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ABSTRACT

This thesis concerns three key aspects of reduced-order modeling for turbulent
shear flows. They are linear mechanisms, nonlinear interactions, and data-driven
techniques. Each aspect is explored by way of example through analysis of three
different problems relevant to the broad area of turbulent channel flow.

First, linear analyses are used to both describe and better understand the domi-
nant flow structures in elastoinertial turbulence of dilute polymer solutions. It is
demonstrated that the most-amplified mode predicted by resolvent analysis (McK-
eon and Sharma, 2010) strongly resembles these features. Then, the origin of these
structures is investigated, and it is shown that they are likely linked to the classical
Tollmien-Schichting waves.

Second, resolvent analysis is again utilized to investigate nonlinear interactions in
Newtonian turbulence. An alternative decomposition of the resolvent operator into
Orr-Sommerfeld and Squire families (Rosenberg and McKeon, 2019b) enables a
highly accurate low-order representation of the second-order turbulence statistics.
The reason for its excellent performance is argued to result from the fact that the
decomposition enables a competition mechanism between the Orr-Sommerfeld and
Squire vorticity responses. This insight is then leveraged to make predictions
about how resolvent mode weights belonging to several special classes scale with
increasing Reynolds number.

The final application concerns special solutions of the Navier-Stokes equations
known as exact coherent states. Specifically, we detail a proof of concept for a data-
driven method centered around a neural network to generate good initial guesses for
upper-branch equilibria in Couette flow. It is demonstrated that the neural network is
capable of producing upper-branch solution predictions that successfully converge
to numerical solutions of the governing equations over a limited range of Reynolds
numbers. These converged solutions are then analyzed, with a particular emphasis
on symmetries. Interestingly, they do not share any symmetries with the known
equilibria used to train the network. The implications of this finding, as well as
broader outlook for the scope of the proposed method, are discussed.
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C h a p t e r 1

INTRODUCTION

Turbulence is pervasive. From weather patterns, to ocean currents, to jet engine
combustors, it plays a central role in many areas that directly affect daily life. Con-
sequently, the ability to make quantitative predictions about how turbulence behaves
is vital for many areas of science and engineering. Unfortunately, a comprehensive
theory of turbulence remains elusive after more than a century of research. To
appreciate why, one need only drop food coloring in water or stir milk into cof-
fee. What emerges are captivating, astoundingly complex motions of myriad sizes
evolving on myriad time scales, all of which influence each other. To get a sense of
the complexity turbulence researchers are confronted with, consider the Reynolds
number (Re), which quantifies the relative importance of fluid inertia to viscous
forces. In turbulent flows, Re also serves as an indicator of the range of length scales
present. Typical Re for some real-world systems, including flow over the hull of a
cargo ship and the atmospheric surface layer, can be as large as$ (105−107) (Smits
and Marusic, 2013).

Absent a complete theory, engineers have largely relied on empiricism to determine
quantities of interest, such as the drag force on an aircraft wing. While empirical
approaches have been enormously successful in aviation and elsewhere, there are
still limitations to what can be learned. For example, performing experiments to
measure every bit of desired information for every iteration of an aircraft design is
clearly infeasible. Similarly, although the advent of high-performance computing
has enabled the simulation of some turbulent flows, most that are of technological
relevance still lie beyond the capabilities of even the largest modern supercomputers
and likely will for some time.

This underscores the need for models of reduced complexity, but which still retain
the physics essential for making useful predictions. Simplified models are, of
course, not a new idea. However, many of the ones developed for turbulence are
largely based on phenomenology, which means that they are unlikely to generalize
well. Ideally then, a “reduced-order” model should be produced in some principled
fashion.

The purpose of this chapter is to briefly introduce and provide some background for
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the concepts discussed at length in subsequent chapters.

1.1 Wall-bounded turbulence and coherent structures
Many turbulent flows of practical significance involve motion past a solid bounding
surface. Such flows are categorized as wall-bounded turbulence. The presence
of a wall has several important implications. The first is that the geometry of the
surface imposes a length scale on the flow, which determines the size of the largest
turbulent motions. Second, friction causes the velocity of the fluid relative to the
surface to be zero at the wall. Through viscosity, this effect is felt a finite distance
from the wall, resulting in a wall-normal gradient of the mean velocity. Importantly,
this mean velocity gradient, or mean shear, acts as a source for the production of
turbulent fluctuations. For this reason, wall-bounded turbulence, unlike turbulence
in the absence of a mean shear, is said to be self-sustaining.

Central to the mechanisms through which wall-bounded turbulence self-sustains are
so-called coherent structures. While there is no consensus on a precise definition
of a coherent structure (Marusic et al., 2010), they can be broadly described as
recurring motions that exhibit spatiotemporal coherence according to some metric.
A large body of literature on coherent structures in wall-bounded flows has been
produced in recent decades, and a comprehensive review is beyond the scope of this
chapter. Instead, we merely identify several classes relevant to the present work.

Close to the wall, alternating low- and high-speed streaks of streamwise velocity
flanked by streamwise-oriented vortices comprise what is known as the near-wall
cycle (NWC). Significantly, it has been argued that the regeneration cycle of the
streaks and vortices is the fundamental process through which near-wall turbulence
is sustained (Hamilton et al., 1995). The NWC also has a significant statistical sig-
nature, with it being responsible for the peak of the streamwise velocity fluctuation
variance close to the wall. It has been proposed that the near-wall vortices form
the legs of larger structures known as “hairpin” vortices (Adrian, 2007). Further,
individual hairpin vortices can generate secondary hairpins upstream and down-
stream of the primary one, creating a hairpin “packet” (Zhou et al., 1999), and
these packets are hypothesized to be the constituent elements of large scale motions
(LSMs) associated with turbulent bulges in the outer region of the flow (Adrian,
2007). Finally, at sufficiently high Re, even larger motions, termed very large-scale
motions (VLSMs) or superstructures, emerge and contribute as much as half of the
turbulent kinetic energy (Kim and Adrian, 1999; Guala et al., 2006; Hutchins and
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Marusic, 2007).

From a reduced-order modeling standpoint, the persistence and energetic dominance
of coherent structures is encouraging, as they support the view that, despite the
complexity of wall-bounded turbulence, perhaps much of the crucial dynamics can
be described in terms of a small set of (relatively) simple features.

1.2 Turbulent drag reduction via polymer additives
Since Toms (1948), it is has been known that the addition of minute amounts of long,
flexible polymers to a liquid can result in substantial turbulent drag reduction (DR).
For example, addition of only 18 parts permillion of polyethylene oxide ofmolecular
weight∼106 towater can reduce the skin friction in pipe flowby roughly a third (Virk
et al., 1967); other polymer solutions can achieve drag reduction has high as 80%
(Virk, 1975). Due to the potentially enormous energy savings, polymer additives
have been adopted in many industrial settings involving large-scale transport of
fluids, the most famous example being in the Trans-Alaska pipeline (Burger et al.,
1980; Burger et al., 1982).

The field of polymer DR has seen sustained research activity for over 70 years
now. This is partly because, from a practical perspective, a better mechanistic
understanding of how the significant DR is achieved could potentially enable a
similar mechanism to be exploited via other means of flow control applicable in a
broader class of flows. Fundamentally, the strong modifications to the turbulence
imply an alteration of the processes that sustain it, situating polymer additives as a
unique way to better understand them.

Early attempts at a theoretical explanation of polymer DR can be broadly classified
as either viewing the effects of the polymers as primarily a local modification of
the viscosity (Lumley, 1969; L’vov et al., 2004), or as the result of elastic energy
being stored by the polymers (Tabor and de Gennes, 1986; de Gennes, 1990;
Sreenivasan and White, 2000). The modified viscosity viewpoint posits that the
intense turbulent fluctuations present in the buffer region of the flow near the wall
cause the polymer molecules to be highly stretched, resulting a dramatic increase
in their extensional viscosity. This locally enhanced viscosity is then supposed
to weaken the eddies, which thickens the buffer layer and reduces the mean wall
shear. The elastic explanation argues that the strain rates in the buffer layer have
too much spatiotemporal variation to fully extend the polymers, and instead that
once the elastic energy stored in the partially-stretched molecules is comparable to
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the kinetic energy contained in length scales larger than those for which viscous
dissipation dominates, the cascade of energy from large to small scales will be
truncated prematurely. Again, the hypothesized effect on the flow is a thickening
of the buffer layer, leading to DR. Both theories have shown qualitative agreement
with experiments and simulations, and it has been suggested that commonly-used
models of the polymers formally admit both interpretations (Sreenivasan andWhite,
2000; White and Mungal, 2008), making it difficult to argue that one is superior to
the other. One takeaway, however, is that such theories are likely too simplistic, in
that they neglect many details of the complex polymer-flow interactions.

Fortunately, recent developments in both experimental measurement techniques and
computing capabilities have enabled investigations of such interactions. For exam-
ple, particle image velocimetry (PIV) has allowed detailed study of how turbulent
structures are modified in the presence of polymers (Warholic et al., 2001; White
et al., 2004). In particular, it has been observed that a decrease in number and
strength of the near-wall quasi-streamwise vortices, typically associated with wall-
ward transport of high momentum fluid, accompanies increasing DR (White et al.,
2004). Using continuum-level models for the polymer molecules, direct numerical
simulations give access to the state of the polymers in a turbulent flow, information
that is largely unavailable using modern flow diagnostics. Such simulations also
show a weakening of near-wall vortical activity and link it to polymers doing work
against the vortices as they are drawn up between and subsequently stretched by them
(Dubief et al., 2004; Dubief et al., 2005; Graham, 2014). The same mechanism
also suppresses the autogeneration process of hairpin vortices (Kim et al., 2008). At
high levels of drag reduction, the polymers are even responsible for sustaining the
near-wall turbulence by injecting energy into the streamwise streaks as they relax
(Dubief et al., 2005).

One of the most intriguing aspects of polymer DR is the existence of the maximum
drag reduction (MDR) state, which is an experimental upper bound on the level
of achievable drag reduction (Virk et al., 1970). MDR is, to a first approximation,
independent of the details of polymer solution, e.g., concentration, molecularweight,
and even the monomer itself (Virk, 1975; White and Mungal, 2008; Graham,
2014). Measurements of bulk flow rate at MDR collapse on a curve that depends
logarithmically on Re, similar to the Newtonian case, but with different constants
(Virk, 1975). This is often referred to as the MDR or Virk asymptote. From the
MDR asymptote, Virk (1975) inferred that the mean velocity profile should also
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obey a log-law. While there exist some phenomenological theories for the origin
of a logarithmic MDR profile (e.g., L’vov et al., 2004), a close examination of
simulation data indicates that the mean velocity profile in the MDR state is, in
fact, not logarithmic (White et al., 2012). This is supported by recent analysis of
the mean momentum balance using data from additional simulations (White et al.,
2018) and experiments (Elsnab et al., 2019), which indicates that the region of
inertial dynamics associated with logarithmic behavior of the mean velocity profile
diminishes with increasing drag reduction, and that MDR corresponds to complete
loss of logarithmic dependence.

Clearly, a comprehensive understanding of MDR remains elusive. One explanation,
which originates from the dynamical systems view of turbulence, is that MDR
corresponds to a state of “hibernating” turbulence (Graham, 2014), a low-drag state
supposed to exist even in the Newtonian limit, in which case it is approached only
infrequently. In this picture, the effect of increasing flow elasticity is to increase
the frequency of excursions to the hibernating state, with MDR corresponding to
the flow spending almost all of its time there. That is, the turbulence becomes
marginalized by the action of the polymers (Graham, 2014). Support for this view
comes from the existence of a family of traveling wave solutions for Newtonian
pressure-driven flow in a channel, the “upper branch” of which has a mean profile
resembling that of Newtonian turbulence, while the corresponding lower branch
mean profile approaches the Virk log-law (Park and Graham, 2015). Moreover,
averages of mean velocity profiles from experiments of transitional Newtonian
channel flow conditioned on low drag events reveal similarities to these invariant
solutions (Whalley et al., 2017).

Another explanation of MDR is related to elastoinertial turbulence (EIT), a novel
chaotic state first observed inmeasurements of pipe flow atmodestRe = $ (103)with
high polymer concentrations (Samanta et al., 2013). Therefore, as the name suggests,
the interplay of inertia and elasticity is believed to be important in EIT. It is thus
distinct from so-called elastic turbulence, which exists in creeping flows of polymer
solutions with curved streamlines (Groisman and Steinberg, 2000; Groisman and
Steinberg, 2001). Notably, for sufficiently high levels of elasticity, EIT can be found
at Re lower than that for the onset of turbulence in a Newtonian fluid (Samanta et al.,
2013; Choueiri et al., 2018).

Simulations of EIT in channels (Samanta et al., 2013; Dubief et al., 2013; Terrapon
et al., 2014; Sid et al., 2018) have elucidated its structure, which is found to be
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markedly different fromNewtonian turbulence or turbulence at modest levels of DR.
The quasi-streamwise vortices and near-wall streamwise streaks are entirely absent,
and the flow is instead dominated by veryweak spanwise-oriented vortical structures.
The polymers undergo large stretching in thin, highly inclined sheet-like structures
that emanate from the near-wall region and are nearly two-dimensional (Samanta
et al., 2013; Dubief et al., 2013). In fact, 2D simulations display qualitatively similar
structures, implying that the mechanism of EIT is fundamentally two-dimensional
(Sid et al., 2018). Additionally, PIV measurements (Choueiri et al., 2018) and
simulations with long domains in pipes show the existence of weak, extremely long
(∼50 diameters) streamwise velocity structures.

Importantly, the friction factor scaling of EIT agrees with that for MDR, and, upon
increasing Re, the mean velocity profile approaches the Virk profile, suggesting that
the two states are linked (Samanta et al., 2013). Furthermore, it was shown that
EIT is dynamically distinct from Newtonian turbulence. By gradually increasing
polymer concentration, Choueiri et al. (2018) demonstrated that for Re sufficiently
low but still above the transition Re for Newtonian fluids, the flow undergoes a
reverse transition leading to relaminarization. Further increase in the concentration
results in different instability, and the flow transitions directly into EIT. At higher Re,
which has been the focus of the majority of the previous experimental and numerical
studies, this elastic instability is apparently initiated before relaminarization occurs,
yielding the classic picture of a continuous path between Newtonian turbulence and
MDR (Choueiri et al., 2018).

1.3 Systems approaches to nonlinear interactions in wall-bounded turbulence
Techniques borrowed from developments in nonmodal stability theory (Trefethen
et al., 1993; Jovanović and Bamieh, 2005; Schmid, 2007) have been met with
much success in the analysis of wall-bounded turbulent shear flows. For example,
analyses of the Navier-Stokes equations (NSE) linearized about the turbulent mean
velocity predict the spanwise length scales associated with the near-wall cycle and
large-scale structures in the outer region of the flow from both a transient growth
(del Álamo and Jiménez, 2006; Cossu et al., 2009; Willis et al., 2010) and energy
amplification of harmonic and stochastic forcing perspective (Hwang and Cossu,
2010; Willis et al., 2010). More recently, the linearized equations have been used
to develop linear estimators (Illingworth et al., 2018; Madhusudanan et al., 2019;
Towne et al., 2020) and compute impulse responses (Vadarevu et al., 2019) that
qualitatively reproduce the coherence and self-similarity of large-scale motions.
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As turbulence is an inherently nonlinear phenomenon, a complete model must
account for nonlinear interactions. A common approach to incorporate the effects
of nonlinearity into linear models is to augment the linearized equations with an
eddy viscosity, such that the turbulent mean profile is fixed as an equilibrium
solution of the modified mean momentum equation (del Álamo and Jiménez, 2006;
Cossu et al., 2009; Willis et al., 2010; Hwang and Cossu, 2010; Illingworth et al.,
2018; Madhusudanan et al., 2019; Vadarevu et al., 2019). While this approach
justifies linearization about the turbulent mean profile, it precludes the study of
finite-amplitude fluctuations, since their nonlinear interactions would feed back on
and further alter the mean. Instead of using an eddy viscosity, Zare et al. (2017)
considered colored-in-time stochastic forcing of the linearized NSE in the problem
of completing partially-known second-order statistics. Notably, they demonstrated
that their approach can be equivalently represented as a low-rank modification of
the original equations.

In a different approach to dealing with nonlinearity, the resolvent analysis framework
introduced by McKeon and Sharma (2010) retains the nonlinear term and interprets
it as endogenous forcing of the linear dynamics through triadic interactions with
the velocity fluctuations at other wavenumber-frequency combinations. This frame-
work eliminates the need to incorporate an eddy viscosity for self-consistency, as
no linearization is performed. Landahl (1967) arrived at a similar formulation,
deriving a forced Orr-Sommerfeld equation in the study of wall-pressure fluctua-
tions. However, Landahl sought approximate solutions in eigenfunction expansions,
while resolvent analysis uses a gain-based approach, in which the fluctuations are
expressed in terms of the most linearly amplified functions, obtained from a singular
value decomposition of the resolvent operator associated with the linearized NSE.

Closure of the loop requires determination of the forcing such that it yields the
correct velocity Fourier modes, as well as the mean velocity profile, which is
assumed known. The forcing can be expanded as a sum over a set of basis functions
such that the unknowns are the complex amplitudes, called the resolvent weights.
An exact equation for the weights can be formulated (McKeon et al., 2013), though
it is intractable to solve for most complex flows of interest. Consequently, there
have been previous attempts to estimate the weights from data, e.g., by using either
a single time series or power spectral density of the velocity fluctuations (Gómez et
al., 2016; Beneddine et al., 2016). Alternatively, Moarref et al. (2014a) used convex
optimization to compute the weights for a resolvent-based low-order representation
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of time-averaged velocity spectra that minimize the deviation from spectra obtained
from a direct numerical simulation (DNS) of channel flow (Hoyas and Jiménez,
2006). Towne et al. (2018) established a link between resolvent analysis and spectral
proper orthogonal decomposition (SPOD) and showed that if the resolvent weights
are treated as stochastic quantities, their covariance matrix can be calculated from
the SPOD modes, which inherently rely on statistical data.

In special cases where full information of the nonlinear forcing is available, such
as for exact coherent states (ECS), which are simple invariant solutions of the
full NSE and will be discussed in detail in the next section, the resolvent weights
can be computed exactly by projecting the forcing onto the aforementioned set
of basis functions (Sharma et al., 2016). For ECS families in channel and pipe
flow, which come in pairs of upper and lower branch solutions, the lower branch
ones are typically well-represented by only a few resolvent modes, whereas many
of the upper branch solutions are not captured as efficiently. Furthermore, the
wall-normal and spanwise velocity components converge much more slowly than
the streamwise velocity. However, an alternative decomposition of the resolvent
operator recently proposed by Rosenberg and McKeon (2019b) yields two families
of modes related to the Orr-Sommerfeld and Squire operators from classical linear
stability theory. By projecting the same channel ECS, they demonstrated that the new
sets of basis functions enable a much more compact representation of both branches
of solutions, and, notably, all three velocity components converge at roughly the
same rate. Subsequent analysis attributed the improved efficacy of the alternative
decomposition to the isolation of the wall-normal velocity response into the Orr-
Sommerfeld modes, such that the Squire wall-normal vorticity is free to interact
with that generated by the Orr-Sommerfeld modes (Rosenberg, 2018).

1.4 Exact coherent states
Exact coherent states (ECS) is a term coined by Waleffe (1998) for special solutions
of the full nonlinear NSE. Most known examples of ECS are either equilibria (of
which the laminar state is a trivial example) and periodic orbits, that is, flows which
are time-periodic, such as the classical von Kàrmàn vortex shedding in the wake
of a circular cylinder. The first three-dimensional ECS for one of the canonical
shear flow geometries was the Couette flow equilibrium reported by Nagata (1990),
obtained by continuing the Taylor vortex flow solution for flow between concentric
rotating cylinders to the case of zero average rotation rate. Since then, numerous
other equilibria have been discovered for Couette flow (Gibson et al., 2008; Nagata,
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1997; Itano and Generalis, 2009; Ahmed and Sharma, 2020) and other canonical
shear flow geometries (Waleffe, 1998; Waleffe, 2001; Faisst and Eckhardt, 2003;
Pringle andKerswell, 2007; Park andGraham, 2015), as have periodic orbits (Clever
and Busse, 1997; Kawahara and Kida, 2001; Viswanath, 2007b; Duguet et al., 2008;
Willis et al., 2016).

In the dynamical systems interpretation of turbulence, a turbulent flow, represented
by a chaotic trajectory through the (nominally infinite-dimensional) state space of
all possible velocity fields satisfying the NSE, may spend a significant amount of
time in the vicinity of various ECS. This has led researches to hypothesize that the
coherent structures observed in turbulence are the signature of a nearby ECS, and
therefore that ECS form the state space “skeleton” of turbulence. Indeed, known
solutions reproduce features such as the near-wall regeneration cycle (Kawahara
and Kida, 2001). This perspective is enticing because it situates ECS as a reduced-
order model of sorts, where individual solutions can be thought of analogously to
(nonlinear) basis functions, from which turbulence can be reconstructed. While
there is presently no means to practically implement such a model, it is nonetheless
a valuable conceptual tool.

The most common numerical method for finding an ECS is Newton iteration. While
this method converges rapidly once in the vicinity of a solution, convergence de-
pends on a sufficiently good initial guess. Numerous techniques for generating
initial guesses have been employed in the literature, most of which are reviewed
in Kawahara et al. (2012). In a bisection method, two guesses are generated. If
one leads to turbulence, and the other decays to laminar, another is chosen between
between the first two, and this process is repeated until the flow neither relaminarizes
or becomes fully turbulent for a sufficiently long time. Using homotopy, an extra
paramter is introduced (e.g., rotation rate in the original Nagata solution), and a
solution is obtained for the original system by continuing solutions to the case of the
parameter value being zero. Filtered snapshots from a turbulent field can also be
used as initial guesses. This often entails the use of recurrence plots, in which a time
series is closely examined for quasi-periodic behavior. Recently, Page and Kerswell
(2020) applied dynamic mode decomposition (DMD) (Schmid, 2010) to turbulent
time series to generate robust initial guesses for nearby periodic orbits. Another
approach proposed recently by Ahmed and Sharma (2020) uses resolvent analysis
to generate low-dimensional projections of known ECS, which resulted in the dis-
covery of numerous new families of equilibria in Couette flow. Finally, Rosenberg
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and McKeon (2019a) demonstrated that an iterative resolvent-based method can
generate converged ECS starting from the laminar state.

ECSoften appear in saddle-node bifurcations at a finiteRe, which yield twobranches.
One is typically closer to the laminar state and is thus referred to as the lower branch
(LB). The other is called the upper branch (UB), and is usually more “turbulent-
like”. Because LB solutions are more like the laminar state, they are typically
easier to compute. Moreover, some LB solutions exhibit the same Re scaling as
the finite amplitude vortex-wave interaction solutions for asymptotically large Re
(Hall and Sherwin, 2010). Computing UB can be more difficult. Typically, one
starts from a known solution at a given Re, often close to the bifurcation point and
then continues the solution branch to larger Re, using the previous converged state
as the initial guess for the next search. However, this can be a computationally
expensive procedure, particularly at higher Re where smaller steps are required, and
convergence requires more iterations at each step. It would therefore be valuable to
have a method that can generate good initial guesses for UB solutions that do not
necessitate costly continuations.

1.5 Objectives and organization of the thesis
The present thesis concerns the application of reduced-order modeling techniques
to particular problems in wall-bounded turbulent flows. These are presented as
three relatively self-contained case studies pertaining to the broad themes of linear
mechanisms, nonlinear interactions, and data-drivenmethods. While specific objec-
tives are given in the relevant chapters, the overarching goals are to (1) gain deeper
physical insight into the flow through reduced-order modeling, and (2) augment
equations-based techniques with data to expand their utility.

The remainder of the thesis is organized as follows: First, Chapter 2 introduces
resolvent analysis for a general nonlinear system. Then, Chapter 3 details the ap-
plication of resolvent analysis to viscoelastic fluids in an attempt to elucidate the
linear mechanisms underlying the origin of the dominant structures observed in
EIT. In Chapter 4 it is demonstrated that an efficient, low-order representation of
second-order statistics in Newtonian turbulent channel flow can be constructed us-
ing an alternative decomposition of the resolvent operator (Rosenberg and McKeon,
2019b), and this representation is used to probe nonlinear interactions within the
resolvent framework. Next, Chapter 5 explores the feasibility of using neural net-
works to generate good initial guesses of upper-branch ECS. Finally, concluding
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remarks and possible directions for future work are discussed in Chapter 6.
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C h a p t e r 2

PRELIMINARIES OF RESOLVENT ANALYSIS

The purpose of this chapter is to introduce the basics of resolvent analysis in a general
setting. Details relevant to the formulation for viscoelastic fluids and nonlinear
interactions are given in Chapters 3 and 4, respectively.

2.1 The resolvent operator
Here we introduce resolvent analysis in the context of a generic nonlinear system:

d q̃
dC
= L( q̃), (2.1)

where q̃(C) is the state of the system at time C. Presently, the only assumption we
make is that Equation (2.1) is statistically stationary, such that a well-defined mean
W B 〈q̃〉, where 〈 · 〉 denotes the averaging operation, exists. In this case, we can
decompose the state as q̃ = W + q, where q B q̃ − W are the fluctuations about the
mean. Substituting into Equation (2.1) and subtracting mean quantities yields an
equation for the fluctuations:

dq
dC
= LWq + f (q,W), (2.2)

whereLW B mL/m q̃ |W represents the linearization of Equation (2.1) about themean
W, and f B f̃ − 〈 f̃ 〉 represents the fluctuations of all terms nonlinear in q; as shown
in Equation (2.2), f will also depend on W in general. Owing to the stationarity of
the system, we express the state and nonlinear terms via their Fourier coefficients,
defined as1

q =

∫ ∞

−∞
q̂ e−8lC dl, (2.3)

f =

∫ ∞

−∞
f̂ e−8lC dl. (2.4)

Substitution into Equation (2.2) gives(
−8l� − LW

)
q̂ = f̂ , (2.5)

1The sign of l in the temporal Fourier Transform is chosen to conform with the convention in
hydrodynamic stability literature that positive frequencies and spatial wavenumbers correspond to
downstream propagating waves.
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f (q,W)
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H

Figure 2.1: Schematic of resolvent analysis. “IFT” and “FT” denote the inverse and
forward Fourier transforms, respectively.

where � is the identity operator. Provided −8l does not belong to the spectrum of
LW , the operator on the left-hand side of Equation (2.5) is invertible, and the Fourier
coefficients of the fluctuations can be expressed as

q̂ =
(
−8l� − LW

)−1
f̂ = H f̂ , (2.6)

whereH B
(
−8l� − LW

)−1 is called the resolvent ofLW . We emphasize that Equa-
tion (2.6) is an exact representation of the full nonlinear system in Equation (2.1);
the only assumption that has been made is one of statistical stationarity. In this
formulation, the nonlinear terms f̂ are re-interpreted as endogenous forcing that
produce the response of the system q̂ (McKeon and Sharma, 2010). This is illus-
trated schematically in the block diagram shown in Figure 2.1, after McKeon et al.
(2013). The bottom half of the loop is the pictorial representation of Equation (2.6):
the forcing f̂ is acted upon by the linear dynamics, represented by H , to produce
the system response q̂. The top half emphasizes the fact that the forcing is produced
by the nonlinearity of the system.

2.2 Decomposition of the resolvent and low-order approximation
In some cases, H may act as a directional amplifier (McKeon and Sharma, 2010).
That is, it may preferentially amplify particular forcing inputs. In such cases, an
efficient low-order representation of the system can be obtained via a singular value
(or Schmidt) decomposition of the resolvent operator:

H =

∞∑
9=1

7 9f9 ( · , 5 9 ) f , (2.7)

where 7 9 and 5 9 , are left and right singular vectors, respectively. They are ordered
by the singular values f9 ≥ f9+1 > 0, which quantify the input-output gain. ( · , · ) f
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denotes the inner product defined on the input space, to which f̂ belongs. We note
that sinceH is parameterized by l, the singular vectors and values are as well.

The left and right singular vectors comprise orthonormal bases for the input (forcing)
and output (response) spaces, respectively:

(5 9 , 5: ) f = (7 9 ,7: )q = X 9 : , (2.8)

where X 9 : is the Kronecker delta. Consequently, the 5 9 are referred to as forcing
modes, and the 7 9 as response modes. f̂ can be expanded as

f̂ =
∞∑
9=1

j 95 9 , (2.9)

where j 9 = ( f̂ , 5 9 ) f ∈ C are referred to as the resolvent weights, and, using
Equations (2.6) and (2.7),

q̂ =
∞∑
9=1
f9 j 97 9 . (2.10)

q̂ can be approximated using the first # modes:

q̂# =
#∑
9=1
f9 j 97 9 . (2.11)

Hereafter, q̂# is referred to as the rank-# approximation. Ideally, this approximation
is good for relatively small # . That is, the error introduced by truncation,

‖ q̂# − q̂‖2q =
∞∑

9=#+1
f2
9 |j 9 |2, (2.12)

is small. However, as discussed in Section 1.3, the forcing is rarely known, making
such an error estimate impossible to compute a priori.

In the special case of (unit amplitude) white noise forcing, j 9 = 1 ∀ 9 , and the
truncation error becomes

‖ q̂# − q̂‖2q =
∞∑

9=#+1
f2
9 . (2.13)

Thus if f# � f#+1, the approximation q̂# is expected to be good, and the resolvent
operator is said to be effectively low rank (McKeon and Sharma, 2010). A special
case worthy of particular attention is the case # = 1, i.e., the rank-1 approximation,
which states that

q̂ ∝ 71. (2.14)
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This implies that the dynamics of the system for a particular value ofl are dominated
by a single mechanism that is strongly linearly amplified by the resolvent operator,
and that the resulting features are captured by the leading resolvent mode. It has
been demonstrated that the rank-1 approximation qualitatively reproduces structures
observed in wall-bounded turbulence (Sharma and McKeon, 2013), and that the
region of parameter space where the resolvent operator is effectively rank-1 has
significant overlap with the region where turbulent fluctuations are highly energetic
(Moarref et al., 2013a). In Chapter 3, the rank-1 approximation is employed in an
analysis of the predominant structures in elastoinertial turbulence.

However, the assumption of white noise forcing is not valid for many systems,
including turbulent flows (Zare et al., 2017; Towne et al., 2018). Therefore, quan-
titatively accurate approximations require calculation or estimation of the resolvent
weights. This is the subject of Chapter 4.
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C h a p t e r 3

LINEAR ANALYSES OF ELASTOINERTIAL TURBULENCE IN
CHANNELS

Portions of this chapter have been previously published in1:

McMullen, R. M., Shekar, A., Graham, M. D., and McKeon, B. J. (2018). “Weis-
senberg number dependence of linear mechanisms in polymer drag-reduced tur-
bulent channel flow”. 12th International ERCOFTAC Symposium on Engineering
Turbulence Modelling and Measurements.

Shekar*, A., McMullen*, R. M., Wang, S.-N., McKeon, B. J., and Graham, M. D.
(2019). “Critical-Layer Structures andMechanisms in Elastoinertial Turbulence”.
Phys. Rev. Lett. 122 (12).DOI:10.1103/PhysRevLett.122.124503, p. 124503.

*Equal contribution.

Shekar, A., McMullen, R. M., McKeon, B. J., and Graham, M. D. (2020). “Self-
sustained elastoinertial Tollmien-Schlichting waves”. Journal of Fluid Mechan-
ics. To appear.

3.1 Chapter overview
EIT is a puzzling phenomenon that is of great importance for both fundamental
and practical reasons. On the one hand, it is a chaotic flow state that is unique
to viscoelastic fluids. On the other, there is strong evidence suggesting that EIT
is the origin of the maximum drag reduction (MDR) state. Both of these aspects
would benefit from a more complete understanding of the mechanisms underlying
EIT. Consequently, the goal of the present chapter is to provide some insights into
the mechanisms that are responsible for initiating EIT, as well as sustaining it.
Both modal and non-modal techniques are employed to highlight the responsible
mechanisms and offer an explanation of how they become strongly amplified.

The organization of the chapter is as follows. First, the governing equations for
a viscoelastic fluid are presented, and the resolvent formulation is revisited in this
context. Next, we demonstrate that the significant structural differences between

1The DNS presented in this chapter were performed by Ashwin Shekar and Michael D. Gra-
ham. Additionally, we are extremely grateful for many discussions with them over the course of a
collaboration from which the contents of this chapter stemmed.
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low levels of drag reduction and EIT are reflected in the linear dynamics of the
flow, as highlighted by componentwise input-output analysis. Further, it is shown
that the leading resolvent mode closely resembles the structure of the polymer stress
fluctuations that are characteristic of EIT. To gain further insight into the origin of
these structures, we next shift our focus to analysis of perturbations to the laminar
state, showing that they strongly resemble the viscoelastic extension of Tollmien-
Schlichting (TS) waves, which are the most-amplified modes. Finally, analysis
of the mode structure shows that critical layer localization is a likely cause of the
strong polymer stretching, and these observations are supported by comparison with
nonlinear simulations of self-sustaining viscoelastic TS waves.

3.2 Formulation for viscoelastic fluids
First, we introduce the aspects of the resolvent formulation specific to the analysis
of viscoelastic fluids.

Continuum modeling of polymers
Given the complexity of long, flexible polymer molecules typical for drag reduction
purposes, a coarse-grained representation is desirable in order to make theoretical
and computational approaches tractable. The most common one used for complex
flows is the bead-spring dumbbell model, in which the polymer molecule is rep-
resented by two massless beads connected by a spring, as shown schematically in
Figure 3.1. In this model, the molecule’s conformation is entirely described by
the end-to-end vector p. That is, all internal degrees of freedom are neglected,
and only the molecule’s orientation and elongation can be described. This may at
first seem like an extremely crude approximation. However, such deformations are
associated with the slowest relaxation rates and are therefore the first to be excited
by the flow, and they also make the largest contribution to the fluid stress (Graham,
2018). Therefore, it may be considered a suitable model to qualitatively reproduce
the first-order effects of polymer-flow interactions.

While the bead-spring dumbbell model greatly simplifies the description of the poly-
mers, it is still a microscopic one, and we desire a continuum-level representation
that is compatible with the Navier-Stokes equations describing the motion of the
fluid. Fortunately, this can be rigorously derived from the kinetic description, start-
ing from a Smoluchowski equation for the probability distribution of the polymers.
However, as this is not the focus of the present chapter, we omit the details and
instead refer the reader to either Bird et al. (1987) or Graham (2018). Rather than
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Figure 3.1: Schematic of the bead-spring dumbbell model for a polymer molecule;
p is the end-to-end vector.

solve for the distribution, an adequate level of fidelity can be retained by writing an
evolution equation for the conformation tensor

r̃ B
3
'2

0
〈 p ⊗ p〉 p, (3.1)

which is the second moment of the distribution, here nondimensionalized by the
equilibrium mean squared length of the molecule '2

0, such that r̃ = I at equilibrium,
and where

〈 5 〉 p (x, C) B
∫

5 k(x, p, C) d p (3.2)

is the average over all conformations and k is the conformation probability density.
The resulting evolution equation for the conformation tensor is

mC r̃ + (ũ · ∇) r̃ − r̃ · ∇ũ − (r̃ · ∇ũ)T = − 1
�_

3̃ + �∇2r̃ . (3.3)

The left-hand side of Equation (3.3) is the upper-convected derivative, which is the
rate of change of a second-order tensor in a material frame. The first term on the
right-hand side is the polymer stress

1
�_

3̃ = −1
_

I + =

�_
〈 p ⊗ L〉, (3.4)

where � = =:�) is the shear modulus, = is the number density of the molecules,
:� is the Boltzmann constant, ) is the absolute temperature of the solution, and _
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is the stress relaxation time (Graham, 2018). L is the spring connector force. Here,
we use Warner’s force law for a finitely extensible nonlinearly elastic (FENE) spring
(Bird et al., 1987; Beris and Edwards, 1994; Graham, 2018), which is given by

L( p) = � p

1 − !−2 p · p
, (3.5)

where ! is the maximum length of the spring and � = 3:�)/'2
0 is the spring

constant. Substitution of Equation (3.5) into Equation (3.4) gives an expression
that cannot be expressed solely in terms of the conformation tensor. Therefore,
an approximation, known as the Peterlin closure, is often invoked (Beris and Ed-
wards, 1994; Graham, 2018); this consists of pre-averaging the denominator of
Equation (3.5) to give〈

p ⊗ p

1 − !−2 p · p

〉
≈

〈
p ⊗ p

1 − !−2 〈 p · p〉

〉
=
'2

0
3
%(r̃ )r̃ , (3.6)

where
%(r̃ ) B 1

1 − ℓ−2 tr r̃
, (3.7)

is the Peterlin function and ℓ2 = 3!2/'2
0 is the dimensionlessmaximumextensibility.

The FENE model with Peterlin closure is referred to as the FENE-P model.

The second term on the right-hand side of Equation (3.3) represents diffusion of
the polymer molecules with diffusivity �. Typically, this diffusivity is very small,
and this term is usually neglected, as it will be herein. However, this has some
mathematical and numerical consequences, which will be discussed later.

To bring the conformation tensor equation Equation (3.3) into dimensionless form,
we introduce the velocity and length scales* and ℎ respectively, giving

mC r̃ + (ũ · ∇) r̃ − r̃ · ∇ũ − (r̃ · ∇ũ)T = −3̃, (3.8)

3̃ =
1

Wi
(%(r̃ ) − I) , (3.9)

where Wi = _*/ℎ is the Weissenberg number; it is the ratio of the relaxation time
of the polymers to the flow time scale ℎ/*. If Wi � 1, then the polymers relax
too quickly to be significantly stretched by the flow, whereas if Wi � 1, significant
stretching can be expected, and the flow will be strongly viscoelastic.

We conclude this section by stating the assumptions and limitations of the FENE-
P model leading to Equation (3.8), apart from those related to the bead-spring
dumbbell model already discussed. First is that the number density =, i.e., the
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concentration of the polymers, is constant. Therefore, the FENE-P model cannot
account for polymer agglomeration. Second, hydrodynamic interactions between
polymer molecules are neglected. That is, each molecule behaves as it would in an
infinitely dilute solution.

Governing equations
The full set of governing equations for an incompressible FENE-P fluid are

mC ũ + (ũ · ∇) ũ = −∇ ?̃ +
V

Re
∇

2ũ + 1 − V
Re
(∇ · 3̃) , (3.10)

∇ · ũ = 0, (3.11)

mC r̃ + (ũ · ∇) r̃ = r̃ · ∇ũ + (r̃ · ∇ũ)T − 3̃, (3.12)

3̃ =
1

Wi
(%(r̃ ) − I) , (3.13)

where V = `s/
(
`s + `p

)
is the ratio of the solvent viscosity to the total viscosity,

and Re = d*ℎ/
(
`s + `p

)
is the Reynolds number, and d is the fluid density. For all

of the results presented here, we fix V = 0.97 and ℓ = 80 because these values are
representative of a dilute polymer solution used for drag reduction.

Perturbation equations
We now consider additive perturbations to all flow variables: ũ = [ + u, ?̃ = % + ?,
r̃ = R + r , where[, %, R are either base or mean states. The perturbation equations
are obtained by substituting the decompositions into Equations (3.10)–(3.12):

mCu + ([ · ∇) u + (u · ∇)[ = −∇? + V

Re
∇

2u + 1 − V
Re
(∇ · 3) , (3.14)

∇ · u = 0, (3.15)

mCr + ([ · ∇) r + (u · ∇) R = R · ∇u + r · ∇[ (3.16)

+ (R · ∇u)T + (r · ∇[)T − 3.

Because of the form of the Peterlin function, substitution of the decomposition into
Equation (3.7) yields the series

%(R + r ) =
∞∑
:=0

%
:+1

ℓ2: (tr r ): , (3.17)

where % = %(R). Thus the polymer stress is decomposed as 3̃ = T + 3, where

T =
1

Wi

(
%R − I

)
(3.18)
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is the base state stress, and

3 =
%

Wi

(
r + %

ℓ2 (tr r )R + · · ·
)

(3.19)

is the stress perturbation appearing in Equations (3.14) and (3.16). The terms that
are written out explicitly in Equation (3.19) are those that would be retained when
considering linear perturbations, and higher-order terms are masked by the ellipses.

Here, it is appropriate to briefly comment on the mathematical nature of the con-
formation tensor. Apparent from Equation (3.1) is that r̃ is a real, symmetric
tensor. Furthermore, since each of its diagonal components r88 = 〈?2

8
〉 p, 8 = 1, 2, 3,

physically represents a squared length and is thus always positive, all of the con-
formation tensor eigenvalues d8 > 0, implying that the conformation tensor is
positive-definite.This means that, unlike the velocity field u, the proper mathemat-
ical setting for the analysis of the conformation tensor is non-Euclidean in nature
(Doering et al., 2006; Balci et al., 2011; Hameduddin et al., 2018). For this reason,
Hameduddin et al. (2018) proposed an alternative geometric decomposition of the
conformation tensor, arguing that a Reynolds decomposition inhibits physical inter-
pretation since the fluctuation tensor r is necessarily not positive-definite and does
not handle extensions and compressions on equal footing. Furthermore, Hamedud-
din and Zaki (2019) show that the arithmetic mean of the conformation tensor is not
necessarily representative of probable individual realizations.

However, within the resolvent framework, the fluctuations r can still be made math-
ematically consistent by, for example, imposing the additional constraint that the
computed weights yield a positive-definite total tensor r̃ . Additionally, the mean
as defined here still has meaning as the (:G , :I, l) = 0 Fourier component. Fur-
thermore, the primary results of the resolvent analysis presented in this chapter are
compared to DNS (which do obey the positive-definite constraint) and are found
to be in good qualitative agreement, thereby justifying our choice of formulation.
Nonetheless, an interesting avenue for future work would be to see if the geometric
decomposition of Hameduddin et al. (2018) can be incorporated within the resolvent
analysis framework, as well as to see how this would modify the results.

The viscoelastic resolvent operator
The state vector for resolvent analysis of the viscoelastic fluid is comprised of
the three velocity fluctuation components, the pressure fluctuations, and the six



22

independent components of the conformation tensor fluctuations:

q =
(
D E F ? rGG rHH rII rGH rGI rHI

)T
. (3.20)

Note that while there are ten equations, there are only nine nonzero forcing com-
ponents since the continuity equation is linear. The forcing components for the
momentum equations are denoted with a single subscript, 50, 0 ∈ {G, H, I}, and the
forcing components of the conformation tensor equations are denoted with a double
subscript, 501, 0, 1 ∈ {G, H, I}.

Fourier transforming in G, I, and C, the resolvent equation Equation (2.6) takes the
form

q̂ =

[
−8lM −

(
L11 L12

L21 L22

)]−1

M f̂ , (3.21)

whereM B diag(�3×3, 0, �6×6), L11 is the linear Navier-Stokes operator, L22 repre-
sents advection and stretching of the polymers by the base flow, L12 represents the
(linear contribution of) polymer stress fluctuations in the momentum equations, and
L21 represents the effects of the velocity fluctuations on the polymer field. Detailed
definitions of these operators are given in Appendix A.2.

Choice of inner product
As discussed in Section 2.1, a choice of inner product must be made when comput-
ing the resolvent modes. For viscoelastic fluids, this choice is not as obvious as for
incompressible Newtonian fluids. This is because, in addition to kinetic energy, the
fluid can store elastic energy through polymer stretching. A measure of perturbation
magnitude should thus account for this. Unfortunately, the most straightforward
definition of the elastic potential energy does not yield a quadratic form amenable to
defining an inner product and associated norm (Doering et al., 2006). Indeed, inte-
grating Warner’s force law Equation (3.5) using the Peterlin closure Equation (3.6),
one obtains for the elastic energy density in a FENE-P fluid (Beris and Edwards,
1994),

4p =

〈∫
L( p) · d p

〉
p

=

∫
�%(r̃ )〈 p · d p〉 p (3.22)

=
:�)ℓ

2

2
log %(r̃ ).
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Neither is this true for the simpler Oldroyd-Bmodel (ℓ →∞), for which 4p ∼ tr r̃ . In
this case, factorizing the conformation tensor as r̃ = b̃Tb̃, where b̃ is the symmetric
square root (SSR) tensor, allows the elastic energy density to be expressed in terms
of the standard Frobenius norm: 4p ∼ ‖b̃‖2� (Balci et al., 2011; Wang et al., 2014).
However, this formulation poses difficulties for implementation within the resolvent
framework, as relating the fluctuations of b̃ to r is not straightforward. Moreover,
the vast majority of the extant literature is formulated in terms of the conformation
tensor, making comparison and interpretation of results difficult. For these reasons,
the SSR formulation is not adopted here.

In the absence of a well-defined physically-motivated measure of the conformation
tensor perturbation magnitude, some of the previous nonmodal stability work for
viscoelastic fluids focuses on amplification of velocity fluctuations (Hoda et al.,
2008; Hoda et al., 2009; Zhang et al., 2013), the reasoning being that transition
would be accompanied by large velocity fluctuations. However, this potentially
overlooks the scenario in which amplification of conformation tensor fluctuations,
and hence polymer stress fluctuations, become large enough to trigger nonlinear
effects that then drive nonlinear velocity fluctuations. Other previous work has
demonstrated that polymer stress fluctuations for streamwise-constant disturbances
in flows with zero or low levels of inertia can be highly amplified (Jovanović and
Kumar, 2010; Jovanović and Kumar, 2011; Lieu et al., 2013), though the need for
an appropriate measure of the conformation tensor was circumvented by focusing
on individual components of the stress.

In the present analysis, we adopt one that is mathematically consistent with the
underlying geometry of positive-definite tensors. For linear perturbations r1,r2 to
the base state R, Hameduddin et al. (2019) proposed using

[r1, r2]R B tr R−1r2R−1r1, (3.23)

which is the scalar product on the tangent space of the manifold of positive-definite
tensors at the point R. We refer to this as the geometric inner product. Further
details are provided in Appendix A.3. Though not included here, additional calcu-
lations were performed using the Frobenius norm as a measure of the conformation
tensor perturbation magnitude. It was found that while there are quantitative dif-
ferences, e.g., in the singular values, the results are qualitatively similar to those
using Equation (3.23) and do not change the conclusions of this chapter. For the
total perturbation magnitude, we use the sum of the kinetic energy density and
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Equation (3.23). The norm is thus defined as

‖ q̂‖2 B
∫ 1

−1

(
û∗û + tr R−1r̂∗R−1r̂

)
dH. (3.24)

As noted, Equation (3.23) applies only to linear perturbations to a base state. An
analysis of such perturbations to the laminar solution (c.f. Appendix A.1) is the
focus of Section 3.4. For resolvent analysis, i.e., for finite-amplitude fluctuations
about a mean conformation tensor, the subject of Section 3.3, we instead analyze
individual components of the conformation tensor, which are measured using the
standard !2 norm (Lieu et al., 2013).

Numerical considerations
In the absence of stress diffusivity in the conformation tensor equation Equa-
tion (3.3), the associated linear operator L has a continuous spectrum. For the
Oldroyd-B model, the continuous spectrum is comprised of two strips in the lower
half of the complex 2 plane, one with imaginary part −1/:GWi, and the other with
−1/(1 − V):GWi (Sureshkumar and Beris, 1995b). The continuous spectrum there-
fore moves closer to the real axis with increasing Wi or :G . An analytical expression
for the continuous spectrum of the FENE-P model is not available but has a similar
shape to the Oldroyd-B one. An example is shown in Figure 3.9(a); note that the
numerical approximation of the continuous spectrum is actually comprised of a set
of discrete eigenvalues, and that it only appears to be continuous due to limitations
in plotting precision.

The eigenfunctions associated with the continuous spectrum are highly singular.
Previous work has identified the existence of both distribution-valued (Kupferman,
2005) and non-integrable solutions (Graham, 1998). Consequently, these functions
cannot be accurately resolved numerically. Furthermore, discretization results in
“ballooning” of the continuous spectrum, possibly resulting in spurious unstable
eigenvalues. A numerical scheme in which the resolvent operator is first recast
as a two-point boundary value problem and then converted to a system of integral
equations and solved numerically with Chebfun (Driscoll et al., 2014) helps alleviate
some of the numerical instability issues (Lieu and Jovanović, 2013). Inclusion of
stress diffusivity has also been considered to circumvent these issues (Sureshkumar
and Beris, 1995a). However, resolution of the length scale

√
�_ associated with a

realistic value of the stress diffusivity � would require an enormous number of grid
points and is therefore not practical, especially for large Wi.
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For the range of :G and Wi considered in this chapter, discretization using a standard
Chebyshev pseudospectral method (Weideman and Reddy, 2000) was found to be
feasible, albeit with a relatively large number of Chebyshev polynomials. From
about #H = 150 to 250 are required for satisfactory convergence of the singular
values, while convergence of (discrete) eigenvalues requires as many as #H = 400.

3.3 Weissenberg number dependence of linear mechanisms in viscoelastic
channel flow

In this section, we show that the structural contrasts between low drag reduction
and EIT are reflected in the linear dynamics of the flow, and that predictions from
resolvent analysis are in good qualitative agreement with the DNS. We focus on two
cases of viscoelastic channel flow at transitional Re = 1500: Wi = 7 and Wi = 20,
representative of low drag reduction and EIT, respectively.

Direct numerical simulations
In order to frame the results from the resolvent analysis, we begin by discussing
some of the features observed in direct numerical simulations. The details of the
numerics are provided in Shekar et al. (2019).

Figure 3.2 shows the mean velocity profiles for both cases, along with that for
Newtonian flow at the same Re for comparison; also shown are the Kármán log law
for Newtonian turbulence and the log law proposed by Virk for MDR (Virk, 1975).
The Wi = 7 profile lies slightly above the Newtonian one, indicating a low level of
drag reduction, whereas the Wi = 20 profile falls nearly on the Virk asymptote.

In addition to the change in statistical quantities, the flow structures at low levels of
drag reduction and EIT are drastically different (Samanta et al., 2013). To illustrate
this, snapshots of vortical structures, identified with isocontours of the &-criterion
(Hunt et al., 1988), and contours of polymer stretch tr r̃ for Wi = 7 and Wi = 20
are shown in Figure 3.3(a) and Figure 3.3(b), respectively. For Wi = 7, the flow
is populated with quasi-streamwise vortices that are familiar from Newtonian wall-
bounded turbulence. The polymers are stretched and advected upward bewteen the
vortices, forming the “plumes” shown in the plane at G = 0 in Figure 3.3(a). In
stark contrast, the flow at Wi = 20 exhibits weak, spanwise-oriented vortices and
quasi-two-dimensional, highly-inclined sheets of polymer stretch that are localized
near the wall.

Additionally, the spatial spectra of the wall-normal velocity fluctuations E at the
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Figure 3.2: Mean velocity profiles in inner units for Wi = 0 (red), Wi = 7 (blue), and
Wi = 20 (green). Also shown are the Kármán log law *+ = 2.5 log H+ + 5.5 (solid
gray) and the Virk asymptote*+ = 11.7 log H+ − 17.0 (dashed gray).
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channel centerline H = 0 are shown as insets in Figure 3.3 in terms of the scaled
wavenumbers :G!G/2c and :I!I/2c, where !G = 10 and !I = 5 are the streamwise
and spanwise dimensions of the DNS box, respectively. Consistent with the quali-
tative observations made above, there is a shift from streamwise-oriented stuctures
at Wi = 7, represented by spectral content at :G!G/2c = 0, to spanwise-oriented
structures at Wi = 20, represented by spectral content at :I!I/2c = 0.

Componentwise amplification analysis
Next, we demonstrate that some of themost important structural differences between
the Wi = 7 and Wi = 20 DNS cases discussed above, namely the emergence of
spanwise-constant structures, are captured by resolvent analysis. Our focus is on
the largest amplification over all temporal frequencies l for a given spatial scale
(:G , :I), which is quantified by the �∞ norm of the resolvent operator (Zhou et al.,
1996):

‖H ‖∞(:G , :I) B sup
l∈R

f1(:G , :I, l). (3.25)

Further insight can be gained by considering componentwise amplification (Jo-
vanović and Bamieh, 2005; Schmid, 2007; Lieu et al., 2013), that is, the ampli-
fication from a particular forcing component to a particular response component.
This can be achieved by appropriately altering the input and output operators B and
C of the resolvent2, as in, e.g., HG→D B CD (−8 lM − L)−1 BG , which maps the
nonlinear streamwise velocity forcing 5G to the streamwise velocity response D. In
this case, we choose the underlying norm on the input and output to be the standard
!2 [−1, 1] norm. With a total of nine forcing components and ten response com-
ponents, there are 90 possible input-output operators. Here we focus on only two
forcing components and two response components: The response components are
D and rGG , since they typically dominate the velocity and conformation tensor fields,
respectively. The forcing components are 5G and 5H. With the exception of :I → 0,
the response to 5I is qualitatively similar to that for 5H, and it has been found that the
velocity forcing typically elicits a much larger response than the conformation tensor
forcing. Moreover, the observations presented here, particularly the Wi trends, hold
qualitatively for the other input-output pairs not shown.

Figure 3.4 shows the H∞ norm of HB→D, with B = {G, H} for the wavenumber
ranges :G ∈ [10−3, 3], :I ∈ [10−2, 10]. Results for Wi = 7 are shown in Fig-
ure 3.4(a) and Figure 3.4(b), and those forWi = 20 in Figure 3.4(c) and Figure 3.4(d).

2In Equation (3.21) B =M and C = �10×10.



28

0 2 4 6 8
k
x
L
x
/(2 )

0

2

4

6

8
k
z
L
z
/(
2
)

(a)

0 2 4 6 8
k
x
L
x
/(2 )

0

2

4

6

8

k
z
L
z
/(
2
)

(b)

Figure 3.3: (a) Snapshot of flow structures for Wi = 7 in the lower half of the
domain: Isosurface of vortex strength & = 0.075, color-coded blue to red based
on increasing distance from the wall, and polymer stretch tr r̃ in the planes G = 0
and I = 5; lighter contours indicate high levels. Inset is the time averaged spatial
spectrum of E at H = 0; significant spectral content is indicated by lighter contours.
(b) Same as in (a) for Wi = 20, but with & = 0.00014.
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Figure 3.4: �∞ norms of (a),(c)HG→D and (b),(d)HH→D, with (a),(b) Wi = 7; (c),(d)
Wi = 20.
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For Wi = 20, there is a visible strip for :I → 0 and :G = $ (1) that is absent at
Wi = 7 and is reminiscent of the signature of Tollmien-Schlichting waves (Schmid,
2007). This is perhaps not altogether surprising considering that the mean velocity
profile at Wi = 20 is almost identical to the laminar parabolic profile. However, for
both Wi, streamwise-elongated modes, i.e., :G → 0, are the globally most amplified,
with the peak for wall-normal forcing (Figure 3.4(b) and Figure 3.4(d)) occurring
for :I = $ (1), suggesting that streamwise rolls and streaks are still the optimal
linearly amplified velocity structures at EIT. Additionally, the magnitude of the peak
amplification does not change appreciably between Wi = 7 and Wi = 20.

Next, we consider the amplification for the dominant conformation tensor com-
ponent rGG . Figure 3.5 shows the H∞ norm of HB→rGG , B = {G, H}, for the same
wavenumber ranges in Figure 3.4. The wall-normal forcing cases in Figure 3.5(b)
and Figure 3.5(d) closely resemble their counterparts for D in Figure 3.4(b) and
Figure 3.4(d), respectively, with the signature of :I = 0 modes emerging for the
higher of the two Wi, but still with the overall highest amplification occurring for
:G = 0 modes. For the streamwise forcing shown in Figure 3.5(a) and Figure 3.5(b),
however, :I = 0 modes become the globally most amplified for Wi = 20. Note
also that the peak amplifications for rGG are several orders of magnitude higher than
those for D, and that the amplification increases by at least an order of magnitude
from Wi = 7 to Wi = 20, indicating that at EIT, forcing of the conformation tensor
is significantly more amplified than that for the velocity field.

The presence of highly amplified :I = 0 modes for Wi = 20 is consistent with the
observations of the structural changes in the DNS. Indeed, Figure 3.3(b) shows that
the largest spectral content occurs for :G!G/2c = 2. For a box length !G = 10,
this corresponds to :G ≈ 1.26, which is in very good agreement with the location
of the strip displayed in Figures 3.4 and 3.5. Furthermore, the structure of the
most amplified mode for :I = 0 closely resembles the full DNS field. Figure 3.6
shows contours of the rGG component of the most amplified (over l) resolvent mode
for (:G , :I) = (1.26, 0) and Wi = 20, plotted in the bottom half of the channel
only. The peak amplification is attained for a frequency l = 0.46, or wavespeed
2 = l/:G = 0.37, which corresponds to a critical layer at H ≈ ±0.8. Figure 3.6
indicates that the mode is highly localized around the critical layer. Plotted in the
top half of the channel for comparison are contours of rGG in the I = !I/2 plane from
a DNS snapshot. The resemblence is striking – the single resolvent mode accurately
captures not only the localization near the wall, but the large streamwise inclination
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Figure 3.5: �∞ norms of (a),(c) HG→rGG and (b),(d) HH→rGG , with (a),(b) Wi = 7;
(c),(d) Wi = 20.
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of the sheets as well. Additionally, the same DNS snapshot and resolvent mode
are shown in the G = !G/2 plane in Figure 3.7, which clearly illustrates the nearly
two-dimensonal nature of EIT. Finally, we emphasize that the only information from
the DNS that the resolvent is provided with are the mean profiles, and yet it can still
reproduce some of the most salient features from instantaneous flowfields.

3.4 Critical layer mechanisms and structures in EIT
As was demonstrated in the previous section, the most-amplified resolvent mode
for Wi = 20 reproduces the hallmark structures observed in DNS snapshots of
EIT, namely the highly inclined and localized sheet-like structures of large polymer
stress fluctuations. While this demonstration is encouraging for resolvent-based
low-order modeling of viscoelastic turbulence, we now investigate these structures
further, with the goal of gaining some insight into their origin, as well as their role
in sustaining EIT. To this end, we briefly take a step back and look at how EIT is
approached in a channel at low Re.

Approach to EIT
Figure 3.8 shows the normalized deviation of the friction factor from the laminar
value computed from the DNS at Re = 1500 as a function of Wi (Shekar et al.,
2019). Starting at Wi = 0 is Newtonian turbulence. As Wi increases, the friction
factor decreases, but the overall flow structure still resembles Newtonian turbulence,
consistent with previous results on low levels of drag reduction; correspondingly,
this branch is labeled “NT.” The NT state exists up to Wi ≈ 7, beyond which it
abruptly loses existence (schamtically illustrated by the dotted red line), causing the
flow to relaminarize. This regime of laminar flow persists for a range of Wi, labeled
“L” in Figure 3.8. Upon further increase of Wi, however, the laminar state is subject
to a new instability and at Wi ≈ 20 transitions directly into EIT. Further increase
in Wi results in only a modest increase in the friction factor, in agreement with the
view that EIT corresponds to MDR (Choueiri et al., 2018).

We draw particular attention to the case Wi = 20, which was highlighted in Sec-
tion 3.3 and is shown in Figure 3.3(b). For reference, the inset of Figure 3.8 shows
the same spectrum in the inset. What is now apparent is that Wi = 20 corresponds
to a flow state very near the point where the flow transitions to EIT. Therefore, it is
anticipated that this case exhibits the simplest dynamics that are representative of
EIT. Furthermore, its proximity to the transition point motivates a stability analysis
of laminar state, which we next describe in detail, with a particular emphasis on the
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Figure 3.8: Scaled friction factor vs. Wi at Re = 1500. Abbreviations “NT”, “L” and
“EIT” stand for Newtonian-like turbulence, laminar, and elastoinertial turbulence,
respectively. In most cases, the error bars are smaller than the symbols. Red dotted
lines indicate the intervals of Wi in which the NT solution loses existence and the
EIT solution comes into existence, respectively, as Wi increases. Inset shows the
spatial spectrum of the wall normal velocity at H = 0 for Wi = 20. Here, G- and
I-wavenumbers :G and :I are reported in scaled form, as :G!G/2c and :I!I/2c.
For inset, low is blue, high is yellow. Reproduced from Shekar et al. (2019).
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highly localized stress fluctuation structures identified in Section 3.3.

Linear stability analyses of viscoelastic channel flow at high Wi
To shed light on the origin of the highly localized large stress fluctuations, we
now consider the evolution of infinitesimal perturbations to the laminar state with
given wavenumbers (:G , :I). We perform both modal analyses, i.e., analysis of the
spectrum ofL in Equation (3.21), and nonmodal analyses, i.e., resolvent analysis, or
analysis of the pseudospectrum ofL (Trefethen et al., 1993; Schmid, 2007; McKeon
and Sharma, 2010). In both analyses, the concept of critical layers, i.e., wall-normal
positions where the fluid velocity equals the wavespeed of an eigenmode or resolvent
mode, is important. While some recent studies suggest the importance of critical
layer mechanisms in viscoelastic shear flows (Page and Zaki, 2015; Lee and Zaki,
2017; Haward et al., 2018; Hameduddin et al., 2019), they do not make as direct a
connection to EIT as we illustrate here.

Figure 3.9(a) shows the result of the modal analysis (the eigenvalues 2) for Wi = 20,
(:G!G/2c = 2, :I!I/2c = (2, 0), the wavenumber corresponding to the dominant
structures observed in the nonlinear simulations (c.f. Figure 3.3(b)). All eigenvalues
fall in the lower half of the complex 2 plane, implying that the laminar flow is linearly
stable3. Of note is the discrete eigenvalue labeled “TS” lying above the continuous
spectrum. It is the viscoelastic continuation of the classical Tollmien-Schlichting
mode (Drazin and Reid, 2004). For low values of Wi, the mode is less stable than its
Newtonian counterpart, while for Wi & 2, it becomes more stable with increasing
elasticity; this non-monotonic behavior has been reported by Zhang et al. (2013),
who attribute it to viscoelastic modification of the phase difference between D and
E. However, over the range of Wi considered here, viscoelasticity has only a weak
effect on the TS eigenvalue. It varies by less than 1% of the Newtonian value,
and, importantly, the mode never becomes unstable, implying that finite amplitude
disturbances are required to trigger transition to EIT. Despite the small change in 2,
the conformation tensor disturbance depends very strongly on Wi; the peak value of
rGG grows from zero at Wi = 0 to ∼105 times the peak value of D at Wi = 20.

Although the TS mode ultimately decays, the linear Navier-Stokes equations ad-
mit significant disturbance growth at short times or significant amplification of
harmonic-in-time disturbances (Schmid, 2007) that may be sufficient for nonlin-

3An extension of Squire’s theorem to Oldroyd-B fluids has been proven by Bistagnino et al.
(2007). While there is no such result for FENE-P fluids, we have not observed any three-dimensional
linear instabilities in the region of parameter space considered here.
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Figure 3.9: (a) Eigenvalue spectrum for (:G!G/2c, :I!I/2c) = (2, 0) with Wi =
20 and Re = 1500. The eigenvalue labeled “TS” corresponds to the TS mode.
(b) Leading singular value of the resolvent operator for the same wavenumbers and
Reynolds number as in (a) and Wi = 0 (red) and Wi = 20 (blue). Reproduced from
Shekar et al. (2019).
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ear effects to become significant, potentially triggering EIT. We quantify this am-
plification by computing the largest singular value f1 of the resolvent operator.
Figure 3.9(b) shows results for Wi = 0 and Wi = 20 in the same range of (real)
wavespeeds 2 = l/:G depicted in Figure 3.9(a). The amplification increases dra-
matically with Wi, with the values at Wi = 20 being ∼ 102 times those for Wi = 0;
this is consistent with the drastic increase in the conformation tensor disturbance
amplitude already discussed for the TS mode and suggests that with increasing elas-
ticity, considerably smaller disturbances may be sufficient to trigger self-sustaining
nonlinear mechanisms. For both Wi shown in Figure 3.9(b), the maximum amplifi-
cation occurs for 2 ≈ 0.37, which coincides with the wavespeed for the TS mode,
suggesting that the most-amplified disturbance may be closely linked to it.

To confirm this, we now examine the structure of the TS eigenmode and the most-
amplified resolvent mode, as well as emphasize their connection to the structures
observed in EIT. Contours of rGG and E in a 2D slice from a snapshot of the Wi = 20
DNS are shown in Figure 3.10(a). Since the structure of the rGG field has been
discussed in detail in Section 3.3, here we primarily focus on the the E field.
While much of the (small scale) E activity is co-located with the stress fluctuations,
there are in addition larger-scale E motions that span almost the entirety of the
channel. Figure 3.10(b) shows the phase-averaged structures corresponding to
(:G!G/2c, :I!I/2c) = (2, 0), the dominant content in the spectra. To generate this
plot, the Fourier mode was extracted from many snapshots, such as the one shown
in Figure 3.10(a), and then phase-aligned using the maximum of E before being
averaged. The resulting E structures are even across the channel center and extend
from one band of the localized rGG sheets to the other.

The structure of the TS eigenmode is shown for Wi = 20 in Figure 3.10(c). In
the Newtonian case, the disturbance velocity field is a train of spanwise-oriented
vortices that span the entire channel; this structure is only weakly modified even
at high Wi. The polymer stress disturbance behaves very differently: at Wi = 20
it consists of highly inclined sheets that are extremely localized around the critical
layers H = ±0.79 for theTSwavespeed of 2A ≈ 0.37. Comparisonwith Figure 3.10(a)
and Figure 3.10(b) shows a strong similarity between the eigenmode and the tilted
sheetlike structures that are the hallmark of EIT, with the resemblance between
the TS mode and the (:G!G/2c, :I!I/2c) = (2, 0) structure from the DNS in
Figure 3.10(b) being particularly striking. Specifically, note that for the TS mode,
Figure 3.10(c), E and rGG are even and odd, respectively, with respect to H = 0, while
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in Figure 3.10(b) these symmetries hold to a good approximation. Figure 3.10(d)
shows the leading resolvent mode, which is indeed almost identical to the TS
eigenmode in Figure 3.10(c). This result provides additional strong evidence that
the structures observed in EIT are closely related to those in viscoelasticity-modified
TS waves.

As mentioned above, the fact that the polymer stress fluctuations are localized about
the critical layer suggests that they play an important role in the generation of these
structures. To elucidate this, Figure 3.11 shows the same rGG as in Figure 3.10
zoomed in on the critical layer in the lower half of the channel. Also shown are
streamlines computed in a reference frame co-moving with the wave. In the vicinity
of the critical layer, the streamlines exhibit the distinctive Kelvin’s cat’s eye pattern
(Drazin and Reid, 2004). Importantly, the cat’s eyes are separated by hyperbolic
stagnation points, which are well-known to induce large polymer stretching as the
molecules are drawn in and subjected to a large extensional strain rate (Renardy,
2006; Haward and McKinley, 2013). Indeed, the positive fluctuations coincide
with the stagnation points, suggesting that they are responsible for the sheet-like
structures observed in EIT.

These dynamics carry over into the nonlinear case, as illustrated in Figure 3.12,
which shows the structure of a self-sustained nonlinear viscoelastic TS wave for
Re = 3000, Wi = 3. As in Figure 3.11, regions of closed streamlines are separated by
stagnation points, fromwhich emerge high values of polymer stretch. Note, however,
that unlike Figure 3.11, the highest stretching occurs not at the “instantaneous critical
layers” (shown in green lines), but between the stagnation points and the walls. This
is due to the lower value of Wi. As we show next, above a certain value of Wi the
largest stretching coincides with the critical layer.

Although the amplitude of the linear TS mode is arbitrary, a measure of the relative
importance of the conformation tensor and velocity disturbances is the ratio of the
peak amplitudes of r̂GG and Ê. This ratio is shown for a range of Wi and Re = 3000
in Figure 3.13(a). Two distinct regimes are apparent, with the transition between
the two occurring at Wi ≈ 3.1. The low Wi regime scales as Wi2, which is the
same scaling as in simple shear flow. The amplitude ratio above the change in
slope does not exhibit power law scaling. The change in slope at Wi ≈ 3.1 can be
understood by examining the rGG mode shapes, the magnitudes of which are plotted
in Figure 3.13(b) for several values of Wi in the range shown in Figure 3.13(a).
For small Wi, the disturbance is largest at the wall and decays rapidly away from
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Figure 3.10: (a) Snapshot of E (line contours) and rGG (filled contours) from
3D nonlinear DNS at Re = 1500, Wi = 20. (b) Phase-matched average
(:G!G/2c, :I!I/2c) = (2, 0) structures from 3D DNS. (c) Structure of the TS
mode for Re = 1500,Wi = 20, and the same wavenumbers as in (b). (d) Structure
of the most strongly amplified resolvent mode for Re = 1500,Wi = 20, the same
wavenumbers as in (b), and 2 = 0.37. In all plots, contour levels are symmetric
about zero. For E, dashed and solid contours indicate negative and positive values,
respectively. For rGG , black, red, and yellow indicate negative, zero, and positive
values, respectively. Reproduced from Shekar et al. (2019).
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Figure 3.11: Zoomed view of the TS mode rGG (filled contours) and streamlines (line
contours) in a reference frame co-moving with the wave forRe = 1500, Wi = 20. For
rGG , blue, white, and red indicate negative, zero, and positive values, respectively.
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Figure 3.12: Structure of nonlinear self-sustaining TS wave at Re = 3000,Wi = 3.
White streamlines, shown in a reference framemoving with the wavespeed 2 = 0.39,
are superimposed on color contours of r̃GG . Green lines indicate the instantaneous
critical layer positions, and white dots indicate the locations of hyperbolic stagnation
points. Reproduced from Shekar et al. (2019).
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it. Therefore, the Wi2 scaling in this regime can be explained by the fact that the
leading-order approximation of the base flow very near the wall is simple shear. As
Wi increases, this value decreases, while a new local maximum emerges and grows,
becoming the global maximum just above Wi = 3; the arrow in the figure indicates
the profile where this occurs. Upon further increase in Wi, the maximum gradually
shifts away from the wall, and the modes become increasingly localized around
the location of the critical layer. The critical layer for Wi = 13 is indicated by the
vertical dashed line. This suggests that a critical layer mechanism is responsible
for the change in scaling at large Wi, though at present we do not understand the
specific origin of this result. Interestingly, the Wi at which a new flow state, dubbed
the viscoelastic nonlinear TS attractor (VNTSA) (Shekar et al., 2020), comes into
existence is only slightly larger than that at which the transition to critical layer
scaling occurs.

Also shown in Figure 3.13(b) is the amplitude ratio computed from the VNTSA
for several values of Wi. Excellent agreement between the linear and nonlinear
results quantitatively reinforces the TS-like nature of the VNTSA. Additionally, the
profile of |r̂GG |, averaged in the streamwise direction and over many snapshots, for
the VNTSA at Wi = 13 is shown by the thick red line in Figure 3.13(b), and the blue
line highlights the linear mode for the same Wi. The VNTSA profile exhibits the
same localization, and the location of the peak value is in close agreement with the
critical layer location.

3.5 Chapter summary
The goal of the present chapter has been to shed light on the origin of the structures
and mechanisms underlying EIT at low Reynolds number. First, the differences
between polymer drag-reduced turbulence in the low drag reduction regime (Wi = 7)
and in the regime of EIT (Wi = 20) were investigated from a linear perspective. To
achieve this, the resolvent analysis of McKeon and Sharma (2010) was extended
to viscoelastic fluids obeying the FENE-P constitutive model. The most amplified
structures as a function of wavenumbers :G and :I were identified, with a focus on
the streamwise and wall-normal forcing of the streamwise velocity D and streamwise
conformation tensor component rGG .

For Wi = 20, modes with :I = 0 and :G = $ (1) can be highly amplified, particularly
for streamwise forcing of rGG . This is consistent with observations from DNS that
spanwise-oriented structures are dominant in EIT. The importance of :I = 0 modes
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Figure 3.13: (a) Solid blue line: ratio of peak amplitudes of r̂GG and Ê for the linear
TSmode as a function ofWi; circles: amplitude ratio for the VNTSA. (b)Magnitude
of r̂GG for the linear TS mode for several values of Wi in the range [1, 20]. Darker
lines indicate higher values of Wi. The thick red line shows the averaged magnitude
of r̂GG from the VNTSA for Wi = 13. For comparison, the linear TS mode profile
for the same Wi is shown in blue, and the vertical dashed line marks the critical
layer location H2 = 0.825. The arrow indicates the value of Wi corresponding to the
arrow in (a).
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in the dynamics of EIT is further underscored by recent work demonstrating that
EIT can be sustained in completely two-dimensional simulations (Sid et al., 2018).
Additionally, the rGG component of the leading resolvent mode corresponding to the
dominant streamwise lengthscale in the Wi = 20 DNS bears strong resemblance to
snapshots of the full flowfield, reproducing in particular the highly inclined sheets
of polymer stretch. Analysis by Page and Zaki (2015) shows that similar tilted
sheets of polymer stretch arise in homogeneous viscoelastic shear flow perturbed by
a spanwise-oriented vortex.

Streamwise-constant modes remain highly amplified at Wi = 20, similar to findings
of previous nonmodal stability analyses (Hoda et al., 2009; Lieu et al., 2013), which
place a heavy emphasis on such structures, citing them as a possible mechanism
for bypass transition analogous to that in Newtonian fluids. While streamwise-
elongated structures are not observed in the DNS of EIT shown here, we note that
recent experiments (Choueiri et al., 2018) and simulations (Lopez et al., 2019)
of EIT in a pipe do observe them. This discrepancy perhaps has to do with the
difference of domain size (Lopez et al., 2019).

Next, due to the fact that theWi = 20 case is very close to the point where EIT comes
into existence at Re = 1500, stability analyses of the laminar state were performed
in an attempt to further understand the origin of the structures characteristic of
EIT. Through a modal analysis focusing on the wavenumbers corresponding to the
dominant spectral content in the DNS, it was demonstrated that the flow is linearly
stable, and therefore the instability leading to EIT in this region of parameter
space is subcritical in nature. Resolvent analysis showed that amplification of
disturbances grows considerably with with increasing elasticity. A distinct peak in
the amplification was observed at a wavespeed corresponding to that of the least
stable eigenmode, the viscoelastic extension of the TS mode.

A detailed comparison of the structure of the TS mode and the most amplified
resolvent mode confirmed the two are nearly identical and therefore provides strong
evidence that the highly localized stress fluctuations observed in EIT are TS-like
in nature. Furthermore, the localization was found to occur at the critical layer,
which locally resembles the classical Kelvin’s cat’s eyes pattern. Situated between
the cat’s eyes are hyperbolic stagnation points, which coincide with the maxima of
the conformation tensor fluctuations, thereby supporting the idea that they are the
origin of the sheet-like structures observed in EIT.

The observations made about the linear TS mode were seen hold for nonlinear self-
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sustaining TS waves computed for Re = 3000 and Wi = 3. However, in that case, the
largest polymer stretching occurs between the stagnation points and the walls. This
discrepancy was explained by computation of the TS mode at Re = 3000 for a range
of Wi. For Wi . 3, the maximum of r̂GG modes is at the wall. For higher Wi, this
maximum gradually shifts away from the wall and toward the critical layer location.
Accompanying this is a change in the scaling of the ratio of the peak amplitudes
of r̂GG and Ê from ∼ Wi2, correpsonding to that of simple shear flows, to a critical
layer scaling, which does not appear to obey a power law, at least for the range of Wi
considered here. This is possibly an effect of the finite extensibility in the FENE-P
model, but further analysis is needed to determine if the Oldroyd-B model yields a
simple scaling behavior.

Finally, we note that it was recently shown that viscoelastic pipe flow of Oldroyd-B
fluids can be linearly unstable to center-localizedmodeswithwavespeed 2A ≈ 1 (Garg
et al., 2018), and a similar instability exists in channel flow. However, we estimate
that for the present parameter values, this mode only becomes relevant for Wi more
than an order of magnitude larger than what was considered here. Furthermore,
center-localized structures are not observed in the DNS of EIT, so we do not believe
them to be relevant here. Nonetheless, it illustrates that there may be different
pathways to EIT in different regions of parameter space.
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C h a p t e r 4

INTERACTION OF FORCED ORR-SOMMERFELD AND
SQUIRE MODES IN A LOW-ORDER REPRESENTATION OF

TURBULENT CHANNEL FLOW

The contents of this chapter have been previously published in1:

McMullen, R. M., Rosenberg, K., and McKeon, B. J. (2020). “Interaction of forced
Orr-Sommerfeld and Squire modes in a low-order representation of turbulent
channel flow”. arXiv: 2001.02785 [physics.flu-dyn].

While the utility of decomposing the resolvent operator into Orr-Sommerfeld and
Squire modes for highly simplified flows like ECS has been established (Rosenberg
and McKeon, 2019b), an open question is whether or not it remains relevant for
high Reynolds number turbulence. In this chapter, it is shown that the second-order
statistics of turbulent channel flow can be accurately represented using a low-order
approximation based on this framework. It is additionally shown that the vorticity
produced by theOrr-Sommerfeld and Squiremodes act to oppose each other, and this
observation reveals information about how the resolvent weights for the two families
scale relative to each other with Reynolds number. Altogether, these insights point
to a mechanism in turbulent channel flow that is important for low-order modeling
efforts.

4.1 Formulation
Resolvent analysis of turbulent channel flow
Resolvent analysis was introduced for a generic dynamical system in Section 2.1.
Here, we provide the details of the formulation relevant to incompressible flow of a
Newtonian fluid in a channel, the starting point of which is the incompressible NSE:

mC ũ + (ũ · ∇) ũ = −∇ ?̃ + Re−1
g ∇

2ũ, (4.1a)

∇ · ũ = 0, (4.1b)

1We acknowledge Kevin Rosenberg for numerous discussions and feedback that helped guide
the contents of this chapter, as well as for providing the DNS data used in Figure 4.6.
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which are nondimensionalized using the friction velocity Dg and channel half-height
ℎ; Reg = Dgℎ/a is the friction Reynolds number. The velocity field is first Reynolds
decomposed as ũ = [+u, where[ = (* (H) 0 0)T is the turbulent mean velocity
profile and u are the fluctuations about the mean, and then Fourier transformed in the
homogeneous wall-parallel and temporal directions G, I, and C, resulting in equations
for the Fourier coefficients, denoted by ˆ( · ) . For each wavenumber-frequency triplet
(:G :I l)T ≠ 0, we have

−8l û + ([ · ∇) û + (û · ∇)[ + ∇ ?̂ − Re−1
g ∇

2û = f̂ (4.2a)

∇ · û = 0, (4.2b)

where f = − (u · ∇) u + 〈(u · ∇) u〉 and 〈 · 〉 denotes an averaged quantity, is
interpreted as a forcing that drives the dynamics linear in û. The pressure can be
projected out of Equation (4.2) using the standard mapping to wall-normal velocity
Ê and wall-normal vorticity [̂ = 8:ID̂ − 8:GF̂. The equations are then concisely
written as (

Ê

[̂

)
= H(:G , :I, l) ĝ, (4.3)

where

H =

(
−8l − J−1LOS 0
−8:I*′ −8l − LSQ

)−1

(4.4)

is the resolvent operator, J = D2 − :2, D = d/dH, :2 = :2
G + :2

I , and *′ = D*.
Additionally,

LOS = 8:G (*′′ −*J) + Re−1
g J

2, (4.5a)

LSQ = −8:G* + Re−1
g J (4.5b)

are the Orr-Sommerfeld (OS) and Squire (SQ) operators, respectively. The forcing
term ĝ = (6̂E 6̂[)T in Equation (4.3) is related to f̂ via

ĝ =

(
−8:GJ−1D −:2J−1 −8:IJ−1D

8:I 0 −8:G

)
︸                                         ︷︷                                         ︸

B

f̂ . (4.6)

As pointed out by Rosenberg and McKeon (2019b), only the solenoidal part of f̂

contributes to ĝ since the irrotational component lies in the null space of B.

Following Equation (2.7), we compute the SVD ofH . On both the input and output
spaces we adopt the standard kinetic energy inner product (Schmid and Henningson,
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2001):

(x1, x2) =
∫ 1

−1
x∗2Qx1dH, (4.7)

where ( · )∗ denotes the conjugate transpose and

Q = 1
:2

(
−J 0
0 1

)
. (4.8)

The rank-# approximation of Equation (4.3) is obtained from Equation (2.11). It
has been shown that H is low-rank for a large portion of spectral space that is
energetically significant (Moarref et al., 2013a), and this low-rank behavior has
previously been exploited to model salient features in wall-bounded turbulence
(McKeon and Sharma, 2010; Sharma and McKeon, 2013; Moarref et al., 2013a).

Finally, in order to compute the second-order velocity statistics, the velocity û is
recovered from the response via

û =
1
:2

©­­«
8:GD −8:I
:2 0
8:ID 8:G

ª®®®¬
(
Ê

[̂

)
. (4.9)

Orr-Sommerfeld and Squire decomposition of the resolvent
As discussed in Section 2.1, the decomposition of H given in Equation (2.7),
hereafter referred to as the standard resolvent decomposition, is optimal in the
kinetic energy norm induced by the inner product in Equation (4.7). However, in
wall-bounded turbulence the kinetic energy is often dominated by the the streamwise
velocity, which means that all three velocity components may not be approximated
uniformly well (Moarref et al., 2014a; Sharma et al., 2016). In such situations, an
alternative decomposition that more faithfully represents the underlying dynamics
may be desirable. This idea has been explored previously by Juttijudata et al. (2005),
who transformed near-wall data from turbulent channel flow into Squire’s coordinate
system and then performed POD on modes associated with the streamwise streaks
and rolls separately. While the resulting basis functions are energetically suboptimal
compared to those from standard POD, they demonstrate that the reconstruction of
wall-normal, spanwise, and Reynolds shear stress statistics improves substantially.

In a similar spirit, Rosenberg and McKeon (2019b) proposed the following alterna-
tive decomposition ofH . Note that Equation (4.3) can be rewritten as(

Ê

[̂

)
=

(
HEE 0
H[E H[[

) (
6̂E

6̂[

)
, (4.10)
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where

HEE =
(
−8l − J−1LOS

)−1
, (4.11a)

H[[ =
(
−8l − LSQ

)−1
, (4.11b)

H[E = −8:IH[[*′HEE . (4.11c)

Apparently,HEE andH[E are forced by 6̂E only, whileH[[ is forced by 6̂[ only. This
motivates the separation of the response (Ê [̂)Tinto two distinct families:(

Ê

[̂OS

)
=

(
HEE
H[E

)
6̂E, (4.12a)

[̂SQ = H[[ 6̂[ . (4.12b)

In the following, we refer to the family of modes in Equation (4.12a) as Orr-
Sommerfeld (OS) modes and the family in Equation (4.12b) as Squire (SQ) modes.
The separation of [̂ into two distinct families is common practice in linear stability
analysis, where the SQ and OS modes are, respectively, the homogeneous and
particular solutions of the Squire equation: (−8l − LSQ)[̂ = −8:I*′Ê (Schmid and
Henningson, 2001). That is, the OS modes can be interpreted as a response to the
wall-normal velocity. This interpretation still holds in the nonlinear setting, since
the second component of Equation (4.12a) can be written as [̂OS = −8:IH[[*′Ê.
However, the SQ modes are no longer the homogeneous solutions, but are now
interpreted as the response to forcing by 6̂[.

Note that only the OSmodes contain a Ê response, such that the SQmodes contribute
only to the [̂ response, i.e., to the wall-parallel velocity components. There is
thus the potential for interaction between the OS and SQ vorticity in ways that
are not admitted by the standard resolvent decomposition. This fact is of central
importance for the OS-SQ resolvent decomposition, and it will be demonstrated in
Section 4.2 that this drastically improves the accuracy of a low-order resolvent-based
representation of the second-order statistics for turbulent channel flow.

An SVD of each operator in Equation (4.12) is performed separately, and the
resulting decomposition is referred to as the OS-SQ decomposition of the resolvent.
The approximation of the response becomes(

Ê

[̂

)
≈
#OS∑
9=1

7OS
9 f

OS
9 jOS

9 +
#SQ∑
:=1

7SQ
:
f

SQ
:
j

SQ
:
. (4.13)
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Note that Equation (4.13) is now a sum of #OS+#SQ terms. Furthermore, while the
left and right singular vectors of each family still comprise orthonormal sets with
respect to the inner product given in Equation (4.7), it is not guaranteed that modes
belonging to different families are orthonormal, e.g., (7OS

9
,7SQ

:
) ≠ X 9 : in general.

Emprical determination of the resolvent weights via convex optimization
The singular values and vectors are computed directly from the resolvent operator,
which depends only on the (assumed known) mean velocity profile *, whereas
computation of the weights requires solution of a nonlinear programming problem
(McKeon et al., 2013). This can be done exactly in special cases, such as for exact
coherent states (ECS) (Rosenberg, 2018). However, it rapidly becomes intractable
with an increasing number of degrees of freedom, and, to our knowledge, fully
turbulent flows remain out of reach.

Consequently, several attempts have beenmade to determine the weights empirically
(Moarref et al., 2014a; Gómez et al., 2016; Beneddine et al., 2016; Zare et al., 2017;
Towne et al., 2018). In particular, Moarref et al. (2014a) used convex optimization
to compute the weights that minimize the deviation between a resolvent-based
representation of the energy spectra and DNS data. We take the same approach
here and largely adopt their formulation, with the major exception that we employ
the OS-SQ decomposition discussed in Section 4.1. That is, for given #OS and
#SQ, we attempt to approximate the DNS statistics using the approximation given
in Equation (4.13).

As introduced byMoarref et al. (2014a), the resolvent three-dimensional streamwise
energy spectra are

�A (H, :G , :I, 2) = Re{tr(AAX )} , (4.14)

with A ∈ {DD, EE, FF, DE}, and where Re{ · } is the real part of a complex number
and tr( · ) is the matrix trace. Note that we have chosen to parameterize the spectra in
terms of the wavespeed 2 = l/:G since resolvent modes tend to be localized about
the critical layers H2, where * (H2) = 2 (McKeon and Sharma, 2010), and it has
been observed experimentally that the range of energetic wavespeeds is relatively
compact, with the most energetic motions typically being confined to the range
8 . 2 . *2; (LeHew et al., 2011), where *2; is the mean centerline velocity. In
Equation (4.14), the matrix ADD, for example, with entries

ADD,8 9 = f8f9 D̂8D̂∗9 , (4.15)
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represents the contributions of the singular values and response modes and can be
determined a priori from the SVD of the resolvent. The matrix X , with entries

X8 9 = j∗8 j 9 , (4.16)

is the weights matrix. Apparent from this definition is that X T = 66∗ � 0, where
6 is the vector of weights and � denotes the Löwner order, i.e., X is a rank-1
positive-semidefinite matrix. The OS-SQ decomposition is incorporated into this
framework simply by partitioning the AA and X matrices as

AA =

(
AOS/OS
A AOS/SQ

A

ASQ/OS
A ASQ/SQ

A

)
, X =

(
X OS/OS X OS/SQ

X OS/SQ ∗ X SQ/SQ

)
, (4.17)

where the superscript X/Y denotes the family of the 8th and 9 th mode, respectively,
in Equations (4.15) and (4.16).

The goal is to compute the weights matrix such that the deviation between the
wavespeed-integrated resolvent spectra in Equation (4.14) and time-averaged DNS
spectra is minimized. After discretization of the wavespeed range 2 ∈ [0,*2;], this
can be formally cast as the following optimization problem: For fixed :G and :I,

minimize
{X;};=1,2,...,#2 , 4

4

subject to
‖�DNS

A −∑#2

;=1 :G d2Re
{
tr
(
AA,;X;

)}
‖2

‖�DNS
A ‖2

≤ 4

X; � 0, ; = 1, 2, . . . , #2,

(4.18)

where the subscript ; denotes a quantity evaluated at 2 = 2; . Note that the norm ‖ · ‖
is not the one induced by Equation (4.7). It is defined as

‖ 5 ‖2 =
∫ H+max

H+min

�� 5 (log H+)
��2 d log H+ (4.19)

and is designed to penalize deviations across the channel equally (Moarref et al.,
2014a). Thus deviations from the DNS spectra are penalized for 5 ≤ H+min ≤ H+ ≤
H+max < Reg.

Equation (4.18) is a semidefinite program for the weights matrices X; and can
therefore be solved efficiently using a convex optimization software package. Note
that imposing the rank-1 constraint on the X; would make Equation (4.18) non-
convex. Moarref et al. (2014a) employed an iterative rank-reduction procedure to
recover rank-1 matrices from the full-rank solution (Huang and Palomar, 2010).
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However, we do not employ this algorithm here and instead choose to work with the
full-rank weights matrices. In this case, the X; can be interpreted as the covariance
matrices of theweights, similar toTowne et al. (2018). Finally, since the optimization
is performed for second-order statistics, the present approach does not provide
phase information about modes with different wavenumbers. This means that the
computed weights do not yield a closed, self-consistent system, as such information
is necessary to recover themean velocity profile aswell as the fluctuations. Extension
of the method to incorporate phase is a direction for future work.

Numerical details
The resolvent operators are discretized inMATLAB using a Chebyshev pseudospec-
tral method (Weideman and Reddy, 2000); all results presented here use 203 Cheby-
shev polynomials. The SVDs of the discretized operators are performed with a
random matrix algorithm, which is faster than MATLAB’s built-in svd() (Halko
et al., 2011). The time-averaged two-dimensional DNS spectra for Reg = 934 and
Reg = 2003 are obtained from Hoyas and Jiménez (2006), and for Reg = 4219
from Lozano-Durán and Jiménez (2014)2. Additionally, spectra were generated
for Reg = 185 using Channelflow (Gibson, 2014). The resolutions of all the DNS
considered are given in Table 4.1. Also shown in Table 4.1 is the number of planes
#sp for which spectra are available for each simulation.

For the results presented in Section 4.2, which focus on Reg = 2003, the DNS
spectra are interpolated onto a grid of #:G = 30 by #:I = 31 logarithmically spaced
wavenumbers, which is sufficient to reproduce the general shape of the spectra.
Furthermore, it has recently been shown that statistics such as the DE Reynolds
stress can be accurately reproduced even when retaining only about 2% of the
wavenumbers fromDNS (Toedtli et al., 2019). Both the spectra and resolvent modes
are interpolated onto a common grid of #H = 60 logarithmically spaced points in
the wall-normal direction, and the wavespeed range 2 ∈ [0,*2;] is discretized into
#2 = 100 linearly spaced wavespeeds. The optimization problem Equation (4.18) is
then solved with CVX (Grant and Boyd, 2014). The results are insensitive to further
increases in #H and #2 (Moarref et al., 2014a). Though sensitivity to increases
in #sp could not be tested with the available data, the fact that the shapes of the
spectra and intensities are faithfully reproduced in Figures 4.1 and 4.2, respectively,
suggests that changes in the results would be insignificant.

2The authors appreciate Javier Jiménez making the spectra for the Reg = 934 and Reg = 2003
simulations publicly available, as well as Adrián Lozano-Durán sharing the spectra for Reg = 4219.



54

Table 4.1: Resolutions of the DNS from which spectra were obtained for the opti-
mization. #sp is the number of planes for which spectra are available.

Reg #G #H #I #sp

185 (Channelflow, present work) 384 129 128 65
934 (Hoyas and Jiménez, 2006) 1024 385 768 18

2003 (Hoyas and Jiménez, 2006) 2048 635 1536 20
4219 (Lozano-Durán and Jiménez, 2014) 1024 1081 1024 22

4.2 Analysis of the optimized spectra
Reconstruction of time-averaged statistics
The accuracy of the optimized spectra is evaluated by comparing them to the time-
averaged statistics from the DNS for Reg = 2003. The premultiplied 1D :G spectra,

:G�A (H, :G) =
∫ :I,max

:I,min

∫ *cl

0
:2
G �A (H, :G , :I, 2) d2 d:I, (4.20)

using #OS = #SQ = 3 modes, i.e., six modes per wavenumber-frequency triplet,
are compared to the DNS in the right column of Figure 4.1, which is plotted in
terms of _+G = 2c/:+G . Clearly, #OS = #SQ = 3 modes is sufficient to accurately
reproduce the spectra since the overall agreement between the resolvent and DNS
spectra is very good, and in particular, the peaks are captured almost exactly. The
only significant discrepancies are in :G�DD at large _+G and H+ . 100 and −:G�DE
at large _+G and H+ . 50. Further discussion of these discrepancies, as well as
the accuracy of the optimized spectra using different numbers of modes is given
in Section 4.2. Also shown in the left column are the spectra obtained using the
standard decomposition with the same total number of modes. The performance is
significantly worse, with :G�DD and :G�FF being greatly over-predicted, and :G�EE
and −:G�DE being under-predicted. In fact, the standard resolvent decomposition
fails to capture the 90% energy level (darkest blue contours) for−:G�DE. Subsequent
integration over :G gives the intensities, which are shown in figure Figure 4.2. The
deviation errors are 4.3%, 0.95%, 0.66%, and 3.8% for 〈D2〉, 〈E2〉, 〈F2〉, and 〈−DE〉,
respectively. These should be compared with errors of 30%, 14%, 12%, and 31%
using the standard resolvent decomposition, shown in the dashed curves.

As the goal of the optimized spectra is to obtain a low-order representation of the
spectra, it is worth comparing the number of degrees of freedom of the resolvent
spectra to the original DNS. For a given :G , :I, the Reg = 2003 DNS spectra
were computed using #H = 665 wall-normal grid points and #C = 7730 snapshots
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Figure 4.1: Premultiplied one-dimensional spectra from the resolvent (filled con-
tours) and DNS (black contours) for Reg = 2003. (a,c,e,g) Standard resolvent
decomposition using # = 6 modes per wavenumber-frequency triplet; (b,d,f,h)
OS-SQ resolvent decomposition using #OS = #SQ = 3 modes per wavenumber-
frequency triplet. (a,b) :G�DD, (c,d) :G�EE, (e,f) :G�FF, (g,h) −:G�DE. Contour
levels are from 10% to 90% of the DNS maximum in 20% increments.
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(Hoyas and Jiménez, 2006). For the results shown in Figures 4.1 and 4.2, the
resolvent representation was computed using # = 6 resolvent modes and #2 = 100
wavespeeds, about 0.01% of the degrees of freedom in the DNS.

Behavior at large _G
As discussed above, the most significant discrepancies between the DNS and OS-
SQ representation of 1D the spectra shown in Figure 4.1 occur in :G�DD at large _+G
and H+ . 100 and −:G�DE at large _+G and H+ & 30. Furthermore, these errors do
not improve considerably with an increasing number of modes, as demonstrated in
Figure 4.3, which shows a slow decrease in the error for #OS = #SQ = # > 4.

The reason for the persisting error is that for large _+G , there is significant energetic
content below the peaks of the lowest wavespeed modes, which typically sit around
H+ ≈ 40− 50 for Reg = 2003 (Moarref et al., 2013b). Thus, trying to match near the
wall results in overcompensation at larger H+. This is illustrated for the representative
wavelenghts (_+G , _+I ) ≈ (3.83×104, 2.78×103) in Figure 4.4. To confirm that this is
indeed the cause, Figure 4.4 also shows the result of the optimization with H+min = 50,
in which case the large oscillations disappear.

The near-wall errors eventually diminish as the number of modes tends to infinity.
However, the fact that the spectra for these wavenumbers are not well-represented
by a low-rank approximation suggests that the response modes may not be the
most efficient basis. Indeed, Rosenberg et al. (2019) outline conditions under
which the flowfields around a cylinder and for channel ECS are more compactly
represented by the response to the forcing generated by the leading response at a
different wavenumber triplet; it is possible that the present case is a similar situation,
but the number of triadic interactions that would have to be accounted for in fully
turbulent flow significantly complicates matters. It has also recently been shown that
augmentation of Equation (4.4) with an eddy viscosity improves the representation
of large-scale structures (Hwang, 2016; Illingworth et al., 2018; Madhusudanan
et al., 2019). Both approaches attempt to constrain the forcing, the former by using
triadic interactions to identify which scales are most important, and the latter by
choosing to only directly model the large-scale coherent motions. However, as
pointed out in ??, such nonlinear interactions are incompatible with the turbulent
mean velocity profile when an eddy viscosity is included.
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Figure 4.2: Intensities from the resolvent with #OS = #SQ = 3 modes per
wavenumber-frequency triplet (blue) and DNS (black) for Reg = 2003. Also shown
in dashed lines are the intensities obtained from the standard resolvent decomposi-
tion approach using the same total number of modes.
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Figure 4.3: Relative errors in 〈D2〉 (blue), 〈E2〉 (red), 〈F2〉 (green), and 〈−DE〉
(orange), as a function of #OS = #SQ = # .



59

Figure 4.4: Comparison of DNS (black) and the optimization results with H+min = 5
(red) and H+min = 50 (green) using #OS = #SQ = 6 modes for (_+G , _+I ) ≈ (3.83 ×
104, 2.78 × 103).
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Prediction of additional statistics
Since the optimization only attempts tomatch time-averaged spectra, the distribution
of energetic content in 2 is not directly constrained. To assess this, the power
spectra computed from the resolvent representation using the optimized weights
with #OS = #SQ = 3 are compared to those computed from DNS for Reg = 185
using Welch’s method with 8491 snapshots divided into 10 segments having 50%
overlap. Figure 4.5(a) and Figure 4.5(b) show the 2D premultiplied streamwise
power spectra in the :G − l and :I − l planes, respectively, at H+ ≈ 15.

The distribution in the :G−l plane is fairly good, withmost of the energetic content of
the resolvent spectrum falling within the 10%DNS contour. As discussed above, the
distribution in 2 is not directly constrained. However, the localization of the leading
resolvent modes at the critical layer implies that the energetic content at a given
wall-normal location is largely contributed by modes with a wavespeed matching
the local mean velocity. This is evident in Figure 4.5, where both the DNS and
resolvent spectra are concentrated around the dashed line representing the constant
wavespeed equal to the mean velocity at H+ = 15, i.e., 2 = * (H+ = 15). There is
no such localization mechanism in the :I − l plane. Nonetheless, the resolvent
representation still reproduces the general shape of the DNS spectrum quite well.
Note that to produce Figure 4.5(b), the resolvent spectrum was interpolated onto a
common l grid prior to integration over :G .

The optimized weights can also be used to compute an approximation of the forcing
spectra in a manner that is directly analogous to the velocity spectra in Equa-
tion (4.14):

�6E6E (H, :G , :I, 2) = Re
{
tr
(
BEEX OS/OS

)}
, (4.21a)

�6[6[ (H, :G , :I, 2) = Re
{
tr
(
B[[X SQ/SQ

)}
, (4.21b)

where BEE,8 9 = qE,8q
∗
E, 9
, and B[[,8 9 = q[,8q

∗
[, 9
. The estimates of the 2D forcing

spectra with #OS = #SQ = 3 in the :G − :I plane at H+ ≈ 15 for Reg = 185 are
compared to the full forcing spectra computed from DNS (Rosenberg, 2018) in
Figure 4.6. The resolvent estimate reasonably predicts the general shape of the full
spectra with only a few modes; this is consistent with results indicating that the OS-
SQ decomposition yields not only an efficient response basis, but also a forcing basis
that is more efficient than the one obtained from the standard resolvent approach
(Rosenberg and McKeon, 2019b). Furthermore, this estimate was obtained using
only information about the velocity statistics, an interesting implication of which is
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Figure 4.5: 2D premultiplied streamwise velocity power spectra at H+ ≈ 15 for
Reg = 185. (a) l:G�DD, (b) l:I�DD. Filled contours: Optimized weights with
#OS = #SQ = 3. Line contours: DNS; levels are 10% (thin) and 50% (thick) of the
maximum value. The slope of the dashed line indicates the the local mean velocity
* (H+ = 15).
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that potentially much can be be learned about the nonlinear forcing directly from
commonly-computed flow quantities. We note that similar observations have been
made by Towne et al. (2020), who use a limited set of flow statistics to infer forcing
statistics, which are in turn used to estimate the unknown flow statistics.

To give additional insight into how energetic modes are distributed across spectral
space, the magnitudes of the total mode coefficients, i.e., the weight multiplied by
the singular value, are plotted for the leading OS and SQ modes in Figure 4.7(a)
and Figure 4.7(b), respectively, for Reg = 2003; for ease of visualization, only
coefficients larger than 1% of the maximum value over all spectral space are plotted.
Interestingly, they are largely concentrated at large _G and 2 close to*2; . In addition,
there are large coefficients for very low 2 and large _+G , which are likely related to
near-wall over-compensation, discussed in Section 4.2. This observed clustering
may have implications for further model reduction by highlighting important regions
of spectral space. Finally, with the exception of some SQ coefficients at small _+G and
2 ≈ *2; , the large OS and SQ coefficients occupy the essentially the same regions
of spectral space which is a reflection of the interactions between the two families
of modes; this is discussed in detail in the next section.

Finally, while Figure 4.7 appears to suggest that the longest modes should domi-
nate the spectra, we remark that since modes with very large _G typically span the
entire channel, the orthonormality constraint requires that their peak amplitudes be
relatively low compared to other modes having more compact wall-normal sup-
port. Thus their contribution to the spectra at a given wall-normal location may be
comparable to modes having smaller coefficients.

Interpretation of the OS-SQ decomposition: a competition mechanism
It has been demonstrated that the performance of the optimization is greatly improved
by employing the OS-SQ decomposition of the resolvent. Previous work reported
similar results for channel ECS (Rosenberg, 2018; Rosenberg and McKeon, 2019b).
In that case, the relatively poor performance of the traditional resolvent method
was attributed to the fact that the [ response dominates under the kinetic energy
norm. Thus, matching the statistics for D (or F) results in under-prediction of the E
statistics, as observed in Figures 4.1 and 4.2. However, in the OS-SQ decomposition,
isolating the E response in only theOSmodes allows E and [, to be “tuned” somewhat
independently, with the role of the SQ modes then being to saturate the OS vorticity.
The improved matching of all components in Figure 4.2 indicates that this is also
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Figure 4.6: 2D forcing spectra at H+ ≈ 15 for Reg = 185. (a) �6E6E , (b) �6[6[ . Filled
contours: Optimized weights with #OS = #SQ = 3. Line contours, reproduced from
Rosenberg (2018): DNS; levels are 10% (thin) and 50% (thick) of the maximum
value.
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Figure 4.7: Magnitudes of the total leading mode coefficients (a) fOS
1

√
X OS/OS

11 , (b)

f
SQ
1

√
X SQ/SQ

11 larger than 1% of the maximum value over all of spectral space for
Reg = 2003. Marker sizes are proportional to the magnitude and are normalized
by the maximum. The axes show the full range of wave parameters included in the
optimization.
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the case for fully-turbulent channel flow, where the dynamics are significantly more
complex than for the aforementioned equilibria.

To understand why the OS and SQmodes comprise a muchmore efficient basis, note
that in certain cases the response modes of the standard resolvent, Equation (4.10),
coincide with those of the OS resolvent, Equation (4.12a). A detailed description
of the regions of parameter space where this holds is beyond the present scope, but
we note that since H[E contains the coupling term −8:I*′, it is expected to hold
whenever the lift-up mechanism is dominant, one such example being for highly
streamwise-elongated modes. Further discussion can be found in Dawson and
McKeon (2019). Here, we simply illustrate by example for a particular wavenumber-
frequency triplet in Figure 4.8, which compares the singular values and magnitudes
of the [̂ response for the standard, OS, and SQ resolvents. Due to the symmetry of the
channel geometry about H = 0, the resolvent yields symmetric-antisymmetric pairs
of modes. If the modes are localized away from the centerline, then their singular
values are equal; if, however, the modes have non-zero support at the centerline, then
the singular values are not equal but are close in magnitude. The singular values of
the OS and standard resolvents are almost equal, with the separation between them
growing slowly with increasing mode index. Looking now at the [̂ response modes,
those from OS and standard resolvents are almost indistinguishable. Though not
shown, the same is true for the Ê responses.

The SQ singular values are significantly smaller than those for the standard or OS
resolvent – by more than an order of magnitude for the first pair. Interestingly, the
SQ singular values do not demonstrate clear pairing beyond this. The SQ [̂ modes
are distinct from the other two, in particular having slightly narrower wall-normal
support. However, the shapes are still largely similar. Importantly, there is still a
significant region of overlap with the OS modes in the wall-normal direction, which
is a necessary condition for the SQ modes to interact with the the OS modes.

It is also instructive to look at the corresponding forcing modes, which are shown in
the top row of Figure 4.9. As with the response modes, qE for the OS and standard
resolvents are virtually identical. This is at first surprising since the standard
resolvent has q[ with comparable amplitude to qE. However, its contribution to the
norm is . 1%. The bottom row of Figure 4.9 shows q[ for the SQ and standard
resolvents normalized by their maximum amplitude for ease of comparison. Despite
some differences that become more pronounced for the higher-order modes, their
shapes are overall quite similar. Therefore, though there may be traces of the SQ
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modes in the leading standard resolvent modes, they are clearly dominated by the OS
ones. This implies that using the standard resolvent operator to generate a low-order
representation is effectively equivalent to using only the OS family of modes, and
the linear mechanisms encoded in the SQ operator are thus not accounted for.

To further examine the relationship between the OS and SQ modes, we decompose
the intensities shown in Figure 4.2 into contributions from OS modes only, SQ
modes only, and a cross term (C) that represents the interaction of OS and SQ
modes, e.g., 〈D2〉 becomes〈

D2〉 = 〈(
DOS

)2
〉

︸     ︷︷     ︸
OS

+
〈(
DSQ

)2
〉

︸     ︷︷     ︸
SQ

+ 2
〈
DOSDSQ〉︸        ︷︷        ︸

C

. (4.22)

The individual terms with # = 3 for 〈D2〉, 〈F2〉, and 〈−DE〉 are shown in Figure 4.10,
along with the totals (black curves). Note that the total 〈D2〉 profile appearing to be
zero in Figure 4.10(a) is merely a result of the scale; it is identical to that plotted
in Figure 4.2(a). The decomposition for 〈E2〉 is not shown since, as seen from
Equation (4.12b), the SQ modes have no E response, and hence 〈E2〉 = 〈(EOS)2〉.
Similarly, there is no SQ-only contribution to 〈−DE〉. For 〈D2〉 and 〈F2〉, the OS and
SQ terms are similar, with the OS term having slightly larger magnitude. However,
for all three components, the C term is negative, which supports the claim that the
SQ vorticity acts to saturate the OS vorticity. In fact, information about the phase
relationship between the OS and SQ modes can be deduced from this observation.
Note that the third term in Equation (4.22) is simply twice the covariance of DOS

and DSQ. For simplicity, express each as a Fourier sine series in one variable:

DOS =

∞∑
8=1

�OS
8 sin(:8G + \OS

8 ), (4.23a)

DSQ =

∞∑
8=1

�
SQ
8

sin(:8G + \SQ
8
), (4.23b)

where �X
8
and \X

8
are the amplitude and phase of the 8th mode, respectively, and
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Figure 4.8: (a) First ten singular values of the OS (blue), SQ (red), and standard
(black) resolvent operators for (:G , :I, 2) = (0.25, 2.5, 24) and Reg = 2003. (b)-(d)
Magnitudes of the vorticity responses from the first, second, and third mode pairs
(same color scheme as in (a)); modes having the same wall-normal symmetry have
been selected from each pair. The standard resolvent (black) and OS (blue) modes
are visually indistinguishable. The gray lines in (b)-(d) are the locations of the
critical layers, H2 = ±0.194.
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Figure 4.9: (a),(c),(e) Magnitudes of the forcing modes corresponding to the re-
sponse modes shown in Figure 4.8, using the same color scheme. qE for the standard
resolvent (solid black) is indistinguishable fromOS (blue). Dotted lines are the stan-
dard resolvent q[. Gray lines are the locations of the critical layers, H2 = ±0.194.
(b),(d),(f) SQ and standard resolvent q[ normalized by their maximum values.
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Figure 4.10: (a) 〈D2〉, (b) 〈F2〉, (c) 〈−DE〉 decomposed into OS (blue), SQ (red),
and C (green) terms for # = 3. The totals are plotted in black.
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0 < :1 < :2 < · · · . Then,

2
〈
DOSDSQ

〉
= 2

∑
8

∑
9

�OS
8 �

SQ
9

〈
sin(:8G + \OS

8 ) sin(: 9G + \SQ
9
)
〉

=
∑
8

∑
9

�OS
8 �

SQ
9

(〈
cos

[
(:8 − : 9 )G + \OS

8 − \
SQ
9

]〉
(4.24)

−
〈
cos

[
(:8 + : 9 )G + \OS

8 + \
SQ
9

]〉)
=

∑
8

�OS
8 �

SQ
8

cos(Δ\8),

whereΔ\8 = \OS
8
−\SQ

8
. The term labeledC inEquation (4.22) can thus be interpreted

as a weighted (by the amplitudes) sum of the cosines of the phase difference between
the OS and SQ modes. Therefore, 〈DOSDSQ〉 < 0 implies c/2 < |Δ\8 | < 3c/2 on
average. Furthermore, the relative magnitudes of the three terms suggests that for
the majority of modes the phase difference is relatively close to c, i.e., the OS
and SQ modes are close to being exactly out of phase. Finally, we note that while
the individual terms in Equation (4.22) depend on # , the trends discussed above,
namely the similarity of the OS and SQ terms and the C term being negative, do
not. Furthermore, performing the decomposition in Equation (4.22) for 〈[2〉 from
Reg = 185 DNS data reveals the same features (Rosenberg, 2018). This provides
strong evidence that they are not merely consequences of the particular optimization
procedure, but are in fact robust features of turbulent channel flow.

Since the SQ modes are exclusively wall-parallel motions, there is a passing resem-
blance to the notion of the “inactive” motions proposed by Townsend (1961). It is
supposed that, at first order, the inactive motions do not interact with the “active”
shear stress-carrying motions. However, Figure 4.10(c) shows that the interaction
of the SQ vorticity with E produced by the OS modes, the C term, contributes
significantly to the overall Reynolds shear stress profile, suggesting that there is not
an exact correspondence between the SQ modes and inactive motions.

In this section, it was shown that the OS-SQ decomposition of the resolvent provides
an improved basis for efficiently representing the statistics of turbulent channel flow,
and that this provides insight into the complex physics at play, namely a competition
mechanism, interpreted as a phase difference, betweenOS and SQmodes that results
in saturation of the wall-normal vorticity. In the next section, we use this insight
to derive simple scalings for the relative magnitudes of the OS and SQ weights of
modes belonging to several special classes.
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4.3 Weights scaling for the universal classes of resolvent modes
Moarref et al. (2013a) leveraged universal scaling regimes of the mean velocity
profile to derive the Reg scaling for several universal classes of resolvent modes.
Here, we extend this to the OS-SQ resolvent decomposition and show that for the
outer and geometrically self-similar classes, each family of modes has a distinct
scaling for the singular values. From this, the scalings of each submatrix of the
energy density matrices AA given in Equation (4.17) can be determined. Combining
these scalings with the hypothesis that competition of the OS and SQmodes remains
relevant at different Reynolds numbers and in different regions of the flow enables
the relative scaling of the OS and SQ weights belonging to the universal classes to
be deduced.

The universal classes investigated here are the inner, outer, and geometrically self-
similar classes. These consist of resolvent modes that are localized within the
near-wall, wake, and logarithmic regions of the flow, respectively, and rely on
universality of the mean velocity profile under the appropriate scaling in these
regions. Figure 4.11(a) demonstrates the universality of * for H+ . 100, and
Figure 4.11(b) shows that the velocity defect*2; −* is universal for H & 0.1; these
approximate boundaries are indicated by the vertical dashed lines in Figure 4.11.
Between these regions, there exists an intermediate region of the mean velocity
profile in which both scalings hold. In this overlap region, it is widely accepted that
the mean varies logarithmically with distance from the wall. Classical estimates
put the beginning of the logarithmic region at H+ = $ (100). However, there is
recent evidence that this lower boundary moves outward as Re1/2

g (Klewicki et
al., 2009; Marusic et al., 2013). In the logarithmic region, the resolvent operator
admits self-similar modes localized about their critical layers (Moarref et al., 2013a).
Furthermore, the scaling of thesemodes reduces to the inner and outer scalings when
H+ or H, respectively, is held fixed, reflecting their mutual validity in the logarithmic
region.

In each of the next subsections, we briefly summarize the scaling of the wave
parameters for each of the three aforementioned universal classes derived byMoarref
et al. (2013a), as well as the distinct scalings for the OS and SQ singular values.
Finally, the relative scaling of the OS and SQ weights are presented and tested
against the computed optimal weights.
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Figure 4.11: (a) Mean velocity profile * (H+) and (b) velocity defect *2; − * (H)
for Reg = 934 (blue), Reg = 2003 (red), and Reg = 4219 (green). The gray
boxes indicate the regions where the profiles are Reg-invariant in the respective
coordinates.
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Inner class
Following Moarref et al. (2013a), the relevant length scale for the inner class is the
viscous unit a/Dg, so that the corresponding inner-scaled parameters are

:+G = Re−1
g :G , :+I = Re−1

g :I, H+ = RegH, (4.25)

and the inner class wave parameters are

S8 : 0 ≤ 2 . 16.4. (4.26)

The upper wavespeed limit is obtained from the critical layer at the top of the inner
region, i.e., * (H+ = 100) = 16.4; this is indicated by the horizontal dashed line
in Figure 4.11(a). Note that this bound is slightly different from the one given in
Moarref et al. (2013a) since the mean velocity profiles they used were obtained from
an eddy viscosity model, whereas the ones used here are taken directly from the
DNS that the spectra are obtained from. Using Equation (4.25) and continuity, it
follows that all three velocity components scale in the same way. Furthermore, the
orthonormality constraint on the resolvent modes imposes

û = Re1/2
g û+, (4.27)

where a superscript ( · )+ indicates a quantity that is Reg-invariant for modes be-
longing to the inner class. Equation (4.25) can be used to obtain the inner-scaled
versions of the weighted resolvent operators:(

FEHEEF −1
E

F[H[EF −1
E

)
= Re−1

g

(
F +E H+EEF +−1

E

F +[ H+[EF +−1
E

)
(4.28a)

F[H[[F −1
[ = Re−1

g F +[ H+[[F +−1
[ , (4.28b)

where F = diag(FE, F[) is the square root of the positive-definite operator Q
defined in Equation (4.8), i.e., Q = F †F , and the superscript ( · )† denotes the
adjoint with respect to the inner product Equation (4.7). Computing the SVDs of
Equations (4.28a) and (4.28b), it is clear that both the OS and SQ singular values
have the same scaling:

fOS
9 = Re−1

g f
OS+
9 , f

SQ
9
= Re−1

g f
SQ+
9

. (4.29)

For a particular :+G , :+I , and 2 ∈ S8, the magnitudes of the leading vorticity response
modes of the OS and SQ resolvent operators and their corresponding forcing modes
for the three Reg in Figure 4.11 are shown in Figure 4.12(a) and Figure 4.12(b),
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respectively, using the scalings derived in Equations (4.27)–(4.29). For comparison,
the leading response and forcing mode for the standard resolvent operator are also
shown; as discussed in Section 4.2, k[ and qE are indistinguishable from the OS
modes.

Substituting Equations (4.27) and (4.29) into Equation (4.15), we obtain the inner-
scaled energy density matrices:

AOS/OS
A,8 9

= Re−1
g AOS/OS+

A,8 9
, AOS/SQ

A,8 9
= Re−1

g AOS/SQ+
A,8 9

, ASQ/SQ
A,8 9

= Re−1
g ASQ/SQ+

A,8 9
.

(4.30)
With this, the decomposed version of the three-dimesional streamwise energy spec-
trum becomes

�DD = Re−1
g Re

{
tr
(
AOS/OS+
DD X OS/OS

)}
+ 2Re−1

g Re
{
tr
(
ASQ/OS+
DD X OS/SQ

)}
(4.31)

+ Re−1
g Re

{
tr
(
ASQ/SQ+
DD X SQ/SQ

)}
,

where the Reynolds number dependence of the right-hand side is made explicit,
save for the unscaled weights matrices XX/Y. Equation (4.30) can be used to write
similar expressions for the other components of the spectra.

Since the overall scaling of �DD for the inner class is not known, the absolute scaling
of the weights cannot be determined directly from Equation (4.31). However, in
Section 4.2, it was shown that the vorticity generated by OS and SQmodes compete.
That is, the vorticity generated by the SQ modes acts to “saturate” the OS vorticity.
We hypothesize that this mechanism is not specific to Reg = 2003 for which the
optimization results were presented, but instead holds for arbitrary Reg. This is only
possible if all three terms remain of the same order in Equation (4.31), which is
satisfied if the inner class OS and SQ weights have the same scaling, i.e., if the ratio����� jSQ

9

jOS
9

����� ≠ fn(Reg) (4.32)

for modes belonging to the universal inner class.

This scaling is tested by computing the weights matrices for the three Reynolds
numbers depicted in Figure 4.11 for fixed inner-scaled wavenumber combinations
(:+G , :+I ). As discussed in Section 4.1, the individual weights are not recovered from
the full-rank solutions. However, X OS/OS

9 9
∼ |jOS

9
|2 and X SQ/SQ

9 9
∼ |jSQ

9
|2, so that

|jSQ
9
/jOS

9
| ∼

√
X SQ/SQ
9 9

/X OS/OS
9 9

. This ratio with 9 = 1 is computed for the three
Reynolds numbers, and the results for several wavenumber combinations spanning
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Figure 4.12: (a) Magnitudes of the scaled OS, SQ, and standard resolvent (color
scheme as in Figure 4.8) inner-class leading vorticity response modes for the three
Reg shown in Figure 4.11, with :+G = 1/934, :+I = 10:+G , and 2 = 10. (b) Corre-
sponding scaled leading forcing mode magnitudes, with the relevant axes indicated
by the arrows. k[ and qE for the standard resolvent are indistinguishable from the
OS modes. The gray line indicates the location of the critical layer.
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a large range of scales are shown in Figure 4.13. Overall, the agreement is quite
good, showing a reasonable collapse despite some scatter. The main exception
is for (:+G , :+I ) = (2c/103, 2c/102) in Figure 4.13(b), where there is clearly some
dependence on Reg for 2 . 10. This trend is consistent for modes of relatively small
scale (:+G & $ (2c/103)) and large aspect ratio (:+I /:+G & $ (10)). The reason for
the failure of the scaling for these modes is unclear. However, it is observed that
in such cases, the profiles of the time-averaged energy spectra are localized very
near the wall. Additionally, the upper limit on the wavespeed range for inner class
modes given in Equation (4.26), 2 = 16.4 is shown in each panel of Figure 4.13
as the vertical gray line. The fact that the scaling given by Equation (4.32) holds
reasonably well for 2 > 16.4 is a reflection of the fact that the inner scaling remains
valid in the logarithmic region, as seen in Fig. 4.11(a).

Outer class
The outer class length scales are

:̃G = Reg:G , :̃I = :I, H̃ = H, (4.33)

and the outer class wave parameters are

S> :

{
0 ≤ *2; − 2 . 6.17
:I/:G & WReg/Reg,min

, (4.34)

where the upper bound on the wavespeed defect *2; − 2 = 6.17 is obtained from
the setting the minimum critical layer location at the bottom of the outer region,
i.e., *2; − * (H = 0.1) = 6.17; this is indicated by the horizontal dashed line in
Figure 4.11(b). Again, this value is slightly different from the one given in Moarref
et al. (2013a) due to the different source for the mean profiles. As Equation (4.34)
indicates, the outer class modes must satisfy an aspect ratio constraint for all Reg
considered, where the minimum aspect ratio is W when Reg = Reg,min (Moarref et al.,
2013a). Here, Reg,min = 934. From Equation (4.33) and continuity, it follows that

û =
©­­«

D̃

Re−1
g Ẽ

Re−1
g F̃

ª®®®¬ . (4.35)

where ˜( · ) indicates a quantity that is approximately Reg-invariant for modes be-
longing to the outer class. See also Sharma et al. (2017) and Moarref et al. (2014b)
for the scaling of each velocity component, as well as for the components of the
forcing modes.
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Figure 4.13: Leading weights ratio for Reg = 934 (blue), Reg = 2003 (red),
and Reg = 4219 (green) with # = 3 for several different wavelengths: (a)
(:+G , :+I ) = (2c/102, 2c/102); (b) (:+G , :+I ) = (2c/103, 2c/102); (c) (:+G , :+I ) =
(2c/103, 2c/103); (d) (:+G , :+I ) = (2c/104, 2c/103). Filled circles denote modes
belonging to the universal inner class, and the highest inner class wavespeed,
2 = 16.4, is indicated by the gray line.
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Figure 4.14: (a) Magnitudes of the scaled OS, SQ, and standard resolvent (color
scheme as in Figure 4.8) outer-class leading vorticity response modes for the three
Reg shown in Figure 4.11, with :̃G = 934, :̃I = W = 1.5

√
10, and *2; − 2 = 1. (b)

Corresponding scaled leading forcing mode magnitudes. k[ and qE for the standard
resolvent are indistinguishable from the OS modes. The gray line indicates the
location of the critical layer.



79

The outer-scaled versions of the weighted resolvent operators are(
FEHEEF −1

E

F[H[EF −1
E

)
=

(
RegF̃EH̃EEF̃ −1

E

Re2
gF̃[H̃[EF̃ −1

E

)
(4.36a)

F[H[[F −1
[ = RegF̃[H̃[[F̃ −1

[ . (4.36b)

Computing the SVDs of Equations (4.36a) and (4.36b), we have for the leading
singular values,

fOS
9 = Re2

gf̃
OS
9 , f

SQ
9
= Regf̃SQ

9
. (4.37)

Note that because the components of Equation (4.36a) do not scale uniformly for
outer-class modes, the scaling of the OS singular values is only expected to hold for
the first several modes. However, since good agreement between the resolvent and
DNS spectra is achieved using only a small number of modes, it is reasonable to
adopt the scalings in what follows.

For a particular (:G , :I, 2) ∈ S>, the magnitudes of the leading vorticity response
modes of the OS and SQ resolvent operators and their corresponding forcing modes
for the three Reg in Figure 4.11 are shown in Figure 4.14(a) and Figure 4.14(b),
respectively, using the scalings derived in Equations (4.35)–(4.37). For comparison,
the leading response and forcing mode for the standard resolvent operator are also
shown; again, k[ and qE are indistinguishable from the OS modes. Apparent
from Figure 4.14 is that the scaling of the outer class modes is only approximate.
Recalling that the derivation of such universal classes relies on universal behavior of
the mean profile, this is not surprising, since it is clear from Figure 4.11(b) that the
mean profiles for the three Reg do not collapse perfectly for H > 0.1. Additionally,
q[ for the standard resolvent (black dotted line in Figure 4.14(b)) does not obey the
same scaling as qSQ

[ . Indeed, using the scaling of the standard resolvent in primitive
variables presented in Sharma et al. (2017), it can be shown that q[ = $ (Re−1

g ).

Substituting Equations (4.35) and (4.37) into Equation (4.15), we obtain the outer-
scaled energy density matrices:

AOS/OS
DD,8 9

= Re4
gÃ

OS/OS
DD,8 9

, AOS/SQ
DD,8 9

= Re3
gÃ

OS/SQ
DD,8 9

, ASQ/SQ
DD,8 9

= Re2
gÃ

SQ/SQ
DD,8 9

, (4.38a)

AOS/OS
EE,8 9

= Re2
gÃ

OS/OS
EE,8 9

, (4.38b)

AOS/OS
FF,8 9

= Re2
gÃ

OS/OS
FF,8 9

, AOS/SQ
FF,8 9

= RegÃOS/SQ
FF,8 9

, ASQ/SQ
FF,8 9

= ÃSQ/SQ
FF,8 9

, (4.38c)

AOS/OS
DE,8 9

= Re3
gÃ

OS/OS
DE,8 9

, AOS/SQ
DE,8 9

= Re2
gÃ

OS/SQ
DE,8 9

. (4.38d)
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The streamwise energy spectrum is thus

�DD = Re4
g Re

{
tr
(
ÃOS/OS
DD X OS/OS

)}
+ 2Re3

g Re
{
tr
(
ÃSQ/OS
DD X OS/SQ

)}
(4.39)

+ Re2
g Re

{
tr
(
ÃSQ/SQ
DD X SQ/SQ

)}
,

where again the Reynolds number dependence of the right-hand side is explicit, save
for the unscaled weights matrices XX/Y, and Equation (4.38) can be used to write
similar expressions for the other energy spectra.

As for the inner class modes, competition between the OS and SQ modes requires
that all three terms are of the same order for arbitrary Reg, which is satisfied if����� jSQ

9

jOS
9

����� ∼ Reg (4.40)

for modes belonging to the universal outer class.

The weights ratio
√

X SQ/SQ
11 /X OS/OS

11 for the three Reynolds numbers is shown in
the top row of Figure 4.15 for several values of the outer-scaled wavenumber com-
binations ( :̃G , :̃G) and a minimum aspect ratio W =

√
10. In agreement with Equa-

tion (4.40), the data from all three Reynolds numbers show reasonable collapse onto
a single curve for*2; − 2 . 6.17 when scaled by Re−1

g , as seen in the bottom row of
Figure 4.15.

Geometrically self-similar class
The self-similar resolvent modes in the logarithmic region of the mean velocity
profile belong to hierarchies parameterized by the critical layer location H2 (Moarref
et al., 2013a). The corresponding length scales along a hierarchy are

:̌G = H
+
2 H2:G , :̌I = H2:I, Ȟ = H/H2, (4.41)

and the self-similar class wave parameters are

Sℎ :


16.4 . 2 . *2; − 6.17
2 = * (H+2 ) = ^−1 log H+2 + �
:I/:G & W

, (4.42)

where ^ is the Kármán constant. Note that the lower wavespeed bound for the
self-similar class, 2 = 16.4, is the same as the upper limit for the inner class
modes, i.e., the beginning of the logarithmic region is taken to be H+ = 100. As
discussed above, recent evidence suggests that this lower limit is Reg-dependent
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(Klewicki et al., 2009; Marusic et al., 2013). However, Moarref et al. (2013a)
demonstrated successful scaling of the self-similar modes using the fixed lower
limit in Equation (4.42), so we continue to use it here. For reference, the beginning
of the logarithmic region according to the balance of terms in the mean momentum
equation, H+ ≈ 2.6Re1/2

g (Klewicki et al., 2009), is indicated by the gray dashed line
in Figure 4.17. The self-similar modes must also satisfy an aspect ratio constraint.
Since the aspect ratio increases like H+2 along a given hierarchy, it is sufficient that the
lowest member on the hierarchy with critical layer H2,; and wavenumbers :G,; , :I,;
satifies :I,;/:G,; & W, where a conservative lower bound is W ≈

√
10 (Moarref et al.,

2013a).

Using Equation (4.41) and continuity, as well as the orthonormality constraint on
the resolvent modes, it follows that

û = H−1/2
2

©­­«
Ď

H+−1
2 Ě

H+−1
2 F̌

ª®®®¬ . (4.43)

where ˇ( · ) indicates a quantity that is approximately H2- and Reg-invariant for modes
belonging to the self-similar class. The H2-scaled versions of the weighted resolvent
operators are (

FEHEEF −1
E

F[H[EF −1
E

)
=

(
H2H
+
2 F̌EȞEEF̌ −1

E

H2H
+ 2
2 F̌[Ȟ[EF̌ −1

E

)
(4.44a)

F[H[[F −1
[ = H2H

+
2 F̌[Ȟ[[F̌ −1

[ , (4.44b)

so that their leading singular values scale as

fOS
9 = H2H

+ 2
2 f̌

OS
9 , f

SQ
9
= H2H

+
2 f̌

SQ
9
. (4.45)

Aswith the outer classmodes, the scaling of theOS singular values are only expected
to hold for the first several modes.

The magnitudes of the leading vorticity response modes of the OS and SQ resolvent
operators and their corresponding forcing modes for five members of a particular
hierarchy atReg = 2003 are shown in Figure 4.16(a) and Figure 4.16(b), respectively,
using the scalings derived in Equations (4.43)–(4.45). For comparison, the leading
response and forcing mode for the standard resolvent operator are also shown; again,
k[ and qE are indistinguishable from the OS modes. Here again, q[ for the standard
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Figure 4.16: (a) Magnitudes of the scaled OS, SQ, and standard resolvent (color
scheme as in Figure 4.8) self-similar leading vorticity response modes for five
members of a hierarchy at Reg = 2003, with :G,; = 10 and :I,; = 103/2. (b)
Corresponding scaled leading forcing mode magnitudes. k[ and qE for the standard
resolvent (black) are indistinguishable from the OS modes (blue).



84

resolvent (black dotted line in Figure 4.16(b)) and qSQ
[ exhibit different scalings,

with the standard resolvent q[ = $ (H−3/2
2 H+−1

2 ).

Substituting Equations (4.43) and (4.45) into Equation (4.15), we obtain the scaled
energy density matrices:

AOS/OS
DD,8 9

= H2H
+ 4
2 ǍOS/OS

DD,8 9
, AOS/SQ

DD,8 9
= H2H

+ 3
2 ǍOS/SQ

DD,8 9
, ASQ/SQ

DD,8 9
= H2H

+ 2
2 ǍSQ/SQ

DD,8 9
,

(4.46a)

AOS/OS
EE,8 9

= H2H
+ 2
2 ǍOS/OS

EE,8 9
, (4.46b)

AOS/OS
FF,8 9

= H2H
+ 2
2 ǍOS/OS

FF,8 9
, AOS/SQ

FF,8 9
= H2H

+
2 Ǎ

OS/SQ
FF,8 9

, ASQ/SQ
FF,8 9

= H2Ǎ
SQ/SQ
FF,8 9

,

(4.46c)

AOS/OS
DE,8 9

= H2H
+ 3
2 ǍOS/OS

DE,8 9
, AOS/SQ

DE,8 9
= H2H

+ 2
2 ǍOS/SQ

DE,8 9
, (4.46d)

and the streamwise energy spectrum is

�DD = H2H
+ 4
2 Re

{
tr
(
ǍOS/OS
DD X OS/OS

)}
+ 2H2H+ 3

2 Re
{
tr
(
ǍSQ/OS
DD X OS/SQ

)}
(4.47)

+ H2H+ 2
2 Re

{
tr
(
ǍSQ/SQ
DD X SQ/SQ

)}
,

where the H2 dependence of the right-hand side is explicit, except for the unscaled
weights matrices XX/Y. Balancing all three terms requires����� jSQ

9

jOS
9

����� ∼ H+2 . (4.48)

The ratio
√

X SQ/SQ
11 /X OS/OS

11 is plotted along several hierarchies with different
:G,; , :I,; for Reg = 2003 in Figure 4.17. In this case, to have a sufficient num-
ber of wavespeeds belonging to Sℎ while keeping the size of the optimization
problem manageable, the matching of the DNS spectra is only enforced for H+min =

100 ≤ H+ ≤ 0.1Reg = H+max, with #2 = 25. The scaling given by Equation (4.48)
is clearly demonstrated, as the data in all cases exhibit a linear dependence on H+2
to within a good approximation. In all cases shown, the aspect ratio at the bottom
of the hierarchies is W = 5. Similar results are obtained using different aspect ra-
tios, provided that W &

√
10 (Moarref et al., 2013a). The slopes of the lines are

observed to decrease with increasing :G,; . Although not shown here, the slopes tend
to increase with increasing W.

4.4 Discussion
A low-order representation of the time-averaged energy spectra of turbulent channel
flow based on the resolvent analysis framework was presented. The resolvent
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Figure 4.17: Leading weights ratio along hierarchies for Reg = 2003 with # = 2.
Each panel is a different hierarchy, represented by the streamwise wavenumber at the
bottom of the hierarchy: (a) :G,; = 1; (b) :G,; = 5; (c) :G,; = 10; (d) :G,; = 20. In all
cases, the spanwise wavenumber at the bottom of the hierarchy is :I,; = W:G,; , with
W = 5. The solid gray lines are the least-squares linear fits, with slopes (a) 0.158,
(b) 0.145, (c) 0.107, and (d) 0.069. The dashed gray lines are H+ = 2.6Re1/2

g ≈ 116.
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mode weights, which encode information about the nonlinear interactions in the
flow, were determined empirically by computing the weights that minimize the
deviation between the resolvent spectra and spectra obtained from DNS using a
convex optimization scheme. The present approach is a modification of previous
work (Moarref et al., 2014a), with the major difference being the incorporation of
a recently-proposed alternative decomposition of the resolvent operator into two
distinct families of modes, referred to as the Orr-Sommerfeld and Squire families
(Rosenberg and McKeon, 2019b).

It was demonstrated that the alternative OS-SQ decomposition results in a dramatic
improvement in the performance of the representation. This improvement is at-
tributed to the isolation of the E response in the OS family, which enables the [
response of the SQ family to compete with the large [ response generated by the OS
modes. Furthermore, for certain values of the wave parameters, the leading modes
of the standard resolvent operator are almost identical to the leading modes of the
OS resolvent, so that the mechanisms encoded in the SQ operator are essentially
neglected; this helps explain the relatively poor performance of the representation
obtained using the standard resolvent. A decomposition of the statistics into contri-
butions from the OS modes, SQ modes, and an interaction between the two families
supports this claim and is in agreement with results from DNS at Reg = 185 (Rosen-
berg, 2018). It was further shown that the competition between the OS and SQ
modes can be interpreted as a phase difference, and that this phase difference is
speculated to be close to c over large portions of spectral space.

Next, the scaling of the leading singular values for the OS and SQ families were
derived for the inner, outer, and geometrically self-similar universal classes of
resolvent modes (Moarref et al., 2013a). For the inner class, both sets of singular
values scale as Re−1

g . For the outer and self-similar classes, the OS singular values
are larger than the SQ ones by a factor of Reg and H+2 , respectively. Interestingly,
this large difference in amplification suggests that modes in these classes are likely
to be among those for which the OS and standard resolvent modes are nearly
identical. Indeed, the scaling of the leading OS singular values is the same as that
for the leading singular values of the standard resolvent for the outer and self-similar
classes. For the inner class, the scaling for both the OS and SQ singular values
matches the standard resolvent. These scalings, combined with the hypothesis that
the competition between SQ and OS modes discussed above remains relevant for
arbitrary Reg and throughout the flow domain, were used to derive the relative
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scalings of the OS and SQ weights in each of the universal classes. The scaling
predictionswere tested against the optimizedweights, and, with the exception of high
aspect ratio modes of the inner class localized very near the wall, good agreement
with the computed optimal weights was found for each of the universal classes.

The results presented herein have several important implications for equation-driven
modeling of turbulent channel flow. The first is that partitioning the resolvent opera-
tor into Orr-Sommerfeld and Squire subsystems, originally presented in the context
of ECS (Rosenberg andMcKeon, 2019b), is also advantageous in terms of its ability
to develop compact representations of fully turbulent channel flow at high Reynolds
number. Furthermore, it provides valuable insight into the complex dynamics by
identifying the competition mechanism between the OS and SQ modes, which has
ramifications for modeling nonlinear interactions. Specifically, considering that for
large Reg, the OS singular values in the logarithmic and outer regions of the flow
are much larger than the SQ ones, it may be tempting from a modeling perspective
to neglect the SQ family of modes. However, doing so does not take into account
the relative scaling of the forcing terms 6̂E and 6̂[ in Equation (4.10) – it implicitly
assumes they remain of the same order. The present results indicate that this is
not the case. In fact, the scaling results of the weights for all of the classes can be
summarized as |jSQ

9
/jOS

9
| ∼ fOS

9
/fSQ

9
.

Though the absolute scalings of the weights were not determined, the present work
can be considered a starting point to guide further modeling efforts toward quanti-
fying nonlinear interactions in turbulent channel flow. For instance, it is particularly
intriguing that, as discussed in Section 4.2, the E statistics depend only on the OS
modes. Consequently, if the scaling of the OS weights can be determined from
these, empirically or otherwise, then the results given in Section 4.3 can be used
to determine the scaling of the SQ weights, effectively reducing the number of un-
knowns by half. Then a single computation at a relatively low Reynolds number
could be combined with the scalings to make predictions of the spectra at Reynolds
numbers that are currently unattainable by DNS.

Taken together, the results point to the competition between the OS and SQ modes
being an important mechanism in turbulent channel flow that should be respected
in order to accurately model the statistics. We hypothesize that if this mechanism
could be interrupted, the dynamics, and consequently the statistics, of the system
would be significantly different. This line of inquiry is the subject of ongoing work.
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C h a p t e r 5

A DATA-DRIVEN APPROACH FOR GENERATING INITIAL
GUESSES OF EXACT COHERENT STATES

5.1 Chapter overview
As discussed in Section 1.4, upper-branch (UB) equilibria are typically harder to
compute than their lower-branch (LB) counterparts. Consequently, methods to
generate good initial guesses of a UB solution for a Newton search are valuable.
The standard method for obtaining UB solutions is using branch continuation, in
which a known solution for a particular Re is used as an initial guess for solutions at
higher or lower Re. While continuation is an extremely useful technique, providing
a wealth of information by tracing out a particular solution in parameter space, it
can be computationally costly. Thus, if one is interested in the behavior of the UB
at a particular Re, it would be desirable to have the option to “jump” from a known
LB solution to the corresponding UB1. Furthermore, this ability would complement
the work of Rosenberg and McKeon (2019a), who used a resolvent-based iterative
method to compute LB solutions directly from the laminar state. Rosenberg (2018)
additionally proposed a simple extension of the method to generate UB solution
guesses by using an “over-amplified” version of the LB mean forcing; however, a
priori knowledge of the UB mean profile informed the value of the amplification
factor used.

The basic idea of “branch jumping” is illustrated schematically in Figure 5.1, which
shows a typical bifurcation diagram for a hypothetical equilibrium solution family.
In this diagram, the closed circle represents an initial known LB solution, which
can be continued up and down in Re (horizontal arrows) to trace out the blue curve.
The open circle represents the desired UB solution, and the vertical arrow illustrates
the jump from between the two. The dashed portion of the UB curve indicates the
region beyond which continuation has been performed.

The general problem statement then amounts to finding amappingF such that uUB =

F (uLB), where uLB and uUB denote LB andUB solutions, respectively. Ideally, such
a mapping could be deduced through analytical and physical insight. However, due

1The contents of this chapter were conceived during a visit with the Graham group at UW-
Madison. We are extremely grateful to Michael D. Graham for making this possible, and to Alec
Linot for numerous illuminating discussions.
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Figure 5.1: Schematic of “branch jumping”. “UB” and “LB” denote upper- and
lower-branch solutions, respectively, and � is some measure of amplitude used to
construct the bifurcation diagram. The closed circle represents a knownLB solution,
the open circle represents the desired UB solution, and F is the proposed mapping
between the two.
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Figure 5.2: Schematic of the neural network “workflow”.

to its almost assuredly nonlinear nature, this is a potentially prohibitively difficult
task. In light of this, resorting to a data-driven approach may be more fruitful.
In particular, neural networks are particularly well-suited for this task, which is
essentially nonlinear regression. By training a network to “learn” F , one could
then use it to generate an initial guess of UB solutions without having to perform a
continuation. Moreover, the learned mapping could in principle be used to generate
initial guesses for uncovering new solutions.

The primary goal of this chapter is a proof-of-concept demonstrating the utility of
neural networks as a data-driven tool to generate initial guesses of UB solutions that
can then be used in a Newton search. The demonstration will be performed using
known equilibria families in Couette flow. First, the details of the training protocol
and network architecture will be presented. Then, the performance of the network
will be assessed, and the successfully converged solutions will be discussed. The
consequences of symmetry breaking by the network will receive particular attention.
Finally, outlook for further application of the approach will be given.

5.2 Methods
In this section, we present the method through which a neural network is used to
generate predictions of UB equilibria. At a high level, an LB solution at a particular
Re is provided as an input to the (trained) network, which generates a prediction of a
UB solution at the same Re, which we denote UBNN. UBNN is then used as an initial
guess for a Newton search, which hopefully converges to a true UB equilibrium.
This basic “workflow” is summarized in the schematic shown in Figure 5.2, and the
various sub-blocks are described in further detail in the following subsections.

Training data
Before discussing the neural network itself, we first describe the dataset used to
train it. The training data comprise LB and UB pairs of Couette flow equilibria over
a range of Re. The equilibria families considered are EQ1-2 and EQ3-4, where,
following the naming convention of Ahmed and Sharma (2020), the first number
designates the LB solution, and the second number designates the corresponding
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UB solution. EQ1-2 are the original Nagata equilibria (Nagata, 1990), which appear
in a saddle-node bifurcation at Re ≈ 218. EQ4 was first discovered by Gibson et al.
(2008), and EQ3 was obtained by continuing it downwards in Re (Gibson et al.,
2009); the saddle-node bifurcation for this pair occurs at Re ≈ 364. A bifurcation
diagram for both families is shown in Figure 5.3. The solutions are plotted in terms
of the fluctuation energy

� B
1

2!G!I

∫
S

u · u dS, (5.1)

where S = [0, !G] × [−1, 1] × [0, !I] is the spatial domain, and u = ũ− HeH are the
fluctuations about the laminar solution. For both equilibrium families, !G = 2c/1.14
and !I = 4c/5. From Equation (5.1), it is apparent that the UB solutions correspond
to the branch with larger � . The bifurcation curves for both families exhibit the
simple LB-UB structure illustrated in Figure 5.1. Evidently, EQ3-4 are weaker, i.e.,
are closer to laminar, than EQ1-2.

To illustrate the structure typical of these solutions, the streamwise-averaged fluc-
tuation fields of EQ1-2 and EQ3-4 at Re ≈ 500 are shown in Figures 5.4 and 5.5,
respectively. In both cases, the basic flow features are a low- and high-speed streak
concentrated primarily in the upper and lower halves of the channel, respectively,
and two counter-rotating streamwise “rolls” centered near the channel midplane.

Data for the EQ1-2 and EQ3-4 families were obtained from Ahmed and Sharma
(2020). The resolution for all solutions is (#G , #H, #I) = (32, 35, 32), which is
consistent with previous studies (e.g., Gibson et al., 2008). The Re range of the
training data is 402 . Re . 1000 for EQ1-2 and for 420 . Re . 1000 for EQ3-4.
The lower Re limit was chosen to exclude the vicinity of the bifurcation point, in
which the LB and UB solutions are not well distinguished. Altogether, this results
in 39 LB-UB pairs. This is a much smaller data set than is typically used for training
neural networks, as a small training dataset increases the likelihood of overtraining.
However, we are not aware of a significantly larger library from which to draw more
data, and we note that this is potentially a limitation of the present approach.

Data preprocessing
Due to the continuous symmetry of plane Couette flow in the streamwise and
spanwise directions, any given solution has infinitely many “copies” corresponding
to streamwise and spanwise shifts. Such ambiguity has the potential to obscure the
relationship between LB and UB solutions that the neural network is attempting to
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Figure 5.3: Bifurcation diagram for EQ1-2 (blue) and EQ3-4 (red).
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Figure 5.4: Streamwise-averaged velocity fields of EQ2 (top) and EQ1 (bottom) for
Re ≈ 500. Contours: D, vectors: E,F.
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Figure 5.5: Streamwise-averaged velocity fields of EQ4 (top) and EQ3 (bottom) for
Re ≈ 500. Contours: D, vectors: E,F.
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learn by forcing it to also learn arbitrary shifts. We instead choose to eliminate
this possibility by phase-shifting the training solutions such that the fundamental
G and I Fourier modes of F at a particular wall-normal height HB are real; that is,
arg F̂(:G = 2c/!G , HB, 0) = arg F̂(0, HB, :I = 2c/!I) = 0.

Additionally, since the training data set rarely have both an LB and UB solution at
a given Re, the LB solutions are linearly interpolated to match the Re for each UB
solution. Since the steps in Re for the LB solutions are relatively small, typically
≈ 40, it is not anticipated that this workaround significantly affects the performance
of the network.

Neural network description
The neural network is implemented in Python using TensorFlow (Abadi et al., 2015)
and Keras (Chollet et al., 2015). The network is a simple sequential network with
densely-connected layers. Network input data, i.e., the LB solution arrays, are
flattened into a vector, so that the dimension of the input layer is �8 = #G#H#I =
35840. Since the UB solutions have the same resolution as the LB ones, the output
layer dimension is �> = �8. The number of hidden layers was varied from one to
four, and negligible difference was observedwhen using two ormore. Several values
of the hidden layer dimension �ℎ were tested. �ℎ = 1024 results in predictions
of poor accuracy, while �ℎ & 3000 requires more computing power than available
on the workstation used. However, larger �ℎ was not pursued since �ℎ = 2048
produced results that were deemed sufficiently accurate for the present purposes.
The activation function for all of the hidden layers is the rectified linear unit (ReLu),
and the output layer activation is linear. The details of the network architecture are
summarized in Table 5.1.

Table 5.1: Details of the neural network architecture.

Layer Input Hidden Output

Dimension 35840 2048 35840
Activation ReLu linear

The loss function � to be minimized is a modification of the standard mean-square
error (MSE) designed to penalize deviations in all three velocity components evenly:

� B
1
#

#∑
:=1

(
‖D′

:
− D: ‖22
‖D: ‖22

+
‖E′
:
− E: ‖22
‖E: ‖22

+
‖F′

:
− F: ‖22
‖F: ‖22

)
, (5.2)
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where # is the size of the training data set, and ( · )′ denotes the neural network
prediction. The network was trained for 100-300 epochs using the Adam optimizer
(Kingma and Ba, 2015). The number of epochs was selected to achieve a balance
between obtaining a low training error and reducing possibility of overtraining.
Training of the networkwas repeated several times to verify that the results presented
here do not vary significantly between particular training outcomes.

Newton search details
The predictions from the neural network are used as an initial guess for a New-
ton search, implemented using Channelflow’s built-in findsoln function (Gibson,
2014). Specifically, this function uses a Newton-Krylov-hookstep (NKH) algorithm
(Viswanath, 2007a) to minimize the residual

M (ũ, ), f) B fL) (ũ) − ũ, (5.3)

where L) is the forward map of the NSE by time ) , and f is a symmetry operation.
The convergence criterion is ‖M‖ < Y. Here, we use the default value Y = 10−13.
Other parameters to be specified for the search are the time integration horizon )
and the number of Newton iterations ## performed before aborting the search if
the convergence criterion is not met. The default value of ) = 20 is used, and ##
was increased from 20 to 40 since some of the searches converged rather slowly.
A set of symmetry operations f can also be specified to restrict the search to the
corresponding the symmetry-invariant subspace. However, this was not done for
the searches initiated from the neural network predictions, as they generally do not
satisfy any of the symmetries of the training solutions. The implications of this will
be discussed in the proceeding section.

5.3 Results
Convergence range
Examples of the neural network predictions are compared to the true UB solutions
for EQ2 and EQ4 in Figures 5.6 and 5.7, respectively. Overall, the predictions do
a good job capturing the main features of the solution. However, there are notable
discrepancies, including a tendency to slightly under-predict D, as well as to over-
predict E and F. Additionally, the E and F fields often appear slightly noisy; this is
most apparent in the E component for EQ4, shown in Figure 5.7. Finally, we note
that the predicted fields generally do not satisfy the no-slip boundary conditions or
continuity. While no attempt was made to address the continuity issue, no-slip is
enforced by directly zeroing the values at the walls prior to the Newton search. To
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quantify the prediction error, we report the !2 distance (c.f. Equation (5.1)) between
the predictions and true equilibria. For the examples shown in Figures 5.6 and 5.7,
they are 0.0175 and 0.0279, respectively. In both cases, Newton searches initiated
from these guesses converged.

As described in Section 5.1, the primary objective is to use the trained neural network
to generate guesses for UB solutions at higher Re. Success is determined by whether
or not such a UB guess results in a converged equilibrium from a Newton search.
To determine the range of convergence, searches were performed at progressively
higher Re until a solution could not be obtained within 40 Newton iterations. For
EQ2, this occurred at Re ≈ 1188, and at Re ≈ 1249 for EQ4. It was observed that
searches for EQ4 generally converged more quickly than those for EQ2, which, as
previously discussed in reference to Figure 5.3, is likely a consequence of the fact
that the EQ4 solutions are weaker. Thus, the neural network predictions enable an
extension in Re by roughly 200. However, we note that this is also the range in
which the highest Re member of the UB training data can be successfully used as an
initial guess. As mentioned in Section 5.2, this suggests limited generalizability of
the network, likely resulting from overtraining on the limited data set. Nonetheless,
the results may be considered an encouraging proof of concept.

Symmetries of the solutions
Almost all of the known ECS in plane Couette flow are highly symmetric (Ahmed
and Sharma, 2020). We do not detail the symmetries admitted in Couette flow here,
as they have been cataloged elsewhere in the literature (e.g., Gibson et al., 2008).
For the present purposes, it is sufficient to note that EQ1-2 and EQ3-4 each satisfy
three discrete symmetries in addition to the identity operation. Namely, they are the
“shift-reflect” and “shift-rotate” symmetries, as well as their composition (Gibson
et al., 2009). However, as mentioned in Section 5.2, none of these symmetries are
imposed when performing the Newton searches. That is, we set f to be the identity
in Equation (5.3). This is because the neural network predictions do not satisfy
them2, and doing so results in failure to converge.

Figures 5.8 and 5.9 compare the streamwise-averaged fields for the known EQ2
and EQ4 solutions (left column), respectively, with the converged results using
the neural network prediction at the same Re (center column). They are visually

2The symmetries of a solution are numerically checked by applying a set of symmetry operations
to it and then computing the distance from the original field. If the distance is < 10−6 (the default in
Channelflow), then the solution is said to satisfy that symmetry.
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Figure 5.6: Comparison of EQ2 (left) and the neural network prediction (right) in
the plane G = 0 for Re = 1148. D: top, E: middle, F: bottom.
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Figure 5.7: Comparison of EQ4 (left) and the neural network prediction (right) in
the plane G = 0 for Re = 1209. D: top, E: middle, F: bottom.
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indistinguishable. Furthermore, their bulk quantities, such as norm and dissipation
rate, agree to at least seven significant figures. Finally, after applying the same phase
shifting procedure used for the training data, the !2 distance between the two is at
most $ (10−8), suggesting the Newton searches converge to the desired solutions.

Interestingly, however, the converged equilibria from the neural network predictions
also do not share any symmetries with EQ2 or EQ4. This is surprising, given the
strong qualitative and quantitative similarity between them. Also shown in the right
column of Figures 5.8 and 5.9 is the difference between the known equilibria and
the asymmetric states. While the magnitudes of the difference fields are extremely
small, consistent with the !2 distance, they exhibit clear structure, which implies
that the symmetry breaking is not merely the result of numerical error.

Beyond satisfactory convergence in the Newton search, several additional checks
were performed to confirm that the asymmetric solutions are in fact equilibria. First,
they were integrated forward in time for ) = 100, five times the value of the horizon
used for the Newton searches, and then compared to the initial state. The distance
between them is typically$ (10−10) or smaller. Additionally, several solutions were
also interpolated onto a finer grid, with (#G , #H, #I) = (48, 51, 48), and a another
Newton search was initiated. The converged result was compared to the initial guess,
and the distance between them was typically $ (10−5). This distance is of the same
order as that computed when this process was repeated for the known EQ2 solution,
indicating the asymmetric solution is sufficiently resolved.

5.4 Discussion
In this chapter, we have, as a proof of concept, demonstrated that a very simple
implementation of a neural network trained on lower- and upper-branch equilibrium
pairs can generate initial guesses for Newton searches that successfully yield con-
verged UB solutions at higher Re. Although the Re range of successful convergence
is not significantly better than what can be achieved using training data as an initial
guess, this does not rule out the possibility that a larger training dataset combined
with optimization of the network architecture can result in substantially better per-
formance. Moreover, since the neural network predictions do not share any the
discrete symmetries with the solutions used for training data, they could potentially
lead to successful convergence in the vicinity of a bifurcation point, which is often
associated with symmetry breaking. Finally, the small size of the hidden layers rela-
tive to the full solution dimension hints at the possibility of significant compression,
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Figure 5.8: Comparison of streamwise averages for EQ2 (left) and the converged
state using the neural network initial guess (center), as well as their difference (right)
for Re = 1148. D: top, E: middle, F: bottom.
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Figure 5.9: Comparison of streamwise averages for EQ4 (left) and the converged
state using the neural network initial guess (center), as well as their difference (right)
for Re = 1209. D: top, E: middle, F: bottom.
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and a potential direction for future work is an investigation of network “modes” that
could be used in low-order representations.

The most notable feature of the converged equilibria obtained from the neural
network predictions is that they also do not satisfy the symmetries of the EQ1-
2 or EQ3-4 families. While the differences leading to the symmetry breaking
are small, they cannot easily be discounted as merely numerical error. This has
several interesting implications. For instance, one possible interpretation is that the
regions of state space surrounding many of the known, highly symmetric solutions
are populated by similar but asymmetric solutions. Significantly, this would then
suggest that a turbulent trajectory that makes a close “visit” to an equilibrium need
not satisfy its symmetries. Another intriguing question is how the small asymmetric
deviations alter the self-sustaining mechanisms of an equilibrium. This question
in particular is well-suited to be addressed via projection onto resolvent modes
(Sharma et al., 2016; Rosenberg and McKeon, 2019b), as the resolvent framework
provides a natural setting to analyze triadic interactions.

In terms of broader outlook, it seems unlikely that any particular learned mapping
F will apply to all families of equilibria. However, it would still be interesting to
see what features do generalize. Particularly, since some LB and UB solutions sit on
opposite sides of the laminar-turbulent state space boundary (Gibson et al., 2008),
this may provide additional insight into what features separate an initial condition
that ultimately decays to laminar from one that leads to turbulence. Finally, we
believe that the present approach is not restricted to equilibria and, provided that
they have a similar LB-UB structure, could likely be extended to other special
solutions like traveling waves or periodic orbits, though slight modifications to
generate guesses of the wavespeed or orbit period may be required.
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C h a p t e r 6

CONCLUSIONS AND FUTURE WORK

This thesis described the application of reduced-order modeling techniques to three
problems in wall-bounded turbulence. Here, we summarize the major findings for
each of them and offer some perspective on how the results could be built upon in
future work.

First, the mechanisms underlying the characteristic structures of elastoinertial tur-
bulence (EIT) at low Re were elucidated. This was accomplished using a combi-
nation of resolvent and modal stability analyses. The dependence on Wi of linear
mechanisms was studied in the context of componentwise worst-case amplification.
Two cases, Wi = 7, representative of low levels of drag reduction, and Wi = 20,
which corresponds to EIT at Re = 1500, were chosen. It was found that the low
drag reduction case is largely dominated by streamwise-oriented modes, which is
consistent with observations from DNS. In EIT, however, there is a shift to large
amplification for spanwise-oriented modes, and the streamwise wavenumber :G of
these agrees very closely with the wavenumber of the most energetic structures
from DNS. Furthermore, it was shown that the structure of the most-amplified span-
wise mode bears strong resemblance to DNS snapshots. In particular, it captures
the wall-normal location and extreme localization of the highly-inclined sheet-like
stress fluctuations, and the localization was shown to occur at the critical layer of
the most-amplified mode. Since Wi = 20 corresponds to a state just beyond tran-
sition to EIT at Re = 1500, combined modal and nonmodal stability analyses of
the laminar state were performed in order to better understand the origin of such
structures. The modal analysis revealed that the most-amplified mode is closely
linked to the viscoelastic extension of the classical Tollmien-Schlichting (TS) mode.
A focus on the critical layer, which locally resembles the Kelvin’s cat’s eye structure,
suggests that a likely mechanism for the strong polymer stretching is the presence
of the hyperbolic stagnation points situated between the cat’s eyes. Finally, it was
shown that the critical-layer localization is Wi-dependent: For Wi . 3, the relative
amplitude of conformation tensor fluctuations to wall-normal velocity fluctuations
exhibits simple-shear scaling ∼Wi2, consistent with the fact that the conformation
tensor fluctuations peak at the wall where the flow locally resembles simple shear.
However, at Wi ≈ 3, the scaling undergoes an abrupt change, after which it does not
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obey a simple power-law. This transition coincides with the conformation tensor
fluctuation peak moving away from the wall and shifting toward the critical layer.
Importantly, these observations also hold for nonlinear TS waves, as was demon-
strated by qualitative and quantitative agreement with both saturated viscoelastic
TS waves and the recently-discovered viscoelastic nonlinear TS attractor (Shekar
et al., 2020). Taken together, the results of this chapter point to the importance of
critical-layer mechanisms in EIT, as well as a close link to TS-like dynamics. Thus,
an important open question is how exactly the two are connected in parameter space,
as well as how they related to different instabilities unique to viscoelastic shear flows
(Garg et al., 2018; Chaudhary et al., 2019).

Next, an alternate decomposition of the resolvent operator was used to obtain an ac-
curate low-order representation of second-order statistics in turbulent channel flow
at moderate Reg. The decomposition first partitions the resolvent into two sepa-
rate operators that are closely related to the Orr-Sommerfeld (OS) and Squire (SQ)
operators from classical linear stability theory (Rosenberg and McKeon, 2019b);
performing a singular value decomposition of each operator yields two families of
resolvent modes. Compared to a low-order representation using the full resolvent
operator, the OS-SQ decomposition results in a dramatic improvement in the ac-
curacy with which the time-averaged statistics can be reproduced. Moreover, it
produces reasonable estimates of the shapes of both the temporal power spectrum
and the nonlinear forcing spectrum. This is particularly significant since no explicit
information about the flow’s frequency content or nonlinear terms is required to
produce the estimates. The markedly better performance was understood to result
from the competitive interaction between the OS and SQ vorticity. Decomposing the
statistics into contributions fromOSmodes, SQmodes, and a cross term clearly sup-
ports this idea and, furthermore, admits a simple interpretation in terms of a phase
difference between the OS and SQ modes. Additionally, it was shown that, in some
cases, the leading response modes of the full resolvent operator coincide with the OS
modes, thereby explaining why the low-order representation using the full operator
performs relatively poorly. The OS-SQ vorticity competition mechanism was then
leveraged to derive scaling behavior for the weights of resolvent modes belonging
to three special universal classes. The scaling predictions were tested against the
optimal weights computed for several Reg, and good agreement was observed for all
three classes. This implies that the competition mechanism is important for any Reg
sufficiently large to exhibit universal scaling of the mean profile. While only a first
step, these results may prove useful for further analyses of nonlinear interactions in



106

wall-bounded turbulence. We note that the present formulation does not provide any
formal guarantees of convergence as more modes are included, and it was shown
that the errors persist for large streamwise wavelengths, where there is significant
energetic content below the peaks of the lowest wavespeed resolvent modes. Further
work is required to improve the representation in these cases. Additionally, because
only second-order statistics were considered, the method does not provide access
to phase relationships between modes with different wavenumbers. An extension
incorporating this would be extremely valuable, as it could potentially provide dy-
namical information and, ideally, eliminate the need for a priori knowledge of the
mean profile, as was assumed herein. Rosenberg andMcKeon (2019a) developed an
iterative resolvent-based approach that successfully circumvents reliance on a known
mean for several traveling wave ECS for which the mean is essentially sustained
by the self-interaction of a single mode. Obviously, achieving a similar result for
fully-developed turbulence, which involves interactions between many spatiotem-
poral scales, will be considerably more challenging. Nonetheless, their approach
demonstrates that such a goal may be attainable. Finally, though the present work
concerns a statistical analysis of the OS-SQ competition, an intriguing direction for
future work would be to see how this mechanism plays out in the dynamics, as well
as how the turbulence is altered if it were to be interrupted.

Last, the focus shifted slightly from resolvent analysis to exact coherent states (ECS),
where themain goal was to develop a data-drivenmethod capable of generating good
initial guesses of upper-branch equilibiria in Couette flow. To this end, a neural
network was trained on multiple equilibrium families in order to produce guesses at
higher Re. The simple implementation of a neural network demonstrated initially
encouraging results for the feasibility of this approach by generating predictions
that successfully lead to converged equilibria over a limited range of Re. It is
hoped that access to a larger training dataset and a more sophisticated network could
further improve the performance. An investigation of the successfully converged
solutions was performed, revealing that, despite being very close (in state space)
to the known equilibria, they did not share any of their symmetries. While the
asymmetric deviations were small, they do not appear to be the result of numerical
error. An interesting possibility this raises is that a given symmetric equilibrium
may be surrounded in state space by other similar asymmetric solutions. Finally,
this also leads to more general questions about how the self-sustaining mechanisms
of ECS are altered when symmetries are broken.
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While each of the three problems presented in this thesis may initially seem some-
what unrelated, we now argue that they in fact pertain to the key facets of reduced-
order modeling for wall-bounded turbulence. First, as has become clear over the past
roughly fifteen years, linear mechanisms play a fundamental role in wall-bounded
turbulence. In the present investigation of EIT, a rank-1 approximation within the
resolvent analysis framework highlighted the roll played by critical layers in generat-
ing dominant flow structures. Also of central importance are nonlinear interactions,
which any reduced-order model must account for in order to be quantitatively ac-
curate, and which were a major theme of the following chapter, again interpreted
through the lens of resolvent analysis. Though resolvent weights leading to a closed,
self-sustaining representation of the system were not computed, a statistical analysis
using estimated weights still yielded valuable insight about mode interactions. The
third facet, addressed here using a neural network, is data-driven techniques. We
believe that resorting to them is not a call to abandon theoretical pursuits. Rather,
we take the pragmatic perspective that data-driven methods can be useful or even
enabling for applications, and, when used judiciously, have the potential comple-
ment theory. In summary, though they were treated separately here, it is our view
that the most successful reduced-order turbulence models will employ all three of
these facets in some fashion. Therefore, further work developing both the individual
areas, as well as a framework to combine them is highly valuable.
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A p p e n d i x A

ADDITIONAL DETAILS OF THE VISCOELASTIC RESOLVENT
FORMULATION

A.1 Base flow
Here we provide the details of the laminar steady-state solutions u = [, ? = %,
r̃ = R to Equations (3.10)–(3.12), referred to as the base flow, for pressure-driven
flow of a FENE-P fluid through an infinite channel. The streamwise, spanwise, and
wall-normal coordinates are G, I ∈ R, and H ∈ [−1, 1], respectively. The velocity
is subject to the no-slip condition at H = ±1. Due to the hyperbolic nature of
Equation (3.12), there are no boundary conditions imposed on the conformation
tensor.

The base velocity has the form [ =

(
* (H) 0 0

)T
. An analytical solution is

provided in Cruz et al., 2005:

* (H) = −Re
2V

d%
dG
(1 − H2) − (1 − V)

V

3
8�

(
�+ |H−1�

− |H−1 + �
− |H−1�

+ |H−1

)
, (A.1)

where

�±(H) =
(
�H ±

√
�2H2 + �3

)1/3
, (A.2)

�±(H) = 3�H ±
√
�2H2 + �3, (A.3)

and
� =

ℓ2

6Wi2

(
3
ℓ2 +

1
V

)
, � =

ℓ2Re
4VWi2

d%
dG
. (A.4)

The nonzero conformation tensor components RGG , RHH, RII, and RGH are expressed
in terms of the shear stress TGH:

RGG =

ℓ2
(
1 + 2Wi2T 2

GH

)
3 + ℓ2 + 2Wi2T 2

GH

, (A.5)

RHH = RII =
ℓ2

3 + ℓ2 + 2Wi2T 2
GH

, (A.6)

RGH = WiTGHRHH, (A.7)

where
TGH = �+(H) + �−(H). (A.8)
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A.2 Operator definitions
Here we provide the details of the sub-operators for the viscoelastic resolvent given
in Equation (3.21). The linearized Navier-Stokes operator is

L11 =

©­­­­­«
−8:G* + VRe−1J −*′ 0 −8:G

0 −8:G* + VRe−1J 0 D
0 0 −8:G* + VRe−1J −8:I
−8:G −D −8:I 0

ª®®®®®¬
, (A.9)

where J B D2 − :2, with D B d/dH, and :2 B :2
G + :2

I . The polymer advection
and stretching operator is

L22 =

©­­­­­­­­­­«

−8:G* 0 0 2*′ 0 0
0 −8:G* 0 0 0 0
0 0 −8:G* 0 0 0
0 *′ 0 −8:G* 0 0
0 0 0 0 −8:G* *′

0 0 0 0 0 −8:G*

ª®®®®®®®®®®¬
. (A.10)

The polymer stresses in the momentum equations are represented by

L12 =
1 − V
ReWi

TP, (A.11)

where

T =

©­­­­­«
8:G 0 0 D 8:I 0
0 D 0 8:G 0 8:I

0 0 8:I 0 8:G D
0 0 0 0 0 0

ª®®®®®¬
, (A.12)

and

P =

©­­­­­­­­­­­«

% + %2
ℓ−2RGG %

2
ℓ−2RGG %

2
ℓ−2RGG 0 0 0

%
2
ℓ−2RHH % + %2

ℓ−2RHH %
2
ℓ−2RHH 0 0 0

%
2
ℓ−2RII %

2
ℓ−2RII % + %2

ℓ−2RII 0 0 0
%

2
ℓ−2RGH %

2
ℓ−2RGH %

2
ℓ−2RGH % 0 0

0 0 0 0 % 0
0 0 0 0 0 %

ª®®®®®®®®®®®¬
. (A.13)



120

Finally, the effects of the velocity fluctuations on the polymer field are given by

L21 =

©­­­­­­­­­­«

2(8:GRGG + RGHD) −R′GG 0
0 2(8:GRGH + RHHD) − R′HH 0
0 −R′II 28:IRII

8:GRGH + RHHD −8:GRGG + RGHD − R′GH 0
8:IRII 0 8:GRGG + RGHD

0 8:IRII 8:GRGH + RHHD

ª®®®®®®®®®®¬
.

(A.14)

A.3 Geometric inner product
Starting from the definition of the inner product on the tangent space to the manifold
of positve definite tensors, given in Hameduddin et al. (2019), we derive the norm
relevant for the Fourier transforms of infinitesimal perturbations to the conformation
tensor. It turns out to be the natural extension to the setting of complex matrices.

Let r be an infinitesimal perturbation to the base state conformation tensor R. A
measure of the size of the perturbation at the point R that is consistent with the
Riemannian metric on the manifold of positive definite tensors is (Hameduddin
et al., 2019)

[r , r ]R B tr
(
R−1r̃

)2
= tr g2 = [g,g] , (A.15)

where g B R−1/2r R−1/2. A sensible global measure of the disturbance “energy"
is thus

E B
∫
S

[r , r ]R dS (A.16)

=

∫
S

[g,g] dS (A.17)

=

∫
S

(
g2

11 + g2
22 + g2

33 + 2g2
12 + 2g2

13 + 2g2
23

)
dS (A.18)

=

∫
:I

∫
:G

∫ 1

−1

(
|ĝ11 |2 + |ĝ22 |2 + |ĝ33 |2 + 2|ĝ12 |2 + 2|ĝ13 |2 + 2|ĝ23 |2

)
dH d:G d:I

(A.19)

=

∫
:I

∫
:G

∫ 1

−1

[
ĝ, ĝ

]
dH d:G d:I, (A.20)

where the third equality is due to Parseval’s theorem. Since the base state R does
not depend on the transformed directions G and I, we have ĝ = R−1/2r̂ R−1/2. Note
that since r̃ and g are real symmetric tensors, their Fourier transforms r̂ and ĝ are
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complex symmetric (not Hermitian). Substituting for ĝ in Equation (A.20), we see
that the relevant norm for the Fourier components is

‖r̂ ‖2R B
∫ 1

−1
tr R−1r̂∗R−1r̂ dH, (A.21)

where the superscript ∗ denotes the conjugate transpose.

A.4 Implementation in resolvent code
The integrand in Equation (A.21) can be expanded as

tr R−1r̂∗R−1r̂ =
R2
HH

r2 |r̂GG |
2 +

R2
GH

r2

(
r̂ ∗GG r̂HH + r̂GG r̂ ∗HH

)
− 2

RGHRHH

r2

(
r̂ ∗GG r̂GH + r̂GG r̂ ∗GH

)
+

R2
GG

r2 |r̂HH |
2 − 2

RGGRGH

r2

(
r̂ ∗HH r̂GH + r̂HH r̂ ∗GH

)
+ 1

R2
II

|r̂II |2 +
RGGRHH + R2

GH

r2 |r̂GH |2

(A.22)

+ 2
RHH

RIIr
|r̂GI |2 − 2

RGH

RIIr

(
r̂ ∗GI r̂HI + r̂GI r̂ ∗HI

)
+ 2

RGG

RIIr
|r̂HI |2,

where r B det R/RII = RGGRHH − R2
GH. Defining the vectorized conformation

5̂ B
[
r̂GG , r̂HH, r̂II, r̂GH, r̂GI, r̂HI

]T, Equation (A.22) can be expressed as a matrix-
vector inner product suitable for implementation in the resolvent code:

tr R−1r̂∗R−1r̂ = 5̂∗W 5̂, (A.23)

with

W = W T =

©­­­­­­­­­­­­«

R2
HH

r2
R2

GH

r2 0 −2RGHRHH

r2 0 0
R2

GG

r2 0 −2RGGRGH

r2 0 0
1

R2
II

0 0 0
RGGRHH+R2

GH

r2 0 0
2 RHH

RII r
−2 RGH

RII r

2 RGG

RII r

ª®®®®®®®®®®®®¬
. (A.24)
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A p p e n d i x B

UNIVERSAL SCALING OF THE ORR-SOMMERFELD AND
SQUIRE RESOLVENT OPERATORS

Wederive the Reynolds number scaling for the components of the resolvent response
and forcing modes belonging to the universal outer and geometrically self-similar
classes described in Moarref et al. (2013a). These scalings have also been reported
in Sharma et al. (2017). However, here, we perform the decomposition into OS and
SQ bases (Rosenberg and McKeon, 2019b), from which it is apparent that for outer
and geometrically self-similar modes, each set has a unique scaling for the singular
values and forcing modes. The singular values of the OS resolvent have the same
scaling as those for the full resolvent. Results for the inner class modes are not
reported here since, as is apparent from Equation (4.28), the OS and SQ resolvent
both exhibit the same scaling and, therefore, the same scaling as the full resolvent.

B.1 Outer class
We have

HOS =

(
RegH̃EE
Re2

gH̃[E

)
, (B.1)

and
HSQ = RegH̃[[, (B.2)

where ˜( · ) indicates a quantity that is Reg–invariant for the universal outer class.
Let / =

(
bE b[

)T and > =
(
iE i[

)T be left and right singular vectors of H ,
respectively. Each set of singular vectors is orthonormal with respect to the energy
inner product

( f , g)� =
∫ −1

−1
g∗Q f dH, (B.3)

where

Q =
(
Q̃E 0
0 Q̃[

)
. (B.4)

Let 7 = C/ = (kD kE kF)T and 5 = C> = (qD qE qF)T, where

C =
©­­«
Re−1

g C̃11 C̃12

1 0
C̃31 Re−1

g C̃32

ª®®®¬ . (B.5)
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Response modes
Using :̃G = Reg:G , H̃ = H, :̃I = :I, continuity gives

∇ · 7 = 8:GkD + DkE + 8:IkF
= 8Re−1

g :̃GkD + D̃kE + 8 :̃IkF (B.6)

= 0.

Fixing k̃D = kD, we thus require k̃E = RegkE and k̃F = RegkF. That is,

7̃ =
©­­«
kD

RegkE
RegkF

ª®®®¬ (B.7)

should be Reg–invariant for modes in the outer class.

OS singular values and forcing modes
Now, the energy inner product weighted OS resolvent is

FHOSF −1 =

(
RegF̃EH̃EEF̃ −1

E

Re2
gF̃[H̃[EF̃ −1

E

)
, (B.8)

where F ∗F = Q. The (leading) singular values therefore scale as

fOS = Re2
gf̃

OS. (B.9)

We note that this is the same scaling as that for the singular values of the entire
resolvent, i.e., without performing the OS-SQ decomposition. We then have

7OS =
1
fOSCH

OS> =
1
f̃OS

©­­«
Re−2

g C̃11H̃EE + C̃12H̃[E
Re−1

g H̃EE
Re−1

g C̃31H̃EE + Re−1
g C̃32H̃[E

ª®®®¬ iE, (B.10)

and

7̃OS =
©­­«
kOS
D

RegkOS
E

RegkOS
F

ª®®®¬ =
1
f̃OS

©­­«
Re−2

g C̃11H̃EE + C̃12H̃[E
H̃EE

C̃31H̃EE + C̃32H̃[E

ª®®®¬ iE (B.11)

is independent of Reg (to leading order) if ĩE = iE. Finally,

5OS = C
(
iE

0

)
=

©­­«
Re−1

g C̃11

1
C̃31

ª®®®¬ ĩE . (B.12)
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Defining q̃OS
D = C̃11ĩE, q̃OS

E = ĩE, and q̃OS
F = C̃31ĩE, we have

5̃OS =
©­­«
RegqOS

D

qOS
E

qOS
F

ª®®®¬ . (B.13)

SQ singular values and forcing modes
Proceeding as before,

F[HSQF −1
[ = RegF̃[H̃[[F̃ −1

[ . (B.14)

Then
fSQ = Regf̃SQ, (B.15)

and

7SQ =
1
fSQCH

SQ> =
1
f̃SQ

©­­«
C̃12H̃[[

0
Re−1

g C̃32H̃[[

ª®®®¬ i[, (B.16)

so that

7̃SQ =
©­­«
k

SQ
D

0
RegkSQ

F

ª®®®¬ =
1
f̃SQ

©­­«
C̃12H̃[[

0
C̃32H̃[[

ª®®®¬ i[ (B.17)

is independent of Reg if ĩ[ = i[. Then

5SQ = C
(

0
i[

)
=

©­­«
C̃12

0
Re−1

g C̃32

ª®®®¬ ĩ[ . (B.18)

Defining q̃SQ
D = C̃12ĩ[ and q̃SQ

F = C̃32ĩ[, we have

5̃SQ =
©­­«
q

SQ
D

0
RegqSQ

F

ª®®®¬ . (B.19)

B.2 Geometrically self-similar class
We have

HOS =

(
H2H
+
2ȞEE

H+ 2
2 Ȟ[E

)
, (B.20)

HSQ = H2H
+
2Ȟ[[, (B.21)
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Q =
(
H2Q̌E 0

0 H3
2Q̌[

)
, (B.22)

and

C =
©­­«
H+−1
2 Č11 H2Č12

1 0
Č31 Re−1

g Č32

ª®®®¬ , (B.23)

where ˇ( · ) indicates a quantity that is H2– and Reg–invariant for the geometrically
self-similar class.

Response modes
Using :̌G = H2H+2 :G , Ȟ = H/H2, :̌I = H2:I, continuity gives

∇ · 7 = 8:GkD + DkE + 8:IkF
= 8H−1

2 H
+−1
2 :̌GkD + H−1

2 ĎkE + 8H−1
2 :̌IkF (B.24)

= 0.

Furthermore, the orthonormality constraint ‖7‖ = ‖/‖� = 1 imposes 7 ∼ H−1/2
2 .

Fixing ǩD = H1/2
2 kD, we thus require ǩE = H1/2

2 H+2kE and ǩF = H
1/2
2 H+2kF. That is,

7̌ = H1/2
2

©­­«
kD

H+2kE

H+2kF

ª®®®¬ (B.25)

should be H2– and Reg–invariant for modes in the geometrically self-similar class.

OS singular values and forcing modes
Now, the energy inner product weighted OS resolvent is

FHOSF −1 =

(
H2H
+
2 F̌EȞEEF̌ −1

E

H2H
+ 2
2 F̌[Ȟ[EF̌ −1

E

)
. (B.26)

The (leading) singular values therefore scale as

fOS = H2H
+ 2
2 f̌

OS. (B.27)

We note that this is the same scaling as that for the singular values of the entire
resolvent, i.e., without performing the OS-SQ decomposition. We then have

7OS =
1
fOSCH

OS> =
1
f̌OS

©­­«
H+−2
2 Č11ȞEE + Č12Ȟ[E

H+−1
2 ȞEE

H+−1
2 Č31ȞEE + H+−1

2 Č32Ȟ[E

ª®®®¬ iE . (B.28)
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Thus,

7̌OS = H
1/2
2

©­­«
kOS
D

H+2k
OS
E

H+2k
OS
F

ª®®®¬ =
H

1/2
2

f̌OS

©­­«
H+−2
2 Č11ȞEE + Č12Ȟ[E

ȞEE
Č31ȞEE + Č32Ȟ[E

ª®®®¬ iE (B.29)

is independent of Reg and H2 (to leading order) if ǐE = H1/2
2 iE. Finally,

5OS = C
(
iE

0

)
= H
−1/2
2

©­­«
H+−1
2 Č11

1
Č31

ª®®®¬ ǐE . (B.30)

Defining q̌OS
D = Č11ǐE, q̌OS

E = ǐE, and q̌OS
F = Č31ǐE, we have

5̌OS = H
1/2
2

©­­«
H+2q

OS
D

qOS
E

qOS
F

ª®®®¬ . (B.31)

SQ singular values and forcing modes
Proceeding as before,

F[HSQF −1
[ = H2H

+
2 F̌[Ȟ[[F̌ −1

[ . (B.32)

Then
fSQ = H2H

+
2 f̌

SQ, (B.33)

and

7SQ =
1
fSQCH

SQ> =
1
f̌SQ

©­­«
H2Č12Ȟ[[

0
Re−1

g Č32Ȟ[[

ª®®®¬ i[, (B.34)

so that

7̌SQ = H
1/2
2

©­­«
k

SQ
D

0
H+2k

SQ
F

ª®®®¬ =
H

1/2
2

f̌SQ

©­­«
H2Č12Ȟ[[

0
H2Č32Ȟ[[

ª®®®¬ i[ (B.35)

is independent of Reg and H2 if ǐ[ = H3/2
2 i[. Then

5SQ = C
(

0
i[

)
= H
−3/2
2

©­­«
H2Č12

0
Re−1

g Č32

ª®®®¬ ǐ[ . (B.36)
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Defining q̌SQ
D = Č12ǐ[ and q̌SQ

F = Č32ǐ[, we have

5̌SQ = H
1/2
2

©­­«
q

SQ
D

0
H+2q

SQ
F

ª®®®¬ . (B.37)


