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ABSTRACT

Humans, like other animals, have evolved a set of neural circuits whose primary
function is survival. In the case of predation, these circuits include “reactive fear”
circuits involved in fast escape decisions, and “cognitive fear” circuits that are
involved in more complex processing associated with slow strategic escape. In
the context of flight initiation distance (FID), using neuroimaging combined with
computational modeling, we support this differentiation of fear circuits by showing
that fast escape decisions are elicited by the periaqueductal gray and midcingulate
cortex, regions involved in reactive flight. Conversely, slower escape decisions
rely on the hippocampus, posterior cingulate cortex, and prefrontal cortex, a circuit
implicated in behavioral flexibility. We further tested whether individual differences
in trait anxiety would impact escape behavior and neural responses to slow and fast
attacking predators. Behaviorally, we found that trait anxiety was not related to
escape decisions for fast threats, but individuals with higher trait anxiety escaped
earlier during slow threats. Functional MRI showed that when subjects faced
slow threats, trait anxiety positively correlated with activity in the vHPC, mPFC,
amygdala and insula. Further, the strength of the functional coupling between the
vHPC and mPFC was correlated with the degree of trait anxiety. A similar pattern
of separation in survival circuits is also found in a follow up study utilizing the
concept of margin of safety (MOS) with multivariate pattern analysis of fMRI data.
In addition, we also discussed how decision making under threat was influenced by
social factors such as reputation. Overall, these results provide new insights into
decision making under threat and a separation of fear into reactive and cognitive
circuits.



v

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] Bowen J Fung, Song Qi, Demis Hassabis, Nathaniel Daw, and Dean Mobbs.
Slow escape decisions are swayed by trait anxiety. Nature human behaviour, 3
(7):702–708, 2019. doi: 10.1038/s41562-019-0595-5.
S.Q. designed the experiment, collected the behavioral and imaging data, par-
ticipated in analyzing the data, and participated in writing the manuscript.

[2] Song Qi, Owen Footer, Colin F Camerer, and Dean Mobbs. A collaborator’s
reputation can bias decisions and anxiety under uncertainty. Journal of Neuro-
science, 38(9):2262–2269, 2018. doi: 10.1523/JNEUROSCI.2337-17.2018.
S.Q. participated in designing the experiment, helped collecting the behavioral
and imaging data, analyzed the data, and participated in writing the manuscript.

[3] Song Qi, Demis Hassabis, Jiayin Sun, Fangjian Guo, Nathaniel Daw, and Dean
Mobbs. How cognitive and reactive fear circuits optimize escape decisions
in humans. Proceedings of the National Academy of Sciences, 115(12):3186–
3191, 2018. doi: 10.1073/pnas.1712314115.
S.Q. designed the experiment, collected the behavioral and imaging data, ana-
lyzed the data, and participated in writing the manuscript.



vi

TABLE OF CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Published Content and Contributions . . . . . . . . . . . . . . . . . . . . . . v
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Chapter I: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Threat, fear and decision making . . . . . . . . . . . . . . . . . . . 1
1.2 Ecologically inspired paradigm and real-life validity . . . . . . . . . 2
1.3 Flight initiation distance and optimal strategy of escape . . . . . . . 3
1.4 Margin of safety and preemptive decision under uncertainty . . . . . 4
1.5 Decisions under threat biased by collaborators’ reputation . . . . . . 5
1.6 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter II: How cognitive and reactive fear circuits optimize escape decisions
in humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter III: Slow, but not fast, escape decisions are swayed by trait anxiety . . 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Supplementary materials . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter IV: Spatial Margin of Safety in the face of volatile attack distances . 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter V: Decisions and anxiety under uncertainty, biased by reputation . . 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Chapter VI: General Discussion . . . . . . . . . . . . . . . . . . . . . . . . 77
6.1 Summary of findings . . . . . . . . . . . . . . . . . . . . . . . . . . 77



vii

6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



viii

LIST OF ILLUSTRATIONS

Number Page
2.1 Experimental procedures, Ydenberg and Dill model (1), and distribu-

tion of escape decisions. (A) Subjects are told whether their decisions
will result in high or low reward or shock. They are then presented
with the image of the virtual predator where the color signals the
attack distance (2 s) (e.g., blue, fast; red, slow). After a short inter-
val, the virtual predator appears at the end of the runway and slowly
moves toward the subject’s triangle. After an unspecified amount
of time (e.g., 4–10 s), the artificial predator will attack the subject’s
virtual triangle exit (i.e., attack distance). To escape, the subject must
flee before the predator attacks. If the subject is caught, they will
receive a tolerable, yet aversive, shock to the back of the hand. Trials
end when the predator reaches the subject or the exit. To motivate
longer fleeing time, the task will include an economic manipulation,
where subjects will obtain more money the longer they stay in the
starting position, and lose money the earlier they enter the safety
exit. After each trial, the subject is asked to report how difficult they
found it to escape the virtual predator (4 s). (B) Modified schematic
representation from the model proposed by Ydenberg and Dill (3).
As the distance between the prey and the predator decreases, the cost
of fleeing decays, while the cost of not fleeing rises. D* represents an
optimal point where the prey should flee. (C) Histograms showing
the distribution of subjects’ flight initiation decision (FID) choices
for early-, mid-, and late-attacking predators, respectively. The x axis
represents FID, while the y axis represents frequency of choice. . . . 9



ix

2.2 Main regions of interest and signal changes associated with fast-
and slower-attacking threats. Parameter estimates and time series
extracted from (A) midbrain, (B) MCC, (C) vmPFC, (D) PCC, and
(E) the hippocampus. Activations shown in the graph show clus-
ters from the whole-brain activation, while the signal change data
were extracted from independent anatomical ROIs. The Upper graph
displays parameter estimates. The y axis represents percent signal
changes, and the x axis is the predator type. The Lower graph displays
time series extracted in a course of 16 s. Blue line: fast predator; red
line: slow predator. The beginning of the time series represents the
time point when the FID event comes online. . . . . . . . . . . . . . 15

2.3 Visualization of Bayesian modeling results. (A) Estimated coeffi-
cients for each subject for the first scanning session, along with 95
percent confidence intervals. The x axis represents the pain coeffi-
cient β1 in the utility function, and the y axis represents the monetary
reward coefficient β2. For a rational player, β2 should be positive
(seeking money), and β1 should be negative (avoiding shock). (B)
Model fit to observed FIDs for the first scanning session. The x axis
represents trial numbers, and the y axis represents FID. Ideal FID
choices predicted by the ideal Bayesian observer (lines), subjects’
actual FID choice (dots). Average values of reward preference and
shock avoidance of the two scanning sessions were used as paramet-
ric modulators for the fMRI analysis. Data for session 2 can be found
in SI Appendix, Fig. S4 of the published content. [3] . . . . . . . . . 17



x

2.4 Regions, and their connectivity, associated with parametric mod-
ulation of “distance to ideal.” (A) Brain regions associated with in-
creased Bayesian decision optimality in the fast AD condition. Better
decision making was associated with increased activity in MCC and
superior motor cortex. (B) Brain regions associated with decreased
distance (increased Bayesian decision optimality) in the slow AD
condition activated regions include bilateral hippocampus and bilat-
eral caudate. A display of the correlation results can be found in SI
Appendix, Table S11 of the published content [3]. (C) Connectivity
analysis usingMCC as seed over the contrast [fast predator > control].
Positive connectivity was found between MCC, motor cortex (MC),
thalamus, and the PAG. (D) Using the hippocampus as seed over the
contrast [slow predator > control], positive connectivity was found
between the hippocampus and PCC. . . . . . . . . . . . . . . . . . . 18

3.1 Predator escape paradigm. In each trial, participants were presented
with a cue indicating the predator type. The predator would appear
on the left side of the runway, and slowly move toward the participant
(green triangle). Participants passively accrued money while they
waited, but at any time could press a button to begin their escape
toward the exit. The predator would speed up (attack) at a random
distance drawn from the respective Gaussian distributions shown
above. If participants were caught by the predator, they would receive
a mild electric shock and lose any money accrued on that trial. . . . . 24

3.2 Kaplan-Meier survival curves for each predator type, as a function of
predator proximity. Curves reflect pooled data from all subjects. . . . 25

3.3 Flight initiation distance for each predator type, as a function of
STAI-Y scores. Each dot corresponds to a single subject’s median
FID in one condition. Dashed lines show the linear fit to the data. . . 26

3.4 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Visualization of the interaction of STAI-Y and BIS on flight initiation

distance within the slow predator condition . . . . . . . . . . . . . . 40
3.6 Visualization of BOLD signal change as a function of trait anxiety

in four brain regions. vmPFC, ventromedial prefrontal cortex; MCC,
mid-cingulate cortex. . . . . . . . . . . . . . . . . . . . . . . . . . . 44



xi

4.1 Paradigm structure. (A) 2x2 decision variables of high or low re-
ward and punishment, the predator the subject will encounter and
confidence of escape rating; This alternates every ten trials; (B) The
pre-emptive avoidance decision and the outcome (C) Attack distribu-
tions for leptokurtic volatile, (D) gaussian distribution with matched
variance and (E) half the variance gaussian; (F) Schematic representa-
tion of predators attacks distances through all trials. X axis stands for
trials No., andY axis stands for attack distance. While a “0” onY axis
marks the mean of the distribution, numbers represent how far away
the drawn instance is away from the mean. (G) Escape probability.
X axis represents possible margin of safety choices, while Y access
represents the corresponding probability of escape. (H) Schematic
representation of the experimental procedure. Participants undergo
4 session of scans scattered in 2 days. . . . . . . . . . . . . . . . . . 47

4.2 Choice frequencies for (A) leptokurtic, (B) matched variance and (C)
half variance attacking threats. The avoidance decision phase and
the outcome. (D) significant correlation between trait anxiety and
pre-emptive avoidance for the leptokurtic condition. This task is run
in four sessions over two days (total time 2 hrs). . . . . . . . . . . . . 53

4.3 Neural representation of pre-emptive avoidance decisions. Avoid-
ance decisions decoded in the vmPFC, Hippocampus, Amygdala and
Insula. Pilot results show that the vmPFC was most significant for
the predictable threat, while the amygdala was evoked only for the
uncertain threat. The hippocampus and insula where activated for all
conditions. Box and whisker plots represent the accuracy. . . . . . . 55

4.4 Neural activity associated with pre-emptive decisions. gPPI-coopled
brain areas using the amygdala seed and the vmPFC seed respectively.
Red areas represent significant activations thresholded at p < 0.05
(FDR corrected) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 gPPI-coopled brain areas using the amygdala seed and the vmPFC
seed respectively. Red areas represent significant activations thresh-
olded at p < 0.05 (FDR corrected) . . . . . . . . . . . . . . . . . . . 56

4.6 Parametric modulation analysis with optimality parameters from the
model and actual behavioral measures.Red areas represent significant
activations thresholded at p < 0.05 (FDR corrected) . . . . . . . . . 57



xii

5.1 Task paradigm and behavioral results. (A) Experimental steps: the
subject was first shown a picture of the partner’s face and reputation
(1 star = RepLow or 5 stars = RepHigh). Next, the subject was
shown two screens: (1) an arrow indicating the partner’s guess about
the direction of the dots (arrow screen) and (2) their guess about
the coherence percentage (30% in the example). The subject then
saw a screen showing the dot movement and was asked to guess the
coherence percentage (using a slider scale). The RDMdiscrimination
estimation was repeated three times. Next, subjects reported how
anxious they feel at the prospect of receiving a shock during the 4–6 s
anticipation screen. The likelihood of receiving a shock was based on
the joint performance accuracy between the subject and the partner.
After the shock anticipation screen, they either received a shock or
not. Then they saw a screen displaying information about the joint
performance of themselves and the partner. The red-bordered boxes
are the analyzed events. (B) Left: Conformity was higher for high-
reputation partners. Right: Mean conformity differed across hard
and ambiguous (uncertain), but not easy conditions. ∗p < .001. . . . 63

5.2 (A) Neural activity associated with the presentation of the RepLow
comparedwith RepHigh transient collaborators. (B) Parametric anal-
ysis showing brain regions associated with increased dissent and
conformity during the RDM task. (C) dACC activity associated with
increased conformity with the RepLow compared with RepHigh and
inset showing overlap between regions associated with dissent and
RepLow conformity. (D) Neurosynth meta-analysis of 357 studies
using the search term “Error” (cluster represents a forward infer-
ence); (E) medial PFC activity for the 2 × 2 interaction between
RepHigh/RepLow × Easy/Uncertain RDM conditions. . . . . . . . . 68



xiii

5.3 (A) Effect of partner reputation on self-report anxiety. (B) Regres-
sion coefficients comparing partner reputation to other variables that
potentially affect anxiety ratings. (C) fMRI activity during anxious
anticipation of potential shock for RepLow compared with RepHigh.
Signal change reflects activity in the (C) dACC and (D) pINS. Betas
show the differences in activity for RepLow and RepHigh for both
the ambiguous (uncertain) and easy RDM conditions, using an inde-
pendent ROI taken from [101]. (E) connectivity between the pINS
(seed) and dACC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



xiv

LIST OF TABLES

Number Page
3.1 Linear regression of predator type and STAI-Y scores on flight initi-

ation distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Activation table for 2nd level STAI-Y score correlation for the slow

versus fast predator contrast. . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Linear regression of predator type, STAI-Y andBIS onflight initiation

distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Activation table for 2nd level BIS score correlation for the slow versus

fast predator contrast . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Summary of performance measures . . . . . . . . . . . . . . . . . . 42
3.6 Activation table for 2nd level STAI-Y score correlation for PPI (vHPC

seed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7 Activation table for 2nd level STAI-Y score correlation for PPI (entire

hippocampus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8 Activation table for 2nd level STAI-Y score correlation for the slow

versus control predator contrast. . . . . . . . . . . . . . . . . . . . . 43
5.1 Brain activation for contrast [low reputation > high reputation] (part-

ner period) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Brain activation for parametric modulation of conformity . . . . . . . 70
5.3 Brain activation for parametric modulation of conformity (low repu-

tation > high reputation) . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Brain activation for interaction between reputation level and task

difficulty (task period) . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5 Brain activation for contrast [low reputation–high reputation (shock

anticipation period)] . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6 Brain activation for PPI analysis (pINS seed) . . . . . . . . . . . . . 73



xv

NOMENCLATURE

FID. Flight Initiation Distance. In ecology literature, it is the distance between
the prey and the predator when the predatory chase starts.

MOS. Margin of Safety. In ecology literature, it is the distance between the prey
and the safety refuge when the prey chooses his potential foraging location.
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C h a p t e r 1

INTRODUCTION

Fear, as one of the most primal and outstanding emotions, dominates our daily life
in a wide range of aspects. This however, has its own merit. Contrary to the popular
notion of fear being an emotion that hinders daily decision making and personal
development, fear is also essential in modulating behaviors under various decision
scenarios, and subsequently optimizes decision outcome and promotes survival.

This observation stimulates two important questions:

• On the behavioral level, how does fear modulates decisions under threat.

• On the neural level, what are the corresponding neural mechanisms.

The focus of the current thesis will tackle the two questions using a combination
of behavioral experimental methods, brain imaging technique, and computational
modelling. The line of research presented in this thesis is based on two basic ideas:
One, that fear is not only a subjective feeling, but also a functional unit promoting
survival; two, that fear is better studied and understood in an ecologically valid
context.

1.1 Threat, fear and decision making
Fear in human is a combination of higher order subjective feeling and lower level
defensive mechanisms, and neither side should be overlooked. LeDoux’s "Survival
Circuits Theory" argues that human fear is distinct from the "defensive circuits"
studies in animals, because it also comprises a higher level feeling of horror or
terror [51]. While this is a theory that’s still under debate, it states the importance
of approaching fear in humans - an opportunity to explore the interaction between
the basic "defensive circuits" and higher level "cognitive circuits".

An important question arising from the differentiation between a basic "defensive
circuit" and a higher level "cognitive circuit"is the boundary between fear and deci-
sion making. while we believe that fear, beyond simple reflexes, (especially fear in
humans) intrinsically involves functional components that optimizes an organism’s
behavior [66] , when we get to higher level decision making which involves a lot
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of conscious deliberations, both the behavioral and neural phenomenon we observe
will be drifting away from fear per se. Thus, throughout the line of research, our
investigation constitutes a combination of fear-induced behavior and the correspond-
ing decision making behavior. As will be stated later, we admit and are well aware
of an overlap between the fear circuit and the decision making related circuit. When
we are investigating the basic defensive circuits, we are closer to the former; while
we are approaching the higher level cognitive circuits, we are closer to the latter.
Thus the title of the thesis: decision making under threat.

1.2 Ecologically inspired paradigm and real-life validity
Approaching the question from an ecological perspective is also advantageous.
Indeed, in the field of ecology, a wealth of behavioral measures such as Flight
Initiation Distance (FID) and Margin of Safety (MOS) has been developed to study
organism’s sensitivity to threat at an individual level. Theoretical models including
This offers us the tool on the behavioral level.

However, this still leaves us the question of how much validity in real life we could
obtain by using ecologically inspired paradigms. For example, in chapter 1, we
used a computer game where participants play as a prey while an AI controlled
predator aims to catch him/her. It makes sense for an organism to display fear and
panic when a life-threatening scenario like prey-predator interaction happens in the
natural world. However, for humans, such interactions no longer exists in modern
society. And in our game, a real death scene upon getting caught by the predator is
replaced by a mild shock to the wrist. How much validity and applicability could
we achieve with somewhat "gimmicky" paradigms like this?

I would argue that real fear is still manifested in our paradigms, since real time
calculation of utility happens throughout the process. A life threatening scene will
have an extreme decrease in utility - on the other hand, an electrical shock, though
mild, will also impose a less severe decrease in the utility function during decision
making. The abstraction of prey-predators interactions function well as a stimulant
to bring out the survival optimization process, of which fear is an indispensable
part. Though not fully generalizable to life-threatening scenarios, our paradigms
still capture the core process of threat avoidance in real life situations.

For the brain imaging Theoretical and neuroanatomical models support the existence
of an interconnected defensive survival circuitry that is remarkably preserved across
species [13, 70, 80, 81, 90]. Under the conditions of immediate danger, the “reactive
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fear” circuitry is evoked. This circuitry includes the midbrain periaqueductal gray
(PAG), central amygdala (CeA), hypothalamus, and the midcingulate cortex (MCC),
which relay, update, and initiate essentially innate reactions including flight and
freezing [35, 51, 67, 81, 94, 104]. Conversely, the ventromedial prefrontal cortex
(vmPFC), posterior cingulate cortex (PCC), hippocampus, and basolateral amygdala
form a collective set of regions that constitutes the “cognitive fear” circuitry that
promotes more complex information processing involved in behavioral flexibility,
internal risk assessment, and cognitive avoidance strategies [26, 60, 61, 70].

It is important to note that we are not advocating an absolute, static dichotomy
of neural networks associated with reactive and cognitive fear. Rather, we strive
to identify a dynamic shifting betweenthe regions under various threat scenarios.
Regions identified above are more like the extreme markers of a broader spectrum.

Next, I present an outline of the thesis. The basic rationale behind this line of
research is consistent throughout all the projects: we identify a novel measurement
of threat sensitivity in ecology research; the saidmeasurement will then be converted
and refitted for studies in humans; Finally, we obtain behavioral and neural markers
of the novel measurement in humans.

1.3 Flight initiation distance and optimal strategy of escape
We first investigate how spatial and temporal distances influence people’s decisions
under threat. Animals go though various states including pre-encounter, post-
encounter and circa-strike [29], and we believe humans do so too. As the threat
switches between various attacking positions, we expect to observe differential
behavioral and neural patterns from humans.

Flight initiation distance (FID), the distance at which an organism flees from an
approaching threat, is an ecological metric of cost–benefit functions of escape de-
cisions. We adapted the FID paradigm to investigate how fast- or slow-attacking
“virtual predators” constrain escape decisions. We show that rapid escape deci-
sions rely on “reactive fear” circuits in the periaqueductal gray and midcingulate
cortex (MCC), while protracted escape decisions, defined by larger buffer zones,
were associated with “cognitive fear” circuits, which include posterior cingulate
cortex, hippocampus, and the ventromedial prefrontal cortex, circuits implicated in
more complex information processing, cognitive avoidance strategies, and behav-
ioral flexibility. Using a Bayesian decision-making model, we further show that
optimization of escape decisions under rapid flight were localized to the MCC, a
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region involved in adaptive motor control, while the hippocampus is implicated in
optimizing decisions that update and control slower escape initiation. These results
demonstrate an unexplored link between defensive survival circuits and their role in
adaptive escape decisions.

It is still unclear, however, how anxiety and its neural substrates relate to these
distinct defensive survival circuits. We tested whether individual differences in
trait anxiety would impact escape behavior and neural responses to slow and fast
attacking predators: conditions designed to evoke “cognitive” and “reactive” fear,
respectively. Behaviorally, we found that trait anxiety was not related to escape
decisions for fast threats, but individuals with higher trait anxiety escaped earlier
during slow threats. Functional MRI showed that when subjects faced slow threats,
trait anxiety positively correlated with activity in the vHPC, mPFC, amygdala and
insula. Further, the strength of the functional coupling between the vHPC andmPFC
was correlated with the degree of trait anxiety. These findings suggest that anxiety
plays little or no role in escape under conditions of proximal threat. Instead, anxiety
affects “cognitive” fear circuits that are involved in volitional strategic escape.

1.4 Margin of safety and preemptive decision under uncertainty
We next investigate how the level of uncertainty of the threat influence people’s
decisions under threat. Unlike the previous sectionswhere threat emerges at different
spatial/temporal distances, the mean value of threat appearance stays the same.
However, their attacking behaviors come in with different levels of uncertainty. We
expect a more conservative behavioral strategy when facing more uncertain threats.

Humans, like many other animals, preempt danger by moving to locations that
maximize their success of escaping future threats. Ethologists have shown that
prey select appropriate spatial margin of safety (MOS) between the predator and
safety refuge, while human studies demonstrate that proximity to safety decreases
subjective fear. Here, we test the idea that volitional spatial MOS decisions, a form
of prospective avoidance, result in participants placing themselves closer to safer
locations when facing more intense and unpredictable threats. Using multivariate
pattern analysis on our fMRI data, we show that key parts of the cognitive fear
circuitry are evoked when making safety decisions and may code for the intensity
and volatility of the threat. Multivoxel parttern analysis revealed activations in
regions including the mPFC, hippocampus, amygdala and insula. Specifically,
while the insula and hippocampus non-selectively code decisions for both normal



5

and volatile attacks, the amygdala and mPFC codes volatile and normal attacks
selectively. Our data suggest that when preempting impending danger, a distinct set
of parallel cortical-subcortical regions code for the threat intensity, uncertainty, and
the decision to shift closer to safety.

1.5 Decisions under threat biased by collaborators’ reputation
Finally, we investigate how social factors such as reputation, a information source
coming from a thir party, can influence people’s decision making under threat.

Humans look to others for advice when making decisions under uncertainty. Ratio-
nal agents, however, do not blindly seek information, but often consider the quality
of its source before committing to a course of action.

Informational social influence theory posits that under conditions of uncertainty, we
are inclined to others for advice. This leaves us remarkably vulnerable to being in-
fluenced by others’ opinions or advice. Rational agents, however, do not blindly seek
and act on arbitrary information, but often consider the quality of its source before
committing to a course of action. Here, we ask the question of whether a collabora-
tor’s reputation can increase their social influence, and, in turn, bias perception and
anxiety under changing levels of uncertainty. Human male and female participants
were asked to provide estimations of dot directions using the random dot motion
(RDM) perceptual discrimination task and were paired with transient collaborators
of high or low reputation whom provided their own estimations. The RDM varied in
degrees of uncertainty and joint performance accuracy was linked to risk of an elec-
tric shock. Despite providing identical information, we show that collaborating with
a high reputation compared with a low reputation partner, led to significantly more
conformity during the RDM task for uncertain perceptual decisions. Consequently,
high reputation partners decreased the subjects’ anxiety during the anticipatory
shock periods. fMRI data showed that parametric changes in conformity resulted
in increased activity in the ventromedial PFC, whereas dissent was associated with
increased activity in the dorsal anterior cingulate cortex (dACC). Furthermore, the
dACC and insula, regions involved in anticipatory pain, were significantly more
active when collaborating with a low reputation partner. These results suggest that
information about reputation can influence both cognitive and affective processes
and, in turn, alter the neural circuits that underlie decision-making and emotion.
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1.6 Thesis Overview
Inspired by the questions discussed before, and building upon previous literature,
this thesis strives to understand the behavioral and neural mechanisms behind human
decision making process under threat.

In Chapter 2, we explore the relationship between spatial/temporal distance of the
threat, the corresponding fear response and the subsequent decisions. By employing
flight initiation distance and the prey-predator interaction widely studied in ecology
research, we simulate real life scenarios where people need to make a trade off
between potential threat (specifically, an aversive yet tolerable electrical shock in
this experiment). This will help us understand how spatial/temporal immediacy
impacts decision making behaviors, together with the neural mechanisms behind it.

Chapter 3 further looks at anxiety’s effect on decision making behavior implicated
in the flight initiation distance paradigm. STAI trait anxiety inventory was used to
measure the level of anxiety. We intend to test whether individual differences in
anxiety level would influence behavioral and neural responses to the "reactive" and
"cognitive" fear circuits respectively, as defined in Chapter 2.

In chapter 4, we borrow another useful measurement from the prey-predator inter-
action system: Margin of Safety, where an organism actively selects an active zone
relative to its safety refuge. This affords us to investigate preemptive avoidance
behavior, in addition to online fear response as discussed in Chapter 3. Moreover,
instead of looking at the effect of temporal/spatial distance, we vary the fear stimulus
such that they display different levels of uncertainty. Thus, we aim to uncover the
neural mechanism behind preemptive avoidance behavior under uncertainty.

Finally, we discuss how social factors (here specifically, reputation from a task
partner) could impact decision making under threat.
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C h a p t e r 2

HOW COGNITIVE AND REACTIVE FEAR CIRCUITS
OPTIMIZE ESCAPE DECISIONS IN HUMANS

2.1 Introduction
Survival depends on the adaptive capacity to balance fitness-promoting behaviors,
such as copulation and foraging, with the omnipresent risk of lethal predatory attack
[70]. In the field of behavioral ecology, this balance between survival behaviors is
depicted by economic models of flight initiation distance (FID), which capture risk
functions by measuring the distance at which an organism flees from an approaching
threat, while considering the cost of fleeing [29, 113]. A wealth of ethological
literature demonstrates that prey are remarkably adept at escape and make decisions
based on the predator’s directionality, lethality, velocity, and previous experience
with the predator [98]. In addition to its capacity to measure escape decisions, FID
is a well-established index of threat sensitivity, resulting in large variability within
and between species [98]. Despite FID measures being applied to a large variety
of taxa, this reliable measure has not been used to identify heterogeneity in threat
sensitivity or escape decisions in humans, and the neural circuits remain unexplored.

Theoretical and neuroanatomical models support the existence of an intercon-
nected defensive survival circuitry that is remarkably preserved across species
[13, 70, 80, 81, 90]. Under the conditions of immediate danger, the “reactive fear”
circuitry is evoked. This circuitry includes the midbrain periaqueductal gray (PAG),
central amygdala (CeA), hypothalamus, and the midcingulate cortex (MCC), which
relay, update, and initiate essentially innate reactions including flight and freezing
[35, 51, 67, 81, 94, 104]. Conversely, the ventromedial prefrontal cortex (vmPFC),
posterior cingulate cortex (PCC), hippocampus, and basolateral amygdala form a
collective set of regions that constitutes the “cognitive fear” circuitry that promotes
more complex information processing involved in behavioral flexibility, internal
risk assessment, and cognitive avoidance strategies [26, 60, 61, 70]. Although few
behavioral ecologists have considered the neurophysiology underlying escape deci-
sions, some have proposed similar dichotomies suggesting that fast, but inaccurate,
decisions are processed by subcortical regions, while slow, but accurate, decisions
are processed by cortical system [72, 106]. Under natural conditions, both cognitive-
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and reactive-fear circuits work in harmony by adaptively switching between survival
circuits to engage the most optimal strategy to maximize escape [5, 26, 67, 70].

Excitation and inhibition between these circuits is determined by the spatiotemporal
distance to the threat [13, 37, 60, 67]. For example, distant threat often results
in freezing and threat assessment, yet when the threat is close, active flight will be
observed [13]. Distance to the threat, therefore, is crucial in choosing the best escape
strategy. Evidence suggests that this pattern is conserved across various species.
In humans, active escape tasks have been used, where the goal of the subject is to
escape from a virtual looming threat with the capacity to chase, capture, and shock
the subject in a virtual maze. FunctionalMRI (fMRI) results show that when a threat
is distant, there is increased activity in the vmPFC, PCC, and basolateral nucleus of
the amygdala. Conversely, as the threat moves closer, there is a switch to increased
activity in the CeA and PAG [71–73]. However, these, and related studies, have
failed to investigate the neural basis of escape decisions (i.e., flight initiation) or to
examine the computational mechanisms that underlie escape decisions to changing
attack distances.

We developed a paradigm to investigate how the defensive survival circuitry fa-
cilitates escape decisions when subjects encounter fast- or slow-attacking threats
(Figure 2.1). In this task, participants encountered virtual predators of three colors,
each representing different attack distances (ADs). On each trial, the actual AD
was drawn from a Gaussian distribution that was unique to the particular predator
type. Fast-attacking predators (i.e., predators that attack from a larger distance) were
characterized by the virtual predator quickly switching from slow approach to fast
attack velocity, therefore requiring the subject to make quick escape decisions. On
the other hand, slow-attacking predators (i.e., predators that attack from a smaller
distance) slowly approached for longer time periods, resulting in larger buffer zones
leading to more time to strategize escape. All types of predators loomed and sped
up at the same rate, and only differed in their timing of attack.

The goal of the task was to escape from the predator while, at the same time,
attempting to acquire as much money as possible by fleeing as late as possible
(Figure 2.1). Using this task, we proposed several hypotheses: (i) for fast escape
decisions, we expected to see activity in the reactive fear circuitry, while slow escape
decisions would reveal more pronounced activity in the cognitive fear circuitry. In
addition, (ii) using a Bayesian decision-making model where subjects’ preference to
reward and avoidance to punishment were considered, we predicted that the reactive
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Figure 2.1: Experimental procedures, Ydenberg and Dill model (1), and distribution
of escape decisions. (A) Subjects are told whether their decisions will result in high
or low reward or shock. They are then presented with the image of the virtual
predator where the color signals the attack distance (2 s) (e.g., blue, fast; red, slow).
After a short interval, the virtual predator appears at the end of the runway and
slowly moves toward the subject’s triangle. After an unspecified amount of time
(e.g., 4–10 s), the artificial predator will attack the subject’s virtual triangle exit
(i.e., attack distance). To escape, the subject must flee before the predator attacks.
If the subject is caught, they will receive a tolerable, yet aversive, shock to the
back of the hand. Trials end when the predator reaches the subject or the exit. To
motivate longer fleeing time, the task will include an economic manipulation, where
subjects will obtain more money the longer they stay in the starting position, and
lose money the earlier they enter the safety exit. After each trial, the subject is asked
to report how difficult they found it to escape the virtual predator (4 s). (B) Modified
schematic representation from the model proposed by Ydenberg and Dill (3). As
the distance between the prey and the predator decreases, the cost of fleeing decays,
while the cost of not fleeing rises. D* represents an optimal point where the prey
should flee. (C) Histograms showing the distribution of subjects’ flight initiation
decision (FID) choices for early-, mid-, and late-attacking predators, respectively.
The x axis represents FID, while the y axis represents frequency of choice.

and cognitive fear circuits would play a corresponding role in facilitating fast and
slow escape decisions, respectively.
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2.2 Methods
Participants
A total number of 30 subjects completed informed consent in accordance with
the guidelines of the Columbia University IRB and were remunerated for their
participation. Data from one subject were lost due to computer error. One additional
subject was excluded due to excessive movement during the scan. Our final sample
consisted of 28 subjects (17 females; 11 males; age, 25.4 ± 7.3 y).

Experiment Design
Subjects were scanned while they viewed stimuli on a screen that displayed a 2D
runway, with a virtual predator “attacking” from the left entrance. In the current
paradigm, the goal of the subject was to escape the attack from a certain virtual
predator, by pressing a button at the desired timing. Once the button was pressed,
a triangle representing the subject started moving toward a “safety exit.” Subjects
gained reward if they escaped to safety before the predator caught them; on the other
hand, they were given a mildly aversive electric shock if they were caught. The key
was to choose the right timing to flee: acquire the maximum amount of reward while
still escaping the virtual predator. Reward in each trial linearly scaled with time
spent before pressing the button. The longer subjects stayed in the starting position
(the smaller the FID), the more reward they got. However, if the subjects stayed for
too long, they could have been caught, which would have resulted in both a loss of
all reward for the current trial and the administration of an electric shock. However,
they still maintain the cumulative reward they received from previous trials.

The runway has a total length of 90 units, where the subject’s triangle is placed
10 units to the safety exit. While in the approaching mode, the predator oscillates
toward the subject’s triangle at a speed of 4 units/s; while in the chasing mode, the
predator proceeds with a speed of 10 units/s. There are 96 trials, factorially divided
to cover different predator attack distances, shock levels, and reward levels [3 × 3 ×
3; three types of predators; three levels of shock (0, low, and high levels of shocks);
and three levels of reward (0, low, and high levels of reward)]. In the high-shock
condition, subjects received two shocks instead of one. In addition, in the high-
reward condition, subjects received twice the original reward if they escaped. The
control condition was the zero-reward and zero-shock condition. Subjects were first
presented with a screen indicating which type of predator and shock/reward level
will be presented in the next trial for 2 s. This shock/reward indicator informed the
next four trials. Next, the trial began, where subjects observed an artificial predator
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slowly looming toward the triangle representing themselves. After a designated
time period, which was learned by the participant, the artificial predator will attack
by speeding up when it reached the attacking position. To make sure reaction time
played no role in FIDs, we manipulated the speed of the predator and the subject so
that, once the threat speeded up to attack, it was impossible to escape after that time
point. After the trial, subjects were required to rate the difficulty of escape using a
visual analog (1–5) scale.

After the first 48 trials, the assignment of predator–color relationship was altered
to introduce novelty and avoid the (habitual) fixation of subject strategies. Same
colors were reassigned among the predators (e.g., the original fast-attacking predator
changed color from blue to red).

Before the start of the actual experiment, subjects went through a brief practice
session of eight trials to familiarize themselves with the paradigm. In the practice
session, subjects played the same game, but the predators’ attack distances were
drawn from different distributions other than the ones used in the actual experiment.
The level of the electric shockwas calibrated according to subjects’ level of tolerance
(self-reported to be aversive, yet not painful). With a 1–10 scale, the average
calibrated shock level was 6.4 (mean, 6.4; SD, 1.3).

Behavioral Analysis
Due to the relative simplicity of our task and exposure to a practice session, subjects’
performance reached saturation very quickly after the beginning of the experiment.
By “saturation,” subjects quickly formed their own patterns of choice making and
carrying out the rest of the experiment. Thus, instead of looking at trial-by-trial
changes of the FID, we focused on the differences of FID between different preda-
tor conditions, and on the approaches subjects’ learning behavior by a Bayesian
decision-making model.

The subjects’ choice of FID, reward from the trial, and escapability ratings were
collected on each trial. We used repeated-measures three-way ANOVAs (of predator
type by reward level by shock level) to assess differences in FID, reward, and
escapability ratings between the various conditions.

Acquisition and analysis of fMRI data
All fMRI data were acquired using a GE Discovery MR750 3.0 T scanner with 32-
channel headcoil. The imaging session consisted of two function scans, each twenty
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minutes, as well as a high-resolution anatomical T1-weighted image (1mm isotropic
resolution) collected at the beginning of each scan session. For functional imaging,
interleaved T2*-weighted gradient-echo echo planar imaging (EPI) sequences were
used to produce 45 3-mm-thick oblique axial slices (TR = 2 sec., TE = 25 ms,
flip angle = 77°, FOV = 192 x 192 mm, matrix = 64 x 64). Each functional run
began with five volumes (1000 msec) before the first stimulus onset. These volumes
were discarded before entering analysis to allow for magnetic field equilibration.
Stimulus were presented using Cogent (matlab-based package). Participants viewed
the screen via a mirror mounted on the head coil, and a pillow and foam cushions
were placed inside the coil to minimize head movement.

Analysis of fMRI datawas carried out using scripted batches in SPM8 software (Wel-
comeTrust Centre for Neuroimaging, London, UK; http://www/l.ion.ucl.ac.uk/spm)
implemented inMatlab 7 (TheMathWorks Inc., NatickMA). Structural images were
subjected to the unified segmentation algorithm implemented in SPM8, yielding
discrete cosine transform spatial warping coefficients used to normalize each indi-
vidual’s data into MNI space. Functional data were first corrected for slice timing
difference, and subsequently realigned to account for head movements. Normalized
data were finally smoothed with a 6-mm FWHM Gaussian kernel.

Preprocessed imageswere subjected to a two-level general linearmodel using SPM8.
The first level contained the following regressors of interest, each convolved with the
canonical two-gammahemodynamic response function: a 2-second box-car function
for the onset of the trial (where the color of the incoming predator is shown); a 4-8
second (duration jittered) box-car function from the onset to 2s before when subjects
make the flight decision; a 2-second boxcar (function for the phase before subjects
make the flight decision; a 4-8 second (duration jittered) box-car function for the
remainder of the trial. Mean-centered trait anxiety ratings, escapability ratings and
parameters in the Bayesian decision model were included as orthogonal regressors.
In addition, regressors of no interest consisted of motion parameters determined
during preprocessing, their first temporal derivative and discrete cosine transform-
based temporal low frequency drift regressors with a cutoff of 192-seconds.

Beta maps were used to create linear contrast maps, which were then subjected
to second-level, random-effects one-sample t tests. In addition, a flexible factorial
model was used to examine the main effects of predator type, reward level and
shock level. Interaction effects between predator type, reward level and shock level
were also examined using the factorial model. The resulting statistical maps were
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thresholded at P < 0.05 corrected for multiple comparisons (false discovery rate
[FDR] corrected). A flexible factorial model was used to examine the interaction
effects between predator type, reward level and shock level. The threshold for those
specific contrasts was set at p < 0.05 (FDR corrected).

A hypothesis driven regions of interest (ROI) analysis was performed after the whole
brain analysis for regions with strong a priori spatial hypotheses. The ROI analysis
was performed using regions associated with the processing of fear, threat and
decision making. Independent ROIs were chosen from previous research showing
similar effects. The threshold for these analyses was set at p < 0.05, small volume
correction (SVC).

The functional connectivity analysis was performed for the response phase (escape
decision) using a generalized psychophysiological interactions (PPI) approach. The
connectivity analysis was carried out based on the [predator condition > control
condition] contrast.

Bayesian decision making model
For details on theBayesian decisionmakingmodel, please refer to the supplementary
material of this published paper within the published content [3].

2.3 Results
Behavior
We first examined the behavioral data by applying a repeated-measures, three-way
ANOVA (predator type by reward level by shock level) for escape responses (e.g.,
FIDs). Results showed a main effect of predator type [F(2,54) = 82.59, P < 0.001].
Post hoc comparisons for the predator type by shock level interaction revealed that
the difference in FID choices between high and low shock levels exists only in
the slow-attacking predator condition (P = 0.013). This shows that subjects took
the level of potential danger into consideration while choosing FID (more risk-
averse when shock is higher), but only in the slow-attacking threat where there was
time for strategic avoidance. The same repeated-measures three-way ANOVA was
performed for escape difficulty ratings. A main effect of predator type was found
[F(2,54) = 49.77, P < 0.001], showing that subjects estimate fast-attacking predator
as the most difficult predator type to escape (all post hoc comparisons: P < 0.001).
Significant interactions were found for predator type by shock level [F(2,54) = 13.68;
P < 0.001] and predator type by reward level [F(2,54) = 4.39; P = 0.017]. For the
predator type by shock level interaction, we found that rating was higher in the high
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shock condition, but only in the slow-attacking predator (post hoc comparison: P
< 0.001). This is intriguing because the predator’s attack distance is identical at
both shock levels, yet subjects perceived the threat to be more difficult to escape in
the high-shock condition (please refer to the SI Appendix, Fig. S1 in the published
content) [3].

Neural basis of fast and slow escape decisions
We next investigated the neural basis of the escape decisions for the fast- and slow-
attacking threats. To control for timing differences between conditions, besides
modeling the rest of the trial as a boxcar function, we specifically looked at the 2 s
before the FID button press as a period where subjects form their final decisions. We
chose to time lock 2 s before the flight initiation decision for several reasons: (i) it
allowed us to examine the neural ramping up of the flight initiation, (ii) it controlled
for the contamination of outcome, and (iii) it reduced the amount or trials that would
be lost for the fast-attacking condition. Also, to control for any confounds of pain, we
excluded the caught trials (number of caught trials: fast-attacking predator, mean, 8 ±
3; mid-attacking predator, mean, 5 ± 2; slow-attacking predator, mean = 4 ± 1), using
these events as regressors of no interest. As the mid-attacking condition was a priori
used as an anchor for the fast- and slow-attacking threats, we focused on activity for
the fast and slow attacking predators. A whole-brain analysis was first performed to
locate regions associatedwith decisions under reactive fear (fast-attacking predators)
and cognitive fear (slow-attacking predators). Detailed regions of activation can be
found in SI Appendix, Tables S1 and S2 in the published content [3]. As shown
in Figure 2.2, data extracted from a priori and independent anatomical regions of
interest (ROIs) of PAG, MCC, PCC, hippocampus, and vmPFC, were differentially
activated for the different predator conditions.

To confirm the dissociation between the reactive and cognitive fear systems (repre-
sented by PAG and vmPFC, respectively), we computed a two-way ANOVA (region
by predator type) using signal change drawn from independent ROIs from PAG and
vmPFC. There was a main effect of region (F = 5.77, P = 0.017) and a significant
interaction between region and predator type (F = 11.50, P < 0.001). For the [fast-
attacking predator > control] contrast, we observed increased activity in PAG and
MCC. A direct comparison between high and low shock levels for the fast-attacking
predator revealed increased activity in the PAG, suggesting that PAG is evoked when
the threat is high (please refer to SI Appendix, Table S7 in the published content)
[3].
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Figure 2.2: Main regions of interest and signal changes associated with fast- and
slower-attacking threats. Parameter estimates and time series extracted from (A)
midbrain, (B) MCC, (C) vmPFC, (D) PCC, and (E) the hippocampus. Activations
shown in the graph show clusters from the whole-brain activation, while the signal
change data were extracted from independent anatomical ROIs. The Upper graph
displays parameter estimates. The y axis represents percent signal changes, and the
x axis is the predator type. The Lower graph displays time series extracted in a
course of 16 s. Blue line: fast predator; red line: slow predator. The beginning of
the time series represents the time point when the FID event comes online.

On the other hand, the [slow-attacking predator > control] contrast revealed in-
creased activity in the cognitive fear circuitry including the vmPFC, PCC, and the
hippocampus. While no amygdala was observed for the main contrast, a direct
comparison between high and low shock levels in the slow-attacking predator con-
dition showed increased activity in the amygdala and hippocampus (please refer to
SI Appendix, Table S8 in the published content) [3]. To further disentangle the
effect and increase the sensitivity of the analysis, we extracted the signal changes
and BOLD-signal time series from the predefined ROIs (i.e., PAG, MCC, vmPFC,
PCC, and hippocampus), regions that have previously been associated with fear,
anxiety, and decision making under stress [71]. A conjunction between fast- and
slow-attacking threats showed that the medial dorsal thalamus (MDT) was com-
monly activated. Although this is an exploratory finding, it is intriguing because
MDT is directly or indirectly connected to both fear circuits, since stimulation of
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the MDT results in depression or potentiation of both circuits and it is thought to
play a role in behavioral flexibility [49, 107].

Computations that support escape decisions
To explore how the observed FIDs might be understood in terms of rational decision
making (i.e., the costs and benefits of flight), we developed a Bayesian decision-
making model. The process by which subjects make escape choices under different
predator ADs can be decomposed to two steps: (i) predicting predators’ distribution
of attack distances, by learning from experience; and (ii) choosing an FID by
comparing themoney that can be possibly obtained against the potential risk of shock
for each possible FID, in expectation over the predicted attack distance distribution
and informed by the individual’s subjective preference levels for shock vs. money.
We assume a Bayesian ideal observer model of subjects’ learning to estimate the
attack distances of different predators from trial-by-trial experience. FID choices
are then determined (with softmax noise) by computing the expected utility for each
possible escape distance. We then calculated the distance between utility resulted
from subjects’ actual FID and the predicted Bayes ideal FID, which is considered a
measure of optimal performance. The modeling results are shown in Figure 2.3 and
SI Appendix, Figs. S3 and S4 of the published content [3]. Details of the model are
explained in SI Appendix, SI Text of the published content [3].

We next examined the neural circuits that correlated with each subjects’ preference
parameters in the Bayesian decision model. For a rational player, the preference
for reward should be positive, while the preference for shock should be negative.
Thus, greater reward or shock sensitivity here corresponds to larger (positive) β2
and smaller (negative) β1 amplitudes. The parametric modulation analysis over the
[predator > control] contrasts revealed that, for the fast-attacking predator condition,
higher reward sensitivity was associated with activations in bilateral putamen, while
higher shock sensitivity was associated with engagement in PAG and bilateral insula.
On the other hand, for the slow-attacking predator condition, right caudate was found
to be associatedwith higher reward sensitivity, while PCCwas found to be associated
with higher shock sensitivity. A display of the activated regions can be found in SI
Appendix, Fig. S3 of the published content [3]. A detailed layout of the activated
regions can be found in SI Appendix, Tables S9 and S10 of the published content
[3].

Next, to investigate what neural circuits are responsible for the optimization of
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Figure 2.3: Visualization of Bayesian modeling results. (A) Estimated coefficients
for each subject for the first scanning session, along with 95 percent confidence
intervals. The x axis represents the pain coefficient β1 in the utility function, and
the y axis represents the monetary reward coefficient β2. For a rational player, β2
should be positive (seeking money), and β1 should be negative (avoiding shock).
(B) Model fit to observed FIDs for the first scanning session. The x axis represents
trial numbers, and the y axis represents FID. Ideal FID choices predicted by the
ideal Bayesian observer (lines), subjects’ actual FID choice (dots). Average values
of reward preference and shock avoidance of the two scanning sessions were used
as parametric modulators for the fMRI analysis. Data for session 2 can be found in
SI Appendix, Fig. S4 of the published content. [3]

.

escape decisions, we considered a measure of performance optimality related to the
per-trial spread between subjects’ actual and Bayesian ideal FIDs. In particular,
we computed the difference between the actual trial-specific utility U(FID) and
the maximum (Bayes optimal) utility the subject could possibly get on the trial
[U(FID)max], given their estimated subjective utilities. A smaller difference (e.g.,
less regret relative to ideal) implies more consistent Bayesian decision making;
variation around the ideal FID will increase the difference. The differences on every
trial were entered as a subject-level parametric modulator separately under each
[predator > control] conditions. For the fast-attacking predator condition, we found
that better Bayesian decisions (smaller distance to ideal) was associated with activity
in MCC, middle frontal gyrus, and superior motor cortex. On the other hand, better
Bayesian decision making in the slow-attacking predator condition was found to be
associated with activity in bilateral hippocampus, as shown in Figure 2.4.
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Figure 2.4: Regions, and their connectivity, associated with parametric modulation
of “distance to ideal.” (A) Brain regions associated with increased Bayesian decision
optimality in the fast AD condition. Better decision making was associated with
increased activity in MCC and superior motor cortex. (B) Brain regions associated
with decreased distance (increased Bayesian decision optimality) in the slow AD
condition activated regions include bilateral hippocampus and bilateral caudate.
A display of the correlation results can be found in SI Appendix, Table S11 of
the published content [3]. (C) Connectivity analysis using MCC as seed over the
contrast [fast predator > control]. Positive connectivity was found between MCC,
motor cortex (MC), thalamus, and the PAG. (D) Using the hippocampus as seed
over the contrast [slow predator > control], positive connectivity was found between
the hippocampus and PCC.

Functional connectivity between computationally defined regions
To investigate the interplay among the brain regions involved in escape decision op-
timization, a functional connectivity analysis was performed for the response phase
(escape decision) using a generalized psychophysiological interactions approach
[59]; to confirm the patterns observed in the whole-brain flexible model, we first
adopted independent seed regions ofMCC and hippocampus from previous research
[72]. For the contrast of [fast-attacking predator > control], we showed a significant
coupling between theMCC seed, the PAG, motor cortex, and bilateral thalamus. For
the contrast of slow predator > control, we showed a significant coupling between
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the hippocampus seed and PCC. This suggests that, when the subjects are provided
time for decision flexibility, they use a search-and-employ approach that prepares
them for action, as shown in Figure 2.4.

2.4 Discussion
We have demonstrated that subjects apply different nodes of the survival circuitry
when escaping fast- and slow-attacking threats. Our analysis revealed increased
activity in reactive-fear circuits, namely the PAG and the MCC for the fast attacking
predators, regions that are implicated in motor response to fast and imminent threats.
Supporting comparative work [6], connectivity analysis revealed a significant couple
between the MCC and PAG. Recent animal work has also shown the optogenetic ac-
tivation of glutamatergic neurons in the dorsal lateral PAG induced motor responses
[e.g., flight [104]]. The MCC is also a critical component of the defensive survival
circuitry and has afferent projections to the ventral striatum, receives efferent signals
from the medial dorsal thalamus, and has bidirectional projections with the amyg-
dala [94]. It has also been suggested that control signals in the MCC may resolve
conflict between defensive strategies (e.g., freezing or fleeing). This has led to the
theory that the cells in the MCC are involved in linking motor centers with defensive
circuits [94].

Our analysis for the slow-attacking threat contrast revealed activation in three key
areas of the cognitive fear circuitry involved in more complex information pro-
cessing—the vmPFC, hippocampus, and PCC. Structural and function connectivity
between these structures has been shown in humans and primates, supporting con-
served pathways across species [90]. Primate research has found that the primate
PCC responds to risky decision making and scales with the degree of risk [57].
The PCC is also correlated with a salience signal reflecting the deviation from the
standard option, suggesting a role in the flexible allocation of neural resources [39].
A function of the PCC may be to harvest information for escape decisions under
conditions of protracted threat. This fits with the proposal that, through its connec-
tions with the hippocampus, the PCC may integrate memory guided decisions with
current decision processes that may involve a “preparation for action” by anticipating
and altering behavioral policies [84].

The vmPFC is also a key player in the defensive survival circuitry. Single-cell
recordings in rodents have shown that the mPFC contains “strategy-selective” cells,
which are thought to be involved in the coordination of defensive responses [37].
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This fits with the idea that the mPFC plays a role in selecting adaptive strategies that
are mapped onto motor responses. Indeed, work in humans shows that larger buffer
distances are associated with activity in the vmPFC, and decreased activity in these
regions is associated with panic-relatedmotor actions [71, 73, 86]. Our data build on
these findings by showing that the vmPFC, hippocampus, and PCC form a strategic
and flexible decision process [26, 74], when the agent has time to contemplate the
best escape action. Our findings tentatively support the role of complex cortical
information processing circuits (i.e., cognitive fear circuits) in “slower” escape
decisions associated with flexible and strategic avoidance through internal risk
assessment that involve model-based memory search [52, 61]. This fits with a
model-based perspective where actions are deliberative and employ a cognitive-
style representation, which is an internal map of events and stimuli from the external
world, and take prospective assessment of the consequences of an action [27].
Thus, the cortical activity observed here could represent “reflective computations”
associated with higher information processing and cognitive architecture [84].

Our Bayesian model also provides insights into how the distinct regions of the
survival circuits associated with optimal escape. Two core regions were associated
with optimal escape: the MCC for the fast-attacking threat and the hippocampus
for the slow-attacking threat. While it is accepted that the PAG needs input to make
optimal decisions, it is unclear where this input comes from. A few candidates
exist; among them is the MCC. The MCC is highly connected to the lateral PAG
and according to adaptive control theory is a “central hub” where information about
reinforcers are passed to motor control areas to coordinate goal-directed behaviors
[94]. Our connectivity results support this conclusion showing that the MCC was
coupled with activity in the PAG and the motor cortex. This proposes that the MCC
is one candidate region for the integration of current goals and implement aversively
motivated instrumental motor behaviors [i.e., when to flee a threat [94]].

Theorists have proposed that the hippocampus computes comparators that assess
multiple goals and in turn corrects actions [62] possibly through a flexible construc-
tive process involved in problem solving [38] and predictive mapping. When there
is time to gather information, the hippocampus may play a role in drawing on pre-
vious threat encounters to form a predictive map and optimize current actions [97].
The hippocampus also plays a role in spatial and temporal “where” and “when”
memory and has theoretically been linked to escape decisions and may act to re-
solve conflict between fitness-promoting behaviors [8, 29, 32, 101, 105, 113]. Our
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computational analysis also revealed a Bayesian role for the hippocampus, where it
potentially gathers information to optimize directed escape during slow-attacking,
but not fast-attacking, threat. Our connectivity analysis did not reveal connections
between these regions but did show that the hippocampus was also coupled with
activity in the PCC, a region thought to be involved in adaptive decisions [84].
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C h a p t e r 3

SLOW, BUT NOT FAST, ESCAPE DECISIONS ARE SWAYED
BY TRAIT ANXIETY

3.1 Introduction
Anxiety is often described as an enduring, conscious state of apprehension. The-
oretical work[14, 51, 70] proposes that anxiety is an emotional state independent
from fear, which is instead evoked when a threat is increasingly proximal, and which
ought to beminimally influenced by the anxiety state of the organism [29, 66]. While
this is generally well recognized in the non-human animal literature, researchers in
the field of human affective neuroscience have paid relatively little attention to the
question of whether anxiety and fear have different associated neural circuitry, and
under what conditions anxiety might influence defensive behaviors in ecological
scenarios. Moreover, recent advances have distinguished different classes of defen-
sive responses which rely on distinct neural circuits, and which may complicate the
theoretical relationship between fear and anxiety [3, 72].

Non-human animal research has shown that anxiety states involve a well-defined
set of neural circuits [17]. The vHPC and mPFC are of particular interest as they
have repeatedly been shown to be recruited during the regulation and representation
of anxiety provoking features of the environment [1, 2, 11, 79]. The vHPC has
input into the mPFC and it appears to be the interaction between these regions that
drives anxiety related behaviors [1]. More recently, CA1 cells in the vHPC have
been shown to exhibit stable representations of anxiety provoking environments and
these cells drive avoidance behaviors [44].

In humans, functional magnetic resonance imaging (fMRI) has been employed in
conjunctionwith “active escape” paradigms, the goal ofwhich is to evade an artificial
predator with the capacity to chase, capture and shock the subject. Studies have
shown that when an artificial predator is distant, increased activity is observed in the
ventromedial prefrontal cortex (vmPFC) [72]. However, as the artificial predator
moves closer, a switch to enhanced activation in the midbrain PAG is observed [72].
More recently, using a novel escape decision task, work from our lab has supported a
similar “cognitive” and “reactive” fear differentiation of defensive survival circuits,
by showing that fast escape decisions are associated with activity in the PAG [3], a
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region shown previously to be involved in reactive flight [72], while slower escape
decisions rely on the vHPC, posterior cingulate cortex and mPFC [3], a circuit
implicated in behavioral flexibility and internal risk assessment [61].

The vHPC-mPFC anxiety circuit therefore overlaps with the “cognitive” fear circuit
recruited during these slower escape decisions [66], but appears to be independent
from “reactive” fear regions that are involved with threat under limited time con-
straints. In general, these “reactive” fear areas (e.g. PAG) have limited interaction
with higher level cortical brain regions, thus are unlikely to be implicated in anxiety.
Thus, it is possible that while anxiety plays no role during imminent threat (when
“reactive” fear circuits are recruited), it may be important within “cognitive” fear
circuits, and subsequently affect defensive behavior in the face of less imminent
threats.

In order to provide evidence for this possibility, a critical question is whether
individual differences in levels of trait anxiety will selectively affect “cognitive” fear
circuits during defensive decisionmaking, or whether “reactive” fear circuits are also
influenced by the trait anxiety of the individual. Moreover, it is equally important
to determine whether there are commensurate changes in survival behaviors and
decision making as a result of differences in trait anxiety, as would be expected if
anxiety has an ethological origin [70].

To address these questions, we reanalyzed behavioral and neural data collected in
our previously published study [3], along with previously unanalyzed trait anxiety
data (the Spielberger State-Trait Anxiety Inventory; STAI-Y). In each trial of the
behavioral task, participants passively earned money while they encountered virtual
predators of three colors, each representing different attack distances (Figure 3.1).
These attack distances were drawn from Gaussian distributions that were unique to
the particular predator type. Fast attack predators (i.e. far or early attacking) were
characterized by the virtual predator quickly switching from slow approach to fast
attack velocity, therefore requiring the subject to make quick escape decisions. On
the other hand, slow attack predators (i.e. close or late attacking) slowly approached
for longer time periods, resulting in larger buffer zones andmore time to contemplate
escape. (It is important to emphasize that “fast” and “slow” here describe the timing
of the predator attack, not the speed of the predators.) The goal of the task was to try
and successfully escape, while at the same time maximizing the amount of money
earned by fleeing as late as possible (i.e. at the shortest distance from the predator,
or flight initiation distance, FID).
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Subjects performed this task while undergoing functional magnetic resonance imag-
ing (fMRI) in order to assess the relative contributions of the “reactive fear” and
“cognitive fear” networks to their escape decisions, and whether behavior or brain
activity in these circuits varied as a function of trait anxiety. Given the theoretical
and neural differentiation between “reactive fear” and “cognitive fear”, we hypothe-
sized that individuals with high trait anxiety would show preferential activity in the
“cognitive fear” circuitry, but not the “reactive fear” circuitry. We also hypothesized
that individuals scoring higher in trait anxiety would make earlier escape decisions,
but only when there is sufficient time to assess threat.

Figure 3.1: Predator escape paradigm. In each trial, participants were presented
with a cue indicating the predator type. The predator would appear on the left side
of the runway, and slowly move toward the participant (green triangle). Participants
passively accrued money while they waited, but at any time could press a button
to begin their escape toward the exit. The predator would speed up (attack) at a
random distance drawn from the respective Gaussian distributions shown above. If
participants were caught by the predator, they would receive a mild electric shock
and lose any money accrued on that trial.

3.2 Methods
Participants
30 subjects were recruited according to the guidelines of the Columbia University
Institutional Review Board after providing informed consent. This sample size was
chosen consistent with previous studies using similar designs [71, 72]. Data from
one subject was lost due to computer error. One additional subject was excluded due
to excessive movement during the scan. Our final sample consisted of 28 subjects
(17 female, age = 25.4 ± 7.3 years).

Stimuli, apparatus and procedure
This article constitutes an independent analysis of data from a previously published
study [3], with detailed methods reported here for completeness. Participants com-
pleted a computer-based task while in an fMRI scanner. The goal of the task was to
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Figure 3.2: Kaplan-Meier survival curves for each predator type, as a function of
predator proximity. Curves reflect pooled data from all subjects.

earn as much money as possible while avoiding being caught by a virtual predator.
Prior to the beginning of each trial, participants were presented with a 2 second
cue indicating one of three different predator types that would be present in the
upcoming trial. The participants were then shown a two-dimensional runway (90
units distance), with an triangle icon representing the position of the participant
toward the right of the runway (at 80 units distance), and a circle icon representing
the position of a predator at the left side of the runway (at 1 unit distance). This
predator had two distinct modes of movement. In “approach” mode, the predator
would proceed rightward along the runway at 4 units per second. At a randomly cho-
sen distance (i.e. the attack distance) the predator would switch to “chase” mode,
at which point it would advance at 10 units per second. These attack distances
were randomly sampled from one of three Gaussian distributions, with means of
25, 40, 50 (standard deviations: 20, 20, 20; for the “slow”, “medium”, and “fast”
predator types, respectively 1). Participants would passively gain money at a rate

1Note that these predator types differed only in their mean attack distance, and not actually the
speed of their attack.
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Figure 3.3: Flight initiation distance for each predator type, as a function of STAI-Y
scores. Each dot corresponds to a single subject’s median FID in one condition.
Dashed lines show the linear fit to the data.

of 2 cents per second while they remained on the runway, and at any time could
press a button to begin an escape toward the right side of the runway at 2 units per
second. Notably, if participants did not respond prior to the predator reaching its
attack distance, it was not possible for them to escape. This prevented participants
frommerely relying on their reaction time by responding after the predator switched
modes. If participants escaped successfully, they would earn the monetary reward
accumulated during that trial. If they failed to escape successfully (i.e. were caught
by the predator) participants were given a mildly aversive electric shock (the shock
magnitude was calibrated to each individual prior to testing), and the monetary
reward earned in that trial would be forfeited. Thus, to perform this task optimally,
participants had to learn the distributions of attack distances for each of the predator
types, and respond as late as possible, provided the distance between them and the
predator (i.e. the FID) was sufficient for a successful escape. Prior to the beginning
of this main task, participants completed a brief, 8-trial practice session to famil-
iarize themselves with the paradigm. (The attack distances of the predators were
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drawn from different distributions to those used in the main task.) Participants then
completed 96 trials of the main task. After 48 trials, the predator-color cue was
re-assigned in order to maintain the attentional demands of the task. Participants
also performed a matching control condition for each predator type, without the risk
of shock or the incentive of monetary reward, but otherwise identical to the main
task. After completion of the computer task, subjects were asked to complete a se-
ries of personality questionnaires that included the trait subscale of the Spielberger
State-Trait Anxiety Inventory, Form Y and the behavioral inhibition/activation scale
(BIS/BAS) [19](see Supplementary materials for an analysis of BIS scores). The
computer task was programmed in Cogent withMatlab. Data collection and analysis
were not performed blind to the conditions of the experiments.

All fMRI data were acquired using a GE Discovery MR750 3.0 T scanner with 32-
channel headcoil. The imaging session consisted of two function scans, each twenty
minutes, as well as a high-resolution anatomical T1-weighted image (1mm isotropic
resolution) collected at the beginning of each scan session. For functional imaging,
interleaved T2*-weighted gradient-echo echo planar imaging (EPI) sequences were
used to produce 45 3-mm-thick oblique axial slices (TR = 2 s., TE = 25 ms, flip
angle = 77, FOV = 192 x 192 mm, matrix = 64 x 64). Each functional run began
with five volumes (1000 msecs) before the first stimulus onset. These volumes
were discarded before entering analysis to allow for magnetic field equilibration.
Participants viewed the screen via a mirror mounted on the head coil, and a pillow
and foam cushions were placed inside the coil to minimize head movement. Electric
stimulation was delivered using a BIOPAC STM100C.

Data analysis
All statistical analyses for the behavioral data were carried out in R [91], using the
packages ‘ezANOVA’ [50], ‘coxme’ [102], and ‘lme4’ [9]. Prior to analyses, data
were tested for normality and equal variances using Shapiro-Wilk and Mauchly’s
sphericity test, respectively. Where appropriate, log transformations of data were
performed to account for non-normality, and Greenhouse–Geisser corrections were
performed to account for violations of sphericity, with the correction factor values
(ε) and original degrees of freedom reported. Partial eta-squared effect sizes are
reported only for significant analyses. Where appropriate, we corrected for multiple
comparisons using Holm-Bonferroni. All tests were two-tailed unless otherwise
specified. We used an alpha level of .05 for all statistical tests2.

2Post-hoc power analyses are available from the authors by request.
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Analysis of fMRI data was carried out using scripted batches in SPM8 software
(Welcome Trust Centre for Neuroimaging, London, UK) implemented in Matlab 7
(The MathWorks Inc., Natick MA). Structural images were subjected to the unified
segmentation algorithm implemented in SPM8, yielding discrete cosine transform
spatial warping coefficients used to normalize each individual’s data intoMNI space.
Functional data were first corrected for slice timing difference, and subsequently
realigned to account for head movements. Normalized data were finally smoothed
with a 6-mm FWHM Gaussian kernel.

Preprocessed imageswere subjected to a two-level general linearmodel using SPM8.
The first level contained the following regressors of interest, each convolved with
the canonical two-gamma hemodynamic response function: a 2 s box-car function
for the onset of the trial (during predator type cue presentation), a 4-8 s (duration
jittered) box-car function from the onset to 2 s prior to participants’ flight decisions,
a 2 s boxcar function for the time prior to participants’ flight decisions, and a 4-8
s (duration jittered) box-car function for the remainder of the trial. Mean-centered
STAI-Y scores ratings were included as orthogonal regressors. In addition, nuisance
regressors consisted of motion parameters determined during preprocessing, their
first temporal derivative and discrete cosine transform-based temporal low frequency
drift regressors with a cutoff of 192 s. Beta maps were used to create linear contrast
maps, which were then subjected to second-level, random-effects one-sample t-
tests. In addition, a flexible factorial model was used to examine the main effects
of predator type. The resulting statistical maps were thresholded at p < 0.05, and
we corrected for multiple comparisons using false discovery rate correction (FDR
whole brain corrected) [32].

After whole-brain analyses, a hypothesis-driven region of interest (ROI) analysis
was performed. These regions were chosen based on results from a previous study
using the same behavioral task (see [3]).

The functional connectivity analysis was performed for the response phase (escape
decision) using a generalized psychophysiological interactions (gPPI) approach [59].
vHPCwas chosen as the seed region for subsequent PPI analysis due to its functional
role in fear, stress and emotion [60, 72] and its empirically demonstrated involvement
in our previous study [3]. (See Supplementary Materials for a similar analysis
that includes the dorsal hippocampus.) In the PPI model, regressors of interest
included the 3 predator conditions (slow/medium/fast), their corresponding control
conditions, and the PPI terms for the above mentioned 6 conditions. Using the gPPI
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toolbox [59], a first level connectivity analysis was carried out based on the PPI
term of the direct comparison between the two predator conditions (slow versus fast
attacking predator). (A similar connectivity analysis based on the PPI term of the
comparison between the slow predator and control condition can be found in the
Supplementary Materials.) As a second level analysis, STAI-Y scores were then
introduced as a co-variate to examine how trait anxiety alters the strength of the PPI
with respect to the seed regions.

Data and code availability
Behavioral data and accompanying code for all behavioral analyses and figures can
be found on the Open Science Framework (https://osf.io/c4qbr/). FMRI data and
analysis code are available from the corresponding author on reasonable request.

3.3 Results
Trait anxiety and flight initiation distance
To test the hypothesis that trait anxiety would affect escape decisions, we estimated a
mixed effects linear regression model, with subjects’ median FIDs as the dependent
variable, and predator type and STAI-Y scores as the independent variables (Table
3.1). Relative to the fast predator type, we observed the expected effects of the
medium (β = −17.88, SE = 2.23, p < 0.001) and slow (β = −52.22, SE = 2.26, p <

0.001) predator types. Importantly, we observed a significant interaction effect
between the slow predator type and STAI-Y scores (β = 0.57, SE = 0.05, p <

0.001), suggesting that trait anxiety and FID were related, but only for the slow
predator condition (see Figure 3.3)

Survival analysis

Note that because participants were given electrical stimulation when they were
caught by the virtual predator, in order to obviate interference it was necessary to
exclude these trials from the imaging analysis reported below. For consistency, the
behavioral analysis above also excluded unsuccessful escape trials. However, unsuc-
cessful escape trials still contain information about subjects’ tolerance to predator
distance. To ensure that the analyses above were not biased by this possibility, we
adopted a technique from survival analysis, which allowed us to take into account
the unsuccessful trials as censored data. To appropriately prepare the data for this
analysis (which is more commonly used to model time-based responses rather than
distance-based responses) we transformed the dependent variable of FID by sub-
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Table 3.1: Linear regression of predator type and STAI-Y scores on flight initiation
distance.

Dependent variable:
Flight initiation distance

Medium predator −17.879∗∗∗
(−22.252, −13.507)

Slow predator −52.219∗∗∗
(−56.646, −47.792)

STAI-Y −0.010
(−0.212, 0.192)

Medium predator:STAI-Y 0.072
(−0.029, 0.173)

Slow predator:STAI-Y 0.567∗∗∗
(0.465, 0.668)

Constant 72.239∗∗∗
(63.395, 81.083)

Observations 1,691
Log Likelihood −5,892.115
Akaike Inf. Crit. 11,800.230
Bayesian Inf. Crit. 11,843.690

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

tracting FID from the maximum FID, then normalizing this by the maximum FID.
This new dependent variable can be thought of as predator proximity, expressed
as a percentage. The Kaplan-Meier estimated survival curves (i.e. probability of
waiting as a function of predator proximity) for each predator are shown in Figure
3.2.

To control for the potential effect of data censoring, we repeated the analysis of
behavioral data using a mixed effects Cox regression model on the probability of
flight responses over time, which took into account predator type and participant
heterogeneity. This model again revealed the expected effects of the medium (β =
−0.98, SE = 0.29, z = −3.34, p < 0.001) and slow (β = −3.09, SE = 0.3, z =
−10.43, p < 0.001) predator types. Importantly, it also again revealed a significant
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interaction effect between the slow predator type and STAI-Y scores (β = 0.05, SE =

0.01, z = 6.74, p < 0.001). This effect had a hazard ratio of 1.05, equivalent to a
5% increase in chance of fleeing per unit increase of STAI-Y.

Trait anxiety and performance
The results above provide clear evidence that trait anxiety influences subjects’
propensity to escape earlier when given enough time to prepare an escape. However,
it is unclear whether this should negatively affect their economic performance in
the task. To test this, we performed a two-way repeated measures ANOVA, with
predator type and STAI-Y scores as independent variables, and subjects’ cumulative
total earnings as the dependent variable. Given that subjects could earn more money
in the slow predator condition, we first standardized reward scores for each predator
type. There was no significant effect of predator type on standardized earnings
(F(2, 52) = 0.34, p = 0.667, ε = 0.81), but we observed a significant main effect of
STAI-Y scores on total earnings (F(1, 26) = 4.32, p = 0.048, η2

p = .09), suggesting
that subjects with higher STAI-Y scores had poorer economic performance in the
task, across all predator types. There was no interaction effect of STAI-Y scores and
predator type (F(2, 52) = 0.36, p = 0.656, ε = 0.81).

Although economic gain is an index of performance in this task, it could be ar-
gued that the more ecologically important performance measure is escape success.
Notably, subjects’ economic performance and proportion of escape trials were not
significantly correlated across all predator types (r(26) = .09, p = .643)3. To
test whether trait anxiety was related to how frequently subjects successfully es-
caped the predators, we again performed a two-way repeated measures ANOVA,
with predator type and STAI-Y scores as independent variables, and the propor-
tion of successful escape trials as the dependent variable. While there were no
main effects of STAI-Y scores (F(1, 26) = 0.23, p = 0.633) or predator type
(F(2, 52) = 1.89, p = 0.175, ε = 0.53), the ANOVA revealed a significant in-
teraction effect between STAI-Y scores and predator type (F(2, 52) = 4.46, p =

0.031, ε = 0.68, η2
p = .15). Simple effects analyses (one-way repeated mea-

sures ANOVAs within each predator type) revealed a significant effect only for
the slow predator type (F(1, 26) = 5.49, p = 0.027, η2

p = .17), but not for the fast
(F(1, 26) = 2.12, p = 0.158) or medium predator (F(1, 26) = 0.39, p = 0.536). This
suggested that, similar to the analysis of FID above, STAI-Y score was positively

3Economic performance and proportion of escape trials were not significantly correlated within
the slow predator condition (r(26) = −.31, p = .108)
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related to escape success only in the slow predator condition. Overall, these results
show that subjects with higher trait anxiety tended to more successfully escape
predators, but that this also negatively impacted how much money they earned in
the task (a summary of performance measures can be found in the Supplementary
materials, in Table 3.5).

Imaging data
We next tested our hypothesis that only during slow attack would we see a positive
correlation between trait anxiety and activity in the “cognitive fear” circuitry. For
this analysis we excluded unsuccessful escape trials due to the interference of the
electric stimulation on BOLD response (mean trials excluded were 6.88, 3.71, and
3.37, per subject, out of 23, 24 and 25, for the fast, medium and slow predator types,
respectively). We focused on the 2 seconds prior to participants’ flight initiation
responses, which allowed us to examine the neural activity in anticipation of the
escape response (detailed methodology of the base fMRI analysis can be found in
[3]). We first contrasted the slow attacking predator condition with the fast attacking
predator condition. We then used participants’ STAI-Y scores as 2nd level regressors
for this contrast, such that any significant increase in activity would indicate positive
modulation by trait anxiety for the slow predator condition.

After thresholding and correction, we observed significant BOLD responses in
regions including the amygdala, hippocampus, vmPFC and midcingulate cortex
(Figure 3.4A, Table 3.2). This was consistent with our hypothesis, and supported the
behavioral findings whereby STAI-Y score exclusively influences escape decisions
when the threat is distant (in the case of the slow attacking predator), but not when
the threat is imminent (in the case of the fast attacking predators). A visualization
of BOLD response as a function of trait anxiety for select regions is shown in Figure
3.6.

To assess the the interaction of brain regions involved in escape decisions, we
performed a generalized psychophysiological interaction (gPPI) analysis [59]. Given
the theoretical and empirically demonstrated involvement of the vHPC in cognitive
fear and anxiety [58, 72], and because of its exhaustive bidirectional anatomical
connections with the amygdala and its nuclei, as well as its functional role in fear,
stress and emotion [28, 44, 75], we chose vHPC as an independent seed region. A
corresponding structural ROI was obtained using the WFU Pickatalas. This first
level gPPI analysis on the slow versus fast predator contrast is reported in [3], and
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Figure 3.4: B

rain imaging results concerning STAI scores. (A) Neural activity associated with
STAI-Y scores for the slow versus fast predator contrast. (B) PPI coupled brain

areas modulated by STAI-Y score. vmPFC, ventromedial prefrontal cortex; Hipp,
hippocampus; MCC, mid-cingulate cortex.

Table 3.2: Activation table for 2nd level STAI-Y score correlation for the slow versus
fast predator contrast.

Brain Region Left/Right Cluster Size t-score MNI coordinates
x y z

Hippocampus L 60 5.32 -15 -27 -6
Postcentral Gyrus L 209 4.91 -45 -18 54
Medial Prefrontal Cortex L 63 4.70 -3 51 -14
Insula L 94 4.53 -40 8 -3
Insula R 107 4.74 36 6 -6
Amygdala R 15 4.93 22 0 -20

Note: p<0.05, FDR corrected
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will not be reported here for brevity. We then added STAI-Y score as a regressor in a
second level analysis. STAI-Y score significantly modulated the functional coupling
between vHPC seed, bilateral mPFC, right IFG, the left insula (Figure 3.4, Table
3.6). Overall, this suggests that these macrocircuits are those that facilitated the
impact of STAI-Y score on escape decisions in the slow predator condition.

3.4 Discussion
Our results provide evidence that trait anxiety can influence escape decisions, but
only under conditions of relatively prolonged threat, compared to more imminent
threats [67, 70]. This disassociation implies that trait anxiety selectively affects
decisions of different ethnological classes, distinguished by the amount of time
afforded for reflection and cognitive strategizing. The notion of a dichotomous
mapping between temporally proximal threats and fear, and temporally distal threats
and anxiety is not new. For example, rodents’ defensive behavior differs when threat
is distal versus when it is immediate [26], and anxiolytic drugs appear to only affect
the former [14]. Likewise, previous models of threat evaluation have suggested
that both anxious and non-anxious individuals will respond similarly to proximal
threats, but individuals with high anxiety will exhibit differential behavior to more
distal threats [56]. However, this is the first empirical study to show that trait anxiety
selectively impacts escape decisions in humans under this specific class of threat.

The interpretation that trait anxiety affects only “cognitive” fear behavior was sup-
ported with our neuroimaging results. These results showed that brain areas previ-
ously indicated to be involved with behavioral flexibility and information process-
ing aspects of fear responses (including hippocampus, amygdala, mPFC and insula
[3, 61, 72]) covaried with trait anxiety. However, areas associated with “reactive”
fear - the PAG, superior colliculus, mid-cingulate cortex and central nucleus of
the amygdala [3, 33, 72] - were not significantly affected by variability in anxiety.
Notably, these findings strongly support theories based on defensive distance [13],
whereby defensive responses to immediate threats and dangers map onto low-level
brain areas such as the PAG, whereas responses to physically or psychologically
distal or anticipated threats map to higher-level areas such as the PFC [33, 60]. Our
findings extend these theories by providing a clear disassociation of the effects of
trait anxiety on one circuit over the other, with accompanying behavioral effects, in
an ecologically relevant paradigm.

These seed-based functional coupling results are consistent with previous non-
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human animal studies showing functional interactions between the ventral and dorsal
hippocampus and vmPFC in anxiety provoking environments [1, 2]. For example,
local field potential recordings in rodents have shown that there is synchrony in theta
oscillatory activity between vHPC and mPFC, and that this synchrony is increased
in anxiogenic environments [1]. In addition, single unit recordings have shown that
cells in mPFC have stronger anxiety-related firing patterns when phased-locked with
local field potentials in the vHPC [2]. Using magnetoencephalography, others have
corroborated these non-human animal findings in humans [45]. Our results parallel
both the human and non-human animal evidence for functional coupling between
the vHPC and mPFC, and further consolidate the characterization of this interaction
with a different brain imaging method.

The specific nature of the coupling between the vHPC and mPFC has garnered
some previous discussion. For example, because vHPC-mPFC connections are
unidirectional [82], it has been suggested that the vHPC primes mPFC to represent
anxiety-related features of the environment, possibly using memories of threats
to estimate threat probability [45]. MPFC has efferent projections to amygdala
and PAG, and these connections have been suggested to be the downstream areas
responsible for the initiation of defensive behavioral responses [33, 108], and the
inhibition of exploratory behaviors [2]. To complement this, vHPC also has direct
projections to BLA, BNST, and the lateral hypothalamic area (LHA), which can
also facilitate anxiety responses [44].

In light of the results from our study, it is possible that vHPC may encode the previ-
ously learned threat context (i.e. the predator condition), and relay this information
to the mPFC where it influences strategic decision making. Our results suggest that
the observed increase in connectivity between vHPC and mPFC in trait anxious in-
dividuals may reflect a priming mechanism which lowered the threshold for escape
responses, resulting in earlier escape decisions [17]. However, for the fast predator
condition, this slow, deliberative priming is not sufficient, and thus the initiation
of behavioral responses appears to bypass this connection. One compelling ques-
tion is whether trait anxiety merely interacts with this vHPC-mPFC mechanism, or
whether it can be fully identified with information processing between these sub-
regions. While we speculatively provide this neural mechanism for trait anxiety -
which is also supported by the non-human animal literature - we emphasize that
this requires causal corroboration, perhaps in the form of pharmaceutical manipula-
tions in humans. Another further piece of evidence that would provide compelling
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support for such a mechanism would be trial-by-trial prediction of flight initiation
distance using brain activity in vHPC-mPFC (an approach that our design lacked
appropriate power for).

Notably, we did not observe modulation of BLA, BNST or LHA, by trait anxiety.
One likely possibility is that these areas are involved in longer-term anxiety re-
sponses, requiring the recruitment of corticotropin-releasing hormone [26], and that
our slow predator condition was not adequately protracted to cause these responses.
Given that BLA and amygdala have strong inputs to vHPC [30, 31], another possibil-
ity is that these areas are more commonly recruited during fear learning (which we
did not examine), and imbue the encoding of environmental stimuli with emotional
salience (e.g. [53]). Indeed, most empirical evidence of the increased involvement
of the amygdala in trait anxious individuals has come from learning paradigms
and studies of fear conditioning (e.g. [40]). Thus, trait anxiety is likely to affect
both the encoding of threats, as well as their retrieval from memory, potentially
via different neural substrates. This latter point may be of critical import for many
clinical anxiety disorders (such as post traumatic stress disorder), where threats
have already been learned. One further possibility, as suggested previously [45],
is that vHPC is specifically involved in threat memory retrieval only when there is
approach-avoidance conflict [8, 41, 78], as in the case with the trade-off between
reward and threat of shock in our task.

Previous research has also suggested the possibility that mPFC representation of the
environment depends of the strength of vHPC input: moderate input appropriately
signals the aversiveness of specific features, but strong input decreases discriminative
capability, leading to generalized anxiety responses [2]. In our study we were not
able to evaluate individuals’ abilities to discriminate between different levels of
threat, but this would be a promising avenue for future research. In particular, this
might suggest that populations with clinical anxiety disorders may exhibit increased
coupling between vHPC and mPFC across threat levels, and consequently faster
escape decisions for all predator conditions.

The impact of trait anxiety on escape decisions could influence survival outcomes
in at least two important ways [55, 87]. Firstly, if individuals with high trait
anxiety escape predators earlier, they expedite other behaviors, like foraging, and
thus may accrue less primary rewards. Our results support this idea by showing
that those with higher trait anxiety earned less total reward in our task. On the
other hand, it could be argued that a more survival-relevant performance metric is
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successful escape - additional reward is irrelevant if caught by a predator. Our results
also showed that individuals with higher trait anxiety made a higher proportion of
successful escape decisions. However, unlike the reward, which was affected across
all predator conditions, individuals with higher trait anxiety only made a higher
proportion of successful escape decisions within the slow predator condition, in line
with the idea that trait anxiety only affects flight decisions under these contexts.
One possible explanation for this difference may have been that trait anxiety also
affected escape responses in the medium and fast predator conditions, but to a lesser,
non-significant degree. This is especially possible considering that there is some
individual variability both in trait anxiety and in performance in general, and thus
our specification of “cognitive” and “reactive” fear classes will not have perfectly
divided performance in these individuals. A series of experiments spanning a large
range of predator conditions and reward contingencies may be able to address this
issue with more clarity, and perhaps reveal population level differences in how
trait anxiety influences performance. Ultimately, both the accrual of reward and
successful escape are important factors for survival, and differences in trait anxiety
appear to arbitrate between these, depending on threat context.

Coexisting with a disassociation of anxiety and fear based on defensive distance
is a disassociation based on defensive direction [60]. The “direction” of this con-
struct refers to approach / avoidance, and theoretical work proposes that fear drives
avoidance of danger, while anxiety drives approach toward danger [60]. In our
experimental design, an approach avoidance conflict existed between reward and
the threat of shock. Because the slow predator condition allowed individuals to earn
greater rewards, this condition may have elicited greater relative anxiety. Under the
defensive direction framework, we may have expected participants with higher trait
anxiety to endure longer in this condition. However, we found that individuals scor-
ing higher in trait anxiety escaped earlier, which speaks against defensive direction
as a potential explanation for our behavioral results. It would be of interest however,
for future experiments to more closely examine how defensive direction and trait
anxiety relate to each other.

Previous studies have also found evidence that anxiety can affect decision making.
For example, individuals with higher dispositional anxiety are more likely to be
more risk-averse in tasks such as the balloon analogue risk task [54]. Our study
makes an important contribution to this literature by situating individuals in an
ecological setting, where the effect of anxiety can be seen as a plausible adaptive
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role, rather than a straightforward deficit in decision making. As such, our findings
support evolutionary accounts of anxiety disorders [63, 76]. While it is important to
note that our current findings do not generalize to populations with clinical anxiety
disorders, such as post-traumatic stress disorder, our hope is that future research
will capitalize on the distinctions between threat contexts in order to better diagnose
and treat these disorders. One potential avenue, for example, would be to tailor
treatments and interventions based on individual differences in threat categorization.

Overall, this study provides strong empirical support for the notion that trait anxiety
affects behavior only when there is sufficient time to appropriately cognize a threat,
and not when threats require an immediate reactive response. These behavioral re-
sults were borne out in an ecologically relevant paradigm, and were complemented
with neural data which suggest that previously learned threat contexts more heav-
ily influence strategic decision making in trait anxious individuals. The present
study provides a complement to previous work describing the contexts under which
“reactive” fear defensive responses manifest [3, 66, 72], and the behavioral and
neural signatures of these responses, and in combination, point to the importance of
examining different ecological classes of threat in future work.

3.5 Supplementary materials
Variability in flight initiation distance
It is important to note that participants had a larger time window in which to respond
in the slow predator condition, thus, while the variances of the empirical attack
times were not significantly different (all subjects experienced the same empirical
attack times; fast vs medium: F(24, 23) = 1.36, p = 0.464, medium vs slow:
F(23, 22) = 0.57, p = 0.186, fast vs slow: F(24, 22) = 0.78, p = 0.537), the variance
in escape distances was not equal across predator types, neither across subjects
(variances across median FIDs, fast vs medium: F(26, 27) = 0.25, p < 0.001,
medium vs slow: F(27, 27) = 0.27, p = 0.001, fast vs slow: F(26, 27) = 0.07, p <

0.001), nor within subjects (t-test of per subject FID variance, fast vs medium:
t(32.94) = −6.12, p < 0.001, medium vs slow: t(32.22) = −5.67, p < 0.001, fast vs
slow: t(27.59) = −7.91, p < 0.001). In particular, the slow predator condition had
significantly larger variance in responses (mean per subject variances were 90.44,
32.51, and 12.82, for slow, medium, and fast predators, respectively).

Importantly, these differences in response variability were a direct consequence of
the experimental manipulation, that is, the manipulation designed to elicit “reac-
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tive” fear allowed a relatively shorter response window, and thus entailed increased
urgency. For this reason, we do not consider the differences in response variabil-
ity to be a confounding factor, but rather a necessary feature of the manipulation.
However, to provide some evidence that the wider time window alone was not
responsible for the relationship between FID and STAI-Y scores, we pooled the
responses across the fast and medium predator types. The variance of median re-
sponses in this pooled data was not significantly different from that of the slow
predator condition (F(54, 27) = 0.73, p = 0.329). We performed a similar linear
regression analysis with this pooled data, which showed that the interaction ef-
fect between the slow predator condition and STAI-Y scores remained significant
(β = 0.56, SE = 0.06, p < 0.001). Overall, this suggested that this relationship
between STAI-Y scores and FID was not simply due to subjects having a larger
variance of responses in the slow predator condition.

Behavioral inhibition and flight initiation distance
Another trait factor that may have played a role in escape decisions is sensitivity
to punishment, or behavioral inhibition [60]. Originally, this was proposed as a
neurobiological substrate for anxiety [34], and is still routinely believed to play
an important role in anticipating and assessing threats. We wished to investigate
whether behavioral inhibition could also explain some of the variance in flight
distance, above or beyond that of trait anxiety as measured by the STAI-Y. Firstly,
we tested whether STAI-Y scores and BIS scores were related within our sample.
A Pearson correlation showed the relationship between STAI-Y scores and BIS
scores was not significant across participants (r(26) = .09, p = .660). We then
ran a mixed effects regression analysis similar to that used in the main text, with
FID as the dependent variable, and predator type, STAI-Y scores, and BIS score
as independent variables (Table 3.3). The results of this analysis recapitulated the
effects observed in previous model, including the significant interaction between
STAI-Y scores and the slow predator condition (β = −7.4, SE = 0.2, p < 0.001).
The model additionally revealed a significant interaction effect of BIS score and
predator type for the slow predator condition (β = −2.98, SE = 0.47, p < 0.001).
It also revealed a significant three-way interaction between BIS score and STAI-Y
scores in both the medium (β = 0.02, SE = 0.01, p = 0.031) and slow predator
conditions (β = 0.08, SE = 0.01, p < 0.001). As can be seen in the median split
visualization plotted in Figure 3.5, the relationship between STAI-Y scores and FID
appears to be driven predominantly by those with higher BIS scores. However, it
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is critical to note that this result should be interpreted with caution, as three-way
interaction effects require substantially more experimental power to appropriately
detect, and the sample size of this study was not chosen with this in mind. In general,
this analysis suggests that the STAI-Y and BIS scores are separable, and that BIS
similarly, but independently, influences FID.

Figure 3.5: Visualization of the interaction of STAI-Y and BIS on flight initiation
distance within the slow predator condition

We have also performed an exploratory fMRI analysis similar to the analysis of trait
anxiety within the slow predator condition (see main text), but instead using BIS
score. Here we find significant activity in the thalamus and right caudate (Table
3.4).

Performance data
Here we report the summary statistics for participants performance in the task, as a
function of predator condition (Table 3.5).

Activation table for 2nd level STAI-Y score correlation for PPI (vHPC seed)
PPI with hippocampus seed
In the main text we reported the results of a PPI analysis showing modulation of
brain areas by STAI-Y score from a dorsal hippocampus seed. Given that literature
has also pointed to interactions between dorsal hippocampus and mPFC[114], here
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Table 3.3: Linear regression of predator type, STAI-Y and BIS on flight initiation
distance

Dependent variable:
Flight initiation distance

Medium predator −7.048
(−23.123, 9.027)

Slow predator −0.273
(−16.512, 15.966)

STAI-Y 0.014
(−0.786, 0.813)

BIS −0.032
(−1.941, 1.876)

Medium predator:STAI-Y −0.346∗
(−0.728, 0.035)

Slow predator:STAI-Y −0.741∗∗∗
(−1.126, −0.357)

Medium predator:BIS −0.562
(−1.467, 0.344)

Slow predator:BIS −2.978∗∗∗
(−3.892, −2.064)

STAI-Y:BIS −0.001
(−0.046, 0.043)

Medium predator:STAI-Y:BIS 0.024∗∗
(0.002, 0.045)

Slow predator:STAI-Y:BIS 0.075∗∗∗
(0.054, 0.097)

Constant 72.634∗∗∗
(38.897, 106.371)

Observations 1,691
Log Likelihood −5,871.537
Akaike Inf. Crit. 11,771.080
Bayesian Inf. Crit. 11,847.140

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.4: Activation table for 2nd level BIS score correlation for the slow versus
fast predator contrast

Brain Region Left/Right Cluster Size t-score MNI coordinates
x y z

Thalamus R 41 4.50 12 -12 0
Caudate R 31 4.94 3 20 0

Note: p<0.05, FDR corrected

Table 3.5: Summary of performance measures

Predator Type N Mean earnings (SD) Mean escape proportion (SD)
Slow 28 889.89 (174.6) 0.9 (0.09)
Medium 28 563.52 (75.54) 0.88 (0.11)
Fast 28 267.56 (83.97) 0.74 (0.2)

Table 3.6: Activation table for 2nd level STAI-Y score correlation for PPI (vHPC
seed)

Brain Region Left/Right Cluster Size t-score MNI coordinates
x y z

Insula L 49 5.13 -33 9 0
Medial Prefrontal Cortex R 168 5.00 15 60 -6
Medial Prefrontal Cortex L 124 5.18 -18 51 -6
Inferior Frontal Gyrus R 38 5.11 42 15 9

Note: p<0.05, FDR corrected

we report the activation table for a similar analysis, using the entire hippocampus
(Table 3.7).

Slow predator versus control contrast modulated by anxiety
Here we report an analysis for the effect of STAI-Y scores within the slow predator
condition similar to that presented in the main text, but using a contrast based on the
control condition (Table 3.8. Note that an identical analysis using the fast predator
condition versus the control condition does not reveal any significant activation in
any areas.

Visualization of BOLD signal change as a function of trait anxiety in four brain
regions
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Table 3.7: Activation table for 2nd level STAI-Y score correlation for PPI (entire
hippocampus)

Brain Region Left/Right Cluster Size t-score MNI coordinates
x y z

Insula L 77 5.37 -31 13 5
Medial Prefrontal Cortex R 96 4.62 11 52 -14
Medial Prefrontal Cortex L 83 4.77 -8 59 -12
Inferior Frontal Gyrus R 63 4.91 48 15 -9
Parahippocampal Gyrus R 57 5.56 26 -20 15
Amygdala L 38 4.79 -24 -2 -15

Note: p<0.05, FDR corrected

Table 3.8: Activation table for 2nd level STAI-Y score correlation for the slow versus
control predator contrast.

Brain Region Left/Right Cluster Size t-score MNI coordinates
x y z

Amygdala L 42 7.70 -9 -24 -9
Hippocampus L 25 6.26 -27 -39 -6
Medial Prefrontal Cortex R 80 7.46 18 60 -6
Postcentral Gyrus L 144 4.38 -57 -21 48
Insula R 133 5.48 45 -24 24

Note: p<0.05, FDR corrected
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Figure 3.6: Visualization of BOLD signal change as a function of trait anxiety in
four brain regions. vmPFC, ventromedial prefrontal cortex; MCC, mid-cingulate
cortex.
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C h a p t e r 4

SPATIAL MARGIN OF SAFETY IN THE FACE OF VOLATILE
ATTACK DISTANCES

4.1 Introduction
Natural observations hint that during threat assessment, prey scrutinize both the
danger level of the environment and monitor the distance to locations of safety.
One metric that is commonly used to preempt predation is spatial margin of safety
(MOS), where prey adopt choices that prevent deadly outcomes from occurring by
keeping close proximity to a safety refuge and increasing the success of escape.
These pre-emptive safety decisions include prospective planning on how far to
move away from a safe refuge or how close one should move to a threat during
foraging. Humans may act in similar ways. For example, when human subjects are
placed close to a safety exit, measures of fear decreases and when under threat, the
sight of safety signals reduces fear and fear reinstatement. Further, safety seeking
is also particularly prevalent in a number of affective disorders in humans. These
observations point to the important role of safety cues in subjective fear and defense-
related behaviors. No studies, however, have investigated the human brain during
MOS decisions, nor have they tested how the statistical uncertainty of a threat’s
attack position influences such decisions.

In the natural world, prey encounter predators that attack with varying degrees of
predictability. Predictabilty is often determined by the likelihood of attack and
the distance at which the threat will attack. These two threat assessment variables
determine defensive behaviors such as pre-emptive avoidance via proximity to a
safety refuge (i.e. MOS decisions). Uncertainty, alerts the prey that information
is missing concerning the predators attack and results in increased anxiety and risk
reduction by pre-emptively avoiding the threat. For example, during central place
foarging, some animals leave the safety of their refuge to reach food patches. Once
the food patch has been reached, the animal needs to make the decision to either
stay and eat, or move back to the safety of the refuge and eat. This latter decision
takes more energy, yet results in successful avoidance of predator. By choosing to
forage in locations spatially close to a safety refuge, animals can reduce the risk of
predation at the cost of lowered foraging quality. Distance to safety, therefore is a
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critical when pre-empting and surviving ecological threats.

The pre-emptive avoidance associated with spatial MOS decisions may elicit a set of
neural circuits involved in anxiety. This set of circuits, which theoretically overlap,
include the ventromedial prefrontal cortex (vmPFC), hippocampus, amydgala and
anterior insula [3, 52, 66]. Research has shown that a safety stimulus during an
aversive experience results in increased activity in the vmPFC while decreasing
threat also results in increased activity in the same region. Research also shows
that attention set to safety signals, extinction, and down-regulation of anxiety are
associated with vmPFC activity. It is important to note that the vmPFC does
not work in isolation and is robustly connected to others regions that play a role in
safety and threat-related decisions, including the hippocampus, insula and amygdala,
regions involved in prospective nature of safety decisions. These regions have been
implicated in decision making under a variety of risks. For example, the insula
is involved in harm avoidance [83], uncertainty and represents homeostatic states
associated with risky decisions [112]. The hippocampus, on the other hand, reflects
decisions that involve, spatial memory and prospective planning of escape and
avoidance behaviors [3]. Further, the amygdala plays a role in tuning to different or
new dangers [36], and the motivation significance and spatial allocation of stimuli
[85]. What remains elusive, is the role of these circuits drive pre-emptive avoidance
of danger.

To address this gap in knowledge, we created a task to investigate spatial margin of
safety decision and elucidate: (i) How do changes in the threat’s attack predictabil-
ity impact the subjects’ MOS decisions? And (ii) what is the neural bases of such
decisions. This models the observed ecological phenomenon, where animals often
need to venture further away from their safety refuge to acquire adequate supplies
of food. How do changes in evolutionary novel leptokurtic attack distance distribu-
tions47. Leptokurtic distributions, which are volatile in nature, are generated as the
composite of two normal distributions with similar means and contrasting variances.
Leptokurtic distributions are probability density curves that have higher peaks at
the mean and are fatter tailed where extreme outcomes (outliers) are expected more
(Fig. C), we contrasted this with standard Gaussians (Fig. D and E)), which are
more computationally familiar, impact subjects’ rate of learning? We hypothesize
that when subjects are facing virtual predators with higher frequency of outlier
attack distributions, this will result in more uncertainty and therefore, increase the
decisions to move closer to safety. This effect will be most pronounced in subjects
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Figure 4.1: Paradigm structure. (A) 2x2 decision variables of high or low reward
and punishment, the predator the subject will encounter and confidence of escape
rating; This alternates every ten trials; (B) The pre-emptive avoidance decision
and the outcome (C) Attack distributions for leptokurtic volatile, (D) gaussian
distribution with matched variance and (E) half the variance gaussian; (F) Schematic
representation of predators attacks distances through all trials. X axis stands for trials
No., and Y axis stands for attack distance. While a “0” on Y axis marks the mean
of the distribution, numbers represent how far away the drawn instance is away
from the mean. (G) Escape probability. X axis represents possible margin of safety
choices, while Y access represents the corresponding probability of escape. (H)
Schematic representation of the experimental procedure. Participants undergo 4
session of scans scattered in 2 days.

who score high on the trait anxiety scale. We also predict that the amygdala and
insula will be increased in activity when facing the more uncertain attacker.

4.2 Methods
We tested 24 subjects were recruited according to the guidelines of the California
Institute of Technology Institutional ReviewBoard after providing informed consent.
Data from two subjects were lost due to incomplete scanning sessions. Our final
sample consisted of 22 subjects (10 female, age = 24.3 +- 8.1 years).

Stimuli, apparatus and procedure
A complete pipeline of experimental procedures can be found in figure 1. Par-
ticipants completed a computer-based task while in an fMRI scanner. The task
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was set under the scenario where subjects place themselves at a desired location
towards a safety exit in face of a potentially dangerous predator. The closer they
place themselves to the safety exit, the more likely they’ll be able to escape from the
predator after the trial starts, but resulting in a smaller amount of potential reward
they can earn. The goal of the task was to earn as much money as possible while
avoiding being caught by the virtual predator. Prior to the beginning of the trial, the
participants were presented with a 2 second cue indicating one of the three different
predator types that would be presented in the upcoming trial. These predators differ
in the location they speed up. These locations correspond to three distributions – a
leptokurtic distribution, a normal distribution with matching variance, and a normal
distribution with only half of the variance. The participants were then shown a
two-dimensional runway (90 units distance, where a unit is the smallest increment
in the program), with an triangle icon representing the position of the participant
toward the right of the runway (at 80 units distance), and a circle icon representing
the position of a predator at the left side of the runway (at 1 unit distance). This
predator had two distinct modes of movement. In “approach” mode, the predator
would proceed rightward along the runway at 4 units per second. At a randomly
chosen distance (i.e. the attack distance) the predator would switch to “chase” mode,
at which point it would advance at 10 units per second. The participants were then
told to make a decision of where they want to start by pressing left or right arrows,
to move from their randomly assigned initial location to a location they desire. The
direction of the chase was counter balanced by adjusting the relative location of the
predator, participant and the safety zone so that half of the chase was from the left to
the right. After participants responded with their preferred margin of safety choice
(MOS choice), they skip the actual animation of the chase (which was shown in full
during the practice session), and was shown the final result of the trial: whether they
got caught or not, and how much reward they earned.

The experiment startswith the subjects being shown that if captured, theywill receive
1 or 2 shocks, and high or low reward if they escape (Fig. 1B). They will then be
presented with one of three different colored spheres, each representing different
attack distributions of the virtual predators. They will then be asked to rate how
confident they are of escape. Next, the subject will be asked to make safety decisions
by either staying or switching to a riskier position that is further away from the safety
exit or stay or move closer to the safety exit. To motivate risky decisions, the subject
will acquire more money if they are more risky (i.e. move further from safety). They
will then be asked to move the cursor to the decided safety position. After a jittered
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ITI, the subject will observe the outcome. If caught, they will receive a shock(s)
and lose their money on this trial. This will repeat for another nine trials, before
the subject is introduced to a new set of reward and shock contingences as well as a
new virtual predator. The margin of safety task is different from the flight initiation
distance as the subject has to make decision concerning their representation of the
attack distributions of the virtual predators and make predictions of where it will
attack next. The virtual predator attack distribution is either (i) mesokurtic (normal
distribution), (ii) leptokurtic (positive kurtosis with fatter tails) or (iii) matched for
variance platykurtic distributions (Fig. 7A). Leptokurtic distributions are rare in
the natural environment, where distributions are often normally distributed and thus
more difficult to learn.

A total number of 400 trials were administrated throughout 4 sessions (2 seesions
per day).

After completion of the computer task, subjects were asked to complete a series of
personality questionnaires that included the trait subscale of the Spielberger State-
Trait Anxiety Inventory, and the behavioral inhibition/activation scale (BIS/BAS)
(see Supplementary materials for an analysis of BIS scores). The computer task was
programmed in Pygames with Python.

fMRI data acquisition
We will collect the fMRI images using a 3T Prisma scanner in the Caltech Brain
Imaging Center (Pasadena, CA) with a 32-channel head receive array. BOLD
contrast images will be acquired using a single-shot, multiband T2*-weighted echo
planar imaging sequence with the following parameters: TR/TE = 1000/30 ms, Flip
Angle = 60°, 72 slices, slice angulation = 20° to transverse, multiband acceleration
= 6, no in-plane acceleration, 3/4 partial Fourier acquisition, slice thickness/gap =
2.0/0.0 mm, FOV = 192 mm × 192 mm, matrix = 96 × 96). Anatomical reference
imagingwill employ 0.9mm isotropic resolution 3DT1wMEMP-RAGE (TR/TI/TE
= 2550/1150/1.3, 3.1, 4.0, 6.9 ms, FOV = 230 m x 230 mm) and 3D T2w SPACE
sequences (TR/TE = 3200/564 ms, FOV = 230 mm x 230 mm). Participants viewed
the screen via a mirror mounted on the head coil, and a pillow and foam cushions
were placed inside the coil to minimize head movement. Electric stimulation was
delivered using a BIOPAC STM100C.
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Data analysis
All statistical analyses for the behavioral data were carried out in R, using the pack-
ages ‘ezANOVA’ , ‘coxme’, and ‘lme4’ . Where appropriate, Greenhouse–Geisser
correctionswere performed to account for violations of sphericity, and the correction
factor values (ε) and original degrees of freedom are reported. Partial eta-squared
effect sizes are reported only for significant analyses. Where appropriate, we cor-
rected for multiple comparisons using Holm-Bonferroni.

Analysis of fMRI data was carried out using scripted batches in SPM8 software
(Welcome Trust Centre for Neuroimaging, London, UK) implemented in Matlab 7
(The MathWorks Inc., Natick MA). Structural images were subjected to the unified
segmentation algorithm implemented in SPM8, yielding discrete cosine transform
spatial warping coefficients used to normalize each individual’s data intoMNI space.
Functional data were first corrected for slice timing difference, and subsequently
realigned to account for head movements. Normalized data were finally smoothed
with a 6-mm FWHM Gaussian kernel.

A multivariate pattern analysis was performed using PyMVPA (Hanke et al., 2009).
We extracted the beta values associatedwith experimental conditions of all the voxels
in each ROI, removing the mean intensity for each multi-voxel activity pattern. For
each participant, the brain response pattern analyses of classification training and
testing with linear support vector machines (SVMs) were conducted using a leave-
one-run-out cross-validation procedure. Furthermore, to evaluate whether stimulus
contrast modulates brain response patterns, cross-validations that use low-contrast
condition data for training and high-contrast condition data for testing, and vice
versa, were also conducted. ANOVAswere then conducted to compare classification
accuracies.

Classification Accuracy
To explore the regions involved in the decision making process under threat within
the Margin of Safety framework, we examined MVPA classification accuracies us-
ing both whole brain searchlight analysis and ROI analysis. We extracted voxel-wise
fMRI responses to margin of safety trial (decision phase) as classification samples.
For each participant and each run, we designed a general linear model (GLM). The
GLM contained 3 regressors indicating the decision phases (duration=4s) of the
3 distribution types, as well as 4 regressors indicating the indication phase (dura-
tion=reaction time), motor phase (duration=4s), and feedback phase (duration=3s).
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All the regressors were convolved with a canonical hemodynamic response function.
In addition, six motion-correction parameters and the linear trend were included as
regressors of no interest to account for motion-related artifacts. For each voxel, the
parameter estimates of the 3regressors corresponded to the fMRI responses to each
of the 3 distributions in each run. The fMRI responses to each distribution item
were then entered into the classification analysis as classification samples.

Naturally, there are two main questions we took priority in. First, what brain regions
are involved in determining which distribution type the participant is facing and
second, what brain regions are involved in determining the MOS decision the par-
ticipant is making. Thus, we used two sets of classification labels corresponding to
the two questions: 1) Normal distribution with normal variance, normal distribution
with half variance, and leptokurtic distribution 2) the 50 possible discrete MOS
choice options.

We employed a linear support vector machine with a cost parameter C=1 as a
classifier. Classification accuracy was estimated using a leave-one-run-out cross-
validation: for each of the four runs, a classifier was trained on the other three runs
and tested on the remaining focal run; and the procedure was repeated for the four
runs (accuracy scores were averaged).

To validate whether the classification performance was significantly above chance,
we further conducted Monte Carlo permutation-based statistical tests. This method
entailed running a classification analysis 1000 times with randomly permuted exper-
imental condition labels, allowing us to construct null distributions that were used
to examine whether a classification accuracy was significantly above chance at an
of p < 0.05.

4.3 Results
Behavioral Results
We first examined the behavioral data by applying a repeated-measures, One-way
ANOVA (Distribution type) for the margin of safety (MOS) escape responses. The
result showed a main effect of distribution type [F(2,44) = 61.33, p < 0.001]. A
Tukey post hoc test revealed that participants’ MOS choice was significantly more
towards the safety zone in the leptokurtic distribution condition (0.74 +- 0.06 ) than
in the normal distribution with matching variance (0.68 +- 0.03). The leptokurtic
MOS choice (0.74 +- 0.06) was also significantly more conservative than the MOS
choice within the normal distribution with only half of the matched variance (0.67
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+- 0.01). This indicates that participants perceived leptokurtic distributions as more
difficult to grasp and thus more dangerous, resulting in an overall safer MOS choice
set. Interestingly, there’s no significant difference in their mean of MOS choices
between the two normal distributions. This might suggest that only a fundamental
change in the statistical structure of the target distribution can impact participants’
decision under threat.

We also examined participant’s MOS choices within high/low shock conditions and
high/low reward conditions. While there’s no significant difference in their escape
decisions facing different levels of rewards, their MOS choices were significantly
more conservative in the high shock condition (0.75 +- 0.07), compared to the
low shock condition (0.69+-0.05) : t(21) = 21.21, p < 0.001. This suggests that
participants were senstivie to the level of danger and adjusted their margin of safety
accordingly.

We collected participants’ confidence ratings before every unique trial block. An
Anova on the confidence ratings also revealed that participants were generally more
confident on trials in the two normal distributions compared with trials in the
leptokurtic distribution. A main effect of distribution type was found [F(2,44) =
27.32, p < 0.001], and a Tukey post hoc test showed that confidence rating in the
leptokurtic condition (1.42 +- 0.42) was significantly lower than those in the normal
distribution with matching mean (2.43 +- 0.68) and normal distribution with half
mean (2.65 +- 0.62).

We were also interested in the question whether participants’ level of anxiety would
influence their MOS decisions. We then estimated a mixed effects linear regression
model, with participants’ MOSs as dependent variable, and distribution type and
STAI-Y scores as the independent variables. Notably, there’s only a significant
interaction between the leptokurtic distribution type and STAI-Y scores (Beta =
0.43, SE = 0.07, p < 0.001), indicating that trait anxiety and MOS were correlated,
but only for the leptokurtic distribution.

Whole brain searchlight
For the analysis of distribution types, activations were found in regions including
right Insula and the PCC, with a decoding accuracy significantly higher than the
monte-caro simulated chance level accuracy (t(21) = 2.82, p = .010). The whole
brain decoding map was thresholded at P<0.05 (FWE); for the analysis of decision
types, activations were found in regions including right hippocampus and amygdala,
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Figure 4.2: Choice frequencies for (A) leptokurtic, (B) matched variance and (C)
half variance attacking threats. The avoidance decision phase and the outcome.
(D) significant correlation between trait anxiety and pre-emptive avoidance for the
leptokurtic condition. This task is run in four sessions over two days (total time 2
hrs).

with a decoding accuracy significantly higher than chance level too (t(21) = 2.47, p
= .022). These results suggested that the MOS decision making process is robustly
represented in the above mentioned regions.

At the same time, whole brain searchlights for reward level category and shock level
category were also significantly above chance level (shock level: t(21) = 3.15,p <
0.001; reward level: t(21) = 2.18, p = 0.048).

ROI analysis
In order to better understand neural mechanisms behind the current decision sce-
nario, and specifically, to isolate key regions implicated in danger (threat encounter)
and safer (threat avoidance) conditions, we also performed MVPA classification
analysis within a series of ROI identified from previous literature, shown to be crit-
ically involved in the process of decision making under threat. These ROIs include
the vmPFC, the hippocampus, the amygdala and the insula. Within each specified
ROIs, we investigated classification accuracy for the MOS decisions labels, sepa-
rately for each distribution conditions. Thus, by comparing how well the process
is decoded within each ROI, we can tell if one/both/neither of the processes are
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ROI-specific. In this case, we could obtain separate and shared representations for
the threat encounter and threat avoidance processes.

Within the vmPFC ROI, only classification for the leptokurtic conditions was sig-
nificantly above chance level (leptokurtic distribution, p < .001; normal distribution
with matching variance, p =.365; normal distribution with half variance, p = .451).
An Anova showed a main effect of distribution type (F = 3.475, p = .037), where
the accuracy for normal distribution with matching variance is significantly higher
than the other two conditions, showing that vmPFC is more robustly decoded in a
decision scenario where the main task is to avoid the threat. Within the hippocam-
pus, classification for all 3 distribution types were also all significantly above chance
level (leptokurtic distribution, p < .001; normal distribution with matching variance,
p = .011; normal distribution with half variance, p = .038). A follow up ANOVA
did not reveal a significant difference among the decoding accuracies.

Within the amygdala, decoding accuracy was only significantly above chance level
for the leptokurtic distribution (leptokurtic distribution, p < .001; normal distribution
with matching variance, p =.213; normal distribution with half variance, p = .276),
An Anova showed a main effect of distribution type (F = 3.875, p = .0259), where
the accuracy in leptokurtic distribution is significantly higher than the other two
distributions. This indicates that in a condition that’s more difficult to decipher
(thus more dangerous), amygdala is more robustly decoded. Compared to vmPFC,
it is implicated in the direct encounter of imminent threat.

Connectivity analysis
Based on the key regions obtained duringMVPA searchlight analysis, we further per-
formed connectivity analysis using gPPI (gPPI; http://www.nitrc.org/projects/gppi),
which is configured to automatically accommodate more than two task conditions
in the same PPI model by spanning the entire experimental space, compares to the
standard implementation in SPM8.

From the MVPA analysis, we took amygdala and vmPFC as seed regions for the
leptokurtic distribution contrast and normal distribution contrast respectively, since
they were identified as regions representing the process where participants make
risk decisions under the corresponding predator conditions. For the amygdala
seed, with the contrast [leptokurtic - normal], we observed increased connectivity
to regions including the hippocampus, insula and MCC. On the other hand, for
the vmPFC seed, with the contrast [normal - leptokurtic], we found increased
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Figure 4.3: Neural representation of pre-emptive avoidance decisions. Avoidance
decisions decoded in the vmPFC, Hippocampus, Amygdala and Insula. Pilot results
show that the vmPFC was most significant for the predictable threat, while the
amygdala was evoked only for the uncertain threat. The hippocampus and insula
where activated for all conditions. Box and whisker plots represent the accuracy.

connectivity to regions including the insula and putamen. Insterestingly, negative
connectivity with vmPFC was also found with the amygdala seed, suggesting a
potential downregulatory process.

What’s also interesting, is that when we did the same analysis with the contrast
[leptokurtic - control] (20 trials with the same distribution, but without reward and
shocks were used as the control condition), we observed increased connectivity to
regions including the hippocampus, insula, MCC and PAG.While uncertainty drives
different pathways in pre-emptive decisions, the flight circuit is still triggered.

Bayesian decision model: parametric modulation analysis
In order to further explore how participants optimize their decision under the threat,
we obtained two measures of optimality from both the original behavioral data and
our Bayesian decision making model. We considered a measure of performance
optimality related to the per-trial spread between subjects’ actual and Bayesian
ideal MOS. In particular, we computed the difference between the actual trial-
specific utility U(MOS) and the maximum (Bayes optimal) utility the subject could
possibly get on the trial [U(MOS)max], given their estimated subjective utilities. A
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Figure 4.4: Neural activity associated with pre-emptive decisions. gPPI-coopled
brain areas using the amygdala seed and the vmPFC seed respectively. Red areas
represent significant activations thresholded at p < 0.05 (FDR corrected)

Figure 4.5: gPPI-coopled brain areas using the amygdala seed and the vmPFC seed
respectively. Red areas represent significant activations thresholded at p < 0.05
(FDR corrected)
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Figure 4.6: Parametric modulation analysis with optimality parameters from the
model and actual behavioral measures.Red areas represent significant activations
thresholded at p < 0.05 (FDR corrected)

smaller difference (e.g., less regret relative to ideal) impliesmore consistent Bayesian
decision making; variation around the ideal FID will increase the difference. On
the other hand, behaviorally, we isolated trials where participants nearly escaped the
threat - the more “last-minutes” the escape is, the more optimal the actual decision
is.

We then performed a first-level parametric analysis with our fMRI data, using
these two measures as parametric modulators. We found bilateral caudate to be
associated with increased model optimality. On the other hand, for the actual
behavioral optimality, the modulation analysis revealed regions including caudate,
thalamus, MCC and vmPFC.

4.4 Discussion
As predicted, our behavioral results showed a more conservative decision pattern
when the threat avoidance scenario is more ambiguous and unpredicatable. The
leptokurtic distribution, which is constructed through the combination of multiple
normal distributions centered at the same mean, provides us a statistical tool to
facilitate such a scenario. When facing leptokuctic predators, paticipants were
presented with threats that had way more outlier situations than normal, rendering
their typical min/maxing strategies ineffective. As a result, they choose to place
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themselves closer to the safety refuge to avoid the volatile capture risk, compared
to the normal distributions. Interestingly, there’s no differences in MOS decisions
between the two normal distributions, although one of them only had half variance
of the other. This suggests that participant’s level of uncertain decisions was not
swayed by a simple change in distribution variance, but by a total structural change
in the distribution, where a continuous random shift in contingency persists.

We are also interested in the neural circuits behind the decision making process.
When dissecting the defensive circuitry, it is critical to understand which brain
regions are involved in the avoidance of danger. Safety behaviors are actions that
are performed to prevent dangerous outcomes from occurring and it is known that
prey preempt danger by adopting choices that increase the success of escape. Such
safety decisions include how far to move away from a safe refuge or how close
one should be to a threat (i.e. margin of safety). Indeed, when human subjects
are placed close to a safety exit, measures of fear decrease and when under threat,
the sight of safety signals reduces fear20 and fear reinstatement. Safety cues have
also been observed to abolish innate defense mechanisms in rodents, such as threat-
related analgesia. One region involved in safety signal and learning is the vmPFC.
Indeed, the presentation of a safety stimulus during an aversive experience results
in increased activity in the vmPFC, while decreasing threat also results in increased
activity in the same region. Despite its role in extinction25, anxiety and fear, little
is known about the role of the vmPFC in these processes and how this region drives
avoidance of danger and down regulates fear and anxiety.

We used MVPA analysis to decipher the neural basis of such decision making pat-
terns. While regions including the hippocampus and insula contribute non-selectivly
to both certain and uncertain threat encounters, the amygdala only significantly en-
coded the more uncertain, leptokurtic threats. The vmPFC, on the other hand,
encoded the less uncertain, normal threats. This is interesting because it displays
two potential keys regions under different threat scenarios. While amygdala seems
to be the processing centre when the risk is more volatile and unpredictable, vmPFC,
on the other hand, becomes online only when the threat is “milder” and the risk is
more controllable. Theorists have proposed that the hippocampus computes com-
parators that assess multiple goals and in turn corrects actions possibly through a
flexible constructive process involved in problem solving and predictive mapping.
When there is time to gather information, the hippocampus may play a role in draw-
ing on previous threat encounters to form a predictive map and optimize current
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actions. This supports the hippocampus’ role on the processing of uncertain stimuli
in a universal, non-selective way.

Leptokurtic noises emerged as a results of complex, large-scale interactions of
real life events and information. It provides an excellent source of unpredictable
outliers, which adds to the level of uncertainty and difficulty of a given decision task.
When the outliers occur due to a continuous random shifts in observational error
variance, the distribution of the information source is far more peaked and displays
much heavier tails than the Gaussian distribution, and is named “leptokurtic”. This
leptokurtic noise is rare in the natural environment, hence more difficult to learn
about and adapt to.

Our Margin of Safety paradigm, on the other hand, offers an ecological context to
assess how humans make decisions under the normal and leptokurtic risk factors.
When approached by a potential predator, individuals decide the best timing to flee.
We have begun to gather neuroimaging data on the critical neural circuits associated
with online decision making of the escaping process. On the other hand, before the
online chasing actually happens, individuals could assess risk by monitoring their
distance to a safety exit (for animals, their nest) from an approaching threat. By
adjusting the distance from the safety exit, individuals can trade off potential threats
with potential reward, thus preemptively adapt to the risky environment before the
threat actually approaches. We also performed functional connectivity analysis with
the critical regions obtained during the MVPA analysis, together with parametric
modulation analysis with the Bayesian model parameters. Regions including the
Caudate were shown to encode the optimization of threat avoidance decisions. This
is consistent with literature where dopamine signaling encoded avoidance learning
during aversive events.

The medial and lateral subregions of OFC have been shown to be associated with
threat processing, and more specifically, in mediating specific symptoms of anxiety
disorders. Rodent studies have shown that macaque with orbitofrontal cortex lesions
showed heightened defensive responses. After the lesion, they displayed a greater
tendency to express defensive responses even when the threat is absent. This implies
a role for the mPFC to downregulate threat avoidance responses, which is consistent
with our fMRI data where vmPFC functions as the processing centre when the
threat is relatively predictable in the normal distribution condition, compared to the
amygdala centre when the more uncertain, leptokurtic threat is present. The vmPFC
is also a key player in the defensive survival circuitry. Single-cell recordings in
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rodents have shown that the mPFC contains “strategy-selective” cells, which are
thought to be involved in the coordination of defensive responses. This fits with
the idea that the mPFC plays a role in selecting adaptive strategies that are mapped
onto motor responses. Work in humans also shows that larger buffer distances are
associated with activity in the vmPFC, and decreased activity in these regions is
associated with panic-related motor actions. Building upon this line of research,
together with results shown in chapter 2 and 3, our results suggest a tentative role
for vmPFC to be a center for modulating pre-emptive decisions under threat.

Our data suggest that when pre-empting impending danger, a distinct set of parallel
cortical-subcortical regions code for the threat intensity, uncertainty, and the decision
to shift closer to safety.
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C h a p t e r 5

DECISIONS AND ANXIETY UNDER UNCERTAINTY, BIASED
BY REPUTATION

5.1 Introduction
According to psychological theory, when we are uncertain about what actions to
take, we often look to others to guide our decisions [20, 111]. In turn, this leaves
us remarkably vulnerable to being influenced by others’ opinions or advice. This is
common in daily life as important decisions are often based on limited information,
and under such circumstances, we often look to the advice of others whom we have
a high regard for, namely those with a good reputation. Supporting the conjecture
that reputation can have a potent influence on social behavior is research showing
that we are highly sensitive to the reputation and the competence of others when
making decisions [15, 101, 103]. Further, classic social psychological experiments
demonstrate subjects’ susceptibility to conforming, that is changing one’s behavior
to match the opinions and actions of others [7, 21, 93, 96] is especially evident when
the influencer is high in authority or reputation [64]. Despite this large body of
research, no studies have yet attempted to understand how the reputation of others
can modulate social influences on perceptual discrimination.

The information we garner from reputable others and how it influences our decisions
become critical when it relates to decision outcomes that result in physical harm.
For example, cage-reared monkeys who are not afraid of snakes instantly exhibit
fear after they observe another conspecific exhibit fear of snakes [65]. It is known
that, in general, the mere presence of a conspecific can ameliorate an individual’s
response to a stressor, a phenomenon called “social buffering” [46]. The identity
of the present conspecific can also change the strength of the buffering response.
For example, holding the hand of a romantic partner during the anticipation of a
possible electric shock reduced the neural pain responses [22]. Others have shown
that when the risk of a shock depends on the task performance of another person,
the level of perceived competence extracted from facial features modulates both
subjective and neural measures of anxiety [101]. Theories of such findings [10, 48]
posit that conspecifics reduce threat responses if they offer protective resources that
factor into predictive computations of threat severity. Little is known, however,
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about what properties of conspecifics, such as wisdom, experience, competence, or
reputation, modulate social buffering.

To explore the relationship between reputation, perceptual bias and emotion, we
used functional MRI in conjunction with a standard random dot motion (RDM) dis-
crimination task to test whether partners high or low in reputation would modulate
perceptual decisions and anxiety of the subject. To create reputation ratings of the
partners, subjects were shown the average ratings of each partner made by their
friends [rounded off to either 1 (low), 3 (mid), and 5 (high) reputation]. Because
perception and anxiety both rely heavily on expectations to inform interpretations
of ambiguous stimuli [89, 100], we hypothesized that a partner’s reputation would
play a significant role determining the degree of social influence on perception and
anxiety. In the task, healthy subjects were provided with RDM estimates by tran-
sient collaborators of high or low reputation. The subject’s goal was to make RDM
estimates based on their own judgements and where needed, incorporate the RDM
estimates of the transient collaborator (Figure 5.1). The likelihood of an electric
shock at the end of each block is based ostensibly on combined task performance.
We show that RepHigh partners induce greater levels of social influence (i.e., confor-
mity) during the RDM discrimination task, especially for the uncertain conditions
and down-regulate subjective and neural markers of anxiety.

5.2 Methods
Participants
Twenty-five individuals recruited from the Columbia University community com-
pleted all parts of the experiment. Data from three participants were removed due to
excessive head motion during scanning (1) or technical issues (shocks not working;
2), and all remaining analyses are based on the remaining 22 individuals (10 females;
12 males; mean age = 25.6 ± 4.6, range 19–35). All participants were right-handed,
had normal or corrected-to-normal vision, had no history of neurological or psy-
chiatric illness, and gave written informed consent for participation. The study was
approved by the Institutional Review Board of Columbia University.

Experimental paradigm
The experiment consisted of a 42 min session consisting of 48 blocks. In each block
(Figure 5.1), the participant was paired up with a new “partner”, or someone who
ostensibly played the same task on a previous visit to the psychology department.
At the beginning of each block, the participant was presented with a picture of that
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Figure 5.1: Task paradigm and behavioral results. (A) Experimental steps: the
subject was first shown a picture of the partner’s face and reputation (1 star =
RepLow or 5 stars = RepHigh). Next, the subject was shown two screens: (1) an
arrow indicating the partner’s guess about the direction of the dots (arrow screen)
and (2) their guess about the coherence percentage (30% in the example). The
subject then saw a screen showing the dot movement and was asked to guess the
coherence percentage (using a slider scale). The RDM discrimination estimation
was repeated three times. Next, subjects reported how anxious they feel at the
prospect of receiving a shock during the 4–6 s anticipation screen. The likelihood
of receiving a shockwas based on the joint performance accuracy between the subject
and the partner. After the shock anticipation screen, they either received a shock or
not. Then they saw a screen displaying information about the joint performance of
themselves and the partner. The red-bordered boxes are the analyzed events. (B)
Left: Conformity was higher for high-reputation partners. Right: Mean conformity
differed across hard and ambiguous (uncertain), but not easy conditions. ∗p < .001.
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partner along with a star rating below. The pictured partners had neutral facial
expressions, were edited to an identical size and brightness, and were unfamiliar to
subjects (as confirmed in a debriefing questionnaire). Confounds such as attractive-
ness, trustworthiness, gender, race, and the likewereminimized by counterbalancing
the faces across subjects.

Implicit competence was controlled for by using ratings from independent samples
of raters from the same subject population (from multiple samples, total N = 91).
Raters judged each partner’s competence based solely on the partner’s picture [101].
Ratings were trifurcated into 1, 3, or 5 stars (with more stars indicating better judged
competence). Participants were instructed that the ratings were an average from the
partners’ friends’ judgments of their general skill at perceptual, cognitive, or “mind
training” games. This was made more realistic by asking the subject to give the
names of friends who could rate them on their perceptual and cognitive abilities and
by taking a photograph for future participants in the experiment. Before starting the
task each participant was randomly assigned to one of two counterbalanced sets of
pairings between partner pictures and reputation ratings. After viewing the partner’s
picture and star rating for 3 s at the start of the block, the star rating disappeared and
a small thumbnail picture of the partner remained in a screen corner. There were
also four blocks (2 in each session) without a partner; in those blocks the partner’s
picture and rating were replaced with “no partner” text.

After the 3 s partner and rating presentation, a 2–4 s jittered ISI occurred before the
perception task began. The goal for participants was to make accurate perceptual
judgments (3 per block) of the direction and level of motion coherence in the RDM
discrimination task. The RDM discrimination task is a standard psychophysical
stimulus used to study motion perception [77, 92]. In the RDM, most dots on the
screen move in random directions but a portion of the total dots move coherently
together either left or right. Coherence levels ranged from 0 to 40%, indicating
the percentage of all dots on the screen that are moving together. Participants must
judge whether the coherent dots are moving left or right (binary judgment), as well
as the numerical level of coherence from 0 to 50% in steps of 5%. As with the rest of
the task, dot stimuli were presented using PsychoPy software based in Python, using
the built-in Dots Component function with the following parameters: 100 total dots
on the screen, 10 pixels dot size, 0.01 U/frame speed, 1000 frame dot lifetime, and
noise dots follow a constant direction. Each dot stimulus was presented for 3 s, after
which the participant had 3 s to input their judgment by toggling left or right on a
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scale that started in the middle at 0% coherence. A 2–4 s jittered ISI followed each
rating.

In the blocks that included a partner, participants saw their partner’s judgment
for 1 s before each dot stimulus in the form of an arrow pointing left or right
(indicating the partner’s binary judgment) and a number inside the arrow (indicating
the partner’s continuous coherence judgment). In blocks without a partner, a blank
screen replaced the arrow for the 1 s before the dot stimulus. Each block consisted of
three dot motion trials, including one “easy” trial (30–40% coherence), one “hard”
trial (10–20% coherence), and one “ambiguous” trial (0% coherence). There was no
difference in task difficulty or the quality of partner judgments by partner reputation.
By definition, however, there were differences in the quality of partner judgments
by partner performance levels, such that the total error of the judgments provided
by low performing partners (70–80% total error) was higher than that of high
performing partners (10–20% total error). Subjects could select “no direction” by
selecting 0% coherence on the visual analog scale. Participants were not explicitly
instructed about the different levels of task difficulty, or the possibility that some
trials would not have a true direction left/right. They were also not instructed on how
they should use the information provided by the partner. Accuracy was calculated
from the absolute distance between the subject’s indicated coherence and the actual
coherence of the dots.

Near the end of each block was an anticipation period (4–6 s, jittered) during which
participants were instructed that they may receive an electric shock to the left wrist
at any point. Before each anticipation period, participants were given 3 s to rate their
level of anxiety on a 7-point Likert scale. Participants were told the shocks were
probabilistically based on a lower combined performance of both themselves and
their partner, such that worse combined performance was associated with a larger
probability of shock. For blocks without a partner, participants were instructed that
the probability of getting a shock was based solely on their own performance. In
reality, all participants received the same number of shocks (5) and those shockswere
paired with the same partners within each of the counterbalanced sets of partners.
The shock stimuli were delivered using a Biopac MP150 with an STM100C module
(Biopac Systems). Attached to the STM100C was a 200 V maximum stimulus
isolation unit (STMISOC, Biopac Systems). Shocks were administered via pre-
gelled radio translucent electrodes on the underside of the participant’s left wrist
and attached to the STMISOC with shielded leads. The shocks were calibrated for
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each participant before the scan with a procedure that allowed the participant to
select a shock level that was uncomfortable but not too painful, with an upper limit
of 100 V.

After the anticipation period and a 2–4 s jittered ISI there was a 3 s feedback period.
During this time, participants were shown a visual metric (a partially full cylinder)
ostensibly indicating the combined performance of the partner and participant in that
block. In reality this feedback bar only reflected the partner’s performance indexed
by the amount of total error in his/her three judgments. Importantly, the partner’s
performance was orthogonal to the reputation rating, and both were orthogonal to
the partner’s implicit competence, gender, and race.

fMRI data acquisition and analysis
All fMRI data were acquired using a GE Discovery MR750 3.0 T scanner with
32-channel head coil. The imaging session consisted of two function scans, each
20 min, as well as a high-resolution anatomical T1-weighted image (1 mm isotropic
resolution) collected at the beginning of each scan session. For functional imaging,
interleaved T2*-weighted gradient-echo echoplanar imaging (EPI) sequences were
used to produce 45 3-mm-thick oblique axial slices (TR = 2 s, TE = 25 ms, flip
angle = 77°, FOV = 192 × 192 mm, matrix = 64 × 64).

Structural images were subjected to the Unified Segmentation algorithm imple-
mented in SPM8, yielding discrete cosine transform spatial warping coefficients
used to normalize (warp) each individual’s data (structural and functional) into
MNI space. After discarding the first five volumes of each functional run to account
for equilibrium effects, the functional data were preprocessed using the following
SPM8 functions: slice-time correction, two-pass realignment to correct for head
motion (rigid body registration of all frames to the averaged image after first pass),
coregistration of each participant’s functional mean image to the corresponding
structural image, followed by applying the normalization parameters determined
during segmentation to the functional images, and then using a 6 mm FWHM
Gaussian smoothing kernel.

Statistical analysis of fMRI data
Preprocessed imageswere subjected to a two-level general linearmodel using SPM8.
The first (individual participant) level contained the following regressors of interest,
each convolved with the canonical two-gamma hemodynamic response function:
a 3 s boxcar function for the partner and rating presentation period, a 3 s boxcar
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function for the dot motion perception period, a 4–6 s (duration-jittered) boxcar
function for the anticipation period, and a 3 s boxcar function for the feedback
period. In addition, an orthogonal regressor using the mean-centered anxiety ratings
parametrically modulating the anticipation period was used, as well as orthogonal
regressors using mean-centered dot motion coherence and computed conformity
levels parametrically modulating the motion perception period. Regressors of no
interest consisted of motion parameters determined during preprocessing, their first
temporal derivative, and discrete cosine transform-based temporal low-frequency
drift regressors with a cutoff of 192 s.

Beta (regression weight) maps were used to create linear contrast maps (weighted
sums of betas), which were then subjected to several second-level, random-effects
(summary statistics) one-sample t tests, with the null hypothesis being that the
mean over all participants is zero (0). Our model included the partner and rating
presentation period (3 s), the motion perception period (3 trials each of 3 s), the
anticipation period (4–6 s), and the feedback period (3 s). The analyses only included
anticipation periods when a shock did not occur. The resulting statistical maps (one-
sample t tests) were thresholded at p < 0.05, corrected for multiple comparisons,
and false discovery rate (FDR)-corrected [32]. Additionally, for results with strong
a priori spatial hypotheses, a small volume correction (SVC) was applied.

Statistical analysis of behavioral data
All behavioral data were analyzed in R. The taskwas a 2 × 2 factorial designwith two
main independent variables, partner reputation and partner performance. Each of
these two variables had three levels, but there were fewer instances of the midlevel
star ratings and performance bars since they were used mainly for psychological
validity. The low and high levels of both variables were balanced and were the
main conditions of interest in the analyses, therefore the task was treated as a 2 × 2
factorial design for analysis of the anxiety measures. Further, the “lmer” package
in R was used to test hypotheses on the repeated-measures data with linear mixed-
effect models. With a binary-dependent variable, we used a generalized linear mixed
model with a logit link fit by maximum likelihood (“glmerMod”), which provides
z-statistics for hypothesis testing of the fixed effects. With a continuous dependent
variable, we used a linear mixed model fit by REML (“lmerMod”), which provides t

statistics using a noninteger Satterthwaite approximation to degrees of freedom for
the fixed effects.
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Figure 5.2: (A) Neural activity associated with the presentation of the RepLow
compared with RepHigh transient collaborators. (B) Parametric analysis showing
brain regions associated with increased dissent and conformity during the RDM
task. (C) dACC activity associated with increased conformity with the RepLow
compared with RepHigh and inset showing overlap between regions associated with
dissent and RepLow conformity. (D) Neurosynth meta-analysis of 357 studies using
the search term “Error” (cluster represents a forward inference); (E) medial PFC
activity for the 2 × 2 interaction between RepHigh/RepLow × Easy/Uncertain RDM
conditions.

5.3 Results
Partner reputation
We first analyzed the fMRI signal in response to the reputation of the partner at the
time of the initial partner screen display. The amygdala (MNI-coordinates 18, 0, 24;
p = 0.020 SVC), showed increased activity for the RepLow (1 star reputation) when
compared directly to the RepHigh (5 star reputation; Figure 5.2A). Other activated
regions including the precuneus, hippocampus and mPFC were also activated [p <
0.05 whole-brain corrected (WBC); 5.1]. No differential activity was observed for
the RepHigh condition compared with RepLow.

Partner reputation and RDM coherence estimates
Next we show that subjects were no more accurate in their judgments of the RDM
direction when paired with RepLow compared with RepHigh partner (88.5% vs
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Table 5.1: Brain activation for contrast [low reputation > high reputation] (partner
period)

Brain region Left/right Cluster Size t score x y z

low reputation >hight reputation (partner)

Cerebellum R 1657 8.50 39 -54 -24

Precuneus L 556 8.32 -3 -54 15

mPFC R 253 7.77 3 57 -9

Hippocampus L 130 6.37 -18 -6 -18

Middle temporal gyrus R 61 6.26 54 0 -21

Superior motor area L 82 5.44 -3 -6 51

Amygdala* L 14 3.56 -18 0 -24

All p<0.05, corrected for multiple comparisons (FDR)

*SVC corrected

86% correct; t(21) = 1.14, p = 0.13; one-sample t test). The partner’s influence
on participant judgments, however, was significantly higher for RepHigh compared
with RepLow, based on both binary measures of social influence (whether partner
and participant judgments of motion direction match; z = 2.48, p = 0.01; 5.1B)
as well as a continuous measure (the absolute difference in judgments of motion
coherence; t(21) = 2.80, p = 0.01; one-sample t test). There was also an interaction
between task difficulty and partner reputation on the amount of social influence
on perception. Task difficulty is equated to stimulus uncertainty (lower coherence
corresponds to higher stimulus uncertainty and makes the task more difficult). As
difficulty increased, the difference in the amount of social influence from RepHigh
partner judgments, compared with RepLow, also increased (t(21) = 1.79, p = 0.04;
one-sample t test; 5.1C). When the task was easy, there was no significant difference
in measures of social influence between RepHigh compared with RepLow partners
(apparently due to a ceiling effect in performance). When the task was hard or am-
biguous (uncertain), there was significantly more conformity to RepHigh compared
with RepLow partners (t(21) = 3.54, p < 0.001; one-sample t test).

To investigate the neural systems underlying these differing levels of social influence
between partner reputation conditions, we looked at the fMRI data during RDM task.
We first examined the parametric changes associated with increasing conformity
and increasing dissent from the partner’s judgment (5.2). Increasing conformity
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Table 5.2: Brain activation for parametric modulation of conformity

Brain region Left/right Cluster Size t score x y z

Conformity +

Fusiform R 34 5.60 24 -69 -12

mPFC L 182 5.53 -6 57 0

Postcentral gyrus R 112 5.23 60 -9 30

Insula R 115 4.97 45 3 3

All p<0.05, corrected for multiple comparisons (FDR)

was associated with increased activity in the vmPFC (5.2B; 6, 57, 0; p = 0.05;
WBC; 5.3). Increasing dissent was associated with increased activity in classic
error monitoring areas, namely the dACC (1, 8, 51; p = 0.012 SVC and p < 0.05
WBC) and the intraparietal sulcus (p < 0.05 WBC), a region frequently activated
during the RDM task (5.2B; 5.3). The latter finding suggest that the decision
to choose an estimate different than the partner’s estimate, results in an error or
conflict signal (5.2D). Furthermore, the dACC was more active when conforming
with the RepLow compared with RepHigh partner (p < 0.05 WBC; 5.3). This
region overlapped with the conflict/error signal observed during dissent and with
the peak regions found in a meta-analysis of neural activity using the term “error”
conducted on 357 studies in Neurosynth (5.2D). Finally, a 2 (RepHigh/RepLow)
× 2 (Easy RDM/uncertain RDM conditions) ANOVA was used to examine the
neural interaction between easy and uncertain RDM conditions and high and low
reputation. This analysis showed activity in the social cognition network including
the mPFC, temporoparietal junction (TPJ), and temporal pole in socially influenced
perceptual decision-making (p < 0.05 WBC; 5.4).

Finally, we did not observe any behavioral difference between low reputation partner
trials and no partner trials. Similarly, when we compared the neural activations
between low reputation and no partner conditions, we found no neural differences
(at p < 0.5 FDR correction).

Partner reputation and threat-evoked anxiety
Being paired with RepLow compared with RepHigh resulted in suggestively higher
levels of subjective anxiety, assessed immediately before the 4–6 s shock anticipation
period (t(21) = 3.65, p = 0.002; one-sample t test; 5.3A). The RepLow and RepHigh



71

Table 5.3: Brain activation for parametric modulation of conformity (low reputation
> high reputation)

Brain region Left/right Cluster Size t score x y z

Conformity + (low - high reputation)

Caudate R 57 5.36 13 7 -9

Precentral gyrus L 48 5.22 -45 -6 48

Superior temporal gyrus R 94 5.11 58 -29 15

dACC R 203 4.97 9 23 27

All p<0.05, corrected for multiple comparisons (FDR)

Table 5.4: Brain activation for interaction between reputation level and task diffi-
culty (task period)

Brain region Left/right Cluster Size t score x y z

Interaction between reputation level and task difficulty (task period)

Medial frontal cortex R 1011 6.63 2 58 -2

Precuneus L 371 5.51 -3 -62 27

TPJ L 235 5.46 -47 -60 28

ACC R 184 4.96 3 37 18

Insula R 150 4.85 42 36 33

All p<0.05, corrected for multiple comparisons (FDR)

partners performed equally well on average between levels of partner reputation. By
design, partner performance was manipulated orthogonally such that some partners
performed well at the task and others performed relatively poorly. Actual partner
performance was defined as the sum total of error (difference between actual numer-
ical motion coherence and partner’s judgment) in the three perceptual judgments
looped through for each stimulus. Actual performance modulated anxiety as much
as reputation did: mean anxiety was significantly higher when the partner’s perfor-
mance was low compared with high (t(21) = 3.17, p = 0.006; one-sample t test).
There was no interaction between partner reputation and partner performance on
anxiety.

To further investigate what caused participants’ anxiety, we ran a multiple linear
regression model with subjective anxiety ratings as the dependent variable. The
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Figure 5.3: (A) Effect of partner reputation on self-report anxiety. (B) Regression
coefficients comparing partner reputation to other variables that potentially affect
anxiety ratings. (C) fMRI activity during anxious anticipation of potential shock for
RepLow compared with RepHigh. Signal change reflects activity in the (C) dACC
and (D) pINS. Betas show the differences in activity for RepLow and RepHigh for
both the ambiguous (uncertain) and easy RDM conditions, using an independent
ROI taken from [101]. (E) connectivity between the pINS (seed) and dACC.

variables included as predictors were the partner’s implicit competence, reputa-
tion rating (i.e., 1 and 5 stars), partner’s performance for the block, participant’s
performance for the block, and the overall level of social influence in the block
(indexed by the total absolute difference between partner and participant numerical
coherence judgments). Results of the model indicate that partner reputation, partner
performance, and amount of social influence are each significantly associated with
anxiety, whereas implicit partner competence and the participant’s performance
were not significantly associated with anxiety (5.3B).

Next, we analyzed the neural correlates of how partner reputation affected subjec-
tive anxiety during the shock anticipation period (trials with actual shocks were
removed from the analysis; 5.5). Being paired with a RepLow compared with a
RepHigh partner increased activity in anticipatory pain pathways, namely the dACC
and bilateral posterior insula (pINS; p < 0.05WBC; 5.3C,D).We also tested whether
there were regions selectively more or less active during anticipation as a function
of partner actual performance, but no regions survived multiple-comparisons cor-



73

Table 5.5: Brain activation for contrast [low reputation–high reputation (shock
anticipation period)]

Brain region Left/right Cluster Size t score x y z

low reputation–high reputation (shock anticipation period)

Middle occipital gyrus L 822 8.88 -21 -96 6

Calcarine R 761 8.38 12 -99 0

Insula R 235 7.46 44 14 3

Precentral gyrus L 625 6.84 -42 -18 57

Middle frontal cortex R 146 6.25 42 36 33

All p<0.05, corrected for multiple comparisons (FDR)

Table 5.6: Brain activation for PPI analysis (pINS seed)

Brain region Left/right Cluster Size t score x y z

PPI analysis (pINS seed)

Insula L 154 3.90 -39 12 0

Middle frontal gyrus L 70 3.86 -45 21 33

Precentral gyrus R 317 3.71 54 0 18

dACC L 227 3.68 -3 15 39

All p<0.05, corrected for multiple comparisons (FDR)

rection. Finally, we conducted a psychophysiological (PPI) analysis which showed
the connectivity from the pINS to dACC (p < 0.05WBC; 5.3E; 5.6), consistent with
earlier findings about pain pathways [109].

5.4 Discussion
How others influence our behavior has been the target of social science research
for decades. Based on previous research and theory, we hypothesized that RepHigh
partners would create greater levels of social influence on perceptual judgments
and lower anxiety toward a potential threat. We found that a partner’s reputation
did have an impact on the perception of RDM perceptual estimates, especially as
stimulus uncertainty increased. We also found that a partner’s reputation affected
subjective and neural measures of anxiety, and levels of a partner’s reputation were
more predictive of anxiety than any other measure. Our observations build on social
influence frameworks by linking the neural representations of perceived reputation
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with decision-making and emotion.

The bilateral amygdala was significantly more active when the subjects were shown
the face and reputation (i.e., number of stars) of a RepLow comparedwith a RepHigh
player (5.2A). One explanation for this result is that pairing with subject with
a RepLow partner resulted in a threat or saliency signal, potentially associated
with the increasing likelihood of diminished performance, and hence, the increased
chance of an electric shock. Research shows that the amygdala is evoked during
explicit judgements of untrustworthiness [4, 110] , yet these studies do not link such
judgments to behavioral outcomes. An alternative explanation might be that the
amygdala plays a role in invigorating the subject to work harder at the task, although
if this estimation is true, one might expect to see activity in the other dopamine
enriched areas, such as the ventral striatum [88] which was not observed, making
this conclusion less viable. Thus, the amygdala activity might be a signal for threat
and behavioral avoidance [3, 69] associated with the increased potential for harm
during performance outcome.

Parametric neural activity in the dACC increased as partner–participant perceptual
conflict increased, whereas activity in a vmPFC region increased as the amount of
social influence, or perceptual similarity, increased. In line with our findings, this
dACC region associated with dissent or social conflict, has previously been linked
to conflict or error monitoring, and more ventral mPFC region here associated
with conformity may contribute to integrating socially relevant reward signals [68].
Indeed, the most consistent findings in fMRI studies of conformity show the dACC
to be involved in anticonformity or dissent [12, 18, 42]. Recent controversy has,
however, occluded the role of the dACC, including its role in motivating effortful
behavior or expected value of control [95]. Without directly comparing these
theories empirically, it is difficult to state the psychological role of the dACC, yet
each of these theories provides viable explanations for our data. It is also important to
note that we also found increased activity in the IPS, a region involved in perceptual
judgments similar to those used in this study [16, 77, 92], where it is possible that
this reflects greater recruitment of motion processing regions as the participant’s
judgment deviated from the partner’s, or equivalently, less recruitment of motion
processing resources when conforming more closely.

Another key finding of this study was that the participants’ perceptions of uncertain
stimuli were influenced more by RepHigh than RepLow partners. This reputation
effect interacted with task difficulty such that participants were not influenced at
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significantly different rates when the task was easy, yet as the task difficulty (i.e.,
stimulus uncertainty) increased, so did the difference in levels of influence between
RepHigh and RepLow partners. This finding supports informational social influence
theory, or in our case, the tendency to trust a RepHigh partner’s judgment when
the RDM task was difficult to estimate [111]. The neural data showed that when
the subjects conformed with the RepLow partners, there was increased activity in
the dACC, which overlapped with overall increased dissent and a meta-analysis of
studies examining the neural basis of error. Although this suggests an alternative
view of the dACC to the parametric analysis discussed above, it does fit with the
notion that this region is involved in error monitoring or increased perceptual effort.
The later theory seems unlikely, however, as activity in the dACC did not correlate
with performance (p = 0.22, r = 0.19). Finally, we conducted an interaction between
RepHigh/RepLow × Easy/Uncertain RDM conditions, which revealed a role for the
social cognition network, including the TPJ, mPFC, temporal pole, and dACC [99],
suggesting that these regions are involved in integrating social information with
perceptual judgments.

Chief among our hypotheses is the notion that a partner’s reputation can shape
subjective ratings of anxiety. Previous work has demonstrated that when one’s
risk for a shock depends on the task performance of an unfamiliar person, the
level of perceived competence in their appearance alone, modulates subjective, and
neural measures of anxiety [101]. In the present task, having a RepHigh partner
alone decreased anxiety ratings toward a possible shock compared with having a
RepLow partner or no partner at all. We also see this decrease in brain regions that
respond to the anticipation of shocks including the pINS, somatosensory cortex, and
dACC where there was less activity during the anticipation period for the RepHigh
comparedwith the RepLow partner. The pINS region appears to largely overlap with
the regions observed in previous pain studies [101], perhaps indicating this region,
known to be involved in interoception and pain processing [23, 24], is sensitive to
these two different cues of another’s reputation and, accordingly, one’s risk of harm.

There has been a growing body of literature demonstrating a series of social contexts
that influence decision-making and cognition. Studies have shown that information
from experts can enhance subsequent memory effects [47] and decision-making
processes [15]. Further, the opinions of others and group membership can also
modulate choices and value judgments [18, 43]. These contextual effects were
associated with activities in the ventral striatum, STS, and prefrontal regions, which
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process value during social interaction [68]. Reputation, however, is significant
because it shows that without experience, one can be led to trust others opinions.
Reputation is likely one of many cues that drives us to conform to others (e.g.,
expectations, confidence, metacognitive abilities, and trust). Therefore, a future
goal is to understand the variety of social variables that lead people to conform to
other opinions.

These findings have implications across all fields in which peoplemake judgments in
a collective way (e.g., in teamwork), or are influenced by what others think and say.
In politics, peer judgments can influence voting behavior based on limited data. In
organizations, committees often make decisions about hiring and risky investments
aggregating judgments of peoplewho know a lot or a little. In economics and finance
“herding” can be rational; helping less-informed investors to rely on the superior
knowledge of others. In medicine, patient–practitioner interactions require patients
to weigh how much their doctor knows, or to compare initial and second opinions
to avoid harmful results. In law enforcement and combat, opinions are shared
during life-and-death decisions. Game theory goes even further, by considering the
incentives of experts to misrepresent howmuch they know, and how well consumers
of expert opinion adjust for these incentives [25]. Future research, therefore, may be
able to elucidate how the effects of reputation described here, reflect more general
ways humans integrate cues about peer knowledge in the social environment and
how they bias cognition and emotion.
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C h a p t e r 6

GENERAL DISCUSSION

6.1 Summary of findings
Summing up, this line of research offered tentative evidence for:

• A differentiation in behavioral portfolio under threat scenarios with divergent
characteristics

• A separation of fear into cognitive and reactive circuits

• A unique neural network representing pre-emptive avoidance decisions under
uncertainty

• A selective role of anxiety in modulating decisions under threat

• A role of partner social reputation for decisions under threat

We have demonstrated that subjects apply different nodes of the survival circuitry
when escaping fast- and slow-attacking threats. Our analysis revealed increased
activity in reactive-fear circuits, namely the PAG and the MCC for the fast attack-
ing predator, regions that are implicated in motor response to fast and imminent
threats. Our analysis for the slow-attacking threat contrast revealed activation in
three key areas of the cognitive fear circuitry involved in more complex information
processing—the vmPFC, hippocampus, and PCC.

Our Bayesian model also provides insights into how the distinct regions of the sur-
vival circuits are associated with optimal escape. Two core regions were associated
with optimal escape: the MCC for the fast-attacking threat and the hippocampus
for the slow-attacking threat. The MCC is highly connected to the lateral PAG and
according to adaptive control theory is a “central hub” where information about
reinforcers are passed to motor control areas to coordinate goal-directed behaviors
[94]. Our connectivity results support this conclusion showing that the MCC was
coupled with activity in the PAG and the motor cortex. This proposes that the MCC
is one candidate region for the integration of current goals and implement aversively
motivated instrumental motor behaviors.
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Our results also provide evidence that trait anxiety can influence escape decisions,
but only under conditions of relatively prolonged threat, compared with more im-
minent threats. This disassociation implies that trait anxiety selectively affects
decisions of different ethnological classes, as distinguished by the amount of time
afforded for reflection and cognitive strategizing. Our study provides empirical ev-
idence that trait anxiety selectively impacts escape decisions in humans under this
specific class of threat.

The interpretation that trait anxiety affects only cognitive fear behaviour was sup-
ported by our neuroimaging results. These results showed that brain areas previously
indicated to be involved with behavioural flexibility and information-processing as-
pects of fear responses (including the hippocampus, amygdala, mPFC and insula)
covaried with trait anxiety. However, areas associated with reactive fear—the PAG,
superior colliculus, midcingulate cortex and central nucleus of the amygdala—were
not significantly affected by variability in anxiety. Notably, these findings strongly
support theories based on defensive distance, whereby defensive responses to imme-
diate threats and dangers map onto low-level brain areas such as the PAG, whereas
responses to physically or psychologically distal or anticipated threats map to higher-
level areas such as the PFC. Our findings extend these theories by providing a clear
disassociation of the effects of trait anxiety on one circuit over the other, with
accompanying behavioural effects, in an ecologically relevant paradigm.

When uncertainty is involved, our behavioral results showed a more conservative
decision pattern when the threat avoidance scenario is more ambiguous and unpre-
dictable. The leptokurtic distribution, which is constructed through the combination
of multiple normal distributions centered at the same mean, provides us a statistical
tool to facilitate such a scenario. When facing leptokuctic predators, participants
were presented with threats that had waymore outlier situations than normal, render-
ing their typical min/maxing strategies ineffective. As a result, they choose to place
themselves closer to the safety refuge to avoid the volatile capture risk, compared
to the normal distributions. Interestingly, there’s no differences in MOS decisions
between the two normal distributions, although one of them only had half variance
of the other. This suggests that participant’s level of uncertain decisions was not
swayed by a simple change in distribution variance, but by a total structural change
in the distribution, where a continuous random shift in contingency persists.

We used MVPA analysis to decipher the neural basis of such decision making pat-
terns. While regions including the hippocampus and insula contribute non-selectivly
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to both certain and uncertain threat encounters, the amygdala only significantly en-
coded the more uncertain, leptokurtic threats. The vmPFC, on the other hand,
encoded the less uncertain, normal threats. This is interesting because it displays
two potential keys regions under different threat scenarios. While amygdala seems
to be the processing centre when the risk is more volatile and unpredictable, vmPFC,
on the other hand, becomes online only when the threat is “milder” and the risk is
more controllable. Theorists have proposed that the hippocampus computes com-
parators that assess multiple goals and in turn correct actions possibly through a
flexible constructive process involved in problem solving and predictive mapping.
When there is time to gather information, the hippocampus may play a role in draw-
ing on previous threat encounters to form a predictive map and optimize current
actions. This supports the hippocampus’ role on the processing of uncertain stimuli
in a universal, non-selective way.

When social factors (in this case, partner reputation) is involved, we hypothesized
that partners with a higher reputation level would create greater levels of social
influence on perceptual judgments and lower anxiety toward a potential threat. We
found that a partner’s reputation did have an impact on the perception of RDM
perceptual estimates, especially as stimulus uncertainty increased. We also found
that a partner’s reputation affected subjective and neural measures of anxiety, and
levels of a partner’s reputation were more predictive of anxiety than any other
measure. Our observations build on social influence frameworks by linking the
neural representations of perceived reputation with decision-making and emotion.

6.2 Limitations
In this line of research, we endeavour to design methodologically clean and eco-
logically valid paradigms. Still, I’m aware that some aspects of the experimental
designs were regrettably confounded.

In the first study, where we examined flight initiation distance as a behavioral
measure for threat sensitivity, the spatial and temporal components are somewhat
mixed together. We define a predator that’s accelerating late as "slow", and a
predator that’s accelerating early as "fast". The time point represents the threat level
of the predator. This is thus intended to be a temporal measure of threat imminence.
However, if we look at each individual predator, there is also a spatial parameter
involved. No matter the predator is "fast" or "slow", psychologically, participants
will feel less pressured when it’s far away, and more pressured when it’s nearby.
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Ideally, we’ll be able to fine-tune a trial into different components, or add a spatial
parameter to control this effect. But this was not possible due to the sensitivity of
our measurement.

Also in the FID study, we included a "mid" predator condition, which is intended as
an "anchor" condition between the "fast" and "slow" predator conditions. Ideally,
we’ll be able to observe an intermediate state between the cognitive fear and reactive
fear circuits. It is true, behaviorally, that participants responded to the "mid"
predator conditions in such away (their flight initiation distances for themid predator
condition fall between the fast and slow predators). However, we did not observe
an intermediate state of neural networks between the cognitive and reactive fear
circuits. A more thoughtful experimental design in the future could potentially
solve the issue.

Similarly, our manipulation of reward levels seems to bring non-significant behav-
ioral changes. This could be due to the fact that the monetary reward offered in the
experiments were trivial compared to the aversion to the possibility of an electrical
shock (which is reflected in the reward/punishment parameters in the Bayesian deci-
sion model). This issue could potentially be solved by presenting and emphasizing
the reward component in a more salient way, or separating the reward component to
another independent experiment run.

6.3 Future Directions
As mentioned in the result summary, we’ve gained some insight into the mechanism
of human avoidance decision making under threat, both on a behavioral and neural
level. However, a suitable computationalmodel that can adequately address and even
predicts individual behaviors is yet to be developed. Our Bayesian decision model
achieved moderate prediction accuracy overall, but it "favors" the slow attacking
threatmore than the fast attacking threat. Thismay suggest that a simpler, more direct
computationmight be involved and a pureBayesianmodel is not one hundred percent
adequate. Due to the nature of the task design, a standard reinforcement learning
model seems unlikely, but we are currently working on comparing performances
from multiple models against a baseline model to find possible solutions.

Another aspect of follow-up would be utilizing other useful behavioral assets in the
animal world. For example, in face of an incoming predatory threat, sometimes it’s
optimal for an organism to stay still, instead of fleeing, for the predator might have
better motion detection than still objects. This "adaptive freezing" behavior can be



81

modeled into a controlled experiment which offers us the opportunity to study more
dynamics within avoidance decisions.
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