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Para Maricruz

“Sabes lo que yo ignoro

y me dices las cosas que no me digo.

Me aprendo en ti mas que en mi mismo”.
—Jaime Sabines (1926—-1999)

iii



iv

Unless we destroy ourselves utterly, the future belongs to those societies that, while
not ignoring the reptilian and mammalian paths of our being, enable the
characteristically human components of our nature to flourish, to those societies
that encourage diversity rather than conformity; to those societies willing to invest
resources in a variety of social, political, economic and cultural experiments, and
prepared to sacrifice short-term advantage for long-term benefit; to those societies
that treat new ideas as delicate, fragile and immensely valuable pathways to the

future.

Carl Sagan, The Dragons of Eden (1977)
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ABSTRACT

This dissertation contains three essays. They offer contributions to the study of
matching in foster care (Chapters 1 and 2), and to the study of the effect of product

market competition on managerial incentives (Chapter 3).

Chapter 1 presents an empirical framework to study the assignment of children
into foster homes and its implications on placement outcomes. The empirical
application uses a novel dataset of confidential foster care records from Los Angeles
County, California. The estimates of the empirical model are used to examine
policy interventions aimed at improving placement outcomes by increasing market
thickness. If placements were assigned across all the administrative regions of the
county, the model predicts that (i) the average number of foster homes children
go through before exiting foster care would decrease by 8% and (ii) the distance

between foster homes and children’s schools would be reduced by 54%.

Chapter 2 proposes and studies a dynamic model of centralized matching in foster
care. The optimal matching policy is characterized by minimizing the number of
children who remain unmatched in every period. The main finding is that the optimal
matching policy gives priority to younger children. The model captures several
dynamic trade-offs, most notably between children’s ages and the heterogeneity in
the expected duration of placements. I also analyze federal data from the Adoption
and Foster Care Analysis and Reporting System (AFCARS). I find that, in Los
Angeles County, placements and their durations are strongly correlated with the

race of children and their foster parents.

Chapter 3, co-authored with Kaniska Dam, develops an incentive contracting model
under oligopolistic competition to study how incumbent firms adjust managerial
incentives following deregulation policies that enhance competition. We show that
firms elicit higher managerial effort by offering stronger incentives as an optimal
response to entry, as long as incumbent firms act as production leaders. Our
model draws a link between an industry-specific feature, the time needed to build
production capacity, and the effect that product market competition has on executive
compensation. We offer new testable implications regarding how this industry-

specific feature shapes the incentive structure of executive pay.
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INTRODUCTION

Many economic transactions are not governed by standard prices, such as the ones
used in traditional commodity markets. Two prominent examples are the trans-
actions that take place in (i) matching markets and (ii) within the boundaries of
organizations. For various moral and legal concerns, prices are often not used to
determine who is matched to whom in matching markets. For example, in modern-
day societies people typically do not pay one another when agreeing to get married.
Likewise, when deciding how to allocate children to public schools or organs to
patients who need a transplant, it is usually illegal for parties to partake in monetary
transactions. Economic transactions that take place within organizations are, by na-
ture, not governed by traditional prices. In some sense, organizations such as firms
and governments exist precisely to allocate goods outside of traditional markets. A
good commonly allocated within organizations is managerial effort. In the presence
of moral hazard, the optimal allocation of effort requires state-contingent contracts

rather than fixed wages or prices.

This dissertation contains three essays. Two of them contribute to the study of
matching markets (Chapters 1 and 2) and one to the study of the provision of
incentives within organizations (Chapter 3). Chapters 1 and 2 focus on the study
of matching in foster care. Chapter 1 presents an empirical framework to study the
assignment of children into foster homes and its implication on placement outcomes.
Chapter 2 complements Chapter 1 by focusing on the dynamic aspect of matching
in foster care. Chapter 3, co-authored with Kaniska Dam, studies the effect that
product market competition has on the provision of managerial incentives within a

firm.

The study of foster care as a matching market is a fairly recent area of research.
The empirical application in Chapter 1 uses a novel dataset of confidential foster
care records from Los Angeles County, California.! The main methodological
contribution of Chapter 1 is to formulate an empirical framework to study matching
in foster care that accounts for unobservable heterogeneity in the distribution of

placement outcomes. In terms of policy, the main contribution of the chapter resides

IT obtained IRB approval and a limited waiver of confidentiality from the Juvenile Division of
the Superior Court of California to analyze confidential records of the Department of Children and
Family Services of Los Angeles County. The analyses and interpretations of all the data used in this
thesis are my sole responsibility. The aforementioned institutions and their agents or employees bear
no responsibility for the analyses and interpretations presented here.
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on the analysis of policies aimed at improving placement outcomes. Specifically, I
use the estimates of the empirical model to examine the effect that market thickness
has on placement outcomes. Notably, the estimates of the model show that, if
placements were assigned across all the administrative regions of Los Angeles
County, (i) the average placement disruption probability across all placements in the
system would reduce by 4.2 percentage points (which is equivalent to a reduction
of 8% in the expected number of foster homes children go through before exiting
foster care), and (ii) the distance between foster homes and children’s schools would
be reduced by 54%.

In Chapter 2, I propose a model to study matching in foster care in a dynamic envi-
ronment. The optimal matching policy in the model is characterized by minimizing
the number of children who remain unmatched on every period. The main finding
of this chapter is that the optimal matching policy gives priority to younger children.
The model captures several dynamic trade-offs, notably between children’s ages and
the heterogeneity in the expected duration of placements. I also analyze federal data
from the Adoption and Foster Care Analysis and Reporting System (AFCARS).2 I
find that, in Los Angeles County, CA, placements and their durations are strongly

correlated with the race of children and their foster parents.

In Chapter 3, co-authored with Kaniska Dam, we develop an incentive contracting
model under oligopolistic competition to study how incumbent firms adjust man-
agerial incentives following deregulation policies that enhance competition. We
show that firms elicit higher managerial effort by offering stronger incentives as an
optimal response to entry, as long as incumbent firms act as production leaders.
Our model draws a link between an industry-specific feature, the time needed to
build production capacity, and the effect that product market competition has on
executive compensation. We offer new testable implications regarding how this

industry-specific feature shapes the incentive structure of executive pay.

2The AFCARS data were made available by the National Data Archive on Child Abuse and
Neglect (NDACAN), Cornell University, Ithaca, NY, and were originally collected by the Children’s
Bureau with funding from the U.S. Department of Health and Human Services. The analyses and
interpretations of all the data used in this study are my sole responsibility. The aforementioned
institutions and their agents or employees bear no responsibility for the analyses or interpretations
presented here.



Chapter 1

WHO GETS PLACED WHERE AND WHY? AN EMPIRICAL
FRAMEWORK FOR FOSTER CARE PLACEMENT

1.1 Introduction

The assignment of scarce resources is at the heart of economics. In this chapter, I
study one particular assignment setting that has been largely absent in the economics
literature—the placement of children into foster homes. I develop an empirical
framework that captures how social workers match children and foster homes in the
field. The analysis centers on the relationship between placement assignments and

outcomes.

I estimate an econometric model using a novel dataset of confidential county records
at the micro-level from the largest foster care system in the United States, the
one in Los Angeles County, California. Motivated by the literature on children
welfare studies (and anecdotal evidence from conversations with social workers),
my definition of placement outcomes includes both the duration of placements and
whether they are disrupted (in which case children are moved from one foster home

to another) or terminate because children exit foster care.

I use the estimates of the model to examine various policy interventions aimed at
improving placement outcomes. I find that thicker markets generate better outcomes
in the sense that they result in lower disruption rates, but the effects are different
along different dimensions. Specifically, the model predicts that the gains from
assigning placements across geographic regions in the county are greater than those
generated by delaying assignments. Counterfactual exercises show that pooling
the assignments across all the regional offices in the county would decrease the
expected number of placements each child goes through before exiting foster care
by 8%. I also quantify the system-wide effects of specific types of foster homes.
I find that increasing the share of placements involving children’s relatives (also
known as “kinship care””) would lead to lower placement disruption rates and longer
placements. By contrast, the model predicts mixed effects from increasing the share

of foster homes that are recruited and trained by non-profit agencies.

The model is designed to capture the co-dependence between placement assign-

ments and outcomes. On the one hand, the model captures how the assignments
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of placements are driven by their expected outcomes. On the other hand, it also
recognizes that the outcomes observed in the data are selected through such as-
signment. The interplay between assignments and outcomes causes an endogeneity
problem. Since the matching mechanism determines which placement outcomes
are observable, the observed distribution of placement outcomes is biased inasmuch
as placement assignments are driven by unobservables correlated with outcomes.
To identify the true distribution of outcomes, the model exploits the exogenous vari-
ation across the dates and geographic regions in which children enter foster care. 1
study matching markets at the daily level across the nineteen administrative regions

defined by the Los Angeles County Department of Children and Family Services.

It is widely recognized that stable foster care placements are essential for the so-
cial, emotional, and cognitive development of children (UC Davis, 2008). Social
workers in the field also strive to assign long-lasting placements to minimize future
workloads. Nonetheless, it is fairly common that children go through multiple foster
homes while they are in foster care.! Understanding how children are assigned to
foster homes allows one to analyze how the matching mechanism used in the field
translates into outcomes via placement characteristics. For example, the estimates
of the model show that the gains from thicker markets come largely from being
able to assign children to foster homes that are closer to their schools. The model
predicts that if the assignments of placements were determined at the county-level
(and not within geographic regions), the average distance between children’s schools

and their foster homes would be cut by 54%.

I model the assignment of children into foster homes as a centralized matching
problem, and I model placement outcomes with a mixed competing risks duration
model. The matching problem allows for idiosyncratic variation in the preferences
of children over foster home characteristics, and vice versa. At the same time,
it takes into account that placements are assigned on the basis of their expected
outcomes. I model unobservable heterogeneity through frailty terms in the outcome
distribution. To account for possible selection bias (i.e., that placements may be
assigned because of unobservables correlated with outcomes), I assume that the

decision-maker choosing the matching between children and foster homes observes

'For example, of all the children who exited foster care in the U.S. during 2015, 56.1% of them
went through at least two placements, and the average number of placements per child was 2.56
(NDACAN, 2015). It has also been shown that the time children spend in foster care, as well as
the number of placement disruptions they experience, are associated in adult life with emotional
and behavioral difficulties, increased criminal convictions, and higher depression and smoking rates
(Dregan and Gulliford, 2012).
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such frailty terms. Thus, the distribution of outcomes generated by the model is

conditional on the assignment chosen and incorporates unobservable heterogeneity.

The estimates of the matching model allow me to quantify the trade-offs that social
workers incur when assigning placements. For instance, at first sight, it seems
intuitive that social workers aim to assign the placements that are expected to
have the longest durations in order to avoid placement disruptions. However, this
reasoning ignores the intimate co-dependence between a placement’s duration and
its termination reason. Indeed, according to the model estimates, social workers’
assignments reflect a dislike for duration conditional on a specific termination reason.
That is, if a placement were known to be disrupted, the model estimates indicate that
social workers would prefer for it to be disrupted sooner rather than later. Similarly,
if it were known that a placement will terminate because the child will exit foster
care to a permanent placement, social workers would prefer for this to happen as
soon as possible. At the same time, the estimates show that social workers prioritize
minimizing disruptions over placement duration. That is, regardless of a placement’s
duration, the model predicts that social workers would always prefer for placements

not to be disrupted.

The rest of the chapter is organized as follows. I review the related literature in what
remains of the introduction. In Section 1.2, I provide an institutional background
of foster care, and describe the data. Section 1.3 presents the econometric model.
In Sections 1.4 and 1.5, I discuss the identification of the model and the estimation
technique. Section 1.6 reports the estimation results. Section 1.7 shows the results

of the counterfactual exercises, and Section 1.8 concludes.

Related Literature.—The main contribution of this chapter is to develop an empir-
ical framework to study (i) how children are assigned into foster homes, and (ii)
how the matching mechanism underlying such assignment translates into placement
outcomes. Slaugh, Akan, Kesten, and Unver (2016) is the only other paper in the
literature that applies tools from matching and market design to a question related
to foster care. They analyze the Pennsylvania Adoption Exchange program, whose
main aim is to facilitate the adoption of foster children through a computerized rec-
ommendation system. They analyze the effect that improvements to the system—in
terms of enhancing the capacity of social workers to match children and prospective

adoptive parents—have on the rate of successful adoptions.

Baccara, Collard-Wexler, Felli, and Yariv (2014) analyze data from an online plat-

form that seeks to facilitate adoptions. Although they are distinct in fundamental
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ways, adoption and foster care are closely related. Parents who are seeking to adopt
often become foster parents beforehand, and, in many cases, foster children are
adopted by their foster parents. Baccara et al. (2014) focus on the preferences that
prospective adoptive parents show for children. They find a favorable preference for

girls, and a preference against African Americans.

Overall, the economics literature analyzing questions related to foster care is slim.
In a series of papers, Doyle Jr. (2007, 2008, 2013) evaluates the impact of foster
care on long-term outcomes. Their approach exploits that, in many cases, social
workers are assigned randomly to investigate reports of abuse and neglect. This
random assignment allows them to identify the “treatment effect” of foster care on
schooling, employment, and criminality. Doyle Jr. and Peters (2007) use variation
in the subsidies offered to foster parents to estimate the supply curve of foster
homes. Analyzing data from the late 1980s to the early 1990s, they estimate that, in
states with shortages of foster homes, an increase in subsidies by 10% increases the

quantity supplied by 3%.2

In broader terms, this chapter belongs to the empirical matching and market design
literature (Roth, 2016). The common denominator in this literature is the formulation
and estimation of structural models that incorporate key institutional aspects of the
market being studied. In a seminal contribution, Choo and Siow (2006) study
the marriage market in a transferable utility (TU) environment. Their setup is
based on the Assignment Game developed by Shapley and Shubik (1971). See
Graham (2011, 2013), Chiappori, Oreffice, and Quintana-Domeque (2012), and
Galichon and Salanié (2015) for extensions and generalizations of their approach.
Choo (2015) further extends the analysis to a dynamic setting. More generally, Fox
(2018) studies nonparametric identification and estimation of TU matching markets.
Buchholz (2019) and Fréchette, Lizzeri, and Salz (2019) study matching models in

the market for taxis.3

In a non-TU environment, Agarwal (2015) formulates and estimates a matching
model of the medical match (NRMP). Agarwal and Somaini (2018) study the strate-
gic incentives of different mechanisms in the assignment of children to public
schools. For other recent contributions to the empirical study of school choice, see
Narita (2016), Hwang (2016), Calsamiglia, Fu, and Giiell (2017), and Abdulka-

2See Doyle Jr. and Aizer (2018) for an excellent literature review on the current state of empirical
work in economics on child maltreatment and its relation to foster care and intimate partner violence.

3Market-clearing transfers need not only be monetary prices (e.g., passengers waiting for taxis
“pay” in waiting-time units), see Galichon and Hsieh (2017).
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diroglu, Agarwal, and Pathak (2017). There is also a growing literature analyzing
kidney exchange (e.g., Agarwal, Ashlagi, Azevedo, Featherstone, and Karaduman,
2019), waiting-list mechanisms for organ donation (Agarwal, Ashlagi, Rees, So-

maini, and Waldinger, 2019), and public housing allocation (Waldinger, 2019).

All the studies cited in the previous two paragraphs model assignments according
to specific matching mechanisms. The TU literature generally assumes that the
market is cleared via equilibrium transfers. In non-TU environments, the assignment
usually results from predetermined matching algorithms.# The main differences
from previous studies and this chapter is that the assignment mechanism underlying
foster care neither involves equilibrium transfers nor makes use of a systematic
matching algorithm. Beyond being centralized, the matching between children and
foster homes is the consequence of both (i) specific regulations and (ii) discretionary

choices made by social workers in the field.

The insights from this chapter are also relevant for the growing literature on dynamic
matching. One of the main objectives of this literature is to study the dynamic trade-
offs between waiting time, thickness, incentives, and match quality. For notable
examples, see Baccara, Lee, and Yariv (forthcoming), Unver (2010), Akbarpour,
Li, and Gharan (2020), Doval (2018), and Ashlagi, Jaillet, and Manshadi (2013).
Specifically, this chapter provides an example in which increasing market thickness

by delaying placements does not have sizable effect on outcomes.

1.2 Institutional Background and Data

Foster Care in the U.S. and Los Angeles County

Every year more than a half million children go through foster care in the United
States. Foster children are a particularly vulnerable population: most of them are in
foster care because they were abused, neglected, or abandoned (NDACAN, 2015).
The main goal of foster care is to provide temporary care for children until permanent
placements can be arranged for them. When a child is moved from a foster home to a
permanent placement, it is said that she exits foster care to “permanency.” Children

who exit to permanency usually go back to live with their birth families, or, if this

4The study of matching algorithms dates back to Gale and Shapley (1962), who formulated
the well-known Deferred Acceptance (DA) algorithm. Roth (1984) documents the history of the
medical match and, more specifically, how it came to employ the DA algorithm before the findings
of Gale and Shapley. Given the attractive features of DA (stability and strategy-proofness), it has
been proposed as a mechanism to match children to schools (Abdulkadiroglu and Sénmez, 2003).
A significant portion of the school choice literature compares the DA algorithm with the so-called
Boston algorithm (e.g., Abdulkadiroglu, Pathak, Roth, and S6nmez, 2005).
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is not possible, are adopted or assigned guardians. When permanent placements
cannot be arranged for children, they stay in foster care until they become of age,

and are emancipated from the system (also known as “aging out”).>

The administrative management of the foster care system is at the county level in
the United States.® The child protection agency of Los Angeles County is the
Department of Children and Family Services (DCFS).” As other child protection
agencies, DCEFS is responsible of processing and investigating reports of child abuse,
taking cases to court, and implementing court resolutions. After receiving a report,
county social workers conduct an investigation to determine if children need to
be removed from home. The decision whether a child should be removed or not
needs to be approved by a judge. The procedures regarding the investigation and
removal decision are independent from placement assignment procedures. Foster
care placements are assigned and managed within nineteen regions across the county
of Los Angeles. When a child enters foster care, her case is handled by the regional
office corresponding to the region where the child’s birth mother lives. Social
workers from that regional office are responsible for finding a suitable placement

for the child, and overseeing her case while she remains in foster care.

Placement Assignment in Foster Care

By law, there are a few factors that social workers must consider when assigning
placements: (1) whether a child has relatives who are available to take care of them,
in which case children must be placed with their relatives; (2) the location of the
foster home: social workers must make efforts to place children in foster homes that
are near their schools and their family homes (from where they were removed), and
(3) whether a child has siblings who are also in foster care, in which case efforts
should be made to place siblings together.®8 However, the law does not provide a

systematic way in which these factors are to be waged against one another. The

SFoster care is inherently different from adoption. In general, adoptive parents have the same
rights and obligations over their children as biological parents. By contrast, foster parents have very
limited say in the placement of foster children. Whether a child is removed from home, placed in or
exits foster care, is a decision made by the courts, which rely heavily on the input of social workers.

°In some cases, there is a single child protection agency for all the counties covering the same
urban area (e.g., there is a single agency for the five boroughs of New York City).

7Specific foster care regulations vary at the state and county level. In California, the main
regulations of the foster care system are provided in the Welfare and Institutions Code (WIC, 2019),
and the Family Code (FAM, 2019). In Los Angeles County, foster care regulations are provided in
the Child Welfare Policy Manual of DCFS (2019). For a history of the foster care system in the
United States, see Rymph (2017).

8See DCFS (2019, Sec. 0100-510.60); FAM (2019, Div. 12, Part 6, Sec. 7950), and WIC (2019,
Div. 9, Part 4, Ch. 1, Sec. 16002).
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law also gives social workers the discretion to assign placements that bypass these
guidelines if they consider it is in a child’s best interest. Likewise, children who are
10 years or older also have the right to make a brief statement in court regarding the

placement decision.

In the field, social workers aim to find placements that fulfill all the requirements
stated in the law, and are also suitable for children in more practical ways. For
example, when evaluating prospective foster homes, they may take into account
scheduling and transportations considerations, the family environment of the fos-
ter home (e.g., the age and gender of the family’s biological children), and other
idiosyncratic factors such as the experience of the foster parents and the history of
a child in the system. The reason for taking into account each of these factors is
because a main concern of social workers is for placements to be disrupted. Place-
ments are usually disrupted because the foster family and the foster child are not able
to establish a harmonious and stable relationship (e.g., the child presents behavioral
problems the family is not prepared to deal with, the situation of the family changes,
or problems emerge between the foster child and the family’s biological children).
When placements are disrupted, children need to be moved to new foster homes. In
LA County, on average, foster children go through 2.1 foster homes before exiting

to permanency.

I gathered the above observations through informal conversations with a handful
of social workers with experience in the field. Overall, my impression from these
conversations is that apart from the guidelines embedded in the law, social workers
work on a case-by-case basis. They treat each case differently, and wage all of the
involved factors in a case to find the best possible placement. Another common
observation is that, in many cases, ideal placements are just not possible because of
the shortage of foster homes. As children enter foster care, social workers within
each regional office come together and do their best to find placements that are

suitable for the children.

Another characteristic feature of how children are assigned placements in the field
is that the process is done as quickly as possible. In most cases, children must
be placed on very short notice. Furthermore, even if a social worker knows that
a child will be removed in the near future (usually not more than a few days), a
placement cannot be assigned until the child has been removed. The reason for
this is precisely because foster homes are scarce and there are children in need of

placements constantly. Therefore, social workers cannot hold placements and wait
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for children to be removed from home. It would mean that other children are not

being placed, which social workers try to avoid as best they can.®

Data Description and Summary Statistics

The data used in this study comes from the confidential county records of DCFS.
The database used for the analysis includes the record of every child that was placed
in a foster home at any point between January 1, 2011, and February 28, 2011, in
LA County.'® During this period, 2,087 children where assigned to a foster home
at least once in LA County, and 2,358 placements were assigned in total across the
nineteen regional offices in LA County. On average, roughly 40 placements are
assigned every day throughout the county. Table 1.1 contains summary statistics of

the placements in the dataset.

Modeling Strategy

In what follows, I develop an econometric model with the objective of analyzing the
determinants underlying placement assignment. The main focus is on placements
that were assigned on the same day in the same regional office. That is, the model
aims to explain what drives the matching between children and foster homes in
cases in which two or more placements where assigned in the same day in the
same regional office. For this purpose, I slice the data of placements into markets
accordingly. The division of the data into markets also incorporates placements with
relatives. That is, if a child was placed with a relative, I form an independent market
consisting of a single child and a single home in which the assignment problem is
trivial. The reason I keep “singleton” markets (i.e., with a single child and single

home) is to study their outcomes.

The way I model placement assignment is by considering a single matchmaker
that assigns placements in terms of their expected outcomes. That is, when there
are several ways in which children and foster homes can be matched, the match-
maker is assumed to consider the expected outcomes of all prospective placements,

and weigh them according to a specific utility function. I rationalize the observed

9Children who enter foster care at times when there are no placements available are usually
placed in Emergency-Foster Care or Emergency Shelter Care while a non-emergency placement can
be found (usually in a few days at most). Emergency placements are available 24/7, but are not
suitable for stays lasting more than a few days.

19The confidentiality waiver needed to access the data granted access to a larger time period.
However, I restrict the sample period to a two-month period for computational considerations. As
it shall be seen in the coming sections, the econometric framework I develop in this chapter is
computationally intensive.
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Table 1.1: Summary statistics

(D (2) (3) ) (5) (6) (N 3)
n mean sd pS p25 p50 p75 p95
Termination Reasons
Disruption 2358 0.5093 0.5 0 0 1 1 1
Exit 2358 0.4237 0.4942 0 0 0 1 1
Emancipation 2358 0.05174 0.2215 0 0 0 0 1
Censored 2358 0.01527 0.1226 0 0 0 0 0
Duration
Duration (days) 2358 255.4 343.9 5 35 131.5 339 898.4
Duration|Disrup 1201 164.6 242.7 4 22 74 186 623
Duration|Exit 999 304.1 304.8 5.45 66 223 4392 879
Duration|[Emanc 122 394.7 437.4 8.6 95 232 502 1400
Duration|Cens 36 1461 850.5 25.1 3445 1969 1988 2002
Children Characteristics
Time Since Removal (days) 2358 387.7 937.6 0 0 32 292 2184
Placement # In Spell 2358 2.75 2.582 1 1 2 3 8
Spell # in Child 2358 1.194 0.4626 1 1 1 1 2
Zero Waiting Time 2358 0.8562 0.3509 0 1 1 1 1
Waiting Time (days) 2358 0.9326 3.148 0 0 0 0 10.6
Age 2358 8.694 5.967 0.2037 2916 8485 1454 17.35
Male 2358 0.4576 0.4983 0 0 0 1 1
Black 2358 0.3138 0.4641 0 0 0 1 1
Hispanic 2358 0.5424 0.4983 0 0 1 1 1
White 2358 0.1175 0.3221 0 0 0 0 1
Other Race 2358 0.02629 0.16 0 0 0 0 0
English 2358 0.8223 0.3823 0 1 1 1 1
Spanish 2358 0.1773 0.382 0 0 0 0 1
Other Language 2358 0.0004241 0.02059 0 0 0 0 0
Absence/Incapacitation 2358 0.2693 0.4437 0 0 0 1 1
Abuse/Severe Neglect 2358 0.2498 0.433 0 0 0 0 1
General Neglect 2358 0.4597 0.4985 0 0 0 1 1
Other Removal Reason 2358 0.0212 0.1441 0 0 0 0 0
Foster Homes Characteristics
County Foster Home 2358 0.08567 0.2799 0 0 0 0 1
Agency Foster Home 2358 0.4258 0.4946 0 0 0 1 1
Group Home 2358 0.1158 0.32 0 0 0 0 1
Relative Home 2358 0.3728 0.4836 0 0 0 1 1
Distance Plac-Office (mi.) 2358 2293 21.27 2.22 7.716 16.05 30.69 71.15
Distance Plac-School (mi.) 2358 18.13 23.77 0 0 7983 269 72.73
No School 2358 0.2472 0.4315 0 0 0 0 1

Note: Summary statistics of placement outcomes and characteristics. The distance measures are at the zip-
code level (foster home and school). They were computed using the Google Maps API (accessible through
https://cloud.google.com/maps-platform/). No School refers to children for which the dataset includes no school
zip-code (presumably because the child does not go to school or the data is missing). sd = standard deviation;
p# refers to the #th percentile.
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matching by considering it as the optimal matching from the matchmaker’s perspec-
tive. Apart from considering the expected outcomes of prospective placements, the
matchmaker’s problem also allows for children and foster homes to have idiosyn-
cratic tastes for the type of foster home and child with whom they are matched. The
model is designed to include the most prominent institutional features of foster care
placement. That being said, the only feature I abstract away from is the placement
of siblings. I ignore the existence of siblings in the system, and focus on one-to-one
matchings. The analysis of placement assignment with siblings is ripe ground for

future research.

1.3 Model

Market of Foster Care Services

A market is a tuple (C, H,X,Y), where C is the set of available children, H is the
set of available foster homes, X = (X.).cc is the matrix of children’s (observable)
characteristics, i.e., X, € X C RIYMX) js the vector of characteristics of child
c € C,and Y = (yn)nep is the matrix of the (observable) characteristics of available
homes, i.e., y, € Y C RYMY) js the vector of characteristics of home h € H.
In order to incorporate idiosyncratic preferences over children’s and foster home’s
characteristics, I define types as a coarsening of characteristics. Let X = {x} and
Y = {y} be the sets of child- and home-types; formally, they are finite partitions of
X and Y. Similarly, let x. € X and y;, € Y denote the types of c € C and h € H,

respectively.

A one-to-one matching between children and foster homes is an indicator function
M : CxH — {0, 1} suchthat }},cy M(c,h) < 1forallc € C,and )} .cc M(c,h) <1
forall h € H. Thatis, M(c, h) = 1if child ¢ is matched with home £, and O otherwise.
For simplicity, I also write (¢, h) € M if M(c, h) = 1. Let M(C, H) denote the set of

feasible one-to-one matchings between C and H.

Matching a child and a foster home forms a placement. The outcome of a placement
is given by (T, R) € R; X R, where T denotes the placement’s duration and R its
termination reason. A placement may terminate because it is disrupted (d), the
child exits to permanency (ex), or is emancipated (em). The set of termination
reasons is thus R = {d, ex, em}. It is convenient to differentiate emancipation from
the other termination reasons because the time to emancipation, denoted by 7,
is not random (i.e., known ex-ante). I define the set of termination reasons with

non-degenerate duration as Ry = {d, ex}.
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Children are matched to foster homes on a daily basis within regional offices through-
out the county. The unit of observation is a market, indexed byi = 1, ..., n. Markets
correspond to office-days, and also incorporate the restriction that children need to
be matched with their relatives whenever possible. That is, children for whom rela-
tives are available as prospective foster parents have their own markets (consisting
of a single child and a single foster home). The data consists on (1) a sample of
markets, (G, H;, X;, Y;)?_,; (2) the matching chosen in each market, (M;)"_,, where
M; € M(C;, H;) fori = 1,...,n, and (3) the outcomes of the assigned placements,
(T;, R, where T; = (Tep)(c.mem;» and R; = (Ren)(e.nyem;-

I take the data of markets, (C;, H;, X;, Yi)?zl, as given (i.e., as exogenous variables).
The observed matching and the realized outcomes, (M;, T;, Ri)?zl , are the outcome
(or endogenous) variables of the model. Note that this implies that there are no
spillovers across office-days. Every day, in every office, a matching is assigned
between the available children and foster homes taking the market as given. I
outline the data generating process of the endogenous variables, (M, T, R), in the

following sections.

Placement Assignment
Placements are assigned by a single (or representative) utilitarian matchmaker,
who has preferences over realized outcomes (7, R) € R, X R. The matchmaker’s

preferences are represented by the utility function:
(T, R; Tom) = g + ¢r1og T + @rlog Ty, (1.1)

where ug, ¢r, g € R are unknown parameters for R € R. The parameter ug
measures the preference over termination reason R € R, regardless of duration; ¢g
is the marginal utility of duration conditional on terminating due to R € R. The
utility function also includes the time to emancipation in its third term to control
for the fact that placements involving younger children may have ex-ante longer
durations. For example, if g = —¢g, the matchmaker cares about duration relative
to the time to emancipation. More generally, one can see that the sign of the
marginal rate of substitution between duration and age, conditional on termination

reason R € R, is equal to the sign of ¢r/@g.

Consider a prospective placement (c, h) € C X H. Let 1., denote the information
that the matchmaker has on its outcome distribution. The total payoff of placing

child ¢ € C in home & € H to the matchmaker is given by:

V(c, h) = n(c, h) + &cy,, + NMxohs (1.2)
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where n(c,h) = E [u(T,R;Tem)|I ch] captures the preferences and information
available to the matchmaker about the placement’s outcome. I specify the distribu-
tion of (T, R)| Z;, in the next section.!! The remaining two terms in (1.2), &, and
nx.h, capture idiosyncratic taste variation across children and foster homes (which
is unobservable to the econometrician). Specifically, &, captures the payoft of
matching child ¢ with a home of type y € Y, and n,; that of matching home £
with a child of type x € X. In this sense, the model incorporates the preferences
of children over being placed in specific types of homes and those of homes over
taking care of particular types of children. More generally, the taste variation terms
are aimed to capture type-specific idiosyncratic unobservables that affect placement
assignment (e.g., the matchmaker may also have preferences over forming certain

types of placements, regardless of their outcomes).

The matchmaker chooses the matching M € M(C, H) that maximizes its aggregate
payoff. Since V(c, h) is observable to the matchmaker for all (¢, h) € C x H, the

observed matching is the solution to the following linear programming problem:

max Z M(c, h)V(c,h) : M € M(C,H) . (1.3)
ceC,heH

I restrict attention to matchings in which no child is left unmatched while there is an
unmatched home. That is, besides incorporating the natural constraints that every
child can be matched with at most one home (and vice versa), the set of feasible
matchings M(C, H) satisfies:

MeM(CH o Z M(c, h) = min{|C|, |H|}. (1.4)
ceC,heH

Placement Outcomes

Prospective placements are indexed by (c, h) € C x H. For simplicity, consider a
generic placement and omit such index in this section. The full vector of characteris-
tics of a placement is given by 7 = (X,y, w), where (X,y) € X XY are the observable
child- and home-characteristics, and @ € RIM@) jg a vector of characteristics not
observed by the econometrician. The distribution of a placement’s outcome, (T, E),

depends on its full vector of characteristics, 7.

I model placement outcomes as the result of mixed competing risks. Consider a

generic placement with characteristics 7 = (x,y, w). Let T be the latent duration

UT differentiate random variables that are observable to the econometrician from their realized
values with a tilde; (7, R) denotes the unrealized (random) placement outcome, while (7, R) € Ry xR
denotes its realization.
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associated to the “risk” of terminating due to reason R € Ry. Up to censoring,
due to the sample period or emancipation, a placement’s outcome is determined
by the least latent duration. Denote the time to the end of the sample period by
Tcen, and indicate censored placements by R = cen. To simplify notation, I define
Tom = Tom and Trep = Toen as the degenerate latent durations corresponding to the
time to emancipation and the end of the sample period, respectively. Formally, the

outcome of a placement is given by:
T = min {TR :ReRU {cen}}, and R = arg min {TR :ReRU {cen}} . (1.5

Under the above specification, a placement is emancipated (or censored) if and only
if it has not been disrupted or has exited to permanency by its emancipation date
(or the end of the sample period). Note that each placement in the data is subject
to either emancipation or censoring due to the sample period, depending on which
of Ty, and T, is lower. Both types of censoring, due to emancipation and the
end of the sample period, are equivalent in terms of the likelihood of the latent
durations. However, they are not equivalent from the matchmaker perspective, who
has a preference over the emancipation likelihood and the time to emancipation.

Censoring due to the sample period is only statistical in nature.

Assumption 1 (Unobserved heterogeneity) The unobservable characteristics of a

placement are given by the vector w = (WR)Rrer,. Furthermore,
w ~ N(O,X,), (1.6)
where X, is a positive semidefinite and symmetric matrix of size |Ro| X |Rol.

Assumption 2 (Burr hazards) Conditional on a placement’s characteristics, 1,
the latent durations, {Tg : R € Ry}, are independent. Furthermore, the conditional

distribution of Tg is determined by the following Burr hazard rate2,

kr(DagT®™!
+yRkr(DTx

AR(T|D) = - R e Ry, (1.7)

where kg(I) = exp {wg + g(x,y)Br} with Bgr € RIMP) ¢+ X x Y — RIMB),
ar >0, and ygr > 0.

12The hazard rate of the random variable T is the function defined by AT) = f(T)/F(T), where
f denotes the probability density function of 7', and F its survivor function. The survivor function
is defined by F(T) = 1 — F(T), where F denotes the variable’s cumulative distribution function.
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Assumption 2 specifies the distribution of placement outcomes from the perspective
of the matchmaker, (7, R)| Z. The matchmaker’s additional information, w, consists
of unobservable frailty terms, (wgr)rer,, Which shift the hazard rate associated to
each “risk” (termination reason) upwards or downwards. Since such frailty terms
are not observable to the econometrician, the distribution (7, R) | I is not observed
directly in the data. The outcome distribution is “mixed” by the distribution of the
unobservable frailty terms; one must integrate out w to recover the distribution of
outcomes in the data. However, note that the distribution of w across the placements
observed in the data is not equal to the unconditional distribution specified in
Assumption 1. The distribution of w across the placements in the data is conditional

on being matched, i.e., to that of w., | M(c, h) = 1.

The Burr specification in Assumption 2 is a standard parametric assumption used in
duration models (e.g., Lancaster, 1990; Wooldridge, 2010).'3 The Burr distribution
has the main advantage of being flexible yet tractable. It generalizes other well-
known duration distributions, such as the Exponential (yg = 0,ag = 1), Weibull
(yr = 0), and Log-Logistic (yg = 1). A convenient feature of this distribution is that
its integrated hazard rate has a closed form, and hence, also its survivor function and
likelihood. The parameters ag and yg govern the duration-dependence of the hazard
function, which may be flat, monotonic (positive or negative), or have an inverse-U
shape. The function g is a shorthand for the covariates used in the model, all of
which are derived from observable characteristics. Besides including stand-alone
covariates, g(x, y) may include interactions between variables in x and y, and other
non-trivial transformations, such as distance measures. The effect of the covariates
on each hazard rate is controlled by the coefficients in S. Since the function Ag is
monotonic in kg, the sign of the coefficients in Sy indicate the direction in which
the covariates shift the hazard rates. A higher hazard rate, say Ag, implies that a

placement is more likely to terminate sooner and due to termination reason R € R,.

Assumption 1 specifies the joint distribution of w = (wg)rer, up to the unknown
covariance matrix X,,. Assuming that w has zero mean is without loss of generality,
as long as the covariates in the hazard function include a constant. Intuitively, the
covariance matrix X, captures the extent of the variation in the observed outcomes
not captured through placement characteristics. Moreover, the correlation between
the individual frailty terms introduces dependence among the latent durations. Such

correlation captures, for example, if (a) children who are less likely to reach perma-

13 Another common application of the Burr distribution, also known as the Singh-Maddala distri-
bution, is to model the distribution of income (Singh and Maddala, 1976).
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nency are also more likely to experience disruptions (because, say, they experienced
worse conditions during their upbringing, and this has an impact on their current
behavior), or (b) children who are more likely to exit the system sooner are also more
likely to experience disruptions (because, say, foster parents are less invested in nur-
turing long and stable relationships with children who will leave their households

sooner).

Collect the parameters of the hazard rates in @ = (@r)rery> ¥ = (YR)ReRr, and
B = (Br)reR,- The conditional outcome distribution, (7, R)| Z, is fully specified in

Assumption 2 up to the unknown vector of parameters
0r = (a,7.B).

Observed Matching

In this section, I consider a generic market (C, H,X,Y), and omit its index i =
1,...,n for simplicity. The problem of the matchmaker in (1.3) is a deterministic
problem over matchings. However, from the econometrician’s perspective, the
observed matching is the realization of a random variable since V(c, k) is not fully
observable. Specifically, an econometrician does not observe the frailty terms
(@Wch)(c,nyecxh, Or the taste variation terms, & = (&¢)yey for every ¢ € C, and

nn = (Mxn)xex forevery h € H.

Assumption 3 (Multinomial Probit) The taste variation terms are independent

multivariate normal random vectors. Namely,
8(,‘ ~ N(Oa 28)9 and 77h ~ N(Oa 27])9 (1 8)

where X.. and X, are positive semidefinite and symmetric matrices. Their sizes are
Y| X |Y| and | X| X | X|, respectively. Furthermore, . L &, for all c,c’ € C, and
nn L nu forall hyh' € H. Also, &, nn, and w .y are mutually independent for all
(c, h),(c",h") e C x H.

Under Assumption 3, the observed matching is a realization of the following random

variable:

M(C,H,X,Y) = arg max{ Z M(c, h)rn(c,h) + vy : M € M(C, H)}, (1.9
ceC,heH

where vy, is the composite error term given by

vm= Y, M h)Eey, + Nanl. (1.10)
ceC,heH
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Since the composite error term, vy, follows a multivariate normal distribution, the
matching problem takes the form of a mixed multinomial probit. Below, I show that
the distribution of the individual taste variation parameters, &. and ), can be backed
out from the distribution of the composite error term v,,. Therefore, the distribution

of the taste variation parameters can be obtained directly from the matching data.

Assumption 3 also includes several independence assumptions. First, the unob-
servable taste variation components are independent across parties, i.e., &, L &,
nn L ny, and &, L ny. This assumption rules out unobservable interdependencies
among placement assignments by considering preferences over types as indepen-
dent across children and foster homes. Second, the unobservable frailty terms are
independent across placements, i.e., w., L @.p. This assumption rules out un-
observable interdependencies among placement outcomes. Conditional on being
matched, the outcome of (c, /) is independent of that of (¢”, 4’). Third, the taste vari-
ation terms, &, and 7, are independent of the frailty terms in w.. This assumption
separates the unobservables affecting placement assignments into two groups. On
the one hand, wj, contains unobservables that affect placement assignments through
their expected outcomes (i.e., outcome-relevant unobservables). On the other hand,
g. and ny, capture the rest of the unobservables which affect the matching, but are

independent of outcomes.

Collect the preference parameters in g = (Lg)rery ¢ = (PR)ReRy> P = (PR)ReR,>
X = (X, X;), and define

Oy =(ue,0.X).

Two-by-two Example

In this section, I consider a simple example to illustrate how the model allows for
the matching observed in the data to depend on distinct factors. Consider a market
with two children and two homes, let C = {ci, 2} and H = {hy, hp}. Let x; and x,
denote the types of children c¢; and ¢, respectively, and y; and y;, those of homes
hi and hy. Let &1 = (&11, €12) and &, = (&1, £22) be the unobservable tastes of child
c1 and ¢, for home-types y; and y,, respectively, where I take the liberty of writing
Ekj = Ecy;- Similarly, let 71 = (1711,121) and 2 = (1712, 722) be the unobservable
tastes of homes 4 and hy for child-types x; and x», respectively, with ni; = 1, h;-
Finally, let (w11, w12, w21, W22) be the unobservable vectors of frailty terms of each

prospective placement, i.e., wy; = (wckhj,R)Rquo for j,k =1,2.
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Let my; = m(ck, h;) denote the payoff of assigning each prospective placement,
which is a function of wy;, for j,k = 1,2. The set of feasible matchings M(C, H)
contains two matchings: M, which assigns placements (cy, #1) and (¢p, hy), and M’,
which assigns placements (cy, i) and (¢, h1). Let V and V’ denote their respective

aggregate payoffs, i.e.,

V =V(cy, hi) +V(ca, hp) = (i1 + €11 + n11) + (122 + 22 + 122) (1.11)
V' =V(c, ha) + V(ca, i) = (M2 + €12 + n12) + (21 + €21 + 121) - (1.12)

Matching M is chosen over M’ if and only if V > V’ (the event V = V' has zero
probability). In principle, all the terms in (1.11) and (1.12) might differ, implying
that observing matching M over M’ might result for numerous reasons, e.g., the
expected outcome of placement (cy, i) or (cp, i) is unfavorable relative to that of
(c1, hy) or (ca, hy) (i.e., myp or a1 are low relative to 7ry; or py) . Alternatively, child
¢ might have a higher than usual preference for being matched with a home of type
Yk (i.e., 11 or &y are particularly high), or home /; might have a higher than usual

preference for being matched with a child of type x; (i.e., 711 or 172, are high relative

to 712 Or 121).

Now consider the case in which y; = y», so that €11 = &2 and &1 = &,. In such

case, matching M is chosen over M’ if and only if

(11 +m11) + (w2 + 1m22) 2 (w12 + 12) + (721 + 1721) - (1.13)

In this case, even though the unobservable taste terms of both children may differ,
i.e.,, €11 # &1, the preferences of children over home-types play no role in the
determination of the optimal matching. Similarly, if the children are also of the

same type, x| = x, then matching M is chosen over M’ if and only if
Ty + Ty = Mg + 7. (1.14)

In this case, the optimal matching is determined only on the basis of expected
outcomes. Importantly, the event V > V" is still random from the econometrician’s
perspective, since (1.14) depends on the unobservable frailty terms, w; for j, k =
1,2.
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Expected Placement Outcomes
In this section, I show in more detail how the payoft function depends on a place-
ment’s expected outcomes. Using (1.1) and the definition of n(c, k), we obtain

(e, h) = Z P(R = R|Zcn) {pr + rE [logT|R = R, T ] + @r10g Tomc} . (1.15)
ReR

Therefore, the expected placement outcomes that are relevant for the matchmaker’s
payoff are the termination probability, P(R = R | Z.;), and the conditional ex-
pected log-duration, E [log T|IR=R1T, ch] , of each termination reason R € R. The
expected placement outcomes can be computed using standard results in survival
analysis (e.g., Kalbfleisch and Prentice, 2002; Lancaster, 1990).'4 Namely, for
R e Ry,

Tem,c _
P(R = R| T.) = / F(T|Zo4)AR(T | T.4)dT (1.16)
0

F(Tlfch)/lR(Tl-[ch)
P(R = Rl-[ch)

Tem,c
E [logT|R = R I.4] :/ logT[ dT, (1.17)
0

where F(T | I,;,) denotes the conditional survival function of T, given by

F(T| L) = exp{— > yglog [1 + yakr(Ten)T*%] ¢ . (1.18)
RER()

Simple calculations show that the resulting integrals in (1.16) and (1.17) have no
closed-form.!5 Therefore, to compute the payoff function of placement (c, h) €
C X H, one needs to compute the integrals in (1.16) and (1.17) numerically at
I = (X, Y, wep), obtain the expected placements outcomes, and replace the

respective values in (1.15).

14To observe why (1.16) holds, it suffices to note that F(T' | T.,)Ar(T | I.1) is the likelihood of
the placement having duration 7 and terminating due to R € Ry. The probability of terminating due
to R € Ry is the integral of this likelihood over the support of T, [0, Tom.c]- Similarly, to observe
why (1.17) holds, it suffices to note that the quotient in brackets in (1.17) is the probability density
function (pdf) of 7| R = R, T.;,. To see this, note that the likelihood of the event (T, R) = (T, R)
may also be written as P(R = R| Z.;,)f(T | R = R, I.j,), where f(T|R = R, I.;) denotes the pdf of
TIR=R,TI.,. Expression (1.18) also follows from standard results. Namely, the survivor function
of the duration in a competing risks model is given by F(T) = exp {— 2ReR, fOT /lR(S)dS}.

I5The fact that these integrals have no closed-form is a common feature among most commonly
used duration distributions. A notable exception, perhaps the only one, is the competing risks model
with symmetric Weibull hazards (all hazards have the same shape parameter). In our case, this corre-
sponds to the case with yg = 0 and ag = a for all R € Ry. In such case, the termination probabilities
have the same form as the choice probabilities of the multinomial logit, and are constant across
time. As shall be seen in next sections, this specification, although attractive for its computational
tractability, is too restrictive for the present case.
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In order to observe how the aggregate payoff of matching M € M(C, H) depends on

the expected placement outcomes of the assigned placements, note that

Z M(c, h)r(c, h) = Z { [Z M(c, h)P(R = R| 1)
c,h

ReR c,h

MR

+| > M(c, B(R = R| I.1)E (logT| R = R I.1) | ¢r
c,h

+ | > M(e, WP(R = R| L01)10g Tome @e}, (1.19)
c,h

where the sums are over ¢ € C,h € H. Hence, conditional on the matchmaker’s
information on every prospective placement, (Z¢p)necxs, the problem of the
matchmaker in (1.9) takes the form of a multinomial probit. The “systematic” or
“observed” portion of the aggregate payoff of matching M € M(C, H), given in
(1.19), is a linear index on the parameters of the matchmaker’s utility function,
(i, @, @). The “covariates” of such linear index are sums of the expected outcomes
of all the assigned placements under M, which, in essence, are non-linear transfor-
mations of the covariates of the assigned placements, {g(x,,y;) : M(c, h) = 1}. The
unconditional problem of the matchmaker takes the form of a mixed multinomial

probit since one must integrate out the unobservable part of (Zcp)(cnyecxn, i-€.,

(@ch)(e,nyeCxH-

1.4 Identification

Outcome Distribution

Absent matching, the data on observed outcomes is sufficient to identify the pa-
rameters of the distribution of outcomes, (X, @7). This observation follows from
Heckman and Honoré (1989), who show that the joint distribution of the latent
durations in a competing risks model is non-parametrically identified as long as
(1) the model includes covariates; (2) the hazard rates of the latent durations have
at least one common covariate with a different coefficient in each hazard rate; (3)
such covariate is continuous and unbounded, and (4) the mixing distribution is suffi-
ciently smooth (and satisfies certain regularity conditions at the limit). All of these
conditions are met given Assumptions 1 and 2. The continuous and unbounded
covariates are distance measures, e.g., the distance between children’s schools and

foster homes, which has a termination-specific coefficient.

Once we take into account the matching part of the model, one must recognize that

the distribution of w across the placements observed in the data, in general, differs
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from the unconditional distribution specified in Assumption 1. The distribution of w
across the placements observed in the data is given by w.;, | M(c, h) = 1, where M is
the random variable defined in (1.9). Hence, the distribution of w in the data depends
on all the variables involved in the matchmaker’s problem. In order to identify this
distribution, the model relies on the random variation on the exogenous variables
(C,H,X,Y). The simplest way to see why this variation is sufficient to identify
the parameters in the unconditional distribution of w is to consider placements
in singleton markets. Note that the distribution of w for placements assigned in
markets with |C| = |H| = 1 is the same as its unconditional distribution. That is,
if |C| = |H| = 1, the matchmaker’s problem is trivial, which implies that the event
{M(c, h) = 1} is uninformative, and the likelihood of such placement’s outcome
is the same as its unconditional one. More generally, in non-singleton markets,
exogenous variation in (C, H, X, Y) identifies the unconditional mixing distribution
in a similar way in which instruments are used in standard sample selection models
(e.g., Heckman, 1979). One needs exogenous variation that affects the likelihood of
being “selected” (i.e., of having an observable outcome) that is independent of the

outcome itself.

Another aspect that differs from the standard competing risks framework is that
the matching may induce endogeneity, which leads to bias when estimating the
coefficients of the covariates in the hazard functions. This observation was first
noted in the literature by Ackerberg and Botticini (2002) in a setting of contract
choice. Their setup is different to the one here, but the underlying intuition is the
same. In a reduced-form setting, they show that when the outcome of a match (in
their case, a joint sharecropping contract) depends on the characteristics of both
parties involved in the match, the presence of unobservables correlated with the
matching and the outcome lead to endogeneity. The matching affects the joint
distribution of a match’s characteristics, causing them to become correlated with
the error term in a regression. To see this in our case, write the latent duration as

follows16

logTr = Kg — g(x,y)Br/ar — wr/ag + errorg, (1.20)

where errorg = log Tr - E [log Tr | T ] is an exogenous error term, and

Kg = ai' [w(1) = v (ygD) + log v (1.21)

I6Expression (1.20) is a well-known feature of the Burr distribution (Lancaster, 1990). Indeed,
the fact that the log-duration can be written in the form of a linear regression is a characteristic
feature of all accelerated failure time models, the Burr duration model included.
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is a constant (¢ denotes the digamma function, ¥ (x) = dlogI'(x)/dx, where I is
the gamma function). In (1.20), one can see how the covariates affect the latent
log-durations in an analogous way to a linear regression. At first glance, the
covariates in g(x,y) seem to be exogenous. The unconditional distributions of wg
and errorg are independent of (x,y). However, the joint distribution of (X, y) across
the assigned placements, (X, ;)| M(c, h) = 1, is determined by the matching. Note
that y, = 3,.cy M(c, W')y),. Hence, the covariates derived from y are no longer
independent from the error term —wg/ag + errorg in (1.20). A symmetric argument

shows that the same holds for the covariates derived from x.

To fix this endogeneity problem, Ackerberg and Botticini (2002) suggest using
instrumental variables that affect the matching, but are independent of outcomes.
In the present case, this exogenous variation comes through (C, H,X,Y). Two
placements that are observationally equivalent, say (c, #) and (¢’, h") with (X¢, y,) =
(X¢7, Yir), will not have the same mixing distribution if they are assigned in distinct
markets. If (say) the first placement is assigned in market (C, H, X, Y) and the second
one in (C’, H,X’,Y’), then the distribution of w | M(c, h) = 1, in general, will be
distinct to that of @ | M’(¢’, ') = 1. The matchings chosen in both markets, M and
M, are independent random variables with distinct distributions. This identification
strategy has been used in the contracting literature since the seminal contribution
of Ackerberg and Botticini (e.g., Sgrensen, 2007; Ewens, Gorbenko, and Korteweg,
2019).

Matching Distribution

The identification of the parameters in the matchmaker’s utility function, (u, ¢, @),
is straightforward once the mixing distribution is identified, and one sets ¢,,, = 0.
Setting ., = 0 is necessary since the time to emancipation appears twice in
u(T,R;T,,,) for R = em, see (1.1). As mentioned above, see (1.19), the matching
problem is a multinomial probit with index linear on (u, @, @).

Finally, I discuss the identification of the covariance matrices of the taste varia-
tion terms, X, and X,. Let o(y,y’) be the (y, y')-th entry of X, i.e., 0:(y, ") =
cov(&cy, &cyr). Similarly, let oy (x, x”) = cov(nxn, nyp). From (1.10), note that the
vector of composite error terms, v = (V) mem(c, ), follows a zero-mean multivari-
ate normal distribution with covariance structure given by (a detailed proof is given
in Appendix A.2):

cov(uy, um) = Z T=(YM(e) YMr(c) + Z o (XMhy Xmr(n))s (1.22)
ceC heH
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where I write M(c) = h & M(h) = ¢ & M(c, h) = 1. To deal with unmatched chil-
drenin (1.22), set o (Yum(c)» Ym(¢)) = 0if ¢ is unmatched in either M or M’. Standard
results in discrete choice models (e.g., Train, 2009) show that the covariance matrix

of v is identified up to location and scale normalizations.

Assumption 4 (Covariance Normalization) There exists xo € X and yo € Y such

that o (xo, x) = 0 for every x € X, and o¢(yo, yo) = 1.

Assumption 4 imposes the necessary normalizations to identify the covariance
matrices X, and X,,. First, it imposes a location normalization by assuming that
there exists a child-type, xo, for which the taste variation term of every home equals
to zero. Second, a scale normalization is assumed by assuming there exists a home-
type, yo, for which the variance of the corresponding taste variation term equals one

for every child.

Proposition 1 Under Assumption 4, the covariance matrices X, and X, are identi-

fied.

The proof of Proposition 1 is provided in Appendix A.2. The proof exploits that
the distribution of the taste variation terms is the same regardless of the types of the
other available children and homes in the market. The proof relies on analyzing the
identified elements of the covariance matrix of v in specific markets with particular
types of children and homes, and use the normalization in Assumption 4 and the

covariance structure in (1.22) to back out the covariance matrices X, and X,,.

Collect all the parameters of the model in @ = [X,,, 07, 6)/]. Let @ € RIM®) pe the
parameter space. That is, @ is the subset of R4™® that incorporates the following
parameter restrictions: ag > 0,yg > O for every R € Ry, e = 0, X;, such that
oy(x0, x) = 0 for every x € X, X, such that o:(yo, yo) = 1, and £, £, and X, are

positive semidefinite and symmetric matrices.

1.5 Estimation

In this section, I explain how to obtain a consistent, efficient, and asymptotically
normal estimator of . The estimation consists in maximizing the simulated log-
likelihood of the model. To simplify notation, let z., = (X, y;) denote the ob-
servable characteristics of placement (c, h) € C; X H;, and group all the observable

characteristics of market i in Z; = (X;,Y;). Similarly, let Q; = (@cn)(cnyec,xh;-
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Fix @ € O. Consider an arbitrary market i. The likelihood of observing (M;, T;, R;),

conditional on (€;, Z;), is given by:

LM, T, R; |4, Z;, 07,0n) = Lyg(M; |4, Zi, 01,07) X - -+
oo Lrr(Ti, R [ M;, Q4,Z;,07)  (1.23)

where Ly (M; | Q;,7Z;, 0y, 07) denotes the conditional matching likelihood, and
L1r(T;, R; | M;, Q;,Z;, 67) denotes the conditional outcome likelihood. Both likeli-
hood functions are conditional on both unobservable and observable characteristics,
Q; and Z;, respectively. In the next two sections, I spell out both conditional likeli-
hood functions. Then, I show how to compute the simulated log-likelihood of the

data, which basically amounts to integrating out €; from (1.23).

Conditional Matching Likelihood

Write the payoff function 7(-) as a function of placement characteristics and param-
eters, i.e., m(Wep, Zen | 07, Opy) = 7(c, h). Also, let M; = M(C;, H;) denote the set of
feasible matchings in market i. The conditional matching likelihood is given by the

Probit choice probability:

Ly(M; |, Z;,07,0)y) = / L a(m;19:,2:,67.0,)(V)AF (), (1.24)

where v = (vp) ey, is the vector of matching composite errors, 14(v) denotes
the indicator function of set A (it takes v as argument), and the set A(M; |

Q;,Z;, 07, 0)) is the set of v’s for which the matching M, is optimal, i.e.,

{v tuy — Uy, < Z [Mi(c, h) — M(c, h)] n(wen Zen |07, 01) VM € Mi} . (1.25)
c,h

Conditional Outcomes Likelihood

Let L7 r(T,R | w,2,07) denote the conditional likelihood of a single placement

outcome, given by the Burr competing risks likelihood:
Lrr(T,R|w,2,07) = F(T |0, 07)A(T | w, z, 07) Retemeen (1.26)

where F(T | ,z 67) is the survivor function given in (1.18), and Ax(T | w, z, 7)
the termination specific hazard-rate in Assumption 2. The conditional outcome

likelihood of all the placements in market i is given by:

Ltr(Ti,R; | M;, Q. Z,;,07) = 1_[ L7 r(Teh Ren | @eny Zen, 07). (1.27)
(C,/’Z)EM[
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(Simulated) Log-likelihood
Let G denote the joint distribution of Q;, i.e., G = X, ,G.n, Where G, = N(0, X,,).
The conditional likelihood of the market-level data (M;, T;, R;) is:

L(Mi,Ti,Rilzi,a)=/£M(Mi|9i,zi,9T,0M) X -

- Lor(Ti, Ri | M;, Q;, Z;, 07)G(dQi [ Xy).  (1.28)

The log-likelihood of the data is

n

£,(012) = > log L(M;. T;, R;|Z;,6). (1.29)

i=1

To estimate 6, I compute the simulated counterpart of ¢,(6 | Z). There are two
multi-dimensional integrals within (1.29) that need to be simulated. The first one is
the integral over v in the conditional matching likelihood, see (1.24). To compute
this integral, I draw a sample of S, independent draws of the taste variation terms,
g. and n;,. The sample is drawn independently of the model parameters, in order
to keep the simulation draws fixed during the estimation. I use a logit-kernel to
smooth the choice probabilities in (1.24). It is well known (e.g., Train, 2009) that
such smoothing is computationally convenient when estimating multinomial probit
models, especially in cases with a large number of alternatives, as in this case. Let
{ > 0 denote the smoothing parameter of the logit-kernel. The second integral
that needs to be computed through simulation is the one over €; in (1.28). To
compute this integral, I draw a random sample of S, independent draws of each
Wch = (WRen)ReRry, for (¢, h) € C;x Hy, i = 1,...,n. Likewise, this sample is drawn
independently of the model parameters. Let f,f“”s”’{(a | Z) denote the simulated
counterpart of the log-likelihood of the data in (1.29). (See Appendix A.1 for more

details on the estimation.) The estimator of @ is given by:

Osyre = argmax £, (0| Z). (1.30)

0O
Standard results (e.g., Gourieroux and Monfort, 1997) imply that 95MLE is a con-
sistent, efficient, and asymptotically normal estimator for 0, as n, S, S, — oo with

min{S,, Sy}/vn — 0.
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1.6 Estimation Results

Empirical Specification

In this section, I present the results of the estimation. Due to computational con-
siderations, I consider a small version of the model in terms of the number of
covariates | include. The estimates presented below correspond to a model that
includes the following placement characteristics: age, type of foster home (relative,
county, agency, or group home), and distance to school. I also include a dummy for
children for which the school’s zip-code is missing (who presumably do not go to

school), and interactions between age and the type of foster home.

I define children and home-types (used to specify the taste variation terms) as
follows. The set of child-types, X, contains two elements differentiating children
who are younger, or older, than 8 years old. The set of home-types, Y, includes one
type for each type of foster home other than relatives. It is not necessary to define a

home-type for relative foster homes since all of them are in singleton markets.

The dataset used in the estimation contains 1,467 markets and 2,358 assigned

placements. This specification of the model has 39 parameters.

Parameter Estimates

In this section, I discuss the simulated maximum likelihood estimates of the model
parameters. Table 1.2 presents the parameter estimates of the outcome distribution,
3, and 87. The first two rows of the table present the estimated covariance matrix
of w. The estimated variance of wy is higher than that of w,,, implying that the
variance not captured by the covariates is higher for disruption than for exit. The
model also captures a positive correlation between both hazard rates: placements
which the matchmaker considers as having a higher hazard for disruption, are also

considered as having a higher hazard for exiting the system.

The next rows of Table 1.2 report the estimated coeflicients of each of the covariates
in g(x,y) for each hazard rate. A larger coefficient of (say) age on the disruption
hazard implies that placements with older children are more likely to be disrupted
(and sooner) than placements with younger children. The coefficients indicate that
older children have higher disruption hazards in all types of foster homes, other than
group homes. By contrast, age is found to have a minor effect in the hazard for

exiting to permanency in foster homes other than group homes.

Table 1.3 reports average partial effects of placement characteristics on placement

outcomes. Partial effects are computed for every placement assigned in the data
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Table 1.2: Estimated parameters of outcome distribution (X, 67)

O] @)

Disruption Exit
Var(wr) 0.873%** 0.02955
(0.2912) (0.02867)
Cov(wy, Wex) 0.1573* 0.1573*
(0.08908) (0.08908)
Age At Placement 0.09872%#%%* -0.01615
(0.01767) (0.01047)
County-FH 2.217%%* -0.02375
(0.332) (0.2101)
Agency-FH 2.983%** 0.4547%**
(0.2556) (0.1237)
Group Home -2.077%* -1.987%%*
(0.9188) (0.5642)
Age At Plac. x County-FH -0.02272 0.01804
(0.0261) (0.01636)
Age At Plac. x Agency-FH -0.07878%** -0.01007
(0.0194) (0.0124)

Age At Plac. X Group Home ~ 0.2569%%%* 0.1419%**
(0.06179) (0.03894)

Distance To School (zip) 0.02052***  -0.006059%***
(0.002471) (0.001724)
Missing Dist. To School 0.9007%*** 0.1222
(0.1603) (0.08942)
Constant -8.996%%#%* -6.082%#%%*
(0.5408) (0.2132)
Alpha (aR) 1.091%#%** 0.9665%**
(0.07551) (0.03427)
Gamma (YRr) 0.9527%*** 0.2222
(0.1183) (0.2361)
Number of markets (1) 1467
SMLL -17005.86

Note: Estimated parameters of unobserved heterogeneity
(X)) and conditional hazard rates (@7). Standard errors in
parenthesis. Significance level of parameters: ***p<0.01,
**p<0.05, *p<0.01.

using expressions (1.16) and (1.17). Here, one can see that, on average, placements
with older children are more likely to be disrupted. The marginal effect of one year
of age on the disruption probability is, on average, 1.4%. Also, placements with
older children are more likely to be disrupted sooner when they do so. Indeed,
placements with older children tend to have lower durations overall, regardless of
the termination reason. Placements with relatives are more stable, they have lower
disruption probabilities than every other type of foster home. They also last less than
every other type of placement except for group homes. Placements in county and
agency foster homes have similar expected outcomes. Both of them are around 30%
more likely to be disrupted than placements with relatives. The distance between
a foster home and the child’s school increases the odds of disruption and overall

diminishes a placement’s expected duration.



Table 1.3: Average partial effects (APEs)

(1 2) “) ) (6)

P(Disrup) P(Exit) E(log T |Disrup) E(logT|Exit)  E(logT)
Age At Placement 0.01393 -0.01146 -0.04059 -0.0218 -0.04014
County-FH 0.3168 -0.2661 -0.9689 -0.6275 -0.9266
Agency-FH 0.32 -0.2716 -1.221 -0.8743 -1.174
Group Home 0.1652 -0.1575 0.2872 0.4496 0.3393
Distance To School (zip) ~ 0.004013  -0.003757 -0.007978 -0.003091 -0.007359
Missing Dist. To School 0.1136 -0.09686 -0.5244 -0.3653 -0.5212
Number of placements 2358

Note: Average partial effects of placement characteristics on expected outcomes. Averages taken across
the sample of assigned placements in the data. The partial effects with respect to continuous variables
is taken by considering a marginal change of one unit.

Table 1.4: Goodness of fit and estimation parameters

1 @)

Predicted Sample
P(Disruption) 0.514 0.5093
P(Exit) 0.4303 0.4237
P(Emanc/Cens) 0.05568 0.06701
E(log T | Disruption) 4.482 4.141
E(log T'| Exit) 4.721 4.994
E(log T | Emanc/Cens) 7.19 5.534
E(logT) 4.615 4.596
Number of markets () 1467
Number of assigned placements 2358
Number of prospective placements 8900
SMLL -17005.86
Sw 50
Sy 50
e le-01
dim(@) 39

Note: Average predicted outcomes and sample average out-
comes. Averages taken across the sample of assigned place-
ments in the data. The number of assigned placements in the
data is equal to 3; >, M;(c, h). The number of prospective
placements is equal to 3; 3. , |C;| X |H;|. SMLL gives the
value of the simulated log-likelihood at the estimated vec-
tor of parameters. S, Sy, and ¢ are the parameters of the
simulated log-likelihood; dim(#) refers to the number of pa-
rameters estimated.
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Table 1.4 reports goodness of fit measures and the parameters used in the estimation.
Overall, the model does good job on matching the average outcomes observed in
the data. Note that when computing average expected outcomes for goodness of
fit purposes, one must take into account censored placements (those for which the
outcome is not observable due to the sample period). This is done by replacing 7,
for min{7,,,, T;.,} in expressions (1.16) and (1.17). Also, note that the (average) ex-
pected log-duration conditional on emancipation/censoring predicted by the model
is much higher than the emancipation/censoring times observed in the data. This
reflects that the placements that are more likely to be emancipated or censored are
precisely the ones that have lower times to emancipation or are closer to the end of

the sample period.

Table 1.5 reports the estimated parameters of the matchmaker’s utility function.
Overall, the matchmaker has a higher payoff from placements that exit to perma-
nency. The least desirable termination reason is disruption. The marginal utility
of duration is negative, regardless of termination reason. The magnitude of the
parameters show that the matchmaker is nor willing to trade-off a placement exiting
to permanency for it being disrupted, regardless of the time to reach permanency
and the time spent in a disruptive placement. To see this, note that if a placement
is to be disrupted, the matchmaker prefers for it to be disrupted as soon as possible.
However, even if a placement is disrupted right away, T = 1, the payoff to the
matchmaker is lower than if the child exits to permanency, regardless of the time the

child needs to wait before exiting.

The marginal utility of the time to emancipation is positive conditional on duration,
but negative conditional on exiting to permanency. This captures that the valuation
of the matchmaker for age differs depending on the termination reason. An inter-
pretation of this preference is that the time to disruption and permanency (i.e., the
time that it takes for a placement to be disrupted or exit to permanency, conditional
on that being its termination reason) is valued differently depending on the age of
children. The sign of the coefficients indicate that the matchmaker’s preference
against children spending time in placements that will be disrupted is stronger for
younger children than for older ones. By contrast, the matchmaker’s tolerance for
children waiting to exit to permanency is higher for younger children than for older
ones. The magnitude of the coefficients allow to compute the marginal rate of
substitution between duration and age. For instance, consider a child of average age,

8.7 years old, who is in a placement known to be disrupted. Set the disruption time



Table 1.5: Estimated parameters of matching utility (6 )
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6] (2 ©))
Disruption Exit Emancipation
UR — MgU. Term. Reason ~ -2.908%** 2.449%%* -2.057%#%*
(0.6972) (1.091) (0.7183)
@R — MgU. Duration -0.3549%%*  -0.5265%** Of
(0.1005) (0.167) 0)
@R — MgU. Emanc. Time  0.3093%#%%* -0.1179 0.009985
(0.06172) (0.09607) (0.01364)
Number of markets (n) 1467
SMLL -17005.86

Note: Estimated parameters of matching utility function (64 ), where u =
UR+¢R log T+ @R log Tep,. Standard errors in parenthesis. Significance
level of parameters: ***p<0.01, **p<0.05, *p<0.01. T indicates fixed
parameter (i.e., not estimated).

at its conditional average, 5.4 months (165 days). A placement that is know to be
disrupted, but has a child who is younger by one year, generates a higher payoff for
the matchmaker as long as its duration is less than 5.9 months (180 days), 9.31%
more. If the placement is known to be terminated because the child will exit to
permanency, the opposite obtains. Again, consider a placement with a child who
is 8.7 years old and, who is known, will exit to permanency in the average time,
10 months (304 days). A placement with a child who is also known will exit to
permanency, but who is one year older, generates a higher payoff to the matchmaker,
as long as the child exits to permanency in no more than 10.2 months (312 days),

2.6% more.

Table 1.6 reports the estimated covariance matrices of the taste variation terms.
Overall, the estimates show no significance variance in the taste variation parameters.
Intuitively, this reflects that, given the current specification, the expected outcomes

of placements seem to be sufficient in order to predict placement assignments.!”

1.7 Counterfactual Exercises

Counterfactual I: Market Thickness

In this section, I analyze the effect of policies aimed at improving outcomes by
increasing market thickness. Market thickness may be increased along two dimen-
sions. First, I consider the case in which placements are assigned every D > 1
days, instead of daily as is done in the field (D = 1). I consider policies with

D < 15. Second, I consider the case in which non-relative placements are assigned

17A caveat of the estimates in Table 1.6 is that the normalizations implemented in this specification
do not correspond to the ones in Assumption 4, which is key in proving Proposition 1. The estimates
in Table 1.6 may be close to zero because the normalizations are not doing a good job in identifying
the parameters.
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Table 1.6: Estimates of the covariance matrix of the taste variation shocks (X)

0F 0F 0F
(0) (0) (0) 0F 0f

& _|0T 00002013  —0.001219 S () (0)

€=1(0) (0.0009768) (0.003017) 7=10f  0.0001188
0f -0.001219  0.01181 (0)  (0.000899)/ 1y x|

(0)  (0.003017)  (0.01172) / y . 1y

Note: Estimated parameters of the covariance matrices of taste variation shock of children over home types,
&c = (gcy)yey ~ N(0,Z¢), and of the covariance matrix of the taste variation shock of homes over children
types, 7, = (Nxh)xex ~ N(0, Xy). Standard errors in parenthesis. Significance level of parameters: ***p<0.01,
*#p<0.05, *p<0.01. { indicates fixed parameter (i.e., not estimated).

across all regional offices together, instead of within them as is done in the field.
I also consider the two types of policies together, i.e., assigning placements every
D > 1 days and pooling the children and foster homes from all regional offices into

a county-wide market.

By design, the aggregate payoff of the matchmaker is higher when markets are
thicker. The reason is because the original matching is always feasible when the
market is thicker. The effect on the expected outcomes of placements is controlled by
the matchmaker’s payoff function, which determines which placements are assigned

in the counterfactual markets.

Figure 1.1 plots the average predicted termination probabilities across the counter-
factual markets. The value of D is plotted in the x-axis. The solid lines correspond to
the termination probabilities in the case in which markets are formed within offices.
The dashed lines to the case in which markets are pooled across regional offices.
The plots also include a dotted line, which is constant across D. The dotted line
corresponds to the “benchmark” case in which all placements are assigned at once,
D = oo, and regional offices are pooled together. The average predicted outcomes
in the benchmark case correspond to the ones of the best placements (from the

matchmaker’s perspective) that can be formed in the full dataset.

The baseline values of the termination probabilities are the values at D = 1, i.e.,
these values correspond to the predicted probabilities of the model with the assign-
ment observed in the data. From the top panel of Figure 1.1, one can see that in
thicker markets the average disruption probability is lower, and that of exiting to
permanency or disruption is higher. When the pools of available children and foster
homes are larger, the matchmaker is able to assign placements with lower disruption

probabilities. However, note that the gains from thicker markets come almost exclu-
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Figure 1.1: Counterfactual I: Average predicted termination probabilities
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Note: Plot of the average predicted termination probabilities. Averages taken across all assigned placements in
each counterfactual. The x-axis plots the value of D, the number of non-matching days in a matching period.
Solid lines correspond to counterfactuals in which markets are defined by regional offices; dashed lines to
ones in which regional offices are pooled together into the same markets. The benchmark case (dotted line)
corresponds to the case in which regional offices are pooled together into markets and D = oo.

sively from pooling regional offices together. When matchings are assigned daily
(D = 1) but regional offices are pooled together, the disruption rates diminishes
from 52.61% to 48.43%. In terms of expected number of placements per child, this

is equivalent from going from 2.11 to 1.94.18

Figure 1.2 is analogous to Figure 1.1, but it plots the average predicted conditional
durations of placements. Here, one can see that the average duration of placements
may be higher or lower than the baseline in thicker markets. Interestingly, when of-
fices are pooled together and placements are assigned daily, the matchmaker assigns
placements with higher expected durations than both the baseline and benchmark
cases. The reason is because the matchmaker is willing to trade-off duration (which
it dislikes) with better termination probabilities. The same can be seen in Figure

1.3, which plots the average expected duration.

The top panel of Figure 1.4 plots the average distance to school across placements in
thicker markets. The average distance between foster homes and children’s schools

is cut in 54% when offices are pooled together into county wide-markets. The

18The average disruption probability can be seen as the probability of a “failure” in a series
of discrete dichotomic random draws. In this case, the number of placements per child follows a
geometric distribution (“number of trials needed to get one success”). If p; denotes the disruption
probability, the expected number of placements per child is 1/(1 — py).
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Figure 1.2: Counterfactual I: Average predicted conditional expected duration
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Note: Plot of the average predicted conditional expected durations. Averages taken across all assigned place-
ments in each counterfactual. The x-axis plots the value of D, the number of non-matching days in a matching
period. Solid lines correspond to counterfactuals in which markets are defined by regional offices; dashed lines
to ones in which regional offices are pooled together into the same markets. The benchmark case (dotted line)
corresponds to the case in which regional offices are pooled together into markets and D = oo.

Figure 1.3: Counterfactual I: Average predicted expected duration
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Note: Plot of the average predicted expected duration. Averages taken across all assigned placements in each
counterfactual. The x-axis plots the value of D, the number of non-matching days in a matching period. Solid
lines correspond to counterfactuals in which markets are defined by regional offices; dashed lines to ones in
which regional offices are pooled together into the same markets. The benchmark case (dotted line) corresponds
to the case in which regional offices are pooled together into markets and D = oo.
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Figure 1.4: Counterfactual I: Average distance to school and waiting time
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Note: Plots of the average distance to school and waiting time. Averages taken across all assigned placements
in each counterfactual. The x-axis plots the value of D, the number of non-matching days in a matching period.
Solid lines correspond to counterfactuals in which markets are defined by regional offices; dashed lines to
ones in which regional offices are pooled together into the same markets. The benchmark case (dotted line)
corresponds to the case in which regional offices are pooled together into markets and D = oo.

average distance goes from 20.43 to 9.5 miles. From the plot, one can see that the
gains resulting from lower disruption probabilities follows the same patters as the
distance to school: the gains from pooling offices together outweighs those obtained
from delaying placement assignments. Finally, the bottom plot of Figure 1.4 shows
the average time that children wait before being assigned placements. As expected,

delaying placements increases this figure monotonically.
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Counterfactual ITa: Relative Foster Homes

In this section, I analyze the effect that relatives have on average expected outcomes.
Specifically, I consider an increase in the share of the foster homes that are relatives
across all markets. I analyze both an increase in the intensive and extensive margins.
Let 6,.; € (0, 1) be the increase in the share of foster homes that are relatives. I
consider policies with 6,,; < 0.25; 6,.,; = 0 corresponds to the baseline case, in

which the supply of foster homes is the same as the one observed in the data.

I increase the share of relative homes as follows. First, I estimate a binary logit
model that predicts whether a child has a relative home or not, as a function of its
characteristics. Let n;‘e = | 8rer *ye |, where n,.; denotes the number of placements
with relatives in the data. Then, from the population of non-relative placements in
the data, I select n},, at random, weighing them by the predicted probability that each
of them had a relative available. That is, I select children who did not had a relative
placement, but had a higher likelihood of having it, with higher probability. In the
case of the intensive margin, I convert the foster homes of the selected placements
into relative homes (leaving all other placement characteristics fixed), and assign
them to new singleton markets with the corresponding child. In the extensive
margin case, | create a duplicate of the foster homes of the selected children. Then,
I convert the duplicated home to a relative home (leaving all the other placement
characteristics fixed), and assign it with the corresponding child to a new singleton
market. The difference between the intensive and extensive margins is that the set of
available foster homes for the rest of the children in the market remains unchanged

in the extensive margin, while it is reduced by one home in the intensive margin.

Figure 1.5 reports the predicted average termination probabilities in the distinct
counterfactuals. The parameter d,.; is on the x-axis. One can observe that a higher
share of relative homes, in both the intensive and extensive margins, has a sizable
effect on termination probabilities. Overall, the disruption probability diminishes
and the one of exiting to permanency increases. The adjustment is more gradual in
the extensive margin. In the intensive margin, the disruption probability goes from
52.6% at 6,1 = 0 to 45.82% at 6,.; = 0.25 (equivalent to going from an average of
2.1 placement per child to 1.84). In the extensive margin, the change is from 52.6%
to 47.8% (equivalent to going from an average of 2.1 placement per child to 1.91).
The difference between both margins has to do with how the rest of the children are

being placed in the non-relative placements. Figure 1.6 shows the analogous plot



37

Figure 1.5: Counterfactual Ila-Relatives: Average predicted termination
probabilities
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Note: Plot of the average predicted termination probabilities. Averages taken across all assigned placements in
each counterfactual. The x-axis plots the value of d,..;, the factor by which the supply of Relative Foster Homes
is adjusted. Solid lines correspond to counterfactuals in which the supply of Relative Foster Homes is increased
in the intensive margin; dashed lines to ones in which the supply of Relative Foster Homes is increased in the
extensive margin.

for conditional durations. Overall, placements tend to last longer when the share of

relative foster homes in the system is increased.

Counterfactual IIb: Agency Foster Homes

In this section, I analyze the effect that agency foster homes have on average expected
outcomes. Specifically, I consider an increase in the share of foster homes that come
through non-profit agencies across all markets. I analyze an increase in both the
intensive and extensive margins. Let d,;, € (0, 1) be the increase in the share of
foster homes that are agency homes. I consider policies with 6., < 0.25; 6., = 0
corresponds to the baseline case, in which the supply of foster homes is the same as

the one observed in the data.

I increase the share of agency homes as follows. Let ”Zh = |Oun * nanl, where
ng, denotes the number of placements with agency homes in the data. Then, from
the population of non-agency placements in the data, I select n;, uniformly at
random, keeping the relative share of the other types of non-agency placements
fixed. In the case of the intensive margin, I convert the foster homes of the selected
placements into agency homes (leaving all other placement characteristics fixed).

In the extensive margin case, I create a duplicate of the foster homes of the selected
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Figure 1.6: Counterfactual Ila-Relatives: Average predicted conditional expected
duration
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Note: Plots of the average predicted conditional expected durations. Averages taken across all assigned
placements in each counterfactual. The x-axis plots the value of §, the factor by which the supply of Relative
Foster Homes is adjusted. Solid lines correspond to counterfactuals in which the supply of Relative Foster
Homes is increased in the intensive margin; dashed lines to ones in which the supply of Relative Foster Homes
is increased in the extensive margin.

Figure 1.7: Counterfactual Ila-Relatives: Average predicted expected duration
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Note: Plot of the average predicted expected duration. Averages taken across all assigned placements in each
counterfactual. The x-axis plots the value of J, the factor by which the supply of Relative Foster Homes is
adjusted. Solid lines correspond to counterfactuals in which the supply of Relative Foster Homes is increased
in the intensive margin; dashed lines to ones in which the supply of Relative Foster Homes is increased in the
extensive margin.
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Figure 1.8: Counterfactual IIb-Agency-FH: Average predicted termination
probabilities
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Note: Plot of the average predicted termination probabilities. Averages taken across all assigned placements in
each counterfactual. The x-axis plots the value of ¢, the factor by which the supply of Agency Foster Homes is
adjusted. Solid lines correspond to counterfactuals in which the supply of Relative Foster Homes is increased
in the intensive margin; dashed lines to ones in which the supply of Agency Foster Homes is increased in the
extensive margin.

children. Then, I convert each duplicated home to a agency home (leaving all the
other placement characteristics fixed). The difference between the intensive and
extensive margins is that the set of available foster homes in the market has the same
number of homes in the intensive margin (with one converted into an agency home),

and in the extensive margin it has an extra agency home.

Figure 1.8 reports the predicted average termination probabilities in the distinct
counterfactuals. The parameter d,, is on the x-axis. One can observe that a
higher share of agency homes, in both the intensive and extensive margins, has a
minor effect on termination probabilities. Interestingly, the effects point in opposite
directions in the intensive and the extensive margins. In the intensive margin, the
disruption probability diminishes and the one of exiting to permanency increases.
The disruption probability goes from 52.6% at 6,, = 0 to 51% at 64, = 0.25
(equivalent to going from an average of 2.1 placement per child to 2). In the
extensive margin, the average disruption probability increases, it goes from 52.6%
to 53.8% (equivalent to going from an average of 2.1 placement per child to 2.2).

Figure 1.6 shows the analogous plots for conditional durations.
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Averages taken across all assigned

placements in each counterfactual. The x-axis plots the value of §, the factor by which the supply of Relative
Foster Homes is adjusted. Solid lines correspond to counterfactuals in which the supply of Agency Foster
Homes is increased in the intensive margin; dashed lines to ones in which the supply of Agency Foster Homes
is increased in the extensive margin.

Figure 1.10: Counterfactual IIb-Agency-FH: Average predicted expected duration
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Note: Plot of the average predicted expected duration. Averages taken across all assigned placements in each
counterfactual. The x-axis plots the value of J, the factor by which the supply of Agency Foster Homes is
adjusted. Solid lines correspond to counterfactuals in which the supply of Agency Foster Homes is increased
in the intensive margin; dashed lines to ones in which the supply of Relative Foster Homes is increased in the

extensive margin.
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1.8 Conclusion

This chapter presents a framework to study how placements are assigned in foster
care. The model aims to capture how social workers assign placements in the field.
The model incorporates key institutional features of placement assignment in foster
care: (1) children need to be placed with relatives whenever possible; (2) social
workers need to prioritize the location of prospective foster homes in relation to the
children’s schools, and (3) social workers have discretion in how to weigh all the

factors that contribute to successful placements.

A key aspect of the model is that it incorporates the endogeneity arising from
placement assignments being affected by unobservables correlated with outcomes.
The main identification strategy is to rely on the exogenous variation across the dates
and geographic regions at which children enter foster care. The empirical exercise
uses a novel dataset of confidential foster care record from Los Angeles County,
California. The parameter estimates of the model show that expected outcomes are
significant factors when assigning placements. Overall, social workers assign the
placements that are less likely to be disrupted and in which it is more likely that the
children exit to permanency. Another key variable when determining assignments is
the conditional expected duration of prospective placements. Social workers aim to
assign placements that, conditional on their termination reason, will have the lowest

possible durations.

Through counterfactual exercises, I show the effect of market thickness and the
presence of different types of foster homes on the distribution of outcomes. A
key contribution of this chapter is to quantify the gains, in terms of better place-
ment outcomes, resulting from thicker markets in foster care. It is shown that the
gains due to market thickness are greater when thickness is increased geographi-
cally (by assigning placements throughout the county) than time-wise (by delaying
placements). Specifically, the model predicts that if placements were assigned in
county-wide markets, the expected number of placements children would experience
in foster care would diminish by 8%, and the average distance from foster homes to

children’s schools would be reduces by 54%.

Often, the allocation of resources is the result of individual choices made within
exogenously-designed institutions. The findings of this chapter support the view
that social workers have a good understanding of which placements are less likely
to be disrupted and seem to do a good job when it comes to assigning them. They

assign the placements that are more likely to work. However, at the system level, the
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model shows that the current state of the system does not facilitate the coordination
between the distinct regional offices. The empirical analysis shows that by being
better at coordinating with one another, regional offices would be able to assign

better placements for children and foster parents.
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Chapter 2

MATCHING IN FOSTER CARE: A DYNAMIC AND
CENTRALIZED APPROACH

2.1 Introduction

The main objective of the foster care (FC) system is to find suitable placements
for children who have been temporarily removed from home by child-protective
services. The main focus of this chapter is to study the determinants of the duration
of assignments (matches) in the FC system. All matches are temporary because
all children in FC exit the system eventually. They are either reunited with their
biological parents, adopted, or emancipated (exit the system when turning 18 or 21
years old, depending on the state). Furthermore, foster care placements may also be
unsuccessful and terminate before children exit the system.! In such cases, children

need to be rematched with new foster families.

The assignment of children to foster families gives rise to a matching market. The
demand side is comprised by children in need of placements and the supply side
by foster families or, more generally, placement providers. The main difficulty of
studying the duration of matches is that they are not assigned randomly. County
social workers are responsible for finding and assigning placements for children
in FC. Furthermore, the pool of children who need a placement and the one of
available foster homes evolves dynamically over time. Importantly, the stochastic
process governing these dynamics is shaped by the matching policy used by county
officials. That is, if “bad” matches are assigned (ie., ones that will be disrupted),
then more children will need a placement in the future. The main goal of this
chapter is to model the matching process dynamically. Given the lack of data on the
exact matching procedure, I model the observed matching as if it were generated by

minimizing the number of children who remain unmatched in any given period.

'In reality, a high fraction of children go through unsuccessful matches. In 2013, the average
number of placements during the last removal was 2.8 across all children who where in FC in the
United States. A match may be terminated prematurely by the foster family, a county social worker,
the involved private agency (if any), or simply because the child runs away.
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First, I propose a general model of centralized one-to-one matching in a dynamic
environment.? In every period, a single matchmaker decides matches among un-
matched children and available families. The duration of each match is random,
and its distribution depends on characteristics of both the child and the family. A
match may terminate for one of two reasons: the child exits the system or the match
is unsuccessful, in which case the child needs to be rematched. At the start of every
period, the set of children in the market is comprised by new arrivals, unmatched
children from previous periods, and those coming from unsuccessful matches. For
simplicity, I assume that unmatched parents exit the market in every period. The
matchmaker lives infinitely and seeks to minimize the expected discounted sum of
the children left unmatched in every period. The setting gives rise to a dynamic
programming problem. When deciding which children to match and to which fami-
lies, the matchmaker must take into account the expected duration of the prospective
matches and, more importantly, their probability of being unsuccessful before the

children exit the system.

Second, I conduct a series of analytic and computational exercises. I consider a
specification of the general model that highlights the tension between matching
younger children with lower expected durations of matches and older children who
have higher expected duration of matches, but are closer to the emancipation age.
The parameters of the model are such that there is a scarcity of foster parents in the
market. The difference between the two types of exercises is the time horizon. Given
the complexity of the general model, the analytic exercises consider a finite horizon
of at most three periods. By contrast, in the computational exercise, I solve for
the matchmaker’s optimal matching policy by iterating over the Bellman equation.
I describe the optimal matching policy for different specifications of the model’s
parameters. The main finding is that the optimal matching policy gives priority to
younger children in terms of the likelihood of getting matched and the guality of
the match in terms of its expected duration. The model captures different trade-offs
between age and heterogeneity in the expected duration of matches. Moreover,
solving the model in infinite horizon allows me to compute its stationary state.
I report the expectation of several variables of interest in the stationary state for

different specifications of the model’s parameters.

2In reality, a family may take care of more than one child, so the matching may be many-to-one.
However, there is no available data of the number of children cared by the same family, so I restrict
the analysis to one-to-one matching.
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Third, I present an empirical description of the FC system in Los Angeles County,
California. The main data source is the Adoption and Foster Care Analysis & Report
System (AFCARS) of the U.S. Children’s Bureau. I describe the dataset and present
summary statistics of relevant variables. I also describe sorting patterns in the FC
in terms of sex, age, and race, and analyze the correlation between the duration
of matches and several children characteristics. The key aspects of the data are
related to its longitudinal characteristics. Even though the AFCARS databases are
cross-sections, they include information and dates of the history of every child in
FC, such as the number of removals from home and number of settings during the

last or current removal.

The chapter is organized as follows. I review the related literature in what remains
of the introduction. I present a general model of centralized matching in a dynamic
environment in Section 2.2. The analytic and computational exercises of the model
are in Section 2.3. Section 2.4 presents a description of the data, and Section 2.5

concludes by addressing the future challenges and objectives of this research agenda.

Related Literature.—The economic analysis of the foster care system is mostly absent
in the economics literature. For some exceptions, see Doyle Jr. (2007, 2008) and
Doyle Jr. and Peters (2007), who analyze social workers’ removal decisions using
a treatment effects framework. The only paper that has analyzed a market design
aspect of the foster care is Slaugh, Akan, Kesten, and Unver (2016). Their main
focus is on children who get adopted from foster care. In particular, they analyze
an existing government program in Pennsylvania which main objective is to find
adoptive families for children in foster care. A related study on adoption markets
is Baccara, Collard-Wexler, Felli, and Yariv (2014). The theoretical portion of this
chapter is related to the literature on dynamic matching. The approach is novel in
that it considers a matching market with reversible matches. In contrast with much
of the existing literature, the main focus is on the determinants of the duration of
matches in a market in which all matches are temporary. Furthermore, the approach
is fully centralized in the sense that a single matchmaker decides which matches
are formed. Individuals do not search or otherwise decide for themselves. Hence,
I do not impose incentive compatibility or individual rationality constraints. For
examples that focus on distinct aspects of dynamic matching markets, such as the
relation between preferences, stability, efficiency and sorting patterns, see Baccara,
Lee, and Yariv (forthcoming), Doval (2018), and Unver (2010).
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The empirical part of the chapter is related to the literature on structural estimation
of matching markets. For examples of the marriage market and transferable utility
matching markets in general, see Choo and Siow (2006), Fox (2018), and Galichon
and Salanié (2015). For treatments with non-transferable utility and strategic con-
siderations, see Agarwal (2015) and Agarwal and Somaini (2018). More generally,
the empirical strategy that this research aims to use falls in the wide empirical liter-
ature on dynamic discrete choice models. For notable contributions, see Hotz and
Miller (1993), Magnac and Thesmar (2002), Pakes (1986), Rust (1987, 1994), and
Wolpin (1984), and the references therein.

2.2 Model

The FC system lasts fort = 0,1,...,T < oo periods. The sequence of every period

t is as follows:

1. Children of age are emancipated.

2. The sets of available children and parents to be matched, and the set of

surviving matches from previous periods, are (randomly) determined.
3. The matchmaker decides matches among the available children and parents.

4. All children’s ages increase by one.

Specifically, the set of available children in period ¢ consists of the children who
remained unmatched in the previous period, new arrivals, and children from broken
matches, of which the last two are randomly determined. The set of available parents
is composed solely by new arrivals, which are random. I assume that parents who
remain unmatched at the end of a period and those from broken matches exit the
system permanently. Every existing match at the end of period ¢ — 1 may exit the
system in period  with some probability, e.g., because the child is adopted or reunited
with her biological parents. The matches who do not exit the system may break up,
in which case the child returns to the market to be rematched, or remain unbroken
and survive period ¢. Exits and breakups are randomly determined. The goal of the
matchmaker is to minimize the amount of children who remain unmatched in every

period.



47
Sketch of the Model

Suppose all parents and children are otherwise homogeneous. The model has three

state variables:

1. m" = number of matches from previous periods that survive period ¢;
2. ¢' = number of available children to be matched in period ¢;

3. p' = number of available parents to be matched in period ¢.

The matchmaker decides a’, the number of matches formed in period ¢. Her choice
set is given by:
a' € ®(c,p') =min{c,p'}. (2.1

That is, the matchmaker may form as many matches as there are available children
or parents. In the next period, each existing match exits the system with probability
e € (0,1), and those who do not exit, are broken with probability » € (0, 1). New
arrivals of children follow a binomial distribution with parameters (n¢, u), and those

of parents with (n”, 1). Thus, the transition of the system is governed by:

pt+l — B(I’lp, /l) (22)
s (m[ +at) _ ol —B(mt 14 — et+1’b) (2.3)
= (¢ = d) + BOS ) + (' +al = e =) (2.4)

where ¢'*! = B (m' + d', e) is the number of matches that exit the system at the start
of period 7+ 1, and B(n, ¢) denotes the realization of a binomial random variable with
parameters (n, ¢). (2.2) formalizes the fact that the set of available parents is simply
composed by new arrivals in each period. The first term in (2.3) is the number of
existing matches at the end of period ¢, the ones from previous periods that have
survived until period ¢ and the newly formed. The second and third terms in (2.3)
correspond to the random numbers of matches that exit the system and are broken
at the start of # + 1. Thus, the set of available children in ¢ + 1 is composed by 1) the
children who remained unmatched in ¢, 2) new arrivals, and 3) children from broken

matches. Each corresponds to the respective term in (2.4). For completeness, set
cl'=0 & m'=0, (2.5)

so that in period ¢ = 0 the market is comprised solely by new arrivals and there are

no matches from previous periods. The number of children who remain unmatched
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in each period is ¢; — a;, so the problem of the matchmaker is given by:

T
max —-E ) ¢ (c-d (%)
a:(at)zzo ; ( )

subjectto  (2.1)-(2.5) Vt=-1,0,1,...,T,

where ¢ € (0, 1) is the matchmaker’s discount factor. The model is thus far incom-
plete because 1) the size of the market may be unbounded, depending on the arrival
and exit probabilities, and 2) there is no heterogeneity across agents in the economy,
so the matchmaker would simply match as many children as possible in each period.
In order to bound the size of the market, I introduce the emancipation age. That is,
each child grows one period old as periods go by, and exits the market permanently
at a predetermined emancipation age. Furthermore, I enrich the model by assuming
that there are different types of children and parents, leading to distinct exit and

breakup probabilities.

Complete Model

Let g be the emancipation age, and denote by G the set of possible ages for children
in the system {0, 1,...,2 — 1}. Assume that each child has a type x € X, where X
is a finite set of child-types. Similarly, each parent has type y € Y with Y finite.
Define the following:

. m;’ xy = number of surviving matches from previous periods composed by a

child of age g and type x, and a parent of type y.

t t
' = ()
&xYy (g,x,y)eGXXXY

. Cé,x = number of available children of age g and type x in period 7.

t t
+e = ()
&* (g,x)eGxX

. pty = number of available parents of type y in period ¢.

p'= (pfy)

yey

The matchmaker decides a’ = (a; . y) , where a;, , , indicates the number
) (g,x,y)EGXX XY ™

of matches formed in period # between a child of age g and type x, and a parent of
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type y. The choice set of the matchmaker in period 7 is given by:

aed(dp)= {a e NICHIXXIYT v (o x) e Gx X, 0 < Z gy < c;’x,
yey

& VyeY,0< ) ¥ ag.y < p;}. (2.6)

geG xeX

The first set of constraints in (2.6) are on the number of matches per children age and
type, whereas the second set of constraints are on the number of matches per type of
parent. A match between a child of type x and a parent of type y exits the system (for
other reason than emancipation) with probability e(x, y). If a match does not exit
the system, it breaks up with probability b(x, y). Hence, a match between a type-x
child and type-y parent survives a period with probability (1 —e(x, y))- (1 —b(x, y)).

Let (ng, o Mg, x) describe the arrival distributions of new children by age and
’ (g.x)eGxX

type, and (n?, /ly)y oy that of new parents by type. Thus, for every (x,y) € X XY and
g € G\ {0}, the transition of the system is governed by:

Pt =B(n, 4,) @.7)
Mgy =0 (2.8)
mg—xl,y = m;—l,x,y + afg—l,x,y - eg—xl,y - B(m;—l,x,y + a;—l,x,y - egxl,y’ b(x’ y)) (29)

c(’)j;l = B(n(c)’x, ,uo,x) (2.10)

C?x] = (C;—l,x - Z a;—l,x,y) + B(ng,x, /Jg,x)

yey
+ Z [m;—l,)c,y + a;—l,x,y - eg—xl,y - mgxl,y] ’ (2.11)
yeY
where

t+1 _ t t
Cexy = B(mg—l,x,y T g1xy e(x, y))

is the number of matches that exit the system at the start of # + 1 per age and
type. See that (2.7) — (2.11) are the analogues of (2.2) — (2.4) with the appropriate
adjustments. First, note that newborns, age g = 0, may only be new arrivals and
cannot come from broken matches or previous periods. Second, children who
reach the emancipation age, g = g, exit the system by construction. Finally, the
matchmaker has any freedom to form matches across types. The number of children

. . . . . t t
who remain unmatched in period 7 is given by X ,c 2 rex (cg,x — 2yer ag’x’y) , SO
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the problem of the matchmaker is

T
max  —E) 6" ) D (chm D iy (%)

a=(ar);_o =0  geG xeX yeY
subjectto  (2.6) —(2.11) Vr=-1,0,1,...,T;
=0 & m'=0.

The state variables of the problem are m’, ¢, and p’. Each has dimension |G| x | X| X
Y|, |G| x |X|, and |Y|, respectively. In any given period, the number of children
in the system, unmatched and matched, is bounded since the arrival distribution of

children has finite support. Namely, for every g € G and x € X,

8
¢+ Z ., < Z n.. (2.12)

The number of children of age g and type x in the system in period ¢, matched or
unmatched, is bounded above by the maximum possible number of arrivals of type-x
children who are g periods old in period #. The state space of the matchmaker’s

problem is a proper subset of NICXIXIXIY+GIX|X]+[Y] 3

2.3 Analytic and Computational Exercises

In this section, I consider a simple specification of the complete model to illustrate
the dynamic trade-offs faced by the matchmaker. In particular, I assume there are
two types of children and parents whose arrivals are Bernoulli distributed. The main
focus is to explore the trade-offs due to the different types and ages of children. First,
I consider three examples in finite horizon to illustrate three important observations.
1) It is not optimal to leave children unmatched while parents are available. This
is unsurprising since parents exit the market when they are unmatched. 2) The
matchmaker gives priority to children who have higher probability of exiting the

market if matched, but lower priority to children who are closer to emancipation

3Specifically, the dimension of the state space is [ngG\{O}xeX ZN“("HY‘)] .

[erx (n(c)’x + l)] [[Myey (% +1)], where Ny = X3 gng, forevery g € G\ {0} and x € X.

To see this formally, note that the second and third terms in brackets are the possible configurations

Ng x (}’H—lYl)
n

of newborn children and parent arrivals. For each (g, x) € (G \ {0}) X X, the sum >} ® is

the possible number of configurations of c . and ( Mg y) satisfying (2.12). Note that there are
ye

("Jr IY') possible values of ¢/, Cg,x and ( that satisfy (2.12) with equality and 7 in the right-hand

X )
g >y ye
side.
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age. 3) The interplay between children ages and types depends on the specification
of the breakup probabilities. Rather than achieving great generality, the objective
of these three examples is to illustrate the workings of the model and the trade-offs

it captures.

Second, I perform a computational exercise in an infinite horizon setup. I write the
Bellman equation of the matchmaker’s dynamic programming problem and solve it
using iteration. The problem is high-dimensional by design, so the optimal policy is
hard to interpret as such. I describe it qualitatively by evaluating four observations
regarding the optimal decision in a set of predetermined states. The observations
highlight the connection between the finite and infinite horizon models. I also
perform discrete comparative statics by analyzing how the optimal policy changes
in the model parameters. Finally, I compute and analyze the steady state of the
system under the optimal policy. The state of the system is a Markov chain under
the optimal matching policy. I compute its transition matrix and obtain its invariant
distribution. This yields a distribution on the state space, so it allows to describe the

market and the matchmaker’s decisions in expected terms.

Analytic Examples in Finite Horizon

Let X and Y be binary sets, say {0, 1}. Assume that arrivals of children and parents
are Bernoulli distributed and homogeneous across types. Moreover, assume that
only newborns arrive to the market. Set n(c)’x = n’y’ = landng , = Oforallg € G\ {0}
and (x,y) € X XY, and let yo, = pand A, = A for x,y € {0, 1}. I consider three

examples.

Leaving Children Unmatched

In a simple two-period example, I illustrate the rationale of why it is not optimal to
leave children unmatched while parents are available. Simply put, matching a child
increases the immediate payoff and the expected value of the following periods.
This is because, all else equal, it is better for the matchmaker if there are fewer
children in the market in each period. Let T = 1. Assume there is one child and one
parent available in ¢+ = 0. For simplicity, I omit specifying the age of children. Let
V! be the expected optimal value of period ¢ conditional on there being ¢ available
children who arrived in previous periods. If the (only) child remains unmatched in

t = 0, the optimal expected value of the matchmaker’s objective function in t = 1 is
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given by:

Vi = (1= [12(=3) + 2u(1 = p)(=2) + (1 = p*(=1)]
+24(1 = 2) [1(=2) + 2u(1 = w)(=1) + (1 = 1)*(0)]
+ 2% [12(=1) + 2u(1 = w)(0) + (1 = w*(0)]
= —(1-2)%Qu+1)—4A(1 - D - 1212 (2.13)

The value Vl1 in (2.13) encompasses the optimal decision of the matchmakerin¢ = 1.
Note that all children are homogeneous from the matchmaker’s perspective. In the
final period, she only wants to match as many children as possible. For example,
with probability (1 — 1)*> no parent arrives in r = 1, so at least one child is left
unmatched, the one who arrived in + = 0. Two more children arrive in t = 1 with
probability u2, in which case three children are left unmatched. With probability
2u(1— ), only one child arrives, so two children are left unmatched. The probability
of there being just one child left unmatched is (1 — ), which is the probability that
no child arrives in the second period. Similarly, the optimal expected value in ¢ = 1,
conditional on there being no children from previous periods in the market, is given
by:

Vg = =2(1 — )%u = 2A(1 — )42 (2.14)

Naturally, the matchmaker prefers that there are less children in the market in r = 1
since VO1 > Vl1 . For this reason, the matchmaker prefers to match the available child
in t = 0 regardless of the breakup probability. To see this formally, note that the
expected optimal value in # = 0 of not matching the child is —1 + 5V11 , whereas the
one of matching heris -0+ ¢ [bVl1 +(1- b)VOI] , where b is the breakup probability
of the match. Matching the child in # = 0 not only yields a higher immediate payoft,

but also a higher expected value from the following periods.

Exit Probability and Emancipation Age

Using the same setup as above, I illustrate why it is optimal for the matchmaker
to give priority to children who are more likely to exit the system if matched, e.g.,
because of getting adopted. Consider a case with two children of different types, x
and x’, but equal breakup probability. Assume there is a single parent available in
t = 0. Let e and ¢’ be the exit probabilities of each child if matched, and denote
by b their common breakup probability. Assume e > ¢’. The expected value of the

matchmaker in period ¢ = 0 from matching child x is given by:

V=145 |evi+(-e)(bv) + (1 -b)V})|. 2.15)
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The expected value on (2.15) encompasses the fact that x” will remain unmatched in
t = 0, and one of three things may happen in the next period: 1) x exits the system,
in which case there will be one child in # = 1 from previous periods, 2) x does not
exit the system and her match breaks up, or 3) she does not exit, but her match does
not break up. It is straightforward to compute Vzl and verify V]1 > V21. The expected
value of matching x’ instead is the same as in (2.15), but with the exit probability ¢’
in place of e. Since Vl1 > V21 and e > ¢’, (2.15) implies it is optimal to match child
x in period ¢ = 0. The reason is because a child that is more likely to exit the system
permanently when matched is also less likely to come back to the market in future

periods because of an unsuccessful match.

Consider instead two children with null exit probability and same breakup proba-
bility, but different ages. In particular, assume that one of them, say x’, is to be
emancipated in the next period. Denote the breakup probability of both children by
b. Matching the child who will be emancipated in the next period yields an expected
value in ¢ = 0 given by V)?, =-1+ 6Vll, whereas matching x, the child who will not
be emancipated, yields

V) =-1+6[bV +(1-b)V,]. (2.16)

The key thing to note is that there will be no children from previous periods in ¢ = 1
if the match of x does not break. This is because x” will be emancipated regardless

of having stayed unmatched. Hence, it is optimal to match x and leave x” unmatched.

Types and Emancipation Age

The previous example emphasizes why it is optimal for the matchmaker to give lower
priority to children closer to the emancipation age. This observation is particularly
strong when looking at the last period of a child previous to emancipation. A
child’s type is unimportant in the period prior to emancipation because her type
only matters to the matchmaker through the breakup probability, which is irrelevant
if the child is to be emancipated in the following period. With this observation in
mind, in this section I consider an example to explore the tension between age and
type. In particular, I consider a situation in which there are two children and one
parent available in the market. One of the children has the same type as the parent,
so a lower breakup probability if matched, but is also closer to the emancipation age.
In order for the type of the older child to be taken into account by the matchmaker,
letT = 2.
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Figure 2.1: Breakup probability b(x, y)
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Specify the breakup probability b(x, y) as in the Figure 2.1. The breakup probability
depends on three parameters: r € [0, 1] indicates the same-type bias, s € [1, o)
measures how likely are matches to survive in this system overall, and w € [1, c0) is
the “bonus” of type-1 parents. High values of r indicate that same-type matches are
less likely to breakup. Formally, the survival probability 1 — b(x, y) is supermodular
if and only if » > 0. High values of s imply that all matches are more likely to
survive, and high values of w that, all else constant, matches involving a type-1

parent are less likely to break up.

The state is fixed in period t = 0 at p? =1, cgo =1, c?l = 1, and all other state
variables equal to zero. There is a type-1 parent, a type-0 child who is O periods old,
and a type-1 child who is one period old. The emancipation age is set to g = 2, so
the type-0 child will be in the system for the three periods, but the type-1 child will
be emancipated in period ¢+ = 2. In every subsequent period, a parent of each type
may arrive with probability A4, and a newborn child of each type may arrive with
probability p. I characterize the parameter values for which it is optimal to match

the type-0 child, and not the type-1 child, in period ¢ = 0.

Proceed by backward induction. In the last period, ¢t = 2, the matchmaker matches

as many children as possible, regardless of their types. It is straightforward to verify

Vg > VE>Vi> Vi (2.17)

A maximum number of three children may arrive to period ¢t = 2 from previous

periods: the type-0 child of period ¢ = 0, and potentially the two arrivals of period

_ . _ . . RS BN B BN 1 1
t = 1. In period t = 1, there are six state variables: €10°21-C00°Co1° Po> and P

The last four variables correspond to new arrivals and are randomly determined:

11
€00> €01
type-0 child in ¢ = 0, then cél =1, and C%o ~ Bernoulli(b(0, 1)), the older type-1

~ Bernoulli(y), and pj, p; ~ Bernoulli(4). If the matchmaker matches the

child remains unmatched and the first-period match breaks up in the next period
with probability »(0, 1) = 1/sw. If instead the matchmaker matches the type-1 child
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in period # = 0, then ¢!, = 1 and ¢!, ~ Bernoulli(b(1, 1)). Hence, there are 52 = 32
p 10 21

possible states in ¢ = 1 for each decision of the matchmaker in r = 0.

Let V!(a® = x) be the expected optimal value in ¢ = 1 if the type-x child is matched
int = 0. See Appendix 1 for details. The matchmaker’s expected value of matching

the type-x child in # = 0 is given by
148V (a0 = x), (2.18)

so it is optimal to match the type-0 child if and only if V!(a® = 0) > V!(a® = 1).
To illustrate how this inequality changes in the parameters, I use the following
benchmark: w =1, s =2, u=0.75, 4 = 0.5, and 6 = 0.98. Figure 2.2 illustrates
the regions of the parameters for which it is optimal to match the type-0 child in
period ¢+ = 0. The x-axis corresponds to the same-type bias r in every plot. I
change one parameter at a time from the benchmark values in the y-axis. In general,
it is not optimal to match the type-0 child for high values of r. Intuitively, if the
same-type bias is sufficiently strong, it is optimal to match the type-1 child even
though she is closer to the emancipation age. Moreover, note that if type-1 parents
are sufficiently “better” (high values of w), then it is always optimal to match the
type-0 child (top-left). This is because a high w “washes out” the same-type bias,
so that a type-1 parent is better for either type of child. The same holds for high
values of s (top-right). If all children have a low breakup probability, the same-type
bias stops playing a role and it is always optimal to match the younger type-0 child.
The main disadvantage of matching the older type-1 child is that the type-0 child
will stay in the system unmatched for more periods. This is crucial if the arrival
probability of children, , is high or the arrival probability of parents, 4, is low. The
middle panels of Figure 2.2 illustrate this observation. For high values of u or low
values of A, a stronger same-type bias is needed if matching the type-1 child is to
be optimal. Finally, note that the discount factor is also relevant in this case. The
bottom panel of Figure 2.2 shows that a lower discount factor, ¢, implies that it is

optimal to match the type-1 child.
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Figure 2.2: Parameter regions in which it is optimal to match type-0 child
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Note: Parameter regions in which Vl(a0 =0) > Vl(ao = 1). Benchmark parameter values: w = 1, s = 2,
u =075 2=0.5,and § = 0.98. The x-axis varies r in [0, 1] in all figures. Other parameters are varied
from the benchmark as follows: w € [1,2] (top-left), s € [1, 3] (top-right), u € [0, 1] (middle-left), 2 € [0, 1]
(middle-right), and 6 € [0, 1] (bottom).
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Computational Example with Infinite Horizon
Consider the case with infinite horizon, 7 = co. The problem in () is stationary,

so I focus on the optimal matching policy per period a = (ay, x,y)( given

8.%,y)EGXXXY?’
the state of the system (m, ¢, p). In particular, the optimal matching policy satisfies

the following Bellman Equation:

Vime.p)= max {— > (cg,x -> ag,x,y) + 6B V(.. p)|m.c. a]}, (2.19)

geG xeX yey

where V is the value function of (x) and the state in the next period (7, ¢, p) evolves

according to:

Py ~ B(n‘;, ﬂy)
gy = 0
Mg xy ~ B(mg_l,x,y + Qg 1xy — €gxy 1 — b(x, y)) (2.20)

CN‘O,)c ~ B(n(c)‘,x’ ﬂO,x)

~ C ~ ~
Cgx = Cg—1x T B(ng’xa /Jg,x) + Z [mg—l,x,y —€gxy ~ mg,x,)’]
yeyY

where &,y = B(1mg_1 1y + ag_1.xy, €(x, y)), foreach (x,y) € XxY and g € G\ {0}.

Consider the same specification as in the previous section: there are two types
of children and parents, only newborn children arrive to the market, and arrivals
are Bernoulli distributed and homogeneous across types. Furthermore, set the
emancipation age at § = 3 periods, and assume a zero exit probability, e(x, y) = 0,

for all (x,y) € X x Y. Specify the breakup probability b(x, y) as in Figure 2.1.

Given the structure of arrivals, the maximum number of children per age and type
in the system (matched and unmatched) is 1, and so is the maximum number of
new arrivals of parents per type. To compute the value function, I use a grid that
includes every possible state, so its dimension is 4% - 22 - 22 = 4, 065, see footnote 3.
Accordingly, the decision variable of the problem, a, has dimension |G| X |X| X |Y|
=3Xx2x2 =12. After solving for the optimal policy, I proceed in three steps. First,
I analyze four observations in a benchmark of the model’s parameters to describe
the optimal matching policy qualitatively. Second, I analyze how these observations
change in the parameters of the model. Third, I analyze the stationary state of
the system under the optimal policy and how it changes for different parameter

specifications.



58

The Optimal Policy: A Benchmark Specification

Consider the following benchmark specification of the model’s parameters: r = 0.5,
w=1,5s=2,u=0.75,1=0.5, and 6 = 0.98. Under the benchmark specification,
there is same-type bias (r > 0), no type-1 bonus (w = 1), and foster parents are
scarce in the market (1 > A). (Note that it is the same specification as in Section
2.3.) The following four observations hold true in the optimal policy under the

benchmark.

Observation 1 No children remain unmatched while parents are available.

Observation 1 goes in line with the reasoning on Section 2.3. Since parents exit
the system permanently when they remain unmatched, there is no reason to leave a
child unmatched while a parent is available. In the next section, we will see that this

observation is robust to different specifications of the model’s parameters.

Observation 2 No child is left unmatched while a same-type older child gets

matched.

It is optimal for the matchmaker to give priority to younger children who are further
from the emancipation age. The intuition for this observation is straightforward:
children who are closer to the emancipation age imply a lower future cost to the
matchmaker if left unmatched because they will be in the market for a fewer number
of periods. In the next section, we will see that this observation is robust to different

specifications of the model’s parameters.

Observation 3 Assume there is only one available parent and is type-1. If there
are two children: one type-1, and one type-0 but younger than the type-1 child, the
younger type-0 child is matched only if the older type-1 child is one period prior to

emancipation.

Observation 3 is the opposite to the case analyzed in Section 2.3. Under the
benchmark specification, there is a relatively strong same-type bias, r = 0.5, so it
is optimal to give priority to type over age. Namely, the breakup probability of the
type-0 young child if matched is 0.5, whereas that of the older same-type child is
0.25. However, as noted in Section 2.3, this observation naturally depends on the

specification of the breakup probabilities. I analyze this issue in the next section.
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Observation 4 Assume there are two available parents, one of each type. If there
are two type-0 children and, at the most, one type-1 child, older than the two type-0
children, the only child matched to a same-type parent is the youngest type-0 child.

Observation 4 explores if age and type are complements or substitutes. Observation
2 highlights the fact that younger children are given priority over older children when
only one parent is available. Observation 4 addresses the question of which of the
two children, the young or the old one, is matched with the same-type parent if there
are two parents available. Under the benchmark specification, the optimal policy
implies that age and type are complements because the younger child is matched
with the same-type parent, whereas the older one is matched with a different-type
parent. Hence, younger children are given priority in getting matched and in getting
matched with a “better” parent in terms of a lower breakup probability. In the next
section, I will see that this observation is robust to different specifications of the

parameters with a few exceptions.

Discrete Comparative Statics

In this Section, I evaluate if the previous observations hold for different specifications
of the parameters. Specifically, I vary the same-type bias r € {0,0.2,0.4,0.6,0.8, 1},
and each of the other parameters one at a time from the benchmark specification:
we {1,1.2,1.4,1.6,1.8,2}, s € {1,1.4,1.8,2.2,2.6,3}, and yu, 4, § € {0.01,0.2,
0.4,0.6,0.8,0.99}. The total number of specifications computed is 180.

1. Observations 1 and 2 hold in all the specifications. No child is left unmatched

while a parent is available or an older same-type child gets matched.

2. I present the parameter values for which Observation 3 holds marked as black
dots in Figure 2.3. Observation 3 holds when the same-type bias is sufficiently
large. In particular, note that it does not hold in the absence of same-type bias,
r = 0. The intuition for the cases in which a young type-0 is left unmatched
while the older type-1 child is matched with a type-1 parent is the same as in
section 2.3. Compare Figures 2.2 and 2.3. The shaded regions in Figure 2.2
correspond to the parameter values under which the type-0 child is matched
in a finite horizon setup. Observation 3 in an infinite horizon setup is slightly
more general since it also considers cases when the type-1 child is older but

one period prior to emancipation age. Roughly, the shaded regions in Figure



60

2.2 correspond to the white dots in Figure 2.3, which represent the cases in

which Observation 3 fails.

3. I present the parameter values for which Observation 4 holds in Figure B.1 in
Appendix 2. In general, Observation 4 holds in all the specifications except
for high values of w. The reason is because high values of w imply that the
same-type bias is not very important for type-0 matches. For large values
of w, matches with a type-1 parent have less breakup probability regardless
of the child’s type. Figure B.1 shows that younger children receive priority,
whether it is due to same-type bias or parent-1 bonus. Younger children tend

to be in the matches with lower breakup probabilities.

The Stationary State

In this section, I analyze distinct features of the system in the stationary state. I
report the expected number of available children, formed matches, children left
unmatched and breakups per age and type, and the expected duration of matches
for five distinct specifications. Formally, the stationary state is obtained through
the invariant (stationary) distribution of the system’s transition matrix under the
optimal policy. Let oo = (m, ¢, p) index a state. Denote the state space by X. For a
fixed policy, a : £ — ®(0), the transition equations in (2.20) determine a transition
matrix P,, where

P,(o,0) =P[F|o, al. (2.21)

That is, the (o, &)-th entry in P, is the probability that the state transitions from o
to & if policy a is implemented. Denote the optimal policy by a*(o-). The optimal

policy determines an optimal transition matrix P* with (o, &)-th entry given by:
P (0,5) = Pye(o)(0, 7). (2.22)

The invariant distribution of the Markov Chain determined by P* is given by 7 €
A(Z) such that
nP* =n. (2.23)

The stationary state of the system o* is distributed according to 7. Once I compute
m, I can compute the expected value of any variable of interest in the stationary state.
For example, the expected number of available children in the market of age g and
type x is given by ¢, = Ercgx(07) = 2ges Cox(0) - (o). Table 2.1 reports the
expectation of several variables of interest in the stationary state.
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Figure 2.3: Parameter regions in which Observation 3 holds
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Note: The black dots indicate the parameter values in which Observation 3 holds with 7 = co. Observation
3: assume there is only one type-1 parent, if there are two children, one type-1 and one type-0 younger than
the type-1 child, the type-0 child is matched only if the older type-1 child is one period prior to emancipation.
Benchmark parameter values: w = 1,5 =2, u = 0.75, 2 = 0.5, and § = 0.98. The x-axis varies r in all figures.
Other parameters are varied from the benchmark one at a time: w (top-left), s (top-right), 4 (middle-left), A
(middle-right), and ¢ (bottom).



Table 2.1: Stationary state

w=2 s=3
Age & Type Variable Benchmark r=0 r=05 r=0 r=0.5
Expected number of available children
g=1L,x=0 cT’O 0.4560 0.3836  0.4336  0.3750  0.4063
g=Lx=1 Cil 0.4560 0.5774 0.4086 0.5625  0.4063
g=2,x=0 c; 0 0.4826 0.4740 04610 04648  0.4333
g=2,x=1 2] 0.4826 0.6121  0.4217 0.5931  0.4333

Expected number of matches
g=0,x=0,y=0 0 0.0 0.3750 0.2217 0.3750 0.3750  0.3750

g=0,x=0,y=1 00 1 0.0255 0.3408 0.0469 0.1875  0.0469
g=0,x=1,y=0 0.0255 0.1533  0.0266  0.0938  0.0469

g=0,x=1y=1 ((;1(1) 0.3750 0.1280 0.3750 0.1875  0.3750
g=1,x=0,y=0 1 0.0 0.0570 0.0461 0.0542 0.0117  0.0317
g=1Lx=0,y=1 10 1 0.0148 0.0079  0.0147 0.0410 0.0134
g=Lx=1y=0 1 L0 0.0148 0.0343  0.0132 0.0098  0.0134
g=lLx=1y=1 1 L1 0.0570 0.0139 0.0319 0.0381  0.0317
g=2,x=0,y=0 2 0.0 0.0119 0.0193 0.0128 0.0040  0.0129

g=2,x=0,y=1 2 0.1 0.0101 0.0020  0.0109 0.0174  0.0107
g=2,x=1y=0 0.0066 0.0127 0.0063  0.0028  0.0070
g=2,x=1y=1 0.0062 0.0027 0.0061 0.0129  0.0068

210
211

Expected number of unmatched children™
g=0,x=0 (*)0 0.3495 0.1875 0.3281 0.1875  0.3281

0 1 0.3495 0.4687 03484 0.4687  0.3281
1 0 0.3842 0.3296 03647 0.3223  0.3611
g=1lLx=1 1 | 0.3842 0.5291 03635 0.5146  0.3611

= 0.4606 0.4526  0.4373  0.4434  0.4097
0.4698 0.5967 0.4094 0.5774  0.4196

20
21

Expected number of breakups*
g=0,x=0,y=0 B} 0.0938 0.1109  0.0937 0.1250  0.0625

g=0,x=0,y=1 B} 0.0127 0.0852 0.0117 0.0625  0.0156
g=0,x=1,y=0 0.0128 0.0766  0.0133  0.0312  0.0156
g=0,x=1y=1 B} 0.0937 0.0320 0.0469 0.0625  0.0625
g=1x=0,y=0 By 0.0846 0.0785 0.0839 0.0872  0.0574
g=1Lx=0,y=1 0.0138 0.0659 0.0125 0.0553 0.0149
g=lLx=1,y=0 B} 0.0846 0.0785 0.0839 0.0872  0.0574
g=lLx=1y=1 Bl,l,l 0.0846 0.0275 0.0450 0.0544  0.0574

Expected duration*
All I* 3.7225 2.9556 54543 29444  5.4140

Note: The number of children who remain unmatched is the difference between the
available and matched. For every g € {0,1,2} and x € {0, 1}, ug x = cgx — (ag x0 +
dg x,1)- The number of broken matches between two periods is the difference between the
matches at the end of the period and the matches that survive the next period. For every
g€{0,1} and x,y € {0, 1}, itismg_1 xy +ag_1 x,y — mg Xy wheremgxy refers to the
matches that survive next period. Thus, the expected number of broken matches on any
state is Bg x,y = mg_1,x,y +dg_1 x,y — Efitg x,y. The expected duration of a (x, y)-match
is 1/b(x,y). Note that the duration of matches follows a geometric distribution. The
expected duration of matches in the stationary state, [*, is the expected duration of the
expected matches.
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The first thing to notice from the tables is that the stationary state is very rich,
offering a wide range of variables of interest that vary with the parameters of the
model. The first panel of Table 2.1 reports the expected number of available children
in the stationary state. The values for ages g = 0 are not reported because they equal
the arrival rates of newborns to the market (u = 0.75). Note that the number of
children available in the market is lower if there is same-type bias (r = 0.5) and,
either w = 2 or s = 3, than in the benchmark case. The reason is because a higher
w or s imply lower breakup probabilities. Moreover, when there is parent-1 bonus
and same-type bias (column 5), the number of available children is greater for type
x = 0. This is because the matching is positively assortative across types, but type-0

matches have greater breakup probability.

The second panel of Table 2.1 reports the expected matching policy in the stationary
state. The first thing to note is that the matching is positively assortative when there
is same-type bias (r = 0.5), even in the presence of parent-1 bonus. Secondly, the
number of expected matches is decreasing in age. The intuition is the one behind
Observation 2: children who are closer to the emancipation age represent a lower
expected future cost if they remain unmatched. Lastly, when there are both same-
type bias and parent-1 bonus (column 5), the number of different-type matches is
greater for matches with s type-1 parent. Intuitively, the number of (0, 1)-matches

is the least since they have the greatest breakup probability.

The third panel of Table 2.1 presents the expected number of children who remain

*

unmatched. For every g € {0,1} and x € {0, 1}, u,, = ¢, - (a;’j’x’o + ag’xil).

Unsurprisingly, the likelihood of remaining unmatched increases with age. An
important remark is that the asymmetry between same-age type-0 and type-1 children
who remain unmatched in the absence of same-type bias (columns 4 and 6) is not
due to any particular aspect of the model, but to the fact that all children are
homogeneous in the absence of same-type bias. Thus, the asymmetry is due to the
arbitrary tie-breaking rule of the matchmaker. That is, if there is a single available
parent and two children of different type but with same breakup probability, the
optimal policy is not unique, so matching any type is optimal.

The fourth panel of Table 2.1 presents the expected number of broken matches. This
is computed as the difference between the number of total matches at the end of
the period mgy_1 y, + a4_1,x,, and the expected number of matches that survive the
next period E g . In the presence of same-type bias, there is a greater number

of broken matches that are same-type than mixed-type. The reason is because
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there are more same-type matches in absolute terms, so the number of them that
break is greater even though they have lower breakup probability. Finally, the
bottom panel of Table 2.1 shows the expected duration across all the matches in
the system. The calculation does not take into account the emancipation age. By
design, all matches last three periods at the most because of the emancipation age.
Nonetheless, I compute the expected duration of the matches as the inverse of their
breakup probability. The duration of a match follows a geometric distribution. The
expected duration of matches in the system may be seen as a measure of the quality
of the matches from the matchmaker’s perspective. Unsurprisingly, the expected
duration of matches in the system is greater when there is same-type bias (r = 0.5)

and parent-1 bonus (w = 2, column 5) or higher survival rate (s = 3, column 7).

24 Data

The main data source is the Adoption and Foster Care Analysis & Report System
(AFCARS) Foster Care File Database, distributed by the National Data Archive on
Child Abuse and Neglect (NDACAN). Under federal mandate, all the states in the
U.S. are required to provide information to the AFCARS of all the children in FC
who are under the responsibility of State welfare agencies. NDACAN publishes
yearly databases containing information of all children in FC.# The data contain
characteristics of each child in FC and their current placement setting, information
regarding the history of each child in FC, and characteristics of each case, including
reason(s) for removal and some characteristics of the biological and foster parents.
Each child has a unique identifier across all databases, so children may be tracked
across years. The AFCARS Foster Care File Database published by NDACAN
contains information of every state since 2001. Even though there is available data
for every state, I limit the analysis to Los Angeles County because the administration
of state child welfare agencies is usually at the county level. Furthermore, the
database does not contain information regarding specific regulations that pertain to
single states or counties. For example, it does not contain trustworthy information
regarding the payments to foster families. First, I present a description of the dataset
and some summary statistics for the fiscal year (FY) 2013.5 Second, I report results
of several regressions in order to describe the correlation among several variables
in the dataset. It is important to note that the regression analysis is not causal since

it does not account for data selection or omitted variables. I focus the analysis on

4For more details, see the AFCARS User’s Guide (NDACAN, 2013b).
5The AFCARS database is published according to fiscal years. The fiscal year 2013 runs from
October 1st, 2012 to September 30th, 2013.
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sorting patterns between children and parents in terms of race, sex, and age, and in

the association between the duration of matches and other variables.

Description of the Data

Each observation in the dataset corresponds to a child who was in FC for at least
24 hours during the year. There are 29,873 observations in LA County.® Reported
characteristics of the child include: sex, race, disabilities, and month and year of
birth. See Table 2.2. Children in FC may have been removed more than one time
from home. Furthermore, during each removal, a child may go through different
placements, indicating that past matches were unsuccessful. Table 2.3 presents
summary statistics on the number of (lifetime) removals, placements in the last
removal, and lengths of stay in the last removal and placement. It also includes
summary statistics on the reasons for removal. It is worth noting that on average
children have been in FC for around two years during the last removal, but have
been on their last placement only for a year approximately. Accordingly, children

have been on 2.45 placements on average during their last removal.

Most of the children in FC (86.15%) are in private homes, 34.81% being cared by
relatives. The remaining 13.85% are placed in one of multiple placement settings
provided by the state. The database also includes some characteristics on the case
of each child. See Table 2.4. Many of the children in FC have a stated “Case Plan
Goal.” A high fraction of the children have reunification listed as a case plan goal
(36.86%). Adoption is the second most common case plan goal (17.66%). The
biological/principal parents of around 10% of the children in FC have lost their
parental rights. However, the case plan goal has not been established or is unknown
in around 20% of the cases. Table 2.4 also lists the discharge reason for all the
children discharged during the FY 2013. The majority of children (56.62%) left FC
to get reunified with their principal/biological caretakers. Note also that a significant
fraction of children leave FC because they get adopted (13.81%). Out of the 29,873
children in the database, 9,773 (32.71%) left FC during the FY 2013, i.e., there were
no longer in FC on September 30th, 2013.

The data also includes characteristics of the principal/biological and foster families
of each child. However, the fraction of missing values is particularly high for these

variables in LA County. For example, the family structure of the principal caretaker

6L A County is the county in the U.S. with the most children in FC, and California is the state
with the most children in FC in the U.S. 34.88% of the children in FC in California are in LA County,
and California comprises 13.36% of all children in FC in the country.
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family is known only in roughly 30% cases. That being said, single female is the
most common family structure within the children for which I observe the structure
of the principal caretaker family. Single female is also the most common family
structure within the foster families for which the family structure is known. As it
may be seen in Table 2.2, even though the database contains the race of the foster

family for each child, it is unknown in the majority of the cases.

The main variables of interest for the empirical application are those related to the
history of the children in FC. In particular, the database contains entry dates for
the first, last, and previous to last removals. This allows to partially construct the
duration of each placement for every child. In principle, the data may be completed
by tracking the previous matches in previous years. However, if a child was removed
more than one time during the same year, some data is not observed. Furthermore,
the data faces a censoring problem because many children are still in FC when
the data is collected, so we only observe a lower bound for the duration of the
current matches. Table 2.6 reports how many children have the same date recorded
for particular events in LA County. For example, on average 27.21 children were
removed from home for the first time every day between October 1st, 2012, and
September 30th, 2013. Similarly, on average 54.9 children were placed on the same
date in their current placement. This figure includes first-time removals, but also all
the children who are re-placed within a removal. These figures are not surprising
since LA County is the county in the U.S. with the largest population in FC. Figure
2.4 presents histograms of the dates at which five distinct events happened in a
child’s case: 1) first removal, 2) discharge from FC, 3) latest removal, 4) beginning
of current placement, and 5) discharge of previous removal. The main thing to notice
is that the dates appear to be evenly distributed across the year. This suggests that
removals and placements are distributed uniformly across time, so the selection due
to the cross-section nature of the dataset is random. The histograms of the begin date
of the current placement (middle-right) and the discharge date from the previous
removal (bottom) are skewed to the right and left, respectively, because they adjust

over time as children are re-placed or discharged from more recent removals.

Regression Analysis

I run two sets of linear regressions to explore the correlation between several vari-
ables in the data. First, I analyze the sorting patterns in terms of race. Table 2.7
reports the estimated coeflicients. The first thing to note is that only a small fraction

of the sample is used in these regressions. This is because the majority of obser-
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vations do not include the race of the foster family, see Table 2.2. Nonetheless,
the results of the regressions suggest that there are strong sorting patterns in the
data within the observations for which the race of the foster parents is known. In
particular, African American, Hispanic, and White children are significantly more
likely to be assigned to foster parents of the same race. The coefficient of Age At
Start (age on October 30th, 2012) is estimated precisely, but it is very close to zero.
Similarly, I find that the sex of children is not correlated with the race of foster
parents. A key finding is the high R-squared of all the regressions, specially the first
one. This suggests that race is an important factor in the assignment of children to

foster families.

The second set of regressions regards the number of removals and placements, as well
as the length of stay during the last and previous placements. These regressions only
include characteristics of the children as independent variables, so they use almost all
the observations in the data. The results are reported in Table 2.8. I find that African
American children have been removed slightly more times from home than White
children have, whereas Hispanics slightly less. In contrast, Asian children appear
to be the less likely of being removed from home. Similarly, African American
children have been through more placements (Settings) than White children during
their last removal, and Hispanic children through less. Unsurprisingly, older children
have been through more placements during their last removal. On average, a child
who is one year older is roughly 10% more likely to have been through one more
placement during her last removal. Similar patterns emerge when looking at the
average length of stay in the last/current placement. African American children
have been for more time at their current/last placement on average than White
children, but Hispanic children have been less time. Note that this regression does
not account for the termination reason. This regression pools children who were
discharged, emancipated, adopted, or were still in FC at the end of the FY. The
last regression (4) analyzes the average length of stay in the previous placements.
In contrast with regression (3), this is the duration of unsuccessful matches since
children got re-assigned after the placement ended. The size of the sample in
this regression is smaller since not all children have been through more than one
placement. Nonetheless, the results are qualitatively similar: older children were on
average more days in their past placements, as well as African American and men
(slightly), whereas Hispanic and Asian children were on average shorter periods of

time in their previous placements.
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2.5 Conclusion and Further Research

The main objective of this chapter is to study the determinants of the duration
of matches in the FC system and to recognize the importance of accounting for
the underlying dynamic matching mechanism. The first step in the analysis was to
develop a general centralized matching model in a dynamic environment. The model
aims to capture the fact that matches are not randomly determined in reality. The
main assumption of the model is that a single matchmaker forms matches in order
to minimize the number of children who remain unmatched. The motivation for this
assumption is that the aim of the FC system is to find placements for children who
are removed from home. The model is flexible enough to capture several dynamic
trade-offs faced by the matchmaker. Through a series of analytic and computational
exercises, I illustrated four features of the matchmaker’s optimal matching policy:
1) it is not optimal to leave children unmatched while parents are available; 2) the
optimal matching policy gives priority to younger children since it does not leave
a child unmatched while an older child with the same type gets matched; 3) the
matchmaker faces a trade-off between matching children and parents of the same
type and matching younger children who are further from the emancipation age, but
are of different type; the optimal solution of this trade-off depends on the model’s
parameters; 4) the optimal policy gives priority to younger children in terms of
match quality in the sense that younger children tend to be in the matches with lower

breakup probabilities.

An important feature of the model is that it allows me to compute and study its
stationary state. I present moments of relevant variables for different specifications
of the model’s parameters. This is crucial for the empirical application since
the moments in the stationary state may be seen as the empirical implications of
the model. The behavior of the stationary state is fairly intuitive with respect
to the model’s parameters. For example, I find that the optimal matching policy
in the stationary state is positively assortative when the survival probability is
supermodular in the types of children and parents (» > 0). Finally, I described the
main data source for the empirical application of the model. In particular, I report
summary statistics and analyze the correlation among several variables of interest
for the FC in Los Angeles County on 2013.

The study of foster care as a dynamic matching market is a new area of study in the

economics literature. This and the previous chapter aimed to provide an introduction



69

to the subject and raise key questions for further research in this field. I conclude by

listing three key challenges and objectives of this research agenda.

)

2)

3)

Study further the meaning of “match-quality” in this market. The present
chapter focused mainly on the breakup probability of different matches. The
next step along this research is to recognize that some children may exit
quicker when matched to specific types of families (e.g., because they are
adopted).

Study different objectives that social workers may have on the field. While
matching as many children as possible is one of the key objectives of the
system, the empirical portion of this chapter notes that there are strong sort-
ing patterns across key variables, such as race. This observation raises the
question: are children and foster families sorted according to race because
this leads to higher “match-quality” (ie., fewer breakups and quicker exits) or

is it motivated by other factors?

Study if parents have dynamic objectives. The model presented in this chap-
ter assumes that foster parents simply exited the system after one period.
Nonetheless, in reality foster parents may have their own objectives regarding
which children to take care of. In principle, they could “strategically wait”
for a child of their preferences. While discriminating on the basis of gender
or race is illegal in the foster care system, social workers may include some
of these considerations in their calculus due to foster parents being more or

less likely to adopt a foster child on the basis of demographic characteristics.
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Note: 1 consider only the cases for which each event happened during the FY 2013. Date of first removal
(top-left), discharge from FC (top-right), last removal (middle-left), start of current placement (middle-right),

discharge from previous removal (bottom).



Table 2.2: Descriptive statistics: Children and foster parents

(D (2 3) “4)

Variable Mean  Std. Dv. Obs. Miss. (%)
Children Age
Age at first removal 6.4273  5.6954 29,849 0.08
Age at end 9.1135 6.0705 29,859 0.04
Children Sex, Race, and Disability
Man 5181 4997 29,873 0
Am. Indian/AK Native  .0048 .0554 29,759 04
Asian .0169 .1206 ” ”
African American 2768 4369 ” ”
White 1222 3031 ” ”
Hispanic 6202 4661 27,573 7.7
Some Disability 5954 4908 29,873 0
Foster Parents Race

Am. Indian/AK Native  .0018 .0397 7,841 67.38
Asian .0186 1326 ” ”
African American 2978 4461 ” ”
White 1292 3227 ” ”
Hispanic 2378 2476 15,868 34

Note: The fifth column reports the percentage of observations for
which the variable is missing. Races are proportional since an
individual can identify more than one. *Age at end = min{Age
at exit, Age at the end of FY}. Some disability = mental retar-
dation, visually/hearing impaired, physical disability, emotionally
disturbed, or “other diagnosed condition.”
Source: AFCARS Foster Care File FY 2013, NDACAN, 2013a.
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Table 2.3: Descriptive statistics: Removals, placements, and removal reason

(D ) (3) “4)
Variable Mean  Std. Dv. Obs. Miss. (%)
Removals and Placements
(Lifetime) Removals 1.3164 .6332 29,873 0
Placements in last removal 24518 2.5203 29,871 0

LOS in last removal (years) 2.0753  2.9975 29,864 0.03
LOS in last placement (years) 1.0102 1.7367 29,558 1.05

Removal Reason

Physical Abuse .0997 .2997 29,595 0.9
Sexual Abuse .0235 1515 ” ”
Neglect .6885 4631 ” ”
Parent Alcohol Abuse .0146 1201 ” ”
Parent Drug Abuse .0552 2285 ” ”
Child Alcohol Abuse .0003 .0184 ” ”
Child Drug Abuse .0151 1218 ” ”
Child Disability .0023 .0489 ” ”
Child Behavior Problem .1041 3054 ” ”
Parent Death .0027 .0519 ” ”
Parent Incarceration .0205 1419 ” ”
Caretaker Inability to Cope 3034 4597 ” ”
Abandonment .0090 .0942 ” ”
Relinquishment .0057 .0756 ? ?
Inadequate Hosing .0278 1644 ” ”

Note: The fifth column reports the percentage of observations for which the
variable is missing. Removals = 1 (75.68%), = 2 (18.54%), < 3 (98.76%).
Placements in last removal = 1 (44.00%), =2 (27.09%), < 7 (95.73%). LOS
= Length of Stay. If the child is still in FC at the end of the FY year, last
removal and placement refer to current removal and placement. One child
may have more than one removal reason.

Source: AFCARS Foster Care File FY FY 2013, NDACAN, 2013a.
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Table 2.4: Descriptive statistics: Placement and case

[€)) @ 3

Observations  Percent (%) Cumulative (%)

Current Placement Setting

Pre-adoptive home 2,098 7.02 7.02
Relative Foster Home 10,398 34.81 41.83
Non-Relative Foster Home 11,545 38.65 80.48
Group home 1,064 3.56 84.04
Institution 1,591 5.33 89.36
Supervised independent living 518 1.73 91.10
Runaway 965 3.23 94.33
Trial home visit 1,694 5.67 100.00
Total 29,873 100.00
Most Recent Case Plan Goal
Reunification 11,010 36.86 36.86
Live with other relative(s) 508 1.70 38.56
Adoption 5,276 17.66 56.22
Long-term foster care 1,501 5.02 61.24
Emancipation 1,493 5.00 66.24
Guardianship 3,549 11.88 78.12
Not established 6,536 21.88 100.00
Total 29,873 100.00
Terminated Parental Rights
TPR 3,052 10.22 10.22
Discharge Reason

Reunification 5,533 56.62 56.62
Adoption 1,350 13.81 70.43
Emancipation 1,368 14.00 84.43
Guardianship 1,003 10.26 94.69
Transfer to another agency 514 5.26 99.95
Death of child 5 0.05 100.00
Total 9,773 100.00

Note: TPR = 1 if both biological/principal parents have terminated their parental
rights. **Out of the 29,873 total number of observations in the dataset, 9,773
(32.71%) correspond to children who were discharged from FC during the fiscal
year 2013.

Source: AFCARS Foster Care File FY 2013, NDACAN, 2013a.
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Table 2.5: Descriptive statistics: Family structure

1 @ 3

Observations  Percent (%)  Cumulative (%)

Principal Caretaker Family Structure

Married couple 867 2.90 2.90
Unmarried couple 1,269 4.25 7.15
Single female 5,940 19.88 27.03
Single male 821 2.75 29.78
Missing 20,976 70.22 100.00
Total 29,873 100.00

Foster Family Structure
Married couple 5,156 21.45 21.45
Unmarried couple 2,306 9.59 31.04
Single female 9,723 40.44 71.48
Single cale 2,181 9.07 80.55
Missing 4,675 19.45 100.00
Total 24,041 100.00

Note: The total of observations with foster family structure, includ-
ing missing values, is less than the number of observations because
not all children are placed in a foster home (see Table 2.4).
Source: AFCARS Foster Care File FY 2013, NDACAN, 2013a.

Table 2.6: Descriptive statistics: Observations with same date on FY 2013

(1 (2 3) C)

Variable Mean  Std. Dv. Obs. Min. — Max.
First Removal 27.21 6.5849 9,363 8-47
Last FC Discharge  3.17 1.5403 573 1-8
Last Removal 34.1 7.1160 11,892 12-56
Current Placement  54.9 13.613 18,414 25-86
FC Discharge 33.52 22.9684 9,625 5-110

Note: If the child is still in FC at the end of the FY year, last removal
and placement refer to current removal and placement. The number
of observations vary because I only consider observations with the
corresponding date between October 1st, 2012, and September
13th, 2013. There are no missing values. All observations have the

corresponding dates.
Source: AFCARS Foster Care File FY FY 2013, NDACAN, 2013a.



Table 2.7: Regression analysis: Racial sorting patterns

)] 2 (3)
FP-Afr. Am. FP-Hispanic FP-White
Age At Start 0.0061 % 0.0000 -0.007 1%
(0.0007) (0.0003) (0.0006)
Man 0.0044 0.0000 0.0007
(0.0069) (0.0032) (0.0070)
African Am. 0.7090%** -0.0680%** -0.4090%**
(0.0146) (0.0058) (0.0178)
Hispanic -0.0530%** 0.2740%** -0.3920%**
(0.0126) (0.0059) (0.0174)
Am. Indian 0.0080 0.0281 -0.4979%**
/AK Native (0.0719) (0.0279) (0.0583)
Asian 0.0255 -0.0073 -0.3320%**
(0.0338) (0.0138) (0.0383)
Constant 0.0765%** 0.0960%** 0.5200%**
(0.0124) (0.0058) (0.0172)
Observations 7,250 14,690 7,250
R-squared 0.548 0.369 0.161

75

Note: The dependent variable is the proportional race of the foster
parent: (1) African American, (2) Hispanic, (3) White, and the
independent variables are characteristics of the children. Races are
proportional since an individual can identify with more than one.
Age At Start is the age (years) of the child on October 1st, 2013.
OLS Estimates. Standard errors (robust to arbitrary heteroskedas-
ticity) in parentheses. *** p<(.01, ** p<0.05, * p<0.1



Table 2.8: Regression analysis: Removals and placements

Q)] 2 3) (C))
Removals Settings ~ LOS-Setting Avg. LOS
-Prev. Settings

Removals

Settings

Age At Start

Man

African Am.

Hispanic

Am. Indian
/AK Native

Asian

Constant

Observations
R-squared

-0.156%*%* -76.94%%%* -54.20%%%
(0.0289) (6.535) (4.631)
-0.00981%#*%* -9.586%** -12.87#%%*
(0.00184) (1.504) (1.062)
0.0300%** 0.117%** 23.72%%%* 16.51%**
(0.000646)  (0.00289) (0.917) (0.757)
-0.00347 -0.191%#%%* 17.66%* 11.69%
(0.00720) (0.0290) (7.666) (6.285)
0.0410%** 0.458%** 138.3%** 53.05%**
(0.0142) (0.0592) (16.02) (13.07)
-0.0525%**  -0.257%** -31.36%* -28.08#*%*
(0.0124) (0.0486) (12.36) (10.75)
0.109 0.765%** 32.46 -6.179
(0.0707) (0.279) (60.47) (42.59)
-0.204#%%* -0.318%** -111.9%%%* -70.95%%*
(0.0233) (0.131) (22.26) (29.88)
1.115%** 1.845%%* 299 4% 221.6%**
(0.0121) (0.0559) (13.11) (12.27)
27,571 27,571 25,498 15,426
0.088 0.094 0.058 0.061

Note: Removals = lifetime removals. Settings = placements during the last
removal. LOS-Setting = Length of stay (days) in the last/current placement.
Avg. LOS-Prev. Settings = Average length of stay (days) in the previous
settings of the last removal. Races are proportional since an individual can
identify with more than one. Age At Start is the age (years) of the child
on October 1st, 2013. OLS Estimates. Standard errors (robust to arbitrary
heteroskedasticity) in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Chapter 3

EXECUTIVE COMPENSATION AND COMPETITIVE
PRESSURE IN THE PRODUCT MARKET: HOW DOES FIRM
ENTRY SHAPE MANAGERIAL INCENTIVES?

Dam, Kaniska and Alejandro Robinson-Cortés (forthcoming). “Executive Compen-
sation and Competitive Pressure in the Product Market: How Does Firm Entry
Shape Managerial Incentives?” Mathematical Social Sciences.
por: https://doi.org/10.1016/j.mathsocsci.2020.03.001.

3.1 Introduction

There is a plethora of empirical evidence that supports the Hicksian view (Hicks,
1935) that executive compensation tends to be more performance-sensitive in more
competitive environments (e.g., Nickell, 1996; Van Reenen, 2011). A series of
empirical studies have used industry-specific regulatory reforms to analyze the
effect of competition on executive pay (Crawford, Ezzell, and Miles, 1995; Cuinat
and Guadalupe, 2009a; Dasgupta, Li, and Wang, 2017; Hubbard and Palia, 1995;
Kole and Lehn, 1999; Palia, 2000). These studies focus on how deregulation
policies that increase competition in the product market affect the structure of
managerial incentive contracts. The main takeaway from this literature is that,
following a deregulation policy that intensifies product market competition, firms
reduce managerial slack by increasing executive compensation and strengthening

its pay-performance sensitivity.

Our objective in this paper is to explain the nature of the aforementioned empirical
regularity, and to offer new insights into how executive pay is shaped by industry-
specific features. First, we provide a simple model of oligopolistic competition with
firm entry that shows why incumbent firms find it optimal to reduce managerial
slack when competition rises due to deregulation. Then, we use our model to derive
novel empirical implications regarding the time to build production capacity in an
industry. Our model shows that this industry-specific feature is a crucial factor when
analyzing the effect that firm entry has on executive compensation. According to
our model, the relationship observed in the empirical studies obtains in industries in
which the time to build capacity is such that incumbents act as production leaders

and entrants as followers. This result goes in line with the empirical literature given
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that existing studies focus on industries in which it takes time to build production

capacity, such as banking, manufacturing, and the airline industry.

The question of how product market competition shapes managerial incentives is far
from being new in the literature.! Notwithstanding, our approach is novel in that we
analyze itexplicitly in a framework of firm entry. Because incumbent firms anticipate
(and accommodate) future entry with relaxing regulation, we use a standard model of
sequential quantity-setting oligopoly, in which entrant firms choose their managerial
contracts and quantities after observing those of the incumbents. Our focus is on the
strategic response of incumbents regarding managerial incentive pay as they foresee
the entry of new firms. In line with the empirical literature, our main finding is
that it is optimal for incumbents to strengthen incentive pay and reduce managerial
slack when they foresee the entry of new firms into the product market. Moreover,
we show that the strength of the managerial incentives offered by incumbents is
increasing in the number of entrants—higher competitive pressure leads to steeper

incentives and lower managerial slack.

Our model incorporates managerial incentive contracts into the Stackelberg quantity
competition framework proposed by Daughety (1990). There is a fixed number of
incumbents and a set of potential entrants with more entrants meaning greater
competitive pressure on the incumbent firms. Both incumbents (in the pre-entry
stage) and entrants (in the post-entry stage) play Cournot games among themselves;
entrants take the aggregate output of incumbents as given. All firms are initially
inefficient and each hires a risk neutral manager whose principal task is to exert
non-verifiable R&D effort to bring down the constant marginal cost of production,
what is often termed “process innovation.” We assume that the final realizations
of marginal costs are private information among firms, and that incentive contracts
are publicly observable. Hence, even though the marginal costs of rival firms are
unknown, each firm observes a signal of how likely every other firm is to reduce its

marginal cost.

The crux of our model is that managerial effort is beneficial to incumbents in two
ways. First, steeper incentives that induce each manager to exert higher effort
directly increase the likelihood of cost reduction (value-of-cost-reduction effect).
Second, they also alter the beliefs of the rival firms about the true cost realization

of a given firm (marginal-profitability-of-effort effect). Even if a manager fails to

I'The notion that monopoly, and market power in general, are detrimental to managerial efficiency
dates back to Smith (1776, Book 1, Chapter 11), and has a long tradition in the literature (Hart, 1983;
Leibenstein, 1966; Scharfstein, 1988).
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achieve the cost target, her effort is profitable in as much as it makes the rivals
believe that a cost reduction has actually been attained. More intensified product
market competition affects each of these two effects through the market size and the
effective size of cost reduction. As the entrants’ optimal contracting and production
decisions are negatively affected by the aggregate incumbent output, the entry of
new firms implies an increase in both market size and the effective size of cost
reduction for incumbents. In turn, this implies both a higher expected value of cost
reduction and expected marginal profitability of effort, which makes it optimal for
the incumbents to elicit higher managerial effort by strengthening incentives. It is
worth noting that, even in the absence of the marginal-profitability-of-effort effect,
a growing number of entrants strengthens the value-of-cost-reduction effect. Such
case arises, for example, when marginal costs are public information and managerial

effort is unprofitable beyond cost reduction.

The key to our main result is that incumbent firms are able to strategically pre-
commit to managerial contracts, which in turn determine technological efficiency
endogenously. The general intuition goes in line with the seminal works of Fu-
denberg and Tirole (1984) and Bulow, Geanakoplos, and Klemperer (1985). In
a standard entry model, when an incumbent and an entrant compete in quantities
(strategic substitutes), lowering the marginal cost of the incumbent decreases the
entrant’s total profits (since the incumbent’s optimal output increases). Hence,
when costs are endogenously determined, incumbents find it optimal to behave
more aggressively in cost-reduction activities. In our framework, this corresponds
to incumbents offering stronger managerial incentives which are observed by the en-
trant firms. Thus, by making a commitment to be more aggressive, the incumbents
push the entrants into a more passive posture. This is an example of the “top-dog”
strategy, according to the terminology proposed by Fudenberg and Tirole (1984).
This sort of aggressive or accommodating behavior on behalf of the incumbent
firms does not emerge under simultaneous competition because the incumbents fail
to reap such benefits due to the lack of pre-commitment to any investment strategy.
By contrast, under strategic complementarity, e.g., price competition, the aforemen-
tioned result is reversed because the incumbent firms would commit to a strategy of
“underinvestment” (weakened managerial incentives) after which the entrants would
optimally respond by lowering their prices. Fudenberg and Tirole (ibid.) call such

underinvestment strategy to avoid stoking competition “puppy-dog ploy.”
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The paper is organized as follows. In Section 3.2, we review the related literature. In
the next section, we outline the model. In Section 3.4, we solve for the equilibrium
and present our main results. In Section 3.5, we present testable implications of
our model. In Section 3.6, we analyze two extensions, hierarchical entry and price
competition. We conclude in Section 3.7. All proofs are relegated to Appendix C.2,

most of which follow from Result 1 in Appendix C.1.

3.2 Related Literature and Our Contribution

The astounding rise in both the level and incentive component of executive com-
pensation packages over the past three decades is often attributed to