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ABSTRACT

In this thesis, I present a number of studies intended to improve our understanding
of black holes using gravitational waves. Although black holes are relatively well
understood from a theory perspective, many questions remain about the nature of
the black holes in our Universe. According to general relativity, astrophysical black
holes are fully described by just their mass and spin. Yet, relying on electromagnetic-
based observatories alone, we still know very little about the distribution of black
hole masses or spins. Moreover, as merging black holes are invisible to these
electromagnetic observatories, we cannot rely on them to provide us with information
about the binary black hole merger rate or binary black hole formation channels.
However, by observing gravitational wave signals from these inherently dark binaries,
we will soon have some answers to these questions. Indeed, the Laser Interferometer
Gravitational-Wave Observatory (LIGO) has already revealed a great deal of new
information about binary black holes; giving us an early glimpse into their mass and
spin distributions and placing the first constraints on the binary black hole merger
rate. This thesis contributes to the goal of probing the nature of black holes with
gravitational waves.

Binary black holes can form as an isolated binary in the galactic field or through
dynamical encounters in high-density environments. Dynamical formation can
significantly alter the binary parameters, which then become imprinted on the
gravitational waveform. By simulating varying black hole populations in high-
density globular clusters, we identify a population of highly eccentric binary black
hole mergers that are characteristic of dynamical formation. Although these systems
would circularize by the time they are visible in LIGO’s frequency band, the
future Laser Interferometer Space Antenna (LISA) is capable of distinguishing
this population of eccentric mergers from the circular mergers expected of isolated
field-formed binaries. As these dynamically formed binaries depend on the size of the
underlying black hole population in globular clusters, we can utilize the dynamically
formed merger rate to infer globular cluster black hole populations – allowing us to
reveal information about binary black hole birth environments.

In order to properly estimate the parameters of binary black holes from detected
gravitational wave signals, such as their masses and spins, high-accuracy waveforms
are a needed. The highest accuracy waveforms are those produced by numerical
relativity simulations, which solve the full Einstein equations. Using the Spectral
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Einstein Code (SpEC), we expand the reach of numerical relativity to simulate
binary black holes with nearly extremal spins, i.e., black holes with spins near the
maximal value χ = 1. These waveforms are used to calibrate existing waveform
approximants used in LIGO data analyses. This ensures that the systematic errors in
these approximants are small enough that if highly-spinning systems are observed, the
spins are recovered without bias. Although rapidly spinning binaries have remained
elusive thus far, these waveforms ensure that the highest-spin systems can be detected
in the quest to uncover the spin distribution of black holes.

The end state of a binary black hole merger is a newly born, single black hole that
rings down like a struck bell, sending its last few ripples of gravitational waves
out into the spacetime. Embedded in this ‘ringdown’ signal are a multitude of
specific frequencies. Einstein’s theory of general relativity precisely predicts the
ringdown frequencies of a black hole with a given mass and spin. The statement
that a black hole is entirely described by just these two parameters is known as
the no-hair theorem. For black holes that obey the laws of general relativity (and
consequently, the no-hair theorem), these frequencies serve as a fingerprint for the
black hole. However, if the objects we observe are not Einstein’s black holes, but
instead something more exotic, the frequencies will not have this property and this
would be a spectacular surprise. A minimum of two tones are required for this test,
each with an associated frequency and damping time that depend only on the mass and
spin. The conventional no-hair test relies on the so-called ‘fundamental’ tones of a
black hole. A test relying on the fundamental modes is not expected to be feasible for
another ∼10-15 years, after detector sensitivity has improved significantly. However,
by analyzing the ringdown of high-accuracy numerical relativity waveforms, we
show that modes beyond the fundamental, known as ‘overtones’, are detectable in
current detectors. The overtones are short-lived, but this is countered by the fact that
they can initially be much stronger than the fundamental mode. By measuring two
tones in the ringdown of GW150914 we perform a first test of the no-hair theorem.
While the current constraints are rather loose, this first test serves as a proof of
principle. This is just one example of the powerful tests that can be employed with
overtones using present day detectors and the even more precise tests that can be
accomplished with LISA in the future.
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C h a p t e r 1

INTRODUCTION

1.1 Our new view of the universe
Black holes are strange creatures of the cosmos. Their mysterious nature and peculiar
properties have intrigued generations of physicists. Their properties are so unusual,
it is somewhat surprising that they actually exist in nature. Yet recent achievements
have confirmed their existence and observations continue to confirm these objects
behave just as Einstein’s general theory of relativity predicts.

Figure 1.1: A high-accuracy visualization of the moments before the merger of two
black holes for a nearby observer. The black holes’ extreme gravity is apparent in
the distortion of of the background stars, as the path of the light emanating from
the stars is bent by the black holes before reaching the observer, producing complex
geometric features. This visualization is based on a simulation of the very first LIGO
detection, GW150914. Credit: SXS

Just over four years ago, the Laser Interferometer Gravitational-Wave Observatory
(LIGO) detected gravitational waves emitted by two black holes as they spiraled
in toward each other, driving them into a violent collision that resulted in a single,
massive, ringing, black hole. As the newborn remnant settled into a stable state, the
ringing grew quieter and the signal faded into the noise. The black hole universe
didn’t remain quiet for long. After the first two observing runs, the tally stood at
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10 binary black hole mergers and one exceptionally scientifically rich observation
of the merger of two neutron stars, which was followed up by a large number of
electromagnetic-based observatories. This was the reward for decades of work by an
enormous group of scientists, both theorists and experimentalists. To date, there are
roughly 50 additional candidate detections, each being carefully analyzed. LIGO
has been hailed for providing us with a new view of the universe, by allowing us
to ‘see’ merging black holes through the gravitational radiation they emit. The
pre-LIGO era was restricted to inferring properties of black holes by observing the
emitted electromagnetic radiation (e.g. radio, infrared, X-ray) generated when black
holes interact with their environment. We have gained an unprecedented amount
of information about black holes from these first few LIGO detections. In the near
future, upgrades to existing detectors and the flight of the future space based detector,
the Laser Interferometer Space Antenna (LISA), will allow for even more precise
detections. As we continue to sense the gravitational perturbations from the extreme
objects throughout the universe, with LIGO and the soon-to-come LISA, unexpected
results will undoubtedly be revealed.

Figure 1.2: A view along one of the 4 km arms of the L-shaped LIGO detector in
Livingston, Louisiana. A second detector resides across the country in Hanford,
Washington. The two detectors operate together to identify coincident gravita-
tional waves and to reject random noise fluctuations that can mimic astrophysical
sources, as the noise should be uncorrelated between the two detectors. Credit:
Caltech/MIT/LIGO Lab.
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1.2 General relativity
Einstein’s general theory of relativity is the current theory of gravity, displacing
Newton’s laws of gravity, which had been in place for over 200 years. One of the
major problems with Newton’s formulation is that the gravitational force propagates
instantaneously. A key insight by Einstein, which was at the heart of his theory of
relativity, is the invariance of the speed of light and its role as a universal speed limit.
In other words, the speed at which light propagates is independent of both the inertial
reference frame of an observer and the motion of the source. A change in gravity is
not felt until there has been sufficient time for the change to travel from the source to
an observer – in contrast to Newtonian instantaneity.

One of the most prominent aspects of general relativity is the concept of a spacetime
fabric. This fabric arises as a consequence of placing the time coordinate on equal
footing with spatial coordinates. This was another one of Einstein’s key insights –
that time is not universal. The three spatial coordinates along with time allow us to
view our universe as a four-dimensional spacetime fabric. In general relativity, one
can write down a metric, often denoted gab, which represents the geometry of the
spacetime fabric and provides the mathematical framework necessary to determine
how objects behave within the spacetime fabric.

A measure of distance across an infinitesimal displacement, also known as the line
element,

ds2 = gab dxa dxb , (1.1)

is a function of the metric gab, which specifies how time and distance are to be
measured along any given direction of the spacetime. The line element, Equation 1.1,
generalizes the familiar line element of Euclidean geometry,

ds2 = dx2 + dy2 + dz2 , (1.2)

to allow for curved geometry in both space and time. The full Einstein field equations
can be written succinctly as:

Gab = 8 π Tab , (1.3)

where Gab on the left-hand side is the Einstein tensor, containing the metric gab and
describing the curvature of the spacetime. On the right-hand side is Tab, the so-called
stress-energy tensor, which represents the density and flux of energy and momentum
in the spacetime. In essence, as John Wheeler concisely stated, “spacetime tells
matter how to move; matter tells spacetime how to curve.”
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Figure 1.3: A visualization of warped spacetime for the Earth-Sun system. The green
mesh represents the underlying spacetime fabric, which has noticeable curvature due
to the massive objects. It is this curvature which tells light and matter how to move
through space and time. Note that while spacetime is a four-dimensional construct,
for illustrative purposes, it is represent here as a two-dimensional sheet. Credit: T.
Pyle, Caltech/MIT/LIGO Lab

A simple example is one within our own solar system. The matter of the Sun causes
the surrounding spacetime to become warped. The Earth orbits the Sun, attempting
to maintain a ‘straight’ path, but a straight path on the warped spacetime forces the
Earth to travel along a more circular trajectory. Similarly, the Earth’s matter causes
the spacetime around it to bend as well, but to a much lesser extent than the Sun.
Figure 1.3 provides a visual representation of the warping of the spacetime near
both the Sun and the Earth. This is the modern picture of how gravity operates, a
purely geometric formulation, where gravity does not emerge as a ‘pulling’ force
as in Newton’s theory, but instead as one where mass modifies the spacetime fabric
itself (see [1–4], for more detailed discussions of general relativity).

1.3 Gravitational waves
An interesting consequence of general relativity is its prediction of gravitational
waves. In the previous section, the concept of a spacetime fabric was introduced.
Gravitational waves are perturbations to this spacetime fabric, wrinkles in the
spacetime that propagate at the speed of light. As gravitational sources accelerate,
the change in the gravitational field propagates through the spacetime, like ripples
in a pond. When a gravitational wave passes an observer, the observer’s local
gravitational field is modified by these waves; the local metric is perturbed and the
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line element, which is a function of the metric (see Eq. (1.1)) and determines how
time and distances are measured, is consequently modified.

More formally, far from any sources, the local metric gab is just Minkowski space, or
flat space, ηab. However, in the presence of a gravitational wave, the local metric
becomes

gab = ηab + hab , (1.4)

where hab is the small perturbation to flat space carried by the gravitational waves.
Following [1], after linearizing the Einstein equations and some manipulation, it can
be shown that small perturbations behave as

hab = Aab exp(ikc xc) , (1.5)

which describes a wave propagating at the speed of light (see [5, 6], for more detailed
discussions of gravitational waves).

Figure 1.4: A simple illustration of how the Laser Interferometer Gravitational-Wave
Observatory (LIGO) functions. A high-power laser passes through a beam splitter,
sending light down each of the 4 km arms. Large mirrors at the end of each arm
reflect the light back to the beam splitter, which redirects some light from each arm
onto a photodetector. The photodetector is sensitive to how the light from each arm
interacts with each other and allows for the detection of small changes in the arm
lengths due to passing gravitational waves. Credit: T. Pyle, Caltech/MIT/LIGO Lab

The LIGO detectors were cleverly designed to detect gravitational waves bymeasuring
these small modifications to our local gravitational field. High-powered lasers are
directed down the two arms of the L-shaped detector, are reflected back by large
mirrors, and are rejoined at a photodetector that monitors how the two beams interact.
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If the local metric remains unmodified, the distance that light travels down each arm
of the detector remains unchanged and so does the light interference pattern. When
a gravitational wave passes through a detector, the distance that light travels down
each arm is slightly longer or shorter, so that when the beams of light reconvene at
the photodetector, the interference pattern is consequently modified.

However, this change in distance due to gravitational waves is incomprehensibly
small. The ratio of the change of distance along one arm, ∆L, over the length of the
arm, L, is referred to as the strain

h =
∆L
L
, (1.6)

which is directly relatable to Eq. (1.5) [4]. Rearranging Eq. (1.6) and writing this as

∆L = h × L , (1.7)

we see that the change in length is directly proportional to the gravitational wave
strain amplitude and the length of the arms. Given the knowledge of expected strain
amplitudes from astrophysical source, the exceptionally long (4 km) LIGO arms
were chosen with Eq. (1.7) in mind – bringing ∆L into a measurable regime.

To get an idea of how small the gravitational strain amplitude actually is, we can
turn to the quadrupole formula, which was first derived by Einstein in 1918 [7]. The
quadrupole formula provides us with a rough approximation for the strain amplitude
of waves emitted from two equal mass objects with mass M [M�], orbiting at a
separation r [M], located at a distance R [Mpc] from a detector (with G = c = 1) [8]:

h ∼ 5 × 10−20
(

1Mpc
R

) (
M
M�

) (
M
r

)
. (1.8)

Let us assume that our source is two objects, each with the mass of ten suns, and it is
located in one of the closest superclusters of galaxies, the Coma Supercluster, which
is at a distance of roughly 90 Mpc away from Earth. This yields h ∼ 5 × 10−21

(
M
r

)
.

The minimum separation achievable by the two objects is approximately twice their
radii. If we assume the objects are black holes, this gives rise to r = 4 M and we
get an estimated strain of h ∼ 1 × 10−21. This corresponds to a change in the length
of the LIGO arms of ∆L ∼ 5 × 10−18 m, which is about 100 times smaller than the
radius of a proton. Detecting changes in length at this scale is an unimaginable feat,
earning LIGO the title of the most precise ruler ever constructed.

If we repeat the above, assuming the same total mass but replacing the source with
two stars rather than compact black holes, the stars enormous sizes prevent them
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from reaching the separations obtainable by black holes. With the radius of the
sun being roughly 2 × 105 larger than a black hole of the same mass, the two stars
would produce, at most, a change of ∆L ∼ 2 × 10−23 m in the LIGO detectors –
this is smaller than the size of the smallest known quark. This difference in strain
amplitude highlights why compact objects are the primary sources of gravitational
waves. Although orbiting stars generate gravitational waves, we are currently only
sensitive to those coming from the most extreme objects in space. Fortunately,
compact objects are arguably some of the most mysterious objects in our universe,
and LIGO has granted us the ability to study these strange beasts comfortably from
Earth.

1.4 Binary black holes
The previous section described how gravitational waves from compact objects are the
most promising sources for detection. While neutron stars are good candidates for
gravitational waves – with one certain detection [9] and another recent candidate [10]
– this thesis focuses solely on binary black hole sources. As black holes are more
massive and more compact than neutron stars, the gravitational waves emitted
by binary black holes are much louder (we say “louder” rather than “stronger”
or “brighter” because stellar-mass black holes produce waves with frequencies
corresponding to the audio band if they were sound waves). This loudness allows us
to see binary black holes from much farther away than neutron star mergers. This
increase in the detectable distance exposes us to a significantly larger volume of the
universe, and consequently, a larger number of sources. The current count of LIGO
detections reflects this, as the number of binary black hole mergers dominates over
the current neutron star merger count.

Despite the exotic nature of black holes, binary black holes only depend on a handful
of fundamental parameters. Each black hole is fully characterized by just its mass,
Mi, and a dimensionless spin parameter, χi = Si/M2

i , where Si is the spin angular
momentum of the hole, and the subscript simply labels each hole in the binary. In a
binary, the orientation of each of the black holes’ spin becomes important, so each
spin is properly described by a vector, Si. Figure 1.5 illustrates the typical parameters
in a binary black hole system. It turns out that the total mass, M = M1 + M2, scales
out of the equations, and instead only the ratio of the masses remains a fundamental
parameter, q = M1/M2. In total, for a circular system, there are three components
for each spin and the mass ratio – bringing the total dimensions of the binary black
hole space to 7.
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Figure 1.5: An illustration of a quasi-circular binary black hole system and the
seven fundamental intrinsic parameters that govern the evolution of the binary. Each
angular momentum spin vector constitutes three parameters, with the seventh being
the mass ratio, q = M1/M2, as the total mass, M = M1 + M2, scales out of the
problem.

The gravitational wave signal from orbiting black holes can be roughly separated
into three segments, the inspiral, the merger, and the ringdown. The inspiral is the
earliest stage of binary black hole evolution. During this stage, the black holes are
widely separated and radiating weak gravitational waves that deplete energy from
the system, causing the black holes to spiral in toward each other. Post-Newtonian
theory is a perturbative scheme built around an expansion parameter that is the
characteristic velocity of the binary over the speed of light (i.e., v/c). It is during
the slow inspiral where this approximation is best suited. As the binary continues
to radiate away gravitational waves, the holes are forced inward at an accelerating
pace. During the last few orbits, the holes are traveling at a significant fraction of the
speed of light, and consequently, post-Newtonian theory breaks down. Finally, as the
two holes near each other, a new black hole forms, as the two black holes merge into
one. The merger is the most dynamic moment for the binary, as the black holes are
now moving at their highest velocity. The magnitude of gravitational radiation is
nearly maximal. Once the new, more massive, black hole is formed it quickly begins
evolving towards its final axisymmetric state. The perturbations to its final shape
are quickly shed in the form of gravitational waves. This end-stage of the binary
life is known as the ringdown, in analogy with the way a struck bell rings down.
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They are comparable in the way that both radiate at frequencies that depend on the
geometry of the object, and in the way that the amplitudes of the signals fade away as
they each settle into a stable state. Figure 1.6 provides a nice visual summary of the
three primary stages of the life of the binary, while also showing how the separation,
relative velocity, and the waveform evolve in time.

Figure 1.6: The top panel shows the underlying gravitational wave data in the Hanford
detector for GW150914 and a waveform produced using numerical relativity that is
consistent with the data. The illustration shows a rough separation of the waveform
into the three key regions of the binary life: the inspiral, the merger, and the ringdown.
The bottom panel shows the corresponding separation of the two black holes and the
relative velocity of the two black holes as functions of time. Credit: LIGO [11]

1.5 Numerical relativity
The previous section described the key components of binary black hole evolution, but
only briefly touched on modeling binary black holes. Unfortunately, their is currently
no analytic solution to the generic two-body problem in general relativity. While
there exists a large number of approximate models, including the post-Newtonian
expansion briefly touched on in the previous section, these approximations all break
down at some level. Waveform models are a critical part of LIGO data analyses
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and will be equally important for LISA. Numerical relativity – solving Einstein’s
equations on supercomputers – is an indispensable tool in waveformmodeling and the
most accurate waveform models are derived from numerical relativity simulations.

The first successful numerical relativity simulation of merging black holes [12]
was achieved roughly a decade before the first detection of merging black holes,
GW150914 [11]. There has been significant progress in the field of numerical
relativity since the first successful simulation, including improved accuracy, newly
identified observable phenomena, and most importantly, from a detection standpoint,
an abundance of waveforms produced by a number of numerical relativity groups.
The following is a short overview of numerical relativity, for a more in-depth
discussion about the field of numerical relativity see Ref. [8].

Figure 1.7: An illustration of spacetime foliation used in numerical relativity
simulations. The bottom hypersurface represents the space-like initial data at a
fixed time. As time progresses, the evolution equations generate a sequence of
non-intersecting space-like surfaces. A stack of these hypersurfaces represent the
full spacetime, each slice being a three-dimensional surface, but with one suppressed
spatial dimension for ease of illustration. Credit: H. Dimmelmeier

The Einstein equations are a system of coupled, nonlinear partial differential equations,
which are intractable with paper and pencil for systems like merging black holes.
Numerical relativity recasts the Einstein equations in such a form that allows for the
time evolution of some initial metric, ensuring that the equations remain satisfied
at all times. The full spacetime for a binary black hole system is described by the
four-dimensional metric gab. A slice of this four-dimensional spacetime results in
a space-like hypersurface, with an induced metric gi j resulting from the projection
of gab onto one fewer dimension. The remaining information of the four-metric,
after projection, is retained in the extrinsic curvature Ki j , which is related to the first
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time derivative of gi j and specifies the initial ‘velocity’ in the initial value problem,
whereas gi j can be interpreted as the specified initial ‘position.’ The Einstein
equations then govern how the space-like surfaces evolve. Figure 1.7 provides a
schematic representation of this foliation of spacetime.

In this thesis, all numerical relativity results were produced using the Spectral
Einstein Code (SpEC) [13], developed by the Simulating eXtreme Spacetimes
collaboration [14]. SpEC is unique in that it utilizes spectral methods for the
simulations, rather than the standard finite-difference methods. The key benefit of
spectral methods is the exponential convergence. This means a comparable change in
the resolution (i.e. the number of grid points in the computational domain) produces
much smaller computational errors in spectral methods versus finite-difference
methods. SpEC has now produced over 2018 distinct gravitational waveforms [15],
roughly a factor of 10 more than the previous release of SpEC waveforms [16]. These
cover the space of mass ratios up to q = 10 and spin magnitudes up to 0.998 [17].
While numerical relativity is important for supplying high-accuracy waveforms, it is
not limited to this sole task – it also serves as an accurate laboratory for exploring
potential observables, which we can use to put general relativity to the test.

1.6 Black holes in globular clusters
Globular clusters are spherical, high-density collections of old stars. There are
approximately 150 globular clusters within the Milky Way galaxy, largely residing in
the halo of our galaxy. These are not unique to our galaxy, as almost every observed
galaxy, with sufficient mass, has been found to harbor a collection of globular clusters.
An important characteristic of globular clusters is that all of its constituents are of
approximately the same age. This means that there has not been sufficient time for
generations of stars to produce metals that typically enrich new stars. Consequently,
stars in globular clusters are typically referred to as low-metallicity stars, because
these stars are metal poor compared to stars like our own Sun. But perhaps the most
intriguing property of globular clusters, is the astounding density of objects within
them. There are only two stars, including our own sun, within about a parsec of us.
The number of stars located within this same volume near the core of a globular
cluster would be of order 104. It is this high density of objects within globular
clusters that make them a rich environment for highly dynamical interactions. The
abundance of objects leads to numerous three-body interactions, where a binary’s
orbital parameters can be significantly modified. This can result in a change in the
original binary’s orbital parameters such as its separation or eccentricity, the binary
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can be completely dismantled, or a new binary can form by ejecting one of the
original partners. This is in contrast to standard binary formation that occurs in the
galactic field, where the density is low enough that binaries form and evolve in nearly
complete isolation.

Figure 1.8: M80, also known as NGC 6093, is one of the densest known globular
clusters in the Milky Way galaxy. The massive collection of stars is bound by their
mutual gravity, leading to a compact, nearly-spherical, object. Clusters such as this
are home to highly dynamical interactions because of the exceptionally high density
of objects compared to the relatively sparse galactic field. Credit: NASA

The general behavior of globular clusters has been modeled very well by relatively
simple methods for decades. However, the majority of previous studies have been
conducted assuming a population of zero to, at most, a few black holes. This
assumption is based on the idea that whatever population of black holes that might
form throughout the history of the globular cluster will eventually migrate to the
core. There, they are subject to a high rate of dynamical interactions that are likely to
eject the black holes as singles or in binaries. It was long accepted that this process
would lead to repeated ejections from the globular cluster, leaving a few to zero black
holes. Historically, this was supported by the lack of observational evidence for a
black hole within a globular cluster. However, black holes are difficult to observe
unless they are actively accreting from a stellar companion and it wasn’t until recently
that observers discovered two black hole low-mass X-ray binaries in the Milky Way
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globular cluster M22. Since this discovery, evidence has continued to mount for the
case of significantly larger populations of black holes in globular clusters.

In Chapter 2 of this thesis, we consider varying sizes of black hole populations in
globular clusters and identify key observables that might allow us to estimate the
size of their black hole populations. As individual black holes are nearly impossible
to detect because of their inherently dark nature, we rely on interacting black holes
to inform us of the underlying population size. Black holes accreting from low-mass
stellar companions emit in the X-ray spectrum, earning them the straightforward
label: black hole low-mass X-ray binaries. Additionally, binary black holes emit
gravitational waves that are potentially detectable by current and future gravitational
wave detectors. In the following, we discuss these two promising observables
characteristic of black holes originating in globular clusters.

X-ray binaries
As briefly discussed above, X-ray binaries are compact objects accreting from a
stellar companion that produce radiation in the X-ray spectrum. Low-mass X-ray
binaries are those where the stellar companion typically has a mass less than the
primary accretor. The accretor in these systems is either a neutron star or a black hole.
For such systems, the X-ray spectrum or a mass measurement can help distinguish
between neutron star or black hole accretors. Hundreds of these systems have been
identified within our own Milky Way galaxy and observations have been steadily
increasing. These systems can form in the galactic field, where most of the matter in
our galaxy resides. However, a large number of the systems have been observed at
large distances above or below the galactic plane – requiring some explanation of
how these systems escaped their birth environments. One potential explanation is a
globular cluster origin. Globular clusters have a broad distribution throughout the
MilkyWay galaxy and spend much of their time in the galactic halo, at large distances
out of the galactic plane. Given a population of black holes within a globular cluster,
dynamical formation readily produces and ejects black hole low-mass X-ray binaries
throughout the Milky Way galaxy.

This population of low-mass X-ray binaries from globular clusters retain a sort
of fingerprint that allows us to deduce their origin. These are characteristically
short orbital periods, low-metallicity companions, and a galactic spatial distribution
that differs from that of low-mass X-ray binaries formed outside globular clusters.
Crucially, the number of black hole low-mass X-ray binaries ejected from globular
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clusters also depends on the size of the black hole population. Chapter 2 discusses,
in much greater detail, the methods for simulating the population of X-ray binaries
and identifies the relation between the population of black-hole X-ray binaries and
the underlying globular cluster black hole population. Further, a number of observed
systems are compared against the simulated systems and a number of X-ray binaries
are identified as candidates for having a globular cluster origin. However, the most
important trademark of a globular cluster origin is a low-metallicity companion, and
unfortunately a measurement of the companion metallicity is lacking for the majority
of these. But, as future data becomes available, these results can be used to place
constraints on globular cluster black hole population sizes.

Eccentric mergers
While black hole low-mass X-ray binaries are a primary proxy for identifying black
holes through electromagnetic observatories, gravitational wave detectors are a
new way to shed some light on the invisible black hole population. The key to
understanding the black hole population in globular clusters, though, is being able to
distinguish them from binary black holes originating outside globular clusters.

A key finding of Chapter 2 is the result that binary black holes in globular clusters can
form with very large eccentricities. The channel for this high-eccentricity formation
is the three-body dynamics leading to the birth of these binary black holes. This
large eccentricity causes the binary to merge more quickly, radiating away large
bursts of energy at each periastron pass, while still inside the cluster. However,
eccentric binary black holes are very efficient at circularizing. By the time these
initially eccentric binaries have evolved to separations at which LIGO is sensitive
to the gravitational waves being emitted by the system, the black holes are in a
nearly perfect circular orbit. Globular clusters also eject a number of black hole
binaries that will merge outside the cluster. These systems tend to have much smaller
eccentricities and will also appear circular by the time they are observable by LIGO.
For this reason, it is difficult to distinguish between binaries formed in the field
versus globular clusters based on eccentricity alone. Future space-based detectors
operate at much lower frequencies than LIGO, effectively observing the binary at
much wider separations, where the eccentricity of the system is still measurable.
The eccentricity in these signals would serve as a unique fingerprint for binaries
formed in dense environments such as globular clusters. The number of eccentric
mergers produced by globular clusters depends strongly on the underlying black hole
population; thus, observations of these systems by LISA could serve to constrain the
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black hole population in globular clusters.

This characteristic gravitational wave observable along with the uniquely produced
black hole low-mass X-ray binaries could serve as independent measures of the black
hole population in globular clusters, but can also serve to complement each other to
place stricter constraints on the size of globular cluster black hole populations.

1.7 Binary black holes with nearly extremal spins
Black holes form after the collapse of massive stars. These massive stars are
observed to be rotating and consequently black holes are expected to be born with
some spin angular momentum. In Section 1.4, a Kerr black hole was described as
having two key parameters, the mass of the black hole, M, and a dimensionless
spin parameter, χ. This dimensionless spin parameter quantifies the amount of spin
angular momentum associated with the black hole and is bounded between 0 and
1, where χ = 1 is referred to as being extremal. For realistic astrophysical black
holes, the Novikov-Thorne upper bound, χ ≤ 0.998, places an approximate limit on
the spin of black holes spun up through the process of accretion from a thin disk.
Observations of stellar-mass black holes in X-ray binaries have measured, albeit
with large uncertainties, systems with black holes very near χ ∼ 1, lending more
credence to the idea of astrophysical black holes reaching nearly-extremal spins.

Simulating nearly-extremal black holes in numerical relativity has proved to be
challenging. Prior to the work presented in Chapter 3, the nearly-extremal region
of parameter space was completely unexplored. A primary factor in the lack of
high-spin waveforms was the difficulty in producing initial data for binary evolutions.
The standard choice for producing spinning binary black hole initial data maxes out
at χ = 0.93, known as the Bowen-York limit. This limit arises from the assumption
that the initial data solution is conformal to flat-space. However, conformally flat
spacetimes cannot represent black holes with angular momentum. Consequently,
conformally-flat spinning black hole initial data is out of equilibrium and spins
specified above χ = 0.93 quickly relax back down to the Bowen-York limit. By
requiring the initial data to be conformal to two superposed Kerr metrics, one for
each rotating hole, the Bowen-York limit can be overcome.

In addition to the difficulties producing initial data with sufficiently high black hole
spins, evolving these systems also proves to be challenging. While the details of
these challenges are perhaps too technical to discuss here, Chapter 3 explores the
difficulties and how they can be overcome.
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There is often some confusion about how large a χ value constitutes a nearly-extremal
black hole, as χ = 0.93 seems rather close to unity. One way to put this in context
is to translate χ values into a fraction of the maximum rotational energy, where
maximal rotation energy of unity corresponds to χ = 1. Figure 1.9 shows the
non-linear relation between rotational energy and χ, providing some guidance on
how to interpret the extremality of χ. Note that a value of χ = 0.93 only corresponds
to roughly 59% of the maximum rotational energy. In Chapter 3, we present results
from simulations with aligned binary spins of χ = 0.99 and χ = 0.994. These
two values of χ result in disproportionate increases in the percent of maximal
rotation energy, bumping from the Bowen-York associated 59% up to 83% and 87%,
respectively.
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Figure 1.9: The fraction of maximal rotation energy as a function of χ, where
χ = 1 corresponds to the maximum rotational energy. This illustrates how steeply
the maximum rotational energy grows as the black hole spin increases. The inset
zooms in to show a number of data points at χ ≥ 0.9, with χ = 0.9 corresponding
to ∼ 52% of the maximum rotational energy of a black hole. The next highest
point is the Bowen-York limit, χ = 0.93, followed by χ = {0.99, 0.994, 0.998}.
These values of χ yield values for the fraction of maximum rotational energy of
{59.1%, 83.5%, 87.1%, 92.5%}, respectively.

The work in Chapter 3 presents the first waveforms generated in the nearly-extremal
region of binary black holes. In this work, we compare existing waveform approxi-
mants against the numerical relativity produced waveforms to quantify the error in
these approximants. These include post-Newtonian models and effective-one-body
waveforms, the latter being a widely used model in LIGO data analyses. Effective-
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one-body models rely on numerical relativity waveforms for calibration, ensuring
that the accuracy of these models remains sufficient for LIGO, across all regions of
the parameter space. As such, these numerically produced high-spin waveforms are
critical in developing waveform models necessary for LIGO detections and parameter
estimation.

1.8 Black hole ringdown
As previously discussed, the ringdown is the final stage of a binary black hole merger.
When the two black holes collide, they merge into a single massive black hole that
rings like a struck bell, sending out ripples in space and time. In general relativity,
this newly formed black hole is described by just its mass, M, and dimensionless
spin, χ. These are the only two parameters necessary to write down the metric
for a single black hole. Although accurate numerical simulations of the ringdown
phase of binary black holes have only become available relatively recently, the
ringdown has been well studied for decades, by carefully understanding the behavior
of small perturbations to the single black hole metric. These studies revealed that
the geometry of the spacetime, fully described by the black holes mass and spin,
produces a specific set of frequencies of gravitational waves, which are radiated away
as the single black hole sheds its perturbations. The model that perturbation theory
produces is a signal that behaves like a damped sinusoid, i.e.,

h ∼ Ae−t/τ cos(νt) . (1.9)

Here ν is the oscillatory frequency of the gravitational waves and τ dictates how
quickly the amplitude of the radiation decays. In perturbation theory, these two
quantities are often combined into a single complex frequency, ω = ν − i/τ. Both ν
and τ directly depend only on the underlying black hole mass and spin, i.e., ω(M, χ).
These perturbative solutions are known as quasinormal modes. The radiative modes
are normal modes of the black hole spacetime, but, since they are non-conservative
because of the escaping radiation, they do not entirely adhere to the normal mode
definition, hence the quasi qualifier.

The first binary black hole observation, GW150914, was exceptionally loud and
sparked significant interest in trying to study the ringdown portion of the data.
Having access to a loud ringdown, along with the relatively simple model predicted
by perturbation theory, provides a seemingly straightforward way to put general
relativity to the test. By measuring the frequency and decay of the ringdown signal,
we can compare how well these measurements agree with predictions from black
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hole perturbation theory in general relativity. This test was carried out in Ref. [11],
where a model with the form of Equation 5.1 was fit to the data to measure ν and
τ. The recovered values are then compared to predicted values that are consistent
with the best-fit parameters determined by analyzing the full gravitation wave signal.
However, this test s problematic. It turns out that the results depend very sensitively
on the assumption about where Equation 5.1 becomes a valid prescription. If it was
employed at times near the peak of the waveform, there was noticeable disagreement.
This disagreement became less pronounced as the analysis was started at later times,
but then the signal gets weaker in time leading to a growth in the uncertainty. The
conclusion was that the single black hole is initially swamped by non-linearities and
that perturbation theory is only relevant at very late times, once the non-linearities
have died out.

Since the measured signal is buried in noise, we can turn to high-accuracy numerical
relativity waveforms as a cleaner testbed to understand the validity of perturbation
theory, as these waveforms are essentially noiseless. In Chapter 4, we carry out an
analysis focused on answering this question. We summarize the key points here.

The discussion about quasinormal modes above left out a few important details.
Perturbation theory does not produce a single frequency for a given black hole.
Instead, perturbation theory predicts a spectrum of frequencies, ωn(M, χ), where n

labels each frequency. The n sorts the modes by how quickly they decay, with n = 0
corresponding the the longest-lived mode. The modes beyond n = 0 are referred to
as overtones, while the n = 0 mode is known as the fundamental mode. We can
include these modes in the prescription, so that the new model is one of the form

h ∼
N∑

n=0
Ane−t/τn cos(νnt) . (1.10)

This is a simple superposition of all modes up to some cutoff, or maximum mode,
N . By analyzing a high-accuracy numerical relativity waveform, consistent with the
GW150914 parameters, we show that Equation 1.10 provides an excellent description
for the region of the waveform going all the way back to the peak amplitude.
Including up to N = 7 modes allows us to accurately match the post-peak region
of the numerical relativity waveform, yielding residuals around the 10−4 level. The
excellent agreement between the numerical waveform and this linear prescription
indicates that non-linearities are very small. This was a surprising result, since the
conventional wisdom was that the peak of the waveform corresponded to the most
non-linear part of the merger. Additionally, allowing for the mass and spin to be free
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parameters in the fit, we find that the best-fit mass and spin only differ by ∼ 10−4

from the numerical relativity measurements of mass and spin of the final black hole
horizon. Repeating the analysis with only the fundamental mode, n = 0, reveals
biased measurements of the black hole mass and spin unless the analysis is started
at very late times. This is in agreement with the findings in Ref. [11]. However,
our conclusion is that, rather than this region being contaminated by complicated
non-linearities, the disagreement in the measurements is biased by the presence of
the overtones that were excluded from the model.

Going one step further, we carried out a full analysis of a GW150914-like numerical
relativity waveform injected into LIGO-like noise. Accurate measurements of the
remnant black hole mass and spin can be obtained by including a sufficient number
of overtones. Ignoring the overtones produces the expected bias, with the bias being
reduced as the number of overtones included in the model is increased.

Although overtones were largely considered to be unimportant, the opposite appears
to be true. While the overtones do indeed decay away rather quickly, the amplitudes
of these modes can initially be much higher than the amplitude of the longest-lived
fundamental mode. Consequently, ringdown analyses must include a sufficient
number of overtones. Our results suggest that given the loudness of GW150914,
an additional mode, the first overtone, should be resolvable. The bias present at
early times in the initial ringdown analysis of GW150914 seems to also suggest the
presence of this mode. The importance of measuring a second mode, along with the
implications for testing general relativity – specifically testing the no-hair theorem –
are discussed in Chapter 5 and summarized in the following section.

1.9 Testing Einstein’s theory
By now, we know that the merger of two black holes results in a single black hole that
rings as it radiates away the distortions to the spacetime. This last bit of radiation,
the ringdown signal, is composed of specific frequencies precisely predicted by
general relativity. The hypothesis that a black hole is entirely described by just its
mass and spin is known as the no-hair conjecture. This strangely titled conjecture is
attributable to John Wheeler, stating ‘black holes have no hair,’ where the hair refers
to any additional properties beyond its mass and spin, as all other information, or
’hair’, is forever lost behind the black hole’s event horizon. For black holes that obey
Einstein’s theory, the mode frequencies serve as a fingerprint for the black hole. A
complementary statement is that if the objects we observe are not Einstein’s black
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holes, but instead something more exotic, the frequencies will not have this property
and this would be a spectacular surprise. Because merging black holes experience
crushing gravity, studies of the ringdown allow for tests of general relativity under
the most extreme conditions.

A minimum of two modes are required for a no-hair test, each with an associated
frequency and damping time that depend only on the mass and spin. The conventional
test relies on measuring two fundamental modes of a black hole, the fundamental
of the dominant quadrupolar mode and the fundamental of a higher-order mode.
However, modes beyond the dominant quadrupolar mode are weakly excited and
have yet to reach the threshold for detectability. Consequently, a test relying on
two fundamental modes is not expected to be feasible for another 10-15 years, after
detector sensitivity has improved significantly.

However, as discussed in the previous section, overtones of the dominant quadrupolar
mode are potentially measurable in current detectors and the overtones are present
much earlier in the waveform than previous ringdown analyses had considered. As
the overtones are present in a much louder part of the signal, we can access the
higher signal-to-noise ratio to resolve these modes. Reanalyzing the first detection,
GW150914, we were able to perform a first test of the no-hair theorem. By comparing
the best-measured mass and spin at early times with one overtone, compared to a
mass and spin obtained at late times solely with the fundamental mode, the remnant
is consistent with a Kerr black hole as predicted by general relativity at the 10%
level. An additional test, more in the spirit of the conventional test, is to allow the
frequencies to be independent parameters in the fit. This test allows us to confirm
that the spectrum is in agreement with the no-hair hypothesis to within ∼ 20%.

These first tests serve as a proof of principle and place the first, albeit loose, constraints
on how far black holes can deviate from general relativity. The framework we have
developed for analyzing ringdowns can be extended to coherently analyze multiple
events, which would improve constraints on the current allowed deviations from
black holes of general relativity. A system similar to the first, GW150914, at today’s
sensitivity would be an exceptional event, allowing for the measurement of 3 or
4 ringdown quasinormal modes – and would provide one of the most stringent
constraints on the nature of black holes. The results presented in Chapter 5 just
scratch the surface of the powerful tests that can be employed with overtones using
present day detectors and the even more precise tests that can be accomplished
with LISA. Once LISA is operational, we expect that several of the overtones
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should be measurable, allowing for the most precise test of the no-hair theorem with
considerably tighter constraints.
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C h a p t e r 2
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Matthew Giesler, Drew Clausen, and Christian D Ott
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arxiv:1708.05915

2.1 Abstract
Recent studies suggest that globular clusters (GCs) may retain a substantial population
of stellar-mass black holes (BHs), in contrast to the long-held belief of a few to zero
BHs. We model the population of BH low-mass X-ray binaries (BH-LMXBs), an
ideal observable proxy for elusive single BHs, produced from a representative group
of Milky Way GCs with variable BH populations. We simulate the formation of
BH-binaries in GCs through exchange interactions between binary and single stars in
the company of tens to hundreds of BHs. Additionally, we consider the impact of the
BH population on the rate of compact binaries undergoing gravitational wave driven
mergers. The characteristics of the BH-LMXB population and binary properties are
sensitive to the GCs structural parameters as well as its unobservable BH population.
We find that GCs retaining ∼1000 BHs produce a galactic population of ∼150 ejected
BH-LMXBs whereas GCs retaining only ∼20 BHs produce zero ejected BH-LMXBs.
Moreover, we explore the possibility that some of the presently known BH-LMXBs
might have originated in GCs and identify five candidate systems.

2.2 Introduction
The fate of the population of stellar-mass black holes (BH) in globular clusters (GCs)
is still widely uncertain. It is expected that tens to hundreds and possibly thousands
of BHs are formed in GCs, of which some fraction might be ejected early due to a
kick at formation [1]. In the standard GC evolution picture, the remainder of the BHs
should rapidly sink to the core due to mass segregation. There they are subject to a
high rate of dynamical interactions that are likely to eject the BHs as singles or in
binaries. It was long accepted that this process would lead to repeated ejections from
the GC leaving a few to zero BHs (e.g., [2]; [3]). Historically, this was supported by
the lack of observational evidence for a BH in a GC; however, BHs are difficult to

https://arxiv.org/abs/1708.05915
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observe unless they are actively accreting from a stellar companion.

In order to explore the population of BHs within and outside of GCs, black-hole
low-mass X-ray binaries (BH-LMXBs) can serve as an ideal proxy. In an evolved
cluster, a main-sequence star (MS) will necessarily be less than the MS turnoff mass,
yielding an abundance of potential low-mass companions. This, coupled with a high
rate of encounters due to the high-density environment of GCs, makes GCs ideal
BH-LMXB factories. However, this assumes that a significant number of BHs are
retained by GCs and that the BHs avoid segregating completely from the lower-mass
stars.

The discovery of two BH-LMXB systems in the Milky Way GC M22 [4] has led to a
renewed interest in GC BH retention. This observation coupled with an estimate for
the fraction of the BH population expected to be in accreting binaries [5] suggests
that M22 may contain 5 − 100 BHs [4]. Additionally, [6] suggested a number of
high-luminosity LMXBs residing in M31 GCs may harbour BH primaries, which
was confirmed by [7]. Recent theoretical studies, including some detailed N-body
simulations (e.g., [8]; [9]), support the idea that GCs are capable of retaining from a
few to hundreds of BHs (e.g., [10]; [11]; [12]; [13]).

There is an increasing number of BH-LMXB candidates identified in the Milky
Way galaxy. BlackCAT [14], a catalogue of BH-LMXBs, has to date identified 59
candidateMilkyWay BH-LMXBs. An LMXB is identified as a candidate BH-LMXB
if the X-ray spectrum rules out a neutron star (NS) as the compact accretor [15].
Of the 59 candidate BH-LMXBs in BlackCAT, 22 are currently considered to be
‘confirmed’ BH-LMXBs. A BH-LMXB labelled as ‘confirmed’ has a dynamical
measurement of the primary mass or mass-function f (MBH) (see, e.g., [16]).

Roughly one-fifth of the observed BH-LMXBs reside at an absolute distance
|z | perpendicular to the galactic plane greater than 1 kpc (e.g., [17]; [14]). The
distribution of the candidate and confirmed BH-LMXBs within the Milky Way gives
rise to the idea that BHs might be subject to high-velocity kicks at formation (e.g.,
[18]; [19]; [20]; [21]). In some cases, the velocity needed for the binary to reach
large |z | exceeds the contribution from a Blaauw kick [22]. This is the velocity
imparted to a binary in the case of sudden mass loss, i.e. in the BH progenitor’s
supernova explosion. The exceptional high-velocity BH-LMXB cases have led to
the idea of high-velocity formation kicks, also known as ‘natal’ kicks, where the
binary receives a large kick through an asymmetric explosion launched prior to
BH formation ([23]; [24]). Due to the long-held assumption that GCs maintain a
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near-zero population of BHs, the possibility that some of these systems originated in
GCs has been largely ignored. BH-LMXBs sourced by BH-retaining GCs might help
to explain some of the peculiar properties of the observed Milky Way BH-LMXB
population. Although GCs are not likely to describe the entire population of BH-
LMXBs, the halo-orbits of GCs in the Milky Way make GCs ideal candidate sources
for the high-|z | systems. In light of the recent studies that suggest GCs might harbour
a large number of BHs, we revisit in this paper the possibility of GCs as a potential
origination point for a subset of the observed BH-LMXB systems.

Although we are primarily concerned with the galactic population of BH-LMXBs
evolving from initially non mass-transferring binaries ejected from GCs, BH-LMXBs
can form within GCs through more exotic channels. These formation channels
include mass-transfer following directly from a physical collision or triple-induced
mass transfer coupled with exchange encounters or physical collisions [5]. The
more recent work of [25], proposes a new BH population-dependent channel for the
production of BH-LMXBs within GCs by means of grazing tidal encounters between
a BH and a subgiant.

In addition to using BH-LMXBs as probes of BH retention in GCs, the BH-BH
merger rates might also serve to place some constraints on GC BH retention. The
recent success in observing merging BH-BH binaries by advanced LIGO (aLIGO)
makes this a realistic possibility ([26]; [27]; [28]). Furthermore, binary BH mergers
occurring in GCs may be characteristically eccentric due to dynamical formation
channels. Although these eccentric systems are likely to have circularized by the
time they are visible in the aLIGO frequency band, the eccentricity is potentially
detectable at lower frequencies. The addition of a space-based gravitational wave
observatory (e.g., LISA) in the future, designed for sensitivity at lower frequencies,
further improves the prospect of using BH-BH mergers to probe GC dynamics.

In this study, we explicitly evolve ‘test’ binaries in a fixed cluster background subject
to dynamical friction and single-binary interactions. Additionally, we include an
updated prescription for allowing single BHs to exchange into existing binaries. The
GCs are chosen to represent a realistic subset of Milky Way GCs with varying BH
populations in order to investigate the effects of BH retention in clusters. Each GC
background is described by an isotropic multi-mass King model. We produce a
large number of realizations for each set of initial parameters to obtain statistical
distributions of the number of ejected binaries and their relevant properties. Using the
statistics from the GC simulations, we then performMonte Carlo simulations to obtain
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a population of BH-LMXBs produced by GCs. The GCs and the ejected binaries are
evolved in time through the Milky Way potential while simultaneously accounting
for the stellar evolution of the ejected binaries. The resulting mass-transferring
systems make up a previously unexplored galactic population of BH-LMXBs from
GCs. We investigate the distribution and properties of the resulting population and
its dependence on BH retention in GCs. Specifically, we find that in the case of
minimal BH retention (NBH = 20) no observable BH-LMXBs are produced, while
the NBH = 200 and NBH = 1000 cases respectively yield galactic populations of
25+10
−6 and 156+26

−24 BH-LMXBs. Furthermore, we use the resulting population to
determine the most likely candidates for a GC origin in the population of observed
Milky Way BH-LMXBs: the five systems that are compatible with our simulated
population of BH-LMXBs from GCs are MAXI J1659-152, SWIFT J1357.2-0933,
SWIFT J1753.5-0127, XTE J1118+480, and GRO J0422+32. One caveat is that
four out of five of these systems are still lacking measurements of the companion
metallicity. Due to the low metallicity environments of GCs, a measurement finding
a metallicity significantly larger than typical GC metallicities would be a strong
piece of evidence ruling out a GC origin for the system under consideration. The
fifth system, XTE J1118+480, has had its metallicity measured twice. However,
the findings of [29] and [30] currently provide conflicting claims regarding the
companion metallicity. Future measurements will be necessary to increase support
for a GC origin theory, but if we can confidently attribute a BH-LMXB to a GC, this
would provide strong evidence for significant BH retention in GCs.

The remainder of this paper is structured as follows. In section 2.3, we describe our
model for the GCs and the evolution of a test-binary in a static cluster background.
In section 2.4, we lay out how we generate the present-day BH-LMXB population
from our simulations of Milky Way GCs. In section 2.5, we review the properties of
the ejected BH binaries along with the distribution and properties of the present-day
BH-LMXBs from GCs. Additionally, we explore the effects of BH retention on
the BH-BH merger rate in GCs. We conclude the section by comparing our results
with observations and previous work. Finally, in section 2.6, we provide concluding
remarks.

2.3 Methods
GCs typically contain ∼105 − 106 stars, which makes them accessible to modern
N-body simulations (e.g., [31]; [9]) that can track GC evolution. However, full
N-body cluster evolution simulations are still very computationally expensive,
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making this method poorly suited for studying many realizations of different GCs
necessary for building statistics on the evolution of BH binaries inside clusters.
Fokker-Planck methods are more approximate and describe GCs with a phase-space
distribution function for its constituent stars that evolves via the Fokker-Planck
equation, a Boltzmann equation with a small local collision term that modifies
only velocities (see, e.g., [32]). The Fokker-Planck equation can be numerically
integrated directly (e.g., [33, 34]) or, more commonly, integrated with Monte Carlo
methods (see, e.g., [35, 36] and [13] for a comparison between N-body and the
Monte Carlo approaches). However, here we are concerned with the evolution of BH
binaries in GCs and not with the GC evolution itself. Hence, we adopt the approach
of modelling the evolution of binaries in a fixed cluster background, pioneered in
the early 90’s (see, e.g., [37–40]; and [41] for an overview of the theoretical models
of GCs and the dynamics occurring within). We approximate the collision term in
the Fokker-Planck equation analytically to model the effects of distant encounters as
the binary evolves through the GC. Near encounters are accounted for by explicitly
integrating the three-body equations of motion. We build up statistics by carrying
out simulations of many random realizations of binaries for a given GC background
model. In the following sections, we describe our method in detail.

Model
Our model, most closely based on [40], incorporates a number of assumptions that
simplify the simulations and allow us to perform ∼104 realizations for a given cluster
model with relatively minimal computational needs. The three key assumptions are:
(i) GCs are well described by a ‘lowered Maxwellian’ distribution function, (ii) the
gravitational potential and distribution functions are stationary, and (iii) the effect of
distant interactions is well described by the leading order terms in the Fokker-Planck
equation. The ‘lowered Maxwellian’ distribution function, which eliminates the
tail of the Maxwellian velocity distribution, introduces a maximum energy for stars
within the cluster to remain bound. This maximum energy φ(rt) implies a finite
mass and a maximum radius rt, commonly referred to as the ‘tidal’ radius, as stars
beyond this distance are pulled from the cluster by the galactic tidal field. Models
based on a ‘lowered Maxwellian’, commonly referred to as King models, readily
describe many observed clusters ([42]; [43]; [32]).

We evolve a single ‘test binary’, initialized according to section 2.3, in a static cluster
background described by an isotropic multi-mass King model [44] defined by single
particle distribution functions fα (r, v,mα) for a discrete set of mass groups. Here,
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r and v are the radius and velocity in the cluster centre-of-mass frame and mα is the
representative mass of group α. The distribution function for a given mass group is
given by

fα (ε) =



n0α
(2πσ2

α)3/2 (e−ε/σ2
α − 1) ε < 0

0 ε ≥ 0 .
(2.1)

Here, ε is the energy per unit mass, ε = v2/2 − Ψ(r), and Ψ(r) ≡ φ(rt) − φ(r) is
the gravitational potential relative to that at the tidal radius rt. Additionally, σα is
the group’s velocity dispersion at the core of the cluster and n0α is a normalization
factor. For an isotropic cluster, the velocity dispersion reduces to the one-dimensional
mean-square velocity, such that 3σ2

α = v̄2
α. The normalization factor in its full form

is
n0α = ηα

no

eΨ(0)/σ2
αerf

(√
Ψ(0)
σ2
α

)
−

√
4Ψ(0)
πσ2

α

(
1 + 2Ψ(0)

3σ2
α

) , (2.2)

where ηα = Nα/N is the number fraction for mass group α and no = n(0) is the
central density.

The free structural parameters necessary to specify a model cluster, with specified
mass groups, are the mean core velocity dispersion σ̄, the core number density no,
and the potential depth, which is specified by the dimensionless King parameter
Wo = Ψ(0)/σ̄2. The remaining structural parameters, which are fully determined
by the free parameters, are: total mass Mc, core radius rc, tidal radius rt, and
concentration c =log10(rt/rc). The core radius rc is defined as the radius at which
the surface brightness has dropped to half the value at the core.

For a given set of masses with corresponding distribution functions, the cluster
satisfies Poisson’s equation for the relative potential ∇2Ψ(r) = −4πG

∑
α ρα. Here,

ρα = mαnα, where nα is the number density of mass group α given by

nα =
∫ v(rt)

0
fα (r, v,mα) 4πv2dv . (2.3)

The upper limit of the integral is the maximum allowed velocity v(rt) =
√

2Ψ(rt), i.e.
the escape velocity. The object masses mα and number fraction η0α are determined
by the evolved mass function, discussed in section 2.3. We generate a model cluster
that satisfies Poisson’s equation for the specified masses and number fractions in
an iterative fashion. We begin by integrating Poisson’s equation out to a radius
rt, implicitly determined by Ψ(rt) = 0, with boundary conditions Ψ(0) = Wo and
∇Ψ(0) = 0, and take ηα = η0α as our initial guess. The actual number fraction of
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each mass group, ηα = Nα/N , is then calculated using

Nα =

∫ rt

0
nα (r) 4πr2dr , (2.4)

along with N =
∑
α Nα. We then update our guess to ηα = (ηαnew + ηαold )/2, where

ηαnew → ηαold × (η0α/ηα). We repeat the above steps until (η0α − ηα)/η0α < δ

is satisfied for all mass groups, where we have made the somewhat arbitrary
choice of δ = 6.25 × 10−3 for our convergence threshold. This iterative procedure
determines the normalization constant n0α and rt. Once rt is found, the concentration
c = log10(rt/rc) is determined and the total mass of the cluster Mc is obtained from

− ∇Ψ(rt) =
GM
r2

t
. (2.5)

The evolution of our ‘test binary’ in the cluster background is affected by long-range
and short-range interactions, which modify the magnitude and direction of the
binary’s velocity. The short-range encounters are accounted for by fully resolving
the three-body interactions, detailed in section 2.3. We account for the velocity
fluctuations due to long-range interactions with ‘field stars’, distant cluster stars,
through the diffusion coefficients D(∆vi) and D(∆vi∆v j ) in the Fokker-Planck
equation,

D f
Dt
=

(
∂ f
∂t

)
enc
=

∑
i, j

{
−

∂

∂vi
(D(∆vi) f ) +

1
2

∂2

∂vi∂v j
(D(∆vi∆v j ) f )

}
. (2.6)

In this context, a diffusion coefficient D(X ) for a variable X , corresponds to the
average change in X per unit time. Here, we focus on velocity changes per unit time
as experienced by the binary due to interactions with the ‘field stars’. The form of
the coefficients can be derived, for a simple case, by first considering the change in
velocity of a mass m1, initially at rest, due to an encounter with a second mass m2 at
a relative velocity v with impact parameter p,

(∆v)2 =
4m2

1
(m1 + m2)2

v2

(1 + ( p
po

)2)
, (2.7)

where po ≡ G(m1+m2)/v2 is a reference impact parameter which causes a deflection
of π/2, consistent with close encounters (e.g., [32]). The average rate of change of
the quantity in Equation 2.7, per unit time, due to encounters is then obtained by
integrating over the possible impact parameters for a given density of field stars n,

D(∆v2) = 2π
∫ pmax

0
∆v2pnvdp , (2.8)
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up to a maximum allowable impact parameter pmax. The maximum impact parameter
is required to suppress the divergence of the integral and essentially determines
the maximum distance of long-range encounters that contribute to the velocity
perturbations. This maximum value, pmax, is not explicitly specified, but finds
its way into the coefficient calculations through the so-called Coulomb logarithm,
lnΛ ≡ ln(pmax/po), which appears as a result of the integration.

We work out the details for the case of an isotropic velocity dispersion with a density
of field stars given by Equation 2.3 and restate the relevant coefficients we use in
our model (cf. [45]). These coefficients, which describe the average rate of change
in the velocity of the binary due to long-range encounters, are used to update the
velocity of the binary at each time step. The implementation is described further in
section 2.3. A detailed derivation and a more general form of the coefficients can be
found in [32].

By choosing a coordinate system in which one axis is aligned with the velocity of the
binary, we can decompose D(∆vi) into a coefficient parallel to the binary’s velocity
D(∆v‖) and two mutually orthogonal coefficients perpendicular to the velocity,
D(∆v⊥)1 and D(∆v⊥)2. In an isotropic cluster, there is no preferred direction with
regard to the two perpendicular components, so the contributions from D(∆v⊥)1 and
D(∆v⊥)2 tend to cancel each other out. Their squares, D(∆v2

⊥)1 and D(∆v2
⊥)2, on the

other hand, do not and are non-vanishing. Additionally, we include a quadratic term
for the parallel component D(∆v2

‖
) and in consideration of the symmetry we retain

only the sum of the perpendicular components D(∆v2
⊥) = D(∆v2

⊥)1 + D(∆v2
⊥)2.

The diffusion coefficient D(∆v‖) parallel to the binary’s motion is by analogy often
referred to as the coefficient of dynamical friction as it opposes the binary’s direction
of motion,

D(∆v‖) = −
∑
α

γα

(
1 +

mb

mα

) ∫ v

0

(
vα

v

)2
fα (vα)dvα . (2.9)

Here, mb is the mass of the binary and γα ≡ (4πGmα)2 lnΛ, where we have chosen
to set lnΛ = 10, a value typical for GCs [32]. The two remaining coefficients,

D(∆v2
‖
) =

∑
α

2
3
vγα

{ ∫ v

0

(
vα

v

)4
+

∫ ∞

v

(
vα

v

)}
fα (vα)dvα (2.10)
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and

D(∆v2
⊥) =

∑
α

2
3
vγα

×

{ ∫ v

0

[
3
(
vα

v

)2
−

(
vα

v

)4]
+ 2

∫ ∞

v

(
vα

v

)}
fα (vα)dvα ,

(2.11)

are strictly positive. These coefficients are responsible for the stochastic perturbations
to the parallel and perpendicular components of the velocity, which take the binary
on a random walk through velocity space and compete with the slowing due to
dynamical friction. We implement these ‘random kicks’ as discrete changes to
the binary’s velocity by sampling from a normalized distribution of the velocity
perturbations, described in section 2.3.

Initial conditions
Evolved mass function

We obtain an initial distribution of masses in the range 0.08 M� < m < 120 M� from
the broken-power-law initial mass function (IMF)

ξ (m) ∝



m−1.3m0.3−x∗
x m < mx

m−1.0−x∗ m ≥ mx ,
(2.12)

with x∗ = 1.35 and mx = 0.55 M� chosen to incorporate a Salpeter IMF [46] for
masses above mx and a Kroupa ‘correction’ [47] to masses below mx along with
a normalization factor for continuity. Stars with masses below the main-sequence
turn-off, which we set to mto = 0.85 M� [48], are assumed not to evolve significantly
on the timescale of the simulations, while masses above mto are assumed to be
completely evolved according to a specified evolved mass function (EMF). The
evolved mass me is determined by the EMF

me =




mMS = m 0.08 M� < m ≤ mto

mWD = 0.45 + 0.12(m − 1) mto < m < 8 M�

mNS = 1.4 8 M� ≤ m < 20 M�

mBH = mBH(m, fsBH ) 20 M� < m < 120 M� ,

(2.13)

where the mass subscripts label the object type and refer to main sequence (MS),
white dwarf (WD), neutron star (NS), and black hole (BH). We occasionally refer
to the set of MS and WD objects as the non-compact (NC) population. The MS
stars below the turnoff mass are set to their zero-age main-sequence (ZAMS) mass,
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the WD stars are a linear function of their ZAMS mass [49], NS are simply set to
1.4 M�. Following the work of [50], the BHs are assumed to have formed from two
possible channels: stars with companions that significantly affect the evolution of the
star and those stars that are ‘effectively single.’ Effectively single is used to describe
stars that evolve in isolation as well as those stars that evolve in wide binaries with
minimal interaction. [50] estimate that ∼70% of massive stars will have their final
state impacted by a companion, which motivates setting fsBH = 0.3 for the fraction
of BHs that formed in isolation. This fraction of BHs that evolve from ‘effectively
single’ stars are void of the complexities of binary stellar evolution and are assumed
to lose a significant fraction of their hydrogen shells to stellar winds before collapsing
to a BH. For the low metallicities typical of GCs, we approximate the mass loss, as
∼10% of the initial mass and set me = 0.9m. The remaining 70% of BHs formed
will have evolved with a companion and likely passed though a common envelope
phase, stripping the stars down to their helium (He) cores [50, 51]. Using MESA [52]
to evolve masses in the range 20 M� < m < 120 M�, we obtained the He core mass
as a function of the ZAMS mass in order to determine the remnant mass for the
remaining (1 − fsBH ) fraction of BHs

me = mHe = 0.2312
(
mZAMS

)1.1797 M� . (2.14)

The stellar evolution performed using MESA version 6794, follows the procedure
laid out in [53]. Figure 2.1 displays the resulting He core mass as a function of
the ZAMS mass from the MESA runs with metallicity Z = 5 × 10−4, along with the
power-law fit of Equation 2.14. This metallicity corresponds to the higher peak
in the bimodal, GC metallicity distribution [54]. In order to properly account for
the range of metallicities in our sample of clusters (see Table 2.2), we repeat the
same process with Z = 5 × 10−3, corresponding to the secondary peak in the GC
metallicity distribution. However, as this order of magnitude difference in metallicity
produces He core masses differing by . 10%, we rely on Equation 2.14 as a good
approximation for the remnant masses in all modelled clusters.

In addition to specifying the evolved masses, it is also necessary to specify the
number of NS and BH objects retained by the cluster in its static state. We specify
the retained population of compact objects, comprised of NSs and BHs, through
the retention fractions f rNS and f rBH , respectively. This is necessary since we are
modelling the cluster in its evolved state, a time at which many of the NS and
BHs formed within the cluster have already been ejected due to formation kicks.
Studies of the proper motion of pulsars suggest that NSs receive kicks in the range of
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Figure 2.1: The He core mass (marked by circles) as a function of zero-age main-
sequence mass from the MESA [52] runs, along with the fit (blue, dashed line) given
by Equation 2.14. For the ∼70% of BHs formed in binaries, we approximate the
remnant BH mass with the He core mass of the progenitor. The remnant mass for
the remaining ∼30% of BHs is approximated by 0.9MZAMS, which accounts for the
hydrogen mass lost to stellar winds at low metallicity.

200− 450 km s−1 [55], easily exceeding the typical escape velocity of clusters, which
is on the order of tens of km s−1. However, the observations of pulsars in GCs implies
a ‘retention problem,’ since the observed fraction retained is inconsistent with the
average natal kick velocities being significantly greater than GC escape velocities.
This issue is somewhat reconciled by assuming some NSs form in binaries, which
dampen the kick and allow the GC to maintain a hold on the NS and companion [56].
In consideration of these observations, for the case of NSs, we retain a constant
fraction, f rNS = 0.1, of those produced by the IMF ([40]; [56]; [57]). In the BH case,
the distribution of natal kicks is highly uncertain. Rather than take the retention
fraction f rBH to be a constant across clusters, as in the NS case, we utilize this fraction
as a free parameter in our models to control the number of retained BHs in each
modelled GC.

Once we have determined the evolved masses from the IMF, the masses are binned
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Mass group mmin [M�] mmax [M�] m̄ [M�] fm fn fL

0 0.08 0.200 0.12827 0.17531 0.42853 1.0000
1 0.20 0.350 0.26596 0.17757 0.20933 1.0000
2 0.35 0.450 0.40704 0.13954 0.10748 0.7552
3 0.45 0.600 0.51190 0.24921 0.15264 0.5763
4 0.60 0.700 0.64624 0.10020 0.04861 0.7644
5 0.70 0.850 0.76855 0.11027 0.04499 0.8233
6 0.85 1.000 0.91758 0.01161 0.00397 0.0000
7 1.00 1.200 1.08980 0.01005 0.00289 0.0000
8 1.20 1.500 1.29547 0.00527 0.00128 0.0000
9 1.50 10.00 8.87443 0.00143 0.00005 0.0000
10 10.0 40.00 20.4808 0.01261 0.00019 0.0000
11 40.0 120.0 57.1851 0.00693 0.00004 0.0000

Table 2.1: Evolved mass groups for NGC 6121 (NBH = 200) with corresponding
mass index, the lower boundary bin mass mmin, the upper boundary bin mass mmax,
the average mass of the group m̄, the fraction of the total mass in the cluster fm, the
number fraction with respect to the total number of objects in the cluster fn, and the
fraction of luminous objects in the group fL. For reference, the BH masses occupy
the top three mass groups with mean masses of 8.87 M�, 20.48 M�, and 57.18 M�.

into 12 groups. The small number of bins allows for a proper representation of the
true distribution while keeping the computational costs to a minimum. Poisson’s
equation is then integrated to determine the final structural parameters as discussed
in section 2.3. For illustrative purposes, the evolved mass distribution for NGC
6121 with 200 retained BHs is given in Table 2.1. The bins for each mass group,
the mean mass in each bin, and the fraction of luminous objects are constant across
simulations, however the mass fraction and number fraction depend on the structure
of the cluster and the number of BHs.

Core density

As discussed in section 2.3, one of the free parameters in our model when specifying
a cluster’s structure is the core number density no. However, because this parameter is
not easily observable, a GC’s density is often reported in terms of a central luminosity
density ρL. For each mass group we determine a central luminous number density
nLα = fLα n̄α, where fLα and n̄α are the fraction of luminous objects and the core
density, respectively, of mass group α. The central luminosity density is then given
by ρL =

∑
α LαnLα . In order to account for the variability in the mass-luminosity

relation with stellar mass, we use a parameterized luminosity for each group of the
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form Lα = a(mα)b, with luminosity coefficients a = 0.23, b = 2.3 for mα < 0.43 M�
and a = 1.0, b = 4.0 for the remaining luminous objects [58]. To ensure that our
clusters appropriately model the Milky Way GCs of interest, we compute ρL for each
integrated cluster and adjust no accordingly to match the observed quantity.

Binary fraction

In order to account for the uncertainty in the size of the binary population within a
cluster, we allow for a specifiable binary fraction. The fraction of objects that are
binaries is

fb =
Nb

Ns + Nb
, (2.15)

where Ns and Nb are the number of single objects and binary objects, respectively, and
the total number of objects in our model clusters is then N = Ns + 2Nb. Observations
of the binary fraction are limited to the luminous objects within the cluster. Due to
this restriction, we take the observed fraction to be determined solely by the MS
star binary fraction fobs = NMSb/(NMSs + NMSb ), where, as above, we respectively
refer to NMSs and NMSb as the number of single and binary MS stars. Using the
above definitions along with the fraction of all binaries that are MS-MS binaries,
fMSb = NMSb/Nb, and the fraction of objects that are MS stars, fMS = NMS/N , we
convert the observed binary fraction into a uniform total binary fraction for use in
our models through the relation

fb =

(
fMSb

fMS

( fobs + 1)
fobs

− 1
)−1

. (2.16)

The number of MS stars NMS is determined solely by the IMF and for the simulations
in this studywe use fMSb = 0.23 [59]. We perform our simulation with fobs covering a
range of values, consistent with theoretical findings, between 5 to 10% [60], and with
observational constraints, between 5 to 20 % [61]. We complete an approximately
equal number of simulations for fobs taking values from the set {0.05, 0.10, 0.20}.
However, we find that this parameter has a negligible effect on the quantities of
interest, so for conciseness, it is not specified in the simulation parameters.

Modified black-hole velocity dispersion

Recent studies of BH retention in GCs have shown clusters initially retain between
65−90% of the BHs formed in cluster, with the remainder being lost due to formation
kicks [62]. This is in contrast to the long-standing belief that present-day GCs should
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be nearly void of BHs. In addition to the increase in retention, [62] also found that
the retained BHs remain well-mixed with the non-BH population. Follow-up studies
support the idea of a large population of BHs that are spread throughout the cluster
and are consistent with a recent 106 N-body simulation [13].

In the standard King model, it is common to assume that the mass groups satisfy an
equipartition of energy. Specifically,

mασ
2
α = m̄σ̄2 , (2.17)

where mα and σα are the mass and velocity dispersion of mass group α, m̄ is the mean
mass of all objects in the cluster, and σ̄ is the mean velocity dispersion. However,
with this equipartition of kinetic energy amongst all mass groups, the heavier objects
then necessarily have lower random velocities compared to the lighter objects and
become trapped deep in the gravitational potential at the core of the cluster. With an
equipartition of kinetic energy in place, the much more massive BHs densely populate
the central region of the cluster, driving the core radius to a small fraction of the tidal
radius. This disparity between the core radius and tidal radius leads to concentrations
that deviate from observations, limiting the modelled clusters to supporting only a
small number of BHs. In order to generate clusters with a significant BH population
that are still representative of observed GCs, motivated by [62], we implement a
velocity dispersion for the BHs away from energy equipartition, We maintain an
equipartition of energy among the lower-mass objects and use a modified energy
partitioning for the BHs of the form

mβσ
2
β =

∑
mβ∑
mα

1
fs

m̄σ̄2 , (2.18)

where the indices β and α label the mass groups corresponding to BHs and non-BHs,
respectively. Here, fs is a specifiable scale factor of order unity. The f s parameter is
enough to rescale the velocity dispersion for the BHs, however, the factor involving
the mass ratio contributes substantially and f s remains of order unity and does not
vary wildly across the GCs we consider.

With this modified BH velocity dispersion in place, we find that we can match the
observed structural parameters of a specific cluster for zero BHs up to ∼20 BHs, in
the case of more massive clusters up to ∼100 BHs, and in the most massive clusters
up to ∼1000 BHs. We vary the number of BHs residing in the cluster by adjusting
the scale factor f s in Equation 2.18 and the fraction retained, f rBH , introduced in
section 2.3. To illustrate the spreading of the BHs, we present in Figure 2.2 the



37

radial density profiles for the BHs and the non-BH objects for different populations
of retained BHs in the cluster model representing NGC 6656. In the case of minimal
BH retention, the BH number density falls off quickly outside of the core, which for
our model of NGC 6656 is located at rc = 0.73 pc and is marked by a vertical line in
Figure 2.2 for reference. However, in the case of many BHs, the modified velocity
dispersion extends the number density profile radially, spreading the BHs throughout
the cluster, without affecting the central density. The distribution of non-BH objects
is largely unaffected by the change in BH numbers.
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Figure 2.2: Radial number density profiles for the BH subgroup (solid lines) and
the non-BH objects (dashed lines) in NGC 6656 for the three considered values of
NBH. The vertical line (red, dashed), at rc = 0.73 pc, marks the core radius for this
cluster. The non-BH objects are largely unaffected by the different numbers of BHs
added to the cluster and the necessary modification to the velocity dispersion. For
NBH = 20, the BHs are concentrated in the core region, whereas to accommodate
NBH ≥ 200, the modified velocity dispersion spreads the BHs throughout the cluster
with a profile similar to that of the non-BH objects.

Binary initialization

We choose the initial masses for our ‘test binary’ by randomly sampling from the
evolved mass distribution and reject those that do not contain at least one BH. If
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one of the component masses falls within a mass bin with a non-zero luminous
population, we then sample from the luminous mass fraction to determine whether
the low-mass object is an MS star or WD. Additionally, if the selected mass is in
the turnoff group, 0.63 M� ≤ m ≤ 0.8 M�, then the object is chosen to be a giant
with probability P = 0.095 fL, where fL is the luminous fraction for the turnoff-mass
group. The probability for giants is adopted from [40] and represents the approximate
fraction of the cluster age that giants in this mass range survive. Once the masses
and object types are established, the BH radii are set to the Schwarzschild radius
RBH = 2GM/c2, while the stellar radii are determined as described in [40]. The
eccentricity of the binary e is specified by sampling from the probability density
function f (e) = 2e [63], commonly referred to as a ‘thermal’ eccentricity distribution.
The semi-major axis a is obtained from a distribution uniform in log10 a in the
range −3 ≤ log10(a au−1) ≤ 1. To avoid an immediate merger of the objects in our
initial binary, we enforce a > f tid(R1 + R2)/(1 − e), where Ri are the radii of each
component of the binary and f tid = 3.1, by letting a → 2a until this condition is
satisfied. The factor f tid is chosen based on the separation at which tidal effects
would induce a merger [64]. Once the binary parameters are set, we sample the
primary-mass number density profile nα (r) to determine the binary placement within
the cluster and obtain a velocity from the primary-mass velocity distribution function
at r .

Evolution of the ‘test binary’
Once we have an appropriate model, which satisfies the structural parameters for
a specific cluster and an initial binary, we then evolve this single binary within the
cluster background. In addition to the static potential, we include the interaction
terms discussed in section 2.3. To account for dynamical friction, the diffusion
coefficient D(∆v‖) is added to the potential gradient to create a smooth effective
accelerationaeff = ∇Ψ(r)+D(∆v‖). This smooth force is integrated using a 4th order
Runge-Kutta integrator, which is discussed in detail in section 2.3. The quadratic
scattering terms, or random ‘kicks’, are implemented by discretely updating the
corresponding velocity components at each time step ∆t. As discussed in section 2.3,
the diffusion coefficient for ∆v2, of the form D(∆v2), represents the change in this
quantity per unit time, i.e. ∆v2/∆t. We update the velocity at each time step by
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sampling from the normal distribution of kicks through

∆v‖ = X
√

D(∆v2
‖
)∆t ,

∆v⊥1 = Y

√
1
2

D(∆v2
⊥)∆t ,

∆v⊥2 = Y

√
1
2

D(∆v2
⊥)∆t ,

(2.19)

where X andY are random numbers with mean values of zero and standard deviations
of one.

At each time step, we also consider the evolution of the binary’s semi-major axis
a and its eccentricity e due to gravitational wave (GW) emission. If the BH is in
a binary with another compact object — which includes BHs, NSs, and WDs —
then we implement the evolution of a and e according to the gravitational radiation
formalism of [65]. In these cases, we also calculate the time until coalescence td

due to the decay of a, and if this will occur within the current time step, td < ∆t,
we consider this a GW merger. If the merger is of a BH-BH or BH-NS binary, we
add a recoil velocity, or ‘kick’, based on the fits to numerical relativity simulations
given by [66] with initial spin magnitudes and orientations assigned as in Clausen,
Sigurdsson, and Chernoff [67].

Short-range encounters

As the binary moves throughout the cluster, at each time step, we check for the
possibility of a short-range encounter with a single star. Since the effects of long-
range interactions are accounted for by the diffusion coefficients (section 2.3), here we
focus on capturing the effects due to strong three-body interactions with much smaller
impact parameters. We limit the range of encounters to include only those three-body
interactions that result in a resonance, exchange, ionization, or the occasional flyby.
We accomplish this by choosing the maximum impact parameter to be

p = a[B + C(1 + e)] , (2.20)

where we have set B = 4 and C = 0.6 following [68]. The choice of these coefficients
is intended to limit the number of weak encounters that have minimal impact on
the binary, as these still require full resolution of the encounter, which is one of the
more computationally intensive tasks during evolution. However, the coefficients
only provide an approximate contour in the space of initial conditions, hence the
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occasionally flyby. The cross section for an encounter to take place between the
binary and a star of mass mα with velocity vα is

σ(v, vα) = πp2 +
2πG(mb + mα)p
|v − vα |2

, (2.21)

(see, e.g., [32]). We then calculate the expected encounter rate between the binary
and each mass group

Γ(r, v, α) =
∫

σ(v, vα) |v − vα | fα (vα)dvα , (2.22)

and from this assign the probability of interacting with mass group α to be

Pα = Γ(r, v, α)∆t . (2.23)

An encounter is deemed to have occurred, based on a random generated number Z

from a uniform distribution between 0 and 1, if Z is less than the total probability
P =

∑
α Pα. The total probability is implicitly constrained to be less than unity

by controlling the time-step size ∆t, which is discussed in more detail in the
subsequent section. In the case that Z < P, we select the third star m3 based on the
relative probabilities Pα and initiate our three-body integration scheme explained in
section 2.3.

Time stepping

We use a 4th order Runge-Kutta integrator to evolve the effective acceleration
introduced in section 2.3 as well as the three-body interactions described in section 2.3.
During integrations, we utilize a time step reduction scheme requiring that the
accuracy of the solution does not vary by more than a tolerance of ε rk = 10−5 when
the time step is halved. The initial integration time step ∆t = λ(1 + r)/(1 + v) is
dynamically determined to account for the position and velocity of the binary in the
cluster, with λ = 0.1 chosen to produce a time step that is a fraction of the core
dynamical time rc/σ̄ for a binary at rest in the core. This time stepper accounts
for the higher density in the core and the enlarged cross section at small velocities.
Although this choice of time step is usually sufficient, some extra care needs to be
taken when using ∆t in Equation 2.23 to determine the encounter probability, so
that the total probability does not exceed unity. To ensure that we correctly sample
the encounter probabilities, by satisfying the constraint P � 1, we set Pmax = 0.1
and enforce P < Pmax by reducing the time step ∆t when necessary. For the case
P > Pmax, we decrease the succeeding time step by letting λ → 0.9(Pmax/P)λ.
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During the subsequent step, if λ < λo, where λo = 0.1 is the fiducial value, and
P < Pmax, we allow the time step to increase slowly by setting λ → 1.1λ. Once
λ > λo and the probability is satisfactorily small, which often occurs once the binary
migrates out of the problematic dense region, we reset the time step factor to λ = λo.

Three-body interactions

In the case of an encounter, the relative probabilities described in section 2.3
determine the mass and velocity of the third object. We take this sampled velocity v3

to be the velocity of the third body at infinity and calculate the relative velocity at
infinity for the encounter from v∞ = |v − v3 | =

√
v2 + v2

3 − 2vv3 cosχ. Given v and
the sampled m3 and v3, the relative velocity at infinity is determined up to the cosχ
term, which for an isotropic King model distribution function can be sampled from
an analytic expression for χ ∈ [0, π] as in [40]. With the mass of the third body and
the relative velocity known, the maximum impact parameter is obtained from the
cross section for the encounter

πp2
max = σ(v, v3) = πp2

(
1 +

2G(mb + m3)
pv2
∞

)
, (2.24)

with p defined in Equation 2.20. The actual impact parameter for the encounter is
sampled from a uniform distribution in the area spanned by the maximum impact
parameter πp2

max. The angles that comprise the remaining free variables necessary
to specify the initial conditions are the projected true anomaly f of the binary at the
time that the incoming third body reaches pericentre, two angles θ and φ specifying
the initial location of the third body with respect to the binary centre-of-mass, and
the impact orientation ψ, which specifies the angle of the impact parameter in a
plane transverse to the incoming velocity of the third body. Theses four angles are
sampled in a manner consistent with [68]. With the initial conditions specified, the
explicit integration is performed with a modified scheme based on [69].

Wemodify the original method of a fixed initial distance of the third star, at Rin = 20a,
to one of variable distance to improve efficiency and to prevent the case of long
three-body interactions that can exceed the cluster time step. The addition of massive
BHs introduces the possibility for wide binaries with orbital separations much greater
than those for which the previous method was suited to handle. With a fixed choice
for the distance of the third star from the binary, interactions such as distant flybys,
which are the quickest to resolve computationally and have little impact on the
binary, often take a time that exceeds the cluster evolution time step and leads to the
possibility of missing other probable encounters.
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To represent the three-body system as an isolated one, and to reduce excessive
time spent integrating long approaches, we require that Rin ≤ Rmax(n), where
Rmax(n) = (4πn/3)−1/3 is the ‘interparticle’ distance and is a function of the local
density n(r). Once Rin is specified, we determine the relative velocity vin at Rin

based on the relative velocity at infinity. With these two quantities specified, we
approximate the time for a flyby as δt = 2Rin/vin. For the case in which δt > ∆t,
we let Rin → (∆t/δt)Rin, calculate vin at the new initial distance and recompute the
new estimated time. We repeat this procedure until the estimated time is roughly the
same as the cluster time step, 0.9 < δt/∆t < 1.1. One important caveat is that this
could lead to placing the third object too close to the binary, spoiling the assumption
of an object at infinity approaching a well defined binary. To address this issue, we
maintain one extra condition on the initial distance specification, a consideration for
which we are willing to forgo our time step restrictions: that (a/Rin)3 ≤ 0.01.

To increase the speed of the three-body integration, we move from a constant
integration time step to one that is dynamical. We choose a maximum time step
δTmax to be an arbitrarily small fraction ε = 6.25 × 10−3 of the binary period Tb,
i.e. δTmax = εTb. At the end of each integration step, we update the time step to
δT = ε (rmin/vmax), where rmin is the minimum separation between any pair of the
three objects and vmax is the largest velocity of the three bodies. This sets the time
step to the maximum allowable value in consideration of the need to resolve the
dynamics of the three objects or any potentially bound pair. In some instances, a
resonance can form a temporarily bound triple system, causing the integrator to
reach the maximum number of steps Nmax = 2 × 106 or to exceed the arbitrarily
specified maximum allowable time of 5∆t. Under these rare circumstances, we
reinitialize the system with newly sampled initial angles and restart the integration.
In addition to the occasional long-lasting semi-stable triples that form, there are
also instances when a binary makes its way to the core where the average timescale
necessary to resolve the three body encounters begins to approach the timescale for
the evolution of the binary in the cluster. Since we calculate three-body encounters
decoupled from the binary’s evolution in the cluster, we are forced to terminate the
run in such cases. As the cluster timescale is inversely proportional to the cluster
density, this situation is most likely to occur in the densest clusters. As a result of
this timescale termination criterion, although a similar number of realizations are
performed for each cluster, the highest density clusters have noticeably fewer runs
than the lower density clusters, as is observable in the rightmost column of Table 2.2.
For standard encounters, which are often much shorter than the cluster time step, we
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periodically check whether the interaction has resolved — according to the criteria
discussed in the following section — and in the case that a new binary has formed,
even temporarily, we update δTmax with the period of this new binary.

Encounter resolution

We first identify a potential binary among the triple system composed of the original
binary, m1 and m2, and the third mass m3, by selecting the pair with the largest
gravitational binding energy. We refer to the masses in the potential binary as m̄1

and m̄2, which may no longer correspond to the original binary composed of m1 and
m2. The remaining object, which is not part of the potential binary, is labelled m̄3

which is distinct from m3. All unbarred variables represent the initial configuration
where the third object is incoming, while barred variables refer to the system where
a binary has been identified and the encounter is nearly resolved. The encounter can
be resolved in three ways: (I) there is a well defined bound binary system with the
third object unbound and moving off to infinity, (II) a merger has occurred or (III)
the system is completely ionized.

For case (I), we terminate the integration once the following criteria are all satisfied:
(i) the third body has achieved the minimum required separation from the binary,
|r̄3 − (m̄1r̄1 + m̄2r̄2)/(m̄1 + m̄2) | > max{Rmax(n), 1.1 Rin}, (ii) the eccentricity ē of
m̄1 and m̄2 is less than unity, (iii) m̄1 and m̄2 are bound, specifically Ēb < 0, and
(iv) m̄3 is unbound, i.e. Ē3 > 0. Here, Ēb is the total energy of the final binary and
Ē3 is the total energy of the third body. In addition to the above requirements, to
determine the final state of the ‘isolated’ binary, we continue the integration until the
total potential energy between m̄3 and each mass in the binary is a fraction of the
total energy of the system E, specifically

Gm̄1m̄3

|r̄1 − r̄3 |
+

Gm̄2m̄3

|r̄2 − r̄3 |
> 0.05E . (2.25)

In case (II), two of the bodies merge and the third body is either unbound or forms a
new binary with the merger product. The criteria for mergers is based on the distance
of nearest approach d between two bodies during the three body encounter. In the
case of a potential merger between two BHs, the merger criterion is d ≤ R1 + R2.
For the remaining merger situations, the criterion remains d = f tid(R1 + R2), as
adopted from [40], using the same value for f tid as introduced in section 2.3. Our
choice for f tid was selected as it approximately separates the boundary of where
hydrodynamical effects become important (e.g., [64]; [70]). When this criterion
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Name M [M�] σ2 [cm2s−2] ρL [L�pc−3] c Z NBH Nruns

Pal 13 5.12×103 8.10×109 1.45 0.66 2.6×10−4 20 15232
NGC 6838 3.67×104 5.29×1010 6.76×102 1.15 3.3×10−3 20 18364

200 20430
NGC 6535 5.93×104 5.76×1010 5.19×102 1.33 3.2×10−4 20 35865

200 33561
NGC 6362 1.17×105 7.84×1010 1.95×102 1.09 2.0×10−3 20 32544

200 33798
NGC 5053 1.66×105 1.96×1010 3.47 0.74 3.8×10−5 20 69058

200 74681
NGC 6121 2.25×105 1.60×1011 4.37×103 1.65 1.4×10−3 20 14429

200 17884
1000 24667

NGC 5694 2.92×105 3.36×1011 8.91×103 1.89 2.1×10−4 20 14029
200 13382

1000 17445
NGC 6093 3.67×105 1.54×1012 6.17×104 1.68 3.6×10−4 20 7435

200 7019
1000 4645

NGC 5286 4.80×105 6.56×1011 1.26×104 1.41 4.1×10−4 20 6761
200 10032

1000 8196
NGC 6656 5.36×105 6.08×1011 4.27×103 1.38 4.0×10−4 20 12539

200 20993
1000 14832

NGC 1851 5.61×105 1.08×1012 1.23×105 1.86 1.3×10−3 20 7189
200 6950

1000 4563
NGC 6205 6.27×105 5.04×1011 3.55×103 1.53 5.9×10−4 20 13444

200 24899
1000 23583

NGC 6441 1.30×106 3.24×1012 1.82×105 1.74 7.0×10−3 20 2388
200 2439

1000 2463
NGC 104 1.45×106 1.21×1012 7.59×104 2.07 3.8×10−3 20 9545

200 10467
1000 8559

NGC 5139 2.64×106 2.82×1012 1.41×103 1.31 5.9×10−4 20 13197
200 17466

1000 23513

Table 2.2: Summary of simulations. Listed are the 15 GCs modelled for evolution
along with the total cluster mass Mc, squared velocity dispersion σ2, the luminous
core density ρL, concentration c, and metallicity Z . The clusters are ordered by total
mass. There are 39 independent models after taking into account the number of BHs
retained by the cluster. Medium to high mass clusters can accommodate large BH
populations without disrupting the listed structural parameters. The size of the BH
population in lower-mass clusters is either (1) limited in number by the IMF or (2) by
the ability of the cluster to maintain the model structural parameters in their presence;
in these cases, the cluster is not used for evolutions and is omitted from the table. In
the final column we list the total number of evolutions performed for each case.
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is met, we assume a tidal encounter takes place. The merger is assumed to be
a momentum conserving, impulsive, completely inelastic collision with no mass
loss [71]. When a merger occurs between the BH companion and the third body,
if the merger product remains bound to the BH, this dynamically formed binary
becomes our new ‘test binary’, which we continue to follow and evolve within the
cluster. Similarly, if the BH merges with a third body and we still have a bound
binary system, we again continue to follow this binary. However, if the BH becomes
unbound by merging with another body or becomes unbound from a merger product,
we handle the newly single BH as described in the subsequent section. In each of
these cases, the position of the new binary, or single BH, is updated by continuing
along the original binary trajectory and the velocity is updated by converting from
the three-body centre-of-mass frame, where the three-body integration is performed,
back to the cluster frame.

The result of the encounter can also end in complete ionization, case (III). Ionization
occurs in the case of ill-defined binaries that will inevitably be unbound if, given that
all previous criteria are satisfied, either (a) the eccentricity of m̄1 and m̄2 satisfies
1 − ē < 1 × 10−7 or (b) |r̄1 − r̄2 | > Rmax(n) is satisfied. Additionally, ionization
occurs if m̄i v̄

2
i > 2

(
m̄im̄ j/|r̄i − r̄ j | + m̄im̄k/|r̄i − r̄k |

)
is true for all masses at any

time, with i , j , k taking on values {1, 2, 3}. This last criterion is a straightforward
definition for a totally unbound triple. In addition to these choices for ionization
during three-body encounters, there is one other instance in which the binary can be
dissociated. For very wide binaries, the encounters are dominated by repeated grazing
encounters with low mass stars, which tend to further widen the orbital separation.
As a result, strong interactions become less likely and the binary will inevitably
be dissociated by the increasing occurrence of these slowly ionizing encounters.
For this reason, we use the encounter rate to define a maximum semi-major axis of
dynamically formed binaries as

amax(Γ) =
( Gmb

3(2πΓ)2

)1/3
, (2.26)

which is equivalent to requiring a minimum of three orbits between encounters. Here,
the total encounter rate Γ =

∑
α Γ(r, v, a) is a sum over the rate associated with each

mass group defined by Equation 2.22). The final criterion for ionization is then
a > min{amax(Γ), Rmax(n)}.



46

Single black holes

As described in the previous section, a BH can become single due to three-body
dynamics such as exchange, merger, or through the dismantling of a binary that
exceeds our large a or large e criteria. In the case of a single BH, we allow for the
solitary BH to form a new binary by interacting with existing binaries within the
cluster.

In order to accomplish this, we need to know the probability for the following
encounter,

(m1,m2) + mBH → (mBH,m2) + m1 , (2.27)

in which the BH exchanges with m1 into a binary originally composed of masses
m1 and m2. We also consider the possibility that mBH and m2 undergo an exchange,
which contributes to the total probability that the BH will exchange into the binary.
However, for conciseness in deriving the probability of exchange, we will focus
specifically on the encounter described by Equation 2.27, later adding the contribution
from the reaction where the subscripts are interchanged. Unfortunately, we can
no longer compute the probability for encounter as in section 2.3, since we do not
possess a distribution function for binaries. However, by considering the reverse
reaction of Equation 2.27, given by

(mBH,m2) + m1 → (m1,m2) + mBH , (2.28)

and relating this to the one of interest, we can obtain the encounter probability for the
BH to exchange into an existing binary in the same way that we compute encounters
for a binary composed of a BH and a companion.

We use the seminumerical fit of [72],

σ̄1,2 =
( M23

M123

)1/6 ( m3

M13

)7/2 ( M123

M12

)1/3 ( M13

M123

)
g(2, 3, 1) , (2.29)

as the dimensionless cross section for a generically labelled single mass m3 to
exchange into a binary of masses m1 and m2 to form a new binary composed of m3

and m2, with m1 being ejected. In this notation, uppercase masses represent the sum
of the mass subscripts, i.e. Mi j = mi + m j . The coefficient g(2, 3, 1) is a numerical
fitting factor designed to improve the analytically derived fit. This dimensionless
cross section σ̄1,2 is related to the dimensionful cross section for exchange Σ1,2

through

σ̄1,2 =
2|v1,2 − v3 |

2

πGM123a1,2
Σ1,2 . (2.30)
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The existing binaries that the BH is likely to encounter, which have remained intact
in the cluster over long timescales, can be considered ‘hard’. These ‘hard’ binaries
are characterized by having a binding energy Ubin that exceeds the average energy of
the other stars in the cluster |Ubin | >

1
2 m̄σ̄2 and this is what allows them to stay intact

over such long timescales. In this case, we approximate the total encounter cross
section by the dominant gravitational focusing term in Equation 2.21, explicitly:

σ1,2 '
2πGM123a1,2

|v1,2 − v3 |2
. (2.31)

Finally, relating Equation 2.30 and Equation 2.31 allows us to express the cross
section for exchange in terms of the total encounter cross section σ1,2 through

Σ1,2 =
(
σ̄1,2/4

)
σ1,2 . (2.32)

Evidently, the dimensionless cross section for exchange is related to the fractional
probability that the total encounter ends in the specific exchange we previously
described. Considering Equation 2.31 and assuming the relative velocities are similar
for the forward and reverse reactions, we can relate the forward and backward total
cross sections through σ1,2 = ( a1,2

a2,3
)σ2,3. Since the energy given to the binary is

comparable to the energy required to destroy it, m1m2/a1,2∼m2m3/a2,3, we can recast
the relation in terms of the masses alone:

σ1,2 =
(m1

m3

)
σ2,3 . (2.33)

The cross section for the specific exchange of m3 for m1 in terms of the total
encounter cross section of the original binary is found by substituting Equation 2.33
into Equation 2.32, yielding

Σ1,2 =
( σ̄1,2m1

4m3

)
σ2,3 . (2.34)

By writing the exchange probability in terms of the post-exchange binary, we can
now utilize the same procedure described in section 2.3. In this formalism, m3

represents the BH and we return to referring to this body as mBH, while m1 goes
to mα, a variable companion used for computing the relative probabilities for each
mass group α. First we select a companion object m2 for the BH on the left-hand
side of Equation 2.28. We obtain m2 by sampling from the local number density and
determine a and e for the binary as in section 2.3. The probability of the encounter
described by Equation 2.27, where the BH exchanges places with mα in a binary
composed of m2 and mα is then,

Pα,2 = ∆t
∫ ( σ̄α,2mα

4mBH

)
σ2,BH(v, vα) |v − vα | fα (vα)dvα . (2.35)
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The usefulness of the manipulations in this section is most clearly seen by writing
this in terms of Equation 2.23:

Pα,2 =
( σ̄α,2mα

4mBH

)
Pα , (2.36)

which in practice makes computing the exchange probabilities as easy as rescaling
our standard encounter computations by the parenthetical factor. Since we also allow
for the BH to exchange with m2, we also consider the probability P2,α =

(
σ̄2,αm2
4mBH

)
P2.

We apply one final rescaling to account for the density of binaries that are of
type m2 and mα. We assume that the fraction of objects that are binaries fb is
constant throughout the cluster with the value specified by Equation 2.16. The
density of binaries is then nb(r) = ( fb

1+ fb
)n(r), which is derived from Equation 2.15.

Additionally, we also assume that the fraction of binaries of a given type is constant
at all cluster radii, ni j (r) = fi/ jnb(r). Here, fi/ j represents the fraction of binaries
that have a star of type i and a star of type j, e.g. fNS/MS is the fraction of all binaries
that are composed of an NS and an MS star. For binaries composed of only MS
or WD we use values of fMS/MS = 0.23, fMS/WD = 0.44, and fWD/WD = 0.32 [59].
The remaining one percent of binaries contain at least one BH or NS, for which we
compute the binary fraction through fi/ j = 0.01( Ni

N )( Nj
NBH+NS

), where i can be any
object type, j is limited to BH or NS, N is the total number of objects in the cluster,
and NBH+NS is the total number of BHs and NSs.

The final total probability for the BH to exchange into a binary, given the sampled
mass m2, is then

Pexch(r) =
∑
α

nα2(r)
( Pα,2

nα (r)
+

P2,α

n2(r)

)
. (2.37)

Here we divide out the respective local density picked up in the integration of the
distribution function in order to enforce our assumption of a uniform binary fraction.
If an exchange is determined to occur based on this total probability, we select a
specific binary for the encounter based on the relative probabilities of exchange for
each mass group mα. With a binary in hand, we initiate our three-body system,
which is run until we get the proper outcome dictated by the encounter cross section
— i.e. that mBH exchanges with the appropriate mass in the binary.

2.4 Simulations
We present 698,486 realizations from 15 GC models with total masses in the range of
5.12× 103 – 2.64× 106 M�, velocity dispersions covering 9× 104 – 1.8× 106 cm s−1,
core densities of 1.45 – 1.23 × 105 pc−3, and concentrations spanning 0.66 – 2.07.
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The simulations are summarized in Table 2.2, which includes the catalogue name
for the modelled cluster, total mass, velocity dispersion squared, central luminosity
density, concentration, metallicity, the number of retained BHs in the model, and the
total number of completed runs. The simulations are run for t = 1010 years or until
the single/binary is ejected from the cluster, when r > rt.

Structural parameters
In our framework, a GC’s structure is determined by four parameters: the total
cluster mass Mc, the core velocity dispersion σ, the core luminosity density ρL, and
the concentration c. [73] finds that GCs described by single-mass isotropic King
models are fully defined by four independent physical parameters: the mass-to-light
ratio Υv,0, total binding energy Eb, central concentration c, and total luminosity L.
Furthermore, [73] shows that Milky Way GCs lie in a ‘fundamental plane’ and thus
can be fully described by just two independent parameters, c and L. A face-on view
of the fundamental plane is defined by the axes ε2 = 2.05 log10 E∗b + log10 L and
ε3 = c. The apparent dependence on the third quantity log10 E∗b is due to a rotation
in the larger three dimensional space in order to remove projection effects. However,
this is reconciled by showing that this third parameter, E∗b , is fully described by the
luminosity, such that E∗b (L) [73]. With the space of physical clusters reduced to the
fundamental plane, we determine a representative group of 15 Milky Way clusters by
sampling from the two-dimensional distribution. A face-on view of the fundamental
plane is given in Figure 2.3, which includes all GCs from the Harris catalogue [54,
2010 edition] for which observed concentrations are available. We omit clusters
identified in the catalogue as core-collapsed, since these are not generally well
described by King models. This includes those with c = 2.5, an arbitrary value
assigned to clusters in the catalogue with central density cusps indicative of core
collapse. There are 125 Milky Way GCs remaining after core-collapse pruning; of
these, 15 GCs are chosen as representative models, in an attempt to properly cover
the fundamental parameter space. The 15 Milky Way GC models representative
of the 125 Milky Was GCs are described in Table 2.2 and represented by stars in
Figure 2.3 to visualize our coverage of the fundamental parameter space.

As stated in section 2.3, our input parameters for specifying the structure of a cluster
are the core velocity dispersion σ̄, the central density no, and the King parameter Wo.
The mean core velocity dispersion σ̄ is chosen to be the observed value listed in the
Harris catalogue. The core number density no is adjusted until the central luminosity
density ρL is consistent with observation. Finally, the King parameter Wo, which sets



50

95 100 105 110
ε2

0.5

1.0

1.5

2.0

2.5

ε 3

modeled GC
unmodeled GC

Figure 2.3: The distribution of non core-collapsed Milky Way GCs in a face-on
view of the fundamental plane. The colour of each unmodelled GC (marked by
circles) indicates the corresponding modelled GC (marked by stars) that serves as its
proxy for determining the properties of the ejected binaries. The plane is defined by
ε2 = 2.05 log10 E∗b + log10 L and ε3 = c, with the dashed line corresponding to the
fit ε3 = −12.5 + 0.13ε2. Here c is the concentration, L is the total luminosity, and
E∗b is an additional parameter related to L (see section 2.4 for additional details).

the depth of the potential, is varied until the cluster has the desired total mass Mc and
concentration c. Once we have a model for a given GC, we add BHs by increasing
the fraction of retained BHs f rBH , where a value of unity corresponds to retention of
all BHs produced according to the IMF. For a given number of BHs in the cluster,
we use the parameter f s in Equation 2.18 to adjust the BH velocity dispersion such
that the overall structure of the cluster is unaffected by the presence of a significant
number of BHs. However, we find that there is a limit to the number of BHs each
cluster can harbour. For the lowest-mass clusters, such as Pal 13, setting the retention
factor to unity, f rBH = 1, in order to maximize the number of BHs retained by the
cluster produces a peak number of ∼20 BHs. In this case, the number of BHs retained
by the cluster is inherently limited by its structure. More generally, for lower-mass
clusters that allow for more BHs, the large number of BHs can become problematic
as they become a more significant part of the total mass of the cluster. As the fraction
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of the total mass in BHs increases, the BHs begin to affect the structural parameters
such that no set of initial parameters exists that satisfy the observed structure of the
GC. We find that for many of the lower-mass clusters we are only able to simulate
populations of 20 or 200 BHs (cf. Table 2.2).

Galactic evolution
The GC evolution models, described in detail in section 2.3, compute the properties
of the BH binaries at the moment they are ejected from a GC. Determining the
present day properties of potentially observable, ejected BH binaries requires further
modelling that tracks both the evolution of ejected binaries in the MilkyWay potential
and the internal evolution of each binary. In this section, we describe Monte Carlo
models for the subsequent evolution of the ejected binaries that are seeded with
results from our GC models.

Globular cluster orbits

We first build a sample of GCs to include in our galactic evolution simulations.
The orbit of a cluster is specified by its location on the sky (right ascension and
declination), distance from the Sun D�, radial velocity vr , and proper motion µα and
µδ. Of the 125 non core-collapsed GCs in the Harris catalogue [54, 2010 edition],
we are able to find literature values for the orbital parameters of 106 of these clusters
in the catalogues of [74] and [75]. For clusters appearing in both catalogues we use
the values given in Moreno, Pichardo, and Velázquez [74].

To begin each realization in our Monte Carlo ensemble, we initialize the GC orbits
by sampling the uncertainty in their current positions and velocities. We assume
normally distributed errors and use the quoted uncertainties in vr , µα, and µδ.
Following Krauss and Chaboyer [76], we assume a 6% error in D�. After the orbit is
specified, we integrate it 10 Gyr backward in time, corresponding to the duration of
our GC dynamical simulations.

The orbits of the GCs, and the ejected binaries, are integrated using the python
galactic dynamics library galpy1 [77]. We model the Milky Way gravitational
potential using the built in MWPotential2014. The potential includes contributions
from the galactic bulge, disc, and halo, which have been fit to observational data
to provide a realistic model of the Milky Way potential. The physical scale of the
potential is set using the distance from the centre of the Galaxy to the Sun and the

1http://jobovy.github.io/galpy/

http://jobovy.github.io/galpy/
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circular velocity of the Sun, which we set to 8 kpc and 220 km s−1, respectively. For
all calculations, we use the dopr54_c integrator, a fast implementation of a high
order Dormand-Prince method included with galpy.

Now that we have calculated the positions and velocities of the Milky Way GCs
during the past 10 Gyr, the next step is to determine the properties of any potential
BH-LMXBs ejected by these clusters. Since our dynamical simulations only include
a subset of the galactic GCs, we use the results from the 15 GCs simulated in
Table 2.2 as proxies for the ejected binary populations produced by the remaining
110 clusters in our galactic evolution models. For each of the unmodelled clusters, a
proxy cluster is selected by finding the nearest simulated cluster in the fundamental
plane (see section 2.4). Specifically, we find min

[
(ε′2,i − ε

′
2,j)

2 + (ε′3,i − ε
′
3,j)

2
]
, where

the i index runs over all 106 clusters in the galactic evolution models, the j index runs
over the 15 clusters included in our GC dynamics models, and the primes denote
the normalized versions of ε2 and ε3 restricted to the range [0, 1]. Figure 2.3 shows
the proxy cluster chosen for each GC, by assigning the same colour marker to each
GC as the colour of the proxy cluster used, which are marked by coloured stars. To
ensure the robustness of this method for choosing a proxy cluster, we assign a proxy
by two additional methods. One secondary method is to assign the proxy cluster
based on the minimum distance in the fundamental plane using the unnormalized
axes ε2 and ε3. The second alternative is by identifying the most similar cluster
using the structural parameters Mc, σ, and ρL weighted according to the strengths of
the correlations between these parameters and the ejected binary populations, which
are explored in 2.5. Selecting the proxy cluster by any of these three methods gives
similar results in our galactic evolution models. In fact, all three methods will select
the same proxy cluster for all but ∼15 of the 110 unmodelled GCs in our study. In
what follows, we discuss models that use the scaled distance in the fundamental
plane to assign the proxy cluster.

The ejected binaries

The output of our GC dynamical simulations describes the properties of the BH-
binaries ejected from GCs. To model the present day population of BH-LMXBs that
are ejected from GCs, we use as inputs for our galactic evolution models: the ejection
time tej, ejection velocity vej, and the properties of the binary, the semi-major axis a,
eccentricity e, the mass of the BH primary m1, and the mass of the companion m2.
This is accomplished by constructing empirical cumulative distribution functions
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(CDFs) of these quantities for each of the 37 sets of parameters listed in Table 2.2,
and then sampling these distributions in our Monte Carlo models. We assume that
the ejection time, ejection velocity, and binary properties are independent and sample
the marginal distributions of each.

In the GC dynamical models, a, e, tej, and vej are treated as continuous variables.
As such, we are able to sample the CDFs for these quantities directly. We fit cubic
splines to the empirical CDFs and invert the distributions by interpolation. The GC
dynamical models treat m1 and m2 as discrete quantities, which fall into the mass bins
shown in Table 2.1. In our galactic evolution models, however, we want to consider
continuous masses. To accomplish this, we first determine an object’s mass bin by
sampling the discrete CDF output by the dynamical simulations. Next, we sample
the mass distribution within that bin using the evolved mass function described in
section 2.3. Using these CDFs, we are able to generate sample populations of the
BH-binaries ejected by the 106 GCs in our galactic evolution simulations.

During each realization, for each cluster, we first determine the number of binaries
that the cluster will eject during the 10 Gyr simulation by sampling a Poisson
distribution with rate parameter 〈Nej〉 (third column of Table 2.3). Once we have
determined the number Nbin of ejected binaries, we draw Nbin samples from the a, e,
m1, m2, tej, and vej distributions.

Since the internal evolution of a binary is independent of its orbit in the Galaxy,
we separately compute the full internal evolution of the binary using the rapid
binary population synthesis code BSE described in [78] with the updates described
in [79] and [80]. BSE combines interpolated stellar evolution models with recipes
for mass-transfer and other binary evolution processes to enable rapid modelling
of a binary system’s lifetime. Binary population synthesis calculations employ
parameterized models to describe poorly understood processes in binary evolution.
In our BSE runs, we assume that stable mass transfer is conservative. Additionally,
we use a common-envelope efficiency parameter of 1.0 and include the effects of
tidal circularization.

We use each set of a, e, m1, m2 as the initial conditions for a BSE run. When
handling the binary stellar evolution to determine which ejected binaries become
mass-transferring, we discard a small number of binaries that would have begun
mass-transfer within the cluster. The internal evolution of these tight binaries are
coupled to their dynamical evolution within the cluster in a complex manner. Since
these effects are not accounted for in our code, we do not include them in our results.
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For the remaining binaries, we set the companion star’s metallicity to that of its
parent GC and its age to tej. The latter has little effect because most of the ejected
stars have lifetimes that exceed 10 Gyr. The binary is evolved for tevol = 10 Gyr − tej,
i.e., to the present day. Systems are discarded if the companion star is not overflowing
its Roche-lobe and transferring mass to the BH at the end of the simulation. For
each mass transferring binary, we determine the position rGC and velocity vGC of its
parent GC at tej. We initialize an orbit for the ejected binary at rGC and vGC + vej,
assuming that the binaries are ejected isotropically. With the initial conditions
determined, we then evolve these binaries using galpy to determine their positions
at the present day.

Our galactic evolution models consider three BH-retention scenarios. In the first, we
assume that most BHs are ejected and use the results from our GC dynamics models
with NBH = 20. We refer to this set of models as MIN. In the second case, referred to
as 200, we assume moderate BH retention, using the results from our GC dynamics
models with NBH = 200. Finally, in a case denoted MAX, we consider significant
BH retention by utilizing the GC dynamics models with NBH = 1000. In cases where
we are unable to generate a background cluster model with the appropriate NBH, we
use the results from the model with nearest NBH simulated for that same cluster. We
compute 104 realizations for the MIN and 200 cases and 5 × 103 realizations for the
MAX case.

2.5 Results
Our simulations of binary-single star interactions in GCs provide us with statistical
properties of the ejected BH binaries they produce including ejection time tej,
ejection velocity vej, the orbital properties a and e, and the component masses m1

and m2. Combining these results with the methods described in section 2.4, we
obtain predictions for the distribution and properties of the galactic population of
BH-LMXBs produced by GCs. Additionally, the simulations allow us to explore
merger events involving BHs such as gravitational radiation driven mergers, both in
the cluster and post-ejection, as well as those mergers that occur during three-body
encounters. We describe these results in detail below.

Ejected black-hole binaries
We find that the number of ejected binaries and the properties of these binaries are
strongly affected by the GC structure and the number of retained BHs. In Table 2.3,
we list the expected number of ejected BH binaries over the life of each cluster, listed
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Name NBH BH-NC BH-NS BH-BH
Pal 13 19.64 3.14 7.74 × 10−3 1.40 × 10−1

NGC 6838 20.61 6.33 × 10−1 3.59 × 10−2 5.08 × 10−1

174.55 2.56 × 101 2.39 × 10−1 2.67
NGC 6535 19.89 2.35 × 10−1 1.72 × 10−2 3.64 × 10−1

198.95 5.12 1.24 × 10−1 2.08
NGC 6362 20.22 1.61 × 10−1 6.83 × 10−3 2.31 × 10−1

199.33 1.07 2.36 × 10−2 1.55
NGC 5053 21.71 2.04 × 10−2 3.14 × 10−4 7.31 × 10−2

199.65 1.79 × 10−1 2.67 × 10−3 4.96 × 10−1

NGC 6121 20.70 3.11 × 10−1 6.31 × 10−2 4.96 × 10−1

200.53 1.74 3.03 × 10−1 2.66
1039.16 1.02 × 102 1.43 8.17

NGC 5694 20.49 2.29 × 10−1 1.18 × 10−1 7.49 × 10−1

200.39 1.54 1.02 4.19
1001.94 3.21 × 101 2.87 1.54 × 101

NGC 6093 19.85 1.01 × 10−1 4.81 × 10−2 3.42 × 10−1

198.31 1.13 3.67 × 10−1 2.66
1004.51 1.23 × 101 2.38 1.31 × 101

NGC 5286 12.29 6.00 × 10−2 2.36 × 10−2 1.91 × 10−1

198.28 9.29 × 10−1 5.93 × 10−2 2.08
787.45 4.42 3.84 × 10−1 5.48

NGC 6656 19.80 6.79 × 10−2 1.42 × 10−2 2.57 × 10−1

205.86 4.22 × 10−1 8.83 × 10−2 1.74
1000.35 3.10 2.02 × 10−1 5.09

NGC 1851 20.76 8.37 × 10−2 4.91 × 10−2 4.74 × 10−1

203.71 8.79 × 10−1 4.98 × 10−1 3.09
1039.94 1.98 × 101 1.82 1.03 × 101

NGC 6205 20.10 6.13 × 10−2 1.79 × 10−2 2.62 × 10−1

199.58 4.25 × 10−1 5.61 × 10−2 1.70
998.62 1.61 1.27 × 10−1 5.36

NGC 6441 20.98 3.51 × 10−2 1.76 × 10−2 3.16 × 10−1

212.57 9.59 × 10−1 8.72 × 10−2 1.57
1010.37 3.69 8.20 × 10−1 4.72

NGC 104 22.49 6.60 × 10−2 3.06 × 10−2 4.49 × 10−1

222.95 1.09 4.47 × 10−1 2.89
979.55 3.09 2.52 8.41

NGC 5139 20.84 0.00 0.00 2.53 × 10−2

207.50 1.19 × 10−2 0.00 1.19 × 10−1

1009.04 0.00 0.00 2.57 × 10−1

Table 2.3: Expected number of binary ejections. For each cluster and number of
retained BHs, we list the exact number of BHs in the cluster along with the expected
number of ejections over the cluster lifetime for three binary types: BH-NC, BH-NS,
and BH-BH. The clusters follow the same order as Table 2.2, sorted according
to increasing total cluster mass. The values of NBH are non-integer values as a
consequence of modelling the population with a smooth distribution function.
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in order of increasing mass, including the exact number of BHs in each cluster. The
ejected BH-binary expectation value is well described by the number of retained
BHs NBH and the two characteristic variables that define the fundamental plane of
GCs (see Figure 2.3), namely the total cluster mass Mc and the concentration c. In
Figure 2.4, we plot the expected number of ejected BH binaries as a function of the
three characteristic variables: NBH, Mc, and c.
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Figure 2.4: Expected number of binary ejections 〈Nej〉 as a function of the number
of retained BHs NBH, concentration c, and total cluster mass Mc. The number of
binaries ejected over the life of the cluster is well described by the two characteristic
variables of the fundamental plane, c and Mc, along with the number of BHs retained
by the cluster.

The most important structural variable that impacts the ejected binary properties
is the cluster mass. The total cluster mass enforces a minimum energy needed
to escape, which the binary must gain through repeated encounters. In order for
a binary to escape from the cluster, it must acquire a recoil velocity from a final
three-body encounter high enough to climb out of the cluster gravitational potential.
In Figure 2.5, we show the distribution of the ejected binary velocities as a function
of cluster mass, where the influence of the mass of the cluster on the ejection velocity
is apparent. The expected number of ejections is then higher for lower-mass clusters
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Figure 2.5: The distributions of ejection velocities vej as a function of the total
cluster mass Mc for the ejected binaries. Each vertical bar represents the distribution
of vej for the corresponding mass Mc and is normalized such that the integral over
log10vej in each mass bin yields unity. The binary velocity fluctuates due to random
encounters with other stars in the cluster until the binary acquires a high enough
recoil velocity to exceed the minimum ejection velocity, which is determined by the
cluster mass. The increase in the necessary velocity for escape is apparent in the
increasing mean value of each vej distribution.

due to the lower escape velocities associated with these clusters, as is visible in
Figure 2.4. To decouple this statement from the additional variables in Figure 2.4,
it can also be observed in Table 2.3 (which is ordered by increasing mass) that for
a fixed number of retained BHs, the expected number of ejections scales with the
cluster mass.

The mechanism through which the binary converts binding energy to kinetic energy
is easiest to understand in the three-body centre of mass frame, where we perform our
integration for encounters. After an encounter, the final relative velocity at infinity is
given by

v̄2
∞ =

m3(m1 + m2)
m̄3(m̄1 + m̄2)

v2
∞ +

2M123

m̄3(m̄1 + m̄2)
(Ubin − Ūbin) , (2.38)

where Ubin = −
Gm1m2

a is the binding energy of the binary and all unbarred quantities
represent the initial binary before encountering m3, while barred quantities represent
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the final binary and m̄3 is the ejected mass. In the case of no exchange, and utilizing
∆a ≡ ā − a, Equation 2.38 reduces to

v̄2
∞ = v2

∞ −
2M123

m3mb

(Gm1m2∆a
a2

)
. (2.39)

In this frame, the binary velocity is related, through conservation of momentum,
to the relative velocity simply by vb =

m3
M123

v∞. The change in the kinetic energy,
∆T ≡ T̄ − T , of the binary is then

∆T = −
Gm1m2m3

M123

(
∆a
a2

)
. (2.40)

The amount by which the semi-major axis changes in an average encounter, where
the semi-major axis is reduced without exchange, is proportional to the semi-major
axis, ∆a ≈ −εa, with ε in the range ∼[0, 0.6] [69]. Using this relation, and assuming
a binary with constant m1 and m2, Equation 2.40 reduces to

∆T ∝
m3

M123

ε

a
, (2.41)

yielding a simple relation that describes the gain in kinetic energy in terms of the
constant fractional change in the semi-major axis ε and the ratio of the third body to
the total mass of the three-body system. Additionally, Equation 2.41 shows that this
change in kinetic energy becomes more efficient as the semi-major axis decreases,
converting more energy from binding to kinetic after each encounter that shrinks
the binary’s orbit. After repeated interactions, the increase in velocity due to the
decrease in a becomes more substantial and the binary can eventually reach the
necessary velocity to escape.

We can directly relate the necessary gain in kinetic energy to the change in binding
energy ∆U = Ūbin −Ubin, by simply rearranging Equation 2.38 and assuming no
exchange of masses, which yields

∆T = −
m3

M123
∆U . (2.42)

In the process of the binary increasing its kinetic energy, the binding energy becomes
more negative. Since the higher-mass clusters tend to hold on to the binaries longer,
this strict minimum kinetic energy for ejection is manifest in the more negative-valued
binding energy of the binaries it ejects. It follows from this, that on average, the
semi-major axes of the binaries ejected from more massive clusters tend to be smaller.
This is confirmed by Figure 2.6, which depicts the distribution of orbital separations
as a function of cluster mass.
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Figure 2.6: The distributions of the semi-major axes at ejection a as a function of
the total cluster mass Mc for the ejected binaries. Each vertical bar represents the
distribution of a for the corresponding mass Mc and is normalized such that the
integral over log10a in each mass bin yields unity. High mass clusters require a high
velocity for escape, which a binary must acquire through three-body interactions in
order to be ejected. The energy needed to escape is more easily gained once the
orbital separation has decreased sufficiently (see Equation 2.41). As a consequence,
the mean value of a at ejection shifts to smaller separation with increasing cluster
mass Mc.

In addition to the increase in the expected number of ejected binaries in lower-mass
clusters, the total number of expected ejections also increases with an increase in
the number of BHs. While the number of ejections is expected to increase with the
number of BHs, interestingly, the fraction of ejected binaries composed of a black
hole and non-compact object (BH-NC) also grows with the number of BHs (see
Figure 2.4 and Table 2.3). This behavior can be attributed to the fact that the BHs
are not in energy equipartition with the rest of the cluster. Adding more BHs without
affecting the distribution of the luminous cluster members requires that the BHs
are spread out farther from the core, where they have traditionally been expected to
reside. Accordingly, the mean density of BHs goes down, and they are less likely
to interact with each other. However, because they are well mixed with the stars
at larger radii, the number of BH-NC binaries that form in three-body exchanges
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grows. Additionally, since these binaries form farther from the core, they also have
the benefit of a shallower potential to climb out of.

Besides influencing the number of ejected binaries, the number of retained BHs also
affects the distribution of the semi-major axes of the ejected binaries. In Figure 2.7,
we show the distribution of semi-major axes for the ejected BH-NC binaries in our
cluster model for NGC 5694 for the three different choices of BHs retained. We
choose this cluster since it is representative of the effect that the number of retained
BHs has on the population of ejected BH-NC binaries. Figure 2.7 displays an increase
in the width of the distribution of semi-major axes for larger populations of BHs. This
is again related to the necessary spreading of the BHs as we increase the number of
BHs harboured by the cluster. Therefore, the BH-NC binaries that form outside of the
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Figure 2.7: The probability distribution for the ejected BH-NC binary semi-major
axes from NGC 5694, a representative case, with a population of 20, 200, and 1000
BHs. An increase in the number of BHs requires spreading the BHs outside of the
core, where they are more likely to form binaries with NC objects. In the outskirts,
the energy necessary to escape is much smaller, allowing the binary to escape before
it has had sufficient time to harden. These binaries escape with comparatively low
magnitude binding energy and wide orbital separations.

core, where the escape velocity drops rapidly as a function of radius, can be ejected
while their binding energies are of comparably lower magnitudes. Although the
more widely separated binaries are less likely to become mass-transferring systems,
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the simulations with large BH numbers tend to have much higher ejection rates. The
higher ejection rates still produce enough tight binaries in the tail of distribution to
outnumber those produced with fewer BHs present.

The remaining structural property of GCs that has a clear effect on the population
of ejected binaries is the cluster density. In Figure 2.8, we plot the distribution of
ejection times as a function of the luminous central density, which is related to the
core density as discussed in section 2.3. The distribution establishes that the cluster
density has some impact on the time at which binaries are ejected from their host
GC. The time between binary-single encounters can be approximated by
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Figure 2.8: The distributions of time of ejection tej as a function of the luminous
central density ρL for the ejected binaries. Each vertical bar represents the distribution
of tej for the corresponding core luminosity density ρL and is normalized such that
the integral over log10tej in each density bin yields unity. In higher density clusters,
where encounters occur more frequently, many binaries are ejected after only a few
Gyr, while in the lower density clusters most ejections occur near the end of the 10
Gyr evolution.

tenc = Γ
−1 =

vm

2πG(mb + m̄)noa
, (2.43)

where vm is the mean velocity of stars in the cluster, no is its core density, and m̄

is the mean mass. Combining this result with Equation 2.40, we can obtain an
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Figure 2.9: The distribution of the number of BH-LMXBs, NBH−LMXB, produced
from 104 realizations for the NBH = 200 case and 5 × 103 realizations for the
NBH = 1000 case. The NBH = 20 case produces a population of zero BH-LMXBs
in 104 realizations. The expected values for the two producing cases are 25+10

−6 for
NBH = 200 and 156+26

−24 for NBH = 1000, with the stated uncertainties bounding the
95% confidence interval.

approximation for the rate at which a binary increases its kinetic energy ∆T/∆t. As
encounters approximately occur in increments of the encounter timescale, letting
∆t = tenc, we find that the rate at which the binary increases its kinetic energy,

∆T
∆t
=

(2πG2m1m2m3ε

vm

)
no , (2.44)

scales with the cluster core density. Therefore, the time it takes for a binary to
acquire a high enough velocity to escape is reduced for higher density clusters. As
can be seen in Figure 2.8, in clusters of higher density, where encounters occur more
frequently, most BH-NC systems are ejected after only 3 Gyr of evolution whereas in
lower density clusters most ejections take place near the end of the 10 Gyr simulation
(i.e. the present day),

Black-hole low-mass X-ray binaries
Here we focus strictly on the population of the present-day mass-transferring systems
that have successfully become BH-LMXBs. These results reflect the contribution to
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Figure 2.10: The spatial probability distribution of the simulated population of
BH-LMXBs from GCs with NBH = 1000. The populations of Milky Way GCs
(marked by black circles) and known BH-LMXBs (marked by orange stars) are
included for reference. The map is a Mollweide projection of the (l,b) galactic
coordinate system. The galactic centre is located near 0◦ latitude and 0◦ longitude,
where the high density of objects explains the clustering of BH-LMXBs and GCs.

the BH-LMXB population from the entire population of non-core collapsed Milky
Way GCs. The production of BH-LMXBs is based on a subset of 15 simulated GCs
and the methods detailed in section 2.4. In the following section, we discuss the
distribution and the properties of this population of BH-LMXBs from GCs.

As discussed at the end of section 2.4, some clusters require choosing a BH retention
fraction of unity, f rBH = 1, in order to obtain the desired quantity of BHs. This
occurs in the lowest-mass cluster for each set of NBH, i.e. Pal 13 for NBH = 20, NGC
6838 for NBH = 200, and NGC 6121 for NBH = 1000. These specific parameter sets
are not used in determining the population of BH-LMXBs. Although the results
from these three sets are included in the previous discussions, they are excluded here
due to the unphysical nature of complete BH retention. During BH formation, natal
kicks ensure that at least some fraction of the BHs formed from the IMF are ejected
from the cluster. This makes complete BH retention essentially unattainable. In
consideration of this, we include only those models with f rBH < 1.

Population

The number of mass transferring systems that develop from the BH-NC binaries that
are ejected from our model clusters strongly depends on the assumed BH retention
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in GCs. We employ the same notation as in section 2.4 for BH retention: MIN
refers to NBH = 20, 200 refers to NBH = 200, and MAX refers to NBH = 1000.
The populations are generated from 104 realizations in the MIN and 200 case and
from 5 × 103 realizations for the MAX case, as described in section 2.4. The
resulting BH-LMXB population distributions are presented in Figure 2.9. The MIN
case produces zero observable BH-LMXB systems. The 200 case produces 25+10

−6
mass-transferring BH low-mass systems and the MAX case yields an expectation
value of 156+26

−24 ejected BH-LMXBs, with the stated uncertainties bounding the 95%
confidence interval.

The clusters that contribute the largest number of BH-LMXBs are those with the
highest BH-NC ejection rates (see Table 2.3). As is visible in Figure 2.4, the expected
number of ejections can be approximated as a function of the number of retained BHs
NBH and the two fundamental parameters describing the cluster: the concentration c

and the total cluster mass Mc. While the initial semi-major axis at ejection a, which
is sensitive to the cluster mass (Figure 2.6), is an important factor in determining
whether a BH-NC will lead to mass transfer, surprisingly, the fraction of BH-NCs
that become BH-LMXBs appears nearly constant across clusters. Equivalently
stated, 〈NBH−LMXB〉∼ fLMXB〈Nej〉 appears to hold true for the set of clusters modelled,
where fLMXB∼0.25 represents the fraction of ejected BH-NC binaries that evolve into
BH-LMXBs. Although the distributions of most orbital parameters, which determine
whether a system will evolve into a BH-LMXB, vary from cluster to cluster, the
thermal eccentricity distribution shared by all clusters ensures that a roughly equal
proportion of the ejected binaries will become BH-LMXBs. For clusters that tend to
eject wider binaries, it is only the highly eccentric systems that become BH-LMXBs,
and vice versa.

For a given BH retention, the number of successfully formed BH-LMXBs from GCs
is potentially a function of the ejection time, initial separation, initial eccentricity,
primary and companion masses, and the complex internal evolution of the binary.
Yet, since we find that the ejection properties are largely determined by the cluster
properties, namely the quantities defining the fundamental plane, the size of the
BH-LMXB population from GCs is well approximated by the cluster properties
alone.
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Distribution

As GCs generally have low escape velocities, the ejected BH-LMXBs typically
escape with relatively low velocities. Due to this, the distribution of BH-LMXBs
closely mimics the distribution of GCs in the Milky Way galaxy. In Figure 2.10, we
present the spatial probability distribution of BH-LMXBs from GCs, for the MAX
case, on a Mollweide projection of the galactic map in longitudinal and latitudinal
galactic coordinates (l,b). Additionally, we include the distribution of galactic GCs
and known BH-LMXBs from BlackCAT [14], a catalogue of candidate BH-LMXBs,
which we use in all figures including an observed population, unless stated otherwise.
Although the 200 case produces fewer BH-LMXBs, the distribution is qualitatively
similar to the MAX case. The highest probability density region is near the galactic
centre, where the majority of GCs reside. However, as Figure 2.5 illustrates, the
distributions of the ejection velocities have widths that span an order of magnitude or
more. As a consequence, some fraction of the binaries have ejection velocities that
allow them to separate from their parent cluster. Additionally, the binaries that are
ejected at an earlier time in the GC’s orbit have sufficient time to diverge from the
host GC orbit. The higher density streaks in Figure 2.10 can be attributed to these
binaries that have drifted from the parent GC.

As GCs primarily follow halo orbits that extend well out of the galactic plane, the
GCs are easily able to populate this space with BH-LMXBs. In Figure 2.11, we
provide the spatial probability distribution for BH-LMXBs from the MAX case in
the R − z plane. Again, we present only the MAX case, as the 200 case is similarly
distributed but with a lower overall probability density. The median absolute distance
from the galactic plane is |z | = 1.63 kpc and the median distance from the galactic
centre in the plane is R = 4.51 kpc. While it is clear from Figure 2.11 that many of
the BH-LMXBs from GCs are located in the galactic disc, the distribution extends
well out of the galactic plane into the lower density regions above and below the disc.
BH-LMXBs that form in the field will generally reside in the high density galactic
plane, unless they receive substantial kicks at birth, which might eject them into the
‘high-z’ regions. However, the magnitude of BH-LMXB kicks is still uncertain and
the magnitude necessary to reach the highest of BH-LMXBs from GCs is considered
unlikely (see, e.g., [21]; [81]). In Figure 2.12, we show the cumulative distribution
function of the absolute distance |z | perpendicular to the galactic plane for the MAX
case, the 200 case, and the observed population of BH-LMXBs. The observed
population terminates at a maximum |z |∼2 kpc, while the BH-LMXB population
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Figure 2.11: The spatial probability distribution of the simulated population of
BH-LMXBs from GCs with NBH = 1000 in the R − z plane. The coordinate z
specifies the distance perpendicular to the galactic plane and R is the in-plane distance
from the galactic centre at the origin. The populations of Milky Way GCs (marked
by black circles) and known BH-LMXBs (marked by orange stars) are included for
reference. While many of the BH-LMXBs from GCs populate the galactic disc, the
distribution extends well out of the galactic plane into the high-|z | region.

from GCs extends well beyond this point. This produces a region of space that is
unique to a population of BH-LMXBs from GCs, a population distinct from those
forming in the field.

Properties

A typical BH-LMXB with a GC origin has an initial semi-major axis of 5.71 R�,
initial BH mass of 8.09 M�, and an initial companion mass of 0.4 M�. The median
present-day period is 4.48 h and the median present-day BH mass is 8.25 M�, which
has increased above the initial median BH mass due to accretion from the companion.
As discussed in section 2.4, the masses used in the Monte Carlo models for the
ejected binaries are sampled according to the EMF from the mass bin corresponding
to the mass in the ejected BH-NC. This is done for both the primary BH mass MBH

and the companion mass m2 to obtain the mass distributions, which we discuss below.

In Figure 2.13, we show the distribution of the BH mass in the population of
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Figure 2.12: The normalized cumulative distribution function of the absolute distance
perpendicular to the galactic plane |z |. The included distributions are the BH-LMXBs
produced in our GC simulations for the cases of NBH = 200, NBH = 1000, and the
observed population. Note that in the case that GCs have minimal BH retention
(NBH = 20), no mass-transferring systems are produced.

BH-LMXBs from GCs for both cases that produce mass transferring systems.
Along with the BH mass distributions for the 200 and MAX cases, we include the
inferred BH mass distribution from observations [82]. Although the observed mass
distribution reaches down to ∼5 M�, our EMF does not produce BH masses in the
range MBH < 7 M�. The BH primary mass is peaked at 7.4 M� and displays a
preference for the lower-mass BHs. The lack of systems at high BH mass can be
attributed to two contributing factors. The leading contribution is the distribution
of BH masses in the ejected BH-NCs, which is dominated by the two lowest BH
mass bins (i.e. 8.87 M� and 20.48 M�). Although these are produced in nearly equal
numbers, the preference for the lowest mass bin that arises in the BH-LMXBs is
due to a secondary effect introduced during the binary stellar evolution. High mass
ratio systems are prone to disrupting the companion star, ending the possibility of
evolving into a stable BH-LMXB. Despite these barriers to forming BH-LMXBs
with high mass BHs, there remains a small population of high mass present-day
BH-LMXBs, with MBH > 40 M�, which accounts for ∼1% of the population.
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Figure 2.13: The probability distributions of BH masses in BH-LMXBs for the
observed population [82] and for the BH-LMXBs produced in our GC simulations
for the cases of NBH = 200, 1000. Note that in the case that GCs have minimal BH
retention (NBH = 20), no mass-transferring systems are produced. The discontinuous
jumps in the distribution correspond to the mass bin minimum and maximum, with a
power law distribution in-between determined by the evolved mass function. The
lowest BH mass bin was truncated at 7M�.

The low-mass companions are restricted to the range m2 < 0.85 M�, where the
maximum mass is constrained by the MS turnoff-mass, mto = 0.85 M�. The present-
day companion mass is a function of the mass-transfer rate and the time since the
onset of mass transfer. The majority of the companion masses are MS stars, however
there exists a subpopulation of WD companion masses which account for ∼10%
of the companions in the MAX case and ∼20% in the 200 case. In Figure 2.14,
we display the companion mass distribution for the MAX case, 200 case, and the
observed population of BH-LMXBs. The lack of lower-mass companions in the
200 case relative to the MAX case is due to the higher fraction of WDs, which have
masses mWD & 0.4 M�. In the MAX case there is a larger number of BHs in the
outskirts where the lowest masses reside, whereas the 200 case is more centrally
concentrated where there is an increase in the probability of picking up a higher mass
companion and which includes a larger population of WDs. The observed population
in Figure 2.14 is generated from the observational data in the candidate BH-LMXB
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Figure 2.14: The probability distributions of the companion masses in BH-LMXBs
for the cases NBH = 1000 and NBH = 200. The observed population includes
12 of the 18 confirmed BH-LMXBs in BlackCAT [14] that have the necessary
observational quantities (see section 2.5 for a description of the observed population)
and are included for reference; the circles indicate the mean value, the line represents
the uncertainty in the observations, and the inclusion of an arrow indicates that
the uncertainty is only bounded on one side. The remaining 6 confirmed BH-
LMXBs have companion masses above the range considered here, where the axis
has been truncated to focus on the range of masses less than the MS turnoff-mass
mto = 0.85 M�. The peaks in the simulated distributions are due to the sampling of
companion masses from the evolved mass function (EMF) within each mass bin.

catalogue BlackCAT. There are 18 confirmed BH-LMXBs in the catalogue that
have a measurement of the BH mass MBH and the mass ratio q, which we use to
estimate the companion mass m2 = q MBH. The companion masses in the observed
population have large error bars due to the uncertainty in the measurements of the
BH mass and the mass ratio.

The initial eccentricity of the binaries follows a thermal distribution, while the initial
semi-major axis, as discussed in 2.5, is typically (a/AU) � 1, due to their GC origin.
The small initial separation of the BH-NCs leads to a distribution of periods p where
∼99% of the BH-LMXBs have p . 6.2 h for the MAX case and p . 6.8 h in the 200
case. The subpopulation of BH-LMXBs with a WD companion have a qualitatively
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similar distribution but with a reduced period such that ∼99% of the population have
p . 3 h for both cases, MAX and 200. The reduced period for the WD companions
is due to the smaller separations necessary to induce mass transfer for these compact
objects. In Figure 2.15, we display the bi-modal distribution of the orbital period for
our population of BH-LMXBs along with a subset of the observed population with
periods less than ∼1/2 day.
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Figure 2.15: The probability distribution of orbital periods in the simulated BH-
LMXBs from GCs for the two stellar companion sub-populations: WD and MS. The
periods for the observed population of BH-LMXBs that are less than 13 h are included
for reference and are identified by orange tick marks (18 of the 28 candidate BH-
LMXBs from BlackCAT). To preserve the relative size of the MS andWD companion
populations, each distribution is independently normalized and then multiplied by
the factors NBH−MS/N and NBH−WD/N , respectively, with N = NBH−MS + NBH−WD.
This normalization is applied to each NBH case independently.

The mass transfer in these systems is primarily driven by angular momentum loss due
to tidal circularization. As the companion star passes the BH at periastron, the tidal
forces from the BH deform the star and dissipate energy. This tidal torque efficiently
removes eccentricity from the system and eventually leads to circularization of the
orbit with a reduced period. Once the period reaches some critical separation, the
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companion star overfills its Roche lobe and transitions to a state of mass transfer.
This is the same mechanism operating on the BH-LMXBs with a WD companion,
however due to the compact nature of WDs, the critical separation which leads to
Roche lobe overflow occurs at smaller separations, hence the shorter orbital periods.
The binary evolution for the BH-LMXBs from GCs is significantly different from the
evolution of field binaries. In the standard binary evolution picture, the companion
evolves to overfill its Roche lobe, which can lead to mass transfer at relatively large
separations. The MS stars in BH-LMXBs from GCs have not evolved significantly
within the cluster, but evolve on much longer timescales, preventing them from
achieving mass transfer at wide separations.

In Figure 2.16, we provide a temperature-luminosity diagram for themass-transferring
MS companions. We exclude the WD systems from the diagram, since they are
likely too faint for observation. The MS companions have temperatures ∼1500 –
6300 K and luminosities ∼ 6 × 10−4 – 5 × 10−1 L�, making these identifiable as K/M
late-type MS stars below the MS turnoff.
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Figure 2.16: Temperature-luminosity diagram for the BH-LMXB companion mass
in the simulated population of BH-LMXBs from GCs with NBH = 1000. The
low-luminosity WD companions are excluded from the figure, leaving only the mass-
transferring MS companions. Since the MS companions from GCs are unevolved
stars, the companion temperature-luminosity diagram is essentially the portion of
the Hertzsprung-Russell MS branch with m2 < mto.
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3-body mergers GW mergers

Name NBH BH-NC BH-WD BH-NS BH-BH BH-WD BH-NS BH-BH
NGC 13 19.64 2.53 × 10−1 1.81 × 10−2 0.00 0.00 1.42 × 10−2 0.00 7.74 × 10−3

NGC 6838 20.61 8.27 1.02 8.98 × 10−3 1.68 × 10−3 9.27 × 10−1 6.85 × 10−2 2.99 × 10−1

174.55 4.40 × 101 4.76 1.71 × 10−2 4.27 × 10−3 4.15 2.22 × 10−1 1.54
NGC 6535 19.89 5.32 5.96 × 10−1 1.28 × 10−2 2.77 × 10−4 5.15 × 10−1 4.55 × 10−2 1.97 × 10−1

198.95 3.29 × 101 3.30 1.19 × 10−2 0.00 2.88 1.90 × 10−1 1.19
NGC 6362 20.22 4.77 4.81 × 10−1 4.97 × 10−3 1.24 × 10−3 5.33 × 10−1 2.55 × 10−2 1.83 × 10−1

199.33 3.40 × 101 3.82 2.95 × 10−2 2.95 × 10−3 3.49 1.59 × 10−1 1.11
NGC 5053 21.71 5.63 × 10−1 2.51 × 10−2 3.14 × 10−4 3.14 × 10−4 3.21 × 10−2 3.14 × 10−4 1.79 × 10−2

199.65 3.89 1.71 × 10−1 0.00 0.00 2.33 × 10−1 0.00 1.22 × 10−1

NGC 6121 20.70 1.51 × 101 2.31 4.30 × 10−2 5.02 × 10−3 2.19 6.99 × 10−1 9.91 × 10−1

200.53 1.22 × 102 1.71 × 101 3.25 × 10−1 2.80 × 10−2 1.74 × 101 3.45 6.74
1039.16 3.85 × 102 4.32 × 101 5.90 × 10−1 8.43 × 10−2 5.50 × 101 4.80 1.70 × 101

NGC 5694 20.49 2.21 × 101 4.62 9.93 × 10−2 2.19 × 10−3 4.36 2.34 2.34
200.39 1.98 × 102 3.83 × 101 8.39 × 10−1 4.49 × 10−2 3.53 × 101 1.57 × 101 1.69 × 101

1001.94 6.90 × 102 1.10 × 102 2.87 2.87 × 10−2 1.14 × 102 2.75 × 101 5.06 × 101

NGC 6093 19.85 3.70 × 101 9.09 1.23 × 10−1 1.33 × 10−3 6.19 4.46 5.21
198.31 3.96 × 102 9.52 × 101 1.33 2.83 × 10−2 6.85 × 101 3.67 × 101 4.64 × 101

1004.51 2.01 × 103 4.60 × 102 3.68 1.08 × 10−1 3.81 × 102 1.42 × 102 2.03 × 102

NGC 5286 12.29 1.10 × 101 1.50 3.09 × 10−2 1.82 × 10−3 1.45 6.40 × 10−1 1.06
198.28 2.07 × 102 3.19 × 101 3.95 × 10−1 3.95 × 10−2 3.38 × 101 5.97 1.45 × 101

787.45 7.43 × 102 1.14 × 102 1.06 9.61 × 10−2 1.23 × 102 1.20 × 101 3.96 × 101

NGC 6656 19.80 1.53 × 101 2.18 4.90 × 10−2 7.90 × 10−4 2.37 4.74 × 10−1 1.13
205.86 1.52 × 102 2.32 × 101 2.94 × 10−1 1.96 × 10−2 2.46 × 101 3.55 9.43
1000.35 5.92 × 102 7.79 × 101 1.01 0.00 9.36 × 101 8.09 2.90 × 101

NGC 1851 20.76 2.40 × 101 4.28 9.53 × 10−2 0.00 2.74 2.69 3.41
203.71 2.77 × 102 4.80 × 101 8.21 × 10−1 4.40 × 10−2 3.62 × 101 2.41 × 101 2.85 × 101

1039.94 1.42 × 103 2.45 × 102 5.24 2.28 × 10−1 2.30 × 102 8.11 × 101 1.17 × 102

NGC 6205 20.10 1.42 × 101 2.06 4.34 × 10−2 1.50 × 10−3 2.28 5.73 × 10−1 1.17
199.58 1.35 × 102 1.94 × 101 3.69 × 10−1 1.20 × 10−2 2.23 × 101 3.60 8.74
998.62 5.12 × 102 6.68 × 101 7.62 × 10−1 0.00 7.95 × 101 7.66 2.49 × 101

NGC 6441 20.98 2.57 × 101 3.95 7.91 × 10−2 1.32 × 10−2 2.26 2.76 5.12
212.57 3.54 × 102 6.14 × 101 1.57 4.36 × 10−2 4.98 × 101 2.65 × 101 5.08 × 101

1010.37 2.07 × 103 3.32 × 102 7.38 0.00 3.06 × 102 1.06 × 102 1.99 × 102

NGC 104 22.49 2.51 × 101 4.83 1.88 × 10−1 4.71 × 10−3 3.36 4.29 4.34
222.95 2.92 × 102 5.64 × 101 1.90 1.07 × 10−2 4.70 × 101 4.08 × 101 3.80 × 101

979.55 1.30 × 103 2.33 × 102 7.90 5.72 × 10−2 2.21 × 102 1.29 × 102 1.33 × 102

NGC 5139 20.84 7.15 8.37 × 10−1 1.89 × 10−2 7.90 × 10−4 1.16 1.52 × 10−1 4.63 × 10−1

207.50 7.02 × 101 6.80 1.07 × 10−1 1.78 × 10−2 1.15 × 101 9.86 × 10−1 3.45
1009.04 2.91 × 102 2.84 × 101 5.15 × 10−1 2.15 × 10−2 4.55 × 101 4.29 1.14 × 101

Table 2.4: Expected number of mergers. For each cluster and number of retained
BHs, we list the exact number of BHs in the cluster along with the expected number
of mergers over the cluster lifetime. The number of expected mergers within a cluster
are Poisson distributed. Denoting each expectation value λ, the standard deviation,
σ, associated with each value in the table follows from Poisson statistics and is given
by σ =

√
λ.
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Figure 2.17: The probability distributions for the space velocity v of the simulated
BH-LMXB population for the two BHs retention values NBH = 1000 and NBH = 200.
The BH-LMXB space velocity is v = vej + vGC, where vej is the ejection velocity
and vGC is the velocity of the host GC. Since vej is approximately the GC escape
velocity, the magnitude v is dominated by the relatively large contribution from
vGC. As such, the velocity distribution of BH-LMXBs is consistent with the velocity
distribution of GCs, which is reflected in the high mean velocities.

A distinct characteristic of these systems are their kinematic properties. In Figure 2.17,
we show the distribution of the magnitude of the velocity v of the BH-LMXBs from
GCs. The velocity v is computed from the components of the space velocity in
the heliocentric galactic coordinate system (U,V,W ), a right-handed coordinate
system withU in the direction of the galactic centre, V along the direction of rotation,
and W pointing toward the galactic north pole. The median values of the velocity
components for the MAX case are (U,V,W ) = (−24.47,−211.31,−22.23) km s−1.
The large negative velocity in the V component is indicative of this population
not participating in galactic rotation. The peculiar velocity — the velocity of a
source relative to a local standard of rest, obtained by removing the contribution of
galactic rotation at the source distance in the galactic plane R — is sometimes used
to infer a ‘natal kick’ for BH-LMXBs. Although it is possible to convert the Galactic
space velocity to a peculiar velocity, this inferred ‘kick velocity’ is only justified in
assuming the source was born in the galactic disc, where it participates in galactic
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rotation. For BH-LMXBs formed in the field, which is most likely to occur in the
disc, this is a reasonable assumption. However, the V component of the BH-LMXBs
from GCs indicate low rotational velocities, which is consistent with the parent GC
halo orbits, which are typically non-circular and extend well out of the galactic plane.
As the BH-LMXBs with GC origins are ejected at relatively low velocities along the
GC’s orbit in the galaxy, this population of BH-LMXBs has a velocity distribution
consistent with the high-velocity halo orbits of GCs. As these systems have high
apparent peculiar velocities, due to their halo orbits and the lack of participation in
galactic rotation, attempting to infer a ‘natal kick’ from the peculiar velocity in such
a case is ill-posed and leads to the conclusion of a large required ‘natal kick.’

Merger events
GW-driven mergers

As briefly discussed in section 2.3, we allow for gravitational radiation driven mergers
between compact objects. Since all of our ‘test binaries’ contain at least one BH,
the allowable set of GW merger pairs is limited to BH-NS, BH-WD, and BH-BH.
In addition to those binaries that merge during their evolution within the cluster,
binaries of these types can also be ejected from the cluster. In the case of the
ejection of a compact pair, we calculate the expected merger time td using the ejected
binary parameters and refer to these as post-ejection mergers if tej + td < tH, where
tH = 1010 yr is approximately the Hubble time. The total merger rate includes these
post-ejection mergers in addition to the in-cluster mergers. Here we present an
estimate of the merger rates averaged over the 1010 yr simulations for different BH
retention values.

For notational convenience, we refer to a parameter set as xi, where the index i runs
over the 39 parameter sets which make up each row of Table 2.2 and corresponds
to a specific GC and value of NBH. We compute the expected number of mergers
for each parameter set by considering the probability of a BH being involved in a
merger, defined simply by Pm(xi) =

Nmergers(xi )
Nruns(xi )

, multiplied by the BH population

〈Nm〉i = Pm(xi) NBH(xi) . (2.45)

In the case of a merger involving two BHs, the expectation value is calculated
using NBH(xi)/2 in order to avoid double counting. The rightmost three columns of
Table 2.4 list the expected number of GW-driven compact object mergers over the
lifetime of each cluster for a given BH population. The number of BH-BH mergers
is strongly correlated with the GC core density no. Each population of BHs has a
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merger expectation value that follows a power-law in the core density with exponent
∼0.58. Since we do not include primordial binaries, exchange encounters are the
only means to forming BH-BH binaries that can later merge. The average rate of
encounters is directly proportional to the density, with the highest density clusters
providing the largest number of opportunities to successfully form BH-BH binaries.
There are additional correlated variables, such as the concentration c and velocity
dispersion σ, however these are secondary to the density no and likely due to their
own correlation with no.

Given the expected number of mergers for each cluster, we determine a weighted
average using the GC mass function, since the total cluster mass of GCs is not
uniformly distributed [83]. We do this individually for each group of simulations
belonging to the sets NBH = {20, 200, 1000}, utilizing the GC mass spectrum
dN (Mc)/dMc of [83]. For each simulated cluster, we assign aweightwi = N (Mc(xi))
and compute the expected number of mergers per cluster in the Milky Way from

〈Nm(NBH)〉 =
∑

i wi 〈Nm〉i∑
i wi

. (2.46)

For clarity, to obtain the expected number of mergers for NBH = 20, we sum over all
parameter sets in Table 2.2 with NBH = 20. The resulting expected number of BH-BH
mergers over the life of a cluster for each choice of NBH are 〈Nm(20)〉 = 0.513,
〈Nm(200)〉 = 5.08, and 〈Nm(1000)〉 = 62.5.

We convert the expected number of mergers to a merger rate density by assuming that
our simulations of Milky Way GCs are a fair representation of GCs in other galaxies,
that the GCs are all approximately tGC = 1010 yrs old, and that the spatial density
of GCs in the universe is ρGC = 0.77 Mpc−3 (see supplemental materials of [84]).
Using the weighted averages computed above as our ‘typical’ cluster merger values
and assigning this value to each GC in the volume, we obtain the merger rate density
due to all GCs in the universe,

〈R(NBH)〉 =
〈Nm(NBH)〉

tGC
ρGC . (2.47)

In Table 2.5, we provide the computed estimated merger rate densities for compact
object mergers due to GCs for the three populations of NBH we consider. Although
there is an increased interest in the BH-mass spectrum for BH-BH mergers in GCs,
stimulated by the larger than expected BH masses recently detected by aLIGO [85],
the use of just three discrete BH masses precludes the possibility of such an analysis.
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〈R(NBH)〉 BH-BH BH-NS BH-WD
〈R(20)〉 3.95 × 10−2 2.71 × 10−2 7.15 × 10−2

〈R(200)〉 3.91 × 10−1 2.51 × 10−1 7.73 × 10−1

〈R(1000)〉 4.81 2.83 10.59

Table 2.5: The contribution to the compact merger rate density from all GCs in the
universe, stated in Gpc−3 yr−1. Each row corresponds to the merger rate contribution
from GCs with the simulated BH population specified by NBH in 〈R(NBH)〉. The
merger rate densities are averaged over the life of the cluster, weighted by the GC
mass function to account for the non-uniform mass distribution of GCs, and assumes
a GC spatial density of ρGC = 0.77 Mpc−3.

Since BH-BH mergers from GCs only partially contribute to the total merger rate,
with the remaining mergers coming from the field, the rates due to GCs should
not exceed the upper bound of the total estimated merger rate. The most recent
observational evidence constrains the BH-BH merger rate density to lie in the range
12−213 Gpc−3 yr−1 [86]. The GCBH-BHmerger rate densities given in Table 2.5 for
the three different BH retention scenarios are well below the upper bound, presenting
no conflict with the observed rate. It is tempting to rule out the lower BH retention
cases based on their relatively low merger rate densities compared to the observed
lower bound. However, we emphasize that the rates presented in Table 2.5 are the
expected rates due to GCs alone, while the observed rate provides bounds on the total
BH-BH merger rate that includes the contribution from the field. We could attempt
to convert the cluster merger rate to a total rate, but this relies on a well constrained
value of the GC fractional contribution. Given the large uncertainty in this fractional
contribution, any attempt to approximate the total rate will be dominated by the error
in the fractional estimate. Therefore, we presently refrain from ruling out certain BH
populations based on their BH-BH merger rate densities alone.

The bounds of our merger rates, which span a wide range of uncertainty in BH
retention, are consistent with previous studies that provide estimates of the BH-BH
merger rate from GCs ([87]; [88]; [89]; [62], [90]). However, we find that only
∼10% of the BH-BH mergers occur outside of the cluster boundaries, which differs
from a subset of these previous studies. In [89] no mergers occur in-cluster, while
in [62], ∼85% of BH-BHmergers occur post-ejection, and [90] find that ∼90% merge
outside the cluster. In contrast to the small number of BH-BH binaries these studies
find merging in cluster, [87] finds that only ∼24 − 72% of the BH-BH mergers are
post-ejection. Finally, [88] is most closely aligned with our results, with ∼10% of
mergers occurring out of the cluster.
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This discrepancy in merger location can be attributed to the distribution of the BHs
in the cluster and their interactions with the lower-mass components. In models with
centrally clustered BHs, the BHs are segregated from the remainder of the cluster,
forming an isolated and decoupled system. These self-interacting BHs efficiently
form BH binaries. Strong binary-binary interactions can eject these binary BHs from
the cluster, where they might later merge in isolation. In addition to the efficient
removal of BH binaries from the core, binary-single interactions are equally efficient
at ejecting single BHs from the cluster. Furthermore, these strong encounters are
likely to interrupt potential mergers of eccentric BH binaries which would merge
in-cluster if uninterrupted. This channel leads to a majority of BH-BH mergers
outside of the cluster and eventually depletes the GC of BHs (e.g., [87]; [91]; [89]).
We assume that in order for GCs to retain significant BH populations, the BHs must
avoid segregating in the core, which we accomplish through a modified velocity
dispersion for the BHs, as discussed in section 2.3. This modified velocity dispersion
spreads the BHs throughout the cluster, where they can interact with the lower-mass
stars. This supposition is similar to the assumptions made in [88] and produces
qualitatively similar results.

In our simulations, a key channel for producing BH-BH binaries is through the
formation of a binary composed of a BH and a non-BH outside of the core, which
eventually drift to the centre where there is a high density of BHs. The non-BH will
be preferentially exchanged with one of the more massive BHs in the core, producing
a BH-BH binary that will realize one of three outcomes: (1) the BH-BH binary will
be dismantled in the high density region, (2) given a sufficiently large eccentricity
(hence a shorter orbital decay time), will eventually merge in the core, or (3) will
harden and be ejected from the cluster. This formation channel is similar to that
described in [88]. As discussed in section 2.3, we allow for single BHs to exchange
into existing binaries. The majority of binaries that a single BH encounters are
binaries composed of two low-mass stars. Successful exchanges of a more massive
BH for one of the lower-mass stars tend to produce high-eccentricity BH–non-BH
binaries following the relation

〈e〉 ≈ 1 − 1.3
(mnon−BH

mBH

)
, (2.48)

which is independent of the initial eccentricity and applicable when mnon−BH �

mBH [69]. For the three BH masses considered, MBH = {8.87, 20.48, 57.18}M�, and
a cluster non-BH star with an average mass of 〈mnon−BH〉 ≈ 0.3 M�, this leads to
mean initial eccentricities of 〈e〉 ≈ {0.956, 0.981, 0.993}. Once the binary makes it to
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the core, the non-BH is easily exchanged for one of the many massive BHs, yielding
a highly eccentric BH-BH binary according to Equation 2.48. In Figure 2.18, we
display the eccentricity distributions for the BH-BH binaries at formation and at
merger or ejection for those binaries that have end states (2) and (3), as described
above, respectively. Some fraction of the eccentric binaries that form through this
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Figure 2.18: The probability distributions of eccentricity for two populations of
BH-BH binaries in GCs: BH-BH binaries which form and merge in cluster (BH-BHm,
black lines) and the BH-BH binaries which form and are ejected from the cluster
(BH-BHej, blue lines). For each population, we show the eccentricity distribution at
the time the binary forms, e(to) (solid lines), and the distribution of eccentricities at
the binary’s final state (dashed lines). The final state of the in-cluster mergers is at a
time tm, the time at which the computed merger time is less than the cluster timestep.
The final state for the ejected binaries is the time of ejection tej. A thermal eccentricity
distribution, with probability density f (e) = 2e, is included for reference.

channel are driven to high enough eccentricities that they can merge in-cluster
in-between encounters. The remainder are subject to further encounters that drive
their eccentricities toward a thermalized distribution, are hardened in the process,
and are eventually ejected.

The eccentricity distribution ofmerging BH-BH binaries is important for the detection
of the resulting gravitational waves. The eccentricity tends to zero as the orbit shrinks,
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however modern detectors are sensitive to the GW signal at frequencies when the
binary is still in the inspiral phase and the eccentricity is finite. The aLIGO [92]
detectors are sensitive to ∼10 Hz, at design sensitivity, while the future space-based
detector LISA [93] will be sensitive to much lower frequencies ∼1 mHz. We
determine the eccentricity at a specific frequency by evolving ao and eo, according
to 〈de/da〉 [65], up until some target value a associated with the frequency in
consideration. In Figure 2.19, we display the residual eccentricity of the inspiralling
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Figure 2.19: The eccentricity probability distributions for two populations of BH-BH
mergers from GCs for the two detectors aLIGO and LISA. The two populations
correspond to the BH-BH mergers occurring in-cluster (solid lines) and those that
merge outside of the cluster, post-ejection (dashed lines). The black lines correspond
to the eccentricity of each population when it reaches a corresponding gravitational
wave frequency of fGW = 10 Hz, the lower bound frequency of the aLIGO band
at design sensitivity. The blue lines represent the eccentricity distribution at
fGW = 1 mHz, the proposed lower frequency bound for LISA.

BH-BH binaries as they first enter the design-sensitivity frequency bands for aLIGO
and LISA. It is apparent that for aLIGO, both the ejected mergers and the initially high-
eccentricity in-cluster mergers have residual eccentricity distributions below 10−1,
which has a negligible effect on detections using circularized templates. However, in
the case of LISA, while the ejected mergers result in a small eccentricity at 1 mHz, the
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initially highly eccentric in-cluster merger population remains significantly eccentric
at this frequency.

Utilizing 〈de/da〉 to determine the evolved eccentricity assumes that the binary
evolves in isolation. For the in-cluster mergers, we classify a BH-BH binary as
merged once the orbital decay time has fallen below the cluster timestep. However,
this could leave significant time for further dynamics to modify the eccentricity such
that the binary will not in fact merge in cluster [91]. To account for this possibility,
the in-cluster mergers in Figure 2.19 only include those mergers which satisfy the
additional constraint tdec < 〈tenc〉, which is satisfied for ∼70% of in-cluster mergers.
Here, the average encounter time is approximated by 〈tenc〉 = tbin/Nenc with tbin

corresponding to the time since the binary’s formation and Nenc is the number of
three-body encounters the binary has been subject to during the time tbin. The
remaining ∼30% of mergers are uncertain and are not further evolved; they may be
broken up, ejected, or merge after subsequent interactions.

Three-body mergers

In addition to the GW-driven mergers, we also calculate the rate of tidally driven
mergers or ‘collisions’ that occur during three-body encounters. The merger criteria
are based on a minimum separation between bodies, as discussed in section 2.3.
We compute the expected number of three-body merger events only for those that
involve a BH. Although we track the number of three-body mergers for all object
types, including NS-NS, MS-WD, etc., we are missing a significant fraction of these
mergers by only tracking single BHs or binaries with at least one BH. We compute
the expected number of mergers in a manner similar to the computation of GW
mergers above.

The left columns of Table 2.4 list the expected number of mergers involving a BH that
occur during three-body encounters over the lifetime of each cluster for a given BH
population. These three-body mergers are computed using Equation 2.45 to obtain
an expected value for each cluster in the set. As the majority of these events will only
be observationally relevant locally, we provide these rates solely for the Milky Way
galaxy. Using the computed values from Table 2.4 we construct a cluster weighted
average with Equation 2.46. From this we use a modified version of Equation 2.47,
with NGC ' 150, for the approximate number of GCs in our galaxy, in place of ρGC to
obtain the final approximate rate for each event: 〈R(NBH)〉 = 〈Nm(NBH)〉

tGC
NGC. These

computed rates for BH-BH, BH-NS, BH-WD and BH-NC are shown in Table 2.6,
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〈R(NBH)〉 BH-NC BH-WD BH-NS BH-BH
〈R(20)〉 1.02 × 10−1 1.60 × 10−2 2.65 × 10−4 1.64 × 10−5

〈R(200)〉 1.08 1.72 × 10−1 2.53 × 10−3 1.40 × 10−4

〈R(1000)〉 12.27 2.14 3.03 × 10−2 1.11 × 10−3

Table 2.6: The rate of three-body mergers in GCs computed for the MilkyWay galaxy
and stated in MWEG−1Myr−1. Each row corresponds to the three-body merger rate
in Milky Way GCs with the simulated BH population specified by NBH in 〈R(NBH)〉.
The merger rates are averaged over the life of the cluster, weighted by the GC mass
function to account for the non-uniform mass distribution of GCs, and assumes
NGC ' 150 for the number of GCs in the galaxy.

stated in terms of the number of expected events per Milky Way equivalent galaxy
(MWEG) per Myr. The BH-NC merger rate includes the three-body mergers of both
BH-RG and BH-MS.

These rates are included to ensure that a large population of retained BHs in GCs does
not lead to a conflict with observations. Even in the case of maximal BH retention,
the occurrence of these events is relatively infrequent. The most commonly occurring
three-body collision is that between a BH and a NC star. The interaction of a NC
object with a BH, commonly referred to as a tidal disruption event (TDE), is often
studied in the context of supermassive BHs rather than stellar-mass BHs. However,
there is some interest in GC-relevant NC collisions with stellar-mass BHs, which are
referred to as micro-TDEs [94]. These events lead to full or partial tidal disruption
of the NC star and are accompanied by long-duration energetic flares. There is large
uncertainty in the signals associated with these events as the strength and duration of
the signal depends heavily on the details of the encounter (see, e.g., [94]).

The signals associated with the compact mergers are likely to appear as head-on
mergers due to the criteria associated with categorizing mergers during three-body
encounters; the exclusion of higher order corrections to Newtonian gravity in our
three-body calculations requires extremely close-encounters due to the relatively
small size of the compact objects involved. Despite the uncertainty in the observables
produced in three-body collisions, the rate of occurrence is low enough that our
model does not generate a conflict with present observations.

Comparison with observations and previous results
In our simulations, GCs produce a population of BH-LMXBs with a unique set of
characteristic properties. These properties provide some constraints on the likelihood
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of a BH-LMXB having a GC origin. In this section, we identify the key characteristics
of BH-LMXBs from GCs and determine which of the currently known BH-LMXBs
are consistent with this population.

As discussed in section 2.5 and visible in Figure 2.13, the spectrum of BH masses in
BH-LMXBs from GCs in our simulations is roughly consistent with the observed
population of BHmasses. Thismakes the BHmass a poor candidate for differentiating
between field-formed BH-LMXBs and those with a GC origin. As a consequence
of the age of GCs, the companions are typically unevolved MS stars, with masses
necessarily below the turnoff-mass mto = 0.85 M�. Additionally, they reside on
a tightly confined branch of a temperature-luminosity diagram (see Figure 2.16).
This provides the first distinctive characteristic of BH-LMXBs formed in GCs: a
companion mass of m2 . 0.85 M� and a spectral class consistent with late-type
K/M stars. BlackCAT [14] currently contains 18 observed BH-LMXB systems
with the proper information to compute an estimate of the companion mass. Of
the 18 systems, six BH-LMXBs have companion masses exceeding the maximum
companion mass in our population of BH-LMXBs from GCs. Two of these six are
near the edge of the distribution with with m2 & 0.9 M�, while the other four have
m2 ≥ 2.52 M�, suggesting these are more consistent with a field-formation scenario.

A second property of a BH-LMXB with a GC origin is a characteristically short
period. As shown in Figure 2.15, there is a sharp limit in the distribution confining
GC-origin BH-LMXBs to periods shorter than p∼6.5 h. Of the 27 confirmed
BH-LMXBs with measured periods in BlackCAT, 18 have periods with p > 7 h,
indicating an unlikely GC origin for an additional set of systems. Note, however, that
these systems are not necessarily distinct from those ruled unlikely on the basis of
companion mass.

Although the GC-origin BH-LMXBs are more likely to reside at larger values of |z |
perpendicular to the galactic plane (see Figure 2.12), the overall distribution of the
BH-LMXBs from GCs does not provide a strict criterion for discerning between GC
origin and field origin. Figure 2.11 illustrates that while the simulated population
extends much farther out of the galactic plane than the observed distribution, there
is still a significant population of GC-origin BH-LMXBs that reside in the plane,
overlapping the region where field-formed binaries are expected to have the highest
density. This makes discerning a potential origin for BH-LMXBs in this region
difficult. Additionally, for the many systems clustered near the galactic centre or
those that reside in the plane, the high density of objects and dust make these systems
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Name MBH [M�] m2 [M�] p [h] |z | [kpc] References
MAXI J1659-152 5.8 ± 2.2 0.19 ± 0.05 2.414 ± 5 × 10−3 2.45 ± 1.05 [0,1]
SWIFT J1357.2-0933 > 8.3 > 0.33 2.8 ± 3 × 10−1 > 1.75 [2,3]
SWIFT J1753.5-0127 > 7.4 ± 1.2 ≥ 0.30 ± 0.03 3.244 ± 1 × 10−3 1.3 ± 0.4 [4-7]
XTE J1118+480 7.55 ± 0.65 0.187 ± 0.083 4.07841 ± 1 × 10−5 1.52 ± 0.09 [8-11]
GRO J0422+32 8.5 ± 6.5 0.46 ± 0.31 5.09185 ± 5 × 10−6 0.51 ± 0.06 [12-15]

Table 2.7: Properties of the five observed systems that are consistent with the
properties of our simulated population of BH-LMXBs with GC origins. The columns
refer to the primary BH mass MBH, the companion mass m2, the orbital period p, and
the absolute distance perpendicular to the galactic plane |z |. [0] Yamaoka et al. [95],
[1] Kuulkers et al. [96], [2] Mata Sánchez et al. [97], [3] Corral-Santana et al. [98],
[4] Shaw et al. [99], [5] Neustroev et al. [100], [6] Zurita et al. [101], [7] Cadolle
Bel et al. [102], [8] Khargharia et al. [103], [9] Calvelo et al. [104], [10] Torres et al.
[105], [11] Gelino et al. [106], [12] Casares et al. [107], [13] Beekman et al. [108],
[14] Webb et al. [109], [15] Gelino and Harrison [110]

equally difficult to observe optically. Although a number of BH-LMXB candidates
are detectable in these regions through X-ray, the detailed properties of these systems
remain unknown due to current optical limitations. The spatial distribution of
BH-LMXBs from GCs, in general, makes observations of the population difficult,
even for those out of the plane. Observation and confirmation of BH-LMXBs rely on
a dynamical measurement of the BH mass through optical spectroscopy, introducing
a bias toward sources at distances D < 10 kpc from the Sun [21]. For the population
of BH-LMXBs from our model GCs, the MAX and 200 cases both produce a median
distance of D = 9.7 kpc, placing roughly half of the systems beyond the observable
range.

Although this model population has characteristics that make observations of the
binary properties difficult, there are some observed systems that provide a resemblance
to those with GC origins. There are 18 observed and confirmed BH-LMXBs in
BlackCAT with measured quantities that allow for comparison with our simulated
population. Five of the 18 systems have a BH mass, companion mass, and period
consistent with the characteristics of our population of BH-LMXBs from GCs. These
systems are MAXI J1659-152, SWIFT J1357.2-0933, SWIFT J1753.5-0127, XTE
J1118+480, and GRO J0422+32. In Table 2.7, we list the five consistent systems and
the known properties that are compatible with the range of values belonging to our
population of BH-LMXBs from GCs. While we cannot make any strong claims in
regards to the specific origin of these systems, it is worthwhile to note the similarities
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of these systems with respect to the population produced in this study.

The BH-LMXB system XTE J1118+480 is well studied, which provides some
additional parameters worth comparing with our modelled population of BH-LMXBs
fromGCs. In addition to the consistentmass of the companion star inXTE J1118+480,
the spectral type is also aligned with the band of GC-origin companions in Figure 2.16.
Although space-velocity measurements of BH-LMXBs are rare, fortunately there
exists a velocity measurement of XTE J1118+480. In the same heliocentric galactic
coordinate system (U,V,W ) introduced in section 2.5, [111] found a space-velocity
for this system of (U = −105 ± 16,V = −98 ± 16,W = −21 ± 10) km s−1. The large
magnitude v∼145 km s−1 and the large negative V component are consistent with
a high-velocity halo orbit and a lower than average rotational velocity about the
galactic centre. This description is consistent with the velocity distribution of our
population of BH-LMXBs from GCs, which inherit the high-velocity halo-orbits
when they are ejected from the GC. As a consequence of the high-velocity halo orbit,
which manifests itself as a high computed peculiar velocity, this system is commonly
invoked to support large natal kicks ([18]; [19]; [20]; [21]). Confidently identifying
an origin for this system could help to shed some light on the issue. The relatively
low-metallicity environments of GCs provides an additional constraint on properly
categorizing BH-LMXBs as originating in GCs versus in the field. Although all
of the previous characteristics point to a GC origin, perhaps one of the strongest
arguments against a GC origin for this system is the supersolar abundance of elements
in the secondary star found by [30], which is consistent with a metal-rich progenitor
and makes a GC origin highly unlikely. However, there exist a conflicting claim
presented by [29], where through broad-band X-ray spectroscopy, it was concluded
that the companion has a metallicity of Z∼10−3, consistent with the low metallicities
expected of systems at large |z | or those with a GC origin. Given that metallicity
provides a strong constraint on the origin of a BH-LMXB, additional observations
appear necessary to reduce the uncertainty of this case.

To our knowledge, there are no known velocity measurements or metallicity mea-
surements for the four other BH-LMXBs with possible GC origins. Although
an increasing number of BH-LMXB candidates are being discovered in X-rays,
only a few have been confirmed and characterized with detailed optical follow-up
observations. Over time, more data will become available, better constraining the
properties of the galactic BH-LMXB population. If even a single BH-LMXB could
be confidently attributed to a GC origin this would provide a strong argument in
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favor of BH retention in GCs.

2.6 Discussion and conclusions
There is growing observational evidence and theoretical support for a sizable BH
population in present-day galactic GCs. These BHs can acquire low-mass companions
through dynamical interactions within the GC. Those binaries that are ejected from
the GC can evolve into BH-LMXBs and can populate a large region of space above
and below the galactic plane. These binaries could potentially explain observed
BH-LMXBs at large distances from the plane without a need for large BH birth kicks.

In this study, we have presented a population of Milky Way BH-LMXBs formed
through dynamical interactions in GCs. To explore the BH-LMXB population
dependence on BH retention in GCs, we performed simulations for retained BH
populations of 20, 200, and 1000 BHs. The simulated GCs broadly cover the
parameter space and represent a realistic subset of Milky Way GCs. We generated a
large number of binary evolution realizations for each set of initial GC parameters
and number of retained BHs. This allowed us to derive statistical distributions for
the number of ejected binaries and their relevant properties. Using the statistics from
the GC simulations, we performed Monte Carlo simulations to obtain a present day
population of BH-LMXBs ejected from GCs.

We find that in the case of minimal BH retention (NBH = 20) no observable BH-
LMXBs are produced, while the NBH = 200 and NBH = 1000 cases yield 25+10

−6 and
156+26

−24 BH-LMXBs, respectively. Here, the uncertainties represent the bounds of
the 95% confidence interval. As there is no observable population for minimal BH
retention, this suggests that finding any BH-LMXB of GC origin would imply that
GCs retain sizable BH populations of more than a few tens of BHs.

Aside from the difference in the size of the population, the properties and distributions
of BH-LMXBs are qualitatively similar for the two cases that produce BH-LMXBs,
200 and MAX. We find that BH-LMXBs from GCs have velocity distributions
inherited from their host clusters that are consistent with stars on high-velocity
halo orbits. Additionally, the ejected BH-LMXBs have a spatial distribution that is
also similarly aligned with the GC galactic distribution. This shared distribution is
described by a high density in the galactic plane and near the galactic centre, with a
significant fraction distributed well above and below the galactic plane. The typical
binary is located at an absolute distance of R = 4.5 kpc from the galactic core when
projected on to the galactic plane, an absolute distance of |z | = 1.6 kpc perpendicular
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to the galactic plane, and at a distance of D = 9.74 kpc from the Sun. The presence
of a large population of BH-LMXBs at large distances from the plane is characteristic
of BH-LMXBs from GCs, as field formed BH-LMXBs must be subject to large kicks
in order to access this region. The average present-day BH-LMXB ejected from a
GC is composed of a 8.25 M� BH and a 0.22 M� K/M late-type MS star below the
turnoff-mass, with a characteristically short orbital period of p = 0.186 h. These
properties and their associated distributions are key observable characteristics of this
predicted population of BH-LMXBs formed in GCs.

Comparing our BH-LMXB systems with the ensemble of observed BH-LMXBs,
we find that five of these are candidates for having a GC origin. There are a total
of 27 confirmed BH-LMXBs, but just 18 of these have sufficient observations
for comparing measured properties against our results. The five systems that are
compatible with our simulated population of BH-LMXBs from GCs are MAXI
J1659-152, SWIFT J1357.2-0933, SWIFT J1753.5-0127, XTE J1118+480, and
GRO J0422+32. XTE J1118+480 is one of the rare systems with a measured space
velocity and it is atypically large for a system formed in the galactic disc, with
v∼145 km s−1. This system is commonly discussed in the context of formation kicks,
since a high-velocity kick is required to explain the large distance from the galactic
plane, |z |∼1.52 kpc, under the assumption that it originated in the plane. However,
if XTE J1118+480 comes from a GC, which produces BH-LMXBs at a median
distance of |z |∼1.6 kpc from the plane, then its position and velocity are a natural
consequence of the GC origin and do not require a large BH birth kick.

Future observations of the remaining four system velocities would provide an
important additional piece of evidence in each of these cases. Additionally, the
companion stars in BH-LMXBs from GCs should have the same low metallicity as
is typical for GCs. This emphasizes the need for reliable metallicity measurements
of the companion metallicity, which could help to support or reject a GC origin
scenario. The strength in this measurement relies on the distinctly low-metallicity
environments of GCs compared to the disc environment. The metallicity of the
companion in XTE J1118+480 has been measured by [29] and [30]. However, the
two measurements disagree, with the former finding sub and the latter finding super
solar metallicity. Additional observations may be necessary to settle the discussion
for XTE J1118+480. Future observations will be needed to more reliably determine
or rule out the potential GC origin of the candidate BH-LMXBs. On the basis of our
GC simulations, we reaffirm that if one or multiple can be shown to come from a
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GC, then GCs retain sizable BH populations.

An additional result from our simulations is a prediction for the BH-BH merger rate
as function of the GC BH population. The expected rate of mergers due to all GCs
for our maximum retention case, NBH = 1000, is 4.81 Gpc−3 yr−1, while in the case
of minimal retention, NBH = 20, the rate is as low as 3.95 × 10−2 Gpc−3 yr−1. This
rate represents an average over the cluster lifetimes and assumes a spatial density
of GCs throughout the universe of ρGC = 0.77 Mpc−3. Our maximum retention
rate is consistent with previous estimates of the GC merger rate contribution and is
compatible with the recent observations by aLIGO. Although our model produces
rates in good agreement with previous studies, our simulations result in a larger
than average fraction of mergers occurring in-cluster, as opposed to post-ejection.
We attribute the discrepancy to the increased interaction between the BHs and the
lower mass stars as a consequence of our cluster BH distribution. The BH-BH
binaries that merge in-cluster are a consequence of the large eccentricities, acquired
through dynamical formation, leading to significantly shortened orbital decay times.
The dynamically formed BH-BH binaries that merge in-cluster are formed with an
average eccentricity of e∼0.96. At the time of merger in the aLIGO band, the residual
eccentricities are small and in the range 10−6 . e . 10−2. However, we find that
when passing through the LISA band years before merger, they still have eccentricities
in the range 10−2 . e . 1. Models in which the BHs are confined to a subcluster at
the core of GCs produce mergers with substantially smaller eccentricities. As the
merger formation channels are sufficiently different for a BH subcluster model, LISA
might be able to help distinguish how a population of retained BHs is distributed in
GCs by observing the distribution of eccentricities.

The present study provides new insights into the population and properties of BH-
LMXBs of GC origin. However, there are a number of important limitations that
should be kept in mind when interpreting our results. While there is mounting
evidence to support that present-day GCs are BH retaining, howGCs are able to retain
a significant population of BHs and how those BHs are distributed is still uncertain.
Our choice of distributing the BHs throughout the cluster is motivated by preserving
the observed structural properties of each modelled GC in the presence of a large BH
population. However, this spreading leads to an increase in interaction between the
BHs and the lower-mass stars, which is typically a rare occurrence if the BHs remain
clustered in the core. If GCs are able to retain a significant population of BHs that
remain centrally clustered, formation of BH-NC binaries will likely be suppressed.
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The reduced formation of BH-NC binaries would significantly reduce the number of
ejected BH-NCs, directly diminishing the number of BH-LMXBs from GCs. Future
studies regarding the impact of the BH distribution within BH-retaining GCs are
necessary to fully understand the consequences of this limitation. Furthermore, the
results presented here rely on the outcomes of many independent realizations. Since
we perform each simulation independently in a static cluster background, we are
neglecting the change in the BH population and its impact on the cluster as single
BHs and BH binaries are ejected over the cluster lifetime. Additionally, we do not
account for binary-binary interactions, which have the potential to disrupt existing
binaries or possibly aid in ejecting them. Models which account for these limitations
are necessary to better understand the impact of ignoring these processes. While
N-body simulations and Monte Carlo based models can resolve some of these issues,
the computational expense remains a limiting factor in performing many realizations.
However, as the computational techniques and resources continue to improve, it will
soon be possible to produce many high-accuracy GC simulations that address these
limitations.
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3.1 Abstract
Astrophysical black holes could be nearly extremal (that is, rotating nearly as fast
as possible); therefore, nearly extremal black holes could be among the binaries
that current and future gravitational-wave observatories will detect. Predicting the
gravitational waves emitted by merging black holes requires numerical-relativity
simulations, but these simulations are especially challenging when one or both
holes have mass m and spin S exceeding the Bowen-York limit of S/m2 = 0.93.
We present improved methods that enable us to simulate merging, nearly extremal
black holes (i.e., black holes with S/m2 > 0.93) more robustly and more efficiently.
We use these methods to simulate an unequal-mass, precessing binary black hole
coalescence, where the larger black hole has S/m2 = 0.99. We also use these
methods to simulate a non-precessing binary black hole coalescence, where both
black holes have S/m2 = 0.994, nearly reaching the Novikov-Thorne upper bound for
holes spun up by thin accretion disks. We demonstrate numerical convergence and
estimate the numerical errors of the waveforms; we compare numerical waveforms
from our simulations with post-Newtonian and effective-one-body waveforms; we
compare the evolution of the black-hole masses and spins with analytic predictions;
and we explore the effect of increasing spin magnitude on the orbital dynamics (the
so-called “orbital hangup” effect).

3.2 Introduction
Second-generation interferometers such as Advanced LIGO, Virgo, and KAGRA [1–
4] will soon begin searching for gravitational waves. To increase the number of
gravitational-wave detections and to maximize what we can learn about the waves’
sources, we require accurate theoretical models of the sources and the emitted

https://arxiv.org/abs/1412.1803
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gravitational radiation.

The inspiral, merger, and ringdown of binary black holes (BBHs) are among the
most promising astrophysical sources of gravitational waves. As the black holes
orbit, they lose energy to gravitational radiation, inspiraling until they collide and
merge to form a final black hole (the “remnant”) that eventually settles to a stationary
Kerr state.

A BBH is characterized by 7 intrinsic parameters: the spin angular momenta ~S

of each hole and the mass ratio q. The spin magnitude of a black hole is often
characterized by the dimensionless quantity χ ≡ S/m2, where S = |~S |, m is the
black-hole mass, and we use geometrized units where c = G = 1. A black hole
with the maximum possible dimensionless spin χ = 1 is called extremal. There
is considerable uncertainty in the expected mass ratios and spins of astrophysical
BBHs that are likely to be detected by gravitational-wave interferometers; however,
there is evidence that nearly extremal black holes exist in nature. For instance,
recent measurements of stellar-mass black holes (such as Cygnus X-1 [5–7], GRS
1915+105 [8], and GX 339-4 [9]) and supermassive black holes (such as Swift
J0501.9-3239 [10]) suggest that there could be a population of black holes with
spins of χ ∼ 1. (See, e.g., Refs. [11, 12] for reviews of astrophysical black-hole spin
measurements.)

Post-Newtonian (PN) methods accurately model the binary evolution and the emitted
gravitational radiation during the early inspiral [13], but numerical simulations
solving the full Einstein equations are necessary to model the binary through late
inspiral, merger, and ringdown. Following breakthroughs in 2005–2006 [14–16],
a number of research groups have made tremendous progress toward simulating
merging black holes with different black-hole masses and spins (see, e.g., [17–20] for
recent reviews), and several groups are building catalogs of BBH simulations [21–26].

So far, the region of the parameter space with black-hole spins near the theoretical
maximum χ = 1 remains almost completely unexplored. Numerical simulations of
nearly extremal, merging black holes are especially challenging. One reason for this
is that initial data for a BBH must satisfy the Einstein constraint equations, but the
simplest method for constructing constraint-satisfying initial data, the Bowen-York
method [27–29], cannot yield initial data with nearly extremal black holes. This is
because the Bowen-York construction assumes that the initial spatial geometry is
conformally flat (i.e., that the initial spatial metric is proportional to the metric of
flat space). Conformally flat spacetimes cannot represent black holes that i) are in
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equilibrium, and ii) possess linear [30] or angular [31, 32] momentum; therefore,
conformally-flat spinning black holes are out of equilibrium and will quickly relax
to an equilibrium state. Specifically, Bowen-York puncture initial data can produce
BBHs with initial spins as large as χ = 0.984, but when evolved, the spins rapidly
relax to about χ = 0.93 or less (the Bowen-York limit) [33–35].

Even given initial data containing black holes with spins exceeding the Bowen-York
limit, evolving those data through inspiral, merger, and ringdown is especially
challenging for two reasons, as discussed in Refs. [36–38]. First, the portion
of the spacetime near the horizons requires very high resolution (and thus high
computational cost), since metric gradients are much larger than for lower spins.
Second, for evolution methods that excise the singularities inside each black hole and
evolve only the exterior region, constructing and maintaining a suitable computational
domain that keeps each excision boundary just inside the corresponding apparent
horizon becomes more and more challenging as the spin approaches extremality.

In this paper, we use the phrase “nearly extremal” to refer to χ > 0.93, i.e., to a black
hole with a spin above the Bowen-York limit. Note that a black hole with χ = 0.93
is significantly less extremal than a black hole with χ = 0.998, the Novikov-Thorne
upper bound for black holes spun up by accretion [39, 40]. This is because the effects
of spin scale nonlinearly with increasing χ. For instance, if the rotational energy of a
Kerr black hole with a fixed mass is denoted Erot( χ), then Erot(0.93)/Erot(1) is only
59%, while Erot(0.998)/Erot(1) is 92.5% (c.f., Fig. 1 of Ref. [36]). Furthermore, the
total energy that a BBH emits in gravitational waves also scales nonlinearly with
χ. For example, for equal masses and equal spins aligned with the orbital angular
momentum, a BBHwith χ = 1 radiates 10% more energy than a BBHwith χ = 0.93,
whereas a BBH with χ = 0.07 radiates only 4% more energy than a BBH with χ = 0
(Eq. (9) of Ref. [41]). Nonlinear scaling with χ is also seen for binaries consisting of
a black hole and a neutron star: the amount of neutron-star matter remaining outside
the black hole just after tidal disruption increases very rapidly with black-hole spin
(Fig. 10 of Ref. [38]).

Several groups have constructed and evolved Bowen-York puncture initial data with
spins near (but below) the Bowen-York limit [42–45]. Recently, Ruchlin et al. [46]
constructed and evolved puncture initial data for a head-on collision of two black holes
with equal mass and spins of magnitude χ = 0.99. Only four previously published
simulations [24, 36, 37] out of hundreds published to date contain the quasi-circular
coalescence of BBHs with χ > 0.93. These four simulations were evolved using the
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Spectral Einstein Code (SpEC) [47] from “superposed-Kerr-Schild” excision initial
data [48] and have equal masses and equal spins aligned or anti-aligned with the
orbital angular momentum.

In this paper, we present technical improvements that have enabled us to simulate
BBHs with black-hole spins up to χ = 0.994 (i.e., Erot(0.994)/Erot(1) = 87.1%)
and to complete the first nearly extremal BBH simulation that includes precession.
We compare the results of these simulations with analytical models describing the
remnant properties (e.g. final spin and total radiated energy) as a function of the
initial black-hole spins; these models were constructed using lower-spin simulations
and then extrapolated to higher spins. We measure the slow increase in mass (“tidal
heating”) and decrease in spin (“tidal torquing”) of the individual black holes before
merger, and we compare these measurements with perturbative calculations of the
same quantities. We also compare gravitational waveforms from these simulations
with post-Newtonian and effective-one-body [49] models.

The methods described here allow us to robustly explore the portion of the BBH
parameter space where one or both black holes are nearly extremal. Simulations
using these methods will enable us to calibrate and validate analytic waveform
models, construct improved models of the dependence of remnant properties on the
initial masses and spins of the black holes, and explore the dynamics of the strongly
warped spacetime during the merger. In a companion paper, we use these methods
to explore the extremality of apparent horizons in numerical simulations [50].

The remainder of this paper is organized as follows. We summarize our techniques in
Sec. 3.3, focusing on new improvements to our algorithm that enable us to simulate
higher black-hole spins more robustly. We present three new simulations in Sec. 3.4,
and we present results in Sec. 3.5, including a comparison of the emitted gravitational
waveforms with analytical predictions and also a comparison of the evolution of
the black-hole masses and spins with analytic predictions. We briefly conclude in
Sec. 3.6.

3.3 Techniques
We carry out numerical simulations with the Spectral Einstein Code (SpEC) [47]. We
construct [51] quasi-equilibrium [48, 52] constraint-satisfying [53] initial data based
on a weighted superposition of two boosted, spinning Kerr-Schild black holes [48].
We use an iterative method to produce initial data with low eccentricity [54–56].

We use a generalized harmonic formulation [57–60] of Einstein’s equations and
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damped harmonic gauge [61–63] to evolve the initial data. The adaptively-refined [36,
64] grid extends from pure-outflow excision boundaries just inside the apparent
horizons [63, 65–67] to an artificial outer boundary, where we enforce constraint-
preserving boundary conditions [60, 68, 69]. The grid has only one excision boundary
after the holes merge [65, 66]. We use a pseudospectral fast-flow algorithm [70] to
find apparent horizons, and we compute spins on these apparent horizons using the
approximate Killing vector formalism of Cook, Whiting, and Owen [71, 72].

In the remainder of this section, we describe new techniques that allow simulations
of binaries with large black-hole spins. Large spins are difficult for two reasons. First,
the metric gradients near the black-hole horizons become larger with larger spin,
making increased numerical resolution necessary in this region. Second, black-hole
excision is more difficult: in SpEC, we remove the physical singularity inside each
black hole by placing an artificial excision boundary just inside each apparent
horizon and evolve only the region exterior to all excision boundaries. We find that
the maximum required coordinate distance between an excision boundary and the
corresponding horizon becomes smaller with larger spin, so that our algorithm for
dynamically adjusting the excision boundaries to track the size, shape, and motion of
the horizons must be more accurate. We consider both of these difficulties below.

Not all of the improvements discussed here were necessary for all of the simulations
described in Sec. 3.4. For example, the simulation discussed in Sec. 3.4 succeeded
without some of the grid and control system improvements; however, these improve-
ments became necessary when simulating even larger black-hole spins (Sec. 3.4) or
allowing generic spin directions and unequal masses (Sec. 3.4).

Grid improvements
Meeting the need for high resolution near the horizons is accomplished via spectral
adaptive mesh refinement [64]. This includes both p-type refinement (changing the
number of collocation points in a given spectral subdomain) and h-type refinement
(adding, removing, or changing the distribution of subdomains). The simulations
described here used the algorithm detailed in [64], with adjustments to default
parameters so as to allow for higher resolution. In particular: We increased the
number of radial collocation points in a spherical subdomain that forces h-refinement
from 20 points to 40, we disabled angular h-refinement in the spherical subdomains
that touch the excision boundary so as to retain a single spherical subdomain at this
boundary, and we increased the allowed number of spherical-harmonic coefficients
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in spherical shells from L = 40 to L = 80. Note that most of these changes (such as
allowing up to L = 80) were necessary only for a small portion of the simulation
when the horizons are highly distorted, such as during the initial “junk radiation”
transients (when spurious gravitational radiation is emitted as the BBH relaxes to
equilibrium) and near the moment of merger.

We also reduced the initial distance between the apparent horizons and the excision
boundaries. To understand this change, note that when solving elliptic equations for
initial data, the excision boundaries are made to coincide exactly with the apparent
horizons via boundary conditions imposed on those surfaces. But for the evolution,
the excision boundaries must be slightly inside the horizons, so that the horizons
are fully contained in the computational domain and therefore can be determined
by the apparent horizon finder. To accomplish this, after the initial data have been
determined, these data are extrapolated slightly inside the horizons to a new excision
boundary, before the evolution begins. For large spins, this extrapolation occurs in
the region where metric gradients are growing rapidly as r decreases, so placing the
excision boundary at a larger r reduces those gradients. To carry out some of the
simulations shown here, we moved the initial excision boundary radius from 94% to
98% of the initial horizon radius.

Control system improvements
Several of the improvements necessary for handling high spins involve control systems
used to adjust mappings between coordinate systems. These control systems and
the mappings are described in detail in [66]. Here we briefly summarize important
points, and we discuss key differences from [66].

Summary of size and shape control systems

In SpEC, we remove the physical singularity inside each black hole by placing an
artificial excision boundary just inside each apparent horizon, evolving only the
region exterior to all excision boundaries. We use multiple coordinate systems to
handle excision of black holes that are moving and changing shape [63, 65, 66,
73–76]. We call “inertial coordinates” x̄i those asymptotically inertial coordinates in
which the black holes orbit each other, have a distorted and dynamical shape, and
approach each other as energy is lost to gravitational radiation. We apply spectral
methods in a different coordinate system, “grid coordinates” xi, in which the excision
boundaries are spherical and time-independent. We connect these two coordinate
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systems with an analytic mapping functionM : xi → x̄i that depends on a set of
time-dependent parameters λ(t). These parameters λ(t) are adjusted automatically
by feedback control systems so that, as the apparent horizons of the black holes
move and change shape (in the inertial frame), the excision boundaries are mapped
to inertial-coordinate surfaces that follow this motion and remain just inside the
apparent horizons.

The control of all parameters λ(t) is accomplished in the same way, using a general
control system we have developed, as described in [66]. The part of the algorithm
that distinguishes one λ(t) from another is the specification of the control error
Q(t), which is different for each control parameter. For example, the λScaling(t) that
represents the distance between the excision boundaries has a different Q(t) than the
matrix λRotation(t) that represents the rotation of the inertial coordinates with respect
to the grid coordinates. If there exists a desired value of λ(t), call it λtarget, which
depends on observables A (such as the positions or shapes of the apparent horizons)
but does not depend on λ itself, then we define

Q(t) = λtarget(A) − λ(t). (3.1)

For more general situations in which λtarget depends on λ itself, we generalize the
above definition: we require that λ takes on its desired value when Q = 0, and we
require that

∂Q
∂λ
= −1 + O(Q). (3.2)

Given Q(t), our algorithm adjusts the corresponding λ(t) so that Q(t) is driven
towards zero; this driving occurs on a timescale τd that is determined dynamically
and that is different for each control system.

The full map from grid to inertial coordinates is x̄i =Mxi, where

M = MTranslation ◦MRotation ◦MScaling

◦MSkew ◦MCutX ◦MShape.
(3.3)

Each of these maps is described in detail in Sec. 4 of [66].

Shape control. Here we are concerned only with the last map,MShape, which is
defined as:

xi 7→ xi *
,
1 −

∑
H

fH (rH, θH, φH )
rH

∑
`m

Ỳ m(θH, φH )λH
`m(t)+

-
. (3.4)

The index H goes over each of the two excised regions A and B, and the map is
applied to the grid-frame coordinates. The polar coordinates (rH, θH, φH ) centered
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about excised region H are defined in the usual way, the quantities Ỳ m(θH, φH ) are
spherical harmonics, and λH

`m(t) are expansion coefficients that parameterize the
map near excision region H; these λH

`m(t) are the coefficients that we adjust using
a control system. The function fH (rH, θH, φH ) is chosen to be unity near excision
region H and zero near the other excision region, so that the distortion maps for the
two black holes are decoupled; see Eq. 72 and Fig. 4 of [66] for a precise definition
of fH (rH, θH, φH ). In the following, the control systems for each excised region
H, while independent, are identical in operation, so we will omit the H labels for
simplicity.

We control λ`m(t) so that each excision boundary is driven to the same shape as the
corresponding apparent horizon; this results in conditions on λ`m(t) for ` > 0, but
leaves λ00(t) unconstrained [66].

Size control. The size of the excision boundary, as encoded in the remaining
coefficient λ00(t), must satisfy two conditions.

Horizon tracking. The first is that the excision boundary remains inside the apparent
horizon. To satisfy this condition, we first write the shape of each apparent horizon
as an expansion in spherical harmonics, parameterized in terms of polar coordinates
about the center of the corresponding excision boundary,

r̂AH(θ̂, φ̂) =
∑
`m

Ŝ`mỲ m(θ̂, φ̂), (3.5)

where the intermediate frame x̂i is connected to the grid frame by the map

MDistortion =MCutX ◦MShape. (3.6)

By construction,MDistortion leaves invariant the centers of the excision boundaries,
and the angles with respect to these centers. Then we choose

Q = ˙̂S00(∆r − 1) − λ̇00 (3.7)

where
∆r = 1 −

〈r̂EB〉

〈r̂AH〉
(3.8)

is the relative difference between the average radius of the apparent horizon (in the
intermediate frame) and the average radius of the excision boundary. The angle
brackets in Eq. (3.8) represent averaging over angles. Choosing Q(t) according to
Eq. (3.7) drives d/dt(∆r) towards zero, so that the excision boundary remains a fixed
(relative) distance inside the apparent horizon.
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Characteristic speed tracking. The second condition that must be satisfied by λ00(t)
involves characteristic speeds of the evolved Einstein equations: well-posedness of
our system of equations requires that all of the characteristic speeds be non-negative,
i.e. characteristic fields must flow into the black hole. The minimum characteristic
speed at each excision boundary is given by

v = −α − β̄i n̄i − n̄i
∂ x̄i

∂t
, (3.9)

where α is the lapse, β̄i is the shift, and n̄i is the normal to the excision boundary
pointing out of the computational domain, i.e., toward the center of the hole. It is
possible to write [66]

v = v0 + n̂i
xi

r
Y00λ̇00, (3.10)

where v0 collects all terms that are independent of λ̇00. Therefore, a control system
that controls λ̇00 and drives v to some target value vT can be constructed by defining
the control error

Q = (min(v) − vT )/〈−Ξ〉, (3.11)

where
Ξ = n̂i

xi

r
Y00, (3.12)

and the minimum is over the excision boundary. Note that Ξ < 0 because n̂i and xi/r

point in opposite directions.

Switching between horizon and characteristic speed tracking. Note that Eqs. (3.7)
and (3.11) specify two different control systems that control the same degree of
freedom, λ00: the first control system, which we call “horizon tracking”, adjusts λ̇00

to control ∆r, and the other, which we call “characteristic speed tracking”, adjusts
λ̇00 to control v. Both ∆r and v must remain nonnegative for a successful evolution,
but we cannot use both Eqs. (3.7) and (3.11) simultaneously. Furthermore, changes
in λ̇00 affect ∆r and v in the opposite direction: if λ̇00 increases, ∆r increases, but
the characteristic speed v decreases.

In practice (Sec. 3.3), we now alternate between the two control systems, Eqs. (3.7)
and (3.11). We monitor both v and ∆r as functions of time and predict whether either
of these quantities is likely to become negative in the immediate future; if so, we
estimate the timescale τv or τ∆r on which this will occur. If τ∆r is small enough, i.e.
∆r is in imminent danger of becoming negative, we use Eq. (3.7) to control ∆r. If
τv is small enough that v is in danger of becoming negative, we use Eq. (3.11) to
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control v. The details of how we make these decisions have been improved since the
description in Sec. 5.3 of [66], so we describe the improved algorithm below.

Improved choice of control system timescales

We now describe improvements in the control systems that were necessary for our
new high-spin simulations to succeed.

Comoving characteristic speed as a control system diagnostic. We define a new
quantity vc which we call the comoving characteristic speed:

vc = − α − β̄
i n̄i − n̄i

∂ x̄i

∂t̂

+ n̂i
xi

r


Y00

˙̂S00(∆r − 1) +
∑
`>0

Ỳ m(θ, φ)λ̇`m(t)

. (3.13)

The comoving characteristic speed vc is what the characteristic speed v would be
if Q(t) in Eq. (3.7) were exactly zero, i.e. if ∆r were constant in time. In other
words, if we turn on horizon tracking, the control system drives v toward vc. This
tells us (for instance) that if we find vc < 0, we should not use horizon tracking,
since horizon tracking would drive v to a negative value. The instantaneous value
of vc is independent of λ̇00 and roughly independent of λ00; the only dependence
on λ00 comes from the smooth spatial variation of the metric functions. Hence, vc

is a useful quantity for separating the effects of the control system for λ̇00 from the
effects of other control systems.

One way we use vc is in determining whether our control system for λ̇00 will fail.
During a simulation, vc is usually positive, but it routinely becomes negative for short
periods of time, particularly when the shapes of the horizons are changing rapidly,
for example near t = 0 when the black holes are ringing down from initial “junk
radiation” transients. However, if vc becomes negative and remains so indefinitely,
our control system for λ̇00 must eventually fail. This is because for v > 0 and vc < 0,
∆r must be decreasing, so if we keep v > 0 the excision boundary will eventually
intersect the apparent horizon.

Control error damping timescale improvements. For many of the high-spin SpEC
simulations that failed before we made the improvements described in this paper, we
observed that vc < 0 for an extended period of time. This was caused by inaccurate
control systems for the λ(t) parameters other than λ00; in particular, the shape
parameters λ`m for ` > 0. In other words, the shape and position of the excision
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boundary differed from the shape and position of the horizon by a sufficient amount
that it was not possible to make both v > 0 and ∆r > 0 everywhere by adjusting only
the radial motion of the excision boundary, λ00.

This particular problem was fixed by changing the algorithm for setting the tolerance
on the control error Q(t), for all Q(t) except Q00. Associated with each of our control
systems is a timescale parameter τd which is adjusted dynamically. The control error
Q(t) is damped like e−t/τd , under the assumption that τd is smaller than all other
timescales in the problem. Therefore decreasing τd results in smaller values of Q(t).
The previous method of adjusting τd is described in Sec. 3.3 of [66]: at regular time
intervals ti, the timescale is changed according to

τi+1
d = βτi

d, (3.14)

where

β =




0.99, if Q̇/Q > −1/2τd and |Q | or |Q̇τd | > QMax
t

1.01, if |Q | < QMin
t and |Q̇τd | < QMin

t

1, otherwise.
(3.15)

Here QMin
t and QMax

t are thresholds for the control error Q, set to constant values

QMax
t =

2 × 10−3

mA/mB + mB/mA
, (3.16)

QMin
t =

1
4

QMax
t , (3.17)

where mA and mB are the Christodoulou masses of the two black holes.

In the new algorithm, we make three changes. The first is that QMax
t is no longer a

constant: instead, it is chosen to be QMax
t = a∆rmin, where a is a constant (typically

chosen to be 0.05(mA + mB) for those Q values with dimensions of length, and 0.05
for those Q values that are dimensionless) and ∆rmin is the minimum relative distance
between the excision boundary and the apparent horizon:

∆rmin = min
θ̂,φ̂

(
1 −

r̂EB(θ̂, φ̂)
r̂AH(θ̂, φ̂)

)
. (3.18)

The second change is that we define an estimate of the time that the horizon will
cross the excision surface

τ∆rcross = −∆rmin

(
d
dt
∆rmin

)−1
, (3.19)
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Figure 3.1: The control error Q(t) associated with one particular control system for
two different S++0.994 simulations which differ only in the treatment of QMax

t for that
control system. The black dashed curve shows the case in which QMax

t is a constant,
given by Eq. (3.16), and the red solid curve shows the case in which QMax

t is chosen
to be 0.05∆rmin, with ∆rmin given by Eq. (3.18). The former simulation crashes at
t ∼ 50M .

and if τ∆rcross > 0 and τi
d > τ∆rcross, then we set τi+1

d = τ∆rcross instead of using
Eq. (3.14).

Both of the above changes force each Q(t) to be closer to zero when the excision
boundary approaches the horizon. A third, minor, change we make in the algorithm
affects only the behavior of Q(t) at early times: the initial values of each τd were
decreased so that eachQ(t) is smaller at earlier times; these initial values are specified
separately from the tolerances QMax

t that determine when τd is modified. The effect
of the first change, setting QMax

t proportional to ∆rmin, is illustrated in Fig. 3.1 for one
particular control system.1 In Fig. 3.1 and the remainder of the paper, M ≡ mA +mB

1 The Q(t) illustrated here is the one for the control system that computes a smooth approximation
r̂appx

AH (t) to the average horizon radius; this approximate value is used to compute ˙̂S00 and ∆r in
Eq. (3.7), in order to reduce the number of calls to the computationally expensive horizon finder (see
section 7 and Eq. (108) of [66] for details).
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is the sum of the Christodoulou masses of the two black holes at the time trelax when
the initial “junk radiation” transients have decayed away.

Size control: switching between Eqs. (3.7) and (3.11).

start
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Horizon tracking

vc < 0 or v̇c < 0
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char speed ctrl,
vT → σ5v,
τd → τv
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τd → τ∆rmin
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Figure 3.2: Flowchart illustrating how the control system for λ00 switches between
horizon tracking (Q given by Eq. (3.7)) and characteristic speed control (Q given by
Eq. (3.11)), and how the control system changes values of τd and vT . The yellow
diamonds labeled “v in danger” and “∆rmin in danger” are illustrated in separate
flowcharts in Fig. 3.3. Red final states indicate horizon tracking, purple final states
indicate characteristic speed control, and the green final state indicates that no change
is made. The algorithm is described in detail in § 3.3.

At every time step, the control system for λ00 is governed by a Q given by either
Eq. (3.7) or Eq. (3.11), with an associated damping timescale τd and (if using
characteristic speed control) a target speed vT . At regular intervals (typically every
time step), the algorithm has an opportunity to change from using Eq. (3.7) to using
Eq. (3.11) or vice versa, and to choose a new value of τd and (if using characteristic
speed control) vT . Here we describe how we make these choices. A previous version
of this algorithm was described in [66], but many improvements have been made
since then. The algorithm is summarized by the flowcharts shown in Figs. 3.2 and 3.3.
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Figure 3.3: Flowcharts illustrating how the characteristic speed v (left) and the
minimum distance between the horizon and the excision boundary ∆rmin (right) are
deemed in danger of becoming negative. Each of these flowcharts is represented as a
yellow diamond in Fig. 3.2.

Because the goal of the λ00 control system is to keep both v and ∆rmin positive,
we regularly monitor v and ∆rmin as functions of time. We predict whether either
of these quantities is likely to become negative in the immediate future, and if so,
we estimate the timescale τv or τ∆rmin on which this will occur, using the method
described in Appendix C of [66]. Because the sign of vc is important to the success
of horizon tracking, we also monitor vc as a function of time, and if it is positive and
decreasing, we predict the timescale τvc on which it will become negative. If v, vc,
or ∆rmin are increasing instead of decreasing, we define the corresponding timescale
τv, τvc , or τ∆rmin to be infinite.

We begin by determining whether v is in imminent danger of becoming negative,
so that some immediate action must be taken to prevent this from occurring. We
regard v to be in danger if τv < τd and τv < τ∆rmin . Furthermore, if characteristic
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speed control is in effect, we additionally require τv < σ3τd and v < σ4vT to deem v

in danger; here σ3 . 1 and σ4 ∼ 1 are constants, typically chosen to be 0.99 and
1.1, respectively2. The first requirement, τv < σ3τd , prevents the algorithm from
switching back and forth between characteristic speed control and horizon tracking
on each time step. The second requirement, v < σ4vT , prevents the control system
from rapidly decreasing the characteristic speed to achieve a target vT that is less
than v.

If v is deemed to be in danger, the action taken to prevent v from becoming negative
depends on the current state of the control system. If characteristic speed control is in
effect, then it remains in effect, and τd is set equal to τv in order to drive v towards vT

more quickly. If horizon tracking is in effect, and if vc < 0 or vc is decreasing, then
characteristic speed control goes into effect, with vT = σ5v, and τd is left unchanged.
The constant σ5, typically 1.01, prevents the control system from switching back
and forth on each timestep. Finally, if horizon tracking is in effect, and if vc > 0 and
vc is nondecreasing, then horizon tracking remains in effect and we set τd equal to τv .
This change is all that is required because horizon tracking will drive v toward vc,
which is in no danger of becoming negative.

If v is deemed not to be in danger, then we check whether ∆rmin is in danger of
soon becoming negative. We regard ∆rmin to be in danger if τ∆rmin < τv and if
τ∆rmin < σ1τd , where σ1 is a constant typically chosen to be 20. Furthermore, if
horizon tracking is in effect, we additionally require τ∆rmin < σ6τd to deem τ∆rmin

in danger, where σ6 < 1 is usually chosen to be 0.99; this condition prevents the
control system from switching on every time step.

If ∆rmin is in danger, the action again depends on the state of the control system and
other variables. If horizon tracking is in effect, then it remains in effect, and τd is set
equal to τ∆rmin in order to drive ∆rmin to a constant more quickly. If characteristic
speed control is in effect , vc > 0, and τ∆rmin < σ2τd , then horizon tracking goes into
effect, and τd is set equal to τ∆rmin . Here σ2 is a constant we usually set to 5. We
require vc > 0 to activate horizon tracking because horizon tracking drives v towards
vc, and we wish to maintain v > 0; if horizon tracking becomes active even if vc < 0,
the simulation often fails, as shown in Fig. 3.4. To solve the problem illustrated
by Fig. 3.4, when the code finds that ∆rmin is in danger while characteristic speed
control is in effect and if vc < 0, then the code allows characteristic speed control
to remain in effect, but it sets the new τd to min(τd, τ∆rmin ), and it reduces vT to ηv,

2Labels for control system constants like σi and η are consistent with the notation in Ref. [66].
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Figure 3.4: Characteristic speed v and comoving characteristic speed vc for two
different S++0.994 simulations that differ only in the algorithm for treating the situation
in which ∆rmin is deemed in danger while characteristic speed control is in effect and
vc < 0. The dashed red curve shows v for a simulation in which horizon tracking
becomes active in this situation; the code crashes early, at only t ∼ 0.4M . The solid
red curve shows v for a simulation in which for this situation characteristic speed
control remains in effect, but the target characteristic speed is reduced as described
in the text. The quantity vc is the same for both simulations.

where η < 1 is a constant typically chosen to be 0.125. Reducing the target vT will
reduce v but will increase ∆rmin. If vc < 0 for an extended period of time, several
such reductions of vT will occur as needed. As mentioned above, if vc < 0 and
remains so, this algorithm must eventually fail; the way to prevent such a failure is to
adjust the control systems other than the one for λ00 to attempt to make vc positive,
as discussed in Sec. 3.3.

If neither v nor ∆rmin are in imminent danger of becoming negative, then the system
attempts to find an equilibrium using horizon tracking. If characteristic speed control
is in effect, and if vc > 0, v̇ ≥ 0 , either v > vT or vc > v, and either v̇c ≥ 0 or
τvc > σ2τd , then horizon tracking goes into effect, using the current τd . The purpose
of these various conditions on v, vc, and their derivatives and predicted zero-crossing
times is to prevent horizon tracking from going into effect when it is likely that a
switch back to characteristic speed control will soon be necessary. For example, if
vc is decreasing fast enough so that τvc < σ2τd , then we anticipate that vc will soon
become negative, in which case horizon tracking is inappropriate because it would
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Name SXS ID trelax qr mr

A
mr
B Mωr

orb χr
A

θr
A
/π φr

A
/π χrB θrB/π φrB/π 104e Norb Mf χ f

S++0.99 0177 320 1.0 0.5 0.5 0.0154 0.989 0.00 – 0.989 0.00 – 12.6 25.4 0.888 0.949
S++0.994 0178 640 1.0 0.5 0.5 0.0157 0.994 0.00 – 0.994 0.00 – 8.6 25.4 0.887 0.950
S0.99

0.20 0179 380 1.5 0.6 0.4 0.0148 0.991 0.00 0.73 0.200 0.24 0.23 322.4 23.8 0.922 0.897

Table 3.1: Summary of physical simulation parameters. Data are publicly available
online [77] indexed by their Catalog ID. Quantities with an r superscript are reported
at time t = trelax, the time after the initial “junk radiation” transients have settled
down: q is the mass ratio, mH is the Christodoulou mass of an individual black hole
(where H represents black hole A or B), Mωorb is the orbital frequency (computed
via d2 ~ωorb = ~d × ~̇d, where ~d is the coordinate separation between the black holes),
χH is the dimensionless spin, θH is the angle between ~ωorb and ~χH , and φH is the
angle between the separation vector and the component of ~χH in the orbital plane.
The remaining quantities are eccentricity e, number of orbits Norb from t = 0 to
merger, final Christodoulou mass M f , and final spin magnitude χ f .

drive v towards zero.

The behavior of the control system depends on various constants σi (1 < i < 6) and
η described above; these constants govern decisions made by the algorithm. These
constants have restricted values (e.g. η should not be greater than unity), but they
were chosen without any fine tuning. Changing their values slightly will change
details such as the exact value of τd at a particular timestep, but we expect that small
changes in parameters will not change whether a simulation succeeds or fails, and
will change physical results only at the level of truncation error (because the control
system changes the grid coordinates).

Occasionally when horizon tracking is in effect, we find that the value of ∆rmin is
excessively large or small. If it is excessively small, then τd becomes small, and we
are forced to reduce the timestep in the evolution equations to keep the control system
stable, resulting in a large computational expense. If it is too large, then the excision
boundary lies deep inside the horizon, and excessive computational resources are
needed to resolve the large gradients. Therefore, we allow a drift term to sometimes
be added to Eq. (3.7), as discussed in [66].

3.4 Simulations
Wepresent three new simulations, summarized in Table 3.1. Wewill refer to quantities
defined in Table 3.1 throughout the remainder of this paper. The techniques described
in Sec. 3.3 were essential to the successful completion of these simulations.
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Equal-mass, aligned spins χ = 0.99
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Figure 3.5: The trajectories of the centers of the individual apparent horizons for the
highest resolution of S++0.99.

The first simulation we present, and refer to as S++0.99, is an equal-mass case in which
each black hole has a spin of χ = 0.99 aligned with the orbital angular momentum.
At t = trelax the simulation has Mωorb = 0.0154, where M is the sum of the relaxed
Christodoulou masses. The binary then evolves through 25 orbits, merger and
ringdown. The coordinate trajectories of the black holes are shown in Fig. 3.5. This
simulation took 83 days on 48 cores for the highest resolution.

To assess numerical convergence, we perform several simulations that are identical
except for the numerical resolution, which we label by an integer N . Larger N

corresponds to finer resolution, but the absolute scale of N is different for different
physically distinct simulations. The value of N enters the simulation through the
tolerance in adaptive mesh refinement (AMR): the AMR truncation error tolerance
is chosen to be proportional to e−N . For each value of N , we compute the complex
phase φ of the ` = 2,m = 2 component of Ψ4. We then take the difference ∆φ
between φ computed using otherwise-identical simulations using different values of
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Figure 3.6: Convergence test for S++0.99. Shown are gravitational-wave phase dif-
ferences between Ψ4 computed using different values of the numerical resolution
parameter N . Several differences are shown, and labeled by the values of N that are
compared, e.g. “3-2” means N = 3 versus N = 2. Waveforms are extracted at a
finite radius r = 465M , and no alignment of waveforms was performed.

N .

Figure 3.6 shows these differences for S++0.99. No alignment of the waveforms in
time or phase has been performed. Note the rapid convergence: ∆φ between N = 3
and N = 4 (labeled “4-3") is significantly smaller than ∆φ between the two lower
resolutions. Also note that the difference “3-2" is nearly the same as “4-2", indicating
that this difference effectively measures the numerical truncation error in the N = 2
simulation. Similarly, the difference “4-3" represents the numerical truncation error
in the N = 3 simulation. Furthermore, one would expect that the truncation error in
the N = 4 simulation is smaller than the “4-3” curve by another order of magnitude
(although it would be necessary to run an N = 5 simulation to actually measure this).

In the S++0.99 initial data, the spin of each black hole is 0.99. When the system is
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Figure 3.7: Spin magnitude as a function of time for S++0.99. At early times, the spin
of one of the apparent horizons is shown at resolutions N = 2 (black solid), N = 3
(red dotted) and N = 4 (blue dashed). A closeup of early times is shown in the upper
inset. At late times, the spin of the merged apparent horizon is shown as a function
of time for the same resolutions, and a closeup of late times is shown in the lower
inset.

evolved, the spins decrease very slightly for the first ∼10M as initial transients
propagate away from the horizons, as shown in the upper inset of Fig. 3.7. Then
the spins level off and become roughly constant, but with a small negative slope.
All values of resolution N agree quite well, and the higher two resolutions are
indistinguishable in Fig. 3.7. The spins decrease more rapidly just before merger
(t ∼ 6400M). The common horizon first appears with a spin greater than the final
value, and then relaxes as the remnant black hole settles down, as shown in the lower
inset of Fig. 3.7. The final spin is χ f = 0.948927(3), where the uncertainty is the
difference between the two highest resolution simulations.

The radiated energy fraction Erad is the relative change in energy of the binary from
t = −∞ to t = ∞ and can be computed from

Erad ≡ 1 −
E∞
E−∞

= 1 −
M f

M
. (3.20)
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The final Christodoulou mass M f is the energy of the system at t = ∞, because
the remnant is in equilibrium at the end of the simulation; the total Christodoulou
mass M at t = trelax is the energy of the system at t = −∞, because the individual
black-hole masses change by less than one part in 106 between t = −∞ and t = trelax

(see, e.g. Eq. 14 in Ref. [78]). We find that Erad = 11.26593(3)%, where the
uncertainty is again the difference between the two highest resolutions.

The formulas from Ref. [41] predict χ f = 0.94933(8) and a radiated energy fraction
Erad = 11.24(2)%, in good agreement with the simulations. While the fractional
differences between the measured and predicted values are small, their uncertainty
intervals are disjoint, i.e. our measurements lie outside the uncertainty interval of
the formulas. This is because the error estimates in Ref. [41] did not account for
the observed correlated trends in the fit residuals (as seen in the lower panels of
Figs. 6 and 8 of Ref. [41]). As a result, extrapolating these formulas to initial spins
above χ = 0.97 is expected to overestimate the final spin (see Fig. 6 in Ref. [41])
and underestimate the final radiated energy (see Fig. 8 in Ref. [41]), and this is what
we find with S++0.99.

Equal-mass, aligned spins χ = 0.994
We repeated the equal-mass aligned-spin simulation above, but with a larger spin.
We refer to this case as S++0.994. The initial data were chosen with χ = 0.995 for each
black hole, but the spins drop to χ = 0.9942 after about t = 10M of evolution time,
a much smaller timescale than the relaxation time trelax (this rapid initial decrease
in spin can also be seen for S++0.99 in the upper inset of Fig. 3.7). The simulation
S++0.994 represents the largest spin ever simulated for a black-hole binary. It has
Mωorb = 0.0157 at t = trelax, and then proceeds through 25 orbits, merger, and
ringdown. The highest resolution completed in approximately 71 days on 48 cores.
Note that this simulation, S++0.994, was computationally cheaper than the lower-spin
simulation, S++0.99, and achieved a smaller overall phase error (see Figs. 3.6 and 3.8).
This is due to parallelization, load-balancing, and AMR improvements [64] that were
done between the time that the S++0.99 and S++0.994 simulations were carried out; for the
same version of SpEC, there is actually a steep increase in computational cost as a
function of spin.

Obtaining convergence was more difficult for this simulation than for S++0.99. The
reason is that it is difficult to fully resolve the initial transients, sometimes called “junk
radiation”, that result from imperfect initial data. If these transients are unresolved,
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Figure 3.8: Convergence test for S++0.994. Labels are the same as for Fig. 3.6. For
N , 5, the simulations were started at tbranch = 1414M , using the N = 5 solution as
initial data.

then the small changes in masses, spins, and trajectories caused by these transients are
effectively random, and therefore otherwise-identical simulations run with different
values of resolution N will differ by random small amounts that will not converge
with increasing N . So to investigate convergence, we remove the initial transients in
the following way. We first carry out a simulation with one value of N , call it Nbase.
In the case of S++0.994, Nbase represents the highest resolution. Then we choose some
fiducial time t = tbranch > trelax at which we decide that the transients have decayed
away3. We then carry out simulations with N , Nbase starting at t = tbranch, using
the N = Nbase solution as initial data. This procedure removes the effects of the
transients from our convergence tests.

However, this procedure alone was insufficient to achieve convergence. When
convergence is rapid enough in a particular subdomain so that adding a single grid
point results in a large decrease in truncation error, it is possible for two different
AMR truncation error tolerances, e.g. eN and eN−1, to result in the same number of

3For the simulations presented here, tbranch was chosen ad hoc. As long as tbranch > trelax, we do
not expect the results to depend sensitively on tbranch.
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grid points for that subdomain. This makes the truncation error in that subdomain
identical for two different values of N , which spoils convergence tests for simulations
with those values of N . To remedy this problem in such cases, we increase the
spacing in truncation error tolerance as a function of level N : the truncation error
tolerance is proportional to 10N instead of eN . This, combined with the procedure to
remove the effect of transients, results in good convergence, as shown in Fig. 3.8.

The spin of the remnant black hole is χ f = 0.949931(5) and the radiated energy
fraction is Erad = 11.351(5)%. The formulas in Ref. [41] predict χ f = 0.95021(8)
and Erad = 11.30(2)%, in good agreement with the simulations. However, the
uncertainty intervals of the measured and predicted values are disjoint for the same
reason as explained in Sec. 3.4.

Unequal-mass, precessing
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Figure 3.9: Convergence test for S0.99
0.20 . Labels are the same as for Figure 3.6. For

N , 4, the simulations were started at tbranch = 1362M , using the N = 4 solution as
initial data.

The final simulation we present is an unequal-mass case with q = 1.5, in which the
larger black hole has a spin of χ = 0.99 aligned with the orbital angular momentum,
while the smaller black hole has a spin magnitude of χ = 0.2 in an arbitrary
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direction misaligned with the orbital angular momentum. We will refer to this case
as S0.99

0.20 , using a notation similar to that introduced earlier. The simulation has
Mωorb = 0.0148 at t = trelax, and then proceeds through 23 orbits, merger, and
ringdown. This simulation took approximately 26 days on 48 cores for the highest
resolution using the same optimized version of SpEC as the S++0.994 case described in
Sec. 3.4.

Figure 3.10: Coordinate trajectories (green and purple lines) of the black holes
and coordinate shapes of the individual and common apparent horizons (surfaces)
at the moment of merger, for S0.99

0.20 . The horizons are colored according to their
vorticity [79].

We found that for S0.99
0.20 we needed to remove the effect of unresolved initial transients

and increase the spacing in AMR truncation error tolerance to obtain acceptable
convergence results. To do this we followed the same procedure as for S++0.994,
described in Sec. 3.4. Figure 3.9 shows good convergence of the gravitational-wave
phase difference when using this procedure.

Figure 3.10 shows the trajectories of the centers of the apparent horizons for this
simulation, as well as the individual apparent horizons and the common apparent
horizon at the moment when the common horizon first appears. Trajectories and
horizon shapes are shown in the asymptotically inertial coordinate system used in the
simulation. Because the spin of the smaller hole ~χB is not aligned with the orbital
angular momentum, the system precesses, so the trajectories do not lie in a plane.

Figure 3.11 shows the precession of the spin and orbital frequency vectors in S0.99
0.20 .

The spin ~χA and orbital frequency ~ωorb initially point along the z-axis. Because the
misaligned spin ~χB is on the smaller black hole and is much smaller in magnitude
than ~χA, it has a minimal effect on the orbital dynamics, so ~χA and ~ωorb remain near
the z-axis throughout the simulation. Therefore, we consider the precession to be
mild. As angular momentum is carried away by gravitational radiation, the opening
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Figure 3.11: Precession of the spins and orbital frequency for the highest-resolution
simulation N = 4 of S0.99

0.20 . The unit vector spins, χ̂A and χ̂B, and orbital frequency
ω̂orb trace the precession on the unit sphere. The precession curves for N = 2 and
N = 3 converge to the N = 4 curves shown here, and the curves for N = 3 and
N = 4 are nearly indistinguishable.

angles of the precession cones change. The angles of ~ωorb and ~χA with respect to
the z-axis increase from 0◦ at t = 0 to 6◦ and 12◦, respectively, at the time of merger.
In contrast, the angle of ~χB with respect to the z-axis decreases from 45◦ to 12◦.
The spins ~χA and ~χB complete 2.1 and 2.5 precession cycles, respectively, and ~ωorb

completes 2.4 precession cycles.

The spin of the remnant black hole is χ f = 0.89692(5), and the radiated energy
fraction is Erad = 7.8560(8)%. The formulas from Healy et al. (2014) [25] predict
χ f = 0.89686 and Erad = 7.8365%. Even though these predictions lie outside the
numerical uncertainty of the measured values, the agreement is quite good.4

3.5 Results
Spin evolution during inspiral
During the inspiral, the tidal field of each black hole affects its companion, and this
interaction slowly changes the black-hole masses and spins as a function of time.

4 To evaluate the quantities S | | and ∆ | | in Ref. [25], we used the z-component of ~S and ~∆ at trelax,
which should be strictly valid only for non-precessing binaries. Also, the formula for χ f in Ref. [25]
requires evaluating certain quantities at the innermost stable circular orbit (ISCO) of a Kerr black
hole with a spin of χ f , so that χ f is not given in closed form; for simplicity we evaluate the ISCO
quantities using the measured χ f from the simulation.



123

For aligned spins, Alvi [78] has derived perturbative expressions for the time rate
of change of the mass and spin of a black hole in a binary. Chatziioannou, Poisson,
and Yunes (hereafter CPY) [80], have recently extended these expressions to higher
order in perturbation theory. Although CPY’s expressions in Ref. [80] are computed
to 1.5PN beyond leading order (i.e. terms in dS/dt proportional to v15 and terms in
dm/dt proportional to v18, where v2 = M/r is the PN expansion parameter), their
1.5PN terms are incorrect and will be corrected soon [81]; so here we will truncate
CPY’s expressions to 1PN order. Note that the time derivatives in Ref. [80] are
taken with respect to the time t̄ of an observer comoving with one of the black holes;
we instead compute time derivatives with respect to the PN barycentric time t. A
relation between t̄ and t can be found in Ref. [82].

In our simulations we track the apparent horizons as a function of time, and at
frequent time intervals we measure both the surface area and the spin of the horizons.
The spin computation is carried out using the approximate Killing vector formalism
of Cook, Whiting, and Owen [71, 72]. The mass of the black hole is then computed
using Christodoulou’s formula. We compare our numerical results to the analytic
results of Alvi and CPY.

To compare a black-hole mass or spin from a numerical simulation to that of a
perturbative expression, the two quantities must be compared at the same event
along the black hole trajectory. Although waveform quantities at future null infinity
computed by numerical simulations are routinely comparedwithwaveforms computed
by PN expansions, it is not straightforward to compare near-zone quantities like
black-hole masses and spins because of gauge ambiguities. A further complication is
that spin is defined differently for PN and NR; but note that the two definitions appear
to agree well in practice [83]. Here we make two comparisons. The first compares
quantities at the same numerical and perturbative t coordinate. The second assumes
that the orbital angular velocity ωorb = dφ/dt of the black hole in the numerical
simulation can be equated with that of the perturbative expression. Note that in
both the numerical and perturbative cases, the t coordinate becomes the Minkowski
t at infinity, and the φ coordinate is periodic. Because of the approximate helical
Killing vector d/dt +ωorbd/dφ, ωorb is approximately an angular velocity at infinity.
Therefore, one might hope that equating the perturbative and numerical ωorb yields
better agreement than, e.g., equating the radial coordinate r of the simulation with
that of perturbation theory.

Figure 3.12 compares the magnitude of dS/dt of one of the black holes for S++0.994
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Figure 3.12: Magnitude of dS/dt of one of the black holes from S++0.994. Shown are
three numerical resolutions, Alvi’s expression (Eq. (11) of [78]), the 0PN expression,
and the CPY expression [80, 81] to 1PN order. The inset zooms closer to the
high-resolution numerical curve.

with the expressions of both CPY and Alvi5 We include numerical results for three
resolutions in Fig. 3.12 because the magnitude of dS/dt is extremely small and
difficult to resolve. Indeed, the lowest resolution fails to resolve dS/dt until around
t = 6000M , when dS/dt grows to about 10−7M , and the medium resolution fails to
resolve dS/dt only slightly earlier. Note that Alvi’s expression includes some 1.5PN
terms, but ignores 1PN effects such as magnetic-type tidal perturbations and the
difference between the global PN time coordinate and the local time coordinate of
a frame moving along with one of the black holes. Therefore, we plot both Alvi’s
expression in its entirety, and Alvi’s expression truncated to lowest (0PN) order. The
CPY expression includes 0PN and 1PN terms. The CPY and Alvi expressions agree
to 0PN order.

Figure 3.12 shows overall excellent agreement between the PN and numerical
5 Figures 3.12– 3.15 do not change qualitatively if we use S++0.99 instead of S++0.994, so we do not

show plots for S++0.99 here.
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Figure 3.13: Magnitude of dS/dx, where x ≡ (Mωorb)1/3, of one of the black holes
from S++0.994. The top horizontal axis shows t/M of the highest-resolution numerical
simulation, for comparison with values of x.

simulation results. For t . 5500M, all the perturbative curves agree within our
numerical error, and for t . 3500M the CPY 1PN curve agrees remarkably well with
our highest-resolution result. However, by the time the medium resolution simulation
starts to resolve dS/dt at t & 5500M , none of the perturbative approximations agree
with the numerical result within numerical error, with the largest disagreement for the
CPY result. This disagreement at late times is not surprising since all the perturbative
expressions should lose accuracy shortly before merger.

We can eliminate the time coordinate, a possible source of gauge dependence, by
instead plotting dS/dx versus x, where x ≡ (Mωorb)1/3. This is shown in Fig. 3.13.
To obtain dS/dx from dS/dt and to obtain x from t, it is necessary to have some
function x(t). For the numerical curves, this function is obtained from the numerical
time coordinate and the numerical orbital frequency. For the perturbative curves, this
function is the PN expression for x(t) derived from Eq. (4.14) of Ref. [84]. 6 Thus,

6Although x(t) contains terms up to 2PN order, we truncate the perturbative expressions for
dS/dx (and for dS/dt, dm/dt, and dm/dx) at a consistent PN order, i.e. at 0PN for the 0PN curve,
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all the numerical curves in Figs. 3.12 and 3.13 are independent of any perturbative
assumptions, and all the perturbative curves in Figs. 3.12 and 3.13 are independent
of the numerical data, except that the perturbative and numerical t coordinates are
both represented by the same horizontal axis of Fig. 3.12, and the perturbative and
numerical ωorb are both represented by the same horizontal axis of Fig. 3.13.

In Fig. 3.13, the perturbative and numerical expressions agree early in the inspiral, but
not at late times; this is expected because perturbative expressions become inaccurate
for large x. Alvi’s full expression appears to agree with the numerical simulations
slightly better than the others for small x, but that expression diverges from the
numerical result at larger x earlier than the others. Note that Fig. 3.13 emphasizes
late times because the frequency increases very rapidly with time. The small spike in
the numerical curve at x ∼ 0.45 in Fig. 3.13 is caused by a discontinuous change in
the number of spherical-harmonic Ỳ m modes retained by the apparent horizon finder
(the number of modes is chosen adaptively). The resulting discontinuous change in S

is very small (below numerical error), but its effect on dS/dx = (dS/dt)(dx/dt)−1

is magnified because dS/dt and dx/dt are computed using finite differencing with a
fine spacing in t. This change also causes a similar spike at the same value of x in
Fig. 3.15.

Figures 3.14 and 3.15 are similar to Figs. 3.12 and 3.13 except that they show the
change in Christodoulou mass instead of the change in dimensionful spin. Both the
Alvi and CPY formulas agree well with each other and with the numerical result early
in the inspiral, but do not agree at late times. Note that since the derivative of the
mass is smaller (by a factor of v3 in PN) than the derivative of the spin, dm/dt is more
difficult to resolve numerically than dS/dt, as seen by the larger numerical errors in
Figs. 3.14 and 3.15 compared with the numerical errors in Figs. 3.12 and 3.13.

Orbital hangup
During a BBH inspiral, the orbital frequency ωorb secularly evolves along with the
black-hole masses and spins. For equal-mass binaries with equal spins aligned (or
antialigned) with the orbital angular momentum, the number of orbits until merger
increases as a function of ~S · ~L. Damour [85] observed this effect, today commonly
called “orbital hangup”, in an effective-one-bodymodel of the holes’motion; the effect
is a consequence of post-Newtonian spin-orbit coupling [86]. Campanelli, Lousto,
and Zlochower [87] first demonstrated orbital hangup in numerical simulations of

1PN for the CPY curve, and 1.5PN for the Alvi curve.
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Figure 3.14: Magnitude of dm/dt of one of the black holes from S++0.994. Shown are
three numerical resolutions, Alvi’s expression (Eq. (11) of [78]), the 0PN expression,
and the CPY expression [80, 81] truncated to 1PN order. The inset zooms closer to
the high-resolution numerical curve.

merging BBHs.

Instead of examining the number of orbits from the trajectories, we infer the number
of orbits from the dominant ` = m = 2 mode of the emitted gravitational waves7.
We do this because it is easier to define a gauge-invariant time of merger from the
waveforms than from the trajectories; specifically, we define the time of merger as
the time when the waveform amplitude is at a maximum.

Let h22(t) be the −2Y22 spin-weighted spherical harmonic mode of the gravitational
wave strain h(t), and let ω22 be the frequency of h22(t). Figure 3.16 shows the time
evolution of dω22/dt for simulations S++0.99 and S++0.994. For comparison, we also show
results for other simulations with equal masses and equal spins aligned with the
orbital angular momentum [24, 37, 41]. Note that dω22/dt is positive and steadily
increasing: the frequency does not slow down or momentarily remain constant, as a

7Specifically, we extrapolate the gravitational waves measured on a series of concentric shells to
r → ∞, as discussed in detail in Sec. 3.5.
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Figure 3.15: Magnitude of dm/dx, where x ≡ (Mωorb)1/3, of one of the black holes
from S++0.994.

literal interpretation of the term “orbital hangup" might suggest.

Figure 3.17 shows the gravitational-wave cycles accumulated between an initial
gravitational-wave frequency of Mω22 = 0.036 (i.e., an initial orbital frequency of
Mωorb = 0.018) and merger (when the amplitude of h22 peaks). Simulations S++0.99
and S++0.994 reveal that the orbital hangup depends approximately linearly on the initial
spin χ, even at spins that are nearly extremal; however, most of our simulations
only agree with the linear fit to O(0.1%), which is often larger than our estimated
numerical uncertainties. This linearity implies that even near extremality, the orbital
hangup effect is dominated by spin-orbit coupling; resolving nonlinear features in
Fig. 3.17 would require more simulations with higher accuracy.

Comparison with analytic approximants
Wecompare the gravitationalwaveforms fromour simulations to several analyticwave-
form approximants. The numerical waveforms were computed by performing Regge-
Wheeler-Zerilli extraction [88, 89] at a sequence of radii rextr between 100M and
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Figure 3.16: The evolution of the derivative of the gravitational-wave frequency
ω̇22 = dω22/dt, for simulations S++0.99 and S++0.994 and (for comparison) simulations
S++0.8 [41], S++0.85 [41], S++0.9 [41], S++0.95 [41], S++0.97 [37], and S++0.98 [24].

465M , and then extrapolating to I + with a second-order polynomial in 1/rextr using
the open-source GWFrames software package [83, 90, 91]. The TaylorT1, TaylorT4,
and TaylorT5 approximants were constructed using the PostNewtonian module in
GWFrames.8 The EOB approximants were constructed using SEOBNRv2 [49] from
the LIGO Algorithm Library, with the function SimIMRSpinAlignedEOBWaveform
modified to return h22(t). Physical parameters (i.e. initial masses, spin vectors, and
orbital frequency vector) for the approximants were taken from the highest resolution
from each simulation at the relaxation time. Eccentricity in the NR simulation is not
taken into account when constructing the approximants.

Because SEOBNRv2 is strictly valid only for non-precessing systems, and therefore
accepts only scalar values of the spins as input, it is not obvious what to input for
the case of S0.99

0.20 . We pass the z-component of the spins into the model. If instead
we pass the spin magnitudes, we see larger disagreements between the EOB and
numerical waveforms for S0.99

0.20 , likely due to a change in the strength of spin-orbit
coupling. We will see below that non-precessing EOB agrees remarkably well with

8To our knowledge, the PostNewtonian module includes all terms currently found in the
literature. Non-spin terms are given up to 4.0 PN order for the binding energy [13, 92]; 3.5 PN [13]
with incomplete 4.0 PN information [93] for the flux; and 3.5 PN for the waveform modes [94–96].
The spin-orbit terms are given to 4.0 PN in the binding energy [97]; 4.0 PN in flux [98]; and 2.0 PN
in the waveform modes [91, 99]. Terms quadratic in spin are given to 2.0 PN order in the binding
energy and flux [100, 101], and waveform modes [91, 99, 100].
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Figure 3.17: The number of gravitational-wave cycles as a function of the initial
spin χ, measured after the initial relaxation, for simulations S++0.99 and S++0.994 and
(for comparison) simulations S++0.8 [41], S++0.85 [41], S++0.9 [41], S++0.95 [41], S++0.96 [50],
S++0.97 [37], and S++0.98 [24]. Upper panel: The number of gravitational-wave cycles of
h22 accumulated between a gravitational-wave frequency Mω22 = 0.036 and merger
(i.e., the time when the amplitude of h22 peaks). The dashed line is a linear fit to the
data. Lower panel: Fractional difference (“residual”) between our results and the
linear fit, with uncertainties for simulations except S++0.85 (which we ran at only one
resolution) estimated as differences between medium and high numerical resolutions.

S0.99
0.20 despite the mild precession of this simulation.

In Figs. 3.18, 3.19, and 3.20, we show for S++0.99, S++0.994, and S0.99
0.20 (respectively) the

phase difference ∆φ of h22 between the highest numerical resolution and the PN and
EOB approximants. We also include ∆φ between the highest numerical resolution
and other numerical resolutions for comparison. To compute ∆φ, we first align each
waveform with the highest resolution numerical-relativity (NR) waveform using the
procedure prescribed in Ref. [102]: we find the time offset δt and phase offset δφ
that minimize Φ(δt, δφ), a measure of the phase difference in h22, given by

Φ(δt, δφ) ≡
∫ t2

t1

[
φa (t) − φb(t + δt) − δφ

]2 dt. (3.21)
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Figure 3.18: Phase differences ∆φ of h22 as a function of retarded time before merger
for S++0.99. Shown are differences between the highest numerical resolution and several
analytic approximants. Differences between the highest numerical resolution and
other numerical resolutions are shown for comparison. The waveforms are aligned
in the time interval delimited by the black triangles.

This can be reduced to a one-dimensional minimization problem by computing the
optimal δφ analytically, given any value of δt: differentiating Eq. (3.21) with respect
to δφ, setting the result to zero, and solving for δφ yields

δφ(δt) =
1

t2 − t1

∫ t2

t1

[
φa (t) − φb(t + δt)

]
dt. (3.22)

The alignment interval t ∈ [t1, t2] is the same for all comparisons with a particular
simulation. The lower bound t1 is chosen such that the junk radiation has left
the computational domain for all numerical resolutions, specifically t1 = max[t0 +

3(trelax − t0)], where t0 is the time at the beginning of the waveform. The upper
bound t2 is chosen such that the gravitational-wave frequency changes by at least
10% during the interval [t1, t2], as suggested in Ref. [103].

We have also computed ∆φ with a few other alignment methods, including the three-
dimensional minimization of complex h22 differences in Ajith et al. 2008 (Eq. 4.9
in Ref. [104]) and the four-dimensional minimization over time and frame-rotation
degrees of freedom in Boyle 2013 (Eq. 22 in Ref. [90]). We have found that our
results are qualitatively independent of alignment method.

The TaylorT family of PN approximants shows the largest discrepancy with our
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Figure 3.19: Phase differences ∆φ of h22 between numerical and approximant data
for S++0.994. Labels are the same as for Fig. 3.18.

highest numerical resolution. Phase errors between PN and NR waveforms grow to
several radians before the merger in every case. The smallest phase errors outside
the alignment interval occur for S0.99

0.20 , which is likely a consequence of the smaller
black hole having a moderate spin. We find the best agreement with TaylorT1, in
contrast to PN comparisons for other nearly extremal systems [37], which found the
best agreement with TaylorT4 for spins aligned with the orbital angular momentum;
note that the PN waveforms considered in Ref. [37] include fewer higher-order PN
terms than we do here. This is further evidence that agreement with a particular PN
approximant in the TaylorT family depends sensitively on the PN order. Agreement
with a particular PN approximant also depends on the parameters of the simulation
(e.g., Ref. [37]).

The EOB approximant performs significantly better than the PN approximants
for S++0.99 and S++0.994, which is impressive considering that the parameters of these
waveforms are outside the range in which SEOBNRv2was calibrated to NR. Only about
5 radians of phase error is accumulated in S++0.99 and S++0.994. 9 Phase error increases
to a little over 10 radians in S0.99

0.20 , but this case is precessing, and SEOBNRv2 is only
valid for non-precessing systems. However, the precession is mild (cf. Figs. 3.10
and 3.11), which could account for the relatively good agreement.

9Note that SEOBNRv2 was calibrated by minimizing unfaithfulness rather than phase error; it is
possible to have relatively large phase errors even when the unfaithfulness is small [49].
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Figure 3.20: Phase differences ∆φ of h22 between numerical and approximant data
for S0.99

0.20 . Labels are the same as for Fig. 3.18. Note that the Taylor models include
precession but SEOBNRv2 does not. However, the precession of S0.99

0.20 is mild so the
numerical waveform still agrees reasonably well with SEOBNRv2.

The analytic approximants show much larger ∆φ at early times for S0.99
0.20 (see

Fig. 3.20) than for S++0.99 and S++0.994. We conjecture that this is due to the relatively
large eccentricity of S0.99

0.20 (see Table 3.1), whereas the PN and EOB models used
here are non-eccentric. Note that we use precessing PN models for comparing to
S0.99

0.20 .

The phase errors between numerical waveforms computed at different resolutions are
convergent. Because of the rapid convergence, the difference between the two highest
numerical resolutions represents the numerical error in the second highest resolution;
to determine the numerical error of the highest resolution waveform, we would need
to perform a simulation at an even higher resolution. As a conservative estimate
of the numerical error of the highest resolution waveform, we use the difference
between the two highest-resolution waveforms as an upper bound. The upper bound
of the numerical phase error of the highest resolution simulation, computed in this
way, is thus about 0.2 radians for S++0.99 and S++0.994 and about 1 radian for S0.99

0.20 .

In Figs. 3.18, 3.19, and 3.20, the larger numerical phase errors in the lower resolutions
of S++0.994 and S0.99

0.20 are expected, because these simulations use a larger spacing in
AMR truncation error tolerance as described in Sec. 3.4. The larger spacing increases
relative phase errors between successive numerical resolutions. Nevertheless, our
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comparisons show that numerical errors are much smaller than the errors in the PN
and EOB waveforms for systems with nearly extremal black holes, indicating that
these numerical waveforms will be useful for calibrating and extending the regime of
validity for approximate waveforms.

3.6 Conclusion
We have presented improved methods for simulating the binary evolution of nearly
extremal black holes, i.e., black holes with spins above the Bowen-York limit of
χ = 0.93. These techniques enable robust simulations in the portion of BBH
parameter space where the black holes have very large spins. Because nearly
extremal black holes might exist in astrophysical binaries, these simulations will
be important for helping to maximize what we can learn from gravitational-wave
experiments.

We have applied our new methods to carry out the first unequal-mass, mildly-
precessing BBH simulation containing a nearly extremal black hole, and to extend
aligned-spin BBH simulations to spin magnitudes that begin to approach the Novikov-
Thorne limit of χ = 0.998. From these new simulations, we have learned that
perturbative predictions for tidal heating and tidal torquing agree well with the
numerics at low frequency, even for nearly extremal spins. However, we find that our
numerical errors are still large enough that we cannot reliably distinguish between
0PN and 1PN predictions. Doing so would require further investigation with more
accurate simulations.

While many physical quantities depend on χ in an extremely nonlinear fashion, we
find that the number of orbits starting from a chosen orbital frequency (i.e., the orbital
hangup) scales approximately linearly with χ. Finally, after demonstrating numerical
convergence, we have found that our numerical waveforms agree with SEOBNRv2
much better than with TaylorT PN approximants, even though the parameters for
these simulations are outside the range in which SEOBNRv2 was calibrated. However,
even the SEOBNRv2 waveforms disagree with our numerical waveforms by more than
our numerical truncation error. This indicates that these simulations are sufficiently
accurate to validate and further improve analytical waveform approximants for future
gravitational-wave observations. How significant these improvements will be for
Advanced LIGO is the subject of future work.
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4.1 Abstract
It is possible to infer the mass and spin of the remnant black hole from binary
black hole mergers by comparing the ringdown gravitational wave signal to results
from studies of perturbed Kerr spacetimes. Typically these studies are based on the
fundamental quasinormal mode of the dominant ` = m = 2 harmonic. By modeling
the ringdown of accurate numerical relativity simulations, we find, in agreement
with previous findings, that the fundamental mode alone is insufficient to recover the
true underlying mass and spin, unless the analysis is started very late in the ringdown.
Including higher overtones associated with this ` = m = 2 harmonic resolves this
issue, and provides an unbiased estimate of the true remnant parameters. Further,
including overtones allows for the modeling of the ringdown signal for all times
beyond the peak strain amplitude, indicating that the linear quasinormal regime
starts much sooner than previously expected. This implies that the spacetime is well
described as a linearly perturbed black hole with a fixed mass and spin as early as the
peak. A model for the ringdown beginning at the peak strain amplitude can exploit
the higher signal-to-noise ratio in detectors, reducing uncertainties in the extracted
remnant quantities. These results should be taken into consideration when testing
the no-hair theorem.

4.2 Introduction
The end state of astrophysical binary black hole (BBH) mergers is a perturbed single
black hole (BH) characterized by two parameters: the final remnant mass M f and
spin angular momentum S f [1–3]. The perturbed BH radiates gravitational waves at
a specific set of frequencies over characteristic timescales completely determined by
the mass and spin. The segment of the gravitational wave signal associated with the
single BH’s oscillations is known as the ‘ringdown’ phase, as the perturbed BH rings
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down analogous to a struck bell. The set of frequencies and damping times associated
with a given BH are known as quasinormal modes (QNMs), the damped oscillations
connected to the underlying BH geometry. The modes can be decomposed into
spin-weighted spheroidal harmonics with angular indices (`,m) [4–6]. For each
(`,m), there exists a discrete set of complex frequencies denotedω`mn, where n is the
‘overtone’ index. The oscillatory behavior is described by<(ω`mn), while =(ω`mn)
is related to the damping timescale by τ̀ mn = −=(ω`mn)−1. For a given (`,m), the
overtone index sorts the QNMs in order of decreasing damping timescales, so that
n = 0 corresponds to the least-damped mode (i.e. the longest-lived mode), which is
often referred to as the fundamental mode.

The recent detections of merging BBHs [7–13] by Advanced LIGO [14] and Virgo
[15], including the ringdown phase, have stimulated significant interest in measuring
the QNMs from the observations [16–22]. Accurately determining the QNMs allows
for precise tests of general relativity (GR) [23–29]. In [16], the frequency and
damping time of the fundamental mode were inferred from the ringdown data of
the first event (GW150914). The analysis was performed at several time offsets
with respect to the time of peak strain amplitude. For sufficiently late values of this
start time, the frequency and damping time were found to be in agreement with the
prediction fromGR for a remnant consistent with the full waveform. Themultiple start
times used in the analysis reflect an uncertainty about when the fundamental mode
becomes a valid description for the ringdown, as there is noticeable disagreement
between the measured mode and the GR prediction at early times. This raises the
question: at what point in the ringdown does perturbation theory become relevant?

In this paper, we consider the contribution of QNM overtones to the ringdown.
Including overtones allows for an excellent description of the waveform well before
the fundamental mode becomes dominant and extends the regime over which
perturbation theory is applicable to times even before the peak strain amplitude of
the waveform. Moreover, an improved model for the ringdown through the inclusion
of overtones can provide more accurate estimates of the remnant mass and spin [30,
31]. Furthermore, the inclusion of higher overtones provides a means to test GR at
a more stringent level, because the QNM frequencies of all included overtones are
independently constrained by GR for any given M f and S f .

We begin by demonstrating the benefits of including overtones, in agreement with [30,
31], by analyzing a numerical relativity (NR) waveform. We then show how overtones
can improve the extraction of information from noisy LIGO or Virgo data. We show
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that the overtones are not subdominant as is often assumed, but are instead critically
necessary to properly model the linear ringdown regime. The inclusion of QNM
overtones provides a high accuracy description of the ringdown as early as the time
of peak strain amplitude, where the high signal-to-noise ratio (SNR) can be exploited
to significantly reduce uncertainty in the extracted remnant properties.

4.3 Previous studies
There have been numerous attempts to identify the start time of ringdown, that
is, the point in time where a transition has occurred from the non-linear regime
into one where the signal can be described by a linear superposition of damped
sinusoids [19, 21, 31–34]. To highlight the existing disagreement in the literature,
the following studies, each using NR waveforms as a testbed, come to different
conclusions regarding this transition time. In [32], the start of the ringdown phase
is inferred to be 10M (where M is the total binary mass, and G = c = 1) after
the peak luminosity of the ` = m = 2 component of the strain h; this is the time
at which the frequency of the ` = m = 2 mode roughly agrees with that of the
fundamental QNM. In [33], the ringdown portion of the waveform is considered
to be 10M after the peak luminosity of the Newman-Penrose scalar Ψ4 (related to
two time-derivatives of h). A ringdown model with the fundamental and the first
two overtones was built under this assumed start time and employed in [21], which
concluded that a start time of 16M after the peak strain amplitude is optimal. The
peak of Ψ4 is implicitly used as the start time for the ringdown in [31], where a
superposition of the fundamental mode plus the first two overtones provides an
accurate representation of the remnant properties and the fundamental frequency
expected from perturbation theory. Interestingly, in one of the earliest analyses
of BBH waveforms using NR simulations, despite the limited numerical accuracy
available for simulations at that time, Buoananno, Cook, and Pretorius [30] were able
to fit 3 overtones to the NR ringdown waveform by extending their analysis to times
before the peak amplitude of Ψ4. A superposition of QNMs, including overtones and
pseudo QNMs, became an integral part of modeling the merger-ringdown regime in
earlier EOB models [35–37].1

A likely cause of confusion is that start times are defined with respect to the peak of
1A recent extension of EOB, referred to as pEOBNR [20], was designed for future tests of the

no-hair theorem by measuring the frequencies of the ` = m = 2 and ` = m = 3 fundamental modes.
Restricted to non-spinning binaries, pEOBNR models the full inspiral and merger with an attached
ringdown model (including overtones), in order to avoid deciding at what time the QNMs alone
provide an accurate description of the waveform.
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some waveform quantity, and different authors choose different waveform quantities
for this purpose. To illuminate the implicit time offsets incurred by differences
in this choice, consider as a specific example the GW150914-like NR waveform
SXS:BBH:0305 in the Simulating eXtreme Spacetimes (SXS) catalog [38, 39]. For
this waveform, the peak of h occurs first, followed by the peak luminosity of h,
then the peak of Ψ4, and finally the peak luminosity of Ψ4. These last 3 times are
∼ 7M, 10M, 11M after the peak of h. As we will show, overtones beyond n ∼ 2 are
expected to have significantly decayed by the peak of Ψ4, so that relying on the peak
of Ψ4 to begin a ringdown analysis may be problematic.

The miscellany of start times above can be reconciled, to some extent, by considering
the contribution of overtones to the ringdown. Relying solely on the fundamental
mode as a description for the ringdown should result in only late time agreement.
Additional consideration of overtones at late times should result in finding significantly
reduced amplitudes in any overtones that remain. As we demonstrate below, this
is because overtones decay more quickly for larger n; each additional included
overtone leads to a superposition of QNMs that provides a description of the
ringdown at earlier times. Ignoring the contribution of overtones, by considering
them negligible as in [19] indirectly leads to the conclusion that remnant properties
remain unconstrainable even in the infinite SNR limit—which we find to be untrue.

4.4 Model
We use the fundamental QNM and a varying number of overtones to determine
when the linear QNM solution best describes the (`,m) mode extracted from NR
simulations. Throughout, we focus on the aforementioned astrophysically relevant NR
waveform SXS:BBH:0305 in the SXS catalog, which is modeled after the GW150914
event. The waveform represents a simulated system with a mass ratio of 1.22, where
the larger BH has a dimensionless spin ~χ = 0.33 ẑ and the smaller companion BH
has dimensionless spin ~χ = −0.44 ẑ. The resulting remnant in this simulation has
a final mass M f = 0.9520 M and dimensionless spin χ f = S f /M2

f = 0.6921. We
explore at what time the linear QNM description provides not only an optimal fit for
the resulting ringdown waveform, but also an optimal estimate of the remnant mass
and spin.

We model the ringdown radiation as a sum of damped sinusoids [40–43] by writing
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each angular mode of the complex strain, h = h+ − ih×, as

hN
`m(t) =

N∑
n=0

C`mne−iω`mn (t−t0) t ≥ t0 , (4.1)

with complex frequencies ω`mn = ω`mn(M f , χ f ) as determined by perturbation
theory [44, 45]. Here, t0 corresponds to a specifiable ‘start time’ for the model and
times before t0 are not included in the model. The complex coefficients C`mn, which
are not known a priori as they depend on the binary configuration and dynamics near
merger, are determined using unweighted linear least squares in the time domain.
The complex-valued amplitudes can be factored into a real-valued amplitude and
phase, C`mn = |A`mn |e−iφ`mn , of which we make direct use in Sec. 4.5.

Throughout, we focus on describing the dominant spherical harmonic mode in the
NR simulation, the ` = m = 2 mode.2 The natural angular basis in perturbation
theory is spin-weighted spheroidal harmonics [4–6], which can be written as an
expansion in spin-weighted spherical harmonics [6, 46–48]. Decomposing the
ringdown into spherical harmonics results in mixing of the spheroidal and spherical
bases between the angular functions with the same m, but different `’s, and this
mixing increases with χ f [6, 49]. For the SXS:BBH:0305 waveform, the ` = m = 2
spherical harmonic remains a good approximation for the ` = m = 2 spheroidal
harmonic. The amplitudes of the spheroidal and spherical ` = m = 2 modes differ
by a maximum of only 0.4%, which occurs roughly 15M after the peak of h. This
difference is significantly smaller at the peak. The mixing is small because higher
(`,m) harmonics are subdominant for this waveform, but in a more general case,
these higher harmonics may play a more important role.

4.5 Results
QNM overtone fits
The linear superposition of the fundamental QNM and N overtones is an excellent
description of the waveform around and before the peak strain. To demonstrate this,
we begin by fixing the remnant properties to the final values provided by the NR
simulation. With the mass M f and dimensionless spin χ f fixed, the set of frequencies
ω22n(M f , χ f ) is fully specified by perturbation theory. The only remaining free
parameters in Eq. (4.1) are the complex coefficients C22n and the model start time t0.
For N included overtones, and a given choice of t0, we determine the (N +1) complex

2We have verified the presence and early dominance of overtones in other resolvable (`,m)’s in
the NR waveform.
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Figure 4.1: Mismatches as a function of time for the eight models, each including
up to N QNM overtones. The mismatch associated with each model at a given t0
corresponds to the mismatch computed using Eq. (4.2), between the model and the
NR waveform for t ≥ t0, where t0 specifies the lower limit used in Eq. (4.3). Each
additional overtone decreases the minimum achievable mismatch, with the minimum
consistently shifting to earlier times.

C22n’s using unweighted linear least squares, thus obtaining a model waveform given
by Eq. (4.1). We construct such a model waveform for t ≥ t0 at many start times
beginning at t0 = tpeak − 25M and extending to times t0 = tpeak + 60M , where tpeak

is the peak amplitude of the complex strain. For each start time t0, we compute
the mismatchM between our model waveform, hN

22, and the NR waveform, hN R
22 ,

through

M = 1 −
〈hNR

22 , h
N
22〉√

〈hNR
22 , h

NR
22 〉〈h

N
22, h

N
22〉

. (4.2)

In the above, the inner product between two complex waveforms, say x(t) and y(t),
is defined by

〈x(t), y(t)〉 =
∫ T

t0

x(t)y(t) dt , (4.3)

where the bar denotes the complex conjugate, the lower limit of the integral is the
start time parameter t0 in Eq. (4.1), and the upper limit of the integral T is chosen
to be a time before the NR waveform has decayed to numerical noise. For the
aforementioned NR simulation, we set T = tpeak + 90M .
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This procedure results in mismatches as a function of t0 for each set of overtones;
these are presented in Fig. 4.1. The figure shows that N = 7 overtones provides the
minimum mismatch and at the earliest of times, as compared to the other overtone
models. The waveform corresponding to the N = 7 overtone model and t0 = tpeak is
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Figure 4.2: Comparison between the plus polarization of the ` = m = 2 mode of
the NR waveform and the N = 7 linear QNM model. The QNM model begins at
t0 = tpeak. The upper panel shows both waveforms, and the lower panel shows the
residual for t ≥ tpeak. For reference, the lower panel also shows an estimate of the
error in the NR waveform, |hN R

22 − hN R
22 |, where hN R

22 refers to the highest resolution
waveform of SXS:BBH:0305 and hN R

22 refers to the next highest resolution waveform
for this same system. The two NR waveforms are aligned at t0 = tpeak, in both time
and phase.

visualized in Fig. 4.2, where the model waveform is compared to the NR waveform
along with the fit residual.

At face value, Fig. 4.1 provides us with a guide for determining the times where a
linear ringdown model with N QNM overtones is applicable. However, relying on
the mismatch alone can be deceiving. The n = 7 overtone decays away very quickly,
yet Fig. 4.1 shows that retaining this overtone still produces small mismatches at
times beyond when this mode should no longer be numerically resolvable. This is
due to overfitting to numerical noise after the higher overtones in each model have
sufficiently decayed. We find that the turnover subsequent to the first mismatch
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minimum in Fig. 4.1 is a good approximation for when each overtone has a negligible
amplitude.

It is important then that the model not only minimizes the residual in the wave-
form quantity, but also that it provides faithful estimates of the underlying system
parameters. In particular, we may demand that the inferred mass and spin agree
with the true values known from the NR simulation. To check that the model does
indeed faithfully represent the NR waveform with the correct final mass and spin, we
repeat the fits but we allow M f and χ f to vary, and we set the frequencies of each
overtone to their GR-consistent values through the perturbation-theory formula for
ω22n(M f , χ f ). As a measure of error, we use

ε =
√

(δM f /M)2 + (δ χ f )2 , (4.4)

where δM f and δ χ f are the differences between the best fit estimates for M f and
χ f as compared to the remnant values from the NR simulation. Using a model
with N = 7 overtones and t0 = tpeak, the best fit estimates for M f and χ f yield a
value of ε ∼ 2 × 10−4. For reference, by comparing the two highest resolutions
of this simulation, we estimate the error in the NR measured remnant mass and
spin to be δM f ∼ 1.3 × 10−5M and δ χ f ∼ 2.1 × 10−5, which corresponds to a
value of ε ∼ 2 × 10−5. Furthermore, the difference in the recovered M f and χ f as
compared to the NR values increases as we drop overtones from the model. This
behavior appears to be robust. Repeating the above analysis on roughly 80 additional
waveforms in the SXS catalog with aligned spins and mass ratios up to 8 [38, 50]
yields similar results, with median value of ε ∼ 10−3. The full distribution of ε for
this part of parameter space, with N = 7 overtones at t0 = tpeak is shown in Fig. 4.3.

Returning to our analysis of SXS:BBH:0305, to highlight the worst-fit and best-fit
cases and to visualize the mismatch as a function of mass and spin, we compute
the mismatch between NR and the model Eq. (4.1) with t0 = tpeak and the C22n’s
determined by a least-squares fit for a grid of M f and χ f values. In Fig. 4.4, we see
that with N = 7 overtones, the mismatch has a deep minimum associated with the
true remnant quantities. However, using solely the fundamental mode, N = 0, with
t0 = tpeak provides largely biased estimates for the remnant M f and χ f , as is visible
in Fig. 4.5. This is not surprising in light of Fig. 4.1, where at this time the N = 0
model provides the poorest mismatch; this is a consequence of the higher overtones
dominating the waveform at this time. The bias can be overcome by waiting a
sufficiently long time, which allows the overtones to decay away and the fundamental
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Figure 4.3: The distribution of ε , Eq. (4.4), for a range of simulations in the SXS
catalog. The distribution includes systems with mass ratios up to 8 and orbit-aligned
component spins with | ~χ | ≤ 0.8. The distributions shown are for N = {0, 3, 7}
overtones at the peak of the strain amplitude. For the best performing model, N = 7,
the median value is 2 × 10−3 and the maximum error in estimating the mass and spin
is ∼ 5 × 10−3.

mode to become dominant. This can be seen in Fig. 4.6, where we repeat the same
procedure with N = 0 and t0 = tpeak + 47M. Here the resulting distribution of
mismatches in the M f − χ f plane is on par with the distribution associated with
including N = 7 overtones and t0 = tpeak, with the N = 7 case producing a smaller
absolute mismatch than the N = 0 case. The key point is that we can recover similar
information about the underlying remnant at the peak, through the inclusion of
overtones, as we can by analyzing the waveform at late times. As discussed in more
detail in Sec. 4.5, extending the ringdown model to earlier times allows us to access
higher signal-to-noise ratios and can significantly reduce uncertainties in parameter
estimation.

One might be concerned that the additional free parameters in the fit, introduced by
including the overtones, simply allow for fitting away any non-linearities that may be
present, making the fundamental mode more easily resolvable, and therefore better
determining the underlying remnant mass and spin. A simple test of this idea is to
repeat the fit while still setting the fundamental frequencies ω220(M f , χ f ) according
to perturbation theory, but to intentionally set the frequencies of the overtones to
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Figure 4.4: Mismatches for the ` = m = 2 mode between NR and Eq. (4.1) for a
grid of M f and χ f with N = 7 and t0 = tpeak. The white horizontal and vertical
lines correspond to the NR values and are in good agreement with the M f and χ f
mismatch distribution using the maximum number of overtones considered.

incorrect values. The fit will then have the same number of degrees of freedom as
previously, butwithout the correct physics. Letω22n(M f , χ f ) be the set of frequencies
determined by perturbation theory and take ω̃22n(M f , χ f ) to be the set of frequencies
with the fundamental unmodified, but with ω̃22n(M f , χ f ) = ω22n(M f , χ f )(1 + δ),
for n > 0. As a measure of error, we rely on ε , Eq. (4.4), the root-mean-squared
error in the estimated mass and spin as compared to the known NR values.

For demonstration purposes, we let δ take on values from the set ±{0.01, 0.05, 0.2}
and fit to the spherical ` = m = 2 mode with t0 = tpeak for different numbers of
included overtones N . A comparison between the unmodified and modified models
with the same number of degrees of freedom is presented in Fig. 4.7. From Fig. 4.7,
it is evident that the unmodified set of QNMs, ω22n(M f , χ f ), remains true to the
underlying mass and spin and converges to smaller errors as the number of included
overtones is increased. In the case where the overtones are given slightly incorrect
frequencies by the δ parameter introduced above, including higher overtones yield
fits that remain biased away from the true values, leading to larger values of ε .

Furthermore, in an additional test we have allowed for different values of δ for each n,
each independently sampled from a normal distribution with mean µ = 0 and standard
deviation σ = 0.2. In this test, each overtone frequency is randomly modified to a
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Figure 4.5: The mismatches for the ` = m = 2 mode between NR and Eq. (4.1) over
a grid of χ f and M f with N = 0, the fundamental mode only, and t0 = tpeak. The
white horizontal and vertical lines correspond to the remnant values from NR. As
the fundamental mode is subdominant at this time, this single-mode model is a poor
probe of the underlying remnant mass and spin. Note that the mass and mismatch
scales used in this figure are significantly different than Fig. 4.4, due to the discrepant
single-mode fit at early times.

different extent about ω22n(M f , χ f ). In all 100 cases randomly generated from the
above distribution, the ε’s associated with the modified frequencies always remain
bounded from below by the ε associated with the GR frequencies of the asymptotic
remnant. A random, representative, subset of these 100 cases is shown as faint grey
traces in Fig. 4.7. This suggests that the overtones associated with the asymptotic
remnant provide a sufficiently good linear description of the perturbations for all times
beyond the peak of this mode, while a similar set of overtones that are inconsistent
with the asymptotic remnant do not.

Characterizing the overtones
The behavior in the previous section can be explained by carefully understanding
how the overtones contribute to the ringdown. As briefly touched on in Sec. 4.2, the
overtones are those modes with n > 0, where n orders the modes based on decreasing
damping time. While these modes are the least important in a time-weighted sense,
describing them as ‘overtones’ is somewhat of a misnomer. In a classical description
of harmonics, overtones are at higher frequencies than the fundamental, typically
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Figure 4.6: Mismatches for the ` = m = 2 mode between NR and Eq. (4.1) for a grid
of M f and χ f with N = 0, the fundamental mode, at a late time t0 = tpeak + 47M.
Here the fundamental mode is dominant, since the overtones have decayed away by
this time. Again, the white horizontal and vertical lines correspond to the remnant
values from NR and now, at this late time, we find good agreement between the true
values and those recovered by using only the fundamental mode as a probe for M f
and χ f .

multiples of the first harmonic, and are usually subdominant. However, for QNMs,
the overtones decrease in frequency and are not necessarily subdominant. As briefly
mentioned in Sec. 4.4, the amplitude of each QNM overtone in the ringdown depends
on the binary configuration and the dynamics leading up to merger. This dynamics
specifies the ‘initial data’ for the ringdown, determining which QNMs are excited
and to what extent. As such, the overtone amplitudes for waveform SXS:BBH:0305
will differ from those with different ‘initial data’, i.e., binary configurations with
different mass ratios or different spin vectors.

To provide a qualitative understanding of the relative amplitudes of different overtones,
we decompose the ringdown waveform of SXS:BBH:0305 into its constituent
overtones. Using t0 = tpeak and N = 7 overtones, we determine the C22n’s as in
Sec. 4.5 with M f and χ f fixed to the NR simulation values. The corresponding
values An = |C22n(t = t0 = tpeak) | form the entries in the bottom row of Table 4.1.
For N = 6 we keep t0 = tpeak, so that the amplitudes are measured with respect to
the peak, but we include in our fit only data for t ≥ tfit, where tfit corresponds to
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Figure 4.7: The root-mean-squared error, ε , defined in Eq. (4.4), for different
sets of frequencies, as a function of number of included overtones N . The fits
are performed on the spherical ` = m = 2 mode at t = t0 = tpeak. The label
ω22n(M f , χ f ) represents the set of frequencies consistent with perturbation theory,
while ω̃22n(M f , χ f ) represents the set of frequencies with the fundamental mode,
n = 0, unmodified but with a slight modification to the overtone frequencies by a
factor of (1 + δ). For each δ, there is an associated dashed line of the same color
that corresponds to δ → −δ. The faint grey lines correspond to frequencies with
a random δ for each n, as explained in the last paragraph of Sec. 4.5. The results
suggest there is information present in the overtones that contribute to extracting the
remnant properties at the peak, as these outperform a similar set of functions, with
the same degrees of freedom for each N , but with frequencies inconsistent with the
asymptotic remnant.

the earliest minimum in Fig 4.1 for this N . These amplitudes correspond to the
penultimate row of Table 4.1 and the fit time tfit is stated, with respect to tpeak, in the
last column. The result of this procedure for the remaining N is Table 4.1, where
we provide our best estimate of the amplitudes at t = t0 = tpeak associated with
each overtone. The values in Table 4.1 are computed for the highest numerical
resolution of the NR waveform SXS:BBH:0305, but are truncated at a level such that
the estimates agree with the next highest resolution.

The initial amplitude of the fundamental mode A0 is consistently recovered for all
models, each model having a different N and a different fit time that is optimal for that
N . The first few overtones show similar behavior, while the higher overtones display
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larger uncertainties in the recovered amplitudes and are increasingly sensitive to the
fit time and the number of included overtones. This sensitivity is a consequence of
the strong exponential time dependence in the overtones and is recognized as the
time-shift problem [51]. But, perhaps the most important thing to notice is that the
overtones can have significantly higher amplitudes than the fundamental mode. As
discussed above, the initial amplitudes of the overtones depend on the details of the
nonlinear binary coalescence, which ultimately depend on the binary parameters.
Consequently, the amplitudes of the overtones relative to the fundamental mode will
vary across parameter space. The complex amplitudes C`mn, also known as the QNM
excitation coefficients, can be written as C`mn = B`mnI`mn, where B`mn is a purely
geometric piece determined by the remnant BH, referred to as the QNM excitation
factor, and I`mn is the source term that depends on the binary dynamics [52–54].
Excitation factors have been computed for the first three overtones for Kerr BHs
in [54, 55]; these QNM excitation factors can provide some insight into how the
relative amplitudes might behave for different remnant spins.

The NR waveform SXS:BBH:0305 has a dimensionless remnant spin χ f ∼ 0.7,
for which the relative excitation factors, |B22n |/|B220 |, of the fundamental and the
first three ` = m = 2 QNM overtones are roughly 1.0, 3.53, 5.23, 5.32. However,
for a remnant of χ f = 0, the excitation factors |B22n/B220 | of these same QNMs
are 1.0, 1.28, 1.06, 0.62, which indicates that the overtones may be relatively less
important for lower remnant spins. Using [55], we have computed the excitation
factors for the next two highest overtones of the remnant of SXS:BBH:0305 and
we find that |B224 |/|B220 | ∼ 15.21 and |B225 |/|B220 | ∼ 29.31. Additional excitation
factors are difficult to compute, but the trend is not expected to continue as it is
conjectured that for Kerr BHs B`mn ∼ 1/n for large n [54].

The overtone amplitudes in Table 4.1 increase with overtone number, peak around
n = 4, and then decrease. Therefore we expect that the rapidly decaying overtones
beyond about n = 7 are subdominant; this justifies truncating the expansion in the
vicinity of n = 7. Prelimary studies indicate that n = 8 does not improve the fit at
t0 = tpeak. An additional caveat is that the amplitudes in Table 4.1 are those recovered
from the ` = m = 2 spherical harmonic as opposed to the ` = m = 2 spheroidal
harmonic. However, the spherical-spheroidal mixing is small (c.f. Sec. 4.4), and
should not significantly change the qualitative behavior of the relative amplitudes in
Table 4.1.

Using our results from the last row of Table 4.1, and using the analytic decay rates
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N A0 A1 A2 A3 A4 A5 A6 A7 tfit − tpeak

0 0.971 - - - - - - - 47.00
1 0.974 3.89 - - - - - - 18.48
2 0.973 4.14 8.1 - - - - - 11.85
3 0.972 4.19 9.9 11.4 - - - - 8.05
4 0.972 4.20 10.6 16.6 11.6 - - - 5.04
5 0.972 4.21 11.0 19.8 21.4 10.1 - - 3.01
6 0.971 4.22 11.2 21.8 28 21 6.6 - 1.50
7 0.971 4.22 11.3 23.0 33 29 14 2.9 0.00

Table 4.1: Best-fit estimates of the amplitudes An of the fundamental mode and
overtones in the ringdown of NR simulation SXS:BBH:0305, with t0 = tpeak.
Amplitudes are computed for various values of N , the total number of overtones
included in the fit. Also shown is the time tfit where the fit is performed for each N ,
stated with respect to tpeak. An are always the amplitudes at t = t0 = tpeak, even if the
fit is performed at a later time. The amplitude values are truncated such that the last
significant figure agrees with the the two highest resolutions for the NR simulation.

corresponding to the true M f and χ f , we can reconstruct the expected individual
contributions of each overtone to the total ` = m = 2 ringdown signal at any given
t; in other words, we can compute the time-dependent amplitudes A22n(t) of each
overtone. These are related to the An in Table 4.1 by A22n(t) = Ane−(t−t0)/τ22n . These
amplitudes are shown in Fig. 4.8. This establishes why one has to wait until 10−20M

after the peak before the fundamental becomes the dominant contribution.

Note that Fig. 4.8 uses a single fit over the range t ≥ tpeak, and assumes the expected
analytic time dependence of each overtone amplitude for t ≥ tpeak. Alternatively,
we can attempt to reconstruct each A22n(t) numerically by performing a different fit
for the amplitudes at each time t. For each time t we choose t0 = tfit = t and we fit
data only for times ≥ t0. The numerically extracted time dependence of the overtone
amplitudes, A22n(t), are shown in Fig. 4.9. Obtaining an accurate fit in this way is
difficult because of various numerical complications, such as the small differences in
frequencies and amplitudes between neighboring overtones, the poor resolution of
overtones with small amplitudes, and the risk of overfitting at late times after some
overtones have decayed away. At later times, there is significantly less power in
the highest overtones—making them more difficult to resolve. To mitigate some of
these difficulties, when performing the fit at each time t, we exclude overtones whose
fitted amplitude has increased relative to that at the previous time. This is motivated
by the fact that the model is one of exponentially damped sinusoids. Therefore, if
at any time an overtone has a larger amplitude than the amplitude recovered at a
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Figure 4.8: A decomposition of the ringdown in terms of the overtones for N = 7.
The evolution of the overtones is computed from the analytic decay rates with initial
amplitudes at t = t0 = tpeak specified by the bottom row of Table 4.1. Notice that the
fundamental mode does not dominate the ringdown of SXS:BBH:0305 until roughly
10M after tpeak.

previous time, we consider that overtone to no longer be of physical relevance and we
permanently remove it from the allowed set of modes for future fit times. It is always
the highest overtone available in the remaining set of modes that gets dropped, as
this mode decays more quickly than the other ones. Although we only show up to
N = 4 in Fig. 4.9 because numerically extracting amplitudes is difficult at late times,
the benefit of using overtones up to N = 7 in estimating the remnant mass and spin
is apparent in Fig. 4.7. Consequently, more advanced fitting methods should allow
for an improvement in numerically recovering higher-order overtones as a function
of time, which will be explored further in future work.

Finally, it is worth pointing out that there is good agreement between the model
and NR even at times before tpeak, as indicated by the mismatches in Fig. 4.1, as
well as by the early agreement between the numerically extracted amplitude of the
fundamental mode and the expected analytic behavior visible in Fig. 4.9. Since the
QNMs are solutions to perturbed single BH spacetimes, the agreement could be
interpreted as an indication that the region of the pre-peak waveform already begins
to behave as a perturbed single BH to observers at infinity. This observed behavior
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Figure 4.9: The numerically recovered amplitudes for the fundamental QNM and the
first few overtones at each fit time, t (solid curves). Dashed lines are the same as
the lines in Fig. 4.8. The numerically extracted amplitudes across t agree very well
with the expected decay for the longest-lived modes, while modes that decay more
quickly are more susceptible to fitting issues. Interestingly, the fundamental mode
is in excellent agreement with the expected decay rate at times preceding the peak
amplitude of the strain.

will be explored further in future work.

Observing overtones with GW detectors
Overtones can enhance the power of gravitational wave detectors to probe the
ringdown regime. We illustrate this by studying the simulated output of a LIGO-
like detector in response to the same GW considered above, the NR simulation
SXS:BBH:0305. For simplicity, we assume the orbital plane of the source faces the
instrument head-on (no inclination). We choose a sky location for which the detector
has optimal response to the plus polarization but none to cross, with polarizations
defined in the same frame implicitly assumed in Eq. (4.1). To mimic GW150914,
we rescale the NR template to correspond to a total initial binary mass of 72M�,
in the detector frame, and a source distance of 400 Mpc. We inject the ` = m = 2
mode of the signal into simulated Gaussian noise corresponding to the sensitivity of
Advanced LIGO in its design configuration [56]. This yields a post-peak optimal
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SNR of ∼42.3

To extract information from the noisy data, we carry out a Bayesian analysis similar
to that in [16, 57] but based on the overtone ringdown model of Eq. (4.1), with
` = m = 2 and varying N . For any given start time t0, we obtain a posterior
probability density over the space of remnant mass and spin, as well as the amplitudes
and phases of the set of QNMs included in the template. We parametrize start
times via ∆t0 = t0 − th-peak, where th-peak refers to the signal peak at the detector
(th-peak ≈ tpeak−0.48 ms ≈ tpeak−1.3 M). Unlike [16], we sample over the amplitudes
and phases directly, instead of marginalizing over them analytically, and we place
uniform priors on all parameters. In particular, we consider masses and orbit-aligned
spins within [10, 100] M� and [0, 1] respectively. We allow the QNM phases to
cover their full range, [0, 2π], but restrict the amplitudes (measured at t = th-peak)
to [0.01, 250] hpeak, where hpeak = 2 × 10−21 is the total signal peak. This arbitrary
amplitude interval fully supports the posterior in all cases we consider. We assume
all extrinsic parameters, like sky location and inclination, are perfectly known. We
sample posteriors using the Markov chain Monte Carlo (MCMC) implementations
in kombine [58] and, for verification, emcee [59].

The highest N we consider in our inference model is N = 3, as that is the most we
can hope to resolve given the SNR of our simulation. A guiding principle for two
waveforms to be indistinguishable isM < SNR−2/2, in terms of the mismatchM
defined in Eq. (4.2) but with a noise-weighted inner product [60–62]. For the system
at hand, this implies that post-merger templates with mismatchesM . 3 × 10−4 are
effectively identical. If fitting from the peak on, Fig. 4.1 then implies that differences
between N ≥ 3 templates are unmeasurable. We confirmed this empirically by
checking that N = 4 does not lead to inference improvements with respect to N = 3
and only seems to introduce degenerate parameters. By the same token, we have
also verified that, at this SNR, our results are largely unaffected by the presence
or absence of the next dominant angular mode (3, 2) in the injected NR waveform,
as its amplitude is an order of magnitude weaker than that of the dominant (2, 2)
mode for the chosen system. At higher SNRs, additional (2, 2) overtones and/or
angular modes (potentially, with their respective overtones) are necessary to keep
the modeling error below the statistical error.

Our findings are summarized in Figs. 4.10 and 4.11. In Fig. 4.10 we show the
3Defined as the SNR in frequencies above 154.68 Hz, the instantaneous frequency at the peak of

the time-domain signal.
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Figure 4.10: Remnant parameters inferred with different number of overtones, using
data starting at the peak amplitude of the injected strain. Contours represent 90%-
credible regions on the remnant mass (M f ) and dimensionless spin (χ f ), obtained
from the Bayesian analysis of a GW150914-like NR signal injected into simulated
noise for a single Advanced LIGO detector at design sensitivity. The inference
model was as in Eq. (4.1), with (` = m = 2) and different number of overtones
N : 0 (solid blue), 1 (dashed purple), 2 (dashed yellow), 3 (solid red). In all cases,
the analysis uses data starting at peak strain (∆t0 = t0 − th-peak = 0). The top and
right panels show 1D posteriors for M f and χ f respectively. Amplitudes and phases
are marginalized over. The intersection of the dotted lines marks the true value
(M f = 68.5M�, χ f = 0.69).

posteriors recovered for the remnant mass and spin under the assumption that the
ringdown begins at the peak of the signal strain and for models with different numbers
of overtones. For each case, the main panel displays contours enclosing 90% of the
posterior probability, while the curves on the top and right represent the corresponding
marginalized distributions for the mass and spin. As expected, the fundamental mode
(N = 0) is insufficient to describe the signal near the peak, yielding an estimate
of the remnant properties that is far from the true values determined from the NR
simulation (dotted lines). As the number of overtones is increased, the inferred mass
and spin become increasingly more accurate, with N = 3 producing the best results
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Figure 4.11: Remnant parameters inferred using only the fundamental mode,
using data starting at different times relative to the peak amplitude of the injected
strain. Contours represent 90%-credible regions on the remnant mass (M f ) and
dimensionless spin (χ f ), obtained from the Bayesian analysis of a GW150914-like
NR signal injected into simulated noise for a single Advanced LIGO detector at
design sensitivity. For the blue contours, the inference model included no overtones
(N = 0) and used data starting at different times after the peak: ∆t0 = t0 − th-peak ∈

[0, 3, 6, 10] ms (blue contours). For the red contour, the analysis was conducted
with three overtones (N = 3) starting at the peak (∆t0 = 0), as in Fig. 4.10. The top
and right panels show 1D posteriors for M f and χ f respectively. Amplitudes and
phases are marginalized over. The intersection of the dotted lines marks the true
value (M f = 68.5M�, χ f = 0.69).

(true value within top 40%-credible region). This result illustrates how the overtones
can provide an independent measurement of the remnant properties by studying the
signal near the peak.

We find that the estimate of the mass and spin obtained with overtones at the peak is
more accurate than the one obtained with only the fundamental mode at later times.
We illustrate this in Fig. 4.11, which shows the 90%-credible regions on M f and χ f

inferred using only the fundamental mode (N = 0) at different times after the peak



165

strain (blue contours), as well as the N = 3 result from Fig. 4.10 for comparison (red
contour). As anticipated in [16], the fundamental mode is a faithful representation
of the signal only at later times, which in our case means that the true values are
enclosed in the 90%-credible region only for ∆t0 ≥ 5 ms. The penalty for analyzing
the signal at later times is a reduction in SNR that results in increased uncertainty,
as evidenced by the large area of the blue contours in Fig. 4.11. We obtain a more
precise estimate by taking advantage of the overtones at the peak. We suspect that the
observed agreement at 3 ms in [16] is a consequence of the lower SNR of GW150914.
At lower SNRs, the statistical errors outweigh the systematic errors associated with
including only the fundamental mode.

4.6 Discussion and conclusions
For a given mass M f and spin χ f , perturbation theory precisely predicts the spectrum
of QNMs associated with a ringing single BH, including the characteristic frequencies
for these QNMs. The QNM frequencies are denoted ω`mn(M f , χ f ), where ` and
m describe the angular dependence of a mode and n, the often-ignored integer
overtone index, sorts QNMs with the same angular dependence by how quickly
they decay. The slowest decaying fundamental mode, n = 0, is often considered
to be of primary importance, while the more quickly decaying overtones are often
disregarded. However, we find that the overtones are not necessarily subdominant as
is often assumed, but instead, can dominate the early part of the ringdown.

Using a superposition of QNMs, we model the ringdown portion of the ` = m = 2
mode of the numerical relativity waveform SXS:BBH:0305, which is consistent with
GW150914. We find that with enough included overtones, the QNMs provide an
excellent description for the GW strain for all times beyond the peak amplitude of the
complex strain h. For the GW150914-like NR waveform we analyzed, the overtones
dominate the early part of the perturbations but decay away much more quickly
than the fundamental mode, which eventually becomes dominant roughly 10M after
the peak amplitude (Fig. 4.8). This later time where the fundamental dominates is
sometimes referred to in the literature as the start of the ringdown, the time of a
transition to the linear regime, or the beginning of the domain of applicability of
perturbation theory. However, this time is merely the time at which one may ignore
the contribution of overtones, which play a key role in the early ringdown. Including
the QNM overtones extends the reach of perturbation theory back to the time of
the peak strain amplitude, indicating that the linear ringdown regime begins much
earlier than one would conclude by ignoring these additional modes. As mentioned
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in Sec. 4.5, we have verified, on a sizeable set of aligned-spin waveforms in the SXS
catalog, that the inclusion of overtones provides an accurate model for the post-peak
strain. Not only do the overtones provide excellent mismatches, but the best fit mass
and spin are accurately recovered with median absolute errors in M f /M and χ f of
∼ 10−3. We therefore expect the early dominance of overtones to be a generic feature
of the ringdown.

The QNM overtones can enhance the power of GW detectors to probe the ringdown
regime. They can be used to extract information about QNMs at the peak of the
signal, where the SNR is high. In contrast, the usual approach relies solely on the
later portion of the signal that is dominated by the (initially weaker) fundamental
mode, paying the price of larger statistical errors and uncertainty in the appropriate
time where this mode dominates [16–22, 25–29]. This effect is visible in Fig. 4.11,
where a model with N = 3 overtones remains faithful to the true remnant mass and
spin with less uncertainty than one with N = 0 at later times. The resolvability of
these overtones provides a set of independent modes, each with unique frequencies,
that can potentially be used to constrain deviations from GR.

Studies of the ringdown GW spectrum can provide a direct way to experimentally
determine whether compact binary coalescences result in the Kerr BHs predicted
by GR [23, 24]. This includes tests of the no-hair theorem and the area law, as
well as searches for BH mimickers. The program, sometimes known as “black-hole
spectroscopy,” generally requires independent measurement of at least two modes,
which are conventionally taken to be the fundamentals of two different angular
harmonics (e.g. [25, 29]). However, such choice is only available for systems that
present a sufficiently strong secondary angular mode, which only tends to occur
under some specific conditions (e.g. for high mass ratios) [63–67]. Further, as we
have observed, these fundamental modes should dominate only at late times, being
subject to significantly more noise than modes than can be extracted near the peak of
the waveform. The extraction of an overtone, in addition to the fundamental mode,
could potentially serve as an alternative two-mode test of the no-hair theorem.

The impact of overtones on ringdown tests of GR can already be glimpsed from
Fig. 4.11: by studying the QNMs at early and late times we may obtain two
independent measurements of the remnant parameters, enabling powerful consistency
checks. Unlike tests that rely on a multiplicity of angular modes, studies of overtones
should be feasible at SNRs achievable with existing detectors, as we demonstrate by
our study of a GW150914-like signal seen at design sensitivity by Advanced LIGO



167

(Sec. 4.5). For signals in which they are measurable, higher angular modes and
their overtones could make these tests even more powerful. Overtones can therefore
enable a whole new set of precision studies of the ringdown and make black-hole
spectroscopy realizable with current detectors.
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5.1 Abstract
We analyze gravitational-wave data from the first LIGO detection of a binary black-
hole merger (GW150914) in search of the ringdown of the remnant black hole.
Using observations beginning at the peak of the signal, we find evidence of the
fundamental quasinormal mode and at least one overtone, both associated with the
dominant angular mode (` = m = 2), with 3.6σ confidence. A ringdown model
including overtones allows us to measure the final mass and spin magnitude of the
remnant exclusively from postinspiral data, obtaining an estimate in agreement with
the values inferred from the full signal. The mass and spin values we measure
from the ringdown agree with those obtained using solely the fundamental mode
at a later time, but have smaller uncertainties. Agreement between the postinspiral
measurements of mass and spin and those using the full waveform supports the
hypothesis that the GW150914 merger produced a Kerr black hole, as predicted by
general relativity, and provides a test of the no-hair theorem at the ∼10% level. An
independent measurement of the frequency of the first overtone yields agreement
with the no-hair hypothesis at the ∼ 20% level. As the detector sensitivity improves
and the detected population of black hole mergers grows, we can expect that using
overtones will provide even stronger tests.

5.2 Introduction
The coalescence of two astrophysical black holes consists of a long inspiral followed
by a violent plunge, during which the full richness of spacetime dynamics comes into
play. The two objects merge, forming a single distorted black hole that rings down
as it settles to a final stationary state. Gravitational waves are emitted throughout the
entire process, at each moment carrying information about the evolving source. In
general relativity, radiation from the ringdown stage takes the form of superposed

https://arxiv.org/abs/1905.00869
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damped sinusoids, corresponding to the quasinormal-mode oscillations of the final
Kerr black hole [1–4]. The frequencies and decay rates of these damped sinusoids are
uniquely determined by the final hole’s mass M f and dimensionless spin magnitude
χ f . This is a consequence of the no-hair theorem—the statement that mass and spin
are the only two properties of astrophysical black holes in general relativity.1 The
ringdown spectrum is thus a fingerprint that identifies a Kerr black hole: measuring
the quasinormal modes from gravitational-wave observations would provide us with
a unique laboratory to test general relativity and probe the true nature of remnants
from compact-binary mergers, including testing the no-hair theorem [5–13]. This
program has been called black-hole spectroscopy, in analogy to the spectroscopic
study of atomic elements [6].

Although LIGO [14] and Virgo [15] have already confidently detected gravitational
waves frommultiple binary-black-hole coalescences [16–22], black hole spectroscopy
has remained elusive [23–29]. This is because past analyses looked for the ringdown
in data at late times after the signal peak, where the quasinormal modes are too weak
to confidently characterize with current instruments. The choice to focus on the late,
weak-signal regime stemmed from concerns about nonlinearities surrounding the
black hole merger, which were traditionally expected to contaminate the ringdown
measurement at earlier times [8, 25, 26, 28–31].

Concerns about nonlinearities are, however, unfounded: the linear description can be
extended to the full waveform following the peak of the gravitational wave strain
[32]. Rather than nonlinearities, times around the peak are dominated by ringdown
overtones—the quasinormal modes with the fastest decay rates, but also the highest
amplitudes near the waveform peak [32, 33]. Indications of this can be found in the
waveform modeling literature, with overtones an integral part of earlier equivalent
one-body models [34–36] (although later abandoned, c.f. [37]). Yet, with a few
exceptions [12, 27], previous ringdown analyses have neglected overtones, under the
assumption that their contribution to the signal should always be marginal [8, 23–26,
28, 29, 38]. As a consequence, these studies ignored important signal content and
were unable to extract multiple ringdown modes.

The inclusion of overtones enables us to perform a multimodal spectroscopic analysis
of a black-hole ringdown, which we apply to LIGO data from the GW150914
event [16] (Fig. 5.1). We rely on overtones of the ` = m = 2 angular mode to

1In general, black holes may also possess electric charge, but this is expected to be negligible for
astrophysical objects.
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measure the remnant mass and spin from data starting at the peak of the signal,
assuming first that quasinormal modes are as predicted for a Kerr black hole within
general relativity. We find the least-damped (‘fundamental’) mode and at least one
overtone with 3.6σ confidence (Fig. 5.2). At least one overtone, in addition to the
fundamental, is needed to describe the waveform near the peak amplitude. This
agrees with our expectations from [32] given the signal-to-noise ratio of GW150914.

Assuming the remnant is a Kerr black hole, frequencies and damping rates of the
fundamental mode and one overtone imply a detector-frame mass of (68 ± 7) M� and
a dimensionless spin magnitude of 0.63± 0.16, with 68% credibility. This is the best
constraint on the remnant mass and spin obtained in this work. This measurement
agrees with the one obtained from the fundamental mode alone beginning 3 ms after
the waveform peak amplitude (Figures 5.1 and 5.3) [39]. It also agrees with the
mass and spin inferred from the full waveform using fits to numerical relativity. The
fractional difference between the best-measured combination of mass and spin2 at the
peak with one overtone and the same combination solely with the fundamental 3 ms
after the peak is (0 ± 10)%. This is evidence at the ∼10% level that GW150914 did
result in a Kerr black hole as predicted by general relativity, and that the postmerger
signal is in agreement with the no-hair theorem. Similarly, the fractional difference
between the best-measured combination of mass and spin at the peak with one
overtone and the same combination using the full waveform is (7 ± 7) %.

Traditional proposals for black-hole spectroscopy require frequency measurements for
two or more quasinormal modes [6]. In that spirit, we also consider a single-overtone
model that allows the overtone frequency and damping time to deviate from the Kerr
prediction for any given mass and spin. This enables us to evaluate agreement of the
observed ringdown spectrum with the prediction for a perturbed Kerr black hole,
regardless of the specific properties of the remnant. From analysis of data starting at
peak strain, we find the spectrum to be in agreement with the no-hair hypothesis to
within ∼20%, with 68% credibility (Fig. 5.4). This is a test of the no-hair theorem
based purely on the postinspiral regime.

5.3 Method
Each quasinormal mode has a frequency ω`mn and a damping time τ̀ mn, where n

is the ‘overtone’ index and (`,m) are indices of spin-weighted angular harmonics
that describe the angular dependence of the mode. We focus on the fundamental

2That is, the measurement of the linear combination of Mf and χ f corresponding to the principal
component of the posterior distribution with the smallest associated eigenvalue.
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and overtones of the dominant ` = m = 2 spin-weighted spherical harmonic of the
strain.3 This is the only angular harmonic expected to be relevant for GW150914
[43, 44].4 For ease of notation, we generally drop the ` and m indices, retaining
only the overtone index n. The ` = m = 2 mode of the parametrized ringdown strain
(h = h+ − ih×) can be written as a sum of damped sinusoids [1–4],

hN
22(t) =

N∑
n=0

An exp
[
−i

(
ωnt + φn

)
− t/τn

]
, (5.1)

for times t greater than some start time t0, where ∆t = t − t0. The overtone index n

orders the different modes by decreasing damping time τn, so that n = 0 denotes the
longest-lived mode. N is the index of the highest overtone included in the model,
which in this work will be N ≤ 2. Importantly, higher n does not imply a higher
frequency ωn; rather, the opposite is generally true. All frequencies and damping
times are implicit functions of the remnant mass and spin magnitude (M f , χ f ), and
can be computed from perturbation theory [45–47]. The amplitudes An and phases
φn encode the degree to which each overtone is excited as the remnant is formed and
cannot be computed within perturbation theory, so we treat them as free parameters
in our fit.

We use the model in Eq. (5.1) to carry out a Bayesian analysis of LIGO Hanford
and LIGO Livingston data for GW150914 [16, 22, 48]. For any given start time
t0, we produce a posterior probability density over the space of remnant mass and
spin magnitude, as well as the amplitudes and phases of the included overtones. We
parametrize start times via ∆t0 = t0 − tpeak, where tpeak = 1126259462.423 GPS
refers to the inferred signal peak at the LIGO Hanford detector [23, 49]. We define
the likelihood in the time domain in order to explicitly exclude all data before t0. We
place uniform priors on

(
M f , χ f , An, φn

)
, with a restriction to corotating modes

(ωn > 0). All overtones we consider share the same ` = m = 2 angular dependence,
allowing us to simplify the handling of antenna patterns and other subtleties. Details
specific to our implementation are provided in the supplementary material.

3The spin-weighted spheroidal harmonics form the natural basis that arises in perturbation
theory [3, 40, 41]. These functions are equivalent to the spin-weighted spherical harmonics in the limit
of zero spin. For χ f > 0, the spin-weighted spheroidal harmonics can be written as superpositions
of the spin-weighted spherical harmonics of the same m, but different ` [41, 42]. The effect of this
mixing on the dominant ` = m = 2 spin-weighted spherical mode is negligible for a GW150914-like
system [32].

4Dedicated studies have found no evidence of higher angular harmonics in the late ringdown of
GW150914 [29].
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Figure 5.1: Remnant parameters inferred with different number of overtones, using
data starting at peak strain amplitude. Contours represent 90%-credible regions on
the remnant mass (M f ) and dimensionless spin magnitude (χ f ), obtained from the
Bayesian analysis of GW150914. The inference model is that of Eq. (5.1), with
different number of overtones N : 0 (solid blue), 1 (solid yellow), 2 (dashed purple).
In all cases, the analysis uses data starting at peak strain (∆t0 = t0 − tpeak = 0).
Amplitudes and phases are marginalized over. The black contour is the 90%-credible
region obtained from the full IMRwaveform, as described in the text. The intersection
of the dotted lines marks the peak of this distribution (M f = 68.5M�, χ f = 0.69).
The top and right panels show 1D posteriors for M f and χ f respectively. The linear
quasinormal mode models with N > 0 provide measurements of the mass and spin
consistent with the full IMR waveform, in agreement with general relativity.

We compare our ringdown-only measurements of the remnant mass and spin
magnitude to those obtained from the analysis of the full inspiral-merger-ringdown
(IMR) signal. To do so, we rely on fitting formulas based on numerical relativity to
translate measured values of the binary mass ratio q and component spins ( ~χ1, ~χ2)
into expected remnant parameters [50, 51]. We use posterior samples on the
binary parameters made available by the LIGO and Virgo collaborations [22, 48],
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Figure 5.2: Measured quasinormal-mode amplitudes for amodelwith the fundamental
mode and two overtones (N = 2). The purple colormap represents the joint posterior
distribution for the three amplitudes in the N = 2 model: A0, A1, A2, as defined in
Eq. (5.1). The solid curves enclose 90% of the probability mass. A yellow curve
in the A0–A1 plane, as well as corresponding yellow dashed lines, represents the
90%-credible measurement of the amplitudes assuming N = 1. Similarly, blue
dashed lines give the 90%-credible measurement of A0 assuming N = 0. All
amplitudes are defined at t = tpeak, where all fits here are carried out (∆t0 = 0).
Values have been rescaled by a constant to correspond to the strain measured by
the LIGO Hanford detector. Assuming N = 1, the mean of the A1 marginalized
posterior lies 3.6 standard deviations away from zero, i.e. A1 = 0 is disfavored at
3.6σ. Assuming N = 2, A1 = A2 = 0 is disfavored with 90% credibility.

marginalizing over unavailable component-spin angles.

We consider explicit deviations from the Kerr spectrum by allowing the frequency and
damping time of the first overtone to differ from the no-hair values. Under this modi-
fied N = 1 model, the overtone angular frequency becomes ω1 = 2π f (GR)

1
(
1 + δ f1

)
,

with δ f1 a fractional deviation away from the Kerr frequency f (GR)
1 for any given M f

and χ f . Similarly, the damping time is allowed to vary by letting τ1 = τ
(GR)
1 (1 + δτ1).
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Fixing δ f1 = δτ1 = 0 recovers the regular N = 1 analysis. We may then compute the
relative likelihood of the no-hair hypothesis by means of the Savage-Dickey density
ratio [52].

5.4 Results
Fig. 5.1 shows the 90%-credible regions for the remnant mass (abscissa) and spin
magnitude (ordinate) obtained by analyzing data starting at tpeak with different
numbers of overtones (N = 0, 1, 2) in the ringdown template of Eq. (5.1). The
quasinormal-mode amplitudes and phases have been marginalized over. For compar-
ison, we also show the 90%-credible region inferred from the full IMR signal, as
explained above. If the remnant is sufficiently well described as a perturbed Kerr
black hole, and if general relativity is correct, we expect the ringdown and IMR
measurements to agree. As expected, this is not the case if we assume the ringdown
is composed solely of the longest-lived mode (N = 0), in which case we obtain
a biased estimate of the remnant properties. In contrast, the ringdown and IMR
measurements begin to agree with the addition of one overtone (N = 1). This is
expected from previous work suggesting that, given the network signal-to-noise ratio
of GW150914 (∼14 in the post-peak region, for frequencies >154.7 Hz), we should
be able to resolve only one mode besides the fundamental [32].

Indeed, a ringdown model with two overtones (N = 2) does not lead to further
improvement in the mass and spin measurement. On the contrary, the 90%-credible
region obtained with N = 2 is slightly broader than the one with N = 1, as might
be expected from the two additional free parameters (A2, φ2). This is because the
analysis is unable to unequivocally identify the second overtone in the data, as shown
by the amplitude posteriors in Fig. 5.2. The N = 2 posterior supports a range of
values for A1 and A2, but excludes A1 = A2 = 0 with 90% credibility (center panel in
bottom row of Fig. 5.2). The joint posterior distribution on A1 and A2 tends to favor
the first overtone at the expense of the second: the maximum a posteriori waveform
scarcely includes any contribution from n = 2, and favors a value of A1 in agreement
with the N = 1 posterior (yellow traces in Fig. 5.2).

We next compare measurements carried out with overtones at the peak with mea-
surements without overtones after the peak. Fig. 5.3 shows 90%-credible regions
for the remnant mass and spin magnitude obtained with the fundamental mode
(N = 0) at different times after tpeak (∆t0 ∈ [1, 3, 5] ms). As the overtones die
out, the fundamental mode becomes a better model for the signal. We find that
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the N = 0 contour coincides with the IMR measurement ∼3ms after the peak, in
agreement with [23]. However, the uncertainty in this measurement is larger than for
the N = 1 contour at the peak (also shown for reference). This can be attributed to
the exponential decrease in signal-to-noise ratio for times after the peak.

Finally, we allow the first-overtone frequency and damping time to float around the
no-hair values in an N = 1 model. As in Fig. 5.1, we analyze data starting at the
inferred peak of the strain. Fig. 5.4 shows the resulting marginalized posterior over
the fractional frequency and damping time deviations (δ f1 and δτ1 respectively).
With 68% credibility, we measure δ f1 = −0.05 ± 0.2. To that level of credibility,
this establishes agreement with the no-hair hypothesis (δ f1 = 0) at the 20% level.
The damping time is largely unconstrained in the −0.06 . δτ1 . 1 range. This has
little impact on the frequency measurement, which is unaffected by setting δτ1 = 0.
We find that the ratio of marginal likelihoods (the Bayes factor) between the no-hair
model (δ f1 = δτ1 = 0) and our floating frequency and damping time model is 1.75.

5.5 Discussion and prospects
A linearly perturbed Kerr black hole radiates gravitational waves in the form of
damped sinusoids, with specific frequencies and decay rates determined exclusively
by the hole’s mass and spin. For any given angular harmonic, the quasinormal modes
can be ordered by decreasing damping time through an overtone index n, with n = 0
denoting the longest-lived mode (also known as the ‘fundamental’). Although modes
of all n contribute to the linear description, the fundamental has long been the only
one taken into account in observational studies of the ringdown, with overtones
virtually ignored [23–26, 28, 29]. Yet, these short-lived modes can dominate the
gravitational wave signal for times around the peak and are an essential part of the
ringdown [32, 33]. We demonstrate this with a multimode analysis of the GW150914
ringdown.

Making use of overtones, we extract information about the GW150914 remnant
using only postinspiral data, starting at the peak of the signal (Fig. 5.1). We find
evidence of the fundamental mode plus at least one overtone (Fig. 5.2), and obtain a
90%-credible measurement of the remnant mass and spin magnitude in agreement
with that inferred from the full waveform. This measurement is also consistent with
the one obtained using solely the fundamental mode at a later time, but has reduced
uncertainties (Fig. 5.3).

The agreement between all measurements is evidence that, beginning as early as
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Figure 5.3: Remnant parameters inferred only from the fundamental mode, using
data starting at different times after the peak. Contours represent 90%-credible
regions on the remnant mass (M f ) and dimensionless spin magnitude (χ f ), obtained
from the Bayesian analysis of GW150914. For the blue contours, the inference model
included no overtones (N = 0) and used data starting at different times after the peak:
∆t0 = t0 − tpeak ∈ [1, 3, 5] ms . For the yellow contour, the analysis was conducted
with one overtone (N = 1) starting at the peak (∆t0 = 0), as in Fig. 5.1. Amplitudes
and phases are marginalized over. The black contour is the 90%-credible region
obtained from the full IMR waveform, as described in the text. The intersection
of the dotted lines marks the peak of this distribution (M f = 68.5M�, χ f = 0.69).
The top and right panels show 1D posteriors for M f and χ f respectively. Around
∆t0 = 3 ms, the overtones have become unmeasurable and only the fundamental
mode remains; consequently, at that time N = 0 returns a measurement of the final
mass and spin consistent with both the full IMR waveform and the N > 0 models at
the peak, in agreement with general relativity.
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the signal peak, a far-away observer cannot distinguish the source from a linearly
perturbed Kerr background with a fixed mass and spin, i.e., we do not observe
nonlinearities in this regime. The agreement between the IMR and postmerger
estimates implies that the data agree with the full prediction of general relativity.
This is similar to the consistency test between inspiral and merger-ringdown [53,
54], but relies on a manifestly linear description of the postinspiral signal. More
specifically, it validates the prediction for the final state of a collision between two
black holes.

With the identification of multiple ringdown modes, this is also a step toward the
goal of black hole spectroscopy. The agreement between postinspiral measurements
with two different sets of modes (Fig. 5.3) supports the hypothesis that GW150914
produced a Kerr black hole as described by general relativity. Moreover, we constrain
deviations away from the no-hair spectrum by allowing the overtone frequency
and damping time to vary freely (Fig. 5.4). This is equivalent to independently
measuring the frequencies of the fundamental and first overtone, and establishing
their consistency with the Kerr hypothesis.

Future studies of black-hole ringdowns relying on overtones could potentially allow
us to identify black-hole mimickers and probe the applicability of the no-hair theorem
with high precision, even with existing detectors. Such advances will be facilitated
by improvements in our understanding of how the overtones are sourced, so that we
can predict the amplitudes and phases from the binary properties. This would reduce
the dimensionality of the problem and lead to more specific predictions from general
relativity.
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5.7 Appendix: Technical Details
Time-domain likelihood
The signal model used in this analysis has a sharp transition in the time domain. We
do not wish to incorporate any data from the detectors before our model begins so that
we avoid bias; equivalently, we want to assume that we are infinitely uncertain about
the gravitational wave signal before the start point of our signal model. This requires
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special treatment compared to the standard LIGO data analysis [39, 56]. Other
approaches to quasi-normal mode extraction treat the data similarly [29] except for
the assumption of periodicity, enforced by tapering, which is absent in our treatment
(see below).

As in previous analyses of GW150914, we assume that the detector measures a
discrete data stream d that contains our signal s contaminated by additive, Gaussian
noise n. At time ti,

di = h(ti) + ni , (5.2)

with the noise time series n having a multivariate normal distribution,

n ∼ N (µ,Σ) , (5.3)

with mean µ and covariance matrix Σ. The actual noise in the detector has very
large low-frequency components, while our signal lives primarily at high (& 100 Hz)
frequencies [46, 47]. To reduce the low-frequency components of the noise, we first
apply a fourth-order, high-pass Butterworth filter with a roll-on frequency of 20 Hz.
After the filter, the data are very close to zero mean, so we assume µ = 0.

The distribution of the noise implies that the log-likelihood function (i.e., the
distribution of data d conditioned on a signal h) is

log p (d | h) = −
1
2

(d − h)T Σ−1 (d − h)

−
1
2

log detΣ −
K
2

log 2π , (5.4)

where K is the total number of samples.

We assume that the noise in the detector is stationary, so that the covariance matrix
takes a special (Toeplitz) form where the i j component depends only on the time
separation between samples i and j:

Σi j =
〈
nin j

〉
= ρ

(
|i − j |

)
, (5.5)

where ρ is the autocovariance function,

ρ (k) = 〈nini+k〉 . (5.6)

(The expectation above runs over all times, i.) The assumptions of stationary Gaussian
noise have been checked for GW150914 specifically [39, 56–58] and the LIGO
events in general [22, 59].
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The standard LIGO data analysis imposes an additional assumption that

ρ (k) = ρ (K − k) (5.7)

for 0 ≤ k < K . This “circularity” assumption is appropriate for data that are periodic
with period K ; periodicity is typically enforced by tapering the data segment at
the beginning and end [56, 60]. The benefit of this assumption is that a circular
Toeplitz matrix is diagonal in the Fourier basis (i.e. stationary periodic noise has
statistically-independent Fourier components), and therefore the matrix-inversion
step in the log-likelihood reduces to a sum over independent frequency components.
Such a likelihood can also be computed directly in the time domain [29].

A taper is not appropriate for our data analysis since we wish to ignore data from
times before the peak of the waveform, where our signal model begins. We do not
have data before the peak in which to implement a taper; and tapering past the peak
would significantly reduce our signal. Happily, fast and stable algorithms exist for
solving linear equations with a Toeplitz structure [61–63], so a direct implementation
of our likelihood in Eq. (5.4) is not too costly.

We estimate the autocovariance function by the empirical autocovariance of 64 s of
off-source data, after high-pass filtering as above. This is analogous to the Welch
method for estimating power spectral densities in the frequency domain [64] used
by the standard LIGO analyses [56, 60]. Our analysis is based on data at a sample
rate of 2048 Hz, beginning at the peak signal amplitude at 1126259462.423 GPS and
running for 0.5 s. The autocovariance estimate is truncated to that same duration.

Other details
We handle polarizations by projecting the complex-valued strain in Eq. (5.1) of the
main text onto each LIGO detector by means of the corresponding antenna patterns.
To do so, we assume the source of GW150914 had right ascension α = 1.95 rad
and declination δ = −1.27 rad, with polarization angle ψ = 0.82 rad and inclination
ι = π rad. These parameters are consistent with the maximum a posteriori estimates
inferred for GW150914 [16, 48, 49]. We also time-shift the LIGO Livingston data
by the corresponding arrival-time delay of 7 ms [16, 49], so as to align the signal
at the two detectors. As noted in the main text, we may make these simplifications
because all rindgown modes we consider are subject to the same angular dependence
(` = m = 2). A version of this analysis with the more simplified approach of [23, 65]
yields compatible results.
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Our priors are such that quasinormal-mode amplitudes An are allowed to vary in the
range [0, 2.5 × 10−19], an arbitrary range found to offer full support to the posterior
in all cases. The corresponding phases φn are unrestricted in the full range [0, 2π].
For computational efficiency, we internally parameterize the amplitude and phase
of each mode using the two quadratures cn = An cos φn and sn = An sin φn, but
set priors uniform in An and φn. The remnant mass M f is allowed to vary within
[50, 100] M�, while the dimensionless spin magnitude χ f varies within [0, 1]. When
considering explicit deviations from the no-hair theorem, we set uniform priors such
that −0.5 < δ f1 < 0.5 and −1 < δτ1 < 1. In all cases, samples are drawn from the
posterior using kombine [66].
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