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ABSTRACT

IN order to extract the underlying meaning from a scene captured from
the surrounding world in a single still image, social robots will need to learn the

human ability to detect different objects, understand their arrangement and
relationships relative both to their own parts and to each other, and infer the
dynamics under which they are evolving. Furthermore, they will need to develop
and hold a notion of context to allow assigning different meanings (semantics) to the
same visual configuration (syntax) of a scene.

The underlying thread of this Thesis is the investigation of new ways for enabling
interactions between social robots and humans, by advancing the visual perception
capabilities of robots when they process images and videos in which humans are the

main focus of attention.

First, we analyze the general problem of scene understanding, as social robots
moving through the world need to be able to interpret scenes without having been
assigned a specific preset goal. Throughout this line of research, i) we observe
that human actions and interactions which can be visually discriminated from an
image follow a very heavy-tailed distribution; ii) we develop an algorithm that can
obtain a spatial understanding of a scene by only using cues arising from the effect
of perspective on a picture of a person’s face; and iii) we define a novel taxonomy
of errors for the task of estimating the 2D body pose of people in images to better
explain the behavior of algorithms and highlight their underlying causes of error.

Second, we focus on the specific task of 3D human pose and motion estimation
from monocular 2D images using weakly supervised training data, as accurately
predicting human pose will open up the possibility of richer interactions between
humans and social robots. We show that when 3D ground-truth data is only available
in small quantities, or not at all, it is possible to leverage knowledge about the
physical properties of the human body, along with additional constraints related to
alternative types of supervisory signals, to learn models that can regress the full 3D
pose of the human body and predict its motions from monocular 2D images.

Taken in its entirety, the intent of this Thesis is to highlight the importance of, and
provide novel methodologies for, social robots’ ability to interpret their surrounding
environment, learn in a way that is robust to low data availability, and generalize
previously observed behaviors to unknown situations in a similar way to humans.
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C h a p t e r 1

FLAVORS OF ROBOTS

From Tools to Robots

We live in a world full of robots, and it has been like this for more than a while.

Since the inception of our species, Homo Sapiens have been building tools for
survival, as a form of protection, or for gathering plants and hunting [1, 2]. Just a
few tens of thousands of years later, in the transition from hunter-gatherers to a food-
cultivating species [3–6], tools evolved into more complex, refined and specialized
utensils to serve the new set of skills needed for proliferation.

Only relatively recently, when survival to the next day was not a rare privilege any
longer, have our tools taken a completely different nature, driven by our intellectual
growth and curiosity, rather than by specific daily needs [7, 8]. New powerful tools
also meant having more time for leisurous activities, facilitating long and energy
consuming tasks like crop plowing or irrigation [9], and enabling us to take interest
in more abstract and complex tasks, such as calculating the positions of astronomical
objects [10].

It is in this context that the term automaton was first adopted.

Automaton is the Latin translation of the Greek word αὐτό-ματον, meaning self-
acting, the conjuction of the two words autos/“self” and matos/ “thinking, animated
or willing”. Although the word itself has ancient roots, it appeared for the first time
in the late 16th century [11], in a book recollecting some of the original writings by
the Greek mathematician Hero of Alexandria who extensively studied hydraulics,
pneumatics and mechanics.

It is unclear exactly when the fascination with anthropomorphic automatons started,
but there are a few very famous examples throughout the past centuries. The first
known humanoid automaton is the “Automa Cavaliere”, constructed by Leonardo
da Vinci around the year 1495 [12, 13]. With the outer appearance of a Germanic
knight, it was powered by a complex core of mechanical devices allowing it to stand,
sit, raise its visor and independently manoeuver its arms.

The “Mechanical Turk” [15] is arguably the most famous and controversial automa-
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Figure 1.1: The evolution of human-made tools. As we evolved from Homo Sapiens to
Homo Deus [14], our tools also matured: from the early days of building spears for hunting,
to the Mechanical Turk, all the way to modern day robots and self-driving cars.

ton. It was a well constructed machine based on a mechanical illusion allowing a
real person to hide inside of it and play games of chess. The Turk was designed by
Wolfgang von Kempelen in 1770 to impress the Empress Maria Theresa of Austria
and had a very successfull career1 spanning almost a century until it was destroyed
by a fire in 1854, along with its well-kept secret.

Another construction discussed in The Golden Age of Automata [16], is “The Flute
Player” by Innocenzo Manzetti [17, 18]. The life-size man-shaped automaton was
composed of internal levers, connecting rods and compressed air tubes, allowing
its lips and fingers to move on a flute and perform 12 different arias according to a
program recorded on a cylinder similar to those used in player pianos [19].

It was only in 1920 that the word robot, as we commonly adopt it today, was
introduced in the play “R.U.R - Rossum’s Universal Robots” by Karel Capek [20].
The term is derived from the Czech robotnik/“forced worker” and robota/“labor”
and is an accomplishement of Capek’s older brother, painter and writer Josef [21].

Since then, starting with the technological innovations of the industrial revolution,
robots kept expanding into almost all aspects of society and popular culture. Nowa-
days, we find robots in fiction literature [22–25] and movies [26–29], as well as at
the core of our industrial and economic infrastructure.

Today, the main challenge in robotics is not any longer whether we can build a robot
to perform a specific task, but rather how small, efficient or similar to a human can
we build it to perform such a task.

The practical and economic advantages of robots are such that now, and even more
so in the near future, we must learn to live in a world full of social robots.

1Allegedly, the Turk was operated by many great chess masters, such as Johann Allgaier,
Boncourt, Aaron Alexandre, William Lewis, Jacques Mouret, and William Schlumberger, allowing it
to win most of the games it played during demonstrations around Europe and the Americas.
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Social Robots

As technology keeps improving and becomes more and more pervasive, not only for
industrial applications, but also in our private lives, robots are ready to take the next
leap forward.

In this Thesis, we are interested in Social2 Robots, and address some of the advance-
ments that are required to enable their large scale deployment.

A social robot is a robot [30] capable of performing a variety of tasks in the context
of a social interaction with a human agent [31]. Such tasks can vary from very
specific ones, such as opening the door of a car for a person, to more open-ended
ones, such as walking someone’s dog. At the same time, the nature of the social
interaction could require simple avoidance - who would want a 300 pound robot to
run into them? - or encompass attention, complex expressive communication (verbal
and non-verbal), collaborative or competitive behaviour, or even emotional response.

While intuitive, the above definition is still somewhat vague. Here we would like to
suggest two criteria for marking the distinction between any robot and a social robot:

1. Sensory perception: A social robot must be equipped with an artificial
perceptual system similar to the one that humans use to interact with each
other. The different components of such a system should correspond to all five
senses of the body: vision, sound, touch, taste, and smell.

2. Social perception: A social robot must be able to use its perception system
to support interpersonal interactions, allow it to form impressions about other
people as sovereign personalities, and to elaborate and test inferences based
on such perceptions.

Facial expressions, tone of voice, hand gestures, and body posture or movement
are just a few examples of nonverbal communication between people. Associating
the look of a person sweating with nervousness rather than with sport fatigue is
an example of social inference supported by the ability to detect smell, body parts
and movements through olfactory and visual perceptions. While sensory perception
can, to some extent, be learned and taught [32, 33], social perception can only be
inferred. As a result, it is fundamental for social robots to be able to learn without

2The world social is derived from the Latin expression socii/“allies” named after the Italian Socii
states, historical allies of the Roman Republic.

4
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Figure 1.2: The multi-faceted capabilities of Social Robots. Social Robots are able to
perform a variety of tasks in the context of social interactions with human agents. Pictures
taken from a scene of the movie “I, Robot” [29].

pre-knowledge and be able to interpret the environment and generalize previously
observed behaviours to unknown situations in a similar way that humans are able to.

Our goal is to push forward the transition from designing and building robots as a
tool/something for purely functional, predefined and programmable tasks, to an en-
tity/someone that is able to match our social and intellectual skills for accomplishing
a common goal [31, 34].

To sustain such transition, it is fundamental for social robots to support the perceptive
abilities that are at the basis of human intelligence and evolution [35, 36]. Using
artificial intelligence methods to build robots with the ability to perceive is still an
open endeavor that needs to be achieved in order for them to become truly social
entities.

5
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C h a p t e r 2

(COMPUTER) VISION FOR SOCIAL ROBOTS

Visuomotor skills are fundamental for intelligence [37, 38] and there is a substantial
corpus of research investigating how to build robots that can move like humans. This
will inevitably help perception since vision and movement are deeply intertwined.

However, the main focus of this Thesis is on enhancing one of the perceptive channels
of social robots, specifically visual perception.

In the human brain, neurons devoted to visual processing number in the hundreds
of millions and take up about 30 percent of the cortex, compared with 8 percent
for touch and just 3 percent for hearing. Humans dedicate about half of their brain
power to visual system processes, and vision is by all means the most effective and
direct interface with the world in which we live.

As a result, if we wish to have robots roaming around our cities and seamlessly
interacting with us at coffee shops or in our homes as social companions or
assistants, we need to make sure that their visual abilities are on par with the tasks
they need to accomplish.

As a contribution to clarifying the challenge ahead of us, we’d like to put forward
the following statement of work:

IN order to extract the underlying meaning from a scene captured from
the surrounding world in a single still image, social robots will need to learn the

human ability to detect different objects, understand their arrangement and
relationships relative both to their own parts and to each other, and infer the
dynamics under which they are evolving. Furthermore, social robots will need to
develop and hold a notion of context to allow assigning different meanings
(semantics) to the same visual configuration (syntax) of a scene.

Computer Vision can help provide the means by which the above statement of work
can be pursued and accomplished.

Object Detection: Understanding what objects are where [39] provides one of the
most basic pieces of information needed by social robots.
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Most of the early object detection algorithms were based on handcrafted local image
feature descriptors - designed to be invariant to transformations such as scaling or
rotation [40, 41] - which were selectively compared to parts of the image in the
hope of finding a successful match. The first successful algorithm of this type is
the Viola-Jones detector for human faces [42]. Improvements came in the form of
more intricate feature descriptors, capable of capturing more informative patterns
from the image, such as the histograms of oriented gradients, normalized gradients
magnitude and color channels [43–45]. Deformable Part Models [46], defined by
a global object filter together with a set of parts filters and associated deformation
models between those parts, were the most effective of these methods for traditional
object detection.

Object detection evolved in a new direction and at unprecedented speed with i) the
resurgence of Convolutional Neural Networks [47], which provided a new effective
representation for objects that could be extracted directly from images without
having to be hand-designed, and ii) the availability of datasets with a large number
of images [48–50], which allowed to capture the variability in appearance, providing
robustness and statistical significance to the learned representations.

Detection algorithms are now almost exclusively based on Convolutional Neural
Networks and grouped into two families: “two-stage architectures” [51–54] based
on a coarse to fine process in which a classifier is applied to a sparse set of candidate
object locations, and “one-stage architectures” [55–57], in which a classifier is
applied over a regular dense sampling of all possible object locations in the image.

Part Estimation: Understanding the structure of objects in the world and their part
anatomy is the only way in which a social robot can be able to interact with them
once it established their nature (class/category).

Within the context of inanimate objects, there is significant overlap within the
research for part estimation and object detection. However, in the case of entities for
which highly non-rigid motions are very typical, such as humans, the task assumes
a significantly different nature because of self-occlusion and the fact that those
motions can significantly alter the appearance of the entity. As a result, different
types of algorithms have been successful.

The concept that a small number of simple pixel locations (keypoints) tracking the
main joints of the human body was sufficient to evoke compelling impressions of
the entire human body performing complicated actions such as walking, running or

7
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dancing was first hypothesized (shown) by Johansson [58].

Most of the early work in localizing parts of articulated objects (inanimated and
animated) is inspired from the seminal work on Pictorial Structures [59], in which the
parts of an object are represented by a fixed template and arranged in a deformable
configuration. However, when the type of articulation can be very non-rigid, such
as in the specific case of human parts estimation, the appearance of the template
parts themselves can change significantly, so it is only with the introduction of more
sophisticated graph based deformable part models [46, 60–63] that these approaches
started working more reliably.

The focus on parts based methods remained very central until deep learning became
more pervasive and there was availability of large datasets for human pose
estimation [49, 64, 65]. Completely different methodologies were introduced in
which part templates were no longer defined, but instead the precise pixel locations
of keypoints could be directly regressed from the input image [66].

Now most work is defined in two approaches, top-down [67–69] which starts from a
human detection and then detects its parts, or bottom up [70, 71] which detects parts
of the body and then groups them into instances.

With the availability of datasets of different nature, the task of part estimation has
also evolved. Now synthetic and motion capture datasets [72, 73] started enabling
the task of looking for parts in 3D space and not in the image plane any longer.
Similarly, other areas of interest look at estimating the 3D shape of the body now
that 3D shapes of human body have been parametrized with new dataset [74].

Dynamics: Given a scene, being able to predict possible ways in which it might
evolve will allow social robots to act and interact within the world with intention.
The ability to cope with moving and changing objects, changing illumination, and
changing viewpoints is essential to perform several tasks. If you’re not able to predict
the possible outcomes of a certain action, you cannot choose one based on whatever
your goal might be.

Note that given the intrinsic ambiguities of certain situations, not even humans can
fully resolve the problem of inferring the dynamic evolution of a scene from a static
snapshot. However, from a very early age [75], we develop an intuition that allows
us to predict the evolution of all the possible outcomes.

There are four possible cases under which a scene might be captured by a camera [76]:
i) Stationary camera, stationary objects, ii) Stationary camera, moving objects, iii)

8
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Moving camera, stationary objects, and iv) Moving camera, moving objects. Each
one of these cases presents unique challenges and thus requires different approaches.

For example, one may study the intrinsic properties of the physical entities in a scene
and try predicting their dynamics evolution. A tower of material blocks in a scene
may be determined to be in unstable equilibrium and the final stable configuration
accurately predicted based purely on the laws of physics [77, 78].

Alternatively, it could be possible to predict the way in which an image will evolve
based on the current attributes of its pixels (a generative framework for future video
prediction). This approach typically requires modeling the complex distribution of
all possible future pixel configurations compatible with their initial state [79–81].

Yet another approach specific to the field of robotics attempts learning a model
that can predict the result of the interaction of an agent with the world, in terms of
changes in the visual input caused by a robotic control manipulation [82–84].

Ultimately, in the context of human motion, the goal is being able to predict the dy-
namics of a human body consistent with its current position and intrinsic anatomical
contraints. Recent approaches tackle this problem by using a recurrent network start-
ing from an image at the current state [85, 86].

Context: Context is the set of circumstances that form the setting for an event,
statement, or idea, and in terms of which it can be fully understood and assessed. As
obvious from its definition, context is an over-arching concept that can be applied to
all of the previous work.

For social robots, understanding context of the environment implies the ability of
understanding that they cannot just consider their main focus of attention when
deciding what actions to take, but they also have to take into consideration all
the inferential evidence from the surrounding world. For instance, if the robot
witnesses a shooting scene, it must be able to discriminate the contextual value of
that happening on a stage theater versus happening in a public street.

Computer Vision can help a social robot to validate and determine the context in
which it is operating, or it can aid updating and learning a new context.

In current research, context is modeled as a conditioning variable which is used
for providing answers to certain problems, and can assume one of two natures: i)

spatial, in the sense of what does the world look like around the part of the scene we

9
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are focusing on; ii) temporal, in the sense of what has happened immediately before
what is being considered in the current scene.

The usefulness of context is captured in the famous COCO (common objects in
context) dataset [49]. This is particularly useful when paired with algorithms such
as Convolutional Neural Networks. In fact, CNNs have the ability of considering
spatial context when extracting features for an image portion, due to the fact that
their receptive fields are able to look at the entire picture at higher levels of the
architecture, and exploit any available global information. Intuitively, larger context
regions capture global spatial configurations of objects, while smaller context regions
focus on the local part appearance.

Manually designed context representations, such as multiple bounding boxes or
image crops, have been typically used to provide more precise contextual information
about a scene. This has been very helpful for both object detection [87, 88] and
human pose estimation [89–91]. However, more recently there has been a focus on
studying methodologies that do not pre-define context, but model it as a form of
visual attention in which the network can choose which portions of the image to
focus on [92].

In the field of dynamics, context is typically considered as a small window of time
around the current time, and 3D Convolutional Neural Networks [93] are used to
make predictions over space and time. However, the length of the temporal context
window is very small since these 3D convolutions require dense sampling in time to
work accurately. More recently, for capturing longer term supportive information, a
long-term set of feature banks [94] context is typically used by dynamic models and
can be accessed whenever needed to aid the current recognition task.

10
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C h a p t e r 3

THESIS STATEMENT

The underlying thread of this Thesis is the investigation of new ways for enabling
social interactions between robots and humans by advancing the perceptual capabil-
ities of social robots when they process images and videos where humans are the

main focus of attention.

The investigations carried out throughout this work address the following questions
at multiple levels of abstraction:

• What information can be captured from a static scene that best helps inferring
its context?

• Is it possible to recover information from the real world that is lost in the
projection to monocular images?

• How can one extract information from images and videos on how humans are
positioned and move?

• Can one develop algorithms that work accurately and have good generalization
ability, even for tasks in which there is little high-quality training data?

We tackled the above topics along different dimensions: i) by collecting datasets

for both well-known and novel tasks; ii) by introducing new metrics that capture the
many sources of error that impact the performance of methods performing a certain
task; iii) by designing algorithms that enable tasks that were previously thought
impossible, and by solving known tasks based on less constraining assumptions.

The Thesis is articulated in two main sections, organized in a top-down fashion: in
Part I, we analyze the high-level, general problem of scene understanding; in Part II,
we focus on improving estimates of 3D pose and motion of humans captured in
monocular two-dimensional images and videos when there is a limited amount of
supervision available.
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Part I

The aim of scene understanding entails the ability to provide a description of a scene
depicted in an image as a whole without the need of a specific task or goal being
specified. This comes very easily and natural for humans: even when images are just
shown for a brief moment, we are able to elaborate informative general-purpose high-
level scene descriptions useful for carrying out a diverse set of tasks also unrelated
to the scene’s individual elements.

As social robots move through the world and are presented with images of scenes
dynamically changing, they will need to be able to interpret them without having
been assigned a specific preset goal.

This requires many different skills. For one, understanding a scene as a whole is
to be able to reason about the entities present in the image and the way in which
they are positioned and interact with each other. Further, it implies having a correct
spatial perception of the scene and being able to evaluate depths and the relative
position of the objects in the scene. Finally, it requires distinguishing the number of
people in the image, their positions (both anatomically and with respect to others)
while they may be performing complicated actions.

In the following chapters, we look at this problem from three points of view inde-
pendent from each other, yet all very relevant to the overarching goal of gaining un-
derstanding of a scene that can be useful for a variety of down-stream tasks.

Chapter 4: We answer the question of what should a task-independent image de-
scription look like. We propose a “graph of interactions” which, unlike previously
adopted representations (such as captions or bags of objects), captures in an unam-
biguous way what are the entities in an image, their attributes and relative position-

ing, as well as the action relationships between them.

Chapter 5: We show that it is possible to obtain a spatial understanding of a scene
in terms of the metric distance from a subject of interaction by only using cues
arising from the effect of perspective on a two-dimensional monocular picture of the
person’s face. Furthermore, neither the subject’s specific identity attributes, nor the
camera calibration parameters are found to be necessary.

Chapter 6: We define a novel taxonomy of errors for analyzing the performance
of algorithms on the task of estimating the two-dimensional body pose of people in
monocular images. Our error analysis shows that characteristics of the portrayed

12
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people substantially affect the performance and that current benchmarks do not
appropriately capture the variability of images in real world scenarios.

Part II

One of the three fundamental pillars of modern Computer Vision is the unprecedented
availability of large datasets [48, 95, 96] capturing all the aspects of variability for a
specific task of interest.1

However, it is unrealistic to attempt to collect datasets capturing the variability of all
the social tasks that robots will be expected to tackle. Besides being a very long tail
distribution, the correct answers often cannot even be well defined, in the sense of a
pre-defined sequence of steps constituting the "proper" behavior. In fact, open-ended
tasks can be solved in many different ways and even humans might complete them
in several different, but equally acceptable, ways.

As a result, we need to develop learning algorithms that are robust to low data
availability and display generalization abilities that are at least comparable to those
of humans.

In this Thesis, we have tackled this problem from the angle of estimating the 3D
pose and motion of humans from monocular images and videos. The application of
supervised machine learning to 3D pose estimation in real world images is currently
hampered by the lack of varied training images with corresponding 3D poses. The
majority of current 3D pose estimation algorithms are trained using data that has
either been collected in carefully controlled studio settings or has been generated
artificially, which hampers their applicability to real-life tasks.

Each of the three chapters in this part of the Thesis tackles the above problem with a
slightly different approach, yet they all share the basic goal of improving the ability of
Computer Vision algorithms to work in situations for which it is expensive (time and
resource-wise) and complicated (multitude of environments) to capture the required
supervision needed for applying a supervised Computer Vision methodology.

Chapter 7: We design a new algorithm that learns a set of three-dimensional basis
poses of the human body that can be used to characterize the manifold of primitive
human motions. Our technique uses only two-dimensional keypoints from images

1The other two are the resurgence of Convolutional Neural Networks [47, 97] along with the
development and mass deployment of Graphics Processing Units.
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depicting the actions containing the reconstructed motions, taken from various
known camera pan angles at unknown instants of time.

Chapter 8: We define a novel loss function for training a neural network on the
task of three-dimensional human pose estimation from monocular images, using
only sparse and easily obtainable relative depth annotations. Despite the greatly
simplified set of assumptions, our method shows performance comparable to that of
fully supervised state-of-the-art algorithms.

Chapter 9: We propose a self-supervised methodology for learning a
viewpoint-invariant embedding of human poses from video sources. Our approach
is simple and inexpensive as the only required training data are synchronized videos
from multiple uncalibrated cameras. We explore the data efficiency, accuracy, and
viewpoint invariance of the learned embedding applied to the task of regressing
three-dimensional human pose from monocular images.

Finally, in Chapter 10 we summarize the contributions and novel observations
supported by the research conducted throughout this Thesis, and in Chapter 11
we outline a few promising directions of investigation which we are planning on
pursuing, such as discussing the framework in which we believe our work can be
used for controlling the visuomotor skills of a robot.

14
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C h a p t e r 4

DESCRIBING COMMON HUMAN VISUAL ACTIONS

The contents of this chapter are adapted from the peer-reviewed publication:

M. R. Ronchi and P. Perona “Describing Common Human Visual Actions in

Images.” 26th British Machine Vision Conference (2015, Swansea, Wales).
DOI: 10.5244/C.29.52

URL: http://www.vision.caltech.edu/~mronchi/projects/Cocoa

WHICH common human actions and interactions are recognizable in monocular
still images? Which involve objects and/or other people? How many actions

does a person performing at a time? We address these questions by exploring the
actions and interactions that are detectable in the images of the COCO dataset. We
make two main contributions. First, a list of 140 common ‘visual actions’ obtained by
analyzing the largest on-line verb lexicon currently available for English (VerbNet)
and human sentences used to describe images in COCO. Second, a complete set
of annotations for those ‘visual actions’ composed of subject-object and associated
verb, which we call COCO-a (a for ‘actions’). COCO-a is larger than existing
action datasets in terms of number instances of actions, and is unique because it
is data-driven, rather than experimenter-biased. Other unique features are that it is
exhaustive, and that all subjects and objects are localized. A statistical analysis of
the accuracy of our annotations and of each action, interaction and subject-object
combination is provided.

10.5244/C.29.52
http://www.vision.caltech.edu/~mronchi/projects/Cocoa
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COCO image n.248194 COCO captions

A man reading a paper and two people talking to a officer.

A man in a yellow jacket is looking at his phone with three 
others are in the background.

A police officer talking to people on a street.

A city street where a police officer and several people are 
standing.
A police officer who is riding a two wheeled motorized 
device.

COCO-a annotations (this paper)

Legend:

P4

Cell Phone

objects

P1

P3P2

standing
neutral

- near 
- right of

accompany

- near 
- in front of

- look at 
- talk to

P3

P2P1

- standing 
- balancing neutral

- near 
- right of

- near 
- in front of

- look at 
- talk to

- full contact 
- in front of

- hold 
- use 
- touch 
- look at

- look at 
- talk to

- standing 
- smiling 

visual actionsadverbs solo actions subjects emotions

Handbag

P2

P3P1

neutral

- near 
- left of

accompany

- near 
- in front of

- look at 
- talk to

- full contact 
- right of

- carry 
- hold 
- touch

standing
happy

Figure 4.1: Example annotation from the COCO-a dataset. (Top) COCO image with
its corresponding captions. (Bottom) COCO-a annotations. The annotations are organized
by subject: each person in the image (P1–P4, from left to right) can be represented in turn
as a subject (blue node) or an object (green node). Each subject and subject-object pair is
associated to states and actions (colored boxes containing the collected annotations). Each
action is associated to one of the 140 visual actions defined in our Visual VerbNet (VVN),
Section 4.4.1

4.1 Introduction

Vision, according to Marr, is “to know what is where by looking.” This is a felicitous
definition, but there is more to scene understanding than ‘what’ and ‘where’: there are
also ‘who’, ‘whom’, ‘when’ and ‘how’. Besides recognizing objects and estimating
shape and location, we wish to detect agents, understand their actions and plans,
estimate what and whom they are interacting with, reason about cause and effect,
and predict what will happen next.

The idea that actions are an important component of ‘scene understanding’ in
computer vision dates back at least to the ’80s [1, 2]. In order to detect actions
alongside objects, the relationships between those objects needs to be discovered.
For each action, the roles of ‘subject’ (active agent) and ‘object’ (passive - whether
thing or person) have to be identified. This information may be expressed as a
‘semantic network’ [3], which is the first useful output of a vision system for scene
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understanding.1 Further steps in scene understanding include assessing causality and
predicting intents and future events. It may be argued that producing a full-fledged
semantic network for the entire scene may not be necessary in answering questions
about the image, as in the Visual Turing Test [4], or in producing output in natural
language form. One of the goals of the present study is to ground this debate in data
and make the discussion more empirical and less philosophical.

Three main challenges face us in approaching scene understanding. (1) Deciding the
nature of the representation that needs to be produced (e.g. there is still disagree-
ment on whether actions should be viewed as arcs or nodes in the semantic network).
(2) Designing algorithms that will analyze the image and produce the desired repre-
sentation. (3) Learning – most of the algorithms that are involved have a consider-
able number of free parameters. In the way of each one of these steps is a dearth of
annotated data. The ideal dataset to guide our next steps has four desiderata: (a) it is
representative of the pictures we collect every day; (b) it is richly and accurately an-

notated with the type of information we would like our systems to know about; (c) it
is not biased by a particular approach to scene understanding, rather it is collected
and annotated independently of any specific computational approach; (d) it is large,
containing sufficient data to train the large numbers of parameters that are present in
today’s algorithms. Current datasets do not measure up to one or more of these crite-
ria. Our goal is to fill this gap. In the present study, we focus on actions that may be
detected from single images (rather than video). We explore the visual actions that
are present in the recently collected COCO image dataset [5]. The COCO dataset
is large, finely annotated and focused on 81 commonly occurring objects and their
typical surroundings.

By studying the visual actions in COCO, we make two main contributions:

1. An unbiased method for estimating actions, where the data tells us which
actions occur, rather than starting from an arbitrary list of actions and collecting
images that represent them. We are thus able to explore the type, number and
frequency of the actions that occur in common images. The outcome of this analysis
is Visual VerbNet (VVN) listing the 140 common actions that are visually
detectable in images.

1While there is broad agreement that the knowledge produced by a ‘scene understanding’
algorithm should take the form of a graph, the exact definition and the name of this graph have not
yet been settled. Other popular choices are ‘parse network’, ‘knowledge graph’, ‘scene graph’.
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2. A large and well annotated dataset of actions on the current best image dataset
for visual recognition, with rich annotations including all the actions performed
by each person in the dataset, and the people and objects that are involved in each
action, subject’s posture and emotion, and high level visual cues such as mutual
position and distance, Figure 4.1.

4.2 Previous Work

Human action recognition has been an important research topic in Computer Vision
since the late 80’s, and was mainly based on motion/video datasets. Nagel and his
collaborators analyzed the German language to detect verbs that refer to actions
in urban traffic scenes. They found 119 verbs referring to 67 distinct actions [6,
7], a complete description of actions in a well-defined environment of practical
relevance. Early work on human action detection focused on detecting actions as
spatio-temporal patterns [8, 9]. Datasets collected in the early 2000s reflect this
interest. A popular example is the KTH dataset [10] containing videos of people
performing 6 actions (no interaction with objects and other people). Laptev and
collaborators [11] collected the Hollywood dataset culling video of 12 human actions
from commercial movies, thus mitigating experimenter bias from acting and filming.

Exploring actions in still images [12] is very valuable given the prevalence and
convenience of still pictures. It presents additional challenges – detecting humans,
and computing their pose, is more difficult than in video, and the direction of motion
is not available making some actions ambiguous (e.g. picking up versus putting
down a pen on a desk). State-of-the-art datasets are summarized in Table 4.1.

Everingham and collaborators annotated the PASCAL dataset with 10 actions [13] as
a part of the PASCAL-VOC competition. The dataset contains images from multiple
sources. The dataset is annotated for objects, and contains a point location for
human bodies. Fei-Fei and collaborators collected the Stanford 40 Action Dataset
with images of humans performing 40 actions [14]. All images were obtained
from Google, Bing, and Flickr. The person performing the action is identified
by a bounding box, but objects are not localized. There are 9532 images in total
and between 180 and 300 images per action class. Le et al., in their 89 Actions
Dataset [15], selected all the images in PASCAL representing a human action and
assembled a dataset of 2038 images, which they manually annotated with a verb. The
dataset contains 19 objects and 36 verbs, which are combined to form 89 actions.
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Per Image Statistics
Dataset Images Actions Subjects Objects Interactions Actions Adverbs
Pascal [13] 9100 10 1 1 x 1 x
Stanford 40 [14] 9532 40 1 1 x 1 x
89 Actions [15] 2038 89 1 1 x 1 x
TUHOI [16] 10805 2974 1.8 - x 4.8 x
Our work 10000 140 2.2 5.2 5.8 11.1 9.6

Table 4.1: State-of-the-art datasets for single-frame action recognition. We indicate
with ‘x’ quantities that are not annotated, with ‘-’ statistics that are not reported. The meaning of
Interactions and Adverbs is explained in Section 4.4.

The COCO dataset has been annotated with five captions per image [5], which
provides information on actions. These annotations have many good properties:
they are data-driven and unbiased; easy and inexpensive to collect; and intuitive
and familiar for human interpretation. However, from the point of view of training
algorithms for action recognition, there are significant drawbacks: captions don’t
specify where things are in the image; captions focus typically on one action (which
is a very incomplete description of the image); natural language is ambiguous and
still difficult to analyze automatically. For these reasons, the COCO captions are
not sufficient to inform research on action recognition. The closest work to our own
is a dataset called TUHOI [16], which extends the ImageNet [17] annotations by
providing descriptions of the actions contained in the images. However, the action
annotations are obtained as free-typed verbs, which introduces many ambiguities
(such as synonyms) and does not control the specificity of the verbs and on their
being visually discriminable – more on this in the next Section.

In the present study, we make a number of steps forward. First, we derive the actions
from the data rather than imposing a pre-defined set. Second, we collect data in
the form of semantic networks, in which active entities and all the objects they
are interacting with are represented as connected nodes. Each agent-object pair
is labelled with the set of relevant actions; each agent is also labelled with ‘solo’
actions such as posture and motion. Emotional state of the agent, relative location
and distance at which interactions occur are also recorded. The advantages of this
representation over natural language captions can be seen in Figure 4.1.

20



Chapter 4. Describing Common Human Visual Actions

4.3 Framework

It is important to keep the distinction straight between ‘verbs’ and ‘actions’. Verbs
are words and actions are states and events. According to the dictionary, a verb is
“a word used to describe an action, state, or occurrence”. By contrast, an action
is “the fact or process of doing something”. Thus verbs are words that are used to
denote actions. Unfortunately, the correspondence between verbs and actions is
not one-to-one. For example, the verb spread may denote the action of spreading
jam on a toast using a knife, or may describe the action carried out by a group of
people who part ways simultaneously. Same word, different actions. Conversely, to

spread (in the culinary sense) becomes to butter when what is being spread is butter.
Two words for the same action. Furthermore, some actions may be denoted by a
single word, surf or golf, and others may require a few words, play tennis and ride a

bicycle. For simplicity we will call ‘verb’ all the expressions that describe actions,
whether single or multi-worded.

Actions are not equal in length and complexity. It has been pointed out that one
may distinguish between ‘movemes’, ‘actions’, and ‘activities’ [18, 19] depending
on structure, complexity, and duration. For example: reach is a moveme (a brief
target-directed ballistic motion), drink from a glass is an action (a concatenation of
movemes: reach the glass, grasp its stem, lift the glass to the lips, etc.), while dine is
an activity (a stochastic concatenation of actions taking place over a stretch of time).
Here, we do not distinguish between movemes, actions and activities because in still
images the extent in time and complexity is not directly observable.

We call ‘visual action’ an action, state, or occurrence that has a unique and unam-
biguous visual connotation, making it detectable and classifiable; i.e., lay down is a
visual action, while relax is not. A visual action may be discriminable only from
video data, ‘multi-frame visual action’ such as open and close, or from monocular
still images, ‘single-frame visual action’ (simply ‘visual action’ throughout the rest
of this dissertation), such as stand, eat and play tennis. In order to label visual ac-
tions, we will use the verbs that come readily to mind to a native English speaker, a
concept akin to entry-level categorization for objects [20]. Based on this criterion,
sometimes we prefer more general visual actions (e.g. play tennis) rather than the
sports domain specific ones such as volley or serve, and drink rather than more spe-
cific ‘movemes’ such as lift a glass to the lips), other times more specific ones (e.g.
shaking hands instead of more generally greet).
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Figure 4.2: Steps in the collection of the COCO-a dataset. From VerbNet and COCO
captions, we extracted a list of 140 visual actions. Persons that are annotated in the COCO
images were considered as potential ‘subjects’ of actions, and AMT workers annotated all
the objects they interact with, and assigned the corresponding visual actions. Titles in light
blue indicate the components of the dataset, and their size is shown in parenthesis. COCO
image n.118697 is used in this visualization.

While taxonomization has been adopted as an adequate means of organizing object
categories (e.g. animal→ mammal→ dog→ dalmatian), and shallow taxonomies
are available for verbs in VerbNet [21], we are not interested in fine-grained catego-
rization for the time being, thus there are no taxonomies in our set of visual actions.

4.4 Dataset Collection

Our goal is to collect an unbiased dataset with a large amount of meaningful and
detectable interactions involving human agents as subjects. Our focus is on humans
given the large variety of actions they perform and great availability of data, but we
will consider extending our collection to other agents and objects in the future.
We put together a process, exemplified in Figure 4.2, consisting of four steps:

1. Obtain the list of common visual actions that are observed in everyday images,
Section 4.4.1.

2. Identify the people who are carrying out actions (the subjects), Section 4.4.2.

3. For each subject, identify the objects that he/she is interacting with,
Section 4.4.3.

4. For each subject-object pair, identify the relevant actions, Section 4.4.4.
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board enjoy prop stick block miss step face wrap attach grab pass stuff grind

celebrate extend race stretch close move stop line color hand pick take park
check feature reflect top come open turn load crowd lead place toss pitch

compete include relax travel cross raise slide display leap say watch set
contain learn rest try enter return sprinkle dock make see wave swing
decorate live seem wait flip seat stack handle mount slice tow
double perform shape head shake surround fix observe speak

Figure 4.3: Visual VerbNet (VVN). (Top-Left) List of the 140 visual actions that constitute
VVN – bold ones were added after the comparison with COCO captions. (Top-Right) There
is 60% overlap for the 66 verbs in VVN (of the total 2321 in COCO captions) with > 500
occurrences. (Bottom) Verbs with > 100 occurrences in the COCO captions not contained
in VVN, organized in categories.

4.4.1 Visual VerbNet

To obtain the list of the entry-level visual actions, we examined VerbNet [21]
(containing > 8000 verbs organized in about 300 classes) and selected all the
verbs that refer to visually identifiable actions. Our criteria of selection is that we
would expect a 6–8 year old child to be able to easily distinguish visually between
them. This criterion led us to group synonyms and quasi-synonyms (speak and
talk, give and hand, etc.) and to eliminate verbs that were domain-specific (volley,
serve, etc.) or rare (cover, sprinkle, etc.). To be sure that we were not missing
any important actions, we also analyzed the verbs in the captions of the images
containing humans in the COCO dataset, and discarded verbs not referring to human
actions, without a clear visual connotation, or synonyms. This resulted in adding six
additional verbs to our list for a total of 140 visual actions, shown in Figure 4.3-(top-
left). Figure 4.3-(top-right) explores the overlap of VVN with the verbs in COCO
captions. The overlap is high for verbs that have many occurrences, and verbs that
appear in the COCO captions but not in VVN do not denote a visual action, are
synonyms of a visual action contained already in VVN, or refer to actions that are
either very domain-specific or highly unusual, as shown in the table in Figure 4.3-
(bottom). The process we followed ensured an unbiased selection of visual actions.
Furthermore, we asked Amazon Mechanical Turk (AMT) workers for feedback on
the completeness of this list and, given their scant response, we believe that VVN is
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Figure 4.4: Statistics from the COCO-a dataset. The distribution of (a) the type of
locations for all the images contained in the dataset, (b) the number of subjects portrayed per
image, and (c) the number of objects that a subject is interacting with. (d) The distribution
of the category of the interacting objects.

very close to complete, and does not need extension unless specific domain action
recognition is required. The goal of VVN is not to impose a strict ontology on the
annotations that will be collected, but rather to set a starting point for a systematic
analysis of actions in images and limit the effect of the many ambiguities that are
present in natural language.

4.4.2 Image and Subject Selection

Different actions usually occur in different environments, so in order to balance the
content of our dataset, we selected an approximately equal number of images of
three types of scenes: sports, outdoors, and indoors, as shown in Figure 4.4-(a).
Furthermore, the type of actions performed is strongly correlated to the number of
people interacting. As a result, we selected images of various complexity containing
only a single subject, small groups (2-4 subjects) and crowds (>4 subjects),
Figure 4.4-(b). From the selected images, all the people whose pixel area is larger
than 1600 pixels are defined as ‘subjects’. All the people in an image, regardless of
size, are still considered as possible objects of an interaction. The result of this
preliminary image analysis is an intermediate dataset containing about two subjects
per image, indicated as ‘COCO-a subjects’ in Figure 4.2.

4.4.3 Interactions Annotations

For each subject, we collected labels describing all the objects that he/she is inter-
acting with. In order to do so, we presented annotators with images such as in Fig-
ure 4.5-(left), containing only one ‘subject’ (the person highlighted in blue) and a
multitude of potential ‘objects’ (hightlighted in white), and asked them to either (1)
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Figure 4.5: Quality evaluation of the COCO-a annotations. (Left) Example image
presented to the AMT workers with the ‘subject’ highlighted in blue and all the ‘objects’
in white. When an object is labeled as part of an interaction, it is highlighted in green.
Annotators’ accuracy for the task of ‘subject’ visibility flag classification (Center) and
Precision and Recall curve for the task of ‘subject-object’ interaction detection (Right). We
measure the performance of annotators by consolidating the answers of multiple annotators
using a number of votes ranging from 1 to 5, and comparing the obtained label to the
annotation by the authors on a subset of images.

flag the subject if it was mostly occluded or invisible; or (2) click on all the objects
(including other people) that he/she is interacting with.

Deciding if a person is occluded and if it is interacting with an object (or other
person) is somewhat subjective, so we asked 5 workers to analyze each image and
combined their responses requiring a number of votes ranging from 1 to 5. The
loosest strategy (‘1 vote’) required only one out of the five annotators to say that a
‘subject’ was occluded or that a ‘subject-object’ pair was interacting for that label to
be assigned, while the most strict strategy (‘5 votes’) required complete agreement
between all workers. In order to assess the quality of the responses and determine the
best method for combining them into a unique label, we also collected ground-truth
answers from one of the authors on a subset of the images. 1) We measured the
accuracy (percentage agreement) between the author’s answer and the combined
annotations in assessing the visibility flag of the ‘subject’ in the image. 2) We
framed the annotation of a ‘subject-object’ interaction pair as a detection problem,
and defined the following quantities: True Positives - interactions identified by both
the author and the annotators; False Positives - interactions disregarded by the author,
but identified by the annotators; False Negatives - interactions identified by the
author and missed by the annotators.

Based on the above definitions, it is possible to measure the Precision and Recall
trade-off for all possible combination strategies. We found that requiring three
votes yielded the highest flag agreement of about 95%, Figure 4.5-(center), and the
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best trade-off between Precision and Recall, Figure 4.5-(right). After discarding
the flagged subjects and consolidating the interaction annotations, we obtained an
average of 5.8 interactions per image, which constitute the ‘COCO-a interactions’
dataset, Figure 4.2.

As shown in Figure 4.4-(c), about 1/5 of the subjects is performing ‘solo’ visual
actions (not interacting with any objects), while 2/5 is involved in an interaction
with a single object, and 2/5 interact with two or more objects (Figure 4.1 contains
examples of subjects interacting with two and three objects). Figure 4.5-(d) suggests
that our dataset is human-centric, since more than half of the interactions happen
with other people.

4.4.4 Visual Actions Annotations

In the final step of our process, we labelled all the subject-object interactions in
the COCO-a interactions dataset with the visual actions in VVN. Workers were
presented with an image containing a single highlighted interaction, as visualized in
Figure 4.5-(left), and asked to select all the visual actions describing it.

We organized the set of visual actions in VVN into 8 groups – ‘posture/motion’,
‘solo actions’, ‘contact actions’, ‘actions with objects’, ‘social actions’, ‘nutrition

actions’, ‘communication actions’, ‘perception actions’. This was based on two
simple rules: (a) actions in the same group share some important property, for
instance being performed ‘solo’ (cry, clap hands), with ‘objects’ (cut, ride a bicycle),
or being ‘social’ in the sense of requiring the involvement of other people (shake

hands, feed); (b) actions in the same group tend to be mutually exclusive, i.e. a
person can be drinking or eating at a certain moment, but not both, while ‘visual
actions’ of different categories may co-occur, i.e. one may be eating while standing.

Furthermore, we included in our study 3 ‘adverb’ categories: ‘emotion’ of the
subject.2, ‘location’ and ‘relative distance’ of the object with respect to the subject3
This allowed us to obtain a rich set of annotations for all the actions that a subject
is performing which completely describe his/her state, a property that is novel
with respect to existing datasets and favours the construction of semantic networks

2Despite the disagreement on the fact that humans might have basic discrete emotions [22, 23],
we adopt Ekman’s 6 basic emotions [24] for this study as we are interested in a high level description
of subject’s emotional state.

3Some actions require a special mutual position: sit implies that the sitter is above, as well as in
contact with, the thing that he sits on. Other actions require proximity and no contact.
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Figure 4.6: Distribution of the visual actions based on object category. Fraction of
visual actions that belong to each macro category (excluding posture and solo actions) when
subjects interact with People, Animals, Objects or Food.

centered on the subject. Tables 4.2 and 4.3 contain a break down of the visual
actions and adverbs into the categories that were presented to the AMT workers.

We asked three annotators to select all the visual actions and adverbs that describe
each subject-object interaction pair. In some cases, annotators interpreted interactions
differently, but still correctly, so we return all the visual actions collected for each
interaction along with the value of agreement between the annotators, rather than
forcing a deterministic, but arbitrary, ground truth. Depending on the application
that will be using our data, it will be possible to consider visual actions on which all
the annotators agree or only a subset of them. The average number of visual action
annotations provided per image for an agreement of 1, 2 or all 3 annotators is 19.2,
11.1, and 6.1, respectively.

This constitutes the content of the COCO-a dataset in its final form.

4.5 Analysis

Figure 4.1 allows a first qualitative analysis of the COCO-a dataset. Compared with
COCO captions, COCO-a annotations contain additional information by providing:
i) a complete account of all the subjects, objects and actions contained in an image;
ii) an unambiguous and machine-friendly form; and iii) the specific localization in
the image for each subject and object. Statistics of the information that the COCO-a
dataset annotations capture and convey for each image is summarized in Table 4.1.

In Figure 4.6, we see the most frequent types of actions carried out when subjects
interact with four specific object categories: other people, animals, inanimate objects
(such as a handbag or a chair), and food. For interactions with people, the visual
actions belong mostly to the categories ‘social’ and ‘perception’. When subjects
interact with animals, the visual actions are similar to those with people, except
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Visual Actions
Posture / Motion (23)

balance hang run
bend jump sit
bow kneel squat

climb lean stand
crouch lie straddle

fall perch swim
float recline walk
fly roll

Communication (6)
call

shout
signal
talk

whistle
wink

Contact (22)
avoid massage

bit pet
bump pinch
caress poke

hit pull
hold punch
hug push
kick reach
kiss slap
lick squeeze
lift tickle

Social (24*)
accompany give play baseball

be with groom play basketball
chase help play frisbee
dance hunt play soccer
dine kill play tennis
dress meet precede
feed pay
fight shake hands

follow teach

Perception (5)
listen
look
sniff
taste
touch

Nutrition (7)
chew
cook

devour
drink
eat

prepare
spread

Solo (24*)
blow play soccer
clap play tennis
cry play instrument

draw pose
groan sing
laugh sleep
paint smile

photograph write
play skate

play baseball ski
play basketball snowboard

play frisbee surf

With objects (34)
bend fill separate
break get show
brush lay spill
build light spray
carry mix steal
catch pour put
clear read throw
cut remove use

disassemble repair wash
drive ride wear
drop row

exchange sail

Table 4.2: List of visual actions in COCO-a grouped by category. The complete list
of visual actions contained in Visual VerbNet. Visual actions in one category are usually
mutually exclusive, while visual actions of different categories may co-occur. (*) There are
five visual actions (play baseball, play basketball, play frisbee, play soccer, play tennis) that
are considered both ‘social’ and ‘solo’ types of actions.
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Adverbs
Emotion (6)

anger
disgust

fear
happiness
sadness
surprise

Relative Location (6)
above
behind
below

in front
left

right

Relative Distance (4)
far

full contact
light contact

near

Table 4.3: List of visual adverbs in COCO-a grouped by category. The complete list of
high level visual cues collected, describing the subjects (emotion) and localization of the
interaction (relative location and distance).

Person
Visual Actions
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accompany
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look
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person
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stand
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Figure 4.7: Analysis of the visual actions performed by people and the most common
visual action in the COCO-a dataset. (Left) Top visual actions, postures, distances and
relative locations of person/person interactions. (Right) Objects, postures, distances and
locations that are most commonly associated with the visual action ‘touch’.

there are fewer ‘social’ actions and more ‘perception’ actions. Person and animal
are the only types of objects for which the ‘communication’ visual actions are
used at all. When people interact with objects, the visual actions used to describe
those interactions are mainly from the categories ‘with objects’ and ‘perception’.
As expected, food items are the only ones for which visual actions of ‘nutrition’
category are selected.

Figure 4.8-(top) shows the full lists of objects that people interact with, and the
number of interactions. There are 29 objects with more than 100 interactions in the
images contained in the COCO-a dataset.
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Figure 4.8: Histogram of counts for objects and visual actions in the COCO-a dataset. The frequency distribution of interacting objects obtained
(Top) and visual actions (Bottom) that people perform in the COCO-a dataset, as obtained through the annotation process. The distributions are
long-tailed with a fairly steep slope, and there are only 29 objects and 31 visual actions having more than 100 occurrences.
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Figure 4.9: Heavy tail analysis of the visual actions. The plot in log-log scale of the list
of visual actions against the number of occurrences.

The human-centric nature of the dataset is confirmed by the fact that the most
frequent object of interaction is other persons, an order of magnitude more than any
other objects. Since our dataset contains an equal number of sports, outdoor and
indoor scenes, the list of objects is heterogeneous and contains objects that can be
found in all environments.

In Figure 4.8-(bottom), we show the complete list of visual actions annotated from
the images and their occurrences. There are only 31 visual actions that have more
than 100 occurrences, with 90% of the actions having less than 2000 occurrences
and covering about 27% of the total count of visual actions. The distribution of the
visual actions’ counts follows a heavy tail distribution, to which we fit a line, shown
in Figure 4.9, with slope α ∼ −3. This leads to the observation that COCO dataset is
sufficient for a thorough representation and study of about 20 to 30 visual actions.
However, we are considering methods to bias our image selection process in order
to obtain more samples of the actions contained in the tail.

The most frequent visual action in our dataset is ‘be with’. This is a very particular
visual action as annotators use it to specify when people belong to the same group.
Common images often contain multiple people involved in different group actions,
and this annotation can provide insights in learning concepts such as the difference
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between proximity and interaction – i.e. two people back to back are probably not
part of the same group although spatially close.

The COCO-a dataset contains a rich set of annotations. We provide two examples of
the information that can be extracted and explored, for an object and a visual action
contained in the dataset. Figure 4.7-(left) describes interactions between people. We
list the most frequent visual actions that people perform together (be in the same

group, pose for pictures, accompany each other, etc.), postures that are held (stand,
sit, kneel, etc.), distances of interaction (people mainly interact near each other, or
from far away if they are playing some sports together) and locations (people are
located about equally in front or to each other’s sides, more rarely behind and almost
never above or below each other). A similar analysis can be carried out for the visual
action touch, Figure 4.7-(right). The most frequently touched object are other people,
sports and wearable items. People touch things mainly when they are standing or
sitting (for instance a chair or a table in front of them). As expected, the distribution
of locations is very skewed, as people are almost always in full or in light contact
when touching an object and never far away from it. The location of objects shows
us that people in images usually touch things in front (as comes natural in the action
of grasping something) or below of them (such as a chair or bench when sitting).

To explore the expressive power of our annotations, we decided to query rare types
of interactions and visualize the images retrieved. Figure 4.10 shows the result
of querying our dataset for visual actions with rare emotion, posture, position or
location combinations. The format of the annotations allows to query for images
by specifying at the same time multiple properties of the interactions and their
combinations, making them well suited for the training of image retrieval systems.

4.6 Discussion and Conclusions

By a combined analysis of VerbNet and COCO captions, we were able to compile a
list of the main 140 visual actions that take place in common scenes. Our list, which
we call Visual VerbNet (VVN), attempts to include all actions that are visually dis-
criminable. It avoids verb synonyms, actions that are specific to particular domains,
and fine-grained actions. Unlike previous work, Visual VerbNet is not the result of
experimenter’s choices; rather, it is derived from linguistic analysis (VerbNet) and
an existing large dataset of everyday scenes (COCO captions). Our novel dataset,
COCO-a, consists of the VVN actions contained in 10, 000 COCO images, represen-
tative of a wide variety of scenes and situations in which 81 common objects are an-
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‘fight’ + ‘above’ ‘cry’ + ‘sink’ ‘touch’ + ‘above’

‘happy’ + ‘hydrant’ ‘sad’ + ‘cake’ ‘happy’ + ‘elephant’

‘pose’ + ‘full contact’ ‘toothbrush’ + ‘show’ ‘touch’ + ‘behind’
Figure 4.10: Sample images and rare annotations contained in the COCO-a dataset.
Sample images returned as a result of querying our dataset for visual actions with rare
emotion, posture, position or location combinations. Subjects are in blue.

notated with pixel precision segmentations. A key aspect of our annotations is that
they are complete. First, each person in each image is identified as a possible sub-
ject, or active agent of some action. Second, for each agent, the set of objects that
he/she is interacting with is identified. Third, for each agent-object pair (and each
single agent), all the possible interactions involving that pair are identified, along
with high level visual cues, such as emotion and posture, spatial relationship and dis-
tance. The analysis of our annotations suggests that our collection of images ought
to be augmented with an eye to increasing representation for the VVN actions that
are less frequent in COCO. We hope that our dataset will provide researchers with a
starting point for conceptualizing actions in images: which representations are most
suitable, which algorithms should be used. We also hope that it will provide an am-
bitious benchmark on which to train and test algorithms. Amongst applications that
are enabled by this dataset are building visual Q&A systems [4, 25], more sophisti-
cated image retrieval systems, and automated analysis of actions in images of social
media.
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C h a p t e r 5

DISTANCE ESTIMATION OF AN UNKNOWN PERSON FROM A
PORTRAIT

The contents of this chapter are adapted from the peer-reviewed publication:

X. P. Burgos-Artizzu, M. R. Ronchi and P. Perona “Distance Estimation of an

Unknown Person from a Portrait.” 13th European Conference on Computer Vision
(2014, Zurich, Switzerland).
DOI: 10.1007/978-3-319-10590-1_218

URL: http://www.vision.caltech.edu/~mronchi/projects/FaceDistancePortrait

WE propose the first automated method for estimating distance from frontal
pictures of unknown faces. Camera calibration is not necessary, nor is the

reconstruction of a 3D representation of the shape of the head. Our method is based
on estimating automatically the position of face and head landmarks in the image, and
then using a regressor to estimate distance from such measurements. We explored
which landmarks are more important for this task, and collected and annotated a
dataset of frontal portraits of 53 individuals spanning a number of attributes (sex,
age, race, hair), each photographed from seven distances. We find that our proposed
method outperforms humans performing the same task. We observe that different
physiognomies will bias systematically the estimate of distance, i.e. some people
look closer than others.

10.1007/978-3-319-10590-1_218
http://www.vision.caltech.edu/~mronchi/projects/FaceDistancePortrait


Chapter 5. Distance Estimation of an Unknown Person from a Portrait

60 cm 90 cm 120 cm 180 cm

240 cm 360 cm 480 cm

Figure 5.1: Example annotations from the Caltech Multi-Distance Portraits (CMDP)
dataset. Portrait pictures of a subject taken from 7 different distances ranging between 60
cm (top-left image) and 480 cm (bottom-right image). The effect of perspective, improperly
called ‘perspective distortion’, is clearly noticeable. In portraits taken from a closer distance,
the nose and mouth appear bigger, the ears are partially occluded by the cheeks, and the face
appears longer. This systematic deformation in the image plane is related to distance. We
explore whether, and how accurately, the distance from which the portrait was taken may be
estimated from the image when both the person and the camera are unknown.

5.1 Introduction

Consider a standard portrait of a person – either painted or photographed. Can one
estimate the distance between the camera (or the eye of the painter) and the face of the
sitter? Can one do so accurately even when the camera and the sitter are unknown?
These questions are not just academic – we have four applications in mind. First,
faces are present in most consumer pictures; if faces could provide a cue to distance,
this would be useful for scene analysis. Second, psychologists have pointed out
that the distance from which a portrait is captured affects its emotional valence [1];
therefore, estimating this distance from a given picture would provide a cue to
automate the assessment of its emotional valence. Third, estimating the distance
from which master paintings were produced will provide art historians with useful
information on art practices throughout the ages [2]. The fourth potential application
is forensics: inconsistency in the distance from which faces were photographed may
help reveal photographic forgeries [3].
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The most informative visual cues for distance are stereoscopic disparity [4], motion
parallax [5],[6] and structured lighting [7, 8]. However, we are interested in the case
of a static monocular brightness picture, such as a painting hanging in a museum or
a photograph in a newspaper, where none of these cues is available.

The most reliable remaining cue is object familiarity [9]; however, there are several
obstacles to a straightforward use of this cue. First, if the camera is unknown one
does not have calibration parameters, which rules out straightforward use of the
distance of known points, such as the distance between the pupils. Second, when
the sitter is unknown only statistical knowledge of his/hers 3D shape is available.
However, it is known that one image of a constellation of at least five 3D points
whose mutual position is known is sufficient both for camera calibration and pose
computation [10], and therefore one would expect that some useful signal is available,
see Figure 5.1.

In this work, we study the feasibility and accuracy of automatically estimating the
distance of a person from a camera, using a single 2D frontal portrait image without
requiring any prior knowledge on the camera used or the person being photographed.
Our approach is to first automatically detect facial features and then estimate distance
from their mutual positions in the image. Our main contributions are:

1. A novel approach for estimating the camera-head distance from a single 2D
portrait photograph when both the camera and the sitter are unknown. Our
method yields useful signal and outperforms humans by 16%, see Figure 5.6.

2. The introduction of a new dataset of portraits, Caltech Multi-Distance Portraits

(CMDP), composed of 53 subjects belonging to both sexes, a variety of ages,
ethnic backgrounds and physiognomies. Each subject was photographed from
seven different distances and each portrait manually labeled with 55 keypoints
over the head and face. The dataset is available online.

3. In-depth analysis and discussion of the feasibility of the proposed approach.
We study two different variants of the task and analyze what are the most
important input visual cues. We compare our method’s performance using
both machine estimated and ground-truth landmarks against the performance
of human observers. Interestingly, we found that the main source of error for
both humans and our method is the variability of physiognomies.
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5.2 Related Work

Estimating the pose of a human head from an image was explored in [11, 12]. The
literature focuses on the estimation of the three degrees of freedom (DOF) - yaw,
pitch and roll - under the assumption that the human head can be modeled as a
disembodied rigid object. Knowledge of the intrinsic camera parameters or depth
information is required.

Psychophysics experiments [13, 14] show that human face recognition performance
can be impaired by perspective transformation. As one might expect, the severity of
this deficit depends on the difference between the amount of ‘perspective distortion’
at the learning and testing phases. They also established that both global perspective
information and local image similarity features such as ears, eyes, mouth or nose
play a fundamental role in this task. Their conclusion is that perspective distortion
impairs face recognition, similarly to other visual cues such as lighting and head
orientation. This poses the question of whether perspective distortion or, equivalently,
distance may be estimated.

Psychologists [1] observed that portrait photographs taken from within personal
space elicit lower investments in an economic trust game and lower ratings of social
traits such as strength, attractiveness or trustworthiness. These findings could not
be explained by width-to-height ratio, explicit knowledge of the camera distance
or typicality of the presented faces, thus suggesting the existence of a facial cue
influencing social judgments as a function of interpersonal distance. They suggest
that there is an “optimal distance” at which portraits should be taken. This idea of
choosing the optimal viewpoint and distance to subject is also known to be of great
importance in traditional portraiture [2].

To our knowledge, Flores et al. [15] are the first to propose a method that recovers
camera distance from a single image of a previously unseen subject. Their work is
based on the Efficient Perspective n-Point algorithm (EPnP) [16], a non-iterative
solution to the perspective n-point problem for pose estimation of a calibrated
camera given n 3D-to-2D point correspondences. The main difference with our
work is that this approach is based on explicit computation of 3D information;
therefore it requires 3D models of heads. We argue that this is an unnecessary
complication. Moreover, Flores et al.’s method is not fully automated and requires
hand-annotated landmarks on the test image.
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In contrast with all prior work, we propose to train and test in image space without
the need for 3D head features or pose information. Furthermore, no calibration or
knowledge of camera parameters is needed. Finally, thanks to the recent
improvement of automatic facial landmark estimation [17–21], our method is fully
automated; it uses automatically estimated landmarks instead of manual annotations.

5.3 Caltech Multi-Distance Portraits Dataset

We collected a novel dataset, the Caltech Multi-Distance Portraits (CMDP). This
collection is made of high quality frontal portraits of 53 individuals against a blue
background imaged from seven distances spanning the typical range of distances
between photographer and subject: 60, 90, 120, 180, 240, 360, 480 cm, see Figure 5.1.
For distances exceeding 5m, perspective projection approaches a parallel projection
(the depth of a face is about 10cm), therefore no samples beyond 480 cm were
needed. Participants were selected among both genders, different ages and a variety
of ethnicities, physiognomies, hair and facial hair styles, to make the dataset as
heterogeneous and representative as possible.

Table 5.1: Subject variety in the CMDP dataset. Diver-
sity of the subjects contained in the Caltech Multi-Distance
Portraits dataset. Individuals may belong to multiple cate-
gories.

Category Num. of Subjects Percentage

African-American 4 7.5%
Asian 5 9.4%
Caucasian 36 68.2%
Latino 8 15%
Female 7 13.2%
Male 46 86.8%
With Facial Hair 13 24.5%
With Occlusions 11 20.7%

Pictures were collected with a Canon Rebel Xti DSLR camera mounting a 28-300mm
L-series Canon zoom lens. Participants standing in front of a blue background were
instructed to remain still and maintain a neutral expression. The photographer used
a monopod to support the camera-lens assembly. The monopod was adjusted so
that the height of the center of the lens would correspond to the bridge of the nose,
between the eyes. Markings on the ground indicated seven distances. After taking
each picture, the photographer moved the foot of the monopod to the next marking,
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adjusted the zoom to fill the frame of the picture with the face, and took the next
picture. This procedure resulted in seven pictures (one per distance) being taken
within 15-20 seconds. Images were then cropped and resampled to a common format.
The lens was calibrated at different zoom settings to verify the amount of barrel
distortion, which was found to be very small at all settings, and thus left uncorrected.
Lens calibration was then discarded and not used further in our experiments.

As the camera approaches the subject, the relationship between the size of the picture
and that of the main parts of the face changes, Figure 5.1. It is important to clarify
that this ‘perspective distortion’ is not a lens error (this was verified, as explained in
the previous paragraph): it arises from the projection of the three dimensional world
into a two dimensional image and is easily observable with our own eyes. We could
have used any other lens, including one with fixed focal length, or a pinhole camera,
and there would have been no difference in the amount of ‘perspective distortion’
measured at a given distance (that is, assuming that the lens has no internal flaws or
distortion). Using a lens with a shorter focal length and wider field of view will result
in a coarser pixel sampling of the face, but the perspective geometry and proportions
would only depend on distance, or, equivalently, on the visual angle subtended by
the face. Regardless of the lens used, crops of two images taken from the same
distance would be identical, apart from sampling resolution. We used a zoom lens to
obtain maximum pixel resolution at all distances.

5.3.1 Annotating CMDP

All images in the dataset were manually annotated with 55 facial landmarks
distributed over and along the face and head contour, see Figure 5.2-(a). The
location of our landmarks is very different from landmark positions typically used in
the literature, more focused towards the center and bottom of the face, as for
example Multi-pie [22] format, Figure 5.2-(b). We purposely wanted to have
landmarks around the head contour (in green) and all around the face (in red), to
sample a larger area of the face.

The dataset was annotated by three different people. Portraits from the same subject
were always labeled by the same annotator, to minimize the variance in the location
of landmarks between pictures at different distances. To check consistency of
annotations, we doubly annotated several images from different subjects. Annotators
are very consistent, showing an average disagreement between them less than 3% of
the interocular distance, and not varying much across distances, see Figure 5.4.
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Figure 5.2: Face landmark formats.
Our suggested 55 face landmarks (left)
compared to the 68 ones contained in
the Multi-pie format [22] (right). With
landmarks around the hair line and top
of the forehead, our landmarks allow to
test whether these regions provide useful
signal, despite their intrinsic variability.

5.4 Problem Formulation

The goal of this investigation is to estimate the camera-head distance from a single
2D portrait photograph when both the camera and the sitter are unknown. From this
initial problem formulation, we derive two different tasks:

1. Sorting the seven images belonging to a single previously unseen subject
according to their distance.

2. Estimating the distance from which a single image of a previously unseen
subject was taken.

While the difference between the two might seem subtle, it affects the entire proce-
dure. Firstly, from a machine learning point of view, the former is a classification
task, while the latter is a pure regression problem, meaning that feature normaliza-
tion schemes and error metrics will be different in each case.

Secondly, pure regression is a much harder task. Since the person has never been
seen before, it is difficult to account for his/her physiognomy. For example, a person
with a round face or a big nose will often appear closer than a squared face with a
small nose, see Figure 5.3.

In fact, while humans are able to perform the first task rather accurately, see Fig-
ure 5.6, they are completely unable to perform the second task. Part of the reason is
the well-known fact that humans are better at relative judgments, rather than estimat-
ing absolute values. Another reason may be that having access to several pictures
of the same subject allows to ignore physiognomy and focus on the important sig-
nal. For real-life applications, the regression task is far more relevant; we use the
ordering task exclusively to benchmark our method against human performance and
guide our thoughts.
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Figure 5.3: Impact of physiognomy when
estimating the distance of a person from a
portrait. Estimating the relative distance of
previously unseen subjects is a difficult task.
Consider these portraits: their physiognomy
confuses human annotators, which have a ten-
dency to pick the left image (d=240cm) as
the closest one, while the right hand side one
(d=180cm) was closer.

Error metrics: In the re-ordering problem, we measure for each portrait the prob-
ability of being correctly classified into its distance category (from 1 to 7). In the
regression task, we measure both the Pearson correlation coefficient (Corr) and the
coefficient of determination (R2) between prediction and ground-truth distance on
all 7 images of the test subject:

Corr(sbj) = COV(gt(sbj), pred(sbj))
std(gt(sbj)) ∗ std(pred(sbj)), R2(sbj) = 1 − (gt(sbj) − pred(sbj))2(

gt(sbj) − gt
)2 , (5.1)

where the terms gt(sbj) and pred(sbj) are, respectively, the ground-truth and predicted
distances of each picture belonging to the subject being evaluated, and gt is the
average of all ground-truth distances.

5.5 Method

We use the position of the face’s landmarks to capture the 2D shape of the face
and therefore measure how much it changes with distance. Input landmarks can
be both the result of manual annotations or the output of a landmark estimation
algorithm. After computing the facial landmarks, we apply a supervised learning
approach, see Section 5.5.2. A subset of the subjects in the dataset are used to train
a regressor capable of mapping the shape of their face at different distances to the
ground-truth distances. Then, the performance of the learned regressor is evaluated
on the remaining subjects in the dataset according to each of the tasks defined in the
previous Section.
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Figure 5.4: Performance of the face landmark estimation algorithm. Human annotators
are very consistent, showing a low disagreement (3% average), and not varying much across
distances. Training RCPR using images from CMDP achieves good average performance
except for its high number of failures (16%), struggling in close-range images. RCPR trained
on 300-Faces yields slightly worse average performance with a lower number of failures
(4%). A failure is an average error above 10%, as in [20].

5.5.1 Facial Landmarks

Encouraged by the recent success of facial landmark estimation approaches, we
decided to benchmark its feasibility for this task. We use Random Cascaded Pose

Regression (RCPR) [20], due to its performance, speed and availability of code.

We trained RCPR on 70% of the individuals in our CMDP dataset (259 images in
total), with the same parameters as in the original publication. When applied to the
remaining 30% of our dataset, RCPR yields an average landmark error of 6.9% and
a 16% failure rate, see Figure 5.4-(a). Errors are measured as the average landmark
distance to ground-truth, and normalized as a percentage with respect to interocular
distance. A failure is an average error above 10%, as in [20].

We also trained RCPR on the more exhaustive 300-Faces-in-the wild dataset [21]
which contains more than 2K faces taken from previously existing datasets and re-
annotated following Multi-Pie 68 landmarks [22] convention, see Figure 5.2-(b). To
compare its results on our test images, we only evaluate it on the 22 set of landmarks
our convention shares with Multi-Pie format. This version of RCPR, applied to the
same 30% subset of subjects achieves an average error of 7.8%, but with a much
lower failure rate (4%), see Figure 5.4-(a).

Both RCPR versions are still far from human performance, struggling slightly more
with faces from both distance extremes, less common in face recognition datasets,
see Figure 5.4-(b). The distribution of errors by landmarks, shown in Figure 5.5,
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Figure 5.5: Distribution of errors by individual landmark. (blue=low average error,
red=high average error). (a) Humans concentrate their disagreement on the forehead (telling
where it ends is somewhat subjective) and ears (which can be occluded by hair and excessive
distortion). (b) RCPR trained on our faces struggles with hair and face contours. (c) RCPR
trained on 300W-Faces struggles the most with the eyebrows and chin. Gray points signify
non-presence of the landmark due to use of the Multi-Pie convention.

reveals that RCPR trained on CMDP struggles particularly with the head contour
and the ears due to their inherent variability, while RCPR trained on 300F struggles
with the nose and eyebrows. However, both versions still have a low number of
failure cases and therefore these issues affect only slightly the final performance of
distance estimation when compared with using ground-truth landmarks.

5.5.2 Proposed Approach

After collecting the facial landmarks, we use them as input to learn a regressor that
maps face shapes to their ground-truth distances. More specifically, shape S is
represented as a series of P landmark locations S = [(xp, yp)|p ∈ 1..P ∧ x, y ∈ R].
For each subject i ∈ 1..N , we dispose of seven different shape vectors Si

d associated
with each one of the different distance images d ∈ 1..7. The goal is to learn a robust
mapping from each one of the seven shapes to their respective distance: f : Si

d 7→ R.

Shape vector normalization: Due to the heterogeneity of face physiognomies
contained in our dataset, a prior normalization step of the face shapes is crucial to
learn a robust mapping. First, we standardize all portraits using the individual shape
vectors Si

d , cropping the image around the face, and removing scale and rotation
variations. Then, we propose two different normalization schemes for each one of
the tasks defined previously.

In the re-ordering task, we can compute the average subject face shape across all
seven distances (S

i
= 1

7
∑7

d=1 Si
d) and use it to normalize each shape, subtracting the

mean from the landmark’s position (S′id = Si
d − S

i
). This filters out the variations

in the shape of the face due to the physiognomy of the individual, leaving only the
changes due to perspective distortion.
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In the case of the regression task, at test time we only have access to one shape Si
d

at a time. During training, however, we can compute the average shape for each
distance (Sd =

1
N

∑N
i=1 Si

d). These average shapes can then be used to codify the
current shape as the concatenation of the differences between Si

d and each one of

the d average faces Sd: (S′id =
〈
Si

d − Sd=1, ..,Si
d − Sd=7

〉
).

The effect of each one of these normalization schemes on performance is presented
in Figure 5.9-(b), compared also to no normalization at all. Each step improves per-
formance significantly. It is evident that being able to average out with respect to the
subject’s shape makes a big difference, even compared to our distance normalization
scheme.

Inverse distance: In practice, inverse distance is preferred to avoid the saturation
of the signal after a certain value of distance (i.e. the difference in the measured
distortion becomes negligible with respect to the change in distance).

Learning algorithm: We train a multivariate linear regressor to learn the mapping
from the normalized shapes S′id onto the inverse distance of a face as a weighted
linear combination of the P landmark locations: (∑P

p=1 wpS′id(xp, yp)). We tried
several other methods, but none improved results compared to using a simple linear
regression. We suspect this may be due to the the relatively small number of training
examples and a further investigation should be conducted in future work.

Regression vs. classification: For the classification task, we sort the values the
regressor outputs for each of the 7 images belonging to the same subject and compare
it against ground-truth distance ordering.

5.6 Results

We now discuss the results of our method on the re-ordering and pure regression
tasks. We benchmark three variants of our method depending on the nature of the
input landmarks: using 1) Ground-truth landmarks (MANUAL), 2) Landmarks from
RCPR trained on our CMDP images (RCPR-CMDP) and 3) Landmarks from RCPR
trained on 300-Faces in the wild (RCPR-300F).

All reported results are obtained using 70% of the subjects for training and the
remaining 30% for testing (the same train/test set as that used to train RCPR-CMDP),
except in Figure 5.9 where cross-validation runs are used. Variance is shown as
standard errors. In Section 5.6.3, we show examples of how subject physiognomy
affects performance.
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Figure 5.6: Performance analy-
sis on the re-ordering task. We
measured the probability of cor-
rectly ordering portraits of a sub-
ject according to their distance.
Our methods using manual land-
marks outperforms humans by
16%, while using RCPR-CMDP
performance is virtually identical
(lower by 3%).

5.6.1 Re-ordering Task

Figure 5.6 shows the performance on the re-ordering task. Apart from the three
variants of our method, we also plot the result obtained by humans asked to perform
the exact same task. We developed a specific GUI and asked a group of 5 people
of different levels of computer vision expertise to sort a random permutation of all
7 pictures of a subject based on their conveyed distance. Each person annotated at
least 10 different subjects (70 images in total).

The ground-truth landmarks based variant (MANUAL) outperforms human perfor-
mance by 16%, while the automatic based ones (RCPR-CMDP and RCPR-300F)
are slightly behind by 3% and 25% respectively. Closer faces appear to be much
easier to classify than distant ones because of their unusual and disproportioned ge-
ometry. This has been confirmed by the human subjects of the study, stating their
difficulty in telling apart images in the middle distance-range.

We find these results very encouraging. Our best variant outperforms human capabil-
ities in the classification task, correctly reordering an average of 81% of the faces
when random chance is merely 15%. The same method using machine estimated
landmarks still classifies correctly 62% of the images, and could very likely be im-
proved just by increasing the availability of training examples.

Figure 5.7-(Top) shows which landmarks are most discriminative for the re-ordering
task using both MANUAL and RCPR-CMDP input. We measure how well each
landmark group (head contour, face contour, eyes, nose, mouth) compares to best
performance when only that particular group is used. For both MANUAL and
RCPR-CMDP, best results are achieved using the head contour and the nose, while
the eyes seem to be the least useful.
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Figure 5.7: Input landmarks’ discriminative power on the re-ordering and regression
tasks. The discriminative power of each landmark - ranging from most discriminative (big
blue dot) to least discriminative (small red dot) - is measured in terms of how well does our
method perform when incorporating only a subset of all the possible landmarks as input to
the learning. (Top) In the re-ordering task, the most useful landmarks are the face and head
contours and the nose. (Bottom) In the regression task, the most useful groups of landmarks
are the nose and ears. We observe that for both tasks there is significant overlap in the group
of significative landmarks for both the MANUAL and RCPR-CMDP methods.

5.6.2 Regression Task

Figure 5.8 shows the results on the regression task. There is a strong correlation
between ground-truth distances and predictions of our method. MANUAL achieves
75% correlation with a coefficient of determination of R2 = .5, while RCPR-
CMDP and RCPR-300F achieve 65% and 45% correlation, and R2 = .48 and
.46, respectively. All variants seem to struggle more with the larger distances, as
noticeable from the higher variance and greater distance to the ground truth. This is
an expected result considering the lower effect of perspective differences between
two images taken from afar.

As expected, directly estimating the distance of an unknown face proved to be a
harder task. Nonetheless, a correlation of 75% with ground-truth indicates that the
method is learning well. Furthermore, increasing the amount of training data results
in a peek of correlation up to 85%, see Figure 5.9-(a), with no apparent saturation,
suggesting that with more training data available, final performance could be close
to that desired for real-life applications. Figure 5.10 shows an example output of our
algorithm for a subject whose predicted distances are close to the ground truth.
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Figure 5.8: Performance analysis
on the regression task. We mea-
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(a) Subjects used for training (b) Normalization scheme

Figure 5.9: Ablation study for the regression task. (a) The impact of increasing the
number of training subjects on the regression task using MANUAL landmarks. With each
added subject, the performance continues to grow with no saturation. (b) The impact of
using the different normalization approaches presented in Section 5.5.2 with 52 training
subjects in a leave-one-out cross validation scheme. Normalizing the shape of a subject’s
face using his own average shape across all distances achieves best performance.

Overall, our experiments suggest that the distance of a face may be estimated from
an uncalibrated 2D portrait.

Figure 5.7-(Bottom) shows which landmarks are most discriminative for the
regression task using both MANUAL and RCPR-CMDP input. We measure how
well each landmark group (head contour, face contour, eyes, nose, mouth) compares
to best performance when only that particular group is used. For both MANUAL
and RCPR-CMDP, the most discriminative group is once again the nose. This
finding agrees with human annotators, which consistently reported during the
re-ordering psychophysics experiments the use of the deformation in a subject’s
nose as their main visual cue for the task.

Looking at Figure 5.7-(Top) and Figure 5.7-(Bottom) together is very informative.
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Figure 5.10: Output of the regression algorithm for estimating the distance of an
unknown person from a single portrait image. The input images of the subject are
ordered from top-left (closest) to bottom-right (furthest). The prediction of our method and
the ground-truth distance are respectively listed below every picture.

They show that, as we suspected, head and facial contours are extremely important,
which explains why RCPR using our landmark convention works far better that
RCPR using Multi-Pie convention, which does not have landmarks around head
contour. The differences between both figures tell us what parts of the face vary
the most across individuals, defining most important cues for physiognomy. Take
the facial contour for instance: it switches from most useful in re-ordering task to
least useful in regression. This is natural; if one knows the shape of a subject’s face
(as in the re-ordering task), it can be very useful to watch how it gets deformed by
perspective. However, when not being able to tell physiognomy and perspective
changes apart (as in the regression task), information about the landmarks becomes
uninformative.

5.6.3 Physiognomy Interpretation

A final interesting observation regards physiognomy. Throughout all of the exper-
iments, we observed that physiognomy of people turned out to be one of the key
factors for performance, both for human observers and for our algorithm.

In fact, some people appear to be systematically closer than others exclusively due
to the shape of their face, Figure 5.3, and this systematically biases the estimate of
their distance to the camera.

51



Chapter 5. Distance Estimation of an Unknown Person from a Portrait

5 10 15 20 25 30 35 40 45 50
−0.1

−0.05

0

0.05

0.1

Subject Number

A
ve

ra
ge

 U
nd

er
/O

ve
r 

E
st

im
at

e 
(1

/c
m

)

Figure 5.11: Average per subject bias in the distance estimation task. (Top) Pictures
of all the subjects belonging to the dataset ordered by the amount of bias in their distance
estimation - averaged over all the seven images of a subject - from top-left (most under-
estimated distance) to bottom-right (most over-estimated distance). (Bottom) The value of
the bias in the estimate of the distance of an image over all the distances for a certain subject.

Figure 5.12: Visual example of how physiognomy biases distance estimation. The
ten most under-estimated (top) and over-estimated (bottom) subjects in terms of predicted
distance to the camera.

We discussed in Section 5.5 normalization schemes discarding physiognomy and
preserving the signal from perspective distortion, and, accordingly, we have found
that the accuracy of the method increases when the normalization uses the subject’s
own average shape across the pictures at all distances, see Figure 5.9-(b).
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Figure 5.13: Correlation between the phys-
iognomy of a person and the bias in its dis-
tance estimation. There is no apparent corre-
lation between the width / height ratio of a sub-
ject’s face and its overall bias in the distance
estimation. Very squared (or round) faces are
plotted on the right extreme of the x-axis, and
elongated faces on the left. On the y-axis,
faces are displayed from those whose distance
is over-estimated on average (top) to those
with under-estimated distance (bottom).

However this subject-specific normalization is only applicable in the re-ordering
task, where we can legitimately assume the availability of information on the subject.
This has no practical bearing in the regression task where the person being portrayed
is unknown.

To answer the question of whether the results of our method could provide some
information about a subject’s physiognomy, we analyzed what specific attributes of
a human face are most likely to bias its distance estimates. Therefore, we measured
for all the faces in the dataset their average bias in the estimated distance over several
runs with different training-test set combinations and show our findings over the
whole dataset in Figure 5.11. The ten most under-estimated and over-estimated
subjects are highlighted in Figure 5.12.

Besides a subjective feeling of roundness for the over-estimated faces (judged closer
by the algorithm), no evident pattern was found so far. We also investigated the
correlation between facial properties of the subjects, such as the width / height ratio
and the bias in estimated distance, but again no evident pattern was found, as shown
in Figure 5.13.

Further understanding the relationship and patterns between subject physiognomy
and distance estimate bias could allow to cluster subjects into template categories of
physiognomy based on their appearance, so that during the test of an unseen face,
the normalization step can be done using only faces from subjects in the training set
that belong to the same category.

Estimating the physiognomy of an unknown subject from a single picture is, thus,
an open question answering which would have a great impact on the performance of
our algorithm and should be one of the main lines of investigation in the future.
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5.7 Conclusions

We proposed the first method for estimating automatically the distance from which a
face was photographed. We assume that we have a single frontal photograph, where
both the person and the camera are unknown. The method is based on two steps:
first, estimating the position of a number of facial landmarks; second, estimating
from their relative position the inverse distance by regression.

We find that the method is reasonably accurate. When using manually annotated
landmarks as input, it outperforms relative depth judgments obtained from human
observers. Furthermore, we find that performance does not suffer much when the
method is fully automated with machine-based face landmark estimation. The
fully automated method can estimate absolute distance, which human observers
are unable to do. As expected, distance estimates beyond 3m, where perspective
projection approaches parallel projection, are much noisier than distance estimates
in the 0.5-2m range.

An interesting finding is that the main source of error is the variability of physiog-
nomies. Some people appear to be systematically closer than others because their
face is shaped differently. Once one normalizes for physiognomy, the accuracy of
the method increases about 30%; this has no practical bearing when the person be-
ing portrayed is unknown, and therefore it is impossible to normalize for physiog-
nomy.

Recovering the distance of a face has a number of applications: as an additional
cue to depth in scene analysis, as an indicator of the possible emotional valence
of the picture [1], as a tool to study portraiture in classical paintings, and as a
tool for forensic analysis of images [3]. Our experiments are encouraging, and are
sufficient as a proof of principle to demonstrate feasibility. However, they indicate
that accuracy would be significantly better if a much larger training set was available.
It is intuitive that such a dataset should include a representative range of facial
expressions, as well as a range of viewpoints.
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C h a p t e r 6

BENCHMARKING AND ERROR DIAGNOSIS IN
MULTI-INSTANCE POSE ESTIMATION

The contents of this chapter are adapted from the peer-reviewed publication:

M. R. Ronchi and P. Perona “Benchmarking and Error Diagnosis in Multi-Instance

Pose Estimation.” 16th International Conference on Computer Vision (2017, Venice,
Italy).
DOI: 10.1109/ICCV.2017.48

URL: http://www.vision.caltech.edu/~mronchi/projects/PoseErrorDiagnosis

WE propose a new method to analyze the impact of errors in algorithms for
multi-instance pose estimation and a principled benchmark that can be used

to compare them. We define and characterize three classes of errors: i) localization,
ii) scoring, and iii) background, and study how they are influenced by instance
attributes and their overall impact on an algorithm’s performance. Our technique
is applied to compare the two leading methods for human pose estimation on the
COCO dataset, measure the sensitivity of pose estimation with respect to instance
size, type and number of visible keypoints, clutter due to multiple instances, and the
relative score of instances. The performance of algorithms, and the types of error
they make, are highly dependent on all these variables, but mostly on the number
of keypoints and the clutter. The analysis and software tools we propose offer a
novel and insightful approach for understanding the behavior of pose estimation
algorithms and an effective method for measuring their strengths and weaknesses.

10.1109/ICCV.2017.48
http://www.vision.caltech.edu/~mronchi/projects/PoseErrorDiagnosis


Chapter 6. Benchmarking and Error Diagnosis in Multi-Instance Pose Estimation

0 1
0

Recall

Pr
ec

is
io

n

1

Inversion: .545
.448

Localization Errors (Sec. 3.1):

Jitter:

Swap:
Miss:

.859

.415

Original Detections:
@OKS .9: .327 (AP)

Background Errors (Sec. 3.3):
False Pos.:
False Neg.:

.881
1.00

Scoring Errors (Sec. 3.2):
Opt. Score: .879

Figure 6.1: Coarse to fine error analysis of multi-instance person keypoint estimation
algorithms. We study the errors occurring in multi-instance person keypoint estimation, and
how they are affected by physical characteristics of the portrayed people. We build upon
currently adopted evaluation metrics and provide the tools for a fine-grained description
of performance, which allows to quantify the impact of different types of error at a single
glance. The white Precision-Recall curve is obtained through the coarse error analysis of
current evaluation algorithms. The colored Precision-Recall curves are obtained through our
fine-grained error analysis and show the improvement in the performance of an algorithm
after progressively correcting different types of mistakes.

6.1 Introduction

Estimating the pose of a person from a single monocular frame is a challenging task
due to many confounding factors, such as perspective projection, the variability of
lighting and clothing, self-occlusion, occlusion by objects, and the simultaneous
presence of multiple interacting people. Nevertheless, the performance of human
pose estimation algorithms has recently improved dramatically, thanks to the
development of suitable deep architectures [1–10] and the availability of
well-annotated image datasets, such as MPII Human Pose and COCO [11, 12].
There is broad consensus that performance is saturated on simpler single-person
datasets [13, 14], and researchers’ focus is shifting towards less constrained and
more challenging datasets [11, 12, 15], where images may contain multiple
instances of people, and a variable number of body parts (or keypoints) are visible.

However, evaluation is challenging: more complex datasets make it harder to
benchmark algorithms due to the many sources of error that may affect performance,
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and existing metrics, such as Average Precision (AP) or mean Percentage of Correct
Parts (mPCP), hide the underlying causes of error and are not sufficient for truly
understanding the behaviour of algorithms.

Our goal is to propose a principled method for analyzing the performance of algo-
rithms for multi-instance human pose estimation. We make four contributions:

1. Taxonomization of the types of error that are typical of the multi-instance
pose estimation framework;

2. Sensitivity analysis of these errors with respect to measures of image com-
plexity;

3. Side-by-side comparison of two leading human pose estimation
algorithms highlighting key differences in behaviour that are hidden in the
average performance numbers;

4. Assessment of which types of datasets and benchmarks may be most produc-
tive in guiding future research.

Our analysis extends beyond humans, to any object category where the location of
parts is estimated along with detections, and to situations where cluttered scenes may
contain multiple object instances. This is common in fine-grained categorization [16],
or animal behavior analysis [17, 18], where part alignment is often crucial.

6.2 Related Work

6.2.1 Error Diagnosis

Object Detection: Hoiem et al. [19] studied how a detailed error analysis is essential
for the progress of recognition research, since standard benchmark metrics do not
tell us why certain methods outperform others and how could they be improved.
They determined that several modes of failure are due to different types of error, and
highlighted the main confounding factors for object detection algorithms. While [19]
pointed out the value of discriminating between different errors, it did not show how
to do so in the context of pose estimation, which is one of our contributions.

Pose Estimation: In their early work on pose regression, Dollár et al. [20] observed
that unlike human annotators, algorithms have a distribution of the normalized
distances between a part detection and its ground truth that is typically bimodal,
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highlighting the presence of multiple error modes. The MPII Human Pose

Dataset [11] Single-Person benchmark enables the evaluation of the performance of
algorithms along a multitude of dimensions, such as 45 pose priors, 15 viewpoints
and 20 human activities. However, none of the currently adopted benchmarks for
Multi-Person pose estimation [12, 15, 21] carry out an extensive error and
performance analysis specific to this framework, and mostly rely on the metrics
from the Single-Person case. No standards for performing or compactly
summarizing detailed evaluations has yet been defined, and, as a result, only a
coarse comparison of algorithms can be carried out.

6.2.2 Evaluation Framework

We conduct our study on COCO [12] for several reasons: i) it is the largest collection
of multi-instance person keypoint annotations; ii) performance on it is far from
saturated and conclusions on such a large and non-iconic dataset can generalize to
easier datasets; iii) adopting their framework, with open source evaluation code, a
multitude of datasets built on top of it, and annual competitions, will have the widest
impact on the community. The framework involves simultaneous person detection
and keypoint estimation, and the evaluation mimics the one used for object detection,
based on Average Precision and Recall (AP, AR). Given an image, a distance measure
is used to match algorithm detections, sorted by their confidence score, to ground-
truth annotations. For bounding-boxes and segmentations, the distance of a detection
and annotation pair is measured by their Intersection over Union. In the keypoint
estimation task, a new metric called Object Keypoint Similarity (OKS) is defined.
The OKS between a detection θ̂(p) and the annotation θ(p) of a person p, Eq. 6.1, is
the average over the labeled parts in the ground truth (vi = 1, 2), of the Keypoint

Similarity between corresponding keypoint pairs, Figure 6.2; unlabeled parts (vi = 0)
do not affect the OKS [22].

ks(θ̂(p)i , θ
(p)
i ) = e

−
| |θ̂(p)

i
−θ(p)

i
| |22

2s2k2
i

OKS(θ̂(p), θ(p)) =
∑

i ks(θ̂(p)i ,θ
(p)
i )δ(vi>0)∑

i δ(vi>0)

(6.1)

The ks is computed by evaluating an un-normalized Gaussian function, centered on
the ground-truth position of a keypoint, at the location of the detection to evaluate.
The Gaussian’s standard deviation ki is specific to the keypoint type and is scaled
by the area of the instance s, measured in pixels, so that the OKS is a perceptually
meaningful and easy to interpret similarity measure. For each keypoint type, ki
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Figure 6.2: Similarity measure be-
tween a keypoint detection and its
ground-truth location. The keypoint
similarity (ks) between two detections,
eye (red) and wrist (green), and their cor-
responding ground truth (blue). The red
concentric circles represent ks values of
.5 and .85 in the image plane and their
size varies by keypoint type, see Sec-
tion 6.2.2. As a result, detections at the
same distance from the corresponding
ground truth can have different ks values.

reflects the consistency of human observers clicking on keypoints of type i and is
computed from a set of 5000 redundantly annotated images [22].

To evaluate an algorithm’s performance, its detections within each image are ordered
by confidence score and assigned to the ground-truth annotations that they have the
highest OKS with. As matches are determined, the pool of available annotations
for lower scored detections is reduced. Once all matches have been found, they are
evaluated at a certain OKS threshold (ranging from .5 to .95 in [23]) and classified
as True or False Positives (above or below threshold), and unmatched annotations
are counted as False Negatives. Overall AP is computed as in the PASCAL VOC

Challenge [24], by sorting the detections across all the images by confidence score
and averaging precision over a predefined set of 101 recall values. AR is defined as
the maximum recall given a fixed number of detections per image [25]. Finally, we
will refer to cocoAP and cocoAR when AP and AR are additionally averaged over
all OKS threshold values (.5:.05:.95), as done in the COCO framework [23].

6.2.3 Human Pose and Skeleton Color Coding

The COCO Keypoints format describes the 2D pose of a person portrayed in an
image with a vector θ(p) ∈ R17×3. There are four groups of keypoints annotated: face,
upper-body, torso, and lower-body, for an overall total of 17 body parts, showed in
Figure 6.3. Each individual body part is described using two 0-indexed coordinates
(x, y) localizing that body part on the image plane, and a visibility flag v defined
as follows: v = 0 if the part is not labeled (in which case x = y = 0), v = 1 if the
part is labeled but occluded, and v = 2 if the part is labeled and visible. The (x, y, v)
coordinates and flag values are used to compute the ks between corresponding
keypoints in a detection and ground-truth annotation pair, as shown in Eq. 6.1.
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Face Upper-body

Torso Lower-body

Figure 6.3: COCO keypoints format for 2D human pose and skeleton color coding.

We adopt the following color coding to visualize algorithm’s keypoint detections:

• The location of the left and right parts of the body is indicated respectively
with red and green dots; the location of the nose is plotted in blue.

• Face keypoints (nose, eyes, ears) are connected by purple lines.

• Upper-body keypoints (shoulders, elbows, wrists) are connected by blue lines.

• Torso keypoints (shoulders, hips) are connected by yellow lines.

• Lower-body keypoints (hips, knees, ankles) are connected by brown lines.

6.2.4 Algorithms

We conduct our analysis on the top-two ranked algorithms [2, 6] of the 2016 COCO

Keypoints Challenge [23], Table 6.1, and observe the impact on performance of the
design differences between a top-down and a bottom-up approach.

Top-down (instance to parts) methods first detect humans contained in an image,
then try to estimate their pose separately within each bounding box [4, 7, 10, 15].
The Grmi [6] algorithm is a two-step cascade. In the first stage, Faster-RCNN [26]
based on a ResNet-Inception backbone [27] with inception layers [28] and residual
connections [29] is used to produce a bounding box around each person instance.
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cocoAP AP (50) AP (75) AP (M) AP (L) cocoAR AR (50) AR (75) AR (M) AR (L)

Cmu [31] 0.608 0.834 0.664 0.551 0.681 0.659 0.864 0.713 0.594 0.748
Grmi [6] 0.598 0.810 0.651 0.567 0.667 0.664 0.865 0.712 0.618 0.726
DL61 0.533 0.751 0.485 0.555 0.548 0.708 0.828 0.688 0.740 0.782
R4D 0.497 0.743 0.545 0.456 0.556 0.556 0.773 0.603 0.491 0.644
Umichvl 0.434 0.722 0.449 0.364 0.534 0.499 0.758 0.520 0.387 0.652

Table 6.1: The 2016 COCO keypoints challenge leaderboard. We show the leaderboard
from [23] according to the average metrics used in the Keypoints Challenge, with the best
result per each metric highlighted in bold. Even from such a simple analysis it is possible to
observe how different algorithms perform better for different evaluation metrics.

The second stage serves as a refinement where a ResNet with 101 layers [29] is
applied to the image crop extracted around each detected person instance in order to
localize its keypoints. The authors adopt a combined classification and regression
approach [26, 30]: for each spatial position, first a classification problem is solved to
determine whether it is in the vicinity of each of the keypoints of the human body,
followed by a regression problem to predict a local offset vector for a more precise
estimate of the exact location. The results of both stages are aggregated to produce
highly localized activation maps for each keypoint in the form of a voting process:
each point in a detected bounding box casts a vote with its estimate for the position
of every keypoint, and the vote is weighted by the probability that it lays near the
corresponding keypoint.

Bottom-up (parts to instance) methods first separately detect all the parts of the
human body from an image, then try to group them into individual instances [1, 5,
8, 9]. The Cmu [2] algorithm estimates the pose for all the people in an image by
solving body part detection and part association jointly in one end-to-end trainable
network, as opposed to previous approaches that train these two tasks separately [21,
32] (typically part detection is followed by graphical models for the association).
Confidence maps with gaussian peaks in the predicted locations, are used to represent
the position of individual body parts in an image. Part Affinity Fields (PAFs) are
defined from the confidence maps, as a set of 2D vector fields that jointly encode
the location and orientation of a particular limb at each position in the image. The
authors designed a two-branch VGG [33] based architecture, inspired from CPMs [9],
to iteratively refine confidence maps and PAFs with global spatial contexts. The final
step consists of a maximum weight bipartite graph matching problem [34, 35] to
associate body parts candidates and assemble them into full body poses for all the
people in the image. A greedy association algorithm over a minimum spanning tree
is used to group the predicted parts into consistent instance detections.
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6.3 Multi-Instance Pose Estimation Errors

We propose a taxonomy of errors specific to the multi-instance pose estimation
framework: i) Localization, due to the poor localization of the keypoint predictions
belonging to a detected instance; ii) Scoring, due to a sub-optimal confidence score
assignment; iii) Background False Positives (FP), detections without a ground-
truth annotation match; iv) False Negatives (FN), missed detections. We assess the
causes and impact on the behaviour and performance of [2, 6] for each error type.

6.3.1 Localization Errors

A localization error occurs when the location of the keypoints in a detection results
in an OKS score with the corresponding ground-truth match that is lower than the
evaluation threshold. These errors are typically due to the fact that body parts are
difficult to detect because of self-occlusion or occlusion by other objects. We identify
four types of localization errors, shown in Figure 6.4, using the keypoint similarity
function ks, defined in Eq. 6.1 as a function of the keypoint i of a detection θ̂(p)i and
keypoint j of the ground-truth annotation θ(p)j for a person p.

Jitter: small error around the correct keypoint location:

.5 ≤ ks(θ̂(p)i , θ(p)i ) < .85. (6.2)

The limits can be chosen based on the application of interest; in the COCO frame-
work, .5 is the smallest evaluation threshold, and .85 is the threshold above which
also human annotators have a significant disagreement (around 30%) in estimating
the correct position [22].

Inversion: confusion between semantically similar parts belonging to the same
instance. The detection is in the proximity of the true keypoint location of the wrong
body part:

ks(θ̂(p)i , θ(p)i ) < .5, and

∃ j ∈ J | ks(θ̂(p)i , θ(p)j ) ≥ .5. (6.3)

In our study, we only consider inversions between the left and right parts of the
body, however, the set of keypoints J can be arbitrarily defined to study any kind of
inversion. In practice, an inversion error is the equivalent of a jitter error with the
wrong body part.
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Figure 6.4: Taxonomy of keypoint localization errors. Keypoint localization errors, Section 6.3.1, are classified based on the position of a detection
as, Jitter: in the proximity of the correct ground-truth location, but not within the human error margin - left hip in (a); Inversion: in the proximity of the
ground-truth location of the wrong body part - inverted skeleton in (b), right wrist in (c); Swap: in the proximity of the ground-truth location of the
body part of a wrong person - right wrist in (d), right elbow in (e); Miss: not in the proximity of any ground-truth location - both ankles in (f). While
errors in (b,d) appear to be more excusable than those in (c,e) they have the same weight. Color-coding: (ground truth) - concentric red circles centered
on each keypoint’s location connected by a green skeleton; (prediction) - red/green dots for left/right body part predictions connected with colored
skeleton, refer to Section 6.2.3 for an extended description.
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Score = 15.64
OKS = .82

Score = 2.98
OKS = .96

Figure 6.5: Example of instance scoring error. The detection with highest confidence
score (Left) is associated to the closest ground-truth instance by the evaluation algorithm
described in Section 6.2.2. However, its OKS is lower than the OKS of another detection
(Right). This results in a loss in performance at high OKS thresholds, details in Section 6.3.2.

Swap: confusion between semantically similar parts of different instances. The
detection is within the proximity of a body part belonging to a different person. In
practice, a swap error is the equivalent of a jitter error with the correct body part of
the wrong person:

ks(θ̂(p)i , θ(p)i ) < .5, and

∃ j ∈ J and ∃q ∈ P | ks(θ̂(p)i , θ
(q)
j ) ≥ .5. (6.4)

Miss: large localization error, the detected keypoint is not within the proximity of
any body part:

ks(θ̂(p)i , θ(q)j ) < .5 ∀q ∈ P and ∀ j ∈ J . (6.5)

Every keypoint detection having a keypoint similarity with its ground-truth location
that exceeds .85 is considered Good, as it is within the error margin of human
annotators.

On average, different annotators are not able to provide annotations for a certain
keypoint that agree consistently with each other at a value of KS > .85 [23], so we
use it as the threshold value above which an algorithm should not be penalized.
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Figure 6.6: Analysis of localization errors and their impact on performance. Pie charts showing (a) the overall frequency of localization errors
for all the keypoints predicted by [2, 6] and (b) the breakdown over all body parts for each type of localization error. (c) Each algorithm’s OKS
improvement obtained after separately correcting errors of each type (see Section 6.3.1 for details) evaluated over all the detected instances at OKS
thresholds of .5, .75 and .95; the dots (blue for Cmu [2] and red for Grmi [6]) show the median, while the bars extend between the first and third quartile
of the distribution. (d) The AP improvement obtained after correcting localization errors; evaluated at OKS thresholds of .75 (bars) and .5 (dots). A
larger improvement shows what errors are more impactful on overall performance.
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We can see in Figure 6.6-(a) that about 75% of both algorithms’ detections are good,
and while the percentage of jitter and inversion errors is approximately equal, [2]
has twice as many swaps, and [6] has about 1% more misses.

Figure 6.6-(b) contains a breakdown of errors over keypoint type: faces are easily
detectable (smallest percentage of miss errors); swap errors are focused on the upper-
body, as interactions typically involve some amount of upper-body occlusion; the
lower-body is prone to inversions, as people often self-occlude their legs, and there
are less visual cues to distinguish left from right; finally, jitter errors are predominant
on the hips. There are no major differences between the two algorithms in the above
trends, indicating that none of the methods contain biases over keypoint type.

Correction of Localization Errors

After defining a novel taxonomy of localization errors, we measure the improvement
in performance resulting from their correction.

To do so, for every keypoint predicted by an algorithm, we compute its Keypoint
Similarity (KS) with i) the corresponding ground-truth body part, ii) different ground-
truth body parts of the same person and iii) different ground-truth body parts of
all the other people instances contained in the image. Once the above Keypoint
Similarity values have been measured for all the individual keypoint predictions
belonging to a detection, we use the definitions from Eq. 6.2 and Eq. 6.5 to identify
which category of localization error they belong to, and individually correct them.

Given a detection θ̂(p) of a person in an image, and the corresponding ground-truth
annotation θ(p) with which it was matched by the evaluation procedure, we adjust

the position of every body part keypoint j to obtain an optimal detection
∗
θ
(p)

using
the definition of KS from Eq. 6.1:

• Miss errors (Eq. 6.5) such as left-elbow and wrists in Figure 6.7-(Top) are
corrected by repositioning the keypoint prediction on the KS = .5 circle
centered on the true location1:

∗
θ
(p)
j = θ

(p)
j + v

v = (vx, vy) | | |v | |22 = −(2s2k2
j ) · ln(.5)

. (6.6)

• Swap errors (Eq. 6.4) such as the right-elbow in Figure 6.7-(Top) are corrected
by repositioning the keypoint prediction θ̂(p)j at a distance from the correct

1The value of KS = .5 is the boundary between a miss and a jitter error.
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ground-truth location θ(p)j so that the new value of KS is the same that the

prediction had with the body part θ(q)j which was mistakenly detected since it
belongs to a different person q:

∗
θ
(p)
j = θ

(p)
j + v

v = (vx, vy) | | |v | |22 = −(2s2k2
j ) · ln(KS)

KS = ks(θ̂(p)j , θ
(q)
j )

. (6.7)

• Inversion errors (Eq. 6.3) such as the right-knee in Figure 6.7-(Top) are
corrected by repositioning the keypoint prediction θ̂(p)j at a distance from the

correct ground-truth location θ(p)j so that the new value of KS is the same that

the prediction had with the wrong body part θ(p)i it mistakenly detected from
the same person:

∗
θ
(p)
j = θ

(p)
j + v

v = (vx, vy) | | |v | |22 = −(2s2k2
j ) · ln(KS)

KS = ks(θ̂(p)j , θ
(p)
i )

. (6.8)

• Jitter errors (Eq. 6.2) such as the left-ankle in Figure 6.7-(Top) are corrected
by repositioning the keypoint prediction on the KS = .5 circle centered on the
true location2:

∗
θ
(p)
j = θ

(p)
j + v

v = (vx, vy) | | |v | |22 = −(2s2k2
j ) · ln(.85)

. (6.9)

• Good keypoints such as both hips and shoulders in Figure 6.7-(Top) have
ks(θ̂(p)j , θ(p)j ) > .85 and their position does not need to be corrected2:

∗
θ
(p)
j = θ̂

(p)
j . (6.10)

In practice, miss and jitter errors are corrected by bringing a prediction to a fixed
distance from its true position, while the new location of keypoints with swap and
inversion errors depends on how good the prediction of the wrong body part was:
after correction, a good/bad prediction of the wrong body part becomes a good/bad
prediction (high/low KS) of the true body part.

2The value of KS = .85 is the boundary between a jitter error and a good prediction.
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OKS = .736

Ground-Truth Detection Miss Swap Inversion Jitter Corrected Detection

OKS = .875 OKS = .923 OKS = .937 OKS = .945 OKS = .945

Swap, OKS = .793Miss, OKS = .693

Detection, OKS = .589

Ground-Truth

Corrected Detection, OKS = .946

Jitter, OKS = .946Inversion, OKS = .911

Figure 6.7: Example of the progressive correction of keypoint localization errors. The
change of a detection’s keypoint positions and the resulting OKS improvement as localization
errors are progressively corrected. We plot the ground-truth skeleton in green and the
detection using the color coding described in Section 6.2.3. The red concentric circles
indicate the .5 and .85 KS threshold as discussed in Figure 6.2. When visualizing the
individual error types, we show the concentric circles around the ground-truth location only
for the keypoints that are being corrected.

After the above corrections have been applied to all the predicted keypoints, we

obtain a new detection
∗
θ
(p)

which has a higher OKS with the corresponding ground
truth θ(p). The OKS increase depends on the number of errors, order in which
they were corrected3, and on the total number of visible keypoints present in a
ground-truth instance.

Figure 6.7 provides two visual examples of how the keypoints belonging to a detec-
tion can be progressivily improved: the original algorithm’s detection in Figure 6.7-
(Top) had an OKS with its corresponding ground truth of .736, which would have
resulted in a FP for all the OKS evaluation thresholds ≥ .75. After correction, the
OKS is now .945, corresponding to a TP the four thresholds at .75, .8, .85 and .9.

3The order (i.e. miss -> swap -> inversion -> jitter) in which localization errors are progressively
corrected matters: different orders result in different corrected detections and improved OKS values.
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Figure 6.6-(c) shows the quartiles of the distribution of the OKS improvement
obtainable after correcting errors of each type at three OKS evaluation thresholds
(measured for all the detections of [2, 6]). We see that miss errors are the ones that
impact the most the overall OKS of a detection: the median improvement of fixing
miss errors at OKS of .5 is ∼ .4 corresponding to an 80% improvement of its OKS.
On the contrary, jitter errors, although occurring most frequently (Figure 6.6-(a))
have a small impact on the OKS. Inversions and swaps, even though less impactful
than miss errors overall, have the largest difference between the first and third
quartiles showing that their impact on OKS is very variable.

Changing the evaluation threshold changes the impact of errors (for instance by
lowering it to .5, more detections are TP so there is less improvement from their
correction), but the same relative trends are verified, indicating that the above
observations reflect the behavior of the methods and are not determined by the
strictness of evaluation. However, while the impact of jitter errors is mostly constant
at the three evaluation thresholds (.5, .75, .95), it is greatly reduced for miss, swap

and inversion errors when going to higher OKS thresholds. This indicates that for
a detection to be a True Positive at the higher OKS thresholds, it cannot present
multiple errors other than jitter.

Finally, in Figure 6.6-(d) we look at the improvement of performance in terms of
AUC of the PR curves computed over the entire test set. The fine-grained Precision-
Recall curves, as shown in Figure 6.1, are computed by fixing an OKS threshold
and evaluating the performance after all of the algorithms’ detections have been
corrected. We learn that misses are the most costly error in terms of overall AP over
the entire dataset (∼ 15%), followed by jitter (∼ 6%), inversions (∼ 4%) and swaps

(∼ 2%).

An interesting difference between the two algorithms can be observed by looking at
the improvements for swap and inversion errors: Grmi [6] suffers more of inversions

and Cmu [2] of swaps. This seems plausible with the fact that a top-down method
can only mistakenly assign keypoints of people whose detected bounding boxes
overlap (as opposed to the whole image), and that a bottom-up method might more
easily disambiguate left and right since it can take advantage of visual cues outside
of the bounding box. Similarly, the higher miss rate of Grmi [6] can be due to the
fact that it is restricted to finding keypoints inside the bounding box, so if the person
detector does not provide a good bounding box, errors will always result in a miss.
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6.3.2 Scoring Errors

Assigning scores to instances is a typical task in object detection, but a novel
challenge for keypoint estimation. A scoring error occurs when two detections, θ̂(p)1
and θ̂(p)2 , are in the proximity of a ground-truth annotation θ(p), and the one with the
highest confidence has the lowest OKS:

Score(θ̂(p)1 ) > Score(θ̂(p)2 )

OKS(θ̂(p)1 , θ(p)) < OKS(θ̂(p)2 , θ(p))
. (6.11)

This can happen in cluttered scenes when many people and their detections are
overlapping, or in the case of an isolated person for which multiple detections are
fired, Figure 6.5. Confidence scores affect the evaluation procedure, Section 6.2.2,
locally by determining the order in which detections get matched to the annotations
within every image, and globally, when detections are sorted across the whole dataset
to compute AP and AR. As a result, it is important for the detection scores to be: i)

‘OKS monotonic increasing’, so that a higher score always results in a higher OKS;
and ii) calibrated, so that scores reflect as much as possible the probability of being
a true positive (TP).

We call a score possessing such properties optimal, as it will achieve the highest
performance possible for the provided detections. It follows that if we assign the
maximum OKS value obtainable with any ground-truth annotation from the same
image as the score for a given detection, we have an optimal score: monotonicity and
perfect calibration are both guaranteed by construction, as higher OKS detections
would have higher scores, and the OKS is the exact predictor of the quality of a
detection, by its own definition.

Correction of Scoring Errors

The optimal scores can be computed at evaluation time, by an oracle assigning to each
detection a confidence corresponding to the maximum OKS score achievable with
any ground-truth instance. To obtain them, we solve an assignment problem [34]
over the OKS matrix between all detections and ground-truth annotations in an
image, using the Hungarian algorithm [35], which maximizes the sum of the OKS
value obtained over all matches.

Using optimal scores in place of the original ones from [2, 6] yields about 5%
AP improvement, averaged over all OKS thresholds, and up to 10% at OKS .95,
Figure 6.8-(a), pointing to the importance of assigning low scores to unmatched
detections.
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Figure 6.8: Analysis of scoring errors and their impact on performance. (a) The AP
improvement obtained when using the optimal detection scores, as defined in Section 6.3.2.
The histogram of detections’ (b) original and (c) optimal confidence scores. We histogram
separately the scores of detections achieving the maximum OKS with a given ground-truth
instance (green) and the other detections achieving OKS of at least .1 (red). High overlap of
the histograms, as in (b), is caused by the presence of many detections with high OKS and
low score or vice versa; a large separation, as in (c), is indication of a better score.

Cmu [2] Grmi [6]

Imgs. w. detections 11940 14634
Imgs. w. optimal detection order 7456 (62.4%) 9934 (67.8%)
Number of Scoring Errors 407 82

Increase of Matches (using opt. score) 64 156
Matches with OKS Improvement (using opt. score) 590 430

Table 6.2: Performance improvement due to the optimal rescoring of detections.

A careful examination shows that the reason of the improvement is two-fold,
Table 6.2: i) there is an increase in the number of matches between detections and
ground-truth instances (reduction of FP and FN), and ii) the existing matches obtain
a higher OKS value. Both methods have a significant amount of overlap,
Figure 6.8-(b), between the histogram of original scores for the detections with the
highest OKS with a given ground truth (green line) and all other detections with a
lower OKS (red line). This indicates the presence of many detections with high
OKS and low score, or vice versa. Figure 6.8-(c) shows the effect of rescoring:
optimal score distributions are bi-modal and present a large separation, so
confidence score is a better OKS predictor. Although the AP improvement after
rescoring is equivalent, [6] provides scores that are in the same order as the optimal
ones for a higher percentage of images and makes less errors, indicating that it is
using a better scoring function.
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Figure 6.9: Analysis of background errors (FP, FN) and their impact on performance.
(a) The overall AP improvement obtained after FN (top) and FP (bottom) errors are removed
from evaluation; horizontal lines show the average value for each method. (b) The histogram
of the area size of FP having a high confidence score. (c) The heatmaps obtained by adding
the resized ground-truth COCO segmentation masks of all the FN.

6.3.3 Background False Positives and False Negatives

False Positives (FP) and False Negatives (FN), respectively, consist of an algorithm’s
detections and the ground-truth annotations that remain unmatched after evaluation
is performed. FP typically occur when objects resemble human features or when
body parts of nearby people are merged into a wrong detection. Most of the FP errors
could be resolved by performing better Non-Max-Suppression [36] and scoring,
since their impact is greatly reduced when using optimal scores, i.e. Figure 6.1.
Small size and low number of visible keypoints are instead the main cause of FN. In
Figure 6.9-(a), we show the impact of background errors on the AP at three OKS
evaluation thresholds: FN affect performance significantly more than FP, on average
about 40% versus only 5%. For both methods, the average number of people in
images containing FP and FN is about 5 and 7, compared to the dataset’s average
of 3, suggesting that cluttered scenes are more prone to having background errors.
Interestingly, the location of FN errors for the two methods differs greatly, Figure 6.9-
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Figure 6.10: Sample images from the proposed benchmarks of the COCO dataset. We
suggest to separate the ground-truth instances in the COCO dataset into twelve benchmarks,
based on the number of visible keypoints and overlap between annotations; Figure 6.12-(b)
shows the number of images in each benchmark.

(c): [2] predominantly misses annotations around the image border, while [6] misses
those at the center of an image. Another significant difference is in the quantity of
FP detections having a high confidence score (in the top-20th percentile of overall
scores), Figure 6.9-(b): [6] has more than twice the number, mostly all with small
pixel area size (< 322).

6.4 Sensitivity to Occlusion, Crowding, and Size

One of the goals of this study is to understand how the layout of people portrayed
in images, such as the number of visible keypoints (occlusion), and the amount of
overlap between instances (crowding) and size affects the errors and performance of
algorithms. This Section is focused on the properties of the data, so we perform the
analysis only on the detections from [2].

The COCO dataset contains mostly visible instances having little overlap:
Figure 6.12 shows that only 1.7% of the annotations have more than two overlaps
with an IoU ≥ .1, and 86.6% have 5 or more visible keypoints. Consequently, we
divide the dataset into twelve benchmarks, Figure 6.10, and study the performance
and occurrence of errors in each separate one.
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Figure 6.12: Amount of training data in each of the suggested benchmarks for the
COCO dataset. The number of instances in each benchmark of the COCO training set
based on (a) the size of instances, or (b) the number of overlapping ground-truth annotations
with IoU ≥ .1 and visible keypoints, Figure 6.10.

The PR curves obtained at the evaluation threshold of .75 OKS, after sequentially
correcting errors of each type are shown in Figure 6.11-(a). It appears that the per-
formance of methods listed in Table 6.1 is a result of the unbalanced data distribu-
tion, and that current algorithms still vastly underperform humans in detecting peo-
ple and computing their pose, specifically when less than 10 keypoints are visible
and overlap is present. Localization errors degrade the performance across all bench-
marks, but their impact alone does not explain the shortcomings of current methods.
Over 30% of the annotations are missed when the number of visible keypoints is
less than 5 (regardless of overlap), and background FP and scoring errors account
for more than 40% of the loss in precision in the benchmarks with high overlap. In
Figure 6.11-(b), we illustrate the frequency of each localization error. Miss and jit-

ter errors are predominant when there are few keypoints visible, respectively with
high and low overlap. Inversions are mostly uncorrelated with the amount of over-
lap, and occur almost always in mostly visible instances. Conversly, swap errors
depend strongly on the amount of overlap, regardless of the number of visible key-
points. Compared to the overall rates in Figure 6.6-(a-cmu), we can see that inver-

sion and jitter errors are less sensitive to instance overlap and number of keypoints.

A similar analysis can be done by separating COCO into four size groups: medium,
large, extra-large and extra-extra large, Figure 6.12-(a). The performance at all
OKS evaluation thresholds improves with size, but degrades when instances occupy
such a large part of the image that spatial context is lost, Figure 6.13-(a). AP is
affected by size significantly less than by the amount of overlap and number of
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Figure 6.13: Performance and error sensitivity to size. (a) The overall AP obtained by
evaluating [2] at three OKS evaluation thresholds on the four size benchmarks described in
Section 6.4. (b) The AP improvement at the OKS threshold of .75 obtained after separately
correcting each error type on the benchmarks. The dashed red line indicates evaluation
over all the instance sizes, Sensitivity (S) and Impact (I) are respectively computed as the
difference between the maximum and minimum, and the maximum and average, values.

visible keypoints. In Figure 6.13-(b), we show the AP improvement obtainable by
separately correcting each error type in all benchmarks. Errors impact performance
less (they occur less often) on larger instances, except for scoring and FP. Finally,
while FN, miss, and jitter errors are concentrated on medium instances, all other
errors are mostly insensitive to size.

6.5 Discussion and Recommendations

Multi-instance pose estimation is a challenging visual task where diverse errors have
complex causes. Our analysis defines three types of error - localization, scoring,
background - and aims to discover and measure their causes, rather than averaging
them into a single performance metric. Furthermore, we explore how well a given
dataset may be used to probe methods performance through its statistics of instances
visibility, crowding and size.

The biggest problem for pose estimation is localization errors, present in about 25%
of the predicted keypoints in state-of-the-art methods, Figure 6.6-(a). We identify
four distinct causes of localization errors, Miss, Swap, Inversion, and Jitter, and
study their occurrence in different parts of the body, Figure 6.6-(b). The correction
of such errors, in particular Miss, can bring large improvements in the instance OKS
and AP, especially at higher evaluation thresholds, Figure 6.6-(c-d).

Another important source of error is noise in the detections’ confidence scores. To
minimize errors, the scores should be i) ‘OKS monotonic increasing’ and ii) cali-
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brated over the whole dataset, Section 6.3.2. The optimal score of a given detection
corresponds to the maximum OKS value obtainable with any annotation. Replac-
ing a method’s scores with the optimal scores yields an average AP improvement of
5%, Figure 6.8-(a), due to the fact that ground-truth instances match detections that
obtain higher OKS, and the overall number of matches is increased, Table 6.2. A
key property of good scoring functions is to separate as much as possible the dis-
tribution of confidence scores for detections obtaining high OKS versus low OKS,
Figure 6.8-(c).

Characteristics of the portrayed people, such as the amount of overlap with other
instances and the number of visible keypoints, substantially affects performance. A
comparison between Figure 6.11-(a) and Table 6.1, shows that average performance
strongly depends on the properties of the images, and that state-of-the-art methods
still vastly underperform humans when multiple people overlap and significant
occlusion is present. Since COCO is not rich in such challenging pictures, it
remains to be seen whether poor performance is due to the low number of training
instances, Figure 6.12-(b), and a new collection and annotation effort will be needed
to investigate this question. The size of instances also affects the quality of the
detections, Figure 6.13-(a), but is less relevant than occlusion or crowding. This
conclusion may be biased by the fact that small instances are not annotated in COCO
and excluded from our analysis.

In this study, we also observe that, despite their design differences, [2, 6] display
similar error patterns. Nonetheless, [2] is more sensitive to swap errors, as keypoint
predictions from the entire image can be erroneously grouped into the same instance,
while [6] is more prone to misses, as it only predicts keypoint locations within the
detected bounding box. [6] has more than twice the number of high confidence FP

errors, compared to [2]. Finally, we observe that FN are predominant around the
image border for [2], where grouping keypoints into consistent instances can be
harder, and concentrated in the center for [6], where there is typically clutter and
bounding boxes accuracy is reduced.

Based on the above considerations, we provide some practical guidelines that could
lead to substantial improvements of pose estimation algorithm’s performance.

Improving Localization: 3D reasoning along with the estimation of 2D body
parts [37] can improve localization by both incorporating constraints on the
anatomical validity of the body part predictions, and learning priors on where to
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expect visually occluded parts. Two promising directions for improvement are
possible: i) collecting 3D annotations [38] for the humans in COCO and learning to
directly regress 3D pose end-to-end [39]; ii) modeling the manifold of human
poses [40–42] and learning how to jointly predict the 3D pose of a person along
with its 2D skeleton [43].

Improving Scoring: Graphical models [44] can be used to learn a scoring function
based on the relative position of body part locations, improving upon [2, 6] which
only use the confidence of the predicted keypoints. Another promising approach is
to use the validation set to learn a regressor for estimating optimal scores
(Section 6.3.2) from the confidence maps of the predicted keypoints and from the
sub-optimal detection scores generated by the algorithm. Comparing scores of
detections in the same image relatively to each other will allow optimizing their
order.
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C h a p t e r 7

A ROTATION INVARIANT LATENT FACTOR MODEL FOR
MOVEME DISCOVERY FROM STATIC POSES

The contents of this chapter are adapted from the peer-reviewed publication:

M. R. Ronchi, J. S. Kim and Y. Yue “A Rotation Invariant Latent Factor Model for

Moveme Discovery from Static Poses.” IEEE 16th International Conference on Data
Mining (2016, Barcelona, Spain).
DOI: 10.1109/ICDM.2016.0156

URL: http://www.vision.caltech.edu/~mronchi/projects/RotationInvariantMovemes

WE tackle the problem of learning a rotation invariant latent factor model when
the training data is comprised of lower-dimensional projections of the origi-

nal feature space. The main goal is the discovery of a set of 3D bases poses that can
characterize the manifold of primitive human motions, or movemes, from a train-
ing set of 2D projected poses obtained from still images taken at various camera an-
gles. The proposed technique for basis discovery is data-driven rather than hand-
designed. The learned representation is rotation invariant, and can reconstruct any
training instance from multiple viewing angles. We apply our method to modeling
human poses in sports (via the Leeds Sports Dataset), and demonstrate the effective-
ness of the learned bases in a range of applications such as activity classification,
inference of dynamics from a single frame, and synthetic representation of move-
ments.

10.1109/ICDM.2016.0156
http://www.vision.caltech.edu/~mronchi/projects/RotationInvariantMovemes
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Figure 7.1: Rotation invariant moveme discovery. Given a matrix of static joint locations
annotated from images taken at any angle of view, we learn a factorization into a basis pose
matrix U and a coefficient matrix V. The learned poses in U i) are rotation-invariant, as they
capture the change in pose underlying a specific movement regardless of the angle of view at
which it is portrayed; ii) span the space of all human poses, as a sparse linear combination of
the bases accurately reconstructs the pose of a human involved in an action at any angle of
view, also for poses not contained in the training set.

7.1 Introduction

What are the typical ranges of motion for human arms? What types of leg movements
tend to correlate with specific shoulder positions? How can we expect the arms
to move given the current body pose? Our goal is to address these questions by
recovering a set of “bases poses” that summarize the variability of movements in a
given collection of static poses captured from images at various viewing angles.

One of the main difficulties of studying human movement is that it is a priori
unrestricted, except for physically imposed joint angle limits which have been
studied in medical text books, typically for a limited number of configurations [1, 2].

87



Chapter 7. A Rotation Invariant Latent Factor Model for Moveme Discovery

Furthermore, human movement may be distinguished into movemes, actions, and
activities [3, 4] depending on structure, complexity, and duration. Movemes refer to
the simplest meaningful pattern of motion: a short, target-oriented trajectory, that
cannot be further decomposed, e.g. “reach”, “grasp”, “step”, “kick”. A complex
gesture should be composed out of simple movemes: we define an action as a
predefined and ordered sequence of movemes, such as “drink from a glass”, or “open
a door”. An activity is a (possibly stochastic) combination of actions taking place
over a stretch of time with a typical and yet variable structure, e.g. “dine”, “read”.
Extensive studies have been carried out on human action and activity recognition
[5, 6], however little attention has been paid to movemes since human behaviour is
difficult to analyze at such a fine scale of dynamics.1

In this line of research, our primary goal is to learn a basis space to smoothly
capture movemes from a collection of two dimensional images, although our learned
representation can also aid in higher level reasoning.

Static poses extracted from two-dimensional images are the most abundant source
of pose information. Thus, finding a basis representation using such training data
can prove extremely valuable, given the number of image datasets (as opposed to
video or mo-cap data) that are currently being collected with a focus on common
activities [8–10]. However, such images are typically taken from a wide range of
viewing angles, and can yield only two-dimensional projections of the underlying
three-dimensional pose. Any method that does not directly address these issues will
learn a naive representation that fails to provide a set of global three-dimensional
bases poses that can capture pose changes due to the true human motion while
disregarding those due to a change of the angle of view.

We propose a rotation invariant latent factor model that can recover a set of three-
dimensional bases poses from a training set of two-dimensional projections. Our ap-
proach is distinguished from previous latent factor modeling approaches by directly
incorporating geometric operations in an integrated way, and yields interpretable
three dimensional bases poses that can be easily visualized as well as manipulated to
express a natural range of human poses (as depicted in Figure 7.1). We applied our
approach in a case study on modeling poses that arise in sports activities, since they
have very characteristic and recognizable motions and typically share trajectories

1The extent in time and complexity of human motion is not directly observable in still images,
but requires videos of humans involved in activities which cannot be recorded extensively without
legal or ethical issues, as opposed to fly or mouse behaviour which is very well documented [7].
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of parts of the body (e.g., tennis serve and volleyball strike), which allows to more
easily interpret and evaluate qualitatively the learned movemes.

Our study is not purely academic, as we have four applications in mind. We carry
out a quantitative and qualitative analysis for the first two of them, and leave the
study of the latter to future work:

Activity recognition: A compact representation, such as the proposed one, can be
used in addition to the feature representation of state-of-the-art methods for activity
recognition, favoring both the performance [11], and the interpretability of results.

Action dynamics inference: Modifying the weights of the learned bases poses is
analogous to moving along a line in the high-dimensional space of human poses
(either 2D or 3D). This allows to predict the future dynamic of an action [12], or
morph a pose into another from a single frame, by observing the dynamics of the
movemes which better describe the captured pose.

Computer graphics animation: many animation systems are still based on key-

framing and in-betweening [13]: master animators draw the key frames of a sequence
to be animated and assistant animators complete the intermediate frames by inferring
the movements occurring between the keys. Knowing the movemes underlying
human actions would provide an automated method for interpolating between key
frames, resulting in a faster and simplified animation pipeline.

3D pose estimation: a sparse overcomplete dictionary of human poses has been
used effectively for the reconstruction of 3D human pose given its 2D joint locations
from a single frame image [14–16]. Our technique would allow to identify the most
suited pose bases for a given collection of images without any experimenter bias, or
the need of curating the angle of view of the images in the training set.

In summary, the main contributions of this line of investigation are:

1. An unsupervised method for learning a rotation-invariant set of bases poses.
We propose a solution to the intrinsically ill-posed problem of going from static
poses to movements, without being affected by the angle of view.

2. A demonstration of how the learned bases poses can be used in various
applications, including manifold traversal, discriminative classification, and
synthesis of movements.

89



Chapter 7. A Rotation Invariant Latent Factor Model for Moveme Discovery

7.2 Related Work

Human Pose Analysis

There are two main directions of research for human pose analysis. The first one is
estimation: given a picture containing a person, the goal is to predict the location
of a predefined set of joints of its body, either in the 2D image [17, 18] or in the
3D space [14–16]. Methods for 3D pose reconstruction build upon the results of
2D pose estimators by using mechanisms based on physical constraints and domain
knowledge to infer the true underlying human pose observed in an image, and are
more of interest in this study since they implicitly learn an overcomplete basis
for modeling human movement. However, such methods typically predefine the
dictionary of actions, use additional data in the training phase (such as mo-cap), and
do not treat explicitly the problem of varying angles of view. In contrast, our goal is
to learn a low-rank manifold of 3D poses consistent across multiple viewing angles,
given only two-dimensional data.

The second line of investigation uses pose as a form of contextual information that
can be combined with objects’ category and location in an image, to obtain higher
performance for activity recognition through joint learning procedures [19–21].
Our approach can as well be used as a feature representation for improved activity
recognition.

From the perspective of pose analysis, the goal of this work is to learn a semantically
meaningful representation of human pose that can also be used to model human
motion. This representation should be independent of the application domain, and
flexible, allowing it to be incorporated with other representations. Other people
investigated this problem: it is known that dynamic information can be recovered
from static images of humans engaged in activities [22], and similar representations
for action recognition have been learned using video data [23, 24].

We are the first to propose a method for learning a representation of human motions
that i) learns the best basis autonomously without any experimenter bias, ii) directly
treats the problem of rotation-invariance, and iii) can be learned only from static
2D poses as opposed to motion capture datasets [25], which is a fundamental
contribution since it is the most abundant form of data available.
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Latent Factor Models and Representation Learning

We build upon a long line of research in latent factor models, first popularized
for collaborative filtering problems in content recommendation [26]. Applications
include modeling variations of faces [27], document and text analysis [28], and
behavior patterns in sports [29], amongst many others. Latent factor models are
variants of matrix and tensor factorization, which can easily incorporate missing
values or other types of constraints. In this regard, our work introduces an approach
for learning a latent factor model in a high-dimensional space, when the observed
training data are lower-dimensional projections. Our method is complementary to
and can be integrated with other latent factor modeling approaches.

Our approach can be viewed as a form of representation learning, which includes
methods such as deep neural networks and dictionary learning [30, 31]. One of the
benefits of representation learning is the ability to smoothly traverse the representa-
tion space [32], which in our setting translates to learning movemes as transitions
between poses.

7.3 Models

We develop our approach by building from the classical singular value decomposition.
We characterize the challenge of learning only from lower-dimensional projections
of the underlying feature space, and present a rotation-invariant latent factor model
for dealing with such training data.

7.3.1 Basic Notation and Framework

In this work, we focus on learning from two-dimensional projections of three-
dimensional human poses, however, it is straightforward to generalize to other
settings. We are given a training set S = {(x j, y j)}nj=1 of n two-dimensional poses,
where x and y correspond to the image coordinates of the pose joints from the
observed viewing angle, see Figure 7.2. Let S ∈ <2d×n denote the dataset matrix,
where 2d is the dimensionality of the projected space (twice the number of joints
d for two-dimensional projections). Our goal is to learn a bases poses matrix
U ∈ <2d×k composed of k latent factors, and a coefficient matrix V ∈ <k×n, so that
every training example can be represented as a linear combination:

s j = U · vj + s̄, (7.1)
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Reference Image 2-D joint annotations 2-D Moveme Figure 7.2: Moveme representation
in the 2D image plane. The human
body landmark annotations from an im-
age in LSP [33], and their displacement
from the mean pose, which we use to
encode movemes.

where s̄ denotes the “mean” pose. Of course, Eq. 7.1 does not deal with rotation
invariance and treats the x and y coordinates as having the same semantics across
training examples. We present in Section 7.3.3 a rotation-invariant latent factor
model to address this issue and recover a three-dimensional U ∈ <3d×k .

7.3.2 Baselines

To the best of our knowledge, no existing approach tackles the problem of learning a
rotation-invariant bases for modeling human movement. Previous work is focused
on either learning bases poses only from frontal viewing angles or by extensive
manual crafting of a predefined set of poses [14, 16]. As such, we develop our
approach by building upon classical baselines such as the SVD, which we briefly
describe here.

Singular Value Decomposition

The example in Eq. 7.1 is the most basic form of a latent factor model. When the
training objective is to minimize the squared reconstruction error of the training
data, then the solution can be recovered via SVD, also used for eigenfaces [27]. The
bases matrix U and the coefficient matrix V, respectively, correspond (up to a
scaling) to the left and right singular vectors of the mean-centered data matrix
Sc = (S − s̄). However, naively applying the SVD to our setting will result in the
bases matrix U conflating viewing angle rotations with true pose deformations.

Clustered Singular Value Decomposition

If the viewing angle of the training data is available, or a quantized approximation
of it, then the basic latent factor model in Eq. 7.1 can be instantiated separately for
different viewing angles, via:

s j = U(a j) · vj + s̄(a j), (7.2)
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where a j denotes the viewing angle cluster that example j belongs to. In other
words, given p clusters, we learn p separate latent factor models, one per cluster.
Intuitively, we expect this method to suffer less conflation between changes in pose
due to a viewing angle rotation and true pose deformation, and the more clusters, the
less susceptible. The main drawbacks are that: i) the learned bases representation
is not global, and will not be consistent across the clusters since they are learned
independently, and ii) the amount of training data per model is reduced, which can
yield a worse representation.

7.3.3 Rotation-Invariant Latent Factor Model

Our goal is to develop a latent factor model that can learn a global representation of
bases poses across different angles. For simplicity, we restrict ourselves to settings
where there are only differences in the pan angle, and assume no variation in the
tilt angle (i.e., all horizontal views). To that end, we propose both a 2D and a
3D model which can be used depending on the quality and quantity of additional
information available at training time. For some applications, it may suffice to use
the 2D model, however the 3D model is generally better able to intrinsically capture
rotation-invariance.

We first motivate some of the desirable properties:

• Unsupervised – the bases discovery should not be limited to or dependent on
images of specific classes of actions.

• Rotation Invariant – the learned bases should be composed of movements
from a given canonical view (e.g., frontal) and be able to reconstruct poses
oriented at any angle. The exact same pose may look different when observed
from different camera angles; as such, it is important to disambiguate pose
from viewing angle.

• Sparse – to encourage interpretability, the learned bases should be sparsely
activated for any training instance.

• Complementary – our method should be easy to integrate with other mod-
eling approaches, and thus should implement an orthogonal extension of the
basic latent factor modeling framework.
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General Framework

Our general framework aims to learn a latent factor matrix U, containing the bases
poses instantiated globally across all the training data; a coefficient matrix V, whose
columns correspond to the weights given to the bases poses to reconstruct all training
instance; and a vector θ, containing the angle of view of each training pose.

We can thus model every training example as:

s j = f (s̄ + U · v j, θ j), (7.3)

where f (·, ·) is a projection operator of the higher-dimensional model into the two-
dimensional space. We train our model via:

U,V, θ = arg min
U,V,θ

L(U,V, θ), (7.4)

L(U,V, θ) = E(U,V, θ) +Ω(U,V, θ), (7.5)

E(U,V, θ) =
∑

j

(
s j − f (s̄ + U · v j, θ j)

)2
, (7.6)

where E is the squared reconstruction error over the training instances, and Ω is a
model-specific regularizer. The projection operator f and the regularizer Ω are
specified separately for the 2D and 3D approach. This optimization problem is
non-convex, and requires a reasonable initialization in order to converge to a good
local optimum.

2D approach

The 2D approach, uses the same approach as the clustered SVD baseline and, given
a set of p angle clusters, instantiates the projection operator as:

f (s̄ + U · v j, θ j) = s̄(a j) + U(a j) · v j, (7.7)

a j denotes the cluster that θ j belongs to, and a separate rank-k U is learned for each
viewing angle cluster. At this point, Eq. 7.7 looks identical to Eq. 7.2. However, we
encourage global consistency between the per-cluster models via the regularization
terms:

Ω(U,V, θ) = Rreg(U,V, θ) + Rspat(U,V, θ). (7.8)
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The first term in Eq. 7.8 is a standard regularizer used to prevent overfitting:

Rreg(U,V, θ) =
p∑

a=1

[
λU ‖U(a)‖2F + λV ‖V(a)‖1

]
. (7.9)

We wish to have sparse activations so we regularize V using L1 norm. Depending on
the application, Section 7.4, we sometime enforce that V be non-negative for added
interpretability.

The second term in Eq. 7.8 is the spatial regularizer that encourages (or in some
cases enforces) consistency across the per-cluster models:

Rspat(U,V, θ) = λspat

∑
a,a′

κa,a′‖U(x)(a) − U(x)(a′)‖2F (7.10)

+
∑
a,a′

1
(
U(y)(a),U(y)(a′)

)
, (7.11)

U(x) and U(y) represent the x and y coordinate portions of the bases poses: e.g.
U(x) = [Ui,−], i ∈ X , where X is the set of indices corresponding to x coordinates
in the pose representation. Since we are only modeling variations in the pan angle,
the x coordinates can vary across different viewing angles, while the y coordinates
should remain constant. As such, the first term in Rspat , Eq. 7.10, corresponds to
encouraging the U(x)(a) and U(x)(a′) of different clusters to be similar to each other
(with κa,a′ controlling the degree of similarity), and the second term, Eq. 7.11, is a
{0,∞} indicator function that takes value 0 if the two arguments are identical, and
value∞ if they are not (i.e., it is a hard constraint).

In summary, the spatial regularization term is the main difference between the 2D
latent factor model and the clustered SVD baseline. Global consistency of the
per-cluster models is obtained by encouraging similar values in the x coordinates,
and enforcing identical y coordinates. In a sense, one can view spatial regularization
as a form of multi-task regularization, which enables sharing statistical strength
across the clusters. The main limitation of the 2D model is that the spatial
regularization does not incorporate more sophisticated geometric constraints, so the
notion of consistency achieved may not align with the true underlying
three-dimensional data.

95



C
hapter

7.
A

R
otation

InvariantLatentFactor
M

odelfor
M

ovem
e

D
iscovery

�err

�✓

esr111 = Q(✓111) · es111

U V

+

Mean Pose Frontal

3D reconstruction

Rotated 

3D reconstruction

Projected 

2D reconstruction2D annotation

Image 111

es111 = s̄ + U · v111

theta

S
Dataset Matrix

x

s111

s̄

err = (s111 � esp
111)

2

�err

�U

�err

�V

esp
111 =

⇥
esr,(x)
111 ,esr,(y)

111

⇤

Figure 7.3: Training pipeline of the proposed method LFA-3D. Bases poses U, coefficient matrix V and angles of view θ are initialized and updated
through alternate stochastic gradient descent. Each iteration consists of the following steps: (1) a sparse linear combination of the current bases poses
with coefficients from V is added to the dataset mean pose to obtain a frontal 3D reconstruction of the true pose; (2) the 3D reconstruction is rotated by
the current estimate of the angle of view θ j for that pose; (3) the 3D pose is projected to the 2D space where it is compared to the ground truth; (4) the
gradient update step is computed to minimize the root mean square error wrt. to quantities U, V and θ.
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3D approach

The 3D model directly learns a three-dimensional representation of the underlying
pose space, through a single and global U ∈ <3d×k that is inherently
three-dimensional, and captures k bases poses.

The projection operator is now defined as:

f (s̄ + U · v j, θ j) =
[
Q(θ j)

(
s̄ + U · v j

)] (x,y)
, (7.12)

where Q(·) is the 3D rotation matrix around the vertical axis:

Q(θ j) =


cos(θ j) 0 sin(θ j)
0 1 0

− sin(θ j) 0 cos(θ j)

 , (7.13)

and the superscript (x,y) denotes the projection from the 3D space of U to the 2D
space of the dataset annotations, obtained by indexing only the x and y coordinates
(the underlying model provides x, y, and z coordinates). The projection operator
in Eq. 7.12 allows to compute the two-dimensional projection of any underlying
three-dimensional pose at any viewing angle θ j using standard geometric rules.
Spatial regularization is no longer needed, because the rotation operator Q relates all
the viewing angles to a common model, thus the regularizer assumes the standard
form:

Ω(U,V, θ) = λU ‖U‖2F + λV ‖V‖1. (7.14)

In summary, the 3D latent factor model improves upon the 2D version by learning a
global representation that is intrinsically three-dimensional and integrates domain
knowledge of how the viewing angle affects pose via geometric projection rules.
This results in a more robust method, that does not learn a separate model per
viewing angle or rely on the spatial regularization to obtain consistency. The main
drawback is that a more complex initialization will be required. Figure 7.3 provides
an overview of the steps for the 3D approach.

7.3.4 Training Details

Initialization

Our approaches require an initial guess of the viewing angle for each training
instance, and the bases poses U. For angle initialization, we show in our experiments
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(Section 7.4.5) that we only need a fairly coarse prediction of the viewing angle (e.g.,
into quadrants). The 2D latent factor model bases poses U are initialized uniformly
between -1 and 1, while for the 3D model we use an off-the-shelf pose estimator
[16] and initialize U as the left singular vectors of the mean centered 3D pose data,
obtained through SVD.

Optimization

For both models, we optimize Eq. 7.4 using alternating stochastic gradient descent,
divided in two phases:

• Representation Update: we employ standard stochastic gradient descent to
update U and V while keeping θ fixed. For the 3D model, this involves
computing how the training data (which are two-dimensional projections)
induce a gradient on U and V through the rotation Q. Because we employ
an L1 regularization penalty, we use the standard soft-thresholding technique
[34].

• Angle Update: Once the optimal U and V are fixed, we employ standard
stochastic gradient descent to update θ.

Convergence and Learning Rates

Three training epochs of 10000 iterations are usually sufficient for convergence to a
good local minimum. Typical values of the learning rate are 1 × 10−4 for U and V
and 1 × 10−6 for θ. We use a smaller step size in the update of θ, since the curvature
of the objective function in Eq. 7.4 is higher w.r.t. θ than w.r.t. U and V.

7.4 Experiments and Empirical Results

We analyze the flexibility and usefulness of the proposed model in a variety of
application domains and experiments. In particular, we evaluate i) the performance of
the learned representation for supervised learning tasks such as activity classification;
ii) whether the learned representation captures enough semantics for meaningful
manifold traversal and visualization; and iii) the robustness to initialization and the
generalization error. Collectively, results suggest that our approach is effective at
capturing rotation invariant semantics of the underlying data.
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Figure 7.4: Example annotation for the orientation angle collected on the LSP dataset.
For every image in the LSP dataset, three separate workers were asked to provide the
visualized person’s angle of orientation, described as the pan angle at which the person is
facing with respect to the camera taking the picture.

7.4.1 Dataset and Additional Annotations

We use the Leeds Sports Dataset (LSP) [33] for our experiments. LSP is composed
of 2000 images containing a single person performing one of eight sports (Athletics,
Badminton, Baseball, Gymnastics, Parkour, Soccer, Tennis, Volleyball) annotated
with the x,y location and a visibility flag for 14 joints of the human body. Example
images and annotations are shown in Figures 7.1, 7.2, 7.4, and 7.9. Sports activities
are particularly well suited for this study, as they present characteristic motions that
share trajectories of parts of the body, that allow investigating basis pose sharing
across sports. As part of preprocessing, we normalize all the poses in the dataset by
modifying each bone to have the average bone length computed over all the training
instances [15]. We discard “Gymnastics” and “Parkour” from our analysis because
they have few examples and the class poses do not vary exclusively along the pan
angle (but appear in very unconventional views, i.e. upside-down and horizontal),
violating the assumption in Section 7.3.3. Generalizing the framework, to incorporate
a wider variability of the viewing angles, is an interesting future direction.

We developed an Amazon Mechanical Turk GUI to collect high-quality orientation
angle annotations for each pose in LSP, as shown in Figure 7.4. Although these
annotations are not necessary for training our model, we use them to demonstrate the
robustness to poor angle initialization, and that it can in fact recover the ground-truth
value at evaluation time, see Section 7.4.5. Three annotators evaluated each image
and were instructed to provide the direction at which the torso was facing, and
we combined their answers using a simple average. The standard deviation in the
reported angle of view averaged over the whole dataset is 12 degrees, and more than
half of the images have a deviation of less than 10 degrees, showing a very high
annotator agreement for the task.
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Figure 7.5: Performance analysis on the activity recognition task. (Left) The activity
classification accuracy across the sports in LSP for the following methods: “svd” – baseline,
“svd+rot” – clustered version of the baseline, “lfa2d” – 2D latent factor model with spatial
regularization, “lfa3d” – full 3D latent factor model. (Right) The confusion tables for the
best two performing methods, “lfa3d” and “svd+rot”. Full details in Section 7.4.2.

7.4.2 Activity Recognition

The matrix V describes each pose in the dataset as a linear combination of the learned
latent factors, Section 7.3.1. Thus, v j can be interpreted as a semantically more
meaningful feature representation for j-th data point. For instance, if a lower body
basis pose (e.g. Figure 7.7 top row) has a high weight, the reconstructed pose is very
likely to represent a movement from an activity related to running, or kicking.

A natural way to test the effectiveness of the learned representation is to use it for
supervised learning tasks. To that end, we used the coefficients in V as input features
for classifying the sport categories in LSP.

Figure 7.5 shows the results obtained from five-fold cross validation. The proposed
3D latent factor model (“lfa3d”) outperforms all other methods by an average
accuracy of about 11%. The 2D model (“lfa2d”) performs slightly worse than
the clustered SVD baseline (“svd+rot”), but both show more than a 5% average
improvement over the “svd” baseline. The two most challenging activities are
“athletics”, which does not posses characterizing movements; and “tennis”, whose
movemes are shared and thus confused with multiple other sports, “badminton”
and “baseball” above all. We also report the full classification confusion tables
in Figure 7.5. Note that only the weights of the latent factors reconstructing a
pose are being used to discriminate between the activities, without the aid of visual
cues from the image. It is thus surprising that “lfa3d” achieves an average 39%
accuracy, when a random guess would merely give 16.7%. Finally, the obtained
feature representation is complementary to other representations, such as the hidden
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Figure 7.6: Performance analysis on the action dynamics inference task. We compare
the methods “svd”, “lfa2d”, and “lfa3d” in the task of reordering shuffled sequences of
images sampled from four different sport actions. The color scheme represents actions, and
the methods are plotted with a different transparency value. The performance is described in
terms of: (1) number of sequences exactly reordered; (2) average number of errors contained
in a sequence; (3) average number of swaps needed to obtain the correct sequence; and (4)
accuracy per position in the sequence – shown only for the best two methods (“lfa3d” - dark
marker, “lfa2d” - light marker). Example sequences are shown in Table 7.1, and the full
experiment details are explained in Section 7.4.3.

layer activations of a convolutional neural network [35], and we wish to investigate
in future work the performance obtained by their combination.

7.4.3 Action Dynamics Inference & Manifold Traversal

Every pose in the training set belongs to a movement of the body corresponding to
a complex trajectory in the manifold of human motion. If the latent factor model
captures the semantics of the data, then poses that occur in chronological order
within a given action should lie in a monotonic sequence within the learned space.

A quantitative measure of the quality of the representation can be obtained by
observing how well the order of poses belonging to a same action is preserved. One
straightforward way to find the sequence in which a set of poses lies in the manifold,
is to look at the coefficient of their projection along the “total least squares” line fit
[36] of the corresponding columns in the matrix V. In other words, we are computing
a linear traversal through the representation space. Furthermore, this ordering should
hold regardless of the angle of view of the input instances.

In this experiment, we shuffled 1000 sequences of four images for four sport actions
(“baseball pitch”, “tennis forehand”, “tennis serve”, “baseball swing”), and verified
how precisely could the underlying chronological sequence be recovered. The
analysis is repeated five times to obtain standard deviations, and performance is
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Method Reordered Sequence Errors Swaps

lfa3d 0 0

lfa2d 2 1

svd 2 3

Table 7.1: Example of the chronological re-ordering of a sequence of images using
the LFA-3D method. The coefficients in V are used to chronologically order four images
sampled from a “tennis serve” sequence. We report the number of errors (images out of
position) and swaps necessary to obtain the correct order.

measured in terms of three metrics: (1) what percentage of the 1000 sequences is
exactly reordered; (2) how many poses are wrongly positioned; and (3) how bad
are the reordering mistakes, computed as the number of swaps necessary to sort a
predicted sequence in the correct order.

Figure 7.6 shows the results for the latent factor models “lfa2d”, “lfa3d”, and for the
“svd” baseline. It is not possible to study the performance of the clustered baseline
“svd+rot” since it does not learn a global matrix U, thus the coefficients in V are not
comparable across different viewing angles. The “lfa3d” model has significantly
better outcomes compared to “lfa2d” and “svd”, which perform similarly. Specifi-
cally, “lfa3d” correctly reorders more than twice the sequences overall (1314 against
555 of “lfa2d”) averages 1.6 errors, and is the only algorithm to require an average
number of swaps smaller than 1. Figure 7.6-(4) shows the per-position accuracy.

In Table 7.1, we show the results of the reordering task for an example tennis “serve
sequence”, and only the “lfa3d” method recovers the order correctly. Note how the
images are all taken from different viewing angles.

7.4.4 Moveme Visualization

The “lfa3d” method can be used to recover and synthesize realistic human motions
from static joint locations in images. The underlying idea, is that, as long as the time
scale is small, linear approximations of human motion can be successfully learned
from observations of poses of people performing various actions, as opposed to
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Volleyball Strike / Tennis Serve

s̄

Tennis Forehand

Soccer Kick

s̄ + uis̄ + 0.5ui

Figure 7.7: Time evolution visualization for three learned movemes. Three latent fac-
tors, encoding movemes, from the learned bases poses matrix U; two are easily interpretable
(“soccer kick”, “tennis forehand”) and one is not as well defined (“volleyball strike / tennis
serve”). The sequences are obtained by adding an increasing fraction of the basis to the mean
pose of the dataset and differentiate very clearly, as early as 30% of the final movement, as
visible in the second column. Full details in Section 7.4.4.

deriving mathematical principles which define control laws (e.g. inverse kinematics).

The most significant movemes contained in the training set are captured by the bases
poses matrix U and encoded in the form of a displacement from the mean pose. Each
column of U corresponds to a latent factor that describes some of the movement
variability present in the data.

Figure 7.7 reports the motion described by three latent factors: the rows show the
pose obtained by adding an increasing portion of the learned moveme (from 30% -
second column, to 100% - last column) to the mean pose of the data (first column).
Two are easily interpretable, “soccer kick” and “tennis forehand”, while one is not
as well defined, “volleyball strike / tennis serve”. The movemes differentiate very
quickly, with as little as 30% of the moveme added to the mean pose.

We verify empirically that two parameters mainly affect the correspondence between
an action and a latent factor (moveme purity): the number of latent factors, and
the constraints put on the coefficients of V. We obtain the best visualizations by
approximately matching the number of latent factors with the number of recognizable
actions contained in the dataset (10 for this experiment), and constraining the
coefficients of V to be between 0 and 1.
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Figure 7.8: Performance analysis on the viewpoint-angle estimation task and gener-
alization analysis. (a) Sensitivity with respect to the initial value of the angle of view of
the training poses of (Left) the Root Mean Squared Error and (Right) the Cosine Similarity
between the learned and ground-truth angles. A coarse initialization, within the correct quad-
rant of the true value, yields performances similar to ground truth. (b) The reconstruction
error for poses not contained in the training set with respect to the percentage of data used in
the training set. Full details in Section 7.4.5, and Section 7.4.6.

7.4.5 Angle Recovery

The “lfa3d” method learns a rotation invariant representation by treating the angle of
view of each pose as a variable which is optimized through gradient descent
(Section 7.3.3 and Figure 7.3), and requires an initial guess for each training
instance. We investigate how sensitive is the model to initialization, and how close
is the recovered angle of view to the ground truth. Figure 7.8-(a) shows the Root
Mean Squared Error (RMSE) and cosine similarity with the ground truth, for three
initialization methods: (1) “random”, between 0 and 2π; (2) “coarse”, coarsening
into discrete buckets (e.g., 4 clusters indicates that we only know the viewing angle
quadrant during initialization); and (3) “ground truth”.

As the number of clusters increases, we see that performance remains constant for
“random” and “ground truth”, while both evaluation metrics improve significantly for
“coarse” initialization. For instance, using just four clusters, “coarse” initialization
obtains almost minimal RMSE and perfect cosine similarity. These results suggest
that using very simple heuristics to predict the viewing angle quadrant of a pose is
sufficient to obtain optimal performance.
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7.4.6 Generalization Behaviour

A desirable property of the obtained model is to be able to reconstruct with low
error poses that are not contained in the training set, so the representation is not
tied uniquely to the specific image collection it was learned from. To verify the
generalization quality of the learned bases poses, we trained the “lfa3d” model
on a subset of the dataset and measured the RMSE on the remaining part, for an
increasingly larger portion of the data. We repeated the experiment five times to
obtain standard deviations.

As reported in Figure 7.8-(b), the RMSE over the training set is approximately
constant, while the test set RMSE decreases significantly when going from 10% to
80% of the data used in training. This indicates that the learned latent factors can
successfully reconstruct poses of unseen data.

7.4.7 Manifold Visualization

Figure 7.9 visualizes an embedding of the manifold of human motion learned with
the “lfa3d” method. Each pose in LSP is mapped in the human motion space
through the coefficients of the corresponding column of V and then projected in
two-dimensions using t-SNE [37].

Poses describing similar movements are mapped to nearby positions and form
consistent clusters, whose relative distance depends on which latent factors are used
to reconstruct the contained poses. Upper body movements are mapped closely in
the lower right corner, while lower body movements appear at the opposite end of
the embedding. The mapping in the manifold is not affected by the direction each
pose is facing, as nearby elements may have very different angle of view, confirming
that the learned representation is rotation invariant.

In Figure 7.10, we show the heatmaps obtained from the activations of two latent
factors from Figure 7.7, overlaid on top of the t-SNE mapping of Figure 7.9. To
compute the heatmaps, we extract the coefficients for the “soccer kick” and
“volleyball strike” latent factors from each column of V corresponding to a location
in the embedding, and plot their value after normalization2.

2To better depict the high-level trends, we enhance the contrast using a power of 1.5 and employ
Gaussian smoothing.
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view. Full details in Section 7.4.7.
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Volleyball Strike Soccer Kick

Figure 7.10: Activation heatmap over all the LSP dataset images for two learned
movemes. Activation strength of the learned “volley strike” and “soccer kick” bases poses
from Figure 7.7 (third and first row) in the t-SNE embedding. The heat-maps are consistent
with Figure 7.9 in which movements of the upper and lower body are respectively mapped
to the low-right and high-left corner.

Clearly, the epicentrum of the “volleyball strike” basis pose is located where
volleyball-like poses appear in the t-SNE plot (lower-right corner). Noticeable
upward arm movements are not as present in many other sports, hence the low
intensity of the activation in the rest of the map. Conversely, the “soccer kick” basis
pose is mostly dominant in the top-left area and the heatmap is diffused, consistent
with the observation that most poses contain some movement of the legs.

7.5 Conclusion and Future Directions

In this work, we proposed a model for learning the primitive movements underlying
human actions (movemes) from a set of static 2D poses obtained from images taken
at various angles of view. The bases poses are rotation-invariant and learned through
a modified latent matrix factorization that intrinsically accounts for geometric prop-
erties inherent to viewing angle variability. The approach can be trained efficiently,
requires modest effort to identify a reasonable initialization, and yields very good
generalization on unseen data.

We investigated the practical use of the learned representation for applications such
as activity recognition and inference of action dynamics, observing significantly
better performance compared to conventional baselines that do not account for
variability of viewing angles. We used the bases poses for synthetic generation of
movements, and explored how specific poses are mapped to different parts of the
high-dimensional manifold of human motion.
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One desirable property of our algorithm is that it is complementary to existing
latent factor, pose estimation and feature extraction approaches, and may be used in
combination with them to yield a better overall rotation-invariant representation.

An interesting future direction of investigation would be to use the proposed model in
a semi-supervised setting where there is some availability of true three-dimensional
data along with a large collection of two-dimensional joint locations.

Other possible extensions of our work are: learning to morph actions and synthesize
unseen actions from the set of extracted movemes; inferring the location of occluded
or missing joints based on the position of the visible ones; applying these techniques
to large-scale datasets [38] in conjunction with fine grained annotations of the
performed actions [9, 10] to gain new insights on the structure, complexity, and
duration of human behaviour.
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C h a p t e r 8

IT’S ALL RELATIVE: MONOCULAR 3D HUMAN POSE
ESTIMATION FROM WEAKLY SUPERVISED DATA

The contents of this chapter are adapted from the peer-reviewed publication:

M. R. Ronchi, O. Mac Aodha, R. Eng and P. Perona “It’s all Relative: Monocular

3D Human Pose Estimation from Weakly Supervised Data.” 29th British Machine
Vision Conference (2018, Newcastle, England)
URL: http://www.vision.caltech.edu/~mronchi/projects/RelativePose

WE address the problem of 3D human pose estimation from 2D input images
using only weakly supervised training data. Despite showing considerable

success for 2D pose estimation, the application of supervised machine learning to
3D pose estimation in real world images is currently hampered by the lack of varied
training images with corresponding 3D poses. Most existing 3D pose estimation
algorithms train on data that has either been collected in carefully controlled studio
settings or has been generated synthetically. Instead, we take a different approach,
and propose a 3D human pose estimation algorithm that only requires relative
estimates of depth at training time. Such training signal, although noisy, can be easily
collected from crowd annotators, and is of sufficient quality for enabling successful
training and evaluation of 3D pose algorithms. Our results are competitive with fully
supervised regression based approaches on the Human3.6M dataset, despite using
significantly weaker training data. Our proposed algorithm opens the door to using
existing widespread 2D datasets for 3D pose estimation by allowing fine-tuning with
noisy relative constraints, resulting in more accurate 3D poses.

http://www.vision.caltech.edu/~mronchi/projects/RelativePose
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Figure 8.1: Monocular 3D pose estimation from weak supervision. (a) Lifting based
methods for 3D human pose estimation take a set of 2D keypoints as input and predict their
3D position. (b) This is typically achieved using ground-truth 3D poses during training. (c)
We show that weak supervision in the form of relative depth labels for as little as one pair of
keypoints per image is effective for successfully training 3D pose estimation algorithms.

8.1 Introduction

Reasoning about the pose of humans in images and videos is a fundamental problem
in computer vision and robotics. To ensure that future autonomous systems are safe
to interact with, they need to be able to understand not only the positions, but also
the poses of the people around them. Recent success in 2D pose estimation has been
driven by larger, more varied, labeled datasets. While laborious, it is possible for
human annotators to click on the 2D locations of different body parts to generate
such training data. Unfortunately, in the case of 3D pose estimation, it is much more
challenging to acquire large amounts of training data containing people in real world
settings with their corresponding 3D poses. This lack of large scale training data
makes it difficult to both train deep models for 3D pose estimation and to evaluate
the performance of existing methods in situations where there are large variations
in scene types and poses. While researchers have resorted to various alternative
methods for collecting 3D pose training data - such as motion capture, synthetic
datasets, video, and multi-camera setups - they are expensive, time consuming, and
not easily scalable.

In this work, we argue that instead of using additional hardware to acquire full 3D
ground-truth training data in controlled settings, Figure 8.1-(b), we can make use of
human annotated relative depth information from images in the wild, Figure 8.1-(c),
and train our method with large amounts of very inexpensive annotations (as little as
one extra bit per image) on a large number of collections of images showing great
variability in scene types and portrayed poses.
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Figure 8.2: Trade-off between training
data and 3D pose reconstruction error.
As the amount of training data (measured
in megabytes of annotations) is reduced,
the performance of a fully supervised al-
gorithm, Figure 8.1-(b), breaks down; on
the other hand, our model, Figure 8.1-(c),
predicts accurate 3D poses even with very
small amounts of relative training data.

As a result, our method has a much more efficient trade-off between the amount of
training annotations required for training and the pose reconstruction error, as shown
in Figure 8.2.

The main contributions of this investigation are:

1. A loss for 3D pose estimation of articulated objects that can be trained on
sparse and easy to collect relative depth annotations with performance
comparable to the state-of-the-art;

2. an empirical evaluation of the ability of crowd annotators to provide relative
depth supervision in the context of human poses;

3. a dataset of relative joint depth annotations that can be used for both training
and evaluation purposes.

8.2 Related Work

2D Pose Estimation: Current state-of-the-art methods for 2D human keypoint
estimation are based on deep networks [1–5] trained on large quantities of
supervised data [6–9]. In addition to more sophisticated network architectures, a
large driver in the improved accuracy of these approaches is the increase in the size
and complexity [10] of datasets that contain images with corresponding keypoint
annotations indicating the locations, in pixels, of specific body parts. While suitable
for 2D pose estimation, by and large, most existing 2D datasets do not contain any
supervision signal for 3D pose estimation. In this work, we show that existing 2D
pose datasets can indeed be used for 3D pose estimation by augmenting them with
relative depth annotations collected from crowd annotators.
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3D Pose Estimation: There exist two main categories of methods for 3D pose
estimation: (1) end-to-end models and (2) lifting based approaches. The first set of
models take a 2D image or the output of a person detector as input, and then produce
an estimate of the individual’s 3D pose. This is achieved by learning to regress the
3D keypoint locations during training, either as a set of 3D coordinates [11] or as
volumetric heat maps [12]. These methods assume the availability of a training set
of 2D images paired with corresponding 3D annotations. To further constrain the
problem, it is possible to enforce a strong prior on the predictions in the form of a
parameterized model of human body shape [13–16]. While this ensures realistic
looking outputs [17], it can be limiting if the prior is not flexible enough to cover the
full range of valid poses.

As an alternative, lifting based approaches simply take a set of predicted 2D keypoints
as input and lift them into 3D. The rise in popularity of these methods is driven by
two factors: (1) the 2D location of keypoints is a strong cue indicating their 3D
configuration and (2) the limited number of ‘in the wild’ datasets featuring paired

2D images with 3D poses. A variety of lifting approaches have been proposed that
either frame the problem as one of regression [18, 19], data driven retrieval [20–22],
dictionary based reconstruction [23], or use generative adversarial learning [24].

Instead of requiring full 3D pose information for each individual in an input image,
we propose a method that only needs a small amount of sparse data indicating the
relative depth of different body parts. This results in high quality predictions with as
little as one relative depth constraint per pose at training time.

3D Pose Training Data: A major factor holding back progress in 3D pose estimation
is the lack of in the wild datasets featuring images with ground-truth 3D poses. Most
existing 3D pose datasets feature single individuals captured in controlled studio
settings [25, 26] and are challenging to acquire due to the need for specialized
equipment such as motion capture cameras and markers. Setups with multiple
cameras make it easier to capture small numbers of interacting people [27, 28], but
require multiple synchronized cameras in confined spaces to produce accurate depth.
Depth cameras can be used to generate 3D training data [29], but are usually limited
to the indoors. Alternative approaches use additional equipment such as inertial
sensors [30, 31] or passive markers [32]. The main limitation of these setups is that
it is very difficult to also capture 2D images that cover all the variation in appearance
that one would encounter in real world, non-studio, settings.
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One technique to extend studio captured motion capture data is to use computer
graphics techniques to generate potentially unlimited amounts of synthetic training
data [33, 34]. Synthetic training data has been successful for low-level vision tasks
such as depth and optical flow estimation [35]. However, rendering realistic
environments featuring people interacting with each other and their surroundings is
a challenging problem. Furthermore, even if it is possible to successfully generate
plausible scenes, these methods are still limited by the variation in pose and the
range of subject interactions that are present in the input motion capture data.
Different graphical user interfaces have been explored to allow crowd annotators to
annotate 3D pose information in existing image datasets. Examples include,
manually configuring 3D skeletons [36] or providing coarse body part orientation
information [8, 37, 38]. These can be very laborious tasks, taking a large amount of
time per image.

Relative Depth Supervision: Using ordinal relations between a sparse set of point
pairs as a weak form of supervision has been previously explored in the context of
dense depth estimation in monocular images [39, 40]. While this is not comparable
to metric ground-truth depth, it enables the easy collection of data that can be used
for both training and evaluating monocular depth estimation. This type of data
has also been used for 3D pose estimation [41, 42]. However, unlike previous
work that require complete annotations of all joint pairs to infer the 3D pose, we
use only sparse relative annotations. Our annotations, Figure 8.1-(c), specify the
relative distance between keypoints and the camera. Also [43] crowdsources sparse
pairwise pose constraints. However, in their case the relative relationships are in
the coordinate frame of the person in the image, and used as a replacement for 2D
keypoints. We show that depth annotations relative to the camera are easy to collect
and can be combined with existing 2D keypoint annotations for improving 3D pose
estimation.

In parallel to our work, [44] also explored training 3D pose estimation models using
relative (i.e. ordinal) depth constraints. They use multiple relative annotations per
image to fine-tune 3D supervised trained models. In contrast, we use as little as one
relative pair per image and focus on the setting where no camera intrinsics or 3D
supervised ground-truth are available for pre-training or for calibrating the output of
the model. Finally, we also conduct a detailed user study evaluating how accurate
crowd annotators are at providing relative depth annotations for human poses.
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8.3 Method

Our goal is to predict the 3D pose of an individual depicted in an input image.
We represent pose in 2D as a set of coordinates p ∈ R2×J , where each element
p j = [u j, v j] is a row vector that encodes the location, in pixels, of one of J different
joints. For each p, we aim to infer its position in 3D P ∈ R3×J , where each entry
specifies the location of the joint j in 3D, P j = [x j, y j, z j]. In this work, we take
inspiration from lifting based approaches, Figure 8.1-(a), and attempt to learn the
parameters of a function f : R2×J → R3×J , that maps 2D input keypoints to their
estimated 3D position, where f (p) = P̂. We parametrize f as a neural network,
where the input joint positions p can come from the output of a 2D human pose
estimation algorithm e.g. [2–4].

8.3.1 Supervised 3D Pose Estimation

Given a set of N input 2D keypoints and their corresponding ground-truth 3D pose,
one could use a supervised loss to train f :

Lsup(P̂,P) = | |P̂ − P| |2. (8.1)

This is the approach taken in [19], where a neural network, f , is trained to project
the input coordinates p into 3D. While they only need to infer the missing z j values
for each 2D keypoint, their model predicts each [x j, y j, z j] coordinate, making the
approach more robust to errors in the input 2D locations.

8.3.2 3D Pose Estimation with Relative Constraints

As noted earlier, acquiring large quantities of varied ground-truth 3D pose data
is challenging. Instead, we opt to use much weaker supervision in the form of
depth ordering labels that describe the relative distance to the camera for a pair of
keypoints, see Figure 8.1-(c).

We assume we have access to a set of crowdsourced relative annotations for an image
i, Ai = {( j1, k1, r1), ( j2, k2, r2), ..., ( jA, kA, rA)}, where each annotation ( j, k, r) is a
tuple specifying the joints j and k and their estimated relative depth r ∈ {−1, 1, 0}.
The number of specified pairwise constraints, A, can be different for every image,
and varies between one and

(J
2
)
, when the ordinal supervision is provided for every

pair of keypoints. The value r = −1 indicates that z j < zk + ε (joint j is closer to
the camera compared to k), while r = 1 specifies that zk < z j + ε . If the distance
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between two keypoints is below a certain tolerance ε , then r = 0. In practice, this
corresponds to the case in which human annotators cannot disambiguate the relative
position of two keypoints. Unless otherwise noted, we explore the setting where
r ∈ {−1, 1}.

Similar to [40], we use a pairwise ranking loss to encourage our model to predict the
correct depth ordering of a 3D keypoint pair:

Lrel(P̂,A) =
∑

( j,k,r)∈A


log(1 + exp(−r d̂ j k)), r = −1,+1

| |d̂ j k | |2 r = 0
, (8.2)

where d̂ j k = λ(ẑ j − ẑk), ẑ j being the predicted depth from our network for keypoint
j, and λ controlling the strength of the loss. In practice, we found that it is important
to normalize the range of depth values d̂ to ensure numerical stability [45]. This is
achieved by scaling by the mean absolute depth difference across each minibatch
during training. We also constrain our 3D predictions so they are centered at a root
joint that is encouraged to remain at the origin:

Lroot(P̂) = | |P̂root | |2. (8.3)

This controls the range of the output space, as the network does not have to model
all possible poses at all possible distances from the camera.

The above ranking loss only encourages the relative distances to the camera to be
respected for each keypoint pair, in essence constraining the z values. To force the
correct location in both x and y in image space, we use a reprojection loss:

Lproj(P̂, p, v, s) =
∑

j

| |v j(ΠP̂>j − p j)| |2, (8.4)

where v j ∈ {0, 1} is a visibility flag and Π is a projection matrix. If no camera
intrinsic information is available Π =

[
s 0 0
0 s 0

]
, i.e. scaled orthographic projection,

and in addition to predicting the 3D pose, our network also learns to predict the
scaling parameter s for each input pose. If the ground-truth focal lengths are available
during training, we can use perspective projection, and the reprojection loss becomes:

Lproj(P̃, p, v, s) =
∑

j

| |v j(ΠP̃>j − p j)| |2, (8.5)

where Π =
[

fx 0 0
0 fy 0

]
, and P̃ j =

[
x j/(z j + s), y j/(z j + s), 1

]
. Now the network’s

scaling parameter s has a different interpretation and is used to predict the distance
from the camera to the center of the person in 3D.
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Even with the above terms, 3D pose estimation from 2D inputs is heavily
underconstrained as many different 3D pose configurations can respect both the
relative depth constrains and the reprojection loss. To further constrain the problem,
we include one additional geometric loss that enforces weak prior knowledge related
to the ratio between the lengths of the different limbs. We assume that we are given
an input skeleton B = {(b1

1, b
2
1, l1), (b

1
2, b

2
2, l2), ..., (b

1
B, b

2
B, lB)}, consisting of B

‘bones’ (i.e. limbs), where each entry (b1, b2, l) specifies the indices of the keypoint
pair that are the endpoints for that particular limb, and its length l. The limb length
loss then measures the difference in length between the predicted limb and the
predefined reference length,

Lskel(P̂) =
∑

(b1,b2,l)∈B
| |len(P̂, b1, b2) − l | |2, (8.6)

where len(P̂, j, k) = | |P̂ j − P̂k | |2. In practice, we do not minimize the difference
between the absolute bone lengths, but instead normalize the predicted and reference
bones by fixing one of the limbs to be unit length, in effect constraining their ratios
as in [46, 47]. The skeleton loss also implicitly enforces symmetry between the sets
of left and right limbs.

Our final loss L is the combination of the above four terms with additional weighting
hyperparameters to control the influence of each component

L = 1
N

N∑
i=1
Lroot(P̂i) + αLrel(P̂i,Ai) + βLproj(P̂i, pi, vi, si) + γLskel(P̂i). (8.7)

8.3.3 Implementation Details

We use the same fully connected network architecture presented in [19]. For all
our experiments, we adopted the one stage version of the model (Figure 8.3) since
it showed only a minor loss in performance compared the two-stage version, but
provided a significant speed-up.

To predict the scale parameter s used in our reprojection loss, we add an additional
fully connected layer to the output of the penultimate set of layers and apply a
sigmoid non-linearity to its output. The output of the non-linearity is scaled using a
hyperparameter r to allow the network to predict an arbitrarily wide range. For the
default method ‘Ours Relative’, detailed in Table 8.1, we set r = 1. In the relative
depth loss, we set λ = 2.5. We set the weighting hyperparameters α and γ in the
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Block 1 Block 3Input 2D
Pose

e.g. 17x2

Block 2 Ouput 3D Pose 
and Scale

e.g. 17x3 + 1

Linear Layer - 1024 Units 
Batch Norm
ReLU
Dropout

Figure 8.3: Neural network architecture adopted for 3D pose regression. Our architec-
ture is inspired by [19], but includes an additional scaling factor prediction at the output
layer of the network which we use in the introduced reprojection loss, Eq. 8.4 and Eq. 8.5.

main loss to 1.0 and set β to 0.1. Both fully supervised and relative models are
trained on Human3.6M for a fixed number of 25 epochs, as they do not tend to
benefit from additional training time. When using LSP, we instead train our relative
models from scratch for 100 epochs.

The input 2D keypoints for our relative models are always centered by setting the
root location to (0,0). We did not perform this centering for the supervised baseline
as we found that it hurt performance, but we did center the 3D output coordinates in
a similar fashion.

As in [19], we clip the gradients to 1.0 during training. Training time on Human3.6M
is less than five minutes for one epoch for our relative model.

8.4 Human Relative Depth Annotation Performance

Our model for 3D pose estimation makes use of relative depth annotations at training
time. In order to use this type of supervision, it is important to understand how
accurately can humans provide these labels. This is in contrast to the study carried
out in [48], which investigates the ability of humans to observe and physically reenact
a target 3D pose. To measure the quality of relative joint annotations collected via a
crowd sourcing platform, we performed an evaluation using participants recruited
on Mechanical Turk with 1,000 images randomly selected from the Human3.6M
dataset [26], as it features ground-truth depth.

For each annotation task, the crowd annotators were presented with an image along
with two randomly selected keypoints and were instructed to imagine themselves
looking through the camera and report which of the two keypoints appeared closer
to them. We forced annotators to choose from one of the two possibilities and did
not provide a ‘same distance’ option for ambiguous situations, as those cases can be
inferred by inspecting the disagreement between annotators.
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Figure 8.4: Bias in the annotations due to camera perspective. (a) The green camera
represents the input view and the blue is the upright orientated view as perceived by our
annotators. If the camera is orientated upwards when evaluating annotators’ performance,
the provided labels are a better match with the true relative depths measured with the ground
truth. (b-c) With/without correcting for the orientation of the camera (blue/green lines),
annotators perform better/worse.

For each of the 1,000 images, we collected five random pairs of keypoints, ensuring
that five different annotators labeled the same keypoints and image combination. In
total, this resulted in 25,000 individual annotations collected from 301 annotators,
with an average of 83 annotations each. We merged each of the five votes per keypoint
pair using the crowd annotation system of [49], resulting in a single predicted label
per pair. We found this to perform slightly better than a majority vote, with the added
benefit of providing a probabilistic label.

We observed a bias in the annotations due to the fact that crowd annotators tend
to not factor in the forward lean of the camera in Human3.6M when making their
predictions. In Figure 8.4-(a), we see an illustration of this effect. Here, from the
perspective of the original camera view in green the keypoint ‘P0’ is closer than
‘P1’. In practice, even though annotators see an image of the scene taken from the
perspective of the green camera, they seemingly correct for the orientation of the
camera and ‘imagine’ the distance of the scene from the perspective of the blue
camera. While this change in camera position is subtle, it affects the relative ordering
of the points as ‘P1’ is now closer to the camera. We hypothesize that this is a result
of the annotator imagining themselves in the same pose as the individual in the
image, and then estimating the distance to the camera in a Manhattan world sense.
Without correcting for this effect, 67% of the provided pairwise annotations are
correct, but when this is taken into account then accuracy increases to 71%.

We correct for the bias by forcing the camera to be upright when computing the
scene depth. The results before and after applying this correction and annotator
accuracies can be viewed in Figure 8.4-(b-c). Note that fixing this bias requires
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Figure 8.5: Human performance analysis on the relative keypoint depth annotation
task. We measured human performance on the task of relative keypoints depth annotation
on 1,000 random images from the Human3.6M dataset [26]: (a) accuracy versus distance
between a pair of keypoints; (b) histogram of all the annotator’s accuracy; (c) comparison
of the annotator’s skill at identifying true positives versus true negatives; (d) sorting of the
images based on their overall difficulty measured as accuracy obtained by the annotators.

ground-truth depth data, and is performed here to evaluate annotators’ performance.
In real world scenarios, our model would learn this annotation bias. This effect
is likely to be exacerbated in Human3.6M as there are only four different camera
viewpoints in the entire dataset, and they are all facing downwards. We expect this
to be less of an issue for datasets that feature a larger variation in camera viewpoints
relative to the subject of interest as the dominant ground plane will have less of a
biasing effect.

In Figure 8.5, we quantify the accuracy of the crowd annotations, shown after
correcting for the annotation bias. In Figure 8.5-(a), we see that for keypoint pairs
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Figure 8.6: Example of the relative keypoint depth annotations collected for the LSP
dataset. (Top) The ground-truth 2D skeleton and five randomly selected pairs of keypoints
with the consolidated relative depth supervision and confidence based on annotator’s agree-
ment. (Bottom) The names and relative order of the pair of keypoints are written on top
of every image, with the green keypoint annotated to be closer to the camera compared to
the red one after consolidating all the annotators’ answers. Images are sorted from most to
least confident based on the annotator’s agreement. The two right-most examples illustrate
challenging cases where the keypoints are at a similar distance to the camera.

that are separated by more than 20 cm, our merged predictions are correct over 90%
of the time, where random guessing is 50%. While only a small number of annotators
annotated over 90% of the pairs correctly, Figure 8.5-(b), the vast majority tend to
perform better than random guessing. In Figure 8.5-(c), we observe that the rate of
true positives versus true negatives for every annotator is fairly symmetric, indicating
that annotators are equally good at providing the correct answer independently
of a keypoint being in front or behind another one. Some image and keypoint
combinations are more challenging than others, and in Figure 8.5-(d), we sort the
images from hardest to easiest based on the percentage of keypoint pairs that are
correctly annotated. For over two thirds of the images, four out of the five pairs are
correctly annotated. Importantly, the cases where annotators have trouble predicting
the correct keypoint order, by and large, tend to be ambiguous pairs where the actual
ground-truth distances are small. These results indicate that human annotators can
indeed provide high quality weak 3D pose information in the form of relative depth
annotations that can be used as supervision for our algorithm.

Using the same protocol described above, we collected annotations for all 2,000
images in the Leeds Sports Pose (LSP) dataset [6]. LSP features a much larger
variation in camera viewpoint and pose compared to Human3.6M. We selected five
random keypoint pairs per image, with five repeats, for a total of 50,000 annotations.
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Annotations were performed by 348 annotators who provided an average of 144
labels each. Example annotations, after merging the five responses using [49], can be
seen in Figure 8.6. Unlike Human3.6M, there is no ground-truth depth data available
for LSP, so to evaluate the quality of the crowd annotations, two of the authors
independently annotated the same subset of 500 keypoint pairs. Agreement between
the two was 84%, where the majority of disagreements occurred in ambiguous cases.
For the set of pairs where the two annotators agreed, the merged crowd annotations
were the same 90.2% of the time. These results are consistent with the performance
on Human3.6M, despite the larger variation in poses and viewpoints.

8.5 3D Pose Estimation Results

We use a similar model to [19] for all our experiments and report the 3D pose
estimation performance of our model on the Human3.6M [26] and LSP [6] datasets in
the following sections. A description of our network architecture and implementation
details are available in Section 8.3.3.

8.5.1 Human3.6M Dataset

As noted in [21], many different evaluation protocols have been defined for
Human3.6M, making it very challenging to comprehensively compare to all existing
methods. We opt to use protocol #2 from the state-of-the-art [19], as it is the model
most similar to ours, and has been used by several recent approaches. Here, training
is performed on subjects [1, 5, 6, 7, 8] and the test set consists of all frames and
cameras for subjects [9, 11]. Some methods sub-sample the test data from the
original 50fps to 10fps, but we observed little difference to the test scores and thus
opted to preserve the original frame rate of the dataset. As in [19], Procrustes
alignment is performed at test time between each prediction and its corresponding
test example. With the exception of the results in Table 8.2, where we average
across actions, everywhere else we report results by averaging across all frames.
Finally, unless specified, we use 17 2D keypoints as input and predict their
corresponding 3D locations, with the relative annotations derived from the
ground-truth depth.

We explored different configurations of our model at training time, by varying the
type of reprojection loss adopted, the proportions of the input skeleton, the amount
of training data, and the distance tolerance.
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Model 3D Pose Error (mm)

Reprojection Type Skeleton Amount Train Distance Tolerance Scale Procrustes
1) 3D Supervised - - - - 49.62 36.54
2) Ours Relative Scaled Orthographic H36 Avg 1 Pair No 64.58 48.97
3) Known focal length Perspective H36 Avg 1 Pair No 65.22 48.54
4) Generic skeleton Scaled Orthographic Avg from [41] 1 Pair No 73.26 55.27
5) No skeleton loss Scaled Orthographic H36 Avg 1 Pair No 118.34 89.81
6) Amount train Scaled Orthographic H36 Avg All Pairs (136) No 63.96 48.90
7) Distance tolerance Scaled Orthographic H36 Avg 1 Pair Yes (100mm) 63.45 47.54

Table 8.1: Ablation study of our model on the Human3.6M dataset. The last two
columns show the performance at test time when an optimal single parameter re-scaling
(Scale) or full rigid alignment (Procrustes) is performed for each predicted pose based on
the ground truth. ‘3D Supervised’ is our re-implementation of [19]. ‘Ours Relative’ shows
the default settings adopted for our model, while rows 3-7 contain different variants.

We describe below our most interesting findings from the results in Table 8.1:

• Reprojection: The availability of ground-truth focal lengths at training time,
Eqn. 8.5, yields comparable performance to using the scaled orthographic
projection of Eqn. 8.4.

• Skeleton: Using less accurate limb length ratios in Eqn. 8.6, obtained from
[41] instead of Human3.6M’s training set average, slightly hurts the accuracy,
while entirely removing the skeleton loss significantly reduces performance.

• Amount Train: Increasing the amount of relative depth pairs does not
significantly alter the results. However, this effect is likely due to the high
redundancy present in Human3.6M. This is consistent with the findings of
Figure 8.1-(d), where we report the error against the percentage of training
images used.

• Distance Tolerance: Setting the depth tolerance to 100 mm helps performance.
This is because using r = 0 in Eqn. 8.2 forces the network to constrain a pair
of predicted keypoints to be at the same depth, as opposed to just determining
their relative order.

Some of these configurations are more realistic than others when using crowd
provided annotations on an ‘in the wild’ image dataset. We denote ‘Ours Relative’
as the model with the most realistic assumptions and use it for the remaining
experiments.

Figure 8.7 summarizes the overall performance and robustness to noise of our model.
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Figure 8.7: Performance analysis on the 3D pose estimation task. We compare the
performance of our algorithm and one using full 3D supervision. (a) Histogram of the
errors on all the images in the Human3.6M dataset test set (lines and dots respectively show
the cumulative sum and percentiles). (b) A breakdown of errors over individual keypoints.
(c) Comparison of the robustness to perturbations of the 2D input keypoint locations. (d)
Analysis of our method’s robustness to errors in the relative depth labels during training.

In Figure 8.7-(a), we show a histogram of the pose errors on the test set both for our
method and [19]. The mode and median of the two curves are 10mm from each
other. However, our method suffers from more catastrophic errors, as can be seen in
the longer tail. This is due to the fact that even when respecting all the relative depth
labels we do not fully constrain their absolute depth. This can also be seen in the
breakdown of the error over keypoint type in Figure 8.7-(b). As one might expect,
body extremities such as ankles and wrists show a larger error (and deviation).

Figure 8.7-(c) shows the degradation in performance for the cases in which the 2D
input keypoints are obtained by adding a Gaussian noise N(0, σ2) with increasingly
high variance (up to 20) to the 2D ground-truth keypoints or by using the outputs of
a keypoint detector [3] fined-tuned on the Human3.6M training set, taken from [19].
The performance of [19] is better when the train and test data have the same amount
of noise degradation (lower error along the y-axis), while our method performs best
when noise is only added at test time (lower error along the x-axis).
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Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SitingD Smoke Wait WalkD Walk WalkT Avg

Sanzari et al. [50] 48.8 56.3 96.0 84.8 96.5 105.6 66.3 107.4 116.9 129.6 97.8 65.9 130.5 92.9 102.2 93.2
Rogez et al. [51] – – – – – – – – – – – – – – – 71.6
Kanazawa et al. [17] – – – – – – – – – – – – – – – 58.1
Pavlakos et al. [12] 47.5 50.5 48.3 49.3 50.7 55.2 46.1 48.0 61.1 78.1 51.1 48.3 52.9 41.5 46.4 51.9
Tekin et al. [52] – – – – – – – – – – – – – – – 50.1
Fang et al. [53] 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7
Hossain et al. [54] (T) 36.9 37.9 42.8 40.3 46.8 46.7 37.7 36.5 48.9 52.6 45.6 39.6 43.5 35.2 38.5 42.0
Pavlakos et al. [44] (E) 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8
Martinez et al. [19] 17j GT/GT – – – – – – – – – – – – – – – 37.1
Martinez et al. [19] 17j SH/SH 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
3D Supervised 17j GT/GT 31.1 37.0 34.3 36.3 37.2 42.5 36.6 33.8 39.9 49.3 37.0 37.7 38.8 33.1 37.5 37.5
Ours Relative 17j GT/GT 43.6 45.3 45.8 50.9 46.6 55.3 43.3 47.3 56.6 74.3 47.1 48.5 52.1 48.5 49.8 50.3
Ours Relative 17j GT/GT (N) 46.4 47.3 49.7 53.3 52.3 59.2 43.8 50.9 80.5 107.9 54.3 51.6 53.1 52.4 53.3 57.1
3D Supervised 16j SH/SH 40.2 44.4 46.6 48.3 53.3 56.7 41.7 42.4 55.9 68.1 50.8 46.2 51.8 40.4 45.5 48.8
Ours Relative 16j SH/SH 51.1 50.8 56.4 60.5 60.6 64.7 48.9 52.1 67.5 89.0 59.1 55.8 61.3 59.2 59.0 59.7
Ours Relative 16j SH/SH (N) 54.0 54.5 70.4 64.0 78.3 71.6 50.4 58.8 113.9 131.0 76.7 60.1 64.8 61.8 63.7 71.6

Table 8.2: 3D pose reconstruction errors on the Human3.6M dataset. We use evaluation
protocol #2, defined in Section 8.5.1. GT and SH are the ground-truth and fine-tuned (from
[19]) detected 2D input keypoints respectively, with ‘j’ indicating the number of joints used
for testing. (T) represents the use of temporal information, (E) extra training data, and (N)
the use of simulated annotation noise in the relative depth pairs. Errors are reported in mm.

We hypothesize that this behavior is due to the presence of the reprojection and
skeleton losses at training time, which encourages our method to find plausible 3D
poses that respect the input poses, making it more robust to slight changes in the
distribution of the input keypoints.

In Figure 8.7-(d), we demonstrate that our model is also robust to noise in the relative
depth labels during training. Performance is mostly unchanged when up to 25% of
the labels are randomly flipped. The third bar corresponds to the amount of noise
obtained from simulated crowd annotators, regressed from Figure 8.5-(a). This is of
interest, as it shows performance with noise comparable to what we would expect to
collect in the wild. The worst performance is obtained when the labels are randomly
flipped, and improves for cases in which the amount of noise is larger than 50%, as
the model is able to exploit structure that is still present in the data, but produces
poses that are flipped back to front.

Finally, in Table 8.2 we compare our model to existing fully 3D supervised
approaches. Even with significantly less training data, and without any architecture
exploration, we still perform competitively.

Overall, our results show that, when available, 3D ground-truth is a very powerful
training signal, but using our proposed training methodology relative depth data
can instead be used at the expense of little accuracy at test time. Furthermore, our
model is robust to using noisy predicted 2D keypoints at test time, again with a
minor decrease in performance.
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Ground Truth 3D Supervised - 34.4 mm Ours Relative - 29.5 mm

Ground Truth 3D Supervised - 33.5 mm Ours Relative - 37.3 mm

Ground Truth 3D Supervised - 45.1 mm Ours Relative - 66.5 mm

Ground Truth 3D Supervised - 34.8 mm Ours Relative - 85.2 mm

Ground Truth 3D Supervised - 174.2 mm Ours Relative - 210.8 mm

Ground Truth 3D Supervised - 35.1 mm Ours Relative - 51.9 mm

Figure 8.8: Inference time 3D pose predictions on the Human3.6M dataset. Despite
using much weaker training data, our relative model (Ours Relative 17j GT/GT) produces
sensible results for most input poses. Both the supervised and our approach are depicted
after rigid alignment, with the obtained error (in mm) displayed on top.
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Example 3D predicted poses on input images from the Human3.6M dataset can
be seen in Figure 8.8. Our algorithm is very competitive compared to the fully
supervised baseline, even for images that show more complicated human poses.

8.5.2 Leeds Sports Pose Dataset

We perform experiments on the LSP dataset which, unlike Human3.6M, does not
contain ground-truth 3D pose annotations. As a result, we evaluate the models by
measuring the percentage of relative labels incorrectly predicted compared to the
merged crowd annotations collected via Mechanical Turk.

The 3D supervised model [19] and our relative model, with one comparison per input
pose, trained on Human3.6M achieve test errors of 34.4% and 34.3% respectively.
We are able to further reduce the error of our relative model to 24.1% by fine-tuning
it using the ordinal annotations collected for the LSP training set. Furthermore,
training our relative model from scratch using exclusively the LSP training set also
outperforms the supervised baseline obtaining an error of 27.1%. This shows that
weak training data is sufficient for competitive performance on this benchmark, and
we can successfully make use of noisy annotations to improve the prediction of 3D
poses if 3D ground truth is available.

Example outputs of the above methods on the LSP dataset are displayed in
Figure 8.9. These results show that our method significantly improves the quality of
the predictions compared to the fully supervised baseline. This highlights the
importance of fine-tuning on hard images containing uncommon poses and rare
viewpoints that are not found in the Human3.6M dataset.

8.6 Conclusion

We presented a weakly supervised approach for 3D human pose estimation. We
showed that sparse constraints that indicate the relative depth of pairs of keypoints
can be used as a training signal, resulting in competitive results at a fraction of
the amount of training data. Unlike most approaches that require ground-truth 3D
poses, our method can be applied to legacy image collections, as only the input 2D
keypoints and relative depth annotations are required. This opens the door to using
existing datasets for 3D pose estimation in the wild.

Large scale annotation is time consuming and expensive, even when only collecting
weak supervision. In future, we plan to investigate efficient, active learning based,
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3D Supervised H36 Ours Relative H36 Ours Relative H36 + LSP FT 3D Supervised H36 Ours Relative H36 Ours Relative H36 + LSP FT

3D Supervised H36 Ours Relative H36 Ours Relative H36 + LSP FT 3D Supervised H36 Ours Relative H36 Ours Relative H36 + LSP FT

3D Supervised H36 Ours Relative H36 Ours Relative H36 + LSP FT 3D Supervised H36 Ours Relative H36 Ours Relative H36 + LSP FT

3D Supervised H36 Ours Relative H36 Ours Relative H36 + LSP FT 3D Supervised H36 Ours Relative H36 Ours Relative H36 + LSP FT

Figure 8.9: Inference time 3D pose predictions on the LSP dataset. Fine-tuning (FT)
on LSP significantly improves the quality of our predictions especially for images containing
uncommon poses and viewpoints that are not found in Human3.6M, such as those visualized
in the last row.

approaches for collecting annotations [55]. Current state-of-the-art 2D pose
estimation algorithms perform best on single humans in isolation and their
performance deteriorates when there are large numbers of occluded keypoints and
closely interacting people [10]. Including weak 3D information for multiple
interacting individuals may help resolve some of these ambiguities.
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C h a p t e r 9

HOW MUCH DOES MULTI-VIEW SELF-SUPERVISION HELP
3D POSE ESTIMATION?

The contents of this chapter are adapted from the manuscript:

M. R. Ronchi, O. Mac Aodha and P. Perona “How Much Does Multi-View

Self-Supervision Help 3D Pose Estimation?”

URL: http://www.vision.caltech.edu/~mronchi/projects/MultiView3DPose

3DPose estimation from a single image is challenging due to both the
inherent ambiguity of the task, and the difficulty of collecting large and

varied supervised training datasets. Self-supervised learning has emerged as an
alternative solution where the aim is to learn features that encode pose information
without requiring explicit supervision. This feature learning step is typically framed
as solving a pretext task that is related to pose, such as temporal alignment of video
frames or multi-view reconstruction. However, directly comparing current
approaches is difficult due to different datasets and experimental settings used. In
this work, we standardize this comparison by performing a detailed evaluation of
multi-view self-supervised feature learning methods. Through experiments on
Human3.6M, we observe several important issues that arise when using multi-view
information as a training signal, including the impact of the amount of supervised
pose data, the 3D pose reference frame used, the power of different pose decoders,
among others. We conclude with recommendations and by highlighting open
questions.

http://www.vision.caltech.edu/~mronchi/projects/MultiView3DPose
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Viewpoint Invariant Human Pose Manifold

Expensive Ground Truth

Figure 9.1: Multi-view self-supervision for the task of 3D human pose estimation. We
wish to learn an embedding function that embeds images of the same pose, taken from
different camera viewpoints, to the same place in feature space without requiring any
supervised pose data (left). With a small amount of expensive to collect 3D pose supervision,
we can train a pose decoder that projects from the embedding space to 3D pose space (right).
Depending on the application of interest, human pose can be represented in a camera centered
reference frame (camera-centric) or in an intrinsic reference frame (ego-centric).

9.1 Introduction

The ability to perform robust 3D human pose estimation opens up the possibility
of richer interactions between humans and autonomous systems. By accurately
predicting human pose, these future systems will be able to safely collaborate with
humans in close proximity to each other.

Unfortunately, while innovations in network architectures, losses, and larger super-
vised training datasets have significantly improved the performance of 2D pose esti-
mation [1–5], 3D pose estimation from a single image still remains a challenging
problem.

Traditional approaches to computing 3D human pose from monocular
two-dimenaional images and video relied on hand crafting models of the human
body and designing ad-hoc detectors and trackers [6–9]. However, recent progress
in deep networks has kindled interest in utilizing purely learning-based
approaches [10–12].

A shortcoming of these methods is that they are data hungry, and annotating images
with 3D pose ground-truth is both tedious and expensive, and especially hard to do
for large varied training sets of in-the-wild 3D human poses. We are thus interested
in exploring methods to recover 3D pose that require the least amount of supervision,
both at training and inference time.

138



Chapter 9. How Much Does Multi-View Self-Supervision Help 3D Pose Estimation?

To address this lack of training data, several self-supervised learning approaches
have been proposed that aim to learn features that encode information about human
pose without requiring expensive to obtain ground-truth data. The quality of these
features can then be evaluated by measuring how well they predict pose given a
limited amount of supervised finetuning data.

Existing self-supervised methods exploit different forms of structure that is present
in the raw image data to learn informative features. This can include: temporal
information in the context of video [13, 14], the relationship between 2D and 3D
pose [15], and multi-view images [16, 17]. These methods can be framed as distance
metric learning problems, where the goal is to learn an image embedding space in
which pairs of images containing similar 3D poses are closer in the learned space,
while pairs that contain different poses are further apart.

In contrast to other forms of self-supervision, one of the main advantages of time-
synchronized multi-view approaches [16, 17] is that they explicitly have information,
at training time, about a subset of frames that are known to contain the same poses:
images from the same individual captured at the same time point from different
cameras. However, during training they throw away information about camera
viewpoint as they force the learned embedding to encode the same pose from
different viewing angles in the same location in the feature space. This is acceptable
when the goal is to reason about pose in an ego-centric reference frame, but it poses
challenges when one wants to extract pose with respect to the input camera, camera-

centric reference frame. We highlight the difference between the two representations
of pose in Figure 9.1.

In addition, while using videos recorded from multiple viewpoints provides infor-
mation about positive image pair correspondeces for free, choosing negative pair
frames is still a non-trivial task and worse, there is a danger that similar poses from
different time points will be incorrectly selected as negative pairs [13, 17, 18].

For some applications, such as action recognition and image retrieval, representing
pose with an intrinsic representation might suffice. However, 3D pose estimation
from monocular images and robotic control are the principal applications we have in
mind, and they both benefit from a camera-aware representation of pose. Thus, one
of our goals is to study the ability of recovering either representation of pose from
the learned viewpoint-invariant embedding.
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In this study, we explore issues related to training self-supervised multi-view em-
bedding based approaches for single view 3D human pose estimation. Through ex-
tensive experiments on Human3.6M [19], we show that there are several important
design decisions that can significantly impact the accuracy of 3D pose estimation,
among which some are the choice of reference frame used for evaluation, the ca-
pacity of the pose decoder, and the selection of training samples. By measuring the
effect of each these aspects, and others, we make recommendations for how to best
close the gap between self-supervised and fully supervised training.

9.2 Related Work

Supervised 3D Pose Estimation

The goal of 2D human pose estimation is to predict the 2D locations of a pre-defined
set of keypoints on the human body in the image space. In the case of 3D pose
estimation, we also want to predict the ‘depth’ of each keypoint (either with respect
to the camera or in a specified 3D coordinate space). This is an inherently ill-
posed problem when only given a single image as input. The existing literature for
single image 3D pose estimation can be broadly divided into two main approaches:
end-to-end, and two-stage (i.e.‘lifting’).

End-to-end approaches take a 2D image as input and directly regress the 3D keypoints
from the pixel data. Common representations for the predicted pose include 3D
coordinates [10, 20], volumetric predictions [21, 22], coefficients for probabilistic
pose models [23], and 3D meshes for full body shape and pose encoding [24, 25].
Semi-supervised end-to-end training also enables the use of additional 2D keypoint
data that has no paired 3D information [26, 27]. Multi-view information has also
been shown to improve semi-supervised training [28, 29].

For lifting approaches, the goal is to take a set of 2D keypoints as input and then
predict the missing depth dimension. These methods do not train a full deep feature
extractor from the input image but instead use compact fully connected models to
regress the missing dimensions [30]. In addition to direct regression of missing
keypoints other lifting approaches have explored keypoint distance matrix estimation
[31], direct retrieval [12, 32], and adversarial learning [33, 34].

We explore self-supervised learning of 3D pose aware feature representations using
distance metric learning. Once trained, our feature extraction networks can be
combined with any representation of 3D pose during supervised finetuning.
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Training Data for 3D Pose Estimation

While 2D pose estimation has benefited from large supervised training datasets
e.g.[35, 36], acquiring ground-truth 3D pose data is much more difficult. Standard
options include capturing data in controlled settings with motion capture markers
[19, 37], multi-camera setups [38, 39], or using paired depth cameras [40]. However,
all these approaches require additional hardware and calibration and are difficult
to deploy in outdoor settings. Training data can also be generating synthetically,
resulting in ground-truth dense depth for free [41–43]. However, it is challenging to
generate varied 3D poses with realistic scene appearance and interactions without
significant manual intervention. As full 3D pose information for ‘in-the-wild’ image
collections is very challenging to acquire. One proposed solution is to crowd-source
weak 3D information in the form of estimated relative keypoint distances from the
camera [44–47]. The disadvantage of this approach is that it can result in noisy
labels as in many cases the relative distance of some pairs of keypoints can be hard
to disambiguate.

Our goal is to learn features that encode 3D pose information without requiring any
direct 3D supervision. Once trained, we show that these features can be finetuned
with a relatively small amount of 3D supervision, resulting in accurate 3D pose
predictions.

Self-Supervised 3D Pose Estimation

To overcome the lack of training data for 3D pose estimation, there is a growing
interest in self-supervised approaches for learning features that encode 3D pose.
These methods can be categorized based on their requirements for additional data at
training time or the assumptions they make about how the images are related.

Given no 2D or 3D pose information at training time, but instead a set of time
synchronized multi-view images with known camera extrinsics, [16] proposed an
image reconstruction based approach to learn a features for 3D pose estimation.
As they have the known transformations between the cameras during training the
learned latent space encodes camera viewpoint information as well as pose. [48]
proposed a similar approach but assumed they had access to 2D pose during training
and performed the reconstruction in 2D pose space, rather than in image space.
In contrast, other embedding based approaches that also assume availability of
time synchronized cameras are unable to recover camera viewpoint information as
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they explicitly train embeddings that are invariant to viewpoint [17, 49]. [50] still
assumed access to time synchronized views from neighboring viewpoints but used
a pretrained pose estimation network, along with multi-view epipolar constraints,
to learn how to predict 3D pose. This overcomes the requirement of having known
camera extrinsics.

Another source of self-supervision which has been exploited in the context of 2D
pose estimation is temporal information. [18] trained a Siamese architecture to
predict if two frames were temporally close or far, with the assumption that nearby
frames in time are more similar in pose to further away ones. [13, 14] also utilized
time information with the assumption that the same action performed by two different
people will have a similar temporal ordering. These models learn to align pairs of
video of the same action by enforcing consistency in both directions for the predicted
frame-level embeddings. While they still require multiple videos of the same action,
unlike the previous multi-view approaches, these videos do not have to be time
synchronized or depict the same individual.

The last main category of self-supervision is having access to 2D keypoint informa-
tion from non-time synchronized image collections. [15] proposed a lifting based
approach that used a series of self-consistency constraints in both 2D and 3D along
with an adversarial loss to encourage that projected 3D posses are valid 2D poses.
However, these lifting approaches do not explicitly train an image encoder that can
be used for any arbitrary image.

One of the main challenges for many of the above embedding based approaches for
self-supervised pose representation learning is the sampling of positive and negative
pairs of frames during training. Positive pairs of frames are usually selected based
on some criteria such as the same time-point imaged from a different viewpoint or
two frames that are close in time. However, due to the repeated nature of poses over
time, selecting negative pairs of frames (i.e.ideally those containing very different
poses) is challenging. One solution is to filter out potential negative pairs based on
their similarity in the embedding space during training [13, 17, 18].

In this work we explore design decision related to multi-view self-supervised learning
for single view 3D pose estimation. We evaluate the impact of each of the decisions
on the quality of the learned features and measure how much they effect the predicted
3D poses.
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9.3 Method

The proposed pipeline for semi-supervised monocular 3D pose estimation is com-
posed of three modular components, depicted in Figure 9.2:

1. Pose encoder: We use a Time Contrastive Network [49] to learn a viewpoint-
invariant representation of human poses, Section 9.3.1, using un-edited and
un-calibrated videos from Human3.6M [19].

2. Pose decoder: We use a fully connected architecture [51] to learn the mapping
from vectors in the learned embedding to the output space of human poses
(ego-centric or camera-centric), Section 9.3.2.

3. Viewpoint decoder: We use a neural network architecture combining convo-
lutional and fully connected layers to learn the reference frame orientation of
the predicted poses, Section 9.3.3.

The entire pipeline is trained in two successive phases: i) we train the encoder in
a completely self-supervised way on the pretext task of time-contrastive metric
learning, and ii) we jointly fine-tune the pose and viewpoint decoders, using any
small amount of 3D ground-truth pose supervision available.

Compared to related work in the same area of research, our algorithm does not require
any camera intrinsic or extrinsic parameters during the self-supervised training phase,
as opposed to [16], or the multi-view videos to be pre-segmented in order to avoid
cyclic movements of the portrayed subjects like [14, 49]. This is a fundamental
improvement, which makes the pipeline truly self-supervised and amenable to using
with completely uncurated multi-view video sequences.

At inference time, our pipeline can be used for monocular 3D pose estimation in
images or for video prediction by using it in a frame-by-frame fashion. Depending
on the application of interest, it is possible to predict poses both in ego-centric
coordinates, which discard the viewpoint information, or in camera-centric
coordinates. This can be useful, since we observed that the data versus accuracy
trade-off for the two pose representations is different, see Figure 9.3. Thanks to its
design, our method requires very little supervision in terms of 3D pose ground-truth,
and no supervision at all in terms of the camera intrinsic or extrinsic parameters for
the baseline model.
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Figure 9.2: Encoder-decoder pipeline for monocular 3D human pose estimation. The proposed pipeline for semi-supervised monocular 3D pose
estimation is based on three components: i) a Time Contrastive Network encoder which embeds an image from a video into a viewpoint-invariant
manifold (Section 9.3.1); ii) a pose and iii) a viewpoint decoders (Section 9.3.2 and Section 9.3.3), which output, respectively, the 3D poses in
ego-centric or camera-centric coordinates, and the rotation needed to transform one reference frame into the other, Eq. 9.2. The encoder is trained using
multi-view videos from the Human3.6M dataset [19], while the decoders are trained using individual frames with ground-truth pose.
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9.3.1 Time Contrastive Network Encoder

The goal of the encoder portion of our pipeline is to extract features from the input
images and embed them in a lower dimensional viewpoint-invariant space in which
all the nuisance factors related to viewpoint have been discarded, while the intrinsic
content of an image is preserved. Since our input images portray human subjects
performing a sequence of actions, we hope that the retained information can be
useful for estimating 3D human pose.

The input data consists of 360 × 360 pixel images I extracted from the videos of the
Human3.6M dataset [19]. The training set contains 150 videos obtained from two
repetitions of 15 actions by 5 subjects recorded from four different viewpoints, while
the test set contains two subjects for a total of 60 videos. Following the practice of
related work [16, 26], we down-sample all the videos in the dataset from 50Hz to
10Hz and further sub-sample the test set by selecting one pose every 200th frame,
resulting in a final size of 312,188 images for the training set and 2,844 images for
the test set.

The network is parametrized as a function h : R360×360 → R128 which outputs an
embedding vector e = h(I). The architecture, inspired by [49] with some slight
modifications, is composed of a convolutional backbone taken from an Inception
Network V3 [52] up to the internal layer “mixed-5d”, trained on ImageNet [53] for
the image classification task, to which we add two sets of 512 convolutional filters
of spatial resolution 35 × 35, followed by a Spatial Softmax Layer [54] and a set
of fully connected layers that reduce the final dimension of our embedding to 128.
The outputs of the last convolutional layer are L2 normalized, meaning that our
embedding space is the unit sphere in R128.

We train the encoder in a time-contrastive fashion [49] using a triplet loss [55,
56] formulation that requires that two frames taken at the same ti timestamp, but
different viewpoints vn and vm be encoded in the embedding space at a closer
euclidean distance than two frames from the same viewpoint vn, but at different
moments of time, ti and t j :

Ltriplet =


| |h(Ivnti ) − h(Ivmti )| |

2
2 + α < | |h(I

vn
tj ) − h(Ivnti )| |

2
2

∀ti, t j, vn, vm

, (9.1)

where α > 0 is a real number representing an arbitrary margin enforced between
positive and negative pairs.
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The necessary assumption for the training algorithm to be successful is that two
frames taken at the same timestamp are visually dissimilar, but semantically similar,
while two frames far away in time are visually similar (as they come from the same
viewpoint), but semantically dissimilar.

The implication is that the way in which these triplets are sampled is fundamental.
For every video (and its available viewpoints), we select a short time window centered
around a random frame, and randomly sample a certain number of frames within that
window, called anchor frames. For every anchor frame, we use the corresponding
frames from the other viewpoints as positives, and for each anchor-positive pair a
semi-hard negative is selected by choosing from all the available negatives (frames
from the same viewpoint as the anchor) the one that is closest to the positive in the
embedding space [57]. The window within which random frames are sampled is
very important as it impacts the ability to pick high quality semi-hard negatives.

9.3.2 Pose Decoder

We represent the ego-centric pose of a person, Figure 9.1, with a vector Pego ∈ R3×J ,
where each entry specifies the 3D location of the joint j, P( j)ego = [x j, y j, z j] with
respect to an intrinsic reference system in which the x-axis is aligned with the pelvis
girdle and the y-axis is aligned to the spine. The camera-centric pose of a person
portrayed in an image is instead represented with a vector Pcam ∈ R3×J . However,
Pcam is defined with respect to the coordinate reference system centered in the
camera that took the picture, also visible in Figure 9.1.

The goal of the pose decoder is to map vectors e from the viewpoint-invariant
embedding space to the output space of 3D human poses. We implement it as a fully
connected neural network parametrizing the function f : R128 → R3×J , such that
f (e) = P, (ego-centric or cam-centric). This decoder is non-convolutional, since
all the image processing has been done by the Time Contrastive Network encoder
and is trained using a simple eucledian loss, between the predicted and ground-truth
3D pose, Lpose(P̂,P) = | |P̂ − P| |2, supervised using individual frames from the
Human3.6M dataset [19]. In Figure 9.8 and Figure 9.9, we analyze the impact of
using decoders of different complexity.

If permitted by the application of interest, using ego-centric pose coordinates is
preferable, as it requires a smaller amount of expensive ground truth, as exemplified
in Figure 9.1. We investigate the implication of using different pose representations
with respect to the reconstruction error in Figure 9.3 and Figure 9.4.
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9.3.3 Viewpoint Decoder

If the application of interest requires a camera-centric representation, the pose
decoder’s task is much more complex. In fact, it has to jointly decode both the pose
and camera viewpoint from the embedding space, which has been trained to throw
away viewpoint specific information. In Section 9.4, we look in depth at the pose
decoder’s ability to perform such task across several experiments.

To alleviate the above problem, we introduce a branch in our pipeline that is used
for disentangling the prediction of the camera-centric pose into a separate ego-
centric component, predicted by the pose decoder, and a rigid reference system
rotation, predicted by the viewpoint decoder. Not only this facilitates the task of the
pose decoder, but also it allows the viewpoint decoder to leverage image appearance
features from a lower level of the architecture which might contain useful information
about viewpoint that would have otherwise been discarded by the encoder network
in the training procedure described in Section 9.3.1.

We define the viewpoint rotation matrix Rv ∈ R3×3, as the rigid coordinate system
rotation that brings one pose representation into the other:

Pcam = Pego · Rv . (9.2)

A visualization of the different reference frames is shown in Figure 9.1.

The goal of the viewpoint decoder is thus, given an input image, to predict the
viewpoint orientation matrix Rv that transforms the ego-centric pose prediction into
its alternative camera-centric representation.

Estimating (explicitly or implicitly) the viewpoint orientation matrix with a neural
network is a very complicated task, due to the fact that regression lacks the closed
geometry property of the SO(3) space of 3D rotations in R3. A multitude of recent
approaches have provided suggestions on how using different representations of
rotation impacts the performance of the regression task [58–60].

Inspired by [58, 61], we adopted a representation of rotation based on quaternions.
This is particularly useful because i) unit quaternions are one to one with SO(3) and
ii) the vector part of a quaternion can be interpreted as a coordinate vector, therefore
the algebraic operations of the quaternions reflect the geometry of R3.

As a result, we represent the viewpoint orientation with a vector qv = [w, x, y, z] ∈ R4

such that qv = w+ xi+ yj+ zk, where i, j and k are such that i2 = j2 = k2 = ijk = −1,
and | |qv | |2 = 1.
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We implement the viewpoint decoder as a neural network approximating the function
g : R512×35×35 → R4 such that g(b) = qv. Differently from the pose decoder, g
should not leverage the image processing done by the Time Contrastive Network
encoder, as it needs to retain features from the image that are viewpoint dependent
(and not invariant) in order to predict the orientation.

The input to the viewpoint decoder is the tensor b ∈ R512×35×35, obtained from the
layer “mixed-5d” of the Inception-V3 [52] backbone. Up to this layer, the encoder
weights are initialized with the pre-trained values from the ImageNet classification
task and are not updated during the self-supervised training procedure described
in Section 9.3.1. Therefore, they should have retained the information needed for
the viewpoint prediction task, which is instead discarded by the layers belonging
to the Time Contrastive Network, trained using Eq. 9.1. We then add a set of 512
convolutional filters of spatial resolution 35 × 35, followed by a Spatial Softmax
Layer [54] and a set of fully connected layers, using the architecture from [30], that
reduce the final output dimension to 4.

Using the Hamilton product [62] to combine the outputs of the two decoders produces
the camera-centric representation of 3D pose associated to an input image:

Pcam = q∗v · Pego · qv, (9.3)

where Pego is the output of the ego-centric pose decoder, qv is the output quaternion
obtained by the viewpoint decoder and q∗v is its conjugate.

The viewpoint decoder is trained jointly with the pose decoder using individual
frames from the Human3.6M dataset [19] with one of two strategies. In the
disentangled training, each branch is trained separately and the overall loss is the
sum of the two individual decoder losses equally weighted:

Ldecoders = Lpose + Lview,

where Lpose is defined in Section 9.3.2, and Lview is the negative dot product
between the predicted and ground-truth quaternion Lview = −〈qv, q̂v〉.

Alternatively, in the entangled training, the output of the two decoders is combined
using Eq. 9.3, and the training loss is the eucledian distance loss using camera-centric
ground-truth poses, Ldecoders(P̂cam,Pcam) = | |P̂cam − Pcam | |2.

The main difference between the two approaches is that the latter does not require to
explicitly compute the ground-truth quaternion qv corresponding to Rv , even though
it is always possible to obtain it from the camera-centric pose Pcam, Section 9.3.2.
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9.3.4 Implementation Details

Our baseline approach is presented in Figure 9.2, and consists of a pipeline com-
posed of the Time Contrastive Network and the pose decoder. We leave to future
investigations the experimentation of combining the outputs of the pose and view-
point decoders.

The Time Contrastive Network is trained for a total of 100K iterations with a learning
rate of 0.0001 using RAdam [63] with a decay factor of 0.96 applied every 10K
iterations. The pose decoder has the same architecture as [51] with one stage and
an internal layer size of 1024, and is trained for a total of 150K iterations using a
learning rate of 0.001 decayed once at iteration 100K by a factor of 0.96. Contrary
to [51], we are not using this network for 3D lifting, but instead for predicting a
mapping from our 128 dimensional feature space into the output pose space. The
encoder weights are kept frozen during the training of the pose decoder (with the
exception of training the fully supervised baseline), so that we do not modify the
previously learned embedding. All encoders we compare against are initialized with
ImageNet [53] pretrained weights.

For the experimental evaluation we implemented the following baseline methods:

ImageNet

To verify if the self-supervised procedure is useful at all, we compare its
performance to a network with the same architecture pretrained for image
classification on ImageNet [53].

Camera Aware TCN

Using the geometry aware distance function of Rhodin [16] allows the encoder to
predict a different embedding for every image and compare them by mapping them
into the same part of the manifold using knowledge of the relative position between
each pair of cameras. We modify the loss in Eq. 9.1 using the information about the
relative rotation of the cameras as follows:

| |h(Ivnti ) − h(Ivmti ) · Rvm→n | |22 + α < | |h(I
vn
tj ) − h(Ivnti ) · Rvm→n | |22 . (9.4)

As a result, the embeddings are camera-centric, but their comparison is done in a
ego-centric space.
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Oracle TCN

One of the fundamental problems of our methodology is to determine how to sample
images during training. This method uses the same architecture of our baseline,
but samples according to the 3D pose ground-truth. In practice, we construct our
batches by randomly sampling frames from multiple subjects in the batch. However,
different from our previous method we then use the distance in 3D pose space to
determine how to construct valid triplets. This provides signal (that is not available
in standard self-supervised training) that brings the representation of images of
different people closer to each other in the embedding space. We use the metric
N-MPJPE (normalized mean per joint position error) [19] to determine the distance
between two poses, and put a threshold such that if N-MPJPE(Ptj

ego,P
tj
ego) > 50mm

we treat them as anchor and negative.

Supervised

We compare our self-supervised baseline to a fully-supervised end-to-end network
in which the 3D pose is used to minimize the euclidean distance between predicted
poses and ground-truth annotations. In this version, there is no distinction between
embedder and decoder, but just one unique network with the same number of
parameters. This strong baseline changes the weights of the backbone.

9.4 Experiments

We conduct a detailed experimental evaluation of distance metric based multi-view
self-supervised feature learning for single image 3D pose estimation with the goal
of answering the following questions:

• Are the features learned via multi-view self-supervision predictive of 3D pose?

• Does the learned feature space capture both ego and camera-centric pose?

• How much does additional viewpoint information help at training time?

• What impact does triplet selection have during training?

• Are the learned features invariant to identity?

• What is the impact of the dimensionality of the learned feature space?

• Are simple 3D pose decoders sufficient for supervised finetuning?
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Figure 9.3: Amount of supervision versus reconstruction error trade-off curve
for Ego versus Camera-Centric pose representation. We compare several ap-
proaches to multi-view self-supervised feature learning by finetuning the learned
features with different amounts of ground-truth 3D pose data. The task of ego-centric
pose estimation in (a) is easier than that of camera-centric (b), but we observe a sim-
ilar ranking across both tasks. Here the error bars represent the difference between
the best and last models obtained during finetuning.

9.4.1 Ego versus Camera-Centric 3D Pose Finetuning

For our first experiment, we measure how much pose information do the features
of different multi-view self-supervised learning methods capture. We extract a 128
dimensional embedding vector for each image in the training set, and finetune a
fully connected pose decoder using an architecture similar to Martinez [30], while
freezing the weights of the encoder network. By finetuning with different amounts of
supervision, we can quantify how well do the features learned by each self-supervised
approach generalize to the task of monocular 3D pose estimation.

In Figure 9.3-(a), we see that most approaches improve as the amount of ego-
centric finetuning data increases. However, we also observe that most of the self-
supervised approaches are worse than the fully supervised baseline trained end-
to-end. In general, as more finetuning data is provided the 3D pose performance
improves. Interestingly, features extracted from the same encoder architecture that
has been pretrained on ImageNet [53] (imagenet) does not perform as well as the
self-supervised baselines. Also the fully supervised baseline (supervised) still
performs competitively when there is limited training data. However, the encoder and
decoder for this network are both finetuned during training. Qualitative predictions
are displayed in Figure 9.10.
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Figure 9.4: Generalization of multi-view self-supervision to new viewpoints. In
each of the three cases, we pretrain (PT) our backbone tcn encoder with either
two or four camera views, finetune (FT) the pose decoder with data from only one
camera (view 0), and then test then pose decoder using data from all four views. (a)
The pose decoder fails to generalize to new views when predicting camera-centric
pose. (b) For ego-centric pose, where the features are truly viewpoint invariant, there
is little impact of limited viewpoint finetuning. (c) If we only self-supervise the
backbone with data from two views we observe a drop in performance in ego-centric
prediction compared to using more views, as in (b).

By comparing the performance of ego-centric and camera-centric representations
in Figure 9.3, we observe some interesting differences. While the conventional
tcn encoder and the geometry-aware tcn-cam-aware [16] encoder perform
comparably for ego-centric pose prediction, Figure 9.3-(a), the tcn-cam-aware
features are better suited when jointly decoding camera information as well as pose,
as is the case for the camera-centric evaluation task, Figure 9.3-(b). Surprisingly,
this ability does not result in a drop in ego-centric performance, at least for anything
but very small amounts of finetuning data. It is worth pointing out that while the
tcn-cam-aware encoder is effective, it relies on having knowledge of the relative
position between each pair of cameras [16] during the self-supervised training phase.
This would be very challenging to acquire in the more general framework of moving
cameras, limiting the applications in which such methodology can be deployed.

9.4.2 Impact of Viewpoints During Training

We explore the impact on performance of the availability of additional camera
viewpoint information when both training the encoder and finetuning the pose
decoder. In our experiments, we varied the number of camera viewpoints available
(by selecting from the four views in Human3.6M [19]) to either the self-supervised
network or pose decoder when finetuning. In Figure 9.4-(a), we observe that the
camera-centric pose decoder fails to generalize to images from views other than
the one it was finetuned on (view 0 in this case). In contrast, the features for the
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ego-centric decoder are invariant to viewpoint, and result in a similar distribution
of errors for images from different cameras at test time, Figure 9.4-(b). When only
self-supervising the backbone with images from two views instead of four (using
views 0 and 2), we observe that there is a drop in performance for the ego-centric
decoder, Figure 9.4-(c). We explored all possible permutations of viewpoints, and
the results were consistent.

9.4.3 Image Selection During Training

Learning informative self-supervised 3D pose features relies on pushing features for
pairs of images that contain different poses apart in the feature space and pulling
features with similar poses towards each other. The only strong signal we have for
multi-view training is the subset of images taken at the same time from different
viewpoints, that we know, by construction, to contain the same pose. As a result,
there is a strong likelihood that over training our baseline method will incorrectly
sample both false positives and false negatives.

With the method tcn-oracle, we present results for our baseline when using an
‘oracle’ image sampler, that uses knowledge of 3D pose distance when constructing
positive and negative training examples when training the backbone encoder, so that
false positives and false negatives cannot occur. Obviously, this information would
not be available at training time in the regular framework, but we evaluate it here
to get an upper limit on the potential performance of our embedding approach. In
Figure 9.3 we observe that tcn-oracle outperforms the the simple tcn baseline,
regardless of the pose representation adopted. It does not reach the performance of
the supervised baseline supervised, but we hypothesis this is explained by the
fact that the supervised baseline is trained end-to-end, so even the backbone features
are optimized.

To further illustrate the difference between the simple sampling used by the baseline
tcn and the oracle sampler we plot the distances in the embedding space between
anchor-positive and anchor-negative pairs of frames. By comparing the baseline tcn
encoder and the tcn-oracle encoder in Figure 9.5 ((a) vs (c) and (b) vs (d)), we
see that there is less overlap between the anchor-positive and anchor-negative frames
for the oracle sampler. This is expected, as the oracle sampler is explicitly trained
with ground-truth pose information, but indicates in a quantitative way the value of
better methods for selecting pairs of frames during self-supervised training [13, 18].
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Figure 9.5: Distribution of pairwise distances in the learned embedding space.
We show the distribution of pairwise distances for all the anchor positive (anc-pos)
and anchor negative (anc-neg) pairs of frames in the training (a and c) and test (b
and d) sets. To obtain meaningful anchor positive distances in the embedding space
the tcn-cam-aware method needs to be rotated before comparing the image
pairs, tcn-cam-aware-rotated. This is not necessary for the anchor negative
distances, as they are sampled from the same camera view.

9.4.4 Identity Invariant Features

During the self-supervision stage, we would ideally learn image features that are
invariant to identity, in such a way that the same 3D pose exhibited by two different
people should project to the same location in the embedding space. To test this
hypothesis, we finetune a pose decoder using the learned features from the tcn
encoder with ground-truth ego-centric pose and vary the amount of i) training
subjects and ii) training poses, while keeping the number of subjects fixed to one.
We observe in Figure 9.6-(a), that using 3K frames across all the train subjects (1%
All) is more effective in terms of reducing the pose reconstruction error compared to
using 5K frames from one subject (10% S1). Similarly, if we increase both finetuning
sets by a factor of ten we observe the same relationship (10% All versus 100% S1).
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Figure 9.6: Quantitative and qualitative analysis of the invariance to identity
of the learned embedding. (a) Increasing the amount of data across subjects, as
opposed to for a single subject, has a larger impact on performance. (b) We compare
the distance in the learned feature space and their 3D ego-centric pose distance
for pairs of images sampled from two different videos of a same action. We use
three different settings: i) tcn / same subject, ii) tcn / different subjects, and
iii) tcn-oracle / different subjects. The relationship between pose and feature
distance is better captured for the same individual: i) versus ii). However, iii) the
tcn-oracle features present stronger correlation even for different individuals.

In fact, we can see that finetuning with only 3K frames from all the training subjects
is superior to using 50K frames from only one subject. If the embedding space was
truly invariant to identity we would not expect to see this trend.

In Figure 9.6-(b), we visualize the relationship between distance in the 3D ego-centric
pose space and distance in the learned feature space. The heatmaps are obtained
by randomly selecting pairs of frames over two video sequences and plotting the
distance values in both spaces against each other. To aid visualization, we binned
the distances to have an equal number of bins between a minimum and maximum
N-MPJPE value of [0, 700] mm for the pose space, and minimum and maximum
eucledian distance value of [0, 2] in the embedding space.

For a well learned embedding, there would be a strong correlation between the two
distances, so that pairs of frames that are further apart in the embedding space have
different 3D poses, and vice-versa. We study this behavior when sampling frames
from different videos and compare the tcn and tcn-oracle features. We can see
that, when the frames are sampled from two videos of the same subject performing
a similar action, the tcn features show the desired correlation. However, that is
not the case if the pairs are sampled from videos of different subjects performing
a similar action, as there are multiple pairs of images with similar pose but a large
of distances in the feature space. This indicates that the tcn features still encode
some identity information. On the other hand, the tcn-oracle features show the
desired correlation in the latter case, proving to be more invariant to subject identity.
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Figure 9.7: Sensitivity of the data versus error trade-off curve to the embedding
dimension. (a) Changing the dimensionality of the output layer of the pose encoder
does not impact performance on the ego-centric pose prediction task. (b) However,
we see that a larger dimensionsionality can improve the camera-centric prediction,
up to a point.

9.4.5 Embedding Dimensionality

In our baseline method, we used a default embedding dimension of 128. In
Figure 9.7, we vary this dimensionality to see if it has an impact on the perforance
on the task of 3D pose prediction, and if that changes based on the specific pose
representation adopted. For each of these experiments, we simply change the
number of neurons in the first layer of the pose decoder so that it is the same as the
embedding dimensionality and keep all other settings un-changed.

For ego-centric pose prediction, Figure 9.7-(a), we observe no noticeable difference
except for when there is very small amounts of fine-tuning data. This is not the
case for the camera-centric pose prediction, Figure 9.7-(b), in which increasing the
dimension of the embedding results in a consistent improvement in the accuracy of
the predicted 3D pose, up to a point (as there is no noticeable difference between
512 and 1024).

We believe this is due to the fact that having a decoder with more parameters can
help with the harder task of recovering the camera-centric pose from the viewpoint-
invariant embedding. However, if the dimension is too large, performance for very
small amounts of fine-tuning data available becomes much worst, as there is not
enough data to fit the larger number of parameters.
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Figure 9.8: Impact of the pose decoder architecture on the amount of data
versus reconstruction error trade-off curve. We compare the performance of a
simple decoder consisting only of a linear layer between the embedding and the
output poses with a more complex decoder inspired by Martinez [30]. By comparing
the ego-centric and camera-centric plots we see that the simple pose decoder is able
to decode ego-centric pose as effectively as the more complex decoder. However,
in the case of camera-centric pose, it does not have enough capacity to predict the
correct pose (and viewpoint) and even fails to benefit from additional training data.

9.4.6 Impact of the Pose Decoder

To better understand how much 3D pose information is directly encoded in the
learned feature space we compare the performance of two different pose decoders:
i) a simple linear regressor, consisting of one neural network layer going from
the embedding space to the output pose space, and ii) the default multi-layer fully
connected network inspired by the residual architecture used in Martinez [30] used
in all the previous experiments. We finetune the features with different amounts of
3D supervised pose data using the same hyper parameters for both decoders.

In Figure 9.8-(a), we observe that the simple pose decoder performs equivalently
to the more complex one for the task of ego-centric pose estimation, across almost
all amounts of available training data. However, it fails to predict camera-centric
pose even as the amount of training data is increased, Figure 9.8-(b). This further
supports the idea that the learned feature space is invariant to camera viewpoint and
as a result a more complex decoder is necessary to successfully learn how to decode
both pose and camera viewpoint at the same time from the embedding space.

In fact, the simple regressor does not have enough capacity to perform that task in
the allotted number of training iterations.
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Figure 9.9: Learning rate sensitivity for different pose decoder architectures.
(a) The complex pose decoder inspired by [51] (M-decoder) is more sensitive to
larger learning rates but shows similar convergence properties for smaller ones. (b
and c) The simple pose decoder (S-decoder) performs less well with our default
learning rate of 0.001, but fails to approach the same performance of the larger
one, even with better hyper-parameters. This indicates that carefully choosing
hyper-parameters is very important, as convergence and final performance can vary
significantly across different pose decoders.

To verify if the previous observation is the justification of the observed discrepancy
in camera-centric performance between the two decoders, we trained the two archi-
tectures using multiple learning rate values for twice as many iterations, for a total
of 200,000.

In Figure 9.9-(b), we observe that while the simple decoder benefits from the increase
in training iterations when using the default learning rate of 0.001, it still performs
much worse than the larger one, and has not yet converged. By comparing with
Figure 9.9-(c), we also see more clearly the effect on the reconstruction error of
adding additional training data. For the learning rate of 0.001, if more data is
available even more iterations are required to minimize the reconstruction error.

In comparison, the complex decoder in Figure 9.9-(a) converges much faster and to
a smaller error, also when using a smaller amount of finetuning data (5% of subject
1). It is also more robust to the learning rate, as long as it is not too large.

The results presented in our additional analysis indicate that the camera-centric
prediction task has a much higher sensitivity to hyper-parameters such as the
embedding dimension, Figure 9.7, or the decoder architecture and learning rate,
Figure 9.9. We believe this is due to the fact that the encoder was trained to retain
only ego-centric (viewpoint invariant) information, and that while the results show
that it is still possible, recovering camera-centric coordinates has a much more
complicated optimization landscape.
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Figure 9.10: Inference time ego-centric 3D pose predictions on the Human3.6M dataset. Ego-centric pose predictions obtained by finetuning
the pose decoder with two different self-supervised feature learners. For six test set frames, we show on each column: i) the input image, ii) the
ground-truth pose, iii) the pose prediction trained on the tcn-oracle encoder, and iv) the pose prediction trained on the tcn encoder. For every
example, we show the outputs obtained from two different viewpoints and can observe that the pose decoder prediction is ego-centric for both input
images. We can see an improvement in the predicted output poses for the tcn-oracle method, particularly in the cases of complicated poses and
significant occlusion. Note how The mean per joint prediction error (MPJPE) in mm is reported above each pair of predictions.
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9.5 Discussion and Recommendations

In this Section we distill the observations from the previous experimental results and
make recommendations for future work.

Camera-centric predictions are more difficult: Predicting in ego-centric pose
space is consistently easier than camera-centric for the tcn based approaches we
evaluated, see Figure 9.3. Depending on the down-stream application, ego-centric
pose may be sufficient. However, camera-centric pose is aligned directly to the image
and ego-centric pose can easily be extracted from the camera-centric pose. Going
the opposite direction, from ego to camera pose, requires correspondences between
the predicted pose and image space or knowledge of the camera pose relative to the
person. While geometry-aware embeddings [16] make camera-centric pose recovery
easier, they require knowledge of the camera extrinsics during the self-supervision
stage. We will investigate in the future if, and to what extent, is the viewpoint
decoder branch in our proposed pipeline able to predict the viewpoint information
without needing that knowledge in the self-supervision stage.

Image selection at training time matters: Distance metric approaches like the
ones evaluated here fundamentally rely on the availability of informative pairs during
training. This is challenging for self-supervised learning, as we do not know which
frames contain the same, or different, 3D poses. The results of the tcn-oracle
method, Figure 9.3-(a), show that there is a lot more performance to be extracted by
better sampling. More work needs to be done to investigate what other information
can be used to improve this crucial step.

Current embeddings are not identity invariant: Our experiments show that less
ground-truth supervision from more individuals is much more valuable than more
data from one individual, see Figure 9.6-(a). This is not necessarily surprising, but we
conjecture that a more effective embedding space would be invariant to the identity
and appearance of the people in the images. Instead, we observed large differences
in the statistics of the embeddings across different subjects, Figure 9.6-(b). This is
likely due to the limitations of current multi-view datasets, in which there is no way
to obtain correspondences between different subjects performing the same action,
but future work would benefit from automatically factoring out this information.
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9.6 Conclusion

We performed a detailed experimental evaluation of multi-view self-supervised
feature learning for single image 3D pose estimation. While self-supervised learning
offers the promise of learning informative features with limited supervision, we
showed that in case of 3D pose estimation there are still several open problems
that prevent self-supervised approaches from closing the gap to fully supervised
baselines. These problems include issues related to image sampling during training,
the 3D prediction frame of reference, and generalization to new views and unseen
people. Through ablation experiments we showed that addressing these problems
will result in a large reduction in 3D pose error.
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C h a p t e r 10

SUMMARY OF THESIS AND CONTRIBUTIONS

The research conducted throughout my PhD and presented in this Thesis investigated
elements of the statement of work put forward in Chapter 2 in the context of social
interactions between robots and human agents.

We provided a definition of social robots and characterized what perceptual abilities
they would need to master to effectively function in a world rich of visual stimuli
and to operate alongside humans, interacting both with people and objects.

We described ways in which Computer Vision can support the development and
improvement of social robots’ visual skills with specific focus on tasks that require
interactions with humans.

We investigated the problems of scene understanding, and 3D human pose and
motion estimation from monocular images using weakly supervised training data.

In its entirety, the work of this Thesis addressed the following questions:

• What information can be captured from a static scene that best helps inferring
its context?

• Is it possible to recover information from the real world that is lost in the
projection to monocular images?

• How can one extract information from images and videos on how humans are
positioned and move?

• Can one develop algorithms that work accurately and have good generalization
ability, even for tasks in which there is little high-quality training data?

Let us summarize the fundamental, novel observations supported by this Thesis:

Visual actions performed by humans and objects of interaction in images
follow a very long tailed distribution. Humans portrayed during everyday actions
typically perform many similar tasks using a small number of objects. Currently,
only about 140 human interactions can be visually identified, and most of them are
rare occurances. This highlights the importance of developing learning algorithms
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that are robust to small amounts of training data. In fact, while robots can already
perform a few tasks very well, other complex interaction tasks may be hard to learn
because they occur less frequently and are not easily observable.

Images of human faces contain information on a scene’s spacial setting. The
distance at which a picture was taken can be obtained from a single monocular
image of a human’s face by analyzing the changes in specific visual cues caused
by perspective distortion. This can be particularly useful to social robots, since
interactions with humans should occur at different physical distances to support
comfort and to respect social norms.

Current benchmarks and aggregate performance metrics miss real-world
variability. In the task of multi-instance 2D human pose estimation i) algorithms
with similar aggregate scores actually display strikingly different behavior when
analyzing errors along multiple dimensions, and ii) biases and limited variability of
the training data cause current metrics to overestimate the performance in real-world
scenarios. Novel improved metrics and evaluation procedures can allow to better
capture the true visual abilities of state-of-the-art algorithms, and provide the
directions of improvements necessary for the deployment of social robots.

3D human pose and motion can be recovered from monocular images without
using any 3D ground-truth data. Although people can assume a wide range of
highly non-rigid poses, the human body is anatomically constrained and its parts’
proportions, allowed motions and joint angles are well understood. When 3D ground-
truth data is either lacking or available only in small quantities, one can leverage
such understanding, together with additional constraints related to alternative types
of supervisory signals, to learn models that are able to regress the full 3D pose of the
human body and predict its motions simply from monocular 2D images. The above
observation is supported by succesfully reconstrucing: i) short 3D body motions
using only 2D keypoints from images of sports actions taken at various times from
known camera viewpoints; ii) the static 3D pose of people from images using only
2D keypoints and relative depth labels for pairs of keypoints; iii) the static 3D
pose of people from 2D images using synchronized video from multiple unknown
camera viewpoints. This is fundamental for providing social robots with the ability
to understand the 3D pose of humans with whom they are interacting, and open up
the possibility of richer interactions in scenarios for which it is unrealistic to expect
full 3D pose supervision.
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C h a p t e r 11

FUTURE STEPS TOWARDS SOCIAL ROBOTS

In Chapter 9, we described a methodology for learning an embedding of the pose of
the human body using only training data in the form of synchronized videos from
multiple uncalibrated cameras. The embedding is viewpoint-invariant and can be
used to decode poses of the human body in both an ego-centric and camera-centric
representation with a small metric error on the 3D reconstruction.

The synchronized videos, however, were taken in an indoor environment and with
fixed cameras, while the proposed methodology does not require such limiting
assumptions. A future direction of research we plan to pursue is to quantitatively
verify the validity of our approach when training is performed on more complex,
in-the-wild video collections.

To this end, we designed a stereo ego-centric video capturing rig, shown in
Figure 11.1, composed of two Go-Pro Hero Session cameras with a 120◦ horizontal
FOV which can record videos at 1080p and 60fps. The cameras are positioned in a
stereo setup with a baseline in the range of [60, 120]mm to provide an approximate
depth range of about [.5, 5]m, sufficient for capturing most of the relevant
interactions between humans which we wish to observe.

In Figure 11.2, we show the data collection setup: two or more people wearing the
video recording rigs will be moving while filming one or multiple actors performing
a task, and possibly also interacting with each other in some way.

This will provide a multi-view setup between the pairs of cameras on different
rigs, in which the camera locations and their relative orientation change in time,
from a variety of viewpoints, dynamic backgrounds and illumination conditions.
Further, the change in pose of each rig could be tracked using additional sensors,
such as Inertial Measurement Units (IMUs). At the same time, the use of a calibrated
stereo setup between the two cameras on each individual rig will allow collecting
the ground-truth 3D position of the parts of the human body1, and can be used to
estimate the performance of the 3D pose estimation algorithm.

1The 2D locations of body parts in each monocular image can be annotated by humans or
estimated through a state-of-the-art algorithm.
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Figure 11.1: Stereo and ego-centric video capturing rig. The rig designed for capturing
stereo ego-centric videos of human actions and social interactions.2

Figure 11.2: Video capture setup for collecting a dataset of ego-centric videos of ac-
tions and social interactions. The setup allows recording multiple human subjects, per-
forming an action or interacting, with two or more recording rigs in relative motion to obtain
valuable multi-view signal, while the stereo pair on each recording rig provides the 3D
ground-truth.

We believe that verifying the robustness and generalization ability of the proposed
learning algorithm on such a novel and truly in-the-wild video collection, could be
very impactful. In fact, using a portable rig with the proposed design, one can easily
obtain multi-view and stereo training videos of human actions and interactions from
practically any location: on the top of mountains or under water, or in very trafficked
environments, such as shopping malls, stadiums and parks.

Another research direction we are planning to pursue is studying in depth how
the learned embedding can be modified to encode complex and highly articulated
motions of the human body beyond its static 3D poses. In fact, similarly to how
humans transition through different poses while moving, we would like to understand
if and how the dynamic state of the human body can be represented by following
trajectories in the learned embedding space.

2Thanks to my friend Pablo Guerrero for his assistance with the CAD design and 3D printing of
the video capturing rig.
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Figure 11.3: Dynamic model of the leg of the robot Cassie. Figure taken from [98],
showing (a) the leg joints and (b) the leg model of the robot Cassie [99].

In Chapter 7 we showed that linear interpolations between vectors in the learned
embedding produced realistic looking movemes. We would like to verify if such
observation i) applies also to the embedding learned with the algorithm introduced
in Chapter 9, which is trained using data which is easier to collect and gives better
performance, ii) holds true for more complex non-linear trajectories and iii) can be
extended to model longer actions which are composed of sequences of movemes.

In the work presented in Chapter 7 and Chapter 9, a point in the embedding space
encoded a single image representing a human pose. We would like to investigate
ways to encode multiple frames from consecutive timestamps into a single vector
of the embedding, and analyze whether this results in an improved embedding, not
only in terms of single-frame 3D pose estimation, but also for predicting human
dynamics.

Finally, we would like to explore the framework in which our work can be applied
for controlling the visuomotor skills of under-actuated dynamic bipedal robots that
can walk and run in similar fashion to humans or animals, such as Cassie [99],
Figure 11.3.

Recent work [82–84, 100] has shown that image features, extracted with convolu-
tional neural networks, paired with self regression or reinforcement learning can be
used to control manipulator robots and have them perform simple movements or ob-
ject relocation tasks.
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Figure 11.4: Playing “Simon Says” in the viewpoint-invariant embedding. First, we
learn a manifold of human poses in such a way that the videos of a person performing a
movement, and those of Cassie being manually controlled to imitate that movement, follow
similar trajectories in the embedding space, regardless of their viewpoint. Secondly, we learn
a “dynamics decoder” that can map the learned embedding vectors to Cassie’s actuators’
control signals. The goal is to study the extent to which the dynamics decoder can be trained
with few examples and generalize to novel viewpoints and movements, as is the case for the
pose decoder in the task of 3D pose estimation.

We would like to study how the methodology introduced in Chapter 9 can be
expanded and applied to the highly complex case of controlling an underactuated
robot imitating human body motions, like walking or squatting. This presents several
new challenges, such as describing the dynamic model of the robot and dealing with
instabilities due to the unknown surface contact points. While introducing complex
feedback control algorithms for such types of robots is the main focus of state-of-
the-art robotics research [98], we would like to investigate whether expanding the
state variable with learned features, extracted from images of the robot moving
successfully, can improve such control algorithms. This would add information to
the state representation about the image appearance that is relevant to the movement
that is being controlled, with the hope of making it more stable, secure, and efficient.

In Figure 11.4 we exemplify one possible direction of a further investigation. Sim-
ilarly to how the “pose decoder” introduced in Chapter 9 is able to produce a 3D
pose of the human body from the viewpoint invariant embedding space, we would
like to learn a “dynamics decoder” that can output a control signal for Cassie’s actu-
ators, resulting in Cassie moving accordingly to its visual input in a way that could
enable it to play the game of “Simon Says”.

The embedding of Chapter 9 has the advantage of being able to retain an ego-
centric representation of the human body. This could allow learning more easily a
unique control policy invariant to the viewpoint from which the robot is viewing the
movement it is trying to imitate, while discarding other confounding factors, such as
background elements, lighting and motion blur.
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