
Scalable Synthesis and Verification:
Towards Reliable Autonomy

Thesis by

Sumanth Dathathri

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California, USA

2020

Defended 2 March 2020

ii

© 2020

Sumanth Dathathri

All Rights Reserved

iii

To my mom, Shruthi and the memory of my father.

iv

Acknowledgments

I have had the joy of working with and being mentored by Richard M. Murray, my adviser.

This thesis would not have been possible without Richard’s continued support. I thank

him for his patience and encouragement, even at times when progress was slow. I am also

extremely grateful for his support with independently pursuing my research interests and

collaborations, including spending time away from Caltech. I would like to extend my

deepest thanks to Joel Burdick for his mentorship through my early graduate school years,

and for providing me with office space alongside his group. I would also like to express my

gratitude to Chandy for being a part of my committee and sharing insightful feedback. I

am grateful for the patient collaboration Sicun Gao offered even when I floundered around

with research ideas, and for being a part of my committee. He has also been a wonderful

mentor to me.

I thank Dj and Yisong Yue for being extremely supportive and understanding collabora-

tors and mentors. I sincerely appreciate their unwavering support, even as I flailed around

with research directions. Jason Yosinski, always full of cheerful encouragement, has been

the most amazing mentor and collaborator. I also wish to thank Nikos Aréchiga for his

collaboration and mentorship. I am grateful for extremely rewarding collaborations with

Yuxiao Chen and Ioannis Filippidis, both of whom taught me a great deal. I thank Scott

C. Livingston for being an amazing collaborator during my early graduate school years, for

teaching me a great deal about research, and for his continued friendship.

I am thankful to my friends Ellen, Tung, Richard C., Andrea, Vijay Chav, Ravi, Kishore

(KJ), Pushkar, Neel, Sisir, Kamyar, Shubika, Sophia, Gautam, Jialin and many others (too

many to list here) for making graduate school thoroughly enjoyable, and for their unflinching

support during the highs and the lows. I am indebted beyond measure to my violin teacher,

v

Cynthia Fogg, whose weekly lessons were a source of tremendous comfort during the most

difficult times. I am also indebted to the Caltech squash club and Caltech cricket team for

some very cherishable memories.

vi

Abstract

We have seen the growing deployment of autonomous systems in our daily life, ranging

from safety-critical self-driving cars to dialogue agents. While impactful and impressive,

these systems do not often come with guarantees and are not rigorously evaluated for failure

cases. This is in part due to the limited scalability of tools available for designing correct-

by-construction systems, or verifying them posthoc. Another key limitation is the lack of

availability of models for the complex environments with which autonomous systems often

have to interact with. In the direction of overcoming these above mentioned bottlenecks to

designing reliable autonomous systems, this thesis makes contributions along three fronts.

First, we develop an approach for parallelized synthesis from linear-time temporal

logic Specifications corresponding to the generalized reactivity (1) fragment. We begin

by identifying a special case corresponding to singleton liveness goals that allows for a

decomposition of the synthesis problem, which facilitates parallelized synthesis. Based on

the intuition from this special case, we propose a more generalized approach for parallelized

synthesis that relies on identifying equicontrollable states.

Second, we consider learning-based approaches to enable verification at scale for com-

plex systems, and for autonomous systems that interact with black-box environments. For

the former, we propose a new abstraction refinement procedure based on machine learn-

ing to improve the performance of nonlinear constraint solving algorithms on large-scale

problems. For the latter, we present a data-driven approach based on chance-constrained

optimization that allows for a system to be evaluated for specification conformance without

an accurate model of the environment. We demonstrate this approach on several tasks,

including a lane-change scenario with real-world driving data.

Lastly, we consider the problem of interpreting and verifying learning-based compo-

vii

nents such as neural networks. We introduce a newmethod based on Craig’s interpolants for

computing compact symbolic abstractions of pre-images for neural networks. Our approach

relies on iteratively computing approximations that provably overapproximate and underap-

proximate the pre-images at all layers. Further, building on existing work for training neural

networks for verifiability in the classification setting, we propose extensions that allow us

to generalize the approach to more general architectures and temporal specifications.

viii

Published Content and Contributions

Y.Chen, S.Dathathri, T. Phan-Minh, andR.M.Murray. Counter-exampleGuidedLearning

of Bounds on Environment Behavior. page arXiv:2001.07233, Jan 2020.

S.D participated in the formulation of the project, development of the method, and the

efforts for the writing of the manuscript.

S. Dathathri, J. Welbl, K. D. Dvijotham, R. Kumar, A. Kanade, J. Uesato, S. Gowal, P.-S.

Huang, and P. Kohli. Scalable neural learning for verifiable consistency with temporal

specifications, 2020. URL: https://openreview.net/forum?id=BklC2RNKDS.

S.D led the formulation of the project, development of the method, all experiments and the

efforts for the writing of the manuscript.

S. Dathathri, S. Gao, and R. M. Murray. Inverse abstraction of neural networks using

symbolic interpolation. In The Thirty-Third AAAI Conference on Artificial Intelligence,

AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence, Honolulu,

Hawaii, USA, January 27 - February 1, 2019, pages 3437–3444. AAAI Press, 2019. DOI:

10.1609/aaai.v33i01.33013437.

S.D led the formulation of the project, development of the method, all experiments and the

efforts for the writing of the manuscript.

S. Dathathri, I. Filippidis, and R. M. Murray. Parallelizing synthesis from temporal logic

specifications by identifying equicontrollable states. In Robotics Research, pages 827–842,

Cham, 2020. Springer International Publishing. ISBN 978-3-030-28619-4.

S.D led the formulation of the project, development of the method, all experiments and the

efforts for the writing of the manuscript.

S. Dathathri and R. M. Murray. Decomposing GR(1) games with singleton liveness guar-

https://openreview.net/forum?id= BklC2RNKDS.

ix

antees for efficient synthesis. In 2017 IEEE 56th Annual Conference on Decision and

Control (CDC), pages 911–917, DOI: 10.1109/CDC.2017.8263775.

S.D led the formulation of the project, development of the method, all experiments and the

efforts for the writing of the manuscript.

S. Dathathri, N. Arechiga, S. Gao, and R. M.Murray. Learning-based abstractions for non-

linear constraint solving. In Proceedings of the Twenty-Sixth International Joint Conference

on Artificial Intelligence, IJCAI-17, pages 592–599, 2017. DOI: 10.24963/ijcai.2017/83.

S.D led the formulation of the project, development of the method, all experiments and the

efforts for the writing of the manuscript.

N. Aréchiga, S. Dathathri, S. Vernekar, N. Kathare, S. Gao, and S. Shiraishi. Osiris: A

tool for abstraction and verification of control software with lookup tables. In Proceedings

of the 1st International Workshop on Safe Control of Connected and Autonomous Vehicles,

SCAV’17, pages 11–18, New York, NY, USA, 2017. Association for Computing Machin-

ery. ISBN 9781450349765. DOI: 10.1145/3055378.3055384.

S.D participated in the formulation of the project, development of the method, all experi-

ments and the efforts for the writing of the manuscript.

x

Contents

Acknowledgments iv

Abstract vi

Published Content and Contributions viii

1 Introduction 1

1.1 Main Contributions . 3

1.1.1 Scalable Synthesis Through Parallelization 3

1.1.2 Learning-Based Abstractions for Verification 4

1.1.3 Interpreting and Verifying Neural Networks 5

2 Parallelized Synthesis for LTL Specifications 6

2.1 Preliminaries . 7

2.1.1 Generalized Reactivity (1) . 8

2.1.2 Reachability Games . 11

2.2 GR(1) specifications With Singleton Liveness Goals 11

2.2.1 Counterexample for the Non-Singleton Case 15

2.3 Parallelized Synthesis by Identifying Equicontrollable States 16

2.3.1 Composite Controller for Assembling Sub-Strategies 22

2.3.2 Composing the Sub-Strategies . 24

2.4 Experiments and Analysis . 27

2.4.1 Parallelized Synthesis for Singleton Liveness Guarantees 27

2.4.2 Parallelized Synthesis via Equicontrollable Classes 31

xi

2.5 Conclusions and Future Work . 33

3 Learning for Verification 34

3.1 Lookup Tables and Constraint Solving: Background 38

3.1.1 Lookup Tables . 38

3.1.2 Lookup Tables as Logical Formulas 39

3.2 Lookup Table Abstraction: Problem Statement 40

3.3 Lookup Table Abstraction: Approach . 41

3.3.1 Computing Abstractions by Approximation 42

3.3.2 Falsification . 43

3.3.3 Abstraction Refinement . 45

3.3.4 Implementation Details . 46

3.3.4.1 Proving Specifications 46

3.3.4.2 Falsification . 46

3.4 Lookup Table Abstraction: Case Study . 47

3.5 Constraint Solving: Overview . 50

3.6 Constraint Solving: Learning Abstractions 52

3.6.1 Semi-Soft SVM . 52

3.6.2 Sampling for Learning . 54

3.6.3 Counterexample-Guided Abstraction Refinement(CEGAR) 55

3.6.4 Boosting . 58

3.6.5 Decomposition Methods . 59

3.7 Constraint Solving: Experiments . 61

3.8 Complexity and Discussion . 64

3.9 Data-driven Verification: Preliminaries 65

3.9.1 Signal Temporal Logic . 66

3.9.2 Random Convex Program . 67

3.10 Data-driven Verification: Approach . 68

3.10.1 L1 Piecewise SVM for Reactive Modeling 69

3.10.2 Reliability Analysis with RCP . 72

xii

3.11 Data-Driven Verification: Case Study . 74

3.11.1 Multi-robot Navigation . 74

3.11.2 Lane Change . 76

3.12 Discussion: Data-driven Verification . 79

4 Verifying, Interpreting and Debugging Learned Systems 80

4.1 Preliminaries . 82

4.1.1 Neural Networks as Constraints 82

4.1.2 Symbolic Interpolants . 84

4.2 Computing Pre-Image Abstractions . 84

4.2.1 Computing Overapproximations 86

4.2.2 Bounding the Problem . 87

4.2.3 2D Example . 90

4.3 Computing Pre-Image Abstractions: Algorithms 91

4.4 Computing Pre-Image Abstractions: Experiments 95

4.4.1 2D Toy-Example . 95

4.4.2 Cartpole Control . 96

4.4.3 Swimmer . 97

4.5 Temporal Specifications for Learning Tasks 98

4.5.1 Bounding Caption Length for Image Captioning 99

4.5.2 Verifying That a Robot Never Runs Out of Charge 99

4.5.3 Verifying Generated Outputs from a Language Model 101

4.6 Verified Training of DNNs for STL Specifications 102

4.6.1 Optimization Formulation of STL Verification 102

4.6.2 Bound Propagation . 103

4.6.3 Verified Training for STL Specifications 107

4.7 Verified Training for STL Specifications: Experiments 107

4.7.1 Sequential Captioning of Multi-MNIST Images 107

4.7.2 An RL Mobile-Robot Agent . 109

4.7.3 Language Generation . 110

xiii

4.8 Discussion . 111

5 Conclusions and Future Work 113

5.1 Summary . 113

5.2 Future Work . 114

A Supplementary Material: Parallelized Synthesis for LTL Specifications 133

A.1 Proof of Claim 2 . 133

A.2 Proof of Lemma 3 . 136

B SupplementaryMaterial: Verifying, Interpreting andDebugging Learned Sys-

tems 140

B.1 RL Agent: Task and Training Details . 140

B.2 STL Semantics . 141

1

Chapter 1

Introduction

Recent years have seen an increased presence of robots, autonomous vehicles, and other

cyber-physical systems in our daily lives [9]. The increasing presence of complex cyber-

physical systems, particularly in safety-critical applications, demands that we are able to

mitigate and guarantee the absence of undesired behavior. The complexity of these systems

lends itself to non-trivial failuremodes, which are often difficult to detect and debug, and can

have catastrophic consequenceswhen they occur in safety-critical systems (e.g., autonomous

driving [1]). The rise in such safety-critical applications and their increasing complexity

makes a strong case for the wider adoption of formal methods tools and algorithms to help

design reliable systems with formal guarantees. Despite the rising need for such tools,

several bottlenecks exist that currently limit the adoptability of formal methods tools in the

design/verification of autonomous systems at scale.

The prohibitive computational cost associated with existing tools for the design (e.g.,

synthesis from temporal logic specifications) and verification (e.g., SAT/SMT solvers) of

autonomous systems is a key barrier limiting their wider adoption [86]. Another key

bottleneck is the challenge in developing reliable and precise models for the behavior of

the cyber-physical. Recent years have seen an increased presence of robots, autonomous

vehicles, and other cyber-physical systems in our daily lives[9]. The increasing presence of

complex cyber-physical systems, particularly in safety-critical applications, demands that

we are able to mitigate and guarantee the absence of undesired behavior. The complexity

of these systems lends itself to non-trivial failure modes, that are often difficult to detect

and debug, and can have catastrophic consequences when they occur in safety critical

2

systems (e.g., autonomous driving [1]). The rise in such safety-critical applications and

their increasing complexity makes a strong case for the wider adoption of formal methods

tools and algorithms to help design reliable systems with formal guarantees. Despite the

rising need for such tools, several bottlenecks exist that currently limit the adoptability of

formal methods tools in the design/verification of autonomous systems at scale.

The prohitive computational cost associated with existing tools for the design (e.g.

syntstems, and the often complex and uncertain environments they interact with. Accurate

models are often a precursor to being able to leverage existing tools for the design of these

systems.

A new frontier is the emergence of autonomous systems with complex learning-enabled

components. However, the progress accompanying this emergence towards guaranteeing the

formal correctness of learning-enabled systems at large has been quite limited. As learning-

enabled systems continue to accomplish impressive feats [36, 96, 104], it is essential that

we continue to develop tools that will enable the analysis of these systems, and ensure their

reliability.

This thesis makes contribution towards the above discussed bottlenecks. We first present

results aimed at enabling the parallelized synthesis of controllers from specifications in

linear temporal logic (LTL) [94]. Temporal logic is an expressive language that was

initially developed to express complex properties desired from software programs. More

recently, temporal logic has found increasing use in expressing tasks for cyber-physical

systems for specifications that go beyond simple classical point-to-point motion planning

[24, 38, 80, 88]. For specifications in LTL, we present results that allow for the parallelized

synthesis of controllers from specifications. The majority of the focus here is directed

towards planning for discrete-transition systems.

Constraint solvers (e.g., z3 [37], dReal [53]), which can reason over arbitrary formulas

in first-order logic, have emerged as key tools towards being able to provide formal guar-

antees regarding the reliability of autonomous cyber-physical systems. However, often,

the constraint satisfaction problems that arise corresponding to the verification/synthesis of

cyber-physical systems are challenging and computationally intractable. Besides constraint

solvers, temporal logic falsification tool-boxes such as S-Taliro [5], Breach[39] are another

3

key set of tools that have proven useful in debugging/designing reliable systems. These

tools can be leveraged when we have access to systems that are simulatable or can be

modeled precisely. However, we often require our controllers to function in environments

that are difficult to model or simulate – for example, an autonomous car that interacts with

human-driven cars and pedestrians. In such instances, it is difficult to directly leverage

these tools. To overcome these challenges, we propose approaches for learning abstractions

that i) facilitate the scaling of constraint solvers, and ii) enable us to use tools like S-Taliro,

while providing probabilistic guarantees regarding the correctness of the abstractions.

Going beyond software programs and control systems, which are the primary focus of

existing formal methods tools, we develop new tools and algorithms for the analysis and

design of reliable machine learning systems. We propose i) an algorithm that allow us

to automatically abstract complex neural network-based learned components into simpler

symbolic formulas, and ii) a method for training neural networks such that their temporal

logic constraints can be guaranteed in a tractable manner. Below, we introduce in more

detail the key contributions of this thesis.

1.1 Main Contributions

The results presented in the thesis can be loosely characterized into three parts:

• algorithms for parallelized synthesis from LTL specifications

• approaches for learning abstractions to assist verification with constraint solvers and

falsification tools and

• algorithms for the design and analysis of learned components, with a focus on neural

networks.

1.1.1 Scalable Synthesis Through Parallelization

Chapter 2 builds on existing approaches for control synthesis from temporal logic spec-

ifications, to develop new extensions that facilitate parallelized synthesis. Parallelized

4

synthesis, unlike current algorithms that are primarily sequential, exploits the structure of

the synthesis problem to decompose the primary synthesis into independent subproblems

that can be solved separately. The solution from these subproblems can then be utilized

to synthesize a global controller that solves the primary synthesis problem. The work in

Chapter 2 is based on [32] and [35], which is a result of collaboration with Ioannis Filip-

pidis and Richard M. Murray. In [32], a special sub-class of LTL specifications is identified

where synthesis can be trivially parallelized, allowing for scalable synthesis. Both the

correctness and the soundness of synthesis using the decomposition-based approach for

this sub-class of specifications is proved in [32]. The work in [35] extends this approach

to more general specifications using the notion of equicontrollable classes (sets of states

with bidirectional reachability). The approach from [35], while being sound, loses the

completeness guarantees. The resulting improvements from both approaches introduced in

[32, 35] in comparison to existing approaches is demonstrated on robot motion planning

benchmarks.

1.1.2 Learning-Based Abstractions for Verification

In Chapter 3, we introduce two key ideas based on [6, 23, 33] that demonstrate how

learning-based abstractions can help existing tools for debugging controllers bemore widely

applicable. First, we begin by developing an approach that enables the abstraction of lookup

table-based components, which are common place in industrial cyber-physical systems. The

key idea is to replace the complex lookup tables with simpler abstraction that come with

guarantees (such that they are provable overapproximations). These abstractions can then

be used to speed up verification for the cyber-physical system using constraint solvers. We

demonstrate the approach a cruise control benchmark [124]. Beyond cyber-physical systems

with lookup table, these constraint solvers play a key-role in providing formal guarantees for

diverse applications, ranging from planning and scheduling for control systems to program

analysis. This is based on [6], a result of collaboration with Nikos Aréchiga, Shashank

Vernekar, Nagesh Kathare, Sicun Gao, and Shinichi Shiraishi.

In [33], which is a result of collaboration with Nikos Aréchiga, Sicun Gao and Richard

5

M. Murray, we generalize the approach for verifying lookup table and develop a more

general learning-based approach that can abstract and simplify hard constraint problems

by replacing the original CSP with a simpler (provable) relaxation. The latter part of the

chapter (based on [23], which is a result of collaboration with Yuxiao Chen, Tung Phan-

Minh, and Richard M. Murray) introduces a approach for learning data-driven abstractions

that allow us to formally guarantee the correctness of controllers interacting with difficult

to model, uncertain environments with high probability. The learned abstractions can assist

tools such as S-Taliro in debugging systems before they are deployed in the real-world.

1.1.3 Interpreting and Verifying Neural Networks

In Chapter 4, we consider the analysis of systems with learned neural networks. Neural

networks can represent complex nonlinear functions, and it is often difficult to interpret their

behavior and formally guarantee correctness. In the first part of the chapter we introduce an

approach that decomposes learned neural networks intomodules, and computes abstractions

for these modules that are likely to have a simpler structure. These abstractions can then

be used for interpreting and verifying the behavior of the neural network. This part of the

chapter is result of a collaboration with Sicun Gao and Richard M. Murray [34].

In the second part of the chapter, we introduce an approach for training neural netweorks

wherein the verification objective expressed in temporal logic is folded into the training

objective. We demonstrate the applicability of the approach on tasks from across domains

(language processing, image captioning, and reinforcement learning).

Finally, Chapter 5 concludes the thesis by discussing open problems and promising

avenues for extending the results presented in this thesis. This part of the chapter is based

onwork atDeepMind in collaborationwithKrishnamurthy (Dj)Dvijotham, RamanaKumar,

Aditya Kanade, Jonathan Uesato, Johannes Welbl, Po-Sen Huang, and Pushmeet Kohli.

6

Chapter 2

Parallelized Synthesis for LTL
Specifications

Logic specifications assist in the design of complex systems by enabling us to precisely

specify desired behavior for the system. In particular, reactive synthesis from LTL specifi-

cations for robotics applications has received increased attention [24, 38, 80, 88], where the

controller is synthesized considering all possible behaviors of the environment. Reactivity

here implies that the synthesized controller reacts to the environments behavior while de-

ciding the control action. The inherent structure of this problem, where the system has to

reason over all admissible environment behavior makes synthesis algorithms prohibitively

computationally expensive. The scalability of these algorithms has been identified as a

bottleneck in their adoption [86]. In this chapter, we introduce algorithms for parallelized

synthesis from LTL algorithms to help with scalability.

Synthesizing finite-memory strategies from LTL specifications for the general case is

doubly exponential in the length of the formula [95], but for generalized reactivity (1)

(GR (1)) – a rich, expressive fragment of LTL – the synthesis can be done in polynomial

time in the number of states and the number of liveness guarantees for the system and

the number of liveness assumptions for the adversary [76]. GR(1) specifications model a

game where the system and its adversary infinitely often satisfy a set of liveness constraints

while making moves that satisfy certain safety constraints. This fragment in particular has

received considerable attention since its conception because of the computational tractability

associatedwith it. TheGR(1) fragment is also particularly attractive because of the symbolic

7

nature of the synthesis algorithm, which enables scaling to large finite-transition systems.

First, we begin by identifying a special sub-class of GR(1) synthesis problemswith singleton

liveness guarantees, where the problem can be trivially decomposed and synthesis can be

parallelized. Building on this intuition, we introduce the notion of equicontrollability and

propose an approach that generalizes the approach beyond specifications with singleton

liveness guarantees.

2.1 Preliminaries

In this section, we briefly introduce the notation that we use. Additional details and precise

definitions can be found in [10, 94].

Atomic propositions are statements that evaluate to True or False. Consider a finite

set of atomic propositions AP. Denote by Σ the set of states of the system (Σ := P(AP),

where P(AP) is the power-set of AP). We denote the restriction of the set X to Y by X|Y ,

i.e., X|Y = X ∩Y.

We write s |= p if a state s ∈ Σ satisfies a proposition p ∈ AP. A state s ∈ Σ satisfies

a proposition p ∈ AP if and only if p ∈ s. We will work with the Boolean operators ∧

(conjunction),∨ (disjunction),→ (implication) and↔ (bi-implication) to construct Boolean

formulas. The temporal operators we use are next (©), eventually (3) and always (2). For

a Boolean formula ξ over AP, by [[ξ]]we refer to the set of states satisfying ξ. The semantics

of LTL are defined over infinite strings in Σω. For a string σ ∈ Σω, and some t ∈ N, the

satisfaction of an LTL formula beginning at time t is denoted by σ, t |= ϕ. When σ, 0 |= ϕ

(i.e., t = 0), we simply write σ |= ϕ. For ease of notation, we further extend the semantics

of LTL to reason over finite strings. For a finite string γ ∈ Σ, we define: γ |= ρ↔ γα | = ρ

for any α ∈ Σω. For σ ∈ Σω , σk refers to the (k + 1)th element in the sequence σ with σ0

being the first element.

For reactive synthesis, we model the synthesis problem as a two-player game where

the environment satisfies certain assumptions on its behavior and with these assumptions

being satisfied, the system is required to behave in a desired manner while reacting to the

environment. To formulate the reactive synthesis problem, we first partition AP into two

8

disjoint sets of variables APe and APa such that the set APe is controlled by the environment

and APa is controlled by the agent being designed. The sets APe, APa form a partition of

AP, i.e., AP = APe ∪APa and APe ∩APa = ∅. Define the state spaces over these sets of

propositions as Σe := P(APe) and Σa := P(APa).

The synthesis problem is to find a function f : (Σe × Σ × M) → (Σa × M) such that

the sequences of states generated by this strategy satisfy a given specification ϕ. M is a

finite set of memory values with a unique initial memory value m, in other words f is a

finite-memory strategy. For a finite-memory strategy f , the set of infinite sequences that

occur when using f are referred to as plays:

Plays(f) = {σ ∈ Σω |∃m ∈ Mω such that m0 = m and (2.1)

∀k ≥ 0.(σa
k+1,mk+1) = f (σe

k+1, σk,mk)}.

A strategy is winning for a formula ϕ if and only if all plays of f satisfy the formula and it

is input enabled, meaning that f should be defined at the initial state-memory pair, as well

as at any state-memory pair that can be reached in any play. A state s ∈ Σ is a winning state

for a specification if there exists a strategy that is winning with the given state s as the initial

state. The maximal set of all such winning states is the winning set for a specification. For

a specification ϕ, we denote its winning set as Wϕ. A specification is realizable if there

exists there is a winning strategy from the given initial state.

2.1.1 Generalized Reactivity (1)

For reactive synthesis, we focus specifically on theGR(1) fragment. TheGR(1) specification

models a two-player game where the controlled agent has to satisfy a set of liveness

guarantees and safety constraints under some assumed behavior for the environment. This

assumed behavior for the environment in turn consists of a set of liveness properties and

safety constraints. A GR(1) formula has the form:

ϕ := (θe ∧ θa) ∧ (2ρe ∧

m∧
j=1

23ψe
j) → (2ρ

a ∧

m∧
i=1

23ψa
i), (2.2)

9

where θe is a Boolean function of propositions in AP and marks the set of assumed initial

poses for the environment, The set of valid initial poses for the for the controlled agent is

described by the Boolean formula θa. The assumed safety behavior for the environment

(ρe) is a Boolean function of propositions in APa ∪APe ∪ © APe, with

©APe = {©α : α ∈ APe}.

The specification for valid actions for the controlled agent (ρa) is a Boolean function of

APa ∪APe ∪ © APe ∪ © APa, while ψa, ψe are Boolean functions of APa ∪APe. A GR(1)

synthesis problem is to find a strategy f that is winning for this formula and, in addition,

the following must hold for the every play σ of the strategy:

σ |= 2− ρe → 2− ρa, (2.3)

where 2− is the historically temporal operator [89]. This ensures that the agent does not

violate its safety constraint by forcing the environment to violate its assumption in the future.

Definition 1. Given transition rules for the controlled agent (ρa) and the environment

transition (ρe), the set of reachable states (Σreach) is the set of states in Σ that can be visited

through any sequence of valid actions for the environment and the controlled agent.

Formally,

Σ
reach
G = {v |∃X ∈ Σ∗e, ∃Y ∈ Σ∗a such that (X0,Y0) |= θ, v = (X−1,Y−1), |X | = |Y | and

∀k < |X | − 1.(Xk,Yk, Xk+1) |= ρ
e, (Xk,Yk, Xk+1,Yk+1) |= ρ

a},

where Σ∗ is the Kleene closure of Σ and |X | is the length of the sequence X . The set of

reachable states can be computed in at most O(|Σ |) symbolic steps.

Synthesis for GR(1) Specifications Synthesis for GR(1) specifications can be performed

by solving a µ-calculus formula with an alternation depth of three [76] . For the case with

two liveness guarantees, the µ-calculus formula in [76] can be written using the vector

10

notation as

ν

[
Z1
Z2

] [µY

(
m∨
j=1
νX

(
((ψa

1∧©3 Z2)∨©3Y)∨¬ψe
j∧©3 X

))
µY

(
m∨
j=1
νX

(
((ψa

2∧©3 Z1)∨©3Y)∨¬ψe
j∧©3 X

))
]

(2.4)

Here, ν is the greatest fixpoint operator and µ is the least fixpoint operator (see [101]

for detailed definitions of these operators). Intuitively, the fixed point in X characterizes

the set of states from which the system can force the play to stay indefinitely in [[¬ψe
j]]

for some j or in a finite number of steps reach a state satisfying ψs ∨ ©3Y . Staying in

[[¬ψe
j]] for some j indefinitely implies blocking the environment from satisfying one of its

liveness assumptions. The intermediate least fixed point in Y makes sure that the phase

of play represented by ©3Y eventually ends in [[ψs]]. This way either 3ψs is satisfied or
m∨

i=1
32¬ψe

i is satisfied. The outer greatest-fixed point in νZi corresponds to computing the

set of states for which we can guarantee that after satisfying ϕs
i , the play can be forced to a

state satisfying ϕs
i⊕1 (or indefinitely stays in states satisfying ¬ϕ

e
j for some j).

The GR(1) fragment is often used for high-level reasoning because of the polynomial-

time symbolic algorithms available for the synthesis of strategies for this fragment. Sym-

bolic algorithms allow for reasoning about problems with very large state spaces because

they construct strategies by manipulating sets of states, as opposed to an enumerative ap-

proach where all the states are stored and searched. For the algorithm outlined in [15] for

GR(1) synthesis, the sets are stored and manipulated as binary decision diagrams (BDDs).

BDDs serve as compact representations of sets, but the variable ordering can have a signif-

icant effect on their size [10].

The complexity for reordering of BDDs is often not taken into account while analyzing

the complexity of symbolic synthesis algorithms [15]. Finding the optimal variable ordering

that minimizes the size of reduced order BDDs is NP-hard [16]. For a brief introduction to

BDDs and their use in symbolic model checking we refer the reader to [10].

The synthesis algorithm outlined in [15] and its implementation in modern solvers [47]

results in cubic time algorithms for solving the nested fixpoints. However, using ideas from

[18], the nested fixpoints can be solved in quadratic time but this also results in the storing

and reordering of nm|Σ |2 BDDs (in the worst case).

11

2.1.2 Reachability Games

Let ϕe be the assumption on the behavior of the environment and ρa be the set of transition

rules for the controlled agent. Note that for a GR(1) game, ϕe has the form:

ϕe := θe ∧2ρe ∧

m∧
j=1

23ψe
j .

A reachability game can be defined based on the following LTL specification:

ϕe → 2ρa ∧

(∨
s∈B

3s

)
. (2.5)

Definition 2. For a set of states B ⊆ Σ, we denote the set of winning states for the condition

in equation (2.5) as WinSet(B), or alternatively asWinSet of B.

In other words,WinSet(B) for a set B is the set of states from where the agent can force

the system to transition into B for all admissible behavior for the environment. We shall

refer to the synthesis problem corresponding to equation (2.5) as a reachability game. Note

that this WinSet is different from the winning set introduced earlier.

Synthesis for reachability games Synthesis for reachability games can be performed by

solving a µ-calculus formula with an alternation depth of two [76]. Consider the µ-calculus

formula:

µrg := µY ©«
m∨

j=1
νX

((
(ψa ∨ ©3Y) ∨ ¬ψe

j

)
∧ ©3X

)ª®¬ . (2.6)

The µ-calculus formula in equation (2.5) corresponds to the two inner fixed points in the

µ-calculus formula for the GR(1) game (equation (2.4)). Computing the WinSet for B ⊆ Σ

takes at most O(m|Σ |2) symbolic steps [76].

2.2 GR(1) specifications With Singleton Liveness Goals

In this section, we first identify a special sub-class of GR(1) specifications that are trivially

parallelizable, based on [32]. Consider GR(1) specifications where the liveness goals

12

correspond to singleton sets, i.e, |[[ψa
i]]| = 1 for i = 1, 2, . . . , n. The solution to a GR(1)

game with n liveness goals can be obtained by combining the solutions to n+1 independent

reachability games, each involving solving a µ-calculus formula with an alternation depth

of 2.

The reachability games are independent, unlike the cyclic dependency in equation (2.4)

between the various liveness guarantees. The outermost fixed point computation in Zi can

be avoided here as the liveness guarantees correspond to singleton sets and this allows for

the separation of the sub-games (we prove this later). For example, for a GR(1) game with

two liveness goals (as in equation (2.4)), the GR(1) game can be split into three reachability

games:

ψa
1 ∧

(
2ρe ∧

m∧
i=1

23ψe
i

)
→

(
2ρa ∧23ψa

1
)
, (2.7)

(
(θe ∧ θa) ∨ ψa

1
)
∧

(
2ρe ∧

m∧
i=1

23ψe
i

)
→ 3ψa

2,

(θe ∧ θa) ∧

(
2ρe ∧

m∧
i=1

23ψe
i

)
→ 3 False .

Recall that θa ∧ θe is the initial condition for the original synthesis problem. In general,

for a problem with n liveness constraints, the reachability games can be set up as for

j ∈ {1, 2, . . . , n}:

θ j ∧

(
2ρe ∧

m∧
i=1

23ψe
i

)
→

(
2ρa ∧23ψa

j⊕1

)
(2.8)

with the initial conditions being θ j = ψ
a
j for j , n and θ j = ψ

a
j ∨ (θ

e ∧ θa) for j = n. Note

that ⊕ is the modulo n operator, i.e., j ⊕ 1 = (j + 1) modulo n. For example, n ⊕ 3 = 3

when 3 < n. We shall refer to the winning condition

θk⊕−1 ∧

(
2ρe ∧

m∧
i=1

23ψe
i

)
→

(
2ρa ∧23ψa

k
)

13

as ϕreach
k . Additionally, define ϕreach

0 as

(θe ∧ θa) ∧

(
2ρe ∧

m∧
i=1

23ψe
i

)
→ 3 False . (2.9)

Note that for any given state, a strategy that is winning against this condition can only do

so by forcing the play to block the environment from satisfying its assumptions.

Combining Strategies from Reachability Games The reachability games ϕreach
k for

k = 0, 1, 2, . . . , n are independent and can be solved in parallel. We now formalize how to

utilize the strategies obtained from solving these reachability games. We can observe that if

ϕreach
0 is winnable, then from solving ϕreach

0 we have a strategy for ϕ̄ and this is also winning

for ϕ, since the environment is blocked from satisfying its assumptions.

Suppose ϕreach
0 is not winnable, and the other n reachability games are winnable. We

construct the strategy f ϕG by combining the n reachability games such that f ϕG is winning

against ϕ. To do this, we introduce a variableZn that can take values in {1, 2, . . . , n} to track

which liveness guarantees have been satisfied in the current cycle, withZn initialized to n.

Let f reachj : M j ×Σ×Σe → M j ×Σa be the winning strategy for ϕreach
j⊕1 , with m j

0 as the initial

memory. The strategy f ϕG is constructed such that starting with a state s |= θ, the execution

follows f reachn to reach a state satisfying ψa
1 or blocks the environment from satisfying one

of the liveness assumptions. If the execution reaches ψa
1, the strategy switches to f reach1 and

reaches ψa
2 or blocks the environment, and so on.

Formally, the strategy:

f ϕG : (M × {1, 2, . . . , n}) × Σ × P(APe) → (M × {1, 2, . . . , n}) × P(APa)

is constructed as

f ϕG ((w,Zn), s, s′ ∩ APe) = ((w
′,Z′n), s

′ ∩ APa),

where if s |= ψa
Zn⊕1,

Z′n = Zn ⊕ 1,

14

(w′, s′ ∩ APa) = f reachZ′n (mZ
′
n

0 , s, s′ ∩ APe,),

and if s 6 |= ψa
Zn⊕1,

(w′, s′ ∩ APa) = f reachZn (w, s, s′ ∩ APe),

Z′n = Zn.

HereZ′n denotes the value ofZn at the next step. Similarly, s′ is the next state with s being

the current state. When s |= ψa
Zn⊕1 for a givenZn, we incrementZn. Thereby switching to

the strategy f reachZn⊕1 , which we follow till we reach ψa
Zn⊕2.

If for the initial condition θ, ϕreach
0 is not winnable and for some i such that n ≥ i > 0,

ϕreach
i is not winnable then ϕ is not winnable from θ.

Results Here, we argue the soundness and the completeness of the decomposition and the

constructed strategy. Define ϕ̄ as the following formula:

ϕ̄ := (θe ∧ θa) ∧

(
2ρe ∧

m∧
i=1

23ψe
i

)
→

(
2ρa ∧3ψa

1 ∧

(
n∧

i=1
3

(
ψa

i → 3ψa
i⊕1

)))
. (2.10)

Claim 3. Wϕ = Wϕ̄ if |[[ψa
i]]| = 1∀i ∈ {1, 2 . . . n}.

The winning sets for the formulas ϕ̄ and ϕ(as defined in 2.2) are the same. This implies

that the set of states from which there exists a strategy to satisfy each ψa
i once is the same as

the set of states from which there exists a strategy to cycle through each ψa
i infinitely often.

A proof of the claim is provided in Appendix A.1.

Lemma 4. A GR(1) winning condition of the form

ϕ = (θa ∧ θe) ∧

(
2ρe ∧

m∧
i=1

23ψe
i

)
→

(
2ρa ∧

n∧
i=1

23ψa
i

)
can be solved by solving n + 1 independent reachability games if |[[ψa

i]]| = 1 ∀i ∈

{1, 2, . . . , n}.

A proof of the Lemma is provided in Appendix A.2. Note that the construction of the

15

combined strategy above combines constructions from the proofs of Claim 3 and Lemma 4.

2.2.1 Counterexample for the Non-Singleton Case

While sound, the approach is not complete when than one state can satisfy any of the

liveness guarantees. This is because the GR(1) game might not be realizable from all states

corresponding to a liveness guarantee, and it might be possible to avoid states corresponding

to a liveness guarantee that are not realizable and yet satisfy the specification. In this case,

one of the reachability games arising from the decomposition introduced in this section

would not be realizable, and would lead to a false negative when the GR(1) game itself is

realizable.

Consider the simple environment depicted in Figure 2.1. Let Office, Living Room,

Music Room, . . . be propositional variables corresponding to the position of the robot in

the various rooms. These propositions are assigned values based on the position of the

robot. For instance, the variable Office is assigned the value True when the robot is in

the office part of the workspace. Door and Door1 are propositional variables that take the

value True when the corresponding door is open, and False otherwise. The problem is to

synthesize a strategy for a robot such that it satisfies the liveness goals23(Living Room∨

Office) and 23Garagewith the liveness assumption for the environment being23Door.

The robot can move between rooms if the slit connecting them is not blocked. There is no

assumption on the behavior of the Door1. Here, starting from the office (which satisfies the

formula Living Room∨Office), the robot cannot reach the garage (the other liveness goal)

without assuming that door1 opens, and this would cause the proposed decomposition-based

approach to indicate that the specification is not realizable. However, this is not correct as

the robot can choose to avoid visiting the office entirely, and cycle between the living room

and the garage, satisfying the liveness goals. We will introduce a more general approach in

the subsequent section that can handle such scenarios.

16

Figure 2.1: Example Workspace

2.3 Parallelized Synthesis by Identifying Equicontrollable

States

Here, we build on the intuition from the previous section to generalize the approach for

parallelization. We begin by defining a set of equicontrollable states.

Definition 5. s1, s2 ∈ Σ are equicontrollable if and only if s1 ∈ WinSet(s2) and s2 ∈

WinSet(s1).

In other words, two states are said to be equicontrollable if bidirectional reachability

holds.

Parameterized Reachability Games To allow for decomposition in an efficient manner,

we consider reachability games that are parameterized in a manner similar to that in [3].

However, in contrast to [3], we allow for liveness properties in addition to assuming safety

constraints for the environment.

Let PAP be a set of atomic propositions introduced such that |PAP | = |AP| and PAP ∩

AP = ∅. Define a bijective function fparam : AP → PΣ. Consider some subset of T ⊆ AP

over which we want to parameterize the reachability game. For the set T ⊆ AP, define

PT := {t : ∃x ∈ T, t = fparam(x)}. Define an augmented set of variables APPT := PT ∪AP.

17

We now assume the new auxiliary variables introduced are controlled by the agent, i.e.,

APPTa = APa ∪PT and APPTe = APe. Define the new transition rule for the agent

ρ̄a = ρa ∧
∧

p∈PT

(p↔ ©p).

The parametric propositions introduced are constrained to stay fixed during execution, in

addition to the original constraints on the agent’s behavior. The transition rules for the

environment stay unaltered.

Consider a reachability game with the winning condition:

ψ f := ϕe → 2ρ̄a ∧3
∧
t∈T

(
t ↔ fparam (t)

)
. (2.11)

Solving for the set of winning states for this reachability game returns the set of admissible

parameters and the corresponding states in Σ that, in combination with the admitted param-

eters, are winning for condition (2.11). If (s, r) ∈ Σ × P(PT) and r ∈ P(PT) are winning

for condition (2.11), then what this implies is that starting from s, the controlled agent can

force the execution to transition into a state satisfying f −1
param(r). Note that f −1

param(r) ⊆ T

may only partially constrain the propositions in AP. Hence, f −1
param(r) can be satisfied by

multiple states in Σ.

Remark 6. The set of winning states for condition (2.11) can be computed in O(|Σ |2)

symbolic steps in the worst case.

This follows as a direct consequence of Lemma9 from [76]. From the µ-calculus formula

in [76], we note that the non-parameterized reachability game takes worst-case O(|Σ |2)

symbolic steps. For a given valuation of the parameters (r), the parameterized reachability

game corresponds to solving a reachability game with S∗ = {s : s |T = f −1
param(r)} as the

set of states to be reached. Thus, the symbolic set operations can be seen as operating on

copies of the same transition system for different valuations of the parametric propositions

in parallel [3]. Since the parameters stay fixed during execution, adding the parameters does

not result in an increase in the number of (worst-case) symbolic steps needed for solving

a non-parameterized reachability game. However, the symbolic steps themselves are more

18

expensive because of the added parameters.

Example 1. Consider a system with AP = {a, b, c} and Σ = P(AP). PAP = {pa, pb, pc}

and for r ∈ AP, fparam is defined as fparam(r) = pr . We seek to parameterize the WinSet

computation over T = {b, c}, therefore we set PT = {pb, pc}. The state {a, b} is in WinSet

of the states satisfying (b ∧ c) if and only if {b, pb, pc} is a winning state for the condition

in equation (2.11). This implies that with {b} as the initial state, the agent can force the

execution to a state satisfying (b ∧ c).

Partitioning a Set into Equicontrollable Sets

Problem Statement. Partition the set of states in Σ satisfying the Boolean formula ξ over

propositions in AP into equicontrollable classes over the set of propositions X.

By partitioning over X, we imply that for any x1, x2 ⊆ X, the sets of states S1 = {s |s ∈

Σ, s |X = x1} and S2 = {s |s ∈ Σ, s |X = x2} are in the same equicontrollable class if and only

if from every s ∈ S1, the agent can force the execution into S2 and vice versa. We slightly

abuse the definition of an equicontrollable class by allowing for the states associated with

x ⊆ X to be in the same class even though every pair of states s1, s2 ∈ {s |s ∈ Σ, s |X = x}

may not be equicontrollable. This is done since we are interested in partitioning over X.

From here on, we restrict X to be the set of supporting propositions for the formula

ξ, where [[ξ]] is the set of states to be separated into equicontrollable classes. For specific

tasks, domain knowledge could guide the selection of the set of the propositions X to be

different from the support variables for the formula ξ.

Algorithm 1 formally describes the procedure for solving the partitioning problem. Let

X be the set of propositions over which we want to separate the equicontrollable classes.

First, consider the following formula:

ϕe → 2ρa ∧3

(
ξ ∧

∧
t∈X

(
t ↔ fparam (t)

))
. (2.12)

Solving for the winning states of the above parameterized reachability game gives us a set

of states of the form (s, r) with s ∈ Σ and r ⊆ PX . By construction, these states have the

19

Algorithm 1: Separating into equicontrollable Classes
Input :

• Environmental behavior ϕe, System safety/transition rules ρa.

• Specification ξ representing the set of states to be separated ([[ξ]]).

• BDD ρreach representing the set of reachable states for the system.

• Set of propositions X ⊆ AP over which the states must be partitioned and the map
fparam.

Output
:

• Equicontrollable classes α1, α2, α3, . . . , αk s.t. αi ∩ α j = ∅ for i , j ,
k⋃

l=1
αi = [[ξ]].

1 Define ϕparam
ξ := ϕe → 2ρa ∧3

(
ξ ∧

∧
t∈X

(
t ↔ fparam (t)

))
2 Compute winning states (Wϕ

param
ξ

) for ϕparam
ξ

3 Equicontrollable Classes = ∅
4 for x ⊆ X do
5 t1 = f −1

param(x); EquivFlag = 0
6 for p ∈ Equicontrollable Classes do
7 t2 = f −1

param(p)

8 if
(
∃s.s |X = x ∧ (s, t2) ∈ Wϕ

param
ξ
∧ ∃s.s |X = p ∧ (p, t1) ∈ Wϕ

param
ξ

)
then

9 EquivFlag = 1
10 end
11 end
12 if EquivFlag = 0 and (∃s ∈ Σ.s |= ρreach ∧ s |X = x) then
13 Equicontrollable Classes = Equicontrollable Classes ∪ {s : s ∈ Σ, s |X = x}
14 end
15 end
16 return Equicontrollable Classes

20

property that f −1
param(r) |= ξ and from the state s, the controlled agent can force the execution

to reach the set of states {s ∈ Σ : s |X = f −1
param(r)}, or block the environment from satisfying

the liveness assumptions. In the latter case, the game is trivially won; we will ignore this

case hence forth, and it does not affect any of the arguments that follow.

Following this construction, we iterate through the values for the parameters (recall

that the parametric propositions have a direct correspondence with the variables in X) and

split them into equicontrollable classes as in Algorithm 3. This requires us to perform at

most O(k |ΣX |) evaluations once we have computed the winning set for (2.12), where k is

the number of classes. Furthermore, while iterating over sets of states, we can eliminate

spurious classes by ignoring those sets that have no elements in common with Σreach.

Music
Room

Office

Living
Room

Corridor
Garage

Dining Room

Door

Figure 2.2: Example Workspace

Example 2. For the workspace in Figure 2.2 (similar to that in Figure 2.1, without Door 1),

we want to partition the set of states where the robot is in a room with a charging station

(lightning sign) into equivalence classes. The specification ξ has the form:

ξ = Office ∨ Living Room ∨ Garage.

This specification is satisfied when the robot is in a room that has a charging station. And

we set X := {Office, Living Room, Garage}, the supporting variables for ξ.

21

Suppose ϕe = True, i.e., the behavior of the door is unconstrained. This yields that

Garage, Office are in the same equicontrollable class while the Living Room is in a different

class. Whenwe assume that the door opens infinitely often (ϕe = 23Door Open) as amodel

for the environments behavior, the states corresponding to Garage, Office and Living Room

are in the same equicontrollable class.

Synthesizing a Composite Controller Next, we will describe an approach to build a

transition system and a specification such that the winning strategy for this system can

be used to compose the sub-strategies that are synthesized and stored in parallel to find a

strategy winning against a GR(1) specification.

Example 3. For the workspace from Example 2, consider a synthesis problem where the

robot has to patrol the dining room and the music room infinitely often, while making sure

to visit a room with a charging station infinitely often and the robot is initially in the dining

room. The liveness guarantees to be satisfied are:

23 Dining Room , 23 (Office ∨ Garage ∨ Living Room) , 23Music Room.

Wefix the ordering of liveness guarantees (DiningRoom,Office∨Garage∨Living Room,

Music Room) and build a new transition system as shown in Figure 2.3. For each liveness

guarantee, there is state in the transition system corresponding to a subset of equicontrollable

classes arising from decomposition of the states satisfying the liveness guarantee. We add

transitions between these states if the predecessor is in the WinSet of the successor (or can

block the environment from satisfying the liveness assumptions).

If the environment’s behavior ismodeled as ϕe = True, we get the abstracted supervisory

transition system shown in Figure 2.3a. For the liveness guarantee Office ∨ Garage ∨

Living Room, the classes are {Office ∨ Garage,Living Room}. The transition system in

Figure 2.3a has states corresponding to all non-empty subsets of these classes. If we assume

that the door infinitely often opens, the supervisory transition system is that shown in Figure

2.3b. Both transition systems have a cycle that can be used to compose the sub-strategies.

The construction of the transition system and the composing of the sub-strategies are

22

Living
Room

Living Room
OR Office
OR Garage

Office
OR Garage

Dining
Room

Music
Room

(a) Door need not open infinitely often

Living Room
OR Office
OR Garage

Dining
Room

Music
Room

(b) Door opens infinitely often

Figure 2.3: Supervisory transition system for different environment behavior

formally described in the next section.

2.3.1 Composite Controller for Assembling Sub-Strategies

Consider the GR(1) formula in equation (2.2). The states corresponding to the liveness

guarantees for the agent (ψa
i) are partitioned into equicontrollable classes as described above.

For each i ∈ {1, 2, . . . , n}, let ki be the number of classes [[ψa
i]] has been partitioned into. Let

Λi = {αi,1, αi,2, . . . , αi,ki } be the set of classes associated with ψa
i . Define Ωi to be set of all

subsets of Λi except the empty set (∅). Note that |Ωi | = 2ki − 1. Without loss of generality,

we fix some ordering of the elements in Ωi such that Ωi = {Ωi,1,Ωi,2, . . . ,Ωi,2kj−1}. Denote

by AΩi, j the WinSet for Ωi, j , i.e., AΩi, j = WinSet(Ωi, j). For the case in Example 3, where

the door is not assumed to open infinitely often, the classes corresponding the specification

where the robot has to infinitely often visit a room with a charging station are

Λ2 = {Office ∨ Garage, Living Room},

and

Ω2 =
{
{Office ∨ Garage} , { Living Room} , {Office ∨ Garage, Living Room}

}
.

Note that if |Ωi, j | = 1 we can use the parametric WinSet computed for decomposing

[[ψa
i]] into equicontrollable classes to obtain the WinSet for Ωi, j by setting values to the

23

parametric propositions appropriately. For Ωi, j with |Ωi, j | > 1, we compute WinSet(AΩi, j)

by solving a reachability game with Ωi, j as the goal to be reached. As these computations

are independent, they can be performed in parallel.

Following this setup, the hierarchical game is constructed as follows. The set of atomic

propositions are

AP = {ρi, ji : i ∈ {1, 2, . . . , n}, ji ∈ {1, 2, . . . , 2ki − 1}}.

The transition rule is specified as

ρcompositional =
∨

v

v∈AP

∧
∧︸︷︷︸

i ∈ {1, 2, . . . , n}
j ∈ {1, 2, . . . , 2ki − 1}

©«
ρi, j → ©

∨︸︷︷︸
Ωi, j ⊆ AΩk, l
k ∈ {i, i ⊕ 1}

l ∈ {1, 2, . . . , 2ki − 1}

ρk,l

ª®®®®®®®®®®¬
. (2.13)

Here
∨

is the XOR operator. In equation (2.13), we allow for a transitions between the

states {ρi, j} and {ρk,l} only if the current Ωi, j is in the WinSet for the Ωk,l corresponding

to the successor state. For the transition system in Figure 2.3a, the Dining Room is in the

WinSet of Living Room ∨ Office ∨ Garage but Living Room ∨ Office ∨ Garage is not in

the WinSet of Music Room. The transition relations reflect the same. Similarly, transition

relations are constructed between the other states.

Note that we restrict k ∈ {i, i ⊕ 1}, ensuring that only those transitions that either stay

in the same liveness guarantee or lead to the next liveness guarantee are chosen. This way

we do not cycle back to a liveness guarantee that was visited earlier in the current cycle.

This makes the transition rules sparse, keeping the BDD small, thereby reducing the time

required for synthesizing the composite controller.

The liveness guarantees ensure that infinitely often for each i ∈ {1, 2, . . . , n}, ρi, j for

24

some j is satisfied. The liveness guarantees can be formally written as

ψ
compositional
i :=

∨
j∈{1,2,...,2ki−1}

ρi, j . (2.14)

This ensures that at least one of the classes corresponding to a liveness guarantee is visited

in each cycle through the liveness guarantees. For a particular i, satisfying ψcompositional
i is

equivalent to satisfying ψa
i in the original system.

Note that here there is no environment here and we only need to search for a cycle

passing through all the liveness guarantees for a given set of initial states. Consider some

i ∈ {1, 2, . . . , n}. The set of valid initial states are the nodes corresponding to the elements

in Ωi for which [[θa ∧ θe]] lies in their WinSet. The initial condition can be written as (for

some i)

θcompositional := ∨
θ⊆AΩi, j

ρi, j . (2.15)

Composing the specifications above, we need to find a controller for the condition

θcompositional ∧2ρcompositional ∧

n∧
i=1

23ψ
compositional
i . (2.16)

Finding a winning strategy f compositional : AP × Msup → AP × Msup (where Msup is a

set of memory values) for the above specification gives the compositional controller for

composing the strategies for the reachability games.

2.3.2 Composing the Sub-Strategies

Define f k,l
i,l : Σe × Σ × M k,l

i,l → Σa × M k,l
i,l to be the strategy that takes the agent from a state

in Ωi,l to Ωk,l . Let mk,l
i, j be the initial memory value for M k,l

i,l . Without loss of generality,

assume M k1,l1
i1,l1
∩ M k2,l2

i2,l2
= ∅ when (i1, j1, k1, l1) , (i2, j2, k2, l2).

Define kmax := max{ki : i ∈ {1, 2, . . . , n}}, i.e., kmax is the size of the largest number

of equicontrollable classes for any of the liveness classes. Let M := Msup × ∪
i, j,k,l

M k,l
i, j and

ξcomp := {1, 2, . . . , N} × {1, 2, . . . , kmax} × {1, . . . , N} × {1, . . . , kmax}.

25

We construct a strategy:

f compose : Σe × Σ × ξcomp × M → Σa × ξcomp × M

that uses f compositional to compose the strategies for the reachability games (f k,l
i,l):

f compose(x, s, i, j, k, l,w,wsup) = (y, i′, j′, k′, l′,w′,w′sup), (2.17)

where if s < Ωk,l , then

(y,w′) = f k,l
i, j (x, s,w),

(i′, j′, k′, l′) = (i, j, k, l),

w′sup = wsup,

(2.18)

and if s ∈ Ωk,l , then

(y,w′) = f k,l
i, j (x, s,m

k,l
i, j),

({ρk ′,l ′},w
′
sup) = f compositional({ρk,l},wsup),

(i′, j′) = (k, l).

(2.19)

In equation (2.18), while we are moving towards Ωk,l , the values are updated according to

the strategy f k,l
l, j . Once we reach Ωk,l (equation (2.19)), the next goal is updated according

to f compositional and we continue towards the next goal, switching goals again once the next

goal is reached.

Theorem 7. Strategy f compose is sound. Solving equation (2.16) takes in the worst-case

O((2kmax)2n3) symbolic steps.

Proof. By construction, a winning strategy in the original system was computed corre-

sponding to every transition in the abstracted system, i.e., the agent can either force the

execution to the next liveness guarantee or block the environment from satisfying the as-

sumption on its behavior. A winning strategy for the abstracted system finds an execution

that cycles through the liveness guarantees. Cycling through the liveness guarantees in

26

the abstracted system corresponds to cycling through liveness guarantees in the original

system (or being able to block the environment from satisfying its assumptions). Hence,

composing the strategies from the reachability games in accordance with the composite

controller ensures satisfaction of the original GR(1) formula.

The specification resulting in equation (2.16) is a GR(1) formula without an environ-

ment, i.e., it is not reactive, hence the innermost fixpoint associated with blocking the

environment from satisfying its assumptions does not add to the number of symbolic steps

to be performed. The total number of states is (n2kmax) and there are n liveness guarantees,

resulting in O((2kmax)2n3) symbolic steps [48].

For applications where the number of liveness guarantees and the number of equicon-

trollable classes are much smaller than the total number of states, i.e., n � |Σ | and k � |Σ |,

the parallelized approach presented here is well-suited and should result in performance

gains in term of computation time. We expect such behavior in multi-agent systems with

large state spaces where the agents’ dynamics are not closely coupled.

Limitations

There can be potential corner cases where the algorithm presented above is not complete, as

we lose certain transitions during abstraction into the supervisory transition system. Besides

completeness another limitation of the approach is that if we end up with a large number

of equicontrollable classes, the computation of the compositional strategy can become

intractable. We provide a counterexample below where the approach fails.

Example 4. To illustrate a case where the approach outlined here fails, we consider the

following counter example. Let the set of atomic propositions be AP = {b, c, d} with

APe = {b, d}.

Define the transition rule for the environment as

(d → ©c) . (2.20)

27

Define the transition rule for the controlled agent as

ρe = ((¬c ∧ (b ∨ ¬d) → ©¬ (b ∨ d))) (2.21)

Let the initial condition be θ = (c ∧ b). Consider the following GR(1) synthesis problem:

θ ∧2ρe → 2ρa ∧23b ∧23d. (2.22)

The winning states for this problem are {(b, c, d) , (b, c)}. From both of those states the

agent can pick d and ¬b to hold at the next state, forcing c to hold two instants into future.

When c holds, the agent can pick b satisfying the 3b and then, it is allowed to pick d and

¬b at the next instance and so on, the cycle can continue.

However, when we use the hierarchical approach, we do not obtain a cycle between the

liveness guarantees. The controlled agent cannot force the execution to satisfy 3d from all

states b. To see this consider the state {b}. ¬ (b ∨ d) has to hold at the next step and if the

environment decides to set ¬c, ¬b ∨ d has to again hold at the next instant and this goes

on. Hence, though we have a winning strategy, we are not able to find it in the abstracted

system, demonstrating the incompleteness of the approach. However, if the partitioning of

[[b]]was parameterized over both b and c, the hierarchical approach would have had a cycle.

2.4 Experiments and Analysis

In this section, we perform experiments to benchmark the performance of the different

approaches.

2.4.1 Parallelized Synthesis for Singleton Liveness Guarantees

Here, we study the simpler problem setting of synthesizing strategies for GR(1) specifica-

tions with singleton liveness guarantees. For this class of specifications, in Section 2.2 we

propose a parallelized approach for synthesis based on decomposition into n + 1 indepen-

dent reachability games. To compare the performance of this parallelized approach with

28

standard GR(1) synthesis, we consider the problem of coordinated planar reactive robot

motion planning on a gridworld. For a given set of cells {(ar
1, a

c
1), (a

r
2, a

c
2), . . . , (a

r
n, a

c
n)} and

{(br
1, b

c
1), (b

r
2, b

c
2), . . . , (b

r
n, b

c
n)}, the controlled robot has to coordinate with a moving agent

such that the robot is in cell (br
i , b

c
i) when the agent is in cell (ar

i , a
c
i). The robot has to

complete this coordination task infinitely often. To make sure the problem is feasible, the

cells {{(br
1, b

c
1), . . . , (b

r
n, b

c
n)}} are added as liveness conditions for the agent. The robot’s

motion constraints allow movement to any of its non-diagonally adjacent cells.

LetYr denote the row (horizontal) position of the controlled robotYc the column (vertical)

position. Similarly, let Xr and Xc denote the row and the column position of the uncontrolled

agent. The transition rule for the robot at position (Yr,Yc) = (i, j) can be written as

(Yr = i ∧ Yc = j) →
((

Y ′r = i + 1 ∧ Yc = j
)

∨
(
Y ′r = i ∧ Y ′c = j + 1

)
∨(Y ′r = i ∧ Y ′c = j)

∨(Y ′r = i − 1 ∧ Y ′c = j)

∨(Y ′r = i ∧ Y ′c = j − 1)
)
,

with the additional constraint that Yr and Yc always stay in the bounds of the gridworld, i.e.,

0 ≤ Yr ≤ rmax, 0 ≤ Yc ≤ cmax.

The agent’s motion is constrained in a similar way. Furthermore, the controlled robot as a

part of the safety specification has to avoid collision with the uncontrolled agent, i.e.,

¬(Xr = Yr ∧ Yc = Xc),

where ¬ is the negation operator. Both the controlled robot and the uncontrolled agent

have to avoid collisions with the walls (shaded). For example, if the location (wr,wc) is

shaded, then the safety specification corresponding to avoiding collision with this wall for

29

the controlled robot is

¬(Yr = wr ∧ Yc = wc).

The liveness assumptions can be specified as

n∧
i=1

23(Xr = br
i ∧ Xc = bc

i).

The liveness guarantees are written as

n∧
i=1

23(Yr = ar
i ∧ Yc = ac

i ∧ Xr = br
i ∧ Xc = bc

i).

Figure 2.4: Gridworld of size 14 × 14 with wall density of 0.3. An example task with
singleton liveness goals, where the uncontrolled robot has to cycle between b1, b2 and b3
infinitely often. The controlled robot has to be at a1 when the uncontrolled robot is at b1,
and so on for (a2, b2) and (a3, b3), while avoiding collision.

Figure 2.4 shows an example gridworld instance. The runtimes for the approach pre-

sented here using the decomposed reachability games is compared with those for the solvers

gr1c [84] and slugs [47]. The solvers are accessed using the interfaces in the Temporal

Logic Planning Toolbox (TuLiP)] [51]. The reachability games for decomposition-based

approach are solved using the rgmodule from gr1c. The computations were performed on

30

a 2.40 GHz quad-core machine with 16 GB of RAM.

Gridworld instances with varying number of liveness guarantees and gridsizes are

used for benchmarking. Figure 2.5 depicts the mean runtimes from the benchmarking

experiments on t×t-sized gridworld instances, with varying t. For each grid size, 50 random

problem instances (with a wall density of 10% and 6 liveness guarantees) are created. We

see that the decomposition-based approach outperforms GR(1) synthesis (using slugs and

gr1c).

Figure 2.5: Performance on gridworld problems with varying grid size (t × t).

Figure 2.6 depicts the performance for gridworld instances of size 14× 14 (wall density

0.3) with the number of liveness constraints changing. Here again we observe similar

trends with the decomposition approach outperforming GR(1) synthesis using slugs and

gr1c. When the reachability games are solved in parallel, we observe improved scaling

for the decompositio-based approach. The slope for the parallelized decomposition-based

synthesis is less than that of decomposition-based synthesis without parallelization. This is

because the complexity of each of the reachability games is independent of n, where n is the

number of liveness guarantees. Since the n+1 reachability games are solved in parallel, the

runtime approximately stays constant even with the varying number of liveness guarantees.

31

Figure 2.6: Performance on gridworld problemswith varying number of liveness constraints.

2.4.2 Parallelized Synthesis via Equicontrollable Classes

Next, we study the hierarchical synthesis approach from Section 2.4.2 that allows for

parallelization. We consider a multi-agent robot motion planning problem where the

objective is to, for a set of robots, schedule access to critical sections of a given workspace

in a safe manner. The environment consists of an uncontrolled adversarial mobile robot

that is functioning in the same workspace as the controlled robots and requires access to

certain critical sections of the workspace. An example instance is shown in Figure 2.7.

Both the controlled robots and the uncontrolled robot have to visit cells shaded with each of

the three colors (red and green) infinitely often. The problem instances are parameterized

in terms of the size of the workspace, the number of critical sections and the number of

controlled robots. The colored cells represent critical sections of the workspace that must

be accessed in a mutually exclusive manner and each color represents a critical resource of

a type. While the adversarial robot is accessing a critical section, the controlled robots must

not access the same critical section. Similarly, no two controlled robots can access a critical

section at the same time. The adversarial robot’s access to the critical sections is prioritized

over the controlled robots. When the adversarial robot attempts to access a critical space,

32

Figure 2.7: Workspace with shaded obstacles (black) and critical sections (green and red).
The uncontrolled robot has to cycle between visiting a green cell (marked A), and a red
cell (marked B). The controlled robot has to do the same, while allowing the uncontrolled
robot priority access to any colored cell. The critical sections (green and red) can only be
occupied by one robot at any given time.

the controlled robots as a part of their safety requirement must allow the adversarial robot

to gain access by vacating the critical section. The regions shaded black (density=5%)

represent static obstacles and both the uncontrolled and controlled robots must avoid the

obstacles. The robots are allowed to transition to any of their non-diagonally adjacent cells

in a single step. The uncontrolled robot is allowed to pursue a trajectory of its choice and

the only assumption on its behavior, in addition to the constraints on its motion, is that the

uncontrolled robot will access cells shaded with each of the colors infinitely often.

Figures 2.8a, 2.8b report performance over problem instances of varying size. The mean

time over 50 problem instances is reported. For each of these instances the initial positions

of the robots, the positions of the obstacles and the critical sections are randomized. The

computations were performed on a 32 core AMD Opteron machine at 2.4 GHz with 96 GB

of RAM, and we see considerable gains in computation time for the parallelized approach.

33

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Number of Critical Sections

0

1000

2000

3000

4000

5000

6000

M
e

a
n

 r
u

n
ti

m
e

 in
 s

e
co

n
d

s

Paralle lized synthes is
Conventional Synthes is

Number of Controlled
Robots =2

Workspace Size = 10 x 10

(a) Varying Number of Critical Sections

6 8 10 12 14 16
Workspace Size t x t

0

1000

2000

3000

4000

5000

M
e

a
n

 r
u

n
ti

m
e

 in
 s

e
co

n
d

s

Paralle lized synthes is
Conventional Synthes is

Number of Controlled
Robots = 2
Number of Critical
Sections = 2

(b) Varying size of the workspace

Figure 2.8: Performance on benchmark experiments. Mean runtimes over 50 randomized
problem instances are reported, error bars indicate standard deviation.

2.5 Conclusions and Future Work

Amajor challenge to the widespread adoption of formal methods is their scalability. As sys-

tems get larger and complex, scalable algorithms that can deal with the size and complexity

of the systems are necessary. In this regard, we present approaches that allows us to decom-

pose and parallelize the synthesis algorithm for the GR(1) fragment of linear temporal logic.

The approaches rely on the construction of a composite strategy that is used to compose

local strategies to ensure satisfaction of the GR(1) specification. However, the approach

comes with certain drawbacks as outlined earlier. Empirical evidence demonstrating the

resulting gains in performance is presented for robot motion planning problems.

Future work would be to explore if similar approaches can be used to synthesize poli-

cies that can handle uncertainty, because some local uncertainty can be tolerated without

a resynthesis of the entire strategy by applying a local correction. A hierarchical frame-

work as presented here could be used in such settings. Another direction for future work

includes exploring the possibility of a symbolic approach for decomposition of sets into

equicontrollable classes as opposed to the enumerative approach considered here.

34

Chapter 3

Learning for Verification

Verification plays a key-role in designing reliable systems, ranging from planning and

scheduling for control systems to program analysis. However, verification often suffers

from two critical bottlenecks:

• Verification of complex autonomous systems often involves solving hard, difficult to

scale constraint-solving problems (e.g., reachability problems for highly nonlinear

dynamical systems),

• Verification of autonomous systems requires accurate models of the environments

with which the system interacts. However, we often require our autonomous complex

to interact with complex environments that are difficult to model (e.g., a autonomous

vehicle that has to interact with pedestrians, who are difficult to model).

This chapter proposes approaches to learning abstractions that alleviate some of the concerns

on both fronts, and thereby enabling the wider usage of available tools for verification. First,

we consider the verification of cyber-physical systems with lookup tables. Lookup tables

are an important and irreplaceable element of modern engineering design. Lookup tables

are frequently used to approximately model highly nonlinear physical components, which

are difficult to model. Others serve as control laws in cases where no traditional control

design method delivers the required performance. This widespread use of lookup tables in

embedded systems, across industries such as aeronautics and automotive systems, creates

a critical obstacle for scalable formal verification. Lookup tables challenge traditional

verification techniques because each entry of the lookup table must be treated as a separate

35

case. If the system under analysis contains a large number of cascaded lookup tables, the

number of proof cases grows exponentially, quickly outstripping the ability to deliver timely

verification results as part of a product-development cycle. To overcome this bottleneck,

we introduce an approach for computing abstractions of lookup tables that are provable

overapproximations and have a simple form. These simpler abstractions can then replace

the original lookup tables during verification, significantly reducing the complexity of the

verification problem. We illustrate the performance of our approach on a cruise control

benchmark [124]. This benchmark consists of a controller with a monitor that tries to detect

dangerous conditions. This benchmark contains three lookup tables. The simplest lookup

table is one-dimensional and the most complex lookup table is three-dimensional. The total

number of combinations of lookup table outputs is 77, 409, 024.

We then generalize the insights from verifying lookup tables to propose a more general

learning-based approach for abstracting hard constraint problems to find simple (provable)

relaxations or restrictions of the original problem. To this end, we introduce an approach

(based on [33]) to decompose a set of nonlinear arithmetic constraints and learn simpler

relaxations and restrictions for the decompositions. To learn these simplifications, we

compute a large number of satisfying and falsifying instances for each subset of constraints

using a sampling procedure described later and use these as training data for the learning

procedure. For a given set of samples, we use a semi-soft support vector machine (SVM) to

learn asymmetric classifiers as candidate antecedents and consequents. The semi-soft SVM

is embedded into a refinement loop where a reduced constraint problem is solved to ensure

that the candidate antecedent and consequent are indeed an antecedent and consequent.

The simpler learned antecedents can be used to find a satisfying instance, and the learned

consequents can be used to demonstrate that no satisfying instance exists. Other attempts

at using learning to find interpolants in domains such as program analysis and safety

analysis for hybrid systems [103] do not address the problem of scalability. We evaluate

our technique on four benchmark constraint sets corresponding to the reachability analysis

for a toy-car, finding valid encoder expressions for FPGA design, random instances of

polynomial constraints and Hong’s problem in the first quadrant. Our experiments show

that this technique provides an improvement in the scale of problems that can be handled

36

by a constraint solver.

In the latter part of the chapter, to overcome the challenge from accurate models being

difficult to obtain, we present a data-driven approach that allows for a system to be evaluated

for specification conformance without an accurate model of the environment. Our approach

involves learning a conservative reactive bound of the environment’s behavior using data

and specification of the system’s desired behavior. The approach begins by learning a

conservative reactive bound on the environment’s actions that captures its possible behaviors

with high probability. This bound is then used to assist verification, and if the verification

fails under this bound, the algorithm returns counterexamples to show how failure occurs

and then uses these to refine the bound. We demonstrate the applicability of the approach

through two case studies: i) verifying controllers for a toy multi-robot system, and ii)

verifying an instance of human-robot interaction during a lane-change maneuver given

real-world human-driving data.

Constraint Solving: Related Work Several approaches have been proposed to improve

performance for discrete constraint satisfiability problems using decompositions, including

[8, 31]. [52] a problem-decomposition approach where the original nonconvex optimization

problem is decomposed into subproblems that are approximately independent. In contrast,

our approach first decomposes the problem and then uses a learning procedure to find

simpler abstractions of the problem that are more tractable to solve. The main problem with

finding these interpolants – which serve as simplifications through syntactic manipulations

[27] – is that they are typically slower and difficult to scale.

Data-driven Verification: Related Work Recently, there has been an increased interest

in data-driven verification for cyber-physical systems [49, 50, 79]. In [11], a data-driven

automated approach is proposed to identify non-converging behaviors in black-box con-

trol systems. In [63], the authors propose an approach based on Bayesian inference and

reachability analysis for verifying the behavior of systems. However, the approach does

not decompose the system into the uncontrolled environment and the controller, and is

limited to the model class of linear time-invariant systems. In contrast, our approach lever-

37

ages known policies for the controlled agent to enable verification of their behavior with

complex environments. A closely related direction of work is on mining specifications

[72, 116, 117] from data. The mined specifications are often used as task specifications, as

opposed to being used to verify a given controller. For the case of human-robot interaction,

treating it as a multi-agent task and leveraging the influence of the autonomous agent on the

(uncontrolled) human has been considered before [81, 113]. In [100], the authors propose

an approach that learns a reward function to model the behavior of the uncontrolled agent

and then leverages this reward function to plan for the autonomous agent. This allows the

planner to consider the influence of the autonomous agent on the uncontrolled agent. Here

the authors incorporate the environments behavior into the planning phase, while in contrast,

we leverage the controlled agent’s policy and the desired safety specification for the system

to characterize the environment’s behavior to facilitate verification. [108] demonstrates the

benefits of learning the intent of the uncontrolled agent prior to the physical event, and

leverages this learned intent for seamless collaboration.

This chapter is structured as follows. First, we begin by providing the necessary

background on constraint solving, before describing our approach for learning abstractions

for constraint solving instances. Then, we evaluate our technique on four benchmark

constraint sets corresponding to the reachability analysis for a toy-car, finding valid encoder

expressions for FPGA design, random instances of polynomial constraints and Hong’s

problem in the first quadrant.

Next, we consider the problem of data-driven verification for autonomous systems. We

begin by providing the necessary background regarding Signal Temporal Logic (STL), an

extension of LTL to real-valued signals, and random convex programs. Subsequently, we de-

scribe the approach for learning abstractions that accurately characterize the environment’s

behavior with high probability and can be used for verifying desired properties.

38

3.1 Lookup Tables and Constraint Solving: Background

3.1.1 Lookup Tables

Informally, a lookup table is a function defined by a table of input and output values. A

lookup table maps certain points of its input space, called breakpoints, to values prescribed

by a given table, such as the one shown in Table 3.1. Note that despite the tabular structure,

Table 3.1 represents an n-dimensional lookup table, not a two-dimensional one. The output

of the function for values that do not appear in the table are computed by some given

interpolation function if they are contained in the range of the breakpoints, and by some

extrapolation function otherwise.

x(1)1 . . . x(1)i . . . x(1)n y(1)

...
...

...
...

x(j)1 . . . x(j)i . . . x(j)n y(j)

...
...

...
...

x(m)1 . . . x(m)i . . . x(m)n y(m)

Table 3.1: Lookup table with n inputs and m breakpoints

Formally, an n-dimensional lookup table with m breakpoints is a function λ : Rn → R,

such that

1. for each breakpoint (x(k), y(k)) (k ∈ {1, . . . ,m}) that appears in the table, λ(x(k)) =

y(k), and

2. for every point x ∈ Rn that does not appear in the table,

(a) if each component xi is contained in the range of the lookup table, i.e.,mink(x
(k)
i) ≤

xi ≤ maxk(x
(k)
i) for each i ∈ {1, . . . , n}, then λ(x) is given by some interpolation

function interp.

(b) otherwise, λ(x) is given by some extrapolation scheme extrap.

Our approach is general, and can be applied to any interpolation and extrapolation

functions. However, in our case study, wewill interpolate the lookup table by themultilinear

39

interpolation formula described in [120]. For n dimensions, we will use the notation

multiLinInterpn((x
(1), y(1)), (x(2), y(2)), x)

to mean the n-dimensional interpolation function between points (x(1), y(1)) and (x(2), y(2)),

evaluated at x. For simplicity, we will not extrapolate the lookup tables in our case study

and simply assume that the range of interest is restricted to the range of the lookup tables.

3.1.2 Lookup Tables as Logical Formulas

Our technique relies on the ability to encode the system and its specification into first-order

logic. An n-dimensional, m-breakpoint lookup table can be encoded as a first-order logical

formula as follows. Consider, without loss of generality, a two-dimensional lookup table

with m breakpoints. The k-th breakpoint can be encoded by the following logical formula

bk ≡x(k)1 ≤ x1 ≤ x(k+1)
1 ∧ x(k)2 ≤ x2 ≤ x(k+1)

2 →

y = multiLinInterp2((x
(k), y(k)), (x(k+1), y(k+1)), x),

where k = 1, . . . ,m − 1. The vector x is the input of the lookup table, and x1 and x2

are its components. The function multiLinInterp2 is bilinear interpolation. Similar

expressions can be derived for lookup tables of other dimensions. The overall lookup table

can be expressed by the conjunction of the logical formulas for the breakpoints.

Satisfiability Modulo Theories Suppose a set of constraints {A1(x) . . . , Am(x)} is given,

where x represents a vector of variables. The real-valued constraint-solving problem, also

called satisfiability modulo the theory of the reals, is to compute a real-valued vector x̂

that simultaneously satisfies all of the constraints Ai, or to prove that no such vector exists.

If a satisfying instance x̂ is found, then we say that the constraint set is satisfiable, and

otherwise, we say it is unsatisfiable.

40

Antecedents andConsequents Let A(x) be a logical formula with vector of free variables

x. We say that a logical formula C(x) is an antecedent of A(x) if ∀x . C(x) =⇒ A(x). This

means that the values of x that satisfy C are a subset of the values of x that satisfy A, so we

will also call C(x) an underapproximator of A(x). Conversely, we say that a formula D(x)

is a consequent of A(x) if ∀x . A(x) =⇒ D(x). In this case, all values of x that satisfy

A(x) also satisfy D(x), so we say that D(x) is an overapproximator of A(x). If {A1, . . . , Ak}

is a set of constraints, we say that C(x) is an antecedent for the set of constraints if it is an

antecedent for the conjunction, i.e.,

∀x . C(x) =⇒ A1 ∧ · · · ∧ Ak . (3.1)

The consequent of a set of constraints is similarly defined to be a logical consequence of

the conjunction of the constraints.

3.2 Lookup Table Abstraction: Problem Statement

We consider the problem of proving input-output properties of cyber-physical control sys-

temswith lookup tables. We assume the control system has been translated to a set of logical

constraints Σ(x), not including any lookup tables, where x is the vector of all variables that

occur in the system, including inputs, outputs, and intermediate assignment variables. We

handle the lookup tables separately, and assume that each lookup table, indexed by i has

been encoded as the first-order logic formula Li(x). Similarly, we assume that the speci-

fication is given as a first-order formula S(x). Then, the problem is to determine whether

there exists a value of the variables x that:

1. satisfies the model constraints Σ(x), i.e., the values are related to each other according

to the structure of the model;

2. satisfies each Li, i.e., the values are related to each other in a way that satisfies the

mapping produced by the lookup tables; and

3. does not satisfy the specification S(x), i.e., it is an erroneous condition.

41

To check for the existence of this kind of erroneous condition, we can use an SMT solver

to check the satisfiability of the following logical formula, assuming the number of lookup

tables in the model is N: (
N∧

i=1
Li(x)

)
∧ Σ(x) ∧ ¬S(x).

This logical formula states that values for the vector of variables x must satisfy each

lookup table Li as well as the model constraints Σ(x). In addition, the value x should

falsify the safety condition S(x). If no such value exists, then the system is guaranteed to be

defect-free.

The key obstacle to directly checking this condition is that the lookup table formulas Li

are complex, and combining several complex lookup tables renders the verification problem

intractable. Further compounding this problem, each entry of the lookup table is encoded

as an implication, which induces a case analysis: each range on the left-hand side of the

implication is a case, and the right-hand side of the implication is the value of the table at

that case. If we assume for simplicity that all lookup tables have m cases, and that there

are k lookup tables in a model, hence the total number of cases is mk . This exponential

explosion in cases forbids a naive analysis.

Our approach is to generate a simple overapproximating function to replace the complex

formula Li with the abstraction Ai by using the lookup table data as training data to learn

parameters in an abstraction template. As a result, the logical formula will be simplified,

but the abstraction loses information. To address this, we provide a falsification heuristic

that can help to find true counterexamples when the verification does not succeed.

3.3 Lookup Table Abstraction: Approach

Our approach to improve scalability is to abstract the lookup tables by functional intervals.

A functional interval is a function that for each argument x ∈ Rn returns a (closed) interval

over R, A(x) = [a(x), b(x)] where a(x) is the lower bounding envelope around the lookup

table and b(x) is the upper bounding envelope. We say that a functional interval A(x)

abstracts a lookup table L(x) over a set S ⊆ Rn if for every x ∈ S, L(x) ∈ A(x).

42

A functional interval abstraction is an overapproximation of a lookup table, in the sense

that a property that holds for all values in the interval A(x) must also hold for L(x), but not

vice versa. The abstraction loses precision, but provides a simplification if the functions

a(x) and b(x) have a sufficiently simple structure.

As a result, a procedure to compute a functional interval abstraction must balance

between two conflicting requirements. On the one hand, it should be as precise as possible,

by keeping the size of the interval small for every x, but it must also have a simple arithmetic

structure, preferably consisting of linear or low-order polynomial terms, so that proving that

the desired property holds of the abstraction is as simple as possible. To navigate these

conflicting requirements, we first try to abstract the lookup tables with linear abstractions,

and see if these simple abstractions are sufficient to prove the specification or to guide

the search to a counterexample. If the simple, linear abstractions are insufficient, then

we iteratively increase the complexity to a quadratic template, then to cubic, etc. The

implementation [6] uses a library of abstraction templates that are indexed by complexity,

and iterates through them on each subsequent abstraction attempt.

In the following, we will describe our procedure for computing abstractions from ap-

proximations, and how these same abstractions can guide the search for a counterexample

when the specification cannot be proved in the first attempt.

3.3.1 Computing Abstractions by Approximation

We use a regression-based procedure to automatically compute a functional interval for

each lookup table in the model. First, we fix a parametric template for a function that

approximates the lookup table data, and then we will proceed to learn parameter values that

allow the function to approximate the lookup table data. Next, we use bisection to search

for the smallest offset that can be added and subtracted from the approximation to yield

upper and lower bounds for the lookup table function.

We begin by computing an approximation of the lookup table data. Formally, let f (a, x)

be a function parametrized by a ∈ Rp, with the same domain and range as the lookup table

function L. We solve a regression problem to find the value of the parameter vector a that

43

minimizes the mean-squared error over the k breakpoints of the lookup table.

minimize
a

k∑
i=1
(y(k) − f (a, x(k)))2

Let a∗ be the value of a found by this optimization problem. Next, we use the approxi-

mation f (a∗, x) to find a functional interval. We begin by setting the offset to some initial

value, e.g., ε = 1. Then, we use an SMT solver to check whether the lower and upper offset

functions f (a∗, x) − ε and f (a∗, x) + ε are lower and upper bounds for the lookup table

function over all values in the range of interest S ⊆ Rn. This is equivalent to checking the

validity of the following logical formula with an SMT solver.

∀x ∈ R . f (a∗, x) − ε ≤ L(x) ∧ L(x) ≤ f (a∗, x) + ε

Note that the expression for L(x) contains the values of the breakpoints as well as the

multilinear interpolation expressions in between the breakpoints of L.

If the validity check fails, i.e., the SMT solver is able to find an x ∈ S such that the

lookup table produces a value outside of the upper and lower bounds, we try again with a

larger value of ε . If it succeeds, with this value as the upper cap (valid ε) and 0 (invalid ε)

as the lower cap, we then do a bisection search to find the smallest value of ε (within some

tolerance) such that the offset functions abstract the lookup table. This yields a functional

interval

A(x) = [f (a∗, x) − ε, f (a∗, x) + ε]

such that for all x ∈ S, L(x) ∈ A(x). This relationship is illustrated in Figure 3.1

3.3.2 Falsification

If the verification attempt does not succeed, it means that a value x = x̂ was found such

that the abstractions were satisfied, but the specification was falsified. This candidate

counterexample is not necessarily a true counterexample, since a point that satisfies the

abstractions may not satisfy the lookup tables. However, this candidate counterexample

44

Figure 3.1: Lookup table function L(x) abstracted by upper and lower bounding functions,
obtained by shifting an approximation f (a∗, x).

serves as a flag of a region that may contain a true counterexample. It is sensible to search

between the breakpoints that contain this counterexample, but note that this point may fall

between different breakpoints in different lookup tables, which could potentially lead us

to choose intervals from different lookup tables that are inconsistent with each other. To

prevent this, instead of simply selecting the two breakpoints that contain the candidate

counterexample, we select a small number r of the nearest breakpoints. See Figure 3.2 for

an illustration of this mechanism. In our experiments, r = 3 or r = 4 is usually large enough

to prevent inconsistent intervals.

Informally, we construct new lookup tableswith only r entries each, and attempt to verify

the same model with the reduced lookup tables, this time directly, without abstractions. If

the verification succeeds, we know the candidate counterexample was spurious, and can

repeat the procedure with a different candidate counterexample. If the verification fails,

it provides a true counterexample which can be returned to the engineer as a design flaw

that must be fixed. Formally, let x j, . . . , x j+n be the n inputs of lookup table Li. Then,

consider the values of these variables in the candidate counterexample x̂ j, . . . , x̂ j+n. We

wish to extract the r nearest entries along each dimension—suppose they are x(k)j , . . . , x(k+r)
j

through x(k)j+n, . . . , x(k+r)
j+n . Then, construct a new lookup table L̂i that contains only these

breakpoints, and maps them to the same outputs as Li. Finally, check satisfiability of the

45

following logical formula. (∧
i

L̂i

)
∧ Σ(x) ∧ ¬S(x) (3.2)

If a satisfying instance is found, then that instance is a true counterexample of the original

model. If no satisfying instance is found, then we try the procedure with the different

candidate counterexamples that are at a distance less than δ from x̂. If none of these

candidates are true counterexamples, we move on to the next step, which is to refine the

abstractions and attempt verification again.

Figure 3.2: An illustration of the falsification process. The red × represents a candidate
counterexample. To search for a true counterexample, we construct a reduced table con-
sisting of the two nearest breakpoints, which span the interval between the dashed vertical
lines.

3.3.3 Abstraction Refinement

When the SMT solver finds candidate counterexamples, meaning it is unable to prove

correctness, and the falsification procedure fails to find a true counterexample, we refine

the abstractions and repeat the verification attempt. There are two basic mechanisms by

which we refine abstractions: (1) increasing arithmetic complexity of the templates, and (2)

increasing the number of cases in the piecewise templates. Increasing arithmetic complexity

means moving from linear templates to quadratic templates, higher-order polynomials, or

possibly transcendental functions if one is using an SMT solver that supports such functions,

such as [55]. Increasing the number of cases in a piecewise template means moving from

46

a simple equational template to a template with two cases, or from two to three, etc. Our

implementation tries both of these techniques at the same time, and keeps the technique

that yields the approximation with lowest error. We use the SMT solver z3 in the bisection

search procedure to find the minimal offset ε that produces a true overapproximation of the

lookup table function.

3.3.4 Implementation Details

The above approach is implemented in the tool Osiris [6]. We provide relevant details for

the implementation below.

3.3.4.1 Proving Specifications

Once each abstraction Ai has been generated for each lookup table Li (i = 1, . . . , k), we

form the following logical formula.

A1(x) ∧ · · · ∧ Ak(x) ∧ Σ(x) ∧ ¬S(x).

Then, we invoke the SMT solver z3 to check for satisfiability. If the formula is not

satisfiable, z3 has proven that there is no value that satisfies the abstractions and the

model constraints but falsifies the specification. Since the abstractions overapproximate the

lookup table functions, it follows that the system with the lookup table functions satisfies

its specifications. If the formula was satisfiable, we proceed to the falsification stage.

3.3.4.2 Falsification

If a violation of the safety property x̂ is found, this does not necessarily mean that the

original system violates its specifications. For each lookup table Li, we the find nearest

breakpoints in each lookup table. Then, we try to prove the correctness of the model only

between those breakpoints. If the verification fails, the result is now a true counterexample,

which can be reported to the designer. If no true counterexample is found, we try to compute

new abstractions with the next set of templates in the template library.

47

3.4 Lookup Table Abstraction: Case Study

Figure 3.3: Diagram of adaptive cruise control scenario

For our case study, we consider a verification benchmark published by Toyota InfoTech-

nology Center [124]. This benchmark consists of an adaptive cruise controller along with

an online monitor. When enabled, adaptive cruise control regulates the speed of the car so

that a target speed is maintained, unless another car is detected at some distance in front, in

which case the system tries to maintain a safe distance from the lead car, as shown in Figure

3.3. This controller takes as input the current speed of the car, the distance to the lead car,

and the relative speed between the two cars.

The system consists of a cascade of three lookup tables, as shown in Figure 3.4. The

inputs to the controller are s, the speed of the controlled car, ∆x , the distance to the leading

car, and ∆v the relative speed of the two cars.

Figure 3.4: Signal-flow model of an ACC controller

The first lookup table uses the current speed s of the controlled car to determine a target

48

set distance (∆(target)
x) from the leading car. If the controlled car is moving fast, its braking

distance will be larger, which requires the controller to choose a larger following distance.

∆
(error)
x is the difference between the target following distance and the chosen following

distance, and the second lookup table uses ∆(error)
x together with the relative velocity ∆v

to choose an acceleration a. The third lookup table behaves as an online monitor. In

practice, a monitor lookup table would be produced by recording observations of a physical

component. For this example, the monitor was generated by computing the future distance

between the two cars after 0.1 seconds, given the current distance, relative velocity, and

chosen acceleration. This monitor assumes that the lead car will not change its velocity

within the next 0.1 seconds.

The property we wish to prove is that the online monitor will never predict a future

distance that is negative, i.e., it will never predict that the cars will crash. This does not

mean that the closed-loop system with the real automotive dynamics will not crash, since

that would require analyzing the continuous-time differential equations. However, industrial

controllers are frequently equipped with online monitors that predict or prevent dangerous

conditions, and checking that the controller satisfies its monitor is valuable, as it prevents

any abnormal behavior as long as system integrity is preserved. However, our approach is

not limited to analyzing properties based on a monitor, and can analyze general properties

expressed in first-order logic over the variables of the model.

The first lookup table is one-dimensional and contains 21 breakpoints, resulting in 22

possible interval values. The second lookup table is two-dimensional, and has a total of

1, 232 possible interval values. The third lookup table is three-dimensional and has 2, 856

possible values. A brute-force attempt at proving correctness would need to consider all

possible combinations of lookup table values. Considering all possible combinations of

internal values leads to a total of 77, 409, 024 proof cases.

The model is translated to first-order logic to use an SMT solver to check the validity

of the specification. The logical formulas that represent the lookup table can be directly

constructed by multilinear interpolation on the public benchmark files. The translated

first-order logic constraints are:

49

0 ≤ ∆x ≤ 180, −50 ≤ ∆v ≤ 50, 0 ≤ s ≤ 180,

∆
(target)
x = LookupTable1(s), ∆

(error)
x = ∆x − ∆

(target)
x ,

a = LookupTable2(∆
(error)
x ,∆v), ∆

(next)
x = LookupTable3(∆x,∆v, a).

The constraints on ∆x , ∆v, and s are assumptions on the bounds of these inputs, and

the system cannot be enabled if these bounds are not met. Similarly, commercial adaptive

cruise control systems cannot be used if the speed of the controlled car is too slow. When

attempting to directly verify the model by translating it into first-order logic constraints

and using z3 to check for a violation of the specification, z3 does not terminate after 48

hours. When we ran this model, a counterexample was found in 1 minute and 50 seconds,

as follows:

s 7→ 31.0, a 7→ −2.0, ∆v 7→ −4.0, ∆x 7→ 0.03125,

∆
(error)
x 7→ −30.97, ∆

(target)
x 7→ 31.0, ∆

(next)
x 7→ −0.00865.

The meaning of this counterexample is that the cars start at a distance ∆x of about 3 cm,

with a relative velocity of -4 m/s, i.e., the controlled car is moving 4m/s faster than the

lead car. The controller brakes by applying a negative acceleration of a = −2 m/s2, but the

situation is already too dangerous and the cars have a minor crash, with the controlled car

being 0.8 cm further than it should be.

To measure the run-time of our verification technique, we relaxed the specification to

∆
(next)
x ≥ −2. With this relaxed property, the monitor no longer tries to completely prevent

collisions, but simply to reduce their severity. Of course, this is not a controller that could

be deployed for a commercial automotive system, it is simply for benchmarking of our

tool. This relaxed property was provable in 30 seconds, which compares favorably with an

analysis time of approximately four hours in [69] on a machine with the same specifications.

The case study computations were carried out on a machine with 44 cores, with available

hyperthreading to 88 threads and 256 GB of RAM.

50

Computed abstractions The abstraction computed for lookup table 1 consists of a linear

function, shifted above and below the lookup table data:

A1 = [1.31s − 4.0315 − ε1, 1.31s − 4.0315 + ε1],

We have deliberately left the constants un-simplified. The constant ε1 = 34.1797 is useful

because it represents the largest error between the abstraction and the lookup table itself.

Thus, we can compare which lookup tables are being abstracted with more or less fidelity by

looking at the value of ε . The abstraction computed for lookup table 2 is a linear function,

and has the form

A2 = [f2 − ε2, f2 + ε2]

where f2 = 0.023843553∆(error)
x + 0.091889∆v − 0.51779, with ε2 = 3.90625. The abstrac-

tion computed for lookup table 3 is a linear function.

A3 = [f3 − ε3, f3 + ε3]

where f3 = 0.99876517∆x + 0.00795821∆v − 0.0016369, with ε3 = 0.5859375.

3.5 Constraint Solving: Overview

Next, we develop a similar technique for constraint problems corresponding to large sets of

nonlinear constraints. For a set of constraints A = {A1, . . . , Am}, the constraint satisfaction

problem is to find a point satisfying the constraints, or to prove that the problem is unsatis-

fiable. Our approach is to decompose the original set of constraints A = {A1, . . . , Am} into

subsets A1, . . . ,Ak , and then learn antecedents and consequents for each subset. We then

use these antecedents and consequents to solve the original constraint satisfaction problem.

The details of our learning procedure will be described later in this section, but for now

we simply note that it relies on obtaining satisfying and falsifying instances and learning

classifiers from them that are antecedents or consequents.

Let α j be the learned antecedent for the subset A j , and let γ j be its consequent. Then,

51

we solve the sets of constraints α = {α1, . . . , α j} and γ = {γ1, . . . , γ j}. If the antecedents α

are satisfiable by some instance x̂, then x̂ satisfies the original constraint set, by definition

of antecedence. Conversely, if the consequents γ are unsatisfiable, then the original set A

is also unsatisfiable. For if A were satisfiable, then each A j would be satisfiable, and so

would each γ j , by the definition of consequence. Alternatively, if α is unsatisfiable and γ

is satisfiable, then we cannot conclude anything about A. We must refine our antecedents

and consequents and try again.

Our technique provides performance improvements under the following premises:

1. The subsets of constraints A j are simple enough that they can be solved quickly and

repeatedly to obtain satisfying and falsifying instances.

2. The learned antecedents and consequents are simple enough that checking the prop-

erties of antecedence and consequence is fast.

3. The learned antecedents and consequents are accurate enough to establish the exis-

tence or non-existence of a solution.

The above requirements are inherently conflicting. Greater simplification is obtained by

considering larger subsets A j , but these larger subsets are harder to solve quickly to obtain

samples. Similarly, simpler antecedents and consequents will be easier to check, but will

provide poorer approximations to solve the original problem.

To illustrate the proposed approach, consider the problem of solving the constraint sets A

and B shown in Figure 3.5. The region arising from constraint set A is underapproximated

by the region A′. The constraint set A′ is now solved in conjunction with B to find a

solution satisfying A and B. The learned constraint set A′ has a simpler form, enabling

faster computation.

52

Figure 3.5: A point satisfying the constraint sets A and B can be computed by replacing A
with a simpler underapproximation A′, and then finding a point satisfying A′ and B.

3.6 Constraint Solving: Learning Abstractions

3.6.1 Semi-Soft SVM

As a supervised learning approach, SVMs have been known to perform effectively in

learning classifiers. Two types of SVM are commonly employed: hard margin and soft

margin. Hard-margin SVM approaches do not allow for any misclassification, but may

be infeasible if the data points are not linearly separable. On the other hand, soft-margin

SVM approaches allow for misclassification of some points, but they do not serve our

purpose. Since in general an antecedent will need to exclude all falsifying instances and a

consequent will need to include satisfying instances, soft-margin SVMs are not suitable for

our purposes.

Instead, we use a semi-soft SVM, where we allow only samples of one type to be

misclassified. When searching for an antecedent (underapproximation of satisfying in-

stances), we allow some positive examples to be misclassified. Similarly when searching

for a consequent, we allow some negative examples to be misclassified, resulting in an

overapproximation of the satisfying instances. Asymmetric SVMs have been of interest to

minimize cases of false negatives (or false positives) in certain applications. Some efforts

directed at asymmetric learning [122, 123] aim to minimize the false negatives but for

53

learning consequents we seek to eliminate false negatives.

Use of a semi-soft SVM yields a quadratic program. To abstract the constraints A j ,

we label its satisfying instances as +1 and its falsifying instances as −1. To compute a

consequent, we set up the optimization problem to necessarily yield positive labels for the

positive instances, while simply making a best effort attempt to provide negative labels for

the negative instances.

Let X+ be the set of satisfying instances of the subset of constraints A j(x) and X− the

set of falsifying instances of A j(x). X+ and X− are obtained by the sampling procedure

described in Section 3.6.2. We will search for a consequent by the following optimization

problem, which learns the classifier g(x) = sgn(w0 + w
T x):

min
w,w0,eb

1
2

(
w2

0 + w
Tw + λ

N−∑
n=1

en

)
s.t y−

(
wo + w

T x−b
)
≥ 1 − eb,

y+
(
wo + w

T x+
)
≥ 1,

eb ≥ 0,

∀x+ ∈ X+,

{x−1 , x−2 , . . . , x−N−} = X−,

b = 1, 2, . . . , N−,

(3.3)

where N− = |X− | and N = |X+ ∪ X− |. Here eb are the slack variables allowing for

misclassification of the points in X−. Notice that this deviates from the standard soft-

margin SVM in the sense that only one type of data points are assigned slack variables. The

labels y+ = +1 and y− = −1 correspond to points in X+ and X− respectively. Note that

this optimization problem provides hard constraints for classifying positive points, but soft

constraints for classifying negative points.

Proposition 8. For any given sets of points X+ and X−, the semi-soft SVM as formulated

in (3.3) finds a hyperplane w0 + w
T x = 0 such that ∀x+ ∈ X+, w0 + w

T x+ > 0.

54

Proof. For x+ ∈ X+, from y+ (wo + w
+x+) ≥ 1 we have w0 + w

T x+ ≥ 1 > 0.

The minimization problem in equation (3.3) is a quadratic program (QP). A solution

to the constraints of the QP is w0 = 1,w = 0 and eb = 2, implying that the QP has a

non-empty feasible set. Therefore, equation (3.3) always returns a hyperplane that has the

above property of correctly classifying the points in X+.

The case for computing an antecedent can be derived in a straightforward manner, by

requiring that the classifier correctly provide negative labels for the negative instances, while

simply making a best effort attempt to provide positive labels for the positive instances.

3.6.2 Sampling for Learning

A key aspect of this problem is sampling points that reasonably cover both the regions satis-

fying the constraints and the regions that do not satisfy the constraints to learn meaningful

classifiers. One such simple sampling strategy follows.

We will use a distance metric d(·, ·) to enforce spacing between samples. For the

experiments in this chapter, the distance function is the `2-norm. We begin by choosing a

large radius R0, and sample a set of points C = {c1, . . . , ck} that are separated by a distance

of at least R0. These samples will serve as centers for circles that we will sample from at

the next iteration.

Now, consider a smaller radius R1(< R0). Define circles with radius R0 around each of

the sampled points Ωi = {x |d(x, ci) ≤ R0}. In each Ωi, sample points that are at least R1

apart. In this manner we can iterate through a sequence of decreasing radii R2, R3 . . . Rl by

defining circles around the sampled points with radius Ri and sampling points from these

circles that are at least Ri+1 apart and so on.

The radii Rk are chosen so that the points sampled in a particular layer are distributed

around the feasible region (the intersection of the feasible region for the problem and the

circles defined by us) for that layer. Given a fixed number of samples m to be sampled in

a layer, the optimal radius for that layer can be determined by a bisection search to find

approximately the largest radius that gives m samples per layer. This implies that there

exists no other point in the feasible region that can be sampled that is at a distance greater

55

than rk from the other sampled m points. Further increasing the radius would imply that

we cannot find m such points, and if we can find more than m points we increase the radius

until only m are found.

This approach provides good coverage in our experiments. However, even if the initial

samples are poorly distributed, the CEGAR loop described in Section 3.6.3 iteratively

searches for antecedents and consequents, and only terminates once provable abstractions

are found. As a result, the quality of the initial samples only has an effect on performance,

but does not compromise soundness. The approach is more formally described in Algorithm

2. The term ‘Sample’ in Algorithm 2 refers to a query to the constraint solver to find a

feasible point satisfying the constraints. Though Algorithm 2 provides no formal guarantees

aboutm samples being found during each iteration, the learning can be performedwith fewer

than m samples. When the constraints have no solution and no sample can be found, the

classifier learned is False.

Besides good coverage, an advantage of this approach is that it prevents the explosive

growth of the formula used to sample using an SMT solver. Once the first set of samples

is generated, the procedure is parallelized to generate samples in the balls around each of

these points since the sampling in the individual balls is independent of that in the others.

3.6.3 Counterexample-Guided Abstraction Refinement(CEGAR)

Counterexample-guided abstraction refinement (CEGAR) was first proposed in [28] for

refining abstractions of control structures in programs. We develop our algorithm in the

paradigm of CEGAR.

Once the classifier g(x) has been learned by the semi-soft SVM, it still remains to be

validated that the classifier learned is an overapproximation (underapproximation) of the

constraint set we seek to abstract. Let Ai be the conjunction of the constraints in Ai. To

verify that the classifier learned is indeed a consequent (antecedent) of the constraint set

Ai(x), we need to check the consequence condition Ai(x) =⇒ g(x) > 0 (for showing

antecedence g(x) > 0 =⇒ Ai(x)). If the negation of this formula is not satisfiable, i.e,

there is no assignment to x over which the formula interprets to False, we have learned a

56

Algorithm 2: Sampling Procedure
Input : Set of constraints A(x), k, l,m, R1, R2, . . . , Rn
Output
:

Sets of points X+ satisfying A(x)

1 X+ = ∅, X̄+ = ∅ ;
2 for j=1:m do
3 Sample p ` A(x) s.t. ∀s ∈ X̄+.d(p, s) > ri+1 ;
4 X̄+ = X̄+∪ p ;
5 end
6 for i=1:l-1 do
7 X+ = ∅ ;
8 for q ∈ X̄+ do
9 X+ = ∅ ;
10 for j=1:m do
11 Sample p ` A(x) s.t. d(p, q) < ri and d(p, s) > ri+1.∀s ∈ X+;
12 X+ = X+∪ p ;
13 end
14 X+ = X+ ∪ X+ ;
15 end
16 X̄+ = X+ ;
17 end
18 X+ = X+ ;
19 return X+ ;

57

Algorithm 3: Algorithm to learn abstractions for sets of nonlinear arithmetic
constraints
Input : Set of constraints A(x), parameters m, k
Output
:

g(x) such that A(x) =⇒ g(x) > 0

1 Sample set of points X+ with A(x) as input to Algorithm 2 ;
2 Sample set of points X− with ¬A(x) as input to Algorithm 2 ;
3 Initialize g0(x) = TRUE , iter = 0;
4 Set X = X+ ∪ X− ;
5 Map the X to a higher-dimension feature space ;
6 Cluster points in X− into N clusters ;
7 Learn a classifier separating each cluster in X− from X+ using the semi-soft SVM;
8 Set g(x) = g0(x) ∧ conjunction of the N classifiers ;
9 if A(x) =⇒ g(x) > 0 ∧ iter ≤ k ;
10 then
11 return g(x);
12 else if iter ≤ k then
13 iter=iter+1;
14 else
15 g0 = g(x) ;
16 iter=0;
17 Sample a set of points X∗ with ¬(A(x) =⇒ g(x) > 0) as input to Algorithm 2;
18 X+ = X+ ∪ X∗ ;
19 go to 4 ;

58

consequent γi(x) ≡ (g(x) > 0) (respectively, antecedent αi(x) ≡ (g(x) > 0)). Otherwise,

we sample points that violate the formula as proposed in Algorithm 2, add them to the

training set, and learn a new classifier. This procedure is iteratively repeated until we have

learned a consequent (antecedent). Note that although Algorithm 3 may fail to terminate,

it will terminate only if it has found a consequent for Ai(x).

3.6.4 Boosting

In some problems, the CEGAR procedure might fail to converge after a large number of

iterations or learn poor approximations of the original problem. This can occur if the

constraints to be approximated represent regions in space that cannot be approximated

by a single classifier. This section describes how to sequentially learn classifiers that in

conjunction form a better relaxation.

As a first step, the falsifying points are partitioned into clusters using a clustering

algorithm (K-means for all examples presented in this chapter). A classifier is learned from

each cluster separating it from all the feasible points. These classifiers in conjunction form

a first approximation of the constraints. Next, a few iterations of CEGAR are run where this

approximation is refined. Subsequently, collect the misclassified falsifying points and learn

a new classifier using the misclassified points and the satisfying points in a similar manner.

Note that none of the feasible points are misclassified by the construction of the semi-soft

SVM.

During the CEGAR step that learns the new classifier, the condition Ai(x) =⇒ γi(x)

is checked where now γi(x) is the conjunction of the most recent classifier learned and

the previous classifiers. The classifier learned at the end of these CEGAR iterations is the

conjunction of the two classifiers (which in turn are a conjunction of classifiers).

This differs from conventional boosting [111], where the classifier learned is a weighted

sum of an ensemble of classifiers, and cascade SVMs [60], where the classifiers are learned

in parallel and then combined into a single one.

59

Example 5. To demonstrate the approach described above consider the following constraint

A =x2 + y3 ≤ 4 ∧ x ≥ −4

∧ x2 + y3 + 30y ≤ −20

∧ x5 + 3xy − 2x ≤ 5.

(3.4)

Suppose we want to find a point that lies outside A but satisfies a constraint C, i.e, we are

trying to solve ¬A ∧ C.

We first seek to learn an underapproximation of the feasible region (¬A) or an over-

approximation of the infeasible region (A) with quadratic classifiers, since a collection

of quadratic constraints is easier to solve than a collection of higher-order polynomial

constraints. Recall that by negating the overapproximation of A, we can obtain an underap-

proximation of ¬A.

For constraint A we obtain satisfying and falsifying instances using Algorithm 2. Next,

the sampled instances are transformed to a higher dimensional space by a feature map [17],

which lets us learn quadratic classifiers in the higher dimensional space by the semi-soft

SVM procedure described in Section 3.6.1. An antecedent for ¬A is learned as described in

Algorithm 3. Recall that the antecedence is verified using an SMT solver in Algorithm 3.

Here, the number of clusters is set at 2 and we repeat CEGAR until it converges. We

learn an abstraction that is a conjunction of two quadratic classifiers. The abstraction is

A′ = 0.109xy−0.788x+0.915x2+0.935y+0.135y2 ≥ 1.03∧5.077−0.338xy+6.001x+

1.36x2 + 0.887y + 0.257y2 ≥ 0. A′ underapproximates ¬A. To solve ¬A ∧ C, we solve

A′ ∧ C. Figure 3.6 shows the original set of constraints (red). The infeasible region (A)

is shaded. The classifiers learned are shown in the graph (blue). The feasible area is

underapproximated by the intersection of the regions outside each of the classifiers. The

solution space for the problem is restricted to x ∈ [−2π, 2π] and y ∈ [−2π, 2π].

3.6.5 Decomposition Methods

This section describes the heuristics that we use to select which constraints should be con-

sidered together to learn an abstraction. The first level of decomposition is based on the

60

Region to be
overapproximated

Learned
Overapproximation

Figure 3.6: Quadratic Overapproximation of the infeasible region.

Hamming distance.

Hamming Decomposition: This heuristic groups together constraints that have many com-

mon variables—i.e., those constraints whose sets of variables, treated as vectors, have a

small Hamming distance. Let FV(·) be the function that takes a clause and returns the set

of free variables of that clause. Then, the Hamming distance between constraints cm and cn

can be computed as

H(cm, cn) = |(FV (cm) \ FV (cn)) ∪ (FV (cn) \ FV (cm))|.

We assume that a maximum distance bound θ is given, such that any two constraints with

a Hamming distance less than or equal to θ will be grouped together for abstraction. Our

implementation loops over the constraints; starting with the first constraints c0, it chooses

all constraints ck such that H(c0, ck) ≤ θ. After the first pass, it chooses the next constraint

that was not grouped and loops over the remaining constraints.

If we group the constraints into a few classes with many constraints each, then sampling

each class to generate abstractions will be computationally difficult. In the limit case, if

all constraints are grouped into a single class, then choosing a single satisfying instance

corresponds to solving the original satisfiability problem.

61

Bounded-size decomposition: In some cases, it may be the case that the earlier decom-

position did not produce classes that are sufficiently small to ensure that sampling can be

performed quickly. In this case, we set a bound n, and divide the large classes into smaller

subsets with ≤ n constraints each.

3.7 Constraint Solving: Experiments

This section details the results of experiments on various benchmark sets on a 32-core

AMD Opteron machine at 2.3 GHz, with 96 GB of RAM.1 A timeout of 200 seconds is

set for abstracting each subset, if the abstraction procedure fails to finish in this period the

constraints are used as is.

40 60 80 100 120 140 160 180
6

7

8

9

10

11

12

13

14

15

Number of Time Steps

Lo
g

(R
un

tim
e

in
 m

ill
is

ec
on

ds
)

dReal

Abstracted constraints (incl. time for abstraction)

Abstracted constraints

Figure 3.7: Performance – Car Reachability

Model predictive control for a mobile robot First, we consider a benchmark motivated

by practical problems in mobile robotics. The model predictive control problem is to find

a sequence of control inputs so that a mobile robot can reach a specific position. We use a

1Benchmark problem instances can be found at https://github.com/dathath/IJCAI_2017_SD

https://github.com/dathath/IJCAI_2017_SD

62

Dubins car dynamics model with additional nonlinear terms:

at + c1(at + xt/yt) ≥ at+1,

yt + c2

(
cos (at) − y2

t

)
≥ yt+1,

xt + c3

(
sin (at) − x2

t

)
≥ xt+1.

(3.5)

The constraints encode the problem of starting from an initial point and the objective is to

determine if a target polytope can be reached, i.e., (x f inal, y f inal) ∈ ([a, b] × [c, d]).

The problem’s scale can be varied by changing the number of time-steps. All the

problem instances are satisfiable. Figure 3.7 shows a plot of the run times for dReal,

our abstraction approach, and the time required to check abstractions alone. We cannot

compare with un-abstracted performance of z3, because z3 does not support solving over

sines and cosines. For this same reason, the sampling and abstraction checking are carried

out with dReal, though we solve the simplified problem with z3, because in this example the

resulting abstractions are conjunctions of linear constraints, and z3 typically performs better

than dReal at linear constraints. The classifier learned for this example is a conjunction

of several linear classifiers, one linear classifier learned during each step of CEGAR. The

Hamming distance threshold here was set to 4, which results in subsets with 3 constraints

each. Since sampling these constraints is fast, further decomposition is not required. The

abstracted constraints are always solved faster than solving the constraints directly, which

could be useful in an application scenario in which abstractions can be cached and re-used.

For large problems, the abstraction-based approach (including the time for abstraction)

performs considerably better than solving directly with dReal.

Energy-efficient FPGA design The constraint sets here correspond to the search for valid

probabilistic encoder expressions in a value-deviation-bounded serial encoding technique

[107]. The constraint satisfaction problem is to find assignments of probabilities for a set

of Bernoulli random variables such that they satisfy the constraints for valid encoder family

formulations. The constraint sets here correspond to sets of higher-order polynomials. The

Hamming distance threshold is set to 3 and n is set at 5. The number of clusters was set to

63

Solver No. Of Average Time Avg. Number Avg. Degree
Benchmarks for Benchmarks of Constraints of Constraints

Solved Fully Input Input
Abstracted (ms) Per Instance to Solver

z3 29 1793.4 ∼32 ∼5.93

dReal 28 1788.8 ∼32 ∼ 5.93
Post-Abstraction
(with dReal) 20 133.3 ∼11.5 ∼ 2.06

Table 3.2: Comparison on benchmarks for which the abstraction procedure completes

2. The classifiers learned were of the form:

g(x) =

(∑
i

(
ai x2

i + bi xi

)
+ c0 > 0

)
∧

(∑
i

(
di x2

i + ei xi

)
+ f0 > 0

)
.

Sphere packing in high-dimensions In this set of benchmarks, we solve for a point

x ∈ R15 in the intersection of the exterior of a set of randomized high-dimensional spheres

of the form: ∑
j∈I
(x j − a j)

2 ≤ 30, (3.6)

where I ⊆ {1, 2, . . . , 15} is a randomly chosen set that determines the constrained variables

{x j : j ∈ I} and cubes bounding the search region (|xk | ≤ 30). For each sphere, the

parameters a j : ∀ j ∈ I are randomly chosen in the range [−50, 50]. Figure 3.8 shows a

plot of the different runtimes for varying number of constraints. The time for solving the

abstracted constraints is significantly smaller than the time for solving directly with dReal

and z3 and the time for abstraction scales almost linearly since the time for abstracting each

subset is independent of the total number of constraints. The parameters for the learning

procedure are the same as those from the FPGA design problem.

Hong family. These sets of benchmarks correspond to the Hong family of benchmarks

[73]. We restrict the solution space to the positive quadrant. The problem instances are

64

0 1 2 3 4 5 6

x 104

−2

0

2

4

6

8

10

12

Number of Constraints

Lo
g

(R
un

tim
e

in
 s

ec
on

ds
)

Abstracted Constraints

Abstracted Constraints (incl. time for abstracion)

dReal

z3

Figure 3.8: Performance – Randomized spheres

always unsat by construction. A parameterized generalization of the problem is:

n∏
i=1

xi > 1,
n∑

i=1
x2

i < 1. (3.7)

To facilitate learning abstractions, we rewrite the problem by replacing the quadratic con-

straint with constraints of the form x2
i + x2

i⊕1 ≤ z j and
∑

j z j ≤ 2. This makes the sampling

process easier because each of these constraints have to be sampled only in three dimen-

sions. The Hamming threshold is set to 3 and bounded-size decomposition is not used

here. The classifiers learned are a conjunction of linear classifiers as in the car benchmark.

Figure 3.9 shows the runtimes. z3 does not scale beyond low dimensions, while dReal al-

most scales linearly. The abstraction-based scheme does reasonably well at low dimensions

but at higher dimensions the relaxations computed slow down dReal, interfering with the

δ-complete satisfiability procedures used in dReal.

3.8 Complexity and Discussion

Since the benchmarks contain trigonometric and highly nonlinear functions, even the relaxed

versions of the problem that admit solutions are NP complete [54]. Existing solvers run

into scalability issues when dealing with large constraint-solving instances as in [58].

In our approach, the number of samples grows exponentiallywith the number of variables

65

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

900

1000

Dimension

R
un

tim
e

in
 m

s

dReal after abstraction

dReal

z3

Figure 3.9: Performance – Hong Family

in the constraints. But by restricting to small subsets of the original set of constraints, this

exponential growth can be capped. Lloyd’s algorithm [85] for K-means clustering is a linear-

time algorithm and the semi-soft SVM results in a QP that is solvable in polynomial time.

Verifying that the classifier learned from a small subset of constraints is a consequent (or an

antecedent) is a reduced problem whose complexity is much smaller than solving the entire

large set of constraints, since the complexity of constraint-solving scales exponentially. We

use a sequence of polynomial-time algorithms to learn an approximate simpler instance of

the constraint satisfaction problem.

From the experiments, we observe that though the abstraction procedure is not complete

it can improve the handling of large sets of complex constraints abstracting certain subsets of

the constraints. The experiments demonstrate the potential of the learning-based abstraction

approach in improving the scalability of constraint solvers.

3.9 Data-driven Verification: Preliminaries

In both Sections 3.2 and 3.5, we considered systems that are complexity characterized by

first-order logic formulas. However, in more general settings in the real-world, it is often

difficult to obtain accurate models of the environment with the controller interacts. This

section (based on [23]) develops an approach on providing meaningful guarantees in such

66

scenarios. Consider a dynamical system Σ described by differential or difference equations

x+ = f (x, u, d), (3.8)

where x ∈ X is the state, u ∈ U is the control input, d ∈ D is environment input, and X,

U, D incorporates the physical limits of the variables. A run of Σ is an indexed family σ

consisting of 3-tuples of the form σt = (x(t), u(t), d(t)), satisfying the dynamics equation.

If σ is a run of Σ, we will also write σ |= Σ. A run can be infinite or finite with horizon T .

3.9.1 Signal Temporal Logic

To express desired properties for the system, we use the formalism of signal temporal logic

(STL) [40], an extension of linear temporal logic to vector-valued signals. For any a, b ∈ R,

we will denote by [a, b] the closed interval {x ∈ R | a ≤ x ≤ b}. STL formulas can be built

recursively as

ϕ , True | p | ¬ϕ | ϕ ∧ ψ | ϕU[a,b]ψ,

where p is an atomic predicate of the form: p , f (σ(t)) > 0 for some f : Rm → R. We

write (σ, t) |= ϕ to indicate that ϕ holds for σ(t). The satisfaction of a signal σ at time t for

any of the building block formulas in (3.9.1) is defined in the obvious way, except perhaps

the one with the “until” operator U, which is given as

(σ, t) |= ϕU[a,b]ψ ⇔ ∃τ ∈ [t + a, t + b].(σ, τ) |= ψ ∧ ∀τ′ ∈ [t, τ].(σ, τ′) |= ϕ.

For convenience, we can define the “eventually” ♦ and “always” � operators as ♦[a,b]ϕ ,

TrueU[a,b]ϕ and�[a,b]ϕ , ¬(♦[a,b]¬ϕ) such that (σ, t) |= ♦[a,b]ϕ if and only if ϕ is satisfied

at least once within a time window of length b−a, a time units from t while (σ, t) |= �[a,b]ϕ

requires that ϕ should always be satisfied within that time window.

67

3.9.2 Random Convex Program

We analyze the proposed approach using random convex programs (RCP) [20], which we

introduce here. Let P[K] denote a (minimization) optimization problem with a known

objective function and constraint set K , and let Obj[K] denote the optimal objective value

of P[K]. A constraint k is a supporting constraint if Obj[K\{k}] < Obj[K]. The setup for

an RCP is the following:

min J(α)

s.t. α ∈ Q(δi), ∀δ1, ..., δN i.i.d samples of δ,
(3.9)

where δ ∈ ∆ is a random variable in the space ∆ and {δi} are independently identically

distributed samples of δ, α ∈ Rn, Q(δi) ⊆ R
n is a convex set determined by δi, and J(α) is

a convex objective function. Each δi would pose a convex constraint on α. If we randomly

draw N samples of δ, and denote it as ω � δ1:N ∈ ∆
N , then let Q(ω) �

⋂N
i=1 Q(δi), define

V∗(ω) = P {δ ∈ ∆ : Obj([Q(ω),Q(δ)]) > Obj[Q(ω)]} , (3.10)

which is the probability that an additional sample added on top of ω would change the

objective value of the original optimization with constraints determined by ω. [20] gives

upper bound on P(V∗(ω) ≥ ε) given 1 ≥ ε > 0 for a randomly drawn sequence of samplesω.

We recall the following relevant lemma from [20]:

Lemma 9. Consider the random convex program in (3.9) where α ∈ Rn. When N ≥ ζ ,

P
{
ω ∈ ∆N : V∗(ω) > ε

}
≤ Φ(ε, ζ − 1, N) ≤ Φ(ε, n, N), where ζ is the Helly dimension

denoting the maximum number of supporting constraints, which is bounded by n + 1.

Φ(ε, k, N) =
k∑

j=0

(
N
j

)
ε j(1 − ε)N− j (3.11)

is the cumulative distribution of a binomial random variable, that is, the probability of

getting no more than k successes in N Bernoulli experiments with success probability ε .

This is Theorem 3.3 in [20], which shows that the result of the RCP is likely to be true

68

for unseen δ drawn from the same distribution under large N and small n. We will revisit

this lemma in Section 3.10 to prove probabilistic correctness of the proposed method.

3.10 Data-driven Verification: Approach

Given a dynamical system Σ, a specification about the initial condition ϕ0, a controller ϕc

and a performance specification ϕp, the goal is to verify that ϕp is satisfied by all the runs

of the system, with high probability, when the control input and initial condition satisfy ϕ0

and ϕc. However, since the system is interacting with the environment, ϕc and ϕ0 alone

typically do not imply ϕp, i.e., the verification fails trivially assuming that the environment

can choose arbitrary behaviors. Therefore, we look for an assumption of the environment

ϕe that explains the observed data with high probability and such that Σ∧ϕ0∧ϕe∧ϕc ⇒ ϕp

holds, where the implication is understood as

∀(x(t), u(t), d(t)), ((x(t), u(t), d(t)) |= Σ ∧ ϕ0 ∧ ϕc ∧ ϕe) ⇒
(
(x(t), u(t), d(t)) |= ϕp

)
.

We propose a framework that learns ϕe by using a falsification procedure in the loop,

in addition to data of interaction between the system and the environment. Figure 3.10

depicts an overview of the framework being proposed. The falsification module takes a

fixed controller, the reactive bound of the environment, and the specification ϕp as inputs,

and either returns traces of the system evolution and the environment behavior that falsify

ϕp under the given controller, or returns a flag saying that no falsifying trace could be found.

In particular, we use the tool S-Taliro as an oracle falsifier, which uses stochastic sampling

and can handle STL formulas: see [4] for details. When the falsification returns no trace, the

procedure terminates and the verification is successful. When falsifying traces are found,

they are fed into the reactive modeling module where the positive traces collected from

the actual interaction with the environment and the negative traces from the falsification

module go through a classification process and the output is a reactive bound that maps

the agent’s state x to a set of possible behaviors d for the environment, denoted as Sd(x).

To obtain a bound on the influence of x on the environment response d, we want to find a

69

Figure 3.10: Verification with reactive modeling of the environment

function h : X × D → R such that h(x, d) ≥ 0 indicates that d is possible under x, and

h(x, d) < 0 indicates that d is not possible under x. The set of possible behaviors for the

environment given by the reactive bound can be represented as

Sd(x) = {d | h(x, d) ≥ 0} . (3.12)

Remark 10. Since the data is in the format of snapshots, ϕe is limited to the form�ϕ where

ϕ has no dependence on time. One could use a parameterized form for ϕe and project the

traces to the parameter space, such as in [117], but this limits ϕe to having only monotonic

atoms.

3.10.1 L1 Piecewise SVM for Reactive Modeling

Given the positive and negative traces, we need to learn an indicator function h, which then

gives rise to the reactive bound. This can be solved as a classification problem. There

are numerous classification tools in the literature, such as neural networks and logistic

regression. For the reactive modeling problem, in addition to good classification accuracy,

the following two requirements are critical: i) the probability of false negative should be

low, even for the unseen data, and ii) the classification result h should have an analytic form

for its classification boundary. For the first requirement, note that h(x, d) < 0 indicates

that d will not happen under x, and the verification process will ignore such environment

input under x. Therefore, the probability of false negative should be very low to guarantee

the correctness of the reactive bound and consequently guaranteeing safety. The reliability

70

analysis of the proposed approach is based on the theory of RCP, which we discuss in detail

in Section 3.10.2. For the bound in Lemma 9, wewould like the number of parameters for the

classifier to be small – this prevents overfitting, and enables us to provide better probabilistic

guarantees. The second requirement comes from the fact that the reactive bound will be

used explicitly during verification and control synthesis. Therefore, its explicit form should

be known.

Due to the two requirements, we choose SVMswith explicit features as the classification

method. SVMs fit into the setup of Lemma 9 if the positive data is sampled from an i.i.d.

distribution. In particular, we propose an novel expressive L1 piecewise SVM, which is

based on the work on L1 SVM in [?]. [?] showed that with a proper cost function, the

following optimization solves the L1 SVM:

min
v,c,M

kᵀM

s.t. ‖v‖ ≤ 1, yi = 1⇒ Mi ≥ 0,

∀i = 1, ..., N, vᵀφ(zi)yi − Mi + cyi = 0,

(3.13)

where zi ∈ R
m is the i-th data point and φ : Rm → Rp maps the data to the feature space,

the flag yi = 1 for positive data points and yi = −1 for negative data points. v ∈ Rp is the

support vector and c is the offset, therefore the Helly dimension is p + 2. M ∈ RN is the

slack vector and k is the cost vector with ki > 0 for all i. It is required that all the positive

data points are correctly classified (no false negatives), which is needed for the reliability

proof.

However, the L1 SVM suffers from the lack of expressibility, especially for high-

dimensional d. We propose two improvements on the SVM: i) Algorithm 4, which generates

multiple separating hyperplanes and represents the positive data region as a polytope. ii)

Based on Algorithm 4, we introduce Algorithm 5, which allows a piecewise structure

for the SVM where a different polytope represents the positive data in each region, and

automatically synthesizes the piecewise regions.

The original SVM generates one separating hyperplane in the feature space, which

results in a reactive bound with a smooth boundary in X × D. In order to make the

71

reactive bound more expressive, we propose a piecewise L1 SVM with multiple separating

hyperplanes. SVM with multiple separating hyperplanes is achieved with the following

greedy algorithm:
Algorithm 4: L1 SVM with multiple separating hyperplanes

Input: positive data φp, negative data φn

φactive
n ← φn for i=1:Nh do
Perform L1 SVM with φp and φactive

n , get vi, ci, slacks Mp, Mn

φactive
n =

{
φactive

n (j)|Mn(j) ≥ ε
}

end

Nh is the number of separating hyperplanes, φactive
n is the set of negative data points

that are close to the farthest separating hyperplane, ε is the threshold for picking φactive
n and

Mp and Mn are the slacks for positive and negative data. Each SVM computation generates

one hyperplane with vi and ci and the indicator function is h(z) = min
i=1,.,Nh

{
(vi)ᵀz + ci

}
.

We can further improve the expressibility by introducing a piecewise structure , which

is particularly helpful when the problem itself has a piecewise structure, as demonstrated

in Section 4.5.2. Moreover, we develop an auto-tuning piecewise SVM that adjusts the

dividing point automatically based on the data by the use of membership functions.

For clarity, we present the piecewise SVM with 2 regions, but note that it can be easily

extended to cases with more than 2 regions. Let g : Rn → R be a scalar function and κ be

a scalar variable. We will divide the state space by the threshold g(z) = κ. First, define the

membership functions using the sigmoid:

m1(z, κ) =
1

1 + exp(γ(g(z) − κ))
, m2(z, κ) =

exp(γ(g(z) − κ))
1 + exp(γ(g(z) − κ))

,

where γ is a tuning parameter that controls the steepness of the sigmoid. Note that

m1(z, κ)+m2(z, κ) = 1. When there are d > 2 regions, one simply constructs d membership

functions that are non-negative and add up to 1. With 2 regions, the original feature is

extended to φ̄(z) = [m1(z, κ) · φ(z); m2(z, κ) · φ(z)]. We then perform L1 SVMwith this new

feature vector.

Once the SVM is trained, notice that by equation (3.13), Mi = vᵀφ̄(zi)yi + dyi, taking

72

derivative of the objective function over κ, we have

d(kᵀM)
dκ

=
∑

i
kiyi

d(vᵀφ̄(zi))

dκ
=

∑
i
kiyi

(
v1:p
ᵀφ(zi)

∂m1
∂κ
+ vp+1:2p

ᵀφ(zi)
∂m2
∂κ

)
,

∂m1
∂κ

����
z
= −

∂m2
∂κ

����
z
=

γm1(z, κ)
1 + exp(γ(g(z) − κ))

,

so we obtain the analytic form of the gradient of the objective function over κ. The overall

algorithm alternates between the L1 SVM and optimizing over κ by gradient descent, as in

Algorithm 5.

Remark 11. The setup for L1 SVM allows for piecewise cost function of M by splitting

M = M+ + M− with M+ ≥ 0, M− ≤ 0: see [?] for detail. In the gradient descent step, we

maintain the constraint by assigning a large penalty on M−.

Algorithm 5: Auto-tuning piecewise L1 SVM

Initialize κ for iter=1:T do
Compute membership functions m1, m2

Perform Algorithm 4 with φ̄(z) = [m1(z) · φ(z); m2(z) · φ(z)]

Perform gradient descent to optimize κ
end

3.10.2 Reliability Analysis with RCP

Next, we provide reliability analysis for the reactive bound. For the ordinary L1 SVM, we

have:

Theorem 12. Given a positive data set with N points drawn i.i.d. from a fixed (not

necessarily known) distribution, and a negative data set, let p be the dimension of the

feature vector φ(z), p + 2 < N , the L1 SVM in equation (3.13) is always feasible. Denote

the solution as [v, c], which satisfies vᵀφ(zi) + c ≥ 0, where zi is the i-th positive data

point for i = 1, 2, ..., N . Then for an unseen data point zN+1 from the same distribution, for

0 < ε < 1, we have

P {P {¬(vᵀφ(zN+1) + c > 0)} > ε} ≤
∑p+2

j=0
ε j(1 − ε)N− j . (3.14)

73

Proof. Feasibility can be seen by noticing that the problem is convex and [w, c, M] = 0 is

a solution. Then note that M can be completely eliminated and represented as a function

of [w, c] by the equality constraint, and Helly dimension is upper bounded by p + 2 [65].

Thus the upper bound on the probability of misclassification for unseen data is obtained by

directly using Theorem 3.3 in [20]: see the proof therein.

Theorem 12 gives an upper bound for the probability of the probability of misclassifi-

cation for unseen data to be higher than a threshold, which decreases with the size of the

dataset N and increases with the feature dimension p. For SVM with Nh hyperplanes, we

provide the following corollary.

Corollary 13. Given the condition in Theorem 12, the L1 SVM with Nh separating hyper-

planes is always feasible and define ε̄(k, N) = min
0≤ε≤1

ε +Φ(ε, k, N)(1− ε), whereΦ is defined

in (3.11), then for any 0 ≤ ε′ ≤ 1,

P

{
P

{
¬

(
Nh∧
i=1
(vi)ᵀφ(zN+1) + ci > 0

)}
> ε′

}
≤
ε̄(N, p + 2)Nh

ε′
.

Proof. The multi-hyperplane SVM can be viewed as the conjunction of Nh SVMs, therefore

we have

P(

Nh∨
i=1
((wi)ᵀφ(zN+1) + ci < 0)) ≤

Nh∑
i=1
P((wi)ᵀφ(zN+1) + ci < 0), (3.15)

where for each probability on the right, by Theorem 12, we have P(P((wi)ᵀφ(zN+1) + ci <

0) > ε) < Φ(ε, p+2, N). Since this is true for all 0 ≤ ε ≤ 1, we haveE{P((wi)ᵀφ(zN+1)+ci <

0)} ≤ min
0≤ε≤1

ε + Φ(ε, p + 2, N)(1 − ε), denoted as ε̄(N, p + 2). It is easy to check that this

minimum is taken on a bounded function of ε on a compact set, therefore the minimum can

always be obtained. Then by Markov inequality, we have for 0 ≤ ε′ ≤ 1,

P

{
Nh∑
i=1
P((wi)ᵀφ(zN+1) + ci < 0) ≥ ε′

}
≤

Nh∑
i=1
E{P((wi)ᵀφ(zN+1) + ci < 0)}

ε′

≤
ε̄(N, p + 2)Nh

ε′
. (3.16)

74

Remark 14. The auto-tuning piecewise SVM in Algorithm 5 changes the optimization

problem every time it updates κ, which does not allow us to directly apply Theorem 12.

To overcome this, a simple solution is to separate the positive data points into two batches,

using the first batch to find a good separation of the state space, i.e., find a good κ, and

the second batch to obtain the reactive bound while fixing κ. The size of the second batch

determines the probability of misclassification.

3.11 Data-Driven Verification: Case Study

3.11.1 Multi-robot Navigation

As a toy example, we consider a multi-robot navigation problem consisting of two robots as

shown in Figure 3.11. We denote the positions of the two robots by p1, p2 ∈ [−l, l]2 ⊂ R2.

The robots are characterized by the integrator dynamics Ûpi = vi, where i ∈ {1, 2} and vi

satisfies ‖vi‖2 ≤ vmax . The specification for the system is to always maintain distance, i.e.,

it has to satisfy the specification�[0,T]connected, where T is the time horizon for the STL

specification and connected is a predicate defined by: connected , |p1 − p2 | ≤ rmax.

Here rmax can be thought of as the maximum communication range. The red robot R1 is

the controlled robot and it simultaneously pursues two objects, a moving target T1 (with

bounded velocity), and the blue robot R2. It follows a given controller, which in simulation

is set to be

v1 = satvmax(k1(pT − p1) + k2(p2 − p1)), (3.17)

with gains k1 and k2, where pT denotes the position of the target and sata(x) = x if |x | ≤ a

and a x
|x | otherwise. The motion of the blue robot R2 follows a “black-box” controller, and

we would like to learn an overapproximation of its possible behavior as a function of the

state. In particular, we pick a controller with a piecewise structure depending on the location

R2:

v2 = satvmax
©«

−0.4 −β

β −0.4

 (p2 − p1) + ∆v2
ª®¬ , (3.18)

75

where ∆v2 is a bounded random noise and β = 1 if p2,1(t) ≤ 0 and −1 otherwise (p2,1 denote

the X coordinate of R2). The above controller roughly makes R2 spiral counter-clockwise

towards R1 on the left half plane, and spiral clockwise on the right.

To initiate the process, we first collect data with simulation by enforcing equation (3.17)

and (3.18) on R1 and R2 and let T1 move randomly in the state space. The positive data

collected consists of tuples of [p1, p2, v2]. Recall equation (3.12): In the two robot case, the

state x is [p1, p2], and the environment input d is [v2, vT], where vT = ÛpT is the velocity of

the target. We do not explicitly learn a reactive model of vT and the only constraint for which

is the norm bound. In the falsification process, the falsifier can choose v2 and vT while v1

follows equation (3.17). When no reactive bound is in place, the only constraint for v2 is

the norm bound vmax, and the falsifier can easily find falsifying traces. The falsifying traces

then generate negative data points with the same structure as the positive data, which is then

fed to the reactive modeling module. The reactive modeling module utilizes the auto-tuning

piecewise L1 SVM algorithm introduced in Section 3.10.1 with 3 separating hyperplanes

and g(x) = p2,1 to construct a reactive bound. We choose features that are linear in v2 so that

the resulting reactive bound is a polytope Sv2([p1, p2]) ∈ R
2, given [p1, p2]. The reactive

bound is then fed to the falsifier, which would project the raw input of v2 to Sv2([p1, p2]).

Since we construct the features for the SVM such that Sv2 is a polytope, the projection is

easily solved with quadratic programming.

After 5 iterations of updating the reactive bound, the falsifier cannot find a falsifying

trace, whichmeans that the controller is verified under the learned reactive bound. Moreover,

it turns out that the threshold κ converges to 3 × 10−3, which is very close to the actual

threshold at κ = 0.

Figure 3.11 shows the two robot positions with corresponding reactive bounds. When

R2 is on the right, the reactive bound allows it to spiral clockwise, while the direction

of spiraling flips on the left side. But importantly, the worst-case v2, which is to move

away from R1 with vmax is not allowed in both cases. For this example, we use 40, 000

snapshots with 45 features for the SVM. For ε = 0.01, P(P(misclassification) ≥ ε) < 0.007

by Corollary 13.

76

Figure 3.11: Two robot scenario and Reactive bounds.

3.11.2 Lane Change

A practical application of the proposed method is verification of the lane-change control

for autonomous driving. We would like to guarantee with high probability that a given

controller can safely finish a lane change within a given horizon. We consider a scenario

as depicted in Figure 3.12, where the autonomous vehicle (AV) attempts to make a lane

change with the human-driven vehicle (HV) on the back. The state of the system is

Figure 3.12: Lane-Change Scenario

x =
[
∆X ∆Y ∆v ψ

]ᵀ
, where ∆X and ∆Y are the longitudinal and lateral coordinate

differences between the two vehicles, ∆v is the velocity difference and ψ is the heading

77

angle of the AV. The input of AV are the acceleration a1 and yaw rate r1, and the input of

the HV is the acceleration a2. The dynamics is given by

Ûx =
[
∆v v1sin(ψ) a1 − a2 r1

]ᵀ
. (3.19)

The specification for the problem is to always not collide and keep within the lane, and

eventually finish the lane change within horizon T . Formally, the specification is expressed

in STL:

�[0,T](¬COL ∧ LK) ∧ ♦[0,T]LC, (3.20)

where COL stands for collision, LC stands for lane change and LK stands for lane

keeping, which all can be represented as subsets of the state space:

COL⇔ |∆Y | ≤ a ∧ |∆X | ≤ b

LC⇔ |∆Y | ≤ ε

LK⇔ 0.5w − 0.5b ≥ ∆Y ≥ −1.5w − 0.5b,

, (3.21)

where a, b are the length and width of a typical car, w is the width of a lane and ε ∈ R+
is a small constant. As an example, we consider a model-predictive control scheme with

mixed integer programming as the controller for the AV. As shown in Figure 3.12, the

AV should stay within the union of the two colored regions within the prediction horizon

T , which is enforced by the “big M” procedure as a mixed integer linear constraint. The

MPC controller takes the current value of a2 and assumes an exponential decay within the

prediction horizon a2(t) = a2(0)e−t/τ. This is not accurate but a heuristic prediction used

to plan for the controller. The lane keeping constraint is also enforced as a linear constraint

and the objective function penalizes ∆Y , driving the vehicle to finish the lane change.

The lane-change problem was studied in [?], and we use the same source for positive

data, which is from the safety pilot model deployment (SPMD) database with more than 50

million miles of naturalistic driving data [14]. The feature structure is also inherited from

[?]. Following the procedure shown in Figure 3.10, the falsification tool starts with simply

the physical limit of a2 and tries to falsify the specification in equation (3.20), the falsifying

78

traces are then broken into snapshots and treated as negative data. The SVM procedure then

generates the reactive bound for a2. In the lane-change case, it is not difficult to see that the

safety specification is monotonic w.r.t. a2, i.e., it is always safer for the HV to decelerate.

Therefore, the reactive bound for a2 is in the form of an upper bound a?max(x) that changes

with the state x.

(a) Falsify by blocking

(b) Falsify by collision

(c) Success run

Figure 3.13: Verification of lane change

The result of verification for the MPC controller is shown in Figure 3.13. Without the

reactive bound, the falsification procedure is able to falsify the specification by accelerating

79

and blocking the AV from finishing a lane change, as shown in Figure 3.13a, and the

verification procedure terminates after a maximum iteration number. After 4 iterations, the

SVM presented in Section 3.10.1 generates a reactive bound that makes the falsification

infeasible, i.e., verifies that the MPC controller satisfies the specification and a success run

is shown in Figure 3.13c. However, when we remove the collision avoidance constraint in

the MPC controller, the falsification tool finds a falsifying trace by causing a collision with

the AV (Figure 3.13b), thereby providing feedback for the controller design process.

Run-time considerations The mean run times over 5 runs are 4977 s and 29.6 s for the

robot problem and for the lane-change problem, respectively.

Remark 15. Not every snapshot from the falsifying trace is included in the negative data.

We use an ad hoc selection scheme to pick out ‘important’ snapshots based on criterion such

as the distance between the robots (Section 4.5.2), and lateral position for the AV (Section

3.11.2).

3.12 Discussion: Data-driven Verification

In Section 3.10 we presented a framework that combines falsification and specification

learning to learn an overapproximation of the reactive behavior of the environment from real

data. There are two key parts of the algorithm, the falsifier and the reactivemodelingmodule.

The falsifier can handle specifications written in temporal logic and generate falsifying

traces, which is then used by the reactive modeling module together with the positive

data to generate the reactive bound. The reliability of the reactive bound is guaranteed

by the theory of RCP, which can give probabilistic guarantees determined by the amount

of data available. In Section 3.11, we showed the capability of the proposed framework

to handle nonlinear environment behavior. We also demonstrated the applicability of the

approach to a practical problem in autonomous driving with real-world human-driving

data. The framework presented here provides a general approach for the diagnosis of

autonomous agents interacting with complex environments, such as in the case of human-

robot interaction.

80

Chapter 4

Verifying, Interpreting and Debugging
Learned Systems

While neural networks have demonstrated significant potential as key building blocks of

intelligent systems, and have shown immense progress on diverse tasks [91, 105, 109],

they are often deployed without formal guarantees of their correctness and functionality.

However, interpreting the behaviors of complex neural networks and characterizing their

exact behaviors is an extremely difficult task, which poses a major challenge to their

use in safety-critical systems. Their performance is typically evaluated using test data,

or sometimes with adversarial evaluation [21, 45, 114, 119]. However, such evaluation

does not provide formal guarantees regarding the absence of rare but possibly catastrophic

failures [1, 99, 115]. Another related direction is the formal analysis of neural networks,

where there has been significant progress on developing faster algorithms for validating

or falsifying formal properties of whole neural networks directly through their encoding

as constraint satisfaction problems [19, 75, 125]. Along this direction, most of the focus

in this direction has been restricted to feedforward networks and robustness to adversarial

perturbations [78, 98, 112]. A recent direction for training reliable neural networks that has

shown promise is that of folding the verification procedure into the training loop [59, 90].

Following training, this allows us to provide formal guarantees using tractable algorithms

in a scalable manner.

We build on the aforementioned progress in evaluating and designing reliable neural

networks by making two key contributions:

81

• First, we propose an alternative approach for analysis of neural networks that involves

decomposing the large networks into modules, in contrast with the more commonly

studied approaches that perform a monolithic analysis on the neural network [19,

75, 125]. Such monolithic analysis often does not provide a lot of insight into the

functioning of the neural networks. Performingmodular analysis is a standard practice

in software program analysis [67]. A crucial component for enabling such modular

analysis is that we must be able to represent and manipulate pre-images of programs,

or computable functions in general. On neural networks, this translates to being able

to propagate sets of the network outputs backwards through individual neural layers

(as real-valued functions), eventually to the input domain. However, this is in principle

harder than direct constraint solving, because of the requirement of representing and

manipulating high-dimensional geometric shapes that often do not have polynomial-

size representations. Thus, the important question is how to efficiently compute

approximate representations (abstractions) of such pre-image sets, so that they are

both compact and precise enough for enabling formal analysis, interpretation and

knowledge/policy extraction.

To answer this question, in the first part of this chapter we develop algorithms for

computing symbolic abstractions of pre-images of neural networks. We bypass

the difficulty of representing the exact pre-images by maintaining both overapprox-

imations and underapproximations that can be compactly represented as symbolic

constraints. We leverage a recent algorithm for computing symbolic interpolants [2],

where an extension of Farkas’ lemma is used to learn interpolants that have simple

structures. The techniques are applicable because the concepts that are learned by

neural networks are often simple [7]. We exploit the network structures and propa-

gate pre-images of subsets of the output space through each layer to the input space.

We enhance scalability of the algorithms on piecewise-linear neural networks by

designing heuristics for the specific symbolic forms of the abstractions.

Through experiments for two control environments, a cart-pole system and a swim-

mer model, we demonstrate the applicability of the approach for knowledge/policy

82

analysis and extraction. We show that for the multilayer perceptron (MLP) network

policies trained through standard reinforcement learning algorithms, we can extract

knowledge in the form of compact abstractions. For the cart-pole system, the extracted

policy achieves a perfect score. Using the extracted policy we are able to formally

verify/falsify certain complex safety properties. For the swimmer model, we show

how high-torque outputs are mapped to a compact representation in the input space.

• Second, we propose extensions to recent work [59, 90], which is based on propagating

differentiable numerical bounds through deep neural networks (DNNs), to include

temporal specifications that go beyond adversarial robustness and consider novel

auto-regressive architectures such as gated recurrent units (GRUs) [25]/ recurrent

neural networks (RNNs). This is important as many practically relevant systems

involve DNNs that lead to sequential outputs (e.g., an RNN that generates captions

for images, or the states of a reinforcement learning (RL) agent), and there are many

properties of interest that go beyond simple input-output robustness. To handle the

auto-regressive decoder often used in RNN-based systems, we leverage differentiable

approximations of the non-differentiable operations during training.

We also empirically demonstrate the applicability of our approach to ensure verifi-

able consistency with temporal specifications while maintaining the ability of neural

networks to achieve high accuracy on the underlying tasks across domains. For su-

pervised learning, verified training on the training data enables us to provide similar

verification guarantees for unseen test data. We find that verified training results in

robust DNNs whose specification conformance is significantly easier to guarantee

than those trained adversarially or with data augmentation.

4.1 Preliminaries

4.1.1 Neural Networks as Constraints

Consider a neural network f with n layers. That is, f (x) = h.gn.gn−1.g1(x) where gr is

the transfer function representing the map from the input to the output space for layer r and

83

h : Rk → Y is a map from the logits to the k class-labels (e.g., arg max). For example, if a

network has n − 1 layers with ReLU activation and a final linear layer:

gr(z) = max(Wr x + br, 0) ∀r ∈ 1, 2, . . . , n − 1

gr(z) = Wr x + br r = n.

For simplicity, we only discuss neural networks that map to a discrete set of outputs, but the

approach is valid even when the network produces a continuous set of outputs. By y f
i (x), we

refer to the output from the ith layer of the neural network, i.e., y f
i (x) = gi .gi−1.g1(x).

Often, in classification tasks, the outputs from the layer gn are fed through a softmax layer

to normalize the scores.

For the first half of this chapter, we restrict ourselves to networks that can be expressed in

(quantifier-free linear rational arithmetic) QFLRA. A large class of neural networks, namely

piecewise linear neural networks (without the softmax layer) can be expressed as constraints

in the theory of QFLRA. This includes neural networks with activation functions that are

piecewise-linear (e.g., ReLU, Leaky ReLU, MaxOut, MaxPool). We follow the encoding

described in [46]. For example, a ReLU node y = max(0, x) is written as

(y = 0 ∧ x ≤ 0) ∨ (y = x ∧ x ≥ 0).

The entire network is similarly encoded into QFLRA.

As a slight abuse of notation we interchangeably use g(z) to represent the map of z

through the function g, and the first-order logic constraint that enforces the same. For

example, consider the function g(x) = max(0,wT x). We interchangeably use y = g(x) to

also represent the constraint (y = wT x ∧ wT x ≥ 0) ∨ (y = 0 ∧ wT x < 0). For a satisfying

assignment (y, x) for this constraint, we have y = g(x). For a formula ϕ that has a vector of

free variables s, we write x |= ϕ if ϕ interprets to True when we set s = x.

84

4.1.2 Symbolic Interpolants

Symbolic interpolation is a well-studied concept in propositional and first-order logic [30].

Given two quantifier-free first-order formulas A and B, such that A ∧ B is unsatisfiable, a

Craig interpolant I is a formula satisfying

• A =⇒ I;

• B ∧ I =⇒ False;

• I only contain variables that are shared by A and B.

Intuitively, the interpolant I provides an overapproximation of A that is still precise enough

to exhibit its conflict with B, and does not contain redundant information that involves any

variable that is not shared by both A and B. When A ∧ B is not satisfiable, Craig’s inter-

polation theorem guarantees the existence of an interpolant I such that I overapproximates

A and ¬I overapproximates B. These interpolants have found application in compositional

approaches to program verification and SMT solving. In our work, we build on the algo-

rithm from [2] for computing interpolants, as opposed to other approaches based on lazy

SMT that produces complex interpolants. The intuition behind this choice is that simpler

interpolants are more likely to provide general explanations corresponding to the neural

network’s parameters and the task for which the network was trained, rather than complex

ones that may overfit the specific instantiation. Further, simpler interpolants provide the

added advantage of being easier to reason over using automated reasoning engines (e.g.,

z3).

4.2 Computing Pre-Image Abstractions

Here, we outline an algorithm for computing compact abstractions for the pre-images

for piecewise linear neural networks. We first begin by defining pre-images for a neural

network f .

Definition 16 (Pre-images). Consider a neural network f . Let X be the domain and Y

85

be the codomain. The pre-image of a set S ⊂ Y for the neural network f is the set

{x ∈ X | f (x) ∈ S}.

For example, consider a neural network-based cart-pole controller with the action space

{left, right}. The pre-image corresponding to S = {right} is the set of observations

that cause the controller to output right as the action. In the remainder of this chapter, we

refer to this pre-image of set S for the neural network f as Pre f (S). The exact pre-image

of the network for a given set S, in the worst case, can have exponentially many linear

regions. To overcome this we consider abstractions that provably (over) underapproximate

the exact pre-image Pre f (S). The restriction on the structure of S here is that it has to

be expressible in QFLRA, which includes all constraints that have half-spaces as atoms

combined with Boolean operators. Here, in our analysis, we do not consider the softmax

layer as it preserves the ordering amongst scores corresponding to the different classes. For

a vector z ∈ Rm, arg max
i
{zi} = arg max

i
{softmax(z)i}.

We seek to compute approximations for the pre-image that closely approximate the pre-

image, but are provable (super) subsets of the pre-image. The fact that these are provable

(over) underapproximations (unlike the approximated models in [13, 118]) allows us to

prove properties that hold for the neural network itself. For example, suppose we wish

to prove a property that for every input from some set W , the corresponding output from

the neural network does not belong to the set S. By computing an overapproximation

O for Pre f (S) and showing that O ∧ W is not satisfiable we have verified the property.

Similarly, if the property was that every output belongs to some set S, then by computing

the underapproximationU for Pre f (S) and showing thatW =⇒ U is valid, we have verified

the property.

Here, we give a brief overview of the algorithm for computing the overapproximation of

the pre-image for set S. Consider the neural network described earlier. Let p(f ,S)n be the set

of inputs to layer gn of the neural network that lead to the output being in set S. Similarly,

let p(f ,S)n−1 be the set of inputs to layer gn−1 of the neural network that result in outputs in S.

Note that p(f ,k)n is the set of assignments to s that satisfy

h(gn(s)) |= S.

86

For the other layers (r < n), we can iteratively define p(f ,S)r as assignments to s that satisfy

p(f ,S)r = {s |gr(s) |= p(f ,S)r+1 }. (4.1)

The core idea is to begin by computing an approximate representation of p(f ,k)n , and using

this to then compute the approximations for p(f ,k)n−1 . Then, by iterating through the layers of the

network, we can compute an approximation for Pre f (S). Computing these approximations

involves proving the interpolation condition (see Section 4.2.1). We could compute the

approximation across the entire network, but proving the interpolation condition for the

entire network is computationally expensive. This is because the worst-case complexity

of proving properties for piecewise-linear networks scales exponentially in the number of

nodes under consideration [75]. The layer-wise approach breaks down the problem, where

we compute approximations for each layer. This requires proving properties across one

layer at a time and can be further simplified to computing approximations over sets of nodes

instead of entire layers.

4.2.1 Computing Overapproximations

Here we outline how to compute a useful overapproximation of p(f ,S)r , assuming we have

the overapproximation of p(f ,S)r+1 . Denote the overapproximation of p(f ,S)r+1 as O(f ,S)r+1 with

O(f ,S)n+1 = S. First, consider a set of randomly chosen points X̄ , either by sampling from the

input domain or from the training data. Let XS ⊆ X̄ be the set of points such that for every

x ∈ XS, f (x) < S. Introduce the auxiliary free variable vector p̄r and construct the formula

φr−1 :=
∨
x̄∈XS

(
p̄r = y

f
r−1 (x̄)

)
. (4.2)

This formula allows p̄r to assume the value of the output at layer gr−1 corresponding to

inputs from XS. Recall that y f
r−1(x) = gr−1.gr−2 . . . g1(x), i.e., y f

r−1(x) is the vector of

activation values corresponding to x from layer r − 1 of the network. Now, consider the

formula

ξr := gr(p̄r) |= O(f ,S)r+1 . (4.3)

87

Note that the set of valid assignments for p̄r represents an overapproximation of the set

p(f ,S)r . This is because

(
gr (p̄r) |= p(f ,S)r+1

)
=⇒

(
gr (p̄r) |= O(f ,S)r+1

)
,

which follows from O(f ,S)r+1 overapproximating p(f ,S)r+1 and as a consequence of equation (4.1).

Lemma 17. If O(f ,S)r+1 ∧ φr is unsatisfiable, then the formula ξr ∧ φr−1 is unsatisfiable for

each r ∈ {1, 2, . . . , n}.

Proof. Assume O(f ,S)r+1 ∧ φr is unsatisfiable. Suppose ∃p̄r satisfying φr−1 and ξr . By

definition of φr , we have gr(p̄r) |= φr and by equation (4.3), gr(p̄r) |= O(f ,S)r+1 . This results in

a contradiction since O(f ,S)r+1 ∧ φr is unsatisfiable.

Lemma 18. If O(f ,S)r+1 ∧ φr is unsatisfiable, ∃Ir that satisfies the following:

p(f ,S)r =⇒ ξr =⇒ Ir, (4.4)

Ir =⇒ ¬φr−1. (4.5)

Proof. Lemma 17 and Craig’s Interpolation theorem guarantee the existence of an Ir satis-

fying the two conditions.

Lemma 18 guarantees the existence of an overapproximator of p(f ,S)r that is disjoint

from the set of sampled points that map to the complement of S. This ensures that the

overapproximations do not get arbitrarily slack as we propagate the interpolants through

the layers and remain tight. Further, since we use the algorithm from [2] that is designed

to compute simple interpolants, they are likely to generalize to other data points. A formal

description is provided in Algorithm 7. Note that Ir is only a function of the p̄r (the only

shared free variables between φr−1 and ξr). Figure 4.1 outlines the setup for a single layer.

4.2.2 Bounding the Problem

The interpolants computed that serve as overapproximations are in the disjunctive normal

form (DNF) with the atoms being half-spaces. The convergence of the algorithm for

88

Figure 4.1: Illustration of the approach. ξr is the set of inputs to layer gr(.) that map into
the overapproximating abstraction for the subsequent layer gr+1(.). φr−1 is a set of inputs
to layer gr(.) sampled so that the neural network maps them to outside the set S, where S is
the set whose pre-image is being abstracted.

computing the interpolant can be made faster by restricting the domain in which φr−1 and

ξr need to be separated by the interpolant. Given a lower bound (lr) and an upper bound

(ur) on the outputs y f
r , we can construct an additional constraint Br defined as

Br := (p̄r ≤ ur) ∧ (p̄r ≥ lr).

We then compute the interpolant such that (Br ∧ ξr) =⇒ Ir and Ir =⇒ ¬φr−1. To

compute ur and lr we use the relaxation proposed in [46]. In most tasks, the inputs come

from a bounded domain. For example in image processing, pixels have values ranging

between 0 and 255. These bounds can then be propagated through the network as in [46]

using a convex relaxation of the network. Every ReLU node y = max(0, x) that behaves

non-linearly is approximated with its convex hull:

y ≥ 0, y ≥ 0, y ≤ ux
x − lx

ux − lx
. (4.6)

89

Using this relaxation for the nonlinear constraints results in a linear program (LP). By

optimizing over the resulting LP, the bounds for the nodes can be computed in a sequential

manner, starting with the input layer. These bounds can further be tightened by splitting the

input domain as in [19], but for our work we do not split the input domain. As an added

benefit, bounding the problem makes checking the interpolation condition significantly

faster.

Algorithm 6: Computing compact abstractions
Output
:

Returns Simple Overapproximator of Pre(S)

1 Compute ∀x̄ ∈ XS, y f
1 (x̄) = g1(x̄)

2 Compute l1, u1 and B1
3 for r=2 . . . n do
4 Compute ∀x̄ ∈ XS, y f

r (x̄) = gr(x̄)
5 Compute lr , ur and construct Br

6 end
7 for r=n . . . 1 do
8 Construct φr−1 (See equation (4.2))
9 Construct ξr ∧ Br (See equation (4.3))
10 Compute Ir satisfying equations (4.4) and (4.5)
11 Set O(f ,S)r = Ir

12 end
13 return O(f ,S)1

Theorem 19. (Soundness and Completeness) Algorithm 7 always terminates to return an

overapproximator O(f ,S)1 of Pre(S). Further, O(f ,S)1 is disjoint from XS.

Proof. At r = n, by construction we have O(f ,S)r+1 ∧ φr is not satisfiable. Lemmas 17 and 18

guarantee the existence of an overapproximator (interpolant) satisfying equations (4.4) and

(4.5). The algorithm from [2] is both sound and complete, and hence is guaranteed to find

an interpolant if one exists. For r = n − 1, we again have that O(f ,S)r+1 ∧ φr is not satisfiable

since O(f ,S)r+1 =⇒ ¬φr (equation (4.5)). Repeating the arguments above, for every r ≤ n,

we compute O(f ,S)r+1 (Ir) satisfying equations (4.4) and (4.5). Hence, Algorithm 7 terminates

to return an overapproximator for Pre(S) (equation (4.4)) that is disjoint from XS (equation

(4.5)).

90

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
XS

Computed
 Overapproximation

1.0 0.5 0.0 0.5 1.0

X¬S

Computed
 Underapproximation

Figure 4.2: Left: An overapproximation of the region classified by the network as the third
quadrant. Right: An underapproximation of the region classified by the network as the third
quadrant. The overapproximation and the underapproximation are close to each other. It
can be observed that in both the under and the overapproximations, parts of the third and
the fourth quadrant are misclassified – this indicates faulty behavior for the neural network
f .

4.2.3 2D Example

To illustrate the ideas developed above, we introduce a small example. Consider a simple-

neural network f : R2 → R4, with two hidden layers with 10 ReLU nodes in each layer. The

network is trained to predict which quadrant a point x belongs to and achieves an accuracy

of 99.65% on hold-out data. Here, arg max(f (x)) represents the quadrant x belongs to.

Along each dimension, the input is restricted to the domain [−1, 1]. Here, we are interested

in computing a compact representation of the set the network classifies as the third quadrant.

To compute an overapproximation, we sample a set of 150 points that are classified as being

outside the third quadrant by the neural network. Here, O f ,S
n =

∧
j=1,2,4

(y3 > y j) where y =

f (x) is the output of the neural network. To compute the underapproximation, we sample

50 points that are classified as being in the third quadrant. Here, O f ,S
n =

∨
j=2,3,4

(y3 < y j) and

Figure 4.2 depicts the over and underapproximations computed. The overapproximation

computed is a union of 5 polytopes while the underapproximation computed consists of 2

polytopes.

91

4.3 Computing Pre-Image Abstractions: Algorithms

The core of the computational effort in Algorithm 7 comes from Line 10 where the in-

terpolant Ir is computed. Computing the interpolant for two constraints A and B has the

following key steps:

• Sampling polytopes satisfying A and B and separating them with Farkas’ lemma.

• Checking the conditions A =⇒ I and I =⇒ ¬B, and generating counter examples

(if any).

• Merging and splitting of the polytopes into sets, which are then separated by Farkas’

lemma.

Counterexample-guided abstraction refinement (CEGAR) [29] – checking the interpolation

condition and generating counterexamples to refine the abstraction – is integral to computing

the interpolants. The sampling at the first stage of CEGAR can done with training samples,

and subsequently an oracle can be used to find counterexamples to the condition A =⇒ I

and I =⇒ ¬B. Checking the conditions A =⇒ I and I =⇒ ¬B using an external oracle

turns out to be the most expensive part of the algorithm.

Note that in our work A encodes the behavior of a layer of the neural network (with

the nonlinearity), and conventional SMT solvers are inefficient at verifying properties for

nonlinear neural networks. For checking A =⇒ I, we use the framework PLNN-v from

[19] designed for verifying piecewise-linear neural networks. PLNN-v utilizes an encoding

where the network and the property to be verified are encoded as a single network (f̄), and

an optimization problem is solved to determine if there exists an input to generate an output

whose value is greater than 0. If there is none, the property is unsat over the input domain

for original neural network f . A =⇒ I is verified by checking that A∧¬I is unsatisfiable.

Recall that for each r , O f ,S
r is in DNF with linear atoms. For a layer gr(.), A has the form

(s = gr (p̄r)) ∧

(∨
i

Tis ≤ ti

)

92

and I has the form
(∨

i
Qm p̄r ≤ qm

)
. Then, A ∧ ¬I can equivalently be written as

(s = gr (p̄r))) ∧ (−max(max
i
(−max

j
(−Qi, j p̄r + qi, j),

−max
m
(−max

n
(−Tm,ns + tr)) ≥ 0).

(4.7)

This can then be encoded into a neural network with gr(.) as the first layer followed by a

sequence of MaxPool layers to encode the above constraint. For checking I =⇒ ¬B we

use the SMT solver z3 [37].

Splitting Heuristic The algorithm for computing interpolants from [2] relies on sampling

and separating sets of polytopes SA and SB satisfying formulas A and B, respectively. The

objective is to separate the sets of polytopes by sequentially applying a set of merging and

splitting heuristics with hyperplanes generated using Farkas’ lemma. If the two sets of

polytopes cannot be separated by a single hyperplane, the sets are broken down into smaller

subsets using the unsat-core returned by z3. However, generating the unsat-core

is computationally expensive and further, we do not use z3 for checking A =⇒ I.

Alternatively, we develop an intuitive heuristic where we first consider one polytope each

satisfying Ai ∈ SA and Bi ∈ SB. Then, we compute a separating hyperplane 〈w, x〉 + b = 0

such that 〈w, x〉 + b < 0 =⇒ Ai and 〈w, x〉 + b > 0 =⇒ Bi. Subsequently, we check if

any of the other polytopes in our set are already separated by this hyperplane. If there exists

a polytope p satisfying A that is not separated by the hyperplane, we combine p with the

rest of the separated polytopes from A and compute a new hyperplane 〈ŵ, x〉 + b = 0. If we

cannot compute such a hyperplane, we split p from the rest. This is outlined in Algorithm

7, and the polytopes returned by Algorithm 7 are split from the initial set. In Algorithm 7,

x is the set of shared free variables for formulas A and B.

Merging Heuristic In [2], the heuristic used for merging is to group together polytopes

based on the syntactic similarity. However, for our problem all the sampled polytopes

corresponding to the generated counterexamples during CEGAR are syntactically similar.

Instead, wemerge the polytopes into the set that has the closestmatching pattern of activation

93

Algorithm 7: Splitting Heuristic
Input : SA = {A1, . . . , Ac} (Polytopes satisfying A), SB = {B1, . . . , Bd} (Polytopes

satisfying B)
Output
:

Set of polytopes to be split from SA and SB.

1 Set Acount = 1,Bcount = 1
2 Compute (w, b):〈w, x〉 + b = 0 separates A1, B1
3 Asat-set = ∅, Bsat-set = ∅, Unsat-Set = ∅
4 while Acount ≤ c ∨ Bcount ≤ d do
5 Aold-count = Acount, Bold-count = Bcount
6 for i = Aold-count, . . . , c do
7 Acount = Acount + 1
8 if Ai < Asat-set then
9 if 〈w, x〉 + b < 0 =⇒ A then
10 Asat−set = Asat−set ∪ {Ai}

11 else
12 S̄A = Asat−set ∪ {Ai}

13 end
14 try:
15 Find (w, b) to sep. S̄A, Bsat-set
16 catch:
17 Unsat-Set = Unsat-Set ∪ {Ai}

18 break
19 end
20 end
21 end
22 for i = Bold-count, . . . , d do
23 Bcount = Bcount + 1
24 if Bi < Asat-set then
25 if 〈w, x〉 + b > 0 =⇒ B then
26 Bsat−set = Bsat−set ∪ {Bi}

27 else
28 S̄B = Bsat−set ∪ {Bi}

29 try:
30 Find (w, b) to sep. S̄B, Asat-set
31 catch:
32 Unsat-Set = Unsat-Set ∪ {Bi}

33 break
34 end
35 end
36 end
37 end
38 end
39 return Unsat-Set

94

Figure 4.3: Runtimes for computing abstractions. Left: Varying number of nodes in every
hidden layer. Right: Varying depth of the trained neural network. The run-time scales
exponentially with increasing number of nodes, this is because the worst-case complexity
of checking the interpolation condition scales exponentially in the size of the hidden layer.
The run-time scales almost linearly with increasing depth.

(a) (b)

Figure 4.4: (a) Cart-pole system: the neural network controller is abstracted into simple
control laws, (b) Swimmer-robot: the set of inputs corresponding to high-torque outputs
are abstracted into a simple representation.

states (e.g., constant or linear for ReLU nodes), in terms of Hamming distance. This results

in data points/counterexamples that have similar nonlinear activation patterns being grouped

together.

95

Figure 4.5: Computed abstractions for the neural network cart-pole controller. Left: Varying
x, θ with (Ûx, Ûθ) = 0. Right: Varying θ, Ûθ with (x, Ûx) = 0

4.4 Computing Pre-Image Abstractions: Experiments

In this section, we implement and test our approach with neural networks trained onmultiple

tasks.

4.4.1 2D Toy-Example

We use the simple 2D-example introduced in Section 4.2.3 to study the scalability of the

approach. On the same task, we train networks of varying sizes and measure the run

times for computing underapproximations of the third quadrant, as classified by the neural

network. Figure 4.3 depicts the run times for different network sizes.

Robustness We use the computed underapproximations to verify the robustness of the

classifier. Robustness has been extensively studied for classifiers, particularly in image

processing [22, 110]. For a given input x and the corresponding output-label k, we say the

classifier f is ε robust if

∀x̄ : ‖ x̄ − x‖∞ ≤ ε, f (x̄) = k .

To measure the robustness of the networks trained on this task, we compute both an

underapproximation U f ,S and an overapproximation O f ,S of the pre-image corresponding

to third quadrant for a network with 4-hidden layers and 16 nodes per hidden layer. For a

set of 50 points from the third quadrant and ε = 0.5 (recall the problem domain is [−1, 1]

along each dimension), we check with z3 for each point if there exists a counterexample

96

satisfying

‖ x̄ − x‖∞ ≤ ε, x̄ < U f ,S, and ‖ x̄ − x‖∞ ≤ ε, x̄ < O f ,S .

If a counterexample is found for both conditions, the point is not robust, and if a coun-

terexample is found for the underapproximation but not the overapproximation, the point’s

robustness is unknown. If no counterexample is found for both conditions, the point is

robust. We are able to validate/invalidate the robustness of 49 points and for one point,

the result is unknown, and verifying these set of properties using the computed abstrac-

tions takes 1.4 s. This shows that the approximations are quite accurate for this task. The

computations were performed on a 2.40 GHz quad-core machine with 16 GB of RAM.

4.4.2 Cartpole Control

We consider the classical control problem introduced in [12]. The inputs to the network are

observations from a four dimensional state space comprising of the position of the cart (x),

the velocity of the cart(Ûx), the angle of the pole (θ) and the angular velocity of the pole (Ûθ).

We train a neural network with 2-hidden layers for the problem with Deep-Q learning using

the environment in [92]. The neural network achieves a reward of perfect score of 200.0,

averaged over 100 episodes. The output from the network maps to the discrete actions

{left, right}. For both the output actions, we compute the overapproximations of the

pre-image and computing each abstraction takes under 5 minutes. Note that since there are

just two output classes, the negation of the overapproximation of one output action results in

an underapproximation of the other output action. Both the overapproximations consists of

a union of two half-spaces, which implies that the underapproximations are just one single

polytope.

On replacing the neural network controller with a controller based on the overapproxi-

mation corresponding to {left}, the new controller still achieves a perfect score of 200.0.

This shows that the abstraction closely matches the exact pre-images for the neural network.

Further, these simple abstractions give insight into the internal strategy learned by the neu-

ral network. The computed overapproximation for the pre-image of the output set {left}

97

(Pre(left)) is

(−0.335x − 0.06 Ûx + 0.918θ + 0.202 Ûθ ≤ −0.665)

∨(−0.110x + 0.156 Ûx + 0.950θ + 0.245 Ûθ ≤ −0.015).

We see that a negative x (the cart is to the left of the workspace), causes the cart to apply a

force to the right. A negative θ causes the controller to make the cart move left. (See Figure

4.2.3). This matches the expected intuitive behavior, and is an interpretable abstraction.

Further, we can use the approximations to verify properties about the neural network. For

example, consider the property that ∀xt, Ûxt, θt, Ûθt such that ‖xt ‖ ≤ 0.1, ‖ Ûxt ‖ ≤ 0.1, ‖θt ‖ ≤

0.1, ‖ Ûθt ‖ ≤ 0.1, the condition ‖ Ûθt+1‖ ≤ 0.5 holds. First, we can show that for all points that

satisfy the overapproximation of Pre(left) and the action left, the property holds with the

cart-pole dynamics. Next, we can repeat a similar procedure with Pre(right), to fully verify

the neural network controller. We verify this property with dReal[55], as it can reason

over the sin and cos functions that occur in the dynamics. This computation takes 0.124 s.

However, on checking for the condition (with the underapproximations) ‖ Ûθt+1‖ ≤ 0.3, the

solver finds a counterexample with (xt, Ûxt, θt, Ûθt) = (−0.09,−0.09, 0.0, 0.097) as the initial

condition with Ûθt+1 = −0.31 in 0.037 s.

4.4.3 Swimmer

For this task, we construct a compact abstraction that allows for run-time monitoring. The

setting for the problem is to determine if a noisy observation by a monitor could possibly

lead to unsafe behavior. The controller we consider is a neural network with 2 hidden layers

trained with proximal policy optimization [102] on the Swimmer environment [93]. The

task is to control a 3-link robot in a viscous fluid to make it swim forward as fast as possible.

The network (f) maps from an 8-dimensional state space (x ∈ R8) to a 2-dimensional space

(τ1, τ2) corresponding to the joint actuation torques.

For this task, suppose that in the domain x ∈ [−2, 2]8, the observations made by a

run-time monitor are noisy such that ‖x − xtrue‖∞ ≤ 0.1, where x is the observed state and

xtrue is the true state. The controller has access to xtrue, while the monitor only has the noisy

98

reading x. We want to construct a monitor that during the operation of the robot flags an

input x as unsafe if x is a noisy observation and it is possible that the true state xtrue can

cause a large torque. Formally, x is unsafe if it satisfies:

x ∈ [−2, 2]8 ∧ ∃x̄.‖ x̄ − x‖∞ ≤ 0.1

∧ f (x̄) = (τ1, τ2) ∧ |τ1 | + |τ2 | ≥ 1.0.

Since the monitoring is at run-time, the flagging has to be near instantaneous and we

would like to avoid reasoning over the entire network. To allow for this, we compute

an overapproximating abstraction ϕ(x̄) for the set of inputs to the network in the domain

[−2.1, 2.1]8 such that the network outputs |τ1 |+ |τ2 | ≥ 1.0. The monitor can be set up using

ϕ(x̄) as follows:

x ∈ [−2, 2]8 ∧ ∃x̄.‖ x̄ − x‖∞ ≤ 0.1 ∧ ϕ(x̄).

Algorithm 7 computes a ϕ(x̄) that has a simple structure such that, for 50 inputs (sampled

from observations seen during training) such that x ∈ [−2, 2]8, the average time per input

for checking the condition above with z3 is 0.14 seconds. This time can further be reduced

by parallelizing the check across polytopes.

4.5 Temporal Specifications for Learning Tasks

In the previous section, we developed a tool for analyzing pre-trained networks. Next,

we look at scenarios where we know a priori the property we require our neural network

to satisfy. In this direction, verified training [56, 59] has shown to be effective for simple

input-output robustness properties for neural networks. Here, we extend verified training for

neural networks to a richer class of specifications. To illustrate our approach, we consider

three temporal properties expressed in bounded-time STL that we want our networks to

satisfy. Note that bounded-time STL specifications can be unrolled into specifications in

first-order logic without the modal operators.

99

Figure 4.6: MMNIST Image

4.5.1 Bounding Caption Length for Image Captioning

Multi-MNIST images consist of non-overlapping MNIST digits on a canvas of fixed size

(Figure 4.6). The number of digits in each image varies between 1 and 3. The task is

to label the sequence of digits in the image, followed by an end of sequence token. Prior

work on this task [119] has shown image-to-sequence models to be vulnerable to generating

sequences longer than the true number of digits in the image, under small adversarially

chosen perturbations. Here, we consider the task of training a DNN that does not output

sequences longer than the desired length, while achieving similar nominal task performance.

Let y := f (x) be the sequence of logits output by the RNN model when given input

image x. For an image x, the termination specification is formalized as follows:

∀∆x ∈ {s : ‖s‖∞ ≤ ε}.(f (x + ∆x), 0) |= ϕx, (4.8)

where ϕx(y) := 3[0,t∗x]
∧
i,e
(y[t]e − y[t]i) ≥ 0, t∗x is the true number of digits in the image x,

e is the label corresponding to the end of sequence token, ε > 0 is the perturbation bound.

Informally, this specification enforces that the end of sequence token is output no later than

after the true number of digits have been output by the RNN, for all inputs within ε distance

from a true-image.

4.5.2 Verifying That a Robot Never Runs Out of Charge

To demonstrate our approach in the RL setting, we consider a task with a vacuum cleaning

robot. We summarize this task here (See Appendix B.1 for more details). The agent (robot)

operates in a continuous domain with its location in (x, y) ∈ [0, 25]2 (Figure 4.7). The

room is divided into discrete cells, and the agent gets a reward for visiting any “dirty” cell

100

0 25

0

25

Figure 4.7: Domain for the robot. Recharge cells in green.

which has not been visited in the previous Tdirt time-steps. The agent must visit one of the

recharge cells every Trecharge time-steps, or the episode is terminated with no further reward.

The policy maps observations (of the agent location and a map of the room) to continuous

velocity controls. We use fθ to denote the result of applying the policy, parameterized by

θ, followed by the environment update.

For this agent, we want to verify the specification: ∀z ∈ Sε .(fθ(z), 0) |= 2[0,T]

3[0,Trecharge]ϕrecharge, where ϕrecharge corresponds to the agent being in one of the recharge

cells. This specification ensures that, for a set of feasible starting positions Sε , for every

time-step t in [0,T], the agent recharges itself at least once within Trecharge time-steps. Initial

States of the RL Agent : Sε corresponds to the states (x, y) within a l∞ distance of ε from

the center of each of the cells. We formally define this set below.

For a cell i (for Figure 3, i ∈ {1, 2 . . . 25}) with center xci, yci , the ε-ball Si,ε corresponds

to the set of positions (xa, ya) for the agent such that ‖(xa − xci, ya − yci)‖∞ ≤ ε . Formally,

Si,ε := {(xa, ya) : ‖(xa − xci, ya − yci)‖∞ ≤ ε}.

We can then define S = ∪
i

Si,ε as the set of feasible initial states of the agent for which we

wish to verify the property. Table 4.3 reports the fraction of cells i for which we are able to

verify that the agent recharges on starting from Si,ε .

101

4.5.3 Verifying Generated Outputs from a Language Model

A common failure mode for language models is their tendency to fall into degenerate

loops, often repeating a stop-word [119]. To illustrate the applicability of STL specifica-

tions in this setting, we show how to formalize the property that a GRU language model

does not repeat words consecutively. We call this specification bigram non-repetition.

More concretely, the desired specification is that the output sequence does not contain

bigram repetition amongst the 100 most frequent tokens in the training corpus vocabulary.

We want to verify this property over a large set of possible conditioning inputs for the

generative model. Concretely, we define an input set S of roughly 25 million prefixes

generated from a syntactic template. The prefixes are generated using the following syn-

tax: <pronoun>, <person>, <action-verb>, <connector>, <person>, <pronoun>,

<action-verb> , where:

<pronoun> = {’my’, ’your’, ’his’, ’her’, ’our’, ’their’}

<person> = {’sister’, ’brother’, ’father’, ’mother’, ’son’, ’daughter’, ’king’, ’queen’,

’knight’, ’noble’, ’lord’, ’duke’, ’duchess’, ’cousin’, ’palace’, ’widow’, ’nurse’, ’marshal’,

’archbishop’, ’mayor’, ’maid’}

<action-verb> = {[’changed’, ’despised’, ’loved’, ’married’, ’accused’, ’anointed’,

’danced’, ’rejoiced’, ’killed’, ’came’, ’left’, ’prayed’, ’stood’, ’read’, ’consorted’, ’denied’,

’condemned’, ’ruled’, ’proved’, ’parted’ ’resolved’, ’committed’, ’raised’, ’urged’, ’painted’,

’provoked’, ’lived’, ’charged’, ’yielded’, ’accursed’, ’assured’], }

<connector> = {’but’, ’while’, ’yet’, ’and’, ’because’]}.

The space of combinations holds 25779600 possibilities to condition the languagemodel

generation upon. An example prefix is :‘Our lord yielded and their king left’. These prefixes

are input to the language model, and then we evaluate the specification on the model output.

Now, consider a prefix x and the sequence of logits y output by the recurrent GRU

network f (i.e., y = f (x)), with y(t)k referring to the logit corresponding to the k th most

frequent token in the vocabulary at time t. A compact formal specification ϕbigram ruling

102

out bigram repetition is

ϕbigram := 2[0,Tsample]

∧
i=1,2,...,100

((∧
j,i

y(t)i ≥ y(t) j) → 3[0,1]¬(
∧
j,i

y(t)i ≥ y(t) j
))
, (4.9)

where Tsample denotes the length of the generated sample, in our case 10. The RNN f is

required to satisfy the specification ∀x ∈ S.(f (x), 0) |= ϕbigram.

4.6 Verified Training of DNNs for STL Specifications

We consider the problem of learning a trace-valued function fθ to verifiably satisfy a

specification of the form ∀x ∈ S. (fθ(x), 0) |= ϕ, where input x ranges over set S, and fθ(x)

is the trace generated by fθ when evaluated on x, θ represents the trainable parameters, and

ϕ is an STL specification. We drop θ for brevity, and simply denote fθ(x) as f (x). Formally,

our problem statement is:

Given a set of inputs S, train the parameters θ of fθ so that ∀x ∈ S. (fθ(x), 0) |= ϕ,

where ϕ is a bounded-time STL specification.

4.6.1 Optimization Formulation of STL Verification

For an STL specification ϕ, its quantitative semantics can be used to construct a function

ρ(ϕ, f (x), t) whose scalar valued output is such that ρ(ϕ, f (x), t) ≥ 0 ⇐⇒ (f (x), t) |= ϕ

[41]. In terms of the quantitative semantics, the verification problem is equivalent to showing

that ∀x ∈ S. ρ(ϕ, f (x), 0) ≥ 0. This verification task can be written as the optimization

problem of finding the sequence of inputs x such that the sequence of outputs f (x) result in

the strongest violation of the specification with regard to the quantitative semantics

min
x
ρ(ϕ, f (x), 0) subject to x ∈ S. (4.10)

If the solution to equation (4.10) is negative, then there exists an input leading to the

violation of ϕ.

103

4.6.2 Bound Propagation

The optimization problem in equation (4.10) itself is often intractable; even in the case

when the specification is limited to robustness against perturbations in a classification task,

it is NP-hard [74]. There are tractable approaches to bounding the problem in equation

(4.10) [44, 97], but the bounds are often too loose to provide meaningful guarantees. To

obtain a tighter bound tractably, interval bound propagation – which by itself provides

loose bounds, but is efficient to compute (2x computational cost) – can be leveraged for

verified training to give meaningful bounds on robustness under l∞ perturbations [59, 90].

Our general approach for doing bound propagation on the function f is to use standard

interval arithmetic. While this is straightforward when f is a feedforward DNN [59], here

we extend bound propagation to a richer set of (temporal) specifications and architectures.

First, we highlight the novel aspects of bound propagation required for (a) auto-regressive

RNNs/GRUs, (b) STL specifications.

Bound propagation through GRUs Computing bounds across GRU cells involves prop-

agating bounds through a multiplication operation (as a part of gating mechanisms), which

can be handled by a straightforward application of interval arithmetic [66]. Suppose the

neural network takes as input x and produces a sequence of outputs yτ for τ = 0, ...,K so

the overall output is (y0, y1, . . . , yK). We assume that we are given bounds on the input x:

l0 ≤ x ≤ u0.

Our goal is to obtain bounds on yτ given bounds on x for each τ. Each output is produced

conditioned on the preceding outputs: yτ depends on y0, . . . , yτ−1.

Weproceed recursively, assuming thatwe have already computed bounds on y0, . . . , yτ−1.

We stack the set of inputs to the computation as (x, y0, . . . , yτ−1) ∈ [lτ;0, uτ;0]. We study the

computation graph mapping these inputs to the output yτ. At each node in this computation

graph, we perform a computation of the form

zτ,i = wT
i h

(
zτ;−i

)
+ w̃T

i h̃
(
zτ;−i

)T zτ;−i + bi,

104

where h, h̃ are element-wise nonlinear operations (sigmoid, tanh, ReLU, etc.) and zτ;−i de-

notes the elements of computational graph that are ancestors of the node i. The second term

represents multiplicative interactions (gating interactions) common in recurrent networks

like LSTMs (long short-term memory) [68] and GRUs. Suppose we have already computed

lower and upper bounds lτ;−i, uτ;−i on the preceding elements. Then, we have

zτ,i ≥ max (wi, 0)T h
(
lτ;−i

)
+min (wi, 0)T h

(
uτ;−i

)
+ 1T min ©«

w̃i � h̃
(
lτ;i

)
�

(
lτ;i

)
, w̃i � h̃

(
uτ;i

)
�

(
lτ;i

)
,

w̃i � h̃
(
lτ;i

)
�

(
uτ;i

)
, w̃i � h̃

(
uτ;i

)
�

(
uτ;i

) ª®¬ ,
zτ,i ≤ max (wi, 0)T h

(
uτ;−i

)
+min (wi, 0)T h

(
lτ;−i

)
+ 1T max ©«

w̃i � h̃
(
lτ;i

)
�

(
lτ;i

)
, w̃i � h̃

(
uτ;i

)
�

(
lτ;i

)
,

w̃i � h̃
(
lτ;i

)
�

(
uτ;i

)
, w̃i � h̃

(
uτ;i

)
�

(
uτ;i

) ª®¬ .
Setting lτ,i to the lower bound above and uτ,i to the upper bound, we have computed bounds

on zτ,i. Thus, we can recursively compute bounds until we obtain bounds lτ ≤ yτ ≤ uτ,

which can then be used to compute bounds on yτ+1. Proceeding recursively, we obtain

lower and upper bounds on (y0, y1, . . . , yK).

Bound propagation through auto-regressive RNNs For language modeling and image

captioning, we use GRU decoders with greedy decoding. Greedy decoding involves a

composition of the one-hot and the argmax operations. Both of these operations are non-

differentiable. To overcome this and compute differentiable bounds (during training), we

approximate this composition with a softmax operator (with a low temperature T). In the

limit, as T → 0, the softmax operator converges to the composition one-hot(argmax(·))

For propagating bounds through the softmax operator, we leverage that the bounds are

monotonic in each of the individual inputs. Formally, given a lower (p) and upper (p) bound

on the input p to a softmax layer (i.e., p ≤ p ≤ p), the lower w and upper bound(w) on the

105

output can be computed as:

s =
N∑

i=1
exp pi, s =

N∑
i=1

exp p
i
, ∆i = exp pi − exp p

i
, wi =

exp pi

s + ∆i
wi =

exp p
i

s − ∆i
,

where pi is the ith coordinate of p and p ∈ RN . During evaluation, the one-hot(argmax(.))

function is used as is. Given bounds on each coordinate of p (i.e., p ≤ p ≤ p) and

s = one-hot(argmax(p)), bounds on coordinate si can be computed as:

si(x) =

1 pi ≥ p j . ∀ j

0 otherwise.

si(x) =

0 ∃ j , i such that, p

j
> pi

1 otherwise.
(4.11)

Bounds for discrete inputs Tasks with discrete inputs, such as language generation tasks,

encode a prefix sentence as conditioning before decoding a follow-up sequence of words.

Consider prefixes of the form x = x0, x1, . . . such that xi ∈ Si, where Si is a finite set of

tokens that can appear at position i in the input sequence. We can propagate perturbations

in the prefix by first projecting the tokens Si through the embedding layer E , and then

considering the maximum and the minimum value along each embedding dimension to

bound the output from E . Formally,

E j(xi) = min
xi∈Si

E j(xi) ≤ E j(xi) ≤ max
xi∈Si

E j(xi) ≤ E j(xi). (4.12)

[70, 71] also consider bound propagation for word substitutions.

Boundpropagation through the specification First, we extend the quantitative semantics

for STL specifications [41] to allow us to reason over sets of inputs. For a STL specification ϕ

in negation normal form (NNF) (See Appendix B.2 for details on the quantitative semantics

and conversion to NNF), we first define a lower bound for the quantitative semantics

of ϕ over the set S, which we denote by ωS, f (ϕ, 0). We define this bound assuming

106

we have lower bounds on all the atoms occurring in ϕ. Specifically, let ΩS, f (q, t) be

a lower bound on q(f (x)t) over all inputs x ∈ S; in other words, at each time t we

have ∀x ∈ S.ΩS, f (q, t) ≤ q(f (x)t). Now, we define the lower bound on a specification ϕ

inductively as:

• ωS, f (true, t) = +∞,

• ωS, f (¬true, t) = −∞,

• ωS, f (q(s) ≥ 0, t) = ΩS, f (q, t),

• ωS, f (ϕ1 ∧ ϕ2, t) = min(ωS, f (ϕ1, t), ωS, f (ϕ2, t)),

• ωS, f (ϕ1 ∨ ϕ2, t) = max(ωS, f (ϕ1, t), ωS, f (ϕ2, t)),

• ωS, f (ϕ1Uϕ2, t) = max
t ′∈t+I

min
(
ωS, f (ϕ2, t′), min

t ′′∈[t,t ′]
ωS, f (ϕ1, t′′)

)
.

Lemma 20. For any time t, given lower bounds ΩS, f (q, t) on all the atoms q(s) ≥ 0 in ϕ,

we have

∀x ∈ S. ωS, f (ϕ, t) ≤ ρ(ϕ, f (x), t),

Proof. We proceed by induction on ϕ. The base cases and the conjunction case are

straightforward, and the atom case follows by assumption. The disjunction case requires us

to show: ωS, f (ϕ1 ∨ ϕ2, t) ≤ min
x∈S
(max(ρ(ϕ1, f (x), t), ρ(ϕ2, f (x), t))). Applying the max–min

inequality, the right-hand side is at least max(min
x∈S
(ρ(ϕ1, f (x), t)),min

x∈S
(ρ(ϕ2, f (x), t)). Then

using the inductive hypotheses, we know this is at least max(ωS, f (ϕ1, t), ωS, f (ϕ2, t)), and

the case follows. The case for the U operator has a similar proof based on the max–min

inequality.

Corollary 21. If ωS, f (ϕ, t) ≥ 0, then ∀x ∈ S.(f (x), 0) |= ϕ.

In order to compute the lower bounds ΩS, f (q, t) required for Lemma 20, given bounds on

the input x, we can first compute bounds on the outputs f (x)t at each time t. For the atoms

q(s) ≥ 0 appearing in ϕ, given bounds on the input s we can compute bounds on q(s).

These bounds can then be propagated through the specification inductively.

107

4.6.3 Verified Training for STL Specifications

In this section, we describe how to train a network to satisfy an STL specification ϕ.

The quantitative semantics ρ(ϕ, σ, 0) give a measure of the extent to which σ satisfies

ϕ. First, we compute lower bounds on the values of the atoms in ϕ at each instance of

time. Then, by application of Lemma 20, we can compute the lower bound ωS, f (ϕ, 0)

satisfying ∀x ∈ S. ωS, f (ϕ, 0) ≤ ρ (ϕ, f (x), 0). Subsequently we optimize the lower bound

ωS, f (ϕ, 0) to be non-negative, thereby guaranteeing that the specification of interest holds:

∀x ∈ S. ρ (ϕ, f (x), 0) ≥ 0.

Let Lobj be the loss objective corresponding to the base task, for example, the cross-

entropy loss for classification tasks. Training thus requires balancing two objectives: mini-

mizing loss on the base task by optimizing Lobj(fθ), and ensuring the positivity ofωS, fθ . We

can use gradient descent to directly optimize the joint loss: Lobj(fθ) −λmin{ωS, fθ (ϕ, 0), τ},

where λ is a scalar hyper-parameter, τ is a positive scalar threshold (τ ∈ R+). The clipping

avoids having to carefully balance the two losses. The quantitative semantics of an STL

specification ϕ is a non-smooth function of the weights of the neural network, and is difficult

to optimize directly with gradient descent. We find in practice that curriculum training,

similar to [59], works best for optimizing the specification loss, starting with enforcing the

specification over a subset S′ ⊂ S, and gradually covering the entire S. Empirically, the

curriculum approach means that the task performance (Lobj) does not degrade much.

4.7 Verified Training for STLSpecifications: Experiments

4.7.1 Sequential Captioning of Multi-MNIST Images

For this task, we perform verified training to enforce the termination specification ϕx

(equation (4.10)) on the training data as discussed in Section 4.6.3. Post training, for unseen

test set images, we evaluate the quantitative specification loss ωSx,ε , f (ϕx, 0). For an image

x from the test set, if ωSx,ε , f (ϕx, 0) is positive, it is guaranteed that there is no input within

an l∞ radius of ε around the current image that can cause the RNN to generate a longer

sequence than the number of true digits in the image.

108
Table 4.1: Comparison of GRU trainingmethods on theMMNIST task. We evaluate against
the termination specification on different metrics, and also report nominal accuracy. ‘–’
indicates a trivial verified accuracy of 0% obtained with bound propagation. The entries
with verified termination accuracies corresponding to 0.0 are those where we were able to
generate adversarial examples (counterexamples) to the specification for every point in the
test set. We found that adversarial training is difficult because of the presence of the sigmoid
and tanh activation functions commonly used in GRUs. To have a meaningful baseline,
we performed adversarial training on an RNN (feedforward cells with ReLU activation).
For ε = 0.1, attacking the loss from [119] to produce longer sequences performs better,
while for the other ε values adversarial training with the STL quantitative loss performs
better. Adversarial training performs well but is difficult to verify. At larger ε , verified
training results in both better guarantees (specification conformance), and better nominal
accuracies.

Perturbation ε Training Nominal Verified Adversarial
Accuracy Termination Termination

Accuracy Accuracy
Verifiable 94.9 98.3 100.0

0.1 Adversarial 94.1 – 100.0
Nominal 95.9 – 33.5
Verifiable 94.5 98.7 100.0

0.2 Adversarial 93.3 – 100.0
Nominal 95.9 – 20.94
Verifiable 94.4 98.7 100.0

0.3 Adversarial 90.0 – 99.7
Nominal 95.9 0.0 0.0
Verifiable 94.1 99.0 100.0

0.5 Adversarial 75.6 – 100.0
Nominal 95.9 0.0 0.0

In Tables 4.1 and 4.2, verified termination accuracy refers to the fraction of unseen data

for which we can verify the absence of counterexamples to the termination property ((4.10)).

Nominal accuracy refers to the percentage of correctly predicted tokens, including the end of

sequence token. Table 4.1 compares verified training with nominal and adversarial training.

Verified training outperforms both adversarial and nominal training on both adversarial

and verified termination accuracy metrics. The pixel values are scaled to be in the range

[0, 1]. At perturbations of size ε = 0.5, the images can be turned gray; however, the DNN

remains robust to such large perturbations by predicting that the image has no more than a

single digit at large perturbations, while maintaining nominal accuracy on clean data. This

109
Table 4.2: We train the RNN with ReLU activations from [119] to be verifiable with
ε = 0.3, and compare its verifiability with MILP based verification reported in [119] at
different perturbation radii. The nominal accuracy for the model trained to be verifiable
is 93.9% and model trained in a standard manner is 96.4%. For larger perturbations, the
MILP solver times out. ‘–’ indicates that we were unable to certify robustness for any of the
points in the test set, for the given perturbation within the time-out window of 30 minutes.

Perturbation Radius ε Training Verification Method Verified Termination Accuracy

0.002 Nominal MILP 83.00
Verifiable Bound Prop. 99.01

0.02 Nominal MILP –
Verifiable Bound Prop. 98.95

0.3 Nominal MILP –
Verifiable Bound Prop. 94.3

in contrast with robustness against misclassification, where it is not possible to be robust

at large perturbations because the specifications for images from different classes conflict.

Adversarial accuracy is evaluated with the iterative attack from [119] (10,000 steps).

Run-time Considerations As another baseline, we compare with verified termination

accuracies from [119](Table 4.2). In [119], the greedy decoding and the specification are

turned into a MILP-query solved with the SCIP solver [57]. Further, we use ReLU RNNs

here because GRUs are not amenable to MILP solvers. Verified training allows us to certify

specification conformance for much larger perturbations (≈ 2 orders of magnitude larger).

4.7.2 An RL Mobile-Robot Agent

We consider the recharging specification ϕrecharge over a time horizon of T = 10, for an

agent starting within a l∞ distance of ε from the center of the any of the cells. To regularize

the DNN to be verifiable with regard to ϕrecharge, the specification loss is obtained by rolling

out the current policy through time, and propagating bounds through the rolled out policy

and the dynamics. This assumes a deterministic dynamics model.

We compare our verifiably trained agent to both a vanilla RL agent, and an agent trained

with reward shaping as in [83]. All agents achieve a similar reward, and we do not find

110

specification violations for roll-outs from 106 random (feasible) initial states. To compare

verifiability, we discretize a region within a distance of ε to each cell-center into 102 l∞

balls, and verify with bound propagation that the agent satisfies ϕrecharge for each sub-region.

Agents trained with verified training are significantly more verifiable than agents trained

otherwise, with little degradation in performance (Table 4.3), which is consistent with prior

work in classification [121].

Table 4.3: Mean/Variance performance (across 5 agents of each type) across different
metrics. For each agent, reward is computed as mean across 100 episodes. ε is distance
from the center of the grid cells, and for each ε we report the fraction of the cells for which
we are able to certify that ϕrecharge holds.

Training % of cells % of cells % of cells % of cells % of cells Reward
verified verified verified verified verified
(ε = 1.0) (ε = 0.1) (ε = 0.01) (ε = 0.001) (ε = 0.0001)

Verifiable 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 12.71/0.19
Standard 15.8/9.0 64.9/6.8 77.6/5.3 90.3/1.8 99.2/0.0 12.85/0.06
Reward Shaping 39.1/21.9 74.3/8.6 83.2/5.9 92.0/1.9 100.0/0.0 12.76/0.22

4.7.3 Language Generation

Our languagemodel consists of a 2-layer GRUwith 64 hidden nodes per layer, trained on the

tiny Shakespeare corpus using aword embedding dimension of 32, and vocabulary truncated

to the 2500 most frequent training words. We evaluate the model’s ability to satisfy ϕbigram.

We compare both a nominal model trained using log-likelihood, a model that randomly

samples prefixes from the input space and penalizes violations to the specification, and

Table 4.4: Language model perplexity, number of failures during an exhaustive enumerative
search over the 25M perturbations, and computational cost of verification (number of
forward passes).

Training Perplexity # Failures # Verification Cost

Verifiable 228.91 0 ≈2
Sampled 174.89 0 2.57 × 107

Nominal 153.63 1.79 × 107 2.57 × 107

111

verified training that covers the full input space. We report test set perplexity and count of

violations observed over the 25 M prefixes (Table 4.4).

We find that while standard training achieves the best perplexity results, it also produces

numerous specification failures. Sampling prefixes and regularizing them to avoid bigram

repetition using ρ(ϕbigram, f (x), 0) eliminates failures, but the overall evaluation cost of

the exhaustive search is large. Verifiable training with bound propagation, by contrast,

comes with a constant computational cost of ≈ 2 forward passes. This is because matrix

multiplications form a significant majority of the computational cost during a forward pass,

and propagating bounds through a layer of the form y = σ(W x+b), where σ is a monotonic

activation function (e.g., ReLU, sigmoid, tanh), can be performed such that it only costs

twice as much as a normal forward pass [59].

Run-time Considerations Verification with propagating bounds can be performed in

under 0.4 seconds (including propagating bounds through the spec), while exhaustive search

over 25 M prefixes for specification violations takes over 50 minutes. Further, as possible

word substitutions increase, the cost for exhaustive search grows exponentially while that

for bound propagation stays constant.

4.8 Discussion

Computing Pre-image Abstractions In Section 4.2, we introduced an approach to al-

gorithmically abstract pre-trained neural network pre-images into compact representations

that allow for interpretation and verification. The approach introduced here opens several

possible directions for future contributions. An interesting direction to explore is if the

current approach can be coupled with current verification algorithms for neural networks

to improve verification itself. Another avenue to explore is if the abstraction procedure

introduced in our work can be coupled with training to learn neural networks that satisfy

certain desired properties. Alternatively, given an abstraction for a neural network, an inter-

esting open question is if we can tune the abstraction to satisfy certain desired specifications

without compromising significantly on performance.

112

Verified training for Temporal Specifications In Section 4.6, we developed an ap-

proach for training neural networks such that their consistency with temporal specifications

(over certain given sets of inputs) can be assured in a tractable manner. We empirically

demonstrate the approach on a diverse set of specifications from diverse domains (language

processing, image captioning and reinforcement learning), finding that the guarantees we

are able to provide are significantly stronger than what can be provided with current tools

that analyze neural network behavior based on exhaustive search. Further extensions to the

approach would consider training neural networks to be verifiable with regard to probabilis-

tic guarantees on their behavior. This is interesting in scenarios where the behavior of the

neural network or the environment is probabilistic (e.g., plants with stochastic dynamics,

top-k sampling in language processing).

113

Chapter 5

Conclusions and Future Work

5.1 Summary

While tools such as SAT solvers have matured considerably over the last couple of decades

and have found application at industrial scale [87], more recent tools such as SMT sovlers

[37], falsification tools [4], and tools for symbolic model checking [26] still suffer from

key-bottlenecks. This thesis presents contributions towards allievating some of the key-

challenges limiting the widespread adoption of such tools.

The first contribution is aimed at developing parallelized algorithms for synthesis from

linear temporal logic (LTL). This allows one to exploit hardware that allows for parallel

computations for faster synthesis. This is accomplished through a compositional approach:

first, the primary synthesis problem is decomposed into subproblems, and then the solutions

to the subproblems are pieced together to synthesize a strategy that iswinning for the primary

specification. We identify a special case where the decomposition is straightforward, and

a more general case where we use the notion of equicontrollable classes to abstract the

problem into a simpler, hierarchical structure.

The second contribution is directed at leveraging learning algorithms for assisting ver-

ification. Here, we first introduce an approach for learning abstractions that allow us to

verify embedded systems with lookup tables, where the complex lookup tables result in

intractable verification problem. We overcome this by learning simple (provable) overap-

proximations of the lookup tables that render the problem tractable. Building on this, we

propose an approach for abstracting instances of nonlinear constraint solving to replace

114

harder constraints with simpler ones, thereby speeding up the verification process. Besides

scalability, another challenging for verification tools is the lack of access to accurate models

describing the system’s behavior. To allow for the debugging of such systems, which are

difficult to model, we propose an approach where learned abstractions that can explain the

behavior of such systems with a high probability can be leveraged to ensure the reliablity

of controllers interacting with complex systems.

The third direction of contribution is towards developing tools that enable the reliable

design and analysis of systems with learned components. Here, we introduce an approach

based on Craig’s interpolants [30] that allows us to automatically abstract pre-image sets

for pre-trained neural networks into simple symbolic formulas that are provable (under)

overapproximations for the original pre-image sets. The simpler symbolic abstractions can

then be used for interpreting the behavior of the network, and for further analysis with

solvers such as [55]. We also introduce tools that allow us to train neural networks such

that their consistency with desired temporal specifications can be verified with tractable

approaches.

5.2 Future Work

There are many directions and open challenges for future research in enabling the design

and verification of reliable autonomous systems at scale. Below we identify some such

avenues.

Learning specifications from demonstrations and simulations A key challenge to the

adoption of formal methods is the difficulty often associated with crafting the correct

specification [61]. In the context of synthesis from assume-guarantee LTL specifications,

an interesting direction is learning assumptions about the environment from simulations, and

learning guarantees about the system from successful demonstrations. Another promising

avenue is controller synthesis from input-output examples. A simple instantiation of this

would be one where the end-user feeds the synthesis algorithm a set of initial states, and the

corresponding set of desired final states for the system. This is a paradigm that has found

115

considerable success in the area of program synthesis [62, 82].

Controller Synthesis with probabilistic guarantees In this thesis, we discussed an ap-

proach that allows us to provide probabilistic guarantees for a given controller based on

simulation data for the environment. In the event the controller is not sufficiently robust

or is faulty (does not realize the desired specification), the approach terminates after a set

number of iterations by returning a set of counterexamples that exhibit behavior violating

the desired specifications. Extending this work, a relevant direction is automatically repair-

ing/synthesizing robust controllers based on the counterexamples. This would allow us to

synthesize controllers that are provably probabilistically correct based on simulation data.

Synthesis with human guidance Another interesting paradigm that has received little

attention is that of controller synthesis with interactive supervision. Interactive theorem

provers, software tools that assist in the development of formal proofs by leveraging human-

interaction, have found considerable success [64]. Similar efforts for controller synthesis,

where a human could interactively guide the synthesis process are unexplored. A related

effort in the program synthesis community is that of synthesizing programs from sketches

[106]. Sketches are program-skeletons that are human-generated, and a search procedure

fills in the holes in the sketches to generate a complete program that satisfies the desired

specification. The sketches restrict the search space rendering the synthesis problem more

tractable. Controller synthesis could benefit from similar approaches where strategies are

synthesized to satisfy logic specifications from preliminary solution sketches.

116

Bibliography

[1] US National Transportation Safety Board. Preliminary report highway:

Hwy18mh010. https://www.ntsb.gov/investigations/AccidentReports/

Reports/HWY18MH010-prelim.pdf.

[2] A. Albarghouthi and K. L. McMillan. Beautiful interpolants. In N. Sharygina and

H. Veith, editors, Computer Aided Verification, pages 313–329, Berlin, Heidelberg,

2013. Springer Berlin Heidelberg. ISBN 978-3-642-39799-8.

[3] R. Alur, S. Moarref, and U. Topcu. Compositional synthesis with parametric reactive

controllers. In Proceedings of the 19th International Conference on Hybrid Systems:

Computation and Control, HSCC 2016, Vienna, Austria, April 12-14, 2016, pages

215–224, 2016. doi: 10.1145/2883817.2883842. URL http://doi.acm.org/10.

1145/2883817.2883842.

[4] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan. S-taliro: A tool

for temporal logic falsification for hybrid systems. In International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, pages 254–257.

Springer, 2011.

[5] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan. S-taliro: A tool for

temporal logic falsification for hybrid systems. In P. A. Abdulla and K. R. M. Leino,

editors, Tools and Algorithms for the Construction and Analysis of Systems, pages

254–257, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-

19835-9.

[6] N. Aréchiga, S. Dathathri, S. Vernekar, N. Kathare, S. Gao, and S. Shiraishi. Osiris:

https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf
http://doi.acm.org/10.1145/2883817.2883842
http://doi.acm.org/10.1145/2883817.2883842

117

A tool for abstraction and verification of control software with lookup tables. In

Proceedings of the 1st International Workshop on Safe Control of Connected and Au-

tonomous Vehicles, SCAV’17, pages 11–18, New York, NY, USA, 2017. Association

for Computing Machinery. ISBN 9781450349765. doi: 10.1145/3055378.3055384.

URL https://doi.org/10.1145/3055378.3055384.

[7] J. Ba and R. Caruana. Do deep nets really need to be deep? In Z. Ghahra-

mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors,

Advances in Neural Information Processing Systems 27, pages 2654–2662. Curran

Associates, Inc., 2014. URL http://papers.nips.cc/paper/5484-do-deep-

nets-really-need-to-be-deep.pdf.

[8] F. Bacchus, S. Dalmao, and T. Pitassi. Solving #sat and bayesian inference with

backtracking search. J. Artif. Int. Res., 34(1):391–442, Mar. 2009. ISSN 1076-9757.

URL http://dl.acm.org/citation.cfm?id=1622716.1622727.

[9] R. Baheti and H. Gill. Cyber-physical systems. volume 12, pages 161–166, 2011.

[10] C. Baier and J.-P. Katoen. Principles of Model Checking (Representation and Mind

Series). The MIT Press, 2008. ISBN 026202649X, 9780262026499.

[11] A. Balkan, P. Tabuada, J. V. Deshmukh, X. Jin, and J. Kapinski. Underminer:

A framework for automatically identifying nonconverging behaviors in black-box

system models. ACM Trans. Embed. Comput. Syst., 17(1):20:1–20:28, Dec. 2017.

ISSN 1539-9087. doi: 10.1145/3122787. URL http://doi.acm.org/10.1145/

3122787.

[12] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements

that can solve difficult learning control problems. IEEE Transactions on Systems,

Man, and Cybernetics, SMC-13(5):834–846, Sept 1983. ISSN 0018-9472. doi:

10.1109/TSMC.1983.6313077.

[13] O. Bastani, Y. Pu, and A. Solar-Lezama. Verifiable reinforcement learning via policy

extraction. In Neural Information Processing Systems, NIPS 2018, 2018.

https://doi.org/10.1145/3055378.3055384
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
http://dl.acm.org/citation.cfm?id=1622716.1622727
http://doi.acm.org/10.1145/3122787
http://doi.acm.org/10.1145/3122787

118

[14] D. Bezzina and J. Sayer. Safety pilot model deployment: Test conductor team report,

USDOT Report No. DOT HS 812 171, 2015.

[15] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reac-

tive(1) designs. Journal of Computer and System Sciences, 78:911–938, May 2012.

doi: 10.1016/j.jcss.2011.08.007.

[16] B. Bollig and I.Wegener. Improving the variable ordering ofOBDDs isNP-complete.

IEEE Transactions on Computers, 45(9):993–1002, 1996. doi: 10.1109/12.537122.

[17] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin

classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning

Theory, COLT ’92, pages 144–152, New York, NY, USA, 1992. ACM. ISBN 0-

89791-497-X. doi: 10.1145/130385.130401. URL http://doi.acm.org/10.

1145/130385.130401.

[18] A. Browne, E. Clarke, S. Jha, D. Long, and W. Marrero. An improved algo-

rithm for the evaluation of fixpoint expressions. Theoretical Computer Science,

178(1):237 – 255, 1997. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/S0304-

3975(96)00228-9. URL http://www.sciencedirect.com/science/article/

pii/S0304397596002289.

[19] R. Bunel, I. Turkaslan, P. H. S. Torr, P. Kohli, andM. P. Kumar. InNeural Information

Processing Systems, NIPS 2018, 2018.

[20] G. C. Calafiore. Random convex programs. SIAM Journal on Optimization, 20(6):

3427–3464, 2010.

[21] N. Carlini and D. Wagner. Adversarial examples are not easily detected: Bypassing

ten detection methods. In Proceedings of the 10th ACM Workshop on Artificial

Intelligence and Security, pages 3–14. ACM, 2017.

[22] N. Carlini and D. A. Wagner. Towards evaluating the robustness of neural networks.

In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA,

http://doi.acm.org/10.1145/130385.130401
http://doi.acm.org/10.1145/130385.130401
http://www.sciencedirect.com/science/article/pii/S0304397596002289
http://www.sciencedirect.com/science/article/pii/S0304397596002289

119

May 22-26, 2017, pages 39–57, 2017. doi: 10.1109/SP.2017.49. URL https:

//doi.org/10.1109/SP.2017.49.

[23] Y. Chen, S. Dathathri, T. Phan-Minh, and R. M. Murray. Counter-example Guided

Learning of Bounds on Environment Behavior. page arXiv:2001.07233, Jan 2020.

[24] S. Chinchali, S. C. Livingston, U. Topcu, J. W. Burdick, and R. M. Murray. Towards

formal synthesis of reactive controllers for dexterous robotic manipulation. In 2012

IEEE International Conference on Robotics and Automation, pages 5183–5189, May

2012. doi: 10.1109/ICRA.2012.6225257.

[25] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated

recurrent neural networks on sequence modeling. In NIPS 2014 Workshop on Deep

Learning, December 2014, 2014.

[26] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-

bastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic

Model Checking. In Proc. International Conference on Computer-Aided Verification

(CAV 2002), volume 2404 of LNCS, Copenhagen, Denmark, July 2002. Springer.

[27] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient interpolant generation in satis-

fiability modulo theories. In C. R. Ramakrishnan and J. Rehof, editors, Tools and

Algorithms for the Construction and Analysis of Systems, pages 397–412, Berlin,

Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-78800-3.

[28] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement. In E. A. Emerson and A. P. Sistla, editors, Computer Aided

Verification: 12th International Conference, CAV 2000, Chicago, IL, USA, July 15-

19, 2000. Proceedings, pages 154–169, Berlin, Heidelberg, 2000. Springer Berlin

Heidelberg. ISBN 978-3-540-45047-4. doi: 10.1007/10722167_15. URL http:

//dx.doi.org/10.1007/10722167_15.

[29] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement. In E. A. Emerson and A. P. Sistla, editors, Computer Aided

https://doi.org/10.1109/SP.2017.49
https://doi.org/10.1109/SP.2017.49
http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/10722167_15

120

Verification, pages 154–169, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

ISBN 978-3-540-45047-4.

[30] W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and

proof theory. J. Sym. Logic, 3:269–285, 1957.

[31] A. Darwiche. Recursive conditioning. Artificial Intelligence, 126(1):5 –

41, 2001. ISSN 0004-3702. doi: http://dx.doi.org/10.1016/S0004-3702(00)

00069-2. URL http://www.sciencedirect.com/science/article/pii/

S0004370200000692. Tradeoffs under Bounded Resources.

[32] S. Dathathri and R. M. Murray. Decomposing GR(1) games with singleton liveness

guarantees for efficient synthesis. In 2017 IEEE 56th Annual Conference on Decision

and Control (CDC), pages 911–917, 2017. doi: 10.1109/CDC.2017.8263775.

[33] S. Dathathri, N. Arechiga, S. Gao, and R. M. Murray. Learning-based abstractions

for nonlinear constraint solving. In Proceedings of the Twenty-Sixth International

Joint Conference on Artificial Intelligence, IJCAI-17, pages 592–599, 2017. doi:

10.24963/ijcai.2017/83. URL https://doi.org/10.24963/ijcai.2017/83.

[34] S. Dathathri, S. Gao, and R. M. Murray. Inverse abstraction of neural networks using

symbolic interpolation. In The Thirty-Third AAAI Conference on Artificial Intelli-

gence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence

Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in

Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February

1, 2019, pages 3437–3444. AAAI Press, 2019. doi: 10.1609/aaai.v33i01.33013437.

URL https://doi.org/10.1609/aaai.v33i01.33013437.

[35] S. Dathathri, I. Filippidis, and R. M. Murray. Parallelizing synthesis from temporal

logic specifications by identifying equicontrollable states. In N. M. Amato, G. Hager,

S. Thomas, andM. Torres-Torriti, editors, Robotics Research, pages 827–842, Cham,

2020. Springer International Publishing. ISBN 978-3-030-28619-4.

http://www.sciencedirect.com/science/article/pii/S0004370200000692
http://www.sciencedirect.com/science/article/pii/S0004370200000692
https://doi.org/10.24963/ijcai.2017/83
https://doi.org/10.1609/aaai.v33i01.33013437

121

[36] S. Dathathri, A. Madotto, J. Lan, J. Hung, E. Frank, P. Molino, J. Yosinski, and

R. Liu. Plug and play language models: A simple approach to controlled text

generation. In International Conference on Learning Representations, 2020. URL

https://openreview.net/forum?id=H1edEyBKDS.

[37] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In Proceedings of

the Theory and Practice of Software, 14th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, TACAS’08/ETAPS’08,

pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 3-540-78799-

2, 978-3-540-78799-0. URL http://dl.acm.org/citation.cfm?id=1792734.

1792766.

[38] J. A. DeCastro, J. Alonso-Mora, V. Raman, D. Rus, and H. Kress-Gazit. Collision-

free reactive mission and motion planning for multi-robot systems. In Proceedings

of the International Symposium on Robotics Research (ISRR), Sestri Levante, Italy,

September 2015.

[39] A. Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid

systems. In T. Touili, B. Cook, and P. Jackson, editors, Computer Aided Verification,

pages 167–170, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-

642-14295-6.

[40] A. Donzé. On signal temporal logic. In International Conference on Runtime

Verification, pages 382–383. Springer, 2013.

[41] A. Donzé and O. Maler. Robust satisfaction of temporal logic over real-valued

signals. In Formal Modeling and Analysis of Timed Systems - 8th International

Conference, FORMATS 2010, Klosterneuburg, Austria, September 8-10, 2010.

Proceedings, pages 92–106, 2010. doi: 10.1007/978-3-642-15297-9_9. URL

https://doi.org/10.1007/978-3-642-15297-9_9.

[42] A. Donzé and O. Maler. Robust satisfaction of temporal logic over real-valued

https://openreview.net/forum?id=H1edEyBKDS
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://doi.org/10.1007/978-3-642-15297-9_9

122

signals. In International Conference on Formal Modeling and Analysis of Timed

Systems, pages 92–106. Springer, 2010.

[43] A. Donzé, T. Ferrère, and O.Maler. Efficient robust monitoring for STL. In N. Shary-

gina and H. Veith, editors, Computer Aided Verification - 25th International Con-

ference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, vol-

ume 8044 of Lecture Notes in Computer Science, pages 264–279. Springer, 2013.

doi: 10.1007/978-3-642-39799-8_19. URL https://doi.org/10.1007/978-

3-642-39799-8_19.

[44] K. Dvijotham, R. Stanforth, S. Gowal, T. Mann, and P. Kohli. A dual approach to

scalable verification of deep networks. arXiv preprint arXiv:1803.06567, 2018.

[45] J. Ebrahimi, A. Rao, D. Lowd, andD. Dou. HotFlip: White-box adversarial examples

for text classification. In Proceedings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers), pages 31–36, Melbourne,

Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/

P18-2006. URL https://www.aclweb.org/anthology/P18-2006.

[46] R. Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In

Automated Technology for Verification and Analysis - 15th International Symposium,

ATVA 2017, Pune, India, October 3-6, 2017, Proceedings, pages 269–286, 2017.

doi: 10.1007/978-3-319-68167-2_19. URL https://doi.org/10.1007/978-

3-319-68167-2_19.

[47] R. Ehlers and V. Raman. Slugs: Extensible GR(1) Synthesis, pages 333–339.

Springer International Publishing, Cham, 2016. ISBN 978-3-319-41540-6. doi:

10.1007/978-3-319-41540-6_18. URL http://dx.doi.org/10.1007/978-3-

319-41540-6_18.

[48] E. A. Emerson and C. Lei. Efficient model checking in fragments of the propositional

mu-calculus. In Proc. Symp. on Logic in Computer Science, Cambridge, MA, 1986.

https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1007/978-3-642-39799-8_19
https://www.aclweb.org/anthology/P18-2006
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-68167-2_19
http://dx.doi.org/10.1007/978-3-319-41540-6_18
http://dx.doi.org/10.1007/978-3-319-41540-6_18

123

[49] C. Fan, B. Qi, S. Mitra, and M. Viswanathan. DRYVR: data-driven verification

and compositional reasoning for automotive systems. CoRR, abs/1702.06902, 2017.

URL http://arxiv.org/abs/1702.06902.

[50] C. Fan, B. Qi, and S. Mitra. Data-driven formal reasoning and their applications in

safety analysis of vehicle autonomy features. IEEE Design Test, 35(3):31–38, June

2018. ISSN 2168-2356. doi: 10.1109/MDAT.2018.2799804.

[51] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M. Murray. Control

design for hybrid systems with TuLiP: The temporal logic planning toolbox. In 2016

IEEE Conference on Control Applications (CCA), pages 1030–1041, Sept 2016. doi:

10.1109/CCA.2016.7587949.

[52] A. L. Friesen and P. Domingos. Recursive decomposition for nonconvex optimiza-

tion. In Proceedings of the 24th International Conference on Artificial Intelligence,

IJCAI’15, pages 253–259. AAAI Press, 2015. ISBN 978-1-57735-738-4. URL

http://dl.acm.org/citation.cfm?id=2832249.2832284.

[53] S. Gao, S. Kong, and E. Clarke. dreal: An smt solver for nonlinear theories of the

reals (tool paper). In Conference on Automated Deduction, 2013.

[54] S. Gao, S. Kong, and E. M. Clarke. dReal: An SMT Solver for Nonlinear Theories

over the Reals, pages 208–214. Springer Berlin Heidelberg, Berlin, Heidelberg,

2013. ISBN 978-3-642-38574-2. doi: 10.1007/978-3-642-38574-2_14. URL http:

//dx.doi.org/10.1007/978-3-642-38574-2_14.

[55] S. Gao, S. Kong, and E. M. Clarke. dReal: An SMT solver for nonlinear theories

over the reals. In M. P. Bonacina, editor, Automated Deduction – CADE-24, pages

208–214, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-

38574-2.

[56] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev.

Ai 2: Safety and robustness certification of neural networks with abstract interpreta-

tion. In IEEE Symposium on Security and Privacy, 2018.

http://arxiv.org/abs/1702.06902
http://dl.acm.org/citation.cfm?id=2832249.2832284
http://dx.doi.org/10.1007/978-3-642-38574-2_14
http://dx.doi.org/10.1007/978-3-642-38574-2_14

124

[57] A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L. Gottwald, G. Hendel,

C. Hojny, T. Koch, M. E. Lübbecke, S. J. Maher, M. Miltenberger, B. Müller, M. E.

Pfetsch, C. Puchert, D. Rehfeldt, F. Schlösser, C. Schubert, F. Serrano, Y. Shinano,

J. M. Viernickel, M. Walter, F. Wegscheider, J. T. Witt, and J. Witzig. The SCIP

Optimization Suite 6.0. Technical report, Optimization Online, July 2018. URL

http://www.optimization-online.org/DB_HTML/2018/07/6692.html.

[58] R. Gorcitz, E. Kofman, T. Carle, D. Potop-Butucaru, and R. de Simone. On the

Scalability of Constraint Solving for Static/Off-Line Real-Time Scheduling, pages

108–123. Springer International Publishing, Cham, 2015. ISBN 978-3-319-22975-1.

doi: 10.1007/978-3-319-22975-1_8. URL http://dx.doi.org/10.1007/978-

3-319-22975-1_8.

[59] S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato, R. Arandjelovic,

T. A. Mann, and P. Kohli. On the effectiveness of interval bound propagation

for training verifiably robust models. CoRR, abs/1810.12715, 2018. URL http:

//arxiv.org/abs/1810.12715.

[60] H. P. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vapnik. Parallel support

vector machines: The cascade svm. In L. K. Saul, Y. Weiss, and L. Bottou, editors,

Advances in Neural Information Processing Systems 17, pages 521–528. MIT Press,

Cambridge, MA, 2004. URL http://books.nips.cc/papers/files/nips17/

NIPS2004_0190.pdf.

[61] S. Gulwani. Automating string processing in spreadsheets using input-output exam-

ples. SIGPLAN Not., 46(1):317–330, Jan. 2011. ISSN 0362-1340. doi: 10.1145/

1925844.1926423. URL https://doi.org/10.1145/1925844.1926423.

[62] S. Gulwani, W. R. Harris, and R. Singh. Spreadsheet data manipulation using

examples. Commun. ACM, 55(8):97–105, Aug. 2012. ISSN 0001-0782. doi: 10.

1145/2240236.2240260. URL https://doi.org/10.1145/2240236.2240260.

[63] S. Haesaert, P. M. J. V. den Hof, and A. Abate. Data-driven and model-based

http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://dx.doi.org/10.1007/978-3-319-22975-1_8
http://dx.doi.org/10.1007/978-3-319-22975-1_8
http://arxiv.org/abs/1810.12715
http://arxiv.org/abs/1810.12715
http://books.nips.cc/papers/files/nips17/NIPS2004_0190.pdf
http://books.nips.cc/papers/files/nips17/NIPS2004_0190.pdf
https://doi.org/10.1145/1925844.1926423
https://doi.org/10.1145/2240236.2240260

125

verification: a bayesian identification approach. CoRR, abs/1509.03347, 2015. URL

http://arxiv.org/abs/1509.03347.

[64] J. Harrison, J. Urban, and F. Wiedijk. History of Interactive Theorem Proving,

volume 9, pages 135–214. 12 2014. doi: 10.1016/B978-0-444-51624-4.50004-6.

[65] E. Helly. Über mengen konvexer körper mit gemeinschaftlichen punkte. Jahres-

bericht der Deutschen Mathematiker-Vereinigung, 32:175–176, 1923. URL http:

//eudml.org/doc/145659.

[66] T. Hickey, Q. Ju, and M. H. Van Emden. Interval arithmetic: From principles to

implementation. J. ACM, 48(5):1038–1068, Sept. 2001. ISSN 0004-5411. doi: 10.

1145/502102.502106. URL http://doi.acm.org/10.1145/502102.502106.

[67] C. A. R. Hoare. An axiomatic basis for computer programming. In Communications

of the ACM, 1969.

[68] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):

1735–1780, Nov. 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL

https://doi.org/10.1162/neco.1997.9.8.1735.

[69] A. B. Hocking, M. A. Aiello, J. C. Knight, and N. Aréchiga. Input space partitioning

to enable massively parallel proof. In NASA Formal Methods Symposium, 2017.

[70] P.-S. Huang, R. Stanforth, J. Welbl, C. Dyer, D. Yogatama, S. Gowal, K. Dvijotham,

and P. Kohli. Achieving Verified Robustness to Symbol Substitutions via Interval

Bound Propagation. arXiv e-prints, art. arXiv:1909.01492, Sep 2019.

[71] R. Jia, A. Raghunathan, K. Göksel, and P. Liang. Certified Robustness to Adversarial

Word Substitutions. arXiv e-prints, art. arXiv:1909.00986, Sep 2019.

[72] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia. Mining requirements from

closed-loop control models. IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, 34(11):1704–1717, Nov 2015. ISSN 0278-0070. doi:

10.1109/TCAD.2015.2421907.

http://arxiv.org/abs/1509.03347
http://eudml.org/doc/145659
http://eudml.org/doc/145659
http://doi.acm.org/10.1145/502102.502106
https://doi.org/10.1162/neco.1997.9.8.1735

126

[73] D. Jovanović and L. de Moura. Solving non-linear arithmetic. ACM Commun.

Comput. Algebra, 46(3/4):104–105, Jan. 2013. ISSN 1932-2240. doi: 10.1145/

2429135.2429155. URL http://doi.acm.org/10.1145/2429135.2429155.

[74] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex: An

efficient SMT solver for verifying deep neural networks. In International Conference

on Computer Aided Verification, pages 97–117. Springer, 2017.

[75] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. Reluplex:

An efficient SMT solver for verifying deep neural networks. In Computer Aided

Verification, Berlin, Heidelberg, 2017. Springer Berlin Heidelberg.

[76] Y. Kesten, N. Piterman, and A. Pnueli. Bridging the gap between fair simulation and

trace inclusion. Information and Computation, 200:35–61, 2005. doi: 10.1016/j.ic.

2005.01.006.

[77] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. International

Conference on Learning Representations, 2015.

[78] C. Ko, Z. Lyu, T. Weng, L. Daniel, N. Wong, and D. Lin. POPQORN: quantifying

robustness of recurrent neural networks. CoRR, abs/1905.07387, 2019. URL http:

//arxiv.org/abs/1905.07387.

[79] A. Kozarev, J. Quindlen, J. How, and U. Topcu. Case studies in data-driven verifi-

cation of dynamical systems. In Proceedings of the 19th International Conference

on Hybrid Systems: Computation and Control, HSCC ’16, pages 81–86, New York,

NY, USA, 2016. ACM. ISBN 978-1-4503-3955-1. doi: 10.1145/2883817.2883846.

URL http://doi.acm.org/10.1145/2883817.2883846.

[80] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Where’s Waldo? Sensor-

Based Temporal Logic Motion Planning. In Proceedings 2007 IEEE Interna-

tional Conference on Robotics and Automation, pages 3116–3121, April 2007. doi:

10.1109/ROBOT.2007.363946.

http://doi.acm.org/10.1145/2429135.2429155
http://arxiv.org/abs/1905.07387
http://arxiv.org/abs/1905.07387
http://doi.acm.org/10.1145/2883817.2883846

127

[81] M. Kuderer, S. Gulati, and W. Burgard. Learning driving styles for autonomous

vehicles from demonstration. In 2015 IEEE International Conference on Robotics

and Automation (ICRA), pages 2641–2646, May 2015. doi: 10.1109/ICRA.2015.

7139555.

[82] V. Le and S. Gulwani. Flashextract: A framework for data extraction by exam-

ples. In Proceedings of the 35th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’14, pages 542–553, New York, NY,

USA, 2014. Association for Computing Machinery. ISBN 9781450327848. doi: 10.

1145/2594291.2594333. URL https://doi.org/10.1145/2594291.2594333.

[83] X. Li, C. I. Vasile, and C. Belta. Reinforcement learning with temporal logic

rewards. In 2017 IEEE/RSJ International Conference on Intelligent Robots and

Systems, IROS 2017, Vancouver, BC, Canada, September 24-28, 2017, pages 3834–

3839, 2017. doi: 10.1109/IROS.2017.8206234. URL https://doi.org/10.

1109/IROS.2017.8206234.

[84] S. C. Livingston. gr1c: a collection of tools for GR(1) synthesis and related activities.

http://scottman.net/2012/gr1c. [Online; accessed 15-March 2016].

[85] S. P. Lloyd. Least squares quantization in pcm. IEEE Trans. Inf. Theor., 28(2):

129–137, Sept. 2006. ISSN 0018-9448. doi: 10.1109/TIT.1982.1056489. URL

http://dx.doi.org/10.1109/TIT.1982.1056489.

[86] R. Majumdar. Robots at the edge of the cloud. In Proceedings of the 22Nd Inter-

national Conference on Tools and Algorithms for the Construction and Analysis of

Systems - Volume 9636, pages 3–13, New York, NY, USA, 2016. Springer-Verlag

New York, Inc. ISBN 978-3-662-49673-2. doi: 10.1007/978-3-662-49674-9_1.

URL http://dx.doi.org/10.1007/978-3-662-49674-9_1.

[87] S. Malik and L. Zhang. Boolean satisfiability from theoretical hardness to practical

success. Commun. ACM, 52(8):76–82, Aug. 2009. ISSN 0001-0782. doi: 10.1145/

1536616.1536637. URL https://doi.org/10.1145/1536616.1536637.

https://doi.org/10.1145/2594291.2594333
https://doi.org/10.1109/IROS.2017.8206234
https://doi.org/10.1109/IROS.2017.8206234
http://scottman.net/2012/gr1c
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1007/978-3-662-49674-9_1
https://doi.org/10.1145/1536616.1536637

128

[88] S.Maniatopoulos, P. Schillinger, V. Pong, D. C. Conner, andH.Kress-Gazit. Reactive

high-level behavior synthesis for an atlas humanoid robot. In 2016 IEEE International

Conference on Robotics and Automation (ICRA), pages 4192–4199, May 2016. doi:

10.1109/ICRA.2016.7487613.

[89] Z.Manna andA. Pnueli. A hierarchy of temporal properties. In (PODC ’90) Proceed-

ings of the ninth annual ACM Symposium on Principles of Distributed Computing,

pages 377–408, 1990. doi: 10.1145/93385.93442.

[90] M. Mirman, T. Gehr, and M. Vechev. Differentiable abstract interpretation for

provably robust neural networks. InProceedings of the 35th International Conference

on Machine Learning, volume 80, pages 3578–3586, 2018.

[91] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control

through deep reinforcement learning. Nature, 518(7540):529, 2015.

[92] OpenAI-CartPole-v0. CartPole-v0. https://gym.openai.com/envs/

CartPole-v0/, 2018. [Online; accessed 2-Sep-2018].

[93] OpenAI-Swimmer-v2. Swimmer-v2. https://gym.openai.com/envs/

Swimmer-v2/, 2018. [Online; accessed 2-Sep-2018].

[94] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual

Symposium on Foundations of Computer Science, SFCS ’77, pages 46–57, Washing-

ton, DC, USA, 1977. IEEE Computer Society. doi: 10.1109/SFCS.1977.32. URL

http://dx.doi.org/10.1109/SFCS.1977.32.

[95] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of the

16th ACMSIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’89, pages 179–190, New York, NY, USA, 1989. ACM. ISBN 0-89791-294-2.

doi: 10.1145/75277.75293. URL http://doi.acm.org/10.1145/75277.75293.

[96] A. Radford, J.Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Languagemodels

are unsupervised multitask learners. 2019.

https://gym.openai.com/envs/CartPole-v0/
https://gym.openai.com/envs/CartPole-v0/
https://gym.openai.com/envs/Swimmer-v2/
https://gym.openai.com/envs/Swimmer-v2/
http://dx.doi.org/10.1109/SFCS.1977.32
http://doi.acm.org/10.1145/75277.75293

129

[97] A. Raghunathan, J. Steinhardt, and P. Liang. Certified defenses against adversarial

examples. arXiv preprint arXiv:1801.09344, 2018.

[98] A. Raghunathan, J. Steinhardt, and P. Liang. Semidefinite relaxations for certifying

robustness to adversarial examples. CoRR, abs/1811.01057, 2018. URL http:

//arxiv.org/abs/1811.01057.

[99] C. Ross and I. Swetlitz. Ibm’s watson supercomputer recommended ‘unsafe and in-

correct’cancer treatments, internal documents show. Stat News https://www. statnews.

com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-treatments, 2018.

[100] D. Sadigh, S. S. Sastry, S. A. Seshia, and A. D. Dragan. Planning for autonomous

cars that leverage effects on human actions. In Proceedings of Robotics: Science and

Systems (RSS), June 2016. doi: 10.15607/RSS.2016.XII.029.

[101] K. Schneider. Verification of Reactive Systems: Formal Methods and Algorithms.

SpringerVerlag, 2004. ISBN 3540002960.

[102] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy

optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/

abs/1707.06347.

[103] R. Sharma, A. V. Nori, and A. Aiken. Interpolants as classifiers. In Computer Aided

Verification, 2012.

[104] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driess-

che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Diele-

man, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,

K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of go with deep

neural networks and tree search. Nature, 529:484–503, 2016. URL http://www.

nature.com/nature/journal/v529/n7587/full/nature16961.html.

[105] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the

game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

http://arxiv.org/abs/1811.01057
http://arxiv.org/abs/1811.01057
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

130

[106] A. Solar-Lezama. The sketching approach to program synthesis. In Z. Hu, edi-

tor, Programming Languages and Systems, pages 4–13, Berlin, Heidelberg, 2009.

Springer Berlin Heidelberg. ISBN 978-3-642-10672-9.

[107] P. Stanley-Marbell, P. Andrea Francese, and M. Rinard. Encoder logic for reducing

serial i/o power in sensors and sensor hubs. In 28th Annual IEEE Symposium on

High-Performance Chips (Hot Chips’16), August 2016.

[108] K. Strabala, M. K. Lee, A. Dragan, J. Forlizzi, and S. S. Srinivasa. Learning

the communication of intent prior to physical collaboration. In 2012 IEEE RO-

MAN: The 21st IEEE International Symposium on Robot and Human Interactive

Communication, pages 968–973, Sep. 2012. doi: 10.1109/ROMAN.2012.6343875.

[109] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural

networks. In Advances in neural information processing systems, pages 3104–3112,

2014.

[110] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and

R. Fergus. Intriguing properties of neural networks. CoRR, abs/1312.6199, 2013.

URL http://arxiv.org/abs/1312.6199.

[111] K. M. Ting and L. Zhu. Boosting Support Vector Machines Successfully, pages

509–518. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-

02326-2. doi: 10.1007/978-3-642-02326-2_51. URL http://dx.doi.org/10.

1007/978-3-642-02326-2_51.

[112] V. Tjeng, K. Xiao, and R. Tedrake. Evaluating robustness of neural networks with

mixed integer programming. arXiv preprint arXiv:1711.07356, 2017.

[113] P. Trautman, J. Ma, R. M. Murray, and A. Krause. Robot navigation in dense human

crowds: the case for cooperation. In 2013 IEEE International Conference on Robotics

and Automation, pages 2153–2160, May 2013. doi: 10.1109/ICRA.2013.6630866.

[114] J. Uesato, B. O’Donoghue, A. v. d. Oord, and P. Kohli. Adversarial risk and the

dangers of evaluating against weak attacks. arXiv preprint arXiv:1802.05666, 2018.

http://arxiv.org/abs/1312.6199
http://dx.doi.org/10.1007/978-3-642-02326-2_51
http://dx.doi.org/10.1007/978-3-642-02326-2_51

131

[115] USNationalHighwayTrafficSafetyAdministration. Investigation pe 16-007. https:

//static.nhtsa.gov/odi/inv/2016/INCLA-PE16007-7876.PDF.

[116] M. Vazquez-Chanlatte, J. V. Deshmukh, X. Jin, and S. A. Seshia. Logical clustering

and learning for time-series data. In International Conference on Computer Aided

Verification, pages 305–325. Springer, 2017.

[117] M. Vazquez-Chanlatte, S. Jha, A. Tiwari, M. K. Ho, and S. Seshia. Learning

task specifications from demonstrations. In S. Bengio, H. Wallach, H. Larochelle,

K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neu-

ral Information Processing Systems 31, pages 5368–5378. Curran Associates,

Inc., 2018. URL http://papers.nips.cc/paper/7782-learning-task-

specifications-from-demonstrations.pdf.

[118] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri. Programmatically inter-

pretable reinforcement learning. In International Conference on Machine Learning,

ICML 2018, 2018.

[119] C. Wang, R. Bunel, K. Dvijotham, P.-S. Huang, E. Grefenstette, and P. Kohli.

Knowing when to stop: Evaluation and verification of conformity to output-size

specifications. In CVPR, 2019.

[120] A. Weiser and S. E. Zarantonello. A note on piecewise linear and multilinear

table interpolation in many dimensions. Mathematics of Computation, 50(181):189–

196, 1988. ISSN 00255718, 10886842. URL http://www.jstor.org/stable/

2007922.

[121] E.Wong and Z. Kolter. Provable defenses against adversarial examples via the convex

outer adversarial polytope. In International Conference on Machine Learning, pages

5283–5292, 2018.

[122] S.-H. Wu, K.-P. Lin, C.-M. Chen, and M.-S. Chen. Asymmetric support vector

machines: Low false-positive learning under the user tolerance. In Proceedings of

the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data

https://static.nhtsa.gov/odi/inv/2016/INCLA-PE16007-7876.PDF
https://static.nhtsa.gov/odi/inv/2016/INCLA-PE16007-7876.PDF
http://papers.nips.cc/paper/7782-learning-task-specifications-from-demonstrations.pdf
http://papers.nips.cc/paper/7782-learning-task-specifications-from-demonstrations.pdf
http://www.jstor.org/stable/2007922
http://www.jstor.org/stable/2007922

132

Mining, KDD ’08, pages 749–757, New York, NY, USA, 2008. ACM. ISBN 978-1-

60558-193-4. doi: 10.1145/1401890.1401980. URL http://doi.acm.org/10.

1145/1401890.1401980.

[123] S.-H. Wu, K.-P. Lin, H.-H. Chien, C.-M. Chen, and M.-S. Chen. On generaliz-

able low false-positive learning using asymmetric support vector machines. IEEE

Transactions on Knowledge and Data Engineering, 25(5):1083–1096, 2013. ISSN

1041-4347. doi: http://doi.ieeecomputersociety.org/10.1109/TKDE.2012.46.

[124] M. Yamaura, N. Aréchiga, and S. Shiraishi. Simulink verification benchmark.

https://github.com/Toyota-ITC-SSD/SimulinkVerificationBenchmark, 2017.

[125] R. R. Zakrzewski. Verification of a trained neural network accuracy. In

IJCNN’01. International Joint Conference on Neural Networks. Proceedings (Cat.

No.01CH37222), volume 3, pages 1657–1662 vol.3, July 2001. doi: 10.1109/IJCNN.

2001.938410.

http://doi.acm.org/10.1145/1401890.1401980
http://doi.acm.org/10.1145/1401890.1401980

133

Appendix A

Supplementary Material: Parallelized
Synthesis for LTL Specifications

A.1 Proof of Claim 2

Proof. First we show Wϕ ⊆ Wϕ̄. Let f ϕG be a winning strategy for the condition ϕ for the

set Wϕ. We show that f ϕG is winning for the condition ϕ̄ for the set of states Wϕ, thereby

proving that Wϕ ⊆ Wϕ̄. Consider σ ∈ Plays(f ϕG) such that σ0 ∈ Wϕ. By definition,

σ |= (θa ∧ θe) ∧

(
2ρe ∧

m∧
i=1

23ψe
i

)
→

©«
n∧

j=1
23ψa

j)
ª®¬ .

If σ |=
m∨

i=1
32¬ψe

i or σ |= ¬ (θa ∧ θe), then σ |= ϕ̄ directly. In the other case, σ |=(
n∧

j=1
23ψa

j

)
has to hold. For this case, the semantics of the 3 operator imply that there

exists k1, k2, . . . , kn that are finite such that σki |= ψ
a
i (23ψa

i implies 3ψa
i has to hold at

every step along a run). For each such finite ki, ∀ j ∈ {1, 2, . . . , n}∃hi j > ki .σhi j |= ψ
a
j . This

implies 3(ψa
i ∧3ψ

a
i⊕1) holds for each i. Therefore, σ0 ∈ Wϕ̄ and hence Wϕ ⊆ Wϕ̄.

Now, let us show Wϕ̄ ⊆ Wϕ. Wϕ̄ is the winning set for ϕ̄. By definition of winning sets

there exists a winning strategy f ϕ̄G that is winning against ϕ̄ for every element of Wϕ̄. Also,

Wϕ̄ is not an empty set if the system can win for ϕ̄ from any state. If Wϕ̄ is an empty set,

Wϕ̄ ⊆ Wϕ is trivially true.

To prove that Wϕ̄ ⊆ Wϕ, we construct a new strategy f̄ that is winning against the

134

condition ϕ for all states in Wϕ̄. This way, we show that every state in Wϕ̄ is winning against

ϕ and hence in Wϕ. Consider some play σ̄ of f ϕ̄G such that σ̄ |=
m∧

i=1
23ψe

i and σ̄0 ∈ Wϕ̄. If

no such play exists, then for all plays of f ϕ̄G , the condition ¬
m∧

i=1
23ψe

i holds and the strategy

f ϕ̄G is winning for ϕ because all plays of f ϕ̄G satisfy ϕ.

Consider the case when such a play exists. 3ψa
1 holds implying that at some finite k,

σ̄k: |= ψa
1 ∧3ψa

1⊕1 holds. Denote the smallest k at which σ̄k |= ψ
a
1 ∧3ψa

1⊕1 as k1. By a

similar reasoning, we can go on to define k1, k2, . . . , kn. Next, we introduce a variable Zn

that can take values in {1, 2, . . . , n} and tracks which of the liveness guarantees have been

satisfied. Zn is initialized to 1. The strategy

f̄ : (M × {1, 2, . . . , n}) × Σ × P(APe) →

(M × {1, 2, . . . , n}) × P(APa)

is constructed as

f̄ ((w,Zn), s, s′ ∩ APe) = ((w
′,Z′n), s

′ ∩ APa),

where if s |= ψa
Zn

,

(w′, s′ ∩ APa) = f ϕ̄G (m
σ̄, f ϕ̄

G

kZn
, s, s′ ∩ APe),

Z′n = Zn ⊕ 1,

and if s 6 |= ψa
Zn

,

(w′, s′ ∩ APa) = f ϕ̄G (w, s, s
′ ∩ APe),

Z′n = Zn.

Showing well-definedness for all relevant inputs For any reachable state-memory pair

(s,w) of f ϕ̄G and any input x ∈ P(APe), f ϕ̄G (w, s, x) is defined if (s, x) |= ρe (since f ϕ̄G is

winning for ϕ̄). For the case when (s,w) is reachable, then f (w, s, x) is also reachable if

sx |= ρe. This implies that when s 6 |= ψa
Zn

if ss′ |= ρe and (s,w) is reachable, then (w′, s′)

135

with (w′, s′ ∩ APa) = f̄ (w, s, s′ ∩ APe) is reachable.

Consider a state s such that s |= ψa
Zn

, s = σ̄kZn because σ̄kZn |= ψa
Zn

and [[ψa
Zn
]] is

a singleton. If s = σ̄kZn , then f ϕ̄G (m
σ̄, f ϕ̄

G

kZn
, s, x) is defined ∀x ∈ P(APe).sx |= ρe. This

is because (s,mσ̄, f ϕ̄
G

kZn
) is reached during the execution σ̄ ∈ Plays(f ϕ̄G). Therefore, for any

s |= ψa
Zn

, f̄ (m
σ̄, f ϕ̄

G

kZn
, s, (.)) is well-defined for all valid environmental inputs and (s,mσ̄, f ϕ̄

G

kZn
) is

reachable for f ϕ̄G .

Additionally, we begin execution for the first input at an initial memory value mi ∈ M .

For a valid initial state s ∈ Wϕ̄ and the initial memory value mi, (s,mi) is reachable for f ϕ̄G .

To summarize, we start at a reachable state-memory pair for f ϕ̄G .

We showed that for any reachable state-memory pair (s,w) of f ϕ̄G , f̄ is well-defined for

all valid environmental inputs. We also showed that the output for this case is a reachable

state-memory pair (for f ϕ̄G) if the environmental input is valid. Additionally, we also start

at a reachable state-memory pair. Therefore, for any σ ∈ Pref(f̄), at (σ−1,m
σ, f
−1), f̄ is

well-defined for all valid inputs if σrσr+1 |= ρ
e ∀r < |σ | − 1, σ0 ∈ Wϕ̄, and execution starts

with the initial memory value mi.

Proving properties about the strategy f̄ We argued that f̄ is input-enabled. This implies

that for a state, f̄ is well-defined for any valid environmental input when the environment

assumption has not been violated in the past while getting to that state. Now all that remains

is to show that the plays of f̄ satisfy the specification ϕ.

Consider any σ ∈ Plays(f̄) with σ0 ∈ Wϕ̄. Note that the state sequence σ̄ used for the

construction of the strategy f̄ ϕG is independent of the sequence of inputs corresponding to σ.

Also, note that the strategy f̄ and Plays(f̄) have already been defined. Here we only prove

properties about elements of the set Plays(f̄), specifically that they satisfy ϕ. Consider the

case when σ |=
m∧

i=1
23ψe

i , because for the other case ϕ holds directly.

Execution begins at a valid initial state mi and σ0 ∈ Wϕ̄. If σ 6 |= 3ψa
1, it implies

that execution continued in accordance with f ϕ̄G without any memory resets (from the

definition of f̄). This implies that σ ∈ Plays(f ϕ̄G), but this leads to a contradiction since

σ |= 3ψa
1 ∧

n∧
i=1

3(ψa
i → 3ψa

i⊕1) , implying σ |= 3ψa
1. This is because σ |= ϕ̄ and we are

136

looking at the case when σ |=
m∧

i=1
23ψe

i . So, let l1 be the smallest value at which σl1 |= ψ
a
1

holds.

Now consider σ̄:k1 , the path to σ̄k1 . Let us look at the sequence σl1:. If σl1: 6 |= 3ψa
2,

then the sequence σ̄:k1σl1: ∈ Plays(f ϕ̄G). This is because |[[ψa
1]]|=1, σ̄k1 = σl1 . And by

construction,

f̄ ((mσl1, f̄ , 1), σl1, σl1+1 ∩ APe) = f ϕ̄G (m
σ̄, f ϕ̄

G

k1
, σ̄k1, σl1+1 ∩ APe).

Therefore, σ̄:k1σl1: ∈ Plays(f ϕ̄G) and (σ̄:k1σl1:)0 ∈ Wϕ̄. This implies that

σ̄:k1σl1: |= ψ
a
1 ∧3(ψ

a
1 → 3ψa

2)

from the definition of ϕ̄ and m
σ̄, f ϕ̄

G

k1
– leading to a conttradiction to our assumption σl1: 6 |=

3ψa
2 . Thus, there exists a finite l2 ≥ l1 at which σl2 |= ψ

a
2. The inequality l2 ≥ l1 can be

made strict i.e l2 > l1 by identifying any i, j for which [[ψa
j]] = [[ψ

a
i]], and combining them

into one progress condition. This means that the same state will not satisfy any two distinct

progress conditions, hence l2 > l1 from the condition 3(ψa
1 → 3ψa

2).

Repeating the argument for any i, we get ∃li⊕1 > li such that li+1 is finite andσli⊕1 |= ψ
a
i⊕1

with σli |= ψa
i . This way we showed that there exists a sequence of integers such that

l1
1 < l1

2 < . . . l1
n < l2

1 . . . < lk
j ∀ j ≤ n, ∀k with σli

k
|= ψa

i . Given any j ≤ n and r ∈ N

we can find a k such that r < (k − 1)n, σlkj
|= ψa

j . Therefore, σr: |= 3ψa
j . This holds

true for all r and for all j ≤ n, hence σ |=
n∧

i=1
23ψa

i . Therefore, f̄ is winning against ϕ

and σ0 ∈ Wϕ̄ → σ0 ∈ Wϕ. Therefore, Wϕ̄ ⊆ Wϕ. And from before Wϕ ⊆ Wϕ̄, hence

Wϕ̄ = Wϕ.

A.2 Proof of Lemma 3

Proof. We first show that for a game with ϕ̄ as the winning condition, we can compute the

winning strategy from solving n+1 reachability games. Thenwe use the result fromClaim 3.

Consider a state s that iswinning for ϕ̄. Let f̄ ϕ̄G be thewinning strategy for ϕ̄ from s. Consider

137

σ ∈ Plays(f̄ ϕ̄G), then σ |= ψ
a
1 ∧

n∧
j=1

3(ψa
j → 3ψa

j⊕1) or σ |=
m∨

i=1
32¬ψe

i ∨¬ (θ
e ∧ θa). If all

plays of f̄ ϕ̄G with a valid initial state s satisfy
m∨

i=1
32¬ψe

i , then f̄ ϕ̄G is winning for ϕreach
0 as well

from s. Therefore, by solving the reachability game with ϕreach
0 as the winning condition,

we can obtain a strategy winning for ϕ.

Consider the case when ∃σ ∈ Plays(f̄ ϕ̄G) such that σ |=
m∧

i=1
23ψe

i and σ0 = s where

s |= (θa ∧ θe). We observe that for this case, for each i ∈ {1, 2, . . . , n}, the reachability

game with the condition ϕreach
i is winnable from [[ψa

i⊕−1]]. To do this, first note

σ |= ψa
1 ∧

n∧
j=1

3(ψa
j → 3ψa

j⊕1)

since σ |=
m∧

i=1
23ψe

i ∧ (θ
e ∧ θa) and σ |= ϕ̄. Define ri to be the smallest instance such that

σri |= ψ
a
i (we know that such an ri exists from the arguments in the proof of Claim 3).

Next, we prove that the strategy f̄ ϕ̄G with the initial memory value as m
σ, f̄ ϕ̄

G
ri is winning

for game with condition ϕreach
i⊕1 . To see this, consider any σ ∈ Plays(f̄ ϕ̄G) with σ0 = q such

that q |= ψa
i i.e execute according to the strategy starting at the state q and memory m

σ, f̄ ϕ̄
G

ri .

Note that since [[ψa
i]] is a singleton, q = σri = σ0. And, at the state-memory value pair

(q,m
σ, f̄ ϕ̄

G
ri), f̄ ϕ̄G is well-defined since this state-memory value pair is reachable for f̄ ϕ̄G (recall

we selected this state and memory value from a execution in Plays(f̄ ϕ̄G) starting from the

winning set for ϕ̄).

Case 1: σ |=
m∧

i=1
23ψe

i

For this case,σ:riσ ∈ Plays(f̄ ϕ̄G) since∀k < ri, (mσ
k+1, σk+1∩APa) = f̄ ϕ̄G (m

σ
k σk, σk+1∩

APe) and since σri = σ0. We continue execution from (σri,m
σ, f̄ ϕ̄

G
ri) in accordance with

f̄ ϕ̄G , so the entire sequence was generated in accordance with this strategy. Using the

fact that this strategy is winning from σ0 for ϕ̄, and that the semantics of LTL imply

σ |=

m∧
i=1

23ψe
i → σ:riσ |=

m∧
i=1

23ψe
i ,

138

we arrive at the conclusion that

σ:riσ |= ψ
a
1 ∧

n∧
j=1

3(ψa
j → 3ψa

j⊕1).

Therefore, σ:riσ |= (ψ
a
i ∧3ψ

a
i⊕1) and ri was the smallest instance at which ψa

i holds.

It follows that σ |= (ψa
i ∧3ψ

a
i⊕1). Therefore, σ |= ϕ

reach
i⊕1 .

Case 2: σ |= ¬
m∧

i=1
23ψe

i

σ |= ¬
m∧

i=1
23ψe

i → σ |= ϕreach
i .

This implies that all plays of f ϕ̄G starting with s |= ψa
i and initial memory value m

σ, f̄ ϕ̄
G

ri are

winning against ϕreach
i . Hence, f ϕ̄G is winning against ϕreach

i for the state s |= ψa
i . For the

case with s |= θ, by the definition of ϕ̄, the set of states [[θ]] is winning for ϕreach
n .

Now, we have shown that for the case when the reachability game ϕreach
0 is not winnable,

if ϕ̄ is winnable, we can find a winning strategy for each of the ϕreach
j games with their

respective initial conditions as described in Section 2.2. Let the winning strategy for each

such reachability game be f reachj

G : M j ×Σ×P(APe) → M j ×P(APa) with mi
0 as the initial

memory. Without loss of generality, assume that the for any i, j with i , j, M i ∩ M j = ∅.

The earlier segment of the proof was to show the existence of these strategies when ϕ̄ is

winnable.

Now we show these can be combined to form a winning strategy f ϕ̄G winning against

ϕ̄. First, consider the strategy f reachn . Replace all the memory values corresponding to

reachable (w, s) for f reachn where s |= ψa
1 with m1

0. Note that s |= ψa
1 corresponds to a valid

initial state for the game with condition ϕreach
2 .

Let this modified strategy be f̄ reachn . Effectively, we have patched f reachn with f reach1 so

that after reaching a state that satisfies ψa
1 it switches from f reachn to f reach1 . Call the new

resulting strategy f ∗1,2 where f ∗1,2 is defined as

f ∗1,2(w
′, y) =

f̄ reachn(w, s, x) if w ∈ Mn,

f reach1(w, s, x) if w ∈ M1.

139

Consider σ in Plays(f ∗1,2) such that σ |= (θa ∧ θe) ∧
m∧

i=1
23ψe

i (the other case is trivial).

Initially, we start at memory mn
0 and a state σ0 : σ0 |= (θ

e ∧ θa) and continue execution

along strategy f reachn till we reach ψa
1 in a finite number of steps–this is guaranteed by

the definition of ϕreach
n . Subsequently, execution is continued along f reach1 till we reach

a state that satisfies ψa
2 in a finite number of steps. This is because if σ |=

m∧
i=1

23ψe
i ,

then σ |= 3ψa
1 ∧ 3(ψa

1 → 3ψa
2). Otherwise, from the definition of f reach

1 and ϕreach
2 , we

end up with a contradiction as before. Similarly, we extend f ∗1,2 to replace the memory

corresponding to the reachable (w, s) for f reach
1 where s |= ψa

2 with m2
0. Define the resulting

strategy f ∗1,2,3 as:

f ∗1,2,3(w
′, y) =

f̄ reachn(w, s, x) if w ∈ Mn,

f̄ reach1(w, s, x) if w ∈ M1,

f reach2(w, s, x) if w ∈ M2.

As before, we can show that the plays of this strategy are winning against 3ψreach
1 ∧

3(ψreach
1 → 3ψreach

2) ∧ 3(ψreach
2 → 3ψreach

3). Continue the procedure to obtain f ∗1,2,...,n,1.

By construction, this stategy is winning against ϕ̄.

We argued that for a state s |= (θa ∧ θe) that is winning for ϕ̄, either the reachability

game with condition ϕreach
0 is winnable or the reachability games with condition ϕreach

i with

i ∈ {1, 2, . . . , n} are winnable. And for both cases, we provided a construction for a strategy

winning against ϕ̄ from the strategies winning for the reachability games. This implies that

for a state, ϕ̄ is winnable if and only if the game with ϕreach
0 is winnable or the games with

ϕreach
i are winnable. Therefore, from solving the reachability games we can infer if a state

is winnable or not and also construct a winning strategy for ϕ̄ if it is winnable.

In the proof of Claim 3, we demonstrated an approach to construct a strategy that is

winning against ϕ using the strategy winning against ϕ̄. We also showed that the winning

states for the conditions ϕ and ϕ̄ are the same. Hence, the GR(1) game can be solved by

solving n + 1 reachability games separately.

140

Appendix B

Supplementary Material: Verifying,
Interpreting and Debugging Learned
Systems

B.1 RL Agent: Task and Training Details

The agent’s observation at each time-step t contains i) its own coordinates (xt, yt), ii) for

each cell, the time remaining until that cell is dirty, and iii) the (fixed) locations of the

recharge cells. The agent learns a policy from these observations to a continuous control

action (ax,t, ay,t) ∈ R
2. The continuous part of the agent’s state is updated as:

xt+1 = xt + ax,t, yt+1 = yt + ay,t . (B.1)

The policy is represented in the parameters θ, and the result of applying the policy then the

environment update is our function fθ .

Here, we consider verifying an agents trained with Deep-Q learning in an environment

with Trecharge = 3 and Tdirt = 4, i.e, every cell accumulates dust four time-steps after it was

cleaned, and the robot needs to recharge itself every 4 time-steps. Additionally, the initial

cell where the robot starts can have between 0 − 0.1% uncertainty in the amount of dirt,

the charge that can be acquired from the recharge station, and the initial battery (as another

element of uncertainty in the initial position).

If the agent leaves the domain, it is clipped back into the problem domain. The agent’s

141

each have 4 discrete actions and are trained with a combination of vanilla Deep-Q learning,

Deep-Q learning + reward-shaping, and Deep-Q learning + verifiable training. The actions

corresponds to velocities in the 4 cardinal directions, i.e., {(0, 5), (5, 0), (−5, 0), (0,−5)}. For

the agent trained to be verifiable, in addition to loss from Deep-Q learning, the agent is also

trained to be verifiable with respect to the temporal specification presented in Section 4.5.2.

The verification losses are optimized using the Adam optimizer [77] with learning rate 10−3.

The weight of the verification loss anneals linearly between 0 and 1.5 during the first 70K

steps. The model is trained to be verifiable starting at the center of the grids, and eventually

covering the region around the centers, with ε = 0.015 during the same 70k steps. We find

that this regularizes the model to be verifiable in regions outside the region in which the

model was trained to be verifiable.

B.2 STL Semantics

In addition to the qualitative semantics discussed in the main text, STL formulae have

quantitative semantics [42, 43] defined inductively by the function ρ below. For a given

trace σ, with σt indicating the value of the signal at time t, the quantitative semantics is

given by

• ρ(true, σ, t) = +∞

• ρ(q(s) ≥ 0, σ, t) = q(σt)

• ρ(¬ϕ, σ, t) = −ρ(ϕ, σ, t)

• ρ(ϕ1 ∧ ϕ2, σ, t) = min (ρ(ϕ1, σ, t), ρ(ϕ2, σ, t))

• ρ(ϕ1UI ϕ2, σ, t) = max
t ′∈t+I

min
(
ρ(ϕ2, σ, t′), min

t ′′∈[t,t ′]
ρ(ϕ1, σ, t′′)

)
One can obtain the qualitative semantics from the sign of the quantitative semantics.

Specifically, (σ, t) |= ϕ ⇐⇒ ρ(ϕ, σ, t) ≥ 0.

We can convert the formulae to their equivalent negation normal form by following the

standard procedure until negations are only associated with atoms and Boolean constants.

142

In particular, we interpret ρ(¬true, σ, t) = −∞ and use the disjunction operator defined as

ρ(ϕ1 ∨ ϕ2, σ, t) = max(ρ(ϕ1, σ, t), ρ(ϕ2, σ, t)). The normal form for ¬(ϕ1UIϕ2) is obtained

by pushing the negation into the subformulae, and swapping min with max. Finally, we turn

¬(q(s) ≥ 0) into −q(s) > 0 which we approximate by −q(s) − δ ≥ 0 for some small δ > 0.

	Acknowledgments
	Abstract
	Published Content and Contributions
	Introduction
	Main Contributions
	Scalable Synthesis Through Parallelization
	Learning-Based Abstractions for Verification
	Interpreting and Verifying Neural Networks

	Parallelized Synthesis for LTL Specifications
	Preliminaries
	Generalized Reactivity (1)
	Reachability Games

	GR(1) specifications With Singleton Liveness Goals
	Counterexample for the Non-Singleton Case

	Parallelized Synthesis by Identifying Equicontrollable States
	Composite Controller for Assembling Sub-Strategies
	Composing the Sub-Strategies

	Experiments and Analysis
	Parallelized Synthesis for Singleton Liveness Guarantees
	Parallelized Synthesis via Equicontrollable Classes

	Conclusions and Future Work

	Learning for Verification
	Lookup Tables and Constraint Solving: Background
	Lookup Tables
	Lookup Tables as Logical Formulas

	Lookup Table Abstraction: Problem Statement
	Lookup Table Abstraction: Approach
	Computing Abstractions by Approximation
	Falsification
	Abstraction Refinement
	Implementation Details
	Proving Specifications
	Falsification

	Lookup Table Abstraction: Case Study
	Constraint Solving: Overview
	Constraint Solving: Learning Abstractions
	Semi-Soft SVM
	Sampling for Learning
	Counterexample-Guided Abstraction Refinement(CEGAR)
	Boosting
	Decomposition Methods

	Constraint Solving: Experiments
	Complexity and Discussion
	Data-driven Verification: Preliminaries
	Signal Temporal Logic
	Random Convex Program

	Data-driven Verification: Approach
	L1 Piecewise SVM for Reactive Modeling
	Reliability Analysis with RCP

	Data-Driven Verification: Case Study
	Multi-robot Navigation
	Lane Change

	Discussion: Data-driven Verification

	Verifying, Interpreting and Debugging Learned Systems
	Preliminaries
	Neural Networks as Constraints
	Symbolic Interpolants

	Computing Pre-Image Abstractions
	Computing Overapproximations
	Bounding the Problem
	2D Example

	Computing Pre-Image Abstractions: Algorithms
	Computing Pre-Image Abstractions: Experiments
	2D Toy-Example
	Cartpole Control
	Swimmer

	Temporal Specifications for Learning Tasks
	Bounding Caption Length for Image Captioning
	Verifying That a Robot Never Runs Out of Charge
	Verifying Generated Outputs from a Language Model

	Verified Training of DNNs for STL Specifications
	Optimization Formulation of STL Verification
	Bound Propagation
	Verified Training for STL Specifications

	Verified Training for STL Specifications: Experiments
	Sequential Captioning of Multi-MNIST Images
	An RL Mobile-Robot Agent
	Language Generation

	Discussion

	Conclusions and Future Work
	Summary
	Future Work

	Supplementary Material: Parallelized Synthesis for LTL Specifications
	Proof of Claim 2
	Proof of Lemma 3

	Supplementary Material: Verifying, Interpreting and Debugging Learned Systems
	RL Agent: Task and Training Details
	STL Semantics

