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Para Maricruz

“Sabes lo que yo ignoro
y me dices las cosas que no me digo.
Me aprendo en ti más que en mi mismo”.
—Jaime Sabines (1926–1999)
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Unless we destroy ourselves utterly, the future belongs to those societies that, while
not ignoring the reptilian and mammalian paths of our being, enable the

characteristically human components of our nature to flourish; to those societies
that encourage diversity rather than conformity; to those societies willing to invest
resources in a variety of social, political, economic and cultural experiments, and
prepared to sacrifice short-term advantage for long-term benefit; to those societies
that treat new ideas as delicate, fragile and immensely valuable pathways to the

future.

Carl Sagan, The Dragons of Eden (1977)
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ABSTRACT

This dissertation contains three essays. They offer contributions to the study of
matching in foster care (Chapters 1 and 2), and to the study of the effect of product
market competition on managerial incentives (Chapter 3).

Chapter 1 presents an empirical framework to study the assignment of children
into foster homes and its implications on placement outcomes. The empirical
application uses a novel dataset of confidential foster care records from Los Angeles
County, California. The estimates of the empirical model are used to examine
policy interventions aimed at improving placement outcomes by increasing market
thickness. If placements were assigned across all the administrative regions of the
county, the model predicts that (i) the average number of foster homes children
go through before exiting foster care would decrease by 8% and (ii) the distance
between foster homes and children’s schools would be reduced by 54%.

Chapter 2 proposes and studies a dynamic model of centralized matching in foster
care. The optimal matching policy is characterized by minimizing the number of
childrenwho remain unmatched in every period. Themain finding is that the optimal
matching policy gives priority to younger children. The model captures several
dynamic trade-offs, most notably between children’s ages and the heterogeneity in
the expected duration of placements. I also analyze federal data from the Adoption
and Foster Care Analysis and Reporting System (AFCARS). I find that, in Los
Angeles County, placements and their durations are strongly correlated with the
race of children and their foster parents.

Chapter 3, co-authored with Kanis.ka Dam, develops an incentive contracting model
under oligopolistic competition to study how incumbent firms adjust managerial
incentives following deregulation policies that enhance competition. We show that
firms elicit higher managerial effort by offering stronger incentives as an optimal
response to entry, as long as incumbent firms act as production leaders. Our
model draws a link between an industry-specific feature, the time needed to build
production capacity, and the effect that product market competition has on executive
compensation. We offer new testable implications regarding how this industry-
specific feature shapes the incentive structure of executive pay.
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INTRODUCTION

Many economic transactions are not governed by standard prices, such as the ones
used in traditional commodity markets. Two prominent examples are the trans-
actions that take place in (i) matching markets and (ii) within the boundaries of
organizations. For various moral and legal concerns, prices are often not used to
determine who is matched to whom in matching markets. For example, in modern-
day societies people typically do not pay one another when agreeing to get married.
Likewise, when deciding how to allocate children to public schools or organs to
patients who need a transplant, it is usually illegal for parties to partake in monetary
transactions. Economic transactions that take place within organizations are, by na-
ture, not governed by traditional prices. In some sense, organizations such as firms
and governments exist precisely to allocate goods outside of traditional markets. A
good commonly allocated within organizations ismanagerial effort. In the presence
of moral hazard, the optimal allocation of effort requires state-contingent contracts
rather than fixed wages or prices.

This dissertation contains three essays. Two of them contribute to the study of
matching markets (Chapters 1 and 2) and one to the study of the provision of
incentives within organizations (Chapter 3). Chapters 1 and 2 focus on the study
of matching in foster care. Chapter 1 presents an empirical framework to study the
assignment of children into foster homes and its implication on placement outcomes.
Chapter 2 complements Chapter 1 by focusing on the dynamic aspect of matching
in foster care. Chapter 3, co-authored with Kanis.ka Dam, studies the effect that
product market competition has on the provision of managerial incentives within a
firm.

The study of foster care as a matching market is a fairly recent area of research.
The empirical application in Chapter 1 uses a novel dataset of confidential foster
care records from Los Angeles County, California.1 The main methodological
contribution of Chapter 1 is to formulate an empirical framework to study matching
in foster care that accounts for unobservable heterogeneity in the distribution of
placement outcomes. In terms of policy, the main contribution of the chapter resides

1I obtained IRB approval and a limited waiver of confidentiality from the Juvenile Division of
the Superior Court of California to analyze confidential records of the Department of Children and
Family Services of Los Angeles County. The analyses and interpretations of all the data used in this
thesis are my sole responsibility. The aforementioned institutions and their agents or employees bear
no responsibility for the analyses and interpretations presented here.
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on the analysis of policies aimed at improving placement outcomes. Specifically, I
use the estimates of the empirical model to examine the effect that market thickness
has on placement outcomes. Notably, the estimates of the model show that, if
placements were assigned across all the administrative regions of Los Angeles
County, (i) the average placement disruption probability across all placements in the
system would reduce by 4.2 percentage points (which is equivalent to a reduction
of 8% in the expected number of foster homes children go through before exiting
foster care), and (ii) the distance between foster homes and children’s schools would
be reduced by 54%.

In Chapter 2, I propose a model to study matching in foster care in a dynamic envi-
ronment. The optimal matching policy in the model is characterized by minimizing
the number of children who remain unmatched on every period. The main finding
of this chapter is that the optimal matching policy gives priority to younger children.
The model captures several dynamic trade-offs, notably between children’s ages and
the heterogeneity in the expected duration of placements. I also analyze federal data
from the Adoption and Foster Care Analysis and Reporting System (AFCARS).2 I
find that, in Los Angeles County, CA, placements and their durations are strongly
correlated with the race of children and their foster parents.

In Chapter 3, co-authored with Kanis.ka Dam, we develop an incentive contracting
model under oligopolistic competition to study how incumbent firms adjust man-
agerial incentives following deregulation policies that enhance competition. We
show that firms elicit higher managerial effort by offering stronger incentives as an
optimal response to entry, as long as incumbent firms act as production leaders.
Our model draws a link between an industry-specific feature, the time needed to
build production capacity, and the effect that product market competition has on
executive compensation. We offer new testable implications regarding how this
industry-specific feature shapes the incentive structure of executive pay.

2The AFCARS data were made available by the National Data Archive on Child Abuse and
Neglect (NDACAN), Cornell University, Ithaca, NY, and were originally collected by the Children’s
Bureau with funding from the U.S. Department of Health and Human Services. The analyses and
interpretations of all the data used in this study are my sole responsibility. The aforementioned
institutions and their agents or employees bear no responsibility for the analyses or interpretations
presented here.
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C h a p t e r 1

WHO GETS PLACED WHERE AND WHY? AN EMPIRICAL
FRAMEWORK FOR FOSTER CARE PLACEMENT

1.1 Introduction
The assignment of scarce resources is at the heart of economics. In this chapter, I
study one particular assignment setting that has been largely absent in the economics
literature—the placement of children into foster homes. I develop an empirical
framework that captures how social workers match children and foster homes in the
field. The analysis centers on the relationship between placement assignments and
outcomes.

I estimate an econometric model using a novel dataset of confidential county records
at the micro-level from the largest foster care system in the United States, the
one in Los Angeles County, California. Motivated by the literature on children
welfare studies (and anecdotal evidence from conversations with social workers),
my definition of placement outcomes includes both the duration of placements and
whether they are disrupted (in which case children are moved from one foster home
to another) or terminate because children exit foster care.

I use the estimates of the model to examine various policy interventions aimed at
improving placement outcomes. I find that thicker markets generate better outcomes
in the sense that they result in lower disruption rates, but the effects are different
along different dimensions. Specifically, the model predicts that the gains from
assigning placements across geographic regions in the county are greater than those
generated by delaying assignments. Counterfactual exercises show that pooling
the assignments across all the regional offices in the county would decrease the
expected number of placements each child goes through before exiting foster care
by 8%. I also quantify the system-wide effects of specific types of foster homes.
I find that increasing the share of placements involving children’s relatives (also
known as “kinship care”) would lead to lower placement disruption rates and longer
placements. By contrast, the model predicts mixed effects from increasing the share
of foster homes that are recruited and trained by non-profit agencies.

The model is designed to capture the co-dependence between placement assign-
ments and outcomes. On the one hand, the model captures how the assignments
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of placements are driven by their expected outcomes. On the other hand, it also
recognizes that the outcomes observed in the data are selected through such as-
signment. The interplay between assignments and outcomes causes an endogeneity
problem. Since the matching mechanism determines which placement outcomes
are observable, the observed distribution of placement outcomes is biased inasmuch
as placement assignments are driven by unobservables correlated with outcomes.
To identify the true distribution of outcomes, the model exploits the exogenous vari-
ation across the dates and geographic regions in which children enter foster care. I
study matching markets at the daily level across the nineteen administrative regions
defined by the Los Angeles County Department of Children and Family Services.

It is widely recognized that stable foster care placements are essential for the so-
cial, emotional, and cognitive development of children (UC Davis, 2008). Social
workers in the field also strive to assign long-lasting placements to minimize future
workloads. Nonetheless, it is fairly common that children go through multiple foster
homes while they are in foster care.1 Understanding how children are assigned to
foster homes allows one to analyze how the matching mechanism used in the field
translates into outcomes via placement characteristics. For example, the estimates
of the model show that the gains from thicker markets come largely from being
able to assign children to foster homes that are closer to their schools. The model
predicts that if the assignments of placements were determined at the county-level
(and not within geographic regions), the average distance between children’s schools
and their foster homes would be cut by 54%.

I model the assignment of children into foster homes as a centralized matching
problem, and I model placement outcomes with a mixed competing risks duration
model. The matching problem allows for idiosyncratic variation in the preferences
of children over foster home characteristics, and vice versa. At the same time,
it takes into account that placements are assigned on the basis of their expected
outcomes. I model unobservable heterogeneity through frailty terms in the outcome
distribution. To account for possible selection bias (i.e., that placements may be
assigned because of unobservables correlated with outcomes), I assume that the
decision-maker choosing the matching between children and foster homes observes

1For example, of all the children who exited foster care in the U.S. during 2015, 56.1% of them
went through at least two placements, and the average number of placements per child was 2.56
(NDACAN, 2015). It has also been shown that the time children spend in foster care, as well as
the number of placement disruptions they experience, are associated in adult life with emotional
and behavioral difficulties, increased criminal convictions, and higher depression and smoking rates
(Dregan and Gulliford, 2012).
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such frailty terms. Thus, the distribution of outcomes generated by the model is
conditional on the assignment chosen and incorporates unobservable heterogeneity.

The estimates of the matching model allow me to quantify the trade-offs that social
workers incur when assigning placements. For instance, at first sight, it seems
intuitive that social workers aim to assign the placements that are expected to
have the longest durations in order to avoid placement disruptions. However, this
reasoning ignores the intimate co-dependence between a placement’s duration and
its termination reason. Indeed, according to the model estimates, social workers’
assignments reflect a dislike for duration conditional on a specific termination reason.
That is, if a placement were known to be disrupted, the model estimates indicate that
social workers would prefer for it to be disrupted sooner rather than later. Similarly,
if it were known that a placement will terminate because the child will exit foster
care to a permanent placement, social workers would prefer for this to happen as
soon as possible. At the same time, the estimates show that social workers prioritize
minimizing disruptions over placement duration. That is, regardless of a placement’s
duration, the model predicts that social workers would always prefer for placements
not to be disrupted.

The rest of the chapter is organized as follows. I review the related literature in what
remains of the introduction. In Section 1.2, I provide an institutional background
of foster care, and describe the data. Section 1.3 presents the econometric model.
In Sections 1.4 and 1.5, I discuss the identification of the model and the estimation
technique. Section 1.6 reports the estimation results. Section 1.7 shows the results
of the counterfactual exercises, and Section 1.8 concludes.

Related Literature.—The main contribution of this chapter is to develop an empir-
ical framework to study (i) how children are assigned into foster homes, and (ii)
how the matching mechanism underlying such assignment translates into placement
outcomes. Slaugh, Akan, Kesten, and Ünver (2016) is the only other paper in the
literature that applies tools from matching and market design to a question related
to foster care. They analyze the Pennsylvania Adoption Exchange program, whose
main aim is to facilitate the adoption of foster children through a computerized rec-
ommendation system. They analyze the effect that improvements to the system—in
terms of enhancing the capacity of social workers to match children and prospective
adoptive parents—have on the rate of successful adoptions.

Baccara, Collard-Wexler, Felli, and Yariv (2014) analyze data from an online plat-
form that seeks to facilitate adoptions. Although they are distinct in fundamental
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ways, adoption and foster care are closely related. Parents who are seeking to adopt
often become foster parents beforehand, and, in many cases, foster children are
adopted by their foster parents. Baccara et al. (2014) focus on the preferences that
prospective adoptive parents show for children. They find a favorable preference for
girls, and a preference against African Americans.

Overall, the economics literature analyzing questions related to foster care is slim.
In a series of papers, Doyle Jr. (2007, 2008, 2013) evaluates the impact of foster
care on long-term outcomes. Their approach exploits that, in many cases, social
workers are assigned randomly to investigate reports of abuse and neglect. This
random assignment allows them to identify the “treatment effect” of foster care on
schooling, employment, and criminality. Doyle Jr. and Peters (2007) use variation
in the subsidies offered to foster parents to estimate the supply curve of foster
homes. Analyzing data from the late 1980s to the early 1990s, they estimate that, in
states with shortages of foster homes, an increase in subsidies by 10% increases the
quantity supplied by 3%.2

In broader terms, this chapter belongs to the empirical matching and market design
literature (Roth, 2016). The commondenominator in this literature is the formulation
and estimation of structural models that incorporate key institutional aspects of the
market being studied. In a seminal contribution, Choo and Siow (2006) study
the marriage market in a transferable utility (TU) environment. Their setup is
based on the Assignment Game developed by Shapley and Shubik (1971). See
Graham (2011, 2013), Chiappori, Oreffice, and Quintana-Domeque (2012), and
Galichon and Salanié (2015) for extensions and generalizations of their approach.
Choo (2015) further extends the analysis to a dynamic setting. More generally, Fox
(2018) studies nonparametric identification and estimation of TUmatching markets.
Buchholz (2019) and Fréchette, Lizzeri, and Salz (2019) study matching models in
the market for taxis.3

In a non-TU environment, Agarwal (2015) formulates and estimates a matching
model of the medical match (NRMP). Agarwal and Somaini (2018) study the strate-
gic incentives of different mechanisms in the assignment of children to public
schools. For other recent contributions to the empirical study of school choice, see
Narita (2016), Hwang (2016), Calsamiglia, Fu, and Güell (2017), and Abdulka-

2See Doyle Jr. and Aizer (2018) for an excellent literature review on the current state of empirical
work in economics on child maltreatment and its relation to foster care and intimate partner violence.

3Market-clearing transfers need not only be monetary prices (e.g., passengers waiting for taxis
“pay” in waiting-time units), see Galichon and Hsieh (2017).
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diroğlu, Agarwal, and Pathak (2017). There is also a growing literature analyzing
kidney exchange (e.g., Agarwal, Ashlagi, Azevedo, Featherstone, and Karaduman,
2019), waiting-list mechanisms for organ donation (Agarwal, Ashlagi, Rees, So-
maini, and Waldinger, 2019), and public housing allocation (Waldinger, 2019).

All the studies cited in the previous two paragraphs model assignments according
to specific matching mechanisms. The TU literature generally assumes that the
market is cleared via equilibrium transfers. In non-TU environments, the assignment
usually results from predetermined matching algorithms.4 The main differences
from previous studies and this chapter is that the assignment mechanism underlying
foster care neither involves equilibrium transfers nor makes use of a systematic
matching algorithm. Beyond being centralized, the matching between children and
foster homes is the consequence of both (i) specific regulations and (ii) discretionary
choices made by social workers in the field.

The insights from this chapter are also relevant for the growing literature on dynamic
matching. One of the main objectives of this literature is to study the dynamic trade-
offs between waiting time, thickness, incentives, and match quality. For notable
examples, see Baccara, Lee, and Yariv (forthcoming), Ünver (2010), Akbarpour,
Li, and Gharan (2020), Doval (2018), and Ashlagi, Jaillet, and Manshadi (2013).
Specifically, this chapter provides an example in which increasing market thickness
by delaying placements does not have sizable effect on outcomes.

1.2 Institutional Background and Data
Foster Care in the U.S. and Los Angeles County
Every year more than a half million children go through foster care in the United
States. Foster children are a particularly vulnerable population: most of them are in
foster care because they were abused, neglected, or abandoned (NDACAN, 2015).
Themain goal of foster care is to provide temporary care for children until permanent
placements can be arranged for them. When a child is moved from a foster home to a
permanent placement, it is said that she exits foster care to “permanency.” Children
who exit to permanency usually go back to live with their birth families, or, if this

4The study of matching algorithms dates back to Gale and Shapley (1962), who formulated
the well-known Deferred Acceptance (DA) algorithm. Roth (1984) documents the history of the
medical match and, more specifically, how it came to employ the DA algorithm before the findings
of Gale and Shapley. Given the attractive features of DA (stability and strategy-proofness), it has
been proposed as a mechanism to match children to schools (Abdulkadiroğlu and Sönmez, 2003).
A significant portion of the school choice literature compares the DA algorithm with the so-called
Boston algorithm (e.g., Abdulkadiroğlu, Pathak, Roth, and Sönmez, 2005).
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is not possible, are adopted or assigned guardians. When permanent placements
cannot be arranged for children, they stay in foster care until they become of age,
and are emancipated from the system (also known as “aging out”).5

The administrative management of the foster care system is at the county level in
the United States.6 The child protection agency of Los Angeles County is the
Department of Children and Family Services (DCFS).7 As other child protection
agencies, DCFS is responsible of processing and investigating reports of child abuse,
taking cases to court, and implementing court resolutions. After receiving a report,
county social workers conduct an investigation to determine if children need to
be removed from home. The decision whether a child should be removed or not
needs to be approved by a judge. The procedures regarding the investigation and
removal decision are independent from placement assignment procedures. Foster
care placements are assigned andmanagedwithin nineteen regions across the county
of Los Angeles. When a child enters foster care, her case is handled by the regional
office corresponding to the region where the child’s birth mother lives. Social
workers from that regional office are responsible for finding a suitable placement
for the child, and overseeing her case while she remains in foster care.

Placement Assignment in Foster Care
By law, there are a few factors that social workers must consider when assigning
placements: (1) whether a child has relatives who are available to take care of them,
in which case children must be placed with their relatives; (2) the location of the
foster home: social workers must make efforts to place children in foster homes that
are near their schools and their family homes (from where they were removed), and
(3) whether a child has siblings who are also in foster care, in which case efforts
should be made to place siblings together.8 However, the law does not provide a
systematic way in which these factors are to be waged against one another. The

5Foster care is inherently different from adoption. In general, adoptive parents have the same
rights and obligations over their children as biological parents. By contrast, foster parents have very
limited say in the placement of foster children. Whether a child is removed from home, placed in or
exits foster care, is a decision made by the courts, which rely heavily on the input of social workers.

6In some cases, there is a single child protection agency for all the counties covering the same
urban area (e.g., there is a single agency for the five boroughs of New York City).

7Specific foster care regulations vary at the state and county level. In California, the main
regulations of the foster care system are provided in the Welfare and Institutions Code (WIC, 2019),
and the Family Code (FAM, 2019). In Los Angeles County, foster care regulations are provided in
the Child Welfare Policy Manual of DCFS (2019). For a history of the foster care system in the
United States, see Rymph (2017).

8See DCFS (2019, Sec. 0100-510.60); FAM (2019, Div. 12, Part 6, Sec. 7950), and WIC (2019,
Div. 9, Part 4, Ch. 1, Sec. 16002).
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law also gives social workers the discretion to assign placements that bypass these
guidelines if they consider it is in a child’s best interest. Likewise, children who are
10 years or older also have the right to make a brief statement in court regarding the
placement decision.

In the field, social workers aim to find placements that fulfill all the requirements
stated in the law, and are also suitable for children in more practical ways. For
example, when evaluating prospective foster homes, they may take into account
scheduling and transportations considerations, the family environment of the fos-
ter home (e.g., the age and gender of the family’s biological children), and other
idiosyncratic factors such as the experience of the foster parents and the history of
a child in the system. The reason for taking into account each of these factors is
because a main concern of social workers is for placements to be disrupted. Place-
ments are usually disrupted because the foster family and the foster child are not able
to establish a harmonious and stable relationship (e.g., the child presents behavioral
problems the family is not prepared to deal with, the situation of the family changes,
or problems emerge between the foster child and the family’s biological children).
When placements are disrupted, children need to be moved to new foster homes. In
LA County, on average, foster children go through 2.1 foster homes before exiting
to permanency.

I gathered the above observations through informal conversations with a handful
of social workers with experience in the field. Overall, my impression from these
conversations is that apart from the guidelines embedded in the law, social workers
work on a case-by-case basis. They treat each case differently, and wage all of the
involved factors in a case to find the best possible placement. Another common
observation is that, in many cases, ideal placements are just not possible because of
the shortage of foster homes. As children enter foster care, social workers within
each regional office come together and do their best to find placements that are
suitable for the children.

Another characteristic feature of how children are assigned placements in the field
is that the process is done as quickly as possible. In most cases, children must
be placed on very short notice. Furthermore, even if a social worker knows that
a child will be removed in the near future (usually not more than a few days), a
placement cannot be assigned until the child has been removed. The reason for
this is precisely because foster homes are scarce and there are children in need of
placements constantly. Therefore, social workers cannot hold placements and wait
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for children to be removed from home. It would mean that other children are not
being placed, which social workers try to avoid as best they can.9

Data Description and Summary Statistics
The data used in this study comes from the confidential county records of DCFS.
The database used for the analysis includes the record of every child that was placed
in a foster home at any point between January 1, 2011, and February 28, 2011, in
LA County.10 During this period, 2,087 children where assigned to a foster home
at least once in LA County, and 2,358 placements were assigned in total across the
nineteen regional offices in LA County. On average, roughly 40 placements are
assigned every day throughout the county. Table 1.1 contains summary statistics of
the placements in the dataset.

Modeling Strategy
In what follows, I develop an econometric model with the objective of analyzing the
determinants underlying placement assignment. The main focus is on placements
that were assigned on the same day in the same regional office. That is, the model
aims to explain what drives the matching between children and foster homes in
cases in which two or more placements where assigned in the same day in the
same regional office. For this purpose, I slice the data of placements into markets
accordingly. The division of the data into markets also incorporates placements with
relatives. That is, if a child was placed with a relative, I form an independent market
consisting of a single child and a single home in which the assignment problem is
trivial. The reason I keep “singleton” markets (i.e., with a single child and single
home) is to study their outcomes.

The way I model placement assignment is by considering a single matchmaker
that assigns placements in terms of their expected outcomes. That is, when there
are several ways in which children and foster homes can be matched, the match-
maker is assumed to consider the expected outcomes of all prospective placements,
and weigh them according to a specific utility function. I rationalize the observed

9Children who enter foster care at times when there are no placements available are usually
placed in Emergency-Foster Care or Emergency Shelter Care while a non-emergency placement can
be found (usually in a few days at most). Emergency placements are available 24/7, but are not
suitable for stays lasting more than a few days.

10The confidentiality waiver needed to access the data granted access to a larger time period.
However, I restrict the sample period to a two-month period for computational considerations. As
it shall be seen in the coming sections, the econometric framework I develop in this chapter is
computationally intensive.
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Table 1.1: Summary statistics

(1) (2) (3) (4) (5) (6) (7) (8)
n mean sd p5 p25 p50 p75 p95

Termination Reasons
Disruption 2358 0.5093 0.5 0 0 1 1 1
Exit 2358 0.4237 0.4942 0 0 0 1 1
Emancipation 2358 0.05174 0.2215 0 0 0 0 1
Censored 2358 0.01527 0.1226 0 0 0 0 0

Duration
Duration (days) 2358 255.4 343.9 5 35 131.5 339 898.4
Duration|Disrup 1201 164.6 242.7 4 22 74 186 623
Duration|Exit 999 304.1 304.8 5.45 66 223 439.2 879
Duration|Emanc 122 394.7 437.4 8.6 95 232 502 1400
Duration|Cens 36 1461 850.5 25.1 344.5 1969 1988 2002

Children Characteristics
Time Since Removal (days) 2358 387.7 937.6 0 0 32 292 2184
Placement # In Spell 2358 2.75 2.582 1 1 2 3 8
Spell # in Child 2358 1.194 0.4626 1 1 1 1 2
Zero Waiting Time 2358 0.8562 0.3509 0 1 1 1 1
Waiting Time (days) 2358 0.9326 3.148 0 0 0 0 10.6
Age 2358 8.694 5.967 0.2037 2.916 8.485 14.54 17.35
Male 2358 0.4576 0.4983 0 0 0 1 1
Black 2358 0.3138 0.4641 0 0 0 1 1
Hispanic 2358 0.5424 0.4983 0 0 1 1 1
White 2358 0.1175 0.3221 0 0 0 0 1
Other Race 2358 0.02629 0.16 0 0 0 0 0
English 2358 0.8223 0.3823 0 1 1 1 1
Spanish 2358 0.1773 0.382 0 0 0 0 1
Other Language 2358 0.0004241 0.02059 0 0 0 0 0
Absence/Incapacitation 2358 0.2693 0.4437 0 0 0 1 1
Abuse/Severe Neglect 2358 0.2498 0.433 0 0 0 0 1
General Neglect 2358 0.4597 0.4985 0 0 0 1 1
Other Removal Reason 2358 0.0212 0.1441 0 0 0 0 0

Foster Homes Characteristics
County Foster Home 2358 0.08567 0.2799 0 0 0 0 1
Agency Foster Home 2358 0.4258 0.4946 0 0 0 1 1
Group Home 2358 0.1158 0.32 0 0 0 0 1
Relative Home 2358 0.3728 0.4836 0 0 0 1 1
Distance Plac-Office (mi.) 2358 22.93 21.27 2.22 7.716 16.05 30.69 71.15
Distance Plac-School (mi.) 2358 18.13 23.77 0 0 7.983 26.9 72.73
No School 2358 0.2472 0.4315 0 0 0 0 1

Note: Summary statistics of placement outcomes and characteristics. The distance measures are at the zip-
code level (foster home and school). They were computed using the Google Maps API (accessible through
https://cloud.google.com/maps-platform/). No School refers to children for which the dataset includes no school
zip-code (presumably because the child does not go to school or the data is missing). sd = standard deviation;
p# refers to the #th percentile.
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matching by considering it as the optimal matching from the matchmaker’s perspec-
tive. Apart from considering the expected outcomes of prospective placements, the
matchmaker’s problem also allows for children and foster homes to have idiosyn-
cratic tastes for the type of foster home and child with whom they are matched. The
model is designed to include the most prominent institutional features of foster care
placement. That being said, the only feature I abstract away from is the placement
of siblings. I ignore the existence of siblings in the system, and focus on one-to-one
matchings. The analysis of placement assignment with siblings is ripe ground for
future research.

1.3 Model
Market of Foster Care Services
A market is a tuple (C,H,X,Y), where C is the set of available children, H is the
set of available foster homes, X = (xc)c∈C is the matrix of children’s (observable)
characteristics, i.e., xc ∈ X ⊆ R

dim(x) is the vector of characteristics of child
c ∈ C, and Y = (yh)h∈H is the matrix of the (observable) characteristics of available
homes, i.e., yh ∈ Y ⊆ R

dim(y) is the vector of characteristics of home h ∈ H.
In order to incorporate idiosyncratic preferences over children’s and foster home’s
characteristics, I define types as a coarsening of characteristics. Let X = {x} and
Y = {y} be the sets of child- and home-types; formally, they are finite partitions of
X and Y. Similarly, let xc ∈ X and yh ∈ Y denote the types of c ∈ C and h ∈ H,
respectively.

A one-to-one matching between children and foster homes is an indicator function
M : C×H → {0, 1} such that

∑
h∈H M(c, h) ≤ 1 for all c ∈ C, and

∑
c∈C M(c, h) ≤ 1

for all h ∈ H. That is, M(c, h) = 1 if child c ismatchedwith home h, and 0 otherwise.
For simplicity, I also write (c, h) ∈ M if M(c, h) = 1. LetM(C,H) denote the set of
feasible one-to-one matchings between C and H.

Matching a child and a foster home forms a placement. The outcome of a placement
is given by (T, R) ∈ R+ × R, where T denotes the placement’s duration and R its
termination reason. A placement may terminate because it is disrupted (d), the
child exits to permanency (ex), or is emancipated (em). The set of termination
reasons is thus R ≡ {d, ex, em}. It is convenient to differentiate emancipation from
the other termination reasons because the time to emancipation, denoted by Tem,
is not random (i.e., known ex-ante). I define the set of termination reasons with
non-degenerate duration as R0 = {d, ex}.
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Children arematched to foster homes on a daily basiswithin regional offices through-
out the county. The unit of observation is a market, indexed by i = 1, . . . , n. Markets
correspond to office-days, and also incorporate the restriction that children need to
be matched with their relatives whenever possible. That is, children for whom rela-
tives are available as prospective foster parents have their own markets (consisting
of a single child and a single foster home). The data consists on (1) a sample of
markets, (Ci,Hi,Xi,Yi)

n
i=1; (2) the matching chosen in each market, (Mi)

n
i=1, where

Mi ∈ M(Ci,Hi) for i = 1, . . . , n, and (3) the outcomes of the assigned placements,
(Ti,Ri)

n
i=1, where Ti = (Tch)(c,h)∈Mi

, and Ri = (Rch)(c,h)∈Mi
.

I take the data of markets, (Ci,Hi,Xi,Yi)
n
i=1, as given (i.e., as exogenous variables).

The observed matching and the realized outcomes, (Mi,Ti,Ri)
n
i=1, are the outcome

(or endogenous) variables of the model. Note that this implies that there are no
spillovers across office-days. Every day, in every office, a matching is assigned
between the available children and foster homes taking the market as given. I
outline the data generating process of the endogenous variables, (M,T,R), in the
following sections.

Placement Assignment
Placements are assigned by a single (or representative) utilitarian matchmaker,
who has preferences over realized outcomes (T, R) ∈ R+ × R. The matchmaker’s
preferences are represented by the utility function:

u(T, R; Tem) = µR + ϕR log T + ϕ̄R log Tem, (1.1)

where µR, ϕR, ϕ̄R ∈ R are unknown parameters for R ∈ R. The parameter µR

measures the preference over termination reason R ∈ R, regardless of duration; ϕR

is the marginal utility of duration conditional on terminating due to R ∈ R. The
utility function also includes the time to emancipation in its third term to control
for the fact that placements involving younger children may have ex-ante longer
durations. For example, if ϕ̄R = −ϕR, the matchmaker cares about duration relative
to the time to emancipation. More generally, one can see that the sign of the
marginal rate of substitution between duration and age, conditional on termination
reason R ∈ R, is equal to the sign of ϕR/ϕ̄R.

Consider a prospective placement (c, h) ∈ C × H. Let Ich denote the information
that the matchmaker has on its outcome distribution. The total payoff of placing
child c ∈ C in home h ∈ H to the matchmaker is given by:

V(c, h) = π(c, h) + εcyh + ηxch, (1.2)
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where π(c, h) := E
[
u(T̃, R̃; Tem) |Ich

]
captures the preferences and information

available to the matchmaker about the placement’s outcome. I specify the distribu-
tion of (T̃, R̃) |Ich in the next section.11 The remaining two terms in (1.2), εcyh and
ηxch, capture idiosyncratic taste variation across children and foster homes (which
is unobservable to the econometrician). Specifically, εcy captures the payoff of
matching child c with a home of type y ∈ Y , and ηxh that of matching home h

with a child of type x ∈ X . In this sense, the model incorporates the preferences
of children over being placed in specific types of homes and those of homes over
taking care of particular types of children. More generally, the taste variation terms
are aimed to capture type-specific idiosyncratic unobservables that affect placement
assignment (e.g., the matchmaker may also have preferences over forming certain
types of placements, regardless of their outcomes).

The matchmaker chooses the matching M ∈ M(C,H) that maximizes its aggregate
payoff. Since V(c, h) is observable to the matchmaker for all (c, h) ∈ C × H, the
observed matching is the solution to the following linear programming problem:

max

{ ∑
c∈C,h∈H

M(c, h)V(c, h) : M ∈ M(C,H)

}
. (1.3)

I restrict attention to matchings in which no child is left unmatched while there is an
unmatched home. That is, besides incorporating the natural constraints that every
child can be matched with at most one home (and vice versa), the set of feasible
matchingsM(C,H) satisfies:

M ∈ M(C,H) ⇔
∑

c∈C,h∈H

M(c, h) = min{|C |, |H |}. (1.4)

Placement Outcomes
Prospective placements are indexed by (c, h) ∈ C × H. For simplicity, consider a
generic placement and omit such index in this section. The full vector of characteris-
tics of a placement is given by I = (x, y,ω), where (x, y) ∈ X×Y are the observable
child- and home-characteristics, and ω ∈ Rdim(ω) is a vector of characteristics not
observed by the econometrician. The distribution of a placement’s outcome, (T̃, R̃),
depends on its full vector of characteristics, I.

I model placement outcomes as the result of mixed competing risks. Consider a
generic placement with characteristics I = (x, y,ω). Let T̃R be the latent duration

11I differentiate random variables that are observable to the econometrician from their realized
values with a tilde; (T̃, R̃) denotes the unrealized (random) placement outcome, while (T, R) ∈ R+×R
denotes its realization.
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associated to the “risk” of terminating due to reason R ∈ R0. Up to censoring,
due to the sample period or emancipation, a placement’s outcome is determined
by the least latent duration. Denote the time to the end of the sample period by
Tcen, and indicate censored placements by R = cen. To simplify notation, I define
T̃em = Tem and T̃cen = Tcen as the degenerate latent durations corresponding to the
time to emancipation and the end of the sample period, respectively. Formally, the
outcome of a placement is given by:

T̃ = min
{
T̃R : R ∈ R ∪ {cen}

}
, and R̃ = arg min

{
T̃R : R ∈ R ∪ {cen}

}
. (1.5)

Under the above specification, a placement is emancipated (or censored) if and only
if it has not been disrupted or has exited to permanency by its emancipation date
(or the end of the sample period). Note that each placement in the data is subject
to either emancipation or censoring due to the sample period, depending on which
of Tem and Tcen is lower. Both types of censoring, due to emancipation and the
end of the sample period, are equivalent in terms of the likelihood of the latent
durations. However, they are not equivalent from the matchmaker perspective, who
has a preference over the emancipation likelihood and the time to emancipation.
Censoring due to the sample period is only statistical in nature.

Assumption 1 (Unobserved heterogeneity) The unobservable characteristics of a
placement are given by the vector ω = (ωR)R∈R0 . Furthermore,

ω ∼ N(0,Σω), (1.6)

where Σω is a positive semidefinite and symmetric matrix of size |R0 | × |R0 |.

Assumption 2 (Burr hazards) Conditional on a placement’s characteristics, I,
the latent durations, {T̃R : R ∈ R0}, are independent. Furthermore, the conditional
distribution of T̃R is determined by the following Burr hazard rate12,

λR(T |I) =
kR(I)αRTαR−1

1 + γ2
RkR(I)TαR

, R ∈ R0, (1.7)

where kR(I) ≡ exp {ωR + g(x, y)βR} with βR ∈ R
dim(β), g : X × Y → Rdim(β),

αR > 0, and γR ≥ 0.

12The hazard rate of the random variable T̃ is the function defined by λ(T) = f (T)/F̄(T), where
f denotes the probability density function of T̃ , and F̄ its survivor function. The survivor function
is defined by F̄(T) ≡ 1 − F(T), where F denotes the variable’s cumulative distribution function.
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Assumption 2 specifies the distribution of placement outcomes from the perspective
of the matchmaker, (T̃, R̃) |I. The matchmaker’s additional information,ω, consists
of unobservable frailty terms, (ωR)R∈R0 , which shift the hazard rate associated to
each “risk” (termination reason) upwards or downwards. Since such frailty terms
are not observable to the econometrician, the distribution (T̃, R̃) | I is not observed
directly in the data. The outcome distribution is “mixed” by the distribution of the
unobservable frailty terms; one must integrate out ω to recover the distribution of
outcomes in the data. However, note that the distribution ofω across the placements
observed in the data is not equal to the unconditional distribution specified in
Assumption 1. The distribution ofω across the placements in the data is conditional
on being matched, i.e., to that of ωch |M(c, h) = 1.

The Burr specification in Assumption 2 is a standard parametric assumption used in
duration models (e.g., Lancaster, 1990; Wooldridge, 2010).13 The Burr distribution
has the main advantage of being flexible yet tractable. It generalizes other well-
known duration distributions, such as the Exponential (γR = 0, αR = 1), Weibull
(γR = 0), and Log-Logistic (γR = 1). A convenient feature of this distribution is that
its integrated hazard rate has a closed form, and hence, also its survivor function and
likelihood. The parameters αR and γR govern the duration-dependence of the hazard
function, which may be flat, monotonic (positive or negative), or have an inverse-U
shape. The function g is a shorthand for the covariates used in the model, all of
which are derived from observable characteristics. Besides including stand-alone
covariates, g(x, y) may include interactions between variables in x and y, and other
non-trivial transformations, such as distance measures. The effect of the covariates
on each hazard rate is controlled by the coefficients in βR. Since the function λR is
monotonic in kR, the sign of the coefficients in βR indicate the direction in which
the covariates shift the hazard rates. A higher hazard rate, say λR, implies that a
placement is more likely to terminate sooner and due to termination reason R ∈ R0.

Assumption 1 specifies the joint distribution of ω = (ωR)R∈R0 up to the unknown
covariance matrix Σω. Assuming thatω has zero mean is without loss of generality,
as long as the covariates in the hazard function include a constant. Intuitively, the
covariance matrix Σω captures the extent of the variation in the observed outcomes
not captured through placement characteristics. Moreover, the correlation between
the individual frailty terms introduces dependence among the latent durations. Such
correlation captures, for example, if (a) children who are less likely to reach perma-

13Another common application of the Burr distribution, also known as the Singh-Maddala distri-
bution, is to model the distribution of income (Singh and Maddala, 1976).
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nency are also more likely to experience disruptions (because, say, they experienced
worse conditions during their upbringing, and this has an impact on their current
behavior), or (b) children who are more likely to exit the system sooner are also more
likely to experience disruptions (because, say, foster parents are less invested in nur-
turing long and stable relationships with children who will leave their households
sooner).

Collect the parameters of the hazard rates in α = (αR)R∈R0 , γ = (γR)R∈R0 and
β = (βR)R∈R0 . The conditional outcome distribution, (T̃, R̃) |I, is fully specified in
Assumption 2 up to the unknown vector of parameters

θT ≡ (α, γ, β).

Observed Matching
In this section, I consider a generic market (C,H,X,Y), and omit its index i =

1, . . . , n for simplicity. The problem of the matchmaker in (1.3) is a deterministic
problem over matchings. However, from the econometrician’s perspective, the
observed matching is the realization of a random variable since V(c, h) is not fully
observable. Specifically, an econometrician does not observe the frailty terms
(ωch)(c,h)∈C×H , or the taste variation terms, εc = (εcy)y∈Y for every c ∈ C, and
ηh = (ηxh)x∈X for every h ∈ H.

Assumption 3 (Multinomial Probit) The taste variation terms are independent
multivariate normal random vectors. Namely,

εc ∼ N(0,Σε), and ηh ∼ N(0,Ση), (1.8)

where Σε and Ση are positive semidefinite and symmetric matrices. Their sizes are
|Y | × |Y | and |X | × |X |, respectively. Furthermore, εc ⊥ εc′ for all c, c′ ∈ C, and
ηh ⊥ ηh′ for all h, h′ ∈ H. Also, εc, ηh, and ωc′h′ are mutually independent for all
(c, h), (c′, h′) ∈ C × H.

Under Assumption 3, the observed matching is a realization of the following random
variable:

M̃(C,H,X,Y) = arg max

{ ∑
c∈C,h∈H

M(c, h)π(c, h) + υM : M ∈ M(C,H)

}
, (1.9)

where υM is the composite error term given by

υM ≡
∑

c∈C,h∈H

M(c, h)[εcyh + ηxch]. (1.10)
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Since the composite error term, υM , follows a multivariate normal distribution, the
matching problem takes the form of a mixed multinomial probit. Below, I show that
the distribution of the individual taste variation parameters, εc and ηy, can be backed
out from the distribution of the composite error term υM . Therefore, the distribution
of the taste variation parameters can be obtained directly from the matching data.

Assumption 3 also includes several independence assumptions. First, the unob-
servable taste variation components are independent across parties, i.e., εc ⊥ εc′,
ηh ⊥ ηh′, and εc ⊥ ηh. This assumption rules out unobservable interdependencies
among placement assignments by considering preferences over types as indepen-
dent across children and foster homes. Second, the unobservable frailty terms are
independent across placements, i.e., ωch ⊥ ωc′h′. This assumption rules out un-
observable interdependencies among placement outcomes. Conditional on being
matched, the outcome of (c, h) is independent of that of (c′, h′). Third, the taste vari-
ation terms, εc and ηh, are independent of the frailty terms in ωch. This assumption
separates the unobservables affecting placement assignments into two groups. On
the one hand,ωch contains unobservables that affect placement assignments through
their expected outcomes (i.e., outcome-relevant unobservables). On the other hand,
εc and ηh capture the rest of the unobservables which affect the matching, but are
independent of outcomes.

Collect the preference parameters in µ = (µR)R∈R0 , ϕ = (ϕR)R∈R0 , ϕ̄ = (ϕ̄R)R∈R0 ,
Σ = (Σε,Ση), and define

θM ≡ (µ, ϕ, ϕ̄,Σ).

Two-by-two Example
In this section, I consider a simple example to illustrate how the model allows for
the matching observed in the data to depend on distinct factors. Consider a market
with two children and two homes, let C = {c1, c2} and H = {h1, h2}. Let x1 and x2

denote the types of children c1 and c2, respectively, and y1 and y2, those of homes
h1 and h2. Let ε1 = (ε11, ε12) and ε2 = (ε21, ε22) be the unobservable tastes of child
c1 and c2 for home-types y1 and y2, respectively, where I take the liberty of writing
εk j ≡ εck yj . Similarly, let η1 = (η11, η21) and η2 = (η12, η22) be the unobservable
tastes of homes h1 and h2 for child-types x1 and x2, respectively, with ηk j ≡ ηxkhj .
Finally, let (ω11,ω12,ω21,ω22) be the unobservable vectors of frailty terms of each
prospective placement, i.e., ωk j ≡ (ωckhj,R)R∈R0 for j, k = 1, 2.
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Let πk j ≡ π(ck, h j) denote the payoff of assigning each prospective placement,
which is a function of ωk j , for j, k = 1, 2. The set of feasible matchings M(C,H)
contains two matchings: M , which assigns placements (c1, h1) and (c2, h2), and M′,
which assigns placements (c1, h2) and (c2, h1). LetV andV′ denote their respective
aggregate payoffs, i.e.,

V = V(c1, h1) + V(c2, h2) = (π11 + ε11 + η11) + (π22 + ε22 + η22) (1.11)

V′ = V(c1, h2) + V(c2, h1) = (π12 + ε12 + η12) + (π21 + ε21 + η21) . (1.12)

Matching M is chosen over M′ if and only ifV ≥ V′ (the eventV = V′ has zero
probability). In principle, all the terms in (1.11) and (1.12) might differ, implying
that observing matching M over M′ might result for numerous reasons, e.g., the
expected outcome of placement (c1, h2) or (c2, h1) is unfavorable relative to that of
(c1, h1) or (c2, h2) (i.e., π12 or π21 are low relative to π11 or π22) . Alternatively, child
ck might have a higher than usual preference for being matched with a home of type
yk (i.e., ε11 or ε22 are particularly high), or home h j might have a higher than usual
preference for being matched with a child of type x j (i.e., η11 or η22 are high relative
to η12 or η21).

Now consider the case in which y1 = y2, so that ε11 = ε12 and ε21 = ε22. In such
case, matching M is chosen over M′ if and only if

(π11 + η11) + (π22 + η22) ≥ (π12 + η12) + (π21 + η21) . (1.13)

In this case, even though the unobservable taste terms of both children may differ,
i.e., ε11 , ε21, the preferences of children over home-types play no role in the
determination of the optimal matching. Similarly, if the children are also of the
same type, x1 = x2, then matching M is chosen over M′ if and only if

π11 + π22 ≥ π12 + π21. (1.14)

In this case, the optimal matching is determined only on the basis of expected
outcomes. Importantly, the eventV ≥ V′ is still random from the econometrician’s
perspective, since (1.14) depends on the unobservable frailty terms, ωk j for j, k =

1, 2.
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Expected Placement Outcomes
In this section, I show in more detail how the payoff function depends on a place-
ment’s expected outcomes. Using (1.1) and the definition of π(c, h), we obtain

π(c, h) =
∑
R∈R

P(R̃ = R |Ich)
{
µR + ϕRE

[
log T̃ | R̃ = R, Ich

]
+ ϕ̄R log Tem,c

}
. (1.15)

Therefore, the expected placement outcomes that are relevant for the matchmaker’s
payoff are the termination probability, P(R̃ = R | Ich), and the conditional ex-
pected log-duration, E

[
log T̃ | R̃ = R, Ich

]
, of each termination reason R ∈ R. The

expected placement outcomes can be computed using standard results in survival
analysis (e.g., Kalbfleisch and Prentice, 2002; Lancaster, 1990).14 Namely, for
R ∈ R0,

P(R̃ = R |Ich) =

∫ Tem,c

0
F̄(T |Ich)λR(T |Ich)dT (1.16)

E
[
log T̃ | R̃ = R, Ich

]
=

∫ Tem,c

0
log T

[
F̄(T |Ich)λR(T |Ich)

P(R̃ = R |Ich)

]
dT, (1.17)

where F̄(T |Ich) denotes the conditional survival function of T̃ , given by

F̄(T |Ich) = exp

{
−

∑
R∈R0

γ−2
R log

[
1 + γ2

RkR(Ich)TαR
]}

. (1.18)

Simple calculations show that the resulting integrals in (1.16) and (1.17) have no
closed-form.15 Therefore, to compute the payoff function of placement (c, h) ∈
C × H, one needs to compute the integrals in (1.16) and (1.17) numerically at
Ich = (xc, yh,ωch), obtain the expected placements outcomes, and replace the
respective values in (1.15).

14To observe why (1.16) holds, it suffices to note that F̄(T | Ich)λR(T | Ich) is the likelihood of
the placement having duration T and terminating due to R ∈ R0. The probability of terminating due
to R ∈ R0 is the integral of this likelihood over the support of T̃ , [0, Tem,c]. Similarly, to observe
why (1.17) holds, it suffices to note that the quotient in brackets in (1.17) is the probability density
function (pdf) of T̃ | R̃ = R, Ich . To see this, note that the likelihood of the event (T̃, R̃) = (T, R)
may also be written as P(R̃ = R |Ich) f (T | R̃ = R, Ich), where f (T | R̃ = R, Ich) denotes the pdf of
T̃ | R̃ = R, Ich . Expression (1.18) also follows from standard results. Namely, the survivor function
of the duration in a competing risks model is given by F̄(T) = exp

{
−

∑
R∈R0

∫ T

0 λR(S)dS
}
.

15The fact that these integrals have no closed-form is a common feature among most commonly
used duration distributions. A notable exception, perhaps the only one, is the competing risks model
with symmetric Weibull hazards (all hazards have the same shape parameter). In our case, this corre-
sponds to the case with γR = 0 and αR = α for all R ∈ R0. In such case, the termination probabilities
have the same form as the choice probabilities of the multinomial logit, and are constant across
time. As shall be seen in next sections, this specification, although attractive for its computational
tractability, is too restrictive for the present case.
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In order to observe how the aggregate payoff of matching M ∈ M(C,H) depends on
the expected placement outcomes of the assigned placements, note that∑

c,h

M(c, h)π(c, h) =
∑
R∈R

{[∑
c,h

M(c, h)P(R̃ = R |Ich)

]
µR

+

[∑
c,h

M(c, h)P(R̃ = R |Ich)E
(
log T̃ | R̃ = R, Ich

) ]
ϕR

+

[∑
c,h

M(c, h)P(R̃ = R |Ich) log Tem,c

]
ϕ̄R

}
, (1.19)

where the sums are over c ∈ C, h ∈ H. Hence, conditional on the matchmaker’s
information on every prospective placement, (Ich)(c,h)∈C×H , the problem of the
matchmaker in (1.9) takes the form of a multinomial probit. The “systematic” or
“observed” portion of the aggregate payoff of matching M ∈ M(C,H), given in
(1.19), is a linear index on the parameters of the matchmaker’s utility function,
(µ, ϕ, ϕ̄). The “covariates” of such linear index are sums of the expected outcomes
of all the assigned placements under M , which, in essence, are non-linear transfor-
mations of the covariates of the assigned placements, {g(xc, yh) : M(c, h) = 1}. The
unconditional problem of the matchmaker takes the form of a mixed multinomial
probit since one must integrate out the unobservable part of (Ich)(c,h)∈C×H , i.e.,
(ωch)(c,h)∈C×H .

1.4 Identification
Outcome Distribution
Absent matching, the data on observed outcomes is sufficient to identify the pa-
rameters of the distribution of outcomes, (Σω, θT ). This observation follows from
Heckman and Honoré (1989), who show that the joint distribution of the latent
durations in a competing risks model is non-parametrically identified as long as
(1) the model includes covariates; (2) the hazard rates of the latent durations have
at least one common covariate with a different coefficient in each hazard rate; (3)
such covariate is continuous and unbounded, and (4) the mixing distribution is suffi-
ciently smooth (and satisfies certain regularity conditions at the limit). All of these
conditions are met given Assumptions 1 and 2. The continuous and unbounded
covariates are distance measures, e.g., the distance between children’s schools and
foster homes, which has a termination-specific coefficient.

Once we take into account the matching part of the model, one must recognize that
the distribution of ω across the placements observed in the data, in general, differs
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from the unconditional distribution specified in Assumption 1. The distribution ofω
across the placements observed in the data is given byωch | M̃(c, h) = 1, where M̃ is
the randomvariable defined in (1.9). Hence, the distribution ofω in the data depends
on all the variables involved in the matchmaker’s problem. In order to identify this
distribution, the model relies on the random variation on the exogenous variables
(C,H,X,Y). The simplest way to see why this variation is sufficient to identify
the parameters in the unconditional distribution of ω is to consider placements
in singleton markets. Note that the distribution of ω for placements assigned in
markets with |C | = |H | = 1 is the same as its unconditional distribution. That is,
if |C | = |H | = 1, the matchmaker’s problem is trivial, which implies that the event
{M(c, h) = 1} is uninformative, and the likelihood of such placement’s outcome
is the same as its unconditional one. More generally, in non-singleton markets,
exogenous variation in (C,H,X,Y) identifies the unconditional mixing distribution
in a similar way in which instruments are used in standard sample selection models
(e.g., Heckman, 1979). One needs exogenous variation that affects the likelihood of
being “selected” (i.e., of having an observable outcome) that is independent of the
outcome itself.

Another aspect that differs from the standard competing risks framework is that
the matching may induce endogeneity, which leads to bias when estimating the
coefficients of the covariates in the hazard functions. This observation was first
noted in the literature by Ackerberg and Botticini (2002) in a setting of contract
choice. Their setup is different to the one here, but the underlying intuition is the
same. In a reduced-form setting, they show that when the outcome of a match (in
their case, a joint sharecropping contract) depends on the characteristics of both
parties involved in the match, the presence of unobservables correlated with the
matching and the outcome lead to endogeneity. The matching affects the joint
distribution of a match’s characteristics, causing them to become correlated with
the error term in a regression. To see this in our case, write the latent duration as
follows16

log T̃R = KR − g(x, y)βR/αR − ωR/αR + errorR, (1.20)

where errorR ≡ log T̃R − E
[
log T̃R |I

]
is an exogenous error term, and

KR ≡ α
−1
R

[
ψ(1) − ψ(γ−2

R ) + log γ−2
R

]
(1.21)

16Expression (1.20) is a well-known feature of the Burr distribution (Lancaster, 1990). Indeed,
the fact that the log-duration can be written in the form of a linear regression is a characteristic
feature of all accelerated failure time models, the Burr duration model included.
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is a constant (ψ denotes the digamma function, ψ(x) ≡ d log Γ(x)/dx, where Γ is
the gamma function). In (1.20), one can see how the covariates affect the latent
log-durations in an analogous way to a linear regression. At first glance, the
covariates in g(x, y) seem to be exogenous. The unconditional distributions of ωR

and errorR are independent of (x, y). However, the joint distribution of (x, y) across
the assigned placements, (xc, yh) | M̃(c, h) = 1, is determined by the matching. Note
that yh =

∑
h′∈H M̃(c, h′)yh′. Hence, the covariates derived from y are no longer

independent from the error term −ωR/αR+errorR in (1.20). A symmetric argument
shows that the same holds for the covariates derived from x.

To fix this endogeneity problem, Ackerberg and Botticini (2002) suggest using
instrumental variables that affect the matching, but are independent of outcomes.
In the present case, this exogenous variation comes through (C,H,X,Y). Two
placements that are observationally equivalent, say (c, h) and (c′, h′) with (xc, yh) =

(xc′, yh′), will not have the same mixing distribution if they are assigned in distinct
markets. If (say) the first placement is assigned inmarket (C,H,X,Y) and the second
one in (C′,H′,X′,Y′), then the distribution of ω | M̃(c, h) = 1, in general, will be
distinct to that of ω | M̃′(c′, h′) = 1. The matchings chosen in both markets, M̃ and
M̃′, are independent random variables with distinct distributions. This identification
strategy has been used in the contracting literature since the seminal contribution
of Ackerberg and Botticini (e.g., Sørensen, 2007; Ewens, Gorbenko, and Korteweg,
2019).

Matching Distribution
The identification of the parameters in the matchmaker’s utility function, (µ, ϕ, ϕ̄),
is straightforward once the mixing distribution is identified, and one sets ϕem = 0.
Setting ϕem = 0 is necessary since the time to emancipation appears twice in
u(T, R; Tem) for R = em, see (1.1). As mentioned above, see (1.19), the matching
problem is a multinomial probit with index linear on (µ, ϕ, ϕ̄).

Finally, I discuss the identification of the covariance matrices of the taste varia-
tion terms, Σε and Ση. Let σε(y, y′) be the (y, y′)-th entry of Σε, i.e., σε(y, y′) =
cov(εcy, εcy′). Similarly, let ση(x, x′) = cov(ηxh, ηx′h). From (1.10), note that the
vector of composite error terms, υ ≡ (υM)M∈M(C,H), follows a zero-mean multivari-
ate normal distribution with covariance structure given by (a detailed proof is given
in Appendix A.2):

cov(υM, υM ′) =
∑
c∈C

σε(yM(c), yM ′(c)) +
∑
h∈H

ση(xM(h), xM ′(h)), (1.22)
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where I write M(c) = h⇔ M(h) = c⇔ M(c, h) = 1. To deal with unmatched chil-
dren in (1.22), setσε(yM(c), yM ′(c)) ≡ 0 if c is unmatched in either M or M′. Standard
results in discrete choice models (e.g., Train, 2009) show that the covariance matrix
of υ is identified up to location and scale normalizations.

Assumption 4 (Covariance Normalization) There exists x0 ∈ X and y0 ∈ Y such
that ση(x0, x) = 0 for every x ∈ X , and σε(y0, y0) = 1.

Assumption 4 imposes the necessary normalizations to identify the covariance
matrices Σε and Ση. First, it imposes a location normalization by assuming that
there exists a child-type, x0, for which the taste variation term of every home equals
to zero. Second, a scale normalization is assumed by assuming there exists a home-
type, y0, for which the variance of the corresponding taste variation term equals one
for every child.

Proposition 1 Under Assumption 4, the covariance matrices Σε and Ση are identi-
fied.

The proof of Proposition 1 is provided in Appendix A.2. The proof exploits that
the distribution of the taste variation terms is the same regardless of the types of the
other available children and homes in the market. The proof relies on analyzing the
identified elements of the covariance matrix of υ in specific markets with particular
types of children and homes, and use the normalization in Assumption 4 and the
covariance structure in (1.22) to back out the covariance matrices Σε and Ση.

Collect all the parameters of the model in θ = [Σω, θT, θM]. Let Θ ∈ Rdim(θ) be the
parameter space. That is, Θ is the subset of Rdim(θ) that incorporates the following
parameter restrictions: αR > 0, γR ≥ 0 for every R ∈ R0, ϕem = 0, Ση such that
ση(x0, x) = 0 for every x ∈ X , Σε such that σε(y0, y0) = 1, and Σω, Σε and Ση are
positive semidefinite and symmetric matrices.

1.5 Estimation
In this section, I explain how to obtain a consistent, efficient, and asymptotically
normal estimator of θ. The estimation consists in maximizing the simulated log-
likelihood of the model. To simplify notation, let zch = (xc, yh) denote the ob-
servable characteristics of placement (c, h) ∈ Ci × Hi, and group all the observable
characteristics of market i in Zi = (Xi,Yi). Similarly, let Ωi = (ωch)(c,h)∈Ci×Hi

.
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Fix θ ∈ Θ. Consider an arbitrary market i. The likelihood of observing (Mi,Ti,Ri),
conditional on (Ωi,Zi), is given by:

L(Mi,Ti,Ri |Ωi,Zi, θT, θM) = LM(Mi |Ωi,Zi, θM, θT ) × · · ·

· · · LT,R(Ti,Ri |Mi,Ωi,Zi, θT ) (1.23)

where LM(Mi | Ωi,Zi, θM, θT ) denotes the conditional matching likelihood, and
LT,R(Ti,Ri |Mi,Ωi,Zi, θT ) denotes the conditional outcome likelihood. Both likeli-
hood functions are conditional on both unobservable and observable characteristics,
Ωi and Zi, respectively. In the next two sections, I spell out both conditional likeli-
hood functions. Then, I show how to compute the simulated log-likelihood of the
data, which basically amounts to integrating out Ωi from (1.23).

Conditional Matching Likelihood
Write the payoff function π(·) as a function of placement characteristics and param-
eters, i.e., π(ωch, zch | θT, θM) = π(c, h). Also, letMi ≡ M(Ci,Hi) denote the set of
feasible matchings in market i. The conditional matching likelihood is given by the
Probit choice probability:

LM(Mi |Ωi,Zi, θT, θM) =

∫
1A(Mi |Ωi,Zi,θT ,θM )(υ)dF(υ), (1.24)

where υ = (υM)M∈Mi
is the vector of matching composite errors, 1A(υ) denotes

the indicator function of set A (it takes υ as argument), and the set A(Mi |

Ωi,Zi, θT, θM) is the set of υ’s for which the matching Mi is optimal, i.e.,{
υ : υM − υMi ≤

∑
c,h

[Mi(c, h) − M(c, h)] π(ωch, zch | θT, θM)∀M ∈ Mi

}
. (1.25)

Conditional Outcomes Likelihood
Let LT,R(T, R | ω, z, θT ) denote the conditional likelihood of a single placement
outcome, given by the Burr competing risks likelihood:

LT,R(T, R |ω, z, θT ) = F̄(T |ω, z, θT )λR(T |ω, z, θT )
1R<{em,cen} (1.26)

where F̄(T | ω, z, θT ) is the survivor function given in (1.18), and λR(T | ω, z, θT )

the termination specific hazard-rate in Assumption 2. The conditional outcome
likelihood of all the placements in market i is given by:

LT,R(Ti,Ri |Mi,Ωi,Zi, θT ) =
∏
(c,h)∈Mi

LT,R(Tch, Rch |ωch, zch, θT ). (1.27)
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(Simulated) Log-likelihood
Let G denote the joint distribution of Ωi, i.e., G = ×c,hGch, where Gch ≡ N(0,Σω).
The conditional likelihood of the market-level data (Mi,Ti,Ri) is:

L(Mi,Ti,Ri |Zi, θ) =

∫
LM(Mi |Ωi,Zi, θT, θM) × · · ·

· · · LT,R(Ti,Ri |Mi,Ωi,Zi, θT )G(dΩi |Σω). (1.28)

The log-likelihood of the data is

`n(θ |Z) =
n∑

i=1
logL(Mi,Ti,Ri |Zi, θ). (1.29)

To estimate θ, I compute the simulated counterpart of `n(θ | Z). There are two
multi-dimensional integrals within (1.29) that need to be simulated. The first one is
the integral over υ in the conditional matching likelihood, see (1.24). To compute
this integral, I draw a sample of Sυ independent draws of the taste variation terms,
εc and ηh. The sample is drawn independently of the model parameters, in order
to keep the simulation draws fixed during the estimation. I use a logit-kernel to
smooth the choice probabilities in (1.24). It is well known (e.g., Train, 2009) that
such smoothing is computationally convenient when estimating multinomial probit
models, especially in cases with a large number of alternatives, as in this case. Let
ζ > 0 denote the smoothing parameter of the logit-kernel. The second integral
that needs to be computed through simulation is the one over Ωi in (1.28). To
compute this integral, I draw a random sample of Sω independent draws of each
ωch = (ωR,ch)R∈R0 , for (c, h) ∈ Ci ×Hi, i = 1, . . . , n. Likewise, this sample is drawn
independently of the model parameters. Let `Sω,Sυ,ζ

n (θ | Z) denote the simulated
counterpart of the log-likelihood of the data in (1.29). (See Appendix A.1 for more
details on the estimation.) The estimator of θ is given by:

θ̂SMLE = arg max
θ∈Θ

`
Sω,Sυ,ζ
n (θ |Z). (1.30)

Standard results (e.g., Gourieroux and Monfort, 1997) imply that θ̂SMLE is a con-
sistent, efficient, and asymptotically normal estimator for θ, as n, Sω, Sυ → ∞ with
min{Sω, Sυ}/

√
n→∞.
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1.6 Estimation Results
Empirical Specification
In this section, I present the results of the estimation. Due to computational con-
siderations, I consider a small version of the model in terms of the number of
covariates I include. The estimates presented below correspond to a model that
includes the following placement characteristics: age, type of foster home (relative,
county, agency, or group home), and distance to school. I also include a dummy for
children for which the school’s zip-code is missing (who presumably do not go to
school), and interactions between age and the type of foster home.

I define children and home-types (used to specify the taste variation terms) as
follows. The set of child-types, X , contains two elements differentiating children
who are younger, or older, than 8 years old. The set of home-types, Y , includes one
type for each type of foster home other than relatives. It is not necessary to define a
home-type for relative foster homes since all of them are in singleton markets.

The dataset used in the estimation contains 1,467 markets and 2,358 assigned
placements. This specification of the model has 39 parameters.

Parameter Estimates
In this section, I discuss the simulated maximum likelihood estimates of the model
parameters. Table 1.2 presents the parameter estimates of the outcome distribution,
Σ̂ω and θ̂T . The first two rows of the table present the estimated covariance matrix
of ω. The estimated variance of ωd is higher than that of ωex , implying that the
variance not captured by the covariates is higher for disruption than for exit. The
model also captures a positive correlation between both hazard rates: placements
which the matchmaker considers as having a higher hazard for disruption, are also
considered as having a higher hazard for exiting the system.

The next rows of Table 1.2 report the estimated coefficients of each of the covariates
in g(x, y) for each hazard rate. A larger coefficient of (say) age on the disruption
hazard implies that placements with older children are more likely to be disrupted
(and sooner) than placements with younger children. The coefficients indicate that
older children have higher disruption hazards in all types of foster homes, other than
group homes. By contrast, age is found to have a minor effect in the hazard for
exiting to permanency in foster homes other than group homes.

Table 1.3 reports average partial effects of placement characteristics on placement
outcomes. Partial effects are computed for every placement assigned in the data
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Table 1.2: Estimated parameters of outcome distribution (Σω, θT )

(1) (2)
Disruption Exit

Var(ωR) 0.873*** 0.02955
(0.2912) (0.02867)

Cov(ωd, ωex) 0.1573* 0.1573*
(0.08908) (0.08908)

Age At Placement 0.09872*** -0.01615
(0.01767) (0.01047)

County-FH 2.217*** -0.02375
(0.332) (0.2101)

Agency-FH 2.983*** 0.4547***
(0.2556) (0.1237)

Group Home -2.077** -1.987***
(0.9188) (0.5642)

Age At Plac. × County-FH -0.02272 0.01804
(0.0261) (0.01636)

Age At Plac. × Agency-FH -0.07878*** -0.01007
(0.0194) (0.0124)

Age At Plac. × Group Home 0.2569*** 0.1419***
(0.06179) (0.03894)

Distance To School (zip) 0.02052*** -0.006059***
(0.002471) (0.001724)

Missing Dist. To School 0.9007*** 0.1222
(0.1603) (0.08942)

Constant -8.996*** -6.082***
(0.5408) (0.2132)

Alpha (αR) 1.091*** 0.9665***
(0.07551) (0.03427)

Gamma (γR) 0.9527*** 0.2222
(0.1183) (0.2361)

Number of markets (n) 1467
SMLL -17005.86
Note: Estimated parameters of unobserved heterogeneity
(Σω) and conditional hazard rates (θT ). Standard errors in
parenthesis. Significance level of parameters: ***p<0.01,
**p<0.05, *p<0.01.

using expressions (1.16) and (1.17). Here, one can see that, on average, placements
with older children are more likely to be disrupted. The marginal effect of one year
of age on the disruption probability is, on average, 1.4%. Also, placements with
older children are more likely to be disrupted sooner when they do so. Indeed,
placements with older children tend to have lower durations overall, regardless of
the termination reason. Placements with relatives are more stable, they have lower
disruption probabilities than every other type of foster home. They also last less than
every other type of placement except for group homes. Placements in county and
agency foster homes have similar expected outcomes. Both of them are around 30%
more likely to be disrupted than placements with relatives. The distance between
a foster home and the child’s school increases the odds of disruption and overall
diminishes a placement’s expected duration.
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Table 1.3: Average partial effects (APEs)

(1) (2) (4) (5) (6)
P(Disrup) P(Exit) E(log T |Disrup) E(log T |Exit) E(log T)

Age At Placement 0.01393 -0.01146 -0.04059 -0.0218 -0.04014
County-FH 0.3168 -0.2661 -0.9689 -0.6275 -0.9266
Agency-FH 0.32 -0.2716 -1.221 -0.8743 -1.174
Group Home 0.1652 -0.1575 0.2872 0.4496 0.3393
Distance To School (zip) 0.004013 -0.003757 -0.007978 -0.003091 -0.007359
Missing Dist. To School 0.1136 -0.09686 -0.5244 -0.3653 -0.5212
Number of placements 2358
Note: Average partial effects of placement characteristics on expected outcomes. Averages taken across
the sample of assigned placements in the data. The partial effects with respect to continuous variables
is taken by considering a marginal change of one unit.

Table 1.4: Goodness of fit and estimation parameters

(1) (2)
Predicted Sample

P(Disruption) 0.514 0.5093
P(Exit) 0.4303 0.4237
P(Emanc/Cens) 0.05568 0.06701
E(log T |Disruption) 4.482 4.141
E(log T |Exit) 4.721 4.994
E(log T |Emanc/Cens) 7.19 5.534
E(log T) 4.615 4.596
Number of markets (n) 1467
Number of assigned placements 2358
Number of prospective placements 8900
SMLL -17005.86
Sω 50
Sυ 50
ζ 1e-01
dim(θ) 39
Note: Average predicted outcomes and sample average out-
comes. Averages taken across the sample of assigned place-
ments in the data. The number of assigned placements in the
data is equal to

∑
i
∑

c,h Mi(c, h). The number of prospective
placements is equal to

∑
i
∑

c,h |Ci | × |Hi |. SMLL gives the
value of the simulated log-likelihood at the estimated vec-
tor of parameters. Sω , Sυ , and ψ are the parameters of the
simulated log-likelihood; dim(θ) refers to the number of pa-
rameters estimated.
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Table 1.4 reports goodness of fit measures and the parameters used in the estimation.
Overall, the model does good job on matching the average outcomes observed in
the data. Note that when computing average expected outcomes for goodness of
fit purposes, one must take into account censored placements (those for which the
outcome is not observable due to the sample period). This is done by replacing Tem

for min{Tem,Tcen} in expressions (1.16) and (1.17). Also, note that the (average) ex-
pected log-duration conditional on emancipation/censoring predicted by the model
is much higher than the emancipation/censoring times observed in the data. This
reflects that the placements that are more likely to be emancipated or censored are
precisely the ones that have lower times to emancipation or are closer to the end of
the sample period.

Table 1.5 reports the estimated parameters of the matchmaker’s utility function.
Overall, the matchmaker has a higher payoff from placements that exit to perma-
nency. The least desirable termination reason is disruption. The marginal utility
of duration is negative, regardless of termination reason. The magnitude of the
parameters show that the matchmaker is not willing to trade-off a placement exiting
to permanency for it being disrupted, regardless of the time to reach permanency
and the time spent in a disruptive placement. To see this, note that if a placement
is to be disrupted, the matchmaker prefers for it to be disrupted as soon as possible.
However, even if a placement is disrupted right away, T = 1, the payoff to the
matchmaker is lower than if the child exits to permanency, regardless of the time the
child needs to wait before exiting.

The marginal utility of the time to emancipation is positive conditional on duration,
but negative conditional on exiting to permanency. This captures that the valuation
of the matchmaker for age differs depending on the termination reason. An inter-
pretation of this preference is that the time to disruption and permanency (i.e., the
time that it takes for a placement to be disrupted or exit to permanency, conditional
on that being its termination reason) is valued differently depending on the age of
children. The sign of the coefficients indicate that the matchmaker’s preference
against children spending time in placements that will be disrupted is stronger for
younger children than for older ones. By contrast, the matchmaker’s tolerance for
children waiting to exit to permanency is higher for younger children than for older
ones. The magnitude of the coefficients allow to compute the marginal rate of
substitution between duration and age. For instance, consider a child of average age,
8.7 years old, who is in a placement known to be disrupted. Set the disruption time
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Table 1.5: Estimated parameters of matching utility (θM)

(1) (2) (3)
Disruption Exit Emancipation

µR —MgU. Term. Reason -2.908*** 2.449** -2.057***
(0.6972) (1.091) (0.7183)

ϕR —MgU. Duration -0.3549*** -0.5265*** 0†
(0.1005) (0.167) (0)

ϕ̄R —MgU. Emanc. Time 0.3093*** -0.1179 0.009985
(0.06172) (0.09607) (0.01364)

Number of markets (n) 1467
SMLL -17005.86
Note: Estimated parameters ofmatching utility function (θM ), where u =
µR+ϕR log T+ ϕ̄R log Tem. Standard errors in parenthesis. Significance
level of parameters: ***p<0.01, **p<0.05, *p<0.01. † indicates fixed
parameter (i.e., not estimated).

at its conditional average, 5.4 months (165 days). A placement that is know to be
disrupted, but has a child who is younger by one year, generates a higher payoff for
the matchmaker as long as its duration is less than 5.9 months (180 days), 9.31%
more. If the placement is known to be terminated because the child will exit to
permanency, the opposite obtains. Again, consider a placement with a child who
is 8.7 years old and, who is known, will exit to permanency in the average time,
10 months (304 days). A placement with a child who is also known will exit to
permanency, but who is one year older, generates a higher payoff to the matchmaker,
as long as the child exits to permanency in no more than 10.2 months (312 days),
2.6% more.

Table 1.6 reports the estimated covariance matrices of the taste variation terms.
Overall, the estimates showno significance variance in the taste variation parameters.
Intuitively, this reflects that, given the current specification, the expected outcomes
of placements seem to be sufficient in order to predict placement assignments.17

1.7 Counterfactual Exercises
Counterfactual I: Market Thickness
In this section, I analyze the effect of policies aimed at improving outcomes by
increasing market thickness. Market thickness may be increased along two dimen-
sions. First, I consider the case in which placements are assigned every D > 1
days, instead of daily as is done in the field (D = 1). I consider policies with
D ≤ 15. Second, I consider the case in which non-relative placements are assigned

17Acaveat of the estimates in Table 1.6 is that the normalizations implemented in this specification
do not correspond to the ones in Assumption 4, which is key in proving Proposition 1. The estimates
in Table 1.6 may be close to zero because the normalizations are not doing a good job in identifying
the parameters.
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Table 1.6: Estimates of the covariance matrix of the taste variation shocks (Σ)

Σ̂ε =

©­­­­­­«

0† 0† 0†
(0) (0) (0)
0† 0.0002013 −0.001219
(0) (0.0009768) (0.003017)
0† −0.001219 0.01181
(0) (0.003017) (0.01172)

ª®®®®®®¬ |Y |× |Y |
Σ̂η =

©­­«
0† 0†
(0) (0)
0† 0.0001188
(0) (0.000899)

ª®®¬ |X |× |X |
Note: Estimated parameters of the covariance matrices of taste variation shock of children over home types,
εc = (εcy)y∈Y ∼ N(0,Σε), and of the covariance matrix of the taste variation shock of homes over children
types, ηh = (ηxh)x∈X ∼ N(0,Ση). Standard errors in parenthesis. Significance level of parameters: ***p<0.01,
**p<0.05, *p<0.01. † indicates fixed parameter (i.e., not estimated).

across all regional offices together, instead of within them as is done in the field.
I also consider the two types of policies together, i.e., assigning placements every
D > 1 days and pooling the children and foster homes from all regional offices into
a county-wide market.

By design, the aggregate payoff of the matchmaker is higher when markets are
thicker. The reason is because the original matching is always feasible when the
market is thicker. The effect on the expected outcomes of placements is controlled by
the matchmaker’s payoff function, which determines which placements are assigned
in the counterfactual markets.

Figure 1.1 plots the average predicted termination probabilities across the counter-
factual markets. The value of D is plotted in the x-axis. The solid lines correspond to
the termination probabilities in the case in which markets are formed within offices.
The dashed lines to the case in which markets are pooled across regional offices.
The plots also include a dotted line, which is constant across D. The dotted line
corresponds to the “benchmark” case in which all placements are assigned at once,
D = ∞, and regional offices are pooled together. The average predicted outcomes
in the benchmark case correspond to the ones of the best placements (from the
matchmaker’s perspective) that can be formed in the full dataset.

The baseline values of the termination probabilities are the values at D = 1, i.e.,
these values correspond to the predicted probabilities of the model with the assign-
ment observed in the data. From the top panel of Figure 1.1, one can see that in
thicker markets the average disruption probability is lower, and that of exiting to
permanency or disruption is higher. When the pools of available children and foster
homes are larger, the matchmaker is able to assign placements with lower disruption
probabilities. However, note that the gains from thicker markets come almost exclu-
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Figure 1.1: Counterfactual I: Average predicted termination probabilities
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Note: Plot of the average predicted termination probabilities. Averages taken across all assigned placements in
each counterfactual. The x-axis plots the value of D, the number of non-matching days in a matching period.
Solid lines correspond to counterfactuals in which markets are defined by regional offices; dashed lines to
ones in which regional offices are pooled together into the same markets. The benchmark case (dotted line)
corresponds to the case in which regional offices are pooled together into markets and D = ∞.

sively from pooling regional offices together. When matchings are assigned daily
(D = 1) but regional offices are pooled together, the disruption rates diminishes
from 52.61% to 48.43%. In terms of expected number of placements per child, this
is equivalent from going from 2.11 to 1.94.18

Figure 1.2 is analogous to Figure 1.1, but it plots the average predicted conditional
durations of placements. Here, one can see that the average duration of placements
may be higher or lower than the baseline in thicker markets. Interestingly, when of-
fices are pooled together and placements are assigned daily, the matchmaker assigns
placements with higher expected durations than both the baseline and benchmark
cases. The reason is because the matchmaker is willing to trade-off duration (which
it dislikes) with better termination probabilities. The same can be seen in Figure
1.3, which plots the average expected duration.

The top panel of Figure 1.4 plots the average distance to school across placements in
thicker markets. The average distance between foster homes and children’s schools
is cut in 54% when offices are pooled together into county wide-markets. The

18The average disruption probability can be seen as the probability of a “failure” in a series
of discrete dichotomic random draws. In this case, the number of placements per child follows a
geometric distribution (“number of trials needed to get one success”). If pd denotes the disruption
probability, the expected number of placements per child is 1/(1 − pd).
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Figure 1.2: Counterfactual I: Average predicted conditional expected duration
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Note: Plot of the average predicted conditional expected durations. Averages taken across all assigned place-
ments in each counterfactual. The x-axis plots the value of D, the number of non-matching days in a matching
period. Solid lines correspond to counterfactuals in which markets are defined by regional offices; dashed lines
to ones in which regional offices are pooled together into the same markets. The benchmark case (dotted line)
corresponds to the case in which regional offices are pooled together into markets and D = ∞.

Figure 1.3: Counterfactual I: Average predicted expected duration
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Note: Plot of the average predicted expected duration. Averages taken across all assigned placements in each
counterfactual. The x-axis plots the value of D, the number of non-matching days in a matching period. Solid
lines correspond to counterfactuals in which markets are defined by regional offices; dashed lines to ones in
which regional offices are pooled together into the same markets. The benchmark case (dotted line) corresponds
to the case in which regional offices are pooled together into markets and D = ∞.
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Figure 1.4: Counterfactual I: Average distance to school and waiting time
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Note: Plots of the average distance to school and waiting time. Averages taken across all assigned placements
in each counterfactual. The x-axis plots the value of D, the number of non-matching days in a matching period.
Solid lines correspond to counterfactuals in which markets are defined by regional offices; dashed lines to
ones in which regional offices are pooled together into the same markets. The benchmark case (dotted line)
corresponds to the case in which regional offices are pooled together into markets and D = ∞.

average distance goes from 20.43 to 9.5 miles. From the plot, one can see that the
gains resulting from lower disruption probabilities follows the same patters as the
distance to school: the gains from pooling offices together outweighs those obtained
from delaying placement assignments. Finally, the bottom plot of Figure 1.4 shows
the average time that children wait before being assigned placements. As expected,
delaying placements increases this figure monotonically.
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Counterfactual IIa: Relative Foster Homes
In this section, I analyze the effect that relatives have on average expected outcomes.
Specifically, I consider an increase in the share of the foster homes that are relatives
across all markets. I analyze both an increase in the intensive and extensive margins.
Let δrel ∈ (0, 1) be the increase in the share of foster homes that are relatives. I
consider policies with δrel ≤ 0.25; δrel = 0 corresponds to the baseline case, in
which the supply of foster homes is the same as the one observed in the data.

I increase the share of relative homes as follows. First, I estimate a binary logit
model that predicts whether a child has a relative home or not, as a function of its
characteristics. Let n∗rel = bδrel ∗nrelc, where nrel denotes the number of placements
with relatives in the data. Then, from the population of non-relative placements in
the data, I select n∗rel at random, weighing them by the predicted probability that each
of them had a relative available. That is, I select children who did not had a relative
placement, but had a higher likelihood of having it, with higher probability. In the
case of the intensive margin, I convert the foster homes of the selected placements
into relative homes (leaving all other placement characteristics fixed), and assign
them to new singleton markets with the corresponding child. In the extensive
margin case, I create a duplicate of the foster homes of the selected children. Then,
I convert the duplicated home to a relative home (leaving all the other placement
characteristics fixed), and assign it with the corresponding child to a new singleton
market. The difference between the intensive and extensive margins is that the set of
available foster homes for the rest of the children in the market remains unchanged
in the extensive margin, while it is reduced by one home in the intensive margin.

Figure 1.5 reports the predicted average termination probabilities in the distinct
counterfactuals. The parameter δrel is on the x-axis. One can observe that a higher
share of relative homes, in both the intensive and extensive margins, has a sizable
effect on termination probabilities. Overall, the disruption probability diminishes
and the one of exiting to permanency increases. The adjustment is more gradual in
the extensive margin. In the intensive margin, the disruption probability goes from
52.6% at δrel = 0 to 45.82% at δrel = 0.25 (equivalent to going from an average of
2.1 placement per child to 1.84). In the extensive margin, the change is from 52.6%
to 47.8% (equivalent to going from an average of 2.1 placement per child to 1.91).
The difference between both margins has to do with how the rest of the children are
being placed in the non-relative placements. Figure 1.6 shows the analogous plot
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Figure 1.5: Counterfactual IIa-Relatives: Average predicted termination
probabilities
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Note: Plot of the average predicted termination probabilities. Averages taken across all assigned placements in
each counterfactual. The x-axis plots the value of δrel , the factor by which the supply of Relative Foster Homes
is adjusted. Solid lines correspond to counterfactuals in which the supply of Relative Foster Homes is increased
in the intensive margin; dashed lines to ones in which the supply of Relative Foster Homes is increased in the
extensive margin.

for conditional durations. Overall, placements tend to last longer when the share of
relative foster homes in the system is increased.

Counterfactual IIb: Agency Foster Homes
In this section, I analyze the effect that agency foster homes have on average expected
outcomes. Specifically, I consider an increase in the share of foster homes that come
through non-profit agencies across all markets. I analyze an increase in both the
intensive and extensive margins. Let δah ∈ (0, 1) be the increase in the share of
foster homes that are agency homes. I consider policies with δah ≤ 0.25; δah = 0
corresponds to the baseline case, in which the supply of foster homes is the same as
the one observed in the data.

I increase the share of agency homes as follows. Let n∗ah = bδah ∗ nahc, where
nah denotes the number of placements with agency homes in the data. Then, from
the population of non-agency placements in the data, I select n∗ah uniformly at
random, keeping the relative share of the other types of non-agency placements
fixed. In the case of the intensive margin, I convert the foster homes of the selected
placements into agency homes (leaving all other placement characteristics fixed).
In the extensive margin case, I create a duplicate of the foster homes of the selected
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Figure 1.6: Counterfactual IIa-Relatives: Average predicted conditional expected
duration
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Note: Plots of the average predicted conditional expected durations. Averages taken across all assigned
placements in each counterfactual. The x-axis plots the value of δ, the factor by which the supply of Relative
Foster Homes is adjusted. Solid lines correspond to counterfactuals in which the supply of Relative Foster
Homes is increased in the intensive margin; dashed lines to ones in which the supply of Relative Foster Homes
is increased in the extensive margin.

Figure 1.7: Counterfactual IIa-Relatives: Average predicted expected duration
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Note: Plot of the average predicted expected duration. Averages taken across all assigned placements in each
counterfactual. The x-axis plots the value of δ, the factor by which the supply of Relative Foster Homes is
adjusted. Solid lines correspond to counterfactuals in which the supply of Relative Foster Homes is increased
in the intensive margin; dashed lines to ones in which the supply of Relative Foster Homes is increased in the
extensive margin.
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Figure 1.8: Counterfactual IIb-Agency-FH: Average predicted termination
probabilities
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Note: Plot of the average predicted termination probabilities. Averages taken across all assigned placements in
each counterfactual. The x-axis plots the value of δ, the factor by which the supply of Agency Foster Homes is
adjusted. Solid lines correspond to counterfactuals in which the supply of Relative Foster Homes is increased
in the intensive margin; dashed lines to ones in which the supply of Agency Foster Homes is increased in the
extensive margin.

children. Then, I convert each duplicated home to a agency home (leaving all the
other placement characteristics fixed). The difference between the intensive and
extensive margins is that the set of available foster homes in the market has the same
number of homes in the intensive margin (with one converted into an agency home),
and in the extensive margin it has an extra agency home.

Figure 1.8 reports the predicted average termination probabilities in the distinct
counterfactuals. The parameter δah is on the x-axis. One can observe that a
higher share of agency homes, in both the intensive and extensive margins, has a
minor effect on termination probabilities. Interestingly, the effects point in opposite
directions in the intensive and the extensive margins. In the intensive margin, the
disruption probability diminishes and the one of exiting to permanency increases.
The disruption probability goes from 52.6% at δah = 0 to 51% at δah = 0.25
(equivalent to going from an average of 2.1 placement per child to 2). In the
extensive margin, the average disruption probability increases, it goes from 52.6%
to 53.8% (equivalent to going from an average of 2.1 placement per child to 2.2).
Figure 1.6 shows the analogous plots for conditional durations.
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Figure 1.9: Counterfactual IIb-Agency-FH: Average predicted conditional
expected duration
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Note: Plots of the average predicted conditional expected durations. Averages taken across all assigned
placements in each counterfactual. The x-axis plots the value of δ, the factor by which the supply of Relative
Foster Homes is adjusted. Solid lines correspond to counterfactuals in which the supply of Agency Foster
Homes is increased in the intensive margin; dashed lines to ones in which the supply of Agency Foster Homes
is increased in the extensive margin.

Figure 1.10: Counterfactual IIb-Agency-FH: Average predicted expected duration
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Note: Plot of the average predicted expected duration. Averages taken across all assigned placements in each
counterfactual. The x-axis plots the value of δ, the factor by which the supply of Agency Foster Homes is
adjusted. Solid lines correspond to counterfactuals in which the supply of Agency Foster Homes is increased
in the intensive margin; dashed lines to ones in which the supply of Relative Foster Homes is increased in the
extensive margin.
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1.8 Conclusion
This chapter presents a framework to study how placements are assigned in foster
care. The model aims to capture how social workers assign placements in the field.
The model incorporates key institutional features of placement assignment in foster
care: (1) children need to be placed with relatives whenever possible; (2) social
workers need to prioritize the location of prospective foster homes in relation to the
children’s schools, and (3) social workers have discretion in how to weigh all the
factors that contribute to successful placements.

A key aspect of the model is that it incorporates the endogeneity arising from
placement assignments being affected by unobservables correlated with outcomes.
The main identification strategy is to rely on the exogenous variation across the dates
and geographic regions at which children enter foster care. The empirical exercise
uses a novel dataset of confidential foster care record from Los Angeles County,
California. The parameter estimates of the model show that expected outcomes are
significant factors when assigning placements. Overall, social workers assign the
placements that are less likely to be disrupted and in which it is more likely that the
children exit to permanency. Another key variable when determining assignments is
the conditional expected duration of prospective placements. Social workers aim to
assign placements that, conditional on their termination reason, will have the lowest
possible durations.

Through counterfactual exercises, I show the effect of market thickness and the
presence of different types of foster homes on the distribution of outcomes. A
key contribution of this chapter is to quantify the gains, in terms of better place-
ment outcomes, resulting from thicker markets in foster care. It is shown that the
gains due to market thickness are greater when thickness is increased geographi-
cally (by assigning placements throughout the county) than time-wise (by delaying
placements). Specifically, the model predicts that if placements were assigned in
county-widemarkets, the expected number of placements childrenwould experience
in foster care would diminish by 8%, and the average distance from foster homes to
children’s schools would be reduces by 54%.

Often, the allocation of resources is the result of individual choices made within
exogenously-designed institutions. The findings of this chapter support the view
that social workers have a good understanding of which placements are less likely
to be disrupted and seem to do a good job when it comes to assigning them. They
assign the placements that are more likely to work. However, at the system level, the
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model shows that the current state of the system does not facilitate the coordination
between the distinct regional offices. The empirical analysis shows that by being
better at coordinating with one another, regional offices would be able to assign
better placements for children and foster parents.
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C h a p t e r 2

MATCHING IN FOSTER CARE: A DYNAMIC AND
CENTRALIZED APPROACH

2.1 Introduction
The main objective of the foster care (FC) system is to find suitable placements
for children who have been temporarily removed from home by child-protective
services. The main focus of this chapter is to study the determinants of the duration
of assignments (matches) in the FC system. All matches are temporary because
all children in FC exit the system eventually. They are either reunited with their
biological parents, adopted, or emancipated (exit the system when turning 18 or 21
years old, depending on the state). Furthermore, foster care placements may also be
unsuccessful and terminate before children exit the system.1 In such cases, children
need to be rematched with new foster families.

The assignment of children to foster families gives rise to a matching market. The
demand side is comprised by children in need of placements and the supply side
by foster families or, more generally, placement providers. The main difficulty of
studying the duration of matches is that they are not assigned randomly. County
social workers are responsible for finding and assigning placements for children
in FC. Furthermore, the pool of children who need a placement and the one of
available foster homes evolves dynamically over time. Importantly, the stochastic
process governing these dynamics is shaped by the matching policy used by county
officials. That is, if “bad” matches are assigned (ie., ones that will be disrupted),
then more children will need a placement in the future. The main goal of this
chapter is to model the matching process dynamically. Given the lack of data on the
exact matching procedure, I model the observed matching as if it were generated by
minimizing the number of children who remain unmatched in any given period.

1In reality, a high fraction of children go through unsuccessful matches. In 2013, the average
number of placements during the last removal was 2.8 across all children who where in FC in the
United States. A match may be terminated prematurely by the foster family, a county social worker,
the involved private agency (if any), or simply because the child runs away.
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First, I propose a general model of centralized one-to-one matching in a dynamic
environment.2 In every period, a single matchmaker decides matches among un-
matched children and available families. The duration of each match is random,
and its distribution depends on characteristics of both the child and the family. A
match may terminate for one of two reasons: the child exits the system or the match
is unsuccessful, in which case the child needs to be rematched. At the start of every
period, the set of children in the market is comprised by new arrivals, unmatched
children from previous periods, and those coming from unsuccessful matches. For
simplicity, I assume that unmatched parents exit the market in every period. The
matchmaker lives infinitely and seeks to minimize the expected discounted sum of
the children left unmatched in every period. The setting gives rise to a dynamic
programming problem. When deciding which children to match and to which fami-
lies, the matchmaker must take into account the expected duration of the prospective
matches and, more importantly, their probability of being unsuccessful before the
children exit the system.

Second, I conduct a series of analytic and computational exercises. I consider a
specification of the general model that highlights the tension between matching
younger children with lower expected durations of matches and older children who
have higher expected duration of matches, but are closer to the emancipation age.
The parameters of the model are such that there is a scarcity of foster parents in the
market. The difference between the two types of exercises is the time horizon. Given
the complexity of the general model, the analytic exercises consider a finite horizon
of at most three periods. By contrast, in the computational exercise, I solve for
the matchmaker’s optimal matching policy by iterating over the Bellman equation.
I describe the optimal matching policy for different specifications of the model’s
parameters. The main finding is that the optimal matching policy gives priority to
younger children in terms of the likelihood of getting matched and the quality of
the match in terms of its expected duration. The model captures different trade-offs
between age and heterogeneity in the expected duration of matches. Moreover,
solving the model in infinite horizon allows me to compute its stationary state.
I report the expectation of several variables of interest in the stationary state for
different specifications of the model’s parameters.

2In reality, a family may take care of more than one child, so the matching may be many-to-one.
However, there is no available data of the number of children cared by the same family, so I restrict
the analysis to one-to-one matching.
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Third, I present an empirical description of the FC system in Los Angeles County,
California. The main data source is the Adoption and Foster Care Analysis & Report
System (AFCARS) of the U.S. Children’s Bureau. I describe the dataset and present
summary statistics of relevant variables. I also describe sorting patterns in the FC
in terms of sex, age, and race, and analyze the correlation between the duration
of matches and several children characteristics. The key aspects of the data are
related to its longitudinal characteristics. Even though the AFCARS databases are
cross-sections, they include information and dates of the history of every child in
FC, such as the number of removals from home and number of settings during the
last or current removal.

The chapter is organized as follows. I review the related literature in what remains
of the introduction. I present a general model of centralized matching in a dynamic
environment in Section 2.2. The analytic and computational exercises of the model
are in Section 2.3. Section 2.4 presents a description of the data, and Section 2.5
concludes by addressing the future challenges and objectives of this research agenda.

Related Literature.—The economic analysis of the foster care system ismostly absent
in the economics literature. For some exceptions, see Doyle Jr. (2007, 2008) and
Doyle Jr. and Peters (2007), who analyze social workers’ removal decisions using
a treatment effects framework. The only paper that has analyzed a market design
aspect of the foster care is Slaugh, Akan, Kesten, and Ünver (2016). Their main
focus is on children who get adopted from foster care. In particular, they analyze
an existing government program in Pennsylvania which main objective is to find
adoptive families for children in foster care. A related study on adoption markets
is Baccara, Collard-Wexler, Felli, and Yariv (2014). The theoretical portion of this
chapter is related to the literature on dynamic matching. The approach is novel in
that it considers a matching market with reversible matches. In contrast with much
of the existing literature, the main focus is on the determinants of the duration of
matches in a market in which all matches are temporary. Furthermore, the approach
is fully centralized in the sense that a single matchmaker decides which matches
are formed. Individuals do not search or otherwise decide for themselves. Hence,
I do not impose incentive compatibility or individual rationality constraints. For
examples that focus on distinct aspects of dynamic matching markets, such as the
relation between preferences, stability, efficiency and sorting patterns, see Baccara,
Lee, and Yariv (forthcoming), Doval (2018), and Ünver (2010).
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The empirical part of the chapter is related to the literature on structural estimation
of matching markets. For examples of the marriage market and transferable utility
matching markets in general, see Choo and Siow (2006), Fox (2018), and Galichon
and Salanié (2015). For treatments with non-transferable utility and strategic con-
siderations, see Agarwal (2015) and Agarwal and Somaini (2018). More generally,
the empirical strategy that this research aims to use falls in the wide empirical liter-
ature on dynamic discrete choice models. For notable contributions, see Hotz and
Miller (1993), Magnac and Thesmar (2002), Pakes (1986), Rust (1987, 1994), and
Wolpin (1984), and the references therein.

2.2 Model
The FC system lasts for t = 0, 1, . . . ,T ≤ ∞ periods. The sequence of every period
t is as follows:

1. Children of age are emancipated.

2. The sets of available children and parents to be matched, and the set of
surviving matches from previous periods, are (randomly) determined.

3. The matchmaker decides matches among the available children and parents.

4. All children’s ages increase by one.

Specifically, the set of available children in period t consists of the children who
remained unmatched in the previous period, new arrivals, and children from broken
matches, of which the last two are randomly determined. The set of available parents
is composed solely by new arrivals, which are random. I assume that parents who
remain unmatched at the end of a period and those from broken matches exit the
system permanently. Every existing match at the end of period t − 1 may exit the
system in period t with some probability, e.g., because the child is adopted or reunited
with her biological parents. The matches who do not exit the system may break up,
in which case the child returns to the market to be rematched, or remain unbroken
and survive period t. Exits and breakups are randomly determined. The goal of the
matchmaker is to minimize the amount of children who remain unmatched in every
period.
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Sketch of the Model
Suppose all parents and children are otherwise homogeneous. The model has three
state variables:

1. mt = number of matches from previous periods that survive period t;

2. ct = number of available children to be matched in period t;

3. pt = number of available parents to be matched in period t.

The matchmaker decides at , the number of matches formed in period t. Her choice
set is given by:

at ∈ Φ
(
ct, pt ) ≡ min

{
ct, pt} . (2.1)

That is, the matchmaker may form as many matches as there are available children
or parents. In the next period, each existing match exits the system with probability
e ∈ (0, 1), and those who do not exit, are broken with probability b ∈ (0, 1). New
arrivals of children follow a binomial distribution with parameters (nc, µ), and those
of parents with (np, λ). Thus, the transition of the system is governed by:

pt+1 = B(np, λ) (2.2)

mt+1 =
(
mt + at ) − et+1 − B

(
mt + at − et+1, b

)
(2.3)

ct+1 =
(
ct − at ) + B(nc, µ) +

(
mt + at − et+1 − mt+1

)
, (2.4)

where et+1 = B
(
mt + at, e

)
is the number of matches that exit the system at the start

of period t+1, and B(n, q) denotes the realization of a binomial random variable with
parameters (n, q). (2.2) formalizes the fact that the set of available parents is simply
composed by new arrivals in each period. The first term in (2.3) is the number of
existing matches at the end of period t, the ones from previous periods that have
survived until period t and the newly formed. The second and third terms in (2.3)
correspond to the random numbers of matches that exit the system and are broken
at the start of t + 1. Thus, the set of available children in t + 1 is composed by 1) the
children who remained unmatched in t, 2) new arrivals, and 3) children from broken
matches. Each corresponds to the respective term in (2.4). For completeness, set

c−1 = 0 & m−1 = 0, (2.5)

so that in period t = 0 the market is comprised solely by new arrivals and there are
no matches from previous periods. The number of children who remain unmatched
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in each period is ct − at , so the problem of the matchmaker is given by:

max
a=(at )Tt=0

− E
T∑

t=0
δt (

ct − at ) (∗)

subject to (2.1) − (2.5) ∀ t = −1, 0, 1, . . . ,T,

where δ ∈ (0, 1) is the matchmaker’s discount factor. The model is thus far incom-
plete because 1) the size of the market may be unbounded, depending on the arrival
and exit probabilities, and 2) there is no heterogeneity across agents in the economy,
so the matchmaker would simply match as many children as possible in each period.
In order to bound the size of the market, I introduce the emancipation age. That is,
each child grows one period old as periods go by, and exits the market permanently
at a predetermined emancipation age. Furthermore, I enrich the model by assuming
that there are different types of children and parents, leading to distinct exit and
breakup probabilities.

Complete Model
Let ḡ be the emancipation age, and denote by G the set of possible ages for children
in the system {0, 1, . . . , ḡ − 1}. Assume that each child has a type x ∈ X , where X

is a finite set of child-types. Similarly, each parent has type y ∈ Y with Y finite.
Define the following:

• mt
g,x,y = number of surviving matches from previous periods composed by a

child of age g and type x, and a parent of type y.

• mt =
(
mt
g,x,y

)
(g,x,y)∈G×X×Y

• ct
g,x = number of available children of age g and type x in period t.

• ct =
(
ct
g,x

)
(g,x)∈G×X

• pt
y = number of available parents of type y in period t.

• pt =
(
pt
y

)
y∈Y

Thematchmaker decides at =
(
at
g,x,y

)
(g,x,y)∈G×X×Y

, where at
g,x,y indicates the number

of matches formed in period t between a child of age g and type x, and a parent of
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type y. The choice set of the matchmaker in period t is given by:

at ∈ Φ
(
ct, pt ) ≡ {

a ∈ N|G |×|X |×|Y | :∀ (g, x) ∈ G × X, 0 ≤
∑
y∈Y

ag,x,y ≤ ct
g,x,

& ∀y ∈ Y, 0 ≤
∑
g∈G

∑
x∈X

ag,x,y ≤ pt
y

}
. (2.6)

The first set of constraints in (2.6) are on the number of matches per children age and
type, whereas the second set of constraints are on the number of matches per type of
parent. Amatch between a child of type x and a parent of type y exits the system (for
other reason than emancipation) with probability e(x, y). If a match does not exit
the system, it breaks up with probability b(x, y). Hence, a match between a type-x
child and type-y parent survives a period with probability (1− e(x, y)) · (1− b(x, y)).
Let

(
nc
g,x, µg,x

)
(g,x)∈G×X

describe the arrival distributions of new children by age and

type, and
(
np
y, λy

)
y∈Y that of new parents by type. Thus, for every (x, y) ∈ X ×Y and

g ∈ G \ {0}, the transition of the system is governed by:

pt+1
y = B

(
np
y, λy

)
(2.7)

mt+1
0,x,y = 0 (2.8)

mt+1
g,x,y = mt

g−1,x,y + at
g−1,x,y − et+1

g,x,y − B
(
mt
g−1,x,y + at

g−1,x,y − et+1
g,x,y, b(x, y)

)
(2.9)

ct+1
0,x = B

(
nc

0,x, µ0,x

)
(2.10)

ct+1
g,x =

(
ct
g−1,x −

∑
y∈Y

at
g−1,x,y

)
+ B

(
nc
g,x, µg,x

)
+

∑
y∈Y

[
mt
g−1,x,y + at

g−1,x,y − et+1
g,x,y − mt+1

g,x,y

]
, (2.11)

where
et+1
g,x,y = B

(
mt
g−1,x,y + at

g−1,x,y, e(x, y)
)

is the number of matches that exit the system at the start of t + 1 per age and
type. See that (2.7) – (2.11) are the analogues of (2.2) – (2.4) with the appropriate
adjustments. First, note that newborns, age g = 0, may only be new arrivals and
cannot come from broken matches or previous periods. Second, children who
reach the emancipation age, g = ḡ, exit the system by construction. Finally, the
matchmaker has any freedom to form matches across types. The number of children
who remain unmatched in period t is given by

∑
g∈G

∑
x∈X

(
ct
g,x −

∑
y∈Y at

g,x,y

)
, so
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the problem of the matchmaker is

max
a=(at )Tt=0

− E
T∑

t=0
δt

∑
g∈G

∑
x∈X

(
ct
g,x −

∑
y∈Y

at
g,x,y

)
(?)

subject to (2.6) − (2.11) ∀ t = −1, 0, 1, . . . ,T ;

c−1 = 0 & m−1 = 0.

The state variables of the problem are mt , ct , and pt . Each has dimension |G | × |X | ×
|Y |, |G | × |X |, and |Y |, respectively. In any given period, the number of children
in the system, unmatched and matched, is bounded since the arrival distribution of
children has finite support. Namely, for every g ∈ G and x ∈ X ,

ct
g,x +

∑
y∈Y

mt
g,x,y ≤

g∑̃
g=0

nc
g̃,x . (2.12)

The number of children of age g and type x in the system in period t, matched or
unmatched, is bounded above by themaximum possible number of arrivals of type-x
children who are g periods old in period t. The state space of the matchmaker’s
problem is a proper subset of N|G |×|X |×|Y |+|G |×|X |+|Y |.3

2.3 Analytic and Computational Exercises
In this section, I consider a simple specification of the complete model to illustrate
the dynamic trade-offs faced by the matchmaker. In particular, I assume there are
two types of children and parents whose arrivals are Bernoulli distributed. The main
focus is to explore the trade-offs due to the different types and ages of children. First,
I consider three examples in finite horizon to illustrate three important observations.
1) It is not optimal to leave children unmatched while parents are available. This
is unsurprising since parents exit the market when they are unmatched. 2) The
matchmaker gives priority to children who have higher probability of exiting the
market if matched, but lower priority to children who are closer to emancipation

3Specifically, the dimension of the state space is
[∏

g∈G\{0},x∈X
∑Ng,x

n=0
(n+ |Y |

n

) ]
·[∏

x∈X

(
nc0,x + 1

)]
·
[∏

y∈Y

(
np
y + 1

) ]
, where Ng,x =

∑g
g̃=0 ncg̃,x for every g ∈ G \ {0} and x ∈ X .

To see this formally, note that the second and third terms in brackets are the possible configurations
of newborn children and parent arrivals. For each (g, x) ∈ (G \ {0}) × X , the sum

∑Ng,x

n=0
(n+ |Y |

n

)
is

the possible number of configurations of ctg,x and
(
mt
g,x,y

)
y∈Y

satisfying (2.12). Note that there are(n+ |Y |
n

)
possible values of ctg,x and

(
mt
g,x,y

)
y∈Y

that satisfy (2.12) with equality and n in the right-hand
side.
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age. 3) The interplay between children ages and types depends on the specification
of the breakup probabilities. Rather than achieving great generality, the objective
of these three examples is to illustrate the workings of the model and the trade-offs
it captures.

Second, I perform a computational exercise in an infinite horizon setup. I write the
Bellman equation of the matchmaker’s dynamic programming problem and solve it
using iteration. The problem is high-dimensional by design, so the optimal policy is
hard to interpret as such. I describe it qualitatively by evaluating four observations
regarding the optimal decision in a set of predetermined states. The observations
highlight the connection between the finite and infinite horizon models. I also
perform discrete comparative statics by analyzing how the optimal policy changes
in the model parameters. Finally, I compute and analyze the steady state of the
system under the optimal policy. The state of the system is a Markov chain under
the optimal matching policy. I compute its transition matrix and obtain its invariant
distribution. This yields a distribution on the state space, so it allows to describe the
market and the matchmaker’s decisions in expected terms.

Analytic Examples in Finite Horizon
Let X and Y be binary sets, say {0, 1}. Assume that arrivals of children and parents
are Bernoulli distributed and homogeneous across types. Moreover, assume that
only newborns arrive to the market. Set nc

0,x = np
y = 1 and nc

g,x = 0 for all g ∈ G\{0}
and (x, y) ∈ X × Y , and let µ0,x = µ and λy = λ for x, y ∈ {0, 1}. I consider three
examples.

Leaving Children Unmatched

In a simple two-period example, I illustrate the rationale of why it is not optimal to
leave children unmatched while parents are available. Simply put, matching a child
increases the immediate payoff and the expected value of the following periods.
This is because, all else equal, it is better for the matchmaker if there are fewer
children in the market in each period. Let T = 1. Assume there is one child and one
parent available in t = 0. For simplicity, I omit specifying the age of children. Let
V t

c be the expected optimal value of period t conditional on there being c available
children who arrived in previous periods. If the (only) child remains unmatched in
t = 0, the optimal expected value of the matchmaker’s objective function in t = 1 is
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given by:

V1
1 = (1 − λ)

2 [
µ2(−3) + 2µ(1 − µ)(−2) + (1 − µ)2(−1)

]
+ 2λ(1 − λ)

[
µ2(−2) + 2µ(1 − µ)(−1) + (1 − µ)2(0)

]
+ λ2 [

µ2(−1) + 2µ(1 − µ)(0) + (1 − µ)2(0)
]

= −(1 − λ)2(2µ + 1) − 4λ(1 − λ)µ − λ2µ2. (2.13)

The valueV1
1 in (2.13) encompasses the optimal decision of thematchmaker in t = 1.

Note that all children are homogeneous from the matchmaker’s perspective. In the
final period, she only wants to match as many children as possible. For example,
with probability (1 − λ)2 no parent arrives in t = 1, so at least one child is left
unmatched, the one who arrived in t = 0. Two more children arrive in t = 1 with
probability µ2, in which case three children are left unmatched. With probability
2µ(1−µ), only one child arrives, so two children are left unmatched. The probability
of there being just one child left unmatched is (1− µ)2, which is the probability that
no child arrives in the second period. Similarly, the optimal expected value in t = 1,
conditional on there being no children from previous periods in the market, is given
by:

V1
0 = −2(1 − λ)2µ − 2λ(1 − λ)2µ2. (2.14)

Naturally, the matchmaker prefers that there are less children in the market in t = 1
since V1

0 > V1
1 . For this reason, the matchmaker prefers to match the available child

in t = 0 regardless of the breakup probability. To see this formally, note that the
expected optimal value in t = 0 of not matching the child is −1 + δV1

1 , whereas the
one of matching her is −0+ δ

[
bV1

1 + (1 − b)V1
0
]
, where b is the breakup probability

of the match. Matching the child in t = 0 not only yields a higher immediate payoff,
but also a higher expected value from the following periods.

Exit Probability and Emancipation Age

Using the same setup as above, I illustrate why it is optimal for the matchmaker
to give priority to children who are more likely to exit the system if matched, e.g.,
because of getting adopted. Consider a case with two children of different types, x

and x′, but equal breakup probability. Assume there is a single parent available in
t = 0. Let e and e′ be the exit probabilities of each child if matched, and denote
by b their common breakup probability. Assume e > e′. The expected value of the
matchmaker in period t = 0 from matching child x is given by:

V0
x = −1 + δ

[
eV1

1 + (1 − e)
(
bV1

2 + (1 − b)V1
1

)]
. (2.15)
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The expected value on (2.15) encompasses the fact that x′ will remain unmatched in
t = 0, and one of three things may happen in the next period: 1) x exits the system,
in which case there will be one child in t = 1 from previous periods, 2) x does not
exit the system and her match breaks up, or 3) she does not exit, but her match does
not break up. It is straightforward to compute V1

2 and verify V1
1 > V1

2 . The expected
value of matching x′ instead is the same as in (2.15), but with the exit probability e′

in place of e. Since V1
1 > V1

2 and e > e′, (2.15) implies it is optimal to match child
x in period t = 0. The reason is because a child that is more likely to exit the system
permanently when matched is also less likely to come back to the market in future
periods because of an unsuccessful match.

Consider instead two children with null exit probability and same breakup proba-
bility, but different ages. In particular, assume that one of them, say x′, is to be
emancipated in the next period. Denote the breakup probability of both children by
b. Matching the child who will be emancipated in the next period yields an expected
value in t = 0 given by V0

x′ = −1 + δV1
1 , whereas matching x, the child who will not

be emancipated, yields

V0
x = −1 + δ

[
bV1

1 + (1 − b)V1
0
]
. (2.16)

The key thing to note is that there will be no children from previous periods in t = 1
if the match of x does not break. This is because x′ will be emancipated regardless
of having stayed unmatched. Hence, it is optimal to match x and leave x′ unmatched.

Types and Emancipation Age

The previous example emphasizes why it is optimal for thematchmaker to give lower
priority to children closer to the emancipation age. This observation is particularly
strong when looking at the last period of a child previous to emancipation. A
child’s type is unimportant in the period prior to emancipation because her type
only matters to the matchmaker through the breakup probability, which is irrelevant
if the child is to be emancipated in the following period. With this observation in
mind, in this section I consider an example to explore the tension between age and
type. In particular, I consider a situation in which there are two children and one
parent available in the market. One of the children has the same type as the parent,
so a lower breakup probability if matched, but is also closer to the emancipation age.
In order for the type of the older child to be taken into account by the matchmaker,
let T = 2.



54

Figure 2.1: Breakup probability b(x, y)

y

0 1

x
0 (1 − r)/s 1/(s · w)
1 1/s (1 − r)/(s · w)

Specify the breakup probability b(x, y) as in the Figure 2.1. The breakup probability
depends on three parameters: r ∈ [0, 1] indicates the same-type bias, s ∈ [1,∞)
measures how likely are matches to survive in this system overall, and w ∈ [1,∞) is
the “bonus” of type-1 parents. High values of r indicate that same-type matches are
less likely to breakup. Formally, the survival probability 1− b(x, y) is supermodular
if and only if r > 0. High values of s imply that all matches are more likely to
survive, and high values of w that, all else constant, matches involving a type-1
parent are less likely to break up.

The state is fixed in period t = 0 at p0
1 = 1, c0

00 = 1, c0
11 = 1, and all other state

variables equal to zero. There is a type-1 parent, a type-0 child who is 0 periods old,
and a type-1 child who is one period old. The emancipation age is set to ḡ = 2, so
the type-0 child will be in the system for the three periods, but the type-1 child will
be emancipated in period t = 2. In every subsequent period, a parent of each type
may arrive with probability λ, and a newborn child of each type may arrive with
probability µ. I characterize the parameter values for which it is optimal to match
the type-0 child, and not the type-1 child, in period t = 0.

Proceed by backward induction. In the last period, t = 2, the matchmaker matches
as many children as possible, regardless of their types. It is straightforward to verify

V2
0 > V2

1 > V2
2 > V2

3 . (2.17)

A maximum number of three children may arrive to period t = 2 from previous
periods: the type-0 child of period t = 0, and potentially the two arrivals of period
t = 1. In period t = 1, there are six state variables: c1

10,c
1
21,c

1
00,c

1
01, p1

0, and p1
1.

The last four variables correspond to new arrivals and are randomly determined:
c1

00, c1
01 ∼ Bernoulli(µ), and p1

0, p1
1 ∼ Bernoulli(λ). If the matchmaker matches the

type-0 child in t = 0, then c1
21 = 1, and c1

10 ∼ Bernoulli(b(0, 1)), the older type-1
child remains unmatched and the first-period match breaks up in the next period
with probability b(0, 1) = 1/sw. If instead the matchmaker matches the type-1 child
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in period t = 0, then c1
10 = 1 and c1

21 ∼ Bernoulli(b(1, 1)). Hence, there are 52 = 32
possible states in t = 1 for each decision of the matchmaker in t = 0.

Let V1(a0 = x) be the expected optimal value in t = 1 if the type-x child is matched
in t = 0. See Appendix 1 for details. The matchmaker’s expected value of matching
the type-x child in t = 0 is given by

−1 + δV1
(
a0 = x

)
, (2.18)

so it is optimal to match the type-0 child if and only if V1(a0 = 0) > V1(a0 = 1).
To illustrate how this inequality changes in the parameters, I use the following
benchmark: w = 1, s = 2, µ = 0.75, λ = 0.5, and δ = 0.98. Figure 2.2 illustrates
the regions of the parameters for which it is optimal to match the type-0 child in
period t = 0. The x-axis corresponds to the same-type bias r in every plot. I
change one parameter at a time from the benchmark values in the y-axis. In general,
it is not optimal to match the type-0 child for high values of r . Intuitively, if the
same-type bias is sufficiently strong, it is optimal to match the type-1 child even
though she is closer to the emancipation age. Moreover, note that if type-1 parents
are sufficiently “better” (high values of w), then it is always optimal to match the
type-0 child (top-left). This is because a high w “washes out” the same-type bias,
so that a type-1 parent is better for either type of child. The same holds for high
values of s (top-right). If all children have a low breakup probability, the same-type
bias stops playing a role and it is always optimal to match the younger type-0 child.
The main disadvantage of matching the older type-1 child is that the type-0 child
will stay in the system unmatched for more periods. This is crucial if the arrival
probability of children, µ, is high or the arrival probability of parents, λ, is low. The
middle panels of Figure 2.2 illustrate this observation. For high values of µ or low
values of λ, a stronger same-type bias is needed if matching the type-1 child is to
be optimal. Finally, note that the discount factor is also relevant in this case. The
bottom panel of Figure 2.2 shows that a lower discount factor, δ, implies that it is
optimal to match the type-1 child.
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Figure 2.2: Parameter regions in which it is optimal to match type-0 child

Note: Parameter regions in which V1(a0 = 0) > V1(a0 = 1). Benchmark parameter values: w = 1, s = 2,
µ = 0.75, λ = 0.5, and δ = 0.98. The x-axis varies r in [0, 1] in all figures. Other parameters are varied
from the benchmark as follows: w ∈ [1, 2] (top-left), s ∈ [1, 3] (top-right), µ ∈ [0, 1] (middle-left), λ ∈ [0, 1]
(middle-right), and δ ∈ [0, 1] (bottom).
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Computational Example with Infinite Horizon
Consider the case with infinite horizon, T = ∞. The problem in (?) is stationary,
so I focus on the optimal matching policy per period a =

(
ag,x,y

)
(g,x,y)∈G×X×Y , given

the state of the system (m, c, p). In particular, the optimal matching policy satisfies
the following Bellman Equation:

V(m, c, p) = max
a∈Φ(c,p)

−
∑
g∈G

∑
x∈X

(
cg,x −

∑
y∈Y

ag,x,y

)
+ δE [V(m̃, c̃, p̃)|m, c, a]

 , (2.19)

where V is the value function of (?) and the state in the next period (m̃, c̃, p̃) evolves
according to:

p̃y ∼ B
(
np
y, λy

)
m̃0,x,y = 0

m̃g,x,y ∼ B
(
mg−1,x,y + ag−1,x,y − ẽg,x,y, 1 − b(x, y)

)
(2.20)

c̃0,x ∼ B
(
nc

0,x, µ0,x

)
c̃g,x = cg−1,x + B

(
nc
g,x, µg,x

)
+

∑
y∈Y

[
mg−1,x,y − ẽg,x,y − m̃g,x,y

]
where ẽg,x,y = B

(
mg−1,x,y + ag−1,x,y, e(x, y)

)
, for each (x, y) ∈ X×Y and g ∈ G\ {0}.

Consider the same specification as in the previous section: there are two types
of children and parents, only newborn children arrive to the market, and arrivals
are Bernoulli distributed and homogeneous across types. Furthermore, set the
emancipation age at ḡ = 3 periods, and assume a zero exit probability, e(x, y) = 0,
for all (x, y) ∈ X × Y . Specify the breakup probability b(x, y) as in Figure 2.1.

Given the structure of arrivals, the maximum number of children per age and type
in the system (matched and unmatched) is 1, and so is the maximum number of
new arrivals of parents per type. To compute the value function, I use a grid that
includes every possible state, so its dimension is 44 · 22 · 22 = 4, 065, see footnote 3.
Accordingly, the decision variable of the problem, a, has dimension |G | × |X | × |Y |
= 3× 2× 2 = 12. After solving for the optimal policy, I proceed in three steps. First,
I analyze four observations in a benchmark of the model’s parameters to describe
the optimal matching policy qualitatively. Second, I analyze how these observations
change in the parameters of the model. Third, I analyze the stationary state of
the system under the optimal policy and how it changes for different parameter
specifications.
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The Optimal Policy: A Benchmark Specification

Consider the following benchmark specification of the model’s parameters: r = 0.5,
w = 1, s = 2, µ = 0.75, λ = 0.5, and δ = 0.98. Under the benchmark specification,
there is same-type bias (r > 0), no type-1 bonus (w = 1), and foster parents are
scarce in the market (µ > λ). (Note that it is the same specification as in Section
2.3.) The following four observations hold true in the optimal policy under the
benchmark.

Observation 1 No children remain unmatched while parents are available.

Observation 1 goes in line with the reasoning on Section 2.3. Since parents exit
the system permanently when they remain unmatched, there is no reason to leave a
child unmatched while a parent is available. In the next section, we will see that this
observation is robust to different specifications of the model’s parameters.

Observation 2 No child is left unmatched while a same-type older child gets
matched.

It is optimal for the matchmaker to give priority to younger children who are further
from the emancipation age. The intuition for this observation is straightforward:
children who are closer to the emancipation age imply a lower future cost to the
matchmaker if left unmatched because they will be in the market for a fewer number
of periods. In the next section, we will see that this observation is robust to different
specifications of the model’s parameters.

Observation 3 Assume there is only one available parent and is type-1. If there
are two children: one type-1, and one type-0 but younger than the type-1 child, the
younger type-0 child is matched only if the older type-1 child is one period prior to
emancipation.

Observation 3 is the opposite to the case analyzed in Section 2.3. Under the
benchmark specification, there is a relatively strong same-type bias, r = 0.5, so it
is optimal to give priority to type over age. Namely, the breakup probability of the
type-0 young child if matched is 0.5, whereas that of the older same-type child is
0.25. However, as noted in Section 2.3, this observation naturally depends on the
specification of the breakup probabilities. I analyze this issue in the next section.
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Observation 4 Assume there are two available parents, one of each type. If there
are two type-0 children and, at the most, one type-1 child, older than the two type-0
children, the only child matched to a same-type parent is the youngest type-0 child.

Observation 4 explores if age and type are complements or substitutes. Observation
2 highlights the fact that younger children are given priority over older children when
only one parent is available. Observation 4 addresses the question of which of the
two children, the young or the old one, is matched with the same-type parent if there
are two parents available. Under the benchmark specification, the optimal policy
implies that age and type are complements because the younger child is matched
with the same-type parent, whereas the older one is matched with a different-type
parent. Hence, younger children are given priority in getting matched and in getting
matched with a “better” parent in terms of a lower breakup probability. In the next
section, I will see that this observation is robust to different specifications of the
parameters with a few exceptions.

Discrete Comparative Statics

In this Section, I evaluate if the previous observations hold for different specifications
of the parameters. Specifically, I vary the same-type bias r ∈ {0, 0.2, 0.4, 0.6, 0.8, 1},
and each of the other parameters one at a time from the benchmark specification:
w ∈ {1, 1.2, 1.4, 1.6, 1.8, 2}, s ∈ {1, 1.4, 1.8, 2.2, 2.6, 3}, and µ, λ, δ ∈ {0.01, 0.2,
0.4, 0.6, 0.8, 0.99}. The total number of specifications computed is 180.

1. Observations 1 and 2 hold in all the specifications. No child is left unmatched
while a parent is available or an older same-type child gets matched.

2. I present the parameter values for which Observation 3 holds marked as black
dots in Figure 2.3. Observation 3 holds when the same-type bias is sufficiently
large. In particular, note that it does not hold in the absence of same-type bias,
r = 0. The intuition for the cases in which a young type-0 is left unmatched
while the older type-1 child is matched with a type-1 parent is the same as in
section 2.3. Compare Figures 2.2 and 2.3. The shaded regions in Figure 2.2
correspond to the parameter values under which the type-0 child is matched
in a finite horizon setup. Observation 3 in an infinite horizon setup is slightly
more general since it also considers cases when the type-1 child is older but
one period prior to emancipation age. Roughly, the shaded regions in Figure
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2.2 correspond to the white dots in Figure 2.3, which represent the cases in
which Observation 3 fails.

3. I present the parameter values for which Observation 4 holds in Figure B.1 in
Appendix 2. In general, Observation 4 holds in all the specifications except
for high values of w. The reason is because high values of w imply that the
same-type bias is not very important for type-0 matches. For large values
of w, matches with a type-1 parent have less breakup probability regardless
of the child’s type. Figure B.1 shows that younger children receive priority,
whether it is due to same-type bias or parent-1 bonus. Younger children tend
to be in the matches with lower breakup probabilities.

The Stationary State

In this section, I analyze distinct features of the system in the stationary state. I
report the expected number of available children, formed matches, children left
unmatched and breakups per age and type, and the expected duration of matches
for five distinct specifications. Formally, the stationary state is obtained through
the invariant (stationary) distribution of the system’s transition matrix under the
optimal policy. Let σ = (m, c, p) index a state. Denote the state space by Σ. For a
fixed policy, a : Σ→ Φ(σ), the transition equations in (2.20) determine a transition
matrix Pa, where

Pa(σ, σ̃) = P[σ̃ |σ, a]. (2.21)

That is, the (σ, σ̃)-th entry in Pa is the probability that the state transitions from σ

to σ̃ if policy a is implemented. Denote the optimal policy by a∗(σ). The optimal
policy determines an optimal transition matrix P∗ with (σ, σ̃)-th entry given by:

P∗(σ, σ̃) = Pa∗(σ)(σ, σ̃). (2.22)

The invariant distribution of the Markov Chain determined by P∗ is given by π ∈
∆(Σ) such that

πP∗ = π. (2.23)

The stationary state of the system σ∗ is distributed according to π. Once I compute
π, I can compute the expected value of any variable of interest in the stationary state.
For example, the expected number of available children in the market of age g and
type x is given by c∗g,x = Eπcg,x(σ) =

∑
σ∈Σ cg,x(σ) · π(σ). Table 2.1 reports the

expectation of several variables of interest in the stationary state.
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Figure 2.3: Parameter regions in which Observation 3 holds

Note: The black dots indicate the parameter values in which Observation 3 holds with T = ∞. Observation
3: assume there is only one type-1 parent, if there are two children, one type-1 and one type-0 younger than
the type-1 child, the type-0 child is matched only if the older type-1 child is one period prior to emancipation.
Benchmark parameter values: w = 1, s = 2, µ = 0.75, λ = 0.5, and δ = 0.98. The x-axis varies r in all figures.
Other parameters are varied from the benchmark one at a time: w (top-left), s (top-right), µ (middle-left), λ
(middle-right), and δ (bottom).
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Table 2.1: Stationary state

w = 2 s = 3
Age & Type Variable Benchmark r = 0 r = 0.5 r = 0 r = 0.5

Expected number of available children
g = 1, x = 0 c∗1,0 0.4560 0.3836 0.4336 0.3750 0.4063
g = 1, x = 1 c∗1,1 0.4560 0.5774 0.4086 0.5625 0.4063
g = 2, x = 0 c∗2,0 0.4826 0.4740 0.4610 0.4648 0.4333
g = 2, x = 1 c∗2,1 0.4826 0.6121 0.4217 0.5931 0.4333

Expected number of matches
g = 0, x = 0, y = 0 a∗0,0,0 0.3750 0.2217 0.3750 0.3750 0.3750
g = 0, x = 0, y = 1 a∗0,0,1 0.0255 0.3408 0.0469 0.1875 0.0469
g = 0, x = 1, y = 0 a∗0,1,0 0.0255 0.1533 0.0266 0.0938 0.0469
g = 0, x = 1, y = 1 a∗0,1,1 0.3750 0.1280 0.3750 0.1875 0.3750
g = 1, x = 0, y = 0 a∗1,0,0 0.0570 0.0461 0.0542 0.0117 0.0317
g = 1, x = 0, y = 1 a∗1,0,1 0.0148 0.0079 0.0147 0.0410 0.0134
g = 1, x = 1, y = 0 a∗1,1,0 0.0148 0.0343 0.0132 0.0098 0.0134
g = 1, x = 1, y = 1 a∗1,1,1 0.0570 0.0139 0.0319 0.0381 0.0317
g = 2, x = 0, y = 0 a∗2,0,0 0.0119 0.0193 0.0128 0.0040 0.0129
g = 2, x = 0, y = 1 a∗2,0,1 0.0101 0.0020 0.0109 0.0174 0.0107
g = 2, x = 1, y = 0 a∗2,1,0 0.0066 0.0127 0.0063 0.0028 0.0070
g = 2, x = 1, y = 1 a∗2,1,1 0.0062 0.0027 0.0061 0.0129 0.0068

Expected number of unmatched children*
g = 0, x = 0 u∗0,0 0.3495 0.1875 0.3281 0.1875 0.3281
g = 0, x = 1 u∗0,1 0.3495 0.4687 0.3484 0.4687 0.3281
g = 1, x = 0 u∗1,0 0.3842 0.3296 0.3647 0.3223 0.3611
g = 1, x = 1 u∗1,1 0.3842 0.5291 0.3635 0.5146 0.3611
g = 2, x = 0 u∗2,0 0.4606 0.4526 0.4373 0.4434 0.4097
g = 2, x = 1 u∗2,1 0.4698 0.5967 0.4094 0.5774 0.4196

Expected number of breakups*
g = 0, x = 0, y = 0 B∗0,0,0 0.0938 0.1109 0.0937 0.1250 0.0625
g = 0, x = 0, y = 1 B∗0,0,1 0.0127 0.0852 0.0117 0.0625 0.0156
g = 0, x = 1, y = 0 B∗0,1,0 0.0128 0.0766 0.0133 0.0312 0.0156
g = 0, x = 1, y = 1 B∗0,1,1 0.0937 0.0320 0.0469 0.0625 0.0625
g = 1, x = 0, y = 0 B∗1,0,0 0.0846 0.0785 0.0839 0.0872 0.0574
g = 1, x = 0, y = 1 B∗1,0,1 0.0138 0.0659 0.0125 0.0553 0.0149
g = 1, x = 1, y = 0 B∗1,1,0 0.0846 0.0785 0.0839 0.0872 0.0574
g = 1, x = 1, y = 1 B∗1,1,1 0.0846 0.0275 0.0450 0.0544 0.0574

Expected duration*
All l∗ 3.7225 2.9556 5.4543 2.9444 5.4140
Note: The number of children who remain unmatched is the difference between the
available and matched. For every g ∈ {0, 1, 2} and x ∈ {0, 1}, ug,x = cg,x − (ag,x,0 +
ag,x,1). The number of broken matches between two periods is the difference between the
matches at the end of the period and the matches that survive the next period. For every
g ∈ {0, 1} and x, y ∈ {0, 1}, it is mg−1,x,y + ag−1,x,y −m′g,x,y , where m′g,x,y refers to the
matches that survive next period. Thus, the expected number of broken matches on any
state is Bg,x,y = mg−1,x,y + ag−1,x,y −E m̃g,x,y . The expected duration of a (x, y)-match
is 1/b(x, y). Note that the duration of matches follows a geometric distribution. The
expected duration of matches in the stationary state, l∗, is the expected duration of the
expected matches.
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The first thing to notice from the tables is that the stationary state is very rich,
offering a wide range of variables of interest that vary with the parameters of the
model. The first panel of Table 2.1 reports the expected number of available children
in the stationary state. The values for ages g = 0 are not reported because they equal
the arrival rates of newborns to the market (µ = 0.75). Note that the number of
children available in the market is lower if there is same-type bias (r = 0.5) and,
either w = 2 or s = 3, than in the benchmark case. The reason is because a higher
w or s imply lower breakup probabilities. Moreover, when there is parent-1 bonus
and same-type bias (column 5), the number of available children is greater for type
x = 0. This is because the matching is positively assortative across types, but type-0
matches have greater breakup probability.

The second panel of Table 2.1 reports the expected matching policy in the stationary
state. The first thing to note is that the matching is positively assortative when there
is same-type bias (r = 0.5), even in the presence of parent-1 bonus. Secondly, the
number of expected matches is decreasing in age. The intuition is the one behind
Observation 2: children who are closer to the emancipation age represent a lower
expected future cost if they remain unmatched. Lastly, when there are both same-
type bias and parent-1 bonus (column 5), the number of different-type matches is
greater for matches with s type-1 parent. Intuitively, the number of (0, 1)-matches
is the least since they have the greatest breakup probability.

The third panel of Table 2.1 presents the expected number of children who remain
unmatched. For every g ∈ {0, 1} and x ∈ {0, 1}, u∗g,x = c∗g,x − (a

∗
g,x,0 + a∗

g,x,1).
Unsurprisingly, the likelihood of remaining unmatched increases with age. An
important remark is that the asymmetry between same-age type-0 and type-1 children
who remain unmatched in the absence of same-type bias (columns 4 and 6) is not
due to any particular aspect of the model, but to the fact that all children are
homogeneous in the absence of same-type bias. Thus, the asymmetry is due to the
arbitrary tie-breaking rule of the matchmaker. That is, if there is a single available
parent and two children of different type but with same breakup probability, the
optimal policy is not unique, so matching any type is optimal.

The fourth panel of Table 2.1 presents the expected number of broken matches. This
is computed as the difference between the number of total matches at the end of
the period mg−1,x,y + ag−1,x,y and the expected number of matches that survive the
next period E m̃g,x,y. In the presence of same-type bias, there is a greater number
of broken matches that are same-type than mixed-type. The reason is because
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there are more same-type matches in absolute terms, so the number of them that
break is greater even though they have lower breakup probability. Finally, the
bottom panel of Table 2.1 shows the expected duration across all the matches in
the system. The calculation does not take into account the emancipation age. By
design, all matches last three periods at the most because of the emancipation age.
Nonetheless, I compute the expected duration of the matches as the inverse of their
breakup probability. The duration of a match follows a geometric distribution. The
expected duration of matches in the system may be seen as a measure of the quality
of the matches from the matchmaker’s perspective. Unsurprisingly, the expected
duration of matches in the system is greater when there is same-type bias (r = 0.5)
and parent-1 bonus (w = 2, column 5) or higher survival rate (s = 3, column 7).

2.4 Data
The main data source is the Adoption and Foster Care Analysis & Report System
(AFCARS) Foster Care File Database, distributed by the National Data Archive on
Child Abuse and Neglect (NDACAN). Under federal mandate, all the states in the
U.S. are required to provide information to the AFCARS of all the children in FC
who are under the responsibility of State welfare agencies. NDACAN publishes
yearly databases containing information of all children in FC.4 The data contain
characteristics of each child in FC and their current placement setting, information
regarding the history of each child in FC, and characteristics of each case, including
reason(s) for removal and some characteristics of the biological and foster parents.
Each child has a unique identifier across all databases, so children may be tracked
across years. The AFCARS Foster Care File Database published by NDACAN
contains information of every state since 2001. Even though there is available data
for every state, I limit the analysis to Los Angeles County because the administration
of state child welfare agencies is usually at the county level. Furthermore, the
database does not contain information regarding specific regulations that pertain to
single states or counties. For example, it does not contain trustworthy information
regarding the payments to foster families. First, I present a description of the dataset
and some summary statistics for the fiscal year (FY) 2013.5 Second, I report results
of several regressions in order to describe the correlation among several variables
in the dataset. It is important to note that the regression analysis is not causal since
it does not account for data selection or omitted variables. I focus the analysis on

4For more details, see the AFCARS User’s Guide (NDACAN, 2013b).
5The AFCARS database is published according to fiscal years. The fiscal year 2013 runs from

October 1st, 2012 to September 30th, 2013.
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sorting patterns between children and parents in terms of race, sex, and age, and in
the association between the duration of matches and other variables.

Description of the Data
Each observation in the dataset corresponds to a child who was in FC for at least
24 hours during the year. There are 29,873 observations in LA County.6 Reported
characteristics of the child include: sex, race, disabilities, and month and year of
birth. See Table 2.2. Children in FC may have been removed more than one time
from home. Furthermore, during each removal, a child may go through different
placements, indicating that past matches were unsuccessful. Table 2.3 presents
summary statistics on the number of (lifetime) removals, placements in the last
removal, and lengths of stay in the last removal and placement. It also includes
summary statistics on the reasons for removal. It is worth noting that on average
children have been in FC for around two years during the last removal, but have
been on their last placement only for a year approximately. Accordingly, children
have been on 2.45 placements on average during their last removal.

Most of the children in FC (86.15%) are in private homes, 34.81% being cared by
relatives. The remaining 13.85% are placed in one of multiple placement settings
provided by the state. The database also includes some characteristics on the case
of each child. See Table 2.4. Many of the children in FC have a stated “Case Plan
Goal.” A high fraction of the children have reunification listed as a case plan goal
(36.86%). Adoption is the second most common case plan goal (17.66%). The
biological/principal parents of around 10% of the children in FC have lost their
parental rights. However, the case plan goal has not been established or is unknown
in around 20% of the cases. Table 2.4 also lists the discharge reason for all the
children discharged during the FY 2013. The majority of children (56.62%) left FC
to get reunified with their principal/biological caretakers. Note also that a significant
fraction of children leave FC because they get adopted (13.81%). Out of the 29,873
children in the database, 9,773 (32.71%) left FC during the FY 2013, i.e., there were
no longer in FC on September 30th, 2013.

The data also includes characteristics of the principal/biological and foster families
of each child. However, the fraction of missing values is particularly high for these
variables in LA County. For example, the family structure of the principal caretaker

6LA County is the county in the U.S. with the most children in FC, and California is the state
with the most children in FC in the U.S. 34.88% of the children in FC in California are in LA County,
and California comprises 13.36% of all children in FC in the country.
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family is known only in roughly 30% cases. That being said, single female is the
most common family structure within the children for which I observe the structure
of the principal caretaker family. Single female is also the most common family
structure within the foster families for which the family structure is known. As it
may be seen in Table 2.2, even though the database contains the race of the foster
family for each child, it is unknown in the majority of the cases.

The main variables of interest for the empirical application are those related to the
history of the children in FC. In particular, the database contains entry dates for
the first, last, and previous to last removals. This allows to partially construct the
duration of each placement for every child. In principle, the data may be completed
by tracking the previous matches in previous years. However, if a child was removed
more than one time during the same year, some data is not observed. Furthermore,
the data faces a censoring problem because many children are still in FC when
the data is collected, so we only observe a lower bound for the duration of the
current matches. Table 2.6 reports how many children have the same date recorded
for particular events in LA County. For example, on average 27.21 children were
removed from home for the first time every day between October 1st, 2012, and
September 30th, 2013. Similarly, on average 54.9 children were placed on the same
date in their current placement. This figure includes first-time removals, but also all
the children who are re-placed within a removal. These figures are not surprising
since LA County is the county in the U.S. with the largest population in FC. Figure
2.4 presents histograms of the dates at which five distinct events happened in a
child’s case: 1) first removal, 2) discharge from FC, 3) latest removal, 4) beginning
of current placement, and 5) discharge of previous removal. Themain thing to notice
is that the dates appear to be evenly distributed across the year. This suggests that
removals and placements are distributed uniformly across time, so the selection due
to the cross-section nature of the dataset is random. The histograms of the begin date
of the current placement (middle-right) and the discharge date from the previous
removal (bottom) are skewed to the right and left, respectively, because they adjust
over time as children are re-placed or discharged from more recent removals.

Regression Analysis
I run two sets of linear regressions to explore the correlation between several vari-
ables in the data. First, I analyze the sorting patterns in terms of race. Table 2.7
reports the estimated coefficients. The first thing to note is that only a small fraction
of the sample is used in these regressions. This is because the majority of obser-
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vations do not include the race of the foster family, see Table 2.2. Nonetheless,
the results of the regressions suggest that there are strong sorting patterns in the
data within the observations for which the race of the foster parents is known. In
particular, African American, Hispanic, and White children are significantly more
likely to be assigned to foster parents of the same race. The coefficient of Age At
Start (age on October 30th, 2012) is estimated precisely, but it is very close to zero.
Similarly, I find that the sex of children is not correlated with the race of foster
parents. A key finding is the high R-squared of all the regressions, specially the first
one. This suggests that race is an important factor in the assignment of children to
foster families.

The second set of regressions regards the number of removals and placements, aswell
as the length of stay during the last and previous placements. These regressions only
include characteristics of the children as independent variables, so they use almost all
the observations in the data. The results are reported in Table 2.8. I find that African
American children have been removed slightly more times from home than White
children have, whereas Hispanics slightly less. In contrast, Asian children appear
to be the less likely of being removed from home. Similarly, African American
children have been through more placements (Settings) than White children during
their last removal, andHispanic children through less. Unsurprisingly, older children
have been through more placements during their last removal. On average, a child
who is one year older is roughly 10% more likely to have been through one more
placement during her last removal. Similar patterns emerge when looking at the
average length of stay in the last/current placement. African American children
have been for more time at their current/last placement on average than White
children, but Hispanic children have been less time. Note that this regression does
not account for the termination reason. This regression pools children who were
discharged, emancipated, adopted, or were still in FC at the end of the FY. The
last regression (4) analyzes the average length of stay in the previous placements.
In contrast with regression (3), this is the duration of unsuccessful matches since
children got re-assigned after the placement ended. The size of the sample in
this regression is smaller since not all children have been through more than one
placement. Nonetheless, the results are qualitatively similar: older children were on
average more days in their past placements, as well as African American and men
(slightly), whereas Hispanic and Asian children were on average shorter periods of
time in their previous placements.
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2.5 Conclusion and Further Research
The main objective of this chapter is to study the determinants of the duration
of matches in the FC system and to recognize the importance of accounting for
the underlying dynamic matching mechanism. The first step in the analysis was to
develop a general centralizedmatchingmodel in a dynamic environment. Themodel
aims to capture the fact that matches are not randomly determined in reality. The
main assumption of the model is that a single matchmaker forms matches in order
to minimize the number of children who remain unmatched. The motivation for this
assumption is that the aim of the FC system is to find placements for children who
are removed from home. The model is flexible enough to capture several dynamic
trade-offs faced by the matchmaker. Through a series of analytic and computational
exercises, I illustrated four features of the matchmaker’s optimal matching policy:
1) it is not optimal to leave children unmatched while parents are available; 2) the
optimal matching policy gives priority to younger children since it does not leave
a child unmatched while an older child with the same type gets matched; 3) the
matchmaker faces a trade-off between matching children and parents of the same
type and matching younger children who are further from the emancipation age, but
are of different type; the optimal solution of this trade-off depends on the model’s
parameters; 4) the optimal policy gives priority to younger children in terms of
match quality in the sense that younger children tend to be in the matches with lower
breakup probabilities.

An important feature of the model is that it allows me to compute and study its
stationary state. I present moments of relevant variables for different specifications
of the model’s parameters. This is crucial for the empirical application since
the moments in the stationary state may be seen as the empirical implications of
the model. The behavior of the stationary state is fairly intuitive with respect
to the model’s parameters. For example, I find that the optimal matching policy
in the stationary state is positively assortative when the survival probability is
supermodular in the types of children and parents (r > 0). Finally, I described the
main data source for the empirical application of the model. In particular, I report
summary statistics and analyze the correlation among several variables of interest
for the FC in Los Angeles County on 2013.

The study of foster care as a dynamic matching market is a new area of study in the
economics literature. This and the previous chapter aimed to provide an introduction
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to the subject and raise key questions for further research in this field. I conclude by
listing three key challenges and objectives of this research agenda.

(1) Study further the meaning of “match-quality” in this market. The present
chapter focused mainly on the breakup probability of different matches. The
next step along this research is to recognize that some children may exit
quicker when matched to specific types of families (e.g., because they are
adopted).

(2) Study different objectives that social workers may have on the field. While
matching as many children as possible is one of the key objectives of the
system, the empirical portion of this chapter notes that there are strong sort-
ing patterns across key variables, such as race. This observation raises the
question: are children and foster families sorted according to race because
this leads to higher “match-quality” (ie., fewer breakups and quicker exits) or
is it motivated by other factors?

(3) Study if parents have dynamic objectives. The model presented in this chap-
ter assumes that foster parents simply exited the system after one period.
Nonetheless, in reality foster parents may have their own objectives regarding
which children to take care of. In principle, they could “strategically wait”
for a child of their preferences. While discriminating on the basis of gender
or race is illegal in the foster care system, social workers may include some
of these considerations in their calculus due to foster parents being more or
less likely to adopt a foster child on the basis of demographic characteristics.
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Figure 2.4: Histograms of relevant dates

Note: I consider only the cases for which each event happened during the FY 2013. Date of first removal
(top-left), discharge from FC (top-right), last removal (middle-left), start of current placement (middle-right),
discharge from previous removal (bottom).
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Table 2.2: Descriptive statistics: Children and foster parents

(1) (2) (3) (4)
Variable Mean Std. Dv. Obs. Miss. (%)

Children Age
Age at first removal 6.4273 5.6954 29,849 0.08
Age at end 9.1135 6.0705 29,859 0.04

Children Sex, Race, and Disability
Man .5181 .4997 29,873 0
Am. Indian/AK Native .0048 .0554 29,759 0.4
Asian .0169 .1206 ” ”
African American .2768 .4369 ” ”
White .1222 .3031 ” ”
Hispanic .6202 .4661 27,573 7.7
Some Disability .5954 .4908 29,873 0

Foster Parents Race
Am. Indian/AK Native .0018 .0397 7,841 67.38
Asian .0186 .1326 ” ”
African American .2978 .4461 ” ”
White .1292 .3227 ” ”
Hispanic .2378 .2476 15,868 34
Note: The fifth column reports the percentage of observations for
which the variable is missing. Races are proportional since an
individual can identify more than one. *Age at end = min{Age
at exit, Age at the end of FY}. Some disability = mental retar-
dation, visually/hearing impaired, physical disability, emotionally
disturbed, or “other diagnosed condition.”
Source: AFCARS Foster Care File FY 2013, NDACAN, 2013a.
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Table 2.3: Descriptive statistics: Removals, placements, and removal reason

(1) (2) (3) (4)
Variable Mean Std. Dv. Obs. Miss. (%)

Removals and Placements
(Lifetime) Removals 1.3164 .6332 29,873 0
Placements in last removal 2.4518 2.5203 29,871 0
LOS in last removal (years) 2.0753 2.9975 29,864 0.03
LOS in last placement (years) 1.0102 1.7367 29,558 1.05

Removal Reason
Physical Abuse .0997 .2997 29,595 0.9
Sexual Abuse .0235 .1515 ” ”
Neglect .6885 .4631 ” ”
Parent Alcohol Abuse .0146 .1201 ” ”
Parent Drug Abuse .0552 .2285 ” ”
Child Alcohol Abuse .0003 .0184 ” ”
Child Drug Abuse .0151 .1218 ” ”
Child Disability .0023 .0489 ” ”
Child Behavior Problem .1041 .3054 ” ”
Parent Death .0027 .0519 ” ”
Parent Incarceration .0205 .1419 ” ”
Caretaker Inability to Cope .3034 .4597 ” ”
Abandonment .0090 .0942 ” ”
Relinquishment .0057 .0756 ” ”
Inadequate Hosing .0278 .1644 ” ”
Note: The fifth column reports the percentage of observations for which the
variable is missing. Removals = 1 (75.68%), = 2 (18.54%), ≤ 3 (98.76%).
Placements in last removal = 1 (44.00%), = 2 (27.09%), ≤ 7 (95.73%). LOS
≡ Length of Stay. If the child is still in FC at the end of the FY year, last
removal and placement refer to current removal and placement. One child
may have more than one removal reason.
Source: AFCARS Foster Care File FY FY 2013, NDACAN, 2013a.
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Table 2.4: Descriptive statistics: Placement and case

(1) (2) (3)
Observations Percent (%) Cumulative (%)

Current Placement Setting
Pre-adoptive home 2,098 7.02 7.02
Relative Foster Home 10,398 34.81 41.83
Non-Relative Foster Home 11,545 38.65 80.48
Group home 1,064 3.56 84.04
Institution 1,591 5.33 89.36
Supervised independent living 518 1.73 91.10
Runaway 965 3.23 94.33
Trial home visit 1,694 5.67 100.00
Total 29,873 100.00

Most Recent Case Plan Goal
Reunification 11,010 36.86 36.86
Live with other relative(s) 508 1.70 38.56
Adoption 5,276 17.66 56.22
Long-term foster care 1,501 5.02 61.24
Emancipation 1,493 5.00 66.24
Guardianship 3,549 11.88 78.12
Not established 6,536 21.88 100.00
Total 29,873 100.00

Terminated Parental Rights
TPR 3,052 10.22 10.22

Discharge Reason
Reunification 5,533 56.62 56.62
Adoption 1,350 13.81 70.43
Emancipation 1,368 14.00 84.43
Guardianship 1,003 10.26 94.69
Transfer to another agency 514 5.26 99.95
Death of child 5 0.05 100.00
Total 9,773 100.00
Note: TPR = 1 if both biological/principal parents have terminated their parental
rights. **Out of the 29,873 total number of observations in the dataset, 9,773
(32.71%) correspond to children who were discharged from FC during the fiscal
year 2013.
Source: AFCARS Foster Care File FY 2013, NDACAN, 2013a.
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Table 2.5: Descriptive statistics: Family structure

(1) (2) (3)
Observations Percent (%) Cumulative (%)

Principal Caretaker Family Structure
Married couple 867 2.90 2.90
Unmarried couple 1,269 4.25 7.15
Single female 5,940 19.88 27.03
Single male 821 2.75 29.78
Missing 20,976 70.22 100.00
Total 29,873 100.00

Foster Family Structure
Married couple 5,156 21.45 21.45
Unmarried couple 2,306 9.59 31.04
Single female 9,723 40.44 7 1.48
Single cale 2,181 9.07 80.55
Missing 4,675 19.45 100.00
Total 24,041 100.00
Note: The total of observations with foster family structure, includ-
ing missing values, is less than the number of observations because
not all children are placed in a foster home (see Table 2.4).
Source: AFCARS Foster Care File FY 2013, NDACAN, 2013a.

Table 2.6: Descriptive statistics: Observations with same date on FY 2013

(1) (2) (3) (4)
Variable Mean Std. Dv. Obs. Min. – Max.

First Removal 27.21 6.5849 9,363 8 – 47
Last FC Discharge 3.17 1.5403 573 1 – 8
Last Removal 34.1 7.1160 11,892 12 – 56
Current Placement 54.9 13.613 18,414 25 – 86
FC Discharge 33.52 22.9684 9,625 5 – 110
Note: If the child is still in FC at the end of the FY year, last removal
and placement refer to current removal and placement. The number
of observations vary because I only consider observations with the
corresponding date between October 1st, 2012, and September
13th, 2013. There are no missing values. All observations have the
corresponding dates.
Source: AFCARS Foster Care File FY FY 2013, NDACAN, 2013a.
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Table 2.7: Regression analysis: Racial sorting patterns

(1) (2) (3)
FP-Afr. Am. FP-Hispanic FP-White

Age At Start 0.0061*** 0.0000 -0.0071***
(0.0007) (0.0003) (0.0006)

Man 0.0044 0.0000 0.0007
(0.0069) (0.0032) (0.0070)

African Am. 0.7090*** -0.0680*** -0.4090***
(0.0146) (0.0058) (0.0178)

Hispanic -0.0530*** 0.2740*** -0.3920***
(0.0126) (0.0059) (0.0174)

Am. Indian 0.0080 0.0281 -0.4979***
/AK Native (0.0719) (0.0279) (0.0583)

Asian 0.0255 -0.0073 -0.3320***
(0.0338) (0.0138) (0.0383)

Constant 0.0765*** 0.0960*** 0.5200***
(0.0124) (0.0058) (0.0172)

Observations 7,250 14,690 7,250
R-squared 0.548 0.369 0.161
Note: The dependent variable is the proportional race of the foster
parent: (1) African American, (2) Hispanic, (3) White, and the
independent variables are characteristics of the children. Races are
proportional since an individual can identify with more than one.
Age At Start is the age (years) of the child on October 1st, 2013.
OLS Estimates. Standard errors (robust to arbitrary heteroskedas-
ticity) in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 2.8: Regression analysis: Removals and placements

(1) (2) (3) (4)
Removals Settings LOS-Setting Avg. LOS

-Prev. Settings

Removals -0.156*** -76.94*** -54.29***
(0.0289) (6.535) (4.631)

Settings -0.00981*** -9.586*** -12.87***
(0.00184) (1.504) (1.062)

Age At Start 0.0300*** 0.117*** 23.72*** 16.51***
(0.000646) (0.00289) (0.917) (0.757)

Man -0.00347 -0.191*** 17.66** 11.69*
(0.00720) (0.0290) (7.666) (6.285)

African Am. 0.0410*** 0.458*** 138.3*** 53.05***
(0.0142) (0.0592) (16.02) (13.07)

Hispanic -0.0525*** -0.257*** -31.36** -28.08***
(0.0124) (0.0486) (12.36) (10.75)

Am. Indian 0.109 0.765*** 32.46 -6.179
/AK Native (0.0707) (0.279) (60.47) (42.59)

Asian -0.204*** -0.318** -111.9*** -70.95**
(0.0233) (0.131) (22.26) (29.88)

Constant 1.115*** 1.845*** 299.4*** 221.6***
(0.0121) (0.0559) (13.11) (12.27)

Observations 27,571 27,571 25,498 15,426
R-squared 0.088 0.094 0.058 0.061
Note: Removals = lifetime removals. Settings = placements during the last
removal. LOS-Setting = Length of stay (days) in the last/current placement.
Avg. LOS-Prev. Settings = Average length of stay (days) in the previous
settings of the last removal. Races are proportional since an individual can
identify with more than one. Age At Start is the age (years) of the child
on October 1st, 2013. OLS Estimates. Standard errors (robust to arbitrary
heteroskedasticity) in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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C h a p t e r 3

EXECUTIVE COMPENSATION AND COMPETITIVE
PRESSURE IN THE PRODUCT MARKET: HOW DOES FIRM

ENTRY SHAPE MANAGERIAL INCENTIVES?

Dam, Kanis.ka and Alejandro Robinson-Cortés (forthcoming). “Executive Compen-
sation and Competitive Pressure in the Product Market: How Does Firm Entry
Shape Managerial Incentives?” Mathematical Social Sciences.
doi: https://doi.org/10.1016/j.mathsocsci.2020.03.001.

3.1 Introduction
There is a plethora of empirical evidence that supports the Hicksian view (Hicks,
1935) that executive compensation tends to be more performance-sensitive in more
competitive environments (e.g., Nickell, 1996; Van Reenen, 2011). A series of
empirical studies have used industry-specific regulatory reforms to analyze the
effect of competition on executive pay (Crawford, Ezzell, and Miles, 1995; Cuñat
and Guadalupe, 2009a; Dasgupta, Li, and Wang, 2017; Hubbard and Palia, 1995;
Kole and Lehn, 1999; Palia, 2000). These studies focus on how deregulation
policies that increase competition in the product market affect the structure of
managerial incentive contracts. The main takeaway from this literature is that,
following a deregulation policy that intensifies product market competition, firms
reduce managerial slack by increasing executive compensation and strengthening
its pay-performance sensitivity.

Our objective in this paper is to explain the nature of the aforementioned empirical
regularity, and to offer new insights into how executive pay is shaped by industry-
specific features. First, we provide a simple model of oligopolistic competition with
firm entry that shows why incumbent firms find it optimal to reduce managerial
slack when competition rises due to deregulation. Then, we use our model to derive
novel empirical implications regarding the time to build production capacity in an
industry. Our model shows that this industry-specific feature is a crucial factor when
analyzing the effect that firm entry has on executive compensation. According to
our model, the relationship observed in the empirical studies obtains in industries in
which the time to build capacity is such that incumbents act as production leaders
and entrants as followers. This result goes in line with the empirical literature given

https://doi.org/https://doi.org/10.1016/j.mathsocsci.2020.03.001
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that existing studies focus on industries in which it takes time to build production
capacity, such as banking, manufacturing, and the airline industry.

The question of how product market competition shapes managerial incentives is far
from being new in the literature.1 Notwithstanding, our approach is novel in that we
analyze it explicitly in a framework of firmentry. Because incumbent firms anticipate
(and accommodate) future entrywith relaxing regulation, we use a standardmodel of
sequential quantity-setting oligopoly, in which entrant firms choose their managerial
contracts and quantities after observing those of the incumbents. Our focus is on the
strategic response of incumbents regarding managerial incentive pay as they foresee
the entry of new firms. In line with the empirical literature, our main finding is
that it is optimal for incumbents to strengthen incentive pay and reduce managerial
slack when they foresee the entry of new firms into the product market. Moreover,
we show that the strength of the managerial incentives offered by incumbents is
increasing in the number of entrants—higher competitive pressure leads to steeper
incentives and lower managerial slack.

Our model incorporates managerial incentive contracts into the Stackelberg quantity
competition framework proposed by Daughety (1990). There is a fixed number of
incumbents and a set of potential entrants with more entrants meaning greater
competitive pressure on the incumbent firms. Both incumbents (in the pre-entry
stage) and entrants (in the post-entry stage) play Cournot games among themselves;
entrants take the aggregate output of incumbents as given. All firms are initially
inefficient and each hires a risk neutral manager whose principal task is to exert
non-verifiable R&D effort to bring down the constant marginal cost of production,
what is often termed “process innovation.” We assume that the final realizations
of marginal costs are private information among firms, and that incentive contracts
are publicly observable. Hence, even though the marginal costs of rival firms are
unknown, each firm observes a signal of how likely every other firm is to reduce its
marginal cost.

The crux of our model is that managerial effort is beneficial to incumbents in two
ways. First, steeper incentives that induce each manager to exert higher effort
directly increase the likelihood of cost reduction (value-of-cost-reduction effect).
Second, they also alter the beliefs of the rival firms about the true cost realization
of a given firm (marginal-profitability-of-effort effect). Even if a manager fails to

1The notion that monopoly, andmarket power in general, are detrimental tomanagerial efficiency
dates back to Smith (1776, Book 1, Chapter 11), and has a long tradition in the literature (Hart, 1983;
Leibenstein, 1966; Scharfstein, 1988).
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achieve the cost target, her effort is profitable in as much as it makes the rivals
believe that a cost reduction has actually been attained. More intensified product
market competition affects each of these two effects through the market size and the
effective size of cost reduction. As the entrants’ optimal contracting and production
decisions are negatively affected by the aggregate incumbent output, the entry of
new firms implies an increase in both market size and the effective size of cost
reduction for incumbents. In turn, this implies both a higher expected value of cost
reduction and expected marginal profitability of effort, which makes it optimal for
the incumbents to elicit higher managerial effort by strengthening incentives. It is
worth noting that, even in the absence of the marginal-profitability-of-effort effect,
a growing number of entrants strengthens the value-of-cost-reduction effect. Such
case arises, for example, when marginal costs are public information and managerial
effort is unprofitable beyond cost reduction.

The key to our main result is that incumbent firms are able to strategically pre-
commit to managerial contracts, which in turn determine technological efficiency
endogenously. The general intuition goes in line with the seminal works of Fu-
denberg and Tirole (1984) and Bulow, Geanakoplos, and Klemperer (1985). In
a standard entry model, when an incumbent and an entrant compete in quantities
(strategic substitutes), lowering the marginal cost of the incumbent decreases the
entrant’s total profits (since the incumbent’s optimal output increases). Hence,
when costs are endogenously determined, incumbents find it optimal to behave
more aggressively in cost-reduction activities. In our framework, this corresponds
to incumbents offering stronger managerial incentives which are observed by the en-
trant firms. Thus, by making a commitment to be more aggressive, the incumbents
push the entrants into a more passive posture. This is an example of the “top-dog”
strategy, according to the terminology proposed by Fudenberg and Tirole (1984).
This sort of aggressive or accommodating behavior on behalf of the incumbent
firms does not emerge under simultaneous competition because the incumbents fail
to reap such benefits due to the lack of pre-commitment to any investment strategy.
By contrast, under strategic complementarity, e.g., price competition, the aforemen-
tioned result is reversed because the incumbent firms would commit to a strategy of
“underinvestment” (weakenedmanagerial incentives) after which the entrants would
optimally respond by lowering their prices. Fudenberg and Tirole (ibid.) call such
underinvestment strategy to avoid stoking competition “puppy-dog ploy.”
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The paper is organized as follows. In Section 3.2, we review the related literature. In
the next section, we outline the model. In Section 3.4, we solve for the equilibrium
and present our main results. In Section 3.5, we present testable implications of
our model. In Section 3.6, we analyze two extensions, hierarchical entry and price
competition. We conclude in Section 3.7. All proofs are relegated to Appendix C.2,
most of which follow from Result 1 in Appendix C.1.

3.2 Related Literature and Our Contribution
The astounding rise in both the level and incentive component of executive com-
pensation packages over the past three decades is often attributed to changes in
industry configurations. The idea is based on the Darwinian view of organizations,
which states that, in order to survive and perform well, firms must solve governance
problems by adapting their structure of managerial incentive contracts as product
market competition rises. As mentioned in the previous section, several studies have
exploited regulatory reforms to analyze how product market competition shapes the
incentive structure of the executive compensation packages. Kole and Lehn (1999),
and Palia (2000) study how the introduction of the Airline Deregulation Act in 1978
has altered the structure of the incentive contracts offered to CEOs in the U.S. airline
industry. Crawford, Ezzell, and Miles (1995), Hubbard and Palia (1995), and Cuñat
and Guadalupe (2009a), analyze the changes in executive pay in the U.S. banking
sector following an important regulatory reform that permitted interstate banking
during the 1980s. In the context of international trade, Cuñat andGuadalupe (2009b)
study the effect of changes in foreign competition on executive pay in the U.S. firms.
Dasgupta, Li, and Wang (2017) analyze the effect of industry-level tariff cuts on
CEOs pay-performance sensitivity in the U.S. manufacturing sector. Overall, these
studies confirm the view that one of the ways in which firms react to intensifying
product market competition is by increasing the pay-performance sensitivity of their
executive compensation packages.2

We build on Daughety’s (1990) Stackelberg leadership model by endogenizing firm
technology via managerial incentive contracts.3 However, Daughety (ibid.) does
not consider the possibility of incumbents using (endogenous) cost-reducing R&D

2In a related study, Karuna (2007) also finds a positive relationship between the degree of product
substitutability and stock options granted to CEOs.

3Both the Stackelberg and Cournot settings of our model can be seen as special cases of a slightly
more general model, which we refer to as the “base model.” The base model may be of independent
theoretical interest as it provides a simple method for analyzing comparative statics on the number
of firms in Stackelberg and Cournot models under cost uncertainty. See Appendix C.1 for further
details.
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investments as a pre-commitment device for product-deterrence, as in Fudenberg and
Tirole (1984) and Bulow, Geanakoplos, and Klemperer (1985). In our model, since
the incumbents are able to pre-commit to strategic managerial incentive contracts,
incumbent output is increasing in the number of entrants. Namely, a higher number
of entrants implies a higher expected marginal profitability of effort. By contrast, in
Daughety (1990), incumbent output is independent of the number of entrants.4

A couple of other papers also analyze the interaction between entry and R&D
incentives in oligopoly with sequential moves. Etro (2004) considers a model of
patent race where a monopolist leader faces a fringe of entrants. In the Stackelberg
equilibrium under free entry, the incumbent monopolist innovates more aggressively
because any profitable innovative opportunity would be reaped by new entrants
until entry dissipates profit. Ishida, Matsumura, and Matsushima (2011) analyze a
two-stage Cournot competition with ex-ante cost asymmetry, whereas we consider
ex-ante symmetry. As in the present paper, investment by one firm in process
innovation is an instrument for pre-commitment to expand output in order to deter
the output of its rivals. However, none of the aforementioned papers considers the
possibility of endogenous production technology in managerial firms via optimal
incentive contracts; instead, they focus on the direct effect of increased competition
on R&D investment.

In agency theoretic models relating product market competition to managerial in-
centives, competing against more firms invariably reduces equilibrium output and
profits.5 In turn, this lowers the value of attaining a cost reduction and thus makes
it optimal to offer weaker managerial incentives (the so-called scale or output ef-
fect). In a framework of hidden information (about the realization of marginal
costs), Martin (1993) assumes that the marginal productivity of managerial effort
decreases in the number of active firms in a Cournot market, and hence, the equi-
librium state-contingent contracts provide weaker incentives as the number of firms
grows. Golan, Parlour, and Rajan (2015) also analyze managerial incentives in a
Cournot oligopoly. As the expected product market profit of each firm depends on
the likelihood of achieving a low marginal cost in the rival firms, the observed profit
as a signal of managerial effort becomes noisier, and hence, the cost of incentive
provision magnifies in a more competitive environment. This effect points in the
same direction as the standard scale effect implying a negative association between
competition and incentives.

4We owe this observation to an anonymous referee.
5See Legros and Newman (2014) for an excellent survey of the extant literature.
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In order to counteract the negative effect of competition on managerial incentives
due to lower product market profits, one thus requires to identify additional coun-
tervailing effects of product market competition on managerial incentives. The
effect of competition on executive pay-performance sensitivity may be, in theory,
non-monotonic. Hermalin (1992) models CEOs as receiving a fraction of the share-
holder income. Because more intense competition erodes this income, managers
tend to consume fewer “agency goods,” i.e., expend more effort, as agency goods
are assumed to be normal goods. Hermalin (1994) assumes that more firms in a
Cournot market implies an exogenous decrease in the slope of the inverse market
demand (with the intercept remaining constant), and hence, an exogenous increase
in the market size of each firm is identified as a countervailing business stealing
effect, apart from the standard value-of-cost-reduction effect. Schmidt (1997) shows
that if a firm is more likely to go bankrupt in a more competitive environment, the
manager tends to work harder to avoid liquidation of the firm’s assets as liquidation
implies a loss of reputation. The value-of-cost-reduction effect and the threat-of-
liquidation effect do not often point in the same direction. Piccolo, D’Amato, and
Martina (2008) build onMartin (1993), and identify an agency effect. In their model,
profit-sharing contracts improve productive efficiency, which points in the direction
opposite to the standard scale effect. Thus, they obtain an inverted-U relationship
between competition and managerial effort. Raith (2003) analyzes a managerial
incentive problem in a price-setting oligopoly with horizontal differentiation and
privately realized marginal costs. He establishes a positive association between
competition and managerial incentives by showing that in a free-entry equilibrium,
managerial incentives increase due to a higher degree of product substitutability,
market size, or lower cost of entry. Wu (2017) analyzes the interaction between
product and labor markets in a model that assigns worker talent to heterogeneous
firms. Greater product market competition, as measured by demand elasticity, re-
sults in a reallocation of more talented managers from smaller to larger firms, and
hence, an increase in the value of managerial efforts in such firms. Consequently,
firms strengthen managerial incentives, and the resulting wage distribution becomes
more right-skewed.

Our approach is novel because we analyze a new mechanism through which product
market competition affects executive pay-performance sensitivity. In particular, we
study how incumbent firms adjust their managerial contracts optimally when new
firms are about to enter the market. As mentioned earlier, a model of sequential
quantity competition is appropriate to analyze the effect of increased competition
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following a regulatory reform. In line with the empirical evidence, we find a positive
relationship—as competition rises, incumbents find it optimal to strengthen execu-
tive pay-performance sensitivity in order to reduce managerial slack. Furthermore,
we also contribute to the literature by noting that the time to build production ca-
pacity in an industry is a key factor in studying how competition affects managerial
incentives. In particular, it allows us to relate our model to the earlier literature that
finds a negative association between competition and managerial incentives. Our
analysis builds on previous literature and conforms to empirical findings.

Our paper is also related to a well-known strand of literature in which incentive
contracts are assumed to be linear combination of profit and revenue (e.g., Fershtman
and Judd, 1987; Sklivas, 1987; Vickers, 1985). In these models, managers choose
output (or price, depending on whether firms compete in quantities or prices) to
maximize the incentive scheme. Wang and Wang (2009) extend this framework
to sequential managerial delegation and obtain results similar to Daughety (1990),
i.e., a more equal distribution on leaders and followers results in higher industry
output, lower price, and higher welfare. The main difference of our approach is that,
in our case, managers receive state-contingent contracts and choose cost-reducing
R&D efforts instead of quantity or price. As a consequence, firms’ cost parameters
become endogenous, which results in ex-post asymmetry.

3.3 The Model
Specifications
The economy consists of two classes of risk neutral agents, n + m ex-ante identical
firms who compete in quantities in a market for a homogeneous good, and n + m

ex-ante identical managers. The firms are divided in two groups—namely, a subset
I of n ≥ 1 incumbents and a subset J of m ≥ 0 entrants, with I ∩ J = ∅. Our
main objective is to analyze the effect of increased competition, i.e., an increase in
|J | = m, on the optimal managerial contracts in the firms that belong to I. Until
section 3.4, where we analyze cross-sectional variation in the number of incumbents,
we consider I as a fixed collection of incumbent firms. A typical incumbent firm is
denoted by i, and a typical entrant, by j. Often, for convenience, we will denote a
generic firm (incumbent or entrant) by k ∈ I ∪ J with |I ∪ J | = n + m.

Let qk denote the production of firm k. The inverse market demand is given by
P = 1 −Q, where Q denotes the aggregate industry output, and P the market price.
Each firm k operates on a constant-returns-to-scale production technology with
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Figure 3.1: Timing of events in the sequential quantity-setting oligopoly

t = 1 t = 2 t = 3 t = 1′ t = 2′ t = 3′

Incumbents Entrants

Contracts Cost realizations Outputs Contracts Cost realizations Outputs

marginal cost ck ∈ {0, c} where 0 < c < 1. Initially, all firms have the inefficient
technology, i.e., ck = c for all k. Each firm hires a manager whose principal task
is to exert non-verifiable R&D effort in order to mark down the marginal cost to 0.
The probability that the marginal cost is reduced is given by ek , which is the effort
exerted by the manager of firm k. Each firm k offers its manager a take-it-or-leave-it
contract (wk(0), wk(c))which is contingent on the realizedmarginal cost ck ∈ {0, c}.
Contracts are subject to limited liability of the managers. Managerial contracts are
publicly observable, but the realized marginal costs remain private information of
the firms. Every manager has the same effort cost function ψ(e) = e2/2, and her
outside option is normalized to 0.

Timing of Events
The timing of events, which is divided into two phases, is described in Figure 3.1.
At date 1, the incumbents hire a manager apiece by offering publicly observable
contingent contracts. At t = 2, the manager at each incumbent firm exerts non-
verifiable effort, and the marginal cost of each incumbent is privately realized. At
t = 3, the incumbents simultaneously set quantities. After observing the aggregate
quantities set by the incumbents, the entrants repeat the timing at dates t = 1′, 2′, 3′.
Finally, after date t = 3′, the market price is set, and the profits of all firms
(incumbents and entrants) are realized.

Managerial Contract and Effort
Each manager k chooses her effort ek optimally, given the contracts wk(0) and wk(c)

at firm k. Because the realizations of marginal costs are independent, managerial
contracts at each firm k are independent of the realizations of marginal costs at the
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rival firms. The optimal effort at firm k is given by:

ek = argmax
êk

{
êkwk(0) + (1 − êk)wk(c) −

1
2

ê2
k

}
= wk ≡ wk(0) − wk(c). (IC)

The above is the incentive compatibility constraint of the manager at firm k in which
wk represents the incentive component of the managerial contract. Therefore, we
will refer to a higher (lower) value of wk , or equivalently, of ek as ‘stronger (weaker)
managerial incentives.’ We assume limited liability (non-negative income for the
manager at each state of nature), i.e.,

wk(c) ≥ 0, and wk(0) ≥ 0. (LL)

Finally, the expected utility of the manager at each firm k must be at least as high as
her outside option 0, i.e., the participation constraint of the manager is given by:

uk ≡ ekwk(0) + (1 − ek)wk(c) −
1
2

e2
k ≥ 0. (PC)

Quantity Competition
We follow Daughety, 1990, which is a generalization of the standard notion of
Stackelberg competition, to model market competition in the present context. After
managers have exerted effort, each incumbent i learns its marginal cost ci privately.
Then, the incumbent firms (the “leaders”) choose quantities (q1, . . . , qn) simulta-
neously to maximize expected profit. After observing the aggregate incumbent
quantity, QI ≡

∑
i∈I qi, the entrants choose managerial contracts simultaneously,

taking QI as given. Following the choice of managerial effort, e j , each entrant firm
j learns its marginal cost c j privately. Finally, the entrant firms (the “followers”)
choose quantities (q1, . . . , qm) in a Cournot fashion to maximize expected profit.
We assume that in equilibrium all m entrants decide to enter, i.e., regardless of their
own and the incumbents’ cost realizations, each entrant finds it optimal to produce
a positive output in equilibrium. This rules out the possibility that the incumbents
may deter entry. The incumbents are also assumed to produce a positive output
in equilibrium regardless of their realized marginal cost. This implies a restriction
of the parameter space—namely, an upper bound on c. This is an innocuous but
conservative assumption as the incentives to attain a low marginal cost would have
been stronger otherwise. We solve for the equilibrium by backward induction, and
show that it is unique and symmetric for incumbents and entrants.
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3.4 Managerial Incentives in Sequential Oligopoly
Choice of Quantities and Managerial Efforts by the Entrants
Let QJ =

∑
j∈J q j be the aggregate entrant output, and q− j ≡ QJ − q j =

∑
k∈J\{ j} qk ,

the aggregate output of the rival entrants. Further, let the managerial effort and
bonus vectors be denoted by (ei, e j) and (wi, w j), respectively for i ∈ I and j ∈ J.
At the quantity setting stage, t = 3′, each entrant j takes QI and q− j as given to solve

max
qj

q j(1 −QI − q j − Eq− j − c j).

The subgame played by the entrants at the quantity setting stage, t = 3′, is simply a
Cournot game among m firms with a residual demand P = 1 − QI −

∑
j∈J q j . The

quantity of each rival entrant is a random variable because its realized marginal cost
is unknown to entrant firm j. The expected cost of firm j is Ec j = c(1−e j), where e j

is the incentive compatible level of managerial effort chosen at date t = 2′. Because
the managerial contracts of all entrant firms are publicly observable, every firm j

knows the expected cost of every rival firm. Further, let e− j ≡
∑

k∈J\{ j} ek . The
quantity and expected profit of each entrant firm in the subgame perfect equilibrium
are respectively given by:

q j(c j, e j, e− j, QI) =
2(1 −QI) − (m + 1)c j + (m − 1)c(1 + e j) − 2ce− j

2(m + 1)
,

π j(c j, e j, e− j, QI) =

{2(1 −QI) − (m + 1)c j + (m − 1)c(1 + e j) − 2ce− j

2(m + 1)

}2
.

Note that π j(c j, e j, e− j, QI) is the expected market profit of each entrant firm j

conditional on its realized cost, c j . It depends on e j even when conditioning on c j

because the effort exerted by the manager at firm j pins down the beliefs of the rival
entrants about c j . These beliefs affect the rivals’ output decisions in the same way as
e− j affects those of firm j, so the effort exerted by the manager at firm j is profitable
beyond its cost realization. If the realized marginal costs were publicly observable,
the product market profits would not depend on managerial efforts; instead, they
would depend on the observed numbers of high- and low-cost firms (cf. Golan,
Parlour, and Rajan, 2015), and managerial effort would not be profitable beyond the
value of cost reduction.

The optimal contracting problem at t = 1′ at each entrant firm j is solved in
two stages (e.g., Grossman and Hart, 1983). First, firm j minimizes the expected
incentive costs in order to implement a given level of effort subject to the constraints
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described in Section 3.3, i.e.,

Cj(e j) = min
{wj (0),wj (c)}

e jw j(0) + (1 − e j)w j(c), (Min j)

subject to (IC), (LL) and (PC).

The value function, called the ‘incentive cost function,’ of the above minimization
problem is given by:

Cj(e j) = C(e j) = e2
j for all j ∈ J .

In the second stage, firm j chooses the effort level e j in order to maximize the
expected profits

Π j(e j, e− j, QI) ≡ e jπ j(0, e j, e− j, QI) + (1 − e j)π j(c, e j, e− j, QI)

net of its incentive costs C(e j), i.e.,

max
ej
Π j(e j, e− j, QI) − C(e j). (Max j)

Let the equilibrium managerial effort in the entrant firms be denoted by eJ(QI, m),
which is derived from the first-order condition of the maximization problem (Max j).
It is analyzed in the following lemma.

Lemma 1 Given the aggregate output QI of the incumbent firms, the equilibrium
managerial effort in the entrant firms is unique, symmetric, and is given by:

eJ(QI, m) =
c[8m(1 −QI) + c(m2 − 6m + 1)]

2[4(m + 1)2 + c2(m − 1)2]
for all j ∈ J . (EE)

The higher the aggregate output of the incumbents, QI , the lower is the managerial
effort in each entrant firm. This is because when the aggregate output of the
incumbents expands, the entrants face a shrunken residual demand, and hence, it
is optimal for each of them to offer weaker incentives to its manager, which elicit
lower effort.

Quantity Choice of the Incumbents
To set output levels at date t = 3, the incumbents solve the following profit maxi-
mization:

max
qi

π
q
i (qi, QJ) ≡ qi(1 − qi − Eq−i −QJ − ci). (Maxq)
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In setting quantities, the incumbents take into account the best response of the
entrant firms and anticipate their managerial efforts. Let q j(c j, e, QI) denote the
quantity of an entrant firm j in the subgame perfect equilibrium for a common level
of effort e (among the entrants), i.e., with e j = e for all j ∈ J. Then, the expected
aggregate output of the entrants is given by:

QJ(QI, m) =
∑
j∈J

Eq j(c j, eJ(QI,m),QI)

= κ(m)(1 − CκQI),

where

κ(m) ≡
(4 + c2)m(m + 1)

4(m + 1)2 + c2(m − 1)2
, and Cκ ≡ 1 −

c(8 + c2)

2(4 + c2)
∈ (0, 1).

It is easily verified that κ′(m) > 0. Hence, the aggregate best response QJ(QI,m)

is linear in the aggregate incumbent quantity QI , and it shifts upward as m grows.
Importantly, ∂2QJ(QI, m)/∂m∂QI = −Cκκ

′(m) < 0. Thismeans that the incumbent
output softens the impact of firm entry on the market price, or, equivalently, that
more entrants make incumbent output more effective in deterring entrant output.6
Therefore, (Maxq) takes the following form:

max
qi

qi(1 − qi − Eq−i −QJ(qi + Eq−i, m) − ci)

⇐⇒ max
qi

qi(A(m) − B(m)(qi + Eq−i) − ci), (3.1)

where A(m) ≡ 1−Cκκ(m) and B(m) ≡ 1− κ(m). From the incumbents’ perspective,
entry of new firms implies two countervailing effects. On the one hand, more firms
imply a lower market price, i.e., A(m) < 1. However, as the aggregate incumbent
output diminishes the optimal effort and output of the entrants, it also implies that
the price is less responsive to the incumbents output, i.e., B(m) < 1. This gives them
more leeway; they can increase output without reducing the equilibrium price too
much. For reasons that will become clear below, it is convenient to consider these
effects in a different but equivalent way. Note that the solution to (3.1) is equivalent
to the solution of the following ‘normalized’ problem:

max
qi

qi(a(m) − (qi + Eq−i) − θ(m)ci),

6This effect is similar to the one in Daughety (1990), except that, in our model, there is an
extra strategic device to achieve this product-deterrence effect—namely, increasing the strength of
managerial incentives to reduce marginal costs.
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Figure 3.2: Optimal output of incumbents

0 qi

MR and MC

qi(0, m)

a(m) − Eq−i

A(m) − B(m)Eq−i

c

qi(c, m)

θ(m)c

1 − Eq−i

Note: The optimal output of a representative incumbent firm for a given number of entrants under the actual
(black line) and normalized (gray line) marginal revenue and cost functions.

where

a(m) ≡
A(m)
B(m)

=
1 − Cκκ(m)

1 − κ(m)
, θ(m) ≡

1
B(m)

=
1

1 − κ(m)
with a′(m), θ′(m) > 0.

That is, from the perspective of each incumbent i, the entry of new firms is equivalent
to an increase in the market size, a(m) > 1, and the size of cost reduction, θ(m)c > c.
This means that, even though entrants reduce the market price, the market size
increases from the incumbents’ perspective as the price is less responsive to their
output, which also equates to a higher size of cost reduction.

We depict the equivalence mentioned above graphically in Figure 3.2 by means of
the marginal revenue (derived from the residual demand faced by i) and marginal
cost curves. The black downward-sloping line is the marginal revenue function
derived from the residual demand [A(m) − B(m)Eq−i] − B(m)qi of incumbent i for
m > 0. This marginal revenue function has a slope equal to −2B(m). The maximum
price is represented by the point A(m)−B(m)Eq−i, and the market size is represented
by a(m) − Eq−i. Hence, the horizontal intercept of the marginal revenue function is
given by [a(m)−Eq−i]/2. If there were no entrants, we would have A(0) = B(0) = 1.
Following the entry of at least one firm, we have A(m) < 1 and B(m) < 1. The black
horizontal line is the marginal cost of a high-cost incumbent i. The equilibrium
quantity qi(c, m) is determined by the intersection of the marginal revenue and
marginal cost of the high-cost incumbent i for a given number of entrants m. The
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normalized marginal revenue function that is derived from the normalized residual
demand a(m) − Eq−i − qi with a(m) > 1, and the normalized marginal cost curve,
θ(m)c, are shownby the gray lines. The normalizedmarginal revenue curve is steeper
than the actual marginal revenue curve because it has a slope equal to −2. These
two normalized functions intersect at the same equilibrium output level qi(c, m) of
each high-cost incumbent. For each low-cost incumbent, the equilibrium quantity
is given by qi(0, m) = [a(m) − Eq−i]/2 because for such a firm i, ci = θ(m)ci = 0.

Let e−i =
∑

k∈I\{i} ek be the aggregate managerial efforts of the rival incumbents.
The equilibrium output and profit of incumbents are described in the following
lemma.

Lemma 2 Given the number of entrants, m, the privately realized marginal costs
{c1, . . . , cn}, and the managerial efforts {e1, . . . , en} of the incumbent firms, the
equilibrium quantity and profit of each incumbent firm are respectively given by:

qi(ci, ei, e−i, m) =
2a(m) − (n + 1)θ(m)ci + (n − 1)θ(m)c(1 + ei) − 2θ(m)ce−i

2(n + 1)
,

πi(ci, ei, e−i, m) =
1

θ(m)

{
2a(m) − (n + 1)θ(m)ci + (n − 1)θ(m)c(1 + ei) − 2θ(m)ce−i

2(n + 1)

}2
.

Although the equilibrium quantity and profit of each entrant j depend on the aggre-
gate incumbent quantity QI , those of each incumbent firm i do not depend on the
entrant quantity because the incumbents act as Stackelberg leaders in the product
market. But they do depend on the number of entrants via the market size a(m) and
the size of cost reduction θ(m)c for the incumbent firms.

Equilibrium Managerial Efforts and Incentives in the Incumbent Firms
In the contracting stage at date 1, each incumbent firm i solves a maximization
problem similar to (Max j) (replace j by i everywhere, and drop QI from the profit
function). Define by ∆πi(ei, e−i, m) ≡ πi(0, ei, e−i, m) − πi(c, ei, e−i, m) the ex-
pected value of cost reduction of each incumbent firm i. The first-order condition
for the contracting problem of each incumbent i is given by:

∂Πi(ei, e−i, m)
∂ei

≡ ∆πi(ei, e−i, m)
[
ei
∂πi(0, ei, e−i, m)

∂ei
· · ·

· · · + (1 − ei)
∂πi(c, ei, e−i, m)

∂ei

]
= 2ei . (FOCi)

At the optimal managerial effort, the marginal benefit of effort is equalized with
the marginal incentive cost. The left-hand-side of (FOCi) is the marginal benefit of
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effort which comprises of two terms—namely, the expected value of cost reduction,
given by ∆πi(ei, e−i, m), and the expected marginal profitability of effort, given
by E[∂πi(ci, ei, e−i, m)/∂ei]. On the right-hand-side of the above equation is the
marginal incentive cost, C′(ei). Let the equilibriummanagerial effort and incentives
of incumbents be denoted by eI(m) and wI(m), respectively, which are determined
from (FOCi) and (IC). Note also that the manager’s utility, i.e., the net level of
compensation of the manager in each incumbent firm is given by:

uI(m) ≡ eI(m)wI(m) −
1
2
(eI(m))2 =

1
2
(wI(m))2. (3.2)

The following proposition describes the equilibrium managerial effort, incentives,
and the level of executive compensation in the incumbent firms.

Proposition 1 The equilibrium managerial effort and incentives of the incumbent
firms are unique, symmetric, and given by:

eI(m) = wI(m) =
c[8a(m)n + θ(m)c(n2 − 6n + 1)]
2[4(n + 1)2 + θ(m)c2(n − 1)2]

∈ (0, 1). (EI)

The equilibrium utility accrued to each manager at the incumbent firms is given by
uI(m), as in (3.2). Moreover, for fixed n ≥ 1 and m ≥ 0, there exists ĉ ∈ (0, 1) such
that every firm (incumbent or entrant) produces a positive output in equilibrium
regardless of its realized cost, provided that c ∈ (0, ĉ).

Note that the first-order condition (FOCi) defines implicitly the best reply in effort
at firm i as a function of the aggregate effort at the rival incumbent firms, e−i, which
is linear and downward sloping (see proof of Result 1-(a) in Appendix C.1 for more
details). Managerial efforts and incentives are strategic substitutes. As a result,
the symmetric equilibrium effort eI(m) is the unique equilibrium outcome. Now,
in order to determine the equilibrium managerial effort, we evaluate the first-order
condition (FOCi) at a common effort level e. The marginal benefit of effort, denoted
by MB(e, m), is strictly decreasing in e as shown by the downward sloping line
in Figure 3.3. The upward sloping line, labeled C′(e), is the marginal incentive
cost as a function of e. The intersection of MB(e, m) and C′(e) yields the unique
equilibrium managerial effort eI(m).

To find the upper bound ĉ on the high marginal cost, note that the firm that produces
the least in equilibrium is a high-cost entrant in a market in which all incumbents
are low-cost. Let qi(ci, e, m) denote the equilibrium output of an incumbent firm i

at marginal cost ci and a common effort level e (among the incumbents), which is
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Figure 3.3: Equilibrium managerial effort of incumbents
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obtained fromLemma 2. Let Q̂I ≡
∑

i∈I qi(0, eI(m), m) be the aggregate incumbents
output at equilibrium when all of them are low-cost. The upper bound ĉ is implicitly
defined by q j(c, eJ(QI, m), QI) = 0. For more details, see the proof of Proposition
1 in Appendix C.2.

Competition and Managerial Incentives in the Incumbent Firms
Our objective is to analyze how increased competition due to the entry of new firms
into the market affects the provision of managerial incentives at the incumbent firms.
The following proposition states our main result.

Proposition 2 Let m′ > m ≥ 0. Given any number of incumbents n ≥ 1, entry
of new firms induces each incumbent firm to elicit higher managerial effort, i.e.,
eI(m′) > eI(m), by providing stronger incentives, i.e., wI(m′) > wI(m), and higher
compensation, i.e., uI(m′) > uI(m).

The above proposition implies two sorts of effects of competition on managerial
incentives. The first one is an extensive margin effect. The equilibrium managerial
effort, incentives, and compensations, are lower in the incumbent firms in the
absence of any entrant firm. Even the entry of only one firm which sets quantity
as a Stackelberg follower induces the incumbents to elicit higher managerial effort
by offering stronger incentives and compensation. This is a consequence of the fact
that both eI(m) and wI(m) are strictly increasing in m. The second is an intensive
margin effect. As the competitive pressure intensifies, each incumbent firm elicits
higher managerial effort and offers stronger incentives and compensations.
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Figure 3.4: Effect of entrants on incumbents output
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Note: Effect of an increase in the number of entrants from m to m′ on the equilibrium outputs of low- and
high-cost incumbents. Let a ≡ a(m) − Eq−i , a′ ≡ a(m′) − Eq−i , qci ≡ qi(ci, e, m) and q′ci ≡ qi(ci, e, m′) for
ci ∈ {0, c}. Following an increase in m, q0 increases to q′0, but qc decreases to q′c .

The effect of an increase in the number of entrants on the equilibrium output of both
low- and high-cost incumbents is shown in Figure 3.4. Entry of new firms induces
the low-cost incumbents to produce more because both their market size and size of
cost reduction increase. As a(m) and θ(m) are both increasing functions of m, entry
benefits the low-cost incumbents implying that qi(0, e, m) is strictly increasing in
m. The same does not obtain for high-cost incumbents. The direction of the change
in qi(c, e, m) following an increase in the number of entrants is a priori ambiguous
because both a(m) and θ(m) are increasing in m. From Figure 3.4, it is immediate
to see that qi(c, e, m) is decreasing in m if and only if a′(m) − θ′(m)c < 0, which
turns out to be the case, i.e., the loss to the high-cost incumbents due to an increase
in the size of cost reduction outweighs the gain from an increase in market size.7

In order to see why entry of new firms induces the incumbents to elicit higher
managerial effort, we analyze how an increased number of entrants affects the
expected value of cost reduction and the expected marginal profitability of effort
of incumbents, i.e., the two terms in the left-hand-side of (FOCi) evaluated at a

7Note that
a′(m) − θ ′(m)c = −

c3κ′(m)
(4 + c2)[1 − κ(m)]2

< 0

because κ′(m) > 0. See Appendix C.2 for details.
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common effort level e of the incumbent firms. The expected value of cost reduction
is given by:

∆πi(e, m) =
c [4a(m) + θ(m)(n − 3)c − 2θ(m)(n − 1)ce]

4(n + 1)
.

Note that if all incumbents increase their effort level, e, the value of the cost reduction
diminishes, since it is more likely for all incumbents to lower their marginal cost.8
Importantly, this effect is amplified if there are more entrants. Hence, it can easily
be shown that the ‘value-of-cost-reduction effect’ is positive, i.e., it is strengthened
by the entry of new firms, if the common effort level is sufficiently low:

d∆πi(e, m)
dm

> 0 ⇐⇒ e < F(c) ≡
2(1 − Cκ)

(n − 1)c
+

n − 3
2(n − 1)

.

The expected marginal profit of effort is given by:

MPEi(e, m) ≡ E
[
∂πi(ci, e, m)

∂ei

]
=

c(n − 1) [a(m) − θ(m)c + θ(m)ce]
(n + 1)2

.

Note that the expected marginal profit of effort, MPEi(e, m), is increasing in the
common effort level, e. That is, if all the firms believe that all of them aremore likely
to reduce the cost, then it is more profitable to exert effort. Intuitively, this effect is
dampened by the number of incumbents n; however, it is amplified by the number
of entrants, m. One can easily show that the ‘marginal-profitability-of-effort-effect’
is positive, i.e., it is strengthened by the entry of new firms, if the common effort
level is sufficiently high:

dMPEi(e, m)
dm

> 0 ⇐⇒ e > G(c) ≡
c2

2(4 + c2)
.

Overall, a higher number of entrants, m, steepens the expected value of a cost
reduction and the marginal profit of effort. Recall that the marginal benefit of effort
is the sum of the two effects, i.e.,

MB(e, m) = ∆πi(e, m) + MPEi(e, m).

Therefore, a sufficient condition for the equilibrium effort eI(m) to be increasing in
the number of entrants is for both effects to be positive:

G(c) < eI(m) < F(c) =⇒
∂MBi(eI(m), m)

∂m
> 0

⇐⇒
deI(m)

dm
> 0.

8Note that this is not the case if a single firm increases its managerial effort. In such case, such
firm would see its value of cost reduction rise while that of the other firms would diminish.
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Oneway of proving Proposition 2 is to show that the inequalityG(c) < eI(m) < F(c)

holds for every c ∈ (0, ĉ), which is, indeed, the case.9 Nonetheless, showing these
inequalities directly is not the most suitable way of proving Proposition 2. The
difficulty lies in that all three, G(c), eI(m), and F(c), are increasing functions of c.
Because the upper bound ĉ does not have a closed form solution (see Appendix C.2),
it is simpler to verify that the inequality holds numerically, by doing an extensive
search in the parameter space.10 Therefore, the proof of Proposition 2 shows directly
that eI(m) is an increasing function of m. Equivalently, one can show that it is an
increasing function of κ(m).

Equilibrium Firm Value and Market Profits
In this section, we focus on the effect that firm entry has on the equilibrium “firm
value” and market profits of incumbents. The firm value is given by a firm’s
expected product market profits net of incentive costs. In equilibrium, the expected
firm value corresponds to the value function of problem (Max j). Let Vi(m) and
Πi(m) denote the expected firm value and expected market profits of incumbent
i ∈ I in equilibrium, respectively. Then,

Vi(m) ≡ Πi(m) − Ci(ei),

where Ci(ei) = e2
i is the incentive cost function, defined in (Min j), and ei denotes

the equilibrium effort of each incumbent firm i. The expected equilibrium profits
are given by:

Πi(m) = eI(m)πi(0, eI(m),m) + (1 − eI(m))πi(c, eI(m),m),

where πi(ci, eI(m),m) denotes the incumbent expected market profits, conditional
on having realized cost ci, on the equilibrium path (see Lemma 2). Recognizing
that the firm value is the value function of a maximization problem, which depends
itself on other value functions (the equilibrium profit functions) yields the following
result.

Proposition 3 The equilibrium firm value of the incumbent firms is decreasing in
the number of entrants.

9It is easy to check that F(c) > G(c) if and only if n + 1 > 0.
10Despite the fact that we prove this claim numerically, the proof of Proposition 2 is fully

analytical. For more details on this and the other claims below that we show numerically, see
Appendix C.3.
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The intuition behind Proposition 3 is straightforward. The objective function in
(Max j) depends on m only through the equilibrium expected profit functions at
realized marginal costs 0 and c, πi(0, eI(m), m) and πi(c, eI(m), m), respectively.
Hence, it follows from the Envelope theorem that, if both of the expected profit
functions are decreasing in m, then Vi(m) is also decreasing in m. This is indeed the
case because the objective function of the profit maximization problem, πq

i (qi,QJ) in
(Maxq), only depends on m throughQJ . SinceQJ = QJ(QI, m) is strictly increasing
in m, due to κ′(m) > 0, by the Envelope theorem, ∂πq

i (qi, QJ)/∂QJ < 0 implies
∂πi(ci, eI(m), m)/∂m < 0 for ci ∈ {0, c}.11 Figure 3.5 shows graphically the result
in Proposition 3.

Figure 3.5: Equilibrium expected incumbent firm value
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Cross-Sectional Variation in the Number of Incumbents
Until now, we have maintained the number of incumbents fixed. To emphasize the
significance of Proposition 2, we analyze how the equilibrium managerial effort
varies with the number of incumbents, n, for a fixed number of entrants. This
corresponds to comparing the managerial contracts offered at firms in two markets
that face the same amount of competitive pressure (same number of entrants), but
one of which is initially more competitive than the other (has more incumbents). Let
eI(n, m) ≡ eI(m), and wI(n, m) ≡ wI(m), as defined in (EI), and uI(n, m) ≡ uI(m),
as defined in (3.2). (In this section we take the liberty of using notation defined
previously, but change m for n to highlight the comparative statics in n.)

11We owe this observation to an anonymous referee.
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Proposition 4 Let n′ > n ≥ 1. Given any fixed number of entrants m ≥ 0,
incumbents in more competitive markets, i.e., in ones with more incumbents, elicit
lower managerial effort, i.e., eI(n′, m) < eI(n, m), by providing weaker incentives,
i.e., wI(n′, m) < wI(n, m), and lower compensation, i.e., uI(n′, m) < uI(n, m).

The marginal benefit of effort, the left-hand-side of (FOCi), differs in two ways in
markets that are initially more competitive. The first one is through the standard
‘output channel.’ More incumbents means greater aggregate production by rivals,
which implies that each firm optimally reduces its output at any realization of
marginal cost as quantities are strategic substitutes. The expected value of cost
reduction is lower as the effect of the number of incumbents on the optimal output
level does not depend on the realized cost. That is, because ∂qi(0, e, n)/∂n =

∂qi(c, e, n)/∂n < 0, one obtains

d∆πi(e, n)
dn

=
2

θ(m)
[qi(0, e, n) − qi(c, e, n)] ·

∂qi(ci, e, n)
∂n

< 0.

Notably, this ‘value-of-cost-reduction effect’ would work under the same logic if the
realizations of marginal costs would have been public knowledge.

Due to the presence of privately realized marginal costs, a higher number of incum-
bents also changes the marginal benefit of managerial effort through the ‘marginal-
profitability-of-effort’ effect. By eliciting a highermanagerial effort, each incumbent
i induces its rivals to believe that it has attained a low marginal cost, and hence,
the aggregate rival quantity is lower in expectation. This raises the expected market
price, and hence, the expected profits of firm i, i.e., ∂πi(ci, e, n)/∂ei > 0 at any
realization of marginal cost. The marginal profitability of effort is greater if rivals
believe that a given firm has attained cost reduction. In a more concentrated market
(less firms), it is easier to influence rivals by affecting their beliefs, and hence, the
marginal profitability of effort is increasing in the number of incumbents. In a
market with many firms, by contrast, it is harder that more rivals are so influenced
(as there are more firms). Thus, the marginal profitability of effort is decreasing in
the number of incumbents in competitive markets. Formally,

dE[∂πi(ci, e, n)/∂ei]

dn
= −

c(n − 3)[a(m) − θ(m)c(1 − e)]
(n + 1)3

,

which is strictly positive (negative) for n < (>) 3 as c < ĉ < a(m)/θ(m). (To see why
this last inequality holds, note that the equilibrium output of a high-cost incumbent
would be negative otherwise. See the proof of Proposition 1 in Appendix C.2 for
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more details.). Thus, the effect of an increase in n on the marginal profitability
of effort may be positive or negative depending on the number of incumbents.
Nonetheless, in either case, the aggregate effect of a higher number of incumbents
on the marginal benefit of effort turns out to be always negative, i.e., MB(e, n) in
Figure 3.3 shifts down as n increases with C′(e) remaining unaltered, and hence,
eI(n, m) is decreasing in n. To see this formally, it suffices to note that

d MB(e, n)
dn

=
d∆πi(e, n)

dn
+

dE[∂πi(ci, e, n)/∂ei]

dn

= −
2c(n − 1)[a(m) − θ(m)c(1 − e)]

(n + 1)3
< 0.

The crucial difference between varying the number of entrants and incumbents is
that the entry of new firms affects the incumbents’ output decision by altering the
effective market size and the size of cost reduction. If there are more incumbents
to start with, this alters directly the number of firms incumbents are competing
against, and leaves the market size and the size of cost reduction unaffected. The
juxtaposition of Propositions 2 and 4 conveys the main message of our paper. The
fact that incumbents find it optimal to elicit higher managerial effort by offering
steeper incentive contracts when they foresee the entry of new firms to the market, is
due to incumbents being able to affect the entrants’ output decisions by committing
to an output level before they start producing.

Managerial Incentives in Simultaneous Oligopoly
The objective of this section is to analyze the effect of entry on managerial efforts
and incentives in the incumbent firms when the m entrant firms are allowed set
quantities simultaneously along with the n incumbents. The simultaneous setting
is nothing but a Cournot market with n + m symmetric firms and privately realized
marginal costs (c1, . . . , cn, c1, . . . , cm). The equilibrium managerial effort in each
firm (incumbent or entrant) can be obtained directly from the expression (EI) as
follows. As the entrants are treated equally as the incumbents, remove the entrants
by setting m = 0, and replace the number of incumbents, n, by n + m. In this case,
a(m) = θ(m) = 1.

Let the symmetric equilibrium managerial effort and incentives in each firm (in-
cumbent or entrant) be denoted by esim(n + m) and wsim(n + m), respectively, and
note that a manager’s equilibrium utility is given by:

usim(n + m) ≡ esim(n + m)wsim(n + m) −
1
2
(esim(n + m))2 =

1
2
(wsim(n + m))2.
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The effect of an entrant in an incumbent’s optimal managerial effort and contract
in this setting is analogous to considering a market that has one more incumbent
(in this setting, entrants and incumbents are symmetric). Hence, we obtain the
following corollary directly from Proposition 4.

Corollary 1 Let m′ > m ≥ 0. In a simultaneous quantity-setting oligopoly in
which m entrants set quantities and managerial contracts along n ≥ 1 incumbents,
entry of new firms implies that each incumbent elicits lower managerial effort,
i.e., esim(n + m′) < esim(n + m), by providing weaker incentives to its manager, i.e.,
wsim(n+m′) < wsim(n+m), and lower compensation, i.e., usim(n+m′) < usim(n+m).

The result in Corollary 1 is not new in the literature (see Golan, Parlour, and Rajan,
2015; Hermalin, 1994; Martin, 1993). The intuition behind it goes in the same line
as the one underlying Proposition 4. The entrants affect the marginal benefit of effort
of the incumbents through the ‘value-of-cost-reduction’ and ‘marginal-profitability-
of-effort’ effects. As noted in section 3.4 above, in this case, entry implies a lower
expected value of cost reduction for the incumbents, and also a lower expected
marginal profit of effort as long as the market is already sufficiently competitive or,
equivalently, the number of entrants is sufficiently high, i.e., as long as n + m > 3.
Notably, as highlighted in the extant literature, the result in Corollary 1 does not
depend onmarginal costs being privately realized. On the contrary, we show that the
negative effect of competition on managerial incentives in this setting is reinforced
with privately realized marginal costs if the market is sufficiently competitive.

3.5 Testable Implications
Nature of Industry Competition and Time to Build Production Capacity
A key insight of our stylized model is the juxtaposition of Proposition 2 with
Corollary 1. If entrants set quantities as Stackelberg followers, incumbent firms
offer stronger managerial incentives as the number of entrants grows, whereas the
opposite is obtained if they set quantities simultaneously, along with the incumbents.

Allen, Deneckere, Faith, and Kovenock (2000) examine the role of capacity pre-
commitment as an instrument to deter production in a Bertrand-Edgeworth model
of price competition. In particular, they analyze a three-stage game where an in-
cumbent firm chooses its capacity first. Having observed the incumbent’s capacity
level, the entrant then chooses capacity. Finally at stage 3, the firms simultaneously
set prices. The authors show that the outcome of this game coincides with that
of a Stackelberg quantity competition. The crux of Allen, Deneckere, Faith, and
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Kovenock’s (2000) analysis is that production capacity cannot be adjusted instanta-
neously in the post-entry game, i.e., for a potential entrant, capacity requires time
to build. This is in contrast with the Bertrand-Edgeworth model analyzed by Kreps
and Scheinkman (1983), in which firms are able to adjust capacity instantaneously
prior to engaging in simultaneous price competition. In this sense, the outcome of
Kreps and Scheinkman (ibid.), which coincides with that of Cournot competition,
corresponds to industries in which capacity requires no time build. This disparity
in the time required to build production capacity leads to the following implication.

Implication 1 (i) In an industry where production capacity requires ‘time to build,’
the incumbent firms offer higher managerial compensation and stronger incentive
pay following an increase in the market competition induced by the entry of new
firms. (ii) By contrast, if the production capacity can be adjusted instantaneously,
entry of new firms implies that incumbents would provide lower compensation and
weaker incentives to their managers following entry.

The Stackelberg outcome is more plausible in an industry in which sequential capac-
ity choices are followed by simultaneous price competition. In such industries, such
as the airline or banking industries, the sluggishness of capacity adjustment gives
rise to an output-deterrence effect due to capacity pre-commitment. By contrast,
in industries in which production capacities can be built almost instantaneously,
such as services and technology, building capacity does not have a pre-commitment
value. Our results imply that this industry-specific feature is key when analyzing
the effect of market product competition on executive compensation.

It is worth emphasizing that Implication 1 applies both at the extensive and the
intensive margins. When entrants set quantity as Stackelberg followers, (i) firm
entry increases incumbents’ managerial effort, i.e., at the extensive margin, and
(ii) a higher number of entrants increases each incumbent’s managerial effort by a
larger magnitude, i.e., at the intensive margin. Figure 3.6 depicts the juxtaposition
of Proposition 2 with Corollary 1. From (EI) it follows that eI(n, 0) = esim(n + 0).
In the absence of any entrant firm (m = 0), the equilibrium efforts coincide because
it makes no difference whether entrants set managerial contracts and quantities after
or along with the incumbents. Because eI(n, m) is strictly increasing in m, and
esim(n+m) is strictly decreasing in m, the equilibrium managerial incentives are not
only higherwhen time is required to build capacity, but also their differencesmagnify
as the number of entrants grows. Therefore, even a monopolist incumbent (n = 1)



101

would respond more aggressively to an increase in the threat of competition under
time-to-build-capacity, whereas she would provide weaker managerial incentives if
the time to build capacity were negligible.

Figure 3.6: Equilibrium managerial effort on the number of entrants

0 m

managerial effort

esim(n + m)

eI (n, m)

eI (n, 0) = esim(n + 0)

Note: Equilibriummanagerial effort as a function of the number of entrants m under simultaneous and sequential
quantity-setting oligopolies for a given number of incumbents n.

Equilibrium Social Welfare
In this section, we focus on the welfare analysis. We simplify the analysis by
analyzing the equilibrium welfare numerically. We use a granular grid of the
model’s parameters to validate Implication 2 below (see Appendix C.3). The total
welfare in the industry consists of three components: (i) consumer surplus (CS),
(ii) total producer surplus of incumbents (PSI), and (iii) total producer surplus of
entrants (PSJ). We sketch how to compute each of these components in turn. We
provide full details in Appendix C.4.

The consumer surplus is directly obtained from the demand function. Conditional
on the total industry output, Q = QI + QJ , the consumer surplus can be readily
computed as CS = Q2/2. Hence, the expected consumer surplus is given by
ECS = 0.5 ∗ EQ2. To compute the producer surplus of the incumbents and the
entrants, define the producer surplus of a generic firm k ∈ K , as the sum of its firm
value and the utility of its manager. Since managerial wages are simply a transfer
between a firm and its manager, the producer surplus of a firm is equal to its market
profits net of its manager’s effort cost. That is, the expected producer surplus of
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firm k ∈ K , denoted by PSk is given by:

PSk(m) = Πk(m) − ψ(ek),

where ψ(e) = e2/2 is the managerial effort cost function, and ek denotes the
equilibrium effort of firm k ∈ K . Note that the producer surplus differs from the
firm value in that, instead of accounting for the incentive costs of effort provision,
it accounts for the effort costs from an efficiency point of view. The total producer
surplus of incumbents is given by PSI =

∑
i∈I PSi(m), and the total producer surplus

of entrants is given by PSJ =
∑

j∈J PSj(m). The total welfare of the industry is
defined by:

W = CS + PSI + PSJ .

As a measure of social welfare, we use the expected total welfare at equilibrium,
EW . As in the previous subsections, define the analog welfare measures for the case
in which entrants produce along the incumbents simultaneously, by W sim, CSsim,
PSsim

I , and PSsim
J .

Implication 2 Entry of new firms affects the consumer surplus, the producer sur-
plus, and the social welfare in the following ways:

(i) The expected consumer surplus both under sequential (Stackelberg) and si-
multaneous (Cournot) competition, ECS and ECSsim are increasing in the
number of entrants. Moreover, the expected consumer surplus under se-
quential competition is higher than that under simultaneous competition, i.e.,
ECS > ECSsim for every m ≥ 1 and n ≥ 1;

(ii) The aggregate expected producer surplus both under sequential and simulta-
neous competition, E(PSI + PSJ) and E(PSsim

I + PSsim
J ) are decreasing in the

number of entrants. Moreover, the aggregate expected producer surplus un-
der sequential competition is lower than that under simultaneous competition,
i.e., E(PSI + PSJ) < E(PSsim

I + PSsim
J ) for every m ≥ 1 and n ≥ 1;

(iii) The expected social welfare both under sequential and simultaneous compe-
tition, EW and EW sim are increasing in the number of entrants. Moreover,
the expected social welfare under sequential competition is higher than that
under simultaneous competition, i.e., EW > EW sim for every m ≥ 1 and
n ≥ 1.
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According to Implication 2, regardless of the nature of competition, i.e., whether
entrants produce after or along with the incumbents, social welfare increases with
firm entry. Moreover, for any combination of parameter values, it also obtains
that social welfare is higher when the incumbents are able to set quantities before
the entrants. This can be seen in Figure 3.7 (top panel), which shows how social
welfare is higher under sequential competition (blue curves) than under simultaneous
competition (red curves). In the central and bottom panels of Figure 3.7, we plot the
consumer surplus and the aggregate producer surplus. Notably, while the consumer
surplus is always increasing in the number of entrants, the producer surplus is
decreasing. Qualitatively, consumer surplus behaves in a similar fashion as social
welfare with respect to entry. However, the producer surplus is higher in the
simultaneous case than with sequential competition. All of these findings point to
the conclusion that the effect of increased competition via firm entry is fiercer when
incumbents behave as Stackelberg leaders. It is worth noting that the above finding
that social welfare is higher under Stackelberg quantity competition is similar to
what Daughety (1990), and Wang and Wang (2009) find, except that in our case the
production technology is endogenized through managerial incentive contracts.

3.6 Extensions
Effect of Hierarchical Entry on Managerial Incentives
Entry of firms seldom takes place simultaneously. The Airline Deregulation Act of
1978 stipulated a transition period of three years over which several small carriers
entered the U.S. airline industry sequentially. Even in the absence of entry barriers,
some firms are quicker than others to learn about market conditions. Prescott and
Visscher (1977) argue that “some entrants become aware of a profitable market
before others or require longer periods of time in which to tool up [our italics].” In
what follows, we analyze an entry gamewhere firms enter sequentially. In particular,
following the quantity choice of the incumbents, firms enter in a hierarchical fashion
(as in Boyer and Moreaux, 1986). For simplicity, we consider only two entrants,
i.e., J = {1, 2}. There are two consecutive periods of entry, entrant 1 enters in
period 1, and entrant 2 enters the market in period 2. We show that hierarchical
competition reinforces the effect of entry on managerial effort relative to the case
when the post-entry quantity competition is simultaneous.

Note that when the two entrants compete simultaneously by setting quantities, the
symmetric equilibrium managerial effort of the incumbent firms are given by eI(2)
which is obtained by substituting m = 2 in the expression (EI) in Proposition 1.
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Denote by eh
I (2) the symmetric equilibrium effort elicited by the incumbents under

hierarchical entry of firms 1 and 2.

Proposition 5 Incumbents elicit greater managerial effort under hierarchical entry
than that under simultaneous entry, i.e., eh

I (2) ≥ eI(2) for any number of incumbents,
n ≥ 1.

Recall that the key determining factors of managerial efforts are the sizes of the
market and cost reduction for the incumbent firms. The key to proving Proposition
5 is that, under hierarchical entry, both the market size and the size of the cost
reduction for incumbents are higher relative to simultaneous entry. Hierarchical
entry implies more intense competition because each predecessor produces more
aggressively in order to deter the production of subsequent entrants. As a result, the
incumbents, being the first movers, provide stronger incentives (relative to the case
of simultaneous entry) in order to reduce managerial slack.

Effect of Price Competition on Managerial Incentives
In this section, we analyze the effect of price competition on managerial incentives.
Consider the setting described in Section 3.3 with the only difference that firms set
prices instead of quantities. Competition is à la Bertrand, i.e., all firms produce a
single homogeneous good, and there is no capacity constraint. The timing of the
game is analogous to the one described in Figure 3.1. Incumbents post prices at
date t = 3, which the entrants observe, and then entrants set prices at date t′ = 3.

Let pk be the price set by firm k ∈ I ∪ J, and let PI = min{pi : i ∈ I} be the lowest
price among those set by the incumbents. Consider the sub-games played by the
entrants and the incumbents once their respective marginal costs have been privately
realized. Standard arguments show that these sub-games do not have equilibria in
pure strategies.12 We analyze symmetric equilibria with atom-less mixed strategies
in the price-setting stages. Also, to simplify the analysis, we restrict attention to the
symmetric equilibrium in the choice of managerial effort.

12First, note that the only case in which an entrant can obtain positive profits is if PI > 0. Also,
see that PI ≤ c in equilibrium (since incumbents would obtain negative profits otherwise). To note
that there is no equilibrium in pure strategies, see that (i) setting pj > 0 is not an equilibrium since
any other entrant could undercut this price and obtain all the demand, and (ii) setting pj = 0 is also
not an equilibrium since there exists the possibility that j is the only entrant with a low cost, in
which case it would be profitable to increase the price marginally. Analogous arguments apply to
the sub-game in which incumbents set prices.
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Figure 3.7: Social welfare
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Proposition 6 Under price competition,

(a) the symmetric equilibrium managerial effort of the entrants is given by
eB

J (m, PI) which solves

eJ

(1 − eJ)
m−1 =

PI(1 − PI)

2
. (3.3)

(b) Similarly, the symmetric equilibrium effort elicited by the incumbents is given
by eB

I (m) which solves

eI

(1 − eI)
n−1 =

c(1 − c)
(
1 − eB

J (m, c)
)m

2
. (3.4)

(c) Both eB
J (m, PI) and eB

I (m) are decreasing in the number of entrants m, i.e.,
eB

J (m
′, PI) < eB

J (m, PI) and eB
I (m

′) < eB
I (m) for m′ > m ≥ 0.

Proposition 6 establishes that the equilibrium effort of incumbents is decreasing in
the number of entrants m in a price-setting environment. The intuition behind this
result lies in the expected equilibrium profits of a low-cost firm who sets its price
according to an equilibrium in mixed strategies. Two observations that follow from
the above proposition are worth noting.

• First, the expected profits in a Bertrand game with privately realized costs
are the same as in the game with publicly observed ones.13 In our case, this
implies that the expected profits of a low-cost entrant are given by:

π j(0, e− j, PI) = PI(1 − PI)(1 − e)m−1, (3.5)

where ek = e for every k ∈ J \ { j}. Note that the expected profits in (3.5)
correspond to the case with publicly observable costs. In this case, entrant j

obtains non-negative profits if and only if it is the only entrant that attains cost
reduction by setting price equal to PI and serving the entire market demand
(we assume that entrants have priority over incumbents if they set the same
price since they can always undercut any positive price set by an incumbent
marginally). From (3.5), one can easily see why the equilibrium effort of
the entrants is decreasing in m. The likelihood of being the only entrant
who attains cost reduction is decreasing in the number of entrants, which
diminishes the marginal profitability of managerial effort.

13For a formal proof of this statement, see the proof of Proposition 6.
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• Second, the equilibrium managerial effort elicited by the incumbent firms is
decreasing in the number of firms when both incumbents and entrants set
prices simultaneously. From (3.4), it is immediate to see that the left-hand-
side is strictly increasing in both eI and n, whereas the right-hand-side is
constant with respect to n for a given value of m. Thus, as n increases, the
left-hand-side of (3.4) shifts up, which implies that eB

I decreases with n.

The expected profits of a low-cost incumbent are given by:

πi(0, e−i) = c(1 − c)(1 − eB
J (m, c))m(1 − e)n−1, (3.6)

where ek = e for every k ∈ I \ {i}. The expected profit of a low-cost incumbent is
also the same as that with known marginal costs. In this case, an incumbent obtains
non-negative profits if and only if it is the only firm in the industry which succeeds
in attaining cost reduction. Therefore, the only channel through which the number
of entrants affects the incumbents’ expected profits is the probability that all entrants
fail in reducing marginal cost, which is given by (1− eB

J (m, c))m. One can easily see
from (3.3) that this probability is decreasing in m. Even though each entrant is more
likely to fail to attain the cost reduction individually as m increases, there are more
of them, so the probability that all of them fail to attain it decreases in m. This, in
turn, drives the profits of every incumbent to zero, which is sufficient to counteract
the fact that the entrants themselves provide less effort when there are more of them.
Therefore, in a price-setting environment, fiercer competition among the entrants
themselves causes them to offer weaker managerial incentives, and, in turn, makes
it profitable for the incumbents to weaken managerial incentives.

3.7 Conclusion
Motivated by empirical evidence, in this paper we investigate how firms adjust exec-
utive compensation packages following deregulation policies that intensify product
market competition by allowing the entry of new firms. Using a standard incentive
contracting model under quantity-setting oligopoly, we show that incumbent firms
find it optimal to elicit higher managerial effort by offering stronger incentive con-
tracts when they foresee entry of new firms into the product market. Our model
allows us to tease out in detail the channels through which product market com-
petition affects managerial incentives in a setting with firm entry. In our model,
the key features that link the number of entrants with an incumbent’s contracting
problem are the market size and the size of cost reduction, both of which affect
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the marginal benefit of effort, through the expected value of cost reduction, and
the expected marginal profitability of effort. By showing that firm entry increases
both the market size and the size of cost reduction for incumbents, and analyzing,
in turn, how these two affect the expected value of cost reduction and the expected
marginal profitability of effort, we show that incumbents find it optimal to offer
stronger managerial incentives when new firms enter the market. Furthermore, we
also show that the magnitude in which incumbents strengthen managerial incentives
is increasing in the number of entrants—a greater competitive pressure triggers a
starker reaction by the incumbents.

Beyond conforming to the empirical regularities, our model also sheds light on
how the nature of competition in product market affects managerial incentives.
Namely, we explore the connection between the time to build production capacity
in an industry and the effect that product market competition has on managerial
incentives. We find that firm entry increases the pay-performance sensitivity of
managerial contracts in markets in which production capacity takes time to build. In
other words, the key driver of our result is that entrants act as Stackelberg followers
in the product market by taking the aggregate output of incumbents as given. In the
opposite case in which production capacity may be obtained instantaneously, i.e.,
entrants are symmetric to incumbents and set contracts and output simultaneously
along with them, the association is negative—incumbents find it optimal to offer
weaker managerial incentives as more firms enter the market.
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A p p e n d i x A

APPENDIX TO CHAPTER 1

A.1 Estimation Details
In this section, I show the steps to compute the simulated log-likelihood `Sω,Sυ,ψ

n (θ |Z)
in detail, see (1.30).

1. Simulate the conditional matching likelihood, using a logit-kernel:

• Write the surplus of matching M ∈ Mi as:

Vsυ (M | Ωi,Zi, θT, θM) =
∑
c,h

M(c, h)
[
π(ωch, zch | θT, θM) + ε

sυ
cyh + η

sυ
xch

]
,

where εsυ
c =

(
εsυ

cy
)
y∈Y and ηsυ

h =
(
ηsυ

xh

)
x∈X

are simulated structural errors.

• To simulate εsυ
c and ηsυ

h , let Γε and Γη be the Cholesky factors of Σε and
Ση, respectively. Draw fixed simulated values

ε̃sυ
c ∼ iid N(0, I|Y |), sυ = 1, . . . , Sυ,

η̃sυ
h ∼ iid N(0, I|X |), sυ = 1, . . . , Sυ,

for every c ∈ Ci and h ∈ Hi. Set εsυ
c = Γε ε̃

sυ
c , and ηsυ

h = Γηη̃
sυ
h .

• Define the simulated counterpart of the conditional matching likelihood
LM(Mi |Ωi,Zi, θT, θM) as

L
sυ,ψ
M (Mi |Ωi,Zi, θT, θM) =

exp
{
Vsυ (Mi | Ωi,Zi, θT, θM)/ψ

}∑
M∈Mi

exp
{
Vsυ (M | Ωi,Zi, θT, θM)/ψ

} ,
where ψ > 0 is the smoothing constant of the logit-kernel.

• Note that Lsυ,ψ
M = 1 for all Mi ∈ Mi if |Mi | = 1. Markets with a single

prospective placement do not contribute to the matching likelihood.

• As ψ → 0, Lsυ,ψ
M tends to the indicator function over the choice set,

given the simulated errors. Formally,

lim
ψ→0
L

sυ,ψ
M (Mi |Ωi,Zi, θT, θM) = 1A(Mi |Ωi,Zi,θT ,θM )(υ

sv ),

where υsv = (υsv
M)M∈Mi with υ

sv
M =

∑
c,h M(c, h)

[
εsυ

cyh + η
sυ
xch

]
.
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2. Integrate over Ωi.

• To simulate ωch, let Γω be the Cholesky factor of Σω. Draw fixed
simulated values

ω̃sω
ch ∼ iid N(0, I|R0 |), sω = 1, . . . , Sω,

for every (c, h) ∈ Ci×Hi. Setωsω
ch = Γωω̃

sω
ch , andΩ

sω
i =

(
ωsω

ch

)
(c,h)∈Ci×Hi

.

• The conditional outcome likelihood LT,R(Ti,Ri | Mi,Ω
sω
i ,Zi, θT ) has a

closed-form.

• Define the simulated counterpart of themarket-level likelihoodL(Mi,Ti,Ri |

Zi, θ) as

LSω,Sυ,ψ(Mi,Ti,Ri |Zi, θ) =
1

SωSυ

Sω∑
sω=1

Sυ∑
sυ=1
L

sυ,ψ
M (Mi |Ω

sω
i ,Zi, θT, θM) · · ·

· · · × LT,R(Ti,Ri |Mi,Ω
sω
i ,Zi, θT ).

3. Add over markets and take logs:

• Finally, define:

`
Sω,Sυ,ψ
n (θ |Z) =

n∑
i=1

logLSω,Sυ,ψ(Mi,Ti,Ri |Zi, θ).

A.2 Matching Covariance
Claim 1 The covariance matrix of the composite error υ = (υM)M∈M(C,H) is given
by:

cov(υM, υM ′) =
∑
c∈C

σε(yM(c), yM ′(c)) +
∑
h∈H

ση(xM(h), xM ′(h)). (A.1)

Proof of Claim 1: Define A(c, h) ≡ εcyh + ηxch. Note that

A(c, h)A(c′, h′) = [εcyh + ηxch][εc′yh′ + ηxc′h′]

= εcyhεc′yh′ + εcyhηxc′h′ + ηxchεc′yh′ + ηxchηxc′h′ .

From Assumption 3, it follows

EA(c, h)A(c′, h′) = 1{c = c′}Eεcyhεc′yh′ + 1{h = h′}Eηxchηxc′h′

= 1{c = c′}σε(yh, yh′) + 1{h = h′}ση(xc, xc′).
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Since EυM = EυM ′ = 0,

cov(υM, εM ′) = EυMυM ′

= E

[∑
c,h

M(c, h)A(c, h)

] [∑
c′,h′

M′(c′, h′)A(c′, h′)

]
=

∑
c,h

∑
c′,h′

M(c, h)M′(c′, h′)EA(c, h)A(c′, h′)

=
∑

c

∑
h,h′

M(c, h)M′(c, h′)σε(yh, yh′)

+
∑

h

∑
c,c′

M(c, h)M′(c′, h)ση(xc, xc′).

Note that
∑

h,h′ M(c, h)M′(c, h′)σε(yh, yh′) = σε(yh, yh′) for h and h′ such that
M(c, h) = M′(c, h′) = 1, which is equivalent toσε(yM(c), yM ′(c)). Using a symmetric
argument in the second term yields the desired expression:

cov(υM, εM ′) =
∑
c∈C

σε(yM(c), yM ′(c)) +
∑
h∈H

ση(xM(h), xM ′(h)).

�

Proof of Proposition 1: For an arbitrary market with choice setM(C,H), let

υ̃M = υM − υM0 ∀ M ∈ M(C,H) \ {M0}, (A.2)

for some fixed M0 ∈ M(C,H). Standard results (e.g., Train, 2009) show that the
covariancematrix of υ̃ ≡ (υ̃M)M∈M(C,H)\{M0} is identified up to a scale normalization.
From (1.22), one can write the elements in the covariance matrix of υ̃ as follows:

cov(υ̃M ′, υ̃M ′′) = cov(υM ′ − υM0, υM ′′ − υM0)

= cov(υM ′, υM ′′) + var(υM0) − cov(υM ′, υM0) − cov(υM ′′, υM0)

=
∑

c

σε(yM ′(c), yM ′′(c)) +
∑

h

ση(xM ′(h), xM ′′(h))

+
∑

c

σε(yM0(c)) +
∑

h

ση(xM0(h))

−

[∑
c

σε(yM0(c), yM ′(c)) +
∑

h

ση(xM0(h), xM ′(h))

]
−

[∑
c

σε(yM0(c), yM ′′(c)) +
∑

h

ση(x0M(h), xM ′′(h))

]
, (A.3)
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var(υ̃M ′) =
∑

c

σε(yM ′(c)) +
∑

h

ση(xM ′(h))

+
∑

c

σε(yM0(c)) +
∑

h

ση(xM0(h))

− 2

[∑
c

σε(yM0(c), yM ′(c)) +
∑

h

ση(xM0(h), xM ′(h))

]
, (A.4)

where I write ση(x) ≡ ση(x, x) and σε(y) ≡ σε(y, y) to simplify notation.

First, I show how to identify the elements of the covariance matrix Ση. Consider a
market with three children whose types are given by x, x′, x′′ ∈ X and a single home
whose type is y ∈ Y . The set of feasible matchings in this market contains three
matchings: M0 = (x, y), M1 = (x′, y), and M2 = (x′′, y), where I abuse notation
and define the matching over the types of the children and homes. Using (A.3) and
(A.4), one may see that the identified elements in the covariance matrix of υ̃ in this
market are given by:

σ∗1 ≡
cov(υ̃M1, υ̃M2)

var(υ̃M1)
=
ση(x′, x′′) + σε (y) + ση(x) − ση(x, x′) − ση(x, x′)

2σε(y) + ση(x) + ση(x′) − 2ση(x, x′)
(A.5)

σ∗2 ≡
var(υ̃M2)

var(υ̃M1)
=

2σε(y) + ση(x) + ση(x′′) − 2ση(x, x′′)
2σε(y) + ση(x) + ση(x′) − ση(x, x′)

. (A.6)

Let x = x0 and y = y0, so

σ∗1 =
ση(x′, x′′) + 1

2 + ση(x′)
. (A.7)

Since ση(x′, x′′) = ση(x′) for x′′ = x′, (A.7) identifies ση(x′) for an arbitrary x′ ∈ X .
Note that this implies that (A.7) also identifies ση(x′, x′′) for arbitrary x′, x′′ ∈ X .

Second, I show how to identify the covariance matrix Σε. Consider a market with
three children whose types are given by x, x′, x′′ ∈ X and two homes whose types are
y, y′ ∈ Y . In this market,M(C,H) contains six matchings. Let M0 be the matching
that assigns placements (x, y) and (x′, y′); M1 the one that assigns (x, y) and (x′′, y′),
and M2 the one assigning (x′′, y) and (x′, y′). Using (A.3), compute the following
covariance:

cov(υ̃M1, υ̃M2) = σε(y, y
′) + ση(x, x′′) + ση(x′, x′′)

+ σε(y) + σε(y
′) + ση(x) + ση(x′)

−
[
σe(y) + ση(x) + ση(x′, x′′)

]
−

[
σε(y

′) + ση(x, x′′) + ση(x′)
]

= σε(y, y
′).
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Let M3 be the matching assigning the placements (x′, y) and (x, y′), and note that:

cov(υ̃M1, υ̃M3) = σε(y
′) + σε(y, y

′) + ση(x′) + ση(x′, x′′) − 2ση(x, x′′).

Hence, two elements of the covariance matrix of υ̃ in this market are given by:

σ∗3 =
cov(υ̃M1, υ̃M2)

var(υ̃M1)
=

σε(y, y
′)

2σε(y′) + ση(x′) + ση(x′′) − 2ση(x′, x′′)

σ∗4 =
cov(υ̃M1, υ̃M3)

var(υ̃M1)
=
σε(y

′) + σε(y, y
′) + ση(x′) + ση(x′, x′′) − 2ση(x, x′′)

2σε(y′) + ση(x′) + ση(x′′) − 2ση(x′, x′′)
.

Since Ση is identified, the previous two equations define the 2-by-2 system of
equations:

σ∗3 =
σε(y, y

′)

2σε(y′) + H

σ∗4 =
σε(y

′) + σε(y, y
′) + K

2σε(y′) + H
,

where H and K are known constants. Identification of Σε follows from noting that
the above system of equations has a unique solution for σε(y′) and σε(y, y′), in terms
of identified quantities. �
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A p p e n d i x B

APPENDIX TO CHAPTER 2

B.1 Details on Example
In this appendix, I provide further details for the example in Section 2.3. In order to
compute the expected optimal value on t = 1, given that policy a0 was chosen on the
first period, I condition on the different possible cases. For example, assume that the
younger type-0 child is matched in the first period, a0 = 0, and that a single type-0
parent arrives on period t = 1. There are eight possible cases for the state variables
(c1

10, c
1
21, c

1
00, c

1
01). In all cases, c1

21 = 1 since the type-1 child remained unmatched in
the first period. The cases are determined by each of the other state variables; each
may equal 0 or 1 with c1

10 ∼ Bernoulli(b(0, 1)) and c1
00, c

1
01 ∼ Bernoulli(µ). Let

V1
(
P1

0 = 1, P1
1 = 0, c1

10, c
1
21, c

1
00, c

1
01

)
denote the expected optimal value of this case. For example, if the first-period match
is broken and two children arrive in the second period, (c1

10, c
1
21, c

1
00, c

1
01) = (1, 1, 1, 1),

it is optimal to match the youngest type-0 child who just arrived on t = 2, leading
to:

V1
(
P1

0 = 1, P1
1 = 0, c1

10 = 1, c1
21 = 1, c1

00 = 1, c1
01 = 1

)
· · ·

· · · = −3 + δ
(
b(0, 0) · V2

3 + (1 − b(0, 0)) · V2
2

)
.

Three children are left unmatched in the market, and one of them is emancipated in
the next period. In period t = 2, there are three available children from previous
periods with probability b(0, 0) (if the second-period match breaks up), and two
with probability 1 − b(0, 0) (if the match does not break up). One may compute
V1

(
P1

0, P
1
1, c

1
10, c

1
21, c

1
00, c

1
01

)
in a similar way for each of the corresponding eight

cases with (P1
0 = 1, P1

1 = 0). Taking the expectation over the eight cases yields
the optimal expected value V1

(
P1

0 = 1, P1
1 = 0; a0 = 0

)
. In order to cover all the

remaining cases, the same must be done for each of the four possible cases of
(P1

0, P
1
1), where P1

0, P
1
1 ∼ Bernoulli(λ). Thus, one obtains V1(a0 = 0) by taking the
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expectation:

V1
(
a0 = 0

)
= (1 − λ)2 · V1

(
P1

0 = 0, P1
1 = 0; a0 = 0

)
+ λ(1 − λ) · V1

(
P1

0 = 1, P1
1 = 0; a0 = 0

)
+ (1 − λ)λ · V1

(
P1

0 = 0, P1
1 = 1; a0 = 0

)
+ λ2 · V1

(
P1

0 = 1, P1
1 = 1; a0 = 0

)
.

The optimal expected value on t = 1 conditional on matching the older type-1 child
on the first period, V1 (

a0 = 1
)
, may be obtained in an analogous way.
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B.2 Plots of Observation 4

Figure B.1: Parameter regions in which Observation 4 holds

Note: The black dots indicate the parameter values in which Observation 4 holds with T = ∞. Observation 4:
assume there are two parents available, one of each type, if there are two type-0 children and one type-1 child,
older than the two type-0 children, the only child matched to a same-type parent is the youngest type-0 child.
Benchmark parameter values: w = 1, s = 2, µ = 0.75, λ = 0.5, and δ = 0.98. The x-axis varies r in all figures.
Other parameters are varied from the benchmark one at a time: w (top-left), s (top-right), µ (middle-left), λ
(middle-right), and δ (bottom).
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A p p e n d i x C

APPENDIX TO CHAPTER 3

C.1 The Base Model
The subgames played by the entrants and the incumbents have the same underlying
structure. In this section, we analyze a more general version of the simultaneous
quantity competition model with a fixed number N of firms, called the base model,
which yields most of the results in Section 3.4. Let K be the set of firms, with
|K | = N ≥ 1, and index firms with k. Let P = A − BQ be the inverse market
demand with A, B > 0. The marginal cost of a representative firm k is given by ck ,
with ck ∈ {0, c} with c ∈ (0, c̄). The upper bound c̄ is such that all firms produce
a positive output in equilibrium regardless of their realized marginal costs. We will
prove that such bound exists. In what follows, we describe the main results of the
base model.

Result 1 Consider the base model.

(a) The equilibrium effort is symmetric and unique across all firms. It is given
by:

e(N) =
c[8AN + c(N2 − 6N + 1)]

2[4B(N + 1)2 + c2(N − 1)2]
. (EC)

Moreover, the second order condition associated with the individual firm
maximization problem in a Bayesian Cournot equilibrium is satisfied for
every firm if all of them produce a positive quantity in equilibrium.

(b) If A is independent of c, then there is c̄ ∈ (0, A) such that, if c ∈ (0, c̄),
every firm produces a strictly positive quantity of output and elicits strictly
positive level of managerial effort in a symmetric equilibrium, regardless of
its realized marginal cost.

(c) If c ∈ (0, c̄), the equilibrium effort in (EC) is decreasing in the number of
firms, i.e., for every N ≥ 1, we have e′(N) < 0.

Proof Let qk denote the production of any firm k ∈ I ∪ J.
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(a) Once all the contracts are observed and marginal costs are privately realized,
each firm k solves

max
qk

qk[A − B(qk + Eq−k) − ck].

The first-order condition of the above maximization problem is given by:

A − 2Bqk − BEq−k − ck = 0

⇐⇒ 2Bqk = A − ck − BEq−k

⇐⇒ qk(ck, Eq−k) =
A − ck

2B
−

1
2
Eq−k . (C.1)

Taking expectation in the above equation, we get

Eqk =
A − Eck

2B
−

1
2
Eq−k =

A − c(1 − ek)

2B
−

1
2
Eq−k . (C.2)

Summing the above over k, we get

N∑
k=1
Eqk =

N(A − c)
2B

+
c

2B

N∑
k=1

ek −
N − 1

2

N∑
k=1
Eqk

⇐⇒

N∑
k=1
Eqk =

1
B(N + 1)

[
N(A − c) + c

N∑
k=1

ek

]
. (C.3)

On the other hand, (C.2) can be written as

Eqk =
A − c(1 − ek)

2B
−

1
2

(
N∑

l=1
Eql − Eqk

)
⇐⇒

1
2
Eqk =

A − c(1 − ek)

2B
−

1
2B(N + 1)

·

[
N(A − c) + c

N∑
k=1

ek

]
⇐⇒ Eqk =

A − c + c(Nek − e−k)

B(N + 1)
, (C.4)

where e−k =
∑

l∈K\{k} el . Thus, using the fact thatEq−k =
∑N

l=1 Eql−Eqk , and
substituting for

∑N
l=1 Eql and Eqk from (C.3) and (C.4), from (C.1) we obtain

the quantity and profit of each firm in the Bayesian Cournot equilibrium,
which are respectively given by:

qk(ck, ek, e−k) =
2A − (N + 1)ck + (N − 1)c(1 + ek) − 2ce−k

2B(N + 1)
(C.5)

πk(ck, ek, e−k) = B
(
2A − (N + 1)ck + (N − 1)c(1 + ek) − 2ce−k

2B(N + 1)

)2
. (C.6)
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At date 1, each firm k chooses the optimal managerial incentives to solve

max
ek

ekπk(0, ek, e−k) + (1 − ek)πk(c, ek, e−k) − e2
k . (C.7)

The expected value of cost reduction is defined as∆πk(ek, e−k) := πk(0, ek, e−k)−

πk(c, ek, e−k). For firm k, it is given by:

∆πk(ek, e−k) =
c[4A + (N − 3)c + 2(N − 1)cek − 4ce−k]

4B(N + 1)
. (C.8)

Also, note that

ek ·
∂πk(0, ek, e−k)

∂ek
+ (1 − ek) ·

∂πk(c, ek, e−k)

∂ek
· · ·

· · · =
(N − 1)c[A − c + c(Nek − e−k)]

B(N + 1)2
. (C.9)

Using the expressions (C.8) and (C.9), the first-order condition of the maxi-
mization problem in (C.7) is given by:

∆πk(ek, e−k) + ek ·
∂πk(0, ek, e−k)

∂ek
+ (1 − ek) ·

∂πk(c, ek, e−k)

∂ek
= 2ek

⇐⇒
c[8AN + (N2 − 6N + 1)c + 2(N − 1)(3N + 1)cek − 8Nce−k]

4B(N + 1)2
= 2ek .

(FOC′k)

Condition (FOC′k) defines the best response (in effort) ek(e−k) of the manager
at firm k, which is given by:

ek(e−k) =
c[8AN + c(N2 − 6N + 1)]

2[4B(N + 1)2 − c2(N − 1)(3N + 1)]︸                                          ︷︷                                          ︸
α≡α(N, A, B)

· · ·

· · · −

(
4c2N

4B(N + 1)2 − c2(N − 1)(3N + 1)

)
︸                                         ︷︷                                         ︸

β≡β(N, A, B)

e−k . (BR′k)

The best response is linear and downward sloping. Let eK =
∑

k∈K ek . Sum-
ming over all k, in equilibrium: eK = Nα − β

∑
k e−k . Thus,

eK =
Nα

1 + β(N − 1)
,

where we use
∑

k e−k = (N − 1)eK . As eK = e−k + ek , the equilibrium effort
is given by:

ek =
α

1 + β(N − 1)
.
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Replacing the values for the constants α and β yields the equilibrium effort
given in (EC). Because effort choices are strategic substitutes with linear best
response functions, there exists a unique symmetric equilibrium.

Next, we show that the second order condition is satisfied for every firm if all
of them produce a positive output in equilibrium. Note that the second-order
condition of firm k’s maximization problem (C.7) is given by:

2
(
∂∆πk

∂ek

)
+ ek ·

∂2∆πk

∂e2
k

+
∂2πk(c, ·)
∂e2

k

− 2 ≤ 0

⇐⇒
c2(N − 1)
B(N + 1)

+
c2(N − 1)2

2B(N + 1)2
− 2 ≤ 0. (SOCk)

Note that (SOCk) is strict for N = 1 and it is equivalent to

1
B
≤

4(N + 1)2

c2(N − 1)(3N + 1)
for N ≥ 2. (SOC′k)

Let qk(ck) ≡ qk(ck, ek, e−k) with ek = e(N) for every k ∈ I ∪ J. Note that
qk(0) − qk(c) = c/2B, so qk(c) > 0 for all k implies

1
B
<

2
cN
·
∑

k

qk(0). (C.10)

The upper bound on 1/B in (C.10) is lower than the one in (SOC′k) as,
by construction,

∑
k qk(0) < 1 (otherwise the equilibrium price would be

negative), and 4(N + 1)2/(N − 1)(3N + 1) > 1 for each N > 0.

(b) We prove the existence of c̄ ∈ (0, A) such that c ∈ (0, c̄) implies qk(ck) >

0 in equilibrium for every k ∈ K and ck ∈ {0, c}. Fix N ≥ 1. Write
e(N, c) ≡ e(N). From (C.5), see that the symmetric equilibrium production
of a high-cost firm is lower than that of a low-cost firm and satisfies:

qk(c) =
2(A − c) − (N − 1)ce(N, c)

2B(N + 1)
> 0

⇐⇒ f (N, c) ≡
2(A − c)
c(N − 1)

− e(N, c) > 0. (C.11)

Note that

lim
c→0

f (N, c) = ∞,

f (N, A) = 0 −
A2(N + 1)2

2[4B(N + 1)2 + A2(N − 1)2]
< 0.
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Therefore, by Intermediate Value Theorem, there is c0 ∈ (0, A) such that
f (N, c0) = 0. If c0 is unique, then take c̄ = c0. Otherwise, take c̄ = min{c0}.
Next, we prove that e(N, c) > 0 for c ∈ (0, c̄), which is equivalent to the
following:

8AN + c(N2 − 6N + 1) > 0. (C.12)

Given that A > c, we have

8AN + c(N2 − 6N + 1) > 8cN + c(N2 − 6N + 1) = c(N + 1)2 > 0,

which proves (C.12) for all N > 0.

(c) Fix N ≥ 1. Differentiating (EC) with respect to N , we obtain

e′(N) = −
2c(N2 − 1)[8B(A − c) + c2(2A − c)
[4B(N + 1)2 + c2(N − 1)2]2

.

The above expression is negative for A > c and N ≥ 1. It is immediate to see
that e(N) is strictly increasing in A and strictly decreasing in B for all N ≥ 1.

This completes the proof. �

C.2 Proofs
Most of the following proofs follow directly from the analysis of the base model,
see Result 1 in Appendix C.1.

Proof of Lemma 1
The proof directly follows from Result 1-(a) with A = 1 −QI , B = 1, and N = m.�

Proof of Lemma 2
The proof directly follows from the proof of Result 1 with A = A(m), B = B(m),
a(m) ≡ A(m)/B(m), θ(m) ≡ 1/B(m), and N = n; see equations (C.5) and (C.6). �

Proof of Proposition 1
The maximization problem of each incumbent i is given by:

max
qi

qi(1 − qi − Eq−i −QJ(qi + Eq−i) − ci)

⇐⇒ max
qi

qi[(1 − Cκκ(m))︸          ︷︷          ︸
A(m)

− (1 − κ(m))︸      ︷︷      ︸
B(m)

(qi + Eq−i) − ci].
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Therefore, setting a ≡ a(m) = A(m)/B(m), θ ≡ θ(m) = 1/B(m), and N = n, it
follows from Result 1-(a) that

eI(m) =
c[8a(m)n + θ(m)c(n2 − 6n + 1)]
2[4(n + 1)2 + θ(m)c2(n − 1)2]

.

Recall that the subgame played by the entrants is equivalent to the base model with
B = 1, a = A/B = 1 − QI , and θ = 1/B = 1. We cannot apply the bound in
Result 1-(b) directly as a depends on c (QI is an equilibrium object that depends
on the model’s parameters). Obtain the equilibrium output of a high-cost entrant by
replacing a = 1 −QI and θ = 1 in (C.5):

q j(c,QI) =
2(1 −QI − c) − c(m − 1)eJ(m, QI)

2(m + 1)
, (C.13)

where eJ(m, QI) is the optimal effort of the entrants given in (EE). Because low-cost
entrants produce more than high-cost ones in equilibrium, the interior solution con-
dition is equivalent to q j(c,Q∗I ) > 0, where Q∗I is the total output of the incumbents
in the symmetric equilibrium. Note that q j(c,QI) is decreasing in QI as

∂q j(c,QI)

∂QI
< 0

⇐⇒ 2 −
4c2m(m − 1)

4(m + 1)2 + c2(m − 1)2
> 0

⇐⇒ m2(4 − c2) + m(8 − c2) + 4 + c2 > 0.

Hence, a high-cost entrant produces the least when all incumbents have low costs.
Let qi(0) be the optimal output of a low-cost incumbent, so the interior solution for
each entrant j requires q j (c,

∑
i∈I qi(0)) > 0. By (C.13), this is equivalent to∑

i

qi(0) < 1 − c −
c(m − 1) · eJ (m,

∑
i qi(0))

2
. (C.14)

From (C.5), the equilibrium output of a low-cost incumbent is given by:

qi(0) =
2a(m) + θ(m)c(n − 1)(1 − eI(m))

2(n + 1)
. (C.15)

Note that a(m) → 1, θ(m) → m + 1, and eI(m) → 0 as c→ 0, and hence, we have

lim
c→0

∑
i

qi(0) =
n

n + 1
< 1 = lim

c→0
1 − c −

c(m − 1) · eJ (m,
∑

i qi(0))
2

.

Therefore, from (C.14), there exists c̄J > 0 such that every entrant produces a
positive output in equilibrium, provided c ∈ (0, c̄J). Furthermore, c̄J < 1 − Q∗I as
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(C.14) also implies

c < c +
c(m − 1) · eJ (

∑
i qi(0))

2
< 1 −

∑
i

qi(0) ≤ 1 −Q∗I .

Finally, we characterize the interior solution condition of the incumbents. From
(C.5), the interior solution condition for incumbents, qi(c) > 0, is equivalent to

eI(m) <
2(A(m) − c)

c(n − 1)
=

2(a(m) − θ(m)c)
θ(m)c(n − 1)

. (C.16)

Because eI(m) → 0 as c → 0, there is c̄I > 0 such that all incumbents produce a
positive output in equilibrium provided that c ∈ (0, c̄I), although the right-hand-side
of (C.16) tends to ∞. Moreover, c̄I < A(m) = a(m)/θ(m) because (C.16) does not
hold if c > a(m)/θ(m). Define ĉ = min{c̄J, c̄I} to obtain the appropriate bound. By
Result 1-(a), every firm’s second order condition of the optimal contracting problem
is satisfied if c ∈ (0, ĉ). �

Proof of Proposition 2
We first establish that κ(m) is strictly increasing in m. Note that

κ′(m) =
(4 + c2)[(4 + c2)(m + 1)2 − 4c2m2]

(4(m + 1)2 + c2(m − 1)2)2
.

The numerator of the above expression is strictly positive if and only if

4 + c2

4c2︸ ︷︷ ︸
h(c)

>
( m
m + 1

)2
.

Note that h(c) is strictly decreasing on [0, 1] with min{h(c)} = h(1) = 5/4 > 1.
The right-hand-side of the above inequality is always strictly less than 1 for m ≥ 1.
Hence, κ′(m) > 0. Next,

A(m) = 1 − Cκκ(m) =⇒ A′(m) = −Cκκ
′(m),

B(m) = 1 − κ(m) =⇒ B′(m) = −κ′(m).

Because
eI(m) =

c[8nA(m) + c(n2 − 6n + 1)]
2[4(n + 1)2B(m) + c2(n − 1)2]

,

we have
e′I(m) =

8κ′(m)[(n + 1)2eI(m) − Cκcn]
2[4(n + 1)2B(m) + c2(n − 1)2]

.
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Thus, e′I(m) > 0 if and only if

eI(m) >
ncCκ

(n + 1)2
⇐⇒

8nA(m) + c(n2 − 6n + 1)
2[4(n + 1)2B(m) + c2(n − 1)2]

>
nCκ

(n + 1)2
. (C.17)

We prove the following condition:

8nA(m) + c(n2 − 6n + 1)
2[4(n + 1)2B(m) + c2(n − 1)2]

>
n

(n + 1)2

⇐⇒ A(m) − B(m)︸          ︷︷          ︸
κ(m)(1−Cκ )

>
c[2cn(n − 1)2 − (n + 1)2(n2 − 6n + 1)]

8n(n + 1)2
. (C.18)

which implies (C.17) because Cκ < 1. Note that A(m)−B(m) is a strictly increasing
function of m as A′(m) − B′(m) = κ′(m)(1−Cκ) > 0. So, in order to prove condition
(C.18), it suffices to show that the inequality holds for m = 1. Note that

A(1) − B(1) = κ(1)(1 − Cκ) =
4 + c2

8
·

c(8 + c2)

2(4 + c2)
=

c(8 + c2)

16
.

Hence, for m = 1, (C.18) boils down to:

8 + c2 >
2[2cn(n − 1)2 − (n + 1)2(n2 − 6n + 1)]

n(n + 1)2︸                                             ︷︷                                             ︸
H(n; c)

. (C.19)

It is easy to show that H(n; c) is strictly decreasing in n for all c ∈ (0, 1). Thus,
H(n; c) achieves a maximum at n = 1, which is equal to H(1; c) = 8 < 8 + c2, and
hence, the proposition. �

Proof of Proposition 3
The proof is in the text. It follows directly from applying the envelope theorem to
the profit maximization problem, and then to the contracting problem. The key is
to first note that QJ is increasing in m, then that the profit functions πi(ci, e, m)

are decreasing in QJ and only depend on m through QJ (by the envelope theorem).
Hence, πi(ci, e, m) is decreasing in m for ci ∈ {0, c}. Lastly, note that by the enve-
lope theorem, the firm value Vi(m) only depends on m through the profit functions.
Since Vi(m) is increasing in both profit functions, it is decreasing in the number of
entrants m. �

Proof of Proposition 4
The proof directly follows from Result 1-(c) with A = A(m), B = B(m), and N = n.
�
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Proof of Corollary 1
The corollary follows directly from Proposition 4. Because eI(n, m) is strictly
decreasing in n by Proposition 4 and esim(n + m) = e(n + m, 0), esim(n + m′) <

esim(n + m) for every m′ > m. �

Proof of Proposition 5
A direct but more mechanical way to prove Proposition 2 is to show that eI(m) is
strictly increasing in κ(m). Note that

eI(m) =
c[8n(1 − Cκκ(m)) + c(n2 − 6n + 1)]
2[4(n + 1)2(1 − κ(m)) + c2(n − 1)2]

≡ êI(κ(m)) .

It is easy to show that

sign[ê′I(κ)] = sign [2c(n + 1)2(8n + c(n2 − 6n + 1) − 4ncCκ(4(n + 1)2 + c2(n − 1)2)]︸                                                                                  ︷︷                                                                                  ︸
h(n, c)

.

For all n > 0 and c ∈ (0, 1), h(n, c) > 0, and hence, êI(κ) is strictly increasing in κ.

To show that the managerial effort elicited by the incumbents is higher under hier-
archical entry than that under simultaneous entry, the only thing we require to show
is that, under hierarchical entry, κ(2) is higher than that under simultaneous entry.
First, consider the case of simultaneous entry. Note that

κ(2) =
6(4 + c2)

36 + c2 .

Next, consider hierarchical entry. The last mover, entrant 2 solves

max
q2

q2 (1 −QI − q1 − q2 − c2) ,

where QI is the aggregate incumbent output, and q1 is the production of entrant 1.
The optimal output and profit of entrant 2 are respectively given by:

q2(c2) =
1 − (QI + q1) − c2

2
,

π2(c2) =
(1 − (QI + q1) − c2)

2

4
.

The optimal managerial effort of entrant 2 is given by:

e2 =
π2(0) − π2(c)

2
=

c(2 − 2(QI + q1) − c)
8

.
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Thus, the expected output of entrant 2 is given by:

Eq2(QI + q1) = e2q2(0) + (1 − e2)q2(c) =
c2(2 − c) + 8(1 − c)

16︸                    ︷︷                    ︸
G2(c)

−
4 + c2

8︸ ︷︷ ︸
K2(c)

(QI + q1).

In previous stage of entry, entrant 1 solves

max
q1

q1 (1 −QI − q1 − Eq2(QI + q1) − c1) .

Following the same procedure as in the case of entrant 2, we obtain

Eq1(QI) =
32 − 32c + c3(12 − 2c + c2)

4(4 − c2)2︸                               ︷︷                               ︸
G1(c)

−
4 + c2

8 − 2c2︸   ︷︷   ︸
K1(c)

·QI .

Using the recursive formulation, we thus get

QJ(QI) = Eq1 + Eq2 = G1(c) − K1(c)QI + G2(c) − K2(c) (QI + G1(c) − K1(c)QI)︸                         ︷︷                         ︸
QI+Eq1

= G2(c) + G1(c)(1 − K2(c)) − (K2(c) + K1(c)(1 − K2(c)))QI,

i.e., the aggregate best reply of the entrants is linear in QI . Each incumbent i thus
solves

max
qi

qi (1 − (qi + Eq−i) −QJ(qi + Eq−i) − ci)

⇐⇒ max
qi

qi

(
ah(2) − (qi + Eq−i) − θ

h(2)ci

)
,

where

ah(2) =
1 − [G2(c) + G1(c)(1 − K2(c))]
1 − [K2(c) + K1(c)(1 − K2(c))]

=
4

4 − c2 + c
(

12
4 − 3c2 −

c
4 + 2c

)
,

θh(2) =
1

1 − [K2(c) + K1(c)(1 − K2(c))]
=

16
4 − 3c2

are respectively the market size and the size of cost reduction of the incumbents
under hierarchical entry. Note that

θh(2) =
16

4 − 3c2 =
1

1 − κh(2)
⇐⇒ κh(2) =

12 + 3c2

16
.

It is immediate to see that κh(2) > κ(2)for any c ∈ (0, 1), and hence, the proposition
follows. �
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Proof of Proposition 6
To derive the equilibrium managerial efforts, we proceed by backward induction.
Consider the problem of an entrant firm. Let c j ∈ {0, c} be its realized cost,
which is private information. Entrants share the following public beliefs about their
marginal costs, Pr.{c j = 0} = e j . Let PI ∈ [0, c] be the minimum price chosen by
the incumbents. In the price-setting stage of entrants, consider a symmetric mixed
strategy equilibrium, where p j(c j = c) = c and p j(c j = 0) ∼ FJ[pJ

, PI] for every
j. That is, high-cost entrants set a price equal to their marginal cost and obtain zero
profits, and low-cost entrants randomize their price according to distribution FJ ,
which has support on [p

J
, PI], where p

J
≥ 0. We focus on the equilibrium in which

the cdf FJ is a smooth function, i.e., the distribution has no atoms. As explained
in the text, there is no equilibrium in pure strategies. Also, note that the low-cost
incumbents would obtain zero profit by setting their prices above PI .

To derive the equilibrium mixed strategy FJ , we exploit the fact that an entrant must
be indifferent between setting any price in the support of FJ when all other entrants
are playing the equilibrium mixed strategy. Let p j ∈ [pJ

, PI], and set ek = e for
every k ∈ J \ { j}. Under this strategy profile, a low-cost entrant obtains positive
profits if and only if its price is the lowest among all the prices set by the rival
entrants. The probability of this event is given by:

Pr.{p j ≤ pk for all k ∈ J \ { j}} =
(
1 − eFJ(p j)

)m−1
. (C.20)

Hence, for a low-cost entrant, the expected profits of setting price p j are given by:

E
(
π j | c j = 0, e− j, PI

)
= p j(1 − p j)

(
1 − eFJ(p j)

)m−1
. (C.21)

The indifference condition implies that (C.21) is a constant function of p j for the
equilibrium strategy FJ , i.e., there exists a constant KJ such that KJ = E

(
π j | c j = 0,

e− j, PI
)
for every p j ∈ [pJ

, PI]. Using this indifference condition, one obtains

FJ(p j) =
1
e

[
1 −

(
KJ

p j(1 − p j)

) 1
m−1

]
. (C.22)

To find the value of KJ , note that F(PI) = 1, which results in KJ = PI(1 − PI)(1 −
e)m−1. Plugging this value of KJ in (C.22) results in the cdf of the equilibriummixed
strategy, which can easily be shown to be a smooth and increasing function in p j .
Similarly, one may find the value of p

J
by using the fact that F(p

J
) = 0. It is easily

shown that p
J
∈ (0, PI).
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The value of KJ gives the expected profits of a low-cost entrant prior to its own cost
realization. That is, if ek = e for every k ∈ J \ { j}, a low-cost entrant has expected
profits given by:

π j(0, e− j, PI) = PI(1 − PI)(1 − e)m−1. (C.23)

Two key remarks follow from expression (C.23). First, the expected equilibrium
profits do not depend on an entrant’s own managerial effort. As opposed to the
quantity-setting game, managerial effort has no value beyond the true cost realiza-
tion, i.e., the marginal profitability of effort is null in a price-setting environment.
Second, the expected equilibrium profits are the same as if marginal costs were
public information. Note that, if marginal costs were known, (i) entrants with high-
marginal cost would have zero profits as well, and (ii) the only case in which a
low-cost entrant can have a positive profit is that for every other entrant to have high
marginal cost (in which case the entrant would set the price at p j = PI and capture
the entire market demand).

Therefore, at the contracting stage, the problem of entrant j is given by:

max
ej

e jπ j(0, e− j, PI) − e2
j , (C.24)

which yields the following best-response for effort choice among entrants:

e j(e) =
PI(1 − PI)(1 − e)m−1

2
, (C.25)

which implies that effort choices are strategic substitutes, i.e., e′j(e) < 0. Expres-
sion (C.25) yields the equilibrium effort of entrants in the symmetric equilibrium,
eB

J (m, PI), defined implicitly in (3.3).

Now, consider the problem of an incumbent firm. Using similar arguments as above,
one can see that an incumbent firm realizes positive profits if it attains low marginal
cost, sets a price lower than every other incumbent, and every entrant realizes high
cost. Also, it can easily be seen that there is no equilibrium in pure strategies in the
price-setting stage of the incumbents. Therefore, conditional on setting price pi, an
incumbent with low cost will have expected profits equal to

E(πi | ci = 0, pi) = (1 − eJ)
m (1 − eFI(pi))

n−1 pi(1 − pi), (C.26)

where (1− eJ)
m is the probability that all entrants have high cost, e is the symmetric

managerial effort elicited by each rival incumbent, and FI is the symmetric mixed
strategy equilibrium in price choices among the incumbents. Note that conditional
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on the event that i has the lowest price among incumbents implies pi = PI , and
hence, from (3.3) we obtain

(1 − eJ)
m =

2eJ(1 − eJ)

pi(1 − pi)
. (C.27)

Therefore, we can write

E(πi | ci = 0, pi) = 2eJ(pi)(1 − eJ(pi)) [1 − eFI(pi)]
n−1 . (C.28)

To have an equilibrium in mixed strategies, E(πi | ci = 0, pi) must be constant for
all pi. Set E(πi | ci = 0, pi) = KI and solve for FI to obtain

FI(pi) =
1
e

[
1 −

(
KI

2eJ(pi)(1 − eJ(pi))

)n−1
]
. (C.29)

The support of FI is given by [p
I
, c] with p

I
> 0. Find the value of KI by solving

FI(c) = 1, which yields

KI = 2eJ(c)(1 − eJ(c))(1 − e)n−1. (C.30)

Following the same steps as above, one can verify that the equilibriummixed strategy
FI is well-defined, i.e., smooth and increasing, and that p

I
∈ (0, c).

As with entrants, the value of KI gives the expected profits of low-cost incumbents,
i.e., πi(0, e−i) = KI if ek = e for every k ∈ I \ {i}. Solving a problem analogous
to (C.24), and using (3.3), one obtains the best-response for the effort choice of
incumbents:

ei(e) =
c(1 − c)(1 − eJ(c))m(1 − e)n−1

2
. (C.31)

Note that the effort choices among incumbents are also strategic substitutes. Using
the best-response in (C.31) results in the equilibrium effort of incumbents, provided
in (3.4).

Now, we prove that both equilibrium managerial efforts (of the entrants and the
incumbents) are decreasing in m. First, from (3.3) note that the equilibrium effort
level of the entrants is decreasing in m: the left-hand side of (3.3) is increasing as a
function of both eJ and m, hence eJ is decreasing as a function of m. Second, from
(3.4), note that the left-hand side is increasing as a function of eI . Therefore, the
sign of the derivative of eB

I (m)with respect to m is equal to the sign of the derivative
of [1− eB

J (m, c)]m with respect to m. In what follows, we prove that [1− eB
J (m, c)]m

is decreasing in m, and conclude the proof.
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From (3.3), note that (1 − eB
J (m, c))m is decreasing in m if and only if eB

J (m, c)(1 −
eB

J (m, c)) is also decreasing in m. Because eB
J (m, c) is decreasing in m, eB

J (m, c)(1−
eB

J (m, c)) is decreasing in m if and only if eB
J (m, c) ≤ 1/2. We prove this statement

by contradiction.

eB
J (m, c) >

1
2
=⇒

1
2m−1 > (1 − eB

J (m, c))m−1

=⇒
eB

J (m, c)

(1 − eB
J (m, c))m−1 > 2m−2

=⇒
c(1 − c)

2
> 2m−2 [follows from (3.3)],

which is a contradiction since the maximum value of c(1− c)/2 is 1/8 for c ∈ [0, 1],
and the minimum value of 2m−1 is 1/4 for m ≥ 0. �

C.3 Numerical Implementation
In order to show G(c) < eI(m) < F(c) for every c ∈ (0, ĉ), n ≥ 1, m ≥ 1 and
the validity of Implication 2, in Section 3.5, we compute the model numerically.
We define a grid over the parameter space (c, n, m) ∈ C × N × M, where C is
a grid of (0, 1), N = {1, 2, . . . , 50} and M = {0, 1, . . . , 50}. For each (n, m) ∈

N × M, we solve numerically for the upper bound of c, given by ĉ(n, m). For
each (n, m) ∈ N × M, we then show the validity of the claims at every point
c ∈ C(n,m) ≡ {c = ĉ(n, m) ∗ H/51 : H = 1, . . . , 50}.

C.4 Social Welfare
Expected Consumer Surplus
As explained in the text, the expected consumer surplus is given byECS = 0.5∗EQ2.
Straightforward computations show that

EQ2 = nEq2
i + n(n − 1) (Eqi)

2 + mEq2
j + m(m − 1)

(
Eq j

)2
+ 2nmEqiEq j, (C.32)

where Eqi and Eq j are the expected incumbent and entrant outputs in equilibrium,
respectively.1 Computing the expected output of an incumbent in equilibrium, Eqi,

1To see that (C.32) obtains, it suffices to note:

EQ2 = E

(∑
i∈I

qi +
∑
j∈J

qj

)2

= E

(∑
i

q2
i + 2

∑
i,i′

qiqi′ +
∑
j

q2
j + 2

∑
j,j′

qjqj′ + 2
∑
i, j

qiqj

)
= nEq2

i + 2
(
n
2

)
(Eqi)2 + mEq2

j + 2
(
m
2

) (
Eqj

)2
+ 2nmEqiEqj .
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is straightforward using expressions derived in the text. Namely,

Eqi = eI(m)qi(0, eI(m),m) + (1 − eI(m))qi(c, eI(m),m).

To compute the expected output of an entrant in equilibrium, one needs to compute
the expectation over the incumbents aggregate output along the equilibrium path,
QI . Along the equilibrium path, QI is a random variable determined by the realized
number of incumbents that attain the cost reduction, which we denote by L. Let
QI(L) be the aggregate incumbent output conditional on L incumbents attaining the
cost reduction, i.e.,

QI(L) = Lqi(0, eI(m),m) + (n − L)qi(c, eI(m),m).

Note that L is a random variable with support {0, 1, . . . , n} and probability distribu-
tion

pL(l) ≡ P [L = l] =
(
n
l

)
eI(m)l(1 − eI(m))n−l, l ∈ {0, 1, . . . , n}.

Let q j(c j, e, L) = q j(c j, e,QI(L)), and eJ(L,m) = eJ(QI(L),m). Then, the expected
output of an entrant in equilibrium is given by:

Eq j = E
[
E

[
q j | L

] ]
= E

[
eJ(L,m)q j(c, eJ(L,m), L) + (1 − eJ(L,m))q j(0, eJ(L,m), L)

]
=

n∑
l=0

pL(l)
[
eJ(l,m)q j(c, eJ(l,m), l) + (1 − eJ(l,m))q j(0, eJ(l,m), l)

]
.

The expectations Eq2
i and Eq2

j can be computed analogously.

Expected Producer Surplus of Incumbents
The expected producer surplus of an incumbent can be computed directly from
its definition. Note that the expected market profits are given by Πi(m), which is
provided in Section 3.4. Furthermore, at equilibrium, the effort cost of incumbents
is given by ψ(eI(m)).

Expected Producer Surplus of Entrants
To compute the expected producer surplus of an entrant, one needs to take the
expectation over the incumbents aggregate output along the equilibrium path, QI .
Following the same reasoning as in Section C.4, the expected market profits of
entrant j can be expressed as:

Π j(m) =
n∑

l=0
pL(l)

[
eJ(l,m)π j(c, eJ(l,m), l) + (1 − eJ(l,m))π j(0, eJ(l,m), l)

]
,
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where π j(c j, e, L) denotes the expected market profits of an entrant conditional on
having realized marginal cost c j , at a common effort level e j = e for all j ∈ J,
when QI = QI(L), see Section 3.4. Similarly, the effort cost of entrants along the
equilibrium path depends on the incumbents aggregate output. Hence, the expected
producer surplus of an entrant at equilibrium is given by:

PSj(m) = Π j(m) − Eψ(eJ(L,m)),

where

Eψ(eJ(L,m)) =
n∑

l=0
pL(l)

[
eJ(L,m)2

2

]
.
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