
Formal design and analysis for DNA implementations of

Chemical Reaction Networks

Thesis by

Robert F. Johnson

In Partial Fulfillment of the Requirements for the

Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY

Pasadena, California

2020

Defended January 21, 2020

ii

c© 2020

Robert F. Johnson
ORCID: 0000-0002-5340-8347

All rights reserved

iii

ACKNOWLEDGEMENTS

There are many people I am grateful to for helping me become the researcher

represented in this thesis, in more ways than I can effectively express. I can,

however summarize. My advisors, Erik Winfree and Lulu Qian, I would like to

thank for introducing me to the field of molecular programming, for showing

me the many little skills that make the difference between a problem-solver

and a proper researcher, and most of all, for being patient and supportive over

the past 6 years while I was learning and practicing said skills. Professors

Ellen Rothenberg and Shuki Bruck, whose classes I took in my undergraduate

first year, I would like to thank for introducing me to the idea of biology as a

logical system, which started the path that eventually led me here. Professors

Richard Murray and Niles Pierce, the members of my thesis committee in

addition to the four above, I would like to thank for all the advice, and also

for showing me the breadth of molecular programming when I was starting

out. Finally my mother, Devra Johnson, I would like to thank for teaching

me the concepts of math and logic, and for finding opportunities for me to

practice those in my high school years, laying the foundations for the direction

I would eventually go in.

iv

ABSTRACT

In molecular programming, the Chemical Reaction Network model is often

used to describe systems of interacting molecules. This model can describe

either real systems, allowing us to analyze and determine their computational

function; or describe hypothetical systems, with known computational func-

tion but perhaps no known physical example. One significant breakthrough

in the field is that any Chemical Reaction Network can be approximated

by a system using DNA Strand Displacement mechanisms. This allows the

Chemical Reaction Network model to be treated like a programming language,

where programs can be written in the abstract and then compiled into physical

molecules. Given a programming language and a proof-of-concept compiler,

one would want to take the compiler from the proof-of-concept stage into a

more reliable, more systematic, and better understood process. This thesis is

made up of my contributions to that effort.

First, given a programming language and a compiler, it would be useful to

formally verify that the compiler is correct. My collaborators, Qing Dong

and Erik Winfree, and I defined a Chemical Reaction Network-specific form

of bisimulation equivalence, which can compare two such networks and verify

that one is (or is not) a correct implementation of the other. For example,

the compiler-produced DNA circuit can be verified as an implementation of

its abstract program, although this is not the only possible use. After defin-

ing this concept of equivalence, we show that it can be checked by algorithm;

although various parts of the problem are NP-complete or PSPACE-complete,

we give algorithms that meet these lower bounds. We also prove a number of

interesting properties of Chemical Reaction Network bisimulation equivalence,

including transitivity and modularity properties which are particularly useful

for stepwise checking of large systems. We further extend this bisimulation

method to linear Polymer Reaction Networks, a strictly more powerful ab-

straction which has been occasionally used in molecular programming. Again

we prove complexity hardness results, which in this case are as expected un-

computable in the general case; however, many practical systems can still be

verified, and we give one such example. Finally, we use bisimulation to iden-

tify a class of single-locus networks that are practical to implement. Thus we

show a method of verification which can simplify use of the above-mentioned

v

compiler by proving general statements of correctness about its results.

Second, given a programming language and a concept of compiling it, it would

be useful to optimize the result of the compilation. One particular area of

optimization is the number of DNA strands per prepared complex; some ex-

periments suggest that systems with no more than 2 strands per complex are

more robust. Lulu Qian and I developed some proposed DNA Strand Dis-

placement schemes for general Chemical Reaction Network implementations

with no more than 2 strands per complex, and a number of other desirable

properties. Meanwhile, having been shown to be useful for many reasons, the

mechanisms of DNA Strand Displacement have recently been formalized, ab-

stracted, and analyzed. I show that this formalization, combined with the

bisimulation methods above, can prove various statements about the limits of

DNA Strand Displacement systems. For example, a set of desirable conditions

including the 2-strand limit cannot be achieved by any general Chemical Re-

action Network implementation scheme. I also observe that two of the new

schemes we discovered, each meeting all but one condition of the impossible

set, were found in the process of coming up with this proof. I thus argue that

through formalization of DNA Strand Displacement we can have a more sys-

tematic method of finding and designing molecular programs, and of knowing

when the programs we want do not exist.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] Robert F. Johnson. Impossibility of sufficiently simple chemical reaction
network implementations in DNA strand displacement. In Ian McQuil-
lan and Shinnosuke Seki, editors, Unconventional Computation and Natu-
ral Computation, pages 136–149. Springer International Publishing, 2019.
ISBN 978-3-030-19311-9. doi: 10.1007/978-3-030-19311-9 12.
Contributions: RFJ formulated the question of impossibility, proved the
theorems, and wrote the manuscript.

[2] Robert F. Johnson, Qing Dong, and Erik Winfree. Verifying chemical
reaction network implementations: A bisimulation approach. Theoretical
Computer Science, 2018. doi: 10.1016/j.tcs.2018.01.002.
Contributions: EW formulated the initial questions and definitions of CRN
bisimulation, provided advice and assistance throughout, and reviewed and
edited the manuscript. QD gave the initial formulation and proof of the
equivalence of three notions theorem and the reactionsearch algorithm,
contributed an initial manuscript describing those parts, and reviewed the
final manuscript. RFJ improved existing definitions and proofs, proved the
transitivity and modularity theorems, designed the loopsearch and graph-
search algorithms, proved the completeness results, defined and analyzed
the extension for implicit catalysts, and was the primary writer of the final
manuscript.

vii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions vi
Table of Contents . vii
List of Illustrations . ix
List of Tables . xi
List of Algorithms . xii
Chapter I: Introduction . 1

1.1 The promise of molecular programming 1
1.2 Theory in molecular programming 2
1.3 A type of molecular compiler 2
1.4 Formal verification . 3
1.5 Exploring formal DNA strand displacement 4

Chapter II: Verifying Chemical Reaction Network implementations: A
bisimulation approach . 5
2.1 Perspective . 5
2.2 Background . 8
2.3 The Chemical Reaction Network Model 16
2.4 The Meaning of Correctness 19
2.5 Checking Bisimulation . 41
2.6 Additional Features of CRN Bisimulation 88
2.7 Discussion . 98

Chapter III: Verifying Polymer Reaction Networks using bisimulation . 103
3.1 Perspective . 103
3.2 Introduction . 107
3.3 Definitions . 110
3.4 Verifying the DNA Stack Machine 130
3.5 Hardness Results . 143
3.6 Single-Locus Networks . 146
3.7 Alternate polymer models and extended models 156
3.8 Discussion . 160

Chapter IV: Simplifying Chemical Reaction Network implementations
with two-stranded DNA building blocks 164
4.1 Perspective . 164
4.2 Introduction . 166
4.3 Two-stranded motifs . 167
4.4 Chemical Reaction Network implementations 170
4.5 Correctness of the schemes . 174
4.6 Discussion . 175

viii

Chapter V: Impossibility of sufficiently simple Chemical Reaction Net-
work implementations in DNA strand displacement 178
5.1 Perspective . 178
5.2 Introduction . 181
5.3 Formalizing DNA Strand Displacement 183
5.4 The 2-r4 Condensed Reaction 188
5.5 Chemical Reaction Network Implementations 192
5.6 Discussion . 196
5.7 Omitted Proofs . 197

Bibliography . 200

ix

LIST OF ILLUSTRATIONS

Number Page

2.1 Implementation of A + B → C + D using the scheme described

in [66]. 20

2.2 Interpretation of the implementation CRN in Figure 2.1. 21

2.3 Example CRNs with the same set of (interpreted) trajectories

but different behavior. 23

2.4 Modified version of the rock-paper-scissors oscillator [25, 44] and

an incorrect implementation. 24

2.5 The translation scheme from [57], when used as a general CRN

implementation, violates the delimiting condition. 30

2.6 An example implementation CRN with multiple possible correct

interpretations as different formal CRNs. 31

2.7 An implementation CRN that satisfies the modularity condition. 39

2.8 Example set of minimal implementation states for the reaction

A+B → C. 43

2.9 Example use of minimal states to reduce the dependence of the

permissive condition on null species. 46

2.10 Example graphs of minimal states. 48

2.11 Example of the loopsearch graph for the formal reaction A+B →
C with implementation CRN from Figure 2.10B. 50

2.12 An implementation CRN with a correct interpretation if and

only if the corresponding space-bounded Turing machine accepts. 63

2.13 A pictorial illustration of the search tree explored by the reaction-

search algorithm for the given pair of formal and implementation

CRNs. 71

2.14 Example formal and implementation CRN corresponding to an

instance of the 3-SAT problem. 80

2.15 An example spurious reaction in a variant of the translation

scheme by Soloveichik et al. [66]. 94

3.1 Scaling of number of states in well-mixed versus polymer systems.104

3.2 An example implementation CRN with interpretation. 114

3.3 Illustrated definition of a Polymer Reaction Network. 117

x

3.4 Example Polymer Reaction Networks to demonstrate various fea-

tures of the PRN model. 122

3.5 Features of a polymer interpretation. 127

3.6 Choice of monomers in Qian et al.’s DNA stack machine [57]. 133

3.7 Enumeration of reaction schemata and interpretation of the monomers

in Qian et al.’s DNA stack machine [57] as enumerated in Fig-

ure 3.6. 136

3.8 Examples of the three types of modules. 139

3.9 The “minimal states argument” from our previous work on CRN

bisimulation [40] is often the most effective way to prove the

permissive condition. 141

3.10 Intuitive illustration of single-locus reaction schemata. 148

4.1 Four previously studied reversible 2-stranded DSD motifs, shown

through common examples. 168

4.2 A cooperative 4-way branch migration mechanism. 171

5.1 The reaction rules of Definition 5.3.2. 185

5.2 A locality theorem. 187

5.3 The two-toehold-mediated reversible 4-way branch migration (2-

r4) condensed reaction mechanism. 189

5.4 An example O(1) toeholds systematic DSD implementation. . . 193

5.5 An example information-bearing set. 195

xi

LIST OF TABLES

Number Page

3.1 The transition rules of the Turing machine whose polymer im-

plementation is shown in Figure 3.4. 124

4.1 List of species for the 4-way O(n)-toeholds scheme. 173

xii

LIST OF ALGORITHMS

2.1 The loopsearch algorithm to check the permissive condition in poly-

nomial space. 57

2.2 The graphsearch algorithm to check the permissive condition in time

and space polynomial in the number of minimal states. 59

2.3 The reactionsearch algorithm to complete a partial interpretation

or assert that no completion exists, in polynomial space. 68

1

C h a p t e r 1

INTRODUCTION

1.1 The promise of molecular programming

The works I will present in this thesis are all within the field of molecular pro-

gramming. If forced to summarize in one sentence, I would describe molecular

programming as taking the abstract definition of “computer” and studying

how the behavior of molecules can satisfy it. Often the molecules in ques-

tion are biological—DNA, RNA, proteins, and others. The belief of molecular

programming is that if the behavior of these molecules satisfies the same ab-

stractions as a computer, then it can be understood and programmed in the

same sense as a computer can. The promise of molecular programming is the

ability to understand and control the way molecules compute, in order to add

another dimension to our understanding of what exactly computation is, and

to build practical devices that can solve complex computational problems with

likely different strengths and weaknesses than more typical modern comput-

ers. What form this will take is not yet known; some promising properties

of molecules compared to modern computers are their hyper-parallelism and

their potential biocompatibility.

Currently, the field has produced a number of interesting molecular devices.

As a survey of examples: DNA tiles with programmed interactions can count

in binary [30], construct uniquely-addressed shapes [79], and execute 6-bit

layered circuits [82]. DNA origami can fold large DNA scaffolds into detailed

shapes [59], including hundred-nanometer-scale objects with nanometer-scale

addressability [73], walkers [62, 75] with the potential for tasks such as sorting

objects [71], and lockboxes that release a chemical in response to a specific

signal [27]. Dynamic DNA technologies such as DNA strand displacement

can implement large boolean circuits [55, 72] and simple abstract Chemical

Reaction Networks such as majority determination [19] and controlled oscil-

lations [67]. Of course, there are many other interesting molecular devices

demonstrated in the past few decades.

2

1.2 Theory in molecular programming

Behind all of these devices lies a rich theoretical structure, generalizing classes

of molecular programs and connecting them to classical computation. DNA

tile assembly results are based on an abstract Tile Assembly Model, which

was proven to be Turing universal [80], the theory of which has since been

significantly expanded. The Chemical Reaction Network model describes ab-

stract chemical systems, and serves as the foundation for much of the dynamic

DNA nanotechnology devices. All of the results in this thesis are related to

the Chemical Reaction Network model or an expansion thereof.

The Chemical Reaction Network (CRN) model is of some types of abstract

chemical species in a well-mixed solution with specified reactions; a technical

definition will be given in future chapters. It serves as a language to describe

existing chemical and biochemical systems, to design new systems, and to rea-

son about the capabilities of systems that fit within its paradigm. (The CRN

syntax, a list of species and reactions, can be interpreted as either large num-

bers of molecules interacting when measured as concentration of molecules per

volume, or as small numbers of molecules interacting measured by individual

molecules. These are often called the deterministic and stochastic models of

CRNs; my work, and all of this discussion, refers to the stochastic model.) Ex-

amples of interesting CRNs include small CRNs for approximate majority [2]

and sustained oscillations [25, 67]. Larger CRNs can simulate space-bounded

Turing machines without error [41, 69] or unbounded Turing machines with

small probability of error [65]. There are a number of useful results about the

computational power of (stochastic) CRNs: for example, that their reacha-

bility problem is decidable [47], implying that CRNs with no errors allowed

are less powerful than Turing machines, and in particular they can compute

exactly the semilinear functions [1, 16, 26].

1.3 A type of molecular compiler

While the CRN language is abstract, it turns out that any CRN can be ap-

proximated by DNA molecules using DNA Strand Displacement (DSD) mech-

anisms. A number of implementation schemes have been constructed; some I

consider noteworthy are the first proof of concept by Soloveichik et al. [66],

a scheme used as part of a stack machine by Qian et al. [57], and a com-

pact two-domain scheme by Cardelli [6]. In some sense, these schemes can

be considered a compiler for CRNs as a programming language; in a more

3

literal sense, Shin [63] followed up by Badelt et al. [4] have worked on the

Nuskell program, which takes a CRN and a translation scheme and outputs

the compiled DSD circuit. These implementation schemes promise to take

the abstract CRNs described above and turn them into real devices, and to

some extent this promise has been fulfilled: Chen et al. have demonstrated

an approximate majority CRN using Cardelli’s scheme [19], and Srinivas et al.

have demonstrated a 3-species oscillator using Soloveichik et al.’s scheme [67].

The next step, then, is to make these schemes work reliably for CRNs large

enough to compute more complex functions and tasks.

1.4 Formal verification

To make this compiler work more reliably for larger systems, we would like a

solid theoretical understanding of how it works. One part of this understand-

ing is formal verification of the compiler: a proof that the DSD system output

by the compiler is correctly approximating the desired CRN. Lakin et al. have

developed a serializability method [46], and Shin et al. a pathway decompo-

sition method [64], to answer this question. In this thesis I discuss a method,

a CRN-specific adaptation of bisimulation as used in concurrency theory [52],

that checks whether one CRN is a correct implementation of another CRN.

Because DSD systems (without infinite polymerization) can be described as

CRNs, this method is particularly useful for verifying that the DSD system

produced by a compiler correctly implements the intended CRN, although this

is not the only use case. The Nuskell compiler mentioned above, after compil-

ing a CRN, can verify the result using either pathway decomposition or CRN

bisimulation [4].

Chapter 2 covers my work with Qing Dong and Erik Winfree on the bisim-

ulation method applied to CRNs. CRN bisimulation is, informally, based on

an interpretation of each implementation species as a bunch of formal species,

then asking if the two systems are equivalent up to that interpretation. We

define CRN bisimulation equivalence, prove properties such as transitivity and

modularity, show that CRN bisimulation can be checked algorithmically but

is NP- or PSPACE-complete depending on the assumptions made, and give

algorithms that meet those lower bounds. Chapter 3 covers my work with

Erik Winfree expanding this concept to linear Polymer Reaction Networks

(PRNs). We extend the interpretation used in CRN bisimulation so that the

interpretation of a polymer is made up of the interpretations of its monomers

4

and show that CRN bisimulation can be adapted to PRNs; we show that PRN

bisimulation is undecidable in the general case, but can be used to verify some

practical implementations; and we use PRN bisimulation to identify a class

of single-locus PRNs that is promising for DNA implementation. All of this

sets up bisimulation as a theoretical foundation with many uses for the CRN

compiler, including the obvious use of verifying a given implementation; the

use of transitivity and modularity to prove that an implementation scheme

will always produce correct implementations; or, as in the single-locus case, as

a guideline to use when searching for new correct implementation schemes.

1.5 Exploring formal DNA strand displacement

To make the CRN-to-DSD compiler(s) work more reliably for larger systems,

we would like a solid theoretical understanding of how they work. The other

side of this understanding is modeling the behavior of DSD systems. To start

with, models such as Visual DSD [45, 53] and Peppercorn [36] formally define

the known strand displacement reactions and, given a set of DNA complexes,

will enumerate the reactions they can undergo (to the best of our knowledge)

as a CRN. Peppercorn in particular is used by Nuskell when verifying its results

[4]. This allows us to understand the systems we design, and is necessary for

the above verification work.

A belief I hold about this field is that we can use this theory not only to

analyze systems already designed, but to guide the design of new systems.

This thesis contains three results I feel are examples of this belief. First, the

single-locus PRN result mentioned in Chapter 3 involves using knowledge of

bisimulation to identify an interesting class of PRN. Second, I have been trying

to use the formalizations of DSD to investigate its limits; in particular, what

are the simplest implementations of CRNs, and whether implementations with

certain desirable properties are in fact impossible. One such desirable property

is using only 2-stranded input complexes; in the process of this investigation,

Lulu Qian and I found new 2-stranded mechanisms that can be used for CRN

implementations, which I present in Chapter 4. Third, Chapter 5 presents the

impossibility result itself, or at least a preliminary result showing one of the

limits of DNA Strand Displacement. I believe that following up on this line of

investigation will produce a new understanding of DNA Strand Displacement,

possibly allowing systematic design of DSD circuits or otherwise easier ways

of writing molecular programs.

5

C h a p t e r 2

VERIFYING CHEMICAL REACTION NETWORK
IMPLEMENTATIONS: A BISIMULATION APPROACH

2.1 Perspective

I have so far mentioned Chemical Reaction Networks (CRNs) as a molecu-

lar programming language, DNA strand displacement (DSD) as a toolbox of

molecular mechanisms, and the ability to compile CRNs to DSD systems. In

this chapter I discuss a method to check whether the output of such a compiler

will correctly implement its input.

Why do we need such a method? There’s a straightforward reason: some

of our DSD implementation schemes might be wrong. A scheme might be

wrong just from basic human error by its designers, or the problem might be a

more subtle one, failing to do something that the designers didn’t realize was

necessary. Moreover, more complex tasks require larger and more complex

CRNs and implementations, and thus makes it more likely for errors in the

implementations to occur and/or be undetected. When we want molecular

programs to do practical tasks, we need larger and larger programs, and a

formal—ideally, computer-checkable—verification method becomes essential.

In addition, having a definition of “correct” implementation allows us to prove

that a correct implementation must or can’t have certain properties, which I

expand on in chapters 4 and 5.

So what exactly is formal verification? We mentioned that some systems have

errors; formal verification is a process for finding those errors if they exist.

More specifically, formal verification is a process that, given a specification and

an implementation, says either “correct” or “incorrect”. Ideally, if the process

says “correct” it implies a correspondence between the implementation and the

specification, and if the process says “incorrect” it identifies an error in the

implementation. For example, a correspondence between CRNs might mean

that any state reachable in the specification is reachable in the implementation,

and vice versa. Stronger guarantees are both possible and desirable. Similar

questions have been extensively explored in (non-molecular) computer science,

and part of the contribution of this work is the adaptation of those concepts

6

to molecular systems. In particular, simulation and bisimulation methods are

a well-studied approach for verifying a correspondence between two systems

[52], and the method discussed in this chapter is a type of bisimulation.

Our CRN bisimulation method is one method of verifying CRN implementa-

tions, but not the only one. Other methods include pathway decomposition

[64] and serializability analysis [46]. Each of these methods is based on a

different idea: CRN bisimulation is based on a correspondence between spec-

ification and implementation species; pathway decomposition is based on a

correspondence between sequences of reactions in the specification and in the

implementation; and serializability analysis is based on re-ordering sequences

of reactions in the implementation to a standard form. People familiar with

the three methods could argue which ones are more or less suited for various

situations; for example, we know a number of implementation features that

pathway decomposition analyzes properly while CRN bisimulation fails on,

and vice versa. However, to my knowledge no thorough comparison of these

methods has been done.

Given all the above motivation, what exactly did we do in this paper? In one

sentence, we defined CRN bisimulation and discussed how to use it. CRN

bisimulation is a formal verification method based on an “interpretation” of

species in the implementation CRN as sets of species in the specification

CRN. If that interpretation has certain properties, then (as we prove) the

rate-independent behaviors of the two CRNs will be equivalent; while not the

end-all be-all of equivalence, it is a desirable property. We then go on to dis-

cuss various properties of CRN bisimulation, many of which have implications

for its theoretical nature and/or practical use. A reader interested in analyzing

implementations by hand, for example, might want to look at the examples of

bisimulation, and the transitivity and modularity properties. One interested

in computational checking of bisimulation might focus on the algorithms for

doing so, and hardness results that prove optimality of said algorithms. For

those familiar with bisimulation in non-molecular systems, we discuss how the

structure of CRNs gives rise to a natural subclass of bisimulation relations,

which are more restricted but in some ways more powerful.

With all this, how can CRN bisimulation be used, and how does it fit into

the big picture of the field? What I argue is that there is a larger project, of

constructing a high-level programming language for molecules, of which CRN

7

bisimulation is a necessary step. We can write and have written meaningful

programs in the CRN model, including approximate majority functions [2], os-

cillators [25, 44], and Turing machines [65]. However, the CRN model is more

of a low-level description of what molecules do than a high-level programming

language with powerful programming features. In my ten-year plans I imag-

ine such a language built out of pieces each of which can be compiled to a

CRN, such that powerful programs can be written in that language, compiled

reliably into CRNs, and those CRNs can be compiled reliably into DSD cir-

cuits and further to DNA molecules which physically execute the intended

program. A few examples of such a language have been proposed, such as

CRN++ [76]; none are in wide use. CRN bisimulation is then the verification

step—the “reliably”—of the CRN-to-DSD compilation, and is meant to build

a foundation for a future higher-level language.

More concretely, CRN bisimulation is currently part of the Nuskell verifying

compiler, a program that uses any of the various translation schemes to con-

vert a CRN to a DSD system then verifies that the result is correct [4]. CRN

bisimulation and Nuskell are both part of the larger ecosystem built up around

formalizing DSD and compiling CRNs. In the CRN-to-DSD layer, we have re-

action enumerators such as Visual DSD [45] and Peppercorn [36], programs

that given a set of DNA complexes will enumerate what reactions are possible

according to the DSD model; and further work done on formalizing this model

[53]. Even more work has been done on the DSD-to-physical-DNA layer, in

finding actual DNA sequences that have the correct abstract behavior of the

“domain-level” DSD model. Relevant software packages include Nupack, for

analysis and design of short DNA strands’ static behaviors [24, 81, 84]; Sticky-

Design, searching for short orthogonal sequences (although originally designed

for tile assembly rather than DSD) [29]; Multistrand, which models the dy-

namic behavior of short DNA strands [61]; and KinDA, which interfaces with

Nupack and Multistrand to check for discrepancies between the behavior of

the actual DNA sequences and the desired DSD system [5]. For a simpler

option, the Seesaw Compiler [55, 72] uses a pool of domains which will likely

work well for more general DSD circuits. So while the layers of programming

languages above CRNs are not very well explored, the layers between CRNs

and physical DNA are well-developed.

The remainder of this chapter is a slightly modified version of the following

8

previously published work:

Robert F. Johnson, Qing Dong, and Erik Winfree. Verifying chemical reaction
network implementations: A bisimulation approach. Theoretical Computer
Science, 2018. doi: 10.1016/j.tcs.2018.01.002.
Contributions: EW formulated the initial questions and definitions of CRN
bisimulation, provided advice and assistance throughout, and reviewed and
edited the manuscript. QD gave the initial formulation and proof of the
equivalence of three notions theorem and the reactionsearch algorithm, con-
tributed an initial manuscript describing those parts, and reviewed the final
manuscript. RFJ improved existing definitions and proofs, proved the tran-
sitivity and modularity theorems, designed the loopsearch and graphsearch
algorithms, proved the completeness results, defined and analyzed the exten-
sion for implicit catalysts, and was the primary writer of the final manuscript.

Abstract

Efforts in programming DNA and other biological molecules have recently fo-

cused on general schemes to physically implement arbitrary Chemical Reaction

Networks. Errors in some of the proposed schemes have driven a desire for

formal verification methods. By interpreting each implementation species as

a multiset of formal species, the concept of weak bisimulation can be adapted

to CRNs in a way that agrees with an intuitive notion of a correct implemen-

tation. The theory of CRN bisimulation can be used to prove the correctness

of a general implementation scheme or to detect subtle problems. Given a

specific formal CRN and a specific implementation CRN, the complexity of

finding a valid interpretation between the two CRNs if one exists, and that

of checking whether an interpretation is valid are both PSPACE-complete in

the general case, but are NP-complete and polynomial-time, respectively, un-

der an assumption that holds in many cases of interest. We present effective

algorithms for both of those problems. We further discuss features of CRN

bisimulation including a transitivity property and a modularity condition, the

precise connection to the general theory of bisimulation, and an extension that

takes into account spurious catalysts.

2.2 Background

Introduction

In molecular programming, many real and abstract systems can be expressed

in the language of Chemical Reaction Networks (CRNs). A CRN specifies a set

of chemical species and the set of reactions those species can do, and the CRN

9

model allows us to deduce the global behavior of the system from that local

specification. CRNs are a useful way to separately analyze the computational

and the physical aspects of a system. We can use the CRN model to help

analyze real systems [7, 8] or design engineered systems [19, 67].

The CRN model is particularly useful as a programming language for molecu-

lar computation. Small CRNs have been designed to exhibit simple behaviors

and to compute simple problems, such as the “rock-paper-scissors” oscilla-

tor, which oscillates between high concentrations of three species in consistent

order [25, 44], and the approximate majority network, which converts all of

the initial populations of two species to whichever one was initially greater [2].

Other examples of CRNs designed to compute include a CRN that produces an

output with count equal to the larger of two input counts [16], and a CRN that

simulates a given Turing machine with arbitrarily small probability of error

[65]. To show that using CRNs as a programming language can apply to real

molecular systems, Chen et al. experimentally demonstrated an implementa-

tion of the approximate majority CRN [19], and Srinivas et al. demonstrated

an implementation of the rock-paper-scissors oscillator [67], both using DNA

strand displacement cascades [87].

In order to discuss how these CRNs compute, we first define a semantics that

specifies the behavior of a CRN, then define computation in terms of, for

example, from a given input state, how many of or with what probability a

given output molecule is produced. The two most common semantics are de-

terministic or ordinary differential equation (ODE) semantics, and stochastic

or continuous-time Markov chain (CTMC) semantics. Deterministic seman-

tics assumes real-valued concentrations of species which evolve according to a

system of ODEs determined by the reactions. Stochastic semantics assumes

integer-valued counts of species which transition discretely at random times

according to the reactions, with rates based on the counts and the reaction

rate constants. Any CRN can be interpreted in either semantics, but its be-

havior may be slightly or entirely different. In deterministic semantics, for

example, the rock-paper-scissors oscillator will oscillate correctly indefinitely,

and the approximate majority CRN will correctly convert all molecules to

whichever species was initially greater quickly, even as the difference between

initial counts approaches zero, except for an equilibrium with both species

present when the difference is exactly 0. In stochastic semantics, on the other

10

hand, the rock-paper-scissors oscillator will oscillate for a while but eventually

undergo an extinction event and stop oscillating [25], while the approximate

majority CRN will still compute correctly with high probability, but may con-

vert all molecules to the wrong species with error probability increasing with

smaller initial differences [2]. The CRN from [16] that computes the maxi-

mum of its input counts functions identically in deterministic and stochastic

semantics, which we suspect is related to the rate-independent property dis-

cussed below, a connection which has been partially explored by Chen, Doty

and Soloveichik [17]. Finally, the CRN to simulate a Turing machine has

only been explored in the stochastic model, since it depends on exact integer

counts of certain species; its dynamics in deterministic semantics are probably

uninteresting.

There is a certain subclass of CRNs that, while they are interpreted in the

stochastic model, do not depend on randomness or relative probabilities of

certain trajectories to compute an interesting function. This type of com-

putation has been called “deterministic computation” by some [16], but to

avoid confusion with deterministic semantics we refer to it in this paper as

rate-independent computation. Rate-independent computation requires that

the correct answer is produced no matter what reactions fire in what order

(subject to a fairness condition), a property that implies that for any choice of

positive rate constants, the correct answer is produced with probability 1 in

stochastic semantics. Rate-independent computation can compute exactly the

semilinear functions [1, 16, 26], an example of which is computing the maxi-

mum of two input counts [16]. A concept of rate-independent computation in

the deterministic model has been explored by Chen, Doty and Soloveichik [17],

where it can compute exactly positive continuous and piecewise rational linear

functions, but the exact relation between the two concepts of rate-independent

computation is unknown.

Despite the current progress in CRN computation, there remains a gap be-

tween abstract and real CRNs. To illustrate this gap, consider the approximate

majority CRN [2, 19]:

11

X + Y
k−→ 2B

X +B
k−→ 2X

Y +B
k−→ 2Y

This abstract CRN quickly and with high probability converts all of the initial

X and Y molecules into the same amount of whichever one was initially greater

[2]. However, no three molecules with exactly this behavior are known to exist.

(In a strict sense, no three molecules with exactly this behavior can exist,

because for all three reactions to be driven forward would require X + Y to

be both lower-energy and higher-energy than 2B.) For contrast, consider the

DNA strand displacement system built by Chen et al. [19] meant to implement

this abstract CRN. The DNA system uses additional molecules which are

consumed as “fuel” to drive these three reactions, ending up with over 25

each of species and reactions. Without knowing that it is meant to be an

implementation of the approximate majority CRN, it might be difficult to tell

what the DNA system was meant to do. Even knowing the correspondence, it

is not obvious that there is no mistake in that complex implementation.

The issue of verifying correctness is exacerbated by the recent profusion of

experimental and theoretical implementations in synthetic biology and molec-

ular programming. Of particular interest to us, Soloveichik et al. [66] designed

a systematic way to construct a DNA system to simulate an arbitrary CRN.

Since then there have been a number of methods to translate an arbitrary

CRN into a DNA strand displacement circuit [6, 57, 66]. While each one gave

arguments for why it was a correct implementation, they did not come with

a general theory of what it means to correctly implement a CRN. In some

cases this led to subtle problems, of which we will give examples later. To be

certain that such implementations are correct, CRN verification methods were

invented. Such methods include Shin’s pathway decomposition [64], Lakin et

al.’s serializability analysis [46], and Cardelli’s morphisms between CRNs [7].

The concept of “bisimulation” was developed as a way of comparing the ob-

servable behavior of concurrent systems [52]. Roughly speaking, bisimulation

involves coming up with a relation on states such that any action in one of

a pair of related states can be matched in the other, leading to another pair

of related states. Weak bisimulation, in particular, abstracts away from the

12

details of the system by focusing on “observable” actions and allowing matches

between sequences with arbitrary numbers of “silent” actions and one observ-

able action. From this local concept of equivalent states, one can prove global

properties of equivalence of the behavior of the systems. Bisimulation has been

studied in finite-state systems, Petri nets, and hybrid systems, among others

[3, 31, 39]. The complexity of bisimulation in finite systems and in Petri nets

(which are equivalent to CRNs) has also been studied; particularly relevant to

us, whether an (arbitrary) bisimulation relation exists that relates the initial

states of two Petri nets is undecidable [39]. However, the direct application

of bisimulation to Petri nets used in that result ignores the structure of a

Petri net (or CRN) in the following sense: where bisimulation allows matching

arbitrary states with each other, CRNs (and equivalently, Petri nets) have a

structure on the state space that allows addition of states, and we might re-

quire that the bisimulation relation preserves that addition. For example, if

A ∼= B and C ∼= D, where ∼= is the bisimulation relation, we might require

that A+C ∼= B +D. If such constraints better capture the notion of “equiv-

alent CRNs”, they could also be exploited to simplify the tasks of finding a

satisfactory bisimulation or proving that none exists.

Motivated by the expectation that there is a natural class of restricted bisim-

ulations that respect the structure of CRNs in a way well-suited for molecular

implementations—and that makes analysis tractable—we present a method

for comparing an implementation CRN with an abstract CRN based on the

concept of bisimulation from concurrency theory [52]. Our method associates

each implementation species with a multiset of formal species, then asserts

correctness if the reactions reachable from any implementation state are the

same as those in the corresponding state in the abstract CRN. Like pathway

decomposition [64] and serializability [46] but unlike Cardelli’s morphisms [7],

our bisimulation method works with the stochastic model for low-copy-number

CRNs and doesn’t take into account rates or kinetics. Therefore, like pathway

decomposition and serializability, bisimulation cannot prove that a property

true with some probability in the formal CRN will be true with the same or

even approximately the same probability in an implementation CRN, but it can

guarantee that any rate-independent behaviors or computations of the formal

CRN will carry over to the implementation. The use of interpretations instead

of pathways means that some implementations considered correct by pathway

decomposition are considered incorrect by bisimulation and vice versa. Inter-

13

pretations also make bisimulation more local than pathway decomposition or

serializability, in that many properties can be checked on individual reactions

rather than pathways; we hope this makes bisimulation more understandable

and tractable. We show how bisimulation can be used to prove a CRN im-

plementation correct or identify subtle problems. We present an algorithm to

check whether a particular interpretation between two CRNs is a bisimulation

relation, and an algorithm to find such an interpretation if one exists. We

analyze the computational complexity of both problems. We prove that both

are PSPACE-complete in the general case but become polynomial time and

NP-complete, respectively, when formal reactions are limited to a constant

number of reactants. We hope this method can be used in both verifying

that engineered systems match their specification and in comparing natural

systems to a system simple enough to analyze.

Related Works

Our research into verification of CRN implementations is inspired by a num-

ber of works on implementing arbitrary CRNs with DNA strand displacement,

such as [6, 57, 66]. Soloveichik et al. in [66] present a general construction for

DSD implementations of arbitrary CRNs, give an argument that the ODE se-

mantics of their construction should approximate the original CRN in a certain

limit, and demonstrate similar (but not identical) behavior on some example

CRNs. However, this argument does not address the stochastic model, or

rate-independent computation within the stochastic model. (We will show in

Section 2.4 that the construction in [66] is in fact correct for rate-independent

computation according to our definition of bisimulation, but this is not proven

in [66].) Qian et al. in [57] present a “history-free” general CRN implemen-

tation suited to the stack machines they then describe, and give an argument

for its qualitative correctness in the stochastic model, but the argument is

non-rigorous. In fact, the argument in [57] misses an error in the construction

as published when applied to certain combinations of reactions, allowing some

probability of incorrect behavior when run with low counts of species, which

we will discuss further in Section 2.4. Cardelli in [6] presents a simplified,

history-free general CRN implementation using only nicked double-stranded

gates and single-stranded signals, and defines an algebra which can be used

to prove statements about the behavior of such systems. This algebra can

prove some desirable properties, but Cardelli in [6] acknowledges that proper-

14

ties such as lack of crosstalk require exploring large state spaces and are thus

difficult to prove with that technique.

Visual DSD [45] and Peppercorn [36] provide formal semantics for the behavior

of a DNA strand displacement such as the ones mentioned in [6, 57, 66]. Both

[45] and [36] also provide an algorithm to, given a DSD system, produce a CRN

that models its behavior. This allows us to reduce the problem of verifying

DSD implementations of CRNs to the problem of checking whether one CRN

is a correct implementation of another.

In addition to the bisimulation method we propose, other methods have been

proposed for verifying CRN equivalence for the use case of DNA strand dis-

placement implementations of CRNs, usually focusing on rate-independent

computation in the stochastic model. Lakin et al. define a method of verifi-

cation of an implementation CRN that is already divided into one module for

each formal reaction [46]. This verification method gives properties of each

module individually and of non-interaction between modules that, if satisfied,

imply that every trajectory of the implementation CRN is equivalent to a serial

execution of trajectories corresponding to some sequence of formal reactions,

which is at least sufficient for correctness of rate-independent computation.

Shin et al. define a method of computing the “formal basis” of a CRN based

on pathways in the implementation CRN that begin and end in formal species

[64]. If every pathway can be decomposed into the pathways that make up the

formal basis, and certain niceness conditions are satisfied, then this “pathway

decomposition” method can guarantee that the implementation CRN will be

equivalent, at least in rate-independent computation, to its formal basis. Both

of these methods depend on a division of the implementation CRN into “for-

mal” species, “fuel” species, “waste” species, and “intermediate” species. This

division is a typical feature of engineered DNA strand displacement implemen-

tations of CRNs such as the ones mentioned above, but may not generalize

to other types of implementations or to comparing natural systems. Lakin et

al. [46] give no algorithm for computationally checking the conditions of their

serializability method when they are not already known by design; Shin et al.

[64] give an algorithm for finding the formal basis of a CRN, but its complexity

is not known and it seems to require more than polynomial space in the general

case. Both of these methods have been applied to DNA strand displacement

implementations such as those in [6, 57, 66]. Where Lakin et al. [46] discuss a

15

method of verification that they apply to a specific class of implementations

(two-domain strand displacement), and Shin et al. [64] discuss a method with

an algorithm that can be applied to any individual implementation CRN, we

hope to present a method with an algorithm that can verify any individual

implementation CRN, but is also tractable enough to permit proofs that, for

example, any implementation created by a given translation scheme will be

correct.

Another area of related work has explored more abstract forms of model re-

duction and CRN equivalence not shaped by DNA strand displacement CRN

implementations. Gay et al. discuss a method meant to be useful for systems

biology models, where the exact structure of the network has a number of un-

certainties and unknowns [33]. This method is based on two operations, merge

and delete, which can be applied to graphs of the reactions of a CRN, such

that there is an epimorphism from the detailed graph to the more simple graph

if and only if the simple graph is equivalent to the result of some sequence of

these rules applied to the detailed graph. Some of these concepts correspond

loosely to concepts in bisimulation, for example the merging of two species in

[33] is intuitively similar to two implementation species being interpreted as

the same formal species, but [33] does not have any equivalent of the require-

ment in bisimulation that any reaction involving one of two equivalent species

has an equivalent reaction that involves the other instead. Possibly for this

reason, Gay et al. do not prove any properties of the behavior of their networks

that a graph epimorphism implies carry over from one network to another.

In a line more directly related, Cardelli, Tribastone, Tschaikowski, Vandin,

and Tognazzi have developed multiple concepts of CRN equivalence based on

strong bisimulation. Forward and backward bisimulation respectively imply

two different forms of equivalence of the ODE semantics behavior of the equiv-

alent CRNs [10, 12], while syntactic Markovian bisimulation implies equiva-

lence of the CTMC semantics [14]. Each of these types of bisimulation is an

equivalence relation between species of a single CRN, with properties that

imply that a simpler CRN, whose species are the equivalence classes of that

relation, has dynamics that are well-defined and equivalent in the appropriate

sense to the original CRN. In all three cases it is easily checkable whether a

given relation is a (forward, backward, or syntactic Markovian) bisimulation,

and the same authors give algorithms and software tools to find such relations

16

[11, 13, 14, 74]. All three of these methods correspond to strong bisimulation

in the sense of [52]: one reaction in one system must be matched by exactly

one reaction in the other, and vice versa, as opposed to weak bisimulation,

where one reaction in one system can be matched by zero or more reactions

in the other. This allows these methods to imply equivalence of kinetics in

the deterministic and stochastic models, respectively, which would be much

more difficult with weak bisimulation. These methods also use a relation on

species to induce the relation on states required by bisimulation in the sense

of [52], which disallows phenomena such as a single strand of a DSD circuit

representing that one copy of the formal species C and two copies of formal D

are all present. Since DSD CRN implementations tend to use both one DSD

species representing multiple formal species and one formal reaction taking

multiple DSD reactions to implement, none of the DSD schemes presented in

[6, 57, 66] are equivalent to their formal specifications according to forward,

backward, or syntactic Markovian bisimulation.

2.3 The Chemical Reaction Network Model

We work within the Chemical Reaction Network (CRN) model. A CRN is a

pair (S,R), where S is a finite set of species and R a finite set of reactions. A

reaction is itself a triple (R,P, k), where the reactants R and products P are

both multisets of species, and k > 0 is a real number. We require that in any

reaction R 6= P , and that no two reactions (R,P, k1) and (R,P, k2) with the

same reactants and products exist in the same CRN. Once we define semantics,

we will see that these requirements can be met without loss of generality; in

both deterministic and stochastic semantics, a reaction (R,R, k) has no effect

on the CRN’s behavior, and a CRN with two reactions (R,P, k1) and (R,P, k2)

behaves exactly the same as one where those two are replaced by one reaction

(R,P, k1 + k2).

We use the notation {|. . .|} for multisets interchangeably with the chemi-

cal notation, e.g. 2A + B, {|A,A,B|}, and {|2A,B|} all refer to the same

state. Similarly, we sometimes use the chemical notation for reactions, e.g.

A+B
k−→ 2C is the same as ({|A,B|} , {|2C|} , k). The “reversible reaction” no-

tation A+B
k1−⇀↽−
k2

2C is a shorthand for the two reactions ({|A,B|} , {|2C|} , k1)
and ({|2C|} , {|A,B|} , k2). Where S ∈ NS is a multiset and X ∈ S, S(X) refers

to the count of X in S; this matches the formal definition of NS as the set of

functions S → N. Multisets can be added and multiplied by scalars compo-

17

nentwise, and can be compared componentwise: S ≤ T ⇐⇒ ∀XS(X) ≤
T (X), and S < T if S ≤ T and S 6= T . If S ≤ T then subtraction

T − S is defined componentwise. Set operations involving multisets implic-

itly treat each multiset as the set of all objects which appear at least once;

e.g. {|1, 1, 2|} ⊂ {1, 2, 3} but {|1, 1, 2|} 6⊂ {1}. S∧T is the componentwise min-

imum, (S ∧ T)(X) = min(S(X), T (X)). S\T = S − (S ∧ T) is the removal of

T from S: (S\T)(X) = max(S(X)− T (X), 0). The size of a multiset S ∈ NS

is the number of objects in it, |S| = ∑X∈S S(X).

The CRN model comes with two common interpretations or semantics: deter-

ministic semantics and stochastic semantics. In deterministic semantics, the

state of the CRN at any given time is a vector s ∈ RS≥0 of the concentrations of

each species, which evolves according to a set of ordinary differential equations.

These differential equations come from the reactions, and for each X ∈ S,

where ri = (Ri, Pi, ki),
ds(X)
dt

=
∑

ri∈R ρ(ri, s)(Pi(X) − Ri(X)). Here ρ(ri, s)

refers to the “rate” of reaction ri in state s, which according to mass-action

kinetics is given by ρ(ri, s) = ki
∏

Y ∈S s(Y)Ri(Y). Since this paper mostly does

not deal with deterministic semantics, we only briefly mention it.

In stochastic semantics, the state of the CRN at any given time is a vector

S ∈ NS of the counts of each species, which transitions probabilistically to

other states, forming a continuous-time Markov chain. In any given state S,

each reaction ri = (Ri, Pi, ki) has a propensity of firing, which in stochastic

mass-action kinetics is ρ(ri, S) = ki
∏

X∈S
S(X)!

(S(X)−Ri(X))!
, and the reaction takes

the CRN from state S to state S−Ri+Pi. Note that this expression is defined

if and only if S ≥ Ri; when S 6≥ Ri we set ρ(ri, S) = 0. These propensities

play the role of state transition rates in the continuous-time Markov chain.

In the stochastic model, each possible behavior of a CRN is specified by a timed

trajectory: an initial state S0 ∈ NS together with a (finite or infinite) sequence

of reactions ri = (Ri, Pi, ki) ∈ R and times ti at which they occur, with

ti > ti−1 > 0. When we care only which reactions happened in what order but

not at what exact time, we can define a trajectory as an initial state followed

by a sequence of reactions, without the times; each trajectory can be identified

with the set of all timed trajectories with that initial state and sequence of

reactions. A trajectory implicitly specifies a sequence of states Si = S0 +∑
j≤i(Pj −Rj), but a sequence of states is not enough to specify a trajectory.

For example, if A
k1−→ B and X + A

k2−→ X + B are both reactions, then the

18

sequence of two states (S0, S1) = ({|X,A|} , {|X,B|}) does not specify which

of those two reactions happened, which is sometimes important. The CTMC

implicitly specifies a probability distribution over timed trajectories, and since

a trajectory interpreted as a set of timed trajectories will be a measurable set in

this probability space, we also get a probability distribution over trajectories.

For rate-independent computation, we care only about which trajectories are

possible, ignoring the times of the reactions and the relative probabilities. We

say that a finite trajectory is valid if and only if it has nonzero probability,

and an infinite trajectory is valid if every finite prefix is valid. Note that

a trajectory is valid if and only if every reaction is possible in the state it

occurs, i.e. Ri ≤ Si−1 for all i. Since whether a trajectory is valid in a CRN

does not depend on the rate constants of any reaction (as long as they are all

positive), and from here on we are generally working with rate-independent

computation, we write reactions as a pair (R,P) or R→ P instead of a triple

(R,P, k) or R
k−→ P . In general when we speak of “the trajectories of a CRN”

we mean the valid trajectories.

A state T is reachable from a state S if T is the result of a valid finite trajectory

that starts in S. We say a state T is coverable from a state S if there is some

T ′ ≥ T such that T ′ is reachable from S. While the set of reachable states

(from any given initial state) is an important aspect of the behavior of a CRN,

it does not contain all the information about that CRN. For example, the two

CRNs ({A,B,C}, {A → B,B → C,C → A}) and ({A,B,C}, {A → C,C →
B,B → A}) have exactly the same set of reachable states T from any given

initial state S, but in an external context that distinguishes A, B, and C from

each other these two sets of reactions are clearly different in a meaningful way.

If however the sets of (valid) trajectories of two CRNs are the same, then the

two CRNs must be identical: since in particular the length-zero trajectories

(i.e. states) are the same, so the sets of species are the same, and the length-

one trajectories (single reactions) are the same. We say that two CRNs are

isomorphic if there is a bijection between the sets of species such that the set

of reactions of one, after applying this bijection, equals the set of reactions of

the other.

19

2.4 The Meaning of Correctness

Interpretations

Schemes for translating an arbitrary abstract CRN into a DNA Strand Dis-

placement (DSD) implementation [6, 57, 66] provide designs for the necessary

DNA molecules, but how these molecules interact is best described by a model

of the relevant biophysics. Reaction enumerators such as Visual DSD [45] and

Peppercorn [36] produce, given a set of DNA molecules, a description of their

predicted interactions as a CRN, allowing us to compare it to the original CRN

using the same language. Since most molecular systems can be described as

CRNs, defining correctness as a comparison of CRNs will also cover much

more general cases, not limited to DNA strand displacement. We refer to the

original abstract CRN as the formal CRN (S,R) and the model’s enumer-

ated CRN as the implementation CRN (S ′,R′), which is usually larger than

the formal CRN. As a convention, we assume that the formal CRN and the

implementation CRN make use of disjoint sets of species. When using verifica-

tion to compare a detailed model of a natural system with unknown function

to a simpler abstract CRN with known function, the natural system is the

implementation and the abstract system is the formal CRN.

Although the definition of correctness we will propose is general, some of its

parts are inspired by engineered implementations such as DNA strand dis-

placement. There are three important features typical of engineered imple-

mentation CRNs that a concept of correctness must deal with. First, there

is typically for each formal species A an implementation species xA intended

to correspond specifically to it, sometimes called a “signal species”. Second,

certain implementation species must always be present for the system to work,

and are designated “fuel species”. Fuel species are typically assumed to be held

at a constant concentration, for example by setting their initial concentration

high enough that it does not vary significantly over the running time of the

CRN. In this situation, we can approximate the implementation CRN by a

simplified CRN with all fuel species removed; e.g. if g1 is a fuel, the reaction

xA + g1 → iA can be replaced by xA → iA with no loss of meaning. This

approximation holds not just for rate-independent computation, but for both

stochastic and deterministic semantics in the following sense: if a species g1

is (approximately) at a constant concentration c over the time interval con-

sidered, the equations introduced in Section 2.3 for the dynamics of all other

species will be (approximately) the same if the reaction xA+g1
k−→ iA is replaced

20

by xA
kc−→ iA [66]. Third, certain species are inert side products whose further

presence or absence has no effect on the correctness of the system behavior,

and are thus designated “waste species”. Such species can also be removed

with no effect on the system dynamics. However, one advantage of our theory

is that it does not need to distinguish signal species or waste species from each

other or from other species: while knowing that a given species is a signal or

a waste can be a helpful hint for finding an interpretation in our theory, it is

not necessary, and there are no special rules for signal or waste species. Our

theory still requires that fuel species be removed before applying the theory.

signal

fuel

g1

g2

xA xBfA

iA w1

tCD

w2

xCtCD

xD

1xA + g1
 iA + fA xA
 iA

iA + xB → tCD + w1 iA + xB → tCD + w1

tCD + g2 → xC + xD + w2 tCD → xC + xD + w2

Figure 2.1: Implementation of A + B → C + D using the scheme described
in [66]. Top: DNA complexes and reactions, given as a diagram of the DNA
strand displacement circuit. Each complex shown in the diagram is one species
in the enumerated CRN, and arrows are reactions that would be enumerated
by a reaction enumerator. Designated “signal” species are enclosed in dashed
boxes, and designated “fuel” species in grey boxes. Bottom left: Direct trans-
lation of reactions in the implementation CRN. Bottom right: Implementation
CRN after removing fuels.

Figure 2.1 gives an example of this process for the formal reaction A + B →
C + D, yielding an implementation CRN with four reactions. (Names such

21

as xA and tCD are based on the intent of the designers of the CRN, but the

subscripts have no theoretical meaning.) The signal species xA can freely

convert to and from iA, and the strand tCD can produce the signals xC and xD

(and waste w2). Intuitively, iA is an A and tCD is a C and a D; in this sense

the first and third reactions are silent, and the second is A + B → C + D.

We use this intuition as a basis for our definition of correctness. Formally, we

define an interpretation of the implementation species (Figure 2.2):

Definition 2.4.1. An interpretation is a function m : S ′ → NS from imple-

mentation species to multisets of formal species. We extend this linearly from

species to states: m(
∑n

i=1 aiXi) =
∑n

i=1 aim(Xi). We also define an interpre-

tation of reactions: m(R′ → P ′) = m(R′)→ m(P ′) unless m(R′) = m(P ′), in

which case m(R′ → P ′) = τ and we say the reaction is trivial. For example, if

m(iAB) = A+B, m(xA) = A, and m(tBC) = B+C then m(iAB+xA) = 2A+B,

and m(iAB → xA + tBC) = A+B → A+B + C.

The interpretation of an implementation reaction is always a pair (R,P) of

multisets of formal species, or τ , but (R,P) may not be in R. Any such pair

is a reaction in the language of the formal CRN, but is a formal reaction only

if (R,P) ∈ R. Similarly, (R′, P ′) is an implementation reaction only if it is in

R′.

fuel

m(xA) = {|A|}

m(xB) = {|B|}

m(xC) = {|C|}

m(xD) = {|D|}

m(iA) = {|A|}

m(tCD) = {|C,D|}

m(w1) = ∅

A ⇀↽ A A + B → C + D

1

Figure 2.2: Interpretation of the implementation CRN in Figure 2.1. m(tCD) =
A+B would also be a valid interpretation for this CRN.

In the following notation, S ′, T ′, S ′′, and T ′′ refer to implementation states; S

and T to formal states; r′ to an implementation reaction; and r to a reaction

22

in the language of the formal CRN or τ . When a formal reaction r takes state

S to state T , we write S
r−→ T ; S ′

r′−→ T ′ is similar. Note that if S
r−→ T ,

then r = (R,P) ∈ R as well as S − R + P = T , and analogously for the

implementation. Further, we write S ′
r−→ T ′ when S ′

r′−→ T ′ for some r′ with

m(r′) = r, which does not require r ∈ R (but does require r′ ∈ R′). Note

that if S ′
τ−→ T ′ then m(S ′) = m(T ′). One of the core concepts of weak

bisimulation is the behavior of the system when we abstract away from trivial

reactions. To discuss this behavior, we introduce the relation S ′
r

=⇒ T ′: we say

S ′
τ

=⇒ T ′ when S ′ can reach T ′ via 0 or more trivial reactions, and S ′
r′
=⇒ T ′

when S ′
τ

=⇒ S ′′
r′−→ T ′′

τ
=⇒ T ′. Note that S ′

τ
=⇒ S ′ and S

τ
=⇒ S are always true.

S ′
r

=⇒ T ′ for r 6= τ is again defined as S ′
r′
=⇒ T ′ for some r′ with m(r′) = r.

S
r

=⇒ T for r 6= τ is defined but trivial: S
r

=⇒ T ⇐⇒ S
r−→ T . When the

final state is irrelevant, we sometimes write S ′
r′
=⇒, etc., as appropriate. We

say an implementation state S ′ can reach an implementation reaction r′ when

S ′
r′
=⇒, and we say S ′ can implement a formal reaction r when S ′

r
=⇒. (These

definitions are based on notation used by Milner in [52], a connection that will

be further discussed in Section 2.6.)

Three Notions of Correctness

Our notion of correctness is motivated by the earlier observation that the set

of valid trajectories defines equivalence between formal CRNs, and allowing

renaming of species defines isomorphism. Applying this notion to an imple-

mentation CRN with an interpretation introduces two difficulties. First, due

to trivial reactions, the implementation trajectory may involve more steps.

This is easily solved by defining the interpretation of an implementation tra-

jectory to remove trivial reactions. Second, and more seriously, the full set of

interpreted implementation trajectories may cover the formal trajectories, yet

particular implementation trajectories may experience restricted options for

alternative paths. Two examples of this are shown in Figures 2.3 and 2.4.

In the first example (Figure 2.3), there are two implementation species, xB

and yB, that are both interpreted as B. Because xB can do anything in the

implementation CRN that B can do in the formal CRN, and because xA can

react to become xB, the implementation CRN can match any trajectory of the

formal CRN using xB and ignoring yB. However, an implementation trajectory

that reaches—or starts from—yB cannot proceed, whereas, the formal CRN

cannot get stuck. To see that the key issue concerns limiting options, of which

23

A C

B

xA

A

xB

B

yB

B

xC

C
=
?

1
Figure 2.3: Example CRNs with the same set of (interpreted) trajectories but
different behavior. Circles represent species and arrows represent reactions;
implementation species are given with their name above the line and inter-
pretation below the line, so for example xA is an implementation species with
m(xA) = {|A|}. Both CRNs have the same set of trajectories (after interpreta-
tion): from any initial count of As, Bs, and Cs, each species can independently
change from A to B, B to C, and C to A any finite or infinite number of times.
However, the implementation CRN (right) can convert all species to yB, from
which no further reactions are possible, while the corresponding formal state
of all Bs can react further.

getting stuck is just a special case, the reader is encouraged to construct an

example where the formal CRN is the one in Figure 2.3 augmented by the

three reverse reactions, but the implementation CRN can become trapped in

a subspace where only the “clockwise” trajectories are possible, although it

can never get stuck. To appreciate the subtlety of the problem, in our second

example (Figure 2.4), there are two forms of each formal species, and while

the x forms can copy the formal CRN exactly, if all species are converted to

y forms in the implementation CRN then no further reaction can happen. As

mentioned earlier, this paper is not concerned about differences in kinetics

or the probability distribution over trajectories; however, we would like to be

able to ensure that properties about what states can be visited in the future,

and in what order, are preserved in the implementation. Effectively, the naive

definition of trajectory equivalence requires that for every formal state there

exists an implementation state with the same interpretation and behavior,

while we need a finer-grained notion of trajectory equivalence that requires

for every formal state, all implementation states with the same interpretation

have the same behavior. As defined formally below, the finer-grained notion

becomes a satisfactory definition of correctness.

Although trajectory equivalence as defined below has the desired meaning,

24

A+B
1.0−→ 2B xA + xB

1.0−→ 2xB yA + xB
1.0−→ xB + yB

B + C
1.0−→ 2C xB + xC

1.0−→ 2xC yB + xC
1.0−→ xC + yC

C + A
1.0−→ 2A xC + xA

1.0−→ 2xA yC + xA
1.0−→ xA + yA

2A
0.01−−→ 2B 2xA

0.01−−→ 2xB xA + yA
0.01−−→ 2yB

2B
0.01−−→ 2C 2xB

0.01−−→ 2xC xB + yB
0.01−−→ 2yC

2C
0.01−−→ 2A 2xC

0.01−−→ 2xA xC + yC
0.01−−→ 2yA

99.6 99.7 99.8 99.9 100.0
time

50

100

150

counts

A

B

C

1 2 3 4 5
time

50

100

150

200

counts

xA

xB

xC

yA

yB

yC

Figure 2.4: Modified version of the rock-paper-scissors oscillator [25, 44] and

an incorrect implementation. Adding the reactions 2A
0.01−−→ 2B etc. ensures

that the formal CRN oscillates forever under stochastic semantics (left CRN,
left image); without these reactions, eventually the count of one will hit zero
and can never be recovered [25]. An implementation CRN with two variants
(xA, yA, etc.) of each formal species oscillates correctly over short periods of
time, and the sets of trajectories of the two CRNs are the same; however, the
implementation CRN can and eventually will reach a state where all species
are in y form, in which case no further reactions can happen (right CRN, right
image).

since the sets of trajectories are generally infinite, we would like a more local

definition that facilitates efficient computational analysis. We define three lo-

cal conditions on the interpretation which we show are equivalent to trajectory

equivalence. As further evidence that our notion of correctness is sound, we

show that these three conditions are equivalent to a special case of weak bisim-

ulation from concurrency theory [52]. (We discuss this connection further in

Section 2.6.) This gives us three notions of correctness, given a formal CRN,

an implementation CRN, and an interpretation:

Definition 2.4.2 (Three notions of correctness). An implementation CRN

(S ′,R′) is a correct implementation of a formal CRN (S,R) if a correct in-

terpretation exists. An interpretation m : S ′ → NS is correct if any of the

following three sets of conditions are true:

25

I Equivalence of trajectories

(i) The set of formal trajectories and interpretations of implementation

trajectories are equal.

(ii) For every implementation state S ′, the set of formal trajectories

starting from m(S ′) and interpretations of implementation trajec-

tories starting from S ′ are equal.

II Three conditions on the interpretation

(i) Atomic condition: For every formal species A, there exists an im-

plementation species xA such that m(xA) = {|A|}.
(ii) Delimiting condition: The interpretation of any implementation

reaction is either trivial or a valid formal reaction.

(iii) Permissive condition: If S
r−→ and m(S ′) = S, there exists an im-

plementation reaction r′ such that m(r′) = r and S ′
r′
=⇒.

III Weak bisimulation

(i) For all implementation states S ′,

if S ′
r−→ T ′, then S

r
=⇒ T where S = m(S ′) and T = m(T ′).

(ii) For all formal states S, there exists S ′ with m(S ′) = S, and for all

such S ′,

if S
r−→ T , then for some T ′, S ′

r
=⇒ T ′ and m(T ′) = T .

A few comments may help explain these definitions. It may seem that the

second condition for trajectory equivalence supersedes the first, but it does

not: for example, the second condition may be satisfied even if there is no

implementation state S ′ that is interpreted as formal state S, whereas the first

condition will not be satisfied in that case. In our definition of weak bisimu-

lation, the use of T and T ′ is in some sense redundant due to the structure of

CRNs: the resulting state of a reaction is determined by the initial state and

the reaction, so for example if S
r−→ T and S ′

r
=⇒ T ′ then it already must be the

case that m(T ′) = T . The definitions of the delimiting and permissive con-

ditions are thus more suited to the structure of CRNs; we gave the definition

of weak bisimulation as we did to match the definitions used in concurrency

theory [52], and Theorem 2.4.1 proves that this definition is still equivalent.

Because of the connection to bisimulation theory, when m : S ′ → NS is a

26

correct interpretation we often say that m is a bisimulation from (S ′,R′) to

(S,R). When the distinction is important, we refer to a bisimulation that

satisfies our additional restrictions (i.e., is an interpretation that satisfies the

atomic condition) as a “CRN bisimulation”, but for most of this paper when

not explicitly comparing the different theories of bisimulation we use “bisim-

ulation” to mean “CRN bisimulation”.

Theorem 2.4.1. The three definitions of correctness, namely trajectory equiv-

alence, the three conditions on the interpretation, and weak bisimulation, are

equivalent.

Proof. We show that trajectory equivalence implies the three conditions for-

mulation; the three conditions imply weak bisimulation; and weak bisimulation

implies trajectory equivalence.

Given trajectory equivalence, we prove the three conditions onm. First, for the

atomic condition, consider applying condition I.(i) of trajectory equivalence to

formal trajectories of length 0, which are just formal states, and in particular

formal states SA = {|A|} for each formal species A. That the set of trajectories

are equal implies that there is an implementation trajectory whose interpre-

tation is the (zero-length trajectory) state SA, i.e. an implementation state

S ′A with m(S ′A) = {|A|}. Since implementation species cannot be interpreted

as fractional or negative formal species, there is some species xA ∈ S ′A with

m(xA) = {|A|}, satisfying the atomic condition. Second, for the delimiting con-

dition, consider implementation trajectories of length 1, specifically for each

implementation reaction r′ = (R′, P ′) the trajectory R′
r′−→ P ′. If r′ is trivial,

that is m(r′) = τ , its interpreted trajectory is a zero-length trajectory; if not,

its interpreted trajectory is m(R′)
m(r′)−−−→ m(P ′), which by trajectory equiva-

lence must be a formal trajectory. For that to be so, m(r′) must be a reaction in

R, thus satisfying the delimiting condition. And third, for the permissive con-

dition, for every formal reaction r = (R,P) and implementation state S ′ with

m(S ′) ≥ R, the trajectory m(S ′)
r−→ T , where T = m(S ′)−R+ P , is a formal

trajectory. By condition I.(ii) of trajectory equivalence, there is an implemen-

tation trajectory starting in S ′ whose interpreted trajectory is m(S ′)
r−→ T .

(Note that condition I.(i) implies this for some S ′ with m(S ′) = S, but not

necessarily for every S ′.) To have that interpretation, that implementation

27

trajectory must have some reaction r′ with m(r′) = r and all other reactions

trivial; this is the definition of S ′
r

=⇒, satisfying the permissive condition.

Given the three conditions, we prove weak bisimulation. Given any S ′ with

m(S ′) = S and S ′
r′−→ T ′ where r′ = (R′, P ′), by the delimiting condition

either m(r′) = τ is trivial or m(r′) = r = (R,P) ∈ R. If trivial, then m(T ′) =

m(S ′) = S and S
τ

=⇒ S is true by convention. If nontrivial, then r ∈ R;

since S ′
r′−→ we must have S ′ ≥ R′, thus m(S ′) ≥ m(R′) = R, and S

r−→ T

(therefore S
r

=⇒ T) where T = S − R + P . Since T ′ = S ′ − R′ + P ′, m(T ′) =

m(S ′)−m(R′) +m(P ′) = T , satisfying condition III.(i) of weak bisimulation.

Given any S, we find an S ′ with m(S ′) = S by taking S ′ =
∑

A αAxA, where

S =
∑

A αAA and m(xA) = {|A|} must exist by the atomic condition. Given

any such S ′ with S
r−→ T where r = (R,P), by the permissive condition there

is some r′ with m(r′) = r and S ′
r′
=⇒, which is an abbreviation for ∃T ′S ′

r′
=⇒ T ′,

which is further an abbreviation for ∃S′′S ′
τ

=⇒ S ′′
r′−→ T ′. (Strictly speaking

S ′
r′
=⇒ T ′ means there is some S ′

τ
=⇒ S ′′

r′−→ T ′′
τ

=⇒ T ′, but since we are choosing

an arbitrary T ′ we can take T ′ = T ′′.) Then m(S ′) = m(S ′′) = S since they

are connected by trivial reactions, and where r′ = (R′, P ′) with m(R′) = R

and m(P ′) = P we have T ′ = S ′′ − R′ + P ′ so m(T ′) = S − R + P = T ,

satisfying condition III.(ii) of weak bisimulation.

Given weak bisimulation, we prove trajectory equivalence. We first prove

condition I.(ii). Given any S ′0 with S0 = m(S ′0) and any implementation tra-

jectory (S ′0, r
′
1, . . . , r

′
k, . . .) with r′k = (R′k, P

′
k), let S ′k = S ′k−1−R′k +P ′k = S ′0−∑

i≤k R
′
i+
∑

i≤k P
′
k. Letting Sk = m(S ′k) and rk = m(r′k), it follows that either

rk = τ or else rk = (Rk, Pk) and Sk = Sk−1−Rk+Pk = S0−
∑

i≤k Rk+
∑

i≤k Pk

by linearity of m. From bisimulation, since each S ′k−1
r′k−→ S ′k we have either

rk = τ and Sk−1 = Sk, or r 6= τ and Sk−1
rk−→ Sk, since for r 6= τ in the formal

CRN S
r

=⇒ T ⇐⇒ S
r−→ T . The interpretation of that implementation tra-

jectory is exactly S0 followed by those reactions Sk−1
rk−→ Sk for which rk 6= τ ,

and thus the interpretation is a formal trajectory. Conversely, given S ′0 with

S0 = m(S ′0) and any formal trajectory (S0, r1, . . . , rk, . . .) with rk = (Rk, Pk),

letting Sk = Sk−1−Rk+Pk = S0−
∑

i≤k Rk+
∑

i≤k Pk, we construct an imple-

mentation trajectory whose interpretation is that formal trajectory. Given S ′0,

define inductively S ′k and r′k to be an implementation state and reaction such

that S ′k−1
r′k=⇒ S ′k with m(r′k) = rk and m(S ′k) = Sk, which exists by condition

III.(ii) of weak bisimulation. Expanding each
r′k=⇒ implicitly defines an im-

28

plementation trajectory (S ′0, r
′′
1,1, . . . , r

′′
1,l1
, r′1, r

′′
2,1, . . .) where each m(r′′k,j) = τ

and each m(r′k) = rk; the interpretation of this trajectory is the formal tra-

jectory (S0, r1, . . . , rk, . . .) as desired, proving condition I.(ii). Condition I.(i)

follows from condition I.(ii) of trajectory equivalence and condition III.(ii) of

weak bisimulation: every implementation trajectory starts from some S ′ and

by condition I.(ii) its interpretation must be a formal trajectory starting from

m(S ′). Conversely, every formal trajectory starts from some S, by condition

III.(ii) of weak bisimulation there is some S ′ with m(S ′) = S, and by condition

I.(ii) of trajectory equivalence there is an implementation trajectory starting

from S ′ whose interpretation is that formal trajectory.

Applying Bisimulation

We now consider how to use bisimulation to analyze our example implemen-

tation of A+B → C+D, as shown in Figure 2.2. We use the three conditions

formulation. The atomic condition is satisfied by the “signal species” xA, xB,

xC , and xD. For the delimiting condition, we check each implementation reac-

tion individually: iA+xB → tCD +w1 is interpreted as A+B → C+D, which

is formal, while xA
 iA and tCD → xC + xD +w2 are trivial. The permissive

condition says that for every formal reaction and for every implementation

state in which that reaction should be able to happen, it can. There is one

formal reaction, A+B → C +D, and any state in which it should be able to

happen must contain an xB and either an xA or iA, since those are the only

species whose interpretations contain either B and/or A. If the state contains

xB and iA, then the reaction iA +xB → tCD +w1 can happen and satisfies the

permissive condition. If the state contains xB and xA, then the trivial reaction

xA → iA followed by iA + xB → tCD + w1 satisfies the permissive condition.

Now consider a different case. Figure 2.5 shows an implementation of A+B →
C + D as described by Qian et al. [57] as a means to implement stack ma-

chines, along with a natural interpretation. The species iAB:CD is interpreted

as C + D, while iA:BCD is interpreted as A and xB as B. This makes the

reaction iAB:CD → iA:BCD + xB interpreted as C +D → A+B, which is not a

valid formal reaction. Thus the delimiting condition is unsatisfied, and the im-

plementation is not correct according to bisimulation. Although we only show

one candidate interpretation, any interpretation will have the same problem

provided m(xA) = {|A|}, m(xB) = {|B|}, m(xC) = {|C|}, and m(xD) = {|D|}.
The core of the problem in this implementation is that the irreversible step

29

in the pathway happens only after xC and xD are released, so there exist

trajectories in which one or both is released and then the pathway reverses,

producing xA and xB again. When analyzed with bisimulation, such a system

will (in the closest possible interpretation) have some step that is interpreted

as A + B → C + D but is also reversible, in which case the reverse reaction

will be interpreted as C +D → A+B, which is the problem described above.

While this does not lead to a problem for the specific construction of determin-

istic stack machines used in Qian et al. [57], it does identify an error with this

as a translation scheme for arbitrary CRNs: if the reaction A + B → C + D

were put together with a reaction C → C + E, then it would be possible to

go from {|A,B|} to {|A,B,E|} in the implementation CRN when it is not pos-

sible to do so in the formal CRN. As an aside, the inevitability of a reverse

reaction interpreted as C + D → A + B brings up the question of whether

this construction would be a correct implementation of a formal CRN with

the reversible reaction A+B
 C +D. In fact the construction in Figure 2.5

would not, since although the delimiting condition would be satisfied, the re-

action C + D → A + B cannot take place starting from xC + xD, failing the

permissive condition: the reaction needs xC +xD+ iABCD: to reverse itself, but

iABCD: is not a fuel. However, Qian et al. designed a construction intended

to implement reversible reactions, also presented in [57], which when enumer-

ated produces a similar CRN with iABCD: replaced by a fuel fABCD: and no

iABCD: + fi → wABCD reaction, and this construction is correct according to

bisimulation.

A given CRN can be a correct implementation of more than one formal CRN.

Given an interpretation, there is only one possible formal CRN for which

that interpretation might be a bisimulation, but a given implementation CRN

may have multiple interpretations to multiple formal CRNs, more than one

of which may be correct bisimulations with an appropriate formal CRN. At

the extremes, every CRN is an implementation of itself where m(x) = {|x|}
for all species x is a bisimulation, and every CRN is an implementation of

the CRN with 0 species and 0 reactions where m(x) = ∅ for all x is a bisim-

ulation. As a more interesting example, consider the implementation CRN

shown in Figure 2.6(A). The CRN has 16 species xi,j for 1 ≤ i, j ≤ 4, with

reactions xi,j
 xi+1,j and xi,j
 xi,j+1 for all appropriate i, j. For now, con-

sider a formal CRN with 4 species {N,S,E,W} (with unspecified reactions),

with the constraint m(x1,1) = {|W |}, m(x4,1) = {|S|}, m(x1,4) = {|N |}, and

30

m(xB) = {|B|}

f
+
B

m(iA:BCD) = {|A|}

m(iAB:CD) = {|C,D|}

1
xA + fABCD
 iA:BCD + f+

A

xB + iA:BCD
 iAB:CD + f+
B

iAB:CD + f−C
 iABC:D + xC

iABC:D + f−D
 iABCD: + xD

iABCD: + fi → wABCD

Figure 2.5: The translation scheme from [57], when used as a general CRN
implementation, violates the delimiting condition. Species named f are fu-
els. Top: DNA Strand Displacement diagram of the reversible reaction
xB+iA:BCD
 iAB:CD+f+

B with interpretation of involved species given. With
the closest possible interpretation (shown), the reverse reaction (highlighted)
is interpreted as C+D → A+B, which violates the delimiting condition when
the only formal reaction is A+B → C+D. Bottom: List of enumerated reac-
tions of the full DSD system for A+B → C +D, before removing fuels, with
the violating reaction xB + iA:BCD
 iAB:CD + f+

B highlighted. Although only
one candidate interpretation is shown to be invalid in this figure, any other
interpretation either has the same problem or is invalid for other reasons.

31

A.

x1,1

W

x1,2

?

x2,1

?

x1,3

?

x2,2

?

x3,1

?

x1,4

N

x2,3

?

x3,2

?

x4,1

S

x2,4

?

x3,3

?

x4,2

?

x3,4

?

x4,3

?

x4,4

E

1

B.

W

N

S

E

C.

W

N

S

E

D.

W

N

S

E

E

S

N

W

1

Figure 2.6: An example implementation CRN with multiple possible correct
interpretations as different formal CRNs. Here each circle represents one im-
plementation species, with the name of the species above the bar and its inter-
pretation below the bar; a “?” means the interpretation is not yet specified.
A. The implementation CRN with constraints on the interpretation of 4 of
its species. B.,C. Two correct interpretations as two distinct formal CRNs.
D. An interpretation not correct for any formal CRN. For B., C., and D.,
species in the same colored circle have the same interpretation.

m(x4,4) = {|E|}. Figure 2.6(B,C,D) shows three possible interpretations for

this implementation CRN. The first one is a valid bisimulation for the formal

CRN {W
 N,W
 S,N
 E, S
 E}, while the second is a valid bisimu-

lation for {W
 S,W
 E,W
 N}. The third interpretation is not a valid

bisimulation for any formal CRN: the only formal CRN for which the atomic

and delimiting conditions are satisfied is {N
 W,N
 E,N
 S,W

E,W
 S,E
 S}, but then the permissive condition is not satisfied for

(e.g.) the reaction E → S from initial x1,2. m(x1,2) = E but x1,2 cannot turn

into anything that is interpreted as S without passing through something that

is interpreted as either W or N , which would be a nontrivial reaction; and

the permissive condition requires that a formal reaction be implemented by a

sequence of implementation reactions of which all but the last are trivial. The

interested reader may enjoy trying to show that there is no interpretation of

this implementation CRN which is a valid bisimulation for the formal CRN

{N
 W,N
 E,N
 S,W
 E,W
 S,E
 S}, unless the constraint on

the interpretation of the corner species is relaxed.

In many implementations, species with m(z) = ∅ play a role. We call those

species “null species”. One type of null species is what theories such as path-

32

way decomposition [64] would call “waste species”: implementation species

that never appear as a reactant unless all other species involved in the reac-

tion are also waste species. This allows the waste species to be ignored once

produced. The species w1 and w2 in the example above from Soloveichik et al.

[66] (Figure 2.1) are examples of this type of null species, which are usually

easy to handle with bisimulation.

However, not all null species have to be waste species. Consider the following

formal and implementation CRNs:

S = {A,B} S ′ = {xA, yA, z, xB}

A→ B xA → yA

yA → xA + z

xA + 3z → xB

Let m(xA) = m(yA) = A, m(xB) = B, m(z) = ∅. The only reaction which

implements A → B is xA + 3z → xB, which requires the null species z. So

starting from either xA or yA, to implement A→ B the system loops xA → yA

and yA → xA+z as many times as needed, then does xA+3z → xB. Since any

state whose interpretation has an A must have either xA or yA, this proves

the permissive condition is satisfied. The atomic condition is satisfied by

m(xA) = A and m(xB) = B, and the delimiting condition is satisfied since the

first two implementation reactions are trivial and the third is A → B. Thus

this is an example of a correct interpretation with a non-waste null species.

As a final example of the effects of null species, consider a pair of CRNs similar

to the previous example:

S = {A,B} S ′ = {xA, yA, z, xB}

A→ B xA → yA + z

yA + z → xB

B → A xB → xA

33

If we consider the same interpretation as the previous CRN pair, m(xA) =

m(yA) = A, m(z) = ∅, m(xB) = B, then the permissive condition is not sat-

isfied. In the implementation state {|yA|}, since m({|yA|}) = {|A|} the reaction

A → B should be possible, but in the implementation CRN no reactions are

possible. (In fact, no correct interpretation exists.) Intuitively, this CRN tried

to implement A → B where the combination yA + z represents one copy of

A; in fact, the theory of pathway decomposition [64] would take this view,

with xA and xB identified as formal species A and B and with yA and z con-

sidered intermediate species, because pathway decomposition only considers

initial states consisting exclusively of formal species when evaluating correct

behavior. However, our use of interpretations requires that every implemen-

tation species must have a meaning on its own, and counts implementations

that rely on combinations having meaning as invalid.

One example of CRN comparison, as discussed in [7], is when a larger CRN

contains multiple copies of a smaller CRN, and we want to consider the larger

CRN as an implementation of the smaller CRN. As a naive example, consider

just two copies of a correct implementation as the implementation CRN:

S = {A,B} S ′ = {xA, yA, xB, yB}

A→ B xA → xB

yA → yB

This example, with m(xA) = m(yA) = A and m(xB) = m(yB) = B, is a

correct implementation. However, when we try to do the same thing with

bimolecular reactions, problems arise. Consider:

S = {A,B,C} S ′ = {xA, yA, xB, yB, xC , yC}

A+B → C xA + xB → xC

yA + yB → yC

If m(xA) = m(yA) = A, m(xB) = m(yB) = B, and m(xC) = m(yC) = C, then

the permissive condition is not satisfied: the state {|xA, yB|} is interpreted as

34

{|A,B|}, and thus should be able to implement A + B → C, but in fact no

reactions are possible and it cannot. This sort of problem is the motivation for

the modularity condition which we describe soon, and the reason why checking

the permissive condition is difficult, as discussed in Section 2.5. One solution,

in terms of implementation CRN design, is to allow every possible combination

of reactants to any reaction to interact:

S = {A,B,C} S ′ = {xA, yA, xB, yB, xC , yC}

A+B → C xA + xB → xC

xA + yB → xC

yA + xB → yC

yA + yB → yC

This, with the same interpretation as above, is now a correct implementation.

However, it can scale poorly: if a formal reaction has k reactants and each one

has n possible implementation species, then there are roughly nk combinations

which each need their own reaction. A better-scaling way is to allow different

implementation species to interconvert:

S = {A,B,C} S ′ = {xA, yA, xB, yB, xC , yC}

A+B → C xA + xB → xC

yA + yB → yC

xB
 yB

Again using the same interpretation, this system is a correct implementation.

This approach is the one expected by the modularity condition, which helps

the scaling behavior.

Properties of CRN Bisimulation

We describe two properties of CRN bisimulation that are likely to be use-

ful when analyzing larger systems. While bisimulation in the classic sense is

35

an equivalence relation between systems [52], our definition of interpretation-

dependent CRN bisimulation is a partial order on the set of CRNs. In partic-

ular, CRN bisimulation is transitive, which allows us to do complex proofs of

correctness in stages. We also show a modularity condition, where the combi-

nation of interpretations can be verified using only properties of each individ-

ual interpretation. This is particularly useful for general translation schemes

where the translation of a whole CRN is the combination of one “module” for

each reaction. As an example, we use modularity to prove that the translation

scheme in [66] is correct for any CRN.

We first show that CRN bisimulation is transitive. Consider three CRNs: an

abstract CRN (S,R), an implementation CRN (S ′′,R′′), and an intermediate

CRN (S ′,R′). For example, (S,R) is an abstract CRN, (S ′′,R′′) is a low-

level reaction enumeration of a prospective DNA implementation of (S,R),

and (S ′,R′) is a more high-level reaction enumeration of the same DNA im-

plementation, which abstracts away from certain details. Say we have proven

that (S ′,R′) is a valid implementation of (S,R) by finding an interpretation

m1 : S ′ → NS that is a bisimulation, and similarly have found an interpreta-

tion m2 : S ′′ → NS′ that is a bisimulation from (S ′′,R′′) to (S ′,R′). We want

to prove that (S ′′,R′′), the system we actually have, is a valid implementation

of (S,R), the system we want. The natural interpretation m : S ′′ → NS is

m(x) = (m1 ◦m2)(x) = m1(m2(x)), treating m2 as a function of species and

m1 as extended to a function of states. It turns out that this interpretation is

in fact a bisimulation.

Lemma 2.4.1. (Transitivity) If m2 is a bisimulation from (S ′′,R′′) to (S ′,R′)
and m1 is a bisimulation from (S ′,R′) to (S,R), then m = m1 ◦ m2 is a

bisimulation from (S ′′,R′′) to (S,R).

Proof. We use the three conditions formulation of correctness. We refer to

(S,R) as the “formal” CRN, (S ′′,R′′) as the “implementation” CRN, and

(S ′,R′) as the “intermediate” CRN. We show that each condition for m follows

from the corresponding conditions for m1 and m2.

For any formal species A, by the atomic conditions for m1 and m2 there is an

intermediate species xA with m1(xA) = {|A|} and implementation species yA

with m2(yA) = xA. Then m(yA) = m1(m2(yA)) = m1({|xA|}) = {|A|}, thus m

satisfies the atomic condition.

36

For any implementation reaction r′′ = R′′ → P ′′, by the delimiting condition

for m2 its interpretation m2(r
′′) is either an intermediate reaction R′ → P ′ ∈

R′ or is τ . If m2(r
′′) = τ , that means m2(R

′′) = m2(P
′′) and m(R′′) =

m1(m2(R
′′)) = m1(m2(P

′′)) = m(P ′′), so m(R′′ → P ′′) = m(r′′) = τ . If

m2(r
′′) = R′ → P ′ is a valid intermediate reaction, thenm(r′′) = m1(R

′ → P ′),

which by the delimiting condition for m1 is either a valid formal reaction or

trivial.

For any formal state S and reaction r with S
r−→ and any implementation

state S ′′ with m(S ′′) = S, that means S ′ = m2(S
′′) is an intermediate state

with m1(S
′) = S. By the permissive condition on m1, there is some r′ with

m1(r
′) = r and S ′

r′
=⇒. Using the permissive condition on m2 and the argument

used in Theorem 2.4.1 to show that the permissive condition implies trajectory

equivalence, there is a sequence of implementation reactions starting from S ′′

which implements the intermediate trajectory by which S ′
r′
=⇒. This means

that one of those reactions r′′ has m2(r
′′) = r′, some of them interpret via m2

to various intermediate reactions in that pathway that are trivial under m1,

and the rest of which are trivial under m2. An implementation reaction trivial

under m2 is trivial under m, as is a reaction which interprets under m2 to

an intermediate reaction trivial under m1, thus all reactions in this pathway

except r′′ are trivial under m, so when viewed under m, S ′′
r

=⇒.

Lemma 2.4.2. (Partial order) The relation & as described by the following

is a partial order: (S ′,R′) & (S,R) if there exists an m : S ′ → NS which

satisfies the atomic, delimiting, and permissive conditions with equality de-

fined as (S ′,R′) ≡ (S,R) if there exists a bijection n : S ′ → S such that

(n(S ′), n(R′)) = (S,R) where n is extended naturally to sets and reactions.

Proof. A partial order must be transitive, reflexive, and anti-symmetric. Tran-

sitivity (if a ≤ b and b ≤ c then a ≤ c) follows immediately from Lemma 2.4.1.

Reflexivity (a ≤ a) is obvious by letting m be the identity function. It re-

mains to show anti-symmetry (if a ≤ b and b ≤ a, then a = b), i.e. that given

(S1,R1) and (S2,R2) with m1 : S1 → NS2 and m2 : S2 → NS1 that each sat-

isfy the atomic, delimiting, and permissive conditions, (S1,R1) and (S2,R2)

are identical up to a change of species names. The atomic condition implies

that |S1| ≤ |S2| and |S2| ≤ |S1|, thus the numbers of species are equal and in

particular m1 is a bijection from species in S1 to sets of exactly one species

37

in S2 (and the same is true for m2). To simplify notation, we let n(x) = y if

m1(x) = {|y|}; n must be a bijection from S1 to S2. (If the CRN has sufficient

symmetry, it is not necessarily true that m2(n(x)) = {|x|}, for example if both

CRNs are {A → C,B → C} we could have m2(n(A)) = {|B|}.) Since n is a

bijection, any reaction that would be trivial after interpretation (by either m1

or m2) must be trivial before interpretation, and thus cannot exist. By the

delimiting condition for m1, every reaction in R1 must have its image under n

in R2; by the permissive condition for m1, every reaction in R2 must have its

preimage under n in R1; thus the CRNs are equal up to isomorphism n.

This result stands in contrast to the definition of bisimulation in transition

systems, which is an equivalence relation on states that can be extended to

an equivalence relation on systems [52]. We discuss this difference further in

Section 2.6.

In Section 2.4 we showed that the translation scheme from [66] is a correct

implementation of the single reaction A + B → C + D according to CRN

bisimulation. Intuitively, given a CRN of multiple reactions we should be able

to combine the implementations of each such reaction to form a correct imple-

mentation of the CRN. In particular, we would like to show that the combined

implementation CRN is correct using a condition we can check on each in-

dividual reaction’s implementation without having to check any property of

the combined CRN. Since, as we will see in Section 2.5, the time required to

check an interpretation scales much worse than linearly in the size of the im-

plementation CRN, such a modularity condition would be a significant saving

in the time required. While it is not in general true that combining two correct

implementation CRNs gives a correct implementation of the combined formal

CRN, there is a modularity condition which guarantees that the combined

CRN is correct.

We consider an implementation CRN (S ′1,R′1) and formal CRN (S1,R1) with

interpretation m1 : S ′1 → NS1 , and another implementation CRN (S ′2,R′2) and

formal CRN (S2,R2) with interpretation m2 : S ′2 → NS2 , where both m1 and

m2 are bisimulations. We assume the interpretations are compatible: for each

x ∈ S ′1 ∩ S ′2, m1(x) = m2(x), which implies m1(x) ∈ NS1∩S2 . We also assume

that if the species involved are real molecules (for example, in a DNA Strand

Displacement system), the reactions in R′1 and R′2 are the only reactions that

occur when you combine the implementation species in S ′1 and S ′2; that is, we

38

assume no crosstalk reactions. Whether there is crosstalk in a DSD system

can be checked by a reaction enumerator [36, 45], but is beyond the scope of

this theory. (Although if crosstalk reactions do occur, but all of them sat-

isfy the delimiting condition, the remainder of this discussion will still hold.)

Aside from crosstalk, the main reason for the combined implementation to be

incorrect according to bisimulation is a failure of the permissive condition. If

some implementation species y in e.g. S ′1 but not in S ′2 has an interpretation

that contains a formal species A ∈ S1∩S2, there may be some formal reaction

in R2 with A as a reactant that cannot be implemented from an implemen-

tation state where y is the representation of A, in which case the permissive

condition is false. (For example, if in Figure 2.7 the reaction i1:1 → xA was not

present, then the interpretation m1 would still be a correct bisimulation, but

the combined interpretation m would fail the permissive condition for where

formal reaction C +A→ B+D cannot be implemented from implementation

state {|xC , i1:1|}.) If any such species y can, via trivial reactions, “release” any

formal species in S1 ∩ S2 in its interpretation to implementation species in

S ′1 ∩ S ′2, then we would think this problem cannot arise. This condition can

be checked individually on each module without checking the combined CRN,

and we show that this condition guarantees that the combined implementation

is correct according to bisimulation. An example of a modular implementation

CRN is shown in Figure 2.7.

Definition 2.4.3 (Modularity Condition). Let m be a bisimulation from

(S ′,R′) to (S,R). Let S ′0 ⊂ S ′ and S0 ⊂ S be subsets of implementation

and formal species, respectively, where y ∈ S ′0 ⇒ m(y) ⊂ S0. We say that m

is a modular interpretation with respect to the common (implementation and

formal) species S ′0 and S0 if for any x ∈ S ′ there is a sequence of trivial reac-

tions {|x|} τ
=⇒ Y +Z where Y ⊂ S ′0 and m(Z)∩S0 = ∅, i.e. all common formal

species in the interpretation of x are extracted as common implementation

species.

Theorem 2.4.2. (Modularity) Let m1 be a bisimulation from (S ′1,R′1) to

(S1,R1) and m2 be a bisimulation from (S ′2,R′2) to (S2,R2) where m1 and

m2 agree on S ′1 ∩ S ′2. Let S ′ = S ′1 ∪ S ′2, R′ = R′1 ∪ R′2, S = S1 ∪ S2, and

R = R1 ∪ R2, and m : S ′ → NS equal m1 on S ′1 and m2 on S ′2. If m1 and

m2 are both respectively modular bisimulations with respect to the common im-

plementation species S ′1 ∩ S ′2 and common formal species S1 ∩ S2, then m is

39

common
species
(S ′

1 ∩ S ′
2)

(S ′
1,R′

1)

(S ′
2,R′

2)

xA

A

i1:1

A

i2:1

A

xB

B

i1:2
C + D

i2:2
B + D

xC

C

w1:1

∅

w2:1

∅

xD

D

1
Figure 2.7: An implementation CRN that satisfies the modularity condition.
Circles represent implementation species with interpretation given below the
line, and boxes with arrows represent reactions, with reactants on one side of
the box and products on the other; boxes where arrows point both ways are
reversible reactions. Here the top CRN (S ′1,R′1) is a correct implementation of
the formal reaction A+B → C +D, and the bottom CRN (S ′2,R′2) a correct
implementation of C + A → B + D. Green arrows indicate reactions used to
satisfy the modularity condition in Definition 2.4.3; for example, i1:2

τ
=⇒ Y +Z

by reaction i1:2 → xC + xD + w1:1, where Y = {|xC + xD|} ⊂ S ′1 ∩ S ′2 and
Z = {|w1:1|} has m(Z) = ∅. Thus the combined implementation CRN is a
correct implementation of the combined formal CRN. If the reverse reaction
i1:1 → xA did not exist, (S ′1,R′1) would still be a correct implementation of
A + B → C + D, but the combined CRN would not satisfy the permissive
condition, since state {|xC , i1:1|} cannot implement C + A → B + D without
that reaction.

a bisimulation from (S ′,R′) to (S,R), and m is also modular with respect to

S ′1 ∩ S ′2 and S1 ∩ S2.

Proof. We use the three conditions formulation. The atomic condition for m

for each formal species A is satisfied by the species xA that satisfy it for m1

or m2, as appropriate, or possibly both; e.g. if A ∈ S1 then there is some

species xA ∈ S ′1 such that m1(xA) = {|A|}, which implies that xA ∈ S ′ and

m(xA) = m1(xA) = {|A|}. Similarly the delimiting condition for m follows

from that for m1 and m2: for any implementation reaction R′ → P ′ in R′,
that reaction is in either R′1 or R′2 (the proof still holds if in both), and

its interpretation in m agrees with its interpretation in either m1 or m2 as

appropriate, which is either a trivial reaction or a formal reaction in R1 or R2,

which is thus in R.

For the permissive condition, consider a formal reaction r = R → P and

implementation state S ′ where R ≤ m(S ′). Either r ∈ R1 or r ∈ R2; without

loss of generality say r ∈ R1 (where again, the proof still holds if also r ∈ R2).

Divide S ′ into species in the first CRN and species not: let S ′ = S ′1+S ′2, where

40

S ′1 ⊂ S ′1 and S ′2 ∩ S ′1 = ∅. If m(S ′1) ≥ R, then the permissive condition for m1

applied to reaction r and state S ′1 mean S ′1
r

=⇒, thus S ′
r

=⇒ by the same sequence

of reactions ignoring species in S ′2. In the general case, this means the proof

is nontrivial only for formal species in R whose implementations in S ′ are in

S ′2, and we need to show that those formal species can be “extracted” into

an implementation species in S ′1. This is exactly the modularity condition:

for each species xi ∈ S ′2 there is a sequence of trivial reactions by which

xi
τ

=⇒ Yi+Zi, where Yi ⊂ S ′1 and m(Zi)∩S1 = ∅. In particular, since R→ P is

a reaction in R1, R ⊂ S1 and R∩m(Zi) = ∅. We then have S ′
τ

=⇒ S ′1 + Y +Z,

where Y =
∑

i Yi ⊂ S ′1 and Z =
∑

i Zi. Since R ∩ Z = ∅, R ≤ m(S ′), and

m(S ′) = m(S ′1 + Y) +m(Z), we have R ≤ m(S ′1 + Y). Since S ′1 + Y ⊂ S ′1, the

permissive condition for m1 implies S ′1 + Y
r

=⇒, thus S ′
r

=⇒.

That m is modular with respect to S ′1 ∩ S ′2 and S1 ∩ S2 also follows simply

from the same properties for m1 and m2, and the fact that if m1(r
′) = τ or

m2(r
′) = τ then m(r′) = τ . For any x ∈ S ′, there is a sequence of trivial (under

m) reactions by which x
τ

=⇒ Y +Z, for Y ⊂ S ′1∩S ′2 and m(Z)∩S1∩S2 = ∅: if

x ∈ S ′1, then such a sequence follows from the modularity of m1, and if x ∈ S ′2,
from the modularity of m2.

DNA implementation schemes for arbitrary CRNs such as [66], [57], and [6]

typically have a set of common species and for each formal reaction a “mod-

ule” with additional species and implementation reactions that implement the

formal reaction. If the modules have no crosstalk and each one correctly im-

plements its reaction and satisfies the modularity condition, then repeated

applications of Theorem 2.4.2 prove that the entire CRN is a correct imple-

mentation.

Corollary 2.4.3. Consider a formal CRN (S,R) with n reactionsR = {ri}ni=1,

and n implementation “module” CRNs (S ′0 ∪ S ′i,R′i) with species S ′0 in com-

mon, where any S ′i is disjoint from any S ′j for 0 ≤ i < j ≤ n. If there

are interpretations mi : S ′i → S for 0 ≤ i ≤ n such that the interpretation

(m0∪mi) is a bisimulation from (S ′0∪S ′i,R′i) to (S, {ri}) and is modular with

respect to the common implementation species S ′0 and common formal species

S, then m =
⋃n
i=1mi is a bisimulation from (S ′0 ∪

⋃n
i=1 S ′i,

⋃n
i=1R′i) to (S,R).

In particular, the translation scheme from [66] discussed earlier satisfies the

condition in Corollary 2.4.3 for S ′0 = {xA | A ∈ S}, i.e. the signal species.

41

Note that formally, each module contains all signal species—even ones that do

not appear in reactions in that module. For example, if the formal CRN has

reactions A+B → C and A+D → B, then the signal species xD ∈ S ′0 appears

as an implementation species in the module corresponding to A+B → C but

does not appear in any reaction in that module. Although counterintuitive,

our theory works fine when some species do not appear in any reactions. Thus

Corollary 2.4.3 proves that for any number of formal reactions, the scheme in

[66] produces a correct implementation CRN, as long as the DSD reaction enu-

merator produces exactly the described reactions and no additional crosstalk

reactions.

2.5 Checking Bisimulation

We now have a definition of “correct implementation”, and can sometimes

prove that a particular implementation is or is not correct. We would like to

find a general way to check whether any implementation is correct.

We divide “checking bisimulation” into three questions. First, given a formal

and implementation CRN and an interpretation, is the interpretation a bisim-

ulation? Second, if (as in most engineered CRN implementations) we have a

formal CRN, implementation CRN, and for each formal species A a designated

signal species xA, is there an interpretation which is a bisimulation and has

m(xA) = {|A|}? Finally, given a formal CRN, implementation CRN, and no

additional information, is there an interpretation which is a bisimulation?

For complexity purposes, we define the size of a CRN (S,R) as

|(S,R)| = |S|+
∑

X∈S,R→P∈R
(dlog(R(X) + 1)e+ dlog(P (X) + 1)e) .

This corresponds roughly (up to polynomial factors) to writing the number

of species in unary (to cover edge cases involving species not appearing in

any reaction), then writing each reaction in the usual chemical notation (e.g.

5X + 3Y → Z + 2X). Similarly, for an interpretation m : S ′ → NS we define

|m| =
∑
x∈S′

∑
X∈S
dlog(m(x)(X) + 1)e ,

which corresponds roughly to writing out each interpretation e.g. m(x3) =

3A + B. We find that the complexity of our algorithms is best expressed in

terms of three parameters: the size n = |S| + |R| + |S ′| + |R′|, the number

42

of species and reactions in the CRNs; the arity k = maxR→P∈R
∑

X∈S R(X),

the maximum number of reactants in any formal reaction; and the max stoi-

chiometry s = max(R→P)∈R∪R′,X∈S∪S′ R(X). Note that |(S,R)|+ |(S ′,R′)| ≤
n2 dlog(s+ 1)e and k ≤ s|S|, so any algorithm whose time or space complexity

is (for example) polynomial in some combination of n, log s, log k, and |m| is

(for example) polynomial in |(S,R)| + |(S ′,R′)| + |m|. We find that some

algorithms are less complex when k is bounded by a constant, such as k = 2

limiting the formal CRN to bimolecular reactions, and that the possibility

that s is not bounded by a constant (in particular, when k is ω(n)) affects the

technical details of the proofs but not the result.

Checking an Interpretation

First we consider the problem of, given an interpretation, checking whether

it is a bisimulation. We use the three conditions on an interpretation, having

proved in Theorem 2.4.1 that they are equivalent to bisimulation and trajec-

tory equivalence. Given two CRNs and an interpretation between them, the

atomic and delimiting conditions are trivial to check. This leaves only the

permissive condition.

Checking the permissive condition means, for each formal reaction r = (R,P)

and implementation state S ′ with m(S ′) ≥ R, checking whether S ′ can reach

via trivial reactions some state from which a reaction that is interpreted as r

can happen. Although there are infinitely many such implementation states,

we can find a finite set that is sufficient for checking the permissive condition.

Figure 2.8 shows an example of such a set for the reaction A + B → C in a

hypothetical implementation CRN.

Definition 2.5.1. Given a formal reaction r = (R,P) ∈ R, we say that an

implementation state S ′ is a minimal implementation state for r if m(S ′) ≥ R

and there is no S ′0 with S ′0 < S ′ and m(S ′0) ≥ R. (Equivalently, S ′ is a

minimal element—in the usual sense for partially ordered sets—of the set

{S ′ | m(S ′) ≥ R}, so we often say S ′ is “minimal for m(S ′) ≥ R”.) We use

the notation M(r) for the set of minimal implementation states for a formal

reaction r.

Lemma 2.5.1. Let (S,R) and (S ′,R′) be a formal and implementation CRN

with interpretation m. The interpretation m satisfies the permissive condition

if and only if, for every formal reaction r and every S ′ ∈M(r), S ′
r

=⇒.

43

iA

A

iB

B

iB

B

xA

A

iAC

A + C

iB

B

iA

A

xB

B

xB

B

xA

A

xB

B

iAC

A + C

jB

BiA

A

xA

A

jB

B

jB

B

iAC

A + C

jAB

A + B

1
Figure 2.8: Example set of minimal implementation states for the reaction
A + B → C. Large circles represent minimal states; circles within minimal
states represent implementation species, with their interpretation in formal
species given below the line. Assuming that the 7 implementation species
shown are the only species whose interpretation contains either an A or a B,
any implementation state whose interpretation contains A + B must contain
one of the 10 minimal states shown. The set of minimal states does not depend
on the implementation reactions, so no reactions are shown.

Proof. Clearly, if the permissive condition is satisfied, then for any formal re-

action r and implementation state S ′ ∈ M(r), m(S ′)
r−→ so by the permissive

condition, S ′
r

=⇒. For the converse, assume for every r ∈ R and S ′ ∈ M(r)

that S ′
r

=⇒, and consider an arbitrary formal reaction r = (R,P) and imple-

mentation state S ′′ with m(S ′′)
r−→, i.e. m(S ′′) ≥ R. There is at least one

minimal S ′ ∈ M(r) with S ′′ ≥ S ′, and by assumption S ′
r

=⇒. Since S ′′ ≥ S ′,

the same sequence of reactions can occur in S ′′, thus S ′′
r

=⇒. Since this is true

for every r and S ′′, the permissive condition is satisfied.

Lemma 2.5.2. Let (S,R) and (S ′,R′) be a formal and implementation CRN

with interpretation m, and r = (R,P) ∈ R a formal reaction. Let n = |S ′| be

44

the number of implementation species and k = |R| the number of reactants of r.

The number of minimal implementation states for r is at most nk, and all such

states can be enumerated in time poly(nk) and space poly(n, k). When k ≥ n,

in particular the number of minimal implementation states for r is at most

2n log k, and they can be enumerated in time 2poly(n,log k) and space poly(n, log k).

Proof. We describe an algorithm to enumerate all implementation states S ′

minimal for m(S ′) ≥ R given R, then show that it has the desired complexity

and correctly enumerates all minimal states.

If R = ∅, then the only minimal implementation state for m(S ′) ≥ R is S ′ = ∅.
If not, choose an arbitrary formal species A ∈ R. For each implementation

species x with A ∈ m(x): Construct a multiset of formal species Qx = R\m(x)

by removing m(x) from R, ignoring any species in m(x) but not in R. Apply

this algorithm recursively to enumerate all implementation states S ′x minimal

for m(S ′x) ≥ Qx. For each such S ′x, the state S ′ = S ′x + {|x|} has m(S ′) ≥ R

and may be minimal. Check if it is minimal by, for each y ∈ S ′, checking

if m(S ′ − {|y|}) ≥ R. If none of them are, then S ′ is minimal; print it and

continue enumerating.

We now prove that the algorithm enumerates exactly all minimal states S ′

with m(S ′) ≥ R. Since we check whether S ′ is minimal before printing it,

the algorithm clearly does not enumerate any S ′ with m(S ′) ≥ R that is not

minimal. (Without this check, the algorithm could generate a non-minimal

implementation state. For example, let R = {|A,B|} where there are imple-

mentation species x1 with m(x1) = {|A|} and m(x2) = {|A,B|}. The algorithm

could first choose A from R and x1 with A ∈ m(x1), generating Qx1 = {|B|},
then when called recursively choose B from Qx1 and x2 with B ∈ m(x2), thus

generating the state S ′ = {|x1, x2|} which is not minimal, since S ′ > {|x2|} and

m({|x2|}) = {|A,B|} ≥ R.) That every enumerated S ′ has m(S ′) ≥ R can be

proven by induction on |R|. If |R| = 0, i.e. R = ∅, then m(∅) = ∅ is trivially

true. If not, then for each x with A ∈ m(x) iterated through, |Qx| < |R| so

by assumption each generated S ′x has m(S ′x) ≥ Qx. Then the S ′ generated

from that S ′x has m(S ′) = m(S ′x) +m(x) ≥ Qx + (m(x) ∧R) ≥ R. Finally, to

prove that every minimal state is enumerated, we again use induction on |R|,
with the case |R| = 0 having only one minimal state, S ′ = ∅, which is gener-

ated. When |R| > 0, consider an arbitrary state S ′ minimal for m(S ′) ≥ R.

Where A ∈ R is the first formal species chosen by the algorithm, there is at

45

least one x ∈ S ′ with A ∈ m(x), and the algorithm at some point iterates

through that x. Consider Qx = R\m(x) as generated in the algorithm, and

S ′x = S ′ − {|x|}. If we can show that S ′x is minimal for m(S ′x) ≥ Qx, then

by assumption the recursive call to the algorithm generates S ′x, thus the al-

gorithm generates S ′ = S ′x + {|x|}. If S ′x is not minimal for Qx, then there is

some y ∈ S ′x such that m(S ′x − {|y|}) ≥ Qx. However, if so, then y ∈ S ′ and

m(S ′−{|y|}) = m(S ′x−{|y|}) +m(x) ≥ Qx + (R∧m(x)) = R, thus S ′ was not

minimal for R, creating a contradiction. Thus the algorithm generates every

minimal S ′, completing the proof of correctness.

Finally, we prove that the algorithm takes time poly(nk) and space poly(n, k).

Since the algorithm adds one implementation species at each recursion depth

and subtracts at least one species from R at each depth, the depth is at

most |R| = k. Iterating through at most |S ′| = n implementation species at

each depth proves a bound of nk on the number of minimal implementation

states and the poly(nk) time bound. At any time the algorithm stores one

implementation species plus poly(n, k) information for the Qx and S ′x’s for

each recursion depth, proving the space bound.

If k ≥ n then instead of removing one copy of one implementation species x at

each recursive step, we choose one implementation species x and a number α,

set Qαx = R\αm(x), and mark that x cannot be chosen again in the recursive

call. To keep only minimal states, we bound α such that (α − 1)m(x) ∧ R <

αm(x) ∧ R (i.e. the αth copy of x is not redundant); since we only choose

x with |m(x)| ≥ 1 and |R| = k this implies α ≤ k. This algorithm has a

depth of at most n, making a choice out of k possibilities at each step and

keeping track of at most n numbers each bounded by k, which proves the

bounds of time 2poly(n,log k) and space poly(n, log k) given when k ≥ n. (Note

that k ≥ n ≥ 2⇒ n log k ≤ k log n, so the bounds given for k ≥ n are tighter

than the bounds given for the general case.)

Consider applying the algorithm described in Lemma 2.5.2 to the example

implementation CRN in Figure 2.8. Here R = {|A+B|}, and assume A is

chosen first. The algorithm then splits into different branches based on the

choice of implementation species that contains A, where each branch may

enumerate one or more minimal states; we discuss the branches separately.

One branch of the algorithm will choose jAB to contain A, and stop, since

m(jAB) ≥ R, enumerating one minimal state. Other branches will choose each

46

A+B → C

xA

A

xB

B

+z

xA

A

yB
B

−z

xB → yB + z xA + yB + z → xC

1
Figure 2.9: Minimal state S ′0 = {|xA, xB|} can implement A + B → C by
producing and then consuming a null species z. Because z must be produced
from xB, minimal state S ′1 = {|xA, yB|} cannot implement A+B → C.

of iA, xA, and iAC . Each of those branches will recursively call the algorithm

with Qx = {|B|}; in particular, in the iAC line, {|A+B|} \ {|A+ C|} = {|B|}.
Within each of those three branches, the recursive call will again split into

branches, with one branch that considers each of iB, xB, jB, and jAB to contain

B. The branches that consider jAB will conclude that the resulting minimal

states e.g. {|xA + jAB|} are not minimal, but the other branches will conclude

that the resulting states are minimal, enumerating the other 9 minimal states

shown in Figure 2.8.

Now we have reduced an infinite number of possible initial implementation

states to a finite number of minimal implementation states for each formal

reaction. We have to check, for each S ′0 ∈ M(r), whether S ′0
r

=⇒; equiva-

lently, whether S ′0
τ

=⇒ T ′ where T ′ ≥ R′ for some implementation reaction with

m(R′ → P ′) = r. Checking this for one S ′0 is the “superset reachability”

or “covering” problem, which was proven by Rackoff [58] and Lipton [49] to

be EXPSPACE-complete. Surprisingly, we found that the requirement that

every S ′0
r

=⇒ makes the permissive condition checkable in PSPACE, by ruling

out complex constructions such as Lipton’s proof of hardness in [49].

Intuitively, we will show that if some S ′0
r

=⇒ but requires the full complexity

of exponential space to determine that, then that complexity will force some

other S ′1 with m(S ′1) ≥ R to have S ′1 6
r

=⇒. Figure 2.9 provides a simplified

example of the principle we use. Here we have two minimal states for the

formal reaction r = A+B → C. One of them, S ′0 = {|xA, xB|} can implement

r via the reactions xB → yB + z and xA + yB + z → xC . In doing so, it passes

through a non-minimal state {|xA, yB, z|}, and requires the extra species z to

finish implementing r. However, that the extra z is required to implement r

47

means that the other minimal state S ′1 = {|xA, yB|} has no way to implement r;

so the permissive condition is false, and we don’t need to check whether S ′0
r

=⇒.

This idea turns out to be generalizable, and allows us to mostly ignore “null

species” with m(x) = ∅, which among other things prevents the complexity

necessary for Lipton’s proof in [49]. In particular, we will show that when

checking for a pathway by which S ′
r

=⇒ we need only consider the minimal

statesM(r) plus a small amount of additional information, and that this can

be done in poly(nk) time and poly(n, k) space, where n = |S ′| + |R′| and

k = |R|.

For a simple case, consider an implementation CRN with no species x where

m(x) = ∅, such as the one shown in Figure 2.10A, and consider its graph

of minimal states for a formal reaction r = R → P . If, for every minimal

state, there is a path through the graph of minimal states to a reaction that

implements r, then the permissive condition is true. In fact, the permissive

condition is true if and only if such a path exists for every minimal state. If S ′0 is

minimal and S ′0
τ

=⇒ S ′′ which is not minimal, then there is some minimal S ′1 with

S ′′ > S ′1, which without null species must have m(S ′1) < m(S ′′) = m(S ′0). Here

either S ′1
r

=⇒ and therefore S ′0
r

=⇒ by reaching S ′′ and then following the same

path by which S ′1
r

=⇒, or S ′1
r

=⇒ and the permissive condition is false regardless

of whether S ′0
r

=⇒. Since m(S ′1) < m(S ′0), the path by which S ′1
r

=⇒ cannot pass

through S ′0, so reducing the question of S ′0
r

=⇒ to S ′1
r

=⇒ is valid. Effectively,

for the purpose of checking the permissive condition, we can pretend S ′′ is S ′1,

thus reducing our search for trajectories to a search for paths through the set

of minimal states. Where k is the number of reactants in r and n the number

of implementation species, we know from Lemma 2.5.2 that the number of

minimal states is at most nk when k ≤ n and at most 2n log k when k ≥ n, both

of which are exponential in the size of the CRN as defined at the beginning

of this section. Because searching for paths through a graph can be done in

space logarithmic in the size of the graph [60], we can check the permissive

condition in polynomial space when there are no null species. To generalize

this, we show that null species and loops do not make this bound worse.

Now consider an implementation CRN with null species, such as the one shown

in Figure 2.10B, and its graph of minimal states for a formal reaction r = R→
P . We can try to apply the same logic as in the case without null species: if

a minimal state S ′0
τ

=⇒ S ′′ non-minimal with a minimal state S ′1 < S ′′, either

48

A.

iA

A
iB

B

iB

B

xA

A

iAC

A+ C

iB

B

xB

B

iA

A

xB

B

xA

A

xB

B

iAC

A+ C

iA

A

jB

B

xA

A
jB

B

iAC

A+ C

jB

B

jAB

A+B

1

xA
 iA

xB
 iB

xB
 jB

xB + iA → xA + iB

xA + iC
 iAC

xA + jB
 jAB

jAB → xC

B.

xAB

A+B

xA

A
xB

B

yA

A

xB

B

xA

A yB

B

yA

A

yB

B

+2z

−3z

−3z

−2z

1

xA
 yA

yA + xB
 xAB

xAB → xA + xB + 2z

xB + 3z → yB

xA + yB + 2z → xC

yA + yB → yC

Figure 2.10: Example graphs of minimal states. We draw an arrow from a
state S ′1 to a state S ′2 if there is a trivial reaction that can occur in S ′1 (plus
some null species) and the resulting state is ≥ S ′2. Arrows “out” (with no
target) represent implementation reactions interpreted as the formal reaction
in question and that can occur in the minimal state in question plus some null
species. A. An example graph for the reaction A+B → C in an implementa-
tion CRN without null species, producing the same set of minimal states shown
in Figure 2.8. Here the permissive condition is true for A + B → C if and
only if every minimal state has a path to some arrow out, which we can see is
true for this graph. Note that the reaction iAC → xA+ iC in state {|iAC + xB|}
would result in {|xA + xB + iC |}, which is not minimal but is > {|xA + xB|},
so the arrow is from {|iAC + xB|} to {|xA + xB|}. Since the reverse reaction
xA + iC → iAC is not possible in any minimal state and our algorithms do not
need it, as far as we are concerned the reverse reaction is impossible. B. An
example graph for the reaction A + B → C in an implementation CRN with
one null species z. Here arrows for reactions that consume and/or produce
null species are marked with the number of null species they consume and/or
the number they produce. Arrows for reactions that consume null species are
grayed out, since they cannot occur in the minimal state in question, but may
be relevant if the required null species are produced. Checking the permissive
condition for A+B → C in this CRN may require more complex techniques.

49

S ′1
r

=⇒ and we can pretend S ′′ is S ′1, or S ′1 6
r

=⇒ and the permissive condition is

false anyway. Without null species this was valid because S ′′ > S ′1 implies

m(S ′′) > m(S ′1), and thus S ′1 cannot reach S ′0 via trivial reactions. With

null species, on the other hand, it may be that S ′′ − S ′1 contains only null

species and it may be that S ′1
τ

=⇒ S ′0; in particular it may be that both S ′0
r

=⇒
and S ′1

r
=⇒, but the only path by which S ′1

r
=⇒ goes through S ′0 and the only

path by which S ′0
r

=⇒ goes through S ′′, creating a loop that will not be found

when searching through the graph of minimal states. In fact, this is exactly

the case in the CRN shown in Figure 2.10B, for example with S ′0 = {|xAB|}
and S ′1 = {|xA + xB|}. All minimal states in that CRN can in fact implement

A + B → C, but doing so for e.g. {|xA + xB|} requires a “loop” through

{|yA + xB|} and {|xAB|} to {|xA + xB + 2z|}, eventually producing enough z for

the reactions xB + 3z → yB and xA + yB + 2z → xC , which is interpreted as

A+B → C. Since any state with z is a non-minimal state, that path cannot

be found by searching through only the graph of minimal states.

In the CRN in Figure 2.10B, the path by which {|xA + xB|} r
=⇒ involves a

“loop” by which {|xA + xB|} τ
=⇒ {|xA + xB|} + {|2z|}, i.e. a minimal state can

reach a state equal to itself plus some null species. In such a case, that loop

can be repeated any number of times to produce any number of z, and when

searching for a path, there is no need to keep track of the exact number

of z produced: either there are no z, or there are “enough” z produced by a

previous loop. Recall the argument we tried to use that failed: if S ′0
τ

=⇒ S ′1+Y ,

with S ′0 and S ′1 minimal, then either S ′1
r

=⇒ and so does S ′0, or S ′1 6
r

=⇒ and the

permissive condition is false. Recall that this argument only failed because it

may be that S ′1
r

=⇒ but only by passing through S ′0, in a situation similar to

the loop in Figure 2.10B. This suggests, which we will show is true, that this

example is general: if S ′0
τ−→ S ′1 + Y for S ′0, S

′
1 ∈ M(r), then for each y ∈ Y ,

either y can be completely ignored when checking the permissive condition,

or else the following all hold: m(y) = ∅, there is some S ′j ∈ M(r) such that

S ′j
τ

=⇒ S ′j + y+ . . . , and y is only “relevant” after it has been produced in some

such loop.

The above discussion allows us to define a graph, which can be both enumer-

ated and searched through in polynomial space, such that paths through the

graph correspond to paths by which a given minimal state implements a formal

reaction r. The states of this loopsearch graph are triples of the form (S ′, S ′0, ζ)

50

xAB

A+B

xA

A
xB

B

yA

A

xB

B

xA

A yB

B

yA

A

yB

B

+2z

−3z

−3z

−2z

ζ(z) = 0

ζ(z) = 1 ζ(z) = ∞

S′
1

S′
2

S′
3

S′
4

S′
5

0

1

2

3 4

(S′
1
, S′

3
,~0)

(S′
3
, S′

3
,~0)

(S′
2
, S′

3
, z)

(S′
3
, S′

3
,∞z)

(S′
5
, S′

5
,∞z)

1
Figure 2.11: Example of the loopsearch graph for the formal reaction A+B →
C with implementation CRN from Figure 2.10B. The graph of minimal states
from Figure 2.10B is reproduced at bottom right, with each minimal state
given a name S ′i. In the loopsearch graph, initial vertices (S ′i, S

′
i,~0) are filled in

green, and terminal vertices represented by doubled circles. Vertices and edges
not reachable from any initial vertex are grayed out, as they are not relevant
to the theory or algorithms that follow. The permissive condition is true for
A+B → C if and only if for each initial vertex, there is a path in the loopsearch
graph to some terminal vertex. One such path is given by the numbered
vertices 0 through 4 from initial vertex ({|yA + xB|} , {|yA + xB|} ,~0) to terminal
vertex ({|yA + yB|} , {|yA + yB|} ,∞z); observe that each of the other four initial
vertices can also reach a terminal vertex, so the permissive condition is true
for this interpretation.

where ζ maps each null species in Z to 0, 1, or ∞: in each state we are at

or covering one minimal implementation state S ′ ∈ M(r), in the middle of a

loop beginning at some other state S ′0 ∈ M(r), and each null species in Z ′ is

either absent, produced previously in the current incomplete loop, or present

in infinite copies from a previous loop. An example of such a graph is given

in Figure 2.11.

We use the following notation in defining and discussing the loopsearch graph,

in the context of a given formal and implementation CRN with interpretation

51

and a specific formal reaction r. Let S ′0, S
′
1 ∈ M(r), ζ ∈ 3Z and Z ∈ 2Z . We

write ζ−1(x) = {z ∈ Z | ζ(z) = x} for x ∈ {0, 1,∞}; in particular, ζ−1(∞) is

the set of null species that have been produced in previous loops, and are thus

“available” for use later. We write S ′0
ζ−→ S ′1 + Z if there is a trivial reaction

that, for some n ∈ N, can occur in S ′0 + nζ−1(∞), where the resulting state is

some S ′′ containing S ′1 and at least one copy of each null species in Z. Z may

be empty, in which case S ′0
ζ−→ S ′1 is the same as S ′0

ζ−→ S ′1 + ∅. Following the

terminology of [58], to “cover” a state S in a CRN is to be in a state containing

S plus possibly some other species.

Definition 2.5.2. Given (S,R) and (S ′,R′) a formal and implementation

CRN, m : S ′ → NS an interpretation, and r a formal reaction, we define the

loopsearch graph for r. The loopsearch graph is a directed graph with vertex

set M(r) ×M(r) × 3Z , where Z = {z ∈ S ′ | m(z) = ∅}, with some vertices

designated as “terminal”. Here a vertex (S ′, S ′0, ζ) is interpreted as, “we are

covering state S ′, in the middle of a loop starting and ending at S ′0, with

null species present or absent as determined by ζ”, except that S ′ = S ′0 is

interpreted as “not in the middle of a loop”. ζ ∈ 3Z maps each null species z

to {0, 1,∞}, a coarse-grained representation of the number of copies of z: we

only need to remember whether z is not present (ζ(z) = 0), produced during

the current loop (1), or produced as many times as necessary in a previous loop

(∞). This interpretation suggests the definition of the edges of the loopsearch

graph, which is as follows:

• Reactions outside a loop: Whenever S ′
ζ−→ S ′1 and ζ−1(1) = ∅, there

is an edge from (S ′, S ′, ζ) to (S ′1, S
′
1, ζ).

• Reactions inside a loop: Whenever S ′
ζ−→ S ′1 + Z, there is an edge

from (S ′, S ′0, ζ) to (S ′1, S
′
0, ζ
′) for each S ′0 6= S ′1, where ζ ′ is defined as

follows:

– If ζ(z) = 1 or ∞ then ζ ′(z) = ζ(z).

– If ζ(z) = 0 and z /∈ Z then ζ ′(z) = 0.

– If ζ(z) = 0 and z ∈ Z then ζ ′(z) = 1.

• Finishing a loop: Whenever S ′1
ζ−→ S ′0 + Z, there is an edge from

(S ′, S ′0, ζ) to (S ′0, S
′
0, ζ
′), where ζ ′(z) = 0 if ζ(z) = 0 and z /∈ Z, otherwise

ζ ′(z) =∞.

52

A vertex (S ′, S ′, ζ) is designated as “terminal” if S ′ +∞ζ−1(∞)
r−→, that is, if

there is some implementation reaction r′ with m(r′) = r that can occur in S ′

plus sufficiently many copies of null species z with ζ(z) =∞.

Some comments on the definition may help give an intuitive understanding

of the loopsearch graph. First, note that ζ is monotonic in this graph: for

any given z ∈ Z, ζ(z) can change from 0 to 1, from 1 to ∞, or from 0 to

∞, but never decrease. A null species z can be produced inside a loop, but

the paths we are searching for cannot use z inside the loop where it was first

produced; and once that loop ends, z is present in “infinite” copies and will

always be so. Second, the loopsearch graph has a repeating substructure that

mirrors the structure of the graph of minimal states; compare Figure 2.11

bottom right to the remainder of Figure 2.5.2. Vertices of the form (S ′, S ′, ζ)

for fixed ζ with ζ−1(1) = ∅, with edges from “Reactions outside a loop” in

Definition 2.5.2, have exactly the structure of the graph of minimal states,

except edges “grayed” in the graph of minimal states may or not be present in

the loopsearch graph. Specifically, such grayed edges represent reactions that

have null species as reactants (see Figure 2.10B, Figure 2.11 bottom right),

and are present in the parts of the loopsearch graph where the null species z

that are reactants of the corresponding reaction have ζ(z) = ∞. Vertices of

the form (S ′, S ′0, ζ) for fixed S ′0 and ζ, with edges from “Reactions inside a

loop” and “Finishing a loop” in Definition 2.5.2, have a structure very close to

the graph of minimal states, differing occasionally when the edge changes ζ.

Finally, many of the vertices in the loopsearch graph are unreachable from any

“initial vertex” (i.e., vertex of the form (S ′, S ′,~0)); usually such unreachable

vertices, according to the meaning we give them, would contain some sort of

contradiction. For example, every vertex of the form (S ′, S ′, ζ) with ζ−1(1) 6=
∅ will be unreachable in any loopsearch graph; in such a vertex, the form

(S ′, S ′, ζ) means we are at state S ′ and not in the middle of a loop, but

ζ(z) = 1 means z has been produced in the current, nonexistent loop. Other

vertices are unreachable due to less obvious contradictions; in the example in

Figure 2.11, where i ∈ {1, 2, 3} and j ∈ {4, 5}, vertices of the form (S ′i, S
′
j, ζ)

are unreachable, because we would be at S ′i in a loop starting at S ′j, but

such states S ′i are unreachable from states S ′j; similarly, vertices of the form

(S ′j, S
′
i, ζ) are unreachable for ζ(z) 6= ∞. Unreachable vertices and edges are

shown in grey in Figure 2.11.

53

Because the edges in the loopsearch graph come from trivial reactions possible

at the corresponding states, any path through the loopsearch graph implies the

existence of a class of trajectories in the implementation CRN. A segment from

(S ′0, S
′
0, ζ) to (S ′1, S

′
1, ζ) traveling only through vertices of the form (S ′, S ′, ζ)

with no change in ζ implies that the corresponding sequence of trivial reactions

can occur starting from S ′0 plus some null species, including “sufficiently many”

copies of ζ−1(∞), and ending in a state that covers S ′1. A segment from

(S ′0, S
′
0, ζ) to (S ′0, S

′
0, ζ
′) traveling only through vertices of the form (S ′, S ′0, ζ

′′)

implies the existence of a “loop” in the implementation CRN of the form

S ′0 + Z0
τ

=⇒ S ′0 + Z1, where Z0 includes “sufficiently many” copies of ζ−1(∞),

and Z1 includes at least all null species in (ζ ′)−1(∞) that are not in ζ−1(∞).

Given any number of times for this loop to happen, it can happen that many

times starting with sufficiently many copies of ζ−1(∞), producing as many

copies of (ζ ′)−1(∞) as desired. This logic lets us compose paths made of these

segments into trajectories possible in the implementation CRN, by taking each

loop as many times as necessary to produce all species necessary for all future

segments. In particular, a path from (S ′0, S
′
0,~0), where ~0 ∈ 3Z is the function

that maps all null species to 0, to a terminal state of the form (S ′, S ′, ζ) implies

the existence of a trajectory in the implementation CRN by which S ′0
r

=⇒. Thus,

if such paths can be found for every minimal S ′0, we know that the permissive

condition is satisfied. What we will show is that, if the permissive condition

is satisfied, then it is satisfied by trajectories corresponding to paths through

the loopsearch graph.

Lemma 2.5.3. Let (S,R) and (S ′,R′) be a formal and implementation CRN,

with interpretation m. Let r = (R,P) ∈ R be a formal reaction and S ′0 an

implementation state minimal for m(S ′0) ≥ R. If the permissive condition

is satisfied, then there exists a path through the loopsearch graph described in

Definition 2.5.2 from (S ′0, S
′
0,~0) to some terminal state, where ~0(z) = 0 for all

null species z. Conversely, if such paths exist for every formal reaction and

minimal implementation state, then the permissive condition is satisfied.

Proof. Given r = R → P ∈ R and S ′0 ∈ M(r), assuming the permissive

condition is true, we find a path through the loopsearch graph for r from

(S ′0, S
′
0,~0) to a terminal state. In particular, we show that if the permissive

condition is true, then from any (S ′1, S
′
1, ζ) where ζ−1(1) = ∅, there is a path

either to a terminal state (S ′2, S
′
2, ζ) for the same ζ, or to another such state

54

(S ′2, S
′
2, ζ
′) where (ζ ′)−1(1) = ∅ and ζ−1(∞) ((ζ ′)−1(∞), from which this

process can be repeated. Since ζ−1(∞) ⊂ Z which is finite, this process must

find a terminal state in finitely many steps, namely at most |Z|.

Given arbitrary (S ′1, S
′
1, ζ) with ζ−1(1) = ∅, let Z = ζ−1(∞) and note that for

each S ′′ ∈ M(r) and µ ≥ 0, m(S ′′ + µZ) ≥ R. By the permissive condition,

there is a trajectory in the implementation CRN by which S ′′+µZ
r

=⇒; for each

S ′′, choose a shortest such path. Construct a new trajectory by starting at

S ′1+µZ, where µ is high enough for this trajectory to be valid, and at each step

where we are ≥ some S ′′ + µ′Z, take the first reaction on the chosen shortest

path for S ′′. Continue until the trajectory either takes an implementation

reaction r′ with m(r′) = r, or covers the same minimal state S ′2 twice.

If the trajectory takes an implementation reaction r′ with m(r′) = r, then

by the construction of the loopsearch graph, for each reaction in the trajec-

tory from a state ≥ S ′′1 to a state ≥ S ′′2 , there is an edge from (S ′′1 , S
′′
1 , ζ) to

(S ′′2 , S
′′
2 , ζ). Where S ′2 is the minimal state such that r′ was taken in a state

≥ S ′2, since r′ was possible that means (S ′2, S
′
2, ζ) is a terminal state. Thus

these edges give a path from (S ′1, S
′
1, ζ) to (S ′2, S

′
2, ζ) which is terminal, which

is the desired path.

If on the other hand the trajectory covers the same minimal state S ′2 twice, then

there must be at least one null species z /∈ Z produced by a reaction between

the first and second times S ′2 is covered; otherwise such a path would be a futile

loop, implying that for at least one S ′′ covered in that time there is a µ which

gives a shorter path by which S ′′ + µZ
r

=⇒. Then again by the construction

of the loopsearch graph, for each reaction in the trajectory from a state ≥ S ′′1
to a state ≥ S ′′2 before the first state ≥ S ′2, there is an edge from (S ′′1 , S

′′
1 , ζ)

to (S ′′2 , S
′′
2 , ζ). For each reaction after the first state ≥ S ′2, there is an edge

from (S ′′1 , S
′
2, ζ
′′
1) to (S ′′2 , S

′
2, ζ
′′
2), with the first ζ ′′1 = ζ, each new ζ ′′2 equalling

ζ ′′1 except that any null species z produced in the corresponding reaction with

ζ ′′1 (z) = 0 has ζ ′′2 (z) = 1 (“Reaction inside a loop” in Definition 2.5.2), and the

last ζ ′′2 = ζ ′ has ζ ′(z) =∞ if any ζ ′′(z) =∞ or 1 or if z was produced by the

last reaction (ζ ′(z) = 0 otherwise), ending in the state (S ′2, S
′
2, ζ
′) (“Finishing

a loop”). Since at least one such z /∈ ζ−1(∞) must have been produced, this

is a path from (S ′1, S
′
1, ζ) to (S ′2, S

′
2, ζ
′) with ζ−1(∞) ((ζ ′)−1(∞), which is the

desired path.

If such a path through the loopsearch graph from (S ′0, S
′
0,~0) exists for a

55

given formal reaction r and minimal implementation state S ′0, then we show

S ′0
r

=⇒. We gave this argument informally above. Where states are of the form

(S ′i, S
′
j, ζ), observe from Definition 2.5.2 that the only edges that changes ζ

leave S ′j unchanged (i.e. are in a loop), and the only edges that change S ′j
are edges from (S ′1, S

′
1, ζ) to (S ′2, S

′
2, ζ) leaving ζ unchanged with ζ−1(1) = ∅

(i.e. are outside a loop). From that, given a path from (S ′0, S
′
0,~0) to some

terminal state (S ′f , S
′
f , ζf), we can divide the path into segments as follows: in

states of the form (S ′i, S
′
j, ζ), segments will alternate between segments where

all states have S ′i = S ′j and ζ is unchanged (“paths”), followed by segments

where S ′j is unchanged (“loops”). Where (S ′i, S
′
i, ζi) is the state at the end of

the ith loop and Zi = ζ−1i (∞), we show by induction on i that for any µ ≥ 0,

S ′0
τ

=⇒ S ′i + µZi. The base case i = 0 has ~0−1(∞) = ∅, so S ′0
τ

=⇒ S ′0 + µ∅ is

trivially true. Assuming that S ′0
τ

=⇒ S ′i + µZi for any µ, consider the sequence

of trivial reactions corresponding to the edges on the path from (S ′i, S
′
i, ζi) to

(S ′i+1, S
′
i+1, ζi) and the loop from there to (S ′i+1, S

′
i+1, ζi+1). Those trivial re-

actions are, by Definition 2.5.2, possible using only null species in Zi; let µ′

be the largest number of a single null species in Zi used after adding up all

reactants of all reactions along the path and loop (ignoring any products of the

reactions). Given arbitrary µ ≥ 0, let µ′′ = (µ+1)(µ′+1), and by assumption,

S ′0
τ

=⇒ S ′i+µ′′Zi. Then by following the trivial reactions along the path from S ′i
to S ′i+1, we use up at most µ′Zi, so S ′i+µ

′′Zi
τ

=⇒ S ′i+1+µ(µ′+1)Zi. Then by fol-

lowing the trivial reactions along the loop µ times, each loop uses at most µ′Zi

and produces at least Zi+1\Zi, so S ′i+1+µ(µ′+1)Zi
τ

=⇒ S ′i+1+µZi+µ(Zi+1\Zi),
completing the induction. That S ′0

τ
=⇒ S ′f + µZf for all µ ≥ 0 is a special case

of this proof, and since by Definition 2.5.2 that (S ′f , S
′
f , ζf) is a terminal state

means S ′f + µZf
r−→ for some µ ≥ 0, this proves that S ′0

r
=⇒.

If such paths exist for every formal reaction r and minimal state S ′0 for r, then

every minimal state S ′0
r

=⇒. Thus as discussed in Lemma 2.5.1 every state with

m(S ′)
r−→ has S ′

r
=⇒, satisfying the permissive condition.

With this preparation, we can now describe algorithms to check the permissive

condition. Having shown that the permissive condition is true if and only if

certain paths through the loopsearch graph exist, our algorithms will be based

on searching for those paths. In general, if a formal reaction r = R → P has

k = |R| reactants and the implementation CRN has n = |S ′| species, there

may be order nk minimal implementation states for r and the trajectories by

56

which any one implements r may have to pass through most or all of them.

As that suggests, we will later prove that checking the permissive condition

(and thus checking an interpretation in general) is PSPACE-complete. So the

first algorithm we present is the loopsearch algorithm, which runs in poly(n, k)

space and poly(nkn) time, which is Algorithm 2.1.

The size (number of vertices) of the loopsearch graph is |M(r)|23|Z|, at worst

exponential in the size of the CRNs, and we have reduced the permissive

condition to a question of whether paths between certain pairs of vertices

exist in that graph. Savitch’s theorem states that we can decide whether such

paths exist through a graph of size N in log2N space [60], which given the

results so far completes the proof that the permissive condition can be decided

in polynomial space; the loopsearch algorithm is just a concrete application of

Savitch’s result to the loopsearch graph. Specifically, the loopsearch algorithm

breaks a path from (S ′0, S
′
0,~0) into alternating segments of two types: one type

from (S ′i, S
′
i, ζi) to (S ′i+1, S

′
i+1, ζi) through only states of the form (S ′, S ′, ζi),

and the other type from (S ′i, S
′
i, ζi−1) to (S ′i, S

′
i, ζi) through only states of the

form (S ′, S ′i, ζ), the same decomposition discussed in the proof of Lemma 2.5.3.

Both types of segments can have length no longer than |M(r)|; for the first

type, this is obvious, while for the second, we rely on the proof of Lemma 2.5.3

to say that a decomposition exists where no segment covers the same minimal

state twice. To search for a path of length 20 = 1, we check each possible edge

(trivial reaction) to see if the start and target state are connected; to search for

a path of length 2i+1, we check for each possible intermediate state, whether a

path of length 2i exists from the start to the intermediate, and whether a path

of length 2i exists from the intermediate to the target. For a segment of the

first type, the possible intermediate states are just (S ′, S ′, ζi) for S ′ ∈ M(r),

while for a segment of the second type, the possible intermediate states are

(S ′, S ′i, ζ) where S ′ ∈ M(r) and for all z ∈ Z, ζi−1(z) ≤ ζ(z) ≤ ζi(z). This

condition, which reduces the number of ζ to check, relies on a monotonicity of

ζ(z) that follows from the types of edges defined in Definition 2.5.2.

Theorem 2.5.1. Whether an interpretation is a bisimulation can be checked

in polynomial space.

Proof. We show that the loopsearch algorithm is correct and runs in polynomial

space. We proved in Lemma 2.5.3 that the permissive condition is true if and

57

def loopsearch(CRN formal, CRN impl, interpretation m):

Z = { species x in impl where m(x) is empty }

for each reaction r in formal:

Min = minimal_states(impl, m, r)

k = log(|Min|, base 2)

for each state S’0 in Min:

found = False

for each sets <Y0,Y1,...,Yl> in partitions(Z,|Z|+1),

states <S’1,...,S’l> in Min:

if (for all i in 1,...,l, ...

reach_with_inf(S’(i-1), S’i, Y1+...+Y(i-1), k) ...

and reach_with_inf(S’i, S’i + Yi, Y1+...+Y(i-1), k)) ...

and reach_with_inf(S’l, r, Y1+...+Yl, k):

found = True

if not found:

return False

if found for all r and all S’0 ...

return True

def reach_with_inf(state start, (state or reaction) target, ...

(set of species) infinites, integer k):

check if start can reach target in at most 2^k reactions

given infinitely many copies of species in infinites

if k is 0:

for each trivial reaction r’:

if r’ takes start to target: return True

return False

if k is not 0:

middles = Min x 2^({z in target | m(z) = 0})

for each state middle in middles:

if reach_with_inf(start, middle, infinites, k-1) ...

and reach_with_inf(middle, target, infinites, k-1):

return True

return False

Algorithm 2.1: The loopsearch algorithm to check the permissive condition in
polynomial space.

58

only if a loop-segmented path exists for every formal reaction r and every

minimal implementation state S ′0 for r, so we need only to show that the

loopsearch algorithm finds a loop-segmented path if and only if one exists.

Each loop-segmented path implicitly specifies a sequence of l minimal states

S ′i, and a sequence of sets of null species Yi. By removing from Yi all null species

in Yj for j < i and defining Y0 = Z − ⋃l
i=1 Yi, we get the partition that the

loopsearch algorithm searches for while preserving the loop-segmented path.

Since the loops and paths in the desired loop-segmented path never repeat a

minimal state, they must each have length at most N the number of minimal

states, and a path of length 2j from S ′a to S ′b exists if and only if for some S ′c a

path of length 2j−1 from S ′a to S ′c and a path of length 2j−1 from S ′c to S ′b both

exist. The desired loop-segmented path has each loop and path as a path

between minimal states with certain null species ignored and the algorithm

matches this restriction, so the loopsearch algorithm is correct.

At any point in the loopsearch algorithm, it is storing the following information:

a formal reaction r, a minimal state S ′0, a partition of l+1 sets of null species Yi

(thus implying that l ≤ z ≤ n), a sequence of l minimal states S ′i, and at most

dlogNe triples of minimal states S ′a, S
′
b, S

′
c in the recursive search algorithm.

The at most nk minimal states can be enumerated in polynomial space (i.e.

without storing any states other than the current and next one) as shown in

Lemma 2.5.2, and similarly partitions of z ≤ n elements can be enumerated in

poly(z) space. Also according to Lemma 2.5.2, the number of minimal states

is N ≤ nk, so the depth of the search dlogNe is poly(n, k). (When k ≥ n,

N ≤ 2n log k so the depth is at most poly(n, log k).) To complete the proof,

note that as discussed earlier, checking the atomic and delimiting conditions

are both trivial given an interpretation, thus whether an interpretation is a

bisimulation can be checked in polynomial space.

We have repeatedly said that the difficulty of checking the permissive condition

scales with the number of minimal states for any given formal reaction r =

R → P , which typically scales like (and never scales worse than) nk where

n = |S ′| and k = |R|. We stated earlier, and will show later, that when k is

unbounded, checking an interpretation is PSPACE-complete. However, many

CRNs in practice have large numbers of species but small numbers of reactants

per (formal) reaction; in particular, almost any interesting behavior—if not

any interesting behavior—that can be done with a CRN can be done with

59

def graphsearch(CRN formal, CRN impl, interpretation m):

for each reaction r in formal:

Min = minimal_states(impl, m, r)

states or r reachable from S’

table reach(S’) = <empty> for each state S’ in Min

null species producible in a loop at S’

table prod(S’) = <empty> for each state S’ in Min

repeat until reach and prod are both unchanged:

for each S’1 where reach(S’1) is not r:

if S’1 + inf prod(S’1) can do r’ with m(r’) = r:

set reach(S’1) to r, continue to next S’1

for each trivial reaction r’ by which

S’1 + inf prod(S’1) -> S’2:

if reach(S’2) is r:

set reach(S’1) to r, continue to next S’1

reach(S’1) += reach(S’2)

if S’1 in reach(S’2):

prod(S’1) += prod(S’2)

prod(S’1) += {y in products(r’) where m(y) = empty}

if not all reach(S’) is r: # after table no longer changes

return False

return True # if all reactions pass without returning False

Algorithm 2.2: The graphsearch algorithm to check the permissive condition
in time and space polynomial in the number of minimal states.

a CRN with a bound of k ≤ 2. For those CRNs, we present a graphsearch

algorithm which takes poly(nk) space and time, making it much faster than

the loopsearch algorithm when k is small but taking much more space when k

is large, as Algorithm 2.2.

For each formal reaction r, the graphsearch algorithm enumerates and creates

a table of all implementation states S ′i minimal for r. The algorithm uses this

table to store “known information” about which states are reachable from S ′i
and iteratively updates this information, continuing until either every S ′i

r
=⇒

is known or until no further information can be known, in which case some

S ′i 6
r

=⇒. For each S ′i, the algorithm stores whether or not it is known (yet) that

S ′i
r

=⇒. If it is not yet known that S ′i
r

=⇒, then the algorithm stores, for each

minimal state S ′i, whether it is known that S ′i
τ

=⇒ S ′j, and for each y ∈ S ′ with

m(y) = ∅, whether it is known that S ′i
τ

=⇒ S ′i + y. Initially, the only thing

known is that S ′i
τ

=⇒ S ′i for each S ′i.

60

Given this table, the algorithm goes through repeated “cycles” of updating the

known reachabilities until one cycle passes with no changes. In each cycle, the

algorithm iterates through each minimal S ′i. For each S ′i, if S ′i
r

=⇒ is known,

the algorithm skips S ′i. If not, where Yi is the set of all y such that S ′i
τ

=⇒
S ′i+y is known, the algorithm checks for each implementation reaction r′ with

m(r′) = r whether it can occur in S ′i given arbitrarily many copies of Yi. If

S ′i +∞Yi r′−→ for one of those r′, then the algorithm records that S ′i
r

=⇒ and

will skip S ′i in the future. Otherwise, the algorithm iterates through all trivial

reactions in the implementation CRN and check whether they can occur in

S ′i +∞Yi. For each reaction that can occur, the algorithm finds the (possibly

multiple) minimal state(s) S ′j that are covered by the state after that reaction,

and updates the table based on what is known about S ′j:

(i) If S ′i +∞Yi τ−→ S ′j and S ′j
r

=⇒, then S ′i
r

=⇒. Otherwise,

(ii) If S ′i +∞Yi τ−→ S ′j and S ′j
τ

=⇒ S ′k, then S ′i
τ

=⇒ S ′k.

(iii) If S ′i +∞Yi τ−→ S ′j + y and S ′j
τ

=⇒ S ′i, then S ′i
τ

=⇒ S ′i + y.

(iv) If S ′i +∞Yi τ−→ S ′j and S ′j
τ

=⇒ S ′j + y and S ′j
τ

=⇒ S ′i, then S ′i
τ

=⇒ S ′i + y.

The algorithm terminates when a full cycle passes with no change to the table.

At that time, if S ′i
r

=⇒ is known for every minimal S ′i, the algorithm states

that the permissive condition is true; otherwise, the algorithm states that the

permissive condition is false.

Theorem 2.5.2. When the number of reactants in a formal reaction k is con-

stant, whether an interpretation is a bisimulation can be checked in polynomial

time.

Proof. We prove that i) if the graphsearch algorithm returns true, then the

permissive condition is true; ii) if the permissive condition is true, then the

graphsearch algorithm will return true; and iii) the graphsearch algorithm al-

ways terminates in poly(nk) time.

To prove the first, the graphsearch algorithm is based on deductions from

“known” information. The initially known information is that each S ′i
τ

=⇒ S ′i,

which is trivially true (since
τ

=⇒ includes the sequence of 0 reactions). There

are five deduction rules: the rule that if S ′i
τ

=⇒ S ′i + Yi and S ′i +∞Yi r′−→ with

61

m(r′) = r then S ′i
r

=⇒, and the four listed rules for when S ′i +∞Yi τ−→ S ′j. Each

of the rules is a valid deduction, so any information deduced by the algorithm

will be true. In particular, the algorithm says the permissive condition is

true only when every minimal S ′i
r

=⇒, which by Lemma 2.5.1 implies that the

permissive condition is in fact true.

To prove the second, we show that if the permissive condition is true but at a

given cycle evaluating the formal reaction r the graphsearch algorithm does not

yet know that every minimal S ′i
r

=⇒, then there is at least one additional fact

that it can learn this cycle. The proof is similar, but not identical, to the proof

of Lemma 2.5.3. At any given cycle, for each minimal state S ′i let Yi be the set

of all null species such that S ′i
τ

=⇒ S ′i +Yi is known. If the permissive condition

is true, then the permissive condition is true in a modified CRN which for each

S ′i adds the (trivial under the given interpretation) reaction S ′i → S ′i + Yi. For

each minimal S ′i, there is a path in the modified CRN by which S ′i
r

=⇒ which

is “shortest” in the sense of having the fewest reactions that are not any of

the added reactions S ′i → S ′i +Yi; consider for each of those shortest paths the

first reaction that is not one of the added reactions. Note that each of those

reactions is a reaction, either trivial or implementing r, that the graphsearch

algorithm will detect as possible and consider.

For each S ′i, construct a trajectory which starts at S ′i, takes the reaction S ′i →
S ′i +Yi as many times as necessary to take the first non-added reaction on the

shortest path by which S ′i
r

=⇒, and takes that reaction to reach some S ′j; takes

S ′j → S ′j +Yj as many times as possible to take the first non-added reaction on

the shortest path by which S ′j
r

=⇒, and takes that reaction; then continues this

process. Each such path must eventually, in a number of reactions less than

the number of minimal states N ≤ nk, either implement r or repeat a minimal

state. If any path eventually implements r, and for any minimal state S ′k on

that path it is not known that S ′k
r

=⇒, then the last such S ′k has the reaction

S ′k
τ−→ S ′l available and S ′l

r
=⇒ known, so on this cycle the algorithm will deduce

that S ′k
r

=⇒.

The last possibility is that at least one path must eventually repeat a minimal

state, since if all paths implement r and all states on such paths are known

to implement r, then all minimal states are known to implement r. For any

such loop, that loop will be the entire trajectory for all states on that loop. If

some state in that loop is not known to reach some other state in that loop,

62

then at least one such fact will be deduced this cycle: there will be some S ′i
where a reaction S ′i

τ−→ S ′j is possible and S ′j
τ

=⇒ S ′k is known but S ′i
τ

=⇒ S ′k is

not known; that fact will be deduced this cycle. If not, then there must be

some y with m(y) = ∅ that is produced along that loop and some S ′i in that

loop for which S ′i
τ

=⇒ S ′i + y is not known; otherwise one of the reactions in the

loop is not the first reaction along the shortest path by which the appropriate

S ′j
r

=⇒. If that S ′i is one such that S ′i
τ−→ S ′j + y, then S ′j

τ
=⇒ S ′i is known (by

assumption that all such facts in this loop are known), and S ′i
τ

=⇒ S ′i + y will

be deduced this cycle. Otherwise, there will be an S ′i such that S ′i
τ−→ S ′j is

possible, S ′j
τ

=⇒ S ′j + y is known but S ′i
τ

=⇒ S ′i + y is not known, and that fact

will be deduced this cycle. This covers all the cases, and proves that if the

permissive condition is true but not yet proven, then at least one fact will be

deduced each cycle until the permissive condition is proven.

To complete the proof, we note that the number of facts is bounded above by

(z+1)nk+n2k, where z ≤ n is the number of null species, and thus is poly(nk).

Thus, if the permissive condition is true, one of a finite number of facts will

be learned each cycle until the permissive condition is proven. Furthermore,

the algorithm will terminate one way or another in at most poly(nk) cycles,

thus poly(nk) time.

Although polynomial space is inefficient, in the general case we cannot do

better. Two results in particular suggest a connection between CRNs and

space-bounded Turing machines, the acceptance problem of which is known to

be PSPACE-complete [32]; we use this connection to prove that verifying CRN

bisimulation is PSPACE-complete. Jones et al. gave a construction to, given

a space-bounded Turing machine with m states and tape size n, construct

a Petri net (equivalently, a CRN) that directly simulates it, with poly(n,m)

species and reactions [41]. Thachuk and Condon extended this connection

to reversible CRNs, constructing a CRN that solves the known PSPACE-

complete problem QSAT, proving a number of questions about CRNs and

DNA strand displacement systems to be PSPACE-complete [69]. In the case

of CRN bisimulation, if we have (on the order of) nk minimal states, it is

possible to embed a PSPACE-complete computation in the trivial reactions

between those nk states. Given any space-bounded Turing machine and input,

we construct a formal and implementation CRN with interpretation, where the

implementation CRN contains the construction of Jones et al. in the trivial

63

...
(q3, 0, q4, 1, R)

(q3, 1, q5, 0, R)

(q4, 0, q3, 0, R)

(q4, 1, q5, 0, L)

q5: HALT

...
q3
i

+ 0i → q4
i+1

+ 1i

q3
i

+ 1i → q5
i+1

+ 0i

q4
i

+ 0i → q3
i+1

+ 0i

q4
i

+ 1i → q5
i−1

+ 0i
q5 + 11 + 02 + 03 + 04 + 05 + 06 → h

input:
011010

q
j
i
→ q6

6

q6
6

+ 06 → q6
5

+ 06

q6
6

+ 16 → q6
5

+ 06

q6
5

+ 05 → q6
4

+ 15

q6
5

+ 15 → q6
4

+ 15...q3

q4

0 0 0 1 1 0

0 1 0 1 1 0

q3
2

Q

02

A2

q4
3

Q

12

A2

1
Figure 2.12: An implementation CRN with a correct interpretation if and only
if the corresponding space-bounded Turing machine accepts. The formal CRN
has one species Q corresponding to the Turing machine head and one species Ai
for each ith tape square; if all are present, they can react. The implementation
CRN simulates the space-bounded Turing machine, with Turing machine head
state species qji all interpreted as Q and tape square species 0i and 1i both
interpreted as Ai. All reactions involved in the simulation are thus trivial.
If the simulation accepts, the formal reaction can be implemented. At any
time the implementation CRN can use q6i to “reset” to the start state on the
given input, thus being able to “correctly” simulate the computation from an
arbitrary initial implementation state. Thus this interpretation satisfies the
permissive condition if and only if the Turing machine accepts.

reactions, plus some additional reactions specific to our case. Our construction

is illustrated in Figure 2.12. There is one formal reaction that can only occur

in an implementation state corresponding to the accept state of the Turing

machine; thus, the state corresponding to the start state can implement that

reaction if and only if the Turing machine does in fact accept. The additional

reactions ensure that every minimal implementation state can implement the

formal reaction if the “start state” can, making the interpretation a CRN

bisimulation if and only if the space-bounded Turing machine accepts.

Theorem 2.5.3. Verifying CRN bisimulation in the general case is PSPACE-

complete.

Proof. We are given a Turing machine with m states with tape alphabet {0, 1},
and an input x of length n. We assume the states are numbered such that q0

is the start state and qm−1 is the halt state. We assume the Turing machine

always halts while never using more space than the length of its input, and

when it halts, it does so in state qm−1 reading the first square of its tape, with

64

all squares but the first reading 0, and the first square reading 1 to indicate

an accepting state and 0 to indicate rejecting. Given that, our formal CRN

has n + 2 species and 1 reaction, Q + A1 + · · · + An → H. We construct

an implementation CRN with species 0i and 1i for each spot on the tape

1 ≤ i ≤ n, qji for each tape spot 1 ≤ i ≤ n and state of the Turing machine

0 ≤ j ≤ m− 1, additional species for a “reset” state qmi for 1 ≤ i ≤ n, and a

halting species h. The implementation CRN contains reactions to simulate the

Turing machine, reactions to reset the Turing machine to the start state q0 on

input x, and reactions to check whether a halting state is accepting or rejecting

that can implement the formal reaction if and only if it is an accepting state.

To simulate the Turing machine, for each transition of the form, in state j

reading symbol σ ∈ {0, 1}, write symbol σ′ ∈ {0, 1}, transition to state j′,

and move (right,left) we have n reactions of the form qji + σi → qj
′
i±1 + σ′i for

1 ≤ i ≤ n, where the product is qj
′
i+1 if the move is right and qj

′
i−1 if the move is

left. (If the move is right, the reaction for qjn is instead qjn+σn → qj
′
n +σ′n, and

similarly if the move is left the reaction for qj1 is instead qj1 + σ1 → qj
′

1 + σ′1.)

To reset, we have a reaction qji → qmn for every qji including j = m and qm−11 but

not including any qm−1i for i ≥ 2. We then have reactions qmi + σi → qmi−1 + xi

for each 2 ≤ i ≤ n and qm1 + σ1 → q01 + x1, in each case for both σ = 0 and

σ = 1, where xi represents the species 0i if the ith character of the string x is

0 and 1i if the ith character is 1.

To check whether a halting state is an accepting state, we have a reaction

qm−11 + 1i
 qm−12 , reactions qm−1i + 0i
 qm−1i+1 for 2 ≤ i ≤ n − 1, and a

reaction qm−1n + 0n → h. Note that by assumption qm−1 is the halting state

of the given Turing machine and thus has no transitions; so other than these

reactions the only implementation reaction with any qm−1i as a reactant is the

reaction qm−11 → qmn .

We want to check the validity of the interpretation m where m(qji) = Q for

j 6= m − 1, m(qm−1i) = Q +
∑i−1

k=1Ak (so for example m(qm−11) = Q and

m(qm−13) = Q + A1 + A2), m(0i) = m(1i) = Ai, and m(h) = H. However, we

will show in Theorem 2.5.5 that for any CRN constructed this way based on

a Turing machine, the only possible valid interpretations are this one up to

a permutation of formal species, and either this interpretation is valid or no

valid interpretation exists.

65

We use the three conditions formulation of validity. The atomic condition is al-

ways satisfied bym(q01) = Q, m(0i) = Ai, andm(h) = H, as well as many other

ways. The delimiting condition is satisfied since under this interpretation, ev-

ery reaction mentioned above is trivial except for the reaction qm−1n + 0n → h,

which is interpreted as the one formal reaction Q + A1 + · · · + An → H. It

only remains to check the permissive condition, and we will show that the

permissive condition is true if and only if the given Turing machine accepts

the given input x.

The set of minimal states for the one formal reaction r = Q+A1+· · ·+An → H

is exactly the set of states containing either one copy of one qji for j 6= m− 1

and one copy of either 0i or 1i for each 1 ≤ i ≤ n, or one copy of some qm−1i

and one copy of either 0k or 1k for each i ≤ k ≤ n. Appealing to Lemma 2.5.1,

the permissive condition is true if and only if each of those minimal states S ′

has S ′
r

=⇒. We are particularly interested in the state S ′0 containing q01 and the

species xi for each 1 ≤ i ≤ n, where xi represents either 0i or 1i depending on

the ith character of x, which is minimal. Any minimal state of the first type

with a qji for j 6= m− 1 can reach S ′0 by the reaction qji → qmn followed by the

reset reactions qmi + σi → qmi−1 + xi and qm1 + σ1 → q01 + x1 in the appropriate

order. Any minimal state of the second type with a qm−1i can reach S ′0 by the

reverse reactions qm−1i+1 → qm−1i + 0i and qm−12 → qm−11 + 11, as appropriate, of

the reactions to check the halting state, followed by qm−11 → qmn , followed by

the rest of the reset reactions as appropriate. Since every minimal state can

reach S ′0 via trivial reactions, the permissive condition is true if and only if

S ′0
r

=⇒.

Note that any state of the implementation CRN with exactly one copy of

one qji for j < m − 1 and for each 1 ≤ i ≤ n exactly one of either 0i or 1i

corresponds to the Turing machine state where the tape contents of square i

is whichever of 0i or 1i is present, and the Turing machine is in state j reading

square i where qji is the q species present. S ′0 is one such state. Note also that

in any such state, the only possible reactions are to either faithfully simulate

the next transition of the Turing machine, leading to either another such state

or a halting state (i.e. a state which would be a simulating state except that

the q species present is qm−11), or to start a reset. In a “resetting” state, which

is a state where any qmi and for each 1 ≤ i ≤ n exactly one of either 0i or

1i is present, the only possible reaction is to continue the reset, leading to

66

either another resetting state or eventually to a state that represents a Turing

machine state.

If the Turing machine accepts x, then S ′0 can faithfully simulate the Turing

machine until it halts, which since the input was x, will be the accepting state

qm−11 + 11 + 02 + · · · + 0n. From this state, the reactions to check whether

a halting state is an accepting state are possible in order, eventually leading

to the reaction qm−1n + 0n → h, which is interpreted as r; thus S ′0
r

=⇒ and

the permissive condition is true. Conversely, if the Turing machine rejects x,

then from S ′0 the only possible trajectories are those that faithfully simulate

the Turing machine with occasional resets. Some of those trajectories may

reach a halting state, but since the Turing machine rejects x, that state will

be qm−11 + 01 + 02 + · · · + 0n, and the reaction qm−11 + 11 → qm−12 will not be

possible. None of these trajectories ever reach the reaction qm−1n + 0n → h,

thus S ′0 6
r

=⇒ and the permissive condition is false.

Finding an Interpretation

We now consider the problem of, given a formal and implementation CRN,

can we find an interpretation that is a bisimulation or correctly assert that

none exists? It is natural to consider performing an exhaustive depth-first

search through the space of possible interpretations, testing each one to see if it

satisfies the atomic, delimiting, and permissive conditions using the algorithms

described above—thus either finding an interpretation or asserting that none

exists. There are two major stumbling blocks to this approach. First, the space

of possible interpretations is infinite, and thus we need some way to guarantee

that if a valid interpretation exists, there must be one among a defined finite

subset of interpretations that we can search. Second, to be useful in practice,

the depth-first search must prune aggressively to eliminate fruitless branches.

The reactionsearch algorithm, presented below, addresses both of these chal-

lenges. Rather than directly exploring the space of interpretations, the reac-

tionsearch algorithm organizes the depth-first search according to properties

that the interpretation must have, effectively proceeding in five stages. First,

as a precondition for the permissive condition, the algorithm ensures that

every formal reaction has an implementation reaction that interprets to it;

second, to satisfy the delimiting condition, the algorithm ensures that every

remaining implementation reaction is interpreted as some formal reaction or is

67

trivial; third, to satisfy the atomic condition, the algorithm ensures that every

formal species has some implementation species that interprets to it; fourth,

any unassigned implementation species are provided an interpretation that

respects the assignment of implementation reactions as formal reactions or

trivial reactions; and fifth, the permissive condition is tested on any such com-

pleted interpretation that is thus found. We will first describe the algorithm

itself, and then discuss the lemmas that guarantee that a valid interpretation

will be found if one exists.

Often, implementation CRNs are designed with specific interpretations in mind

for some species, so it is reasonable to provide such information as an addi-

tional constraint on the search. Further, such a formulation enables a natural

recursive definition for the algorithm (Algorithm 2.3). Thus, the algorithm

takes as input a formal CRN (S,R), implementation CRN (S ′,R′), and a

partial interpretation m which, for some (possibly empty) subset of S ′, speci-

fies each m(x) ∈ NS . The algorithm first constructs a table of, for each formal

reaction r ∈ R or τ and for each implementation reaction r′ ∈ R′, whether

r′ can be interpreted as r (in some completion of the partial interpretation

m, regardless of what that completion will do to the other reactions). The

algorithm then enumerates interpretations by iterating, in an order described

below, through all possible assignments of each r′ to be interpreted as some r

or τ , and enumerating completed interpretations which match that.

After constructing the table, if there is some r ∈ R with no r′ that is inter-

preted as r (i.e., all species x involved in r′ have m(x) specified and m(r′) = r),

the algorithm chooses such an r with the smallest number of r′ that can be

interpreted as that r. (If there is an r with no r′ that can be interpreted as

r, then there is no completion of the partial interpretation that can satisfy

the atomic and permissive conditions, so the algorithm returns that fact.) For

each r′ that can be interpreted as that r, the algorithm enumerates all possible

interpretations of each species not yet interpreted by m and involved in r′ that

make m(r′) = r. For each enumerated set of interpretations, the algorithm

calls itself recursively to enumerate completions of the partial interpretation

m with those new interpretations added. If a valid completion is found, the

algorithm returns it; otherwise, the algorithm continues with the next partial

interpretation or next r′.

If after constructing the table every r ∈ R has some r′ that is interpreted as

68

def reactionsearch(CRN formal, CRN impl,

partial interpretation m):

return complete(formal, impl, m, { })

def complete(CRN formal, CRN impl, partial interpretation m,

assigned reactions k):

table maybe(r, r’) = True if m does not rule out m(r’) = r ...

for reaction r in formal or trivial, reaction r’ in impl

if any r has no r’ or any r’ has no r where maybe(r,r’):

return False

let r in formal where no r’ in impl where m(r’) = r ...

and which minimizes |{r’ in impl where maybe(r,r’)}|

if such an r exists: for each r’ where maybe(r,r’):

for each assignment of m’(x) where x in r’ ...

and m(x) undefined such that (m U m’)(r’) = r:

out = complete(formal, impl, m U m’, k U {r’})

if out is an interpretation: return out

return False # if no r’ is found

if no such r exists:

if (m(r’) is known or maybe(trivial, r’)) for all r’:

for each assignment of, for each formal species A with no

implementation species x with m(x) = A,

one unassigned x to have m’(x) = A:

out = solve_diophantine_equations(impl, m U m’)

if out is an interpretation and permissive_check(out):

return out

if k includes all implementation reactions: return False

let r’ in impl where r’ is not in k ...

and which minimizes |{r in formal where maybe(r,r’)}|

for each r in formal or trivial where maybe(r,r’):

for each assignment of m’(x) where x in r’ ...

and m(x) undefined such that (m U m’)(r’) = r:

out = complete(formal, impl, m U m’, k U {r’})

if out is an interpretation: return out

return False # if no r is found

Algorithm 2.3: The reactionsearch algorithm to complete a partial interpreta-
tion or assert that no completion exists, in polynomial space.

69

r, the algorithm then finds the r′ that has the fewest r ∈ R such that r′ can

be interpreted as r, and which hasn’t yet been used for branching. (Again,

if there is an r′ with no r ∈ R or τ that r′ can be interpreted as, then no

completion of the partial interpretation can satisfy the delimiting condition,

and the algorithm returns that.) For each such r ∈ R, the algorithm as above

enumerates all possible interpretations of each uninterpreted species involved

in r′ that make m(r′) = r and calls this algorithm recursively for each such

partial interpretation. If r′ can be interpreted as τ , then an additional recursive

branch is explored wherein m(r′) = τ is enforced.

If all r′ ∈ R′ which involve uninterpreted species can be interpreted as τ , then

on one branch the algorithm will consider the possibility that all of them are

interpreted as τ , which as described above does not involve specifying any

interpretations for the remaining uninterpreted species. Since the trivial re-

action solver—which as described below will complete the interpretation for

the uninterpreted species, if possible—works more efficiently with a partial

interpretation which satisfies the atomic condition, the algorithm first ensures

that that is the case. For each formal species A for which there is no imple-

mentation species xA where the partial interpretation specifies m(xA) = A,

the algorithm lists all possible xA for which, if m(xA) = A was added to the

partial interpretation, all remaining reactions would still be able to be trivial.

The algorithm then iterates over all combinations of choices of such xA for

each unimplemented formal species A, and runs the trivial reaction solver for

each combination.

To find a completed interpretation in which all remaining r′ are interpreted

as τ , the trivial reaction solver sets up and solves a system of linear equations

in variables m(x;A) for each uninterpreted implementation species x and for-

mal species A, where m(x;A) is the count of A in m(x). For each pair of an

implementation reaction r′ and a formal species A the algorithm derives one

equation regarding various m(x;A) by setting the sum of counts m(x;A) in

the (interpreted or uninterpreted) reactants of r′ minus that of the products

of r′ to be 0. For example, if the implementation reaction x1 + x2 → x3 + x4

should be interpreted as τ , m(x1) = A + C and m(x3) = B + C are spec-

ified while m(x2) and m(x4) are unspecified, then the algorithm will derive

the equations 1 + m(x2;A) − m(x4;A) = 0, m(x2;B) − 1 − m(x4;B) = 0,

m(x2;C) − m(x4;C) = 0, and m(x2;D) − m(x4;D) = 0 for each other for-

70

mal species D. Combining such equations for all remaining implementation

reactions that are to be interpreted as trivial, we obtain a system of linear

Diophantine equations where the variables specify the interpretations of all

remaining uninterpreted species. The trivial reaction solver then runs an algo-

rithm described by Contejean and Devie [21] that will find a minimal solution

to a system of linear Diophantine equations, if any solution exists; this so-

lution is then used as the interpretation of each remaining implementation

species. (A minimal solution for a system of linear Diophantine equations is

one such that no other solution has every variable being less than or equal to

the given solution; thus there may be many minimal solutions.) We will prove

in Lemma 2.5.4 that if there is any solution to these equations that satisfies

the permissive condition, then the minimal solution returned by this algorithm

does. If no solution to the equations exists, then no completed interpretation

where all remaining m(r′) = τ is possible, and the algorithm returns that.

Once the reactionsearch algorithm has a completed interpretation, which may

be passed in initially, passed in by a recursive call, or found by the trivial

reaction solver, it then runs either the loopsearch algorithm or the graphsearch

algorithm as described previously, or any other algorithm yet to be discov-

ered, in order to check the permissive condition. If the permissive condition

is satisfied, then the given interpretation is valid and the reactionsearch algo-

rithm returns that. If not, the algorithm passes that information to previous

recursive calls in order to check further possible interpretations. If any level of

recursion in the algorithm has checked all possible completed interpretations

without finding a valid one, that level returns that no completion exists. An

example of the depth-first search tree explored by the reactionsearch algorithm

for a simple pair of CRNs is shown in Figure 2.13.

This completes the description of the reactionsearch algorithm. Now we turn to

its correctness and its complexity. For correctness, the exhaustive depth-first

search aspect of the algorithm is self-evident; the outstanding issue is whether

the trivial reaction solver is guaranteed to find a solution if one exists.

Lemma 2.5.4. Given a formal CRN (S,R) and implementation CRN (S ′,R′),

let m0 : S ′′ → NS be a partial interpretation on some S ′′ (S ′ which satis-

fies the atomic condition. If there exists any completion m1 : S ′ → NS which

agrees with m0 on S ′′, is a bisimulation, and is such that every implementation

reaction r′ involving at least one species not in S ′′ has m1(r
′) = τ , then any

71

formal:

r1 = A→ B + C

r2 = A+B → A

implementation:

r′1 = x→ i+ j

r′2 = i+ x→ k

r′3 = k → i+ x+ v

r′4 = k → x+ wm = {}

r1 ≡ r′1 r1 ≡ r′2
unexplored

r1 ≡ r′3
unexplored

r1 ≡ r′4
unexplored

x ≡ A
i ≡ B + C

j ≡ ∅

fail
r′2 ≡ A+B + C → k

x ≡ A
i ≡ ∅
j ≡ B + C

x ≡ A
i ≡ C
j ≡ B

fail
r′2 ≡ C +A→ k

x ≡ A
i ≡ B
j ≡ C

r2 ≡ r′3 r2 ≡ r′4 r2 ≡ r′2 r2 ≡ r′4

k ≡ A+B

v ≡ ∅

fail
r′2 ≡ A→ A+B

k ≡ A+B

w ≡ ∅

fail
r′2 ≡ A→ A+B

k ≡ A

fail
r′3 ≡ A→ A+B + w

k ≡ A+B

w ≡ ∅

1−m(v;A)− 1 = 0

1−m(v;B)− 1 = 0

0−m(v;C) = 0

success!
permissive test passes

interpretation r1 r2 τ

r′1 = A→ B + C 3 7 7

r′2 = A→ k ? 7 ?
r′3 = k → A+ v 7 ? ?
r′4 = k → A+ w 7 ? ?

interpretation r1 r2 τ

r′1 = A→ B + C 3 7 7

r′2 = A+B → k 7 ? ?
r′3 = k → A+B + v 7 7 ?
r′4 = k → A+ w 7 ? ?

interpretation r1 r2 τ

r′1 = A→ B + C 3 7 7

r′2 = A+B → A+B 7 7 3

r′3 = A+B → A+B + v 7 7 ?
r′4 = A+B → A 7 3 7

Figure 2.13: A pictorial illustration of the search tree explored by the reac-
tionsearch algorithm for the given pair of formal and implementation CRNs.
Double-lined boxes indicate the new constraints on the partial interpretation
at each node of the tree, where x ≡ A is shorthand for m(x) = A. Rounded
boxes indicate the new constraints on the interpretation of reactions, where
r ≡ r′ is shorthand for requiring that m(r′) = r. The dashed box indicates
the Diophantine equation set up by the trivial reaction solver upon the first
execution where it can successfully find a solution. The green dotted boxes
illustrate the table of which implementation reactions may be interpreted as
which formal reactions, for the given node in the tree.

minimal solution of the system of equations set up by the trivial reaction solver

produces a completed interpretation m which is a bisimulation.

Proof. It is clear that, given m0 as described, any such m1 will correspond to

a solution of the equations set up by the trivial reaction solver on m0. It is

also clear that any m1 produced by a solution to the trivial reaction solver

equations will satisfy the atomic and delimiting conditions if and only if m0

does (since m0 is assumed to satisfy the atomic condition), so we assume

that m0 satisfies the delimiting condition and are concerned only with the

permissive condition. We first prove that if some solution to the equations

72

produces an m1 that satisfies the permissive condition (thus implying that a

solution exists), then there is a minimal solution to the equations that produces

an interpretation m that also satisfies the permissive condition. For any formal

reaction r = R → P and implementation state S ′ with m(S ′) ≥ R it is also

true that m1(S
′) ≥ m(S ′) ≥ R, because either m1 is minimal or there is

a minimal solution m in which each value is the same or smaller than in

m1. Since m1 satisfies the permissive condition, there is some implementation

trajectory which, under m1, is interpreted as S ′
r

=⇒. Since m1 and m agree

in their interpretation of every implementation reaction, that trajectory under

m is also interpreted as S ′
r

=⇒; since r and S ′ were arbitrary, m satisfies the

permissive condition. Since every solution to the trivial reaction equations

is ≥ some minimal solution, this proves that if there is any solution that

produces m1 that satisfies the permissive condition, some minimal solution

(in particular, the one ≤ it) produces m that also satisfies the permissive

condition.

Having proven that at least one minimal solution produces a valid interpreta-

tion m, we show that every minimal solution does. In fact, the statement of

the lemma is somewhat misleading: we show that under the above assump-

tions, for each formal species A that appears as a reactant in at least one

formal reaction, the minimal solution to the equations for the counts of A is

unique. For a formal species that never appears as a reactant, its counts in

the interpretation of an implementation species cannot influence the permis-

sive condition (given a fixed interpretation of every implementation reaction

r′, which is true by assumption), thus if some solution satisfies the permissive

condition then every solution does. Now given m which satisfies the permis-

sive condition, consider a complete interpretation m2 generated by a distinct

minimal solution which differs in at least one formal species that appears as a

reactant. Then there is some x ∈ S ′ where m(x)(A) > m2(x(A)) and A ∈ R
for some formal reaction r = R → P (where m(x)(A) is the count of A in

m(x)), and in particular choose x to minimize m(x)(A) for the given A. Let

R1 = R\m(x) be the formal species in R not in m(x), and let R′1 be the

implementation state obtained by, for each formal species B in R1, taking

(the appropriate count of) the species xB with m(xB) = m2(xB) = B, which

exists since the partial interpretation satisfies the atomic condition. Then

for R′ = R′1 + x, we have m(R′) ≥ R, so by the permissive condition there

is a sequence of reactions which under m are interpreted as R′
r

=⇒. Let r′

73

be the last reaction in that sequence, which means m(r′) = r, which since

all unspecified reactions must be trivial means that r′ involves only species

in S ′′ and m2(r
′) = r also. By removing r′, we get a sequence of reactions

R′
τ

=⇒ Y ′ + U ′, where Y ′ ⊂ S ′′ and U ′ ∩ S ′′ = ∅. Then first of all, Y ′ contains

all the reactants of r′, and second, m and m2 agree on every species in Y ′.

Since that trajectory consists of only trivial reactions under both interpreta-

tions, we must have m(Y ′ + U ′) = m(R′) and m2(Y
′ + U ′) = m2(R

′); that

is, m(Y ′) +m(U ′) = m(R′1) +m(x) and m2(Y
′) +m2(U

′) = m2(R
′
1) +m2(x).

In particular, we have m(U ′)(A) − m2(U
′)(A) = m(x)(A) − m2(x)(A). If

m(U ′)(A) = 0, then this implies m2(U
′)(A) < 0, an obvious contradiction. If

m(U ′)(A) > 0, then there is some x′ ∈ U ′ such that m(x′)(A) > m2(x
′)(A).

But since m(Y ′)(A) = R(A) > m(R′)(A), this means m(x′)(A) ≤ m(U ′)(A) <

m(x)(A), which is also a contradiction since we assumed x was chosen to min-

imize m(x)(A) of species for which m(x)(A) > m2(x)(A). So either way, given

a partial interpretation which satisfies the atomic condition, if there is a com-

plete interpretation which satisfies the three conditions in which all remaining

reactions are trivial, then the trivial reaction solver will find one by searching

for the first minimal solution.

Theorem 2.5.4. Given a formal CRN (S,R), implementation CRN (S ′,R′),

and a partial interpretation which specifies m(x) for some (possibly empty) set

of various x ∈ S ′, whether a complete interpretation m : S ′ → NS exists that

respects the given partial interpretation and is a bisimulation can be decided in

polynomial space. In particular, if such an interpretation exists, then one exists

that is polynomial size in that of the two CRNs and the partial interpretation.

Proof. We prove that the reactionsearch algorithm described above outputs a

correct completion of the partial interpretation if one exists and returns false if

none exists; that it does so using only polynomial space; and that in particular

if a correct interpretation is output then the interpretation is polynomial size

in the input.

Most of the algorithm consists of, given a partial interpretation, trying out

some number of ways to specify the interpretation of some species not yet

specified, then calling the algorithm recursively on each of those more-specified

partial interpretations. We will show that, if a correct completed interpretation

exists, then at least one of those more-specified partial interpretations can be

74

completed to that interpretation. Since the number of unspecified species and

reactions decreases at each recursive call, the algorithm will eventually reach

that completed interpretation. In any correct interpretation, for each formal

reaction r, the atomic condition implies that there is an implementation state

that interprets to the reactants of that reaction, and the permissive condition

that that state must be able to eventually reach some r′ with m(r′) = r; in

particular, such an r′ must exist. So when the algorithm says, “if no r′ is known

to be interpreted as r, for each possible r′ enumerate all possible ways that

r′ can be interpreted as r,” then if a correct completed interpretation exists,

one of those possible ways must be part of it, provided that “enumerate all

possible ways” can be done in finite time and in particular in polynomial space.

Similarly, by the delimiting condition every r′ must have either m(r′) = r for

some r or m(r′) = τ , so when the algorithm considers all those possibilities,

one of them must be part of the correct completed interpretation if one exists.

On the branch where the algorithm has found all r′ with m(r′) 6= τ in the

correct interpretation, it will run the trivial reaction solver for all remaining

m(r′) = τ . At any given time the algorithm only needs to store a single partial

interpretation for each of at most |S ′| + |R′| layers of recursive calls (since

each one will specify the interpretation of at least one implementation species

or reaction), plus whatever information is needed to “enumerate all possible

interpretations” or run the trivial reaction solver or a permissive condition test,

all of which we will prove take polynomial space (with the permissive condition

tests already proven). So all we have left to prove is that enumerating “all

possible interpretations” of each uninterpreted species in some r′ such that

m(r′) = r for a specific r, or enumerating “all possible interpretations” for

achieving the atomic condition, can be done in finite time and polynomial

space, and that the trivial reaction solver works and takes polynomial space.

We first address enumerating all possible interpretations of each species in a

given r′ such that m(r′) = r for a given r. If r′ = R′ → P ′ and r = R → P ,

then m(r′) = r if and only if m(R′) = R and m(P ′) = P . In particular, if in a

partial interpretation r′ can be interpreted as r, then the interpreted part of

m(R′) must be ≤ R and similarly the interpreted part of m(P ′) must be ≤ P .

By taking the difference of R minus the partial interpretation of R′ and taking

all assignments of each formal species in that difference to some uninterpreted

species in R′, doing the same for P and P ′, and removing any assignments that

self-contradict, we can enumerate all possible partial interpretations where

75

m(r′) = r. To clarify, multiple copies of the same formal species in R or P

can be assigned to different implementation species, but different copies of

the same implementation species in R′ and/or P ′ must be assigned the exact

same multiset of formal species, otherwise the interpretation self-contradicts.

Since all assignments of at most k copies each of i objects to j boxes can

be enumerated in poly(i, j, log k) space, this process takes polynomial space.

Since the interpretation of any given species involved in r′ where m(r′) = r =

R→ P must be ≤ R or ≤ P , the partial interpretation throughout this entire

part of the algorithm is bounded by the size of the formal CRN (except for

larger interpretations provided in the initial partial interpretation), and is thus

polynomial size.

Lemma 2.5.4 proves that if at the point when the trivial reaction solver is

called a valid completion of the interpretation exists (where all remaining

reactions are trivial), then the trivial reaction solver will find one and it will

be a minimal solution of the given equations. It remains to show that the

trivial reaction solver runs in polynomial space and produces a polynomial-

size interpretation. The trivial reaction solver runs, for each formal species,

the stack-based algorithm given by Contejean and Devie [21] to solve a system

of linear Diophantine equations. Where q is the number of variables in the

system, i.e. the number of implementation species whose interpretation is not

yet specified, Contejean and Devie prove that their algorithm stores at most q

states at one time on the stack, each of which is a tuple of q integers. Pottier

has proven a bound on the size of those integers, namely, that their sum is at

most, in that notation, (1 + ||A||1,∞)r [54]. There r is bounded above by the

number of unknown implementation reactions and ||A||1,∞ is the maximum of

any individual equation (i.e., unknown implementation reaction) of the sum of

coefficients in that equation (coefficients of unknown implementation species in

the reaction, or of formal species in the known interpretations involved). The

“size” of the given interpretation is bounded by q times the logarithm of the

bound on an individual count, i.e. |m| ≤ qr(1+log ||A||1,∞), where log ||A||1,∞
itself is the “size” of some combination of the implementation CRN and the

current partial interpretation. The implementation CRN is of course part of

the input to the algorithm, and we have proven that the partial interpretation

up to this point is polynomial in the size of the input; thus the entire algorithm

runs in space polynomial in its input, and if a correct interpretation exists,

then one exists which is polynomial size.

76

In the general case, finding an interpretation turns out to be just as hard as

checking an interpretation; in fact, the same space-bounded Turing machine

reduction from Theorem 2.5.3 applies.

Theorem 2.5.5. Whether a bisimulation interpretation exists from a given

implementation CRN to a given formal CRN is PSPACE-complete.

Proof. Theorem 2.5.4, with Theorem 2.5.1 for checking the permissive condi-

tion, prove that a bisimulation can be found, or shown that none exists, in

polynomial space. To prove completeness, we use the same formal and imple-

mentation CRN used in Theorem 2.5.3 and shown in Figure 2.12. Consider an

arbitrary Turing machine with m states and tape alphabet {0, 1}, with start

state q0 and halt state qm−1 which on any input, halts without using more space

than the length of the input, with the tape reading 10n−1 if it accepts and 0n if

it rejects; also consider an input x with length n. Given that, the formal CRN

has n+ 2 species and 1 reaction, Q+A1 + · · ·+An → H. The implementation

CRN has species 0i and 1i for each tape spot i, qji for each tape spot i and

each Turing machine state j, additional qmi for a “reset” state m and each tape

spot, and a halt species h. As described in Theorem 2.5.3, the implementation

CRN can simulate the Turing machine with reactions qji + σi → qj
′
i±1 + σ′i;

can “reset” the computation to the start state reading string x with reac-

tions qji → qmn (for all qji except qm−1i for i > 1), qmi + σi → qmi−1 + xi, and

qm1 +σ1 → q10 +x1; and can check whether the computation has accepted with

reactions qm−11 +11
 qm−12 , qm−1i−1 +0i−1
 qm−1i for i > 2, and qm−1n +0n → h.

We showed in Theorem 2.5.3 that the interpretation m(0i) = m(1i) = Ai,

m(h) = H, m(qji) = Q for j 6= m− 1 and m(qm−1i) = Q +
∑

k<iAk is valid if

and only if the given Turing machine accepts the string x, thus proving that

checking an interpretation is PSPACE-complete. To prove that finding an in-

terpretation is PSPACE-complete, we show that aside from permutations of

the formal species in that interpretation (which are also correct if and only if

the Turing machine accepts x), no other interpretation can be correct; there-

fore, a correct interpretation exists if and only if the Turing machine accepts

x.

To prove that only one correct interpretation (up to permutations) is pos-

sible, we use the three conditions to eliminate possibilities until only that

one remains. First, by applying the delimiting condition to the reactions

77

qji → qmn , either all qji (except qm−1i for i > 1) must have the same interpre-

tation, or some subset of them (including qmn) must interpret to H and the

rest to Q+A1 + · · ·+An. We can quickly eliminate the cases m(qmn) = ∅ and

m(qmn) = H, and prove that m(0i) = m(1i) for every i.

If m(qmn) = ∅, then by the atomic condition there must be some state which

interprets to exactly Q + A1 + · · · + An by, for each of those formal species,

selecting one implementation species that interprets to exactly one of that

formal species and nothing else. For each qji that appears, apply the appro-

priate sequence of reactions from qm−1i → qm−1i−1 + 0i−1, q
m−1
2 → qm−11 + 11,

and qji → qmn until the only qji that appears is some number of copies of qmn .

All these reactions must be trivial (or the delimiting condition is violated):

each of the qm−1i -involving reactions are reversible while the formal reaction

is not, while if m(qmn) = ∅ then any qji → qmn reaction has product ∅ while

no formal reaction does; thus the resulting implementation state has the same

interpretation as the original, namely Q + A1 + · · · + An. Since m(qmn) = ∅,
by removing all copies of it we get another implementation state with inter-

pretation Q + A1 + · · · + An but no copies of qji for any i, j. Since every

implementation reaction has some qji as a reactant, no reactions can fire in

this state and the permissive condition is violated.

If m(qmn) = H then m(qmi) = m(q01) = H because the “reset” reactions qmi +

xi → qmi−1 + xi and qm1 + x1 → q01 + x1 (using the notation xi for 0i if the ith

symbol of the string x is 0 and 1i if it is 1, and x−i for 1i if the ith symbol of

x is 0 and 0i if it is 1; these are the reactions used in the event that the tape

already has the correct symbol) must be trivial (since no formal reaction has

an H as a reactant), and the only difference between the two sides is the two

q’s. Since if m(qmn) 6= H we know m(qmi) = m(q01) = m(qmn) anyway, the reset

reactions qmi +x−i → qmi−1+xi and qm1 +x−1 → q01+x1 prove that m(0i) = m(1i)

for all i: the reaction must be trivial since m(qmn) 6= ∅ and no formal reaction

is catalytic. By the atomic condition, there are n + 1 species Q,A1, . . . , An

which must each have some implementation species that interprets as one copy

of that species, and since m(0i) = m(1i) the 0i’s and 1i’s can account for at

most n of them. Call the remaining species X, and note that by assumption

either m(qm−11) = H or m(qm−11) = Q + A1 + · · · + An. If m(h) = X, then

the sequence of reactions qm−11 + 1i → qm−12 , qm−1i−1 + 0i−1 → qm−1i for 3 ≤
i ≤ n in order, then qm−1n + 0n → h is a sequence which takes a state whose

78

interpretation contains either an H or all of Q,A1, . . . , An to a state which

has no H and only one of Q,A1, . . . , An; this is impossible in the formal CRN,

thus at least one implementation reaction on that pathway must be nontrivial

and not a formal reaction. The only remaining implementation species are

the qji ’s, and we have already shown that if m(qmn) = H then m(qji) for every

j 6= m is either H or Q + A1 + · · · + An, and cannot be just X. That leaves

only some qm−1i for i ≥ 2, but since the reversible reactions must be trivial,

m(qm−1i) = m(qm−11) +
∑

k<im(0k), which must contain either an H or all

of Q + A1 + · · · + An, and cannot be just X. Thus it is impossible to have

m(qmn) = H, and we must have m(qji) = m(qmn) whenever j 6= m− 1.

So far we know that m(0i) = m(1i) for all i, m(qmn) is neither ∅ nor H,

m(qji) = m(qmn) for j 6= m − 1, and since the reversible reactions must be

trivial m(qm−1i) = m(qmn) +
∑

k<im(0i). In order to satisfy the atomic con-

dition for n + 2 formal species, we need n + 2 implementation species with

distinct interpretations. Regardless of the interpretations of any other species,

m(qm−1i) ≥ m(qmn) so no qm−1i can be interpret as a single formal species other

than the one (if any) that qmn is interpreted as, so all the qji ’s can satisfy the

atomic condition for at most one formal species. Each pair of 0i and 1i must

have the same interpretation, so all the 0i’s and 1i’s can satisfy at most n

species, and h can satisfy an additional one, but no other implementation

species remain. So since we have n+ 2 “categories” of implementation species

that can possibly be interpreted as a single formal species and n + 2 formal

species, each such group must be interpreted as a distinct formal species. Given

that, the reaction qm−1n + 0n → h cannot be trivial, so it must be interpreted

as Q + A1 + · · · + An → H; in particular, we must have m(h) = H. The

remaining constraints say that each 0i and qmn is interpreted as a distinct one

of Q or some Ai, that m(1i) = m(0i), that m(qji) = m(qmn) for j 6= m− 1, and

that m(qm−1i) = m(qmn) +
∑

k<im(0i); this is exactly the interpretation given

in Theorem 2.5.3, up to a permutation of the formal species Q and the Ai’s.

Any such interpretation will satisfy the atomic and delimiting conditions, and

will satisfy the permissive condition if and only if the given Turing machine

accepts the string x, thus finding a correct interpretation is as hard as decid-

ing whether a linear bounded Turing machine accepts a given string, which is

PSPACE-complete.

When the number of formal reactants is bounded by a constant, we showed

79

that whether an interpretation is valid can be checked in polynomial time.

Then finding an interpretation is a natural NP problem; we show that it is in

fact NP-complete, with a reduction from 3-SAT. An example of this reduction

is shown in Figure 2.14.

Theorem 2.5.6. When the number of reactants in a formal reaction k is

bounded by a constant k ≥ 1, whether a bisimulation interpretation exists is

NP-complete.

Proof. If a valid interpretation exists, Theorem 2.5.4 guarantees that we can

find a valid polynomial-size interpretation which can be checked in polynomial

time by Theorem 2.5.2.

To prove NP-completeness, given an arbitrary 3-SAT formula we construct a

formal and implementation CRN such that a valid interpretation exists if and

only if the formula is satisfiable. Our formal CRN has two species C and T and

three reactions C → T , C → 2T , and C → 3T . Our implementation CRN has

two species sC and sT plus for each variable xi in the 3-SAT formula two species

xti and xfi . We encode each clause of our 3-SAT formula e.g. (x1 ∨ ¬x2 ∨ x3)
as an implementation reaction e.g. sC → xt1 + xf2 + xt3. Formally, we say that

a clause is (l1 ∨ l2 ∨ l3) where each lj is some xi or ¬xi, and it is encoded in

the implementation reaction sC → v1 + v2 + v3, where vj is xti if lj is xi, or xfi
if lj is ¬xi. We also add the implementation reactions sC → sT , sC → 2sT ,

and sC → 3sT , and for each xi the reaction sT
 xti + xfi which we will

show restrict interpretations that satisfy the three conditions to correspond to

satisfying assignments of the 3-SAT formula.

We again observe that none of the formal reactions are reversible, so in or-

der to satisfy the delimiting condition the reactions sT
 xti + xfi must be

trivial. Note that all other implementation reactions have exactly sC as their

reactants. The combination of atomic and permissive conditions implies that

each formal reaction must have at least one implementation reaction that is

interpreted as it; since all three formal reactions have reactants C and all re-

maining implementation reactions have reactants sC , any valid interpretation

must have m(sC) = C. Now the reactions sC → sT and sC → 2sT cannot

both be trivial, since that would imply m(sT) = 2m(sT) and thus m(sT) = ∅,
which from the reactions sT
 xti + xfi implies m(xti) = m(xfi) = ∅, leaving

not enough species to satisfy the atomic condition. Therefore at least one of

80

3-SAT problem Formal CRN Implementation CRN
C → T sC → sT

C → 2T sC → 2sT

C → 3T sC → 3sT

(x1 ∨ ¬x2 ∨ x3) (C → 2T) sC → xt1 + xf2 + xt3

∧(¬x1 ∨ x4 ∨ ¬x2) (C → 2T) sC → xf1 + xt4 + xf2

∧(x2 ∨ ¬x3 ∨ ¬x4) (C → T) sC → xt2 + xf3 + xf4

(T
 T) sT
 xt1 + xf1

(T
 T) sT
 xt2 + xf2

(T
 T) sT
 xt3 + xf3

(T
 T) sT
 xt4 + xf4

satisfying assignment valid interpretation

x1 = true m(xt1) = T, m(xf1) = ∅
x2 = false m(xt2) = ∅, m(xf2) = T

x3 = false m(xt3) = ∅, m(xf3) = T

x4 = true m(xt4) = T, m(xf4) = ∅
m(sC) = C, m(sT) = T

Figure 2.14: Example formal and implementation CRN corresponding to an in-
stance of the 3-SAT problem. Top left: example 3-SAT instance. Top middle:
the formal CRN. Eventual interpretations of the corresponding implementa-
tion reactions are given in parentheses. Top right: the implementation CRN
corresponding to this 3-SAT instance. Each 3-SAT clause has a corresponding
implementation reaction, with auxiliary implementation reactions added. Bot-
tom left: a satisfying assignment for the 3-SAT formula. Bottom right: a valid
CRN bisimulation interpretation for the two CRNs, which the reactionsearch
algorithm would find. Note the correspondence between satisfying assignment
and interpretation: if xi is true then m(xti) = T and m(xfi) = ∅, otherwise
m(xti) = ∅ and m(xfi) = T . Such an interpretation is a CRN bisimulation if
and only if the corresponding assignment satisfies the 3-SAT formula; if no
satisfying assignment exists, then no valid interpretation exists.

81

those two reactions must be formal; the only way to satisfy that is m(sT) = T ,

making those two reactions and sC → 3sT interpreted as the three formal

reactions respectively, and also satisfying the atomic condition.

Given that m(sC) = C and m(sT) = T , since the reversible reactions are all

trivial we have for each i, m(xti) + m(xfi) = T . In other words, exactly one

of m(xti) or m(xfi) is T , and the other is ∅. Such an interpretation satisfies

the atomic condition with m(sC) = C and m(sT) = T , and satisfies the

permissive condition since any state whose interpretation has a C has an sC ,

and can do the reactions sC → sT , sC → 2sT , or sC → 3sT for whichever

formal reaction is desired; further, those three reactions and the reversible

sT
 xti + xfi satisfy the delimiting conditions, leaving only the reactions for

each clause of the 3-SAT formula. These interpretations have an obvious one-

to-one correspondence with assignments to the variables in the 3-SAT formula:

xi is assigned to true if m(xti) = T , or to false if m(xfi) = T . Each reaction

sC → v1 + v2 + v3, corresponding to a clause (l1 ∨ l2 ∨ l3), will be interpreted

as either C → ∅, C → T , C → 2T , or C → 3T , depending on how many

of l1, l2, and l3 are true in the corresponding assignment. Specifically, the

interpretation will satisfy the delimiting condition (none of the clause reactions

are interpreted as C → ∅) if and only if the assignment satisfies the formula

(none of the clauses have no true variables). Thus a valid interpretation exists

if and only if the formula has a satisfying assignment, which completes the

proof of NP-completeness.

Using the Modularity Condition

Because finding and checking interpretations are in some cases computation-

ally intractable, any way of reducing the size of the problem would be help-

ful. Often, a larger implementation CRN can be broken up into a number

of smaller modules. The modularity condition of Definition 2.4.3 shows that

each module can be checked individually and combined into a correct im-

plementation, as described in Theorem 2.4.2 and Corollary 2.4.3. We show

that the reactionsearch algorithm from Section 2.5 can be modified to iterate

through a number of correct interpretations such that if any correct inter-

pretation is modular with respect to the given sets of common formal and

implementation species, then one of the enumerated interpretations is. We

also show that whether an interpretation is modular with respect to given sets

of common formal and implementation species can be checked in polynomial

82

time, and present an algorithm to do so. We begin by proving Lemma 2.5.5,

which provides the mathematical foundation for the modified reactionsearch

algorithm. Then, Lemma 2.5.6 presents an algorithm for testing modularity

and establishes its running time. Finally, Theorem 2.5.7 presents the modified

reactionsearch algorithm for finding a modular interpretation and establishes

its running time. Note that the user will be responsible for identifying the

modules and the common species; the modified reactionsearch algorithm will

be responsible for finding a valid modular interpretation with respect to those

modules, if one exists. Thus, below, the formal CRN and implementation CRN

that we discuss will be only those species and reactions relevant to verification

of a single module at a time.

Recall that the reactionsearch algorithm for finding an interpretation was based

on Lemma 2.5.4 which proved that if a valid completion of an interpretation

exists when the trivial reaction solver is called, the trivial reaction solver will

find a valid completed interpretation. Our first step is to show that if at the

same point a valid modular completion exists, then the trivial reaction solver

will find one.

Lemma 2.5.5. Given a formal CRN (S,R), implementation CRN (S ′,R′),

and sets of common species S0 and S ′0, let m0 : S ′′ → NS be a partial interpre-

tation defined on some set of implementation species S ′′ with S ′0 ⊂ S ′′ (S ′,
where m0 satisfies the atomic condition. If there exists any completion m1 :

S ′ → NS that agrees with m0 on S ′′, is a modular bisimulation with respect to

S0 and S ′0, and such that every reaction r′ involving at least one species not in

S ′′ has m1(r
′) = τ , then any minimal solution of the system of equations set

up by the trivial reaction solver produces a completed interpretation m which

is a modular bisimulation with respect to S0 and S ′0. If every formal species

in S0 appears as a reactant in R, then the previous statement holds even if

S ′0 6⊂ S ′′.

As a remark, we give two conditions of which only one is required for the

lemma to hold: S ′0 ⊂ S ′′ (the interpretation of the common implementation

species is already known) or every formal species in S0 appears in a reaction.

In the typical use case of this algorithm, namely a systematic DNA strand

displacement implementation to which we want to apply Corollary 2.4.3, the

first condition holds but the second does not. In such a system, S ′0 is typically

the set of all signal species {xA, xB, . . . }, for which we “know” that m(xA) = A

83

etc., at least in the sense that any interpretation where that is not true is not

interesting. However, in such a system S0 = S is the set of all formal species,

in that each module officially contains all formal species of the larger CRN

even if only some of them appear in a reaction in any given module.

Proof. First, we show that if some solution to the trivial reaction solver equa-

tions produces a modular bisimulation, then some minimal solution does. Let

m1 be the modular bisimulation produced by the solution that exists by as-

sumption, and let m be the interpretation produced by an arbitrary minimal

solution ≤ that solution; so for all x, m(x) ≤ m1(x). Lemma 2.5.4 shows that

m is a bisimulation, so we only need to prove it is modular. Given any x,

there is a sequence of trivial reactions (since any two solutions agree on the

interpretation of any reaction, the sequence is trivial under both m1 and m)

by which x
τ

=⇒ Y + Z, where Y ⊂ S ′0 and m1(Z) ∩ S0 = ∅. Since m ≤ m1, in

particular m(Z) ≤ m1(Z) and m(Z) ∩ S0 = ∅, so the same sequence of trivial

reactions satisfies the modularity condition for m. Since this applies for all x,

m is also modular.

Now that there exists at least one minimal solution which produces a modu-

lar bisimulation, let m be that modular bisimulation and m2 a bisimulation

produced by another minimal solution. Given that the interpretation of every

reaction is the same, we know we can treat the solution for each formal species

separately. For species B /∈ S0, if x
τ

=⇒ Y + Z for Y ⊂ S ′0 and m(Z) ∩ S0 = ∅
then m2 disagreeing with m on the count of B in any species will not affect

whether m2(Z) ∩ S0 = ∅; if m and m2 only disagree on species not in S0
then m2 is modular. (Since Lemma 2.5.4 proves that if any minimal solu-

tion produces a bisimulation then the minimal solution is unique on all formal

species that appear as a reactant, if every species in S0 appears in a reaction

then the above completes the proof without requiring S ′0 ⊂ S ′′.) If m and

m2 disagree on any m(x)(A) for A ∈ S0, then take any such x look at the

reactions by which x
τ

=⇒ Y + Z with Y ⊂ S ′0 and m(Z) ∩ S0 = ∅. Now using

the assumption S ′0 ⊂ S ′′ so m and m2 agree on any species in S ′0, in par-

ticular m(x)(A) = m(Y)(A) = m2(Y)(A), which since m(Z)(A) = 0 implies

m2(Z)(A) = m2(x)(A)−m(x)(A) > 0. Since each formal species can be taken

independently, if m2(x)(A) > m(x)(A) whenever they disagree then an inter-

pretation m3 defined as m3(x)(A) = m(x)(A) and m3(x)(B) = m2(x)(B) for

B 6= A is also a solution, but m3 ≤ m2 so m2 is not minimal, a contradiction.

84

This proves that the minimal solution to the trivial reaction solver is unique

and correct for any formal species A that appears as a reactant in a formal

reaction (Lemma 2.5.4) or is in S0 (assuming S ′0 ⊂ S ′′), and any other formal

species can’t affect whether the interpretation is a modular bisimulation; so if

a modular bisimulation exists, then given the conditions, any minimal solution

to the trivial reaction equations produces one.

Given a formal and implementation CRN (S,R) and (S ′,R′), an interpretation

m which we already know is a bisimulation, and sets of common species S0
and S ′0, we can check whether m is modular with respect to S0 and S ′0 using

an algorithm similar to the graphsearch algorithm for checking the permissive

condition. First, construct a table which for each implementation species

x ∈ S ′ stores either that x is “finished”, or if it is not finished, stores a list

of all x′ ∈ S ′ such that m(x′) = x and x
τ

=⇒ x′ + Z is known (x “can reach”

x′) and a list of all z ∈ S ′ such that x
τ

=⇒ x + z is known (x “can produce”

z; this implies m(z) = ∅). Here “x is finished” means either it is known that

x
τ

=⇒ Y + Z for Y ⊂ S ′0 and m(Z) ∩ S0 = ∅, or it is known that x
τ

=⇒ x′1 + X ′

for ∅ < m(x′1) < m(x). We will show later that if all x meet one of those two

conditions, then m is modular with respect to S0 and S ′0. Initialize the table

to say that x is finished if x ∈ S ′0 or m(x) ∩ S0 = ∅, otherwise x is known to

reach itself and not known to produce anything. Then in cycles, for each x

not yet finished where Zx is the set of all z such that x
τ

=⇒ x + z is known,

for each trivial reaction that can happen in a state with one x and arbitrarily

many copies of Zx (written x +∞Zx τ−→ . . .), update the table according to

the following rules:

(i) If x+∞Zx τ−→ Y where every species in Y is finished, then x is finished.

(ii) If x+∞Zx τ−→ x′1 +X ′ where ∅ < m(x′1) < m(x), then x is finished.

(iii) If x+∞Zx τ−→ x′ +Z where m(x′) = m(x) (implying m(Z) = ∅), then x

can reach x′ and x can reach any species that x′ can reach.

(iv) If x +∞Zx τ−→ x′ + Z where m(x′) = m(x) and x′ can reach x, then x

can produce any species z ∈ (Z ∪ Zx′).

Continue until one cycle (checking every trivial reaction for every unfinished

x) passes with no changes to the table. At that time, if every x is finished

then m is modular, otherwise m is not modular (with respect to S0 and S ′0).

85

Lemma 2.5.6. Given a formal and implementation CRN (S,R) and (S ′,R′),

a bisimulation m : S ′ → NS , and common species sets S0 ⊂ S and S ′0 ⊂ S ′,
whether m is modular with respect to S0 and S ′0 can be checked in polynomial

time.

Proof. We prove that the above algorithm is correct and runs in polynomial

time. For correctness, first, the table is initialized with true facts and updated

with true deductions: for initialization, if x ∈ S ′0 then x
τ

=⇒ x + ∅, and if

m(x) ∩ S0 = ∅ then x
τ

=⇒ ∅ + x, as sequences of 0 reactions fulfill x
τ

=⇒ Y + Z

for Y ⊂ S ′0 and m(Z) ∩ S0 = ∅. The deductions in general follow from that,

if x
τ

=⇒ x + Zx and x +∞Zx τ−→ S ′, then x
τ

=⇒ S ′. The only non-obvious one

is that if x
τ

=⇒ Y ′ where every species in Y ′ is finished, then x is finished; this

follows from induction on the order in which the algorithm marks species as

finished: if every species x′ marked as finished before x satisfies one of the

two x′
τ

=⇒ . . . conditions in the definition of finished, and x
τ

=⇒ Y ′ made up of

only those species, then x satisfies one of the two conditions. Then we need

to prove that if every x ∈ S ′ is finished then every x
τ

=⇒ Y + Z as desired: the

proof is by induction on |m(x)|, proving that if x′
τ

=⇒ Y ′+Z ′ for every x′ with

m(x′) < m(x) and x is finished then x
τ

=⇒ Y +Z. Recall that “x is finished” is

defined as, either x
τ

=⇒ Y + Z for Y ⊂ S ′0 and m(Z) ∩ S0 = ∅, or x
τ

=⇒ x′1 +X ′

for ∅ < m(x′1) < m(x). If x
τ

=⇒ Y +Z then we are done. If x
τ

=⇒ x′1 +X ′ for ∅ <
m(x′1) < m(x), then every species x′ ∈ X ′ has m(x′) ≤ m(x)−m(x′1) < m(x),

so by the induction hypothesis every x′ ∈ X ′ ∪ {x′1} is finished and therefore

has x′
τ

=⇒ Yx′ +Zx′ as desired, so by combining all those x
τ

=⇒∑
x′ Yx′ +

∑
x′ Zx′ ,

satisfying the modularity condition. This proves that if the algorithm says m

is modular, then it is.

To complete the proof that the algorithm is correct, we show that if m is in

fact modular, the algorithm will not say it is not. The algorithm terminates

when a cycle passes with no change to the table, so we show that if m is

modular but at the beginning of a cycle at least one species is not yet finished,

then there is some fact not yet in the table that will be learned this cycle.

Consider a modified implementation CRN where the reaction x
τ−→ x+ Zx for

the current Zx known to be producible at x is added for each x; if m is modular

in the original CRN then it is modular in the new CRN, since reactions were

only added. Then consider, for each x ∈ S ′, the first reaction on the path

with the fewest non-x
τ−→ x + Zx reactions by which x

τ
=⇒ Y + Z to satisfy

86

the modularity condition; the algorithm will consider these reactions (among

others) as possible and update based on them this cycle. Now consider the

path obtained by starting from an x not yet finished, at any given state {|x′|}
(ignoring null species), taking that first reaction, until either a Y +Z satisfying

the modularity condition is reached, or some x′1 +X ′ with ∅ < m(x′1) < m(x)

is reached, or a non-null species is repeated; for this purpose, the reactions

x′
τ−→ x′+Zx′ do not count as repeating a species. (Given finitely many x′ with

m(x′) = m(x), one of those three must eventually happen.) If the path ends

in Y +Z or x′1 +X ′, then the last x′ with m(x′) = m(x) along the path which

is not yet finished (which may be x) will be marked as finished this cycle. If

the path ends by repeating a species, say x
τ

=⇒ x′0 + Z1
τ

=⇒ x′0 + Z1 + Z0 with

m(x′0) = x, then if any species x′1 in the loop x′0
τ

=⇒ Z1 + Z0 is not known to

reach some other species x′2 in the loop, for each x′2 the last such species will

become known to reach x′2 this cycle. If every species in the loop is known

to reach every other species in the loop, and x′0 is known to produce every

species in Z0, then replacing the x′0
τ

=⇒ x′0 + Z0 loop with the (in our measure

of path length, 0-length) reaction x′0
τ−→ x′0 + Zx′0 would create a shorter path

by which x
τ

=⇒ Y +Z; so there is some z ∈ Z0 not known to be produced from

x′0. Somewhere in that loop is a reaction x′1
τ−→ x′2 + z + Z2, and since every

species in the loop is known to reach every other species in the loop (including

itself), the last species in the loop before x′1 which is not yet known to produce

z (which may be x′0) will be known to produce z this cycle. This covers all

cases, and completes this part of the proof: if m is modular but the algorithm

does not yet known that every species is finished, it will learn at least one new

fact each cycle, thus never saying no.

To complete the proof, we show that the algorithm always terminates in poly-

nomial time. Each cycle consists of for each implementation species, for each

trivial reaction, checking whether that reaction is possible from that species

plus null species, checking properties in the table for each of the produced

species, and updating the table, a polynomial number of polynomial-time op-

erations. Since at least one fact must be learned each cycle, the number of

cycles is bounded by the number of facts: n(n+ z+ 1), where n is the number

of implementation species and z the number of null species, so the algorithm

is guaranteed to terminate in polynomial time. Since the algorithm is guar-

anteed to terminate, that the algorithm never returns no when m is modular

implies that it returns yes, which also completes the proof of correctness.

87

To find modular bisimulation interpretations, we modify the reactionsearch

algorithm such that after checking the permissive condition it also uses the

above algorithm to check the modularity condition. For this to be correct we

would need to prove that if a modular bisimulation exists then the algorithm

will find it; thankfully this is true.

Theorem 2.5.7. Given a formal and implementation CRN (S,R) and (S ′,R′),

sets of common species S0 ⊂ S and S ′0 ⊂ S ′, and a partial interpretation which

specifies m(x) for some set S ′′ ⊂ S ′ of various x ∈ S ′′, provided that either

S ′0 ⊂ S ′′ or every formal species in S0 appears as a reactant in R, whether a

complete interpretation m : S ′ → NS exists that respects the given interpreta-

tion and is a modular bisimulation with respect to S0 and S ′0 can be decided

in polynomial space. In particular, if such an interpretation exists, then the

modified reactionsearch algorithm will find one that is polynomial size in that

of the two CRNs and the partial interpretation.

Proof. That the modified reactionsearch algorithm outputs only polynomial-

size bisimulations and runs in polynomial space is proven in Theorem 2.5.4, so

when combined with the modularity checker it will output only polynomial-

size modular bisimulations. If a complete modular bisimulation exists, then

whatever partial interpretation of it specifies the interpretation of all nontrivial

reactions will be considered by the modified reactionsearch algorithm, at which

point it will call the trivial reaction solver; so far, the proof is the same as

Theorem 2.5.4. Given that partial completion, by Lemma 2.5.5, if a completion

of it exists (which it does) then one exists which is a minimal solution of

the trivial reaction solver equations. That such an interpretation must be

polynomial-size is again proven in Theorem 2.5.4, so it will be found and

verified by the permissive and modularity checkers, and returned.

Given a large formal CRN and implementation CRN along with a user-provided

breakdown into modules with defined common species and a partial interpre-

tation on the common implementation species, the modified reactionsearch

algorithm may be applied sequentially (or in parallel) to each module; if all

modules admit a valid modular interpretation, then a valid interpretation for

the full system exists – specifically, the union of all the modules’ interpreta-

tions, which will be consistent since they share the given interpretation on the

common species. Furthermore, if the algorithm fails to find an interpretation

88

for some module, then no valid modular interpretation exists (although it re-

mains possible that a non-modular valid interpretation exists). Note that the

choice of modules must be consistent with the requirements of Theorem 2.4.2,

for example, every module contains the same set of common species and their

intersection contains no other species.

We have shown that finding a modular bisimulation is not significantly harder

than finding a bisimulation at all, and in fact finding a modular bisimulation

for a large CRN broken into many modules is much easier than trying to find a

bisimulation for the whole CRN with no information about its modularity. On

a trivial level, any interpretation is modular with respect to common imple-

mentation species S ′0 = S ′ regardless of the common formal species or common

formal species S0 = ∅ regardless of the common implementation species. Thus,

Theorems 2.5.3, 2.5.5, and 2.5.6 apply, and checking a modular bisimulation is

PSPACE-complete in general (but polynomial time in nk if the largest number

of reactants in a formal reaction is k), and finding one is PSPACE-complete in

general and NP-complete when the number of reactants in a formal reaction

is bounded by a constant. Whether this stays true for more “meaningful”

cases of modularity is a more interesting question. For example, the property

S0 = S, |S ′0| = |S0| and satisfies the atomic condition—every formal species

is common, and the common implementation species consist of exactly one

species xA with m(xA) = A for each formal species A—describes the typical

non-history-domain systematic DSD implementation of CRNs, and neither of

the CRNs in Theorems 2.5.3, 2.5.5, or 2.5.6 are modular with respect to any

sets with that property. Whether there is another hardness proof for that sort

of set of common species, or whether checking or finding a modular interpre-

tation is in fact easier in (the worst case of) that subcase, is currently an open

question.

2.6 Additional Features of CRN Bisimulation

Bisimulation in Transition Systems

We call this theory “CRN bisimulation” because it is a special case of the

theory of weak bisimulation in concurrent systems, adapted to CRNs. In [52],

this theory is defined in terms of a labelled transition system

(Σ, T , t−→: t ∈ T)

89

where Σ is a set of states, T a set of labels, and for each t ∈ T there is a

relation
t−→⊂ Σ × Σ, specifying which states can transition to which other

states by an action of type t. For example, a CRN (S,R) can be expressed

as a labelled transition system; there are multiple ways to do this, but to give

one particularly natural way, let Σ = NS be the set of all states in the usual

sense of the CRN, T = R so that the labels for transitions are the reactions,

and for r = R → P ∈ R the transition relation is
r−→= {(S, S − R + P) | S ∈

NS , S ≥ R}. This construction matches the semantics of CRNs as defined in

Section 2.3, and is the basis of the connection between our theory of CRN

bisimulation and weak bisimulation as defined in [52].

Aside from labelled transition systems, however, the paradigm used by Milner

in [52] diverges from the paradigm we use when discussing CRNs. Milner

discusses concurrent processes in terms of agents and agent expressions in a

certain language, and defines a single labelled transition system where Σ is

the set of all, infinitely many (in fact uncountably many) agent expressions,

with T similarly infinite. Strong and weak bisimulation are used to define

which agent expressions are in fact “the same agent” in terms of either what

actions they can do (strong) or what observable (non-τ) actions they can do

(weak). The two types of bisimulation are eventually used to define a notion

of equality of agent expressions which roughly matches “same sequence of

observable actions” while being preserved by each of the combinators in the

language used to define an agent expression. For this purpose, the concept

of one labelled transition system is particularly useful, and this one labelled

transition system has single relations ∼, ≈, and = defined as “the” strong

bisimulation, weak bisimulation, and equality, respectively. In order to get

there, however, Milner defines what it means for a relation to be “a” strong

or weak bisimulation, then defines “the” strong or weak bisimulation as the

largest such relation. For example,

Definition 2.6.1 (Definition 5.5 in [52]). A relation ↔ ⊂ Σ× Σ is a (weak)

bisimulation if P ↔ Q implies, for all α ∈ T ,

(i) Whenever P
α−→ P ′ then, for some Q′, Q

α
=⇒ Q′ and P ′ ↔ Q′

(ii) Whenever Q
α−→ Q′ then, for some P ′, P

α
=⇒ P ′ and P ′ ↔ Q′

90

where, as in Section 2.4, P
τ

=⇒ Q ⇐⇒ P
τ−→∗ Q and P

α
=⇒ Q ⇐⇒ P

τ−→∗

P ′′
α−→ Q′′

τ−→∗ Q for α 6= τ . (Our notation is slightly different from Milner’s:

we use
α
=⇒ to mean the same thing as Milner’s

α̂
=⇒.) Note the similarity between

Definitions 2.6.1 and 2.4.2(III).

In contrast to Milner in [52] comparing two agents (states) of the same labelled

transition system, we want to compare two CRNs which we think of as sep-

arate (labelled transition) systems. This itself is not a significant difference:

given two systems (Σ1, T , t−→1: t ∈ T) and (Σ2, T , t−→2: t ∈ T) and a relation

↔⊂ Σ1×Σ2 we can consider the system (Σ = Σ1∪Σ2, T , t−→=
t−→1 ∪ t−→2: t ∈ T)

with ↔ ⊂ Σ1 ∪ Σ2 ⊂ Σ × Σ, fitting Milner’s paradigm with no significant

changes. More importantly, our concept of CRN equivalence wants to con-

sider an asymmetric pair of CRNs: one, (S,R), is the “formal” CRN where

R is the set of “meaningful actions”, and another, (S ′,R′), is meant to be

an implementation of the formal CRN. This means that some natural con-

ditions we want our definition of correctness to have are that every state of

the implementation CRN corresponds to one and only one state of the formal

CRN; that every state of the formal CRN has at least one state of the im-

plementation CRN that implements it; and since we’re working with CRNs,

which are fundamentally linear, that the sum of any number of implementa-

tion states corresponds to the sum of their corresponding formal states. (This

linearity condition is also why the undecidability result from [39] doesn’t ap-

ply to our CRN bisimulation.) It turns out that those conditions on a relation

↔ ⊂ NS × NS′ are true if and only if ↔ corresponds to some interpretation

m : S ′ → NS as defined in Definition 2.4.1:

Lemma 2.6.1. Let ↔ ⊂ NS × NS′ be a relation between formal states and

implementation states. If for every implementation state S ′ there is exactly

one formal state S such that S ↔ S ′ (function) and for every pair of pairs

S1 ↔ S ′1 and S2 ↔ S ′2 we have S1 + S2 ↔ S ′1 + S ′2 (linearity), then there is

some interpretation m : S ′ → NS which, when extended to implementation

states m : NS′ → NS , induces that relation: S ↔ S ′ ⇐⇒ S = m(S ′).

Furthermore, for every S there is some S ′ such that S ↔ S ′ (surjectivity) iff

m satisfies the atomic condition.

Proof. Given that the relation↔ is a linear function from NS′ to NS , we define

the interpretation to be m(x) = Sx where Sx is the unique formal state such

91

that Sx ↔ {|x|}. Now, any implementation state S ′ is some sum of implemen-

tation species, S ′ =
∑

x∈S′ αxx, and because we define the interpretation of a

state as the sum of interpretations of species, m(S ′) =
∑

x∈S′ αxm(x). Then

by the linearity assumption on ↔, m(S ′) ↔ S ′. Thus, if S = m(S ′), then

S ↔ S ′. Conversely, if S ↔ S ′, then S = m(S ′) because ↔ is a function.

If we further assume that ↔ is surjective, then in particular for each formal

species A, there must be some S ′ such that {|A|} ↔ S ′, i.e. m(S ′) = {|A|}.
Sincem(S ′) is the sum of interpretations of species in S ′ and an implementation

species cannot interpret to fractional or negative formal species, there must

be some species xA ∈ S ′ with m(xA) = {|A|} (and any other species in S ′

interpret to ∅). Thus the atomic condition is satisfied. Conversely, if the atomic

condition is satisfied, then consider an arbitrary formal state S =
∑

A∈S αAA.

Using linearity, let S ′ =
∑

A∈S αAxA, so m(S ′) = S, and thus ↔ must be

surjective.

Since we said that R should be the set of “meaningful actions”, that means

our transition systems (Σi, T , t−→i) should have the same set of labels, and at

first glance that set of labels should be T = R∪{τ}. In the formal CRN, this

is easy: the interpretation of a CRN as a transition system that we previously

described has T = R, which simply means no τ transitions appear. In the im-

plementation CRN, we need to find a correspondence between implementation

reactions and formal reactions (or τ), but this is already what the interpre-

tation does: as described in Definition 2.4.1, any interpretation m : S ′ → NS

induces a map m : R′ → (NS×NS)∪{τ}. (We previously referred to members

of NS × NS not necessarily in R as “reactions in the language of the formal

CRN”.) Since an implementation reaction might be interpreted as a reaction

in the language of the formal CRN which is “invalid” i.e. not in R, we take

T = (NS × NS) ∪ {τ}, and when converting the implementation CRN to a

transition system we say for r ∈ T that S ′
r−→ T ′ if S ′

r′−→ T ′ and m(r′) = r

for some r′ ∈ R′. (This means that, formally, which transition systems we are

comparing depends on the relation we find between them, a bit of apparent

circularity which leads to various differences between CRN bisimulation and

the classic definition.) Given this, an interpretation is a CRN bisimulation

(satisfies Definition 2.4.2(III)) if and only if it satisfies the Atomic Condition

(Definition 2.4.2(II.i)) and the relation on states it induces is a weak bisimula-

92

tion (Definition 2.6.1). Therefore, a valid interpretation m can be equivalently

described as a surjective linear weak bisimulation.

We would like to compare some features of our concept of CRN bisimulation to

bisimulation in transition systems as in [52]. To avoid ambiguity, for this dis-

cussion we use the phrase “bisimulation relation” to mean a relation between

states ↔ ⊂ S × S that satisfies Definition 2.6.1, and “CRN bisimulation” or

“bisimulation interpretation” to mean an interpretation m : S ′ → NS that

satisfies Definition 2.4.2 and therefore induces a bisimulation relation.

The most important difference between a bisimulation relation and a CRN

bisimulation is that, as we said earlier, the transition system induced by the

implementation CRN is not fully defined until an interpretation is given. For

example, if x1 → x2 ∈ R′, m(x1) = A and m(x2) = B then the transition

{|2x1|} → {|x1, x2|} has label A→ B, but if m(x1) = m(x2) = A then the same

transition has label τ . So for example, the fact (Proposition 5.1(4) in [52])

that
⋃
i∈I ↔i is a bisimulation relation if each ↔i is a bisimulation relation

has no obvious analog for CRN bisimulations, since there is no obvious way to

even define the union of two relations defined on different and “contradictory”

transition systems. We don’t try.

Milner discusses the relation ≈ =
⋃{↔ | ↔ is a bisimulation relation} [52].

In any given transition system, such a relation exists, is the largest bisimula-

tion relation (which follows from the previous statement about unions), and

is an equivalence relation. In the context of comparing agent expressions, this

is a useful way of saying, for example, that the result of applying a sequence

of transitions to a complex agent expression is another complex agent expres-

sion. In the context of a formal CRN (S,R) and its induced transition system

(NS ,R ∪ {τ}, r−→), the relation ≈ exists but is not very useful. In fact the

relation is the trivial S ≈ T ⇐⇒ S = T relation except in some particularly

degenerate CRNs; for example, if S = {A} and R = {∅ → A} then S ≈ T

for all S, T . In the context of CRN bisimulation, a formal CRN and imple-

mentation CRN where the actions are reactions in the language of the formal

CRN or τ , as previously discussed we haven’t finished defining the transition

system, so ≈ is not yet defined without an interpretation. Given an interpreta-

tion m, we have a transition system so ≈ exists, but it is mostly restricted by

m. If m is a CRN bisimulation, then adopting the convention that m(S) = S

for formal states S ∈ NS , S ≈ T ⇐⇒ m(S) ≈ m(T) for any (formal or

93

implementation) states S, T , where the right side can use the definition of ≈
on the formal CRN. That is, “the bisimulation” is just m together with any

degeneracy in the formal CRN.

Handling Spurious Catalysts

The definition of CRN bisimulation as stated previously has difficulty han-

dling overly detailed enumerations of DNA strand displacement circuits, but a

simple extension of bisimulation fixes that problem. As an example, consider

the implementation of the reaction A + B → C + D according to the variant

of the scheme by Soloveichik et al. [66] discussed in Section 2.4. Figure 2.15

shows a spurious reaction possible in that scheme: a toehold on the “trigger

strand” (what would be tCD if released) in the complex iA binds to the ex-

posed complementary toehold in another copy of iA. This spurious binding

has no meaningful effect on the DSD system’s function: no strand displace-

ment reactions are possible given that binding that should not be possible, and

since the binding is reversible it can fall off before any reaction that it would

otherwise interfere with. In particular, an analog of the iA + xB → tCD + w1

reaction can still happen in this complex, producing a tCD strand with a spu-

rious binding to an iA complex (and a normal w1 waste complex). However,

when analyzing the system with bisimulation, we need to interpret each im-

plementation species, including this complex and the result of the reaction. In

order for the binding and unbinding reactions to be trivial, we must interpret

the iA : iA complex as 2A and the tCD : iA complex as C + D + A, and they

must be trivial in order to satisfy the delimiting condition. Then the reaction

iA : iA + xB → tCD : iA + w1 is interpreted as 2A + B → A + C + D. This

is neither trivial nor is it a formal reaction, so by bisimulation as so far de-

fined, the delimiting condition is violated. However, it is “clearly” the reaction

A+ B → C +D with a “spurious catalyst” A on the side, and we would like

a definition of bisimulation that can confirm this.

Recall that in Definition 2.4.1 we defined three related but distinct interpreta-

tions: m : S ′ → NS an interpretation of implementation species ; m : NS′ → NS

an interpretation of implementation states ; and m : NS′ ×NS′ → (NS ×NS)∪
{τ} an interpretation of implementation reactions. At the time, we said that

the interpretation of species m : S ′ → NS was arbitrary, but the other two

were defined unambiguously in terms of that m. While we still want to keep

the interpretation of states as the sum of the interpretations of species, we can

94

iA : iA tCD : iA

xB w1

A+B → C +D
?

1
Figure 2.15: An example spurious reaction in a variant of the translation
scheme by Soloveichik et al. [66].

loosen the definition of the interpretation of a reaction to allow reactions like

iA : iA +xB → tCD : iA +w1 to be interpreted as A+B → C +D as intended.

Definition 2.6.2. Let (S,R) and (S ′,R′) be a formal and implementation

CRN with m : S ′ → NS an interpretation of implementation species, which is

extended to implementation states as in Definition 2.4.1. An interpretation of

reactions mρ : NS′ × NS′ → (NS × NS) ∪ {τ} is consistent with m if:

(i) If R′ 6= P ′ but m(R′) = m(P ′) then mρ(R
′ → P ′) = τ , and

(ii) If m(R′) 6= m(P ′) and mρ(R
′ → P ′) = R → P then there is some

C ∈ NS such that m(R′) = R + C and m(P ′) = P + C.

Adapting the definition of bisimulation to this new concept of interpretation

is straightforward.

Definition 2.6.3. Let (S,R) and (S ′,R′) be a formal and implementation

CRN. Let m : S ′ → NS be an interpretation of implementation species and mρ

an interpretation of reactions consistent with m. The pair (m,mρ) is a CRN

95

bisimulation if m satisfies the atomic condition, mρ satisfies the delimiting

condition, and the combination satisfies the permissive condition where m is

applied to states and mρ to reactions.

Most of the important properties of the interpretation of reactions remain true

for any mρ consistent with m. For example, if S ′
r′−→ T ′ and mρ(r

′) = r = R→
P then m(T ′) = m(S ′) − R + P , as we used in proving Theorem 2.4.1. In

fact, once trajectory equivalence and weak bisimulation are redefined to use

mρ for the interpretation of any reaction, they remain equivalent to the three

conditions by the same logic used in that theorem. Less trivially, it turns

out that the algorithms for checking or finding a bisimulation discussed in

Section 2.5 can be modified to work with the new concept of CRN bisimulation.

(For complexity purposes, we assume mρ is written by writing the index of

mρ(r
′) for each r′ ∈ R′, giving it size |mρ| ≤ |R′| log |R| ≤ n log n.)

Theorem 2.6.1. Given a formal and implementation CRN (S,R) and (S ′,R′)
with interpretation (m,mρ) where mρ is consistent with m, the problem of

checking whether (m,mρ) is a CRN bisimulation is PSPACE-complete in gen-

eral, and can be checked in polynomial space by the loopsearch algorithm as

previously described. The graphsearch algorithm as previously described also

correctly checks whether (m,mρ) is a CRN bisimulation, and when the number

of reactants in any formal reaction in R is bounded by some k, the graphsearch

algorithm runs in poly(nk) time and space.

Proof. Both algorithms do not depend on the fact thatm(R′ → P ′) = m(R′)→
m(P ′) or τ , but only depend on being able to find m(r′) given r′, which is

still easy given mρ. Similarly, assumptions made by the algorithm such as if

S ′
τ−→ T ′ then m(S ′) = m(T ′) still hold. Thus, the previous proof of correctness

and complexity of the algorithms holds. Similarly, in the completeness proof in

Theorem 2.5.3, the given interpretation with mρ(R
′ → P ′) = m(R′)→ m(P ′)

when m(R′) 6= m(P ′) is consistent with m and is the same as the interpre-

tation in that theorem, and is still correct if and only if the space-bounded

Turing machine accepts, so the problem is still PSPACE-complete.

When we try to find an interpretation, we modify the reactionsearch algorithm

as follows. The algorithm takes as input (S,R) and (S ′,R′) as the previous

96

version, and also takes zero or more interpretation constraints. An interpre-

tation constraint is a statement of one of the forms m(x) = Sx, m(x) ≥ Sx,

or mρ(r
′) = r, where x is an implementation species, Sx a multiset of formal

species, r′ an implementation reaction, and r a formal reaction. We assume

any r′ has zero or one mρ(r
′) = r constraints and any x has either exactly one

m(x) = Sx constraint or zero or more m(x) ≥ Sx constraints but not both;

anything else would be redundant or contradictory, and it would be easy to

tell which it is. Where the algorithm previously would consider the possibility

that m(r′) = r and enumerate all possible partial interpretations of uninter-

preted species in r′, then call itself recursively, the new algorithm enumerates

all possible minimal (in the usual sense of having no strict subset be valid;

e.g. if m(x1) ≥ A, m(x2) ≥ B is valid then m(x1) ≥ 2A, m(x2) ≥ B is not

minimal) partial interpretations of all implementation species x appearing in

r′ which do not have an m(x) = Sx constraint, and recursively calls itself with

the reaction constraint mρ(r
′) = r and the enumerated partial interpretation

encoded as m(x) ≥ Sx constraints, with an exception: if every species x on one

side of r′ has an m(x) = Sx constraint, then the enumerated interpretation of

the other side is passed as m(x) = Sx constraints.

The algorithm runs the trivial reaction solver when every r′ with no mρ(r
′) = r

constraint can be trivial. When solving the atomic condition before running

the trivial reaction solver, the new algorithm assigns an m(x) = A for each A

such that there is no m(x) = A restriction already present, and chooses from

all x such that there is no m(x) = Sx 6= A restriction and m(x) = A is not

contradicted by any m(x) ≥ Sx restriction. When running the trivial reaction

solver, the algorithm first assigns to each x with no m(x) = Sx restriction a

“base interpretation” m0(x) =
∨
m(x)≥Sx

Sx, then sets up and solves equations

in terms of an “additional interpretation” m+(x) such that m(x) = m0(x) +

m+(x). (As in the previous algorithm, it solves separately for each m+(x;A).)

The algorithm sets up an equation for every implementation reaction r′, even

those with an mρ(r
′) = r 6= τ constraint; if r′ = R′ → P ′ has an mρ(r

′) =

r = R→ P , then the equations are of the form m(R′)− R −m(P ′) + P = 0,

expanded in terms of each m+(x;A) after subtracting m0 and replacing any

species x with an m(x) = Sx constraint. As before, the algorithm searches for

only one minimal solution, then tests the permissive condition, since as before

if there is any solution that satisfies the permissive condition then there is a

unique (for every formal species that appears as a reactant in any reaction)

97

minimal solution and it satisfies the permissive condition.

Theorem 2.6.2. Given a formal and implementation CRN (S,R) and (S ′,R′)
with zero or more conditions of the form m(x) = Sx, m(x) ≥ Sx, or mρ(r

′) = r,

the modified reactionsearch algorithm as described above correctly finds an in-

terpretation or asserts that none exists. The algorithm runs in polynomial

space, and if a correct interpretation exists then the algorithm outputs one

that is polynomial size in its inputs. Deciding whether an interpretation from

a given implementation CRN to a given formal CRN is PSPACE-complete in

the general case, and is NP-complete when the number of reactants in any

reaction in R is bounded by a constant k ≥ 1.

Proof. Lemma 2.5.4 still applies to the new trivial reaction solver; the proof

as stated applies exactly to the new definition of CRN bisimulation with the

exception that the statement m(Y ′)(A) = R(A) > m(R′)(A) needs to become

m(Y ′)(A) ≥ R(A) > m(R′)(A), which does not affect the remainder of the

proof. The proof that the new algorithm is correct then follows the same

lines as the proof that the old algorithm is correct in Theorem 2.5.4; if a

correct completion of the interpretation exists, then one of the branches of the

algorithm will find it.

To prove that finding an interpretation is PSPACE-complete, we use the

same reduction from linear bounded Turing machine acceptance to formal

and implementation CRN as in Theorem 2.5.5. Even under the expanded

definition of correct interpretation, the interpretation m(0i) = m(1i) = Ai,

m(h) = H, m(qji) = Q for j 6= m − 1 and m(qm−1i) = Q +
∑

k<iAk, with

mρ(q
m−1
n +0n → h) = Q+A1 + · · ·+An → H and mρ(r

′) = τ otherwise, is the

only possibly correct interpretation up to a permutation of formal species Q

and the Ai’s, and it is correct if and only if the given Turing machine accepts

the given input string x. The proof, however, requires some different steps

to rule out possibilities that are opened up by a less restrictive definition of

interpretation. First, we observe that mρ(q
m
i + xi → qmi−1 + xi) = τ , since

combining those reactions with qmi → qmn gives a loop from qmn + x1 + · · ·+ xn

to itself; this is impossible in the formal CRN if any reaction fires, so all re-

actions involved must be trivial (or violate the delimiting condition). This

means that m(qmi) = m(qmn), and applying the same to qm1 + x1 → q01 + x1 and

q01 → qmn we get that m(q01) = m(qmn) also. Now, each qmi + x−i → qmi−1 + xi

98

and qm1 +x−1 → q01 +x1 reaction shows that for each i either m(0i) = m(1i) or

m(xi) = H and m(x−i) = Q+ A1 + · · ·+ An (the second case was impossible

in the old definition when m(qmi) 6= ∅), and similarly from qji → qmn either

m(qji) = Q + A1 + · · · + An or m(qji) = m(qmn). Since no formal reaction is

reversible, we have mρ(q
m−1
1 + 11
 qm−12) = mρ(q

m−1
i−1 + 0i−1
 qm−1i) = τ ,

so m(qm−1i) = m(qm−11) + m(1i) +
∑

2≤k<im(0k) for i ≥ 2. This is important

because, as in the previous proof, we have n + 2 formal species and by the

atomic condition, each one must have at least one implementation species in-

terpreted as one copy of it and nothing else. Although we have yet to prove

that m(0i) = m(1i), the above does prove that the two cannot (for the same

i) satisfy the atomic condition for two different formal species; similarly, no qji
can satisfy the atomic condition for a different formal species than qmn . This

leaves n+2 groups of implementation species—qmn , xi for 1 ≤ i ≤ n, and h—to

n + 2 formal species, so each of the mentioned implementation species must

be interpreted as exactly one copy of a different formal species. Then m(0n)

is either a single formal species not equal to m(h), or is Q+A1 + · · ·+An, so

mρ(q
m−1
n + 0n → h) 6= τ , so mρ(q

m−1
n + 0n → h) = Q + A1 + · · · + An → H

and m(h) = H. This rules out the possibilities that any of the xi’s or qmn

are interpreted as H, leaving the only possibility that they are interpreted as

some assignment of Q and the Ai’s, with m(0i) = m(1i), m(qji) = m(qmn) for

j 6= m− 1, and m(qm−1i) = m(qmn) +
∑

k<im(0k). This interpretation satisfies

the atomic and delimiting conditions, and satisfies the permissive condition

if and only if the given Turing machine accepts x, thus deciding whether a

correct interpretation exists is still PSPACE-complete.

The proof of Theorem 2.5.6 applies to the new definition of interpretation

without modification, proving that whether a correct interpretation exists is

NP-complete when the number of reactants in a formal reaction is bounded

by a constant k ≥ 1.

2.7 Discussion

Comparing Chemical Reaction Networks on different levels of abstraction is

an important tool for systematic programming with CRNs. We showed how

to adapt the concept of bisimulation to check whether one CRN is a correct

implementation of another. We showed that bisimulation can be used to prove

the correctness of some existing CRN implementations, and to identify subtle

but real problems with others. We discussed transitivity and modularity, which

99

can be used to simplify a bisimulation proof. We presented different algorithms

to check bisimulation which are adapted to different cases. We showed that

the condition can be checked in polynomial time with favorable assumptions,

is NP-complete with less favorable assumptions, and is PSPACE-complete in

the general case.

In the beginning, we mentioned a DNA implementation of the approximate

majority CRN [2] that was experimentally demonstrated by Chen et al. [19].

We might consider applying our bisimulation checker to this implementation.

The implementation as presented in [19] would be incorrect according to bisim-

ulation, for the same reason the example in Figure 2.5 from Qian et al. [57]

fails: outputs of an irreversible reaction are released before an irreversible

step is taken, leading to a small probability of such a reaction reversing it-

self after the products have reacted downstream. Despite this, Chen et al.’s in

vitro experimental demonstration showed no such problems. While there are a

number of explanations for this observation, including that the formal approx-

imate majority CRN is particularly resistant to error [2], it nonetheless raises

the question of how serious are the potential errors that may occur in CRN

implementations that are not correct according to bisimulation? The answer

will depend on the specific formal CRN of interest, as well as the conditions

under which it is run. For example, behavior that may be problematic with

non-negligible probability in low molecular counts, may have negligible effect

in high molecular counts typical of in vitro experiments.

Another observation we have is that for typical engineered CRN implementa-

tions, at least for DNA strand displacement implementations, either there is

a problem in the implementation of one formal reaction; or there is a problem

with crosstalk between formal reactions; or there is no problem, and correct-

ness can be proven by the modularity condition. In the case of crosstalk, as

we mentioned in Section 2.4, that problem needs to be detected by the reac-

tion enumerator, and is beyond the scope of our bisimulation theory. In the

implementation by Chen et al. [19], for example, there are three formal reac-

tions, but the (technically) incorrect behavior can be detected by considering

only one of them. In the implementation of the rock-paper-scissors oscilla-

tor by Srinivas et al. [67], they use a systematic translation method slightly

modified from Soloveichik et al. [66]. After confirming that their method ap-

plied to one reaction is correct, using Corollary 2.4.3 we can prove that such

100

a method applied to any combination of reactions will be correct according to

bisimulation.

The theory and algorithms discussed in this paper have been incorporated by

Badelt et al. into the Nuskell compiler, a software package that automati-

cally translates a CRN into a DNA strand displacement circuit and verifies

that the result is correct [4]. Nuskell currently contains the loopsearch and

graphsearch algorithms for checking the permissive condition as well as an ex-

haustive search algorithm for the same, the reactionsearch algorithm for finding

an interpretation, and the algorithms to check the modularity condition and

find a modular interpretation when given a decomposition into modules of an

implementation CRN. Badelt et al. use bisimulation to verify a number of

translation schemes applied to the rock-paper-scissors oscillator [25, 44, 67],

showing that bisimulation algorithms can be used to verify CRN implementa-

tions used in practice.

Algorithms such as the graphsearch algorithm and loopsearch algorithm scale

better with the number of meaningful species than the number of null species,

while engineered CRN implementations generally do not use loops that pro-

duce null species. Thus those algorithms will be faster than their worst-case

limits in practical cases. For example, the graphsearch algorithm takes at most

(2znk + 1)nk = O(n2k+1) cycles in theory, where n is the number of implemen-

tation species, k the largest number of reactants in a formal reaction, and z

the number of implementation species with empty interpretation. When there

are no null species (or when none can be produced in a loop, as in schemes

such as [66]), this becomes at most nk cycles.

In CRN bisimulation, we require that every implementation species has an

interpretation as a (possibly empty) multiset of formal species. In contrast,

verification methods such as pathway decomposition [64] or serializability [46]

both assume that each formal species is represented by one implementation

species, while other implementation species are classified into fuels, wastes,

and intermediates. Because of this, pathway decomposition and serializability

compare formal reactions to implementation pathways which begin and end

with (representations of) formal species, while in bisimulation an individual

implementation reaction can be interpreted and compared to the formal CRN.

An additional consequence, for pathway decomposition, is that correctness

guarantees do not apply to implementation states that cannot be reached from

101

initial states representing formal species, whereas bisimulation is more robust

in that correctness is asserted in those cases as well. Furthermore, even in the

permissive condition, bisimulation requires that there exist an implementation

pathway which implements a given formal reaction, while pathway decompo-

sition and serializability both require that all implementation pathways have

properties which may be nontrivial to check. This locality is what allows us

to prove the complexity results given, which we suspect are significantly lower

complexity than methods that depend on implementation pathways.

However, the use of interpretations instead of pathways means that in some

cases CRN bisimulation and pathway decomposition differ on which implemen-

tations they consider correct. Bisimulation can easily be adapted to situations

where there is no clear single “canonical representation” of a given formal

species, while pathway decomposition has difficulty. For example, the imple-

mentation in [57] of the reversible formal reaction A+B
 C+D by reversible

implementation reactions {xA
 iA, iA+xB
 iCD, iCD
 xC+iD, iD
 xD}.
Bisimulation considers this correct with the obvious interpretation, while path-

way decomposition considers the ability to release xC then reverse without

releasing xD to be an error. On the other hand, bisimulation has trouble han-

dling implementation species with no well-defined interpretation. Shin et al.

describe a “delayed choice” phenomenon where an implementation CRN com-

mits to implementing one of two formal reactions before deciding which one,

producing an intermediate that cannot be correctly interpreted as either of the

reaction’s products or their reactants; such implementations are generally con-

sidered incorrect according to bisimulation but pathway decomposition often

considers them correct [64]. They then propose a hybrid notion of correctness

where an implementation CRN is considered correct if it is a correct imple-

mentation according to pathway decomposition of some intermediate CRN,

and the intermediate CRN is a correct implementation of the formal CRN

according to bisimulation [64]. This notion considers correct any implementa-

tion that is correct according to either pathway decomposition or bisimulation,

plus some others.

One area this theory overlooks is the rates of reactions and the probabilities of

reaching certain states. For example, in [66] Soloveichik et al. argue that the

concentration of each intermediate is proportional to the product of that of

the formal species which we would call its interpretation, and thus the reaction

102

rates are approximately correct. Whether this can be generalized, and whether

bisimulation can help this generalization, is an important open question.

Acknowledgments

The authors would like to thank Chris Thachuk, Damien Woods, Dave Doty,

and Seung Woo Shin for helpful discussions. We would also like to thank the

anonymous reviewers for many helpful suggestions. RFJ and EW were sup-

ported by NSF grants 1317694, 1213127, and 0832824. RFJ was supported by

Caltech’s Summer Undergraduate Research Fellowship program and an NSF

graduate fellowship. QD thanks Steve Skiena for his kindness and flexibility.

103

C h a p t e r 3

VERIFYING POLYMER REACTION NETWORKS USING
BISIMULATION

3.1 Perspective

I have mentioned that Chemical Reaction Networks (CRNs) are a useful pro-

gramming language to describe molecules interacting in solution, and that

they can be compiled into DNA strand displacement (DSD) systems which

can be implemented physically with DNA strands. In the previous chapter I

discussed a method called CRN bisimulation to verify the equivalence of two

CRNs, which can be used to confirm that the DSD compilation of a CRN is in

fact a correct compilation. However, while “molecules interacting in solution”

describes many of the possible behaviors of molecules, it doesn’t describe all

of them. In this chapter I discuss one way to go beyond molecules interacting

in solution, namely unbounded linear polymers. In particular, I discuss how

to describe such systems with a linear Polymer Reaction Network (linear PRN

or just PRN) model, how to extend CRN bisimulation to the PRN model as

PRN bisimulation, and what this means for potential DSD or other physical

implementations of polymer systems.

What are polymers and why are they important? The CRN model assumes

a bunch of molecules moving freely in solution, where any molecule can come

into contact with any other; this is often referred to as a “well-mixed” system.

“Systems with geometry” refers to the broad class of systems where that’s

not true. Polymer systems are a specific type of geometry, where individ-

ual “monomers” bond to each other, and the structure of the bonds makes

monomers more or less likely to interact. DNA, RNA, and proteins are clas-

sic examples of polymers, where a small number of monomer (nucleotide or

amino acid) types form a huge variety of chains. Importantly, the behavior of

biological polymers can’t be understood without the polymer structure—the

sequence AGGAGG, for example, has different behavior than other arrange-

ments of 4 G’s and 2 A’s.

Though not commonly thought of this way, the common way of writing num-

bers is a type of polymer: the number 137 in decimal, or 10001001 in binary,

104

!" = $, !% = &, !& = "%

!%'!"(!")!"* ⋯!,!&!%!"
= &&&&%&"&%&"""%&&"&&&

Total number of possible states:
3./ = 3,486,784,401

Total number of possible states:
< 209 = 8,000

well mixed polymer

Figure 3.1: Scaling of number of states in well-mixed versus polymer systems.
Art by Lulu Qian.

is a linear string of monomers such as 0, 1, 3, and 7, and 137 is definitely not

the same as 713, nor is 10001001 the same as 00011010 (26 in decimal). Not

only that, but common operations such as addition can be thought of as “in-

teractions between adjacent monomers”: you add the digits in the same place,

then carry over any extra value in the place to their left. The same applies to

many computer programs, especially in abstract models of computing such as

Turing machines. The fundamental feature of a Turing machine, for example,

is a tape made up of squares with different symbols written on them—a lin-

ear polymer—with a head moving between adjacent squares and altering the

square at its current position. Polymers are fundamental to biology, mathe-

matics, and computation, and are so because they are in a fundamental way

more powerful than well-mixed CRNs. There are a number of interesting re-

sults illustrating this difference in power [1, 16, 42, 47, 65], but it can be seen

starkly in one calculation, illustrated in Figure 3.1. In a well-mixed system

where you have 20 total molecules each of which can be one of 3 types, all

that matters is the count of each of three species, and the number of possible

states is less than 203 = 8000. If instead you have a linear polymer made of

20 monomers, each of which can be one of 3 types, where the same count of

species in a different order is a different state, then the number of possible

states is 320 = 3, 486, 784, 401.

This chapter focuses not just on PRNs but on PRN bisimulation, a verification

method that extends the CRN bisimulation method discussed in Chapter 2.

105

If one asks why we would want verification for our polymer systems, then

many of the answers will be the same as for CRN bisimulation: systems can

have errors, systems large enough to do meaningful tasks can be harder to

check and have more subtle errors, and formal verification also serves as a

foundation for analysis of systems and guided design. All of this is discussed

in the Perspective for, and elsewhere in, Chapter 2. In that case, what’s

different about PRN bisimulation? In a CRN, there are a finite number of

species but an infinite number of possible states; thus, CRN bisimulation took

advantage of the structure of CRNs and used an interpretation on the finite

set of species that automatically extended to the infinite set of states. In a

PRN, the corresponding concept to CRN species are the polymers, of which

there are an infinite number made up of a finite number of monomers. So in

PRN bisimulation we again take advantage of the structure of PRNs and define

an interpretation of each monomer, which can extend to an interpretation of

polymers (species) and thus to an interpretation of states.

Our work in this paper is to define the (linear) Polymer Reaction Network

model, extend CRN bisimulation to PRN bisimulation with an interpretation

suited to the structure of PRNs, and work out the implications of this exten-

sion. Like CRN bisimulation, algorithmic checking of an implementation PRN

or a DSD implementation is desirable; unlike CRN bisimulation, checking a

PRN is much more difficult. We show one example where, using knowledge

of how a previously proposed DSD system [57] was meant to implement its

specification, we can prove that it is correct according to PRN bisimulation.

Currently many steps of that needed our knowledge and input; and even worse,

some parts of the task are provably harder or impossible in the most general

case. However, we suspect it is possible to find an algorithm that can solve

both of those problems in the cases we care most about, and that would be a

promising line of investigation.

This chapter also contains the first concrete example in this thesis of my belief

that formal verification can give a better understanding, and even guide the de-

sign, of the systems it analyzes. The PRN model in general allows a very wide

class of reaction mechanisms, but we can define a class of augmented single-

locus PRNs where each individual reaction mechanism must occur within a

bounded region of the polymer, regardless of the size of the polymer it hap-

pens to. Intuitively, such mechanisms are “physically realistic” in a way that

106

mechanisms without this property aren’t; DSD mechanisms, for example, are

single-locus. More importantly, we show that any implementation PRN that is

augmented single-locus cannot be a correct implementation, according to PRN

bisimulation, of a formal PRN that isn’t. Further, any augmented single-locus

PRN can be implemented (correctly according to PRN bisimulation) by the

right combination of four types of mechanisms, three of which have proposed

DSD implementations [56, 57]. So even within the basics of PRN bisimulation

theory, we have identified a class of PRNs that is likely easy to implement

and a class that is hard or even impossible, and made it much easier to find a

candidate DSD implementation for the former class.

The remainder of this chapter is a slightly modified version of the following

manuscript, recently submitted to Theoretical Computer Science:

Robert F. Johnson and Erik Winfree. Verifying polymer reaction networks
using bisimulation. Submitted to Theoretical Computer Science, 2020.
Contributions: Work done primarily by RFJ with advice and assistance from
EW.

Abstract

The Chemical Reaction Network model has been proposed as a programming

language for molecular programming. Methods to implement arbitrary CRNs

using DNA strand displacement circuits have been proposed, as have meth-

ods to prove the correctness of those or other implementations. However, the

stochastic Chemical Reaction Network model is provably not deterministically

Turing-universal, that is, it is impossible to create a stochastic CRN where a

given output molecule is produced if and only if an arbitrary Turing machine

accepts. A DNA stack machine that can simulate arbitrary Turing machines

with minimal slowdown deterministically has been proposed, but it uses un-

bounded polymers that cannot be modeled as a Chemical Reaction Network.

We propose an extended version of a Chemical Reaction Network that models

unbounded linear polymers made from a finite number of monomers. This

Polymer Reaction Network model covers the DNA stack machine, as well as

copy-tolerant Turing machines and some examples from biochemistry. We

adapt the bisimulation method of verifying DNA implementations of Chem-

ical Reaction Networks to our model, and use it to prove the correctness of

the DNA stack machine implementation. We define a subclass of single-locus

Polymer Reaction Networks and show that any member of that class can be

107

bisimulated by a network using only four primitives, suggesting a method of

DNA implementation. Finally, we prove that deciding whether an implemen-

tation is a bisimulation is Π0
2-complete, and thus undecidable in the general

case, although it is tractable in many special cases of interest. We hope that

the ability to model and verify implementations of Polymer Reaction Networks

will aid in the rational design of molecular systems.

3.2 Introduction

Background

We consider the problem of how molecules can compute: how do biologi-

cal systems use their components to compute, and what computing systems

can be built with biological or bio-compatible molecules? For relatively small

molecules in a well-mixed solution, the well-studied Chemical Reaction Net-

work (CRN) model is a natural way to describe them. Known examples of

computation with CRNs include useful small devices such as the approximate

majority CRN [2, 19] and the rock-paper-scissors oscillator [25, 44, 67], boolean

circuits [50] and neural networks [38], as well as more general results, including

deterministic computation of arbitrary semilinear functions [1, 16, 26] and sim-

ulation of Turing machines with arbitrarily small error probability [65]. Fur-

ther, computationally interesting (or uninteresting) CRNs can be “compiled”

into physical devices: Soloveichik et al. [66], Qian et al. [57], and Cardelli [6],

among others, give schemes to construct a DNA Strand Displacement (DSD)

circuit that implements an arbitrary CRN.

One assumption of the CRN model is that the molecules are in a “well-mixed

solution”: that there is no concept of geometry or spatial organization of the

molecules, that any pair of molecules is as likely to interact as any other,

and that the only relevant information about the current state is the count

(or concentration) of each molecule present. For small circuits like the ones

mentioned above, this is quite reasonable. For classic models of computation

and for biological systems, however, this assumption doesn’t match: Turing

machines, DNA/RNA/Proteins, and the cytoskeleton are all fundamental ex-

amples and fundamentally geometric. A counting argument suggests why:

consider a system with k “types of object” (e.g. chemical species, Turing ma-

chine tape symbols) and a state of that system with n total objects. In a

well-mixed CRN, the number of possible such states is on the order of (but

less than) nk; in a Turing machine or other geometric system, that number is

108

on the order of kn. In uniform computation—a single machine built to handle

arbitrarily large computations—we have a constant k with n scaling with the

size of the computation; so for example, the CRN that simulates Turing ma-

chines mentioned above uses around 3n copies of a given molecule to simulate

a Turing machine with n tape squares filled [65].

For such reasons, researchers have begun building molecular computing sys-

tems that take advantage of geometry. There are a number of variations on

the concept of a DNA walker moving around a surface, often DNA origami,

in a programmable way; a particularly complex example is the cargo-sorting

robot of Thubagere et al. [71]. Chatterjee et al. have built logic circuits on

origami, using a constant number of components regardless of the size of the

circuit [15]. In the examples closest to abstract CRNs, Cardelli and Zavattaro

discussed a CRN-like model with association and dissociation [9]; Qian et al.

proposed a DNA implementation of a generic stack machine [57]; and Qian

and Winfree proposed a DNA implementation of CRN-like reactions localized

on a surface [56].

Also relevant to this topic are theoretical results on the computational power

of well-mixed CRNs, and the difference in power between well-mixed CRNs

and geometry-using models. The two most relevant results are the result that

well-mixed CRNs that “always eventually” compute the right answer (in a

certain sense well-defined in the theorem), can compute exactly the semilinear

functions [1, 16]; and the result that the reachability problem for CRNs is

decidable by a Turing machine [42, 47]. The reachability problem is in an

informal sense the CRN equivalent of the Turing machine halting problem;

in particular, any CRN trying to simulate a Turing machine must have some

reachable state that involves an error. Thus those CRNs that try to simulate

Turing machines can either do so in a non-uniform sense, where a single CRN

can simulate a Turing machine with a given bound on its tape size, and a

larger CRN must be created to simulate a larger Turing machine tape [41, 50];

or do so uniformly but with some probability of error, and due to the counting

argument above, using species counts exponential in the space used by the

Turing machine [65]. Polymer systems such as the Biochemical Ground Form

[9], the DNA stack machine [57], and Surface CRNs [56], can all simulate

Turing machines with no chance of error and using the same amount of space

as the Turing machine.

109

We focus in this paper on verification of polymer systems. Specifically, we

focus on the problem of, given an abstract description of a polymer system

and a physical system, does the physical system “do the same thing” as the

abstract description? For example, we might compare the abstract descrip-

tion of the DNA stack machine to its actual physical implementation [57],

and wonder if the properties of a stack machine are preserved. This problem

came up in the finite CRN case, where verification methods found subtle er-

rors in some of the proposed CRN compilation schemes. Verification methods

developed for finite CRNs include serializability analysis [46], pathway decom-

position [64], and our previous work on CRN bisimulation [40]. Each of those

methods has various advantages and disadvantages relative to the others, but

all are capable of proving relevant correspondences between the behavior of

physical CRN implementations and the abstract CRNs, or pointing out imple-

mentations that fail to correctly correspond to the abstract CRNs. Focusing

on CRN bisimulation, our previous work discusses a method of “interpreting”

the chemical species of the physical system as combinations of species of the

abstract system, then asking if the possible qualitative behaviors of the two

systems are equivalent up to that interpretation. This bisimulation method

has a natural adaptation to polymer systems, which we will show.

Structure of the paper

In this paper, we show how CRN bisimulation can be adapted to polymer

CRN-like systems, and help design practical such systems. In Section 3.3 we

define a model of “linear Polymer Reaction Networks” henceforth referred to

as PRNs. PRNs are a special case of CRNs with (usually) infinitely many

species and reactions, and the PRN model covers most of the behavior we

want while being convenient for discussion of bisimulation. This model is

based on species being arbitrary strings over a finite set of “monomers”, and

a finite set of “reaction schemata” with wildcards from which reactions can

be enumerated. Because PRNs are a special case of infinite CRNs, and most

of the theorems of CRN bisimulation do not require the CRNs to be finite,

CRN bisimulation can with a few new concepts be adapted to PRNs; we show

how to do this, and define PRN bisimulation. This PRN bisimulation can

be used to verify designs for physical implementations of polymer systems,

which we show in Section 3.4 by proving correct an updated version of the

DNA stack machine by Qian et al. [57]. Although many of the theorems (such

110

as transitivity and modularity) from our previous work on CRN bisimulation

[40] still apply to PRN bisimulation, the algorithms for finding or checking a

bisimulation interpretation assume finite CRNs, and in Section 3.5 we show

that the corresponding problems are undecidable for polymer systems.

We believe that CRN and PRN bisimulation are not just useful for verifying

systems once designed, but can be used as “goalposts” to help guide the design

of CRN and PRN implementations. For example, a proof by bisimulation that

a certain small class of reaction mechanisms is sufficient to implement any of a

larger class of reactions, suggests a design strategy involving implementing that

small class of reactions. In Section 3.6 we give an example of such a proof that

any of a class of “single-locus reaction schemata”, which capture most of what

we think of as physically realistic single-step reactions, can be implemented up

to PRN bisimulation by a specific set of five reaction primitives. Finally, since

our linear PRNs are only one of many reasonable models of a polymer CRN-

like system, in Section 3.7 we show how PRN bisimulation might be defined

for other such systems, and that most or all of our theorems still apply or can

be easily translated.

3.3 Definitions

Multisets and automata

N is the set of natural numbers, {0, 1, 2, . . . }. Where A is a set, NA is the set

of multisets of elements of A, or equivalently, the set of functions from A to

N. Where S ∈ NA, X ∈ A we write S(X) for the count of X in S; this is

consistent with S as a function A → N. Addition and scalar multiplication

of multisets are defined componentwise. Comparison is also defined, S ≥ T

means ∀XS(X) ≥ T (X), and S > T if S ≥ T and S 6= T . As we are only

concerned with finite multisets, if A is infinite we use NA to mean the set of

multisets S with
∑

X∈A S(X) < ∞. We use the notation {|. . .|} for multisets,

e.g. {|X, Y |} or {|2X,Z|}.

Where Σ is a set, Σ∗ is the set of strings of 0 or more elements of Σ. ε is the

empty string.

We use finite automata, stack automata, and Turing machines for various pur-

poses. We generally assume familiarity with them, but give a brief description.

A (nondeterministic) finite automaton (FA or NFA) is M = (Q,Σ, δ, q0, F). Q

is a set of states, Σ an alphabet, δ ⊂ (Q,Σ, Q) a transition relation, q0 ∈ Q a

111

start state, F ⊂ Q a set of accepting states. (If δ is a function (Q,Σ) → Q,

then the automaton is deterministic (DFA).) The automaton accepts a string

w ∈ Σ∗ if there is a sequence q0w1q1 . . . wnqn with (qi−1, wi, qi) ∈ δ and qn ∈ F .

A language L ⊂ Σ∗ is the language accepted by a finite automaton if and only

if it is the language that matches some regular expression, and we often use

the two interchangeably [43]. We also use L(M) or L(e) to mean the languages

of an NFA or regular expression respectively, so w ∈ L(M) or w ∈ L(e) mean

w is accepted by M/matches e.

A stack machine is effectively a finite automaton with one or more last-in-first-

out memory stacks; where Γ is a stack alphabet, δ ⊂ (Q,Σ∪{ε},Γ∪{ε}, Q,Γ∪
{ε}) indicates an initial state, symbol to read from the input string, symbol

to pop off the stack, target state, and symbol to push onto the stack. Note

that any of these three may be empty (ε), i.e. a step can advance the input

string and/or pop from the stack and/or push to the stack without doing

all three. Acceptance is the same as in the NFA case. Section 3.4 and the

DNA stack machine [57] use a variation where the input string is placed on

stack 1 and each transition can either push or pop, but not both. Similarly,

a Turing machine is effectively a finite automaton with an unbounded tape

of memory, with Σ ⊂ Γ and the input string being the initial tape contents.

Here δ ⊂ (Q,Γ, Q,Γ, {L,R}) reads a symbol, writes a symbol, and moves left

or right on the tape. We usually deal with deterministic stack and Turing

machines.

Chemical Reaction Networks

Definition 3.3.1. A Chemical Reaction Network (CRN) is a pair (S,R),

where S is a set of species and R ⊂ NS × NS is a set of reactions.

We often use chemical reaction notation to write reactions: (R,P) = R→ P .

If (R,P) and (P,R) are both reactions, we write R
 P . Consistent with

chemical reaction notation, when unambiguous we often identify each species

A with the multiset {|A|}, so e.g. A+B and {|A,B|} refer to the same object.

In general CRNs, each reaction is given a positive real number as a “rate

constant”, so a reaction is a triple (R,P, k), sometimes written as R
k−→ P .

These rate constants affect the amount each reaction happens in a given time

interval and, in the stochastic model, the likelihood of a reaction happening

relative to other reactions. The theory of CRN and PRN bisimulation deals

112

with whether a thing can happen in CRNs, but not how likely it is or how

much time it takes, and for those questions the values of rate constants are

irrelevant (as long as they are all positive real numbers). Thus for the purposes

of this paper we define reactions as pairs of reactants and products without

rate constants. We further assume that no reactions R→ P with R = P exist.

We work with the stochastic model of CRN semantics, where a CRN starts

with some count of each species present, and any possible reaction may occur,

which changes the counts. Specifically, a CRN will at any point in time be

at a state S ∈ NS , a multiset of species, and for each reaction R → P where

S ≥ R the CRN can transition from state S to state S − R + P . Given

rate constants, this process is a continuous-time Markov chain with transition

rates dependent on the rate constants and the count of reactants in S; when

we only care about which transitions are possible, the previous description is

equivalent to that continuous-time Markov chain.

Consider a pair of CRNs (S,R) and (S ′,R′), where (S,R) is some abstract

CRN and (S ′,R′) a more realistic CRN intended to implement (S,R). We call

(S,R) the formal CRN and (S ′,R′) the implementation CRN. We previously

defined a concept of CRN bisimulation to check whether the implementation

CRN is, in fact, a correct implementation of the formal CRN [40]. (The cita-

tion [40] is, in fact, Chapter 2 of this thesis.) CRN bisimulation is based on an

interpretation of each implementation species as a multiset of formal species,

where the implementation is correct if (for some interpretation) from any initial

state the possible formal trajectories and interpreted implementation trajec-

tories are equivalent. An example DNA implementation with interpretation is

shown in Figure 3.2.

Definition 3.3.2. An interpretation is a function m : S ′ → NS from im-

plementation species to multisets of formal species. We extend this linearly

from species to states: m(
∑n

i=1 aiXi) =
∑n

i=1 aim(Xi). We also define a

natural interpretation of reactions : m(R′ → P ′) = m(R′) → m(P ′) unless

m(R′) = m(P ′), in which case m(R′ → P ′) = τ and we say the reaction is

trivial. For example, if m(iAB) = A + B, m(xA) = A, and m(tBC) = B + C

then m(iAB + xA) = 2A+B, and m(iAB → xA + tBC) = A+B → A+B+C.

In our previous work [40] we considered the possibility that an implementa-

tion of a reaction might have “spurious catalysts”, i.e. extra species formally

113

present in the interpretation that are not involved in or affected by the intended

formal reaction. For example, in a physical DNA-based implementation, an

extra strand might bind to some part of the reacting complex without affecting

the actual reaction mechanism. This turns out to be a major concern in even

abstract polymer systems, so we bring in that definition here.

Definition 3.3.3. Let (S,R) and (S ′,R′) be a formal and implementation

CRN with m : S ′ → NS an interpretation of implementation species, which

is extended to implementation states as in Definition 3.3.2. An interpretation

of reactions mr : R′ → (NS × NS) ∪ {τ} is consistent with m if, for each

R′ → P ′ ∈ R′:

(i) If m(R′) = m(P ′) then mr(R
′ → P ′) = τ , and

(ii) If m(R′) 6= m(P ′) then mr(R
′ → P ′) = R → P for some R,P,C ∈ NS

with m(R′) = R + C and m(P ′) = P + C.

Naturally, the natural interpretation of reactions given an interpretation m is

in fact consistent with m. In general below we abuse notation and use m to

refer to all of the interpretation of species, the extension to states, and the

chosen interpretation of reactions (natural or otherwise) consistent with the

interpretation of species.

We defined correctness of an interpretation in three ways: trajectory equiva-

lence, three conditions, and weak bisimulation. Loosely, trajectory equivalence

is what we want “correctness” to imply, the three conditions are easy to define

and check, and weak bisimulation is the well-studied theory of which CRN

bisimulation is an instance. A theorem from our previous work proves that

these three definitions are equivalent, as desired. As notation, S
r−→ means

reaction r can occur in state S, while S
r−→ T means that reaction r takes state

S to state T . In the implementation CRN, S ′
r′
=⇒ and S ′

r′
=⇒ T ′ mean the same

for a sequence of zero or more trivial reactions followed by r′. Where S ′ is an

implementation state and r is a formal reaction, S ′
r−→ T ′ means “S ′

r′−→ T ′ for

some r′ with m(r′) = r”, and similarly for S ′
r

=⇒ T ′, S ′
r−→, and S ′

r
=⇒. In the

formal CRN, S
r

=⇒ T is equivalent to S
r−→ T .

Definition 3.3.4 (Three notions of correctness). An implementation CRN

(S ′,R′) is a correct implementation of a formal CRN (S,R) if a correct inter-

pretation exists. An interpretation m : S ′ → NS is correct, in which case we

114

fuel

m(xA) = {|A|}

m(xB) = {|B|}

m(xC) = {|C|}

m(xD) = {|D|}

m(iA) = {|A|}

m(tCD) = {|C,D|}

m(w1) = ∅

A ⇀↽ A A + B → C + D

1

Figure 3.2: An example implementation CRN with interpretation. Vari-
ous DNA complexes in the implementation system are modeled as species of
the implementation CRN with interpretations as multisets of formal species.
(Complexes marked as “fuel” are assumed always present and are not mod-
eled as species in the implementation CRN [40, 66]. For example, the reaction
on the left is enumerated as xA
 iA, ignoring the two fuel complexes.) In-
terpretations of trivial (left) and nontrivial (right) reactions follow from the
interpretations of the species involved. Figure adapted from [40].

say m is a CRN bisimulation, if any of the following three sets of conditions

are true:

I Equivalence of trajectories

(i) The set of formal trajectories and interpretations of implementation

trajectories are equal.

(ii) For every implementation state S ′, the set of formal trajectories

starting from m(S ′) and interpretations of implementation trajec-

tories starting from S ′ are equal.

II Three conditions on the interpretation

(i) Atomic condition: For every formal species A, there exists an im-

plementation species xA such that m(xA) = {|A|}.
(ii) Delimiting condition: The interpretation of any implementation

reaction is either trivial or a valid formal reaction.

115

(iii) Permissive condition: If S
r−→ and m(S ′) = S, there exists an im-

plementation reaction r′ such that m(r′) = r and S ′
r′
=⇒.

III Weak bisimulation

(i) For all implementation states S ′:

if S ′
r−→ T ′, then S

r
=⇒ T where S = m(S ′) and T = m(T ′).

(ii) For all formal states S, there exists S ′ with m(S ′) = S, and for all

such S ′:

if S
r−→ T , then for some T ′, S ′

r
=⇒ T ′ and m(T ′) = T .

Our previous work proved a number of theorems about CRN bisimulation. For

this work, the relevant ones are those that do not assume the CRNs involved

are finite. In particular, the equivalence of the three definitions of correctness,

the transitivity lemma, and the modularity condition will all apply to polymer

systems.

Theorem 3.3.1. The three definitions of correctness, namely trajectory equiv-

alence, the three conditions on the interpretation, and weak bisimulation, are

equivalent.

Lemma 3.3.1. (Transitivity) If m2 is a bisimulation from (S ′′,R′′) to (S ′,R′)
and m1 is a bisimulation from (S ′,R′) to (S,R), then m = m1 ◦ m2 is a

bisimulation from (S ′,R′) to (S,R).

(It is an abuse of notation to write m1 ◦m2 when m2 takes S ′′ → NS′ and m2

takes S ′ → NS . Intuitively, we extend m1 to an interpretation on multisets

over S ′; formally, for x ∈ S ′′, m(x) =
∑

y∈S′ m2(x)(y)m1(y), where m2(x)(y)

means the count of y in m2(x) and is a scalar multiplier for the multiset m1(y).)

Definition 3.3.5 (Modularity Condition). Let m be a bisimulation from

(S ′,R′) to (S,R). Let S ′0 ⊂ S ′ and S0 ⊂ S be subsets of implementation

and formal species, respectively, where y ∈ S ′0 ⇒ m(y) ⊂ S0. We say that m

is a modular interpretation with respect to the common (implementation and

formal) species S ′0 and S0 if for any x ∈ S ′ there is a sequence of trivial reac-

tions {|x|} τ
=⇒ Y +Z where Y ⊂ S ′0 and m(Z)∩S0 = ∅, i.e. all common formal

species in the interpretation of x are extracted as common implementation

species.

116

Theorem 3.3.2. (Modularity) Let m1 be a bisimulation from (S ′1,R′1) to

(S1,R1) and m2 be a bisimulation from (S ′2,R′2) to (S2,R2) where m1 and

m2 agree on S ′1 ∩ S ′2. Let S ′ = S ′1 ∪ S ′2, R′ = R′1 ∪ R′2, S = S1 ∪ S2, and

R = R1 ∪ R2, and m : S ′ → NS equal m1 on S ′1 and m2 on S ′2. If m1 and

m2 are both respectively modular bisimulations with respect to the common im-

plementation species S ′1 ∩ S ′2 and common formal species S1 ∩ S2, then m is

a bisimulation from (S ′,R′) to (S,R), and m is also modular with respect to

S ′1 ∩ S ′2 and S1 ∩ S2.

Polymer Reaction Networks

A polymer reaction network, like a Chemical Reaction Network, will be a set

of species and a set of reactions. Unlike a typical CRN, a typical polymer

system allows arbitrarily long polymers to be made from its set of monomers,

and allows the same “reactions” to occur among monomers regardless of the

content of the rest of the polymer. When modeled as a CRN, such a system

would typically have an infinite number of both species and reactions. To

handle this, we define a Polymer Reaction Network as a finite species schema

and a finite set of reaction schemata, which will then generate the set of species

and reactions.

The species of a polymer system are, in general, arbitrarily long polymers

made up of a finite set of monomers. While polymers with branches and

loops can exist, we wished to avoid the associated complexity. As many of the

essential features we wish to study arise in linear polymer systems, we focus

on those. (We discuss further the reasons for this in Section 3.7.) Thus our

species will be strings over some finite “alphabet” or set of monomers. (We

assume that “left” and “right” are distinguished, so that the strings e.g. abc

and cba are different molecules; a b monomer in this example would have two

distinct binding sites, and the molecules differ in which site is bound to a and

which to c. Again Section 3.7 contains discussion on what can happen if this

assumption is not true.)

In a physical system, typically not every string of monomers can actually exist

as a polymer; some pairs of monomers will have the appropriate interfaces for

binding to each other, and other pairs will not. Similarly, we assume that only

some monomers can occur on the left edge of a polymer, which we represent by

`, and similarly for the right edge a; some monomers might not be stable when

117

(a)
A B

C

(b)
A A B B A

A(BB∗A)∗BC

B B B C C

(c)

∗1BA∗2 → ∗1BB∗2
(d)

A B B A B C

A B C

A B A B B B C

(e)
A B B A B C

A B B B B C

1

Figure 3.3: A PRN is defined as a set of monomers (a), a regular expression
restriction (which may be given as a compatibility relation, b), and a set of
reaction schemata (one shown in c). The species of a PRN are the set of
all strings of monomers that match the regular expression (three examples
shown in d). Reactions are obtained by substituting strings of monomers
for wildcards in the reaction schemata such that both sides of the reaction
respect the compatibility relation; for example, ∗1 = AB and ∗2 = BC in
∗1BA∗2 → ∗1BB∗2 enumerates the reaction ABBABC → ABBBBC (e).

unbound. We model this by letting the set of species to be restricted to those

that match a specified regular expression. We justify this by showing that a

more physically meaningful restriction, of only allowing certain monomers to

bind to each other and to the edges, is equivalent to a regular expression up

to interpretation.

(One might ask why it is necessary to restrict the set of possible polymers

at all. To answer that, intrinsic to our notion of CRN bisimulation is that

the behaviors of the two CRNs are equivalent from any initial state, and we

would like to have the same guarantee for PRNs. Many systems would have

some polymers that can never exist physically, but if they could exist, would

have absurd behavior that breaks the system. Either the regular expression

restriction or the local compatibility restriction can solve this problem.)

Given an infinite set of species generated from a finite set of monomers, we

would like to specify the possible reactions of those species with a finite set of

rules. A reasonable assumption is that there are a finite number of “reaction

mechanisms”, each of which depends on some features of its context but may

118

be independent of others. To use an example from the stack machine of Qian

et al. [57], a 02 (symbol 0 on stack 2) unit at the right end of a polymer can

react with a query strand Q2, removing the 02 symbol while leaving the rest

of that polymer unchanged, and releasing a signal strand, which we call 0f2 .

This reaction depends on the 02 symbol being on the end of its polymer, but

is independent of what else makes up the remainder of the polymer. We could

write this reaction mechanism as ∗102 + Q2 → ∗1 + 0f2 , where the string ∗102

means “any polymer that ends in 02”. Here ∗1 is a wildcard, which can be

filled in by any string, provided that the same wildcard is replaced by the

same string in each of its appearances; since there are infinitely many possible

strings that can replace ∗1, this reaction schema generates infinitely many

reactions. So for example, λ212021202 +Q2 → λ2120212 + 0f2 would match this

schema, but λ21202 + Q2 → λ2 + 0f2 would not. Other mechanisms can also

be described with wildcards: ∗1 + P → ∗1 + ∗1 + P models P catalytically

copying an arbitrary string, for example, while ∗1AB∗2 → ∗1∗2 models AB

removing itself from anywhere in a polymer. We thus define the reactions of

a PRN by a set of reaction schemata, each of which is a reaction over strings

including wildcards, and generate the reactions of a PRN by substitution into

the wildcards of the schemata.

As is usual in CRN notation, we will write R
 P to represent the pair of

reaction schemata R → P and P → R. This is valid if every wildcard that

appears in either R or P appears in both, and if so, observe that the schema is

truly reversible: any reaction enumerated by one direction will have its reverse

reaction enumerated by the other.

Definition 3.3.6. A Polymer Reaction Network is a triple (Σ, e,Ψ) of a

monomer set Σ, regular expression e over Σ, and set of reaction schemata

Ψ. When the reaction schemata are irrelevant, we refer to the pair (Σ, e) as

a species schema. A reaction schema ψ ∈ Ψ is a pair (R,P) of multisets of

strings over Σ ∪ ∗N where ∗N = {∗1, ∗2, . . . }, such that any ∗n that appears

in either R or P appears at least once in R. Given a PRN, it induces an

enumerated CRN (S,R). (We sometimes write S(Σ, e), R(Σ, e,Ψ).) S is the

set of all nonempty strings over Σ that match e. To enumerate R, consider a

reaction schema ψ = (R,P) ∈ Ψ, and for each ∗n that appears in ψ, choosing

a string sn and substituting sn for each appearance of ∗n, to obtain a pair of

multisets of strings over Σ. If every string obtained this way (in both R and

119

P) matches e, then the pair of multisets is a reaction of species in S; R is the

set of all such reactions.

Definition 3.3.7. An augmented PRN is a triple (Σ, e,Ψ) of a monomer set

Σ, regular expression e over Σ, and set of augmented reaction schemata Ψ.

An augmented reaction schema ψ ∈ Ψ is a reaction schema (R,P) together

with, for each ∗n that appears in the schema, a regular expression en over Σ.

The enumerated CRN (S,R) has S enumerated as usual, while R is the set

of reactions enumerated as for an unaugmented PRN with the restriction that

in a schema ψ, each string sn substituted for ∗n must match en.

We do not discuss augmented PRNs much until Section 3.6, where among

other results we show that an augmented PRN can be implemented, up to

PRN bisimulation, by a non-augmented PRN.

Consider a particular type of mechanism that restricts on which strings over

Σ are valid polymers: only some pairs of monomers have the complemen-

tary binding sites necessary to bind. We might also assume that only some

monomers are stable on the left edge of a polymer, and only some monomers

are stable on the right. We can write this as a relation ρ ⊂ Σε, where

Σε = Σ∪ {ε}, ε /∈ Σ. Then aρb means ab can bind in that order in a polymer;

similarly ερa (aρε) means a can occur on the left (right) end of a polymer.

Such a relation cannot be more powerful than a regular expression, and up

to an interpretation (as defined below), we show that it is as powerful as a

regular expression.

Definition 3.3.8. Given a monomer set Σ with notation Σε = Σ∪{ε}, ε /∈ Σ,

a compatibility relation is a relation ρ ⊂ Σε×Σε. Given a monomer set Σ and

compatibility relation ρ, the set of enumerated species S(Σ, ρ) is the set of all

w = x1 . . . xn ∈ Σ∗ such that all of ερx1, xiρxi+1, and xnρε. As we show below

that any compatibility relation can be described by a regular expression, a

PRN (augmented or not) can be given as (Σ, ρ,Ψ) instead of (Σ, e,Ψ).

Lemma 3.3.2. For any regular expression e over an alphabet Σ, there is a

monomer set Σ′, compatibility relation ρ′, and interpretation π : Σ′ → Σ

such that a string x = x1 . . . xn ∈ Σ∗ ∈ L(e) if and only if there is a species

x′ = x′1 . . . x
′
n ∈ S(Σ′, ρ′) with π(x′i) = xi for 1 ≤ i ≤ n. This construction

can be done with Σ′ = Σ, ∀xπ(x) = x if and only if e has the property that for

120

x ∈ Σ, u1, v1, u2, v2 ∈ Σ∗, if u1xv1 and u2xv2 match e then so does u1xv2; if so,

we say that e is local. Conversely, given any monomer set Σ with compatibility

relation ρ there is a local regular expression e with S(Σ, e) = S(Σ, ρ). All of

these transformations can be computed in polynomial time.

Proof. Consider a nondeterministic finite automaton M that recognizes strings

that match e. Where Q is the set of states of M , let Σ′ = Σ × Q and let

π((x, q)) = x. Let ((x1, q1), (x2, q2)) ∈ ρ′ if and only if M can transition from

state q1 to state q2 by reading x2, let (`, (x, q)) ∈ ρ′ if and only if M can

transition from its start state q0 to q by reading x, and ((x, q),a) ∈ ρ′ if

and only if q is an accept state of M . Valid polymers correspond exactly to

accepting computation paths of M on their interpretations.

If e is local, then for any states qi, qj both of which have incoming transitions

labeled x, either one of those transitions is not reachable on any string and

can be removed, or given locality, the set of strings accepted after reaching

qi and qj are the same. In that case, an equivalent automaton has qi and qj

collapsed into one state. Repeating this process constructs a finite automaton

that recognizes e where for each state x there is at most one state qx with

incoming transitions labeled x (it may be that qx = qy for x 6= y). Applying

the above construction to this new finite automaton and labeling the monomer

(x, qx) as x gives the desired (Σ, ρ).

Given (Σ, ρ), a finite automaton as above can be easily constructed: for each

monomer x a state qx, with qx
y−→ qy ⇐⇒ xρy, q0

x−→ qx ⇐⇒ ερx, and

qx accepts if and only if xρε. As above, valid polymers correspond exactly to

accepting computation paths of M .

The concept of local regular expressions is the k = 2 case of strict locally

testable languages [85], a connection which may be interesting to explore fur-

ther.

PRN Examples

Because a PRN is an infinite CRN, we can simulate a PRN using the semantics

of a stochastic CRN, such as Gillespie’s algorithm [34]. Although the number

of reactions in a PRN may be infinite, if at a given time there are a finite num-

ber of polymers each of finite length, then at that time there will be a finite

121

number of reactions possible. The only difficulty is that the set of possible re-

actions in general must be re-computed every time a new species is produced,

preventing various methods of optimizing the Gillespie algorithm that are pos-

sible for a finite CRN. However, implementing the basic Gillespie algorithm is

possible, which has been done in Visual DSD for polymer-like systems created

from DNA strand displacement networks [45]. For the examples in Figure 3.4,

we assume that each reaction schema has a rate constant, that every reaction

enumerated from that schema has that schema’s rate constant, and that the

same reaction enumerated multiple times (from different schemata and/or dif-

ferent substitutions into the same schema) has as its rate constants the sum

of schema rate constants from all of its enumerations (which is guaranteed to

be finite). Other methods of specifying rate constants are possible.

Figure 3.4 gives examples that showcase various relevant features of the Poly-

mer Reaction Network model. We discuss some of those examples in further

detail here.

Example 3.3.1 (Dynamic instability). Shown in the upper left of Figure 3.4,

this PRN has 5 monomers, Σ = {D,T, S,Df , Tf}; regular expression restric-

tion SD∗T ∗ | Df | Tf equivalent to the compatibility relation ρ shown; and 6

reaction schemata.

We give an example PRN that describes a model of dynamic instability,

inspired by but not necessarily agreeing with biological microtubules. Our

model, in English, is as follows: A polymer is a seed S followed by any number

of D monomers then any number of T monomers; those two types of monomers

can also exist free-floating in solution, represented by Df and Tf . A free Tf

monomer can attach onto the right end of a polymer as a T ; T monomers

can convert into D monomers starting from the left end of a polymer; and D

monomers can fall off of either end, but fall off slowly from the left and very

rapidly from the right. In solution, free Df converts back into Tf , to complete

the cycle.

In the compatibility relation, first observe the patterns (`, Df), (Df ,a) and

similarly (`, Tf), (Tf ,a), with no other occurences ofDf or Tf ; the result of this

is that Df and Tf can exist as monomers but can’t polymerize. Effectively, Df

and Tf are CRN species. The only other presence of ` is (`, S), so any polymer

must start with S, and given (S,a) ∈ ρ, can end immediately. Otherwise,

122

Time (s)

Po
ly

m
e
r

Le
n
g
th

Time (s)

Po
ly

m
e
r

Le
n
g
th

Time (s)

B
in

a
ry

 C
o
u
n
t

Dynamic Instability

Σ

D

T

S

Df

Tf

ρ

S S D S T S

D D D T T T

Df Df Tf Tf D

Te = SD∗T ∗ | Df | Tf
∗1 + Tf

4−→ ∗1T Df
2−→ Tf

ST∗1 80−→ SD∗1 ∗1DT∗2 80−→ ∗1DD∗2
SD∗1 1−→ S ∗1 +Df ∗1D 1000−−−→ ∗1 +Df

#S = 11 #Tf = 1000

Rock-Paper-Scissors Oscillator

Σ

R
P

S

ρ

R R R R

P P P P

S S S S

e = R∗ | P ∗ | S∗

R+ ∗1S 1−→ R+ ∗1SS R+ ∗1PP
1−→ R+ ∗1P

P + ∗1R 1−→ P + ∗1RR P + ∗1SS 1−→ P + ∗1S
S + ∗1P 1−→ S + ∗1PP S + ∗1RR

1−→ S + ∗1R

#R = #P = #S = 1

Restriction Enzymes

Σ

Si Si Si

(1 ≤ i ≤ n)

Ri L

ρ

Si Si Sj Si

Si Sj Si Si

Ri Ri L L

Ri + ∗1Si∗2 → Ri + ∗1Si + Si∗2
L+ ∗1Si + Si∗2 → L+ ∗1Si∗2

String copying (one-step model)

Σ

A

T

G

C

P

e
(A | T | G | C)∗ | P

P +A∗1 → P +A ∗1 +A∗1
P + T∗1 → P + T ∗1 +T∗1
P +G∗1 → P +G ∗1 +G∗1
P + C∗1 → P + C ∗1 +C∗1

String equality detection (one-step model)

Σ

0

1
Y

e = (0 | 1)∗ | Y

∗1 + ∗1 → Y

Turing Machine

Σ

0l 0r 1l 1r q1 q2 q3 h

e
(0l | 1l)∗(q1 | q2 | q3 | h)(0r | 1r)∗

∗1q10r∗2 → ∗11lq2∗2 ∗1q1 → ∗11lq2
∗1q11r∗2 → ∗11lh∗2
∗1q20r∗2 → ∗10lq3∗2 ∗1q2 → ∗10lq3
∗1q21r∗2 → ∗11lq2∗2
∗10lq30r∗2 → ∗1q30r1r∗2

∗10lq3 → ∗1q30r1r
∗11lq30r∗2 → ∗1q31r1r∗2

∗11lq3 → ∗1q31r1r
q30r∗1 → q30r1r∗1 q3 → q30r1r

∗10lq31r∗2 → ∗1q10r1r∗2
∗11lq31r∗2 → ∗1q11r1r∗2

q31r∗1 → q10r1r∗1

String copying (local model)

Σ

A

T

G

C

a

t

g

c

P sS

e = Σ∗

P +A∗1 → sPA∗1
P + T∗1 → sPT∗1
P +G∗1 → sPG∗1
P + C∗1 → sPC∗1

∗1PA∗2 → ∗1aAP∗2 ∗1PG∗2 → ∗1gGP∗2
∗1PT∗2 → ∗1tTP∗2 ∗1PC∗2 → ∗1cCP∗2
∗1Aa∗2 → ∗1aA∗2 ∗1At∗2 → ∗1tA∗2

· · · (×14)
∗1P → ∗1S + P ∗1sS∗2 → ∗1 + ∗2
∗1AS∗2 → ∗1SA∗2 ∗1sa∗2 → ∗1as∗2

· · · (×3)

String reverse detection (local model)

Σ

0l 0r

1l 1r

Y S

e
(0l | 1l)∗
| (0r | 1r)∗

| (0l | 1l)∗S(0r | 1r)∗

| Y

∗10l + 0r∗2 → ∗1S∗2 ∗11l + 1r∗2 → ∗1S∗2

∗10lS0r∗2 → ∗1S∗2 ∗11lS1r∗2 → ∗1S∗2

S → Y

Binary Counter

Σ

0

1
C

e = Σ∗

∗10 + C
1−→ ∗10C ∗11 + C

1−→ ∗11C

∗10C∗2 1−→ ∗11 ∗2 +C

∗11C∗2 1−→ ∗1C0∗2
C∗2 1−→ 1 ∗2 +C

#0 = 1 #C = 1

1Figure 3.4: These example Polymer Reaction Networks demonstrate various
features of the PRN model. Shown for each PRN is the monomer set Σ; the
regular expression e describing the set of polymers and/or, if e is local, the
equivalent compatibility relation ρ; and the reaction schemata. Additionally
for some PRNs, rate constants are assigned to each reaction schema and a
sample stochastic simulation, as described above, from the given initial con-
ditions is shown. Which of these PRNs are useful and/or interesting is left as
an exercise to the reader.

123

(S,D), (D,D), (D,T), (T, T), and (T,a) allow for one or more D then one

or more T , while (S, T) and (D,a) allow the possibility of 0 D’s or 0 T ’s,

respectively. Thus the set of possible polymers is, as claimed in Figure 3.4,

represented by the regular expression SD∗T ∗ | Df | Tf .

The reaction schemata then correspond to the above description of the system’s

behavior; for example, ∗1+Tf → ∗1T is a free Tf attaching to the right edge of

a polymer, while ∗1D → ∗1 +Df is a D falling off the right edge. Recall that

in enumerating reactions, a string can only be substituted for a given wildcard

if doing so respects ρ in both the reactants and the products. Thus in the

reaction schema ∗1 + Tf → ∗1T , while for example ∗1 = Df would make valid

reactants Df + Tf , the product DfT does not respect ρ, and Df + Tf → DfT

is not a reaction in this PRN. (This reaction schema is the only one in this

figure for which this consideration is relevant. Replacing ∗1 + Tf → ∗1T with

either the one schema S ∗1 +Tf → S ∗1 T or the three schemata S+Tf → ST ,

∗1D+Tf → ∗1DT , and ∗1T +Tf → ∗1TT would give the same set of reactions

without taking advantage of this technicality, and the generalization of this is

discussed further elsewhere in this paper.)

The graph shown is from a Mathematica simulation of this PRN as discussed

previously, from an initial state with 11 copies of (the length-1 polymer) S

and 1000 copies of Tf . Mathematica was instructed to track the length of one

individual S polymer, and the plot shows that one polymer’s length over time.

Example 3.3.2 (Copy-tolerant Turing machine). Shown in the middle right

of Figure 3.4, this PRN has 8 monomers; a regular expression restriction (0l |
1l)
∗(q1 | q2 | q3 | h)(0r | 1r)∗; and 15 reaction schemata corresponding to the 6

transition rules of a particular 3-state Turing machine.

The PRN shown in Figure 3.4 simulates a particular 3-state Busy Beaver Tur-

ing machine with transition rules shown in Table 3.1. This Turing machine,

from state q1 on a blank (all-0) initial tape, halts after 14 steps with 6 1’s on

the tape [48]. Similarly, in the PRN the polymer q1 will, after 14 unimolec-

ular reactions, become the polymer 1l1l1lh1r1r1r (and any polymer with q1

preceded by any number of 0l and followed by any number of 0r will have a

similar trajectory).

This PRN is an instance of a general method of simulating Turing machines

with linear PRNs, using unimolecular reaction schemata corresponding to

124

q1 q2 q3
0 q2,1,R q3,0,R q3,1,L
1 h,1,R q2,1,R q1,1,L

Table 3.1: The transition rules of the Turing machine whose polymer imple-
mentation is shown in Figure 3.4.

the transition rules of the Turing machine; for example, the reaction schema

∗1q21r∗2 → ∗11lq2∗2 corresponds to the rule “in state 2, reading 1, write 1,

move right, and transition to state 2”. Transition rules reading a 0 require

an additional reaction schema for the right edge of the tape, assuming blank

spaces are treated as 0, and transition rules moving left require multiple reac-

tion schemata for a 0, 1, or left edge of the tape to the left of the current square;

this causes the 6 transition rules of the 3-state, 2-symbol Turing machine to

require 15 reaction schemata.

A state of a Turing machine tape is any number of tape symbols, followed by

a Turing machine head state, followed by any number of tape symbols; for a 2-

symbol 3-state Turing machine this can be described by the regular expression

(0 | 1)∗(q1 | q2 | q3 | h)(0 | 1)∗, but this regular expression is not local and, if we

wanted to physically implement the restriction, we could not do so using only

nearest-neighbor interactions. Applying the construction from Lemma 3.3.2

requires 0 and 1 to each have two monomers representing them, leading to the

regular expression (0l | 1l)∗(q1 | q2 | q3 | h)(0r | 1r)∗ shown in Figure 3.4. (One

could imagine some creative methods to physically implement the nonlocal

regular expression, such as having a qi monomer destabilize 0 and 1 monomers

to its right and left in different ways. We would argue that such creative

solutions are best modeled by treating “0 destabilized by a q on its right” and

“0 destabilized by a q on its left” as distinct monomers, since they would be

physically distinct and have different behaviors; and this is equivalent to the

0l, 0r model.) As this regular expression is local, it can be implemented by a

compatibility relation ρ containing pairs (`, 0l), (`, 1l); (a, b) for a, b ∈ {0l, 1l};
(a, q) for a ∈ {0l, 1l}, q ∈ {q1, q2, q3, h}; (q, a) for q ∈ {q1, q2, q3, h}, a ∈ {0r, 1r};
(a, b) for a, b ∈ {0r, 1r}; (0r,a), and (1r,a). The generalization to a Turing

machine with any number of states and/or tape symbols is obvious.

We previously mentioned that well-mixed CRNs can simulate Turing machines

with arbitrarily small probability of error but using species counts exponential

in the space of the Turing machine [65], and provably cannot simulate Turing

125

machines deterministically [1, 16, 47]. Polymer systems such as Qian et al.’s

stack machine [57] and Cardelli et al.’s Biochemical Ground Form (BGF) [9]

are already known to be able to simulate Turing machines deterministically, in

some cases with no time or space slowdown. The PRN shown in Figure 3.4, if it

can be implemented, has a feature that the DNA stack machine and the BGF

register machine do not: because a Turing machine tape is encoded in a single

polymer and its transitions are all unimolecular reactions, multiple copies of

the Turing machine can coexist in the same solution without interfering with

each other.

Example 3.3.3 (String copying). The middle left and lower left of Figure 3.4

show respectively a one-step nonlocal and a multi-step local model of string

copying with PRNs. The one-step model has monomers Σ = {A, T,G,C, P},
local regular expression restriction (A | T | G | C)∗ | P , and four reaction

schemata to copy, in one step catalyzed by P , any string that starts with A,

T , G, or C. The local model takes a string made of monomers A, T,G,C and

transcribes the corresponding string of a, t, g, c, using monomers P , s, and S

to copy one monomer at a time and eventually split the two strings.

The string copying PRNs illustrate an interesting feature of wildcards using

models inspired by, but not accurate to the mechanisms of, DNA and RNA

polymerases. The one-step model can be thought of as an abstraction of the

result of DNA polymerase: where P exists only as a monomer and any string

over A, T,G,C is possible under e, the PRN has four reaction schemata of

the form P + x∗1 → P + x ∗1 +x∗1 for x ∈ {A, T,G,C}; note that given

e, this implies that ∗1 must be made of A, T, C,G. (The reaction schema

P + ∗1 → P + ∗1 + ∗1 would have allowed the reaction 2P → 3P , which is

certainly not what we wanted and is known to go to infinity in finite time.)

Because when enumerating reactions from a schema, each instance of a given

wildcard is substituted by the same string, the result of these schemata is to

copy any string made of A, T,G,C, catalyzed by P . However, the idea that

a second copy of an arbitrarily long string can be produced in one step is

not physically realistic, and while this PRN may represent the result of DNA

polymerase, it certainly does not represent its mechanism.

The local model of string copying is a more realistic PRN that accomplishes

the result of RNA polymerase, i.e. given a string over A, T,G,C it creates

an additional copy of the corresponding string over a, t, g, c, catalyzed by P .

126

(While this is a more physically realistic mechanism with the same result as

RNA polymerase, it is not in fact the mechanism of RNA polymerase, because

that mechanism cannot be modeled with only linear polymers.) This concept

of local mechanisms as “physically realistic” in a sense that many exotic uses

of wildcards are not, is formalized in the concept of single-locus PRNs in

Section 3.6.

PRN Bisimulation

Because a PRN is an infinite CRN, we can extend the definition of CRN

bisimulation from CRNs to PRNs, but doing so requires an infinite interpreta-

tion. To finitely express an infinite interpretation, we build an interpretation

of species from an interpretation of monomers. The obvious thing to do is to

have the interpretation of a polymer be the concatenation of interpretations

of its monomers, but that would not allow interpreting one implementation

polymer as a multiset of formal polymers (as is possible in the finite case). We

therefore require that our interpretation be built from two finite functions, µ

and π, defined on the implementation monomers. Here π(x) is the contribu-

tion of the monomer x to the polymer it is contained in and µ(x) is a multiset

of additional, free-floating species represented by x. We sometimes say that

x polymerizes as π(x) and carries µ(x). Because in PRNs every species is

thought of as a polymer, even monomers that never “polymerize”, in such

cases we will typically encode the interpretation in π and leave µ empty.

Definition 3.3.9. Given a formal PRN (Σ, e,Ψ) and implementation PRN

(Σ′, e′,Ψ′), a polymer interpretation is a pair (π, µ) of functions π : Σ′ → (Σ∪
{+})∗ and µ : Σ′ → NS . These functions induce an interpretation m : S ′ → NS

defined by

m(x1 . . . xn) = π(x1) . . . π(xn) +
n∑
i=1

µ(xi).

The symbol + is interpreted as breaking a polymer, matching the notation

for separate CRN species: if the π-interpretation of a polymer reads as e.g.

AB + CD, then it is interpreted as separate species AB and CD (plus its µ-

interpretation). For example, if π(x) = AB+CD and µ(x) = EF +2GH then

m(xx) = AB + CDAB + CD + 2EF + 4GH. If an implementation species x

carries nothing, µ(x) = ∅, and if it polymerizes as nothing, π(x) = ε, the empty

string. Note that an empty-string polymer is not considered to be a species,

127

(a) x

π(x)

µ(x)

(b)
l

L

∅

c1

ε

AB +X

r1

RR

Y

LRR + AB +X + Y

(c) α

A

∅

β′

B

C

α

A

∅

β

B

∅

γ

C

∅

AB + C → ABC

(d)

∗1
β′

B

C

∗2 ∗1
β

B

∅

γ

C

∅
∗2

∗1B ∗2 +C → ∗1BC∗2

1

Figure 3.5: Features of a polymer interpretation. An implementation monomer
x has a pair of interpretations π(x) and µ(x) (a). An implementation polymer
(e.g. lc1r1) is interpreted by concatenating π-interpretations and adding µ-
interpretations (b). Given an interpretation of species, interpretations of states
and reactions (c) follow as in CRN bisimulation [40], Definitions 3.3.2 and 3.3.3.
Intuitively, interpretations of reaction schemata can follow from interpretations
of monomers (d, see also Theorem 3.3.3), but this does not always work as
expected.

so if all π(xi) = ε then m(x1 . . . xn) =
∑n

i=1 µ(xi). As in CRN bisimulation

it is possible for a given m(x1 . . . xn) = ∅, in this case if all π(xi) = ε and all

µ(xi) = ∅.

If this interpretation preserves validity of species (which is not necessarily

true if the compatibility relations are incompatible), adapting the definition

of bisimulation is straightforward with one snag. Consider an interpretation

where π(x) = X and µ(x) = Y while π(z) = Z and µ(z) = ∅, in which

case the reaction scheme ∗1x∗2 → ∗1z∗2 intuitively should be interpreted as

∗1X ∗2 +Y → ∗1Z∗2. However, substituting x for ∗1 and ε for ∗2 yields

xx → xz, which would be interpreted as XX + 2Y → XZ + Y , which can-

not be obtained by substituting any two strings into the given formal reaction

scheme. Avoiding this requires using the spurious-catalyst extension of CRN

bisimulation from [40], in which an implementation reaction whose interpre-

tation has catalysts can be labeled as a formal reaction without some or all

of those catalysts. Naturally, we assume any species present in µ of some

monomer in a wildcard are spurious catalysts.

128

An interpretation can “preserve validity of species” in either of two ways. The

obvious way is if x ∈ S ′ guarantees m(x) ⊂ S:

Definition 3.3.10. Let (Σ, e) and (Σ′, e′) be a formal and implementation

species specification, with π-interpretation π : Σ′ → (Σ ∪ {+})∗. Introduce

notation e+ = ε ∪ (e(+e)∗), i.e. a string matches e+ if it is empty or a +-

separated list of strings that each match e. We say that π satisfies the Com-

patibility Condition if x1 . . . xn matching e′ implies π(x1) . . . π(xn) ∈ L(e+).

In this case, given that any µ by assumption is a function Σ′ → NS , the induced

m will in fact be a CRN interpretation S ′ → NS as desired, and asking whether

m is a CRN bisimulation is well-defined.

If π does not satisfy the compatibility condition, the structure of the imple-

mentation reaction schemata may still make the system well-behaved. For

example, consider the proposed DNA implementation of Qian and Winfree’s

Surface CRNs [56] in the one-dimensional case as an implementation of a given

PRN. The DNA implementation has no restrictions on which signals can be

adjacent, so physically e′ = (Σ′)∗. If e is nontrivial and π maps onto all

formal monomers, there will be stable implementation molecules interpreted

as formally invalid polymers. However, an implementation could be designed

such that any reaction involving only valid polymers will produce only valid

polymers; thus invalid states are not reachable from valid initial states. We

capture this concept as follows:

Definition 3.3.11. Let (Σ, e) be a formal species specification and (Σ′, e′,Ψ′)

an implementation PRN, with π-interpretation π : Σ′ → (Σ ∪ {+}). We

say that π satisfies the Consistency Condition if, for any reaction R′ → P ′

enumerated from a schema in Ψ, if all x ∈ R′ has π(x) ∈ L(e+) then all y ∈ P ′
has π(y) ∈ L(e+).

If (π, µ) is a polymer interpretation where π satisfies the consistency condi-

tion, then let S ′0 = {x ∈ S ′ | π(x) ∈ L(e+)}. Naturally, m restricted to S ′0 will

be a function S ′0 → NS ; the consistency condition implies that “restricting”

the enumerated implementation CRN to S ′0 is well-defined. That is, the CRN

(S ′0,R′0) where R′0 is the set of reactions with all reactants and products in S ′0
contains every reaction with all reactants in S ′0. Then m is a CRN interpre-

tation from that CRN to the enumerated formal CRN, and asking whether m

is a CRN bisimulation is well-defined.

129

Definition 3.3.12. Let (Σ, e,Ψ) and (Σ′, e′,Ψ′) be a formal and implementa-

tion PRN, with polymer interpretation (π, µ) and induced CRN interpretation

m. Let S = S(Σ, e) and S ′ = S(Σ′, e′).

We say (π, µ) is a PRN bisimulation if π satisfies the compatibility condition

and m is a CRN bisimulation. We say (π, µ) is a PRN bisimulation up to

reachability (from valid initial states) if π satisfies the consistency condition

and m (restricted to S ′0 as defined above) is a CRN bisimulation.

In our previous work we proved that CRN bisimulation was equivalent to up-

to-interpretation trajectory equivalence [40], and that result holds for infinite

CRNs and thus for PRNs. Because of this, we use CRN bisimulation (with

either the compatibility condition or the consistency condition) as the defi-

nition of PRN bisimulation, despite the fact that the atomic, delimiting, and

permissive conditions now each refer to an infinite set of objects. We could, in-

stead, have defined similar conditions on the polymer structure of a PRN, and

showed that those conditions imply the three conditions of CRN bisimulation,

just as a polymer interpretation induces a CRN interpretation. Such condi-

tions would capture most of the typical PRN implementations, while missing

some edge cases that nevertheless satisfy CRN bisimulation. Although not the

definition of PRN bisimulation, one such set of sufficient conditions is useful

for proving that common implementations satisfy PRN bisimulation.

Theorem 3.3.3. Let (Σ, e,Ψ) and (Σ′, e′,Ψ′) be a formal and implementation

PRN with polymer interpretation (π, µ). Assume either π satisfies the com-

patibility condition and m is the induced CRN interpretation, or the system

satisfies the consistency condition and m is the CRN interpretation restricted

to formally valid species and reactions. If (π, µ) satisfies the following three

conditions, then m is a CRN bisimulation (and thus a PRN bisimulation or

PRN bisimulation up to reachability depending on whether it satisfies the com-

patibility or consistency condition):

1. Polymer Atomic Condition: For each formal monomer X there is a

canonical implementation monomer x0 with π(x0) = X and µ(x0) = ∅.
e and e′ are local and equivalent to compatibility relations ρ and ρ′ respec-

tively, where for all formal monomers X, Y with canonical implementa-

tion monomers x0, y0 respectively, (X, Y) ∈ ρ⇒ (x0, y0) ∈ ρ′ (including

X = ` = x0 or Y = a = y0).

130

2. Polymer Delimiting Condition: For each reaction schema in the imple-

mentation PRN, each wildcard appears the same number of times in the

products as it does in the reactants, and syntactically replacing each non-

wildcard monomer with its π and µ either produces equal expressions for

the reactants and products or produces a formal reaction schema.

3. m as a CRN interpretation satisfies the permissive condition.

Proof. The polymer atomic condition implies the atomic condition: any for-

mal polymer can be built up from its corresponding implementation monomers.

The polymer delimiting condition implies the delimiting condition: any imple-

mentation reaction enumerated from a schema will be interpreted as trivial or

as a formal reaction enumerated from the “syntactically interpreted” formal

reaction schema. (This last statement requires either the compatibility con-

dition to imply that the resulting formal reaction is valid, or the consistency

condition for an implementation reaction in the restricted subsystem to imply

the same.)

Note that the above conditions are sufficient, but not necessary, for PRN

bisimulation. In some sense they describe a “natural” or “polymer” way to

satisfy the conditions of PRN bisimulation. However, a pair of PRNs with a

compatible or consistent interpretation may happen to satisfy the conditions of

CRN bisimulation, and thus PRN bisimulation, without satisfying the stronger

polymer conditions.

3.4 Verifying the DNA Stack Machine

We show the use of the Polymer Reaction Network model, and PRN bisim-

ulation, by analyzing an existing DNA strand displacement system that uses

polymers. Specifically, we analyze the system proposed by Qian et al. to im-

plement arbitrary stack machines using DNA strand displacement [57]. This

system uses a reversible addition primitive to add units representing stack

symbols onto a growing stack, and uses a systematic CRN implementation

for state transitions. The reversible addition primitive can grow polymers of

unbounded length (as desired for a stack machine), and thus the system can-

not be modeled as a Chemical Reaction Network. Modelling the DNA stack

machine as a Polymer Reaction Network allows us to check whether the strand

displacement system is a correct bisimulation of an abstract stack machine.

131

We show that the obvious interpretation on the DNA stack machine, with a

correction for irreversible reactions, is a bisimulation between the DNA strand

displacement system and the set of abstract reactions discussed in the original

stack machine paper.

To prove that two systems are (or are not) equivalent using PRN bisimulation,

we need to find an interpretation (or consider all potential interpretations for

the negative case), check the compatibility or consistency condition (the stack

machine as we model it will satisfy the compatibility condition), then check

the atomic, delimiting, and permissive conditions. All of that assumes the two

systems are a formal and implementation PRN; if not, we need to model each

system as a linear PRN. For the stack machine, the formal system is a linear

PRN and the implementation a DSD system; we use reaction enumeration as

described below to describe it as an implementation PRN. To take advantage

of the modularity condition from our previous work [40], we will add an ad-

ditional step of dividing both systems into modules before checking the three

conditions of CRN bisimulation. Thus the steps are as follows: enumerate the

reaction schemata of the DSD system as an implementation PRN; construct

an interpretation; check the compatibility condition; modularize; check the

atomic, delimiting, and permissive conditions for each module.

When enumerating a DSD system without polymers as a CRN, every new

DNA complex is a new species in the CRN. With polymers, on the other

hand, most DNA complexes are polymers made out of monomer subunits,

which requires identifying which patterns of DNA strands are the monomers.

The naive approach, of having each strand be a monomer, would work with

branched polymers, but fails in our linear polymer model given strands with

more than two binding domains. We do not currently have a way to auto-

mate this. Therefore we describe below, and in Figures 3.6 and 3.7, which

DNA complexes we choose as monomers in Σ′, after which e′ is a local regular

expression generated from a ρ′ where monomer complexes can bind if they

have complementary long domains and Ψ′ is determined by the enumerated

set of strand displacement reactions. Even given a set of monomers, current

reaction enumeration algorithms cannot automatically enumerate polymer re-

action schemata, although this is potentially a useful area for future work.

Instead we given an implementation PRN below that we claim is the result

of applying Peppercorn’s condensed semantics [36] to the DSD stack machine

132

[57], and invite the reader to confirm that this is the case. For the six-state

three-stack machine in Figure 4(a) of Qian et al. [57], the resulting implemen-

tation PRN is (Σ′, e′,Ψ′) as follows:

Σ′ = { 01, 0
f
1 , 11, 1

f
1 , λ1, λ

f
1 , 02, 0

f
2 , 12, 1

f
2 , λ2, λ

f
2 , 03, 0

f
3 , 13, 1

f
3 , λ3, λ

f
3 ,

0+
1 , 0

−
1 , 1

+
1 , 1

−
1 , λ

+
1 , λ

−
1 , 0

+
2 , 0

−
2 , 1

+
2 , 1

−
2 , λ

+
2 , λ

−
2 , 0

+
3 , 0

−
3 , 1

+
3 , 1

−
3 , λ

+
3 , λ

−
3 ,

Q,Q1, Q2, Q3, I
Q
1 , I

Q
2 , I

Q
3 , S1, S2, S3, S4, S5, S6,

I1012Q1 , I1012Q2 , I1012Q3 , I1012Q4 , I1114Q1 , I1114Q2 , I1114Q3 , I1114Q4 ,

I1λ161 , I1λ162 , I1λ163 , I1λ164 ,

I2Q302
1 , I2Q302

2 , I2Q302
3 , I2Q302

4 , I3Q103
1 , I3Q103

2 , I3Q103
3 , I3Q103

4 ,

I4Q512
1 , I4Q512

2 , I4Q512
3 , I4Q512

4 , I5Q113
1 , I5Q113

2 , I5Q113
3 , I5Q113

4 ,

w1, w2, w1012Q, w1114Q, w1λ16, w2Q302, w3Q103, w4Q512, w5Q113}

e′ = λ1(01 | 11)
∗(0+

1 | 0−1 | 1+
1 | 1−1 | ε) | λ+1 | λ−1 | 0f1 | 1f1 | λf1

| λ2(02 | 12)
∗(0+

2 | 0−2 | 1+
2 | 1−2 | ε) | λ+2 | λ−2 | 0f2 | 1f2 | λf2

| λ3(03 | 13)
∗(0+

3 | 0−3 | 1+
3 | 1−3 | ε) | λ+3 | λ−3 | 0f3 | 1f3 | λf3

| Q | Q1 | Q2 | Q3 | IQ1 | IQ2 | IQ3 | S1 | S2 | S3 | S4 | S5 | S6

| I1012Q1 | I1012Q2 | I1012Q3 | I1012Q4 | I1114Q1 | I1114Q2 | I1114Q3 | I1114Q4

| I1λ161 | I1λ162 | I1λ163 | I1λ164

| I2Q302
1 | I2Q302

2 | I2Q302
3 | I2Q302

4 | I3Q103
1 | I3Q103

2 | I3Q103
3 | I3Q103

4

| I4Q512
1 | I4Q512

2 | I4Q512
3 | I4Q512

4 | I5Q113
1 | I5Q113

2 | I5Q113
3 | I5Q113

4

| w1 | w2 | w1012Q | w1114Q | w1λ16 | w2Q302 | w3Q103 | w4Q512 | w5Q113

We give the reaction schemata in Ψ′ in multiple groups based on their intended

function. The reaction schemata that implement pushing and popping onto

the stack are, for each stack i ∈ {1, 2, 3} and symbol x ∈ {0, 1}, where λ

indicates the bottom of the stack:

133

F1,x

+x*P* T* T*T +Q

P T +x T

F2
P T

T +x

-x

F3,x
+x T

+x*P* T* T*T +Q

+x TPT*

+x*P* T* T*T +Q

PT* T +x

-x

+x*P* T* T*T +Q

PT* T +Q* PT*T +x

-x

+⊥*T* T* +Q

+⊥ T

T +⊥
-⊥

F3,⊥
+⊥ T

+⊥*T* T* +Q

T +⊥

-⊥

F4
T +Q* PT*

T+Q
-Q

+⊥*T* T* +Q

T +Q* PT*T +⊥

-⊥

T+Q
-Q

λ

x ∈ {0 ,1 }

x

Q

xf

λf

λ
-

x-

x+

λ+

i i
i ∈ {1,2,3}

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

λ

λ+

λ
-

λf xf

?

?

Q

x x-

x+

⇒

Figure 3.6: Choice of monomers in Qian et al.’s DNA stack machine [57].

∗1
 ∗1x−i (3.1)

∗1x−i + xfi
 ∗1x+i (3.2)

∗1x+i
 ∗1xi +Qi (3.3)

λ−i + λfi
 λ+i (3.4)

λ+i
 λi +Qi (3.5)

For each stack i, interchangeability of Q is implemented by:

Qi
 IQi (3.6)

IQi
 Q (3.7)

The irreversible stack machine transitions as shown in Figure 1 of Qian et al.

[57] are incorrect according to CRN bisimulation, as discussed in our previous

work: releasing the output species before the first irreversible step allows the

reaction to reverse itself, producing a small probability of formally incorrect

pathways [40]. As one would expect, this would be incorrect according to PRN

bisimulation as well. Qian and Winfree have come up with a corrected version

of the DSD mechanism (unpublished), and we give the reaction enumeration

of the corrected version below. The stack machine transitions of the form

134

Si +A→ Sj +B, where A and B are either free stack symbols xfk or Q (which

correspond to the seven classes of I iAjB monomers), are implemented by:

Si
 I iAjB1 (3.8)

I iAjB1 + A
 I iAjB2 (3.9)

I iAjB2 → I iAjB3 + Sj + w1 (3.10)

I iAjB3
 I iAjB4 +B (3.11)

I iAjB3 → wiAjB + w2 (3.12)

The formal PRN that describes the stack machine is given in Figure 4(d) of

Qian et al. [57]. Adapted to our notation, the formal PRN is (Σ, e,Ψ) as

follows:

Σ = { 01, 0
f
1 , 11, 1

f
1 , λ1, λ

f
1 , λ

−
1 , 02, 0

f
2 , 12, 1

f
2 , λ2, λ

f
2 , λ

−
2 , 03, 0

f
3 , 13, 1

f
3 , λ3, λ

f
3 , λ

−
3 ,

Q,Q1, Q2, Q3, S1, S2, S3, S4, S5, S6}

e = λ1(01 | 11)
∗ | λ2(02 | 12)

∗ | λ3(03 | 13)
∗

| 0f1 | 1f1 | λf1 | λ−1 | 0f2 | 1f2 | λf2 | λ−2 | 0f3 | 1f3 | λf3 | λ−3
| Q | Q1 | Q2 | Q3 | S1 | S2 | S3 | S4 | S5 | S6

With Ψ containing the reaction schemata:

135

S1 + 0f1 → S2 +Q

S1 + 1f1 → S4 +Q

S1 + λf1 → S6 + λf1

S2 +Q→ S3 + 0f2

S3 +Q→ S1 + 0f3

S4 +Q→ S5 + 1f2

S5 +Q→ S1 + 1f3

Q
 Qi | i ∈ {1, 2, 3}

∗1 + xfi
 ∗1xi +Qi | x ∈ {0, 1}, i ∈ {1, 2, 3}
λ−i + λfi
 λi +Qi | i ∈ {1, 2, 3}

Theorem 3.4.1. There exists a polymer interpretation (π, µ), from the im-

plementation PRN as described above to the formal PRN as described above,

that is a PRN bisimulation.

The proof of Theorem 3.4.1, including constructing π and µ, is the remainder

of this section. While the proof is given as though for this specific stack

machine, it is in fact general and should apply to any instance of the DNA

stack machine [57].

Given the formal and implementation PRNs, since we are proving that the

implementation is correct, the next step is to construct an interpretation.

For the stack machine, as with most engineered implementation systems, the

rationale behind the construction suggests a natural interpretation which, if

the implementation is correct at all, will be a valid PRN bisimulation. When

we give this interpretation, recall the notation m(x) = (A;B) as a shorthand

for π(x) = A, µ(x) = B where x is an implementation monomer, A a string

of formal monomers, and B a multiset of formal species. Here the natural

interpretation is as follows:

1. A monomer x that appears in both the formal and implementation PRNs,

such as x = S3 or x = 02, has m(x) = (x; ∅). Note that this covers all

formal monomers.

136

F1,x

+x*P* T* T*T +Q

P T +x T

F2
P T

T +x

-x

F3,x
+x T

PT*

+x*P* T* T*T +Q

+x TPT*

+x*P* T* T*T +Q

PT* T +x

-x

F4

+x*P* T* T*T +Q

PT* T +Q* PT*T +x

-x

T+Q
-Q

+⊥*T* T* +Q

+⊥ T

T +⊥
-⊥

F3,⊥
+⊥ T

+⊥*T* T* +Q

T +⊥

-⊥

F4
T +Q* PT*

T+Q
-Q

+⊥*T* T* +Q

T +Q* PT*T +⊥

-⊥

T +Q* PT*

T+Q
-Q

T+Q
-Q

-*1 ⇌ *1 x

-λ + λ ⇌ λf +

*1 x + x ⇌ *1 xf- +

λ ⇌ λ + Q+

*1 x ⇌ *1 x + Q+

∅

∅

Q

∅

Q
∅∅

λ

∅

λ

∅

λ+

λ
-

λf xfQ

x x-

x+

λ

λ
-

λf xfQ

x ε
x

Figure 3.7: Enumeration of reaction schemata and interpretation of the
monomers in Qian et al.’s DNA stack machine [57] as enumerated in Fig-
ure 3.6.

2. For monomers involved in pushing and popping from the stack, for each

stack i ∈ {1, 2, 3}, m(s−i) = (ε; ∅) for s ∈ {0, 1} and m(s+i) = (si;Q) for

s ∈ {0, 1, λ}. (The case m(λ−i) = (λ−i ; ∅) is covered as λ−i is a formal

monomer.)

3. For intermediates I iAjBk in the stack machine transitions, implementing

Si + A → Sj + B for A,B ∈ {xf1 , xf2 , xf3 , Q}, we have π(I iAjBk) = ε

while µ(I iAjB1) = Si, µ(I iAjB2) = Si+A, µ(I iAjB3) = B, and µ(I iAjB4) = ∅.
Similarly for the interchange of Q, m(IQi) = (ε;Q). Each m(w...) = (ε; ∅).

Given an interpretation, we check the compatibility condition or the consis-

tency condition to see if CRN bisimulation is even definable. In this case,

the stronger, compatibility condition holds: the π-interpretation of any valid

implementation species is a valid formal species or ε. Start with e′, which de-

scribes all valid implementation species: 3 regular expressions describing stack

polymers, and a number of species that exist as monomers (i.e., length-1 poly-

mers). The stack polymer expressions are of the form λi(0i | 1i)∗(0+
i | 0−i | 1+

i |
1−i | ε); since π(0+

i) = π(0i) = 0i, π(1+
i) = π(1i) = 1i, π(0−i) = π(1−i) = ε, and

π(λi) = λi, any implementation polymer matching this expression will have its

π-interpretation match the λi(0i | 1i)∗ subexpression of e, and thus be a valid

formal polymer. The monomers are I-type species whose π-interpretation is

137

ε; formal species Q, Qi, Si, x
f
i , and λ−i whose π-interpretations are themselves

and which appear in e as valid formal length-1 polymers; and the λ+i species

whose π-interpretation λi matches the λi(0i | 1i)
∗ subexpression of ρ. This

covers all cases in e′, proving that the compatibility condition holds.

Given the compatibility condition, the induced interpretation m (see Defini-

tion 3.3.9) is in fact a CRN interpretation, and is a PRN bisimulation if and

only if it is a CRN bisimulation (Definition 3.3.12). Thus the last thing we

need to do is show that m satisfies the atomic, delimiting, and permissive

conditions (Definition 3.3.4.II). Again, for a PRN treated as an infinite CRN,

an algorithmic way of doing this is generally infeasible; in fact we will show

in the next section that checking the permissive condition in the general case

for linear PRNs is undecidable. To check an engineered system, one would

typically rely on the intent of the designers being formalizable into a proof of

correctness. The stack machine was designed in subsystems, each of which cor-

rectly implements one formal reaction or formal reaction schema, which when

combined form a correct implementation of the formal PRN. The modularity

condition from Theorem 3.3.2 covers exactly this case: we will only need to

prove each module correct, and the correctness of the whole system will follow.

Thus, the next step is to divide the enumerated formal and implementation

CRNs into modules.

To specify each module we must specify a set of formal species, formal re-

actions, implementation species, implementation reactions, and sets of “com-

mon” formal and implementation species, each subsets of their respective sets

of species. The modularity condition expects each module to have an interpre-

tation; since we already have m defined, each module’s interpretation is just m

restricted to its implementation species. For each stack i, we have one module

consisting of: all formal species matching λi(0i | 1i)
∗ | λ−i | λfi | 0fi | 1fi | Qi,

the formal reaction λ−i + λfi
 λi + Qi, and all formal reactions enumerated

from the two reaction schemata ∗1 + xfi
 ∗1xi + Qi | x ∈ {0, 1} (recall that

a reversible reaction schema is a shorthand for two irreversible schemata); all

implementation species matching λi(0i | 1i)
∗(0+

i | 0−i | 1+
i | 1−i | ε) | λ+i | λ−i |

0fi | 1fi | λfi | Qi, and all implementation reactions enumerated from reaction

schemata of type (1) through (5) for stack i; and the common formal species

being all formal species, while the common implementation species are all those

with the same name as a formal species. For each stack i, we have a separate

138

module containing formal species Q and Qi and reactions Q
 Qi; implemen-

tation species Q, Qi, and IQi and reactions of type (6) and (7) for stack i;

and {Q,Qi} is again both the set of common formal species and of common

implementation species. For each formal reaction of the form Si+A→ Sj+B,

we have a module consisting of those formal species and that formal reaction;

implementation species Si, Sj, A, B, and all I iAjBk species, and reactions of

type (8) through (11) for this formal reaction; and again, all formal species

are common and all implementation species with the same name as a formal

species are common. In this three-stack, six-state, seven-transition stack ma-

chine, this gives 13 modules, shown in Figure 3.8; we prove below that each of

those 13 modules satisfies the atomic, delimiting, permissive, and modularity

conditions.

Recall the polymer atomic and polymer delimiting conditions from Theo-

rem 3.3.3. The argument that the whole system satisfies the atomic condition

starts similarly to the polymer atomic condition: each formal monomer x has

an implementation monomer with the same name and with m(x) = (x; ∅).
Then observing that e is a subexpression of e′, any formal species w ∈ S (i.e.,

string matching e) will also match e′, thus w ∈ S ′ and will have m(w) = {|w|}.
Because each module, for each formal species it contains, also contains the

implementation species with the same name, each module satisfies the atomic

condition.

The whole system satisfies the polymer delimiting condition, which we prove by

going through the types of implementation reaction schemata. The reader can

verify that schemata of types (1) and (3), and reactions of types (5), (7), (8),

(9), and (11) are all trivial (for example, type (3) is syntactically interpreted

as ∗1xi + Qi
 ∗1xi + Qi); schemata of type (2) are syntactically interpreted

as ∗1 + xfi
 ∗1xi + Qi; reactions of type (4) as λ−i + λfi
 λi + Qi; type (6)

as Qi
 Q; and type (10) as the appropriate Si + A → Sj + B. All of those

nontrivial syntactically interpreted reactions or schemata appear in the formal

PRN, so the polymer delimiting condition is satisfied, which proves that the

whole system satisfies the delimiting condition. Again, each module, for each

nontrivial implementation reaction it contains, also contains the corresponding

formal reaction, so each module satisfies the delimiting condition.

The permissive condition is where the division into modules matters. To prove

the permissive condition we will have to check each formal reaction within each

139

*1

*1

*1

*1

Figure 3.8: Examples of the three types of modules. Top left: the stack module
for stack 2. Bottom left: the Q exchange module for stack 2. Right: the stack
machine transition module for formal reaction S2 + Q → S3 + 0f2 . Common
species are outlined in red dashed lines. DNA complexes covered in gray boxes
are fuel complexes, which are not included in the implementation PRN.

140

module; since no formal reaction appears in multiple modules, modularity does

not increase how much we have to check, and since the size of each implemen-

tation module is smaller than the whole implementation CRN, we have less

to check per reaction, thus less overall. As discussed in our previous work on

CRN bisimulation, we prove the permissive condition by showing that for each

formal reaction, for each minimal implementation state whose interpretation

contains all the formal reactants, that reaction can be implemented; since if

every minimal implementation state can do something, then every implemen-

tation state can do the same thing [40].

To treat the simple cases first, consider the formal reactions that are not

schemata (i.e. have no wildcards). A formal reaction of the form Si + A →
Sj +B appears only in its own module, in which the minimal implementation

states containing Si + A in their interpretation are {|Si + A|},
{∣∣∣I iAjB1 + A

∣∣∣},

and
{∣∣∣I iAjB2

∣∣∣}. These states implemement Si + A → Sj + B by, respectively,

forward reactions of type (8) then (9) then (10); (9) then (10); or just (10); (8)

and (9) are trivial reactions followed by (10) which is interpreted as Si +A→
Sj +B. As an edge case, if A = B (as is the case for S1 +λf1 → S6 +λf1), then

any of the above three states with A replaced by I iAjB3 is also a minimal state.

Such a state implements Si + A → Sj + B by the forward reaction of type

(11) followed by the appropriate sequence mentioned above. Similarly, the

formal reactions Q
 Qi each appear only in their own modules, in which the

minimal states for Q → Qi are {|Q|} and
{∣∣∣IQi ∣∣∣}, and the only minimal state

for Qi → Q is {|Qi|}. Those three states implement the appropriate formal

reaction respectively by forward (6) followed by forward (7); just forward (7);

and just reverse (7).

The remaining formal reactions are the λ−i + λfi
 λi + Qi reactions and the

reactions enumerated from the ∗1 + xfi
 ∗1xi + Qi schemata, all of which

exist in the stack modules. Each of the three stack modules thus contains

infinitely many reactions: in stack module i ∈ {1, 2, 3}, for each w ∈ {0, 1}∗
and x ∈ {0, 1}, where wi is w made up of 0i’s and 1i’s, ∗1 + xfi
 ∗1xi + Qi

enumerates a pair of reactions λiwi + xfi
 λiwixi +Qi.

There is only one minimal implementation state for λ−i + λfi → λi + Qi,{∣∣∣λ−i + λfi

∣∣∣}, which implements the formal reaction by a forward reaction of

type (4). λiwi + xfi → λiwixi + Qi has four minimal states, namely xfi plus

any one of λiwi, λiwi0
−
i , λiwi1

−
i , λiw

′
iy

+
i if w = w′y for y ∈ {0, 1}, or λ+i if

141

λ2

λ2

∅

0−2
ε

∅

λ2

λ2

∅

1+2
12

Q2

λ2

λ2

∅

0−2
ε

∅
Q2

Q2

∅

λ2

λ2

∅

λ2

λ2

∅

12

12

∅

1+2

12

Q2

λ2

λ2

∅

λ2

λ2

∅

1+2
12

Q2

λ2

λ2

∅
Q2

Q2

∅

λ+
2

λ2

Q2

λ2

λ2

∅

1−2
ε

∅

λ2

λ2

∅

1+2
12

Q2

λ2

λ2

∅

1−2
12

Q2

Q2

Q2

∅

λ2

λ2

∅

λ2

λ2

∅

0+2
02

Q2

... λ+
2 → λ−

2 + λf
2

1Figure 3.9: The “minimal states argument” from our previous work on CRN
bisimulation [40] is often the most effective way to prove the permissive con-
dition. Here we show some of the minimal impementation states (within the
stack 2 module) in which the formal reaction λ2 + Q2 → λ−2 + λf2 should
be able to occur. Arrows between states represent trivial implementation
reactions; the arrow with no target represents the implementation reaction
λ+2 → λ−2 + λf2 , which is interpreted as the desired formal reaction. As in
the finite CRN bisimulation case, reversible reactions from a minimal state
to a non-minimal state may be shown as irreversible arrows between minimal
states, e.g. ∗11+

2
 ∗112 + Q2 taking λ2 + λ2121
+
2 to (a non-minimal state

containing) λ2 +Q2. Unlike the finite CRN case, here we have infinitely many
minimal states (for example, every state of the form λ2+λ2w1+

2 , w ∈ {02, 12}∗),
so the permissive condition cannot be verified by simply checking for paths in
this graph; however, the argument given in the text based on this graph can
prove it.

142

w = ε. These states implement the formal reaction as follows: λiw
′
iy

+
i becomes

λiwi +Qi by a reaction of type (3); λ+i becomes λi +Qi by a reaction of type

(5); λiwi(1−x)−i becomes λiwi by a reverse reaction of type (1); λiwi becomes

λiwix
−
i by a forward reaction of type (1), all of the so-far-mentioned reactions

being trivial; and λiwix
−
i +xfi implements the formal reaction by a reaction of

type (2). The reverse reactions are slightly more complex, because the Qi can

be provided by any implementation species in the module whose interpretation

contains Qi, namely Qi itself, λ+i , or any λiuiy
+
i for u ∈ {0, 1}∗, y ∈ {0, 1}.

The minimal states for λi +Qi → λ−i + λfi are then either λ+i by itself, or one

of λi, λi0
−
i , or λi1

−
i plus one of any species providing Qi (other than λ+i , in

which case the state would not be minimal). Similarly, the minimal states for

λiwixi+Qi → λiwi+xfi are either λiwix
+
i by itself, or one of λiwixi, λiwixi0

−
i ,

or λiwixi1
−
i plus one of any non-λiwix

+
i species providing Qi. These states

implement the formal reaction as follows: any species providing Qi releases

the implementation Qi by a reaction of type (3) or (5) as appropriate; any 0−i
or 1−i “falls off” by a reverse reaction of type (1); free Qi joins λi by a reverse

reaction of type (5) or λiwixi by a reverse reaction of type (3); and finally

the formal reaction is implemented by a reverse reaction of type (2) or (4) as

appropriate. This covers all modules, and proves that within each module,

the permissive condition is satisfied; but does not prove that the permissive

condition is satisfied for the whole system.

From our previous work, the modularity theorem proves that, if each mod-

ule satisfies the permissive condition and the modularity condition, then the

whole system satisfies the permissive condition (and the modularity condi-

tion) [40]. So the last step is to prove that each module satisfies the mod-

ularity condition: each implementation species can “decompose”, via trivial

reactions, into one multiset of common implementation species and another

multiset of implementation species whose interpretation contains no common

formal species. For common implementation species, and for implementation

species containing no common formal species, this decomposition is already

done. The non-common implementation species are the I iAjBk intermediates,

IQi intermediates, λ+i , λ−i , λfi and xfi monomers, and stack polymers matching

λi(0i | 1i)∗(0+
i | 0−i | 1+

i | 1−i | ε), but of those only I iAjBk for k 6= 4, IQi , λ+i , and

species matching λi(0i | 1i)∗(0+
i | 1+

i) contain common formal species. Each of

those species decomposes as follows: I iAjB1 to Si via reverse reaction (8); I iAjB2

to A + Si via reverse reactions (9) and (8); I iAjB3 to I iAjB4 + B via reaction

143

(11); IQi to Q via reaction (7); λ+i to λi + Qi via reaction (5); and a species

of the form λiwix
+
i to λiwixi + Qi via a reaction enumerated from reaction

schema (3). This satisfies the modularity condition, meaning that the permis-

sive condition will be satisfied when the initial implementation state combines

species from different modules. This completes the proof that the given (π, µ)

is a PRN bisimulation from the DNA stack machine to its formal description,

which implies that the two systems will have the same set of trajectories from

any initial state. Since it is intuitive that the formal system, when started in

the appropriate initial states, simulates an abstract stack machine, so does the

DNA system.

3.5 Hardness Results

Having defined a concept of correctness of an implementation of a polymer

network, we would like to be able to algorithmically check, given two polymer

networks and an interpretation, whether that interpretation is a bisimulation.

Knowing that polymer networks are capable of Turing-universal computation,

we might suspect that to be impossible. A next best thing would be if bisimu-

lation or non-bisimulation was recursively enumerable: either that any correct

interpretation would have a proof of correctness, or that any incorrect inter-

pretation would have a proof of incorrectness. Unfortunately, neither one is

the case. We show that verifying our notion of bisimulation for PRNs is equiv-

alent to the uniform halting problem, which given a Turing machine, asks if

every possible configuration of the Turing machine will eventually lead to a

halting configuration [37]. This problem is in the class Π0
2, the complement of

the second level of the arithmetic hierarchy, which is the class of all languages

L = {x | ∀y∃zφ(x, y, z)}, where φ is a decidable predicate. Since each level of

the arithmetic hierarchy strictly contains the previous levels, a Π0
2-complete

problem cannot be recursively enumerable, nor can its complement [43]. Since

the uniform halting problem is Π0
2-complete [37], so is PRN bisimulation. It

is also interesting to note that the atomic condition, which is trivial to check

for finite CRNs, becomes PSPACE-complete for Polymer Reaction Networks,

proven by reduction from the problem of checking whether a regular expression

describes the language of all strings [51, 68].

Lemma 3.5.1. Given a formal species schema (Σ, e), implementation species

schema (Σ′, e′), and interpretation (π, µ), the problem of checking the atomic

condition and that of checking the compatibility condition are both PSPACE-

144

complete. If one or both are required to be local, or equivalently, given as a

compatibility relation (Σ, ρ) and/or (Σ′, ρ′), then the atomic condition remains

PSPACE-complete. The compatibility condition does not depend on the imple-

mentation schema; it is PSPACE-complete if the formal schema is given as a

regular expression, but can be checked in polynomial time if the formal schema

is known to be local.

Proof. The problem of, given a pair of regular expressions (e1, e2) over Σ,

deciding whether the language of e1 is contained in that of e2 is PSPACE-

complete. To check the atomic condition in polynomial space, e1 = e(+e)∗

and e2 is the expression of π-interpretations of strings matching e′ using only

monomers x ∈ Σ′ with µ(x) = ∅, union with the (finite) set of all A such that

some x0 has π(x0) = ε and µ(x0) = {|A|}, and ux0v ∈ L(e′) where all x ∈ uv
has m(x) = (ε, ∅). Similarly to check the compatibility condition, e2 = e

and e1 is the expression of π-interpretations of strings matching e′, this time

regardless of their µ-interpretations. Completeness for both conditions uses

Σ′ = Σ, m(x) = (x, ∅), and e and e′ are e1 and e2 respectively for the atomic

condition and in the reverse order for the compatibility condition.

If one or both species schemata are given as local regular expressions or com-

patibility relations, then we recall Lemma 3.3.2, that given any regular expres-

sion there is a compatibility relation on an implementation monomer set and

a π-interpretation under which they allow the same set of strings. Here we

use that deciding whether a regular expression e matches all strings over Σ is

also PSPACE-complete. So the atomic condition, given formal species schema

(Σ, ρ) with ρ = Σε × Σε (allowing all strings) and implementation schema

(Σ′, ρ′) and π-interpretation implementing e according to Lemma 3.3.2, is true

if and only if e matches all of Σ∗. The compatibility condition, when the for-

mal schema is allowed to be nonlocal, is true for (Σ,Σ∗) implementing (Σ, e)

if and only if e matches Σ∗. When the formal schema is given with a compati-

bility relation (Σ, ρ), and the implementation schema is (Σ′, e′) which may be

local or not, define ρ′ε such that xρ′εy if any uxvyw ∈ S(Σ′, e′), u, v, w ∈ (Σ′)∗,

with π(v) = ε; the cases x = ε and y = ε correspond to vyw ∈ S(Σ′, e′) and

uxv ∈ S(Σ′, e′), respectively, with the same restrictions on u, v, w. This can

be computed in polynomial time with reachability questions on the nondeter-

ministic finite automaton associated with e′. It is in general not true that

S(Σ′, e′) = S(Σ′, ρ′ε), but where π(x)1 and π(x)−1 are the first and last charac-

145

ters, respectively, of π(x), it is true that the compatibility condition is true if

and only if xρ′εy ⇒ π(x)−1ρπ(y)1, with the convention π(ε)1 = π(ε)−1 = ε.

Theorem 3.5.1. The problem of, given a formal PRN (Σ, e,Ψ), implemen-

tation PRN (Σ′, e′,Ψ′), and interpretation (π, µ), deciding whether that inter-

pretation is a bisimulation is Π0
2-complete.

Proof. Weak bisimulation is the statement that for all pairs of related states

and steps in one of the two states there exists a corresponding sequence of steps

in the other state, which is naturally a Π0
2 statement. (In PRN bisimulation

this description applies to both the delimiting and permissive conditions, while

the atomic condition is decidable in PSPACE by Lemma 3.5.1.) To prove

completeness, we reduce from the uniform halting problem: given a Turing

machine, is is true that from any combination of state and tape contents, the

Turing machine halts? Since PRNs can simulate Turing machines, we show

that the condition that, for all states of a PRN, a given reaction can happen

is equivalent to the condition that, for all configurations of a Turing machine,

the Turing machine will halt. In the case of PRN bisimulation, the above

condition corresponds to the permissive condition, in an implementation PRN

where the delimiting condition is true. Since the uniform halting problem is

Π0
2-complete [37], so is bisimulation.

Given a Turing machine M with alphabet {0, 1, b} (where b is the blank sym-

bol), with states Q, start state q0 and halt state qH , we construct a pair of

PRNs and an interpretation which is a bisimulation if and only if M halts from

every instantaneous description (with finitely many nonblank characters). The

formal PRN is ({Q,H}, Q | H, {Q → H}). The implementation PRN is the

simulation of M generalized from Example 3.3.2, simulating M using state

monomers qi and tape squares 0l, 1l to the left of the state, 0r, and 1r to the

right, and between one and six reaction schemata for each transition in M .

µ(x) = ∅ for all x, π(0l) = π(0r) = π(1l) = π(1r) = ε, π(qi) = Q for each

non-halting state qi, and π(qH) = H.

Given e′ = (0l | 1l)∗(qi)(0r | 1r)∗ from the generalized Example 3.3.2, the valid

implementation polymers are exactly the valid instantaneous descriptions of

M , and the only reactions that can happen are simulations of steps of M .

Any valid implementation species has only one state qi, and thus interprets

to either Q or H, both of which are valid formal species, which also satisfies

146

the atomic condition. Any implementation reaction is a transition of M , so

the corresponding formal step is either trivial, if the transition is not to qH , or

Q → H if it is, satisfying the delimiting condition. In any formal state with

a Q, and any implementation state interpreted as that formal state, there is

at least one non-halting instantaneous description of M , and the statement

that all such states can eventually do Q → H (the permissive condition)

is equivalent to the statement that all instantaneous descriptions eventually

halt.

3.6 Single-Locus Networks

Given a class of interesting Polymer Reaction Networks, we would naturally

want to find a physical implementation of some or all of those networks. So far,

steps taken towards implementing polymer reactions include the stack machine

implementation by Qian et al. [57], and the surface CRN implementations pro-

posed by Qian and Winfree [56]. To illustrate one challenge in implementation,

recall the string copying and equality/reverse detection PRNs from Figure 3.4.

For example, the one-step string copying PRN uses reaction schemata of the

form

P + A∗1 → P + A ∗1 +A ∗1 .
While this schema describes the copying of an arbitrarily long string starting

with A and catalyzed by P , physical systems (biological, engineered, or oth-

erwise) tend not to copy arbitrarily long strings in one step. The local model

string-copying PRN in Figure 3.4 transcribes a string of length n in O(n)

steps, each of which affects only a constant number of monomers (specifically,

at most 3). In general, physical systems will—on the most realistic level—be

modeled as such local and bounded reactions, by which we mean reactions

that only “read” and “write” a finite number of monomers and/or connections

between monomers.

If we try to model the local mechanism of DNA polymerase as an implementa-

tion of P+A∗1 → P+A∗1+A∗1, an immediate problem is that the structure is

no longer linear, but branched. This problem is somewhat related to an issue

with naively enumerating a PRN from a DNA strand displacement system:

in the stack machine, for example, treating a single strand as a monomer will

fail when some strands have enough domains to bind to three other strands

at once. In that case, since the “third branch” never exceeded a fixed size, a

clever choice of DNA complexes to be treated as implementation monomers

147

allowed us to model the system as a linear PRN, but the same is not true

for DNA polymerase. A DNA polymerase “implementation” network could

be modeled in Cardelli’s Biochemical Ground Form [9], or in the branching

PRN extended model we discuss in Section 3.7, but not in the linear Polymer

Reaction Network model. Even if we use a model with branching polymers,

the implementation will not be correct according to bisimulation: in the for-

mal network, the second copy of the arbitrarily long polymer A∗1 is produced

in one step, which is impossible in an implementation network made up of

only local and bounded reactions. (The network could be correct according

to CRN bisimulation on the induced infinite CRNs, where for each polymer w

the branched structure being built up from an initial A∗1 = w is interpreted

as w + P until the final dissociation step, at which point each copy of w is

interpreted as w. However, PRN bisimulation would require each individual

monomer to have an interpretation, preventing this workaround.)

The key obstacle here is the (so far informal) concept of “local and bounded”,

and the difficulty of implementing formal reaction schemata that are not “local

and bounded” using only implementation schemata that are. (Or at least, the

difficulty of doing so in a way bisimulation can recognize and verify.) For the

moment, therefore, we will turn to implementation of reaction schemata that

are local and bounded, with a suitable definition. We define a concept of a

single-locus reaction schema, which we feel captures the informal concept of

“local and bounded”. We will show that these single-locus reaction schemata

can be implemented up to bisimulation by a set of four polymer primitives,

three of which have candidate DNA implementations from the stack machine

[57] or surface CRNs [56]. We show that a class of infinite CRNs, which

is intuitively the class of single-locus PRNs plus compatibility relation-based

computational power, is closed under bisimulation and any member of that

class can be implemented by the given primitives, suggesting that the concept

of single-locus schemata is a natural class to discuss.

Definition 3.6.1. A reaction schema is single-locus if:

(i) Any wildcard that appears at all, appears exactly once in the reactants

and exactly once in the products.

(ii) Wildcards appear only at the beginning or at the end of a polymer, and

each wildcard that appears, appears at the same place (beginning or

148

*1 *2... → ...

... ...

...

Figure 3.10: Single-locus reaction schemata are, intuitively, schemata whose
reactions occur entirely within one region whose size is not affected by wild-
cards. This region may be in the middle of one polymer (if ∗1 and ∗2 are
on different edges of the same polymer), at the joining of two polymers (if ∗1
and ∗2 are on separate polymers), or at either end of one polymer (if either
∗1 and/or ∗2 does not exist). The schema may consume, produce, and/or be
catalyzed by any number of additional, finite polymers, since such a reaction
can still be thought of as taking place within a finite region.

end) in the products as in the reactants.

(iii) No two distinct wildcards appear at the beginning of a polymer, and no

two distinct wildcards appear at the end of a polymer.

(For the purpose of conditions (ii) and (iii), a wildcard that is the entire

polymer can be counted as at the beginning or at the end, and the reaction

schema is single-locus if it satisfies the conditions for at least one of those two

choices. For example, ∗1
 ∗1E, ∗1
 E∗1, and ∗1 + ∗2
 ∗1I∗2 are all

single-locus.)

A PRN (Σ, e,Ψ) is single-locus if e is local and each reaction schema in Ψ is

single-locus. An augmented PRN (Σ, e,Ψ) is augmented single-locus if each

reaction schema in Ψ, ignoring its regular expression restrictions, is single-

locus; here e is not required to be local.

Intuitively, a reaction schema is single-locus if it only “reads from” (is condi-

tional on) and “writes to” (changes) one region of finite size, i.e. containing

no wildcards. ∗1AB∗2 → ∗1CDE∗2 is the ideal example of this; it “reads”

AB and “writes” CDE, a region of size at most 3, while leaving ∗1 and ∗2
unchanged. Similarly, in ∗1A ∗2 +B → ∗1C∗2, the “region” includes both

the region A on the polymer ∗1A∗2 and the free monomer B, which since

149

the monomer B has no wildcards is still a finite size. A reaction schema

∗1 +A∗1 → ∗1 +B∗1 would not be single-locus, since to check that both poly-

mers have the same sequence substituted for the wildcard ∗1 requires reading

that sequence, and a wildcard’s sequence is not bounded by a finite size. Simi-

larly, ∗1A∗2B∗3 → ∗1C ∗2D∗3 requires reading both the A and B and writing

both C and D, which thanks to the intervening ∗2 cannot be included in one

region of finite size. (These examples correspond to violations of conditions (i)

and (ii), respectively.) A schema such as ∗1A ∗2 + ∗3B∗4 → ∗1C ∗2 + ∗3D∗4 is

not single-locus by the above definition because it violates condition (iii), even

though the A and B could be viewed as a finite region to read from and write

to. To do so, however, we would have to view the A-B region as a single region

on a branched polymer, and for the same reason, implementing this reaction

schema (up to PRN bisimulation) with “physically possible” (i.e., single-locus)

reactions of linear polymers is impossible. We will, however, return to this

topic in Section 3.7. An augmented single-locus PRN is not exactly local, and

reaction schemata may read (but not change) unbounded regions; however,

it turns out that augmented single-locus PRNs are a natural class of PRNs

closed under PRN bisimulation.

Theorem 3.6.1. For any formal single-locus PRN (Σ, e,Ψ), there is an im-

plementation PRN (Σ′, (Σ′)∗,Ψ′) and bisimulation up to reachability interpre-

tation (π, µ) such that all reaction schemata in Ψ′ are of one of the following

four forms:

∗1AB∗2 → ∗1CD∗2 (Context-sensitive Replacement)

∗1A ∗2 +B
 ∗1C∗2 (Monomer-dependent Replacement)

∗1
 ∗1E,∗1
 F∗1 (Reversible Addition)

∗1 + ∗2
 ∗1I∗2 (Reversible End-joining)

Proof. We will later show how to implement any reaction schema of the form

∗1x1 . . . xn ∗2 +r1 + · · ·+ rk → ∗1y1 . . . ym ∗2 +p1 + · · ·+ pl,

where xi and yi are monomers, ri = ri,1 . . . ri,ni
and similarly pi are strings of

monomers. We can use such an implementation to implement the remaining

classes of single-locus schema, as follows. Reactants or products of the form

∗1w1 + w2∗2 (here wi are strings of monomers) can be replaced by ∗1w1Iw2∗2
together with the reaction schema ∗1 + ∗2
 ∗1I∗2, where m(I) = (+; ∅).

150

Reactants or products without ∗1 (resp. ∗2) can replace w∗2 with ∗1FLw∗2 with

the reaction schema ∗1
 FL∗1 (resp. replace ∗1w with ∗1wFR∗2 and add the

reaction schema ∗1
 ∗1FR), where m(FL) = m(FR) = (ε; ∅). This argument

implicitly makes use of the transitivity property of CRN bisimulation [40],

which applies equally well to infinite CRNs and thus to PRNs. For example,

it is simple to confirm that (for any reasonable Σ, ρ, Σ′, ρ′) {∗1AIB∗2 →
∗1C∗2, ∗1+∗2
 ∗1I∗2} is a correct (up to PRN bisimulation) implementation

of {∗1A+B∗2 → ∗1C∗2}, so by transitivity, any correct implementation of the

former PRN will be a correct implementation of the latter. We also assume

that {x | (x, x1) ∈ ρ} = {x | (x, y1) ∈ ρ}, and similarly {x | (xn, x) ∈ ρ} = {x |
(ym, x) ∈ ρ}; if this is not the case, we can replace this schema with multiple

schemata of the form ∗1x0x1 . . . xnx−1 ∗2 + · · · → ∗1x0y1 . . . ymx−1 ∗2 + . . .

for every possible x0 and x−1 (and consider each separately), each of which

trivially satisfies the condition. Such a replacement will again be a correct

implementation up to bisimulation of the original single schema, and again

transitivity applies. Given an implementation of each reaction schema in a

formal PRN, combining the implementation reaction schemata will produce

a correct implementation of the formal PRN; this relies on the modularity

property of CRN bisimulation [40], and in fact the implementation we give

will satisfy the condition for modularity to hold.

Given a formal reaction schema of the above form, we can implement it as

follows: use ∗1AB∗2
 ∗1CE∗2 and ∗1A ∗2 +B
 ∗1C∗2 trivial reactions to

combine all reactants into two monomers on one polymer; use a ∗1AB∗2 →
∗1CD∗2 reaction to convert those two into two monomers representing the

products; then use the reverse of the first process to separate those into the

intended products. In the implementation CRN we have a monomer a for each

formal monomer A (with m(a) = (A; ∅)), and a monomer for each prefix w of

x, y, or any ri or pi. (If a string w is a prefix of multiple such strings, they

will use the same w monomer.) We have an implementation monomer E with

m(E) = (ε, ∅), and reaction schemata ∗1
 ∗1E and ∗1wE∗2
 ∗1Ew∗2 for

every prefix monomer w (including formal monomers as prefixes of length 1).

Where w is a prefix of any of the above and wA is the next prefix, we have

a reaction schema ∗1wA∗2
 ∗1E(wA)∗2, where wA on the left means the

two monomers w and A while (wA) on the right means the one monomer for

the prefix wA. We have monomers ri for 1 ≤ i ≤ k and pi for 1 ≤ i ≤ l;

where ri (resp. pi) refers to the “prefix” monomer that is the entire string of

151

the formal species ri (resp. pi) and r0 = p0 = E, we have reaction schemata

∗1ri−1 ∗2 +ri
 ∗1ri∗2 (resp. ∗1pi−1 ∗2 +pi
 ∗1pi∗2). Finally, where x (resp.

y) is the prefix monomer for the entire string x1 . . . xn (resp. y1 . . . ym), we

have the reaction schema ∗1rkx∗2 → ∗1ply∗2. As an edge case, if n = 0 the

reactants of that last reaction are ∗1rk∗2, if k = 0 the reactants are ∗1x∗2,
and if n = k = 0 the reactants are ∗1E∗2; the products are treated similarly

if m and/or l = 0. We let ρ′ = (Σ′ ∪ {`}) × (Σ′ ∪ {a}); anything can bind

to anything else, but we rely on the reaction schemata to keep the polymers

formally valid and the consistency condition to ensure that they do. We show

that this is a correct implementation, according to modular PRN bisimulation

up to reachability, of the given formal reaction schema.

To show that this implementation is correct, we construct an interpreta-

tion; show that it satisfies the consistency condition; then show that it sat-

isfies the atomic, delimiting, permissive, and modularity conditions. The in-

terpretation is intuitive: where w is an implementation monomer that is a

string of formal monomers, m(w) = (w; ∅), m(ri) = (ε;
∑i

j=1 rj), m(pi) =

(ε;
∑i

j=1 pj), and m(E) = (ε, ∅). The consistency condition then follows

from the assumption that {x0 | (x0, x1) ∈ ρ} = {x0 | (x0, y1) ∈ ρ} and

{x−1 | (xn, x−1) ∈ ρ} = {x−1 | (ym, x−1) ∈ ρ}: the only reaction schema that

changes the π-interpretation of any polymer is the intended formal schema,

∗1rkx∗2 → ∗1ply∗2, which replaces an x1 after ∗1 and xn before ∗2 with y1

after ∗1 and ym before ∗2. (The ∗1ri−1 ∗2 +ri
 ∗1ri∗2 and similar pi schemata

create and destroy π-interpretations, but those ri and pi are by assumption

valid formal species.) This allows m as a CRN interpretation to be defined.

The atomic condition follows from the polymer atomic condition, which is

satisfied by the formal monomers as implementation monomers. The delim-

iting condition follows from the polymer delimiting condition: it is simple

to confirm that all reaction schemata are syntactically interpreted as triv-

ial except ∗1rkx∗2 → ∗1ply∗2, which is syntactically interpreted as the sin-

gle formal reaction schema. To prove the permissive condition, it is simpler

to prove the modularity condition first, with respect to all formal species as

common formal species and all polymers made of only formal species as com-

mon implementation species. Given an arbitrary non-common implementa-

tion species, decompose it as follows: first, use ∗1ri∗2 → ∗1ri−1 ∗2 +ri and

∗1pi∗2 → ∗1pi−1∗2 schemata to produce a set of species with only prefix

152

monomers and E monomers. Observe that ∗1
 ∗1E and ∗1wE∗2
 ∗1Ew∗2
schemata can take any such polymer to any other such polymer with the same

sequence of prefix monomers interspersed with any pattern of E’s. In partic-

ular, for each polymer in the current decomposition, take that polymer to one

where each prefix monomer w is to the right of exactly |w| − 1 E monomers.

From such a state, ∗1E(wA)∗2 → ∗1wA∗2 schemata will produce polymers

with only formal monomers, finishing the decomposition to only common im-

plementation species.

Given that every non-common implementation species can be decomposed via

trivial reactions to common implementation species, we need only prove the

permissive condition from minimal states consisting of only common species.

For each formal reaction, i.e. each choice of w1 and w2 to be substituted for ∗1
and ∗2, exactly one such minimal state exists: w1x1 . . . xnw2+r1+· · ·+rn. This

minimal state implements the formal reaction by the intuitive path: ∗1wA∗2 →
∗1E(wA)∗2 reactions to reach w1E

n−1xw2 (in the edge case where k > 1 and

n = 0 or n = 1, use ∗1 → ∗1E and ∗1wE∗2 → ∗1Ew∗2 to reach w1Exw2);

∗1ri−1∗2+ri → ∗1ri∗2 reactions with the initial r0 = E on the E directly to the

left of x, reaching w1E
n−2rkxw2 (in the edge case k = 0 ignore this step; in the

edge case n < 2 the result will be w1r
kxw2); then the reaction w1E

n−2rkxw2 →
w1E

n−2plyw2 is enumerated from ∗1rkx∗2 → ∗1ply∗2 and is interpreted as

w1x1 . . . xnw2 + r1 + · · · + rk → w1y1 . . . ymw2 + p1 + · · · + pl, satisfying the

permissive condition. Any minimal state within this module implements that

formal reaction by first decomposing all non-common implementation species

then following the above path; any minimal state from outside this module

satisfies the permissive condition by the modularity theorem; so this completes

the proof that this interpretation is a PRN bisimulation up to reachability.

Intuitively we thought the class of single-locus PRNs would be closed under

PRN bisimulation, but quickly found a counterexample: a formal PRN with

reaction schemata A ∗1 X → A ∗1 Y and B ∗1 X → B ∗1 Z is not single-locus,

but can be implemented by single-locus reaction schemata ∗1xA → ∗1y and

∗1xB → ∗1z if π(xA) = π(xB) = X, if the implementation compatibility re-

lation guarantees that xA can only appear in a polymer whose interpretation

begins with A, and xB only in a polymer whose interpretation begins with

B. In fact, a single-locus implementation schema has “computational power”

equal to the computational power of its formal syntactic interpretation (in the

153

sense of the polymer delimiting condition, Theorem 3.3.3) plus that of the

regular expression restriction. (Given Lemma 3.3.2, this extra power would

still be present had we defined PRNs using compatibility relations instead of

regular expressions.) It is also important to note that in Definition 3.3.12 we

defined PRN bisimulation as roughly a (π, µ) polymer interpretation whose in-

duced CRN interpretation m is well-defined and is a CRN bisimulation, which

cares about the set of implementation and formal reactions but not about the

set of reaction schemata from which they were enumerated. Thus our state-

ment about closed classes takes the form, “given a (possibly infinite) formal

CRN and a single-locus implementation PRN with polymer interpretation that

is a CRN bisimulation, the set of formal reactions is equal to the set of re-

actions enumerated from some set of augmented single-locus formal reaction

schemata”.

Theorem 3.6.2. Let (Σ′, e′,Ψ′) be a single-locus implementation PRN and

(Σ, e,Ψ) be an arbitrary formal PRN, with PRN bisimulation interpretation

(π, µ). Then R(Σ, e,Ψ) = R(Σ, e,Ψ0) for some augmented single-locus PRN

(Σ, e,Ψ0). Conversely, given an augmented single-locus PRN (Σ, e,Ψ0) there

is an implementation PRN (Σ′, e′,Ψ′) where all schemata in Ψ′ are of the types

described in Theorem 3.6.1 with PRN bisimulation interpretation (π, µ). If e

is local, then (Σ′, e′,Ψ′) is single-locus, and further (Σ′, (Σ′)∗,Ψ′) is also single-

locus and the same (π, µ) defined on that PRN is a PRN bisimulation up to

reachability.

Proof. Given (Σ′, e′,Ψ′), (Σ, e,Ψ), and (π, µ), we produce a Ψ0 set of aug-

mented single-locus reaction schemata with R(Σ, e,Ψ) = R(Σ, e,Ψ0). Recall

the concept of “syntactically interpreting” a reaction schema, as used in The-

orem 3.3.3: replace each implementation monomer with its π-interpretation

and add its µ interpretation to the appropriate side of the reaction schema,

producing a reaction schema defined in terms of formal monomers. The desired

Ψ0 is the set of syntactic interpretations ψi of each reaction schema ψ′i ∈ Ψ′

(which, given that syntactic interpretations preserve the placement of wild-

cards, will be single-locus). For each ∗1 (or ∗2) in ψ′i, because the schema is

single-locus, it appears as either ∗1x′ . . . , . . . x′∗1, ∗1∗2, or ∗1 alone. In either

case, the set of possible implementation sequences preceding or following some

x′, or forming the first (or last) part of a polymer, or forming an entire poly-

mer, can be described by a regular expression over Σ′. The regular expression

154

restriction ei,1 (or ei,2) is obtained from this regular expression by replacing

each implementation monomer with its π-interpretation.

It follows from the three conditions of CRN bisimulation that the set of formal

reactions R(Σ, e,Ψ) equals the set of nontrivial interpretations of implementa-

tion reactions in R(Σ′, e′,Ψ′). (If π satisfies the consistency condition but not

the compatibility condition, then this is true for the set of nontrivial interpre-

tations of implementation reactions whose reactants are interpreted as valid

formal species.) Then given any reaction enumerated from some ψ′i ∈ Ψ′ (with

the above condition if π only satisfies the consistency condition), its interpre-

tation will be enumerated from the corresponding ψi: whatever values ∗1 and

∗2 take in the implementation enumeration, their π-interpretations will be the

values of ∗1 and ∗2 in the formal enumeration. Those values, by construction,

will satisfy the regular expressions ei,1 and ei,2, and the full (i.e., combining

π and µ) interpretation of the monomers in ψ′i will be the monomers and ex-

tra polymers in ψi; the compatibility or consistency condition, as appropriate,

ensures that the formal interpretations match e so that the reaction is in fact

enumerated. (If the µ-interpretation of implementation monomers in ∗1 or ∗2
is nonempty, then those monomers will appear as both reactants and products,

and as discussed in Definition 3.3.12 its interpretation is the reaction without

those spurious catalysts.) Given any reaction enumerated from some ψi ∈ Ψ,

similarly consider the corresponding ψ′i ∈ Ψ′. By construction, the regular

expression restrictions on ψi represent all strings that are π-interpretations of

some string of implementation monomers that would be a valid substitution

for the appropriate wildcard; those strings for the formal values of ∗1 and ∗2
will be the implementation values of ∗1 and ∗2. Recalling that the spurious

catalysts definition of bisimulation removes nonempty µ-interpretations, the

interpretation of the implementation reaction so produced will be the formal

reaction in question. Thus the set of reactions enumerated from Ψ0 with re-

strictions is the set of interpretations of nontrivial reactions enumerated from

Ψ′, which since (π, µ) is a PRN bisimulation is equal to R(Σ, e,Ψ).

Given a formal augmented single-locus PRN (Σ, e, {ψ}) with one reaction

schema, we construct an unaugmented implementation PRN (Σ′, e′,Ψ′) and

PRN bisimulation interpretation (π, µ), where every reaction schema in Ψ′

is single-locus, and if e is local then so is e′. Given Theorem 3.6.1 and

the transitivity and modularity results, this is sufficient to prove the state-

155

ment of this theorem. Say ψ takes the form ∗1x1 . . . xn ∗2 +r1 + · · · + rk →
∗1y1 . . . ym + p1 + · · ·+ pl, where the string x1 . . . xn may include + (if ∗1 and

∗2 are on different polymers), and ∗1 is restricted to match the regular expres-

sion e1 while ∗2 must match e2. Let M1 be an NFA recognizing e1 and M2

an NFA recognizing the reverse of e2. Let Σ′ be Σ together with species xq

and x′q for x ∈ Σ and q a state in M1 or M2. Construct e′ as the intersection

of three regular expressions as follows. First, replacing each xq and x′q with

x should match e. Second, starting from the leftmost monomer may trace a

valid partial computation of M1 as follows: k− 1 monomers of the form (xi)
′
qi

,

0 < i < k, followed by a monomer (xk)qk , such that where q0 is the start state

of M1, qi−1
xi−→ qi for 1 ≤ i ≤ k. Third, starting from the rightmost monomer

reading right-to-left may trace a valid partial computation of M2 in the same

manner; between these partial computations, only monomers x ∈ Σ will ap-

pear. Observe that because the partial computation regular expressions are

local, if e is local then so is e′.

Ψ′ will have reversible reaction schemata

x∗1
 xq ∗1 for (`, x) ∈ ρ, q0;M1

x−→ q;

∗1xqy∗2
 ∗1x′qyr ∗2 for (x, y) ∈ ρ, q y−→ r ∈M1;

similarly

∗1x
 ∗1xq for (x,a) ∈ ρ, q0;M2

x−→ q

and

∗1xyq∗2
 ∗1xry′q ∗2 for (x, y) ∈ ρ, q x−→ r ∈M2;

and

∗1xqx1 . . . xnyr ∗2 +r1 + · · ·+ rk → ∗1xqy1 . . . ymyr ∗2 +p1 + · · ·+ pl

whenever q and r are accepting states of M1 and M2 respectively, and (x, x1),

(xn, y), (x, y1), and (ym, y) are all in ρ. The polymer interpretation will have

π(x) = π(xq) = π(x′q) = x

and

µ(x) = µ(xq) = µ(x′q) = ∅

for all x, q. The construction of e′ implies that π satisfies the compatibility

condition, and Σ ⊂ Σ′ with strings matching e also matching e′ implies the

156

atomic condition. Any reaction enumerated from one of the reversible reac-

tion schemata will be trivial; for the last schema, which matches the formal

schema, any reaction enumerated from that schema, to be made of valid im-

plementation species, must have ∗1xq be an accepting computation of M1 and

yr∗2 an accepting computation of M2, implying that the corresponding formal

strings match e1 and e2, and that the interpreted formal reaction is a reaction

enumerated from ψ with the restrictions; thus the delimiting condition is sat-

isfied. For the permissive condition, observe that any implementation polymer

containing partial computations can reverse itself to a formal polymer, thus

proving modularity (with respect to both sets of common species being S),

and that starting from only formal polymers whose interpretation can imple-

ment a reaction enumerated from Ψ, the implementation polymers can use the

reversible reaction schemata to simulate M1 on the beginning and M2 on the

end, at which point the nontrivial schema applies and the formal reaction can

be implemented.

If e is not local, then applying Theorem 3.6.1 with transitivity and modularity

to any number of reaction schemata in (Σ, e,Ψ0) produces a (Σ′, e′,Ψ′) with

single-locus schemata in Ψ′ (since the classes of schemata in Theorem 3.6.1

are all single-locus), but the PRN itself is not single-locus since e′ is not local.

However, if e is local, then so is e′, so the same (Σ′, e′,Ψ′) is single-locus, and

for the same reason as shown in Theorem 3.6.1, the same (π, µ) defined on

(Σ′, (Σ′)∗,Ψ′) is a PRN bisimulation up to reachability.

3.7 Alternate polymer models and extended models

In defining linear Polymer Reaction Networks and PRN bisimulation, we made

various choices of model properties. Alternative choices would have led to

different models, some of which would have the same theorems applicable,

some of which would have had different results. Here we briefly discuss two of

those alternative choices, and what effects they would have had on the above

theory.

Altered wildcards

Recall again the one-step and local string copying and comparison models

in Figure 3.4. As opposed to the previous section, here we pay attention to

what behaviors we can define if we don’t care about single-locus restrictions

on wildcards. If we want to copy, move, or remove an arbitrary polymer, or

157

compare two polymers, wildcards as defined can do that:

∗1 + P → ∗1 + ∗1 + P

On the other hand, consider a simplified model of RNA polymerase, written

(in not-yet-defined notation) as:

∗1{A, T, C,G}+ P → ∗1 + P + ∗1[A→ a, T → u,C → c,G→ g]

Here RNA polymerase acting on a polymer made up of the DNA bases A, T ,

C, and G produces a copy replacing each DNA base with the corresponding

RNA base a, u, c, or g, similar to the result of the string copying local model.

String transcribing is not signficantly stranger than string copying, and it

seems reasonable to construct a model that, if it can describe one as a one-

step process, can do the same for both. We might similarly want to model

effects that have a wildcard and its reverse, such as polymerase reverse-copying

a single strand of DNA, or a stack and its reverse meeting and annihilating

each other (also shown as a multi-step mechanism in Figure 3.4), or possibly

other transformations of wildcards.

One way to define such a model is as follows: In a reaction schema, each wild-

card ∗i must, in exactly one spot in the reactants, be written ∗i{A1, . . . , An},
for some set of monomers {Aj}. (As a notational convenience, ∗i{Σ} can be

written as just ∗i.) At any other point in the reactants and/or products where

∗i appears, it can appear as ∗i[A1 → B1, . . . , Ak → Bk], and/or be tagged

∗revi . Such a schema is enumerated as follows: ∗i{A1, . . . , An} is replaced by a

string wi containing only the Aj’s, and modified instances of ∗i are replaced by

wi reversed and/or with each Aj replaced by Bj, as appropriate. Other tags,

with the same syntax as reverse and with corresponding modifications in the

semantics, could be defined as necessary. Any schema that uses any of these

features, except ∗i{Σ} in the reactants with ∗i unmodified in the products, is

not single-locus, since these features involve reading and/or writing arbitrarily

large strings in the wildcards.

Mostly, the main content of this paper is orthogonal to this aspect of the model.

A PRN with this extension is still enumerated into and treated as a (probably

infinite) CRN; PRN bisimulation is still defined as previously discussed; the

hardness results still apply. Single-locus PRNs are defined (as they should be)

to exclude these features, so those results are similarly unaffected. Overall, we

158

did not define PRNs with these features because we did not need these features

to discuss the DNA stack machine, but the model should handle these features

without too much difficulty.

It is also of interest when physically rotating a polymer in a way that reverses

left and right causes the same molecule to be described by a different string

of monomers. For example, say we want to represent fully double-stranded

DNA as a linear polymer, and we let the monomer T represent a T base on

the top strand paired with an A on the bottom strand, and similarly for A, C,

and G. Then e.g. the strings TGGC and GCCA represent the same physical

molecule, and any good model should recognize that. To handle this we could

say that in a rotatable PRN, there is some function on monomers x→ xt with

(xt)t = x, which extends to polymers such that (uv)t = utvt, and the species

of the enumerated CRN are pairs of equivalent strings {w,wt}. Reactions are

enumerated from schemata such that for some substitution into the wildcards,

whatever strings are produced, the pairs containing those strings are the CRN

species involved in the enumerated reaction. This requires intuitive restrictions

on the compatibility relation, (x, y) ∈ ρ ⇐⇒ (yt, xt) ∈ ρ where `t = a, and

on polymer interpretations, π(xt) = π(x)t and µ(xt) = µ(x). The rest of the

theory should be compatible without further changes. As an example, if the

string-reverse detection local model from Figure 3.4 is taken as a rotatable

PRN with 0tl = 0r, 1tl = 1r, S
t = S, and Y t = Y , then it will identify a string

over {0l, 1l} with its reverse over {0r, 1r}, and two copies of the same such

string will go through the mechanism that eventually produces Y .

Branched polymers

Examples of Turing-universal computation used in molecular programming,

such as register machines [9], stack machines [57], and Turing machines them-

selves [56], tend to be linear. We therefore studied a system of linear PRNs,

where each monomer can bind to at most two other monomers, and we can

write a polymer as a string of monomers. We could instead have allowed each

monomer to make either an arbitrary number of bonds, or up to some finite

(characteristic of the monomer) number of bonds, either of which would allow

us to model much more general systems. Such an approach would present

some complications for defining reaction schemata, and present further com-

plications for defining bisimulation, but we believe those complications are all

solvable.

159

The obvious way to extend our definition of linear Polymer Reaction Networks

to more general PRNs is effectively a graph-rewriting system with wildcards.

In this sense, a (linear) polymer reaction schema such as ∗1A ∗2 +B → ∗1C∗2
is already a graph rewriting rule, where all graphs must be lines, and this is a

straightforward generalization. Two examples of this would be:

A

B

C
∗1

∗2

∗3

D
C∗1

∗2

∗3

A

B

D∗1
∗2

∗3

C

D

∗1∗2

∗2∗3

1

When we defined polymer interpretations for PRN bisimulation, we defined

a π-interpretation and a µ-interpretation. With linear polymers, it was easy

to say that, given a string of monomers, we interpret them by concatenating

their π-interpretations. The equivalent for nonlinear polymers, if a monomer’s

π-interpretation is anything other than a single monomer, is not obvious. One

solution might be to say that each monomer must have a finite set of “faces”,

i.e. potential bonds, and for each face of an implementation monomer, its

π-interpretation specifies a face of a formal monomer in the π-interpretation

to correspond to that implementation face. As a special case, we could say

that an implementation monomer whose π-interpretation is ε must have at

most two faces, and if it has two faces both connected to something, the

connections are connected to each other in the interpreted formal polymer.

This concept of faces would also solve a similar problem with defining the

compatibility relation, and would allow linear PRNs as defined above to be

a subcase of branched PRNs, where every monomer has exactly two faces,

“left” and “right”. The rest of the theory of PRN bisimulation should extend

naturally to branched PRNs. (The concept of faces still has a few details to

be worked out, but we suspect it can be done.)

Single-locus PRNs can be defined for branched PRNs, and in fact can be

defined in a somewhat more natural way than for linear PRNs. Recall Defini-

tion 3.6.1 of linear single-locus PRNs, in particular condition (iii), that no two

160

distinct wildcards appear at the beginning of a polymer, and similarly for the

end; this definition was motivated by, imagining a physical implementation

of a single-locus reaction schema, such an implementation of a schema that

violates condition (iii) would require an intermediate step that is not linear.

When the underlying PRN model allows branched polymers, this is not as

much of a problem. For branched PRNs, we would define single-locus reac-

tion schemata as follows: (i) any wildcard that appears at all, appears exactly

once in the reactants and exactly once in the products, and (ii) all wildcards

have at most one bond. (Of the above branched reaction schemata, the first is

single-locus and the second is in multiple ways not single-locus.) We suspect a

theorem similar to Theorem 3.6.1 would be provable for branched single-locus

PRNs.

The Biochemical Ground Form (BGF), discussed by Cardelli and Zavattaro

[9], serves as an example of what a branched polymer model could look like.

(The concept of faces, for example, corresponds roughly to association labels

in the BGF.) The BGF, instead of graph rewriting reaction schemata, defines

reactions in terms of the actions of different “agents” (monomers), some of

which may require coordination with other agents. Implicitly, if a monomer

A can take an action a, it can do so regardless of what that monomer is

bound to, which in our way of writing means every reaction (schema) has

all possible wildcards. In particular, we suspect every BGF system could be

written a single-locus branched PRN. The BGF as described has no mechanism

for a monomer to coordinate specifically with another monomer bound to it, as

opposed to another monomer of the specific type that may be on a different

polymer; with such a mechanism, we suspect but have not proven that the

BGF could implement, up to bisimulation, any single-locus branched PRN.

3.8 Discussion

Our main claim is that polymer CRN-like systems are a strong candidate for

powerful and practical molecular computation; that formal verification is use-

ful for systematic construction of (eventually, large) polymer systems; and that

bisimulation is a useful technique in formal verification of polymer systems.

To show this, we defined a model of linear Polymer Reaction Networks, and

defined PRN bisimulation based on that model. We proved some useful prop-

erties of PRN bisimulation; we showed how to use PRN bisimulation to verify

an existing system; and we showed an example of how PRN bisimulation can

161

identify good design strategies for implementing a large class of systems. Al-

though we did all of this within the model of linear PRNs, we discussed how

PRN bisimulation is likely to be applicable, and our results translatable, to

other models of polymer CRN-like systems. Thus, even if this model of linear

PRNs is not the optimal model for polymer systems in molecular program-

ming, the concept of PRN bisimulation will likely remain useful.

Our definition of PRN bisimulation interprets each state of the implementation

system as a state of the formal system, and checks whether, from any initial

state, the possible trajectories of the two systems are equivalent under that

interpretation. However, it ignores quantitative aspects of the system such

as rate constants, meaning PRN bisimulation says nothing about the kinetics

of the system (i.e. how long things take) or the probabilities of the various

possible trajectories. It also assumes that the model of the implementation

system as a PRN is accurate, and the model we used in this case ignores the

“leak reactions” and other side reactions typical of DNA strand displacement

systems; with no way to distinguish between likely and unlikely reactions,

PRN bisimulation evaluated on a model including leak reactions would say

that the implementation is incorrect. This means that when an implementa-

tion is proven correct according to PRN bisimulation, we know that a specific

class of its behavior is equivalent to the corresponding behavior of its specifica-

tion (formal PRN), namely the rate-independent behavior up to (if applicable)

whatever model we used to describe the implementation system as an imple-

mentation PRN. In systems such as stack machines and Turing machines, the

rate-independent behavior is the only relevant behavior of the abstract sys-

tem, so PRN bisimulation proves that the implementation has the behavior

we want. In systems such as oscillators or dynamic instability, while PRN

bisimulation can prove some correspondence between the implementation and

the abstract system, it may not be able to say anything about the kinetics that

imply the relevant behavior. (Whether an extension of PRN bisimulation can

take kinetics into account is, as it is for CRN bisimulation [40], an important

open question.) Intuitively we expect that for “systematic implementations”

such as the stack machine or the various CRN translation schemes, if the

scheme has no qualitative (i.e., detectable by CRN/PRN bisimulation) errors

then its kinetics are “close enough” to and/or can be tuned to match those

of the abstract system. Experimental implementations such as the CRN os-

cillator by Srinivas et al. [67] suggest this is the case, and the experiments

162

of Chen et al. [19] demonstrate an experimentally working CRN even when

CRN bisimulation identifies a potential error (that, presumably, averages out).

Polymer systems especially, compared to well-mixed CRNs, are more likely to

depend on rate-independent computation and not care about kinetics; for ex-

ample, well-mixed CRNs require kinetics to approximate the behavior of “A

happens, then B happens”, while polymer systems can use geometric separa-

tion to achieve the same thing with less probability of error. (This is more

true for polymer systems that simulate classic models of computation than for

those found in biology.) This is why we claim that, while PRN bisimulation

cannot prove correct every relevant aspect of an implementation PRN in gen-

eral, it is a useful tool to verify the important aspects of many useful polymer

systems.

The simplest thing to do with PRN bisimulation is to, given one formal PRN

and one putative implementation, verify by hand that the implementation

matches the formal PRN. We demonstrated an example of this with the DNA

stack machine from Qian et al. [57]. We suspect that bisimulation can be

used in more powerful ways, such as automated verification of systems too

large to verify by hand, or as a basis for formal proofs that certain classes

of systems will or will not be correct implementations of other classes, or as

an intuition to guide designers of molecular devices in their search for correct

implementations.

As we would expect for a model equivalent in power to Turing machines,

whether two systems are PRN bisimulation equivalent is undecidable in gen-

eral, but this does not rule out any form of computer-aided verification. Ex-

actly what form such verification could take, we don’t know, but we have two

possibilities to suggest. The main problem that produces the undecidability

result stems from the permissive condition, that for every formal reaction in

any implementation state whose interpretation can do that reaction, the im-

plementation state can implement the formal reaction after some sequence of

zero or more trivial reactions. The problem is that there is no upper bound

on the number of trivial reactions; the undecidability result uses a formal re-

action that can be implemented only if a Turing machine computation made

of trivial reactions halts. Systems intended to be built in practice typically

use a small, and in particular bounded, number of trivial reactions per for-

mal reaction. Based on this, the first suggestion is that some bound on the

163

number of trivial reactions may give a definition of PRN bisimulation that is

decidable or even tractable. Exactly what type of bound is best, and whether

this idea covers all the physical implementations we care about, is unknown.

Similarly, systems intended to be built in practice typically have a designer

who knows how the system is intended to work, and can provide a “proof”

that the permissive condition is satisfied, as we did for the DNA stack machine

above. The hardness result shows that not every correct implementation will

have a finite proof at all, let alone one that can be checked in reasonable time,

but it may be that a large enough class of “reasonable” implementations does.

How exactly such a proof should be specified, and what class of systems can

be proven correct this way, is unknown.

That formal verification methods such as PRN bisimulation can be used to

guide design is a speculation of ours. We showed a concrete example of this

idea with the proof that any “physically realistic” (single-locus) PRN can be

implemented by five reaction schema “primitives”. This sort of result will likely

be helpful for designing complex polymer systems, where whatever complex

behavior the designer needs can be implemented in a known way with simple

primitives, which themselves can be implemented in some known way yet to

be discovered. We further hope that, with a formal definition in mind of what

makes a correct implementation, someone designing physical implementations

would have a better idea of what systems to design.

164

C h a p t e r 4

SIMPLIFYING CHEMICAL REACTION NETWORK
IMPLEMENTATIONS WITH TWO-STRANDED DNA

BUILDING BLOCKS

4.1 Perspective

If there’s a common bond between the chapters of this thesis, it’s the attempt

to improve the CRN-to-DSD compilation process, from a proof-of-concept that

CRN compilation can be done in theory to a process efficient enough to be the

practical way to implement its class of molecular programs. One necessary

part of this is optimizing the result of the compilation. Since the original

CRN-to-DSD implementation scheme [66] a few other ideas [6, 57] have been

proposed for what, concretely, the DSD implementation of a CRN should look

like. Each scheme has its own strengths and weaknesses. In this chapter I

discuss another two such schemes, with properties often not shared by previous

schemes: both use DNA complexes with no more than 2 strands each; both

use 4-way branch migration instead of 3-way branch migration; and both are

physically reversible.

What does it mean to optimize a DSD system? First, all DSD CRN imple-

mentations so far require “fuel species” (or “fuels”), DNA complexes that have

to be synthesized by whatever method and added to the DSD system at the

start. When testing DSD circuits in the lab, fuels are chemically synthesized,

annealed, and manually added to the test tube; in the hypothetical future

where DSD is used in autonomous molecular devices, those devices would need

some as-yet-undecided mechanism to synthesize or input fuels. Any property

of the fuel species, such as length of strands, number of strands, or number of

fuels, that makes them more costly to synthesize, or more difficult to synthe-

size without undesired byproducts, is thus a target for optimization. Second,

no physical DSD system ever does exactly what the formal DSD model says it

should. Some of this is due to improbable, but not impossible, “leak reactions”

not included in the formal model, while some is due to the aforementioned un-

desired byproducts or other imperfect synthesis of the fuels [67]. In particular,

Lulu Qian and I focus on limiting fuels to 2-stranded complexes because the

165

seesaw gates, which are always 2-stranded, have been shown to be particu-

larly robust [55, 72]. Physical reversibility is also useful, since it reduces the

quantity of fuel consumed by reversible reactions.

Now that we know what an optimized DSD system is, how do we as researchers

and/or designers find one? I don’t know the general answer to that, but in

this chapter I suggest a direction in which to search. We discuss five “mo-

tifs”, simple DSD reactions involving 1- or 2-stranded reactants, including one

novel motif based on cooperative 4-way branch migration. Each motif can

be discussed in terms of its inputs and outputs, what features each has, and

which upstream or downstream motifs they can feed into, on a level more

abstract than the low-level formal DSD model (which is itself more abstract

than physical DNA strand behavior) but less so than abstract CRNs. When

we discuss CRN implementations, including existing CRN implementations as

well as the two new implementation schemes we propose, we describe the im-

plementations mostly in terms of the motifs without needing the details of the

low-level DSD reactions. Abstraction hierarchies are generally important for

effectively designing systems, and this “motif way of thinking” is a candidate

abstraction hierarchy for designing complex DSD systems.

In this chapter, we present one novel motif and two novel CRN implementation

schemes, plus describe how we used motifs to design and analyze the schemes.

We also prove both schemes correct according to CRN bisimulation, and dis-

cuss how they compare to existing implementation schemes. To summarize the

result of that comparison, we reduced complexity in the size of our fuels at the

expense of needing a significantly larger number of fuels. Whether this tradeoff

is worth it—in general or in some specific circumstances—we don’t know, but

now the option exists. This then suggests the question of whether our design

can be improved to use fewer complexes while still remaining 2-stranded and

reversible, or whether we innately have to trade simpler mechanisms for more

steps. It also suggests the question of, since we’re comparing our 4-way-branch-

migration-based schemes to existing 3-way-branch-migration-based schemes, if

the two different types of DSD mechanism have different natures when used to

make larger systems. I suspect that there are some interesting features both

of 2-stranded complexes and of 4-way branch migration, and discuss those

questions further in Chapter 5.

The remainder of this chapter has an introduction and discussion specific to

166

this thesis, but is otherwise based on the following manuscript in progress:

Robert F. Johnson and Lulu Qian. Simplifying chemical reaction network
implementations with two-stranded DNA building blocks. In preparation,
2020.
Contributions: Work done primarily by RFJ with advice and assistance from
LQ.

4.2 Introduction

Past chapters have discussed the Chemical Reaction Network (CRN) model

as a programming language, and the ability to “compile” CRNs to DNA

Strand Displacement (DSD) systems. Implementation schemes such as those

of Soloveichik et al. [66], Qian et al. [57], and Cardelli [6] are the current

state of the art, and have been demonstrated experimentally on small CRNs

[19, 67]. The next step in making CRN programs practical is to “scale up” the

size of the CRNs that can be physically built, and generally reduce the leak

and error rates.

In terms of robust DSD systems, we can take a lesson from experiments with

seesaw gates [55, 72]. The key point is based on the fuel complexes, which were

briefly mentioned in previous chapters on bisimulation: from that perspective,

fuels were DNA complexes that were assumed to be always present and thus

removed from the enumerated CRNs before verification analysis. From an ex-

perimental perspective, to be “always present” means one has to synthesize

and add a large number of each fuel complex, and if the fuel is imperfectly

annealed or otherwise misbehaves, the error is large relative to the system’s

signal. For a two-reactant two-product reaction, the Soloveichik et al. trans-

lation scheme uses 3-stranded fuels [66], the Cardelli scheme 4-stranded fuels

[6], and the Qian et al. scheme (in the corrected version in Chapter 3) a 5-

stranded or a 7-stranded fuel. The seesaw gates compute logic gates which are

less complex than chemical reactions, but they do so with only single strands

and 2-stranded complexes [55]. Possibly because of this, they have been used

to build larger circuits and to be robust to experimental imperfections, such

as unpurified strands [72].

For this purpose, Lulu Qian and I have been investigating implementing CRNs

using only 2-stranded fuels. Simple DSD systems, such as detecting a desired

sequence [18] or AND gates [35], are often 2-stranded, in addition to the see-

saw gates mentioned above. There is even a class of hairpin-based systems

167

that construct larger structures from single-stranded initial complexes [83],

including the Hybridization Chain Reaction often used in imaging [23], and a

design for hairpin-based logic circuits [28]. However, none of these are a full

Chemical Reaction Network implementation, or even an equivalently powerful

dynamical system—while logic gates are universal for computing functions,

CRNs have a dynamical behavior that logic gates in general do not.

This chapter contains the positive side of our work on 2-stranded CRNs, with

some limits discussed in Chapter 5. We discuss four known 2-stranded DSD

motifs that can serve as building blocks for such implementations, and we

present a new cooperative 4-way strand exchange motif that starts with 2-

stranded complexes. We discuss two ways of implementing general CRNs

with these motifs, and tradeoffs between the two schemes. Finally, we show

how, using CRN bisimulation, these schemes can be proven correct assuming

the assumptions of the formal DSD model reflect real DSD systems.

We believe that having abstract descriptions of simple motifs will help the

design of complex DSD systems. Whatever complex behavior is desired, it

may be easier to implement by combining the simple logical operations of

known motifs. To demonstrate this, we first discuss the 5 motifs and their

behavior on an abstract level, then show how various CRN implementations

can be constructed and comprehended by combining those abstract behaviors.

4.3 Two-stranded motifs

We identify five “motifs”, or simple condensed reactions, out of which we

build two-stranded CRN implementations. Four of these motifs have been

previously studied, while one is new. We discuss the properties of each motif

in itself, while in Section 4.4 we will discuss how those properties interact when

building larger circuits. For building two-stranded CRNs, key questions about

a given motif are what logical operation it represents, whether its outputs have

the form of its inputs and/or the inputs of the other motifs, and whether its

outputs and reverse gates are 2-stranded.

Toehold Exchange A reversible 3-way strand displacement exchanges which

of two strands is bound to a gate (Figure 4.1 (a)). The input strand is an

unbound toehold-long domain combination, while the input gate has that long

domain bound with that toehold open. The reaction has two high-level effects.

First, the output strand has the same long domain (B, in the figure) in a

168

... ...

(a) (b)

(c) (d)

Figure 4.1: Four previously studied reversible 2-stranded DSD motifs, shown
through common examples. (a) Toehold exchange; (b) Symmetric cooperative
hybridization; (c) Asymmetric cooperative hybridization; (d) 4-way strand
exchange, with a diagram used in the abstracted notation we will introduce.

different toehold context, and may have different long domains (A versus C)

on the other side of its newly open toehold. Second, the gate now has a

different toehold open, which may allow interaction with adjacent domains.

See for example the first CRN implementations [66], seesaw gates [55], and

various others [87].

Cooperative Hybridization (symmetric) Two 3-way strand displacement

reactions occur simultaneously on either side of a gate complex, meeting in

the middle and allowing the two halves to dissociate only if both inputs are

present (Figure 4.1 (b)). The input strands are unbound toehold-long domain

combinations, while the output signals have the same long domains adjacent

to different open toeholds. See for example Cherry et al.’s winner-take-all

circuits [20].

Cooperative Hybridization (asymmetric) Two 3-way strand displace-

ment reactions occur simultaneously on either side of a gate complex, meeting

in the middle and releasing an output strand only if both inputs are present

(Figure 4.1 (c)). The input strands are unbound toehold-long domain combi-

nations, while the output strand has those two long domains in combination

with a different toehold; but with only one toehold, barring complex mecha-

nisms either one but only one of them can react. However, even if both inputs

are single strands the reverse gate is a 3-stranded complex, so this motif is not

169

“reversible with 2-stranded fuels”. Introduced and tested by Zhang [86].

4-way strand exchange Two 2-stranded complexes bind by two toeholds and

exchange strands via 4-way branch migration (Figure 4.1 (d)). The inputs are

2-stranded complexes sharing a common long domain, with complementary

pairs of open toeholds and (if the reaction is reversible) a closed toehold on

each. The outputs are 2-stranded complexes in the same form, with the for-

merly open toeholds now paired up and closed and the formerly closed toeholds

now split and open. Experimentally tested by Dabby [22].

4-way Cooperative Hybridization Two 4-way branch migrations happen

on either side of a gate, meeting in the middle and separating into two inter-

mediate complexes (Figure 4.2). Each of the two products carries only half of

the information of the original reactants, thus products of different instances of

this reaction can interact in the reverse reaction. The effect of such a quadru-

plet of reactions is strand exchange between one pair of complexes coupled to

strand exchange between the other, simultaneously changing the open toehold

combinations on distinct long domains.

While the other four mechanisms discussed have been experimentally demon-

strated to work, cooperative 4-way branch migration has not yet been tested.

In particular, the final dissociation step requires 3 toeholds separated by two

4-way junctions to dissociate. We think this is plausible, based on Dabby’s

observation that 2 toeholds separated by one 4-way junction can dissociate

[22]; or, if this is not the case, that there is some 0 < Length(l) ≤ 6 for which

that dissociation is possible and reversible.

An abstraction for 4-way strand exchange Common to both uncooper-

ative and cooperative 4-way strand exchange is a basic signal complex: two

strands, one long domain bound to its complement flanked by one bound pair

of complementary toeholds and one open pair of non-complementary toeholds,

as seen repeatedly in Figures 4.1 (d) and 4.2. As both types of 4-way strand

exchange transform complexes of this form into complexes of the same form

with different domain combinations, we find an abstract description of this

type of molecule useful. For example, we write the molecule with long domain

X, open 3’ (end of the DNA) toehold t, open 5’ toehold s∗, and bound toehold

m as X(t, s;m). When the long domain is unimportant or universal, such as a

system composed entirely of uncooperative 4-way strand exchange, we omit it

and write simply (t, s;m). For experimental reasons we prefer to have strands

170

made up of only non-∗ or only ∗ domains, and design non-∗ and ∗ domains to

have distinct sequence properties (for example, using a three-letter code [55]).

Then X(t, s;m) unambiguously describes the top reactant of Figure 4.1 (d),

with s understood to mean an open s∗ toehold. With that assumption, the top

product in Figure 4.1 (d) would be X(m,n; s)∗, with the first toehold listed

still being on the 3’ end of its strand, but now understood to mean an open

m∗ toehold. Without that assumption, we might use a more general notation

where those molecules are X(t, s∗;m) and X∗(m∗, n; s∗) respectively. The cir-

cle abstraction shown in said figures is also useful to illustrate strand exchange

reactions. Each circle represents a strand with one long domain and two toe-

holds, where half-faded circles represent strands made of ∗ domains. Thin

connections (both figures) represent strands bonded directly, requiring match-

ing domains; thick connections labelled with a toehold domain (horizontal in

Figure 4.2) represent strands connected by gate strands from a cooperative

4-way strand exchange reaction, which can be between any domains so long

as the appropriate gate exists.

4.4 Chemical Reaction Network implementations

The above motifs can be combined in various ways to construct implemen-

tations of arbitrary Chemical Reaction Networks. To implement arbitrary

CRNs, the reaction A + B → C + D (or A + B → C and A → B + C) is

sufficient; for arbitrary reversible CRNs, the reaction A+B
 C (or a fortiori,

A + B
 C + D) is sufficient. From a logical perspective, “join” and “fork”

operations are sufficient; the above reactions represent those logics.

CRN implementations typically have signal complexes that are the primary

form of a given formal species, and fuel complexes that are assumed to be

always present and drive the reactions. For a CRN to have “only 2-stranded

inputs”, as desired in this work, means that all signal complexes and fuel

complexes are single strands or 2-stranded. We implicitly assume that we are

discussing systematic CRN implementations, where we give a template for a

generic reaction and construct larger CRNs by combining independent copies

of the template with different domain identities. In such a case we can ask

how the number of toehold domains scales, i.e. whether different reactions

can use the same toeholds or have to create new ones; as toeholds are limited

in length by thermodynamics, a system with O(n) toeholds may be able to

implement small CRNs but a system with O(1) toeholds is better if possible.

171

Figure 4.2: A cooperative 4-way branch migration mechanism. Initial X and Y
complexes combine with a gate that matches their open toehold combinations,
producing two 3-stranded complexes each with one of the strands of X and
one of the strands of Y . These complexes can recombine with each other or
with the corresponding products of a similar reaction, which in the latter case
will produce X and Y complexes with different toehold combinations. On the
right, this reaction is shown in abstracted form.

Whether a scheme requires cooperative mechanisms is worth noting. Finally,

it is desirable if reversible reactions (A+B
 C+D) can be implemented with

physically reversible mechanisms, so that going forward and backward multiple

times does not consume fuel; to be truly reversible, the 2-stranded fuel criterion

should include the reverse fuels as well. These criteria are discussed more fully

and more formally in Chapter 5.

Toehold Exchange-based CRNs Existing CRN implementations [6, 57, 66]

are often based on toehold exchange mechanisms where e.g. A + B → C is

implemented by a toehold exchange reaction with A opening a toehold on the

gate for a reaction involving B. These schemes can be understood in light

of the motifs previously discussed: the property of toehold exchange that a

different toehold on the gate is opened allows join and fork logic. The property

that the released strand has a different long domain/toehold combination is

used to pass signals between gates.

Such a mechanism seems to require a 3-stranded complex for the gate molecule

172

to achieve join logic, so it does not meet the goal of this paper, but is worth

mentioning as the current state of the art. Another relevant mechanism using

toehold exchange is the seesaw gate [55], where transduction logic combines

with threshold logic to check whether the total amount of signal is more than

either A or B can produce by itself. This achieves join logic for macroscopic

signals but cannot satisfy criteria such as CRN bisimulation for individual

molecules.

3-way Cooperative CRNs The symmetric cooperative hybridization is A+

B
 C + D logic, if we consider the same long domain in a different toehold

context to be a different signal. Since toehold exchange reactions depend on

the combination of long domain and toehold, this is valid. Thachuk et al. use a

combination of symmetric cooperative hybridization and toehold exchange to

implement leakless A+B → C+D reactions in exactly this manner (personal

communication with Chris Thachuk regarding unpublished results, but based

on their work on leakless gates [70, 78]).

From our perspective, the only problem is that symmetric cooperative hy-

bridization with 1-stranded inputs produces 2-stranded products, and toehold

exchange with a 2-stranded input signal produces a 3-stranded reverse gate.

For physically reversible reactions, this 3-stranded gate would be considered

a reverse fuel, and the system would not have entirely 2-stranded fuels. Thus

this mechanism meets all our criteria for irreversible CRNs, but not reversible

CRNs.

4-way-based CRNs with O(n) toeholds The two-toehold-mediated 4-way

strand exchange mechanism effectively exchanges toeholds on a common long

domain; note that while the inputs both have t and s toeholds, the outputs

have one with only t and one with only s. When a signal complex goes through

multiple copies of this reaction with different fuels, it can turn any combination

of toeholds into any other combination. When two signals with complementary

pairs of toeholds meet in this reaction, it produces two signals with different

combinations in A+B
 C+D logic. So for example, we can turn (a1, a2; a3)

into (r1, r2; r3) and (b1, b2; b3) into (r2, r1; r4), which will react and produce

(r3, r4; r2)
∗ and (r4, r3; r1)

∗, which can be turned into (c1, c2; c3) and (d1, d2; d3)

respectively. Thus two-toehold-mediated 4-way strand exchange alone can

implement arbitrary reversible CRNs if we allow O(n) toeholds.

A list of all species involved is given in Table 4.1. Note that fuels (r2, r1; r5)

173

A ∅ B ∅
(a1, a2; a3) (a2, a1; r5) (b1, b2; b3) (b2, b1; r6)
(r5, a3; a1)

∗ (a3, r5; a2)
∗ (r6, b3; b1)

∗ (b3, r6; b2)
∗

(a3, r5; r2)
∗ (b3, r6; r1)

∗

(r2, a1; r5) (a1, r2; a3) (r1, b1; r6) (b1, r1; b3)
(a1, r2; r3) (b1, r1; r4)

(r3, r5; r2)
∗ (r5, r3; a1)

∗ (r4, r6; r1)
∗ (r6, r4; b1)

∗

(r5, r3; r1)
∗ (r6, r4; r2)

∗

(r1, r2; r3) (r2, r1; r5) (r2, r1; r4) (r1, r2; r6)

C ∅ D ∅
(c1, c2; c3) (c2, c1; r3) (d1, d2; d3) (d2, d1; r4)
(c3, r3; c2)

∗ (r3, c3; c1)
∗ (d3, r4; d2)

∗ (r4, d3; d1)
∗

(r3, c3; r2)
∗ (r4, d3; r1)

∗

(c2, r2; r3) (r2, c2; c3) (d2, r1; r4) (r1, d2; d3)
(r2, c2; r4) (r1, d2; r3)

(r3, r4; r2)
∗ (r4, r3; c2)

∗ (r4, r3; r1)
∗ (r3, r4; d2)

∗

Table 4.1: List of species for the 4-way O(n)-toeholds reaction A+B
 C+D,
in the abstracted notation. Species in columns A, B, C, and D represent the
given formal species. Species in columns labeled ∅ are fuels and assumed to
be always present. ai domains are toeholds specific to species A, and similarly
for B, C, and D; ri domains are specific to the reaction A+B
 C +D; this
ensures no crosstalk with other pathways.

and (r1, r2; r6) can interact, but the products can do nothing but reverse the

reaction, and the same is true for (r4, r3; c1)
∗ with (r3, r4; d1)

∗.

4-way Cooperative CRNs The cooperative 4-way strand exchange motif,

when its products recombine with products of a different instance of the reac-

tion, simultaneously exchanges the toehold combinations on a complex with

long domain X and a complex with long domain Y . If A(t, s;m) is the sig-

nal molecule for A, then simultaneously breaking the (t, s) combination on A

and putting together a (u, v) combination on some long domain R is effec-

tively converting A(t, s;m)
 R(v, u;n)∗ if all other molecules involved are

considered fuels. Where R is unique to the reaction A+ B
 C +D, we can

convert the four signal species from their own long domains to the R domain,

then use a two-toehold-mediated 4-way strand exchange reaction to imple-

ment the reaction itself. In contrast to the previous implementation scheme,

that each reaction has a different long domain allows the toeholds (u, v, etc.)

to be universal, using O(1) toeholds at the expense of requiring cooperative

174

hybridization.

As this scheme is based on the O(n)-toehold scheme, we reuse the mecha-

nism from Table 4.1. Assume all complexes in that list have long domain R,

unique to the reaction A + B
 C + D. To the toeholds listed, add toe-

holds t, s,m, n, l, and let a3 = b3 = c3 = d3 = n∗. Then use cooperative

4-way strand exchange to convert A(t, s;m)
 (R∗(a∗1, a
∗
2;n))∗ = R(a1, a2;n

∗)

(the fuel will have R∗ on the “top” strand with A), B(t, s;m)
 R(b1, b2;n
∗),

C(t, s;m)
 R(c1, c2;n
∗), and D(t, s;m)
 R(d1, d2;n

∗). This gives a mech-

anism with one long domain per species, one long domain per reaction, and a

total of 19 toeholds. Because the long domains now indicate species/reaction

identity, the toeholds can be shared between all species and reactions without

crosstalk.

4.5 Correctness of the schemes

Table 4.1 is effectively a proof of the correctness of the O(n)-toehold 4-way-

based scheme according to CRN bisimulation (chapter 2). For each A+B

C + D reaction, construct a copy of this mechanism with unique ri domains,

but any ai domains in common with other reactions using the same for-

mal species; reactions with fewer reactants or products can have one of A,

B, C, or D as a fuel; reactions with more reactants or products should

be broken into steps with at most 2 of each. DNA complexes in columns

labeled A, B, C, or D are interpreted as one copy of the corresponding

species, while complexes in columns labeled ∅ are fuels. Formally, fuels are

assumed always present and removed from the enumerated implementation

CRN before bisimulation verification; so for example the physical pathway

(r2, a2; r3) + (a2, r2; r5)
 (r5, r3; r2)
∗ + (r3, r5; a2)

∗ would be represented as

(r2, a2; r3)
 (r5, r3; r2)
∗, and then interpreted as the trivial reaction A
 A.

Using the abstraction for 4-way strand exchange notation, the table is struc-

tured such that each non-fuel species can interact with the (usually two)

fuel species in the same row, producing the corresponding fuel+non-fuel pair

above or below it; that the final A + B forms react to produce the final

C + D forms, while their fuels also have a spurious-but-harmless reaction

with each other; and that, given the uniqueness of the domains, no other

intra-module or inter-module reactions exist. Then all reactions are trivial

except (r1, r2; r3) + (r2, r1; r4)
 (r3, r4; r2)
∗ + (r4, r3; r1)

∗ which is interpreted

as A + B
 C + D; with (a1, a2; a3) etc. as the “common species”, the com-

175

mon species can implement the formal reaction; and any intermediate species

can turn into the common species with the same interpretation by interacting

with only fuels. As these are the conditions of modular CRN bisimulation,

this completes the proof: any combination of these modules will be a correct

implementation according to CRN bisimulation.

For the cooperative 4-way scheme, the same bisimulation logic applies. In

this case the lack of crosstalk between modules is assured by the distinct long

domains; even if toehold combinations are identical, different long domains will

make the reaction unproductive. The remaining caveat is with the cooperative

4-way mechanism itself. We designed the system so that the toeholds along the

cooperative reaction are always m, l, n. Thus, we assume that intermediates

of the cooperative pathway will all have the matching m, l, n toeholds, and all

three toeholds will bind and dissociate as a unit. Whether this is actually true

or not will be determined experimentally; if not, there may be problematic

crosstalk between, for example, an (A,R1) and (A,R2) pair of long domains

which leads to temporarily duplicated signals. If it is true, however, then the

result of such a crosstalk will be a release of one side with the other suspended,

one of which carries the signal, and the system will be correct according to

bisimulation.

4.6 Discussion

We discussed the use of DNA Strand Displacement to implement Chemical

Reaction Networks, and the desire to create larger, more robust DSD CRN

implementations. We then presented 2-stranded DSD motifs which we used

to build 2-stranded CRN implementations, in the hope that they would be

more robust than those which rely on 3-or-more-stranded complexes. There

is some indication that 2-stranded DSD systems in general are more robust,

but whether these particular systems are more robust than the current state-

of-the-art CRN implementations is an open question.

We can compare Soloveichik et al.’s original CRN scheme [66, 67] (which

is reasonably representative of other toehold exchange schemes), our O(n)-

toehold 4-way strand exchange scheme, and our (O(1)-toehold) cooperative

4-way strand exchange scheme. While 3- and 4-stranded complexes may be

less robust, in other aspects the toehold exchange scheme is simpler than our

two schemes: it uses one long domain per formal species, one long domain per

176

reaction, and can be done with a single, universal toehold. To go from reac-

tant signal species to product signal species in the toehold exchange scheme

(as implemented experimentally [67]) takes 4 toehold exchange steps in an

A + B → C + D reaction, and generalizes naturally to n + m steps in an n-

reactant m-product reaction. In contrast, while the cooperative 4-way scheme

also uses one long domain per formal species and reaction, as described above

it uses 19 universal toeholds and takes 30 reactions for A+B → C +D. (By

“reaction” I mean roughly one condensed reaction as described in Peppercorn

[36] or Chapter 5 of this thesis, generalized to include trimolecular reactions.

So one toehold exchange or one 2-toehold-mediated 4-way strand exchange is

one reaction, as is the cooperative 4-way strand exchange shown in Figure 4.2;

note that using that mechanism to exchange e.g. A(t, s;m)
 R(a1, a2;n
∗)

takes 4 such reactions.) The O(n)-toeholds scheme takes only 14 reactions for

A + B → C + D, but with one universal long domain it takes 3 toeholds per

species and 6 per reaction, which may run out of design space for large CRNs.

Also, 14 reactions is still much more than 4. These pathways are not provably

optimal; we suspect they can be reduced to less than 14 and 30, but still more

than 4.

The increase in number of reactions to implement A + B → C + D may

just be a cost of using 2-stranded complexes. The fundamental question is,

given a complex of a certain size, how much information can it store? How

can complexes meant to represent A, C, and an E from another reaction all

present different enough open and bound domains that none can undergo a

reaction meant for a different one? With 3-stranded complexes and toehold

exchange, the long domain identity and open toehold does this very efficiently.

With 2-stranded complexes and 4-way strand exchange, we use pairs of toehold

identity to represent signal identity, which means we need extra reactions to

(a) change the toehold identity one strand at a time, and (b) ensure that

intermediates of different pathways don’t try to pass through the same toehold

combination. The impossibility proofs of Chapter 5 of this thesis start to

examine the theoretical question of how much distinguishing information one

complex can hold.

Another aspect worth mentioning is the focus on motifs before building up

CRN implementations. We argued that each of the 5 motifs has certain ab-

stract behaviors, and that larger systems such as CRN implementations can

177

be thought of in terms of those behaviors. When building large systems, it

is much easier if one can build mid-sized building blocks out of the funda-

mental units, then build larger systems out of the mid-sized building blocks.

Motifs take that role between fundamental DSD steps (bind, unbind, 3-way

branch migration, 4-way branch migration) and systems on the scale of CRN

implementations. To the extent that we were able to describe our CRN imple-

mentations in terms of the motifs rather than in terms of the underlying DSD

steps, this approach should be considered for future DSD system design.

178

C h a p t e r 5

IMPOSSIBILITY OF SUFFICIENTLY SIMPLE CHEMICAL
REACTION NETWORK IMPLEMENTATIONS IN DNA

STRAND DISPLACEMENT

5.1 Perspective

Whenever one wants to optimize something, it helps to know when to stop. Is

there some DSD system so optimized for its task (for example, implementing a

given CRN) that there’s no possible better one? Or at least, are there multiple

“best” systems with different tradeoffs relative to each other, each one best for

its specific task? There must be, since typically “best” means some variant of

“smallest”, but how can we find them, or know when we have one? I don’t

have the final answer, but I have a preliminary result that suggests a direction

to search. In this chapter I show that a general CRN-to-DSD implementation

scheme that satisfies a certain set of desirable but restrictive criteria cannot

exist.

Why are we interested in proving what can’t be done? The two main reasons

are, first, to develop the theory of DSD, and second, that knowing what can’t

be done helps us do what can be done. In computational complexity, we

feel we have a good grasp on the difficulty of a problem when we can say

it’s complete for a certain complexity class. Intuitively, this means we have

a way to solve the problem, we know how complex our way is, and we have

proven that there’s no less complex way to solve it. In DSD systems, we might

prove that general CRN implementations cannot be done without at least

one of mechanisms A, B, C, and D, then present an implementation scheme

that uses mechanism A but not B, C, or D. In fact, in Chapter 4 I discussed

two new CRN implementations, each one having a desirable feature (O(1)

toeholds or using only bimolecular reactions) that the other lacked, as well as

a number of other desirable features. In this chapter, I prove that a general

CRN implementation scheme with all of those desirable features, including

both O(1) toeholds and using only bimolecular reactions, cannot be done with

DSD. Thus the lower bound proven in this chapter is a tight lower bound, and

suggests that the schemes from Chapter 4 are in some sense optimal.

179

So how does one prove statements about DSD systems? The first step is to

formalize what a DSD system is. From one point of view, “DNA strand dis-

placement” is just a description of some things DNA strands do, which can

be experimentally measured [22, 87] and used to build circuits that experi-

mentally work [19, 67]. However, in order to more efficiently program with

DSD, various researchers built models such as reaction enumerators [36, 45],

and with those models come assumptions of how DSD works. The work in this

chapter is based on a specific model as published by Petersen et al. [53], which

assumes four basic DSD reactions: binding, toehold unbinding, 3-way branch

migration, and 4-way branch migration. “All models are false, but some are

useful,” as the saying goes; a formalization of DSD is not the underlying phys-

ical behavior of DNA strands, but it is a formal system about which some

statements can be proven. To the extent that it approximates the behavior of

the DNA strands, those statements may apply to the DNA strands as well.

If in general one can prove statements about the formalized DSD system,

which specific things did I prove? I proved that one cannot design a system-

atic CRN-to-DSD implementation scheme with all of the following properties:

correct according to modular CRN bisimulation; uses 4-way but not 3-way

branch migration; uses a constant number of toehold domains; does not use

“effectively trimolecular” DSD mechanisms; uses only reversible DSD reac-

tions; and uses only 1- or 2-stranded fuels. (Each of these concepts, including

systematic implementation scheme, has a formal definition in terms of the

DSD model.) Most of these conditions are not necessary for a functioning

CRN-to-DSD implementation scheme, but each has a reason to be desirable:

“systematic and correct according to modular CRN bisimulation” is a for-

malization of the intuitive concept of “correct implementation scheme”; the

number of distinct toehold domains is limited by physical properties of DNA;

trimolecular mechanisms are less reliable at lower concentration; reversible

mechanisms consume less fuel; and 2-stranded fuels are potentially more ro-

bust as described in Chapter 4. Regarding 3-way and 4-way branch migration,

I intended this result to be an intermediate step in determining whether such

an implementation scheme was possible using both DSD mechanisms, but as

a first step I proved it impossible without 3-way branch migration. It is also

worth noting that both of the implementation schemes we presented in Chap-

ter 4 satisfy all but one of the above conditions: one uses a scaling number of

toehold domains, while the other uses a trimolecular mechanism.

180

I also think this proof can teach us more about DSD systems than just its

result. In general the method of proof I used in this chapter is to categorize all

combinations of the four DSD reactions and show that none of the categories

can transform DNA complexes in a certain way, thus making that transfor-

mation impossible. For example, as an intermediate step I prove a locality

theorem: that for parts of a DNA complex on different sides of a 4-way junc-

tion to affect each other, the reactions must go through the 4-way junction,

and cannot do so while leaving the junction unchanged. That is, no sequence

of the four DSD reactions will have the effect of making a change on one side

of the junction while leaving the junction itself as it was, unless that change

can be made independently of any other side. Any of the intermediate steps,

but in particular this locality theorem, may be interesting facts in their own

right, and/or may be useful as parts of other proofs regarding DSD systems.

Finally, there’s an implication of impossibility proofs such as this that is hard

to define, but I argue is important. I often say that the best known technique

for designing DSD systems is no technique at all—ad-hoc brainstorming ideas

until you come up with one that does what you want or you give up. In

other words, designing DSD circuits is more of an art than a science: there

are no design techniques that can be explained, well-defined, and reproduced,

but there are intuitive understandings that make people more or less skilled

at designing a DSD system for a given task. Statements such as the locality

theorem come with an intuitive understanding, both of the statement itself

and of the way it was proven. The more such intuitive understandings can

be communicated and spread, the more people will be able to design DSD

systems with the higher levels of skill, and the more quickly someone new to

the field can reach the higher levels of intuition. In the long term, we may

even be able to find a more systematic way of designing DSD systems, if we

can gain enough formal understanding.

The remainder of this chapter is a slightly modified version of the following

previously published work:

Robert F. Johnson. Impossibility of sufficiently simple chemical reaction net-
work implementations in DNA strand displacement. In Ian McQuillan and
Shinnosuke Seki, editors, Unconventional Computation and Natural Compu-
tation, pages 136–149. Springer International Publishing, 2019. ISBN 978-3-
030-19311-9. doi: 10.1007/978-3-030-19311-9 12.

181

Contributions: RFJ formulated the question of impossibility, proved the the-
orems, and wrote the manuscript.

Abstract

DNA strand displacement (DSD) has recently become a common technology

for constructing molecular devices, with a number of useful systems experi-

mentally demonstrated. To help with DSD system design, various researchers

are developing formal definitions to model DNA strand displacement systems.

With these models a DSD system can be defined, described by a Chemical Re-

action Network, simulated, and otherwise analyzed. Meanwhile, the research

community is trying to use DSD to do increasingly complex tasks, while also

trying to make DSD systems simpler and more robust. I suggest that formal

modeling of DSD systems can be used not only to analyze DSD systems, but

to guide their design. For instance, one might prove that a DSD system that

implements a certain function must use a certain mechanism. As an example,

I show that a physically reversible DSD system with no pseudoknots, no effec-

tively trimolecular reactions, and using 4-way but not 3-way branch migration,

cannot be a systematic implementation of reactions of the form A
 B that

uses a constant number of toehold domains and does not crosstalk when mul-

tiple reactions of that type are combined. This result is a tight lower bound in

the sense that, for most of those conditions, removing just that one condition

makes the desired DSD system possible. I conjecture that a system with the

same restrictions using both 3-way and 4-way branch migration still cannot

systematically implement the reaction A+B
 C.

5.2 Introduction

DNA strand displacement (DSD) has become a common method of designing

programmable in vitro molecular systems. DSD systems have been designed

and experimentally shown to simulate arbitrary Chemical Reaction Networks

(CRNs) [6, 19, 66, 67] and some polymer systems [57], implement large logic

circuits [55, 72], conditionally release a cargo [27], sort objects [71], perform

computation on a surface [56], and a number of other tasks [87]. Most DSD

systems are based on the 3-way strand displacement mechanism, but a num-

ber of interesting devices based on a 4-way strand exchange mechanism have

been shown [18, 22, 35, 77]. More complex tasks may require combinations of

these two mechanisms, such as a 3-way-initiated 4-way strand exchange mech-

182

anism used in Surface CRNs [56]. Meanwhile, simple DSD mechanisms such

as seesaw circuits [55] have been found to function with more robustness to

uncontrollable conditions, compared to more complex mechanisms [72]. The

ideal case is, of course, to find as simple a DSD mechanism as possible to

accomplish the desired task.

To help with design and analysis of DSD systems, a number of researchers

are developing techniques to formally define and analyze the behavior of DSD

systems. Reaction enumerators formally define a set of reaction types that

DNA strands are assumed to do [36, 45, 53]. Given that, a reaction enumerator

will take a set of strands and complexes and enumerate a CRN, which may

have finite or countably infinite species and reactions, describing the behavior

of a DSD system initialized with the given complexes. Formal verification

methods of CRN equivalence define whether a given implementation CRN is a

correct implementation of a given formal CRN [40, 46, 64]. Thus all the tools

necessary are available to ask, given a formal CRN and a DSD implementation,

is it correct? The Nuskell compiler, for example, combines all of the above

tools to answer exactly that question [4].

I suspect that this level of formal analysis can prove that certain tasks in

DSD cannot be done without certain mechanisms, or certain tasks require a

certain minimum level of complexity. As an example of this, I chose general

CRN implementation schemes as the task, using CRN bisimulation [40] as the

measure of correctness. Current CRN implementation schemes require high

initial concentrations of “fuel” complexes using 3 or more strands [6, 57, 66],

while the seesaw gates that showed such robustness to uncertainty use only

single strands and 2-stranded complexes [55, 72]. Thus, I investigated whether

arbitrary CRN implementations could be made using only 2-stranded signal

and fuel complexes. To further probe the limits of DNA strand displacement,

I investigated DSD systems with additional restrictions: the system should

implement multiple CRN reactions in a systematic way (as existing CRN im-

plementation schemes do [6, 57, 66]); the number of “short” or “toehold”

domains (which is bounded by thermodynamics) should not increase as the

number of reactions increases; the system should work under Peppercorn’s

condensed semantics [36] (excluding trimolecular mechanisms such as cooper-

ative hybridization); and reversible formal reactions should be implemented by

physically reversible DSD mechanisms. Under those restrictions I prove that,

183

using only 4-way strand exchange (excluding 3-way strand displacement), the

reactions A
 B and C
 D cannot be implemented without crosstalk.

While 3-way strand displacement can easily implement those reactions (such

as the seesaw gates), it has difficulty implementing bimolecular reactions such

as A + B
 C with only 2-stranded fuels. I conjecture that, allowing both

3-way and 4-way branch migration with all the restrictions above, the reaction

A + B
 C cannot be implemented systematically without crosstalk; this

result is intended to be the first part of that proof.

In the following sections, I first formalize the concept of DSD system and the

reaction rules I use. With that formalization, I prove a locality theorem for

reversible, non-pseudoknotted DSD systems without 3-way branch migration,

which will be essential to the remaining proofs. I then introduce the concept

of condensed reaction as formalized by Peppercorn [36], and show that in

the above type of system with 2-stranded reactants there is in fact only one

type of condensed reaction possible, the two-toehold-mediated reversible 4-way

strand exchange or 2-r4 reaction. Finally, I formalize the concept of systematic

CRN implementation, which existing DSD implementations of CRNs satisfy

[6, 57, 66], and the information-bearing set of domains which, in a systematic

implementation, identify which species a DNA complex represents. I then

show that the 2-r4 reaction cannot add an information-bearing domain to a

complex that did not already have a copy of that domain. This implies that

there is no way to build a pathway from a species A to another species B with

distinct information-bearing domains, which completes the proof.

5.3 Formalizing DNA Strand Displacement

The syntax of a DSD system is defined by a set of strands, which are sequences

of domains, and grouping of strands into complexes by making bonds between

pairs of complementary domains. The semantics of the system will be defined

by reaction rules, each of which says that complexes matching a certain pattern

(and possibly some predicate) will react in a certain way, and defines the

products of that reaction. Starting from a given set of complexes, enumerating

species and reactions by iteratively applying reaction rules produces a possibly

infinite Chemical Reaction Network, which models the behavior of the DSD

system.

Definition 5.3.1 (Petersen et al. [53]). The syntax of a DSD system is defined

184

by the following grammar, in terms of domain names x, y, z and bonds i, j, k.

d ::= x or x∗ (Domain)

o ::= d or d!i (Domain instance)

S ::= o or o S (Sequence of domains)

P ::= S or S | P (Multiset of strands)

A complex is a multiset of strands P that is connected by bonds. Complexes

are considered equal up to reordering of strands and/or renaming of bonds.

In this paper I use a specific set of reaction rules: binding b, toehold unbinding

u, 3-way strand displacement m3, and 4-way strand exchange m4. To define

these rules, I use the following assumptions and notation. Each domain x has

a complementary domain x∗, such that (x∗)∗ = x. Each domain x is either

short (“toehold”) or long, and x∗ is short iff x is short. Bonds are between

exactly one domain instance and one instance of its complement: if d!i appears

in some P , then P has exactly one d∗!i and no other instances of i.

A pseudoknot is a pair of bonds that cross over each other. Formally, a complex

is non-pseudoknotted if, for some ordering of its strands, for every pair of bonds

i, j, the two instances of i appear either both between or both outside the two

instances of j. This non-pseudoknotted ordering, if it exists, is unique up

to cyclic permutation [24]. Pseudoknots are poorly understood compared to

non-pseudoknotted DSD systems; for this reason, DSD enumerators such as

Peppercorn and Visual DSD often disallow them [36, 45]. For the same reason,

I define the reaction rules in such a way that no pseudoknot can form from

initially non-pseudoknotted complexes.

Definition 5.3.2 (Reaction rules). The reactions of these DSD systems come

from the following rules:

1. Binding (b): x, x∗ → x!i, x∗!i if the product is non-pseudoknotted.

2. Toehold unbinding (u): x!i, x∗!i → x, x∗ if x is short and i is not an-

chored. A bond i is anchored if it matches

x!i y!j, y∗!j x∗!i or y!j x!i, x∗!i y∗!j.

185

b

u

m3

m4

Figure 5.1: The reaction rules of Definition 5.3.2. Dotted line in m3 indicates
that the reactant must be one complex; the products of m3 and m4 can be
either one complex or two.

3. 4-way branch migration (m4): x!i y!j, y∗!j z∗!k, z!k y!l, y∗!l x∗!i

→ x!i y!j, y∗!l z∗!k, z!k y!l, y∗!j x∗!i.

4. Remote-toehold 3-way strand displacement (m3):

x, x!i, x∗!i → x!i, x, x∗!i if the reactant is one complex and the product

is non-pseudoknotted.

A Chemical Reaction Network is a pair (S,R) of a set of abstract species S
and a set of reactions between those species R. The DSD system enumerated

from an initial multiset of strands P and a set of rules is the smallest DSD

system such that any complex in P is a species in S, any application of one of

the rules to reactants in S is a reaction in R, and its products are species in

S.

I use comma-separated sequences instead of |-separated sequences in the above

definition to indicate that those sequences may each be part of a larger strand,

and may or may not be on the same strand as each other. I use comma-

separated sequences for the same purpose throughout the paper, which given

the nature of the proofs is much more common than knowing the full se-

quence of a strand. Although in general checking whether a complex is non-

pseudoknotted is hard due to having to find the non-pseudoknotted order,

given a complex or complexes with known non-pseudoknotted order(s) check-

ing whether an additional bond makes a pseudoknot (as in the b and m3

conditions) is easy.

186

These reaction rules are similar, but not identical, to those from Petersen et al.

[53]. The main difference is that Petersen’s u rule counts 4-way (and n-way)

junctions as “anchored” for the purpose of prohibiting u reactions. Based on

Dabby’s experiments and energy models of toehold-mediated 4-way branch

migration [22] and the probe designed by Chen et al. using reversible 4-way

branch migration [18], there is evidence that 2 toeholds separated by a 4-way

junction can dissociate, and I would like to model and design DSD systems

using this mechanism. As the binding of those toeholds is already modeled by

two separate b reactions, and I am interested in physical reversibility of these

systems, I modeled the unbinding as two separate u reactions, allowing u at

anything but an unbroken helix. The other difference is that in the “sufficiently

simple system” that I would like to prove cannot accomplish certain tasks, the

m4 reaction can only happen at a 4-way junction, while Petersen’s equivalent

rule could happen at larger junctions. All of these reactions are possible in

Peppercorn [36].

Observe that a b reaction is reversible (by u) if the domain x is short and

the bond formed is not anchored; a u is always reversible (by b); an m3 is

reversible (by m3) if it does not separate complexes; and a m4 is reversible (by

m4) if bonds j and l are part of a new 4-way junction. The impossibility proof

I wish to present here deals with reversible, 4-way-only DSD systems ; a DSD

system is reversible if it contains only reversible reactions, and a DSD system

is 4-way-only if it contains no m3 reactions. In such a system, largely because

of the no-pseudoknots condition, I can prove an important locality theorem:

that if a complex with a 4-way junction can, via unimolecular reactions, break

the 4-way junction and eventually reach a different state with the same 4-way

junction reformed, then that initial complex can reach the same final state

(via unimolecular reactions) without ever breaking the 4-way junction. This,

in a certain sense, one-way flow of information limits the type of reactions that

can happen in such a system.

Theorem 5.3.1. In a reversible, 4-way-only DSD system, consider a complex

P containing a 4-way junction, where P is non-pseudoknotted. Assume P

P ′ via a trajectory of unimolecular reactions, where P ′ contains the same 4-

way junction (but may differ elsewhere). Then P
 P ′ via a trajectory of

unimolecular reactions, not longer than the original trajectory, with no reaction

changing the bonds within the 4-way junction.

187

... ...

...

?
?

?...

...

⇓

Figure 5.2: Theorem 5.3.1 states roughly that if some change outside of a four-
way junction can occur after which the four-way junction is reformed, then the
same change can occur without breaking the four-way junction.

Proof. This theorem assumes an initial complex P , with no details specified

except the existence of a 4-way junction:

x!i y!j, y∗!j z∗!k, z!k w!l, w∗!l x∗!i.

This theorem also assumes some sequence of reactions by which P
 P ′,

again with no details specified except that the system is reversible and 4-way-

only, the path contains only unimolecular reactions, and the result P ′ has

the same 4-way junction made out of the same strand(s). I focus on three

steps in the given trajectory: the first reaction that breaks the 4-way junction;

the first reaction afterwards that requires that reaction to have happened;

and the reaction that eventually reforms the original 4-way junction. (If the

junction breaks and reforms multiple times, apply the theorem to each such

sub-trajectory.) If those reactions do not exist, the result is trivial: if the

junction never breaks, then the given trajectory is the desired trajectory, and

if the first reaction that requires the break is the reaction that reforms the

junction, then removing those two gives either the desired trajectory or (if

what used to be the second reaction that breaks the 4-way junction is now

the first) a shorter trajectory to which this theorem can be applied. Each

of those three reactions has a limited number of possibilities, and I show that

each combination of possibilities produces either a contradiction or the desired

pathway.

In a reversible, 4-way-only system, a reaction that breaks a bond must be u or

m4. If the junction is first broken by u, then except for its reverse b, the only

reaction that can depend on a u is a b with one of the newly opened domains:

x, x!i, x∗!i
u−→ x, x, x∗

b−→ x!i, x, x∗!i.

188

However, observe that this pair of reactions is equivalent to (and implies the

possibility of) an m3 reaction, thus the DSD system is not 4-way-only.

If the junction is first broken by m4, to be reversible it must form a new 4-way

junction with two smaller stems and two larger stems:

x!i y!j u!g, u∗!g y∗!l z∗!k, z!k y!l v!h, v∗!h y∗!j x∗!i.

To reform the junction, bonds j and l must be broken, specifically by u or m4.

If one is broken by u, then since both have domain identity y this allows an m3

reaction with the other, contradicting 4-way-only. An m4 reaction that is not

the reverse of the original m4, while it would break one of the bonds, would

produce another bond that needs to be broken to reform the original junction,

and to which this argument could be applied (formally, this is induction on the

size of the remaining DNA complex). The only remaining possibility is that

the original junction is reformed by the reverse m4 of the one that broke it,

implying that at that time the new (j, g, l, h) 4-way junction must be present.

I treat the above as a proof by induction on the length of the given trajectory

by which P
 P ′. The base case is a trajectory of length 0, P = P ′, which

does not break the 4-way junction and thus is the desired trajectory. In a given

trajectory of length n > 0, let P1 be the state after the m4 breaking the 4-way

junction and P ′1 the state before the reverse m4; both have the same (j, g, l, h)

4-way junction and P1
 P ′1 by a trajectory of length at most n− 2 satisfying

the assumptions of this theorem. Thus P1
 P ′1 by a trajectory not longer

than the original in which no reaction breaks the (j, g, l, h) 4-way junction.

But the only reactions that can require the original m4 are a u or m4 involving

bonds j, g, l, and/or h, thus none of the new trajectory requires that m4; and

P
 P ′ by removing both m4’s and replacing the trajectory between them by

the new P1
 P ′1 trajectory. Because this new trajectory is valid both before

and after the m4 reaction exchanging bonds j and l (“j, l-m4”), no reaction in

it can break bonds i or k: a u reaction would be impossible post-j, l-m4 as the

pattern x!i y!j, y∗!j x!i anchors i and similarly bond l anchors k, while an m4

reaction on i or k would form a 6-way junction and thus be irreversible before

the j, l-m4.

5.4 The 2-r4 Condensed Reaction

Grun et al. in Peppercorn used the concept of a condensed reaction, which

models a sequence of multiple reaction rules as one reaction [36]. They divide

189

b, b

u, u

m4

m4

u, u

b, b

1
Figure 5.3: The two-toehold-mediated reversible 4-way branch migration (2-
r4) condensed reaction mechanism. For conciseness, the first and last two b, b
and u, u detailed steps are drawn together.

detailed reactions into “fast” and “slow” reactions, assume that no slow reac-

tion can happen while any (productive sequence of) fast reactions can happen,

and treat a single slow reaction followed by multiple fast reactions as a single,

“condensed” reaction. The usual division, which I use, is that all unimolecular

reactions are fast and all bimolecular reactions are slow.

Definition 5.4.1 (Grun et al. [36]). Take as given a DSD system (S,R) and a

division of reactions in that DSD system into “fast” unimolecular and “slow”

bimolecular reactions. A resting set (or resting state) is a set of complexes

connected by fast reactions, and none of which have outgoing fast reactions

with products outside the resting set.

A condensed reaction is a reaction of resting sets, such that for some multiset

of representatives of the reactant resting sets, there is a sequence of one slow

reaction followed by zero or more fast reactions that produces a multiset of

representatives of the product resting sets. The condensed DSD system cor-

responding to (S,R) is (Ŝ, R̂) where Ŝ is the set of resting states of S and

R̂ is the set of condensed reactions. A reversible, condensed DSD system is a

condensed DSD system where every reaction in R and condensed reaction in

R̂ is reversible.

A given condensed reaction can correspond to multiple equivalent pathways of

detailed reactions. To distinguish between detailed and condensed reactions,

I will often use the word “step” to refer to a detailed reaction and “reaction”

to refer to a condensed reaction. If all unimolecular steps are fast and all

bimolecular steps slow, then a condensed reaction must be bimolecular and

begin with a bimolecular b step. In a reversible system, all condensed reactions

190

must have exactly two products and end with a u that separates complexes:

one product can always reverse back to its reactants; with 3 or more products

the reverse would not be a condensed reaction; and any steps after that u that

do not separate complexes are reversible and thus are steps within a resting

set.

An important example condensed reaction is the two-toehold-mediated re-

versible 4-way strand exchange reaction, or 2-r4 reaction, shown in Fig. 5.3.

Definition 5.4.2. A 2-r4 reaction is a reversible condensed reaction of which

one representative pathway is the following sequence of detailed reactions:

x y!j z!g, z∗!g y∗!j w∗, w y!l v!h, v∗!h y∗!l x∗

b−⇀↽−
u
x!i y!j z!g, z∗!g y∗!j w∗, w y!l v!h, v∗!h y∗!l x∗!i

b−⇀↽−
u
x!i y!j z!g, z∗!g y∗!j w∗!k, w!k y!l v!h, v∗!h y∗!l x∗!i

m4−⇀↽−
m4

x!i y!j z!g, z∗!g y∗!l w∗!k, w!k y!l v!h, v∗!h y∗!j x∗!i

u−⇀↽−
b
x!i y!j z!g, z∗!g y∗!l w∗!k, w!k y!l v, v∗ y∗!j x∗!i

u−⇀↽−
b
x!i y!j z, z∗ y∗!l w∗!k, w!k y!l v, v∗ y∗!j x∗!i

Any reversible condensed reaction that can be written as a sequence similar

to the above, with more than one m4 step across an unbroken sequence of

migration domains, is also a 2-r4 reaction.

Recall that the comma-separated sequence notation means that the sequences

above may be only part of their strands, and the complex may contain ad-

ditional strands not mentioned. Note that the reverse pathway is also a 2-r4

reaction, hence the phrase “reversible condensed reaction”. An important fea-

ture of the 2-r4 reaction is that if its reactants are at most 2-stranded, so are

its products.

Lemma 5.4.1. A 2-r4 reaction where one of the reactants is a single strand

is impossible. In any 2-r4 reaction where the reactants are both 2-stranded

complexes, the products are both 2-stranded complexes.

Proof. The initial and final state must each be 2 separate complexes; in par-

ticular, the patterns x y z, v∗ y∗ x, w y v, and z∗ y∗ w∗ must be on 4 separate

191

strands. If both of the initial complexes are 2-stranded, then those 4 are the

only strands involved, and each product has 2 of them.

In addition to the restrictions of a reversible, condensed, 4-way-only DSD sys-

tem, I would like to consider systems where all initial complexes have at most

2 strands each. In this case Lemma 5.4.1 suggests, and Theorem 5.4.1 proves,

that all complexes involved will have at most 2 strands. Using Theorem 5.3.1,

I show via a trace rewriting argument that any condensed reaction between

2-stranded complexes in a reversible, condensed, 4-way-only system is a 2-r4

reaction. As a first step in that proof, I observe that only b and u steps cannot

make a nontrivial condensed reaction.

Lemma 5.4.2. In a reversible, condensed, 4-way-only system, if a pathway of

some condensed reaction with non-pseudoknotted reactants consists of only b

and u steps, then the condensed reaction is trivial.

Proof. Observe that any two consecutive u steps can happen in any order, and

any u step that can happen after a b step can happen before it, except the

reverse of that b (which can thus be removed). Then any pathway matching

the assumptions of this lemma is equivalent to a pathway where all u steps

happen before all b steps. Such a path is either trivial or involves one of the

reactants separating unimolecularly, in which case that reactant was not in a

resting state.

Theorem 5.4.1. In a reversible, condensed, 4-way-only system, any con-

densed reaction between non-pseudoknotted 2-stranded complexes is a 2-r4 re-

action.

Proof. (Sketch) Given a reversible pathway representing a condensed reaction

from two reactant resting states to two product resting states, I show that

that pathway can be “rewritten” into a pathway that represents the same

condensed reaction and matches Definition 5.4.2.

Lemma 5.4.2 implies that an m4 step, which does not eventually reverse itself,

happens. That is, the first m4 step in the reaction goes from

x!i y!j w!g, w∗!g y∗!j z∗!k, z!k y!l v!h, v∗!h y∗!l x∗!i

192

to

x!i y!j w!g, w∗!g y∗!l z∗!k, z!k y!l v!h, v∗!h y∗!j x∗!i.

If this m4 was not possible in a resting state (and neither was an m3 between

what are now bonds j and l), it must be that bonds i and k were formed by

inter-reactant b steps. Since these three steps cannot depend on any other b

or u steps, there is an equivalent pathway where those bbm4 are the first three

steps. (The case where y is a sequence of more than one domain and this m4

is more than one m4 is still covered by this pattern.)

Looking ahead to the u step that separates complexes, separating bonds g and

h by two u steps (if w and v are short) completes the 2-r4 pattern. Any other

possible separation can be eliminated. If the entire (j, g, l, h) 4-way junction

is on one product, with the other product coming from the g or h stems, then

the appropriate reactant must have been either pseudoknotted or 3-stranded.

If the other product comes from the j or l stems without breaking bonds j or

l, then it could have separated without the j, l-m4 step. If either of bonds j

or l is broken, then this will either allow an m3 reaction, allow an irreversible

reaction involving 6-way junctions, or be equivalent to the j, l-m4 step never

happening.

5.5 Chemical Reaction Network Implementations

Previous work on formal verification of CRNs allows one to define whether

one CRN correctly implements another [40, 64], and combine that work with

the above definitions of modeling a DSD system as a CRN to verify that a

DSD system correctly implements a CRN [4]. The definition of “systematically

correct” in Definition 5.5.2 is based on (modular) CRN bisimulation [40].

Most existing DSD-based CRN implementations are not intended to be an

implementation of one specific CRN, but rather a general translation scheme to

implement arbitrary (or at least a wide class of) CRNs [6, 57, 66]. A systematic

implementation is one where (a) each species has a “signal complex”, and the

signal complexes corresponding to two different species are identical except

for the identities of certain domains; and (b) similarly, the pathways by which

formal reactions of the same “type” are implemented, are identical to each

other except for the identities of some domains unique to the species involved

and some domains unique to the reaction. Fig. 5.4 shows an example of this

definition.

193

fAD(t) = t

fAD(A) = D

fr1r2(r) = s

fr1r2(A) = fAD(A) = D

fr1r2(t) = fAD(t) = fBE(t)

= fCF (t) = t

1
Figure 5.4: An example O(1) toeholds systematic DSD implementation
(Cardelli et al. [6]). Left: signal species sA and sD, with domain isomorphism
fAD. Right: fuels Fr1 and Fr2 for r1 = A+B
 C and r2 = D+E
 F , and
domain isomorphism fr1r2 .

Definition 5.5.1 (Systematic implementation). A domain isomorphism is an

injective partial function on domains f with f(x∗) = f(x)∗. Where P is a

multiset of strands and f a domain isomorphism, let P{f} be the multiset

of strands obtained from P by replacing each d with f(d) whenever f(d) is

defined.

A DSD implementation of a formal CRN (S,R) is, for each species A ∈ S,

a “signal” DSD complex sA, and for each reversible or irreversible reaction

r ∈ R, a set of “fuel” complexes Fr. A DSD implementation is systematic if:

1. Given species A,B there is a domain isomorphism fAB where sB =

sA{fAB}. If A 6= B there is at least one domain d appearing in sA with

fAB(d) 6= d.

2. If a domain d is in both sA and sB for A 6= B, then fCD(d) = d for all

C,D.

3. Given reactions r1, r2, if there is a bijection φ on species such that r2 =

r1{φ}, then there is a domain isomorphism fr1r2 where Fr2 = Fr1{fr1r2}.
For one such φ, for each A in r1, fr1r2 = fAφ(A) wherever fAφ(A) is defined.

A systematic DSD implementation is O(1) toeholds if, whenever d is a short

domain, all fAB(d) = d and all fr1r2(d) = d.

Where R is a multiset of species, the notation sR means sA for each A ∈ R.

194

Definition 5.5.2. Given a CRN (S,R) and a systematic DSD implementa-

tion, let (S ′,R′) be the (detailed or condensed) DSD system enumerated, plus

reactions ∅ → Fr for each r ∈ R. The implementation is systematically correct

if:

1. There is an interpretation m mapping species in S ′ to multisets of species

in S, with each m(sA) = A and x ∈ Fr ⇒ m(x) = ∅.

2. For each r′ = R′ → P ′ ∈ R′, either m(R′) = m(P ′) (r′ is “trivial”) or

m(R′)→ m(P ′) is some reaction r ∈ R.

3. For each r = R → P ∈ R, there is a pathway containing exactly one

nontrivial reaction, from Fr + sR to some Wr + sP , with x ∈ Wr ⇒
m(x) = ∅.

4. For each x ∈ S ′, there is a pathway of trivial reactions from x to sm(x).

I now consider whether the 2-r4 reaction can be used to construct a system-

atically correct implementation of A
 B and C
 D with O(1) toeholds.

I define the information-bearing set or infoset of an intermediate complex in

A
 B as the long domains that, if changed appropriately, would make it “act

like” C
 D, as shown in Fig. 5.5. The infosets of sA and sB must be disjoint

and nonempty. I show that the 2-r4 reaction can’t add long domains to the

infoset.

Definition 5.5.3. Consider a systematically correct implementation of the

two reversible reactions r1 = A
 B and r2 = C
 D. Let fAC , fBD, and

fr1r2 be the appropriate domain isomorphisms as in Definition 5.5.1. Where

x is a complex with m(x) = A or m(x) = B, there is a pathway by which

x produces sB. Define the information-bearing set or infoset I(x) to be the

smallest set of domains for which, where x′ is x with each domain d ∈ I(x)

replaced by fr1r2(d), x′ can do the following: follow the pathway by which x

produces sB but using fuels from Fr2 to produce some complex s′D; s′D then

mimics D → C to produce some s′C ; s′C then mimics C → D to produce sD.

(The use of s′C and s′D is a technical detail to say that domains whose identity

exists but does not matter are not in the infoset.)

195

Figure 5.5: In this systematic implementation of A
 B and C
 D using
3-way strand displacement, replacing A+ with C+ in sA (left) lets it follow the
C
 D pathway (bottom) instead of the A
 B pathway (top). Thus, the
infoset I(sA) = {A+}.

Lemma 5.5.1. In a reversible, condensed, 4-way-only systematically correct

O(1)-toehold DSD implementation of A
 B and C
 D, let x+ f
 x′+ f ′

be a 2-r4 reaction on the pathway from sA to sB. Without loss of generality say

m(x) and m(x′) are each either A or B, and m(f) = m(f ′) = ∅. If x and f are

non-pseudoknotted complexes with at most 2 strands each, then I(x′) ⊂ I(x).

Proof. (Sketch) Observe that if x, f , x′, or f ′ contains inter-strand long domain

bonds not in the 2-r4 reaction pattern, then the 2-r4 reaction cannot happen.

Any domain d ∈ I(x′) must eventually be involved in a reaction; since O(1)

toeholds implies d is a long domain, the next such reaction must be an m4

reaction. To participate in an m4 reaction, it must be bound; for this to be

a necessary reaction (i.e. not eliminated by Theorem 5.3.1; detailed proof

omitted), its bound complement must be on a distinct strand. Since x′ cannot

have inter-strand bonds not mentioned in the 2-r4 reaction pattern, d can only

be the y domain in Definition 5.4.2; thus d ∈ I(x).

Given Theorem 5.4.1 and Lemma 5.5.1, the desired result is trivial.

Theorem 5.5.1. No reversible, condensed, 4-way only systematically correct

O(1)-toehold DSD implementation of A
 B and C
 D where each signal

and fuel complex has at most 2 strands can exist.

196

5.6 Discussion

The above proofs show that a reversible, condensed, 4-way-only DSD system

with at most 2-stranded inputs cannot be a systematically correct with O(1)

toeholds implementation of multiple, independent reactions of the form A

B, and therefore cannot implement more complex CRNs. I proposed that a

proof of “Task X cannot be done without mechanism M” suggests “In order

to do task X, use mechanism M”. For most of the restrictions I investigated,

removing just that one restriction makes A
 B, or even A+ B
 C (which

can implement arbitrary reversible reactions), possible. For example, removing

the 4-way-only restriction allows seesaw gates, which implement A
 B [55].

Existing CRN implementations are made with 3-stranded fuels [6, 66] and I

suspect a similar mechanism can work using 2-r4 reactions instead of 3-way

strand displacement reactions. The 2-r4 reaction is A + B
 C + D if A,

B, C, and D are identified by combinations of toeholds, violating the O(1)

toeholds condition (Chapter 4 of this thesis). Finally, a cooperative 4-way

branch migration mechanism (Chapter 4) implements A + B
 C but is not

a condensed reaction. In that sense, this result is a tight lower bound.

I conjectured that a system with the same restrictions but allowing 3-way

branch migration cannot implement A + B
 C. Informally, 3-way strand

displacement can easily implement A
 B [55], but has difficulty implement-

ing “join” (A + B
 C) logic without either 3-stranded fuels [6, 57, 66] or

cooperative hybridization. Meanwhile, 4-way strand exchange can do join logic

on O(n) toeholds with the 2-r4 reaction (Chapter 4), but is provably unable

to transduce long domains with O(1) toeholds. In trying to combine 3-way

and 4-way mechanisms I have found numerous pitfalls. I suspect that with

2-stranded fuels, combining 3-way and 4-way mechanisms will not gain the

advantages of both, and A+ B
 C under the above restrictions will remain

impossible.

Acknowledgements. I thank Chris Thachuk, Stefan Badelt, Erik Win-

free, and Lulu Qian for helpful discussions on formal verification and on two-

stranded DSD systems. I also thank the anonymous reviewers of a rejected

previous version of this paper for their suggestions, many of which appear

in this version. I thank the NSF Graduate Research Fellowship Program for

financial support.

197

5.7 Omitted Proofs

Two proofs were left in sketch form in order to fit the above into a conference

paper format. They are presented below.

Proof of Theorem 5.4.1

Proof. Given an arbitrary sequence of steps representing a nontrivial con-

densed reaction between 2-stranded reactants, I show how that condensed

reaction can be rewritten as the 2-r4 reaction from Definition 5.4.2, with any

extra steps being unimolecular rearrangements within a resting set of either a

reactant or a product.

Consider two DNA complexes, with nothing known of their structure except

that each is in a resting state and has at most 2 strands. Consider a condensed

reaction between them, that is, a pathway in a reversible, 4-way-only system

that is a bimolecular b step, followed by any number of unimolecular b, u,

and m4, followed by a u step separating complexes. Since by Lemma 5.4.2

only b and u in a 4-way-only system can only produce a trivial condensed

reaction, there must eventually be an m4 step. It must be an m4 step that

never reverses itself (or otherwise re-forms its prior 4-way junction), because

otherwise Theorem 5.3.1 would apply and remove it; since Theorem 5.3.1

produces a strictly shorter pathway when removing an m4 and its reverse, this

process must eventually terminate in a trivial condensed reaction or an m4

that cannot be removed. Further, the m4 that cannot be removed must be an

m4 step between the two reactant complexes, since all the initial b’s and u’s

commute sufficiently that an m4 within one reactant would be possible in the

resting state. That is, the reaction goes from

x!i y!j w!g, w∗!g y∗!j z∗!k, z!k y!l v!h, v∗!h y∗!l x∗!i

to

x!i y!j w!g, w∗!g y∗!l z∗!k, z!k y!l v!h, v∗!h y∗!j x∗!i,

where i and k are bonds between the two reactants. (One bond between two

originally separate complexes cannot make a 4-way junction, bonds g and h

are necessary to be reversible but not necessary for the m4 to happen, and

if either bond j or bond l was not present in one of the reactants then that

reactant could do an m3 reaction.) This being the first necessary m4 implies

that bonds i and k were formed by b steps, and since b’s and u’s sufficiently

198

commute I can assume that those two b steps followed by this m4 were the first

three steps of the (or an equivalent) pathway. If v = w, another m4 may be

possible; imagining that y is a sequence of 1 or more domains, e.g. y = y1 y2 y3

(in which case y!j = y1!j1 y2!j2 y3!j3 and y∗!j = y∗1!j1 y
∗
2!j2 y

∗
3!j3, etc.), further

m4 steps can be described by the same pattern as above.

At this point consider the eventual u step separating 2 complexes, and which

bonds are broken to allow their domains to be on separate product complexes.

This “cut” can be divided into the following exhaustive cases: a cut “inside”

the reaction, where the entire pattern above is in one product and the other

product is from the stem of bond g or h; “outside” the reaction, where the other

product is from the i or k stems; “between” the reaction where it separates

bonds g and h; or “against” the reaction where it separates i and/or k. If w and

v are both short, then two u steps on w and v is a cut between the reaction and

also the completion of the 2-r4 pattern, since any other dissociations necessary

for a cut between the reaction can be assumed to have happened in the resting

state (again appealing to commutativity of u’s, and that an m4 cannot depend

on a u); if this is not possible, then no cut between the reaction is possible. I

will show that the other types of cuts all lead to a contradiction.

A cut “inside” the reaction is entirely within one reactant, and by the no-

pseudoknots assumption implies that that reactant must have at least 3 strands:

e.g. if it is in the g stem, then in the appropriate non-pseudoknotted order

(that is, the order used when describing the 4-way junction above) the pattern

x!i y!j w!g must appear before the at least 1 strand that is separated, which

must appear before the w∗!g y∗!j z∗!k pattern, so those three must be separate

strands. A cut inside the h stem is treated the same.

A cut “outside” the reaction, if it is possible after this m4 reaction, is possible

before it. Without loss of generality assume the cut occurs in the i stem; the

same logic applies to the k stem. If bond i is never broken, then any interaction

between the i stem and the (j, g, l, h) junction or any of the other stems would

be a pseudoknot, so the sequence that leads to the cut is independent of

whatever is going on on the other side of j. If bond i is broken by m4 after the

j, l-m4 step, then that same m4 would be possible but irreversible (making a

6-way junction) before the j, l-m4 step. Bond i cannot be broken by u after the

j, l-m4 step without breaking bond j, and similarly bond j cannot be broken

by u after the j, l-m4 step without breaking bond i. This leaves the possibility

199

that j is broken by an m4 reaction, but not the j, l-m4 reaction since that

would invoke Theorem 5.3.1, meaning to match the m4 pattern bonds g and h

must be broken and replaced. If one is broken by u and replaced by b then that

is equivalent to m3, while if one is replaced by m4 that would be irreversible

as long as j has not yet changed. This eliminates the possibility of a cut

“outside” the reaction, or at least eliminates the possibility that such a cut

depends on the j, l-m4 step. Since this contains the argument that bonds i

and k cannot be broken while depending on the j, l-m4 step, it also eliminates

the possibility of a cut “against” the reaction. Thus I have shown that a 2-r4

condensed reaction may be possible, and eliminated all other possibilities.

Proof of Lemma 5.5.1

The proof given in the main text omits only the justification that, for d ∈ I(x′),

an instance of d must be bound to a complement on a distinct strand in x′.

Since d is a long domain, the next reaction it is involved in must be an m4

step; by Theorem 5.4.1, since the only condensed reactions are 2-r4 reactions,

this must be either a 2-r4 reaction or a unimolecular rearrangement within

a resting set. If it is a 2-r4 reaction, then d is bound to a complement on a

distinct strand, as necessary for the proof in the main text.

If the next necessary step involving d is an m4 step within a resting state,

then either the entire m4 reaction was within one strand, or the domain d is

now bound to a complement on a distinct strand. In the first case, it cannot

participate in any 2-r4 reactions (it doesn’t match the pattern), contradicting

the assumption that it is necessary for a future condensed reaction. In the

second case, those strands must separate for a 2-r4 reaction to complete. As

in the case for cuts “against” the reaction in the previous proof, if one side of

the m4 separates by u it enables an m3; if one side separates by m4 then it

forms a 6-way junction; and if both of them separate simultaneously by m4 then

that is the previous m4 reversing itself. In the last case, Theorem 5.3.1 applies

(since all of this is preparation for a 2-r4 reaction, it must be all unimolecular),

contradicting the assumption that the m4 was necessary. So the d must be

bound to a complement on another strand, and the proof from the main text

follows.

200

BIBLIOGRAPHY

[1] Dana Angluin, James Aspnes, and David Eisenstat. Stably computable
predicates are semilinear. In Proceedings of the twenty-fifth annual ACM
symposium on Principles of distributed computing, pages 292–299. ACM,
2006.

[2] Dana Angluin, James Aspnes, and David Eisenstat. A simple population
protocol for fast robust approximate majority. Distributed Computing,
21:87–102, 2008.

[3] Marco Antoniotti, Carla Piazza, Alberto Policriti, Marta Simeoni, and
Bud Mishra. Taming the complexity of biochemical models through bisim-
ulation and collapsing: theory and practice. Theoretical Computer Sci-
ence, 325:45–67, 2004.

[4] Stefan Badelt, Seung Woo Shin, Robert F. Johnson, Qing Dong, Chris
Thachuk, and Erik Winfree. A general-purpose CRN-to-DSD compiler
with formal verification, optimization, and simulation capabilities. In
Damien Woods and Yannick Rondelez, editors, DNA Computing and
Molecular Programming, volume 9818 of Lecture Notes in Computer Sci-
ence, pages 232–248. Springer, 2017.

[5] Joseph Berleant, Christopher Berlind, Stefan Badelt, Frits Dannenberg,
Joseph Schaeffer, and Erik Winfree. Automated sequence-level analysis of
kinetics and thermodynamics for domain-level DNA strand-displacement
systems. Journal of the Royal Society Interface, 15(149):20180107, 2018.

[6] Luca Cardelli. Two-domain DNA strand displacement. Mathematical
Structures in Computer Science, 23(02):247–271, 2013.

[7] Luca Cardelli. Morphisms of reaction networks that couple structure to
function. BMC Systems Biology, 8:1–18, 2014.

[8] Luca Cardelli and Attila Csikász-Nagy. The cell cycle switch computes ap-
proximate majority. Scientific Reports, 2, 2012. doi: 10.1038/srep00656.

[9] Luca Cardelli and Gianluigi Zavattaro. On the computational power of
biochemistry. In Algebraic Biology, pages 65–80. Springer, 2008.

[10] Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea Vandin.
Forward and backward bisimulations for chemical reaction networks. In
Luca Aceto and David de Frutos Escrig, editors, 26th International Con-
ference on Concurrency Theory (CONCUR 2015), volume 42 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 226–239,
Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik. ISBN 978-3-939897-91-0. doi: 10.4230/LIPIcs.CONCUR.2015.226.

201

[11] Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea Vandin.
Efficient syntax-driven lumping of differential equations. In International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 93–111. Springer, 2016.

[12] Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea Vandin.
Comparing chemical reaction networks: a categorical and algorithmic per-
spective. In Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, pages 485–494. ACM, 2016.

[13] Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea Vandin.
ERODE: A tool for the evaluation and reduction of ordinary differential
equations. In TACAS (2), pages 310–328, 2017.

[14] Luca Cardelli, Mirco Tribastone, Max Tschaikowski, and Andrea Vandin.
Syntactic markovian bisimulation for chemical reaction networks. In Luca
Aceto, Giorgio Bacci, Giovanni Bacci, Anna Ingólfsdóttir, Axel Legay,
and Radu Mardare, editors, Models, Algorithms, Logics and Tools: Es-
says Dedicated to Kim Guldstrand Larsen on the Occasion of His 60th
Birthday, pages 466–483. Springer International Publishing, Cham, 2017.
ISBN 978-3-319-63121-9. doi: 10.1007/978-3-319-63121-9 23.

[15] Gourab Chatterjee, Neil Dalchau, Richard A Muscat, Andrew Phillips,
and Georg Seelig. A spatially localized architecture for fast and modular
DNA computing. Nature Nanotechnology, 12(9):920, 2017.

[16] Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function
computation with chemical reaction networks. In DNA 2012: Proceedings
of The 18th International Meeting on DNA Computing and Molecular
Programming, volume 7433 of Lecture Notes in Computer Science, pages
25–42. Springer, 2012.

[17] Ho-Lin Chen, David Doty, and David Soloveichik. Rate-independent com-
putation in continuous chemical reaction networks. In Moni Naor, editor,
Proceedings of the 5th conference on Innovations in Theoretical Computer
Science, pages 313–326. ACM, 2014.

[18] Sherry Xi Chen, David Yu Zhang, and Georg Seelig. Conditionally fluores-
cent molecular probes for detecting single base changes in double-stranded
DNA. Nature Chemistry, 5(9):782, 2013.

[19] Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca
Cardelli, David Soloveichik, and Georg Seelig. Programmable chemical
controllers made from DNA. Nature Nanotechnology, 8(10):755–762, 2013.

[20] Kevin M Cherry and Lulu Qian. Scaling up molecular pattern recognition
with DNA-based winner-take-all neural networks. Nature, 559(7714):370,
2018.

202

[21] Evelyne Contejean and Hervé Devie. An efficient incremental algorithm
for solving systems of linear Diophantine equations. Information and
Computation, 113:143–172, 1994.

[22] Nadine L Dabby. Synthetic molecular machines for active self-assembly:
prototype algorithms, designs, and experimental study. PhD thesis, Cali-
fornia Institute of Technology, February 2013.

[23] Robert M Dirks and Niles A Pierce. Triggered amplification by hybridiza-
tion chain reaction. Proceedings of the National Academy of Sciences, 101
(43):15275–15278, 2004.

[24] Robert M Dirks, Justin S Bois, Joseph M Schaeffer, Erik Winfree, and
Niles A Pierce. Thermodynamic analysis of interacting nucleic acid
strands. SIAM review, 49(1):65–88, 2007.

[25] Alexander Dobrinevski and Erwin Frey. Extinction in neutrally stable
stochastic Lotka-Volterra models. Physical Review E, 85:051903, 2012.

[26] David Doty and Monir Hajiaghayi. Leaderless deterministic chemical
reaction networks. In David Soloveichik and Bernard Yurke, editors, DNA
2013: Proceedings of The 19th International Meeting on DNA Computing
and Molecular Programming, volume 8141 of Lecture Notes in Computer
Science, pages 46–60. Springer International Publishing, 2013. doi: 10.
1007/978-3-319-01928-4 4. URL http://dx.doi.org/10.1007/978-3-

319-01928-4_4.

[27] Shawn M Douglas, Ido Bachelet, and George M Church. A logic-gated
nanorobot for targeted transport of molecular payloads. Science, 335
(6070):831–834, 2012.

[28] Abeer Eshra, Shalin Shah, Tianqi Song, and John Reif. Renewable DNA
hairpin-based logic circuits. IEEE Transactions on Nanotechnology, 18:
252–259, 2019.

[29] Constantine G Evans and Erik Winfree. DNA sticky end design and
assignment for robust algorithmic self-assembly. In David Soloveichik and
Bernard Yurke, editors, DNA Computing and Molecular Programming,
volume 8141 of Lecture Notes in Computer Science, pages 61–75. Springer,
2013.

[30] Constantine Glen Evans. Crystals that count! Physical principles and
experimental investigations of DNA tile self-assembly. PhD thesis, Cali-
fornia Institute of Technology, 2014.

[31] Jean-Claude Fernandez. An implementation of an efficient algorithm for
bisimulation equivalence. Science of Computer Programming, 13:219–236,
1990.

203

[32] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New
York, NY, USA, 1979. ISBN 0716710447.

[33] Steven Gay, Sylvain Soliman, and François Fages. A graphical method
for reducing and relating models in systems biology. Bioinformatics, 26:
i575, 2010. doi: 10.1093/bioinformatics/btq388.

[34] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical re-
actions. The Journal of Physical Chemistry, 81(25):2340–2361, 1977. doi:
10.1021/j100540a008.

[35] Benjamin Groves, Yuan-Jyue Chen, Chiara Zurla, Sergii Pochekailov,
Jonathan L Kirschman, Philip J Santangelo, and Georg Seelig. Com-
puting in mammalian cells with nucleic acid strand exchange. Nature
Nanotechnology, 11(3):287, 2016.

[36] Casey Grun, Karthik Sarma, Brian Wolfe, Seung Woo Shin, and Erik
Winfree. A domain-level DNA strand displacement reaction enumerator
allowing arbitrary non-pseudoknotted secondary structures. CoRR, 2015.
URL http://arxiv.org/abs/1505.03738.

[37] Gabor T. Herman. Strong computability and variants of the uniform halt-
ing problem. Mathematical Logic Quarterly, 17(1):115–131, 1971. ISSN
1521-3870. doi: 10.1002/malq.19710170117.

[38] Allen Hjelmfelt, Edward D Weinberger, and John Ross. Chemical imple-
mentation of neural networks and Turing machines. Proceedings of the
National Academy of Sciences, 88(24):10983–10987, 1991.

[39] Petr Jančar. Undecidability of bisimilarity for Petri nets and some related
problems. Theoretical Computer Science, 148:281–301, 1995.

[40] Robert F Johnson, Qing Dong, and Erik Winfree. Verifying chemical
reaction network implementations: A bisimulation approach. Theoretical
Computer Science, 2018. doi: 10.1016/j.tcs.2018.01.002.

[41] Neil D Jones, Lawrence H Landweber, and Y Edmund Lien. Complexity
of some problems in Petri nets. Theoretical Computer Science, 4:277–299,
1977.

[42] Richard M Karp and Raymond E Miller. Parallel program schemata.
Journal of Computer and System Sciences, 3(2):147–195, 1969.

[43] Dexter Kozen. Automata and computability. Springer, 1997.

[44] Michael Lachmann and Guy Sella. The computationally complete ant
colony: Global coordination in a system with no hierarchy. In Federico
Morán, Alvaro Moreno, Juan Julián Merelo, and Pablo Chacón, editors,

204

Advances in Artificial Life: Third European Conference on Artificial Life
Granada, Spain, June 4–6, 1995 Proceedings, pages 784–800. Springer,
1995. doi: 10.1007/3-540-59496-5 343.

[45] Matthew R. Lakin, Simon Youssef, Filippo Polo, Stephen Emmott, and
Andrew Phillips. Visual DSD: a design and analysis tool for DNA
strand displacement systems. Bioinformatics, 27(22):3211–3213, 2011.
doi: 10.1093/bioinformatics/btr543. URL http://bioinformatics.

oxfordjournals.org/content/27/22/3211.abstract.

[46] Matthew R Lakin, Darko Stefanovic, and Andrew Phillips. Modular veri-
fication of chemical reaction network encodings via serializability analysis.
Theoretical Computer Science, 632:21–42, 2016.

[47] Jérôme Leroux. Vector addition systems reachability problem (a simpler
solution). In Andrei Voronkov, editor, The Alan Turing Centenary Con-
ference, volume 10 of EPiC Series, pages 214–228, Manchester, United
Kingdom, June 2012. Andrei Voronkov. URL https://hal.archives-

ouvertes.fr/hal-00674970.

[48] Shen Lin and Tibor Rado. Computer studies of Turing machine prob-
lems. J. ACM, 12(2):196–212, April 1965. ISSN 0004-5411. doi:
10.1145/321264.321270.

[49] Richard Lipton. The reachability problem requires exponential space.
Research Report 63, Department of Computer Science, Yale University,
New Haven, Connecticut, pages 1–15, 1976.

[50] Marcelo O Magnasco. Chemical kinetics is Turing universal. Physical
Review Letters, 78(6):1190–1193, 1997.

[51] Albert R Meyer and Larry J Stockmeyer. The equivalence problem for
regular expressions with squaring requires exponential space. In Switching
and Automata Theory, 1972., IEEE Conference Record of 13th Annual
Symposium on, pages 125–129. IEEE, 1972.

[52] Robin Milner. Communication and concurrency. Prentice-Hall, Inc., 1989.

[53] Rasmus L Petersen, Matthew R Lakin, and Andrew Phillips. A strand
graph semantics for DNA-based computation. Theoretical Computer Sci-
ence, 632:43–73, 2016.

[54] Loic Pottier. Minimal solutions of linear Diophantine systems: bounds
and algorithms. In International Conference on Rewriting Techniques and
Applications, pages 162–173. Springer, 1991.

[55] Lulu Qian and Erik Winfree. Scaling up digital circuit computation with
DNA strand displacement cascades. Science, 332(6034):1196–1201, 2011.

205

[56] Lulu Qian and Erik Winfree. Parallel and scalable computation and spa-
tial dynamics with DNA-based chemical reaction networks on a surface.
In Satoshi Murata and Satoshi Kobayashi, editors, DNA Computing and
Molecular Programming, volume 8727 of Lecture Notes in Computer Sci-
ence, pages 114–131. Springer, 2014.

[57] Lulu Qian, David Soloveichik, and Erik Winfree. Efficient Turing-
universal computation with DNA polymers. In Yasubumi Sakakibara and
Yongli Mi, editors, DNA Computing and Molecular Programming, vol-
ume 6518 of Lecture Notes in Computer Science, pages 123–140. Springer,
2011.

[58] Charles Rackoff. The covering and boundedness problems for vector ad-
dition systems. Theoretical Computer Science, 6(2):223–231, 1978.

[59] Paul WK Rothemund. Folding DNA to create nanoscale shapes and pat-
terns. Nature, 440(7082):297, 2006.

[60] Walter J. Savitch. Relationships between nondeterministic and determin-
istic tape complexities. Journal of Computer and System Sciences, 4:177
– 192, 1970.

[61] Joseph Malcolm Schaeffer, Chris Thachuk, and Erik Winfree. Stochastic
simulation of the kinetics of multiple interacting nucleic acid strands. In
Andrew Phillips and Peng Yin, editors, DNA Computing and Molecular
Programming, volume 9211 of Lecture Notes in Computer Science, pages
194–211. Springer, 2015.

[62] Jong-Shik Shin and Niles A Pierce. A synthetic DNA walker for molecular
transport. Journal of the American Chemical Society, 126(35):10834–
10835, 2004.

[63] Seung Woo Shin. Compiling and verifying DNA-based chemical reaction
network implementations. PhD thesis, California Institute of Technology,
2011.

[64] Seung Woo Shin, Chris Thachuk, and Erik Winfree. Verifying chemical
reaction network implementations: A pathway decomposition approach.
Theoretical Computer Science, page doi:10.1016/j.tcs.2017.10.011, 2017.

[65] David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck.
Computation with finite stochastic chemical reaction networks. Natural
Computing, 7(4):615–633, 2008.

[66] David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal
substrate for chemical kinetics. Proceedings of the National Academy of
Sciences, 107(12):5393–5398, 2010.

206

[67] Niranjan Srinivas, James Parkin, Georg Seelig, Erik Winfree, and David
Soloveichik. Enzyme-free nucleic acid dynamical systems. Science, 358:
doi:10.1126/science.aal2052, 2017. ISSN 0036-8075.

[68] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential
time (Preliminary Report). In Proceedings of the fifth annual ACM sym-
posium on Theory of computing, STOC ’73, pages 1–9, New York, NY,
USA, 1973. ACM. doi: 10.1145/800125.804029.

[69] Chris Thachuk and Anne Condon. Space and energy efficient computa-
tion with DNA strand displacement systems. In Darko Stefanovic and
Andrew Turberfield, editors, DNA Computing and Molecular Program-
ming, volume 7433 of Lecture Notes in Computer Science, pages 135–149.
Springer, 2012.

[70] Chris Thachuk, Erik Winfree, and David Soloveichik. Leakless DNA
strand displacement systems. In Andrew Phillips and Peng Yin, editors,
DNA Computing and Molecular Programming, volume 9211 of Lecture
Notes in Computer Science, pages 133–153. Springer, 2015.

[71] Anupama J. Thubagere, Wei Li, Robert F. Johnson, Zibo Chen, Shayan
Doroudi, Yae Lim Lee, Gregory Izatt, Sarah Wittman, Niranjan Srinivas,
Damien Woods, Erik Winfree, and Lulu Qian. A cargo-sorting DNA
robot. Science, 357(6356), 2017. ISSN 0036-8075. doi: 10.1126/science.
aan6558. URL https://science.sciencemag.org/content/357/6356/

eaan6558.

[72] Anupama J Thubagere, Chris Thachuk, Joseph Berleant, Robert F John-
son, Diana A Ardelean, Kevin M Cherry, and Lulu Qian. Compiler-aided
systematic construction of large-scale DNA strand displacement circuits
using unpurified components. Nature Communications, 8:14373, 2017.

[73] Grigory Tikhomirov, Philip Petersen, and Lulu Qian. Fractal assembly
of micrometre-scale DNA origami arrays with arbitrary patterns. Nature,
552(7683):67, 2017.

[74] Stefano Tognazzi, Mirco Tribastone, Max Tschaikowski, and Andrea
Vandin. EGAC: A genetic algorithm to compare chemical reaction net-
works. In Proceedings of 1st Genetic and Evolutionary Computation
Conference-17 (GECCO’17), pages 833–840, 2017.

[75] Toma E Tomov, Roman Tsukanov, Yair Glick, Yaron Berger, Miran
Liber, Dorit Avrahami, Doron Gerber, and Eyal Nir. DNA bipedal motor
achieves a large number of steps due to operation using microfluidics-
based interface. Acs Nano, 11(4):4002–4008, 2017.

[76] Marko Vasić, David Soloveichik, and Sarfraz Khurshid. CRN++: Molec-
ular programming language. Natural Computing, pages 1–17, 2020.

207

[77] Suvir Venkataraman, Robert M Dirks, Paul WK Rothemund, Erik Win-
free, and Niles A Pierce. An autonomous polymerization motor powered
by DNA hybridization. Nature Nanotechnology, 2(8):490, 2007.

[78] Boya Wang, Chris Thachuk, Andrew D Ellington, Erik Winfree, and
David Soloveichik. Effective design principles for leakless strand displace-
ment systems. Proceedings of the National Academy of Sciences, 115(52):
E12182–E12191, 2018.

[79] Bryan Wei, Mingjie Dai, and Peng Yin. Complex shapes self-assembled
from single-stranded DNA tiles. Nature, 485(7400):623, 2012.

[80] Erik Winfree. On the computational power of DNA annealing and lig-
ation. In Richard J. Lipton, editor, DNA Based Computers, volume 27
of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 199–221. American Mathematical Society, 1996.

[81] Brian R Wolfe, Nicholas J Porubsky, Joseph N Zadeh, Robert M Dirks,
and Niles A Pierce. Constrained multistate sequence design for nucleic
acid reaction pathway engineering. Journal of the American Chemical
Society, 139(8):3134–3144, 2017.

[82] Damien Woods, David Doty, Cameron Myhrvold, Joy Hui, Felix Zhou,
Peng Yin, and Erik Winfree. Diverse and robust molecular algorithms
using reprogrammable DNA self-assembly. Nature, 567(7748):366, 2019.

[83] Peng Yin, Harry MT Choi, Colby R Calvert, and Niles A Pierce. Pro-
gramming biomolecular self-assembly pathways. Nature, 451(7176):318–
322, 2008.

[84] Joseph N Zadeh, Conrad D Steenberg, Justin S Bois, Brian R Wolfe,
Marshall B Pierce, Asif R Khan, Robert M Dirks, and Niles A Pierce.
Nupack: analysis and design of nucleic acid systems. Journal of compu-
tational chemistry, 32(1):170–173, 2011.

[85] Yechezkel Zalcstein. Locally testable languages. Journal of Computer and
System Sciences, 6(2):151–167, 1972.

[86] David Yu Zhang. Cooperative hybridization of oligonucleotides. Journal
of the American Chemical Society, 133(4):1077–1086, 2010.

[87] David Yu Zhang and Georg Seelig. Dynamic DNA nanotechnology using
strand-displacement reactions. Nature Chemistry, 3(2):103–113, 2011.

