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Abstract

Gravitational-wave astronomy is now a reality. During my time at Caltech, the
Advanced LIGO and Virgo observatories have detected gravitational waves from
dozens of compact binary coalescences. All of these gravitational-wave events oc-
curred in the relatively local Universe. In the first part of this thesis, I will in-
stead look towards the remote Universe, investigating what LIGO and Virgo may
be able to learn about cosmologically-distant compact binaries via observation of
the stochastic gravitational-wave background. The stochastic gravitational-wave
background is composed of the incoherent superposition of all distant, individually-
unresolvable gravitational-wave sources. I explore what we learn from study of the
gravitational-wave background, both about the astrophysics of compact binaries and
the fundamental nature of gravitational waves. Of course, before we can study the
gravitational-wave background we must first detect it. I therefore present searches
for the gravitational-wave background using data from Advanced LIGO’s first two
observing runs, obtaining the most stringent upper limits to date on strength of
the stochastic background. Finally, I consider how one might validate an apparent
detection of the gravitational-wave background, confidently distinguishing a true
astrophysical signal from spurious terrestrial artifacts.

The second part of this thesis concerns the search for electromagnetic counterparts
to gravitational-wave events. The binary neutron star merger GW170817 was ac-
companied by a rich set of electromagnetic counterparts spanning nearly the entire
electromagnetic spectrum. Beyond these counterparts, compact binaries may addi-
tionally generate powerful radio transients at or near their time of merger. First,
I consider whether there is a plausible connection between this so-called “prompt
radio emission” and fast radio bursts – enigmatic radio transients of unknown origin.
Next, I present the first direct search for prompt radio emission from a compact
binary merger using the Owens Valley Radio Observatory Long Wavelength Array
(OVRO-LWA). While no plausible candidates are identified, this effort successfully
demonstrates the prompt radio follow-up of a gravitational-wave source, providing
a blueprint for LIGO and Virgo follow-up in their O3 observing run and beyond.
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LIGO’s Hanford and Livingston detectors during the O2 observ-
ing run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.8 Posterior on the amplitude and spectral index of the gravitational-
wave background following O1 and O2, assuming a log-uniform
amplitude prior. . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.9 As in Fig. 6.8, but assuming a uniform amplitude prior. . . . . 173
6.10 Posterior on possible tensor, vector, and scalar-polarized contri-

butions to the gravitational-wave background following the O1
and O2 observing runs, assuming a log-uniform amplitude prior. 174

6.11 As in Fig. 6.10, but assuming a uniform amplitude prior. . . . . 175



xiii

6.12 Simulated Hanford-Livingston cross-correlation spectrum, con-
sisting of a frequency comb plus Gaussian noise. . . . . . . . . 180

6.13 Tensor, vector, and scalar amplitude posteriors (under the TVS
model) given by analysis of the simulated comb in Fig. 6.12. . . 180

6.14 Simulated Hanford-Livingston cross-correlation spectrum, con-
sisting of elevated Gaussian noise. . . . . . . . . . . . . . . . . 182

6.15 Tensor, vector, and scalar amplitude posteriors (under the TVS
model) given by analysis of the simulated elevated noise in Fig.
6.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.16 Tensor, vector, and scalar amplitude posteriors (under the TVS
model) given by analysis of the simulated elevated noise in Fig.
6.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.1 Overlap reduction function γ(f) (blue) for the Advanced LIGO’s
Hanford-Livingston detector baseline. Alternative baseline ge-
ometries have different overlap reduction functions as illustrated
by the collection of grey curves, which show overlap reduction
functions between hypothetical detectors randomly positioned
on Earth’s surface. . . . . . . . . . . . . . . . . . . . . . . . . 188

7.2 Simulated Advanced LIGO cross-correlation measurements of an
isotropic stochastic gravitational-wave background. . . . . . . . 189

7.3 The distance between Hanford and Livingston detectors, inferred
from the simulated observation in Fig. 7.2. . . . . . . . . . . . . 189

7.4 Parametrized geometry of an arbitrary detector baseline on the
Earth’s surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.5 Astrophysical, comb, and Schumann spectra used to simulate
cross-correlation measurements between the Advanced LIGO Han-
ford and Livingston detectors. . . . . . . . . . . . . . . . . . . 194

7.6 Log-odds between astrophysical and terrestrial signal models for
injections of astrophysical stochastic backgrounds. . . . . . . . 196

7.7 As in Fig. 7.6, for injections of magnetic Schumann contamination.197
7.8 As in Fig. 7.6, for injections of correlated frequency combs. . . 197
7.9 Reconstructed cross-correlation spectra given simulated Advanced

LIGOmeasurements of an isotropic gravitational-wave background,
a correlated frequency comb, and Schumann resonances. . . . . 199



xiv

7.10 Posterior on the Hanford-Livingston baseline geometry, given an
Advanced LIGO observation of an astrophysical gravitational-
wave background. . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.11 As in Fig. 7.10, but for simulated measurement of a correlated
frequency comb. . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.12 As in Fig. 7.10, but for simulated measurement of a magnetic
Schumann signal. . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.13 Log-odds betweenHγ andHFree when deliberately analyzing bro-
ken power-law signals with an incorrect power-law model. . . . 205

8.1 Timeline of the multi-messenger observations of GW170817, to-
gether with theorized prompt radio emission. . . . . . . . . . . 211

8.2 Illustration of a late-time binary neutron star merger. . . . . . 213
9.1 Distribution of inferred distances to known FRBs . . . . . . . . 223
9.2 Binary coalescence rates compared to the inferred rate of FRBs. 225
10.1 Posterior probability distribution on the sky position of the bi-

nary black hole merger GW170104. . . . . . . . . . . . . . . . 231
10.2 Total intensity image of the OVRO sky from 27 to 84MHz at

the time of GW170104. . . . . . . . . . . . . . . . . . . . . . . 233
10.3 Dynamic spectrum of a randomly-chosen sky location within the

GW170104 localization region. . . . . . . . . . . . . . . . . . . 234
10.4 Signal-to-noise ratios as a function of dispersion measure DM

and the initial time t0. . . . . . . . . . . . . . . . . . . . . . . . 234
10.5 Cumulative background distribution of signal-to-noise ratios from

a subset of sky directions and dispersion trials. . . . . . . . . . 237
10.6 Full-band dirty image of an example meteor reflection event. . . 238
10.7 The spectrum of the meteor reflection event in Fig. 10.6. . . . . 239
10.8 95% credible upper limits on the flux density of prompt radio

emission from GW170104. . . . . . . . . . . . . . . . . . . . . . 241



xv

LIST OF TABLES

Number Page
5.1 Parameters describing the simulated gravitational-wave back-

grounds used in parameter estimation case studies. . . . . . . . 135
6.1 Bayes factors between signal and noise models for the gravitational-

wave background, given data from Advanced LIGO’s O1 observ-
ing run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.2 O1 stochastic parameter estimation results for each signal sub-
hypothesis, assuming log-uniform amplitude priors. . . . . . . . 166

6.3 As in Table 6.2, assuming uniform amplitude priors. . . . . . . 167
6.4 Log Bayes factors between each signal sub-hypothesis considered

and the Gaussian noise hypothesis. . . . . . . . . . . . . . . . . 175
6.5 Full parameter estimation results on the gravitational-wave back-

ground following O1 and O2, using log-uniform amplitude priors. 177
6.6 As in Table 6.5, but assuming uniform amplitude priors. . . . . 178



1

Chapter 1
Gravitational Waves: Then and Now

Gravitational-wave astronomy is not a new idea. As early as 1960, only forty-
four years after Einstein’s prediction of gravitational waves, Joseph Weber was
already constructing resonant “Weber bar” detectors in an effort to experimen-
tally observe these infinitesimal ripples in spacetime [1]. At the time, consensus
was that gravitational waves were little more than mathematical curiosities.
It was only in the 1950s that physicists satisfied themselves that gravitational
waves were even real (rather than spurious mathematical artifacts of Gen-
eral Relativity, as Einstein himself once espoused). And the physical effects
of gravitational waves – their microscopic stretching and squeezing of space
and time – were deemed so insignificant as to make their direct observation
impossible.

Weber rejected this consensus. He realized that extreme astrophysical objects
like the (then) newly discovered pulsars [2] might produce gravitational waves
strong enough to be detected on Earth [3]. He even sent a device aboard Apollo
17, the final human expedition to the Moon, in an attempt to detect low-
frequency gravitational radiation via the slight geological vibrations they might
excite within the Moon [4]. Weber believed his efforts successful, announcing in
1969 an apparent detection of gravitational waves [5, 6]. Although these claims
were later discredited, Weber had succeeded in an arguably more important
task – articulating a new kind of gravitational-wave astronomy, in which
we rely not on light but on gravitational waves to examine the Universe around
us.

In 1972, while Weber was busy defending his claims of gravitational-wave de-
tection, Rainer Weiss described in an underwhelmingly-titled yet now-famous
Quarterly Progress Report No. 105 an alternative kind of gravitational-wave
detector, one that relied on laser measurements of the precise distance between
distant mirrors rather than the vibrations of Weber bars [7]. This idea would
form the basis for the LIGO (Laser Interferometer Gravitational-Wave Obser-
vatory) project. Comprising three detectors – two in Hanford, Washington and
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one in Livingston, Louisiana – the LIGO experiment was formally launched
in 1984 under the joint leadership of Weiss and Caltech’s Kip Thorne and
Ronald Drever. Despite a rocky and somewhat scandal-clad beginning (see,
for instance, Caltech’s collection of oral histories from LIGO’s early leaders [8–
12]) the project successfully secured funding from the National Science Foun-
dation, and the instruments began their first scientific observing run August
2002 [13, 14].

This first scientific observing run lasted for two weeks. And in these two weeks,
LIGO detected precisely nothing [15–19]. Initial LIGO (as the experiment’s
first incarnation is now known) observations continued in a series of additional
observing runs spanning the 2000s. Despite orders of magnitude improvement
in LIGO’s sensitivity [20], as well as the addition of the Virgo gravitational-
wave detector in Italy [21], the Initial LIGO project continued to hear only a
gravitational-wave “silence.” This was perhaps not unexpected. LIGO’s initial
proposal to the NSF very carefully promises only “to build and operate” the
observatory while continuing relevant research and development. It is fairly
directly acknowledged that the successful detection of gravitational waves may
only be made by a much-improved future “Advanced” LIGO detector1 [13].

From Einstein’s first prediction of gravitational waves through the experiments
of Weber to the construction and operation of Initial LIGO, gravitational-wave
astronomy is a surprisingly old idea. It was not until four years ago, however,
that it became a reality. In 2015, during the second year of my graduate
studies, the search for gravitational waves was just concluding a five year
hiatus. Final touches were being placed on the LIGO detectors, which had
since 2010 been undergoing upgrades to vastly improve their sensitivity [22–
24]. In fall 2015 these upgraded Advanced LIGO detectors were first switched
on for their first “O1” observing run. Then, only days into their operation, the
Advanced LIGO detectors recorded the first unambiguous gravitational-wave
signal. Termed GW150914, this signal was identified with violent collision of
two black holes, roughly 1.3 billion years ago in a galaxy 400 Mpc away [24–
33]. This direct detection of gravitational waves would win Weiss, Thorne,
and Initial LIGO director Barry Barish the 2017 Nobel Prize in Physics. It is
interesting to note that more time elapsed between LIGO’s successful detection
and Weber’s first attempts than between Weber and Einstein himself.

1The projections listed on p. 10 of the proposal remain surprisingly accurate today,
roughly 30 years later.



3

In the few years since, gravitational-wave astronomy has transformed rad-
ically. The number of operational gravitational-wave detectors grew from
two to three, with the first operation of the European Advanced Virgo de-
tector [34] alongside Advanced LIGO during the 2016-2017 O2 observing run.
The Japanese KAGRA detector [35–37] may be brought online in the com-
ing months during LIGO and Virgo’s current O3 observing run [37, 38], and
construction is beginning on the LIGO-India instrument, adding yet another
instrument to the world-wide network of gravitational-wave detectors [38, 39].

Accompanying this growing number of detectors has been an ever-increasing
number of events. Since GW150914, gravitational waves have been detected
from nine additional binary black hole mergers – two more in O1 [40, 41] and
seven in O2 [42–45]. O2 also marked the first observation of a second class
of gravitational-wave source. In August 2017, LIGO and Virgo witnessed the
collision of two neutron stars via the gravitational-wave signal GW170817 [46–
52]. Unlike black holes, which are ultimately nothing but empty space, neutron
stars are composed of matter. And when matter is present, we can usually
expect light. Indeed, GW170817 was observed not just in gravitational waves,
but also with telescopes spanning the electromagnetic spectrum [53, 54]. In
perhaps the largest coordinated scientific effort in history, the publication de-
scribing the “multi-messenger” gravitational and electromagnetic observations
of GW170817 listed 3529 authors and 61 scientific collaborations [54].

In these short four years, we have learned an immense amount of information
about the gravitational universe. We have learned that stellar-mass black
holes collide far more frequently than once surmised, and we have begun to
study their characteristic masses and spins. We have learned that at least
some fraction of neutron star mergers are accompanied by electromagnetic
emission, and have used the gravitational and electromagnetic signals from
GW170817 to jointly probe the nature of the extraordinarily dense matter
hidden within neutron star interiors. And yet, as an observational field in its
infancy, gravitational-wave astronomy is presently dominated by innumerably
many more questions than answers.

In this thesis, I will work towards answering two of these many questions:

1. What can we learn from the stochastic gravitational-wave back-
ground?
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Binary neutron star and black hole mergers are but one piece of the gravita-
tional-wave sky. Beyond compact binaries, the Advanced LIGO and Virgo
experiments are used to search for a host of other gravitational-wave sources,
including the stochastic gravitational-wave background. For every loud
gravitational-wave source in the relatively local Universe, there are innumer-
ably many more that are too distant and/or too weak to individually detect.
The stochastic gravitational-wave background is the random gravitational-
wave “static” that arises from the combination of all of these quiet sources in
the Universe.

With present-day detectors, we are largely limited to directly observing com-
pact binaries in the relatively local Universe. As we will explore in Ch. 4, the
stochastic gravitational-wave background offers a glimpse of compact binaries
at truly cosmological distances, far earlier in the Universe’s history. We have
good reason to believe that this early population of black hole and neutron
star binaries may be very different from those we see today. We live in an
aging Universe – the majority of stars that will ever form have already done
so [55], and the accelerating expansion of the Universe means that space will
increasingly become a darker and emptier place [56]. The young Universe
was very different. Stars were born and consequentially died with a much
greater frequency. Heavy elements were scarcer, allowing stars (and their
black hole descendants) to sustain much larger masses. Measuring the prop-
erties of the stochastic background – the volume and statistical character of
the gravitational-wave static – may allow us to infer just how compact binary
masses and merger rates have evolved over cosmic time.

The gravitational-wave background will serve not only as a tool with which to
learn about distant gravitational-wave sources, but one that can additionally
be used to study gravity itself. Our best current understanding of gravity is en-
capsulated in Einstein’s general relativity. The predictions of general relativity
have been borne out by every astronomical observation to date – the precession
of Mercury, the gravitational deflection of light, and the orbital decay of binary
pulsars, to name but a few [57]. So far, though, general relativity has been
subjected only to fairly forgiving “weak field” tests, involving small masses
moving at relatively slow speeds through weak gravitational fields. With their
discovery, gravitational waves offer a means of testing general relativity in
truly extreme environments – namely the extraordinarily strong and dynamic
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gravitational fields in the immediate vicinity of black holes and neutron stars.

Beyond their role as messengers, gravitational waves themselves offer a new
arena for testing general relativity. General relativity predicts that gravita-
tional waves travel at exactly the speed of light, a fact that the joint electro-
magnetic and gravitational-wave observations of GW170817 have confirmed to
one part in 1015 [53]. General relativity also predicts that gravitational waves
take on very particular shapes (or polarizations). In general, the polarizations
of gravitational waves are difficult to directly characterize [44, 58]. We will see
in Ch. 5 that the stochastic gravitational-wave background can be utilized to
measure the polarizations of gravitational waves, allowing us to directly de-
termine whether gravitational waves are consistent (or not) with predictions
from general relativity.

Of course, before we can utilize the stochastic gravitational-wave background
to study distant compact binaries or constrain deviations from general rel-
ativity, we must first succeed in detecting it. The signals comprising the
gravitational-wave background are generally orders of magnitude weaker than
those from GW150914 or GW170817. Additionally, a host of other terrestrial
effects can conspire to mimic this tiny gravitational-wave “static.” Together,
these facts make the confident detection of the gravitational-wave background
a formidable challenge. In Chs. 6 and 7, we will seek to detect the stochas-
tic background with Advanced LIGO, and additionally explore techniques to
differentiate a true stochastic signal from terrestrial “mimickers.”

2. Do compact binary mergers give rise to prompt radio counter-
parts?

The binary neutron star merger GW170817 taught us that at least some frac-
tion of gravitational waves come accompanied by light. GW170817 was ob-
served in nearly every electromagnetic band [54]. The gravitational-wave signal
was followed seconds later by a burst of high-energy gamma rays generated
in the neutron stars’ cataclysmic collision [59]. Soon after came the visible
light of a “kilonova” – literally the radioactive glow of heavy elements being
forged in the collision’s aftermath [60, 61]. Finally, GW170817 launched a jet
of particles moving near the speed of light, yielding a long-lasting radio signal
that faded away only months later [62].

This confluence of gravitational waves and electromagnetic signals proved in-
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valuable. By synthesizing the electromagnetic and gravitational-wave signa-
tures of GW170817, we learned far more than we could have with either signal
alone. Analysis of GW170817’s optical afterglow revealed that binary neu-
tron stars act as cosmic forges, very likely producing most of the gold found
in the present-day Universe [63]. As mentioned above, the relative arrival
times of GW170817’s gravitational and gamma-ray signals gave us an extraor-
dinarily precise measurement of the speed of gravitational waves [53]. And
the gravitational-wave and radio analyses of GW170817, combined with opti-
cal observation of its host galaxy, even provided a direct measurement of the
expansion rate of the Universe [64].

We do not yet understand if these so-called “multi-messenger” events, appear-
ing to us both via gravitational waves and light (and one day, perhaps, neu-
trinos), are a rare occurrence or the new norm. Were we simply exceedingly
lucky with GW170817, or will a large fraction of neutron stars generically
yield observable electromagnetic counterparts? Moreover, beyond gamma-
rays, kilonovae, and radio jets, are there additional yet-to-be-observed classes
of electromagnetic signals that can accompany compact binary mergers?

In Chs. 8-10, we will switch gears and focus on one such theorized counterpart:
prompt radio emission. A sharp pulse of radio waves, prompt emission is
predicted to be generated in the last instant of a binary neutron star’s life, as
the two objects collide at nearly the speed of light. Prompt emission is quite
speculative. It has not yet been observed, and it is by no means certain that it
even exists. If detected, however, prompt emission would provide an invaluable
snapshot of a binary’s final moments, allowing us to study the conditions at
the very heart of the neutron star merger.
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Chapter 2
The Basics of Gravitational-Wave
Astronomy

I’ll start by reviewing the basics of gravitational-wave astronomy – the prop-
erties of gravitational-waves, their generation by various astrophysical sources,
and the data analysis schemes with which we can detect gravitational waves in
otherwise noisy data. My goal is to provide enough background to contextu-
alize and prepare readers for subsequent chapters, and to build intuition with
examples that I’ve found pedagogically useful. In general I will not derive re-
sults from first physical principles; good introductions to the basic physics of
gravitational waves appear in Refs. [65–68]. I will, though, try motivate first-
principles results with physical arguments and order-of-magnitude estimates.

2.1 The Physical Effects of Gravitational Waves

Just as electromagnetic waves are vacuum solutions to Maxwell’s equations,
gravitational waves are vacuum solutions to Einstein’s equations. In an oth-
erwise flat spacetime, gravitational waves manifest as wavelike perturbations
hαβ to the ordinary Minkowski metric ηαβ:

gαβ = ηαβ + hαβ (hαβ � 1) (2.1)

The perturbation hαβ is known as the gravitational-wave strain. Although
the components are hαβ are coordinate-dependent, gravitational waves are
most commonly discussed in the transverse-traceless gauge, in which both
the strain tensor’s trace hαα and the contraction hαβkα with its wavevector k
vanish. In this coordinate system, the strain tensor of a gravitational wave
traveling in the z-direction has components

hαβ =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 . (2.2)
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x /c
MirrorObserver

t
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B

C

Figure 2.1: Spacetime diagram of the time-of-flight experiment carried out by our ambitious
physics student. The student, at coordinate position x = 0, hangs a mirror at position
x = L0. At time t = 0 she then shoots a pulse of light at the mirror, recording the time ∆t
at which the pulse returns to her.

Equation (2.2) is expressed entirely in terms of two physical quantities: h+

and h×. These represent the two polarizations, “plus” (+) and “cross” (×),
available to gravitational waves in Einstein’s general relativity.1 A generic
gravitational wave can be decomposed into the sum hαβ = h+ê

+
αβ + h×ê

×
αβ,

where ê+
αβ and ê×αβ are the basis tensors for plus and cross modes:

ê+
αβ =


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 and ê×αβ =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 . (2.3)

The physical effect of a gravitational wave is to vary the proper distance be-
tween freely-falling objects. Consider an enterprising physics student who
wishes to measure the distance between herself (at the origin of her coordinate
system) and a mirror at position x = L0. She decides to do so via the time-of-
flight measurement sketched in Fig. 2.1, shooting a pulse of light towards the
mirror at time t = 0 (event A), letting the pulse bounce off the mirror (event

1We will explore additional polarizations allowed by alternative theories in Ch. 5.
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B), and finally recording the time ∆t0 = 2L0/c at which the pulse returns to
her (event C).

The student decides to repeat her experiment again, but this time in the
presence of a passing gravitational wave moving along her z-axis, into the
plane of Fig. 2.1. Assume this gravitational wave has a period much longer
than the light’s travel time to and from the mirror, so that hαβ is approximately
constant for the duration of the experiment. The round-trip time ∆t measured
in the presence of this gravitational wave can be computed using the fact that
eventsA andB are null-separated, as areB and C. If the coordinate separation
between events A and B is ∆xα = (1

2
c∆t, L0, 0, 0), then we can use Eq. (2.1)

to write
0 = gαβ∆xα∆xβ

= −1

4
(c∆t)2 + (1 + h+)L2

0.
(2.4)

Solving for ∆t and using the fact that h+ � 1, the new round trip time is:

∆t = 2
√

1 + h+L0/c

≈ 2

(
1 +

1

2
h+

)
L0/c.

(2.5)

The proper distance between the student and her mirror has increased by
δL = h+L0/2! This is the origin of the term “gravitational-wave strain.” Just
like a mechanical strain exerted on a material, gravitational waves stretch
and shrink the proper distance between freely-falling objects by an amount
proportional to the objects’ initial separation.

In transverse-traceless coordinates, the effects of gravitational waves are con-
fined entirely to the metric. Initially stationary, freely-falling objects (i.e. the
student and her mirror) remain motionless at their initial coordinates, while
the space between them expands and contracts to yield the additional time
delay ∆t. An alternative way to describe gravitational waves involves treating
them like a mechanical force. To do this, we adopt local Lorentz coordinates,
defined such that gij = ηij and all first derivatives of gij vanish. In these coor-
dinates, the metric is fixed by design, and it is instead the mirror that moves
in response to incident gravitational waves. To see this, we can return to the
above example and compute the geodesic deviation of the mirror relative to
our student. Remember that the geodesic deviation of a particle at position
xα relative to an observer with four-velocity uα and proper time τ is (see e.g.
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Ref. [66])
D2xα

dτ 2
= Rα

βµνu
βuµxν , (2.6)

temporarily switching to geometrized units in which c = 1. Here, Rα
βµν is

the Riemann tensor and D/dτ represents the covariant derivative along uα.
When applied in the rest frame of our student, this equation tells us that she
measures the mirror’s acceleration in the x-direction to be

d2x

dt2
≈ Rx

ttxL0

= −RxtxtL0.

(2.7)

In linearized gravity, the (i0j0) components of the Riemann tensor are Ri0j0 =

−1
2
ḧij (dots denote coordinate time derivatives) and are invariant to gauge

transformations [66]. So, despite working in local Lorentz coordinates, we
can substitute into Eq. (2.7) the transverse-traceless expression for hij above.
We find that, in these coordinates, gravitational waves serve to accelerate the
mirror by ẍ = 1

2
ḧ+L0. Integrating twice, at leading order the student measures

the mirror’s position to be

x(t) =

(
1 +

1

2
hxx

)
L, (2.8)

consistent with Eq. (2.5) above.

These different coordinate-dependent descriptions – a fluctuating metric vs. an
effective force on a fixed background – can be the source of much confusion,
offering seemingly contradictory descriptions of how gravitational waves inter-
act with laboratory experiments. When in doubt, it’s generally best to revert
to thinking in terms of time-of-flight measurements [69, 70].

Gravitational waves carry energy. To calculate the energy carried by gravi-
tational waves, it is necessary to expand Einstein’s equations to second order
in hαβ; see e.g. Refs. [65–67]. At leading order, one finds that the effective
stress-energy tensor of a gravitational wave is

T gw
µν =

1

32πG

〈(
∂µh

tt
αβ

) (
∂νh

αβ
tt

)〉
, (2.9)

where the “TT” label denotes transverse-traceless coordinates and the brackets
〈...〉 indicate an average taken over several wavelengths. The energy density
of a gravitational wave is the T gw

00 component of Eq. (2.9). Restoring factors
of c,

ρgw =
c2

32πG

〈
ḣttαβḣ

αβ
tt

〉
. (2.10)
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2.2 Gravitational-Wave Generation

Just as electromagnetic waves are generated by accelerating charges, gravita-
tional waves are sourced by accelerating mass and/or energy. The generation
of gravitational-waves is a well-understood problem in general relativity. Be-
fore presenting the exact equation governing gravitational-wave generation,
though, it is instructive to explore what form this equation must take, based
only on dimensional analysis and symmetry arguments [65, 71].

r

R

Source
Observer

dV

Figure 2.2: A generic gravitational-wave source, a distance R away from an observer. As
argued in this section, at leading order only the acceleration of the source’s quadrupole
moment contributes to gravitational radiation.

The Newtonian gravitational potential is

Φ(R, t) = G

∫
ρ(r, tr)

|R− r|dV, (2.11)

where R is the fixed vector from the origin to the observer and the integral is
taken over r. Here, ρ(r, tr) is the source’s mass-energy density at position r,
evaluated at the retarded time tr = t − |R − r|/c. If the size of the source is
small compared to the distance R to the observer, then we can take a Taylor
expansion of 1/|R− r| in powers of (r/R):

1

|R− r| =
1

R
+

R̂ · r̂
R

( r
R

)
+

3(R̂ · r̂)2 − 1

2R

( r
R

)2

+ ... (2.12)

where R̂ and r̂ are unit vectors in the direction of R and r, respectively.
Substituting Eq. (2.12) into Eq. (2.11) and rearranging, we can expand the
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gravitational potential as

Φ =
G

R

∫
ρ dV +

GRi

R3

∫
ρri dV +

3GRiRj

2R5

(
δki δ

l
j −

1

3
δijδ

kl

)∫
ρrkrldV + ...

(2.13)

This is a standardmultipole expansion. The leading term involves the mass
monopole

∫
ρ dV , while the second includes the mass dipole

∫
ρr dV . The third

term is proportional to the quadrupole moment
∫
ρrirj dV , while the next term

(not shown) would be the octopole, involving integration over three powers of
r. To the extent that gravitational-waves resemble wave-like oscillations in
the Newtonian potential, it stands to reason that their generation must also
involve some function f of the source’s multipole moments:

h ∼ f
(∫
ρ dV,

∫
ρr dV,

∫
ρrirj dV

)
. (2.14)

First consider the monopole moment. A gravitational wave’s strain tensor is
dimensionless. Accordingly, we must construct some dimensionless quantity
using only the monopole moment and the relevant physics: the constants G
and c, the distance R to the source, and (possibly) time derivatives d

dt
. We al-

ready know from Eq. (2.10) above that the energy of a gravitational wave scales
as ρgw ∝ h2. If a gravitational wave represents true radiation, with energy es-
caping to infinity, then it must be the case that ρgw4πR2 ∝ h2R2 = constant,
or h ∝ R−1. Given this dependence on distance, the only dimensionless quan-
tity we can build with the monopole moment is h ∼ G

Rc2

∫
ρdV . Note that the

monopole moment is simply the total mass M of the source. So we have

hmonopole ∼
GM

Rc2
. (2.15)

Can this term describe gravitational-wave generation? No – mass conservation
of an isolated system tells us that the right-hand side of this relation is constant
in time. In contrast, we expect the left-hand side to be varying sinusoidally,
with non-zero time derivatives dh

dt
and d2h

dt2
. So a source’s monopole moment

cannot contribute to gravitational radiation.

Let’s move to the dipole moment. The only dimensionless quantity we can
build is hdipole ∼ G

Rc3
d
dt

∫
ρrdV . Looking more closely, the integral over ρr gives

us Mrc, where rc is the source’s center of mass. This implies that d
dt

∫
ρrdV =

Mvc, the source’s total linear momentum. We now have

hdipole ∼
GMvc
Rc3

. (2.16)
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This term also cannot describe an oscillatory gravitational wave. The linear
momentum of an isolated system is also conserved, which implies that dh

dt
=

d2h
dt2

= 0. So, although dipole radiation is the leading-order contributor to
electromagnetic wave emission, the extra symmetries present here prohibit
dipole gravitational-wave radiation.

Finally, we arrive at the quadrupole moment, from which we can construct the
dimensionless quantity

hquadrupole ∼
G

Rc4

d2

dt2

∫
ρrirjdV. (2.17)

We’ve run out of symmetries – there are no further conservation laws pro-
hibiting time derivatives of this h. This suggests that quadrupole radiation
represents the leading-order gravitational-wave emission.

We arrived at the quadrupole nature of gravitational waves using purely physi-
cal reasoning and dimensional analysis. A rigorous derivation confirms exactly
this result – at leading order, gravitational-waves are generated via quadrupole
radiation. In particular, the gravitational-wave strain hij at a large distance
R from the source is [65–67]

hij =
2G

Rc4

d2

dt2
-I ij(tr), (2.18)

where

-I ij = Iij −
1

3
δijδ

klIij

=

∫
ρ

(
rirj −

1

3
δijr

2

)
dV,

(2.19)

called the reduced quadrupole moment, is the trace-free part of Iij. Recall
that it was -I ij, not Iij, that formally appeared in our multipole expansion
in Eq. (2.13) above. Equation (2.18) is called the quadrupole formula,
describing gravitational-wave generation at the lowest (non-zero) order.

As described in Ch. 2.1, gravitational waves are most commonly described
via transverse-traceless (TT) gauge. Generically, the strain tensor given by
Eq. (2.18) is not automatically in these desired coordinates. Thus comput-
ing the gravitational wave signal from a given source is generally a two-step
process: first we compute hij according to Eq. (2.18), then we perform a co-
ordinate transformation to obtain hTT

ij .
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First we make hij transverse. This is done using the projection tensor

Pij = δij − ninj. (2.20)

Note that Pijni = 0. Meanwhile, given a vector mi orthogonal to ni, Pijmi =

mj. Thus, as its name might suggest, Pij projects vectors onto the plane
perpendicular to ni. Given a gravitational-wave traveling in the ki direction,
we can therefore obtain the transverse strain tensor via P k

i P
l
jhkl. All that’s

left is to subtract off the trace. All together, we can convert an arbitrary hij
to the transverse-traceless gauge using

hTT
ij =

(
P k
i P

l
j −

1

2
PijP

kl

)
hkl. (2.21)

2.3 Gravitational-Wave Sources

Although any system with a time-varying quadrupole moment yields gravita-
tional radiation, we can only expect detectable gravitational waves from the
most extreme systems in the Universe – large masses moving close to the speed
of light.

To see this, let’s return to the quadrupole formula above and use the approx-
imation that d2

dt2
-I ij = d2

dt2

∫
ρ(rirj − 1

3
δijr

2)dV ∼ Mv2, where v is the system’s
characteristic velocity and M its total mass. From Eq. (2.18), then, a source
with mass M and speed v yields gravitational waves of amplitude

h ∼ G

Rc4
Mv2

∼ GM/c2

R

(v
c

)2

.

(2.22)

Note that the first term is just the ratio between the source’s Schwarzschild
radius and our distance to the source. Plug in some characteristic numbers:

h ∼ 10−24

(
100 Mpc

R

)(
M

1M�

)(
0.1c

c

)2

. (2.23)

Thus a solar-mass moving at one-tenth of the speed of light 100Mpc away
generates strain of only h ∼ 10−24. As we will see below, strain of this or-
der is essentially the limit of what we can detect with present-day detectors.
Eq. (2.23) also makes it clear why the generation of detectable gravitational
waves on Earth is basically impossible. Say we constructed some gravitational-
wave emission apparatus (maybe a rotating dumbbell) on Earth, placing it
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100 km from our detectors. Even if we could move the dumbbell at speeds of
0.1 c, Eq. (2.23) implies that we’d need the dumbbell’s mass to be of order
1010 kg, equivalent to roughy one hundred aircraft carriers.

Prime sources of detectable gravitational waves are compact binary mergers,
rotating neutron stars, and stellar supernovae. Together, these comprise the
canonical sources hunted by present-day gravitational-wave detectors.

2.3.1 Compact binary mergers

r
\

m1 m2

Figure 2.3: An illustration of a compact binary, composed of black holes and/or neutron
stars of masses m1 and m2 orbiting with separation r.

The most well-studied gravitational-wave source is a compact binary com-
posed of two stellar remnants – neutron stars, black holes, and/or white dwarfs
(together known as “compact objects”). Figure 2.3 shows a cartoon illustration
of a compact binary – two point masses m1 and m2 with orbital frequency f
and separation r. Using the quadrupole formula [Eq. (2.18)] we can derive
some characteristics of the gravitational waves emitted by compact binary
sources.

We’ll consider the effective one-body problem: a reduced mass µ = m1m2/(m1+

m2) orbiting the system’s total mass M = m1 +m2 at distance r. In this one-
body picture, the reduced mass’ Cartesian coordinates at some time t are

rµ =
(
r cos(2πft), r sin(2πft), 0

)
, (2.24)
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and the binary’s mass-density is

ρ(r) = Mδ3(r) + µ δ3(r− rµ). (2.25)

Its reduced quadrupole moment is therefore

-I ij =

∫
ρ(r)

(
rirj −

1

3
δijr

2

)
dV

= µ

(
rµ,irµ,j −

1

3
δijr

2
µ

)

=
µr2

3

3 cos2(2πft)− 1 3
2

sin(4πft) 0
3
2

sin(4πft) 3 sin2(2πft)− 1 0

0 0 −1


(2.26)

with second time derivatives

-̈I ij = −8π2µr2f 2

cos(4πft) sin(4πft) 0

sin(4πft) − cos(4πft) 0

0 0 0

 . (2.27)

Using Eq. (2.18), the gravitational-wave strain generated by the compact bi-
nary is

hij = −16Gπ2µr2f 2

Rc4

cos(4πft) sin(4πft) 0

sin(4πft) − cos(4πft) 0

0 0 0

 . (2.28)

Let’s simplify Eq. (2.28) by using Kepler’s Third Law2 to replace r =

(GM/4π2f 2)
1/3. Then

hij = − 4

Rc4
(GMc)

5/3 (2πf)2/3

cos(4πft) sin(4πft) 0

sin(4πft) − cos(4πft) 0

0 0 0

 , (2.29)

whereMc = η3/5M is the binary’s chirp mass. Here, η = µ/M = m1m2/(m1+

m2)2 is the system’s reduced mass ratio (also known as the symmetric mass
ratio). At leading order, we see that the amplitude of gravitational radiation
from a compact binary depends only on this particular combination Mc of
component masses. Equation (2.29) demonstrates another important feature

2Kepler’s Third Law remains valid for circular orbits around non-rotating black
holes [68].
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of gravitational radiation – the gravitational waves are generated at twice the
binary’s orbital frequency.

What does our result imply about the polarization of gravitational waves from
compact binaries? First consider an observer positioned on the z-axis, such
that they view the binary face-on. Fortuitously for this observer, Eq. (2.29) is
already in the appropriate transverse-traceless gauge. They see a circularly-
polarized gravitational-wave signal, with equal amplitude “plus” and “cross”
modes exactly 90◦ out of phase.

What about an observer on the x-axis, who sees the binary “edge on?” First,
rotate the strain Eq. (2.29) to the primed coordinates adopted by this observer
as shown in Fig. 2.4:

hi′j′ = h0

0 0 0

0 − cos(4πft) − sin(4πft)

0 − sin(4πft) cos(4πft)

 , (2.30)

where h0 = − 4
Rc4

(GMc)
5/3 (2πf)2/3. Next, we need to transform to transverse

traceless coordinates. We’re interested in waves traveling out along the z′ axis.

x

y

z

z′�
x′�

y′�

Figure 2.4: Primed coordinates for an observer viewing the binary edge-on. This edge-on
observer measures the gravitational waves propagating out along the x-axis, defined as the
z′-axis in their frame.
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In primed coordinates, the corresponding projection tensor is

Pi′j′ =

1 0 0

0 1 0

0 0 0

 . (2.31)

Substituting Eqs. (2.30) and (2.31) into Eq. (2.21), the transverse-traceless
strain measured by our observer on the x-axis is

hTTi′j′ =
1

2
h0 cos(4πft)

1 0 0

0 −1 0

0 0 0

 . (2.32)

The edge-on observer, then, sees a purely linear “plus” polarized signal.

2.3.2 Rotating neutron stars

Another canonical gravitational-wave source is a rotating neutron star. A
perfectly spherical star has no time-varying quadrupole moment, and so will
emit no gravitational radiation. However, neutron stars are predicted to be
slightly deformed due to their rapid rotation and/or their intense internal
magnetic fields. If these deformations are not perfectly axisymmetric, then
they will result in a varying quadrupole moment, and the neutron star will
effectively become a source of steady, monochromatic gravitational radiation
(called “continuous gravitational waves”).

As an example, consider the deformed neutron star in Fig. 2.5, whose rotation
axis lies parallel to one of its principal directions. We’ll start in a frame co-
rotating with the neutron star, with coordinate axes aligned with the neutron
star’s principal axes, and assume that the star rotates about the z-axis with
angular velocity ω. In our co-rotating frame, the star’s quadrupole moment is
of the form

Iîĵ =

Ix̂x̂ 0 0

0 Iŷŷ 0

0 0 Iẑẑ

 , (2.33)

for some non-zero Ix̂x̂, Iŷŷ, and Iẑẑ (I’ll use “hats” to denote quantities in the
corotating frame). These three moments can be used to define the neutron
star’s characteristic ellipticity:

ε =
Ix̂x̂ − Iŷŷ
Iẑẑ

. (2.34)
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Ω

Figure 2.5: Illustration of a deformed, rotating neutron star. For simplicity, we consider the
case in which neutron star’s rotation is aligned with one of its principal axes.

Given a particular neutron star ellipticity, what is the resulting gravitational
radiation? First, we need to transform the quadrupole tensor from co-rotating
coordinates to inertial non-rotating coordinates. If the neutron star rotates at
angular velocity ω, then the quadrupole tensor Iij(t) measured by an inertial
observer at time t is found by rotating Iîĵ through an angle ωt about the z-axis,
giving

Iij =

Ix̂x̂ cos2 ωt+ Iŷŷ sin2 ωt 1
2
(Ix̂x̂ − Iŷŷ) sin 2ωt 0

1
2
(Ix̂x̂ − Iŷŷ) sin 2ωt Ix̂x̂ sin2 ωt+ Iŷŷ cos2 ωt 0

0 0 Îzz

 . (2.35)

This expression becomes much nicer if we use the definition of ellipticity to
replace Iŷŷ = Ix̂x̂ − Iẑẑε. Substituting this into Eq. (2.35) and simplifying, the
quadrupole tensor becomes

Iij =

Ix̂x̂ − εIẑẑ sin2 ωt 1
2
εIẑẑ sin 2ωt 0

1
2
εIẑẑ sin 2ωt Ix̂x̂ − εIẑẑ cos2 ωt 0

0 0 Iẑẑ

 (2.36)

with second time derivatives

Ïij = -̈I ij = −2εIẑẑω
2

cos 2ωt sin 2ωt 0

sin 2ωt − cos 2ωt 0

0 0 0

 . (2.37)
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Finally, the strain measured at distance r is

hij = −16π2G

c4

εIẑẑf
2

r

cos 2ωt sin 2ωt 0

sin 2ωt − cos 2ωt 0

0 0 0

 , (2.38)

expressed in terms of the neutron star’s physical rotation frequency f . Just
like compact binaries, we again see that rotating neutron stars generate grav-
itational waves at 2f .

We’ve limited ourselves to the fairly simple situation in which the neutron
star rotates about one of its principal axes. In reality this is not guaranteed
to be the case. A more realistic system rotating about an arbitrary axis will
additionally exhibit spin precession. The resulting gravitational waves will be
comparable in amplitude to our estimate in Eq. (2.38), but will be radiated at
both once and twice the neutron star’s rotational frequency; see Ref. [72] for
a pedagogical derivation of this effect.

We can use Eq. (2.38) to estimate the ellipticities ε that might yield detectable
gravitational-wave signals. First, what gravitational-wave strain h might we
be able to successfully detect from a continuously rotating neutron star? To
help us estimate this, look to the successfully detected signal GW150914. The
binary black hole merger GW150914 had peak strain hBBH ∼ 10−21 and was
observed for approximately 0.1 s [25]. We will see that the signal-to-noise
ratio (SNR) of a gravitational-wave signal scales as SNR ∝ h

√
T , where

T is the signal’s duration. If we were able to detect strain 10−21 in 0.1 s
of observation, then a rotating neutron star observed for a year should be
detectable when its strain is of order

hNS ∼ hBBH

√
0.1 s

107 s
∼ 10−25. (2.39)

Sure enough, recent Advanced LIGO and Virgo searches for persistent gravita-
tional waves from rotating neutron stars achieve upper limits of order 10−25 [73–
75].

What neutron star ellipticity does this correspond to? The canonical neutron
star moment of inertia is Izz ∼ MnsR

2
ns ∼ 1038 kg m2, where Mns ∼ 1M� and

Rns ∼ 10 km are typical neutron star masses and radii. Let’s also consider a
neutron star rotating at f = 200 Hz at a distance r = 1 kpc. The resulting
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ellipticity is of order
ε ∼ 10−7. (2.40)

This is equal in magnitude to the latest constraints on neutron star ellipticities
obtain in LIGO and Virgo’s O2 observing run [73, 74].

2.3.3 Stellar core collapse

A final canonical gravitational-wave source is the core collapse of massive stars.
Massive stars support themselves through nuclear burning, counteracting their
own gravitational pull with the light and heat generated by nuclear fusion.
When such a star exhausts its fuel reserves, it can no longer withstand its own
gravitational attraction, imploding inward upon itself. The infalling matter
strikes a proto-neutron star forming at the star’s center and, in what is known
as the “core bounce,” reverses course, generating an explosion that, with the
help of an immense neutrino outflow, disrupts the star in a supernova.

Our previous examples – compact binaries and rotating neutron stars – are,
at first order, very simple systems that lend themselves to analytic expres-
sions for the expected gravitational-wave emission. In contrast, core-collapse
supernova are inherently complex and chaotic. In fact, at lowest order stel-
lar core-collapse should not radiate gravitational-waves at all! A collapsing
and/or bouncing spherically-symmetric shell has no time-varying quadrupole
moment. Any gravitational waves emitted in stellar collapses must therefore
be associated with higher-order complexities – asymmetry in the collapsing
core, turbulence in the ejecta, etc. Unfortunately for us, these complexities
do not lend themselves to pencil-and-paper estimates of gravitational-wave
production.

Instead, we can very crudely estimate the gravitational-wave strain we might
expect from a core-collapse supernova; this argument follows Ch. 3 of Ref. [76].
Given a collapsing star of mass M , then we’ll start by assuming that some
fraction ε of the star’s mass-energy is converted to gravitational waves:

EGW ∼ εMc2. (2.41)

Next, assume that the gravitational-wave burst is of some characteristic dura-
tion τ , so that the luminosity of the burst is L ∼ EGW

τ
and the gravitational-
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wave flux measured at Earth is F ∼ L
4πR2 , or

F ∼ εMc2

4πR2τ
. (2.42)

Note that gravitational-wave detectors do not measure a gravitational wave’s
energy, but rather its amplitude. Above we saw that the energy-density of a
gravitational wave is ρGW ∼ c2ḣ2

32πG
. Then a gravitational wave’s flux is related

to its strain via

F ∼ c3ḣ2

32πG

∼ πc3

8G
f 2h2,

(2.43)

where in the second line we used ḣ ∼ 2πfh for a wave of frequency f . By
combining Eqs. (2.41) and (2.43), we can solve for the characteristic amplitude
h corresponding to a gravitational-wave burst of efficiency ε, frequency f , and
duration τ :

h ∼
(

2G

π2c

εM

f 2R2τ

)1/2

. (2.44)

We still need to do some more (even less defensible) work before we can obtain
a quantitative estimate for h. First, a burst of duration τ will have peak
frequency of order f ∼ (2πτ)−1. Meanwhile, we might identify τ with the
light crossing time of our source. If our source is compact, then its size is of
order its Schwarzschild radius RS = 2GM

c2
, and so τ ∼ 2GM

c3
. Alternatively, we

might associate τ with the free-fall time for an object of massM and size 2GM
c2

;
this gives the same result. Substituting these relations into Eq. (2.44) above,

h ∼ GM

π2c2

ε1/2

R
. (2.45)

Note that this result can be expressed even more simply as h ∼ ε1/2RS
R
.

Let’s plug in some typical numbers, assuming a M = 10M� star at a distance
of R = 10 kpc. State-of-the-art simulations, meanwhile, suggest conversion
efficiencies of order ε ∼ 10−9 between a collapsing progenitor’s mass energy
and gravitational-wave generation [77–79]. Then we might expect gravitational
waves of amplitude

h ∼ 1.0× 10−22

(
M

10M�

)( ε

10−9

)1/2
(

R

10 kpc

)−1

, (2.46)
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radiated at a characteristic frequency

f ∼ 1

2π

c3

2GM

∼ 1.6 kHz

(
M

10M�

)−1 (2.47)

over time
τ ∼ 2GM

c3

∼ 0.1 ms

(
M

10M�

)
.

(2.48)

Equation (2.46) suggests that we might be able to detect gravitational-wave
bursts from core-collapse supernova within the Milky Way. What about more
distant sources? The Andromeda Galaxy sits at a distance of approximately
800 kpc. A supernova in Andromeda might therefore yield strain of ampli-
tude 10−22(10 kpc/800 kpc) ∼ 10−24. This is likely undetectable with current
instruments. Therefore, barring exotic emission mechanisms, only supernova
in the Milky Way are likely to be accessible to present-day gravitational-wave
detectors.

2.4 The Advanced LIGO Detectors

Next I’ll briefly describe the Advanced LIGO detectors. This discussion will
be largely qualitative; more detailed descriptions of the instrumental and
engineering bases of interferometric gravitational-wave detection appear in
Refs. [67, 70]. Also see the more technical summaries presented in Refs. [22,
23, 80].

Advanced LIGO comprises two near-identical instruments in Hanford, Wash-
ington and Livingston, Louisiana. The Hanford instrument is shown in Fig-
ure 2.6. Just like our hypothetical graduate student from Ch. 2.1 above, each
LIGO instrument detects passing gravitational waves by measuring apparent
changes in length of its two 4 km arms.

Very broadly, each detector operates like a Michelson interferometer. Laser
light is sent through a central beamsplitter, directed down each arm, and
recombined, directed onto a photodiode at the interferometer’s “output port.”
The interference between the two recombined beams (and hence the total
power measured by the photodiode) encodes the relative phases acquired by
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Figure 2.6: The LIGO detector in Hanford, Washington. Photo credit: Caltech/MIT/LIGO
Laboratory.

Figure 2.7: Schematic of the optical layout of the Advanced LIGO detectors. Each instru-
ment measures the relative lengths of two 4 km Fabry-Perot arms. Figure from Ref. [22].

the laser light during propagation along each arm, which in turn depends
on the arms’ relative lengths. In practice, the interferometers are considerably
more complex than a simple Michelson. Figure 2.7 illustrates the optical layout
of the Advanced LIGO detectors. The interferometers’ arms are themselves
Fabry-Perot cavities, bounded by two 40 kg mirrors, or “test masses.” Each test
mass is suspended from a sequence of four pendula, achieving extraordinary
mechanical isolation from the surrounding environment and ensuring that the
test masses are effectively freely-falling at the frequencies of interest.
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One of the main effects that hinders Advanced LIGO’s sensitivity is quantum
mechanical “shot noise,” random Poissonian fluctuations due to the discrete
nature of photons. The relative amplitude of shot noise is minimized by max-
imizing the number of photons – in other words, by maximizing the power
circulating in the instrument. Advanced LIGO achieves this in two ways.
First, high-reflectivity mirror coatings ensure that light remains trapped in the
Fabry-Perot arms, undergoing many round trips before escaping and thereby
increasing the power contained in each cavity. Second, the detectors addition-
ally employ a so-called power recycling mirror. In the absence of a gravitational
wave, recombined laser light is sent back towards the input laser; the power
recycling mirror redirects this light once more into the instrument, increasing
the effective laser power.

Increased cavity power comes at a cost, however. If L = 4 km is the inter-
ferometer’s arm length and N is the number of round trips along the arms
completed by a typical photon, LIGO’s sensitivity to gravitational waves falls
off rapidly at frequencies f & c

2NL
, where the period of gravitational waves

is comparable to or larger than the time a photon remains trapped in the
detector arms. Increasing N therefore decreases the bandwidth over which
LIGO is sensitive to gravitational waves. A final mirror, the signal recycling
mirror, is introduced at LIGO’s output ports in order compensate for this ef-
fect; its precise tuning allows the interferometer to maintain a broad sensitive
bandwidth. Alternatively, other signal recycling tunings enable narrowband
observations that sacrifice bandwidth in favor of heightened sensitivity across
a narrow range of frequencies (envisioned, say, to allow targeted study of the
monochromatic radiation from a known neutron star).

Unfortunately, gravitational waves are not the only phenomena that induce
a signal in Advanced LIGO. Astrophysical gravitational waves must compete
against a relative cacophony of noise sources. We will quantify the strength of
noise in a given detector via its noise power spectral density (PSD) P (f),
defined by

〈ñ(f)ñ∗(f ′)〉 =
1

2
δ(f − f ′)P (|f |). (2.49)

Here, ñ(f) is the Fourier transform of the detector’s noise time series n(t); a
star (∗) denotes complex conjugation. In practice, since the total strain s(t)

measured by a detector is dominated by its noise, we can approximate the
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Figure 2.8: The design sensitivity noise power spectral density of Advanced LIGO. Also
shown are the individual contributions from known and/or expected sources of instrumental
or terrestrial noise. Figure adapted from Ref. [23].

power spectral density as 〈s̃(f)s̃∗(f ′)〉 ≈ 1
2
δ(f − f ′)P (|f |). A related quantity

is the noise amplitude spectral density (ASD), defined as

ASD(f) =
√
P (f). (2.50)

The ultimate power spectral density targeted by Advanced LIGO’s “design
sensitivity” is shown in Fig. 2.8, along with the myriad contributions from
individual sources of noise [23]. Some noises sources are environmental – due
to the seismic motion of the Earth or the minute variations in the local grav-
itational fields around the detectors (called gravity gradient noise). Others
are instrumental. These include the thermal motion both in the fibers sus-
pending Advanced LIGO’s mirrors and in the coatings covering the mirrors
themselves, as well as residual gas left behind in the imperfect vacuum tubes
housing LIGO’s optical systems. Advanced LIGO is even limited by quantum
mechanical noise. At high frequencies, this takes the form of shot noise –
Poissonian fluctuations in the number of photons emerging from the interfer-
ometer to arrive at the photodiode. At low frequencies, meanwhile, quantum
mechanical noise manifests as radiation pressure – random fluctuations in the
mirrors’ positions as they are “kicked” by incident photons.
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Figure 2.9: The Hanford, Livingston, and Virgo noise power spectral densities near the time
of the binary neutron star GW170817. This figure is reproduced from Ref. [47].

For comparison, Fig. 2.9 shows the actual power spectral densities of the Han-
ford, Livingston, and Virgo detectors at the time of the binary neutron star
merger GW170817 during the O2 observing run [47]. Note that Advanced
LIGO’s O2 PSDs are roughly an order of magnitude larger than the projected
design-sensitivity PSDs in Fig. 2.8, indicating the sensitivity gains still pos-
sible from future development and commissioning. Second, the O2 PSDs are
riddled with sharp narrowband features. These “lines” are due to a variety of
sources, including power mains, electronics that sense and control the state
of the interferometer, “violin mode” vibrations in the filaments suspending
LIGO’s optics, and deliberately-injected calibration signals [81].

It is worth taking an additional moment to discuss units. The PSD has what
might appear to be fairly odd units: [P (f)] = [strain2 Hz−1]. Correspondingly,
the ASD has units [ASD(f)] = [strain Hz−1/2]. These units reflect the fact
that the PSD defines the strain power of random detector noise per unit fre-
quency bandwidth. Put another way, the PSD’s units should remind us that the
amplitude of random noise adds in quadrature as we integrate across frequen-
cies [70]. This means that, when estimating noise amplitudes in gravitational
wave detectors, we need to specify not only a frequency f but also a band-
width ∆f ; the characteristic noise amplitude across this band is then given by
n0 ∼

√
P (f)∆f .
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Figure 2.10: A schematic illustrating the frame of a gravitational-wave detector, as well
as orthonormal coordinates describing incoming gravitational waves. The detector’s arms
are oriented along the X̂ and Ŷ axes. The unit vector n̂ points towards the gravitational-
wave source, and û and v̂ are orthonormal vectors in the plane perpendicular to n̂; the
polarization angle ψ describes the rotation of û and v̂ about n̂.

2.5 Identification of Gravitational Waves in Noisy Data

In the previous sections we saw an overview of the properties and generation
of gravitational waves, as well as a qualitative overview of the interferometers
used to record them. Now we’ll turn to the methods used to actually identify
gravitational waves in the noisy data recorded by gravitational-wave detectors.

Figure 2.10 shows an illustration of a gravitational wave incident upon a LIGO-
like interferometric detector from direction n̂. If the gravitational wave is of
the form hij = h+ê

+
ij+h×ê

×
ij, then the resulting signal s output by the detector

is
s = Dij

(
h+ê

ij
+(θ, φ, ψ) + h×ê

ij
×(θ, φ, ψ)

)
. (2.51)

The detector tensor Dij acts as the transfer function between the incident
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gravitational-wave strain and our measured signal. Interferometric gravitational-
wave detectors like Advanced LIGO and Virgo have detector tensors of the
form

Dij =
1

2
(XiXj − YiYj) , (2.52)

where X i and Y i are unit vectors along each of the detector’s arms. Equa-
tion (2.51) can alternatively be written

s = F+(θ, φ, ψ)h+ + F×(θ, φ, ψ)h×, (2.53)

where we’ve defined antenna patterns F+(θ, φ, ψ) = Dij ê
ij
+(θ, φ, ψ) and

F×(θ, φ, ψ) = Dij ê
ij
×(θ, φ, ψ). The Advanced LIGO and Virgo antenna pat-

terns are given analytically by3,4

F+(θ, φ, ψ) =
1

2

(
1 + cos2 θ

)
cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ

F×(θ, φ, ψ) =
1

2

(
1 + cos2 θ

)
cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ.

(2.54)

Strictly speaking, Eq. (2.54) is only correct in the long-wavelength regime, in
which the wavelength of a gravitational wave is much longer than our detector.
At smaller wavelengths (higher frequencies) the antenna patterns have non-
negligible frequency dependence [70]. For our purposes, however, we will treat
the antenna patterns as frequency-independent.

As we saw in Ch. 2.4, astrophysical gravitational-wave signals compete against
a chorus of terrestrial and instrumental noise sources. How does the noise
power in present-day detectors compare with the strength of astrophysical
gravitational-wave signals? The binary neutron star merger GW170817, for
example, had peak strain of order h0 ∼ 10−22 at frequency f ∼ 2 kHz. We
can see in Fig. 2.9, meanwhile, that the corresponding noise power in both
Hanford and Livingston is approximately P (2 kHz) ∼ 10−45 Hz−1. If we as-
sume a bandwidth ∆f ∼ f ∼ 2 kHz, then the instrumental noise competing
with GW170817 has amplitude n0 ∼

√
P (2 kHz)∆f ∼ 10−21. This is an order

of magnitude larger than the signal itself! Seemingly paradoxically, though,
GW170817 was a very loud detection, with signal-to-noise ratios of approxi-
mately 20 in each Advanced LIGO detector.

3Caution! Sign errors in the analytic antenna patterns abound in the literature.
4In Ch. 5 we will also see the analogous antenna patterns for additional polarizations

permitted by alternative theories of gravity.
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The detection of gravitational-wave signals like GW170817 that are far weaker
than instrumental noise is made possible by matched filtering. Matched
filtering involves searching for excess correlation C =

∫
s(t)h(t)dt between

instrumental output s(t) and a pre-computed template waveform h(t) that
matches the gravitational-wave signal we hope to detect. We will rigorously
work through the mathematics of matched filtering below. First, though, let’s
derive some back-of-the-envelope results to illustrate how matched filtering
enables the detection of very weak gravitational-wave signals.

Consider the case where a gravitational wave is present, and we miraculously
happen to have a template that perfectly matches the gravitational-wave sig-
nal. Define S to be the correlation measured in this case (this discussion
follows that in Ch. 7 of Ref. [67]):

S =

∫
s(t)h(t)dt

=

∫
[h(t) + n(t)]h(t)dt,

(2.55)

where n(t) is the noise present alongside the gravitational-wave signal. Ter-
restrial noise and the astrophysical gravitational-wave signal have nothing to
do with one another, and so are uncorrelated; at leading order S is then just

S ≈
∫
h2(t)dt

∼ h2
0Nτ,

(2.56)

where h0 is the scale amplitude of the gravitational-wave, τ is the period of
the the wave, and N is the total number of waveform cycles contained in the
signal. In contrast, define N to be the correlation (using this same template)
when a gravitational-wave signal is not present. Since random detector noise
and our template are uncorrelated (and can both be positive or negative), our
cross-correlation grows only as a random walk in N :

N =

∫
s(t)h(t)dt

∼ n0h0

√
Nτ,

(2.57)

where n0 is the scale amplitude of random detector noise. The ratio S/N now
gives an estimate of a resulting signal-to-noise ratio (SNR). If f = 1/τ is
the frequency of the gravitational-wave signal and T is the signal’s duration,
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then we find [67]

SNR ∼
√
fT

h0

n0

. (2.58)

Equation (2.58) implies that we can detect an arbitrarily weak signal as long
as we observe it for a time

T � 1

f

(
n0

h0

)2

. (2.59)

Let’s return to the example of GW170817. According to Eq. (2.59), in order
to detect GW170817-like signals we must observe them for times much longer

than 1
2 kHz

(
10−21

10−22

)2

∼ 0.05 s. In comparison, GW170817 lasted roughly ∼ 100 s

in the band of Advanced LIGO. It’s therefore not surprising that GW170817
was an incredibly confident detection, despite being an order of magnitude
smaller in amplitude than instrumental noise.

Having derived a few useful rules-of-thumb, we can now more carefully work
through the details of matched filtering. More formally, matched filtering is
performed by computing C =

∫
s(t)h(t)Q(t)dt, where Q(t) is a yet-unspecified

real-valued filter. Ideally, we will choose Q(t) to be the optimal filter that
maximizes the SNR of a signal matching our template. To identify the optimal
filter for a given template, it is easier to work in the frequency domain, re-
expressing C as an integral over frequencies. This can be quickly done using
the convolution theorem, but it is instructive to work this out by hand – in
doing so we’ll see several tricks that will reappear when discussing searches for
the gravitational-wave background in Ch. 3.

To rewrite C in the frequency domain, first we’ll use the fact that h(t) and
Q(t) are both real to write

C =

∫ ∞
−∞

dt s(t)h(t)Q(t)

=

∫ ∞
−∞

dt s(t) [h(t)Q(t)]∗ .

(2.60)

Now explicitly express both s(t) and h(t)Q(t) as inverse Fourier transforms
from their frequency domain representations:

C =

∫ ∞
−∞

dt

[∫ ∞
−∞

dfe2πifts̃(f)

] [∫ ∞
−∞

df ′e2πif ′th̃(f ′)Q̃(f ′)

]∗
=

∫ ∞
−∞

df

∫ ∞
−∞

df ′ s̃(f)h̃∗(f ′)Q̃∗(f ′)

∫ ∞
−∞

dt e2πi(f−f ′)t,

(2.61)
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where in the last line we’ve done some suggestive rearranging.

Let’s take a careful look at the time integral. In the limit that t ranges between
±∞, it’s not clear how exactly to calculate this integral. Instead, we will
integrate over the bounded range (−T/2, T/2) and then let T →∞.∫ ∞

−∞
dt e2πi(f−f ′)t = lim

T→∞

∫ T/2

−T/2
dt e2πi(f−f ′)t

= lim
T→∞

1

2πi(f − f ′)
(
e2πi(f−f ′)t

) ∣∣∣ T/2
−T/2

= lim
T→∞

sin π(f − f ′)T
π(f − f ′)T T

= lim
T→∞

T sinc (π(f − f ′)T ) .

(2.62)

The result is a sinc function, with a peak value of T at f − f ′ = 0, and
whose central width is roughly ∆(f − f ′) = 1/T . As we let T → ∞, the
sinc function becomes vanishingly narrow and infinitely tall. In other words,∫∞
−∞ dte

2πi(f−f ′)t behaves like a Dirac delta function:

lim
T→∞

∫ T/2

−T/2
dt e2πi(f−f ′)t = δ(f − f ′). (2.63)

When T is left finite, the integral is called a finite time delta function:

∫ T/2

−T/2
dt e2πi(f−f ′)t ≡ δT (f − f ′), (2.64)

where

δT (f − f ′) =

T (f = f ′)

0 (otherwise)
. (2.65)

Returning to Eq. (2.61) and replacing the time integral with a Dirac delta
function, we have

C =

∫ ∞
−∞

df

∫ ∞
−∞

df ′ s̃(f)h̃∗(f ′)Q̃∗(f ′)δ(f − f ′)

=

∫ ∞
−∞

df s̃(f)h̃∗(f)Q̃∗(f).

(2.66)

As above, we will define define S as the expectation value 〈C〉 when a signal
matching our template is present in the data. In this case, 〈s̃(f)〉 = h̃(f),
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giving

S =
〈∫ ∞
−∞

df s̃(f)h̃∗(f)Q̃∗(f)
〉

=

∫ ∞
−∞
|h̃(f)|2Q̃∗(f)df.

(2.67)

Similarly, define N 2 as the variance of C in the absence of a signal, such
that the detectors measure pure noise: s̃(f) = ñ(f). Since 〈ñ(f)〉 = 0, the
expectation value 〈C〉 vanishes in the noise-only case, and so the variance of
C is

N 2 = 〈C2〉
= 〈CC∗〉

=

∫ ∞
−∞

df

∫ ∞
−∞

df ′
〈
ñ(f)ñ∗(f ′)

〉
h̃∗(f)h̃(f ′)Q̃∗(f)Q̃(f ′)

=
1

2

∫ ∞
−∞

df |h̃(f)|2|Q̃(f)|2P (f),

(2.68)

where in the second line we used the fact that C is real-valued to write C = C∗,
and in the final line we used the definition of the power-spectral density P (f).
Together, Eqs. (2.67) and (2.68) let us to define the squared signal-to-noise
ratio (SNR) of our matched filtering search:

SNR2 =
S2

N 2

= 2

(∫∞
−∞ |h̃(f)|2Q̃∗(f)df

)2

∫∞
−∞ df |h̃(f)|2|Q̃(f)|2P (f)

.

(2.69)

We’re now finally in a position to identify the filter Q̃(f) that maximizes SNR2.
The entirely unobvious “trick” is to realize (i.e. be told) that we can rewrite
Eq. (2.69) in the form

SNR2 =

〈
h
∣∣hQP〉2〈

hQP
∣∣hQP〉 , (2.70)

where we’ve defined an inner product (not to be confused with an expectation
value) 〈

a
∣∣ b〉 = 2

∫ ∞
−∞

df
ã(f)b̃∗(f)

P (f)

= 4

∫ ∞
0

df
ã(f)b̃∗(f)

P (f)
.

(2.71)
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between between real time-series a(t) and b(t). When dealing with ordinary
vectors ~A and ~B, the quantity ( ~A· ~B)2

~B· ~B is maximized when the two vectors are
parallel, such that ~B ∝ ~A. This exact same idea holds true here: the squared
SNR is maximized when h̃(f)Q̃(f)P (f) ∝ h̃(f), or when

Q̃(f) =
1

P (f)
, (2.72)

setting the arbitrary constant of proportionality to one. Then Eq. (2.69) be-
comes

SNR2
opt = 4

∫ ∞
0

df
|h̃(f)|2
P (f)

=
〈
h
∣∣h〉1/2

.

(2.73)

This is the optimal SNR of a gravitational-wave signal. More generally, the
SNR of data s(t) given template h(t) is

SNR2 =

〈
s
∣∣h〉2〈
h
∣∣h〉 . (2.74)

This reduces to Eq. (2.73) when h(t) = s(t).

2.6 Looking Ahead: The Stochastic Gravitational-Wave Background

In this chapter we reviewed the properties, generation, and detection of gravi-
tational waves. The principles we’ve seen so far are broadly applicable to virtu-
ally all areas of gravitational-wave astronomy. In the next chapter, we’ll narrow
our focus to one particular class of gravitational-wave signal: the stochastic
gravitational-wave background.
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Chapter 3
The Stochastic Gravitational-Wave
Background

To date, Advanced LIGO and Virgo have published the detection of gravita-
tional waves from eleven compact binary mergers [25, 40, 42–46]. The most
distant of these, GW170729, likely occurred at a luminosity distance of 2.8Gpc
[45]; its gravitational-wave signal traveled for roughly six billion years be-
fore arriving at Earth. Although this may seem like a vast distance, today’s
gravitational-wave detectors generally probe only the relatively local Universe.
Advanced LIGO, in its present O3 sensitivity, can detect 10+10M� black hole
mergers out to a redshift of z ∼ 0.2, a distance that pales in comparison to
the redshifts z ∼ 10 that can be studied using electromagnetic telescopes.

For every single gravitational-wave source detected by Advanced LIGO and
Virgo, there are a multitude of other sources spread throughout the more dis-
tant Universe. Some of these sources are astrophysical, like remote compact
binary mergers. Others may be cosmological, like the gravitational reverber-
ations left over from the very birth of the Universe. By the time they reach
Earth, the gravitational waves from these distant sources are too weak to
be detected. The net sum of all such signals, however, may nevertheless be
collectively detectable in the form of a stochastic gravitational-wave back-
ground – the random gravitational-wave signal created by the superposition
of all distant gravitational-wave sources.

3.1 Observing the Gravitational-Wave Background: A Toy Picture

In Ch. 2.5 above, we saw how matched filtering enables the detection of po-
tentially weak gravitational wave signals. Matched filtering, however, requires
a template waveform – we must know a priori the exact form of the signal we
seek to detect. Unlike the deterministic gravitational-wave signals from sin-
gle compact binary mergers, the stochastic gravitational-wave background is a
random signal, formed from the incoherent superposition of a large number of
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individual events. The random, unpredictable nature of the gravitational-wave
background means that it cannot be detected via standard matched filtering.
Instead, we will attempt to detect the gravitational-wave background in the
form excess cross-power between widely-separated detectors.

It is useful to first sketch how this cross-correlation search for the gravita-
tional-wave background works; we’ll go through this more carefully in Ch. 3.6
below. Consider two identical and co-located gravitational-wave detectors,
each of which measure random independent noise realizations n1 and n2. Both
detectors also measure a common signal h (also random) due to the presence of
the gravitational-wave background. Together, the signals s1 and s2 measured
by the two detectors are

s1 = n1 + h

s2 = n2 + h.
(3.1)

If we knew n1 or n2 perfectly, we could detect the gravitational-wave back-
ground with one detector alone, measuring the total signal power 〈s2

1〉 =

〈n2
1〉+ 〈h2〉 and computing the difference 〈h2〉 = 〈s2

1〉− 〈n2
1〉 between this total

power and what we expect from noise alone. In practice, however, this ap-
proach is virtually impossible. From Fig. 2.9 above, we can estimate that
the Advanced LIGO’s Hanford and Livingston detectors have noise power
P (100 Hz) ∼ 10−46 Hz−1 at 100Hz. In comparison, we’ll demonstrate below
that gravitational-wave background may be composed of individual events with
strain power h2

0 . 10−49 So the detection of the gravitational-wave background
in this way would require us to know the noise power in our detector to better
than one part in 103!

Instead of looking for excess power in a single detector, we must instead look
for excess cross-power C = 〈s1s2〉 between our two hypothetical detectors:

C =
〈
(n1 + h)(n2 + h)

〉
≈ 〈h2〉.

(3.2)

Note that, since n1, n2, and h are mutually independent and uncorrelated, all
terms involving instrumental noise vanish at leading order, leaving us with a
direct estimate of the strain power 〈h2〉 of the stochastic gravitational-wave
background.

Similar to matched filtering, cross-correlation enables the detection of the
gravitational-wave background even when it is far weaker than instrumental
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noise. Like we did in Ch. 2.5, we can build intuition by defining a back-of-the-
envelope expression for the signal-to-noise ratio of a cross-correlation search
for the gravitational-wave background. Let S and N be the expected values
of C in the presence and absence of a gravitational-wave background, respec-
tively. If the gravitational waves comprising the stochastic background have
characteristic amplitude h0 and period τ , then at leading order

S = 〈h2〉

=
1

T

∫
h2dt

∼ 1

T
h2

0Nτ,

(3.3)

where T is our total observation time and N ∼ fT ∼ T/τ is the number of
gravitational-wave cycles (of frequency f) completed in this time. Meanwhile,
in the presence of noise alone, we expect to measure cross-correlation

N = 〈n1n2〉

=
1

T

∫
n1n2dt.

(3.4)

If the noise in our two detectors is truly independent, then this cross-correlation
will vanish as we integrate for infinite time T . Sadly, though, we’re limited
to finite integration times. In this case, since the product n1n2 is a random
variable (that can be both positive and negative), the integral in Eq. (3.4)
grows as a random walk with the number of cycles N .

N ∼ 1

T
n2

0

√
Nτ. (3.5)

Together, the signal-to-noise ratio of the gravitational-wave background is

SNR ∼ SN

∼
√
fT

(
h0

n0

)2

.

(3.6)

Even if the stochastic gravitational-wave background is much weaker than
intrinsic detector noise, we can nevertheless confidently detect it via a cross-
correlation search, provided we integrate for a time

T � 1

f

(
n0

h0

)4

. (3.7)
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Compare Eq. (3.7) with Eq. (2.59), the integration time required for ordinary
matched filtering. In a matched filter search, the integration time required to
detect a signal is Tmatched ∝ (n0/h0)2. In contrast, the integration time required
for an excess cross-power search is Tcross ∝ (n0/h0)4 ∝ T 2

matched. Compared to
a matched filter search, cross-correlation searches evidently take much longer
to detect a signal with the same characteristic amplitude h0. This increased
time is the price we unfortunately must pay in order to detect a random
gravitational-wave signal versus a deterministic one.

3.2 Why the Gravitational-Wave Background?

Using Eq. (3.7), we can estimate the time required to detect a stochastic signal
due to distant compact binary mergers. Let’s use the binary neutron star
GW170817 to estimate the characteristic amplitude h0 of the gravitational-
wave background. As we will see below, the gravitational-wave background
is dominated by compact binary mergers at redshifts z & 1, corresponding to
luminosity distances of 7Gpc and beyond. If GW170817 had strain of order
10−22 at a distance of 40Mpc, then binary neutron stars at z ∼ 1 have strain
amplitudes h0 ∼ 10−22

(
40 Mpc
7 Gpc

)
∼ 6 × 10−25. Meanwhile, assume that we

are searching in Advanced LIGO’s most sensitive band, at f ∼ 100 Hz where
P (f) ∼ 10−46 Hz−1 (see Fig. 2.9). Assuming a ∆f = 100Hz bandwidth, then
the amplitude of competing instrumental noise is n0 ∼

√
P (100 Hz)∆f ∼

10−22. Substituting these estimates into Eq. (3.7) above, we find that detection
of the gravitational-wave background requires us to integrate for time T �
0.3 yr.

Based on this back-of-the-envelope calculation, it seems that detection of the
stochastic gravitational-wave background might entail observation times on
the order of years ! This is a rather significant amount of time, requiring a
large investment of both person-power and patience. Detection and analysis
of the gravitational-wave background will nevertheless prove valuable for two
reasons.

First, the gravitational-wave background is dominated by compact bi-
naries at cosmological distances, well beyond the horizon of current
gravitational-wave detectors.

One might expect that the gravitational-wave background is dominated by
sources “just beyond earshot” – objects that LIGO and Virgo can’t quite de-



39

dr

r

Figure 3.1: A spherical shell of thickness dr and radius r centered at the Earth. In Eqs. (3.8)
and (3.9) we demonstrate that, in an isotropic Universe, every such shell contributes an equal
SNR to a cross-correlation search for the gravitational-wave background, regardless of the
shell’s radius.

tect but that still sit relatively nearby in the local Universe. This isn’t the
case. The stochastic gravitational-wave signal measured in cross-correlation
searches is dominated by the vast population of truly distant sources. The
gravitational-wave background therefore offers a glimpse of a distinct popu-
lation of gravitational-wave sources, complementary to those nearby sources
that we can observe directly.

To understand why this is true, picture a static, isotropic Universe in which
gravitational-wave sources are distributed uniformly in time and volume. Next,
imagine dividing the Universe into a set of concentric spherical shells cen-
tered around the Earth, each shell with thickness dr; see Fig. 3.1. What is
the stochastic signal-to-noise ratio d(SNR) collectively contributed by all the
sources in a given shell of radius r (i.e. events occurring at distances between
r and r + dr)?

If individual sources at distance r each have a characteristic signal-to-noise
ratio SNR0, then the total SNR from the shell is just

d(SNR) = SNR0 dN, (3.8)

where dN is the total number of sources in the shell. From Eq. (3.6), we
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know that the characteristic stochastic signal-to-noise ratio of a single source
scales quadratically with strain. Gravitational-wave strain, meanwhile, scales
inversely with distance, and so we have SNR0 ∝ h2

0 ∝ r−2. Meanwhile, in our
toy isotropic Universe the number of binaries within a shell is just proportional
to the shell’s volume: dN ∝ r2dr. Together,

d(SNR) = SNR0 dN

∝
(
r−2
) (
r2dr

)
∝ dr.

(3.9)

All factors of r have canceled! In this (naively simple) toy Universe, the
stochastic signal-to-noise ratio of a shell does not depend on its radius; a shell
of radius r = 1 Gpc and a shell of radius r = 100 Gpc will contribute equally
to the stochastic gravitational-wave signal measured with a cross-correlation
search.

An immediate corollary is that the gravitational-wave background is domi-
nated by distant sources. For any specific radius r0, we can ask whether shells
inside or outside r0 contribute more to the gravitational-wave background.
As long as r0 is finite, then there are infinitely many more shells beyond r0

than within it; gravitational-wave sources at radii r > r0 will therefore dom-
inate, regardless of our choice for r0 (this is essentially Olber’s paradox in
gravitational-wave form).

In actuality, of course, our Universe is neither static nor isotropic. Due to
the cosmological expansion of the Universe, the true signal-to-noise ratio of
single events falls more rapidly than SNR0 ∝ r−2 [67], and the Universe’s
evolving star formation rate causes the expected numbers of sources to peak
and subsequently decrease at redshifts z & 1 [82]. Nevertheless, we will see
in more detail below that detection of the gravitational-wave background of-
fers a glimpse of a truly distinct source population at far earlier times in the
Universe’s evolutionary history.

Second, cross-correlation searches for the stochastic background are
model-agnostic, and so are potentially sensitive to new gravitational-
wave sources and/or new physics.

In contrast to matched filtered searches for compact binary coalescences, the
cross-correlation search for the gravitational-wave background is an unmod-
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eled search. We search only for excess correlations between detectors, with
minimal assumptions about the exact nature of the signal(s) comprising the
gravitational-wave background. We just saw above that unmodeled searches
can carry a penalty in the time required to detection. Still, unmodeled searches
play a crucial role in gravitational-wave astronomy. By virtue of making min-
imal assumptions about the morphology or statistical character of a gravita-
tional-wave signal, unmodeled searches set us up to discover the unexpected.

Stochastic searches, in particular, might serve to alert us to new types of
gravitational-wave sources. As we will see below, we have reasonable predic-
tions for the amplitude and shape of the gravitational-wave background due to
standard astrophysical sources like compact binaries or rotating neutron stars.
Should the gravitational-wave background be louder than expected, this would
alert us to the presence of something unexpected. Alternatively, constraints
on the gravitational-wave background provide a simple but powerful sanity
check on newly-proposed and/or speculative gravitational-wave sources. It is
relatively easy to explain why some new theorized source may so far have
avoided direct detection – individual sources may be too quiet or we may lack
the sufficiently precise templates needed to detect them via matched filter-
ing. But any source population will generically produce a gravitational-wave
background, detectable via cross-correlation of our detectors given sufficient
observing time.

Unmodeled searches for the gravitational-wave background can also reveal un-
foreseen physical effects. We will see below that the exact features of the
correlated signal encode a wide range of information about the gravitational-
wave sky – its angular distribution, its frequency dependence, and the polar-
ization properties of gravitational waves themselves. The gravitational-wave
background can therefore be used as a tool with which to examine the very
basic properties of gravitational waves, allowing us to search for and constrain
deviations from the firm predictions made by general relativity.

3.3 Characterizing the Stochastic Background

So far our discussion of the gravitational-wave background has been purpose-
fully qualitative. In this section, we’ll make things more concrete, reviewing
the tools used to quantitatively characterize the stochastic background.

Let hA(t, n̂) be the net gravitational-wave signal with polarization A arriving
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at Earth at time t from direction n̂ on the sky. We can equivalently consider
the corresponding Fourier domain quantity h̃A(f, n̂). This signal is due to the
incoherent superposition of all gravitational-wave sources in the Universe in
direction n̂, and so is effectively random. This randomness means that h̃A(f, n̂)

has no preferred complex phase – at any given instant we are equally likely to
measure sine or cosine waves (of positive or negative amplitude). Hence the
expectation value of h̃A(f, n̂) is necessarily 〈h̃A(f, n̂)〉 = 0 for all nonzero f .

Since the expectation value of h̃A(f, n̂) vanishes, we’ll instead need to charac-
terize the gravitational-wave background via the correlation 〈h̃A(f, n̂)h̃∗A′(f

′, n̂′)〉
between the signals from directions n̂ and n̂′ with polarizations A and A′ and
frequencies f and f ′. We’ll assume that 〈h̃A(f, n̂)h̃∗A′(f

′, n̂′)〉 is separable:

〈h̃A(f, n̂)h̃∗A′(f
′, n̂′)〉 = A(A,A′)Θ(n̂, n̂′)H(f, f ′), (3.10)

with functions A(A,A′), Θ(n̂, n̂′), and H(f, f ′) independently characterizing
correlations between polarization, sky direction, and frequency.

First consider the function A(A,A′). As we saw in Ch. 2.3, the polarization
of a gravitational-wave signal depends on extrinsic parameters like the angle
at which we view the source. If gravitational-wave sources are randomly dis-
tributed and oriented across the sky, then it must be the case that (i) the
strain power of the stochastic background is distributed equally between +

and × polarizations and (ii) that the signals measured in each polarization
are uncorrelated. These two facts imply

A(A,A′) =
1

2
δA,A′ . (3.11)

The leading factor of 1
2
is chosen such that

∑
A,A′ A(A,A′) = 1. Together,

these two properties constitute the assumption that the gravitational-wave
background is unpolarized.

Next, since the gravitational-wave signals from sufficiently different directions
n̂ and n̂′ originate from causally disconnected sources, we will assume that the
gravitational-wave background is isotropic, with

Θ(n̂, n̂′) =
1

4π
δ2(n̂, n̂′), (3.12)

where δ2(n̂, n̂′) = δ(cos θ − cos θ′)δ(φ− φ′) is the Dirac delta function defined
on the sphere.



43

Finally, consider the term H(f, f ′). If the stochastic background comprises a
large number of incoherent sources each instantaneously radiating at a different
frequency f , then we should expect no correlations between the gravitational-
wave signals at different frequencies. We’ll therefore write

H(f, f ′) =
1

2
δ(f − f ′)H(f). (3.13)

All together, we have

〈h̃A(f, n̂)h̃∗A′(f
′, n̂′)〉 =

δA,A′

2

δ2(n̂, n̂′)

4π

δ(f − f ′)
2

H(f). (3.14)

We can integrate Eq. (3.14) over all sky directions, polarizations, and frequen-
cies to obtain∫ ∞

0

H(f) df =
∑
A,A′

∫∫
Sky

dn̂ dn̂′
∫∫ ∞
−∞

df df ′ 〈h̃A(f, n̂)h̃A′(f
′, n̂′)〉. (3.15)

So H(f) is the strain power in the gravitational-wave background – the net
power received from all sky directions and polarizations per unit frequency.
H(f) is both real and positive, obeying H(−f) = H(f). The factor of 1

2
in

Eq. (3.13) means that H(f) is a one-sided power, normalized over positive
frequencies as in Eq. (3.15).

If we wished, we could stop here and work entirely in terms of the strain
power spectrum H(f) of the gravitational-wave background. Conventionally,
however, the gravitational-wave background is described not in terms of its
strain power, but by its dimensionless energy density

Ω(f) =
1

ρc

dρgw
d ln f

. (3.16)

Here dρgw is the energy-density in gravitational-waves per logarithmic fre-
quency interval d ln f , and ρc = 3c2H2

0/8πG is the critical energy density
required to close the Universe. H0 is the Hubble constant.

We can find the relationship between the gravitational-wave background’s en-
ergy density Ω(f) and its strain power H(f) using Eq. (2.10) for the energy
density of a gravitational wave:

ρgw =
c2

32πG

〈
ḣαβḣ

αβ
〉
. (3.17)
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In the Fourier domain, ḣαβ = 2πifhαβ, and so

ρgw =
c2

32πG

〈
ḣαβḣ

αβ
〉

=
πc2f 2

8G

〈
hαβh

αβ
〉

=
πc2f 2

8G

〈
2h2

+ + 2h2
×
〉

=
πc2f 2

4G
H(f).

(3.18)

Note that we’ve used our assumption that the background is unpolarized to
write

〈
h2

+

〉
=
〈
h2
×
〉

= 1
2
H(f). Substituting Eq. (3.18) into Eq. (3.16), we

obtain1

Ω(f) =
2π2

3H2
0

f 3H(f), (3.19)

or

〈h̃A(f, n̂)h̃A′(f
′, n̂′)〉 =

3H2
0

32π3
δA,A′δ

2(n̂, n̂′)δ(f − f ′)f−3Ω(f). (3.20)

Equation (3.20) has two features worth mentioning. First, in converting from
gravitational-wave strain power to energy density Ω(f), we’ve acquired a factor
of f−3. Two powers of f are due to the time derivatives in the definition
Eq. (3.17) of a gravitational wave’s energy density. The remaining power of f
is purely conventional, due to our choice to work with the energy density dρgw

d ln f

per logarithmic frequency interval.

Second, Eq. (3.20) depends on the Hubble constant H0. The appearance of
the Hubble constant is a not-infrequent source of some consternation – why
should cosmology have anything to do with purely local measurements of the
gravitational-wave strain power at Earth? This, again, is simply a widespread
convention. Historically, the primary target of stochastic searches by ground-
based detectors was the cosmological background due to fluctuations and/or
phase transitions in the very early Universe. In this context it is sensible to
describe the stochastic background using the language of cosmology. We now
know that the gravitational-wave background in the frequency band of Ad-
vanced LIGO and Virgo is instead likely dominated by astrophysical sources,

1Note that different authors use different definitions when defining H(f). In the stan-
dard Ref. [83], for instance, H(f) is defined via 〈h̃A(f, n̂)h̃∗A′(f ′, n̂′)〉 = δA,A′δ2(n̂, n̂′)δ(f −
f ′)H(f), giving Ω(f) = 32π3

3H2
0
f3H(f). Every author should agree on Eq. (3.20), however,

regardless of convention.
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not cosmological effects [26, 48, 84]. The conventional parametrization in terms
of Ω(f), however, has persisted.

There are two additional assumptions that are typically made regarding the
gravitational-wave background. First, we will assume that the gravitational-
wave background is Gaussian, such that the random time series hA(t, n̂) is
characterized completely by its mean (zero) and variance. Second, the gravita-
tional-wave background is assumed to be stationary, with statistical properties
that do not change over time.

To summarize everything in one place, we have assumed the following about
the gravitational-wave background:

• Unpolarized: Power is distributed equally among gravitational-wave po-
larizations; different polarizations are uncorrelated.

• Isotropic: Average strain power is identical in all directions.

• No spectral correlations: The strain received at frequency f is indepen-
dent of the instantaneous strain at some other f ′ 6= f .

• Gaussianity: The gravitational-wave background is completely charac-
terized by a mean and variance.

• Stationarity: The statistical properties of the background are unchanging
with time.

Most of these are very reasonable. The lack of net large-scale polarization
and the absence of spectral and/or polarization correlations are likely very
good assumptions. It is difficult to imagine mechanisms that would introduce
correlations between frequencies. And only fairly exotic mechanisms, like par-
ity violation in the early Universe [85] or birefringence in gravitational-wave
propagation [86–90], can impart the background with significant correlations
and/or asymmetry between polarizations. Our assumption of stationarity is
similarly robust. The duration of our observations (years) is vanishingly small
compared to the age of the Universe. Any evolution in the properties of the
gravitational-wave background are therefore imperceptible to us.

Isotropy is also reasonable. The solar system moves at speed v⊕ ≈ 370 km/s

with respect to the cosmic microwave background [91], and hence we might ex-
pect large-scale dipole anisotropy across the sky that is a factor of v⊕/c ∼ 10−3
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weaker than the overall isotropic monopole moment. Structure formation in
the Universe additionally means that astrophysical gravitational-wave sources
are not quite truly isotropically distributed [92–97]. Although significant dis-
agreement exists between different authors regarding the exact strength of
this astrophysical anisotropy [98, 99], all authors agree that it is small – likely
no more than a 10% effect for Advanced LIGO and Virgo. Equally signifi-
cant is anisotropy due to astrophysical “shot noise.” Because we can observe
the gravitational-wave sky for only a finite period of time, we see only some
small, random fraction of all astrophysical sources. The random placement of
these sources is subject to considerable variance, which manifests as an ap-
parent anisotropy that masks true anisotropy due to cosmological structure
[100, 101].

In contrast, the gravitational-wave background is likely not very Gaussian.
The Gaussianity of the gravitational-wave background depends on the duration
of individual signals relative to the average time between signals. If the signals’
durations are much longer than the time between them, then at any given
instant many individual sources overlap; the central limit theorem then implies
that their collective strain is a Gaussian random variable. If, on the other
hand, the signals’ durations are much shorter than the time between them,
then on average no more than one source is active at any given instant. The
resulting strain will be decidedly non-Gaussian, characterized non-trivially by
higher order moments beyond a mean and variance. As we will see below,
the astrophysical background due to binary black holes very likely falls in this
non-Gaussian regime. While cross-correlation searches of the type described in
Sects. 3.1 and 3.6 are optimal for a truly Gaussian signal, they are non-optimal
for non-Gaussian backgrounds; the development of more efficient methods for
detecting non-Gaussian backgrounds is therefore currently the subject of much
discussion [102–108].

3.4 Modeling the Gravitational-Wave Energy Density

Next we’ll review how to actually calculate Ω(f) for a given gravitational-
wave source. Since the stochastic gravitational-wave background is due to
the superposition of sources throughout the Universe’s history, we will need
to account for the effects of cosmology. It is crucial to do this carefully –
historically the exact relationship between present-day observables and source-
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frame emission has been the cause of confusion [109].

Let dEs
dfs

be the energy per unit frequency radiated by a single gravitational-
wave source, as viewed in the source’s frame. If dN

dVcdz
is the number of such

sources per comoving volume and unit redshift, then the net gravitational-wave
energy density in the present-day Universe is given by the integral

dρgw
df

(f) =

∫
dz

dN

dVcdz

dEs
dfs

∣∣∣
f(1+z)

. (3.21)

Note that the energy spectrum dEs
dfs

is evaluated at frequency f(1 + z); this
accounts for the cosmological redshifting of a gravitational wave’s frequency
between its emission (at redshift z) and its detection (today at redshift z = 0).

The exact dependence of Eq. (3.21) on dEs
dfs

is a frequent source of confusion,
and so it is worth explaining this further. Consider an infinitesimal packet
of source-frame energy dEs radiated between source-frame frequencies fs and
fs + dfs at redshift z. As this packet propagates over cosmological distances,
how is it affected by the expansion of the Universe? First, the packet is
redshifted in frequency – observers today will measure the packet’s frequency
range to span fs

1+z
and fs+dfs

1+z
. Thus the observed bandwidth of the packet is

df = dfs
1+z

. Meanwhile, the packet’s energy is also redshifted, with observers
today measuring energy dE = dEs

1+z
. This implies, however, the energy dE

df
per

unit frequency is invariant – observers today measure

dE

df
=
dEs/(1 + z)

dfs/(1 + z)

=
dEs
dfs

.

(3.22)

Hence it is the source-frame energy spectrum that appears in Eq. (3.21). We
cannot completely disregard cosmological redshifting, though. Although our
hypothetical packet’s energy per unit frequency has remained constant, its
central frequency has still been redshifted down to fs

1+z
. So if we wish to know

the energy radiated at (present-day) frequency f , we must therefore evaluate
dEs
dfs

at source-frame frequency fs = f(1 + z).

Next, we can recast the number dN
dVcdz

of sources per comoving volume and
redshift in terms of R(z) = dN

dVcdts
, the source-frame merger rate per comoving
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volume (also called the source’s rate density):

dN

dVcdz
=

dN

dVcdts

dts
dz

=
dN

dVcdts

1

(1 + z)H(z)

≡ R(z)
1

(1 + z)H(z)
,

(3.23)

where H(z) is the Hubble parameter at redshift z:

H(z) = H0

√
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ. (3.24)

Ωm, Ωr, and ΩΛ are the dimensionless energy densities of matter, radiation,
and dark energy, respectively. For most applications we’ll encounter in later
chapters, we are interested only in redshifts z . 10, and so in practice we
can usually neglect the radiation term. Collecting and combining Eqs. (3.16),
(3.21), and (3.23), we have [110]

Ω(f) =
f

ρc

∫
dz
R(z)dEs

dfs

∣∣
f(1+z)

(1 + z)H(z)
. (3.25)

Given the energy-density spectrum dEs
dfs

and merger rate R(z) for a particular
source, we can use Eq. (3.25) to very straightforwardly calculate the resulting
gravitational-wave background.

3.5 Sources Contributing to the Gravitational-Wave Background

Here I’ll give a brief overview of sources that potentially contribute to the
stochastic gravitational-wave background in the frequency band of Advanced
LIGO and Virgo.

3.5.1 Compact Binary Mergers

Although the gravitational-wave background contains contributions from ev-
ery class of gravitational-wave source in the Universe, we expect it to be
dominated primarily by distant compact binary mergers [26, 48, 84]. The
stochastic backgrounds due to distant binary black holes and binary neutron
stars are predicted to have energy-densities Ωbbh(25 Hz) = 5.3+4.2

−2.5× 10−10 and
Ωbns(25 Hz) = 3.6+8.4

−3.1 × 10−10 [26, 48, 84].
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These predictions each carry a near-100% uncertainty. This considerable un-
certainty originates from two sources. The first is simple Poisson uncertainty
in the local merger rates of compact binaries. With the detection of only
ten binary black holes, their merger rate remains uncertain to an order of
magnitude, with coalescence rate estimates ranging between approximately
10 − 110 Gpc−3 yr−1 [45, 111]. Binary neutron star rates are even more un-
certain, with estimates between 110 − 3840 Gpc−3 yr−1 [45, 46]. The second
source of error is the considerable systematic uncertainty involved in the ex-
trapolation of observed local merger rates to far earlier times in the Universe
[26, 112–116]. This extrapolation requires knowledge of the underlying for-
mation rate of stellar progenitors [82, 117], the dependence of compact object
formation on stellar metallicities, and the distribution of time delays between
a compact object’s birth and its eventual gravitational-wave driven merger.
At present these systematic uncertainties are smaller than the simple Poisson
uncertainties above [26, 48], but will become dominant as our knowledge of
local merger rates improves with future detections.

Note that binary neutron stars and binary black holes are predicted to con-
tribute roughly equal energy densities to the gravitational-wave background.
Although binary neutron stars are lighter and hence weaker sources of grav-
itational radiation than binary black holes, they merge roughly ten times as
frequently – coincidentally these effects almost exactly cancel out [48].

While the energy densities due to binary neutron stars and black holes are
comparable, the gravitational-wave backgrounds due to each object have very
different statistical natures. A binary neutron star system merges somewhere
in the Universe roughly every 10 s [48]. The gravitational-wave signal from
each such system, meanwhile, persists in the Advanced LIGO frequency band
for approximately 200 s. Thus the binary neutron star background is highly
Gaussian – at any instant, the data measured by Advanced LIGO and Virgo
contain overlapping signals from tens of individual binary neutron star merg-
ers. In contrast, binary black holes merge less frequently (between one and
five mergers every ten minutes at frequencies accessible to LIGO and Virgo)
and have short duration signals lasting only seconds. The result is a so-called
popcorn background – long durations of gravitational-wave “silence” punc-
tuated every ∼ 200 s by a lone binary black hole merger. The distinction
between the statistically-Gaussian and “popcorn” backgrounds is illustrated in
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Figure 3.2: The net gravitational-wave strain at Earth due to all binary neutron star (red)
and binary black hole (green) mergers. The inset shows a magnified view of the strain time
series near 2000 s. Given the large rate and long duration of binary neutron star signals,
the binary neutron star background is highly Gaussian, with many signals overlapping at
any given instant. In contrast, binary black holes give rise to a non-Gaussian “popcorn”
background in which each individual event is well-separated in time. Figure reproduced
from Ref. [48].

Fig. 3.2, which shows the net strain at Earth due to neutron star (red) and
black hole (green) mergers.

We also expec a background from neutron star-black hole mergers. Although
no neutron star-black hole mergers have been detected, the upper limit of
610 Gpc−3 yr−1 on their merger rate [45, 118] enables an upper limit of Ω(25 Hz)

. 9× 10−10 on their energy density [84].

We will see in Ch. 4 a detailed calculation of the gravitational-wave back-
ground from compact binary mergers. Here, though, we can use Eq. (3.25) to
heuristically compute the spectral shape of the energy-density spectrum from
compact binaries. In the Fourier domain, the strain due to a compact binary
merger is h̃(f) ∝ f−7/6 [67]. Hence a compact binary’s energy spectrum is
dE
df
∝ ḣ2 ∝ f 2h2 ∝ f−1/3, and the resulting gravitational-wave background, at

leading order, takes the form of a power-law:

Ωcbc(f) ∝ f 2/3. (3.26)
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This power law extends up to the frequency at which the compact binaries (at
z = 0) merge, given approximately by [67]

fMerge ≈ 2.2 kHz

(
M

M�

)−1

, (3.27)

where M is the total mass of a binary.

3.5.2 Isolated Neutron Stars

Just as isolated rotating neutron stars generate sources of continuous gravita-
tional waves, so too will they give rise to a gravitational-wave background
[112, 119–131]. The exact strength of the predicted background depends
strongly on many poorly-understood properties of neutron stars, including
the configuration and strength of their internal magnetic fields [123, 125, 127]
and the neutron star equation of state [131]. Generally, the most optimistic
predictions correspond to gravitational-wave emission by young magnetars –
neutron stars with internal fields of up to 1016 − 1017 G that might sustain
ellipticities of ε ∼ 10−4. Precise estimates vary from author to author, but the
most optimistic magnetar scenarios generally correspond to a gravitational-
wave background of amplitude Ω . 10−10 at 100Hz [112, 123, 125, 129].

We can again use Eq. (3.25) to estimate the approximate form of the gravita-
tional-wave background due to rotating neutron stars. First, the spin-down of
a rotating neutron star can be written [131]

ω̇ = −B
2R6ω3

6Ic3
− 32Gε2Iω5

5c5

≡ −ω̇em − ω̇gw.
(3.28)

The first term represents energy loss due to magnetic dipole radiation; B is the
neutron star’s dipole field, R is its radius, and I is its moment of inertia. The
second term, meanwhile, represents energy carried away by gravitational-wave
emission; ε is the star’s rotationally or magnetically-induced quadrupole de-
formation (this expression assumes deformation along a principal axis normal
to the star’s spin axis [129]). Next, the gravitational-wave energy spectrum
radiated by a single neutron star can be written

dE

df
=
dE

dt

dt

dω

dω

df
, (3.29)

where dE
dt

is the energy per unit time carried away via gravitational waves. If
E = 1

2
Iω2 is the neutron star’s total rotational energy, then the energy lost in
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the form of gravitational waves is just dE
dt

= Iωω̇gw, where ω̇gw is the second
term in Eq. (3.28). We then have

dE

df
=

32πG

5c5

ε2I2ω6

|ω̇| . (3.30)

If the neutron star primarily loses energy through magnetic dipole radiation,
then the first term in Eq. (3.28) dominates the star’s overall spindown, giving
ω̇ ∝ ω3. Then the energy spectrum of a single neutron star is dE

df
∝ ω3 ∝

f 3, and, from Eq. (3.25), the corresponding stochastic background has the
approximate shape [112]

Ωns(f) ∝ f 4. (3.31)

On the other hand, if gravitational radiation dominates, then the overall spin-
down rate is ω̇ ∝ ω5, and the spectrum for a single source is dE

df
∝ f . This

is the case typically presumed for magnetars, which are thought to have (rel-
atively) large magnetically-induced quadrupole deformations. The resulting
gravitational-wave background in this case has shape [112]

ΩMagnetar(f) ∝ f 2. (3.32)

Beyond gravitational waves from continuous solid-body rotation, a gravita-
tional-wave background can in principle arise from other neutron star mecha-
nisms, including abrupt spin “glitches” [126] and internal instabilities excited
by gravitational-wave emission [119, 124, 130].

3.5.3 Core-Collapse Supernovae

The gravitational-wave background will also contain a contribution from dis-
tant core-collapse supernova [132–150]. Recall that in Ch. 2.3.3 we assumed
that core collapse converts some fraction ε of a star’s mass energy to gravita-
tional radiation. Early studies presumed that this efficiency factor could be
quite large, perhaps ε ∼ 0.1, and hence yield incredibly strong gravitational-
wave backgrounds with Ω ∼ 0.1 [151–153]. We now know that gravitational-
wave production is much weaker, with some simulations suggesting ε ∼ 10−9

[77–79]. Hence the gravitational-wave background from stellar core collapse is
likely not relevant for the current generation of ground-based detectors. Re-
cent estimates project that the energy-density from core-collapse supernova
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might lie in the range Ω(f) ∼ 10−10 − 10−9 between 10-100Hz [147, 149].
These studies, however, presumed gravitational-wave production efficiencies
in the range ε ∼ 10−5; if ε is in fact closer to 10−9 then these projections could
be four orders of magnitude too high.

At lowest order, we can think of the gravitational-wave emission from core-
collapse as a white-noise burst, with a flat energy spectrum dE

df
= constant.

Then, from Eq. (3.25), the resulting energy-density spectrum will scale as
Ω(f) ∝ f . In practice, though, this is not a very good approximation. Simu-
lated gravitational waveforms from supernova show many additional complex
features that cause dE/df to deviate significantly from a flat spectrum, includ-
ing a high-frequency steepening and exponential cutoff as well as amplified
low-frequency emission [150].

3.5.4 Cosmological Gravitational Waves

Beyond stochastic signals from unresolvable astrophysical sources, so-called
cosmological backgrounds are expected to arise from a variety of early
Universe effects. Given that astrophysical backgrounds are due to a multitude
of individual independent signals, it’s clear why such backgrounds are nec-
essarily stochastic. It’s less clear why we should expect a gravitational-wave
signal of cosmological origin to be stochastic in nature.

A nice argument explaining why a cosmological signal is inevitably stochastic
is given in Ref. [154]. Consider an arbitrary process acting at redshift z that
generates gravitational-wave emission, and let this gravitational-wave emission
be spatially correlated across some distance l. This distance is necessarily
smaller than the cosmological horizon at redshift z: l ≤ c/H(z). As viewed by
an observer today, the angular extent of one such causally-connected “patch”
is δΘ = l/DA(z), where

DA(z) =
c

1 + z

∫ z

0

dz′

H(z′)
(3.33)

is the angular diameter distance [155]. Then the total number of such patches
over the entire sky is N ∼ 4πδΘ−2, or

N ∼ 4π
H2(z)

(1 + z)2

(∫ z

0

dz′

H(z′)

)2

. (3.34)

Following Ref. [154], we might specifically imagine a hypothetical process ac-
tive at the time of photon decoupling, at z ≈ 1090. From Eq. (3.34), today
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we would see this process occurring across N ∼ 6× 104 causally disconnected
patches, each with an angular size of approximately 0.8 deg.

How does this compare to the angular resolution of the ∆x = 3000 km Ad-
vanced LIGO baseline? Choose a reference frequency of 1 kHz, corresponding
to wavelengths λ(1 kHz) ≈ 300 km. Then the maximum resolution achiev-
able at this frequency is λ

∆x
∼ 6 deg, far larger than the size of our causally-

connected patches; every sky “pixel” resolvable by Advanced LIGO would con-
tain emission from

(
5.7 deg
0.8 deg

)
∼ 60 different patches. At 100Hz, meanwhile,

Advanced LIGO’s angular resolution is approximately 60 deg, and every pixel
contains the superposition of over 5500 independent patches. By the cen-
tral limit theorem, any such gravitational-wave signal generated in the early
Universe is therefore necessarily stochastic.

There are three commonly-discussed cosmological sources of gravitational
waves; see Refs. [154, 156, 157] for excellent reviews. First, inflation may have
given rise to a cosmological background via the amplification of pre-inflation
quantum fluctuations, or via the excitation of gravitational waves as inflation
comes to a halt [158–161]. Gravitational waves may also be generated by var-
ious processes associated with a first-order phase transition, including sound
waves and collisions between “bubbles” of high or low-temperature phases [162–
167]. Finally, a gravitational-wave background may arise due to a population
of gravitational-wave bursts from cosmic strings [84, 168–174].

3.6 Measuring the Gravitational-Wave Background

In Ch. 3.4 above, we characterized the stochastic gravitational-wave back-
ground in terms of the correlations 〈h̃A(f, n̂)h̃A′(f

′, n̂′)〉 between gravitational-
waves from different directions, of different polarizations, and at different
frequencies. Under a fairly extensive set of assumptions, we also saw how
these correlations could be expressed in terms of the energy-density Ω(f) of
gravitational-waves. In this section, we will describe in greater detail how to
actually measure the stochastic background with gravitational-wave detectors.

If gravitational-wave detectors were strongly directional – that is, if they could
be precisely pointed towards specific directions on the sky – then we could mea-
sure 〈h̃A(f, n̂)h̃A′(f

′, n̂′)〉 directly. Given two detectors, we would simply point
them at directions n̂ and n̂′, rotate them such that they measure polarizations
A and A′, and then cross-correlate their outputs. Real gravitational-wave
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detectors, however, are decidedly not directional. On the one hand this is
a blessing – a single detector can measure signals nearly omni-directionally
across the sky. On the other hand, at any instant a single detector receives a
superposition of signals from many different directions and polarizations. This
makes the measurement of the gravitational-wave background a bit more com-
plicated; we will need to do some work to relate the cross-power 〈s1s2〉 between
the outputs of two gravitational-wave detectors to 〈h̃A(f, n̂)h̃A′(f

′, n̂′)〉.

First, consider the output s(t) of a single detector located at position x(t).
We can expand s(t) as the sum of instrumental noise n(t) plus a set of plane
gravitational waves spanning all directions n̂, polarizations A, and frequencies
f (see Ref. [175] for a discussion of different Fourier conventions in stochastic
searches):

s(t) = n(t) +
∑
A

∫
Sky

dn̂FA(n̂, t)

∫ ∞
−∞

df h̃A(f, n̂)e2πif [t−n̂·x(t)/c]. (3.35)

Note the explicit time dependence in Eq. (3.35). The detector’s location x(t)

changes over time with the rotation and movement of the Earth. The Earth’s
rotation also means that the antenna patterns FA(n̂, t) are time-dependent.
In principle, the movement of the Earth also Doppler shifts the apparent fre-
quencies of gravitational-wave signals, but this effect is negligible in stochastic
searches (in contrast, the correction of Doppler shifts and other higher order
effects is crucial in searches for continuous waves from rotating neutron stars).

Ideally, we’d like to rewrite Eq. (3.35) in the frequency domain. Strictly speak-
ing, this is made difficult by the time-dependent detector location and antenna
patterns. We’ll circumvent this problem altogether by taking the Fourier trans-
form of Eq. (3.35) over a small time interval T ; as long as T is much less than
24 hours we can assume that FA(n̂, t) and x(t) are effectively constant over the
span of this interval. Current searches, for instance, take Fourier transforms
over T ∼ 100 s windows [84, 176]. Treating the detector’s antenna patterns
and position as constants, the Fourier transform of its output s(t) centered
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around time t, is

s̃(f, t)

=

∫ t+T/2

t−T/2
dt′ s(t′)e−2πift′

=

∫ t+T/2

t−T/2
dt′ n(t′)e−2πift′

+
∑
A

∫ t+T/2

t−T/2
dt′e−2πift′

∫
dn̂FA(n̂, t′)

×
∫
df ′ h̃A(f ′, n̂)e2πif ′[t′−n̂·x(t′)/c]

≈ ñ(f) +
∑
A

∫
dn̂FA(n̂, t)

∫
df ′ h̃A(f, n̂)e−2πif ′n̂·x(t)/c

×
∫ t+T/2

t−T/2
dt′e−2πi(f−f ′)t′

= ñ(f) +
∑
A

∫
dn̂FA(n̂, t)

∫ ∞
−∞

df ′ h̃A(f ′, n̂)e−2πif ′n̂·x(t)/cδT (f − f ′).

(3.36)

In the third line, we’ve let FA(n̂, t′) ≈ FA(n̂, t) and x(t′) ≈ x(t). In the
last line, meanwhile, we’ve used the definition Eq. (2.64) of the finite time
delta function. If we were to let T →∞ then this would become a true delta
function; if we further neglected the time dependence of the detector’s position
and antenna patterns, Eq. (3.36) would become

s̃(f, t) = ñ(f) +
∑
A

∫
dn̂FA(n̂, t)h̃A(f, n̂)e−2πif n̂·x/c. (3.37)

This is called the plane-wave expansion of a measured gravitational-wave
signal. We’ll want to keep careful track of our finite time delta functions
and their normalizing factors of T , though, so we’ll continue working with
Eq. (3.36).

Given two detectors, we can cross-correlate their outputs s1(t) and s2(t) and
investigate how the result is related to the underlying gravitational-wave en-
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ergy density. Multiplying two copies of Eq. (3.36), we have

〈s̃1(f, t)s̃∗2(f ′, t)〉

=
〈[∑

A

∫
dn̂FA

1 (n̂, t)

∫ ∞
−∞

dk h̃A(k, n̂)e−2πikn̂·x1(t)/cδT (f − k)
]

[∑
A′

∫
dn̂′ FA′

2 (n̂′, t)

∫ ∞
−∞

dk′ h̃∗A(k′, n̂′)e2πik′n̂′·x2(t)/cδT (f ′ − k′)
]〉

=
∑
A

∑
A′

∫∫
dn̂ dn̂′FA

1 (n̂, t)FA′
2 (n̂′, t)

∫∫
dk dk′δT (f − k)δT (f ′ − k′)

×
〈
h̃A(k, n̂)h∗A(k′, n̂′)

〉
e−2πikn̂·x1(t)/ce2πik′n̂′·x2(t)/c.

(3.38)
To keep our notation somewhat manageable, we’re using variables k and k′ as
dummy variables inside the two frequency integrals (as f ′′ and f ′′′ would get
rather unwieldy). Also, we’ve neglected the instrumental noise terms ñ1(f, t)

and ñ2(f, t), since any terms involving the instrumental noise vanish when we
take the expectation value. Substituting Eq. (3.14) for the expectation value
〈h̃A(k, n̂)h∗A(k′, n̂′)〉, we get

〈s̃1(f, t)s̃∗2(f ′, t)〉

=
1

16π

∑
A

∫
dn̂FA

1 (n̂, t)FA
2 (n̂, t)

∫∫
dk dk′δT (f − k)δT (f ′ − k′)

× δ(k − k′)H(k)e−2πikn̂·x1(t)/ce2πik′n̂·x2(t)/c

=
1

16π

∑
A

∫
dn̂FA

1 (n̂, t)FA
2 (n̂, t)

∫
dk δT (f − k)δT (f ′ − k)

×H(k)e−2πikn̂·∆x(t)/c,

(3.39)
where we’ve integrated over the true delta function δ(k − k′) and defined the
detector separation vector ∆x = x1 − x2.

Now we need to deal with the two remaining finite time delta functions. Re-
member that δT (f −k) is peaked at δT (0) = T , with a width of approximately
1/T . If T = 100 s, then δT (f − k) is only ∼ 0.01 Hz wide. In contrast, the
strain power H(k) of the gravitational-wave background is expected to vary
much more slowly, changing significantly only over tens of Hz. What about the
exponential? The exponential term changes significantly only over a frequency
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range ∆k ∼ c/∆x. If we take ∆x to be the radius of the Earth (6× 104 km),
then the exponential varies only over ∆k ∼ 5 Hz. Hence for any Earth-based
detectors, the exponential too varies much more slowly with frequency than
δT (f − k). It’s therefore a fairly reasonable approximation to treat one of the
finite time delta functions like a true delta function and integrate over k to
obtain:

〈s̃1(f, t)s̃∗2(f ′, t)〉

≈ 1

16π

∑
A

∫
dn̂FA

1 (n̂, t)FA
2 (n̂, t)

∫
dk δ(f − k)δT (f ′ − k)

×H(k)e−2πikn̂·∆x(t)/c

=
δT (f − f ′)

16π
H(f)

∑
A

∫
dn̂FA

1 (n̂, t)FA
2 (n̂, t)e−2πif n̂·∆x(t)/c.

(3.40)

Let’s clean this up slightly by defining

Γ(f) =
∑
A

∫
dn̂FA

1 (n̂, t)FA
2 (n̂, t)e−2πif n̂·∆x(t)/c, (3.41)

in terms of which the cross-correlation between our two detectors is

〈s̃1(f, t)s̃∗2(f ′, t)〉 =
δT (f − f ′)

16π
Γ(f)H(f). (3.42)

Γ(f) is called the overlap reduction function between our two detectors.
The overlap reduction function can be thought of as the “transfer function”
between the gravitational-wave background’s strain power H(f) and the cross-
power measured between detectors. The overlap reduction function depends
only on the detectors’ geometry. It is maximized for identical co-located and
co-oriented detectors and decreases with other baseline geometries, penalizing
detectors that are separated or rotated with respect to one another. Note also
that the overlap reduction function is time-independent. Because FA

1 (n̂, t),
FA

1 (n̂, t), and ∆x(t) rotate synchronously, the integral over all sky directions
evaluates to the same result regardless of the exact time t at which we calculate
Γ(f). Hence we can just write our correlation as 〈s̃1f)s̃∗2(f ′)〉, without any
explicit reference to time; in this case, we presume that FA

1 (n̂), FA
1 (n̂), and

∆x are mutually evaluated at some arbitrary time.
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In the LIGO and Virgo literature it is more common to see the normalized
overlap reduction function γ(f) = λΓ(f), where the normalization factor

λ =

(∑
A

∫
dn̂ [FA(n̂)]2

)−1

(3.43)

is defined such that identical co-located and co-oriented detectors have γ(f) =

1. For interferometric detectors with 90 deg opening angles like Advanced
LIGO and Virgo, λ = 5/8π giving

〈s̃1(f)s̃∗2(f ′)〉 =
δT (f − f ′)

10
γ(f)H(f). (3.44)

Expressed in terms of the gravitational-wave energy density,

〈s̃1(f)s̃∗2(f ′)〉 =
3H2

0

20π2
δT (f − f ′)f−3γ(f)Ω(f). (3.45)

Let’s now define a somewhat tailored cross-correlation statistic

Ĉ(f) =
1

T

20π2

3H2
0

f 3 s̃1(f) s̃∗2(f) (3.46)

Using Eq. (3.45), we can immediately see that the expectation value of Ĉ(f)

is

〈Ĉ(f)〉 = γ(f)Ω(f). (3.47)

That is, Ĉ(f) is an estimator of the energy-density of the gravitational-wave
background, multiplied by the overlap reduction function. This is a slightly
different statistic than that defined in most older references. Most searches for
the gravitational-wave background are presented in terms of a measurement
Ŷ (f) = Ĉ(f)/γ(f), defined such that 〈Ŷ (f)〉 = Ω(f) is a direct estimator of
the background’s energy-density spectrum. In later chapters, though, it will
eventually be to our advantage to work in terms of Ĉ(f), rather than Ŷ (f).

What’s the variance of Ĉ(f)? Before calculating this, it is useful to take a
quick digression and return to the definition of a detector’s PSD P (f):

〈ñ(f)ñ∗(f ′)〉 =
1

2
δ(f − f ′)P (f). (3.48)

How is this expression modified if we’re considering data Fourier transformed
only over a finite time T? First, write the detector’s noise time series as an
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inverse Fourier transform:

n(t) =

∫
df ñ(f)e2πift. (3.49)

Now do a finite-time Fourier transform back into the frequency domain:

ñ(f) =

∫ T/2

−T/2
dt′n(t′)e−2πift′

=

∫ T/2

−T/2
dt′
∫
df ′ñ(f ′)e2πif ′t′e−2πift′

=

∫
df ′ñ(f ′)

∫ t+T/2

t−T/2
dt′e−2πi(f−f ′)t′

=

∫
df ′δT (f − f ′)ñ(f ′).

(3.50)

Then, again using k and k′ as dummy frequencies,

〈ñ(f)ñ∗(f ′)〉 =

∫
dk

∫
dk′ δT (f − k)δT (f ′ − k′)〈ñ(k)ñ∗(k′)〉

=
1

2

∫
dk

∫
dk′ δT (f − k)δT (f ′ − k′)δ(k − k′)P (k)

=
1

2

∫
dk δT (f − k)δT (f ′ − k)P (k)

≈ 1

2
δT (f − f ′)P (f),

(3.51)

where in the final line we’ve again used our trick of replacing one of the finite
time delta functions with a true Dirac delta. Comparing this result against
Eq. (3.48), accounting for finite Fourier transforms amounts (not surprisingly)
to replacing the Dirac delta with a finite time delta function.

Now we’re ready to go back and calculate the variance of Ĉ(f):

〈Ĉ(f)Ĉ∗(f ′)〉 − 〈Ĉ(f)〉〈Ĉ∗(f ′)〉

=
1

T 2

(
20π2

3H2
0

)2

f 6
〈
s̃1(f) s̃∗2(f) s̃∗1(f ′) s̃2(f ′)

〉
− γ(f)Ω(f)γ(f ′)Ω(f ′)

=
1

T 2

(
20π2

3H2
0

)2

f 6
〈
s̃1(f) s̃∗1(f ′)

〉〈
s̃2(f ′) s̃∗2(f)

〉
− γ(f)Ω(f)γ(f ′)Ω(f ′)

=
1

T 2

(
20π2

3H2
0

)2

f 6

(
1

2
δT (f − f ′)P1(f)

)(
1

2
δT (f − f ′)P2(f)

)
− γ(f)Ω(f)γ(f ′)Ω(f ′)

= δ(f − f ′)σ2(f)− γ(f)Ω(f)γ(f ′)Ω(f ′),
(3.52)
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where

σ2(f) =
1

T

(
10π2

3H2
0

)2

f 6 P1(f)P2(f). (3.53)

Note that one of the finite time delta-functions has been converted to a true
Dirac delta; the other evaluated to δT (f − f) = T . The first term is pro-
portional to the product P1(f)P2(f) between the detectors’ PSDs; in general
this is orders of magnitude larger than the background’s strain power H2(f).
We’ll therefore usually approximate the variance of Ĉ as 〈ĈĈ∗〉 − 〈Ĉ〉〈Ĉ∗〉 ≈
〈ĈĈ∗〉 = δ(f − f ′)σ2(f).

Current LIGO and Virgo searches for the gravitational-wave background op-
erate via measuring Ĉ(f), searching for statistically significant correlations
between instruments. Given a measured cross-correlation spectrum Ĉ(f) (and
associated uncertainty σ2(f)), how do we gauge if it is, in fact, statistically
significant?

Define a broadband detection statistic

ĈB =

∫
df Ĉ(f)λ(f)∫
df ′ λ(f ′)

, (3.54)

where λ(f) is some weighting function. The expectation value and variance of
Ĉ are, respectively,

〈ĈB〉 =

∫
df 〈Ĉ(f)〉λ(f)∫
df ′ λ(f ′)

=

∫
df γ(f)Ω(f)λ(f)∫

df ′ λ(f ′)

(3.55)

and

σ2
B = 〈Ĉ2

B〉 − 〈ĈB〉2

=

∫
df
∫
df ′
[
〈Ĉ(f)Ĉ(f ′)〉 − 〈Ĉ(f)〉〈Ĉ(f ′)〉

]
λ(f)λ(f ′)(∫

df ′′ λ(f ′′)
)2

≈
∫
df
∫
df ′δ(f − f ′)σ2(f)λ(f)λ(f ′)(∫

df ′′ λ(f ′′)
)2

=

∫
df σ2(f)λ2(f)(∫
df ′ λ(f ′)

)2 .

(3.56)
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The expected broadband signal-to-noise ratio is

〈SNR〉 =
〈ĈB〉√
σ2
B

=

∫
df γ(f)Ω(f)λ(f)√∫
df σ2(f)λ2(f)

.

(3.57)

We can now choose λ(f) to maximize this signal-to-noise ratio. We’ll use the
same trick that we saw when choosing the optimal filter in Ch. 2.5. If we
define the inner product

(A |B) =

∫ ∞
−∞

df
Ã(f)B̃(f)

σ2(f)

=

(
3H2

0

10π2

)2

T

∫ ∞
−∞

df
Ã(f)B̃(f)

f 6P1(f)P2(f)
,

(3.58)

then Eq. (3.57) can be written in the form

〈SNR〉 =
(γΩ |λσ2)√
(λσ2 |λσ2)

. (3.59)

Using the same argument as in Ch. 2.5, the SNR is maximized when λ(f)σ2(f)

and γ(f)Ω(f) are “parallel” – i.e. when

λ(f) =
γ(f)Ω(f)

σ2(f)
. (3.60)

Thus the optimal SNR of a stochastic signal is

SNRopt =
√

(γΩ | γΩ)

=

[(
3H2

0

10π2

)2

T

∫ ∞
−∞

df
γ2(f)Ω2(f)

f 6P1(f)P2(f)

]1/2

.
(3.61)

Just like optimal matched filtering required us to know in advance the specific
signal for which we were searching, here too we need to know the spectral
shape of Ω(f) in order to optimally choose the filter function λ(f). If we’ve
yet to actually detect the gravitational-wave background, then obviously we
can’t already know Ω(f). In practice, we therefore have to choose some model
ΩM(f) for the background’s energy-density spectrum. Given cross-correlation
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measurements Ĉ(f) and a model spectrum ΩM(f), the measured signal-to-
noise ratio is

SNR =

(
Ĉ | γΩM

)
√

(γΩM | γΩM)
. (3.62)

This analysis has so far relied on an implicit assumption regarding the stabil-
ity of instrumental noise – namely, that it is stationary, with PSDs that do
not evolve in time. While stationarity is a very good assumption regarding
the power of the gravitational-wave background (see Ch. 3.3), it is a partic-
ularly poor assumption for detector noise, which can vary significantly over
days, hours, and even minutes. We cannot, therefore, perform a single cross-
correlation with time T equal to, say, the length of an observing run. Instead,
we must measure a sequence of many cross-correlations Ĉ(f, t) (with associ-
ated variances σ2(f, t)), each taken over a sufficiently short time T that the
instrumental noise can be considered approximately stationary. In the O1
and O2 observing runs, for instance, cross-correlations were measured over
individual segments of duration T = 192 s [84, 176].

Given multiple measurements Ĉ(f, ti) of a correlation spectrum at multiple
times ti, how do we combine them to into a single spectrum? We’ve inad-
vertently already answered this question. Look back to Eqs. (3.54), (3.56),
and (3.60). Together, these equations told us how to optimally combine cross-
correlations measured at different frequencies. An exactly analogous argu-
ment holds when combining measurements at different times. Assuming a
temporally “flat” model spectrum Ω(t) = constant, the optimal combination
of different time segments is given by

Ĉ(f) =

∑
i Ĉ(f, ti)/σ

2(f, ti)∑
i 1/σ

2(f, ti)
, (3.63)

with variance
1

σ2(f)
=
∑
i

1

σ2(f, ti)
. (3.64)

3.7 Looking Ahead

This section introduced us to the stochastic gravitational-wave background. I
argued qualitatively that the gravitational-wave background offers a glimpse at
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the most distant gravitational-wave sources – remote astrophysical sources and
cosmological gravitational waves from the early Universe. In Ch. 3.3 I formally
defined the stochastic signal in terms of its power spectrum, or, equivalently,
its dimensionless gravitational-wave energy density. In Ch. 3.4 I derived a
generic prescription for modeling the energy-density of the gravitational-wave
background, and in Ch. 3.5 we saw an overview of the astrophysical and cosmo-
logical sources that may contribute to the stochastic background. Finally, in
Ch. 3.6 we learned how cross-correlation measurements between gravitational-
wave detectors are used in an attempt to detect and characterize a stochastic
gravitational-wave signal.

In the next several chapters I will apply these principles to further investigate
several aspects of the stochastic gravitational-wave background, its interpre-
tation, and its detection. First, in Ch. 4, I will quantify how astrophysical
sources at different redshifts contribute to the stochastic signal measured by
Advanced LIGO. I will also examine exactly which spectral properties of the
background’s energy-density spectrum are measurable with present-day in-
struments. Ch. 5, meanwhile, will explore what the gravitational-wave back-
ground might teach us about fundamental physics – namely, the polarizations
of gravitational waves. In Ch. 6 I will then present searches for the stochastic
gravitational-wave background, using data from Advanced LIGO’s O1 and O2
observing run. Finally, in Ch. 7 I will consider how we might, one day, seek
to unambiguously validate a tentative detection of the stochastic background.
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Chapter 4
Astrophysical Information Contained in
the Gravitational-Wave Background

This chapter contains work published in:

T. Callister, L. Sammut, S. Qiu et al., Limits of Astrophysics with
Gravitational-Wave Backgrounds, Phys. Rev. X 6, 031018 (2016).

I produced all results and wrote the majority of the published manuscript.

At the time this work was published, Advanced LIGO had detected only one
unambiguous gravitational-wave event: GW150914. Besides this one event,
we knew little about the broader population of binary black holes, and so in
Callister (2016) we had to simply presume that all binary black hole mergers
had masses comparable to GW150914’s. We now know, of course, that this is
not true. However, when presenting the results below, I’ll temporarily neglect
the existence of these other gravitational-wave detections and, as in Callis-
ter (2016), restrict purely to GW150914. The main findings of this chapter,
though, will nevertheless remain valid when we again consider the broader
population of black holes.

The detection of an astrophysical stochastic background would be a major
accomplishment for the gravitational-wave community, providing us a glimpse
of sources at truly cosmological distances. As we saw in Ch. 3, the energy-
density spectrum Ω(f) of the gravitational-wave background depends on the
detailed astrophysics underlying gravitational-wave sources – their intrinsic
properties and their distribution across redshifts.

Even though the gravitational-wave background depends on this rich astro-
physics, it is not clear how well we can actually extract this information given
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a measurement of the gravitational-wave background. In this chapter I will
explore this problem, investigating the following three questions:

First, how does the information contained in the gravitational-wave back-
ground compare to what we learn from resolvable binaries in the local Uni-
verse? In Ch. 4.1, we will find that the stochastic signal due to binary black
hole mergers is dominated by sources between redshifts z ≈ 0.1− 3.5. Obser-
vations of the stochastic background will therefore probe a binary black hole
population that is truly distinct from directly resolvable sources in the local
Universe.

Second, which spectral features of the gravitational-wave background can we
expect to successfully measure? In Ch. 4.2, I will demonstrate that, while
second generation gravitational wave detectors may successfully measure the
amplitude of the stochastic background, it is difficult to further distinguish
higher-order features of the background’s energy density spectrum, such as its
spectral index. This means that, unfortunately, our ability to study detailed
astrophysics and cosmology using the gravitational-wave background alone is
somewhat limited.

Third, how does the presence of binary black holes affect our ability to mea-
sure other potentially interesting contributions to the gravitational-wave back-
ground? In Ch. 4.3, we will see that the astrophysical background due to binary
black hole mergers acts as a limiting foreground, significantly obscuring the
presence of other astrophysical or cosmological sources.

4.1 Information contained in the astrophysical gravitational-wave
background

In Ch. 3.4 above, we derived a general prescription for modeling the energy-
density spectrum of the gravitational-wave background:

Ω(f) =
f

ρc

∫
dz
R(z)dEs

dfs

∣∣
f(1+z)

(1 + z)H(z)
, (4.1)

where R(z) is the source-frame event rate per comoving volume and dEs
dfs

is the
source-frame energy spectrum of a single event. Let’s begin by applying this
prescription to the specific case of binary black hole mergers. Specifically, we
will follow the so-called Fiducial model for the binary black hole background
described in Ref. [26].
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We will describe the gravitational-wave signals from individual binary black
holes using the phenomenological model of Ref. [177], which provides a semi-
analytic description of a binary black hole’s inspiral, merger, and final ring-
down. The resulting energy spectrum for a single binary is [114, 177]

dEs
dfs

=
1

3
(Gπ)2/3M5/3

c e(f), (4.2)

where

e(f) =



f−1/3 (f < fmerge)

f2/3

fmerge
(fmerge ≤ f < fring)

1

fmergef
4/3
ring

(
f

1+
(
f−fring
σ/2

)2

)2

(fring ≤ f < fcutoff)

0 (f ≥ fcutoff)

. (4.3)

The merger, ringdown, and cutoff frequencies fmerge, fring, and fcutoff as well
as the ringdown bandwidth σ found by fitting to results from numerical rela-
tivity; numerical definitions for these fitted quantities are given in Sect. IV of
Ref. [177].

We also need a prescription for R(z), the binary black hole merger rate as a
function of redshift. Assuming that the black holes observed with Advanced
LIGO are the remnants of stellar progenitors (rather than primordial black
holes), then the binary merger rate is likely to trace the Universe’s star forma-
tion rate, modulo a time delay between a main sequence binary’s formation
and the eventual gravitational-wave driven merger of its black hole remnants.
The Fiducial gravitational-wave background model of Ref. [26], for example,
adopts the star formation rate [117]

R∗(z) = ν
a eb(z−zm)

a− b+ b ea(z−zm)

M�
Mpc3 yr

, (4.4)

with ν = 0.145, zm = 1.86, a = 2.80, and b = 2.62. Equation (4.4) is calibrated
to the observed distribution of gamma-ray bursts [178].

It may also be the case that binary black holes are born preferentially in low-
metallicity environments. Metal-rich stars are known to lose significant mass
to stellar winds. Metal-poor stars, in contrast, retain a greater fraction of their
initial mass over their lifetime, and hence may more readily yield massive black
holes [179–182]. As in the Fiducial model, we will reweight Eq. (4.4) by the
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fraction F (z) of stars formed redshift z with metallicities below Z�/2, where
Z� = 0.02 is the solar metallicity.

As a function of redshift, the mean stellar metallicity is [82]

logZ(z) = 0.5 + log

(
y(1−R)

ρb

∫ 20

z

Rmd
∗ (z′)dz′

H(z′)(1 + z′)

)
, (4.5)

with stellar metal yield y = 0.019, return fraction R = 0.27, baryon density
ρb = 2.77 × 1011 Ωb h

2
0M�Mpc−3, and Ωb = 0.045. The star formation rate

used in calibrating y and R is [82]

Rmd
∗ (z) = 0.015

(1 + z)2.7

1 +
(

1+z
2.9

)5.6

M�
Mpc3 yr

. (4.6)

Assuming that stellar metallicities are log-normally distributed with a stan-
dard deviation of 0.5, the fraction of stars with metallicities below Z�/2 is

F (z) =

√
2

π

∫ logZ�/2

−∞
e−2(logZ−logZ(z))

2

d logZ. (4.7)

We have one final ingredient to consider – the time delay between a binary’s
formation and eventual merger. Let p(td) be the probability distribution of
time delays td. Then the merger rate per comoving volume is the convolution
of the metallicity-weighted stellar formation rate R∗(z)F (z) with p(td):

R(z) = R0

∫ tmax

tmin
R∗(zf (td, z))F (zf (td, z)) p(td) dtd∫ tmax

tmin
R∗(zf (td, 0))F (zf (td, 0)) p(td) dtd

. (4.8)

Here zf (td, z) is the formation redshift of a binary that later merges at redshift
z after a delay td. Equation (4.8) is normalized such that the constant R0 is
the local merger rate per comoving volume at redshift z = 0. The integration
limits tmin and tmax are the minimum and maximum delay times over which
we believe compact binaries can evolve to merger. We take tmin = 50 Myr and
tmax = 13.5 Gyr, the present-day age of the Universe. The shape of p(td) itself
is not very certain; we assume a power-law form [183]:

p(td) ∝

t−1
d (tmin ≤ td ≤ tmax)

0 (else)
. (4.9)

Figure 4.1 shows examples of energy-density spectra created using Eqs. (4.1),
(4.2), and (4.8). In particular, we vary the average chirp massMc of the pre-
sumed binary black hole population. Also shown are power-law integrated (PI)
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Figure 4.1: Energy-density spectra corresponding to binary black holes of various chirp
masses, assuming a local coalescence rate of R0 = 16Gpc−3yr−1. Power-law integrated
curves for one year of integration with Advanced LIGO at early, middle, and design-
sensitivity are shown for comparison [184]. Approximately 95% of the signal-to-noise ratio
comes from a band spanning 15− 45Hz.

curves [184] indicating the sensitivity of the stochastic search after one year
of integration with Advanced LIGO at early, middle, and design-sensitivity.1

From Fig. 4.1 we can immediately see that the stochastic energy-density spec-
trum depends on black hole masses in two ways. First, since dEs

dfs
∝ M5/3

c ,
increasing Mc (at fixed R0) causes the peak value of Ω(f) to correspond-
ingly grow like M5/3

c . Second, since more massive binaries merge at lower
frequencies, increasing chirp mass shifts the binary black hole energy-density
leftward. Specifically, the knee frequency fmax at which the energy-density
spectrum peaks scales as fmax ∝ 1/Mc.

We can use this newly constructed model of the binary black hole background
to carefully answer the following question:

If we detect the gravitational-wave background, exactly which sys-
tems in the Universe have we actually detected?

In Ch. 3.2 above, we argued very qualitatively that the gravitational-wave
background contains information about truly distant gravitational-wave sources,

1Note that these were projected sensitivities, estimated in 2016 when these results were
published. With the benefit of hindsight, these sensitivity projections were rather optimistic.
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rather than the closest “sub-threshold” events just beyond the range of direct
detection. In this argument we appealed to a toy Universe that was static and
isotropic. Of course, the Universe is neither static nor isotropic. The Universe
itself evolves due to cosmological expansion, and the distribution of binary
black hole mergers is expected to trace the star formation rate via Eq. (4.8).

Recall that the optimal signal-to-noise ratio of a gravitational-wave back-
ground Ω(f) is

SNR =

[
2T

(
3H2

0

10π2

)2 ∫ ∞
0

γ(f)2Ω(f)2

f 6P1(f)P2(f)
df

]1/2

. (4.10)

To more rigorously quantify the SNR contribution from binaries at different
redshifts, we can define an “SNR density”

d(SNR)

dz
=

2T

SNR

(
3H2

0

10π2

)2 ∫ ∞
0

γ2(f)Ω(f)dΩ
dz

(f, z)

f 6P1(f)P2(f)
df, (4.11)

with
dΩ

dz
(f, z) =

f

ρc

dEs
dfs

(f(1 + z))R(z)

(1 + z)H(z)
. (4.12)

Equation (4.11) quantifies the stochastic signal-to-noise ratio due to sources
between redshifts z and z + dz.

The stochastic SNR density for design-sensitivity Advanced LIGO is plotted
as a function of z in Fig. 4.2 for several choices of chirp mass, assuming the
Fiducial binary black hole model described above. For purposes of compar-
ison, each curve is normalized to a total signal-to-noise ratio SNR = 1. Also
shown is the cumulative SNR, obtained by integrating d(SNR)/dz up to some
cutoff z. Within each subplot, the dashed vertical lines indicate threshold
redshifts z50% beyond which BBHs of each chirp mass (indicated by the re-
spective colors) are individually resolvable less than 50% of the time. These
threshold redshifts therefore indicate the typical range of a direct search for
compact binary coalescences – binaries at redshifts z < z50% are, on average,
directly resolvable, while those at z > z50% are not. In general, z50% increases
with binary chirp mass, as more massive systems are more readily detectable
at greater distances. Note, however, that extremely massive Mc = 150M�

systems have a threshold redshift lower than that forMc = 100M� objects;
this is due to the fact that gravitational-waves from very massive systems are
rapidly redshifted out of Advanced LIGO’s sensitivity band.
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Figure 4.2: Top: SNR density d(SNR)/dz for various choices of chirp mass, assuming the
Fiducial model for the gravitational-wave background due to binary black hole mergers.
Each curve is normalized to a total signal-to-noise ratio of 1. Bottom: The cumulative SNR
as a function of maximum redshift.
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Figure 4.3: Stochastic SNR density d(SNR)/dz, assuming that compact binaries are due to
stellar progenitors with metallicities Z < Z�/10.
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For binaries like GW150914, withMc ≈ 28M� and z50% ≈ 0.5, approximately
70% of the stochastic SNR is due to unresolvable binaries when assuming the
Fiducial model. Sources between redshifts 0.1 and 3.5 contribute the central
90% of the total signal-to-noise ratio, and half of the total SNR is due to
binaries beyond z ≈ 1.2.

It is also interesting to see consider how SNR density changes with average
chirp mass. For chirp masses Mc . 50M�, all SNR density curves appear
similar; this is because the “knee frequency” of Ω(f) sits beyond the sensitive
part of the Advanced LIGO band (see Fig. 4.1 above). At Mc ≈ 100M�,
however, the SNR density instead shows a peak at moderate z. This peak
corresponds to the redshift at which the binary’s final merger is redshifted
into Advanced LIGO’s most sensitive band. Finally, asMc increases further
to 150M�, the merger from high-redshift signals is shifted below the LIGO
band entirely, leaving mostly signal from low-z sources.

The details do, of course, depend on our exact prescription for Ω(f). Varying
the precise astrophysics (the time delay distribution, star formation rate, etc.)
assumed in our model for the gravitational-wave background does inevitably
alter the inferred SNR density. One of the largest sources of systematic uncer-
tainties is the dependence of compact binary formation on metallicity. In the
Fiducial model described above, we assumed that compact binary formation
is dominated by stellar progenitors with metallicities Z < Z�/2. Alternatively,
if we assume extremely metal-poor stellar progenitors with Z < Z�/10 (the
Low Metallicity model of Ref. [26]), then we instead obtain the results in
Fig. 4.3.

Requiring very metal-poor progenitors implies a much larger number of com-
pact binary mergers at high redshift, when the Universe was younger and
largely metal-free. Compared to the SNR densities in Fig. 4.2, Fig. 4.3 there-
fore shows stochastic SNR densities shifted towards higher redshifts. In the
case of GW150914-like binaries, 80% of the stochastic SNR is due to unre-
solvable binaries, with 90% of the total signal contributed by binaries between
redshifts 0.1 and 4.2 (in contrast to redshifts 0.1 to 3.5 in the Fiducial model
above).
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4.2 Extracting Astrophysical Information from the Stochastic
Background

Our results in Ch. 4.1 should suggest that valuable astrophysical information
is contained in the binary black hole background. Figure 4.1, for instance,
demonstrated that the amplitude and spectral shape of the background’s
energy-density spectrum depends on the masses and coalescence rates of the
binary black hole population. Furthermore, this population of binary black
holes is not the same population directly detected in the local Universe, but
a distinct population comprising sources at cosmological distances, extending
up to redshifts z ≈ 3 or 4 (depending on our prescription for progenitor metal-
licity). The degree to which this information can be extracted, however, is an
altogether separate question, depending on our ability to perform model selec-
tion and parameter estimation with measurements of the gravitational-wave
background.

Before proceeding quantitatively, we can gain some intuition by qualitatively
reexamining Fig. 4.1 above. In Ch. 3.5.1, we argued that the energy-density
due to compact binaries should scale approximately as Ω(f) ∝ f 2/3. Figure 4.1
confirms exactly this. At low frequencies, all example energy-density spectra
trace f 2/3 power laws, deviating only at relatively high-frequencies, where the
slope of Ω(f) increases slightly before turning over and going to zero. It is
precisely this departure from a power law that will break degeneracies between
the mass and rate of binary black holes. If this departure is undetectable, then
we will be limited in our ability to independently measure the population of
distant compact binaries using the gravitational-wave background alone.

Parameter estimation has already been shown to be difficult for gravitational-
wave backgrounds dominated by compact binaries of several solar masses [185],
which only depart from Ω(f) ∝ f 2/3 power laws at frequencies above ∼
1 kHz. The discovery of GW150914, though, has since taught us that the
gravitational-wave background will have a significant contribution from high-
mass binary black holes. The energy-density spectrum due to these more
massive black holes will be shifted to lower frequencies, where departures from
power-law spectra are increasingly visible to ground-based detectors. This ten-
tatively suggests that binary black hole backgrounds may be more promising
targets for model selection and parameter estimation.

To generically evaluate our prospects for extracting astrophysical information
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from the binary black hole background, we will investigate at which point
an astrophysical background (following the Fiducial model) can be distin-
guished from a simple power-law spectrum

Ωpl(f) = Ω0

(
f

f0

)2/3

, (4.13)

where Ω0 is the background’s amplitude at an arbitrary reference frequency
f0.

Recall that, in cross-correlation searches for the stochastic background, our
measurement noise is assumed to be Gaussian. Given a model ΩM(f) for
the background’s energy-density spectrum, we’ll therefore define a Gaussian
likelihood for the cross-correlation Ĉ(f) measured within a single frequency
bin of width df : [83, 185]

Lf
(
Ĉ(f) |ΩM(f)

)
∝ exp

(
−
[
Ĉ(f)− γ(f)ΩM(f)

]2
2σ2(f)

df

)
, (4.14)

where Ĉ(f) and σ2(f) are given by Eqs. (3.46) and (3.53), respectively. Cru-
cially, here we do not have actual measurements Ĉ(f), but will instead be
using Eq. (4.14) to forecast what future observations might reveal. Thus we’re
interested not in Lf , but its expectation value:〈

Lf
(
Ĉ(f) |ΩM(f)

)〉
∝ exp

(
− [γ(f)Ω(f)− γ(f)ΩM(f)]2

4σ2(f)
df

)
. (4.15)

Equation (4.15) is obtained by substituting Ĉ(f) = γ(f)Ω(f) + δC(f) into
Eq. (4.14). δC(f) is the random error associated with a single measurement; it
is Gaussian distributed with a mean of zero and a variance of σ2(f). Marginal-
izing over all possible noise instantiations δC(f) gives Eq. (4.15).

Equation (4.15) is almost identical to Eq. (4.14), but with an extra factor of
1/2 in the exponential. Thus the proper consideration of measurement error
is crucial when forecasting future observational prospects; studies that use
Eq. (4.14) to forecast future results implicitly assume zero measurement error,
and hence obtain overly-precise results. Put another way, one should take care
to use the average likelihood, 〈Lf (Ĉ(f) |ΩM(f))〉, and not the likelihood of
the average, Lf (〈Ĉ(f)〉 |ΩM(f)).

Of course, we don’t measure the cross-correlation between detectors in a single
frequency bin, but measure an entire spectrum of cross-correlations. The full



76

(ensemble-averaged) likelihood is the product of Eq. (4.15) across all frequen-
cies:

L(Ω |ΩM) ∝
∏
f

〈Lf〉

= N exp

[
−1

4
(Ω− ΩM |Ω− ΩM)

]
,

(4.16)

where N is a normalization factor and we have defined the inner product

(A |B) = 2T

(
3H2

0

10π2

)2 ∫ ∞
0

γ(f)2Ã(f)B̃(f)

f 6P1(f)P2(f)
df. (4.17)

Note that Ω, not Ĉ, appears on the left-hand side of Eq. (4.16), since this
ensemble-averaged likelihood depends only on the expectation value 〈Ĉ(f)〉 =

γ(f)Ω(f).

Given a true gravitational-wave background described by the Fiducial model,
we can now compute the maximum-likelihood ratio

R =
Lml(Ωbbh |ΩM = Ωbbh)

Lml(Ωbbh |ΩM = Ωpl)
(4.18)

between the astrophysical and power-law models, defined by Eqs. (4.1) and
(4.13), respectively. Large values of R will indicate that the astrophysical
model is (correctly) preferred over the power-law background model. Mean-
while, values close to R = 1 indicate that the background’s energy-density
spectrum is indistinguishable from a simple power law.

The maximum likelihood when correctly assuming the astrophysical Fiducial

model is simply
Lml(Ωbbh |ΩM = Ωbbh) = N ; (4.19)

since the true underlying background is contained within the space of our
model, the difference Ω−ΩM vanishes in Eq. (4.16). The maximum likelihood
when (incorrectly) assuming a power law model can also be derived analyt-
ically. The power law model has a single free parameter: its amplitude Ω0.
The amplitude maximizing Eq. (4.16) satisfies

0 =
d logL(Ωbbh |ΩM = Ωpl)

dΩ0

= −1

4

d

dΩ0

(
Ωbbh − Ω0(f/f0)2/3

∣∣Ωbbh − Ω0(f/f0)2/3
)

= −1

4

[
−2 (Ωbbh |ω) + 2Ω0 (ω |ω)

] (4.20)
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or
Ωml

0 =
(ω |Ωbbh)

(ω |ω)
(4.21)

where ω(f) = (f/f0)2/3. The corresponding maximum likelihood is

Lml(Ωbbh |ΩM = Ωpl)

= N exp

{
−1

4

(
(Ωbbh |Ωbbh)− (ω |Ωbbh)2

(ω |ω)

)}
.

(4.22)

Thus

R = exp

{
1

4

(
(Ωbbh |Ωbbh)− (ω |Ωbbh)2

(ω |ω)

)}
. (4.23)

Today, maximum likelihood ratios are relatively rare in the gravitational-wave
data analysis community. Instead, they’ve been supplanted by more formally-
correct (and correspondingly more difficult to compute) Bayes factors be-
tween competing hypotheses. As will be discussed in Ch. 5 below, there exists
a simple conceptual relationship between Bayes factors and maximum likeli-
hood ratios. In particular, a Bayes factor may be approximated by an ordi-
nary maximum likelihood ratio, multiplied by an additional “Occam’s factor”
that further penalizes the more complex of the two models under considera-
tion [106]. The inclusion of this Occam’s factor here would only serve to penal-
ize the complex astrophysical model for the binary black hole background. By
neglecting the Occam’s factor, we are effectively showing the most optimistic
prospects for discerning the form of an astrophysical BBH background.

Figure 4.4 shows contours of the maximum log likelihood ratio lnR, as a
function of the local coalescence rate R0 and presumed average chirp massMc

of binary black holes, after three years of observation with design-sensitivity
Advanced LIGO. For reference, the solid black curve indicates the merger
rates above which a binary black hole background is detectable with optimal
SNR = 3 after three years, when correctly assuming an astrophysical model
for Ω(f). The dashed black curve similarly indicates rates above which binary
black hole backgrounds are detectable with SNR = 3 when assuming a power-
law model that does not turn over at high frequencies.2 The chirp mass and
local merger rate inferred from GW150914 [26–28] are indicated by a star.

2Note that this not an optimal SNR, since the space of power law models does not
contain the true BBH spectrum.
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Figure 4.4: Contours of maximum log likelihood ratios lnR between the astrophysical and
power-law background models (Eqs. (4.1) and (4.13), respectively) given three years of obser-
vation with design-sensitivity Advanced LIGO. The solid and dashed black curves indicate
the local coalescence rates at which the background is detectable with SNR = 3 when using
astrophysical and power-law models, respectively. The star indicates the background as-
sociated with GW150914 [26]. Although the background inferred from GW150914 may be
marginally detectable with Advanced LIGO after three years of observation, it is indistin-
guishable from a simple power-law model. The background remains indistinguishable from
a power-law even for co-located detectors, which are predicted to make a strong detection
of the BBH background.
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Figure 4.5: As in Fig. 4.4 above, but assuming co-located detectors, which are predicted to
make a strong detection of the binary black hole background.

Over a majority of the plotted parameter space, we see that lnR . 1; in this
region the power-law and astrophysical models cannot be distinguished. Only
for chirp masses and local rates much larger than those implied by GW150914
is lnR > 1. Thus, while Advanced LIGO may possibly detect the stochastic
background associated with GW150914, such a background is indistinguish-
able from a simple power-law. Quantitatively, approximately 6000 years of
observation at design sensitivity are required to attain lnR = 3!

Recall that the sensitivity of Advanced LIGO’s Hanford-Livingston (H1-L1)
network to a stochastic background is limited at high frequencies by the over-
lap reduction function, which rapidly approaches zero at frequencies f & 60

Hz [186]. Hence it is the overlap reduction function that effectively prevents
us from detecting departures in Ω(f) from ordinary power laws. The critical
frequency above which the overlap reduction function goes to zero is inversely
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proportional to the separation between detectors. Searches for the isotropic
gravitational-wave background would therefore benefit from smaller baselines
between detectors. There is some historical precedent for this – during Ini-
tial LIGO, a third interferometer (H2) was present at Hanford, co-located and
co-oriented with H1 [187]. With a frequency-independent overlap reduction
function γH1-H2(f) = 1, the H1-H2 pair is significantly more sensitive (geomet-
rically speaking) to the high-frequency gravitational-wave background than
H1-L1. Of course, in reality there are substantial practical barriers to success-
fully operating two co-located detectors, namely strongly correlated noise due
to common seismic, magnetic, and anthropogenic environments [187].

While there are currently no plans to reinstall a second interferometer at Han-
ford during Advanced LIGO, it is interesting to consider how Fig. 4.4 might
change given a hypothetical H1-H2 network of co-located 4 km Advanced LIGO
interferometers. Figure 4.5 illustrates the maximum likelihood ratios between
our astrophysical and power law models for this hypothetical H1-H2 network.
Once again, while the binary black hole background implied by GW150914 is
detectable with H1-H2, it remains indistinguishable from a power law. Approx-
imately 50 years of observation with design-sensitivity co-located detectors are
required to reach lnR = 3 in favor of the astrophysical model. Although this
is a significant improvement (by a factor ≈ 140) over the H1-L1 performance
above, it nevertheless remains an impractically long time.

The behavior of Figs. 4.4 and 4.5 can be better understood by re-plotting
contours of lnR as functions of the background’s energy-density Ω(10 Hz) at
10Hz and the frequency fmax at which the energy-density is at a maximum
(recall that Ω ∼ M5/3

c R0 and fmax ∼ 1/Mc; see Fig. 4.1). The result is
shown in Figs. 4.6 and 4.7 for the H1-L1 and H1-H2 baselines, respectively.
From Fig. 4.6, it is apparent that the only backgrounds distinguishable from
power laws using H1-L1 are those whose masses place fmax between ∼ 10− 50

Hz (chirp masses between approximately 70− 300M�), corresponding to the
most sensitive frequency band for the isotropic stochastic search. The H1-H2
network avoids the penalty associated with the overlap reduction function and
so shows sensitivity across a broader fmax range, limited only by the detectors’
own PSDs at high and low frequencies.

Any configuration of advanced detectors appears unlikely to differentiate an
astrophysical gravitational-wave background model from a simple power-law.
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Figure 4.6: Maximum log-likelihood contours between the astrophysical and power-law mod-
els, shown as a function fmax (see Fig. 4.1) and the background’s amplitude at 10 Hz. The
results shown assume three years of integration with design-sensitivity Advanced LIGO.
As in Fig. 4.4, solid and dashed black curves show the amplitudes at which a background
is detectable when assuming astrophysical and power-law models, respectively, while the
star indicates the astrophysical background associated with GW150914. Advanced LIGO is
best able to distinguish realistic background models from power laws for frequencies fmax
between 10-50 Hz, corresponding to the most sensitive frequency band for the stochastic
search.
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Figure 4.7: As in Fig. 4.6, but assuming a hypothetical H1-H2 network of co-located and
co-oriented Advanced LIGO detectors.

Hence astrophysical inference on the gravitational-wave background will likely
be limited to a single piece of information – its amplitude Ω0 – rather than its
spectral shape.

As a rule of thumb, it should be possible to distinguish two models for the
background’s energy density only when their difference ∆Ω(f) is itself de-
tectable. For reference, a gravitational-wave background with energy-density
Ω(f) = 10−9 (f/10 Hz)2/3 has expected signal-to-noise ratio SNR ≈ 3 after one
year of integration with Advanced LIGO. Therefore, given integration time T ,
it will be possible to select between two models for the gravitational-wave
background only if their difference is of order

∆Ω(f) & 10−9

(
f

10 Hz

)2/3(
1 yr

T

)1/2

. (4.24)
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4.3 The binary black hole background as a limiting foreground

So far in this chapter, we have considered only the gravitational-wave back-
ground’s ability to teach us about distant compact binaries. The gravitational-
wave background, of course, is not only due to compact binary mergers alone.
It will invariably comprise signals from a multitude of other sources – rotating
neutron stars, core-collapse supernovae, gravitational waves of cosmological
origin, and maybe even exotic or as-of-yet unforeseen sources of gravitational
radiation. Once a stochastic gravitational-wave signal is observed by advanced
detectors, a natural question will therefore be:

Is the observed signal consistent with expectations from binary black
hole mergers alone, or is there a contribution from something else?

In this sense, the binary black hole background now becomes a limiting fore-
ground, possibly obscuring the presence of additional, weaker contributions to
the net gravitational-wave background.

As a simple scenario, consider a combined signal composed of an astrophysical
background due to GW150914-like black holes (chirp massMc = 28M� and
local rate R0 = 16Gpc−3yr−1) and a flat energy-density spectrum with ampli-
tude Ωc of cosmological origin. How loud must Ωc be in order to be detectable
against the binary black hole background Ωbbh(f)? An equivalent question is:
how loud must the stochastic signal be in order to detect a spectral index that
is inconsistent with the binary black hole scenario? Since the energy-density
spectrum due to compact binaries is known to follow f 2/3, only the measure-
ment of a spectral index inconsistent with 2/3 can provide direct evidence of
a distinct additional source population in the stochastic background.

We can recast this question as another model selection problem. In Ch. 4.2,
we just demonstrated that the astrophysical background due to binary black
holes is likely indistinguishable from a power law. Hence we will assume that a
background composed of binary black holes alone (the “BBH-only” hypothesis)
is described by

Ωbbh–(f) = Ω0

(
f

f0

)2/3

. (4.25)

Meanwhile, when allowing for an additional contribution to the gravitational-
wave background (the “BBH+” hypothesis), we’ll use the energy-density spec-
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trum

Ωbbh+(f) = Ω1

(
f

f0

)2/3

+ Ω2, (4.26)

where Ω2 is a constant.

Once again, given a true gravitational-wave background with energy density
Ω(f), we can form a maximum likelihood ratio

R =
Lml(Ω |ΩM = Ωbbh+)

Lml(Ω |ΩM = Ωbbh–)
(4.27)

quantifying the evidence that the background contains an additional contribu-
tion beyond binary black holes alone. The “BBH-only” likelihood is maximized
by the same amplitude Ωml

0 given in Eq. (4.21), provided we replace Ωbbh(f)

with the combined background Ω(f) = Ωbbh(f) + Ωc considered here. The
“BBH+” likelihood is in turn maximized by solving

0 =
d logL(Ω |ΩM = Ωbbh+)

dΩ1

(4.28)

and
0 =

d logL(Ω |ΩM = Ωbbh+)

dΩ2

, (4.29)

which together give

Ωml
1 =

(ω | 1)(Ω | 1)− (1 | 1)(Ω |ω)

(ω | 1)2 − (ω |ω)(1 | 1)

Ωml
2 =

(ω | 1)(Ω |ω)− (ω |ω)(Ω | 1)

(ω | 1)2 − (ω |ω)(1 | 1)
.

(4.30)

Figure 4.8 shows contours in lnR as a function of the cosmological background
amplitude Ωc and the total integration time, assuming the design-sensitivity
H1-L1 detector network. The solid and dashed black curves indicate the obser-
vation times necessary to detect the combined astrophysical and cosmological
backgrounds with optimal signal-to-noise ratios of SNR = 3 and 5, respectively.
Note that these curves diverge downwards as Ωc approaches zero, correspond-
ing to the fixed detection time required for the binary black hole background
alone (which is held constant in this exercise). The solid and dashed grey
curves, meanwhile, indicate that cosmological background amplitudes that
would have been detectable with SNR = 3 and 5 if there existed no binary
black holes.

The fact that the grey curves lie deep within the lnR ' 0 region implies that
the presence of the binary black hole background serves to largely obscure
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Figure 4.8: Contours of the maximum likelihood ratio between the “BBH+” and “BBH-only”
models, as a function of the cosmological background’s amplitude Ωc and total integration
time with design-sensitivity Advanced LIGO. Black curves indicate observation times re-
quired to detect the combined astrophysical and cosmological background with a given
optimal SNR, while grey curves show the amplitudes Ωc that alone would be detectable.
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Figure 4.9: As in Fig. 4.9, but assuming a hypothetical H1-H2 network of co-located Ad-
vanced LIGO detectors.
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Figure 4.10: As in Fig. 4.9 above, but assuming that the amplitudes Ω0 and Ω1 (in the
“BBH-only” and “BBH+” models, respectively) of the binary black hole background are
known a priori to within a factor of two.

any cosmological background that might otherwise be detectable. If no bi-
nary black hole background were present, for instance, Advanced LIGO could
detect a cosmological background of amplitude Ωc ≈ 10−9.0 with SNR = 3

after three years of observation. When the binary black hole background is
present, however, a much larger Ωc ≈ 10−8.2 (corresponding to lnR = 3) is
required to both detect and resolve the additional presence of the cosmological
signal. After three years of observation at design sensitivity, Advanced LIGO
will therefore be able to constrain the amplitudes of additional background
components to Ωc . 10−8.2.

A network of co-located detectors performs somewhat better. As shown in
Fig. 4.9, our hypothetical H1-H2 network could place constraints Ωc . 10−8.4

after one year of observation and Ωc . 10−8.6 after three.

To obtain Figs. 4.8 and 4.9, we’ve treated the power-law amplitudes Ω0 and Ω1

of Eqs. (4.25) and (4.26) as entirely free parameters. In reality, we will likely be
able to place a strong prior on these parameters, leveraging the direct detection
of nearby compact binaries to estimate of the average binary chirp mass and
local coalescence rate as well as improving our understanding of systematic
uncertainties in the formation history of compact binaries [26]. However, even
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if we assume tight a priori constraints on the amplitudes Ω0 and Ω1, we find
little change in our results. Fig. 4.10 shows contours of lnR when we assume
that the amplitude of the binary black hole background is known to within a
factor of two, an optimistic assumption given the uncertainty in merger rate
evolution with redshift [26]. Even with these optimistic priors, we see that
our ability to resolve a cosmological background is notably improved only for
Ωc & 10−8 and integration times T . 1 yr. After T ≈ 1 yr of integration,
the experimental uncertainty on the gravitational-wave background amplitude
has become smaller than our presumed prior uncertainty, and so our a priori
knowledge is no longer useful.

4.4 Takeaways and Prospects

In this chapter, we sought to address three questions concerning what we might
learn from detection of the astrophysical gravitational-wave background.

First, how does the information contained in a stochastic background compare
with what can be learned from nearby, individually-resolvable binary mergers?
We saw that, while direct searches for binary black hole mergers are sensitive
to redshifts less than z50% ≈ 0.5, the stochastic background is dominated by
binary mergers in the far more distant Universe, with 90% of the stochastic
SNR due to sources between redshifts z ≈ 0.1−3.5. The stochastic background
therefore encodes astrophysical information about a population of black hole
binaries that is distinct from the local population visible to direct matched-
filter searches for compact binaries.

Second, what astrophysics can we hope to extract from future observations
of the binary black hole background? In principle, the functional form of the
background’s energy density spectrum depends upon the precise characteris-
tics of the underlying binary black hole population – its mean chirp mass,
local coalescence rate, star formation history, and metallicity dependence. We
found, however, that for realistic chirp masses and coalescence rates, the form
of the stochastic background is indistinguishable from a simple f 2/3 power-law
with Advanced LIGO. In the near future, astrophysical inference using the
gravitational-wave background will largely be limited to considering only the
overall amplitude of the the background and not its shape.

Finally, how is our ability to measure other stochastic backgrounds affected by
the presence of an astrophysical binary black hole background? We quantified
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the degree to which the binary black holes obscure additional contributions
to the stochastic background, like gravitational waves of cosmological origin.
For a cosmological background to be resolvable, it must be strong enough
to overcome our uncertainty in the amplitude of the binary black hole back-
ground. In this sense, the stochastic signal due to compact binaries now acts
as a foreground, limiting Advanced LIGO’s sensitivity to additional, weaker
background components.

At face value, these conclusions are somewhat disheartening. There remains
cause for optimism, though. First, our analysis has assumed a standard cross-
correlation search for the gravitational-wave background. Cross-correlation
searches are optimal provided that the gravitational-wave background is sta-
tionary, isotropic, and Gaussian. However, as described in Ch. 3.5.1, we know
that the gravitational-wave background is decidedly not Gaussian. It may
therefore be possible to improve upon our results with future data analysis
methods optimized for non-Gaussian backgrounds.

In the more distant future, third generation detectors like the Einstein Tele-
scope (ET) [188, 189] and Cosmic Explorer (CE) will be able to probe black
hole binaries at cosmological distances. ET, for instance, is projected to resolve
individual GW150914-like events to redshifts of z ∼ 15 [189], allowing for pre-
cision observation of the binary black hole population over the entire history
of star-formation. The ability of ET to resolve such events raises the exciting
possibility of the individual identification and subtraction of each BBH coales-
cence from the data, opening the way for the detection of weaker, underlying
stochastic backgrounds of astrophysical or even cosmological origin.

Even in the present, there is much to be learned by synthesizing the results
from both direct searches for nearby binary mergers and cross-correlation mea-
surements of the gravitational-wave background. By acting as a measure of the
integrated merger history of compact binaries, knowledge of the gravitational-
wave background’s amplitude alone, when combined with knowledge from the
local Universe, may allow us to make powerful statements about the formation
and merger history of compact binaries.
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Chapter 5
Measuring Gravitational-Wave Polariza-
tions with the Stochastic Background

This chapter contains work published in:

T. Callister, S. A. Biscoveanu, N. Christensen et al., Polarization-
Based Tests of Gravity with the Stochastic Gravitational-Wave Back-
ground, Phys. Rev. X 7, 041058 (2017).

I conceived of this project, produced most of the results in the published text
(all of the results shown here), and wrote the majority of the manuscript.

5.1 Gravitational-Wave Polarizations

In this section we’ll adopt geometrized units in which c = 1. The speed of light
will return in Ch. 5.2.

When introducing gravitational waves in Ch. 2, we declared that they are
described entirely by two polarizations, the plus (+) and cross (×) modes.
These two gravitational-wave polarizations have basis tensors

ê+
ij =

1 0 0

0 −1 0

0 0 0

 , (5.1)

and

ê×ij =

0 1 0

1 0 0

0 0 0

 , (5.2)

and deform rings of freely-falling test masses as shown in Fig. 5.1.
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Figure 5.1: The effect of + and × polarizations on rings of freely-falling test masses, assum-
ing a gravitational-wave propagating in the ẑ direction.

It is worth investigating why we only have two gravitational-wave polariza-
tions. The easiest way to understand this is by counting independent com-
ponents of the Riemann tensor Rαβγδ. While the Riemann tensor has 256
components, only 20 of these are independent given the many symmetries
that the Riemann tensor must obey. The components of the Riemann ten-
sor must also obey the Bianchi identities ∇[λRαβ]µν = 0. If we restrict to a
plane wave on an otherwise flat background, such that Rαβγδ ≡ Rαβγδ(t− z),
then the Bianchi identities leave us with only six independent quantities – the
components Ri0j0.

So far this counting argument has assumed only a metric theory of gravity.
Let’s now restrict to our favorite metric theory of gravity – general relativity.
In vacuum, Einstein’s equations provide four more constraints on the Riemann
tensor, reducing the number of independent components to two:

Rx0x0 = −Ry0y0 (5.3)

and
Rx0y0 = Ry0x0. (5.4)

How do these remaining Riemann tensor components relate to gravitational
waves? Recall that the Riemann tensor in linearized gravity is

Rαβµν =
1

2
(∂α∂νhβµ + ∂β∂µhαν − ∂α∂µhβν − ∂β∂νhαµ) , (5.5)

neglecting terms of O(h2). In the Newtonian limit,

Ri0j0 =
1

2
(∂i∂0h0j + ∂0∂jhi0 − ∂i∂jh00 − ∂0∂0hij)

≈ −1

2
ḧij,

(5.6)
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where, since gravitational waves travel at the speed of light, we have assumed
that time derivatives of hij are much larger than spatial derivatives (∂0hij �
∂khij). So the Riemann tensor components Ri0j0 simply correspond to (time
derivatives of) the components of a gravitational wave’s strain tensor hij. The
fact that the Riemann tensor has only two independent components therefore
implies that gravitational waves have only two independent components as
well: our familiar + and × modes.

If general relativity is not the correct description of gravity, though, then
the above argument breaks down. In a general metric theory of gravity, we
are left with our original six independent components of the Riemann tensor,
yielding six independent polarizations available to gravitational waves. The
four additional degrees of freedom are most commonly decomposed into the
x, y, breathing (b), and longitudinal (l) modes, with polarization tensors

êxij =

0 0 1

0 0 0

1 0 0

 , (5.7)

êyij =

0 0 0

0 0 1

0 1 0

 , (5.8)

êbij =

1 0 0

0 1 0

0 0 0

 , (5.9)

and

êlij =

0 0 0

0 0 0

0 0 1

 . (5.10)

The effect of each of these alternative polarizations is shown in Fig. 5.2. In
contrast to the + and × polarizations, which are purely transverse, three of
the four alternative polarizations (x, y, and l) have components along the
gravitational wave’s direction of propagation.

The + and × modes are often referred to as “tensor” polarizations (alter-
natively “spin-2” modes). Analogously, the x and y modes are referred to
as “vector” (spin-1) polarizations while the breathing and longitudinal modes
are called “scalar” (spin-0) polarizations. These names are inspired by the
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Figure 5.2: The effect of alternative x, y, breathing, and longitudinal polarizations on rings
of freely-falling test masses, assuming a gravitational-wave propagating in the ẑ direction.

responses of the polarization tensors to rotations. Consider rotating the su-
perposition hTij = a ê+

ij + b ê×ij by an angle φ about the ẑ axis,

hT
îĵ

= Ri
î(φ)Rj

ĵ(φ)hTij, (5.11)

where Ri
ĵ(φ) is a rotation matrix (not a contraction of the Riemann tensor).

Simplifying,

hT
îĵ

= a
[
Ri

î(φ)Rj
ĵ(φ) ê+

ij

]
+ b
[
Ri

î(φ)Rj
ĵ(φ) ê×ij

]
= a

(
cos 2φ ê+

ij + sin 2φ ê×ij
)

+ b
(
− sin 2φ ê+

ij + cos 2φ ê×ij
)

= (a cos 2φ− b sin 2φ) ê+
ij + (a sin 2φ+ b cos 2φ) ê×ij.

(5.12)

The gravitational-wave returns to its original state after a rotation of only
φ = π rad, just like a spin-2 particle in the language of quantum mechanics.

Next, similarly rotate the superposition of “vector” modes hVij = a êxij + b êyij:

hV
îĵ

= Ri
î(φ)Rj

ĵ(φ)hVij

= a
[
Ri

î(φ)Rj
ĵ(φ) êxij

]
+ b
[
Ri

î(φ)Rj
ĵ(φ) êyij

]
= a

(
cosφ êxij + sinφ êyij

)
+ b
(
− sinφ êxij + cosφ êyij

)
= (a cosφ− b sinφ) êxij + (a sinφ+ b cosφ) êyij.

(5.13)

The x and y components of hVij transform like an ordinary vector (or a spin-1
particle).

Finally, the breathing and longitudinal modes are symmetric in the transverse
plane, and so do not transform at all under rotations about the ẑ axis. Hence
these polarizations behave just like scalars (or spin-0 particles) under rotations.

The direct measurement of gravitational-wave polarizations is a particularly
clean test of general relativity. General relativity predicts that gravitational
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waves are described purely by the two tensor modes. The observation of vector
or scalar modes would therefore be an immediate and direct indicator of new
physics beyond general relativity. Moreover, polarization-based tests of gravity
require almost no assumptions about a gravitational-wave signal or its source.
Whereas many tests of general relativity with gravitational waves are highly
model dependent, involving the measurement of coefficients parametrizing the
exact phase and amplitude evolution of a gravitational-wave signal [52, 190],
here we are instead interested in a local, purely geometric characterization of
a gravitational wave’s strain tensor.

5.2 Extended Theories of Gravity and Sources of Alternative Po-
larizations

In the spirit of model-independence, our focus in this chapter is largely phe-
nomenological – do alternative polarizations exist (invalidating general relativ-
ity) or not? Nevertheless, there are good theoretical reasons to search for alter-
native gravitational-wave polarizations. Among the broad range of alternative
gravitational theories, particularly well-studied is the class of scalar-tensor
theories, which contain an additional scalar field that is non-minimally cou-
pled to spacetime curvature [191]. Scalar-tensor theories effectively elevate
Newton’s constant G to a field that evolves dynamically alongside the space-
time metric and matter fields.

Within the context of scalar-tensor theories, core-collapse supernovae (CC-
SNe) constitute a potential source of scalar gravitational waves. Spherically-
symmetric stellar collapses have no time-varying quadrupole moment, and so
CCSNe are expected to be very weak sources of gravitational radiation in gen-
eral relativity. They do, however, radiate scalar breathing modes in canonical
scalar-tensor theories. While the direct observation of gravitational waves from
CCSNe could therefore place strong constraints on scalar-tensor theories [192],
only supernovae within the Milky Way are likely to be directly detectable us-
ing current instruments [193, 194]. Such events are rare, occurring at a rate
between (0.6 − 10.5) × 10−2 yr−1 [195]. Nevertheless, certain extreme phe-
nomenological supernovae models predict gravitational radiation many orders
of magnitude stronger than in more conventional models, possibly allowing
their detection at extragalactic distances [193]. Additionally, the superposi-
tion of all distant CCSNe could give rise to a gravitational-wave background
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of breathing modes [147, 150].

Compact binary coalescences may also yield scalar-polarized gravitational waves.
In many scalar-tensor theories, bodies may carry a “scalar charge” that sources
the emission of scalar gravitational waves [196, 197]. Monopole scalar radia-
tion is suppressed due to conservation of scalar charge (just as conservation of
mass suppressed monopole gravitational radiation in Ch. 2 above), but there
is in general no conservation law suppressing dipole radiation. Scalar dipole
radiation from compact binaries is enhanced by a factor of (v/c)−2 relative
to ordinary quadrupole tensor radiation (where v is the orbital velocity of
the binary) and thus represents a potentially promising source of scalar grav-
itational waves. Electromagnetic observations of pulsar binaries have placed
stringent constraints on anomalous energy loss beyond that predicted by gen-
eral relativity; these constraints may be translated into a strong limit on the
presence of additional scalar-dipole radiation [198, 199]. These limits, though,
are strongly model-dependent, assuming a priori only small deviations from
general relativity. Additionally, pure vacuum solutions like binary black holes
are not necessarily subject to these constraints [200–203].

A variety of exotic sources may radiate alternative polarizations as well. Cos-
mic strings, for instance, generically radiate alternative polarizations in ex-
tended theories of gravity [169, 204]. Another potential source of alternative
polarizations are the so-called “bubble walls” generated by first order phase
transitions in the early Universe [156, 165, 167]. In scalar-tensor theories, bub-
bles are expected to produce strong scalar emission [196]. Gravitational waves
from bubbles are heavily redshifted, though, and today may have frequencies
too low for Advanced LIGO to detect [165]. Bubble walls may therefore be
a more promising target for future space-based detectors like LISA than for
current ground-based instruments.

Finally, it is in principle possible for alternative polarizations to be generated
more effectively from sources at very large distances. There are several ways
in which this might occur. First, modifications to the gravitational-wave dis-
persion relation can lead to mixing between different polarizations in vacuum
(an effect analogous to neutrino oscillations). This can cause mixing between
the usual tensor modes [205], and also between tensor modes and other po-
larizations [206, 207]. Thus alternative polarizations can be generated during
propagation even if tensor modes alone are produced at the source. This kind
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of behavior appears, for instance, in generic Lorentz-violating theories of grav-
ity [208, 209]. Secondly, as mentioned above alternative theories may promote
fundamental constants like Newton’s constant G to dynamical fields. If these
fields behaved sufficiently differently at earlier stages in the Universe’s evo-
lution, local constraints on scalar emission may not apply to emission from
remote sources [210]. Finally, it is possible to posit screening mechanisms that
suppress the emission of alternative polarizations by local sources but that do
not affect more remote sources [211].

5.3 Measuring Gravitational-Wave Polarizations

The crucial reason we are able to measure gravitational-wave polarizations
at all is that our detectors have different geometrical responses to different
gravitational-wave polarizations. In Ch. 2.5, we defined the antenna patterns
F+(n̂) and F×(n̂) characterizing a detector’s response s to + and ×-polarized
waves from direction n̂:

s = F+(n̂)h+ + F×(n̂)h×, (5.14)

where the antenna patterns are themselves the contraction of the detector
tensor Dij with the basis tensor ê+

ij(n̂) and ê×ij(n̂). The antenna patterns de-
scribing the response to alternative polarizations are defined analogously, e.g.
Fx(n̂) = Dije

ij
x (n̂), Fy(n̂) = Dije

ij
y (n̂), etc. Absolute values of the LIGO/Virgo

antenna patterns for the tensor, vector, and scalar polarizations are shown in
Figs. 5.3 – 5.5. In each figure it is assumed that the detector lies in the z = 0

plane with arms in the x̂ and ŷ direction. Note that only one plot is shown
in Fig. 5.5. This is because breathing and longitudinal polarizations induce
identical (up to a sign) responses in “L”-shaped interferometric detectors like
LIGO and Virgo.

The fact that these antenna patterns are (with the exception of Fb and Fl)
distinct will allow us to infer the polarization of a gravitational-wave signal,
provided that signal is seen in multiple detectors [212]. Consider a generically-
polarized gravitational-wave burst arriving from direction n̂:

hij = h+ê
+
ij(n̂) + h×ê

×
ij(n̂) + hxê

x
ij(n̂) + hyê

y
ij(n̂) + hbê

b
ij(n̂) + hlê

l
ij(n̂). (5.15)

Measuring the burst’s polarization amounts to measuring the six amplitudes
h+, h×, etc. Given one detector, though, we can only measure the single linear



96

|F+| F×
Figure 5.3: Absolute values of the LIGO and Virgo antenna patterns F+ and F× for tensor
+ and × modes. The detector is presumed to lie in the z = 0 plane, with its vertex at the
origin and its arms extending in the x̂ and ŷ directions.

Fx Fy

Figure 5.4: Absolute values of the LIGO and Virgo antenna patterns Fx and Fy for vector
x and y modes.
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Fb/Fl
Figure 5.5: Absolute values of the LIGO and Virgo antenna patterns Fb and Fl for scalar
b and l modes. The breathing and longitudinal antenna patterns are identical, up to an
overall sign.

combination

s1 = F+
1 (n̂)h+ + F×1 (n̂)h× + F x

1 (n̂)hx + F y
1 (n̂)hy + F b

1 (n̂)hb + F l
1(n̂)hl

=
(
F+

1 (n̂) F×1 (n̂) F x
1 (n̂) F y

1 (n̂) F b
1 (n̂) F l

1(n̂)
)
· ~h ,

(5.16)
where ~h = (h+ h× hx hy hb hl)

T is a vector defining the wave’s polariza-
tion. This equation clearly isn’t invertible. To solve for ~h, in general we
need six detectors, each measuring signal si with antenna patterns F a

i (with
i labeling the detector and a labeling the polarization). If we define a vector
~s = (s1 s2 s3 ...)

T whose components are these six measurements, then we can
write

~s =


F+

1 (n̂) F×1 (n̂) F x
1 (n̂) F y

1 (n̂) F b
1 (n̂) F l

1(n̂)

F+
2 (n̂) F×2 (n̂) F x

2 (n̂) F y
2 (n̂) F b

2 (n̂) F l
2(n̂)

...
F+

6 (n̂) F×6 (n̂) F x
6 (n̂) F y

6 (n̂) F b
6 (n̂) F l

6(n̂)

 · ~h

≡ F · ~h.

(5.17)

Provided that none of our six detectors are co-located and co-oriented (so that
no two rows of F are linearly-dependent), F can be inverted and we can solve
Eq. (5.17) for ~h.
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This isn’t quite yet a complete picture, though. There are two additional
complicating factors. First, Eq. (5.15) describing our generically polarized
gravitational wave has not six but eight unknowns: the six polarization ampli-
tudes and two additional parameters describing the event’s a priori unknown
sky location n̂. Given a sufficiently loud and sufficiently brief burst, in prin-
ciple we can use time-of-flight measurements between detectors to constrain
n̂. But in practice localization constraints are non-trivially informed by the
relative amplitudes measured between detectors. Thus Eq. (5.17) is optimistic
– in reality at least six detectors are needed to measure the 6 + 2 unknowns
encapsulated in our hypothetical gravitational-wave burst.

Second, we specified above that we need detectors that are not co-located
and co-oriented; two parallel detectors would simply measure the same linear
combination si of the unknown polarization amplitudes, providing us with no
new information. Unfortunately, LIGO’s Hanford and Livingston detectors
are very nearly parallel, with antenna patterns as close to one another’s as
allowed by the curvature of the Earth. This choice was intentional – LIGO’s
early researchers wished to maximize the probability that a signal seen in
one detector would also appear in the other. Before the first experimental
confirmation of gravitational waves, this design choice was quite sensible as
a cross-check on any putative gravitational-wave signal. Now, however, this
choice means that while we may have a network of three detectors, we can
really only measure two polarization components.

With these challenges in mind, Advanced LIGO and Virgo have now begun the
first direct study of gravitational-wave polarizations. The binary black hole
GW170814 was the first event to be observed in all three LIGO and Virgo
detectors, allowing the first preliminary analysis of its polarization content
[44, 58]. When analyzed with models assuming pure tensor, pure vector, and
pure scalar polarizations, GW170814 moderately favored the tensor-only hy-
pothesis, with log-Bayes factors lnBTV = 5.3 and lnBTS = 6.9 (later revised to
the less stringent values lnBTV = 3.4 and lnB = 5.4) relative to the vector-only
and scalar-only models [44, 213].

Far more powerful constraints were enabled by the binary neutron star merger
GW170817. Above, we saw that, barring independent knowledge of a gravita-
tional wave’s source location, not only six but eight measurements are needed
to fully characterize the gravitational wave’s polarization. In the case of
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GW170817, this independent knowledge came in the form of a plethora of elec-
tromagnetic counterparts [46, 53, 54], which allowed the unambiguous identifi-
cation of the signal’s host galaxy and direction of propagation [60]. GW170817
therefore yielded much more powerful evidence in favor of the tensor-only
model, rejecting the vector- and scalar-only hypothesis with lnBTV = 47.9 and
lnBTS = 53.2 [52].

These results from GW170817 and GW170814 represent significant first steps
in polarization-based tests of gravity. They are, however, somewhat limited
– with three detectors, we can say little about the possibility of mixed polar-
izations. We would struggle, for instance, to say anything about the presence
of tensor and scalar modes within a transient gravitational wave [58]. Future
detectors like KAGRA [35, 37] or LIGO-India [39] will therefore be necessary
before we can break existing degeneracies and confidently distinguish vector
or scalar polarizations in gravitational-wave transients.

5.4 Polarization Measurements with the Gravitational-Wave
Background

Above, we argued that (in the best case) six independent measurements are
required to characterize the polarization of an arbitrary gravitational-wave.
When discussing gravitational-wave transients,1 six independent measurements
means six (non-parallel) detectors. Of course, we expect other classes of
gravitational-wave signals beyond transients. In particular, LIGO and Virgo
search for a variety of long-duration signals, including continuous waves from
rotating neutron stars and the stochastic gravitational-wave background. A
long-duration signal observed over the course of a sidereal day allows for
multiple linearly independent measurements even with a single detector – as
the Earth rotates, the gravitational-wave signal sweeps through different an-
gles across the detector’s antenna patterns. In the language of Eq. (5.17)
above, we can construct an invertible F not by combining antenna patterns
F a
i (n̂) from six different detectors, but by combining the antenna patterns
F a

1 (n̂i) of a single instrument measured in six different directions n̂i. Unlike
gravitational-wave transients, long-lived sources like the stochastic background
[214–216] and continuous waves [217, 218] could be leveraged to directly mea-

1Here, “transient” means anything whose duration in the LIGO/Virgo frequency band
is much smaller than a sidereal day.
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sure gravitational-wave polarizations today, without the need for additional
detectors or electromagnetic counterparts.

Recall that the cross-correlation between measurements from two gravitational-
wave detectors gives [83, 219]

〈s̃1(f)s̃∗2(f ′)〉 =
1

10
δ(f − f ′)γ(f)H(f), (5.18)

where γ(f) is the overlap reduction function between the two detectors and
H(f) is the total strain power of the stochastic gravitational-wave background
(see Eq. (3.44)). In terms of the detectors’ antenna patterns and separation
vector ∆x, the overlap reduction function is written [186]

γ(f) =
5

8π

∑
A∈{+,×}

∫
dn̂FA

1 (n̂)FA
2 (n̂) e−2πif∆x·n̂/c, (5.19)

normalized so that γ(f) = 1 for co-incident and co-located detectors. Im-
plicit in Eq. (5.18) is the assumption that general relativity is correct ; that is,
gravitational waves are purely tensor polarized. If we instead step back and
allow for the existence of all six possible polarizations, then Eq. (5.18) must
be amended.

In general, the output of a single detector is

s̃(f) =
∑
a

∫
dn̂F a(n̂)h̃a(f, n̂)e−2πifx·n̂/c, (5.20)

where a ∈ {+,×, x, y, b, l} indexes the different gravitational-wave polariza-
tions, and the cross-power between two such detectors is

〈s̃1(f)s̃∗2(f ′)〉 =
1

8π
δ(f − f ′)

∑
a

Ha(f)

∫
dn̂F a

1 (n̂)F a
2 (n̂)e−2πif∆x·n̂/c

≡ 1

8π
δ(f − f ′)Ha(f)

∫
dn̂F a

1 (n̂)F a
2 (n̂)e−2πif∆x·n̂/c.

(5.21)

Rather than explicitly writing sums over polarizations, we’ll adopt an Einstein
summation-like notation, with repeated indices indicating a sum over a. Also
note the leading factor of 8π, rather than 16π that appears in Eq. (3.40). This
difference arises because Ha(f) is the strain power per polarization, whereas
H(f) in Eq. (3.40) is the total strain power across plus and cross modes (we
will explicitly denote this latter quantity HT (f) below).

Buried in Eq. (5.21) are our standard assumptions about the gravitational-
wave background, namely that it is isotropic, stationary, and Gaussian. We’ve



101

also assumed that the various gravitational-wave polarizations are mutually
uncorrelated, with 〈h̃a(f, n̂)h̃∗a′(f

′, n̂′)〉 vanishing unless a = a′, and that tensor
and vector sectors are each unpolarized, such that

H+(f) = H×(f) =
1

2
HT (f) (5.22)

and
Hx(f) = Hy(f) =

1

2
HV (f), (5.23)

where HT (f) and HV (f) are the total strain powers in tensor and vector
modes, respectively. This assumption follows from the same argument made
in Ch. 3.3 – if gravitational-wave sources are randomly distributed and ori-
ented with respect to the Earth, we have no reason to expect more x-polarized
signals than y-polarized ones. The same argument cannot be made for the
scalar polarizations. Because the scalar breathing and longitudinal polariza-
tions cannot be rotated into one another, source isotropy does not imply equal
power in each scalar polarization.

The above assumptions are not all equally justifiable, and may be broken by
various alternative theories of gravity. For instance, one should not expect
an unpolarized background in any parity-violating theory, like Chern-Simons
gravity [86–90], even in the absence of non-tensorial modes [220]. Further-
more, different polarizations may not be statistically independent, as is the
case for the breathing and longitudinal modes in linearized massive gravity
[175]. Finally, we should expect a departure from isotropy in any theory vio-
lating Lorentz invariance [205, 208, 209]. These exceptions notwithstanding,
for simplicity we’ll proceed under the assumptions listed above.

In terms of HT (f) and HV (f), Eq. (5.21) becomes

〈s̃1(f)s̃∗2(f ′)〉

=
1

8π
δ(f − f ′)×{

1

2
HT (f)

∫
dn̂
[
F+

1 (n̂)F+
2 (n̂) + F×1 (n̂)F×2 (n̂)

]
e−2πif∆x·n̂/c

+
1

2
HV (f)

∫
dn̂ [F x

1 (n̂)F x
2 (n̂) + F y

1 (n̂)F y
2 (n̂)] e−2πif∆x·n̂/c

+Hb(f)

∫
dn̂F b

1 (n̂)F b
2 (n̂)e−2πif∆x·n̂/c

+Hl(f)

∫
dn̂F l

1(n̂)F l
2(n̂)e−2πif∆x·n̂/c

}
.

(5.24)
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Remember, though, that for right-angle interferometric detectors like LIGO
and Virgo, the antenna response patterns to breathing and longitudinal polar-
izations are identical up to a sign: F b

i (n̂) = −F l
i (n̂). So the final two lines in

Eq. (5.24) can be written

Hb(f)

∫
dn̂F b

1 (n̂)F b
2 (n̂)e−2πif∆x·n̂/c +Hl(f)

∫
dn̂F l

1(n̂)F l
2(n̂)e−2πif∆x·n̂/c

=
[
Hb(f) +Hl(f)

] ∫
dn̂F b

1 (n̂)F b
2 (n̂)e−2πif∆x·n̂/c

=
[
Hb(f) +Hl(f)

] ∫
dn̂

F b
1 (n̂)F b

2 (n̂) + F l
1(n̂)F l

2(n̂)

2
e−2πif∆x·n̂/c

=
1

2
HS(f)

∫
dn̂
[
F b

1 (n̂)F b
2 (n̂) + F l

1(n̂)F l
2(n̂)

]
e−2πif∆x·n̂/c.

(5.25)
Specifically, in the second line we replaced F l

1(n̂)F l
2(n̂) = F b

1 (n̂)F b
2 (n̂) in order

to factor out Hl(f). Then, in the third line, we re-expanded F b
1 (n̂)F b

2 (n̂) =
1
2
[F b

1 (n̂)F b
2 (n̂) + F b

1 (n̂)F b
2 (n̂)] = 1

2
[F b

1 (n̂)F b
2 (n̂) + F l

1(n̂)F l
2(n̂)]. Since the re-

sponses of Advanced LIGO and Virgo to breathing and longitudinal modes
are completely degenerate, we are sensitive only to the total power HS(f) in
scalar modes, rather than the individual energies in the breathing and longi-
tudinal polarizations [212, 214].

All together, Eq. (5.24) can be rewritten as [214]

〈s̃1(f)s̃∗2(f ′)〉 =
1

10
δ(f − f ′)γA(f)HA(f), (5.26)

where the repeated capitalized index A indicates summation over tensor, vec-
tor, and scalar modes A ∈ {T, V, S}. We now have not one, but three overlap
reduction functions, γT (f), γV (f), and γS(f), which separately quantify the
response of the baseline to each class of polarization [186, 214]:

γT (f) =
5

8π

∑
A∈{+,×}

∫
dn̂FA

1 (n̂)FA
2 (n̂) e−2πif∆x·n̂/c, (5.27)

γV (f) =
5

8π

∑
A∈{x,y}

∫
dn̂FA

1 (n̂)FA
2 (n̂) e−2πif∆x·n̂/c, (5.28)

and
γS(f) =

5

8π

∑
A∈{b,l}

∫
dn̂FA

1 (n̂)FA
2 (n̂) e−2πif∆x·n̂/c. (5.29)
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Figure 5.6: Overlap reduction functions quantifying the sensitivity of the Hanford-Livingston
baseline to isotropic backgrounds of tensor, vector, and scalar-polarized gravitational waves.
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Figure 5.7: As in Fig. 5.6, but for the Hanford-Virgo baseline. Since the distance between
Hanford and Virgo is much larger than that between Hanford and Livingston; the Hanford-
Virgo overlap reduction functions are smaller in amplitude and more rapidly oscillatory.
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Figure 5.8: As in Fig. 5.6, but for the Livingston-Virgo baseline.

Equations (5.27)-(5.29) are normalized such that co-located and co-oriented
right-angle interferometric detectors have γT (f) = 1.

Figure 5.6 shows these three overlap reduction functions for the Hanford-
Livingston (H1-L1) Advanced LIGO network. Although the vector and scalar
overlap reduction functions are qualitatively similar to γT (f), there are im-
portant quantitative differences between the three curves. First, γV (f) and
γT (f) are of comparable magnitude at low frequencies, but γV (f) remains rel-
atively large at frequencies above 64Hz, where γT (f) is effectively zero. As
a result, we will see that Advanced LIGO is in many cases more sensitive to
vector-polarized backgrounds than to standard tensor backgrounds. Second,
the scalar overlap reduction function is smallest in magnitude, with |γS(0)|
roughly a factor of three smaller than |γT (0)| and |γV (0)|. Advanced LIGO is
therefore least sensitive to scalar-polarized backgrounds. This reflects a generic
feature of quadrupole gravitational-wave detectors, which geometrically have a
smaller response to scalar modes than to vector and tensor polarizations [218].
For an extreme example of the opposite case, see pulsar timing arrays, which
are orders of magnitude more sensitive to longitudinal polarizations than to
standard tensor-polarized signals [221–223].

For comparison, Figs. 5.7 and 5.8 show the overlap reduction functions for the
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Hanford-Virgo (H1-V1) and Livingston-Virgo (L1-V1) baselines. As the sep-
arations between Hanford/Livingston and Virgo are much greater than that
between Hanford and Livingston, the H1-V1 and L1-V1 overlap reduction
functions are generally much smaller in amplitude and more rapidly oscilla-
tory, translating into weaker sensitivity to the stochastic background. Note,
however, that the H1-V1 and L1-V1 tensor overlap reduction functions re-
main larger in amplitude than H1-L1’s at frequencies f & 200 Hz, implying
heightened relative sensitivity to tensor backgrounds at high frequencies [224].

The strain powers HA(f) appearing in Eq. (5.26) are theory-independent;
they are observable quantities that can be directly measured in the detector
frame. We conventionally describe gravitational-wave backgrounds not with
strain power, though, but by their gravitational-wave energy-density Ω(f) (see
Eq. (3.16)). Within general relativity, the background’s energy-density is re-
lated to HA(f) via [83]

ΩA(f) =
2π2

3H2
0

f 3HA(f). (5.30)

As shown in Ch. 3.3, Eq. (5.30) is a consequence of Isaacson’s formula for
the effective stress-energy of gravitational waves [83, 175, 225]. Alternate
theories of gravity, though, can predict different expressions for the stress-
energy of gravitational-waves and hence different relationships between strain
power H(f) and energy-density Ω(f) [175]. For ease of comparison to previous
studies, we will use Eq. (5.30) to define the canonical energy-density ΩA(f)

in polarization sector A. If we allow Isaacson’s formula to hold, then ΩA(f)

may be directly interpreted as a physical energy density. If not, though, then
ΩA(f) can instead be understood simply as a derived function of the observable
HA(f).

5.5 Advanced LIGO’s Sensitivity to Backgrounds of Alternative
Polarizations

When allowing for the existence of alternative gravitational-wave polariza-
tions, the cross-correlation statistic Ĉ(f) introduced in Ch. 3.6 now has the
expectation value [83, 214]

〈Ĉ(f)〉 = γA(f)ΩA(f), (5.31)
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with variance 〈C(f)C(f ′)〉 = δ(f − f ′)σ2(f), where

σ2(f) =
1

T

(
10π2

3H2
0

)2

f 6P1(f)P2(f). (5.32)

Here, T is the total coincident observation time between detectors and Pi(f)

is the noise power spectral density of detector i.

Remember also that a spectrum of cross-correlation measurements Ĉ(f) may
be combined to obtain a single broadband signal-to-noise ratio, given by

SNR2 =

(
Ĉ | γAΩA

M

)2(
γBΩB

M | γCΩC
M

) , (5.33)

defined in terms of the inner product

(A |B) =

(
3H2

0

10π2

)2

2T

∫ ∞
0

Ã∗(f)B̃(f)

f 6P1(f)P2(f)
df. (5.34)

In Eq. (5.33), ΩA
M(f) represents our adopted model for the energy-density

spectra of tensor, vector, and scalar modes within the stochastic background.
The optimal SNR is obtained when our model matches the background’s true
energy density, giving

SNR2
opt = (γAΩA | γBΩB). (5.35)

We will continue to model stochastic energy-density spectra as power laws,
such that

ΩA
M(f) = ΩA

0

(
f

f0

)αA
, (5.36)

where ΩA
0 is the amplitude of the gravitational-wave background at frequency

f0 and with polarization A and αA is the corresponding spectral index. We
demonstrated in Ch. 4.2 above that the ordinary (tensorial) stochastic back-
ground from compact binary coalescences, for instance, is well-modeled by a
power law of slope αT = 2/3 in the sensitivity band of Advanced LIGO [226].
Slopes of α = 0 and α = 3, meanwhile, correspond to scale-invariant energy
and strain spectra, respectively. While we will largely stick to power-law mod-
els in our analysis, in Ch. 5.8 we will also explore the potential consequences
if this assumption is in fact incorrect (as would be the case, for instance, for
a background of unexpectedly massive binary black holes [226]). Throughout
this chapter we will use the reference frequency f0 = 25 Hz.
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Figure 5.9: Power-law integrated (PI) curves showing the sensitivity of Advanced LIGO
to stochastic backgrounds of tensor, vector, and scalar polarizations (solid blue, red, and
green, respectively). Power-law energy-density spectra drawn tangent to the PI curves have
expected 〈SNRopt〉 = 3 after three years of observation at design sensitivity. Also shown
are “naive” PI curves for vector and scalar backgrounds (dashed red and green) illustrating
the sensitivity of existing search methods optimized only for tensor polarizations.

With this formalism in hand, we are now equipped to quantify Advanced
LIGO’s sensitivity to stochastic backgrounds of alternative polarizations. Plot-
ted in Fig. 5.9 are power-law integrated curves (PI) curves representing Ad-
vanced LIGO’s optimal sensitivity to power-law backgrounds of pure tensor
(solid blue), vector (solid red), and scalar (solid green) modes [184]. PI curves
are defined by the locus of power-spectra (with slopes ranging from −∞ to
+∞) that are individually detectable with 〈SNRopt〉 = 3 after three years of
observation with design-sensitivity Advanced LIGO. In quasi-closed form,

PI(f) = min
α

{
Ω0,α (f/f0)α

}
, (5.37)

where the amplitudes Ω0,α are chosen such that each power law Ω0,α (f/f0)α

has an optimal SNR of 3. Energy-density spectra lying above and below the PI
curves will generally have optimal SNRs greater and less than 3, respectively.
The solid curves in Figure 5.10, meanwhile, explicitly show the background
amplitudes required for a marginal detection (〈SNRopt〉 = 3 after three years
of observation) as a function of spectral index.

For spectral indices αA . 0, we see that Advanced LIGO is approximately
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Figure 5.10: Minimum detectable background amplitudes (〈SNRopt〉 = 3 after three years of
observation at design sensitivity) as a function of spectral index αA. For small and negative
values of αA, Advanced LIGO is approximately equally sensitive to backgrounds of all three
polarizations. For large αA, Advanced LIGO is instead most sensitive to vector and scalar-
polarized backgrounds. The dashed curves show amplitudes detectable with existing “naive”
methods. The sensitivity loss between optimal and naive cases is negligible for αA . 0, but
becomes significant at moderate positive slopes (e.g. αA ∼ 2). The kinks in the naive curves
are due to biases incurred when recovering vector and scalar backgrounds with purely-tensor
models; see the text for details.

equally sensitive to tensor and vector-polarized backgrounds, but has reduced
sensitivity to scalar signals. When αA = 0, for instance, the minimum optimally-
detectable tensor and vector amplitudes are ΩT

0 = 1.1× 10−9 and ΩV
0 =

1.5× 10−9, while the minimum detectable scalar amplitude is ΩS
0 = 4.4× 10−9,

a factor of several larger. These values reflect the fact that, as shown in
Fig. 5.6, the Hanford-Livingston tensor and vector overlap reduction functions
are comparable at low frequencies, while the scalar overlap reduction function
is reduced in magnitude.

In contrast, Advanced LIGO’s tensor overlap reduction function decays more
rapidly at high frequencies than the vector and scalar overlap reduction func-
tions. As a result, Advanced LIGO is more sensitive to vector and scalar
backgrounds of large, positive slope than to similarly-shaped tensorial back-
grounds. In Fig. 5.9, for instance, the vector and scalar PI curves lie an order
of magnitude below the tensor PI curve at frequencies above f ∼ 300 Hz.
The constraints that Advanced LIGO can place on positively-sloped vector
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and scalar backgrounds are therefore as much as an order of magnitude more
stringent than those that can be placed on tensor backgrounds of similar slope.

It should be emphasized again that the Hanford-Livingston network’s relative
sensitivities to tensor, vector, and scalar-polarized backgrounds are due purely
to its geometry, rather than properties of the gravitational-waves themselves.
If we were instead to consider the Hanford-Virgo baseline, for instance, the
right-hand side of Fig. 5.7 shows that at high frequencies the Hanford-Virgo
pair is least sensitive to scalar polarizations, whereas the Hanford-Livingston
baseline is least sensitive to tensor modes in this same band.

So far we have discussed only Advanced LIGO’s optimal sensitivity to stochas-
tic backgrounds of alternative polarizations. Existing stochastic searches,
though, are not optimal for such backgrounds, instead using models ΩA

M(f)

that allow only for tensor gravitational-wave polarizations.2 The dashed curves
in Figs. 5.9 and 5.10 illustrate Advanced LIGO’s “naive” sensitivity to back-
grounds of alternative polarizations if we were to incorrectly assume a purely-
tensor model. The failure to correctly model the polarization of the stochastic
background carries two consequences.

The first consequence is a simple reduction in SNR, translating into decreased
sensitivity to backgrounds of vector and scalar modes. Sensitivity loss is fairly
minimal for slopes αA . 0. When αS = 0, for example, the minimum de-
tectable scalar amplitude rises from ΩS

0 = 4.4 × 10−9 in the optimal case to
5.3×10−9 in the naive case, an increase of 20%. The SNR penalty grows more
severe, however, for stochastic backgrounds of moderate positive slope. For
αS = 2, Advanced LIGO can optimally detect a scalar background of ampli-
tude ΩS

0 = 1.3× 10−9, while “naive” methods would detect only a background
of amplitude ΩS

0 = 4.4× 10−9, a factor of 3.4 larger. Note that, since the SNR
of the stochastic search accumulates only as SNR ∝

√
T , even a small decrease

in sensitivity can result in a somewhat severe increase in the time required to
make a detection. To illustrate this, Fig. 5.11 shows the ratio TNaive/TOptimal

between the observing times required for Advanced LIGO to detect vector
(red) and scalar (green) backgrounds using existing “naive” methods and op-
timal methods. Even at αS = 0, where we saw minimal sensitivity loss in
Fig. 5.10, naive methods would require at least 50% more observing time to

2Since publication of this work, LIGO and Virgo now perform searches optimized for
stochastic backgrounds of alternative polarizations; see Ch. 6.
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Figure 5.11: The fractional increase in observing time required for Advanced LIGO to make
a detection of vector (red) and scalar (green) backgrounds when incorrectly assuming pure
tensor polarizations, as a function of the backgrounds’ spectral indices αA. The sharp kinks
in each curve are due to biases incurred when fitting vector and scalar backgrounds with a
purely-tensor model.

detect a scalar-polarized stochastic background. Since the stochastic back-
ground is expected to be optimally detected only after several years, even a
50% increase potentially translates into years of additional observation time,
a requirement which may well stress standard experimental lifetimes and op-
erational funding cycles.

The second (arguably more dangerous) consequence is bias. If we attempted to
fit a sufficiently loud vector or scalar-polarized background with a purely ten-
sorial model, we would invariably recover something, but there is no guarantee
that the best-fit spectral index αT under the tensorial model would match
the background’s true spectral index αV or αS. Hence we would suffer from
“stealth bias,” unknowingly recovering heavily-biased estimates of the ampli-
tude and spectral index of the stochastic background [227, 228]. In general,
when fitting a purely tensorial model to vector and scalar backgrounds with
slopes αV/S & 3, our best-fit slope is biased towards large values, such that
αT > αV/S. Meanwhile, vector and scalar backgrounds with αV/S . 1 yield
best-fit slopes that are biased in the opposite direction, towards smaller values.
The sharp kinks in Figs. 5.10 and 5.11 occur at the transitions between these
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two regimes. Such biases indicate another pitfall of search methods designed
only for tensor-polarizations. Even if a vector or scalar-polarized background
is recovered with minimal SNR loss, without some independent confirmation
we may remain entirely unaware that the detected background indeed violates
general relativity.

5.6 Identifying the polarization of the gravitational-wave background

We have seen in Ch. 5.5 that, even when using existing methods assuming
only standard tensor polarizations, Advanced LIGO may still be capable of
detecting a stochastic background of vector or scalar modes (albeit after po-
tentially much longer observation times). Detection is only the first of two
hurdles, though. Once the stochastic background has been detected, we will
still need to establish whether it is entirely tensor-polarized, or if it contains
vector or scalar-polarized gravitational waves.

Since tensor, vector, and scalar gravitational-wave polarizations each enter
into cross-correlation measurements [Eq. (5.31)] with unique overlap reduc-
tion functions, the polarization content of a detected stochastic background
is in principle discernible from the spectral shape of Ĉ(f). As an example,
Fig. 5.12 shows simulated cross-correlation measurements Ĉ(f) for both purely
tensor (blue) and purely scalar-polarized (green) backgrounds after three years
of observation with design-sensitivity Advanced LIGO. Note that these are
extremely strong backgrounds, with spectra ΩT (f) = 5× 10−8(f/f0)2/3 and
ΩS(f) = 1.8× 10−7(f/f0)2/3; each would be detectable with 〈SNRopt〉 = 150

after three years. The dashed curves trace the expectation values 〈Ĉ(f)〉 of the
cross-correlation spectra for each case, while the solid curves show a particular
instantiation of measured values. The alternating signs (positive or negative)
of each spectrum are determined by the tensor and scalar overlap reduction
functions, which have zero-crossings at different characteristic frequencies (see
Fig. 5.6). As a result, the tensor and scalar-polarized gravitational waves each
impart a unique shape to the cross-correlation spectra, offering a means of
visually discriminating between the two cases.

As mentioned above, though, the backgrounds shown in Fig 5.12 are unphysi-
cally loud, with SNRopt = 150. A tensor background of this amplitude would
already have been detected with the standard isotropic search over Advanced
LIGO’s O1 observing run [176]. Since stochastic searches accumulate SNR
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Figure 5.12: Simulated cross-correlation measurements Ĉ(f) for purely tensor (blue) and
purely scalar (green) stochastic backgrounds, recovered after three years of observation with
design-sensitivity Advanced LIGO. The backgrounds shown have αT = αS = 2/3, and have
amplitudes chosen such that each is detectable with 〈SNRopt〉 = 150. The measured spectra
each show distinct modulations characteristic of the tensor and scalar overlap reduction
functions, allowing a clear identification of the polarization in each case.
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Figure 5.13: As in Fig. 5.12, but now with weaker tensor and scalar backgrounds, detectable
with 〈SNRopt〉 = 5 after three years of observation at design sensitivity. While each back-
ground is still sufficiently loud to be confidently detected by existing search techniques, the
characteristic amplitude modulations and hence the polarization content of each simulated
background are no longer evident.
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slowly with time, the first detection of the stochastic background will neces-
sarily be marginal; in this case the presence of alternative gravitational-wave
polarizations will not be evident. To demonstrate this, Fig. 5.13 shows the sim-
ulated recovery of relatively weaker tensor and scalar backgrounds of spectral
shape ΩT (f) = 1.7× 10−9(f/f0)2/3 and ΩS(f) = 6.1× 10−9(f/f0)2/3, again
after three years of observation with Advanced LIGO. Note that these are
still considered “loud” signals – both backgrounds would be confidently de-
tected with 〈SNRopt〉 > 5 after three years. Despite this, the backgrounds’
polarization content is no longer obvious.

Interestingly, even when naively searching for purely-tensor polarized back-
grounds, design-sensitivity Advanced LIGO would still detect the quieter scalar
background in Fig. 5.13 with SNR = 5.0. This again serves to demonstrate
that, when assuming a priori that the stochastic background is purely tensor-
polarized, any vector or scalar contributions detected with standard search
methods may simply be mistaken for ordinary tensor modes. Not only would
vector or scalar components fail to be identified, but, as discussed in Ch. 5.5,
they would heavily bias parameter estimation of the tensor energy-density
spectrum. If we wish to test general relativity with the stochastic background,
we will therefore need to develop new tools in order to formally quantify the
presence (or absence) of vector or scalar polarizations. Additionally, while
we have so far investigated only backgrounds of pure tensor, vector, or scalar
polarization, most plausible alternative theories of gravity will predict back-
grounds of mixed polarization, with vector or scalar components in addition to
a tensor component. Any realistic approach must therefore be able to handle
a stochastic background of completely generic polarization content.

Our approach will be to detect and classify the stochastic background using
Bayesian model selection, adapting the method used in Ref. [218] to study
the polarization content of continuous gravitational-wave sources. Specifically,
given cross-correlation measurements of the gravitational-wave background,
we will calculate odds ratios quantifying (i) whether a stochastic signal has
been detected and (ii) whether that stochastic signal contains evidence for
alternative gravitational-wave polarizations.
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5.6.1 Bayesian Statistics and Odds Ratios

Before proceeding with these calculations, we will first take a brief detour and
introduce the fundamentals of Bayesian inference.

Consider two experimental outcomes, denoted A and B, and the joint proba-
bility P (A∩B) (“the probability ofA andB”) that both outcomes are observed.
This joint probability can be rewritten

P (A ∩B) = P (A|B)P (B), (5.38)

where P (B) is the probability of outcome B (irrespective of A), and P (A|B)

(“the probability of A given B”) is the conditional probability of A if we a
priori assume B is true. Certainly, though, P (A ∩ B) is symmetric in A and
B. So we could alternatively have written

P (A ∩B) = P (B ∩ A)

= P (B|A)P (A).
(5.39)

Combing Eqs. (5.38) and (5.39) and solving for P (A|B) gives

P (A|B) =
P (B|A)P (A)

P (B)
. (5.40)

Known as Bayes’ theorem, this simple expression serves as the foundation
for most statistical inference across the gravitational-wave community. In
essence, Bayes’ theorem tells us how to “invert” conditional probabilities –
given P (B|A), we can use Eq. (5.40) to compute P (A|B).

The most common application of Bayes’ theorem is parameter estimation.
Consider an Advanced LIGO/Virgo observation of a compact binary merger.
Let the variable d symbolically represent the measured strain data, while ~θ
represents the set of (unknown) source parameters – the masses, spins, dis-
tance, etc. of the compact binary. Our goal, of course, is to leverage the data
d to tell us about the binary’s source parameters ~θ. In other words, our aim is
to calculate the conditional probability p(~θ|d,S) that the source is described
by parameters ~θ, given our measurements d and the assumption that a true
signal is indeed present (hypothesis S).

Problematically, though, we do not know p(~θ|d,S). Instead, what we do know
(provided that the statistics of instrumental noise are properly understood)
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is the probability p(d|~θ,S) with which we expect to obtain our particular
realization of data d, given a source with fixed parameters ~θ. Bayes’ theorem
provides a prescription for converting between what we know, p(d|~θ,S), and
what we want:

p(~θ|d,S) =
p(d|~θ,S)p(~θ,S)

p(d,S)
. (5.41)

In practice, the explicit dependence of Eq. (5.41) on hypothesis S is often
suppressed, giving

p(~θ|d) =
p(d|~θ)p(~θ)
p(d)

, (5.42)

where the presence of S within each term is implied. Different names are
conventionally reserved for the different factors in Eq. (5.41). The quantity
p(~θ|d) is called the posterior probability of ~θ, while p(d|~θ) is the likeli-
hood. Meanwhile, p(~θ) is the prior on parameters ~θ and p(d) is known as the
evidence.

The prior p(~θ) is sometimes the source of contention. Unlike the likelihood,
which has a single objective definition, there is no single correct choice for
p(~θ). Instead, the prior should be chosen to represent one’s state of knowl-
edge of ~θ, before the observation in question is carried out. For example,
lacking any special prognoses about where in the Universe the next compact
binary will occur, we might assume that binary mergers are equally likely to
occur anywhere on the sky and hence choose a uniform prior p(n̂) on the sky
direction n̂ of a source. Alternatively, when searching for continuous gravita-
tional waves from rotating neutron stars we might choose a prior p(n̂) that is
strongly concentrated in the plane of the Milky Way, since we expect to de-
tect isolated neutron stars only within our own galaxy. Crucially, the prior is
intrinsically subjective. Two different experimenters may well know different
pieces of information, and so will naturally adopt two different priors. While
this subjectivity is sometimes viewed as a weakness of Bayesian statistics, I
believe it should instead be viewed as a strength – the direct appearance of the
prior in Eq. (5.41) forces us to be transparent, making explicit the assumptions
that, stated or unstated, invariably underlie all statistical analyses.

The evidence p(d), in contrast, is much less important for parameter estima-
tion. In Eq. (5.41), the evidence is simply a constant normalization factor,



116

obtained by integrating the numerator over all possible source parameters:

p(d) =

∫
d~θ p(d|~θ)p(~θ). (5.43)

The evidence is sometimes called the fully-marginalized likelihood, as we
have integrated out the dependence on all parameters ~θ.

The evidence plays a much more central role in the second-most common appli-
cation of Bayes’ theorem: hypothesis testing (also called model selection).
Given data d, say we now wish to determine which of two hypotheses is bet-
ter supported by this data? For instance, an extremely common question is
whether data better supports the presence of a true gravitational-wave signal
(hypothesis S) or whether it shows only evidence for noise (hypothesis N ). In
general, we can compute the probability P (A|d) that any one hypothesis A is
correct using Bayes’ theorem:

p(A|d) =
p(d|A)p(A)

p(d)
. (5.44)

Note that, in Eq. (5.44), it is the evidence p(d|A) (abbreviated just as p(d)

in Eqs. (5.41)-(5.43) above) that appears in place of the likelihood. There
also appears a (necessarily subjective) prior probability p(A) for hypothesis
A. The meaning of the factor p(d) in the denominator of Eq. (5.44), however,
is somewhat less clear. Recall that, when performing parameter estimation,
the denominator p(d|S) of Eq. (5.41) represented a normalizing integral taken
over all possible source parameters ~θ. Analogously, the denominator p(d) of
Eq. (5.44) can only be given by a sum over all possible hypotheses :

p(d) =
∑
A
p(d|A)p(A). (5.45)

Obviously, short of omniscient knowledge of all the infinite possible hypotheses,
this sum is impossible to compute.3

Fortunately, we don’t actually need to compute p(d). In any real-world sce-
nario, we are concerned not with p(A|d) alone but with the relative probabil-
ities between two competing hypotheses A and B. This relative probability is

3I sometimes hear p(d) referred to as “God’s evidence.”
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expressed via an odds ratio:

OAB =
p(A|d)

p(B|d)

=
p(d|A)

p(d|B)

p(A)

p(B)
.

(5.46)

By virtue of taking a ratio, all incalculable factors of p(d) have vanished! The
odds ratio quantifies our relative belief in hypotheses A and B, following the
measurement of our new data d. In fact, OAB can be interpreted as literal
betting odds between each hypothesis. Odds ratios OAB � 1 (or lnOAB � 0)
indicate strong belief in A over B, whereas odds OAB � 1 (lnOAB � 0) imply
the opposite. Within Eq. (5.46), the factor p(A)/p(B) is called the prior
odds between hypotheses. As with all priors, this factor is again subjective,
quantifying how much evidence we require to tip our beliefs in favor of one
hypothesis or the other. The ratio p(d|A)/p(d|B), meanwhile, is known as the
Bayes factor. Many studies work purely in terms of Bayes factors, rather
than odds ratios.4

In Ch. 4 above, we used maximum likelihood ratios to determine which of
two model energy-density spectra (e.g. power-law vs. astrophysical) better
described the gravitational-wave background visible to Advanced LIGO. There
exists a conceptually simple relationship between maximum likelihood ratios
and the admittedly more involved odds ratios described in this chapter.

Consider the one-dimensional likelihood sketched in Fig. 5.14 (our argument
will generalize straightforwardly to multi-dimensional likelihoods). Assume
that we’re adopting a flat prior over a parameter range ∆θ, and that the
likelihood is reasonably well-peaked about an interval of width δθ � ∆θ, with
maximum-likelihood value Lml. Under these assumptions, we can approximate
the evidence p(d|A) as

p(d|A) =

∫
dθ p(d|θ,A)p(θ,A)

≈
∫
dθ p(d|θ,A)

1

∆θ

≈ LmlA
δθ

∆θ
,

(5.47)

4I find this practice misleading. The use of Bayes factors alone, rather than odds ratios,
purports to sidestep the subjective choice of prior odds. But whenever Bayes factors are
used as measures of statistical significance, there exists an implicit choice of equal prior
odds p(A)/p(B) = 1 between the relevant hypotheses.
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ℒML

Figure 5.14: Sketch of a toy likelihood distribution, used in Eq. (5.47) to illustrate the
relationship between a Bayesian odds ratio and a maximum likelihood ratio. In this toy
example, we assume that the likelihood is strongly peaked about a range δθ and that our
prior is flat across a range ∆θ.

where in the second line we used p(θ,A) ≈ 1/∆θ and in the third line we
assumed that the integral over the likelihood can be approximated by the
likelihood’s height times its width.

Now consider a second hypothesis B with model parameters φ. Again using
Eq. (5.47) to approximate the corresponding evidence p(d|B), the odds ratio
between A and B is approximated by

OAB =
p(d|A)

p(d|B)

p(A)

p(B)

≈ LmlA
LmlB

δθ/∆θ

δφ/∆φ

p(A)

p(B)
.

(5.48)

Thus the odds ratio is approximated as a standard likelihood ratio, multiplied
by an extra term δθ/∆θ

δφ/∆φ
(as well as our prior odds). The factor δθ/∆θ

δφ/∆φ
is known

as the Occam’s factor. The fractions δθ/∆θ and δφ/∆φ can be thought
of as the fraction of available parameter space supported by the data under
each model. A simple hypothesis with few free variables, for example, has a
relatively small parameter space ∆θ, and thus the fraction δθ/∆θ is likely to
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be large. In contrast, an extremely complex model with many free parameters
may fit the data quite well, but is likely to do so only in a very small corner
δθ/∆θ of the overall available parameter space. The Occam’s factor is therefore
a formal realization of Occam’s razor, imposing an extra penalty on the more
complex of the two hypotheses and safe-guarding against the overfitting of
data.

5.6.2 Application to Polarization Measurements

With this Bayesian formalism in hand, we can now define two odds ratios to
characterize a generically-polarized gravitational-wave background. First, we
will define an odds ratio Osig

n between signal (SIG) and noise (N) hypotheses to
determine if a stochastic background (of any polarization) has been observed in
our data. Once a background is detected, we can then construct a second odds
ratio Ongr

gr to determine if the background contains only tensor polarization
(GR hypothesis) or if there is evidence of alternative polarizations (the NGR
hypothesis). Unlike previously existing detection methods that assume a pure
tensor background, this scheme will allow for the detection of generically-
polarized stochastic backgrounds. It encapsulates the optimal detection of
tensor, vector, and scalar polarizations as described in Ch. 5.5, and moreover
enables the detection of more complex backgrounds of mixed polarization.

To construct odds ratios we need three ingredients: a likelihood, priors on the
parameters of each hypothesis considered, and prior odds between hypotheses.
As in Ch. 4, we will adopt a Gaussian likelihood for measuring cross-correlation
Ĉ(f) within a single frequency bin of width df [83, 185, 226]:

L
(
Ĉ(f)|θ,A

)
∝ exp

−
[
Ĉ(f)− γA(f)ΩA

A(θ; f)
]2

2σ2(f)
df

 . (5.49)

Here, γA(f)ΩA
A(θ; f) is our model energy-density spectrum under hypothesis

A with parameters θ (recall the implicit summation over polarizations A) and
the variance σ2(f) is given by Eq. (5.32). The full likelihood L({Ĉ}|θ,A) for
a spectrum of cross-correlation measurements is the product of the individual
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likelihoods in each frequency bin:

L({Ĉ}|θ,A) ∝
∏
f

L(Ĉ(f)|θ,A)

=
1√
2π

exp

[
−1

2

(
Ĉ − γAΩA

A | Ĉ − γBΩB
A

)]
,

(5.50)

using the inner product defined in Eq. (5.34).

Under the noise hypothesis (N), we assume that no signal is present at all,
such that ΩA

n (f) = 0. Then the corresponding likelihood is simply

L({Ĉ}|N) =
1√
2π

exp

[
−1

2

(
Ĉ | Ĉ

)]
. (5.51)

The signal hypothesis (SIG) is somewhat more complex. First, explicitly define
a “TVS” hypothesis that allows for the simultaneous presence of tensor, vector,
and scalar gravitational-wave polarizations. In this case, we would model the
stochastic energy-density spectrum as the sum of three power laws,

Ωtvs(f) = ΩT
0

(
f

f0

)αT
+ ΩV

0

(
f

f0

)αV
+ ΩS

0

(
f

f0

)αS
, (5.52)

with free parameters ΩA
0 and αA setting the amplitude and spectral index of

each polarization sector. In defining the TVS hypothesis, though, we have ex-
plicitly assumed that tensor, vector, and scalar radiation are all indeed present.
This is not the only possibility, of course. A second distinct possibility, for in-
stance, is that only tensor and vector polarizations exist; call this our “TV”
hypothesis with the corresponding energy-density spectrum

Ωtv(f) = ΩT
0

(
f

f0

)αT
+ ΩV

0

(
f

f0

)αV
. (5.53)

In a similar fashion, we must ultimately define seven such hypotheses, denoted
TVS, TV, TS, VS, T, V, and S, to encompass all combinations of tensor, vector,
and scalar gravitational-wave backgrounds. Our complete signal hypothesis
is given by the union of these seven sub-hypotheses [190, 218]. Each of the
signal sub-hypotheses are logically independent, and so the net odds ratio Osig

n

between signal and noise hypotheses is given by the sum of odds ratios between
the noise hypothesis and each of the seven signal sub-hypotheses [190, 218]:

Osig
n =

∑
A∈{t,v,s,tv,...}

OAn . (5.54)
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Figure 5.15: Illustration of the prior odds assigned to models and sub-hypotheses when
searching for a stochastic background of alternative gravitational-wave polarizations. When
constructing Osig

n , we assign equal prior probability to the noise and signal hypotheses;
within the signal hypothesis, equal probability is given to the seven signal sub-hypotheses
{T, ... ,TVS}. Similarly, when constructing Ongr

gr , we give equal probability to the NGR and
GR hypotheses and identically weight the six non-GR sub-hypotheses {V, ... ,TVS}.

As illustrated in Fig. 5.15, we assign equal prior probability to the signal and
noise hypotheses. Within the signal hypothesis, we weight each of the signal
sub-hypotheses equally, such that the prior odds between e.g. the T and N
hypotheses is p(T)/p(N) = 1/7. This choice of prior probabilities is not unique;
other choices may be equally defensible.

The odds ratio Ongr
gr is constructed similarly. In this case, we are selecting be-

tween the hypothesis that the stochastic background is purely tensor-polarized
(GR), or the hypothesis that additional polarization modes are present (NGR).
The GR hypothesis is identical to our tensor-only hypothesis T from above,
with energy-density

Ωgr(f) = ΩT
0

(
f

f0

)αT
. (5.55)

The NGR hypothesis, on the other hand, will be the union of the six signal
sub-hypotheses that are inconsistent with general relativity: V, S, TV, TS,
VS, and TVS. The complete odds ratio between NGR and GR hypothesis is
then

Ongr
gr =

∑
A∈{v,s,tv,...}

OAT . (5.56)

As shown in Fig. 5.15, we have assigned equal priors to the GR and NGR
hypotheses as well as identical priors to the six NGR sub-hypotheses.

We still need priors for the various parameters governing each model for the
stochastic background. There are two classes of parameters in the various
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energy-density models presented above: amplitudes ΩA
0 and spectral indices

αA of the background’s different polarization components. For each amplitude
parameter, we will use the prior

p(Ω0) ∝

1/Ω0 (ΩMin ≤ Ω0 ≤ ΩMax)

0 (Otherwise)
. (5.57)

This corresponds to a uniform prior in the log-amplitudes between log ΩMin and
log ΩMax. In order for this prior to be normalizable, we cannot let it extend
all the way to ΩMin = 0. Instead, we must choose a finite lower bound. While
this lower bound is somewhat arbitrary, our results depend only weakly on
the specific choice of bound [218]. Here, we take ΩMin = 10−13, an amplitude
that is indistinguishable from noise with Advanced LIGO. Our upper bound,
meanwhile, is ΩMax = 10−6, consistent with upper limits placed by Initial
LIGO and Virgo [229].

We adopt a triangular prior on α, centered at zero:

p(α) =


1

αMax

(
1− |α|

αMax

)
(|α| ≤ αMax)

0 (Otherwise)
. (5.58)

This prior has several desirable properties. First, it captures a natural ten-
dency for spectral index posteriors to peak symmetrically about α = 0 given
uninformative data. As a result, our α posteriors reliably recover this prior
in the absence of a stochastic detection (see Fig. 5.26, for example). Second,
this prior preferentially weights shallower energy-density spectra. This quan-
tifies our expectation that the stochastic background’s energy density is likely
to be distributed somewhat uniformly across logarithmic frequency intervals
(at least in the LIGO band), rather than entirely at very high or very low
frequencies.

Alternatively, Eq. (5.58) can be viewed as corresponding to identical log-
uniform priors on the background strength at two different frequencies. A
spectral index α may be written as a function of background amplitudes Ω0

and Ω1 at two frequencies f0 and f1 (see Fig. 5.16):

α(Ω0,Ω1) =
log (Ω1/Ω0)

log (f1/f0)
. (5.59)

The prior probability of a particular slope α is equal to the probability of
drawing any two amplitudes Ω0 and Ω1, both with random log-amplitudes be-
tween log ΩMin and log ΩMax, that together satisfy log(Ω0/Ω1) = α log(f0/f1):
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Figure 5.16: Spectral indices allowed by identical log-uniform priors on the gravitational-
wave background’s amplitude at frequencies f0 and f1.

p(α) =

∫
p(Ω1)p(Ω0) δ [log(Ω1/Ω0)− α log(f1/f0)] dΩ1. (5.60)

For simplicity, we will choose f1 = 10f0, so that log(f1/f0) = 1. Then
Eq. (5.60) reduces to Eq. (5.58).

Although so far we’ve focused only on the Advanced LIGO Hanford-Livingston
baseline, below we will additionally explore how prospects are improved by
the three-detector Advanced LIGO-Virgo network. The Bayesian framework
discussed here is easily extended to accommodate multiple detector pairs. To-
gether, the three LIGO and Virgo detectors measure three cross-correlation
spectra: Ĉhl(f), Ĉhv(f), and Ĉlv(f). In the small signal limit (ΩA(f) � 1),
the covariances between these measurements vanish at leading order and so
the three baselines can be treated as statistically independent [83]. We can
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therefore factorize the joint likelihood for the three baselines:

L({Ĉhl,Ĉhv, Ĉlv}|θ,A)

= L({Ĉhl}|θ,A)L({Ĉhv}|θ,A)L({Ĉlv}|θ,A)

=
1

(2π)3/2
exp

{
−1

2

[ (
Ĉhl − γhlA ΩA

A | Ĉhl − γhlB ΩB
A

)
+
(
Ĉhv − γhvA ΩA

A | Ĉhv − γhvB ΩB
A

)
+
(
Ĉlv − γlvA ΩA

A | Ĉlv − γlvB ΩB
A

)]}
,

(5.61)

substituting likelihoods of the form (5.50) for each pair of detectors. Note that
we have explicitly distinguished between the overlap reduction functions for
each baseline. Other than the above change to the likelihood, all other details
of the odds ratio construction are unchanged when including three detectors.

Our Bayesian approach differs in important ways from previous proposed
methods with which to search for gravitational-wave backgrounds of alter-
native polarizations [214–216]. These previous methods endeavor to separate
and measure the background’s tensor, vector, and scalar content within each
frequency bin. To solve for these three unknowns, three pairs of gravitational-
wave detectors are required to break the degeneracy between polarizations. A
nice feature of these methods is that they allow for the separation of polar-
ization modes without the need for a parametrized model of the background’s
energy-density spectrum. However, they have several drawbacks. First, as
already stated, such component separation schemes require at least three de-
tectors. Although we now in fact have three detectors, with the addition of
Advanced Virgo, component separation remains not very sensitive; large co-
variances between polarization modes mean that only very loud backgrounds
can be separated and independently detected with reasonable confidence. Fi-
nally, component separation methods are largely concerned with the detection
of a background, not the characterization of its spectral shape. Ref. [216] does
discuss parameter estimation on the stochastic background using a Fisher ma-
trix formalism, but Fisher matrices suffer from well-known problems [230].

Instead of attempting to resolve the relative polarization content separately
within each frequency bin, we assume a broadband model for the energy-
density spectrum in each polarization mode. While our approach is potentially
susceptible to bias if our model poorly fits the true background, it is a reason-
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able model for astrophysically plausible scenarios. Even if the true background
differs significantly from this model, we will see in Ch. 5.8 below that poten-
tial bias is negligible. Another advantage of our method is that it can be used
with only two detectors and hence can be applied today, rather than wait-
ing for the construction of future gravitational-wave detectors. Additionally,
in Ch. 5.7 we will be able to perform full Bayesian parameter estimation on
the stochastic background, properly taking into account the full degeneracies
between background parameters (something a Fisher matrix analysis cannot
do).

To compute odds ratios Osig
n and Ongr

gr , we use the PyMultiNest package
[231], which implements a Python wrapper for the nested sampling software
MultiNest [232–234]. MultiNest, an implementation of the nested sam-
pling algorithm [235, 236], is designed to efficiently evaluate Bayesian evi-
dences in high-dimensional parameter spaces, even in the case of large and
possibly-curving parameter degeneracies. At little additional computational
cost, MultiNest also returns posterior probabilities for each model parame-
ter, allowing for parameter estimation in addition to model selection. Details
associated with running MultiNest are given in Ch. 5.B.

5.6.3 Backgrounds of Single Polarizations

As a first demonstration of our Bayesian machinery, we explore the simple cases
of purely tensor, vector, or scalar-polarized stochastic backgrounds. Shown in
Fig. 5.17 are the distributions of odds ratios Osig

n obtained for simulated ob-
servations of pure tensor and scalar backgrounds, each of slope α = 2/3 (the
characteristic slope of a tensor binary black hole background). For each polar-
ization, we consider two choices of amplitude, corresponding to 〈SNRopt〉 = 5

and 10 after three years of observation with design-sensitivity Advanced LIGO.
For comparison, the hatched grey distribution show odds ratios obtained in
the presence of pure Gaussian noise. Gaussian noise yields a narrow odds
ratio distribution centered at lnOsig

n ≈ −1.0 . In contrast, the simulated ob-
servations of tensor and scalar backgrounds yield large, positive odds ratios,
well-separated from Gaussian noise. Note that the tensor and scalar distri-
butions lie nearly on top of one another, as Osig

n depends primarily on the
optimal SNR of a background and not its polarization content.

Figure 5.18, in turn, shows the odds ratios Ongr
gr quantifying the evidence
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Figure 5.17: Distributions of odd ratios Osig
n between signal and noise hypotheses for sim-

ulated observations of tensor (blue) and scalar (green) stochastic backgrounds of slope
α = 2/3, assuming three years of observation with design-sensitivity Advanced LIGO. We
consider two different strengths for each polarization, corresponding to 〈SNRopt〉 = 5 and
10. For each background strength, the tensor and scalar odds ratios lie nearly on top of
one another. Also shown is the background distribution of odds ratios obtained when ob-
serving pure Gaussian noise (hatched grey). In the presence of a stochastic background, the
recovered odds ratios quadratically grow as lnOsig

n ∝ SNR2
opt, showing increasingly large

preference for the signal hypothesis.

for alternative polarization modes. In the case of pure Gaussian noise, we
again see a narrow distribution of odds ratios, centered at lnOngr

gr ≈ −0.4.
In the absence of informative data, our analysis thus slightly favors the GR
hypothesis. This can be understood as a consequence of the implicit Bayesian
“Occam’s factor,” which penalizes the more complex NGR hypothesis over the
simpler GR hypothesis. Simulated observations of scalar backgrounds, in turn,
yield large positive values for lnOngr

gr , correctly preferring the NGR hypothesis.
In contrast, pure tensor backgrounds yield negative lnOngr

gr . Interestingly, the
recovered odds ratios do not grow increasingly negative with larger tensor
amplitudes, but instead saturate at lnOngr

gr ≈ −1.4. This reflects the fact
that a non-detection of vector or scalar polarizations can never strictly rule
out their presence, but only place an upper limit on their amplitudes. In
other words, a strong detection of a pure tensor stochastic background cannot
provide evidence for the GR hypothesis, but at best only offers no evidence
against it. This behavior is in part due to our choice of amplitude priors, which
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Figure 5.18: Odds ratios Ongr
gr between NGR and GR hypotheses obtained for the same

simulated Advanced LIGO observations considered in Fig. 5.17. In the presence of a tensor-
polarized background, we recover narrow distributions of odds ratios centered at lnOngr

gr ≈
−1.4, reflecting consistency with the GR hypothesis. A scalar background, on the other
hand, yields large positive odds ratios, correctly showing a strong preference for our NGR
hypothesis.

allow for finite but immeasurably small vector and scalar energy densities.

Figures 5.19-5.21 illustrate more generally how Osig
n and Ongr

gr scale with
the amplitudes of purely tensor, vector, and scalar-polarized stochastic back-
grounds. Black points mark odds ratios computed from individual realiza-
tions of simulated data, while the solid curves and shaded regions trace their
smoothed mean and standard deviation. We again see lnOsig

n increasing mono-
tonically with injected amplitude for all three polarizations. Specifically, Osig

n

depends inversely on the noise-hypothesis likelihood [defined by Eq. (5.51)]
and therefore scales as

lnOsig
n ∝ SNR2

opt. (5.62)

As we saw earlier in Fig. 5.18, lnOngr
gr saturates at −1.4 for loud tensor back-

grounds. In the case of vector and scalar backgrounds, on the other hand,
lnOngr

gr grows quadratically with increasing amplitude. In particular, lnOngr
gr

is proportional to the squared SNR of the residuals between the observed Ĉ(f)

and the best-fit tensor model. We begin to see a strong preference for the NGR
hypothesis when these residuals become statistically significant.
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Figure 5.19: Odds ratios Osig
n (top) and Ongr

gr (bottom) for simulated Advanced LIGO ob-
servations of purely tensor-polarized stochastic backgrounds. Within each plot, we show
750 simulated observations, with random log-amplitudes chosen uniformly over the range
−10 < log ΩT0 < −7. Black points mark the results from individual realizations, while the
solid curves and shaded regions show the moving mean and standard deviations (smoothed
with a Gaussian kernel) of these realizations. For each polarization, lnOsig

n scales quadrat-
ically with the amplitude of the stochastic background. The values of lnOngr

gr , meanwhile,
saturate at approximately −1.4.
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Figure 5.20: As in Fig. 5.19, but for simulated Advanced LIGO observations of purely
vector-polarized stochastic backgrounds. In contrast to Fig. 5.19, both lnOsig

n and lnOngr
gr

increase quadratically with the strength of our injected signals.
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Figure 5.21: As in Fig. 5.19, but for simulated Advanced LIGO observations of purely
scalar-polarized stochastic backgrounds.
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Figure 5.22: Odds ratios Osig
n for simulated Advanced LIGO measurements of stochastic

backgrounds containing both tensor and scalar polarizations, assuming three years of ob-
servation at design sensitivity. The tensor and scalar components have slopes αT = 2/3
and αS = 0, respectively. The observed values of Osig

n effectively trace contours in total
background energy. Thus the detectability of a background depends largely on its total
power, not its polarization content.

5.6.4 Backgrounds of Mixed Polarization

So far we have considered only cases of pure tensor, vector, or scalar polariza-
tion. Plausible alternative theories of gravity, however, would typically predict
a mixed background of multiple polarization modes. How does our Bayesian
machinery handle a background of mixed polarization? To answer this ques-
tion, we will investigate backgrounds of mixed tensor and scalar polarization.
Figures 5.22 and 5.23 illustrate values of Osig

n and Ongr
gr , respectively, as a joint

function of the amplitude of each polarization. While we vary the amplitudes
of our injected signals, we fix the tensor and scalar slopes to αT = 2/3 (as
predicted for binary black hole backgrounds) and αS = 0.

Within Fig. 5.22, the recovered values of lnOsig
n simply trace contours of total

energy. Thus the detectability of a mixed background depends only on its total
measured energy, rather than its polarization content. Meanwhile, Fig. 5.23
exhibits three distinct regions. First, for small tensor and small scalar ampli-
tudes (log ΩT

0 . −9.0 and log ΩS
0 . −8.5), we obtain lnOngr

gr ≈ −0.4. In this
region, the mixed background cannot be detected and so simply we recover



132

−10.5 −10.0 −9.5 −9.0 −8.5 −8.0

Tensor log ΩT0

−10.5

−10.0

−9.5

−9.0

−8.5

−8.0

−7.5

S
ca

la
r

lo
g

Ω
S 0

−3

0

3

10

30

50

70
90

ln
O

n
g

r
g

r

Figure 5.23: As in Fig. 5.22, but now showing odds Ongr
gr between NGR and GR hypotheses.

Advanced LIGO would confidently identify the presence of the scalar background component
when log ΩS0 & −7.9. LIGO’s sensitivity to the scalar component is nearly independent of
the strength of the tensor component; the minimum identifiable scalar amplitude ΩS0 rises
only slightly with increasing ΩT0 .

the slight Occam’s bias towards the GR hypothesis as noted above. Second,
for small scalar amplitudes but large tensor amplitudes (log ΩT

0 & −9.0), the
recovered odds ratios decrease to lnOngr

gr ≈ −1.4. This corresponds to the de-
tection of the tensor component alone; the decrease in odds ratios is the same
behavior previously seen in Figs. 5.18 and 5.19. Finally, when ΩS

0 is large,
the scalar component is detectable and so lnOngr

gr increases rapidly to large,
positive values. The threshold value of ΩS

0 at which lnOngr
gr becomes positive

shows only little dependence on the amplitude of any tensor background which
might also be present. When ΩT

0 is small, for instance, scalar amplitudes of
size log ΩS

0 & −7.9 are required to preference the NGR model. When ΩT
0 is

large, this requirement increases only slightly to log ΩS
0 & −7.8. Thus, we

should expect Advanced LIGO to be able to both detect and identify as non-
tensorial a flat scalar background of amplitude log ΩS

0 & −8, regardless of the
presence of an additional tensor component.

It should be pointed out that positive values of lnOngr
gr indicates only that

there exists evidence for alternative polarizations. From this odds ratio alone
we cannot infer which specific polarizations – vector and/or scalar – are present
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in the background. Although Advanced LIGO might succeed in identifying
mixed tensor-scalar backgrounds as non-tensorial when log ΩS

0 & −8, this does
not necessarily imply that we can successfully identify the scalar component as
such, only that our measurements are not consistent with tensor polarization
alone; this qualification will be discussed more in Ch. 5.7 below.

The future addition of new gravitational wave detectors will extend the reach
of stochastic searches and help to break degeneracies between backgrounds
of different polarizations. This expansion has begun with the completion of
Advanced Virgo, which joined Advanced LIGO during its O2 observing run
in August 2017 [34, 44]. It is therefore interesting to investigate how the
introduction of Advanced Virgo improves the above results. Given detectors
indexed by i ∈ {1, 2, ...}, the total SNR of a stochastic background is the
quadrature sum of SNRs from each detector pair [83]:

SNR2 =
∑
i

∑
j>i

SNR2
ij, (5.63)

where each SNRij is computed according to Eq. (5.33). Naively, the SNR
with which a background is observed is expected to increase as SNR ∝

√
N ,

where N is the total number of available detector pairs (three in the case of
the Advanced LIGO-Virgo network). However, both the Hanford-Virgo and
Livingston-Virgo pairs exhibit reduced sensitivity to the stochastic background
due to their large physical separations. This fact is reflected in their respective
overlap reduction functions, which are a factor of several smaller in magnitude
than the Hanford-Livingston overlap reduction functions; see Figs. 5.7 and 5.8.

Given three independent detector pairs (and hence three independent measure-
ments at each frequency), one can in principle directly solve for the unknown
tensor, vector, and scalar contributions to the background in each frequency
bin [214–216, 219]. This component separation scheme can be performed with-
out resorting to a model for the stochastic energy-density spectrum. However,
frequency-by-frequency component separation is unlikely to be successful using
the LIGO-Virgo network, due to the large uncertainties in the measured back-
ground at each frequency. Instead, when considering joint Advanced LIGO-
Virgo observations we will again apply the Bayesian framework introduced
above, leveraging measurements made at many frequencies in order to con-
strain the power-law amplitude and slope of each polarization mode.
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Figure 5.24: As in Fig. 5.22, but for simulated three-year observations with the joint Ad-
vanced LIGO-Virgo network at design sensitivity. Despite the inclusion of Advanced Virgo,
the sensitivity of this three-detector network is nearly identical to that of Advanced LIGO
alone.
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Figure 5.25: As in Fig. 5.23, but assuming three-years of observation with the joint Advanced
LIGO-Virgo network at design sensitivity. Once again, the inclusion of Advanced Virgo
yields negligible improvement in network sensitivity.
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Table 5.1: Stochastic background parameters used for each case study presented. For each
case, the vector amplitude is set to zero. Also shown are the odds ratios computed for each
simulated observation.

Case log ΩT
0 αT log ΩS

0 αS
H1-L1 H1-L1-V1

lnOsig
n lnOngr

gr lnOsig
n lnOngr

gr
1. Noise - - - - -1.1 -0.4 -1.1 -0.4
2. Tensor -8.78 0.67 - - 8.4 -1.4 8.8 -1.4
3. Tensor+Scalar -8.48 0.67 -7.83 0.0 193.5 16.1 197.3 19.3

To quantify the extent to which Advanced Virgo aids in the detection of the
stochastic background, we again consider simulated observations of a mixed
tensor (slope αT = 2/3) and scalar (slope αS = 0) background, this time with a
three-detector Advanced LIGO-Virgo network. The odds ratios obtained from
our simulated Advanced LIGO-Virgo observations are shown in Figs. 5.24 and
5.25 for various tensor and scalar amplitudes. The inclusion of Advanced
Virgo yields no clear improvement over the results shown in Figs. 5.22 and
5.23 using Advanced LIGO alone. Due to its large distance from either LIGO
detector, Advanced Virgo does not contribute more than a small fraction of the
total observed SNR. As a result, the combined Hanford-Livingston-Virgo net-
work both detects (as indicated with Osig

n ) and identifies (via Ongr
gr ) the scalar

background component with virtually the same sensitivity as the Hanford-
Livingston network alone.

5.7 Parameter Estimation on Mixed Backgrounds

Parameter estimation will be the final step in a search for a stochastic back-
ground of generic polarization. If a gravitational-wave background is detected
(as inferred from Osig

n ), how well can Advanced LIGO constrain the proper-
ties of the background? Alternatively, if no detection is made, what upper
limits can Advanced LIGO place on the background amplitudes of each polar-
ization mode? We investigate these questions through three case studies: an
observation of pure Gaussian noise, a standard tensor stochastic background,
and a background of mixed tensor and scalar polarizations. The simulated
background parameters used for each case are listed in Table 5.1.

When performing model selection above, the odds ratios Osig
n and Ongr

gr were
constructed by independently allowing for each combination of tensor, vector,
and scalar modes. Parameter estimation, on the other hand, must necessarily
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be performed in the context of one specific background model. For the case
studies below, we will adopt the broadest possible hypothesis, allowing for all
three polarization modes – we previously termed this the “TVS” hypothesis,
with an energy-density spectrum given by Eq. (5.52). This choice will allow us
to place simultaneous constraints on the presence of tensor, vector, and scalar
polarizations in the stochastic background. Parameter estimation is achieved
using MultiNest, which returns samples drawn from the measured posterior
distributions.

There are several key subtleties that must be understood when interpreting the
parameter estimation results presented below. First, whereas standard tensor
upper limits have conventionally been defined by assuming a single, fixed slope
[176, 229], we will quote amplitude limits obtained after marginalization over
all possible spectral indices. This approach concisely combines information
from the entire posterior parameter space to offer a single limit on each polar-
ization considered. As a result, however, our simulated upper limits presented
here should not be directly compared to those from past searches for tensor
backgrounds. Secondly, parameter estimation results are contingent upon the
choice of a specific model. While we will demonstrate parameter estimation
results under our TVS hypothesis, other hypotheses may be better suited to
answering other experimental questions. For example, if we were specifically
interested in constraining scalar-tensor theories (which a priori do not allow
vector polarizations), we would instead perform parameter estimation under
the TS hypothesis. And if our goal was to perform a standard stochastic search
for a purely tensor-polarized background, we would restrict to the T hypoth-
esis. Although these various hypotheses all contain an analogous parameter
ΩT

0 , the resulting upper limits on ΩT
0 will generically be different in each case.

In short, different experimental questions will yield different answers.

5.7.1 Case 1: Gaussian Noise

First, we consider the case of pure noise, producing a simulated three-year ob-
servation of Gaussian noise at Advanced LIGO’s design sensitivity. The result-
ing TVS posteriors are shown in Fig. 5.26. The colored histograms along the
diagonal show the marginalized 1D posteriors for the amplitudes and slopes of
the tensor, vector, and scalar components (blue, red, and green, respectively).
The priors placed on each parameter are indicated with a dashed grey curve.
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Figure 5.26: Posteriors obtained for a simulated Advanced LIGO observation of pure Gaus-
sian noise (Case 1 in Table 5.1), under the TVS hypothesis. The subplots along the diagonal
show marginalized posteriors for the amplitudes and slopes of the tensor, vector, and scalar
backgrounds (blue, red, and green, respectively), while the remaining subplots show the 2D
posterior between each pair of parameters. Each amplitude posterior is consistent with our
lower prior bound, reflecting the non-detection of a stochastic background.
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Figure 5.27: Marginalized amplitude and slope posteriors for the Gaussian noise observation
in Fig. 5.26, after the additional inclusion of design-sensitivity Advanced Virgo. The light
grey histograms show the Advanced LIGO-only results from Fig. 5.26. As above, dashed
grey lines show the priors placed on each parameter. We see that the inclusion of Advanced
Virgo does not significantly affect the parameter estimation results.
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Above each posterior we quote the median posterior value as well as ±34%

credible limits. The remaining subplots illustrate the joint 2D posteriors be-
tween each pair of parameters.

For this simulated Advanced LIGO observation, we obtain lnOsig
n = −1.1,

consistent with a null detection. Accordingly, the posteriors on ΩT
0 , ΩV

0 , and ΩS
0

are each consistent with the lower bound of our amplitude prior (at log ΩMin =

−13). Meanwhile, the posteriors on spectral indices αT , αV , and αS simply
recover our chosen prior. The 95% credible upper limits on each amplitude
are log ΩT

0 < −9.8, log ΩV
0 < −9.7, and log ΩS

0 < −9.3.

In Fig. 5.27 we show the posteriors obtained if we additionally include design-
sensitivity Advanced Virgo (incorporating simulated measurements for the HV
and LV detector pairs). For reference, the grey histograms show the posteriors
from Fig. 5.26 obtained by Advanced LIGO alone. The Advanced LIGO-
Virgo posteriors are virtually identical to those obtained from Advanced LIGO
alone, with 95% credible upper limits of log ΩT

0 < −9.9, log ΩV
0 < −9.6, and

log ΩS
0 < −9.4. In the case of a null-detection, then, the inclusion of Advanced

Virgo does not notably improve the upper limits placed on the amplitudes of
tensor, vector, and scalar backgrounds.

5.7.2 Case 2: Tensor Background

Next, we produce a simulated observation of a pure tensor background with
amplitude log ΩT

0 = −8.78 and spectral index αT = 2/3. The amplitude is
chosen such that the background would be detected by Advanced LIGO with
expected 〈SNRopt〉 = 5 after three years of observation at design-sensitivity.
The odds ratios obtained for this simulated observation are lnOsig

n = 8.4 and
lnOngr

gr = −1.4, indicating a strong detection consistent with general relativity.

The corresponding parameter posteriors are shown in Fig. 5.28. In this case,
the injected parameter values are shown via dot-dashed black lines. The log ΩT

0

posterior is strongly peaked near the true value, with a central 68% credible
interval of −9.0 ≤ log ΩT

0 ≤ −8.7 and a median value of log ΩT
0 = −8.8. The

vector and scalar amplitudes, in turn, are consistent with the lower bound on
our prior, with 95% credible upper limits of log ΩV

0 < −9.2 and log ΩS
0 < −9.0.

The parameter estimation results when additionally including Advanced Virgo
are given in Fig. 5.29. Once again, the grey histograms show parameter esti-
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Figure 5.28: As in Fig. 5.26, for a simulated observation of a pure tensor background (Case
2 in Table 5.1). The injected tensor amplitude and slope are indicated by dot-dashed
black lines. The tensor amplitude and slope posteriors are peaked about their true values.
The vector and scalar amplitude posteriors, meanwhile, are consistent with our lower prior
bound.
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Figure 5.29: Marginalized amplitude and slope posteriors for the tensor background obser-
vation in Fig. 5.28, after the additional inclusion of design-sensitivity Advanced Virgo. For
reference, the light grey histograms show the Advanced LIGO-only results from Fig. 5.28.
The joint LIGO-Virgo parameter estimation yields a slightly tighter measurement of ΩT0 , as
well as marginally improved upper limits on ΩV0 and ΩS0 .
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mation results from Advanced LIGO alone. Although Virgo does not improve
our confidence in the detection, it can serve to break degeneracies present be-
tween different polarization modes. We begin to see this behavior in Fig. 5.29,
in which the vector and scalar log-amplitude posteriors are pushed to smaller
values in the joint LIGO-Virgo analysis. When including Advanced Virgo, we
obtain a marginally tighter 68% credible interval of −8.9 ≤ log ΩT

0 ≤ −8.7

on the tensor amplitude, and slightly improved upper limits of log ΩV
0 < −9.3

and log ΩS
0 < −9.2 on vector and scalar amplitudes.

5.7.3 Case 3: Tensor and Scalar Backgrounds

As discussed above, most alternative theories of gravity would predict a stochas-
tic background of mixed polarization. For our final case study, we therefore
consider a mixed background with both tensor (log ΩT

0 = −8.48 and αT = 2/3)
and scalar (log ΩS

0 = −7.83 and αS = 0) components. The amplitudes are cho-
sen such that each component is individually observable with 〈SNRopt〉 = 10

after three years of observation. Analysis with MultiNest yields odds ratios
lnOsig

n = 193.5 and lnOngr
gr = 16.1, representing an extremely loud detection

with very strong evidence for the presence alternative polarizations.

The posteriors obtained for this data are shown in Fig. 5.30. Despite the
strength of the simulated stochastic signal, we see that parameter estima-
tion results are dominated by degeneracies between the different polarization
modes. Although the tensor and scalar amplitude posteriors are locally peaked
about their true values, much of the background’s energy is misattributed to
vector modes, illustrating that potentially severe degeneracies persist even at
high SNRs. These degeneracies are exacerbated for backgrounds with small
or negative spectral indices, as in the present case. Such backgrounds pref-
erentially weight low frequencies where the Advanced LIGO overlap reduc-
tion functions are all similar (see Fig. 5.6). This example serves to illustrate
that, while Advanced LIGO can likely identify the presence of alternative po-
larizations through the odds ratio Ongr

gr , Advanced LIGO alone is unable to
determine which modes (vector or scalar) have been detected.

In contrast, the degeneracies in Fig. 5.30 are completely broken with the in-
clusion of Advanced Virgo. Whereas the ΩV

0 posterior is strongly peaked in
Fig. 5.30, we see in Fig. 5.31 that the posterior is instead entirely consistent
with our lower prior bound when including Advanced Virgo. The tensor and
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Figure 5.30: As in Figs. 5.26 and 5.28, for a simulated observation of a mixed tensor and
scalar background (Case 3 in Table 5.1). While the ΩT0 and ΩS0 posteriors are locally peaked
about the true values, much of the observed energy is mistaken for vector polarizations.
Thus Advanced LIGO alone is unable to break the degeneracy between tensor, vector, and
scalar amplitudes.
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Figure 5.31: Marginalized amplitude and slope posteriors for the mixed tensor and scalar
background observation in Fig. 5.30, after the additional inclusion of design-sensitivity Ad-
vanced Virgo. For reference, the light grey histograms show the Advanced LIGO-only results
from Fig. 5.30. In contrast to the results in Fig. 5.30, the degeneracy between polarization
modes is completely broken when including Advanced Virgo. Thus, while Advanced Virgo
does not particularly improve prospects for the detection of a mixed background, it can
significantly improve our ability to perform parameter estimation on multiple modes simul-
taneously.
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scalar amplitude posteriors, meanwhile, are each more strongly-peaked about
their correct values and are now inconsistent with the lower amplitude bound.
Thus, while Advanced Virgo generally does not improve our ability to detect
a stochastic background, we see that it can significantly improve prospects for
simultaneous parameter estimation of multiple polarizations.

5.8 Safeguarding against Mismodeling of the Gravitational-Wave
Background

The stochastic search method presented here offers a means to search for al-
ternative gravitational-wave polarizations in a nearly model-independent way.
Unlike direct searches for compact binary coalescences, our search makes min-
imal assumptions about the source and nature of the stochastic background.
We do, however, make one notable assumption: that the energy density spec-
tra ΩA(f) are well-described by power laws in the Advanced LIGO frequency
band. This is expected to be a reasonable approximation for most predicted
astrophysical sources of gravitational waves. The backgrounds expected from
stellar-mass binary black holes [226], core-collapse supernovae [147], and rotat-
ing neutron stars [112, 115, 128], for instance, are all well-modelled by power
laws in the Advanced LIGO band. It may be, however, that the stochastic
background is in fact not well-described by a single power law. This may be
the case if, for instance, the background is dominated by high-mass binary
black holes, an excess of systems at high redshift, or previously-unexpected
sources of gravitational waves.

Given that our search allows only for power-law background models, how would
we interpret a non-power-law background? In particular, if the stochastic
background is purely tensorial (obeying general relativity) but is not well-
described by a power-law, would our search mistakenly claim evidence for
alternative polarizations?

To investigate this question, we consider simulated Advanced LIGO observa-
tions of pure tensor backgrounds described by broken power laws:

ΩT (f) =

Ω0

(
f
fk

)α1

(f < fk)

Ω0

(
f
fk

)α2

(f ≥ fk).
(5.64)

Here, Ω0 is the background’s amplitude at the “knee frequency” fk, while α1

and α2 are the slopes below and above the knee frequency, respectively. We
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Figure 5.32: Odds ratios Ongr
gr obtained for simulated Advanced LIGO observations

of tensor-polarized broken power-law backgrounds with energy-density spectra given by
Eq. (5.64), with knee frequencies fk = 30Hz in the center of the stochastic sensitivity band.
We scale the amplitude Ω0 of each injected background such that it is optimally detectable
with 〈SNRopt〉 = 5 after the simulated observation period. By design, these backgrounds are
not well-described by single power laws, the form explicitly assumed in our search. Despite
this fact, we find that these backgrounds are not systematically misclassified as containing
vector or scalar polarizations.

will set the knee frequency to fk = 30 Hz, placing the backgrounds’ knees in the
most sensitive band of the LIGO-Virgo stochastic search. We will deliberately
analyze simulated observations of (purely-tensorial) broken power laws with
an incorrect model, assuming an ordinary power-law form for ΩA(f).

The resulting odds ratios Ongr
gr are shown in Fig. 5.32 as a function of the

two slopes α1 and α2. Each simulation assumes three years of observation at
design-sensitivity, and the injected amplitudes Ω0 are scaled such that each
simulated stochastic background has expected 〈SNRopt〉 = 5 after this time.
Any trends in Fig. 5.32 are therefore due to the backgrounds’ spectral shapes
rather than their amplitudes.

If tensor broken power laws are indeed misclassified by our search, we should
expect large, positive lnOngr

gr values in Fig. 5.32. Instead, we see that broken
power laws are not systematically misclassified. When α1 and α2 are each posi-
tive, we recover lnOngr

gr ≈ −1.5, correctly classifying backgrounds as tensorial
despite the fact that they are not described by power laws. When α1 < 0,
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meanwhile, we recover odds ratios scattered about lnOngr
gr ≈ 0. This simply

reflects the fact that when α1 is negative the majority of a background’s SNR
is collected at low frequencies where Advanced LIGO’s tensor, vector, and
scalar overlap reduction functions are degenerate. In such a case we do not
show preference for either model over the other. Note that we find lnOngr

gr ≈ 0

even along the line α2 = α1 (for α1 < 0), where the background is described
by a single power law.

We expect broken power laws to be most problematic when α1 > 0 and α2 < 0;
in this case a background’s SNR is dominated by a small frequency band
around the knee itself. This would be the case if, for instance, the stochastic
background were dominated by unexpectedly massive binary black hole merg-
ers [226]. Figure 5.32 does suggest a larger scatter in lnOngr

gr for such back-
grounds. Even in this region, however, there is not a systematic bias towards
larger values of Ongr

gr , and the largest recovered odds ratios have lnOngr
gr . 2.5,

well below the level required to confidently claim evidence for the presence of
alternative polarizations.

Despite the fact that we assume purely power-law models for the stochastic
energy-density spectra, our search appears reasonably robust against broken
power-law spectra that are otherwise purely tensor-polarized. In particular,
in order to be mistakenly classified by our search, a tensor stochastic back-
ground would have to emulate the pattern of positive and negative cross-power
associated with the vector and/or scalar overlap reduction functions (see, for
instance, Fig. 5.12). This is simply not easy to do without a pathological back-
ground. While we have demonstrated this only for Advanced LIGO, we find
similarly robust results for three-detector Advanced LIGO-Virgo observations.

Nevertheless, when interpreting odds ratios Ongr
gr it should be kept in mind

that the true stochastic background may deviate from a power law. Even if
a broken tensor background is not misclassified in our analysis, the parameter
estimation results we obtain would likely be incorrect (another example of so-
called “stealth bias”). It should be pointed out, though, that our analysis is
not fundamentally restricted to power-law models. While we adopt power-law
models here for computational simplicity, our analysis can be straightforwardly
expanded in the future to include more complex models for the stochastic
energy-density spectrum.
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5.9 Discussion

The direct detection of gravitational waves by Advanced LIGO and Virgo has
opened up new and unique prospects for testing general relativity. One such
avenue is the search for vector and scalar gravitational-wave polarizations, pre-
dicted by some alternative theories of gravity but prohibited by general relativ-
ity. Observation of vector or scalar polarizations in the stochastic background
would therefore represent a clear violation of general relativity. While the
first preliminary measurements have recently been made of the polarization of
GW170814 and GW170817, our ability to study the polarizations of transient
gravitational-wave signals is generally limited by the number and orientation
of current-generation detectors. In contrast, searches for long-duration sources
like the stochastic background offer a promising means of directly measuring
gravitational-wave polarizations with existing detectors.

In this chapter, we explored a procedure by which Advanced LIGO can detect
or constrain the presence of vector and scalar polarizations in the stochastic
background. In Ch. 5.5, we found that a stochastic background dominated by
alternative polarization modes may be missed by current searches optimized
only for tensor polarizations. In particular, backgrounds of vector and scalar
polarizations with large, positive slopes may take up to ten times as long to
detect with current methods, relative to a search optimized for alternative po-
larizations. In Ch. 5.6, we therefore proposed a Bayesian method with which
to detect a generically-polarized stochastic background. This method relies on
the construction of two odds ratios. The first serves to determine if a stochas-
tic background has been detected, while the second quantifies evidence for the
presence of alternative polarizations in the background. This search has the
advantage of being entirely generic; it is capable of detecting and identifying
stochastic backgrounds containing any combination of gravitational-wave po-
larizations. With this method, we demonstrated that a flat scalar-polarized
background of amplitude ΩS

0 ≈ 2× 10−8 can be confidently identified as non-
tensorial with Advanced LIGO.

In Ch. 5.7, we then considered the ability of Advanced LIGO to perform si-
multaneous parameter estimation on tensor, vector, and scalar components
of the stochastic background. After three years of observation at design sen-
sitivity, Advanced LIGO will be able to limit the amplitudes of tensor, vec-
tor, and scalar polarizations to ΩT

0 < 1.6× 10−10, ΩV
0 < 2.0× 10−10, and
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ΩS
0 < 5.0× 10−10, respectively, at 95% credibility. If, however, a stochastic

background of mixed polarization is detected, Advanced LIGO alone cannot
precisely determine the parameters of the tensor, vector, and/or scalar com-
ponents simultaneously due to large degeneracies between modes.

We also considered how the addition of Advanced Virgo to the Hanford-
Livingston network affects the search for alternative polarizations. In Ch. 5.6,
we found that addition of Advanced Virgo does not particularly increase our
ability to detect or identify backgrounds of alternative polarizations. How-
ever, in Ch. 5.7 we saw Advanced Virgo does significantly improve our ability
to perform parameter estimation on power-law backgrounds, breaking the de-
generacies that plagued the Hanford-Livingston analysis.

Relative to other modeled searches for gravitational waves, the stochastic
search described here has the advantage of being nearly model-independent.
We have, however, made one large assumption: that the tensor, vector, and
scalar energy-density spectra are well-described by power laws in the Advanced
LIGO band. In Ch. 5.8 we explored the implications of this assumption, ask-
ing the question: would tensor backgrounds that are not described by power
laws be mistaken for alternative polarizations in our search? We found that
our proposed Bayesian method is reasonably robust against this possibility.
In particular, even pure tensor backgrounds with sharply-broken power law
spectra are not systematically misidentified by our search.

The non-detection of alternative polarizations in the stochastic background
may yield interesting experimental constraints on extended theories of grav-
ity. Meanwhile, any experimental evidence for alternative polarizations in the
stochastic background would be a remarkable step forward for experimental
tests of gravity. Of course, if future stochastic searches do yield evidence for
alternative polarizations, careful study would be required to verify that this re-
sult is not due to unmodeled effects like non-Gaussianity [26, 100, 103, 104, 106]
or anisotropy [237–239] in the stochastic background. Comparison to polar-
ization measurements of other long-lived sources like rotating neutron stars
[217, 218] will additionally aid in the interpretation of stochastic search re-
sults.



147

Appendix 5.A Comparison to Nishizawa et al. (2009)

In this chapter we defined the overlap reduction functions for tensor, vector,
and scalar polarizations as

γT (f) =
5

8π

∑
A∈{+,×}

∫
dn̂FA

1 (n̂)FA
2 (n̂) e−2πif∆x·n̂/c

γV (f) =
5

8π

∑
A∈{x,y}

∫
dn̂FA

1 (n̂)FA
2 (n̂) e−2πif∆x·n̂/c

γS(f) =
5

8π

∑
A∈{b,l}

∫
dn̂FA

1 (n̂)FA
2 (n̂) e−2πif∆x·n̂/c,

(5.65)

such that the cross-correlation statistic Ĉ(f) has expectation value

〈Ĉ(f)〉 = γA(f)ΩA(f), (5.66)

in terms of the canonical energy densities ΩA(f) [Eq. (5.30)]. The scalar over-
lap reduction function γS(f) differs from that given in Eq. (24) of Ref. [214]:

γ̃S(f) =
15

4π

1

1 + 2κ

∫
dn̂
[
F̃ b

1 (n̂) F̃ b
2 (n̂) + κF̃ l

1(n̂) F̃ l
2(n̂)

]
e−2πif∆x·n̂/c, (5.67)

where κ = Ω̃l/Ω̃b is defined to be the ratio between energy densities in longi-
tudinal and breathing modes. Note that we will use tildes to denote quantities
defined according to the conventions of Ref. [214].

The difference between Eqs. (5.65) and (5.67) is due to different definitions of
the longitudinal polarization’s basis tensor. We adopt

êlij =

0 0 0

0 0 0

0 0 1

 (5.68)

while Ref. [214] uses

ẽlij =

0 0 0

0 0 0

0 0
√

2

 . (5.69)

As a consequence, Ref. [214] obtains a longitudinal antenna pattern

F̃ l(n̂) =
1√
2

sin2 θ cos 2φ, (5.70)
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which differs by a factor of
√

2 from the conventional form

F l(n̂) =
1

2
sin2 θ cos 2φ. (5.71)

Thus the LIGO/Virgo antenna patterns for longitudinal and breathing modes
are, in the convention of Ref. [214], related via |F̃ l(n̂)| =

√
2|F̃ b(n̂)|. Given

this relation, Eq. (5.67) can be rewritten

γ̃S(f) =
15

4π

∫
dn̂ F̃ b

1 (n̂) F̃ b
2 (n̂) e−2πif∆x·n̂/c

=
15

4π

∫
dn̂F b

1 (n̂)F b
2 (n̂) e−2πif∆x·n̂/c

=
15

8π

∫
dn̂
[
F b

1 (n̂)F b
2 (n̂) + F l

1(n̂)F l
2(n̂)

]
e−2πif∆x·n̂/c

= 3γS(f);

(5.72)

note the conversion from F̃ b
1 to F b

1 in the second line.

If F̃ l =
√

2F l, then the strain amplitudes as defined in Ref. [214] must in turn
be reduced by h̃l = hl/

√
2, so that the signals F̃ lh̃l and F lhl registered by a

given detector are equal. Hence the quantity Ω̃l(f) appearing in Ref. [214],
which is quadratic in h̃l, is half of what we define as the canonical energy
density Ωl(f) of longitudinal gravitational waves:

Ω̃l(f) =
1

2
Ωl(f). (5.73)

A related algebraic result that will be useful is the relation

ΩS(f) = Ωb(f) + Ωl(f)

= Ω̃b(f) + 2Ω̃l(f)

= (1 + 2κ) Ω̃b(f)

=
1 + 2κ

1 + κ

(
Ω̃b(f) + Ω̃l(f)

)
=

1 + 2κ

1 + κ
Ω̃S(f)

(5.74)

between ΩS(f) and Ω̃S(f).

To verify that both approaches are equivalent, note that in the convention of
Ref. [214], the contribution of scalar modes to the cross-correlation statistic is
〈Ĉ(f)〉 = ξγ̃S(f)Ω̃S(f), where ξ = 1

3

(
1+2κ
1+κ

)
. Converting to our own notation
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Figure 5.33: MultiNest Bayesian evidences for a single simulated stochastic background
observation as a function of the number of live points chosen. For the simulated data, we
assume a tensor-polarized background (with ΩT0 = 2 × 10−8 and αT = 2/3) observed for
one year with design-sensitivity Advanced LIGO, and compute evidence using the T model.
Results are shown for both MultiNest’s Default and INS modes; also shown are the error
estimates provided by each mode. To compute the results presented in this chapter, we used
n = 2000 live points.

using Eqs. (5.72) and (5.74),

〈Ĉ(f)〉 = ξγ̃S(f)Ω̃S(f)

=
1

3

(
1 + 2κ

1 + κ

)(
3γS(f)

)( 1 + κ

1 + 2κ
ΩS(f)

)
= γS(f)ΩS(f),

(5.75)

consistent with Eq. (5.66).

Appendix 5.B Evaluating Evidences with Multinest

Here I discuss several details associated with using MultiNest to evaluate
Bayesian evidences for various models of the stochastic background. The
MultiNest algorithm allows for several user-defined parameters, including
the number n of live points used to sample the prior volume and the sampling
efficiency ε, which governs acceptance rate of new proposed live points (see
e.g. Ref. [233] for details). MultiNest also provides the option to run in De-
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Figure 5.34: Histograms of MultiNest evidences (for the TVS model) obtained by evaluat-
ing a single simulated data set 500 times in both the Default and INS modes. To generate the
simulated data, we assume a one-year observation of a tensor background (ΩT0 = 2 × 10−8

and αT = 2/3) with design-sensitivity Advanced LIGO. The dashed error bars show the
mean 68% confidence interval reported by each method, while the solid error bars show the
true 68% confidence interval computed from the evidence distributions.

fault or Importance Nested Sampling (INS) modes, each of which use different
methods to evaluate evidences [234].

To set the number of live points, we investigated the convergence of Multi-

Nest’s evidence estimates with increasing values of n. For a single simulated
observation of a tensorial background (with amplitude ΩT

0 = 2 × 10−8 and
slope αT = 2/3), for instance, Fig. 5.33 shows the recovered evidence for the
tensor-only T hypothesis as a function of n, using both the Default (blue)
and INS modes (green). The results are reasonably stable for n & 1000; we
choose n = 2000 live points. Meanwhile, our recovered evidence estimates do
not exhibit noticeable dependence on the sampling efficiency; we choose the
recommended values ε = 0.3 for evidence evaluation and ε = 0.8 for parameter
estimation [233].

In addition to computing Bayesian evidences, MultiNest also returns an
estimate of the numerical error associated with each evidence calculation. See,
for instance, the error bars in Fig. 5.33. To gauge the accuracy of these error
estimates, we construct a single simulated Advanced LIGO observation of a
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purely-tensorial stochastic background (again with ΩT
0 = 2 × 10−8 and αT =

2/3). We then use MultiNest to compute the corresponding TVS evidence
500 times, in both Default and INS modes. The resulting distributions of
evidences are shown in Fig. 5.34. The dashed error bars show the averaged
±1σ intervals reported by MultiNest, while the solid bars show the true ±1σ

scatter observed in the ensemble of runs. We see that the errors reported by
MultiNest’s Default mode appear to accurately reflect the numerical error
in the evidence calculation, while the errors reported by the INS mode are
underestimated by a factor of ∼ 2.

Additionally, Fig. 5.34 illustrates several systematic differences between the
Default and INS results. First, Default mode appears significantly more pre-
cise than INS mode, giving rise to a much narrower distribution of evidences.
Not only is the INS evidence distribution wider, but it exhibits a large tail
extending several units in evidence above the mean. We find that similarly
long tails also appear for other pairs of injected signals and recovered mod-
els. For this reason, we choose to use MultiNest’s Default mode in all
evidence calculations. Typical numerical errors in Default mode are of order
δ(evidence) ∼ 0.1, and so the uncertainty associated with a log-odds ratio is
δ(lnO) ∼

√
2δ(evidence), again of order 0.1. Additionally, we see that the

peaks of the Default and INS distributions do not coincide. In general, the
peaks of evidence distributions from the Default and INS modes lie ∼ 0.3

units apart. Thus there may be additional systematic uncertainties in a given
evidence calculation. However, as long as we consistently use one mode or
the other (in our case, Default mode), any uniform systematic offset in the
evidences will simply cancel when we ultimately compute a log-odds ratio.
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Chapter 6
Bayesian Constraints on the Gravitational-
Wave Background from the O1 and O2
Observing Runs

This chapter contains work published in:

P. B. Covas et al., Identification and Mitigation of Narrow Spectral
Artifacts that Degrade Searches for Persistent Gravitational Waves
in the First Two Observing Runs of Advanced LIGO, Phys. Rev.
D 97, 082002 (2018).

LIGO Scientific Collaboration & Virgo Collaboration, Search for
Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-
Wave Background, Phys. Rev. Letters 120, 201102 (2018).

LIGO Scientific Collaboration & Virgo Collaboration, A Search
for the Isotropic Stochastic Background Using Data from Advanced
LIGO’s Second Observing Run, Phys. Rev. D (in press)

I developed and ran the software to identify narrowband Hanford-Livingston
correlations in the O1 and O2 observing run; these results were used in LIGO &
Virgo (2018) and (2019), and documented in Covas et al. (2018). I conceived of
and led the study published within LIGO & Virgo (2018). Finally, I produced
the parameter estimation results and most figures appearing in LIGO & Virgo
(2018); this manuscript was co-written by Andrew Matas, Rich Ormisten, and
myself. The content of Ch. 6.A has not been previously published.

In the previous chapter, we developed a Bayesian methodology with which to
search for stochastic backgrounds of alternative gravitational-wave polariza-
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tions. This same Bayesian machinery, though, can be perfectly well applied to
searches for a standard tensorial gravitational-wave background. Here we will
do exactly this. In this chapter I will present Bayesian analyses of O1 and O2
Advanced LIGO data. The results are the best upper limits to date on the
amplitude and spectral shape of the stochastic gravitational-wave background.
We will also have a chance to apply the full machinery developed in Ch. 5,
additionally computing constraints on the presence of alternative polarizations
in the gravitational-wave background.

6.1 The Advanced LIGO O1 Observing Run

6.1.1 Data

Here we will analyze Advanced LIGO data recording during the O1 Observing
Run between September 18, 2015 15:00 UTC and January 12, 2016 16:00 UTC.
We will deliberately exclude times that contain the binary black hole signals
GW150914, GW151226, and GW151012.

The initial data processing proceeds as in previous LIGO/Virgo stochastic
analyses [176, 229]. Time-domain strain measurements from the LIGO-Hanford
and LIGO-Livingston detectors are down-sampled from 16384Hz to 4096Hz
and divided into half-overlapping 192 s segments. Each time segment is then
Hann-windowed, Fourier transformed, and high-pass filtered using a 16th or-
der Butterworth filter with a knee frequency of 11Hz. Finally, the strain data
are coarse-grained to a frequency resolution of 0.03125Hz and restricted to
a frequency band from 20–1726Hz. Within each segment, we compute the
LIGO-Hanford and LIGO-Livingston strain auto-power spectral densities us-
ing Welch’s method [240].

Standard data quality cuts are performed in both the time and frequency do-
mains to mitigate the effects of non-Gaussian instrumental and environmental
noise [176, 239, 241]. In the time domain, we discard 35% of data due to
nonstationary detector noise, leaving 29.85 days of coincident observing time.
In the frequency domain, an additional 21% of data is discarded to remove
correlated narrow-band features between LIGO-Hanford and LIGO-Livingston
[176, 239, 241]. These narrow-band correlations are due to a variety of sources,
including injected calibration signals, power mains, and GPS timing systems.
The final cross-correlation spectrum between Hanford and Livingston is shown
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Figure 6.1: The cross-correlation spectrum Ĉ(f) measured between Advanced LIGO’s Han-
ford and Livingston detectors during the O1 observing run. The estimator is normalized
so that 〈Ĉ(f)〉 = γ(f)Ω(f). The black traces mark ±1σ uncertainties on the measured
cross-correlations. Coherent lines that were identified to have an instrumental cause have
been removed from the spectrum.

in Fig. 6.1.

To estimate possible contamination due to terrestrial Schumann resonances
[242–244], we additionally monitored coherences between magnetometers in-
stalled at both detectors. Schumann resonances were found to contribute
negligibly to the O1 stochastic measurement [176, 241].

We assume conservative 4.8% and 5.4% calibration uncertainties on the strain
amplitude measured by LIGO-Hanford and LIGO-Livingston, respectively [245].
Phase calibration is a much smaller source of uncertainty and is therefore ne-
glected [176, 246]. All results below are obtained after marginalization over
amplitude uncertainties.

6.1.2 Methods

We will analyze the O1 Advanced LIGO data using the method described
in Ch. 5 above to search for a generically-polarized background. As in Ch. 5,
we assume that the gravitational-wave background is stationary, isotropic, and
Gaussian. We also assume that the background is uncorrelated between polar-
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ization modes, and that the tensor and vector contributions to the background
are individually unpolarized (with equal contributions, for instance, from the
tensor plus and cross modes). Recall that certain theories may violate one or
more of these assumptions. For example, the stochastic background is unlikely
to remain strictly unpolarized in the presence of gravitational-wave birefrin-
gence, as in Chern-Simons gravity [86, 88, 89], while theories violating Lorentz
invariance may yield a departure from isotropy [208, 209]. The violation of
one or more of our assumptions would likely reduce our search’s sensitivity to
the stochastic background.

Given the above assumptions, the expected cross-correlation between two de-
tectors in the presence of a stochastic background is of the form [83, 214–216]

〈s̃1(f)s̃∗2(f ′)〉 =
1

16π
δ(f − f ′)

∑
A

ΓA(f)HA(f) (6.1)

(see Ch. 5.4). HA(f) is the (two-sided) gravitational-wave strain power spec-
tral density of the net tensor (A = T ), vector (V ), and scalar (S) contributions
to the stochastic background and ΓA(f) are the unnormalized overlap reduc-
tion functions, defined [83, 186, 214, 247]

ΓA(f) =
1

8π

∑
a∈A

∫
dn̂ F a

1 (n̂)F a
2 (n̂) e2πifn̂·∆x/c. (6.2)

F a
I (n̂) is the antenna response function of detector I to signals of polarization
a, ∆x is the separation vector between detectors, and c is the speed of light.
The integral is taken over all sky directions n̂.

As in previous chapters, we will work not with ΓA(f), but rather with the
normalized overlap reduction functions γA(f) = λΓA(f), where the constant
λ is chosen such that γT (f) = 1 for co-located and co-oriented detectors. For
Advanced LIGO, λ = 5/8π, but in general its value will vary for other ex-
periments like LISA and pulsar timing arrays [219]. The normalized overlap
reduction functions for LIGO’s Hanford-Livingston baseline are shown above
in Fig. 5.6. Because tensor, vector, and scalar modes each have distinct over-
lap reduction functions, the shape of a measured cross-correlation spectrum
[Eq. (6.1)] will reflect the polarization content of the stochastic background
[214, 247]. Of the three Hanford-Livingston overlap reduction functions, the
scalar overlap reduction function is smallest in magnitude. This reflects the
fact that the Advanced LIGO detectors have weaker geometrical responses
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to scalar-polarized gravitational waves than to tensor- and vector-polarized
signals.

Also as in previous chapters, we will adopt the standard convention of working
in terms of the energy-density spectra ΩA(f) in different polarization modes,
not the strain power HA(f). It should be reiterated, though, that the precise
relationship between ΩA(f) andHA(f) is theory dependent. Under any theory
obeying Isaacson’s formula for the stress-energy of gravitational waves [225],
the energy-density spectrum is related to H(f) by [83, 175, 247]

ΩA(f) =
4π2

3H2
0

f 3HA(f). (6.3)

Although Eq. (6.3) does not necessarily hold in general [175], for ease of com-
parison with previous studies we will take Eq. (6.3) as the definition of the
canonical energy-density spectra ΩA(f). The canonical energy-density spectra
can be directly identified with true energy densities under any theory obey-
ing Isaacson’s formula. For other theories, ΩA(f) can instead be understood
simply as a function of the detector-frame observable HA(f).

Within each 192 s time segment (indexed by i), we form an estimator of the
visible cross power between LIGO-Hanford and LIGO-Livingston:

Ĉi(f) =
1

∆T

20π2

3H2
0

f 3s̃1,i(f)s̃∗2,i(f), (6.4)

normalized such that the estimator’s mean is

〈Ĉi(f)〉 =
∑
A

γA(f)ΩA(f) (6.5)

and its variance is 〈C(f)C(f ′)〉 = δ(f − f ′)σ2(f), with

σ2
i (f) =

1

∆T

(
10π2

3H2
0

)2

f 6P1,i(f)P2,i(f), (6.6)

respectively. Within Eqs. (6.4) and (6.6), ∆T is the segment duration and
PI,i(f) is the one-sided auto-power spectral density of detector I in time seg-
ment i. Finally, the cross-power estimators from each segment are optimally
combined via a weighted sum to form a single cross-power spectrum for the
O1 observing run,

Ĉ(f) =

∑
i Ĉi(f)σ−2

i (f)∑
i σ
−2
i (f)

, (6.7)
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with the corresponding variance

σ−2(f) =
∑
i

σ−2
i (f). (6.8)

Given the final measured cross-power spectrum Ĉ(f), we compute Bayesian
evidence for the various hypotheses defined in Ch. 5 describing the presence
and polarization of a possible stochastic signal within our data:

• Gaussian noise (N): No stochastic signal is present in our data, and the
measured cross power is due entirely to Gaussian noise [see Eq. (5.51)].

• Signal (SIG): A stochastic background of any polarization(s) is present
[Eq. (5.52) and surrounding text].

• Tensor-polarized (GR): The data contains a purely tensor-polarized stochas-
tic signal, consistent with general relativity [Eq. (5.55)].

• Non-standard polarizations (NGR): The data contains a stochastic signal
with vector and/or scalar contributions [Eq. (5.56)].

We calculate Bayesian evidences for each hypothesis using PyMultiNest [231],
a Python interface to the nested sampling code MultiNest [232–236]. These
evidences are combined to form two Bayesian odds [247]:

• Odds Osig
n for the presence of a stochastic signal relative to pure noise

• Odds Ongr
gr for the presence of nonstandard polarizations versus ordinary

tensor modes

As demonstrated in Ch. 5, Osig
n quantifies evidence for the detection of a

generically polarized stochastic background, and generally depends only on a
background’s total power, not its polarization content. Ongr

gr , meanwhile, in-
dicates if the background’s polarization is inconsistent with general relativity.
In particular, the sensitivity of Ongr

gr to nonstandard polarizations is not sig-
nificantly affected by the strength of any tensor polarization which may also
be present [247].

We parameterize all energy densities as power laws

ΩA(f) = ΩA
0

(
f

f0

)αA
(6.9)
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using a reference frequency f0 = 25 Hz. For purposes of computing Bayesian
evidences, we adopt the same priors as in Ch. 5, with a log-uniform ampli-
tude prior between 10−13 ≤ ΩA

0 ≤ 10−5. The upper amplitude bound (10−5)
is consistent with limits placed by Initial LIGO and Virgo [229]. In order
to be normalizable, the log-uniform prior requires a nonzero lower bound; al-
though parameter estimation results will depend on the specific choice of lower
bound, in general this dependence is weak [218]. Our lower bound (10−13) is
chosen to encompass small energy densities well below the reach of LIGO and
Virgo at design sensitivity [48, 176]. Meanwhile, we use a triangular prior
p(αA) ∝ 1 − |αA|/αmax for |αA| ≤ αmax on spectral indices [247]. This prior
preferentially weights flat energy-density spectra, penalizing spectra which are
more steeply positively or negatively sloped in the Advanced LIGO band; see
Ch. 5.6. We conservatively choose αmax = 8, allowing for energy-density spec-
tra significantly steeper than is predicted for known astrophysical sources (like
compact binary mergers). Finally, we choose the same prior odds between
hypotheses as shown in Fig. 5.15.

When performing parameter estimation, we will present results obtained with
two different amplitude priors – the same log-uniform prior between 10−13 ≤
ΩA

0 ≤ 10−5 as well as a uniform prior between 0 ≤ ΩA
0 ≤ 10−5. Although

the log-uniform prior more faithfully represents our true uncertainty in the
gravitational-wave background amplitude, the uniform prior implicitly repro-
duces the maximum likelihood analysis used in previous studies, and therefore
allows more direct comparison to previous stochastic search results [176, 229].

In Ch. 5 above, we analyzed only simulated cross-correlation measurements
between detectors. As we are analyzing real data here, we have to deal with an
additional layer of complication – calibration uncertainty. The strain measured
by Hanford and Livingston is not known perfectly, but is subject to non-zero
calibration uncertainty. For imperfectly calibrated data, the expectation value
of cross-power measurements Ĉ(f) is not

∑
A γA(f)ΩA(f), but is instead given

by
〈Ĉ(f)〉 = κ

∑
A

γA(f)ΩA(f), (6.10)

where κ is some multiplicative (and possibly frequency-dependent) factor [246].
Perfect calibration would yield κ = 1, but in general κ is unknown.

To account for calibration uncertainty, we include the calibration factor κ as an
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additional parameter in MultiNest, so that the likelihood function becomes

L
(
Ĉ(f)|κ,ΩA

M(f)
)
∝
∏
f

exp

−
(
Ĉ(f)− κ∑A γA(f)ΩA

M(f)
)2

2σ2(f)
df

 , (6.11)

where ΩA
M(f) is our model energy-density spectrum and Ĉ(f) and σ2(f) are

given by Eqs. (6.7) and (6.8), respectively. We place a Gaussian prior on κ,
centered at κ = 1:

p(κ) ∝ exp

(
−(κ− 1)2

2ε2

)
. (6.12)

The standard deviation ε encapsulates the amplitude calibration uncertainty.
During O1, Hanford and Livingston had maximum estimated amplitude un-
certainties of 4.8% and 5.4%, respectively, within the 20-1726Hz frequency
band [245]. These uncertainty estimates are retrospectively improved relative
to the the uncertainties previously adopted in Refs. [176, 239, 241]. For our
analysis, we take ε = 0.072, the quadrature sum of the Hanford and Livingston
uncertainties [176]. All results are given after marginalization over κ.

In this prescription for calibration uncertainty we have made two simplifying
assumptions. First, we have neglected phase calibration uncertainty, which is
expected to be a sub-dominant source of uncertainty in the stochastic anal-
ysis [245, 246]. Secondly, although calibration uncertainties are frequency-
dependent, for simplicity we’ve assumed uniform amplitude uncertainties across
all frequencies. Our quoted amplitude uncertainties are conservative, en-
compassing the largest calibration uncertainties in the stochastic sensitivity
band [176, 245].

6.1.3 Results

Using the cross power measured between Hanford and Livingston during Ad-
vanced LIGO’s O1 observing run, we obtain the Bayes factors given in Ta-
ble 6.1 between our various signal hypotheses and Gaussian noise. If we adopt
equal prior odds between Gaussian noise and a standard tensor-polarized sig-
nal, then we lnOT

N = −0.33, indicating no evidence for the detection of a
gravitational-wave background.

Given this non-detection, we can place upper limits on the amplitude of the
stochastic gravitational-wave background. We perform parameter estimation
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using posterior samples obtained by PyMultiNest. Figures 6.2 and 6.3 show
our posteriors on the amplitude (at f0 = 25 Hz) and spectral index of the
stochastic energy-density spectrum, under both log-uniform and uniform am-
plitude priors and following marginalization over calibration uncertainty. The
diagonal subplots show marginalized posteriors on the amplitude Ω0 and slope
α of the stochastic background, while the interior subplots show the joint
posteriors between Ω0 and α.

In Fig. 6.2, we recover spectral index posteriors that are largely consistent with
our choice of prior, but indicate a slight bias against large positive spectral
indices. The posterior preference towards small or negative spectral indices
is far more pronounced in Fig. 6.3. This preference reflects the fact that Ad-
vanced LIGO is most sensitive to backgrounds of large, positive slopes [247].
Hence the non-detection of a stochastic background therefore constrains larger
amplitudes to have small and/or negative spectral indices; see the joint Ω0– α
posterior in Fig. 6.3. All together, after marginalizing over calibration uncer-
tainty and spectral index, we limit the amplitude of the gravitational-wave
background to

log Ω0 ≤ −7.21 (Log-uniform prior) (6.13)

or
log Ω0 ≤ −6.60 (Uniform prior), (6.14)

depending on one’s choice of amplitude prior.

Table 6.1: Bayes factors between each signal sub-hypothesis and the Gaussian noise hypoth-
esis, as computed by MultiNest. These Bayes factors are combined following Eqs. (5.54)
and (5.56) to obtain odds Osig

n between Signal and Gaussian noise hypotheses, and odds
Ongr

gr between NGR and GR hypotheses.

Hypothesis lnBAn
T −0.33

V −0.33

S −0.31

TV −0.66

TS −0.65

VS −0.65

TVS −0.99
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Figure 6.2: Posterior on the amplitude and spectral index of the stochastic gravitational-
wave background, following Advanced LIGO’s O1 observing run. Here we assume a log-
uniform prior on the background’s amplitude; the priors on both log Ω0 and α are shown as
dashed gray lines.

For reference, Fig. 6.3 additionally contains a dashed black curve in the joint
Ω0 – α posterior; this represents the exclusion curve previously published in
Ref. [176] using O1 data. Care should be taken when comparing previously
published upper limits like these to our new limits obtained here. Three im-
portant distinctions should be kept in mind. First, our amplitude limits are
obtained after marginalization over spectral index. Previous analysis, on the
other hand, typically assume specific fixed spectral indices (e.g. Table I of
Ref. [176]) or present exclusion curves in the Ω0 − α plane [176]. Second,
Bayesian upper limits may be strongly influenced by one’s adopted prior.
Uniform amplitude priors, for instance, preferentially weight larger signals and
hence yield larger upper limits, while log-uniform priors support smaller signal
amplitudes, giving tighter limits. The exclusion curve of Ref. [176], meanwhile,
implicitly assumes uniform spectral index priors, unlike our peaked priors here.
Finally, these results are obtained under a specific signal hypothesis allowing
only for tensor polarizations. These limits will not be identical, say, to the
limits on the tensor amplitude ΩT

0 under alternative hypotheses that allow for
the simultaneous presence of additional gravitational-wave polarizations
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Figure 6.3: As in Fig. 6.2, but here assuming a uniform prior on Ω0. For reference, the
dashed black curve in the 2D subplot shows the exclusion line previously published in
Ref. [176]. This previously published limit does not account for calibration uncertainty,
and it additionally implicitly assumed a uniform prior for α.

Now let’s relax our restriction to purely tensor polarized backgrounds. If we al-
low for a generically-polarized gravitational-wave background, we obtain odds
lnOsig

n = −0.53 between our generic Signal and Gaussian noise hypotheses,
again indicating a non-detection of the stochastic gravitational-wave back-
ground. Additionally, we find lnOngr

gr = −0.25, consistent with values ex-
pected in the presence of Gaussian noise [247]. These odds ratios are obtained
using the Bayes factors in Table 6.1, combined with the prior odds shown in
Fig. 5.15 between our various sub-hypotheses. These prior odds are necessarily
somewhat arbitrary; different choices will invariably yield different values of
Osig
n and Ongr

gr . Using the results in Table 6.1, one can easily recompute these
odds under different prior choices.

We can now place generic upper limits on the presence of tensor, vector, and
scalar contributions to the stochastic background. To simultaneously constrain
the properties of each polarization, we will restrict to the “TVS” hypothe-
ses that assumes the existence of tensor, vector, and scalar-polarized signals.
Under this hypothesis, the total canonical energy density of the stochastic
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Figure 6.4: Posteriors on the tensor (top), vector (center), and scalar (bottom) stochastic
background amplitudes at reference frequency f0 = 25 Hz. Within each subplot, dark poste-
riors show results obtained assuming log-uniform priors (dashed curves) on ΩA0 , while light
posteriors show results corresponding to uniform amplitude priors (dot-dashed curves). The
prior curves shown here have been renormalized by constant factors to illustrate consistency
with the posteriors below our measured upper limits. These posteriors correspond to the
95% credible upper limits listed in Table 6.2. Relative to the log-uniform priors, the uni-
form amplitude priors preferentially weight loud stochastic signals and therefore yield more
conservative upper limits.
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Figure 6.5: Full posteriors for the power-law amplitudes and slopes of tensor, vector, and
scalar contributions to the stochastic background, assuming the TVS hypothesis and log-
uniform amplitude priors. The corresponding 95% credible amplitude and spectral index
limits are listed in Table 6.2.

background is modeled as a sum of power laws:

Ω(f) = ΩT
0

(
f

f0

)αT
+ ΩV

0

(
f

f0

)αV
+ ΩS

0

(
f

f0

)αS
. (6.15)

Figure 6.4 shows posteriors on the tensor, vector, and scalar background am-
plitudes, under each choice of amplitude prior. The dashed and dot-dashed
curves are proportional to the log-uniform and uniform amplitude priors, re-
spectively; each prior curve has been renormalized by a constant factor to
illustrate consistency between our priors and posteriors at small ΩA

0 . When
allowing for the presence of all three polarization sectors, we obtain upper
limits

log ΩT
0 ≤ −7.25

log ΩV
0 ≤ −7.20

log ΩS
0 ≤ −6.96

(Log-uniform priors) (6.16)
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Figure 6.6: As in Fig. 6.5, but assuming a uniform prior on background amplitudes. The
resulting 95% credible limits are listed in Table 6.3.

and
log ΩT

0 ≤ −6.70

log ΩV
0 ≤ −6.59

log ΩS
0 ≤ −6.07.

(Uniform priors) (6.17)

For completeness, in Figs. 6.5 and 6.6 we also show the full six-dimensional
parameter estimation results for the amplitude and slopes of the TVS model for
each choice of prior. Tables 6.2 and 6.3, meanwhile, list these upper limits as
well as central 95% credible intervals on the spectral index of each polarization
sector.

As mentioned above, upper limits obtained under one hypothesis are not, in
general, equal to those obtained under some different hypothesis. The upper
limit log ΩT

0 ≤ −7.25 given by the TVS model, for instance, is not the same as
the upper limit log Ω0 ≤ −7.21 we found earlier when considering a standard
tensor polarizations alone. Therefore, in addition to upper limits under the T
and TVS hypotheses, Tables 6.2 and 6.3 additionally list 95% credible limits
on the parameters of every signal sub-hypothesis.
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6.2 The Advanced LIGO O2 Observing Run

The O2 observing run began in November 2016 and ran until August 2017.
Much of O2 consisted of the Advanced LIGO Hanford and Livingston detec-
tors alone. However, in June 2017, Advanced Virgo became operational and
joined LIGO for the final few months of O2, yielding the first triple-coincidence
gravitational-wave observations [44, 46].

In this section, we will incorporate Hanford and Livingston’s O2 data to update
the O1 stochastic search results presented above. Although O2 data from Ad-
vanced Virgo is available, the combination of Virgo’s relative insensitivity and
the the poor Hanford-Virgo and Livingston-Virgo overlap reduction functions
means that Virgo would contribute little to the sensitivity of the stochastic
search. We will therefore not include Advanced Virgo in this analysis.

6.2.1 Data

We will incorporate data recorded between 16:00:00UTC on 30 November,
2016 and 22:00:00UTC on 25 August, 2017. We make use of “cleaned” Hanford
and Livingston strain time series [248, 249], from which linearly coupled noise
has been removed via Wiener filtering [250]. By comparing Hanford-Livingston
coherence spectra with and without this Wiener filtering, we have verified that
this noise subtraction doesn’t introduce any spurious correlated artifacts into
the strain time series.

Data analysis proceeds exactly as described in Ch. 6.1 above, with strain
data downsampled, high-pass filtered, Fourier transformed, and finally coarse-
grained to a resolution of 1/32Hz with 192 s segment lengths. We remove
times when detector noise is sufficiently non-stationary, as well as times con-
taining known gravitational-wave signals [45]; these cuts remove 16% of avail-
able coincident time, leaving a total of 99 days available to analyze. In the
frequency domain, we remove frequencies containing narrowband coherent fea-
tures that have known instrumental or environmental causes [81], excluding
15% of the total frequency band (but only 4% of the band below 300Hz, where
the stochastic search is most sensitive).

Figure 6.7 shows the final Hanford-Livingston cross-correlation spectrum ob-
tained after these data quality cuts. Note that, since I’m following the nor-
malization convention 〈Ĉ(f)〉 = γ(f)Ω(f), Fig. 6.7 differs by a factor of γ(f)
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Figure 6.7: The cross-correlation spectrum Ĉ(f) measured between Advanced LIGO’s Han-
ford and Livingston detectors during the O2 observing run. The estimator is normalized
so that 〈Ĉ(f)〉 = γ(f)Ω(f). The black traces mark the ±1σ uncertainties on the measured
cross-correlations. Coherent lines that were identified to have an instrumental cause have
been removed from the spectrum.

from Fig. 1 of Ref. [84].

6.2.2 Joint analysis and marginalization over calibration
uncertainty

In order to jointly analyze O1 and O2 data (with measured cross-correlation
spectra ĈO1 and ĈO2) in search of a gravitational-wave background, we will
take advantage of the fact that ĈO1 and ĈO2 represent independent trials and
hence have a factorizable likelihood:

L(ĈO1, ĈO2|ΩM) = L(ĈO1|ΩM)L(ĈO2|ΩM). (6.18)

We will handle calibration uncertainty slightly differently than when we ana-
lyzed O1 alone. As in Ch. 6.1 above, we incorporate imperfect calibration by
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adopting a likelihood

L
(
Ĉ|κ,ΩM

)
∝
∏
f

exp

−
(
Ĉ(f)− κγ(f)ΩM(f)

)2

2σ2(f)
df


= N exp

−∑
i

(
Ĉ(fi)− κγ(fi)ΩM(fi)

)2

2σ2(fi)
df


(6.19)

where ΩM(f) is our predicted energy-density spectrum based on a model for
the gravitational-wave background and κ is an unknown multiplicative factor
that encapsulates potential calibration inaccuracy. Although in the past we’ve
written similar expressions as an integral over continuous frequencies f , here
we’ll explicitly retain the summation over discrete frequencies fi. N , mean-
while, is a normalization factor that we’ll carry through this calculation. As
above, we will treat κ as a random variable variable drawn from a normal
distribution centered at 1 (perfect calibration) but with a variance ε2:

p(κ) ∝ exp

[
− 1

2ε2
(κ− 1)2

]
. (6.20)

When analyzing O1 data above, we incorporated κ as an additional parameter
that we sampled with MultiNest, numerically achieving the marginalization
over calibration uncertainty. This strategy worked well when we had only a
single calibration factor to worry about. However, this strategy isn’t sustain-
able when jointly analyzing data from multiple runs and/or multiple detector
pairs. In this case, we must include a separate independent calibration pa-
rameter for every detector pair and every observing run (e.g. κHL

O1 , κHL
O2 , etc.).

These additional parameters rapidly increase the dimensionality of our param-
eter space, making numerical marginalization over calibration uncertainties
infeasible. Instead, we will shift strategies and analytically marginalize over
calibration uncertainties, prior to parameter estimation on the gravitational-
wave background with MultiNest.

First, we can impose the additional constraint that κ be positive – that is,
we might not know the amplitude of the measured strain correct, but we are
confident in its sign. In this case, the probability distribution for κ becomes

p(κ) =

√
2

π

1

ε
[
1 + Erf( 1√

2ε2
)
] exp

[
− 1

2ε2
(κ− 1)2

]
, (6.21)
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normalized to unity on the interval κ ∈ (0,∞). Equation (6.21) will function
as our prior on κ. Next, with Eq. (6.21) in hand, we can marginalize Eq. (6.19)
over κ:

LMarg(Ĉ|ΩM)

=

∫
L(Ĉ|κ,ΩM)p(κ)dκ

= N
√

2

π

1

ε
[
1 + Erf( 1√

2ε2
)
]

×
∫ ∞

0

exp

[
− 1

2

∑
i

(
Ĉ(fi)− κγ(fi)ΩM(fi)

)2

σ2(fi)
− 1

2

(κ− 1)2

ε2

]
dκ.

(6.22)

Expanding the exponential and grouping powers of κ:

LMarg(Ĉ|ΩM)

= N
√

2

π

1

ε
[
1 + Erf( 1√

2ε2
)
]

×
∫ ∞

0

exp

[
−1

2

{
κ2

(
1

ε2
+
∑
i

[γ(fi)ΩM(fi)]
2

σ2(fi)

)

− 2κ

(
1

ε2
+
∑
i

Ĉ(fi)γ(fi)ΩM(fi)

σ2(fi)

)

+

(
1

ε2
+
∑
i

Ĉ2(fi)

σ2(fi)

)}]
dκ

≡ N
√

2

π

1

ε
[
1 + Erf( 1√

2ε2
)
] ∫ ∞

0

exp

[
−1

2

(
Aκ2 − 2Bκ+ C

)]
dκ,

(6.23)

where for convenience we’ve defined

A =
1

ε2
+
∑
i

[γ(fi)ΩM(fi)]
2

σ2(fi)
, (6.24)

B =
1

ε2
+
∑
i

Ĉ(fi)γ(fi)ΩM(fi)

σ2(fi)
, (6.25)

and

C =
1

ε2
+
∑
i

Ĉ2(fi)

σ2
i

. (6.26)
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Figure 6.8: Posterior on the amplitude and spectral index of the gravitational-wave back-
ground following Advanced LIGO’s O1 and O2 observing runs. Here we assume a log-
uniform prior on the background’s amplitude. Although the posterior does show a marginal
peak near log Ω0 ≈ −8 and α ≈ 1, this peak is not statistically significant.

The final line of Eq. (6.23) is now in a form that we can integrate analytically
by hand, giving

LMarg(Ĉ|ΩM) = N 1

ε
√
A

[
1 + Erf( B√

2A
)

1 + Erf( 1√
2ε2

)

]
exp

[
−1

2

(
C − B2

A

)]
. (6.27)

The final likelihood that we implement in MultiNest is

L(ĈO1, ĈO2|ΩM) = LMarg(ĈO1|ΩM)LMarg(ĈO2|ΩM). (6.28)

Once again, we take ε = 0.072 for O1, the root-mean-square of the 4.8%
and 5.4% amplitude uncertainties in Hanford and Livingston [245]. In O2,
amplitude uncertainties were estimated to be less than 2.6% and 3.85% in
Hanford and Livingston across our 20-1726Hz frequency band [245, 251]; we
use the root-mean-square ε = 0.046 for our O2 uncertainty.

6.2.3 O1 and O2 limits on the gravitational-wave background

Given the O1 and O2 cross-correlation spectra between Hanford and Liv-
ingston, we find a Bayes factor B = −0.33 between the presence of a (tensor-
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Figure 6.9: As in Fig. 6.8, but assuming a uniform amplitude prior.

polarized) gravitational-wave background and Gaussian noise. Hence we have
again made no detection of a stochastic gravitational-wave signal.

We can, however, noticeably improve our upper limits on the possible strength
of the gravitational-wave background. Figure 6.8 shows the joint posterior be-
tween the background amplitude Ω0 and spectral index α following O1 and
O2, assuming a log-uniform prior on Ω0. For comparison to past frequentist
results, Fig. 6.9 additionally shows the joint posterior when assuming a uni-
form amplitude prior. After marginalizing over spectral index, we obtain 95%
credible upper limits

log Ω0 ≤ −7.47 (Log-uniform prior)

log Ω0 ≤ −6.95 (Uniform prior)
(6.29)

Comparing to the O1-only limits in Ch. 6.1 above, these represent an improve-
ment by roughly a factor of two. These upper limits, along with 95% credible
bounds on α, are listed in Tables 6.5 and 6.6.

We can additionally update our constraints on the presence of non-standard
polarizations in the gravitational-wave background. After jointly analyzing
O1 and O2 data, we obtain the Bayes factors shown in Table 6.4 between each
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Figure 6.10: Posterior on possible tensor, vector, and scalar-polarized contributions to the
gravitational-wave background, following the O1 and O2 observing runs. These results
assume a log-uniform prior on the amplitude of each background contribution.

signal sub-hypothesis and Gaussian noise. If we adopt the same prior odds as
in Chs. 5 and 6.1 above (see Fig. 5.15), we are left with odds OSIG

N = −0.53 be-
tween a generically-polarized stochastic background, and odds ONGR

GR = −0.25

for the presence of alternative gravitational-wave polarizations. Both are, un-
surprisingly, consistent with Gaussian noise. Figures 6.10 and 6.11 show the
full posteriors for the TVS model allowing the existence of tensor, vector, and
scalar modes, and 95% credible limits are listed in Tables 6.5 and 6.6 for all
unique combinations of polarizations.

It is worth mentioning that, unlike our O1-only results above, the our joint
O1+O2 posteriors are not featureless. In fact, Fig. 6.8 contains a rather notice-
able peak,1 centered at roughly Ω0 ≈ 10−8 and α ≈ 1, suggestively compatible
with the expected slope α = 2/3 due to compact binary mergers. Even more
notably, this peak appears in Fig. 6.10 showing joint posteriors for tensor, vec-
tor, and scalar-polarized contributions to the stochastic background. Within

1Infamously known to the Stochastic Group as “The Bump.”
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Figure 6.11: As in Fig. 6.10, but assuming a uniform amplitude prior.

Hypothesis lnB
T −0.33

V −0.33

S −0.31

TV −0.66

TS −0.65

VS −0.65

TVS −0.99

Table 6.4: Log Bayes factors between each signal sub-hypothesis considered and the Gaus-
sian noise hypothesis.
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Fig. 6.10, the peak appears only in the tensor sector. Recall that different
gravitational-wave polarizations are modulated by different overlap reduction
functions in our cross-correlation measurements Ĉ(f). Gaussian noise (or even
non-Gaussian terrestrial sources of coherence) does not “know” about the over-
lap reduction functions; naively, we might therefore expect a loud noise instan-
tiation to yield a peak in all polarization sectors. In contrast, Fig. 6.10 shows
exactly the behavior we might expect of a real gravitational-wave background
obeying general relativity.

As illustrated below in Ch. 6.A, this intuition is misleading – loud noise real-
izations can, in fact, lead to marginal posterior peaks that appear asymmet-
rically between the tensor, vector, and scalar sectors. This behavior can be
traced back to the overlap reduction functions. Because the overlap reduction
functions for the various gravitational-wave polarizations have different mag-
nitudes, in any given frequency band certain polarizations will appear more
strongly in Ĉ(f) than others. Thus elevated noise in Ĉ(f) can, depending on
the particular frequency, be more readily identified with certain polarizations
than than others.

6.3 Looking Ahead

So far we have detected no signs of the gravitational-wave background. Even
so, our new upper limits represent a remarkable improvement over past results.
The best upper limit set by Initial LIGO was, restricting to a spectral index
α = 0, Ω0 ≤ 5.6× 10−6 [229]. With our combined analysis of O1 and O2 data
from Advanced LIGO, we have achieved an upper limit of Ω0 ≤ 3.4 × 10−8

(marginalized across all α), or 3.5 × 10−8 if we set a delta-function prior at
α = 0. Despite our non-detection, we have improved on previous upper limits
by more than two orders of magnitude!

As I write, the next O3 observing run is currently underway, with both the
Advanced LIGO Hanford and Livingston detectors as well as Advanced Virgo
joining from the start. Current projections estimate that the astrophysical
background due to compact binary mergers may be detectable with the Ad-
vanced LIGO-Virgo network in the next several years [84]. The coming observ-
ing runs will also see the addition of KAGRA [35, 37]. Despite the large sepa-
ration between KAGRA, Virgo, and LIGO, this increasing number of baselines
will further accelerate our progress towards detection of the gravitational-wave
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background.

With this future in mind, it is crucial to begin preparing now for the day that
a gravitational-wave background is apparently detected. The tentative detec-
tion of the stochastic background is, in many ways, the easiest part of our en-
deavor. Once we have identified statistically-significant correlated signal across
our detector network, we will then have to address an even more challenging
question: how can we be sure that this signal is due to the gravitational-wave
background, rather than instrumental and/or terrestrial noise? We’ll explore
this question next in Ch. 7.

Appendix 6.A The polarization footprint of loud noise

In Ch. 6.2 above we saw that, although consistent with the non-detection
of the gravitational-wave background, the joint O1+O2 stochastic analyses
exhibited a marginal peak in our Ω0 posterior. Moreover, when performing
parameter estimation using our TVS model that encompasses alternative po-
larizations, we found that the peak appeared only in the tensor sector, just as
we would expect for a true marginal detection of a gravitational-wave back-
ground obeying general relativity. Random noise, the argument went, does not
“know” about gravitational-wave polarizations and their corresponding overlap
reduction functions; if the “bump” were due to noise alone, we might there-
fore expect it to appear in all three polarization sectors, rather than standard
tensor polarizations alone.

To semi-quantitatively test this intuition, we can purposefully inject mock in-
stantiations of elevated noise and inspect the resulting parameter estimation
on the gravitational-wave background. Figure 6.12, for instance, shows sim-
ulated measurements of Gaussian noise consistent with the variance of our
true O2 cross-correlation spectrum. To this Gaussian noise we have added a
frequency comb with a (negative) amplitude of 3× 10−7. The resulting ampli-
tude posteriors obtained when analyzing this data under the TVS hypothesis
are shown in Fig. 6.13. Contrary to intuition, the injected comb doesn’t con-
tribute apparent power symmetrically across polarizations, but instead yields
a peak confined entirely to the tensor sector, qualitatively quite similar to the
posterior peak that appeared in our O2 analysis above.
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Figure 6.12: Simulated Hanford-Livingston cross-correlation spectrum, consisting of a fre-
quency comb plus Gaussian noise. The Gaussian noise is consistent with the σ2(f) uncer-
tainty spectrum given by the O2 stochastic analysis. The filled grey region spans ±1σ(f).
The corresponding parameter estimation results are shown in Fig. 6.13.
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Figure 6.13: Tensor, vector, and scalar amplitude posteriors (under the TVS model) given
by analysis of the simulated comb in Fig. 6.12. These results are qualitatively similar to
that of our O2 stochastic search (see Figs. 6.8 and 6.10), with a peak that is confined entirely
to ΩT0 .
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Besides non-Gaussian features like correlated combs, we can alternatively ob-
tain apparent excess of noise if we underestimate the uncertainties σ(f) on the
measured cross-correlation spectrum Ĉ(f). Such underestimates can occur,
for example, if estimates of the detectors’ PSDs are biased by non-stationary
data. Figure 6.14 shows a simulated observation of random Gaussian noise,
with variance consistent not with the σ2(f) measured in O2 (black curves),
but instead with a deliberately inflated variance 1.7σ2(f) (red curves). Anal-
ysis of this inflated noise yields the amplitude posteriors shown in Fig. 6.15.
We again see a peak confined to one polarization mode alone, but this time
the vector sector. The exact behavior of elevated noise varies significantly
from realization to realization; the polarization sector in which a peak appears
varies between trials, and often peaks appear in two (but very rarely three)
sectors.

Our initial intuition – that terrestrial artifacts or elevated noise do not “know”
about polarizations and hence should project equally onto tensor, vector, and
scalar modes – appears incorrect. Thus the kinds of outlier that appeared in
the O2 analysis, confined entirely to tensor polarizations, are in fact consis-
tent with noise and should not necessarily be taken as evidence of a marginal
astrophysical signal.

The reason that elevated noise can contribute so asymmetrically to the differ-
ent polarization sectors can be traced back to the overlap reduction functions.
The fact that the overlap reduction functions for different polarizations have
distinct spectral shapes means that, at a given frequency, elevated noise can
masquerade as certain polarization modes much more readily than others. Re-
call that the signal-to-noise ratio of a measured gravitational-wave signal is

SNR =

(
Ĉ|γAΩA

M

)
√

(γBΩB
M |γCΩC

M)
. (6.30)

Let’s restrict to the cases of a pure-tensor (hypothesis “T”), pure-vector (V),
and pure-scalar (S) models for the gravitational-wave background. Further-
more, assume flat energy-density spectra, with spectral indices αA = 0. Then
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Figure 6.14: Simulated Hanford-Livingston cross-correlation spectrum, consisting of ele-
vated Gaussian noise. The shaded grey region spans ±1σ(f), as given by our O2 stochastic
search results. The simulated measurements, however, are randomly drawn from a delib-
erately broadened Gaussian distribution with variance 1.7σ2(f); the inflated ±1 standard
deviation band is shown in red. The corresponding parameter estimation results are shown
in Fig. 6.15.
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Figure 6.15: Tensor, vector, and scalar amplitude posteriors (under the TVS model) given by
analysis of the simulated elevated noise in Fig. 6.14. Like the simulated comb, here elevated
noise contributes asymmetrically to the inferred polarization content of the gravitational-
wave background, this time yielding a peak in the vector amplitude ΩV0 .
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the signal-to-noise ratio inferred under our T hypothesis, for example, is

SNRT =

(
Ĉ|γT

)
√

(γT |γT )

=

(∫
γ2
T (f)

σ2(f)
df

)−1/2 ∫
Ĉ(f)γT (f)

σ2(f)
df.

(6.31)

Similarly, the signal-to-noise ratios obtained under the V and S hypotheses
are

SNRV =

(∫
γ2
V (f)

σ2(f)
df

)−1/2 ∫
Ĉ(f)γV (f)

σ2(f)
df (6.32)

and

SNRS =

(∫
γ2
S(f)

σ2(f)
df

)−1/2 ∫
Ĉ(f)γS(f)

σ2(f)
df. (6.33)

Given these three models and associated broadband SNRs, define the SNR re-
sponse SNRA(f) as the recovered signal-to-noise ratio due to a delta-function
peak at frequency f when assuming polarization A:

SNRT (f) =

(∫
γ2
T (f)

σ2(f)
df

)−1/2
γT (f)

σ2(f)

SNRV (f) =

(∫
γ2
V (f)

σ2(f)
df

)−1/2
γV (f)

σ2(f)

SNRS(f) =

(∫
γ2
S(f)

σ2(f)
df

)−1/2
γS(f)

σ2(f)
.

(6.34)

These SNR responses are plotted in Fig. 6.16. The relative signs and ampli-
tudes indicate how elevated noise at different frequencies projects onto differ-
ent gravitational-wave polarizations. In region “A,” for instance, all three SNR
responses are negative, and SNRT (f) and SNRV (f) have roughly equal ampli-
tudes. Thus elevated negative coherence in the 20-40Hz range is expected to
project onto all three polarization sectors, but to be primarily identified with
tensor or vector-polarized gravitational waves. In region “B,” meanwhile, the
scalar response is positive while the tensor response has the largest negative
amplitude. Parameter estimation of excess positive coherence in this 40-45Hz
range would therefore prefer a scalar-polarized signal, whereas excess negative
coherence would be most readily identified as a tensorial gravitational-wave
background.
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Figure 6.16: Relative SNRs inferred from delta-function cross-correlations Ĉ at different
frequencies, when assuming tensor, vector, and scalar polarized gravitational-wave signals.
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Chapter 7
Validating Detection of the Stochastic
Gravitational-Wave Background

This chapter contains work published in:

T. A. Callister, M. W. Coughlin, J. B. Kanner, Gravitational-
wave geodesy: A new tool for validating detection of the stochas-
tic gravitational-wave background, Astrophys. J. Letters 869, L28
(2018).

I conceived of this project, produced all results, and wrote the majority of the
published manuscript.

7.1 The Danger of Correlated Noise

So far no observation has been made of the stochastic gravitational-wave back-
ground. In Ch. 6, we saw that analysis of Advanced LIGO’s O1 and O2 data
showed no evidence for the detection of a stochastic signal; instead we lim-
ited its amplitude to Ω0 ≤ 3.4 × 10−8 at 25Hz, improving on previous limits
by two orders of magnitude. Our situation may soon change, though. The
latest binary black hole and binary neutron star merger rates inferred by Ad-
vanced LIGO and Virgo [45, 46, 111] indicate that the astrophysical stochastic
gravitational-wave background may in fact be detectable in the next several
years [26, 48, 84, 176].

The cross-correlation search for the stochastic background relies on the as-
sumption that, in the absence of a gravitational-wave signal, the outputs of
different gravitational-wave detectors are fundamentally uncorrelated. The
LIGO-Hanford and LIGO-Livingston detectors, for instance, are separated by
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3000 km, with a light travel time of ≈ 0.01 s between sites. One might therefore
reasonably expect them to be safely uncorrelated at frequencies greater than
roughly (0.01 s)−1 ∼ 100 Hz, in the frequency band of interest for ground-based
detectors. All our work performed so far in Chs. 4-6 has been predicated on
this fundamental assumption.

In reality, however, terrestrial gravitational-wave detectors are not truly un-
correlated. Hanford-Livingston coherence spectra consistently show correlated
features that, if not properly identified and removed, can severely contaminate
searches for the stochastic gravitational-wave background [81]. Schumann res-
onances are one expected source of terrestrial correlation [252, 253]. Global
electromagnetic excitations in the cavity formed by the Earth and its iono-
sphere, Schumann resonances may magnetically couple to Advanced LIGO
and Advanced Virgo’s test mass suspensions and induce a correlated signal
between detectors [84, 186, 242, 243, 254, 255]. Another expected source of
correlation is the joint synchronization of electronics at each detector to Global
Positioning System (GPS) time. In Advanced LIGO’s O1 observing run, for in-
stance, a strongly correlated 1Hz comb was traced to blinking LED indicators
on timing systems independently synchronized to GPS [81].

Any undiagnosed terrestrial correlations may yield a false-positive detection
of the stochastic gravitational-wave background. We even just saw in Ch. 6.A
above that a comb can yield spuriously sensible parameter estimation results,
such as energy-density confined entirely to tensor modes as expected from gen-
eral relativity. More concerningly, while Schumann resonances and frequency
combs represent two known classes of correlation, other currently unknown
classes may also exist. The validation of any apparent observation of the
stochastic background will therefore require us to answer the following ques-
tion:

How likely is an observed correlated signal to be of astrophysical ori-
gin, rather than a yet-unidentified source of terrestrial correlation?

The gravitational-wave community lacks the tools to quantitatively answer
this question. Searches for gravitational-wave transients can address this issue
through the use of time-slides: the artificial time-shifting of data from one de-
tector relative to another’s. This process eliminates any coherent gravitational-
wave signals while preserving all other properties of the data, allowing for
accurate estimation of the false-positive detection rate. In cross-correlation
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searches for the stochastic background, however, time-slides would not only
remove a gravitational-wave signal but also any correlated terrestrial contam-
ination as well. Time-slides are therefore of limited use in searches for the
gravitational-wave background.

In this chapter I will explore a novel technique with which to evaluate the
astrophysical significance of an apparent correlated stochastic signal. Our
method is inspired by the field of radio geodesy, in which interferometric ob-
servations of the radio sky serve to precisely localize radio telescopes on the
Earth. In the same way, we will see that measurements of the gravitational-
wave background can be similarly reverse-engineered to infer the separations
and relative orientations of gravitational-wave detectors. By demanding that a
true gravitational-wave background yield results consistent with the known ge-
ometry of our detectors, we can separate true gravitational-wave signals from
spurious terrestrial correlations.

7.2 Gravitational-Wave Geodesy

Recall that searches for the stochastic background seek to measure the gravitational-
wave energy density Ω(f) by computing the cross-correlation spectrum Ĉ(f)

between pairs of gravitational-wave detectors:

Ĉ(f) =
1

∆T

20π2

3H2
0

f 3 Re [s̃∗1(f)s̃2(f)] , (7.1)

where ∆T is the time duration of data analyzed, and s̃I(f) is the (Fourier
domain) strain measured by detector I. Equation (7.1) is normalized such
that, for Advanced LIGO, the expectation value of Ĉ(f) is [83]

〈Ĉ(f)〉 = γ(f)Ω(f). (7.2)

In the weak signal limit, the variance of Ĉ(f) is given by 〈Ĉ(f)Ĉ(f ′)〉 =

δ(f − f ′)σ2(f), with

σ2(f) =
1

∆T

(
10π2

3H2
0

)2

f 6P1(f)P2(f), (7.3)

where PI(f) is the one-sided noise power spectral density of detector I. The
overlap reduction function γ(f) encodes the dependence of the measured corre-
lations on the detector baseline geometry – the detectors’ locations and relative
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Figure 7.1: Overlap reduction function γ(f) (blue) for the Advanced LIGO’s Hanford-
Livingston detector baseline. Alternative baseline geometries have different overlap reduc-
tion functions as illustrated by the collection of grey curves, which show overlap reduction
functions between hypothetical detectors randomly positioned on Earth’s surface.

orientations [186]. Advanced LIGO’s normalized overlap reduction function is
given by

γ(f) =
5

8π

∑
A

∫
Sky

FA
1 (n̂)FA

2 (n̂)e2πif∆x·n̂/cdn̂. (7.4)

Here, FA
I (n̂) is the antenna response of detector I to gravitational waves of

polarization A and ∆x is the separation vector between detectors. The inte-
gral is performed over all sky directions n̂ and a sum is taken over both the
“plus” and “cross” gravitational-wave polarizations. The leading factor of 5/8π

normalizes the overlap reduction function such that identical, coincident, and
co-aligned detectors would have γ(f) = 1.

Overlap reduction functions are strongly dependent upon baseline geometry –
different pairs of gravitational-wave detectors generically have very different
overlap reduction functions. To illustrate this, the overlap reduction function
for the Hanford and Livingston baseline is shown in blue in Fig. 7.1. The
collection of grey curves, meanwhile, illustrates alternative overlap reduction
functions for hypothetical pairs of detectors placed randomly on the surface of
the Earth.

The strong dependence of γ(f) on baseline geometry raises an interesting pos-
sibility. Given cross-correlation measurements Ĉ(f) between two detectors, we
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can use the measurements themselves to infer the baseline’s geometry. In the
electromagnetic domain, a very similar technique has long been used in the
field of geodesy: the experimental study of Earth’s geometry. While most
commonly used to study the radio sky, very-long baseline interferometry can
instead be used to precisely localize radio telescopes on the Earth, allowing
for measurements of tectonic motion to better than ∼ 0.1mmyr−1 [256, 257].
Similarly, here we will use the gravitational-wave sky to determine our detec-
tors’ relative positions and orientations.

As an initial demonstration, Fig. 7.2 illustrates a simulated observation of
the stochastic gravitational-wave background with design-sensitivity Advanced
LIGO. We assume a stochastic energy-density spectrum given by Ω(f) =

3.3 × 10−9 (f/25 Hz)2/3, chosen to yield SNR = 10 after three years of ob-
servation. The dashed curve indicates the mean correlation spectrum 〈Ĉ(f)〉
corresponding to this injection, while the solid trace shows a simulated cross-
correlation spectrum Ĉ(f) after three years of observation. By fitting to Ĉ(f)

(as will be described below in Ch. 7.3), we can attempt to estimate the geome-
try of the Hanford-Livingston baseline. The resulting posterior on the separa-
tion between the Hanford and Livingston detectors is shown in Fig. 7.3. This
posterior is consistent with the true separation between detectors (≈ 3000 km).

7.3 Differentiating Astrophysical and Terrestrial Sources of
Correlation

Of course, the physical separations between current gravitational-wave detec-
tors are already known to far better precision than can be obtained through
gravitational-wave geodesy. Nevertheless, the ability to measure baseline ge-
ometry with the gravitational-wave sky suggests a powerful consistency test
for any possible detection of the gravitational-wave background.

In the presence of an isotropic, astrophysical stochastic background, the mea-
sured cross-correlation spectrum Ĉ(f) must exhibit amplitude modulations
and zero-crossings consistent with the baseline’s overlap reduction function.
Thus, when using the data Ĉ(f) to infer the baseline’s geometry, we must
obtain results that are consistent with the known separations and orientations
of the detectors. In contrast, spurious sources of terrestrial correlation are not
bound to trace the overlap reduction function. Hence, there is no a priori rea-
son that a correlated terrestrial signal should prefer the true baseline geometry
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over any other possible detector configuration.

We can more rigorously define this consistency check within the framework
of Bayesian hypothesis testing. Given a measured cross-correlation spectrum
Ĉ(f), we can ask which of the following hypotheses better describes the data:

• Hypothesis Hγ: The measured cross-correlation is consistent with the
true baseline geometry (and hence the baseline’s true overlap reduction
function).

• Hypothesis HFree: The cross-correlation spectrum is consistent with a
model in which we do not impose the baseline’s known geometry, instead
(unphysically) treating the detectors’ positions and orientations as free
variables to be determined by the data.

An isotropic, astrophysical stochastic signal will be consistent with both Hγ

and HFree (assuming that the true baseline geometry is among the possible
configurations supported in HFree). As the simpler hypothesis, however, Hγ

will be favored by the Bayesian “Occam’s factor” that penalizes the more com-
plex model. So a true isotropic astrophysical stochastic background will favor
Hγ. A generic terrestrial signal, on the other hand, is unlikely to follow the
baseline’s true overlap reduction function, and so will be better fit by the ad-
ditional degrees of freedom allowed in HFree. Terrestrial sources of correlation
are therefore likely to favor HFree.

This procedure is similar to the “sky scramble” technique used in pulsar timing
searches for very low-frequency gravitational waves [258, 259]. In pulsar timing
experiments, the analogue to the overlap reduction function is the Hellings and
Downs curve, which quantifies the expected correlations between pulsars as a
function of their angular separation on the sky [260].1 By artificially shifting
pulsar positions on the sky, one can seek to disrupt this spatial correlation and
produce null data devoid of gravitational-wave signal but that retains other
(possibly correlated) noise features.

Given a tentative detection of the stochastic background, we can compute an
odds ratio O between hypotheses Hγ and HFree to determine which is favored

1Whereas the overlap reduction function quantifies correlations between detectors as a
function of their distance, in units of wavelengths.
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by the data. We assume Gaussian likelihoods, such that the probability of
measuring Ĉ(f) given a model spectrum CH(Θ; f) with parameters Θ is

p({Ĉ}|Θ,H) ∝ exp

[
−1

2

(
Ĉ − CH(Θ)|Ĉ − CH(Θ)

)]
, (7.5)

in terms of the inner product

(A|B) = 2

∫ ∞
0

A∗(f)B(f)

σ2(f)
df. (7.6)

For both hypotheses, we adopt a standard power-law form for the background’s
energy-density spectrum, defined by a reference amplitude Ω0 and a spectral
index α:

Ω(f) = Ω0

(
f

25Hz

)α
. (7.7)

Our model for the cross-correlation spectrum under Hγ is therefore

Cγ(Ω0, α; f) = γTrue(f) Ω0 (f/25Hz)α , (7.8)

where γTrue(f) is the true overlap reduction function for the given baseline.

For our unphysical hypothesis HFree, we additionally need a parametrized
model encompassing the various possible baseline geometries. We use the
scheme illustrated in Fig. 7.4. Given two detectors on the surface of the Earth
(which we approximate as a sphere of radius R⊕ = 6.4×106 m), we will choose
coordinates such that the first detector lies at the pole and the second along
the meridian, in the x − z plane. We then have three remaining degrees of
freedom that specify the baseline geometry: the polar angle θ between detec-
tors, and the rotation angles φ1 and φ2 of each detector about its local zenith.
Specifically, if ûi and v̂i are unit vectors aligned with the arms of detector i,
then we define φi as the angles between v̂i and the y-axis:

φi = cos−1 (v̂i · ŷ) . (7.9)

For convenience, we will actually work in terms of the distance ∆x = 2R⊕ sin θ/2

between detectors, rather than the polar angle. All together, our model cross-
correlation spectrum under hypothesis HFree is

CFree(Ω0, α,∆x, φ1, φ2; f) = γ(∆x, φ1, φ2; f) Ω0 (f/25Hz)α , (7.10)

where γ(∆x, φ1, φ2; f) is the overlap reduction function corresponding to de-
tectors separated by ∆x with local rotation angles φ1 and φ2.
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Figure 7.4: Parametrized geometry of an arbitrary detector baseline on the Earth’s surface.
We initially choose coordinates such that the detectors lie in the x − z plane, with one
detector at the pole. The remaining degrees of freedom are the polar angle θ between
detectors, and the rotation angles φ1 and φ2 specifying the orientation of each detector.

We set a log-uniform prior on Ω0 between (10−12, 10−6), extending well above
and well below Advanced LIGO’s sensitivity, and uniform priors on φ1 and φ2

on (0, 2π). Similarly, we use a uniform prior on cos θ between (−1, 1), corre-
sponding to a prior p(∆x) ∝ ∆x on the distance between detectors. We adopt
a triangular prior on the background’s spectral index: p(α) ∝ 1 − |α|/αMax,
with αMax = 6. This prior penalizes very steeply sloped backgrounds, while
still accommodating backgrounds that are much steeper than those predicted
from known sources. Finally, we will choose equal prior odds between both
hypotheses.

7.4 A Demonstration

To explore our ability to differentiate terrestrial correlation from an astro-
physical background, we will simulate Advanced LIGO measurements of three
different sources of correlation: an isotropic stochastic background, a corre-
lated frequency comb, and magnetic Schumann resonances. These latter two
sources are terrestrial, and hence should disfavor Hγ over HFree. We should
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Figure 7.5: Mean cross-correlation spectra used to simulate stochastic search measurements
with the Advanced LIGO Hanford and Livingston detectors. We consider an isotropic
astrophysical stochastic background, with energy density Ω(f) ∝ f2/3 [blue; Eq. (7.11)].
We additionally consider two sources of terrestrial, non-astrophysical correlation: a signal
due to magnetic Schumann resonances [red; Eq. (7.13)] and a correlated frequency comb
with ∆f = 2 Hz spacing [green; Eq. (7.12)]. The amplitudes of the spectra have been scaled
such that each is expected to be detected with SNR = 10 after three years of observation
with design-sensitivity Advanced LIGO. For comparison, the grey band illustrates the ±1σ
uncertainties of a cross-correlation search after three years of integration.

point out that there exist dedicated strategies for identifying and mitigating
combs and Schumann resonances [81, 243]. Here, we use combs and Schumann
resonances simply as proxies for any as-of-yet unknown sources of terrestrial
correlation that could contaminate stochastic search efforts and lead to a false
detection claim.

We adopt the following models for the cross-correlation spectra expected in
each test case:

1. Isotropic stochastic gravitational-wave background: We assume that the
stochastic gravitational-wave background is well described by a power law
with spectral index α = 2/3, as predicted for compact binary mergers. The
corresponding expected cross-correlation spectrum is

〈C(f)〉Stoch = γLIGO(f) Ω0

(
f

25Hz

)2/3

, (7.11)

where γLIGO(f) is the overlap reduction function for the Hanford-Livingston
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baseline.

2. Frequency comb: We consider a correlated comb of uniformly spaced lines,
separated in frequency by ∆f and with heights set by C0:

〈C(f)〉Comb = C0∆f
∞∑
n=0

δ(f − n∆f). (7.12)

Note that the leading factor of ∆f in Eq. (7.12) ensures that C0 is dimension-
less. In the examples below, we use a comb spacing of ∆f = 2 Hz.

3. Magnetic Schumann resonances: Given an environmental magnetic field
m̃(f), the strain induced in a gravitational-wave detector is s̃(f) = T (f)m̃(f),
where T (f) is a transfer function with units [strain/Tesla]. If there exists a
correlated magnetic power spectrum M(f) = 〈m̃∗1(f)m̃2(f)〉 between the sites
of two gravitational-wave detectors, then from Eq. (7.1) the resulting strain
correlation will be of the form Ĉ(f) ∝ f 3|T (f)|2 ReM(f). We take M(f) to
be the median Schumann auto-power spectrum measured at the Hylaty station
in Poland, as reported in Ref. [255]. This may not exactly match the magnetic
cross-power spectrum between Hanford and Livingston. Most notably, we take
ReM(f) to be everywhere positive, as the (potentially frequency-dependent)
sign of the Schumann cross-power between the LIGO detectors is not well
known. Nevertheless, this model captures the qualitative features expected of
a Schumann signal. The magnetic transfer functions for the LIGO detectors
are expected to be power laws, but their spectral indices are also not well
known; we somewhat arbitrarily choose T (f) ∝ f−2. Our Schumann signal
model is therefore

〈C(f)〉Schumann = S0

(
f

25 Hz

)−1
ReM(f)

ReM(25 Hz)
, (7.13)

normalized so that S0 is the cross-correlation measured at the reference fre-
quency 25Hz.

The mean cross-correlation spectra for the astrophysical, Schumann, and comb
models are shown in Fig. 7.5. For each source of correlation, we simulate Ad-
vanced LIGO measurements of 300 signal and noise realizations, with expected
signal-to-noise ratios ranging from 0.1 to 100. To produce each realization, we
scale the relevant amplitude parameter (Ω0, C0, or S0) to obtain the desired
SNR and add random Gaussian measurement noise δC(f) with variance given
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Figure 7.6: Log-odds between the physical and unphysical hypotheses Hγ and HFree as a
function of the amplitude Ω0 of an injected astrophysical stochastic background [Eq. (7.11)].
To enable a direct comparison between injection types, the upper horizontal axes shows the
signal-to-noise ratios of these injections. The recovered values of lnO increase linearly with
the strength of the astrophysical injections, indicating consistency with the correct (known)
detector geometry.

by Eq. (7.3). For each simulated measurement, we then compute an odds ra-
tio between Hγ and HFree to determine whether the data physically favors the
correct detector geometry, or unphysically favors some alternate geometry. We
compute Bayesian evidences using MultiNest [232, 233], an implementation
of the nested sampling algorithm [235, 236]. We make use of PyMultiNest,
which provides a Python interface to MultiNest [231].

The resulting odds plotted in Figs. 7.6-7.8 as a function of injected signal
amplitude. As physically distinct parameters, the power-law, Schumann, and
comb amplitudes should not be directly compared to one another. Instead,
we show the injections’ expected signal-to-noise ratios (which can be directly
compared) on the upper horizontal axes. To compute these SNRs, we assume
recovery with a power-law model of slope α = 2/3. Thus the SNRs of the
power-law injections are optimal. Although SNRs for the comb and Schu-
mann injections are not optimal (as the recovery model and injections are not
identical), they do represent the signal-to-noise ratios at which such signals
would contaminate searches for the stochastic background.

At signal-to-noise ratios SNR . 1, the log-odds for all three sources of corre-
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Figure 7.7: As in Fig. 7.6, but for injections of magnetic Schumann resonances [Eq. (7.13)].
The recovered log-odds decrease exponentially with the strength of the Schumann signal,
disfavoring the correct geometry. Thus lnO therefore successfully discriminates between an
astrophysical gravitational-wave signal and terrestrial Schumann contamination.
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Figure 7.8: As in Fig. 7.6, but for injections of a correlated frequency comb [Eq. (7.12)]. The
recovered log-odds again decrease exponentially, correctly rejecting the comb as terrestrial.
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lation cluster near lnO ∼ 0. For an astrophysical signal above SNR ∼ 1, lnO
becomes positive, growing approximately linearly with log Ω0. In contrast,
lnO falls exponentially to large negative values as we increase the amplitude
of Schumann and comb injections.

It is instructive to look at parameter estimation results for specific astro-
physical, comb, and Schumann injections. Figures 7.10-7.12 show posteriors
on the parameters of HFree given simulated observations of an astrophysical
background, a frequency comb, and a Schumann signal, each injected with
SNR = 10. Figure 7.9 shows these three injections as well as the posteriors
obtained on each cross-correlation spectrum. With the five free parameters
afforded by HFree, we succeed in reasonably fitting each of the three spectra.
Note that, although we appear to poorly recover the correlated comb injec-
tion, the posterior on C(f) closely matches the constant frequency-averaged
correlation spectrum.

Although the gravitational-wave background, comb, and Schumann injections
are all reasonably well fit under HFree, they yield very different posteriors
on Advanced LIGO’s baseline length ∆x and detector orientation angles φ1

and φ2. Figure 7.10 shows the parameter posteriors given by the simulated
astrophysical gravitational-wave background. The diagonal subplots show
marginalized one-dimensional posteriors on each parameter, while the cen-
tral subplots show joint posteriors between each pair of parameters. The solid
black lines indicate true parameter values and dashed curves show the priors
placed on each parameter. We recover posteriors consistent with the amplitude
and spectral index of the injected stochastic signal. More importantly, though,
we also obtain well-behaved posteriors on Advanced LIGO’s geometry, with
a distance posterior2 consistent with the true separation between detectors.
Interestingly, although neither φ1 nor φ2 are well constrained, their difference
is well measured. This can be seen in the joint posterior between both angles,
which strongly supports diagonal bands of constant φ1−φ2, including the true
rotation angles of Hanford and Livingston. We therefore have strong support
for the correct detector geometry, in this case yielding lnO = 3.6 (O = 36.6)
in favor of Hγ.

Figure 7.11, meanwhile, shows parameter estimation results obtained for the
comb injection. As seen in Fig. 7.9, we have enough freedom to fit the (average)

2This is the same posterior shown in Fig. 7.3
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Figure 7.9: Reconstructed cross-correlation spectra using simulated Advanced LIGO obser-
vations of an isotropic gravitational-wave background (top), a correlated frequency comb
(middle), and Schumann resonances (bottom). The blue, green, and red curves show the
injected gravitational-wave, comb, and Schumann spectra, respectively, while the shaded
bands indicate the ±1σ uncertainty region on the simulated measurements. The collections
of grey curves show the resulting posteriors on the injected cross-correlation spectrum under
the unphysical HFree hypothesis in which baseline geometry is allowed to vary.
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signal-to-noise ratio of 10. Dashed lines in the one-dimensional marginalized posteriors show
the prior adopted for each parameter, while solid black lines mark the injected background
parameters and the true Advanced LIGO geometry. In addition to recovering the amplitude
and spectral index of the injected stochastic signal, we obtain posteriors consistent with the
true separation and rotation angles of the Advanced LIGO detectors.

cross-correlation spectrum, yielding reasonably peaked posteriors in Fig. 7.11.
However, the posteriors on detector separation and orientation are unphysi-
cal, excluding the known Hanford-Livingston geometry. We therefore obtain
lnO = −58.5 (O = 3.9× 10−26). Similarly, Fig. 7.12 gives parameter estima-
tion results for the Schumann injection. Interestingly, the distance posterior
for this injection is consistent with the true Hanford-Livingston separation.
The rotation angle posteriors, though, exclude the true detector orientations,
yielding lnO = −62.7 (O = 5.9× 10−28).

The observed dependence of O on injected astrophysical and terrestrial signal
strengths can be analytically understood, at least approximately, using the
Laplace approximation. As discussed in Ch. 5.6.1, the Laplace approximation
involves two assumptions. First, our prior p(Θ|H) on the parameters of hy-
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Figure 7.11: As in Fig. 7.10 above, but for a simulated measurement of a correlated frequency
comb with SNR = 10. The correlated comb is not well fit by the Advanced LIGO overlap
reduction function, and so our recovered posteriors on Hanford and Livingston’s separation
and rotation angles are inconsistent with their known values (solid black lines).

pothesis H is assumed flat over a range ∆Θ, so that p(Θ|H) = 1/∆Θ. Second,
the likelihood p(Ĉ|Θ,H) is assumed to be strongly peaked about maximum-
likelihood parameter values Θ and a peak value L. The width of the peak
is δΘ (see Fig. 5.14). Under these assumptions, a Bayesian evidence may be
approximated as

p(Ĉ|H) =

∫
p(Ĉ|Θ,H)p(Θ|H)dΘ

≈ δΘ

∆Θ
L.

(7.14)

Given two hypotheses HA and HB, the odds ratio between them becomes

OAB =
p(Ĉ|HA)

p(Ĉ|HB)

p(HA)

p(HB)

≈ δΘA/∆ΘA

δΘB/∆ΘB

LA
LB

p(HA)

p(HB)
.

(7.15)

The ratio LA/LB is the standard maximum likelihood ratio between HA and
HB, while p(HA)/p(HB) is our prior odds between hypotheses. The leading
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Figure 7.12: As in Figs. 7.10 and 7.11 above, for a simulated observation of a correlated
Schumann signal with SNR = 10. While the posterior does encompass the correct Hanford-
Livingston separation, it is incompatible with the detectors’ true rotation angles.

term, known as the “Occam’s factor,” penalizes the more complex hypothesis
with the larger available parameter space.

Using the Laplace approximation, our odds ratio between hypotheses Hγ and
HFree may be written

O =
p(Ĉ |Hγ)

p(Ĉ|HFree)

≈
[
δΩ0

∆Ω0

δα

∆α

]
γ

[
δΩ0

∆Ω0

δα

∆α

δθ

∆θ

δφ1

∆φ1

δφ2

∆φ2

]−1

Free

×
exp

[
−1

2

(
Ĉ − Cγ|Ĉ − Cγ

)]
exp

[
−1

2

(
Ĉ − CFree|Ĉ − CFree

)] ,
(7.16)

where Cγ, for instance, is the maximum-likelihood fit to the data under the
Hγ hypothesis and we have set our prior odds to unity.

First, consider the case of an isotropic astrophysical background of amplitude
Ω0. In this case, both hypothesesHγ andHFree can successfully fit the resulting
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cross-correlation spectrum. Then our residuals are Ĉ−Cγ ≈ Ĉ−CFree ≈ 0 and
the likelihood ratio in Eq. (7.16) is approximately unity. Because both models
can fit the data, posteriors on each parameter (of each hypothesis) are peaked,
with fractional widths (e.g. δθ/∆θ) that scale as SNR−1 ∝ Ω−1

0 . Then, in the
presence of an astrophysical background, we might expect Eq. (7.16) to scale
as O ∝ Ω3

0, or
lnO ∼ 3 log Ω0, (7.17)

up to additive constants. This linear slope is, in fact, a reasonably good
approximation to the linear trend in Fig. 7.6.

Next, consider a correlated signal of terrestrial origin, characterized by some
amplitude C0. In this case, it is likely that Hγ is unable to accommodate the
measured correlations, but that HFree, with a greater number of free param-
eters, can successfully fit the data to some extent. Then Ĉ − CFree ≈ 0 but
Ĉ−Cγ 6= 0. So the resulting likelihood ratio in Eq. (7.16) is not constant, but
will depend exponentially on C0. Ignoring the leading Occam’s factors (which
can scale at most as a power law in C0), our odds ratio becomes

O ∝ exp

[
−1

2

(
Ĉ − Cγ|Ĉ − Cγ

)]
∝ exp

[
−1

2

(
Ĉ|Ĉ

)
+
(
Ĉ|Cγ

)
− 1

2

(
Cγ|Cγ

)]
,

(7.18)

giving

lnO ∼ −1

2

(
Ĉ|Ĉ

)
+
(
Ĉ|Cγ

)
− 1

2

(
Cγ|Cγ

)
. (7.19)

The maximum likelihood value of Ω0 [the amplitude of our model spectrum
Cγ(f)] is given by [226]

Ω0 =

(
f 2/3|Ĉ

)
(f 2/3|f 2/3)

. (7.20)

Although this does scale proportionally with C0, the inner product (f 2/3|Ĉ)

may be small if the measured correlation spectrum has a very different shape
from an astrophysical power law. In this case the cross term (Ĉ|Cγ) in
Eq. (7.19) may be neglected, and we recover lnO ∝ −C2

0 , or

lnO ∝ −102 logC0 . (7.21)

This again provides a reasonably good match to the scaling seen in Figs. 7.7
and 7.8.
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We’ve now seen that the geodesy technique can discriminate between an astro-
physical stochastic background and spurious, terrestrial sources of correlation.
One possibility that we’ve ignored, however, is that of false positives: non-
astrophysical correlation spectra that, purely by chance, yield posteriors con-
sistent with Advanced LIGO’s geometry. To carefully calculate the probability
of a false positive at a particular value of O, one could analyze a set of random
cross-correlation spectra (e.g. drawn from the space of spectra supported by
HFree) and construct a null distribution of the resulting Bayes factors. Alter-
natively, we can quickly estimate the probability of false positives at a given
lnO using the results in Fig. 7.6. At SNR = 10, injected isotropic signals yield
lnO ≈ 4, indicating e4 : 1 odds that these signals are drawn from Hγ rather
than HFree. Taken at face value, this implies that we would need to simulate
e4 + 1 ≈ 56 random correlation spectra from HFree with SNR = 10 before find-
ing one that yields lnB & 4 by chance. Interpreted in this way, the geodesy
formalism not only offers a means of rejecting non-astrophysical correlations,
but can bolster the statistical significance of a real stochastic signal.

7.5 Complications

Our analysis in this chapter has relied on several important assumptions. Most
notably, we have assumed that our model energy-density spectrum (a power
law) is a good descriptor of the true stochastic background. This assumption
was guaranteed by design, as our injected stochastic energy-density spectrum
was a power law. While most gravitational-wave sources are predicted to yield
power-law energy-density spectra in the Advanced LIGO and Virgo band, there
do exist speculative sources like superradiant axion clouds [261–263] that may
instead yield more complex spectra.

It is worthwhile to investigate what might happen if we mistakenly adopt an
incorrect model – one that is a poor descriptor of the background’s energy-
density spectrum. In this case, would we risk rejecting a real stochastic back-
ground as a terrestrial signal? To test this, we simulate observations of a
broken-power law background with energy density

Ω(f) =

Ω0 (f/f0)α1 f ≤ f0

Ω0 (f/f0)α2 f > f0

. (7.22)

We will analyze these observations, meanwhile, using an ordinary power-law
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Figure 7.13: Log-odds between Hγ and HFree when deliberately analyzing astrophysical
broken power-law signals with an incorrect power-law model. Each injected signal has a
knee frequency of f0 = 30 Hz and an amplitude Ω0 scaled such that the signal has SNR = 5
after three years of observation with design-sensitivity Advanced LIGO. Despite the signal-
model mismatch, we correctly classify the majority of the simulated signals, with no evidence
of increased false-dismissals due to the mismatch.

model, deliberately choosing an incorrect description of the injected stochastic
signal.

Figure 7.13 illustrates the resulting odds ratios for simulated observations with
α1 and α2 each ranging between −4 and 4. For each injection we chose f0 = 30

Hz, placing the broken power-law’s “knee” in the center of the stochastic sen-
sitivity band, and scaled the amplitudes Ω0 such that each observation has
SNR = 5 when naively recovered with an ordinary power law. The vast ma-
jority of these simulations yield positive log-odds factors, correctly classifying
these signals despite our poor choice of model. Note that the injections falling
along the line α1 = α2 are power laws. If the signal-model mismatch signifi-
cantly degraded our ability to classify stochastic signals, then Fig. 7.13 would
exhibit a color gradient as we move perpendicularly off the α1 = α2 line,
away from power laws and toward increasingly sharp signal spectra. Instead,
Fig. 7.13 shows no such gradient, and our method remains robust even in the
case of poorly fitting models.

We attribute this robustness to the fact that the isotropic energy-density spec-
trum and baseline geometry have very different effects on the expected cross-
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correlation spectrum 〈C(f)〉 = γ(f)Ω(f). The energy density spectrum Ω(f)

is everywhere positive, and so different energy-density spectra can change only
the amplitude of C(f), not its sign. The sign of C(f) is set by the overlap
reduction function, which alternates between positive and negative values with
zero-crossings fixed by the baseline geometry. Even if our model for C(f) as-
sumes an incorrect energy-density spectrum (as above), ourHγ hypothesis nev-
ertheless predicts the correct zero-crossings of the observed cross-correlation
spectrum. This offers some robustness against false-dismissal of a true stochas-
tic signal, even if our model energy-density spectrum is imperfect. At the same
time, it prevents us from over-fitting spurious terrestrial correlations [whose
sign is unrelated to the sign of γ(f)], mitigating the risk of false positives.

We made a number of other assumptions about the character of the gravita-
tional-wave background – that it is isotropic, unpolarized, and free of the
non-standard “vector” and “scalar” gravitational-wave polarizations predicted
by modified theories of gravity. These assumptions are unlikely to all be
strictly true. The stochastic background may be polarized by a variety of early
universe effects [85], as well as the scattering of gravitational waves by massive
objects during propagation [264]. Meanwhile, the solar system’s motion with
respect to the cosmic microwave background will likely impart a small apparent
dipole moment to the stochastic gravitational-wave background. Additional
anisotropies might arise from structure in the local universe [96, 265], together
with the fact that, over a finite integration time, we observe only a discrete
set of gravitational-wave events [100].

A stochastic background containing anisotropies, polarization asymmetries, or
non-standard polarizations would yield correlations that are not consistent
with the standard overlap reduction function, but that instead obey some
different effective overlap reduction function. If we naively analyzed such a
signal with the method presented in the main text, we would likely find a
preference for the (unphysical) hypothesis HFree over Hγ and risk rejecting the
signal as terrestrial.

In practice, deviations from our ideal stochastic background model are ex-
pected to be small, and so these complicating factors are unlikely to signif-
icantly affect our analysis. For example, the solar system moves with speed
v⊕ ≈ 370 km/s with respect to the cosmic microwave background [91], and so
the stochastic background’s apparent dipole moment is expected to be a fac-
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tor of v⊕/c ∼ 10−3 weaker than the isotropic monopole moment. The intrinsic
anisotropy and polarization of the astrophysical background are also predicted
to be small. Considering multipole moments up to l = 20 (the approximate
angular resolution limit of the LIGO Hanford-Livingston baseline [238]), the
observed energy density is expected to vary by no more than ∼ 10% with
direction [96, 265]. Any net polarization arising from scattering is predicted
to be further suppressed by many orders of magnitude in the frequency band
of Advanced LIGO and Virgo [264].

If any of these complications were a significant concern, however, the formalism
of Ch. 7.3 can be straightforwardly extended to accommodate these effects. As
an example, here we demonstrate how to extend our formalism to the case of
an anisotropic stochastic background.

When allowing for anisotropy, the observed energy-density of the stochastic
background will generically have directional dependence on our viewing angle
n̂. It is generally assumed that an anisotropic energy-density spectrum can be
factored via Ω(n̂, f) = F(f)P(n̂), where F(f) and P(n̂) encode the frequency
and directional dependence of Ω(n̂, f), respectively. We can further decompose
P(n̂) into a sum of spherical harmonics Ylm(n̂), giving [237–239]

Ω(n̂, f) = F(f)
∑
l,m

P lmYlm(n̂) (7.23)

for some set of coefficients P lm. We use a normalization convention in which∫
|Ylm(n̂)|2dn̂ = 1.

Over the course of a sidereal day, gravitational-wave detectors have varying
sensitivities to different sky directions n̂. In the presence of an anisotropic
background, the expected cross-correlation between detectors is therefore time-
dependent:

〈C(f, t)〉 = F(f)
∑
l,m

P lmγlm(t, f), (7.24)

where t is periodic over a sidereal day. This expression is similar in form to
our standard expectation in the presence of an isotropic signal, but contains a
sum over spherical harmonics and distinct (time-dependent) overlap reduction
functions for each spherical harmonic [237, 238]:

γlm(t, f) =
5

2
√

4π

∑
A

∫
Sky

Ylm(n̂)FA
1 (n̂, t)FA

2 (n̂, t)e2πif∆x(t)·n̂/cdn̂. (7.25)
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In Eq. (7.25), the detectors’ antenna patterns FA
i (n̂, t) and separation vector

∆x(t) are time-dependent, rotating with the Earth over the course of a side-
real day. The normalization of Eq. (7.25) is chosen such that monopole overlap
reduction function γ00(t, f) reduces to Eq. (7.4) for our standard isotropic over-
lap reduction function. The time-dependence of Eq. (7.25) can be conveniently
factored out via [237, 238]

γlm(t, f) = γlm(0, f)e2πim(t/T ), (7.26)

where T is the length of one sidereal day.

If we incorrectly assumed an isotropic background and averaged our cross-
correlation measurements over a sidereal day, we would measure cross-correlation

〈C(f)〉 =
1

T

∫ T

0

〈C(f, t)〉dt

= F(f)
∑
l,m

P lmγlm(0, f)
1

T

∫ T

0

e2πim(t/T )dt

= F(f)
∑
l

P l0γl0(0, f),

(7.27)

where the integral vanishes for all m 6= 0. Equation (7.27) does not trace the
isotropic overlap reduction function, but instead follows a linear combination of
the anisotropic γl0(f)’s. Thus, if the background were significantly anisotropic
(with some P l0 comparable in magnitude to the monopole amplitude P00), we
would incorrectly conclude that the resulting correlated signal is incompatible
with our detector geometry and dismiss it as terrestrial.

To safeguard against this possibility, we could extend hypothesis Hγ to include
anisotropic terms, adopting a model cross-correlation spectrum of the form

Cγ(Θ,P lm; f) = F(Θ; f)
∑
l,m

P lmγTrue
lm (t, f), (7.28)

where γTrue
lm (t, f) is the baseline’s known overlap reduction function for spheri-

cal harmonic (l,m) and Θ represents the variables parametrizing F(f). Anal-
ogously, the unphysical hypothesis HFree would become

CFree(Θ,P lm, θ, φ1, φ2; f) = F(Θ; f)
∑
l,m

P lmγlm(θ, φ1, φ2; t, f). (7.29)
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7.6 Discussion

As searches for the stochastic gravitational-wave background grow increas-
ingly sensitive, we may be nearing the first detection of the background. This
prospect, though, comes with significant risk, namely the high cost of a false
positive detection. To minimize this risk, it will be important to develop
methods to validate tentative detections of the gravitational-wave background.
Specifically, when assessing any apparent detection, it will be necessary to ar-
gue not just that an observed correlation is statistically significant, but that
it is astrophysical – that it is due to gravitational waves and not some terres-
trial process. While well-developed methods exist to quantify the statistical
significance of measured correlations, until now no generic method has existed
to gauge whether or not a statistically significant cross-correlation is indeed
astrophysical.

In this chapter, we explored how gravitational-wave geodesy – the use of the
stochastic gravitational-wave background itself to determine the positions and
orientations of gravitational-wave detectors – can form the basis for a novel
consistency check on an apparent detection of the background. If the measured
correlation between detectors truly represents a gravitational-wave signal, then
the reconstructed detector orientations and positions must be compatible with
their true, known values. Correlations due to any terrestrial source, on the
other hand, have no reason to prefer the baseline’s true geometry over any
other possible arrangement. By demanding that gravitational-wave geodesy
yield results consistent with the true baseline geometry, we can discriminate
between astrophysical and terrestrial sources of correlation. Used in this fash-
ion, gravitational-wave geodesy provides a second independent measure of de-
tection significance besides a standard signal-to-noise ratio.

7.7 Looking Ahead

This chapter concludes our exploration of the stochastic gravitational-wave
background. For the remainder of this thesis, I will shift gears and focus on
an altogether different aspect of gravitational-wave astronomy: the search for
electromagnetic counterparts to gravitational-wave events.



210

Chapter 8
Prompt Radio Emission from Compact Bi-
nary Mergers

So far we’ve largely focused on study of the stochastic gravitational-wave back-
ground – how we might detect it and what we might learn from it regarding
distant compact binaries and even the nature of gravity itself. In this chapter
we will switch gears entirely, leaving the stochastic background and instead
investigating the electromagnetic signatures that might accompany binary neu-
tron star and black hole mergers.

8.1 Electromagnetic Emission from Compact Binary Mergers

It should not come as a surprise that compact binary mergers yield observable
electromagnetic counterparts. In the gravitational-wave driven merger of a
binary with total mass M , a considerable fraction of the binary’s energy E ∼
Mc2 is radiated in time t ∼ GM/c3, giving a luminosity roughly of order [266]

L ∼ c5

G
∼ 1059 erg s−1. (8.1)

For comparison, the brightest supernova ever witnessed had an inferred bolo-
metric luminosity of 1045 erg s−1 [267]. Less than one-trillionth of the energy
lost by a merging compact binary need be converted to electromagnetic energy
to yield an overwhelmingly luminous electromagnetic signal. Any mechanism
that might extract a fraction of the binary’s energy, however small, is therefore
a good candidate for powering an electromagnetic counterpart.

The binary neutron star merger GW170817 confirmed these expectations.
Alongside its gravitational-wave signal [46], GW170817 was observed in vir-
tually every electromagnetic band. Figure 8.1 presents a timeline of these
observations, spanning gamma rays [53, 59], ultraviolet through infrared [60,
61, 268–271], x-rays [272], and, beginning roughly two weeks after the event,
radio [62]. Together, these observations yielded an extraordinary amount of
information, including measurements of nucleosynthesis in kilonova [63, 273–



211

Figure 2. Timeline of the discovery of GW170817, GRB 170817A, SSS17a/AT 2017gfo, and the follow-up observations are shown by messenger and wavelength
relative to the time tc of the gravitational-wave event. Two types of information are shown for each band/messenger. First, the shaded dashes represent the times when
information was reported in a GCN Circular. The names of the relevant instruments, facilities, or observing teams are collected at the beginning of the row. Second,
representative observations (see Table 1) in each band are shown as solid circles with their areas approximately scaled by brightness; the solid lines indicate when the
source was detectable by at least one telescope. Magnification insets give a picture of the first detections in the gravitational-wave, gamma-ray, optical, X-ray, and
radio bands. They are respectively illustrated by the combined spectrogram of the signals received by LIGO-Hanford and LIGO-Livingston (see Section 2.1), the
Fermi-GBM and INTEGRAL/SPI-ACS lightcurves matched in time resolution and phase (see Section 2.2), 1 5×1 5 postage stamps extracted from the initial six
observations of SSS17a/AT 2017gfo and four early spectra taken with the SALT (at tc+1.2 days; Buckley et al. 2017; McCully et al. 2017b), ESO-NTT (at
tc+1.4 days; Smartt et al. 2017), the SOAR 4 m telescope (at tc+1.4 days; Nicholl et al. 2017d), and ESO-VLT-XShooter (at tc+2.4 days; Smartt et al. 2017) as
described in Section 2.3, and the first X-ray and radio detections of the same source by Chandra (see Section 3.3) and JVLA (see Section 3.4). In order to show
representative spectral energy distributions, each spectrum is normalized to its maximum and shifted arbitrarily along the linear y-axis (no absolute scale). The high
background in the SALT spectrum below 4500Å prevents the identification of spectral features in this band (for details McCully et al. 2017b).

4

The Astrophysical Journal Letters, 848:L12 (59pp), 2017 October 20 Abbott et al.

Prompt radio 
emission?

Figure 8.1: Timeline of the multi-messenger observations of the binary neutron star merger
GW170817, adapted from Ref. [54]. Beyond the electromagnetic counterparts associated
with GW170817, binary neutron stars are additionally predicted to give rise to prompt
radio emission radiated in coincidence with the gravitational-wave signal, as shown in the
annotation.

275], new insights into gamma-ray burst mechanisms [276, 277], constraints on
the neutron star equation of state [49, 278, 279], an independent measurement
of the Hubble constant [64, 280], and powerful new constraints on alternative
theories of gravity [52, 53, 281–283].

8.2 Prompt Radio Emission

Beyond this already-diverse range of counterparts, binary neutron stars are
predicted to yield yet another electromagnetic signature: prompt radio
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emission. Unlike the late-time radio emission from GW170817, which was
due to synchrotron radiation from a relativistic jet, this theorized prompt ra-
dio emission is generated at or near the time of merger by a distinct process (or
processes) operating in the immediate vicinity of the merging neutron stars.

A diverse range of processes have been theorized to generate prompt radio
emission. As detailed in the following subsections, possible emission mecha-
nisms can be loosely sorted into three categories based on the time at which
they predict prompt radio emission to be generated. Each of these mechanisms
is individually quite speculative; it is not at all certain which (if any) are at
play in real binary neutron star mergers. Conveniently, though, all have been
suggested to give rise to phenomenologically similar signals – sub-second, co-
herent radio pulses generated simultaneously with the final gravitational-wave
“chirp.”

8.2.1 Before Merger

A host of processes have been proposed to convert the orbital and/or magnetic
field energy of a compact binary into electromagnetic radiation in the final
moments just before merger. Figure 8.2 depicts a late-stage binary neutron
star system. The leftmost neutron star is assumed to be highly magnetized
and slowly spinning, while the rightmost neutron star has a negligible intrinsic
magnetic field. Paired high- and low-field neutron stars like this are predicted
to arise from binary stellar evolution. The older, firstborn neutron star accretes
matter from its (then) stellar companion, increasing its rotation rate while
decreasing its magnetic field, much like the recycling of millisecond pulsars.
The second, younger neutron star is later born with a comparatively stronger
magnetic field and slower rotation rate.

The system’s net magnetic field offers several means of energy extraction [266].
The rapid orbit of the primary’s dipole field generates a time-varying quadrupole,
giving rise to magnetic quadrupole radiation. Meanwhile, the primary induces
a dipole magnetic field around the unmagnetized companion; the rotation of
this induced dipole with the binary’s orbit yields dipole radiation. Lense-
Thirring precession can also source dipole emission via the modulation of the
primary’s magnetic field orientation.

The relativistic motion of the unmagnetized companion through the primary’s
magnetic field also induces a strong voltage across the companion. This volt-
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age might accelerate particles away from the binary, driving a relativistic wind
of charged particles [287–289]. Alternatively, it might drive particles inward
toward the primary, establishing a current loop – effectively a DC circuit –
guided by magnetic field lines [287–294]. This is a so-called “unipolar in-
ductor,” the same mechanism that powers radio emission from the Jupiter-Io
system [295]. The unipolar inductor mediates several additional channels for
orbital energy extraction. Curvature radiation might arise from charged parti-
cles moving relativistically along the magnetic field lines [290]. Interaction of
the current with the primary’s magnetic field may torque the binary and spin
up the primary [291, 292]. With the circuit analogy in mind, resistive losses
might deposit energy in the magnetosphere, driving additional particle accel-
eration and eventual synchrotron radiation [291–293]. Resistive losses on the
neutron stars themselves, meanwhile, will heat and potentially ablate portions
of their outer surfaces [292].

Yet more channels are possible if both stars have non-negligible magnetic fields.
If the neutron stars’ dipole fields are misaligned, magnetic reconnection can
occur in the space between stars [285, 286]. Alternatively, aligned dipoles
can sequester energy via the amplification of the stars’ parallel magnetic
fields [285, 286]. Finally, at very late times the neutron stars may become
tidally locked, with rotational periods matching their orbital period. Co-
rotation may be accompanied by a burst of energy from reconnecting field
lines [286] or by coherent dipole radiation due to the synchronized rotation of
both stars’ magnetic fields [284].

An altogether different pre-merger energy source is the outgoing gravitational
radiation itself. Magnetized plasma is unstable to perturbations from gravi-
tational waves. The intense gravitational radiation generated in the moments
before merger can trigger these instabilities in the plasma surrounding the bi-
nary, driving the growth of magnetoacoustic and Alfven waves that propagate
parallel to the gravitational waves [296–300]. The subsequent interaction of
these magnetohydrodynamic waves with relativistic outflowing winds may be
sources of detectable synchrotron and/or inverse Compton radiation [298].

8.2.2 During Merger

Prompt emission may alternatively arise during the binary’s final merger, due
to processes associated with possible short-lived merger remnants.
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It is generally expected that neutron stars can sustain maximum masses of
roughly 2.3M� [301]. Merger remnants heavier than this maximum will ul-
timately collapse into black holes. This collapse is not necessarily instant,
though. Rotating “supramassive” neutron star remnants with∼ 2.5M� masses
can centrifugally support themselves (temporarily) against gravitational col-
lapse. Highly-magnetized remnants may have lifetimes between 10 s and 104 s

after merger [302], while weakly-magnetized remnants might survive for thou-
sands of years [303]. When these remnants inevitably collapse, the newborn
black hole must shed the magnetic “hair” of the supramassive remnant. The
result is the rapid destruction of the system’s magnetosphere via reconnection,
accelerating particles to relativistic speeds and potentially producing coherent
radio emission through curvature radiation [302–304].

Even heavier “hypermassive” remnants might exist, supported by differential
(rather than solid-body) rotation for roughly 10 ms before collapsing to a black
hole. Differential rotation can strongly amplify the remnants’ initial magnetic
field to magnetar field strengths (∼ 1016 G). Subsequent magnetic braking of
the hypermassive remnant might then power coherent pulsar-like emission for
the duration of the remnant’s lifetime [305]. Following gravitational collapse,
there presumably may also be an electromagnetic transient associated with the
destruction of the hypermassive remnant’s amplified magnetic field, analogous
to the case of supramassive remnants above.

Not all authors agree. In Refs. [288, 289, 306] it is argued that, in the presence
of a plasma-filled magnetosphere, the “no-hair” theorem is invalid and the final
black hole retains the remnant’s magnetic field. In this case there is no rapid
destruction of the magnetosphere. Instead, the newborn black hole is mag-
netically braked just like a neutron star, generating a potentially observable
electromagnetic signal [288, 306].

8.2.3 Post-Merger

Finally, prompt radio emission may even arise in the moments after merger,
due to a highly-magnetized relativistic wind launched by the binary merger.
As the relativistic wind interacts with ambient interstellar gas, it is decel-
erated and its magnetic field weakened. When, in the wind’s rest frame,
the energy densities of the oncoming gas and the wind’s magnetic field be-
come comparable, the wind-gas interaction becomes turbulent, exciting non-
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stationary currents at the wind front and generating low-frequency electro-
magnetic waves [307–309].

8.3 Why Radio?

In Ch. 8.2 we’ve seen many means of energy extraction from binary neutron
stars. We’ve seen conspicuously fewer explicit means of radio wave production.
Instead, most authors cited above posit some microphysical process, generally
parametrized by an unknown efficiency factor, that converts the extracted
energy into coherent radio emission.

Why should we trust that these mechanisms do in fact yield radio emission?
The answer is two-fold. First, many of these ideas describe conditions resem-
bling the environments of pulsars, with relativistic charges moving along the
field lines of a highly magnetized and rapidly rotating central engine. And,
although we don’t understand how, we know that pulsars ultimately produce
coherent radio emission (see e.g. Ref. [310]). It may not be too large a leap,
therefore, to suspect that whichever mechanism(s) are responsible for pulsar
radio emission might also be at play here.

Second, in many ways these authors’ focus on radio signatures anticipates
observational selection effects. We are most likely to detect the brightest elec-
tromagnetic signals, which in turn are most efficiently produced by coherent
emission. And coherent emission is most readily obtained at low frequencies
and long wavelengths. There are also temporal selection effects to consider.
As will be discussed more below, the speed at which electromagnetic waves
travel through the intergalactic and interstellar media is frequency-dependent.
Prompt emission at high frequencies propagates at the speed of light, and
so will arrive at Earth instantaneously with the gravitational-wave signal.
Barring independent detection by wide-field survey instruments, this high-
frequency emission will have come and gone by the time the gravitational-wave
signal is registered and announced to electromagnetic observers. Prompt emis-
sion at radio frequencies, on the other hand, propagates below the (vacuum)
speed of light; the resulting delay between the arrival of gravitational-wave
and radio signals may offer just enough time to detect a gravitational wave,
alert and point radio telescopes, and catch the slightly slower prompt radio
counterpart.
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8.4 Looking Ahead

In the next two chapters we’ll explore what we can presently say about the
nature of prompt radio emission. First, in Ch. 9 I’ll ask if prompt radio emis-
sion has already been detected in the form of fast radio bursts (FRBs).
Powerful radio transients of extragalactic origin, the source of FRBs remains
unknown. Many authors speculate that FRBs may constitute prompt radio
emission from distant compact binaries. We’ll investigate whether this associ-
ation is plausible by comparing the inferred rates of FRBs and compact binary
mergers.

In Ch. 10 I will then present the first search for prompt radio emission as-
sociated with a gravitational-wave detection. This search target the binary
black hole event GW170104 [42]. While binary black holes are generally not
expected to yield electromagnetic emission, this study will develop and demon-
strate the tools needed for prompt radio follow-up of compact binaries, tools
that are currently being used to follow-up gravitational-wave candidates in the
present O3 observing run.



218

Chapter 9
Fast Radio Bursts as Prompt Emission
from Compact Binaries

This chapter contains work published in:

T. Callister, J. Kanner, and A. Weinstein, Gravitational-Wave Con-
straints on the Progenitors of Fast Radio Bursts, Astrophys. J.
Letters 825, L12 (2016).

I led this study, producing all results and writing the published manuscript.

Today the detection of fast radio bursts (FRBs) seems nearly commonplace
– high time-resolution radio surveys are routinely detecting dozens of FRB
signals. In 2016, though, when this work was published, there were only 17
confirmed fast radio bursts. While I have updated Ch. 9.1 with the latest FRB
count and appropriate references, the remainder of this chapter is written from
the perspective of 2016, assuming only those FRBs publicly announced when
Callister et al. (2016) was in preparation. This also means that the rates of
compact binary mergers quoted in Ch. 9.2 will be rather dated. In 2016, our
knowledge of the binary black hole merger rate was based on only a single event
– GW150914. And we had only upper limits on the rate of binary neutron
star mergers. Nevertheless, the conclusions drawn in this chapter are extremely
robust, and do not change when using the most up-to-date FRB and compact
binary merger rates. Although not reflected in the text, I have annotated
Fig. 9.2 to include present-day constraints on compact binary merger rates.

9.1 Fast Radio Bursts

The discussion of prompt radio emission in Ch. 8 above may well remind
you of another class of radio transient – fast radio bursts. First discovered
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in 2007 [311], fast radio bursts (FRBs) are radio transients characterized by
millisecond durations, ∼Jansky flux densities, and dispersion measures (DMs)
consistent with sources at Gpc distances. Although first observed only with
the Parkes Radio Telescope (and partially conflated with a misbehaving mi-
crowave), FRBs are now observed with a growing number of instruments, in-
cluding Parkes [311–318], Arecibo [319–321], Green Bank [322], Molonglo [323–
325], the SKA Pathfinder [326–330], and CHIME [331, 332]. FRBs also seem
to be quite numerous. To date, 73 confirmed FRBs have been reported [333].1

After correcting for sky coverage and observing cadence, this implies that be-
tween 103 and 104 occur on the sky per day [313, 334]. That is, a hypothetical
telescope array observing continuously with complete sky coverage would ob-
serve between 1000 and 10,000 FRBs per day!

A large number of theories have been put forward as to the possible source(s)
of FRBs. Theorized sources include (but are certainly not limited to) su-
pergiant neutron star pulses [335, 336], pulsar-planet systems [337], bremm-
strahlung from gamma-ray bursts or active galactic nuclei [338], and galactic
flare stars [339, 340]. More exotic sources include the explosions of white
holes [341], primordial black hole evaporation [342], cosmic string decay [343],
or even lasers used by advanced alien civilizations to propel light sails [344].

As tempting as alien light sails may be, there is another attractive possibility:
compact binary mergers. The observed properties of FRBs are tantalizingly
similar to those expected of prompt radio emission. Many of the mechanisms
discussed in Ch. 8, in fact, were first proposed as possible explanations for
the origin of FRBs [284, 290, 291, 302–304]. Mechanisms like the unipolar
inductor [294] may also be at play in neutron star-black hole [288, 345–347]
and even binary black hole [288, 348] mergers.

The possibility that binary coalescences are FRB progenitors is particularly
appealing. This association would further bolster the case for prompt radio
monitoring of compact binary mergers [349–356] Although the recent discov-
ery of two repeating fast radio bursts [320, 332] points to a non-cataclysmic
origin for at least some fraction of FRBs, FRBs may not constitute a single
population [320, 346]; there may instead exist multiple FRB populations, each
arising from a different class of progenitor.

1See the frbcat: http://www.astronomy.swin.edu.au/pulsar/frbcat/

http://www.astronomy.swin.edu.au/pulsar/frbcat/
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If binary coalescences are to be considered plausible models for one such pro-
genitor population, then their astrophysical rates must be less than or equal
to the inferred rate of FRBs. In this chapter, we will explore this consistency.
We will find that existing and future gravitational-wave measurements of the
rates of binary coalescences can be leveraged to place novel constraints on the
nature of FRB progenitors. In some cases, we can confidently rule out certain
classes of binary coalescences as dominant FRB progenitors.

9.2 Rates of Compact Binary Coalescences

The Advanced LIGO and Virgo detection of the BBH merger GW150914 [25]
produced the first direct measurement of the binary black hole merger rate per
comoving volume (the so-called “rate density”) in the nearby Universe. From
this event, it was inferred that the BBH merger rate density lies between 2

and 400 Gpc−3 yr−1 [27].

While the rate densities of BNS and NSBH mergers remain unknown, binary
pulsar observations and population synthesis models place rough bounds on
the expected BNS and NSBH rates, respectively.2 BNS and NSBH merger rate
densities are predicted to plausibly fall between Rbns = 10− 104 Gpc−3 yr−1

and Rnsbh = 0.6− 103 Gpc−3 yr−1 [357–360]. Note, however, that Ref. [361]
predicts NSBH rate densities as low as 0.04 Gpc−3 yr−1. Gravitational-wave
experiments have not yet begun to probe these predicted ranges; the best
experimental results, placed by jointly by Initial LIGO and Initial Virgo, limit
BNS and NSBH merger rate densities to Rbns < 1.3× 105 Gpc−3 yr−1 and
Rnsbh < 3.1× 104 Gpc−3 yr−1, respectively [362].

Although these Initial LIGO/Virgo limits are well above the most optimistic
predictions from population synthesis and binary pulsars, Advanced LIGO’s
recently concluded first observing run (O1) is expected to measure rate den-
sities down to Rbns ≈ 3× 103 Gpc−3 yr−1 and Rnsbh ≈ 750 Gpc−3 yr−1, ex-
perimentally probing for the first time the range of astrophysically plausible
merger rates [363]. In 2017-18, Advanced LIGO’s second O2 observing run is
projected to be sensitive3 to rate densities as low as Rbns ≈ 450 Gpc−3 yr−1

2We now know the binary neutron star merger rate to be Rbns = 0.1 − 3.8 ×
103 Gpc−3 yr−1 [45]. The binary black hole merger rate has been refined to Rbbh =
0.1 − 1.1 × 102 Gpc−3 yr−1, and an improved upper limit of Rnsbh < 600 Gpc−3 yr−1 has
been placed on the neutron star-black hole merger rate [45, 111].

3Clearly this projection was optimistic; see the previous footnote.
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and Rnsbh ≈ 100 Gpc−3 yr−1, while O3 may further push Advanced LIGO’s
sensitivity to Rbns ≈ 100 Gpc−3 yr−1 and Rnsbh ≈ 20 Gpc−3 yr−1 [363].

9.3 Rates of FRBs

The predicted and measured rates of binary coalescences allow for direct con-
straints on the nature of FRB progenitors by comparison to the inferred FRB
rate per comoving volume. Other authors have considered the physical rate of
FRBs, but these calculations are typically not shown in detail and significant
disagreement exists in the literature, e.g. Ref. [284] vs. Refs. [364, 365]. Our
goal in this section is therefore a careful accounting of the FRB rate density.
As we will show below, the FRB rate per comoving volume is potentially far
higher than the corresponding rate densities of binary coalescences. Thus, it is
unlikely that the coalescence of stellar-mass compact binaries represents more
than a small fraction of FRB progenitors. Because of this rate discrepancy,
the lowest FRB rate estimates are most compatible with CBC progenitors. In
the following, we will therefore deliberately seek a lower limit on the FRB rate
density in order to most generously assess the plausibility of CBC progenitors
of FRBs.

The inferred FRB rate per comoving volume is approximately (3robs)/(4πD
3).

Here, D is the comoving distance containing the observed FRB population and
robs is the observed rate at which FRBs occur on the sky. For simplicity, we
will assume this rate density is constant and neglect evolution with redshift.
If FRB emission is beamed, then the rate robs is undercounted due to selection
effects – beamed FRBs, like pulsars or GRBs, are only observed if the Earth
lies within the path of the beam. In general, the FRB rate per comoving
volume is

Rfrb ≈
3robs

ΩD3
, (9.1)

where Ω is a typical solid angle over which emission is beamed.

Although few FRBs have been observed, their inferred rate on the sky is large.
With four FRB detections at high Galactic latitudes using Parkes, Ref. [313]
inferred that robs = 1.0+0.6

−0.5 × 104 FRBs occur on the sky per day. However,
there remains considerable disagreement as to the true value of robs, with sub-
sequent radio surveys producing differing rate estimates, often defined with
respect to different fluence limits and different assumptions about search sys-
tematics. Ref. [334], for instance, points out that FRB detection is subject to
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significant selection effects, such as survey incompleteness below a fluence of
∼ 2 Jyms, suboptimal recovery of broad radio pulses, and potential obscura-
tion of FRBs in the galactic plane. They estimate a fluence-limited detectable
FRB rate of 2500 sky−1 day−1 above ∼ 2 Jy ms. Ref. [366] also arrives at
robs ≈ 2500 sky−1 day−1 but by different means, suggesting that the apparent
FRB rate at high latitudes is enhanced by interstellar scintillation. Ref. [367],
meanwhile, adopts a Bayesian approach, combining several published rate es-
timates to obtain robs = 4.4+5.2

−3.1 × 103 sky−1 day−1 above 4.0 Jy ms. On the
other hand, Ref. [368] argues that previously published single-dish rate esti-
mates are biased below their true values and that, once potential biases are
corrected, previous estimates are consistent with robs = 1.2× 104 sky−1 day−1

above 1.7 Jy ms.

It is not obvious which value to select for robs (or even which range of un-
certainties to adopt). In order to place a robust lower limit on the FRB rate
density, however, we will take robs = 2500 sky−1 day−1, consistent with the low-
est of the above estimates. To additionally allow for various search selection
effects, we will define η as the FRB detection efficiency, the fraction of oth-
erwise detectable FRBs (e.g. with intrinsic signal-to-noise ratios above some
threshold detection value) which are actually recovered in a radio transient
search. The physical rate of FRBs on the sky is then robs/(ηΩ).

Distances to FRB sources may be estimated using their reported DMs, which
we obtained from the frbcat [333]. Assuming that the intergalactic medium
(IGM) is homogeneous and fully ionized, the dispersion measure DMigm due
to propagation through the IGM is related to source redshift via [369, 370]

DMigm(z) =
nec

H0

∫ z

0

(1 + z′) dz′√
Ωm(1 + z′)3 + ΩΛ

, (9.2)

where ne = ρcΩb/mp = 2.5 × 10−7 cm−3 is the local free electron density in
a fully ionized Universe. Here, Ωb, Ωm, and ΩΛ are the energy densities of
baryons, matter, and dark energy, respectively, mp is the proton mass, and
ρc = 3H2

0/8πG is the critical energy density required to close the Universe. G
is Newton’s constant, c the speed of light, and H0 the Hubble constant; we use
H0 = 67.7 km s−1Mpc−1, Ωb = 0.049, Ωm = 0.31, and ΩΛ = 0.69 [371]. The
comoving distance corresponding to redshift z is given by

D(z) =
c

H0

∫ z

0

dz′√
Ωm(1 + z′)3 + ΩΛ

. (9.3)
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Figure 9.1: Distribution of inferred distances to known FRBs, assuming a homogeneous,
fully ionized intergalactic medium and neglecting dispersion measure contributions from
both the Milky Way and FRB host galaxies. We take 3 Gpc as a fiducial distance bounding
the observed FRB population.

In the small redshift limit this reduces to D ≈ cz/H0, and Eq. (9.2) becomes
DMigm(z) ≈ neD. Using Eqs. (9.2) and (9.3), the inferred comoving distances
to the 17 known FRBs are shown in Fig. 9.1. Based on this sample, we will take
D = 3 Gpc as a fiducial distance encompassing the observed FRB population.

We have made several assumptions in computing the distances shown in Fig. 9.1.
Since a factor of 2 error in the fiducial distance will result in a factor of 23

error in the FRB rate density, it is important to highlight these assumptions
and understand how they affect our result.

First, we have assumed that the observed radio dispersions are entirely due to
propagation through the IGM. In reality, the Milky Way may contribute up
to ∼ 20% of the observed DM [333]. The distances in Fig. 9.1 may therefore
be overestimated by a factor of ∼ 1.25. If we also allow for a comparable
DM contribution by the FRB’s host galaxy (as well contributions from any
matter over-densities along the line of sight to the FRB), then the distances
may be overestimated by at least a factor of 1.7. This implies that our FRB
rate density is underestimated by a factor between 2 and 5.

Second, we assumed a fully ionized Universe. While valid for hydrogen, this
is not necessarily true for helium, which may be either singly or fully ionized.
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Helium makes up approximately 24% of the IGM by mass [370]; if this helium
is only singly ionized, then the free electron density ne will be reduced by
roughly 10%. Finally, Ωb is an overestimate of the baryon density in the IGM,
since ∼ 10% of baryons are sequestered in galaxies [372]. Together, these
two approximations cause ne to be (at most) 20% larger than the true free
electron density in the IGM. Hence the fiducial distance D is underestimated
by a factor of 1.25, and the FRB rate density is correspondingly overestimated
by a factor of 2.

Of the two assumptions described above, the first (uncertainty in the galactic
and intergalactic DM) will cause the fiducial distance to be underestimated,
while the second and third (uncertainty in ne) cause the distance to be over-
estimated. Of these uncertainties, the potentially large overestimate of the
intergalactic DM is expected to dominate. Thus our choice of D = 3 Gpc is
likely an upper bound on the fiducial FRB distance. This is in line with our
goal – to obtain a robust lower limit on the rate density of FRBs. Because
Rfrb ∝ D−3, any decrease in the fiducial distance D will only increase our
estimated FRB rate density, further increasing the tension identified below
between the rates of FRBs and binary coalescences.

All together, the FRB rate per comoving volume is

Rfrb = 8.1× 103 Gpc−3 yr−1

(
robs

2500 sky−1 day−1

)(
1

η

)
×
(

3Gpc
D

)3(
4π Sr

Ω

)
.

(9.4)

The characteristic parameters in Eq. (9.4), robs = 2500 sky−1 day−1, a perfect
detection efficiency η = 1, and isotropic radio emission Ω = 4π Sr, have been
chosen to yield the lowest possible FRB rate density consistent with observa-
tions:

RLow
frb = 8.1× 103 Gpc−3 yr−1. (9.5)

A more plausible rate density, on the other hand, is obtained by assuming
robs = 5000 sky−1 day−1, an imperfect detection efficiency of η = 0.5, and
moderately beamed emission with a 30◦ half-opening angle. These values give

RRealistic
frb = 4.8× 105 Gpc−3 yr−1, (9.6)

nearly two orders of magnitude larger than Eq. (9.5).
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Figure 9.2: Binary coalescence rates compared to the inferred rate of FRBs. Solid bars
indicate the range of BNS (blue) and NSBH (orange) merger rates predicted by binary pulsar
observations and population synthesis models [359], as well as the measured LIGO/Virgo
rate of BBH mergers (red) [27]. Also shown are existing Initial LIGO/Virgo (iLV) limits
and projected O1, O2, and O3 sensitivities [362, 363]. The gray band indicates a range of
potential FRB rate densities, from the lowest plausible value in Eq. (9.5) to a more realistic
estimate in Eq. (9.6). (Note: Shown in black are the latest estimates of compact binary
merger rates [45, 111], following the O2 observing run.)

Our lower limit on the FRB rate density agrees well with the rate previously
estimated by Ref. [284]. It is, however, more than an order of magnitude higher
than the more recent results computed in Refs. [364, 365]. The discrepancy lies
in the fact that Refs. [364, 365] mistakenly use the luminosity distance DL =

D(1+z) rather than the comoving distance to calculate the FRB rate density.
Refs. [364, 365] choose z = 1 as a fiducial redshift; the corresponding comoving
and luminosity distances are D = 3.4 Gpc and DL = 6.8 Gpc, respectively.
This factor of 2 error in distance leads to a factor of 8 error in the FRB rate
density. Plugging in D = 3.4 Gpc in Eq. (8) of Ref. [365] gives an FRB rate
density of 5.8× 103 Gpc−3 yr−1, in reasonably good agreement with our lower
limit.

9.4 Compact Binaries as FRB Progenitors?

By comparing Rfrb from Ch. 9.3 to the binary coalescence rates in Ch. 9.2, we
can constrain the fraction of FRBs that can be explained via compact binary
coalescences. Fig. 9.2 shows a range of potential FRB rate densities, from the
lowest plausible estimate given in Eq. (9.5) (assuming robs = 2500 sky−1 day−1,
efficiency η = 1, and isotropic FRB emission) to a more realistic value in
Eq. (9.6) (which assumes robs = 5000 sky−1 day−1, efficiency η = 0.5, and FRB



226

beaming with a half-opening angle of 30◦). Solid bars indicate the range of
BNS and NSBH merger rate densities predicted by binary pulsar observations
and population synthesis models, as well as the measured BBH rate density.
Also shown are existing Initial LIGO/Virgo limits, as well as the projected
sensitivities of the O1, O2, and O3 observing runs.

Binary black holes: The measured rate of binary black holes mergers is at
most ∼ 5% of the inferred FRB rate. Thus, BBHs cannot explain more than a
small fraction of the observed FRB population. Previous claims that the rates
of FRBs and BBH mergers are consistent [364, 365] are based on an erroneous
calculation of the FRB rate density, as discussed in Ch. 9.3.

Neutron star-black hole binaries: Population synthesis predictions are
highly inconsistent with the theory that NSBH mergers are FRB progenitors,
with predicted NSBH merger rates equal to at most ∼ 12% of the FRB rate.
This fraction assumes isotropic radio emission, and hence should be taken as
a highly optimistic upper limit on the FRB fraction compatible with NSBH
binaries. Even moderate beaming, with a half-opening angle of e.g. 30◦,
reduces the predicted FRB fraction to ∼ 0.8%. Assuming the realistic FRB
rate density in Eq. (9.6) further lowers this fraction by a factor of four.

Although Initial LIGO/Virgo upper limits are uninformative (limiting the
most optimistic NSBH fraction of FRB progenitors to Rnsbh/R

Low
frb . 4), Ad-

vanced LIGO is capable of measuring significantly smaller NSBH merger rates.
A non-detection during the O1 and O2 observing runs, for instance, would limit
the NSBH FRB fraction to . 9% and . 1%, respectively (assuming isotropic
emission).

Binary neutron stars: There exist competing claims as to whether the rates
of FRBs and binary neutron star mergers are [284, 290] or are not [313] com-
patible. Note that Ref. [290] adopts the FRB rate estimate from Ref. [365], and
hence erroneously finds strong consistency between the rates of BNS mergers
and FRBs. We find that the most optimistic BNS rate density predictions are
consistent with the lowest possible FRB rate density, with Rbns/R

low
frb ≈ 1.2.

Therefore, BNS mergers could constitute a subpopulation of FRB progenitor
if multiple FRB subclasses do indeed exist. This compatibility is quite ten-
uous, however, simultaneously requiring the highest possible BNS rates and
the lowest possible FRB rates (with, e.g., perfect FRB detection efficiency and
isotropic radio emission). FRB models that predict even moderately beamed
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emission are incompatible with BNS progenitors.

If BNS mergers are indeed FRB progenitors, then it is likely that Advanced
LIGO will observe a large number of BNS sources in the O1 observing run.
If no such detections are made, then the resulting rate limits will increasingly
cast doubt on the role of BNSs as FRB progenitors. An Advanced LIGO
non-detection during O1 and O2 would limit the most optimistic fraction of
FRBs compatible with BNS mergers to . 40% and . 6%, respectively. If we
assume moderate FRB beaming (again with a half-opening angle of 30◦), then
O1 and O2 non-detections imply even more stringent FRB fractions of . 2%

and . 0.4%, respectively. Note that these limits also apply equally well to
short-lived products of BNS mergers, such as hypermassive neutron stars.

9.5 Conclusions

A diverse range of FRB progenitor models have been proposed, including the
binary coalescences of neutron stars and/or black holes. Existing or future
limits from gravitational-wave observations can serve to severely constrain
such models. The recent Advanced LIGO/Virgo measurement of the local
BBH merger rate density largely rules out stellar-mass binary black holes as
progenitors of the observed FRB population. Meanwhile, predictions of NSBH
merger rate densities from population synthesis are in strong tension with the
inferred rate density of FRBs; upcoming observations by Advanced LIGO and
Virgo could rule out NSBHs as FRB progenitors.

Under highly generous assumptions (broadly beamed radio emission, large
FRB distances, and low underlying FRB rates), the rate of BNS mergers
may be consistent with a subpopulation of FRB progenitors. In order for
this subpopulation to be significant, however, the BNS merger rate density
must be on the order of ∼ 104 Gpc−3 yr−1, comparable to the most optimistic
predictions from population synthesis. Additionally, FRB emission must be
largely isotropic; models that predict even moderately beamed emission are
inconsistent with BNS rates. If BNS mergers are indeed FRB progenitors,
then Advanced LIGO and Virgo will soon begin to observe a large number of
such systems. If no such observations are made, then the resulting rate limits
will increasingly constrain the ability of BNSs to explain even a subclass of
the FRB population.
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Chapter 10
A First Search for Prompt Radio Emis-
sion Accompanying a Gravitational-Wave
Event

This chapter contains work published in:

T. A. Callister, M. M. Anderson, G. Hallinan, et al., A First Search
for Prompt Radio Emission from a Gravitational-Wave Event, As-
trophys. J. Letters 877, L39 (2019).

I produced all results (with a great deal of help and guidance from Marin
Anderson) and led the preparation of the published manuscript.

10.1 Introduction

Beyond the gamma-ray burst, kilonova, and radio jet of GW170817, we ar-
gued in Ch. 8 that binary neutron stars may additionally be accompanied
by prompt radio emission. Unlike the late-time radio afterglow associated
with GW170817, due to the interaction of relativistic ejecta with the ambient
medium, prompt radio emission is theorized to be generated by an altogether
different process (or processes) in the immediate vicinity of the merging ob-
jects. In particular, prompt emission may take the form of a short (likely
sub-second) coherent radio pulse generated near the instant of merger.

The detection of prompt radio emission from a binary neutron star would
yield an immense amount of information. Prompt radio emission would serve
as a probe of the binary’s immediate magnetic environment near the time of
merger. The observed dispersion and/or scattering of the emission acquired
during propagation might enable study of the intergalactic medium and Milky
Way halo. The detection of prompt radio emission would also incidentally
provide precise ∼arcminute constraints on the location of its compact binary
progenitor.
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The successful observation of prompt emission is made difficult by several fac-
tors, however [352, 353, 373]. First, gravitational-wave detectors provide only
poor localization of gravitational-wave sources. Even for the three-detector
Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and
Virgo network, the median binary neutron star localization is expected to
be 120 − 180 deg2 during the upcoming O3 observing run [38]. Second, low-
frequency prompt emission released at time of merger may arrive at Earth as
little as one minute after the gravitational-wave signal, slowed only by free
electrons encountered during propagation. Searches for prompt radio emission
are therefore typically limited by the latency with which gravitational-wave
candidates are announced – notices released more than minutes after a gravi-
tational wave’s arrival may well come too late.

All previous searches for prompt radio emission have targeted short gamma-
ray bursts [350, 351, 354, 356, 374] or were carried out too late to detect any
prompt emission that may have been present [375, 376]. Here, I will describe
the first search for prompt radio emission coincident with a gravitational-wave
signal, using the Owens Valley Radio Observatory Long Wavelength Array
(OVRO-LWA).

The OVRO-LWA is a low-frequency interferometry radio array in Owens Val-
ley, California. The array comprises 288 dual-polarization antenna spanning
a 1.5 km maximum baseline, and observes between 27 and 84MHz. Cross-
correlation of 256 of these antenna using the LEDA (Large-Aperture Experi-
ment to Detect the Dark Age) correlator allows for all-sky imaging with 24 kHz
frequency resolution and ∼ 10 arcminute spatial resolution [354, 377, 378].

The OVRO-LWA is uniquely suited to the challenge of detecting prompt radio
emission. Its nearly hemispherical field of view can capture much of the LIGO-
Virgo localization region within a single image. Additionally, the OVRO-LWA
operates in a continuous buffered mode, temporarily saving all visibilities to
disk for up to 24 hours. This alleviates (although does not eliminate; see
Ch. 10.5) the need for rapid LIGO-Virgo notices. As long as LIGO and Virgo
release a notice within one day of the gravitational-wave event, the relevant
on-source data can be retrieved from the buffer and written permanently to
disk.

In previous discussion of prompt radio emission, we have focused almost en-
tirely on the case of binary neutron stars. The OVRO-LWA was indeed observ-
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ing at the time of GW170817. Unfortunately, however, the binary neutron star
merger occurred below the OVRO-LWA’s horizon [46], and so we were unable
to search for prompt radio emission associated with GW170817. Instead, here
I will describe the results of an analogous search targeting the binary black
hole merger GW170104 [42, 379].

According to conventional wisdom, stellar-mass binary black hole mergers
are generally not expected to yield electromagnetic transients. However, the
Fermi-GBM detection of a marginally-significant gamma-ray transient coin-
cident with GW150914 [380] (and also a Fermi-LAT outlier at the time of
the binary black hole GW170608 [43, 381, 382]) has sparked new interest in
possible counterparts to LIGO/Virgo’s binary black hole events. In particular,
binary black holes might conceivably generate electromagnetic transients if one
or more of the black holes is charged [364, 383–385] or if the system is sub-
jected to an ambient magnetic field [288, 348]. Electromagnetic transients may
also occur in the presence of a circumstellar or circumbinary disk [386, 387],
or in the case of black hole “twins” born from the collapse of a single mas-
sive star [388, 389]. Although the statistical significance of the Fermi-GBM
candidate remains under debate [390–393], the plethora of models predicting
electromagnetic counterparts makes binary black hole mergers an interesting
(if speculative) observational target.

While valuable in its own right, the search for prompt radio emission from
GW170104 will additionally serve as a powerful proof of principle. GW170104
exemplifies the challenges facing detection of prompt radio emission. First, its
accompanying localization is poor, spanning a significant fraction of the sky.
Second, the LIGO/Virgo alert announcing the detection of GW170104 was re-
leased hours after the gravitational-wave event, long after the expected arrival
of any prompt radio emission. Despite these challenges, we place stringent
upper limits on the prompt radio luminosity of GW170104, demonstrating the
capability of the OVRO-LWA to follow up future compact binary mergers.

10.2 GW170104 and OVRO-LWA Observations

The gravitational-wave signal GW170104 was measured on 2017 January 4 at
10:11:58.6 UTC by the Advanced LIGO experiment [42, 379]. Arising from
a 31 + 19M� binary black hole merger, the signal was initially localized to a
∼ 1600 square degree band on the sky (see Fig. 10.1) and its redshift estimated
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Figure 10.1: Posterior probability distribution (in blue) on the sky position of the binary
black hole merger GW170104. Also shown is the OVRO-LWA’s field of view at GW170104’s
time of arrival; areas below the OVRO-LWA horizon at this time are shaded in grey. The
total localization region provided by Advanced LIGO spans approximately 1600 square
degrees, with a 54% probability of GW170104 occurring within the OVRO-LWA field of
view.

to be z = 0.18+0.08
−0.07. Following a delay related to the calibration of Advanced

LIGO’s Hanford detector, an alert with preliminary event localization was
released at 16:49:56 UTC, six hours after the gravitational wave’s arrival [394].
At this time, the OVRO-LWA was under continuous operation, temporarily
storing 13 s integrations in a continuously-overwritten 24-hour buffer. Upon
receiving the gravitational-wave event notice, buffered data spanning 09:00:03
to 14:11:11 UTC were copied to long-term storage.

Data are flagged (i.e. vetoed) on a per antenna, baseline, and channel basis.
We flag antennas showing anomalous autopower spectra, cutting an average of
54 antennas (∼ 38% of visibilities). An additional 398 baselines are flagged to
mitigate cross-talk between adjacent signal paths and eliminate other spuri-
ous excess power. Finally, loud individual channels are automatically flagged
to reduce radio frequency interference (RFI), removing ∼ 12% of the 2398
frequency channels.

Cassiopeia (Cas) A and Cygnus (Cyg) A are the brightest sources in the low-
frequency radio sky and therefore make opportune calibration sources. We
calibrate our visibility data using a single integration recorded roughly ten
hours earlier, at 22:44:04 January 03 UTC (21:49:47 local sidereal time), when
both Cas A and Cyg A are close to zenith. The per-channel complex gains
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of each antenna are determined using a simplified sky model comprising three
point sources – Cas A, Cyg A, and the Sun [395, 396].

Following this initial calibration, there persist residual errors due to unmodeled
directional variations in antenna gains. To combat sidelobe contamination
arising from these errors, we “peel” bright sources, performing an additional
direction-dependent calibration and subtraction of these sources [397]. At the
time of GW170104, Cas A and Taurus (Tau) A are the brightest sources in
the OVRO-LWA field of view (Cyg A had since set below the horizon). We
peel both Cas A and Tau A, as well as a generic near-field source to remove a
stationary noise pattern likely caused by cross-talk between electronics [378].
Because Cas A is nearly on the OVRO-LWA’s horizon, this peeling procedure
fails for a small number of integrations; these integrations are manually flagged.

Figure 10.2 shows a peeled and deconvolved 13 s image of the OVRO-LWA
sky at the time of GW170104 with 0.125 deg resolution. Deconvolution is
performed using the wsclean algorithm with a Briggs weighting of 0 and a
multiscale bias of 0.6[398]. The blue contours show the 68% and 95% credible
bounds on the sky location of GW170104’s progenitor, restricted to the OVRO-
LWA’s field of view. The 95% credible contour contains 72,556 pixels, each of
which we search for a dispersed radio signal.

10.3 Search for a Dispersed Signal

Radio waves of frequency ν propagating through the interstellar and/or inter-
galactic media experience a dispersion delay [399, 400]

t =

(
e2

2πmec

)
DM

ν2

=
(
4.149× 103 s

)( DM

pc cm−3

)( ν

MHz

)−2
(10.1)

relative to signals of infinite frequency. Here, e is the fundamental charge,
me is the electron mass, c is the speed of light, and the dispersion measure
DM is the integrated column density of free electrons along the wave’s path.
The dispersion measure may contain contributions from the immediate envi-
ronment and/or host galaxy of GW170104, the intergalactic medium, and the
interstellar medium of the Milky Way.

Parameter estimation on the gravitational-wave signal GW170104 constrains
its redshift to z = 0.173+0.072

−0.071 with an effective-precession waveform model and
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Figure 10.2: Total intensity image of the OVRO sky from 27 to 84MHz in a 13 s interval
centered at 10:11:54.1 UTC, containing GW170104’s time of arrival. The dark and light blue
contours show the 95% and 68% credible bounds on the location of GW170104’s progenitor,
respectively, conditioned on the OVRO-LWA’s field of view.

z = 0.182+0.081
−0.078 using a model capturing full spin-precession effects [42, 379].

We conservatively assume that GW170104’s progenitor lies between 0.1 ≤ z ≤
0.3. When including the effects of cosmology, the dispersion measure due to
propagation through the intergalactic medium is [369, 370]

DMigm = nec

∫ z

0

(1 + z′)

H(z′)
dz′, (10.2)

where H(z) = H0

√
Ωm(1 + z)3 + ΩΛ, H0 is the Hubble constant, and Ωm and

ΩΛ are the dimensionless energy-densities of matter and dark energy, respec-
tively. We take H0 = 67.7 km s−1 Mpc−1, Ωm = 0.31, and ΩΛ = 0.69. As
in Ch. 9.3, we obtain an upper limit on the mean electron density ne in the
intergalactic medium by assuming the Universe’s baryonic density ΩB = 0.049
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Figure 10.3: Dynamic spectrum of a randomly-chosen sky location within the GW170104
localization region (Fig. 10.2), after subtraction of the median flux measured in an annulus
surrounding the target location. White vertical and horizontal bands correspond to times
and frequency channels that have been flagged due to excess antenna power or RFI. The left
and upper subplots show the time- and frequency-averaged flux densities, respectively. The
filled grey region within each subplot marks the ±3σ band as measured in the background
annulus. Broadcast television channels are denoted by hatched regions in the time-averaged
spectrum; these channels represent common sources of RFI due to meteor reflection events.
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Figure 10.4: Signal-to-noise ratios as a function of dispersion measure DM and the initial
time t0 at which a signal is presumed to enter the OVRO-LWA band, targeting the same
sky location as Fig.!10.3. We search for signals with dispersion measures 113 pc cm−3 ≤
DM ≤ 630 pc cm−3 in a roughly one-hour window around the GW170104’s time of arrival.
The blank region on the figure’s right-hand side corresponds to time-frequency tracks that
extend beyond the duration of our data set.
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is composed entirely of ionized hydrogen [369]. Then the mean electron num-
ber density is ne = ΩBρc/mp, where ρc = 3H2

0/8πG is the closure density
of the Universe, G is Newton’s constant, and mp is the proton mass. As
the Universe is neither fully ionized nor composed purely of hydrogen, this
approximation yields an overestimate of ne and hence a conservative overes-
timate of the intergalactic dispersion measure; see the discussion in Ch. 9.3.
Assuming that GW170104’s progenitor lies within 0.1 ≤ z ≤ 0.3, we estimate
113 pc cm−3 ≤ DMigm ≤ 350 pc cm−3.

The GW170104 localization region, meanwhile, spans a broad range of Galac-
tic latitudes, corresponding to a wide range of possible galactic dispersion
measures. A lower bound on the dispersion measure to due the Milky Way
is simply zero. An upper bound is given by assuming a line of sight directly
through the Galactic disk, yielding 0 ≤ DMmw ≤ 180 pc cm−3 [401, 402].

Finally, we need to account for the progenitor’s host galaxy and/or immediate
environment. We have no knowledge about either of these, and so the best we
can do is add an additional and somewhat arbitrary term to our total disper-
sion measure budget. We naively assume DMHost + DMEnv ≤ 100 pc cm−3.

Combining the individual contributions from the Milky Way, the intergalactic
medium, and GW170104’s environment and host galaxy, we bound the disper-
sion measure of radio transients associated with GW170104 to 113 pc cm−3 ≤
DMigm ≤ 630 pc cm−3. This corresponds to time delays ranging from 640 to
3600 s at the bottom of the OVRO-LWA band, relative to electromagnetic sig-
nals of infinite frequency. We therefore analyze data up to one hour after the
gravitational-wave event. Recall that many models for prompt radio emission
predict a precursor signal released before binary merger [285–287, 289, 293],
and so we additionally analyze the 70 minutes of buffered data recorded before
the event. Our final data set comprises 610 integrations spanning 09:00:03 to
11:12:00 UTC, each 13 s in duration.

Because of our finite 24 kHz frequency resolution, radio transients will also
be dispersed within each frequency channel. This intra-channel dispersion is
strongest in the lowest channel, in which signals separated by 24 kHz are de-
layed by a maximum of 6.4 s with respect to one another. Although this delay
is smaller than our 13 s integration time, it is sufficiently long that a randomly
placed transient might conceivably be split across adjacent integrations, po-
tentially degrading our search sensitivity at low frequencies.
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Scatter broadening is unlikely to affect our search. Assuming a ν−4 frequency
dependence [400], the estimated Milky Way scattering timescale of 0.06µs

at 1GHz corresponds only to 0.1 s at 28MHz, much less than our 13 s inte-
gration time [401]. We might expect similarly negligible contributions from
GW170104’s host galaxy. Additionally, fast radio bursts show minimal scat-
tering due to the intergalactic medium [403].

Our search window spans approximately 130minutes. In this time the sky
rotates considerably, and so we must track the movement of a given source
across the OVRO-LWA’s field of view. Just as a sufficiently broadened pulse
could span multiple time integrations at a given frequency, it is possible for
the Earth’s rotation to smear emission across multiple image pixels within a
single 13 s integration. Since the array’s synthesized beam (with 0.50 deg and
0.24 deg major and minor axes at 56MHz) is larger than our 0.125 deg pixel
size, any astrophysical emission will manifest in multiple neighboring pixels.
We are therefore unlikely to miss a significant fraction of a source’s emission
as we follow it from one image pixel to the next.

As an example, Fig. 10.3 shows the dynamic spectrum obtained by tracking
a randomly chosen location within the GW170104 localization region. To
account for slow temporal variations and sidelobes from bright, nearby sources,
we have subtracted away the median flux measured in an annulus extending
five to seven beamwidths around the target location (see Fig. 10.6 below). We
search all such dynamic spectra for significant dispersed transients, stepping
through dispersion measures and times t0 at which a proposed signal enters the
OVRO-LWA band. The spacing δDM between our dispersion measure trials
is set by our tint = 13 s integration time and the bounds ν1 = 27.384MHz and
ν2 = 84.912MHz on the OVRO-LWA band:

δDM

pc cm−3
=

tint

4.149× 103 s

[( ν1

MHz

)−2

−
( ν2

MHz

)−2
]−1

, (10.3)

giving δDM = 2.62 pc cm−3. For each dispersed track, we estimate the corre-
sponding flux density with the weighted average

F̂ =

∑
i F̂i/σ

2
i∑

j 1/σ2
j

, (10.4)

where F̂i is the measured flux density in the track’s ith time-frequency pixel
and σ2

i is the corresponding variance, estimated using the background annulus.



237

30 20 10 0 10 20 30 40
Signal-to-Noise Ratio

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

Measured SNRs
Exponential Fit
Gaussian Fit

Figure 10.5: Cumulative background distribution of signal-to-noise ratios from a subset of
sky directions and dispersion trials. The distribution is well fit by a central Gaussian and
a exponential tail dominated by meteor reflection events. Based on this distribution, we
manually follow up any dispersion trial giving S/N > 20.

In the presence of a true radio transient of flux density F , the expectation value
and variance of F̂ are

〈F̂ 〉 = F (10.5)

and
σ2 =

1∑
i 1/σ

2
i

, (10.6)

respectively. The signal-to-noise ratio (S/N) of each dispersion trial is defined
by combining Eqs. (10.4) and (10.6):

S/N =
F̂

σ
. (10.7)

Figure 10.4, for example, shows the signal-to-noise ratios obtained from de-
dispersing the dynamic spectrum in Fig. 10.3.

With 72,556 sky pixels and 92,763 DM and t0 trials per pixel, a dedispersion
search over the entire GW170104 localization region yields 6.7×109 total trials.
To determine a suitable S/N threshold for manual follow-up, in Fig. 10.5 we
plot the cumulative distribution of signal-to-noise ratios obtained from a ran-
dom subset of sky locations, dispersion measures, and initial times t0. We find
our signal-to-noise ratios to be fairly Gaussian distributed. The bulk of the dis-
tribution is well fit by a somewhat broadened Gaussian centered at zero with a
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Figure 10.6: Full-band dirty image of an example meteor reflection event. Within the inset,
the blue contour gives the OVRO-LWA’s synthesized beam and the dashed green contours
mark the annulus used for background estimation. Meteor reflections occur in-atmosphere
and so appear as resolved sources.

variance of 1.44. At high significances, however, Fig. 10.5 shows the emergence
of a non-Gaussian tail. This tail is dominated by meteor reflection events, in
which patches of atmosphere temporarily ionized by passing meteors act as re-
flective surfaces, redirecting RFI from beyond the horizon into the OVRO-LWA
(see more below). The tail is well-fit by log10 P = a (S/N)+b, with a = −0.136

and b = −2.913. Using this fit, we choose our threshold for manual inspection
to be S/N = 20, above which we expect (6.7× 109) 10 a(S/N)+b ≈ 1.5 × 104

outliers.

After searching across the entire GW170104 localization region, we find 6,828
outliers exceeding our threshold. This suggests that extrapolation of the sub-
set of data shown in Fig. 10.5 overestimates the rate of high significance events
by a factor of two. All candidates warranting manual follow-up are identified
as meteor reflection events [404, 405]. Figures 10.6 and 10.7 illustrate the
properties of a typical reflection event. First, meteor reflections occur within
the atmosphere (well inside the array’s 2D2/λ ∼ 1000 km far-field limit, where
D is the array size and λ a characteristic wavelength) and hence appear as
resolved sources. Second, their spectra show emission confined to one or more
broadcast television channels. The reflection event in Figs. 10.6 and 10.7, for
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Figure 10.7: The spectrum of the meteor reflection event in Fig. 10.6. As is typical, the
observed emission from this event is confined exactly to broadcast television channels 5
(76–82MHz) and 6 (82–88MHz), and so is readily identifiable as terrestrial in origin.

instance, is confined to channels 5 (76–82MHz) and 6 (82–88MHz). As meteor
reflections currently dominate our search background, the automated identifi-
cation and rejection of meteor reflections will be a crucial step in improving
the sensitivity of future searches.

10.4 Radio Luminosity Limits

Having rejected all outliers as reflection events, we place upper limits on the
prompt radio emission associated with GW170104. Let’s symbolically repre-
sent our radio data via d. Our first goal is to compute the posterior p(F |d, Ω̂)

on the radio flux of GW170104 for every possible progenitor sky location Ω̂.
This posterior is obtained by marginalizing over the parameters of our signal
model, namely dispersion measure DM and initial signal time t0:

p(F |d, Ω̂) =

∫
dDM

∫
dt0 p(F |d, Ω̂,DM, t0)p(DM)p(t0), (10.8)

where p(DM) and p(t0) are our prior probabilities on a signal’s dispersion mea-
sure and initial time. Next, using Bayes’ theorem, we can relate the posterior
p(F |d, Ω̂,DM, t0) to the likelihood p(d|F, Ω̂,DM, t0) of having measured d:

p(F |d, Ω̂) ∝
∫
dDM

∫
dt0 p(d|F, Ω̂,DM, t0)p(F )p(DM)p(t0), (10.9)

where p(F ) is our flux density prior.
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We will assume Gaussian likelihoods, centered at F̂ (Ω̂,DM, t0) with a variance
σ2(Ω̂,DM, t0) as defined by Eqs. (10.4) and (10.6). Meanwhile, for simplicity
we assume flat priors over the ranges ∆DM and ∆t0 considered: p(DM) =

1/∆DM and p(t0) = 1/∆t0. We similarly assume a uniform (improper) prior
over all positive F . All together,

p(F |d, Ω̂) =

∫
dDM

∆DM

∫
dt0
∆t0

1

N (Ω̂,DM, t0)
exp

−
[
F̂ (Ω̂,DM, t0)− F

]2

2σ2(Ω̂,DM, t0)

 ,

(10.10)
with normalization factor

N (Ω̂,DM, t0) =

∫ ∞
0

dF exp

−
[
F̂ (Ω̂,DM, t0)− F

]2

2σ2(Ω̂,DM, t0)

 . (10.11)

With the flux posterior p(F |d, Ω̂) in hand, the 95% credible flux upper limit
in direction Ω̂ corresponds to the flux F95 satisfying

0.95 =

∫ F95

0

dFp(F |d, Ω̂). (10.12)

Figure 10.8 shows these 95% credible flux upper limits for each image pixel
within the 95% credible gravitational-wave localization region. We exclude
pixels containing persistent point sources detected at 5σ prior to dedispersion,
yielding the “holes” seen in Fig. 10.8. We additionally trim the southernmost
points that set below the OVRO-LWA’s horizon during the observation. All
together, we cover 94% of the localization region contained within the OVRO-
LWA’s field of view, and 54% of GW170104’s global probability map. We
achieve a median upper limit of 2.4 Jy. Our sensitivity is degraded at low
elevations due to the (sin θ)1.6 scaling of the antennas’ primary beam with
elevation angle θ [406]. Flux upper limits are also impacted by sidelobes in
the vicinity of particularly bright point sources.

With the sky and distance localization provided by Advanced LIGO, we can
re-express our flux limits as constraints on the equivalent isotropic radio lu-
minosity of GW170104. To do this, we need to compute the posterior p(L|d)

on the equivalent isotropic luminosity of GW170104, marginalized over all
possible progenitor sky locations Ω̂ and distances D:

p(L|d) =

∫
dD

∫
dΩ̂ p(L|d, D, Ω̂)p(D, Ω̂). (10.13)
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Figure 10.8: 95% credible upper limits on the flux density of prompt radio emission from
GW170104, as a function of its presumed sky location. The “holes” mark locations of
persistent point sources excluded from our analysis. For reference, the contour traces the
95% credible localization of GW170104 within the OVRO-LWA’s field of view. Our median
upper limit across the sky is 2.4 Jy. Marginalizing over the sky location and distance
constraints due to the gravitational-wave signal, we limit GW170104’s equivalent isotropic
luminosity between 27 and 84 MHz to L ≤ 2.5× 1041 erg s−1 at 95% credibility.

Here, p(D, Ω̂) is the probability distribution on the progenitor location of
GW170104; we take this to be the localization provided by Advanced LIGO.
As in Eq. (10.12) above, the 95% credible upper limit is given by the luminosity
L95 satisfying 0.95 =

∫ L95

0
p(L|d)dL, or

0.95 =

∫
dD

∫
dΩ̂

∫ L95

0

dL p(L|d, D, Ω̂)p(D, Ω̂). (10.14)

As currently written, this equation requires the probabilities p(L|d, D, Ω̂) on
luminosity as a function of direction and distance. We can recast Eq. (10.14)
in terms of our known flux posteriors p(F |d, Ω̂) [Eq. (10.10)] by substituting
p(L|d) = p(F |d) dF/dL = p(F |d)/4πD2 and dL = 4πD2dF , giving

0.95 =

∫
dD

∫
dΩ̂

∫ F (D,L95)

0

dF p(F |d, Ω̂)p(D, Ω̂). (10.15)
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In practice, Eq. (10.15) is somewhat easier to evaluate when rearranged as

0.95 =

∫
dΩ̂ p(Ω̂)

∫
dD p(D|Ω̂)

∫ F (D,L95)

0

dF p(F |d, Ω̂), (10.16)

evaluating the flux and distance integrals for each sky location searched.

After performing this marginalization over all sky locations and distances,
we obtain a limit on GW170104’s equivalent isotropic luminosity between 27
and 84 MHz if Lradio ≤ 2.5 × 1041 erg s−1 at 95% credibility, assuming the
source lies within the OVRO-LWA’s field of view. The total energy radiated
by GW170104 was EGW = 2.0+0.6

−0.7M�c
2 [42]. We therefore limit the fraction

of the total energy converted to prompt radio emission to Lradiotint/EGW ≤
1.4× 10−12, using the lower bound on EGW.

For reference, the equivalent isotropic luminosity of the Fermi-GBM outlier as-
sociated with GW150914 was 1.8+1.5

−1.0×1049 erg s−1 [380]. Note that GW150914
and GW170104 occurred at luminosity distances of approximately 410 Mpc

and 880 Mpc, respectively [25, 42]. If the OVRO-LWA had been operating at
the time of GW150914, we would therefore have been sensitive to any associ-
ated radio transient with luminosity 2.5 × 1041 erg s−1 (410 Mpc/880 Mpc)2 ≈
5.5 × 1040 erg s−1. Hence in the future, if additional gamma-ray outliers are
identified in coincidence with gravitational-wave events, simultaneous obser-
vations with the OVRO-LWA will limit the ratio of radio and gamma-ray
luminosities to . 3× 10−9.

Similar limits will be possible for future binary neutron star mergers. GW170817
occurred at a distance of 40.7Mpc [407]. Rescaling our flux limit to 40.7Mpc,
OVRO-LWA follow-up of binary neutron stars at this distance will yield lu-
minosity limits of approximately 5 × 1038 erg s−1. The equivalent isotropic
luminosity of GRB 170817A was estimated to be 1.6× 1047 erg s−1 (with total
energy 3.1 × 1046 erg) in the 1 keV-10MeV band [53]. The limits attainable
with the OVRO-LWA would therefore limit the ratio of radio and gamma-
ray luminosities to . 3 × 10−9, and the ratio of total radiated energies to
. 2× 10−7.

10.5 The Third LIGO/Virgo Observing Run and Beyond

Advanced LIGO & Virgo’s third observing run (O3) began in April 2019 and is
scheduled to run for one calendar year. During this time, between 1-50 binary
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neutron star detections are expected [38]. The OVRO-LWA will operate in
continuous buffering mode during O3, searching for prompt radio transients
associated with compact binary mergers.

The sensitivity of this study to sub-second radio transients is limited by the 13 s
resolution of buffered visibilities [356]. The buffering of future data with higher
time resolution will increase the signal-to-noise ratio of temporally unresolved
transients. We are additionally exploring options to buffer the incoherent sum
of antenna powers at their raw 197MHz sampling rate. The incoherent sum
will provide no directional information, but the vastly increased time resolution
and temporal coincidence with gravitational-wave events will enable sensitive
measurements of prompt radio transients.

A more ambitious goal is the buffering and coherent dedispersion of all 512
signal paths at 197MHz. This endeavor has previously required prohibitively
large buffer disk space due to significant latency in the release of LIGO/Virgo
alerts. In their upcoming O3 observing run, however, LIGO & Virgo will tran-
sition to automated alerts released within 1-10 minutes of a gravitational-wave
candidate [408]. If successful, this reduced latency may make the buffering of
raw antenna voltages computationally feasible.

Finally, the OVRO-LWA will soon be undergoing upgrades towards its “Stage
3” design, consisting of 352 correlated antennas over an extended 2.5 km max-
imum baseline. Also included in this design is the buffering of raw antenna
voltages, allowing high time-resolution searches triggered by automated LIGO
& Virgo alerts. With these improvements, Stage 3 OVRO-LWA promises to
enable even more sensitive detection and precise localization of prompt radio
emission from compact binary mergers.
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Chapter 11
The Next Steps

I consider myself unreasonably fortunate in the timing of my graduate studies.
These early days of practical gravitational-wave astronomy have been truly
exhilarating, and even more inspiring to witness as a graduate student in the
field. It is an incredibly dynamic time – we learn something new seemingly
every day, and facts are revised almost as soon as they can be written down.
As of August 13, 2019, while I write this final chapter, LIGO and Virgo’s
current O3 observing run has yielded 22 public gravitational-wave candidates;
the coming days (or even the coming hours) will surely bring even more. And,
as I wrote in Ch. 1, gravitational-wave astronomy is in the enviable stage where
our open questions far outnumber our available answers.

In this thesis I explored just two of these many questions:

First, I asked what present-day gravitational-wave experiments might learn
from observation of the stochastic gravitational-wave background. In Ch. 4, I
quantified which redshifts dominate the astrophysical gravitational-wave back-
ground accessible to Advanced LIGO, and identified which spectral features of
the background we might hope to constrain. Chapter 5, meanwhile, demon-
strated that the gravitational-wave background may be utilized as a tool
with which to study fundamental physics, enabling direct measurements of
the polarizations of gravitational waves. Having studied the interpretation
of a stochastic gravitational-wave signal, in Ch. 6 we turned to the actual
problem of detection. In this chapter I presented a search for the stochastic
gravitational-wave background with Advanced LIGO. Although we did not
uncover a clear signal, we were able to improve upon previous upper limits by
two orders of magnitude. Then, in Ch. 7, I asked how one might confirm an
apparent detection of the gravitational-wave background, developing a method
to differentiate a true astrophysical signal from spurious terrestrial noise.

Second, I investigated whether the compact binary mergers detected with Ad-
vanced LIGO might also give rise to theorized prompt radio emission. Chap-
ter 8 first reviewed the myriad models predicting the emission of a prompt
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radio precursor (or immediate “post-cursor”) to stellar-mass compact binary
mergers. In Ch. 9, I then asked if prompt radio emission might already have
been detected in the form of fast radio bursts (FRBs). While the properties
of FRBs are remarkably similar to those predicted of prompt radio emission,
we found that the rate of FRBs is vastly greater than the rate of compact
binary mergers, largely ruling out an association between the two. Then, in
Ch. 10, I presented a direct search for prompt radio emission, following up the
binary black hole GW170104. While I (perhaps unsurprisingly) detected no
statistically significant radio emission from GW170104, this study served to
demonstrate the feasibility of prompt radio follow-up, illustrating that we can
place sensitive limits on radio transients arriving in coincidence with or even
before a gravitational-wave signal.

Although we’ve made significant headway in exploring both of these questions,
we are certainly far from finished. With respect to the stochastic gravitational-
wave background, I believe it will be crucial to continue the work begun in
Ch. 7. As we saw there, there exist known terrestrial effects – Schumann reso-
nances, correlated combs, and perhaps others – that can mimic a gravitational-
wave signal. While we have more or less known for decades how to detect a
stochastic gravitational-wave signal, until now virtually no work has been done
to explore how to differentiate a gravitational-wave background from one of
these terrestrial effects. While I proposed one technique in Ch. 7, there may
certainly be others that are more effective. Whichever technique(s) are ulti-
mately used, once a detection is indeed made of the gravitational-wave back-
ground we will need thoughtful and well-developed methods for convincing
ourselves (and the broader scientific community) that the detection is legiti-
mate.

Detection (and validation) of the gravitational-wave background, of course, is
only a means to and end. That end is to learn about compact binary mergers
at cosmological distances. Practically speaking, the LIGO/Virgo community
has a great deal of infrastructure and methodology devoted to the predic-
tion and detection of the stochastic background. Relatively little attention, in
contrast, has been paid to inference on a stochastic signal – using the detec-
tion of a gravitational-wave background to test concrete properties of distant
compact binaries. In the near term, there is a vast amount of work to be
done exploring this latter question, particularly since the first detection of the
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stochastic background may soon be drawing near. This work will be hard.
In Ch. 4, we showed that the current generation of gravitational-wave detec-
tors can generally only hope to measure the background’s amplitude, not its
shape. Nevertheless, the amplitude of the gravitational-wave background con-
tains, indirectly at least, a great deal of information that is complementary
to studies of individually-resolvable signals in the local Universe. One of the
most fruitful avenues of research, I believe, will be the development of ways to
synthesize these two sources of information – measurements of the stochastic
background and observations of individual, nearby events – to understand how
the properties of compact binary mergers evolve as we look back in time.

The search for prompt radio emission also has a long list of clear next steps. Us-
ing the OVRO-LWA, we now have radio data coincident with eight gravitational-
wave candidates from O3, including one high-significance binary neutron star
candidate. This data is currently undergoing analysis. In parallel, we should
explore ways to further optimize our analysis. As discussed in Ch. 10, the
binary black hole GW170104 was localized to 1,600 sq. degrees on the sky;
at the time we considered this to represent a “worst-case scenario.” We were,
invariably, proven wrong. The binary neutron star candidate S190425z has a
localization region spanning 10,000 sq. degrees, of which approximately 60%
is covered by the OVRO-LWA’s field of view. Poorly localized events like
S190425z currently represent a significant computational challenge, requiring
both a vast amount of storage and long computing times. We would therefore
benefit immensely from any methods allowing us to search faster over larger
localization regions.

Clearly, the most exciting outcome of the OVRO-LWA follow-up efforts would
be the unambiguous detection of a prompt radio counterpart. Pragmatically,
a perhaps more likely outcome is a set of non-detections associated with a pop-
ulation of binary black hole and neutron star candidates. Given a sufficiently
large set of non-detections, though, we will be able to begin placing mean-
ingful constraints on the properties of prompt radio emission – its beaming
angle, energetics, etc. It will be valuable to anticipate this endeavor, learning
how to account for non-trivial selection effects and identifying specific emission
models that we may be able to rule out.

Finally, as we saw in Ch. 10, the sensitivity of current OVRO-LWA follow-
up is limited by our 13 s integration times. If the duration of prompt radio



247

emission is much less than a second, then we would gain considerable sensitivity
by moving to shorter integrations. The ultimate goal is to do away with
integrations altogether – to instead buffer and search the raw voltages output
by the radio antennas. In addition to specialized hardware and a vast amount
of computing memory, this daunting task will require us to develop and deploy
methods with which to coherently dedisperse and search these raw voltages in
real time.
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