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Abstract

Exploratory experiments have been performed on circular cylinders execut-
ing forced rotary motions in a steady uniform flow. These motions include harmonic
oscillations, steady rotation, and combinations of the two. Flow visualization and
laser-Doppler velocimetry measurements were used to characterize the wake struc-
ture, and to estimate the convection speed, spacing, and strength of the vortical
structures. Laser-Doppler velocimetry measurements were also made to estimate
the cylinder drag coefficient and wake displacement thickness. In addition, the peri-
odic flow close the cylinder and in the near wake region was mapped for a particular
forced case. The data show that a considerable amount of control can be exerted
over the flow by such means. In particular, a large increase, or decrcase, in the
resulting displacement thickness, estimated cylinder drag, and associated mixing
with the free stream can be achieved, depending on the frequency and amplitude
of oscillation. In order to assess the effects of oscillatory forcing on a cylinder with
a net (mean) rotation rate, a novel method for estimating the steady lift forces was
emploved. Using this method, it was also found that the addition of forced rotary
oscillations to the steady rotation of the cylinder helped to increase €, in the cases
where the wake would normally be separated in the steadily rotating case, and
decrease it otherwise. Results obtained for a steadily rotating cylinder (no forced

oscillations) compare favorably with similar data published in the literature.
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CHAPTER 1

Introduction

1.1 Preface

The title of the thesis, “Active Control of the Flow Past a Cylinder Executing
Rotary Motions,” can mean different things to different people. In this case, it refers
to the flow past a circular cylinder in a water tunnel. This cylinder was bounded
at both ends and below by test section walls, and from above by the water tunnel
free surface. See Fig. 1.1. To control the structure of the flow, the cylinder was
programmed to execute rotary motions about its axis. This control strategy is called
“active,” because energy must be (actively) supplied to execute these motions, cf.
“passive” controls, such as spoilers or riblets, which require no special input of
energy. Since no feedback was necessary (or used) the forcing was under “open-

loop,” or “program” control.

In the past this has been called “forcing the flow,” and if the flow responded
in a periodic way, terms like “resonance,” “locking,” and “synchronization” were
used. The notion of controlling unsteadiness was reserved for the elimination of
instabilities. The aim of the present investigations, however, is to program the in-

evitable vortical structures that dominate unsteady flow behind a circular cylinder.
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Fic. 1.1 Configuration

1.2 Background

Traditionally, experiments involving a cylinder executing rotary motions in
a uniform flow have been performed with cylinder motions that are cither harmonic
oscillations or steady rotation. It is believed that the present investigations are the
first to examine cylinder motions combining the two. Because of this, background
material for the oscillating and steadily rotating cases falls naturally into two parts
presented here as Secs. 1.2.2 “Rotary oscillations” and 1.2.3 “Steady rotation.” Sec-
tion 1.2.1 introduces a class of forcing functions which includes (rotary) oscillations

plus net rotation of the cylinder.
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1.2.1 Forcing parameters

The motion of the cylinder in the present experiments can be described by

a single equation; i.e.,

Q = Qo + @ sin(2nft) , (1.2.1)
where .
fa
= (1:2:2)

is the normalized rotation rate of the cylinder, a is the cylinder radius, Uy, is the
free-stream velocity, t is the time, 8 is the angular velocity of the cylinder, f is
the forcing frequency, and, 2 and {; are amplitudes of the steady and harmonic
components of the cylinder motion. The normalized forcing frequency is

2af

Sy T

Il

(1.2.3)

1.e., the forcing Strouhal number.

Three forcing parameters are considered in the present experiments, g, {1,

and Sy. In addition, another important parameter is the Reynolds number,

20U,

14

Re =

: (1.2.4)

where v is the kinematic viscosity.

Another dimensionless quantity which might have been used is the angular
position of the cylinder, 8(t). In the present experiments, however, Q(t) was used
in favor of 6(f) to provide consistent notation for the normalized mean (Q¢) and
harmonic (2 ) components of the rotation rate. Using angular position to describe
the motion of a cylinder with a net rotation rate is awkward. Note that with , =0
(no net rotation rate), Sy =1, and Q; = 2, the amplitude of the oscillations in the

angular position of the cylinder is 6; = 36.5°.
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1.2.2 Rotary oscillations

The dynamic behavior of the flow over a bluff body is dominated by large
scale vortical structures shed in its wake. Weihs (1972) proposed a methodology
for predicting the structure of such a wake and found that it could become wider,
narrower, or remain the same, depending on the initial strength and spacing of these
vortices. His work was primarily aimed at describing the wake behind an oscillating
airfoil (e.g., Bratt 1953, Koochesfahani 1987). Nevertheless, Weihs’s results do

suggest the potential for effective control of wakes in general.

Okajima et al. (1975) examined the forces acting on a rotationally oscillating
cylinder, for Reynolds numbers based on cylinder diameter in the range of 40 <
Re < 6 x 10®. Their measurements were for a normalized peak rotation rate in
the range 0.2 < ©; < 1.0, and a forcing Strouhal number in the range 0.05 <
Sy < 0.3. They noted a “synchronization” similar to that observed, for example,
by Bishop & Hassan (1964), Koopman (1967), and, more recently, Ongoren &
Rockwell (1988a,b), and Williamson & Roshko (1988) for a cylinder in transverse
and in-line oscillation. Both Okajima and Bishop & Hassan reported a hysteresis
in their measurements for increasing and decreasing Sy. Investigations at similarly
low normalized forcing frequencies, amplitudes and Reynolds numbers were also
performed by Wu et al. (1989). Taneda (1978) demonstrated that in the range
30 < Re < 300, the “dead water” region behind a cylinder can be removed for €,
sufficiently large (2; > 7 to 27, depending on such factors as the cylinder span
and tank width). For somewhat larger ©; vortex shedding was inhibited. Similar
behavior was also documented by Williams & Amato (1988) using a line of unsteady
pulsing jets embedded in the trailing edge of the cylinder, at a comparable Reynolds
number of 370.
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The present experiments covered in Chs. 3 and 4 were performed on circular
cylinders executing forced rotary oscillations in a uniform flow (no mean rotation
rate). The Reynolds numbers are higher than in previous investigations at Re =
1.5 x 10? in Ch. 3 and Re = 2.1 x 10* in Ch. 4. Okajima et al. approached these
Reynolds numbers (< 6 x 10%), but their experiments examined perturbations of
the flow employing peak forcing amplitudes, {2;, an order of magnitude lower than

in the present investigations.

In Ch. 3, flow visualization data were used to characterize the wake structure,
and to estimate the convection speed, spacing, and strength of the vortical struc-
tures. In addition, LDV measurements were made to estimate the cylinder drag
coefficient, and wake displacement thickness. The data show that a considerable
amount of control can be exerted over the wake flow by such means. In addition,
a large increase, or decrease, in the associated displacement thickness, estimated
cylinder drag, and mixing with the free stream was achieved, depending on the

frequency and amplitude of oscillation. See also Tokumaru & Dimotakis (1991).

Chapter 4 examines a particular case of a cylinder executing forced rotary
“oscillations. An estimate of the unsteady, phase-averaged streamfunction was made.
It was found that the forced shedding mechanism gathers vorticity close to the
cylinder surface and then releases it into the flow. This is in contrast to natural
(unforced) shedding, where the vorticity is released into the flow from more-or-less
steady separation points, allowing the vortices to form in the wake. The speed
and strength of the forced vortical structures was estimated and it was found that
very little of the asymmetry (quantified by the circulation generated at the cylinder

surface) is found in the wake.
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1.2.3 Steady rotation

A rotating cylinder moving in a uniform stream experience a force normal
to the direction of motion. Goldstein (1938) makes several historical references for
both rotating spheres and cylinders and credits Magnus (1853) with the first labo-
ratory expefiments examining the lift on a rotating cylinder. Early in this century,
experiments on a circular cylinder rotating about its axis in a uniform flow were
performed by Reid (1924), Prandtl (1925), Thom (1926, 1931), for example. Now,
on the verge of the 215 century researchers continue to find this flow interesting,
e.g., the experiments and simulations of Badar, et al. (1990) for the flow past a

cylinder impulsively started in both rotation and translation.

It can be shown that the mean lift coefficient of a 2-D body can be written

L T
C]_, = pUgOa - - Uooa’ (1.2.5)

where p is the fluid density, Uy is the free-stream velocity, a is the cylinder radius,
L is the lift per unit span, and I" is the circulation taken round a contour enclosing
the lifting body. See for example Taylor (1925), Thwaites (1960, § V.9). That
this circulation could be measured around contours close to the cylinder was shown

experimentally by Thom (1931).

In the potential flow prototype of a rotating cylinder in a uniform free stream,
the rotation of the cylinder is modeled by placing a point vortex of strength I" at
its center. When modeling a flow, T should be considered as a parameter to be ad-
justed so that the flow is properly represented; e.g., to satisfy the Kutta Condition.
Proposing that C can be made arbitrarily large by arbitrarily increasing I' is not

very helpful; I' #s the mean lift; ¢f. Eq. 1.2.5.
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Prandtl (1925) argued that the maximum circulation, I'max, which could
be realized about the rotating cylinder was equal to the circulation at which the
upstream and downstream stagnation points join on the bottom of the cylinder.

From the potential low analog of that case, a value of
Thmax = 4nU0a (1.2.6)

is used. See also the discussion in Goldstein (1938 I, pp. 81-84). Beyond this point,
Prandtl argued that no circulation could be shed by the cylinder to infinity as it
is ramped up from rest to some constant rotation rate of {3 > 4, fixing the total
circulation at infinity and the lift of the rotating cylinder thereby. If this argument
were correct, the maximum (steady state) lift coefficient that can Be realized would
be given by,

Cr,... = 4r =~ 126. (1.2.7)

max

It is not at all clear from the discussions in the literature, but Prandtl relates the
real and potential flow case of the rotating cylinder, not by matching the circulation
calculated by taking a contour round the cylinder at the surface, as one would
expect, but by matching the peak circumferential velocities in the two cases. Not

coincidently, this is also the choice that “looks right.”

Chapter 5 examines the effect of cylinder rotation on the flow ahead of the
cylinder. In order to assess the effects of forcing, a novel method for describing
the flow ahead of the cylinder, in terms of the strength and position of a virtual
vortex, was employed. The strength of the virtual vortex was then related to the
lift coefficient of the cylinder. Results obtained for a steadily rotating cylinder (no
forced oscillations) compare favorably with similar data published in the literature.
It was also found that the addition of forced rotary oscillations to the steady rotation
of the cylinder helped to increase the lift coeflicient in the cases where the wake

would normally be separated in the steadily rotating case, and decrease it otherwise.



- 18-

It is believed that this is the first investigation of the flow past a cylinder with both

net rotation and oscillations.

1.3 A note on the transport of vofticity about the cylinder

The concept of separation is useful because i1t gives an intuitive feel for the
transport of vorticity into a flow. For the generic case of flow about a bluff body
in steady uniform flow, the vorticity is shed into the wake from “slowly” moving
separation points. It might be appropriate to call this kind of separation gquasi-
steady. In contrast, when a body is accelerated in rotation, or translation, as in the
present experiments, separations can appear, move, and disappear over length and
time scales comparable those of the body motion and the surrounding flow. In the

latter case it is even difficult to define “separation”.

Fia. 1.2 Flow past a cylinder.

An ad hoc approach is to examine the transport of vorticity close to the body.

In particular, for the case of a circular cylinder, the convective vorticity flux across
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a 6 = constant ray (traversing the boundary layer) can be written as

§
J = / wug dr , (1.3.1)

where § is the boundary layer thickness. In dimensionless form

J 8/ qwug r
T 2/1 oz d(z) . (1.3.2)

If the vorticity in the boundary layer can be approximated by

Ous
~ r

(1.3.3)

then Eq. 1.3.2 can be approximated by

[z (—(%ft)) - (% > ' (134)

oo

Looking at the vorticity convected in the boundary layer at § = 90° gives
an indication of the vorticity convected into the (dead water) region behind the

cylinder. See Fig. 1.2.

Consider the case of a cylinder executing rotary oscillations with no mean

rotation rate. The potential flow model for the flow past a circular cylinder has
ug = —2U at 90°, (1.3.5)

which is close to the velocity outside the boundary layer in the real case. Using
Eqgs. 1.3.5, 1.2.2, and 1.2.1 with Q¢ = 0 (no mecan rotation rate) then yields for the
vorticity convected past the 90° point,

J(6 = 90°)

NiE ~ 4 — QF sin?(2nft) . (1.3.6)
2~ 00
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Hence any rotary oscillation of the cylinder will tend to decrease the convection of

vorticity past the 90° point. Note that when
Q2 sin*(27ft) = 4, (1.3.7)

(instantaneously) no vorticity is convected past the 90° point as would be the case

in potentizﬂ flow. Equation 1.3.7 suggests that a value of
Qpin = 2 (1.3.8)
may be needed to effectively control this flow.
If, on average, no vorticity is to be convected past the 90° point, then {2

will satisfy
0

Q

2V2 ~ 238. (1.3.9)

It is shown {experimentally) in Ch. 3 that (S, Q) = (1,3) marks the minimum

wake displacement thickness in the ( Sy, Q; )-parameter space.



CHAPTER 2

Experimental facilities

2.1 Flow facility

The initial phase of the current experiments, i.e., wake mean velocity mea-
surements and preliminary flow visualization, was carried out in the 18" wide by 19"
deep Low Specd Water Channel (LSWC) located in the basement of Guggenheim.*
Subsequent flow visualization and lift measurements were preformed in the 20" x20"

Free Surface Water Tunnel (FSWT) in the Hydrodynamics Lab. See Ward (1976).

2.2 The cylinder apparatus

The cylinder support structure, Fig. 2.1, holds a cylinder 10" above the
bottom of the water channel, between 0.5" thick Plexiglas fairings placed flush to
the side walls of the channel. Power is transferred from the motor to the cylinder
using steel reinforced neoprene timing belts. They are entirely enclosed in the

fairings and do not interfere with the flow, ¢f. Figs. 2.1 and 2.2.

* Also known as “The Student Channel.”



~929-

When choosing a motor and cylinder diameter, the minimum design goal was
to be able to oscillate the cylinder with peak rotational rates greater than {; = 2
(as discussed in Sec. 1.3) and at Reynolds numbers around Re = 10%. It was felt
that frequencies an order of magnitude faster than the natural (unforced) shedding
frequency would be fast enough (S5 = 2). In addition, a five times “engineering”

factor was used.

| The cylinders were driven by a high performance JR16M4CH ServoDisc'™
DC motor, from PMI Motion Technologies, capable of tracking an arbitrary com-
mand signal, within the bandwidth and slewing rates that were investigated. This
command signal was generated by a function generator, or a computer digital-to-
analog converter output channel. In addition, the angular poéition of the cylinder
could be monitored through a 13-bit M25 Series absolute position encoder from BEI
Motion Systems Co.

Cylinders with a radius ranging from 0.25" to 2" and span from 17" to
19" were used. Cylinders were made out of both anodized aluminum and Plexiglas.
Two 2" radius cylinders were used in the present experiments. One was made of
smooth anodized aluminum tubing. The other was made of machined Plexiglas
tubing equipped with ports so that dye could be introduced into the flow from the
cylinder surface. Additional flow visualization was accomplished by introducing dye

upstream of the cylinder, through hypodermic tubing.



FiGg. 2.1 The cylinder appafatus.




FIG. 2.2 The cylinder drive mechanism.
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2.3 Measurement apparatus

_ Measurements were made using a number of laser Doppler velocimetry sys-
tems. More details are given in the “experimental setup” sections for each chapter.
In the LSWC a u-channel Bragg cell frequency-shifted He-Ne based system was
used. Translation of the LDV (and measurement volume) was effected by a manual

z-y traverse system.

In the FSWT u, (u,v), and vg, Argon-ion based systems, derived from the
LDV system of Lang (1985) were used. All but the u in the (u,v) arrangement,
were Bragg cell frequency-shifted. Translation of the LDV was performed by a
digital z-y-z traverse, and rotation of the focal volume for the vy measurements

was effected by a rotatable dove prism.

The data were gathered using LSI-11 data acquisition computers, and then
transferred to DEC VAX, Apple Macintosh, and NeXT NeXTstation computers for

further reduction and presentation.



CHAPTER 3

Non-lifting cylinder

3.1 Preface

This chapter describes exploratory experiments, performed on circular cylin-
ders executing rotary oscillations, in a steady uniform flow. Flow visualization data
were used to characterize the wake structure and to estimate the convection speed,
spacing, and strength of the vortical structures. In addition, LDV mecasurements
were made to estimate the cylinder drag coeflicient and wake displacement thick-
ness. The data show that a considerable amount of control can be exerted over the
flow by such means. In particular, a large increase, or decrease, in the resulting dis-
placement thickness, estimated cylinder drag, and associated mixing with the free
stream can be achieved, dcpending on the frequency and amplitude of oscillation.

See also Tokumaru & Dimotakis (1991).
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3.2 Experimental setup

For the experiments detailed in this chapter, ¢ was set to zero and §); was
chosen such that within the range of parameters examined, the peak circumferen-
tial velocity of the cylinder would be comparable to the velocity just outside the
boundary layer of the cylinder (approximately twice the free-stream velocity). It
was anticipated that amplitudes of this magnitude, or greater, would be necessary

to effect a significant change in the flow, as was discussed in Sec. 1.3.

The experiments presented in Secs. 3.3 and 3.4 examine the control parame-
ters (; and Sy over a range of values. The free-stream velocity was approximately
15 cm/s, yielding a Reynolds number based on cylinder diameter of Re = 1.5 x 10%.
In addition, wake mean and rms velocity profiles were measured at a single stream-
wise station, located 4.5 diameters downstream of the cylinder axis. The remaining
sections in this chapter touch on some other issues pertaining to the present exper-

iments.

The wake streamwise mean velocity measurements were performed in the
GALCIT 18" wide by 19" deep Low Speed Water Channel, using a He-Ne based
laser Doppler velocimeter (LDV). The cylinder used for the wake velocity measure-
ments is an anodized and machined aluminum tube, 4" in diameter, and mounted
and driven by the apparatus described in Ch. 2. The command signal for the

cylinder velocity was generated by a computer controlled function generator.

The (15 mW He-Ne) laser beam for the LDV velocity measurements was split
into two beams of nearly equal intensity using a cube beam splitter. The beams
were then Bragg cell frequency-shifted to accommodate flow reversals. The Bragg

cell offset between the two beams was 100 to 200 kHz for the data presented in
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this chapter. An achromat was used to focus the beams in a focal (measurement)
volume located in the midspan plane of the LSWC. The light scattered from the
focal volume was gathered by an achromat and focused on a photodiode with an
| integral low noise pre-amplifier designed by Dan Lang. The signal from the pre-
amplifier was then band-pass filtered above and below the frequency corresponding
to the mean flow velocity. The band-pass range was chosen to pass instantaneous
velocity fluctuations. A tracking phase-locked loop designed by Dan Lang and Paul
Dimotakis was then used to lock a TTL square wave to the dominant frequency. The
TTL signal was then read by a counter-timer board on a data acquisition computer
and stored on disk for later processing. The transmitting and receiving hardware

was mounted on a manual z-z traverse (positioner).

Photographs were taken in the GALCIT 20" x20" Free Surface Water Tunnel
(FSWT) using a 35mm camera. Red dye was used in all figures except for Fig. 3.1.
A blue filter was used (except for Fig. 3.1) to darken the red dye marker relative to
the white background. Illumination was provided from behind by a large (backlit)
white sheet of paper, suspended outside of the tunnel, behind the model. The
cylinder used for the flow visualization data is a machined Plexiglas tube, 4" in
diameter. Holes for introducing dye into the flow were drilled through the surface
at midspan. Additional flow visualization was accomplished by introducing dye
through hypodermic tubing into the flow ahead of the cylinder. The cylinder was
mounted and driven by the apparatus described in Ch. 2. The command signal for

the cylinder velocity was generated by a computer-controlled function generator.
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3.3 Flow visualization

_ A useful picture of the control that can be exercised over the separated
flow in the wake of the cylinder emerges from the flow visualization data. These
demonstrate the overall narrowing, or widening, as well as the formation of distinct

vortical structures in the wake, depending on the values of the control parameters

Sf and Q].

In Fig. 3.1, dye is introduced ahead of the cylinder by a comb of dye injectors.
In the unforced case (Fig. 3.1, top), the dye can be seen to be dispersed and mixed
across the full height of the test section, within a few diameters downstream of the
cylinder. In contrast, the dye marker in the forced case, corresponding to a reduced
wake width (Fig. 3.1, bottom), occupies approximately the same fraction of the test

section height on exit as it did entering.

The data in Fig. 3.2 and Fig. 3.5 (recorded with dye issuing from the surface
of the cylinder) illustrate how the wake may be made wider, or narrower, depending
on the control parameters Sy and ;. Weihs (1972) examined this phenomenon
by considering the mutual influence of the vortices in the wake and those being
shed. Although his analysis is highly idealized, considering only point vortices in
potential flow, it does provide a physical argument for the various trajectories taken
by the vortices. Additional flow visualization data (also recorded with dye issuing
from the surface of the cylinder), at fixed ; = 8 and increasing Sy, are depicted

in Fig. 3.6 and Fig. 3.7.
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FiG. 3.1 Closeup and full flow visualization views with and without active control.
Top pictures: Unforced (non-rotating) cylinder in uniform flow; bottom
pictures: Sy ~1, {; = 3.
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F1Gg. 3.2 Forced shedding at fixed Sy = 1 (Re = 1.5 x 10*). (a) Q; = 8, (b)
Q] = 16, (C) Q] = 32, (d) Q] = 64.

3.3.1 Wake structure

Several, qualitatively different, Voftex shedding modes were observed. They
are presented hére in order of increasing frequency. Figure 3.3 locates the various
modes .i'n the (Sf,Ql )-parameter space. In the dual mode (e.g., Fig. 3.4), the
cylinder releases two vortices of the same sign per half-cycle. This mode was not

easy to set up and should not be considered robust enough for use in active program

control.
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Fi1G. 3.3 Location of figures in the (Sy,; )-parameter space.

In the global mode (e.g., Fig. 3.5), the wake structure is synchronized with
the forced cylinder oscillation, and persists beyond the end of the test section.
This mode was relatively casy to set up because it occurred over a wide range of
forcing parameters. In the local mode (e.g., Fig. 3.6}, the near wake structure is
synchronized, but becomes unstable and evolves into a structure with lower spatial
frequency some distance downstream of the cylinder. In the shear layer mode (e.g.,
Fig. 3.7), the wake structure is not synchronized with the forcing. The effect of
forcing is primarily observed in the shear layers separating from the cylinder. Note
that while the flow visualization photographs of the forced cylinder wake at the
largest values of Sy (cf. Fig. 3.7, bottom) resemble those for the unforced case (cf.
Fig. 3.8), it was found that the wake displacement thickness (Eq. 3.4.2) in these

forced cases is still noticeably less than in the unforced case.
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Fi1G. 3.4 Dual shedding: Forced shedding of two same sign vortices during a half
forcing cycle, Sy =0.2, Q; =2, Re = 1.5 x 10*.

The transition between the global and shear layer modes occurs gradually
through the local mode. Figures 3.5 to 3.7 demonstrate how the “break-up” of the
| synchronized structure in the local mode moves toward the cylinder with increasing
S¢. The shear layer mode is then found, at even higher Sy, when none of the
wake structure (save small perturbations of the separating shear layers) is shed syn-
chronously with the forcing. This “break-up” in the flow structure in the local and
shear layer modes may be attributable to the stability characteristics of the evolving
mean velocity profiles (as suggested by Cimbala, Nagib & Roshko 1988, for lower
Reyﬁolds number flows, far downstream), vortex coalescence, three-dimensional ef-

fects, or some combination thereof.

Behavior similar to the dual, global, and local modes was previously observed
by Roberts (1985) and Roberts & Roshko (1985) for the case of a forced wake behind
a splitter plate, and Williamson & Roshko (1988) for a cylinder executing transverse

‘oscillations in a free stream, for example.
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FIG. 3.5 Global locking: Global wake structure is synchronized with the forcing
frequency. (a) Sy = 0.3, (b) Sy = 0.5, (¢) Sy = 0.7, (d) Sy = 0.9.
(Q; =8, Re = 1.5x10%).

3.3.2 Speed and spacing of the vortical structures

Flow visualization techniques are usually considered only for qualitative anal-
ysis of flow fields. In the present experiments, however, estimation of the normalized
speed (celerity) of the vortical structures relative to the cylinder, u, = f¢,, divided

by the free-stream velocity,

S~
=
&
-

]

o
8
il

= Sy 5 (3.3.1)
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FI1G. 3.6 Local locking: Local wake structure is synchronized Wif;h the forcing fre-
quency. (a) Sy =11, (b) S; =15, (Q =8, Re = 1.5 x 10*).

L -] .

FiG. 3.7 Shear layer forcing: (a) Sy = 2.0, (b) Sy = 33. (&1 = 8, Re =
1.5 x 10%).

was straightforward, since Sy was known a prior: and the ratios of the vortex spac-

ing to the cylinder diameter, £;/2a and £, /2a, could be obtained from photographs

like those in Figs. 3.5 to 3.7. See Fig. 3.9. This analysis assumes that the dye marks

~ the centers of the vortical structures. The normalized celerity, A;, is also estimated
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£

FIG. 3.8 Natural (unforced) shedding. Flow visualized with dye issuing as in
Fig. 3.2 - Fig. 3.8.

in Sec. 4.3, p. 4.18, for a particular forced case, using LDV measurements. While
Az is the normalized celerity of the vortical structures, averaged over one forcing
cycle, it is also the spacing, normalized by the distance moved by the flow in one

forcing cycle. The normalized transverse spacing is analogously defined as

.
[+
@

Ay =

=S¢ —. (3.3.2)

- on—>

- F1G. 3.9 Diagram of (£;)o, (€)1, (€y)o, and (€y);.
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Note that a negative value of )\, is unphysical as it indicates vortical struc-
turés moving ahead of the cylinder. Similarly, a value of A\; > 1 is also unlikely
for a wake, since it corresponds to vortical structures moving downstream faster
than the free-stream velocity ahead of the cylinder. In a finite test section, how-
ever, blockage effects result in a local free-stream velocity, Uy, measured above and
below the wake, that is somewhat higher than U,,. Hence, it is not impossible for

Az to be somewhat greater than 1.

Figures 3.10 and 3.11 shows the variation of A; and A, with Sy, just behind
the cylinder. The spacing for the first two forcing periods, nearest the cylinder, are
shown. The squares in these figures denote the spacing for the first pair of vortical
structures, directly behind the cylinder. The circles denote the second pair. The
vertical lines mark the range. The dashed vertical lines indicate where there was a
rapid contraction of the spacing, because the vortical structures were being “rolled”
into larger lower spatial frequency structures. This rapid contraction is not evident
at the highest values of S§, because the roll up does not occur until several more

forcing periods downstream of the cylinder.

Note the decrease in A; around Sy = 1. This change is reminiscent of Trit-
ton’s (1959) high-speed and low-speed vortex shedding modes. In the global mode
the vortex structures move downstream quickly (cf. Tritton’s high-speed mode) and
in the local mode the structures move downstream more slowly (cf. Tritton’s low-
speed mode). It should be noted, however, that because of the finite test section
height, a larger wake displacement thickness, especially at the lower values of Sy,
can exaggerate the speed of the vortical structures relative to the cylinder. It is
tempting, anyway, to associate the instability in the wake structure observed above

Sy ~ 1 with the decreased initial speed of the vortices.
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Fi1G. 3.10 Variation of initial A, with Sy (§; = 8). Squares: A; for the first pair
of structures, circles, for second pair.

Figure 3.12 shows the variation of the spacing ratio,

Ay £y

bl
Az z

with Sy. The squares in Fig. 3.12 denote the initial spacing ratio, (Ay/Az),, the
circles, the spacing ratio one period farther downstream, (A,/X;),. Weihs (1972)
suggested that, to first order behavior, the wake would become narrower, or wider,
depending on the initial spacing ratio. For the data in Fig. 3.12, the “neutral”
value of (Ay/Az),, t.e., when (Ay/Az), = (Ay/Az),, which marks the switch from a
“widening” wake, (Ay/Az), < (Ay/Az),, to “narrowing” one, (Ay/Az), > (Ay/Az),,
occurs around (Ay/Az), = (Ay/Az), = 0.41 (S5 = 0.6). Perhaps related to the
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FIG. 3.11 Variation of initial A, with Ss (£2; =~ 8). Squares: A, for the first pair
of structures, circles, for second pair.

switch in (Ay/Az), at Sy = 0.6 is the coincidence of the value of the wake displace-
ment thickness for the forced case and the unforced case. See Fig. 3.17, at 3 = 8.
Around (X, /Az), = 0.85 (S5 =~ 1.2), the data indicate a switch back from “narrow-
ing” to “widening.” This switch marks the center of the local mode, the division
between the global and the shear layer modes. Note that the terms “widening” and
“narrowing” refer to the ratio of the transverse and streamwise spacing of the vorti-
cal structures, not the absolute spacing. The spacing of the vortical structures was
also measured at a fixed z/a = 9, downstream of the cylinder. Figure 3.13 shows
the variation of the spacing of the structures, with Sy, for 2, = 8, and Fig. 3.14,

for Qy = 4. The spacing of the forced vortical structures is not shown in the figure,
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F1G. 3.12 Variation of initial ratio, Ay/A; with Sy (4 = 8). Squares: A\, /A; for
first pair of structures, and, circles, for the second pair.

for the higher values of 5S¢, because they were not discernible at z/a ~ 9.

Note that within the spread of the data, Az, Ay, and Ay/A;, at z/fa ~ 9,
scem to be constant over most of the range shown. They do seem to be a function of
2, though. This suggests that, for a given 2, , the geometry of the wake structure is
similar over that range. Note that the vertical spacing A, is depressed at the lower
values of S¢. This is probably because of the finite test section height. In addition,
the scatter in the data, especially in the ©; = 4 case, may be attributable to the
subjective method of locating the centers of the vortical structures. For ; = 4,

the average values of A, Ay, and Ay/A; were 0.96, 0.28, and 0.3 respectively. For
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F1G. 3.13 Variation of A;, Ay, and A,/A; with S; at z/a = 9 with Q; = 8.
Triangles: A, squares: Ay, and diamonds A,/A;.

1 = 8, they were, 0.89, 0.37, and 0.41. Note that, at the same value of £2; = 8, the
average value of Ay/A; at z/a = 9 matches the “neutral” value of (A,/A;), = 0.4

found earlier.
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FIG. 3.14 Variation of X\;, Ay, and A, /A; with Sy at z/a = 9 with Q; = 4.
Triangles: A., squares: Ay, and diamonds Ay /A, .

3.3.3 A rough estimate of the vortex strength

A measure of the strength of the vortical structures in the wake can be
obtained from their speed and spacing. A vortex street will have a self-induced
velocity ug, which will depend on the strength, I'y, and the streamwise and lateral
spacing of vortical structures, £; and ¢,, and also .on factors such as the presence
of the cylinder, finite test section height, finite core size of the vortical structures,
and viscous effects. Sce Goldstein {1938, §242-246) and Roshko (1954c¢) for similar

estimates of the strength of vortical structures in a bluff body wake.
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Using the potential flow model of a periodic vortex street,* of the strength
of the vortical structures in the wake, it can be seen (e.g., Goldstein 1938) that the
strength per unit streamwise spacing of the vortical structures in the wake can be

written as
'y Ug Ty
Uoo fz = 2‘(—]—; COth( fm ) . (33.3)

This expression is not valid at £, = 0, because when the structures are lined up,

us =0 and I'y can be any value. In addition, ug can be related to the velocity of

the vortical structures, u,, from Sec. 3.3.2, 1.e.,
us = Ug—uy = Ug—fl,. (3.3.4)

U, varies with downstream position, and is not known e prieri. Using continuity,
however, and neglecting the core size of the vortical structures, Uy can be written
in terms of, 'y /£;, U, and £y/h, i.e.,

T, 4,
Up = Ueo + 5= (3.3.5)

where h is the test section height. A little algebra, and the definitions for A; and
Ay, then yield
Fv 1 - A:1:

—Y =9 ) (3.3.6)
Uoolx tanh ( m\:) — g,—il

A
Note that the singularity in this expression is directly related to the fact that the

speed of the vortex street is zero for the case £, =0.

Figure 3.15 shows the variation of T'y/Us£; with S¢. The dashed line in
the figure is a plot of Eq. 3.3.6 assuming constant A; and A,. Therisein Iy /Ul;
at the lowest values of Sy could be an artifact of finite test section height effects,
represented by the the ¢,/h term in Eq. 3.3.6. Similar plots for the ; = 4 case

were not interpretable, because the spread in the data was too large.

* Using such a model can only yield a relative measure of the strength of the vortices in the wake.
See Sec. 4.3 for a better measure of the strength of the vortical structures, for a particular forced
case.
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Fig. 3.15 ['y /Ul vs. Sy. (&1 = 8).

Similar to ['y/Uxf;, a measure of the strength of an individual vortical
structures can be written as

Fv Ax 1 - AI
=4 (-) - — (3.3.7)
Usoa S5/ tanh ("—/\—-'L) _ 2y

h

x

Figure 3.16 shows the variation of I'y /Usa with Sy. The dashed line in the figure
is Eq. 3.3.7, assuming constant A; and .

For ¢,/h < 1, Egs. 3.3.6 and 3.3.7 become

A
=20 Az)coth(’;y> :

z

(3.3.8)
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and
T A TA
o= 425 (1 - A, t1 9 . 3.3.9
Uwt Sf( )COl(AI) (3.3.9)

Though not really applicable to this idealized case, it was suggested by

Roshko (1954c) that, for a real wake, the mean local velocity along the line of

vortex centers, Us, be used to calculate the velocity of the vortex street relative to
the fluid, where

T,
V=9 (3.3.10)
Uus £,

for the potential flow model discussed here. Using % instead of u, in the preceding

analysis is equivalent to setting tanh(w¢,/¢;) = 1 in the Eqs. 3.3.6 to 3.3.9. This
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leads to simpler estimates,

I
T ~2(1-=2X), (3.3.11)
and
r A
Yo~ 1—- ) =2 312
Ua 4 ( )Sf (3.3.12)

3.3.4 Ejection of circulation into the flow

The rate at which circulation is introduced into a flow about a body can be
written (e.g., Leonard 1987) as

dar

Et" fow = _2Abody ebody ) (3313)
where Apody is the cross-sectional area of the body and ébody is the rotational
acceleration of the body. In words, net circulation is introduced into a flow from a

body only when it experiences rotary acceleration.**

Integrating Eq. 3.3.13 with respect to time yields for the case of a circular

cylinder of radius a,

AFﬂow = —271’&2 Agbody s (3.3.14)

where A denotes “change in.” Hence, when a rotating cylinder goes from one
rotation rate to another, a net circulation will be ejected from the surface. In

dimensionless form this is

ATl
Uoa

= —2r AQ (3.3.15)

** 1t is important to note that “flow” here refers to both the boundary layer and outer flows.
To accentuate this point recall that an impulsively started and lifting airfoil has no rotational
acceleration but ejects a starting vortex into the outer flow. There is no paradox because an
amount of circulation equal to that shed into the outer flow is trapped in the boundary layer
of the airfoil.
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If all of the circulation of a particular sign created during a forcing period and
due to the angular acceleration of the cylinder where put into alternating vortices

Eq. 3.3.15 would indicate a vortex strength of up to

Ly
Ut

= 470, . (3.3.16)

For the present data Q; = 4 and 8. This yields values of

Ty
Uxa

~ 50; 100 (3.3.17)

which are much larger than those presented in Fig. 3.16. That the strength of
the vortical structures in Fig. 3.16 is only rough does not account for the large
discrepancy between the values in Fig. 3.16 and Eq. 3.3.17. A plausible explanation
for this discrepancy is that most of the vorticity generated at the cylinder surface is
reabsorbed, or is cancelled, combining with vorticity of the opposite sign, before the
vortical structure is shed into the wake. This is consistent with the observation that
the vortical structures form very close to the cylinder and hence have time to absorb
both the positive and the negative circulation generated by the cylinder’s rotational

acceleration. See Sec. 4.3 for a description of the flow close to the cylinder.

It is likely that the discrepancy will decrease at the lowest values of Sy,
because the trend is for
T,
Usoa

~ §71, (3.3.18)

cf. Eq. 3.3.7. At the very lowest Sy, the shedding of vortices appear much like

alternating “starting vortices.”
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3.4 Displacement thickness and drag coefficient estimation

In order to provide a more quantitative measure of the effects of forcing
on the cylinder and the resulting wake, the cylinder drag and wake displacement
thickness were estimated from wake streamwise mean and rms velocity profiles. For

flow that is two-dimensional, the displacement thickness is normally defined as

‘fhi = /01 [1 - %’Z_)] dn . (3.4.1)

In this expression, 7 = y/h is the normalized vertical (cross-stream) position, u(n)
is the mean streamwise velocity, y and h are the vertical position and water channel
depth respectively, and Uy is the velocity in the (free-stream) region outside the
cylinder wake and water channel boundary layers. Recall Uy and Uy in Fig. 1.1.

By analogy, the “displaced area” for a three-dimensional flow, can be defined as

i* _ A[l"ﬂ%;g)] dndc (3.4.2)

where A is the test section cross-sectional area, and ( = 2/b is the normalized
spanwise coordinate, with z the spanwise coordinate and b the water channel span.

Continuity then yields for Uy, the free-stream velocity far ahead of the cylinder,

U = /Au(n,C) dnd( . (3.4.3)

Using Eq. 3.4.3 to simplify 3.4.2 then yields

A* Uoo
=1--=2 3.4.4
4 T (3.4.4)

This expression is useful in that it provides information about the flow over an

entire cross-section of the water channel, while requiring only the measurement of

Uy and Uy (see Fig. 1.1).
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In order to remove the contribution of the initial boundary layer (in the
absence of the cylinder), to leading order, it is useful to compare Up (with the
cylinder in place) with the undisturbed flow velocity in the absence of the cylinder,
Us , at the same streamwise location. This yields an expression for the approximate

displaced area by the wake; 1i.e.,

N o
T =1-% (3.4.5)

Figure 3.17 depicts the variation of ZS*/A with Sy and ;. The dashed curves in
this figure denote A* /A levels equal to, or less than, those corresponding to the
unforced case. The parameter space denoted by the solid lines represents an increase
in A* /A over the unforced case. The displacement area can be made substantially
larger, or smaller, depending on the frequency and amplitude of oscillation. The
minimum for A* /A over the range shown occurs in the neighborhood of S¢ = 1,
and ; =~ 3, and 1s roughly half that of the unforced case. Measurements for A* [/A
were taken in the range 0.17 < Sy < 3.3 in steps of about 0.17, and 0 < §}; <
16 in steps of 1. The data presented in Figs. 3.17 and 3.18 was averaged over
2 minutes (approximately 40 natural unforced shedding cycles). Wake midspan
velocity profiles were measured for Sy in the range of 0.15 to 1.4, holding §2; fixed

at €; = 2. Figure 3.18 compares the wake profiles for several values of S, at

Q =2.

For a finite test section and flow that is two-dimensional in the mean over a
portion of the the span, it can be shown that the sectional drag coefficient can be

estimated by the expression (Dimotakis 1978):

- 2h/d LY ( u /1 u'? —p'? 1 (5* 2
PO L7 Y (ST I A B Sl RN
“p (1 —é&*/h)? l:/o U ! U[)) 7 0 Uz mE g h
(3.4.6)

In this expression, u’ and v’ are the streamwise and cross-stream rms velocities, and

§* is the displacement thickness defined in Eq. 3.4.1. The displacement thickness
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FIG. 3.17 Variation of A*/A with § r and §};. Dashed lines mark the region where
the wake displacement thickness is less than in the unforced case (note
the minimum around Sy =1 and §; = 3). Solid lines mark the region
where it is greater than or equal to the unforced case.

and drag coefficient estimates summarized in Figs. 3.19 and 3.20 were calculated
from midspan mean velocity profiles, using Eqgs. 3.4.1 and 3.4.6, neglecting the
fluctuating terms, which are not only small, but very nearly cancel (Dimotakis
1978). As can be seen, there is a broad minimum in Cp and 6*/h around Sy =1.
The estimated Cp for the unforced case is a factor of six greater than for this forced
case. Similarly, there is a factor of five reduction in 6*/h. Note that the value of
§*/h for a particular Sy and §2; is generally less than the corresponding value

of A*/A, indicating an increase in §*/h outside the midspan region. Since Cp
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FiG. 3.18 Cylinder wake mean velocity profiles, measured at midspan (§2; = 2).
Squares: unforced, circles: Sy =~ 0.2, and triangles: Sy~ 1.

increases with §*/h it should also increase outside this midspan region. A spanwise
variation in 6*/h may be attributed to the interaction of the sidewalls with the shed
vortices. Sce Roberts (1985), Roberts & Roshko (1985), Koochesfahani (1987), and
Kurosaka et al. (1988).

Figure 3.21 shows the correlation between the calculated sectional drag coef-
ficients and sectional wake displacement thicknesses. The dashed line in that figure
denotes the approximate relationship (e.g., Batchelor 1970, §5.12),

5*
C]) ~ -, (3.4.7)
a
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FIG. 3.19 Cylinder wake displacement thickness variation with Sy (2; = 2).

for wake profiles taken far downstream of the cylinder.

Another local minimum exists near S ¢ = 0.2. The flow visualization in
Fig. 3.4 suggests that this corresponds to the dual mode in which the cylinder
releases two vortices of opposite sign during each half-cycle. When one of these two
vortices shed from the bottom appears on top, a dip is observed in the corresponding
velocity profile. See circles in Fig. 3.18. This phenomenon was only observed in a

small region of the ( Sy, {2 )-parameter space.
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——————— UNFORCED

FI1G. 3.20 Drag coefficient variation with Sy (Q; = 2).

3.5 A note on the interpretation of linear stability analyses

This section was originally written in response to a reviewer of the paper
“Rotary oscillation control of a cylinder wake,” by Tokumaru & Dimotakis (1991).

It is included here as a point of interest.

There has been much interest in the use of linear stability analyses to describe
unforced bluff body flows. See Koch (1985), Triantafyllou et al. (1986), Monkewitz
& Nguyen (1987), Provansal et al. (1987), Chomaz et al. (1988), Monkewitz (1988),
and Karniadakis & Triantafyllou (1989). Using linear theory, it has been noted that

the response to periodic forcing of the absolutely unstable near wake region of a
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FiGg. 3.21 Cp wvs. §*/h. Circles: forced (; = 2), square: unforced (£2; =0).

bluff body will be overwhelmed by the “intrinsic” vortex shedding mode observed
in the absence of external forcing. See Huerre & Monkewitz (1983), Monkewitz &
Nguyen (1987), Chomaz et al. (1988), and Karniadakis & Triantafyllou (1989). This
argument is based on a linearized model and suggests that the periodic response
will be overwhelmed because the transient response grows exponentially in time
while the forcing is only periodic in time. Since the system cannot be considered
linear for large excursions from the “base” state, however, this argument can only be
relied upon for infinitesimal forcing amplitudes and short times. It is not surprising,
perhaps, that this interprctation of the results of linear theory is not in accord with
experiments and simulations which show that finite amplitude forcing of the wake

of a bluff body can result in a wake structure that is synchronous with the forcing,



-3.30 -

over a range of forcing frequencies and amplitudes; e.g., Koopman (1967), Provansal

et al. (1987), and Karniadakis & Triantafyllou (1989).

Provansal et al. (1987), examined the (nonlinear) Landau stability model
(Landau 1944, Stuart 1958, 1960) and showed how it could be used to describe
qualitatively the conditions necessary for synchronization at small but finite forcing
amplitudes, at Reynolds numbers in the vicinity of the onset of vortex shedding.
See also Landau & Lifshitz (1987, §26 & §30). Evidently, while the linear stability
analysis, and hence the notion of the bluff body wake as a globally unstable flow with
a region of absolute instability, is useful in describing the system dynamics, given an
e priors knowledge of the final averaged flow (Karniadakis & Triantafyllou, 1989),
prediction of the final dynamic state, especially in the presence of finite external

forcing, requires a different approach.



CHAPTER 4

A particular forced case

In this chapter, a particular case of a cylinder executing forced rotary oscilla-
tions in a uniform stream is examined. An estimate of the unsteady, phase-averaged
streamfunction was made. The speed and strength of the shed vortical structures

was also estimated.

4.1 Experimental setup

The experiments documented here were performed in the 20" x 20" Frec
Surface Water Tunnel at GALCIT. The cylinder used for the near wake velocity
measurements is an anodized and machined aluminum tube, 4" in diameter, and
mounted and driven by the apparatus described in Ch. 2. The command signal for
the cylinder velocity was generated by a computer controlled function generator.
The position of the cylinder output by the BEI 13-bit absolute position encoder was

read using the computer’s parallel interface.

Velocities were measured using a one-channel, Bragg cell frequency-shifted
laser Doppler velocimeter with a translatable (and rotatable) focal volume. A Lexel
Model 85 Argon-ion laser operating in single line mode (514.5 nm) at about 200 mW
was used for the LDV. The laser beam for the LDV velocity measurements was split
into two beams of nearly the same intensity using a cube beam splitter. The beams

were then Bragg cell frequency-shifted to allow for flow reversals. The Bragg cell
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offset between the two beams was 200 kHz for the data presented in this chapter. A
Dove prism was introduced in line after the Bragg cells for the purpose of rotating
the orientation of the measurement volume. An achromat was used to focus the
beams in a focal (measurement) volume located in the midspan plane of the water
tunnel. The light scattered from the focal volume was gathered by an achromat
and focused on a photodiode with an integral low noise pre-amplifier designed by
Dan Lang. The signal from the pre-amplifier was then band-pass filtered above and
below the frequency corresponding to the mean flow velocity. The band-pass range
was chosen to pass instantaneous velocity fluctuations. A tracking phase-locked
loop designed by Dan Lang and Paul Dimotakis was then used to lock a TTL
square wave to the dominant frequency. The TTL signal was read by a counter-
timer board on a data acquisition computer and stored on disk for later processing.
The transmitting and receiving hardware was mounted on a motor driven z-y-z

traverse (positioner).

4.2 Measurement details

For all the data presented in this chapter, Sy = 0.94, Q; = 2, and Re = 2.1x
10%. This Reynolds number was chosen to be higher than in Ch. 3 to shorten the
time scale of the flow dynamics, and hence also of the experiment. The tangential
velocity, vg(r,8) was measured along eleven § = constant rays in the upper half
plane, at 15 degree intervals. Along most of these rays, vg was measured in steps
or/a = 0.01, beginning near the cylinder surface, for 1.01 < r/a < 1.15, where r/a
is the normalized radial position. Then in steps of ér/a = 0.025 for 1.15 < r/a <
1.25, steps of ér/a =0.05 for 1.25 < r/a < 1.5 and finally in steps of ér/a = 0.25
for 1.5 < rfa < 2.5. Figure 4.1 shows the § = constant measurement rays. The

velocities at each location were measured at fét = 0.02 time intervals. At each
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location, 41 forcing periods were averaged at constant forcing phase, yielding 50
rea.liéations of the flow averaged at constant forcing phase. The velocity field in the
lower half plane was taken to be the same as that at the top, but a half forcing
period out of phase.

Before the velocity data were averaged at constant phase, they were
smoothed in time using a gaussian filter with a 3 dB cutoff around five times the
forcing frequency. No other explicit smoothing was performed, but, because of the
wide spacing of the 6 = constant rays, there was an implicit smoothing of data

interpolated in between.

Fi1G. 4.1 Measurement locations.
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4.2.1 Streamfunction

Calculation of the stream function was straightforward. Given that the
stream function ¥ is known at some point in the flow X, and the velocity normal
to any path C connecting the two points x and Xo, ¥, = u-n, is also known, the
(dimensionless) stream function ¥(x) can be calculated, for two-dimensional flows,

by the expression

v u, dl

Y (x/a) = ’z}%z = /C T — + 10 (Xo/a) - (4.2.1)

Further, since the stream function is constant along a solid boundary surface, it is
convenient to begin integrating from there, and to choose some constant ¥(x¢/a) =

1o on that surface. For the present experiments, Eq. 4.2.1 was written as

/% ve(r/a
srta) = [ D vy, (622)

It should be noted that for a number of the measurements, the boundary
layer near the wall could not be resolved with the present setup, because of large
gradients in the velocity, and difficulties in positioning the measurement volume.
This did not cause large errors in the calculation of ¥, however, because the velocity
at the wall was known a priori. For the integration of Eq. 4.2.2, a (straight) line

was fit between the velocity at the wall, and the nearest measured velocity.

The forced shedding process for Sy ~ 1 and ; = 2 is illustrated in Figs.
4.3 to 4.12. The illustrations on the top denote fluid marked with dye introduced
just ahead of the ten o’clock position on the cylinder. They were traced from a
video tape of the flow. The circles with the © in them indicate the direction and

magnitude (arbitrary scale) of the rotation rate. The illustrations on the bottom
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show the stream lines calculated from data averaged at constant forcing phase. Brief
notes on the averaged constant-phase streamline data are contained in the captions
of the Figs. 4.2 - 4.12*. Figure 4.2 illustrates the average, over all forcing phases,

of the stream function.

The stream function data were first estimated by integrating along 6 =
constant rays. Between the measurement points, the streamfunction was estimated
using splinc interpolation, first along the rays, and then between them. The stream-
line plots were generated using a contour plotting routine with points interpolated

on a 300 x 400 rectangular grid.

1.5 T & T I I T

1.0

.0
-1.5 -1.0 -.5 .0 .5 1.0 1.5 2.0

FI1G. 4.2 Streamlines averaged over all phases. Note the delayed average separation
point and the small averaged “recirculation” region realized in this forcing
regime. This looks very much like the (unforced) time averaged flow
around the cylinder at higher Reynolds numbers (> 5 x 10°), which also
has a similar drag coefficient of about 0.2 to 0.3.

In Figs. 4.3 - 4.12, the flow visualization data are illustrated on the top and

the phase averaged stream line pattern calculated from ldv data are on the bottom.

* The entire set of 50 phase averaged realizations of the flow is included in Appendix B.



- 4.6 -

The dot in the figures mark the approximate cylinder position, the arrows, the

direction of rotation, and the shaded regions, the range of motion.

It appears that the forced shedding mechanism outlined here replaces the
natural shedding mechanism with one that gathers vorticity close to the cylinder
surface, and then releases a vortical structure into the flow. This would suggest
that the formation of vortical structures in the forced case is less affected by the
stability. characteristics of the low downstream of the cylinder. This is in contrast
to observations of unforced vortex shedding which show that vorticity is introduced
into the flow from more-or-less steady scparation points, with the resulting vortical

structures forming in the wake of the cylinder.

When comparing the streamline patterns in this chapter and Appendix B
with simulations, several factors should be considered. As can be seen from Fig. 4.1,
the spatial resolution of the data for r/a > 1.5 corresponds to only a handful of
measurement locations per vortical structure in that region. The continuity of the
velocity field, however, diminishes this problem. As stated in Sec. 4.2, the data in
the lower half plane was taken to be the same as in the upper half plane, but a
half forcing cycle out of phase. Because of asymmetries in the flow, this match (at
y = 0) is not perfect and causes small “glitches” in the streamline pattern around
the joint between the upper and lower half planes. Comparing streamline patterns
a half period apart gives an indication of the asymmetry in the data. Because
the present data was measured at midspan, there is no out-of-plane velocity, in
the mean. This does not, however, remove three-dimensional effects like vortex

stretching and instantaneous out-of-planc flow.

Because of factors such as these, comparisons of the present data with sim-

ulations will not be perfect. It should be emphasized that the basic mechanisms
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gathering vorticity close to the cylinder (allowing it to mix and cancel) and then
ejecting it into the flow, should not be strongly affected by these factors. A simu-
lation that captures the behavior of the unsteady boundary layer in this flow will

likely have results similar to the present data.
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FiGc. 4.3 ft = 0.0. At this point, the cyl;nder has just finished shedding a vortex
(at z/a = 1.5), and the kernel (bump) of the next vortex to be shed can
be seen at about 45 degrees on the cylinder surface.
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FiG. 44 ft = 0.1. The bump has grown larger, note also the beginnings of a
second bump on the cylinder surface at about 90 degrees.
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FIG. 4.5 ft = 0.2. Figure 4.5. Both the main bump and secondary bump have
grown larger, and moved around the cylinder in the clockwise direction.
Note that there is also a large vortical structure being shed off the lower
surface at this time.
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FiG. 4.6 ft = 0.3. The bumps continue to grow. Note that the main bump seems
to be held in place relative to the cylinder surface, possibly by the flow
induced by the previously shed vortices. Note that the cylinder motion
is in the clockwise direction which, intuitively, would tend to have the
opposite effect.
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Fic. 4.7 ft = 0.4. Again, the bumps continue to grow, but now are becoming
more rounded. The large bump almost looks as if it is being “pinched”
into the flow.
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FiG. 4.9 ft = 0.6. The cylinder begins to move in the opposite direction to the
flow on that side. This appears to be when the vortex begins to be
released into the flow.
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FiG. 4.11 ft = 0.8. The main vortex begins to move off to the right. The next
vortex to be shed continues to be held in place both by the vortices
which have been shed, and the rotation of the cylinder.
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4.3 Strength of shed vortices

Section 3.3.3 proposed a measure of the strength of the vortical structures
shed into the wake. In this section, another estimate for the circulation of the vor-

tical structures is made by measuring the circulation of the flow about the cylinder,

Te(r) = r/ vg(r,8)do ,
_ C{r)
for varying phase, ft, and radius of integration, r. The associated dimensionless

quantity is
Le(r)
Usa
Figure 4.15 shows the variation of ['c/Usa with ft and r/a.

The circulation in an annulus between two circles of radii r; and rp can be

written as
I,
Usa

Hence, an estimate for the strength of a vortical structure (residing in an annulus)

r2 _ FC(TQ) _ Fc(rl) ‘

ry Uooa Uooa

(4.3.1)

is
L, N | 1S (Tmax )
Uswa Usa

where rmax and rmjn are chosen to maximize Eq. 4.3.2 in the wake. The data

rc(rmin)

- R
max Uooa min

(4.3.2)

in Fig. 4.13 is typical of the variation of I'c/Usa with radius of integration r/a
at a constant phase. Figure 4.14 is the streamline pattern related to the data in
Fig. 4.13. From data like Fig. 4.13, the estimated strength of the vortical structures

18
Iy
Usa

~ 1 (4.3.3)

In addition, from the slope of the contours in Fig. 4.15,

d(r/a) _5 Az

d(ft) Sy’
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FiG. 4.13 Variation of the normalized circulation, I'c /Uxa, taken round contours
of varying radius, r/a (ft = 0.54). The rise in the curve between
r/fa = 1.2 and 1.7 marks a patch of positive (clockwise) circulation

and the drop between r/a = 1.7 and 2.3 a negative (counter-clockwise)
patch. ¢f Fig. 4.14.

it is found that the average (normalized) convection speed of the vortices in the

near wake, based on the slope of the I'c/Usxa = 0 contour, is

A, ~ 06, for = >12. (4.3.4)

a

The transverse spacing of the vortices was difficult to estimate but appeared to be

in the range

02 <Xy <03, (4.3.5)
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F1G. 4.14 Streamline pattern associated with the data in Fig. 4.13 (ft = 0.54).

Interestingly, using the method of Sec. 3.3.3, p. 3.17, for the periodic vortex street
yielded estimates close to Eq. 4.3.3. Using Eq. 3.3.7, and A; and A, from Egs.

4.3.4 and 4.3.5, yielded an estimate for the strength of the shed vortical structures,

Iy
L1 < 5= < 14, (4.3.6)

ol

and similarly for the simplified estimate, Eq. 3.3.12, which takes no account of the



transverse spacing, a value

~ 1.0. (4.3.7)

What is remarkable is that very little of the circulation, calculated at the
cylinder surface, actually finds its way into the flow. If all of the circulation of a
particular sign created during a fofcing period and due to the angular acceleration
of the cylinder where put into alternating vortices Eq. 3.3.16 would indicate a vortex

strength of up to

T = AT~ 2 (4.3.8)

for the data in this chapter. For the forced case presented in this chapter, the
strength of the vortical structures shed into the wake is only about 4% of this

value.
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CHAPTER 5

Lifting cylinder

5.1 Preface

In this chapter, a novel method for estimating the lift on the cylinder is pre-
sented. The data calculated using this method compare favorably with similar data
published for steadily rotating cylinders. In addition, the effect of superimposing
forced rotary oscillations on the steady rotation of the cylinder is also presented;
1.e., a cylinder rotary motion of,

Uso

o(t) = —= [Qo + Qi sin(27f1)] , (5.1.1)

where € is the angular velocity of the cylinder, 2y and {); are the normalized
amplitudes of the steady and oscillating components of the rotation, and f is the

forcing frequency.
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5.2 Experimental Setup

The experiments documented in this chapter were performed in the GALCIT
20" x 20" Free Surface Water Tunnel (¢f. the LSWC used for the wake measurements
in Ch. 3).

The cylinder used for the near wake velocity measurements is machined Plex-
iglas cylinder, 1" in diameter ( AR = 18.7), and mounted and driven by the appara-
tus described in Ch. 2. The command signal for the cylinder velocity was generated
by a computer-controlled function generator. The position of the cylinder output
by the BEI 13-bit absolute position encoder was read using the computer’s parallel

interface.

Velocities were measured using a two-channel (u,v), laser Doppler velocime-
ter. The optics, traverse and analog/digital LDV processor, outlined below, are
from Lang’s (1985) thesis. The u-channel was only used to measure the free stream
velocity. The wv-channel velocities were used to estimate the lift coefficient. The
v-channel was Bragg cell frequency-shifted. A Lexel Model 85 Argon-ion laser op-
erating in single line mode (514.5 nm) at about 200 mW was used for the LDV.
The laser beam for the LDV velocity measurements was split into four beams of
nearly equal .intensity using two cube beam splitter in series mounted in series at
+45° and —45° respectively. The beams for the v-channel were then Bragg cell
frequency-shifted to allow for flow reversals. The Bragg cell offset between the two
beams was 300 kHz for the data presented in this chapter. Each of the four beams
was then aligned (to insure that they intersect in a single focal volume) by pass-
ing them through wedge prisms. An achromat was used to focus the beams in a
focal (measurement) volume located in the midspan plane of the FSWT. The light

scattered from the focal volume was gathered by an achromat and focused on a pho-
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todiode with an integral low noise pre-amplifier &esigned by Dan Lang. The signal
froni the pre-amplifier was then band-pass filtered above and below the frequency
corresponding to the mean flow velocity to isolate the u-velocity and around the
Bragg offset to isolate the v-velocity. The band-pass ranges were chosen to pass

instantaneous velocity fluctuations and were non-overlapping.

For the data in Figs. 5.2, 5.3, and 5.4, the u- and v-channel outputs from
the band pass filters were then passed thorough a pair of transimpedance amplifiers
(Lang 1985) before being sent to the analog/digital LDV processor (Lang 1985).
The signals were then processed by an analog and digital LDV processor and the
velocity data was stored to disk using data acquisition software written by Dan
Lang. See Lang (1985) for a complete description of the analog/digital signal pro-
cessing hardware. Each data point in Fig. 5.2 is an average over about 10,000

(instantaneous) velocity measurements.

For the data in Figs. §.5, 5.7, 5.8, and 5.9, a pair of tracking phase-locked
loops designed by Dan Lang and Paul Dimotakis were used to lock TTL square
waves to the dominant u- and v-channel frequencies from the band-pass filters.
The TTL signals were then read by a (multiple) counter-timer board on a data

acquisition computer and stored on disk for later processing.

Flow visualization was accomplished by introducing red dye into the flow
ahead of the cylinder through a hypodermic tube. A blue filter was used to darken
the red dye marker relative to the white background. Photographs were taken using
a 35mm camera. [llumination was provided from bchind by a large (backlit) white

sheet of paper susperided, outside the water tunnel, behind the model.
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5.3 Lift estimation by the virtual vortex method

Since the cylinder in the present experiments experiences no net rotational
acceleration it cannot shed any (net) vorticity into the wake, in the mean. It follows
that the net circulation in the wake cannot contribute to I'. As a consequence, the
vorticity coﬁtributing to T’ must be restricted to a relatively small neighborhood
around the cylinder. This suggests that the effect on the flow, some distance from
the lifting body, can be approximated, in a multipole expansion sense, by a single
virtual vortex of strength I'. It is also reasonable to expect that this virtual vortex

resides somewhere within the cylinder boundaries.

Ideally, in an infinite domain, the velocity v(z,y = 0), a distance z upstream

of a vortex center is

v =-— . (5.3.1)

Using Eqs. 1.2.5 and 5.3.1, v can be written in terms of the lift coefficient, Cy .
For the infinite domain case this can be written as
v(z) CLz

= = 3.2
Uy 21 a (5-32)

Because of the finite height of the test section, a proper account should
include spatially periodic image vortices located above and below the cylinder. See

Fig. 5.1. Equation 5.3.1 is then replaced by

r T — g _
V== csch <7r i ) , (5.3.3)

where h 1s the test section height and x, is the streamwise position of the virtual
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Fi1G. 5.1 Diagram of periodic image vortices. Only the image vortices immediately
above and below are pictured. The shaded circle denotes the cylinder (not
to scale), and the smaller circles the virtual vortex and its images.

vortex.* Rearranging Eq. 5.3.3 yields,

2};0 = —csch (W i _hﬂfo) ) (5.3.4)

* A transverse displacement of the virtual vortex from the cylinder axis, yg, is a higher order
effect.
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F1G. 5.2 Normalized transverse velocity ahead of a cylinder executing steady ro-
tation (§2; =0): 2hv/T vs. (z —z¢)/a, Re =3.8x 10°. €2 =0.5 (O
»15(0 )2(4),25(4+)3(—),4(0),5(*),6(A)8
(1), 10 ( = ), and ©; = 0. The dashed line is csch(n(z — z¢)/h).

or, using kq. 1.2.5,

v . fl_ T — Iy
l_]; = o7 C, csch (77 i > ) (5.3.5)

The transverse velocity was measured at several locations ahead of the cylin-
der axis, for a range of 0.5 < €y < 10. The validity of Eq. 5.3.3 as a model for
the decrease in the velocity ahead of the cylinder is demonstrated in Fig. 5.2, a
plot of 2hv/T ws. (z — z¢)/a. The parameters h, a, and z were known a prior:
and v/Us was measured. I" and z¢ were determined using Eq. 5.3.5 and a version
of the Levenberg-Marquardt nonlinear least-squares fit routine from Press et al.

(1986). Figure 5.3 compares the data of Reid (1924) with C} determined from the
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FIG. 5.3 Cy based on data fit in Fig. 5.2 Re = 3.8 x10%, Q; =0, AR = 18.7 (0).
Data of Reid (1924) AR = 13.3, Re = 4.0 x 10* ( O ), Re = 5.6 x 10
(A), Re =79x%x10* ( + ), Re =12 x 10° ( — ). Data of Prandtl
AR = 4.7, Re =52 x 104 (— — —).

nonlinear least squares curve-fit.

The curve-fit data also show that the centroid of the virtual vortex, zg, is
'slightly ahead of the cylinder axis. See Fig. 5.4. The centroid appears to be slightly
ahead of the cylinder body, i.e., zo/a > 1, at the lowest value of Qg (=0.5). Ideally,
this should not occur. The velocities being measured in that case, however, are
small (0.004 < v/Us < 0.02) and errors of this order cause anomalies in the fit

parameters.
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F1G. 5.4 Centroid of the virtual vortex, o, based on the data fit in Fig. 5.2.

In the following sections, C}, is estimated using a single velocity ahead of the
cylinder, and taking the centroid of the virtual vortex to be on the cylinder axis.
In addition, the other parameters were set at z/a = 10, h/a = 40, z/h = 0.25 and
a/h =0.025.
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5.4 Steady rotation: 2; =0.

Figure 5.5 shows the lift calculated using Eq. 5.3.5 with 29 = 0 and v/U,
measured at z/a = 10. The published data of Prandtl (1925) and Reid (1924) are
shown for reference. Note that the present data seem to overestimate C at the
lowest values of §g. This may partially be attributable to the fact that the origin
of the virtual vortex is not on the cylinder axis. However, the fact that the data
of Prandtl (1925) and Reid (1924) show a negative Cp, at the lowest values of Qq,
suggests that the lower Reynolds number in the present experiments may also be
a factor. Note that Tritton (1977) reports that a sphere also experiences a lift in
the “wrong” direction at low rotation rates and higher Re because of a turbulent
separation on the side of the sphere moving opposite to the flow. As can be seen
from the data, Fig. 5.5, larger cylinder aspect ratios ( AR ) yield larger maximum
lift coefficients (Cp, ., ). Compare the data in the present experiments employing a

cylinder with a larger AR = 18.7 with the data of Reid ( AR = 13.3) and Prandtl
(AR =4.7). -

Recall that Goldstein (1938), in an interpretation of an intuitive argument
given by Prandtl (1925), suggested that Cp,,, =47 = 12.6. The present data
which show the estimated Cp exceeding 4m casts doubt on this proposed upper
limit. Note that the value of Cp measured at the highest value of Qy exceed
“Cr,..~ by almost 25%. In addition, the trend suggests that the estimated C},

can be made even larger by increasing €}y beyond 12.

It should be noted that in real flow, diffusion and unsteady flow processes
can transport vorticity away from the cylinder at start-up, weakening Prandtl’s

proposed Cp_ . (Eq.1.2.7). A more plausible explanation is that three-dimensional

max

(end) effects will tend to reduce the mean spanwise lift measured at a particular
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Fic. 5.5 Comparison with published data of C, ws. Qg for steadily rotating cylin-
ders whose ends are flush with the test section walls. Present data (circles)
Re = 4.2 x 10® | (squares) Re = 6.8 x 10°, AR = 18.7, in water. Data of
Reid, (dots) Re = 4.0 x 10* < Re < 1.2 x 10°, AR = 13.3, in air. Data
of Prandtl (dashes), Re = 5.2 x 10*, AR = 4.7, in air.

rotation rate to below that which could be attained in a two-dimensional flow.
Thom (1926) showed that the sectional 1ift coefficient decreased toward the ends of
a rotating cylinder. It is interesting that Goldstein also relates how Prandtl, in one
of his experiments, associated the limiting of Cr__ (= 4) with a separation of the
flow from the side walls of the test section. To remedy this situation, Prandtl added

(= 10).

co-rotating end disks to the cylinder and then observed an increased Cy

max

No further note was made of the end effects for that configuration.
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5.5 Rotation with forced oscillations: Q; # 0, Sy =0.7.
For the data presented in this section, the forcing Strouhal number,

S_fE

’

2af
Ueo

was fixed at a value of 0.7, while the steady and fluctuating components of the

rotary motion were varied.

18 T T T T T

16L -]

14 + -

FiG. 5.7 Comparison of Cp ws. o data for several amplitudes of oscillations,
with constant forcing frequency and Reynolds number (Sf = 0.7, Re =
6.8 x 103 ). Squares: €y =0, crosses: 1.2, and diamonds: 2.3.
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F1G6. 5.6 Flow visualization for various mean rotation rates (o). With oscillations
(left, @ = 2.1, S§ = 0.7), and without (right, Q; = 0), cf. stars and
circles in Fig. 5.8. From top to bottom, the mean (normalized) rotation

-rateis Qy = 0,1, 2, 3,4, and 5. Re=4.1 x 10*. Note that the picture
on the top right corner is the unforced (non-rotating) case.
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Fic. 5.8 Comparison of Cp vs. p data for the steady case and an oscillating
case, at two Reynolds numbers. Steady rotation: (circles) Re = 4.2x10?,
0, =0, (squares) Re = 6.8 x10%, Q; = 0. Net rotation with oscillations.
(stars) Re = 4.2x 10%, @, = 2.1, S; = 0.7, (diamonds) Re = 6.8 x 10%,
2 =23, 5,=0T7.

It was found that forced rotary oscillations increased Cp for 0 < 1y < 2.5
and decrcased it for 2.5 < Q¢ < 4.5. See Fig. 5.7. It is no coincidence that for
the steadily rotating case, §2; = 0, the cylinder has noticeable vortex shedding for
Q¢ < 2.5, and none for Q7 > 2.5. Flow visualization (Fig. 5.6) shows that for
Qy < 2.5, forced oscillations of the cylinder help close the wake, creating a flow
that, on average, is closer to potential. In contrast, for 2.5 < {1y < 4.5, where

the wake would normally close with steady rotation alone, oscillations hinder this

effect. The data for the three cases presented in Fig. 5.7 coincide for £ > 4.5, 1.e.,
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the oscillations of the cylinder have little effect on the lift beyond this point.

There is a cross-over region of the Cp vs. Qg curve at {2y between 2 and
4. The data in Figs. 5.7 and Fig. 5.8 suggest that C in that region is not a
strong function of the forcing amplitude or the Reynolds number. While there is an
indication in Fig. 5.6 (c) that the forced oscillation frequency ( Sy ) and the natural
shedding frequency (S, ) are close below the cross-over region (¢ < 2.5), estimates

of Cy, varied little with S; in that region. See Fig. 5.9 (squares).

As can be seen in Fig. 5.8, the data for Re = 4.2 x 10%, and Re = 6.8 x 10°
are close, except for a slightly delayed break in the lift curve around Q = 4.5 for
Re = 4.2 x 10%. This is possibly due to a delayed boundary layer separation from

the test section walls in the latter case.
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(Re = 6.8 x 10, Q; =2.3).



CHAPTER 6

Conclusions

The type of active program control of the flow described in the present ex-
periments relies on the forces between the cylinder and the surrounding flow. It
1s this interaction that regulates the ejection of circulation into the separated flow
region and actuates the entire flow field. This is exemplified by the control of the
wake structure demonstrated in Chs. 3 - 5 as well as the up-stream influence char-
acterized in Ch. 5. In addition, the way this type of control exploits the natural
tendency to have vortical structures in the flow is in contrast to the more traditional
control philosophy that unsteadiness is something that should be canceled, e.g., the
feed-forward control employed by Liepmann, Brown & Nosenchuck (1982) and Liep-
mann & Nosenchuck (1982), and the feedback control employed by Ffowces-Williams
& Zhao (1989).

In Ch. 3, the efficacy of oscillatory cylinder rotation as an actuation mech-
anism for actively controlling the cylinder wake was examined. It was found that
considerable control could be exercised over the structurc in the wake with such
forcing. In particular, a large increase, or decrease, in the resulting displacement
thickness, estimated cylinder drag, and associated mixing with the free stream can
be achieved, depending on the frequency and amplitude of oscillation. Not sur-
prisingly, the present results show that working in a control domain in which the
structures shed are synchronous with the forcing provides the greatest control au-

thority over the wake structure. In addition, while these results were obtained for
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moderate Reynolds numbers, i.e. Re ~ 10%, there are indications that the descrip-
tionlof the flow phenomena presented here is qualitatively the same over a large
range of Reynolds numbers. The streamline data in Ch. 4 show that under control
(forcing), the vortical structures are formed very close to the cylinder. This is an
indication that the formation of the wake structure, under control, has more to do
with the controlled ejection of circulation, and the associated forces on the body,
than with the stability characteristics of some generic unforced wake. This forced
shedding is in contrast to the natural (unforced) shedding of vortices, where the
structures form only after the vorticity has been shed into the wake, from more-or-
less steady separation points. Hence, it is possible that the stability characteristics
of the wake can play a more significant role in the unforced case than in the forced.
In addition, it is shown that under control, very little of the circulation introduced
at the cylinder wall appears in the wake. Evidently, most of the positive and nega-
tive vorticity introduced into the boundary layer fluid combines before the fluid is

allowed to enter the w_a,ke.

The virtual vortex method explored in Ch. § was found to be successful in
characterizing flow ahead of the cylinder. In addition, the method yields estimates
for C; which which agree with the data published by Thom (1924) for lift coeffi-
cients greater than 2, i.c., Q > 1. While the method seems to overestimate C,
at the smaller values of Qg < 1, it is not certain whether this is due to a fail-
ure in the method, a difference in Re between the experiments, or a pronounced
variation of the sectional lift coefficient along the cylinder span (Thom 1926). The
C1 calculated at the larger values of €y were also found to be greater than in the
published data, but this was probably due to the larger aspect ratio of the cylinder
in the present experiments. In addition, the maximum (obtainable) lift coefficient
proposed by Prandtl (1925), was exceeded in the present experiments, possibly be-

cause Prandtl’s arguments neglected unsteady effects. Finally, it was found that the
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addition of forced rotary oscillations to the steady rotation of the cylinder increased
C, in cases where the wake would normally be separated (in the steadily rotating

case), but decreased it otherwise.



APPENDIX A

Forces on a body

This appendix was extracted form notes collected over the course of the
present investigations. This particular segment of the notes was chosen because it
lends support to the “virtual vortex method” used in Ch. 5. In addition, it shows

how the unsteady circulation around the body 1is related to the unsteady forces.

A.1 Forces in three-dimensional flow

The unsteady force on a body moving through an incompressible flow (For

steady case see Milne-Thomson 1968, p. 672), can be written as

= _pdz‘/ udV + /[ pn—pu(u-n)+ pgw x nldS , (A1)

where, V is a volume surrounding, but not including, the body, o is the surface
enclosing V and the body, p is the fluid density, u is the velocity, p is the pressure,
i is the viscosity, w = V x u is the vorticity, and n is the outward normal to the

surface o. Sce Fig. A.1.

If B, the Bernoulli constant, is defined as
1 1
ﬂEp+§P(u'u)_poo_§P(U00'U00)a (A.1.2)

Eq. A.1.1 can be rewritten as

= —r / udV +/{—6n+%p(u-u)n—pu(u<n)+;zwxn]d5.
(A.1.3)
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Fic. A.1 3-D Geometry.

Note that the nonlinear terms in Eq. A.1.3 can be written (Milne-Thomson 1968,
p.68) as

/Uu(u-n) dS—/a%(u‘u)ndS = /waudV+/vu(V-u)dV. (A.1.4)

Then, noting also that the last term in Eq. A.1.4 is zero in incompressible flow, we

have

d
Fg = _pa/\/UdV + /[—ﬁn—i—uwxn]dS + p/vuxde. (A.1.5)

In order to extract the “classic” Lift = pU,I" from the momentum equation,

it is useful to subtract the free-stream velocity, U, from the velocity field. Let

uy = u — Uy, . (A.1.6)
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Noting that
= Vxu = Vx(u+Usx) = Vxug (A1.7)

and also that the vector circulation may be defined as
I‘E/de=/V><uodV, (A.1.8)
v |4

the last term in Eq. A.1.5 can be written as

'/uxdezf(Uoo—}—uo)xde
v v

Uoox/ wdV + / uy X w dV (A.1.9)
1% 1%

= UgxT + / uy X (V xug) dV .
v

It is desirable to write the force in terms of surface integrals, so note that
re-applying the identity (Eq. A.1.4) to ug, with V-ug = 0, yields for the last term
i Eq. A.1.9

/Vuox{quo)dV = —/;UQ (up-n) dS + /%(ua-uo) ndS . (A.l.l())

o

For ease of notation define the surface integral

_ Ug Ug dS 1 up o dsS
Y = /ano (Uoc -n) 7o " /U (Uoo . Uoo) n (A.1.11)
such that Eq. A.1.10 can be written as

/ ug x (V xug)dV = —pUZobaE (A.1.12)
v

where 2ba* is the frontal area of the body. This then yields for the force on a

body in incompressible flow,

= —pdt/ udV + /[—ﬂn +pwxn]dS + pUgp xT + pUiba¥X
Y (A.1.13)

* For the case of a circular cylinder, a is the radius and b is the span.
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Fic. A.2 2-D Geometry.

A.2 Yorces in two-dimensional flow

Writing this for two-dimensional flow,
' 5Tbe, , w—owe, , Uy—oUsxpe, , (A.2.1)

yields the force per unit span,

d
Fg/b= —p—-/ udA —/ Bndl—pUy,T e, +;L/ we, xndl+ pUtaX, p,
dt Ja c c
| (A.2.2)
where A is the two-dimensional cross-sectional area of the volume V, C is the

boundary of A (See Fig.'A.2), and

_ ug ug dl 1 u, g dl
EZ—D = L []OO (UOO Il) a — 5 L (m—lz) n ; . (A23)
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In terms of the force coefficient,

Fg
C =
P22 =172 2ab
a d u dA B dl
—e = 2 2= nd A24
oo dt J4 Uy a? LpU&ana ( )
r e, + 2 / wae Xxn + X
Usoa Y Re Jo U # 2-b
A.3 Lift coefficient
Calculating the lift coefficient,
CL = sz_D - €y
-__E_E/_‘f_d_A_/_ﬁ__(n e) &
 Usdt Jo Us a® c pU%a ¥ a (A3.1)
T 2 wa dl-e
— — Y — Thop-ey,

Uwa | Re Jo Um a
and following G. 1. Taylor (1925), the f integral is eliminated by traversing the

wake vertically, so that (n-e,) = 0 (recall that, by construction, # = 0 outside

the wake). Then

a d v dA r 2 wa dy
C; = ——— _— - —_— _ _n- 3.
L U dt Jo Uy a? Usa +Re c U @ Tr-p-ey , (A32)
where
2 oo
Re = ———————apU
,u,

is the Reynolds number.

Averaging Eq. A.3.2 yields

— r 2 wa \ dy —
= — - = — ] — — ¥ p- . 3.
Cu Usxa | Re  Jiaxe <U00> a 2-D " Gy (A.3.3)



- A6 -

Because T tends to a constant outside a small neighborhood of the body (e.g.,
Thom 1931) and C, is a property of the body, it is apparent that

2 wa \ dy =
— — | = — ¥ p- ~ t.
Re /\;ake (Uoo) a =D Cy const

and since X approaches zero for large contours, it is proposed that

_2_/ Gd\ dy 5 2 Au
Re Jyake \ U/ d D%y Re Uy

for any contour about the body that traverses the wake vertically, where Au is the
velocity jump across the wake at a large distance from the body. Equation A.3.3

can then be written as

— T 2 Au
C, = ~Uea + O(E i.Z) ) (A.3.4)

For even moderate Re, the second term in Eq. A.3.4 may be neglected, since

AufUs will also tend to be small.



APPENDIX B

Streamlines averaged at constant forcing phase.

Forcing function:

6(t)a . Ut
(70);— = — sm(rSf—a—) ,

where 2; =2, Sy =0.94, and Re = 2.1 X 10* for the present experiments. In the
figures, a negative rotation is in the clockwise direction. See Ch. 4 for a description

of these data.
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FiG. B.1 Time-averaged streamlines.
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