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iii.
Abstract

This work is devoted to the development and application of the
numerical technique suitable for solution of the free-boundary problems,
i.e. those in which the shape of the boundary should be determined as a
part of the solution. The technique is based on a finite-difference
solution of the equations of the problem on an orthogonal curvilinear
coordinate system, which is also constructed numerically and always
adjusted so as to fit the current boundary shape. The same orthogonal
mapping approach may also be used to construct orthogonal coordinates
fitted to boundaries of anwn but complicated shapes.

The technique is applied to two classical problems of fluid
mechanics -- deformation of a gas bubble rising through a quiescent
fluid due to buoyancy, and deformation of a gas bubble in a uniaxial
extensional flow. For the rising bubble, the shapes and flow fields
are computed for Reynolds numbers 1 ¢ R ¢ 200 and Weber numbers up to
20 at the lower Reynolds numbers and up to 10 at Reynolds numbers 50,
100 and 200. The most interesting results of this part are those
demonstrating the phenomenon of flow separation at a smooth free surface.
This phenomenon does not appear to have been theoretically predicted
before, in spite of its importance for understanding the mechanics of
free-surface flows.

In the case of a bubble in a uniaxial extensional flow, the compu-
tations show that at Reynolds numbers of order 10 and higher the de-
formation of a bubble proceeds in a way qualitatively different from the
low Reynolds number regime studied previously; the bubble bursts at a

relatively early stage of deformation never reaching the highly elongated



shapes observed and predicted at low Reynolds numbers. It is shown
also that for this problem the solution at Reynolds number of order
100 is already quite close to the potential flow solution which can

be easily obtained using the present technique.
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Introduction

Free boundary problems, i.e. those in which the shape of the
boundary is not known in advance but should be determined as a part of
the solution, are abundant in chemical engineering. The classical
examples of such problems are found in fluid mechanics where the free
boundary is usually a gas-liquid or liquid-liquid interface. This
class of problems is becoming tractable now, with the advent of the
computer. Most of the published work in the field has been based on
the finite-element discretization of the domain of solution. The
present study offers an alternative approach in which the equations
of the problem are written in a curvilinear orthogonal coordinate
system, always adjusted so as to fit the current boundary shape, and
then solved by a finite-difference technique. The orthogonal coor-
dinate system is also constructed numerically, using the technique

of orthogonal mapping described in Chapter 1. It should be noted

that this technique may also be used to construct boundary-fitted
orthogonal coordinates in cases when the shape of the boundary is
known but does not conform to classical coordinates of mathematical
physics (Cartesian, cylindrical, spherical, ellipsoidal, etc.). Prob-
lems of this type are, of course, even more ubiquitous than the free
boundary ones.

The rest of the present work is devoted to application of this
technique to a classical problem of fluid mechanics — deformation of
a gas bubble in a fluid flow. Gas bubbles are encountered in many

technological processes and their behavior has been the subject of



numerous investigations; however, only limited theoretical understanding
could be achieved without a technique capable of predicting large defor-
mations in nonlinear flows (the creeping flow regime can be efficiently
investigated by the boundary-integral technique). The present technique
is limited to axisymmetric problems; two of the more interesting cases
in this category — a bubble rising through a quiescent fluid under the
action of buoyancy and a bubble in uniaxial extensional flow — are in-
vestigated here.

Chapter 2 contains an overview of the application of orthogonal
mapping to free-surface problems, with the emphasis on implementation
of stress boundary conditions. Namely, in the vorticity-stream function
formulation adopted here the condition of zero tangential stress is used
to obtain the boundary values of vorticity at the interface, while the
balance between normal stress and surface tension forces is used to
drive the shape of the free surface to its equilibrium configuration.

In Chapter 3 the results for the rising bubble problem are presented
and discussed. These include the drag, the bubble ghape and the details
of the velocity field for Reynolds numbers from 0.5 to 200 and Weber
numbers up to 20 at the lower Reynolds numbers and up to 10 at Reynolds
number equal to 50, 100 and 200. Perhaps the most interesting results
of this chapter are those demonstrating the phenomenon of flow separation
at a smooth free surface. This phenomenon does not appear to have been
theoretically predicted before, in spite of its importance for under-
standing the mechanics of free-surface flows.

The problem of a bubble in a uniaxial extensional flow is treated

in Chapter 4. The computations show that at Reynolds numbers of order



10 and higher the deformation of a bubble proceeds in a way quali-
tatively different from the low Reynolds numbers regime that has pre-
viously been studied in the creeping flow limit by G. l.'Tayior, A.
Acrivos and others; the bubble bursts at a relatively early stage of
deformation, never reaching the highly elongated shapes observed and
predicted at low Reynolds numbers. lt’is shown also that for this
problem the solution at Reynolds number of order 100 is already quite
close to the potential flow solution which can be easily obtained using

the present technique.
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Abstract

A technique of orthogonal mapping is proposed for constructing boundary-fitted
orthogonal curvilinear coordinate systems in 2D. The mapping is defined by the covari-
ant Laplace equation, and constraints on the components of the metric tensor of the
curvilinear coordinates are used to achieve orthogonality and to control the spacing of
coordinate lines. Two different methods of implementing the mapping are presented.
The first, termed the strong constraint method, is intended primarily for problems in
which the boundary shape is not known in advance, but is to be determined as a part
of the solution (e.g. free boundary problems in fluid mechanics). The second, termed
the weak constraint method, is designed for the construction of an orthogonal map-
ping with a prescribed boundary correspondence, i.e. the production of boundary-fitted
orthogonal coordinates for a domain of given shape with a prescribed distribution of

coordinate nodes along the boundary.

The method is illustrated by numerical examples, and it is shown that the problem
of mapping infinite domains can be treated by mapping the infinite domain onto a
finite one using a simple conformal transformation and then applying the orthogo-
nal mapping technique developed here to the finite domain. The possibility of obtain-
ing analytical solutions for the mapping functions is discussed. The Appendices con-
tain connection (Christoffel) coefficients which provide a convenient means for deriving
equations of a physical problem for the constructed coordinates in terms of physical

components, using a slight extension of Cartesian tensor notation.



1. Introduction

The construction of a curvilinear coordinate system in which a boundary of arbi-
trary shape is represented by a coordinate line or surface is an important problem of
applied mathematics. The best-known approach to this problem is typified by the
method of Thompson et al. [1,2], who also review previous research. In Thompson et
al.'s method [2], the transform relations £(x.y) and 7n(x,y) between Cartesian coordi-
nates X,y and '"boundary-fitted'' curvilinear coordinates £,7, are assumed to satisty ellip-

tic equations of the form

&n , &n
P P Q(¢.m)

where the functions P(¢,m) and Q(¢.m) are chosen (essentially by trial and error) to con-
trol the spacing and configuration of coordinate lines in the domain of interest. It is
suggested that "sums of decaying exponentials” provide a convenient form for P and Q,
but the choice is otherwise ad hoc. To actually carry out the transformation, a set of
coupled, nonlinear partial differential equations is derived for x(¢.7) and y(¢,n ) from
(1) by direct interchange of dependent and independent variables, and these equations
are then solved numerically. Though undoubtedly useful, Thompson ef al.’s approach
has the severe drawback, when applied to the numerical solution of differential equa-
tions from mathematical physics, of yielding a nonorthogonal coordinate system. In
addition, the only control over spacing and configuration of coordinate lines is exer-

cised by the ad hoc choice of P(£,m) and Q(¢.7).

We consider the development of a method to generate orthogonal (boundary-fitted)
coordinates. With this objective, the first and classical candidate in 2D is, of course,

conformal mapping. Indeed, efficient methods for numerical construction of



conformal mappings have been developed (see [3,4] and references therein); however,
as Fornberg [3] points out, conformal mappings are ill-conditioned in the sense that
very small changes in the shape of the domain can dramatically alter the position of
mapped boundary points. Also, the density of boundary points (placed uniformly in
the .7 plane) may vary by several orders of magnitude along the boundaries of the ori-
ginal x,y domain. Examples given by Fornberg [3] (see Figs. | and 7 of his paper) show
clearly that conformal mapping can yield coordinate grids which are completely

unsuitable for numerical solution of partial differential equations.

The problem with conformal mapping is that the dual requirements of orthogonality
and equality of the scale factors (so that a small square in the ¢, plane is mapped
onto a square in the physical x,y plane) are too restrictive. Hung and Brown [5] and
Pope [6] have attempted to alleviate this problem by constructing orthogonal map-
pings in which the ratio of scale factors is not unity but rather some (adjustable) con-
stant throughout the domain. However, the use of a constant ratio of scale factors is
still too restrictive for a generally applicable transformation technique, and Mobley
and Stewart [7] have thus suggested construction of an orthogonal mapping by nonun-
iform stretching of the conformal coordinates. The coordinates of Mobley and Stewart
are thus a pair of variables, each of which is a monotonic function of a respective con-
formal variable. By eliminating the 'intermediate” conformal variables, Mobley and
Stewart obtained generating equationé for their transformation functions. As will be
seen in sections 2 and ,ﬁ this procedure can lead to basically the same types of grids as
the "strong constraint” subclass of the present method and the generating equation of
Mobley and Stewart is just a covariant Laplace equation, though this important fact
could not be recognized in the framework of their approach. Most recently, Haussling
and Coleman [8] have attempted to produce orthogonal coordinate grids in two dimen-
sions with prescribed nodal correspondence on all boundaries, using a pair of

differential constraints on the mapping functions x(¢,7m), y(¢,m) which are equivalent to



our orthogonality constraint g,; = 0 (see section 2 below). The single constraint of
orthogonality is, however, insufficient to completely specify a ‘mapping in two-
dimensions, and the resulting procedure exhibits a number of problems including
nonorthogonal mesh. One example, which is treated successfully by the method out-
lined in the present paper (see Figs. 7 and 8), led to a completely unacceptable mesh in

Haussling and Coleman [8].

Other recent attempts to construct orthogonal coordinates have been based on solv-
ing first order partial differential equations of the Cauchy-Riemann type as an initial
value problem. Starius [9] used this idea to construct an orthogonal coordinate mesh
in a strip near a given boundary, but was forced to use a different grid in the interior
of his domain with interpolation between the two grids then required in the region of
overlap. Following an earlier approach by Potter and Tuttle [10], Davies [11] used the
same idea to construct a second set of coordinate lines orthogonal to a first set which
was to be specified on an a priori basis, e.g. a set coincident with pathlines of the fluid
in a semi-Lagrangian code. However, the application of this initial value approach is
not generally suitable for the construction of a coordinate system for the complete
domain, since it is usually necessary to specify conditions on all boundaries, and the

generating equation should thus be elliptic.

In the present paper, a 'covariant” approach is suggested for the generation of
orthogonal mappings. Simple considerations from vector and tensor analysis are used
in section 2 to establish the covariant Laplace equation as the generating elliptic equa-
tion for the transformation functions x(¢,7) and y(¢,m). The properties of the resulting
coordinate system are then determined by constraints on the components of its metric
tensor. We consider three types of application. In the first, the boundary shape is to
be determined as part of the solution of the problem, and we develop the so-called
“strong constraint method" to determine the mapping. This case is discussed in sec-

tion 4. In the second type of application, the shape of the domain is known, and in the
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third, the spacing of boundary nodes is also specified, i.e. the complete boundary
correspondence is prescribed. For these cases, we have developed the 'weak constraint
method”, which is discussed in section 5. Finally, a brief comparison with the classical
method of conformal mapping is given in section 8. A preliminary presentation of our
technique of orthogonal mapping was given in [12], and an application of the "strong
constraint method” to calculate the shapes of gas bubbles rising through a viscous

fluid is summarized in [13].

2. Equations Defining the Mapping

A most important first step in the development of a mapping between a Cartesian
and a ‘boundary-fitted"” curvilinear coordinate system is to determine the equations to
be satisfied by the transform functions x(£,n7) and y(¢,m). Fortunately, this is extremely
simple even if the resulting 'boundary-fitted” coordinates are required to have
predetermined properties such as orthogonality, provided the well-known covariant
point of view is adopted, according to which any physical or geometrical law must be
expressible in a form that does not depend on the choice of a particular coordinate

system (see, e.g. section 12.5 of [14]).

In particular, a covariant, coordinate-free form of the equations for x and y follows
directly from the trivial observation that x, as a Cartesian coordinate in the physical
space, is obviously a linear scalar function of position and the same is true of y. Thus,

grad(x) and grad(y) are constant valued vector fields, and it follows that
div grad(x) =0

(2)
div grad(y) =0

everywhere, with div grad being the covariant Laplace operator V 2 As is well known,

this operator can be written in explicit form for any particular coordinate system gt 2,
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including the one we want to construct, provided only that we know the components of
the metric tensor gos which define the length of a line element according to the rela-

tion
ds? = gaedéode? .

Here, the Greek indices equal 1 or 2 in 2D and summation on the repeated indices is

implied.

The obvious question, then, is how the metric tensor is to be determined before the
coordinate system is constructed. The answer is that the development of an appropri-
ate coordinate transformation must begin by specifying the metric tensor — and it is
this specification which determines the properties of the resulting coordinate system.
For example, if the nondiagonal components of g,s are zero, the coordinate system
¢'.¢% is orthogonal. If, in addition, the diagonal components are all equal to 1, the sys-
tem is Cartesian, etc. Now, whatever physical problem is being considered, there are
always m degrees of freedom (wherem = 2 in 2D and m = 3 in 3D) in choosing the map-
ping functions [e.g. the functions x(£,7).y(¢.m) in 2D]. The essential idea pursued in the
remainder of this paper is to "use' these available degrees of freedom to impose m con-
straints on the components of the metric tensor in order to build the desired proper-

ties into the constructed coordinate system.

Although the metric tensor (being symmetric) generally has three independent com-
ponents in 2D (and six in 3D), the m constraints referred to above are the maximum
number that can be imposed if the space described by the resulting coordinate system
is to be Fuclidean ('flat"). Mathematically, the condition that the space is Euclidean is
equivalent to requiring the Riemann curvature tensor of the coordinate system to be
zero (see [14]). The Riemann tensor, which is a function of the metric tensor and its
first and second derivatives, has only one independent component in 2D (which is pro-

portional to the Gaussian curvature), and the restriction to a Euclidean space thus
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imposes a single constraint on g,.s reducing the number of freely specifiable con-
straints to two. In 3D, the Riemann tensor has six independent components, but they
are linked by the differential Bianchi identities (see [14]), leaving only three 'flatness"
constraints on the metric tensor. Consequently, the number of freely specifiable con-
straints on gag in 3D is three. Note that an explicit consideration of the 'flatness” con-
straints is not necessary. 1f a solution of Egs. (2) exists (thus defining a transforma-
tion from ¢7m to the Cartesian coordinates x,y), the space described by €7 is
guaranteed to be Euclidean because Cartesian coordinates may be introduced onlyin a
Euclidean space. In other words, the condition that the Riemann tensor be zero is just
a condition of integrability for Eqs. (2) (see [15], section 39) — and so will be satisfied

automatically when a solution of (2) is obtained.

It is, of course, not clear that the degrees of freedom in choosing the mapping fune-
tions x(£,m).y(¢,m) can always be utilized as constraints on the metric tensor. In partic-
ular, it is not evident that mapping functions can always be found connecting some
particular domains in the x,y and ¢{,m planes which satisfy prescribed constraints on
the metric tensor. To prove that this is indeed possible for arbitrary constraints would
amount to a major result in theoretical mathematics, and is beyond the scope of the

present work. However, for the particular pair of constraints in 2D;

g1z =0 and gz .
g

which define conformal mapping. the proof is, in fact, well known: it is the celebrated
Riemann Mapping Theorem. This fact provides some theoretical support for the

present approach, though we do not restrict ourselves to conformal maps.

The most obvious (and useful) constraint in the general case is to set all of the non-
diagorial components of g,s equal to zero, thereby ensuring that the resulting coordi-
nate system is orthogonal. Since the number of independent nondiagonal components

is 1 in 2D and 3 in 3D, it is evident that this is always possible in two- or three-
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dimensional systems. In fact, in the important 2D case, one additional degree of free-
dom is still left. For m > 3, on the other hand, the orthogonality constraint cannot be
satisfied — an arbitrary space of more than three dimensions does not generally admit
an orthogonal coordinate system — see Eisenhart [18]. We restrict our attention to

orthogonal systems in two dimensions in the remainder of this paper.!

The metric tensor for 2D orthogonal coordinates ¢,m7 can be written as

"

Eap = | h3
where index 1 corresponds to ¢, and index 2 to 7. Recall now that there is one degree
of freedom left in 2D after setting g;» = 0, and we propose using this to impose an addi-
tional constraint on the scale factors h; and hp. A simple and useful constraint is to
specify the ratio of the scale factors as a function of ¢ and 7, i.e. £((,m) = ha/h,. The
ratio hg/h, has a clear geometrical significance —it specifies the ratio of the sides of a
small rectangle in the x,y plane which is an image of a small square in the £,7 plane. It
is therefore natural to call f(£.7) the distortion function. By judicious choice of the
distortion function, one can control the spacing of a computational grid in the x.y
plane, which is the image of a uniform grid in the £,7 plane (say, on a unit guare). This
should be particularly useful in problems involving disparate length scales in different
directions (e.g. a boundary layer-like structure). Although the distortion function
could, in principle, be adjusted automatically during the course of numerical solution
to reflect the evolving gradients of the solution, such an algorithm would be expensive

and has not been implemented in the current study.

The condition f(¢7) = 1, which corresponds to conformal mapping, is obviously a
major restriction on the class of possible mappings; an adjustable function of two vari-
ables f(£,7) evidently provides much greater flexibility while orthogonality is still main-

tained. Indeed, the "stiffness” of the conformal mapping, which makes it ill-suited for
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the present purposes (see section 1), is due to this unnecessary restriction f(¢,7) =

To a lesser degree, the same is true for other methods in which f(¢,m) = const (Hung
and Brown [5], Pope [6]). We note in passing that in 3D no freedom is left after
specification of the three orthogonality constraints g; = g;5 = gz23 = 0. and so orthogo-

nal mapping in 3D is likely to be as "stiff" as conformal mapping in 2D.

Equations (2) can now be written explictly in the ¢ 7 coordinates using the condi-

tions
g1z2=0
hy _ hs _ (ge2)* _
BB (o = fiem)

and the well-known formula for the two-dimensional covariant Laplace operator in
orthogonal coordinates, which is

1 [a[h, 3 [hy

ve=
h¢h, | 8¢ he agj an | hy

The generating equations are thus®

gﬂ{@:h a1 ax]
3¢ | a¢)  an|f on

g 1.0 8 |18yl _
E{f%+7ﬂ{faﬂ]“°

The solution of these equations with appropriate boundary conditions (to be discussed

| Se—
i
o

(3)

later) will provide the transformation from Cartesian coordinates X,y to an orthogonal
curvilinear coordinate system {7 provided the mapping actually exists for the particu-
lar boundary shape’. The scale factors, he and h,, that are required in the governing
equations of the physical problem, can be computed easily from the standard formulae

of tensor analysis



ay ]2
8¢° | (4)

o _ . axPaxr _[ox]?
h§== gaa—’éﬁ'?asa aga - [afdJ +

Ot course, only one of the scale factors needs to be computed trom (4) as the second

one can be obtained from h,/h, = f(£.7).
Three types of application should be distinguished:

1. The shape of the domain is not known in advance, but is to be determined as a part
of the solution of a physical problem (e.g., free boundary problems in fluid mechan-

ics).

2. The shape of the domain is known, but the distribution of the coordinate nodes

along the boundary is not specified and may be determined by the mapping.

3. The shape of the domain is known and the distribution of coordinate nodes is
specified along all boundaries, i.e. the complete boundary correspondence is
prescribed.

The two methods, considered in the rest of the paper [the 'strong constraint” method
(section 4) and 'weak constraint” method (section 5)] are not equally suitable for these
problems. The strong constraint method (which includes conformal mapping as a spe-
cial case) works well for problems of the first type, and might, in principle, be also
applied to problems of type 2. The strong constraint method cannot be used to solve
problems of the third type. The weak constraint method, on the other hand, is particu-
larly well suited to problems of the third type, and thus also can be used conveniently
for the second category by simply prescribing some reasonable boundary correspon-

dence.

Since problems of types 2 and 3 are more common than those of type 1, the weak

constraint method is likely to be the more important of the two methods of mapping.

3. Application to an Infinite Domain
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In order to actually apply Egs. (3) to the calculation of a boundary-fitted coordinate
system, it is necessary to specify the distortion function f and determine boundary
conditions for the functions x(¢,m) and y(¢m). As a preliminary, however, we consider
here the aplication to an infinite domain. Since the present investigation was originally
motivated by the fluid mechanics problem of flow past a deformable bubble (or drop),
we shall use this problem for illustration purposes in this and subsequent sections. In
the case of a bubble, the interior flow can be ignored and it is therefore only necessary
to develop boundary-fitted coordinates for the region exterior to the bubble. The
objective, for a given bubble shape, is an orthogonal mapping X(£,m),Y(£,m1) which maps
the unit square 0 < é¢< 1 and 0 < < 1 onto the exterior of the bubble. A 'reason-
able"” correspondence of the b’oundaries for this case is sketched in Fig. 1a, with £ = 1
being the bubble surface, ¢ = 0 corresponding to 'infinity” and n varying from 0 to 1 as
the bubble surface is traversed from the trailing to leading axis of symmetry. Note
that the ¢,7n coordinate system, as sketched, will yield (after rotation about the x-axis)
a left-handed three-dimensional coordinate system £,7m,¢ if the sense of rotation is such
that the cylindrical coordinates x,y,¢ (where y= 0) are right-handed, but this presents
no real problems and will actually be very useful in the case of a viscous drop where
the matching of an exterior and interior coordinate system is most convenient when
one is right-handed and the other left-handed. One should only remember that in a
left-handed coordinate system all the expressions which involve the Levi-Civita alter-

nating symbol & (e.g. cross product and curl) change sign.

The first problem, and one whose resolution is of some general interest, is the map-
ping of an infinite domain by numerical solution of equations (3) subject to some suit-
able boundary conditions. Since numerical solution cannot produce functions X(¢,7)
and Y(¢7m) which reach infinite values, it is necessary to introduce some modification
into the problem. One obvious possibility would be to simply truncate the XY domain

at a large, but finite distance. However, a more satisfactory resolution is to combine a
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numerically generated orthogonal mapping from ¢,n to a ('fictitious”) auxiliary domain
in which x(£7) and y(¢,n) are finite, followed by a conformal mapping from this finite

auxiliary domain to the infinite, 'physical” domain in the XY space.

From the properties of conformal mapping it follows immediately that the ¢€,m coor-
dinates in the physical X,Y space will be orthogonal; moreover, the scale factors He H,
for these coordinates will be related to the scale factors he.h, of the auxiliary mapping

via simple formulae
He= |F'|he . H, = |F'|hy,
where F is the analytic function which defines the conformal mapping, i.e. X +iY = F(x
+ iy).
One especially simple and convenient conformal mapping (of the so-called second

kind since it reverses orientation) which transforms from a finite to infinite domain is

the inversion

X1y (5)

which leads to

where

A qualitative sketch of the auxiliary mapping x(¢.7).y(¢£.n), which, when combined
with (5) and (6), will yield an orthogonal, boundary-fitted coordinate system outside a
bubble (or any particle), is seen in Fig. 1b. The point x=y=0 corresponds to infinity in
the XY plane and is an image of the line ¢ = 0, i.e. the mapping is singular here. The
distortion function f(¢,) should thus be equal to 0 at ¢ = 0 (a concentration point of

the coordinate system). Other factors concerning the choice of f(¢£,n) will be discussed
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later.

4. Mapping by the Strong Constraint Method
a. Choice of the Listortion Function and Boundary Conditions

Let us now turn to the application of orthogonal mapping, beginning with the sim-
plest case from a conceptual point of view, in which the distortion function f(¢,7) is
specified completely throughout the ¢,7 domain. In anticipation of the alternative
approach outlined in section 5, the method of mapping associated with this condition
will be called the 'strong constraint method"” It is especially convenient when the
shape of the domain must be determined as a part of the solution of the problem (e.g.
the shape of a bubble in flow at finite Reynolds number). but cannot be used when the
boundary correspondence is completely specified, where the 'weak constraint” method

of section 5 must be adopted.

The most appropriate form for the distortion function depends on the domain of
interest and any special features of the physical problem which must be resolved. Con-
sider, for example, a bubble in a uniform fluid flow. The auxiliary domain has already
been sketched in Fig. 1b, and we have noted that £{0,n7) should be 0. If one does not
need the distortion to vary along the boundary £ = 1, one can simply choose £(¢7) to be
the same as for polar coordinates, i.e. f = n¢. Such a choice would, of course, produce
polar coordinates if the shape of the boundary ¢ = 1 were a semicircle with its center
at x=y=0, though very diflerent coordinates will be produced when the shape of the
boundary is noncircular. One potential advantage of equating f(¢,n) with the distortion
function for some classical, "separable” coordinate system (such as polar coordinates),
is that it may be possible to construct analytical expressions for the mapping func-
tions, x(¢7m) and y(é.n) — see section 4c below. On the other hand, if one wants the
computational grid to be denser in the region downstream of the bubble (say, to

resolve the wake), this can be accomplished easily by introducing the desired 7
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dependence into the distortion function —see Fig. 2. Similarly, a higher resolution can
be achieved in the boundary region by introducing a more complicated dependence on
¢ into f(¢£,m). Note that the finite-difference equations of the problem of interest will
always be solved on a uniform grid in the unit square, 0 < {71 =< 1, it is well known that
the uniform grid is preferable for the production of finite-difference schemes of high

accuracy.

Let us now consider the boundary conditions for numerical generation of the map-

ping x(¢,n).y(£.m). Referring to Fig. 1b, it is easy to see that

X

ety

an-r'=0=0 . Y]ﬂgozc

n=1 7=1 | (7)

At ¢ = 0, which is a concentration point for the coordinate system and a singular point
for the differential Eqs. (3), the only necessary condition is that x and y be finite (see
Morse and Feshbach [19], pp. 713-716), which reflects the fact that no real physical
boundary is present. This condition will, of course, be satisfied by any numerical solu-
tion of (3), and it is permissible to choose arbitrary values [within some reasonable
range of 0(1)] for x and y at ¢ = 0, with the particular choice influencing the solutions
for x(¢,m) and y(é.m) by no more than the order of accuracy of the numerical scheme.

Here, we simply choose

Xlg=0=0 | Vi=0=0
(8)

Finally we turn to conditions at the boundary ¢ = 1, which corresponds to the bub-
ble surface in the example considered here. In general, both x(1,7) and y(1.n) cannot
be specified simultaneously if the resulting coordinate system is to be orthogonal. In
order to demonstrate this fact, we need only examine the orthogonality constraint g;,

= 0. With the definition of scale facors (4), and the distortion function, this yields

0% _ 8y 8% __ .8y
ot on on ot (9)
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These are obviously the analogue of the Cauchy-Riemann conditions in conformal map-
ping.* Clearly, if X|¢= is given as a function of 7, the conditions (9) determine 8y/0¢ | =1.

and vice versa. Thus if both x(1,7) and y(1.n) are given, the conditions (9) provide also

0x dy
) and
T T

nation of a constant Dirichlet condition for one function and a zero Neumann condi-

. and the problem is overdetermined. Note, however, that a combi-
¢=1

tion for the other will satisty (9) automatically [conditions (7) are of this type]. If it is
essential that both x(1,m) and y(1,m) be specified (i.e. the exact boundary correspon-
dence of the mapping be prescribed), it is evident that the method of coordinate
transformation must be substantially changed. This question is considered in section

5.

We have noted earlier that the strong constraint method is particularly useful for
problems in which the boundary shape must be determined as part of the solution.
For the example of a deformed bubble, considered here, the shape of the boundary,
x(1,m).y(1.n) must be attained as part of the problem solution. One approach is to use
an iterative procedure starting from an initial shape (e.g. spherical). At each itera-
tion, the position of the curve ¢ = 1 which represents the bubble boundary (in either
%,y or X,Y) must be changed incrementally in the normal direction, with the magnitude
and sign of the increment (i.e. whether the boundary moves locally "in" or "out') to be
determined by the magnitude and sign of the local normal-stress imbalance across the

interface.

What is needed for application of the strong constraint method to problems involv-
ing an unknown boundary shape is a method for changing the mapping x{(¢£7).y(£7) so
that the position of the curve £ = 1 is changed in the desired direction by a small incre-
ment normal to itself. This must be done without directly specifying both x(1,m) and
y(1,m), as would seem to be necessary if one were to attempt somehow to specify the

new position of a boundary point [say, x*(1.1).y"(1,m)] directly from its position in the
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previous iteration [x*'(1,m),y*"}(1m)]. The approach proposed here is to alter the
mapping, in a prescribed fashion, by changing its metric tensor (i.é. the scale factors).
In particular, it is evident from the geometrical significance of hs(¢,m) that a point of
the boundary, say ¢ = 1, 7 = 7,, can be moved outward or inward along a ¢-coordinate
line (n = 7n,) which is locally normal to the boundary (due to the orthogonality of the
coordinate lines) by simply increasing or decreasing h¢(é.7m,). There is, of course, no
way to modify h; all along the line n =7, in an a priori fashion and still obtain a map-
ping which satisfies Eqs. (3). If a point on the boundary is moved, the mapping func-
tions and the scale factors are then completely determined inside the domain by these
equations. The approach which we adopt is thus to derive boundary conditions for the
functions x and y at ¢ = 1 which are equivalent to changing h; locally in the limit as £ -
1. In order that this change in he(l.'r;o) actually cause the boundary ¢ = 1 to move
inward or outward in the x,y plane, it is necessary that it propagate inside the domain
to produce changes of the same sign for hi(¢,m,) for £ < 1. We can offer no rigorous
proof at this time that this will always be true. For now, we simply accept it as a
hypothesis. It should be noted, however, that this hypothesis is supported in the spe-
cial case f = 1 of conformal mapping by the so-called Lindeldf principle [20] and has

also turned out to be true for all test cases that we have considered to date.

The iterative procedure which we have adopted in the case of determining the unk-
nown boundary shape for a bubble may be represented as follows. The value of he(l.no)
at the n'® iteration is calculated as its value at the previous iteration plus a small
change 6""'(7,), dependent on (in the simplest case, "proportional to") the normal

stress imbalance at 7, for the n-1% iteration, i.e.

hE(1.m6) = W~ (1.m) + &7 n,)
(10)

for 0 < n, < 1. The new value of h(1,7,) is then transformed into boundary values for

by means of the definition
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and the constraint of orthogonality, g,z = 0. The latter is implemented by noting that

g12 = 0 can be expressed in the form

w2
aE - _......a_:)...‘__

[ax [.a_y_ (12)
o =1 o) ¢=1

The term on the left-hand side is the slope of a é-coordinate line at the boundary, while
that on the right is the negative inverse of the slope of the boundary (£ = 1) itself.
Thus, in order that the iterative procedure converge to a mapping in which the -
coordinate line at the boundary (¢ = 1) is orthogonal to the boundary, we interpret
(and use) Eq. (12) as defining the slope of the ¢-coordinate line at the n* iteration via

the slope of the boundary ¢ = 1 at the prévious iteration, i.e.
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Equations (10), (11) and (13) provide sufficient information to determine boundary

conditions for

ax"

oy
a¢ d

an
£=1 aé

£=1

at each new iteration. Equation (13) can be applied either in the given form or

inverted, the choice being made in such a manner as to avoid division by very small

n
numbers. The signs of a;; and %Y;— [which are found by a square root
£=1 ¢=1
n-1 n-1
operation from (11)] are determined from the signs of 8y’ and ox’

677 =1 617 £=1
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via (9).

The procedure outlined above can be implemented easily on a computer and leads
to a stable and fast iterative process. It may be noted, however, that the boundary
conditions for x(£,m) are all of the Neumann type, with the exception of the 'weak' con-
dition at ¢ = 0 and the solution is therefore determined only up to an arbitrary con-
stant. Numerically, this 'indeterminacy” manifests itself in the fact that the coordi-
nate boundary (and, in fact, the whole coordinate system) may "creep” along the x axis
during the iterative process (the point ¢ = 0 stays at x = 0 but, being a singular point,
it cannot "hold” the rest of the solution — see the discussion above). A simple way to
eliminate this unwanted movement is to add a constant to x(£,m) after each iteration,
with the value chosen in such a way that the points closest to ¢ = 0 on the x axis [i.e.
x(h,0) and x(h,1) where h is the gird size] are required to fit symmetrically about the

point x = 0.

b. Numerical Examples of the Strong Constraint Method

The proposed strong constraint method for generation of boundary-fitted, orthogo-
nal coordinates has now been reduced to the sclution of Eqs. (3), subject to the boun-
dary conditions described above. A variety of finite-difference schemes can be used for
this purpose. In our own computations we have adopted the AD! technique of Peace-
man and Rachford {see, e.g. Richtmyer and Morton [21]) and used a 41x41 grid, i.e. h =

0.025.

First, we test the adequacy of Eqs. (11) and (13) for the generation of boundary con-
ditions for (0x/0¢),=, and (8y/8¢)¢=; With h (1,m) known. We consider two cases. In the
first, we set

he(1m) =1

and
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t(¢m) = mé(1 - 0.9cosnn) .
while the second has

5

] <

for 05

and
f(¢m) =me .

In both cases, an iterative process is necessary even with h;(l.n) specified. For the cal-
culations reported here, we start with an initial guess for x,y, use this to calculate
(8x/8n) and (dy/@n) at the boundary (¢ = 1), use the specified form for h, and Egs. (11)
and (13) to obtain boundary values for 3x8¢ ¢=1 and 3y/B¢ .-, and finally calculate a
new estimate for the mapping by numerically solving Eqs. (3) with 8x/8¢ ¢=1 and
8y/B¢ ¢=, as boundary conditions. With this new estimate for x(¢,m) and y(¢£,1) the pro-
cess can be repeated. Presumably, if Eqs. (11) and (13) did not provide a sufficient
means of obtaining boundary conditions for x(¢,m7) and y(¢.m) (and this is by no means
obvious), we might expect this iterative procedure to diverge. However, in both of the
cases listed above, a convergent solution was obtained. In the first example, a very
goced initial guess can be generated analytically and the test of conditions (11) and {13)
is rather weak. However, the resulting coordinate mapping, which is shown in Fig. 2, is
of some qualitative interest in itself since it demonstrates how the density of a compu-
tational grid can be controlled by f(¢,7); this particular grid might potentially be useful
for computation of the flow past a body with a developed wake. The 'teardrop” shape
shown in Fig. 3 was obtained for the second case and constitutes a much stronger test
of convergence with boundary conditions generated from Egs. (11) and (13). In this
case, approximately 80 iterations [with a constant time step 0(h)] were necessary to
compute the mapping, starting with polar coordinates (and a circular boundary) as an

initial guess (sixty iterations correspond to approximately 30 sec of CPU time on the



VAX-11/780 computer which we used for our work). It should be noted that h,(1,m) = 1
for all 7 in this initial guess and the change from this to the specified form for h(1.7)
is a very strong "jump”, much greater than one might expect at each step in an overall
solution scheme for a problem with unknown boundary shape where he is incremented
according to Eq. (10). The maximum nonorthogonality error in the final solution is

approximately 0.5%, i.e. max|g;2| ~ 0.005.

Let us now turn to an example of a problem in which an unknown boundary shape is
to be calculated as part of the solution. This will constitute a final numerical test of
the strong constraint method. Figure 4 gives a final converged solution for the axisym-
metric steady shape of a bubble at finite Reynolds number, for a uniform streaming
flow which moves from left to right. Of course, the shape is initially unknown and can
be determined only in the course of solving the full fluid dynamical problem, described
by the Navier-Stokes equations and appropriate boundary conditions. This is precisely
the type of problem that the strong constraint method was designed to handle, but it is
very important to establish the convergence of the overall solution scheme outlined in
section 4a, including iterative incremental changes in h,(1,n) as indicated in Eq. (11).
In the present example, only an approximate solution of the fluid dynamics problem
was obtained on the grid provided by the mapping at each overall iteration. This
decreases the necessary computing time to the final steady state, but renders mean-
ingless the transient results for bubble shape and velocity field at intermediate itera-
tions in the solution scheme. The mapping and bubble shape illustrated in Fig. 4 were
obtained starting from a sphere as the initial guess for bubble shape. After obtaining
the solution of the fluid dynamiés problem for a given boundary shape at each itera-
tion in the overall solution scheme, the scale factor h¢(1.m) was changed according to
the sign and magnitude of the normal stress imbalance at the surface of the bubble, as
discussed in subsection 4a. The new scale factor was then used to redefine the map-

ping and the corresponding boundary shape for the bubble, and the whole process was
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repeated for this new shape, until overall convergence was achieved. A detailed
account of this luid mechanical problem will appear in a forthcoming publication. A

brief description of the solution procedure and results was presented in [13].

c. On the Possibility of Analytical Solution by Separation of Yariables

The present approach to the construction of an orthogonal mapping via the strong
constraint method is primarily a numerical one. Nevertheless, it is of interest to note
that the possibility exists for analytical solution in cases where the distortion function
f(¢.m) of the mapping happens to coincide with the distortion function of some classical
separable coordinate system. For example, the distortion function in the previous sec-
tion, f(¢,m) = wé¢, is just that for polar coordinates and an analytical solution could have
been attempted. The reason for this is that the covariant Laplace Eq. (3), which
defines the orthogonal mapping, has exactly the same form for the general orthogonal
coordinates {£.7 as it does in the classical polar coordinate system with the same {(£,7)
— simply because the form of the equation depends only on f(¢,7). The domain in the
£.m plane is a unit square and one can solve Eqgs. (3), in principle, as a series expansion

in the appropriate eigenfunctions of the Laplace equation.

As an example, let us consider the distortion function f(¢,n7) = w¢ for which the gen-
eral solution of the Laplace equation, that is finite at ¢ = 0, is (Morse and Feshbach

[19], pp. 718-714),

Y [Ajcos(inn) + Bysin(lmn)]et
i=0

Applying the conditions at ¢ = 0,7 = 0 and 7 = 1 that were discussed in section 4a, one

thus obtains

X = iA,cos(l mmE: y= i Bpsin(mmn)¢™

i=1 m=1

and the conditions for orthogonality (9) require
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A, =By for i=m

The mapping is thus

x = Y Acos(lmn)ét ; y = ‘Sj':lA;sm(lwn)e‘

i=1

and the coefficients are to be determined from the boundary conditions at ¢ = 1, where

iA,cos(lrm) = X|g=1 iA;sin(lnn) =¥le=1 -
(=1 1=1 (14)
One can distinguish several possible cases insofar as determination of A; is concerned.
First, in the unlikely circumstance that one of the Cartesian coordinates, i.e. x or v, is
known at the boundary ¢ = 1 as a function of the transform variable 7, the coefficients
can be obtained directly from (14) using the orthogonality of cos(l7n) and/or sin{l 7).

Second, in a more realistic situation, the shape of the boundary ¢ = 1 is given

parametrically, e.g.

X|g=1 = u(s) ; Vle=1 = v(s) ; 0< S< Spax

aul  [av)_,
ds ds

Since the correspondence between s and 7 is not ordinarily known, the coefficients A,

where s is an arclenth, i.e.

in this case cannot be found directly in closed form, but some version of a method of

successive approximations should be used.

Finally, there may be cases like that discussed in section 4a in which the boundary
shape is not known in advance but must be determined as part of the solution. In this

case, an iterative procedure like that adopted in section 4a is appropriate.

Whatever method (numerical or analytical) is used to construct the mapping, the
equations of the problem of interest, which are to be solved on the mapped domain,

may still be solvable by separation of variables, provided f(¢,7) is of some classical
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form. This curious possibility of using classical analytical methods of solution, devised
for some very special coordinate systems, in the case of a much more general orthogo-
nal mapping is due to the fact that the form of the governing equations depends

mainly (for the Laplace equation entirely) on the distortion function.

These analytical approaches are worth exploring in more detail than is done here.
On the other hand, as the next section will show, in many cases it may be advantageous
to use a distortion function which is not limited by the requirement of being of some

classical form.

5. Orthogonal Mapping with a Prescribed Boundary Correspondence (the Weak

Constraint Method)

The strong constraint method, considered so far, could also be used, at least in prin-
ciple, for problems of type 2 when the shape of the domain (but not the complete
boundary correspondence) is prescribed from the beginning. In this case, one might
start from some initial approximation to the desired boundary shape and proceed
iteratively by using the distance between the desired boundary and the numerical
approximation to that boundary (measured along the direction normal to the current
boundary) as a driving 'normal force"” for moving the boundary in or out. In practice,
however, a much more powerful technique can be devised for dealing both with this
problem, and the apparently more difficult one in which the complete boundary
correspondence (i.e. the boundary shape and the spacing of coordinate nodes along

the boundary) is specified. This is the topic of the present section.

Let us then consider the generation of an orthogonal mapping with a prescribed
boundary correspondence. It has often been suggested that such a mapping is impos-
sible — see, for example, Thompson ef al. [1], p. 300. Indeed, in the case of conformal
mapping it is not possible to achieve a prescribed boundary correspondence, and this

is crucial in limiting the application of conformal mapping to problems of practical
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importance.

It would be very beneficial in a number of applications to be able to construct an
orthogonal mapping with a prescribed distribution of grid points along a boundary of
given shape. Indeed, in the case of a boundary separating two domains of solution (e.g.
the surface of a liquid drop), this ability is imperative in order that the normal coordi-
nate lines on the two sides emanate from the same boundary points (otherwise appli-

cation of matching conditions is greatly complicated).

It may seem, at first, that the present approach could not be any more successful
than conformal mapping as far as the determination of a mapping with prescribed
boundary correspondence is concerned. Indeed, a complete prescription of boundary
shape and mesh spacing along a boundary requires the imposition of Dirichlet boun-
dary conditions for both functions x(¢,7m) and y(£.n7) on the boundaries of the ¢7
domain — and this is clearly impossible with f(¢,m) specified (as discussed in section
4a). However, we will see that the present approach does allow orthogonal mappings
with prescribed boundary correspondence, provided one imposes what we shall call &
"weak constraint” on f(£.7n), rather than specifying f(¢,n) completely throughout the

whole £,7 domain.

We have noted in section 2 that two degrees of freedom exist in defining a mapping
in two dimensions. In the method of the preceding section, these were used to impose
the orthogonality condition g;; = 0. and to specify the distortion function,
f(¢.m) = hyA, throughout the domain of £ and 7. It will be convenient to refer to con-
straints specified throughout ¢ and 7 as utilizing a "domain degree of freedom’, and
call these "strong constraints”. Evidently, in this terminology. a mapping in two dimen-
sions allows imposition of two (and only two) strong constraints, and the imposition of
an added '"boundary constraint”, in the form of a prescribed boundary correspondence,

will cause the mapping to be over-determined unless one of the domain constraints, for
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g1z or f. is relazed. The basic idea proposed here is to maintain orthogonality, i.e. g;5 =
0. while giving up a part of the freedom to specify t(£.n) everywhe‘re in return for the
ability to specify both x(£,m) and y(¢,m) on the boundary of the ¢,7 domain. In other
words, we propose to relinquish a "part” of the "domain degree of freedom" available to
specify f, in order to gain a 'boundary degree of freedom" for x(£,m) [or y(£.m)] while
still retaining the orthogonality condition g,, = 0. Instead of prescribing the function
f(¢.m) explicitly throughout the domain, we give a 5\_112 which determines f in the inte-
rior of the ¢, domain as soon as it is known on the boundary. The boundary values of
f are found using the definition of f(= h,/h,), and the formulae (4) to obtain h, and h,
from the mapping functions x(¢,n) and y(¢£7). The latter are obtained, in principle, by
solving Egs. (3) subject {for prescribed boundary correspondence) to Dirchlet condi-
tions on the boundaries of the {7 domain. It is evident, since the governing Egs. (3)
for x and y involve f, that the boundary values for f (which are used to determine { in
the interior) and the mapping functions x(¢,m) and y(¢,n7) must be determined sequen-
tially in a successive approximation scheme, starting from some initial guess for f. The
exact manner in which this scheme is implemented will be discussed shortly. As a prel-
liminary, however, it is useful to consider some additional factors that are intended to

clarify the fundamental ideas behind the approach proposed here to obtain orthogonal

mappings with a prescribed boundary correspondence.

First, the rule to determine f from its boundary values is essentially arbitrary, sub-
Ject to the condition that f > 0. It may thus take the form of an algebraic ("interpola-
tion") formula, or, for example, an elliptic differential equation which can be solved to
determine f from its values on the boundary. For convenience, we denote this type of

condition on f as a weak constraint to distinguish it from the strong constraint in

which f is given explicitly throughout the domain. It is obvious that a weak constraint
together with the values of f on the boundary is exactly equivalent to some strong con-

straint, and we have seen that a strong constraint on f is enough, together with the
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condition g;s = 0, to determine an orthogonal mapping in two dimensions. The avail-
able domain degree of freedom may thus be used either to impose a strong constraint
on f (as in the previous section), or to impose a weak constraint together with values of
f along the boundary. Heuristically, the second approach divides a domain degree of
freedom into two "parts™ the "interior degree of freedom" (used by a weak constraint)

and the "boundary degree of freedom".

The key idea of the present development is to use a weak distortion constraint
instead of a strong one, and to leave the values of f along the boundary unspecified, i.e.
to let these values be determined by the mapping itself. The hope is that in this case
one will be able to prescribe the boundary correspondence, since the boundary degree

of freedom, available for the distortion constraint, is not used.

Let us now discuss how the method is to be applied. As we have noted, the problem
of determining x(¢,m) and y(£,7m) is rather unusual in the sense that the coefficients of
the governing partial differential Eqs. (3) depend via f(¢,m) on the coupling between the
solutions x(¢,m) and y(£,m). The problem is thus nonlinear and must be solved by some
iterative procedure. Although this might seem a disadvantage in comparison with the
strong constraint method of the previous section, this is not necessarily true since the
latter also requires iteration (on boundary conditions) and it is not obvious which
iteration will converge most rapidly. At any rate, this nonlinearity is a small price to
pay for the ability to construct an or-thogonal mapping with a prescribed boundary

correspondence.
The iterative procedure mentioned above may be realized as follows:

1. Choose an initial guess for x(¢,7m).y(£,n), thus obtaining an initial guess for f(¢,n) via
its definition and expressions for scale factors (4). It is preferable, but probably
not absolutely necessary, that the initial f(¢,m) satisfy the chosen weak constraint,

i.e. the chosen rule for determining f from its boundary values.
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2. Using this f(¢,n) and the Dirichlet boundary conditions for x(¢.nm).y(¢,m) known from
the prescribed boundary correspondence, calculate new x(¢.7),y(£,n) from the basic
Egs. (3); if some iterative scheme is used to solve (3), it will be sufficient to advance

the solution by only a few (or even one) iterations.
3. Calculate new scale factors on the boundary from x(¢,7).y(£,m) using (4).

4. Use the weak constraint and the new boundary values for {{¢,n), calculated from the

scale factors of step 3, to find new £(£,7) in the interior of the domain.
5. Go to step 2 and repeat.

This algorithm appears to work fairly well. It has been tried with two types of weak dis-
tortion constraints (rules) — algebraic "interpolation” and an elliptic partial differential
equation (EPDE). The weak constraint may apparently be chosen quite arbitrarily, but
it should give f(¢,m) which is non-negative and, preferably, smooth. Since the freedom
to prescribe the boundary correspondence already gives a considerable degree of con-
trol over the spacing of coordinate lines near the boundaries (which is usually the
most important area), the weak constraint can often be chosen as a rule which deter-
mines the values of £(¢,) in the interior of a domain as some kind of simple interpola-

tion between its boundary values.

To obtain interpolation by EPDE, f(£,m) is defined as a solution of some EPDE with
Dirichlet boundary conditions. The EPDE may, for example, be the ordinary Laplace
. 9%t i . . . .
equation b—é—z—-i» %-2— = 0, and the motivation for this approach is the fact that a linear

2
interpolation in 1D can be thought of as defined by the differential equation g-g-g-»= .

It is, of course, known that the solution of the ordinary Laplace equation provides a

means of (local) averaging throughout the domain.

Although this EPDE approach appears quite sophisticated, experience obtained in

the course of the present study indicates that the simpler, algebraic, approach is often
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to be preferred, and this will now be described in more detail.

To obtain a convenient formula for an algebraic interpolation, consider first the
case when the given boundary values of f(¢,7n) are zero in all four corners of the

0=< ¢n< 1 domain. Then the formula
t°(¢m) = (1 — O)1(0n) + £1(1m) + (1 = nI(£.0) + nf(£.1)

gives a suitable, smooth interpolation. If the corner values are not zero, however, this
formula is not suitable, since each corner value appears in it twice, giving a spurious
contribution. To obtain a useful interpolation formula in this case, we need to sub-

tract a bilinear "corner function”
fe(ém) = (1 = £)(1 =m)(0,0) + (1 = &)nf(0.1) + (1 —nE(1.0) + énf(1.1) .

The final formula for an algebraic interpolation thus reads®

f*(¢n) = 1°(¢m) —1°(6m)
(15)

This algebraic interpolation is very easy to apply both as a weak constraint for a distor-
tion function f(£.m) and as an initial guess for x(£,m) and y(£.n) (if a better guess is not
available). We note in passing that if orthogonality of the boundary-fitted coordinates
is not required [as in the method of Thompson et al. (see section 1)], a direct algebraic
interpolation for x(¢,7m).y(¢m) provides the simplest possible way to construct a com-

plete coordinate system with prescribed boundary correspondence.

It should be borne in mind that oﬁe has almost complete freedom in choosing the
weak constraint rule, and the above suggestions are simply examples. In particular,
some control over the spacing of the coordinate lines can obviously be achieved by the
form chosen for the weak constraint, in addition to the strong control obtained by
prescribing the boundary correspondence. The only limitation is that f(£,7,) must be
greater than O inside the domain. In some cases, this will follow automatically from

the fact that f(£7) > 0 at the boundaries (where it is calculated as a ratio of two posi-
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tive quantities - the scale factors). In other cases, the condition f(¢,7) > O inside the
domain may be quite simply satisfied by adding some function of ¢ and 7 to (15), which
vanishes at the boundaries; the same function can also be efficiently used for control
of the coordinate mesh. Other possibilities are conceived easily, but the details of
choosing the weak constraint rule are much better discussed in the context of a par-

ticular application and we will not deal with them further here.

Let us finally consider numerical examples of the weak constraint method. These
examples were obtained using an ADI technique to solve Egs. (3) and the algebraic
interpolation (15) as an initial guess for x(¢,1). y(¢£,7m). The number of iterations needed
was of the same order (50 - 100) as required by the strong constraint method of sec-
tion 4. The "peanut” shape, shown in Fig. 5 was obtained by simply specifying arbi-
trarily chosen values of x and y (i.e. prescribing the boundary correspondence) at ¢ =

1,m=0and n = 1; plus the boundary conditions y(0,n) = 0 and (22 S 0 at the boun-

0¢ |i=o
dary ¢ = 0 (which in this case corresponds to a segment of the x axis). This last pair
satisfies the orthogonality conditions (9) for any £{0,n7) which means that at this part of
the boundary (only) the value of f(¢7) needs to be given; it was chosen as f(0,n)
4sin?mn. The algebraic interpolation (15) served then as a weak constraint on the dis-
tortion function f({(,7n). Note that in order to make the picture legible, only every

second of the n-coordinate lines were drawn.

The mapping shown in Fig. 8 gives a coordinate system in the interior of the axisym-
metric bubble, deformed by the flow. The distribution of the coordinate nodes at the
surface of the bubble (i.e. the boundary correspondence x(1,m).y(1.n) at the boundary ¢
= 1) was taken from the mapping of the exterior of the bubble (see Fig. 4) which was
obtained previously as a part of the solution of the fluid mechanical problem using the
strong constraint method. The boundary conditions for x(¢,1) and y(¢,7) at ¢=0, n=0

and n=1 were assumed to be the same as in section 4a [see (7) and (B)] and hence,



they too satisty (8) for any distortion f(¢.n). Thus, f(¢£7) must be specified indepen-
dently at £€=0, n=0 and n=1. If £=0 is to be a concentration point of the coordinate sys-
tem, then f{0,7) should be equal to 0, and if f(£,0) and f(¢,1) are taken to be linear
functions of ¢, one obtains the simplest possible variety of the algebraic weak con-

straint
t(¢m) = £t(1m) |
which was, in fact, used to construct the mapping in Fig. 6.

In the last two examples, shown in Figs. 7 and 8, we consider mapping in a concave
region whose shape is similar to a domain in which the recent method of Haussling and
Coleman [B] failed to produce an orthogonal grid even for shapes with smaller boun-
dary curvature. It is important to note that the boundary correspondence in Figs. 7
and 8 was prescribed on all four boundaries. The mapping in Fig. 7 was computed with
the weak constraint given by (15). The mapping in Fig. B was obtained using (15) multi-
plied by (1 - 0.8 sin 7¢ sin 7n) as the weak constraint. Comparing Figs. 7 and 8, it can
be seen that the form chosen for the weak constraint does provide a degree of control
over the spacing of the coordinate grid inside the domain; however, the main features
of the mapping are determined by the prescribed boundary correspondence. Though
the numerical examples that we have considered show that an orthogonal mapping can
be computed with a prescribed boundary correspondence for reasonably complicated
geometries, they do not, of course, px;ove either the existence or uniqueness of such
mappings for arbitrary geometries and/or boundary correspondence. This is a very
important and interesting question, but one that is far beyond the scope of the present

study and probably requires the attention of theoretical mathematicians.

A final important point about the weak constraint method concerns the prescription
of the boundary correspondence. Apart from the difficult question of the existence of

a mapping, some care must also be exercised to minimize the possibility of the result-
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ing coordinates being ill-suited for numerical solutions. Consider, for example, the
problem of generating orthogonal coordinates inside an acute angle with coordinate
nodes distributed in equal increment along the sides. Evidently, orthogonal coordi-
nates can be generated quite easily if these nodes are connected by one family of coor-
dinate lines with the other family emanating from the vertex (thus giving, essentially,
polar coordinates inside the angle). However, if it were assumed that the side boun-
dary nodes belonged to different families of coordinate lines (as might initially seem to
be the obvious choice if one were to think of the acute angle as being obtained from a
right angle with Cartesian coordinates inside it, by simply decreasing the included
angle), the configuration of the corresponding coordinates is less obvious and the
numerically generated coordinates would likely have a larger nonorthogonality error

due to discretization.

8. Conclusions

The mapping techniques proposed in this paper provide a method for the construc-
tion of an orthogonal, boundary-fitted coordinate system in two dimensions. The
strong constraint method of orthogonal mapping is obtained by specifying f(£,7)
throughout the ¢, domain in advance and is especially suitable for cases when the
shape of the boundary in the x.y plane is not known but is to be found as a part of the
solution of some physical problem ('free boundary problems’). The weak constraint
method of orthogonal mapping is obtained by specifying a rule which determines the
values of f(¢.m) in the interior of the ¢,77 domain as soon as its boundary values are
known. This method is capable of solving the most important and difficult problem,
namely the construction of an orthogonal mapping with a prescribed boundary
correspondence, or, in other words, the construction of an an orthogonal coordinate
system fitted to a boundary of given shape, with a prescribed distribution of coordinate

nodes along this boundary.
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The governing equations of any physical problem of interest can be written out
easily in the resulting orthogonal coordinate system in terms of physical components
of vectors and tensors, using the standard expressions for invariant differential opera-
tions in orthogonal coordinates. Alternatively, the technique of tensor analysis can be
employed directly for this purpose if the connection coefficients in the orthonormal

basis and a 'physical tensor" notation (given in the Appendices) are used.

The most serious rival of the present method is, of course, conformal mapping. The
main advantage of conformal mapping is that a harmonic function of the x.y coordi-
nates remains a harmonic function of the £,n coordinates. This reduces the solution of
the Laplace equation on some domain in the X,y plane to a problem of finding the con-
formal mapping for this domain. However, this reduction is not of much help unless a
conformal mapping function has already been tabulated; moreover, the solution of the
Laplace equation, though significant, is certainly not the only important problem to be

solved.

The important drawbacks of conformal mapping include the difficulty of construc-
tion by the direct approach, closely connected with the inability to prescribe the boun-
dary correspondence, and the potentially poor quality of the resulting grid for numeri-
cal solutions. The method proposed here for orthogonal mapping is free of these prob-

lems. In addition, it has the potential of extension to a three-dimensional space.
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Footnotes

1. Note that this case can also serve as a basis for three-dimensional orthogonal coor-
dinates in the presence of either translational symmetry in the direction normal to
the x,y plane (i.e. no dependence on z) or axial symmetry. For these special cases,
the three-dimensional orthogonal coordinates are obtained, respectively, by either
translating the £,7 system in the z direction or rotating it about the axis of sym-

metry provided that the latter is also a coordinate line in ¢,7.

2. One of the referees has pointed out that Eqgs. (3) can be obtained from Thompson
et al’s Egs. (1) with an appropriate choice for P and Q, thus suggesting that the
present mapping techniques (and all related techniques intended to generate
orthogonal mappings) should be considered as special cases of Thompson et al.'s
technique. While the first part of this statement is, of course, true, the specific

choice

po_1l 8 o_ 1 8 [1_]
heh, 0f heh, on |1
which is necessary to obtain (3), was not, apparently, evident to Thompson and co-
workers, who suggested that P and Q be chosen as sums of decaying exponentials
and stated "An orthogonal system cannot be achieved with arbitrary spacing of the
coordinate lines around the boundary', nor to subsequent workers (cf. Haussling
and Coleman [8]) who actually attempted to generate the P and Q so as to ensure
an orthogonal mesh. At any rate, this choice is not directly realizable since he and

h, cannot be specified in advance.

3. It may be noted that the present orthogonal mapping corresponds to a special case
of a so-called quasiconformal mapping [17,1B] when f and f~! are bounded [the
"complex dilatation” u of the quasiconformal mapping being real and equal to (1 -

f)/(1 + f) in this case]. An extensive mathematical theory of quasiconformal map-
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ping has been developed, including the mapping theorem [17,18] which establishes
the existence of a quasiconformal mapping for a given u (and thus of an orthogonal
mapping for a given f if f and ™! are bounded). It would obviously be of consider-
able interest to establish theoretically the existence of an orthogonal mapping for
any given f, since some of the most useful orthogonal mappings do not satisfy the
above boundedness conditions (e.g. the mapping which gives polar coordinates, has
f = n¢ sothat f = 0 at ¢ =0, see section 4a). In this paper we take the existence of
an orthogonal mapping for granted and proceed to the practical task of generating

the mapping numerically.

. Note that the signs in (9) are for a mapping which preserves orientation, otherwise

the signs are reversed.

. We are indebted to one of the referees for pointing out the existence of an ela-
borate mathematical framework [22] for constructing expressions of this type. In
mathematical terminology, the Eq. (15) is a 'bivariate interpolation by a Boolean
sum of projection operators” P; @ P, = P; + Py, - P Py, where the projection opera-
tor P; has been defined in our case as Pif(£,m) = (1 — ¢)f(0,n) + ££(1m), ie. P;and F,
realize linear interpolations in 1D. Obviously, much more sophisticated interpola-

tion formulae can be obtained by using more complicated forms for P; and P,
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Appendix A.

Connection Coefficients in Orthonormal Basis

In order to use the orthogonal mapping techniques which are presented in the main
body of this paper, it is necessary to express the governing differential equations and
boundary conditions of a physical problem, which are normally given in terms of the
invariant differential operators for vectors and/or tensors, in terms of a general
orthogonal coordinate system. In most instances this can be done by simply using the
standard expressions for the various invariant differential operations in orthogonal
curvilinear coordinates which are given in numerous texts and require only a
knowledge of the scale factors h;, However, expressions for some differential opera-
tions are not readily accessible, and it is necessary, in general, to have a method avail-
able for their derivation from the invariant (tensorial) form. The most commonly
advocated approach is to use the expression for the V operator, together with the
expressions for the spatial derivatives of the unit basis vectors. This is a rather
cumbersome and outdated procedure in comparison with the powerful technique of
tensor analysis; the trouble is, however, that the connection coefficients, which are

necessary for covariant differentiation, are usually given only for a coordinate basis

(whose vectors e; = :;’-;Li-are not generally of unit length). In this case (only) they are

called 'Christoflel symbols" Correspondingly, covariant differentiation can usually be

performed only for covariant and contravariant components of vectors and tensors.
In the case of an orthogonal coordinate system, it is highly pﬁferable to use an

orthonormal basis (whose basis vectors e;= -Elare of unit length) and physical com-
i

ponents of the vectors and/or tensors. In this case, we need only the normal rules for
covariant differentiation and the connection coefficients for an orthonormal basis.

These connection coefficients are derived easily, following the methods of [14] (see, in
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particular, Chapter 8), but we do not intend to spell out the details here. Instead, we
simply state the results, first using the standard notation of tensor analysis. In Appen-
dix B, a much simplified notation is introduced for 'physical tensors”, which is a

natural and obvious extension of the Cartesian tensor formalism.
We use the gradient of a second rank tensor, say
G=VT

as a suitable invariant object (a third rank tensor) for illustration purposes. This
entity can be expressed for any particular coordinate system in terms of its comi-
ponents calculated in any basis according to the rules of covariant (absolute)

differentiation (denoted by the semicolon ")

Glye = Ty = Ty + I"lkT‘J - I“jkTi;
where indices run through 1,2,3 and summation over repeated indices is implied. The
connection coefficients are denoted I'™;,, and the comma "” indicates differentiation of
the tensor component as if it were a scalar (for example, f) indicates the k" com-
ponent of the gradient of a scalar field f). It should be noted that this "scalar

differentiation” coincides with partial differentiation 8/0¢X only in a coordinate basis; in

the orthonormal basis it is given by

1 of
h; a¢ (A1)

f';

]

eV i=

Scale factors h;, being a shorthand notation for (g;)'”2. are exempt from the summa-

tion convention. Carets are employed to indicate the use of an orthonormal basis.

Now, in a general three-dimensional space, there are 27 connection coefficients.
However, in an orthonormal basis, only 12 are nonzero, and these can be expressed in

the compact form
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s = —TTas =h_ oh, (m# n, nosummation) .
(AZ)

The general rule for covariant differentiation, together with the formulae (A1) and (A2}
are all that is needed to write any differential expression in terms of physical com-

ponents in a general orthogonal coordinate system.

Appendix B
A Simplified 'Physical Tensor’ Notation for Covariant Differentiation

in Orthogonal Coordinates

An orthonormal basis (with a positive definite metric) is identical with its dual
(reciprocal), so that covariant and contravariant components coincide (and are called
"physical”) and the usual distinction between these quantities, by the use of upper and
lower indices, becomes unnecessary. In other words, the metric tensor of an orthonor-
mal basis is always a unit tensor, ie. gir=6; (This tensor should be distinguished.
however, from the metric tensor of the coordinate basis gy which is used in the main
body of this paper and is often called 'the metric tensor of the coordinate ﬂs_t;_egz.”
because it defines the line element.) Although an attempt has previously been made to
formulate the rules of tensor calculus specifically for physical components (see Erick-
sen [23]), the resulting rules have not found application, apparently due to notational
inconvenience. Here, a much simpliﬁgd notation is introduced which is a natural gen-
eralization of Cartesian tensor formalism. Since the physical components are by
definition (see McConnell [24]) the components in the local Cartesian coordinate sys-

tem, whose basis vectors coincide with the orthonormal basis vectors at a given point,

the similarity between physical and Cartesian tensor analysis is not surprising.

The transition to a simplified notation for physical tensors from the general covari-
ant formalism is accomplished by writing all indices of tensor or vector components as

subscripts and switching to the convention of summation over repeated subscripts
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which is typical of Cartesian tensors. The carets, which indicated an orthonormal basis
before, will be dropped since we deal with orthonormal bases only. All tensor algebra
for physical tensors is formally identical to Cartesian tensor calculus, but the rules of
differentiation are different. Specifically, the gradient of a tensor field G= VT is cal-
culated according to the following rule of covariant (meaning here 'invariant’)

differentiation for physical tensors

Gu...nk—i Tﬁ--'nzk=Tﬂ~'nk+’P“kT”~“n+

(B1}
lekTil-“n+ vt +’PnlkTij~~~l
where the comma ",” denotes scalar differentiation defined by
£ = 1 of
© hy O (B2)

(as always, scale factors h; are exempt from the summation convention).
For a Cartesian coordinate system where
all y=1, all I'=0

the rule (B1) reduces to the familiar partial differentiation of Cartesian tensor cal-
culus. Otherwise one has to correct for the change of scale [thus (B2)] and for the
variation of basis vectors in space [the 'T'T" terms in (B1), one for each index of T]. To
remember the pattern of these latter terms, the following mnemonic rule is useful: (1)
The last index of [' is always the differentiation index; (2) The index being corrected
shifts to the first subscript on I and is replaced on T by a dummy summation index,
identical to the middle index on I'. The 12 nonzero connection coefficients can be
taken directly from (A2),

Tig = =T = hy/hy = m (i # j, no summation) (53)
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The basic rule of tensor analysis is that a tensorially correct equation (formula),
which is true in a particular coordinate system (say, Cartesian), is true in any other
coordinate system. It is thus evident that a physical law expressed in terms of the phy-
sical components for some arbitrary orthogonal system is formally identical to its
component form for Cartesian tensors, provided only that ordinary partial derivatives
with respect to coordinates are replaced by covariant derivatives, i.e. one simply has to
substitute semicolons for the symbol used to indicate partial differentiation in the
Cartesian expression and then use (B1). This makes relatively complicated differential
expressions very easy to calculate 0assuming a familiarity with the corresponding Carte-
sian tensor quantities. By way of illustration, we may consider the derivation of formu-
lae for the physical components of the rate-of-strain tensor in a general orthogonal

coordinate system. A diagonal component, such as e, is simply

1 0y, uz oh, + ug dh,
hy 8¢, hyh; 8¢2  h,hg 9¢3

e = upy =uy, +Ny =
while the off-diagonal (2,3) component is

1 1
€3 = 'é‘(uz;s + Ugg) = '2"(1-12.8 + Tgiswy + ug 2 + 'y2wy)

- ‘1_{ 1 6112 Ug ahs + 1 6u3 Ug ahg]

2|hs 065 hghg 8¢,  hp 8¢z  hehg 0¢g |
Although these formulae are identical to those derived by direct differentiation of the
basis vectors (see, e.g. [25], p. 600), they are obviously much easier to obtain using the

physical tensor notation.

So far we have been dealing with general orthogonal coordinates in 3D. However, the
orthogonal coordinate system used in practice is most likely to be axisymmetric or
two-dimensional, in which cases even fewer connection coefficients remain nonzero.
Consider first the axisymmetric case, with é3 = p being the azimuthal angle. In this

case, hg = 0 where o is the distance between the point of interest and the symmetry
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axis, and only eight connection coefficients remain nonzero

1 8hy 1 Bhs
Tizp = -T2y =hyahy = biby 0fg " Ta12 = =T'j22 = hg /hp = P T
(B4)
1 do . 1 80
Pors = Thoa = 00/ = e g Toes = Tame = 020 = o5

In the two-dimensional case with ¢5 = z and hy = 1, only "1y, ['211. 212 and I'yzp remain

nonzero.

The formalism presented above provides an easy method for writing any differential
expression in terms of physical components for the boundary-fitted orthogonal coordi-
nates (¢7.¢) whose construction we have discussed in the main body of the paper. A
final quantity of interest, relevant to the boundary conditions in some problems, is the
boundary curvature. The geometric definition of the connection coefficients for the

orthonormal basis (see [14], Chapter 8) is

I'jk = (i component of the rate of change in e, along ey).

Thus, it is evident that

Ty =xfl : Ty = ol
where lc&l} is the normal curvature in the direction e; of the coordinate surface with
normal e; and /c((é? is the geodesic curvature of the {; coordinate line on the same sur-
face (note, there is a slight difference here from the classical definition of geodesic cur-

vature which usually takes it to be always positive - see [15,24]).

If one considers the ¢; coordinate line as a curve on the coordinate surface §y =

const, the geometrical meaning of I'y; and I'y; is reversed. i.e.

Pjﬁ = "'IC({S) ) Pkﬁ = K-'gs)

The half-sum of the normal curvatures in two perpendicular directions [say, «{} and



k6.

X)) gives the mean curvature of the surface; and since the coordinate lines of an
orthogonal coordinate system are also the lines of curvature of a coordinate surface
([15]. p. 195). these normal curvatures are also the principal curvatures and hence

their product gives the Gaussian (intrinsic) curvature of the surface.
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authors wish to thank J. R. A. Pearson and P. R. Eiseman for valuable comments on an

earlier draft of this paper.
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Sketch of the coordinate system for the exterior of an axisymmetric bub-
ble. (a) The final coordinate system in the infinite domain, and (b) the auxi-

liary mapping for the finite domain.

Control over the density of coordinate lines by distortion function. Here,

f(¢.n) = m€(1 - 0.9 cosmn), he(lm) = 1.

. 2 .
"Teardrop” shape; obtained with f(¢,7) = m¢ and he(1,7) = { S"{l ™ g gfo%s

Deformed bubble; obtained as a part of solution of the fluid mechanical

problem described by the Navier-Stokes equations; {(£,7) = n¢.

"Peanut” shape; obtained by the weak constraint method (only every second

of the n-coordinate lines are drawn).

Interior of the deformed bubble; obtained by the weak constraint method
with the distribution of the points at the surface taken from the exterior
mapping (Fig. 4).

Orthogonal mapping by the weak constraint method with prescribed boun-
dary correspondence on all four boundaries and algebraic interpolation

(15) used as the weak constraint.

Same as Fig. 7 but the weak constraint is now (15) multiplied by (1-0.8

sinmésinnn).
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CHAPTER 11



Large Deformations of a Bubble in Axisymmetric Steady Flows.
Part 1. Numerical Technique

by

G. Ryskin and L. G. Leal

Department of Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Abstract

We present here a brief description of a numerical technique suitable for solving
axisymmetric (or two-dimensional) free-boundary problems of fluid mechanics. The
technique is based on a finite-difference solution of the equations of motion on an
orthogonal curvilinear coordinate system, which is also constructed numerically and
always adjusted so as to fit the current boundary shape. The overall solution is
achieved via a global iterative process, with the condition of balance between total nor-
mal stress and the capillary pressure at the free boundary being used to drive the
boundary shape to its ultimate equilibrium position.

J. Fluid Mech. (submitted)
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1. Introduction

We are concerned in this paper, and the two papers which follow, with some specific
examples of the class of so-called ‘free-boundary” problems of fluid mechanics. This
class of problems is characterized by the existence of one boundary (or more) of the
flow domain whose shape is dependent upon the viscous and pressure forces generated
by the fluid motion. In this case, the shape of the boundary and the form of the velo-
city and pressure fields in the fluid are intimately connected, and one must solve for
the boundary shape as a part of the overall solution of a particular problem. The most
common problems of this type in fluid mechanics occur in the motions of two immisci-
ble fluids which are contiguous at a common interface. In parts Il and III of this series,
we consider two specific problems involving the motion of a bubble in a viscous,
incompressible Newtonian fluid; namely, buoyancy-driven motion through an
unbounded, quiescent fluid, and motion in an axisymmetric straining flow. In the
present paper, we discuss those general features of the numerical solution scheme,
used in parts II and III, which would be expected to carry over to the solution of other

free-boundary problems that involve a gas/liquid interface.

The existing published literature on free-boundary problems in fluid mechanics is
quite extensive in number, but limited in scope. Three distinct solution methods can
be identified. By far the majority of papers is concerned with asymptotic or limiting
cases in which the interface shape, while unknown, deviates only slightly from some
predefined configuration. In the case of bubble motions, for example, a number of
authors have used the so-called '"domain perturbation” method to solve for the first
(infinitesimal) deviations from a spherical bubble in a variety of flows (cf. Taylor, 1934;
Taylor & Acrivos, 1964). In addition, a similar approach has been used to consider the
first deviations from the limiting form of a slender body with an arbitrarily small
radius-to-length ratio, which is relevant, for example, to uniaxial extensional flows with
a sufficiently high strain rate (Taylor, 1964; Acrivos & Lo, 1978). A second method of

solution for free boundary problems is restricted to the limiting cases of either zero
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Reynolds number, where the governing differential equations are the linear Stokes’
equations, or inviscid, irrotational flow where the governing differential equations
reduce to Laplace's equation. This is the so-called boundary-integral technique in
which fundamental solutions of the governing (linear) equations are used to reduce the
general n-dimensional problem to the solution of a set of (n-1)-dimensional integral
equations. The boundary-integral method is not restricted to small deformations.
Indeed, solutions have been obtained which exhibit large departures from a predefined
shape (Youngren & Acrivos, 1976; Miksis, Vanden-Broeck & Keller, 1981; Lee & Leal,
1982). However, this method is applicable only in the creeping or potential flow limits,
and this reduces its usefulness. The third and most important class of free boundary
problems is that in which neither of the restrictions of small deformation or linear
governing differential equations is present. This is, quite simply, the general problem
at finite Reynolds number which clearly requires a fully numerical method of solution.
This case has received relatively little attention to date. Most of the solutions which
have been obtained were developed using a finite-element formulation of the numerical
problem. Here we consider an alternative approach based upon a finite-difference

approximation of the governing equations.

The finite-difference method which we have developed incorporates a numerically
generated orthogonal coordinate system, which is 'boundary-fitted"” in the sense that
all boundary surfaces of the solution domain (including the free-boundary whose shape
is determined as part of the solution) coincide with a coordinate line {or surface) of
the coordinate system. Thus, the problem of interpolation between nodal points of the
finite-difference grid when the latter is not coincident with physical boundaries is
avoided altogether. Indeed, the existence of the interpolation problem in the first
place is seen to be a consequence of the use of the common, analytically generated
coordinate systems, such as cylindrical, spherical, etc. when the latter do not

correspond to the natural boundaries of the solution domain.
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A full description of the procedure for generation of an orthogona],., boundary-fitted
coordinate system has already been given in Ryskin and Leal (1983) hereafter called I.
The present paper will focus on implementation of this procedure in a full numerical
algorithm for fluid mechanics problems in which the free-boundary is a gas-liquid
interface. The mapping procedure is presently restricted to two-dimensional and
axisymmetric flow domains. For the problems currently under investigation, we addi-
tionally restrict ourselves to steady motions. The shape of the free boundary is deter-
mined via an iterative procedure, with the coordinate system changed at each step to

match the current approximation to the free boundary shape.

II. Problem Formulation

In this section, we outline the mathematical formulation of a typical free-boundary
problem in which the free boundary is a gas-liquid interface that is assumed to be com-
pletely characterized by a constant (i.e. spatially uniform) surface tension. In effect,
we are assuming that the interface is free of surfactant and the system is isothermal.
We assume that the boundary geometry and flow fields are both axisymmetric and
steady. The steady-state assumption can be relaxed, in principle, by suitable
modification of the methods and equations of this paper. The assumption of axisym-
metry is required by the mapping algorithm in its present form. We assume that the
liquid in our system is incompressible and Newtonian, and that its density and viscosity
is sufficiently large compared with that of the gas so that the dynamic pressure and
stress fields in the gas at the interface can be neglected compared to those on the

liquid side.

We denote the 'boundary-fitted" coordinate system as (£7.¢), with ¢ being the
azimuthal angle measured about the axis of symmetry. In view of the assumed axisym-
metry, these boundary-fitted coordinates can be connected with the common cylindri-
cal coordinates (x,0,¢) (with the axis of symmetry being the x-axis) via a pair of map-

ping functions, x(¢,n) and o (¢,m), which satisfy the covariant Laplace equations (see I)
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Here, the function f(£.n) is the so-called "distortion function” representing the ratio,
ho/hg of scale factors (hy, = VEn,. he = Vige) for the boundary-fitted coordinate sys-
tem. In the "strong constraint” method developed in I for free-boundary problems, the
distortion function can be freely specified to provide control over the density of coordi-
nate lines in the boundary-fitted system. With respect to the (£,7,¢) system, the map-
ping is always defined in such a way that the solution domain (for any arbitrary fixed

@) is the unit square
O= ¢n=< 1 .

Boundary conditions for the mapping functions x(¢,m) and o(£,m) were described in
detail in I. In section IV we focus on boundary conditions at the free surface, and the
corresponding numerical method of adjusting the interface shape at each step in an
iterative solution scheme, with the shape change based upon the imbalance of normal
stress and surface tension forces calculated from a previous guess of the interface

shape.

The fluid mechanics part of the problem, then, is to obtain solutions of the Navier-
Stokes equations using a finite-difference approximation in the boundary-fitted (¢£,7)
coordinates. With axisymmetry assumed, the Navier-Stokes equations are most con-

veniently expressed in terms of the stream function ¥ and vorticity » in the form

[
=gt (8% 8 |w|_ %08 |»
L*(wo) Rh,,,helag o | an 3E | o @
LWw+w=0
(3)

where
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and R is the Reynolds number. In terms of the mapping functions, x(¢,m) and o(tn),

the scale factors which appear in these equations are
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We assume, for convenience, that the coordinate mapping is defined with ¢ = 1

correspending to the interface, and 7 = 0 and 1 to the symmetry axes. Then, boundary

conditions at the symmetry axes are

Yv=0,w=0 at 7n=0and 1 .

(6)
At the gas-liquid interface (¢ = 1), we require:
¥=0
(7)
corresponding to zero normal velocity in the assumed steady state solution,
© — REmU, = 0
(8)

corresponding to the condition of zero tangential stress (note: x,) is the normal curva-
ture of the interface and u, is the tangential velocity in the n direction); and
Teg — '%r"’["(n) + Kg) ] =0

(9)
representing the balance between the normal stress contributions due to pressure and
viscous forces on the one hand and the capillary force on the other (here, x, is the
normal curvature in the ¢ direction and W the dimensionless Weber number measuring
the ratio of characteristic pressures due to inertial and capillary forces at the inter-
face). The conditions at ¢ = 0 (the far-field boundary in many cases) depend on the
particular problem. If the flow domain is two-dimensional rather than axisymmetric,

suitable modifications of the equations (2)-(§) are made easily, but will not be pursued
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here.

It may be noted that the complete streamfunction and vorticity fields can be deter-
mined for an axisymmetric interface af specified shape using only conditions (7) and
(8). The normal stress balance (9) then provides a consistency condition on the inter-
face shape, as well as a basis for determining an improved estimate of that shape when
the condition is not satisfled. As is well known, the only source of vorticity at the gas-

liquid (zero tangential stress) interface is the boundary curvature.

Il. Solution Algorithm

The problem, from a numerical point of view, is to solve simultaneously the
differential equations (1), (8) and (3) for the mapping functions and the
streamfunction /vorticity fields subject to cornditions (8)-(9) at the interface, ¢ = 1, plus
appropriate additional boundary conditions at the other boundaries, ¢ = 0 and n = 0,1

as indicated above.

A simple approach which we have found to be efficient and stable for solution of this
coupled fluid dynamics-mapping problem involves an iterative procedure that can be

summarized broadly as follows:

1. Chocse some initial shape of the gas-liquid interface together with the correspond-
ing orthogonal coordinate system (usually taken from a known solution or

obtained analytically, as for a spherical bubble).

2. Obtain an approximation to the streamfunction and vorticity flelds by carrying out
some small number of iterations on Egs. (3) and (&), subject to the boundary condi-
tions (6)~(8), plus the appropriate conditions at ¢ = 0. In practice, we have found
that the most rapid convergence of the overall solution algorithm is usually

attained by a single iteration at this step.

3. Check the normal stress condition, Eq. (9), and if it is not satisfied, modify the

interface shape so as to reduce the imbalance between the total stress, 74, and the
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surface tension term (k) + K(,))/W, and compute a new (approximate) boundary-
fitted coordinate system by carrying out some number of iterations (usually one)

on Egs. (1), plus boundary conditions.

4. Return to step 2 and repeat until all equations and boundary conditions are

satisfied.

In the subsequent sections of this paper, we shall consider in detail several aspects of
the numerical algorithm which we believe may not be obvious. In particular, we discuss
implementation of the tangential stress condition (8), the ADI technique used to solve
the differential Eqs. (1), plus (3) and (#). and, finally, the method of modifying the

interface shape in accord with Eq. (9).

IV. Details of the Solution Algorithm
A. Discretization and Solution by ADI

Equations (1), (3) and (3) were all solved using the ADI procedure of Peaceman and
Rachford (see e.g., Richtm#@yer and Morton, 1967). In order to illustrate the procedure
in our present context, it is convenient to express Egs. (1), (3) and (3) in a standard

form

-2 w . 9w ow ow

4

(10)
in which the q's are coefficients that do not depend explicitly on w. The ADI procedure
is then implemented by imbedding (10) in a fictitious time-dependent problem of para-
bolic type, and discretizing in such a way that derivatives in the spatial directions are
alternately treated implicitly at one half-step in 'time" and explicitly at the next half-
step. Denoting the value of an independent variable at each full iteration n by a super-
script, and the intermediate (half-step) value by ~, we have

W+ wh
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We utilize a uniform finite difference grid in the ¢,77 coordinates, with control over mesh
density affected by the form chosen for the distortion function £(£¢,m). The symbols §/6¢
or 6/6m are used in (11a) and {11b) to denote centered difference approximations of the
indicated partial derivatives. The resulting systems of linear algebraic equations along

each coordinate line are tridiagonal and can be solved very efficiently.

The only unusual feature of the discretization in (11a) and (11b) is that involving

the term qgw in (10). The 'obvious”" form, qg;“-’-—%‘ﬁ- for the first half-step and
W + wht! )
qé‘-—-—-—é———-——for the second was found to lead to instability in the solution of the vorti-

city equation (3) for Re > 0(50), even with frozen ¥ and boundary conditions. This ins-
tability was, at first, thought to be due to the use of centered difference approxima-
tions in the q, and qp terms. However, putting q; and qg identically to zero (for testing
purposes) did not prevent instability, while qg = 0 did. It is evident that a differential

equation of the form

will exhibit exponential growth of w if qg is positive. Such growth is, of course, res-
tricted by other terms in the case of the differential Eq. (3) (at least for moderate R),
but a precise cancellation may not occcur at some intermediate step in the numerical

solution of the same equation. In order to avoid this potential problem, the term ggw
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was frozen at its level from the previous (nth) iteration if qg > 0, thus yielding Egs.
(11a) and (11b). The numeral scheme represented by Eqs (11) proved stable [R up to
0{200) was achieved in the application reported in part 11, for example] and accurate

(when compared with exact solutions such as the Hill's spherical vortex).

In practice, it was found that dividing the form (10) of the vorticity equation (2) by
f2 and then applying ADI [with large time steps At = 0(10)] improved the stability of the
numerical computation at high R and W. We do not at present have a viable explana-

tion for this observation.

B. Application of the Tangential Stress Condition

The condition (B) of zero tangential stress at the fluid interface is used to obtain the
boundary vorticity values. In most cases, this can be done in the simple explicit

manner

Wt = w0t = (" = 2emun)
(12)

pioneered by Dorodnitsyn and Meller (1968) and Israeli (1970) for a solid wall, and
extended later for the case of a fluid-fluid interface by Rivkind and Ryskin (1976) (see
Ryskin, 1980, for details). Here, 8, is a positive relaxation parameter whose optimal

value must be found by numerical experiment,; typical values are 0(107% — 107!).

The corresponding condition &®*! =" + g,u} for a solid boundary can be used
effectively for any smooth boundary shape. However, in the case of a fluid-fluid boun-
dary, the condition (12) leads to a stable computation of vorticity only for interfaces of
convex shape (where &g, > 0) or slightly concave shapes. For strongly concave inter-

face shapes, condition (12) leads to instability.

In this latter case of a concave interface, an alternative implicit method was suc-
cessfully implemented for calculation of the boundary vorticity. This method, first
suggested by Ghia and Davis (1974), is much more complicated than the explicit

method based on (12). The basic idea for any implicit scheme would be to determine
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the relationship between the boundary values for u, and the boundary values of vorti-
city, i.e. u,(w), thus giving from Eq. (8) (with «(, known) an equation for the vorticity,

ie.
@ = 2Kmu,(w) =0

The difficulty with this approach is to estimate u,{w) since u, is obtained from the
streamfunction s@ai4RM which, in turn, depends on the entire vorticity field, i.e. the
dependence of u, on the boundary values of w is extremely complicated and nonlocal
(u, at some given boundary point depends on w at all boundary points). Even if one
were to assume heuristically that the dependence on local values of w is most impor-
tant, and seek to find this dependence, one would have to solve for new vorticity and
streamfunction fields with w Varied at the point of interest and 'frozen” at all other
boundary points, and this would need to be done separately for every boundary point
in turn. Such an approach is clearly out of the question due to the extreme expendi-

ture of computer time that would be required.

However, Ghia and Davis (1974) suggested an idea to circumvent this difficulty.
Instead of doing a full iteration on @ and ¥, one does a half-step in @ which is implicit
along the lines normal to the boundary (i.e. along the ¢ lines) and then immediately a
half-step in ¥ along the same ¢ lines, using the new values of w. Thus the interdepen-
dence on the direction parallel to the boundary is disconnected, and a single half-
iteration on the whole field provides the necessary dependence of u, on w at the same
boundary point for all boundary points at once. Of course, an error is introduced by
using half-step values of w and ¥ instead of the full-step, but this error goes to zero
with convergence, since the half-step and full-step flelds are equal on the converged

selution in ADI.

It may also be noted that the function u,(w) can be expressed ('locally’) as a linear
function of w if the solution of the discrete equations for w along the £ lines (which are

linear) is obtained as a sum of a "particular” solution, wp, with wp set equal to zero on
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the boundary, and a "homogeneous" solution wy of the same equations with the right-
hand side (i.e. the terms not including @) set equal to zero but with a nonzero boun-
dary value for wy (say, wy = 1). The two resulting solutions for w are then used
separately to obtain two solutions of the discrete equations for ¥ along the same £ line
(which are also linear) and the velocity at the boundary is then obtained as a sum of
two parts — one 'particular” part due to w, and one "homogeneous” part due to wy.
Thus, if the actual vorticity is « at the boundary, the velocity will be u, = U, + wu.y,

and solution of (8) for w, with u, expressed as a linear function of w, is a trivial task.

The rate of convergence of our numerical scheme is about the same with either the
explicit or implicit prescription of boundary vorticity. Therefore, we used the implicit
method, which takes more computer time, only for strongly concave interface shapes

where the explicit scheme failed.

C. Use of the Normal Stress Balance to Determine Interface Shape

We have already indicated in section IIl that the steady shape of the free interface is
determined in our solution scheme via an iterative process in which the imbalance
between the total normal stress and capillary forces for a given estimated shape of the
interface is used to obtain an 'improved’ shape for the next iteration —i.e. a shape for
which the imbalance is decreased [or condition (9) more nearly satisfled]. Although a
number of methods may be suggested for obtaining this improved estimate of boun-
dary shape, the applications of the solution technique considered to date suggest a
heuristic approach as providing the greatest degree of stability and most rapid
approach to the final steady state. In effect, this approach is equivalent to considering

any local excess of total normal stress to capillary forces, i.e.

1
P(n) = ¢ = W“['C(vn + Kip) ]

as a kind of normal "force” causing a local displacement of the interface in the direc-

tion of the '"force”, the magnitude of the local displacement being proportional to m(n).
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Before going on to describe the detailed implementation of this simple heuristic
method, it is, perhaps, worth dicussing briefly two alternatives which were not chosen.
The most obvious would be to treat the normal stress boundary condition (9) as a
nonhomogeneous differential equation for the boundary shape functions x(1.1),0(1.7)
with the total stress 1 calculated from the streamfunction and vorticity fields
corresponding to the interface shape at the previous iteration. However,this tech-
nique, utilized in an explicit scheme as described above, is not suitable for large values
of W. This is because it assumes implicitly that the shape is determined by a balance
between the total stress, 7 (including hydrostatic and dynamic pressure plus viscous
stress contributions), and capillary forces, whereas for large W the capillary forces are
negligible (except possibly in regions of very high curvature) and the interface shape is
actually determined by the condition that the viscous stress, and the hydrostatic and
dynamic pressure distributions balance in such a way that Teelg=1 ™ 0. Another possi-
ble methoed of calculating the steady interface shape is to treat the whole problem in a
genuine transient mode, thus applying the two stress relationships (8) and (9) as boun-
dary conditions to determine the instantaneous streamfunction and vorticity fields,
and the kinematic condition [i.e. the transient generalization of (7)] to increment the
interface position based on the magnitude and sign of the normal velocity at each
point. Although this approach appears viable to us, and would, in fact, be necessary to
obtain solutions in a transient problem, the means of using (9) as a boundary condi-
tion for determination of the streamfunction and vorticity fields is not obvious, and is
likely, in any case, to yield a quite unstable solution algorithm since it involves deriva-
tives of ¥ and w rather than the values themselves. It must be admitted, however, that
we have not so far devoted much effort to this approach, and it may ultimately prove

satisfactory for both transient and steady state calculations.

The prior efforts to compute free-boundary solutions utilized finite element tech-
niques, cf. Silliman and Scriven (1980), Saito and Scriven (1981). Silliman and Scriven

used either the normal stress or kinematic condition in the ways just described. As
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expected, they found that the normal stress iteration diverged for low surface tension
i.e. when a parameter, characterizing the relative magnitude of capillary pressure and
stress, was below 0(1); while the kinematic iteration diverged when the same parameter
was above 0(1). Eventually they had to abandon both of these approaches and
switched to a global Newton's method (Saito & Scriven, 1981), with the free-boundary
shape included in the system of equations and solved simultaneously with the dynam-
ics. The Newton process has great advantages (quadratic convergence, generality, avai-
lability of the Jacobian matrix which can be used to trace nonunique solutions, etec.).
But it also has some severe drawbacks, including the necessity to invert a huge Jaco-
bian matrix (extremely time-consuming). The other problem with Newton's method is
the need for a very good initial guess (e.g. Fornberg, 1980, in order to compute flow
past a circular cylinder at R = 300, needed the solution at R = 297.5 as an initial
guess). Fornberg (1980) also required 1-2 min. of computer time for a single case on
the CDC STAR-100 computer which is 0(10%) faster than our VAX-11/780, on which our

algorithm takes from 15-80 min. for a single case (for comparable grids).

Let us now consider the details of our current technique, which is heuristic in con-
cept, but is extremely simple and exhibits sufficiently rapid and stable convergence to

the final steady state interface shapes.

As noted before, we modify the interface shape at each step in the overall iteration
scheme by slightly moving points of the surface in the normal direction by an amount
proportional to B(n) at the point. As explained in I, this cannot be done by prescribing
new positions for the interface nodal points directly {and still maintain coordinate
orthogonality), but must rather be done indirectly by changing the mapping itself via
increments in the scale factor, h;, at the boundary £ = 1. We have shown in I that the
increment in h; can be expressed in terms of equivalent Neumann boundary conditions

for the mapping functions, x(£,7) and o(£¢,m). Thus
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N SR (13)

where the new values of h; are then used to calculate updated values of dx/8¢ and 90 /6¢
at ¢ = 1, which provide the necessary boundary conditions for x(¢,m) and o(¢,m). The
coeflicient, 8;, has to be determined by numerical experiment, its typical values being

0(107% - 1072).

In many applications, including the two problems discussed in parts II and III, the
interface completely encloses one of the two fluids —i.e. we then have a drop or bubble
in a viscous fluid. In such circumstances, the local incrementation in the location of
boundary points must be done in such a way as to preserve the bubble drop volume.

Now, to first order, the change in volume between the nth and (n + 1)st iterations is

i

[ b5t b Jonyam

o (14)
where the integral is taken along the boundary ¢ = 1. Since,
hf*! =hf~ n®
(15)
it follows that
fl
Roh,8n =0
0 (18)

This provides a constraint on 7, which contains a free integration constant that can

be chosen at each n so the constraint (16) is satisfied.

Even after this constraint has been satisfied, however, the bubble or drop may still
change volume slightly at each iteration due to higher order effects [neglected terms in
(14) and (15)] and numerical error. If left unchecked, these small changes may accu-
mulate and eventually result in a gross error. To prevent this, a simple scaling of the
whole mapping can be incorporated directly into the formula for he, i.e.

/38

hn+1
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where V® is the volume of the bubble at the nth iteration, i.e.
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The application of the algorithm described in this paper to the motion of deform-
able bubbles in a viscous fluid will be taken up in parts II and IIl of our present com-

munication.

This work was supported by a grant from the Fluid Mechanics Program of the

National Science Foundation.
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CHAPTER |11



Large Deformations of a Bubble in Axisymmetric Steady Fiows.
Part 2. The Rising Bubble

by
G. Ryskin and L. G. Leal

Department of Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Abstract

In this paper, numerical results are presented for the buoyancy-driven rise of a
deformable bubble through an unbounded, quiescent fluid. Complete solutions, includ-
ing the bubble shape, are obtained for Reynolds numbers in the range 1 < R < 200 and
for Weber numbers up to 20. For Reynolds numbers R < 20, the shape of the bubble
changes from nearly spherical to oblate ellipsoidal to spherical-cap depending on
Weber number; at higher Reynolds numbers "disk-like" and "saucer-like" shapes appear
at W = 0(10). The present results show clearly that flow separation may occur at a
smaooth free surface at intermediate Reynolds numbers; this fact suggests a qualitative
explanation of the often observed irregular (zigzag or helical) paths of rising bubbles.

J. Fluid Mech. (submitted)
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1. Introduetion

The buoyancy-driven motion of a deformed bubble through a quiescent fluid has
been extensively studied by experimentalists (see references in sectionl,‘). but no
theory exists except for the cases of very small deformation at either high (Moore,
1959) or low (Taylor and Acrivos, 1964) Reynolds number. The well-known analysis of
the "spherical cap” bubble due to Davies and Taylor {1950) relates the speed of rise to
bubble size, but the bubble shape is assumed on the basis of experimental observation

rather than calculated as part of a full solution.

In addition to being an inherently interesting physical problem, the motion of a
deformable bubble also represents a good example of the important class of free-
boundary problems of fluid mechanics, from which one may anticipate obtaining a
better understanding of both solution methods and the factors which control the
boundary shape. The problem also affords the opportunity of investigating the rather
poorly understood phenomenon of flow separation at a free boundary. The practical
importance of bubble motions, ubiquitous as they are in nature and technology, is self-

evident.

This paper represents the second in a three-part series on the solution of free-
boundary problems at finite Reynolds number by a numerical, finite-difference scheme
that is based upon the use of boundary-fitted, orthogonal coordinates that are gen-
erated as a part of the overall solution. The general features of the technique were
described in part 1 of this series (Ryskin and Leal, 1983, hereafter referred to as I).
Here, we consider the solution of the problem of a deformed bubble rising under the
action of gravity for Reynolds numbers in the range 1 < R < 200, and Weber numbers

up to 20.

2. Problem Statement

The gas bubble is assumed to be of constant volume 4/3 ma?, rising under gravity

with velocity U in a quiescent, incompressible Newtonian fluid of viscosity ux, and
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density p. The density and the viscosity of the gas inside the bubble are assumed to be
negligible in c‘omparison with those of the liquid, and the interface of the bubble is
assumed to be characterized by a constant surface tension, y (thus excluding surfac-
tant effects from consideration). We restrict our attention to steady, axisymmetric
bubble shapes — which are physically realizable in experimental studies up to R ~

0(100-200) or even higher, depending upon the surface tension.

The problem is attacked numerically using a finite-difference approximation of the
Navier-Stokes equations and boundary conditions on a curvilinear orthogonal coordi-
nate system (¢7.¢) (see Fig. 1), which is connected with the conventional cylindrical
coordinates (x.0,¢), with x directed along the axis of symmetry, through the mapping

functions

x(¢.m). o(¢m)

which can be obtained numerically given an approximation of the bubble shape, using

the technique of orthogonal mapping given by Ryskin and Leal (1983) and 1.

Utilizing the streamfunction, ¥, the governing differential equations and boundary

conditions can be expressed in terms of the (£,7,¢) system as

L¥wo) - B 1 {W 2 [2_]_2?_2_[9;_”:0

2 heh, | 9 On |0 | on Of |o (1)

and

LY +w=0
(2)

where

L% = ,__1__ ...a..... .f_, _Q_, + _6_ _.L .g_...
heh, | 8¢ (o 8¢ on (fo on '
he.h, are the scale factors for the £7.¢ coordinate system, R = 2pUa/u is the Reynolds

number and w is the azimuthal vorticity component. The corresponding boundary con-

ditions are
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Y=w=0 at =0 and =1 (symmetry)

(3)
Y~ -é—-cra . @0 for £+ 0 (infinity relative the bubble)

(4)

with
¥ = 0 (zero normal velocity)
(5)
Ten = O (zero tangential stress)

(6)

and

Tee — %.[,C(") + fc(,)] =0 (normal stress balance)

at ¢ = 1, the bubble surface. Here ;) and x¢,) are the normal curvatures of the bubble

surface in the directions of the n and ¢ coordinate lines, W is the Weber number, W

2
gﬁgﬁ-and T¢e contains the difference between pressures inside and outside the bub-

]

ble, as well as dynamic contributions. The curvatures are defined as positive for a con-
vex shape, like a sphere, since the unit vector of the £-coordinate serves as the unit
normal to the interface and is directed inward. As explained in a general way in I, the
tangential stress condition is used to obtain values for the vorticity at the bubble sur-

face, and the normal stress condition is used to determine the bubble shape.

Expressions for the normal curvatures k(, and x(,) are obtained easily in terms of
the so-called connection coefficients of the £,7.¢ coordinates, as shown in Ryskin and

Leal (1983). In particular,

ooy = — L OBn
m h,h Of

(») Uh$ 65

However, from a computational point of view, it is more convenient to differentiate

parallel to the interface rather than normal to it and to avoid differentiation of a scale
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factor. Thus, using the general properties of an orthogonal mapping (Ryskin and Leal,

1983),

o= L | 8x 8% *x 8o
m hi? 617 6772 anz on

(8)

- 1 8x
Klg) = = T 73—

ch, o

The tangential stress condition, T, = 0, can be shown to be equivalent to the condition

W =26mu,=0; §¢=1 ©

relating the surface vorticity and surface curvature. Finally, for use in the normal

stress condition, we have

s p+Be o p.B L B
TP RS TP TR Ghy gy T (10)

To obtain the pressure on the interface, we use the equation of motion in the form

(P+.ll)‘ Jx*"z(l.l,/\.az)-”icurlg
(11)
At steady state
2ag _ 3
b

where

Cp = drag force

-éf pURma?®

Thus, the n-component of (11) at the bubble surface gives

1 9 2 _ 3.
- {p+u,, 4CDX

or, upon integration
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=3 4
P=7 Cpx — uf - 7 fc T —=(gw)dn + const (12)

in which %Cpx is the hydrostatic pressure contribution, pys, and the remainder is the
dynamic pressure terms, Pgyn.

It may be noted that the expression (12) for the pressure contains a free constant
of integration, which is a consequence of the incompressibility assumption. This con-
stant is determined in the numerical computation from the constraint (of incompres-

sibility) that the bubble volume be constant using the method described in 1.

The drag coefficient, required in (12), is calculated from the equation
CD-Zf [ Payn + e“]c ——-677
R (13)

3. Numerical Method

The general features of a numerical algorithm for free-boundary problems of the
type exemplified by the present problem were presented in part I of the present series.
Here, we concentrate only on those aspects of the numerical methods which are unique

to the present problem.

First, the orthogonal mapping methods outlined in Ryskin and Leal (1983) for an
infinite domain were adopted here. In particular, the mapping process is carried out in
two steps: first, a conformal mapping of the form x + ig = (x* —ic”’)™! is used to invert
the infinite physical domain into a finite auxiliary domain; and then, an orthogonal

mapping transforms from the finite auxiliary domain to the ¢£,7 plane. Second, a dis-

tortion function of the form f = mwf(1 - —%—-cosm;) was adopted because it leads to a

denser grid downstream of the bubble, where it is desirable in order to give better reso-
lution of the wake structure. Third, a minor change is required in condition (13) of 1
due to the fact that the final mapping is obtained from the auxiliary mapping

x*(¢m), 0°(¢£m) by the above inversion. This means that a point on the boundary £ = 1



of the auxiliary mapping should be moved inward if the corresponding point of the
final mapping is to move outward corresponding to positive #(n) = 7, ~ %—(:c(,,) + K(g))-
Thus, condition (13) of I must be modified to the form

he'(n“) =h e‘(n) ~ Bp(r VAT at £=1
(14)

where the factor (r°)? is inserted because the scale factors for the auxiliary and

orthogonal mappings are related according to h, = h{/ (r°)2. Fourth, and finally, the

singularity which occurs in ¥ at ¢ = 0 (in the transform domain) as a consequence of

the condition (4) at infinity (in the physical domain) is removed by subtracting a func-

tion which has the same form for ¢ >> 1 but preserves the homogeneous boundary
conditions on 9 at the other three boundaries

¥ =9 - 5a¥(1 - )

(15)

The subtracted term is the irrotational flow solution for a spherical bubble, but has no

simple interpretation when the bubble shape is nonspherical. The modification (15)

leads to an equation for ¥°, derived from equation (), of the form
L3y + o = = L¥(0%%) = 0

From the Oseen solution, we know that 4’ is bounded at infinity, § = 0. This point is a
singular point of the differential equation, and boundedness is therefore a sufficient
condition for solution (see e.g. Morse and Feshbach, 1953, pp. 713-716). Numerically.
any 0(1) number (say, 0) can be used as a boundary condition for ¢° at £ = 0, with the
particular choice influencing the solution by no more than the order of accuracy of the

numerical scheme.

The overall scheme for solution of the four elliptic equations, [(1,2) and the two
equations for the mapping functions x°(¢,m) and o°(¢,7)], subject to the boundary con-
ditions indicated earlier for ¥°, @ and in I for the mapping functions, has already been

described in 1. In the present case, all of the basic computations were performed on a
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40x40 grid in the £,7 domain, 0 < §,7 < 1. A number of checks were made to assess the
accuracy of the resulting solutions. One was to insure that the final bubble shapes
were consistent with the geometric constraint that is known as the Gauss-Bonnet
theorem (cf. Sokolnikoff, 1984). This theorem states that the integral of the total
(Gaussian) curvature K over a smooth surface, topologically equivalent to a sphere,
should equal 4m. Since the normal curvatures k() and K, are also the principal curva-
tures (Dupin's theorem, see Sokolnikoff, 1964, p. 195), we have K = Km)X(y), and the
integral is computed easily. The final bubble shapes always satisfled the Gauss-Bonnet

theorem to within 1%.

A second check was more physical, and involved comparisons between the drag
coefficients computed, respectively, on the basis of the total rate of energy dissipation
via the Bobyleff-Forsythe formula (see Ryskin, 1980) and by integration of the pressure
and viscous stresses over the bubble surface. It may be anticipated that the latter
values, dependent only on surface quantities, should be the more accurate of the two,
and the surface force integration was adopted as our basic method. The drag
coeflicients calculated by the two methods were found to be in good agreement in most
cases (see Table 1). The level of agreement was actually quite surprising since the dis-
sipation calculation involves integrating the squared vorticity over the whole solution
domain — an operation which magnifies the effects of errors in the vorticity at large
distances away from the bubble. However, at the largest values of R and W the
differences were much larger. We believe that these differences in the calculated drag
coefficients provide a conservative view of the accuracy of our numerical solutions. As
we have already noted, the dissipation calculation weighs heavily the vorticity values at
a large distance from the bubble surface, and this is just the point where one might
expect the largest errors to appear. Indeed, for the highest R and W considered, some
evidence of "numerical noise” was present in the vorticity fields far from the bubble
and recirculating wake, indicating that we are approaching the limits of usefulness of

the 40x40 mesh. It should be noted, however, that relatively small errors in the
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vorticity at large distances from the bubble (< 2% of wp,y). especially downstream and
outside the wake. would not be expected to influence the solution much in the vicinity
of the bubble surface. Support for this point of view may be found in the recent work
of Fornberg (1980) who showed that the major effect of downstream boundary condi-
tions on the accuracy of numerical solutions for streaming flow past a cylinder was in
the streamfunction, with the precise form of the vorticity boundary conditions playing
a relatively minor role. The calculated drag coeflicients for all cases considered are

given in Table 1.

Finally, as indicated above, a comparison was made for one case, R = 20 and W = 12
(a highly deformed bubble), with solution obtained on a finer 80x80 grid. The compu-
tations on the 40x40 grid took approximately 15-80 minutes of CPU time on a VAX
11/780 for each case, starting with the solution at the same R and the next lower value
of W as an initial condition. The solution on an BOx80 grid required more than order of
magnitude increase in computer time and therefore was computed only foz; a single
case. As can be seen from Fig. 2, the only noticeable difference in the 40x40 and 80x80
solutions in this particular case is in the intensity of motion inside the recirculating
wake (whose shape is virtually identical). Since the velocities in this region are
extremely small anyway (the magnitude of ¥ at the innermost streamline is only 0.01),
we judge the absolute error to be acceptably small. The value of the drag coefficient is
about 3% lower on the finer grid, and this probably should be used to suggest that all of
the drag coefficients from the 40x40 mesh system are going to be a little above the

true values.

4. Summary of Experimental Observations

The experiments of Haberman and Morton (1953), Saffman (1958), Hartunian and
Sears (1957), Hnat and Buckmaster (1976), Bhaga and Weber (1981) and others provide
a fairly detailed picture of the motion of gas bubbles through a quiescent, viscous

liquid. It is convenient to describe their results in terms of the dimensionless parame-
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ter, M = gu*/ py?, which is related to our parameters according to

_3 . w
=Cp -
The variation of M in pure liquids is mainly due to variations in viscosity; M varies from

0(107*3) in liquid metals to 0{10%) in viscous oils. Water has M = 0(10719),

In high-M liquids (M = 4 x 1072 according to Bhaga and Weber, 1981), the flow past a
bubble is steady if R < 110 (for R > 110, the wake becomes unsteady) and the shape
depends mainly on R, changing from spherical for R < 0.1, to oblate ellipsoidal, to ellip-
soidal cap and finally to spherical cap (Hnat and Buckmaster, 1976; Bhaga and Weber,

1981).

In low-M liquids the bubbles likewise change from spherical to oblate ellipsoidal at
low R and ### have a spherical-cap shape at large R. However, the transition between
these regimes does not pass through a sequence of steady shapes as in the high-M case.
First, when the bubbles are still only slightly deformed at W = 0(3) and R = 200, their
path becomes zigzag or helical (Hartunian and Sears, 1957). At higher R and W, the
path becomes rectilinear again, but the bubble becomes very flattened in shape, and
fluctuates violently (Saffman, 1958). Finally, at W = 0(30), the bubble assumes a stable
spherical cap shape but with a very sharp (often ragged) rim and unsteady or tur-

bulent wake {(Wegener and Parlange, 1973).

Our numerical solution technique is restricted to steady and axisymmetic laminar
flows. In effect, we attempt to obtain steady, axisymmetric solutions without question-~
ing their stability (and, hence, realizability) in the real, physical situation. Although a
failure of the numerical procedure to converge may sometimes be indicative of a physi-
cal instability, this is by no means obvious and should not be automatically construed
in that light. A common feature of many problems is the existence of a steady solution
for a given set of parameters where the steady solution would not be realizable due to

the presence of an instability or bifurcation. Such steady solutions may still be of con-
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siderable interest in understanding the asymptotic nature of the governing equations
and boundary conditions. In the present work, we attempt to achieve steady, axisym-

metric solutions for both low- and high-M conditions.

5. Results of the Numerical Computations

We have computed solutions for R in the range 1 < R < 200 and W from 2 up to 20 for
R=< 20 and up to 10 for R > 50. All these cases are listed in Table 1. In addition, several
solutions were obtained for R = 0.5 for comparison with the low Reynolds number,
small deformation theory of Taylor and Acrivos (1964). The limits on W are a conse-
quence of the very large values of curvature which occur at the rim of the bubble, in

combination with the use of a 40x40 mesh for the calculations.

(a) Drag Coefficients

Our results for the drag coefficient are presented in Fig. 3 for the cases with R > 1.
Several solutions were also obtained for R = 0.5, as indicated above, and the com-
parison between these sclutions and the small R, small deformation theory of Taylor
and Acrivos (1964) is shown in Table 2. These latter results suggest that the Taylor-
Acrivos theory is quantitatively accurate only for R < 0.5, W < 0.5, where the deforma-

tion is very small (see section (b) below).

Bhaga and Weber (1981) found that the drag coefficient (and the shape) depended
cnly on R for high-M liquids (i.e. for M = 4 x 1079). In the context of our solutions, this
should imply that the drag coefficient and shape become independent of W for any
fixed R at sufficiently large W. Bhaga and Weber (1981) gave an empirical formula for
the drag coefficient for high-M liquids (i.e. for large W in our framework), namely

0.9 j17/ 0.8

18

[
Cp= [(2,67)0'9 +

and the values of Cp calculated from this formula are shown in Fig. 3 together with our

numerical results. For R = 20, and sufficiently large W, there is obviously good
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agreement between our results and the empirical, large-M formula of Bhaga and Weber
(1981) for the drag coefficient. However, it should be noted that the value of W
required for each R does not correlate well with a fixed critical value of M, and, in any
case, the corresponding values of M are considerably larger than 4 x 1073, Thus,
though our results for R < 20 show asymptotic behavior in full agreement with the
empirical formula, the latter must apparently be viewed as an asymptotic result for
sufficiently large W, rather than a universally valid result for high-M liquids. It is evi-
dent that the value of W required for good comparison with Bhaga and Weber’s experi-
mental asymptote does increase with increasing Reynolds number. The values of W
which we could achieve for R = 50 were apparently not large enough, though this
should not be considered as suggesting that the asymptotic behavior would not appear

for higher W.

A byproduct of beginning our calculations from a spherical shape at each value of R
is the results for the drag coefficient for a spherical bubble at each R (in effect, the
solution for W = 0 shown in Fig. 3). These results are in essential agreement with the
results of numerical computations for spherical bubbles by Brabston and Keller (1975)
and Rivkind and Ryskin (1976). The latter authors also demonstrated good agreement

with experimental data for cases where the actual bubble shapes are nearly spherical.

Experimental data corresponding to R = 50 and W < 10 do not apparently exist.
Such cases would correspond roughly to liquids with 0(1077) < M < 0(1073%). However,
the experiments would be more difficult than those with high-M liquids because the
small bubbles required to achieve modest R in the range 50-200 would be highly sus-
ceptible to the influence of surface active impurities. In addition, even if such experi-
ments did exist, it is quite possible that the bubbles at these R and W would rise in a
zigzag or spiral path, thus rendering any comparison with the present solutions mean-

ingless.
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{(b) Bubble Shape

The computed bubble shapes for all cases considered, except R = 0.5, are shown in
Fig. 4. Results for R = 0.5 and W = 0.5 and 1 are given in Fig. 5, along with the shapes
calculated for these cases from the asymptotic formula of Taylor and Acrivos (1964).
As was also true for the drag coefficients, quantitative agreement with this small R,
small W asymptotic theory is evidently possible only for W and R < 0.5 where the defor-
mation is very small indeed. Let us now turn to the more general results represented

by Fig. 4, beginning with cases for R < 20.

We may first note that, for Re < 20, the progression of bubble shapes is in accord
with qualitative "expectations" based on the most commonly reported experimental
observations, namely spherical‘ to oblate ellipsoid to more complicated "oblate” shapes
with indentation and/or ﬂatiening at the rear.! Furthermore, as W reaches 0(15), for R
< 0(R0), the shape of the bubble becomes visually independent of W, in agreement with
the experimental observations of Bhaga and Weber (1981). It may be noted that direct
comparison with the photographs of Bhaga and Weber (1981) is possible in some cases,
e.g. our result for R = 2, W = 16 with their photo for R = 2.47 and W = 18.5 (their Fig.
3a), but the majority of their experimental results are for very high Weber numbers

compared to those attained in the present work.

Although the bubble shapes for W > 0(15) appear visually similar at any fixed R < 20,
as noted above, our computations show that the influence of W does still persist in this
range in the vicinity of the bubble rim where the local curvature continues to increase
with W. Evidently, two bubbles may have quite different local curvatures at the rim and
still have almost identical overall shapes. The local differences in curvature with
increase of W are, however, quite important for the flow fields, which continue to

change with W even after the overall bubble shape is visually constant —it may be seen

T It should be kept in mind, however, that typical experiments do not hold
either R or W constant, but rather the parameter M with the independent
dimensional B[arameter being the bubble volume. An increase in bubble
volume with M held constant yields an increase in W proportional to
u“a and an increase in R proportional to ua.
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from the condition (9) of zero tangential stress that the amount of vorticity generated
at any point on the bubble surface is proportional to the local curvature. The resul-
tant changes in the vorticity and velocity fields with W (see Fig. 7 for R = 20) do not,

however, seem to feed back to have strong influence on the bubble shape.

In its present form, our numerical technique is not well suited for handling very
high surface curvature. We did not, therefore, compute any solutions for W > 20, and
cannot do more than speculate as to the asymptotic nature of the flow for large W and
R = 20. In the low R number range, it appears likely that the final asymptotic shape
will not differ much, in an overall sense, from the highest W results of Fig. 4. However,
the curvature at the rim and consequently the amount of vorticity in the wake may
well grow indefinitely with W. The existence of "skirts" at the rim (cf. Hnat and Buck-
master, 1976) may suggest that a value of W exists for any R beyond which surface ten-
gsion can no longer balance the local "pulling” action of dynamic forces at the rim, but

this is pure speculation at the present time.

In spite of the fact that shapes in which the deformation is strongest at the rear
(eventually leading to spherical caps) have become accepted as the "natural” mode of
deformation, it is not easy to explain why this should occur. At steady state, all defor-
mation is a consequence of local imbalances between hydrostatic and dynamic (nor-
mal) stresses which must, on the other hand, balance exactly in a certain global (i.e.
integral) sense in order that the resultant force on the bubble be zero. In the caseR =
0. both static and dynamic forces are linear functions of vertical position (i.e. of x in
our notation) and thus must also balance locally leading to a spherically shaped bub-
ble for any surface tension. For nonzero Reynolds number, on the other hand, defor-
mation will occur in a form that depends wholly on the details of any local imbalance
between the static and dynamic normal stress contributions and these details are
nearljy impossible to anticipate in any "a priori” sense. Examination of the surface dis-
tributions of hydrostatic pressure, dynamic pressure and the normal component of

viscous stress, given in Fig. 8 for R = 2, W = 16, shows that the hydrostatic pressure
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contribution is locally dominant at the rear of the bubble thus leading to an indenta-
tion in that part of the bubble. While this fact may be associated, after the fact, with a
leveling of the dynamic normal stress contributions from their initially linear depen-
dence on x (caused by the sweeping of vorticity to the rear of the bubble?) no satisfac-
tory "a priori” explanation seems possible. Indeed, a striking feature of the bubble
shapes for high W and R < 20 is that they can be closely approximated by intersecting
segments of two spheres of different radii. This means that two strongly varying func-
tions (the hydrostatic pressure and the dynamic normal stress) add up to one of two
constant values everywhere on the bubble surface except in the local vicinity of the rim
(see Fig. 8 for R = 2, W = 16). Apparently, as W - =, the sum of hydrostatic and
dynamic forces will approach a d-function located at the rim, though we can offer no
real insight as to why this should be the case for a shape consisting of two spherical

segments (including a plane as a limiting case of a sphere).

Let us now consider the results for the higher Reynolds numbers, R = 50. As can be
seen from Fig. 4, at these Reynolds numbers the (front) stagnation pressure becomes
dominant and the bubble initially flattens more at the front than at the back. Eventu-
ally, for R = 100 and 200, the bubble actually develops an indentation in this area.
Miksis, Vanden-Broeck and Keller (1981) have also found bubble shapes in potential
flow with an indentation at the front, but in that case the bubble shape must remain
fore-aft symmetric so that the overall shape resembles a donut without the hole. In
the real viscous flow, the rear stagnation pressure does not reach the same value as
the front stagnation pressure (see Fig. 6 for R = 100, W = 10), and the deformation is
greater in the front as shown in Fig. 4. The case of R = 50 lies approximately on the
border between two types of deformation: one characteristic for lower R with stronger
deformation in the rear, and another characteristic for higher R, with stronger defor-
mation in the front. Consequently, at R = 50 the bubbles almost preserve fore-aft sym-
metry, leading at higher Weber numbers to the shapes which Bhaga and Weber (1981)

termed "disk-like"” (see the photograph in their Fig. 2¢c for R = 55.3 and W = 15.4). They



9h.

note that these bubbles wobbled as they rose. Observations of saucer-like shapes such
as those illustrated in Fig. 4 for R = 100 and W = 0(10) have also been reported in the
literature (see e.g.. Lane and Green, 1958), but we were unable to find any photographs
for comparison. It is quite likely that this is a consequence of the fact that the real
bubbles do not rise steadily at the highest Reynolds and Weber numbers which we
attained in our computations, but rather wobble or rise along a zig-zag or helical path
(see section 8 below). Since these latter phenomena cannot be predicted in our
present studies which assume the flow and bubble shapes to be steady and axisym-
metric, a natural question is the purpose of obtaining solutions for the higher values R
and W that are represented in Fig. 4. We would assert that such solutions are of consid-
erable importance, even if they are unstable in reality, because they can demonstrate
important trends toward asymptotic behavior (see e.g., Saffman, 1981). In classical
fluid mechanics, an equivalent problem is the quest to develop steady, asymptotic solu-
tions for separated flows at high Reynolds number even thbugh experimental observa-

tion shows such solutions to be unstable if they exist at all.

A case in point in the present study is the evolution with increasing Weber number,
and Re = 100, of flatter and flatter shapes with an indentation in front, and the con-
comitant lack of any apparent tendency toward spherical cap shapes which are known
experimentally to occur for W = 0(30) at these Reynolds numbers (see Bhaga and
Weber, 1981), following a regime of unsteady motions and shapes at lower W. Indeed,
the trend of the present solutions with increasing W would appear to support the pro-
position that no steady solutions of this branch (i.e. increasingly flattened bubbles with
increasing W) can exist above some critical W which will depend upon the Reynolds
number R. In particular, the occurrence of increasingly flattened bubbles for higher W
is likely to lead eventually to a situation in which a further increase in Weber number,
and thus deformation, will not lead to an equilibrium shape because the dynamic
forces associated with the local increase in curvature will increase faster than surface

tension forces. Results of precisely this type were reported for potential flow past an
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axisymmetric bubble by Miksis et al. (1981) who found a critical Weber number of 3.2.
Restrictions in the present solution technique prevent us from extending the solutions
at R = 100 and 200 beyond W = 10 and we can thus neither prove that solutions of the
branch attained here do not exist for W > W, nor provide a numerical estimate of the
critical Weber number, W,, for the finite Reynolds numbers considered here. In partic-
ular, the rate of convergence using our particular iterative algorithm for bubble shape
slows considerably at these higher values of R and W. In addition, the 40x40 grid is not
sufficiently fine to merit extension of the present solutions to larger R or W, while the
use of a finer grid is currently too costly. The fact that we cannot yet obtain results at
larger W does not, however, diminish the potential value of extending the range of
steady, axisymmetric solutions beyond the point of experimentally observed instability.
The use of such solutions in the present problem to establish the nonexistence of the
branch of flattened shapes beyond some critical W = W (R) would presumably signal the
onset of "shape instabilities” which may account for the violent fluctuations and irre-
gularities of shape that are observed experimentally before the bubble attains a spher-
ical cap shape (Saffman, 1958). In spite of the current restrictions on maximum W, we
believe that the solutions shown in Fig. 4 for R = 100 and 200 are indicative of just such
a result (though, as already noted, we cannot yet pinpoint a critical value for W at
these Reynolds numbers). Note that "shape instability" associated with the nonex-
istence of steady, axisymmetric solutions for bubble shape should be distinguished
from non-axisymmetric shapes caused by non-rectilinear trajectories that result from
intrinsically unsteady wake flows (termed "path instability”). The "instability” of the
"path” occurs when the bubble is still only slightly deformed (cf. Hartunian and Sears,
1957), and is of a completely different nature than the instability of shape associated
with a large, super-critical deformation. We will discuss this point in more detail in sec-
tion 6 below. However, the fact noted by Miksis et al. (1981) that the instability of the
trajectory (or path) often occurs at Weber numbers very near the critical value (3.2)

for shape instability in potential flow is purely coincidental. The "path instability” can-



not be predicted if the flow is assumed axisymmetric and steady from the outset, as is
done in both potential solutions (cf. Miksis et al., 1981) and in our computations, while
the "shape instability” implies nonexistence of steady axisymmetric solutions above
some Weber number and thus will manifest itself quite clearly under the above assump-

tions.

It is relevant to note that the branch of solutions exhibiting increased flattening
with W was generated here by holding R constant and gradually increasing W starting
with a sphere for W = 0. It is quite possible that the spherical-cap branch of solutions
for R = 0(100) could be reached numerically by first computing spherical cap bubbles
for R = 0(20) and W = 0(30) —where they must presumably exist as an extension of our
present solution for R = 20, W = 20 — and then increasing R while holding W constant.
However, we have not yet attempted to attain spherical caps by this route, pending
changes in the numerical scheme to better accommodate local regions of high surface

curvature.

Finally, it may be noticed from Fig. 4 that the dependence of the shape on Reynolds
number becomes rather weak for R = 0(100). It is not clear, however, if this means
that the solution is near its asymptotic form for R -» = or that the values of R = 0(100)
correspond to a "plateau” region in the dependence of the shape and flow structure on
the Reynolds number. Nor can one discard the possibility that this behavior is (at least

partly) an artifact of the numerical scheme working at its limits of accuracy.

(c) Flow Structure-Separation at a Free Surface

In different branches of fluid mechanics flows with free surfaces at high Reynolds
numbers are treated as irrotational. This is a good approximation if the flow does not
separate since then the velocity at the free surface will differ from its irrotational
value by a small amount proportional to R™!/ ? (see Batchelor, 1987, section 5.14). If
the flow separates, however, the entire structure of the flow field will be changed and

the assumption of irrotational flow is not useful. It is therefore quite important to
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understand if such separation may indeed occur at a free surface and under what con-
ditions. We are not aware of any theoretical or numerical work in this area. There
appears to exist a belief that a flow does not separate from a smooth free surface but
may separate if a free surface has a sharp edge (see e.g., Batchelor, 1967, sections 5.14

and 6.11).

At intermediate Reynolds numbers, flow separation can be studied numerically, and
the present problem provides an excellent opportunity for such study. Our results (see
Figs. 7) show that separation not only occurs at a smooth free surface, but that the
size of the separated flow region may be very substantial. The onset of separation
depends on both Reynolds and Weber numbers. Very roughly, it occeurs at W & 9 for R
=10, at WR7forR=20,at WR5for R =50, at W~ 4 for R = 100 and at W between 3
and 4 for R = 200. The size of the separated region grows with both R and W, though at
R = 0(100) the dependence of this size on R is rather weak, similar to the situation for
the shape of the bubble, discussed at the end of section 5(b). The present solutions
also show that the dividing zero streamline leaves the surface of the bubble at a large
angle, though the fine structure of solution near the point of detachment cannot be

studied on our relatively coarse grid.

An obvious question is whether the streamline patterns and shapes shown in Figs. 4
and 7 are realistic, especially since the existence of separation from a smooth, zero
shear stress surface is not, perhaps, easily accepted by all workers in the field. To
answer this question, the most effective course is comparison of our calculated solu-
tions with actual photographs. We could only find one example of a photograph which
clearly showed a standing eddy structure downstream and also had values of R and W
matching closely one of our numerical cases. A comparison of the computed and
experimental bubble shape and wake structure is shown in Fig. 8. As noted, the photo-
graph was taken from the study of Hnat and Buckmaster (1976). The experimental
and numerical results for both shape and streamline pattern compare extremely well.

It should be noted that the indentation at the rear of the bubble is visible in the
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original published photo though somewhat obscured by the fact that we look through
the edge of the bubble. It is, however, more difficult to discern in our reproduction of

the Hnat-Buckmaster photo.

How can one explain the appearance of separation in this flow with a free surface?
We believe that the best explanation is the evolution-type argument due to Batchelor
(1967, section 4.12), according to which the separation per se is a secondary
occurrence while the primary phenomenon is the development of standing eddies
behind the body due to the accumulation of vorticity brought to this area by convec-
tion. The crucial evidence in support of this view is the fact that while separation in
laminar flow is always accompanied by standing eddies, the standing eddies behind a
body may exist without separation, as observed experimentally for a bluff body with
base bleed by Leal and Acrivos (1969), and found numerically for a spherical viscous
drop by Rivkind and Ryskin (1976). Clearly, the eddies are primary and the separation
secondary. However, unless something prevents the standing eddy from attachment
(base bleed, internal motion in the drop), the eddy wﬁl attach and thus cause separa-

tion.

According to the viewpoint expressed above, the key condition for existence of
standing eddies (and hence separation) is the generation of vorticity at a sufficient
rate from the bubble surface. As is evident from condition (9), this implies the
existence of sufficiently large curvature, i.e. bubble deformation. Since the shape of &
bubble depends on both the Reynolds number and Weber number, it is difficult to
separate the effects of these parameters on the existence of standing eddies (and
separation), especially in view of the fact that the Reynolds number is also indicative of
the relative efficiencies of convection and diffusion in the transport of vorticity. It can
be seen, however, that no separation occurs at any of the Reynolds numbers con-
sidered here when the bubble is spherical in shape (i.e. W = 0) —a result also confirmed
by earlier numerical studies due to Brabston and Keller (1975) and Rivkind and Ryskin

(1976) for spherical bubbles. This is presumably due to the fact that the surface
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curvature and hence boundary vorticity is not sufficiently large for a sphere. As W
increases, however, bubble deformation increases, as do the maximum surface curva-
ture and vorticity and it is not surprising to find separation occurring for a particular
Reynolds number at some critical value of W (dependent on R). Our numerical results
show that the deformation need not be all that great to yield sufficient vorticity to give
standing eddies; the maximum boundary vorticity at the onset of separation is of the

order 4-10, being smaller for lower Reynolds numbers (i.e. for more bluff shapes).

Although experimental photographs have been published by a number of authors,
including the Hnat-Buckmaster (1976) study cited earlier, which show clear evidence of
separation, there has been a reluctance to accept this result as unequivocal evidence
for separation from a free interface. In particular, in the experiments, it is never clear
that the interface is completely free of surfactants, temperature gradients or other
impurities which could change the boundary conditions and thus conceivably account
for the existence of separation. The present numerical results, on the other hand, do
satisfy the zero shear stress condition to within a small numerical error and thus pro-
vide a clear demonstrétion of flow separation from a smooth free surface, at least for
intermediate Reynolds numbers. Consequently, the usual assumption that flow near o
smooth free surface will correspond closely to potential flow at high Reynolds numbers

cannot be taken for granted, but requires additional investigation in each case’

6. Discussion

Finally, in this section, we consider some further implications of our numerical
results for the conditions for existence of the unsteady and/or non-axisymmetric
motions observed by Saffman (1956), Hartunian and Sears (1957), and many other
investigators. As noted in the description of experimental results, these motions con-
sist of zigzag or helical trajectories for sufficiently large Reynolds numbers and rela-
tively small Weber numbers where the shape deformation is only moderate, and violent,

chaotic fluctuations of shape with a nearly rectilinear path for more highly deformed,
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saucer-like bubbles at higher Weber number. The latter phenomenon has been tenta-
tively associated with the nonexistence of steady, axisymmetric flattened shapes
beyond a certain critical Weber number (see section 5(b) above). It was, in fact, sug-
gested many years ago by Haberman and Morton (1953) that the origin of the zigzag or
helical path was a consequence of vortex shedding from the bubble. However, this
explanation was not readily accepted because it presumed the existence of a standing
vortex structure, and because lateral motions of similar magnitude had not been
observed for rigid spheres even though rigid spheres and spherical bubbles should
exhibit similar hydrodynamic resistance to lateral translational accelerations due to
the added mass effect (Saffman. 1956). Later experiments with extremely light solid
spheres by Preukschat (1962) and Macgeady and Jex (1964) did, however, show large
scale oscillations of path similar character to those observed for bubbles, thus lending
support for Haberman and Morton's (1953) hypothesis. Nevertheless, the fundamental
question remains as to why heavy and light bodies in a given fluid should exhibit large
differences in the amplitude of path oscillations when the effective mass (i.e. actual +
added mass) differs by only an 0(1) numerical factor. We believe that the reason lies in
the large differences in mament of inertia which, for spheres, is directly proportional to
the particle density (the added moment of inertia for a sphere is zero). The lateral
force associated with vortex shedding is a consequence of the periodic Magnus force
arising from interaction of the main flow past the sphere and the circulation around it
(the latter being induced each time an amount of vorticity is shed and being of oppo-
site sign to this vorticity). The moment of inertia is important because the induced
circulation around the sphere will be strongly damped by viscous effects unless the
sphere participates readily in the rotation. This will be true of a bubble or a "hollow”
sphere, but not for a solid sphere, since the moment of inertia for a sphere is propor-

tional to its density.

Now, for vortex shedding to occui’, two obvious conditions should be met: the stand-

ing eddy should exist behind the body, and the Reynolds number should exceed the
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critical value R, at which the motion in the wake becomes unstable. In the case of a
rigid bluff body, the standing eddy structure always appears at Reynolds numbers
below R., which is of 0(200) (see e.g., Nakamura, 1976, for spheres; and Willmarth, Hawk
and Harvey, 1964, for disks). For bubbles, on the other hand, our solutions show that
separation is not found for any Reynolds number (< 200) when the shape is spherical
or near-spherical. Thus, in spite of the fact that a Reynolds number may be reached at
which vortex shedding would occur if a vortex structure existed, our solutions suggest
that there will be little or no departure from a rectilinear path until a sufficiently large

W is reached to obtain the necessary downstream eddy structure.

These implications of the present solutions appear to provide a basis for under-
standing the experimental results of Hartunian and Sears (1957) who found two dis-

tinct criteria for the change from a rectilinear to zigzag or helical path:
a. A critical Reynolds number, R ® 200, for impure liquids.

b. A critical Weber number, W & 3.2, for pure liquids.
Apparently, in the impure liquids, the conditions on the surface of the bubble are
sufficiently close to no-slip that the vortex ring forms even for bubble shapes close to
spherical when the Reynolds number is below R,, and the usual criterion for onset of
vortex shedding from a solid is obtained. In pure liquids, on the other hand, the free
surface conditions are relevant and the condition for onset of zigzag for any
sufficiently large Reynolds number is the existence of a sufficiently large Weber number
to allow formation of the downstream eddy structure. Our numerical solutions show
that the Weber number required for existence of separation is somewhat dependent
upon the Reynolds number, but decreases to a value of 0(3-4) for R = 200. This is close
to the value reported for onset of zigzag in clean fluids by Hartunian and Sears (1957).
At lower Reynolds numbers, it is unlikely that the wake structure becomes unstable
(based on the necessary critical R for spheres and disks cited earlier), though instabil-

ity of shape may be expected for R ~ 0(50-100) where the flattened branch of steady
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solution suggests a critical Weber number for nonexistence of steady, axisymmetric
shapes. We may also note that the existence of a perfectly pure interface is difficult to
achieve (especially for water) in an experiment, and any small departure to a slightly
contaminated surface will tend to lead to separation at lower W than predicted here for
the perfectly clean, zero shear-stress interface. This may account for the fact that the
Hartunian and Sears (1957) critical Weber number was only 3.2, while the present
numerical results at R = 200 would suggest the need for W = 0(5-8) in order to have not
only onset of separation but some development of the standing vortex structure
behind the bubble. It may be noted, in support of this contention, that Tsuge and
Hibino (1977) report higher critical Weber numbers for onset of zigzag motions, up to

0(5), for bubbles in highly purified organic liquids.

This work was supported by a grant from the Fluid Mechanics Program of the

National Science Foundation.
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Table 2. Comparison of the present results for the drag coefficient at low R and W.with
the asymptotic theory of Taylor and Acrivos (1964).

Present Results Taylor & Acrivos (1964)

R=05W=20 3386 33.7

R=05%w=05 ‘ 34.7 \ 33.8

R=05W=1 35.3 l 33.9
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figuré 4.

Figure 5.

Figure 8.

Figure 7.

The boundary-fitted coordinate system.

Comparison of the solution for R = 20, W = 12 with the 40x40
grid (left) and the finer 80xB0 grid (right). Here and else-
where in this paper, the contour values for the stream-
function are 0, + 0.001, + 0.002, + 0.005, + 0.01, etc.; for vorti-

city 0, £ 0.01, £ 0.02, £ 0.05, £ 0.1, etc.

Drag coefficients for a steadily rising bubble as a function of
the Weber number for various values of the Reynolds number.
The arrows indicate the empirical correlation of Bhaga and
Weber (1981) for very large W; W = 0 corresponds to spherical

bubbles.

Computed steady, axisymmetric shapes of rising bubbles as &

function of R and W.

Comparison of the present results for bubble shape (solid
line) with the asymptotic solution of Taylor and Acrivos

(1964) (broken line).

Surface distributions of pressure and viscous normal stress
as functions of the (relative) distance from the front stagna-

tion point. (1) the hydrostatic pressure -pp,; (2) the

dynamic pressure —pgyn: (3}viscous normal stress %—e“; (4)

total normal stress Ty, i.e. the sum of (1), (2) and (3) accord-

ing to Eq. (10).

Flow separation at a free surface: the standing eddy struc-

ture behind the bubble.
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Figure 8. Comparison of the experimental photograph by Hnat and
Buckmaster (1976) for R = 19.4, W = 15.3 (Cp = 3.44) with

present results for R = 20, W = 15 (Cp = 3.55).
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R=10, W=-8 R=10, W=10

R=10, W=12 R=10, W=14

Figure 7



117,

R=20, W=15 R=20, W=20

Fig. 7 cont'd
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R=50, W-8 R=50, W=10

Fig. 7 cont'd
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R=100, W=3 R=100, W=4

R=100, W=5 R=100, W=6

R=100, W=8 R=100, W=10

Fig. 7 cont'd
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R=200, W=-3 R=200, W-4

R=200, W=5 R=200. W=6

— e

R=200, W-8 R=-200, W=10

Fig. 7 cont'd
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Figure 8
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CHAPTER 1V
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Large Deformations of a Bubble in Axisymmetric Steady Flows.
Part 3. Uniaxial Extensional Flow

by

G. Ryskin and L. G. Leal
Department of Chemical Engineering
California Institute of Technology
Pasadena, CA 91125

Abstract

We consider the deformation of a bubble in a uniaxial extensional flow for Reynolds
numbers in the range 0.1 < R < 100. The computations show that the bubble bursts at
a relatively early stage of deformation for R = 0(10), never reaching the highly
elongated shapes observed and predicted at low Reynolds numbers. We also compute
the deformation of the bubble under the assumption of potential flow and conclude
that the potential flow solution provides a good approximation to the real flow in this
case for R= 0(100).

J. Fluid Mech. (submitted)
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1. Introduction

The present paper is the third in a series (see Ryskin and Leal, 1983b,c) in which we
use numerical methods to study the deformation of a bubble in axisymmetric flow
flelds at finite Reynolds number. Here we consider uniaxial extensional flow. Previous
theoretical studies of this problem have been restricted to zero Reynolds number flows
(Taylor, 1934, 1964; Buckmaster, 1972; Barthes-Biesel and Acrivos, 1973; Youngren and
Acrivos, 1976), with the exception of the nonzero Reynolds number, slender-body
analysis of Acrivos and Lo (1978) which extends to Reynolds number of 0(0.1).
Although laboratory studies have generally been restricted to highly viscous fluids (and
to two-dimensional, rather than uniaxial, extension), many practical flows involve low
viscosity fluids such as water and the Reynolds numbers in these systems easily attain
values 0(10%~10%). For example, to achieve R = 100 in water with a bubble of 1 cm
diameter requires a strain rate of only 0(1 sec™). The present study covers R ranging
from 0.1 to 100, as well as potential flow results, in all of which the deformation may

become quite large.

At low Reynolds number, both experiments and theory (Taylor, 1964) show that &
bubble may become extremely elongated and develop pointed ends where the curva-
ture tends locally to extremely large values. Such cases are not accessible with our
present numerical technique, and the slender-body analysis of Taylor (1964), Buckmas-
ter (1972) and Acrivos and Lo (1978) cannot be checked now. However, we can com-
pare our results in the low Reynolds number range, R = 0.1 and 1, with the predictions
of Youngren and Acrivos (1976) who used the boundary-integral technique for creeping
flow to consider large deformations of a bubble in extensional flow at zero Reynolds

number.

Our resuits for intermediate Reynolds numbers, R = 10 and 100 appear to us to be
of greater interest. Assuming that the absence of numerical convergence can be taken

to signify the nonexistence of a stable, axisymmetric solution (which is certainly not
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always true, but appears likely in this case), our results indicate that the presence of

inertia leads to breakup of a bubble at a quite early stage of deformation.

2. Statement of the Problem

We consider an incompressible gas bubble of volume 4/3 ma® subjected to a steady
uniaxial extensional flow of a fluid with constant density p and constant viscosity sx.
The density and viscosity of the gas inside the bubble are assumed negligible in com-
parison with those of the liquid. Furthermore, the surface of the bubble is assumed to
be characterized completely by a uniform surface tension 7. Finally, we neglect all
effects of gravity including the hydrostatic pressure variation in the fluid. The latter
condition has been adopted in all previous studies of the problem, and is necessary in
order that the shape be axisyfnmetric and exhibit fore-aft symmetry. If the x-axis of
cylindrical coordinates x,0,¢ is directed along the axis of symmetry, the (dimensional)

velocity fleld far from the bubble is given by

1 0 0
u=Er:; E=E/0 -1/2 0 ; BE>0
0 0 -1/2

where E is the principal strain rate. We use the equivalent radius of the bubble a as &
characteristic length scale and the product Ea as a characteristic velocity scale. The
numerical solution is computed on a boundary-fitted, curvilinear orthogonal coordi-
nate system {.7.¢ obtained by the technique of orthogonal mapping (Ryskin and Leal,
1983a), in such a way that the surface of the bubble is always represented by the coor-
dinate surface £ = 1. The derivation of the appropriate form of the Navier-Stokes equa-

tions proceeds exactly as in Part 2. Thus, as before, we obtain

R L [ 8 e 8y 8 |w]||
L*(wo) 2hgh.,{a$ o a] on o¢ G]} 0 (1)
LPY+w=0
(2)

where
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Here ¢ is the Stokes stream function, o is the vorticity and R =2 p(Ea)a/u the Reynolds

1

number based on the equivalent diameter of the bubble 2a.

The scale factors h.h, are obtained from the mapping tunctions x(¢.7m).0(¢,n) — see

Part 1. The distortion function f = hn/h; is specified in advance as f = -g-f.

Due to the obvious symmetry with respect to the equatorial plane, we need to con-
sider only half of the ¢ = const plane, i.e. x>0, 0> 0 (see Fig. 1). The boundary condi-
tions are thus:

on the axis of symmetry, 7 =0

Y=0, w=04and
on the plane of symmetry, n = 1 (3)

¢~-é—xcr"’; @ -0 ato (¢-0)
(4)

plus conditions at the surface of the bubble ¢ = 1. These are the kinematic condition

v=0at £¢=1,
(5)
the condition of vanishing tangential stress
@ - Remun, =0
(8)

where k() is the normal curvature of the surface in the 7-direction, and the balance
between normal stress and forces due to surface tension
4 =
Tee ~ W"[’C(n) + ”(n] =0
(7)
where k() is the normal curvature of the surface in g-direction and W = 2p(Ea)?a/ v is

the Weber number.

Expressions for the normal curvatures in terms of x(¢,7) and o(£,7) are given in
Part 2. The normal stress 7¢ can also be taken directly from Part 2, with the only

change being that hydrostatic pressure variations are neglected in the present



127.

problem, i.e.

- 8
Tee = “Payn ¥ pre

(8)
where
=m2 4 rt 8
and
=1 8
%€= " Sh, on (7q) - (9b)

This essentially completes the statement of the problem. The method of solution has
been described in Parts 1 and 2. We used a 40x40 grid in the {7 coordinates; each
solution took 15 to 45 min of CPU time on the VAX-11/780 computer that was used in

the present work.

3. Numerical Results and Discussion

We have done computations for R = 0.1, 1, 10, 100, gradually increasing W in each
case until a value of W was reached at which either a converged solution could not be

obtained or became excessively expensive.

The computed shapes are shown in Fig. 2. At low Reynolds numbers there is an
apparent trend, predicted by the creeping flow theory and observed in experiments
(see Acrivos and Lo, 1978, and references therein) for a bubble to elongate monotoni-
cally with increase in the capillary number uEa/y = W/R. In the process of this elonga-
tion, the curvature of the surface becomes very large at the tips of the bubble. As
noted in the preceding Parts I and II, our numerical method in its present form is not
well-suited to the treatment of bubble shapes with locally very large curvature.
Accordingly, when convergence either cannot be achieved or becomes excessively slow
in cases with very large curvature somewhere on the surface, this fact does not neces-

sarily signify the nonexistence of steady axisymmetric solutions for bubble shape.
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Indeed, the slender-body theory at R = 0 due to Taylor (1964), Buckmaster (1972) and
Acrivos and lo (1978) predicts no breakup and is in good agreement with experiment.
This slender-body regime (which requires uEa/y >> 0.23, see Hinch and Acrivos, 1979,

p. 405) is beyond the scope of the present study.

Our results at R = 0.1 are in good agreement with the creeping flow solution of
Youngren and Acrivos (1976), which was obtained using the boundary-integral tech-
nique (see Fig. 3). It can be seen that our solution predicts a slightly higher deforma-
tion for R = 0.1 than Youngren and Acrivos’'s (1978) for R = 0. A qualitatively similar
result was obtained in the slender-body analysis for a bubble by Acrivos and Lo (1978)
which predicts no breakup at R = 0, but greater deformation and breakup for R # 0. At
R = 1, our results show that the deformation follows the same general "low Reynolds
number patttern”, with the bubble becoming strongly elongated. It can be seen, for R
< 1 and puEa/y < 0.25, that the influence of Reynolds number is mainly to increase the

magnitude of deformation without a radical change in its character.

A qualitative change in the nature of the deformation does take place at some Rey-
nolds number between 1 and 10. At R = 10 and 100, the bubble does not become
elongated. As can be seen from Fig. 2, the bubble first assumes the shape of an oval,
but with further increase of W the side surface approaches a circular cylindrical shape.
We could not obtain a converged solution for R= 10 and W= 1 and for R = 100 and W =
2.2, even though solutions for the same Reynolds numbers and W less by 0.1 were
readily obtained (see Fig. 2). In these cases, there are no surface points where the cur-
vature is much higher than 0(1), and so it is unlikely that purely numerical difficulties
could be a source of divergence. Monitoring the shape of the bubble during an attempt
to compute these diverging solutions, we observed that after some number of itera-
tions the side surface of the bubble became cylindrical at the equator (i.e. K(; became
zero there), then a "waist” appeared and divergence followed. Though our numerical
procedure in its present form does not simulate a real transient (unsteady) flow, it is

intuitively clear from the sequence of shapes for R = 10 and 100 in Fig. 2 that further
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increase in Weber number would lead to appearance of the "waist” in a real flow. Again
intuition suggests that a bubble with a waist is unlikely to be stable and should burst
into two parts (indeed, such is the ease for a slender bubble with a waist at R = 0 as

shown by Hinch, 1980).

We do not present the streamline plots corresponding to the shapes in Fig. 2 since
there is no flow separation and accordingly the streamlines provide little additional
insight. It is quite unlikely that separation will appear at higher Reynolds numbers
since the only source of vorticity is boundary curvature which seems to be approaching
an 0(1) limit as R is increased for any fixed W (see Part II for a discussion of the con-
nection between vorticity production and separation). Also, the velocity and pressure
fields in an extensional flow differ from those in the uniform flow in a way which makes
flow separation much less likely, e.g. there is no separation in an extensional flow past
a solid sphere at Reynolds numbers up to 0(10%) (see Ryskin, 1980, section 7). If
separation does not occur, a solution under the assumption of irrotational flow should
provide a good approximation to the real flow for R + =, Therefore, we have computed
such inviscid irrotational solutions by setting the vorticity equal to zero everywhere
and neglecting those terms which include a factor 1/R in the expression for normal

stress, which thus becomes

Tee =~ Pam = Up -
The problem becomes quite easy in this case and takes only about 5-10 min of CPU
time on the VAX-11/780. The results presented in Fig. 2 show that the trend which is
already apparent at R = 10 continues to R + . The Weber number W = 2.7 is the
highest (in steps of 0.1) for which a converged solution could be obtained in the poten-
tial flow limit; for W = 2.8 the "waist" appears at some stage of the iteration process

and then keeps contracting without converging to an equilibrium solution.

We thus conclude that bubbles in an extensional flow for R = 0(10) do not become

elongated but burst at W = 0(1) after a relatively small deformation. In particular, our
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results suggest strongly that bubble breakup or burst will occur at W= 1 for R = 10, at

WrR2RforR=100,and at WN2.8as R - e,

It should be emphasized that our results are valid only for bubbles (whose density is
negligible) but not for inviscid drops. These two cases are identical only if the Reynolds
number is zero or if the shape is fixed (spherical). Otixerwise. one must take into
account the variation of pressure inside the inviscid drop. In particular, if the drop is
neutrally buoyant, the u,,f term in the expression for the normal stress (9) will be
exactly cancelled by a similar term inside the drop. This u,,'f term is the dominant con-
tribution to the normal stress and thus the shapes of bubbles at high R. In particular,
the strong deformation at the equator of the bubble for R > 0(10) (and eventually, the
development of the "waist” and subsequent bursting of the bubble) is apparently due
to the high stagnation pressure at this point. The complete cancellation of the ug term
in the case of a neutrally buoyant (viscous or inviscid) drop is certain to have a pro-
found effect on the deformation. We note in passing that the above remarks are also
applicable to Acrivos and Lo’s (1978) solution at nonzero Reynolds number in the
slender-body regime, which is therefore valid only for a bubble and not for an inviscid

drop as suggested by Acrivos and Lo (1978).

4. Comparison with Rising Bubble

In a certain sense, the deformation of a bubble in an extensional flow is a much
simpler phenomenon than the deformation of a rising bubble in a quiescent fluid. In
particular, the surface values of the hydrostatic and dynamic pressure and the viscous
normal stress balance exactly in an integral sense in the case of a rising bubble (see
part 2) since the resultant force on the bubble is zero. Thus, deformation in this case
is a consequence of local differences in stress and pressure distributions, which are
extremely difficult to anticipate, balanced against capillary forces. On the other hand,
the balance of forces to achieve zero net force in the extensional flow is satisfied due

entirely to the fore-aft symmetry of the bubble. Thus, one or the other of the pressure
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and normal stress contributions can become dominant over the others, and then
deformation occurs as a result of this one distribution balanced against capillary
forces. Because of this, the qualitative mode of deformation is much more accessible
to intuition in the latter case. For example, the tendency for a bubble in extensional
flow at low Reynolds number to extend in the direction of the principal axis of strain is
easily anticipated from the viscous stress and pressure distribution at the surface of a
spherical bubble in the same flow. Similarly, at high Reynolds number, the dynamic
pressure is the dominant contributor to the stress balance at the bubble surface, and
it is evident that the bubble should be pushed inward at all stagnation points due to

the higher pressure there, as was indeed observed.

The above discussion also clarifies the difference between the two problems in terms
of the importance of the dimensionless groups for estimating the degree of deforma-
tion. In the most general sense (i.e. not referring to any particular problem), one
would expect the degree of deformation at low Reynolds number to depend upon the
capillary number W/R, which is a measure of the magnitude of viscous stresses relative
to capillary pressure. For example, when W/R = 0(1), one should normally expect large
scale deformation and possibly even breakup on the basis of the order of magnitude
estimate of viscous "deforming" forces relative to the surface tension "restoring”
forces which is inherent in W/R. Likewise, the Weber number would be expected to play
a similar role at higher R, since it is a measure of the order of magnitude of dynamic
pressure forces relative to capillary forces. These expectations are fully borne out in
the case of an extensional flow, as can be seen from the results of Fig. 2. However, in
the case of a rising bubble, these expectations prove completely wrong. The capillary
number does not play any role at all. Furthermore, though the Weber number does
determine the deformation at nonzero Reynolds numbers, the deformation is rather
small at W = 0(1) and, indeed, extremely high Weber numbers can be reached experi-
mentally for spherical-cap bubbles without breakup, the shape of a bubble becoming

essentially independent of W above some value of order 15-20 (see part 2). Unlike the
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extensional flow problem where W/R and W do provide a direct measure of the strength
of the dominant deforming forces relative to the restoring tendency of surface tension,
the overall "integral” balance between static and dynamic pressures and the viscous
normal stress means that no single one of these deforming forces can become dom-

inant at any W/R or W.
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Figure Captions

Figure 1. The boundary-fitted coordinate system.

Figure 2. Shapes of a bubble in uniaxial extensional flow as a function of Reynolds
and Weber numbers; R = = corresponds to the potential flow solution.

Figure 3. Comparison of the present results for R = 0.1 (points) with the results of

Youngren and Acrivos (1978) for R = 0 (solid line), plotted in terms of the
deformation parameter D = (I - b)/(l + b) as a function of the capillary
number pEa/y. Here !l and b are, respectively, lengths of the major and

minor axes of the bubble profile.
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