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ABSTRACT

My various projects in graduate school have centered around a common theme: har-
nessing relatively well-understood phases of matter and combining them to create
exotic physics. They also involve Majoranas, or more accurately, defects that bind
Majorana zero modes and are the centerpiece for topological quantum computation.
We exploit and enrich this Majorana zero mode by employing topological super-
conductors, time crystals, and quantum dots and combining them together. Our first
project involved joining Majorana nanowires and quantum dots to simulate the SYK
model, a zero-dimensional strongly interacting phasewith connections to black holes
and holography. We follow by explaining how to combine spontaneous symmetry-
breaking with topological superconductivity to recover parafermion physics in one
dimension. We explain an exact mapping that relates fermions to parafermions,
illustrating a deep connection between different one-dimensional phases of matter.
We finally show that enhancing the topological superconductor with a time crystal,
a phase of matter that spontaneously breaks time-translation symmetry, creates an
anomalous zero mode that displays 4T periodicity in the Floquet drive. By combin-
ing these different phases in judiciouswayswe achieve exotic physics unattainable by
the constituent parts. Our work thus illustrates profitable directions for harnessing
Majorana zero modes to study the physics of exotic matter.
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catalyzes the topological phase. Finally, the last two lines list the
transformations for Γ1,2. The factor p = iγ1γ2 is required to preserve
anticommutation between Γj and γ j . . . . . . . . . . . . . . . . . . 56

36 Symmetry transformations for the SPT edge degrees of freedom in the
clock realization (top) and spinful-fermion realization (bottom). Here
j = 1 and 2 respectively correspond to the left and right boundaries. 67
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C h a p t e r 1

INTRODUCTION

Standard Model Condensed Matter System
ground state vacuum ∼ 1023 electrons
excitations elementary particles quasiparticles allowed
exchange bosonic/fermionic anyonic allowed
dimensions 3 + 1D lower dimensions allowed

Table 11: A short comparison between the standard model and a typical condensed
matter system.

The elementary particles of the standard model can be classified by their behavior
under exchange. If two identical bosons are exchanged with one another, then the
wavefunction of the system remains the same, while if two identical fermions are
interchanged the wavefunction accumulates a global minus sign. This theorem is
fundamental and all particles can be classified in this manner; the two options of plus
and minus one are intimately tied to the fact that all closed paths in three dimensions
can be deformed around the particles under exchange and into a point.

In condensed matter physics, the situtation is far richer. Even though our Hamiltoni-
ans are still typically built from electrons, the ground state of the system is no longer
the vacuum. This allows for the existence of quasiparticles—emergent degrees of
freedom that cannot exist outside the condensed matter system. A typical example
is a phonon in a metal, a quanta of vibration. While for all intents and purposes the
phonon behaves as a bosonic particle, it cannot be "pulled out" of the metal and into
the vacuum, as phonons require a lattice to vibrate.

These quasiparticles can thus behave in manners that standard particles cannot, and
their exotic physics can be exploited to our ends. In two dimensions one escapes
the restriction that exchange accumulates only a sign; quasiparticles with richer
exchange are termed anyons [40, 63, 64]. Examples of these particles are the
collective excitations that emerge in the Quantum Hall effect [46, 52, 53, 62], bound
to vortices in a p+ip superconductor [31], in models like the toric code or Kitaev
honeycomb [36, 38], or even in designer heterostructures [15, 18, 41, 45, 61] that
combine these phases together, among many, many other suggestions [5, 6].
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Figure 11: Anyonic exchange and fusion. Abelian anyons simple accumulate a
phase, while non-Abelian anyons rotate the ground state with a unitary transforma-
tion. WhenAbelian anyons are fused, their result is deterministic; when non-Abelian
anyons are fused, there are multiple possible outcomes.

These anyons are further classified into two types, Abelian and non-Abelian, which
are intimately related to how they behave under exchange. Particle exchange in
two dimensions is characterized by the braid group, and the representations of this
group distinguish the different types of anyons [27, 66]. Abelian anyons accumulate a
global phase when exchanged, yet in some sense this is still ‘uninteresting’ as global
phases cannot be measured and generally do not affect measurement outcomes.
Non-Abelian anyons, on the other hand, encode a non-local ground state degeneracy
in the condensed matter system. Exhange of two non-Abelian anyons implements
a unitary rotation of the ground state. This has led to the idea of implementing
anyons for topological quantum computation: an adiabatic exchange of these anyons
implements a protected unitary gate on the ground state subspace [23, 38, 48].

1.1 Topological quantum computation
Though anyons are exciting in their own right (with their bizarre physics and ex-
perimental signaures), by far and large their greatest application is in quantum
computation. Simulating quantum systems with classical computers comes with
immense difficulty; the size of the Hilbert space grows exponentially in system size
and performing quantum operations involves matrix multiplication on that Hilbert
space. While many clever simplifications exist for Hamiltonians that are local or
obey some physical property that makes them tractable, a generic quantum evolu-
tion is computationally intractable on a classical computer. However, one may turn
this problem on its head, instead proposing a quantum computer that manipulates
a quantum system to solve problems that are expensive for a classical computer.
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Unlike standard computers, which use binary arithmetic to compute, a quantum
computer will involve unitary operations on a Hilbert space, thus opening a new
paradigm of probabilistic algorithms. There are already incredible breakthroughs
in the realm of quantum algorithms, most notably Shor’s algorithm, a method of
factoring prime numbers that far surpasses any known classical algorithm [58].

Manipulating a quantum system is fraught with difficulty. Even ignoring the precise
control one must have over the quantum mechanical degrees of freedom, quantum
systems by their nature are sensitive to even the smallest perturbation. Key to
the power of quantum computers is the ability to maintain coherence of quantum
states. Coupling to the environment will inevitably destroy our quantum super-
positions. There have been several avenues suggested to solve the problem: one
prominent technique is quantum error correction, where in essence the quantum
system is redundantly coded to protect against environmental perturbations [59].
If the protection is acceptable to a certain degree, then quantum computation is
possible.

The other technique, topological quantum computation, exploits the striking proper-
ties of non-Abelian anyons [38]. As mentioned earlier, well-separated non-Abelian
anyons encode a degenerate ground state; this is the Hilbert space employed for
quantum computation. Unlike systems with fermionic or bosonic zero modes, non-
Abelian anyons cannot occur outside the system and cannot couple easily with
environmental perturbations. If the anyons are separated in space by macroscopic
distance L these perturbations are suppressed in system size. The system is also
gapped, meaning thermal activations are suppressed in temperature. Thus, con-
densed matter systems hosting non-Abelian anyons are a promising avenue for
fault-tolerant quantum computation.

Braiding
The mathematical theory behind non-Abelian anyons is incredibly rich [1, 9, 19,
20, 22, 25, 38, 42, 64]. Here we will review two key properties that will occur in
later chapters: braiding and fusion. The exchange of two anyons (or any identical
particle in general) implements a unitary rotation of the ground state subspace. These
unitary operators form a representation of the braid group, as the worldlines in two
dimensions form the strings that are braided around each other. It is these operations
that we use to implement the quantum gates for computing. Depending on the type
of non-Abelian anyon, one will have access to certain unitaries for gates. If these
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gates can approximate any unitary operation with sufficient applications, then the
gate set is universal. The braiding operation is also insensitive to local perturbations.
If the anyons are kept far apart during the evolution, the braid operation depends
only on the topology of the worldlines of the anyons and not the minutiae of the
process.

Being able to braid non-Abelian anyons requires the ability to capture anyons and
manipulate their locations. One of the most promising avenues concerns one-
dimensional topological superconductors, which can host Majorana zero modes
at their ends [2, 37, 43, 49, 55]. These zero modes can be braided by adjusting
voltages and couplings in one-dimensional wire networks [4, 17, 30, 56], or via
measurement-based protocols [8, 32].

Fusion
To implement quantum readout, anyons can also be brought together, or ‘fused’. By
bringing two anyons close together in position, we allow for perturbations that mix
the anyons, lifting the ground state degeneracy and allowing us to collapse onto a
quantum state. If the anyon is Abelian, there is only one result of fusion. If the
anyon is non-Abelian, there are multiple outcomes of this process. The Majorana
zero mode captures an Ising-type anyon, two of which can fuse into two possible
channels [47].

1.2 Majorana zero modes
Majorana zero modes have been found to capture non-Abelian statistics and have
thus received immense amount of attention in the literature, especially as a vehicle
for quantum computation [3, 7, 39, 54, 60]. Their greatest advantage lies in that
Majorana fermions can be captured in one-dimensional, non-interacting fermionic
Hamiltonians (though superconductivity is necessary). While it may seem odd
to imagine ‘braiding’ in one dimension, the Majoranas in our wires are not true
anyons in the sense of quasiparticle excitations. It is more accurate to describe
them as defects that bind zero modes, and ‘braiding’ is an adiabatic evolution of the
Hamiltonian in parameter space. The non-Abelian defects in modern literature have
similar flavors: some one-dimensional system (it could be a wire, or the edge of a
topological insulator, or a trench carved in a quantum Hall fluid) is gapped with two
different mechanisms on either side of a domain wall (for example, backscattering
and pairing) [15, 18, 41, 50, 61, 68]. At the domain wall the gap must close and this
‘zero mode’ is what captures the non-Abelian statistics. Majorana nanowires are
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especially alluring as one-dimensional systems are more tractable both theoretically
and experimentally. Even though Ising anyons cannot achieve universal quantum
computation alone via braiding and fusion, they can be supplemented with non-
protected operations (such as magic-state injection) that can offer a high degree of
fidelity at the cost of some overhead, or other techniques [10–13, 24, 48].

Algebra
Fermion creation operators may be decomposed as

c j =
1
2
(γ2 j + iγ2 j−1) (1.1)

γ2 j−1 = −i(c j − c†j ) (1.2)

γ2 j = c j + c†j . (1.3)

These newMajorana operators are self-Hermitian, anticommute, and square to unity:

{γ j, γk} = 2δ j k, j , k (1.4)

γ j = γ
†

j . (1.5)

A single Dirac fermion is equivalent to twoMajoranas; the Fock space they generate
is identical. An example ofwhereMajorana fermions can emerge in two dimensional
systems is in a p+ip superconductor, where Majorana zero modes are bound to
vortices [31]. Pairs of these fermions may be grouped together to create a fermionic
description of the low-energy Hilbert space.

Nanowire setups
In this section, we will detail schemes to realize Majorana zero modes in nanowire
geometries. The simplest model that realizes Majorana zero modes in a wire is the
Kitaev chain, a one-dimensional chain of spinless fermions [37]. The Hamiltonian
reads

H =
L−1∑
j=1
−tc†j c j+1 − ∆c jc j+1 + H.c. − µc†j c j, (1.6)

where hopping and pairing are supplemented by p-wave pairing. The fermions are
spinless. In the limit where t = ∆, µ = 0, the Hamiltonian becomes particularly
simple:

H =
L−1∑
j=1
−itγ2 jγ2 j+1, (1.7)
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where γ1, γ2L do not appear in the Hamiltonian and thus are zero modes. As the
two Majorana zero modes combine into a Dirac fermion (ψ = 1

2 (γ1 + iγ2L)), there
is a two-fold ground state degeneracy, and this cannot be lifted without hybridizing
the Majoranas separated by length L. If we tune slightly away from this perfect
limit the Majorana modes still persist, but their wavefunctions will bleed into the
interior of the wire. The zero modes will commute with the Hamiltonian up to
an exponentially suppressed correction. Tuning the parameters greatly will push
the system through a topological phase transition, turning the system into a trivial
insulator and removing the Majorana zero modes.

Despite the simple form of the Hamiltonian it is difficult to realize in experiment.
The Kitaev model requires spinless fermions c and a special pairing mechanism
that is not very natural. Great progress was made when it was realized that the
p-wave pairing could be replaced by coupling a spin-orbit coupled spinful nanowire
system to an s-wave superconductor [2, 43, 49, 55]. A wire is endowed with spin
orbit coupling, which shifts the spin up and spin down bands to the left and right
in momentum space. The chemical potential is dropped in the middle of the wire,
yielding four low-energy fermionic movers; this is reduced to two by gapping out
the interior modes at momentum k = 0 pair via a Zeeman coupling to a magnetic
field. The remaining modes are gapped with an s-wave superconductor, yielding
Majorana modes at the ends. The Hamiltonian reads

H =
∫

x
ψ†

(
−
∂2

x

2m
− µ − hσx − iασy∂x

)
ψ + ∆(ψ↑ψ↓ + H.c.), (1.8)

and we will revisit this Hamiltonian in future parts of this thesis.

Braiding and Fusion
Braiding and fusion take on slightly different interpretations in nanowire networks:
the wire Hamiltonians are subjected to an adiabatic cycle which rotates the ground
state while mapping the Hamiltonian back to itself. A simple example of such a
cycle would be endowing the superconductor with phase ϕ and winding the phase
from 0 to 2π. The Kitaev chain Hamiltonian with superconducting phase reads

H =
∑

j

−tc†j c j+1 − ∆eiϕc jc j+1 + H.c. − µc†j c j, (1.9)
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and the superconducting phase can be gauged away by a redefinition of c:

c→ e−iϕ/2c (1.10)

γ1 = −i(eiϕ/2c1 − e−iϕ/2c†1) (1.11)

γ2L = eiϕ/2cL + e−iϕ/2c†L (1.12)

and it becomes clear that the Majorana modes accumulate a minus sign after one
evolution, though the Hamiltonian remains the same [3].

A braiding protocol involves shuttling zero modes around each other, sometimes
using special wire network geometries like T-junctions [4, 17, 26, 30, 56]. We
can, however, argue the form of the braid matrix without appealing to microscopic
calculations. Two Majorana modes γ1, γ2 will combine to form a Dirac fermion ψ,
which can be occupied or unoccupied. However, since no other Majorana modes
are involved in braiding γ1 and γ2, fermion parity must be conserved. Also, the
self-Hermitian square-to-one properties of the Majorana modes greatly constrains
their form after braiding. This restricts the braid operation to be (up to an overall
sign)

γ1 → γ2 (1.13)

γ2 → −γ1. (1.14)

Two of these braids yields the same result as winding the phase by 2π.

Fusion is also straightforward: we can shrink the topological regions and allow two
zero modes to hybridize:

Hpert = −thybiγ1γ2, (1.15)

which splits the states in energy according to whether ψ is occupied or unoccupied.
Hence, we have a simple mechanism for readout of Majorana zero modes.

Fractional Josephson effect
One key signature of the Majorana zero mode is its effect on Josephson junctions
[37]. In a conventional Josephson junction, the current between the two supercon-
ductors is 2π periodic in the phase difference. In a topological Josephson junction,
two topological superconductors are allowed to contact and the two Majorana zero
modes at the junction are allowed to hybridize. There are thus two bound states
at the junction, corresponding to an occupied fermion or unoccupied. If the two
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Majorana modes are denoted as γ2, γ3, then the occupation of ψM =
1
2 (γ2 + iγ3)

dictates the energy of the system.

However, as the phase difference is varied by 2π, theMajorana mode γ3 → −γ3, and
thus the fermion ψM → ψ†M . Physically, this means the occupation of the junction
switches under a 2π evolution, that is, a fermion is ‘pumped’ to the outer edge.
Thus, even though the Hamiltonian is 2π periodic, it takes a 4π evolution, a double
winding, for the ground state to map back into itself.

1.3 This Thesis
In this thesis we recount three of our research projects, all of which involve exploiting
the Majorana zero mode in some fashion to achieve even richer physics. All of our
setups are heterostructures built from tabletop condensed matter systems. We begin
by demonstrating how to recreate the SYK model out of Majorana nanowires. The
SYK model is a zero-dimensional, strongly interacting Hamiltonian whose physics
relates to those of black holes and is thus of immense interest to high-energy theorists
[35, 44]. We then proceed to illustrate an exact mapping between parafermions, non-
Abelian anyons that generalize the Majorana mode, and Majoranas intertwined with
symmetry breaking. We propose simple models that capture the physics of this new
phase and the implications of the enhancement on Majorana braiding and fusion.
Our results link togethermany different types of one-dimensional phases, illustrating
deep relations between, for example, the TRITOPS phase [14, 16, 28, 29, 33, 51,
69] and other SPT’s. We finally promote symmetry-breaking to time-translation
breaking by harnessing the physics of time crystals [21, 34, 57, 65, 67], creating
a new type of anomalous Majorana zero mode that exhibits previously unforetold
quadrupled periodicity in the Floquet drive.
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C h a p t e r 2

APPROXIMATING THE SACHDEV-YE-KITAEV MODEL WITH
MAJORANA NANOWIRES

2.1 Introduction
Majorana fermions provide building blocks for many novel phenomena. As one
notable example, Majorana-fermion zero modes [38, 53] capture the essence of
non-Abelian statistics and topological quantum computation [39, 47], and corre-
spondingly now form the centerpiece of a vibrant experimental effort [1, 11, 14,
16, 17, 20, 31, 41, 42, 45, 46, 62]. More recently, randomly interacting Ma-
jorana fermions governed by the ‘Sachdev-Ye-Kitaev (SYK) model’ [36, 44, 55]
were shown to exhibit sharp connections to chaos, quantum-information scram-
bling, and black holes—naturally igniting broad interdisciplinary activity (see, e.g.,
[4, 8, 12, 13, 15, 21–24, 27, 29, 32–35, 40, 49, 51, 61, 63]). The goal of this
paper is to exploit hardware components of a Majorana-based topological quantum
computer for a tabletop implementation of the SYK model, thus uniting these very
different topics.

The SYK Hamiltonian reads

HSYK =
∑

1≤i< j<k<l≤N

Ji j klγiγ jγkγl, (2.1)

where γi=1,...,N denote Majorana fermions with ‘all-to-all’, Gaussian-distributed
random couplings Ji j kl satisfying

〈Ji j kl〉 = 0, 〈Ji j kl Ji′ j ′k ′l ′〉 = δi,i′δ j, j ′δk,k ′δl,l ′
3!J̄2

N3 . (2.2)

At large N the model is solvable and exhibits rich behavior. Most remarkably,
for temperatures satisfying J̄/N � T � J̄ the SYK model enjoys approximate
conformal symmetry and, similar to black holes, is maximally chaotic as diagnosed
by out-of-time-ordered correlators. These properties are expected for a holographic
dual to quantum gravity, and there has been much interest in the corresponding bulk
theory [28, 33].

Laboratory realizations of Eq. (2.1) face intertwined hurdles: First, hybridizing
Majorana fermions naively yields bilinears of the form iMj kγ jγk as the dominant
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couplings, yet these are absent from the Hamiltonian. Second, generating all-to-all
couplings requires abandoning locality for the Majorana fermions. And finally,
the host platform must carry sufficient disorder to at least approximate indepen-
dence among the large number of random Ji j kl’s. References [13, 49] proposed
SYK-model platforms using cold atoms and topological insulators, respectively,
while Ref. [22] suggested a qubit simulation of the model capable of probing
correlations. We instead envision a realization [Fig. 21(a)] that exploits Majo-
rana zero modes germinated in proximitized semiconductor nanowires [43, 48]—a
leading experimental architecture for topological quantum information applications
[1, 11, 14, 16, 20, 31, 41, 42, 45].

More precisely, we explore an array of such wires interfaced with a disordered quan-
tum dot that mediates coupling among the constituent Majorana modes and random-
izes the corresponding zero-mode wavefunctions. Unwanted Majorana bilinears are
suppressed by an approximate time-reversal symmetry [59] that, importantly, is
preserved by the dominant sources of disorder expected in the dot. Interactions
intrinsic to the dot instead generate the desired all-to-all four-Majorana couplings,
thus approximating the SYK model up to corrections that we quantify (and which
appear generic for any physical realization). We discuss several future directions
that our approach spotlights, including tunneling experiments that provide a natural
first probe of SYK physics.

2.2 Setup
We begin with the Hamiltonian for a clean, single-subband proximitized wire:

Hwire =

∫
x

[
ψ†

(
−
∂2

x

2m
− µ − hσx − iασy∂x

)
ψ + ∆(ψ↑ψ↓ + H.c.) + · · ·

]
, (2.3)

which features Zeeman coupling h generated by a magnetic field B, spin-orbit
coupling α, and proximity-induced pairing ∆. Together these ingredients allow the
formation of Majorana zero modes γ, γ̃ at the wire ends over a chemical potential
window centered around µ = 0 [43, 48]. Crucially, the terms explicitly displayed
above respect a time-reversal transformation T that sends ψ → ψ, i → −i and thus
satisfies T 2 = +1 [59]. Additional couplings denoted by the ellipsis can in general
violate T since it is not a true microscopic symmetry. Nevertheless, we will assume
that such perturbations are negligible, which is not unreasonable at low densities
appropriate for the topological regime. (See Discussion for further comments.)
Under the approximate T symmetry the Majorana-zero-mode operators transform
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(a)

(b)
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Majorana 
zero modes

Majorana 
zero modes

Dot 
levels

B

γ̃iγi

λ

λδεtyp

J

(c)

ε

Figure 21: (a) Device that approximates the SYK model using topological wires
interfaced with a 2D quantum dot. The dot mediates disorder and four-fermion
interactions amongMajoranamodes γ1,...,N inherited from thewires, whileMajorana
bilinears are suppressed by an approximate time-reversal symmetry. (b) Energy
levels pre-hybridization. The dot-Majorana hybridization energyλ is large compared
to Nδεtyp, where N is the number ofMajoranamodes and δεtyp is the typical dot level
spacing; this maximizes leakage into the dot. (c) Energy levels post-hybridization.
The N absorbed Majorana modes enhance the energy ε to the next excited dot state
via level repulsion; four-Majorana interactions occur on a scale J < ε .

as γ → γ and γ̃ → −γ̃. The opposite signs acquired by γ, γ̃ ensure thatT commutes
with the ground-state fermion parity P = iγγ̃, as it must.

Consider now N topological wires ‘plugged into’ a 2D disordered quantum dot
[Fig. 21(a)], such that the Majoranas γ1,...,N that are even under T hybridize with
the dot while their partners γ̃1,...,N decouple completely. The full architecture con-
tinues to approximately preserve T provided (i) the dot carries negligible spin-orbit
coupling and (ii) the B field orients in the plane of the dot so that orbital effects are
absent. Here the setup falls into class BDI, which in the free-fermion limit admits an
integer topological invariant ν ∈ Z [37, 54] that counts the number of Majorana zero
modes at each end; interactions collapse the classification to Z8 [18, 19]. In essence
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our device leverages nanowires to construct a topological phase with a free-fermion
invariant ν = N: All bilinear couplings iMj kγ jγk are forbidden by T and thus
cannot be generated by the dot under the conditions specified above. We exploit
the resulting N Majorana zero modes to simulate SYK-model physics mediated by
disorder and interactions native to the dot, similar in spirit to Refs. [49, 63].

Figures 21(b) and (c) illustrate the relevant parameter regime. The dot-Majorana
hybridization energy λ satisfies λ � Nδεtyp, where δεtyp denotes the typical dot
level spacing. This criterion enables the dot to absorb a substantial fraction of
all N Majorana zero modes as shown below. The dot’s disordered environment
then efficiently ‘scrambles’ the zero-mode wavefunctions, though we assume that
their localization length ξ exceeds the dot size L. More quantitatively, we take
the mean-free path `m f p � L to maximize randomness and the dimensionless
conductance g = kF`m f p > 1 such that L < ξ. Turning on four-fermion interactions
couples the disordered Majorana modes with typical Ji j kl’s that are smaller than the
energy ε to the next excited state (which as we will see is enhanced by level repulsion
compared to δεtyp). This separation of scales allows us to first analyze the disordered
wavefunctions in the non-interacting limit and then explore interactions projected
onto the zero-mode subspace. We next carry out this program using random-matrix
theory, which is expected to apply in the above regime [2, 5].

2.3 Random-matrix-theory analysis
We model the dot as a 2D lattice composed of Ndot � N sites hosting fermions
ca=1,...,Ndot 1. In terms of physical dot parameters we have Ndot ∼ (L/`m f p)

2— that
is, the fermions represent degrees of freedom coarse-grained on a length scale of
order the mean-free path. The Hamiltonian governing the dot-Majorana system is
H = H0 + Hint , with H0 and Hint the free and interacting pieces, respectively. We
employ a Majorana basis and write ca = (ηa + iη̃a)/2, where ηa is even under T
while η̃a is odd (similarly to γi, γ̃i). In terms of

Γ = [η1 · · · ηNdot ; γ1 · · · γN ]
T, Γ̃ = [η̃1 · · · η̃Ndot ]

T, (2.4)

H0 takes the form

H0 =
i
4

[
ΓT Γ̃T

] [
0 M

−MT 0

] [
Γ

Γ̃

]
. (2.5)

1We assume spinless fermions for simplicity; spin can be introduced trivially since we impose
T 2 = 1 symmetry.
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Time-reversal T fixes the zeros above but allows for a general real-valued (Ndot +

N) × Ndot-dimensional matrix M . (The matrix is not square since we discarded the
γ̃i modes that trivially decouple.) One can perform a singular-value decomposition
of M by writing Γ = OΓ′ and Γ̃ = ÕΓ̃′. Here O, Õ denote orthogonal matrices
consisting of singular vectors, i.e., the matrixΛ ≡ OT MÕ only has non-zero entries
along the diagonal. Writing Γ′ = [η′1 · · · η

′
Ndot

; γ′1 · · · γ
′
N ]

T and similarly for Γ̃′, the
Hamiltonian becomes

H0 =
i
2

Ndot∑
a=1

εaη
′
aη̃
′
a, (2.6)

where εa ≡ Λaa are the non-zero dot energies. Most importantly, γ′i=1,...,N drop out
and form the modified N Majorana zero modes guaranteed by T symmetry.

We are interested in statistical properties of the associated Majorana wavefunctions
in the presence of strong randomness. To make analytic progress we assume (for
now) that all elements of M in Eq. (3.40) are independent, Gaussian-distributed
random variables with zero mean and the same variance, corresponding to the
chiral orthogonal ensemble [57, 60]. This form permits Cooper pairing of dot
fermions—an inessential detail for our purposes—and also does not enforce the
strong-hybridization criterion λ � Nδεtyp. We will see that the Majorana wave-
functions nevertheless live almost entirely in the dot as appropriate for the latter
regime.

The probability density for such a random matrix M is [6] P(M), which is pro-
portional to exp(− π2

8Ndotδε
2
typ
Tr(MT M)). Because P(M) is invariant under M →

OT MÕ, the singular-vector matrices O, Õ are uniformly distributed over the spaces
O(Ndot + N) and O(Ndot), respectively. In particular, the Majorana wavefunctions
φi corresponding to γ′i are the final N columns of a random element of O(Ndot +N).
For large Ndot + N the distribution of wavefunction components is asymptotically
Gaussian [5, 30]:

〈φi,I〉 = 0, 〈φi,Iφ j,J〉 =
δi, jδI,J

Ndot + N
≈
δi, jδI,J

Ndot
. (2.7)

Summing φ2
i,I over the dot sites thus gives unity up to corrections of order N/Ndot ,

i.e., the dot swallows the Majorana modes as claimed.

Once absorbed by the dot, the N Majorana zero modes repel the nearby energy
levels. Random matrix theory allows us to estimate the energy ε to the first excited
dot state. References [3, 56] show that the smallest eigenvalue for theWishart matrix
MT M approaches (

√
a−
√

b)2v, where M is an a× b matrix with variance v for each
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element. The energy ε is the square root of this eigenvalue. For our matrix M we
thus obtain

ε ≈
1
π

Nδεtyp. (2.8)

The enhancement compared to δεtyp [sketched in Fig. 21(c)] isolates the N Majorana
modes from adjacent levels, justifying projection onto the zero-energy subspace.

Let us now examine a general T -invariant four-fermion interaction among dot
fermions, Hint =

∑
abcd Uabcdc†ac†bcccd . Projection follows from ca →

1
2
∑

i φi,aγ
′
i ,

which yields

H →
∑

1≤i< j<k<l≤N

Ji j klγ
′
iγ
′
jγ
′
kγ
′
l (2.9)

Ji j kl =
1
24

∑
abcd

Uabcd

∑
p

spφp(i)aφp( j)bφp(k)cφp(l)d . (2.10)

The p sum runs over permutations of i j kl, and sp = ±1 is the parity of permutation
p. Notice that only the part of Uabcd that is asymmetric under swapping any pair
of indices contributes to Ji j kl . For density-density interactions among the coarse-
grained fermions—where Uabcd ∝ δadδbc—all Ji j kl consequently vanish. This in
fact is a virtue that underlies compatibility of SYK physics with randomness in
our setup. Density-density interactions would project nontrivially only if potential
disorder δµac†aca did as well, but the latter would generate unwanted Majorana
bilinears that tend to spoil SYKproperties. Other physical couplings such as current-
current interactions produce non-zero Ji j kl . We stress, however, that microscopic
density-density interactions will generically contribute to Ji j kl after coarse graining.

Emulating the SYK model requires that the Ji j kl’s encode all-to-all Majorana in-
teractions and form independent random variables whose correlations obey Wick’s
theorem. Using Eq. (2.7) one reproduces Eq. (2.2) with

J̄2 =
3N3

8N4
dot

∑
abcd

(Uas
abcd)

2 ∼
N3

Nα
dot
. (2.11)

Here Uas
abcd denotes the antisymmetric part of Uabcd . The exponent α on the right

side is interaction-dependent. An (unphysical) non-local interaction with (Uas
abcd)

2 =

constant yields α = 0, while a localUas
abcd with support only for bcd ‘near’ a instead

yields α = 3.

Equation (2.11) implies all-to-all coupling but does not guarantee independence of
the Ji j kl’s. Since there are

(N
4
)
∼ N4 such couplings and N × Ndot independent
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Figure 22: (a) Average absorption of Majorana wavefunctions into the dot versus
the hybridization strength λ with N = 16 zero modes. Inset: probability density
for a Majorana wavefunction swallowed and randomized by the dot of size 51 × 51.
(b) Enhanced level repulsion of the first excited dot state ε by N absorbed Majorana
modes; cf. Figs. 21(b) and (c). (c) Histogram of Ji j kl couplings obtained from local
current-current interactions on a dot of size 21 × 21, together with a Gaussian fit
(solid line). (d) Scaling of the variance ∝ J̄2 of these couplings versus Ndot .

Majorana-wavefunction components in the dot, a necessary condition for the latter
property is

Ndot & N3. (2.12)

Corrections to Wick’s theorem persist even in this regime, however. For example,
Eq. (2.7) yields

〈Ji j kl JklmnJi jmn〉 ∝
1

N6
dot

∑
abcde f

Uas
abcdUas

cde f U
as
abe f ∼

1
N β
dot

,

(2.13)

whereas in the SYK model such correlations vanish. (Note that our system still
preserves the statistical SO(N) ‘flavor’ symmetry corresponding to rotations among
the Majorana fermions that is present in the SYK model.) A local interaction
implies β = 5; Eq. (2.13) then decays faster with Ndot compared with 〈J2

i j kl〉
3/2. In

this sense the Ji j kl’s asymptotically form independent Gaussian random variables as
in Ref. [13]. Corrections toWick’s theorem do nevertheless introduce a proliferation
of new Feynman diagrams that may qualitatively alter SYK-model physics over some
energy scales 2.

2See Section 2.6 for a discussion of corrections to Wick’s theorem for Ji jkl couplings.
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2.4 Numerics
Wenow semi-quantitatively validate random-matrix-theory predictions using amore
physically motivated Hamiltonian. Consider first the free part,

H0 = −
∑
a,b

tabc†acb +
∑

a

Vac†aca + λ

N∑
i=1

γi(cai − c†ai ). (2.14)

HereVa is an uncorrelated Gaussian disorder landscape with zero mean and variance
V̄2. In the λ hybridization term, Majorana γi couples to a single dot site ai. For
the hoppings tab, we consider uniform nearest-neighbor tunnelings of strength t

(yielding an Anderson model) and compare results with purely random, arbitrary-
range hopping satisfying 〈tab〉 = 0, 〈tabta′b′〉 = t2 (yielding a random-matrix model).
All data below correspond to V̄ = t with adjacent Majorana modes separated by two
or three dot sites. Unless specified otherwise λ = t/2, the dot system size is 31×31,
and results are disorder-averaged over many configurations [20 for Fig. 22(a), 50 for
(b) and (d), and 500 for (c)].

Figure 22(a) corresponds to N = 16 and plots the fraction of the Majorana mode
wavefunctions absorbed by the dot—averaged over all 16 zero modes—versus
λ/(Nδεtyp). For both the Anderson and random-matrix models the fraction is
of order one at λ/(Nδεtyp) & 4, eventually saturating to unity as in random ma-
trix theory. The inset shows the probability density for a zero-mode wavefunction
nearly fully absorbed by the dot, obtained from an N = 1 Anderson model; the
wavefunction appears thoroughly randomized and loses all information about its
original position (in this case, the center). Figure 22(b) illustrates level repulsion of
the excitation energy ε (normalized by the level spacing δεtyp) versus N . Note that
the dot almost completely absorbs all zero modes up to the largest N shown. The
randommatrix model yields a slope that agrees within ∼ 5% with Eq. (2.8) obtained
from random matrix theory, while the Anderson model agrees within ∼ 20%.

Next we include a local current-current interaction

Hint = U
∑
〈ab〉

c†a∇ca · c
†

b∇cb, (2.15)

with ∇ a lattice gradient, projected into the zero-mode subspace. Figure 22(c) plots
a histogram of the resulting Ji j kl couplings (in units of U) using an Anderson model
with N = 8 and a 21 × 21 dot. The data agrees well with a Gaussian distribution;
see solid line. Finally, Fig. 22(d) illustrates the Ndot-dependence of the variance
∝ J̄ for Ji j kl [recall Eq. (2.2)] with N = 8. The Anderson model yields a scaling
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close 1/N2
dot—slower than 1/N3

dot result from random matrix theory [Eq. (2.11)].
We attribute this difference primarily to localization effects that effectively reduce
the system area. As a check, the random-matrix model, which should not suffer
localization due to the non-local hoppings, indeed yields the expected 1/N3

dot scaling.

2.5 Discussion
We showed that in certain regimes ourMajoranawire/quantumdot setup can emulate
the SYK model up to very generic corrections. Chiefly, we invoked an approximate
time-reversal symmetry that suppresses bilinears, strong dot-Majorana coupling that
delocalizes and randomizes the wavefunctions, level repulsion that suppresses pol-
lution of the zero-mode subspace by additional dot levels, and sufficient randomness
to approximate independent, random all-to-all couplings Ji j kl . Regarding the last
property, Eqs. (2.11) and (2.12) imply that independence requires J̄ ∼ 1/N3 for a
dot with local interactions. Since J̄ � ε excited dot states indeed can be safely
ignored. We saw that level repulsion of the dot states scales with N , implying that
one can enlarge the dot to accommodate arbitrarily many wires without spoiling
this property, provided the system size does not exceed the localization length. (For
larger scales we lose all-to-all coupling, as the Majorana wavefunctions localize.)
However, increasing N rapidly diminishes the strong-coupling temperature window
T � J̄—where much of the interesting physics emerges. This challenge can be
alleviated with long-range interactions, which lead to slower decay with N . Alter-
natively, one can intentionally abandon independence to boost J̄, though the fate of
SYK physics in such cases remains to be systematically understood.

To maintain approximate T symmetry graphene-based dots appear ideal due to their
strict two-dimensionality and extremely weak spin-orbit coupling. In this case the
dominant source of T violation will likely originate from the Majorana wires. We
can crudely assess the impact of such perturbations by adding local T -breaking
terms for the dot in the vicinity of the wires and projecting, e.g.,

δH = χ

N∑
i=1
(ic†aicai+1 + H.c.) →

∑
1≤ j<k≤N

iMj kγ
′
jγ
′
k

Mj k = χ

N∑
i=1
(φ j,aiφk,ai+1 − φk,aiφ j,ai+1). (2.16)

The Mj k bilinear couplings are random with zero mean and variance 2χ2N/N2
dot ∼

1/N5, wherewe usedEq. (2.12). The correction to the two-point correlation function
〈γi(t)γi(0)〉 is thus ∝ N(χ2/N5), and should be compared to the contribution J̄2 ∼
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U2/N6 (for local interactions) from four-Majorana interactions. This correction
is small provided χ . U/N; longer-range interactions relax the criterion further.
Tunneling into the dot provides an appealing benchmark of proximity to SYK
physics: the conductance approaches a constant at zero bias if bilinears dominate
but diverges as V−1/2 for the large-N SYK model [44].

The setup we propose suggests several other tantalizing applications. First, with
relatively few wires (N ≤ 8) one can experimentally explore the Z→ Z8 reduction
of the BDI classification by interactions [18, 19], very similar to Refs. [10, 50].
One can also investigate quantum quenches as a possible probe of SYK physics
by disconnecting or reconnecting the dot and wires to effectively freeze the zero
modes or restore their coupling. Finally, much work has been done regarding
measuring out-of-time-order correlators in cold atoms and qubit systems; see, e.g.,
[25, 58, 64, 65]. Our setup offers the exciting prospect of exploiting Majorana
hardware and topological quantum information ideas to measure such quantities in
pursuit of the SYK model’s hallmark maximal chaos. Developing protocols to this
end poses an interesting challenge highlighted by our study.

2.6 Corrections to Wick’s theorem
In this Section we discuss the asymptotically small corrections to Wick’s theorem
for the Ji j kl couplings. Our treatment is quite general and does not rely on our
particular proposed realization. We will take the best-case scenario for randomness,
invokingEq. (2.12) and assuming completely disordered and independent zero-mode
wavefunctions φi that obey Eq. (2.7). In practice the φi’s also suffer subdominant
correlations and will not be truly Gaussian; these corrections can be studied using
techniques described, e.g., in Refs. [26, 52] but are neglected for simplicity.

Using Eq. (2.10) we see that correlations among m Ji j kl’s satisfy

〈

m∏
f=1

Ji f j f k f lf 〉 =

(
4!
24

)m ∏
f

Uas
a f b f cf df

〈
∏

f

φi f a f φ j f b f φk f cf φlf df 〉, (2.17)

where repeated indices are summed. The assumption of i.i.d. Gaussianwavefunction
components φi,I allows us to simply applyWick’s theorem to evaluate the right-hand
side—though this does not mean the Ji j kl couplings are independent. EachUas

a f b f cf df

connects to four wavefunction elements φi f ,a f , etc., and each wavefunction element
contracts with another. The disorder average on the right side of Eq. (2.17) thus pairs
all the a f , b f , c f , d f indices in some manner and also forces all of the i f , j f , k f , l f

indices to similarly pair together (otherwise the average vanishes trivially).
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Wick-theorem-obeying correlations among Ji j kl’s occur when all four indices of
each Uas

a f b f cf df
pair with all four indices of another. For a local interaction such

cases yield

〈

m∏
f=1

Ji f j f k f lf 〉Wick ∼ Ng−2m
dot , (2.18)

where g is the number of connected pieces in the diagram and m must be even 3.
Note that the maximally disconnected pieces with g = m/2 minimize the decay with
Ndot and reduce to 〈J2

i j kl〉
m/2.

Non-Wick correlations arise when more than two Ji j kl’s share indices. Equa-
tion (2.13) gives one example. Another is

〈Ji j kl JinkpJmjol Jmnop〉 ∝
1

N8
dot

∑
abcde f gh Uas

abcdUas
ebgdUas

a f chUas
e f gh ∼ N−7

dot, (2.19)

where we again used a local interaction. By contrast, Eqs. (2.13) and (2.19) both
vanish in the SYK model. Such non-Wick contributions are generically suppressed
by some power of Ndot compared to 〈J2

i j kl〉
m/2. Naively, this analysis suggests that

theWick contributions dominate the Feynman-diagram expansion of the model, and
that hence we can use the ‘melon diagram’ formalism [36, 44, 51] that yields the
large-N SYK solution.

However, at increasingly high order in the diagrammatic expansion, non-Wick corre-
lations lead to a proliferation of new diagrams. Though each individual contribution
is small in the above sense, the number of allowed graphs grows far faster than the
suppression in 1/Ndot . References [7, 9] discuss the asymptotic number of simple
regular graphs, that is, graphs with each vertex connected to a fixed number of edges.
In our case we are concerned with 4-regular graphs: the number scales as

P(m) ∼
(4m)!

(2m)!(m)!Cm ∼ mm (2.20)

for some constantC. Note that this result underestimates the number of graphs since
it excludes the ones that have multiple edges that join the same vertices. Thus while
each graph is, at best, suppressed exponentially in m (i.e., by a factor 1/Nconst×m

dot ),
the number of such graphs grows combinatorially, and it becomes very nontrivial to
resum the Feynman diagrams for the two and four point functions. Hence the melon
and ladder diagram resummations may need to be amended.

3Here connectedness refers to the way the U tensors are contracted.
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What fate befalls the SYK model in the large-N limit in the presence of the correc-
tions identified above, which are likely present in any physical realization? Possi-
ble ways of addressing this important question include (i) developing a controlled
scheme for analytically including residual correlations among Ji j kl’s and (ii) nu-
merically studying the evolution of two- and four-point functions for finite-N in the
presence of correlated disorder. While both schemes lie beyond the scope of our
work, we offer some speculations here. Plausible outcomes include a reduction
from the maximal chaos present in the ‘pure’ SYK model, corrections to scaling
of the two-point function, and possibly new physics setting in at the lowest energy
scales (e.g., spin-glass behavior). Understanding such issues provides yet additional
motivation for pursuing experimental realizations of the SYK model and variations
thereof.
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C h a p t e r 3

FERMIONIZING PARAFERMIONS

3.1 Introduction
Interacting quantum systems in two dimensions can host quasiparticle excitations
whose properties are seemingly at odds with their microscopic origin. In particu-
lar, ground states characterized by a subtle non-local entanglement structure—i.e.,
topological order—host ‘anyon’ excitations that not only carry fractional quantum
numbers, but additionally exhibit exchange statistics that is neither bosonic nor
fermionic. An especially interesting example is provided by ‘non-Abelian anyons’,
which display a number of fascinating properties. First, non-Abelian anyons carry
exotic zero-energy degrees of freedom that generate a space of locally indistin-
guishable ground states. Second, braiding the anyons rotates the system within this
ground-state space—yielding the remarkable phenomenon of non-Abelian statistics.
And third, they exhibit nontrivial fusion rules, i.e., pairs of non-Abelian anyons can
combine to form multiple quasiparticle types. The above characteristics are also
technologically relevant as they form the basis for inherently fault-tolerant topo-
logical quantum computation [59, 85]. An experimentally relevant setting where
such exotic excitations emerge is the Moore-Read fractional-quantum-Hall state
[75]. There, charge-e/4 quasiparticles harbor Majorana zero modes that endow
them with the braiding and fusion properties of ‘Ising’ non-Abelian anyons.

One can alternatively harness non-Abelian-anyon physics through defects in sim-
pler topological phases [13]. Consider, for example, the Kitaev chain [58], which
describes a spinless one-dimensional (1D) p-wave superconductor. Domain walls
separating topological and trivial phases of the model harbor Majorana zero modes,
and hence behave very similarly to non-Abelian anyons in the Moore-Read state.
The pursuit of Majorana modes in 1D superconducting devices has correspondingly
become a vibrant (and oft-reviewed [2, 5, 14, 30, 32, 64, 66, 95, 99]) enterprise.
A more exotic example arises from ‘parafermion’ chains [6, 34]—1D systems with
degrees of freedom that possess an intrinsic, unbreakableZN charge symmetry, anal-
ogous to the unbreakable Z2 parity symmetry of fermions. Domain walls between
topological and trivial phases for the chain bind parafermion zero modes, which are
ZN Majorana generalizations that generate larger ground-state degeneracy, denser
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Figure 31: Correspondence between non-Abelian defects in 2D topologically or-
dered phases and in strictly 1D fermionic systems. Parafermion zero modes α1,2
translate into symmetry-enriched Majorana zero modes γ1,2 intertwined with an or-
der parameter O. We show that symmetry-enriched Majorana zero modes underlie
physical properties not possible from conventional Majorana systems, including an
enlarged set of braid transformations and anomalous pumping protocols that are
closely related to nontrivial fusion rules in the associated parafermion platform.

braid transformations, and richer fusion rules. Because the chain is built from
neither bosons nor fermions, realizing these non-Abelian defects is more challeng-
ing. Nevertheless, numerous blueprints now exist for stabilizing parafermion zero
modes at line defects within a two-dimensional, Abelian topologically ordered host.
Possible host platforms include the toric code [16], fractional Chern insulators [10],
quantum-Hall bilayers [11], quantum-Hall/superconductor hybrids [24, 29, 65, 104],
and more [67, 110].

Here we rigorously establish a link between non-Abelian defects in such 2D topolog-
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ically ordered phases and those that can arise in strictly 1D fermion systems. To this
end, we introduce exact, non-local mappings between arbitrary Zeven parafermion
chains and microscopic 1D fermionic models. This machinery provides a ‘dictio-
nary’ connecting observables, phases, and any other quantity of interest between
the two representations. We in particular find that Zeven parafermion zero modes
translate into ‘symmetry-enriched Majorana zero modes’ whose wavefunctions de-
pend nontrivially on a spontaneously chosen order parameter for the fermions; see
Fig. 31. Although the degeneracy in the latter setting enjoys only partial topological
protection, we demonstrate that symmetry-enriched Majorana modes give rise to
phenomena that are not possible in conventional Majorana platforms.

For one, braiding processes can alter the order-parameter configuration, thereby
rotating the system within an enlarged subspace (though the braid matrices do not
match those arising from parafermions for reasons that we explain). Moreover, we
show that the richer fusion rules stemming from parafermion zeromodes are directly
manifested in the 1D fermion setting. Imagine fusing two non-Abelian defects that
bind parafermion zero modes. One can define a pumping cycle that returns the
Hamiltonian to its original form yet modifies the fusion channel for the defects.
The system thus exhibits an anomalous periodicity set by the number of available
fusion channels. Interestingly, one can realize pumping cycles with exactly the
same periodicity by hybridizing symmetry-enrichedMajorana modes in 1D fermion
systems. We study two implementations of such anomalous fermionic pumps. One
requires symmetry protection to maintain the same periodicity as in the parafermion
realization, while the other relies only on locality and fermion-parity conservation.

Useful insights can be obtained by specializing to the Z4 case, which we primarily
focus on in this paper. In this limit the correspondences highlighted above can be
anticipated from several angles. First, each pair of Z4 parafermions contributes four
states to the Hilbert space, just like two species of fermions. Second, Ref. [69]
used complementary analytical and numerical methods to infer that the eigenstates
of certain Z4 parafermion chains can be described in terms of free fermions. Third,
Zhang and Kane [111] and Orth et al. [87] showed that proximitized edge states of a
two-dimensional quantum-spin-Hall insulator can support zero modes reminiscent
of Z4 parafermions (see also Refs. [46, 90, 105]). Finally, parafermion chains are
related to bosonic clock models (for any ZN ) [34, 37]—a relation that we will
frequently exploit. In the Z4 limit one can decompose clock spins into two sets of



38

Pauli matrices [48, 62, 108] that can be fermionized by standard methods 1. We
will later draw further connections to all of these works, particularly the results for
quantum-spin-Hall systems.

While the ‘fermionizability’ of Z4 parafermion chains is thus natural, it is not
clear a priori whether the associated 1D fermionic systems are at all physically
relevant. Importantly, in our fermionization scheme (which differs from the strategy
noted above) Z4 parafermions map onto ordinary spinful electrons with familiar
symmetries including time reversal and spin rotations. Our dictionary thus indeed
relates phases for parafermions to interesting, and in some cases already well-
studied, 1D electronic states of matter. The phase that supports symmetry-enriched
Majorana modes (see again Fig. 31) corresponds to a topological superconductor
accessed by spontaneously breaking time-reversal symmetry, which may already be
realized in atomic-chain experiments [33, 51, 83, 88, 94]. As another noteworthy
example, the parafermion chain supports a symmetry-protected topological phase
that translates into a time-reversal invariant topological superconductor (TRITOPS)
[19, 27, 40, 41, 57, 92, 112] with a Kramers pair of Majorana zero modes at each
end. One of the anomalous pumping cycles we introduce involves modulating a
fermionic wire between trivial and TRITOPS phases; the magnetization at the ends
of the system exhibits quadrupled periodicity—reflecting the four fusion channels
available in the corresponding parafermion platform. We note that this pump is a
strict-1D analogue of the 8π-periodic Josephson effect identified for quantum-spin-
Hall edges in Refs. [87, 111]. The experimental requirements for implementing the
cycle are surprisinglyminimal, thus providing a tantalizing opportunity for exploring
certain aspects of parafermion physics using non-fractionalized 1D systems.

We organize the remainder of the paper as follows. In Secs. 3.2 through 3.4 we
exclusively treat the Z4-parafermion case. Section 3.2 details our fermionization
scheme, while Sec. 3.3 derives the correspondence between various phases in the
clock, parafermion, and electronic representations. We then turn to experimental
implications in Sec. 3.4. There we contrast the non-Abelian braiding properties
arising from Z4 parafermion zero modes and symmetry-enriched Majorana modes,
and analyze the anomalous pumping cycles. Section 3.5 generalizes these results to
arbitrary Zeven parafermions. An executive summary appears in Sec. 3.6 along with
several future directions. Finally, Sections 3.7 through 3.16 contain supplemental
results and technical details.

1For yet another take on fermionizing parafermions, see Ref. [18].
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3.2 Operator Mappings
This section introduces non-local mappings that link bosonic Z4 clock operators,
Z4 parafermions, and spinful fermions residing on a 1D lattice. In what follows
we primarily flesh out these mappings without recourse to specific Hamiltonians,
which will instead be constructed and analyzed in Sec. 3.3. Sections 3.2 and 3.2
below largely parallel the treatment of Z3 parafermions in Ref. [73].

Z4 clock operators
We first review the Z4 clock representation. Each lattice site, labeled by integers a,
contains a four-state ‘spin’. The Hilbert space is spanned by unitary clock operators
σa and τa that satisfy

σ4
a = τ

4
a = 1 (3.1)

along with the commutation relation

σaτa = iτaσa . (3.2)

(Off site, the clock operators commute.) The relations above imply that σa and τa

both exhibit eigenvalues ±1,±i, with τa ‘winding’ the eigenvalue of σa and vice
versa.

We will be particularly interested in chains that exhibit a global Z4 symmetry,
generated by

Q =
∏

a

τ†a , (3.3)

as well as an antiunitary time-reversal symmetry T that satisfies T 2 = +1. The
former acts according to

QσaQ† = iσa , QτaQ† = τa . (3.4)

Note that if clock spins constitute physical degrees of freedom, Z4 symmetry can
be broken either spontaneously or explicitly—a situation that we will later contrast
with the cases where parafermions and fermions form the physical objects. Time
reversal transforms clock operators as

TσaT = σ
†
a , T τaT = τa . (3.5)

We will also invoke a ‘charge conjugation’ symmetry C that yields

CσaC = σ
†
a , CτaC = τ

†
a . (3.6)
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Figure 32: (a) Chain of clock operators σa, τa together with their dual counterparts
µa+ 1

2
, νa+ 1

2
, which live on the dual lattice. The dual operator µa+ 1

2
corresponds to a

non-local τ string (wavy line). (b) Binding σ and µ yields parafermion operators;
attaching the double string µ2 to σ × gα(σ2, τ), where gα(σ2, τ) is a local function
of clock operators, gives fermions with spin α. See Secs. 3.2 and 3.2 for precise
expressions relating parafermions and fermions to clock variables.

Table 31 summarizes these symmetry properties.

One can equivalently describe the system with dual operators

µa+ 1
2
=

∏
b<a+ 1

2

τb , νa+ 1
2
= σ†aσa+1 (3.7)

that reside on dual-lattice sites labeled by half-integers [see Fig. 32(a)]. Similar to
the original clock variables, the dual operators are unitary and satisfy

µ4
a+ 1

2
= ν4

a+ 1
2
= 1 , µa+ 1

2
νa+ 1

2
= iνa+ 1

2
µa+ 1

2
. (3.8)

Their symmetry properties follow straightforwardly from Eqs. (3.4) through (3.6)
and are also listed in Table 31.

Suppose that Z4 symmetry is spontaneously broken, leading to 〈σa〉 , 0. Starting
from such a broken-symmetry phase, the dual operator µa+ 1

2
creates a domain-wall

defect that winds all clock spins to the left of the dual site a + 1
2 . Proliferation of
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Z4 C T

σ → iσ σ† σ†

τ → τ τ† τ

µ→ µ µ† µ

ν → ν ν† ν†

α→ iα α† α′†

α′→ iα′ α′† α†

f↑→ ieiπn↓ f↑ eiπn↑ f↓ ieiπn↑ f↓
f↓→ −ieiπn↑ f↓ eiπn↓ f↑ ieiπn↓ f↑

Table 31: Action of primitive symmetries on clock operators σ, τ; dual clock oper-
ators µ, ν; two representations of parafermion operators α, α′; and spinful fermions
f↑,↓. Site labels are suppressed for brevity here and in other tables below.

these defects—i.e., 〈µa+ 1
2
〉 , 0—destroys the order and restores Z4 symmetry. In

this sense σ and µ respectively represent order and disorder operators. Combining
order and disorder operators generates Z4 parafermions [34, 37], to which we turn
next.

Z4 parafermions
We have some freedom for how to construct parafermions from order and disorder
operators. One choice binds σ and µ to define lattice Z4 parafermions

α2a−1 = σaµa− 1
2
, α2a = e−i π4 σaµa+ 1

2
, (3.9)

as sketched in Fig. 32(b). Like the clock variables, these unitary operators obey

α4
a = 1 . (3.10)

The τ string encoded in the disorder operators, however, yields the non-local com-
mutation relation

αaαb>a = iαbαa . (3.11)

We could equally well bind σ and µ† to define a non-locally related set of Z4

parafermion operators

α′2a−1 = σaµ
†

a− 1
2
, α′2a = ei π4 σaµ

†

a+ 1
2

(3.12)

that similarly obey
α′4a = 1 , α′aα

′
b>a = −iα′bα

′
a . (3.13)
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While not independent, both representations are useful to consider since they trans-
form into one another under time reversal T . Table 31 lists their transformation
properties, which are inherited from those of the clock operators and their duals.
Throughout this paper we mainly focus on the αa representation for concreteness.

Hereafter, we will define parafermions as physical degrees of freedom if the host
system exhibits a Z4 symmetry (which sends αa → iαa) that can never be broken
explicitly by any local perturbation. Consider, for example, Z4 parafermions ger-
minated from extrinsic defects in a parent fractional-quantum-Hall medium. The
parafermion operator αn

a adds nontrivial anyon charge to position a provided n , 0
mod 4, while (α†a)n adds the opposite anyon charge. Since the total anyon charge for
the system must be trivial, all physical terms in the Hamiltonian must be invariant
under Z4 symmetry.

Next we discuss spontaneous Z4 symmetry breaking, closely following Ref. [77]
(see also Refs. [4, 17, 70]). Due to the non-local commutation relation in Eq. (3.11),
a parafermion system cannot spontaneously develop an expectation value 〈αa〉 , 0
across the chain. To see this, note that 〈α†aαb〉 = ±i〈αbα

†
a〉; when |a − b| → ∞,

factorizing the left and right sides yields 〈α†a〉〈αb〉 = ±i〈αb〉〈α
†
a〉, which admits only

trivial solutions. Since [α2
a, α

2
b] = 0, however, no such obstruction exists for spon-

taneously developing an expectation value 〈α2
a〉 , 0. The resulting ‘parafermion

condensate’ phase spontaneously breaks Z4 symmetry, but in a way that necessarily
preservesZ2

4. This is the maximal extent to whichZ4 can be broken in a parafermion
chain.

Parafermions loosely exhibit a ‘self-dual structure’ in that they arise from combina-
tions of clock operators and their duals. For a more precise statement consider the
quantities

ei π4 α†2a−1α2a = τa , ei π4 α†2aα2a+1 = σ
†
aσa+1 . (3.14)

Duality swaps the role of the right-hand sides above, and hence implements a simple
spatial translation of parafermion operators.

Spinful fermions
In the previous subsectionwe saw that parafermionic commutation relations [Eq. (3.11)
or (3.13)] emerge upon combining the bosonic operator σ with a string of τ’s or
τ†’s. ‘Doubling’ the string as sketched in Fig. 32(b)—i.e., attaching τ2’s to clock
operators—instead naturally generates objects with fermionic statistics. Since the
doubled string is Hermitian, the freedom that led to multiple parafermion represen-
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Figure 33: Representation of Z4 clock-model operators in terms of spinful hard-
core bosons. Eigenstates of τ are encoded through boson number eigenstates, e.g.,
τ = +1 is the boson vacuum while τ = −1 corresponds to a state with both spins
populated. The operator σ cycles through τ eigenstates and hence adds and removes
bosons in a state-dependent fashion.

tations no longer exists here. Recovering the full clock Hilbert space with four states
per site, however, requires that the fermions carry an internal label that is profitably
viewed as an electronic spin-1/2 degree of freedom.

As a first step to formalizing this heuristic picture, we introduce spinful hard-core
bosons ba,↑ and ba,↓. Observe that one can decompose the τa clock operator via

τa = ei π2 (na,↑−na,↓+2na,↑na,↓), (3.15)

where na,α = b†a,αba,α denote boson occupation numbers. In this representation
τa = +1 corresponds to the boson vacuum. Starting from this state, adding a
spin-down boson yields τa = −i, further adding a spin-up boson yields τa = −1,
removing the spin-down boson gives τa = +i, and finally removing the spin-up
boson returns the τa = +1 state. This sequence of τa windings is implemented by
the conjugate clock operator σa as Fig. 33 illustrates 2. To express σa in terms of

2This decomposition of σa and τa in terms of hard-core bosons is not unique. We could have
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bosons it is convenient to introduce operators Pα(0) = 1−na,α and Pα(1) = na,α that
respectively project onto the subspace with occupation numbers 0 and 1 for spin α.
From Fig. 33 we see that

σa = b†a,↓P↑(0)P↓(0) + b†a,↑P↑(0)P↓(1)

+ ba,↓P↑(1)P↓(1) + ba,↑P↑(1)P↓(0) (3.16)

= (b†a,↓ + ba,↑) + (b
†

a,↑ − ba,↑)na,↓ + (ba,↓ − b†a,↓)na,↑ .

As described in Section 3.7, Eqs. (3.15) and (3.16) can be inverted to yield

ba,↑ =

[
σa

1 − τ2
a

4
+ H.c.

]
+ i

[
σa
τ†a − τa

4
+ H.c.

]
(3.17)

ba,↓ =

[
1 − τ2

a

4
σa + H.c.

]
+ i

[
τ†a − τa

4
σa + H.c.

]
. (3.18)

We can now define spinful fermions

fa,↑ = e−i π4 Saba,↑ (3.19)

fa,↓ = e−i π4 Saeiπna,↑ba,↓. (3.20)

The e−i π4 phases are introduced for later convenience, the factor eiπna,↑ in Eq. (3.20)
enforces anticommutation of spin-up and spin-down fermions on the same site 3,
and

Sa = eiπ
∑

b<a(nb,↑+nb,↓) =
∏
b<a

τ2
b = µ

2
a− 1

2
(3.21)

is a Jordan-Wigner string that ensures off-site anticommutation. Note the ‘doubled’
string relative to the αa operators, consistent with our heuristic picture above.

Section 3.8 derives the action of Z4,T , and C on the fermions; see Table 31 for a
summary. With our conventions all three symmetries act nontrivially, in the sense
that the fermions acquire a phase factor dependent on the occupation of the opposite
spin species. Combinations of these symmetries nevertheless correspond to familiar
operations. First, the generator Q of Z4 symmetry squares to

Q2 =
∏

a

τ2
a = eiπ

∑
a(na,↑+na,↓) = fermion parity. (3.22)

instead expressedσa in terms of boson densities and τa in terms of creation and annihilation operators
that cycle σa eigenvalues. The latter parametrization is problematic, however, in that Z4-symmetric
terms such as − f (τa + τ

†
a) become nonlocal upon fermionization (in contrast to our conventions,

where such terms remain local).
3More generally, we could have inserted factors eiθna,↑ in Eq. (3.19) and ei(θ+π)na,↓ in Eq. (3.20)

to maintain on-site anticommutation. The choice θ = 0 that we adopted is particularly convenient
for symmetries.
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clock parafermion spinful fermion
Z4 breakable yes no yes
explicitly? (locality)

Z4 breakable yes yes yes
spontaneously? (〈α2

a〉 , 0)
Z2

4 breakable yes no no
explicitly? (locality) (locality)

Z2
4 breakable yes no no

spontaneously? (statistics) (statistics)

Table 32: Comparison of Z4-symmetry robustness in various representations. For
the case of spinful fermions, the locality and statistics conditions listed in the right
column reduce to the familiar statement that fermion-parity conservation can be
broken neither spontaneously nor explicitly.

Thus Z2
4 sends fa,α → − fa,α and represents global fermion parity conservation—

which can be broken neither explicitly nor spontaneously in a system of physical
fermions. By contrast, Z4 itself can be readily broken (explicitly or spontaneously)
provided Z2

4 remains intact. Table 32 summarizes the varying robustness of Z4

symmetry in the clock, parafermionic, and fermionic representations.

Second, Telec ≡ Z4T acts according to

Telec fa,αT −1
elec = iσy

αβ fa,β; (3.23)

here and below σx,y,z denote the usual Pauli matrices 4. One can recognize Telec as
electronic time-reversal symmetry that satisfies T 2

elec = −1 when acting on single-
particle states. Third, Uspin ≡ Z4C corresponds to a π spin rotation, i.e.,

Uspin fa,αU†spin = σ
y
αβ fa,β. (3.24)

The setTelec,Uspin, andZ4 provides a convenient basis of symmetries in the fermionic
representation. WhileZ4 generally acts nontrivially on the fermions, a simplification
is possible in the low-density limit where 〈na,α〉 � 1. Here one can approximate Z4

by dropping the density-dependent phases acquired by the fermions. The resulting
operation, which we label Z4, yields a simpler transformation

Q fa,αQ
†
= iσz

αβ fa,β , (low-density approx. of Z4) (3.25)
4We inserted the factors e−i

π
4 in Eqs. (3.19) and (3.20) simply to recover the familiar form of

electronic time-reversal in Eq. (3.23); without these factors the i on the right side would be absent.
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Telec = Z4T Uspin = Z4C Z4

f → iσy f σy f iσz f

Table 33: Action of composite symmetries Telec and Uspin along with Z4 on spinful
fermions. Remarkably, Telec implements electronic time-reversal symmetry with
T 2
elec = −1 while Uspin implements a π spin rotation. In the last column Z4 is an
approximation of the exact Z4 symmetry (see Table 31) valid in the low-fermion-
density limit; this operation implements a π spin rotation about a different axis.

that represents π spin rotation about a different axis. Symmetry transformations
under Telec,Uspin, and Z4 appear in Table 33.

Dual fermions
One can of course straightforwardly generalize Eqs. (3.17) through (3.21) to instead
fermionize the dual representation of the clock model. To this end we first define
dual hard-core bosons

b̃ã,↑ =

[
µã

1 − ν2
ã

4
+ H.c.

]
+ i

[
µã
ν†ã − νã

4
+ H.c.

]
(3.26)

b̃ã,↓ =

[
1 − ν2

ã

4
µã + H.c.

]
+ i

[
ν†ã − νã

4
µã + H.c.

]
, (3.27)

where ã = a + 1
2 labels dual-lattice sites. Dual fermions are then given by

f̃ã,↑ = e−i π4 S̃ã b̃ã,↑ , (3.28)

f̃ã,↓ = e−i π4 S̃ãeiπñã,↑ b̃ã,↓ , (3.29)

with
S̃ã = eiπ

∑
b̃<ã(ñb̃,↑+ñb̃,↓) =

∏̃
b<ã

ν2
b̃
= σ2

aσ
2
−∞ . (3.30)

Clock-model duality [Eq. (3.7)] non-locally transforms our original spinful fermions
fa,α into these dual fermions f̃ã,α. The situation should be contrasted to the para-
fermion representation, where duality merely implements a spatial translation. It is
also worth contrasting to the Majorana-fermion representation of the Ising model,
where Ising duality similarly corresponds to a spatial translation of the Majorana
operators (as opposed to non-locally mapping to a new set of fermions).

The clock-operator fermionization described so far allows one to directly express lat-
tice Z4 parafermions as non-local combinations of either fermions or dual fermions.
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Interestingly, it is also possible to express parafermions in terms of a local prod-
uct of fermions and dual fermions—reflecting the roughly self-dual nature of the
parafermion operators alluded to earlier. The latter form resembles the factorization
identified in Ref. [70] of Z4 parafermions into two sets of fermions that exhibit
nontrivial commutation relations with one another. We relegate explicit expressions
linking parafermions and fermions to Section 3.11 (see also Sec. 3.3).

Spin-1/2 representation and alternative fermionization schemes
There are numerous alternative mappings that relate Z4 clock operators to spin-1/2
or fermionic degrees of freedom. Among these, different choices may be convenient
for revealing particular properties. This section briefly outlines an approach that
yields the same spinful fermion operators as Sec. 3.2, but through a very different
route. Sections 3.9 and 3.10 present additional details about this mapping and
several other schemes, including that of Refs. [62, 108].

We begin by expressing the clock operators σa, τa in terms of spin-1/2 degrees of
freedom via [62, 108]

σa =
1 + i

2

(
sz

a+ 1
4
+ isz

a− 1
4

)
, (3.31)

τa =
1
2

(
sx

a+ 1
4
+ sx

a− 1
4

)
+

1
2

(
sx

a+ 1
4
− sx

a− 1
4

)
sz

a+ 1
4
sz

a− 1
4
, (3.32)

where sx,y,z denote Pauli matrices that reside at sites a ± 1
4 . Next, we perform the

familiar Ising-model duality mapping that trades in these variables for dual spins
t x,y,z living on integer as well as half-integer sites,

t x
a = sz

a− 1
4
sz

a+ 1
4
, tz

a =
∏
a′<a

sx
a′ . (3.33)

‘Exchange’ and ‘transverse-field’ clock-model couplings take on a particular simple
form in this language:

−J(σ†aσa+1 + H.c.) = −J
(
t x
a t x

a+ 1
2
+ t x

a+ 1
2
t x
a+1

)
,

− f (τa + τ
†
a ) = − f

(
tz
a− 1

2
tz
a + tz

atz
a+ 1

2

)
,

(3.34)

and in particular precisely coincide with couplings in the 1D XY model. (Refer-
ences [62, 108] used a somewhat different mapping to a spin-1/2 model as dis-
cussed in Section 3.10.) Since clock-model duality interchanges the J and f terms,
Eqs. (3.34) naively suggest that such a duality transformation is implemented as a
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global π/2 rotation of t spins around the y axis. We caution, however, that this
interpretation only holds for specific Hamiltonians and is not dictated by conditions
of symmetry and locality; see Section 3.9.

Let us now employ a Jordan-Wigner transformation to define complex fermions

ca =
1
2
(tya − itz

a)
∏
a′<a

t x
a′ (3.35)

and then introduce spinful fermions da,α via a Bogoliubov transformation:

da,α =
i
√

8

(
−ca − c†a − ca+ 1

2
+ c†

a+ 1
2

)
+

α
√

8

(
−ca− 1

2
− c†

a− 1
2
− ca + c†a

)
. (3.36)

On the right side, α = +1 for spin up and −1 for spin down. Somewhat lengthy
but straightforward algebra sketched in Section 3.10 reveals that a local canonical
transformation,

fa,α = e−i π4 (1+α) exp
(
−i
π

2
d†a,−αda,−α

)
da,α , (3.37)

yields operators that are identical to fa,α up to a boundary term that squares to unity.

An alternative set of fermions can be formed by defining c̃a = UcaU†, where U

implements a global π/2 spin rotation around ty. Note that ca and c̃a are nonlocally
related—the Jordan-Wigner string consists solely of t x operators in the former but
tz operators in the latter. Since U is precisely the spin rotation that swaps the two
lines of Eq. (3.34), it is natural to expect that c̃a fermions closely relate to the
dual fermions f̃a,α of Sec. 3.2. Let d̃a,α and f̃a,α denote spinful fermions defined
analogously to Eqs. (3.36) and (3.37). On the level of single-fermion operators, f̃a,α
and f̃a,α are related nonlocally. Nevertheless, Hamiltonians for which clock-model
duality corresponds to a spin rotation take on an identical form when expressed in
terms of either set of operators, though this relation breaks down for more generic
models.

3.3 Mappings Between Phases
Hamiltonians
The remainder of this paper primarily explores translationally invariant fermionic
phases and their clock/parafermion counterparts. All of the phases that we will
discuss can be accessed microscopically from limits of (or in some cases weak
perturbations to) the Hamiltonian

H = −J
N−1∑
a=1
(σ†aσa+1 + σ

†

a+1σa − λσ
2
aσ

2
a+1) − f

N∑
a=1
(τa + τ

†
a − λτ

2
a ) (3.38)
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for an N-site clock chain. Equation (3.38) corresponds to the well-studied Ashkin-
Teller model [9], which exhibits a variety of ordered and disordered gapped phases,
novel critical points, and extended critical phases (see, e.g., Refs. [3, 62, 108,
109]). Throughout we assume non-negative J, f couplings and take open boundary
conditions to highlight nontrivial edge physics that arises in certain regimes. Since
duality interchanges the J and f terms, the Hamiltonian is self-dual at J = f for
any λ.

In terms of parafermions, the model becomes

H = −J
N−1∑
a=1
[(ei π4 α†2aα2a+1 + H.c.) + λα2

2aα
2
2a+1]

− f
N∑

a=1
[(ei π4 α†2a−1α2a + H.c.) + λα2

2a−1α
2
2a] . (3.39)

The first and second lines favor competing dimerization patterns for the parafermion
operators.

For spinful fermions it is useful to partition the Hamiltonian as H = H0+Hλ, where
Hλ contains the terms proportional to λ in the Ashkin-Teller model. Implicitly
summing repeated spin indices and neglecting unimportant overall constants, H0

can be expressed as

H0 = − J
N−1∑
a=1

(
t̂α,βa f †a,α fa+1,β + i∆̂α,βa f †a,α f †a+1,β + H.c.

)
+ 2 f

N∑
a=1

f †a,α fa,α . (3.40)

The f coupling simply yields a chemical potential for the fermions. In the J term,
t̂α,α

′

a and ∆̂α,α
′

a encode spin- and density-dependent hoppings and triplet pairings,
respectively. We explicitly have

t̂α,αa = 1 − na,−α − na+1,−α ,

t̂α,−αa = α[2na,−αna+1,α − na,−α − na+1,α] ,

∆̂
α,α
a = α[na,−α − na+1,−α] ,

∆̂
α,−α
a = [na,−α + na+1,α − 2na,−αna+1,α − 1] .

(3.41)

The λ terms yield nontrivial four-fermion interactions:

Hλ = λJ
N−1∑
a=1
(i f †a,↑ + fa,↑)( f

†

a,↓ + i fa,↓)(i f †a+1,↑ + fa+1,↑)( f
†

a+1,↓ + i fa+1,↓)

+ λ f
N∑

a=1
(2na,↑ − 1)(2na,↓ − 1) . (3.42)
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Z4 C T

φ→ φ + π/2 −φ φ

θ → θ −θ −θ

Table 34: Symmetry properties of bosonized fields used to construct long-
wavelength expansions of clock operators, parafermions, and fermions.

View from the long-wavelength limit
It will prove exceedingly useful to obtain a bosonized description of H that filters
out all but the long-wavelength modes needed to describe the phases of interest. To
this end we focus on the spinful-fermion representation and assume the low-density
limit na,α ≈ 0 where Z4 symmetry is well-approximated by Z4. Consider first the
λ = 0 limit. Upon retaining only the density-independent pieces from Eqs. (3.41),
H0 reduces to a free-fermion Hamiltonian

H0 = −J
N−1∑
a=1

(
f †a,α fa+1,α − i f †a,ασ

x
αβ f †a+1,β + H.c.

)
+ 2 f

N∑
a=1

f †a,α fa,α. (3.43)

When f = J the spectrum becomes gapless at zero momentum; low-energy excita-
tions are captured by one right- and one left-moving fermion mode, ψR/L .

A bosonized description of this critical point arises from the identification

i( f↑ − f †
↓
) ∼ ψR ∼ ei(φ+θ) ,

f↑ + f †
↓
∼ ψL ∼ ei(φ−θ) ,

(3.44)

where φ, θ are continuum fields satisfying

[φ(x), θ(x′)] = iπΘ(x′ − x) . (3.45)

(Our bosonization recipe closely follows that employed by Ref. [36].) For later use
we note that ∂xθ/π yields the spin density since

f †
↑

f↑ − f †
↓

f↓ ∼ ψ
†

RψR + ψ
†

LψL ∼ ∂xθ/π , (3.46)

while

eiπ
∑

a,α f †a,α fa,α = eiπ
∑

a[ f
†

↑
f↑− f †

↓
f↓] = ei

∫
x
∂xθ (3.47)

correspondingly specifies the total fermion parity in a region of the chain.
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Table 34 catalogues symmetry properties of the bosonized fields inferred from
Eq. (3.44). [Technically, Eq. (3.44) yield the action of Z4 instead of Z4, though as
we will see below this distinction is immaterial in the long-wavelength limit. We
caution, however, that Eq. (3.44) can be used to relate microscopic fermion operators
to continuum fields only in the low-density limit; outside of this regime one must
exploit symmetry to find the bosonized form of a given lattice operator.] With
these symmetries in hand we can deduce the low-energy expansion for operators in
various other representations. Order and disorder operators correspond to

σa ∼ eiφ , µa+ 1
2
=

∏
b<a+ 1

2

τb ∼ e−iθ/2 . (3.48)

Note that the right-hand sides not only yield consistent symmetry properties, but are
also faithful to the clock-operator commutation relations. Similarly expanding our
two parafermion representations—which again arise from attaching either a string
of τ or τ† to σ—gives

αa ∼ ei(φ−θ/2) , α′a ∼ ei(φ+θ/2) . (3.49)

As a useful sanity check, doubling the string yields precisely the continuum limit of
spinful fermions derived in Eqs. (3.44); cf. the lattice picture provided in Sec. 3.2.

From a dual perspective, one essentially views µ as the elementary spin operator
and σ as the string. The dual analogue of Eq. (3.48) is then

µa+ 1
2
∼ eiφ̃ , σaσ

†
−∞ =

∏
b<a

νb+ 1
2
∼ e−iθ̃/2 (3.50)

with [φ̃(x), θ̃(x′)] = iπΘ(x′ − x) as in Eq. (3.45). Clearly the original continuum
φ, θ fields and their duals are related by

φ̃(x) = −θ(x)/2 , θ̃(x) = −2[φ(x) − φ(−∞)] . (3.51)

Attaching a string of ν or ν† to µ yields essentially the same long-wavelength limit
of parafermion operators as before. Doubling this string, however, generates the
continuum limit of our dual fermions:

ψ̃R ∼ ei(φ̃+θ̃) , ψ̃L ∼ ei(φ̃−θ̃) . (3.52)

In Sec. 3.2 we noted that parafermions can be expressed as local combinations of
fermions and dual fermions on the lattice. This relation becomes particularly simple
in the long-wavelength limit. Using Eq. (3.51) one immediately obtains

αa ∼ ψ
†

Rψ̃
†

L , α′a ∼ ψ
†

Lψ̃R , (3.53)
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very similar to Ref. [70].

Returning to the critical Hamiltonian, the bosonized form of Eq. (3.43) readsH0 =∫
x

v0
2π [(∂xφ)

2 + (∂xθ)
2] with v0 ∝ J. Turning on λ , 0 and resurrecting interaction

terms from H0 that were neglected in Eq. (3.43) generically modifies the low-energy
Hamiltonian to

H =

∫
x

{
v

2π
[g(∂xφ)

2 + g−1(∂xθ)
2] − κ1 cos(4φ) − κ2 cos(2θ)

}
. (3.54)

Here v is a renormalized velocity; g is the Luttinger parameter characterizing the
interaction strength (g = 1 corresponds to free fermions, while g < 1 and g > 1
respectively indicate repulsive and attractive interactions); and the κ1,2 terms are the
leading harmonics consistent with symmetries and locality. Effective Hamiltonians
of this form have been studied in related contexts in Refs. [55, 68, 87, 111]. We can
appeal to self-duality of the microscopic Hamiltonian at J = f to further constrain
H . In particular, here the continuum Hamiltonian must take the same form in terms
of either φ, θ or their duals φ̃, θ̃. Using Eq. (3.51) we thus obtain κ1 = κ2 and
g = 2. The latter constraint guarantees that the two cosines—which swap under
duality—are both marginal at the self-dual critical point. Upon rescaling φ→ φ/

√
2

and θ →
√

2θ, H maps onto one of the manifestly self-dual theories analyzed in
Ref. [63]. There, non-Abelian bosonization techniques showed that the self-dual
model exhibits a ‘hidden’ continuous U(1) symmetry.

Breaking self-duality spoils these relations and can drive the system into various
possible gapped phases that we explore next, both from a continuum andmicroscopic
viewpoint. The phases that arise depend sensitively on the signs of κ1 and κ2. In
the λ = 0 limit we must have κ1, κ2 > 0 so that the familiar ferromagnetic and
paramagnetic phases of the clock model are ‘nearby’ (see below). We will show,
however, that turning on λ provides access to phases driven by κ1, κ2 < 0 as well.

Phases driven by κ2 > 0
With relevant κ2 > 0 the cos(2θ) term pins θ to 0 modulo π. In terms of clock
spins, the disorder operator then condenses (〈µ〉 , 0), yielding a trivial paramagnet.
Microscopically, the paramagnetic state arises most simply from the Ashkin-Teller
model at J = λ = 0, where the unique ground state is |τ = 1, . . . , 1〉. One sees from
Eq. (3.39) that the corresponding parafermion system dimerizes in a trivial manner
that gaps out the entire chain, including the ends. Finally, according to Eq. (3.40)
spinful fermions realize the vacuum with no fermions present. The first column of
Fig. 34 summarizes the properties of this regime in all three representations.
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Paramagnet

Clock

Duality

Parafermion

Spinful
fermion

Trivial

Fermion vacuum Topological superconductor
+ symmetry breaking

Topological

Ferromagnet

J = λ = 0, f �= 0 f = λ = 0, J �= 0

στ

|A〉

|B〉

|C〉

|D〉

|τ = 1, . . . , 1〉

α1 α2

γ2
γ1

γ2
γ1

m = iΓ1Γ2 = −1

m = iΓ1Γ2 = +1

Hamiltonian
parameters

Bosonized
perturbation − cos(2θ) − cos(4φ)

|AB〉

Duality

Topological superconductor
+ symmetry breaking

Topological

Canted ferromagnet SPT

anomalous
pseudospin-1/2

edge modes

SPT

SPT
(TRITOPS)

|DA〉

|CD〉

|BC〉

with f ′ �= 0withJ ′ �= 0

J, f �= 0,λ = 1 J, f �= 0,λ = 1

α1

α2

f at λ = 1

J at λ = 1

J ′ or f ′

η2,PF

η1,PF

η1 η2

γ1↓ γ2↓

γ2↑γ1↑
γ2γ1

m′ = iΓ1Γ2 = ±1

+cos(2θ)+cos(4φ)

J at λ = 0

f at λ = 0

Figure 34: Correspondence between gapped phases in the clock, Z4 parafermion,
and spinful fermion representations. The first and second rows respectively indicate
the microscopic Hamiltonian parameters and associated bosonized perturbations
that generate the phases summarized in each column. Phases in the first and second
columns are dual to one another, as are the phases in the third and fourth columns.

Phases driven by κ1 > 0
When κ1 is relevant and positive, the cos(4φ) term pins φ to 0 modulo π/2. Impli-
cations of the pinning depend strongly on which degrees of freedom are regarded
as physical. According to Eq. (3.48), a system of clock spins spontaneously breaks
Z4 symmetry and realizes a four-fold-degenerate ferromagnetic state characterized
by the local order parameter 〈σ〉 = ±1 or ±i. Such ferromagnetic order can be
accessed straightforwardly from the f = λ = 0 limit of the Ashkin-Teller model,
which admits broken-symmetry ground states

|A〉 = |σ = 1, . . . , 1〉 , |B〉 = |σ = i, . . . , i〉 ,

|C〉 = |σ = −1, . . . ,−1〉 , |D〉 = |σ = −i, . . . ,−i〉 . (3.55)

A parafermion chain, by contrast, realizes the topological phase introduced by Fend-
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ley [34]. From Eq. (3.39) and Fig. 34 one sees that at f = λ = 0 the parafermions
dimerize in a pattern that gaps the interior but leaves behind an ‘unpaired’ zero-
energy mode at each edge. These parafermion zero modes encode a four-fold de-
generacy that can not be lifted by any perturbation that is local from the parafermion
viewpoint. Physical ground states in this representation correspond toZ4-preserving
Schrödinger-cat superpositions of clock states defined in Eq. (3.55).

− cos(4φ)− cos(2θ) − cos(2θ)

Figure 35: Domain configuration used to extract zero-mode operators from the
bosonized theory.

Although the parafermion zero-mode operators are easily identified from the micro-
scopic Hamiltonian, it is instructive to recover their form also from the low-energy
bosonized point of view. Figure 35 sketches a domain configuration in which triv-
ial phases gapped by − cos(2θ) (recall Sec. 3.3) flank a central region gapped by
− cos(4φ). For compactness we choose a gauge where θ pins to 0 in the left domain,
but parametrize φ = πâ/2 in the central domain and θ = πb̂ in the right domain.
Here â, b̂ are integer-valued operators that obey the commutator [â, b̂] = 2i/π inher-
ited from Eq. (3.45). Using Eq. (3.49), parafermion operators acting at the left and
right domain walls respectively project to

α1 = ei π2 â , α2 = ei π2 (â−b̂) , (3.56)

which are the continuum counterpart of the lattice parafermion zero modes.

A system of spinful fermions splits the difference between the clock and parafermion
realizations: half of the degeneracy has a topological origin, while the other half is
encoded in the local order parameter

m ≡ 〈iψRψL + H.c.〉 ∼ 〈cos(2φ)〉 = ±1 , (3.57)

signaling spontaneous breaking of electronic time-reversal Telec,Uspin, and Z4. Sim-
ilar phases have been captured previously in both 1D systems [68, 89, 100]—most
notably Fe chains proximitized by a Pb superconductor [26, 33, 51, 82, 83, 88, 94]—
and proximitized quantum-spin-Hall edges [87, 111]. Even at f = λ = 0, the surviv-
ing pieces of the microscopic fermion Hamiltonian in Eq. (3.40) appear nontrivial
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due to the interactions implicit in the J term. (Recall the density dependence in
t̂, ∆̂.) In terms of dual fermions f̃a,α, the f = λ = 0 model is of course quadratic.
Changing from fermions to dual fermions, however, requires a non-local change of
basis. Alternatively, one can tame these interactions with a judicious local basis
change,

fa,↑ =
e−i π4

2
(ca + c†a + da − d†a) , (3.58)

fa,↓ =
e−i π4

2
(da + d†a + ca − c†a) , (3.59)

where ca, da are canonical fermions with symmetry properties given in Table 35. In
this basis the Hamiltonian becomes

H f=λ=0 = −J
N−1∑
a=1
(mac†a + ca)(ca+1 − ma+1c†a+1) + H.c.

(3.60)

with
ma = eiπd†ada = − f †a σ

x fa + (i f †a,↑ f †a,↓ + H.c.) (3.61)

operators that commute with the Hamiltonian for any a [see Section 3.11 for an
alternate derivation of Eq. (3.60)]. Note that in clock language we have ma = σ

2
a .

By symmetry, ma is the lattice analogue of the continuum order parameter in
Eq. (3.57). We note that one cannot obtain this microscopic order parameter by
using Eqs. (3.44) in conjunction with Eq. (3.57) because the former relations holds
only in the low-density limit, which is not relevant here; recall the discussion below
Eq. (3.47). In terms of the original spinful fermions, ma receives contributions
from the magnetization along x and singlet pairing with an imaginary coefficient—
both of which share common symmetry properties. For simplicity we will refer to
ma as just ‘magnetization’ in what follows. The energy is minimized by choosing
either ma = +1 or −1 uniformly across the entire chain. Focusing on such uniform
configurations and replacing ma → m, the Hamiltonian further simplifies to

H f=λ=0 → −2J
N−1∑
a=1
(mc†a + ca)(ca+1 − mc†a+1) . (3.62)

Equation (3.62) can be recognized as the trivially solvable limit of the Kitaev chain
in the topological phase [58], but with one crucial distinction: in our case the
model arose from spontaneous breaking of symmetries, most notably electronic
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Telec = Z4T Uspin = Z4C Z4

c→ ic† ic† ieiπd†dc†

d → −id† −id† −ieiπc†cd†

γ1 → mγ1 γ1 mγ1

γ2 → mγ2 −γ2 −mγ2

Γ1 → pΓ1 Γ1 pΓ1

Γ2 → pΓ2 −Γ2 −pΓ2

Table 35: Symmetry properties for the microscopic fermions ca, da defined through
the basis change in Eqs. (3.58) and (3.59). Themiddle two lines summarize the trans-
formations for the symmetry-enriched Majorana zero mode operators [Eq. (3.63)
and (3.64)] that arise in the fermionic representation of the Ashkin-Teller model
at f = λ = 0. The quantity m = iΓ1Γ2 = ±1, which is odd under all three
symmetries in the table, is the order parameter whose condensation catalyzes the
topological phase. Finally, the last two lines list the transformations for Γ1,2. The
factor p = iγ1γ2 is required to preserve anticommutation between Γj and γ j .

time reversal. Consequently, the phase of matter realized here is distinct from that
of the Kitaev chain. (See, e.g., Ref. [23] for a general discussion of the classifica-
tion of short-range entangled phases with spontaneous symmetry breaking.) The
Hamiltonian supports ‘symmetry-enriched edge Majorana zero modes’ described
by

γ1 = ei π4 (m+1)c†1 + e−i π4 (m+1)c1 , (3.63)

γ2 = ei π4 (m−1)c†N + e−i π4 (m−1)cN , (3.64)

whose form depends on the magnetization order parameter. These zero modes
satisfy the usual Majorana algebra γ2

i = 1, γi = γ
†

i , and {γ1, γ2} = 0, but transform
nontrivially under electronic time-reversal symmetry,

Telec : γ j → mγ j, (3.65)

reflecting the intertwined symmetry-breaking order and topological physics. One
can not sweep away the m in Eq. (3.65) by any redefinition of theMajorana operators
that preserves their algebra. More physically, since each edge hosts only one
Majorana mode, the m factor is required by the fact that T 2

elec must send γ j → −γ j .
In Sec. 3.6 we will argue on general grounds that proximitized Fe chains provide a
concrete physical realization of our modified Kitaev-chain Hamiltonian.
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Projecting the total-fermion-parity operator [Eq. (3.22)] into the ground-state man-
ifold yields

Ptot ≡ eiπ
∑

a(na,↑+na,↓) → mp , (3.66)

where we defined
p = iγ1γ2 . (3.67)

Equation (3.66) further illustrates the intertwinement of symmetry and topology:
Flipping m while leaving p constant changes the total parity. This type of magneti-
zation reversal is thus naturally implemented by fermionic operators, which one can
efficiently obtain by decomposing

m = iΓ1Γ2. (3.68)

Here Γ1,2 are Majorana operators that we take to additionally obey {Γi, γ j} = 0; they
simultaneously flip the magnetization and total parity as desired. Together, γ j and
Γj form a complete set of low-energy operators describing this fermionic phase (see
Table 35 for their symmetry properties). We emphasize that Γ1,2, in contrast to γ1,2,
are generally not local operators since they change themagnetization across the entire
system. Locality therefore dictates that Γj can only appear in the Hamiltonian when
the system becomes sufficiently small that the magnetization becomes a fluctuating
quantum degree of freedom. We will encounter such ‘small’ systems in Sec. 3.4.

It is worth noting that while the factor of m in Eq. (3.65) is unavoidable, the
form of the parity operator above depends on our specific definition of γ1,2. One
could instead define γ′1 = γ1 and γ′2 = mγ2, yielding a more standard expression
Ptot = iγ′1γ

′
2. Magnetization flips would then more naturally be implemented

by bosonic operators. This alternate convention is, however, less convenient for
understanding hybridization of symmetry-enriched Majorana modes that will be
discussed later.

Interestingly, one can reassemble the four Majorana operators characterizing the
low-energy subspace into a single pair of Z4 parafermion zero modes:

α1 = −ei π4 (m−1)γ1 , (3.69)

α2 = −e−i π4 [p(m+1)+1]
Γ2 . (3.70)

These expressions arise upon translating the microscopic zero-mode operators from
the parafermion representation into fermionic language and projecting into the low-
energy subspace. Such a reorganization is always possible for any quartet of Ma-
jorana operators. Some caution is thus warranted when invoking a parafermion
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interpretation of the physics, particularly when the operators are non-local (as is the
case for α2 above when the fermion system is ‘large’). Section 3.4 elaborates on the
issue.

Here too we can recover the zero-mode structure from the low-energy bosonized
theory. Consider again the setup from Fig. 35, and respectively write θ = 0,
φ = πâ/2, and θ = πb̂ in the left, central, and right domains. In the present context
â, b̂ determine the central domain’s magnetization and total fermion parity according
to

m = eiπâ, Ptot = eiπb̂ , (3.71)

where we used Eq. (3.47) for the parity operator. The bosonized analogue of
Eqs. (3.63) and (3.64) are

γ1 =
√

2 cos
[
π

2

(
â −

1
2

)]
, (3.72)

γ2 = −i
√

2 cos
[
π

2

(
â +

1
2

)]
eiπb̂ . (3.73)

Both operators are local in the sense that γ1 involves only projections of physical
fermionsψR/L ∼ ei(φ±θ) evaluated at the left domain wall, while γ2 similarly involves
fermions evaluated at the right domain wall. Moreover, using Eq. (3.71) we have
p = iγ1γ2 = mPtot, in harmony with Eqs. (3.66) and (3.67). The remaining pair of
Majorana operators can be written

Γ1 = cos
[
π

2

(
â − b̂ +

1
2

)]
− cos

[
π

2

(
â + b̂ +

1
2

)]
(3.74)

Γ2 = cos
[
π

2

(
â − b̂ −

1
2

)]
+ cos

[
π

2

(
â + b̂ −

1
2

)]
, (3.75)

which involve not only domain-wall fermions, but also the operator ei
∫
x∈central domain ∂xθ/2 ∼

ei π2 b̂ that flips the central domain’s magnetization. This definition of Γ1,2 reflects
a gauge choice and is certainly not unique: Any rotation among Γ1 and Γ2 that
preserves the magnetization constitutes an equally valid set of operators. Equa-
tions (3.74) and (3.75) yield iΓ1Γ2 = m, consistent with the decomposition in
Eq. (3.68). Using Eqs. (3.69) and (3.70) to repackage the bosonized form of
the Majorana operators into Z4 parafermion zero modes precisely reproduces the
parafermion operators from Eq. (3.56).

The Majorana representation of the zero modes is far less compact compared to the
parafermion representation; cf. Eqs. (3.56) and (3.72) through (3.75). Nevertheless,
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the former provides a much more natural description for an electronic system as
it clearly partitions the topological and non-topological parts of the degeneracy.
A similar viewpoint was very recently stressed by Mazza et al. [68]. We also
note while some references (e.g., the review in Ref. [6]) discussed domain walls in
quantum-spin-Hall edges with spontaneously broken time-reversal in terms of Z4

parafermions, it is now clear that the physics is more accurately described in terms
of symmetry-enriched Majorana modes.

The form of the Hamiltonians in Eqs. (3.60) and (3.62) implies that the ground
states, and in fact all energy eigenstates, have a free-fermion character despite the
obviously interacting nature of the original fermionic Hamiltonian in Eq. (3.43).
(More precisely, for any fixed configuration of ma’s the Hamiltonian is quadratic.)
This observation connects with the recent work of Meichanetzidis et al. [69] that
inferred free-fermion eigenstates from an analytic solution of the f = 0 fixed point
combined with an interesting numerical diagnostic for the general case [103]. In
terms of the clock-model states in Eq. (3.55), the total-even-parity fermionic ground
states correspond to |A〉 + |C〉, |B〉 + |D〉 while the odd-parity states are |A〉 − |C〉,
|B〉 − |D〉 (to see this, recall that Ptot = Q2 =

∏
a τ

2
a ).

Figure 34, second column, summarizes the results from this subsection.

Phases driven by κ1 < 0
When κ1 is relevant and negative, φ locks to π/4 modulo π/2, leading to physics
similar to what we encountered in Sec. 3.3 for positive κ1. Clock spins once again
realize a broken-symmetry phase with four degenerate ground states, parafermions
form a topological phase where the degeneracy is fully protected, and fermions
enter a topological state hosting a partially protected degeneracy encoded through
symmetry-enriched Majorana zero modes. These states are distinct, however, from
those of Sec. 3.3, at least in the presence of C symmetry. The bosonized theory
encodes this distinction as follows. To smoothly interpolate between phases driven
by κ1 > 0 and κ1 < 0, one could in principle replace−κ2 cos(4φ) → −κ2 cos(4φ−φ0)

and then continuously sweep φ0 between 0 and π. However, C symmetry permits
only φ0 = 0 or π, thereby obstructing the interpolation; similar arguments appear in
Ref. [74] in the context of symmetry-protected topological phases.

Pinning of φ to π/4 modulo π/2 implies that clock spins spontaneously break Z4

symmetry by developing a canted ferromagnetic polarization 〈σ〉 = (1 ± i)/2 or
(−1± i)/2. By modifying the ‘root states’ |A, B,C,D〉 defined in Eq. (3.55), we can



60

construct trial wavefunctions

|AB〉 =
∏

a

1 + τa
√

2
|A〉 , |BC〉 =

∏
a

1 + τa
√

2
|B〉

|CD〉 =
∏

a

1 + τa
√

2
|C〉 , |DA〉 =

∏
a

1 + τa
√

2
|D〉

(3.76)

with precisely these expectation values 5. For example, in |AB〉 any site is equally
likely to be found with σ = 1 or i (and similarly for |BC〉, etc.). Two closely related
properties are worth noting: (i) these trial states involve no antiparallel σ bonds
at any distance and (ii) the (1 + τa) factors ensure that the wavefunctions contain
no τ = −1 components. States with these characteristics are exact ground states
of the Ashkin-Teller model [Eq. (3.38)] at λ = 1, independent of f /J. At λ = 1
the J term penalizes antiparallel nearest-neighbor σ bonds but does not distinguish
parallel and 90◦ bonds, while the f term penalizes τ = −1 but does not differentiate
other τ states. See Fig. 36 for an illustration. Trial states in Eq. (3.76) incur no such
penalties, and are thus indeed ground states.

Other ground states exist as well—a consequence of an ‘accidental’ U(1) symmetry
supported by the Ashkin-Teller model in this limit [62]. In fact at λ = 1 the Ashkin-
Teller model is known to reside at the edge of an extended ‘critical fan’ in the phase
diagram [62]. To move away from criticality we therefore additionally incorporate
a second-neighbor interaction

δH = −J′
N−2∑
a=1
(σ†aσa+2 + σ

†

a+2σa − σ
2
aσ

2
a+2) (3.77)

with J′ > 0. The above perturbation spoils the accidental U(1) by penalizing
second-neighbor antiparallel σ bonds (similar to the J term), leaving our trial
canted ferromagnet states as unique ground states. Exact diagonalization numerics
summarized in Fig. 37 support this scenario; see caption for details. As a further
check, DMRG calculations were performed on a 400-site system using ITensor 6.
With J′ = 0, DMRG exhibited characteristics of a gapless system, predicting a gap
several orders of magnitude below the J, f couplings. When a small J′ perturbation
was added, DMRG instead converged to the expected canted ground states 7 while

5These trial states do not form an orthogonal set on a finite chain, though any nontrivial overlaps
vanish as 1/2N .

6Calculations performed using the ITensor C++ library, http://itensor.org/
7More precisely, with Z4 symmetry enforced, DMRG returns Schrodinger-cat superpositions of

the states in Eq. (3.76). Adding a small Z4-breaking perturbation of the form ei
π
4 σj + H.c. to a

single site j, however, yields one of the physical canted product states.
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Figure 36: Energies versus λ obtained from the Hamiltonians shown at the top of
the figure. The left plot represents the energy for a single J bond in the Ashkin-
Teller model, Eq. (3.38). As λ increases from zero, the energy difference between
parallel σ bonds (i.e., σ†1σ2 = 1) and 90◦ σ bonds (σ†1σ2 = ±i) decreases. At
λ = 1 these states become degenerate; the Hamiltonian then penalizes antiparallel
σ bonds (σ†1σ2 = −1) but does not distinguish other configurations. The right plot
similarly represents the energy for a single f term in the Ashkin-Teller model. Here
the energy difference between τ = 1 and τ = ±i states diminishes with λ until they
become degenerate at λ = 1; the Hamiltonian then penalizes τ = −1 states but does
not differentiate other configurations. As discussed in Secs. 3.3 and 3.3, the λ = 1
limit is useful for accessing canted-ferromagnet and symmetry-protected topological
phases for clock spins, and by extension the analogous phases for parafermions and
spinful fermions.
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Figure 37: Low-energy spectra of the perturbed Ashkin-Teller model H + δH given
in Eqs. (3.38) and (3.77) for a chain of N = 10 sites with open boundary conditions.
All spectra are shifted such that the ground states sit at zero energy, independent of
parameters. (a) The ‘vanilla’ clock model corresponding to λ = J′ = 0 undergoes
a phase transition at J = f separating the paramagnetic ( f > J) from the ordered
(J > f ) phase. In a finite system, we find a unique ground state in the former and
an (approximately) four-fold-degenerate ground state in the latter. (b) For non-zero
λ, there is a finite region around J = f where the spectrum remains relatively
flat, and which we interpret as a finite-size avatar of the critical fan [62]. (c) At
λ = 1 the spectrum is highly degenerate for arbitrary J and f . For N ∈ [2, 10] the
ground-state degeneracy grows as 2N + 1. (d) Turning on non-zero J′ immediately
lifts this degeneracy; for J′ > 0 only a four-fold-degenerate ground state remains as
expected for the canted-ferromagnet phase.

predicting a gap of order J′. These results strongly suggest that the Hamiltonian is
indeed gapped so long as J′ > 0.
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Translating into parafermion language, δH becomes

δH = −J′
N−2∑
a=1

[
(iα†2aα2a+1α

†

2a+2α2a+3 + H.c.)

− α2
2aα

2
2a+1α

2
2a+2α

2
2a+3

]
. (3.78)

See Fig. 34 for an illustration of the full set of couplings for the parafermion chain
arising from both δH and the Ashkin-Teller model at λ = 1. Our prior analysis
allows us to deduce some general features of the parafermion phase realized here:
First, ground states necessarily correspond to Z4-preserving superpositions of clock
states in Eq. (3.76), and second, the chain must host edge Z4 parafermion zero
modes. (Upon breaking C this phase smoothly connects to the topological phase
discussed in Sec. 3.3; since parafermion zero modes obviously exist in the latter
case, they must also survive in the former by continuity. Restoring C can not change
this conclusion.) Explicitly constructing lattice zero-mode operators is nevertheless
nontrivial given that the Hamiltonian no longer consists of a sum of commuting
terms 8.

We will content ourselves with capturing the zero modes within a bosonized frame-
work. Let us take a domain configuration akin to Fig. 35, with outer regions again
gapped by − cos(2θ) but with the central region gapped by + cos(4φ) instead of
− cos(4φ). We parametrize the low-energy sector with integer-valued operators â, b̂

by writing θ = 0, φ = π/4+ πâ/2, and θ = πb̂ in the left, middle, and right regions.
Note in particular the π/4 shift in φ compared to the parametrization adopted in
Sec. 3.3. The zero modes we seek follow from projecting parafermions evaluated at
domain walls, and then introducing phase factors to ensure that the resulting low-
energy operators fourth to unity; this procedure yields parafermion zero modes α1,2

given precisely by Eq. (3.56). What, then, is the distinction between the parafermion
analogue of the conventional ferromagnetic and canted ferromagnetic phases? The
answer lies in the symmetry properties of the zero modes. In particular, under C
the zero modes obtained in Sec. 3.3 transform as α j → α†j , while in the present case
they transform as α j → −iα†j—a consequence of the π/4 shift mentioned above.
Without C symmetry this distinction vanishes, consistent with our earlier arguments.

8We expect that localized ‘strong zero mode’ operators that commute with the full microscopic
Hamiltonian—and thus guarantee at least four-fold degeneracy of all eigenstates—do not actually
exist, similar to the situations encountered in Refs. [4, 34, 49, 52, 76]. ‘Weak zero modes’, which
arise from projections of local operators and ensure degeneracy only among ground states, certainly
exist and are captured by the bosonization description that follows.
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For spinful fermions, two ground states arise from Majorana zero modes while the
other two reflect spontaneous symmetry breaking. A more obvious distinction from
Sec. 3.3 emerges here: The local order parameter

m̄ ≡ 〈ψRψL + H.c.〉 ∼ 〈sin(2φ)〉 = ±1 (3.79)

again breaks Telec and Z4 but, contrary to Eq. (3.57), preservesUspin. We can readily
obtain the zero-mode structure from the continuum bosonized theory, following
exactly the same procedure as for parafermions above. Within this framework our
four Majorana zero mode operators once again take the form in Eqs. (3.72) through
(3.75) and similarly satisfy p = iγ1γ2 = m̄Ptot and m̄ = iΓ1Γ2. Moreover, the
Majorana operators transform under Telec and Z4 precisely as in Table 35 (with
m → m̄); they are invariant under Uspin, however, because the ground states now
preserve that symmetry.

We can again interpret the physics in terms of a Kitaev-chain-like model arising
from spontaneous symmetry breaking. The microscopic order parameter can be
written as

m̄a = i(cada − d†ac†a) = − f †a σ
y fa, (3.80)

corresponding to a magnetization along y. The above expression arises from
fermionizing σ2(τ − τ†)/2, which has the same symmetry properties as Eq. (3.79).
Because m̄a no longer commutes with the lattice Hamiltonian, an exact microscopic
analysis is nonetheless more nontrivial than in Sec. 3.3 and will not be pursued here.

The canted phase and its parafermionic and fermionic counterparts are summarized
in the third column of Fig. 34; note the close relation to the phases from the second
column.

Phases driven by κ2 < 0
With relevant κ2 < 0 the cos(2θ) term pins θ to π/2 modulo π. It is tempting to
conclude that clock spins then form a trivial, symmetric gapped phase as found in
Sec. 3.3 for κ2 > 0, since the pinning once again condenses the disorder operator
µ. However, one can not smoothly interpolate between phases driven by κ2 > 0 and
κ2 < 0 without violating symmetries. Let us first apply the same logic as in the
previous subsection: A term of the form −κ2 cos(2θ − θ0) can only have θ0 = 0 or π
unless both C and T are explicitly broken, which precludes symmetrically bridging
the two phases via continuous evolution of θ0 [74]. We could alternatively connect
the phases by (i) starting from the trivial regime gapped by κ2 > 0, (ii) ramping
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up a ‘large’ cos(φ − φ0) perturbation for some constant φ0, (iii) sweeping κ2 from
positive to negative, and (iv) turning off the cos(φ − φ0) term. The system follows
a unique ground state throughout this path, yet along the way maximally breaks Z4

and possibly other symmetries depending on φ0. By ‘maximally’, we mean that
Z4 and Z2

4 are both violated. To better understand this second scenario, suppose
that we replace cos(φ − φ0) with cos(2φ)—which also breaks Z4 but preserves Z2

4.
Here, passing from (i) to (ii) incurs an Ising-type phase transition at which the
order parameter eiφ condenses into one of two spontaneously chosen values. The
cos(φ − φ0) term, by contrast, circumvents criticality by favoring a unique state.
An identical distinction arises between the β2 = 2π and 4π theories discussed in
Ref. [63]; in our conventions, the self-dual Sine-Gordon models described there
model the deformation from the cos(2θ)-dominated phase to the cos(qφ)-dominated
phase, where q is an integer.

The observations above suggest that κ2 < 0 germinates a symmetry-protected topo-
logical phase (SPT). We will show that this is indeed the case not only for clock
spins, but also for parafermions and fermions.

Recall that phases driven by κ2 < 0 and κ1 < 0 are dual to one another, and that
the κ1 < 0 state arises microscopically from the Ashkin-Teller Hamiltonian at λ = 1
supplemented by δH in Eq. (3.77). Dualizing the perturbed Ashkin-Teller model
thus immediately yields a parent Hamiltonian for the phases of interest here. In
the Ashkin-Teller parts, dualizing merely swaps J ↔ f . At λ = 1 the swap is
inconsequential insofar as ground states are concerned, since these pieces merely
penalize τ = −1 configurations and antiparallel nearest-neighbor σ bonds for any
f /J (see again Fig. 36). The dual of δH takes the form

δ̃H = − f ′
N−1∑
a=1
(τaτa+1 + τ

†
aτ
†

a+1 − τ
2
aτ

2
a+1). (3.81)

For f ′ > 0, which we assume throughout, δ̃H additionally penalizes nearest-
neighbor configurations with (τa, τa+1) = (1,−1), (−1, 1), (i, i), or (−i,−i).

We can modify the ‘root state’ |τ = 1, . . . , 1〉 to construct an exact ground state of
our new perturbed Ashkin-Teller model. For reasons that will become clear shortly,
we label the wavefunction

| ↓↑〉 =

N−1∏
a=1

1 + σ†aσa+1
√

2
|τ = 1, . . . , 1〉 ; (3.82)
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note the dual relation to the canted-ferromagnet states defined in Eq. (3.76). The
(1 + σ†aσa+1) product generates an entangled state that, by construction, projects
away all antiparallel σ bonds. Nontrivial elements in the product take the form
σ†a1σa1+1σ

†
a2σa2+1 · · ·σ

†
amσam+1 where all ai’s are distinct. Crucially, such terms

produce neither τ = −1 configurations nor (τa, τa+1) = (i, i) or (−i,−i) pairs. (Ob-
taining τ = −1 contributions would require σ2

a factors, while the latter pairs would
require σ†aσ†a+1 or σaσa+1; none of these appear.) So | ↓↑〉 maximally satisfies both
the λ = 1 Ashkin-Teller model and δ̃H, and hence is a ground state as claimed.

For any site away from the edges, configurations with τ = 1, i, and −i all occur in
| ↓↑〉. Acting with σ or σ† in the bulk thus necessarily takes the system out of
the ground state, e.g., by mixing in τ = −1 components penalized by the Ashkin-
Teller terms. Boundaries behave differently. The leftmost two sites involve only
(τ1, τ2) = (1, 1), (1, i), (i, 1), and (i,−i) pairs, and the rightmost two sites involve only
(τN−1, τN ) = (1, 1), (1,−i), (−i, 1), and (i,−i) pairs. We can therefore twist the edge
spins without energy cost, yielding three additional ground states

| ↑↑〉 = σ1 | ↓↑〉 , | ↓↓〉 = σ†N | ↓↑〉 , | ↑↓〉 = σ1σ
†

N | ↓↑〉 . (3.83)

For later use, observe that the generator Q of Z4 symmetry acts in the ground-state
subspace as follows:

Q | ↑↑〉 = i | ↑↑〉 , Q | ↓↓〉 = −i | ↓↓〉 ,

Q | ↓↑〉 = | ↓↑〉 , Q | ↑↓〉 = | ↑↓〉 .
(3.84)

Our construction shows that each boundary of the clock chain hosts a degenerate
pseudospin-1/2 degree of freedom, whichwe describe with Pauli matrices ηµ1 and ηµ2 .
(Arrows in the kets above designate ηz

1,2 eigenvalues.) The pseudospins are locally
distinguishable by Hermitian operators i(τ − τ†) since 〈ηz

1η
z
2 |i(τ1 − τ

†

1 )|η
z
1η

z
2〉 = η

z
1

and 〈ηz
1η

z
2 |i(τN−τ

†

N )|η
z
1η

z
2〉 = η

z
2. These expectation values, together with Eqs. (3.83)

and (3.84), enable us to relate pseudospins and microscopic operators projected into
the ground-state subspace with a projector P:

Pi(τ1 − τ
†

1 )P = η
z
1, Pi(τN − τ

†

N )P = η
z
2 , (3.85)

Pσ1P = (η
x
1 + iηy1)/2, PσNP = (η

x
2 + iηy2)/2 , (3.86)

PQP = ei π4 (η
z
1+η

z
2). (3.87)

Table 36 summarizes the pseudospin symmetry properties that follow from these
relations.
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Z4 C T

ηx
j → −η

y
j ηx

j ηx
j

η
y
j → ηx

j −η
y
j η

y
j

ηz
j → ηz

j −ηz
j −ηz

j

Telec = Z4T Uspin = Z4C Z4

γ j↑→ γ j↓ γ j↓ γ j↓

γ j↓→ −γ j↑ γ j↑ −γ j↑

Table 36: Symmetry transformations for the SPT edge degrees of freedom in the
clock realization (top) and spinful-fermion realization (bottom). Here j = 1 and 2
respectively correspond to the left and right boundaries.

Abandoning C andT allows the boundary degeneracy to be lifted through local edge
perturbations of the form hz(η

z
1 + η

z
2), while discarding Z4 permits a perturbation

hx(η
x
1 + η

x
2 ) that likewise spoils the degeneracy. The symmetry-protection of the

edge degeneracy seen here fully corroborates the analysis of the bulk given in the
beginning of this subsection. In Section 3.13 we further show that the edge modes
are anomalous (in all representations) in the presence of either Z4T , or Z4 and C,
thus proving that the system forms an SPT.

Suppose next that parafermions form the physical degrees of freedom. Figure 34
sketches the parafermion-chain couplings for this case [including δ̃H, which takes
the same form as Eq. (3.78) but translated by one site]. The ground states in
Eq. (3.84) are already eigenstates of the Z4 generator Q, and so form a physical
basis also in this realization. Physical low-energy operators should, however, now
derive from projections of parafermionic rather than clock degrees of freedom.
Specifically, the microscopic operators to be projected become

− e−i π4 α†1α2 + H.c. = i(τ1 − τ
†

1 ),

− e−i π4 α†2N−1α2N + H.c. = i(τN − τ
†

N )

α1 = σ1, α2N = ei π4 Q†σN, (3.88)

which give rise to edge operators that we label ηµj,PF . At the left boundary the
projection is unmodified compared to the clock case; hence ηµ1,PF = η

µ
1 . The factor

of Q† appearing in α2n does modify the structure of the edge mode at the right
boundary, yielding

ηz
2,PF = η

z
2 , η

x,y
2,PF = e−i π4 η

z
1η

x,y
2 . (3.89)
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Notice that ηx,y
1,PF and ηx,y

2,PF donot commute—a remnant of the nonlocal parafermionic
commutation relations. We stress that locality prevents these operators from ap-
pearing in the Hamiltonian by themselves. The only local operators that can remove
the edge degeneracy in the parafermion SPT realization take the form hz,1η

z
1,PF and

hz,2η
z
2,PF , which require breaking C and T . In other words, the Z4-breaking route to

connecting the trivial and SPT phases discussed earlier for clock spins is inaccessible
because Z4 can never be broken explicitly in a parafermion system.

We treat the spinful-fermion realization analogously. Since fermions arise from
attaching a ‘doubled’ string to clock operators (Fig. 32), the edge modes take
the same form as for the parafermion chain but with e−i π4 η

z
1 → e−i π2 η

z
1 = −iηz

1 in
Eq. (3.89). [That is, the fermionic counterpart of Eq. (3.88) involves Q2 instead of
Q†.] One can conveniently parametrize the resulting edge modes as follows,

ηz
1 = iγ1↓γ1↑, ηz

2 = iγ2↓γ2↑ (3.90)

ηx
1 + iηy1 = γ1↑ − iγ1↓ (3.91)

− iηz
1(η

x
2 + iηy2) = γ2↓ − iγ2↑, (3.92)

where γ jα are Majorana-fermion operators. Table 36 lists their transformation
properties under the symmetry generators Telec,Uspin, and Z4 that are natural for
the fermionic representation. Most importantly, we see that the pair of Majorana
modes at each end form a Kramers doublet under electronic time reversal—which
immediately implies that the SPT in this representation corresponds to a time-
reversal-invariant topological superconductor (TRITOPS) [19, 27, 40, 41, 57, 92,
112].

Two additional observations further illuminate the edge physics. First, our fermion-
ization algorithm yields the relation

Sz
a ≡

~
2
( f †a,↑ fa,↑ − f †a,↓ fa,↓) = −i

~
4
(τa − τ

†
a ) , (3.93)

where Sz
a denotes the z-component of the electronic spin at site a. Upon combining

with Eq. (3.85) we obtain

PSz
1P = −

~
4
(iγ1↓γ1↑), PSz

NP = −
~
4
(iγ2↓γ2↑) . (3.94)

Thus each edge hosts a fractional spin ±~/4, which is another known signature of a
TRITOPS phase [19, 57]. It is illuminating to view this result also in bosonization.
In our bosonized theory the edge can bemodeled by taking a TRITOPS phase gapped



69

by + cos(2θ) bordered by trivial phases gapped by − cos(2θ). Using Eq. (3.46), we
see that the resulting π/2 kinks in θ at the domain walls bind fractional spin in
agreement with our lattice calculation. Interestingly, an identical domain structure
arises in the bosonized description of a quantum-spin-Hall edge gapped by regions
with opposite magnetization. In that context the domain walls bind e/2 fractional
charge [91], which we now see is a precise analogue of fractional spin at a TRITOPS
edge. Yet another instance in which fractional spin binds to the edge of a 1D
model occurs in the Haldane phase [1, 31, 43], which was analyzed using similar
bosonization methods in Ref. [74]. Note that the status of the Haldane phase as an
SPT is subtle when viewed as arising from electrons; see Refs. [8, 78]. By contrast,
time-reversal-symmetry alone protects TRITOPS as a nontrivial SPT.

Second, the total fermion parity operator obeys

Ptot = Q2 → γ1↓γ1↑γ2↓γ2↑. (3.95)

Equation (3.84) then implies that | ↓↑〉 and | ↑↓〉 have even parity while | ↑↑〉 and
| ↓↓〉 have odd parity. It is now clear that the edge Majorana modes cycle through
the ground states by simultaneously flipping the total fermion parity and fractional
edge spins. Electronic time-reversal by itself suffices to preserve the boundary
degeneracy and SPT order; in principle Uspin can also protect the topological phase
but is a less natural symmetry to impose on an electronic system. Finally, as in the
parafermion realization breaking Z4 does not destroy the SPT, in this case because
Z2

4 can never be broken explicitly.

The final column of Fig. 34 summarizes the SPT’s in each representation.

Hybrid order
It is also possible to stabilize phases with both 〈e2iφ〉 , 0 and 〈eiθ〉 , 0. In clock
language such ‘hybrid order’ translates into the square of order and disorder operators
condensing simultaneously—i.e., 〈σ2〉 , 0 and 〈µ2〉 , 0—while σ itself fluctuates
wildly. Clock spins thus spontaneously break Z4 but preserve Z2

4, yielding only
two degenerate ground states. For simplicity, we will concentrate on hybrid orders
that preserve C and T symmetries, which admit a particularly simple microscopic
parent Hamiltonian given by

Hhybrid order = −J2

N−1∑
a=1

σ2
aσ

2
a+1 − f2

N∑
a=1

τ2
a . (3.96)
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We assume J2, f2 > 0 throughout this subsection. Equation (3.96) corresponds to
the Ashkin-Teller model with only the λ terms retained, and is trivially solvable
since σ2 and τ2 commute.

For any f2/J2, ground states have τ2
a = 1 for all a and Ising-like ferromagnetic

order with either σ2
a = +1 or −1 uniformly across the chain. The ground-state

wavefunctions can be written in a similar form as the canted-ferromagnet states in
Eq. (3.76):

|+〉 =
∏

a

1 + τ2
a

√
2
|σ = 1, . . . , 1〉 (3.97)

|−〉 =
∏

a

1 + τ2
a

√
2
|σ = i, . . . , i〉 . (3.98)

The (1 + τ2
a ) factors simultaneously disorder σ and project out τ2

a = −1 config-
urations. As desired, both states are C,T -symmetric and yield 〈σ〉 = 0, while
τ2 |±〉 = |±〉 and σ2 |±〉 = ±|±〉. When J2 = f2 the Hamiltonian is self-dual; one can
also view the phase itself as self-dual for general f2/J2, in the sense that swapping
f2 ↔ J2 yields exactly the same order. We show in Section 3.12 that duality indeed
leaves the above states invariant, modulo a trivial basis transformation.

Equation (3.49) implies that the associated parafermion system realizes a ‘parafermion
condensate’ phase with 〈α2〉 , 0 [4, 17, 77]. The parent Hamiltonian in this repre-
sentation becomes

Hhybrid order = J2

N−1∑
a=1

α2
2aα

2
2a+1 + f2

N∑
a=1

α2
2a−1α

2
2a , (3.99)

which is an example of the commuting-projector models from Ref. [17], and can
also be viewed as a simpler variant of the parafermion-condensate model intro-
duced by Motruk et al. [77]. The two ground states correspond to Z4-preserving
superpositions |+̃〉 = (|+〉 + |−〉) /

√
2 and |−̃〉 = (|+〉 − |−〉) /

√
2 that are locally

indistinguishable and satisfy Q |±̃〉 = ±|±̃〉. Operators α2 ∝ σ2µ2 acting anywhere
in the chain toggle between the ground states. As emphasized in Refs. [4, 17, 77],
the system exhibits a protected degeneracy yet lacks edge zero modes.

In the spinful-fermion realization, the two-fold degeneracy arises entirely from spon-
taneous symmetry breaking. The order parameter m from the bosonized theory in
fact takes the same form given in Eq. (3.57). This symmetry breaking emerges trans-
parently from the fermionic representation of Eq. (3.96), which can be conveniently
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Ising-like ferromagnet
Clock

Parafermion

Spinful
fermion

Parafermion condensate

Symmetry breaking only

Hamiltonian
parameters

σ2

m = ±1

|−〉

|+〉

J2, f2 �= 0

J2

f2

Figure 38: Summary of phases stabilized by the equivalent Hamiltonians of
Eqs. (3.96), (3.99), and (3.100). In the spinful-fermion realization, the system forms
a topologically trivial strong-pairing superconductor with spontaneous symmetry
breaking.

expressed as

Hhybrid order = − J2

N−1∑
a=1

mama+1 − f2
N∑

a=1
(2na,↑ − 1)(2na,↓ − 1). (3.100)

Here ma = σ2
a = − f †a σx fa + (i f †a,↑ f †a,↓ + H.c.) is the microscopic clock order

parameter re-expressed in terms of fermions [cf. Eq. (3.61)]. To maximally satisfy
the f2 termwe project into the sector where both spin species on a given site are either
occupied or unoccupied. In effect, the projection strongly pairs the fermions into
bosons that can be conveniently described with spin-singlet Cooper-pair operators
ba = fa,↑ fa,↓. Within this low-energy subspace, the order parameter projects to
ma → i(b†a − ba). Clearly the system can now also maximally satisfy the J2 term by
condensing 〈i(b†a − ba)〉 = ±1. We thereby obtain a strong-pairing superconductor
in which the fermions spontaneously develop an s-wave pairing potential with
imaginary coefficient, thus breaking electronic time-reversal as well asUspin and Z4.

Figure 38 summarizes the phases highlighted in this subsection.
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3.4 Experimental Implications
How much non-Abelian-anyon physics survives in 1D electronic systems?
At this point we have studied in detail the exact mapping between parafermions
and spinful fermions, relating symmetries and various phases of matter in these
representations. In Secs. 3.3 and 3.3we found that a parafermion chainwith unpaired
Z4 parafermion zero modes translates into an electronic topological superconductor
that hosts symmetry-enrichedMajorana zero modes and spontaneously breaks time-
reversal symmetry. A natural question arises in light of this connection: to what
extent does the non-Abelian-anyon physics encoded through parafermion zeromodes
survive in the latter strictly 1D fermionic setting? We will specifically address the
survival of the three signature properties of non-Abelian anyons highlighted in the
introduction: (i) the existence of locally indistinguishable ground states produced
by the anyons, (ii) non-Abelian braiding that ‘rigidly’ rotates the system within the
ground-state manifold, and (iii) nontrivial fusion rules that specify the different
types of quasiparticles that the anyons can form when they coalesce. To bolster
connection to experiment, in our treatment of the electronic setting below we will
at most enforce Telec = Z4T symmetry and not separately enforce Z4 (which is
unnatural in that realization).

Concerning property (i), a pair of Z4 parafermion zero modes yields four locally
indistinguishable ground states. The corresponding electron system certainly does
not preserve this characteristic; Majorana modes generate two locally indistinguish-
able ground states, but the other two ground states reflect order-parameter con-
figurations that local measurements readily distinguish. We note that this point
is well-appreciated by previous works on related electronic systems; see, e.g.,
Refs. [55, 68, 89, 111].

To address property (ii) we will first summarize non-Abelian braiding in the
parafermion realization, which is known to be richer than in conventional Majo-
rana systems [12, 24, 29, 44, 47, 65, 104]. Imagine four Z4 parafermion zero modes
α1,...,4 realized at defects in a parent fractional-quantum-Hall fluid; see Fig. 39(a).
For a given fixed overall Z4 charge, the system admits four degenerate ground states,
and arbitrary superpositions of these states are physically permissible. Braiding,
as implemented, e.g., in Fig. 39(a), rotates the system within this manifold. One
specifically finds that swapping α j and α j+1 sends α j → α j+1 and α j+1 → iα†jα

2
j+1,
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γ1

α2

α2 α2

α2α1 α1

α1

α1α4α3 α4α3 α4α3 α4α3

fractional quantum
Hall medium

fractional-charge
tunneling

electron
tunneling

γ2γ1
mRmL

γ4γ3 γ2
mR

γ4γ3

γ2

γ1
mRmL

γ4γ3

γ2

γ1

mR

γ4γ3

(a)

(b)

m′
L m′

L

m′
L

Figure 39: Sample braiding protocol in (a) a Z4 parafermion platform and (b) its
electronic counterpart. In (a) Z4 parafermion zero modes α1,...,4 arise at line defects
in a parent fractional-quantum-Hall medium. The sequence shown braids α1,2
(other braids proceed similarly). The electron equivalent in (b) hosts two strictly
1D topological superconductors with spontaneously chosen magnetizations mL/R
and symmetry-enriched Majorana zero modes γ1,...,4. Here the panels sketch a braid
of γ1,2—which is not described by parafermionic braid matrices. Differences in
braiding properties can be traced to the second panels above: in (a) the dashed line
represents a parafermion coupling that is non-local when mapped to fermions. Thus
the Hamiltonian implementing parafermionic braid transformations is unphysical
in the electronic realization. Braiding γ1,2 does nevertheless allow for additional
freedom compared to conventional Majorana platforms, since the initial and final
magnetizations, mL and m′L , need not coincide.

9 which is implemented by the unitary braid operator

U j, j+1 = exp
{

iπ
8
[2(ei π4 α†jα j+1 + H.c.) − i(α†jα j+1)

2]

}
. (3.101)

The equivalent 1D electronic setup, sketched in Fig. 39(b), features a pair of topo-
logical superconductors each with spontaneous time-reversal symmetry breaking.
The left superconductor hosts symmetry-enriched Majorana zero modes γ1,2, mag-
netization mL = iΓ1Γ2, and fermion parity Ptot,L = mL(iγ1γ2); the right super-
conductor similarly hosts Majorana modes γ3,4, magnetization mR = iΓ3Γ4, and

9We focused on one particular chirality for the braid here. Moreover, in the more general case
the operators could transform as αj → e−i

π
2 kαj+1, αj+1 → ei

π
2 (1−k)α†jα

2
j+1 for integer k [29, 65].

We have taken k = 0 for simplicity.
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parity Ptot,R = mR(iγ3γ4). In this realization, physical wavefunctions, i.e., non-
Schrödinger-cat states with fixed global fermion parity, take the form

|ψ〉 = a |mL, Ptot,L; mR, Ptot,R〉

+ b |mL,−Ptot,L; mR,−Ptot,R〉 (3.102)

for some complex a, b. Compared to the parafermion case, we now have eight states
instead of four, since only global Z2

4 charge needs to be fixed, though the allowed
superpositions are strongly restricted by the need to avoid cat states.

Braiding symmetry-enriched Majorana zero modes can induce rotations that are
forbidden in conventional Majorana platforms yet still differ fundamentally from
those in the parafermion realization. Consider adiabatically swapping γi, j such that
the instantaneousHamiltonianH(t) does not explicitly break time-reversal symmetry
at any point during the exchange. The time-evolution operator implementing the
braid is Uelec

i, j (ti, t f ) = Tei
∫ tf
ti

dtH(t). Here T denotes time ordering, and we take
ti = −∞ and t f = +∞ as appropriate for an adiabatic process. Applying time
reversal yields TelecUelec

i, j (ti, t f )T
−1
elec = [U

elec
i, j (t f , ti)]†. On the right side, Hermitian

conjugation reverses the braid chirality but so does swapping ti ↔ t f . These factors
thus ‘cancel’, so that the braid operator satisfies

TelecUelec
i, j T

−1
elec = Uelec

i, j . (3.103)

For a similar analysis see Ref. [38]. Equation (3.103) together with parity con-
servation allow us to infer the braiding properties of symmetry-enriched Majorana
modes. All results below have been verified by explicit calculations similar to those
in Ref. [29].

Figure 39(b) sketches an exchange of γ1 and γ2. The first step of the braid extends
the left magnetized region into the lower loop. Crucially, the magnetization m′L
in the loop segment can either align or anti-align with the original magnetization
mL depending on details of the junction Hamiltonian. If m′L = mL then the braid
preserves the magnetization, and we obtain a standard Majorana exchange that acts
as

Uelec
1,2 γ1(Uelec

1,2 )
† = −sγ2, Uelec

1,2 γ2(Uelec
1,2 )

† = sγ1 (3.104)

for some sign s [7, 28, 50]. As usual, the extra minus sign acquired by one of the
Majorana operators is necessary to ensure conservation of parity Ptot,L for the left
topological region. By applying time reversal to Eq. (3.104) using Table 35 and
Eq. (3.103), one finds that the left and right sides are consistent only if s does not
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depend on magnetization. Taking s = +1 for concreteness, the associated braid
matrix then reads

Uelec
1,2 = e

π
4 γ1γ2 (mag.-preserving braid) . (3.105)

If m′L = −mL then the braid flips the magnetization. In this case conservation of
Ptot,L dictates that the Majorana operators (written in our conventions) transform
slightly differently from above:

Uelec
1,2 γ1(Uelec

1,2 )
† = s′γ2, Uelec

1,2 γ2(Uelec
1,2 )

† = s′γ1 (3.106)

with some sign s′. Consistency with time reversal now requires s′ = mL (or
s′ = −mL , but we focus on the former for simplicity). This transformation is
implemented by

Uelec
1,2 =

1
√

2
(e−i π4 Γ1γ1 + ei π4 Γ2γ2) (mag.-flipping braid) . (3.107)

Note that in addition to transforming γ1,2, Uelec
1,2 also sends Γ1 → pΓ2 and Γ2 → pΓ1,

yielding the required magnetization flip mL → −mL . We stress that Eq. (3.107)
can not describe an adiabatic closed cycle in a Majorana system with explicit time-
reversal symmetry breaking, for which the initial and final magnetizations would
necessarily coincide.

Other braids can be analyzed similarly. The braid matrix Uelec
3,4 governing the

exchange of γ3 and γ4 clearly conforms to a straightforward generalization of
Eqs. (3.105) and (3.107). Swapping zero modes γ2,3 that reside on different topo-
logical segments, however, naturally preserves both magnetizations. We find that
consistency with time reversal yields

Uelec
2,3 = exp

[π
8
(1 + mL − mR + mLmR)γ2γ3

]
. (3.108)

One can readily verify using Table 35 that Eqs. (3.105), (3.107), and (3.108) all
satisfy Eq. (3.103).

To directly compare the parafermion and electronic braid matrices, we will now
recast Eq. (3.101) in terms of Majorana operators γ j and Γj using exact mappings
that generalize Eqs. (3.69) and (3.70) to the case with four parafermion zero modes.
Section 3.14 sketches this exercise. For U1,2 we obtain

U1,2 = exp
{

iπ
4

[
i(γ2Γ1 + γ1Γ2) −

1
2

Ptot,L

]}
, (3.109)
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which is clearly very different from Uelec
1,2 . The first two pieces in the exponent swap

local Majorana operators γ1,2 with the non-local operators Γ1,2; consequently, when
acting on generic physical fermion wavefunctions |ψ〉, U1,2 generates cat states that
superpose mL = ±1 configurations (see Section 3.14). A similar conclusion holds
for U3,4. For U2,3 we find

U2,3 = exp
{

iπ
4

[
(mL + mR)iγ2γ3 −

1
2

mLmR

]}
, (3.110)

which preserves the magnetizations and thus does not generate cat states. Never-
theless U2,3 and Uelec

2,3 still differ qualitatively, and in fact the latter generates a finer
protected rotation of the γ2,3 zero-mode operators compared to the former.

The stark contrast between parafermion and electronic braid matrices seen here
may appear surprising given that exact mappings bridge the two representations.
This difference originates from the fact that the physical Hamiltonian governing
the exchange in the parafermion realization becomes non-local when translated into
fermion language. Specifically, the dashed line from Fig. 39(a), second panel,
represents a coupling between parafermions at opposite edges of the loop, which
microscopically arises from tunneling of fractional charge through the interven-
ing quantum-Hall fluid. Mapping this term to spinful fermions generates an ‘un-
canceled’ string across the entire loop below—yielding an unphysical process in
this representation. Instead the analogous physical coupling in the electronic real-
ization arises from ordinary electron tunneling (along with coupling between the
magnetizations) across the upper part of the loop; see Fig. 39(b) 10.

The situation for fusion, property (iii), is different. Fusion brings two zero modes
together, thereby intentionally removing any topologically protected degeneracies
that arise when the zero modes are far apart. In the context of fusion properties,
the distinction between the parafermion and electronic realizations is thus naturally
blurred. Consider a parafermion platform and let X denote a domain-wall defect
that binds a Z4 parafermion zero mode. These non-Abelian defects obey the fusion
rule

X × X ∼ I + q1 + q2 + q3 , (3.111)

indicating that two defects can annihilate, corresponding to the identity fusion chan-
nel I, or form three different nontrivial quasiparticle types q1,2,3. Wewill explore this
fusion rule further by examining the setup from Fig. 310(a) that hybridizes the pair

10Our discussion here applies equally well to the braiding scheme proposed in Ref. [87] in the
quantum-spin-Hall setting.
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α1,2 as well as the pair α3,4. The figure indicates the bosonized perturbation gapping
out each region; most importantly, the central domain is gapped by − cos(2θ − θ0),
where θ0 represents a ‘knob’ that we will use to probe the parafermionic fusion
characteristics.

In Section 3.15 we show that hybridization between α1,2 can be described by the
Hamiltonian

H1,2 = −t
[
ei π−θ0

4 α†1α2 + H.c.
]

(3.112)

for some real coupling t that we take to be postive (hybridization between α3,4 can be
treated similarly). When θ0 = 0 H1,2 admits a unique ground state with ei π4 α†1α2 = 1,
corresponding to the identity fusion channel in Eq. (3.111); excited states with
ei π4 α†1α2 = ±i,−1 correspond to the three possible nontrivial quasiparticles q1,2,3.
Figure 310(b) plots the energy spectrum for H1,2 as a function of θ0. Crucially,
all level crossings are protected by the (unbreakable) Z4 symmetry exhibited by
the parafermion platform, thus strongly constraining the system’s response to θ0

sweeps. As an example, imagine starting from the ground state with θ0 = 0 and then
adiabatically winding θ0 by 2π. This cycle returns the Hamiltonian to its original
form—which is clear from Fig. 310(a) 11—but maps the ground state into an excited
state. The system re-enters its ground state only after sweeping θ0 by a total of 8π.
This anomalous periodicity reflects the fact that winding θ0 cycles the system among
the four possible fusion channels in Eq. (3.111). The pumping cycle reviewed here
is a cousin of the generalized fractional Josephson effect discussed for parafermions
in fractional-quantum-Hall systems in Refs. [24, 25, 29, 65].

Below we will turn to the equivalent electronic setup and identify an analogous
8π-periodic pumping cycle that, remarkably, represents a purely 1D manifestation
of nontrivial parafermionic fusion rules. We will also draw connections with closely
relatedwork in Refs. [87, 111] in the context of interacting quantum-spin-Hall edges,
viewed from a new perspective in light of our mappings.

Imprint of parafermionic fusion rules in a 1D electron system
Figure 311(a) shows the strictly 1D electronic counterpart of the parafermion plat-
form from Fig. 310(a). Recall that the outer segments gapped by − cos(2θ) form
trivial, Telec-invariant gapped phases that smoothly connect to the fermion vacuum.
The central region gapped by − cos(2θ − θ0) interpolates between a trivial phase (at

11Shifting θ0 by 2π also returns the hybridization Hamiltonian H1,2 to its original form, when
followed by a gauge transformation α2 → iα2. The key point is that ei

π
4 α†1α2 is a conserved quantity;

once fixed, the eigenvalue thus can not readjust to accommodate shifts in θ0.
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α2α1 α4α3

− cos(2θ)− cos(2θ) − cos(2θ − θ0)

− cos(4φ)− cos(4φ)

(a)

(b)

E1,2

θ0
0

8π6π4π2π

protected by
(unbreakable) Z4

Figure 310: (a) Setup used for fusion in a Z4 parafermion platform. Parafermions
α1 and α2 hybridize on the left, and similarly for α3 and α4 on the right. We label
the bosonized perturbations gapping each region; note in particular the shift θ0 in
the central region, which modulates the parafermion couplings. (b) Energies E1,2
for the hybridized parafermions α1,2 versus θ0. All level crossings are protected by
the parafermion platform’s unbreakable Z4 symmetry. For a given θ0 the different
energy levels correspond to the four possible fusion channels for the non-Abelian
defects binding the parafermions. Adiabatically winding θ0 cycles the system among
these four fusion channels, leading to an anomalous 8π-periodic response even
though the underlying Hamiltonian is 2π periodic.
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Figure 311: (a) Electronic counterpart of the fusion setup from Fig. 310(a). Outer
regions form a trivial phase smoothly connected to the electron vacuum. The central
region interpolates between a trivial phase at θ0 = 0 and TRITOPS phase at θ0 = π,
and can be realized experimentally by a spin-orbit-coupled wire with an s-wave
pair potential ∆(k) that changes sign at some momentum k0. (b) Band structure for
such a wire along with chemical potentials corresponding to trivial and TRITOPS
phases. In this realization one can wind θ0 by 2π by varying the chemical potential
µ and an applied magnetic field B along the cycle shown in (c). Hybridization of the
symmetry-enriched Majorana operators γ1,2 and fluctuating quantum magnetization
degree of freedom mL yields the energy spectrum versus θ0 sketched in (d). The
levels are similar to those in the parafermion platform [Fig. 310(b)] except that
crossings at θ0 = π mod 2π are protected by fermion parity whereas those at
θ0 = 0 mod 2π are protected by electronic time-reversal symmetry. Provided
these crossings are maintained, the system inherits the parafermion platform’s 8π-
periodic pumping cycle—an imprint of nontrivial parafermionic fusion rules in our
strictly 1D electron setting. The pumping cycle can be detected experimentally by
measuring the magnetization at the edge, which as (e) illustrates is also 8π periodic.
Magnetization for a given curve in (d) is shown with the same line type in (e).
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θ0 = 0) and a Telec-invariant TRITOPS phase (at θ0 = π) via a path that explicitly
breaks Telec. For a practical implementation of this region, we envision a spin-orbit-
coupled wire with a momentum-dependent s-wave pairing potential that changes
sign at some momentum k0. As Fig. 311(b) illustrates, trivial and TRITOPS phases
arise depending on whether the outer Fermi momentum is smaller or larger than k0

[42, 84, 93, 107, 112]. One can, moreover, smoothly tune between these phases
by varying the chemical potential µ and a Telec-breaking magnetic field B along the
path shown in Fig. 311(c)—which in bosonized language winds θ0 by 2π. Note that
the B field generically induces both a Zeeman term and an imaginary component to
the s-wave pair potential, thus preempting a phase transition.

The ‘small’ adjacent − cos(4φ) regions in Fig. 311(a) exhibit magnetizations that
now form fluctuating quantum degrees of freedom. Consequently, the Majorana
operators Γj that we used to decompose the magnetizations become physical op-
erators that can appear in the Hamiltonian, in addition to the symmetry-enriched
Majorana operators γ j . Focusing on the left region, we describe hybridization of
these operators by an effective Hamiltonian

Helec
1,2 = Ht + HZ4-breaking . (3.113)

The first term,

Ht = −t
[

cos
(
θ0
4

)
i(γ1Γ2 + γ2Γ1) − sin

(
θ0
4

)
i(γ1Γ1 + γ2Γ2)

]
, (3.114)

represents Eq. (3.112) rewritten in terms of fermions using Eqs. (3.69) and (3.70).
At both θ0 = 0 and θ0 = π, Ht preserves Telec symmetry 12. The second term,
HZ4-breaking, encodes additional allowed couplings that violate Z4 symmetry and
hence are unphysical in the parafermion context; we assume that this piece also
preserves Telec at θ0 = 0. For any θ0 the Hamiltonian commutes with Ptot,L =

(iγ1γ2)(iΓ1Γ2).

Suppose for now that HZ4-breaking = 0. Figure 311(d) sketches the resulting energies
E1,2 versus θ0; solid and dashed curves respectively correspond to states with Ptot,L =

+1 and −1. By construction the energies are identical to those in Fig. 310(b),
though the nature of the eigenstates changes. At θ0 = 0, Ht energy eigenstates have
iγ1Γ2 = ±1 and iγ2Γ1 = ±1. The many-body spectrum correspondingly features

12At θ0 = 0 the Majorana operators transform under Telec precisely as in Table 35 from Sec. 3.3.
At θ0 = π, however, the domain configuration differs from that analyzed in Sec. 3.3, so here one
obtains the modified transformations γ1 → mγ1, γ2 → −mγ2, Γ1 → −pΓ2, and Γ2 → pΓ1 under
Telec.
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non-degenerate states with energies ±2t along with a degenerate Kramers doublet of
states at zero energy. Increasing θ0 breaks Telec and eliminates the degeneracy until
time-reversal symmetry is revived at θ0 = π. To understand the θ0 = π spectrum it
is convenient to employ a rotated basis γ± = (γ1 ± γ2)/

√
2 and Γ± = (Γ1 ± Γ2)/

√
2.

The t term then becomes

Ht(θ0 = π) =
√

2tiγ−Γ− . (3.115)

Notice that iγ+Γ+—which is odd under Telec—does not appear in the Hamiltonian,
i.e., the system supports a fermionic zero mode corresponding to the hallmark
Majorana Kramers pair for a TRITOPS phase 13. The many-body spectrum thus
contains levels at ±

√
2t, each with two degenerate states carrying opposite fermion

parity. Further increasing θ0 to 2π yields a spectrum identical to that at θ0 = 0,
except with the Ptot,L eigenvalues reversed.

As a technical aside, the opposite Ptot,L eigenvalues at θ0 = 0 and 2π may seem
surprising. Clearly the bosonized Hamiltonian is identical at θ0 = 0 and 2π, so the
energies and eigenstates must also be identical at these points. The resolution is
that in our conventions the bosonized fermion-parity operator ei

∫
x
∂xθ across the left

− cos(4φ) region projects to Ptot,L at θ0 = 0 but −Ptot,L at θ0 = 2π 14; thus opposite
Ptot,L eigenvalues are actually required. The virtue of this convention is that tracking
the evolution of states in response to θ0 sweeps becomes particularly transparent.

Turning on HZ4-breaking , 0 of course non-universally modifies the energies in
Fig. 311(d). Nevertheless, the level crossings at θ0 = 0 mod 2π remain protected
by Telec, whereas the crossings at θ0 = π mod 2π are unbreakable due to fermion-
parity protection. (Breaking Telec can only shift the the latter degeneracy points to
different θ0 values but can not turn them into avoided crossings.) Consequently,
despite the obliteration of Z4 symmetry, our 1D electronic system inherits the
parafermion platform’s anomalous 8π-periodic pumping cycle, so long as Telec is
preserved at θ0 = 0 mod 2π.

We can understand the pumping process physically as follows. Suppose the system
starts in its unique ground state at θ0 = 0. Due to conservation of Ptot,L , adiabatically

13While it is illuminating to describe the Majorana Kramers pair using our effective Hamiltonian
that couples γi and Γi , its existence more fundamentally arises from the TRITOPS state. That is, the
‘small’ − cos(4φ) region functions as a quantum dot that houses the Majorana Kramers pair that is
guaranteed to exist due to the adjacent TRITOPS region.

14For an explicit example, at either θ0 = 0 or 2π, the ground state is unique and must have θ
pinned to the same value on both sides of the ‘small’ − cos(4φ) region (twists in θ cost energy in
such geometries). Thus ground-state projection yields ei

∫
x
∂xθ → 1. From Eq. (3.114), however,

one can readily see that Ptot,L = (iγ1γ2)(iΓ1Γ2) projects to +1 at θ0 = 0 but −1 at θ0 = 2π.
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winding θ0 to 2π necessarily evolves the system to an excited state in which the
fermion parity in the left − cos(4φ) region has flipped (recall the relation between
fermion parity and Ptot,L noted above). That is, the 0→ 2π sweep pumps a fermion
between the left and right − cos(4φ) regions, producing a state that generically
exhibits a non-zero magnetization even though the ending Hamiltonian preserves
Telec. Subsequently sweeping θ0 from 2π to 4π restores the original fermion parities.
Time-reversal symmetry, however, now prevents the system from returning to the
ground state. Restoring the ground state requireswinding θ0 by a total of 8π. One can
experimentally probe this anomalous pumping cycle bymeasuring themagnetization
at the edge of the wire, which exhibits the same 8π periodicity. Figure 311(e)
sketches possible magnetization curves colored according to the corresponding
branch in Fig. 311(d). Note that dispensing with Telec still yields a nontrivial
4π-periodic cycle; in this case the pumping process becomes very similar to that
introduced in Ref. [57] (see also Ref. [15]).

The specific electronic setup examined so far makes the connection to parafermions
explicit and also allows one to capture the 8π-periodic pumping cycle within a
very simple effective Hamiltonian. However, the requirements for implementing
the cycle in practice can be distilled into a few basic ingredients shared by a much
broader class of superconducting systems:

• A generic family of electron Hamiltonians H(θ0), where θ0 is an adiabatic
parameter such that H(θ0 + 2π) = H(θ0). By ‘generic’ we mean that H(θ0)

should contain no accidental degeneracies.

• H(θ0) describes a phase that preserves electronic time-reversal symmetry if
and only if θ0 = 0 mod π. At these θ0 points time reversal guarantees
Kramers degeneracy for states with odd electron number.

• Asingle fermion zeromode—or equivalently, a pair ofMajorana zeromodes—
at each end of the system when θ0 = π mod 2π. Due to time-reversal
invariance at this point, the zero mode must be anomalous.

• A set of four many-body sub-gap states whose evolution is constrained by
the first three items above. These sub-gap states must be separated from the
continuum for any value of θ0 so that an adiabatic pumping cycle is well-
defined.
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(Once these items are satisfied, one can actually break time-reversal symmetry at
θ0 = π mod 2π without spoiling the 8π periodicity, consistent with the preceding
discussion.) Perhaps most importantly, the ‘small’ − cos(4φ) regions [Fig. 311(a)]
bordering our spin-orbit-coupled wire are inessential. Any source of sub-gap
states—e.g., band bending at the edges—can satisfy the last item in this list. In this
modified picture, the symmetry-enriched Majorana modes and fluctuating magneti-
zation degree of freedom are simply adiabatically deformed into a pair of fermions
encoding those sub-gap states. Further intuition can be gained by comparing with
the more familiar 4π-periodic fractional Josephson effect [58] arising in junctions
formed by a pair of topological superconductors with explicitly broken time-reversal
symmetry. There, the nontrivial 4π-periodic cycle is conveniently understood as
arising from Majorana modes that hybridize across a finite-width barrier in the
junction; the effect survives equally well, however, if the barrier width shrinks to
zero—so long as a sub-gap localized state persists. The latter sub-gap state is con-
tinuously connected to the hybridizedMajorana modes in the finite-barrier situation,
just as the sub-gap states in our problem are connected to the symmetry-enriched
Majorana modes and magnetization degree of freedom.

References [87, 111] introduced a quite different platform satisfying the above prop-
erties, namely a Josephson junction realized at a quantum-spin-Hall edge. The
quantum-spin-Hall setup is described by the same bosonized perturbations from
Fig. 311(a), but with θ ↔ φ (in the notation of Ref. [111]) and the adiabatic param-
eter θ0 replaced by the superconducting-phase difference ∆ϕ across the junction.
The cos(4θ) terms in the barrier regions of the Josephson junction reflect two-
particle backscattering; when relevant, these perturbations catalyze spontaneous
time-reversal symmetry breaking with a magnetization order parameter cos(2θ)—
very similar to the order parameter in our problem. Electronic time-reversal sym-
metry is present at ∆ϕ = 0 and π, and at the latter value the barrier binds a single
fermionic zero mode. Moreover, the necessary sub-gap levels can arise from An-
dreev bound states in a ‘wide’ junction. These properties, in conjunction with
arbitrarily weak interactions, conspire to yield an 8π-periodic Josephson current.

Figure 312 summarizes the relation between our strictly 1D realization and the
analogous quantum-spin-Hall setup. In the latter setting, the anomalous Josephson
effect can also be naturally viewed as arising from hybridization of symmetry-
enriched Majorana modes with a quantum magnetization degree of freedom—
similar to Refs. [46, 90, 105] which analyzed the junction coupled to an impurity
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trivial TRITOPS

quantum spin Hall

vacuum

~

vacuum

(θ0 = π)(θ0 = 0) ↔

ϕSC = 0 ϕSC = 0ϕSC = ∆ϕ

superconductor

Figure 312: Connection between our strictly 1D electronic system (top) and a
quantum-spin-Hall Josephson junction (bottom). The outer vacuum regions in the
1D setting correspond to segments of the Josephson junction with superconducting
phase ϕSC = 0. Thewirewith spin-orbit-coupling (SOC) andmomentum-dependent
s-wave pairing corresponds to the central part of the junction with phase ϕSC = ∆ϕ.
Varying the adiabatic parameter θ0 in the 1D system yields an 8π-periodic edge
magnetization, while varying ∆ϕ yields an 8π-periodic Josephson current.

spin. Our exact mappings clarify the precise connection between these electronic
setups and a system hosting bona fide Z4 parafermions: the hybridized sub-gap
states mediating the anomalous pumping cycles are in one-to-one correspondence
with fusion channels of non-Abelian defects binding Z4 parafermion zero modes.
Given our general discussion in Sec. 3.4, which applies equally well to the strict 1D
and quantum-spin-Hall platforms, we expect that this is the maximal extent to which
non-fractionalized electron systems inherit non-Abelian Z4-parafermion physics.

We conclude this section with a discussion of the alternative fusion setup shown in
Fig. 313. Compared to our previous setups, the cos(2θ) and cos(4φ) regions have
essentially swapped roles. Note especially that the central domain in the figure is
gapped by − cos(4φ − φ0), where φ0 is the control parameter that we wish to vary.
For the parafermion realization in Fig. 313(a), Section 3.15 shows that parafermions
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Figure 313: Variation of Figs. 310(a) and 311(a) for (a) a parafermion platform and
(b) the corresponding electron system. Here a pumping process is carried out by
varying the parameter φ0 in the interactions governing the central region. In (b),
m1,2,3 denote spontaneously chosenmagnetizations for the adjacent domains. (c) En-
ergy spectrum describing hybridization of symmetry-enriched Majorana modes γ2,3
at the left junction in (b), assuming fixed m1 = +1. All level crossings are protected
by either locality or fermion-parity considerations. The electronic system therefore
exhibits an anomalous 8π-periodic response to φ0 even when all symmetries are
abandoned.
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α2,3 at the left junction hybridize according to

H2,3 = −t
[
ei π+φ0

4 α†2α3 + H.c.
]
, (3.116)

which takes a nearly identical form to Eq. (3.112). Modulating φ0 thus also cycles
the system among the four possible fusion channels in Eq. (3.111), in turn gener-
ating a robust 8π-periodic response even though the microscopic Hamiltonian is
2π periodic. Fusing parafermions across regions gapped by cos(4φ) versus cos(2θ)
evidently makes little difference.

The electronic realization in Fig. 313(b) nevertheless differs starkly from Fig. 311(a)
because pairs of symmetry-enriched Majorana modes now hybridize across trivial
domains. The outer regions gapped by − cos(4φ) exhibit spontaneously chosen
magnetizations m1 and m3 determined by 〈cos(2φ)〉 = ±1, while the central region
gapped by − cos(4φ − φ0) exhibits a magnetization

m2 = 〈cos(2φ − φ0/2)〉 = ±1 (3.117)

whose microscopic meaning evolves with φ0. For example, m2 corresponds to a
magnetization along x at φ0 = 0 but along y at φ0 = π; see Eqs. (3.61) and (3.80).

Converting H2,3 into fermionic language using the dictionary from Section 3.14
yields 15,

H2,3 = −t
[
(m1 + m2) cos

(
φ0
4

)
+ (1 − m1m2) sin

(
φ0
4

) ]
iγ2γ3 . (3.118)

For simplicity let us fix the magnetization in the leftmost region to m1 = +1.
Figure 313(c) sketches the energy levels E2,3 versus φ0 for the four remaining sectors
labeled by m2 = ±1 and iγ2γ3 = ±1. The level crossings at φ0 = 0 mod 2π arise
from states with opposite fermion parity and are therefore protected. Furthermore,
the crossings at φ0 = π mod 2π arise from macroscopically distinct states carrying
opposite m2 magnetizations, and can not be lifted by virtue of locality. Thus all
level crossings are protected, implying that the electronic system automatically
inherits the parafermion platform’s 8π-periodic response without any symmetry
enforcement required (as long as the microscopic Hamiltonian remains invariant
under φ0 → φ0 + 2π). An alternative way of viewing the resilience of the 8π
periodicity is to observe that m1,m2, and iγ2γ3 are conserved quantities in H2,3,

15Despite appearances, the hybridization Hamiltonian H2,3 is also 2π periodic in φ0, both in the
parafermionic and fermionic representations. In the fermionic case, the periodicity reflects the fact
that sending φ0 → φ0 + 2π shifts m2 → −m2 and γ3 → m2γ3.
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and must remain so even in the presence of arbitrary physical perturbations: The
magnetization-flipping operators Γj are non-local in the present setting, and there
are no other sources of low-energy fermions that can flip iγ2γ3. Spoiling the 8π
periodicity requires shrinking the magnetized domains so that the order parameters
become fluctuating quantum degrees of freedom and additional Majorana operators
can provide a mechanism for fermion-parity switching.

The 8π-periodic cycle proceeds as follows: Start from the unique ground state at
φ0 = 0. Winding φ0 by 4π rotates the central domain’s magnetization by a full 2π
around the z axis [recall Eq. (3.117) and the comments just below], but also pumps
a fermion to the junction—yielding an excited state. One must wind φ0 by 4π a
second time to recover the original ground state. The absolute robustness of this
process is not without a price: implementing the cycle requires strong correlation
together with interactions that can be tuned to twist φ0.

Reference [89] examined a somewhat similar setup consisting of a Josephson junc-
tion formed by topological superconductors with spontaneous time-reversal sym-
metry breaking. These authors predicted an 8π-periodic Josephson effect protected
by time-reversal symmetry. We would like to point out, however, that within a
fixed order-parameter sector, time reversal does not protect level crossings in the
spectrum. We expect that in such systems anomalous periodicity should either be
protected by a symmetry that is present within a given order-parameter sector, or
enjoy absolute protection due to locality constraints as found above.

3.5 Extension to higher parafermions
Our results for theZ4 case can be efficiently extended to arbitraryZ2M parafermions,
where M is any positive integer. In this section we outline a general fermioniza-
tion scheme, then posit models that capture analogues of the four types of phases
summarized in Fig. 34, and finally develop anomalous pumping cycles that reveal
nontrivial fusion properties for higher parafermions.

Fermionization procedure
It is useful to introduce bosonic Z2M clock variables σa, τa as an intermediary
between parafermions and fermions. These unitary operators are now taken to
satisfy

σ2M
a = τ2M

a = 1, σaτa = ei πM τaσa . (3.119)
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We will consider a Z2M symmetry that sends

σa → ei πM σa , τa → τa (3.120)

alongwithT andC symmetries that act exactly as inEqs. (3.5) and (3.6). These clock
variables can be nonlocally combined to form unitary Z2M parafermion operators

α2a−1 = σaµa− 1
2
, α2a = e−i π

2M σaµa+ 1
2
, (3.121)

where µa+ 1
2
=

∏
b<a+ 1

2
τb as before. These parafermions obey

α2M
a = 1 , αaαb>a = ei πM αbαa . (3.122)

Next, we would like to relate Z2M clock variables to fermions. In analogy with
Sec. 3.2, fermion anticommutation at long separation can be obtained by binding σ
to the M th power of the string µ, but the local structure requires some additionalwork.
Each clock site now hosts a 2M-dimensional Hilbert space. For Z4, the dimension
matches that for two species of fermions, facilitating a complete fermionization of
the clock operators as carried out in Sec. 3.2. A similar matching occurs when
M = 2k−1 (k is an integer), which in principle allows a complete fermionization into
k species of fermions. At other M values, however, this relation breaks down.

To cover all M’s in one formalism, we will thus follow a variant of the route adopted
for the Z4 case in Sec. 3.3. In particular, there we utilized an explicit separation into
a fermionic sector (described by a single species ca) coupled to a Z2 magnetization
order parameter ma = eiπd†ada = σ2

a . When generalizing to the Z2M case, we will
again employ a single fermion species Ca, but promote the magnetization ma to a
unitary ZM order parameter Oa = σ

2
a whose eigenvalues are cycled by a conjugate

unitary operator Da, i.e.,

OM
a = D

M
a = 1 , OaDa = ei 2π

MDaOa . (3.123)

In this way the clock-spin Hilbert-space dimension is faithfully recovered for all M .
The explicit mapping to these variables follows from

σa = Ba + OaB†a , (3.124)

τa = ei πM B†aBaDa , (3.125)

where Ba are hard-core bosons that commute with Oa,Da. One can readily verify
that the decomposition above preserves the properties in Eq. (3.119). Finally, we
introduce spinless fermions via

Ca ≡ Baeiπ
∑

b<a B†
b

Bb = Ba

∏
b<a

τM
b . (3.126)
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Z2M C T

σ → ei πM σ σ† σ†

τ → τ τ† τ

B→ ei πM B BO† BO†

O → ei 2π
M O O† O†

D → D D†e−i 2π
M C†C Dei 2π

M C†C

C → ei πM C CO† CO†

Table 37: Transformation properties for Z2M clock variables and the operators used
to decompose them through Eqs. (3.124), (3.125), and (3.126).

The order parameter Oa can also be rewritten in terms of fermions, as in the case
for Z4 parafermions, though if M is not a power of 2 we will need to project out the
excess states in the Hilbert space.

Section 3.16 inverts Eqs. (3.124) and (3.125) and, in the special case of Z4, relates
the operators above to the ca and da fermions used in Sec. 3.3; specifically, we show
that

Da = (da + d†a)(c
†
a − ca) , (3.127)

Ca =
1 − ma

2
ca +

1 + ma

2
c†a . (3.128)

Table 37 enumerates the symmetry properties for the original clock variables along
with operators defined in Eqs. (3.124) through (3.126). From the table one sees that
in the fermionic representation, (Z2M)

M is the Z2 symmetry associated with con-
servation of global fermion parity. We also observe that the composite anti-unitary
symmetry T ′ ≡ Z2MT is a generalization of electronic time-reversal symmetry for
which (T ′)2 has eigenvalues ei 2π

M l (l is an integer).

With this general fermionization algorithm in hand, we will now explore the cor-
respondence between various phases in the clock, parafermion, and fermion repre-
sentations. It is worth keeping in mind, however, that many different fermionization
schemes are possible as alluded to above and will generally yield different fermionic
phases from what we describe below; pursuing such alternative representations is
certainly interesting but left to future work.
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Paramagnetic and ferromagnetic phases
It is simplest to first examine the Z2M clock model

H = −J
N−1∑
a=1
(σ†aσa+1 + H.c.) − f

N∑
a=1
(τa + H.c.) . (3.129)

The J = 0 and f = 0 limits provide trivially solvable realizations of the non-
degenerate paramagnetic state and 2M-fold degenerate ferromagnetic phase, re-
spectively. In terms of Z2M parafermions H becomes [34]

H = − J
N−1∑
a=1
(ei π

2M α†2aα2a+1 + H.c.) − f
N∑

a=1
(ei π

2M α†2a−1α2a + H.c.) . (3.130)

At J = 0 all parafermions dimerize yielding a unique ground state; at f = 0 the
parafermions form a topological phase with unpaired parafermion zero modes that
encode a robust degeneracy consisting of 2M locally indistinguishable states.

The fermionized Hamiltonian reads

H = − J
N−1∑
a=1
[(C†a − O

†
aCa)(Ca+1 + Oa+1C†a+1) + H.c.]

− f
N∑

a=1
(ei πM C†aCaDa + H.c.) . (3.131)

In the J = 0 limit, the ground state has Da = 1 and C†aCa = 0 for all sites. Hence,
the trivial parafermion phase corresponds to the fermionic vacuum with a vanishing
order parameter 〈Oa〉 = 0. The f = 0 Hamiltonian closely resembles Eq. (3.60),
though recall that the ca and Ca fermions do not coincide at M = 2. Here the energy
is minimized by uniformly condensing the order parameter, i.e., taking 〈Oa〉 = ei 2π

M n

for some arbitrary integer n. The fermions then enter a topological phase with
symmetry-enriched Majorana end states whose wavefunctions again depend on the
precise order-parameter configuration. Just like the Z4 case, topological degener-
acy encoded by parafermion zero modes becomes a mixture of 2-fold topological
degeneracy and M-fold symmetry-breaking degeneracy.

We can also appeal to a long-wavelength approach to recover these phases, following
a straightforward generalization of Sec. 3.3. Using bosonized variables φ, θ that
satisfy the commutator in Eq. (3.45), clock order and disorder operators can now be
expanded as σ ∼ eiφ, µ ∼ e−iθ/M . Inserting these expansions into Eqs. (3.121) and
(3.126) yields α ∼ ei(φ−θ/M) for long-wavelength parafermions and ψR/L ∼ ei(φ±θ)
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for long-wavelength fermions. The bosonized Hamiltonian takes the form

H =

∫
x

{
v

2π
[g(∂xφ)

2 + g−1(∂xθ)
2] − κ1 cos(2Mφ) − κ2 cos(2θ)

}
. (3.132)

Relevant κ1 > 0 and κ2 > 0 couplings respectively generate the ferromagnetic and
paramagnetic phases in clock language. Next we turn to the phases stabilized by
relevant couplings of the opposite sign, which are generalizations of the canted and
SPT phases explored previously for the Z4 case.

Canted and SPT phases
The canted-ferromagnet phase discussed in Sec. 3.3 generalizes to a state with
〈σa〉 ∼ ei πM (k+

1
2 ) for integer k, i.e., the clock spins orient ‘halfway’ between adjacent

σa eigenvalues. We construct trial wavefunctions that exhibit this ordering as

|ei πM (k+
1
2 )〉 =

∏
a

1 + τa
√

2
|σ = ei πM k, ei πM k, . . .〉 . (3.133)

These states contain no τ = −1 components; moreover, all nearest-neighbor bonds
involve only configurations with σ†aσa+1 = 1, ei πM , or e−i πM . Our trial wavefunctions
are therefore exact ground states of the Hamiltonian

Hcanted = −

N−1∑
a=1
P
σ†aσa+1=1,ei

π
M ,e−i

π
M
+

N∑
a=1
Pτa=−1 , (3.134)

where Pκ projects onto states satisfying property κ. In the Z4 limit Hcanted is
equivalent to the Ashkin-Teller model at f = 0 and λ = 1, which contains many
other ground states as well. Thus we should again add a perturbation akin to δH in
Eq. (3.77) that leaves the canted states as the only ground states. (The specific form
of the interaction is not important for us.)

In the absence of C symmetry, the canted and ferromagnet states can be smoothly
connected. The parafermion counterpart of these clock phases must therefore
share exactly the same symmetry-independent topological characteristics—i.e., both
phases must support a 2M-fold robust ground-state degeneracy. An identical con-
clusion holds for the fermion realization: Both phases yield Majorana end states
whose structure depends on the order parameter, but with a different expectation
value 〈Oa〉 = 〈σ

2
a 〉 ∼ ei πM (2k+1) in the canted state.

The dual of Hcanted is given by

HSPT = −

N∑
a=1
P
τa=1,ei

π
M ,e−i

π
M
+

N−1∑
a=1
Pσ†aσa+1=−1 . (3.135)
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The four wavefunctions |ηz
1η

z
2〉 defined for the Z4 case in Eqs. (3.82) and (3.83) are

unfrustrated ground states of HSPT for any M . One can always add a perturbation δ̃H

to ensure that no other ground states exist; wewill assume that such a perturbation has
been included. The resulting four-fold degeneracy again arises from pseudospin-1/2
edge degrees of freedom ®η1,2 for the clock chain. These edge modes can be related
to microscopic operators projected into the ground-state manifold:

P
i(τ1 − τ

†

1 )

sin π/M
P = ηz

1, P
i(τN − τ

†

N )

sin π/M
P = ηz

2 (3.136)

Pσ1P = (η
x
1 + iηy1)/2, PσNP = (η

x
2 + iηy2)/2, (3.137)

which straightforwardly generalize Eqs. (3.85) and (3.86).

The parafermion and fermion realizations exhibit edge zero modes as well, though
the statistics of the boundary operators naturally changes compared to the clock
case. (The transcription between representations can be carried out using the same
procedure adopted in Sec. 3.3.). In particular, for the fermion case the edge degrees
of freedom can be described by a pair of Majorana zero modes at each end, precisely
as for the TRITOPS phase found in the Z4 limit. For any representation, the edge
zero modes are robust in the presence of Z2M, C, and T but can be eliminated when
all breakable symmetries are abandoned—strongly suggesting the onset of an SPT
phase for any M ≥ 2.

Anomalous Z2M pumps
The parafermion fusion setups in Figs. 310(a) and 313(a) extend straightforwardly
to the Z2M case by simply replacing cos(4φ) → cos(2Mφ) and cos(4φ − φ0) →

cos(2Mφ−φ0) in the appropriate domains. For the generalized Fig. 310(a), coupling
of parafermions α1,2 is governed by

H1,2 = −t
[
ei π−θ0

2M α†1α2 + H.c.
]
. (3.138)

Eigenstates of H1,2 have ei π
2M α†1α2 = ei πM n with n = 0, . . . , 2M −1, yielding energies

En(θ0) = −2t cos
(
nπ
M
−

θ0
2M

)
(3.139)

that are each 4Mπ-periodic in θ0. Level crossings occur only at θ0 = 0 mod π; they
are all protected by an unbreakable Z2M symmetry in this realization—implying a
4Mπ-periodic response to θ0 sweeps. Once again, this anomalous periodicity
reflects the fact that shifting θ0 by 2π cycles the system among the 2M available
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fusion channels for the corresponding non-Abelian defects. For the generalized
Fig. 313(a), parafermions α2,3 couple via

H2,3 = −t
[
ei π+φ0

2M α†2α3 + H.c.
]
. (3.140)

Identical logic applied to this setup implies a 4Mπ-periodic response to φ0 sweeps
as well.

The fermionic setups from Figs. 311(a) and 313(b) admit the same Z2M gener-
alization, though here we must also promote the magnetizations mi to ZM order
parameters Oi. As in our analysis of the Z4 case, we will allow for additional
physical perturbations in this setting, e.g., those that break Z2M symmetry. If the
level crossings that underlie the anomalous periodicity for the parafermion platform
persist, then the 4Mπ-periodic response survives; otherwise the periodicity will be
reduced.

Consider the generalized Fig. 311(a) first. Suppose for now that the Hamiltonian
is given by Eq. (3.138) re-expressed in terms of fermions, so that the energies
are again given by Eq. (3.139). At θ0 = 0, the n = 0 and n = M levels are
non-degenerate, while all other energy levels form doublets comprised of states
with n = p and n = −p mod 2M . This structure persists even in the presence of
additional perturbations provided the Hamiltonian preserves T ′ = Z2MT—which
guarantees degeneracy of the doublets via a generalization of Kramer’s theorem. At
θ0 = π the Hamiltonian describes the boundary between the fermionic vacuum and
the SPT phase described in the previous subsection. This interface hosts a single
Dirac-fermion zero mode and, accordingly, all energy levels in Eq. (3.139) are
doubly degenerate. The resulting level crossings at θ0 = π are protected by fermion
parity and remain robust to arbitrary local perturbations. Hence, the fermionic
system retains the anomalous 4Mπ-periodic response to θ0 sweeps provided T ′

symmetry is enforced at θ0 = 0 mod 2π.

Finally, consider the generalized Fig. 313(b). Just as for the Z4 limit, locality and
fermion-parity constraints alone guarantee an anomalous 4Mπ-periodic response to
φ0 (no special symmetries required). The Hamiltonian governing the left junction in
the figure can only depend on iγ2γ3 and the order parameters O1,2, all of which are
necessarily conserved quantities in the effective low-energy description. Eliminating
the level crossings that underlie the anomalous periodicity would require either
transitioning between macroscopically distinct order-parameter configurations, or
a source of low-energy fermions to flip iγ2γ3. Neither process is available in our
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setup. We can see this result explicitly by rewriting Eq. (3.140) in the fermionic
representation:

H2,3 = −2t cos
[
π

M
(q̂1 − q̂2) +

φ0
2M

]
iγ2γ3, (3.141)

where we introduced integer-valued operators q̂1,2 that specify the order parameters
viaO1,2 = ei 2π

M q̂1,2 . As deduced on general grounds, Eq. (3.141) predicts energies that
are 4Mπ periodic in φ0, with each branch corresponding to fixed order-parameter
and parity configurations. Transitions between these levels are therefore forbidden.

As an aside, Eq. (3.141) in the M = 2 limit describes precisely the same setup
as Eq. (3.118), though the Hamiltonians look rather different. In terms of the
magnetizations appropriate for the Z4 case, we have ei π2 q̂1,2 = [(1 + m1,2) + i(1 −
m1,2)]/2. Using this relation and sending γ2 → m1γ2 in Eq. (3.141) reproduces
Eq. (3.118), i.e., they indeed provide equivalent descriptions.

Figure 314 summarizes the structure of the energy levels in both fermionic platforms
considered above, specializing to the M = 3 case.

3.6 Discussion
We have established an exact correspondence between Zeven parafermion chains
and 1D fermionic systems, using clock spins as an intermediary. From the clock
viewpoint, our formalism extends the familiar fermionization of the Ising model into
a much broader class of discrete spin systems. We were most interested, however, in
understanding how the physics of bona fide parafermions, which (to our knowledge)
require a fractionalized host, filters into the fermionic realm.

Most of our effort centered around the Z4 case. There we introduced a judi-
cious fermionization algorithm that maps Z4 parafermions to ordinary spinful elec-
trons, a result foreshadowed by earlier works on anomalous quantum-spin-Hall edge
modes [87, 111]. Moreover, we saw that symmetries of the parafermion system
can be repackaged into familiar operations for fermions—notably electronic time
reversal and global spin rotations. Phases for Z4 parafermions, in turn, translate
into physically relevant electronic states as summarized in Fig. 34: The trivial
gapped parafermion phase maps to an electronic insulator; the topological phase
with unpaired parafermion zero modes [34] maps to a topological superconduc-
tor hosting symmetry-enriched Majorana zero modes whose structure intertwines
with a spontaneously chosen magnetization order parameter; and an SPT phase for
parafermions maps to the widely studied time-reversal-invariant topological super-
conductor (TRITOPS) for electrons.
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protected by
fermion parity
[       cycle]

6π

protected by
fermion parity
[       cycle]

Energies

9π3π
0

or φ0

φ0

protected by
locality
[       cycle]φ0

θ0

θ0

protected by

[       cycle]θ0

12π

T ′ = Z2MT

Figure 314: Energies versus pumping parameters θ0 or φ0 for the fermionic setups in
Figs. 311(a) and 313(b), generalized to theZ6 case (i.e., M = 3). For the generalized
Fig. 311(a), the level crossings at θ0 = 0 mod 2π are protected by the antiunitary
symmetry T ′ = Z2MT , while level crossings at θ0 = π mod 2π exhibit fermion-
parity protection. As long as these level crossings aremaintained, the system exhibits
an anomalous 12π-periodic response to θ0 sweeps. For the generalized Fig. 313(b),
the level crossings at zero energy are fermion-parity protected; all others occur
between states with different order-parameter configurations and are protected by
locality. The system thus generically exhibits 12π-periodic response to φ0, with no
additional symmetries required. These enlarged periodicities are an imprint of the
nontrivial fusion rules in the corresponding Z6 parafermion platforms.
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Interestingly, symmetry-enriched Majorana zero modes may have already been ex-
perimentally realized in proximitized Fe chains [33, 51, 83, 88, 94]. The Fe-chain
Hamiltonian of course differs markedly from the toy models studied in Sec. 3.3, but
shares the all-important feature of spontaneous time-reversal symmetry breaking.
Majorana zero modes appearing in Fe chains must then conform to Eq. (3.65) on
very general grounds, indicating symmetry enrichment in the sense defined in this
paper. The precise connection to parafermion physics highlights a surprising new
perspective on these experiments.

Our exact mappings further enabled a rigorous comparison between non-Abelian-
anyon physics arising fromZ4 parafermion zeromodes and from symmetry-enriched
Majorana modes. We showed that their braiding properties differ starkly and pin-
pointed the origin of this distinction (the parafermion braidingHamiltonian becomes
nonlocal when mapped to fermions). Symmetry-enriched Majorana modes do, nev-
ertheless, underlie braid transformations that can not arise in conventional Majorana
systems, since the order parameter need not return to its original value under an
adiabatic closed cycle of the Hamiltonian. It is unclear whether this additional flex-
ibility offers any advantages for quantum computing, though this question certainly
warrants serious consideration.

Fusion properties arising from Z4 parafermion zero modes are more directly inher-
ited by electrons in the following sense. Parafermion platforms admit a pumping
cycle that returns the Hamiltonian to its original form but cycles the system among
four possible ‘fusion channels’ for the parafermions—yielding an anomalous 8π-
periodic response. Precisely the same 8π periodicity can be harnessed in the
corresponding 1D electronic setting. We introduced ‘weak’ and ‘strong’ implemen-
tations that can both be understood in terms of hybridization of symmetry-enriched
Majorana modes. The ‘weak’ version (summarized in Fig. 311) cyclically modu-
lates a wire between TRITOPS and trivial phases; provided time-reversal symmetry
is maintained at certain points of the cycle, the magnetization at the ends of the
system exhibits 8π periodicity. This phenomenon is a cousin of the 8π-periodic
Josephson effect that can arise at a quantum-spin-Hall edge [46, 87, 90, 105, 111].
The ‘strong’ version (Fig. 313) realizes an anomalous 8π-periodic pumping cycle
that eschews symmetry requirements altogether, but necessitates strong correlation
together with tunable interactions. Implementation in proximitized Fe chains poses
a tantalizing possibility worth exploring in detail.

We generalized our Z4 results by using a modified algorithm that recasts Z2M
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parafermions in terms of a single species of fermions coupled to a ZM order param-
eter. Weak and strong anomalous pumping cycles, now with 4Mπ periodicity, were
identified also in this broader setting. Experimental connections are less obvious
compared to the Z4 case, however, and would be useful to develop in future work.
One potentially promising avenue is to explore an array of wires with a ZM rota-
tional symmetry (similar to the bundles examined in Ref. [60]) that is spontaneously
broken, yielding a nontrivial interplay with Majorana zero modes. It is natural to
also ask about Zodd parafermions. Our fermionization approach does not readily
extend to this case due to a ‘mismatch’ in Hilbert-space dimensions. Nevertheless,
it would be interesting to pursue variations of our approach, for instance that map
Zodd parafermions to fermions with a constrained Hilbert space.

The classifications of interacting gapped 1D phases from Refs. [21, 35, 96, 102]
strongly constrain the kinds of non-Abelian-anyon defects that 1D systems can
support. Specifically, these works capture only ‘Ising’ defects that trap Majorana
zero modes. One of the general messages of our work is that the interplay between
Majorana modes and local order parameters can nonetheless enrich their properties
as summarized above. In light of this perspective, it would be interesting to revisit
earlier works aimed at mimicking parafermion physics in strictly 1D setups [60, 61,
86, 101]: might such setups provide additional platforms for symmetry-enriched
Majoranamodes? Pursuing realizations of symmetry-enhanced non-Abelian defects
using cold atoms poses another natural direction: building, e.g., off of Ref. [45].
Cold-atoms proposals for obtaining genuine parafermions do exist [67], but the
requisite topologically ordered host platforms have not yet been demonstrated.

We conclude by highlighting several other future directions. A more exhaustive
dictionary linking phases for parafermions and fermions would certainly be wel-
come. We have focused on a select few examples, and there are likely deeper
insights to be gained from other such correspondences. Majorana zero modes
can also of course arise in two-dimensional topological superconductors. Can one
harvest a fruitful interplay with order-parameter physics also in this setting? On
a more formal level, we saw that a duality transformation for clock spins maps
fermions onto dual fermions, which (roughly) are related to one another by attach-
ing a parafermion [recall, e.g., Eq. (3.53)]. It is interesting to ask whether a similar
nontrivial connection between fermions and dual fermions can exist in higher di-
mensions [71, 72, 79, 98, 106]. Explorations along these lines may contribute to
the growing ‘duality web’ that has recently been established in (2 + 1)-dimensional
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field theories [20, 39, 53, 54, 56, 80, 81, 97].

3.7 Expressing hard-core bosons in terms of Z4 clock operators
Inverting Eqs. (3.15) and (3.16) is nontrivial since the expansion of σa involves
terms that are both linear and cubic in hard-core boson operators. We perform the
inversion by first assembling linear combinations that cancel the cubic components.
Some algebra yields

σ

(
1 − τ2

2

)
+ H.c. = b†

↑
+ b↑ (3.142)(

1 − τ2

2

)
σ + H.c. = b†

↓
+ b↓ (3.143)

σ

(
τ† − τ

2

)
+ H.c. = i(b†

↑
− b↑) (3.144)(

τ† − τ

2

)
σ + H.c. = i(b†

↓
− b↓), (3.145)

where for notational simplicity we suppressed the site label a. From here it is
straightforward to take superpositions that isolate b↑ and b↓, yielding Eqs. (3.17)
and (3.18) from the main text.

3.8 Symmetry properties of spinful fermions
In this section we derive the action of Z4, T , and C symmetries on spinful fermions.
The string Sa is invariant under each of these operations; thus all the action arises
from the bosons and the additional phase factors in Eqs. (3.19) and (3.20).

Consider first Z4. The following relations, which can be obtained from Eqs. (3.15)
and (3.16), are helpful for evaluating this symmetry:

iσ
(
1 − τ2

2

)
+ H.c. = −ieiπn↓(b†

↑
− b↑) (3.146)

i
(
1 − τ2

2

)
σ + H.c. = ieiπn↑(b†

↓
− b↓) (3.147)

iσ
(
τ† − τ

2

)
+ H.c. = eiπn↓(b†

↑
+ b↑) (3.148)

i
(
τ† − τ

2

)
σ + H.c. = −eiπn↑(b†

↓
+ b↓). (3.149)

(We continue to suppress site indices for simplicity.) Using the above together with
Eqs. (3.4), (3.17), and (3.18), one sees that the hard-core bosons transform under
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Z4 as

Qb↑Q† = ieiπn↓b↑, Qb↓Q† = −ieiπn↑b↓. (3.150)

The fermions transform in an identical fashion:

Q f↑Q† = ieiπn↓ f↑, Q f↓Q† = −ieiπn↑ f↓. (3.151)

The action of time-reversal T on hard-core bosons follows straightforwardly from
Eqs. (3.5), (3.17), and (3.18); we find

T b↑T = b↓, T b↓T = b↑. (3.152)

In this case the phase factors in Eqs. (3.19) and (3.20) result in a more nontrivial
action on the fermions,

T f↑T = ieiπn↑ f↓, T f↓T = ieiπn↓ f↑. (3.153)

An analogous situation arises for charge conjugation C. For the bosons we obtain
the simple transformation

Cb↑C = b↓, Cb↓C = b↑, (3.154)

which yields
C f↑C = eiπn↑ f↓, C f↓C = eiπn↓ f↑ (3.155)

for the fermions.

3.9 Spin-1/2 representations and symmetries
To better understand the structure behind our fermionization, and compare to earlier
works, it is instructive to express the clock operators σa, τa in terms of spin-1/2
degrees of freedom. References [62, 108] employed one possible decomposition
given by

σa =
1 + i

2
(sz

a+ 1
4
+ isz

a− 1
4
) , (3.156)

τa =
1
2
(sx

a+ 1
4
+ sx

a− 1
4
) +

1
2
(sx

a+ 1
4
− sx

a− 1
4
)sz

a+ 1
4
sz

a− 1
4
.
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The inverse relationship is

sz
a− 1

4
= −

1 + i
2
(σa − iσ†a ) , (3.157)

sz
a+ 1

4
=

1 − i
2
(σa + iσ†a ) , (3.158)

sx
a− 1

4
=

1
2

(
τa + τ

†
a + σ

2
a (τa − τ

†
a )

)
, (3.159)

sx
a+ 1

4
=

1
2

(
τa + τ

†
a − σ

2
a (τa − τ

†
a )

)
. (3.160)

In these variables the Ashkin-Teller model, Eq. (3.38), maps onto two coupled
transverse-field Ising models:

H = − J
∑

a

(sz
a+ 1

4
sz

a+1+ 1
4
+ sz

a− 1
4
sz

a+1− 1
4
) (3.161)

− f
∑

a

(sx
a+ 1

4
+ sx

a− 1
4
)

+ λ
∑

a

(Jsz
a− 1

4
sz

a+ 1
4
sz

a+1− 1
4
sz

a+1+ 1
4
+ f sx

a− 1
4
sx

a+ 1
4
) .

Next we will show that this spin-1/2 model admits two useful alternative forms:
‘Spin model A’ exhibits translation symmetry, with duality implemented as a non-
symmorphic spin rotation. ‘Spin model B’ is invariant under a continuous spin-
rotation symmetry, with duality instead implemented as a translation.

Spin model A
Suppose that we perform the familiar Ising-model duality transformation that trades
in sx,y,z

a± 1
4
variables for dual spins t x,y,z living on integer as well as half-integer sites:

t x
a = sz

a− 1
4
sz

a+ 1
4

tz
a =

∏
a′<a

sx
a′ . (3.162)

(In the second expression, the variable a′ in the product runs over all integers and
half-integers.) The Ashkin-Teller model then takes the form

HJ, f = − J
∑

a

(t x
a− 1

2
t x
a + t x

a t x
a+ 1

2
) (3.163)

− f
∑

a

(tz
a− 1

2
tz
a + tz

atz
a+ 1

2
)

+ λ
∑

a

(Jt x
a t x

a+1 + f tz
a− 1

2
tz
a+ 1

2
) .

For later convenience, on the left side we have explicitly displayed the J, f couplings
as subscripts of H. The λ terms only involve operators on the same sublattice
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(integer or half-odd-integer sites). Translations T : a → a + 1 and inversions I
that preserve these sublattices leave HJ, f invariant. We also introduce the ‘half-
translation’T1

2
: a→ a+ 1

2 , which interchanges the sublattices, and a
π
2 spin rotation

U = exp
[
i π4 ty

]
. The model of Eq. (3.163) satifies

HJ, f [t] = H f ,J[T1
2
U tU−1T−1

1
2
] , (3.164)

i.e., duality is realized as a local spin rotation combined with a change of sublattice.
This implementation of duality is specific to the Ashkin-Teller Hamiltonian and
does not hold for more generic models that are only constrained by Z4, C and T
symmetries. We already encountered an example of such a term in Eq. (3.77).
Specifically, we find

σ†aσa+2 + H.c. =[t x
a+ 1

2
t x
a+ 3

2
][t x

a t x
a+1 + t x

a+1t x
a+2] , (3.165)

τaτa+1 + H.c. =[tz
atz

a+1 − tya tya+1][t
z
a− 1

2
tz
a+ 1

2
+ tz

a+ 1
2
tz
a+ 3

2
]

+ [tz
atz

a+1 + tya tya+1][1 + tz
a− 1

2
tz
a+ 3

2
] .

Clock-model duality interchanges the expressions on the left side, but the corre-
sponding terms on the right side are clearly not related by T1

2
U. In contrast, for the

last term in Eq. (3.77), the symmetry operation T1
2
U does implement duality, i.e.,

σ2
aσ

2
a+2 = t x

a t x
a+2 ,

τ2
aτ

2
a+1 = tz

a− 1
2
tz
a+ 3

2
.

To connect to the treatment in the main text, it is convenient to bosonize this spin
model according to

ty ∼ ∂xφ + (−1)x sin 2φ , (3.166)

tz ± itx ∼ e∓iθ[(−1)x + sin 2φ] . (3.167)

This expansion results in an effective low-energy Hamiltonian

H =

∫
x

{
v

2π
[g(∂xφ)

2 + g−1(∂xθ)
2]

− κ1 cos(4φ) − κ2 cos(2θ)
}

(3.168)

that has same form as Eq. (3.54), though the relation between g, κ1, κ2 and mi-
croscopic parameters of the Ashkin-Teller model is different. Firstly, for λ = 0
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and J = f , Eq. (3.163) is a pure XY model, which in the convention defined by
Eqs. (3.166) and (3.167) corresponds to g = 1 and κ1 = κ2 = 0. Taking J , f but
λ = 0 introduces an Ising anisotropy with κ2 ∼ J− f . When instead λ , 0 but J = f ,
Eq. (3.163) is symmetric under T1

2
U, which acts as φ → φ + π/2, θ → θ + π/2—

implying that κ2 = 0. Finally, for generic J, f , λ all terms in Eq. (3.168) are
present. The broken translation symmetry would appear to permit the additional
term ∼ cos 2φ, but that is forbidden by I.

In this formulation of the Ashkin-Teller model, all phases discussed in Sec. 3.3 are
readily identified. The ferromagnetic and paramagnetic phases of the clock model
are driven by κ2. When κ2 < 0, θ is pinned to π/2 mod π and 〈t x〉 , 0 while for
κ2 > 0 it is pinned to 0 mod π and consequently 〈tz〉 , 0. The phases driven by κ1

are characterized by magnetization in the y direction (κ1 < 0) or by valence-bond
order (κ1 > 0). Finally, ‘hybrid order’ can be read off from the λ → ∞ limit of
Eq. (3.163) and amounts to 〈t x〉 , 0 on integer sites and 〈tz〉 , 0 on half-integer
sites.

Spin model B
We now return to Eq. (3.161) and perform the Ising-model duality of Eq. (3.162)
for half of the spins, i.e., s′xa−1/4 = sz

a− 1
4
sz

a−1− 1
4
and s′z

a− 1
4
=

∏
a′<a sx

a′− 1
4
(the product

now runs only over integer sites a′). The Ashkin-Teller Hamiltonian becomes

HJ, f = − J
∑

a

(sz
a+ 1

4
sz

a+1+ 1
4
+ s′x

a− 1
4
) − f

∑
a

(sx
a+ 1

4
+ sz

a− 1
4
s′z

a+1− 1
4
)

+ λ
∑

a

(Js′z
a+ 1

4
s′z

a+1+ 1
4
sx

a+1− 1
4
+ f sz

a− 1
4
sz

a+1− 1
4
s′x

a+ 1
4
) . (3.169)

A second application of Eq. (3.162), this time for all s and s′, yields [62, 108]

HJ, f = − J
∑

a

(t′x
a− 1

2
t′xa + t′z

a− 1
2
t′za − λt′y

a− 1
2
t′ya ) (3.170)

− f
∑

a

(t′za t′z
a+ 1

2
+ t′xa t′x

a+ 1
2
− λt′ya t′y

a+ 1
2
) .

This formulation is invariant under continuous global spin rotations about t′y and
satisfies

HJ, f [t
′] = H f ,J[T1

2
t′T−1

1
2
] , (3.171)

i.e., duality is implemented as a translation. Bosonizing as before, one finds

H =

∫
x

{
v′

2π
[g′(∂xφ

′)2 + g′−1(∂xθ
′)2] − κ′1 cos(4θ′) − κ′2 cos(2φ′)

}
(3.172)
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with κ′2 ∼ J − f . It follows that the low-energy descriptions of spin models A and
B are related by interchanging φ and θ.

3.10 Alternative fermionization schemes
The spin-1/2 representations of Section 3.9 provide an alternative route to fermion-
izing clock Hamiltonians by using the conventional Jordan-Wigner transformation.
The form of Eq. (3.163) suggests introducing spinless Jordan-Wigner fermions as

c′a =
1
2
(tz

a − it x
a )

∏
a′<a

tya′ . (3.173)

When these fermions are bosonized via c′a ∼ eikFaei(θ+φ) + e−ikFaei(θ−φ), the Pauli
operators take the form given in Eqs. (3.166) and (3.167), and the low-energy
Hamiltonian is the one of Eq. (3.168). Note that the bosonization convention
employed above differs from that in Sec. 3.3, which is useful since the low-energy
descriptions obtained in the two approaches then exactly match up.

Spinful fermions
To connect to the fermionization performed in the main text, it is instructive to adopt
the alternative convention

ca =
1
2
(tya − itz

a)
∏
a′<a

t x
a′ . (3.174)

This is related to the one above by a global spin rotation—a highly non-local
transformation on the fermions. Using Eqs. (3.156) and (3.162) we find for integer
a

ca =
i
2
(σa + σ

†
a )τ
†
a

∏
a′<a

τ2
a′ ,

c†
a+ 1

2
− ca+ 1

2
=

1 + i
2
(σa + iσ†a )τ

2
a

∏
a′<a

τ2
a′ ,

c†
a− 1

2
+ ca− 1

2
= −

1 − i
2
(σa − iσ†a )τ

2
a

∏
a′<a

τ2
a′ ,

where we omitted a boundary term sz
0. Note that the spinful fermions introduced in

Sec. 3.2 have exactly the same structure, i.e., a string of τ2’s that is terminated by
an odd power of σ operators. This similarity implies a local relationship between
the two kinds of fermions, which we already provided explicitly in Eqs. (3.36) and
(3.37).
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Dual fermions
To connect to the dual fermions of Sec. 3.2, recall that the spin-1/2 representation of
Eq. (3.163) implements duality as a π/2 rotation combined with a half-translation.
This suggests that the spinful fermions f̃a,α defined by replacing ca in Eqs. (3.36)
and (3.37) by

c̃a = T1
2
UcaU−1T−1

1
2
=

1
2
(ty

a+ 1
2
+ it x

a+ 1
2
)

∏
a′<a+ 1

2

tz
a′ (3.175)

correspond to the dual fermions introduced in the main text. Indeed, for the Ashkin-
Teller model one finds

HJ, f [ f̃α] =H f ,J[ fα] = H f ,J[fα] (3.176)

=HJ, f [T1
2
UfαU−1T−1

1
2
] = HJ, f [f̃α] ,

where the third equality holds due to Eq. (3.164). This relationship breaks down,
e.g., in the presence of the perturbation described by Eq. (3.165). Unlike fα and fα,
the single-particle operators f̃α and f̃α are related non-locally as noted in the main
text.

3.11 Explicit map between Z4 parafermions and fermions
Here we furnish explicit maps that fermionize the Z4 parafermion operators defined
in Eq. (3.9). We first use Eqs. (3.15) through (3.21) to write σa and σaτa in terms
of fermions:

σa = Sa[(w̄ f †a,↓ + w fa,↑) + (w̄ f †a,↑ − w fa,↑)na,↓ − (w fa,↓ + w̄ f †a,↓)na,↑] (3.177)

σaτa = Sa[w̄( f
†

a,↓ − fa,↑) + (w̄ fa,↑ − w f †a,↑)na,↓ + (w fa,↓ − w̄ f †a,↓)na,↑], (3.178)

where w = ei π4 . These expressions simplify considerably upon introducing Majo-
rana operators and projectors as follows:

fa,α = w̄(γa,1α + iγa,2α)/2 (3.179)

Pa,1± =
1
2
(1 ± iγa,1↓γa,2↑) (3.180)

Pa,2± =
1
2
(1 ± iγa,1↑γa,2↓). (3.181)

We then obtain

σa = Sa[Pa,1+γa,1↑ − iPa,1−γa,2↓] (3.182)

w̄σaτa =
Sa
√

2
e
π
2 i(Pa,2+−1)(γa,1↓ − γa,2↑). (3.183)
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As an aside, Eq. (3.182) provides an alternative means of recovering Eq. (3.60)
directly from the clock model. The fermionic operators ca and da are respectively
given by ca =

1
2 (γa,1↑ + iγa,2↓) and da =

1
2 (γa,1↓ + iγa,2↑). Moreover, Pa,1+ and Pa,1−

project onto the magnetization sectors ma = −1 and ma = +1, respectively, while
the strings combine to yield a simple multiplicative factor of ma(iγa,1↑γa,2↓).

The parafermion operators α2a−1, α2a arise from Eq. (3.182), (3.183) multipled by
the disorder operator µa− 1

2
, respectively. Both cases contain a factor

Saµa− 1
2
= µ†

a− 1
2
= e−i π2

∑
b<a(nb,↑−nb,↓+2nb,↑nb,↓)

= e−i π4
∑

b<a[1+iγb,1↑γb,2↑(2+iγb,1↓γb,2↓)]. (3.184)

Putting everything together yields

α2a−1 =
1
2

e−i π4
∑

b<a[1+iγb,1↑γb,2↑(2+iγb,1↓γb,2↓)][Pa,1+γa,1↑ − iPa,1−γa,2↓]

(3.185)

α2a =
1
√

2
e−i π4

∑
b<a[1+iγb,1↑γb,2↑(2+iγb,1↓γb,2↓)]e

π
2 i(Pa,2+−1)(γa,1↓ − γa,2↑). (3.186)

Equations (3.185) and (3.186) explicitly relate parafermions to non-local products
of fermions. We will now derive an alternative decomposition that involves local
combinations of fermions and dual fermions. To this end define the dual analogue
of Eqs. (3.179) through (3.181),

f̃ã,α = w̄(γ̃ã,1α + iγ̃ã,2α)/2 (3.187)

P̃ã,1± =
1
2
(1 ± iγ̃ã,1↓γ̃ã,2↑) (3.188)

P̃ã,2± =
1
2
(1 ± iγ̃ã,1↑γ̃ã,2↓), (3.189)

as well as the dual analogue of Eq. (3.182),

µã = S̃ã[P̃ã,1+γ̃ã,1↑ − iP̃ã,1−γ̃ã,2↓], (3.190)

where ã = a + 1
2 . The string in the above equation reads

S̃ã =
∏̃
b<ã

ν2
b̃
= σ2

a = iγa,1↓γa,2↑. (3.191)

Here we neglected the termination of the ν2 string; that is, we discarded aσ2
−∞ factor.

To obtain the right-hand side, we used Eq. (3.182) to express S̃ã as a purely local
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product of the original fermions. One can similarly express the string in Eqs. (3.182)
and (3.183) as a local product of dual fermions:

Sa = µ
2
ã−1 = iγ̃ã−1,1↓γ̃ã−1,2↑. (3.192)

We can now obtain the desired form of the parafermion operators,

α2a−1 = σaµã−1

= [Pa,1+γa,1↑ + iPa,1−γa,2↓](P̃ã−1,2+ − P̃ã−1,2−)

× [P̃ã−1,1+γ̃ã−1,1↑ − iP̃ã−1,1−γ̃ã−1,2↓] (3.193)

α2a = w̄σaµã

= w̄[Pa,1+γa,1↑ − iPa,1−γa,2↓](Pa,2+ − Pa,2−)

× [P̃ã,1+γ̃ã,1↑ − iP̃ã,1−γ̃ã,2↓]. (3.194)

The factor µã−1 above involves a string S̃ã−1 = σ2
a−1. To derive Eq. (3.193) we

equivalently wrote this string as S̃ã−1 = σ2
a ν

2
ã−1, expressed σ

2
a in terms of a local

product of fermions using Eq. (3.191), and expressed ν2
ã−1 in terms of dual fermions.

Similarly, the σa in Eq. (3.194) involves a string Sa = µ
2
ã−1 which we can rewrite as

τ2
a µ

2
ã. Herewe expressed µ

2
ã as a local product of dual fermions using Eq. (3.192) and

wrote τ2
a in terms of fermions. We adopted this approach to express the parafermions

as products of fermion operators living on a single site and dual fermions living on
another.

3.12 Self-duality of the hybrid-order ground states
Asdiscussed in Sec. 3.3, ground states of theHamiltonianHhybrid order = −J2

∑
a σ

2
aσ

2
a+1−

f2
∑

a τ
2
a can be expressed as

|+〉 =
∏

a

1 + τ2
a

√
2
|σ = 1, . . . , 1〉 (3.195)

|−〉 =
∏

a

1 + τ2
a

√
2
|σ = i, . . . , i〉 (3.196)

for any positive couplings f2, J2. Our goal here is to show that these states take
essentially the same form after a duality transformation.

For this purpose, one can profitably view |±〉 as follows: Start from ‘root states’
|σ = 1, . . . , 1〉 and |σ = i, . . . , i〉 that satisfy the J2 term, and then apply (1 + τ2

a )

factors that project away τ2
a = −1 configurations to satisfy the f2 term. (Choosing

root states |σ = −1, . . . ,−1〉 and |σ = −i, . . . ,−i〉 produces the same end result.)
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From a dual viewpoint, we can construct one ground state by taking the root state
|τ = 1, . . . , 1〉 that satisfies the f2 term, and then applying (1 + σ2

aσ
2
a+1) factors to

satisfy J2. The corresponding wavefunction reads

|+̃〉 =
∏

a

1 + σ2
aσ

2
a+1

√
2

|τ = 1, . . . , 1〉 (3.197)

and obeys Q |+̃〉 = |+̃〉 (as usual Q is the Z4 generator). Taking the root state
|τ = −1, 1, . . . , 1〉—which also satisfies f2—yields a second ground state

|−̃〉 =
∏

a

1 + σ2
aσ

2
a+1

√
2

|τ = −1, 1, . . . , 1〉 = σ2
1 |+̃〉 (3.198)

with Q |−̃〉 = −|−̃〉. Despite appearances, |±̃〉 represent product states for the clock
chain. Applying the basis change |τ = 1〉 = 1

2
∑
σ |σ〉 allows us to write

|+̃〉 + |−̃〉
√

2
=

1
2N

∑
σ1,...,σN

1 + σ2
1

√
2

∏
a

1 + σ2
aσ

2
a+1

√
2

|σ1, . . . , σN〉. (3.199)

The (1 + σ2
1 ) factor restricts the σ1 sum to ±1; the product (1 + σ2

aσ
2
a+1) then

propagates this same restriction to all other sites. We therefore obtain the relation
|+̃〉 + |−̃〉
√

2
= |+〉, (3.200)

while analogous logic yields
|+̃〉 − |−̃〉
√

2
= |−〉. (3.201)

Duality indeed merely introduces a basis change. The situation should be contrast to
the broken-symmetry canted-ferromagnet states defined in Eq. (3.76), which dualize
into ground states of an SPT phase [Eqs. (3.82) and (3.83)].

3.13 Zero-mode anomalies in the SPT phases
This Section rigorously shows that the κ2 < 0 states discussed in Sec. 3.3 correspond
to SPT phases. To do so, we will appeal to the theory of projective representations
for SPT’s put forward by Refs. [21–23]. The relevant symmetries are Z4, C, and
T . Generators of these symmetries—which we respectively denote by Q, c, and
t—form a linear representation of the symmetry group when acting on physical
degrees of freedom. For example, take Z4. In the clock representation, we can
choose σ eigenstates as physical kets; Q ‘winds’ these states according to

|σ = 1〉 → |σ = −i〉 → |σ = −1〉

→ |σ = i〉 → |σ = 1〉 . (3.202)
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This action leads to an example of a linear representation: the matrix representation
of the symmetry generator Q,

N(Q) =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


, (3.203)

obeys the same multiplication rules as the symmetry generators themselves. That
is,

N(g)N(h) = N(gh), (3.204)

where g, h are symmetry-group elements and N is the corresponding matrix repre-
sentation. When considering Z4 alone, one has g = Qa and h = Qb for integers a, b,
though Eq. (3.204) defines a linear representation for general symmetry groups as
well.

For an SPT, an interesting loophole arises: the edge modes are anomalous and
carry a projective representation of the symmetry group. Specifically, if M(g) is the
matrix representation that specifies how the edgemodes transform under a symmetry
element g, then

M(g)M(h) = ω(g, h)M(gh). (3.205)

Here ω is a phase factor that cannot be gauged to 1 by a phase redefinition of the
form M(g) → M′(g) = eiθg M(g). In what follows we will show that the edge
zero modes in the κ2 < 0 phases indeed transform projectively under appropriate
symmetries, indicating that the bulk forms an SPT.

We will first address the clock representation (see below for an extension to the
fermion and parafermion cases). Let us focus on the left zero mode, which as
discussed in Section 3.3 encodes a twofold degeneracy corresponding to pseudospin-
1/2 states with ηz

1 = ±1. According to Eq. (3.87), the action of Q on the zero mode
is given by the operator ei π4 η

z
1 , which yields the matrix representation

M(Q) =

[
ei π4 0
0 e−i π4

]
. (3.206)

Although Q4 = 1 by definition, the matrix above satisfies [M(Q)]4 = −1. In this
case the −1 on the right side can be gauged away by defining M′(Q) = ei π4 M(Q).
Then M′(Q)4 = M′(Q4) = 1, yielding a linear representation. Hence the clock chain
does not form an SPT if Z4 alone is present.
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Suppose that we instead enforce the combination Z4T . The symmetry properties
from Table 36 imply that T transforms the zero mode according to the matrix

M(t) =

[
0 1
1 0

]
K, (3.207)

where K denotes complex conjugation, reflecting antiunitary of T . The matrix
representation of the generator Qt follows as

M(Qt) =

[
0 ei π4

e−i π4 0

]
K . (3.208)

Similar to the case ofZ4 by itself, we see that [M(Qt)]4 = −1 even though (Qt)4 = 1.
Crucially, however, here there is no phase factor that we can append to remove the
−1. Thus the zero mode transforms projectively under Z4T , and the clock chain
forms an SPT in the presence of this composite symmetry.

Alternatively, the clock chain can form an SPT protected by Z4 and C. Under C
symmetry σ eigenstates transform as

|σ = 1〉 → |σ = 1〉 , |σ = −1〉 → |σ = −1〉 (3.209)

|σ = i〉 → |σ = −i〉 , |σ = −i〉 → |σ = i〉 . (3.210)

Furthermore, C transforms the zero mode according to

M(c) =

[
0 1
1 0

]
, (3.211)

where we again used the symmetry properties from Table 36. It is useful to now
associate σ eigenstates with the four compass directions; from this viewpoint Z4

effects a rotation while C yields a reflection. The corresponding symmetry group
is D8, the dihedral group on 4 elements. In order for the zero modes to transform
as a linear representation with respect to Z4 and C symmetries, we must be able to
deform the matrices in Eqs. (3.206) and (3.211) so that

[M(Q)]4 = M(Q4) = 1 (3.212)

[M(c)]2 = M(c2) = 1 (3.213)

M(c)M(Q)M(c) = M(cQc = Q−1) = M(Q)−1. (3.214)

In the last line we invoked properties of the dihedral group. Such a deformation
is impossible—no matter what phases we append to M(Q) and M(c), we can not
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simultaneously satisfy all three conditions above. So the zero modes indeed trans-
form projectively in the presence of Z4 and C, again guaranteeing an SPT for the
clock chain.

Note that both Z4 and C symmetries must be enforced for the conclusion above to
apply, as similar logic shows that the combination Z4C by itself does not protect
the SPT. However, an SPT does emerge upon supplementing Z4C with Z2

4, which
together form the group Z2 × Z2. The associated matrix representations are

M(Qc) =

[
0 ei π4

e−i π4 0

]
, M(Q2) =

[
i 0
0 −i

]
. (3.215)

A linear representation arises if we can redefine the matrices such that

[M(Q2)]2 = M(Q4) = 1 (3.216)

[M(Qc)]2 = M((Qc)2) = 1 (3.217)

M(Q2)M(Qc) = M(Qc)M(Q2), (3.218)

which again is impossible.

We can readily extend these results to the parafermion and fermion realizations.
Above we saw that the clock-chain SPT can be protected by (i) Z4T , (ii), Z4 and C,
or (iii) Z4C and Z2

4. For parafermions and fermions, some of these symmetries are
enforced automatically—thus weakening the symmetry requirements for obtaining
an SPT in these realizations. Parafermions realize Z4 automatically, so that we
need only impose T or C. Fermions realize Z2

4 automatically—which corresponds
to global fermion parity—though Z4 itself can be broken. Thus electronic time
reversal Telec = Z4T or spin rotation symmetry Uspin = Z4C protect the fermionic
SPT. Incidentally, the existence of an SPT in the latter context is clear even without
the analysis in this section, since the fermions realize the well-studied TRITOPS
phase.

3.14 Parafermion braid matrices in fermion language
As noted in Sec. 3.4, rewriting parafermion braid matrices in terms of Majorana
operators enables a direct comparison with braid matrices that arise in the spinful-
fermion realization. Adapting the machinery from Sec. 3.3 yields the following
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dictionary:

α1 = −ei π4 (mL−1)γ1 (3.219)

α2 = −e−i π4 [pL(mL+1)+1]
Γ2 (3.220)

α3 = −ei π4 [mR−mL+pL(mL+1)]γ3γ2Γ1 (3.221)

α4 = −e−i π4 [pR(mR+1)−pL(mL+1)+mL]Γ1Γ4γ2. (3.222)

Here α j and γ j denote zero-mode operators in Fig. 39; pL = iγ1γ2 and pR = iγ3γ4;
and mL = iΓ1Γ2 and mR = iΓ3Γ4 denote the magnetizations in Fig. 39(b). The total
fermion parities in the left and right topological segments are Ptot,L = mL pL and
Ptot,R = mRpR, respectively. Inserting the decomposition above into Eq. (3.101)
yields the braid matrices given in Eqs. (3.109) and (3.110) from Sec. 3.4.

To see that the parafermionic braid matrix U1,2 generates cat states when acting on
physical fermion wavefunctions, consider its action on states |mL, Ptot,L〉 for the left
topological segment:

|mL = 1, Ptot,L = 1〉 → ei 3π
8 |mL = −1, Ptot,L = 1〉

|mL = 1, Ptot,L = −1〉 → ei π8 |mL = 1, Ptot,L = −1〉

|mL = −1, Ptot,L = 1〉 → ei 3π
8 |mL = 1, Ptot,L = 1〉

|mL = −1, Ptot,L = −1〉 → ei π8 |mL = −1, Ptot,L = −1〉 .

The total parity is preserved under U1,2 as expected, though the magnetization flips
in the Ptot,L = +1 sector. Applying U1,2 to a physical fermion state

|ψ〉 = a |mL, Ptot,L; mR, Ptot,R〉 + b |mL,−Ptot,L; mR,−Ptot,R〉

then yields a cat state whenever a and b are both nonzero.

3.15 Derivation of parafermion fusion Hamiltonians
We will now analyze Fig. 310(a) and derive the minimal Hamiltonian coupling
parafermions α1 and α2. Following Sec. 3.3, we parametrize the pinned bosonized
fields in the adjacent domains as follows: θ = 0 on the left, φ = πâ/2 between
α1,2, and θ = πb̂ + θ0/2 in the central region. With these definitions (in particular,
including the θ0/2 shift) â, b̂ are once again integer-valued operators that define
parafermions via α1 = ei π2 â and α2 = ei π2 (â−b̂), precisely as in Eq. (3.56).

Now consider the bosonized perturbation

H1,2 = −2t cos
[
θ(x2) − θ(x1)

2

]
, (3.223)



112

where x1 sits just to the left of α1 while x2 sits just to the right of α2. This coupling
cycles φ in the intervening region among adjacent pinned values and is physical
provided α1,2 are close to one another. Note also that H1,2 preserves Z4, C, and
T—which are present at least when θ0 = 0 mod π. Away from these special θ0

values we can in principle introduce a non-universal shift inside of the cosine in
H1,2, though such a shift is benign for our purposes. We will also ignore higher
harmonics, i.e., terms like cos[θ(x2) − θ(x1)], since they also do not affect our
conclusions. Projecting H1,2 into the low-energy subspace yields

H1,2 → −2t cos
(
π

2
b̂ +

θ0
4

)
= −t

[
ei π−θ0

4 α†1α2 + H.c.
]
, (3.224)

corresponding to Eq. (3.112) from the main text.

One can similarly examine the parafermion setup from Fig. 313(a). Here we
parametrize the pinned bosonized fields as φ = πâ/2 on the left, θ = πb̂ between
α2,3, and φ = πĉ/2+φ0/4 in the middle domain (â, b̂, ĉ are integer-valued operators).
In this case the parafermion operators are given by α2 = ei π2 (â−b̂) and α3 = ei π2 (ĉ−b̂).
Define a bosonized perturbation that cycles θ between adjacent pinned values:

H2,3 = −2t cos[φ(x3) − φ(x2)] (3.225)

with x2 now taken just to the left of α2 and x3 taken just to the right of α3. This term
projects to

H2,3 → −2t cos
[
π

2
(ĉ − â) +

φ0
4

]
= −t

[
ei π+φ0

4 α†2α3 + H.c.
]
. (3.226)

3.16 Dictionary for higher parafermions
In this sectionwewill invert Eqs. (3.124) and (3.125) so that we can express fermions
and order-parameter operators in terms of clock variables. This exercise will enable
us to relate the fermions in the M = 2 limit to the alternate set of fermions that we
obtained for the Z4 case in Sec. 3.3.

As we already observed, the order parameter Oa is easily related to clock operators
by squaring Eq. (3.124), which yields

Oa = σ
2
a . (3.227)
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Next we will solve for the hard-core bosons Ba. It is useful to observe that

τM
a = eiπB†aBa, (3.228)

which follows from Eqs. (3.125) and (3.123). Using this relation in conjunction
with Eq. (3.124), we have

σa = Ba + OaB†a (3.229)

σaτ
M
a = −Ba + OaB†a (3.230)

and hence
Ba =

1
2
σa(1 − τM

a ). (3.231)

Substituting our expression for Ba into Eq. (3.125) yields

Da = τ

[(
1 + τM

2

)
+ e−i πM

(
1 − τM

2

)]
. (3.232)

One can readily verify that Da and Oa commute with Ba, as assumed in our
decomposition. Finally, combining Eqs. (3.228) and (3.231) allows us to write Ca

fermions defined in Eq. (3.126) as

Ca =
1
2
σa(1 − τM

a )
∏
a′<a

τM
a′ . (3.233)

We now specialize to Z4, i.e., M = 2, with the intention of relating operators
Oa,Da,Ca to the fermions ca, da defined in Eqs. (3.58) and (3.59). The order
parameter part is trivial, since Oa → ma = eiπd†ada [recall Eq. (3.61)]. As an
intermediate step for the other pieces, we use Eqs. (3.15) and (3.16) to express Da

and Ba in terms of hard-core spinful bosons:

Da = eiπna,↓ = eiπ f †
a,↓

fa,↓ (3.234)

Ba = na,↓b
†

a,↑ + (1 − na,↓)ba,↑. (3.235)

Using Eq. (3.59) in the first equation immediately gives

Da = (da + d†a)(c
†
a − ca). (3.236)

The string that relates Ca fermions to Ba bosons [see Eq. (3.126)] is built from

eiπB†aBa = eiπ(na,↓+na,↑), (3.237)

and thus has exactly the same form as the string in Eq. (3.21) that relates spinful
fermions fa,α to ba,α. Thus, Ca should be locally related to fa,α fermions, and in
turn ca, da fermions. Equation (3.235) together with Eqs. (3.19), (3.20), (3.58), and
(3.59) specifically yield

Ca =
1 − ma

2
ca +

1 + ma

2
c†a . (3.238)
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C h a p t e r 4

TIME-CRYSTALLINE TOPOLOGICAL SUPERCONDUCTORS

4.1 Introduction
Periodically driven quantum systems evade certain constraints imposed in equilib-
rium. For instance, ‘time crystals’ that spontaneously break time-translation sym-
metry in the sense envisioned in Refs. [29, 34] cannot arise in equilibrium [33], yet
can emerge with periodic driving. In periodically driven time crystals any physical
(i.e., non-cat) state evolves with a subharmonic of the drive frequency [11, 15, 36].
The canonical realization consists of disordered Ising spins that collectively flip
after each drive period, thereby requiring two periods to recover their initial state.
Experiments have detected signatures of time crystallinity both in driven cold atoms
[30, 38] and solid-state spin systems [7, 22, 25].

As a second, deeply related example, consider a one-dimensional (1D) free-fermion
topological superconductor hosting Majorana end modes [16], each described by
a Hermitian operator γ. If γ adds energy E then γ† adds −E , while Hermiticity
requires that these be equivalent. In equilibrium the unique solution is E = 0—
corresponding to the well-studied Majorana zero modes. Periodically driving with
frequency Ω additionally permits ‘Floquet Majorana modes’ carrying E = Ω/2
since energy is then only conserved mod Ω [14]. Floquet Majorana modes have
been proposed to facilitate more efficient quantum information processing compared
to equilibrium systems [2, 4, 5]. Moreover, they encode a topological flavor of time-
translation symmetry breaking in that Floquet Majorana operators change sign each
drive cycle, thus also requiring two periods to recover their initial form.

We merge the phenomena above by exploring periodically driven 1D topologi-
cal superconductors generated upon coupling Cooper-paired electrons to doubled-
periodicity time-crystalline Ising spins. Such ‘time-crystalline topological super-
conductors’ intertwine bulk time-translation symmetry breaking and topological
physics, yielding anomalous quadrupled-periodicity Floquet Majorana modes that
categorically can not arise in free-fermion platforms. We propose implementation
via quantum-dot arrays (see Fig. 41) reminiscent of setups utilized in Refs. [8, 12, 28]
for engineering equilibriumMajorana zeromodes. We derive and analyze an exactly
solvable, physically intuitive model for time-crystalline topological superconductiv-
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Figure 41: Proximitized quantum-dot array coupled to Ising spins. The Ising spins
polarize the dot electrons—effectively producing a system of spinless fermions c j .
In any Ising configuration, the fermions can realize topological superconductivity
with unpaired Majorana zero modes γ1,2 that intertwine with the adjacent spins.

ity and show that probing junctions between time-crystalline and static topological
superconductors reveals the Floquet Majorana modes’ quadrupled periodicity.

4.2 Model and Setup
Time-crystalline topological superconductors closely relate to equilibrium topolog-
ical superconductors that spontaneously violate electronic time-reversal symmetry
T , which importantly satisfies T 2 = −1. We thus begin by modeling the latter.
Our setup, sketched in Fig. 41, consists of a superconductor coupled to a chain of
quantum dots indexed by sites j, each hosting one active spinful level described by
operators f jσ (σ =↑, ↓ denotes spin); we assume that charging energy is quenched
by coupling to the superconductor and can thus be neglected. A chain of Ising spins
described by Pauli matrices mz

j resides proximate to the quantum-dot array. We
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model the setup with a T -symmetric Hamiltonian H = H0 + H f , where

H0 =
∑

j

(−Jmz
j m

z
j+1 − Kmz

j f †j σ
z f j), (4.1)

H f =
∑

j

[−µ f †j f j − t( f †j f j+1 + H.c.)

+ α(i f †j σ
x f j+1 + H.c.) + ∆( f j↑ f j↓ + H.c.)]. (4.2)

In H0, J > 0 ferromagnetically couples neighboring Ising spins and K > 0 couples
the Ising and dot spins. Terms in H f describe the chemical potential (µ), hopping
(t), spin-orbit coupling (α), and proximity-induced pairing (∆) for the quantum-dot
electrons.

Suppose that the K term dominates and energetically enforces alignment of each
electron spin with the nearest Ising spin. Only one of the two spinful levels in
each dot remains active at low energies—effectively creating a system of spinless
fermions described by operators

c j =
1
2

[
(1 + mz

j ) f j↑ + (1 − mz
j ) f j↓

]
, (4.3)

as Fig. 41 illustrates. Time-reversal T sends mz
j → −mz

j and c j → mz
j c j , thus

satisfying time-reversal symmetry. This intertwinement between spinless fermions
and Ising spins is unavoidable; without it, c j has no way of acquiring the required
minus sign upon two applications of T .

In Section 4.8 we project H onto the spinless-fermion subspace by integrating out
high-energy fermionic modes, yielding an effective Hamiltonian

He f f =
∑

j

[−Jmz
j m

z
j+1 − µ

′c†j c j

+ (t′mz
j ,m

z
j+1

c†j c j+1 + ∆
′
mz

j ,m
z
j+1

c jc j+1 + H.c.)]. (4.4)

Here µ′ = −(K + µ) is a renormalized chemical potential, while t′mz
j ,m

z
j+1
= a +

a∗mz
j m

z
j+1 and ∆

′
mz

j ,m
z
j+1
= bmz

j − b∗mz
j+1 denote Ising-spin-dependent effective hop-

ping and p-wave pairing amplitudes, with a = (−t+iα)/2 and b = (−t+iα)∆/(K−µ).
The real part of a sets the hopping strength between sites with aligned Ising spins,
which is directly inherited from spin-conserving tunneling in Eq. (4.2); the imagi-
nary part similarly fixes the hopping when Ising spins anti-align, which is instead
mediated by spin-orbit coupling α. Pairing in He f f follows from second-order pro-
cesses that involve virtual excitations out of the spinless-fermion subspace—hence
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the K − µ energy denominator in b. Depending on the Ising configuration, either
spin-conserving hopping or spin-orbit coupling virtually creates a doubly-occupied
site of f fermions that then Cooper pair via the original s-wave ∆ term, effectively
mediating p-wave pairing of spinless fermions.

4.3 Phase Diagram
Equation (4.4) describes a strongly interacting system of Ising spins and fermions.
Nevertheless, for any given Ising configuration the model reduces to free fermions.
Consider first uniformly polarized all-up or all-down Ising spins. Here Eq. (4.4)
maps to the familiar Kitaev chain [16] with uniform hopping strength 2|a| cos φa

and pairing ±2i |b| sin φb, where a = |a|eiφa and b = |b|eiφb . (Our derivation above
yielded φa = φb, though it will be useful to now keep these phases independent.)
Accordingly, the chain hosts edge Majorana zero modes provided the chemical
potential intersects the band and pairing is finite, i.e., for |µ′| < 4|a| | cos φa | and
sin φb , 0 as sketched in Fig. 42(a).

To examine the fermionic ground state with random Ising spins—which is our main
interest—we compute the correlation length ξ using the transfer-matrix technique;
see, e.g, Ref. [19] and Section 4.9. This method allows us to map out phase
boundaries by numerically searching for diverging ξ aswe vary φa,b; for our purposes
a regular 400×400 grid of φa and φb values in the interval [−π/2, π/2] is sufficient.
[Exploiting ξ(φa, φb) = ξ(−φa,−φb) halves the number of simulations]. Figure 42(b)
illustrates representative results obtained for µ′ = |b| = |a|/4 and N = 106 sites.
The data points indicate local maxima where ξ is typically of order 102 or larger,
while it is of order unity elsewhere. We expect these peaks to represent true
divergences in ξ when φa or φb are tuned continuously in the thermodynamic
limit. Topological regions are easily identified via exact diagonalization on smaller
systems and confirming the presence of edge Majorana zero modes. In Section 4.10
we analytically capture the topological phase for a restricted window of φa,b via the
Born approximation.

For our quantum-dot setup, we expect φa = φb [red line in Fig. 42(b)] and also
|a| � |b| since p-wave pairing encoded in b appears at second order in perturbation
theory. Starting from the topological phase in this physical regime, Fig. 42(b)
strongly suggests that we can deform parameters to φa = π/4 and φb = −π/4,
|a| = |b|, and µ′ = 0 without encountering a divergent ξ. (See Section 4.9 for
additional evidence.) This special point corresponds to themodel’s zero-correlation-



131

0

0

+π
2

−π
2

+π
2

−π
2

φb

φa

Trivial phase

Trivial phase

Trivial phase

Trivial phase

Topological
phase

Topological
phase

(a) Ordered Ising spins

deformation
� � � � � � � � � � � �� � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
������

����
�����

�����
���

����
������

������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���

���
���
���
���
���
���
���
���
���
���
�� �
���
���
���
���
���
���
���
���
���
���

���
���
���

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �

�

���
���

���
���

��
����

���������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���
� ��� � � � � �� �� �� �� ����� � ��� ���������� ������� ����� ��� ��� ��� �� �� �� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� �� �� �� ��� �� ���� ����� �������� ������ ���������� �� �� �� �� �� � � � � ��� � � � � ��������������������������������������������������������������������������������������������������������������������������������������

0

0

+π
2

−π
2

+π
2

−π
2

φb

φa Trivial phase

Topological
phase

Topological
phase

(b) Random Ising spins

Figure 42: Phase diagram for Eq. (4.4) assuming (a) fully polarized and (b) random
Ising spins. In (a) a nonzero chemical potential µ′ = |a| generates the trivial phase,
and the system is gapless along the thick black lines. Data in (b) were generated
from transfer-matrix simulations at µ′ = |b| = |a|/4 with 106 sites. Data points
indicate sharp peaks in the localization length, as expected at a topological phase
transition. The red diagonal line φa = φb is relevant for the physical quantum-dot
setup from Fig. 41. As the dashed arrow illustrates, the topological phase along this
line can be deformed to the zero-correlation-length limit with φa = π/4, φb = −π/4
(and also |a| = |b|, µ′ = 0) without crossing a phase boundary.

length limit. Here it is convenient to decompose the spinless fermions in terms of
Majorana operators ηA,B j via c j = e−i π4 mz

j (ηB j + iηAj), whereupon Eq. (4.4) becomes

H′eff =
∑

j

(−Jmz
j m

z
j+1 − iκsmz

j ,m
z
j+1
ηAjηB j+1) (4.5)

with smi,mj = (1 −mi +m j +mim j)/2 = ±1 and κ = 4
√

2|a|. For any choice of mz
j ’s

theMajorana operators dimerize nontrivially as shown in Fig. 41, yieldingMajorana
zero modes

γ1 ≡ ηB1 = ei π4 mz
1 c1 + H.c.

γ2 ≡ ηAN = −iei π4 mz
N cN + H.c. (4.6)

at the leftmost and rightmost sites. Notice the spin-fermion intertwinement inherent
in the zero modes, which consequently evolve under T via

γ1 → mz
1γ1, γ2 → −mz

Nγ2, (4.7)
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again consistent with T 2 = −1. All Hamiltonian eigenstates are at least fourfold
degenerate in this limit: one factor of two arises because T flips all Ising spins,
while the other reflects topological degeneracy encoded in theMajorana zeromodes.
The topological degeneracy of the fermionic ground states given a static Ising
configuration persists even away from the special limit examined above, due to the
finite gap for fermionic excitations. Moreover, Section 4.11 shows that Eq. (4.7)
holds even when the zero-mode wavefunctions extend over many sites.

4.4 Adiabatic cycle
Next we generalize Eq. (4.1) to

H′0 =
∑

j

[−J(n̂ ·m j)(n̂ ·m j+1) − K(n̂ ·m j) f
†

j n̂ · σ f j], (4.8)

wherem,σ denote vectors of Pauli matrices and the unit vector n̂ ≡ cos θẑ + sin θŷ
determines the easy axis for the Ising spins. At either θ = 0 or π, H′0 reduces to
Eq. (4.1). Suppose that we again deform to the zero-correlation-length limit (which
is possible for any θ) and then implement the following cycle: (i) Start with an
arbitrary Ising spin configuration at θ = 0, (ii) initialize the fermions into one of the
topological-superconductor ground states, and finally (iii) adiabatically rotate the
easy axis by winding θ from 0 to π.

Although the Hamiltonian returns to its original form, the wavefunctions do not.
Rather, the cycle slowly rotates all Ising spins by π, while the fermions follow their
instantaneous minimum-energy configuration given the adiabaticity. The initial
ground state thereby transforms into its time-reversed counterpart. One rotation
sends mz

j → −mz
j , f j → ei π2 σ

x
f j , and hence c j → ic j . Majorana zero modes thus

transform as γ1 → mz
1γ1 and γ2 → mz

Nγ2, similar to the action of T . Interestingly,
two cycles return the Ising spins to their original form whereas four cycles are
required to recover the initial zero-mode operators, e.g.,

γ1 → mz
1γ1 → −γ1 → −mz

1γ1 → γ1. (4.9)

4.5 Time-crystalline topological superconductivity and detection
We now promote the adiabatic ground-state phenomenon described above to a
dynamic phenomenon applicable to arbitrary physical states. To this end we apply
a variation of the preceding cycle periodically with period T , thus generating time-
crystalline topological superconductivity. We specifically consider a binary drive
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Figure 43: Time evolution for the time-crystalline topological superconductor gen-
erated by Eq. (4.10) at ε = 0. Each period T globally flips all Ising spins, yielding
doubled-periodicity bulk response, whereas the FloquetMajoranamodes γ1,2 exhibit
quadrupled-periodicity response that can be probed in the junction with the static
topological superconductor on the right. The inner Majorana modes γ2,3 hybridize
with coupling strength λ. Since γ3 is static while γ2 evolves nontrivially after each
period T , the junction’s energy inherits the latter’s quadrupled periodicity.
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such that the Floquet operator that evolves the system over a single period reads

UT = e−i(π/2−ε)
∑

j (mx
j +c†j cj )e−iTHdis

e f f . (4.10)

The right exponential evolves the system with respect to a disordered, static Hamil-
tonian Hdis

e f f that is the same as Eq. (4.4) but with J, a, b replaced with random
site-dependent couplings Jj, a j, b j . We neglect randomness in the phases of a j, b j

and treat Jj, a j, b j as independent random variables with magnitudes drawn from
uniform distributions [J̄ − δJ, J̄ + δJ], [ā − δa, ā + δa], [b̄ − δb, b̄ + δb]. Disorder
crucially introduces many-body localization (MBL) into the dynamics and pre-
vents heating to infinite temperatures [1, 9, 13, 17, 23]. The left exponential in
Eq. (4.10) performs an instantaneous ‘kick’ that (at least approximately) flips the
Ising spins via a transverse magnetic field pulse and applies a potential to the spin-
less fermions—thereby mimicking evolution from our adiabatic cycle without the
adiabaticity requirement.

The dynamics is analytically tractable at ε = 0 and when Hdis
e f f reduces to Eq. (4.5)

with random couplings Jj, κ j . Starting from any Ising configuration, the ‘perfect’
kick inUT sends mz

j → −mz
j and thus flips all spins, signifying period-doubling time

crystallinity in the spin sector. In the fermionic sector, γ1,2 in Eq. (4.6) continue
to commute with Hdis

e f f despite the randomness. The kick, however, nontrivially
transforms the Majorana edge operators so that UTγ1U†T = mz

1γ1 and UTγ2U†T =

mz
Nγ2. Precisely as illustrated in Eq. (4.9), γ1,2 therefore require four drive periods

to recover their initial form, i.e., they form the hallmark quadrupled-periodicity
Floquet Majorana modes. Shaded regions of Fig. 43 summarize the evolution.

Quadrupled periodicity can be experimentally probed in junctions between time-
crystalline and static topological superconductors as in the right side of Fig. 43,
wherein γ3 and γ4 denote time-independent Majorana zero modes. Electron tun-
neling across the junction couples γ2 with γ3, producing a Hamiltonian term
H23 = iλγ2γ3 for some λ that may depend on the adjacent Ising spins. Consequently,
the junction’s energy density (among other local properties) directly manifests the
quadrupled-periodicity built into the anomalous Floquet Majorana mode γ2.

Rigidity against ‘imperfect’ drives is a crucial feature of time-crystalline phases
[11, 15, 32, 36]. Here, such imperfection arises from taking ε , 0 and Hdis

e f f away
from the zero-correlation-length limit, which spoils exact solvability and prompts
us to turn to numerics.
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4.6 Numerics
We employ time-evolving block decimation (TEBD), using a maximum bond di-
mension of χ = 50, on a 20-site system with random Ising spins and parameters
appropriate for our quantum-dot setup: φa = φb = π/8, b̄ = ā/2, J̄ = ā/4, µ′ = 0,
δa = δb = δJ = ā/8. Our simulations incorporate a decoupled, static zero-energy
fermion c0 that functions similarly to the static topological superconductor in Fig. 43.
We initialize into a state that entangles the static fermion with the rest of the system.
We then simulate the Floquet operator in Eq. (4.10) with āT = 2 and āT = 0.2,
and with the kick shifted away from commensurability by ε = 0.2 1. Despite the
rather small system size, in both cases the bond dimension quickly saturated, and
the truncation error was relatively coarse. To check robustness of our numerics we
repeated the computations for maximum bond dimension χ = 25, and the results
agreed with those at χ = 50.

Over a run of 60 Floquet evolutions and 150 disorder averages, we measure the Ising
spin 〈mz

j=10〉 in the middle of the system as well as 〈c†0c1〉, where c1 corresponds
to the leftmost quantum dot. The former probes bulk time crystallinity while the
latter probes the Floquet Majorana modes. Figure 42 plots the Fourier transform of
both quantities as a function of frequency ω normalized by Ω = 2π/T . For āT = 2
the data show the rigidity characteristic of a time crystal: despite the imperfect
drive, the bulk magnetization and edge fermion bilinear respectively remain peaked
at ω = Ω/2 and ω = 3Ω/4 (as expected for doubled-periodicity Ising spins and
quadrupled periodicity Floquet Majorana modes). By contrast, in our āT = 0.2
simulations both peaks clearly shift due to non-zero ε , indicating an absence of rigid
time-crystallinity for this case. We also ran exact numerics on a 7-site system and
measured the level-spacing statistics of the UT eigenvalues. At āT = 2 the mean
level spacing was approximately 0.39, close to the Poisson value 0.386 expected for
MBL [21].

4.7 Discussion
The admixture of symmetry breaking and topology is known to generate new physics
in static systems; examples include 8π-periodic Josephson effects [20, 37] and en-
richment of Majorana braiding and fusion [6]. Our work establishes that driven
systems can be similarly enriched by ‘decorating’ topological phases with sponta-
neous time-translation symmetry breaking. We specifically showed that 1D time-
crystalline topological superconductors engineered from quantum-dot arrays host

1Calculations were performed using the ITensor Library, http://itensor.org.



136

0.00 0.25 0.50 0.75 1.00
/

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 F
ou

rie
r T

ra
ns

fo
rm

150 Disorder Averages, 20 Sites

aT = 2.0, c0 c1

aT = 0.2, c0 c1
aT = 2.0, mz

10
aT = 0.2, mz

10

Figure 44: Fourier transform of the quantities shown in the legend following time
evolution via Eq. (4.10) with ε = 0.2 and parameters specified in the main text.
Data are normalized by setting the maximum of each Fourier spectrum to 1, and
frequency ω on the horizontal axis is normalized by Ω = 2π/T , with T the drive
period. Here mz

10 represents an Ising spin at the center of the chain, c0 is an
auxiliary zero-energy static fermion that enables probing the Floquet Majorana
mode periodicity, and c1 is the fermion at the left end of the quantum-dot chain.
For initialization we use random Ising configurations and random fermionic states
that entangle c0 with the rest of the system. Runs were repeated 150 times for
disorder averaging with maximum bond dimension χ = 50; similar results were
obtained with χ = 25. For āT = 2 sharp peaks persist at Ω/2 and 3Ω/4—despite
‘imperfect’ driving generated by ε , 0—indicating ‘rigid’ doubled-periodicity Ising
spins and quadrupled-periodicity Floquet Majorana modes characteristic of time-
crystalline topological superconductivity. For āT = 0.2, the imperfect drive pushes
the peak frequencies away from these quantized values, indicating a loss of rigid
time crystallinity.
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novel Floquet Majorana modes that display anomalously long periodicity not possi-
ble with free fermions. Exotic states of this type are not captured by the cohomology
classification of interacting topological Floquet phases [10, 24, 26, 27, 31]. In future
work, it would be interesting to explore similarly enriched two-dimensional (2D)
phases. Driven spinless 2D p+ ip superconductors also support doubled-periodicity
Floquet Majorana modes [3, 18, 35] and thus constitute natural candidate plat-
forms. One could envision promoting spinless fermions in such systems to spinful
fermions coupled to magnetic degrees of freedom as done here, possibly leading to
new higher-dimensional adiabatic cycles, time-crystalline topological phases, and
nontrivial pre-thermal regimes.

4.8 Derivation of effective spinless-fermion Hamiltonian
Here we derive the effective Hamiltonian given in Eq. (4.4) that describes the
quantum dots and Ising spins in the limit of large K . We start from the original
microscopic model H = H0 + H f [recall Eq. (4.2)] and decompose the spinful
fermions via

f j↑ =
1
2
[(1 + mz

j )c j + (1 − mz
j )d j] (4.11)

f j↓ =
1
2
[(1 − mz

j )c j + (1 + mz
j )d j]. (4.12)

Here c j are precisely the low-energy fermionic degrees of freedom from Eq. (4.3)
that minimize the energy of the K term, while d j represent high-energy fermions
that we wish to formally integrate out. In terms of c j and d j , we have

H0 =
∑

j

[−Jmz
j m

z
j+1 − K(c†j c j − d†j d j)] (4.13)

and

H f =
∑

j

{
− µ(c†j c j + d†j d j)

+ [(−tPj1 + iαPj2)(c
†

j c j+1 + d†j d j+1) + H.c.]

+ [(−tPj2 + iαPj1)(c
†

j d j+1 + d†j c j+1) + H.c.]

+ ∆mz
j (c j d j + H.c.)

}
. (4.14)

In Eq. (4.14) we introduced projectors

Pj1 =
1
2
(1 + mz

j m
z
j+1), Pj2 =

1
2
(1 − mz

j m
z
j+1) (4.15)
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that project onto states where nearest-neighbor Ising spins are aligned and anti-
aligned, respectively.

The formal elimination of d j’s is conveniently carried out within a (Euclidean)
path-integral formalism, with the zero-temperature partition function given by

Z =
∫
Dd†DdDc†Dce−S, (4.16)

where

S =
∫ ∞

−∞

dτ

[∑
j

(c†j ∂τc j + d†j ∂τd j) + H

]
(4.17)

is the imaginary-time action. Upon integrating over d j, d
†

j (which can be done
exactly since H is quadratic in fermions), the partition function can be written as

Z ∝
∫
Dc†Dce−Se f f

Se f f =

∫ ∞

−∞

dω
2π

[∑
j

(−iωc†j c j) +He f f (ω)

]
. (4.18)

In the low-frequency limit, i.e., |ω | � (K−µ), we can neglect frequency dependence
in He f f to obtain an effective spinless-fermion Hamiltonian that takes the form of
Eq. (4.4). Finally, upon truncating the chemical potential, hopping, and pairing
matrix elements to leading nontrivial order in 1/(K − µ), we obtain precisely the
µ′, t′mz

j ,m
z
j+1
,∆′mz

j ,m
z
j+1

couplings quoted in the main text.

4.9 Transfer-matrix details
To examine the fermionic ground state for random Ising spins we express the model
of Eq. (4.4) in terms of transfer matrices. The equation of motion for ψ j = (c j, c

†

j )

can be brought to the form (
ψ j+1

F†j ψ j

)
= Tj

(
ψ j

F†j−1ψ j−1

)
, (4.19)

with

Tj =

(
F−1

j [E − µσ
z] −F−1

j

F†j 0

)
, (4.20)

Fj =
©«

t′mz
j ,m

z
j+1
−∆′∗mz

j ,m
z
j+1

∆′mz
j ,m

z
j+1
−t′∗mz

j ,m
z
j+1

ª®¬ . (4.21)
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Figure 45: Transfer-matrix data for µ′ = |b| = |a|/4 and 106 sites. On the left we
show a density map of log(ξ), with darker shades denoting larger ξ. The phase
boundaries are readily apparent as narrow dark lines. The dashed lines denote
two specific cuts for which we show ξ on a linear scale on the right. The very
rapid divergence of ξ near specific points supports our identification of the phase
boundaries.

The transfer matrix for an N-site chain is Q =
∏N

j=1 Tj , and the smallest positive
eigenvalue of 1

N log[QQ†] is the inverse localization length ξ−1 (see, e.g., [19]). In
Fig. 45 we present the data from which the phase diagram in Fig. 42 of the main text
is obtained. First, we show a two-dimensional density map of ξ on a logarithmic
scale, which reveals the phase boundaries without any need for processing the data.
Second, we show ξ on a linear scale for two representative cuts to illustrate the rapid
growth of ξ near phase boundaries.

Finally, we detune the parameters of the models from the ones of Fig. 42—which
relate to the microscopic model—towards the exactly solvable point |a| = |b| and
µ′ = 0; see Fig. 46. [In Figs. 45 and 46 we do not use the relation ξ(φa, φb) =

ξ(−φa,−φb) to halve the data points, contrary to Fig. 42(b) from the main text.]
During this deformation the phase boundaries move substantially, but at the specific
value φa = −φb = π/4 the system always remains in the same strongly localized
topological phase. Consequently, the topological phase obtained with microscop-
ically derived parameters indeed smoothly connects to the zero-correlation length
limit φa = −φb = π/4, |a| = |b|, and µ′ = 0 as suggested by Fig. 42(b) from the
main text.
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Figure 46: Density maps of log(ξ) for (left) µ′ = |a|/8 and |b| = |a|/2, (middle)
µ′ = |a|/20 and |b| = 3|a|/4, and (right) µ′ = |a|/50 and |b| = 0.95|a|. The phase
boundaries change significantly between these parameter values, but the special
point φa = −φb = π/4 always remains deeply in the localized topological phase.

4.10 Majorana Zero Modes via the Born Approximation
For certain values of a, b, we can use the Born approximation to capture Majorana
zero modes in the Hamiltonian of Eq. (4.4) with random mz

j Ising configurations.
In what follows we ignore the J term for simplicity. Suppose that we perform the
gauge transformation

c j → ei π4 (1−mz
1)e−i π4 [1+

∑
k< j (1−mz

k
mz
k+1)]c j, (4.22)

so that Eq. (4.4) becomes

He f f =
∑

j

[−µ′c†j c j + (t′′mz
j ,m

z
j+1

c†j c j+1 + ∆
′′
mz

j ,m
z
j+1

c jc j+1 + H.c.)]. (4.23)

The new hopping and pairing coefficients are given by

t′′mz
j ,m

z
j+1
=
(ae−i π4 + c.c.)

√
2

+
mz

j m
z
j+1(aei π4 + c.c.)
√

2
(4.24)

∆
′′
mz

j ,m
z
j+1
=
(−bei π4 + c.c.)

√
2

+
mz

j m
z
j+1(be−i π4 + c.c.)
√

2
. (4.25)

As before we write a = |a|eiφa and b = |b|eiφb . Notice that at φa = π/4 and
φb = −π/4, which are the same phases used to access the zero-correlation limit, the
mz

j dependence has been completely gauged out of the Hamiltonian for any |a|, |b|.
We immediately conclude that at these phases the system harbors edge Majorana
zero modes regardless of the Ising configuration provided |µ′| < 2

√
2|a|.

Suppose next that we deform away from this limit by writing φa = π/4 + εa and
φb = −π/4 + εb, where |εa,b | � 1. The mz

j dependence no longer drops out, and
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for random Ising configurations can be viewed as generating weak disorder in the
fermion hoppings and pairings. To lowest order in the Born approximation this
disorder is treated by simply replacing He f f → He f f with the overline indicating a
disorder average over mz

j configurations. Here and below we will assume that the
mz

j ’s are uncorrelated from site to site and have zero mean (as appropriate for the
random Ising configurations that are our primary interest). The hopping and pairing
strengths accordingly become

t′′mz
j ,m

z
j+1
=
√

2|a| cos εa, ∆
′′
mz

j ,m
z
j+1
= −
√

2|b| cos εb. (4.26)

Within this approximation edge Majorana zero modes persist so long as |µ′| <
2
√

2|a| cos εa.

Thus far we have made no assumptions about the relative strength of |a| and |b|.
Additional progress is possible if we specialize to the (most physically relevant)
regime |a| � |b|, which we now assume. We continue to take φa = π/4 + εa

but now allow for general φb, and treat εa as well as the entire pairing term as
perturbations. Within the lowest-order Born approximation the hopping and pairing
strengths are now modified to

t′′mz
j ,m

z
j+1
=
√

2|a| cos εa, (4.27)

∆′′mz
j ,m

z
j+1
= −
√

2|b| cos(φb + π/4). (4.28)

At this order, edge Majorana zero modes appear when |µ′| < 2
√

2|a| cos εa and
cos(φb + π/4) , 0. These criteria naively rule out Majorana zero modes when
φb = π/4. Nonzero pairing after disorder averaging is, however, generated at
second order in the Born approximation (at least when εa , 0), so that Majorana
zero modes can still emerge as we show next.

Let φb = π/4 and write the Hamiltonian as He f f = H0+H1, where all mz
j -dependent

terms are lumped into H1. Explicitly, we have

H0 =
∑

j

[−µ′c†j c j + (t̄c
†

j c j+1 + H.c.)] (4.29)

H1 =
∑

j

mz
j m

z
j+1(t1c†j c j+1 + ∆1c jc j+1 + H.c.) (4.30)

with t̄ =
√

2|a| cos εa, t1 = −
√

2|a| sin εa, and ∆1 =
√

2|b|. To proceed we switch
to first-quantized language, defining position-space Hamiltonian matrix elements
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H0,1; j k through

H0,1 =
∑
j,k

Ψ
†

jH0,1; j kΨk, (4.31)

where

Ψ
†

j =
[
c†j c j

]
(4.32)

is the Nambu spinor. In terms of the bare Green’s function

G0; j k(iω) = (iω −H0)
−1
j k , (4.33)

the fermion self-energy at second order in the Born approximation reads

Σ j k = H1; jlG0;lm(iω = 0)H1;mk . (4.34)

Repeated indices are implicitly summed above. The prefactor mz
j m

z
j+1 in H1 im-

plies that the disorder average is nonzero only when we contract matrix elements
corresponding to the same sites, i.e., when jl = mk or jl = km.

Disorder averaging effectively restores translation invariance, so it is useful to pass
to momentum space. ForH0 we simply write

H0; j k =

∫
p

eip( j−k)H0(p). (4.35)

The Fourier transform is

H0(p) =
1
2
(2t̄ cos p − µ′)τz, (4.36)

where Pauli matrices τx,y,z act in Nambu space. For H1 we isolate the position-
dependent magnetization by instead writing

H1; j k = mz
j m

z
k

∫
p

eip( j−k)H̃1(p), (4.37)

which yields

H̃1(p) = t1 cos p τz + ∆1 sin p τy . (4.38)

We can now express the self-energy as

Σ j k = mz
j m

z
l mz

mmz
k

∫
p1,p2

eip1( j−l)eip2(m−k)H̃1(p1)G0;lm(iω = 0)H̃1(p2). (4.39)
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The disorder average on the first line evaluates to

mz
j m

z
l mz

mmz
k = δ j kδlm + δ jmδkl . (4.40)

The first pair of Kronecker deltas involve δ j k and thus merely generate an on-site
correction. We neglect this term and instead focus on the second pair of Kronecker
deltas:

Σ j k →

∫
p1,p2

ei(p1+p2)( j−k)H̃1(p1)G0;k j(iω = 0)H̃1(p2). (4.41)

Upon further Fourier transforming the Green’s function we obtain

Σ j k =

∫
q

eiq( j−k)
Σ(q) (4.42)

Σ(q) =
∫

p1,p2

H̃1(p1)G0(iω = 0, p1 + p2 − q)H̃1(p2). (4.43)

It is useful to now decompose the self energy as

Σ(q) = Σz(q)τz + Σy(q)τy . (4.44)

The Σz(q) part encodes renormalization of the kinetic energy, while Σy(q) encodes
p-wave pairing. The latter is given by

Σ
y(q) = −2t1∆1

∫
p1,p2

sin(p1 + p2)

2t̄ cos(p1 + p2 − q) − µ′
(4.45)

= −
t1∆1

t̄
f
(
µ′

2t̄

)
sin q (4.46)

for some nontrivial function f (x) that satisfies f (x � 1) ≈ 1. Provided t1,∆1 are
nonzero—which in turn requires nonzero εa and |b|—the pairing amplitude is finite,
yielding unpaired Majorana modes if |µ′| < 2

√
2|a| cos εa as claimed. We note that

the correlated nature of disorder in the tunneling and pairing terms in H1 is essential
to this outcome.

In our second-order Born analysis we set φb = π/4 exactly. If we now take
φb = π/4+ εb (again with εb � 1) then we can estimate the effective p-wave pairing
amplitude ∆e f f by simply summing the contributions from Eqs. (4.28) and (4.46).
[Technically, taking εb , 0 also modifies Eq. (4.46), though this correction will be
small compared to the contribution from Eq. (4.28).] We thereby obtain

∆e f f ≈
√

2|b|εb −
t1∆1

t̄
f
(
µ′

2t̄

)
≈
√

2|b|

[
εb + εa f

(
µ′

2
√

2|a|

)]
, (4.47)
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Figure 47: Summary of Born-approximation results. Shaded and circled regions
denote φa,b values amenable to the Born approximation (assuming the regime of
|a|/|b| values indicated). Except for the gapless lines in the upper-right and lower-
left quadrants, Majorana zero modes are predicted over a finite window of chemical
potential throughout these regions, in agreement with transfer-matrix simulations.

where on the second line we used t1/t̄ ≈ −εa, t̄ ≈
√

2|a|, and∆1 =
√

2|b|. In the limit
µ′ � |a| we can further replace f → 1; the pairing then vanishes when εb = −εa,
which defines a gapless line along which Majorana modes are absent.

Figure 47 summarizes our Born-approximation results, which are fully consistent
with our transfer-matrix simulations.

The Born approximation further elucidates the structure of the phase diagram.
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After applying the gauge transformation in Eq. (4.22), the Hamiltonian in Eq. (4.23)
exhibits purely real couplings. Hence an ‘accidental’ antiunitary T ′ symmetry that
obeys T ′2 = +1 becomes manifest. Majorana modes can therefore be classified as
‘real’ or ‘imaginary’ depending on whether they exhibit eigenvalues +1 or −1 under
T ′. In the standard, uniform Kitaev chain Hamiltonian, the topological phase can
be characterized by the relative sign of the hopping and pairing, sgn(t∆). Should
this quantity be positive, the left Majorana zero mode is imaginary while its partner
on the right end is real. If the sign is negative, the opposite is true.

Our system is more complex, in that the hopping and pairings depend nontriv-
ially on the Ising configuration in a site-dependent fashion. However, the Born
approximation smears out this nontrivial dependence, thereby generating uniform
effective hopping and pairing. With |a| � |b|, φa = π/4 + εa, and φb = π/4 + εb,
these quantities are given approximately by Eqs. (4.27) and (4.47). In particular,
the effective pairing in Eq. (4.47) changes sign along the gapless lines sketched
in Fig. 47—implying that the two topological phases meeting at that line exhibit
Majorana zero modes with opposite T ′ eigenvalues. More generally, a first-order
or continuous phase transition, or an intermediate state, necessarily separates these
phases so long as T ′ persists.

4.11 Transformation of Majorana Zero Modes
In the main text we deformed our effective spinless-fermion Hamiltonian to the
zero-correlation-length limit, yielding Eq. (4.5). Each Majorana zero mode in this
limit localizes to a single site as shown in Fig. 41 and Eq. (4.6). Moreover, accord-
ing to Eq. (4.7) each Majorana zero mode acquires a factor of the adjacent Ising
spin, i.e., mz

1 or mz
N , under time-reversal symmetry T . This transformation rule

raises a conundrum: away from the zero-correlation-length limit, the zero-mode
wavefunctions extend into the bulk over a distance set by the correlation length,
and thus ‘sample’ not just mz

1 or mz
N , but many Ising spins. How does T trans-

form the Majorana zero modes in this more generic situation? The normalization
γ2 = 1 together with Hermiticity implies that the zero-mode operators can only
be multiplied by an operator with eigenvalues ±1. This discreteness prohibits any
perturbative corrections and the transformation in Eq. (4.7) in fact continues to hold
more generally. It is instructive to see explicitly how this comes about by perturbing
the Hamiltonian Eq. (4.5) away from the perfectly dimerized limit.
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Consider the T -invariant Hamiltonian

H′′eff =
∑

j

( − Jmz
j m

z
j+1 − iκsmz

j ,m
z
j+1
ηAjηB j+1 − iκ′ηAjηB j) (4.48)

corresponding to Eq. (4.5) modified by the κ′ term—which spoils the perfect dimer-
ization and yields a finite correlation length. We assume |κ′| < |κ | so that the
fermions remain in the topological phase, and also take κ′ to be independent of mz

j ’s
since such a choice is compatible with T . In contrast, T necessitates the nontriv-
ial mz dependence in the signs smz

j ,m
z
j+1
. This mz dependence can nevertheless be

absorbed into the Majorana fermions by defining

ηA,B j ≡
©«
∏
k< j

smz
k
,mz

k+1

ª®¬ η̃A,B j, (4.49)

where η̃A,B j are a new set of Majorana operators. The Hamiltonian becomes

H′′eff =
∑

j

( − Jmz
j m

z
j+1 − iκη̃Aj η̃B j+1 − iκ′η̃Aj η̃B j). (4.50)

Couplings between Majorana fermions in this representation are manifestly inde-
pendent of the Ising spins.

Because H′′e f f only couples η̃Ai Majorana fermions to η̃B j Majorana fermions,
the Hamiltonian preserves an ‘accidental’ antiunitary symmetry T ′ (see also Ap-
pendix 4.10) that obeys (T ′)2 = +1 and sends

mz
j → mz

j, η̃Aj → −η̃Aj, η̃B j → η̃B j . (4.51)

The zero modes γ1,2 can be defined such that they acquire either +1 or −1 eigenvalue
under T ′, which sharply constrains their allowed form. Additionally incorporating
Hermiticity and invoking continuity with the κ′ = 0 limit allows us to write

γ1 =
∑

j

φB j η̃B j =
∑

j

φB j
©«
∏
k< j

smz
k
,mz

k+1

ª®¬ ηB j (4.52)

γ2 = S
∑

j

φAj η̃Aj =
∑

j

φAj
©«
∏
k≥ j

smz
k
,mz

k+1

ª®¬ ηAj (4.53)

for real φA,B j that localize exponentially to the ends of the chain and, importantly,
do not depend on mz

j . On the right sides we reverted back to ηA,B j operators to
explicitly display the non-local mz

j dependence in the zero-mode wavefunctions. In
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the second line we introduced a factor S =
∏

all sites j smz
j ,m

z
j+1
, which causes the

string of smz
k
,mz

k+1
signs to emanate from the right in the expression for γ2. This

convention is very natural since γ2 localizes to the right end of the chain, and
moreover correctly recovers the κ′ = 0 limit of γ2 from Eq. (4.6).

Physical time reversal T sends

ηAj → mz
jηAj, ηB j → −mz

jηB j, (4.54)

smz
j ,m

z
j+1
→ mz

j m
z
j+1smz

j ,m
z
j+1
. (4.55)

Using these transformations to enact T on γ1,2, one finds that the contribution of
each term in the string of smz

j ,m
z
j+1

signs cancels with the next, except at the very ends
of the chains. One thus recovers Eq. (4.7) as claimed.
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C h a p t e r 5

CONCLUSION

In this thesis, we have proposed different setups that enrich the already nontrivial
physics of the Majorana mode. These setups all consist of heterostructures built
from realtively well-understood phases of matter. Our work can be viewed as a
sort of intermediate step between near-term and fully-fledged topological quantum
computation: by harnessing systems already being developed for computation, we
create testbeds for new, unexplored physics.

Our first project detailed a scheme to realize the SYKmodel by hybridizingMajorana
nanowires and quantum dots. The SYKmodel is a theoetical goldmine for the study
of holography and gravity; realizing this system in the laboratory will thus be of
immense value. It is natural to ask the following question: if an implementation of
the SYK model is created, what properties of the system should be studied? One
quantity that will be of great interest to study is out of time ordered correlators, or
OTOCs. In the SYKmodel, this quantity saturates a bound on how rapidly quantum
chaos can grow in a system. Measuring this quantity remains a major challenge,
due to the necessity of backwards-in-time measurement of operators.

Our second project, investigating the relationship between Z4 parafermions and
Majorana modes intertwined with symmetry breaking, has highlighed all sorts
of new dualities and mappings between different phases of matter. Perhaps most
striking is the technique to recover signatures of Z4 parafermionic fusion in pumping
cycles. Our result detailing the pumping cycle between the TRITOPS and trivial
phase is extremely appealing in that no interactions are needed; the Z4 character of
the phases is revealed via free fermion physics. Onemany further consider extending
our symmetry enrichment to more nontrivial phases and symmetries; for example,
using two dimensional systems or quantum Hall phases.

Our final result, the time-crystalline topological superconductor, has illuminated a
new direction in heterostructure creation. To the best of our knowledge, time crystals
have never before been considered as tools to be exploited to enrich non-Abelian
anyon physics. We show this avenue is extremely profitable, creating a new type
of anomalous Majorana zero mode that cannot emerge in standard Majorana wire
systems. We also detail experimental protocols to probe the anomalous character
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of these zero modes in physical setups. This result begs the question of whether
time crystals can be further exploited in more nontrivial settings, again perhaps in
two-dimensional materials.

Our work here has only scratched the surface of what is possible with Majorana zero
modes. We have employedwell-known phases of matter to create exotic systems, but
what if we were to use different ingredients, like quantum Hall systems, topological
insulators, in place of our superconductors and ferromagnets? Our three projects are
exciting results in what is potentially an extremely profitable line of research: using
known phases of matter to enrich and probe properties of Majorana zero modes and
other non-Abelian anyons.
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