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C h a p t e r 4

DESIGN AND SIMULATIONS OF PHOTONIC RESONATORS

This chapter explains why silicon is a good material for near IR wavelength photonic
devices at low temperature. The basic theory of finite difference time domain
(FDTD) simulations is explained. Then the entire FDTD simulation procedure is
described, which is used to determine the parameters for Si ring resonators on SiC.

4.1 Silicon photonic devices for near IR wavelength
The emission of qubits can be improved by using scalable on-chip cavity devices
that couple to the optical transition to generate lifetime limited emission and channel
it into optical waveguides. One strategy to develop on-chip photonic devices is to
fabricate them directly in the qubit host material. For this technique, it is required
to start with thin membranes on a low refractive index substrate, or on a substrate
that can be etched away or undercut. Even if some techniques exist to produce
membranes, it is not always the case that these membranes can host high quality
quantum emitters. Additionally, fabrication process often damages the material and
leaves unwanted charges that degrades qubits’ properties. For 4H-SiC, heteroepi-
taxial growth is not available and creating thin membranes is not straightforward.
An alternative is to make hybrid devices in a high refractive index layer located
on top of the substrate hosting the qubits, such that the emitters are coupled to the
evanescent field. In my research project, we used a crystalline silicon (c-Si) hybrid
platform of ring resonators and waveguides fabricated on top of SiC substrate shown
in figure 4.1.

We want to choose the right device layer material for the hybrid platform. We can
check if the material has large enough refractive index contrast to possibly confine
light well and if it has minimal absorption for the wavelength range of interest. The
intrinsic quality factor of the Si ring resonator surrounded by air is calculated for
different temperature as shown in figure 4.2. This is calculated based on absorption
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coefficient of Si [70, 71] and resonator theory [72, 73]:

a2 = e−αL (4.1)

FWHM =
∆θλ2

res

πne f f L − λres∆θ
(4.2)

∆θ = cos−1
(
2 − 1 + a2 |t1 |2 |t2 |2

2a|t1 | |t2 |

)
(4.3)

a is single round amplitude transmission and α is absorption coefficient. L is the
round trip length. t1 and t2 are self-coupling coefficient for two waveguides. λres

is the resonant wavelength. ne f f is the effective refractive index. These intrinsic
quality factor values correspond to silicon ring resonators with perfectly smooth
surfaces (no scattering loss) with material absorption loss, characterized by a single
round amplitude transmission a. Silicon has a bandgap at 1.11 eV ( 1120 nm
wavelength of light) at 300K [74]. At lower temperature the bandgap decreases and
silicon has less interband absorption. From the figure 4.2, at 1050 nm and 20K
the intrinsic quality factor exceeds 108. At this low temperature Si shows sufficient
transparency to be used as a device layer coupling divacancy ZPLs ranging in the
interval 1080-1130 nm.

Figure 4.1: Left: c-Si ring resonator on 4H-SiC for spin-photon interfaces. c-Si is
drawn in red, while the transparent part underneath is 4H-SiC. RIght: Cross section
showing the ring resonator near color centers in the 4H-SiC underneath it, that can
couple to the evanescent field of the cavity.

4.2 Principles of finite-difference time-domain (FDTD) method
The finite-difference time-domain (FDTD) method is a systematic computational
method for electromagnetic fields using the central difference approximation of
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Figure 4.2: Intrinsic quality factor of Si ring resonator surrounded by air at different
temperature.

coupled Maxwell’s curl equations (Faraday’s law and Ampere’s law) [75]. Space
and time is divided into grids, which is called Yee lattice to update the results
of both electric and magnetic field at certain location/time to those of neighbor
location/time. In an actual simulation, computation starts in a volume with finite
grids in space at time zero and, using initial condition of electric or magnetic field,
the field value at the neighbor grid in space at next time step will be calculated. This
continues until all field values at that time step of interest are computed. Then time
is incremented by one time step and the field calculation for the same region starts
again.

If we consider an electromagnetic (EM) wave in isotropic media, the electric dis-
placement field D and auxiliary magnetic field H are parallel to electric field E and
magnetic field B accordingly.

D = εE (4.4)

B = µH (4.5)

where ε is electric permittivity and µ is magnetic permeability. The Maxwell’s curl
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equations in isotropic media can be written as:

∇ × E + µ
∂H

∂t
= 0 (4.6)

∇ × H − ε ∂E
∂t
= J (4.7)

Each component of the electric field and auxiliary magnetic field is written,
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where J is the electric current density. According to the Yee algorithm[75, 76],
if we denote any function evaluated at a grid point in space and time with lattice
increment (∆x,∆y,∆z,∆t) in x, y, z and t coordinates,

u|ni, j,k = u(i∆x, j∆y, k∆z, n∆t) (4.14)

the partial differential equations of time are approximated using centered finite
difference expressions at a space point (i, j, k):
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Partial differential equations of space coordinates can be approximated in similar
manner. As an example, using this approximation on equation 4.10 , it can be
written as following:
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As we can see from this equation, Ez is approximated by a combination of Hx and
Hy at a half previous time step and Ez at the previous time step. Now we want to
know how to approximate Hx and Hy using equations 4.11, 4.12, and 4.15.
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As a further example, we write down Ex component used in Hx above:

Ex |
n− 1

2
i+ 1

2 , j,k+
1
2
=
∆t
ε

©«
Hz |n−1

i+ 1
2 , j+

1
2 ,k+

1
2
− Hz |n−1

i+ 1
2 , j−

1
2 ,k+

1
2

∆y
−

Hy |n−1
i+ 1

2 , j,k+1
− Hy |n−1

i+ 1
2 , j,k

∆z

− Jx |n−1
i+ 1

2 , j,k+
1
2
+ Ex |

n− 3
2

i+ 1
2 , j,k+

1
2

(4.19)

You can see the half step coordinate offset between electric field and magnetic
field component in these equations. With centered difference approximation, each
electric field and magnetic field component lie at a different 3D spatial lattice point
offset by half of the increment, in order to update them in time sequence. Also, the
time step is half of the increment different for electric and magnetic field. This is
shown in figure 4.3.

4.3 Comparison with other EM simulation method
Finite element method (FEM)
FEM replaces theMaxwell equations in continuous space with simpler interpolation
functions in smaller subspaces (elements). By doing this, functions with infinite
degree of freedom can be approximated by solving finite coefficients of simpler
functions. The first step is discretization of the space that will be simulated. The
entire space is divided into small elements that can take shapes of triangles or
rectangles etc. in 2D, tetrahedra or rectangular blocks etc. in 3D. The size and dis-
tribution of the elements are carefully decided so that the numerical approximations
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Figure 4.3: Electric and magnetic component positions in Yee algorithm.

are sufficiently accurate with appropriate computation time. The principle is that
electromagnetic waves behave in a way that they minimize their total energy. FEM
is used in COMSOL Multiphysics software offered by COMSOL, Inc.

4.4 MEEP simulation of c-Si on SiC ring resonator devices
We used the open-source software MEEP[77] to simulate our Si ring resonator
devices on SiC with FDTD method. This section explains details of the MEEP
simulation steps. These simulations were run in multi-core computers using the
parallel computing version of MEEP, meep-mpi. The most time consuming sim-
ulation described in the section is a 3D ring simulation with waveguide, typically
taking 2-3 hours with 20 processors.

2D cylindrical ring simulation
In this first simulation step, we want to simulate ring resonators by looking at the
modes confined in a 2D space assuming cylindrical symmetry. We’d like to choose
the ring’s radius, width and height at the end of the simulation step. We prefer
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smaller ring radius (smaller mode volume), smaller ring height (More evanescent
field underneath the substrate) and high quality factor. We wanted to simulate single
TM mode ring resonator. The refractive index configuration is shown in figure 4.4
(a). TM mode was chosen because stronger field can exist beneath the Si and SiC
interface compared to the transverse electric mode due to the field discontinuity,
which is shown in figure 4.4 (b)(c). This simulates the ring structure without any
waveguide. Because it has continuous rotational symmetry, one dimension in φ is
reduced and we can only think about field change in r and z coordinates. In MEEP,
you can evaluate the quality factor by using special harmonic inversion function at a
given point inside the ring. The simulated quality factor vs. ring radius with a fixed
height 360 nm and width 300 nm is shown in figure 4.5. One can see more light
leaking out through the substrate to the external ring direction when the radius of the
ring is smaller. In this ring design, the radiation limit was reached with radius ∼3.25
µm with simulated Q<1000. The radius 3.75 µm with simulated Q was chosen to
minimize the ratio of the quality factor Q=7 × 105 to mode volume V considering
that the quality factor in the current fabricated devices is limited by scattering losses
to Q=23000. The simulation gives a calculated V of 19.5 (λZPL/nSi)3. The 2D
cylindrical ring simulation code is attached in the appendix ??.

Figure 4.4: 2D cylindrical ring simulation (a) Refractive index setting (green:
SiC/n=2.64, yellow: Si/n=3.55 and blue: air/n=1.00)(b)ln|Ez | with colormap(c)
Plot of ln|Ez | at the ring width center cross section.

3D ring simulation
3D ring simulation is necessary if we introducewaveguides that guide light to grating
couplers. In contrast to 2D ring simulation with perfectly smooth sidewalls, rough-
ness on rings is inevitable because of the computational grids (i.e. the resolution).
In typical resolution of 40 pixels per unit length, 1 um used in these simulation, the
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Figure 4.5: 2D cylindrical ring simulation quality factor vs. ring radius with height
360 nm and width 300 nm.

refractive index assignment causes rough radial surfaces with roughness of order
∼10 nm. So we should consider the simulated quality factor in 3D a lower bound of
that of fabricated ring resonators only with scattering effect. To fabricate close to
critically coupled ring resonators, we simulated ring resonators with waveguides at
different distances from rings. The typical simulation setup and results are shown in
figure 4.6 (a)(b). The change in quality factor depending on waveguide-ring distance
is shown in figure 4.6 (c). The intrinsic quality factor in this 3D simulation was
2.1 × 105. From this result, we choose to fabricate arrays of ring resonators with
different waveguide separation that gives 20-80% of intrinsic quality factor. The 3D
ring-waveguide simulation code is attached in the appendix ??.

2D and 3D grating coupler simulation
To efficiently collect and detect emission from the divacancies grating couplers were
added to the end of waveguides for diffracting light to a microscope objective. Basic
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Figure 4.6: 3D ring simulation with waveguides. (a)Refractive index setting (color
distribution same with figure 4.4) (b)ln|Ez | (c)Quality factor vs. waveguide distance

grating coupler parameters such as grating period and duty cycle were simulated
for wavelength 1080 nm. To calculate the grating coupler efficiency we place a
flux region in the simulated space where the fields are scattered and evaluate the
electromagnetic flux or integral of Poynting vector going through that region. The
following figure 4.7 depicts the typical simulation setup in 2D. The two lines are
the flux regions in this simulation for evaluating diffracted light in almost vertical
or angled direction accordingly. Also, a waveguide transmission simulation is
performed to evaluate the flux going through the end of the waveguide, which is
set to the same length of grating coupler in the other simulation. The grating
coupler efficiency in these simulations is calculated by the normalization flux (F1)
divided by the sum of the flux going through vertical/angled direction (F2+F3) in
the grating coupler simulation, as shown in figure 4.7. In 2D simulations, gratings
were considered to be straight and infinitely long in z direction.

I started the flux simulations by sweeping the grating period and duty cycle to find
a parameter range that gives significant amount of F2 flux and a good wave profile.
Our objective lens can collect light from a light cone of angle less than ∼ 38◦, so we
also wanted to pick parameters that ensure the grating doesn’t diffract significantly
beyond that angle. Then we simulated the flux in a finer sweep of parameters in
this range and also took electric field output snapshots at the end of the simulation.
The summary of the flux simulations with the finer sweep is shown in figure 4.8.
We needed to look at the electric field diffraction pattern by plotting the snapshot
to make sure the grating actually diffracts. Even if there seems to be a lot of flux
going through F2, light might be scattered with the first grating without propagating
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much. We wanted to see plane wave like pattern similar to what is shown in the right
bottom figure 4.7. In this design of simple grating couplers, increasing the duty
cycle with fixed period increases diffraction angle (figure 4.9) and increasing period
with fixed duty cycle also increases diffraction angle (figure 4.10). This trend can
be seen in the right panel of figure 4.8 by F2/F3 flux. To ensure the diffraction angle
is not too steep I chose parameters with F2/F3 >10 and F2 is close to maximum in
the left panel of 4.8. From this simulation we picked grating parameters of grating
period 470 nm and duty cycle 82 % (Grating width 385 nm and gap 85 nm) for
fabrication.

3D simulations use concentric grating couplers, that are implemented in fabrication
to see changes in efficiency compared to straight gratings. The 3D simulation
configuration is shown in figure 4.11. The simulation revealed the concentric
design doesn’t change much the optimized parameters obtained in 2D simulation.
The best parameters obtained from 3D simulation is period 490 nm and duty cycle
80 %. The The 2D/3D simulation codes are included in appendix ??.
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Figure 4.7: 2D grating simulation normalization simulation on the left. Main
simulation is on the right. Top figures are refractive index configuration and bottom
figures are plotting ln|E |.

Figure 4.8: 2D grating flux depending on period and duty cycle.
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Figure 4.9: 2D grating diffraction angle change depending on duty cycle (fixed
period)

Figure 4.10: 2D grating diffraction angle change depending on period (fixed duty
cycle)
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Figure 4.11: 3D grating simulation configuration. Each figure is at the center plane
of the simulated space.


