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Abstract

In this work, we develop a new technique for the numerical study of quan-
tum field thebry. The procedure, borrowed from non-relativistic quantum
mechanics, is that of finding the eigenvalues of a finite Hamiltonian matrix. The
matrix is created by evaluating the matrix elements of the Hamiltonian operator
on a finite basis of states. The eigenvalues and eigenvectors of the finite dimen-
sional matrix become an accurate approximation to those of the physical sys-

tem as the finite basis of states is extended to become more complete.

We study a model of scalars coupled to fermions in 0+1 dimensions as a
simple field theory to consider in the course of developing the technique. We
find in the course of studying this model a change of basis which diagonalizes
the Hamiltonian in the large coupling limit. The importance of this transforma-
tion is that it can be generalized to higher dimensional field theories involving a

trilinear coupling between a Bose and a Fermi field.

Having developed the numerical and analytical techniques, we consider a
Fermi field coupled to a Bose field in 1+1 dimensions with the Yukawa coupling
A¥9¥, We extend the large coupling limit basis of the 0+1 dimensional model to
this case using a Bogoliubov transformation on the fermions. Although we do not
use this basis in the numerical work due to its complexity, it provides a handle
on the behavior of the system in the large coupling limit. In this model we con-

sider the effects of renormalization and the generation of bound states.
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Introduction

In recent years, a great deal of progress has been made in understanding
gquantum field theory through the use of numerical techniques. The most popu-
lar method, developed by Creutz [1], has been to use a coordinate space lattice
to approximate the continuous classical system and then evaluate the Feynman
path integral using Monte Carlo techniques. The use of the Monte Carlo method
allows the computation of the lowest level of any sector corresponding to a given
symmetry. Statistical errors make the computation of excited state energies
very difficult. In spite of this restriction, a great deal of progress has been made

in the understanding of lattice gauge theories using these methods [2].

In comparison to the Monte Carlo method, Hamiltonian matrix techniques,
which are very popular in atomic and nuclear physics, have not received as
much attention. Other than the work of Barnes and Daniell [3], very little has
been done using matrix methods to investigate field theory. This has been due
to the extremely large size of the state space which one must deal with in a field
theoretic problemn. Hamiltonian techniques give much more information about
the theory than the statistical ones based on the path integral as many eigen-
values and eigenvectors may be computed. Since the Hamiltonian matrix must
be explicitly stored in the computer, this technique can only be applied to rela-
tively small systems. This makes the matrix method, which gives detailed infor-
mation but is restricted to small systems, complementary to the statistical one
which gives much less information but may be applied to systems which have a

large number of degrees of freedom.

In this work we develop a new Hamiltonian technique for the study of quan-
tum field theory. Here we do not use the coordinate space lattice which has

been the mainstay of other groups pursuing numerical methods. Instead, we
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discretize the theory on a lattice in momentum space. The momentum space
lattice is created in a clean and natural way, the fields are quantized in a box of
length [, with periodic boundary conditions. As with any matrix eigenvalue prob-
lem, a great deal of numerical work can be avoided by careful selection of the
basis representation. For the case of field theory, we know the solutions to the
eigenvalue problem for certain values of the coupling. It is not surprising that
good numerical performance can be obtained by using these known solutions as

the basis choice for other coupling values.

In chapter 1 we examine the finite matrix method in general, making a crit-
ical comparison of the coordinate space lattice technique with our momentum
space lattice. We find that the momentum space choice has many advantages.
By using the momentum space lattice we avoid finite difference effects which
arise in the approximation of derivatives with respect to the space coordinate z
and the dynamical field coordinate ¥. Among the problems which can be
removed are the aliosed modes, modes which are translationally invariant
modulo Az but have non-zero momentum. The dispersion relation for a coordi-
nate space lattice of finite spacing Az does not agree with the continuum one.
This incorrect energy-momentum relation is one of the sources of energy
defects on the finite lattice. With the momentum space lattice choice, we use
the continuum dispersion relation and therefore sidestep the problems induced
by an incorrect energy-momentum relation. For the case of Fermi fields the
problems arising from the incorrect dispersion relation are particularly severe,
as some effects persist in the continuum limit. Extra terms must be added to

the lattice approximation for the Dirac equation in order to remove them.

The advantages of the momentum space lattice choice do not stop here.

With this basis we can isolate states which do not contribute much to the
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eigenvectars of interest, making further progress in reducing the matrix size for
a given accuracy in modeling the continuum Hamiltonian. As we will find in
chapter 1 this can provide a reduction in matrix size of many orders of magni-
tude. This is a very important advantage when trying to get reliable information
about eigenvalues and eigenvectors using the rather modest computer
resources which are available today. Indeed, without this advantage the matrix
method could not be successfully applied to even the most simple field theoretic

models.

Having discussed the momentum space lattice technique in the first
chapter, we consider in chapter 2 a simple model of a Fermi field coupled to a
Bose field in 0+1 dimensions. We are interested in this model as its coupling
term contains the basic trilinear form ¥¢y which occurs in more realistic
theories whether the Bose fleld is scalar or vector in nature. We show in detail
how the Fermi degrees of freedom are dealt with and find that Fermi fields are
simpler to deal with than the Bose fields, unlike the situation in the Feynman
path integral approach. Their anti-commutling nature provides a natural cutoff
for the Fermi occupation number, giving a finite number of states per lattice
site, whereas the Bose‘ occupation number must be artificially limited in order to

achieve a finite matrix.

In addition to the free particle basis, we find a solution to the eigenvalue
problem in the large coupling limit. This new basis, which we will refer to as the
large coupling limit basis, can be also used to do numerical computations. We
find that it gives good performance in the numerical work, not only for large
coupling but also in the small coupling regime, allowing accurate computation of
eigenvalues over the full range of coupling with a smaller matrix. This gain in

numerical performance is offset by increased difficulty in computation of the
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matrix elements. Fortunately, the problem can be solved for the 0+1 dimen-

sional model without incurring much overhead.

In the final chapter we consider a Fermi field coupled to a Bose field with a
Yukawa interaction in 1+1 dimensions. The large coupling limit basis of chapter
R is extended here to the 1+1 dimensional model. We find this basis to be very
useful in getting a handle on the behavier of the eigensolutions as a function of
the coupling, but, due to the complexity of evaluating matrix elements of the
Hamiltonian in this basis, we do not use it in the numerical work. In the 1+:
dimensional model we find bound states along with some interesting effects
which arise in the process of renormalizing the mass parameters which occur in
the Hamiltonian. The choice of bare masses which give specified physical
masses can be non-unique. This appears to be a finite lattice effect which will
disappear in the continuum limit but as we are restricted to rather small lat-

tices we can not make conclusive statements concerning this issue.
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Chapter 1

HAMILTONIAN METHODS IN LATTICE FIELD THEORY

1. THE FINITE MATRIX APPROACH

In using Hamiltonian methods to study field theory the object is to find solu-

tions of the time independent Schrodinger equation
ﬁw,n} = En I’wn> . (:.1)

If the eigenvalue problem can be solved, the masses of physical particles and
bound states are obtained directly from the eigenvalues. Using the eigenvec-

tors, one can compute scattering cross sections through the time evolution of a

given initial state.

This is an extension of the familiar case in non-relativistic quantum
mechanics where the Hamiltonian is an operator dependent on the cocrdinates
(and conjugate momenta) of the particles which make up the physical system.
As we are concerned with systems which defy analytical solution, we will be
resorting to numerical methods in solving (1.1). This will be done by using a
finite basis of states to generate a matrix approximation to the Hamiltonian
operator. The eigenvalues and eigenvectors of the matrix can then be found
using standard numerical techniques. The spectrum of the finite dimensional
matrix becomes an accurate representation of the real problem as one makes

the basis more complete. Since computer resources are limited, one must
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optimize the performance of a given finite matrix size, limited by computer
memory and speed, by caretfully selecting the basis. A poor basis éhoice might
make a problem, which is numerically tractable with a better basis, computa-
tionally too demanding. This issue is of extreme importance for the case of field
theory where there are an infinite number of degrees of freedom in the contin-

uum limit.

Consider, for purposes of illustration, the harmonic oscillator with a Az*
term added to the Hamiltonian. This Hamiltonian for this system in terms of the

position coordinate = of the particle is

~ 2 g2 2
H=_N 4 mo

2.\t
e it 2 P+Azt (1.2)

We will first create a matrix approximation for (1.2) using the |z) basis. To gen-
erate a matrix approximation we restrict the continuous parameter z to a
discrete set of equally spaced values z, separated by ar with z;=0 for
definiteness. This converts our differential operator (1.2) to a finite difference
operator which when applied to a wave function ¥(z,) gives

nE
2m Aazx?

Biac¥(zn) = - 2 Loy W) 4z )2z ¢ ez e ¥(za) . (19)

2

By further restricting the range of z to values to those such that [z | € Xpag We
truncate the matrix to a finite size. Considering the truncated basis of states
flzop. Iz . lz-D. |z, |z_2>}, and using periodic boundary conditions, we get a 5

dimensional matrix approximation for [1.2]

2-1-1 00 00000 000 0 O
~ pp L RO-1O . 01000 010 0 0
He—ogil 002 0 -1+ Az?10 0 1 0 O[+xaz*0 01 O O (1.4)
0-1 0 2-1 00040 00016 O
0 0-1-12 00004 000 016
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One notes here that for each matrix size N, we must adjust the parameter Az to
optimize the accuracy of the N dimensional approximation of (1.2): Should Az
be too small the width of the wave function ¥(z) which could be represented
would be too narrow. On the other hand if Az is too large the approximation
which {1.3) makes for the second derivative becomes poor. An optimum value
for Ax minimizes the total energy defect coming from these two sources of

error.

An alternative basis choice is the eigenbasis for the simple harmonic oscil-
lator which results for the case A=0. In the number representation the Hamil-

tonian of (1.2) becomes

- K2
= ho(8%a + %) + gt +a)t 1.
H w(3Ta + 1) (Zm.:.))z(a &) {1.5)
where
(BT + &) = aM+a*+4a%a +4878% + 8aRa% + 68T + 66° + 12414 +3 . (1.6)

In this representation we get an infinite dimensional matrix for (1.2) without
introducing any approximations equivalent to the finite differences of {1.3). By
truncating the space of simple harmonic oscillator states |n) to a finite number
N we arrive at another matrix approximation for (1.2). Considering the trun-

cated basis of states [0), |1, |2). |3, |4) we get a 5 dimensional approximation

for (1.2)
10000 3 0 BVZ 0 2V8
. 03000 A2 0 3 0 10VE 0
Hg—z@oosoo+ms¢é 0 15 0 28Vv3 . (1.7
00070 0 10VB 0 39 0
R 2v6 0 28V3 0 75

Unlike the basis choice for (1.4) this choice takes advantage of known solutions
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at A=0. For small values of the coupling where perturbation theory is not accu-

rate enough " this basis is the optimal choice for the matrix method.

2. The |#(z)) basis for the self coupled scalar field

In extending the methods of the preceding section to the case of quantum
field theory, one must deal with a classical system having an infinite number of
degrees of freedom. In order to realize a finite problem suitable for computer
solution, an approximation must be made to achieve a finite number of degrees
of freedom before quantization. Once this has been done, the number of allowed
states for each degree of freedom can be made finite using the methods of the
preceding section. This process resulis in a finite dimensional matrix approxi-

mation for the Hamiltonian of the field thecretic system.

Consider the scalar field, self coupled with a A¢* interaction term in 1+1

dimensions. The Hamiltonian for this system in the classical field basis |#{z)) is

f= fdz{ ! Wz l(—i"ﬁl) +imeEane)) . (1)

(z)?
The value of the field ¢ at each point z is an independent degree of freedom.

_nz 52
The functional derivative term ——
. g &¥(z

2
2—--;? in (1.2). The last three terms specify the potential in which the field

variables #(z) move. We see here that the Hamiltonian is an integral over anhar-

)2 is the analog of the kinetic term

monic oscillators which are coupled by the x derivative term.

We will first consider the approach of Barnes and Daniell [3] for the realiza-
tion of a matrix approximation for (1.8). Using this approach, the number of

degrees of freedom is made finite by defining the field ¥ on a finite lattice of N,

1} Perturbation theory does not converge for this Hamiltonian. See reference [4].
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equally spaced points separated by Ax. We take for definiteness an odd number
N,

of points {z_,,...,zq,.... 2, ]} With zg=0 and n = ?' We also use periodic bound-

ary conditions’in x, identifying z,,, with z_,. With this discretization for z an

approximation for (1.8) is constructed by making the replacements:

Continuous z | Discrete z
z z; = jAx
P(z) P(z;) = ¢;
d¢(z $in=¥
dx : Az
5 1.8
diﬂ(x) Ax BSDJ
6{z-z") L6,
AT z.z
o n
S oazr@) |2 s
-0 j=-n

Quantized on the z space lattice the Hamiltonian (1.8) becomes

P .y n g 1 L0 2 R n
P S e P e

j=—n j="mn Jj=-n
The wave functional ¥(¢(z)) has become a wave function of N, field variables
Y(P-p,.... %0 ....%n). The functional derivatives have been replaced by partial

derivatives with respect to the field variables ¥;.

Once the classical degrees of freedom have been reduced to a finite
number, one must discretize the values of the field variables ¥; in the same
manner as for the anharmonic oscillator of (1.2). This produces a finite matrix

approximation for (1.8). If each field variable #; is discretized into a lattice of
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N, points, we reduce the basis of all classical functions |#(z)) to a finite basis of
N,N' possible functions on the z,% lattice. One immediately notices the funda-
mental problem in studying quantum field theory with matrix methods. The size

of the state space grows very rapidly with the lattice parameters N, and N;.

Faced with an astronomical rate of growth for the state space as a function
of the lattice parameters N; and N, it is important to reduce the Hamiltonian
matrix to the smallest possible block diagonal sector containing the eigenstates
of interest. This is done by including in the basis only those states which have
the same conserved quantum numbers as the eigenstates of interest. In the
case of the Hamiltonian given by {1.8) we have the symmetries ¢ parity, z parity
and spatial translation invariance. Since we are most interested in eigenstates
which have a total momentum of zero, and these correspond to translationally
invariant states, we can reduce the Hamiltonian by ~ N, if the basis choice is
suitably restricted. Taking advantage of ¥ and z parity is not as profitable, net-

ting only factors of two.

In the case of the z space lattice approximation given by (1.9), we have
translation invariance for steps of size Az, giving momentum conservation

modulo i—" This means that the translationally invariant basis on the x space
g, 4m

Az
of zero total momentum. This is a consequence of replacing the integrals of

lattice will include states of momentum gﬂ: y g in addition to those

(1.8) by the finite sums of (1.9). We will refer to these states of non-zero
momenta as aliased modes, and will be able to remove them with the basis

choice of the next section.

A basis of translationally invariant states is arrived at by taking the linear
combination —-\Z—N_—(|¢(xj))+|¢(zj+1))+|§0(zj+2))+ C +|9’(21+N,—1)>) for any
T

functions ¥(z;) which are not constant. The number of translationally invariant
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states for a N, *N; lattice can be shown to be

N = =206 (1.10)
®j

where the sum is over all divisors of N, and §(7) is Euler's Totient function, the
‘number of integers from 1 to j inclusive which are prime to j. We show in table
1 the number of translationally invariant states for seleﬁted values of N, and N;.
We will compare these results with those of the momentum space basis in the

next section.

Using the z, ¥ lattice as a basis for the matrix method, as done by Barnes
and Daniell, makes the same approximations for the ¢ field as were made in con-
structing a matrix approximation for the anharmonic oscillator using the |z
basis. In the case of the field theory we find that the size of the state space
grows as N‘,N’ and suffers dramatically should N, need to be large. In addition
to the approximations made in modeling each fleld variable, we have approxi-
mated the classical system as well, using the lattice in z space. This leads to

further errors coming from the lattice dispersion relation

w(k)=\/mz+£-2—sm2(l°—§£) with -T<p<l | (1.11)

the introduction of aliased modes and other finite difference effects. One would
guess that great gains might be made by taking advantage of known sclutions

for A=0. As we will show in the next section this is indeed the case.
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3. The momentum space basis for the self coupled scalar field

In the same manner as for the anharmonic oscillator of (1.2), free field solu-
tions can be utilized in the case of the self coupled scalar field. By quantizing in

a box of length L with periodic boundary conditions we get for motion of the free

field
$(z.t) = T (L20) kB o % + af e*03] (1.22)
k
kx = wpt-kxr | wk==\/kz+,u@2 ) lc,,=gzm-7-' n=0, =1, £2, -

The operator coeflicients of the Fourier expansion satisfy the commutation rela-
tions [ &, 8 1 =0, and [ @ .G ]=0. The continuum limit is obtained by taking
the limit £ -~ in () and making the replacements zk:Ak: ~>fdlc and 5—:?_ =+ G(k)
with Ak = %-;E . A matrix approximation for (1.8) is obtained by using this
discrete expansion for the field operator at time £ =0. Doing this we obtain

o~ Ewk( G +7A) + o7 E (Wiijkﬁh)_” .

.J.k.l

. [6(i+j +k +1)(afafalaf + aya 0 )
+ 46(i+j +k-1)(afa; 050, + ofafala;) (1.13)
+ 86(i+j-k —l)(aﬁaj'faka;)]

;i—‘z 3 (w5Pwewr) %[sa(k +1)(afaf + apa) + 126(k -1)(ada,) + 36(k 1)
jk.i

By quantizing the field in a box of length L we have created a lattice in
momentum space. Using the momentum space lattice, we retain the continuum
dispersion relation . = Vk?+1,°, and have not made the finite difference
approximations of the z space lattice which introduced aliased modes. In order
to make the number of classical modes finite, we must impose a momentum

cutoff on the momentum space‘ lattice. As opposed to the z space lattice which
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defines the field at N, discrete positions, the momentum space basis defines the
field as continuous functions of z, but limits the Hilbert space of functions to the
set spanned by the restricted Fourier series with the momentum cutoff. Classi-
cal wave packets, although restricted to a smoother set of functions represent-
able by the truncated Fourier series, still move with dispersion relations given

by the continuum formula.

To finally arrive at a finite matrix approximation for the Hamiltonian of
(1.8) we apply a cutoff on the number of Bose quanta allowed in states selected
for the basis.. The dimensionality of the resulting matrix approximation, assum-
ing independence of Bose quanta allowed on the lattice sites, is N, ¥ where Ny is
the number of Bose levels allowed on each lattice site and N is the total
number of sites allowed by the momentum cutoff. The formula is identical with

the corresponding one for the z,¢ lattice.

With the momentum space basis we have much more freedom with respect
to removing unwanted states. Aliased modes are removed by only acceptling
states with total momentum which is exactly zero. Table 2 shows the number of
states which have zero total momentum as a function of N, and N,. Comparing
these results with table 1 we see that the aliased modes account for a substan-
tial part of the basis, increasing the size of the state space by a factor of 210 for
a Bose cutoff of 32. All else being equal, the use of the momentum space basis
gives a very large advantage sclely from the removal of these unwanted modes.
In this basis we do not have to use mixed states in order to get momentum 0
states, as was done with the |¢(z)) basis to obtain translationally invariant
states. Taking advantage of ¥ parity is equally trivial. If one is interested in
eigenstates of (even, odd) ¢ parity, then one accepts in the basis, states with a

{even, odd) total number of Bose particles. Only for the case of z parity do we
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have to mix states to derive basis states corresponding to the correct sym-

metry.

In addition to taking advantage of symmetry considerations, one can, in a
basis which is close to the eigenvectors of the problem, use cuts which take
"advantage of the characteristics of the actual solutions of the eigenvalue prob-
lem. Such constraints on the states allowed in the basis can provide for very
large reductions in the matrix size, but their reliability must in general be pro-
ven through explicit numerical examples. One such cut, which will be used to
great advantage in the work of succeeding chapters, is to only allow states which
have a total number of Bose particles less than the Bose cutoff that is applied to
each lattice site. The validity of this cut can be understood as follows. If each
Bose occupation number is allowed to independently run from 0 to Np-1 then
states of Np(Nb—l) quanta will be included in the basis before states of A,
quanta on one lattice site and all other sites emply. Considering the energies of
the states, perturbative arguments indicate that the state of lower energy (N,
quanta on one lattice site) will have a greater contribution and should be
included before states of N, -1 quanta on all of the lattice sites. Culs on the
basis set such as this one can have a dramatic effect on the dimensionality of
the Hamiltonian matrix. In table 3 we show the resuits of applying such a cut to
the states represented in table 2. As can be seen by comparing the tables, this
cut can provide a dramatic reduction in the size of the state space. The judi-
cious use of such cuts allows one to apply the finite matrix method rather close

to the continuum limit for this field theoretic model.



4. Fermions

Quantizing a Fermi field on the z space lattice is beset with a problem
which comes from the Dirac equation being first order in the spatial derivatives.
For a massless field in 1 + 1 dimensions the finite difference approximation

resuits in a dispersion relation

1

E=tA—;sin(kAx) , ——<k=

(1.14)

B

I
Az
The problem is that the modes at k = tA-% remain finite in energy as the lattice
spacing Ar is decreased to 0. Wilson [5] has dealt with this problem by modify-
ing the Dirac equation through the addition of a second derivative term. This
raises the energy of the modes at k =f% and leaves the modes near k£ =0
unaffected. Another method due to Susskind [6] manages to get rid of the

unwanted modes at the expense of introducing extra fermion species.

By quantizing on a momentum space lattice we side step these problems.
The Fermi field in momentum space is easily dealt with using the anti-
commuting operators of the canonical formalism. The fact that the fermion
occupation numbers are only allowed to be 0 or 1 automatically provides the
limit on the quantum numbers which was introduced artificially for the Bose
field. This makes the Fermi fields more accurately dealt with than their Bose
counterparts. No further approximations need be made once the number of

classical degrees of freedom is finite.
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Table Captions

Table 1
The number of translationally invariant states #; as a function of the number of
field points per site N, and the number of sites N;. The same numbers are

arrived at using the momentum space basis if one includes the aliased modes.

Table 2
The number of momentum O states as a function of the number of Bose levels

per site N, and the number of sites N,. The aliased modes are excluded.

Table 3
The number of rest states as a function of the number of Bose levels per site N,
and the number of sites Np. States with a total number of bosons = N, along

with the aliased modes have been excluded.
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N, Ne 3 5 7 9 11
- 4 8 | 20 60 188‘
- :
4 24 208 2344 29144 | 381304
8 176 6560 | 299600 | 1.4%107 | 7.8*108
16 1376 . 209728 | 3.8%107 | 7.6*10% | 1 5%101%
32 10944 | 6.7+#108 | 4.9*#10% | 3.9+1012 | 3.2%1015
Table 1
No S 5 7 9 11
2 4 8 20 52 152
4 16 112 1064 11664 | 138640
B8 64 1728 . 66256 | 2.9*10% | 1.4+108
18 256 | 27392 | 4.2*108 | 7.4*108 | 1.4%101!
32 1024 | 437248 | 2.7+108 | 1.9+1011 | 1.4*10%4

Table 2
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N, M| 3 5 7 9 11 13 15
2 2 2 2 2 2 2 2
4 6 10 14 20 26 34 42
B 20 . 72 216 566 | 1204 | 2704 | 5194
16 v2 | 73B . 5BB6 | 36336 | 181092 | 762976 | 2.8*10°
32 272 | 9312 | 232768 | 4.1*10% | 5.5%107 * *

l

Table 3
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Chapter 2

SCALARS COUPLED TO FERMIONS IN 0+1 DIMENSIONS

1. Introduction

In chapter 1 we discussed two different methods of constructing a matrix
approximation for field theoretic Hamiltonians. At the end of the chapter we
briefly mentioned some of the problems which are encountered when dealing
with fermions and that these problems were side stepped by using the number
representation in momentum space. In this chapter we will show how the fer-
mions are dealt with in detail through the discussion of a simple model. The
model is that of a scalar field coupled to a Fermi field on a single momentum

space lattice point.

The work of this chapter serves two purposes: first, we wish to demonstrate
how the Fermi degrees of freedom are incorporated into our method. Second, in
the course of analyzing this simple model, which involves a trilinear coupling
between a Fermi and a Bose field, we will develop analytical techniques which are
applicable to more realistic theories which have similar coupling terms. We will
extend these techniques to the case of the Yukawa coupling in 1+1 dimensions in

chapter 3.

In section 2 we present the basic model which is the subject of this chapter.
We discuss two analytic limits of the model in sections 3 and 4. The results of

the numerical soluticn of the eigenvalue problem for our model are presented in
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section 5. An examination of the transition to the large coupling limit is given in

section B.

2. The Model

We consider a Bose field coupled to a Fermi fleld with the dynamics

specified by the Hamiltonian and commutation relations given by
A = w88 + 0, (576 +d'd) + M@ +a)(8'6 +d"d+db +51d") (2.1)
g8'=1 , d.di=1 , (8.67=1

The operators &, bt and d' are creation operators for bosons, fermions and anti-

fermions respectively.

Since the fermion number operator N, =(6'6-d'd) commutes with the
Hamiltonian of the system, the vector space formed by the free particle basis
Ins Y®Inz>®|ny) splits into three sectors of differing fermion number in which
the Hamiltonian is block diagonal. Denoting a state of the free particle basis by

|'nf .nf,'nb) the three sectors are enumerated in the table below.

~
]' Eigenvalue of ﬁj‘ States
0 10,0.mp .| 1, 1,75
1 ll.O,'nb)
-1 |0,1.'n,,)

’nb=0.1,2, cr
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The Ny =1 and Ny =-1 sectors can be solved analytically. The effective
Hamiltonian for these sectors is ﬁ‘”f i=1 = wp@Ta+A(81+8)+w, which is soluble by
completing the square in the Bose operators. The spectrum of eigenvalues is
the same as the free particle spectrum except that it is lowered by A*/w,. The
"eigenvectors and eigenvalues are given by (2.2) where |-A\/ w,) is the normalized

coherent state satisfying the relation &|-A\/ w, )= =N/ wp |-A/ wp).
In = (n)# @7+ W |-N w5 (2.2)

En =y’ = N3/ @y + 00y

To analyze the N; =0 sector we write the effective Hamiltonian for this sec-

tor explicitly showing the matrix elements of the Fermi operators:

10

. o 0o
HNI=Q=Q¢,(Z ao 1 +C)f

0 2] +A(a8T+d)

03 2.5)

This Hamiltonian can not be diagonalized analytically and one must resort
to computer solution and analytical approximations to extract the physics from
it. One must note here that since this sector contains the vacuum and all ener-
gies are measured relative to the vacuum energy, the sectors that are analyti-

cally soluble pick up a shift due to the subtraction of the vacuum energy.

3. The Small ay Limit

- - 0 0
Consider the Hamiltonian obtained from HN_r:g by dropping the 2w, [0 IJ

term:
Py 10 Q1
Hg= 0wy &T&[O l] +)\(t’i"+:’i) [l 2] . (24)

01 -~
Since the matrix [1 2] commutes with H'g we know that the Hamiltonian can be

reduced to block diagonal form by rewriting it in terms of the eigenvectors of



-23-
01 o
[1 ] The eigenvectors of this matrix define a new basis given below:
[(0,0)) = af0,0) + V1-a®|1,1)
[(1.1)) = ~V1i-efl0.0+af1,1) (2.5)
o = (4+2V2) %~ 383

Written in terms of this basis the Hamiltonian F]'a is in the block diagonal form

o~ 10 Ji+v2 o
The effective Hamiltonian for the |(0,0)7 sector

FIBH =w, 8T8 +A(1+V2)(aT+8&) is soluble by completing the square. The eigenvec-

tors and eigenvalues are given in terms of coherent states:
: '’ .
l(0.0.m,) = (ny1) % [a‘u M(1+VE ] | ALEVRS (2.7)
Wy Wy

E(1(0.0),1,7) = wpne'- N(1+VR)E

Wy

The effective Hamiltonian for the |(l.l)’.n,,’) sector is same as the one for
the |(0,0),n," sector except that V2 is replaced by —V2 The solutions for the
eigenvalue problem in this sector are given by (2.7) with the same replacement.
It is interesting to note that the |{0,0),n,") eigensclutions have a .85 probability
of having an ff pair present and that the splitting between the |(0,0).n," levels

and the |(1,1),7," levels is given by

((1+V2PR-{(1-VR)RN/ wp, = &VRAY/ w0, . (2.8)

One also notes that the energy of the lowest level in this sector (the
vacuum) is not zero but is given by -A%(1+V2)?/ w,. Since all energies are meas-

ured relative to the vacuum, one subtracts this term from the full Hamiltonian
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to set the energy of the vacuum to zero. This energy renormalization is a finite
function of A which raises the energies of the analytically soluble sectors. Equa-
tion (2.7) gives us an approximation of the vacuum energy that is good only in
the small w; limit, but indicates the general nature of the renormalized |Ny |=1
levels. After renormalization the energy of the | Ny |=1 levels will increase with
the coupling as 2(1+V2)A*/ wy, a functional dependence which places them

somewhat below the (1,1) levels.

4. The lLarge Coupling Limit

A large coupling limit solution to the eigenvalue problem for ﬁyf =g can be
00
obtained by rewriting the matrix 2wz |y 4} in the (0,0, |(1.1)) basis. In this
basis the free fermion mass term is

Py A Ay l—az [2 l_a
Wy (bTb +dtd) = 2-&)} cx\/l:o? 2

. (2.9)

The diagonal part of this term shifts the |[(0,0)'n," levels up by 2w, (1-c?)
and the |(1,1),m," levels up by 2w;o? The off diagonal part of the free Fermi
Hamiltonian gives non-zero matrix elements between the [(0,0),m,) and the
|(1,1),m,") sectors. The value of a matrix element connecting members of these

two sectors is given by

Rws oV 1-a?
()% (my)¥

. < - M|(a+ Ml_w't_\/zz)na'(at_*_ R(l;\/é) )ma'l _ 7\(1—\/2)> . (2.10)
b b Wy

{mny'(0,0)|Re, avVi-o®|(1,1)Y m,) =

Wy

The matrix elements of the creation and annihilation operators between
coherent states can be evaluated by writing the operator expression in normal
ordered form and using the definition of the coherent state &|A\)=A[\). This

results in a polynomial in A of order ny'+m;' multiplied by the projection of one
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coherent state on the other

AM1+v2Y | A1-VR)\ _ A® :
<_ W l— W >_eXp[_7w_5}' (211)

The exponential in A* dominates the polynomial in A for large A. Because of this,
adding the diagonal part of the Fermi mass term to the small v, Hamiltonian
gives an analytically soluble Hamiltonian which approximates the full Hamil-
tonian of (2.1) for large coupling. One must note that this approximation will
break down in the small coupling limit and also that the approximation predicts
crossing of the |{0,0Y,ny") and the |(1,1),n," levels. In the full Hamiltonian the
off-diagonal matrix elements of the free fermion mass term break the symmetry
that allows the crossing of the |{0,0¥,n,> and the |(1,1),ny") levels. Thus one
expects the large coupling limit solutions to fail in regions where they indicate
crossing. High precision numerical calculations in the crossover regions
confirm that the exact levels do not cross and that the large coupling limit solu-

tions are highly accurate outside the crossover region.

Due to the competition between the diagonal elements of the free Fermi
mass term and the offset of the (1,1) sector proportional to A? that arises from
completing the squaré in the Bose operators, the character of the vacuum in the
large coupling approximation depends on the size of the coupling. If the cou-
pling A is less than .57 the vacuum is given by |(%,1).0) and has a small f f pro-
bability. If the coupling is greater than .5wf the vacuum is given by j(0,0Y,0)
and has a large ff probability. Thus the large coupling solutions predict a
change in the character of the vacuum at a coupling A=.5wf . This feature will

be examined in more detail later.
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- 5. Numerical Solution of the Ny =0 Sector

The N,y =0 sector can be solved to any desired accuracy in principle by
numerical techniques. The techniques are very straightforward in that one
evaluates the matrix elements of the Hamiltonian in some complete basis and
then diagonalizes the resulting matrix. One immediately runs into practical
problems here. The system one wishes to solve is infinite dimensional and the

computer that one uses to solve it has finite memory and speed.

What one must do is to select a finite basis that will be "complete" enough
to give the desired accuracy and diagonalize the resulting matrix. The best
choice of basis depends upon which regime in coupling constant one wishes to
solve the problem for. For couplings near A=0 the best choice of basis is the
free particle basis, For large couplings one should use the large coupling limit

solutions as a basis,

In the numerical calculations presented here, we have used the free parti-
cle basis since it has provided accurate solutions well into the large coupling
regime with a modest matrix size. If one was working with a more complicated
system one might do well to take advantage of large coupling limit solutions if
they exist. The actual algorithm used in the numerical work is discussed in
appendix 1. We also discuss numerical computations using the large coupling

limit basis in appendix 2.

The graphs of fig(1) show the spectrum of the cutoff Hamiltonian for the
N; =0 sector for the case wy =.25. [Since wy can be factored out of the Hamil-
tonian we consider only the case w, =1 in all numerical work. The energy, w,
and the coupling A are presented in units of w,.] Each graph is for different
values (7,15,30, and 80) of the Bose quantum number cutoff Ny, and the conver-

gence as the cutoff is increased is clearly displayed. The deviations from the
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dotted lines are errors caused by the finite cutoff on the Bose gquantum number.

The graph for N, =60 clearly shows the large coupling limit behavior that
was considered in the previous section. One can see that once the coupling A
exceeds approximately .3 the spectrum of this sector is well described by the
two families of levels labeled by (0,0) and (1,1). The levels that are increasing

quadratically with A are the (1,1) levels.

It is interesting to investigate the dependence of the spectra of the N, =0
sector on the value of the Fermi mass term w,. The lowest ten levels of the
Ny =0 sector for Fermi mass terms w; =0.1,1.0, 10 are presented in the graphs
of figs{2-4). The free particle basis with a Bose cutoff ¥, =680 was used in these
calculations., All energies are measured relative to the lowest level in this sec-
tor. The solid lines in these graphs are the levels numerically calculated on the
computer, which are most accurate for small coupling and low levels. The
superimposed dotted lines are the large coupling limit solutions which become

accurate for large coupling.

Except for the deviations from harmonic oscillator like levels caused by the
finite cutoff on the Bose quantum number, the computer calculations give accu-
rate solutions past unit coupling. Note that the large coupling limit solutions
agree well with the computer solutions except for coupling constants below
some critical coupling A, where a depression in the levels occurs. The value of

this critical coupling depends on the value of the Fermi mass w;.

One also sees that the crossings between the [(0,0)) and [(1,1)) levels
predicted by the large coupling limit solution are indeed prevented by the off-
diagonal matrix elements of the Fermi mass term. When one examines the
eigenvectors corresponding to two levels that attempt to cross, one finds that

the two levels have traded their character. That is, the level that had a high
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fermion probability trades places with the level that had a low fermion probabil-

ity as the levels repel.

The Suddén drop in energy of the top level as a function of coupling in vari-

ous plots is an artifact caused by the algorithm that we used in the numerical

'computations. Since the eigenvectors for one coupling are used as guess vec-
tors in the next coupling step the computer tends to lock on to an eigenvector of

given character. When the energy differences become great enough the small

error component of an eigenvector of lower eigenvalue manages to become large

enough for the calculation to be sensitive to it. When this happens the calcula-

tion converges to the eigenvalue of lower absolute magnitude.

6. The Transition to Large Coupling Limit Behavior

From the graphs of figs{2-4) one notices that the spectrum of I?N! =g has a
critical value of coupling where the energy eigenvalues begin to follow the large
coupling limit solutions. One also notices that the critical coupling A; at which
this transition takes place depends on the value of w,. Since the regions around
such {ransitions are llikely to be the most interesting ocnes we consider the

details of this transition here.

Since the large A limit is characterized by an 85% probability of finding a
fJ pair in the vacuum level, we define A, to be the value of coupling for which
the probability of finding such a pair in the vacuum level reaches 50%. The
graph in fig{5) shows this probability as a function of coupling constant for vari-
ous values of w,. The values of A, are plotted against the values of w, in fig(8).

The power curve

e = .5Buwj (2.12)
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fits the numerical results extremely well.

The large coupling solution of Section 4 predicts the numericai form for A,
to be .5&)}5 which is in reasonable agreement with the numerical results. Since
the large coupling limit solutions take into account the coherent state character
of the eigenstates of the Hamiltonian analytically, one expects that doing the
numerical work in the large coupling basis will result in high accuracy with a

very modest matrix size.

An examination of fig{5) indicates that the transition to large coupling
behavior happens very abruptly for larger values of ;. Some insight into this
feature of the model can be gained by considering perturbation theory. We con-
sider the perturbations of the large coupling limit solutions caused by the off-
diagonal matrix elements of the Fermi mass term in the primed basis. One
should note the difference between normal application of perturbation methods
and what is being considered here. This perturbation increases as the coupling
A decreases in distinction with normal applications where one is considering per-
turbations of the free particle solutions caused by small couplings. The second

order correction to the energy of the vacuum is given by

2
o = 2 r‘ﬁ"‘% - (2.13)

nAVeC

In the primed basis the off-diagonal part of the Fermi mass term is

This term has nonzero matrix elements between a state of the (0,0) sector
and a state of the (1,1) sector. The matrix element between |(0,0),0) and

[(1.1) " is

7 _ 2a>,'a\/1-a2< _>\(1+\/'é)|(af+ A(l—\/g))nb'
vasmy T ()R tp Wy

220
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_ RwpaVi-a? {)\2\/2 }"‘ {—?)\2}
= exp

.15
(nb.!)% wb Daz (2 )

The second order correction to the vacuum energy is given by the formula

2van |

Wy

1
(Euac—En)

2 . 1
Ry = P (2.16)
n=

c'nb’.

—m\2
Rwp oV 1—0{%){13[-5-2— ]

b

All of the terms in this sum are small for large coupling (the region where the
transition takes place for large ;) except the term coupling the |[(1,1),0) and
1(0,0),0) levels. When these two levels approach degeneracy as predicted by the
large coupling limit solution, the term coupling them in the second order
correction becomes important in spite of the damping influence of the exponen-
tial. The correction will be large only in the narrow region of lambda in which
this denominator is small. The energy difference required for the correction to
be large shrinks for larger A/ wp due to the exponential factor. Furthermore the
[(1,1),0) level is crossing the |(0,0),0) level with a slope given by BVZ\/ w, . Thus
the effective "crossing region” shrinks for larger values of w;. This is the reason
the transition to large coupling behavior becomes more abrupt for the larger

values of wy.

7. Discussion

We have discussed a simple model which has a trilinear coupling between a
Fermi and a Bose field. This model is to be contrasted to a similar one inveolving
two Bose fields with the trilinear coupling term AX*¢ which would be unstable
against a diverging field amplitude for X. The stability of the model considered
in this chapter comes from the fact that the Pauli exclusion principle does not
allow arbitrary excitations of the Fermi field. That is, the allowed occupation
numbers for the Fermi states are 0 or 1 and not 0 to = as in the Bose case. This

fact eliminates the instability found in the Bose case where the bilinearly
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coupled field X becomes arbitrarily large giving a Hamiltonian with no lower

bound for the energy.

Of particular interest is the possibility that the nonperturbative methods
used here have extensions to more realistic models in 1,2 or 3 space dimensions.
We will consider the extension of this method to the case of the Yukawa potential

in 1+1 dimensions in the next chapter.
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Appendix 1: The numerical algorithm for matrix diagonalization

The numerical method used to calculate the spectrum of the lHamiltonian
as a function of the coupling A is a rather straightforward application of the
power algorithm. In using the power algorithm to find an eigenvalue and eigen-
vector of a matrix one takes a trial vector and iteratively multiplies the the trial
vector with the matrix and normalizes the vector. The component of the trial
vector corresponding to the eigenvector of largest absolute magnitude grows
and after enough iterations one can obtain the eigenvalue-eigenvector pair to
any desired degree of accuracy. Since we are interested in finding the numeri-
cally lowest part of the spectrum we add an ofiset to the matrix so that we

obtain the bottom of the spectrum first.

In order to obtain the next level in the spectrum one iterates multiplication
followed by orthogonalizing the vector to the previously computed eigenvector.
In this way one may obtain as many of the levels as one wishes starting with the

ground state.

There are several features of the problem we are working on that make the
power algorithm an efficient one to use. We start with the zero coupling case for
which we have the exact solution. One then uses the eigenvectors for a preced-
ing coupling step to extrapolate a set of trial vectors for the next coupling step.
This procedure provides rather good trial vectors resulting in a substantial sav-
ings in computer time. The modified Aitken acceleration [2] was used to speed

up the iteration process when two eigenvalues were nearly degenerate.
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Appendix 2: Numerical computation using the large coupling limit basis

We present here numerical calculations using the large coupling limit basis.
The use of this basis, although not necessary for the numerical investigation of
this model, can provide a substantial reduction in the matrix size required for a
numerical solution. We start by completing the computation of the matrix ele-
ments of the Hamiltonian in the large coupling limit basis. This was left undone

in sect, (4).

From the discussion of sect. (4) we obtain the large coupling limit solutions
which are two families of levels denoted by |(0,0).n," and [(1,1).m,". The ener-

gies of these levels are given by

R(+ 2
E(](0,0) 1)) = wyny' +2wp(1-07) - A—(—‘E):ﬁl- (.17)
and
2( 1 _/5)2
E((1.1).mpD) = wymy' +Rw, o - M'l'w—:—@L (2.18)

with a given by (2.5). From (2.10) we obtain the off-diagenal matrix elements of

the free fermion mass term which connect the two families of levels

I Zcofowl—a .

T 1R ()R

(-

Wy

' my’
[Ei+—(———H 1+VR ] ' ar+ A(*—\@)] b|—>‘(1;\/—2)> . (2.19)
b

154

In the large coupling limit basis [, ., is the "interaction” and is of the form
RuyaVi-a¥{z.nlm.y) , (2.20)

where {z,n|m y) is the amplitude of the m'th excitation of a coherent state
l-y> to be in the n'th excitation of a coherent state |-z>. The ladder operator

for a coherent state |-z) is af+z. We compute this amplitude by writing
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(a+z)*(af+y)™ in normal ordered form so that we may take advantage of the
definition of a coherent state a}-g)= -8l-8) along with its hermitian conjugate

{-Blat=-8{-g|. Using the binomial expansion

(a+p)" =), ['}C‘] ok gln k) (2.21)
k=0

and the normal ordered form for a®a™

aram = S0 (B[ prattnplatnn (222
= pllpl? ’

we obtain
n 1 minlk,l) '
anlmay= 31333 (EEE B -

o gy M- )Py )& Plexp(-%(z-y)?) . (2.23)

Numerical values for I, m, are obtained by making the necessary substitutions

for z, n, m and y in (2.20).

In Fig. 7 we show the results for numerical computations using the large
coupling limit basis for a Bose cutoff of 5 and a Fermi mass wy =1.0. One can
see both the (0,0) and the (1,1) levels, The (1,1) levels are indicated by the
extrapolation of the 5 lines which eventually rise quadratically in energy with
respect to the coupling A. Comparing Fig. 7 with Fig. 3, which uses the free par-
ticle basis for the same Fermi mass, we see that the computation using the large
coupling basis achieves comparable accuracy for the first 5 levels. The large
coupling limit basis gives correct solutions in the large coupling regime without
introducing a severe penalty for small coupling. One should note here that the
dimension of the matrix for Fig. 7 was 10 in comparison to 120 for Fig. 3. The

computational savings gained by reducing the matrix size is substantial.
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Figure Captions
[1] Dependence of the spectrum of the N =0 sector on the Bose cutoff N, for

wp =, 25. The dashed lines are the large coupling limit solutions.

[2] The spectrum of the Ny =0 sector for w,=0.1 and the Bose cutoff M, =60

The dashed lines are the large coupling limit solutions.

[3] The spectrum of the Ny =10 sector for wy;=1.0 and the Bose cutoff N, =60.

The dashed lines are the large coupling limit solutions.

[4] The spectrum of the Ny =0 sector for wy=10 and the Bose cutoff N, =860.

The dashed lines are the large coupling limit solutions.

[6] The ff probability as a function of coupling for different values of wr. The

curves are labeled by the corresponding values of w,.

[6] The critical coupling A, as a function of w,;. The triangles are the results of
the numerical calculations. The solid line is the least squares curve fit to

the numerical data.

(7] The spectrum of the N;=0 sector for w;=1.0 and the Bose cutoff N,=5

using the large coupling limit basis.
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Chapter 3

SCALARS COUPLED TO FERMIONS IN 1+1 DIMENSIONS

1. Introduction

In chapter 2 we introduced a non-perturbative technique for studying
models of a Bose fleld coupled to a Fermi field in 0 space, 1 time dimensions. In
this chapter we extend the technique to 1+1 dimensions. The coupling is the tri-
linear form ¥¢¥ which occurs in many realistic theories of bosons coupled to
fermions. We again use the Hamiltonian formalism to investigate the model

using both analytic approximations and computer solutions.

In order to use a computer to investigate the model we study it on a finite
lattice as is done by many other groups using a computational approach to field
theory. In sharp contrast with other groups, however, we study the theory on a
finite lattice in momentum space. This allows us to express the Hamiltonian in
terms of the free field solutions of the theory. The cancnical creation, annihila-
tion operator formulation is used throughout. The operators create and annihi-

late particles on the finite set of lattice points in momentum space.

The momentum space lattice is arrived at in a most natural way. One quan-
tizes the free field in a box of length L with periodic boundary conditions. This
gives a momentum space lattice with finite spacing and infinite extent. A finite

lattice is obtained by imposing a momentum cutofl.
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In sect. 2 we review the free field solutions to the Klein-Gordon and Dirac
equations in 1+1 dimensions. We present the coupled Hamiltonian wﬁﬂch is the
subject of this paper in sect. 3. In sect. 4 we use a Bogoliubov transform on the
fermion operators to derive a basis which is useful in the large coupling limit.
The computational procedure which was used to find the eigenvalues of the cou-
pled Hamiltonian is described in sect. 5. Finally in sect. 8 we present the results
of the numerical work. In this section we compare the numerical results with
those of sect. 4 and then consider the problem of renormalizing the mass
parameters occurring in the model. It is here that unexpected results occur. In
addition to the expected binding of the fermion-antifermion pair, we find that

the choice of the bare masses which give desired physical masses is not unique.

2. The free field equations

The selutions te the free Klein-Gordon equation

(B,8%+ )P =0 (3.1)

in 1+1 dimensions follow directly from the 3+1 dimensional case. If one quan-
tizes in a box of length L with periodic boundary conditions the free field solu-

tions to the Klein-Gordon equation are given by
®(zx.t) = Zb: (L2we) {t’ik e thx 4 gl gtikx) (3.2)

kx = wpf- kzx, w,,=\/k2+,uoz, kn=2TTm n=0, £, £2, -
The operator coefficients of the Fourier expansion satisfy the commutation rela-

tions [ 8¢ G ] = 6k i and [ &, ] = 0. The continuum limit is obtained by taking

the limit L-e= in (3.2) and making the replacements Y Ak - fdk and
' 3

c’ik - . _&T_
75 &(k) with Ak = T



~4.6-
The solutions of the Dirac equation

(19794 ~ ™o )Y = 0 (3.3)

have some differences with the 3+1 dimensicnal case. In 1+1 space-time dimen-
'sions a two dimensional representation of the Dirac matrices which satisfy the

algebra
(P =29%1, (FP=-1, (PP=1 (3.4)

can be found. The two dimensional representation allows for the description of
fermions and antifermions without spin. The absence of spin is natural in 1+1

dimensions.

The representation of the Dirac matrices which we use is:

s [t o Lo 1)
Y=g o1|=% s ¥V =4 ol =i0w - (3.5)

By defining the spinors 4, v, Z and ¥ according to the usual conventions

1 4
= EP tm, p - Ep +my, Ep +m,
u(p) T Ep+ma ,  v{p)= —é'go—- y s (3.8)

Z(p) =ul{p)y® and w(p)=v'p)°
the positive and negative energy solutions for the Dirac equation are
+ . - .
YV =u(p)e* and Y =u(p)e*iPT (3.7)

respectively.

When one guantizes in a box of length L with periedic boundary conditions

one obtains for the free field operators:

]b(a:',t)=z:wQ / —IT:LEL': [Ep u(p) e P* + 4l v(p) e”l”x] (3.8)
2
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The operator coefficients of the Fourier expansion satisfy the anti-commutation

relations {6,573} = 6,, and {d, d} ] =8y, with all other anti-commutators

being zero. In addition the Bose operators commute with the Fermi operators,

The continuum limit is obtained in the same manner as for the scalar field by

taking the limit Z-e in (3.8) and making the replacements ) Ap - [dp,
N 5 P

b

v 5 & 5 - _2n
Vv -+ b(p) and g > d{(p) with Ap= 7

3. The coupled ficlds

The Hamiltonian for the system we are studying is given by
B =Hy+H with (3.9)
Ho =Y By (bb, +did, ) + Ez_“wb ald, and (3.10)
P
By =2\ [dz (a)e@=) (8.11)

We have chosen this Hamiltonian as it is the simplest one which invelves a tri-
linear coupling of the two fields, The : . refers to normal ordering of the field

operators.

The expressions for the time dependent flields @(z,t) and V(z.t) given by
(3.2) and {3.8) are only valid in the case of free fields. We must diagonalize the
Hamiltonian of (3.9) in order to find the solutions to the coupled field .equations.
We work with the matrix elements of the Hamiltonian in the free field basis at

time ¢+ = 0. In this basis the interaction Hamiltonian is given by
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Br=2))(Lwp) % o (3.12)
pk

{68 [ 710.p+k) (Blbpw + Al udp) + folp.~(p+K)) (BJd T ey +d 55y )]

~ -~ -~

+ 8 [f p.p+k) (b.ebp +dtad _paey) + Falp.—(p +k)) (&_(p”c)z?,, + Eg+k&“1p)]§

with the functions f; and f 2 defined by

N l_\/ Ep +1, _\/Epr+mo
fl(p |p) - 2 Ep Ep‘

. pp
i- 3.13
(Ep+m.,)(Ep.+mg)} (3.13)

and

5o 1 Ep +me Lptm, | p' p
/0P = E\/ pEp -\/pEP' [(Ep‘+mo)  (Eptmo) (8.14)

4, The large coupling limit

In chapter 2 we derived a large coupling limit by changing to a basis which
diagonalized the Fermi part of the interaction. Once the Fermi part of the
interaction Hamiltonian was diagonalized we were able to complete the squares
in the Bose operators, thereby removing the {rilinear interaction term from the
Hamiltonian. This trénsformation left the [ree Fermi Hamiltonian in a non-
diagonal form. Since the off diagonal parts of the free Fermi Hamiltonian van-
ished as the coupling was increased, dropping these terms provided us with an
approximation which became accurate for large coupling. Furthermore, the
new basis proved to be better than the free particle basis for numerical compu-

tation.

In order to apply a computer to the problem one must approximate the
operators by finite dimensional matrices. This is done by imposing a Bose cutoff

on the space of states which one uses to compute the matrix elements of the
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Hamiltonian. In order to have an accurate approximation to the infinite dimen-
sional problem it is necessary that eigenvalues converge rapidly as the Bose
cutoff is increased. Since the new basis gives eigenvectors in the large coupling
limit it is not surprising that it would be the best basis to use in that regime. It
‘turns out that the advantage in the large coupling regime is obtained without
introducing any serious problems for small coupling. These benefits do not
come for free. The computation of matrix elements of the Hamiltonian, which is
already a formidable task in the free particle basis, is much more difficult in the
new basis. If one does not find an efficient algorithm for computing these matrix
elements in the new basis the computer time saved by using smaller matrices to
approximate the problem could be offset by the time required to compute the

matrix elements of the Hamiltonian.

Our present meodel is not as simple as the one discussed in chapter 2, but
the same techniques may be used to advantage. In order to see how to do this,
we simplify the problem temporarily by dropping all terms in the interaction
with boson momenturn & #0. Using {3.12), (3.13) and (3.14) we obtain for the

truncated interaction

L]

~ _ -~ ~ My |~y -~ - o~y o~ -~ -~
H = Z A (2Lu, Y % (Af +do) —E-—-(bgb,, +adld j)- Z?—( Jdl, +d_pbp)| . (3.15)
4 2 7

We want to diagonalize the Fermi part of the interaction given by (3.15). To do

this we use a Bogoliubov transform given by
Ep = (1+ag)* (5;, - 0pdl,) and 5p = (1+af)7*# (d_p + apgg) , (3.18)

where op is to be determined by the condition that (3.15) be diagonal in the

transformed operators.
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Considering the diagonal form Bj5, + J}D, one finds that
BB, + DiD, = (3.17)
(1+a2)? [2ap + (1- a)(B)6, + dTpdp) - 2ap(BJdl, + d_pbp)

By comparing (3.17) with (3.15) one sees that the former will fit the Fermi part

of ﬁg if we can find an o, which satisfies

2o, D 1-a2  m,
= d = = 3.18
+al B an lvos (3.18)
The function &, which satisfies these conditions is given by
=P 3
op = Ep + T, (3.¢9)

Using the transformation (3.16) we can rewrite H, in terms of the new operators

as

B =) A (2Lw) ¥ (@ +80) |BIB, + DD, - 2—
P

(3.20)

Before we generalize this transform to the k # 0 sector, it is interesting to
consider what (3.20) tells us about the large coupling limit. Using the same

arguments as in chapter 2 we complete the square in the &k = 0 Bose operators.

One finds that corresponding to each eigenvalue of y,( 575, + BjD, - Ep- m)
there is a family of equally spaced levels which d:op in energy like A®. The
coefficient of the quadratic behavior is proportional to the square of the eigen-
value of the Fermi operator. The eigenvalue with largest absoclute magnitude,
which gives the state of eventual lowest energy, corresponds to a full pseudo-
Fermi sector. As we let the momentum cutoff extend to = the coefficient of A?

for the lowest state diverges! This indicates that the eigenvalues of the Hamil-

tonian have no lower bound in the limit of large momentum cutoff, and that the
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model might have an instability in which infinitely many pairs are popped out of
the vacuum while the Bose field amplitude becornes divergent. We will discuss

this further later on.

The transform given by (3.18) can be used to rewrite the entire interaction
ineluding all k. How to do this becomes apparent by considering

E‘JEPW + ﬁ;+kﬁp. In terms of the free particle operators it is
+ (l - apapm)(gggpm + al(pi—k)a—p) - (ap +ap+k)(ggaz(p+k) + a—pngc)]

An operator of the form EJEP &+ ﬁ;+k5p will reproduce the Fermi operator mul-

tiplying @4 in (3.12) if the conditions

_ (1—a o +J.-,) _ _ —(ap + +k) /
FApP k) = ety and Sap (k) = g (022)

are satisfied. Some tedious algebra shows that the earlier choice of ¢, given by
(3.19) satisfies the conditions. The full Hamiltonian given by (3.9) when written

in terms of the pseudo-particle operators B and D takes the form

A= Z[m.a(B B +D Dp) +p( At +ﬁp§p) (Ep- mu)] ZC% (3.23)
P
~ A A ~ -~ E - My
+ A (RLex)H [aJ(B;Bp+k # DBy - 6 00) + H c.]
p.L P

An examination of (3.23) reveals what the use of the Bogoliubov. transform
has accomplished. The pair creation and annihilation terms have been
separated from the scattering terms, the former being found in the free Fermi
Hamiltonian, the latter being found in the interaction. If the pair creation and
annihilation terms are neglected, the remainder is a trivial extension of the

scalar field model which is discussed in [1]. In the approximation that we
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neglect the pair terms we can use the analytical techniques presented in [1] to
separate the Bose and Fermi degrees of freedom.
To see what is happening more clearly we define the operator

= )\ o~ -~ -~ -~ E - My
G = W;‘ Bl Bk + D Dy - _LEj_apw,c] . (3.24)

The full Hamiltonian written in terms of the operator G is

B =Y (ma(BiBy + BiDy) + (BB + Dy By) + (Bp-mma)] (3.25)
p

+ Lo (B + G (8 + o) - gwk ed
We would like to use a displacement operator to absorb the 51, into the @,. This
is an extension of the familiar case
B =8% +x8t+ 78 (3.28)
where ones use a displacement transform of the form
D(A) = exp(A&8T-\"& (3.27)
to transform {3.26) to the form

B =aa-\\ . (3.28)

We must deal with two complications here. First, we have many Bose
degrees of freedom each of which must be displaced by an appropriate f’k.
Second, the displacement E’k is not a simple scalar but is composed of Fermi
operators. Fortunately the £, satisfy the commutation relations (&} ,5'_,-] =0 and

[&k.é,-] = 0 which makes things economical. 2 The displacement transformation

2) These commutation relations are satisfied if the limits of summation may be shifted.
The details of this are discussed in appendix 3.1.
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given by

DC) = exp( L Ga! - G (3.29)
has the desired effect on the Bose field

D(C)& D HC) = & - Ce (3.30)

and since the & satisfy the commutation relations above they are left
untouched by the transform. The number operator terms in (3.25) are also left

untouched as they also commute with G and &J.

The Hamiltonian of {3.25) after the displacement transformation is

B = Z‘[w(égép +BiB,) + pD(C)(BIDI + D, B,)DUC) + (B -m,)] (3.31)
P

)

+ Zwkfigak - Zﬁ% G
k )

Based on the similarity of the above Hamiltonian with the model discussed
in chapter 2 we expect the matrix elements of the pair creation and annihilation
terms to vanish in the large coupling limit. Indeed, this is the case for the
present model. As in chapter 2, the matrix elements of the pair terms take the
form of a polynomial in A times ezp(—aA®) where the polynomial and « can be
computed on a state by state basis. The computation of these matrix elements
is a very tedious task (discussed in appendix 3.1) which is done with the aid of

the symbolic manipulation program SMP.

Drﬁpping the pair terms decouples the Bose and Fermi fields giving an
approximation to the full Hamiltonian which becomes accurate in the large cou-
pling limit. The Bose sector of this large coupling limit Hamiltonian is trivial as
it is just the free Bose Hamiltonian. The solution of the Fermi sector consists of

diagonalizing the term - Z“’k E‘,If‘k. Expanding in terms of the F and D
. 3
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operators we get

- D ClG = (3.32)
It ,w[; -

t 3 E 5B B By Bpve + Blqsi D' i By Dp
kp.q ¥k

-~

+ D' B Dy By e + D44, D%, D, Dp+k]

A2 Ee=Mal(ae 5 . Ar A A2 1 s A A oA
+ L—u?;[zq: —"E;——][E;Bp +DTPDP] " 2l [2 ;kz—((p+k)][BTpo +D§,Dp]

1 |2 |<€Pax

with ¢(z) = { 0 |2 !>Prax
The first term in the expansion is a correction to the vacuum energy. The
second is a four Fermi particle interaction which conserves the number of fer-
micn and antifermions independently. The third and fourth terms are correc-
tions to the Fermi mass. It is interesting to note that the fourth term gives a
correction to the Fermi mass which is momentum dependent if the momentum
cutofl P, is finite. The momentum independence is recovered as the momen-

tum cutoff Piaxr.

Due to the presence of the four Fermi particle scattering term in
- Ewk 5‘,3 f'k . the diagonalization of the large coupling limit Hamiltonian,
tho:gh far simpler than the full Hamiltonian with the pair terms included, is still
nontrivial, Since A? factors out of ‘Z"’k 5’;@ , one only need diagonalize it for
unit coupling. The eigenvalues for an; coupling can then be obtained by scaling
the results for unity. We see that the energy eigenvalues for the full Hamiltonian
(ignoring Z&J&k for the moment) should asymptotically approach the curves
specified b;

By =my{ng +ng) + ) (Ep = my) + 0 (Mg, o, Progg, L)N? (3.33)
P
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where ny and ny are the tetal numbers of fermions and antifermions respec-
tively, ms, and p» are the Fermi and Bose bare masses, Ppx is the‘ momentum
cutoff and L is the length of the box which we are quantizing in. The coeflicients
0 (70 o, Prax, [.) are the eigenvalues of "2“" C’JE}, at unit coupling. Fach of
‘the levels enumerated above is the lowest i)f a family of equally-spaced levels
obtained by adding all possible excitations of the Bose field. The energy levels
given by the large coupling approximation will be compared to numerical results

for the full Hamiltonian in the following sections.

5. The numerical method

In this section we discuss how the numerical work was done using the free
particle basis. This basis is the optimal one to use in the small coupling regime,
but as noted in the previous section, the large coupling basis would be a better
numerical choice for the large coupling regime. The difficulty of computing the
maltrix elements of the Hamiltonian has prevented us from using the large cou-
pling basis in the numerical work. This situation might be alleviated if a method
similar to the one described for the free particle basis below is developed for the

large coupling basis.

Even for the free particle basis, for which the Hamiltonian is expressed very
economically, the matrix element computation must be done with a three step
procedure which minimizes the amount of computer time invested in matrix ele-
ment calculation. The key to the process is to keep the state enumeration and
matrix element computation in symbolic form as long as possible, inserting the
values of the bare mass parameters and coupling only when the numerical value
of the matrix element is actually needed. In doing this one minimizes the com-

puter time which is spent considering a matrix element for a pair of states
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which are not directly connected by the Hamiltonian.

The first step of the process is to generate a list of states which will contain
levels of interest and satisfy the various cutoffs which are used to make the
dimension of the Hamiltonian matrix finite. One must introduce a momentum
cutoff which produces a finite lattice from the discrete but infinite lattice
created with the periodic boundary conditions in a box of length L. One must
also introduce a limit on the Bose field which has an infinite number of excita-
tions possible at each lattice point. This was done by introducing a cutoff N, on
the total number of Bose particles allowed in any particular state. These parti-
cles were allowed to distribute themselves over the lattice in any fashion. The
above method of cutting off the Bose field is to be compared to the alternate one
where one puts a limit N, on the number of excitations allowed at each lattice
site. It was found in the early numerical work that the latter method of cutofl
greatly increased the size of the state space without enhancing the numerical
results. Why this happened can be understood by considering the fact that the
latter method introduces states with N, times the number of lattice sites bosons
into the finite basis before states with only N, +1 bosons on a single lattice site.
By considering perturbation theory we see that the missing states which have a
smaller energy are likely to contribute more to the eigenstates of the system.
In the large coupling regime where the perturbative argument is not valid the
analysis of the previous section indicates that the &£=0 Bose fleld will get the
largest displacement and hence need the the largest cutoff. Due to the pairing
of the bosons of non-zero momenta for states of zero total momentum, the
former method of establishing the Bose cutoff (a cutoff N, on the total number
of Bose quanta) provides for the larger effective cutoff on the k£ =0 Bose field and

gives better numerical results with a smaller basis.



-5’?-

In addition to the cutoffs, which restrict accuracy, one also takes advantage
of symmetries present in the Hamiltonian to reduce the size of the matrix one
must diagonalize to find the eigenstates of interest. One is most interested in
states which have a total momentum of zero as the energies of other states can
be inferred from Lorentz invariance {subject of course to the limitation that the
finite momenturn cutoff breaks Lorentz invariance). Discrete symmetries {par-
ity, charge, charge conjugation) can also be used to reduce the size of the sec-
tor which one must diagonalize at one time. In our numerical work we have only
taken advantage of total momentum and total charge. To take advantage of the
other discrete symmetries the basis would have to be written in terms of the
eigenstates of these symmetries, which would complicate the matrix element
computation process. The relatively small gain in terms of reducing the size of
the Hamiltonian matrix was judged not to be worth the trouble for preliminary
work. One might want to take advantage of all possible symmetries in a more
intensive study in order to reduce the computer time required for the numerical

computations.

Once one has created a suitable basis, the second step of the numerical
procedure is fo enumerate all pairs of states which have non-zero matrix ele-
ments for the Hamiltonian. As the matrix generated by the Hamiltonian in the
free particle basis is very sparse it is important that only non-zerc matrix ele-
ments be computed in the program which completes the final stage of numerical
computation. Whether or not two states could have a non-zero matrix element
can be decided by comparing the quantum numbers of the two states. How this
can be done is easily seen by considering the nature of the interaction. The
interaction is a sum of operator products which always include one and only cne

Bose operator. This means that two states will be coupled by the interaction
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only if their Bose sectors differ by the creation or annihilation of one Bose quan-
tum. If the pair of states in question passes this test, one goes on to compare
the Fermi sectors. Here the Fermi sectors must either be identical, differ by
the addition or deletion of an appropriate pair, or differ by the scattering of one
‘fermion {or antifermion). There may also be accidental cancellations due to the
coefficients f; or f; We have ignored these as 95% of the matrix elements

which pass the above tests on quantwm numbers are non-zero.

The task of enumerating all pairs of states which have non-zero matrix ele-
ments consumes a large amount of computer time. Since the decision concern-
ing a pair of states could be made without reference {o the input parameters
such as the coupling and masses, this task needed to be run only once for cach
basis choice. This provided a list of pairs of states which the program that actu-
ally computed numerical values needed to consider. This resulted in a great
econemy in the third and final step of the computation. At the computationally
expensive matrix diagonalization stage where matrix elements would have to be
computed for many different values of the input parameters, pairs of states

which would always give zero for their matrix element were never considered.

One might ask why did we not follow the procedure used in chapter . and
simply compute the matrix elements for unit coupling, and then scale by the
coupling for the range of couplings for which we wanted the energy spectrum.
This would have been an efficient thing to do if we did not have to renormalize
the masses. In a renormalized computation we will have to adjust the bare
masses m, and g, in order to hold the physical masses fixed as the coupling is
increased. The bare masses enter inteo the interaction in a non-trivial way, mak-
ing such a "scaling" operation rather difficult to program. The method of com-

putation which we used solved the problem in a much more elegant way and
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kept the computation in "symbeolic” form as much as possible. This not only pro-
vided an efficient means of computation but also provided for easy commparison

with the derivations of earlier sections, insuring correctness.

8. Numerical results

We now turn to the numerical results obtained using the free particle basis.
First, we compare these results with the large coupling limit work. We wiil then

discuss the problem of renormalizing the two masses which occur in the model.

Referring to the graph of Fig. 1, we can compare the results obtained from
the numerical computations in the free particle basis with those of the large
coupling limit calculations. A few selected energy levels are plotted as a func-
tion of A% so that the functional dependence upon A in the large coupling limit
can be easily seen. The levels shown are the full pseudo Fermt sector and one of
its Bose excitations, a level with one pseudo Fermi hole at rest, and three levels
which which have a pseudo Fermi hole pair of total momentum zero. These last
three levels are mixed by the operator ‘E“’k CIC, and are an example of a non-
trivial diagonalization of the Hamiltoniankwith the pair terms removed in order
to obtain the large coupling limit. The results of numerical computations in the

free particle basis are shown by the solid lines. The results of the large coupling

limit analysis are shown by the dashed lines.

All of the levels asymptotically approach straight lines as a function of A%,
This qualitatively confirms the results of the large coupling limit analysis. The
eventual lowest level, given by a full pseudo Fermi sector, agrees with the
results of the large coupling limit analysis extremely well. We have also shown
one of the Bose excitations of this level. In the large coupling limit these excita-

tions become the equally spaced harmonic oscillator excitations which the
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coherent state analysis predicts. Inspection of the other curves show that as
one goes up to the higher levels which have more pseudo-particlé holes, the
disagreement with the results of the large coupling limit analysis increases. The
source of this disagreement is the assumption that the various operators {; and
Gl commute with each other. They do commute for an infinite momentum
cutoff. For a finite momentum space lattice these operators do not in general
commute. Upon further analysis of these commutators, one finds that a few of
the operators (; and ¢ fail to commute with each other whereas Cg and C§
commute with all the other operators. Since any {; must scatter a pseudo-
particle if 20 we see that all the operators which have non-zero commutators
give zero when applied to the eventual lowest level which has a full pseudo Fermi
sector. Thus we understand why the solid and dashed lines apprecach one
another asymptotically for this level. As one increases the number of holes in
the pseudo Fermi sector one increases the possibility that a scattering operator
will give a nonzero result. This explains the fact that disagreement between
solid and dashed lines grows larger as we move up to states with more holes in

the pseudo Fermi sector.

Figures 2 and 3 show the spectrum of the Hamiltonian in the charge 0 and
charge | sectors respectively. %) These figures contain the free particle basis
results shown in Fig. 1 along with all of the other levels which were computed. In
these graphs the energy of the vacuum, which we define to be the lowest energy
state with the same conserved quantum numbers as the free particle vacuum,
has been subtracted. We see here that the energy of the single fermion at rest,

which is the lowest energy level in the charge 1 sector, does not have a fixed

¥ In some of the figures one notices that the upper levels make sudden drops in energy
as a function of the coupling. This happens when an eigenvalue crosses from above. An ex-
planation of this artifact is found in chapter 2.
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value but decreases with the coupling and eventually becomes negative. The
energy of the single boson at rest, which is the line emerging frorﬁ Mo al zero
coupling in the charge 0 sector, does not have a fixed value either. The energy
of the single boson initially decreases as the coupling increases and then turns
'back up, asymptotically approaching the bare Bose mass value in the large cou-
pling limit. This asymptotic behavior is not surprising as it was predicted by the
large coupling limit analysis.

We wish to describe a system which has specified values for the physical
Bose and Fermi masses. In order to keep the physical masses fixed we must
adjust the bare masses, for each value of the coupling, until the specified physi-
cal masses emerge from the diagonalization of the Hamiltonian. This brings up
the question of uniqueness and existence of bare mass values which will give
specified physical mass values. There is no guarantee that we will be able to find
bare mass values which will give the specified physical values for all couplings,
or that the solutions we find will be unique. Due to this possible difficulty we will
start by renormalizing only the Fermi mass. The monotonically decreasing
behavior found in Fig. 3 for the single fermion level as a function of the coupling,
for a fixed bare Bose fnass, gives us a unique Fermi mass renormalization. Fig-
ures 4 and 5 show the charge O and charge 1 sectors of the Hamiltonian in a
computation where we have renormalized the Fermi mass. The bare Fermi mass
which was required in order to keep the physical Fermi mass fixed is shown in
Fig. 8. One should note here that renormalization of the Fermi mass does not
prevent one from reaching the large coupling limit. One can see the harmonic
oscillator like levels emerging as the large coupling limit is reached. Indeed, if
it were not for the small error incurred from our assumption about the commu-

tation properties of the C; and ¢}, we would be able to compute the Fermi mass



-g2-

renormalization analytically in the large coupling limit using the pseudo-particle

basis.

We now turn to the question of renormalizing the Bose mass. The way the
single boson level behaves as the the bare Bose mass is increased has some
interesting consequences. In Fig. 7 we show the energy of the single boson as a
function of the coupling for several values of the Bose bare mass. These levels
were obtained from numerical computations in which the Fermi mass was renor-
malized. The couplings where the given bare Bose mass resulls in a physical
energy which fits our desired mass value of 1.0 are marked with triangles. By
plotting these points we can generate the relationship between the bare Bose
mass and the coupling which keeps the physical Bose mass at the fixed value of
1.0. This is done in the graph of Fig. 8. The answer to the question of uniqueness
for the Bose mass renormalization is evident in this diagram. Above the critical
coupling A, there ére three possible choices of bare Bose mass which will give
the specified physical result. Should the critical coupling A, remain finite as the
continuum limit is appreached, the non-unique choice of the bare Bose mass will
be an interesting feature {or predicament) of the model. One must note that
the bare Fermi mass depends on the bare Bose mass. Due to the non-unique
choice of the bare Bose mass once the coupling exceeds A,, the choice of the

bare Fermi mass, which would otherwise be unique, becomes triple valued also.

It is interesting to consider the general form of the bare Bose mass curve
shown in Fig. 8. Examining Fig. 7 we note that if the physical Bose mass had
been selected at a smaller value, the two triangles would have met joining the
two curves of Fig. B. The calculations of the physical Bose mass, for fixed bare
Bose mass, which we have done indicate that the minimum of the physical Bose

mass curve continues to rise as the bare Bose mass is increased. Barring
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further surprises, this leads one to speculate that the two curves shown in Fig. 8

would eventually join for any specified physical Bose mass.

Having discussed the issues associated with renormalizing the masses in
our numerical computations, we present in Figs. [9-11] the results obtained
from calculations where we have renormalized both the Fermi and Bose masses.
Here at each coupling step we adjust the bare masses u, and m, until the
specified physical masses f, and m, are attained. If this iterative technique
converged slowly, renormalized computations would be prohibitively expensive
as a large matrix must be diagonalized for each new trial point. Fortunately
only one or at most two iterations are required, making the computation tract-
able. When there is more than one solution possible for the bare Bose mass this
procedure tends to stay on the upper curve of Fig. B. In Fig. 9 we show the
lowest few levels of the charge 0 sector. The single boson level is the flat line
which emerges from u, at zero coupling. The charge 1 sector is shown in Fig.
10. The single fermion level is the flat line emerging from my, at zero coupling.
The bare Bose and Fermi masses which were required to hold the physical
masses fixed are shown in Fig. 11. For couplings where the choice of bare

masses is not unique these curves correspond to staying on the upper curve of

Fig. 8.

Once one has computed spectra with renormalized masses one can examine
features which are of "physical” interest. Here we consider the energy of the
fermion-antifermion pair at rest. This level is the line emerging from fJ atzero
coupling in Fig. 9. We see that the energy of this level decreases as the coupling
is increased. This indicales binding of the fermion-antifermion pair for this
model. As can be seen in the graph this level crosses the vacuum at the critical

coupling A;. This critical point is a consequence of having a finite lattice spacing
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Ap=—2L—‘rr where /7, is the size of the box we have quantized in. As Z is increased A;
moves to the right as might be expected of the continuum limit. The critical
coupling A, where the mass renormalization becomes non-unique, is approxi-
mately equal to A; for a box length of 2m. This appears to be an accident.
" Although A, moves to the right as L is increased, it is almost stationary when

compared to A;. This indicates that the two critical couplings are unrelated and

casts some doubt as to whether A, becomes infinite in the continuum limmit.

7. Discussion

We have presented the extension of the non-perturbative techniques intro-
duced in chapter 2 to the case of the Yukawa coupling in 1+1 space-time dimen-
sions. Due to the complexity of the model, the large coupling limit basis, which
was very successful in chapter 2, served only to provide a semiqualitative check
for the numerical work using the free particle basis. This is in contrast to the
case described in chapter 2 where the large coupling limit basis was simple
enough to allow its use in numerical computation. This allowed accurate compu-

tation of eigenvalues with a much smaller matrix than for the free particle basis.

In the present case we have found that adjustments of the vacuum energy
and the bare masses, which are functions of the coupling and the momentum
cutoff, are necessary in order to have a physical spectrum which has fixed
masses. These results are expected from a perturbative analysis of the model.
Perturbative analysis indicates that the Fermi mass correction, along with the
coupling constant renormalization, will remain finite as the momentum cutoff
tends to «. The perturbative prediction for the Bose mass correction is that it
will be logarithmically divergent in the momentum cutoff. We have presented all

spectra in terms of the bare coupling since the coupling constant
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renormalization would require a computationally prohibitive scattering calcula-

tion.

We élso find that the fermion-antifermion pair becomes a bound state. This
is a result which can not be predicted using perturbation theory, but is expected
as the Yukawa interaction is known to provide attraction between fermions. A
totally unexpected result is the non-unique choice of the bare masses once the
critical coupling A, has been exceeded. Due to limited resources we have not
been able to determine whether or not this critical point remains finite in the
continuum limit. Answering this question along with that of finding the physical
effects, if any, of such freedom in the choice of bare masses, provides an
interesting feature for further investigation in 1+1 dimensions. It appears that

the Yukawa model is not as simple as perturbative analysis suggests.
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Appendix 1: The pair term in the large coupling limit basis
We will compute here the large coupling limit basis representation for the
pair term Zpﬁ(ﬁ'fpi)\*p + D, B,) of (3.31) and show that it takes the form of a
P

polynomial in A times e ®* The polynomial and the coefficient & must be com-

puted on a state by state basis.

In order to instill some confidence in the displacement transform method
we will compare it to the coherent state analysis of chapter 2. For this com-
parison we will use a variant of (2.1) which is amenable to a Bogoliubov

transform similar to (3.16). This Hamiltonian, with w, =1, is given by

o~

H = 88 + 0, (676 + dtd) + M@+ 8)(67aT + db) . (3.34)

We rewrite this Hamiltonian using the Bogoliubov transform given by

5_ 1 0 a5t A=~ (d+ht
= — = d+5b
B \/é(b +d") and D \/é( ) (3.35)
obtaining the form
A= *T@+wf(:_§'rﬁT_ﬁ§)+}\(§T§ +Dth-1)(&t+&) . (3.36)

The Bogoliubov transform diagonalizes the Fermi part of the interaction at the

expense of the free Fermi mass term. Defining the operator
C=NBB+DD-1) (3.37)
and completing the square for the free Bose mass term, we obtain

B=(@+0)(@+0C)+uw,(1-B'D"-DB)-C? | (3.38)

The transform to the large coupling limit basis can now be completed through a

displacement transformation D('S) =e¢f with § defined by



S=0E-a) . (3.39)
To compute this transform we use the operator identity

eSdeS=A+[5 4]+ M§ﬂ+ o= ;Ll—,.g‘“ﬁ;’ (3.40)

43

and note that e de~5 =4 - C as all commutators of § with & beyond the first

~

are zero. C also transforms simply, giving e$ e 5= T, as § commutes with C.

We are left with the form analogous to (3.31)
B=a'd+w,(1-D(S)BD'DYS)-D(S)DED1(S)) - C? . (3.41)

This ieaves us with the transform of the pair creation and annihilation terms for

which the operator series (3.40) does not terminate. The first 9 terms 3‘“E§TET§

4)

were computed with the aid of the symbolic manipulation program SMP ™’ and

are shown below:
S Bt Dt} = BT D

S8BT DY = —2A(a Bf Di-at BT D1)

SR{RT Pt} = —aa*( BY D'-a? Bt D'-a® B D'+2ata BT DT)

531 p1} = 8A3(3a BT DT-3a! BT D-ad BT DT+a®® Bt D'+ 3al o? Bt DT-3at®a 57 DY)

S4Bt Dt = 16)* (3BT D'-6a® BT D'+a* BT D'-6a™ BT D
+a™ Bt D'+12a%a BY D'-4atal BY Dt+6a'?a? BT D'-4a'a BT DY)

D) SMP was used to compute these operator expressions and also to print them in a
form suitable for the document processor. This reduces the possibility of human error.
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5%{Bt DY} = —32A%( 150 BY D'-15a' BT D'~ 1043 BY Dt+a® Bt Dt : (3.42)
+10a™ Bt D'~ BT pT+30at a? BT D'-5at a* Bt D'-30a™a BT DY
’ +10aa® BT D'-10a®a? 5 Dl+5atta BT 1)

S8{Bt D] = —84A8( 158" DT-4502 BT D'+ 15a* BT DT
~a® Bt D1-45a™ BY DT+ 15a™ Bt D1-a™ B D'+90ata BT DY
-60a’ad B D' +6ata® B D'+90a® a? BT D'~ 150 a* BT DT-60a™ @ Bt DY
+20a'% 0l BY Di-15a™a® Bt DT+6aa BT D)

ST{B' DY} = 128\" (105a Bt D'-105a! BY D'-105a2 Bt DY+21a® BY DI-a” B DY
+105a™ BT D'~21a™ Bt Dt+a” BT D'+315a" a? BY DT-105aTat BT DY
+7ata® BT D'-315a®a BT Dt+210aal BT DT-R1a®a® BT DT-210at¥a? BT DF
+35a™a® BT DT+105a™a BT D1-35a™a® BT DT+21aP a? BT DT-7at®a BT D)

S8BT DT = 256A8 (10581 D'-420a? BT D1+210a* Bt D'-28a® BT D'+a® BT DT
-420a® Bt D1+210at B DT-28a!® BT D'+a'™ Bt DT +840aa BT DY
~B40a'a® BT D'+168a' a® Bt Dt-Bata” Bt D'+1260a™®a® BT DT-420a™® at Bt D
+28a" a® B D'-840a3 a BT D1+560a o® BT D1-56a1% a® BT DT-420a™ a? BT DT
+70a™a* BT DT+168a' o Bt D-56a'® a® B D'+28a™ a® BT DT-Bai"a BT DY)

From the coherent state argument of appendix 2.2 and the eigenvalues of
the Fermi part of the interaction for this Hamiltonian, {1,~1}, we know that the
matrix element of the off-diagonal part of the free Fermi mass term between
€0,(1,1)| and }(0,0),0) will be —e?° Examining (3.42) we can pick up the terms
of the operator series (3.40) which give a contribution between these two states.
As the Bose quantum numbers of the two states are zero, only those terms in the
series proportional to B'D' can give a non-zero matrix element. Using {3.41),

(3.40) and (3.42) we collect these terms and obtain
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TN 42% | 4BX*  960A° | 268BOA°
_ET‘DT{I'E—’L /TR T T (3.43)
The series can be rewritten in terms of {2A\®) obtaining
— 2A2 2 ZAZ 3 2)\2 4
—BTDT[l—(2A2)+( 2!) d 3!) , 4!) - (3.44)
az

which we recognize as the series representation of —e™"". If we were to consider
the off-diagonal matrix elements of H between two states of differing Bose quan-
tum numbers we would obtain a polynomial in A times the same exponential

above. An example of this is

(1,01, D) A1(0,0).0) = —2re ¥ (3.45)
which can be derived by picking out terms in the operator series proportional to
atprot,

With the discussion of the simple 0+1 dimensional example complete we can
now return to the 1+1 dimension model of this chapter. We wish to complete the
displacement transformation for the pair terms of (3.31) and show their
behavior in the large coupling limit. This Hamiltonian is

A= E["’m(ﬁ}ﬁp + DIB,) + pD{(SHBID} + D, B )DYUS) + (E, -m,,)] (3.46)
p

+ Zwkaﬁﬁk - Zwk GG
k &
with the operator Cj defined by

-~ )\ o~ A - - E - Mo
G = GLopp Z[BJBW; + D Dy - T%wk] : (3.47)
p

The displacement transformation D(S) is given by D(S)=e® as in the earlier

example, but in this case 5 is

§=Y [Cai-Gia) . (3.46)
13
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D(S) displaces the Bose field operator &@; by C. in the same manner as the ear-
lier example. In section 3.4 we assumed that the f}, transformed simply. This
required the 6‘.; and 5‘} to commute with each other. Computing these commu-

tators we find that

[G.G]=0 (3.49)
for all § and k£ but that
[E}',E'Tk] =it Z [6j+pl.k+p2-§1.p1§pz_dpllpzé‘r]‘ﬁ_paéj.FPI (3.50)
PP +6p1.pgﬁTJ'+p15k+pa_'5j+p1.k+p2ﬁszﬁp,]
with £, given by
ty = (Eﬁ?ﬁ*)_% (3.51)

We see that this second commutator will not in general be zero unless the limits
of summation may be shifted. For the truncated momentum space lattice,
which we have used in our numerical work, this condition is not satisfied. On the
other hand, a momentum space lattice with closed ends allows the shift of the
summation variables p, and pp around a closed ring in momentum space. This
cures the commutator problem at the cost of introducing the aliased modes
which were discussed in chapter 1. We choose to keep the truncated momentum
space lattice for the numerical work, keeping the state space as small as possi-
ble, but will compare the results with a large coupling limit basis calculation
which ignhored the non-commutation of the 5’1 on the cutoff lattice. These com-
mutation errors change the values of various numerical coefficients by about
10% but do not prevent the eventual approach to a large coupling limit in the

numerical work.
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With these preliminaries out of the we way we can now turn to the computa-

tion of the pair terms of (3.48) which are given by
Y 0[D(5)BIBiD(S) +D(5) 0, B)D(S)) (3.52)
P

The transform is computed using the expansion (3.40). The first 3 terms of the
operator series are shown below. The fourth and fifth terms were also computed

using SMP but are not shown here for the sake of brevity.
S°{B', D'{ = B D

S'{Bty D3 = (B Dok, @k b, +B'p Dlpri, @'k, b, (3.59)

~B'pik, D'y ap b + Bpue, Dipatog, te,)

SR*{BY, D'} = (—BB", D'yt P-28" ke, Dlp sk, b ?
+B' Dlpr Cog, te,~B% Dlpri, Cl, te,
+Bp 1k, D' e te,~Blpsk, Do Cloie i,
+B% DV ik 4k Bk, Top, b, te,~ 2B Dy riey @, @ g, b L,
+B'% Dpvie sk, @V, @l tie, byt Blpak, Dlpviey G, B, b e,
+B sk, Dlp kg @iy @ i ey~ 2B vk, Dlprie, 8%k 0p b, b,
+B' 1k, D'p v, 0t i, a%y, bk, te,~RB%p 4k, D' vk, U'Tka Qe b, be,,
+B% ke, Dlpvr, 0,0 te te,+ By vl +ky D' iy Qi i, b,

~RB%p vk e D' @k i, te it Bl ke ek, Dlpaty al g, te, tkg)

We wish to consider the off-diagonal matrix element of (3.46) between the
vacuum |0) and a pseudo particle pair ETQETAO). Using the first 5 commutator
terms in the expansion of (3.58) we select the parts which can contribute a non-

zero matrix element between these two states. We obtain
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- v —2 o~ o~ o~ -~ .
ZP Bl D + (2, ) ZP te 2 (B'p D' Blp 1 D'p sk, (3.54)
p . ’ p,k1

(12) - -~ -~ -~ o~ -~ -~
o Z pte e (B D% +RB ik D'k + Bo ik vk, Do ve,) -

4 pPkykg
Evaluating the matrix element of (3.54) between the two states |0) and 5%, D%, |0

and taking advantage of {3 being even in k we obtain
~ A 1 2 —
<ol B, Aoy =g {1- (2);¢,,9)+ Z(226" ) (3.55)
which we recognize to be the series representation for

q exp(—zg,‘tkz) : (3.56)
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Figure captions

[1]

[2]

(8]

Selected levels plotted vs A? showing the behavior in the large coupling
limit.
The spectrum of the charge 0 sector for fixed bare masses. The energy of

the vacuum has been subtracted.

The spectrum of the charge 1 sector for fixed bare masses. The energy of

the vacuum has been subtracted.

The spectrum of the charge 0 sector for a fixed bare Bose mass and renor-

malized Fermi mass.

The spectrum of the charge 1 sector for a fixed bare Bose mass and renor-

malized Fermi mass.

The bare Fermi mass required to keep the physical Fermi mass fixed for the

eigenspectra shown in Figs. 4 and 5.

The physical Bose mass for fixed bare masses of 1.01, 1.Z and ..5. The tri-
angles show the couplings for which the bare masses result in a desired

physical mass of 1.C.

The bare Bose mass which gives a physical Bose mass of 1.0. The onset of

non-uniqueness is marked by A,.

The spectrum of the charge 0 sector with both the Bose and Fermi masses

renormalized.

[10] The spectrum of the charge 1 sector with both the Bose and Fermi masses

renormalized.

[11] The bare masses which were required to keep the physical masses fixed for

the spectra shown in Figs. 9 and 10.



Energy

-75-

N
O. \\\\\ N olos ~
® L\ N
, 7] \\ N\ \\
3\
NN
N\ ~
NN
o N\
(A} T
-
- %o
4%
o % \
©
-l
e Large coupling limit
—— Free particle basis
<
o
AV,
{ I T | T 1
0.0 3.2 6.4 9.6 12.8

Figure 1

16.0



Energy

-76-

-\

-
3.2 4.0

Figure 2



-7r-

09

Figure 3



r
4.0

l
3.2

T
2.4

T
1.6

0.8

0.0



Energy

6.0

5.0

-79-

0.0ﬁ

0.0

Figure 5

4.0



-80-

:
g

Q

4

I,
g

L=2~r

4.0

3.2

2.4

1.6

0.8

.0

1

09

T

0'S

T
0¥
Sseul

| 1
0'€E 02
TurIo oJdegq

01

0

00

Figure 8



-B1-

L { |
02 g1 071
sseul ©9sog [eoIsAyd

G0

0.0

00

Figure 7



-B2-

m,=0.3

=1.0
21

e
L=

10.0

T
8.0

09

p—

0'G

1 I I
0 0'E 02
sseuw1r osog oaJeg

0’1

Figure 8



-B3-

6.0

m_=0.3
=1.0

5.0
)
=
i
[\
-

4.0

Energy
3.0

2.0

B

Figure 8



Energy

6.0

-B4-

m,=0.3
o =10
] L=2m
<
<
. ———
/’_——_
Q \_ﬁ
N
.
i
m;
<
o 1 ! 0 T I
0.0 0.8 1.6 2.4 3.2

Figure 10



Bare mass

-B5-

o
o)
m,=0.3
=1.0
Te) Ky
At L=2n
7
s
©_ d
o 7
s
g
g
g
7
0 | g
-~ P
P
e
~
-~
-~
-
o -7
‘-:l___ —
wn
d— — - Bare Bose mass
— Bare Fermi mass
©
o | | T ] |

0.0 0.8 1.6 2.4 3.2 4.0

Figure 11



