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Abstract

The motion of a uniform vorticity of an elliptical shape (UEV) induced by an
external linear flow field and a self induced effect in a two dimensional incompressible
inviscid flow is investigated. The fluid particle motion around the UEV is also
investigated. The techniques from dynamical systems are intensively used. In
particular, we develop some modified versions of the Melnikov techniques which
show how the perturbations influence the dynamics and allow us to predict the

perturbed dynamics by knowing the unperturbed dynamics.

The UEV motions in steady external linear flow fields are regular, however
there are quite a few possibilities for types of motion depending on the UEV ini-
tial configuration and the external linear flow field parameters. When time peri-
odic perturbation is imposed, the UEV motion drastically changes and various new
types of motion become possible. This includes transition dynamics (i.e., the UEV
changes its type of motion), chaotic motion, irregular oscillation and rotation, and
quasiperiodic motion. The Melnikov techniques tell that the excess kinetic energy

play significant roles in determining the UEV dynamics.

A periodic motion of the UEV in a steady external linear flow field results in
the generation of chaotic fluid particle mixing regions around the UEV where the
fluid particles from distinct flow regions are chaotically transported. Our study
emphasizes on the finite core size effect of the UEV in comparison to flow fields
induced by a point vortex in unsteady external linear flow fields. We show that the
size of the UEV core and the UEV initial configuration are important factors in

determining the size of the mixing region.
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Chapter 1

INTRODUCTION

1.1 Motivation

In two dimensional incompressible inviscid flow, the vortex distribution com-
pletely determines the flow field as described by the Biot-Savort law (Bachelor
[1968], Saffman and Baker[1979]). Hence, understanding the vortex dynamics (or
equivalently vortex interaction process) is one way of understanding the flow dy-
namics. There are many flows which can be modeled by single or multiple number
of discrete vortices (Roshko [1976], Jimenez [1987], McWilliams [1984], Moore and
Saffman[1975], Saffman and Schatzman[1982]). If the discrete vortices are close to-
gether, merger may take place. (Melender et.al. [1985][1987a][1987b][1988]). If a
discrete vortex is far from other vortices, it is useful to study the vortex’s dynamics
(i.e., how it deforms around its centroid through the influences of itself and the

other vortices).

In a Lagrangian frame which is translated with and rotated around a vortex
blob centroid, the vortex blob configuration is changed by the influence of self-
induced velocity field and the external flow field, i.e., the local fluid particle velocity
relative to the centroid. The first order approximation to the external flow field is a
linear flow field around the centroid which is composed of straining and rotational
effects. The straining flow field is described by two variables (+, @) where v is the
strength of the straining effect and « is the inclination axis of the straining axis
in the Lagrangian coordinate frame. The straining flow field, which is irrotational,
is caused by vortex interaction with other vortices and boundaries. The rotational
flow, or background vorticity effect, is described by a variable wg. It is strictly due

to the rotation of the Lagrangian frame around the centroid, because of assumptions



on the discrete vortex. In this research, we are concerned with vortex motion in an
arbitrary-external linear flow field. We use an elliptical region of uniform vorticity
distribution (uniform elliptical vortex, UEV henceforth) as a model vortex. The
UEV, as a model, has a significant advantage for the analysis, i.e., the UEV changes
its configuration in time in steady or unsteady external linear flow fields, while the
elliptical shape of the vortex is preserved. This is because the total velocity field
around the UEV centroid is linear. Note that the two variables (7, 8), where = a/b
is an aspect ratio of the ellipse with a and b as the semi-major and semi-minor axes,
and 6 is an inclination angle of semi-major axis of the ellipse from the Lagrangian
frame, can completely describe the vortex configuration because the area and the
circulation of the vortex are invariant in the flow field. Furthermore, the dynamics

of the UEV are given by solving two dimensional O.D.E.’s for (7, 8).

When some perturbation is imposed on the boundary shape of the vortex, non-
linear effect may become important factor for the vortex’s dynamics (Constantin
and Titi [1988], Dritschel [1988a],[1988b],Moore and Saffman [1975], Wan and Pul-
virenti[1985]). This thesis does not include either instability analysis (i.e., how the
perturbation on the vortex boundary may or may not develop, Szeto and Saffman
[1980], Kamm [1987]) or vortex dynamics in external nonlinear flow fields. How-
ever, the modified moment model, which is a generalized version of Melander et.al.

[1986], seems to give some insights to those problems.

1.2 Historical background

The dynamics of a UEV in no external flow field were first formulated by
Kirchoff [1877). A UEV of any aspect ratio rotates around its centroid with a
constant angular velocity while preserving its aspect ratio (see also Lamb [1945]).
Moore and Saffman [1971] showed that in a steady, pure straining field or in a steady
simple shear flow, there exist steady UEV configurations. For a UEV in a steady,
pure straining field, the steady UEV configuration exists with its semi-major axis
aligned T to the straining axis as long as the straining and the UEV vorticity rate

:}3; is less than 0.15. For a UEV in a steady simple shear flow, the steady UEV
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configuration exists as long as the shear and the UEV vorticity rate - is less than

0.21. -

The equations of the UEV motion in steady external linear flow fields were first
obtained by Kida [1981] as two dimensional O.D.E.’s for (7, #) as exact solutions of
the Euler equations corresponding to uniform vorticity regions of elliptical shape.
The bifurcation diagram in (~:—'§~, ;75) was given so as to show all possible UEV

motions caused by variation of two steady external linear flow parameters. Note

that (=&

frame is chosen axis to be aligned with the straining axis. Neu [1984] showed

WE, ) describe the steady external linear flow field when the Lagrangian
a systematic way of deriving the O.D.E.’s for the UEV motion in a steady pure
straining field (i.e., no background vorticity effect). Neu also reformulated the
equations of the UEV motion as a Hamiltonian system and presented the solution
in X — Y phase space with polar coordinates (7,6). However, the transformation
to the Hamiltonian system that Neu adopted involves scaling of the time variable
by 4=, which means that the solutions given in the Hamiltonian system do not
correspond to the UEV motion in a time-wise sense. This becomes a significant
obstacle when we consider the UEV motion in time dependent external linear flow

fields.

In this thesis, we first show that the equations of the UEV motion hold
in any time dependent external linear flow field described by three variables
(v(t),a(t),wr(t)). It can also be shown that the elliptical shape of the vortex
can not be preserved in higher order external velocity field, i.e., the equations of
the UEV motion are based on an assumption that the total induced velocity inside
the UEV is linear. In order to facilitate techniques from dynamical systems, we
transform the equations of the UEV motion to two sets of the Hamiltonian systems
(see Melander et al. [1987]). We show that these Hamiltonian systems, together
with the new canonical variables of the equations, display the physical background
of the UEV motion. We recover the bifurcation diagram given by Kida, and show
all possible solutions in steady external linear flow field as the level sets of the

Hamiltonian function in the phase space of the corresponding canonical variables.



In Chapter 4, we seek all possible motions of the UEV in a unsteady external lin-
ear flow field, see how the external flow parameters influence the unsteady UEV
dynamics, and try to understand the mechanisms of the UEV dynamics. We use

techniques from dynamical systems theory and add modifications which give some
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physical interpretations of the perturbation effects.

1.3 Simple examples

are time dependent. We now show three simple examples which demonstrate time

dependence on straining effects and background vorticity effects through vortex

In the vortex interaction process, it is clear that the influences of other vortices

interaction and boundary conditions on the UEV.

1)

A pair of co-rotating equal UEV’s

Consider a pair of co-rotating equal UEV’s whose centroids’ positions are de-
noted by z = +Re'X. We assume that the distance 2R between two vor-
tices are much larger than the vortex core radius m =constant (i.e.,
R/m > 1) so that the leading order term in the local external flow field
on the UEV induced by another UEV is linear term (i.e.,the straining effect).
The Lagrangian frame is translated with and rotated around the centroid so
that the straining axis and the Lagrangian frame axis are aligned. The rota-
tion of the Lagrangian frame results in the back ground vorticity effect wg.

The straining effect (7, a) and background vorticity effect wp which each UEV

receives from another UEV are as follows:

with

v = 87233 + higher order terms in -}%
a=0
r . :
wp = Py + higher order terms in R

dR? r a’r n* -1
— in2(9 —
dt (3%) (7732) ( n >Sm2( x)

2

atr
high der terms in | —> ] .
+ mgher order terms in (UR2>



3)
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Time dependence on the external linear flow field is due to the change in the

distance 2R between two vortices.

A pair of translating UEV’s of opposite sign

Consider a pair of translating UEV’s of opposite sign which float in a uniform
flow field. The distance between centroids is R, and we again assume that that
the distance 2R between two vortices are much larger than the vortex core
radius \/a?r/n =constant (i.e., R/y/a?7/n > 1 ) so that the leading order
term in the local external flow field on the UEV induced by another UEV is
linear term (i.e.,the straining effect). The Lagrangian frame is translated with

the centroid . The straining effect (7, a) that each UEV receives from another

UEV is as follows:

. o1
v = + higher order terms in %

r
T R3

a=10,

dR? B r a’m n? -1\ . 20
dt  \32n ) \nR? n s e

+ higher order t in (ET
11 €er order terms in — .
g e

with

Time dependence on the external linear flow field is due to the change in the

distance 2R between two vortices.

A UEV floating with a uniform flow (U) over a wavy wall.

In this case, it can be shown by solving the resulting stream line structure in
the flow field that the UEV receives a time periodic straining effect from the
wall up to the leading order. (Liepmann and Roshko [1956]). The wall must

be far enough from the vortex as compared to the vortex mean core size

. .1
v (1 + e471(t)) + higher order terms in R

- 47rR8

. ) o1
o= —%(1 + €q1(t)) + higher order terms in T

where R is the distance between the wall and the UEV, Ry is the mean distance

between the wall and the UEV, moreover, €., €4, 71(t) and a;(t) are defined by
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the wavy wall configuration, and ~;(t) and «;(t) are periodic functions. Time

dependence on the external flow field is due to the wall configuration.

1.4 Fluid particle motion

In *wo dimensional incompressible flow, the velocity field for the fluid particle
motion can be formulated as a Hamiltonian system with the stream function acting
as the Hamiltonian function. This gives a significant understanding of the flow

dynamics.

Consider a flow field induced by a point vortex in a steady external flow field.
It is clear that the total induced flow field is steady and hence, all fluid particle
motion whose paths are described by the stream lines are regular. However, if the
point vortex is replaced by a finite core size vortex blob, then the blob may be
deformed around its centroid by the external flow field and by a self-induced effect.
This results in a unsteady flow field around the vortex blob. In order to examine
the finite core effect of the vortex on the flow dynamics, we study the fluid particle
motion around a UEV in a steady external linear flow field. This is a simple,
leading order approximation to the flow dynamics. Moreover, the UEV dynamics
are completely understood from the analysis in Chapter 3, which is a significant

advantage in the analysis from a technical point of view.

When a UEV is at its steady configuration, the total induced flow field is steady,
and the flow dynamics can be described by the stream line structure. When a UEV
undergoes periodic motion, the total induced flow field is unsteady (time periodic),
and the stream line structure may break up resulting in new types of motion which
can not occur in the steady flow field. The techniques from dynamical systems
theory are again used to study the flow dynamics. In particular, the breaking-up of
the dividing stream lines results in a chaotic transport region whose mechanism is
well formulated by lobe dynamics (see Rom-Kedar, Leonard and Wiggins {1988]).
We examine the flow dynamics induced by the UEV as compared to the flow dy-
namics due to the point vortex in steady and unsteady external linear flow fields by

introducing modified Melnikov functions additionally.
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1.5 Organization of the thesis

This- thesis is organized as follows. In Chapter 2, we derive the equations
of motion for the UEV and discuss their physical implications. In Chapter 3, we
describe the various UEV motion in steady linear external flow field. In Chapter
4, we describe how the UEV motion changes under time periodic perturbation in
the external linear flow field. And, in chapter 5, we examine how a finite core size

vortex influences fluid particle motion.



Chapter 2

EQUATIONS OF MOTION OF A UEV

In two-dimensional incompressible inviscid flow, each vortex element moves
with the local fluid velocity induced by either vortex interactions or boundary con-
ditions. When the flow field is represented by discrete vortex blobs and some bound-
ary conditions, the flow dynamics can be decomposed into the centroid motion of

the vortex blobs and the deformation of the vortex blobs around their centroids.

In a Lagrangian frame which is translated with and rotates around a vortex
blob centroid, the vortex blob changes its configuration due to the self-induced
velocity field and the external flow field, i.e., the local fluid velocity field relative to
the centroid. The first order approximation to the external flow field is a linear flow
field around the centroid which is composed of a straining effect and a rotational
effect. The straining flow field is irrotational and caused by the vortex interaction
with other vortices and boundary conditions, while the rotational flow field, or
equivalently the background vorticity flow field, is strictly due to the rotation of
the Lagrangian frame around the centroid. In this thesis, we are concerned with
vortex dynamics in an arbitrary external linear flow field using a uniform elliptical
vortex (UEV) as a model. We will also briefly discuss fluid particle motion around

the vortex in terms of finite core size effects of the vortex.

2.1 Coordinate Systems for Uniform Elliptical Vortices (UEV) and
the Self-induced Flow Field

We consider a UEV whose centroid is located at the origin of the Lagrangian
frame denoted by (z,y) with z = z + 1y (Fig. 2.1). The semi-major axis, a, and
semi-minor axis, b, of the ellipse define a UEV fixed coordinate system denoted by

(X,Y) with Z = X +:Y (Fig. 2.2). The angle 6 in Fig. 2.1 is called the inclination
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(or tilting) angle of the UEV and provides the relation between two coordinate
systems (z,y) and (X,Y") as follows

z=R(6)X

where ¥ y "
: D . —sin
e=(3)x=(7) 0= (Ghreors )
The aspect ratio n = a/b of a UEV is, by definition, greater than unity and n = 1, 0o
correspond to a uniform circular vortex and a vortex sheet, respectively. The area
of the UEV Ag = wab and the total circulation I' = wgpAp are invariants in the
flow. We define the mean core radius, A, of a UEV to be the radius of a circle with
center at the center of the UEV that encloses a region of area Ag. Since Ag is an

invariant, A is also an invariant.

The velocity field induced by a vorticity distribution w(z,y) is computed by the
Biot-Savart law (see Batchelor [1967]). For an elliptical vortex (EV) of arbitrary
vorticity distribution (i.e., a vortex blob whose vorticity contours are all aligned
ellipses of the same aspect ratio n (see Appendix 1 for more details)), the self-
induced velocity in the vortex fixed coordinate system is written in complex form

as follows

Vi
. r : : Z K ¢
o=t [ (8) (£ (380)4(2). e

0

where )
R = 2 (X +YY)
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and Z* is the velocity conjugate at Z, R is the mean core radius of the ellipse going
through Z, A is the core radius of the vorticity distribution and f(-/-\lz) is 2 normalized
vorticity distribution. Eqn. (2.1) implies that the contribution to the self-induced
velocity at Z comes only from the vorticity in the interior of a smaller ellipse with

aspect ratio n with boundary passing through Z. Applying Eqn. (2.1) to a UEV

R 1 for
f(3)-1 o

We obtain the self-induced velocity field around the UEV in the (X,Y") coordinates

with

>l

>1,

as follows

Inside the vortex (7\5E <1

- 5} .0
Zin = gy i tigx Ve
(2.2a)
r 1 ,
in A2 m (=X +mY) ;
Outside the vortex (% > 1)
- 0 0 _
Zout = EZFout = ﬁ ((I)out + Z‘I’out)
(2.2b)

r
=—(z-V22-D) ,
D
where
n’ —1
n
Z* is a velocity conjugate at Z = X + Y, &,V and F are potential, stream

D= A%,

and complex potential functions in the UEV fixed coordinate respectively, and the
subscripts “in” and “out” stand for “inside” and “outside”, respectively. Since the

flow exterior to the UEV is irrotational, a complex potential function can be used to
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describe the flow field. The associated stream function ¥;, and complex potential

function #5,,¢ may be written as follows

ou - gt x e (3be) 1

Fout = q)out -+ Z.\I’out

VZ? -
-1 log<Z+QZ D)+————.F (ZZ—Z\/E?_.—....I.;_).

127 127D

Fig. 2.3 shows typical stream lines around a UEV. The constants in ¥;,, and F},,; are
chosen so that 1) F,,; asymptotically approaches the complex potential function
for a point vortex, Fp; = ;g;log Z, as |%l — 00, l.e., the stream functions are
independent of vortex shape as “/Z(I — 00, and 2) the stream functions for outside

and inside of the vortex agree on the UEV boundary,

lim
1. |-1‘%-|——)OO(FOUt“Fpt)=O
im O 0
a oua"'"Fou =
%|——>oo@77F T 0

1
2. Wi =Tou on —(X%+ 172Y) = R?=A%.
n

The choice of the constants is very important in evaluating the excess kinetic energy

of the UEV as we will see in Section 2.3.

2.2 The external linear flow field

The external linear flow field can be decomposed into a straining field which

1s irrotational, and a background vorticity field which is rotational, and expressed



as follows 5
i =i5+ip= EM Rl
y
- 0 d
TT e— = — (0 1)
Zs 5zfs £l (65 +1%s)
= ye By (2.3)
3 0 Ve + ¥
T= eee— q
Jo— ‘—QR *
jrasiad "")__Z s

where *’s are the velocity conjugates at z = z+iy in the Lagrangian frame, and the
subscripts “L,” “S” and “R” stand for “external linear,” “strain” and “rotation,
" respectively. ¢, ¥ and f are potential, stream and complex stream functions
in the Lagrangian frame respectively; v is the strength of the straining field, o is
the angle between the Lagrangian coordinate and the strain axis as shown in Fig.
2.4, and wp is the background vorticity which is equivalent to the angular velocity
of the rotation of the Lagrangian frame in the absolute coordinate system. The
combination of three parameters (7, @,wg) can describe any linear flow field in two-
dimensional incompressible flow. The associated complex potential function for the
straining field, fg, and stream function for background vorticity field, ¥ g, are as
follows:

fs =05 +ivs = STt

and

YR = E-df (=% +y?) .

Fig. 2.4 shows typical stream lines for both linear flow fields.
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2.3 Conserved quantities

For two-dimensional incompressible inviscid flow in an infinite domain, the
following four quantities are conserved in the absolute coordinate system (Z,7)

which is fixed in space.

Total circulation: T'yye

Fgot // d(l)dy
P = / / (2, §)idady

Total angular momentum: Q¢

Quot = / / §,)|2[2dzdg

Total excess kinetic energy: K Ey,;

KE¢ = // (Z,9)Y(2,y)dzdy

Those four quantities evaluated over a UEV in the Lagrangian frame are

Fz//wgdmdyz//wEdXdY

= //wggdzdy =0
Angular momentum: @

2 1
Q= //mx; da:dy..//wElXI ixdy = AL F" +

Excess kinetic energy: KE

Total linear impulse: P, ,

Circulation: T’

Linear impulse: P

KE=KFEg+ KEs+ KEp
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1 1
KEg = 3 //wEwi,ldxdy =3 //wE\If,‘ndXdY

. 2 2
_ _weh I‘{log(n.*-l) +210gé—£}
8 n 2

KEg = %//wEl/)dedy

B vA?T | n? -1
=5 sin2(8 — «)

.KER =—;-//wgz/)gdxdy = —;'//qu/RdAYdY

_ __wRAQF n? +1
32 n

Since the total circulation is a coordinate free quantity, i.e., I' = const, P must be

where

3]

identically a zero vector by the definition of the centroid and the Lagrangian frame.
The angular momentum, whose integrand is quadratic in (z,y) and a function of
distance from the centroid, depends on only 7 (i.e., is independent of 8). The excess
kinetic energy decomposes into three parts, the self-induced effect denoted by FE,
the external straining effect denoted by S, and the external rotation effect denoted
by R. Among them, only K Eg depends on the coordinate in which it is evaluated

and hence is a function of 5 and 6 — a.

We define the normalized angular momentum (} and excess kinetic energies

KE’s as follows:
nt+1

Q= |
7 (2.4)
KE=KEp+KEs+KEg,

where

KEg =log(Q +2)

e 1 ~
KEs = —=—L1/O? — 45in2(6 — a)
QwE
KEp=<%R0 .
4wg
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and the relation between normalized variables and dimensional variables are

AT .
Q= 4
/\2:{1 —T
KE = ——wpNE |

Alr

2 . . . - r
+— and A——l-;-‘ﬁfl are invariant. In Section 2.4, we will see that the UEV

where
dynamics (i.e., how the UEV changes its configuration) can be understood as the
change of (normalized) angular momentum of the UEV and the UEV tilting angle
through the vortex interaction, while total excess kinetic energy is conserved in an

entire flow domain.

2.4 Ordinary differential equations (O.D.E.’s) describing UEV
motion

The equations of motion of a UEV in an arbitrary steady external linear flow
field were first obtained by Kida [1981] and can be used to construct exact solutions

of Euler equations for prescribed flow field.

By following the time evolution of the boundary vorticity of a UEV in the flow
field, Kida found that the UEV keeps its elliptically shaped boundary while the
semi-major axis, the semi-minor axis and the inclination angle change in time. The
possible motions of the UEV include steady states, oscillation, rotation, asymptoti-
cally approaching a steady state and irreversible elongation, depending on the initial
configuration and external flow parameters, i.e., (v/wg, a,wr/wg). The existence
of such solutions strictly depends on the facts that the total velocity field inside of

the vortex is linear, and the vortex boundary shape is quadratic in (z,y).

Neu [1984] showed a systematic way of deriving O.D.E.’s for the variables
(a,b,8), although Neu only considered the time-independent (steady) straining ef-
fects and included neither time dependence of the flow field nor the background
vorticity effects. Following Neu’s outline, we obtain the equations of motion of the
UEV in an arbitrary time-dependent external linear flow field. Note that, since the
area of the UEV is an invariant in the flow, the UEV configuration is defined by two
variables (7,8). Moreover, the O.D.E.’s for those two variables give the complete

dynamics of the UEV.
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The equation of the UEV boundary may be written as follows
zTE(m,6;A)z =1,

where the matrix E(n,8; A) is defined as follows

1
20

0 77) R(-6) .

B85 = 5 R6) (

Since vorticity moves with the local fluid velocity, we have

D
= {2TE(n,6,0)z} = 5-1=0. (2.5)
The velocity vector —-,%g = z on the UEV boundary for time-dependent external

linear flow field (v(), a(t),wr(t)) is given by Eqns. (2.2) and (2.3).

z=gp+2s+zp=U(n0,wg;v,0,wr)z . (2.6)

where

. . _ TWE 0 2 7 _
U(n797wE77’aawR)— ’I]-{-lR(G)(——l,O)"—E( 9)

rome (3 ) mw+ (1)

Substituting Eqn. (2.6) into Eqn. (2.5) yields

D T
DtE+U E+EU=0.
Consequently
%Itl _ 27(2)77 cos2(0 — a) ) | o
@ L (1) T sin2(6 — a(t)) + 250

At n = 1, the UEV becomes circular and the semi-major, -minor axes can not be

defined over the UEV. This results in the singularity of the equation at n = 1.

2.5 Change of variables

As is mentioned in the previous section, two O.D.E.’s for (n,6) in Eqn. (2.7)
may describe the dynamics of the UEV. In this paper, however, we adopt two
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sets of transformations of variables to convert Eqn. (2.7) into nondimensionalized
Hamiltonian systems which facilitates the use of modern techniques from dynam-
ical systems theory. The techniques, including Poincaré maps, Melnikov methods,
and KAM theory, provide us with new results on the dynamics of UEV in a time

dependent external flow field, as we will see in the next two chapters.

We define nondimensionalized external flow field parameters as

(1,0,0R) = (0,0, ) = (-l o ﬁ’i) |

y &y
WE WE

where ¢ is the strain - UEV vorticity rate and & is background vorticity - UEV

vorticity rate.

The first set of variables that we define has nice physical interpretations of
angular momentum of the UEV and half the inclination angle. Furthermore, the
Hamiltonian corresponds to the total excess kinetic energy in the entire flow field.

Let us define a new set of variables.

(Qv 9977_) = (Q + QC729,2wEt) ’

where Q = -'1—27;'-'—1- is the normalized angular momentum of the UEV as is defined in

Eqn. (2.4), g, is an arbitrary constant, o is twice the UEV inclination angle and 7

1s a normalized time variable.

By this transformation, Eqn. (2.7) is converted into a Hamiltonian formulation

for any ¢,

(

ala aja
] 4 KO

1 I Q—QC
(Q“?c)+2 \/(Q__qc)2__4

B o/(Q — gc)? —4cos (p — %) B (—%)
- n(p-5)+5) \ %5/

where
H(Q,p;0,a,x) = Hp(Q) + Hs(Q,v;0,a) + Hr(Q; x)
Hp(Q) =log{(Q — ¢.) +2} = KEg

Hs(Q, ¢i0,0) = =01/(Q = ¢.)* — 4sin(p — 5) = 2KEs (2.8)

gR(Q;K,)ZgQ_:Q@R.
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From Eqn. (2.8) we can easily see that the Hamiltonian corresponds to the normal-
ized excess kinetic energy. The terms Hg, Hs, and Hg represent the contribution
to the Hamiltonian from the UEV| the external strain, and the external vorticity,
respectively. The facts that the total excess kinetic energy must be conserved in
the entire flow domain and K E s,r are induced by the external velocity field (i.e.,
ﬁg by vortex interaction and KE r by rotation of the Lagrangian frame), give
the factor of 2 for Hg and Hg. This agrees with the results obtained by Melander
et al. [1986] using a moment model to describe external straining effects through

vortex interactions.

We choose ¢, = —2 for convenience so that I > 0 and redefine

(I,o,7) = (Q—Z = M,ZG,ZwEt) .

The related Hamiltonian formulation is

<3—£—) oy/(I? —4I cos (¢ —
do | T\ L _ o I42 o _
T+4 0’7(=I=‘§—-::781n(99

dr

)

)+

iR wfR
wolx

Il
N

|

o

; |
~lm g |m,
~—

where
H(I,C,D;O’,O(,K,) = HE(I) + HS(I,(,O;O‘,C!) + HR(Iv ’(‘:)
Hg(I)=log(I+4) = KEg
HS(I,go;o,a)::—a\/12+4lsin(go-g-):2ﬁs (2.9)
Hp(I; &) = -2'31 —2KEpg .
We call I and ¢ the modified angular momentum and the modified inclination
angle, respectively. The singularities at I = 0 in the %‘f equation, which corre-

spond to those at n = 1 in Eqn. (2.7), can be removed by adopting another set of

transformation of variables.

(6,¢, 1) = (\/é.jcoscp, \/Z_isingo,'r) .
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The corresponding Hamiltonian system is

is —2¢ §2+2¢%+8 AH
(Tz‘r‘) _ | Vorrers T § Voreas — 20| _ (_~ a¢ )

€@« 26— 2 _ 8¢  + 55 2H
" Verais Jercgs o
H(6,(50,0,k) = Hp(6,¢) + Hs(6,(;0,a) + Hr(6,(; &) (2.10)

2 2
Hp(6,¢) = log (‘iig-—i—?)

Hs(6,¢i0,0) = =2 (V& + (7 +8

Hp(6,Gim) = 7(6° +¢*) .

The transformation from (I, ¢, 7) to (6,(, 7) is canonical and a standard operation

to remove the singularities (Greenspan and Holmes [1983]).

Neu [1984] also obtained a Hamiltonian formulation for the UEV motion in
a steady external straining field. However, the transformation that Neu adopted
involved 7 in the new time variable, and hence real (physical) time is not measured
uniformly during the motion of the UEV. This fact makes it difficult to interpret
the UEV dynamics in time, especially when we consider a time dependent external

linear flow field.

Although the equations of motion are well-formulated in Eqns. (2.9) and (2.10)
as Hamiltonian systems, the dynamics of the UEV can be easily understood in
terms of the UEV configuration (7, ) rather than the modified angular momentum
and inclination angle (I, ). The relations between (I,¢),(6,() coordinates and
the UEV configuration (7,6) are as follows. The modified angular momentum I
and the aspect ratio 7 have one-to-one correspondence as shown in Fig. 2.5, and
hence any I (I > 0) uniquely defines the aspect ratio n of the UEV. The longer and
thinner UEV has more angular momentum and n = 1, 00 correspond to I = 0, oo,
respectively. The definition of the modified inclination angle ¢ strictly depends on
the symmetry of the UEV and external linear flow field. Fig. 2.6 shows the relation
between (I, ¢) and (6,(). The polar coordinate of (§,¢) Cartesian coordinate may
be given by (v/2I,¢). The origin of (6,() coordinate corresponds to a circular
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vortex (I = 0,7 = 1), and the distance from the origin (i.e., V2I) has one-to-one

correspondence to the aspect ratio 7.



921 —

2.6 Figures for Chapter 2

Figure 2.1 Lagrangean coordinate system and the UEV coordinate system
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Figure 2.2 UEV configuration and vorticity distribution
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Figure 2.3 Stream lines induced by the UEV

<

Ys ¥

S\

Figure 2.4 Stream lines induced by external linear flow fields
(a) external straining field  (b) external rotational field.
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Figure 2.5 Relation between I and 7

Figure 2.6 Relation between § — ( phase space and (v2I, ) coordinate
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Chapter 3

UEV DYNAMICS IN A
STEADY EXTERNAL LINEAR FLOW FIELD

In this chapter, we examine the dynamics of a UEV in a time-independent
(steady) external linear flow field. For this purpose, we first study Eqn. (2.10) and
obtain all the possible solutions, ¢(7) = (6(7),((7)), in the § — { phase space as a
function of the external flow field parameter values (xg, 0¢), where we can set ag = 0
without loss of generality by choosing the Lagrangian frame axis to be aligned with
the steady straining axis. We show that solutions can exhibit a variety of bifurca-
tions, and we will give the bifurcation diagram in (k¢, 0g) parameter space, which
agrees with Kida’s results [1981]. We will give an interpretation of each orbit in the
6 — ( phase space in terms of UEV motion. We will see that, even in a steady exter-
nal linear flow field, there are quite a few possibilities for UEV motion depending
on the initial configuration and external flow field parameter value. Finally, we will
give an interpretation of the causes of the different UEV motions by examining the

effects due to the self-induced motion, the external straining field and the rotational
field.

3.1 Dynamics and bifurcation of Eqn. (2.10)

In this section, we present all the possible solutions of Eqn. (2.10) in the
6 — ¢ phase space as a function of the parameters (kg,0p). Because the system 1is
autonomous and Hamiltonian, the solution curves in the é —( phase space are given
by the level curves of the Hamiltonian function (H). This illustrates one of the
advantages of the Hamiltonian formulation. (See Wiggins [1988]). An important
feature of this problem is that the solution structure in the § — ( phase space may
change as the parameters are varied, i.e., bifurcations occur. (See Chow and Hale

[1982]). We begin by discussing some typical orbits in the § — ¢ phase space, and
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then consider the solution structure and bifurcations in relation to the parameter

values. -

The possible motions, for any parameter values, are one of the following: (1)

fixed points, (2) periodic orbits, (3) homoclinic orbits, (4) orbits connecting a hy-

perbolic fixed point to infinity, and (5) unbounded orbits. We describe each orbit

more precisely.

(1)

(2)

A fixed point is where the right hand side of Eqn. (2.10) is identically zero and
hence the orbit remains at that point for all time. In a Hamiltonian system,
fixed points are generically classified into two types according to its linearized

stability.

(a) A hyperbolic fixed point, ¢ = (6, (r), is a fixed point where the eigenval-
ues associated with the linearized equations at ¢, are real and of opposite
sign. g¢p possesses an invariant stable manifold denoted by W?*(gqs) and
an invariant unstable manifold denoted by W*(¢x) which are tangent to
the eigenvectors associated with the linearized equations at g, as shown
in Fig. 3.1. Solutions starting on W*(qs) (W"(qn) resp.) approaches g

asymptotically as 7 — oo (7 — —o0, resp.).

(b) An elliptic fixed point, g = (e, (e), is a fixed point where the eigenvalues
associated with the linearized equations at ¢. are pure imaginary and of
opposite sign. As shown in Fig. 3.2, ¢, is typically surrounded by a one-

parameter family of periodic orbits which we will define next.

A periodic orbit, ¢*(7) = (6¥(r), (7)), parametrized by the corresponding
Hamiltonian value H, is represented as a closed curve in the § — { phase space
and is time periodic with period TH, i.e., ¢!'(r + TH) = ¢f(r) for any .
Periodic orbits associated with H € (Hy, H;) are said to belong to a one-

parameter family. The condition (see Fig. 3.3)

0
-a-}:-]“TH#O for He(H1,H2)

is referred to as the non-zero twist condition. If Eqn. (3.1) is violated, we will

see that interesting dynamical phenomena may occur.
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(3) A homoclinic orbit is an orbit which connects a hyperbolic fixed point g5 to
itself. Or, in other words, a branch of W*(qx) and W*(q4) coincide as shown in
Fig. 3.4. If the region interior to a homoclinic orbit contains only periodic orbits
around an elliptic fixed point g., then those periodic orbits typically belong to
a one-parameter family parametrized by H € (Hy,H;) where H; = H(q.)
and H, = H(qn) as shown in Fig. 3.4. The period, T, approaches 27/, as
H — H(q.) where Q. is the absolute value of the eigenvalues of the linearized

equations at g., approaches infinity as H — H(qp).

(4) A branch of W*(gs) or W*(q1) come together at a sink at infinity forming two
heteroclinic orbits (Keith and Rand [1985]).

(5) An unbounded orbit approaches infinity in both positive and negative time.

Now we consider the solution structure in the § — ( phase space corresponding
to different parameter values (xg,09). The curves S'i,Gi:,Ifh,Iét,U:t and R in
Fig. 3.5 are called bifurcation curves and define the boundaries of the regions in
the (xo,00) plane corresponding to topologically distinct orbit structures. Note
that the bifurcations on G* and U¥ are associated with the singularities at I = 0
in Eqn. (2.9) and they are not bifurcations in the § — ¢ phase space in a strict
sense. However, since the UEV motion exhibits qualitatively different dynamics
upon crossing these curves, we treat them as bifurcations. We now give a brief
description of the dynamics near the bifurcation curves S1,G™, I1+, I;, Ut and R.
The description for S7,G~,I] and I, follows by the symmetry of the system as we
discussed in the previous chapter. See Appendix 2 for derivation of the bifurcation
curves. The numbers 1%, ... 17% 18,19,20,21 and 22 label the phase portraits in

the different regions shown in Fig. 3.13.
S*: Saddle-node bifurcation

As we cross ST from above to below, (e.g., in crossing S* from 7% to 5%, 8% to
10%, or 17% to 15 as shown in Fig. 3.13) a hyperbolic fixed point, ¢}, and an
elliptic fixed point, ¢}, are born on the positive (-axis (p = 3 ) with g7 above
gt as shown in Fig. 3.6. Since this is a Hamiltonian saddle-node bifurcation, a
homoclinic orbit connecting g; to itself and surrounding ¢}, is born at the same

time. The interior of the homoclinic orbit contains a one-parameter family of
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periodic orbits whose direction of motion is counterclockwise (c-c) around ¢} .
For {ko,00) above both ST and I} (e.g., 7% in Fig. 3.13), the § — ¢ phase
space consists of only unbounded orbits with ¢ ~ 7 —sin(5=) as 7 — —oo
and ¢ ~ sin(3X) as 7 — oo where for sin(-) we take the principle value. As
we cross St above I (e.g., in crossing St from 7t to S* in Fig. 3.13), the
saddle-node bifurcation takes place; however, the unbounded orbits are still
the typical motion in the § — ( phase space. We will discuss the saddle-node
bifurcation that occurs on crossing St below I later. Note that fixed points

born through the saddle-node bifurcation remain on the positive (-axis for any

(Ko,00), (09 > 0) as long as the fixed points exist.
Global bifurcation at the origin

As we pass Gt from above to below (e.g., on crossing G* from 5 to 3%, 10%
to 12, or 15% to 13* in Fig. 3.13), the homoclinic orbit crosses the §-axis and
encircles the origin of the § — ( phase space as shown in Fig. 3.7. This has
important dynamical consequences for the UEV motion that we will discuss in

Section 3.2.

: Bifurcation at infinity on the positive (-axis

As we approach I;" from above (3%), g7 moves to infinity along the positive
(-axis, and finally it disappears on Ij. At the same time, the corresponding
homoclinic orbit disappears at infinity. This results in that periodic orbits

around ¢} become the typical motion in the § — ( phase space in I}.
Bifurcation at the origin for ¢

As we cross U™T from above to below (e.g., in crossing Ut from 11 to 17 in
Fig. 3.13), ¢ moves from the positive (-axis to the negative (-axis as shown

in Fig. 3.8.

: Bifurcation at infinity on the negative (-axis

As we cross I} from above to below (e.g., in crossing I} from 3% to 13+, 4+
to 14%, 5% to 15, 61 to 16%, or 7t to 17* in Fig. 3.13), an elliptic fixed
point ¢_ is born at infinity on the negative (-axis accompanied by clockwise

(c) periodic orbits around itself. If we cross I below St (e.g., in crossing I
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from 3% to 13%, 4% to 141, or 5 to 151 in Fig. 3.13), then the branches of
W*(g¥) and W*(¢j) which did not belong to the previous homoclinic orbit
coincide, forming a new homoclinic orbit enclosing a newborn ¢_ as shown in
Fig. 3.9. We call the original homoclinic orbit the inner homoclinic orbit (IHO)
and the new homoclii.ic orbit, the outer homoclinic orbit (OHO). The § — ¢
phase space is thus divided into three regions by the IHO and the OHO with

a one parameter family of periodic orbits in each region.

Now we return to the saddle-node bifurcation on S* below .

S* below I;: Saddle-node bifurcation on a periodic orbit.

As we cross St from above below I (e.g., in crossing St from 17 to 15 in
Fig. 3.13) q,f and ¢} are born on the positive (-axis through a saddle-node
bifurcation along with a corresponding IHO. Since ¢; and ¢} are born on a
(c) periodic orbit which encircles ¢, the periodic orbit turns into an OHO as
shown in Fig. 3.10. On the other hand, if we cross St from below to above
(e.g., in crossing St from 17 to 15" in Fig. 3.13), then the OHO turns into a

periodic orbit.

: Bifurcation at the origin for ¢_

As we cross U~ from above to below (e.g., in crossing U~ from 171 to 177 in
Fig. 3.13), ¢ moves from the negative (-axis to the positive (-axis as shown
in Fig. 3.11. This has important dynamical consequences that we will discuss

in section 3.2.
Ring bifurcation

As we approach R from above, ¢ moves toward the origin while both the THO
and the OHO coalesce. On R, ¢} reaches the origin and the two homoclinic
orbits turn into a circular ring of fixed points in which ¢_ disappears as shown
in Fig. 3.12. The ring of fixed points divides the 6 — { phase space into two
regions which contain (c-c) circular periodic orbits and (c¢) circular periodic

orbits, respectively. We define this bifurcation as the Ring Bifurcation.

In Fig. 3.13, we show all possible phase portraits as well as the behavior of the

period of the periodic orbits.
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3.2 UEYV motion

Having described the solutions of Eqn. (2.10) in the § — ¢ phase space as a
function of the parameter (o, 00), we now interpret these solutions in terms of the

UEV motion.

The interpretation of the dynamics of a UEV moving along a constant H curve
1s that the total excess energy of the entire flow field is conserved while the angular
momentum and excess kinetic energy of the UEV change as the UEV evolves in the
flow field. In other words, the deformation of the UEV, which results in the change
of the angular momentum and inclination angle of the principle axis (semi-major
axis), is caused so as to conserve the total excess kinetic energy through the vortex

interaction.

The bifurcation analysis was most easily performed in the § — { coordinate
system. However, for describing the motion of the UEV in physical space it will
often be more clear to return to either the (n,8) coordinates or the (I,¢) co-
ordinates. Recall from Chapter 2 that § = £, n = ¢, and I = Lﬂ:n—l-ﬁ with
(8,¢) = (V2I cos p, V2 sinp). We make the important remark that all rescalings
of time were by constant factors. This is very important when we consider time
dependent external velocity fields. Since the UEV dynamics can be understood as
the change of UEV configuration (7, 6) and/or motion of a point at the tip of UEV
semi-major axis (y/7,6), we first define the terminology for two main features of
UEV dynamics in terms of the rate of change in (I, ). We call 5{: the deformation
rate of the vortex shape and note that Z—i > 0 implies %’Tl > 0 which corresponds
to elongation of a UEV. Similarly, -3{: < 0 implies %2 < 0 which corresponds to
contraction of a UEV. Additionally, we refer to %f as the modified angular velocity

of the semi-major axis. In general, we can have %‘f >0 or %55 < 0 corresponding to

counterclockwise (c-c) motion or clockwise (¢) motion, respectively.

We next describe the five typical orbits described in Section 3.1 in terms of

UEV motion.

(1) A fixed point corresponds to a steady UEV which does not change its config-
uration (7, 8) for all time. A hyperbolic fixed point ¢, (an elliptic fixed point
ge, Tesp.) corresponds to an unstable (stable, resp.) steady UEV. Any UEV
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whose initial configuration (IC) is slightly shifted from a stable steady UEV

configuration undergoes a periodic oscillatory motion with small change in its

configuration, which corresponds to a periodic orbit around g., as we will see

in (2). This may not be the case for a UEV whose IC is slightly perturbed

from an unstable steady UEV configuration. Since all the fixed points q?l”, qF

in the 6 — ( phase space exist only on the (-axis, a UEV can be steady only at
™

some special inclination angle, i.e., §(= ¥) = & which corresponds to q: and

¢ and §(= £) = %’—' which corresponds to ¢ .

The periodic motions of the UEV can be classified into six distinct types de-
pending on 1) the direction of motion and 2) whether or not the periodic orbit
contains the origin (in the é — { plane) in its interior. If the origin is not con-
tained inside the interior of the periodic orbit then the angle ¢ cannot exceed
27. This periodic motion is referred to as oscillation. If the origin is contained
in the interior of the periodic orbit, then ¢ can increase through 27, and the
resulting periodic motion is referred to as rotation. In the case of a periodic
orbit passing through the origin, the angle ¢ becomes undefined at the ori-
gin. This critical periodic orbit is special in that it separates oscillation from

rotation. We refer to it as a periodic boundary orbit (PBO).
Hence the six types of periodic motions are

1) Oscillation about §(= £) = £. In this case the tip of the semi-major axis

of the UEV moves along a closed curve in a counterclockwise sense.
2) Rotation in a counterclockwise sense.
3) Counterclockwise periodic orbit passing through the origin.

4) Oscillation about §(= £) = 32X In this case the top of the semi-major

axis of the UEV moves along a closed curve in a clockwise sense.
5) Rotation in a clockwise sense.
6) Clockwise periodic orbit passing through the origin.

We illustrate different types of periodic orbits in the § — { phase plane in Figs.
3.14a and 3.14b, the right dashed hatched region, the right solid hatched region,
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the left dashed hatched region and the left solid hatched region correspond
to (e-c) oscillation around 6(°=9 = Z (c-c) rotation, (c) oscillation around

§(9) = 3X and (c) rotation, respectively.

Also note from Fig. 3.13 that the regions corresponding to periodic orbits in
the § — ( phase space are either unbounded or bounded by homoclinic orbits

depending on parameter value (g, 09). We discuss this in more detail next.

A homoclinic orbit corresponds to a UEV motion which asymptotically ap-
proaches an unstable steady state in positive and negative time. The motion
is said to be rotational or oscillatory depending on whether or not the orbit
encloses the origin of the § — ( phase space. Furthermore, homoclinic orbits
define boundaries separating regions of qualitatively distinct UEV motions. If
IHO (inner homoclinic orbit) is the only homoclinic orbit in the é — ¢ phase
space, then it divides the § — ¢ plane into an interior region corresponding
to a (c-c) periodic motion and an exterior region corresponding to irreversible

elongation which we discuss next.

When both THO and OHO (outer homoclinic orbit) exist in the é — ¢ phase
space, for some values (kg,d¢), they define the boundaries of three regions: the
interior of IHO ((c-c) periodic motion), the region bounded by IHO and OHO
((c) periodic motion) and the exterior of OHO ((c) periodic motion).

The orbits connecting q?{ to infinity, i.e., the branches of Ws(q:) and W*(q¥)
which don’t belong to a homoclinic orbit, correspond to irreversible contraction
of UEV (on W*(g})) along the contraction axis 6. and irreversible elongation

of UEV (on W*(q)) along elongation axis 6. where

fie - Ko
f. =< —sin™' | —
5 sin (20())

Unbounded orbits correspond to irreversible elongation of UEV along 6. and
.. These orbits are classified into two types depending on the direction of
elongating motion, i.e., (c-c) elongation and (c) elongation. The boundaries of

these two regions are defined by some orbits as follows.



- 33 -

Case 1: The origin of the § — ( phase space is not enclosed by a homoclinic
‘orbit. An unbounded orbit which goes through the origin defines the
boundary as shown in Fig. 3.15.

Case 2: The origin of the §—( phase space is enclosed by a homoclinic orbit.

W*(q}) and W*(q;) which connect g7 to infinity define the boundary.

The orbits which define the boundary are called unbounded boundary orbits
(UBQO’s). The unbounded orbits above UBO’s in the § — ( phase space cor-
respond to (c) irreversible elongation and the unbounded orbits below UBO’s
corresponds to (c-c) elongation. In Figs. 3.15 and 3.16, the vertical (horizontal

resp.) hatched region corresponds to (¢) ((c-c) resp.) irreversible elongation.

Table 3.1 shows all possible motions of the UEV and their corresponding orbits
in the § — ¢ phase space together with the boundary orbits which divide regions
corresponding to different types of UEV motion. In a steady external linear flow
field, the UEV motion associated with orbits in the § — { phase space are regular

and no transition between qualitatively different regions of motion can happen.

Finally, for a given external flow field parameter value (kg,0q), all possible
motions of UEV are summarized in Fig. 3.17 where 1¥ ~ 17%,18 ~ 22 correspond

to the parameter set values in the bifurcation diagram (Fig. 3.5).

3.3 The kinetic energy decomposition

UEV motion for a given initial configuration (Iy, ¢ ) and an external linear flow
field (0g, ap = 0, ko) is uniquely determined so as to conserve the total excess kinetic
energy H of the entire flow domain. In this section, we discuss the decomposition of
H into Hg, Hs and Hp as described in chapter 2 and describe how the external flow
parameter ( kg, og) influences the UEV dynamics in terms of these three components
of kinetic energy. Fig. 3.18abc shows the level curves of Hg, Hs and Hg in the 6 —(
phase space. Because the time variable 7 is normalized by the UEV vorticity wg,
the sign of the Hamiltonian functions Hg and Hg corresponds to the direction of the
motion induced by each effect. For example, if Hg > 0, then corresponding motion

induced by the straining effect is in the same direction as self-induced motion, i.e.,
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%‘fls > 0. Similarly, Hs < 0 corresponds to %—‘f—ls < 0. Note that every level curve
of Hg is eircular, and Hg has its minimum at the origin (I = 0) with Hg(0) = log 4.
This results in all periodic motion being (c-c) rotations when ko = 09 = 0. In Fig.
3.18b which shows that the level curves of Hs, ¢ = 0 and ¢ = 7 correspond to
contracting and stretching axes of the straining field, respectively. Hs is negative
for 0 < ¢ < 7 because the flow field induced by the straining effect acts against
the self-induced motion (i.e., the induced flow field is in clockwise direction). Hg is

positive for 7 < ¢ < 27 because the induced flow field is in the same direction as

n

the self-induced motion. The straining effect is most effective on ¢ = 7, %71‘ (le., a

level curve of Hg is tangent to a level curve of Hr on those axes).

Any level curve of Hp is circular as is shown in Fig. 3.18¢c. If ko > 0 (i.e.,Hg >
0), then the flow field induced by the background vorticity is in the same direction as
the self-induced motion. Hg has one minimum at [ = 0, and all the corresponding
motions are (c-c). Similarly for kg < 0, Hg is negative with one maximum at I = 0,

and all the corresponding motions are (c).
The asymptotic behavior of Hg, Hs and Hg for I < 1 and I > 1 is as follows

logd+11 Ix1
HEN{ log I I>1

—200VIsin¢ Ikl
Hg ~ X
—oglsine I>1

Ko

Hp = ?I .
For I >» 1 the UEV dynamics is governed by the external flow field. Let us first
consider the mechanism of the irreversible elongation. Irreversible elongation, which
takes place when Hs dominates Hg for I > 1, is possible for oo > J%’-l Another
way of understanding irreversible elongation is as follows. On the elongation axis
for I > 1, a UEV deforms without change in ¢ i.e., change in I does not affect H
although change in ¢ does affect H, i.e., %—'}—I = 0 and %HJ # 0 on the elongation
axis. Note that if Hg dominates Hg for I >> 1, then the UEV undergoes periodic

rotation with a large aspect ratio.



- 35 —~

Having described the behavior of each of the three components of the kinetic
energy, we interpret the bifurcations in phase space in terms of a superposition of
the effects of Hg, Hs and Hr. We start with 09 = 0. The number of regions and

bifurcation curves are as listed in Fig. 3.5, and see Fig. 3.13 for the phase portraits.

22: H has one minimum at I = 0 and hence all the periodic motion are (c-c)

rotation without deformation.

20: Hg and Hg have opposite sign, where Hg (Hp resp.) dominates Hr (HEg
resp.) for I < Iy = -(7§; +4) (I > I resp.) H has one minimum at [ = 0,
and a ring of maxima at I = Iy. This results in (c-c) rotation for I < Ip, steady

UEV at I = I; and (c) rotation for I > I, without deformation.

18: Hg and Hp have opposite sign but Hr dominates Hg in the entire phase
space. H has one maximum at I = 0 and hence all the periodic motions are

(c) rotation without deformation.

When a small straining effect is imposed (i.e., we move off the k¢ axis), the circular
symmetry breaks down, and a small region corresponding to oscillating UEV’s is
born near I = 0. (Note: the notation 17 (< 22) means moving of the ¢ axis from
the segment with phase portraits 22 into the region with phase portraits 17.)

v

17 (<« 22),13%(« 20): The minimum energy point moves up on ¢ = 7, and a
region corresponding to (c-c) oscillation is created. Furthermore, for the region
13*, the ring of maximum energy breaks down and forms two homoclinic orbits

enclosing a region corresponding to (c) oscillation.

17* (<« 18): The maximum energy point moves down on ¢ = %r, and a region
corresponding to (c) oscillation is born.

As the straining effect becomes stronger, the minimum or maximum energy points

move away from I =0 on ¢ = Z or %ﬂ', respectively. Note that whether or not Hg

and Hp balance determines the existence of a region corresponding to irreversible

elongation on the phase space. (Note: the notation 3+(1;1: 1%) implies crossing the

bifurcation curve Il+ from the region with phase portraits 1* into the region with

phase portraits 3%.)
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+
3t (i}: 1*): On I, Hs and Hg balance on ¢ = -’% at I+o00. In ST, there exists one
local maximum and one local minimum of excess kinetic energy on ¢ = 7. The

local maximum , which is a saddle in the phase space, provides a homoclinic

orbit going around the local minimum.

7+ (217'{“), 5+(I<2:15+), 3+( 7 13*): On I, Hs and Hg balance in ¢ = 2F
at I 4+ oo, and H becomes positive on ¢ = g—f with -—H > 0 resulting in
disappearance of the maximum energy point. It follows that, above I, there

exists a region corresponding to irreversible elongation of the UEV.
Saddle-node bifurcation is a combination of effects from three excess kinetic energies.

7t (5;5+), 17"’(“:15*'): On S, the straining effect becomes strong enough to

smooth out the local maximum and minimum on ¢ = 7.

Now we examine how three components of the excess kinetic energy, Hg, Hs
and Hpg, interchange during the motion of UEV while the total excess kinetic energy

is conserved for a given external flow field (¢, 09). From Eqn. (2.9), we have

d d d d
dTH Or—"(-i-;HE-i-E;Hs-%-EHR.

The interchange rates between each excess kinetic energy are

_c_l_ 1 iI___ I
dr E_I+4d'r‘00 I+4

d 1 dI KZQ 5
drHS_“<T+'Z+2>dr _"( Tra ™t VI+4>C°S“”

-f-l—HRz Ko -C—q = ko VI? +4lcosyp
dr 2 dr 2

cos @

Each of rate of chnges in kinetic energies are evaluated on the orbit defined by a
constant H curve. Since every orbit is symmetric around ¢ = 7 and %W for any
z
2

parameter (Ko, 09 ), we only have to consider the case —F < ¢ <
%HE For any orbit, —HE > 0 with %= HE =0ongp==7.

%HS: For kg > 0, dTHg < 0 on any orbit with —-—Hs =0on ¢ = I%. For
—-% < 59 < 0, E‘%;Hg may change its sign if the orbit crosses Iy = —;—5 —4. The
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geoetrical relations between Iy and orbits in 137 and 15% are shown in Fig.

3.19. For ko < —%, £ Hs > 0 with £Hs =0 on ¢ = +%.

f;HR: For kg > 0, d_{—'HR > 0 with gd;HR =0 on ¢ = 5%’5 For kg < 0,

ji;HR < 0 with Ed;HR = 0 on ¢ = £%. For any orbit, f;HE > 0 with
LHg=0o0n¢==%Z.

Furthermore, since our analysis of the UEV motion in unsteady external linear flow
fields mainly concerns the dynamics along homoclinic orbits and periodic orbits as
we will see in chapter 3, we examine ad;HE, E‘I;HS and f;HR on those orbits. For
homoclinic orbits, we choose 7 = 0 on (—axis (i.e., §(0) = 0) and examine for 7 > 0.
For periodic orbits, we choose 7 = 0 on (—axis with {(0) < C(%}i), and examine

forO<T<OI-2-Ii.

f;HE:
> 0 onIHO
—iH < 0 on OHO
dr"F) > 0 on (c-c) periodic orbit
< 0 on (c) periodic orbit
'j{':HRI
iH > 0 onIHO for kg >0
dr Bl< o on THO for kg < 0
{< 0 on OHO
> 0 on (c-c) orbit for kg >0
< 0 on (c-c) orbit for kg < 0
{< 0 on (c) periodic motion .
dir-HS:

For (—ld;Hg, we use the following fact.

d d
“Hs=—(H—Hp—H
——Hs=—(H - Hg - Hg)

(Heg + Hpg) (3.1)

dal
dr

e
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with

3 1 +_fi_0 <0 for I < I
I+4 2 >0 for I > I .

As a consequence,

d
—Hs{< 0 onIHO
dr

{< 0 on (c-c) orbit

> 0 on OHO for I < I,
< 0 on OHO for I > I,

> 0 on (c) orbit for I < Iy
< 0 on(c)orbit for I > I

Note from Eqn. (3.1) that j%:HE dominates Ed;HR for I < I and f;HR domi-

nates ad;HE for I < I,. E‘iT-HS balances the difference of a‘—i;HE and %HR.

Some typical behavior of -dii;HE, d%_Hg and %HR are shown in Fig. 3.20 for some pa-
rameter values, i.e., (kg = 0,09) = (0.,0.05) for (c-c) periodic orbits (corresponding

to oscillation and rotaion), and inner homoclinic orbit.

We will see later when we introduce the Melnikov technique that the rate of
change in Hs and Hp are very important to understand the UEV dynamics in

unsteady external flow field.
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3.4 Figures and table for Chapter 3

Figure 3.1 A hyperbolic fixed point g, a stable manifold W?*(gs)
and a unstable manifold W*(q¢y)

qH(7)

Figure 3.2 An elliptic fixed point ¢,
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Figure 3.3 One parameter family periodic orbits
around an elliptic fixed point ¢,

Figure 3.4 A homoclinic orbit and associated

one parameter family periodic orbits
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Figure 3.5

Bifurcation diagram in kg, 0o space
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Figure 3.6 Saddle-node bifurcation across S+ above I,

Figure 3.7 Global bifurcation across G+
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Figure 3.8 Bifurcation at the origin regarding ¢} across U+

Figure 3.9 Bifurcation at I = oo on ¢ = 37/2 across I below S+
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Figure 3.10 Saddle-node bifurcation on S* below I
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Figure 3.11 Bifurcation at the origin regarding ¢} across U~
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Figure 3.12 Ring bifurcation across R
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Region in
(g, Gp)

The 5 Corresponding
phase space pariod on {—axis

Possible solution

o

aq
(c—c) periodic orbits

Qe

q
(-c) periodic orbits

(c—c) periodic boundary orbit
homoclinic boundary orbit
unbounded orbits

qq

a,

{c—~c) periodic orbits
homociinic boundary orbit
unbounded orbits

g;

(dc) periodic orbits
homoclinic orbit
unbounded orbits

unbouns’

Figure 3.13 Possible UEV motion
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(G~c) periodic orbits
(c~c) boundary orbit
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(c) perniodic orbits
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(c—c) periodic orbits
IHO, OHO

(c) periodic orbits

(c) periodic orbits
(c) periodic boundary orbit

a=
(¢} periodic orbits
(c) periodic boundary orbit
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Figure 3.14 UEV periodic motion
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Figure 3.15 Unbounded orbit

Figure 3.16 irreversible elongation
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Region in
(g, Gp)

Possible UEV
motion

Boundary
orbit

stable steady motion
(8,=4)

(o) OSC. (8= w4)
(c=c) C.P.M.

(c~c) rotation

(e—c) PBO

l
[

stable steady motion
(8y=n/4)

unstable steady motion
(o-c) OSC. (8= ni4)
{o~c) C.P.M.

{c~c) rotation

{c—c) elongation

(c) elongation

{c—c) PBO

L

stable steady motion
(8= ni4)

unstable steady motion
(c~c) OSC. (8= ni4)
(c—c) elongation

{c) elongation

I |l

e |

stable steady motion
0= na)

unstable steady motion
(o-c) OSC. (07 = wa)
(c—c) elongation

(c) elongation

IHO
uBo

=
IS

{(c—c) elongation
(c) elongation

Figure 3.17 Possible UEV motion
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W

stable steady motion
(8,=w/4 and 6,= 3x/4)
unstable steady motion
(c—c) OSC. (eg") = x/4)
{c—) C.P.M.

(o~c) rotation

(o—c) H.B.M.

(c) OSC. (8 = 3r/4)
(c) HB.M.

(c) rotation

{c—c) PBO

4

stable steady motion
(8,=/4 and 6= 3x/4)
unstabie steady motion
(c—c) OSC. (eg*c’ = n/4)
(c—c) H.B.M.

(c) OSC. (8\ = 3x/4)

(c) H.B.M.

(c) rotation

IHO

stabie steady motion
(8,=x/4 and 6= 3x/4)
unstable steady motion
(c—c) OSC. (8\°°) = wa)
(c—) H.B.M.

(c) OSC. (8{) = 3x/4)

() C.P.M.

(c) rotation

(c) H.B.M.

IHO
oBoO

(c) PBO

stable steady notion
(6y= 3n/4)

(c) OSC. (8{= 3wa)
{c) P.P.M.

(c) rotation

(c) PBO
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Figure 3.18 Level curves of excess kinetic energies
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Figure 3.19 Geometrical relation between I and orbits
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Figure 3.20 Rate of change in Hg, H, and Hg on some unperturbed orbits
a) (c-c) periodic orbit b) IHO c) (c) periodic orbit
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dH/dr on Unperturbed Orbit vs. T
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on (c) periodic orbit

gy = 0.080
Ky = —.180

¢ ~(c) oc- = —12.7

————— aHs/dr (strain)

—————— aHe/dr (rotation)

aHa/dr (engle)
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Orbit in the cor.rgpi%ndmg
§ — o phase space UEV motion (o)
qef stable steady motion (6o = %) 1,3,5,13,14,15
fixed q; stable steady motion (8 = 2*) 13,14,15,17
points . 4
n unstable steady motion (6o = %) 3,4,5,13,14,15
(C-C) oscillation (Bf)c'c) =1I) 1,3,4,5,13,14,15
periodic (C-C) rotation 3,13
(C-C) pbo | (C-C) critical periodic motion 3,13
(C) oscillation (85°°) = ) 13,14,15,17
orbits (C) rotation 13,14,151,17
(C-C) pbo | (C-C) critical periodic motion 3,13
homoclinic ho (C-C) homoclinic boundary motion 3,4,5,13,14,15
orbits oho (C) homoclinic boundary motion 13,14,15
unbounded ubo irreversible contraction and elongation 3,4,5,7
orbits (C-C) elongation and (C) elongation 3,4,5.7

Table 3.1 Regular UEV motions in steady external flow field

for (Ko, 0p) and thier corresponding orbits
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Chapter 4

UEV DYNAMICS IN AN
UNSTEADY EXTERNAL LINEAR FLOW FIELD

We study UEV dynamics in an external linear flow field which is slightly per-
turbed in a time periodic manner. The UEV dynamics drastically changes under
the perturbation and a few types of new motion become possible. Our analysis
will consist of the following four steps, 1) describe a mathematical method, the
Poincaré map technique, which is useful for studying systems of two-dimensional
nonautonomous O.D.E.’s with periodic dependence in time (the perturbed system),
2) examine Eqns. (2.9) and (2.10) with small time periodic perturbation in the pa-
rameters using the Poincaré map technique together with dynamical systems ideas
so as to obtain all the possible solution types (qualitative analysis), 3) interpret
those solutions in terms of UEV dynamics (i.e., possible motions for UEV), and 4)
use an additional mathematical method, the Melnikov function technique, to give
some quantitative analysis in relation to the perturbation types and perturbation

frequency effects.

4.1 The Poincaré map technique

Recall that the solutions to Eqns. (2.9) and (2.10) for a given constant param-
eter value (kg,00) (ag = 0 w.lo.g.) can be represented by invariant curves in the
6 — ( phase plane, i.e., a level set of the Hamiltonian function. However, when the
system is perturbed periodically in time, the dimension of the system is effectively
increased by one, with the result that a level set of the Hamiltonian function in
the § — ( phase space at some specific time 7 may not give any useful information
concerning the dynamics, and following the solutions with respect to all the ini-
tial conditions for all time is hardly possible. To conquer the difficulties, we use

the Poincaré map technique. This technique offers some advantages in the study
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of two-dimensional nonautonomous O.D.E.’s with periodic dependence in time. In
particular, numerically or analytically computed global structure of the orbits, for
example invariant manifolds associated with a fixed point, gives insightful display
of dynamics. As we will see later, the Poincaré map technique together with other
dynamical systems theories enables us to abstract much information for the under-
standing of the dynamics. Now let us briefly describe the construction of a Poincaré
map. Eqn. (2.9) with time periodic perturbation in its parameter can be represented
in the following form

% o) +esla. )

g=(6() e R*.

where ¢ is time periodic with period T = 27/, i.e, for any ¢ and 7, g(¢,7) =

(4.1)

g(¢, 7 + 27 /Q). By defining a new function u(7)
w(r) = Qr mod2x € (0,27] ,

we can rewrite Eqn. (4.1) as a three dimensional autonomous O.D.E.’s
(4.2)

A two dimensional cross section of three dimensional space of Eqn. (4.2) i1s given by

E={(6,¢u)lu=pe(0,27] }.

The Poincaré map P* of T# to B* is defined as
pP# : o by o#
I3 I3 i+ 2m f+ 2T
((Brak)  ~  (aEEEEEE)

where the dimension of the phase space of Eqn. (4.2) is reduced by one. The Poincaré

map associated with a two dimensional time periodic Hamiltonian system has the
following properties: 1) any two cross section L#! and Y#? of iy, g2 € (0, 27] have
topologically equivalent structure which is referred to as variation of cross section.
Hence from now on we eliminate the superscript z for convenience 2) it preserves

orientation, and 3) it preserves area. See Wiggins [1988] for more details.
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Before embarking on the study of the perturbed phase space structure, we go
back to the unperturbed system and examine the behavior of some typical orbits
in the Poincaré map with return time 7 = 2#x/Q. It is clear that an orbit in the
Poincaré map follows the invariant curve defined by a level set of the Hamiltonian
function. However, the orbit is now a collection of points instead of a continuous
curve. For example, a homoclinic orbit follows W*(q,) and W?(qn) of ¢, and
approaches ¢, under positive and negative iteration. Dynamics along invariant
circles corresponding to periodic orbits of O.D.E.’s may be classified into two types
in the Poincaré map depending on the rotation number p which is a ratio of the
period TH of the corresponding periodic orbit of the O.D.E.’s and the Poincaré
return time T = 27/Q, i.e., p = TH /T (see Arnold and Arez [1968]).

a. p = & = rational, i.e., m and n are relatively prime integers : During m iterates
n 9 M

of the Poincaré map, every orbit on the invariant circle makes n complete
revolutions along the circle and returns to its original position. In other words,

every point on the circle is a period m point.

b. p = irrational : Any orbit on the invariant circle never comes back to its original

position in the Poincaré map, i.e., the orbit is dense along the circle.

4.2 Some typical orbits of the perturbed system in the Poincaré
map

We are concerned with how unperturbed structures of some typical orbits
which we saw in the previous chapter break down under small time periodic per-
turbation and provide mechanisms for new classes of dynamics. These include, 1)
breaking-up of the invariant manifolds of a hyperbolic fixed point which provides
mechanisms for chaos and transition dynamics, and 2) irregular and quasiperiodic
motion associated with the breaking up or persistence of the invariant circles of the
unperturbed system. We mean by the transition dynamics that the UEV changes
its type of motion (for example (c-¢) oscillation to (c-c) elongation) which occurs
when the corresponding orbit crosses the boundary between two regions describ-

ing different types of the UEV motion. Furthermore, we say the UEV motion is
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chaotic when the following conditions hold, 1) slight difference in its initial config-
uration results in totally different types of the UEV motion 2) the period of the
UEV periodic motion can be arbitrarily long, and 3) there exist infinitely many
initial UEV configurations which satisfy the previous two conditions. (see Devaney
[1988] for the definition of the chaotic invariant cantor set). We will discuss tran-
sition dynamics and chaotic UEV motion in detail later. In this section, we take a
geometrical approach together with some analytical techniques, 1.e., the Melnikov
functions (Melnikov [1963]). They provide us physical and insightful information

for understanding of the perturbed dynamics.

4.2.1. Homoclinic tangle

Here we geometrically show how unperturbed structure along a homoclinic
orbit breaks up and forms a so-called homoclinic tangle which provides a mechanism
for complicated dynamics, such as transition dynamics and chaos. Since the purpose
of this research is to understand UEV dynamics in the time periodic external linear
flow field, we study two cases corresponding to unperturbed phase structures of
the UEV motion, i.e., case 1: there exists only one homoclinic orbit (the phase
structure is similar to the one corresponding to UEV motion for a parameter value
given in 3%,4% and 5 of the bifurcation diagram (Fig. 3.5), and case 2: there exist
two homoclinic orbits with one encircling the other (the phase structure of UEV
motion for a parameter value set given in 13%,14% and 15%). For both cases, we
first describe generic dynamics regarding the breaking up of the homoclinic orbit(s)
and then interpret the UEV motion in time periodic unsteady external linear flow

field for corresponding parameter value (xg, 0¢).
case 1

In the Poincaré map, W?*(qs) and W*(q,) persist, but may break up and in-
tersect transversely (see Frenichel[1971] and Hirsch et.al.[1977]). Because of the
invariance of the manifolds, the iterations under the Poincaré map result in a struc-
ture referred to as the homoclinic tangle as shown in Fig. 4.1. Whether or not
W?(qn) and W*(qp) intersect transversely is determined analytically by the Mel-

nikov technique which detects the transverse intersections in the following manner.
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The first order term, up to a known normalization factor, of the Taylor expan-
sion of the ‘signed’ distance d(7g, €) from W*(qx) to W?(qs) along the unperturbed

homoclinic orbit ¢n(7) is given by

M(rp)

A70.€) = TR0l

+ O(e?)

where

Mim) = [ T (F A an(r) T+ o)

— o0
f and ¢ are given in Eqn. (4.1), 7o is a parameterization variable along ¢x(7), A
denotes the usual wedge product and M(7p) is called the Melnikov function. The
Melnikov theorem states that a simple zero of M(7p) (i.e., M (7o) =0, %M(m) #
0) implies the transverse intersection of W*(gqs) and W?(qp). Furthermore, if all
the intersection are transverse, then M(7y) has an even number of simple zeroes
per perturbation period, i.e., for 7y € (0, 29—"] The geometrical explanation of the
Melnikov function is shown in Fig. 4.1. As we will see later, the Melnikov function
provides not only the geometrical meaning but also some physical consequences of

the perturbation.
< Transition dynamics >

In order to study the transition dynamics, i.e., how an orbit crosses the bound-
ary between two distinct regions, we first describe so-called transport dynamics.
See Rom-Kedar et.al. [1989] and Rom-Kedar and Wiggins [1989] for more details.
The relation of transport dynamics and transition dynamics through the homoclinic
tangle is as follows. The transport dynamics through the homoclinic tangle involves
not only a single orbit but also all orbits which belong to a part of one of the two
distinct regions. The region which crosses the boundary is defined by segments of
W*(qn) and W?*(qp) which form the homoclinic tangle as we will see in detail later.
We call this region a lobe. The transition dynamics associated with the transport
dynamics concerns how an orbit which belongs to a lobe crosses the boundary be-
tween two distinct regions. Hence describing the transport dynamics through the
homoclinic tangle is, in a sense, equivalent to describing the transition dynamics

through the homoclinic tangle.
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Now we examine how the dynamics associated with the homoclinic tangle plays
a significant role in the transport between two regions separated by the segments of
W*(qr) and W*(qp). To demonstrate the transport dynamics, we begin with some

definitions.

Definition 4.1. Consider a point p € W*(qn) N W*(qn) and let gpp® (qnp’
resp.) denote the segment of W*(gqs) (W?*(qp) resp.) from ¢n to p on W*(qs)
(W?*(qu) resp.). Then p is called a primary intersection point (pip) if ¢xp* and

qrp’ intersect only in p as shown in Fig. 4.1.

Definition 4.2. Let p; and p; be two adjacent pip’s. We refer to the region
bounded by the segments of W*(g,) and W*(qs) which connect p; and p; as
a lobe L as shown in Fig. 4.1.

The area of the lobe u(L) is computed using the Melnikov function
T2
w(L) = e/ M(7)dry + O(€?) ,

where 7, and 7, are parameterization variables corresponding p; and p; respectively.
Now let po be a pip which defines a region bounded by grpy U ¢npy nearest to the
unperturbed homoclinic orbit as shown in Fig. 4.2. We refer to this region as A.
We want to describe the mechanism of the transport dynamics across the boundary
OAB of A. Note that the regions C is separated from other regions by W?*(¢)) and
W*(qs) which do not intersect any other manifolds. Because of the invariance of

the manifolds, no orbit can across the boundary 0BC (i ., no transition).

Definition 4.3. A lobe is called an exterior lobe, if no part of the lobe is

contained in A. A lobe is called an interior lobe if it is not an exterior lobe.

Furthermore, we make some ordering of the lobes as shown in Fig. 4.3 so that the

following relation holds

P(E;)=Ei1n
P(D;) = Diyn ,
where E; (j < 1) and D; (j < 1) are exterior lobes, Ex (k > 1) and Dy (k > 1) are

interior lobes and n corresponds to the number 2n of the simple zeroes of M (1)
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per perturbation period. The transport mechanism is completely governed by the
lobe dynamics in the following way: 1. after one cycle of the perturbation (one
iterate of the map) Ey,---, E_,4+; enter region A. Similarly, Dg, -+, D_, 41 leave
region A, and 2. the lobes maintain their orderings which results in complete order
in the transport dynamics. Recall that the number, n, of the lobes per cycle is
related to the number, 2n, of transverse intersection of W*(gqx) and W?*(qs) per
cycle, and hence it is also related to the number, 2n, of the simple zeros of M (7).
One of the significant consequences of the transport mechanism governed by the
lobe dynamics is that one can precisely predict how long it takes for a point to
cross the boundary 0A of A depending on which lobes contain that point. Another
significant consequence is that one can compute “the resident time distribution”
i.e., how long the points in E; can stay in A which is determined by how images
of Ey under the Poincaré maps intersect with Dy,--- D, as shown in Fig. 4.3. For
more detailed discussion concerning the transport dynamics, see Rom-Kedar et. al.
[1988]. As we mentioned earlier, the transition dynamics can be understood as how

an orbit crosses the boundary 0AB associated with the transport dynamics.

The corresponding UEV dynamics for various (kg,0p) is the following. For
(Ko, 00) in 3T in a steady external linear flow field, the homoclinic orbit defines the
boundary of (c-c) rotation and (c-c) elongation. Hence in the time periodic external
linear flow field, the UEV may change its type of motion between (c-c) rotation and
(c-c) elongation. The lobe dynamics enables us to compute the residence time (i.e.,
how long the UEV can undergo (c-c) rotation before it changes its type of motion
to (c-c) elongation). Once the UEV changes its motion from (c-c) rotation to (c-
c) elongation, then it can never change its type of motion to (c-c) rotation. For
(Ko, 09) in 51, the same argument for 3% holds, but (c-¢) rotation is replaced by
(c-¢) oscillation. For (kg,00) near 41, the homoclinic tangle may contain the origin
of the coordinate system. This means that the argument for 3% holds, but (c-c)
rotation is replaced by (c-c) rotation and (c-c) oscillation. Note that the transition
between (c-c) rotation and (c-c) oscillation can occur an arbitrary number of times
because the corresponding regions for both types of motion lies in the same side of

the boundary defined by parts of W*(gq,) and W?*(qy) .
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< Chaos >

Now let us describe another important dynamics associated with the homo-
clinic tangle, i.e., chaotic dynamics. The so-called horseshoe map associated with
the homoclinic tangle provides a complicated dynamics which we will briefly demon-
strate now. See Wiggins [1988], Guckenheimer and Holmes[1983], Greenspan and
Holmes [1984], Holmes [1984] and Holmes and Marseden[1984]. In doing so, we
assume n = 1 for convenience, i.e., only n = 1 lobe enters A across 0AB per cycle.

For n > 1, the mechanism is the same as the case for n = 1.

Consider a region denoted by V as shown in Fig. 4.6. After four iterates of the
Poincaré map, P®(B) returns onto itself as a horseshoe shaped domain having been
stretched and folded as demonstrated in Fig. 4.6. It can be shown, see Wiggins
[1988], that V contains an invariant Cantor set A such that P™|,, for some m > 4,
1) a countable infinity of unstable periodic orbits of all possible periods, 2) an
infinity of unstable nonperiodic orbits, and 3) two points initially close together
eventually end up in completely different positions. A is called a chaotic invariant
Cantor set for P™ associated with the horseshoe map. Note that V 1s contained in

A and hence the chaotic dynamics exists only in the interior of A.
We make one more definition.

Definition 4.3. We call a region which contains the homoclinic tangle and
provides the mechanism for transition dynamics and chaotic dynamics as the

chaotic transition region.

Note that the size of the chaotic transition region is closely related to the size
of a lobe, and hence the Melnikov function M(7y) defines the size of the chaotic

transition region.

In terms of the UEV motion, the chaotic Cantor set along the horseshoe map
means the following, 1) slight difference in its initial configuration results in totally
different type of the UEV motion, 2) the period of the UEV periodic motion can be
arbitrarily long, and 3) there exist infinitely many initial UEV configurations which
satisfy the previous two conditions. For (kg,00) in 3%, the UEV may undergo

chaotic (c-c) rotation. For (k¢,09) in 51, the UEV may undergo chaotic (c-¢)
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oscillation. For (kg,0q) near 47, the UEV may undergo chaotic motion between

(c-¢) rotation and (c-c) oscillation.
case 2

When two homoclinic orbits break up under the time periodic perturbation, the
resulting homoclinic tangle structure may look as shown in Fig. 4.5. The tangles of
inner and outer homoclinic orbits generically intersect and wrap around themselves.
The dynamics along the tangles are again governed by those tangles which provide
the transport between three regions as shown in Fig. 4.5 and the chaotic dynamics.
The mechanisms of the transport and chaotic dynamics are basically the same as
the ones for case 1, however, they are more complicated. For example, we need
careful consideration whether or not some lobe may come back onto itself after
some iterates of the Poincaré map because it effects the transport dynamics. The
chaotic region can exist on both side of the boundaries along the heteroclinic tangles

1n case 2.
< Transition dynamics and chaotic motion >

The corresponding UEV dynamics for various (kg,09) is the following. For
(ko,00) in 137 in the steady external linear flow field, two homoclinic orbits define
the boundaries of (c-c) rotation, (c¢) oscillation and (c) rotation. Hence in the time
periodic external linear flow filed, the UEV may change its types of motion between
(c-c) rotation, (c) oscillation and (c) rotation. The lobe dynamics enables us to
compute the residence time (i.e., how long the UEV can stay in the same type
of motion before it changes type of motion to the other). Note that the UEV can
change its type of motion arbitrary times because there exist two homoclinic tangles
intersecting each other. Furthermore, the chaotic periodic motion of UEV exists
for (c-c) rotation, (c) oscillation and (¢) rotation along two homoclinic tangles. For
(Ko, 09) in 157, the same argument for 13* holds, but (c-c) rotation is replaced by
(c-c) oscillation, and (c) oscillation and (c) rotation are replaced by two kinds of (c)
rotation. For (kg,0q) near 141, the homoclinic tangle may contain the origin of the
coordinate system. This means that the argument for 3% holds, but (c-c) rotation

is replaced by (c-c) rotation and (c-c) oscillation.
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4.2.2 Breaking-up of the invariant circles of the unperturbed system

In this section, we study how the unperturbed dynamics along the invari-
ant circles may be destroyed under time periodic perturbation. This corresponds
to irregular oscillation or rotation of the UEV. Recall that, qualitatively speak-
ing, dynamics on an unperturbed invariant circle in the Poincaré map depends on
whether or not its rotation number p is rational, where p is a ratio of the return
time of the Poincaré map 27/ and the period of the corresponding invariant circle
of natural frequency Q. In the perturbed system, again the rotation number p of
the corresponding unperturbed system plays an important role in determining the
qualitative dynamics of the orbit, although the dynamics itself may exhibit com-
pletely different behavior from the unperturbed dynamics. We discuss the possible
dynamics and their mechanisms to see how the unperturbed invariant circles may

be destroyed depending on p. Finally we describe the corresponding UEV motion.

4.2.2.1 Resonance band of order —';’f

When the time periodic perturbation is imposed, the unperturbed invari-
ant circle with a resonance relation mQF = nQ may break up and leave 2m¢ period
m points where ¢ is some integer and {2 is the perturbation frequency, Q is the
natural frequency of the unperturbed periodic orbit. Generically, of those 2m/? pe-
riod m points are m¢ hyperbolic period m points and m/¢ elliptic period m points
with alternating stability type along e-close to the unperturbed invariant circle as
is shown in Fig. 4.6 for m = 3, n = 1 and ¢ = 1. The stable and unstable invariant
manifolds of hyperbolic period m points intersect transversely and form heteroclinic
tangles while surrounding their neighboring elliptic period m points. This results
in a chain-like structure, the so-called resonance band of order 2 (henceforth RB
™). Clearly, the dynamics along a resonance band is governed by these heteroclinic
tangles through the same mechanism as we described for the homoclinic tangle,
l.e., the lobe dynamics determines the process of passage through the resonance
band, and also the horseshoe maps associated with the heteroclinic tangles pro-
vides chaotic dynamics along the band. If the orbit corresponding to the UEV

motion is contained in RB 2, then the UEV oscillates (or rotates) with fairly large
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fluctuation amplitude from its original unperturbed motion. The UEV motion can
also be chaotic if the corresponding orbit lies in in the chaotic Cantor set associated

with the horseshoe map along the heteroclinic tangles.

An analytical technique, the Melnikov function M (79) on RB = tells us the
conditions for the existence of period m points which is equivalent to the existence of
the resonance band itself. M () can also provide more information regarding not
only the possible dynamics along the band but also how the perturbation influences

the motion as we will see later.

First we consider the orbits belonging to a one-parameter family, i.e., (—3%-TH #

0 on the unperturbed orbits. Let us define M= (7o) as follows:

=t
MEm) = [ Faale® o

2

where 7y € (~~%—T-7 —";—T] is the parametrization variable on the corresponding unper-
turbed orbit ¢ (7) and the integral is evaluated on ¢» (7). Then the Melnikov tech-
nique tells us that the simple zeroes of M= (7g), (i.e., M= (75) = 0, %M% (10) # 0)
imply the period m points of RB 2 with alternating stability type between elliptic

and hyperbolic.

Besides the existence of RB #, the Melnikov function M W (79) also gives us
more points of information. Among them, the following three are particularly useful,
1) it gives the width of RB %, 2) it gives the bifurcation condition of RB £, and
3) it tells us that, if some symmetry exists in the unperturbed phase space, then
M™ (19) may be identically zero for n # 1 which means that the ultraharmonics
are hard to identify if the symmetry exists. We describe these three properties and

interpret the UEV motion now.

1) As M(7p) on the homoclinic orbit relates to the distance between unstable and
stable invariant manifolds, it can be shown that M (1) on the resonance band
relates to the width of the band d* (7o, ¢€) in the following manner. M ™ ()
is the first order term of the width of the band up to a known normalization

factor.

M%(TQ)
1£(g™ (=mo))I

+ O(€%).

d%(TQ,E) = ¢
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It is clear that larger d» means larger fluctuation in the UEV configuration
from the original motion. Using the width of RB Z, we can compute the
perturbation frequency range for the origin of the coordinate system, i.e.,
(6,¢() = (0,0), to be contained in RB % up to the first order in e. This is
extremely important when we consider the transition dynamics of the UEV
between oscillation and rotation in the same direction through RB 2 as we
will see later. (Recall that we distinguish the UEV oscillation from rotation
depending on whether or not the corresponding orbit contains the origin of the

coordinate system interior to itself.)

Qe (2ol - A%, Dol 1 AQ%)
n n

where H
m 1m o
A =5 l6.6)1=(0.0) dg’ (70) |ro=75
with
MW (T
dH (o) = (7o)

TP =l

The Melnikov function is evaluated on the unperturbed orbit going through
the origin, denoted by ¢f(7), Q& is the natural frequency of the corresponding
orbit, and 7g is the value of parametrization variable on the orbit at the origin

(or on the (—axis).

The Melnikov function M ™ (7) also gives the condition for the bifurcation on
RB 2. We consider two types of bifurcations of RB 2 which occur in the
motion of the UEV as we will see later. First we consider a bifurcation that
occurs when the Melnikov function is identically zero, i.e., M ™ (19) = 0 for

70 € (0,mT] and either one of the following conditions holds

where ¢ is some parameter. The following dynamical consequences can be
proven. If %M%(TQ) #0 (%M%(TO) # 0 resp.), then, as @ (c resp.) varies,

the resonance band disappears once and reappears with the stability type of
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the period m points exchanged as is demonstrated in Fig. 4.7form =3, n =1
and £ = 1. We call this bifurcation the ring bifurcation. The consequence of
this bifurcation is as follows. When a resonance band disappears, the passage
through the resonance band and chaotic dynamics associated with the horse-
shoe map do not exist. As § (¢ resp.) varies, the band reappears although
the stability types of the period m points have been exchanged. The meaning
of this bifurcation in terms of the UEV motion is the following. When RB &
disappears, the corresponding UEV motion becomes regular. The UEV motion
sensitively depend on the value of Q (¢ resp.).

The other bifurcation, which occurs in the § — { phase space corresponding to
the UEV motion, is a bifurcation corresponding to the non-twisting band (i.e.,
E%QH = 0) in the unperturbed phase space. (Recall that the non-twisting
band may exist in the § — ( phase space for (kg,00) in 17" corresponding to
the UEV motion, see Chapter 3.) We refer to Wiggins [1988] for the detail
and only demonstrate the result of the bifurcation. Also see Van der Weele et.
al. [1988] for more discussion for a special bifurcation. When the resonance
relation mQ! = nQ is satisfied on the non-twisting band, a combination of
local saddle-node bifurcation and global effect may end in the birth of twin RB
 on both side of the non-twisting band as shown in Fig. 4.8. For a given per-
turbation frequency, there exist two distinct RB 2 next to each other. There
exist two layers where the orbits fluctuate with the same frequency. Before the
birth of the twin RB , the corresponding UEV motion is regular. After the
birth, there exist two layers of the UEV configuration for the UEV to undergo

irregular oscillation or rotation.

We make the last remark on M (7y). It regards the symmetry in the unper-
turbed phase space. Let us assume that there exists some symmetry in the
unperturbed phase structure as shown in Fig. 4.9. Symmetry type 1 as shown
in Fig. 4.9a corresponds to the motion of the UEV for g # 0 and symmetry
type 2 as shown in Fig. 4.9b corresponds to the motion of UEV for oy = 0. Sup-

" pose the time periodic perturbation is imposed sinusoidally for reasons which
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we will state later. For example, the perturbation in o(7) in Eqn. (2.12) is
written

o(7) = 09 + o€ SIn QT + 74)

where ¢, is a perturbation amplitude and 7, describes the phase shift of the
perturbation. Then the M= () generically has the following property for both
types of perturbation.

M~ (r) =0 for n#1

See Appendix 3 for proof. It can also be shown (Appendix 3) that Symme-
try type 2 may have furthermore property as follows depending on how the

perturbation is imposed.

2k41

M ™7 (r9)=0 or leﬁ(’rg)z()

Recall that the M™ (7g) is related to the first order term of the width of the res-
onance band. Hence, if M ™ (1) = 0, then it does not necessarily follow that RB
™ does not exist, i.e., it may exist, however the width is higher order. Hence we
can conclude that the ultraharmonic resonance bands are hard to identify when
the symmetry exists in the unperturbed structure. Furthermore, if the symmetry
exists as is shown in Fig. 4.9, then some of the subharmonic resonance bands are
hard to identify. It follows that, due to the symmetry in the UEV itself and the
steady external linear flow field, the ultrahamonic motion of the UEV is very hard

to identify.

4.2.2.2 KAM torus and cantorus

The perturbed dynamics along an invariant circle whose rotation number
p 1s irrational is classified into two types depending on the degree of ‘irrationality’

of p.

KAM torus: When p is sufliciently poorly approximated by rational numbers,
the invariant circle, called a KAM torus, survives under the perturbation. Orbit

on a KAM torus is again dense in the phase space which implies that the motion
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in a continuous time system can be viewed as quasiperiodic to the perturbation
frequency. The KAM torus, which 1s an invariant circle, is extremely important

because it prohibits any passage across itself.

cantorus : When p fails to satisfy the condition for KAM torus, the motion
may still be quasiperiodic but orbits do not densely fill a circle, but rather a
Cantor set. This structure has been called a cantorus since it geometrically

appears as a circle with an infinite number of gaps.

If an orbit corresponding to the UEV motion lies in either KAM torus or cantorus,
then the UEV motion is fairly regular with very small fluctuations from the original

motion, but it i1s quasiperiodic to the perturbation frequency.

4.2.2.3 The global structure

We consider the resulting global structure of a one-parameter family invari-
ant circles of case 1 as shown in Fig. 4.9a because it is the case for the UEV motion

for o # 0. Suppose that the family is parametrized by H € (H;, Hy), then the

corresponding period T satisfies TH < TH < TH where TH = inf{TH: TH2}
TH.w = sup{TH, TH2} and ZTH # 0 for any H € (Hy,H;). The corre-

sponding natural frequency Qff = 27/T! ranges between TH € (QH._QH ) =

(2r/TH 27/TH ). If the family contains an elliptic fixed point ¢, at its center,

min
then TH = TH4) = 27 /0, where (, is the imaginary part of eigenvalues asso-
ciated with the linearization of the vector field at ¢.. Moreover, if the family is

bounded by homoclinic orbits, then TH  goes to infinity logarithmically, in other
words QX goes to zero, due to the presence of the hyperbolic fixed point gy.

Now we want to geometrically describe the resulting structure of the phase
space in the Poincaré map and see how the perturbation frequency  influences

the global dynamics. Since the dynamics on RB £, KAM torus and can torus are

completely different, locating them globally in the phase space is very important
for understanding of the global dynamics. For this purpose, we locate RB % for

all possible m first. Note that possible m’s depend on the perturbation frequency
H QH

min? ¥ “max

2 and the natural frequency range ({2 ). For a given family, {2 plays an
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important role for determining the global structure of the perturbed phase space as

we will see later.

Since the global structures are completely different depending on whether or
not the one-parameter family is bounded by homoclinic orbits, we consider two

cases which are related to the UEV motion separately, i.e., 1) a family bounded
H

min
global structure of the UEV motion with (xg,00) in 37, 4%, 57, 13%, 14", and
H

min

by homoclinic orbits, meaning that Q = 0. (this corresponds to the unsteady

15%), and 2) a family not bounded by homoclinic orbits meaning that > 0
(this corresponds to the unsteady global structure of the UEV motion with (g, o)
in 1t and 177).

case 1: a family bounded by homoclinic orbits.

In Fig. 4.10, the curves are the graph of the position of the corresponding un-
perturbed orbit on (—axis with respect to the perturbation frequency {2 for several
m’s of RB Z. Note that the curve for m = 1 corresponds to the graph of the
position of the unperturbed orbit with natural frequency Q¥ = . Because the
natural frequency is bounded as Q € (QF,  QH ) we can obtain the lowest order

Mmin Of the resonance band from the resonance relation = mQ* for a given €.

Mmin = [

For a fixed perturbation frequency €2, the higher order resonance band approaches
the homoclinic tangle (see Fig. 4.10). Eventually, the resonance bands of high
enough order are absorbed in the homoclinic tangle. Typical structure is shown in

Fig. 4.11.

case 2: a family not bounded by homoclinic orbits. Q¥ € (QH, QH ) (Qf +£0)

min>?

In Fig. 4.12, similar to Fig. 4.10, the curves are the graph of the position of
the corresponding unperturbed orbit on (—axis with respect to the perturbation
frequency Q for several m’s of RB . Because the natural frequency is bounded
away from zero, the dynamics is strongly governed by the perturbation frequency.
We make some remarks regarding perturbation frequency effects on the global dy-

namics.



Remark 1: Frequency range for RB

Let us define frequency range for RB F as follows:

Q;ﬂ = mﬂgin
.o (4.3)
2 T MAlpax -

Then RB 7 exists only if the perturbation frequency {2 satisfies the following
condition.

Qe (mQi  moi

mino max) :

Remark 2: Minimum frequency for the existence of RB 4t for any order.
H

The minimum perturbation frequency to have any resonance band is 2 = Q.;,

H

and the corresponding resonance band is RB 1. For < QL , there exists no
RB % for any m, i.e., a perturbation with a low frequency may not cause any
irregular dynamics as is observed in Figs. 4.12 and 4.13. This means that the
UEV motion in unsteady external flow field with low perturbation frequency is
fairly regular for any initial configuration. As the frequency increases, the UEV

motion near stable steady configuration begins to undergo irregular oscillation.

Remark 3: Frequency gap of order &
Suppose that there exists a k& such that

OF < QL

Then, for Q@ € (25, Q51) there exists no unperturbed periodic orbit which
satisfies the resonmance relation mQ2 = Q for any m. In other words, there
exists no RB 2 for any m. See Appendix 5 for proof. We call the interval
in the perturbation frequency € (i.e., Q € (025, Qf“)) as the frequency gap of
order k. If the perturbation frequency of the external linear flow field for the
UEV motion is in the frequency gap of order k, then the UEV motion is fairly

regular for any initial configuration. We illustrate the frequency gap of order
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k for k =1 in Fig. 4.12.

Remark 4: Frequency gap of order k* < k

Suppose that k satisfies the condition given in Remark 3. Then there exists
a frequency gap of order k* for k* < k, and the frequency gap is given by
Qe (QF, Qf“”). See Appendix 5 for proof.

Remark 5: Number of the frequency gaps N, (highest of order N)
From Remark 4, the number of the frequency gaps N, and the highest order

for the frequency gap are the same.

H

Qmin
N9: QH -—QH +1 )

max min

where [?] denote the minimum integer which does not exceed 2. See Appendix

5 for proof.

Remark 6: Further general remarks in terms of the UEV motion

If the perturbation frequency is in a gap, then every orbit lies in either KAM
torus or cantorus, meaning that the motion is fairly regular for any orbit.
Furthermore, if the order of the resonance m is less that Ny, then RB T is
the only resonance band in the phase space. The corresponding UEV motion
for a perturbation with € in a gap is that the UEV undergoes fairly regular
quasiperiodic motion to the perturbation frequency. Typical structure for a

family which contains ¢, at its center is shown in Fig. 4.13.

4.2.2.4 Transition dynamics through RB %

Recall that when the boundary of two regions corresponding to oscillation
and rotation in the same direction in a steady external flow is defined by a PBO
(periodic boundary orbit) which is an orbit going through the origin of the (¢, ()
coordinate system ((c-c) PBO for (xg,00) in 17, 3%, 13% and (c¢) PBO for 157,
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171). An orbit corresponding to oscillation (rotation resp.) does not (does resp.)

contain the origin interior to itself.

In an unsteady external linear flow field, the transition dynamics of the UEV
motion depends on whether the origin lies in a RB 7, KAM torus or can torus.
If the origin lies in KAM torus or can torus, then the UEV motion is regular and
there exists no transition dynamics between oscillation and rotation. If the origin
is contained in a RB ¢, then it may fluctuate in the band with large fluctuation
amplitude. This corresponds to the irregular motion of the UEV flipping its type

of motion between oscillation and rotation.

Notice that the transition dynamics through RB %t is strongly governed by
the perturbation frequency 2. The transition dynamics may not exist for some
2, which is different from the transition dynamiecs through the homoclinic tangle.
From Eqn. (4.3), the frequency range for the origin to be contained in RB -Al—’f is as

follows:

Qe (mQ —a0T),(mQ +AQT)) .

See Appendix 4 for proof. If the width of RB 4 is larger, then the frequency range

for the transition is larger.

4.3 Summary for qualitative UEV motion in time periodic external
linear flow field

We summarize the qualitative UEV motion in time periodic linear external flow
field for corresponding various (kg,00) in 11,37 4% 5% 13% 14% 157 and 17t in
Table 4.1 together with mechanisms of the motion and the corresponding typical

Poincaré maps.

4.4 The Melnikov techniques and its physical implication
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4.4.1 Three types of perturbation and excess kinetic energy

We now come back to the equations of UEV motion and see how the per-
turbation imposed on the external linear flow field influences the UEV motion.
Recall that the external linear flow field is determined by three parameters, i.e.,
the strength of the straining effect o(7), the inclination of the straining axis a(7)
and the strength of the background vorticity x(7). Hence there are three types of
perturbation corresponding to three parameters. For simplicity, we assume that the
perturbation is imposed sinusoidally with period T' = 27 /%2, but our methods apply
to any periodic perturbation with period T = 27 /.

(1) = 0¢ + €,008In (1 + 75)
a(7) = €asin QU7 + 74)
k(T) = Ko + €xrosin Q1 + 1) ,
where €,, €4, €, are perturbation amplitudes and 7,, 7o, 7x are phase shifts for each

perturbation type. The equations of the UEV motion in the unsteady external

linear flow field are written

dl g
| _ —EE{H(W;U(T),Q(T)W(T)}
dp 0 ’
- S {H(L g 0(r), a(r), K(7)
where
H(I,p;0(7),a(1),5(7)) = He(I) + Hs(I,0;0(7), (7)) + Hr(L; (7))
Hg(I) = log(I +4)
Hs(I,p;0(7),a(r)) = o(1)VI? + 41 sin(p — 2a(T))
Hp(I; k(7)) = f.%ﬁ[ .
The total Hamiltonian function H(I,¢;0,®, k) is constant in time,

d dI 0H dp OH

Zl_;H( y P30 (7’)0((7') ()_:Z;@I+dT599_O
This physically means that the total excess kinetic energy in the entire flow field is
conserved through the unsteady vortex interaction. (The external flow field can be

viewed as the results from the vortex interaction.)
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Recall that the arguments in Section 4.1-4.3 do not require any assumption on
the perturbation but structural stability and time periodicity. Hence the dynamics
of UEV is qualitatively the same under any type of time periodic perturbation in
the external linear flow field. In this section, we discuss dynamics more quantita-
tively for each type of perturbation and examine how each perturbation influences
the UEV dynamics using the Melnikov techniques. In doing so, we describe the

geometrical meaning of the Melnikov function in terms of the UEV motion first.

The Melnikov functions on the homoclinic orbits and resonance bands are in-
terpreted in terms of the UEV motion as follows. On the homoclinic orbit, the
Melnikov function M (7g; 0p, ko; §2) is related to the signed distance between stable
and unstable manifolds of the hyperbolic fixed point and measures the size of the
chaotic transition region, i.e., it defines a range for the UEV configuration along
the unperturbed homoclinic orbit so that a UEV may undergo chaotic or transition
motion induced by lobe dynamics. It also defines the amplitude of the fluctuation
in the UEV configuration. If the amplitude of M(g; 09, ko;§2) is larger, then the
corresponding UEV motion is more irregular. On RB & , the Melnikov function
M (19; 09, ko; ), which is related to the existence of period m points, also mea-
sures the width of the band and gives the range for the UEV configuration to be
contained in the band. The UEV motion whose corresponding orbit is contained
in RB £ is irregular. The amplitude of the fluctuation in the UEV configuration
can be computed based on M T (79; 0, k¢;§2). Again the larger the amplitude of
M7 (1q; 09, Ko; ) is, the more irregular corresponding UEV motion is. Further-
more, the frequency range for the transition between oscillation and rotation in
the same direction to occur can be computed by M= (7g; 09, ko; ). Moreover,
M= (1q; 00, Ko; ) is identically zero for n # 1, meaning that there does not exist

any ultrahamonic motion of the UEV up to the first order in e.

Now we describe how each perturbation influences the UEV motion. Three
perturbations are classified into two categories depending on how they influence
the excess kinetic energies induced by the external linear flow field. The pertur-
bation in o(7) for a fixed oy excites Hs(I,y; 00, aq) time periodically. Similarly,

the perturbation in &(7) excites Hp(I; ko) time periodically. We define that the



perturbation is the Hamiltonian perturbation of type 1 (external perturbation) if
the time periodic perturbation in the parameter causes time periodic excitation of

a part of the Hamiltonian. The perturbations in o(7) and &(7) are of this type.

Hs(I,p;0(1),a0) = {1 + €, sin Q(7 + 7, )} Hs(I, 500, q)
Hp(Iir(7)) = {1 + €, sinQ(7 + 7))} Hr(I; ko) -

The perturbation in «a(7) for a fixed oy is rewritten as follows:

Hs(I,¢500,a(7)) = Hs(I,p — 2a(7); 09,0)
= Hs(I, o — 2e,sin Q1 + 74); 00,0) .

The perturbation in «(7) has the same effect on Hs as the oscillation of the abso-
lute coordinate axis. Generally, it can be viewed as the origin of one of canonical
variables (in this case @) is perturbed around some level time periodically. We call
this type of perturbation the Hamiltonian perturbation of type 2 (internal pertur-

bation).

As is shown in Appendix 6, the forms of the Melnikov functions for both types
of Hamiltonian perturbations in general provide nice physical implications regarding
how the perturbations influence the dynamics. Here, we just use the consequences
for each type of perturbation, i.e., o(7),a(7) and «(7), and interpret them as the
UEV motion so as to understand the UEV dynamics together with the mechanisms

of the motion in time periodic external linear flow fields.

4.4.2 Perturbation in o(7)

On homoclinic orbit

The Melnikov function M,(7; 00, ko; ) for € = €, = 0 (i.e., the perturbation
imposed only on the strength of the straining effect o(7)) is written as follows
because the perturbation is the Hamiltonian perturbation of type 1 (see Appendix
6). .

Mo (70500, K03 ) = /m{%HS(I,p; 00, K0)} sin Q(1 + 79 + 75 )dT

= Fy(o9,k0;) cos Q1o + 7o)
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Fuloo,mai ) = [ {5-Hs(Lpio0,x0)) sinQrdr

where the integrals are evaluated on the corresponding unperturbed homoclinic
orbit. The Melnikov function M,(79; 00, K0; ) is related to the Fourier transform
of the rate of change in the excess kinetic energy induced by the steady external
straining effect. F,(og, &0;§2) is similar to M, (70; 00, ko; 1) without phase shift
T, and parametrization variable 79. In other words, if we know the UEV motion
in the steady external linear flow field and how the straining effect contributes to
the motion, then we also know how the UEV motion receives the influences of the
perturbation in o(7) for a given perturbation frequency €2 through the Melnikov
function. If the perturbation is imposed so that it is ‘synchronized with’ E‘I;Hs as
the UEV evolves along the homoclinic orbit, then the UEV motion becomes most

irregular.

In Section 3.3, we examined how the excess kinetic energy induced by the
straining effect (Hgs) changes in time for several types of the UEV motion in var-
ious (kg,d9) (see Fig. (3.5)). On IHO (inner homoclinic orbit), typically ]%Hsl
increases in time, attains a local and global maximum and decays exponentially
as T — oo due to the existence of the hyperbolic fixed point. Hence the typical
behavior of the graph of F,(0q, ko;2) with respect to {2 is as follows (see Fig. 4.14).
|Fy(00, ko; )| increases linearly for 2 small, attains the local and global maximum
at some frequency (2¢), and decays exponentially as @ — co. We call the frequency
which gives the global maximum of the F,(o9, xo;(2) the extremum frequency and
denote it by 2¢. The amplitude of Fy,(0g, ko; §2) sensitively depends on {2, i.e., the
perturbation frequency is an important factor for the chaotic transition of the UEV

when the perturbation is imposed on o(7).
On RB %
The Melnikov function M?(Tg; a0, ko;§2) for €4 = €, = 0 is written as follows for
the Hamiltonian perturbation of type 1.
mT
m
1

2 d .
M (0 moi ) = [ (g H(Tgio o)) sinfr + 7 + 7, )dr

2

= Fﬁl(ao, Ko; 1) cos Q1o + 7o)
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m mEIl d
Fy' (09, k0;8)) = / {=—Hs(I,p;00,ko)}sinfdrdr ,
mr dT

where the integrals are evaluated on the corresponding invariant circle with the
resonance relation & = mQ and Qf of the natural frequency of the unperturbed
orbit. The Melnikov function M?(TQ; ag, ko; §2) is related to the Fourier coeflicient
of the rate of change in the excess kinetic energy induced by the steady external
straining effect. Fﬁl(a'o, Ko; {21) is similar to ]Vf?(ro; 09, Ko; 1) without phase shift 7,
and parametrization variable 7,. Again, if we know the UEV motion in the steady
external linear flow field and how the straining effect contributes to the motion, then
we also know how the UEV motion receives the influences of the perturbation in
o(7) for a given perturbation frequency §2 through the Melnikov function. It is clear
from the form of the Melnikov function and the graph of f;Hs as shown in Fig.
3.5 that, on a given orbit of Q¥ the amplitude of Fa%(ag, ro; Q) with @ = mQH is
the largest for m = 1 because -&%;H s 1s more naturally ‘synchronized with’ sin (27
than sin Qmr for m > 2. Fig. 4.15 show the relation between the signed width of
RB 2 up to the first order on € (i.e., F'T (g0, ro; /11 f (¢ (=70))||), which is on the
horizontal axis, and the position of the band on the (—axis, which is on the vertical
axis. Each figure regards three types of perturbations for a (g, 0¢ ) corresponding to
either one of 11, 3%, 5%, 13%, 171 in Fig. 3.5. The solid curve corresponds to the
perturbation in o(7)). On the vertical axis, the position of ¢, (elliptic fixed point)
is marked by a circle, the positions corresponding to PBO (periodic boundary orbit
which governs the transition dynamics) are marked by an asterisk, and the positions
corresponding to homoclinic orbits or ¢, (hyperbolic fixed point) are marked by a
triangle. When there exists a homoclinic orbit, the width of RB £ accumulates to
the distance between stable and unstable manifolds of the homoclinic tangle (see

Guckenheimer and Holmes [1983]).

4.4.3 Perturbation in (1)

On homoclinic orbit
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Since the perturbation in «(7) excites H g time periodically as the perturbation
in o(7) excites Hg time periodically, we now examine the influence of the pertur-
bation in the strength of the background vorticity effect on the UEV dynamics
by examining the Melnikov function as we did for the perturbation in o(7). The
Melnikov function My (7g; 00, ko; §2) for €, = €, = 0 (i.e., the perturbation imposed

only on the strength of the straining effect «(7)) is written as follows:

>~ d
M (70500, k0;2) = / {EHR(I»%O’O»"CO)} sin (7 + 7o + 7 )dr

= Fy(oo,ko; ) cos Q1o + 7«)

> d
Fi(og,k0; Q) :/ {E;HR(I,QQ;Uo,RQ)}SinQTdT ,

where the integrals are evaluated on the corresponding unperturbed homoclinic
orbit. The Melnikov function My (79; 00, Ko; §2) 1s related to the Fourier transform
of the rate of change in the excess kinetic energy induced by the steady external
background vorticity effect. If we know the UEV motion in the steady external
linear flow field and how the background vorticity effect contributes to the motion,
then we also know how the UEV motion receives the influences of the perturbation
in (1) for a given perturbation frequency {2 through the Melnikov function. If the
perturbation is imposed so that it is ‘synchronized with’ -dd—THR as the UEV evolves

along the homoclinic orbit, then the UEV motion becomes most irregular.

Again, we make use of the behavior of the excess kinetic energy (induced by
the background vorticity effect in this case) with respect to time on the homoclinic
orbit to predict the behavior of the Melnikov functions. On IHO, the behavior of
[‘f;HRl is similar to }j{:HSI . Typically ]-f;HR] increases in time, attains a local
and global maximum and decays exponentially as 7 — oo due to the existence of
the hyperbolic fixed point. Hence the typical behavior of the graph of Fy (o, x; §2)
with respect to 2 is as follows (see Fig. 4.14). |Fi (0o, ko; Q)| increases linearly for
2 small, attains the local and global maximum at some frequency (2°), and decays
exponentially as 2 — co. We call the frequency which gives the global maximum
of the Fi(oy, ko; Q) the extremum frequency and denote it by Qf. The amplitude
of Fy(og,r0;82) sensitively depends on the 2, i.e., the perturbation frequency is

an important factor for the chaotic transition of the UEV when the perturbation
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is imposed on k(7). The behavior of |- Hp| on OHO (outer homoclinic orbit) is
similar to IE‘iT-HR} on IHO, hence the behavior of the graph of Fy(og,xo; ) with
respect to 2 on OHO is similar to the one on ITHO.

On RB 2

pecy .
The Melnikov function M, (79; 00, Ko; §2) for €, = €, = 0 1s written as follows:

mL

d
M?(TQ;UO,RO;Q) = / ’ {C—Z-HR(I,go;UO,nO)} sin Q7 + 1o + 7 )dT
mT T

= F?(ao,mg;ﬂ)cos Qro + 7x)

mT

d
F?(ao,ﬁo;ﬂ)zf i {—Hpg(I,p;00,K0)}sinQrdr ,
=z dr

where the integrals are evaluated on the corresponding invariant circle with the reso-
nance relation = mQH and QF of the natural frequency of the unperturbed orbit.
The Melnikov function M?(Tg; 09, Ko; §2) is related to the Fourier coefficient of the
rate of change in the excess kinetic energy induced by the steady external back-
ground vorticity effect. Again, if we know the UEV motion in the steady external
linear flow field and how the background vorticity effect contributes to the motion,
then we also know how the UEV motion receives the influences of the perturbation
in x(7) for a given perturbation frequency 1 through the Melnikov function. It
is clear from the form of the Melnikov function and the graph of f;H r as shown
in Fig. 3.5 that, on a given orbit with Q | the amplitude of F,fla(ao,/ig; 2) with
Q = mQH is largest for m = 1 because E‘!T-Hs is more naturally synchronized with
sin Qr than sin Qmr for m > 2. Fig. 4.15 show the relation between the signed
width of RB 7% up to the first order on € (i.e., FT (00, k0;)/||f(¢"(=70))]|), which
is on the horizontal axis, and the position of the band on the (—axis, which is on the
vertical axis. Each figure regards three types of perturbations for a (o, 00) corre-
sponding to either one of 17, 3%, 5%, 13%, 17% in Fig. 3.5. The broken curve with
a dot corresponds to the perturbation in x(7)). On the vertical axis, the position of
¢e (elliptic fixed point) is marked by a circle, the positions corresponding to PBO
(periodic boundary orbit which governs the transition dynamics) are marked by
an asterisk, and the positions corresponding to homoclinic orbits or g, (hyperbolic

fixed point) are marked by a triangle. When there exists a homoclinic orbit, the
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width of RB ﬂll accumulates to the distance between stable and unstable manifolds

of the homoclinic tangle (see Guckenheimer and Holmes [1983]).

4.4.4 Perturbation in «(7)

On homoclinic orbit

The Melnikov function M, (7o; 00, ko; ) for €, = €, = 0 (i.e., the perturbation
imposed only on the inclination angle of the straining axis a(7)) is written as follows
because the perturbation is of Hamiltonian perturbation of type 2 (see Appendix
6).

O d2
Ma(ro;ao,/io;Q)z/ {==I}sinQ(7 + 70 + 7o )dT
oo AT

= Fa(oo, %05 §2)sin Q70 + 7o)
(e o] d2
Fo(og,ke;Q) = / {Eﬁ[} cos Qrdr (4.4)

where the integrals are evaluated on the corresponding unperturbed homoclinic
orbit. The Melnikov function M, (7y;00, ko; ) is related to the Fourier transform
of the second derivative of the angular momentum of the UEV with respect to time
in the steady external straining effect. F, (09, x¢;(2) is similar to M, (70; 09, Ko; §2)
without phase shift 7, and parametrization variable 75. In other words, if we
know the UEV motion in the steady external linear flow field and how the angular
momentum (or equivalently the aspect ratio) of the UEV changes, then we also
know how the UEV motion receives the influences of the perturbation in «(7) for a
given perturbation frequency §2 through the Melnikov function. If the perturbation
is imposed so that it is ‘synchronized with’ ~dd—:5] as the UEV evolves along the

homoclinic orbit, then the UEV motion becomes most irregular.

Again, we can use the same type of argument to predict the values of

My (10; 00, ko3 ) as we used for M, (7o; 0, ko3 §2) and M (70; 09, Ko;§2). However,
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if we integrate Eqn. (4.4) by parts once

o0

Mo(70; 00, K0;2) = ——Q/ {Ed;f} sin Q(7 + 1o + 7o )dT

< d
Fo(oo, ko3 §2) = —Q/ {—1I}sinQrdr
oo dT
then F,(0g, ko; ) and Fy(og, ko; §2) have the following relation.
—rkoFol(o0,k0; ) = QF (00, K0; ) . (4.5)

For a given (Ko, 09), the ratio of values of F,(0y, ko; ) and Fy, (0o, 9; §2) is propor-
tional to the perturbation frequency 2. The perturbation in «(7) and &(7) both

are related to the angular velocity %f. This fact gives the relation in Eqn. (4.5).

Typical behavior of the graph of F,(og, xo;§2) with resect to 2 on both IHO
and OHO is shown in Fig. 4.14, which can be predicted by Eqn. (4.5). The graph

of |Fy(0og, ko; )| with respect to {2 increases quadratically in 2 for small €2, attains

e
asd

Eqn. (4.5) and the behavior of Fy(0yg, ko; ) and F(og, £0; §2), it can be shown that

the local and global maximum at Q¢, and decays exponentially as ! — oco. From

the following relation holds:
Qg < Q5.
OnRB 2
The Melnikov function M;{l(rg; o9, Ko; §2) for €, = €, = 0 1s written as follows.

ml )

= T d
Mo (10500, K0;82) = / {Fz 1} sinQ(r + 70 + 7o)dr

=g dr

= F;{l(oro, Ko; 1) sin Q7 + 7o)

m L
Fl (o, k0;82) = /_mzj‘{a;[} cos Qrdr

where the integrals are evaluated on the corresponding invariant circle with the
resonance relation mQ¥ = Q and Q¥ of the natural frequency of the unperturbed
orbit. The Melnikov function ]\/L?(TO; ag, Ko; §2) is related to the Fourier coefficient

of the second derivative of the angular momentum of the UEV with respect to time
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in the steady external linear flow field. If we know the UEV motion in the steady
external linear flow field and how the angular momentum (or equivalently the aspect
ratio) of the UEV changes, then we also know how the UEV motion receives the
influences of the perturbation in a(7) for a given perturbation frequency 2 through
the Melnikov function. Again, the following relation holds for Fjl(ao, Ko; §2) and

Fi (09, k03 Q), ie.,
"K’OFG(UO’ K’O;Q) = QFn(aﬂvh"O;Q) .

F:ln(ao, rko; §1) is the largest for m = 1 because g-:—é- is more naturally synchronized
with sin Q7 than sin Qm7 for m > 2. Fig. 4.15 show the relation between the signed
width of RB 2 up to the first order on € (i.e., F'¥ (y, ko; )/11f(¢®(=70))||), which
is on the horizontal axis, and the position of the band on the (—axis, which is on
the vertical axis. Each figure regards three types of perturbations for a (g, o)
corresponding to either one of 17, 3%, 5% 13% 17% in Fig. 3.5. The broken curve
corresponds to the perturbation in a(7)). On the vertical axis, the position of ¢,
(elliptic fixed point) is marked by a circle, the positions corresponding to PBO
(periodic boundary orbit which governs the transition dynamics) are marked by
an asterisk, and the positions corresponding to homoclinic orbits or g, (hyperbolic
fixed point) are marked by a triangle. When there exists a homoclinic orbit, the
width of RB 2 accumulates to the distance between stable and unstable manifolds

of the homoclinic tangle (see Guckenheimer and Holmes [1983]).

4.4.5 Relation between perturbations and influences of parameters

Because the total kinetic energy is conserved in the flow field, there are
some relations among F’s and among F1’s. We make some remarks regarding
those relations on both homoclinic orbits and periodic orbits, which we did not

mention in the previous sections.

On homoclinic orbit

Remark 1:

From Eqn. (3.1), F,(09, ko; Q) and Fy (09, £o;§2) have the following relation.

Fo‘(UOa R01§2) - ”(FK(GOaKO;Q) + FE(U(M F‘:O7Q)) 3
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where

Fg(og, k0592 / {—-—-HE (I,9;00,k0)}sinQrdr

/ (—— )}smﬂrdr |

Fg(og, ko; Q) corresponds to the Fourier transform of the rate of change in the
self-induced excess kinetic energy. From the discussion in Sections 4.1,2,3,4 and
3.3, the graph of Fg(oy, ko; 1) typically behaves like other F's with respect to
§2. Since the level sets for Hg(I) and Hg(I) are both circular in § —( space, the
extremum frequency for Fg(oy, ko;§2) is same order as F(og, ko; ). It follows
from the above equation that the extremum frequencies for F,(oq, ko;2) and
EF(og, ko; ) are the same order, i.e.,

Qr ~ Q0

(o K °

Remark 2:

Let us consider the steady parameter effects (kg, 0g) on the extremum frequen-
cies. In general, the extremum frequency §2¢ depends on how fast the orbit
approaches the hyperbolic fixed point ¢,. Hence, €2° sensitively depends on the
eigenvalues at g, and the elliptic fixed point on the positive (— axis (¢J) for
IHO. For OHO, Q¢ depends on the eigenvalues at ¢, and the elliptic fixed point
on the negative (— axis (¢. ), and the natural frequency at I — oo. It follows
that Q¢ — 0 for (kg, 09) near bifurcation values given by the bifurcation curves

S*, R and If for IHO, and S* and R for OHO.
Remark 3:

Next we consider the steady parameter effects (kg, 0o) on the amplitude of F''s.
It is clear from the form of F’s that the amplitude of F’s is larger when % on
the corresponding is larger. Recall that IHO disappears to infinity for (kg, o)

close to I;", meaning that the amplitude of F’s also grows.

RBZ

1

Remark 1:
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Eqn. (3.1) provides us with the same relation for F;{L,F:;l(ag, Kg; §1) as for the

homoclinic orbit, i.e., we have the following relation.

I
1

Ff (00, 50;Q) = —(Fa (00,503 Q) + Fi (00,70; Q)

where
T

= d
F;P(UQ,NQ;Q):/ {E—HE(I,@;JO,&O)}SinQTdT
mr - dr

=51 dI .
:[%I{(m)(a;)}s1nQTdT.

In
Fg (09, ko; 2) corresponds to the Fourier coefficient of the rate of change in

the self-induced excess kinetic energy.
Remark 2:

When F'T’s changes its sign as the perturbation frequency varies for a given

(k0,00), the bifurcation of RB & which we discussed in Section 4.2.2.1 occurs.

4.4.6 Perturbation in all parameters

When the perturbation is imposed on all parameters (o(7), a(7), £(7) in the
external linear flow field simultaneously, it can be shown that the total Melnikov
functions on the homoclinic orbit Myo¢(70; 00, £0; 2) and on RB M:i(m; g, Ko; §2)
are a superposition of the Melnikov functions corresponding to three types of the

perturbations, i.e., on the homoclinic orbit
Mioi(70, 00, K05 2) =

EaMa(To; T0, Kos Q) + €a]Wa(To; Ty, Koy Q) + €~A4N(To; To, Ko, Q) .

Similarly, on RB

m
Mi(0,00,K0;2) =
m m m
GaMal (70;007 KO;Q) + GQMC,I (7_0;007";0;9) + GKM'Cl (TO;UOvKO;Q) .

Note that both total Melnikov functions are order of € here.
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Now we discuss the properties of the total Melnikov functions. We first dis-

cuss Mio1(70; 00, k0;€2) on the homoclinic orbit. A similar argument holds for

m
Mtét(To;an Koj Q)

To discuss the properties of the Melnikov function on the homoclinic orbit

Mioi(70; 00, Ko; §), we first redefine the phase shifts 7o, 7o, 7 to 75, 74, T as follows:

€aFpsinQ(1g + 75) =| €, F5 | sin Q19 + 7))
€aFosinQ(rg + 74) =| €aFo | sin Qo + 75)
€xFesinQ(rg + 7)) =] e F | sin Q7o + 1) ,

ie., for1 =0 and &

« T if EF>0
TTEIR4AE M F<0,
ie., for a
*® TO’ if Fa>0
e = Vet if Fa<0,

The total Melnikov function is as follows:

Mtoz(T : anﬂo;Q) = Ftot(UOa’imQ)SinQ(TO + Ttot) y

where .
Fior = {(Co + Cq +Cn)2 + (Sa + Sa +3n)2}2
- *ltan"l Sg + 8o + Sk
RATIES) Co + Co + Cx
with

(o 30) = (|65 Fy| cos 1y, l€5 F iy | sin Q7))

(CarSa) = (|eaFal cos Q] |€q Fo|sin Q1)

(cx,sn) = (lexFi| cos Q7 lex Fie|sin Q7)) .
Recall that F,, F, and F, are given for a fixed (¢, 0¢) and {2. We now examine how
the phase shift effects control the total UEV motion through the Melnikov function.
We consider the following two cases, i.e., 1) maximization of Fy,:(00, ko; 1), and 2)

minimization of Fyyi(0g, Kko;§2).
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1) maximization of Fy (0, ko; §2):
Fiot(oo, K0;§2) can be rewritten as follows:
Ftot(a()v Kg; Q) = (EUFO')Q -+ (6aFa)2 + (éKFK)2
+ 2] epeaFyFy | cosQ(ry —12%)
+ 2| egeFyF | cosQ(ry — 7))
+ 2| eqexFoFy | cosQrr —12) .

It is clear that Fis¢(og, ko; €2) is maximum when the following relation is satis-

fied:

The corresponding Fioi( 0o, ko; §2) is

Ftot(UOa Ko, Q)[max B (faFa)Q + (EO(FQ)Q + (frcFrc)2
+2(] €o€aFoFo |+ | o€ FoFx |+ | €a€nFaFx]) .

2) minimization of Fy,(0g, kg; Q):
For the minimization of Fyu(0g, ko; 2), we first define Fy, F, andF3 as follows:
Fy = sup{le, Fol, [eaFul, |€xFx|}
Fy = inf{lex Fy|, |€a Fal, |€x Fx|}
F3 = {ieaFcrlvleaFalvlfranl I F3 ?/:FMFB #FZ} .
Then the minimum value of Fy,(op, ko;2) depends on the relation among
Fl,F2 and Fg.
F1 > F2 -+ Fgl
Ftoz(Uo,/‘io;Q)lmin =F —-F, - Fy,
with
2Ty R
where subscripts for F’s and 7* commute each other.
Fy, < Fy, + F;:
Ftot(am K03 Q)lmin =0 3
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where 77, 75 and 75 satisfy the following condition.

B

F3

sinQ(ry +77) = sin Qg +717) .

When Fy, (09, ko; ) is maximum, the UEV motion becomes wild (i.e., enhancement
of chaos). On the other hand, if Fi,(0y,ko;§2) is small, then the UEV motion
becomes less irregular (i.e., suppression of chaos). By changing the phase shifts of

the perturbation, we can control the UEV motion.

Similar argument holds for the UEV motion on RB . Again, by changing the

phase shifts in the perturbations, we can control the UEV motion.
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4.5 Figures and table for Chapter 4

Figure 4.1 Geometrical structure of a homoclinic tangle

Figure 4.2 Primary intersection point
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Figure 4.3 Ordering of the lobes



Figure 4.4 Horseshoe map
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Figure 4.5 Two homoclinic tangles
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Figure 4.6 Resonance band of order = for m =3,n=1and £ =1

Figure 4.7 Bifurcation on resonance band of order

Zform=3n=1land {=1
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Figure 4.8 Bifurcation of a resonance band on nontwisting band
form=3n=1land =1

=
o
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N

Figure 4.9 Geometrical symmetry in the unperturbed phase space

(a) (-axis  (b) é-axis and (-axis
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Figure 4.10 Periodic orbits bounded by a homoclinic orbit

and its geometrical relation to RB &

Figure 4.11 Global resulting structure for one parameter family of

periodic orbits bounded by a homoclinic orbit
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Figure 4.12 Periodic orbits not bounded by a homoclinic orbit
and their geometrical relation to RB 2

Figure 4.13 Global resulting structure for periodic orbits
not bounded by a homoclinic orbit
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Resonance Melnikov functions F™1(mn)
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Resonance Melnikov functions M/ 1(ma)
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Resonance Melnikov functions Fm/l(mﬂ)
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Resonance Melnikov functions F™'1(m)
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Resonance Melnikov functions Fm/i(mﬂ)
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Region in
(Ko, 00) Some typical UEV motion and mechanisms

e (C-C) osc on RB 2, KAM, can
e transition between (C-C) osc. and rot if RB %

1 includes the origin of (6, ()
e (C-C) osc on RB™r, KAM, can

e (C-C) osc on RB 2, KAM, can

e transition between (C-C) osc. and rot if LRB %
includes the origin of (6, ()

e (C-C) osc on RB 2, KAM, can

e transition between (C—CZ rot. and irreversible elongation

3 through homoclinic tangles

e chaotic (C-C) rot. along horseshoe map

e (C-C) osc on RB %, KAM, can

near e transition between (C-C) osc. and irreversible
4 elongation through homoclinic tangles

e chaotic (C-C) osc and rot. along horseshoe map

e (C-C) osc on RB 7, KAM, can

o transition between (C-C) osc. and irreversible
5 elongation through homoclinic tangles

® chaotic (C-C) osc. along horseshoe map

e (C-C) osc on RB 2, KAM, can
e transition between (C-C) osc. and rot if RB 7
includes the origin of (6, ¢)
e (C-C) osc on RB 2, KAM, can
e (C) osc on RB & KAM, can
e (C) rot on RB 3, KAM, can
e transition between (C-C) rot, (C) osc, and (C) rot. through
13 inner and outer homoclinic tangles
e chaotic (C-C) osc, (C) osc., and (C) rot along horseshoe map

e (C-C) osc on RB %, KAM, can

o (C-C) osc on RB -’-i‘-, KAM, can

e transition between (C-C) osc., (C) osc., and (C) rot.

14 through inner and outer homoclinic tangles

e chaotic (C-C) osc., (C) osc., and (C) rot. along horseshoe map

e (C-C) osc on RB 2, KAM, can
¢ (C) osc on RB 2, KAM, can
e transition between (C-C) osc. and (C) rot. if
RB 2 includes the origin of (4, ()
e (C) rot on RB T, KAM, can
e transition between (C-C) osc. and (C) rot.
15 through inner and outer homoclinic tangles
e chaotic (C-C) osc. and (C) rot. along horseshoe map

e (C) osc. on RB %, KAM, can
e transition between (C) rot. and (C) rot. if RB 2

17 includes the orir%in of (6, {)
e (C) rot on RB™ r, KAM, can

Table 4.1 Possible UEV motions in unsteady external flow field

for (kg,09) and thier mechanism
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Chapter 5

PARTICLE MOTION

In this section we study the fluid particle motion in the velocity field induced
by a UEV in a steady linear velocity field. We compare our results with a study
of the fluid particle motions in the velocity field induced by a point vortex in both
steady and time periodic velocity fields. This will give us an idea of the effect of the
finite core size of a UEV on the mixing of fluid. In other words, a finite core size
vortex works as a mixer in the flow field. In particular, we will study fluid particle

motion in the following four velocity fields.

1. Flow field induced by a point vortex in a steady external linear velocity field

(steady PV system).

2. Flow field induced by a stable steady UEV in a steady external linear velocity
field (steady UEV system).

3. Flow field due to a point vortex in a time-periodic external linear velocity field

(unsteady PV system).

4. Flow field due to a UEV undergoing periodic motion in a steady external linear

velocity field (unsteady UEV system).

5.1 The equations of motion governing the flow field

The total velocity field, in complex variables, induced by point vortex or UEV
in an external linear velocity field can be written as a superposition of each velocity
field as shown in Chapter 2. First, we begin with an appropriate nondimensional-

1zation of the system so as to facilitate comparisons. In order to nondimensionalize
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the system, we use the following scaling of variables since a PV itself does not have

(z,t) — (2,7) ( 1/ ) (5.1)

where vy > 0 is the strength of the basic external straining field and 2" is the

any length scale.

distance between a PV and one of the stagnation points in the flow Wlth wrp =10
as we will see later. Note that the transformation given by Eqn. (5.1) is singular
at 7o = 0 due to the lack of any length scale in the system. The equations of fluid
particle motion for a PV system shown in Chapter 2 are written in the normalized

variables as follows (henceforth neglecting the ”’ on z and 1)

d 1 ‘ 3 .
—z" = — + e % 4 ﬂz* = hpy(z,27;7,a,B)
dr 1z 21

0

= ‘é'gfpv = g;(qbpv +uppy),

where

fPszp+fs+fr

fp=1/ilogz
fs — _g_e—ZiozZZ
3 5.2
R (5.2)
- Y
¥ =—
Yo
=  Wp K
f="2=—,
Yo ol

where the subscripts ‘PV’, ‘p’, ‘s’ and ‘t’ stand for ‘PV system’, ‘point vortex’,
‘straining effect’” and ‘background vorticity effect’ respectively. The f’s are the
normalized complex stream function f = ¢ + 1), where ¢ and 1 are potential and
stream functions, respectively, and ¥ and 3 are the normalized straining rate and

background vorticity rate nondimensionalized by 7o, respectively.

Similarly, the equations of fluid particles for motion of a UEV system in the

normalized variables are as follows.

d 2 . 5
k= _ -; i8 L2, Eatipe™
= z'De?“’(z 22 — De?%) + ve z + 2iz
- hUEV(ZaZ*aT"»CV»ﬂ;Uag?A)
0

= b‘Z‘fUEV = 5-2-(¢UEV +WuEy) ,



~ 110 -

where

fuev = fE + fs + fr
— - D ..
log(z 4+ z? - Dez‘a) + D ¥ 9 — 2\ 2% — De2 — "")‘6218}

772 ~ 1 (5.3)

< r
A=A
/ 210

where the subscript ‘UEV’ stands for ‘UEV system’ and A is the normalized UEV
core radius and 7(r), §(7) are obtained from Eqn. (2.7). Recall that the basic

external linear velocity field was described by two parameters (xg,0y) in Chapters
2, 3 and 4. Here, the basic external velocity field is described by an alternate set of
parameters (g, A), where 3, = ?;1 1s the ratio of basic external background vorticity
to straining rate. For a PV system, A = 0 and hence f is the only parameter. Note

that the two sets of parameters (o, k¢) and (8, A) can be related as follows.

= —— = 2A?
0= 70/ (5.4)
Ko = ﬁoao = 250A2 .

Notice that the straining rate is proportional to A?, i.e., the area of the UEV.
Hence, the larger core size UEV receives stronger influence from the external linear
flow field. We remark that for a given (fg,A), the UEV dynamics is completely
understood from Chapter 3 and, moreover, we can always find a stable, steady
UEV configuration, (i.e., a fixed point of Eqn. (2.7)) provided the corresponding
(09, %9) does not belong to region 7% of the bifurcation diagram in Fig. 3.5. Also,
note from Eqns. (5.2) and (5.3) that the total velocity field is expressed as a sum
of three parts, i.e., a part due to a PV or UEV, a part due to the external straining
flow and a part due to the external rotational flow. The reader should note that
this is similar to the composition of the ordinary differential equations governing

the motion of the UEV derived in Chapter 2.
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5.2 The Steady Flow Fields

We next describe the fluid particle motion in the steady external flow fields,
First we consider a steady PV system. Eqn. (5.2) in the polar coordinate (r, x)

where z = re'X, is written as follows.

d _

Er = For cos 2(x — ag)

d 1 ) =
o :;-'?/051n2(x—a0)+2ﬁ,

where 7 = 1 and ag = 0 for a steady external flow field. Near the PV, the
flow field is strongly governed by the PV, and hence the fluid particles rotate in
a counterclockwise direction around the PV. In the far field (i.e.,, r — o0), the
external flow field effect becomes dominant. For 8y > 1 (8 < = resp.), 4ty is
positive (negative resp.) for any (r, x), meaning that a fluid particle in the far field
undergoes counter-clockwise (clockwise resp.) periodic motion while the distance
from the PV to the particle fluctuates due to the straining effect. For | 8y |< %,
the straining effect overcome the background vorticity effect and the fluid particles
drift from infinity along the contraction axis y. and to infinity along the stretching
axis X

Xs = sin™! 230

CIERIES

L . 145
— 5 sin 1953, .

L

Xe =
As a consequence, the far field is divided into four regions by dividing stream lines
which correspond to the contraction and stretching axes. Recall that the motion
of the UEV exhibits similar behaviors, i.e., the UEV undergoes periodic motion
(irreversible elongation resp.)when the background vorticity effect (the straining

effect resp.) governs the external linear flow field.

Since this is a steady two-dimensional incompressible flow, the fluid particles
follow the level sets of the stream function . By solving Eqn. (5.2), we obtain
three geometrically distinct flow field structures depending on 3y as follows (See

Fig. 5.1).

Bo > 1/2 (09 > xo/2): The counterclockwise background vorticity effect dom-

inates the far field flow. All fluid particles rotate counterclockwise around the
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PV. The period of the rotation along the inner closed streamlines is shorter

than the period along the outer streamlines, see Fig. 5.1a.

1Bo] < 1/2 (Joo| > &0/2): The straining effect dominates the flow in the far field.
As a consequence, the flow domain is divided into five regions by some dividing
streamlines. In the core region which is bounded by two dividing streamlines
connecting two stagnation points at (r,x) = (1/55—05%7, f) and (« / E%OQE—I, %)
where (7, x)is the polar coordinate (i.e., z = re'X), a fluid particle undergoes
counterclockwise periodic rotation around the PV. In the four regions outside
of the core, fluid particles drift to infinity along the dividing streamlines y, =

%sin—l 28y (r — 00) due to the straining effect, see Fig. 5.1b.

Bo < —1/2 (09 < —ko/2): In the far field, the clockwise background vorticity
effect governs the flow and fluid particles undergo clockwise rotation. The flow
domain is divided into four regions by four dividing stream lines as shown in
Fig. 5.1c, i.e., the core, the far field and two intermediate regions. In each
intermediate region, fluid particles undergo clockwise periodic rotation around

a stagnation point at (r, x) = ( "“QL" —fa_| 11} Note that

3

% ) or

2B0+1 2B0+1)0 4
the boundaries of the four regions are defined by four heteroclinic orbits con-

necting two stagnation points at (r, x) = (ﬁ;%g%;, 'Zf) and (\/ 2—5‘%‘1‘» %E), see

Fig. 5.1c.

Next we consider a steady UEV system. The streamline structures are topo-
logically similar to the structures for a steady PV system for various f; values with
A small enough. We say that the UEV core is small enough if the stagnation points
exist exterior to the core. Notice that, for a given f;, the geometrical structure of
the stream lines is topologically equivalent to that of a PV system. This is a direct
result from Eqn.(5.3), however, it can also be justified from the following facts. As
we have seen in Chapter 3, a steady UEV can only exist for § = ¥ or %f— depending
on (o9, ko), i.e., (B, A). The velocity field exterior to a UEV is very similar to that
of a PV, ie., it decays like 1/r as r — oo. Hence, the external flow field governs the

far field flow structure as well as the steady PV system. Since two velocity fields

induced by the PV and the UEV agree on the extended semi-major and semi-minor

ks
4

axes of the UEV which are either on y = §, 2F or —3f, —774-’5 for a steady UEV system,



- 113 -

the stagnation points in the flow on xy = £, 28 =E I exist at the same positions
with the same stability type for both systems. This means that as long as the
stagnation points exist exterior to the UEV core, the qualitative flow structures for

a given fy are topologically equivalent.

5.3 The Unsteady Flow Fields

When the total flow field is time periodic, the flow structure may exhibit new
types of motion. In the PV system, the time periodic perturbation is due to the
time periodic perturbation in the external linear flow field which may have arbitrary
frequency. In a UEV system, the time periodic motion of the UEV in the steady
external flow field induces a time periodic perturbation for a given external flow field
(B, A) and UEV initial configuration (1(7),8(7)). In this case the perturbation
frequency is uniquely determined, and, therefore, cannot be arbitrary. We use the
same technique as in Chapter 4 to study the unsteady flow dynamics, however the

physical implications of those techniques are different.

5.3.1 Qualitative flow dynamics

The Poincaré map enables us to better understand the unsteady time pe-
riodic flow dynamics. We examine how the flow dynamics changes under the time
periodic perturbation. Note that, qualitatively speaking, the PV system and the
UEV system exhibit the same types of flow dynamics. Typically, the heteroclinic
orbits which define the boundaries of unperturbed flow regions break up and result
in a region of chaotic fluid particle motion. The mechanisms for these dynamics are
as follows. In the mixing region, lobe dynamics, which we described earlier, can be
used to describe the transport process and to compute residence time distributions,
as we will demonstrate later. There also exists chaotic particle motion in the mixing
region associated with horseshoe maps. In Fig. 5.2, the typical heteroclinic tangle

structures for |fy] < % and By < :51- are shown.

For fluid particles which undergo periodic rotation along the invariant circles
in the steady flow, the rotation number p = %}i, where () is the perturbation fre-

quency and Q7 is the frequency of the unperturbed periodic orbit, governs the
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perturbed dynamics. When p is rational, i.e., p = * where m and n are relatively

prime integers, the invariant circle breaks up and forms a resonance band consist-
ing of 2m periodic fluid particle motions equally distributed around the circle which
alternate in stability type between elliptic and hyperbolic. The resonance band,
which posesses heteroclinic tangles due to the unstable and stable manifolds of the
hyperbolic period m points, allows fluid passage through the resulting lobe dynam-
ics. Moreover, there exists chaotic dynamics along the resonance band associated
with horseshoe maps. On the other hand, the invariant circle may persist under
the perturbation as a KAM torus when p is irrational. KAM tori are extremely
important since they represent total barriers to fluid motion. When p is irrational
and fails to satisfy the condition for KAM tori, then the invariant circle may partly
break down and contain small gaps which permit verv slow fluid passage. These

motions are referred to as cantori.

5.3.2 The Melnikov technique on heteroclinic orbits

The Melnikov techniques for the heteroclinic tangle and the resonance band

again provide insightful information regarding the fluid particle motion.

First we consider the unsteady PV system where the external flow parameters

are perturbed sinusoidally.
(1) =1+ ¢€ysin Q1 + 1)
a(T) = €o sin Q7 + 74)
B(r) = Bo(1 + esin Q7 +75)) ,

where 74,74 and 73 describe phase shifts in each perturbation. The total Melnikov

function is a composition of three effects, i.e.,
M(7) = exMey(10) + €aMeal(T0) + €gMcp(T0) .

We now give the physical insight of the Melnikov function for each perturbation.

First we consider the perturbations in 5(7) and B(7). Eqn. (5.2) can be written in
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two real variables x and y associated with the stream function as follows.

d 0 _ __
E;I = 5;(1/)1) + '?ws + ﬂ#%)
d 15} _ __
gf;y - —'5;(1/);: + 71/)3 + ﬁwr) 3
where _
1/)3 - :sz
¢r - ijr .

Notice that the perturbations in ¥ and § have the form of Hamiltonian perturbations
of Type 1 which we discussed in Chapter 4. Hence, the Melnikov functions M. (7)
and Mg(7o) for the both perturbation types are written as follows.
oo d - )
M (1) = / -(2-7—_@/13 sin Q1 + 7y + 70)dT
= F, cos Q1o + 7)
My(ro) = By /

hade o]

(5.5)

oo

i?Z’RSinQ(T+Tg + 79 )dT
dr
= FgcosQ(my + 73) ,

where

F.,:/ (—;;d_)s)sinﬂ‘rdr

— 00
o4 -
Fg = ﬁO/ (—1y)sinQrdr .
oo dT

From Eqn. (5.5), M,(79) and Mga(7y) relate to the Fourier transform of the rate of
change in the corresponding stream functions along the unperturbed heteroclinic
orbit. Note that F., and Fj are linear in the basic flow parameter By, and 1, and
g are independent of 8y. Hence the behaviors of F, and Fj) with respect to the
perturbation frequency are strongly governed by the geometrical structure of the
unperturbed heteroclinic orbit in relation to ¢, and é,. Physically it means that
the flow dynamics in the mixing region are determined by how much influence a
fluid particle receives from the steady part of the perturbed external flow field as
the fluid particle drifts on the dividing stream line of the steady flow field. For
example, consider the rate of change of the external straining stream function on

the heteroclinic orbit for 0 < By < % which connects two stagnation points on
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x = £ and 54—". On the orbit, ;f;’ws < 0 for x < 3—4"- (i.e., 7 < 0 by taking 7 = 0 on

X = 74—-)7 (—i‘-i-r-z/gs > 0 for y > %’5 (i.e., 7 > 0), and | f;@bs | decays exponentially as the

W
g w1

orbit approaches stagnation points (i.e., 7 — £o00.) Similarly, the rate of change of
the external background vorticity stream function on the heteroclinic orbit is such
that ;f;@/)R < 0for yx < -3-575 (i.e., 7 < 0), and f;;bR > 0 for x > % (le., 7 > 0)
and | f;z/m | decays exponentially as the orbit approaches stagnation points (i.e.,
7 — *£o00.) Hence we can infer that the graphs of F, and F3 versus the perturbation
frequency 2 show the typical behavior, i.e., | F,, | and | Fj3 | have the global maximal

at their first local maximum and decay exponentially as Q goes to infinity.

For understanding the physical implication of Mqy(79), we use the following

canonical transformation of variables which we used in Chapter 2 for the UEV

motion.
(z,y) = (R.x),
where ) ,
r ety
Then the equations of motion given by Eqn. (5.2) are written in another Hamiltonian
formulation.
dp_ —a—(zb + Y5 + )
dr Oy " ° "
= 3V2Rcos2(x — «)
d 0
X = 'é“é(l/)p + s + Pr)
1 _
= —— —Fsin2(y —a)+ 24,
55 7 (x —a)
where
Y, = V2R

Y = 2BR .
The reader should notice that the perturbation in a(r) is a Hamiltonian perturba-
tion of Type 2 which we discussed in Chapter 4. Therefore, the Melnikov function

1s written

;0 d2
My(m) = / (E_—iﬂ) sin Q(7 + 74 + 0 )dT (5.6)

= Fosin Q7o + 7o)
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where

Fo = [—w(%R)COSQTdT .

From Eqn. (5.6), My(7o) relates to the Fourier transform of the second derivative
of R = 7 with respect to time where r is the distance from the PV. Furthermore,

one can show following relation between F, and Fp,
BOFa = QFﬂ ’

i.e., the ratio of F, and Fj is proportional to perturbation frequency 2 and in-
versely proportional to the basic external flow parameter 8y. Notice that «(7) is
the inclination angle of the straining axis, and 3(7) is the background vorticity rate
normalized by the straining effect, and hence both a(r) and S(7) are related to
the angular velocity component of the fluid particle. The behavior of the graph
of Fy can be inferred from the relation to Fjs or the geometrical structure of the

unperturbed orbit.

Finally, the total Melnikov function is a superposition of three effects.

eM(7; 803 ) = Fiot(Bo; ) sin Q1o + Teor)

where s
Ftot = {(Cv + Co +Cﬁ)2 + (8‘7 + Sa + 5,3)2}2
1 o+ s 5.7
Ttot:-~tan"1————-—-———--————87+s o6 . (57
Q Cy+ Catcp
with

si = |6 Fi(Bo; Q)| sin Q1o + 73)
¢i = & Fi(Bo; Q)| cos Qg + i)

=7, f.
When the external linear flow is excited in more than one parameter, they may excite
or cancel each other. The phase shift parameters have an important influence on
the total flow dynamics because with proper phase shift, F},; can be identically zero

from Eqn. (5.7).

In Fig. 5.3, the graphs of F, and F, are plotted versus perturbation frequency
Q for By = 0 (i.e., kg = 0). The effects of the perturbation frequency € on the
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graphs of F, and Fj are as follows. F., increases in proportion to {2 for {2 small,
attains the first local and global maximum at the extremum frequency Q¢ ~ 3.
and decays exponentially as 2 goes to infinity. F, increases in proportion to 22
for £ small, attains the first local and global maximum at the extremum frequency
Q¢ ~ 2. and decays exponentially as {2 goes to infinity. The area of a lobe is plotted
in Fig. 5.4 with e, = ¢35 =0.1.

Next we consider the unsteady UEV system. However, in order to apply the
Melnikov technique or the unsteady UEV system, we need to introduce the modified
Melnikov function which has a slightly different form from the regular Melnikov
function. One of the main reasons for using the modified Melnikov function is that
the equations of motion for the unsteady UEV can not easily be written as a system
of two real variables. The regular Melnikov function can be computed using the
averaging method (Holmes and Holmes [1978]), however, the modified Melnikov
function gives more simpler and insightful form of the functuon. See Appendix 7

for detailed proof.

We define the modified Melnikov function M.(7g) on the heteroclinic orbit as

follows.

* d d
M (m) = -Im/ —J;zg&;z(zh(r)ﬁ + 79)dT (5.8)

where 1y is the parametrization variable on the unperturbed heteroclinic orbit z,(7)

as we defined before, -f;zg describes the conjugate of the unperturbed velocity
as a complex variable, dirz describes the perturbed velocity and the integrand is
evaluated on the unperturbed heteroclinic orbit. Then M(rg) is O(e), where € is
the order of the perturbation, and it is the first order term of the signed distance
d(79, €) between unstable and stable manifolds which form the heteroclinic tangle,

up to a known normalization factor, 1.e.,

M(7o)

137 25 (za(= o)l

d(ro,€) = + O(€%) .

For a system which can be written in a form so as to compute the regular Melnikov

function, M(7g), Me(70) has the following relation to M(7)

M(ro) = eM(79) + O(€®)
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It follows from the Melnikov theorem that the simple zeroes of M,(7p) (i.e., M. (70) =
0 and E%MG(TO) # 0) imply the transverse intersection of two manifolds. As a
consequence, the modified Melnikov function M.(7y) gives the number of transverse
intersections per perturbation cycle.

Now let us examine Eqn. (5.8) for the physical implication of the modified
Melnikov function. The integrand Im { ddT 25 dd '} corresponds to the out-of-phase
component of the perturbed velocity projected down to the unperturbed velocity.
Again, the perturbation frequency is an important factor of the modified Melnikov
function as well as the amplitude of the perturbation. It is clear that if no per-

turbation is imposed, i.e., d—drz = dd zg, then Im{dT 25 drz} = 0, meaning that

e(TO) = 0.

Using the modified Melnikov function, we can compute the area of each lobe

A, up to the first order in € as well as the regular Melnikov function.
A, =| / M(1o)dry | +O(€) | (5.9)
T

where 7; and 7, are the parametrization variables corresponding to two adjacent
pip-

Now let us apply the modified Melnikov function on the heteroclinic orbit to
examine how the finite core size UEV contributes to the chaotic mixing in the flow
field in comparison to the unsteady PV system. For a given (f,,A) = ( 2, %‘l> ,
the period of the motion is uniquely determined by the UEV configuration. Here
we choose By = 0 and describe how the chaotic transport is influenced by the finite
core effect and initial UEV configuration using the modified Melnikov function and
the area of a lobe. The area of a lobe defines the size of the mixing region and
it shows how much fluid is transported across the boundary between two or more

distinct flow regions. The modified Melnikov function is given as follows.
M(m) = —Im/ "“‘Zo 2(zp(7), T + T9)dT

where

d 2
R Y (SN s WE T +ﬁo .

dr zD062‘90 21

—d—z: —Vz De2’9)+z+60 .

dr 2D62'9
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The subscript ‘ ¢ * for D and 6 denotes the stable steady UEV configuration. Since
the perturbation is given by (n(7),6(7)), and hence the time dependence of the
perturbation does not appear explicitly. The result is that M(7o) is implicit in 7.
However, the area of each lobe does not depend on 74 by definition from Eqn. (5.9).
In order to examine the finite core effects of the UEV, we compare the area of a
lobe for the unsteady PV system and the unsteady UEV system. A, are computed
for By = 0 and several A values, i.e., (8,A) =(0,0.245),(0,0.316) and (0,0.374) which
correspond to (og, ko) =(0.03,0),(0.05,0) and (0,0.07) respectively. Futhermore, for
each core radius A, five initial UEV configurations, which correspond to periodic
oscillation of UEV are chosen to examine the perturbation amplitude effects.

™

(7:,6:) = (L +c(no — 1) 2

c€(0,1],

)

where (n;,6;) is the initial UEV configuration, i, is the aspect ratio for the stable
steady UEV, ¢ is a parameter which controls the perturbation amplitude. ¢ = 0
corresponds to a steady stable UEV (i.e., the steady UEV system) and ¢ = 1
corresponds to a UEV undergoing critical boundary motion between oscillation and
rotation as we discussed in Chapter 3. Here, we chose ¢ = 0.1,0.3,0.5,0.7,0.9.
The result is shown in Fig. 5.5 in comparison to the result from the unsteady
PV system. Notice that for a given core size A, the period of the oscillation is
insensitive to the initial UEV configuration. Hence, we first discuss the effect of the
perturbation amplitude for a given core radius A. If the UEV undergoes oscillation
with larger amplitude perturbation (i.e., ¢ larger), then the area of a lobe is larger
meaning that the size of the mixing region is bigger. The period of the UEV motion
strongly depends on A. The larger core UEV undergoes periodic motion with lower
frequency, and as the core radius approaches zero (i.e., the PV), the perturbation
frequency goes to infinity. Fig. 5.6 shows that the larger core radius UEV with
bigger perturbation from the steady configuration generates a larger mixing region.
The regular motion of a finite core UEV in a steady external linear flow field creates
a chaotic mixing region, i.e., a UEV works as a mixer in the flow field. The initial

configuration and core size have a significant effect in the flow field.



5.4 Figures for Chapter 3

Figure 5.1 Stream line structures for a steady PV system

(a)Bo > 1/2  (b)IBo] <1/2  (c)Bo < —1/2

Figure 5.2 heteroclinic tangles

(a)lBol <1/2  (b)Bo < —1/2
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Appendix 1

THE INDUCED VELOCITY FIELD
BY A ELLIPTICAL VORTEX

We consider an elliptical vortex (EV) of arbitrary vorticity distribution and
compute the velocity field around its centroid and the local straining effects in the
induced flow field. By presenting these results, we not only give the exact solutions
of the Euler equations corresponding to EV’s but also hope to give some assistance
to improve the computational elements of the vortex methods which may be used
to simulate two-dimensional incompressible flows. For this purpose, we take the
following steps; 1) define an EV, compute the induced velocity field around its
centroid, 2) compute a local straining effect around a point in a general irrotational
flow, and 3) apply the formulae to compute the induced velocity fields and the local
straining effects in flow fields for a UEV and a gaussian elliptical vortex (GEV).

A1.1 Definition of a EV and induced velocity field around its
centroid

We mean by an EV a region of vorticity in which each vorticity contour has
an elliptical shape. The semi-major axis, a, and the semi-minor axis, b, of each
ellipse has the same aspect ratio n = . Those axes are properly aligned as shown
in Fig. A1.1 and define an EV fixed coordinate system (X,Y) with Z = X + Y.
The angle 6 in Fig. A1.2 is called the inclination angle of the EV and measures the
tilting of the vortex from the standard coordinate system (z,y) with 2 = z +y. In
a EV fixed coordinate system, it is convenient to use the elliptic coordinates (R, ¢)

which are defined as follows.

(X,Y) = (v/Rncosg,/R/nsine)



le.,

R = \/(%>2+(Y\/ﬁ)2 (A1.1)

(Y
=t 1

By definition of the EV, the vorticity distribution in (X,Y") coordinate system is

written using the elliptic coordinate variables.

wp(X,Y) = gf (_@ (A1.2)

[ @) e

A is a mean core radius of the EV and f(-j-\l-z-) is a normalized vorticity distribution.

where

The two-dimensional Biot-Savart law for an arbitrary vorticity distribution

w(X,Y) may be written in a complex form

// —dXdY (A1.3)
T - (X + 2Y

where Z* is the velocity conjugate at Z = X +1Y. We now evaluate this integral
in the elliptic coordinates. Substituting Eqn. (A1.2) into Eqn. (A1.3) yields

Bt = Ow{f( )}{ VA (Z Rn>}d(R)

Z R 2 do
N\ 7L 5o
o (£)-(%) (Coscp+zsm<,o)

H(%, 7\"2, n) can be computed by the residue theorem

R 1 1 for 0<R<R
H (—Z— X 77) = \/<%)2~(f—"=i)<§)2

ATAT
0 for

where

3

=5
V
&=
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Consequently, the velocity conjugate Z* at Z is written

z* :Z*(Z;F,A;n)
r % (R\. R Z R R (A1.4)
=2 ) {f (X)HX}{H (X’K’n> jd (K)

In a standard coordinate system (z,y), the velocity conjugate z* at z = + 1y is
k=il w =6, ) =
2t =e""Z (ze7 T Ay ) (AL.5)

From Eqns. (A1.4) and (A1.5), it is clear that the contribution to the self-induced
velocity at z comes only from the vortices interior to the ellipse of (7, 8) which goes

through z.

A1.2 Local straining effect in an irrotational flow

In general, the irrotational velocity field at z i1s written using the complex
potential function F(z) = ¢(z) + 13¥(z) where ¢(z) = Real F(z) is a potential

function and ¥(z) = Im F(z) is a stream function.

—
z _aZF(z)

0 .
= 5‘2(9?5(2) + 1p(2))

If the flow field is induced by some vorticity distribution w, then F(z) is given as

follows.
r - .
F(e) =z [ [l ol = @+ i9)) didg
Note that F(z) is analytic in z because the flow is irrotational.

The local straining effects at zg = xg + 2y i1s computed as follows. The local
velocity field around zq = ¢ + iyy can be expressed as a Taylor series in (z — zg)

because the flow is irrotational.

2= (%) + 772 (2= 20) + O ((z — 20)?)
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The first order term in z — z¢ represent the local straining effect at z = zg, 1.e.,

—208 __ ___a____*
veT = oo e
ol (A1.6)
az F( ) 12220

v is the strength of the local straining effect and « is the inclination angle of the
local straining axis form the standard coordinate system. Using Eqn. (A1.6), we

obtain the straining effect at zg = zo +1yo for a known vorticity distribution w(z,y),

-zm_m//{z f e Joms (ALT)

Applying Eqn. (A1.7) for an EV, we obtain the local straining effect at z = z
induced by an EV.

et (B ; ; ; ;
e = L2 | {f(—f)}{%}{ﬂ(%-};,n)}d(-f) zmmperrs (4L8)

where

A1.3 Applications to a UEV and GEV

We now apply Eqns. (A1.5) and (A1.8) for a UEV and a GEV (gaussian

elliptical vortex).
A UEV

The vorticity distribution function for a UEV is as follows.

f R _ { 1 for R<A
A 0 for R>A
Hence the induced velocity field and the local straining effect at z = zy are

r -

SE oo . 2 _D 281
2 = - (2 z e

zerew'( )

76—*201' — ______}:____ 1 . 1 i —
1w De?20t Vz2 — De-20i | T
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A GEV

We show another application using a Gaussian elliptical vortex (GEV). For a

GEV, the normalized vorticity distribution function is

f(%) =exP{_<§>2} (A1)

Substituting Eqn. (A1.11) into Eqns. (A1.5) and (A1.8), we obtain the induced
velocity field for a GEV

P 1
C2Aef 2 -1
_ (B2 1 C n Z
{6 (A) cerf (‘*"7'7'5—-—{ 7\-> — cerf (1/m X)} IZ:ze“‘“

cerf(z) = complex error function

2 27; z 2
=e 7 1+——-/ etdt}
)

1
= —(X +inY
¢ \/ﬁ( + 1Y)

and the local straining effect at z

where

: - I n
—2at —261
~e e 52 ;7_5___._]_:
.._( Az)zi f ........._.}._..._ ..C; — I“f 77 —_— -0
{e aner \/772—7 A ce n2 —1 A | Z2=ze
where
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A1l.4 Figures for Appendix 1

Figure Al.1 Vorticity distribution of a EV
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Figure A1.2 Coordinate system for a EV
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Appendix 2

BIFURCATIONS

A2.1 Bifurcations on ¢ = T (or positive ( axis)
On ¢ = Z, from Eqn. (2.9),

dI

EZZT :( 1 I+ 2 I€0>
....0’ e ——
d—f I+4 °Jrryal 2

Hence, fixed points exist when %3;3 =0, Le.,

5o = 2o I+2 1
T EIT Al T+4
Fig. A2.1 shows the graph of I = K[ (I;00) with respect to K for any o9 > 0.
Recall that (v/21,¢) are the polar coordinates for 6 — ( phase space, hence the

Y= K4 (1 :09)

vertical axis of Fig. A2.1 is related to the positive ¢ axis. The intersections of I =
K;l(l; 0o ) and a vertical line K} = kg in Fig. A2.1 correspond to the fixed points.
Clearly, there exist 0 fixed point for kg < K;(0g), 1 fixed point for kg = K;(0g), 2
fixed points for K1{og) < k¢ < K2(0y), and 1 fixed point for kg > K;(0g) where

Ki(o0) = {K4(I;00) | ;%A;(I; o0) = 0}
= {Ky(I;00) | I* = (400)*(I + 4)}
Ka(o0) = {E4(Lioo) | Jim Ko (T 00))
= {K4(L;00) | K4(I;00) = 200}
The Jacobian of Eqn. (2.9) shows that for Ki(o¢) < s < K3(0g), a fixed point

with the larger I is of hyperbolic type and a fixed point with the smaller I is of

elliptic type. The followings are two bifurcations regarding the ¢ = 7 axis.



St : saddle-node bifurcation
A pair of hyperbolic and elliptic fixed points are born on S¥.

I+2 1

ST = {(ko,00) | ko = 2(00m — I+4)’[3 = (400)%(I +4)}

+ . : R — —
I7" : bifurcation at [ =ocoon p = %

A hyperbolic fixed point disappears to infinity.

I;ﬁ e {(KO’U()) ] Ko — 20’0}

A2.2 Bifurcations on ¢ = 2f (or negative ( axis)

On ¢ = 2%, from Eqn. (2.9),

— 0

gr :( 1 . I+2 &0)
[P O'————......___._.——

L4 I+4 VTPt al 2

A fixed point exists when %‘f =0, ie.,

I+2 1

N, - I+4) =K_(I:09)

KRg — —"2(0'0

Fig. A2.2 shows that the graph of I = K_'(I;0¢) with respect to K _ for any ¢y > 0.

The vertical axis of Fig. A2.2 is related to the negative ( axis. The intersections of

I = K~-'(I;04) and a vertical line K_ = xq in Fig. A2.2 correspond to the fixed

point on ¢ = %’5 There exist, 1 fixed point for ko < K3(0g), and 0 fixed point for

ko > K3(oy), where
Kj3(og) = {K_(I;00) | Ilim K_(I;00)}
={K_(I;00) | K_(I;00) = =200}

The Jacobian of Eqn. (2.9) shows that the fixed point is of elliptic type.

corresponding bifurcation on ¢ = -33"- is as follows.
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L} : bifurcation at I = co on ¢ = 37

A elliptic fixed point disappears to infinity.

IF = {(ko,00) | ko = —20¢}

A2.3 Bifurcations to periodic motion as [ — oo

As I — oo, Eqn. (2.9) becomes,

ar
il ( 0'0' cos . )
de | =\ —opsing + —
- 2
dr

From %‘f equation, %‘f >0 if o < % for any ¢, which corresponds to

counterclockwise periodic motion. Similarly, %{i <0 if o9 < =% for any ¢,
which correspond to and clockwise periodic motion. For —%2 < oy < 42, the

motion for I > 1 is not periodic. The corresponding bifurcations are as follows.

I : bifurcation to counterclockwise periodic motion for I > 1

If = {(ko,00) | ko = 200}

I} . bifurcation to clockwise periodic motion for I 3> 1

I; = {(kg,00) | Ko = —20¢}

Notice that these two bifurcations are associated with the bifurcations of the fixed

points which we described in A2.1 and A2.2.

A2.4 Global bifurcation

The global bifurcation occurs when the origin of § — { phase space (i.e., a
point at I = 0) lies in the homoclinic orbit. The condition for the global bifurcation
is that two Hamiltonians evaluated at the hyperbolic fixed point (Hp) and at the

origin (Hy) are the same.
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Hy, = H,
where .
Hy =log(I+4)— 0 12+4I+——29-I
Hy =log4
dy
I'={I(ro,00) | 7lo=5 = 0}
1 I+2 Ko

= {] S e
{<’€0700)1[+4 UO\/m 2}

The corresponding bifurcation curve GV is.
Gt : global bifurcation

1 I+2 Ko
Gt = {(x - — =0,
{(ho»ao) l T+4 O T2 14l 5

4 o
1og11“ -<70\/IQ+4I—%O-I:O}

A2.5 Bifurcations on oy =0
For 0y = 0, Eqn. (2.9) becomes
dI

= 0
& T+4 2

dr

First let us consider —% < Ko < 0 with o¢g = 0. There exist Iy such that %f =90

where Iy = -(-;2; +4). This corresponds to a ring of fixed points at Iy = —(%O +4).

If we move from o9 =0 to og > 0, then the ring of fixed points breaks up and

leave a hyperbolic fixed point on ¢ = Z. This generically results in the birth of

2

two homoclinic orbits with one encircling the other interior to itself. Similarly, if

we move from o9 =0 to o¢ < 0, then the ring of fixed points breaks up and leave

a hyperbolic fixed point on ¢ = 3575- Again, this generically results in the birth of

two homoclinic orbits with one encircling the other interior to itself. We call this

bifurcation the ring bifurcation and denote the corresponding bifurcation curve as

R.



R : ring bifurcation

1
R ={(ko,00) | =5 < ko <0,00 =0}

For kg > 0, the bifurcation regarding to the UEV motion (not a bifurcation in
a strict sense) on op = 0 is as follows. The elliptic fixed point on the positive (
axis for o9 < 0 moves to the negative ( axis as we cross o¢ = 0 . Similarly for
ko > 0, the elliptic fixed point on the negative ( axis for oy < 0 moves to positive
( axis as we cross og = 0 . We define bifurcation curves U; and U; regarding these

bifurcations.

Uy : bifurcation at the origin
U] = {(/io,a'()) l ko < 0,00 = 0}
Us @ bifurcation at the origin

U2 = {(KZO,O'Q) l K < -'2,0'0 = O}

2
A2.6 Bifurcation curves

We give a list of the bifurcation curves.

I+2 1
ST = {(kg,0 Ko = 2(0 — VI = (409) (I + 4

{(x0,00) | %o (OI2+4I 13 (400)°(1 +4)}
1 I+2

G* = {(50,00) | P - 2 =),

I+4 °JITyal 2
IogI:4——00\/I2+4I—%qI:0}

If:{(ﬁo,ao)l%:%‘}

f;={(ﬁo700)|00=—fé9

Uy = {(ko,00) | ko0 >0, g9 =0}

R = {(xo,00) | —;1)-</~c0<0, oo = 0}
1
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A2.7 Figures for Appendix 2

Kyo)

Figure A2.2 Graph of I = KZ'(I;09)
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Appendix 3

THE MELNIKOV FUNCTION M~ ()
ON THE RESONANCE BAND
OF ORDER 2 WITH GEOMETRICAL SYMMETRY

Let us consider the following system.

ir :<f1(q)+eg1(w)+0(62)>
s f2(q) + eg2(q,7) + O(€?)
where

q(T) (6( )C(T))
_a_
(z:éz:?) (;z q):zii:)

6)
O(€?); time periodic with period T = kil

[

The purpose of this appendix is to show the properties of the Melnikov function on
resonance band of order 2* for this system when the unperturbed phase space has

some geometrical symmetry as shown in Figs. 4.13a and 4.13b.
Case 1

Let us consider a system whose unperturbed phase space has a geometrical
symmetry as shown in Fig. 4.13a. If we choose 7 = 0 on the (— axis, then the
unperturbed periodic orbit ¢ (1) = (6 (7), (¥ (7)) satisfies the following condition
due to the symmetry, where a superscript ¢ 77 denotes the level of the Hamiltonian

function.
(87(r), ¢*(r)) = (=6"(=7), ¢"(=7))

The orbit ¢¥(7) can be written as a Fourier series as follows.

(68 (r), ¢H(r)) = (i D sinQer, > Z{ cos QM er) (A3.1)
= £=0
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where Q1 is the natural frequency of the orbit, and D} and Z}' are Fourier coef-

ficients.

Now we want to compute the Melnikov function on RB 2.

~3

m

M%(TO) = [;T {f /\g}(qH(T),T + 79)dT

|

T (A3.2)
= /:_ml {fAGysinQr (¢f(r), 7 + 70)dr
We define h(q*(7)) as follows.
h(g"()) = {f Ag}a" (7)) (43.3)

To compute M= (), we examine the form of h(¢f(7)) using Eqn. (A3.1). Since f
and § are both functions of ¢¥(7) = (§(7),((7)) and §(r) is odd and ( is even in
time by definition, each term in k(¢ (7)) is either odd or even in time. In other
words, each term in h(¢¥ (7)) can be written as either a sine Fourier series or a

cosine Fourier series.

h(¢™(r)) = ho(g™ (7)) + hp(e" (7)) (A3.4)

ho(q"(7)) =) Of sinQ”er
=t (A3.5)
he(qf(r)) = Z EH cos QF 0r

£=1
ho(q (7)) and hg(¢¥ (7)) describe odd and even terms respectively. By substitut-
ing Eqn. (A3.4) into Eqn. (A3.2),

m.
M* (1) = M:)'z'l(To) + Mg (7o)

Further substitution of Eqn. (A3.5) gives

%

Mé‘l(ro):[ ho(qH (1)) sin Q(r + mo)dr

mT

e

=

]‘VI;‘L(TQ) = /_m hE(qH(T)) sin §2(7 + 79 )dT

2
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where

Q

M
© 0 forn # 1

(ro) = { 2109m o5y, forn =1

mrEn ginQr, forn =1

Y _ O
Mg (7o) { 0 forn #1

It follows that M™ (7p) for the ultraharmonic resonance band (i.e. n # 1) is
identically zero if the symmetry shown in Fig. (4.13(a)) exists. In other words,

ultraharmonics are at least O(e?).

Case2

Now we consider the system with symmetry show in Fig. 4.13b. We follow
the same procedure as in Case 1 to compute M (7). If we choose 7 = 0 on the
(— axis, then he unperturbed periodic orbit ¢ (1) = (§¥(7), (¥ (7)) satisfies the

following condition due to the symmetry.

(67(r), ¢H(r)) = (=67 (=7), ¢"'(-7)

TH H H TH (A3.6)
(8" =), (T = 7)) = (=81 (o 4 ), = (= 4 1)

where T denotes the period of the orbit. The orbit ¢ (7) is then written in a

Fourier series to satisfy Eqn.(A3.6).

(7 (), ¢H(r)) = (Z Daer T sinQF (20 + 1)7 Zzze+1 cos Q1 (20 + 1)7)
£=0 =0
(A3.7)
Note that the even order Fourier coefficients of both 6(7) and ((r) are identically
zero. Again, the Melnikov function has the following form.

mL

M7 () = /:_f:_T_{h(qH(T))} sin Q7 (¢f(7), 7 + m0)dr (A3.8)

2

where h(q" (7)) is defined in Eqn. (A3.3). To compute M™ (7), we examine the
form of h(¢* (7)) in Eqn. (A3.3) using Eqn. (A3.7). Notice that f and g are both
functions of ¢fI(7) = (6(r),¢((7)), and §(7) is odd and ( is even in time with all

even order Fourier coefficients identically zero as shown in Eqn. (3.7). It can be
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shown that each term in h(¢‘r)) has either one of following four forms, hoo(qt (7)),
hoe(¢"(1)), hpo(q™ (7)) or her(q" (7).

h(g" (7)) = hoo(q™ (7)) + hor(¢™ (7)) + heo(d™ (7)) + her(d (7)) (A3.9)

hoo(q"(r)) = Z 0F sin Q1 (20 + 1)
=1
hoe(q(1)) = Z OF sin Q207
= (A43.10)
heo(q(7)) = > Ef cos QP (20 + 1)7
=1
hep(df(r) = Z Ef cosQfoer
=1
where the coefficients, O?, OeE, Eeo, E,E, are uniquely determined by the form of
h(¢H (7)) and Eqn. (A3.7). By substituting Eqn. (A3.9) into Eqn. (A3.8), we obtain

= 2 2 2 2
M (79) = MGo(m0) + M3g(m0) + M3g(m0) + Mgg(7o)

where oz
Mp(r) = [ hoola™(r)sinQr + r)ar

g
Mp(r) = [ hepte(0)sinfr + r)dr

mT
MEo(r) = [ heola™(r)sin Qs + ro)ir

2
mI

Mzg(o) = /mT hep(g™ (7)) sin QT + 7o)dr

2

Furthermore, substituting Eqn. (A3.9), we obtain

o]
Algfo(?’o) = { yﬁo‘m cosQry forn=1and m = odd
otherwise

OE
]VI(?E(TO) = { T‘%“m cosirg forn=1and m = even
otherwise

]\42%0(7'0) - { mTEL Gin Qry forn=1and m= odd

0
otherwise
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E
m mnrkF . ) . .
Mg (7o) = { —g 2 sin{lry  for n = 1 and m = even
otherwise

It follows that M (7g) for the ultraharmonic resonance band (i.e. n # 1) is identi-
cally zero if the symmetry shown in Fig. (4.13(a)) exists. In other words, ultrahar-
monics are at least O(e?). Moreover, there may exist only odd order subharmonics
or even order subharmonics resonance band of order % depending on how the per-

turbation is imposed (i.e., the form of A(g™(7)).
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Appendix 4

PERTURBATION FREQUENCY RANGE
TRANSITION BETWEEN OSCILLATION AND ROTATION
(Proof for Equation (4.3))

Proof

For the proof, we take the following steps;

1) compute the width of RB 2 up to the first order in ¢, denoted by d(7y),
corresponding to the unperturbed orbit, denoted by ¢ff(7), going through the
origin of the coordinate system (4, () = (0,0) with natural frequency Q. (ie.,
resonance relation mQf = nQ, where () is the corresponding perturbation

frequency).

2) compute the point on the (—axis (4,() = (0,(,) at which a stable invariant
manifold of period m point of RB 2 intersects the (—axis, up to the first order

in ¢, using dff(m).

3) compute the natural frequency, denoted by QX of the unperturbed periodic

orbit going through (6,¢) = (0,¢,) up to the first order in € from ¢, .

4) compute the width of RB Z* up to the first order in ¢, denoted by dH (7)),
corresponding to the unperturbed periodic orbit going through (4,¢) = (0, (),
denoted by ¢(7), with natural frequency Q¥ (i.e., resonance relation mQ =
nfl, where 2, is the corresponding perturbation frequency), and argue that

CdH(ry) = dff () + O(é2).
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5) obtain AQ™ from 4 and §,.

1) By definition, the width of the corresponding RB 2, d™ (1o;€), and its first order

term, df (ry), are as follows.
dw (195 €) = dif (r0) + O(€?)

where

My (o)
£ (g8 (=mo))l

dg(TO) =€

and
I
=

My (7o) = M (7o)lqn —qx

Furthermore, from the resonance relation we obtain

Qp = —QH (A4.1)
n
2) Since the width of RB 2 describes the signed distance from the unstable in-

variant manifolds to stable invariant manifolds perpendicular to the corresponding

unperturbed periodic orbit, (. is given as follows.
1
Cx = §df(7'0) IT0=T5‘

where 75 is the value of the parametrization variable on the (—axis.

3) The natural frequency on the periodic orbit going through (6,¢) = (0,{,) up to
the first order in ¢, denoted by Q| is obtained by Taylor expansion of 2 around
ol

onH

H _ H
alf = off + -

l(5,0)=(0,0) G+ + O(€%) (A44.2)

4) We first want to obtain df(7y) in relation to dff (7o)

M (70)lqu—qu

N E =)

d(r0) =
In doing so, we take Taylor expansion in M7 (7) around Qf = Qff.

NI%(TO)IQHzﬂfI = ]\l%(TO)[QH:QéJ + O(e)
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Furthermore, we take Taylor expansion in || f(¢”(—7))|| around Qf = Qff.

1F (@ (=7o))ll = 1/ (g5" (=)l + OCe)

Hence n
M (1o)|qn=qu

TFE =)
_ M= (1o)lqu—qu + O(e)
= T )l + O(e)
= d¥ (r0) + O()

Moreover, from the resonance relation we obtain

Al (ro) =

Qe =

m
n

ff (A4.3)

5) It follows from 4) that, under the perturbation with perturbation frequency
Q, = L:—Qf, the origin of the coordinate is contained in the RB 2. Hence, we

obtain from Eqns. (A4.1),(A4.2) and (A4.3)

AQL:— = ]QO - Q*l
=12 - o)
n

1m o
- |§;L__a_c... l(5,¢)=(0,0) dH(19) |ry=5z |

where -
b\ M)
Ao () = T ]
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Appendix 5

PROOF FOR REMARK 3,4 AND 5 FOR CASE 2

Proof for Remark 3

We want to show that for any m, the condition for RB £+ given Eqn. (4.3) can not
be satisfied, i.e.,

Q¢ Q)

For any m > I+ 1,

0 < §2}1€+1 S& gn < S’zgz

From Remark 1, there exists no unperturbed periodic orbit which satisfies the res-
onance relation m§Q 7 = Q for any m > k + 1.
For any m < k,

Q>ab>ar s an

From Remark 1, there exists no unperturbed periodic orbit which satisfies the reso-

nance relation mQ = Q for any m < k. Consequently, there exists no unperturbed

periodic orbit which satisfies the resonance relation m§ = Q for any m.

Proof for Remark 4

If we show for any k* < L

0F < of

then it follows from Eqn. (4.3) that there exists frequency gap of order A*. Using

the definition of Q% and Qi‘ *1 and the condition for the frequency gap of order
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k,
QI+ - = (1 1t — 01,
= (" 1) = 0y + (k= k)00,
> (B + 1) Qi = K Qe+ (k= KO,
= (k + D) — Q4 ax
>0
1.e.,

QF <o

Proof for Remark 5

The conditions for NV, 1s are as follows.
Il dit for N, foll

N, Ny,+1
Qe < s
Ng+1 Ng+2
Q,°7 >0,

From first inequality, we obtain using Eqn. (4.3)

OH
Yo T qm _—an

max “min

From second inequality, we obtain using Eqn. (4.3)

QH.
J\/’ < min
g H H
Qma.x - Qmin
As a result, we obtain
N Szﬁin 1
B Y oY A

max min

= (hk—Ak")
— (k= k")

QH

min

QH

max



Appendix 6

THE MELNIKOV FUNCTIONS
FOR THE HAMILTONIAN PERTURBATIONS

We consider the following two types of the Hamiltonian perturbation which are
described in Chapter 4. First we consider the Melnikov function on the homoclinic

orbit.
Type 1 : external excitation

Suppose that a part of the Hamiltonian is sinusoidally excited in time.

dI 15}
. —E*{H(IM;T)}
do | = 8
- a1 HL @7}

o A (46.1)
g5 (L) + (14 esin Qr)H(I,¢)}

%{T{'(I,¢)+(1 +esinQT)ﬁ(I,99)}

where

H(I, p;7) :—ﬁ([,@)+(1 —{—esinQr)fI(I,@)

where I*:T(I, ) is the excited Hamiltonian, and e = 0 corresponds to the unperturbed

system.

By the definition of the Melnikov function on the homoclinic orbit  ¢x(7) =

(Ia(7),0(7),
0 = [ (GG - (G o= T sinrr (an(rYir + ) dr

where the integral is evaluated on the unperturbed homoclinic orbit ¢x(7). Notice

that on ¢n(7),

o i
8('0 e=0 _ - ZZ—’;
0H ¥

oI =0 dr
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and hence

>~ dI _0H 0H
M’(To):[_ (——) E:)-}—( dT)(B )sin Q1 (qu(7);7 + 79) dr
- (46.2)

= —-/ {-——}stT (gp(7);7 + 10) dT

From Eqn. (A6.2), the Melnikov function is related to the Fourier transform of the
rate of the change in the unperturbed part of the excited Hamiltonian evaluated on

the unperturbed homoclinic orbit.
Type 2 : internal excitation

Suppose that one of the canonical variables ¢ is perturbed sinusoidally in time

around some value g

I {H( — (@0 + esin Q7)}
dar | _ | 9y A6.3
de 5, ) (46.3)
I E{H(I,ap——(@o-kesmﬂf)}

where € = 0 corresponds to the unperturbed system.

Since esin Q1 is O(e), we expand Eqn. (A6.3) with respect to esin Qr

2

dl 9 oo i 0r 2 H(I b O(e2
ffT _ (-3&’9 (I, <po)+681nQTgf2 (I, — o) + O(€*)
i 9 o) — e _ 2
ar aIH(I,Lp o) estTaSOaIH(I,cp o)+ O(€)

where O(e?) terms are also periodic in time with period T = ZQ—" By definition of

the Melnikov function on the homoclinic orbit ¢n(7) = (In(7), pr(7))

]\/f TO =
/ (- 0*H 0H 0*H

le 0)(— 5 aI]ezO)-( 37 |e=0 (8 7 le=0)} sIn Q7 (qn(7); 7 + 70) dr7

where the integral is evaluated on the unperturbed homoclinic orbit. Notice that

the O(e) terms evaluated on the unperturbed homoclinic orbit can be rewritten as

follows. 92 5 dr
——H I, o~ —
9.7 (I, — o) N e = He=o
0* - 9 dp

818 (I799-990) 6[ dr }[6 0
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and hence the Melnikov function is

 dI 0 ,dI g dI
M) = [ (GH-F5HG) = (PHGoGMsinar (aa(r)im + ) dr
oo d2
/ }sm Q7 (qr(7); 7+ 710) d7
(A6.4)
From Eqn. (A6.4), the Melnikov function is related to the Fourier transform of
the second derivative of the unperturbed canonical variable with respect to time

evaluated on the unperturbed homoclinic orbit.

Following the same procedure, the Melnikov functions on RB ** can be written

as follows.
Type 1 : external excitation

Bl g
MEm) = [ (L H@ e sintr ()i 4wy dr (465)

where the integral is evaluated on the corresponding unperturbed periodic orbit
¢ (7) with resonance relation mQf = nQ, where Q is the natural frequency
of the orbit. From Eqn. (A6.5), the Melnikov function is related to the Fourier
coefficient of the unperturbed part of the excited Hamiltonian evaluated on the

unperturbed invariant circle.

Type 2 : internal excitation

M%(TQ):/_ { }stT (¢ (r);7 4 70) dr (A6.6)

where the integral is evaluated on the unperturbed invariant circle with resonance
relation mQ7 = nQ where Q¥ is the natural frequency of the unperturbed orbit.
From Eqn. (A6.6), the Melnikov function is related to the Fourier coefficient of
the second derivative of the unperturbed canonical variable with respect to time

evaluated on the unperturbed invariant circle.
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Appendix 7

THE MODIFIED MELNIKOV FUNCTIONS

The purpose of this Appendix is to define and examine the dynamical conse-
quences of the modified Melnikov functions on the homoclinic orbit and resonance
band of order = for a Hamiltonian system with time periodic perturbation whose

equations of motion are written in complex form.

A7.1 Equations of motion

The system we study is written in a complex form as follows

dz* . 190 .
o= h(z,z%;¢) = E_a—zH(z’z i) (A7.1)

where z =z +1y,c € R? (p > 1) is a parameter and H(z,z*;c) is the Hamiltonian
function. We assume that ¢ € R? has a small time periodic perturbation of O(e)

around ¢y with period T = %’5, ie.,

c(1) = co + ecy(7)

2) AT.2)
a(r) =al(r+5) (
We can rewrite Eqn. (A7.1) in real variables (%, %) as follows
d
Efj = hy(z,y;c) = Real h(z,2%;¢c) = %H(z,z*;c)
dy ooy _9 ‘.
- = ho(z,y;¢) = -Im h(z,z%;¢c) = —axH(z,z ;c)
Taylor expansion in ¢ around ¢y yields
dzx 5.
= = filz,y) +eqie,y;m) + 0() = Mz, y5¢)
T (A7.3)

d

?J_Z = f2(z,y) + €g2(z,y; 7) + O(€*) = ha(z,y; )
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()

where

il

()

9 . (AT7.4)
(m) _ '%(‘:hl(x’yyc)'Q(T)lc:co
92 5‘712(337% ¢) - e1(7)le=co
c
Note that g, g2 and O(e*) terms are periodic with T’ = 29—
A7.2 Modified Melnikov function M.(7y) on the homoclinic orbit
We define a modified Melnikov function M(7g) as follows
M) =T [ (RN a4 ) d (47.5)
(1) = -Im — Y (zp(7T); T+ 10) dT )
0 o ldr tar 0
where %‘3— = f1 — ify is the unperturbed velocity in complex conjugate form, %ﬁ— =

hi +1hsy is the perturbed velocity, and the integral is evaluated on the unperturbed
homoclinic orbit zx(7) = zp(7) + iyx(7). By substituting Eqn. (A7.3) into Eqn.
(A7.5), we obtain

M) =t [ T =i (4 e + O(E) +ilfa + ega + O())
(za(7),yn(T); 7+ 19) dr

- e/_oo {fig2 — fag1} (zn(7),yn(T); 7 + 7o) dr + O(€?)
= 5/—0" {fAg} (zp(7),yn(7T);7 +70) dT + O(%)

Notice that the first term of the right hand side of the equation is related to the
regular Melnikov function. Hence, the modified Melnikov function M.(7y) and the

regular Melnikov function M (ry) have the following relation.
M (9) = eM(79) + O(€*) (A7.6)

Note that the order of M.(79) is e.
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Now let us consider some dynamical consequences of the modified Melnikov
function M(7g). Recall that the regular Melnikov function M(7g) is related to the

signed distance d(7,., €) between unstable and stable invariant manifolds as follows.

d(ro,€) = + O(€) (A7.7T)
17720 (2 (=m0))
where || - || denotes the usual norm. From Eqns. (A7.6) and (A7.7), we obtain the

relation of the modified Melnikov function M,(7y) to the signed distance d(7o, €)

ME(T())
[l 20*(z1(—70))]

It follows, by the Melnikov theorem, that simple zeroes of M(ry) (i.e., M () =

d(79,€) = + O(€*) (A7.8)

0, 8? M(79) # 0) imply simple zeroes of d(7g,€), i.e., the transverse intersection
of unstable and stable invariant manifolds (or existence of the homoclinic tangle

structure).

Moreover, M(7g) is related to the area of a lobe (L) (see Chapter 3 for the
definition). Recall that the area yu(L) is computed by the regular Melnikov function.

pl) = /T2 e M(ro)dro + O(¢")

1

where 7; and 7, are values of parametrization parameter 79 on the homoclinic orbit
at two adjacent pip’s corresponding to the lobe L. Substituting Eqn. (A7.8), we
obtain u(L) using the modified Melnikov function.

wL) = /Tz Me(7o)dro + O(€”)

AT7.3 Modified Melnikov function Me%(ro) on resonance band of order

m

n

We define a modified Melnikov function M 61:‘1 (79) on resonance band of order

’—;‘— as follows.

MF (10) = Im/ dzo (zH(T);T+Tg) dr (A7.9)
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where the integral is evaluated on the unperturbed periodic orbit, z#(7) = z/(7) +
iy (1), of natural frequency 27 with the resonance relation mQ# = nQ. Following
the same procedure as in the previous section, we can show that that the modified

2
Melnikov function M." (79) on resonance band of order 2 is related to the regular

Melnikov function M ™ (7o) on resonance band of order 2

M (o) = eM™ () + O(€2) (AT.9)

where
ml

M) = [ {Fng} (Hrgir ) dr

2
It follows from Eqn. (A7.9) that simple zeroes of Mj‘l('ro) (ie., M:%‘L(TQ) =
0, %Mﬁl(’r@) # 0) imply the existence of period m points of the resonance band

of order = by the Melnikov theorem.
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