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ABSTRACT 

This thesis summaries my exploration of hypoelectronic aryloxy-perfunctionalized dodecaborate 

clusters ([B12(OR)12]). Closo-dodecaborate (closo-[B12H12]2-) is only stable as a dianionic closed-shell 

species. However, some perfunctionalized dodecaborate clusters can be isolated in 

hypoelectronic oxidation states, such as hypocloso-[B12(OR)12]1- and hypercloso-B12(OR)12 (R = alkyl 

or aryl). Depopulation of the [B12(OR)12] highest occupied molecular orbital (HOMO) give rise 

to strong visible absorption bands, which has opened up for their use as photoredox reagents. 

Furthermore, their inert nature and highly reversible redox behavior has inspired applications in 

charge–storage devices and as dopants in conducting polymers.  

The work presented in Chapters 2–4 were part of a broad collaborative effort lead by Professor 

Alexander M. Spokoyny (University of California, Los Angeles). Chapter 2 discusses my early 

contributions, which aimed to spectroscopically investigate the photoredox properties of 

aryloxy-perfunctionalized hypercloso-B12(OR)12 clusters. Obtaining reliable photophysical data 

proved exceedingly difficult, due to formation of hypercloso-[B12(OR)12]1-, disproportionation and 

solvent-cluster interactions. Chapter 2 summarizes discoveries made while attempting to 

understand these issues, as well as the final luminescence data collected for hypercloso-B12(OR)12 

and hypercloso-[B12(OR)12]1- clusters. Much of the discussion is speculative, but we felt it should 

be published here so that other researchers can learn from our struggles.  

Given the issues we had with photophysical characterization of the aryloxy-perfunctionalized 

clusters discussed in Chapter 2, we turned our attention to the alkyloxy-perfunctionalized 

analogues, which we hoped would be more amenable to spectroscopic characterization. These 

clusters did not help our investigation of the photoredox behavior, however, while 

electrochemically characterizing [B12(OEt)12] (Et = C2H5) we discovered a third reversible 

oxidation wave, corresponding to the [B12(OEt)12]1+/0 couple. Chapter 3 discusses this discovery 

and the characterization of super-oxidized [B12(OR)]1+ clusters.  

Up until now, electronic structure descriptions of hypoelectronic dodecaborate clusters have 

been largely limited to computational work. Attempts to access the distribution of the frontier 

orbitals through electron paramagnetic resonance (EPR) spectroscopy had been hindered by the 
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lack of resolution in the continuous wave (CW) spectra of hypocloso-[B12]1- species. In chapter 

4, we present Q-band pulsed EPR results that give a quantitative measure of the spin distribution 

of both hypocloso-[B12(OR)12]1- and super-oxidized [B12(OR)12]1+ clusters. This is to our knowledge 

the first time pulsed EPR techniques have been applied to hypoelectronic dodecaborate clusters. 

Our results indicate that the frontier orbitals of hypocloso-[B12(OR)12] clusters are confined to the 

cluster core and delocalized evenly across the B12 pseudo-icosahedron. The data for the super-

oxidized [B12(OR)12]1+ indicate a somewhat more localized spin distribution, which we suggest 

stems from increased elongation along the z-axis resulting in a concentration of spin density 

around the equatorial boron atoms. Furthermore, we provide UV–vis–NIR evidence indicating 

that visible and NIR electronic transitions in [B12(OR)12] occur between orbitals that are largely 

confined to the cluster core.  
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INTRODUCTORY REMARKS 

My time at Caltech has been defined by a number of collaborations spanning a range of topics. 

My first main project was developing flash-quench techniques for mechanistic investigation of 

nitrogenase enzymes together with colleagues from the Rees lab (Caltech) and Tezcan lab 

(UCSD). At the same time, I was involved in researching organic electrooxidation using metal 

catalysts, and semiconductor photochemistry together with members of the Lewis Lab. During 

my third year at Caltech, I became interested in doing more synthetic inorganic chemistry and 

transitioned into one of the Gray group’s current focus areas—Group 6 Metal Arylisocyanide 

complexes. Within that project I developed new classes of alkyne-bridged arylisocyanide ligands, 

along with mixed ligand carbonyl-arylisocyanide complexes. Additionally, I initiated a 

partnership with the Greer lab (Caltech) to use metal arylisocyanide complexes as absorbers for 

two-photon nanofabrication.  

The research presented in this thesis started during my second year but was until recently a side 

project of mine. It was part of a broad collaboration initiated by Professor Alex Spokoyny at 

UCLA, who develops perfunctionalized dodecaborate clusters and investigates their reactivity 

and applications. Chapter 2 covers much of my early work. At that time, we were fumbling in 

the dark trying to understand dodecaborate photoredox mechanisms and photophysics. I truly 

enjoyed all the little experiments I performed to test various hypothesis’ and trying to patch 

together large sets of seemingly unrelated data. However, I never thought that work would lead 

to anything significant, much less an entire thesis.  

Two key advances drove the dodecaborate work to the forefront of my research. The first 

discovery was made using the newly acquired Q-band pulsed EPR system at Caltech. We found 

that Electron Nuclear Double Resonance (ENDOR) techniques could be applied to obtain 

information on hyperfine interactions in open shell dodecaborate clusters, which allowed us to 

experimentally describe the dodecaborate frontier orbitals. The second development was my 

electrochemical observation of a new super-oxidized cationic state in the electrochemistry of 

alkyloxy-perfunctionalized dodecaborate clusters. Both were major breakthroughs; the pulsed 
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EPR data provided experimental insights that had previously been inaccessible, and the 

discovery of cationic dodecaborates demonstrated that the clusters could reversibly reach 

oxidation states that were previously thought be highly unstable.  

About a year ago Harry suggested that the dodecaborate data I had was enough for a thesis and 

that I should “just write it up”. It was a difficult choice as I really enjoyed the metal arylisocyanide 

project, but I could not resist the draw of an earlier graduation date. Today, putting down the 

final words of this thesis, I am very happy about that decision. It has allowed me to finish my 

studies in good time and focus my energy toward future career goals. Additionally, I am excited 

about how the metal arylisocyanide project has evolved after I stepped away. Javier Fajardo has 

made amazing progress, both in continuing my work on alkyne-bridged isocyanides and in 

developing his own systems.  

As I turn away from academia to pursue a career in consulting, I will surely miss Caltech and my 

time at the bench. It has been some of the most rewarding years of my life.   

 

I hope you will enjoy reading this account of my Caltech experience! 

 

 

 

 

 

 

 

 


