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ABSTRACT

This thesis concerns three key aspects of reduced-order modeling for turbulent
shear flows. They are linear mechanisms, nonlinear interactions, and data-driven
techniques. Each aspect is explored by way of example through analysis of three

different problems relevant to the broad area of turbulent channel flow.

First, linear analyses are used to both describe and better understand the domi-
nant flow structures in elastoinertial turbulence of dilute polymer solutions. It is
demonstrated that the most-amplified mode predicted by resolvent analysis (McK-
eon and Sharma, 2010) strongly resembles these features. Then, the origin of these
structures is investigated, and it is shown that they are likely linked to the classical

Tollmien-Schichting waves.

Second, resolvent analysis is again utilized to investigate nonlinear interactions in
Newtonian turbulence. An alternative decomposition of the resolvent operator into
Orr-Sommerfeld and Squire families (Rosenberg and McKeon, 2019b) enables a
highly accurate low-order representation of the second-order turbulence statistics.
The reason for its excellent performance is argued to result from the fact that the
decomposition enables a competition mechanism between the Orr-Sommerfeld and
Squire vorticity responses. This insight is then leveraged to make predictions
about how resolvent mode weights belonging to several special classes scale with

increasing Reynolds number.

The final application concerns special solutions of the Navier-Stokes equations
known as exact coherent states. Specifically, we detail a proof of concept for a data-
driven method centered around a neural network to generate good initial guesses for
upper-branch equilibria in Couette flow. It is demonstrated that the neural network is
capable of producing upper-branch solution predictions that successfully converge
to numerical solutions of the governing equations over a limited range of Reynolds
numbers. These converged solutions are then analyzed, with a particular emphasis
on symmetries. Interestingly, they do not share any symmetries with the known
equilibria used to train the network. The implications of this finding, as well as

broader outlook for the scope of the proposed method, are discussed.
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Chapter 1

INTRODUCTION

Turbulence is pervasive. From weather patterns, to ocean currents, to jet engine
combustors, it plays a central role in many areas that directly affect daily life. Con-
sequently, the ability to make quantitative predictions about how turbulence behaves
is vital for many areas of science and engineering. Unfortunately, a comprehensive
theory of turbulence remains elusive after more than a century of research. To
appreciate why, one need only drop food coloring in water or stir milk into cof-
fee. What emerges are captivating, astoundingly complex motions of myriad sizes
evolving on myriad time scales, all of which influence each other. To get a sense of
the complexity turbulence researchers are confronted with, consider the Reynolds
number (Re), which quantifies the relative importance of fluid inertia to viscous
forces. In turbulent flows, Re also serves as an indicator of the range of length scales
present. Typical Re for some real-world systems, including flow over the hull of a
cargo ship and the atmospheric surface layer, can be as large as O (10° — 107) (Smits
and Marusic, 2013).

Absent a complete theory, engineers have largely relied on empiricism to determine
quantities of interest, such as the drag force on an aircraft wing. While empirical
approaches have been enormously successful in aviation and elsewhere, there are
still limitations to what can be learned. For example, performing experiments to
measure every bit of desired information for every iteration of an aircraft design is
clearly infeasible. Similarly, although the advent of high-performance computing
has enabled the simulation of some turbulent flows, most that are of technological
relevance still lie beyond the capabilities of even the largest modern supercomputers

and likely will for some time.

This underscores the need for models of reduced complexity, but which still retain
the physics essential for making useful predictions. Simplified models are, of
course, not a new idea. However, many of the ones developed for turbulence are
largely based on phenomenology, which means that they are unlikely to generalize
well. Ideally then, a “reduced-order” model should be produced in some principled

fashion.

The purpose of this chapter is to briefly introduce and provide some background for



the concepts discussed at length in subsequent chapters.

1.1 Wall-bounded turbulence and coherent structures

Many turbulent flows of practical significance involve motion past a solid bounding
surface. Such flows are categorized as wall-bounded turbulence. The presence
of a wall has several important implications. The first is that the geometry of the
surface imposes a length scale on the flow, which determines the size of the largest
turbulent motions. Second, friction causes the velocity of the fluid relative to the
surface to be zero at the wall. Through viscosity, this effect is felt a finite distance
from the wall, resulting in a wall-normal gradient of the mean velocity. Importantly,
this mean velocity gradient, or mean shear, acts as a source for the production of
turbulent fluctuations. For this reason, wall-bounded turbulence, unlike turbulence

in the absence of a mean shear, is said to be self-sustaining.

Central to the mechanisms through which wall-bounded turbulence self-sustains are
so-called coherent structures. While there is no consensus on a precise definition
of a coherent structure (Marusic et al., 2010), they can be broadly described as
recurring motions that exhibit spatiotemporal coherence according to some metric.
A large body of literature on coherent structures in wall-bounded flows has been
produced in recent decades, and a comprehensive review is beyond the scope of this

chapter. Instead, we merely identify several classes relevant to the present work.

Close to the wall, alternating low- and high-speed streaks of streamwise velocity
flanked by streamwise-oriented vortices comprise what is known as the near-wall
cycle (NWC). Significantly, it has been argued that the regeneration cycle of the
streaks and vortices is the fundamental process through which near-wall turbulence
is sustained (Hamilton et al., 1995). The NWC also has a significant statistical sig-
nature, with it being responsible for the peak of the streamwise velocity fluctuation
variance close to the wall. It has been proposed that the near-wall vortices form
the legs of larger structures known as “hairpin” vortices (Adrian, 2007). Further,
individual hairpin vortices can generate secondary hairpins upstream and down-
stream of the primary one, creating a hairpin “packet” (Zhou et al., 1999), and
these packets are hypothesized to be the constituent elements of large scale motions
(LSMs) associated with turbulent bulges in the outer region of the flow (Adrian,
2007). Finally, at sufficiently high Re, even larger motions, termed very large-scale
motions (VLSMs) or superstructures, emerge and contribute as much as half of the
turbulent kinetic energy (Kim and Adrian, 1999; Guala et al., 2006; Hutchins and



Marusic, 2007).

From a reduced-order modeling standpoint, the persistence and energetic dominance
of coherent structures is encouraging, as they support the view that, despite the
complexity of wall-bounded turbulence, perhaps much of the crucial dynamics can

be described in terms of a small set of (relatively) simple features.

1.2 Turbulent drag reduction via polymer additives

Since Toms (1948), it is has been known that the addition of minute amounts of long,
flexible polymers to a liquid can result in substantial turbulent drag reduction (DR).
For example, addition of only 18 parts per million of polyethylene oxide of molecular
weight ~ 10 to water can reduce the skin friction in pipe flow by roughly a third (Virk
et al., 1967); other polymer solutions can achieve drag reduction has high as 80%
(Virk, 1975). Due to the potentially enormous energy savings, polymer additives
have been adopted in many industrial settings involving large-scale transport of
fluids, the most famous example being in the Trans-Alaska pipeline (Burger et al.,
1980; Burger et al., 1982).

The field of polymer DR has seen sustained research activity for over 70 years
now. This is partly because, from a practical perspective, a better mechanistic
understanding of how the significant DR is achieved could potentially enable a
similar mechanism to be exploited via other means of flow control applicable in a
broader class of flows. Fundamentally, the strong modifications to the turbulence
imply an alteration of the processes that sustain it, situating polymer additives as a

unique way to better understand them.

Early attempts at a theoretical explanation of polymer DR can be broadly classified
as either viewing the effects of the polymers as primarily a local modification of
the viscosity (Lumley, 1969; L'vov et al., 2004), or as the result of elastic energy
being stored by the polymers (Tabor and de Gennes, 1986; de Gennes, 1990;
Sreenivasan and White, 2000). The modified viscosity viewpoint posits that the
intense turbulent fluctuations present in the buffer region of the flow near the wall
cause the polymer molecules to be highly stretched, resulting a dramatic increase
in their extensional viscosity. This locally enhanced viscosity is then supposed
to weaken the eddies, which thickens the buffer layer and reduces the mean wall
shear. The elastic explanation argues that the strain rates in the buffer layer have
too much spatiotemporal variation to fully extend the polymers, and instead that

once the elastic energy stored in the partially-stretched molecules is comparable to
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the kinetic energy contained in length scales larger than those for which viscous
dissipation dominates, the cascade of energy from large to small scales will be
truncated prematurely. Again, the hypothesized effect on the flow is a thickening
of the buffer layer, leading to DR. Both theories have shown qualitative agreement
with experiments and simulations, and it has been suggested that commonly-used
models of the polymers formally admit both interpretations (Sreenivasan and White,
2000; White and Mungal, 2008), making it difficult to argue that one is superior to
the other. One takeaway, however, is that such theories are likely too simplistic, in

that they neglect many details of the complex polymer-flow interactions.

Fortunately, recent developments in both experimental measurement techniques and
computing capabilities have enabled investigations of such interactions. For exam-
ple, particle image velocimetry (PIV) has allowed detailed study of how turbulent
structures are modified in the presence of polymers (Warholic et al., 2001; White
et al., 2004). In particular, it has been observed that a decrease in number and
strength of the near-wall quasi-streamwise vortices, typically associated with wall-
ward transport of high momentum fluid, accompanies increasing DR (White et al.,
2004). Using continuum-level models for the polymer molecules, direct numerical
simulations give access to the state of the polymers in a turbulent flow, information
that is largely unavailable using modern flow diagnostics. Such simulations also
show a weakening of near-wall vortical activity and link it to polymers doing work
against the vortices as they are drawn up between and subsequently stretched by them
(Dubief et al., 2004; Dubief et al., 2005; Graham, 2014). The same mechanism
also suppresses the autogeneration process of hairpin vortices (Kim et al., 2008). At
high levels of drag reduction, the polymers are even responsible for sustaining the
near-wall turbulence by injecting energy into the streamwise streaks as they relax
(Dubief et al., 2005).

One of the most intriguing aspects of polymer DR is the existence of the maximum
drag reduction (MDR) state, which is an experimental upper bound on the level
of achievable drag reduction (Virk et al., 1970). MDR is, to a first approximation,
independent of the details of polymer solution, e.g., concentration, molecular weight,
and even the monomer itself (Virk, 1975; White and Mungal, 2008; Graham,
2014). Measurements of bulk flow rate at MDR collapse on a curve that depends
logarithmically on Re, similar to the Newtonian case, but with different constants
(Virk, 1975). This is often referred to as the MDR or Virk asymptote. From the
MDR asymptote, Virk (1975) inferred that the mean velocity profile should also
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obey a log-law. While there exist some phenomenological theories for the origin
of a logarithmic MDR profile (e.g., L'vov et al., 2004), a close examination of
simulation data indicates that the mean velocity profile in the MDR state is, in
fact, not logarithmic (White et al., 2012). This is supported by recent analysis of
the mean momentum balance using data from additional simulations (White et al.,
2018) and experiments (Elsnab et al., 2019), which indicates that the region of
inertial dynamics associated with logarithmic behavior of the mean velocity profile
diminishes with increasing drag reduction, and that MDR corresponds to complete

loss of logarithmic dependence.

Clearly, a comprehensive understanding of MDR remains elusive. One explanation,
which originates from the dynamical systems view of turbulence, is that MDR
corresponds to a state of “hibernating” turbulence (Graham, 2014), a low-drag state
supposed to exist even in the Newtonian limit, in which case it is approached only
infrequently. In this picture, the effect of increasing flow elasticity is to increase
the frequency of excursions to the hibernating state, with MDR corresponding to
the flow spending almost all of its time there. That is, the turbulence becomes
marginalized by the action of the polymers (Graham, 2014). Support for this view
comes from the existence of a family of traveling wave solutions for Newtonian
pressure-driven flow in a channel, the “upper branch” of which has a mean profile
resembling that of Newtonian turbulence, while the corresponding lower branch
mean profile approaches the Virk log-law (Park and Graham, 2015). Moreover,
averages of mean velocity profiles from experiments of transitional Newtonian
channel flow conditioned on low drag events reveal similarities to these invariant
solutions (Whalley et al., 2017).

Another explanation of MDR is related to elastoinertial turbulence (EIT), a novel
chaotic state first observed in measurements of pipe flow at modest Re = O (10°) with
high polymer concentrations (Samanta et al., 2013). Therefore, as the name suggests,
the interplay of inertia and elasticity is believed to be important in EIT. It is thus
distinct from so-called elastic turbulence, which exists in creeping flows of polymer
solutions with curved streamlines (Groisman and Steinberg, 2000; Groisman and
Steinberg, 2001). Notably, for sufficiently high levels of elasticity, EIT can be found
at Re lower than that for the onset of turbulence in a Newtonian fluid (Samanta et al.,
2013; Choueiri et al., 2018).

Simulations of EIT in channels (Samanta et al., 2013; Dubief et al., 2013; Terrapon
et al., 2014; Sid et al., 2018) have elucidated its structure, which is found to be



6

markedly different from Newtonian turbulence or turbulence at modest levels of DR.
The quasi-streamwise vortices and near-wall streamwise streaks are entirely absent,
and the flow is instead dominated by very weak spanwise-oriented vortical structures.
The polymers undergo large stretching in thin, highly inclined sheet-like structures
that emanate from the near-wall region and are nearly two-dimensional (Samanta
etal., 2013; Dubief et al., 2013). In fact, 2D simulations display qualitatively similar
structures, implying that the mechanism of EIT is fundamentally two-dimensional
(Sid et al., 2018). Additionally, PIV measurements (Choueiri et al., 2018) and
simulations with long domains in pipes show the existence of weak, extremely long

(~50 diameters) streamwise velocity structures.

Importantly, the friction factor scaling of EIT agrees with that for MDR, and, upon
increasing Re, the mean velocity profile approaches the Virk profile, suggesting that
the two states are linked (Samanta et al., 2013). Furthermore, it was shown that
EIT is dynamically distinct from Newtonian turbulence. By gradually increasing
polymer concentration, Choueiri et al. (2018) demonstrated that for Re sufficiently
low but still above the transition Re for Newtonian fluids, the flow undergoes a
reverse transition leading to relaminarization. Further increase in the concentration
results in different instability, and the flow transitions directly into EIT. At higher Re,
which has been the focus of the majority of the previous experimental and numerical
studies, this elastic instability is apparently initiated before relaminarization occurs,
yielding the classic picture of a continuous path between Newtonian turbulence and
MDR (Choueiri et al., 2018).

1.3 Systems approaches to nonlinear interactions in wall-bounded turbulence
Techniques borrowed from developments in nonmodal stability theory (Trefethen
et al., 1993; Jovanovi¢ and Bamieh, 2005; Schmid, 2007) have been met with
much success in the analysis of wall-bounded turbulent shear flows. For example,
analyses of the Navier-Stokes equations (NSE) linearized about the turbulent mean
velocity predict the spanwise length scales associated with the near-wall cycle and
large-scale structures in the outer region of the flow from both a transient growth
(del Alamo and Jiménez, 2006; Cossu et al., 2009; Willis et al., 2010) and energy
amplification of harmonic and stochastic forcing perspective (Hwang and Cossu,
2010; Willis et al., 2010). More recently, the linearized equations have been used
to develop linear estimators (Illingworth et al., 2018; Madhusudanan et al., 2019;
Towne et al., 2020) and compute impulse responses (Vadarevu et al., 2019) that

qualitatively reproduce the coherence and self-similarity of large-scale motions.



7

As turbulence is an inherently nonlinear phenomenon, a complete model must
account for nonlinear interactions. A common approach to incorporate the effects
of nonlinearity into linear models is to augment the linearized equations with an
eddy viscosity, such that the turbulent mean profile is fixed as an equilibrium
solution of the modified mean momentum equation (del Alamo and Jiménez, 2006;
Cossu et al., 2009; Willis et al., 2010; Hwang and Cossu, 2010; Illingworth et al.,
2018; Madhusudanan et al., 2019; Vadarevu et al., 2019). While this approach
justifies linearization about the turbulent mean profile, it precludes the study of
finite-amplitude fluctuations, since their nonlinear interactions would feed back on
and further alter the mean. Instead of using an eddy viscosity, Zare et al. (2017)
considered colored-in-time stochastic forcing of the linearized NSE in the problem
of completing partially-known second-order statistics. Notably, they demonstrated
that their approach can be equivalently represented as a low-rank modification of

the original equations.

In a different approach to dealing with nonlinearity, the resolvent analysis framework
introduced by McKeon and Sharma (2010) retains the nonlinear term and interprets
it as endogenous forcing of the linear dynamics through triadic interactions with
the velocity fluctuations at other wavenumber-frequency combinations. This frame-
work eliminates the need to incorporate an eddy viscosity for self-consistency, as
no linearization is performed. Landahl (1967) arrived at a similar formulation,
deriving a forced Orr-Sommerfeld equation in the study of wall-pressure fluctua-
tions. However, Landahl sought approximate solutions in eigenfunction expansions,
while resolvent analysis uses a gain-based approach, in which the fluctuations are
expressed in terms of the most linearly amplified functions, obtained from a singular

value decomposition of the resolvent operator associated with the linearized NSE.

Closure of the loop requires determination of the forcing such that it yields the
correct velocity Fourier modes, as well as the mean velocity profile, which is
assumed known. The forcing can be expanded as a sum over a set of basis functions
such that the unknowns are the complex amplitudes, called the resolvent weights.
An exact equation for the weights can be formulated (McKeon et al., 2013), though
it is intractable to solve for most complex flows of interest. Consequently, there
have been previous attempts to estimate the weights from data, e.g., by using either
a single time series or power spectral density of the velocity fluctuations (Gémez et
al., 2016; Beneddine et al., 2016). Alternatively, Moarref et al. (2014a) used convex

optimization to compute the weights for a resolvent-based low-order representation
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of time-averaged velocity spectra that minimize the deviation from spectra obtained
from a direct numerical simulation (DNS) of channel flow (Hoyas and Jiménez,
2006). Towne et al. (2018) established a link between resolvent analysis and spectral
proper orthogonal decomposition (SPOD) and showed that if the resolvent weights
are treated as stochastic quantities, their covariance matrix can be calculated from

the SPOD modes, which inherently rely on statistical data.

In special cases where full information of the nonlinear forcing is available, such
as for exact coherent states (ECS), which are simple invariant solutions of the
full NSE and will be discussed in detail in the next section, the resolvent weights
can be computed exactly by projecting the forcing onto the aforementioned set
of basis functions (Sharma et al., 2016). For ECS families in channel and pipe
flow, which come in pairs of upper and lower branch solutions, the lower branch
ones are typically well-represented by only a few resolvent modes, whereas many
of the upper branch solutions are not captured as efficiently. Furthermore, the
wall-normal and spanwise velocity components converge much more slowly than
the streamwise velocity. However, an alternative decomposition of the resolvent
operator recently proposed by Rosenberg and McKeon (2019b) yields two families
of modes related to the Orr-Sommerfeld and Squire operators from classical linear
stability theory. By projecting the same channel ECS, they demonstrated that the new
sets of basis functions enable a much more compact representation of both branches
of solutions, and, notably, all three velocity components converge at roughly the
same rate. Subsequent analysis attributed the improved efficacy of the alternative
decomposition to the isolation of the wall-normal velocity response into the Orr-
Sommerfeld modes, such that the Squire wall-normal vorticity is free to interact

with that generated by the Orr-Sommerfeld modes (Rosenberg, 2018).

1.4 Exact coherent states

Exact coherent states (ECS) is a term coined by Waleffe (1998) for special solutions
of the full nonlinear NSE. Most known examples of ECS are either equilibria (of
which the laminar state is a trivial example) and periodic orbits, that is, flows which
are time-periodic, such as the classical von Karman vortex shedding in the wake
of a circular cylinder. The first three-dimensional ECS for one of the canonical
shear flow geometries was the Couette flow equilibrium reported by Nagata (1990),
obtained by continuing the Taylor vortex flow solution for flow between concentric
rotating cylinders to the case of zero average rotation rate. Since then, numerous

other equilibria have been discovered for Couette flow (Gibson et al., 2008; Nagata,
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1997; Itano and Generalis, 2009; Ahmed and Sharma, 2020) and other canonical
shear flow geometries (Waleffe, 1998; Walefte, 2001; Faisst and Eckhardt, 2003;
Pringle and Kerswell, 2007; Park and Graham, 2015), as have periodic orbits (Clever
and Busse, 1997; Kawahara and Kida, 2001; Viswanath, 2007b; Duguet et al., 2008;
Willis et al., 2016).

In the dynamical systems interpretation of turbulence, a turbulent flow, represented
by a chaotic trajectory through the (nominally infinite-dimensional) state space of
all possible velocity fields satisfying the NSE, may spend a significant amount of
time in the vicinity of various ECS. This has led researches to hypothesize that the
coherent structures observed in turbulence are the signature of a nearby ECS, and
therefore that ECS form the state space “skeleton” of turbulence. Indeed, known
solutions reproduce features such as the near-wall regeneration cycle (Kawahara
and Kida, 2001). This perspective is enticing because it situates ECS as a reduced-
order model of sorts, where individual solutions can be thought of analogously to
(nonlinear) basis functions, from which turbulence can be reconstructed. While
there is presently no means to practically implement such a model, it is nonetheless

a valuable conceptual tool.

The most common numerical method for finding an ECS is Newton iteration. While
this method converges rapidly once in the vicinity of a solution, convergence de-
pends on a sufficiently good initial guess. Numerous techniques for generating
initial guesses have been employed in the literature, most of which are reviewed
in Kawahara et al. (2012). In a bisection method, two guesses are generated. If
one leads to turbulence, and the other decays to laminar, another is chosen between
between the first two, and this process is repeated until the flow neither relaminarizes
or becomes fully turbulent for a sufficiently long time. Using homotopy, an extra
paramter is introduced (e.g., rotation rate in t