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ABSTRACT 

We incorporate nanoelectromechanical systems (NEMS) into a state-of-the-art commercial 

mass spectrometer (Q Exactive Plus with Orbitrap detection). This unique hybrid instrument 

is capable of ionizing molecules up to 4.5 MDa in their intact native state, isolating molecules 

of interest according to their mass-to-charge ratio, performing high resolution mass 

spectrometry (MS), and delivering those molecules to the NEMS. We use NEMS optimized 

for detecting the inertial mass of adsorbed species directly, which contrasts with indirect 

measurements of the mass-to-charge ratio performed with typical instruments. This unique 

form of mass spectrometry, NEMS-MS, with its single-molecule sensitivity, has promising 

applications to the fields of proteomics and native mass spectrometry, including deep 

proteomic profiling, single-cell proteomics, mass spectrometry-based imaging, or identifying 

viruses in their in vivo state. 

We analyze intact E. coli GroEL chaperonin, a noncovalent 801 kDa complex consisting of 

14 identical subunits. GroEL was sent to NEMS operated with the first two vibrational modes 

monitored in real time. Molecules physisorbing to the NEMS cause an abrupt shift in its 

resonance frequencies. The change in resonance frequencies is used to calculate the mass of 

each molecule. A mass spectrum is compiled with a main peak of 846 kDa, close to the 

expected value, and a secondary peak resolved near twice the mass of GroEL. 

Measurements are then performed operating the first three modes simultaneously. Using a 

technique called inertial imaging, frequency shifts are used to calculate the first three mass 

moments: mass, position, and variance (size). This is used to distinguish between adsorbates 

arriving in a single, point-like distribution or a more extended distribution, thus 

demonstrating a rudimentary form of molecular imaging. 

Two new theories are presented for analyzing frequency-shift data. The first approach offers 

a more streamlined approach for calculating the mass moments. This approach is used to 

improve the mass spectrum of the GroEL calculated using three-mode data, producing a main 

peak almost fully resolved at 805 kDa. An entirely different approach is presented that allows 
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for obtaining the mass density distribution of an adsorbed molecule (i.e., imaging) with a 

higher number of modes.  
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C h a p t e r  1  

INTRODUCTION 

This thesis advances development of a platform for measuring the mass of single 

molecules, as well as other physical attributes, such as their charge and the image they project 

on a flat surface, using nanoelectromechanical systems (NEMS). In NEMS-based mass 

spectrometry, particles are directed at nanometer scale mechanical structures that have been 

etched into silicon wafers. As the particles land one at a time on a device, the resonance 

frequency of each vibrational mode abruptly changes. A model is then used to calculate the 

mass or image of each particle that would induce such a set of frequency shifts. The devices 

are engineered to operate both as actuators and sensors through transduction between the 

electrical and mechanical domains: electrical energy is used to drive device motion 

mechanically, and mechanical motion in turn produces an electrical signal which can be 

monitored. NEMS-based sensors have captivated significant research attention due to their 

extreme responsivity and the possibility of co-opting very large scale integration (VLSI) 

technology in use by the semiconductor industry to achieve mass production.  

Fully realizing the potential of NEMS devices in the domain of mass sensing will 

eclipse the ultimate limits of several figures of merit of traditional mass spectrometry 

technology, including mass resolution, mass range, linear dynamic range, and limit of 

detection. Traditional mass spectrometry works by separating or identifying particles based 

on their mass to charge ratio and is a cornerstone of analytical laboratories studying a wide 

variety of compounds, including biomolecules. Surpassing the state of the art with a 

fundamentally new technology, such as with NEMS transducers, will enable the detection of 
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increasingly minor changes to large molecules, such as individual proteins that have 

undergone post-translational modification, or the rapid fingerprinting or cataloging of 

increasingly complex mixtures, such as rare biomarkers in the human plasma proteome, or 

the analysis of an increasingly small sample volume, such as the contents that could be 

extracted from a single cell. This chapter will review traditional approaches to mass 

spectrometry and their limitations, with a special emphasis on biological applications, such 

as proteomics and structural biology, as well as operation of NEMS-based mass sensors and 

how they might exceed those limitations. 

1.1 Mass spectrometry 

Conventional mass spectrometry is a technique able to infer the mass of small 

particles to identify or analyze an unknown sample. This is accomplished by charging a 

molecular species, manipulating the ions with the use of electromagnetic fields, and detecting 

their motion. Instruments have been constructed that can distinguish species with different 

mass to charge ratio, or m/z, from one another based on different spatial paths they take 

(sector instruments) [19], different times to travel a path (time of flight) [23], stability or 

instability through an ion trap (3D quadrupole trap linear or quadrupole filter) [4], or 

frequency of continuous motion in an ion trap (Fourier transform ion cyclotron resonance or 

Orbitrap) [11, 24]. Ion signal versus m/z is reported with the result termed a mass spectrum, 

although “m/z spectrum” might be a more accurate descriptor. This thesis will include data 

involving both m/z spectra and true inertial mass spectra, with the former generated with 

conventional mass spectrometry techniques, and the latter generated using NEMS devices. 

However, the term mass spectrum will be used to refer to both types of data in order to keep 

with historical convention, since the nature of the data will always be unambiguous. 



3 

Common instrument configurations. A brief discussion of the major m/z separation 

methods is given below. 

 

Time of flight (TOF) – ions are accelerated with an electric field. The time required for an 

ion to traverse a drift tube to the detector is proportional to (𝑚 𝑧⁄ )−1 2⁄ , with the constant of 

proportionality dependent on instrument geometry and electric potential, and determined 

through calibration. 

 

Aside from time of flight mass spectrometry or sector instruments, other instruments 

typically rely on ion trapping. According to Earnshaw’s theorem (1842), a DC electric field 

is not sufficient to keep a charged body in stable equilibrium. Ion trapping makes use of: (1) 

a DC and an RF electric field, used by the quadrupole trap, (2) a DC electric field and an 

orbiting particle, used by the Orbitrap, or (3) a DC magnetic field, an electric field, and an 

orbiting particle, used by Fourier transform ion cyclotron resonance (FTICR). Methods (1) 

and (2), relying only on electrical potential set on some conducting surfaces in the instrument 

Φ = Φ1, Φ2, …, will have Φ satisfy Laplace’s equation ∇2Φ = 0 everywhere else inside the 

trap. 

  

3D quadrupole trap – this utilizes an RF electric field with field strength proportional to 

distance from a straight line in order to focus the ions toward the center of the trap (Figure 

1a) [4]. The potential for such a configuration works out to: 

Φ =
𝑈 + 𝑉 cos 𝜔𝑡

𝑎2

(𝑥2 − 𝑦2)

2
,                                                       (1) 
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where 𝑈 and 𝑉 are the DC and RF voltages, and 𝑥 and 𝑦 are coordinates perpendicular to the 

focusing axis. Based on the choice of DC voltage and RF voltage and frequency, ions within 

a certain range of m/z will either maintain a stable trajectory through the trap and reach a 

detector, or become unstable and fail to reach the detector. Physically, the Paul trap is 

constructed using a hyperbolic ring electrode and a pair of hyperbolic end electrodes as 

shown in Figure 1b. Equipotential surfaces have a saddle shape as shown in Figure 1c. A 

mechanical analog of an ion in this potential would be a ball that falls down if the saddle is 

stationary, but could remain in motion without falling if the saddle is rotated at the correct 

frequency. 

 
Figure 1. 3D quadrupole trap and 2D quadrupole filter. (A) A quadrupole trap uses 

an RF electric field whose magnitude |𝜉| is proportional to some distance 𝑟 from a 
straight line. From [4]. (B) It is constructed using a hyperbolic ring electrode and two 
hyperbolic end electrodes. Adapted from [10]. (C) Mathematica plot showing that 
equipotential surfaces of the Paul trap are shaped like a saddle. (D) A linear quadrupole 
filter can be constructed using two pairs of circular rods. The DC potential across these 

rods 𝑈 and the RF potential 𝑉 and frequency 𝜔 determine if ions will remain radially 

stable. Adapted from [16]. 
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2D quadrupole filter – this is constructed using two pairs of circular rods, with the two pairs 

operated with a DC and RF voltage 𝑈 and 𝑉 added to or subtracted from an overall DC 

potential Φ0 as shown in Figure 1d. A more ideal quadrupole filter will use hyperbolic 

shaped rods, similar to the hyperbolic geometry used in the 3D Paul trap. However, circular 

rods produce a potential similar enough to that shown in Equation 1 [25], but are much 

simpler to construct. As discussed in Appendix A, transmission of ions through these 

quadrupoles will occur for a range of m/z values based on the values of 𝑈, 𝑉, and the RF 

frequency 𝜔. 

 

Orbitrap – ions orbit in a spindle-shaped trap with an internal potential given by 

Φ(𝑟, 𝑧) =
𝑘

2
(𝑧2 −

𝑟2

2
) +

𝑘

2
𝑅𝑚

2 ln (
𝑟

𝑅𝑚
) + 𝐶,                                     (2) 

where 𝑧 and 𝑟 are the axial and radial cylindrical coordinates, 𝑘 is the field curvature, 𝑅𝑚 is 

the characteristic radius, and 𝐶 is a constant [11]. Equation 2 represents the sum of a 

quadrupolar potential that confines the ions axially and a new logarithmic potential that 

serves to provide orbital trapping. The internal potential follows Equation 2 from Laplace’s 

equation if electrodes are constructed with the geometry matching equipotential surfaces 

Φ = Φ1, Φ2. Such surfaces are shown in Figure 2a along with the final Orbitrap geometry 

in Figure 2b. Ions entering the trap have a rotating elliptical orbit in the radial direction, and 

harmonic motion in the axial direction given by 

z(t) = 𝑧0 cos 𝜔𝑡 + √2𝐸𝑧 𝑘⁄ sin 𝜔𝑡 ;           𝜔 = √𝑘(𝑞 𝑚⁄ ) ,                        (3) 
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where 𝐸𝑧 is an axial kinetic energy term and 𝑚 𝑞⁄  is the mass to charge ratio of the ion. The 

axial frequency 𝜔 depends only on mass to charge ratio and a constant related to trap 

geometry. Orbiting ions will create an image current on the outer electrodes which are 

engineered to only collect this axial motion contribution. The detection scheme is shown in 

Figure 2c. 

 
Figure 2. Orbitrap design and detection scheme. (A) Equipotential surfaces of the 

quadro-logarithmic potential given in Equation 2. From [3]. (B) Oribtrap design with 

inner and outer electrodes engineered to follow the geometry of two of the equipotential 

surfaces. From [11]. (C) Detection scheme for Orbitrap instruments. Once an ion packet 

is injected into the Orbitrap, it orbits the central electrode with elliptical radial motion and 

harmonic axial motion. The frequency of axial motion of the ion packet depends only on 

mass to charge ratio and is detected based on the differential image current formed 

between the two outer electrodes. The Fourier transform of this detected current is used 

to construct the mass spectrum. Adapted from [18]. 
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FTICR – Ions are trapped using a large, static magnetic field with a small quadrupolar DC 

electric field for axial confinement. The ions undergo cyclotron motion with the frequency 

proportional to (𝑚 𝑧⁄ )−1. A Fourier transform of the detected image current is used to 

produce a mass spectrum [24]. 

 

Ionization methods. Biomolecular ions are charged with the ionization techniques 

electrospray ionization (ESI) [26] or matrix-assisted laser desorption ionization (MALDI) 

[23, 27]. These techniques, which ionize peptides or proteins without fragmenting them, are 

referred to as soft ionization. In ESI, a syringe pump pushes the sample through a glass needle 

coated with conductive material. A large voltage (1−2 kV) is applied to the needle, causing 

it to emit a jet of charged liquid droplets that evaporate, leading to a process that results in 

charged ions. The molecule takes on multiple charges during this process, which is a 

beneficial feature for analyzing large molecules like biomolecules, as it lowers the m/z value, 

making it more accessible for typical instrumentation. It can also produce a variable number 

of charges, known as a charge state distribution (CSD). This variable charging effect, 

combined with the mass variability naturally associated with isotopes, produces multiple m/z 

peaks even for pure samples. In MALDI, the sample is mixed with an organic molecule (the 

matrix), which absorbs radiation from a laser beam. The matrix transfers the energy to the 

sample, typically forming positive ions with a single charge. 

Deconvolution. Since the charge state of each peak in a mass spectrum is unknown, 

a procedure termed deconvolution must be performed to reconstruct mass. If peaks 

unambiguously belong to a single species, the mass and charges can be determined using a 
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system of equations [28]. However, assignment becomes difficult when sample 

heterogeneity causes several charge state distributions to overlap in m/z; in this case, 

Bayesian approaches requiring a priori knowledge of the sample have been proposed [29]. 

 Sample pre-fractionation and tandem MS. In order to reduce sample complexity, 

additional methods for pre-stratifying molecules (i.e., separation orthogonal to m/z) may be 

used such as liquid chromatography and ion mobility spectrometry. Fragmentation methods 

such as electron transfer dissociation (ETD), electron capture dissociation (ECD), collision-

induced dissociation (CID), UV photodissociation, and higher energy collisional dissociation 

(HCD) can be included between m/z separation methods as well in order to simplify the final 

spectrum enough to identify the sample components; this is known as tandem MS [30]. 

Popular combinations include triple quadrupole and quadrupole-ToF hybrids; alternatively, 

some analyzers such as the Paul trap can perform multiple rounds of MS [18]. 

1.2 Ion mobility spectrometry 

Ion mobility spectrometry (IMS) is an analytical technique used to separate and 

identify ionized molecules in the gas phase based on their mobility in a carrier buffer gas 

[31]. The separation mechanism, involving collisions with the background gas, differentiates 

analytes by the rotationally-averaged collisional cross-sections. When coupled with mass 

spectrometric analysis, IMS provides an additional level of information that enhances the 

characterization of biomolecular species – especially in the case of high-mass macro-

molecular complexes.  

For example, ligand binding to biomolecular complexes can sometimes induce 

conformational changes that affect the collision cross section of the complex, and these 

changes can be monitored via ion mobility measurements [32]. IMS can also be used to 
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monitor changes in the stability of a complex upon ligand binding. In order to do this, ions 

are stored in an ion trapping region where they undergo ion activation (e.g. heating) which 

will destabilize the complex and increase the ion mobility drift time; ligand binding can 

reduce this effect as a result of increased stability [33]. In both cases, IMS is useful for 

monitoring or discovering complex-ligand interactions that occur when the complex is in its 

native state; such information could not be obtained otherwise. 

IMS has less orthogonality compared to chromatography methods due to the strong 

correlation between analyte mass and size [34], but remains useful as a high-speed technique 

that increases the maximum number of resolvable analytes (referred to as peak capacity [35]), 

in addition to providing better signal-to-noise and increased dynamic range. However, this 

increased analytic power comes at the cost of ion transfer loss, reducing the limit of detection 

for rare sample components. 

1.3 Mass spectrometry performance metrics 

Different aspects of a mass spectrometer’s performance are quantified in their figures 

of merit, many of which are a function of m/z: 

 

Mass range – upper, and sometimes lower, limit of m/z ratios amenable to analysis 

Resolving power – 𝑀 Δ𝑀⁄ , where Δ𝑀 is the difference in m/z between adjacent peaks 

according to a specified overlap criterion, and 𝑀 is the average m/z ratio of those two peaks; 

sometimes referred to as mass resolution 

Mass accuracy – ratio of m/z measurement error divided by true m/z and stated in ppm 

Dynamic range – range, i.e. number of molecules, over which high mass accuracy (typically 

5 ppm) can be achieved in a single scan.   
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Detection limit – lowest quantity of analyte that can be distinguished from the system noise 

Sensitivity – The signal response to a particular quantity of analyte normalized to the amount 

of analyte giving rise to the response 

Throughput – mass spectra collected per second; sometimes referred to as scan rate. 

 

Provided the mass range can cover the sample of interest, the resolving power is the most 

important metric, as it must be high enough to resolve adjacent peaks. Once that has been 

accomplished, mass accuracy must be high enough for sample identification. Often, 

increasing the resolving power comes with a tradeoff or other constraints. For example, the 

resolving power of FTICR increases with magnetic field strength, with the highest using an 

extremely costly 21-tesla magnet [36]. Similarly, the resolving power of ToF can be 

increased with longer flight path, with the longest attempt currently at 20 ft [37]. Both FTICR 

and the Orbitrap obtain a mass spectrum by Fourier transforming the detected current; longer 

acquisition time therefore increases the resolving power but at the cost of longer 

measurement time. Certain applications require a minimum throughput in order to 

continuously measure the output of a liquid chromatography column; in this case, resolving 

power must sometimes be decreased even if a higher capability is available [37]. 

Orbitrap technology, used in this thesis, has become a popular alternative FTICR for 

many applications because it can be realized as a cost effective benchtop instrument 

compatible with common tandem MS configurations [30]; its resolving power as a function 

of 𝑚/𝑧 compares favorably with FTICR as shown in Figure 3. There are some limitations 

that come with the convenience of the Orbitrap. Compared with FTICR, which is capable of 

maintaining ion cyclotron motion for several minutes to achieve extremely high resolving 
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power [24], Orbitrap measurements are limited to a few seconds due to orbital decay or 

decoherence due to dissociation or collisions with gas molecules or other ions [18]; this 

problem is especially severe for large molecules, limiting the upper mass range [38]. The 

dynamic range is also limited by Coloumb repulsion effects present when large numbers of 

ions are stored in the C-trap prior to injection into the Orbitrap [14].  

Two major applications of mass spectrometers involving biomolecules include 

proteomics (characterizing the proteins encoded by a genome) and native mass spectrometry 

(characterizing proteins or protein complexes in their intact state). The most challenging 

aspects of these applications will be discussed in the following sections in order to highlight 

opportunities for disruption with NEMS devices. In order to compare instruments built for 

similar tasks, specifications for instruments used for proteomics is shown in Table 1.  

 

 

Figure 3. Resolving power as a function of m/z for some Orbitrap- and FTICR-
based instruments. Higher resolving power enables instruments to resolve peaks that 
are closer and closer together in a mass spectrum. This figure-of-merit typically 
diminishes with higher 𝑚/𝑧 (or Thomson, Th). Shown are the resolving power for a 
standard and high field (HF) Orbitrap, which have a resolving power proportional to 

(𝑚/𝑧)−1 2⁄ , and for 7T and 15T magnetic field strength FTICR instruments, which have 

a resolving power proportional to (𝑚/𝑧)−1. Adapted from [9]. 
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1.4 Proteomic mass spectrometry 

The development of mass spectrometers combining high resolving power, high mass 

accuracy, and high throughput ushered in the era of large-scale proteomics studies. The term 

proteome refers to the complete set of proteins expressed by a genome. In contrast with the 

genome, which remains relatively stable, the proteome is highly dynamic, with the relative 

number of proteins changing as a result of a cell’s regulation of gene expression in response 

to its environment. Biological functions at the cellular and molecular level are carried out by 

intact proteoforms and multiproteoform complexes. Proteoforms are the wide variety of 

different molecular forms that protein products of a single gene can assume, such as genetic 

variation, alternative splicing of RNA transcripts, and post-translational modifications 

Table 1. Typical figures of merit for modern high resolution mass spectrometry 

instruments used for proteomics. Mass range, resolving power, mass accuracy, and 

detection limit are reported using company product literature for representative 

instruments for each technology. Here, ToF refers to Waters Vion IMS QToF, FTICR 

refers to Bruker solariX 15T, and Orbitrap refers to Thermo Q Exactive or Q Exactive 

EMR. Detection limit is reported in terms of a quantity added to an online LC column 

that feeds into an ESI unit, or, equivalently, the number of molecules. Dynamic range 

values are representative for the general class of technology. 

Figure of Merit ToF FTICR Orbitrap 

Mass range m/z 20–64,000 m/z 100–10,000 
Standard: m/z 50–6,000 

EMR: m/z 350–20,000 

Resolving power 50,000 at m/z 1000 

>107 at m/z 100 

10,000 at m/z 10,000 

[9]  

>240,000 at m/z 200 

17,500 at m/z 10,000 

Mass accuracy < 1 ppm at m/z 500 250 ppb 
Standard: < 3 ppm 

EMR: < 10 ppm 

Detection limit 
5 fg verapamil 

(7:1 S/N) = ~107 

100 amol  

= 6×107 

500 fg buspirone 

(100:1 S/N) = ~108 

Dynamic range Few hundred 

[12-14] Few thousand [21, 22] 5000 [14] 
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(PTMs)  [39]. Individual proteoforms are subsequently assembled by covalent and non-

covalent interactions to form multiproteoform complexes (MPCs) that enable the immense 

spectrum of cellular functions. Therefore, an inventory of each proteoform, MPC, and their 

concentration and interaction network in a given time frame under normal and abnormal 

conditions will lead to a detailed understanding of cellular function and disease. 

Unfortunately, undertaking such a task invites considerable complexity – while humans have 

30,000 to 40,000 genes encoding up to 40,000 proteins, the number of distinct proteoforms 

is more than 2,000,000 [40]. 

The majority of proteomic analyses utilize a “bottom-up” approach for protein 

identification, in which proteins are enzymatic digested into peptide fragments small enough 

to be unambiguously identified by the mass spectrometer, then bioinformatics is used to 

deduce the original intact molecules. Identification of small peptides is possible using the 

m/z measurement obtained in a mass spectrometer, assuming its resolving power and mass 

accuracy is high enough. This is because small fragments are singly charged and only consist 

of a limited number of possible elements. Smaller amino acid fragments are significantly 

easier to identify, but harder to piece together using bioinformatics. The Journal of the 

American Society for Mass Spectrometry author’s guidelines requires a mass accuracy of 34 

ppm at 118 m/z but an accuracy of 0.018 ppm at 750 m/z for unambiguous identification of 

an unknown amino acid fragment composed of the elements C, H, O, and N. As shown 

previously in Table 1, modern instruments are capable of around 1 ppm accuracy in this mass 

range. Fragmenting the millions of proteins averaging 400 amino acids long, at 100 Da per 

amino acid [41], however, would lead to considerable peak overlap in this mass range. Pre-

fractionation techniques such as 2D electrophoresis or online liquid chromatography are 
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often necessary, at the cost of sample dilution, which can render relatively rare components 

undetectable.  

Recently, using these techniques, a draft map of the human proteome was compiled 

[42], using mass spectra corresponding to proteins encoded by ~17,000 genes, covering 

~84% of the human genome. The proteome of human HeLa cancer cells was also quantified 

[43], identifying 10,000 distinct protein groups with a concentration dynamic range spanning 

up to seven orders of magnitude. Such deep preotemic coverage of HeLa cells was possible 

using large scale experiments with isolated cell clones occurring over weeks. Ordinarily, low 

abundance proteins may not be detected as their isotope distributions are obscured by 

components present with higher prevalence [44]. The human plasma proteome consists of 

proteins with concentrations spanning 10 orders of magnitude as illustrated in Figure 4; only 

a few dozen high abundance proteins are used for routine clinical diagnostics due, in part, to 

 
Figure 4. Concentration dynamic range of the human plasma proteome. Human 
plasma is a common clinical specimen and represents the deepest accessible version of 
the human proteome. Ten orders of magnitude in concentration separate albumin from 

the rarest proteins, but only a few dozen are used clinically. From [5]. 
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the demand for consistent detection in a realistic setting [5]. 

These studies demonstrate that bottom-up proteomics studies can effectively create 

an inventory of expressed proteins, but cannot directly reveal the nature of intact proteoforms 

and MPCs. Although they enable critical structural characteristics and protein-protein 

interactions enabling proteoform and MPC function to be hypothesized, these hypotheses 

cannot be directly confirmed. Accordingly, “top-down” analyses have emerged [45]; these 

begin with intact proteoforms and MPCs. However, present top-down MS methods are 

severely challenged by the complexity of MPC heterogeneity, and addressing this requires 

laborious and often problematic preparatory protocols to avoid “averaging” over species. 

These protocols can completely remove the rarest analytes – often the ones that are especially 

significant.  

1.5 Native mass spectrometry 

Recently, it has been shown that noncovalent interactions, including higher order 

protein structure and weak binding between molecules, can be preserved as analytes are 

transported from the native cellular environment to the gas phase and then onto subsequent 

MS analysis. This enables direct elucidation of intact protein complexes and protein 

assemblies and, thereby, information on subunit stoichiometry, binding partners, protein 

complex topology, protein dynamics, and even binding affinities. Cumulatively, this method 

has been termed native mass spectrometry [46]. Carrying out native MS analysis involves 

exchanging the native buffer solution to one with similar ionic strength and pH that preserves 

the original molecular configuration, but which is volatile. This allows for evaporation and 

minimizing the formation of salt adducts in order to be compatible with MS. The solution is 

ionized using nano-ESI (ESI through a 1-10 micron diameter needle tip at nanoliter/min flow 
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rates), and instrument electronics and ion optics are modified to handle large m/z analytes.  

Achieving the goals of native MS is not straightforward, as protein complexes assemble with 

a high proportion of labile, noncovalent interactions. Despite this challenge, membrane 

proteins [47], ribosomes [48, 49], and 18 MDa viruses [7] have been successfully elucidated. 

Mass spectra obtained with native MS feature a complex charge state distribution due 

to a variable number of charges being incorporated into the molecule during nano-ESI 

(Figure 5). Determining mass requires deconvolving this series of peaks in the m/z spectrum, 

so each charge state peak must therefore be distinct or the analysis will fail. This in turns 

requires both high resolving power at high m/z values, as well as a relatively pure 

(homogeneous) sample [50-52]. Typically, this is accomplished with a targeted protein of 

interest that has been expressed at high levels in a genetically engineered culture, where a 

 
Figure 5. Native mass spectrometry. (A) Crystal structure of E. coli GroEL, an 800 kDa 

protein assembly consisting of 14 identical monomers. (B) GroEL produces a mass 

spectrum with a charge state distribution produced from the same molecule associated 

with a variable number of charges. Each assigned charge state (68+, 69+, 70+) multiplied 

by the m/z value for each peak recovers the intact mass of 800 kDa.  (C) High resolution 

instruments can distinguish ADP and ATP molecules (~500 Da) co-incubated with 

GroEL, providing information on binding dynamics. Adapted from [6]. 
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large amount of sample can be produced in order to survive multiple filtration and 

purification stages. The latter often must be developed de novo for each new molecule of 

interest. This process thus does not lend itself to large-scale experimental analysis and, 

especially, the discovery of rare molecular complexes in an unknown, complex mixture such 

as typically obtained via a proteomic workflow.  

The applications of Native MS are vast. For example, screening millions of 

interacting compounds to target specific proteins is critical to development of new 

pharmaceuticals. These can involve antibody isoforms (proteins encoded from the same gene 

with alternative splicings or post-transcriptional modifications) with masses exceeding 

1 MDa. Native MS can also provide information about topology and dynamics that is 

important for structural biology; for example, the locations and nature of ligand binding sites 

[53-56], and information about membrane protein complexes [47]. By contrast, top-down 

MS, which involves molecular dissociation and subsequent analysis of the resulting 

molecular fragments, can generate sequence and identity information for monomeric 

proteins, but provides limited applicability for analyzing large, noncovalent protein 

complexes. In part, this limitation is instrumental: measurement of large (greater than 100 

kDa) protein complexes is difficult with conventional MS systems.  However, existing MS 

systems also typically do not have sufficient sensitivity to resolve individual protein 

complexes, so purification to create a homogeneous population of analytes becomes 

essential. Otherwise, the analysis of heterogeneous populations of protein complexes in more 

typical experiments will yield an “average” over differently assembled complexes – 

conflating, rather than stratifying, the variety of species present within the sample. 
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Despite these advances, native mass spectrometry faces several important limitations, 

the most important being the need for homogeneous samples. As discussed previously, 

intrinsic to the technique of mass spectrometry is the requirement to calculate mass via 

deconvolution of a series of peaks formed from individual charge states. Mass assignment 

then fails if sample heterogeneity causes peaks to broaden enough that they overlap. 

Heterogeneity can arise in samples with a variable number of water molecules or salt adducts 

due to incomplete solvent evaporation, as well as heterogeneous mixtures with small mass 

variations or substoichiometric components. Each of these cases will be discussed briefly.  

Adduct formation due to incomplete desolvation. Nano-ESI forms smaller droplets 

that evaporate more efficiently, allowing for the use of aqueous solvents that help preserve 

structure. However, this process of evaporation becomes less efficient for huge particles with 

more sites to interact with water molecules or ammonium ions. Therefore, for very large 

particles, even extremely pure samples will still carry a variable number of water molecules 

or salt ions, resulting in broader peaks [50]. Currently, desolvation limits the largest 

detectable complex in native mass spectrometry to around 18 MDa [7] (Figure 6a). 

..Heterogeneous mixtures. Separation of large heterogeneous mixtures proves more 

challenging. Peaks for the 30S small ribosomal subunit can be resolved, but not for the 50S 

large ribosomal subunit (Figure 6b). This is due to loss of the L10/(L7/L12)4 stalk complex 

from some of the 50S large ribosomal subunits, so the 50S units that are detected are too 

heterogeneous for the peaks to be distinguishable [15]. In possibly a more extreme case of 

heterogeneity, small RNAs of unknown, random length are incorporated during assembly of 

the Hepatitis B virus, preventing charge state and mass assignment for the entire, intact virus 

(Figure 6c) [20]. Researchers could only estimate the mass at between 5,000 – 6,500 kDa, 
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demo 

 
Figure 6. Limitations of native mass spectrometry. Heterogeneity broadens peaks, 

which can prevent charge state assignment and deconvolution to determine mass. 

Heterogeneity can be observed in samples with (A) incomplete desolvation, resulting in 

complexes with variable water and ammonium ions [7], (B) loss of the stalk complex 

from some of the 50S ribosomal subunits [15], and (C) incorporation of random small 

RNAs from the cellular environment during assembly of Hepatitis B virus [20]. 

Oligomers of up to 28-mers (~440kDa) and intact capsids (~2.5-4 MDa) are resolved. 

The number of monomers and the charge of the most abundant charge state is indicated 

above the oligomer peaks. The different charge-state distributions are color-coded. Intact 

HBV capsids (magenta/purple traces) do not show charge-state resolution due to low 

activation energies and sample heterogeneity; the sample contains complete capsid 

assemblies and those lacking one or two dimers. 
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demonstrating that, without charge state assignment, mass values are highly uncertain. In 

contrast, the capsid shell proteins engineered to self-assemble in vitro form two 

homogeneous structures with clearly resolvable peaks.  

Qualitative nature of data. Finally, it should be noted that peak size in native mass 

spectrometry is related to ionization, transmission, and detection efficiency, which can differ 

between different species; because of this, quantitative information is difficult to obtain [57]. 

1.6 Overview of single molecule NEMS-MS and inertial imaging 

Over the past two decades, mass measurements using nanomechanical devices have 

systematically improved to the point where they now offer the capability for a new form of 

mass spectrometry. Upon adsorption onto the surface of a NEMS resonator, an individual 

molecule will downshift the device’s resonant frequency by a small, but measurable, amount. 

The small size of NEMS makes them extremely sensitive to the added mass of adsorbed 

particles [58-63], and this has enabled mass detection of individual proteins [8, 64], 

nanoparticles [65], large biomolecules [66, 67], and individual atoms [68-71].  

Details on the operation of NEMS devices for real-time single-molecule mass 

detection have been described elsewhere [8, 64, 72]; critical aspects will be discussed here 

and the next few sections for convenient reference. Upon its adsorption onto a 

nanomechanical resonator, typically a cantilever or doubly-clamped beam, a point analyte 

with mass 𝛿𝑚 – a single molecule, molecular complex, or nanoparticle – induces a downshift 

in resonant frequency of the resonator expressed by the formula 

𝛿𝑓𝑛

𝑓𝑛
= −

𝛿𝑚

2𝑀𝑛
𝑒𝑓𝑓

𝜙𝑛(𝑎)2.                                                   (4) 
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The resulting fractional frequency shift, 𝛿𝑓𝑛 𝑓𝑛⁄ , is proportional to the fractional mass 

change, 𝛿𝑚 𝑀𝑛
𝑒𝑓𝑓⁄ .  Here, 𝑓𝑛 is the resonant frequency of the NEMS resonator’s 𝑛th mode, 

𝑀𝑛
𝑒𝑓𝑓

 is the resonator’s effective modal mass, 𝛿𝑓𝑛 is the mode’s frequency shift, 𝜙𝑛 denotes 

the mode shape, and 𝑎 is the position-of-adsorption of the molecule upon the beam 

(normalized to unitary beam length). The effective mass can be written 𝑀𝑛
𝑒𝑓𝑓

= 𝑀𝛼𝑛 where 

𝑀 is the device mass and the numerical constant 𝛼𝑛, which depends on mode number, is of 

order unity [8]. 

In the experimental approach developed in the Roukes group, a NEMS device or 

array of devices is placed in a vacuum chamber, cooled below ambient temperature, and its 

frequencies are continuously tracked with a sensitive electronic (phase-locked) control loop.  

Using methods from conventional mass spectrometry, biomolecules are delivered 

sequentially to the NEMS device, and the induced frequency shifts arising from single-

 
Figure 7. Detection of human IgM antibodies by NEMS-MS. (A) Individual IgM 

particles landing on a doubly-clamped nanomechanical beam resonator produce abrupt 

shifts in the first (black) and second (blue) mechanical modes. The frequency offset is 25 

(67) MHz for the first (second) mode.  Inset: magnification of a typical frequency shift as 

tracked by the feedback loop. (B) Molecule-by-molecule acquisition of the mass spectra 

for human IgM proteins. Different molecular isoforms accumulate at their respective mass 

values. The sum spectrum (black) combined from all 74 events has readily identifiable 

peaks corresponding to major isoforms of IgM typically found in human serum. From [8]. 
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molecule events are measured for two modes and used to deduce the adsorbing analyte’s 

mass and position [8].  Cooling the NEMS enhances non-specific physisorption of the 

arriving analytes on the surface of the device(s). Figure 7a shows example raw data of time-

correlated frequency shifts induced in the first two displacement mechanical modes of a 

NEMS resonator by single-molecule events. 

By individually measuring the mass of sequentially arriving particles, a mass 

spectrum representing the entire heterogeneous sample can be constructed, as seen in Figure 

7b. Here, each IgM molecule landing on the device appears as a Gaussian-like mass 

distribution, with the distribution representing the uncertainty in deduced mass (in 

comparison, peak height in conventional mass spectrometry represents the number of species 

detected, with peak width the result of heterogeneity). As subsequent molecules land on the 

device, the mass spectrum for each molecule can be added together if desired, to form a 

composite spectrum representing the entire sample (Figure 7b, black curve) – but NEMS-

MS resolves its intrinsic components. 

Over the past decade, the Roukes group has constructed several experimental systems 

for performing NEMS-based mass spectrometry.  One tabletop system, used to acquire the 

IgM data shown in Figure 7, employs ESI and ion optics to guide individual analyte ions 

onto the NEMS sensor(s). The setup consists of an ESI system to launch protein ions into 

three successive, differentially pumped vacuum chambers. The analytes are transported 

along their trajectory by hexapole ion guides, and ultimately delivered to the NEMS analysis 

stage. A flow cryostat is used to cool this stage to stabilize analyte physisorption onto the 

NEMS sensors. Complete system details can be found in [8]. 

Inertial Imaging.  Inertial imaging is somewhat analogous to IMS, but provides the 
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enhanced capabilities of single-molecule analysis without rotational averaging. Inertial 

imaging is a new NEMS-based technique that provides the spatial distribution of mass within 

an individual analyte – in real time and with molecular-scale resolution – when it adsorbs 

onto a nanomechanical resonator [17]. By continuously monitoring multiple vibrational 

modes of a nanomechanical device, the spatial moments of mass distribution can be deduced 

for individual analytes, one-by-one, as they adsorb.  This new method for inertial imaging 

has been validated with finite-element simulations to permit analysis of the inertial mass, 

position-of-adsorption, and the molecular shape of individual analytes. Details of the 

mathematical formalism underlying inertial imaging can be found in [17].  In brief, when an 

analyte lands on a nanomechanical resonator, each of its vibrational modes frequency shifts 

differently in response to the attached load.  An ensemble of these distinct modal frequency 

shifts can then be used to yield moments of the analyte’s mass density distribution; to deduce 

 
Figure 8. Inertial imaging FEM simulations. (A) A rectangular test particle (gray) is 

placed along a doubly-clamped beam. A snapshot of displacement for the fourth out-of-

plane flexural mode of the beam is shown.  Colors represent displacement magnitude. 

The physical characteristics of the beam are the same as those in [8]. (B) The simulated 

step-wise density profile of the test particle in the x-direction (gray).  The spatial moments 

derived using inertial imaging are used to recreate an approximation of the original 

distribution using Pearson’s method (red). The frequency shifts in the first five out-of-

plane displacement beam modes were used. (C) The simulated and calculated values of 

the first five spatial moments of the particle using the frequency shifts. From [17]. 
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𝑁 moments requires measuring induced shifts in a minimum of 𝑁 + 1 modes. The new 

method is termed inertial imaging as it enables reconstruction of the analyte’s  spatial mass 

density from the deduced moments – e.g., using a Pearson distribution [17] (Figure 8). 

1.7 Mass adsorption to an Euler-Bernoulli beam  

NEMS-MS efforts to date have made use of flexural beams such as cantilevers or 

doubly-clamped beams that are simple to fabricate and have dimensions much longer than 

their width or thickness. Small deflections of such devices are governed by Euler-Bernoulli 

beam theory, which postulates that beam cross-sections remain perpendicular to the neutral 

axis (the geometric centroid for these devices), and transverse deflections are a function of 𝑥 

(along the beam’s length) only. An illustration of a beam is shown in Figure 9 along with 

variable conventions used in this text.   

For a homogeneous beam with deflection function 𝑢(𝑥, 𝑡), the kinetic energy per unit 

length is 

 
Figure 9. Doubly-clamped beam geometry. Variable conventions for axes and 

dimensions used in the text are shown for a doubly-clamped beam. For in-plane motion, 

beam displacement is in the 𝑦 direction and a function of 𝑥 only. The white dashed line 

shows the second resonant mode 𝜙2(𝑥). 
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𝑇 =
1

2
𝜇0 (

𝜕𝑢

𝜕𝑡
)

2

,                                                            (5) 

where 𝜇0 is the linear mass density of the beam, and the potential energy (strain energy) per 

unit length is 

𝑉 =
1

2
𝐸𝐼 (

𝜕2𝑢

𝜕𝑥2
)

2

,                                                         (6) 

where 𝐸 is the Young’s modulus and 𝐼 is the second moment of area. In the language of 

modern physics, we can write the Lagrangian density as 

ℒ(𝑥, 𝑡, 𝑢, 𝑢̇, 𝑢𝑥𝑥) = 𝑇 − 𝑉 =
1

2
𝜇0𝑢̇2 −

1

2
𝐸𝐼𝑢𝑥𝑥

2  ,                            (7) 

where we have assumed no external loads or forces, and no damping. From here, we can 

derive the equation of motion: 

𝜕

𝜕𝑡

𝜕ℒ

𝜕𝑢̇
−

𝜕2

𝜕𝑥2

𝜕ℒ

𝜕𝑢𝑥𝑥
−

𝜕2

𝜕𝑡𝜕𝑥

𝜕ℒ

𝜕𝑢̇
𝜕𝑥

= 0                                                   

𝐸𝐼
𝜕4𝑢(𝑥, 𝑡)

𝜕𝑥4
+ 𝜇0𝑢̈(𝑥, 𝑡) = 0 .                                               (8) 

Given harmonic motion 𝑢(𝑥, 𝑡) ↦ 𝑢(𝑥)𝑒𝑖𝜔𝑡, we can write 

𝐸𝐼
𝑑4𝑢(𝑥)

𝜕𝑥4
− 𝜇0𝜔2𝑢(𝑥) = 0 .                                                (9) 

The associated boundary conditions for a cantilever anchored at 𝑥 = 0 and free at 𝑥 = 𝐿 are: 

𝑢(0) = 0,     𝑢′(0) = 0,     𝑢′′(𝐿) = 0,     𝑢′′′(𝐿) = 0                      (10a) 

and for a doubly-clamped beam anchored at 𝑥 = 0 and 𝑥 = 𝐿 are: 

𝑢(0) = 0,     𝑢′(0) = 0,     𝑢(𝐿) = 0,     𝑢′(𝐿) = 0 .                       (10b) 

Equations 9 and 10 together constitute a regular fourth-order Sturm-Liouville problem [73], 

which guarantees an infinite number of solutions for 𝜔 and associated displacement 
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functions 𝑢(𝑥). These solutions are the resonant frequencies 𝜔𝑛 and mode shapes or 

eigenfunctions 𝜙𝑛(𝑥), which (according to Sturm-Liouville theory) are orthogonal: 

1

𝐿
∫ 𝜙𝑚(𝑥)𝜙𝑛(𝑥) 𝑑𝑥 = 𝛿𝑚𝑛 = {

0,     𝑚 ≠ 𝑛
1,     𝑚 = 𝑛

𝐿

0

  .                           (11) 

To solve for 𝜔𝑛 and 𝜙𝑛, we first write the general solution to Equation 9: 

𝜙𝑛(𝑥) = 𝑎𝑛 cos
𝜆𝑛

𝐿
𝑥 + 𝑏𝑛 sin

𝜆𝑛

𝐿
𝑥 + 𝑐𝑛 cosh

𝜆𝑛

𝐿
𝑥 + 𝑑𝑛 sinh

𝜆𝑛

𝐿
𝑥              (12)  

where  

𝜆𝑛

𝐿
= (

𝜇0𝜔𝑛
2

𝐸𝐼
)

1 4⁄

  .                                                     (13) 

Given 𝐼 = 𝑡𝑤3 12⁄  for beams with rectangular cross-section, and writing the linear mass 

density of the beam in terms of its density as 𝜇0 = 𝜌0𝑤𝑡, the resonance frequencies can be 

written in terms of the eigenvalues as 

𝑓𝑛 =
𝜔𝑛

2𝜋
=

𝑤

4𝜋
√

𝐸

3𝜌0
(

𝜆𝑛

𝐿
)

2

 .                                              (14) 

Applying the four boundary conditions in Equation 10a or 10b to Equation 12 is sufficient 

to solve for the eigenvalues 𝜆𝑛 and the eigenfunctions 𝜙𝑛(𝑥) up to some scaling factor. 

Writing 𝑘𝑛 = 𝜆𝑛 𝐿⁄ , we obtain, for a cantilever: 

[sinh2 𝑘𝑛 − sin2 𝑘𝑛] − [cosh 𝑘𝑛 + cos 𝑘𝑛]2 = 0                      (15a) 

𝜙𝑛(𝑥) = 𝐴𝑛 ([sinh 𝑘𝑛𝑥 − sin 𝑘𝑛𝑥] −
sinh 𝑘𝑛 + sin 𝑘𝑛

cosh 𝑘𝑛 + cos 𝑘𝑛

[cosh 𝑘𝑛𝑥 − cos 𝑘𝑛𝑥]2)    (16a) 

and for a doubly-clamped beam: 

[sinh2 𝑘𝑛 − sin2 𝑘𝑛] − [cosh 𝑘𝑛 − cos 𝑘𝑛]2 = 0                     (15b) 

𝜙𝑛(𝑥) = 𝐵𝑛 ([sinh 𝑘𝑛𝑥 − sin 𝑘𝑛𝑥] −
sinh 𝑘𝑛 − sin 𝑘𝑛

cosh 𝑘𝑛 − cos 𝑘𝑛

[cosh 𝑘𝑛𝑥 − cos 𝑘𝑛𝑥]2).   (16b) 
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Equations 15a and 15b can be solved numerically for 𝑘𝑛 and the results for the first five 

modes are shown in Table 2. The constants 𝐴𝑛 and 𝐵𝑛 for the mode shapes 𝜙𝑛(𝑥) can be set 

to satisfy the normalization condition in Equation 11, but conventionally they are set such 

that the maximum value of the function is 1. The first five mode shapes are plotted for a 

cantilever and a doubly-clamped beam in Figure 10. 

Upon adding a flat adsorbate (such as a molecule) with linear mass density 𝜇𝑎𝑑(𝑥), 

for a beam undergoing a deflection 𝑢(𝑥, 𝑡), the kinetic energy of the system increases by 

Δ𝑇 =
1

2
𝜇𝑎𝑑 (

𝜕𝑢

𝜕𝑡
)

2

,                                                       (17) 

where we have assumed the adsorbate is thin and flat relative to the device motion, allowing 

 
Figure 10. Device mode shapes. Mode shapes (eigenfunctions) normalized for a beam 

of length 1 are shown for (A) a cantilever and (B) a doubly-clamped beam. The 𝑛th mode 

crosses the 𝑥-axis 𝑛 − 1 times. 

Table 2. Eigenvalues for first five resonant modes of a cantilever and doubly-

clamped beam. Shown are values for 𝑘𝑛 solving Equations 15a and 15b, where 𝑘𝑛 =
𝜆𝑛 𝐿⁄  are the eigenvalues for a beam normalized to length 1. 

Device Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Cantilever 1.8751 4.6941 7.8548 10.9955 14.1372 

Doubly-

clamped beam 
4.7300 7.8532 10.9956 14.1372 17.2788 
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us to neglect any contribution due to rotational inertia. To determine the change in resonance 

frequency to first order, we can first use Rayleigh’s energy method, which states that the 

energy in a dynamical system is conserved: 

𝑑

𝑑𝑡
(KE + PE) =

𝑑

𝑑𝑡
(

1

2
∫ 𝜇0 (

𝜕𝑢

𝜕𝑡
)

2

𝑑𝑥

𝐿

0

+
1

2
∫ 𝐸𝐼 (

𝜕2𝑢

𝜕𝑥2
)

2

𝑑𝑥

𝐿

0

) = 0           (18) 

𝜔𝑛 = √
∫ 𝐸𝐼 (

𝜕2𝜙𝑛

𝜕𝑥2 )
2

𝑑𝑥
𝐿

0

∫ 𝜇0𝜙𝑛
2(𝑥) 𝑑𝑥

𝐿

0

= √
𝐾𝑛

𝑒𝑓𝑓

𝑀𝑛
𝑒𝑓𝑓

 .                                      (19) 

To go from Equation 18 to 19, harmonic motion 𝑢(𝑥, 𝑡) ↦ 𝑢(𝑥)𝑒𝑖𝜔𝑡 was used and the 

resulting deflection function at resonance relabeled in terms of the mode shapes 𝜙𝑛. The 

resonance frequency written in Equation 19 can be understood in terms of the beam’s 

effective modal stiffness 𝐾𝑛
𝑒𝑓𝑓

 and effective modal mass 𝑀𝑛
𝑒𝑓𝑓

. Assuming the beam stiffness 

and the mode shapes do not change upon adding the adsorbate, the same method can be used 

to determine the new frequency: 

ω𝑛
′ = √

𝐾𝑛
𝑒𝑓𝑓

𝑀𝑛
𝑒𝑓𝑓

+ ∫ 𝜇𝑎𝑑𝜙𝑛
2(𝑥) 𝑑𝑥

𝐿

0

 .                                        (20) 

Assuming the mass of the adsorbate is small relative to the beam, the relative frequency shift 

can be written: 

Δ𝜔𝑛

𝜔𝑛
=

ω𝑛
′ − 𝜔𝑛

𝜔𝑛
≈ −

1

2𝑀𝑛
𝑒𝑓𝑓

 ∫ 𝜇𝑎𝑑𝜙𝑛
2(𝑥) 𝑑𝑥

𝐿

0

,                           (21) 

where 𝑀𝑛
𝑒𝑓𝑓

= 𝑀𝛼𝑛, with 𝑀 denoting total beam mass. Calculated values for 𝛼𝑛 =

∫ 𝜙𝑛
2(𝑥) 𝑑𝑥

𝐿

0
 are given in Table 3. 

In the case of a point particle, 𝜇𝑎𝑑 = 𝑚𝑎𝑑𝛿(𝑥 − 𝑎), where 𝛿 is the Dirac delta 
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function, 𝑚𝑎𝑑 is the particle mass, and 𝑎 is the particle’s position, the formula simplifies: 

Δ𝜔𝑛

𝜔𝑛
=

Δ𝑓𝑛

𝑓𝑛
= −

𝑚𝑎𝑑

2𝑀𝑛
𝑒𝑓𝑓

𝜙𝑛
2(𝑎) .                                           (22) 

The two unknowns 𝑚𝑎𝑑 and 𝑎 can be solved given the fractional frequency shifts of the first 

two resonant modes of a doubly-clamped beam [8]; for a cantilever, three modes are required. 

In the more general case where the particle has an arbitrary mass distribution 𝜇𝑎𝑑(𝑥), the 

mass moments – total mass, position, standard deviation ∫ 𝜇𝑎𝑑(𝑥)(𝑥 − 𝑥̅)2 𝑑𝑥
𝐿

0
, skewness, 

etc., of the analyte, can be calculated using more than two fractional frequency shifts [17, 

74]. 

Determination of the distribution itself 𝜇𝑎𝑑(𝑥), i.e. imaging the particle, is an ill-

posed inverse problem as discussed in Chapter 5. Additionally, these calculations assume no 

kinetic energy contribution due to rotational inertia. Certain classes of analytes, such as a 

nanoparticle with minimal contact area compared with its height, or a thin molecule 

undergoing in-plane motion as shown in Figure 9 would need a new theory to account for 

this effect. As mentioned previously, no change in device stiffness is assumed; other groups 

have explored classes of analytes which would induce this effect [75, 76]. Finally, the device 

mode shapes can be appreciably modified for certain classes of analytes; see Appendix B. 

Table 3. Calculating effective modal mass. Effective modal mass used for calculating 

frequency shifts is given by 𝑀𝑛
𝑒𝑓𝑓

= 𝑀𝛼𝑛, with values for 𝛼𝑛 tabulated below. 

Device Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Cantilever 0.25 0.25 0.25 0.25 0.25 

Doubly-

clamped beam 
0.3965 0.4390 0.4371 0.4372 0.4245 
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Ignoring position, the sensor’s mass responsivity (sensitivity to added mass) is:  

ℛm =
Δ𝑓𝑛

Δ𝑚
= −

𝑓𝑛

2𝑀𝑛
𝑒𝑓𝑓

= −
1

8𝜋𝜌0𝑡𝐿
√

𝐸

3𝜌0
(

𝜆𝑛

𝐿
)

2

∝
1

𝑡𝐿3
.                      (23) 

Scaling linear dimensions by a factor of 103 from MEMS to NEMS produces twelve orders 

of magnitude in mass responsivity, demonstrating enormous potential for NEMS technology. 

1.8 Device fabrication and operation 

Devices used for measurement in this thesis were fabricated at CEA-LETI (Grenoble, 

France) under the framework of the Alliance for Nanosystems VLSI, a collaboration between 

Dr. Roukes and Leti-Minatec, a micro and nanotechnologies campus with clean rooms 

devoted to teaching and tech transfer. The devices are in-plane resonators for mass sensing 

applications designed with a top-down process compatible with VLSI CMOS on 200 mm 

silicon-on-insulator (SOI) of (100) orientation with a p++ doped top silicon layer (9 ∙ 1018 

cm-3 to 5 ∙ 1019 cm-3) [77-79]. Colorized SEM images of cantilevers and doubly-clamped 

 
 

Figure 11. Colorized SEM images of devices used in this thesis. In-plane 

nanomechanical (a) cantilevers and (b) doubly-clamped beams fabricated at CEA-LETI 

under the Alliance for Nanosystems VLSI. Actuation pads in red, bias gauges in blue, and 

output in green. From [2]. 
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beams are shown in Figure 11. Several fabrication runs were made, the most recent providing 

hundreds of devices per chip, including single devices and arrays of 20, 49, and 100 devices 

[80]. The devices used in this thesis are from the CAL3 wafer (referring to the third 

fabrication run of the Alliance). The typical device is 300 nm wide by 160 nm thick, and the 

chip includes devices with a range of lengths from 7.2-10 µm, with longest giving a 

resonance frequency of the first mode at 25 MHz. The beams are sent into motion by the 

capacitive force between actuation pads and the beam. The nanogauges alternately 

experience compressive and tensile strain as the beam moves; this is converted to an 

electrical signal through the piezoresistive effect. Details are provided or referenced in [2] 

and summarized below. 

Actuation. Device motion occurs through capacitive force originating from a voltage 

difference between the actuation electrode and beam. Assuming small displacements relative 

to the gap between the two surfaces, this electrostatic force can be approximated as [2]: 

𝐹𝑒𝑙 ≈ −
𝐴𝜀0

2𝑔2
𝑉𝑑

2 ,                                                        (24) 

where 𝐴 is the capacitor surface area, 𝑔 is the gap between the electrode and beam, and 𝑉𝑑 

is the actuation voltage. For an actuation voltage with DC and AC components 𝑉𝑑 = 𝑉𝐷𝐶 +

𝑉𝐴𝐶 cos 𝜔𝑡, this expands to 

𝐹𝑒𝑙 = −
𝐴𝜀0

2𝑔2
(𝑉𝐷𝐶

2 +
𝑉𝐴𝐶

2

2
+ 2𝑉𝐷𝐶𝑉𝐴𝐶 cos 𝜔𝑡 +

𝑉𝐴𝐶
2

2
cos 2𝜔𝑡) ,            (25) 

which has components at DC, 𝜔, and 2𝜔. This nonlinear transduction effect can be combined 

with the standard lock-in amplifier’s capability of detection at the reference’s higher 

harmonics to enable two detection modes. In 1f mode, 𝑉𝑑 = 𝑉𝐷𝐶 + 𝑉𝐴𝐶 cos 𝜔𝑡 with 𝑉𝐷𝐶 ≠

0 and 𝜔 set to the device resonance frequency. In 2f mode, 𝑉𝑑 = 𝑉𝐴𝐶 cos 𝜔𝑡 with 𝜔 set to 
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half the device resonance frequency and the lock-in amplifier set to detect at 2𝜔. The 

capacitive force is proportional to 𝑉𝐷𝐶𝑉𝐴𝐶 for 1f mode and 𝑉𝐴𝐶
2  for 2f mode. At higher 

frequencies, where it is more difficult to deliver higher voltages, 1f mode can provide a 

stronger force with the much more accessible DC voltage. On the other hand, 2f mode 

prevents detection of any unintended DC voltage contribution that might arise; Chapters 2 

and 3 discuss the advantages of this approach when detecting charged analytes. 

Detection. As the beam is driven into motion, one nanogauge undergoes tension and 

the other compression. This alternates as the beam completes each cycle of oscillation. Strain 

in the gauges at frequency 𝜔 is transduced to resistance variation 𝑅 ± Δ𝑅 cos 𝜔𝑡 through the 

piezoresistive effect [77]:  

Δ𝑅

𝑅
= γε(ω) = 𝛾

𝐹𝑔(𝜔)

2𝑠𝐸
 ,                                              (26) 

where 𝛾 is the piezoresistive gauge factor (caused primarily by modification of the energy 

bands inside the semiconductor), 𝑠 is the gauge cross-sectional area, 𝐸 is the Young’s 

modulus, and 𝐹𝑔 is the force acting on the gauges. This force can be related to the electrostatic 

force on the beam given in Equation 25 by modelling the beam as a driven-damped oscillator: 

𝐹𝑔(𝜔) ∝
𝜔0

2

𝜔0
2 − 𝜔2 + 𝑖𝜔𝜔0 𝑄⁄

𝐹𝑒𝑙 ,                                      (27) 

where 𝜔0 is the resonance frequency and 𝑄 is the beam quality factor. The use of two 

opposing nanogauges allows for their operation in bridge configuration for background 

cancellation. At resonance frequency, which is typically in the MHz range, the electrical 

signal would be rapidly attenuated due to parasitic capacitance 𝐶𝑝. This includes cable 

capacitance (~100pF/m), the input impedance of the lock-in amplifier, the device pads for 

wirebonding, giving an overall 𝐶𝑝 of ~125 pF, which combines with the electrical resistance 
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of the device to effectively create a low pass filter at 120 kHz [77]. To overcome this, a 

downmixing technique [77, 81-83] is used in which the device is driven at its resonance 𝜔, 

and a bias voltage is applied to the nanogauges at 𝜔 − Δ𝜔 to read out resistance variation at 

a lower frequency Δ𝜔 (at <100 kHz). Three electrical ports are used with this approach, 

shown in Figure 11 as Bias+, Bias–, and Output. 

A circuit schematic of a device operated with downmixing is shown in Figure 12. In 

the standard approach, a bias voltage is applied with 180 degree splitter to opposite ends of 

nanogauges 𝑉𝑏 cos[(𝜔 − Δ𝜔)𝑡] and the output is monitored at the “output” electrode labeled 

in Figure 11. Alternatively, a bias voltage 𝑉𝑏 cos[(𝜔 − Δ𝜔)𝑡] is applied to the “output” 

electrode, and the voltage between “Bias+” and “Bias–” monitored. This approach was 

consistently found to yield superior background cancelation during the course of this thesis, 

 
 

Figure 12. Circuit schematic for piezoresistive downmixing. Gate voltage 𝑉𝑑 cos 𝜔𝑡 

is used to drive the device using capacitive force, and device motion induces resistance 

variation in the nanogauges 𝑅 ± Δ𝑅 cos 𝜔𝑡. A downmixing scheme is then used in which 

a bias voltage 𝑉𝑏 cos[(𝜔 − Δ𝜔)𝑡] is applied, leading to a signal proportional to Δ𝑅 𝑅⁄  at 

a lower frequency Δ𝜔 that can pass through the parasitic cable capacitance 𝐶𝑝. This output 

signal is differentially read into the lock-in amplifier. PS, LPF, LIA are power splitter, 

low-pass filter, lock-in amplifier. 
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so it is the one depicted in Figure 12.  A circuit analysis shows this results in a differential 

current induced in nanogauges to leading order in Δ𝑅 𝑅⁄  given by 

Δ𝑖𝑜 =
𝑉𝑏 cos[(𝜔 − Δ𝜔)𝑡]

4𝑅(𝑅𝑏 + 𝑅 2⁄ )
Δ𝑅 cos 𝜔𝑡 ,                                  (28) 

which is converted to a voltage through the input impedance of the lock-in amplifier 𝑍𝑖𝑛. An 

output signal proportional to Δ𝑅 𝑅⁄  is produced at Δ𝜔 and 2𝜔 + Δ𝜔, with the higher 

frequency signal removed by the lock-in’s built-in low pass filter if it is not already attenuated 

by the parasitic capacitance. The lock-in amplifier extracts the component of the input signal 

in-phase and out-of-phase with the reference at Δ𝜔, which is output as the magnitude of the 

signal 𝑉𝑜(𝜔) and its phase 𝜃 relative to the reference for a given 𝜔: 𝑉𝑜(𝜔) ∝ Δ𝑖𝑜(𝜔) cos 𝜃. 

Open and closed loop operation. Equations 24-28 provide the overall signal 

transduction pathway between the input and output signals. The transfer function as extracted 

by the lock-in can be written: 

𝑉𝑜(𝜔) ∝
𝜔0

2

𝜔0
2 − 𝜔2 + 𝑖𝜔𝜔0 𝑄⁄

𝑉𝑑
2(𝜔) .                                  (29) 

The device operates like a bandpass filter around its resonance frequency 𝜔0 with bandwidth 

Δ𝜔 related to its quality factor 𝑄 = 𝜔0 Δ𝜔⁄ . The device also introduces a phase shift −𝜋 2⁄  

at resonance. In open loop operation, the actuation frequency 𝜔 is swept around 𝜔0, and the 

magnitude of the output signal, given by Equation 29, is fitted to a Lorentzian function to 

obtain 𝜔0 and 𝑄 for the device. Once these parameters are known, closed-loop operation is 

used to operate the device continuously at its resonance frequency with the use of a phase-

locked loop (PLL). The AC drive and bias frequency 𝜔 is continuously adjusted to target a 

phase shift between it and the signal detected by the lock-in amplifier of −𝜋 2⁄ . This is 

achieved in a robust and stable manner, returning the device to resonance quickly for a large 
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perturbation (e.g., when an adsorbate lands), while filtering out high frequency disturbances 

(e.g., arising from device noise), through the use of H∞ loop shaping [84]. 

Measurement noise. Fluctuations in the resonance frequency tracked in the PLL can 

be characterized with a statistical tool called the Allan deviation [85]. It is analogous to a 

standard deviation calculation over (averaged) sequential fractional frequency data: 

𝜎𝑦(𝜏) = √
1

2(𝑁 − 1)
∑(𝑦̅[𝑛 + 1] − 𝑦̅[𝑛])2

𝑁−1

𝑛=1

 ,                                  (30) 

where 𝜏 is the PLL time, 𝑁 is the number of samples, 𝑦 is the averaged fractional frequency 

difference:  

𝑦̅𝑛(𝑖) =
𝑓𝑛̅(𝑖 + 1) − 𝑓𝑛̅(𝑖)

𝑓𝑛̅

,                                                 (31) 

𝑓𝑛̅(𝑖) is the mean frequency at time 𝑖 over some averaging time, typically a multiple of 𝜏. 

The slope of Allan deviation versus time scale can be used to identify the dominant noise 

source driving frequency fluctuations as shown in Figure 13. Devices used in this thesis are 

 
 

Figure 13. Noise source based on 𝝉-dependence of Allan deviation. From [1]. 
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typically limited by white noise for short measurement times. Lower noise can be achieved 

with longer measurement times (at the expense of reducing the rate of detection of molecular 

adsorption events), up until the device is dominated by its intrinsic 1/f mechanical domain 

noise (having an Allan deviation with 𝜏0 dependence), at which point further signal 

averaging does not provide any advantage. Typically, the best Allan deviation for CAL3 

devices is achieved with a measurement time of around 100 ms. 

The mass resolution at 1𝜎 can be related to the Allan deviation using Equation 21: 

𝜎𝑚 = 𝜎𝑦(𝜏)
2𝑀𝑛

𝑒𝑓𝑓

𝜙𝑛
2(𝑎)

 .                                                     (32) 

A theoretical formula for Allan deviation for devices limited by thermomechanical noise has 

been developed [77, 86]: 

𝜎𝑦(𝜏) ≈
10−DR 20⁄

√𝑄
 ,                                                     (33) 

where DR is the dynamic range. The in-plane piezoresistive devices described in this section 

have a DR of 100 dB and should have a theoretical Allan deviation of 1.5 ⋅ 10−9 over an 

integration time of 1 second, corresponding to a mass resolution of 0.3 zg or 180 Da at room 

temperature [77]. Experimentally, Allan deviations of 6 ⋅ 10−6 at room temperature appear 

to be the lower limit [77], corresponding to a mass resolution of 720 kDa. The large gap 

between experimental and expected mass resolution is an open question; progress in this area 

would clearly reap enormous benefits. Empirically, the performance improves with lower 

temperature. Experiments are typically performed at 80 K with the use of liquid nitrogen; 

typical performance gives a mass resolution of 50 kDa [8]. 
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1.9 Contribution of NEMS to classical mass spectrometry 

NEMS-MS promises several intriguing avenues to enhance the traditional field of 

mass spectrometry due to the unique measurement methodology and extreme sensor 

responsivity. Most notably, it is fundamentally a single molecule technology. This allows for 

accurate signal quantification over an arbitrary range, in principle providing unlimited 

dynamic range. As shown in Table 1, modern high resolution mass spectrometers have a 

limited dynamic range due to the inability to trap or focus large numbers of ions; mutual 

repulsion causes ions to affect each other’s flight time or trajectory, impacting the 

measurement [14]. This issue is most problematic when attempting to detect a rare analyte 

in a mixture. As discussed in Section 1.4, the human proteome has a concentration dynamic 

range of >1010 with the rarest proteoforms or MPCs often the most clinically significant. 

With NEMS-MS technology, detection of each molecule would not in principle be affected 

by prior measurements, allowing for much deeper proteomic profiling. 

NEMS-MS provides a direct measurement of each analyte’s inertial mass, rather than 

an indirect measurement provided with m/z instruments. Intact proteoforms or MPCs are 

detected as multiple peaks in traditional mass spectra, further complicating a sample likely 

to already be heterogeneous. NEMS-MS mass spectra do not require deconvolution 

algorithms that can fail if such spectra become too complex. 

NEMS devices compatible with VLSI CMOS, such as discussed in Section 1.8, have 

the possibility of mass production and multiplexing. A field of 100,000 NEMS or more can 

be feasibly fabricated using VLSI technology, allowing for experiments to be completed 

faster, or to keep pace with a liquid chromatography column eluting at a fixed rate. As an 

example, for a human cell with 2 billion protein molecules [41], it would take a single NEMS 
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device operating with four modes around one year to compile the complete proteome using 

a measurement time of 10 ms. With a field of 100,000 NEMS, this could be reduced to about 

10 minutes. 

As discussed in Section 1.5, traditional mass spectrometry can handle very large 

biomolecules (>18 MDa), but these samples must be pure, with minimal heterogeneity. 

Obtaining such a sample often requires laborious sample preparation that must be tailored to 

each individual molecule prior to it producing a viable mass spectrum, and the resulting 

purified sample does not necessarily resemble its native in vivo state. In contrast, the upper 

mass limit of NEMS-MS is around 10% the mass of the beam (which is around 30 GDa for 

the LETI style devices). As NEMS-MS directly measures mass, no deconvolution of 

complicated mass spectra is necessary, so the sample could be measured from the in vivo 

environment without specialized purification. Additionally, the mass resolution (or resolving 

power) for typical mass spectrometers typically becomes much worse for larger m/z values 

(Figure 3); in contrast, the mass resolution for NEMS-MS is a function of the frequency 

fluctuations present while tracking its resonance frequency alone as given by Equation 32; 

this equation has no dependency on the analyte’s mass. 

Despite the promising applications of NEMS technology in the field of mass 

spectrometry, important technological barriers remain. The most pressing is the relatively 

low mass resolution realized by devices used in our group to date for detecting molecules. 

While carbon nanotubes have been used with reported mass resolution at the yoctogram level 

(~1 Dalton) [71], such devices are not readily compatible with CMOS electronics and VLSI, 

both of which are needed to form large arrays for proteomic or single-cell experiments; 

additionally these devices may be too narrow for adsorption of proteoform complexes. The 
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LETI fabricated devices we use meet both these requirements, but the mass resolution is 50 

kDa. As discussed in Section 1.8, the noise of these devices is significantly higher than their 

theoretical limit, which should yield a resolution of 180 Da, indicating there is a substantial 

opportunity for improvement. Lower temperatures can also be used; plans are currently in 

motion to design devices that can be operated at milliKelvin temperatures. The ultimate limit 

for mass sensing with the use of mechanical devices has been conjectured, as dictated by 

quantum mechanics, to be at the microDalton level [87]. 

Mass resolution at the tens of kiloDalton level has only limited practical applications, 

while devices at the microDalton level would offer potential for a true paradigm shift in the 

field of mass spectrometry. Mass differences of less than a single electron could be detected 

in the latter case. Intermediate milestones might still provide some utility if the NEMS 

devices can be configured to analyze molecules prior to final measurement in an MS 

analyzer. Active efforts are under way in the Roukes group to desorb molecules from NEMS 

devices after they have been adsorbed and analyzed, while retaining their charge. Such a 

workflow would allow for pre-fractionation of molecules in a sample according to 

orthogonal physical attributes, including their mass, shape, charge [88], heat capacity [89], 

and so on, as determined by NEMS, prior to the ultimate m/z measurement, with the aim of 

simplifying a complex mass spectrum for a proteomic MS or native MS experiment. This 

multi-physical approach to single-molecule analysis could present a competitive alternative 

to chromatography methods with large sample dilution, poor resolution, and a limited ability 

to keep weakly bound protein complexes intact. 

The small cross-sectional area of NEMS devices (~3 µm2 for the LETI devices) 

would seem to severely limit the molecular detection rate as well as the detection limit 
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(number of molecules in the initial solution needed to produce a signal); the earliest ESI-

based setup developed in the Roukes group detected an event every ~20 minutes [72]. 

Proteomic experiments with heterogeneous samples would then require long experiment 

times and enormous amounts of starting material to produce a useful mass spectrum. 

However, the flux rate is determined based on the NEMS capture cross section relative to the 

ion beam. In Chapter 3, we will show that ion optics can be used to focus the beam to a small 

spot size, such that the NEMS devices can then have an appreciable capture cross-section 

relative to the incoming ions. As a benefit, an appreciable fraction of ions in the original 

solution could be detected, with the only other limits being the ionization efficiency and 

transfer efficiency to the NEMS. The overall detection limit for the hybrid instrument can be 

estimated, as discussed in Chapter 6, and it could feasibly improve on LC-based separation 

methods by several orders of magnitude.  

In summary, combining the benchtop high resolution Orbitrap instrument with the 

unlimited dynamic range and improved detection limit of NEMS-MS has the potential to 

open new horizons in proteomics and native mass spectrometry, especially as the resolution 

of NEMS devices improves. Other instrument combinations can enable new applications as 

well. Using the high upper mass limit of TOF systems in a TOF-NEMS instrument could 

allow for the measurement of large viruses [7] in their native state. Using the position-

controlled laser in a MALDI-NEMS setup would enable MS-based imaging with similarly 

improved metrics. 

1.10 Summary of work 

This thesis is split into two parts, with Part I (Chapters 2 and 3) covering the 

experimental work and Part II (Chapters 4 and 5) dedicated to the theoretical work. 
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In Chapter 2, we will discuss the construction and calibration of a hybrid Orbitrap-

NEMS instrument. This represents the first attempt to incorporate a nanoscale sensor into a 

high resolution, commercial mass spectrometer to improve its capabilities, and is a step 

towards realizing a tangible commercial application of NEMS technology. The ability of the 

Orbitrap to precisely isolate and detect molecules in their native state will be demonstrated, 

allowing for the identity of the molecules delivered to the NEMS devices to be known with 

great confidence. The system will be characterized in detail, including the overall ion 

transmission rate and the first NEMS adsorption events showing the detection of both mass 

and charge of the molecules. A method to operate the sensor to eliminate effect of charge on 

frequency-based mass measurements is demonstrated. 

In Chapter 3, two- and three-mode measurements are performed of intact GroEL 

molecules adsorbing onto NEMS devices. Mass spectra are recovered, featuring peaks that 

agree with the known mass of GroEL to excellent precision. A rudimentary form of adsorbate 

imaging is demonstrated with the use of three modes. 

Chapter 4 presents a new, streamlined approach to recover the mass moments from 

a set of frequency shifts induced by the physisorption of an analyte. This approach was 

utilized with great facility to analyze the three-mode data in Chapter 3. 

Chapter 5 presents an entirely new theory to directly recover an adsorbate’s image 

from the frequency-shift data, without the intermediate calculation of its mass moments. This 

approach is shown to have comparable, and in some cases, improved, accuracy to the 

approach in Chapter 4. It is also demonstrated experimentally using previously-published 

data involving droplets on microcantilevers.  
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P A R T  I :  E x p e r i m e n t a l  W o r k  

C h a p t e r  2  

CONSTRUCTION OF A HYBRID ORBITRAP-NEMS SYSTEM 

2.1 Introduction 

Thermo Scientific, at the behest of Dr. Alexander Makarov, generously provided our 

lab with a custom Q Exactive Plus instrument modified with EMR (extended mass range) 

capabilities.1 The instrument is outfitted with a special quadrupole for selecting species of 

interest up to 4.5 MDa, as well as an Orbitrap detector capable of analyzing the mass-to-

charge ratio of species with extremely high resolving power (up to 140,000 for 200 m/z) [1]. 

A similar instrument was constructed in Professor Albert Heck’s lab in collaboration with 

Dr. Makarov, and was capable of measuring intact IgG antibody at 149 kDa, yeast 

proteasome at 730 kDa, and GroEL at 801 kDa [2], up to viral nanoparticles at 4.5 MDa [4]. 

The acquisition of this unique instrument thus immediately brought our capabilities of 

transferring biomacromolecular species from solution to the gas phase, and selecting and 

analyzing species of interest, to the forefront of native mass spectrometry research. 

Modification of this instrument into a hybrid system also capable of delivering molecules to 

NEMS for the purpose of single molecule analysis is the primary subject of this chapter. 

The design, construction, and operation of the hybrid system form the bulk of my 

experimental work for this thesis. The design of the instrument modifications was supervised 

by Professor Michael Roukes, Dr. Warren Fon (a senior staff scientist in the group), and Dr. 

                                                 
1 The addition of a quadrupole to the Exactive Plus EMR, or conversely, modification of the Q Exactive Plus for EMR 

capability, is not yet available commercially. For brevity, in this thesis, the custom mass spectrometer will simply be 

referred to as the Q Exactive. 
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Alexander Makarov and his team at Thermo Scientific (Dr. Maria Reinhardt-Szyba and Dr. 

Dmitri Boll). The construction and operation was carried out with extensive help from Dr. 

Eric Sage (a postdoc in the group). A schematic of the custom Q Exactive we obtained is 

shown in Figure 14. 

Successful realization of the hybrid system required careful consideration of the 

design of the Q Exactive, and also the necessary operating conditions of both the Q Exactive 

and our NEMS devices. The Q Exactive includes multiple chambers for transferring or 

trapping ions. One such chamber, the higher energy collisional dissociation (HCD) cell, 

includes a removable back port purposely designed to allow for instrument modification or 

extension for special projects such as ours. The existence of this back port, as well as precise 

engineering schematics of the HCD cell in the form of STEP files provided to us by Thermo, 

 
Figure 14. Diagram of Q Exactive. A Thermo Exactive Plus Extended Mass Range 

(EMR) instrument outfitted with an electrospray ionization (ESI) or nanoelectrospray 

ionization (nanoESI) source is used to introduce intact proteins or protein complexes 

from solution to the gas phase. Molecules with a specific mass-to-charge ratio can be 

selected with the quadrupole mass filter, then delivered to the Orbitrap for analysis. The 

back port of the HCD cell can be removed for instrument modification or extension. 

Reproduced from Q Exactive product literature. 
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greatly facilitated the practical modification and construction of the hybrid instrument. Once 

properly adapted, this HCD cell back port serves as the boundary between the Q Exactive 

and the NEMS analysis chambers. 

The Q Exactive is intended to operate under continuous high vacuum to prevent 

moisture or external contaminants from degrading the performance of the system. Although 

the instrument can be completely shut off and vented with nitrogen, restoring the instrument 

state following shut off requires an overnight bakeout, extensive calibration routines, and 

runs the risk of contamination with any interruption of the flow of nitrogen. NEMS devices, 

on the other hand, tend to fail fairly frequently, especially when operated under new 

conditions. Therefore, a key constraint on the design was the installation of a gate valve 

between the Q Exactive and the NEMS analysis chamber allowing for the easy exchange of 

NEMS devices in the NEMS chamber without breaking the vacuum of the Q Exactive. 

Another necessary consideration for the hybrid system design includes maintaining 

a proper vacuum regime for both the Q Exactive and for the NEMS. As discussed in 

Section 2.5, the HCD cell in the Q Exactive acts as an extended trapping region for larger 

molecular weight complexes. Relatively high pressure (10-4 Torr) is used in this chamber 

both to trap incoming ions so they can be collected in the C-Trap prior to injection into the 

Orbitrap, and to remove excess water and salt molecules via collisions with gas molecules 

[2]. On the other hand, NEMS operation requires relatively low pressure (<10-6 Torr). While 

dissipation of NEMS devices due to collisions with gas molecules becomes negligible at 

pressures less than a few mTorr [5], a larger concern was the possibility of significant 

adsorption of ambient gas while operating the devices at cryogenic temperatures. Such 

adsorption would lead to a constant drift in resonance frequency of the devices and 
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enhancement of fluctuation processes that degrade their noise performance [6, 7]. Therefore, 

a differential pumping design was employed, using a separate NEMS inlet chamber with its 

own turbo pump in order to isolate the high pressure of the HCD cell from the low pressure 

of the NEMS analysis chamber. Pressure measurements of the NEMS inlet and analysis 

chambers under the full range of HCD cell pressure settings are later given in Section 2.4 

and demonstrate that the pressure of the NEMS inlet chamber does rise significantly with 

increasing HCD gas pressure, validating this design decision. The HCD cell, on the other 

hand, continues to maintain a relatively high pressure despite the addition of the new vacuum 

chambers due to the presence of a circular disc with an orifice of only 2.5 mm diameter (not 

 
Figure 15. Ion optics design. Thermo designed a series of ion lenses which could be 

used to focus the ion beam exiting the HCD cell and continuing on through a series of 

transfer quadrupoles into a 50 micron spot (Figures and simulations provided by 

Thermo). Assuming precise positioning of the NEMS devices, this would guarantee 

sufficient flux rate to the NEMS, with a typical cross-sectional area of 0.3 µm2, for ample 

data for the calculation of mass spectra. 
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shown). This disc serves to trap gas inside the HCD cell while allowing ions to continue past 

the HCD cell if necessary. 

A final critical design criterion was achieving sufficient ion flux to the NEMS. The 

typical cross section for devices used for mass sensing is on the order of 10 microns by 

0.3 microns, which represents an extremely small capture cross section for typical ion beam 

sizes on the order of a few mm2. This previously presented a barrier to obtaining abundant 

data; a prior ESI-based instrument developed in the Roukes group achieved a maximum 

event rate of 1 per minute [8]. This limitation, however, could be circumvented with the 

addition of ion optics immediately prior to the NEMS. Thermo provided an optimal design 

for such ion optics appropriate for the Q Exactive hybrid system (Figure 15); it was up to us 

to implement the design and ensure that the NEMS could be placed in the center of the 

focused ion beam with adequate precision. 

2.2 Hybrid system architecture 

An overview of the hybrid system architecture satisfying the main design constraints 

is shown in Figure 16. Upon removing the back plate of the HCD cell, an additional vacuum 

chamber (NEMS Inlet Chamber) is attached, followed by a gate valve, and a second vacuum 

chamber (NEMS Analysis Chamber). Both NEMS chambers are outfitted with turbo pumps 

backed by diaphragm pumps that provide sequential differential pumping. The NEMS chip 

itself is mounted on a printed circuit board (PCB) that rests on a 3D translatable stage and is 

thermalized to a cryostat which can be cooled with liquid nitrogen or liquid helium. 

Dr. Makarov advised that the new transfer quadrupoles should be collinear with the 

HCD cell axis to within 50 microns, and any end-to-end gaps between quadrupoles should 

be less than 5 mm to avoid excessive loss of ion transfer efficiency. To achieve this level of 
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p 

 
Figure 16. Architecture of the Hybrid Q Exactive-NEMS System. Once properly 

modified, the hybrid instrument is capable of delivering intact proteins or protein 

complexes either to the Orbitrap chamber for analysis of mass-to-charge ratio, or to the 

NEMS for single molecule analysis. Delivery to the NEMS is accomplished by removing 

the back plate of the HCD cell and the use of additional vacuum chambers, transfer 

quadrupoles, and ion lenses. The NEMS chip is thermalized to a cold finger cryostat and 

can be precisely positioned using a three dimensional translatable stage. 

 

 
 

Figure 17. HCD adapter plate. The back plate of the HCD cell was replaced with an 

adapter plate that allows for precise positioning of the NEMS transfer quadrupole and 

converts the custom Thermo vacuum flange to a standard one. Details of the HCD cell 

are proprietary and have been intentionally blurred out. 
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precision, an HCD adapter plate was designed that would allow the NEMS inlet chamber 

quadrupole to slide in place precisely via a slip fit (Figure 17). The quadrupole rods are held  

in place via circular PEEK inserts (shown in orange); PEEK was chosen for its low 

outgassing properties. Finally, the HCD adapter converts from the custom Thermo vacuum 

flange to a standard vacuum flange (which was welded in place concentric to the HCD cell 

axis) and allows for the remaining design to consist of standard vacuum components to 

reduce the time and cost of construction. 

The opposite end of the NEMS inlet chamber quadrupole (“QP1”) was clamped into 

place using a “groove grabber” from Kimball Physics (Figure 18). These groove grabbers 

are seated into grooves in the interior of double sided CF flanges which also have an exterior 

groove for mounting brackets. The double-sided CF flanges also have offset screw holes so 

that one side can be tightened at a time, providing for straightforward assembly: QP1 is 

inserted into place, then tightened down with the groove grabber while one side of the double 

sided CF flange is attached to the inlet vacuum chamber. Then, once QP1 has been mounted, 

 
Figure 18. Quadrupole mounting near gate valve. The two transfer quadrupoles are 

mounted into place by fitting into a groove machined into a vacuum flange on one end, 

and clamped into place on the other end using “groove grabbers” (Kimball Physics). 
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the gate valve is attached using the other set of screw holes. The second transfer quadrupole 

corresponding to the NEMS analysis chamber (“QP2”), which is also visible in Figure 18, is 

assembled in a similar fashion. QP2 slides into place into a groove machined into a flange, 

then the other side is clamped down using the groove grabber with one side of the double 

sided CF flange having been assembled. Finally, the remaining side of the CF flange is 

screwed in to the gate valve. 

Per Dr. Makarov’s suggestion, the end-to-end gap between QP1 and QP2 was set to 

5 mm. A miniature gate valve (VAT) was commercially available with a gate thickness of 

4 mm, which made this possible. The lengths of the quadrupole rods and locations of the 

PEEK inserts via tapped threads needed to be machined to within 0.5 mm precision. The 

variable gap between CF flange components, even when fully tightened, made it challenging 

to achieve this precision. In practice, the quadrupole rods needed to first be machined slightly 

longer, then small amounts taken off the ends until the gate valve could close. 

As mentioned in Section 2.1, an ion lens assembly was required to focus the spot size 

of the ion beam. Thermo provided us with a schematic including lens geometries and 

 
Figure 19. Ion lens design. (A) Thermo provided a schematic of an ion lens assembly 

that would enable the ion beam to be focused to a 50 micron spot according to proprietary 

simulations. (B) This was used to create an engineering design. 
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voltages that would result in the required spot size (Figure 19). For ease of assembly and 

alignment, the lenses were all mounted together and to QP2 using a single PEEK housing. 

Although a mere 0.5 mm gap separated two of the lenses separated by up to 350 V, no 

shorting between these components was observed provided the turbo pump for the NEMS 

analysis chamber was on (once, the voltages were accidentally turned on with only a rough 

vacuum in place, and this led to shorting and ablation of some of the lens surfaces, after 

which the components needed to be replaced). Similarly, QP2 was operated at up to 500 Vpp 

at 650 kHz despite 5 mm worth of PEEK material in contact with all four rods, and no 

shorting between these components was observed provided the turbo pump was on. 

The final components of the Q Exactive hybrid system architecture not yet discussed 

include a 3D XYZ positioner (Attocube), the NEMS PCB, and a liquid helium cryostat 

 
Figure 20. Q Exactive Hybrid System overview (cutout drawing). The NEMS 

chambers are connected together and to the Q Exactive through a few custom vacuum 

flange adapters and otherwise standard vacuum components. The transfer quadrupoles 

and ion lenses are concentric with the HCD cell. After closing the gate valve, the cryostat 

can be readily removed, and the NEMS replaced. 
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(Janis). The PCB and cryogenics will be discussed later in Section 2.6. For the positioner, 

we acquired the Attocube low temperature, high vacuum piezo positioner with 5 mm of 

travel range in three dimensions and sub-nanometer positioning capabilities. An overview of 

the entire system design is given in Figure 20. 

2.3 Assembly of NEMS inlet chamber 

After the instrument was unboxed and set up, Dr. Reinhardt-Szyba from Thermo 

performed the necessary instrument modifications and calibration routines for us to have an 

operational Exactive Plus EMR instrument outfitted with a quadrupole mass filter. Prior to 

continuing on with the planned modifications as depicted in Figure 16, several components 

that contribute to the normal functioning of the Q Exactive needed to be permanently 

removed from the end of the HCD cell in order to enable ion transmission through this 

compartment. One of these components was an electrometer sensor electrode used by the 

Q Exactive to monitor ion current. Before removing this component, electrospray ionization 

(ESI) was performed on a standard calibration mixture (“Calmix,” or LTQ Velos ESI 

Positive Ion Calibration Solution, Pierce) in order to obtain a baseline ion current 

measurement for characterizing the ion transfer efficiency of each of the NEMS chambers.  

Calmix is typically measured in the Q Exactive using voltage settings optimized for 

calibration as shown in Figure 21a. These settings include a gradually decreasing DC voltage 

up until the C-trap entrance lens, upon which the voltage suddenly increases. The reason for 

this voltage barrier is as follows: caffeine (one of the Calmix components) ionizes at higher 

efficiency than the other components of the calibration mixture and would typically dominate 

the mass spectrum, preventing calibration from completing. The presence of the C-trap 

entrance lens voltage barrier, on the other hand, partially blocks ion transmission, and does 
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so much more effectively for ions with lower kinetic energy (and hence m/z). For the purpose 

of determining ion transfer efficiency, however, these voltage settings were modified to 

maximize total current, rather than using the suggested settings for optimal calibration. This 

was possible simply by removing the C-trap entrance lens voltage barrier. 

 A mass spectrum of Calmix under these modified settings and electrometer 

measurements at the back of the HCD cell are shown in Figure 21b and Figure 21c. 

 
Figure 21. Calmix mass spectrum and ion current. (A) Voltage settings were modified 

from those typically used for calibration purposes in order to maximize total ion 

transmission to the electrometer. (B) Mass spectrum of standard calibration mixture 

(“Calmix”) under these modified settings. (C) An ion current of 175 pA was measured 

via a built-in electrometer at the back of the HCD cell. Various lens settings were 

periodically adjusted to block Calmix transmission. These adjustments correctly resulted 

in zero current as shown in the plot. 



58 

Approximately 175 pA of current was measured. Various ion lens voltages could be adjusted 

to intentionally block or allow ion transmission, demonstrating the monitored current was 

due to Calmix ions reaching the HCD cell. 

After performing this initial measurement, the instrument was vented, the HCD back 

plate removed, the electrometer sensor electrode at the back of the HCD cell was removed, 

and then construction proceeded up to the gate valve. A picture of construction up to this 

intermediate stage is shown in Figure 22. Once the gate valve was installed, vacuum in the 

Q Exactive was restored, an overnight bakeout of the Q Exactive was performed, and the 

instrument was successfully recalibrated. At this point, rather than continue construction of 

the NEMS analysis chamber, it was decided to operate the partially constructed system to 

individually evaluate the ion transmission efficiency of the NEMS inlet chamber. 

To evaluate ion transmission of the NEMS inlet chamber, a new electrometer sensor 

electrode was installed immediately after the gate valve. The Thermo electrometer electrode 

removed from the HCD cell was unable to be used for this purpose, so a new electrometer 

 
Figure 22. Assembly of first stage. Completed assembly of NEMS inlet chamber up to 

and including the gate valve. A custom electrometer was mounted after the gate valve to 

monitor ion transmission efficiency through this stage. 
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electrode was constructed consisting of a screw embedded in a PEEK cylinder serving as the 

electrometer lead, shielded by a wire mesh grid (Figure 23a). This new construction was 

mounted concentrically with the HCD cell via a groove grabber, and installed immediately 

after the gate valve to monitor ion transmission. The mesh grid provides an equipotential 

surface while allowing ions to pass through [9]. This equipotential surface was floated to  

–30 V to achieve suitable ion landing potential as depicted in Figure 19a, and additionally 

served as a shield for the purpose of performing low noise current measurements of ions 

landing on the lead with an electrometer (Keithley 6514). 

Calmix was introduced into the Q Exactive as before, except this time a setting was 

used (“beam mode”) to continuously send ions through the HCD cell, rather than the usual 

configuration, in which ions are trapped in the HCD cell, prior to sending them to the 

Orbitrap for analysis. Voltage settings for the HCD cell used in the operation of beam mode 

 
Figure 23. Electrometer reading past first stage. (A) A custom electrometer was 

mounted concentrically into a flange which was later attached to the gate valve. (B) This 

electrometer recorded a current of 23 pA for Calmix during the periods of time that the 

solution was continuously delivered through the ESI needle via a syringe pump.  



60 

are adjusted ahead of time in the control software, so that the only action needed to switch to 

the new modality of allowing ions to pass through the HCD cell continuously is a single 

mouse click. 

Power was also supplied to QP1 to allow for ion transmission through the NEMS 

inlet chamber. As discussed in Appendix A, linear quadrupole ion guides consist of two pairs 

of circular rods operated with a DC and RF voltage added to or subtracted from an overall 

DC potential. Transmission of ions of a broad range of m/z values can be achieved by 

operating all four quadrupole rods at the same DC. Given an operating frequency of 650 kHz, 

the most stable trajectory for Calmix was predicted to occur with an RF voltage of 60V. The 

overall DC potential of all rods was set to –25V, halfway between the voltage at the back of 

the HCD cell (–20V) and the electrometer potential (–30V). 

Calmix was sent to the electrometer using these initial voltage settings for QP1, then 

the RF voltage was tuned until the current was maximized. A maximum current of 23 pA 

was recorded by the electrometer with 50V RF, close to the predicted RF value (Figure 23b). 

Compared to the electrometer current of 175 pA measured at the back of the HCD cell, the 

ion transmission through the NEMS inlet chamber and across the gate valve was 13%.  

2.4 Assembly of NEMS analysis chamber and adjustment of ion optics 

The remaining portion of the hybrid instrument after the gate valve, the NEMS 

analysis chamber, was then assembled. Pictures of this PCB, the interior of the NEMS 

analysis chamber, and the exterior of the completed hybrid instrument are shown in Figure 

24. The interior includes a new quadrupole which slides into a custom vacuum flange via a 

slip fit, then is clamped down via a groove grabber near the gate valve as shown in Figure 
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18. A custom electrometer sensor, fabricated as a PCB, was also temporarily mounted on the 

piezo positioner to monitor ion transmission through this new chamber. 

Following assembly, the hybrid instrument was tested with a helium leak detector, 

then the NEMS analysis chamber was soft baked at 325 K for a few days, then the gate valve 

opened while the Q Exactive was in standby mode. In this configuration, the NEMS analysis 

 
Figure 24. Hybrid instrument following assembly of NEMS analysis chamber. (A) 
Electrometer PCB for preliminary monitoring of ion current through chamber. (B) 

Interior view of chamber showing mounted PCB and quadrupole. (C) Exterior view of 

completed construction. 
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chamber had a base pressure of 2.6E–7 Torr, while the NEMS inlet chamber had a base 

pressure of 4.7E–7 Torr. As discussed in Section 2.1, during normal operation of the 

Q Exactive, nitrogen gas is introduced into the HCD cell in order to facilitate the trapping of 

large biomolecules, and a differential pumping design was used to isolate this higher pressure 

from the lower pressure required in the NEMS analysis chamber. To verify that this design 

decision was effective in practice, the trapping gas pressure of the HCD cell was increased 

in increments, up to the maximum setting enabled by the software, and the pressure of the 

two chambers was recorded after the system reached equilibrium. These pressure readings 

are given in Table 4 and demonstrate that the NEMS inlet chamber pressure increases 

substantially with the use of high trapping gas pressure, while the NEMS analysis chamber 

pressure does not increase substantially and can remain in a regime where adsorption of 

ambient gas to NEMS devices is minimized. This justifies the use of the differential pumping 

design despite the added cost and complexity to the overall instrument construction. 

After measuring the vacuum chamber pressures, Calmix ions were sent to the NEMS 

Trapping Gas Pressure 

Setting for HCD Cell 

(Q Exactive software) 

NEMS Inlet 

Chamber Pressure 

(Torr) 

NEMS Analysis Chamber 

Pressure (Torr) 

(Q Exactive Off) 4.7E–7 2.6E–7 

1 1.2E–6 2.7E–7 

3 3.3E–6 2.8E–7 

5 5.6E–6 2.9E–7 

7 8.1E–6 2.9E–7 

8 9.2E–6 3.0E–7 

Table 4. Vacuum pressure under typical instrument operation. Pressure readings of 

the two vacuum chambers under a range of HCD trapping gas settings used for a typical 

native MS experiment. The NEMS inlet chamber pressure increases substantially with 

higher trapping gas pressure, but the effect on the NEMS analysis chamber is minimal. 
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analysis chamber using +30V for the initial value for the ion lens diaphragm (Figure 25a). 

The electrometer PCB was scanned over the full translational range using the piezo 

positioner, but no ions were detected. To verify the ions could cross the 5 mm gap between 

QP1 and QP2, QP2 was used as an electrometer during Calmix transmission and a current of 

50 pA was measured. The lens diaphragm was then adjusted to a value of 0 V, the PCB 

scanned, and ions were detected with a maximum current of 18 pA. Once the position for 

maximum ion current was found with the lens diaphragm set at 0 V, the lens focusing 

cylinder and diaphragm voltages were adjusted over a wide range to find the settings 

maximizing ion transmission. The lens focusing cylinder was found to have minimal impact 

on ion transmission until it increased to higher than –10V, at which point ion transmission 

was blocked. Ion transmission was found to be more sensitive to the diaphragm setting, and 

the electrometer current as a function of diaphragm voltage is shown in Table 5. In general, 

ions were detected with a range between -60V and +10V, which differed from the expected 

range of 0V to +30V obtained by Thermo’s proprietary ion simulations used for lens design. 

Ion Lens Diaphragm 

Voltage 

Electrometer Current on 

NEMS PCB 

–60V 34 pA 

–40V 30 pA 

–20V 27 pA 

0V 18 pA 

+10V 10 pA 

+20V 0 pA 

+30V 0 pA 

Table 5. Optimizing ion lens diaphragm voltage. Ion detection with the electrometer 

PCB required the correct diaphragm voltage setting which differed from the expected 

range of 0-30V. 
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To better understand the discrepancy between the expected and observed range of 

lens diaphragm voltages leading to efficient transfer of ions to the electrometer PCB, ion 

trajectories were calculated using SIMION, a standard ion optics simulator. The precise 

geometry and potential energies of each component of the ion lens assembly was input into 

 
Figure 25. Ion trajectory simulations for lens assembly. The lens assembly geometry 

was modeled in SIMION, and particle trajectories were calculated and superimposed on 

potential energy surface plots for various choices of ion kinetic energy and lens 

diaphragm voltage.  (A) Configuration using recommended voltages and estimated ion 

kinetic energy. (B) Focused spot size can be moved towards landing surface by reducing 

diaphragm voltage. (C) Further reducing diaphragm voltage maximizes transmission at 

the loss of a defocused ion beam. 



65 

the simulator; however, a key variable dictating ion trajectories are their initial ion kinetic 

energy, which is unknown. Discussions with Thermo led to an estimate of 10 eV for ions 

emerging at the back of the HCD cell. With this value, ion trajectory simulations were 

performed as shown in Figure 25a and demonstrated a focal point slightly in front of the 

landing surface, along with a small spot size of landed ions, which is qualitatively in 

agreement with the Thermo simulation shown in Figure 15. Decreasing the diaphragm 

voltage moved the focal point for the ions backwards toward the landing surface, reaching 

the surface at +10V as shown in Figure 25b. Further reducing the diaphragm voltage results 

in an ion beam focused behind the landing surface as shown in Figure 25c, with total ion 

transmission increasing at the cost of a defocused ion beam. Similar to the Thermo 

simulation, the SIMION simulation predicted that ions should have been detected with a 

diaphragm voltage of +30V, but additionally revealed that ion flux could be increased with 

reduced diaphragm voltage. This general trend in the data of increased flux with reduced 

diaphragm voltage was observed in the data as shown in Table 5; the fact that ions were 

initially observed for a choice of +10V rather than the expected +30V could be due to the 

fact that the ions have less than 10 eV kinetic energy emerging from the HCD cell. 

The SIMION simulations additionally confirmed the experimental finding that the 

ion trajectory was relatively insensitive to the choice of focusing electrode voltage. The 

choice of −30V for the landing potential is relatively fixed and determines the ion’s landing 

energy, independent of ion beam focus: 

𝐸land = 𝐸𝑘
0 + 𝑞(𝑉HCD − 𝑉land),                                             (34) 

where 𝐸𝑘
0 is the initial ion kinetic energy, 𝑞 = 𝑒𝑧 is the charge of the ion, and 𝑧 is the integer 

number of elementary charges 𝑒 where 𝑒 = 1.6 × 10−19 Coulomb [10]. The choice of 
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landing potential for the Q Exactive hybrid instrument thus gives a landing energy of 30 eV 

per charge, and this value is in line with experiments demonstrating soft landing – that is, 

physisorption of intact species onto solid surfaces. Single-molecule NEMS-based analysis 

requires deposition of intact proteins and protein complexes onto surfaces while preserving 

their composition and charge. ESI-generated biomolecular ions have low translational kinetic 

energies (< 100 eV) – ranging 

from the hyperthermal down to 

the thermal regimes [3, 11] 

(Figure 26). To avoid both 

dissociative landing (protein / 

protein complex fragmentation) 

and reactive landing (formation 

of strong covalent or electro-

static bonds with the surface), 

soft landing is essential [12-14].  

Soft landing of large protein complexes, such as GroEL and apoferritin (801 and 440 

kDa, respectively), has been demonstrated using TEM to characterize deposited molecules 

[15]. It is hypothesized that these species quickly dissipate collisional energy internally given 

their myriad internal degrees-of-freedom. Preservation of the structure and infectivity of a 

virus after soft landing has been confirmed by TEM [16], while conservation of biological 

activity of proteins such as trypsin and lysine after soft landing has been verified with post-

collection bioassays, SEM and AFM [17, 18]. In other studies [16, 19, 20], adsorbed peptides 

and chromophores have been analyzed using secondary ion mass spectroscopy; molecules 

 
Figure 26. Energy regimes for ion-surface collisions. 
A variety of molecule-surface interactions can occur at 

various translational kinetic energies. From [3]. 
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were shown to remain chemically active with up to 35 eV impact energy. The Q Exactive 

hybrid instrument employs similar ion optics and landing energies in these studies, but future 

work involving orthogonal analytic techniques (cryo-EM and nano-SIMS) will be necessary 

to validate soft landing and preservation of analyte composition and conformation. 

2.5 Native MS measurements 

As mentioned in Section 2.1, modification of the Q Exactive for the purpose of 

delivering intact proteins and protein complexes to the NEMS enables preparation and 

selection of molecules according to protocols standardized by native MS researchers. In 

order to have the capability of delivering appropriate samples to NEMS devices in the lab at 

Caltech, I visited Prof. Albert Heck’s lab at Utrecht University and was provided with general 

training for native MS measurements, as well as specific training with analyzing three 

molecular complexes in particular: horse heart myoglobin, the E. coli chaperonin GroEL, 

and chaperonin complex GroEL-GroES, each in their intact or denatured state. This section 

discusses several measurements that were performed at Utrecht under the direction of Drs. 

Joost Snijder and Michiel Van de Waterbeemd and with assistance from Anja Boumeester 

that were later replicated with the assembled hybrid instrument at Caltech.  

Measurements in the remainder of this chapter utilize nano-electrospray ionization 

(nano-ESI) [21] rather than the standard electrospray ionization used for the calibration type 

measurements in the previous sections. Nano-ESI ionization is achieved in the hybrid 

instrument simply by switching out the front end source (depicted in Figure 14) and using 

glass needles with a ~2 𝜇m tip opening and coated with metal. Such needles are available 

from standard suppliers (NewObjective), but the majority of data in this thesis was collected 

using custom gold coated needles manufactured by Anja Boumeester and Joost Snijder and 
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generously provided to us. Nano-ESI refers to the flow rate (typically ~20 nl/min [21]) and 

is the most commonly used ionization method in Native MS due to its low sample use and 

improved ability to desolve salts and buffers from the sample [22]. All protein solutions were 

analyzed at a concentration of 5 μM in 50 mM aqueous ammonium acetate. 

Myoglobin with heme (holo-myoglobin) is a ~17.5 kDa, 3.5 nm diameter protein 

complex [23] that can be readily prepared in abundance from a lyophilized powder (Sigma-

Aldrich). The ease of preparation of myoglobin facilitated the numerous calibration 

experiments to be discussed in the remaining parts of this chapter, which were initially 

necessary to achieve molecular detection with NEMS devices in a well-characterized 

manner. Its molecular weight, however, is below the mass sensitivity threshold to achieve 

single-molecule detection with LETI NEMS devices as discussed in Chapter 1. The larger 

GroEL complex, consisting of 14 identical subunits of ~57 kDa each, for a total of 801 kDa 

[23], is above the sensitivity threshold and more suitable for this purpose. Preparation of 

GroEL for native MS measurements, however, is much more extensive than of myoglobin: 

it requires expression in a genetically engineered culture, as well as multiple rounds of 

filtration and purification [24]. Prof. Albert Heck generously provided us enough GroEL 

sample for a limited number of experiments. He also provided GroES, the co-chaperonin 

composed of 7 identical subunits of ~10 kDa, which combines with GroEL to form a 21-

subunit complex in the presence of ATP or ADP [23]. GroEL is a stable complex that has 

previously been analyzed with native MS using the Q Exactive [2]. Crystallographic models 

of GroEL and the GroEL-GroES chaperonin complex have been published and are shown in 

Figure 27. The GroEL complex has a width of 13.7 nm and a height of 14.6 nm [25]. GroES 

has a diameter of 7.5 nm and a height of 3 nm [26]. 
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Efficient transfer of ions in the Q Exactive is achieved using a combination of 

instrument settings including resolving power and measurement time, DC and RF voltages 

of ion optics components shown in Figure 14, and trapping gas pressure in the HCD cell. 

While every setting could be optimized for each different molecule, a number of general 

principles have been developed based on the physics of ion trajectories in electromagnetic 

fields as well as extensive testing by native MS researchers. These settings have been relayed 

 
Figure 27. Representation of crystallographic models of GroEL and GroEL-GroES. 

E. coli chaperonin GroEL and chaperonin complex GroEL-GroES are shown in (A) and 

(B) with both top and side orientation.  PDB accession codes 4V43 and 1AON were used. 
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to me through discussions with researchers in Professor Albert Heck’s lab (mentioned 

previously) as well as with the R&D team at Thermo (Drs. Reinhardt-Szyba, Boll, and 

Makarov); the most critical settings necessary to replicate the results in this thesis and transfer 

knowledge to future researchers will be included in this section despite the somewhat 

technical nature of the discussion. Some settings specific to GroEL, as well as the rationale 

for these settings, are also discussed in [2]. 

In general, different approaches are used depending on whether the molecule of 

interest is small (<20 kDa) or large (>150 kDa). For small molecules, the resolving power is 

set to the instrument maximum of 140,000 in order to achieve longer measurements with 

isotopic resolution. Beyond around 150 kDa, isotopic resolution is no longer possible due to 

the large number of adducts [27], and the resolving power is instead set to the instrument 

minimum of 8,750 in order to achieve quicker measurements and higher throughput. A 

longer measurement time is not necessary for larger molecules, as they have reduced orbital 

stability due to the higher number of collisions with gas molecules in the Orbitrap chamber; 

this is in turn due to the higher pressure in the Orbitrap chamber that develops as a result of 

the higher trapping gas pressure used for large molecules, as well as a small leak between 

the HCD cell and Orbitrap chamber. 

The HCD cell trapping gas pressure is lower for smaller molecules and higher for 

large molecules. There is no direct pressure gauge in the HCD cell or precise calibration for 

instrument settings vs. pressure; the instrument setting ranges from 1-10, with a setting of 1 

corresponding to roughly 3.5E-5 Torr. A setting of ~3 is used for small molecules and 8 for 

large molecules. The rationale is that larger molecules have more kinetic energy and require 

higher pressures to stop and trap them in the HCD cell prior to analysis in the Oribtrap.  
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DC ion optics voltages begin with the nanospray needle set to a spray voltage of 1.4 

kV, an S-Lens DC voltage of 50V, and additional consequential DC voltages are set 

according to the schematic in Figure 28. Of particular note is the retarding voltage set with 

the C-trap entrance lens, to which ion transmission is particularly sensitive. This retarding 

voltage is used to block low m/z ions or fragments (< 3000 m/z) while allowing higher m/z 

ions through; more details are discussed in [2]. In addition to these DC ion optics, the RF and 

DC voltages of the Quadrupole mass filter are set automatically via the software in order to 

select ions of interest according to a particular range of m/z values. Additional voltages of 

 
Figure 28. DC voltages used for Native MS experiments. Voltage settings optimizing 

ion transmission are shown as communicated from the Heck lab. A retarding voltage at 

the C-Trap entrance lens can be used to block smaller fragments [2]. 
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interest include the HCD collision energy (positive) voltage at the back of the HCD cell used 

to trap ions. A typical value is 100V, with higher voltages sometimes able to remove subunits 

from protein complexes. 

A typical mass spectrum that I obtained for holo-myoglobin with the Q Exactive is 

shown in Figure 29a. The spectrum features a charge state distribution (CSD) of ion signals 

arising from a variable number of charges (z) transferred to the same molecular species. The 

phenomena of CSDs occurs during ESI and is due to the transfer of protons from the 

ammonium acetate buffer to chargeable amino acid residues of the protein of interest [28]. 

The main charge states for holo-myoglobin are labeled in Figure 29a as 7+, 8+, and 9+. 

Unambiguous determination of these charge states is possible due to the isotopic resolution 

present in the data inset shown in Figure 29a: each adjacent peak has the same charge state, 

but differs in mass by one neutron. Two such adjacent peaks are labeled with m/z of 2196.81 

and 2196.94; these peaks which differ in m/z of 0.13 for m = 1 corresponds to z = 8+.  

Alternatively, the charge states can be assigned by examining peaks corresponding 

to the same species, but differing in charge state [28]: 

 

𝑝1 × 𝑧1 = 𝑀𝑝𝑟𝑜𝑡𝑒𝑖𝑛 + 𝑀𝑝𝑟𝑜𝑡𝑜𝑛 × 𝑧1 = 𝑀𝑝𝑟𝑜𝑡𝑒𝑖𝑛 + 1.0079 × 𝑧1                 (35) 

𝑝2 × (𝑧1 − 1) = 𝑀𝑝𝑟𝑜𝑡𝑒𝑖𝑛 + 1.0079 × (𝑧1 − 1)                              (36) 

𝑧1 = (𝑝2 − 1.0079)/(𝑝2 − 𝑝1)                                            (37) 

 

where 𝑝1 = 𝑚/𝑧 peak 1, 𝑝2 = 𝑚/𝑧 peak 2, 𝑧1 charge of peak at 𝑝1. Using 𝑝1 = 2196.81 

and 𝑝2 = 2510.49 shown in Figure 29a, we obtain 𝑧1 = 8+, which matches the prior 

method. The assigned charge state and 𝑚/𝑧 peaks can be combined to calculate the mass of 
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the protein. Averaging the three peaks evident in Figure 29a, we obtain a mass of 17566.40 

Da which is close to the theoretical mass of 17566.67 Da [28]. 

 
Figure 29. Myoglobin measurements using the Q Exactive. (A) Holo-myoglobin 

measured in its intact state shows a charge state distribution with the same species 

producing three ion peaks. The inset shows details of the measurement which features 

adducts (variable sodium atoms) as well as isotopes (variable neutrons). (B) A denaturing 

solvent can be used to measure apo-myoglobin and heme separated from each other (red). 

The denatured protein collects more charges compared with the intact protein. 
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The inset in Figure 29a details not only species differing in isotope, but also the 

presence of a variable number of adducts. These adduct peaks with m/z 2196.81, 2199.55, 

2202.17, 2204.54 differ by a variable mass (on average, the difference corresponds to ~21 

Da). The most reasonable identity of the main adduct is sodium, which at 22.99 Da is not an 

exact match, but the discrepancy can be explained by the fact that different isotopes will have 

slightly different ion transmission efficiencies. 

To demonstrate measurement of a protein in its intact vs. denatured state, holo-

myoglobin was incubated in a solution of 5% formic acid instead of the usual native buffer, 

50 mM ammonium acetate. The mass spectrum is shown in Figure 29b in red and clearly 

shows apo-myoglobin with a mass of 16951.07 Da and heme with a mass of 615.18 Da (this 

totals to 17566.24, close to the intact mass calculated previously). Additionally, the 

denatured complex shows a much larger range of charge states, including higher charge 

states, a phenomena that can be attributed to the fact that the dissociated molecule has a larger 

surface area [29]. This simple dissociation experiment demonstrates the possibility of 

introducing molecules with different conformations through a simple sample preparation 

protocol prior to measurement with the Q Exactive, a capability that could enhance NEMS 

single-molecule measurements. 

A mass spectrum for GroEL obtained with the Q Exactive is shown in Figure 30a. 

For this large molecule, the resolution of the measurement (i.e., width of each peak) is no 

longer limited by the instrument, but instead the variable number of adducts such as water 

and salt molecules [30]. Additionally, the number of adducts differs for each peak in the CSD 

shown in Figure 29a due to the fact that the more energetic species with higher charge states 

have higher kinetic energies, and therefore experience more efficient desolvation. Because 
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each species in the CSD is not identical, Equation 37 does not correctly assign charge states. 

Instead, Equation 35 or 36 could be used to calculate 𝑀𝑝𝑟𝑜𝑡𝑒𝑖𝑛 for a guessed value of 𝑧 for 

each peak (with adjacent peaks differing by one charge). The guess that minimizes the 

 
Figure 30. GroEL measurements using the Q Exactive. (A) Intact structure showing 

charge state assignment minimizing the standard deviation of calculated mass for each 

peak. (B) Mass spectrum recorded under higher collision energy, the effect of which 

removes a monomer from some of the measured species. 
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standard deviation for 𝑀𝑝𝑟𝑜𝑡𝑒𝑖𝑛 for all peaks is assumed to be the best choice [31, 32]. Using 

this procedure, the charge states for GroEL are assigned as demonstrated in Table 6 and 

shown along with the m/z peaks in Figure 30a. The mass of GroEL calculated using this 

procedure was 801.421 kDa, which is close to the expected value of 800.7664 kDa [23]. 

Increasing the collision energy to 200V as shown in Figure 30b removes a monomer 

from some of the 14-mer GroEL complexes, yielding the 1-mer GroEL, the 13-mer, the 14-

mer, as well as a small amount of the 7-mer (evidently, at these energies, GroEL can be split 

in half yielding a 400 kDa complex as well). After charge state assignment, the detected 14-

mer has a calculated mass of 800.967 kDa, which is closer to the expected molecular weight 

than the previous measurement at lower collision energy. This suggests that more adducts 

are present at the lower collision energies, but can be removed with higher collision energies. 

Finally, it can be noted that, when the 14-mer is split, charge is nearly evenly split between 

Charge state guess 

(dominant peak) 

GroEL calculated mass 

(standard deviation) 

GroEL calculated 

mass (average) 

72+ 619.42 Da 824.498 kDa 

71+ 335.04 Da 812.960 kDa 

70+ 𝟓𝟏. 𝟑𝟖 Da 𝟖𝟎𝟏. 𝟒𝟐𝟏 kDa 

69+ 234.18 Da 789.884 kDa 

68+ 518.52 Da 778.345 kDa 

 

Table 6. Charge state and mass assignment for GroEL. Larger species such as GroEL 

are not isotopically resolved with the Q Exactive due to the large number of adducts 

present. Charge state assignment is performed by selecting that which minimizes the 

standard deviation of the calculated mass of the species (shown in bold). 
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the 13-mer and the 1-mer, rather than being split proportional to mass. 

 Interrogation of protein complexes in the native state by the Q Exactive enables 

observation of assembly and stability of these complexes. As a demonstration, 160 µM 

Mg·ATP was added to 2 µM GroES, then this solution was added to 1 µM GroEL. This 

promotes the assembly of the 14/7 GroEL/GroES chaperonin complexes; to study the 

dynamics of assembly, the solution was incubated on ice and analyzed with the Q Exactive 

after 5 minutes and then again after 30 minutes as shown in Figure 31a and Figure 31b. After 

5 minutes, the partially assembled complex with 7/7 GroEL/GroES was the dominant 

species; also present was the 14-mer GroEL and various partially assembled GroEL/GroES 

complexes with 14 GroEL subunits. 

After 30 minutes incubation, the fully assembled 14/7 GroEL/GroES chaperonin 

complex becomes the dominant structure. This solution was then analyzed in the Q Exactive 

with high collision energy (200 V) as shown in Figure 31c. A monomer of GroES was present 

in the mass spectrum, along with 14/6 GroEL/GroES, indicating that a GroES subunit is the 

least strongly bound of the intact 14/7 GroEL/GroES chaperonin complex. 

The color-coding of the mass spectrum and determination of the ratio of GroEL to 

GroES units in each of the experiments shown in Figure 31 is not unambiguous as indicated. 

Previously, a method was discussed to assign charge states, and therefore mass, based on 

minimizing the standard deviation of the calculated mass of each charge state belonging to 

the CSD of an intact complex. The inability to unambiguously rely on this calculation is 

demonstrated in Figure 32 in detail for the presumed 14/7 GroEL/GroES complex indicated 

in Figure 31b. Additional information from tandem MS/MS studies is necessary to fully 

resolve the identity of the mixture. 
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Figure 31. GroEL-GroES measurements using the Q Exactive. GroEL and GroES 

incubated with Mg and ATP on ice for (A) 5 minutes and (B) 30 minutes measured with 

low collision energy and (C) 30 minutes with high collision energy 
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Ambiguous charge state (and hence mass) assignment for heterogeneous complexes 

such as the 14/7 GroEL/GroES with a large, variable number of adducts as shown in Figure 

32 is a common limitation of the techniques of Native MS. New methods to improve 

 
Figure 32. Charge state assignment for dominant GroEL/GroES complex shown in 

Figure 31b. Correct charge state assignment of the peaks identifying the dominant 

structure shown in Figure 17b as 14/7 GroEL/GroES based on the total calculated mass 

is shown in black. This charge state assignment does not minimize the standard deviation 

of calculated masses for each peak as shown in Table 3, but does show the expected trend 

of decreased mass with higher charge state (due to more efficient desolvation of higher 

kinetic energy complexes) and matches the known stable crystallographic data. 

Alternative contenders for charge state assignment are shown in blue, which minimizes 

the standard deviation of calculated mass, but shows an increase in mass with charge 

state, or red, which also has a low standard deviation and the correct trend of mass versus 

charge state, but incorrectly identifies the complex as 14/6 GroEL/GroES. The choice 

between identifying the complex as 14/6 in red and 14/7 in black could be considered 

ambiguous from this data alone; additional information such as tandem MS/MS is 

necessary to unambiguously identify the subunit architecture. 
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desolvation, such as the use of in-source trapping  has been used to reduce heterogeneity and 

increase the mass range of the Q Exactive [33, 34], but this type of limitation is likely to 

persist due to the nature of inferring mass indirectly from a series of unknown charge states. 

Monitoring the absolute mass of partially assembled GroEL/GroES complexes one-by-one 

directly with NEMS devices to resolve the ambiguity could therefore present a new 

opportunity. Such an experiment would require NEMS mass resolution on the order of a 

single GroES subunit (10 kDa), which our group has recently exceeded (Jarvis Li, 2019, 

unpub.). 

2.6 Molecular detection with NEMS operated at cryogenic temperatures 

Previously, delivery of calibration ions to basic circuitry mounted on the cryo-

positioner was detailed in Section 2.4, and introduction and detection of intact protein 

complexes using the Orbitrap was detailed in Section 2.5. Provision of additional electrical 

cabling and enhanced sample and NEMS stage thermalization was necessary to enable 

operation of NEMS devices at cryogenic temperatures, for which significantly reduced phase 

noise has been reported [35]. Low temperatures also promote physisorption of the analyte 

[8]. A Janis ST-100 continuous flow cryostat compatible with both liquid nitrogen and liquid 

helium was adapted for this purpose. The cryostat is outfitted with an electrical head 

consisting of SMA feedthroughs; custom UT-85 stainless steel cabling was manufactured to 

mate with these feedthroughs and carry external RF signals to PCBs mounted and 

thermalized to a cold stage consisting of gold plated copper. Due to the need to operate the 

XYZ positioner with minimal external torque from any attached cabling, highly flexible 

braided copper cables (Lakeshore) were constructed to continue the RF signal from these 

cooling PCBs further to a NEMS PCB mounted on the XYZ positioner, which is in turn 
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mounted to the cold stage. Care was taken to use low outgassing materials, such as Kapton 

insulating tape, Viton O-rings, OFHC copper, and PEEK for plastic. An overview schematic 

showing the NEMS mounting configuration is shown in Figure 33. 

 
Figure 33. NEMS thermalization via cryogenic cabling and PCBs. (A) A Janis ST-

100 continuous flow cryostat thermalizes a cold stage consisting of a copper block 

constructed such that the surface of the NEMS chip (shown in blue) is positioned 5 mm 

away from the ion lens assembly (shown in orange) at the center of the positioner’s travel 

range. (B) Cooling PCBs help thermalize the inner conductor of up to 12 coaxial lines as 

well as the DC connections used to operate the XYZ positioner, heater, and thermometer. 
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DC leads include the 15 needed for the XYZ positioner as well as the 6 needed for 

the 4-wire thermometer and Ohmic heater. These were thermalized to the central shaft of the 

ST-100 using standard techniques [36], including the use of a thin layer of cigarette paper 

underneath the wires to prevent shorts, and cryogenic varnish (General Electric) to secure 

the leads in place (Figure 34a), as well as supplemental gold-coated OFHC copper bobbins 

pressed into the cold stage. The back side of the cooling PCBs were also gold coated, and a 

second blank PCB (with dielectric facing the cooling PCBs) was screwed in on top as a 

second layer in order for the cooling PCBs to have good physical contact with the cold stage 

(Figure 34b). Gold coated copper ribbons thermally anchor the top of the XYZ stage to the 

cold stage. 

 
Figure 34. Cryogenic cabling and PCBs, as constructed. (A) DC wires are wrapped 

around the central cooling shaft of the ST-100 over thin paper and secured in place using 

cryogenic varnish. (B) Cooling PCBs are thermalized to the gold-plated cold stage in two 

layers. The first layer consists of a thin stripline PCB with gold coating on the back; the 

second layer is a thick, rigid, blank PCB with copper on the outside and dielectric facing 

the stripline PCB, with maximum torque applied to hex screws going through both PCB 

layers. 
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A custom PCB was constructed for the NEMS containing 132 through holes 

consisting of silver vias thermally connecting the NEMS chip to the cold stage (Figure 35). 

RF signals are carried to the NEMS with the use of wirebonds to silver pads, which connect 

to SMA jacks. Thermal contacts additionally anchor the PCB to the cold stage, and a 

radiation shield was built to optionally enclose the NEMS and XYZ positioner. Without the 

radiation shield, base temperature as measured by the sample thermometer immediately 

 
Figure 35. NEMS PCB, radiation shield, and base temperature readings. (A) The 

NEMS chip is mounted to a custom PCB using silver paste. The PCB features multiple 

silver vias to improve heat transfer from the NEMS chip to the cold stage. A radiation 

shield can optionally be installed to surround the NEMS and the XYZ positioner. (B) 

Temperature readings during system cooldown show that base temperature of the NEMS 

PCB (“Attocube Thermometer”) is reached within 2 hours. Base temperature was 145K 

without the radiation shield, and 80K with the radiation shield. 
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under the PCB was 145 K with the use of liquid nitrogen. The radiation shield significantly 

improved this base temperature to 80 K with liquid nitrogen and 10.2 K with liquid helium. 

The cryogenic cabling was tested using a LETI NEMS device (CAL3 PP0) actuated 

and detected under a closed loop PLL at resonance as discussed in Chapter 1. Allan deviation 

was measured versus integration time for a variety of temperatures from 300 K to 87 K using 

a Lakeshore temperature controller under PID control with liquid nitrogen cooling, allowing 

 
Figure 36. Allan deviation for a typical device versus stage temperature. A CAL3 

PP0 LETI device was thermalized to the cryogenic stage and actuated and detected at 

resonance under a PLL. (A) Allan deviation vs integration time from 300 K to 255 K. (B) 

Allan deviation under further cooling below 255K. 
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at least 4 hours for the device to reach thermal equilibrium with each temperature change. A 

significant improvement in Allan deviation was observed cooling the device from 300 K to 

275 K, with the lowest Allan deviation observed at 255 K. Further reductions in temperature 

began to show increased Allan deviation (Figure 36), in contrast with the expected trend [35]. 

This suggests that operation of the device may lead to device self-heating above the stage 

temperature. This has been subsequently confirmed by recent experiments in our group 

(Jarvis Li, 2019, unpublished). Replacing the piezosemiconductor-based nanogauges with 

piezometallic material is one possible way to mitigate this effect; alternatively, the device 

could be operated at lower bias voltages (see Chapter 3). 

With the NEMS actuation and readout cabling in place, and the capability of 

introducing intact proteins into the Orbitrap verified, the electrometer PCB was mounted on 

the positioner, and the positioner scanned to check the ion current of myoglobin and GroEL 

and determine the approximate location of ion focusing of GroEL to narrow down the search 

region for later experiments using the NEMS (Figure 37). 

The NEMS was operated according to the circuit schematic shown in Figure 12, 

except the entire device was floated to –15V with the use of bias tees or capacitors as 

appropriate in order to attract the positively charged ions with a lower DC potential than the 

Q Exactive, which is designed around having the C-trap at ground. After multiple days 

sending GroEL ions to a device with this arrangement, only a single adsorption event was 

detected (Figure 38a), even with the device centered at the location of peak ion flux recorded 

by the electrometer. 

An alternative configuration was tested as shown in Figure 38b, where a large 

number of internal voltages of the Q Exactive were adjusted around having the C-trap at 30V 
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(thus allowing the NEMS to operate at ground). These internal voltages were chosen by Dr. 

Dmitry Boll of Thermo Fisher and were found to optimally transmit CsI ions in their 

instrument in Bremen. Once the instrument at Caltech was configured this way, a large event 

rate (a few per minute) of GroEL ions adsorbing to the NEMS could easily be detected, after 

making two important changes with some experimentation here; without these changes, very 

few ions can be transmitted: (1) the C-trap entrance lens inject is a sensitive parameter that 

must be set to 19 or 20V (it is shown as 14V in the figure above), and (2) the trapping gas 

 
Figure 37. Detection of molecules on PCB electrometer sensor. (A) The PCB 

electrometer sensor was positioned until maximum ion flux was achieved with 

myoglobin. A current of 50-100 pA was detected. (B) Similarly, a current of 6-7 pA was 

detected for GroEL. (C) The X and Y axes of the positioner was scanned, showing ion 

current vs. positioner coordinate. The detected ion current mirrors the geometry of the 

electrometer electrode as shown in Figure 24a. 
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pressure must be set to 10. The adjustment of the C-trap entrance lens to 1V higher than the 

flatapole voltage is consistent with the choices typically used for large molecules as 

communicated by the Heck lab and shown in Figure 28. For the trapping gas pressure, 

typically 8 is used for GroEL, and higher values can be used to dissociate GroEL shown in 

Figure 30b. Here, the instrument maximum setting of 10 must be used, possibly due to the 

need to stop the higher kinetic energy of the ions, with dissociation no longer possible.  

 
Figure 38. Single molecule detection with NEMS. (A) First molecular detection event 

of GroEL adsorbing onto a NEMS resonator in the hybrid Orbitrap system. (B) Voltages 

adjusted internally in Q Exactive to allow for operation of NEMS at ground. Voltages 

shown are optimized for CsI ion transmission; some changes (as shown) were needed for 

GroEL transmission as discussed in the text. 
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2.7 Charge detection and retention using NEMS 

With the Q Exactive voltages raised as shown in Figure 38b and the NEMS operated 

at ground, a large number of GroEL adsorption events could easily be obtained. The first two 

resonant modes of a device were simultaneously tracked, in similar fashion to the schematic 

shown in Figure 12 except that an AC drive and bias is used for each mode and combined 

with power splitters, and the output signal is read by a separate lock-in amplifier for each 

mode. Initial data unexpectedly showed positive and negative frequency jumps upon 

molecular adsorption (Figure 39a). This is in contrast with only negative frequency jumps 

predicted by Equation 21, which assumes flat or point-like adsorbates increasing the kinetic 

energy of a device, and is observed in other NEMS-MS systems constructed in the Roukes 

group [8, 37] as well as other studies monitoring mass adsorption to nanomechanical 

 
Figure 39. Real-time detection of GroEL using two simultaneous resonant modes. 

(A) As GroEL adsorbs onto a NEMS resonator, the resonance frequency of each tracked 

resonant mode abruptly shifts, and this shift in resonant frequency is observed in real 

time. (B) Initial GroEL adsorption events were also associated with large changes in 

device amplitude. Reported are the relative changes, i.e., Δ𝑓 𝑓⁄ , Δ𝐴 𝐴⁄ . 
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structures. Carefully inspecting the data, I noticed large swings in device amplitude as well 

(Figure 39b), which has not previously been reported or observed. 

The large amplitude shifts that occur during adsorption are problematic due to the 

nonlinear nature of the devices. A demonstration of this nonlinearity is shown in Figure 40. 

The DC drive voltage was increased in 1V increments every few seconds while tracking the 

device’s resonance frequency. Every 1V increase in the DC drive corresponds roughly to a 

relative amplitude change (Δ𝐴 𝐴⁄ ) of 3% and 5% for the first two modes, respectively, 

corresponding in turn to a relative frequency change (Δ𝑓 𝑓⁄ ) of –2.5E6 and 5E6. The devices 

have a mass sensitivity of 12 Hz/ag and 32 Hz/ag for the first two modes [38],  or 20 Hz/MDa 

and 50 Hz/MDa, respectively. With resonance frequencies typically around 25 MHz and 67 

MHz for the first two modes, such large amplitude changes could indirectly drive frequency 

shifts on the order of that expected from mass loading of single molecules of GroEL. 

 
Figure 40. Frequency and amplitude changes due to applied DC gate voltage. The 

DC drive voltage was increased in 1V increments every few seconds while 

simultaneously tracking the resonance frequency of the device’s first two modes. The 

changes in (A) resonance frequency and (B) amplitude are shown. Reported are the 

relative changes, i.e., Δ𝑓 𝑓⁄ , Δ𝐴 𝐴⁄ . 
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The large number of charges (~70 for each GroEL molecule) accumulating on the 

beam and electrode was hypothesized to modulate the DC potential between gate and beam. 

This would increase the actuation force (Equation 23) and, in turn, the resonant amplitude 

(Equations 24-26). The nonlinear effect transforming the increased amplitude to frequency 

could possibly be due to elastic hardening induced by the potential difference between the 

active area and bulk [39]. 

In order to more systematically measure the amplitude and frequency dependency of 

accumulated charged molecules on NEMS devices, myoglobin (8+, 17.5 kDa) was sent to a 

20-device NEMS array positioned in the ion beam path. These arrays consist of 20 NEMS 

devices, each with the same width and thickness as the individual devices discussed so far, 

with the device lengths within the array varying from 7 µm to 9.2 µm. This separates their 

individual resonance frequencies so they can be tracked individually. Their operation is 

virtually identical to that used for single devices; details of their fabrication and operation are 

discussed in Chapter 3 and [38]. The device array used was pristine; no molecules had been 

sent prior to the experiment. Collection of data with arrays was performed with Dr. Eric Sage. 

Myoglobin adsorbing to the array initially caused the resonance frequencies and 

amplitudes of each device to increase, until the amplitude increase reached a point of 

saturation (100-200s), after which the resonance frequencies of each device began to 

decrease continuously in a linear manner (Figure 41ab). Myoglobin is much smaller than the 

mass resolution of these individual NEMS devices, so discrete adsorption events could not 

be detected. However, the rate of decrease of the NEMS resonance frequency is proportional 

to the molecular flux rate observed by each device. The ion flux rate based on the known 

mass sensitivity of each mode and device differed for each device due to the non-uniform 
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ion beam and is shown in Figure 41c. The amplitude increased significantly for the longer 

devices, with the longest device having an amplitude increase by a factor of 2 for the first 

mode and a factor of 3 for the second mode. The amplitude increase appears not to occur 

monotonically with device length and is independent of the ion flux rate; the effect likely 

depends on the specifics of the gate electrode and beam geometry and how it relates to mode 

 
Figure 41. Resonant frequency and amplitude change during continuous myoglobin 

deposition to a 20-device array. The (A) frequency and (B) amplitude change of the 

first two modes is shown for 18 working devices in a 20-device array during continuous 

adsorption of charged molecules. A map of the devices in the array is shown in (C), with 

the device number 1-20 shown in bold and the adsorption rate in ion/s shown below the 

device number. Device 1 corresponds to the longest device at 9.2 µm and device 20 

corresponds to the shortest device at 7 µm. The colors match the plots in (A) and (B). 
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shape. Because of this complication, evaluation of the resonant amplitude increase and 

resulting nonlinear effect on frequency driven by adsorption of charged molecular species 

will be the subject of further research. 

The time required for amplitude saturation combined with the calculated ion 

adsorption rate yields ~1E5 ions for saturation. Assuming that each myoglobin molecule 

covers 4 nm2 surface area, ~1.5E5 molecules are required to form a single layer on top of the 

beam surface. Therefore, I hypothesize that the amplitude saturation effect may occur when 

a monolayer of myoglobin fully covers the beam and shields further incoming charges from 

modulating the DC potential between the beam and gate. 

Once the resonant amplitude reached this saturation level, the new resonant amplitude 

was found to be very stable. The native oxide layer on the device likely prevents charge 

leakage into the bulk, therefore allowing for the preservation of molecular charge upon 

adsorption to the device. This is a potentially useful finding, because if the molecules can be 

removed from the NEMS devices following their measurement, the charges could potentially 

be preserved as well, allowing for the molecules to be measured in a mass spectrometer after 

they are monitored with NEMS devices. In this way, the NEMS devices could be used to 

pre-stratify like molecules based on some physical property independent from their mass 

spectra, which suggests the new approach to single-molecule proteomics discussed in 

Section 1.4. To monitor charge retention systematically, the resonant amplitude of each 

device was monitored for a week in the same array used in the myoglobin adsorption study 

above, as shown in Figure 42. Both the resonant amplitude and the electrical resistance of 

the nanogauges decayed with a half-life of around 50 hours, indicating that at least a 
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monolayer worth of charge associated with adsorbed molecules is preserved for long periods 

of time. 

In order to maintain device amplitude, a control loop could be used alongside the PLL 

used to maintain device frequency; however, a more direct solution providing for mass 

detection without amplitude changes is preferred. Referring to Equation 25 of Chapter 1: 

𝐹𝑒𝑙 = −
𝐴𝜀0

2𝑔2
(𝑉𝐷𝐶

2 +
𝑉𝐴𝐶

2

2
+ 2𝑉𝐷𝐶𝑉𝐴𝐶 cos 𝜔𝑡 +

𝑉𝐴𝐶
2

2
cos 2𝜔𝑡) ,            (25) 

the electrical actuation force has a DC component when used in 1f mode, but has no DC 

component when used in 2f mode (𝑉𝑑 = 𝑉𝐴𝐶 cos 𝜔𝑡 with 𝜔 set to half the device resonance 

 
Figure 42. Retention of molecular charge on NEMS devices. (A) An open loop sweep 

of a single device in the array following adsorption shows gradually decreasing 

amplitude; (B) the amplitude decays with a half-life of 54 hours. (C) Positive charges 

applied to the surface of a p-doped conductive nanogauge generates a depletion layer and 

increases resistance. (D) The resistance across various electrodes connected to the device 

was monitored before and after ion adsorption; the resistance decay had a similar time 

constant. 
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frequency and the lock-in amplifier set to detect at 2𝜔). Assuming the resonant amplitude 

increase is due to charge accumulation modulating the DC potential between the device and 

the beam, it could therefore be avoided with the 2f actuation technique. This was attempted 

with GroEL molecules sent to a single CAL3 device operated with the first two modes at 

resonance as shown in Figure 43. In contrast with the 1f actuation technique, the 2f actuation 

technique produced adsorption events with only negative frequency jumps as predicted, as 

well as no detectable change in resonant amplitude. The 2f actuation technique therefore 

avoids issues with charge adsorption affecting frequency in a nonlinear way, preventing the 

measurement of inertial mass. For this reason, the 2f technique was used to produce the 

remaining mass spectra in this thesis. Calculation of a mass spectrum for the data collected 

for Figure 43 is discussed in Chapter 3. 

 
Figure 43. Detection of GroEL using 2f actuation. GroEL adsorption events are 

detected in real time for the first two modes with each event showing only negative 

frequency shifts; changes in resonant amplitude were not observed. 
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2.8 Summary 

This chapter detailed the modification of a Q Exactive Plus, outfitted with extended 

mass range (EMR) capabilities, to acquire the capability to deliver intact, noncovalent 

macromolecules (up to 4.5 MDa) to nanomechanical devices operated at cryogenic 

temperatures. Such an undertaking required careful consideration of vacuum requirements, 

the construction and alignment of ion optics to maintain the motion of charged ions, electrical 

cabling thermalization, and thermal radiation shielding. The final ion lens needed to be 

calibrated to focus ions onto a small enough spot to achieve reasonable flux onto NEMS 

devices while achieving soft landing so the molecules would adsorb intact. In order for 

molecules to ultimately be detectable on the NEMS, the NEMS must operate at a lower 

potential than the Orbitrap’s analysis chamber, which is typically at ground. We could not 

float the NEMS at large enough negative voltages without destroying the devices, so a large 

number of internal voltages to the Q Exactive needed to be raised in order to operate the 

NEMS at ground, and some pressure settings adjusted as well. 

With the hybrid system built, a small series of mass spectra were recorded with 

myoglobin (17.5 kDa), GroEL (801 kDa), and 14/7 GroEL/ES (870 kDa) in their native state. 

These molecules could be isolated with the quadrupoles and characterized in the Q Exactive 

to deliver highly purified molecules to the NEMS devices with absolute certainty as to the 

molecule identity, a previously unavailable capability in our lab. 

The cryogenic stage in the instrument could reach 10K base temperature, but the 

VLSI CMOS compatible devices we had on hand could only be cooled to 150 K due to 

device self-heating. At this temperature, single GroEL molecules could be detected 

adsorbing to the devices in real time. These adsorption events were initially associated with 
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large swings in device resonant amplitude, which interfered with the mass detection via 

measuring frequency shifts due to nonlinear coupling between device amplitude and 

frequency. This nonlinear coupling effect could be eliminated by using the 2f actuation 

technique, where no DC gate voltage is used and the devices are actuated only at AC at half 

their resonant frequency (with resonance achieved through the nonlinear electrostatic gate 

force). Up to a monolayer of molecular charge could be detected and is retained on the 

devices with a half-life of ~50 hours.  
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C h a p t e r  3  

MASS SPECTROMETRY AND INERTIAL IMAGING OF PROTEINS 

3.1 Introduction 

In this chapter, we used the hybrid Orbitrap-NEMS system to perform single-

molecule analysis of GroEL (801 kDa). GroEL could be pre-selected using the quadrupoles 

of the Q Exactive, thus ensuring the identity of each molecule adsorbing to the NEMS. This 

is a new capability in our lab, which is documented extensively in Chapter 2. Data for the 

two-mode mass spectra were initially collected with Dr. Eric Sage, and then evaluated with 

calculations using techniques similar to those previously published by our group [2]. I then 

collected the first three-mode mass spectra of single proteins in real time using GroEL 

molecules. The intent was to deduce the first three mass moments of the 1D contact area of 

the molecule according to the method of inertial imaging [3, 4]. The experimental method I 

devised for this study is only a minor extension to the two-mode technique, but several 

important practical details needed to be investigated. Among these were whether the modes 

should be actuated simultaneously or sequentially. Additionally, the statistical framework 

needed to be upgraded to permit detecting events and then transforming the measured 

frequency jumps upon analyte adsorption into uncertainties for the first three mass moments. 

Such an experiment, if successful, would demonstrate the first form of molecular imaging 

based on the change in kinetic energy induced in nanomechanical structures; the technique 

is, in principle, capable of atomic-level resolution with today’s smallest NEMS devices [3]. 
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3.2 3D mapping of ion flux focused by ion lenses 

The initial adsorption attempts discussed in Sections 2.6 and 2.7 each required 

significant time to locate the ion beam due to its tight focusing through our implementation 

of ion optics. Prior to collecting more MS data, we decided to systematically characterize in 

three dimensions the GroEL ion beam directed toward the NEMS. A 20-device CAL3 NEMS 

array was used for this purpose to increase the throughput of data collection. Details 

concerning the operation and fabrication of this array are provided in [1, 5] and summarized 

here for convenient reference. 

The NEMS arrays, fabricated by our Alliance for Nanosystems VLSI with LETI, are 

either cantilevers or doubly-clamped beams. Actuation and detection are performed 

 
Figure 44. Frequency addressed NEMS array. (A) Devices in array are interconnected 

in parallel using two levels of metal. The input and output electrodes are the same as for 

single devices. (B) Different device lengths provide a different resonance frequency for 

each device. An open loop sweep reveals a succession of peaks. (C) Frequency tracking 

involves the sequential use of a PLL for each device in the array; the frequency of each 

device can be reconstructed by splicing together the data collected just prior to switching 

to the next device. Figures from [1]. 
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identically to the single devices discussed in Section 1.8. Each device possesses five 

electrical connections. They are interconnected in parallel using two additional metal layers. 

This ensures that the input signal is applied to all NEMS simultaneously, and the overall 

output is the sum of all devices’ individual outputs. As their resonance frequencies are 

different, they are separately addressable. An example layout of three cantilevers is 

illustrated in Figure 44. Devices are 160 nm thick by 300 nm wide; for the doubly clamped 

beams, the lengths vary from 7–9.2 µm. 

 
Figure 45. SEM images of NEMS array. (A) A 20-device array of doubly-clamped 

beams is shown with the first layer of metallization, AlSi1, in red, and the second layer 

of metallization, AlSi2, in green. The devices have a pitch of 20 µm in X and 60 µm in 

Y for a total field size of 60 × 240 µm. (B) Close up of two adjacent devices showing 

parallel interconnections. (C) Close up of metal interconnections and vias. From [1]. 
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Fabrication details are discussed in [1] and colorized SEM images are shown in 

Figure 45. Simple arrays of 20, 49, and 100 devices have been fabricated; however, operation 

of arrays comprising more than 20 devices proved somewhat problematic beyond the second 

mode with some of the higher modes of the largest devices starting to overlap some of the 

lower modes of the smallest devices. The next generation design will circumvent this issue; 

these arrays were designed prior to our group’s invention of multimodal inertial imaging. 

Successful closed loop operation of a 20-device array is shown in Figure 46a. 

Myoglobin was directed toward the array, and the resonant frequency of each device was 

successfully tracked as shown in Figure 46b. The mass resolution of each device is not high 

enough to sufficiently resolve each adsorbed molecule, but the rate of change of the resonant 

 
Figure 46. Operation of 20-device NEMS array. (A) Sequential closed loop operation 

of all devices. (B) Individual frequency trace of each device under a myoglobin ion beam. 
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frequency is proportional to the adsorption rate incident on each device, assuming uniform 

deposition. The different slopes for Δ𝑓 𝑓⁄  observed for each device is therefore due to 

variable ion flux over the array’s entire field. 

To map the ion flux of GroEL in three dimensions, we used the 3D XYZ positioner’s 

(Attocube) capability for 0.1 nm positioning precision over 5 mm travel range. The array has 

a pitch of 20 µm in X and 60 µm in Y, so to achieve uniformly spaced data collection, the 

array was first staggered twice in Y by 20 µm, forming a field of 60 µm × 300 µm with a 

data point every 20 µm in X and Y. Then, this was repeated to form a field of 600 × 600 µm 

perpendicular to the ion beam axis. This was done with 3 minutes spent per position, so each 
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n 

 
Figure 47. 3D map of GroEL flux rate on NEMS. A NEMS array was mounted on a 

3D positioner to measure the ion flux rate, proportional to (Δ𝑓 𝑓⁄ ) 𝑠⁄ , every 20 nm at 

several positions along the ion beam axis. The maximum flux rate at Z=1500 µm 

corresponds to 25 molecules per second. 
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field took 1 hour to capture. Finally, it was repeated for several Z values, 

from fully extended (closer to the lens, Z=5 mm) to fully retracted (further from the lens, 

Z=0). Positioning was performed in an automated manner using a custom Python script. 

The initial measurement used a lens diaphragm voltage set to 0V. Results are shown 

using contour plots in Figure 47 with raw data given in terms of (Δ𝑓 𝑓⁄ ) 𝑠⁄ . This can be 

converted to molecules/s using the mass responsivity for mode 1 at 12 Hz/ag or the 

responsivity for mode 2 at 32 Hz/ag, the approximate respective resonance frequencies of 25 

MHz and 67 Hz, and a GroEL mass of 1.3 ag. The ions could be focused to a minimum beam 

size of 40 microns, with a flux rate of 25 molecules/s. Measurements were repeated with the 

positioner fully extended, and varying the diaphragm voltage. The ion beam size at different 

positions and diaphragm voltages are summarized in Table 7. Such data, once collected, is 

useful for finding the ions again after installing a new device, as well as setting the position 

of the device to achieve the desired flux rate. The experiment was repeated using myoglobin 

and the flux rate plotted with the positioner fully extended is shown in Figure 48. Myoglobin 

Z (µm) 

keeping lens 

diaphragm at 0V 

Ion beam size 

FWHM (µm) 

Lens diaphragm (V) 

keeping Z=5 mm 

Ion beam size 

FWHM (µm) 

125 127.4 40 189.9 

1500 40.5 20 146.4 

3000 97.7 0 225.6 

4200 212.1 –20 143.4 

4625 245.2 –60 135.5 

4995 225.6   

Table 7. Lateral extent of ion beam (in µm) while varying positioner Z or diaphragm 

voltage. Varying the positioner along the beam axis shows that the ion beam is maximally 

focused to a spot size of 40 µm at Z=1500. 
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could be detected over a much larger 5 mm spot; therefore, it could be used for preliminary 

device positioning. 

3.3 High event rate NEMS-MS of GroEL with two modes 

The ion flux data was used to position the smallest device in the array (7 µm long) 

with the best mass resolution at a location achieving approximately 1 molecule per second 

adsorption rate. This flux rate was chosen to demonstrate the ability to collect a large amount 

of data in a short period of time, while still having a low probability of multiple molecules 

landing within the measurement window of 100 ms. This measurement window is set 

according to the PLL time that minimizes the Allan deviation, and hence mass resolution, as 

shown in Figure 36b. Data was collected over 15 minutes, as shown in Figure 49. Jumps are 

automatically detected and evaluated to build a mass spectrum using a formalism based on 

transforming the joint probability distribution from the frequency domain of the first two 

 
Figure 48. Flux rate of myoglobin on NEMS. Myoglobin was sent to a NEMS array 

similarly positioned to monitor flux rate every 20 nm. The maximum flux rate 

corresponds to 880 molecules per second. 
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modes to the mass and position domains [1, 2, 6]. Using the first two modes, 656 frequency 

jumps were acquired. 

In brief, frequency fluctuations over a given measurement window, for a device array 

with each NEMS element operated with the first two modes simultaneously excited, have 

been observed to form a 2D normal distribution. Adsorption events can be identified as 

fluctuations that exceed a specified threshold, such as 5σ from background noise [1, 6]. For 

 
Figure 49. Two mode detection of GroEL molecules in real time. The highest mass-

resolution device in the 20-device array was positioned to achieve approximately 1 

molecule per second adsorption rate. The frequency of the first two resonance modes was 

tracked in real time using a PLL and frequency jumps exceeding a 5σ threshold were 

detected. 
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a given detected event with relative frequency shifts 𝜇1 = 𝑑𝑓1 𝑓1⁄  and 𝜇2 = 𝑑𝑓2 𝑓2⁄  for the 

first two modes respectively, the probability density function for a given mass and position 

that satisfies these two frequency shifts is given by [6]: 

PDF(𝛿𝑚, 𝑎) = |𝐽|
1

2𝜋𝜎1𝜎2√1 − 𝜌2
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where 𝐽 is the Jacobian of the coordinate system transformation. The mass and position 

spectra are obtained by projecting this two-dimensional PDF into either mass or position: 

PDF(𝛿𝑚) = ∫ PDF(𝛿𝑚, 𝑎)
𝑎=0.5

𝑎=0

𝑑𝑎;                                  (39) 

PDF(𝛿𝑎) = ∫ PDF(𝛿𝑚, 𝑎)
𝛿𝑚=∞

𝛿𝑚=0

𝑑(𝛿𝑚).                              (40) 

The frequency jumps were converted into a mass and position spectra according to this 

method, as shown in Figure 50. The mass spectrum features a peak mass of 747.9 kDa 

(compared with 801 kDa expected) and  FWHM of 445 kDa. The device had Allan deviations 

of 𝜎1 = 2.23E–7 and 𝜎2 = 1.84E–7 for the first two modes and noise correlation coefficient 

𝜌 = 0.28, with an expected mass resolution of 118 kDa. This mass resolution is notably 

higher than the published value of 50 kDa for standalone CAL3 devices [7]; however, the 

measurements in this section used one of the 20 devices in an array, and the performance of 
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each such device in these first NEMS arrays is known to be worse than the performance of 

standalone devices [1]. The position spectrum was neither highly peaked nor uniform. 

Although uniform deposition over the beam is expected, due to the low device responsivity 

near the beam’s clamp points, adsorption events do not uniformly exceed the 5σ threshold 

needed for event detection. 

The effect of varying the jump detection threshold is shown in Figure 51. Because 

the GroEL molecule is close to the mass resolution of the device, the choice of jump detection 

threshold affects the mass spectrum peak. Having too low of a threshold results in a false 

peak at <500 kDa which can be ascribed to false positive events [1], while having too high 

of a threshold creates false negative events and artificially shifts the mass spectrum to the 

right. The choice of 5σ eliminates the false peak at <500 kDa without shifting the centroid 

of the mass spectrum to the right.  

 
Figure 50. Mass and Position spectra of GroEL measured with two modes. 

Frequency jumps detected from GroEL adsorption events are used to form mass and 

position spectra using Equations 38-40. The average mass spectrum peak for 656 single-

molecule adsorption events was 747.9 kDa with a FWHM of 445 kDa. The device had a 

mass resolution of 118 kDa. The position spectrum was not highly peaked, but not 

uniform either, due to low mass responsivity near the device clamp points (see text). 
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The FWHM of the mass spectrum is significantly larger than expected. For a device 

with mass resolution of 118 kDa, a normal probability distribution would produce a FWHM 

of 2√2 ln 2𝜎 ≈ 2.355𝜎 = 278 kDa. Although the mass resolution is produced from a 

decidedly non-normal distribution via the nonlinear joint probability distribution 

transformation, the large difference is still notable. A simulation was performed to closely 

mimic the experiment to ensure that the calculations are internally correct and to investigate 

any sources of discrepancy. Results are shown compared to the experimental data in Figure 

52. The FWHM of the simulation was 299 kDa, close to expected. 

 
Figure 51. Mass spectrum for different choices of jump detection threshold. 

Histograms are shown for calculated mass of GroEL for different multiples of 𝜎 

describing the 2D normal distribution for background device noise fluctuations. 
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Due to the nonlinear transformation, the peak value of the mass probability density 

for each individual particle does not equal the mean value. This difference will also vary 

depending on where the particle lands. To illustrate this, an additional simulation showing 

the peak value of the mass probability density versus the peak value of the position 

probability density is shown in Figure 53. The simulation was conducted both with noise 

added in for the device used in this Section and with no noise, showing that the effect is 

always present. It was found that the ensemble mass spectrum calculated using events over 

the entire device will produce a mass spectrum with an overall peak different from the 

molecule’s mass, unless data inclusion is restricted to calculated positions 0.39 < 𝑥 < 0.41. 

Additionally, the ensemble mass spectrum will have a width larger than that expected from 

the device’s mass resolution unless data is restricted to this extremely narrow region. 

 
Figure 52. Simulation vs experiment for GroEL mass spectrum. A simulation was 

performed consisting of an 801 kDa point mass deposited uniformly 1000 times over a 

doubly-clamped beam. Frequency shifts were calculated, then noise was added to match 

the experimental device. A mass spectrum was then calculated using these frequency 

shifts. The simulated spectrum has a peak at 802 kDa and FWHM of 299 kDa. 
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The mass spectrum for the experimental GroEL data was recalculated using various 

choices of position restriction as shown in Figure 54. Restricting the data to 0.39 < 𝑥 <

0.41 improved the spectrum, not only eliminating the small unresolved peaks on the right 

shoulder of the spectrum, but also allowing for a second peak to be resolved near twice the 

mass of GroEL. The dominant peak of the spectrum for events with 0.39 < 𝑥 < 0.41 was 

846 kDa, and the FWHM was 426 kDa. The second peak was at 1.756 kDa. This 

demonstrates that, since we can deduce where analytes land, we can select those events 

associated with the highest accuracy a posteriori to improve the final result.  This position-

restricted data was compared directly to the simulation in Figure 55. The peak mass was 

close to expected, but the width of the spectrum was still significantly larger than expected. 

 
Figure 53. Simulation of calculated peak mass versus calculated peak position. 

Calculated mass vs position is shown for the same simulation performed, both with and 

without device noise for the device used to collect experimental data. The peak mass of 

each event differs from the molecule’s 801 kDa due to the nonlinear nature of the 

probability distribution transformation. Combining many events collected over the 

device will therefore produce a mass spectrum with an overall peak and width different 

from that collected from a single event. This would occur even with no device noise. 
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The difference in calculated mass compared with expected has been previously observed in 

calibrated experiments with metallic nanoclusters [8]; this has been ascribed to the fact that 

the device’s piezoresistive gauges change the effective device length (and hence, mass). This 

could be addressed with a calibration procedure. The increased width of the spectrum 

compared with the simulation may be due to two or more GroEL molecules landing within 

the measurement time of 100 ms; rather than both landing within the restricted position 

0.39 < 𝑥 < 0.41, giving rise to the secondary peak in the spectrum, the molecules could 

land at two completely different positions, causing the spectrum to broaden.  

A small note on the MATLAB calculations used to compute mass spectra: MATLAB 

natively relies on vectorized data for efficient and optimized computation. For the 2D 

 
Figure 54. GroEL mass spectrum from restricted regions of doubly-clamped beam. 

The position spectrum for each individual event was calculated using Equation 40. The 

peak value of this spectrum was used to determine whether or not to include the event in 

constructing the overall mass spectrum. Significantly restricting the calculated position 

of the data improves the mass spectrum and allows events near double the GroEL mass 

(at 1.6 MDa) to be resolved. 
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calculations involving mass and position data points, it was important to consistently use 

columns to store mass and rows for position. Calculations can then be performed in aggregate 

using matrices rather than looping over each dimension. Rewriting the code like this 

improved computation speed by a factor of 10, allowing for the large number of simulations 

in this section to be easily computed. 

3.4 Actuation and detection of more than two modes 

With the development of inertial imaging theory, additional information about the 

shape of the molecule can be ascertained by actuating and detecting more than two modes 

for a doubly clamped beam. The remainder of this Chapter discusses efforts to perform this 

measurement experimentally on GroEL molecules. In the original configuration of the 

 
Figure 55. Simulation vs experiment for restricted region of doubly-clamped beam. 

Experimental data was much closer to the simulation for the highly restricted region 

0.39 < 𝑥 < 0.41. The dominant mass of the experimental mass spectrum different from 

simulation by 4.9% and the width of the mass spectrum was larger than experiment by 

42%. The experimental plot is constructed using 40 events, 6% of the total detected. 
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experiment, each mode required two signal generators and one lock-in amplifier (LIA) 

(Figure 12); measuring many modes with this approach would start to become unwieldly. A 

custom instrument called a “D-Box,” previously developed by our group, was used which 

 
Figure 56. Measurement setups for more than two modes. (A) The D-Box contains 6 

channels, each capable of actuating a single mode with the down-mixing scheme. 

Actuating more than two modes can be achieved by (B) sequential actuation or (C) 

simultaneous actuation. Details of operation are in the text. 
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includes six channels, with each channel capable of measuring a single mode with the down-

mixing scheme (Figure 56a). More than two channels can be operated on the device by using 

power combiners for the drive and bias signals in the MHz range, and simple tees to split the 

<100 kHz down-mixed signal at the device output to the LIA inputs for each channel. 

Different values of Δ𝜔 for each mode are used to avoid cross-talk between modes for each 

channel. 

The simplest setup would involve switching between modes (assuming device drift 

is minimal during the time it takes to switch between all modes). In principle, this would 

require only one D-Box channel and set of cables. In practice, two channels were used, with 

the first mode using one channel and connected to the larger actuation gate, and the second 

and higher modes using the other channel and connected to the smaller actuation gate (Figure 

56b). This was done because actuation for the first mode was found to be significantly more 

efficient with the larger gate, and actuation for the higher modes was found to be significantly 

more efficient with the smaller gate. 

Alternatively, all modes could be actuated simultaneously. A schematic showing how 

this was done for three modes is shown in Figure 56c. More modes could be achieved using 

power combiners with more inputs as well as additional cables, tees, and D-Box channels. 

Modes activated Allan deviation (Mode 1) 

1 3E–7 

1, 2 3.5E–7 

1, 2, 3 1.2E–6 

1, 2, 3 4 1.5E–6 

Table 8. Allan deviation of first mode while combining actuation with higher modes. 
Room temperature measurement of a single CAL3 device with operation of 1, 2, 3, and 

4 simultaneous modes. Each mode was actuated according to their optimal performance. 

The Allan deviation for the first mode is reported with a measurement time of 100 ms. 
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First attempts for operation of more than two modes focused on the simultaneous actuation 

approach due to the familiarity with simultaneously actuating two modes. An initial test was 

performed by operating a single CAL3 device at room temperature with increasing numbers 

of modes. As shown in Table 8, the Allan deviation of the first mode increased with each 

additional new mode, with significant performance degradation occurring in the jump from 

two to three modes. Similar experiments were performed on piezoelectric AlN membranes, 

and the decrease in performance for multimode operation was not observed [9]. So, with the 

piezoresistive devices in particular, the issue seems to be the large amount of heat dissipated 

during readout of their higher modes. Additionally, operation of additional higher modes to 

their onset of nonlinearity was found to significantly alter the resonance frequencies of lower 

modes; this inter-modal dependence of resonance frequency on amplitude indicates the 

presence of a nonlinearity which could alter device mode shape. Since inertial imaging 

requires extracting small differences in fractional frequency-shift data, this could alter the 

measurement. 

Initial attempts at mode switching were also discouraging. A single CAL3 device 

was operated at room temperature, switching between modes 2 and 4. Each time switching 

to a new mode, a significant change in resonance frequency was observed, with the previous 

resonance frequency recovering after a long time interval of about 5 seconds regardless of 

PLL time (Figurea). Such a long time constant was not likely to be related to anyting 

electrical or mechanical. One possibility was a thermal issue. It was found that by carefully 

tuning the bias voltage 𝑉𝑏𝑖𝑎𝑠 of mode 4, the resonance frequency of mode 2 could remain the 

same frequency when switching back to it (Figureb). Selecting 𝑉𝑏𝑖𝑎𝑠 = 1.87V for mode 4 

evidently allowed for the resonance frequency of mode 2 to remain unchanged; higher 𝑉𝑏𝑖𝑎𝑠 
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would cause the resonance frequency to increase, and lower 𝑉𝑏𝑖𝑎𝑠 would cause the resonance 

frequency to decrease. These measurements are consistent with the temperature of the device 

changing with 𝑉𝑏𝑖𝑎𝑠, and the need to tune 𝑉𝑏𝑖𝑎𝑠 for each mode to achieve constant RMS 

temperature. (Note that the same value of 𝑉𝑏𝑖𝑎𝑠 cannot simply be used for all modes due to 

different signal attenuation at different frequencies). These issues are currently being 

 
Figure 57. Mode switching with matched RMS heating. Data is shown for the tracked 

phase and resonance frequency for mode 2, while switching between modes 2 and 4, 

spending 5 seconds on each mode and operating with a 100 ms PLL time. (A) With each 

mode naively operated according to their individually optimized settings, phase recovers 

to zero within the correct PLL time, but the tracked frequency takes significant time to 

settle. This occurs each time switching to a new mode. (B) This could be avoided for 

mode 2 by tuning 𝑉𝑏𝑖𝑎𝑠 for mode 4 to 1.87V.   
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addressed in other work ongoing in our group by abandoning piezoresistive readout in pursuit 

of much lower power NEMS interrogation methods. 

The Allan deviation for modes 2 and 4, operated individually at room temperature, 

were 6.6E–7 and 9.0E–7, respectively. Switching between the modes and stitching the data 

together for each mode using the bias tuning method, Allan deviation measurements were 

7.0E–7 and 1.0E–6, respectively, showing that higher modes could be operated without 

significantly reducing performance and making inertial imaging measurements feasible. 

The device was lowered to cryogenic temperatures and GroEL molecules were sent 

to the device while interrogating its lowest 4 modes. Unfortunately, large spikes in resonance 

frequency were often observed switching to a new mode, even after molecules were no 

longer sent to the device. This behavior only occurred at cryogenic temperatures, but did not 

have a long time constant like before. The origin of this phenomenon has not been resolved, 

and consequently, the data could not be used to perform inertial imaging. It is possible that 

the issue could be related to cabling imperfections, or issues related to molecular charge 

affecting the resonance frequency when switching actuation voltages. 

Simultaneous actuation was tried again, except with lower levels of actuation for all 

three modes (𝑉𝑏𝑖𝑎𝑠 at about 25% of that required for the onset of nonlinearity). Typically, 

each mode is driven up to the point of nonlinearity; this provides maximal signal-to-noise 

ratio. Lower actuation levels yield higher Allan deviations, and at very low drive levels, the 

device performance becomes limited by Johnson noise rather than its intrinsic 1/f mechanical 

domain noise. However, as discussed in Chapter 2, the performance of the piezoresistive 

CAL3 devices is instead limited by device heating as a consequence of the piezoresistive 

readout. By operating the devices at a lower temperature via a lower actuation voltage, it was 
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found that the devices had lower 1/f noise floor which could be accessed by using longer 

integration times. The devices were cooled to 80K using liquid nitrogen (the actual device 

temperatures under bias conditions were not measured, but assumed to be higher than 80K). 

Operating at reduced actuation levels, Allan deviations of 1.91E–7, 1.08E–7, and 1.67E–7 

were achieved for the first three modes, respectively, for a PLL time of 1 second (Figure 58). 

It was also observed that additional operation of the third mode did not significantly change 

the resonance frequencies of the first two modes, thus limiting the introduction of 

nonlinearities that could alter the measurement, as previously discussed. 

3.5 Rudimentary adsorbate imaging using three modes 

As discussed in Section 3.3, adsorption events are detected when the fractional 

frequency shifts exceed some threshold compared with the background noise level. This 

procedure can be generalized to three or more modes as follows. The raw frequency data are 

 
Figure 58. Allan deviation for CAL3 device actuated with 3 modes simultaneously. 

Devices were operated at 80K with liquid nitrogen and actuated at 25% of that required 

for onset of nonlinearity. Allan deviation was measured using a PLL time of 1 second. 
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averaged over the integration time 𝜏𝑎𝑣𝑔 (3 seconds in these experiments), then the fractional 

frequency differences are calculated: 

 𝑦̅𝑛(𝑖) =
𝑓𝑛̅(𝑖 + 1) − 𝑓𝑛̅(𝑖)

𝑓𝑛̅
,                                                 (41) 

where 𝑓𝑛̅ is the averaged frequency and 𝑦̅𝑛 is the relative (averaged) frequency change for 

mode 𝑛. Using this data, the mean vector 𝝁 and covariance matrix 𝚺 can be calculated. In 

three dimensions: 

𝚺(𝑦̅1, 𝑦̅2, 𝑦̅3) = [

𝜎1
2 𝜌12𝜎1𝜎2 𝜌13𝜎1𝜎3

𝜌12𝜎1𝜎2 𝜎2
2 𝜌23𝜎2𝜎3

𝜌13𝜎1𝜎3 𝜌23𝜎2𝜎3 𝜎3
2

],                             (42) 

where 𝜎1, 𝜎2, 𝜎3 can be identified as the Allan deviations, and 𝜌12, 𝜌13, and 𝜌23 describe 

frequency noise correlation between modes. For the device used to collect data in this section, 

𝜌12 = 0.675, 𝜌13 = 0.223, and 𝜌23 = 0.122. Assuming a multivariate normal distribution, 

contours of constant density are given by vectors 𝒙 satisfying 

(𝒙 − 𝝁)T𝚺−1(𝒙 − 𝝁) = 𝑐2,                                                (43) 

which are ellipsoids centered on 𝒙 = 𝝁 with axes in the directions of eigenvectors of 𝚺 and 

axis lengths 2𝑐√𝜆𝑖, where 𝜆𝑖 are the eigenvalues of 𝚺. To define confidence regions, 𝑐2 can 

be set to the quantiles of the 𝜒2 distribution; for 95% confidence values, one can use the 

inverse 𝜒2 for a 𝑝-value of 0.05 with 3 degrees of freedom. This works out to 𝑐 = 2.796. A 

scatterplot for the averaged fractional frequency shifts of the first three modes are shown for 

the device along with the 95% confidence ellipsoid in Figure 59. Matlab code used to plot 

the confidence contour was adapted from [10].  

Given the need for a slow integration time of 3 s for these experiments, GroEL 

molecules were sent to the device at a reduced rate of about once every 60 s. Over an 8-hour 
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run, around 100 events were observed. A plot demonstrating adsorption events are shown in 

Figure 60. Actuation was performed using the 2f technique described in Section 2.7, with a 

constant amplitude provided throughout the entire experiment. This ensures that the 

frequency shifts are due to mass adsorption alone, and not conflated with charging effects 

that could potentially modify the frequency indirectly, as described in Section 2.7. Over the 

entire experiment, the device experienced a slow downward frequency drift, with each mode 

changing by Δ𝑓 𝑓⁄ ≈ –3E–4. This is due to uniform adsorption of vapor and is minute 

enough not to affect mode shape. Over the course of the measurement window, frequency 

drift was not prominent as shown in Figure 60a. Additionally, the slope of the log-log plot 

 
Figure 59. Noise characterization for three-mode acquisition. Relative frequency 

change is plotted for the first three modes actuated simultaneously with no adsorption 

events. An ellipsoid is plotted denoting the 95% confidence contour. 
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of Allan deviation versus measurement time at the chosen PLL time as shown in Figure 58 

does not indicate drift interferes with the measurement (compare with Figure 13). 

Events were selected that exceeded the background noise with a confidence value of 

99%. Detected frequency jumps were then used to calculate the mass, position, and variance 

using the truncated series approach and associated fitting algorithms (Chapter 4). Since the 

number of events collected was small, this was performed manually. 

A sample of the mass moment calculations for the three-mode data are shown in 

Figure 61. Mass moments were calculated using the truncated series expansion approach 

introduced in Chapter 4 (of Part II, Theory) in this thesis. Some of the events (shown in 

yellow) could be immediately excluded due to the large uncertainty in adsorbate mass. A few 

of the events (shown in blue) demonstrated good precision in uncertainty for the standard 

deviation, but the calculated values (~700 nm) far exceeds the expected (1D) contact area for 

 
Figure 60. GroEL adsorbing to CAL3 device actuated with three modes. A long 

integration time of 3 seconds was used for low-noise operation. Representative frequency 

shifts are shown during adsorption events (left). The amplitude of all three modes was 

constant during the entire experiment (right). 
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GroEL (~15 nm). These events were interpreted to be multiple GroEL molecules landing 

within the measurement timeframe, but at significantly different locations on the beam. The 

remaining events (in green) had good uncertainty for mass, and the measured mass was 

typically within the range of a single GroEL molecule. These calculations were interpreted 

to demonstrate that the three-mode setup could distinguish between a single GroEL molecule 

landing, versus two molecules landing at different positions, but could not measure the spatial 

extent of a single molecule. The goal of inertial imaging of single molecules was not reached, 

but the data still demonstrates in some sense a rudimentary form of molecular imaging 

(adsorbate arriving in a single vs. two separate components). The failure to extract the extents 

of single-molecule events could be due to the low signal-to-noise present in the experiment, 

along with the possibility that single molecules have a significant rotational inertia 

 
Figure 61. Representative sample of mass moment calculations using three-mode 

data. Relative frequency shifts were individually input into the truncated series method 

for calculating mass moments (Chapter 4). The method provides calculated moments as 

well as uncertainties. 
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contribution to their kinetic energy due to their geometry relative to the in-plane beam motion 

(as discussed in Section 1.7).  

To calculate a mass spectrum, the joint probability distribution formulation 

introduced in Section 3.3 needs to be extended to three dimensions. Specifically, the 

probability density function for a given mass, position, and standard deviation to satisfy data 

with relative frequency shifts 𝜇1 = 𝑑𝑓1 𝑓1⁄ , 𝜇2 = 𝑑𝑓2 𝑓2⁄ , and 𝜇3 = 𝑑𝑓3 𝑓3⁄  is given by:  

PDF(𝛿𝑚, 𝑎, 〈𝑥2〉) = |𝑱|
1

√(2𝜋)3|𝚺|
exp (−

1

2
(𝒉 − 𝝁)T𝚺−1(𝒉 − 𝝁)) ;                  

𝑱 =
(𝛿𝑚)2

𝛼1𝛼2𝛼3

det

[
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;     

ℎ𝑖=1,2,3 = −
𝛿𝑚

2𝛼𝑖
(𝜙𝑖

2(𝑎) +
1

2

𝑑2𝜙𝑖
2(𝑥)

𝑑𝑥2
|
𝑥=𝑎

〈𝑥2〉),                        (44) 

where 𝑱 is the Jacobian of the coordinate system transformation, 𝚺 is given by Equation 42, and ℎ𝑖=1,2,3 

are the modeled frequency shifts induced by the random variables 𝛿𝑚, 𝑎, and 〈𝑥2〉 using the 

truncated series expansion approach developed in Chapter 4. The mass spectrum can be 

calculated by integrating over position and variance: 

PDF(𝛿𝑚) = ∫ ∫ PDF(𝛿𝑚, 𝑎, 〈𝑥2〉)
𝑎=0.5

𝑎=0

𝑑𝑎
〈𝑥2〉=1

〈𝑥2〉=0

𝑑〈𝑥2〉.                    (45) 

To compute the mass spectrum, the three-dimensional probability density function was 

calculated for each single-molecule adsorption event, determined as illustrated in Figure 61, 

and then projected onto the mass domain according to Equation 45. The results are shown in 

Figure 62. The primary peak at 795 kDa is extremely accurate. Similarly to the spectrum 

calculated with two modes and severe position restriction (Figure 54), a secondary peak can 
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be resolved near twice the mass of GroEL, indicating two molecules landing together in the 

same location. 

The uncertainty for the dominant peak is 432 kDa, which is similar to that obtained 

with the two-mode measurement, here despite the lower Allan deviation. To see why this 

might be the case, contour plots were produced to show the probability distribution for each 

event in mass and variance space (integrating the 3D probability density function over the 

position dimension). Presumed single- and double-molecule landing events are shown with 

the experimental GroEL data in Figure 63 and compared with simulation data (using the 

 
Figure 62. Mass spectrum for GroEL events calculated from three-mode data. The 

dominant peak is at 795 kDa and has a FWHM of 432 kDa. A secondary peak occurs 

near twice the mass of GroEL. A third peak is observed at 2.812 kDa. 
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device’s 

 
Figure 63. Probability density for mass and standard deviation for representative 

adsorption events (experimental). Density functions integrated over the position 

dimension are shown for (A) a suspected single-molecule event and (B) a suspected 

double-molecule event. The single-molecule event features an additional region in the 

distribution at higher mass and higher variance, which would broaden the final mass 

spectrum if not removed. 
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device’s 

 
Figure 64. Probability density for mass and standard deviation for simulated 

adsorption events. Density functions integrated over the position dimension are shown 

for (A) a single-molecule event with mass of exactly 801 kDa and (B) two molecules of 

801 kDa landing at different positions. The single-molecule event features an additional 

region in the distribution at higher mass and higher variance similar to that seen in the 

experimental data. 
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device’s measured noise characteristics) in Figure 64. Both the experimental and simulation-

based density contours show that the addition of variance as a third degree of freedom to 

describe a single-particle adsorption event results in a new region in the distribution allowing 

for the possibility of a higher mass, higher variance solution to the data. This possibility, 

while less probable than the correct mass, lower variance solution, gets projected onto the 

mass spectrum, leading to unnecessary broadening of the mass spectrum even with more 

information available. Therefore, once the particle has been identified as a single-molecule 

event (with the peak value of the distribution belonging to a low-variance region), other 

regions in the distribution should be removed prior to calculating the mass spectrum. A 

demonstration of this for the particle shown in Figure 63a is shown in Figure 65. Removing 

 
Figure 65. Mass spectrum for GroEL event after identifying as single particle. The 

3D probability distribution in mass, position, and variance space for the GroEL event 

shown in Figure 63a has three regions; the region corresponding to the most probable 

solution (in the lower left) corresponds physically to a small particle solution and was 

integrated over other variables to produce a mass spectrum featuring less uncertainty. 
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data for the probability distribution for normalized standard deviations exceeding 0.075 

results in a simplified mass spectrum for the particle. 

This process was repeated for all GroEL data identified as single molecule events 

through the method illustrated in Figure 61. Each individual event was found to have multiple 

regions to the probability distribution in mass-variance space similar to the representative 

event shown in Figure 63a, with at least one region extending to zero variance, indicating a 

small particle solution. The small particle region of the probability distribution was isolated 

for each event, and integrated over other variables to produce a more representative mass 

spectrum for GroEL single particle events as shown in Figure 66. This mass spectrum 

 
Figure 66. Mass spectrum for GroEL single particle events. The 3D probability 

distribution in mass, position, and variance space for the GroEL data identified as single 

particle events were projected onto mass (“Entire solution”). Regions of their 

distributions corresponding to a small particle solution (those that include zero variance) 

were isolated and integrated over other variables to produce a more accurate mass 

spectrum (“Small particle”). 
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features a peak of 797 kDa with a FWHM of 319 kDa, as well as a secondary peak at 1.469 

kDa. These peaks are close to the mass and twice the known mass of GroEL (801 kDa). 

 Finally, the process was repeated for events identified as two molecules landing at 

different locations on the beam. As illustrated in Figure 63b, there are multiple regions in the 

multidimensional probability distribution. The region with the highest probability density 

was isolated and integrated over other variables to produce mass spectra. These mass spectra 

were combined with those obtained with the single particle events to obtain a final mass 

spectra as shown in Figure 67. Selecting an appropriate region of the probability distribution 

for each event led to an improved mass spectrum, with the main peak of 805 kDa with a 

 
Figure 67. Mass spectrum for all GroEL events calculated from three-mode data. 

The spectrum is shown integrating the 3D probability density over position and variance, 

using either the entire distribution or the appropriate selected region as discussed in the 

text. The effective mass resolution for the final mass spectrum is 131 kDa. 
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FWHM of 310 kDa near the exact mass of GroEL and nearly resolved from the second and 

third peaks. The data features an effective mass resolution of 𝜎 = FWHM / 2.355 = 131 kDa. 

It bears repeating, however, that single-molecule events could have significant rotational 

inertia contribution based on their geometry relative to the in-plane device motion. This 

effect could possibly be mitigated using devices with transverse motion, or adding additional 

corrects to the model to account for this effect. 

3.6 Summary 

In this chapter, GroEL molecules were sent to NEMS devices operated with two or 

three modes using the hybrid Orbitrap-NEMS instrument. An array of 20 NEMS devices was 

initially used to characterize the ion beam in three dimensions, allowing for precise 

positioning of the devices to allow for high (or low) ion flux. High flux measurements were 

performed at ~1 molecule per second with two modes, along for a large amount of GroEL 

adsorption events to be collected. The mass spectrum featured a large uncertainty in mass, 

but enough events were collected that all but 6% of the data landing in a small region of the 

device could be discarded. The remaining data provided more information and yielded a 

higher-quality spectrum revealing two peaks, one centered at GroEL’s expected mass, and 

one near twice the mass, indicating some events were associated with two molecules landing 

simultaneously. 

GroEL molecules were also collected with three modes operated simultaneously. 

Good noise performance could be obtained by operating the devices at lower bias voltages 

(and hence, lower temperature) with long integration times. In this regime, only ~100 events 

could be collected over 8 hours, but the results readily demonstrate a proof-of-concept that 

single- vs double-molecule landing events can be distinguished with the second mass 
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moment (variance) calculated using inertial imaging theory. While this falls short of our 

starting goal of imaging the spatial mass distribution of individual proteins, the ability to 

distinguish between a single point adsorbate and one with an extended mass distribution can 

be considered a form of rudimentary imaging. Carefully analyzing the full three-dimensional 

probability distribution in mass, position, and variance space allows for the construction of 

an improved mass spectrum compared with that collected using only two modes. 
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P A R T  I I :  T h e o r y  

C h a p t e r  4  

BEYOND THE POINT-MASS APPROXIMATION FOR NEMS-MS 

The mass measurement of single molecules, in real time, is performed routinely using 

resonant nanomechanical devices. This approach models the molecules as point particles. A 

recent development now allows the spatial extent, and indeed image, of the adsorbate to be 

characterized using multi-mode measurements [1]. This “inertial imaging” capability is 

achieved through virtual re-engineering of the resonator’s vibrating modes, by linear 

superposition of their measured frequency shifts. Here, we present a complementary and 

simplified methodology for the analysis of these inertial imaging measurements that exhibits 

similar performance, while streamlining implementation. This development, together with 

the software that we provide, enables the broad implementation of inertial imaging which 

opens the door to a range of novel characterization studies of nanoscale adsorbates. 

This chapter was completed in collaboration with Profs. John Sader, Selim Hanay, 

and Michael Roukes, and published in [2]. 

4.1 Introduction 

Nanomechanical resonators can be used as fast and sensitive mass balances due to 

their small mass, high vibrational frequencies, and low intrinsic energy dissipation [3-10]. 

The strong dependence of mass responsivity on device size has driven the development of a 

new type of mass spectrometer based on inertial mass sensing using nanoelectromechanical 

systems (NEMS) [11, 12]. This technology enables very precise measurements particularly 
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for high molecular weight biomaterials. Measurements to date include the weighing of 

individual proteins, metal nanoparticles, large biomolecules and demonstration of mass 

sensing with near atomic-scale-mass resolution [13-16]. 

The above-mentioned measurements use the property that the resonant frequency of 

a nanomechanical device is directly related to its inertial mass. Increasing the device’s inertial 

mass, via mass adsorption on its surface, reduces the resonant frequencies of its vibrating 

modes in a deterministic fashion. Central to all such measurements of adsorbed mass is a 

theoretical model enabling conversion of the observed frequency shifts to an added 

(adsorbed) mass. The most common approach is to approximate the adsorbate by a point 

mass. This leads to the well-known result for a one-dimensional elastic beam: 

𝛿𝑓𝑛

𝑓𝑛
≈ −

𝑚added

2𝑀device
𝜙𝑛

2(𝑥),                                                        (46) 

where 𝛿𝑓𝑛 is the change in resonant frequency of the device upon mass adsorption, 𝑓𝑛 is the 

resonant frequency of the device without the adsorbate, 𝑚added is the adsorbed mass at 

position 𝑥, 𝑀device is the device mass, and 𝜙𝑛(𝑥) is the scaled displacement mode shape of 

mode 𝑛; this formula is valid for  𝑚added ≪ 𝑀device. Equation 46 shows that the frequency 

shift depends not only on the adsorbed mass but also on its position, because 𝜙𝑛(𝑥) varies 

spatially in general – without knowledge of this position, the adsorbed mass cannot be 

determined. However, use of two (or more) modes can disentangle this ambiguity, leading 

to simultaneous determination of the adsorbate’s position and mass [11, 12]; at least three 

modes are required for a cantilever beam. Despite the demonstrated success of this so-called 

“two-mode theory,” data pertaining to the adsorbate’s shape is absent in all such point 

particle analyses. 
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Recently, a methodology was proposed that discards the point particle approximation 

and allows the spatial distribution of the adsorbate’s mass density to be measured, i.e., an 

“inertial image” of the adsorbate is obtained [1]. This inertial imaging methodology uses the 

property that within all the measured fractional frequency shifts, 𝛿𝑓𝑛/𝑓𝑛, lie untapped 

information on the adsorbate’s shape. By linearly superposing the measured frequency shifts, 

the square of the device’s vibrating modes are virtually re-engineered to yield flat (constant), 

linear, parabolic, cubic, etc. spatial dependencies. This virtual re-engineering enables all 

moments of the analyte’s mass distribution to be measured simply by adding constant 

multiples of the observed fractional frequency shifts of several device modes. That is, the 

mass, position, variance, skewness etc. of the adsorbate’s mass density distribution are 

determined simultaneously. This “linear superposition” approach was proposed and 

demonstrated in Ref. [1] using both synthetic numerical data and experimental measurements 

of liquid droplets deposited on a microcantilever in air (Figure 68). 

Critically, the spatial resolution of this inertial imaging technique is limited by 

uncertainty (noise) in the measured frequency shifts, not the spatial wavelength of the 

vibrating modes, i.e., diffraction-like phenomena play no role. Theoretical projections show 

that, with frequency noise levels in current NEMS devices, simultaneous mass measurement 

and imaging with molecular-scale resolution is possible. The methodology presented in Ref. 

[1] involves a numerical algorithm to perform the required virtual mode re-engineering and 

iteratively determine the measurement zone (i.e., the spatial region of the device) over which 
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the moments are to be determined. Since this approach requires some computational analysis, 

it is desirable to simplify its underlying theoretical framework to enable its general use. 

Here, we develop such a complementary theoretical framework for measuring the 

mass distribution of an analyte adsorbed to a resonating nanomechanical device. Rather than 

relying on linear mode superposition to virtually re-engineer the mode shapes, and thus 

determine the required moments of the mass distribution [1], we directly determine the 

moments of the mass distribution using a nonlinear analytical formula; requirement to 

determine a measurement zone is also eliminated. Formulas for both one- and two-

dimensional devices are presented. These formulas are simple and can be employed using 

standard packages like Mathematica and Matlab; Wolfram CDF Player apps are available 

upon request, screen shots of which are provided in the Supporting Information for [2]. The 

formulas are derived using a local (asymptotic) expansion of the mass distribution, whereas 

the linear superposition approach of Ref. [1] uses a global approach of linearly superposing 

 
Figure 68. Images of microcantilevers with known mass distribution. Optical image 

for droplets deposited on a microcantilever using AFM dip-pen lithography to generate 

samples with known mass, mean position, extent, and skewness. After each droplet 

deposition, the frequency shift in the cantilever modes were measured. The analysis of 

mechanical frequency shifts yielded the spatial properties of deposited droplets in Ref. 

[1]. A simplified theoretical approach is presented here to obtain the spatial properties of 

the same analytes. Cantilever dimensions are 397 μm long, 29 μm wide, and 2 μm thick. 

Figure is taken from Ref. [1] and replicated here. 
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the mode shapes over a finite region – these frameworks present complementary approaches 

for interpreting multi-mode NEMS mass adsorption data. 

We examine the performance of the new nonlinear formulas using both numerical 

(synthetic) data and the above-mentioned published experimental measurements [1], and 

contrast them to the properties of the linear superposition theory. Strikingly, both theories 

exhibit similar properties and dependencies on frequency noise, i.e., their spatial resolutions 

are identical. In fact, these complementary theories present an inverse set of relations in the 

limit of small particle size, as we shall discuss. We show that the two-mode theory outlined 

above, which implements a point-mass approximation, is simply a subset of this general 

nonlinear theoretical formula. The one- and two-dimensional formulas are applicable to 

beam and plate resonators, respectively, under arbitrary boundary conditions – they can 

therefore be used to analyze a multitude of measurement configurations. The number of 

modes required to determine the moments is also explored. 

4.2 Theory  

We first consider a one-dimensional elastic beam resonator. The leading-order 

expression for the fractional frequency shift of this resonator with an adsorbate mass, 

𝑚added, that is far smaller than that of the resonator, 𝑀device, is: 

𝛿𝑓𝑛

𝑓𝑛
= −

1

2𝑀device
 ∫ 𝜇1D(𝑥)𝜙𝑛

2(𝑥) 𝑑𝑥,                                        (47)

𝐿

0

 

where 𝜇1D(𝑥) is the linear mass density of the adsorbate, 𝐿 is the device length and the scaled 

displacement mode shapes, 𝜙𝑛, form an orthonormal basis set, i.e., ∫ 𝜙𝑚𝜙𝑛
𝐿

0
𝑑𝑥 =  𝐿 𝛿𝑚𝑛, 

where 𝛿𝑚𝑛 is the Kronecker delta function. 
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We expand 𝜙𝑛
2(𝑥) in its Taylor series about the center-of-mass (position) of the 

adsorbate, 𝑥̅, and substitute the result into Equation 46, giving: 

𝛿𝑓𝑛

𝑓𝑛
= −

1

2𝑀device
[𝜙𝑛

2(𝑥̅) ∫ 𝜇1D(𝑥)𝑑𝑥

𝐿

0

+
𝜕𝜙𝑛

2

𝜕𝑥
|

𝑥=𝑥̅

∫ 𝜇1D(𝑥)(𝑥 − 𝑥̅)𝑑𝑥

𝐿

0

                 

+
𝜕2𝜙𝑛

2

𝜕𝑥2
|

𝑥=𝑥̅

∫ 𝜇1D(𝑥)
(𝑥 − 𝑥̅)2

2
𝑑𝑥

𝐿

0

+ ⋯ ].                                                 (48) 

Knowledge of the position, 𝑥̅, is not required yet – it is determined from 

measurements of the fractional frequency shifts of multiple modes using the resulting 

formula; see below. Importantly, the second integral in Equation 48 vanishes because it is 

the difference of the first moment with itself. This gives the required result 

𝛿𝑓𝑛

𝑓𝑛
= −

𝑚added

2𝑀device
{𝜙𝑛

2(𝑥̅) + ∑
1

𝑝!

𝜕𝑝𝜙𝑛
2

𝜕𝑥𝑝
|

𝑥=𝑥̅

𝑝=∞

𝑝=2

〈𝑥𝑝〉} ,                      (49) 

where 𝑚added is the adsorbate’s mass and the central moments are defined 

〈𝑥𝑝〉 ≡  
1

𝑚added
∫ 𝜇1D(𝑥)(𝑥 − 𝑥̅)𝑝𝑑𝑥

𝐿

0

 .                                    (50) 

Equation 49 enables the central moments, 〈𝑥𝑝〉, of the adsorbate’s mass distribution 

to be determined from the measured fractional frequency shifts, 𝛿𝑓𝑛/𝑓𝑛, of multiple modes.  

The corresponding result for a two-dimensional structure, e.g., an elastic membrane, 

is obtained in an analogous fashion, yielding the required formula: 

𝛿𝑓𝑛

𝑓𝑛
= −

𝑚added

2𝑀device
{𝛷𝑛

2(𝑥̅, 𝑦̅) + ∑ ∑
〈𝑥𝑝−𝑗𝑦𝑗〉

(𝑝 − 𝑗)! 𝑗!
(

𝜕𝑝𝛷𝑛
2

𝜕𝑥𝑝−𝑗𝜕𝑦𝑗
|

(𝑥,𝑦)=(𝑥̅,𝑦̅)

)

𝑝

𝑗=0

𝑝=∞

𝑝=2

} ,       (51) 

where (𝑥, 𝑦) is the Cartesian coordinate system in the plane of the structure, (𝑥̅, 𝑦̅) is the 

adsorbate’s center-of-mass, and the two-dimensional moments are 
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〈𝑥𝑝𝑦𝑞〉 ≡  
1

𝑚added
∫  𝜇2D(𝑥, 𝑦)(𝑥 − 𝑥̅)𝑝(𝑦 − 𝑦̅)𝑞 𝑑𝑆

 

𝑆

,                     (52) 

whereas 𝜇2D (𝑥, 𝑦) is the areal mass density distribution of the adsorbate and the region of 

integration is the structure’s surface area, S. The scaled displacement mode shapes 𝛷𝑛(𝑥, 𝑦) 

in Equation 51 form the orthonormal basis set, ∫ 𝛷𝑚𝛷𝑛
 

𝑆
𝑑𝑆 =  𝑆 𝛿𝑚𝑛. Equation 51 allows 

determination of the central moments, 〈𝑥𝑝𝑦𝑞〉, of a two-dimensional adsorbed mass 

distribution from the measured fractional frequency shifts of multiple modes of a two-

dimensional mechanical resonator. 

As mentioned above, Equations 49 and 51 apply to all one-dimensional and two-

dimensional resonators, regardless of their boundary conditions, such as cantilevered/simply 

supported beams, square plates etc. The mode shapes intrinsically embody the structure’s 

boundary conditions. 

We now discuss some features and practicalities of the above nonlinear formulas, 

Equations 49 and 51, for inertial imaging using nanomechanical devices.  

Number of Modes:  Equations 49 and 51 can be implemented in practice by truncating 

their infinite series and solving for the unknown moments using a numerical root finding 

procedure. Numerical solutions of Equations 49 and 51 are easily found using built-in 

functions of standard packages such as Mathematica and Matlab, e.g., using Newton’s 

method. Importantly, the number of required moments of the mass distribution specifies the 

number modes that need to be measured. For example, to measure the variance of a (1D) 

mass attached to a beam resonator requires at least three modes, because its specification 

involves the three lowest moments of the distribution. We discuss the convergence of the 

moments with increasing mode number below. 
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We focus on the one-dimensional resonator formula, Equation 49, because (i) these 

structures are widely used [3-10], and (ii) the properties of this formula are identical to 

Equation 51 for two-dimensional structures. 

Two-mode (point-mass) theory:  Two-mode theory, Equation 46 for a one-

dimensional elastic beam, is clearly a subset of the general formula, Equation 49 – the latter 

includes all moments of the adsorbate’s mass distribution. Two-mode theory is obtained by 

truncating this general formula to include only the zeroth and first-order moments of the mass 

distribution; in-line with the methodology described above. Use of Equation 49, rather than 

Equation 46, enables higher-order moments to be evaluated using the same methodology as 

two-mode theory, through systematic inclusion of higher-order terms in the expansion.  

Central Moments:  Another feature of the nonlinear formulas, for one-dimensional 

and two-dimensional structures, is that the moments are specified about the mean position of 

the adsorbate’s mass distribution. This contrasts to the linear superposition theory reported 

in Ref. [1] that evaluates the moments about a (user-specified and fixed) reference point on 

the device, e.g., the clamped position of a cantilever beam. The required central moments, 

about the center-of-mass of the adsorbate, are subsequently determined by combining these 

fixed-reference-point moments. The present formulation eliminates this requirement because 

the central moments are evaluated directly; see Equations 49 and 51. As we shall see, this 

does not affect the final result (and its uncertainty), but direct determination of the central 

moments does simplify analysis. 

Convergence:  While Equations 49 and 51 use an (asymptotic) Taylor expansion of 

the mode shape squared, they are expected to converge with increasing mode number, 

regardless of the spatial extent of the mass distribution. This is because the mode shapes can 
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be expressed in terms of elementary functions such as trigonometric and hyperbolic 

functions. That is, exponential functions whose Taylor expansions are themselves uniformly 

convergent for all values of their arguments, i.e., they are entire functions. This convergence 

can be proved for one-dimensional devices by performing a ratio test for the series in 

Equation 49 (see Supporting Information of Ref. [2]). 

Equations 49 and 51 and linear superposition theory are both derived from Equation 

47, albeit using different assumptions. The linear superposition theory takes a global 

approach of virtually re-engineering the modes over a finite spatial domain of the device to 

obtain the required weights for each moment. In contrast, Equations 49 and 51 locally expand 

the device modes about the adsorbate’s center-of-mass using Taylor expansions. In the limit 

of small adsorbate size, both formulations are expected to yield identical results – this is 

observed in the numerical results reported below. 

Moreover, Equations 49 and 51 express the fractional frequency shifts in terms of the 

adsorbate’s moments, whereas linear superposition theory presents the inverse relation: 

moments as a function of the fractional frequency shifts. These complementary theories 

therefore present a set of inverse functions. Indeed, a Taylor expansion can be used to 

formulate linear superposition theory in the limit of small adsorbate size; see Supplementary 

Section 5 of Ref. [1]. 

4.3 Results and Discussion 

We now assess the utility of Equation 49 for recovering the moments of an 

adsorbate’s mass distribution. This is first performed by generating (synthetic) numerical 

frequency shift data from Equation 47, for a specified mass distribution, and then recovering 

the moments of this distribution using Equation 49. Second, we reanalyze the experimentally 
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measured frequency shift data reported in Ref. [1] using Equation 49, and compare its results 

to those of the linear superposition method [1]. The one-dimensional resonator considered 

here is a cantilevered elastic beam, and we use its lowest-order flexural modes of vibration 

in the analysis. 

Synthetic data.  The adsorbate’s mass distribution chosen for this analysis is 

illustrated in Figure 69. It consists of two individual rectangular distributions of different 

magnitude, leading to an overall skewed distribution. The width of each rectangular 

distribution is the same, while the overall width, 𝜖, of the adsorbed mass is varied. This 

enables assessment of the robustness of Equation 49 in recovering the required central 

moments as a function of the width of the adsorbate. The cantilever length, L, scales all 

distances. 

We first examine the performance of Equation 49 using data for the lowest four 

flexural modes of the cantilever beam. This approach is identical to the measurement analysis 

 
Figure 69. Simulated 1D mass density distribution of a sample adsorbate on an 

elastic beam. The adsorbate’s spatial extent (width) is 𝜖, and the adsorbate is formed 

from two rectangular density distributions of equal width that differ in magnitude by a 

factor of two. The lower boundary of the adsorbate is positioned at 𝑥 = 0.7 and its overall 

width is 𝜖 = 0.1. The spatial coordinate is scaled by the device length, L, whereas the 

mass distribution is scaled by its maximum value, 𝜇0. 
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reported in Ref. [1], and allows the robustness of using a fixed number of modes to be 

assessed; the exact moments of the adsorbate’s mass distribution are known in the present 

case. 

Table 9 gives a comparison of (i) the recovered mass (zeroth moment), center-of-

mass (position), variance, and skewness of the sample mass distribution using Equation 49, 

and (ii) the exact moments, as a function of its overall width 𝜖 which is varied from 𝜖 = 0.01 

to 0.3. The largest value of 𝜖 is an adsorbate whose spatial extent covers 30% of the device. 

The results in Table 9 show that mass, position, and variance are all recovered accurately, 

with the error in Equation 49 growing as 𝜖 increases. This rise in error is expected because 

Equation 49 is based on a Taylor expansion about the adsorbate’s center-of-mass. It is 

striking that, despite this asymptotic approach, Equation 49 is robust in recovering these low-

Width, 𝜖 Mass Center-of-Mass Variance Skewness 

0.01 
7.50 × 10−3 

(0.00 %) 
0.704 

(0.00 %) 
7.64 × 10−6 

(-0.03 %) 
0.440 

(0.41 %) 

0.03 
2.25 × 10−2 

(0.00 %) 
0.712 

(0.00 %) 
6.86 × 10−5 

(-0.23 %) 
0.429 

(-2.20 %) 

0.07 
5.25 × 10−2 

(0.02 %) 
0.729 

(-0.01 %) 
3.70 × 10−4 

(-1.10 %) 
0.335 

(-24.0 %) 

0.1 
7.51 × 10−2 

(0.11 %) 
0.741 

(-0.04 %) 
7.50 × 10−4 

(-1.80 %) 
0.178 

(-59.0 %) 

0.3 
0.217 

(-3.60 %) 
0.837 

(1.40 %) 
5.67 × 10−3 

(-18.0 %) 
0.706 

(61.0 %) 

 

Table 9. Recovery of skewed distribution with small extents. Accuracy of Equation 

49 in recovery of the moments of a specified mass distribution (illustrated in Figure 69). 

Recovered moments are reported; percentage error relative to the exact result is in 

parentheses. Frequency shift data for the lowest four flexural modes of a cantilever beam 

is generated using Equation 47. Recovered mass (second column) is scaled by 𝜇0𝐿; see 

Figure 69. 
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order moments, even for the largest value of 𝜖 = 0.3. Skewness is also captured accurately 

for the smallest, 𝜖, but fails for larger spatial extents. This decrease in accuracy with 

increasing adsorbate size is enhanced for the higher-order moments, as expected due to the 

asymptotic nature of Equation 49. Nonetheless, the reduction in accuracy can be overcome 

by using more beam modes, which is now explored. 

Results for the moments as a function of the number of modes are given in Figure 70 

and Figure 71. Figure 70 shows the first two moments of the mass distributions recovered 

using Equation 49 and those obtained directly from the distribution (the exact values); Figure 

71 gives corresponding results for the variance and skewness. Critically, determination of 

the 𝑝th moment using Equation 49 requires use of at least p mechanical modes. As such, 

results for the higher-order moments do not exist when a smaller number of modes are used; 

see Figure 71. While a minimum of three modes are required (in general) to unequivocally 

determine the position of an adsorbate using a cantilever, results for two modes are also 

shown for completeness; any ambiguity in the solution is removed here because the exact 

solution is known. 

Recovered moments for the narrowest mass distribution (𝜖 = 0.01) are given in the 

first row of Figure 70 and Figure 71. Note that as the number of modes is increased, the 

moments determined using Equation 49 systematically approach their exact values. Indeed, 

accurate results for all the presented moments are found regardless of the number of modes 

used. This is because the spatial extent of the adsorbate is only 1% of the total length of the 

device, ensuring that the Taylor expansion in Equation 47 converges rapidly. Equation 49 is 

thus ideally suited to measuring the moments of adsorbates whose sizes are much smaller 

than that of the device – this is particularly advantageous when exploring the ultimate limits 
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of the 

 
Figure 70. Recovery of mass and position of simulated adsorbate. Adsorbed mass and 

position of sample adsorbate in Figure 69 is recovered using Equation 49 as a function of 

number of modes and spatial extent of adsorbate, 𝜖 = 0.01, 0.1, 0.3. Exact solutions are 

shown as red horizontal lines. Mass distribution is given in Figure 69. 
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of the sensitivity of the technique [1]. We remind the reader that inertial imaging is 

independent of any wavelength-dependent phenomena – this feature is illustrated here with 

 
Figure 71. Recovery of variance and skewness of simulated adsorbate. As for Figure 

70, but for the variance and skewness of the mass distribution. 
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the adsorbate size being one to two orders-of-magnitude smaller than spatial wavelengths of 

the beam modes. 

The second and third rows of Figure 70 and Figure 71 show that rates of convergence 

to the exact solutions decrease with increasing 𝜖, i.e., more modes are required. For the 

largest spatial extent, 𝜖 = 0.3, the moments recovered using Equation 49 oscillate about their 

exact values and even using 7 modes does not achieve convergence in highest-order moment, 

i.e., the skewness. While increasing the number of modes will in principle lead to 

convergence (see above), a large number of modes may be required and truncation error may 

provide a limitation in practice (see discussion above). This limitation is in addition to 

obvious practical issues involved in measuring many modes of a real device. This shows that 

the number of modes used in inertial imaging should be systematically increased until 

convergence is achieved in the required moments. If convergence does not occur using the 

available modes, the recovered moments may not be accurate. This is expected to be an issue 

only for adsorbates whose spatial extent is a large fraction of the device size. In Supporting 

Information of Ref. [2], we present an approach to estimate the number of modes needed as 

a function of the geometric moment to be calculated and the spatial extent of the analyte. 

Experimental data.  We now reanalyze the experimental data shown in Figure 68 and 

reported in Ref. [1] for liquid droplet arrays deposited on a microcantilever using dip pen 

lithography. Supplementary Tables 1 and 2 of Ref. [1] report numerical data for the measured 

resonant frequencies of the lowest four flexural modes of the cantilever, and their 

uncertainties (based on a 95% confidence interval). Six cantilever/droplet configurations are 

reported: the unloaded cantilever and 5 droplet arrays. In Ref. [1], linear superposition theory 

(discussed above) was used to recover the mass, position, variance, and skewness of the 
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droplets arrays, with the measured frequency shift noise used to determine uncertainties in 

the measured moments. This published (linear superposition theory) data is now compared 

to the same moments recovered with the nonlinear formula, Equation  4-4. 

Table 10 presents numerical results for the measured variances of the droplet arrays 

using Equation 49, and those obtained using the linear superposition theory. We refrain from 

presenting results for the mass and position since they exhibit similar agreement to the data 

in Table 10.  This comparison shows that numerical values for the recovered variances are 

nearly identical using these two complementary approaches. Even more striking is the 

uncertainties in the variances due to the measured frequency noise of each mode: the two 

theoretical frameworks give virtually identical results. While there are some minor 

differences especially for the droplet distributions of greater spatial extent, this comparison 

Droplet 

array 
Linear superposition 

Equation 49 

4 modes 3 modes 

2 rows 5.35 × 10−4 (±38%) 5.32 × 10−4 (±34%) 5.33 × 10−4 (±31%) 

3 rows 1.60 × 10−3 (±6.9%) 1.56 × 10−3 (±6.5%) 1.48 × 10−3 (±4.8%) 

4 rows 2.92 × 10−3 (±1.4%) 2.79 × 10−3 (±1.2%) 2.81 × 10−3 (±0.74%) 

5 rows 4.33 × 10−3 (±0.39%) 3.87 × 10−3 (±0.36%) 4.12 × 10−3 (±0.34%) 

Asymmetric 

rows 
5.21 × 10−3 (±1.5%) 4.67 × 10−3 (±1.3%) 4.23 × 10−3 (±1.1%) 

 

Table 10. Comparison to linear superposition theory. Measured normalized variance 

of the droplet arrays of Ref. [1]; distance is again scaled by the cantilever length, L. 

Results obtained using linear superposition theory of Ref. [1] and Equation 49. Listed 

uncertainties in the parentheses specify a 95% confidence interval and are determined by 

the uncertainty in the measured resonant frequencies. The first four modes of the 

cantilever are used in the linear superposition theory. 
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shows that Equation 49 can be used with confidence to recover the spatial extent (variance) 

of an adsorbate. This finding is also consistent with above observations regarding the 

applicability of Equation 49 to adsorbates of finite extent – while Equation 49 is derived 

using an asymptotic Taylor expansion, it is expected to hold for adsorbates of arbitrary size 

provided a sufficient number of modes are used to verify convergence. 

Experimental skewness data.  Since more than 4 modes were not measured in Ref. 

[1], an assessment of the convergence of the results for skewness with mode number cannot 

be made. However, Figure 71 clearly shows that increasing the spatial extent of the adsorbate 

reduces the rate of convergence with increasing mode number. Thus, results for the droplet 

array consisting of 2 rows are expected to be more accurate than other arrays. We find nearly 

identical results using linear superposition and Equation 49, with their results differing by 

less than 1% (data not shown). This agreement decreases with increasing spatial extent of 

the adsorbate. For the asymmetric droplet array, linear superposition theory gives a value of 

−0.453 [1] whereas the optically measured value is −0.537; Equation 49 predicts a value 

of −0.695, which is consistent with these results. We refrain from analyzing this data further 

because its convergence, as a function of mode number, cannot be assessed. 

The only inertial imaging measurements to date were reported in Ref. [1]. 

Importantly, these were performed passively by measuring the thermal noise spectra of the 

cantilevers over a finite bandwidth (to 1 MHz) – hence only 4 modes were collected. As 

discussed, analysis of these measurements (using the linear superposition theory of Ref. [1]) 

required significant computation because a measurement zone needed to be computed. The 

present theory eliminates this requirement, simplifying analysis and ensuring unequivocal 

measurement interpretation – uncertainty due to the measurement zone is eliminated. Use of 
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this theory in future measurements, e.g., using active drive and a larger bandwidth to 

overcome the above-stated limitations, will enable the full potential of inertial imaging to be 

experimentally realised. 

4.4 Conclusion 

In this chapter, we have presented simple nonlinear formulas for measuring the 

spatial distribution of a mass adsorbed to a nanomechanical resonator. Formulas for both 

one- and two-dimensional devices have been reported, which facilitates inertial imaging 

measurements using a range of current NEMS devices. The linear superposition theory of 

Ref. [15] and the nonlinear formulas in Equations 49 and 51 formally represent a set of 

inverse relations in the limit of small adsorbate size. They produce identical numerical results 

in this limit. The presented nonlinear formulas can be implemented trivially using standard 

packages such as Mathematica and Matlab, and simply involve the use of a root-finding 

procedure, e.g., Newton’s method. These formulas are expected to be advantageous in the 

application of inertial imaging in practice. Wolfram CDF PlayerTM apps that implement the 

nonlinear formulas for cantilever and doubly-clamped beams are available from the authors; 

details are provided in the Supporting Information [16].  
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C h a p t e r  5  

RECONSTRUCTION OF AN ADSORBATE’S IMAGE  

Inertial imaging with nanomechanical resonators uses the measured frequency shifts 

of multiple modes induced by the physisorption of an analyte to calculate its mass moments 

[1, 2]. These moments include the analyte’s total mass, its center-of-mass, as well as higher 

moments such as the variance (average size), skewness, etc. Subsequently, the adsorbate’s 

mass density distribution, or image, is deduced from these fitted moments.  

In this chapter, we examine a series of techniques that provide direct access to the 

adsorbate’s image. Obtaining this image might be the primary motivation of an experiment; 

for example, it may be useful to ascertain structural features of individual molecules that are 

not ordinarily accessible in proteomics or native mass spectrometry experiments. In this case, 

intermediate calculations involving a finite number of fitted moments as well as their 

associated errors could only negatively impact the desired result. 

At first glance, the problem of deducing the adsorbate’s image appears intractable. 

Intuitively, the image might be arbitrarily complicated, while we are limited to a finite 

amount of data points. However, we find that we can use a technique called regularization 

that uses additional information known about the adsorbate and the experiment used to 

deliver it to the device in order to reduce the complexity of the problem and find a reasonable 

solution. Strikingly, we find that the mass moments of the image recovered directly from the 

data with this approach are more accurate than if the mass moments were fit to the data alone 

via previously introduced methods [1, 2]. 
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5.1 Introduction 

Thus far, two methods have been developed to calculate the mass moments of an 

analyte that has physisorbed to a nanomechanical resonator. One approach to these 

calculations involves creating linear superpositions of the squared mode shapes to 

approximate constant, linear, parabolic, etc., functions, which allows the mass moments to 

be calculated as linear combinations of the measured frequency shifts [1]. A complementary 

approach, introduced in Chapter 4 and [2], instead represents the squared mode shapes as a 

truncated series expansion, allowing the mass moments to be calculated from the fractional 

frequency shifts using a nonlinear fit. Both techniques deduce the adsorbate’s image from 

these fitted moments. 

Obtaining the adsorbate’s image is the primary goal of this chapter; mass moments 

can then be calculated from this image as a secondary objective for quantitative purposes (for 

example, calculating the total mass of the adsorbate and comparing it to the value obtained 

from a traditional mass spectrometer). Reconstructing the unknown image from the data can 

be categorized as a type of inverse problem; a schematic is shown in Figure 72. We will find 

that this inverse problem is ill-posed: if a finite amount of frequency-shift data is available, 

there will always be an infinite number of valid mass density distributions that could have 

produced that data.  

Inverse problems that are ill-posed arise in many fields, especially in situations where 

one wishes to determine the unknown input or internal structure of a physical system giving 

rise to a measured output signal. Some prominent examples include computed tomography, 
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where the density inside a body is reconstructed from the recorded intensity of X-ray beams 

at different angles, solving the diffusion or heat equation backwards in time to determine the 

sources, as well as a variety of inverse problems in acoustics, optics, electrostatics, 

geophysics, digital image recovery, and others [4-8]. 

For any ill-posed problem, including the mass density reconstruction problem 

considered in this chapter, additional information is needed beyond the data to restrict the 

solution space to a single valid solution, or at least a limited number of possibilities. Certain 

assumptions can be included to constrain or reduce the complexity of the problem if 

additional information is known about the adsorbate and the nature of how it is delivered to 

 
Figure 72. Reconstructing shape information about an adsorbate. A particle adhering 

to a nano- or micromechanical device induces a series of frequency shifts for each 

resonant mode of the device. These frequency shifts can be used to deduce information 

about the shape of the adsorbate in terms of the mass moments 𝑚𝑠, 𝑥̅𝑠, 〈𝑥
2〉, … in a well-

posed manner. Recovering the underlying distribution 𝜇𝑠(𝑥) from these calculated 

moments, or directly from the frequency shifts, is an ill-posed problem. 
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the device. For example, if it is known that the experiment delivers one, or at most two, 

distinct particles to the device within a single measurement interval, with each particle having 

a limited spatial extent, then we find that we can distinguish between these possibilities as 

well as recover the first few mass moments with only a small number of measured modes.  

If frequency-shift information is measured from a larger number of modes, we find 

that more details about the adsorbate’s image can be reliably reconstructed. This requires the 

use of additional criteria such as minimizing the complexity, or maximizing the smoothness 

or disorder of the adsorbate, which can be achieved via the process of regularization. The 

physical motivation for such criteria are that, while proteins come in a large variety of shapes 

such as globular, fibrous, and disordered, they generally fold into the lowest energy 

conformation [9]. Additionally, we would like to avoid nonphysical solutions (such as 

singularities) when a simpler shape fits the data just as well, so we would prefer to bias the 

solution toward a realistic physical conformation using a mathematical framework that 

achieves that outcome. 

We consider several variants of regularization: zeroth-order or L2 regularization, 

first-order or Tikhonov regularization, and maximum entropy regularization. The first two 

correspond to minimizing the total mass and overall first derivative of the image. Each 

variant relies on the choice of a regularization parameter 𝜆 that dictates a tradeoff between 

fitting the solution to the data and optimizing the smoothness of the solution. Zeroth- and 

first-order regularization are found to be extremely sensitive to 𝜆, the ideal choice of which 

cannot be known a priori.  In contrast, maximum entropy is found to be robust to the choice 

of 𝜆, and it is demonstrated for a set of simulated density distributions for which excellent 
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agreement is obtained. This method is then used experimentally to recover the image of 

droplets placed on a microcantilever with high fidelity. 

5.2 Theory Overview 

 From Chapter 4, the fractional frequency shift of the nth flexural mode induced by a 

thin adsorbate is given by  

𝛿𝑓𝑛
𝑓𝑛

= −
1

2𝑀device
 ∫ 𝜇𝑠(𝑥)𝜙𝑛

2(𝑥) 𝑑𝑥.                                          (53)

𝐿

0

 

where 𝜙𝑛(𝑥) are the mode shapes normalized such that ∫ 𝜙𝑚(𝑥)𝜙𝑛(𝑥) 𝑑𝑥
𝐿

0
= 𝛿𝑚𝑛. In this 

chapter, we will normalize the frequency-shift data as well as the mass density distribution 

for brevity: 

𝑐𝑛 = ∫𝜇(𝑥)𝜙𝑛
2(𝑥) 𝑑𝑥.                                                    (54)

1

0

 

The problem of finding 𝜇(𝑥) for the case when 𝜙𝑛
2(𝑥) and 𝑐𝑛, 1…𝑁 are known is termed 

the generalized moment problem [10]. It is a generalized form of the classical moment 

problem, in which the data is obtained from a series of monomial functions, i.e. 

𝑐𝑛 = ∫𝜇(𝑥)𝑥𝑛 𝑑𝑥,                                                       (55)

1

0

 

and since the integral is performed over a finite region, the problem is more specifically 

classified as the Hausdorff moment problem [11]. Both the classical moment problem and 

the generalized moment problem are severely ill-posed. More formally, the solution is not 

guaranteed to exist; if the solution exists, it is not unique unless an infinite amount of data is 
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known (𝑛 = 1…∞); and finally, even when the solution is uniquely specified, it can change 

arbitrarily with small perturbations in the data [12]. 

The second two points are problematic given that experimental data is always finite 

and embedded within the inevitable noise associated with the measurements. Additionally, 

both the generalized moment problem and the Hausdorff moment problem are equally ill-

posed. In other words, in seeking a means to reconstruct the unknown mass density 𝜇(𝑥), it 

is not helpful to first construct the mass moments, which could be reframed as transforming 

the generalized moment problem (Equation 54) into the Hausdorff moment problem 

(Equation 55). In fact, information may be lost in doing so due to errors associated with 

truncation or approximation. 

In this chapter, several methods will be proposed to regularize the ill-posed problem; 

that is, to make the problem well-posed so that the solution is guaranteed to be unique and 

vary continuously with the data. In practice, this involves explicitly adding a constraint or 

smoothness condition to the problem a priori, i.e., beyond the data itself. Although this may 

initially seem less preferable to solutions that involve no a priori knowledge, it is important 

to note that several implicit assumptions have already been made in the derivation of 

Equation 1, namely, knowledge of the device mode shapes 𝜙𝑛(𝑥) as well as the physical 

characteristics of the adsorbate (thin and flexible). Hence, such additional constraints may 

naturally arise from detailed physical considerations the solution must always satisfy. A 

violation of these assumptions will lead to incorrect results; for example, if the adsorbate is 

not thin relative to the device motion, this will add a significant rotational inertia component 

that can contribute significantly to the observed frequency shift. Additional assumptions that 

have previously been applied include the point-particle approximation as well as the 
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assumption that only one such point particle lands within the timeframe of the measurement 

[13, 14]. Therefore, the use of a priori assumptions has typically been considered a 

reasonable aspect of the interpretation of the data. 

As there are an infinite number of valid solutions to the original ill-posed problem, 

there exist an infinite variety of methods to make the problem well-posed. This chapter will 

consider a few canonical methods, including zeroth-order regularization [15], first-order 

Tikhonov regularization [15], and the method of maximum entropy [16]. Additional 

prominent methods discussed in the literature include the Backus-Gilbert method [8, 15], the 

kernel density function method [17], as well as the method of adaptive splines [18]. These 

methods may be worth exploring in future work, but they will not be explored here for this 

specific application where the moment data is produced from the frequency shifts arising 

from the physical dynamics of an Euler-Bernoulli beam. 

5.3 Discrete Density Reconstruction 

As previously noted, reconstructing the entire mass density function 𝜇(𝑥) from a 

limited number of data points is an impossible task. We can at least reduce the dimensionality 

of the problem from an infinite number of degrees of freedom to a limited number by 

replacing the integration with a finite sum: 

𝑐𝑛 ≈  ∑𝜇(𝑥𝑖)𝜙𝑛
2(𝑥𝑖) Δ𝑥𝑖.                                                       (56)

𝑖

 

Assuming 𝜇(𝑥) and 𝜙𝑛
2(𝑥) do not vary too much between the points and the points are 

sufficiently dense, the sum in Equation 56 accurately approximates the integral in 

Equation 54. Rewriting 𝑚𝑖 ≡ 𝜇(𝑥𝑖)Δ𝑥𝑖, the underlying density distribution leading to the 

sum in Equation 56 can be represented as: 
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𝜇(𝑥) =  ∑𝑚𝑖𝛿(𝑥 − 𝑥𝑖),                                                       (57)

𝑖

 

where 𝛿(𝑥) is the Dirac delta function. This representation for the mass density distribution 

is equivalent to one used to calculate the mass and position of multiple distinct point particles 

on a microcantilever using multiple modes [19]; in this section, Equation 57 will be used not 

only to determine the minimum number of modes needed to distinguish between one or two 

separate particles in a similar fashion, but also in a novel way: to recover mass moments of 

a single, isolated distribution of limited spatial extents. 

To adapt Equation 57 for a small number of modes, it can be adjusted so that there 

are an equal number of unknown parameters as data points 𝑁: 

𝜇(𝑥) =  ∑𝑚𝑖𝛿(𝑥 − 𝑥𝑖).                                                    (58𝑎)

𝑁/2

𝑖=1

 

for 𝑁 even, and 

𝜇(𝑥) = 𝑚1[𝛿(𝑥 − 𝑥0) + 𝛿(𝑥 − 𝑥1)] + ∑ 𝑚𝑖𝛿(𝑥 − 𝑥𝑖).              (58𝑏)

(𝑁−1)/2

𝑖=2

 

for 𝑁 odd. Substituting into Equation 54, we obtain (for 𝑁 even): 

𝑐𝑛 = ∑𝑚𝑖𝜙𝑛
2(𝑥𝑖),                                                          (59)

𝑁/2

𝑖=1

 

and a similar formula for 𝑁 odd; in particular, for 𝑁 = 3: 

𝑐𝑛 = 𝑚1[𝜙𝑛
2(𝑥1) + 𝜙𝑛

2(𝑥2)].                                                (60) 

In this way, the underdetermined inverse problem has been replaced with a series of 

nonlinear equations with the same number of equations as unknown parameters. In the 

minimal case 𝑁 = 2, the formula reduces to the point-mass approximation formula [2]: 
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𝑐𝑛 = −2
𝛿𝑓𝑛
𝑓𝑛

=
𝑚added

𝑀device
𝜙𝑛

2(𝑥),                                               (61) 

which, in the case of a doubly-clamped beam, allows for the recovery of the mass and 

position of the adsorbate using only two modes [13]. Additionally, we can see that, if the fit 

for unknown parameters is successful, with three frequency-shift measurements, the 

underlying mass distribution 𝜇(𝑥) contains enough information to specify the mass, position, 

and spatial variance (but not asymmetry) of the adsorbate’s mass density. With four 

 
Figure 73. Test distributions used to simulate frequency-shift data. Synthetic 

frequency-shift data was calculated using these test distributions, which represent (A) a 

single point particle 𝜇(𝑥) = 𝑚0𝛿(𝑥 − 𝑥0), (B) two point particles, (C) a uniform 

distribution beginning at 𝑥0 and having width 𝜖, and (D) a piecewise uniform distribution 

having total extents 𝜖. 
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frequency shifts, 𝜇(𝑥) is also able to specify the adsorbate’s asymmetry, since it consists of 

two point masses of different weights. 

This approach was taken using a set of frequency-shift data simulated using 

Equation 53, based on a series of test distributions. These test distributions, shown in Figure 

73, include a single point particle, two point particles, a uniform distribution, and a skewed 

distribution. This represents a range of simplified distributions that approximate what might 

be encountered in a measurement. In particular, while the experiment may be designed to 

deposit one molecule at a time to the sensor, a few molecules may arrive within the 

measurement window, and it would be beneficial to be able to distinguish between these 

situations. If it can be readily established that only a single analyte is detected, this improves 

the ability to distinguish between more complex distributions (e.g. type C vs type D in Figure 

73). We do not include the possibility of three or more separate particles landing at arbitrary 

locations; more modes would be needed to distinguish between possible scenarios. 

Doubly-clamped beam (three frequency shifts). In brief, it was found that for a 

doubly-clamped beam, three frequency shifts are sufficient to reliably distinguish between a 

single point particle, two point particles, and a uniform or skewed distribution with limited 

spatial extents (𝜖 ≤ 0.01) using Equation 60. The fitting was performed using 

Mathematica’s  routine with the initial positions for the fitting chosen arbitrarily, 

and then adjusted to a new arbitrary position only if the fitting routine produced a clear error. 

In the case of a single point particle, the recovered mass and position are accurate to machine 

precision. For the case of two point particles, the fitting produces two distinct positions, thus 

correctly classifying the distribution as type B. However, the positions obtained are 

sometimes wildly inaccurate depending on the initial position choice used for the fitting. 
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For a uniform distribution with limited spatial extents, the recovered mass, position, 

and variance are accurate to within 0.02%. For the case of a skewed distribution with limited 

spatial extents, the recovered mass, position, and variance are also highly accurate, and the 

accuracy improves as the extents approached zero. A summary of the results of the fitting 

for the skewed distribution are shown in Table 11.  

It should be mentioned that no method could possibly distinguish between a single 

point particle and two particles landing on the mirror positions of a doubly-clamped beam 

0.5 − Δ𝑥 and 0.5 + Δ𝑥 due to the symmetry of the device and its responsivity.  

Cantilever (three frequency shifts). For a cantilever, the mass and position of a single 

point particle can reliably be recovered if 0.16 < 𝑥0 < 0.58 or 0.79 < 𝑥0 < 1. For 0.58 <

𝑥0 < 0.79,  mistakenly indicates a two-particle solution for some initial choices 

of the two positions. The frequency shifts generated with the two-particle solution are 

indistinguishable from those generated with the single-particle test distribution for the first 

Width, 𝜖 Mass Center-of-Mass Variance 

0.0001 
7.50 × 10−5 

(0.00 %) 

0.300 
(0.00 %) 

7.64 × 10−10 
(0.01%) 

0.001 
7.50 × 10−4 

(0.00 %) 
0.300 

(0.00 %) 
7.64 × 10−8 

(0.06 %) 

0.01 
7.50 × 10−3 

(0.00 %) 
0.304 

(0.00 %) 
7.68 × 10−6 

(0.57 %) 

0.1 
7.50 × 10−2 

(0.066 %) 
0.341 

(-0.069 %) 
7.52 × 10−4 

(1.60 %) 

 

Table 11. Recovery of skewed distribution with small extents (three modes, doubly-

clamped beam). Skew test distribution (type D shown in Figure 2) was used to generate 

frequency shifts for three modes for a doubly-clamped beam. For all distributions, 𝑥0 =
0.3, but the spatial extent 𝜖 was varied. Recovered moments are reported; percentage 

error is in parentheses. 
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three modes, so, from the results alone, it was not possible to tell that the identification of the 

class of distribution was performed in error. Therefore, for a cantilever, three modes are not 

sufficient to infer information about the distribution if it is not known a priori whether the 

distribution is localized. If it is known a priori that the distribution was localized (e.g. only 

a single adsorbate with limited spatial extents within the measurement window), the mass 

and position of the distribution can be fit using three modes with Equation 61 first, then 

 can be constrained to search for solutions within a small region surrounding that 

initial fit position using Equation 60. When done iteratively in this way, similar results were 

obtained for a skewed distribution with limited extents (𝜖 ≤ 0.01) as shown in Table  for the 

doubly-clamped beam. 

Doubly-clamped beam (four frequency shifts). Equation 59 was used with 𝑁 = 4 to 

attempt to distinguish between all four classes of test distributions shown in Figure 73 as well 

as reliably recover information such as total mass, position, and so on. It was found that this 

can always be done in a robust manner; however, in the case where the test distribution is 

two distinct particles at arbitrary locations, it is necessary to attempt many different guesses 

for the initial positions to obtain any fit at all; for most choices of the initial positions, no fit 

could be made. When a fit can be made, the position and mass of both particles can be 

recovered to machine precision. The weight of the second particle can also be varied from 

𝑚0 10⁄ < 𝑚1 < 10𝑚0 with the same result. For the case of a skewed distribution, the 

recovered distribution resembles the test distribution, as shown in Figure 74. The first four 

mass moments of the distribution can be recovered with excellent agreement as well (Table 

12). 
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Width, 𝜖 Mass Center-of-Mass Variance Skewness 

0.01 
7.50 × 10−3 

(0.00 %) 
0.304 

(0.00 %) 
7.64 × 10−6 

(-0.03%) 
0.448 

(2.09 %) 

0.03 
2.25 × 10−2 

(0.00 %) 
0.313 

(0.00 %) 
6.86 × 10−5 

(-0.25 %) 

0.458 
(4.33 %) 

0.07 
5.25 × 10−2 

(-0.01 %) 
0.329 

(0.00 %) 
3.70 × 10−4 

(-1.23 %) 
0.442 

(0.75 %) 

0.1 
7.50 × 10−2 

(-0.02 %) 
0.342 

(0.00 %) 
7.44 × 10−4 

(-2.62 %) 
0.397 

(-9.43 %) 

 

Table 12. Recovery of mass moments for skewed distribution (four modes, doubly-

clamped beam). Test distribution type D shown in Figure 2 (a skewed distribution) was 

used to generate frequency shifts for four modes for a doubly-clamped beam. For all 

distributions, 𝑥0 = 0.3, but the spatial extent 𝜖 was varied. Recovered moments are 

reported; percentage error is in parentheses. 

 

 
Figure 74. Discrete density reconstruction using four modes. Synthetic frequency-

shift data was calculated using a skewed test distribution for four modes for a doubly-

clamped beam, and the image was recovered by fitting to a discretized distribution, which 

consists of two delta functions of varied weight and location. The height of the arrows 

depicted for the delta functions are proportional to their weights. Excellent agreement to 

the test distribution was obtained. 
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.Cantilever (four frequency shifts). In contrast with the doubly-clamped beam, 

recovery of the four unknown parameters 𝑚1, 𝑥1, 𝑚2, 𝑥2 using Equation 59 is not guaranteed. 

Reliable fitting can no longer be achieved for any test distribution using , but 

instead the fitting must be reformulated as a form of (non-negative) least squares 

optimization to achieve any degree of success: 

argmin
𝑚𝑖,𝑥𝑖

∑(𝑐𝑛 − 𝑚1𝜙𝑛
2(𝑥1) − 𝑚2𝜙𝑛

2(𝑥2))
2

4

𝑛=1

  subject to 𝑚𝑖 ≥ 0.              (62) 

After extensive empirical testing, the results obtained are similar to the case of the doubly-

clamped beam with three modes: the fitting can reliably distinguish between a localized 

distribution (for example, a point particle or a distribution with arbitrary complexity, but with 

total width of 𝜖 < .01) and two point particles at arbitrary locations. In the case of two point 

particles, fitting produces masses and locations substantially different from each other, but 

the fitted positions were often completely inaccurate. In the case of a single point particle 

Width, 𝜖 Mass Center-of-Mass Variance Skewness 

0.01 
7.50 × 10−3 

(0.00 %) 
0.704 

(0.00 %) 
7.64 × 10−6 

(-0.01%) 
0.439 

(0.17 %) 

0.03 
2.25 × 10−2 

(0.00 %) 
0.713 

(0.00 %) 
6.87 × 10−5 

(-0.10 %) 

0.434 
(-1.05 %) 

0.07 
5.25 × 10−2 

(0.01 %) 
0.729 

(0.00 %) 
3.72 × 10−4 

(-0.49 %) 
0.305 

(-11.39 %) 

0.1 
7.50 × 10−2 

(0.06 %) 
0.742 

(-0.02 %) 
7.57 × 10−4 

(-0.87 %) 
0.397 

(-30.50 %) 

 

Table 13. Recovery of mass moments for skewed distribution (four modes, 

cantilever). Test distribution type D shown in Figure 2 was used to generate frequency 

shifts for four modes for a cantilever. For all distributions, 𝑥0 = 0.7, but the spatial extent 

𝜖 was varied. Recovered moments are reported; percentage error is in parentheses. 
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test distribution or localized distribution, the fitting frequently returned 𝑚1 = 0 for one of 

the masses, 𝑚2 close to the correct value, and the 𝑥2 close to the center of mass. The 

distribution can be further interrogated via  after localizing in the first pass least 

squares fitting by restricting the fitting to a small region around the first fitted position. Doing 

so in this iterative manner on the skewed test distribution produces results in excellent 

agreement up to skewness; results are summarized in Table 13. 

More than four frequency shifts. A least-squares fit was performed for 𝑁 = 5 for the 

unknown parameters 𝑚1, 𝑚2, 𝑥0, 𝑥1, 𝑥2 for the skewed test distribution with width 𝜖 = 0.01 

for both a doubly-clamped beam and a cantilever. An exact fit using  was found 

to be impossible. In both cases, the recovered mass, center-of-mass, and variance are highly 

accurate, but both the skewness and kurtosis of the recovered distribution are very inaccurate. 

For the doubly-clamped beam, for example, with the distribution beginning at 𝑥0 = 0.3, an 

error of 0.00%, 0.00%, –0.43% is obtained for the mass, center-of-mass, and variance, 

respectively, but a value of –3.46 was obtained for the skewness (compared with 0.439, 

expected),  and 16.08 for the kurtosis (2.12, expected). The recovered distribution for the 

doubly-clamped beam, along with the initial distribution used to simulate the frequency-shift 

data, is shown in Figure 75. 

It is clear from Figure 75 that the recovered distribution using least squares fitting 

applied to the discretized problem is not able to accurately reconstruct a complicated test 

distribution using five modes. This could be due to numerical accuracy or stability issues 

associated with fitting to data with five modes, or due to the fact that the least squares fitting 

found a local minimum among multiple distributions that are numerically indistinguishable 

from the correct one. A similar recovered image was obtained for the cantilever. 
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5.4 Discrete Density Reconstruction with Regularization 

As noted in Section 5.3, fitting more than four unknown parameters with more than 

four frequency shifts is generally found to be unreliable for a localized distribution. Although 

the discretized formula in Equation 59 converges to the integral in Equation 54 as 𝑁 → ∞, 

in practice, the fit cannot be done due to the complexity of fitting so many unknown 

parameters with a set of highly nonlinear equations. It is evident that there are too many valid 

solutions to a given set of frequency-shift data within the numerical accuracy available for 

calculation. This problem is exacerbated when dealing with noisy data – as the noise level 

 
Figure 75. Discrete density reconstruction using five modes. Synthetic frequency-shift 

data was calculated using a skewed test distribution for five modes for a doubly-clamped 

beam, and the image was recovered by fitting to a discretized distribution, which consists 

of a series of delta functions of varied weight and location. The height of the arrows 

depicted for the recovered distribution are proportional to the weights associated with the 

corresponding delta functions. 
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increases, so does the number of solutions that can reproduce the data with equal validity 

within the noise. Thus, it is necessary to impose some scheme outside the data itself to select 

one solution out of many. A standard approach to do so is known as regularization, and the 

application of this method to recovering an adsorbate’s image will be discussed in this 

section. 

Regularization involves a trade-off between optimizing the agreement between the 

solution and the data (denoted 𝓐), and optimizing the stability or smoothness of the solution 

(denoted 𝓑): since two optimization problems cannot be solved simultaneously, the approach 

optimizes the combined problem 

𝓐 + 𝜆𝓑,                                                                    (63) 

for some choice of 0 < 𝜆 < ∞ that dictates the relative preference of 𝓐 or 𝓑; as 𝜆 → 0, the 

problem approaches optimizing 𝓑 with 𝓐 as a constraint, and as 𝜆 → ∞, the problem 

approaches optimizing 𝓐 with 𝓑 as a constraint [15]. Even if 𝓐 is degenerate in the sense 

of having multiple valid solutions, if 𝓑 is non-degenerate, the overall expression in 

Equation 63 will be too, thus there will be a unique solution to the overall problem [15]. 

As demonstrated in Section 5.3, fitting the solution to the data involving a large 

number of modes requires a least-squares optimization rather than an exact nonlinear fit, so 

a least-squares approach will be used for 𝓐 going forward. In choosing least-squares for 𝓐, 

a larger number of unknowns compared with data points can be used since the degeneracy is 

broken by the overall problem 𝓐 + 𝜆𝓑. Therefore, for ease of implementation, rather than 

the discretization in Equation 58a and 58b using variable positions for each delta function, 

the mass density function will be evaluated over a large number of uniformly spaced points. 

Doing so allows us to rewrite the discretized frequency shift formula in Equation 56 as: 
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𝑐𝑖 = ∑ 𝜇(𝑥𝑘)𝜙𝑖
2(𝑥𝑘)Δ𝑥𝑘

𝑀

𝑘=1

≡ ∑ Φ𝑖𝑘𝜇𝑘,       𝑛 = 1…𝑁                       (64)

𝑀

𝑘=1

 

where Φ𝑖𝑘 ≡ 𝜙𝑖
2(𝑥𝑘)Δ𝑥𝑘, 𝑀 ≥ 𝑁, and 𝑥𝑘 = 𝑥0 + (𝑘 − 1)Δ𝑥 are preselected coordinates 

with 𝑥0 and Δ𝑥 chosen such that the distribution encompasses a region of limited spatial 

extents surrounding the estimated center-of-mass, as discussed in Section 5.3. (Recall that it 

is always possible to distinguish a localized distribution from two separate particles at 

arbitrary locations by using at least 3 modes for a doubly-clamped beam or 4 modes for a 

cantilever. If the distribution is localized, it is possible to obtain an accurate estimate of the 

center-of-mass.) Using this approach, we can formulate 𝓐 as follows: 

argmin
𝜇𝑘

∑(𝑐𝑖 − ∑ Φ𝑖𝑘𝜇𝑘,

𝑀

𝑘=1

)

2𝑁

𝑖=1

  subject to 𝜇𝑘 ≥ 0.                         (65) 

In the case of noisy data, a 𝜒2 estimate can be used [15]: 

argmin
𝜇𝑘

𝜒2 = ∑∑[𝑐𝑖 − ∑ Φ𝑖𝑘𝜇𝑘

𝑀

𝑘=1

] 𝑆𝑖𝑗
−1 [𝑐𝑗 − ∑ Φ𝑗𝑘𝜇𝑘

𝑀

𝑘=1

]

𝑁

𝑗=1

𝑁

𝑖=1

  subject to 𝜇𝑘 ≥ 0,    (66) 

where 𝑆𝑖𝑗 is the covariance matrix. In the case of non-correlated noise, off-diagonal entries 

are not used and the sum simplifies: 

argmin
𝜇𝑘

𝜒2 = ∑[
𝑐𝑖 − ∑ Φ𝑖𝑘𝜇𝑘

𝑀
𝑘=1

𝜎𝑖
]

2𝑁

𝑖=1

  subject to 𝜇𝑘 ≥ 0.                (67) 

If 𝑀 ≫ 𝑁, the values of 𝜇𝑘 can be chosen to make Equation 66 go to zero. A more realistic 

outcome is 𝜒2 = 𝑁, so the value of 𝜆 in the overall problem 𝓐 + 𝜆𝓑 is often adjusted until 

this is achieved for the final solution [15]. 

Zeroth-order regularization. For the stability problem 𝓑, the simplest choice is to 

use the smallest 𝜇(𝑥) in the sense of: 
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argmin
𝜇𝑘

∑ 𝜇𝑘
2

𝑀

𝑘=1

    subject to 𝜇𝑘 ≥ 0.                                        (68) 

The regularization problem using the above for 𝓑 is known as zeroth-order regularization 

[15] or L2 regularization (in the sense of giving preference to solutions with smaller L2 norm) 

[20]. Applied to our problem, this amounts to finding the density function with minimum 

total mass that satisfies the frequency-shift constraints to desired precision. It should be 

pointed out that there is a small distinction between Equation 68 and the typical 

regularization problem in that here the mass density function is required to be positive. This 

positivity constraint means that a closed-form solution is not available; however, the problem 

can still be solved numerically with relative ease due to its stability. 

As a demonstration, the following zeroth-order regularization problem was solved in 

Mathematica for the case of the skewed distribution (type D in Figure 73) on a doubly-

clamped beam starting at 𝑥0 = 0.3 and having width 𝜖 = 0.01: 

argmin
𝜇𝑘

∑(𝑐𝑖 − ∑ Φ𝑖𝑘𝜇𝑘,

𝑀

𝑘=1

)

2𝑁

𝑖=1

+ 𝜆 ∑ 𝜇𝑘
2

𝑀

𝑘=1

 subject to 𝜇𝑘 ≥ 0.                   (69) 

Regularization was then repeated in a more realistic way: the center-of-mass of the 

distribution was first estimated by fitting to a discrete distribution without regularization 

(Section 5.3). Then, 𝑀 = 21 coordinates were chosen centered around this value and having 

small extents (𝜖 = 0.02). The choice of extents is fairly well-matched to the exact value of 

𝜖 = 0.01, but 𝜖 can easily be adjusted to “zoom in” on the distribution in an iterative manner. 

The regularization parameter 𝜆 was then adjusted, and the recovered distributions are shown 

in Figure 76 along with the recovered moments in Table 14. Evidently, too large of a choice 

of 𝜆 favors the smoothness criteria too strongly, creating a smooth function that does not 
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match the original data well. Decreasing 𝜆 to 10−8 or less was found to generate distributions 

with frequency shifts indistinguishable to the simulation data, but still led to a variety of 

outcomes. For 𝜆 = 10−8 and 𝜆 = 10−10, the recovered distributions visually match the 

original distribution quite well, and the recovered moments were accurate. For 𝜆 = 10−18, 

the recovered distribution was irregular and also had moments that poorly matched the 

original distribution. 

Evidently, employing 𝜇(𝑥) as a smoothness parameter enables recovery of a 

complicated distribution, but is not an ideal choice in that the outcome is highly dependent 

on the choice of regularization parameter 𝜆. Additionally, amongst the variety of possible 

solutions, there is no clear reason for preferring the solution with the least mass—other than 

 
Figure 76. Zeroth-order regularization. Regularization was performed on the test 

distribution using 𝑀 = 21 coordinates centered about the estimated center-of-mass 

obtained from the discretized problem without regularization. The recovered 

distributions are shown for various choices of the regularization parameter 𝜆: (A) 𝜆 =
10−3, (B) 𝜆 = 10−8, (C) 𝜆 = 10−10, (D) 𝜆 = 10−18. 
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its simplicity in the formulation of the problem. 

Tikhonov regularization. A generalization of zeroth-order regularization is known as 

linear or Tikhonov regularization, in which the stability problem 𝓑 uses a matrix 𝚪 [15]: 

argmin
𝜇𝑘

|𝒄 − 𝚽 ∙ 𝛍|2 + 𝜆 |𝚪 ∙ 𝛍|2 .                                        (70) 

This generality allows for more sophisticated smoothness criteria, such as minimizing the 

first derivative (or higher) of the unknown function. In minimizing the first derivative, the 

regularization problem becomes: 

argmin
𝜇𝑘

∑(𝑐𝑖 − ∑ Φ𝑖𝑘𝜇𝑘,

𝑀

𝑘=1

)

2𝑁

𝑖=1

+ 𝜆 ∑(𝜇𝑘 − 𝜇𝑘+1)
2

𝑀−1

𝑘=1

 subject to 𝜇𝑘 ≥ 0.      (71) 

Similarly to the previous case, the non-negativity constraint 𝜇𝑘 ≥ 0 makes this problem 

nonlinear (in that sense, Equation 71 is only inspired by Tikhonov regularization). As a 

result, closed-form solutions are not available in contrast with most of the literature on the 

Table 14. Recovery of mass moments using zeroth-order regularization. A skewed 

distribution with 𝑥0 = 0.3 and 𝜖 = 0.1 was used to generate frequency shifts for five 

modes for a doubly clamped beam. The distributions were recovered with different 

choices of regularization parameter. Recovered moments are reported; percentage error 

is in parentheses. 
 

Regularization 

Parameter, 𝜆 
Mass 

Center-of-

Mass 
Variance Skewness 

10−3 
7.51 × 10−2 

(0.11 %) 
0.304 

(0.01 %) 
1.92 × 10−5 

(151%) 
−0.01 

(-102 %) 

10−8 
7.50 × 10−2 

(0.00 %) 
0.304 

(0.00 %) 
7.68 × 10−6 

(0.50 %) 
0.335 

(-23.7 %) 

10−10 
7.50 × 10−2 

(0.00 %) 
0.304 

(0.00 %) 
7.64 × 10−6 

(0.01 %) 
0.415 

(-5.40 %) 

10−18 
7.50 × 10−2 

(0.00 %) 
0.304 

(0.00 %) 
7.72 × 10−6 

(1.03 %) 
−0.09 

(-120 %) 
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subject, but as before, it can be solved numerically in a stable manner. Reconstructed density 

functions from the same test distribution using Equation 71 as the optimization problem are 

shown in Figure 77. The results are marginally smoother than before, but exhibit a similarly 

undesirable sensitivity upon the regularization parameter 𝜆 (with recovered moments 

similarly becoming less accurate with 𝜆 < 10−10). 

Maximum entropy regularization (discrete case). As demonstrated for the case of 

Tikhonov regularization above with the non-negative mass constraint, computational 

solutions for regularization are not necessarily limited by linearity if the overall problem is 

numerically stable. Therefore, it seems reasonable to allow for a generally nonlinear 

smoothness criteria for 𝓑. One popular approach involves maximizing the entropy associated 

with the distribution (equivalently, minimizing the negative entropy) [15]: 

 
Figure 77. Tikhonov regularization. Regularization was performed similar to the 

zeroth-order approach, but using the first derivative of the function as the smoothness 

criteria. The recovered distributions are shown for various choices of the regularization 

parameter 𝜆: (A) 𝜆 = 10−3, (B) 𝜆 = 10−8, (C) 𝜆 = 10−10, (D) 𝜆 = 10−18. 
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argmin
𝜇𝑘

∑(𝑐𝑖 − ∑ Φ𝑖𝑘𝜇𝑘,

𝑀

𝑘=1

)

2𝑁

𝑖=1

+ 𝜆 ∑(𝜇𝑘 log 𝜇𝑘)
2

𝑀−1

𝑘=1

.                        (72) 

It should be noted that, while using a functional form with parallels to thermodynamics and 

information theory, other nonlinear functional forms for such as − log 𝜇 or −√𝑢 are known 

to produce similar results [15]. Thus, while it could be justified on philosophical or axiomatic 

grounds [21], the practical utility of the functional can be equally considered and should 

include the following physical constraints: the solution should be constant (i.e. unbiased) in 

the absence of data, sharp features are permitted among a smooth background, positivity 

must be ensured, and missing data such as 𝑐𝑖, 𝑖 > 𝑁 should be smoothed over. Maximum 

entropy regularization features these constraints [15]. 

 
Figure 78. Discretized maximum entropy regularization. Regularization was 

performed using an entropy functional as the smoothness criteria. The recovered 

distributions are shown for various choices of the regularization parameter 𝜆: (A) 𝜆 =
10−18, (B) 𝜆 = 10−21, (C) 𝜆 = 10−24, (D) 𝜆 = 10−30. 
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When applied to the skewed test distribution, the discretized maximum entropy 

regularization recovers a distribution that resembles the original for any 𝜆 < 10−20 as shown 

in Figure 78. As 𝜆 is reduced to zero, corresponding to maximizing the entropy with the 

frequency shifts as constraints, the recovered mass moments become increasingly accurate 

as shown in Table 15. This contrasts with the zeroth- and first-order regularization 

procedures, in which 𝜆 must be within a certain range of values for a successful outcome.  

5.5 Maximum Entropy Regularization: Continuous Solution 

In the previous section, three functionals were compared for regularizing the 

discretized inertial imaging problem: these minimize the total mass and the overall first 

derivative, and maximize the entropy, respectively. Among the three methods, the maximum 

entropy approach was found to produce the most consistent results for a broad choice of 

values for the regularization parameter 𝜆, and the results improve as 𝜆 → 0, thereby 

Table 15. Recovery of mass moments using discretized maximum entropy 

regularization. A skewed distribution with 𝑥0 = 0.3 and 𝜖 = 0.1 was used to generate 

frequency shifts for five modes for a doubly-clamped beam. The distributions were 

recovered with different choices of the regularization parameter. Recovered moments are 

reported; percentage error is in parentheses. 
 

Regularization 

Parameter, 𝜆 
Mass 

Center-of-

Mass 
Variance Skewness 

10−18 
7.51 × 10−2 

(-0.07 %) 
0.304 

(0.00 %) 
1.49 × 10−5 

(94.5%) 
−0.49 

(-212 %) 

10−21 
7.50 × 10−2 

(0.00 %) 
0.304 

(0.00 %) 
8.73 × 10−6 

(14.3 %) 
0.216 

(-50.7 %) 

10−24 
7.50 × 10−2 

(0.00 %) 
0.304 

(0.00 %) 
7.68 × 10−6 

(0.59 %) 
0.271 

(-38.2 %) 

10−30 
7.50 × 10−2 

(0.00 %) 
0.304 

(0.00 %) 
7.64 × 10−6 

(-0.03 %) 
0.458 

(4.49 %) 
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eliminating the ambiguities associated with the choice of 𝜆 for the other approaches 

considered. 

In this section, maximum entropy regularization will be applied to the original 

moment problem in Equation 54 without discretization. In addition to inheriting the practical 

benefits of the maximum entropy method in the previous section—an unbiased solution in 

the absence of data, sharp features are permitted, missing data (i.e., those that would be 

obtained from higher modes) is appropriately smoothed over, and a positive mass density is 

guaranteed—the continuous solution features a closed form solution in terms of the basis 

functions [16, 22-26]; in this case, these are the squared mode shapes 𝜙𝑛
2(𝑥). 

Maximum entropy regularization seeks to maximize the entropy functional: 

max 𝑆 ≡ −∫𝜇(𝑥) ln 𝜇(𝑥) 𝑑𝑥

1

0

,                                              (73) 

given the fractional frequency-shift data as constraints. Shannon suggested this integral as a 

continuous version of his information entropy [27], but it has been noted that it is not a proper 

generalization, due to not being dimensionally correct, among other objections that have been 

raised [28].  Unlike entropy, relative entropy or cross-entropy does generalize correctly for 

continuous probability densities [21, 28].  Under that approach, the goal is to minimize the 

relative entropy with respect to a bias, or prior distribution estimate Π(𝑥): 

min𝑆rel ≡ ∫𝜇(𝑥) ln
𝜇(𝑥)

Π(𝑥)
𝑑𝑥

1

0

,                                             (74) 

which becomes equivalent to maximizing entropy when choosing a uniform bias distribution.  

Beyond the practical benefits enumerated above, justification for maximizing 

entropy, or minimizing cross-entropy, is frequently given in terms of intuitive arguments 
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about entropy and cross-entropy as information measures [29-31]. The resulting distribution 

𝜇(𝑥) is the one that agrees with what is known, but minimally commits to missing 

information. Alternatively, 𝜇(𝑥) minimizes the amount of information necessary to change 

from a prior Π(𝑥) into the posterior 𝜇(𝑥). There remains some controversy to this approach; 

many find the argument plausible but lacking a sufficient level of proof for choosing to 

maximize entropy and not some other function [32, 33]. The most rigorous argument has 

been given by Shore and Johnson [21]. They argue that minimizing cross-entropy is the 

unique method for performing inductive inference when provided with constraint 

information in the form of expected values (i.e., moments) that is self-consistent. Self-

consistency in this context is defined as the ability to yield a unique solution, regardless of 

the approach. In other words, the same result should be obtained regardless of the choice of 

coordinate system or whether one uses all experimental data simultaneously, or updates the 

solution 𝜇(𝑥) one mode at a time. For example, one can choose to solve for 𝜇(𝑥) given the 

frequency shift for the first mode, then use that 𝜇(𝑥) as the prior Π(𝑥) and solve for 𝜇(𝑥) 

given the frequency-shift data for the second mode, and so on. 

The inclusion of the bias function Π(𝑥) is useful as it allows us to impose a priori 

knowledge about the distribution. For example, if the distribution can be determined to be a 

single, isolated particle of limited spatial extent, Π(𝑥) can be set to zero everywhere except 

in a small region surrounding the particle’s estimated center-of-mass. In terms of the 

regularization procedure established in the previous section, we hope to solve 

argmin
𝜇(𝑥)

∑ (𝑐𝑛 − ∫𝜇(𝑥)𝜙𝑛
2(𝑥) 𝑑𝑥,

1

0

)

2
𝑁

𝑛=1

+ 𝜆 ∫𝜇(𝑥) ln
𝜇(𝑥)

Π(𝑥)
𝑑𝑥

1

0

              (75) 
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for infinitesimal 𝜆. This can be equivalently formulated by associating a Lagrange multiplier 

with each frequency-shift constraint [16]: 

argmin
𝜇(𝑥)

∑ 𝜆𝑛 (𝑐𝑛 − ∫𝜇(𝑥)𝜙𝑛
2(𝑥) 𝑑𝑥,

1

0

)

2
𝑁

𝑛=1

+ ∫𝜇(𝑥) ln
𝜇(𝑥)

Π(𝑥)
𝑑𝑥

1

0

.           (76) 

The solution is obtained by performing functional variation of Equation 75 with respect to 

𝜇(𝑥): 

𝜇(𝑥) = Π(𝑥) exp(− ∑ 𝜆𝑛Φ𝑛
2(𝑥)

𝑁

𝑛=1

) ,                                        (77) 

where the 𝜆𝑛’s can be solved numerically to match the frequency-shift constraints: 

𝑐𝑛 = ∫Π(𝑥) exp (− ∑ 𝜆𝑛Φ𝑛
2(𝑥)

𝑁

𝑛=1

)𝜙𝑛
2(𝑥) 𝑑𝑥

1

0

 .                             (78) 

If a solution to Equation 78 exists, it is unique and varies continuously with the data [16]. 

Thus, it represents a well-posed solution to our present problem of obtaining the spatial mass 

density distribution given the frequency-shift data arising from physisorption to an Euler-

Bernoulli beam. 

Application of maximum entropy to a skewed test distribution with no bias 

(corresponding to Π(𝑥) = 1) is shown in Figure 79 for the case of four modes of a cantilever. 

Frequency shifts generated from the solution match those of the test distribution to machine 

precision. While some general resemblance to the test distribution was obtained, the solution 

also shows mass density near the base of the cantilever (𝑥 < 0.1). Evidently, the algorithm 

is impartial toward adding mass at this location, at which the device provides low 

responsivity. This erroneous result can be avoided only by including additional assumptions, 

which can be encoded precisely with the choice of the bias function Π(𝑥). These assumptions 
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should be based on the physics of the problem, and could include that the adsorbate is 

expected to be a single, localized distribution, as opposed to two distinct distributions. Recall 

from Section 5.3 that this is, in general, not possible unless we severely constrain the overall 

solution space—for example, limiting the possibilities to a single point mass, a single 

localized distribution, or two point masses. With this strong constraint, it is possible to fit 

two delta functions to the data as shown in Figure 74. These can be used as the left and right 

endpoints of the bias function: 

Π(𝑥) = {
1, 𝑥0 − 𝛿 2⁄ < 𝑥 < 𝑥1 + 𝛿 2⁄

0, otherwise
                                           (79) 

where 𝛿 can be increased from 0 until one of the endpoints reaches the boundary of the device 

or, alternatively, until the overall extents reach a maximum width considered reasonable 

given a priori knowledge about the adsorbate. Since the bias function constructed in 

 
Figure 79. Maximum entropy solution with no bias (four modes, cantilever). The 

entropy of the unknown test distribution was maximized, given that it would also satisfy 

the frequency shift formula in Equation 1. No extra assumptions were used to localize 

the solution, and the solution was numerically indistinguishable from the frequency shifts 

simulated from the test distribution. 
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Equation 79 dictates whether or not the solution exists within a certain range, it will be 

referred to as the measurement zone. 

 
Figure 80. Maximum entropy solution with restricted measurement zone (4 modes). 
(A) A bias function was used to restrict the region where the solution was permitted to 

exist. As the measurement zone increases, the solution changes from two singular 

distributions, to resembling the true solution, to resembling a skew-normal distribution. 

X-axis: normalized position, Y-axis: normalized mass density. (B) Relative error of 

variance and skewness of recovered distribution versus width of measurement zone. 

Units of the measurement zone are normalized to the length of the beam. 
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 A demonstration of the dependence of the solution on the choice of measurement 

zone is shown in Figure 80. It is observed that, when the left and right endpoints of the 

measurement zone are chosen to equal the locations of the two delta functions fitted with 

 
Figure 81. Maximum entropy solution with restricted measurement zone (5 modes). 
(A) As the measurement zone increased, the solution changed from several singular 

distributions to resembling the true solution. X-axis: normalized position, Y-axis: 

normalized mass density. (B) Relative error of skewness and kurtosis of distribution 

versus choice of measurement zone. 
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Equation 59, the maximum entropy solution similarly features two distinct, singular 

distributions. The code does not converge if the measurement zone is smaller than this initial 

choice, but it always successfully converges if the measurement zone is larger. When the 

measurement zone is increased symmetrically until 𝑥1 = 1 (the end of the cantilever), the 

solution resembles a skew normal distribution. The mass, position, and variance of the 

recovered solution have an error of order 1%, regardless of the choice of measurement zone. 

The skewness of the recovered solution has an error between –30% to +50%. Thus, without 

imposing additional assumptions about the nature of the unknown distribution, four modes 

are sufficient to reliably recover the mass, position, and variance, but not the skewness. 

This approach was repeated with the same test distribution using five modes, as 

shown in Figure 81. In this case, the first five fitted moments (up to kurtosis) are all found to 

be highly accurate regardless of the choice of measurement zone. Additionally, the fitted 

moments and the appearance of the recovered distribution are stable over a wide range of 

measurement zones once this zone exceeded the test distribution’s extents. 

Figure 80 and Figure 81 demonstrate that with four or five modes, a conservative 

measurement zone of up to 50% of the length of the beam can be used to bias the maximum 

entropy solution in order to recover the unknown mass distribution. However, the physical 

adsorbate likely has sharply defined spatial extents, rather than the long tails obtained in the 

computed distributions using the largest measurement zones. Similarly, the physical 

adsorbate will not have singularities associated with the smallest measurement zones. These 

basic properties can serve to justify the choice of a measurement zone, ranging from the 

smallest possible zone allowing for code convergence and larger ones that provide the most 
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stable results. Imposing this stronger form of bias will improve the accuracy of the fitted 

moments when only four modes are available. 

When choosing a conservative measurement zone that is 50% of the length of the 

beam, simple canonical distributions such as normal, skew, and bimodal distributions can be 

accurately recovered using five modes, as shown in Figure 82. More complicated 

distributions, such as a trimodal distribution, require more modes. Figure 83 shows the 

recovery of a trimodal distribution with increasing number of modes: with only three modes 

available, the recovered distribution incorrectly resembles a normal distribution and the 

recovered moments are accurate only up to the variance; with five modes, the recovered 

 
Figure 82. Maximum entropy solution for canonical test distributions. A series of 

canonical test distributions could be recovered with excellent agreement using the 

maximum entropy solution with five modes for a cantilever: (A) normal, (B) skew, (C) 

bimodal, and (D) skew bimodal. X-axis: normalized position, Y-axis: mass density. 
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distribution incorrectly resembles a bimodal distribution and the recovered moments are 

accurate only up to the kurtosis; seven modes are necessary to fully recover the distribution. 

This demonstrates that determining whether a molecule has two or three distinguishable 

structural domains requires seven modes. 

5.6 Maximum Entropy Regularization for a Small Adsorbate 

The maximum entropy solution, given in Equation 77, is constructed using the 

squared mode shapes and is therefore capable of reconstructing a wide variety of shapes, 

provided these squared mode shapes vary substantially over the measurement zone of 

 
Figure 83. Maximum entropy solution for a complicated test distribution. A trimodal 

test distribution was used to simulate a series of droplets. Maximum entropy was used to 

recover the distribution with an increasing number of modes. X-axis: normalized position, 

Y-axis: normalized mass density. 
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interest. Initial simulations failed to achieve numerical convergence for test distributions with 

widths less than 2% of the length of the beam. It was found that smaller adsorbates required 

increasingly larger values of 𝜆𝑛 to converge to the solution, and the requirement to 

exponentiate these large values during the computation led to numerical stability issues. 

To see this, assume that the mass density distribution represented by Equation 77 has 

a global maximum at 𝑥0 so that 𝜇′(𝑥0) = 0. If we write the maximum entropy solution as 

follows: 

𝜇(𝑥) = Π(𝑥) exp(−𝑓(𝑥)) ,        𝑓(𝑥) = ∑ 𝜆𝑛Φ𝑛
2(𝑥)

𝑁

𝑛=1

,                       (80) 

the function 𝑓(𝑥) can be expanded about 𝑥0: 

𝑓(𝑥) = 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑥 − 𝑥0) +
1

2
𝑓′′(𝑥0)(𝑥 − 𝑥0)

2 + 𝑂((𝑥 − 𝑥0)
3)          (81) 

If the bias function Π(𝑥) represents a uniform function over a chosen measurement zone, the 

location of the global maximum 𝑥0 will also describe the maximum for 𝑓(𝑥), so 𝑓′(𝑥0) =

0.  In this case, 𝜇(𝑥) can be represented approximately as a Gaussian distribution: 

𝜇(𝑥) ≈ exp(−𝑓(𝑥0)) exp(−(𝑥 − 𝑥0)
2 ∑ 𝜆𝑛

𝜕2Φ𝑛
2(𝑥)

𝜕𝑥2
|
𝑥0

𝑁

𝑛=1

)                  (82) 

which has variance  

𝜎2 =
1

2∑ 𝜆𝑛
𝜕2Φ𝑛

2(𝑥)
𝜕𝑥2 |

𝑥0

𝑁
𝑛=1

 .                                                   (83) 

Since the mode shapes have been normalized, we therefore obtain 

𝜆𝑛~
1

𝜎2
 .                                                                   (84) 

Thus, as 𝜎 → 0, 𝜆𝑛 → ∞. 
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To address this issue, the modified Gram-Schmidt procedure was used to 

orthonormalize the squared mode shapes for a given choice of measurement zone. This 

procedure has been discussed as a means for preconditioning data for maximum entropy 

algorithms to make them numerically stable [3]. Intuitively, this process transforms the mode 

shapes, which would all identically look like constant functions over a small interval with 

𝜎 → 0 such that they vary appreciably from each other over a new interval with larger 

effective 𝜎. The frequency-shift data is transformed as well such that the reformulated 

problem is completely equivalent and no data is lost. We find this transformation to be an 

essential step to find solutions that converge over a small measurement zone. In brief, the 

algorithm constructs a new set of functions 𝑢𝑖(𝑥) using a linear superposition of the squared 

mode shapes: 

𝑢𝑖(𝑥) = ∑G𝑖𝑗Φ𝑗
2(𝑥)

𝑁

𝑗=1

                                                  (85) 

that satisfy the orthonormality condition:  

∫ 𝑢𝑖(𝑥)𝑢𝑗(𝑥) 𝑑𝑥 = 𝛿𝑖𝑗

𝑥1

𝑥0

                                               (86) 

over the new measurement zone 𝑥0 ≤ 𝑥 ≤ 𝑥1. Note that while the original mode shapes 

Φ𝑛(𝑥) are orthonormalized over the entire beam 0 ≤ 𝑥 ≤ 1, the shared mode shapes Φ𝑛
2(𝑥) 

are not, so in principle, this Gram-Schmidt procedure could be carried out over any interval 

to improve the numerical performance of the algorithm. Once the coefficients 𝐺𝑖𝑗 have been 

calculated, the frequency-shift data represented by the integral in Equation 54 can be 

transformed to the new basis: 
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                                  ∫ 𝜇(𝑥)𝑢𝑖(𝑥) 𝑑𝑥

𝑥1

𝑥0

= ∑G𝑖𝑗 ∫ 𝜇(𝑥)

𝑥1

𝑥0

Φ𝑗
2(𝑥) 𝑑𝑥

𝑁

𝑗=1

 

= ∑G𝑖𝑗 ∫𝜇(𝑥)

1

0

Φ𝑗
2(𝑥) 𝑑𝑥

𝑁

𝑗=1

= ∑G𝑖𝑗𝑐𝑗

𝑁

𝑗=1

,              (87) 

where the second equality holds provided the measurement zone completely encompasses 

the adsorbate. A demonstration of the modified Gram-Schmidt procedure applied to the first 

five modes of a cantilever, over a measurement zone representing 0.2% of the extents of the 

 
Figure 84. Orthonormalized modes over a small measurement zone. The modified 

Gram-Schmidt procedure was used to create linear superpositions of the squared mode 

shapes that are orthonormal over a small interval. These new mode shapes can be used 

to precondition the frequency-shift data to allow for numerical convergence of maximum 

entropy over a small interval. 
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beam, is shown in Figure 84. Over a small measurement zone, they resemble Legendre 

polynomials. 

Figure 85 shows the test distribution with extents 𝜖 = 0.001 reconstructed using 

maximum entropy using four or five modes after orthogonalizing the squared mode shapes 

over the measurement zone. This measurement zone is chosen conservatively in the 

following manner: the data is initially fitted to a two point-mass solution with positions 𝑥0 

and 𝑥1 using techniques discussed in Section 5.3. The left and right endpoints of the 

 
Figure 85. Maximum entropy solution over a small measurement zone. After 

orthogonalizing the squared mode shapes over a small measurement zone, maximum 

entropy was used to recover a test distribution using (A) 4 modes and (C) 5 modes with 

a conservative choice of measurement zone. The relative error for higher mass moments 

versus measurement zone (normalized to length of the beam) are shown for (B) 4 modes 

and (D) 5 modes. 
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measurement zone are chosen to be 𝑥0 − 𝛿 2⁄  and 𝑥1 + 𝛿 2⁄ , with 𝛿 = 5(𝑥1 − 𝑥0). Mass 

moments up to skewness could be accurately using four modes and in a manner that was 

relatively insensitive to this choice of measurement zone. Similarly, all moments up to 

kurtosis could be similarly recovered using five modes without a strong dependence on 

measurement zone. This is shown in Figure 85, where the measurement zone was varied 

from 𝛿 = 0 to 𝛿 = 5(𝑥1 − 𝑥0).  

In Table 16, I show the accuracy of recovered moments from the maximum entropy 

solution for the same test distribution over a wide range of widths using four modes. In each 

case, the measurement zone is chosen conservatively, as discussed above. For distributions 

with widths of 𝜖 < 0.03, moments up to the fourth (skewness) could be recovered with a 

high degree of accuracy. Above 𝜖 = 0.03, moments up to third (variance) were still accurate, 

but the skewness became inaccurate. This is despite the fact that the maximum entropy 

Width, 𝜖 Mass Center-of-Mass Variance Skewness 

0.001 
7.50 × 10−4 

(0.00 %) 
0.700 

(0.00 %) 
7.64 × 10−8 

(0.00%) 
0.439 

(0.05 %) 

0.003 
2.25 × 10−2 

(0.00 %) 
0.701 

(0.00 %) 
6.88 × 10−7 

(0.00 %) 
0.439 

(0.06 %) 

0.01 
7.50 × 10−3 

(0.00 %) 
0.704 

(0.00 %) 
7.64 × 10−6 

(0.02%) 
0.438 

(0.16 %) 

0.03 
2.25 × 10−2 

(0.00 %) 
0.713 

(0.00 %) 
6.89 × 10−5 

(0.18 %) 

0.452 
(3.14 %) 

0.1 
7.49 × 10−2 

(-0.08 %) 
0.742 

(0.03 %) 
7.73 × 10−4 

(1.13 %) 
0.657 

(49.70 %) 

Table 16. Recovery of mass moments for skewed distribution (cantilever). Test 

distribution type D shown in Figure 2 was used to generate frequency shifts for four 

modes for a cantilever. For all distributions, 𝑥0 = 0.7, but the spatial extent 𝜖 was 

varied. Recovered moments for the maximum entropy solution using a conservative 

measurement zone are reported; percentage error is in parentheses. 
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solution generally resembles the test distribution. As discussed previously, the error for the 

recovered skewness for this larger width distribution can be improved by using a more 

aggressive (smaller) measurement zone, which eliminates the long tails characteristic of the 

continuous maximum entropy distribution—instead favoring a more localized distribution. 

However, because the choice of measurement zone is somewhat arbitrary or would require 

specific justification using a priori knowledge about the adsorbate, the most conservative 

zone is selected for consistency and comparison purposes. 

5.7 Maximum Entropy Regularization in the Asymptotic Limit 

The Gram-Schmidt procedure discussed in the previous section can be used with the 

method of maximum entropy to reconstruct mass density distributions over extremely small 

measurement zones, 𝜖 ≪ 1, relative to the beam length. In this section, we will investigate 

the maximum entropy solution as 𝜖 → 0 in the asymptotic limit. 

The approximation for 𝜇(𝑥) for small adsorbates given in Equation 82 approaches a 

delta function as the standard deviation 𝜎 → 0. This can be shown in another way using 

Laplace’s method, which is used to estimate integrals of the form  

                 ∫ ℎ(𝑥)𝑒𝑀𝑔(𝑥)𝑑𝑥

𝑏

𝑎

,                                                     (88) 

where 𝑀 is large and ℎ(𝑥) is positive. In this case, the integral can be approximated as [34]:  

                 ∫ ℎ(𝑥)𝑒𝑀𝑔(𝑥)𝑑𝑥

𝑏

𝑎

≈ √
2𝜋

𝑀|𝑔′′(𝑥0)|
ℎ(𝑥0) 𝑒

𝑀𝑔(𝑥0) .                    (89) 

As noted in Section 5.6, 𝜆𝑛 → ∞ as 𝜎 → 0, so this approximation applies when calculating 

integrals involving the maximum entropy solution, such as the frequency shifts generated by 
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the solution via Equation 54, or mass moments of the solution. The frequency shifts can be 

expressed as: 

                     𝑐𝑛 = ∫ exp(− ∑ 𝜆𝑛Φ𝑛
2(𝑥)

𝑁

𝑛=1

)Φ𝑛
2(𝑥)𝑑𝑥

𝑥1

𝑥0

 

≈
√

2𝜋

|∑ 𝜆𝑛
𝜕2Φ𝑛

2

𝜕𝑥2 (𝑥𝑠)
𝑁
𝑛=1 |

exp (− ∑ 𝜆𝑛Φ𝑛
2(𝑥𝑠)

𝑁

𝑛=1

)Φ𝑛
2(𝑥𝑠)

= 𝑚𝑠Φ𝑛
2(𝑥𝑠)                                                                                                       (90) 

where 𝑥0 and 𝑥1 define the limits of the measurement zone, and 𝑚𝑠 and 𝑥𝑠 are the adsorbate’s 

mass and position. Therefore, the maximum entropy solution reduces to a point mass in the 

asymptotic limit of a small adsorbate. 

The approximation formula in Equation 89 is accurate to order 𝑂(𝑀−1 2⁄ ). 

Additional terms can be calculated using standard techniques for asymptotic expansion of 

integrals [34]. This was done using integrals involving the frequency shifts as in Equation 90, 

as well as integrals involving moments of the maximum entropy solution, i.e.  

∫ 𝑔(𝑥) exp (− ∑ 𝜆𝑛Φ𝑛
2(𝑥)

𝑁

𝑛=1

)𝑑𝑥

𝑥1

𝑥0

,                                    (91) 

where 𝑔(𝑥) = 1, 𝑥, 𝑥2, etc, in order to simplify the final result. With this approach, the 

frequency shifts can be approximated as: 

𝑐𝑛 ≈ 𝑚𝑠 [Φ𝑛
2(𝑥𝑠) + (𝑥̅ − 𝑥𝑠)

𝜕Φ𝑛
2

𝜕𝑥
|
𝑥𝑠

+
〈𝑥2〉

2

𝜕2Φ𝑛
2

𝜕𝑥2
|
𝑥𝑠

] .                   (92) 

We note the striking similarity to Equation 49 using 𝑝 = 3 (4 modes). Minor differences 

arise due to the requirement of Laplace’s method to expand about the location of the mass 

density distribution’s maximum value, denoted 𝑥𝑠, compared to its center-of-mass, denoted 
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𝑥̅. Some advantages may arise in using Equation 92 to fit mass moments using frequency-

shift data when four modes are present: namely, the formula only uses up to the second 

derivative of the squared mode shapes, yet is able to access asymmetry via the metric 𝑥̅ − 𝑥𝑠 

(which is proportional to the Pearson mode skewness) rather than the skewness 〈𝑥3〉 which 

is a much smaller quantity. 

5.8 Experimental Validation 

In [1], droplets were deposited onto microcantilevers using dip-pen lithography, and 

the frequency of four modes of the cantilevers in air was measured before and after droplet 

deposition. These samples were also imaged optically using a microscope to obtain the 

known center-of-mass, variance, and skewness for comparison. Techniques in [1] and [2] 

have been used to recover the mass moments from the generated frequency-shift data. In this 

section, techniques from Section 5.3 and Section 5.5 will be applied to directly recover the 

density distribution of the published droplet data, then these recovered distributions will be 

compared to the optical images. Additionally, the mass moments of the recovered mass 

density distribution will be compared to the known mass moments. 

Discrete Density Reconstruction. As discussed in Section 5.3, one possible 

generalization to the point-mass formula is given by Equation 59, which gives in the case of 

four modes (𝑁 = 4): 

𝑐𝑛 = 𝑚1𝜙𝑛
2(𝑥1) + 𝑚2𝜙𝑛

2(𝑥2),                                          (93) 

where 𝑚1 and 𝑚2 are relative to the mass of the beam. Equation 93 was used to fit two point 

masses of different weights to the experimental frequency-shift data collected with 4 modes 

and originally published in [1]. Reconstructed density distributions using this approach are 
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shown in Figure 86. The general location and extents of the distribution can be inferred from 

these recovered distributions; however, they do not give much of an impression as to the 

overall shape. The reconstructed distribution for the asymmetric droplets is somewhat 

distinguishable in its asymmetry from the case of four or five rows of droplets, but the fidelity 

of reproduction is weaker in the case of two or three rows of droplets, where the distribution 

incorrectly gives an impression of asymmetry. In the case of a single droplet, Equation 93 

can be used to recognize that a single localized droplet was present, although the location of 

the droplet was somewhat inaccurate, and the width of the droplet was inaccessible. 

 
Figure 86. Discrete density reconstruction of experimental droplet data. Optical 

images for droplets placed on microcantilever using dip-pen lithography are taken from 

[1] and replicated here. Discretization is used to reconstruct the mass density distributions 

using the frequency-shift data for four modes, and these distributions are overlain above 

of the optical images such that the X-axis is precisely aligned with the cantilever extents. 

Recovered distribution represented as delta functions with height on Y-axis representing 

mass relative to the beam. Cantilever dimensions are 397 μm long, 29 μm wide and 2 μm 

thick. 
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Table 17 shows the variance of the recovered distributions and compares with the 

two other techniques, linear superposition and the mode shape expansion approach. For the 

case of four rows, five rows, and asymmetric rows, the discretized density distribution 

recovered from the data had a variance almost exactly between the two other approaches. It 

also produced results consistent with the other approaches in the case of two-row and three-

row droplet arrays. The skewness of the distribution recovered using Equation 93 for the 

asymmetric row data is −0.509; this is also between the value provided from linear 

superposition theory (−0.453) [1] and the value provided from the truncated series approach 

(−0.695) [2], and provides the most accurate result compared with the known optical value 

(−0.537) [2]. 

Maximum Entropy Regularization. As discussed in Section 5.5, this method is most 

successful when careful consideration of the bias function Π(𝑥) is used to localize the 

solution. Discrete density reconstruction as shown in Figure 86 can be used first, indicating 

Droplet 

array 
Linear superposition 

Mode shape Taylor 

expansion 
Equation 93 

2 rows 5.35 E−4 (±38%) 5.32 E−4 (±34%) 6.30 E−4 

3 rows 1.60 E−3 (±6.9%) 1.56 E−3 (±6.5%) 1.62 E−3 

4 rows 2.92 E−3 (±1.4%) 2.79 E−3 (±1.2%) 2.86 E−3 

5 rows 4.33 E−3 (±0.39%) 3.87 E−3 (±0.36%) 4.04 E−3 

Asymmetric 

rows 
5.21 E−3 (±1.5%) 4.67 E−3 (±1.3%) 4.97 E−3 

Table 17. Recovery of variance using different approaches. Measured normalized 

variance of the droplet arrays of [1, 2]. Results obtained using linear superposition theory 

of [1], mode shape expansion theory of [2], and discretization approach using 

Equation 93. Listed uncertainties in the parentheses specify a 95% confidence interval 

and are determined by the uncertainty in the measured resonant frequencies. The first four 

modes of the cantilever are used for all theories. 
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that the distribution always ends near the tip of the cantilever, but varies somewhat in the 

starting point. For simplicity, we can choose for our bias function: 

Π(𝑥) = {
1, 𝑥0 < 𝑥 < 1
0, otherwise

,                                            (94) 

such that we only vary the beginning of the measurement zone 0 < 𝑥0 < 1 over the length 

of the device. Frequency-shift data was reconstructed from the maximum entropy solution 

and compared with the experimental frequency-shift data as shown in Figure 87. For 𝑥0 <

0.79, frequency-shift data reconstructed from the maximum entropy solution is nearly 

 
Figure 87. Choice of measurement zone for experimental droplet data. Discrete 

density reconstruction (top) previously indicated the distribution was near the tip of the 

cantilever. The measurement zone for the maximum entropy method was selected to 

begin at a variable position 𝑥0 along the length of the cantilever and end at the tip of the 

cantilever. After the maximum entropy solution was found using a given measurement 

zone, the frequency-shift data was reconstructed and the total error calculated with 

respect to the experimental data. This total error is shown with an X-axis scaled to align 

with the optical image and has a sharp transition at 𝑥0 = 0.79. 
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indistinguishable from the experimental data. At 𝑥0 = 0.79, a sharp transition occurs and the 

solution no longer accurately reproduces the original data. This contrasts with the situation 

using simulated data in Section 5.5, which failed to converge at all when the measurement 

zone chosen for the algorithm became smaller than the original distribution. The differing 

behavior between simulation and experiment for measurement zones that are too small may 

be due, in part, to device noise. Fortunately, the device noise in these experiments was small 

enough for the transition between a successful image reconstruction and an unsuccessful one 

to be clear. This transition occurs precisely where the droplets physically begin and is evident 

without any a priori knowledge of the adsorbate’s image. The measurement zone is therefore 

chosen to begin immediately prior to this transition point for each set of droplet data. 

This procedure was used for the asymmetric droplet data to select the bias function 

Π(𝑥) given in Equation 42 for three and four modes. The resulting maximum entropy 

solution is shown along with this choice of bias function in Figure 88. Of note, three modes 

are evidently sufficient to indicate a bimodal distribution, rather than a normal distribution, 

which would normally be constructed given knowledge of three moments (mass, center-of-

mass, variance). The recovered images have sharp spikes near the edges of the measurement 

zone, and these are an artifact arising from the choice of a rectangular bias function that does 

not match the physical reality of the adsorbate. This can be avoided by choosing a smoother 

bias function; depending on the a priori knowledge of the adsorbate, its shape can be chosen 

more precisely. Figure 88 shows that with a parabolic bias function, the reconstructed image 

is smoother and matches the data with a high degree of fidelity. Also of note is that 

asymmetry is evident in the reconstructed image using only 3 modes. This is not normally 
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expected, but, in this case, arises due to the fortuitous positioning of the adsorbate at the edge 

of the cantilever. One end of the measurement zone can’t go past the tip of the cantilever, but 

the other end can be chosen in a way that closely matches the physical start of the distribution. 

Thus, the center of the measurement zone does not necessarily align with the center-of-mass 

of the adsorbate. 

This procedure was repeated for all droplet data published in [1] using the parabolic 

bias function, and the results are shown in Figure 89. Compared with the discrete density 

reconstruction method shown in Figure 86, the maximum entropy method appears to give a 

more informative picture of unknown distribution. 

 
Figure 88. Maximum entropy reconstruction of asymmetric droplet data. A (A) 

rectangular or (B) parabolic bias function was chosen for the maximum entropy 

algorithm, and the reconstructed image is shown in (C) and (D) for these bias functions, 

respectively. In each case, 𝑥1 = 1 and 𝑥0 was chosen to minimize the measurement zone 

while still accurately reproducing the experimental data 
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5.9 Two-Dimensional Imaging 

As has been noted in the literature, the method of maximum entropy can be readily 

extended to higher dimensions [3]. Here, the only difficulty lies in the increased 

computational difficulty. The problem can be formulated as follows: 

min 𝑆 ≡ ∫ 𝜇(𝒙⃗⃗ ) ln
𝜇(𝒙⃗⃗ )

Π(𝒙⃗⃗ )
𝑑𝒙⃗⃗ 

Ω

,                                                (95) 

subject to 

𝑐𝑛 ≡ ∫ 𝜇(𝒙⃗⃗ )Φ𝑛
2(𝒙⃗⃗ )𝑑𝒙⃗⃗ 

Ω

,         𝑛 = 1…𝑁                                       (96) 

 
Figure 89. Maximum entropy reconstruction of experimental droplet data. A 

smooth (parabolic) bias function was used with 4 modes for all droplet data published in 

[1], and maximum entropy regularization was used to recover the image. The recovered 

image is shown above the optical data with the X-axis aligned precisely with the 

cantilever dimensions. 
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which has the solution: 

𝜇(𝒙⃗⃗ ) = Π(𝒙⃗⃗ ) exp(− ∑ 𝜆𝑛Φ𝑛
2(𝒙⃗⃗ )

𝑁

𝑛=1

) ,                                      (97) 

Algorithms and code to calculate the 𝜆𝑛 in Equation 45 given a set of moments expressed in 

the form: 

𝑐𝑖𝑗 ≡ ∫ 𝜇(𝒙⃗⃗ )𝑥𝑖𝑥𝑗  𝑑𝑥 𝑑𝑦

Ω

,                                          (98) 

are provided in [3] and could be adapted to use known mode shapes Φ𝑛
2(𝒙⃗⃗ ) from a two-

dimensional membrane device. Alternatively, the moments in the form of Equation 46 can 

be calculated using the truncated expansion approach (which has been shown to be feasible 

 
Figure 90. Two-dimensional maximum entropy imaging. A two-dimensional test 

distribution was used to calculate the first 15 standard moments. The distribution was 

recovered using these moments using software provided in [2, 3]. 
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in two dimensions [2]), and then the image can be reconstructed from these standard 

moments. Figure 90 demonstrates use of the software to reconstruct the two-dimensional 

density distribution of an adsorbate assuming that these standard moments are accurately 

known. 

5.10 Conclusion 

In this chapter, we have investigated several methods to reconstruct the mass density 

distribution of an adsorbate directly from the frequency-shift data. A simple extension to the 

point-mass approximation, representing the adsorbate as a series of point masses, is found to 

be versatile in that it could be used to distinguish when multiple different particles are 

present, similar to [19], but can also be used within a single distribution of arbitrarily small 

spatial extents to infer information about the adsorbate’s size and asymmetry. Applied to the 

latter situation, the mass moments of the recovered distribution are unexpectedly found to be 

more accurate than if the mass moments were fit to the data directly via the previously 

introduced linear superposition approach [1] or truncated expansion approach [2]. The 

improvement over prior theories becomes negligible as the size of the particle goes to zero. 

Further aspects of the adsorbate’s shape are able to be recovered with a large number 

of modes by making use of maximum entropy regularization. This method provides a 

solution with the most disorder relative to a bias function. When given a uniform bias 

function extending over the entire beam, the solution tended to occupy areas of low mass 

responsivity in the beam. However, if the experiment is carefully designed to deposit one, or 

at most two, adsorbates at a time, these aspects of the solution can be eliminated by choosing 

a bias function that limits the solution to a small region near the adsorbate’s estimated 

location. This approach works for arbitrarily small adsorbates, and is also demonstrated on 
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experimental data of droplets placed on a microcantilever. The mass moments calculated 

from the maximum entropy solution that employs the experimentally measured frequency-

shift data are also unexpectedly found to be more accurate than moments calculated from the 

data directly. 

The techniques in this chapter solely require knowledge of the device mode shapes 

and do not explicitly rely on derivatives. This could provide an advantage in situations where 

the mode shapes are not known with complete accuracy, let alone their higher derivatives. 

Experimental attempts to measure the mode shapes have been reported; in some cases, they 

differ substantially from the expected theory [35]. If the experimental mode shapes are 

thought to be more trustworthy than the theory, they could be used as inputs for the maximum 

entropy method discussed here, provided they are linearly independent.  
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C h a p t e r  6  

CONCLUDING REMARKS 

The developments presented in this thesis provide much needed progress towards the 

realistic use of NEMS devices to advance the field of mass spectrometry, however much 

remains to be done. Acquiring a modern, sophisticated MS instrument such as the Q Exactive 

was extremely fortuitous for our lab. Previous incarnations of MS used home-built setups 

which had no method to independently verify the identity of ions delivered to the NEMS and 

very low event rates (one every ~20 minutes). In contrast, we had regular communications 

with Dr. Alexander Makarov and his expert R&D team at Bremen, and I was able to visit the 

factory where the instruments were made to discuss finer points about instrument operation. 

Additionally, I was able to meet Professor Albert Heck’s lab and learn the finer points about 

Native MS. With these resources, we could build an extraordinarily sophisticated front-end 

for delivering molecules to NEMS, as shown in Part I. 

With this hybrid instrument, several important experiments could be performed. The 

hybrid instrument could be used to verify that GroEL ions were sent to NEMS devices, and 

single molecule adsorption events could be easily resolved. Mass spectra collected with two 

and three modes showed excellent agreement with the expected mass. It was shown that 

careful analysis is necessary to compile final mass spectra from an ensemble of 

measurements. Additionally, we observed that charge from molecules sent from the 

Q Exactive could confound frequency-based mass measurements in an indirect way, but this 

effect could be eliminated with the use of a 2f detection technique. Finally, the use of 

improved cryogenics indicated the mass resolution of LETI style devices are limited by self-
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heating. Future device designs with improved mass resolution (now in progress with our lab) 

will need to take note of these observations to avoid pitfalls. 

In Chapter 3, we showed that ion optics can be used to produce a beam with a spot 

size of 40 µm2, allowing for a maximum detection rate of 25 molecules per second. Using a 

20-device array consisting of 10 µm by 300 nm devices thus currently allows for the 

detection of 5% of molecules reaching the device chip. This suggests that NEMS 

measurements can achieve a good limit of detection (the number of molecules in the initial 

solution needed to produce a signal). The only other factors affecting the detection limit using 

NEMS are the electrospray ionization efficiency (typically 5-10%, with the theoretical limit 

up to 85% [1]) and the transfer efficiency of ions to the NEMS (estimated to be 13% in 

Section 2.3). Thus, the current detection limit achieved in this thesis is estimated to be 104-

105 molecules. Work is underway to improve this number significantly by combining an 

array of NEMS devices with an electrostatic focusing chip as a second layer to ensure each 

molecule in the ion beam reaches a NEMS device. As discussed in Chapter 1, conventional 

MS instruments configured for proteomics rely on LC separation, and this front-end stage 

leads to significant sample dilution, reducing the overall limit of detection to 107-108 

molecules, even though the final detectors can sense a small number of charges [2]. Avoiding 

this LC stage, sending molecules directly to NEMS, therefore improves on the status quo by 

three orders of magnitude with more room for improvement. In principle, this will enable 

proteomic experiments on extremely small sample sizes, such as that from a single cell.  

The work in this thesis relied exclusively on NEMS devices fabricated at LETI. The 

large quantity of expendable, reliable devices was a necessity for the initial calibration stage, 

since over a hundred devices were likely destroyed during use in the course of this thesis. 

This would not have been possible with individually-constructed devices at Caltech’s Kavli 
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Nanoscience Institute; however, our locally-sourced devices have featured significantly 

improved mass resolution. Specifically, in parallel to the work described here, efforts were 

undertaken by Dr. Warren Fon and Jarvis Li, a graduate student in our group, to obtain further 

improvements in mass resolution. Following the completion of this work, they have 

developed a device providing 5 kDa mass resolution. Additional efforts are now in progress 

to develop superconducting devices, to implement readout by cavity optomechanics with 

estimated potential for mass resolution at the single-Dalton level. With the extensive 

engineering and documentation presented here to obtain robust delivery to NEMS devices, 

along with continued collaboration with Dr. Makarov and Professor Heck, collection of MS 

data with such next generation devices should prove straightforward. 

In Part II, we introduced two new theories for analyzing frequency-shift data. 

Chapter 4 develops a Taylor expansion approach that allows for direct extraction of mass 

moments of the adsorbed molecule from frequency-shift data. This theory is shown to extract 

the moments with increasing accuracy with smaller particles and was demonstrated using 

previously published measurements involving droplets deposited on AFM microcantilevers. 

This theory also greatly facilitated interpretation of the three-mode measurements of GroEL 

molecules as shown in Chapter 3. Limited signal to noise, along with a possible rotational 

inertia contribution of the molecules relative to the in-plane device motion, prevented 

extraction of size or shape information of single molecules. However, the new inertial 

imaging theory was shown to be very robust at distinguishing when two molecules landed at 

different locations within the measurement window. 

Chapter 5 introduced a new method to directly extract the mass density distribution 

of adsorbates using regularization. Maximum entropy regularization was found to provide a 

robust, closed-form, unique solution and accurate image reconstruction given a series of 
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frequency-shift data for a large number modes. The technique was also shown to work with 

small adsorbates on the order of 0.1% of the beam length, thus showing molecular shape 

information could be reconstructed that was independent of modeshape wavelength. 

Additionally, the accuracy of mass moments of the reconstructed density distributions were 

found to be similar to that of the expansion theory from Chapter 4 as well as previously 

published theory [3], with some improvement noticed for larger molecules (>10% of the size 

of the beam). The accuracy approached 100% in the limit of small molecules. 

The new theory and simulations shown in Chapter 5 were not usable with the GroEL 

data collected in Chapter 3 due to the poor signal to noise, but as the new instrumentation 

efforts discussed above come online, mass density reconstruction should become possible 

for single molecules. In this case, four modes could be used to determine whether each 

molecule has asymmetry. Five modes could be used to distinguish whether the molecule has 

one or two distinct molecular domains. Seven modes could be used to distinguish between 

one, two, or three domains. Such simulations provide reason for optimism for a 

transformative contribution of NEMS to the field of mass spectrometry. 
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A p p e n d i x  A  

LINEAR QUADRUPOLE TRANSMISSION 

The NEMS transfer quadrupoles are constructed using two pairs of circular rods, with 

the two pairs operated with a DC and RF voltage 𝑈 and 𝑉 added to or subtracted from an 

overall DC potential Φ0 (Figure 91a). Transmission of ions through these quadrupoles will 

occur for a range of m/z values based on the values of 𝑈, 𝑉, and the RF frequency 𝜔. The 

equation of motion for an ion entering a linear quadrupole is given by [1]: 

𝑑2𝑥

𝑑𝜏2
+ (𝑎𝑥 + 2𝑞𝑥 cos 2𝜏)𝑥 = 0

𝑑2𝑦

𝑑𝜏2
+ (𝑎𝑦 + 2𝑞𝑦 cos 2𝜏)𝑦 = 0

  ,                                              (A-1) 

where the dimensionless parameters 𝑎 and 𝑞 are related to ion m/z value, quadrupole rod 

spacing from the central axis 𝑟0, as well as 𝑈, 𝑉, and 𝜔: 

𝑎𝑥 = −𝑎𝑦 =
4𝑈

𝑟0
2𝜔2(𝑚 𝑧⁄ )

, 𝑞𝑥 = −𝑞𝑦 =
2𝑉

𝑟0
2𝜔2(𝑚 𝑧⁄ )

, 𝜏 =
𝜔𝑡

2
.              (A-2) 

Equations A-1 are Mathieu differential equations. The amplitude of oscillation is 

proportional to |𝑃(𝑎, 𝑞)−1|, where 𝑃(𝑎, 𝑞) is given by 

𝑃(𝑎, 𝑞) = −𝐶(𝑎, 𝑞, 0)𝑆̇(𝑎, 𝑞, 0),                                            (A-3) 

and 𝐶(𝑎, 𝑞, 𝜏) and 𝑆(𝑎, 𝑞, 𝜏) refer to the even and odd Mathieu functions, respectively [2]. 

Ion trajectory stability is necessary in both dimensions and can be roughly associated with 
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the quantity 𝑃(𝑎, 𝑞)𝑃(−𝑎, −𝑞). Larger values of this product correspond with smaller ion 

amplitudes in both dimensions, and the stability boundary can be found by setting  

𝑃(𝑎, 𝑞)𝑃(−𝑎, −𝑞) = 0. A contour plot of 𝑃(𝑎, 𝑞)𝑃(−𝑎, −𝑞) is shown in Figure 91b. Other 

stability regions with larger values of 𝑎 and 𝑞 exist, but would require much higher voltages 

for the ions of interest. 

From the figure, we see that stable ion trajectories can be obtained by setting the DC 

voltage 𝑈 to zero (𝑎 = 0), provided 0 < 𝑞 < 0.9, and in particular, peak transmission occurs 

at roughly 𝑞 = 0.7. The power supply is set to operate at 650 kHz by design and this 

frequency is not easily adjusted. The spacing between quadrupole rods and the central axis 

is given by 𝑟0 = 2.25 mm. These values can be used to find the optimal RF voltage for an 

ion with a given m/z. Sample values for common ions are given in Table 18. The maximum 

 
Figure 91. Linear quadrupole geometry and stability diagram. (A) A linear 

quadrupole can be constructed using two pairs of circular rods, energized with equal and 

opposite DC and RF voltages superimposed on an overall DC value. Adapted from [1]. 

(B) Contour plot of ion transmission. Ions will be transmitted if dimensionless values 𝑎 

and 𝑞 lie inside the outer contour. The figure is symmetric with respect to both the 𝑎 and 

𝑞 axes. 
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voltage for the power supply is 600 V, so that voltage must be used even if the optimal 

voltage is higher. 
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Table 18. Calculated RF voltage for optimal quadrupole transmission. RF voltage 

is calculated to achieve 𝑞 = 0.7 given the m/z value for each ion using Equation A-2. 

Ion m/z 
RF voltage for  

optimal transmission 

Calmix component (caffeine) 195 60V 

Myoglobin 2200 680V 

GroEL 11500 3.5 kV 
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A p p e n d i x  B  

MODE SHAPE CORRECTION FOR INERTIAL IMAGING 

Recall from Chapter 1 that the mode shapes are assumed to remain unchanged with 

each adsorbed molecule. This appendix calculates the effect that a particle with mass 

density 𝜇𝑎𝑑(𝑥) has on the NEMS resonator’s mode shapes in order to ascertain under what 

conditions that assumption remains valid. The new mode shapes can be calculated 

alongside the new resonance frequency using perturbation theory. This approach was taken 

in [1] with a point particle; here, the derivation is extended to an arbitrary mass density. 

Consider an Euler-Bernoulli beam (or cantilever) with mass density 𝜇0, Young’s 

modulus 𝐸, and second moment of area 𝐼. The equation of motion for the 𝑛th flexural mode 

is given by 

𝐸𝐼
𝑑4𝜙𝑛,0(𝑥)

𝑑𝑥4
− 𝜇0𝜔𝑛,0

2 𝜙𝑛,0(𝑥) = 0,                                       (B-1) 

where 𝜙𝑛,0(𝑥) and 𝜔𝑛,0 refer to the unperturbed modeshape and resonant frequency of the 

𝑛th mode. Upon adding a flat adsorbate with linear mass density 𝜖𝜇𝑎𝑑(𝑥), both the resonant 

frequency and the modeshape of the beam will change: 

𝐸𝐼
𝑑4𝜙𝑛(𝑥)

𝑑𝑥4
− (𝜇0 + 𝜖𝜇𝑎𝑑)𝜔𝑛

2𝜙𝑛(𝑥) = 0,                                   (B-2) 

where the mass density profile of the adsorbate has been expressed as a product of a 

dimensionless parameter 𝜖 that we assume to be small, and a function 𝜇𝑎𝑑(𝑥) describing 

the spatial variation of added mass. Written this way, we can express the new resonant 

frequency and modeshape as a perturbation series involving powers of 𝜖: 
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𝜔𝑛
2(𝑥) = 𝜔𝑛,0

2 + 𝜖𝜔𝑛,1
2 + 𝜖2𝜔𝑛,2 + 𝑂(𝜖3),                            (B-3) 

𝜙𝑛(𝑥) = 𝜙𝑛,0(𝑥) + 𝜖 ∑ 𝑐𝑛𝑚𝜙𝑚,0(𝑥)

∞

𝑚≠𝑛

+ 𝜖2 ∑ 𝑐𝑛𝑚
(2)

𝜙𝑚,0(𝑥)

∞

𝑚≠𝑛

+ 𝑂(𝜖3).     (B-4) 

Note that the correction to each modeshape only includes summations over other 

modeshapes (𝑚 ≠ 𝑛). This is because the self-corrective term 𝑚 = 𝑛 can be normalized 

out. To see this, note that we can instead write the full correction:  

𝜙𝑛(𝑥) = (1 + 𝜖𝑐𝑛𝑛 + 𝜖2𝑐𝑛𝑛
(2)

+ 𝑂(𝜖3)) 𝜙𝑛,0(𝑥) + 𝜖 ∑ 𝑐𝑛𝑚𝜙𝑚,0(𝑥)

∞

𝑚≠𝑛

                             

+ 𝜖2 ∑ 𝑐𝑛𝑚
(2)

𝜙𝑚,0(𝑥)

∞

𝑚≠𝑛

+ 𝑂(𝜖3).                                                                   (B-5) 

Inserting into equation B-2, we can divide through by (1 + 𝜖𝑐𝑛𝑛 + 𝜖2𝑐𝑛𝑛
(2)

+ 𝑂(𝜖3)) and 

absorb this factor into the other coefficients 𝑐𝑛𝑚, 𝑚 ≠ 𝑛. Substituting both perturbation 

series B-3 and B-4 into B-2 allows us to group together like powers of 𝜖. The first order 

equation yields 

𝐸𝐼 ∑ 𝑐𝑛𝑚

𝑑4𝜙𝑚,0

𝑑𝑥4

∞

𝑚≠𝑛

− 𝜇𝑎𝑑𝜔𝑛,0
2 𝜙𝑛,0 − 𝜇0𝜔𝑛,1

2 𝜙𝑛,0 − 𝜇0𝜔𝑛,0
2 ∑ 𝑐𝑛𝑚𝜙𝑚,0

∞

𝑚≠𝑛

= 0,          (B-6) 

which can be simplified by using the unperturbed equation B-1 to express the fourth order 

derivative of the modeshapes in terms of the modeshapes themselves: 

𝜇0 ∑ 𝑐𝑛𝑚(𝜔𝑚,0
2 − 𝜔𝑛,0

2 )𝜙𝑚,0

∞

𝑚≠𝑛

− (𝜇𝑎𝑑𝜔𝑛,0
2 − 𝜇0𝜔𝑛,1

2 )𝜙𝑛,0 = 0.                (B-7) 

To obtain the first order correction to the resonant frequency, we multiply this equation for 

the 𝑛th mode by 𝜙𝑛,0(𝑥) and integrate over the length of the beam. Due to the orthogonality 

of the modeshapes, terms involving ∫ 𝜙𝑚,0(𝑥)𝜙𝑛,0(𝑥)𝑑𝑥
𝐿

0
, 𝑚 ≠ 𝑛 vanish and we obtain:  
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𝜔𝑛,1
2 = −

𝜔𝑛,0
2

𝑀0
∫ 𝜇𝑎𝑑(𝑥)𝜙𝑛,0

2 (𝑥) 𝑑𝑥,
𝐿

0

                                   (B-8) 

where 𝑀0 = ∫ 𝜇0𝑑𝑥
𝐿

0
 is the total mass of the beam, and we have used the fact that the 

original modeshapes can be normalized such that ∫ 𝜙𝑛,0
2 (𝑥) 𝑑𝑥 = 1. Thus, to first order, 

we obtain the following frequency change induced by the analyte: 

𝜔𝑛
2

𝜔𝑛,0
2 − 1 = −

1

𝑀0
∫ 𝜖𝜇𝑎𝑑(𝑥)𝜙𝑛,0

2 (𝑥) 𝑑𝑥
𝐿

0

.                                   (B-9) 

The coefficients describing the first order correction to the modeshape, 𝑐𝑛𝑚, can be 

obtained by multiplying equation B-7 by 𝜙𝑚,0(𝑥) and integrating over the length of the 

beam: 

𝑐𝑛𝑚 =
𝜔𝑛,0

2

𝜔𝑚,0
2 − 𝜔𝑛,0

2

1

𝑀0
∫ 𝜇𝑎𝑑(𝑥)𝜙𝑚,0(𝑥)𝜙𝑛,0(𝑥) 𝑑𝑥

𝐿

0

.                         (B-10) 

Note that the more the resonance frequency for mode 𝑚 differs from mode 𝑛, the smaller 

the correction, and as 𝜔𝑚,0 → ∞, 𝑐𝑛𝑚 → 0. Thus, even though the full correction to the 

modeshape given by equation B-4 involves an infinite sum over all modes, in practice the 

corrections for a given mode 𝑛 due to modes 𝑚 ≫ 𝑛 have an increasingly negligible effect. 

The next correction to the resonant frequency induced by analyte adsorption can be 

obtained by substituting equations B-3 and B-4 into equation B-2 and grouping together 

powers of 𝜖2: 

𝐸𝐼 ∑ 𝑐𝑛𝑚
(2) 𝑑4𝜙𝑚,0

𝑑𝑥4

∞

𝑚≠𝑛

− 𝜇0𝜔𝑛,2
2 𝜙𝑛,0 − 𝜇0𝜔𝑛,1

2 ∑ 𝑐𝑛𝑚𝜙𝑚,0

∞

𝑚≠𝑛

                               

−𝜇0𝜔𝑛,0
2 ∑ 𝑐𝑛𝑚

(2)
𝜙𝑚,0

∞

𝑚≠𝑛

− 𝜇𝑎𝑑𝜔𝑛,1
2 𝜙𝑛,0 − 𝜇𝑎𝑑𝜔𝑛,0

2 ∑ 𝑐𝑛𝑚𝜙𝑚,0

∞

𝑚≠𝑛

= 0.       (B-11) 
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This equation can again be simplified by using the unperturbed equation B-1 to eliminate 

terms involving fourth order derivatives: 

𝜇0 ∑ 𝑐𝑛𝑚
(2)

(𝜔𝑚,0
2 − 𝜔𝑛,0

2 )𝜙𝑚,0

∞

𝑚≠𝑛

− 𝜇0𝜔𝑛,2
2 𝜙𝑛,0 − 𝜇0𝜔𝑛,1

2 ∑ 𝑐𝑛𝑚𝜙𝑚,0

∞

𝑚≠𝑛

                      

− 𝜇𝑎𝑑𝜔𝑛,1
2 𝜙𝑛,0 − 𝜇𝑎𝑑𝜔𝑛,0

2 ∑ 𝑐𝑛𝑚𝜙𝑚,0

∞

𝑚≠𝑛

= 0.                                        (B-12) 

Multiplying by 𝜙𝑛,0(𝑥) and integrating over the length of the beam: 

𝜔𝑛,2
2 = −

𝜔𝑛,1
2

𝑀0
∫ 𝜇𝑎𝑑(𝑥)𝜙𝑛,0

2 (𝑥) 𝑑𝑥
𝐿

0

                                                                                

−
𝜔𝑛,0

2

𝑀0
2 ∑

𝜔𝑛,0
2

𝜔𝑚,0
2 − 𝜔𝑛,0

2 (∫ 𝜇𝑎𝑑(𝑥)𝜙𝑚,0(𝑥)𝜙𝑛,0(𝑥) 𝑑𝑥
𝐿

0

)

2∞

𝑚≠𝑛

,               (B-13) 

from which we obtain the frequency change induced by the analyte: 

𝜔𝑛
2 − 𝜔𝑛,0

2

𝜔𝑛,0
2 = −

1

𝑀0
∫ 𝜖𝜇𝑎𝑑(𝑥)𝜙𝑛,0

2 (𝑥)𝑑𝑥
𝐿

0

+ (
1

𝑀0
)

2

(∫ 𝜖𝜇𝑎𝑑(𝑥)𝜙𝑛,0
2 (𝑥)𝑑𝑥

𝐿

0

)

2

             

− (
1

𝑀0
)

2

∑
𝜔𝑛,0

2

𝜔𝑚,0
2 − 𝜔𝑛,0

2 (∫ 𝜖𝜇𝑎𝑑(𝑥)𝜙𝑚,0(𝑥)𝜙𝑛,0(𝑥)𝑑𝑥
𝐿

0

)

2∞

𝑚≠𝑛

.         (B-14) 

For an analyte with significant spatial extents, we can estimate the relative contribution to 

the frequency change from the modeshape perturbation and the higher mass moments of 

the adsorbate. This can be done by performing a Taylor expansion of the squared 

modeshapes about the particle’s center of mass, similar to [2]: 

          ∫ 𝜖𝜇𝑎𝑑(𝑥)𝜙𝑛,0
2 (𝑥)𝑑𝑥

𝐿

0

 

= [𝜙𝑛,0
2 (𝑥̅) ∫ 𝜖𝜇𝑎𝑑(𝑥)𝑑𝑥

𝐿

0

 +
𝜕2𝜙𝑛,0

2

𝜕𝑥2
|

𝑥̅

∫ 𝜖𝜇𝑎𝑑(𝑥)
(𝑥 − 𝑥̅)2

2
𝑑𝑥

𝐿

0

+ ⋯ ].     (B-15) 
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Note that the integral involving the first moment vanishes above: 

∫ 𝜖𝜇𝑎𝑑(𝑥)(𝑥 − 𝑥̅)𝑑𝑥

𝐿

0

= 0 

because we have defined 

𝑥̅ =
∫ 𝜖𝜇𝑎𝑑(𝑥)𝑥𝑑𝑥

𝐿

0

∫ 𝜖𝜇𝑎𝑑(𝑥)𝑑𝑥
𝐿

0

 

to be the center of mass of the particle. The integral can be represented as follows: 

∫ 𝜖𝜇𝑎𝑑(𝑥)𝜙𝑛,0
2 (𝑥)𝑑𝑥

𝐿

0

= 𝑚𝑎𝑑 [𝜙𝑛,0
2 (𝑥̅) +

𝜕2𝜙𝑛,0
2

𝜕𝑥2
|

𝑥̅

〈𝑥2〉 + ⋯ ],                    (B-16) 

with each higher order moment having an increasingly negligible effect. Substituting the 

first two terms into equation B-14, we obtain 

        
𝜔𝑛

2 − 𝜔𝑛,0
2

𝜔𝑛,0
2 = −

𝑚𝑎𝑑

𝑀0
𝜙𝑛,0

2 (𝑥̅) −
1

2

𝑚𝑎𝑑

𝑀0

𝜕2𝜙𝑛,0
2

𝜕𝑥2
|

𝑥̅

〈𝑥2〉 + (
𝑚𝑎𝑑

𝑀0
)

2

𝜙𝑛,0
4 (𝑥̅)

− (
𝑚𝑎𝑑

𝑀0
)

2

∑
𝜔𝑛,0

2

𝜔𝑚,0
2 − 𝜔𝑛,0

2 𝜙𝑚,0
2 (𝑥̅)𝜙𝑛,0

2 (𝑥̅)

∞

𝑚≠𝑛

+ ⋯                                (B-17) 

Comparing with the nonlinear fit formula proposed in [2] to estimate the variance of a 

distribution from a set of frequency shifts: 

𝜔𝑛
2 − 𝜔𝑛,0

2

𝜔𝑛,0
2 = −

𝑚𝑎𝑑

𝑀0
[𝜙𝑛,0

2 (𝑥̅) +
1

2

𝜕2𝜙𝑛,0
2

𝜕𝑥2
|

𝑥̅

〈𝑥2〉 + ⋯ ].                    (B-18) 

We see that this fit is likely to be inaccurate without accounting for the higher-order 

corrections to the frequency shift formula obtained via perturbation analysis unless  

𝑚𝑎𝑑

𝑀0
𝜙𝑛,0

4 (𝑥̅) ≪
1

2

𝜕2𝜙𝑛,0
2

𝜕𝑥2
|

𝑥̅

〈𝑥2〉.                                       (B-19) 
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Since each derivative of the squared modeshape introduces a factor of 𝐿 (the length of the 

beam), the nonlinear fit formula via B-18 used to determine the variance is likely to yield 

inaccurate results unless 

𝑚𝑎𝑑

〈𝑥2〉
≪

𝑀0

2𝐿2
.                                                     (B-20) 

In other words, the linear mass density of the particle must be substantially less than half 

the beam’s linear mass density. Accounting for height, we obtain (approximately): 

𝜌𝑎𝑑ℎ𝑎𝑑 ≪ 𝜌0ℎ.                                                     (B-21) 

A biomolecule has a density close to water (1 g/cm3), which is of the same order of 

magnitude as silicon at 2.32 g/cm3. We see that accurately measuring a molecule’s variance 

(size) will be possible provided the adsorbate is not too tall compared with the beam. For 

the measurements used in this thesis, ℎ𝑎𝑑 ≈ 15 nm and ℎ =160 nm, so there is no issue. 

However, if future studies use ultra-thin devices or much larger molecules relative to the 

device, Equation B-17 would be needed to accurately calculate the adsorbate’s mass and 

variance. 
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