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ABSTRACT 

Extracellular electron transfer (EET), the process whereby cells access electron acceptors or 

donors that reside many cell lengths away, enables metabolic activity by microorganisms, 

particularly under oxidant-limited conditions that occur in multicellular bacterial biofilms. 

Although different mechanisms underpin this process in individual organisms, a potentially 

widespread strategy involves extracellular electron shuttles, redox-active metabolites that are 

secreted and recycled by diverse bacteria. Here, I first review general aspects of the electron 

shuttling strategy, such as the chemical diversity and potential distribution of electron shuttle 

producers and users, and the costs associated with electron shuttle biosynthesis. Then I 

address the long-standing question: how do these electron shuttles catalyze electron transfer 

within biofilms without being lost to the environment? I show that phenazine electron 

shuttles mediate efficient EET through interactions with extracellular DNA (eDNA) in 

Pseudomonas aeruginosa biofilms, which are important in nature and disease. Retention of 

pyocyanin (PYO) and phenazine carboxamide in the biofilm matrix is facilitated by binding 

to eDNA. In vitro, different phenazines can exchange electrons in the presence or absence of 

DNA and phenazines can participate directly in redox reactions through DNA; the biofilm 

eDNA can also support rapid electron transfer between redox-active intercalators. 

Electrochemical measurements of biofilms indicate that retained PYO supports an efficient 

redox cycle with rapid EET and slow loss from the biofilm. Together, these results establish 

that eDNA facilitates phenazine metabolic processes in P. aeruginosa biofilms, suggesting 

a model for how extracellular electron shuttles achieve retention and efficient EET in 

biofilms.  
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INTRODUCTION 

“Life is the greatest chemist electrochemist.” 

-Adapted from Frances Arnold 

How cells generate energy has been studied in detail for over a century, and broadly we 

understand that cells have exquisite mechanisms to capture energy as electrons move from 

high energy states to lower energy states. Therefore, energy is extracted from input molecules 

(i.e. food) through electron transfer reactions. One of the most beautiful examples of such a 

metabolic process is the mitochondrial electron transport chain (ETC) that generates most of 

the energy in our cells. This system is a set of membrane bound complexes that take high 

energy electrons stripped off of food molecules and facilitate sequential redox reactions to 

oxygen, the terminal electron acceptor. Each reaction cleverly captures the energy released 

by pumping protons across the membrane, and the resulting electrochemical proton gradient 

can be used directly or indirectly to power nearly every cellular process. However, the linear 

eukaryotic ETC we are taught from textbook diagrams is shockingly mundane compared to 

the diversity and complexity of bacterial and archaeal systems.  

“Bacteria are the greatest chemists on the planet.” 

-Dianne Newman 

Collectively, the Bacteria are capable of eating nearly all organic molecules and using them 

as high energy electron donors. Beyond oxygen, these organisms can use many different 

terminal electron acceptors like nitrate, sulfate and DMSO. For a given bacterium, there are 

often branched electron transport chains, containing different options for each step of the 

pathway, that allow for single cells to perform radically different metabolisms when needed. 

The bacterial ETC has long been appreciated, since much of this complexity exists in 

Escherichia coli – no exotic organisms required. However, in the last 20 years, a few 

relatively exotic organisms have taught us about an even more astonishing extension of 

electron transport systems in bacteria.  



 

 

2 
Unlike mitochondria or E. coli, Shewanella and Geobacter species can use insoluble 

terminal electron acceptors that cannot react with the ETC complexes at the inner membrane 

of the cell. Instead, these organisms possess extra ETC components that extend from the 

inner membrane, through the periplasm, to the outer membrane and beyond. These systems 

enable these organisms to respire solid minerals that only exist outside of the cell – this 

metabolism is known as extracellular electron transfer (EET). The common critical 

component of this pathway is an additional set of cytochromes – proteins containing redox-

active heme groups. Specifically, there are multiheme cytochromes found in the outer 

membrane that provide a conduit for electrons to move to the outer edge of the cell. These 

proteins are fascinating, and their distinctive heme binding site motifs led to an explosion of 

discovery that revealed the existence of EET machinery in countless organisms found in 

genomic databases. 

The outer membrane cytochrome system is striking, but it only transfers electrons to the very 

outer edge of the cell – no further. This works when single cells can attach directly onto 

minerals, but bacteria rarely live as single cells – they live as dense surface-attached 

communities known as biofilms. How can these systems function when cells are physically 

separated from their terminal electron acceptor, either because it is insoluble and distant or 

depleted locally? Much work has been done on “nanowires” in Shewanella and Geobacter, 

which may serve as physical extensions of the cell, connecting relatively distant electron 

acceptors back to the outer membrane cytochrome complexes. The mechanism and 

importance of these structures is still being clarified, but cells can also access electron 

acceptors via a different EET pathway. Instead of creating physical extensions of the cells, 

certain organisms seem to be capable of secreting small redox-active molecules that can carry 

electrons to distant electron acceptors. These molecules are called electron shuttles. 

Chapter 1 explores this electron shuttling strategy for EET based on literature and uses that 

foundation to speculate on general principles and prevalence. It reviews literature on two 

relatively characterized electron shuttles – flavins used by Shewanella oneidensis and 

phenazines used by Pseudomonas aeruginosa. Apart from those two examples, this work 
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tries to identify other potential electron shuttling systems among known redox-active 

metabolites and redox-sensing transcription factors in the Bacteria. More generally, the 

feasibility of an electron shuttling strategy is discussed in terms of biosynthetic cost and 

diffusive flux. Lastly, this review provides an experimental roadmap to characterize new 

electron shuttles. 

Chapter 2 dives into the phenazine-based electron shuttling system used by P. aeruginosa. 

Broadly, this manuscript tries to understand how phenazines can support electron transfer 

through the biofilm matrix. This is a complicated question, but it is broken down into two 

simpler questions. 1) Are phenazines retained in the biofilm matrix? 2) What is the 

mechanism of electron transfer? By starting to answer these questions, a more specific and 

complicated model of multi-phenazine EET could be proposed. This model and the 

supporting data are the author’s primary scientific contributions to the field.  

While Chapter 2 focuses on extracellular processes, the appendix discusses a preliminary 

attempt to characterize the cell-associated genetic determinants of phenazine electron 

shuttling. A pooled transposon-based screen was performed in a liquid culture system to 

assay phenazine dependent survival metabolism. Therefore, the screen identified genes 

important for single cells to survive using phenazines in this condition. The dataset contains 

many fascinating effects and may be useful for future phenazine aficionados. 

Like the ETC, phenazines have also been studied (on and off) for over a century. Although 

we know a good deal about these molecules’ genetics and chemistry, there is so much we 

don’t know. Maybe one day there will be a satisfying textbook diagram of a phenazine 

electron transport system. Maybe then phenazine EET will seem mundane compared to the 

next discovery of microbial ingenuity. Certainly, the microbial world is full of many more 

surprises.  
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Abstract 

Descriptions of the changeable, striking colors associated with secreted natural products date 

back well over a century. These molecules can serve as extracellular electron shuttles (EES) 

that permit microbes to access substrates at a distance. In this review, we argue that the 

colorful world of EES has too-long been neglected. Rather than simply serving as a 

diagnostic attribute of a particular microbial strain, redox-active natural products likely play 

fundamental, underappreciated roles in the biology of their producers, particularly those that 

inhabit biofilms. Here, we describe the chemical diversity and potential distribution of EES 

producers and users, discuss the costs associated with their biosynthesis, and critically 

evaluate strategies for their economical usage.  We hope this review will inspire efforts to 

identify and explore the importance of EES cycling by a wide range of microorganisms, so 

that their contributions to shaping microbial communities can be better assessed and 

exploited. 

1. Introduction   

The microbial world is nothing if not colorful.  Colorful figuratively, in that microbes 

accomplish stunning metabolic feats, which, increasingly, are being recognized for their 

important roles in promoting human health (20, 118), shaping the composition of the 

atmosphere, lithosphere and hydrosphere (59), and biotechnological potential (72), to list 

only a few examples.  Colorful literally, in that they produce a spectacular range of pigments, 

representing every rainbow hue.  This latter aspect of microbial identity is often the first thing 

one notices about a strain when it is streaked upon a plate, whether its pigments are tightly 

associated with its colonies or rapidly diffuse away.  Flipping through Bergey’s Manual of 

Systematic Bacteriology (43), one can find numerous examples of organisms that have been 

named after the colors they produce (e.g. Pseudomonas aeruginosa (131), 

Pseudoalteromonas luteoviolacia (44), Streptomyces coelicolor (19), etc.), yet the biological 

functions of these defining pigments are seldom discussed.  Both old (40) and emerging 

evidence (49, 56, 95), however, suggests that literal colorfulness may underpin figurative 

colorfulness, particularly when the pigment in question has the property of changing color.   
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Color changes are often indicative of redox-reactions, and the redox properties of many 

colorful excreted metabolites confer upon them rich potential (bio)chemical reactivity. Such 

reactivity, when combined with their ability to cycle in and out of the cells that produce them, 

permit these molecules to serve as extracellular electron shuttles (EES). While we use the 

word “extracellular” to draw attention to the fact that these metabolites can leave the cell in 

their reduced state to transfer electrons to a distant extracellular oxidant, equally important 

to the definition of microbial electron shuttles is that they can return to the cell in the oxidized 

state, whereupon they are re-reduced (Fig. 1a).  It is the cycling of EES and their facilitation 

of electron transfer both within and without the cell that underpins their important 

physiological functions.  Several years ago, we made a distinction between two types of EES, 

classifying them according to whether microorganisms produce them (endogenous) or 

whether they are already present in an environment (exogenous) (56).  Endogenous EES, for 

example, include microbial metabolites that are often considered to be redox-active 

antibiotics (95); exogenous EES include a chemically heterogeneous fraction of organic 

compounds that derive from the degradation of microbial and plant matter (61, 99).  

EES are particularly relevant to situations where microbes have limited access to a critical 

substrate. For example, an electron acceptor for catabolism might be poorly soluble, as is the 

case for minerals in many groundwater and sedimentary systems or electrodes in biofuel 

applications.  Alternatively, the substrate might be locally depleted due to rapid consumption 

by other cells, outpacing its diffusion, as is the case for oxygen in biofilms, be they on the 

surface of a corroding steel pipeline or in the mucus-filled lungs of an individual living with 

cystic fibrosis (23, 68, 112, 126).  Finally, the substrate might be utilized by another organism 

in an intimate syntrophic partnership, requiring the passage of electrons between different 

cell types to catalyze an important biogeochemical reaction, such as the anaerobic oxidation 

of methane achieved by mixed archaeal-bacterial aggregates (76, 102). In all of these cases, 

extracellular electron transfer permits the microbes at a distance from the terminal electron 

acceptor to remain metabolically active.  
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Cycling of EES represent a strategy whereby microbes can facilitate extracellular electron 

transfer, yet is by no means the only one.  Over the past three decades, investigations into 

how organisms transfer electrons to or from minerals have revealed that many possess outer 

membrane cytochromes that are critically important for these processes (106).  Whether 

and/or how electrons traverse through “nanowires” or “cables” or some type of extracellular 

matrix is still being debated (74, 86, 115, 128). We simply note that in some organisms such 

as the mineral-reducing bacteria Shewanella and Geobacter, the proteinaceous machinery 

that is required for extracellular electron transfer can interact with and reduce EES of 

different types (16, 66, 71, 110, 117). Thus, it is important to be mindful of the potential 

involvement of EES in any context where extracellular electron transfer matters—be it the 

soil of the rhizophere or the inflamed tissues of chronic infections. Moreover, due to their 

versatile redox activity, EES can play other important biological roles, such as serving as 

signaling molecules and promoting iron acquisition (32, 55, 93, 122). 

In this review, we focus our discussion primarily on colorful, endogenous EES, drawing 

upon our experience studying phenazines produced by Pseudomonas aeruginosa (21, 22, 31-

34, 46, 47, 55, 56, 58, 93-96, 116, 120-122) (Fig. 1c).  We use phenazines for illustrative 

purposes only, to pique the reader’s curiosity about what other molecules may have similar 

physiological functions.  We critically discuss costs of EES biosynthesis, as well as 

bioenergetic concerns related to the cell biology of their reduction and potential loss to the 

environment. Underpinning this review is the conviction that recent advances in mass 

spectrometry, imaging, and sequencing have the potential to enable dramatic progress in 

understanding the importance of endogenous EES across diverse microbial systems.  

2. Diversity of Endogenous EES and Organisms 

How many endogenous EES exist in nature and which organisms produce them?  We are 

only at the threshold of being able to answer this question. The two most well-characterized 

EES-producing organisms are Pseudomonas aeruginosa and Shewanella oneidensis, known 

for their use of phenazines and flavins, respectively (13, 46, 66, 75, 120). Other putative 

EES-producing organisms, Lactoccocus lactis, Sphingomonas xenophaga, and Klebsiella 
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pneumonia, are reported to utilize quinone shuttles (see Table 1) (28, 39, 63, 83, 85). A few 

other observations in the literature hint at the production of EES by diverse organisms, 

including Geothrix and Geobacter species (11, 117), yet in most cases the molecular nature 

of the putative EES is unknown.  Though many secreted redox-active natural products have 

been well known for decades, such as indigoidine, only recently have their physiological 

functions begun to be explored (25). Because these types of natural products are genetically 

encoded in biosynthetic clusters, bioinformatic analysis predicts that EES production by 

microorganisms may be extensive (Fig. 2).  In this section, we discuss the chemical diversity 

and potential distribution of EES-producers and users as predicted by current bioinformatics 

platforms. We emphasize that these are predictions, which must be validated experimentally 

(Sidebar 1). 

2A. Chemical diversity of EES 

Much like their intracellular cousins (e.g. NAD(P)H, FAD, and quinones), EES are 

distinguished by the presence of conjugated bonds, often in the form of heterocyclic aromatic 

rings. It is this system of conjugated bonds that confers color upon EES. Generally, 

conjugated bonds are also the molecular origin of an electron shuttle’s redox activity, as 

double bonds can be chemically reduced and rearranged at biologically-accessible reduction 

potentials. Rearrangement of the conjugated bond system necessarily entails a change in the 

molecule’s absorption spectrum, and so a shuttle’s redox activity is inextricably linked to its 

vibrant and interconvertible colors (Fig. 1c). 

Unlike intracellular redox-active metabolites, the endogenous EES described in the literature 

to date generally lack modifications such as adenylation or lipidation. Instead, they can be 

decorated with functional groups (e.g. amines, carboxylic acids, amides) that tune physical 

and chemical properties such as the reduction potential, charge state, or solubility. Advances 

in mass spectrometry and natural product discovery are only beginning to unearth the rich 

combinatorial diversity of these modifications—as of February 2017, the Dictionary of 

Natural Products contains over 190 unique phenazine derivatives, 1200 quinones, 1600 

napthoquinones, and 2200 anthraquinones (1). While the growth of natural products 
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databases has far outpaced our ability to empirically study the functions of these molecules, 

computational chemistry has shown recent progress in predicting their properties such as 

reduction potential (4). We anticipate that a convergence of metabolomics and computational 

chemistry, together with the on-going detailed study of select molecules such as phenazines, 

will implicate many of these redox-active natural products as ubiquitous and diverse EES. 

2B. Phylogenetic Diversity  

To predict which organisms may produce or utilize EES, we may consider the phylogenetic 

distribution of genes used to produce or interact with known EES. We might speculate that 

most organisms could shuttle electrons, since S. oneidensis uses a common cofactor, FMN 

(13). However, it is unclear how many could use flavins in a similar manner, so we will 

instead focus on more specialized natural products.  As an example, we will see that 

biosynthetic clusters for phenazines are widespread, as well as the redox transcription factor, 

SoxR, which can sense phenazines.  

Biosynthetic clusters. Biosynthetic clusters are organized sets of genes that encode enzymes 

to produce specific metabolites. Bioinformatic tools are rapidly improving our ability to 

identify specific natural products (e.g. AntiSmash) (123). The authors of the IMG-ABC 

database showcased their toolkit with phenazines by identifying ~1000 genomes that 

contained at least 6 of 7 genes required for phenazine biosynthesis. These species included 

the well-known phenazine producers Streptomyces and Pseudomonads, but also 

Alphaproteobacteria, Betaproteobacteria, and other Actinobacteria. It was suggested that a 

much wider set of species probably produces phenazines than previously thought, and that 

these new putative producers likely synthesize phenazines with novel chemical structures 

(52). As the accuracy of these types of bioinformatics tools advance, we may be able to 

predict an organism’s ability to make EES from its genome with reasonable confidence.   

SoxR redox sensors. One way to identify potential EES users is to search genomes for 

machinery that can sense them.  Presently, the best-known example is the SoxR transcription 

factor. SoxR was originally studied in E. coli for its role in upregulating the oxidative stress 

response upon exposure to superoxide generating molecules. It was discovered that SoxR 
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sensed redox-active  molecules through a Fe-S cluster bound by a unique cysteine motif, 

and its activation prompted sequence-specific binding and transcriptional activation (92). 

Studies outside of the Enterobacteriacae then showed that SoxR did not upregulate the 

oxidative stress response in P. aeruginosa (82) and Streptomyces coelicolor (24), but that it 

responded to endogenous redox-active molecules (34, 109) and upregulated factors likely to 

be involved in their cycling. Comparative genomic analysis found that SoxR is widely 

distributed through the Bacteria, and it predicted that most organisms do not conform to the 

original E. coli oxidative stress paradigm (34).  

Today the IMG database contains ~15,000 bacterial genomes with high-confidence SoxR 

homologues out of ~47,000 total bacterial genomes (14), approximately the same proportion 

as the stress sigma factor RpoS. Fig. 2 shows that SoxR homologues are present in 10 

bacterial phyla, and that the most representatives are in orders of Proteobacteria and 

Actinobacteria (38, 69). It should be noted that homologues can be found in majorities of 

Pseudomonadales (2308 genomes) and Streptomycetes (402 genomes), which are well 

known for their production of natural products (often redox-active). Strikingly, SoxR 

homologues are also identified in the emerging and established pathogens of the 

Mycobacteria (~400 genomes), the agriculturally important Rhizobia (493 genomes) and 

Frankia (33 genomes), and recently discovered phyla (6 genomes). Whether these organisms 

use SoxR to sense endogenous EES remains to be determined, but it suggests they might 

sense exogenous EES at a minimum. It is even possible that organisms could upregulate their 

own EES processing machinery to “cheat,” analogous to organisms that steal exogenous 

siderophores (51). 

While the diversity of redox-active metabolites, biosynthetic clusters, and redox-sensing 

homologues satisfy important preconditions for potential widespread EES usage in the 

microbial world, the numbers we have presented come with two important caveats. First, not 

all secreted redox-active molecules can serve as EES due to redox-potential constraints (see 

Sidebar 2). Second, though we have good reason to think that SoxR is a robust predictor of 

an organism’s ability to sense EES, it is just one of many possible transcription factors used 
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to sense, modify, and transport small redox-active molecules (34, 101). Our bioinformatic 

analysis only suggests the potential for widespread production and usage of EES in the 

microbial world, which we hope will stimulate experimental follow-up (Sidebar 1). 

3. Costs of EES biosynthesis 

At first glance, electron shuttles might appear expensive to produce, especially for a molecule 

that can be lost to diffusion or used by competitors in a microbial community. We discuss 

strategies for overcoming diffusive losses later, but here we wish to critically ask whether 

shuttles are ‘expensive.’ While a cell certainly loses carbon material by secreting a shuttle, 

the cost should not be compared to the energy that might be gained from fully oxidizing it to 

CO2. It is, after all, precisely the condition of oxidant-limitation where EES are important. In 

a microenvironment where organic carbon is abundant, but oxidants are limited or absent, 

there is essentially no opportunity cost to discarding carbon. Based on biosynthetic pathways, 

what is the cost of producing EES? 

All the known phenazine-producing bacteria use the same biosynthetic pathway, reviewed 

in detail elsewhere (9), in which two molecules of chorismate are modified and condensed 

to produce the core phenazine ring. Chorismate synthesis begins with two ATP equivalents 

and requires two additional ATP equivalents for completion (29), and so the core phenazine 

molecule requires a total of 8 ATP. Some quinones require only a single ATP in their 

conversion from chorismate (29). Riboflavin synthesis requires only one ATP in its 

conversion from guanosine triphosphate (5), and including the precursors, its cost has been 

estimated at up to 25 ATP per molecule (75). For these representative examples, the energy 

required to synthesize a shuttle is on the order of 5 to 25 ATP per molecule. How does this 

compare to other cellular processes? In protein synthesis, the addition of a single amino acid 

to a nascent peptide chain requires an estimated 4.5–7.9 ATP per amino acid (3), while RNA 

transcription further requires one ATP equivalent per nucleotide, and so the biosynthetic 

proteins themselves may represent a significant portion of a shuttle’s cost. A quantitative 

analysis in Shewanella illustrates that its endogenous shuttles, flavin derivatives, cost less 
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than 0.1% of a cell’s energy budget to secrete at the necessary concentration (as low as 

250 nM) (75).  

The striking conclusion is that for a redox-limited microbial community, shuttle synthesis 

may pose only a minor metabolic cost. Furthermore, bacteria are known to carefully regulate 

production of secreted molecules.  Xavier et al. coined the term metabolic prudence to 

describe how P. aeruginosa specifically secretes carbon-rich rhamnolipids (used for 

swarming motility) when excess carbon is available and the cost of production is low (125). 

This regulation ensures that secreting cells are more fit than cheaters in competition 

experiments because cost is minimized while the benefit of swarming remains high. 

Examples from P. aeruginosa and Salmonella typhimurium suggest that metabolic prudence 

is a broadly-used strategy for regulating secretions under diverse nutritional conditions, such 

as iron, phosphate, or nitrogen limitation (45, 48). We expect that metabolically prudent 

regulation could further reduce the effective cost of EES under oxidant limitation. 

4. Cell biology of electron shuttling 

The biochemical reduction of EES poses a unique topological challenge. Perhaps the best-

elucidated mechanism of extracellular electron transport (EET) is in Shewanella oneidensis 

MR-1, which has been reviewed in detail elsewhere (13, 107). This organism uses the Mtr 

pathway, which is distinguished by a set of proteins that directly transfer electrons through 

the inner membrane, across the periplasm, and to the outside of the outer membrane where 

they directly reduce extracellular shuttles (Fig. 3a). The reduction of quinone by NADH 

dehydrogenase can be accompanied by the translocation of up to four protons across the 

inner-membrane (42), thus directly contributing to the proton motive force. In contrast, many 

other membrane-bound quinone reductases, such as succinate dehydrogenase or lactate 

dehydrogenase, are not known to translocate protons, and so the direct benefit of EET 

depends on the particular metabolism of a cell. 

In contrast to Shewanella, specific pathways of extracellular electron transfer in other 

systems, such as phenazine shuttling in P. aeruginosa, remain ambiguous. Recent work from 

our laboratory shows that cytoplasmic (flavo)proteins can catalyze phenazine reduction in P. 
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aeruginosa (47). Specifically, the enzyme dihydrolipoamide dehydrogenase enables 

phenazines to substitute for NAD+ in the pyruvate and α-ketoglutarate dehydrogenase 

complexes. This activity may allow phenazines to promote ATP synthesis during glucose 

oxidation by increasing the flux through pyruvate dehydrogenase and acetate kinase (47) 

(Fig. 3b). Similar findings have been observed in fermenting organisms, where the presence 

of humic substances or analogs increases the ratio of oxidized-to-reduced products (7), 

presumably increasing the ATP yield of fermentation. 

The invocation of cytoplasmic EES reduction has interesting implications with respect to the 

proton-motive force. Upon reduction, phenazines, quinones, and flavins all take on two 

protons at circumneutral pH (Fig. 1c). The subsequent secretion and oxidation of the reduced 

shuttle would therefore release those two protons outside the cell, essentially translocating 

two protons across the inner membrane (Fig. 3b). If this shuttle does not require active 

transport into or out of the cell, redox cycling of a shuttle could drive the generation of a 

proton motive force. Conversely, shuttles that accept electrons from the cytoplasmic face of 

NADH dehydrogenase might consume the proton motive force, such as the artificial 

compound paraquat (18) (Fig. 3c). Though progress is being made on phenazine transport 

systems (101), where different phenazines are reduced and how they enter the appropriate 

efflux pump machinery remain open questions. The take-away message is that the subcellular 

localization of shuttle reduction greatly influences the energy that can be conserved, and we 

expect that future work will elucidate new and interesting mechanisms to accompany the Mtr 

system. 

Finally, while we have focused here on the mechanisms of EES reduction, electron transfer 

entails a subtler point with respect to the terminal electron acceptor. The reduction potential 

of minerals, and the kinetics of their reduction by shuttles (121), depends strongly on pH, 

and so the free energy available to a cell necessarily depends on its microenvironment. 

Moreover, mineral reduction is accompanied by alkalization (Fig. 3c), which further inhibits 

the available free energy and may even negatively affect the proton motive force if it happens 

close to the cell. From a cell’s perspective, the energy that can be conserved via electron 
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shuttling may depend on the pH-buffering capacity of its environment and the rate of 

proton diffusion. 

5. EES in the extracellular environment 

In addition to defining the constraints that shape intracellular EES biosynthesis and 

processing, central to any predictive understanding of EES usage is knowledge of what 

happens to EES once they leave the cell. Because most bacteria live in biofilms (81, 113), 

we will consider the extracellular environment to be a self-produced matrix of EPS and 

water. Here, we explore under what conditions EES can be efficiently recycled. 

 
5A. Shuttle diffusion  

Two studies have shown that diffusion can theoretically explain electron shuttling-supported 

metabolism in a closed system (64, 89). In any environment, the flux of reduced EES away 

from cells (Jred) (toward electron acceptor) is driven by the concentration gradient that forms 

as cells reduce EES and the electron acceptor oxidizes them. Simultaneously, the 

concentration gradient of oxidized EES drives flux (Jox) back to the cells that use EES to run 

their metabolism (Fig. 4a). We adapted a simple model of 3D diffusion, where an inner 

sphere of cells shuttle electrons to an outer sphere of electron acceptor, analogous to P. 

aeruginosa biofilms limited for oxygen (Fig. 4c) (73, 77, 79, 87). Using realistic values of 

phenazine diffusion coefficients (~10-9–10-10 m2/s), concentrations (>10 µM), and metabolic 

requirements (Mmin), the model produces redox gradients that can drive sufficient flux of 

oxidized EES to support survival (Fig. 4d), in agreement with observed phenazine mediated 

survival (33, 46, 64). 

 

5B. Electron hopping as an alternative to shuttle diffusion 

But what about in an open system, which more accurately models environments where EES 

operate? An attractive mechanism that might prevent EES loss in an open system is electron 

hopping among EES’s bound in the biofilm matrix (12, 89). Such conduction would avoid 

the conflict between turnover and loss within the shuttle diffusion model and might better 
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explain electron shuttling in open systems. The flux of hopping electrons from the cells to 

the acceptor is considered a diffusive process, which is driven by the concentration gradient 

of electrons (i.e. redox gradient) (111). In this scenario, EES are bound within the 

extracellular matrix, and electrons propagate from cells to the terminal metabolic electron 

acceptor (e.g. O2) by sequential electron-transfer reactions among the EES, allowing EES 

retention and reuse (Fig. 4b). Hopping steps (khop) are expected to happen rapidly compared 

to shuttle diffusion (D) (100, 119).  

Significant theoretical and experimental work has already been done to describe electron 

hopping in electrode-grown biofilms of Geobacter sulfurreducens. Such biofilms, which can 

exceed tens of microns in thickness, utilize the underlying electrode, poised at a sufficiently 

oxidizing potential, as the terminal metabolic acceptor. Cells not in direct contact with the 

electrode can transport their respired electrons to the electrode via hopping through a 

proposed network of c-type cytochromes as opposed to EES.  This model is supported 

experimentally by measurements of biofilm electrical conductivity (12, 88, 98, 111, 114, 

127-130).  Much of the theory comes from models of synthetic redox polymers and proteins 

that contain bound redox cofactors (10, 12, 50, 91, 115).  This work provides a proof-of-

principle that motivates experiments to test for electron hopping in other biofilms where EES 

may dominate extracellular electron transfer.  

 
5C. Evolutionary strategies that maintain EES in open environments 

Regardless of the electron transfer mechanism, sufficient concentrations of EES must be 

maintained for viability. What strategies do microbes take in producing and maintaining 

public goods in open environments? We view EES as public goods because they are secreted 

molecules that benefit nearby individuals as well as the producer cell (124). Kin selection 

theory posits that public good production can evolve when individuals’ actions increase not 

only their own reproductive success, but also the success of genetically related individuals 

(124). Microbes are therefore more likely to produce public goods when they are highly 

related to their neighbors, the direct and indirect benefits are high, and the cost of production 

is low (78).  
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In this context, it makes sense that EES would be regulated by quorum sensing (QS) 

molecules, signals that direct population behaviors when cell numbers are high.  QS 

molecules can provide cells with information on nearby relatives and diffusion conditions 

(54). By dividing quickly and producing an extracellular matrix, many bacteria can establish 

highly-related microcolonies that favor the evolution of public goods (78). Laboratory 

studies show that producers of the siderophore, pyoverdin, outcompete non-producer 

mutants when populations are highly related, but not when strains are mixed (35, 51). 

Because QS molecules are secreted into the environment and subject to diffusion, they enable 

cells to distinguish between closed and open systems (97).  A good example of QS-regulation 

of EES production can be found in how Pseudomonas species regulate phenazine production 

(32). 

Other strategies that can facilitate the viability of EES utilization relate to mechanisms of 

privatization, such as physical retention or a requirement for special machinery to utilize the 

secreted molecule (124). Physical retention can be achieved via noncovalent interactions 

between small molecule and biofilm components, which in the case of EES, could 

conceivably also provide a scaffold for electron hopping. Marine microbes that retain 

siderophores by embedding them in the outer membrane with lipophilic sidechains (67) 

provide an example of selective retention of a secreted metabolite near producing cells. Other 

chemical mechanisms may facilitate retention, however, such as electrostatic attraction 

between EES and specific components of a biofilm matrix.  This may help rationalize co-

regulation of EES and exopolymeric substances (EPS), as in the case of phenazines, eDNA, 

and particular types of EPS (26, 27, 33).  Discrimination can be achieved with highly specific 

receptors for siderophores and QS molecules that enable only producers to uptake their 

secreted products (80, 104, 124). Another strategy is to make the public good itself toxic, 

which requires specialized detoxification systems (103). Interestingly, many EES were first 

identified as antibiotics (25, 95), and special proteins are required to deal with their toxic 

byproducts (53).  
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6. Outlook 

This is an exciting time to care about microbes that change color.  The explosion of 

computational platforms that can predict structures and properties of natural products, 

combined with the exponential growth of genomic databases, is ushering in a golden age for 

EES discovery.  Based on these databases and lessons learned from experimental systems 

where redox-active pigment production and utilization have been well documented, the 

available evidence suggests that EES are likely to be widespread and play underappreciated 

roles in the physiology of diverse microbes.  

Going forward, it will be important to prioritize systematic screens to test for EES production 

and usage. Sidebar 1 provides an example of how one can approach this, yet innovations that 

would enable high-throughput screens are needed to stimulate the search process. While such 

technologies could be developed by individual labs at universities, an opportunity for 

efficient scale-up exists if national labs that are interested in metabolomics, such as the Joint 

Genome Institute (6, 14, 108), take on this challenge.  The creation of pipelines to interface 

metabolomics with complementary bioinformatics and physiological screens would greatly 

accelerate EES discovery. In our view, the identification of genetically-tractable EES-

producing microbes should be a priority for future research.  Genetically-tractable systems 

are now more achievable than ever before (17, 84), thus the isolation of EES-producing or 

utilizing microbes has the potential to quickly reach a mechanistic level of understanding.   

Identification of machinery that sense and process EES across diverse microorganisms will 

permit the type of comparative analysis needed to enable general principles to be resolved.  

For example, the better we understand the conservation of EES transporters or sensors, the 

more confidently we will be able to scan genomes to predict EES production or usage by 

new isolates.  In this way, we will be able to learn whether the strategies that govern EES 

cycling by the handful of organisms that have been studied in detail to date represent special 

cases or broader paradigms.  Generally, metabolic strategies fall into a limited number of 

categories that are viable for cells, thus it will be exciting to discovery the range of strategies 

that can be used by organisms that employ EES for energy generation and other purposes. 
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Finally, we end by noting that much of what we understand about microbial metabolism 

springs from research that has been done when nutrients are replete.  Yet microbial existence 

in the natural world is usually limited by a variety of substrates (8), and it is in this context 

that we believe EES will prove to be important. Not only can EES enable energy generation 

in oxidant-limited biofilms, which are ubiquitous (81, 113), but the broader reactivity of EES 

can impact the fate and transport of pollutants in soils and sediments (60-62). From both 

fundamental and applied viewpoints, a broader and deeper understanding of EES production, 

sensing, and utilization thus stands to improve our ability to rationalize and control the 

composition and activities of microbial communities across a variety of natural, engineered, 

and clinical environments.   

Glossary 

1. Extracellular electron shuttles (EES): A self-produced small molecule that enables a 

microbe to perform EET by reversibly accepting metabolic electrons and donating 

them to extracellular electron acceptors. Note that these molecules can also act as 

electron donors to metabolism (15).  

2. Biosynthetic clusters: organized sets of genes that encode enzymes to produce 

specific metabolites. 

3. Redox gradient: A concentration gradient of electrons across a field of redox-active 

molecules. This gradient can drive physical diffusion of the molecules in different 

redox states, or electron diffusion via electron transfer between redox-active 

molecules. 

4. Public goods: Secreted molecules that benefit nearby individuals that did not 

originally produce the molecules. 
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Sidebars 

Sidebar 1. How to characterize a putative EES? 

What criteria establish that a molecule functions as an EES? Based on our definition, the 

molecule must 1) facilitate extracellular electron transfer, 2) undergo multiple redox cycles, 

and 3) provide a physiological benefit to its producer via cycling. The following steps can be 

used to determine whether a particular secreted metabolite is an EES. 

Find a tractable extracellular electron transfer phenotype and implicate a soluble EES. 

Quantifiable extracellular electron transfer phenotypes can be detected in assays with 

minerals (55), electrodes (36, 46, 120), or soluble electron acceptors (65, 95). Secreted EES 

can be implicated by demonstrating electron acceptor reduction in the absence of direct cell 

contact using different strategies, such as separation by agar, permeable membranes, glass 

frits, or compartments in microfluidic devices.  

Isolate and characterize the EES molecule. Once an EES phenotype is established, the 

responsible molecule can be purified using chromatography and other standard separation 

methods from organic chemistry. Its spectral properties, biotic and abiotic reactivity, and 

redox potential can then be measured using different types of spectroscopy (UV-VIS, EPR) 

and cyclic voltammetry, respectively (e.g.(40, 105, 121)). 

Genetically inhibit EES biosynthesis. Because EES are not essential under all conditions, 

it is possible to isolate mutants defective in their production. Such mutants can offer insights 

into EES biosynthesis, regulation, and even cycling mechanisms (e.g.(31, 90, 120)).  Control 

over EES production, which is enabled by mutant strains, is necessary to rigorously 

determine the physiological benefits of an EES. 

Measure EES turnover. EES uptake and reduction can be quantified using biosynthetic 

mutants in the presence of a defined EES concentration and oxidant (e.g.(120)). The 

molecule can be defined as an EES if it enables a super-stoichiometric reaction with the distal 

electron acceptor. 
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Sidebar 2. How does redox-potential define an EES? 

The essence of a shuttle is summarized by its midpoint reduction potential, a broad 

generalization of a compound’s ability to act as electron acceptor or donor. To avoid 

misusing this parameter, one must remain cognizant that it is descriptive of standard 

conditions for reactions heading towards thermodynamic equilibrium, conditions that rarely 

describe biological systems. Importantly, many redox reactions involve proton exchange, 

and so the true reduction potential depends on the environmental pH. A distinction must also 

be drawn between the one- and two-electron potentials of a shuttle, which can vary by 

hundreds of millivolts—this difference has even been exploited by some microorganisms to 

drive the reduction of low-potential acceptors in a process known as electron bifurcation (57, 

70). Moreover, the reduction potential says nothing about the kinetics or chemical sensibility 

of the reaction. A striking example of this distinction is the thermodynamic favorability of 

biological nitrogen fixation (2), a process that nonetheless requires catalysis and energy input 

to proceed at rates that support life. Conversely, the artificial redox cycling drug paraquat 

has a midpoint potential below that of most intracellular donors, rendering paraquat reduction 

thermodynamically unfavorable at standard conditions; even so, the paraquat radical reacts 

with oxygen at a rate that is nearly diffusion-limited (37), allowing paraquat to drive redox 

cycling under biological conditions. And so, while a shuttle’s reduction potential is a core 

physical parameter that captures the essence of redox cycling, it must be carefully considered 

with respect to the environmental conditions, reaction kinetics, and other chemical 

properties. A rigorous quantitative prediction of these effects remains an ongoing challenge, 

but further advancements will undoubtedly enrich the already informative natural products 

databases. 

  



 

 

30 
Figures 

 

Figure 1. The colorful world of EES. (a) Action at a distance. Cells can perform redox 
chemistry on small molecules, which then diffuse or electrically conduct to extracellular 
substrates that can be many cell lengths away. (b) The colorful world of microbes as 
illustrated by Streptomyces coelicolor, producing the blue molecule actinorhodin whose 
structure is shown. (c) One molecule, four colors. The color of pyocyanin depends on both 
the pH and reduction potential. The tubes pictured each contain approximately 200 µM 
pyocyanin in water. The radical and fully reduced forms can be prepared by titrating 
pyocyanin with sodium dithionite, producing to an immediate and stunning color change. 
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Figure 2. Phylogenetic distribution of SoxR, a transcription factor that senses redox-active 
metabolites. The phylogenetric tree shows all bacterial orders containing at least one genome 
with a SoxR homolog in the IMG database (SoxR TIGRfam 01950 (14)). The gray bars 
represent the percentage of genomes from each order that contain SoxR, with the absolute 
numbers listed below. The phyla represented are: (1) Actinobacteria, (2) Fermicutes, (3) 
Chloroflexi, (4) Cyanobacteria, (5) Deinococcus, (6) Proteobacteria, with each subphylum 
labeled separately, (7) Planctomycetes, (8) Verrumicrobia, (9) Bacteroidetes, (10) 
Acidobacteria. The tree was generated using the NCBI taxinomic classification with PhyloT 
and the IToL (38, 69). 
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Figure 3. The topology of electron shuttle reduction and oxidation. Filled blue hexagons 
represent oxidized shuttle, and open white hexagons represent reduced shuttle. (a) The Mtr 
system in S. oneidensis MR-1. Shuttles are reduced extracellulary and do not need to re-enter 
the cell. (b) A model of phenazine reduction in P. aeruginosa that allows for energy 
conservation by electron shuttling. By substituting for NAD+ in the pyruvate dehydrogenase 
complex (PDH), phenazines enable the synthesis of acetyl-CoA, which can drive ATP 
synthesis through the enzymes phosphate transacetylase and acetate kinase (46, 47). Efflux 
of reduced phenazines by MexGHI-OpmD (101) may be coupled to proton translocation. (c) 
A condition where electron shuttling is costly. Operating the NADH dehydrogenase in 
reverse can consume the protonmotive force to drive shuttle reduction. Extracellular 
reduction of some minerals, such as Fe(OH)3, can alkalize the medium, possibly depleting 
the protonmotive force further and causing pH stress for the cell. 
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Figure 4. Mechanisms of electron transfer by EES. (a) Diffusion only. The reduced EES can 
diffuse down its concentration gradient to an electron acceptor, while the oxidized form 
simultaneously returns along its own concentration gradient. At steady state (∂c/∂t = 0), the 
concentration gradients are linear in this closed one-dimensional system. (b) The self-
exchange rate (khop) allows electrons to hop between oxidized and reduced EES. If khop is 
significantly faster than the rate of diffusion, electron hopping will accelerate the apparent 
diffusion of electrons. EES diffusion can also co-occur. (c) In three dimensions, with an inner 
sphere of cells and an outer sphere of electron acceptor, the concentration gradient at steady 
state is non-linear. The gradient is steeper near the inner sphere, allowing for higher flux than 
in the one-dimensional case. (d) Results of a closed steady-state model of EES diffusion in 
three dimensions, with different EES concentrations and diffusion coefficients. 
Representative aqueous diffusion coefficients are listed below the plot (30, 73, 77, 79). The 
numbers in each box correspond to the modeled flux of oxidized EES (Jox) through the 
surface area (Amin) of the inner sphere, in units of molecules per second. Green indicates 
regions where diffusion can account for the minimum flux needed for cells to survive, while 
orange indicates regions where diffusion is too slow. The number of molecules per second 
needed to support the inner sphere with volume Vmin was calculated to be 1.5 × 107 
molecules/s based on published parameters for Mmin, the minimum energy required for 
survival in P. aeruginosa (64). The inner sphere radius was rmin = 10 µm and the outersphere 
radius was rmax = 100 µm. For simplification, we have taken the diffusion constants of the 
oxidized and reduced EES (Dred and Dox) to be equivalent, and the rates of EES reduction 
and oxidation (kred and kox) to be instant. 
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Abstract 

Extracellular electron transfer (EET), the process whereby cells access electron acceptors or 

donors that reside many cell lengths away, enables metabolic activity by microorganisms, 

particularly under oxidant-limited conditions that occur in multicellular bacterial biofilms. 

Although different mechanisms underpin this process in select organisms, a widespread 

strategy involves extracellular electron shuttles: redox-active metabolites that are secreted 

and recycled by diverse bacteria. How these shuttles catalyze electron transfer within 

biofilms without being lost to the environment has been a long-standing question. Here, we 

show that phenazine electron shuttles mediate efficient EET through interactions with 

extracellular DNA (eDNA) in Pseudomonas aeruginosa biofilms, which are important in 

nature and disease. Retention of pyocyanin (PYO) and phenazine carboxamide in the biofilm 

matrix is facilitated by binding to eDNA. In vitro, different phenazines can exchange 

electrons in the presence or absence of DNA and phenazines can participate directly in redox 

reactions through DNA; the biofilm eDNA can also support rapid electron transfer between 

redox-active intercalators. Electrochemical measurements of biofilms indicate that retained 

PYO supports an efficient redox cycle with rapid EET and slow loss from the biofilm. 

Together, these results establish that eDNA facilitates phenazine metabolic processes in P. 

aeruginosa biofilms, suggesting a model for how extracellular electron shuttles achieve 

retention and efficient EET in biofilms.  

Introduction 

Microbial biofilms are ubiquitous in natural and engineered contexts, spanning plant roots to 

chronic human infections to anaerobic digestors (Watnick and Kolter, 2000).  As biofilms 

develop, metabolic stratification occurs, driven by steep concentration gradients of 

substrates, such as oxygen, that are consumed by cells at the biofilm periphery faster than the 

substrates can diffuse into the biofilm interior (Stewart, 2003; Stewart and Franklin, 2008; 

Xu et al., 1998). Indeed, oxidant limitation is a generic challenge for cells that inhabit biofilm 

microenvironments where electron donors are abundant, yet electron acceptors are not. One 

widespread strategy microbes employ to overcome this challenge is to channel electrons 

derived from intracellular metabolism to extracellular oxidants at a distance (Shi et al., 2016). 
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Known as extracellular electron transfer (EET), this process requires electron carriers to 

bridge the gap, be they outer membrane-associated or extracellular cytochromes (Jiménez 

Otero et al., 2018; Richter et al., 2009; Xu et al., 2018), cytochrome-replete “nanowires” 

(Subramanian et al., 2018; Wang et al., 2019), cable bacteria conductive filaments 

(Cornelissen et al., 2018), or redox-active small molecules (Glasser et al., 2017a; Hernandez 

and Newman, 2001). While the putative molecular components underpinning different EET 

processes have been described in a variety of organisms, a detailed understanding of how 

these components achieve EET remains an important research goal across diverse systems.  

In contrast to the intense study of microbial nanowires (Malvankar et al., 2011; Reguera et 

al., 2005; Wang et al., 2019), less attention has been paid to how small soluble (physically 

diffusive) extracellular electron shuttles facilitate EET beyond interactions at the cell surface 

(Light et al., 2018; Marsili et al., 2008; Xu et al., 2016). In part, this neglect is due to the 

challenges involved in identifying and studying small molecule metabolites, compared to the 

multiheme cytochromes observed in many genomes of organisms known to engage in EET. 

Accordingly, to study extracellular electron shuttling, we have chosen to work with a model 

system that employs a relatively well studied and tractable set of shuttles called phenazines. 

Phenazines are colorful redox-active molecules that are produced by numerous microbial 

species, including the bacterium Pseudomonas aeruginosa (Turner and Messenger, 1986). 

P. aeruginosa strains are ubiquitous yet perhaps most well-known for their roles in chronic 

infections where their growth as biofilms renders them antibiotic tolerant and contributes to 

patient morbidity and mortality (Costerton et al., 1999); importantly, phenazines support the 

development of anoxic, antibiotic tolerant biofilm regions (Dietrich et al., 2013a; Jo et al., 

2017; Schiessl et al., 2019). While significant progress has been made in defining the 

composition of the P. aeruginosa biofilm matrix (Colvin et al., 2012) and mapping the zones 

of phenazine production within it (Bellin et al., 2014, 2016), we still have much to learn 

about how phenazines facilitate EET within the matrix.  

Intriguingly, while the P. aeruginosa biofilm matrix comprises a heterogeneous group of 

polymers, extracellular DNA (eDNA) from dead cells is a significant contributor (Allesen-
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Holm et al., 2006; Whitchurch et al., 2002), accounting for the majority of the matrix 

polymers in some cases (Matsukawa and Greenberg, 2004; Steinberger and Holden, 2005). 

Phenazines have long been known to intercalate into double stranded DNA in vitro (Hollstein 

and Van Gemert, 1971), and more recently, it was suggested that the phenazine pyocyanin 

(PYO) can participate in DNA-mediated charge transfer (DNA CT) chemistry in vitro (Das 

et al., 2015). Together with the observation that PYO promotes eDNA release by stimulating 

cell lysis (Das and Manefield, 2012), these facts led to speculation that phenazine-eDNA 

interactions might facilitate biofilm EET (Das et al., 2015). Notably, the ability of PYO to 

stimulate cell lysis changes according to the environment: when cells are oxidatively stressed 

(i.e. oxidant replete, but reductant limited) and ATP limited, PYO is toxic; whereas when 

they are reductively stressed (i.e. reductant replete, but oxidant limited), PYO promotes 

viability and biofilm aggregate expansion (Costa et al., 2017; Meirelles and Newman, 2018). 

This observation suggests the intriguing possibility that cell lysis by a small percentage of 

the population early on might later promote EET once biofilms have developed anoxic zones 

where extracellular electron shuttles support metabolism. Though a variety of roles for 

eDNA in biofilms have been proposed, including serving as a structural support, nutrient 

and/or genetic reservoir (Flemming and Wingender, 2010), to our knowledge, that eDNA 

may stimulate biofilm metabolism by facilitating EET has not been tested. 

The current model of the phenazine redox cycle in biofilms can be broadly defined (Fig. 1A). 

In anoxic regions, oxidized phenazines are reduced intracellularly by metabolic reactions that 

support these cells (Glasser et al., 2014, 2017b; Jo et al., 2017; Wang et al., 2010). These 

reduced phenazines physically diffuse through the extracellular matrix toward the oxic 

region where they react abiotically with molecular oxygen. Upon re-oxidation, phenazines 

return to the anoxic region of the biofilm to complete the redox cycle. Although studies have 

begun to characterize the reactions on either side of the redox cycle, very little is known 

about how phenazines operate in the intervening extracellular matrix. Theoretical studies 

suggest that  physical diffusion of oxidized phenazine towards the biofilm interior and 

reduced phenazine towards the biofilm periphery may be fast enough to support the 

metabolism of the oxidant limited cells (Glasser et al., 2017a; Kempes et al., 2014). However, 
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these studies assume a closed system, and it has been an unresolved paradox how diffusible 

extracellular molecules could function in a redox cycle without being lost from the biofilm 

to the environment. Here, we explore how phenazine electron transfer may be reconciled 

with phenazine retention. Specifically, we ask: Are phenazines retained? What mechanisms 

of electron transfer are compatible with phenazine retention? Is phenazine electron transfer 

in vivo fast compared to phenazine loss? Our motivation to answer these questions arises not 

only from a desire to constrain the model of phenazine redox cycling within P. aeruginosa 

biofilms, but more broadly, to identify a potentially generalizable strategy for how diverse 

electron shuttles enable EET. 

Results 

We studied three major phenazine derivatives made by P. aeruginosa strain UCBPP PA14 

(Schroth et al., 2018): phenazine carboxylate (PCA), phenazine carboxamide (PCN), and 

pyocyanin (PYO) (Fig. 1B). Beyond studying wild type (WT) produced phenazines, we also 

explore the effects of individual synthetic phenazines on a mutant that does not produce 

phenazines, ∆phz (∆phzA1-G1, ∆phzA2-G2), or on a mutant that is also incapable of 

modifying PCA, ∆phz* (∆phz, ∆phzMS, ∆phzH). Experiments were performed with two 

different types of biofilms: macroscopic colony biofilms grown on nutrient agar surfaces 

(Fig. 1C, Fig. S1A) and microscopic biofilms attached to the surface of an interdigitated 

microelectrode array suspended in liquid medium. Phenazine-dependent biofilm phenotypes 

operate similarly at both scales (Ramos et al., 2010), so we selected the biofilm cultivation 

method for any given experiment based on which was best suited to answering our specific 

research question.  

Colony biofilms retain PCN and PYO, but not PCA 

First, we sought to quantify phenazine retention by colony biofilms (Fig 1C-D). In contrast 

to previous work that used an electrode array to electrochemically measure the spatial 

distribution of phenazines that physically diffuse into agar underneath colony biofilms 

(Bellin et al., 2014, 2016), we used liquid chromatography-mass spectrometry (LC-MS) to 

quantify extracted endogenous phenazines from the biofilms and compare their 
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concentrations to that in the underlying agar (Fig 1D-F). Colony biofilms could be cleanly 

separated from the agar because they were separated by a 0.2 µm membrane filter, which did 

not affect the results (Fig. S1B-C). Overall, PCA, PCN, and PYO concentrations varied by 

more than 10-fold in the biofilms reaching concentrations of ~15 µM PCA, ~ 400 µM PCN, 

and ~80 µM PYO.  Comparing biofilm to agar concentrations showed that PCN and PYO 

were enriched in the biofilm 10-fold and 30-fold, respectively, while PCA reached similar 

concentrations in the biofilm and the agar (Fig. 1E-F). This suggested that PCN and PYO 

were strongly retained by the biofilm and PCA was not. Importantly, lysing resuspended 

biofilm cells by sonication prior to phenazine quantification did not strongly affect the results 

(Fig. S1D), indicating that the measured pools of phenazines were predominantly retained in 

the extracellular matrix rather than intracellularly.  

To test if differential phenazine retention was caused by a spatial or temporal difference in 

biosynthesis, we grew Dphz* colony biofilms with synthetic phenazines in the agar and 

quantified phenazines taken up by the biofilm. Incubation with > 10µM PYO resulted in 

>200 µM PYO accumulation in the biofilm (Fig. 1G). PCN accumulated to a lesser extent, 

and PCA biofilm uptake was minimal (<50 µM) even with 200 µM added to the agar (Fig. 

1G). Dphz* colonies transferred from phenazine agar to fresh agar after 3 days of growth 

retained phenazines in the same pattern as the wild type (WT) over 24h (Fig. 1H), 

demonstrating that the observed phenazine retention does not depend on endogenous 

phenazine production. Wild-type colony biofilms exhibit relatively thick and smooth 

morphologies that contain deep anoxic regions that are thought to be supported by 

phenazines. ∆phz* colony biofilms exhibit different colony morphologies that are thin and 

highly wrinkled, which is thought to be a physiological adaptation to maximize surface area 

and oxygen penetration in the absence of phenazines as shown for ∆phz (Dietrich et al., 

2013b). Notably, only incubation of Dphz* colonies with exogenous PYO appreciably 

complemented the colony wrinkling phenotype (Fig. S1A). P. aeruginosa colony biofilms 

thus appear able to take up and use significant amounts of exogenous PYO, and PCN to a 

lesser extent. These results predict that colony biofilms contain an extracellular matrix 

component that binds and effectively retains PYO and PCN, but not PCA.  
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Phenazines differentially bind extracellular DNA  

The extracellular matrix in P. aeruginosa PA14 biofilms is known to be primarily composed 

of two polymers: DNA from dead cells (eDNA) and the polysaccharide Pel (Colvin et al., 

2011; Das and Manefield, 2012). To test the hypothesis that eDNA in the biofilm matrix was 

responsible for binding phenazines, we quantified the binding affinity of oxidized PCA, 

PCN, and PYO for double-stranded (ds) DNA in vitro using isothermal titration calorimetry 

(Fig. 2A). As expected, oxidized PCA showed no detectable binding because it is negatively 

charged, as is the phosphate backbone of DNA at pH 7. In contrast, oxidized PCN (KD = 194 

µM; 95% C.I. 148 – 305 µM) and PYO (KD = 13 µM; 95% C.I. 6.5 – 49 µM) both bind ds 

DNA, and these results were consistent with ethidium bromide displacement and microscale 

thermophoresis binding assays (Fig. S2A-B) (Das et al., 2015). Notably, these in vitro 

phenazine-DNA binding affinities correlate with their in vivo retention ratio ( [biofilm]/[agar] 

), where PYO is retained in the biofilm significantly more than PCN, and PCA is not retained. 

Reduced PYO showed no change in endogenous fluorescence upon addition of calf thymus 

DNA (Fig. S2C), which is unexpected for strong intercalative binding. Therefore, the DNA 

binding affinity of PYO is likely redox-dependent.  

To determine whether phenazine-eDNA binding occurs in vivo, we treated 3-day old WT 

biofilms with DNase I for 24 hrs. These experiments were performed with DNase I spotted 

on tryptone agar medium rather than its optimal buffer, as controls showed that buffer alone 

significantly disturbed the biofilm (Fig. S3A-C). Despite a low activity for DNase under 

these conditions, DNase-treated biofilms showed significantly lower biofilm PCN and PYO 

concentrations than their untreated counterparts; moreover, PCA concentration was 

unchanged (Fig. 2B). P. aeruginosa eDNA originates from the genomic DNA of dead cells 

and is therefore high molecular weight and may be bound by other biomolecules (e.g. 

proteins) (Kavanaugh et al., 2019). Therefore, DNase treatment was likely only partially 

effective because it could not cleave ds DNA in the presence of other bound matrix 

components, and/or because it did not have enough activity to degrade the eDNA completely 

to eliminate phenazine binding sites. We also compared the phenazine retention in the WT 

to a Pel mutant (Dpel) and found that biofilms without Pel retained significantly more PYO 
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(Fig. 2C). Because Pel is known to bind eDNA (Jennings et al., 2015), these results suggest 

that Pel may partially block access to eDNA by PYO, although this remains to be tested in 

vitro.  

To probe the eDNA binding sites within the biofilm using a different approach, we competed 

phenazines against ethidium bromide, a classical DNA intercalator. Since PCN and PYO 

compete for DNA binding sites with ethidium in vitro, and ethidium is largely excluded from 

cells (Jernaes and Steen, 1994), we reasoned that these intercalators could compete for 

binding sites in the biofilm eDNA. We grew ∆phz* biofilms with 50 µM PCN and PYO and 

increasing amounts of ethidium in the underlying agar. Figure 2D shows that increasing 

concentrations of ethidium resulted in successively less PYO accumulating in the biofilms, 

while PCN accumulated to a similar lower level in the presence of any amount of added 

ethidium.  

Confocal microscopy of WT and ∆phz* colony biofilms with a cell-impermeable ds DNA 

dye, TOTO-1 (Okshevsky and Meyer, 2014), showed abundant eDNA localized in dead cells 

and in between cells (Fig. S3D). We quantified the bulk concentration of eDNA in colony 

biofilms by incubating biofilm suspensions with TOTO-1 and measuring dye fluorescence. 

Both WT and ∆phz* biofilm suspensions yielded large fluorescence values when incubated 

with TOTO-1. These values fall within the range of 60–500 µM bp ds DNA in the colony 

biofilms, when calibrated against standards of calf thymus DNA (Fig. 2E). However, adding 

calf thymus DNA to the biofilm suspensions did not yield the expected increase in dye 

fluorescence (Fig. S3E), which suggests that the dye may be partially inhibited by biofilm 

components. Therefore, this order of magnitude estimate of biofilm eDNA should be 

interpreted as a lower bound on the true value. Given this estimate, the biofilm eDNA (>100 

µM bp) is in excess of PYO (~80 µM), but it may not be in excess of PCN (>300 µM). Due 

to its poor aqueous solubility, it is probable that PCN crystallizes extracellularly at the 

observed biofilm concentrations, which could lead to its measured retention (Hernandez et 

al., 2004). Together, our in vivo and in vitro results are consistent with eDNA providing 

binding sites for oxidized PCN and oxidized PYO in the biofilm extracellular matrix. 
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Constraints on phenazine electron transfer mechanisms in vitro and in vivo  

Given that phenazines are differentially bound and retained in biofilm eDNA, we next sought 

to constrain how electron transfer might be achieved in this context. Previous research has 

shown distinct localization patterns for different phenazines within biofilms, with the lowest 

potential phenazines (e.g. PCA) in the interior, and the highest potential phenazine (e.g. 

PYO) at the oxic periphery (Bellin et al., 2014, 2016). To test whether electron transfer could 

occur between these molecules in solution, we mixed different oxidized and reduced 

phenazines under anoxic conditions and monitored the absorbance spectra before and after 

mixing (Fig. 3A-B). Because PYO exhibited the largest changes in absorbance upon 

reduction, we monitored different mixtures of PYO with PCA or PCN at 690 nm (unique 

PYO absorbance maximum) starting one minute after mixing, at which point equilibrium 

had been achieved. Reactions proceeded as expected from the redox potentials of the 

phenazines, where PYO was almost completely reduced by the lower potential PCA and 

PCN, but reduction of PCA and PCN by the higher potential PYO was minimal (Fig. 3B, 

Fig. S4A). In addition to establishing that electron transfer can occur between different 

phenazines, given their similar structures, these results suggest that electron transfer between 

like phenazines (e.g., PYO-PYO electron self-exchange) can occur within a redox gradient. 

Moreover, reactions between reduced PCA or PCN and oxidized PYO proceeded faster than 

oxidation of any of these phenazines by molecular oxygen (Fig. 3C). We next wondered 

whether the presence of eDNA would affect the extent of PYO reduction. PYO reduction by 

PCA or PCN proceeded to completion in the presence of eDNA (Fig. 3B). Because PCA 

does not bind eDNA, this result suggests that electron transfer is occurring in solution 

between PCA and unbound PYO. For PCN and PYO that both bind eDNA, it is also possible 

that electron transfer is achieved by their unbound counterparts in solution. However, it has 

long been known that DNA can facilitate electron transfer between bound redox molecules 

(Genereux and Barton, 2010), motivating us to test whether such a process could also occur 

within our P. aeruginosa biofilms.  

DNA facilitates charge transfer (DNA CT) through the p-stacked base pairs (Genereux and 

Barton, 2010), and recent studies have shown that DNA CT can occur over kilobase distances 
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(Tse et al., 2019). A previous study suggested that PYO might be able to transport electrons 

via DNA (Das et al., 2015), but given the preliminary nature of these experiments, we 

decided to revisit these experiments more rigorously. To better test the ability of phenazines 

to carry out DNA CT, we covalently attached a phenazine via a flexible linker to one DNA 

strand and then made DNA-modified gold electrodes with a thiol linker on the 

complementary strand according to standard protocols (Kelley et al., 1997; Slinker et al., 

2010, 2011). Specifically, short ds DNA molecules (17 bp) were covalently linked to the 

gold surface to form a packed monolayer, and the distal 5' end of each duplex contained a 

covalently linked PCN, the phenazine derivative most amenable to synthesis (see Materials 

and Methods) (Fig. 3D). Thus, we established a well-defined chemical system to test if a 

phenazine could participate in electron transfer to the electrode through the ds DNA.  

Because the efficiency of DNA CT depends upon the integrity of the p-stacking of base pairs 

within the DNA duplex (Genereux and Barton, 2010), we compared well-matched duplex 

DNA monolayers to duplex DNAs containing a single base mismatch that stacks less 

efficiently (Fig. 3D). We utilized multiplexed DNA chips to facilitate replicate comparisons 

between well-matched and mismatched DNA monolayers (Fig. S4B-D); measurements with 

a non-intercalating control probe showed that these different monolayers had very similar 

surface coverages (Fig. S4E-F) (Slinker et al., 2010). Figure 3E shows that the mismatched 

construct yielded diminished current in the phenazine redox peak, consistent with the charge 

transfer being DNA-mediated; the presence of the intervening mismatch inhibits DNA CT. 

This mismatch effect was consistent across replicate low density (32-54% decrease) and high 

density (36-69% decrease) DNA monolayers (Fig. S4C and supp. text). These results 

displayed mismatch attenuation similar to that observed for well-characterized small 

molecules shown to stack with the DNA duplex and carry out DNA-mediated CT (Slinker et 

al., 2011). Strikingly, in the presence of oxygen, a classic voltammetric signal characteristic 

of electrocatalysis was obtained (Fig. 3F) centered on the phenazine redox peak. Hence, the 

DNA-tethered phenazine is able to accept electrons from the electrode through the DNA p-

stack and then reduce oxygen in a catalytic fashion. Together, these results demonstrate that 

a P. aeruginosa phenazine can participate in DNA CT in vitro. 
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To test if biofilm eDNA could support DNA CT, we incubated ∆phz* colony biofilms 

suspended in PBS with well-characterized intercalators that can perform DNA CT reactions, 

which can be monitored by time-resolved spectroscopy (Arkin et al., 1996a). The quenching 

of photoexcited Ru(phen)2dppz2+ by Rh(phi)2bpy3+ is well-characterized and known to occur 

by a redox mechanism (Stemp et al., 1995) and not energy transfer (e.g. FRET), with both 

the forward and back electron transfers occurring predominantly on the picosecond timescale 

(Fig. 3G, Fig. S4G) (Arkin et al., 1996b).  Both of these intercalators bind to ds DNA more 

than an order of magnitude more tightly than do phenazines.  Moreover, Ru(phen)2dppz2+ is 

luminescent in aqueous solution only when intercalated in DNA (or otherwise protected from 

water), precluding a 2nd order reaction between the complexes in solution. Thus, in time-

resolved emission experiments on the nanosecond timescale, static quenching, where 

quenching is fast and occurs without a change in the Ru(phen)2dppz2+ excited state lifetime, 

is consistent with DNA-mediated CT (Arkin et al., 1996a), while slower dynamic quenching, 

which leads to a change in emission lifetime, is consistent with a slower diffusive process. 

We first compared the Ru(phen)2dppz2+ signals of liquid grown and biofilm suspensions (of 

the same optical density) to determine if the signal was specific to eDNA; the ruthenium 

complex is not expected to be taken up by the cells and bind to genomic DNA on the time 

scale of this experiment (Fig. 3H). We only observed ruthenium luminescence in the 

presence of the biofilm suspension, consistent with ruthenium luminescence being associated 

with binding to eDNA. We then examined the pattern of quenching of Ru(phen)2dppz2+ by 

Rh(phi)2bpy3+. Figure 3I shows static quenching where the intensity of the Ru(phen)2dppz2+ 

signal decreases, while the observed decay kinetics are unchanged (Fig. S4H). Therefore, we 

conclude that biofilm eDNA can support rapid DNA CT between these two metal complexes 

faster than the timescale for diffusion.  

Electrode-grown biofilms retain PYO capable of extracellular electron transfer 

Having explored phenazine retention and electron transfer separately, we next wanted to 

establish a system in which we could monitor both of these processes simultaneously in vivo. 

We took an electrochemical approach to achieve this, growing P. aeruginosa biofilms on 

interdigitated microelectrode arrays (IDA) (Fig. 4A). Biofilms were grown by incubating 
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IDAs in bioelectrochemical reactors with planktonic cultures under oxic conditions and 

stirring (Fig. 4B). After 4 days, with medium replaced daily, mature biofilms were 

transferred to anoxic reactors with fresh medium for electrochemical measurements. 

Confocal and SEM imaging revealed that the IDA biofilms were heterogeneous in 

composition, but consistently contained multicellular structures of live cells and abundant 

eDNA (Fig. 4C-E, Fig. S5A-B). Under these conditions, the cells predominately produced 

PYO, as measured by LC-MS (Fig. S5C). Because PYO was the most tightly retained 

phenazine in colony biofilms and in vitro, we focused on this phenazine for the remainder of 

these experiments.    

Originally used to measure conductivity of abiotic materials, the IDA has a 2-working 

electrode geometry and recently was adapted to study EET through microbial biofilms (Boyd 

et al., 2015; Snider et al., 2012; Xu et al., 2018; Yates et al., 2015). Measurements are made 

by driving electron transfer between the two electrode bands across a 5 µm gap (Fig. 4F), 

which treats the biofilm like an abiotic material, resulting in EET that is decoupled from the 

cells’ metabolic activity. Specifically, we used a generator-collector (GC) strategy to 

measure EET through the biofilm, where the “generator” electrode is swept from an 

oxidizing potential (E = 0 mV vs. Ag/AgCl) to a reducing potential (E = -500 mV), while 

the “collector” electrode maintains a fixed oxidizing potential (E = 0 mV). In this GC 

arrangement, electron transfer into the biofilm from the generator occurs as the potential of 

the generator is swept negatively, reducing PYO (E0 = -250 mV) at the biofilm/generator 

interface. Electrons are conducted across the gap through the biofilm due to EET, either by 

physical diffusion of PYO or other mechanisms. The electron transfer at both the generator 

and collector is measured as current (Igc) and plotted against the potential of the generator 

electrode. Implicit in generating a sustained Igc is recycling of the redox molecules that 

support the observed current. Figure 4G shows that WT and Dphz* + PYO biofilms 

supported current (above background), while Dphz* alone did not. This current occurs across 

the 5 µm gap over a ~3 min scan as the generator potential approached PYO’s redox potential 

(-250 mV vs. Ag/AgCl), consistent with PYO-mediated EET. Dependency of current on the 

generator potential observed here is consistent with PYO-mediated EET being a diffusive 
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process. Reduction of PYO at the generator and oxidation of PYO at the collector 

generates a redox gradient that drives EET through the intervening biofilm, resulting in 

current centered on the PYO midpoint potential that saturates at strongly reducing generator 

potentials (Snider et al., 2012). Here, the diffusive nature of EET would reflect either physical 

diffusion of PYO through the biofilm (reduced PYO from the generator to collector, oxidized 

PYO from the collector to the generator) or the effective diffusion of electrons through bound 

PYO (Strycharz-Glaven et al., 2011a). 

To test whether these short-term GC measurements of biofilm EET indicate long-term ability 

to support metabolic activity, we poised the IDA electrodes at an oxidizing potential 

(+100mV vs. Ag/AgCl) and monitored the current produced by the biofilm over 4 days in 

the presence of 40 mM succinate as the electron donor for cellular metabolism under anoxic 

conditions. In this configuration, the observed current would be due to cellular oxidation of 

succinate coupled with PYO-catalyzed EET to the poised electrode, where the electrode acts 

as the terminal electron acceptor instead of oxygen (Fig. 4H). Figure 4I shows that both WT 

biofilms relying solely on endogenous PYO and Dphz* biofilms + exogenous PYO generate 

robust current over many days, while Dphz* alone does not. The daily periodic rise in current 

likely reflects the impact of slight temperature or light fluctuations in the room on the cells’ 

metabolic activity over the course of the experiment (Kahl et al., 2016, 2019). Differences in 

current magnitude between the WT and Dphz* + PYO runs are likely due to differences in 

PYO abundance in the biofilms and/or efficiency of cellular PYO reduction. Together, these 

results demonstrate that the IDA biofilms can use retained PYO for EET to support metabolic 

activity. 

To determine whether our IDA biofilms retained phenazines in the same manner as colony 

biofilms, Dphz* IDA biofilms were soaked in PYO in one reactor and then transferred to 

another reactor with fresh medium lacking PYO (Fig. 5A). The equilibration of PYO (from 

the IDA biofilm) with the fresh medium was monitored by square wave voltammetry (SWV) 

(Fig. 5B), for which peak current (Iswv) is proportional to the concentration of the PYO 

remaining in the biofilm at each time interval (Bard et al., 1980). Thus, the rate of decay of 
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Iswv provides a means to assess the loss rate of PYO from the biofilm, a measure of how 

tightly PYO is retained. Upon transfer, the biofilm PYO peak current (Iswv) decays in 30-45 

min, while for a blank IDA (no biofilm) dipped in PYO, Iswv decays in 2-3 min (Fig. 5E). We 

compared PYO and PCA soaks and found that PCA immediately became undetectable by 

SWV or GC in the transfer reactor (Fig. S5D-E) because it quickly diffuses out of the biofilm, 

as expected, because it does not bind eDNA. Thus, like colony biofilms, IDA biofilms appear 

to tightly retain PYO but not PCA.  

Electron transfer through biofilms is faster than PYO loss 

Next, we sought to understand the efficiency of PYO-mediated EET in the biofilm. We 

reasoned that a determination of “efficiency” would compare the rate of electron transfer 

(which supports the metabolism of the O2 limited cells) to the loss rate of PYO from the 

biofilm (which limits the utility of each PYO molecule). These two processes can both be 

described by diffusion coefficients, so in a single electrochemical experiment we measured 

the apparent diffusion coefficient for the PYO-mediated EET, Dap, which characterizes all of 

the redox processes with the electrode, and the diffusion coefficient for PYO as it is lost from 

the biofilm, Dloss. 

We determined Dap for EET by PYO in an IDA ∆phz* biofilm to avoid confounding PYO 

retention with production, although WT biofilms with endogenous PYO yielded similar 

results (Fig. S6A-B). Each ∆phz* biofilm was soaked with PYO in one reactor, then 

transferred to a second reactor lacking PYO (Fig. 5A), and the equilibration of the biofilm 

PYO into the fresh medium was monitored by paired SWV and GC measurements over time 

(Fig. 5B and Fig. 5C). Noting that Iswv is proportional to 𝐶 ∗ $𝐷!", where C is the effective 

PYO concentration (Bard et al., 1980), whereas Igc is proportional to 𝐶 ∗ 𝐷!" (Strycharz-

Glaven et al., 2011b), plotting Igc vs. Iswv for each time point is expected to yield a linear 

dependency with a slope (m) proportional to $𝐷!" (Fig. 5D) when Dap is independent of the 

concentration of PYO in the biofilm (Akhoury et al., 2013; White et al., 1982a). In this 

manner, it is possible to measure Dap for PYO remaining in the biofilm at any given instance 

when its concentration is unknown.  
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Applying this approach, for two biological replicates of ∆phz* biofilms (three technical 

replicates each), we found that the mean Dap for PYO is 6.4 x10-6 cm2/sec over a wide range 

of PYO biofilm concentrations (Fig. 5F, Fig. S6C). To validate our approach, we measured 

Dap using a blank IDA with no biofilm, only solution PYO for which we expect Dap » Dloss. 

Using known PYO concentrations with a blank IDA (no biofilm), we obtained nearly 

identical estimates (Dap = 6.8x10-6 cm2/sec) using our Igc vs. Iswv method (concentration 

unknown) or established methods (Igc vs. [PYO] and Iswv vs. [PYO]) that depend on known 

concentrations (Fig. 5F, Supplementary text, Fig. S6D-G) (Bard et al., 1980). We further 

validated our measurement scheme by comparing it to an established chronocoulometry 

technique with two other redox molecules (Hexaammineruthenium(III) and 

ferrocenemethanol) in the presence and absence of the polymer Nafion. In all cases, estimates 

of Dap by the two methods were within ~2x (Fig. S6H). 

To estimate the upper limit for Dloss of PYO lost from P. aeruginosa biofilms, we applied a 

semi-infinite one-dimensional diffusion model (Supplemental Text) to fit the decay of the 

same Iswv measurements used above (Fig. 5B, 5E). Although each SWV scan depends on 

Dap, the decay process of Iswv results from loss of PYO out of the biofilm (Dloss). This 

calculation requires a scan time constant, whose value we constrain by using the blank 

control where we assume Dap = Dloss, allowing us to solve for this constant (see Supplemental 

Text and Fig. S7A). For Dphz* biofilms, this diffusion model yields a mean Dloss of 2.0x10-

7 cm2/sec (Fig. S7B). Hence, Dap for PYO-mediated biofilm EET is more than 25-fold higher 

than Dloss (Fig. 5F). While this model simplifies the actual physical system, it provides a 

means to estimate an upper limit for the rate of PYO loss from the biofilm. Such a low Dloss 

is consistent with the relatively long time it takes for Iswv to decay when transferred to fresh 

medium for PYO in a biofilm (~45min) compared to PYO for a blank IDA (<2min) (Fig. 

5E) or to PCA in a biofilm (< 1 min) (Fig. S5E). Moreover, the conservative assumptions of 

our model make it likely that we have underestimated the true difference between Dloss and 

Dap in the biofilm. Collectively, these observations support the idea that PYO EET occurs 

rapidly compared to the loss of PYO diffusing out of the IDA biofilms.  
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Discussion 

The redox activity of phenazine metabolites produced by P. aeruginosa has intrigued 

researchers since the 1930’s (Friedheim, 1934), and over the last twenty years a model has 

emerged that links phenazine electron transfer to biofilm metabolism (Dietrich et al., 2013b; 

Hernandez and Newman, 2001; Jo et al., 2017). Using the well-characterized P. aeruginosa-

phenazine system as a model for studying EET mediated by extracellular electron shuttles, 

here we addressed the conundrum of how phenazines complete their redox cycle within the 

biofilm matrix without being lost to the environment. Our results point to eDNA as being a 

critical component of the matrix that facilitates phenazine cycling for EET. 

Quantifying phenazine retention in a simple biofilm system was our first goal. While past 

work has measured phenazines in culture supernatants and in agar underlying colony 

biofilms (Bellin et al., 2014, 2016; Dietrich et al., 2006), phenazine concentrations within 

any type of biofilm system were unknown. We found that the degree of retention varied 

dramatically between the three studied phenazines in colony biofilms, with PCN and PYO 

being strongly enriched in the biofilm, in contrast to PCA, which readily diffuses away. We 

observed a similar trend for biofilms grown in liquid medium attaching to IDAs. Notably, 

oxidized PCN and PYO bind ds DNA in vitro, and perturbing extracellular DNA binding 

sites disrupt PYO retention (and PCN to a lesser extent) in vivo. Previous studies have shown 

that PYO actually promotes eDNA release via cell lysis, so PYO retention by eDNA suggests 

a connection between eDNA production and utilization. To our knowledge, PYO retention 

in eDNA is the first example of a metabolically helpful (as opposed to biofilm structural) 

molecule being bound by the extracellular matrix of a biofilm. Because eDNA is found in 

biofilms made by diverse species and many small molecules exhibit DNA binding capacity, 

our results may be broadly relevant to diverse biofilm functions involving extracellular 

metabolites. 

Recognizing that a primary function for phenazines is extracellular electron transfer, we 

characterized this process in vivo. Our IDA experiments suggest that PYO simultaneously 

can be retained (low Dloss) and facilitate fast EET (high Dap), establishing the efficiency of 
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this process. To understand the mechanism that underpins this efficient EET, we can 

interpret our results in the context of electron transfer theory from the study of redox 

polymers (Dalton and Murray, 1990). This theory holds that the measured Dap is the sum of 

the effective diffusion coefficient of electrons due to self-exchange reactions among bound 

shuttles (De) and the physical diffusion coefficient (Dphys) of any unbound shuttles (Dap = De 

+ Dphys). In this context, we think that there are two ways to explain our electrochemical 

results that biofilm PYO Dap (~6.4 x10-6 cm2/sec) is higher than biofilm PYO Dloss (~2.0 x10-

7 cm2/sec), and similar to solution PYO Dphys (6.8 x10-6 cm2/sec) (Fig. 5F). First, if we assume  

that our measured Dloss is the same as PYO Dphys within the biofilm, the difference between 

Dap and Dphys can be explained by De. Our in vitro data suggest that such self-exchange 

reactions (De) could be DNA-mediated. In the case of very rapid electron transfer among 

eDNA-bound PYO, Dap would still be limited by counter ion diffusion, consistent with a 

measured Dap similar to that of a small molecule in solution (~7 x 10-6 cm2/s) (White et al., 

1982b). Alternatively, the measured loss of PYO from the biofilm, Dloss, may not accurately 

reflect physical diffusion of PYO within the biofilm, Dphys. Because the IDA biofilms do not 

completely cover the electrodes, PYO may be able to physically diffuse in solution adjacent 

to them. In this case, diffusion in solution would be consistent with the measured Dap, and 

the low Dloss measurement would reflect the slow release of PYO from the IDA biofilm due 

to its retention by eDNA. Regardless, the striking measured difference between Dap and Dloss 

indicates that PYO electron transfer promotes efficient biofilm EET metabolism because 

electron transfer occurs rapidly, while loss of PYO to the environment is slow.  

Together, our results allow us to refine our model for how phenazine EET may operate within 

biofilms (Fig. 6). Intriguingly, PYO biosynthesis requires O2, whereas PCN and PCA do not, 

and electrochemical imaging underneath colony biofilms has shown lower potential 

phenazines in the anoxic interior (PCA, PCN) and the higher potential phenazine (PYO) near 

the oxic periphery (Bellin et al., 2014, 2016). Reduced PYO is also known to react with 

oxygen significantly faster than PCA and PCN (Wang and Newman, 2008). As such, it is 

tempting to speculate that phenazines are ordered in the biofilm matrix in a sequence akin to 

a large extracellular electron transport chain—from reduced PCA/PCN in the anoxic interior, 
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to eDNA bound PYO at the oxic periphery, and ultimately to molecular oxygen (Fig. 6A). 

How then do phenazines exchange electrons within this framework? Noting that the 

heterogeneity of the biofilm matrix makes it possible that different electron transfer pathways 

could occur in these complex systems, we favor two mechanisms mediated by eDNA for 

how phenazine EET may operate in the matrix (Fig. 6B). Both mechanisms assume that 

reduced PCA and PCN will diffuse from the anoxic zone to the oxic zone (i), where PYOox 

is bound to eDNA. In one model (Fig. 6B top), PYO’s binding equilibrium will result in some 

PYOox unbinding from the eDNA, allowing it to react with PCAred or PCNred (ii). PYO red 

then reacts with oxygen generating PYOox (iii), which rebinds DNA. In the other model (Fig. 

6B bottom), reduced phenazines (likely PCN) intercalate into eDNA and reduce PYOox via 

DNA CT (ii). PYO red unbinds DNA, reacts with oxygen (iii), and PYOox rebinds DNA. 

Given that PCAred and PCNred react more quickly with PYOox than O2, then both models 

would facilitate the re-oxidation of the interior phenazines and promote diffusion back 

toward the anoxic interior (iv). These non-mutually exclusive models integrate what is 

known about phenazine O2 reactivities, redox potentials, and biosynthesis zones, and help 

explain how PYO and eDNA interactions enhance EET in P. aeruginosa biofilms by 

facilitating retention and electron transfer. Testing these models in physicochemically well-

defined matrixes in addition to complex biofilms represents an exciting challenge for future 

research.  

In conclusion, our findings illustrate that eDNA binding provides a mechanism to resolve 

how otherwise diffusible extracellular electron shuttles can catalyze efficient EET in real 

world, open systems. Beyond serving as a structural support, carbon source, or genetic 

reservoir, our studies reveal that interactions between extracellular electron shuttles and 

eDNA in biofilms underpin their metabolic vitality. It is noteworthy that eDNA is abundant 

in many biofilms (Flemming and Wingender, 2010) and diverse biofilm-forming bacteria 

have the potential to produce extracellular electron shuttles (Glasser et al., 2017a). 

Accordingly, eDNA retention of these electron shuttles—and perhaps of other biologically 

useful molecules—may represent a widespread strategy whereby a reactive extracellular 

matrix supports bacterial biofilms in unexpected and physiologically significant ways.  
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Main Figures 

 

 

 
Figure 1. Colony biofilms retain PYO and PCN. 

(A) Diagram of the phenazine redox cycle in a biofilm. Cells are shown as gray rods, 
phenazines are shown as blue hexagons, electrons are shown as circles, the oxygen gradient 
is shown as the blue background. (B) Structures of the three studied phenazines in their 
oxidized states produced by P. aeruginosa – phenazine carboxylate (PCA), phenazine 
carboxamide (PCN), and pyocyanin (PYO). (C) Images of WT (top) and ∆phz* (bottom) 
colony biofilms. (D) Schematic of phenazine extractions from colony biofilms and agar. The 
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0.2 µm membrane is shown as the dashed line. (E) Biofilm and agar concentrations for 
PCA, PCN, and PYO from three WT biofilms. (F) The same data as C, represented as 
retention ratios ([Biofilm]/[Agar]). (G) Recovered phenazine concentrations from Dphz* 
colony biofilms grown with different levels of synthetic phenazine in the underlying agar for 
4 days. (H) Accumulated phenazine from three Dphz* colony biofilms following three days 
of growth with synthetic phenazine (Day 3), and one day later after transfer to fresh agar 
(Day 4). Data are represented as the percentage Day 4/Day 3. PCA was not detected on Day 
4. In panels E-H, values for individual biofilms are shown by open symbols, and lines or bars 
represent the mean. 
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Figure 2. Phenazines interact with DNA in vitro and in vivo. 

(A) Representative isothermal titration calorimetry (ITC) data for each phenazine injected 
into a solution of ds DNA (29 bp). Exothermic reactions are depicted as negative values. 
Integrated peak data was fit with a Bayesian model to calculate the Kd (in bp DNA) with 
95% confidence intervals (values shown in parentheses) (Duvvuri et al., 2018). (B) Biofilm 
phenazine concentrations for WT biofilms treated with or without DNase I in the underlying 
agar for 24 hrs (n = 3 per condition). Bars with asterisks denote measurements that differ 
significantly (p < 0.05) by a Welch’s single tailed t-test. (C) Phenazine retention ratios for 
WT and Dpel colony biofilms (n = 3 per condition). Statistical test same as in B. (D) 
Accumulated phenazine concentrations for ∆phz* biofilms incubated with 50 µM PCN or 
PYO and increasing concentrations of the competitive intercalator, ethidium bromide, in the 
underlying agar. (E) eDNA quantified in six WT and ∆phz* colony biofilms with the dye 
TOTO-1. Error bars show standard deviation from two technical replicates. Dashed lines 
show calf thymus DNA standards, with concentrations back calculated for the biofilm 
volume. In panels B-D, values for individual biofilms are shown by point symbols, and bars 
represent the mean. 
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Figure 3. Inter-phenazine electron transfer and DNA CT. 

(A) Diagram showing an electron transfer reaction in solution between a reduced phenazine 
and oxidized PYO and between reduced PYO and molecular oxygen. (B) Reaction progress 
after 1 min measured at 690 nm for mixtures of phenazines shown in A, compared to oxidized 
and reduced PYO alone. Each reaction was performed in the presence and absence of calf 
thymus DNA. For each condition, n=3 and error bars are one standard deviation. Dashed line 
shows the background signal from PBS alone or with PCN or PCA. (C) PYO oxidation state 
measured at 690 nm over time (diagnostic for oxidized PYO) for different reactions in the 
presence of oxygen. Points are individual measurements, lines are loess smoothed for each 
set of triplicate measurements. Dashed line shows the background signal from PBS with 
PCNred or PCAred. (D) Schematic showing a DNA modified electrode with tethered PCN 
(green oval) and the expected electron transfer for well-matched duplexes (blue arrow and 
bp) and duplexes containing a mismatch (orange arrow and bp). Mismatched bases are less 
likely to be in a well-stacked position, which is necessary for electron transfer through the 
DNA pi-stack. (E) Representative cyclic voltammetry of the well-matched (wmDNA) and 
mismatched (mmDNA) constructs shown in D under anoxic conditions. (F) Representative 
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cyclic voltammetry of the well-matched, mismatched, or no phenazine constructs under 
the aerobic conditions described in D. (G) Diagram of time-resolved spectroscopy of the 
photoexcited electron donor Ru(phen)2dppz2+ quenched by Rh(phi)2bpy3+ with biofilm 
eDNA. (H) Comparison of Ru(phen)2dppz2+ fluorescence in the presence of a concentrated 
liquid P. aeruginosa culture and a resuspended biofilm containing eDNA. Gray lines show 
background biological fluorescence before Ru(phen)2dppz2+ was added. The color map is the 
same as I. (I) The background subtracted data from the biofilm panel of H. The amount of 
Rh(phi)2bpy3+ is color-coded as quencher equivalents relative to Ru(phen)2dppz2+. Dots are 
raw data, lines are fit biexponential decays. 
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Figure 4. P. aeruginosa forms biofilms on electrodes and shows PYO dependent 

conductivity.  

(A) Photograph of a sterile IDA. (B) Photograph of the growth/electrochemical reactor with 
a submerged IDA in a fresh medium + PYO solution. (C) A max intensity projection of a 
WT IDA biofilm imaged using Syto60 (cell permeable – all DNA), shown as red, and TOTO-
1 (cell impermeable – eDNA), shown as cyan. Fluorescence channels are overlaid on a 
transmitted light channel showing the opaque gold regions of the electrode in gray scale. (D) 
Fluorescence microscopy of IDA biofilms with the same dyes as in C. Top: a 63x confocal 
image of a Dphz* IDA biofilm from a zstack 10 µm above the electrode surface (scale bar = 
10µm).  Middle: a confocal image from the same zstack as top, but at the electrode surface 
(scale bar = 10 µm). Bottom: a confocal slice of a different Dphz* biofilm from a 63x zoom 
with Airyscan, showing single live cells and eDNA on the electrode surface (scale bar = 5 
µm). (E) SEM images at increasing magnification showing cells and extracellular matrix on 
the IDA electrode bands. (F) Diagram showing how a generator-collector (GC) two electrode 
system can generate current through PYO reduction. (G) GC data is displayed as the current 
at each electrode vs. the generator potential, E. Representative measurements are shown for 
WT, Dphz and Dphz + PYO biofilms. (H) Diagram showing how cells generate metabolism-
dependent current through phenazine reduction. (I) Metabolic current described in H is 
measured by chronoamperometry for Dphz and WT biofilms over several days.   
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Figure 5. PYO mediated electron transfer is faster than PYO loss.  

(A) Schematic showing how measurements are made to maximize biofilm specific PYO 
signals, by transferring IDAs to fresh medium. PYO is shown in blue. (B) Repeated SWV 
measurements were taken over time as the Dphz* + PYO biofilm equilibrates with the 
solution in the transfer reactor. Points show peak current within each scan and inset shows 
the quantified peak currents vs. time. The color map is the same for panels B-E. (C) Repeated 
GC measurements were taken concurrently with SWV measurements over time as the same 
biofilm equilibrates. Points and inset are same as in B. (D) Plot of the peak GC vs. peak SWV 
currents fit with a line (gray area is 95% confidence interval). (E) Comparison of SWV signal 
over time in the transfer reactor from IDAs with or without a biofilm. Data are fit with a 1D 
diffusion model, as discussed in the supplementary text. Dashed lines are best fit models and 
gray regions show 95% confidence intervals. (F) Measurements of Dap and Dloss for two 
Dphz* biofilm IDAs soaked in 75µM PYO (shown as sets of open circles and squares) and a 
blank IDA soaked in different concentrations of PYO (open diamonds). A parameter for 
calculating Dloss (scan time - ts) was solved by assuming that Dap = Dloss for the blank IDA 
(see supplementary text). Error bars for Dap are 95% confidence intervals from the linear fit. 
Error bars for Dloss assume I0 was the peak current in the soak reactor and high and low 
estimates were generated with the 95% confidence interval values from the SWV fit as well 
as the Dap estimate. The dotted line is at 7 x 10-6 cm2/sec, the measured D for the similarly 
sized small molecule, caffeine (Niesner and Heintz, 2000). 
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Figure 6. Proposed models of phenazine electron transfer and retention.  

(A) Overview of phenazine electron transport to oxygen in the biofilm. Note that the DNA 
molecules are drawn radially for explanatory purposes only. (B) Proposed models for how 
the scheme shown in A occurs. The top model shows electron transfer in solution and the 
bottom model shows electron transfer via DNA CT. In both models, oxidized PYO is mostly 
bound and retained in the oxic region of the biofilm. PCN and PCA (PHZ) are reduced in the 
anoxic region of the biofilm and diffuse outward (i). The reduced phenazine reduces oxidized 
PYO (ii). Reduced PYO then reacts with molecular oxygen (iii), and the oxidized PYO re-
equilibrates with the DNA binding sites. This facilitates the re-oxidation of PCA and PCN, 
allowing some diffusion back toward the interior (iv).   

  



 

 

71 
Materials and Methods 

General 

All strains were plated on LB from -80°C glycerol stocks and grown overnight at 37°C. 

Plates were stored at -4°C for up to a week and were used to inoculate liquid cultures. Liquid 

cultures were grown in 3 mL of medium in glass culture tubes (VWR #47729-583) in an 

orbital shaker (New Brunswick, Innova 44) at 37°C shaking at 250 rpm.  

Chemicals were obtained from commercial sources (Sigma Aldrich, Fisher Scientific, VWR, 

and New England Biolabs) and used without further purification unless otherwise specified. 

All solutions were made with Milli-Q water (>18 MΩ cm). Phosphate buffered saline (PBS) 

used for resuspending cells or contacting biofilms (137 mM NaCl, 10 mM PO4 (1.44 g/L 

Na2HPO4, 0.24 g/L KH2PO4), 2.7 mM KCl, pH 7.2) was different than PBS used for 

chemical stocks and in vitro assays (10 mM PO4 (0.952 g/L Na2HPO4 , 0.592 g/L NaH2PO4), 

50 mM NaCl, pH 7.0).  

PCA was synthesized by Dr. Stuart Conway’s Lab and was a gift. PCN was obtained from 

Princeton Biochem (#PBMR030086). PYO was synthesized by shining light on PMS (VWR 

#AAH56718-06) and purified with repeated organic (dichloromethane) and acid (HCl) 

extractions as described previously (Costa et al., 2017). PYO was further purified by reverse 

phase HPLC or repeated hexane precipitations. Stocks of PYO were either made in PBS (pH 

7.0) to 1 mM or in 20 mM HCl to 10 mM and quantified by absorbance at 690 nm with the 

extinction coefficient ε690 = 4306 M−1 cm−1. Stocks of PCA were made in PBS to 1-2 mM or 

in 10 mM NaOH to 10 mM. Stocks of PCN were made in DMSO to 20 mM. 

Colony Biofilms 

Growth 

Colony biofilms were grown on 1% tryptone (BD #211705), 1% agar (BD #214010) in 6-

well plates (Fisher Scientific #08-772-49) at room temperature (~22°C) in the dark for 3 to 

4 days.  The medium was autoclaved and cooled to 60°C, then in a biosafety cabinet (The 

Baker Company #SG603A-HE) 5 mL of molten agar was transferred into each well of the 

6-well plate and left to solidify for 60 min with no lid and constant airflow. When phenazines 
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were added to the medium, concentrated stocks were added first, then the medium, and 

then the wells were stirred with sterile pipettes until uniform. Membrane filters (Sigma-

Aldrich # WHA110606) were gently placed shiny side down onto the center of each agar 

well, and colonies were inoculated by pipetting 10 µL of stationary phase culture (from LB 

liquid) onto the center of the membranes.  

For DNase treated biofilms, after 3 days of growth membranes/biofilms were transferred to 

fresh agar wells containing 20 µL of DNase 1 (2 Kunitz units/µL) (Sigma-Aldrich #D4263) 

spotted directly underneath the biofilm. Biofilms then grew for another 24 hrs. DNase 

treatment was done with or without NEB Buffer 4. 

Imaging 

All colony biofilms were imaged in the 6-well plates at 20x zoom with a Keyence digital 

microscope (VHX-600) before extraction. Colonies were stained for confocal imaging by 

growing them with 1 µM TOTO-1 and 10 µM Syto60 in the underlying agar. Biofilms on 

their membranes were transferred to imaging dishes. High magnification images were taken 

by gently dropping coverslips (#1.5) onto the top surface of the colony and imaging through 

the coverslip with an upright confocal microscope, as described below (IDA biofilms – 

Fluorescence imaging). Colony biofilms on membranes were fixed for scanning electron 

microscopy (SEM) by floating the membrane on a paraformaldehyde solution, and then 

submerging. Upon submersion, the colony came off of the membrane mostly intact, leaving 

only a thin layer of cells fixed to the membrane. See SEM imaging section below for further 

details.  

Extraction 

Membranes, with the colony biofilms stably attached, were lifted off the agar with fine 

tweezers and carefully placed in microfuge tubes containing 800 µL or 1 mL of PBS. For 

colonies that were smaller in diameter than the microfuge tube, the membrane was placed 

upside down directly on top of the open tube, so that the colony sat above the PBS hanging 

from the membrane. Then, the colony was gently pushed down into the tube, by pushing 

with tweezers from the center. If the colony diameter was greater than the tube, the 
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membrane/biofilm was carefully held with the tweezers and allowed to flop over. While 

the membrane/biofilm was curved over, it was gently threaded into the tube. If any part of 

the colony touched the rim of the tube, the tweezers were used to scrape as much as possible 

into the inside.  

Once the membrane/biofilm was in the tube, each tube was vortexed (Fisher Scientific #12-

812) at maximum speed for 1 min, after which the vast majority of the biofilm was 

resuspended in the liquid and no longer associated with the membrane. The membrane was 

removed from each tube with tweezers. The biofilm suspension was then centrifuged 

(Eppendorf #5418) at 6000 rcf for 5 min. The supernatant was removed and immediately 

prepared for LC-MS or frozen at -20°C.  This process was done for many biofilms at once, 

so biofilms typically sat for 30-60 min in PBS from the time the membrane was first added 

to the time the samples were centrifuged. 

Biofilm volumes were estimated by comparing biofilm suspension volumes to controls that 

only had bare membranes added and removed. Volumes were measured with a p200 pipette. 

Significant variation was observed in volume measurements of replicate biofilms that looked 

identical, so the mean WT colony volume of 60 µL was used to normalize all colony 

measurements, although there are likely subtle volume differences between the differently 

treated colonies/strains. 

The 6-well agar plates were extracted by adding 2 or 3 mL of PBS to the 5 mL of agar.  The 

agar was scarred with a pipette tip to facilitate agar/liquid exchange. The 6-well plates were 

left on an orbital shaker at 250 rpm (Ika #KS-260) for 6 hours, which was determined to be 

optimal.  Then, 1 mL of the liquid from each well was transferred to a microfuge tube and 

processed for LC-MS or frozen at -20°C. 

For the sonication experiment, resuspended biofilms were treated for 1 min on ice (Fisher 

Scientific, Sonic Dismembrator 550), then processed normally. CFU counts showed that 

>65% of cells died. For the no-membrane experiment, 3 mL of PBS were added directly to 

the wells containing the biofilm. The biofilm was quickly resuspended in the liquid using a 
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cell scraper and 1 mL of liquid was saved, while the rest was removed. Then the agar was 

extracted as normal.  

LC-MS 

Samples were filtered with 0.2 µm spin filters (Corning #8160) and transferred to sample 

vials (Waters #600000668CV), and then loaded into the autosampler at 10°C. Samples were 

run on a Waters LC-MS system (Waters e2695 Separations Module, 2998 PDA Detector, 

QDA Detector). 10 µL of each sample was injected onto a reverse phase C-18 column 

(XBridge #186006035) running a gradient of 100% H2O + 0.04% NH4OH to 70% 

acetonitrile + 0.04% NH4OH over 11 min (run times were 20 min total). UV-Vis and positive 

MS scans were acquired for each run. PCA, PCN, and PYO were distinguished by retention 

time (~3 min, 6 min, and 8.85 min, respectively), detected at 364 nm (PCA and PCN) or 313 

nm (PYO), and manually verified by examining masses 225.2 (PCA), 224.2 (PCN) and 

210.24 (PYO). Peaks were automatically identified in the UV-Vis channels by retention time, 

quantified using the apex track algorithm, converted to concentrations using standard curves 

(>6 points from 100 nM to 100 µM), and then exported as text files from the Empower 

software.  

eDNA measurements 

Resuspended colony biofilms were assayed for eDNA by measuring TOTO-1 fluorescence 

on a Tecan Spark 10M plate reader in black 96 well plates. Wells were prepared with 65 µL 

PBS and 10 µL of TOTO-1 (10 µM stock, 1 µM final), and 25 µL of biofilm suspension or 

calf thymus DNA was added to each well and gently mixed by pipetting. TOTO-1 

fluorescence was monitored with 480 nm excitation and 535 nm emission after ~20 minutes 

of incubation at room temperature. Colony biofilms were measured with six biological 

replicates and technical triplicates. A standard curve was obtained by diluting a stock of calf 

thymus DNA twofold serially, yielding measurements from 500 µg/mL to 7 ng/mL.  

DNA binding assays 

Phenazine stocks were made in PBS (pH 7.0 10 mM PO4, 50 mM NaCl) to 1 mM (PCA, 

PYO) or 500 µM (PCN with 5% DMSO). All assays were performed in the same PBS buffer 
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unless otherwise noted. Complementary 29 bp oligos from IDT were annealed (cooled 

incrementally over 1 hour following denaturation) to form the ds DNA for ITC and the 

ethidium displacement assays (see Table S2 for sequences). ds DNA for MST was prepared 

by PCR amplifying an 80 bp region from P. aeruginosa genomic DNA using the primers 

listed in table S2. One of the primers contained a Cy3 fluorophore for the MST readout. 

Isothermal titration calorimetry (ITC) 

ITC was performed with a MicroCal ITC200 (Malvern). Phenazine stocks were loaded 

directly into the ITC syringe. The cell was loaded with 10 to 50 µM ds DNA in PBS (or PBS 

+ 5% DMSO for PCN). Results shown are representative of replicates taken at various ds 

DNA concentrations. Thermograms were recorded at 21°C with stirring at 300 rpm and 

reference power 2. There were 13 injections of 3.2 µL volume spaced by 240 seconds with 

600 seconds of settle time.  

Thermograms were integrated and baseline corrected in the Origin software. Peak 

integrations were then loaded into the GUI version of pytc (Duvvuri et al., 2018)  with the 

default 0.1 units of uncertainty added to each measurement. Binding curves were plotted with 

the molar ratio phenazine/oligomer. The data were fit with the Bayesian model and parameter 

estimates with confidence intervals were generated. The K value was converted to a 

dissociation constant by taking the inverse and converted from the oligomer concentration to 

base-pair concentration by multiplying by 29 bp/fraction competent (f_x = 1.6 for PYO and 

1.3 for PCN).  

Ethidium bromide displacement 

In black 96 well plates (Nunc #237105), 5 µM ethidium bromide (EtBr) was prepared in 

wells with increasing concentrations of PCA, PCN, or PYO. Fluorescence readings were 

taken on a Tecan Spark 10M plate reader with excitation 480 nm and emission 600 nm. Then 

a small volume of 29 bp ds DNA (prepared the same as for ITC) was added to a final 

concentration of 1 µM. The plates were mixed with rotary shaking and incubated at room 

temperature for at least 5 min protected from light. Then fluorescence was read again, and 

the bound ethidium signal was calculated by subtracting the pre-DNA reading from the post-
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DNA reading. IC50 was calculated by fitting the data to the hill equation. IC50 was 

converted into Ki with the equation Ki = IC50/(1 + [EtBr]/Kd), using an empirical Kd for 

ethidium (under the same -conditions) of 1 µM. 

Microscale thermophoresis (MST) 

Microscale thermophoresis was performed with a NanoTemper Monolith instrument 

following the manufacturer’s protocol (capillaries – NanoTemper #MO-K022). Briefly, 

capillary solutions were prepared with 50 nM ds DNA and two-fold dilutions of phenazines 

starting at concentrations greater than or equal to 1 mM. Thermophoresis was performed at 

an ambient temperature of 22.5°C, with the thermophoresis laser power at 40% and the 

fluorescence excitation laser at 20% power. Thermophoresis was recorded for 30 seconds 

and evaluated using the T-jump strategy. Fluorescence peak shapes along the X-axis of each 

capillary were very uniform and peak intensity did not vary meaningfully between phenazine 

concentrations. Kd was calculated by fitting the quantified data to a hill equation. Results 

shown are representative of multiple MST runs with varied settings. 

Endogenous fluorescence of reduced phenazines 

The endogenous fluorescence of reduced phenazines was measured with different 

concentrations of calf thymus DNA with a BioTek Synergy 4 plate reader placed in an 

anaerobic chamber. Reduced phenazines (100 µM solutions) were prepared by bulk 

electrolysis of oxidized phenazine solutions in electrochemical chambers described 

previously (Wang et al., 2010). The solutions were transferred into stoppered serum bottles 

and moved to the anaerobic chamber containing the plate reader. 135 µL reduced phenazine 

was incubated with 15 µL PBS containing different amounts of calf thymus DNA, thus each 

well contained 90 µM phenazine. Fluorescence was monitored in a black 96-well plate with 

filter cubes to control excitation and emission wavelengths. PYO was excited using a 360 

nm light and emission was monitored at 460 nm. For PCA and PCN, excitation was at 485 

nm and emission was at 528 nm.  
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Phenazine to phenazine electron transfer in vitro 

Electron transfer reactions between phenazines under anoxic conditions were monitored in 

the anaerobic plate reader described above. Reduced phenazines (described above) were 

mixed with oxidized phenazines (67.5 µL each) and 15 µL PBS with or without DNA (2 

mg/mL) to yield mixtures containing 45 µM of each phenazine.  Reactions in clear bottom, 

black walled 96-well plates were measured at 690 nm absorbance approximately one minute 

following mixing. For each well, an absorbance scan and fluorescence measurements 

(described above) were also taken, and these data matched the results obtained at 690 nm. 

Time series (2.5 min) of absorbance and fluorescence measurements were taken for each 

well, but no changes were observed, indicating that the reactions had reached equilibrium. 

Phenazine redox reactions were monitored over time under oxic conditions with an aerobic 

Beckman Coulter DU 800 spectrophotometer. The instrument was blanked with PBS. Plastic 

cuvettes were filled with 500 µL PBS (oxic) or PYOox and placed inside the instrument and 

the lid was shut. Reduced phenazine or anoxic PBS was drawn (~500 µL) from stoppered 

serum bottles (anoxic) into needled 1 mL syringes. Absorbance measurements at 690 nm 

(1.5 sec intervals) were started on the cuvette and proceeded for 10 seconds to acquire 

baseline values. Then the lid was opened, the syringe was quickly emptied into the cuvette, 

and the lid was closed again. The measurement proceeded until 90 seconds had elapsed. 

Reactions were repeated in triplicate. 

DNA modified electrodes 

Preparation of thiol-modified oligonucleotide  

A single-stranded DNA sequence with the 5ꞌ end modified with a C6 S-S phosphoramidite 

was purchased from Integrated DNA Technologies (see Table S1 for DNA sequences). The 

oligonucleotide was reduced using dithiothreitol (DTT, Sigma Aldrich, 100 mM) in a buffer 

solution (50 mM Tris-HCl, pH 8.4, 50 mM NaCl) for 2 h. The reduced thiol-modified DNA 

was then purified by size exclusion chromatography (Nap5 Sephadex, G-25, GE Healthcare) 

with phosphate buffer (pH 7.0, 5 mM NaH2PO4, 50 mM NaCl) as the eluent. Subsequently, 

high pressure liquid chromatography (HPLC, HP 1100, Agilent) was performed using a 
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reverse-phase PLRP-S column (Agilent) using a gradient of acetonitrile and 50 mM 

ammonium acetate (5-15% ammonium acetate over 35 minutes). After HPLC purification, 

the thiol-modified ssDNA was characterized using matrix-assisted laser desorption 

ionization (MALDI) characterization using an Autoflex MALDI TOF/TOF (Bruker), and 

quantified using a 100 Bio UV-visible spectrophotometer (Cary, Agilent). Another ssDNA 

strand for installing a CC mismatch near the interface between DNA duplexes and self-

assembled monolayer (SAM) linker was prepared in an analogous manner as detailed above.  

Preparation of amine-functionalized oligonucleotide 

A single-stranded DNA sequence with the 5ꞌ end modified with a C6 NH2 phosphoramidite 

was purchased from Integrated DNA Technologies. HPLC was performed using a reverse-

phase PLRP-S column using a gradient of acetonitrile and 50 mM ammonium acetate (5-

15% ammonium acetate over 35 minutes). After HPLC purification, the amine-modified 

oligonucleotide was characterized using MADLI-TOF-MS and quantified using UV-visible 

spectrophotometry. 

Preparation of phenazine-functionalized oligonucleotide 

 Phenazine-1-carboxylic acid (PCA, 4.9 mg, 22 µmol) was added to 

dicyclohexylcarbodiimide (DCC, 9.3 mg, 45 mg) and N-hydroxysuccinimide (NHS, 5.2 mg, 

45 µmol) in degassed, anhydrous dimethylformamide (DMF, 500 µL) at RT in a scintillation 

vial wrapped in aluminum foil. The barely soluble PCA turned from green to yellow upon 

stirring overnight in the dark under Ar. The NHS-activated PCA solution was reduced to low 

volume (100 µL) and was then added to a solution containing amine-modified DNA (0.42 

µmol) in the presence of hydroxybenzotriazole (HOBT, 1 mg, 7.4 µmol) and N,N,Nꞌ,Nꞌ-
tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate (HBTU, 1 mg, 2.6 

µmol) in sodium bicarbonate solution (200 µL, pH 8, 0.1 M) overnight in the dark with the 

1.5 mL Eppendorf tube wrapped in aluminum foil and mixed thoroughly using the shake 

function of a benchtop vortexer. The 1.5 mL tube secured using a clip to avoid spilling. The 

crude product was then buffer exchanged using a NAP-5 size-exclusion column into 

phosphate buffer (pH 7.0, 5 mM NaH2PO4, 50 mM NaCl). The treated product was 
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subsequently purified using HPLC on a reverse-phase PLRP-S column with a gradient of 

acetonitrile and 50 mM ammonium acetate (5-15% ammonium acetate over 35 minutes) 

while monitoring 252, 260, 280, 354, and 365 nm simultaneously. Pale yellow liquid 

fractions were collected and freeze-dried on a lyophilizer (Labconco). The resulting yellow 

dried smear was resuspended in minimal MQ H2O and was subsequently analyzed by 

MALDI-TOF-MS.  

Formation of double-stranded DNA duplexes  

The two strands of a duplex are synthesized separately, purified, desalted, EtOH precipitated, 

and stored frozen at -20 °C. Prior to electrochemical experiments, the two strands of a duplex 

were mixed in equimolar (50 µM) in 200 µL phosphate buffer (pH 7.0, 5 mM NaH2PO4, 50 

mM NaCl). The DNA solution was deoxygenated by bubbling Ar for at least 5 minutes per 

mL, and then annealed on a thermocycler (Beckman Instruments) by initial heating to 90°C 

followed by slow cooling over a span of 90 min.  

Preparation of DNA-modified electrodes 

Multiplexed chips are gently cleaned by sonicating with acetone once, then with isopropanol 

three times before drying with Ar. They are then cleaned with UV/Ozone using a UVO 

cleaner for 20 minutes. Immediately after cleaning the surface, a plastic clamp and rubber 

gasket (Buna-N) were affixed to the Au surface to create a well for liquid and 50 μM duplex 

DNA in phosphate buffer (5 mM phosphate, pH 7, 50 mM NaCl) to make ds DNA-modified 

surfaces. The ds DNA was incubated on the surface for 18-24 h in the absence of light. Once 

the ds DNA is affixed to the surface, it cannot be dried without compromising the structure 

and subsequently the measured properties of the ds DNA-modified surfaces. The solution 

was then exchanged 3× with phosphate buffer (pH 7, 5 mM phosphate, 50 mM NaCl, 5% 

glycerol) and incubated with 1 mM mercaptohexanol in phosphate buffer (pH 7, 5 mM 

phosphate, 50 mM NaCl, 5% glycerol) for 45 minutes. Lastly, the surface was rinsed at least 

5× with phosphate buffer (pH 7, 5 mM phosphate, 50 mM NaCl) that was degassed by 

leaving it open in an anaerobic chamber (Coy Lab Products) for at least 3 days. 
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Multiplexed chip electrochemical measurements  

Experiments performed were replicated at least three times using different samples, and data 

presented are from representative trials. Cyclic voltammetry (CV), square wave voltammetry 

(SWV), and differential pulse voltammetry (DPV) were carried out using a 620D 

Electrochemical Workstation (CH Instruments) at room temperature inside an anaerobic 

chamber. The atmosphere of the anaerobic chamber (< 1 ppm O2, ca. 3.4% H2) was 

monitored using a CAM-12 O2 and H2 sensor (Coy Lab Products). The chamber was 

maintained O2-free by using two ventilated Pd catalyst packs (Coy Lab Products).  

Electrochemical experiments were carried out in a three-electrode set-up under an anaerobic 

atmosphere. CV was conducted at a scan rate of 100 mV/s unless otherwise specified. The 

central well around the multiplexed electrode surfaces created by the plastic clamp was filled 

with aqueous buffer containing degassed phosphate buffer (pH 7, 5 mM phosphate, 50 mM 

NaCl). An Ag/AgCl reference electrode (BASi) was coated with a solidified mixture of 1% 

agarose and NaCl (3 M) in water inside a long, thin pipette tip. The tip was cut so that the 

salt bridge could connect the electrode to the buffer from the top of the well. A freshly-

polished Pt wire used as an auxiliary electrode was also submerged in the buffer from the top 

of the well. The working electrode contacted a dry part of unmodified gold surface. Scan rate 

dependence studies (10-5000 mV/s) were carried out to determine whether the phenazine 

moiety was covalently attached to the DNA-modified electrodes. A linear relationship 

between scan rates and measured peak currents signified that phenazine was covalently 

attached. For O2 electrocatalysis studies, CV was conducted in open air in O2-saturated 

phosphate buffer (pH 7, 5 mM phosphate, 50 mM NaCl). Hexaammineruthenium(III) 

chloride (RuHex, 1-500 µM in pH 7, 5 mM phosphate, 50 mM NaCl) was used in control 

experiments to probe whether electron transfer occurred between the Au electrode and the 

covalently attached PCN through DNA. 

Time resolved spectroscopy with metal complexes 

Colony biofilms (∆phz*) were grown and suspensions were prepared in 500 µL PBS, as 

described above for the LC-MS and eDNA measurements. 400 µL of the suspension was 
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transferred to a clean quartz cuvette. Time-resolved emission measurements utilized a 

YAG laser (λexc = 532 nm), with laser powers of ~2 mJ per pulse.  A colored-glass longpass 

filter (λ > 600 nm) was used to minimize scattered laser light and the emission of the 

Ru(phen)2dppz2+ complex was monitored at 620 nm. An excitation pulse (532 nm) was 

delivered and emission was recorded at 620 nm for 1.9 µs and each timepoint was 0.2 ns. A 

background scan was acquired with only the biofilm suspension. Then 5 µM 

Ru(phen)2dppz2+ was added and a scan was recorded. Subsequently, 5 µM Rh(phi)2bpy3+ 

was added after each scan to acquire the 1, 2, 3, and 4 quencher equivalent datasets. This 

process was repeated for multiple biofilms and a liquid ∆phz* culture that was concentrated 

to the same optical density (500 nm) as the biofilm suspensions. Datasets were background 

subtracted from the biofilm-only background scan and were fit with biexponential decay 

models. 

IDA biofilms 

Electrode and reactor preparation 

Gold IDA electrodes were prepared as previously described (Boyd et al., 2015). IDAs 

fabricated on glass substrate were ordered from CH Instruments (#012125). A passivation 

membrane covered the working electrodes except for the overlapping regions that form the 

5 µm gap and where the leads were attached.  Insulated wires (Digi-Key #W7-ND) were 

attached to the two working electrodes of the IDA with a conductive epoxy (Electron 

Microscopy Sciences #12670-EE) that was cured at 80°C for 1 hour. A shell for the IDA 

construct was constructed from 15 mL conical vials that were sawed off at the 2.5 mL mark. 

Rough edges were smoothed with a razor blade, and two holes were poked in the bottom of 

the vial. The IDA with attached wires was placed inside the conical vial and the wires were 

threaded through the holes at the bottom. A nonconductive epoxy (Amron International 

#2131-B) was carefully pipetted into the vial with the IDA until it was full to the rim. The 

epoxy was allowed to set at room temperature in a fume hood for 24-48 hours. IDA 

constructs were then used immediately or stored in petri dishes and covered to protect from 

light and dust. 
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Reactors (Pine Instruments, 265 mL water-jacketed electrochemical reactor) used to grow 

biofilms on the IDA were cleaned thoroughly and autoclaved between uses. For gas control, 

the ports were stoppered or sealed with o-rings and screw clamps. Gas inflow and outflow 

lines were attached via 6 in gassing needles and 16g 1.5 in needles, respectively, pierced 

through separate stoppers. Gas outflow was attached to a liquid overflow vessel, a 500 mL 

Erlenmeyer flask that also had 16g needles as inflow and outflows. The water jacket of each 

reactor was connected in series to a water chiller (Lytron) to heat the vessels to ~31°C. Each 

reactor was filled with 180 mL of sterile medium and the IDA construct was suspended from 

a stopper (size 4) by threading the wires through 16g needles and then removing the needles, 

so that the electrode was fully submerged in the liquid. IDAs were sterilized in 10% bleach 

for 30 seconds, then rinsed in sterile medium before submerging in the reactor. 

Biofilm growth 

Biofilms were grown in a minimal medium (MM) with succinate as the carbon source (14.15 

mM KH2PO4, 38.85 mM K2HPO4, 42.8 mM NaCl, 9.3 mM NH4Cl, 40 mM Na-succinate, 

adjusted to pH 7.2, autoclaved, then 1x SL-10 trace element solution (Atlas, 2004) and 1 mM 

MgSO4 were added).  

From a stationary phase MM culture, the reactors with 180 mL MM were inoculated to an 

OD500 of 0.005. The medium was exchanged every 24 hours, and biofilms were grown on 

the IDA for 3 or 4 days in this fashion. During growth, constant temperature was maintained 

at ~31°C, reactors were stirred at 250 rpm (VWR #58948-138), and air was bubbled into two 

reactors at a time with a small aquarium bubbler (Tetra #77851).  

Depending on the experiment, biofilms were grown with or without the full electrochemical 

setup described below. At a minimum, biofilms were grown with the IDA working electrode 

(disconnected from potentiostat).  

Electrochemical setup 

Electrochemistry was performed using a three-electrode setup and CHI 760b or CHI 760e 

bi-potentiostats. The working electrode(s) were on the IDA and connected to wires as 
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described above. The counter electrode was a separate graphite rod (Alfa Aesar #14738) 

and the reference electrode was a separate Ag/AgCl electrode (BASi #MW-2030 or #MF-

2079) assembled as described in the above DNA CT section. Before measurements were 

made in a reactor, the medium was sparged with N2 for at least 10 min. Reactors were gently 

bubbled with N2 throughout the measurements. Unless otherwise noted, Generator-Collector 

scans were acquired at 3 mV/s, with the collector held at 0 mV. Square wave voltammetry 

was performed at 300 Hz with an amplitude of 25 mV and an increment of 1 mV. 

Chronoamperometry of metabolic current was acquired at +100 mV.  

Measurement scheme 

For experiments where biofilms were soaked in synthetic PYO, biofilms were soaked for at 

least 10 min. To transfer the IDA biofilm, the potentiostat leads were removed and the 

reference and counter leads were attached to the transfer reactor electrodes. The IDA biofilm 

was dipped in fresh medium to remove solution PYO and then submerged in the transfer 

reactor. The working electrodes were attached and the open circuit potential was measured 

to ensure proper connections – this took roughly 30 seconds. For time sensitive experiments, 

SWVs were immediately recorded. For biofilm Dap and Dloss measurements, SWV and GC 

scans were taken consecutively (manually or with a macro) until 15 of each scan had been 

acquired. For blank Dloss measurements, rapid consecutive SWV scans were taken in an 

automated fashion using the “repeated runs” option in the CHI software. For blank Dap 

measurements, the blank IDA was incubated with increasing concentrations of PYO in the 

soak reactor.  

Fluorescence Imaging 

IDA biofilms were prepared for imaging by removing the biofilm coated region of the IDA 

from the epoxy encased shell. The exposed region of the glass substrate near the epoxy 

interface was scored with a diamond-tipped scribe, and then it was snapped off from the rest 

of the vial/epoxy assembly. With tweezers, the IDA fragment was transferred to a slide with 

a multi-well silicone spacer and dye mixture was added with a pipette directly to the edge of 

the IDA fragment until it was fully coated. The dye mixture was 10 µM Syto60 (Invitrogen 
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#S11342) and 1 or 2 µM TOTO-1 (Invitrogen T3600) in PBS. Coverslips (#1.5) were 

added directly on top of the mixture and sealed with clear nail polish to the spacer. 

Slides were then imaged on a confocal microscope. Most imaging was done using an upright 

Zeiss LSM 880 with Fast Airyscan. Syto60 was excited with a 633 nm laser and emission 

was typically recorded with a bandpass filter from 650 to 750 nm. TOTO-1 was excited with 

a 488 or 514 nm laser and emission was typically recorded with a bandpass filter from 530 

to 630 nm.  Tile scans were taken using a 10x objective and high magnification images were 

taken with a 63x objective. Several images were taken at 63x magnification using the 

Airyscan module with superresolution settings. For Airyscan images, the appropriate filter 

cubes were used. 

Other imaging was done on an inverted confocal Leica model TCS SPE with a 10x objective 

for tile scanning. Syto60 was excited with a 633 nm laser, TOTO-1 was excited with a 488 

nm laser, and emissions were set by bandpass filters as above.  

Abiotic IDA measurements with Nafion 

Electrochemical experiments were recorded with a bi-potentiostat (CHI, Model #760) in a 

Teflon cell designed in-house to mount gold interdigitated array (IDA) electrodes from CHI. 

The counter and reference electrodes were a Pt coiled wire and an Ag/AgCl reference 

electrode. All measurements were recorded at room temperature in 0.2 M Na2SO4 as the 

electrolyte purged with Argon. The IDA electrodes were modified with Nafion film by 

pipetting 20 µL of a 5% by weight Nafion solution (Sigma Aldrich) onto the IDA electrodes, 

and allowing a film to form as the solution dried at room temperature. After 2 hours, the 

modified IDAs were rinsed with ethanol and DI water, and then mounted into the base of the 

Teflon cell. 

The Nafion films on the IDAs mounted in the Teflon cell were loaded with various amounts 

of Ru(NH3)6 3+ by either exposing the films to a 10 mM solution of Ru(NH3)6Cl3 (Sigma 

Aldrich) in 0.2 M Na2SO4 at time points from several minutes to several hours or by allowing 

Ru(NH3)6 3+ in the films to diffuse out into bulk electrolyte for several hours. The Nafion 
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films were loaded with Ferrocenemethanol (Fc-OH) by exposing the films to a 250 µM 

solution of Fc-OH in 0.2 M Na2SO4 for several hours. To decrease the amount of Fc-OH in 

loaded films, the films were allowed to have the Fc-OH in the films to diffuse out into bulk 

electrolyte for several hours. For each electrochemical measurement after loading or 

depleting the film, the cell was rinsed with DI water and 2 mL of fresh electrolyte was added. 

The counter and reference electrodes were position above the IDA electrodes in a Teflon lid, 

and the electrolyte were purged with Argon for 15 minutes with a blanket of Argon 

maintained in the head space of the Teflon cell. Three conditions were measured with the 

Fc-OH: (i) Fc-OH in solution with naked IDAs, (ii) Fc-OH in solution at IDAs modified with 

Nafion, and (iii) Fc-OH loaded into the Nafion modified IDAs.   

For the SWV vs. GC method, SWV and GC scans were acquired as described above, and 

equation 5 (Supp. Text) was used to calculate Dap with the following parameters: A = 0.0213 

cm2, y = 0.505, S = 18.4 cm, tp = 1/600 s. For chronocoulometry, voltage was stepped from 

0 mV to -500 mV vs. Ag/AgCl.  From the slope of plots of charge vs. (time)1/2, Dap was 

calculated from the following equation:  

𝐷 = 		(
𝑆𝜋#/%

2𝐹𝐶 -
%

= (
𝑆F𝜋#/%

2𝐹G -
%

 

where S is the chronocoulometric slope (C cm-2 s-1/2), F is the film thickness (cm), G is the 

total quantity of Ferrocenemethanol in the film (mol cm2), F is the Faraday constant, and C 

is concentration in moles/cm3 ( C = 2.5 x 10-7 moles/cm3). A film thickness of 10 µm was 

estimated from the reported density of casted Nafion films by knowing the amount of Nafion 

deposited and the area covered by the film. 

Scanning electron microscopy (SEM) 

IDA and colony biofilms were prepared for SEM using the following protocol. Delicate 

samples were gently transferred between solutions using metal spatulas or plastic grids as 

supports. Material was fixed in 4% paraformaldehyde in PBS for 2 hours or overnight, then 

washed twice with PBS. Material was then fixed in 1% OsO4 in water for 1 hour, then washed 



 

 

86 
twice with PBS. Next, the samples were dehydrated by sequentially immersing in 50, 70, 

90, 95, and 100% ethanol (EtOH) solutions for 10 min, and then again in 100% EtOH for 1 

hour.  Samples were then transferred to hexamethyldisilazane (HMDS) solutions of 1:2, then 

2:1 HMDS:EtOH for 20 min each, followed by two incubations in 100% HMDS for 20 min 

each. Samples were then removed from the solution and air-dried before attaching to imaging 

stubs with conductive tape. Imaging stubs were then sputter-coated with 10 nm of palladium 

before being loaded into the SEM. Imaging was done with a Zeiss 1550VP field emission 

SEM using the SE2 detector.  

Data analysis 

Nearly all data processing and analysis was done in R (R Core Team, 2018) using tidyverse 

packages including ggplot2, dplyr, readr (Wickham, 2017), broom (Robinson and Hayes, 

2018), and hms (Müller, 2018). The nonlinear least squares (‘nls’) function in base R was 

used for Dloss fits and the linear model (‘lm’) function was used for Dap fits. Electrochemical 

data was exported from CHI software as text files with raw data, acquisition parameters, and 

timestamps, and then imported into R. Confocal images were stitched (for tilescans) and 

processed into z-slices or maximum intensity projections using the Zeiss Zen Black software 

and Fiji (Schindelin et al., 2012).  

All code used for data processing and analysis is available in a GitHub repository 

(github.com/DKN-lab/phz_eDNA_2019). Html versions of the Rmarkdown notebooks are 

also available as a website (DKN-lab.github.io/phz_eDNA_2019). 
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Supplementary Text 

DNA modified electrode controls 

The purpose of carrying out the control experiments shown in Fig. S4 using electrodes 

modified using self-assembled monolayers (SAMs) of double-stranded DNA (ds DNA) was 

to probe the electron transfer mechanism between the redox probe and the electrode surface. 

Four sets of control experiments were conducted to probe whether DNA-mediated charge 

transport (DNA CT) occurs between PCN and the electrode via the base stack of ds DNA: 

(i) WM- vs. MM-DNA, (ii) high- vs. low-density monolayers, (iii) PCN vs. RuHex, and (iv) 

scan rate dependence studies. 

(i) WM- vs. MM-DNA: Electrodes modified using SAMs of ds DNA that are well-matched 

(WM) or contain a single base pair mismatch (MM) were prepared under identical 

conditions. WM-DNA electrodes and MM-DNA electrodes have similar physical properties, 

but exhibit different charge transfer properties that occur through the aromatic base stacks of 

DNA. If the electron transfer process between the redox probe and the electrode occurs via 

DNA CT, then a decrease in the yield of DNA CT is expected due to the perturbation to the 

base stack introduced by the MM lesion. If the electron transfer process occurs via other 

modes such as physical diffusion of a charge carrier or physical contact between the redox 

probe and the electrode surface, then no difference in the current measured would be 

expected. 

(ii) High- vs. low-density monolayers: Electrodes modified using high- and low-density 

SAMs of ds DNA were used to probe the effect of the number of ds DNA on the charge 

transport mechanism. A low-density ds DNA monolayer promotes electron transport within 

one ds DNA, but ds DNA may adopt various conformations because the individual ds DNA 

molecules are more distantly spaced. A high-density ds DNA monolayer encourages ds DNA 

to align with each other in a more orderly fashion due to more ds DNA present in a confined 

space. Regardless of a high- or low- density monolayer, for the case of PCN-modified DNA-

SAM, MM discrimination was observed, suggesting that DNA CT is the major mode of 

electron transport between the electrode and the redox probe. 
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(iii) PCN vs. RuHex: RuHex is a positively-charged species that binds electrostatically to 

the negatively-charged phosphate backbone. RuHex also associates to the OH groups at the 

terminus of the SAM surface passivated by backfilling using mercaptohexanol. Electrons 

tunnel through the SAM from the electrode to the RuHex situated at the SAM terminus. 

Electrons can then be transferred and be distributed among the Ruhex bound to the SAM 

surface and on the DNA phosphate backbone. Residual RuHex present in solution could help 

with ET through hopping and diffusion in solution, and the contribution of solution-based 

ET to the current measured depends on the concentration of RuHex used. Therefore, a 

number of RuHex concentrations were screened in order to optimize the conditions for this 

measurement. For species that do not participate in DNA CT, no MM discrimination will be 

observed. The RuHex experiments show that the number of ds DNA on the SAM-modified 

electrodes is similar for both the WM and MM cases. The observation of a sizable MM 

discrimination demonstrates that PCN bound on DNA participates in DNA CT. 

(iv) Scan rate dependence studies (10-5000 mV/s) were carried out to determine whether the 

phenazine moiety was covalently attached to the DNA-modified electrodes. A linear 

relationship between scan rates and measured peak currents signified that phenazine was 

covalently attached. 

Dap measurement theory 

To measure Dap, we compared two electrochemical measurements that depend on Dap in 

different ways. By performing this comparison at multiple concentrations, we could fit the 

data points to a line whose slope can be defined by known parameters, yielding Dap. Dphz* 

biofilms were soaked in 75 µM of PYO, and then transferred to fresh medium lacking PYO. 

The biofilm PYO concentration dropped over the course of 45 min as equilibration with the 

medium occurred. Approximately 15 sets of scans were taken during this time period.  

The first measurement was square wave voltammetry (SWV) (Fig. 5B). The SWV peak 

current (Iswv) is defined in terms of concentration of redox molecules (C) reacting directly 

(by physical diffusion) or indirectly (through electron self-exchange reactions) with the 

electrode (Dap), the area of the electrode (A), the number of electrons per redox reaction (n), 
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the Faraday constant (F), the pulse width (tp), and a normalization constant (𝜑). Note that 

Iswv depends on the square root of Dap. 

𝐼&'( =	
𝑛𝐹𝐴𝐶$𝐷!"
$𝜋𝑡"

𝜑					(𝑒𝑞. 1) 

The second measurement was a generator-collector (GC) measurement (Figure 5C). The 

maximum GC current (Igc) is also defined in terms of C, Dap, n, and F, but depends on a 

geometric factor (S) (Boyd et al., 2015) as opposed to the electrode area. Note that Igc depends 

directly on Dap. 

𝐼)* = 	𝑛𝐹𝑆𝐶𝐷!"					(𝑒𝑞. 2) 

A plot of experimentally determined Igc vs. Iswv values yields linear relationships for PYO in 

biofilms and in solution (i.e., blank IDA) (Fig. 5D, S6), with slope (m) that can be defined in 

terms Igc and Iswv: 

𝑚 =	
𝐼)*
𝐼&'(

	= 	
𝑛𝐹𝑆𝐶𝐷!"

𝑛𝐹𝐴𝐶$𝐷!"
$𝜋𝑡"

𝜑	
					(𝑒𝑞. 3) 

𝑚 =	
𝑆$𝜋𝑡"𝐷!"

𝐴𝜑 					(𝑒𝑞. 4) 

This relationship enables determination of Dap from the experimentally determined 

dependency of Igc to Iswv (i.e., m) in terms of known experimental parameters (Fig. 5F). 

Importantly, it provides a means of determining Dap that is not dependent on knowing C, 

which for our system is unknown and changes over time as PYO diffuses out of the biofilm. 

𝐷!" =
(𝑚𝐴𝜑)%

𝑆%𝜋𝑡"
					(𝑒𝑞. 5) 

Note that because the slope of these plots is linear, it suggests that Dap is constant for a biofilm 

despite how the concentration of PYO changes as it diffuses. We assume a constant Dap by 

fitting the data with a linear model.  
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Dloss measurement theory 

In order to measure the physical diffusion coefficient of PYO molecules lost from the IDA-

grown biofilms, we monitored the loss of biofilm PYO over time as it equilibrated with the 

fresh medium similar to an approach taken with polymer films (White et al., 1982a). To 

quantify this process, we used successive SWV scans acquired over 45min following transfer 

to fresh medium (the SWV subset of the Dap data). A 1-dimensional diffusion model was 

then applied to fit the decay of Iswv yielding an estimate of Dloss. 

Considering 1-dimensional diffusion of an initial mass (M0) of a substance from a point 

source, the solution of Fick’s second law describing the time-dependent concentration 

gradient is given by eq. 6 where x is distance normal from the source, A is the cross-sectional 

area in 3D space, and Dloss is the physical diffusion coefficient.   

𝐶(𝑥, 𝑡) = 	
𝑀+

𝐴$4𝜋𝐷,-&&𝑡
𝑒.

/!
01"#$$2				(𝑒𝑞. 6) 

When the source is located at no-flux boundary such that the mass diffuses only to one side,  

𝐶(𝑥 = 0, 𝑡) = 	
2𝑀+

𝐴$4𝜋𝐷,-&&𝑡
				(𝑒𝑞. 7) 

where C(x = 0, t) is the time dependent concentration at the surface of the no-flux boundary 

(e.g. the IDA surface). 

To connect this model to the data, the concentration and initial mass can be defined in terms 

of the measured SWV current (Iswv). For SWV, the concentration, C, is given by: 

𝐶(𝑡) = 	
𝐼&'((𝑡)$𝜋𝑡"
𝑛𝐹𝐴$𝐷!"𝜑

					(𝑒𝑞. 8) 

Concentration can be defined as the mass per volume, so the initial mass, M0, can be 

expressed in terms of the effective volume probed by the electrode (V):  
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𝑀+ =	
𝑉𝐼+$𝜋𝑡"
𝑛𝐹𝐴$𝐷!"𝜑

					(𝑒𝑞. 9) 

The initial current is defined as Iswv (t = 0) = I0, which is experimentally estimated from the 

last Iswv in the PYO soak, before transfer to PYO-free medium. This is a conservative 

overestimate because some of the soak signal comes from the solution PYO. Substituting the 

values for C (eq. 8) and M0 (eq. 9) into equation 7 yields: 

𝐼&'((𝑡) = 	
2𝐼+𝑉

𝐴$4𝜋𝐷,-&&𝑡
				(𝑒𝑞. 10) 

The term V refers to the biofilm volume from which the mass of PYO was detected by the 

electrode. For a 1D electrode process, the concentration gradient extends from the electrode-

solution interface (C = 0) to the edge of the diffusion layer, 𝛿 (C = Cbulk) in a near linear 

fashion (Bard et al., 1980). There is no region where all of the mass is detected, but the 

electrode has detected one half of the mass in the volume 𝐴	 × 	𝛿, therefore the effective V 

can be defined: 

𝑉 = 	
𝐴𝛿
2 					(𝑒𝑞. 11) 

The diffusion layer, 𝛿, for a single potential step can be estimated by: 

𝛿 = 	2$𝐷!"𝑡&					(𝑒𝑞. 12) 

where ts is the amount of time that the driving potential is held. SWV is a series of forward 

and reverse potential steps for which we could not unequivocally define an equivalent ts 

value, however, we discuss reasonable bounds in the assumptions section below. Substituting 

into equation 11 yields 𝑉 = 𝐴$𝐷!"𝑡&, therefore equation 10 can be written as: 

𝐼&'((𝑡) = 	
𝐼+$𝐷!"𝑡&
$𝜋𝐷,-&&𝑡

					(𝑒𝑞. 13) 

and with that expression, we can fit the decay of Iswv(t) to a model of the form: 
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𝑦 =
𝑏
√𝑡
+ 𝑎					(𝑒𝑞. 14) 

where the coefficient, b, is described in known variables except for Dloss and where a 

accounts for any constant background signal. 

𝑏 = 	
𝐼+	$𝐷!"𝑡&
$𝜋𝐷,-&&

					(𝑒𝑞. 15) 

Therefore, Dloss can be calculated from the fit data as (Fig. 5F, S7): 

𝐷,-&& =	
𝐼+%𝐷!"𝑡&
𝜋𝑏% 					(𝑒𝑞. 16) 

Model assumptions 

The Dloss analysis described above is based on a number of assumptions. It assumes, for 

example, that the biofilms are homogeneous. In reality, they are heterogeneous, containing 

many voids and obstacles (e.g., cells and exopolysaccharides) through which diffusion would 

not occur. We contend that heterogeneity would affect Dloss and Dap in a similar manner, as 

it reduces the biofilm volume in which PYO resides. As such, we don’t expect biofilm 

heterogeneity to greatly affect the determination of Dloss from Dap. Importantly, our analysis 

assumes a single infinitely thick phase described by a single Dloss. In reality, there are at least 

two phases, a thin biofilm adjoining an infinitely thick solution. If Dloss in solution is greater 

than in the biofilm, then at any instance the concentration gradient of PYO across the biofilm 

will be steeper than predicted by the model. Since the flux of PYO out of the biofilm at any 

instance is proportional to the product of the gradient and Dloss, as the model fits the rate of 

change of PYO in the biofilm, the assumption of a shallower gradient than the actual gradient 

is expected to result in a calculated Dloss that is higher than the actual Dloss.    

To estimate the scan time parameter, ts, we assumed that for the blank IDA Dap = Dloss and 

solved for ts that best fit the Iswv decay for the blank IDA. We then used this value, ts = 21 

ms, to calculate Dloss for the biofilm IDAs. The scan time parameter is intended to estimate 

the thickness of the diffusion layer that is formed during a single potential step that drives 
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the flux of the electrode reactant resulting in the observed current. SWV is, however, a 

series of forward and reverse potential steps superimposed on a series of forward potential 

steps. Therefore, determining the effective scan time that describes the change in thickness 

of the diffusion layer that occurs during the forward pulse contributing to Iswv is nontrivial 

(we only consider the forward pulse as the reverse scan partially replenishes the electrode 

reactant that is depleted during the forward scan). One approach to estimate ts is setting the 

SWV expression equal to twice the Cottrell equation (eqs. 17 & 18), since Iswv is the net 

current from the forward and reverse pulses. For a pulse amplitude of 0.025 V and step 

increment of 0.001 V as used here, each potential step is effectively 0.05 V. The potential at 

which the Iswv occurs is the formal potential of the electrode reactant and applying the Nernst 

equation, the fraction of electrode reactant in the oxidized state at the electrode surface at the 

start of the forward potential step generating Iswv (E = Eo'+ 0.025 V) is 82.6% and at the end 

(E = Eo -0.025 V) is 17.4%.  The Cottrell equation assumes that the potential step drives a 

redox reaction in which 100% of the electrode accessible redox molecules at the electrode 

go from oxidized to reduced (or vice versa). Replacing C in the Cottrell equation with 0.655 

x C to reflect the fraction of PYO at the electrode surface that changes oxidation state during 

the forward potential step of the SWV yields an estimate ts » 6 ms.  

𝐼&'( =	
𝑛𝐹𝐴𝐶$𝐷!"
$𝜋𝑡"

𝜑 = 2𝐼"& =
𝑛𝐹𝐴	0.655 × 𝐶$𝐷!"

$𝜋𝑡&
						(𝑒𝑞. 17) 

𝑡& =	
𝑡"	(2 × 0.655)%

𝜑% 				(𝑒𝑞. 18) 

As such, our ts estimate (21 ms) based on the blank Dap = Dloss used to estimate Dloss for the 

biofilm may be an overestimate. Noting that Dloss scales linearly with ts (eq. 16), this would 

conservatively underestimate the difference between biofilm Dap and Dloss. 

Parameters for electrochemical calculations 

The surface area of the electrode for SWV, A = 0.025 cm2, and the geometric factor for GC, 

S = 18.4 cm, were calculated for a blank IDA using the known concentration and Dap for 

ferrocene methanol (Boyd et al., 2015). All quantified SWVs were acquired with a pulse 
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amplitude of 25 mV at a frequency of 300 Hz and an increment of 1 mV. The SWV pulse 

time, tp, is one half the square wave period (½ * 1/300 = 1/600 sec). Peak separation from 

CV of PYO in solution indicated that it did not undergo the full 2 electron reduction, but on 

average underwent electron transfer with n » 1.8. From these acquisition parameters, j = 0.7 

was inferred from a table of existing values (Lovrić, 2010). For the Dloss estimate, it was 

assumed that I0 was the soak SWV peak current. The equivalent scan time, ts, for the Dloss 

calculation is discussed above. 
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Supplemental Figures 

 

 
Figure S1. Colony biofilm images and controls.  

(A) Representative images of colony biofilms formed by WT-DKN, WT-MRP, DpelB, and 
Dphz and Dphz* grown with each phenazine. (B) SEM image of cells at the top and bottom 
(attached to the 0.2 µm membrane) of the colony biofilm. (C)  LC-MS quantification of 
phenazines from colony biofilms grown without an underlying membrane. (D) Comparison 
of phenazines from WT colonies that were lysed with sonication or not. Statistical test was a 
Welch’s single tailed t-test and the star denotes p<0.05. (E) Accumulated phenazine from 
three Dphz* colony biofilms following three days of growth with synthetic phenazine (Day 
3), and one day later after transfer to fresh agar (Day 4). PCA was not detected on Day 4. 
Same data are shown in Fig. 1 H. 
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Figure S2. Phenazine – DNA binding assays.  

(A-B) Dotted lines show best fit Hill equations with shaded regions showing curves from the 
95% confidence intervals for IC50 or KD. (A) Ethidium bromide displacement from 1 µM 
30 bp ds DNA by oxidized phenazines, as measured by change in ethidium fluorescence 
before and after incubation with DNA. Assays were done with 5 µM ethidium, which has a 
KD of 1 µM under these conditions. Ki for phenazines was calculated from the relationship 
Ki = IC50/(1 + [EtBr]/KD). (B) Microscale thermophoresis binding assay of three oxidized 
phenazine derivatives with 50 nM 80 bp cy3 tagged ds DNA. *PYO elicited a strong 
thermophoresis response that did not saturate, therefore the calculated KD is likely not 
relevant. (C) Endogenous fluorescence of reduced phenazines at increasing DNA 
concentrations. Black lines show experimental conditions and gray lines show buffer-only 
control wells. PCNred did not show fluorescence above background, but the values were 
reported to show that adding DNA did not facilitate fluorescence emission. 
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Figure S3. eDNA in colony biofilms.  

(A) Images show representative WT colony biofilms on Day 3 (pre-treatment) and Day 4 
(post treatment) with DNase and buffer or only buffer (NEB Buffer 4). (B) DNase treatment 
of colonies without buffer corresponding to phenazine measurements shown in Fig. 2B. (C) 
Quantification of eDNA (i.e. cell death) in colony biofilm extracts from A measured by 
TOTO-1 fluorescence in a plate reader. (D) A high magnification confocal image showing 
different eDNA structures at the surface of a colony biofilm (white arrows). (E) TOTO-1 
measurements of WT and ∆phz* colony biofilm suspensions. Blue dots show technical 
replicates where 160 ng of calf thymus DNA were added to assess the sensitivity of the assay. 
Dotted lines and gray dots show background fluorescence values of technical replicates 
acquired without the dye. 
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Figure S4. DNA modified electrode details.  

(A) Inter-phenazine electron transfer reactions in solution, including PYO as the reductant 
for PCAox and PCNox. Dashed line shows the background signal from PBS alone or with 
PCN or PCA. (B) Top – layout of the multiplex chip electrodes used for the measurements. 
Bottom – the oligomer sequences used to assemble the PCN and thiol-modified ds DNA 
monolayers. (C) Mismatch (MM) discrimination for the high density and low density DNA 
monolayers from four multiplex chips of the layout shown in B. MM discrimination was 
calculated by comparing peak integrations from WM and MM electrodes using the formula 
1 – (avg. MM/avg. WM) ´ 100%. Error bars are standard error propagated from the four 
WM and four MM electrodes. (D) Scan rate dependence of both the well-matched and 
mismatched surfaces showed linear dependence with increasing scan rate, consistent with a 
bound redox species. (E) Cyclic voltammetry of hexaammineruthenium(III) chloride 
(RuHex), which does not participate in DNA CT. Signal is proportional to DNA surface 
concentration. (F) MM discrimination for different RuHex concentrations calculated in the 
same way as C. (G) The detailed photochemical cycle referred to in Fig. 3G. (H) The bi-
exponential fit coefficients from Fig. 3I. Error bars show two standard deviations. 
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Figure S5. IDA biofilm characterization.  

(A) Confocal microscopy tilescan images of the two IDA Dphz* biofilms used for Dap and 
Dloss analysis. Brackets show the bounds of the IDA working electrode array. Images were 



 

 

101 
acquired at 10x magnification as a tilescan zstack. The stitched maximum intensity 
projections are shown. (B) Images show individual cells and fine eDNA structures (arrows) 
at high magnification (63x with digital zoom and airyscan processing). Images are from a 
single slice of a zstack. (C) LC-MS quantification of WT culture supernatant from an IDA 
reactor on three consecutive days before medium exchange. (D) Generator collector 
measurements of ∆phz* biofilms soaked with PYO. Measurements were acquired during the 
soak and immediately following transfer to a reactor with fresh medium. (E) Same 
measurements as D, except the ∆phz* biofilm was soaked in PCA. The inset figure shows as 
the collector current with more detail. 
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Figure S6. IDA Dap measurements.  

(A) Comparison of WT and ∆phz* + PYO IDA measurements used to determine Dap. (B) 
Comparison of WT and ∆phz* retention of PYO signal over time. (C) Linear fits for Dap 
analysis for two Dphz* IDA biofilms. Dashed lines show best fit linear models for each subset 
of data. Shaded regions show 95% confidence intervals from the linear models. (D) GC peak 
current vs. PYO concentration. The slope, m, is used to define Dap as shown in the expression. 
The dashed line is a linear fit through the data points and the gray region is a 95% confidence 
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interval. (E) SWV peak current vs. PYO concentration in the same format as D. (F) GC 
peak current vs. SWV peak current in the same format as D. (G) Estimates of Dap from the 
three methods shown in D-F with 95% confidence intervals. See supplemental text for the 
parameter values used. (H) Dap estimates from abiotic IDA experiments with or without the 
polymer, Nafion, and RuHex or Fc-OH redox molecules.  
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Figure S7. IDA Dloss measurements.  

(A) Nonlinear fits for Dloss analysis of the blank IDA with different concentrations of PYO. 
Dashed lines are best fit models. Shaded regions show curves generated from the 95% 
confidence intervals for the parameter estimates. (B) Nonlinear fits for Dloss analysis of two 
∆phz* biofilms (three technical replicates each). Dashed lines are best fit models. Lines and 
shaded regions same as above.  
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Strain name Genotype Description 

WT_DKN  Pa PA14 WT from Newman Lab. 

Dphz DphzA1-G1 DphzA2-

G2 

Mutant incapable of synthesizing PCA. 

Derivative of WT_DKN. 

Dphz* DphzA1-G1 DphzA2-

G2 DphzMS DphzH 

Mutant incapable of synthesizing PCA or 

modifying exogenous PCA. Derivative of 

WT_DKN, from Dietrich lab. 

WT_MRP  Pa PA14 WT from Parsek Lab. 

Dpel DpelB Mutant incapable of synthesizing Pel 

polysaccharide. Derivative of WT_MRP. 

Strains are all derivatives of Pseudomonas aeruginosa UCBPP-PA14 (Schroth et al., 2018). 

Table S1. Strains used in this study. 
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Assay Description Sequence (5’ – 3’) 

ITC 29bp duplex Top GTGGCAGGTCAGTCAAGTATACTGCACTA 
 

 Bottom TAGTGCAGTATACTTGACTGACCTGCCAC 
 

MST PCR 80bp 

fragment 

Forward primer Cy3/AGAGCAGTTGGTCAAGGC 
 

 Reverse primer GAAAATAACGCTTGACGGAA 
 

DNA mod electrode 

duplex  

Top - PCN (NH2)-C6/GCTCAGTACGACGTCGA 

 Bottom WM (SH)-C6/TCGACGTCGTACTGAGC 

 Bottom MM (SH)-C6/TCGACCTCGTACTGAGC 

Table S2. DNA sequences used in this study.
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CONCLUSIONS 

In this thesis, I have tried to understand the concepts of electron shuttling broadly, and also 

examine the specifics of P. aeruginosa and phenazines in great detail. Chapter 1 discussed 

the vast diversity of bacterial redox molecules and the phylogenetic diversity of a particular 

redox-sensing transcription factor. This review suggested that despite the biosynthetic costs, 

electron shuttles would likely pay off for producer cells if they provide access to a limiting 

electron acceptor. A simple model also demonstrated that flux of small molecule electron 

shuttles, driven purely by their physical diffusion, would be sufficient to support survival of 

cells. Chapter 2 examined the well-studied P. aeruginosa and phenazine system where the 

broad questions addressed in Chapter 1 have (mostly) already been tested experimentally. 

This paper sought to push this understanding further by examining how the multi-phenazine 

electron shuttle system operates extracellularly in a complicated biofilm system. It 

established that certain phenazines are retained in the biofilm matrix via a binding interaction 

with extracellular DNA. This result along with a better understanding of phenazine based 

electron transfer in vivo and in vitro led to the proposal of a more detailed model of phenazine 

electron shuttling. Below, I will focus on a few in vitro and in vivo questions surrounding 

phenazine EET that may be interesting future directions.  

How do phenazines function independently and/or together to achieve electron transfer from 

donor to acceptor? Much of my work has focused on experiments with simplified systems 

that contain only one phenazine at a time. Moving forward, I think it will be important to 

explicitly look at multi-phenazine systems. In Chapter 2, I proposed one multi-phenazine 

model of EET, and I believe an important step in testing this model will require some type 

of well-designed in vitro system coupled to theory and modeling. As mentioned at the end 

of the manuscript, ideally this in vitro system would be a “physicochemically well-defined 

matrix.” Perhaps this system could be composed of agarose blocks, a series of electrodes, or 

a microfluidic chamber? No matter the details, it would be useful to spatially separate an 

electron donor and acceptor with phenazines in the intervening space. It would be valuable 
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to measure the overall electron transfer flux from the donor to the acceptor, and direct 

optical detection (absorbance, fluorescence, or Raman) of different phenazines over time 

would truly allow for the dissection of a complex multi-phenazine system. Such a system 

would be able to test interesting questions raised by the proposed model. What combination 

of phenazines maximizes electron transfer to O2? How mobile is PYO in a matrix containing 

DNA? Does inter-phenazine electron transfer promote significant back diffusion towards the 

anoxic region? Maybe this perfect in vitro system will never exist, but aspects of this setup 

are already achievable. Importantly, these types of experiments could bridge the gap between 

extremely simple in vitro experiments and very complicated biofilm observations. 

Where are phenazines produced and used in a biofilm? There are pieces of data that start to 

answer this question but building an understanding of what phenazines do where in different 

biofilms remains a challenging and worthy goal. Direct fluorescence measurements of 

phenazines in biofilms have long been a goal of the Newman lab. These measurements are 

complicated by high background signals from NADH and siderophores, closely overlapping 

spectra, and somewhat weak fluorescence. Besides some technical issues, it should be noted 

that only reduced phenazines are fluorescent, and PCN is not fluorescent at all. We should 

remain optimistic that technical issues can be overcome, and beyond fluorescence there are 

also new imaging modalities that may soon enable phenazine detection (e.g. Raman 

spectroscopy, Mass spectrometry). Direct fluorescence imaging of the different phenazines 

in different oxidation states would not only show where phenazines are, but it would open 

up a variety of modern microscopy techniques that could shed light on the proposed model 

from Chapter 2. For example, FRAP or FCS could be used to quantify diffusion or eDNA 

binding in vivo. Further, fluorescent dyes (e.g. voltage sensors) and fluorescent protein 

sensors (e.g. intracellular NADH) may allow microscopy to answer sophisticated 

physiologically questions surrounding phenazines. Without direct detection of phenazines 

progress could likely be made by simply using transcriptional reporters with fluorescent 

proteins under the control of the individual phenazine promoters (e.g. for genes phz1, phz2, 

phzH, phzS). Ultimately, the potential of biofilm microscopy for the study of simple and 

complex phenazine related questions is promising. 
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How are phenazines regulated and utilized by cells in biofilms? The study of phenazine 

EET would be greatly enhanced by a better understanding of the mechanisms cells use to 

regulate and cycle phenazines. Many conditions and perturbations are known to affect 

various aspects of phenazine production, but it is not known comprehensively what genes 

control the expression of which phenazine biosynthetic pathways. One approach to address 

this area would be to perform a genetic screen where mutant fitness (or quantification) in 

liquid medium is tied to the ability to express a reporter (e.g. antibiotic resistance or GFP) 

under the control of a phenazine promoter. Such a screen should demonstrate the effect of 

each mutated gene on expression from the assayed phenazine promoter. Knowledge of this 

regulation could generate new hypotheses about the functions or relevant conditions for 

certain phenazines and provide useful handles to dissect phenazine pathways in biofilms 

genetically or microscopically (see above). The appendix of this thesis discusses a first 

attempt to genetically screen for PCA cycling mechanisms in a liquid culture system. Future 

attempts to screen for phenazine interactions could consider other phenazines (PYO, PCN) 

or genetic interactions by comparing mutant libraries in WT and ∆phz1/2 (or ∆phzMSH for 

individual phenazines) backgrounds. Perhaps it may even be possible for these screens to be 

performed in colony biofilms either as cells growing together or separate colonies growing 

individually and later pooled. Such phenazine genetic interactors could include directly 

interacting cellular machinery, as well as complex indirect interactions from connected 

cellular pathways. The study of cellular phenazine machinery will require targeted genetic 

and biochemical studies, but well-designed screens may yield new targets for these studies. 

Despite the remaining unknowns, phenazines are a relatively convenient model system for 

the study of electron shuttles. However, to understand electron shuttles more broadly will 

require careful characterization of new redox metabolites with their associated producers. 

Perhaps the most valuable and most uncertain future direction is to take on this challenge. 

Maybe electron shuttles are only used by the few organisms we already know about. Maybe 

they are the tip of the iceberg. Good luck! 

-Scott Saunders 
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A p p e n d i x  

IDENTIFYING MECHANISMS OF PHENAZINE CYCLING WITH TN-
SEQ 

A version of this work first appeared as a written candidacy proposal from May, 2016. 

Background 

Pseudomonas aeruginosa is an effective chronic pathogen that forms recalcitrant biofilms. 

This gram-negative bacterium infects ~51,000 (CDC report 2013) hospital patients every 

year (nosocomial infections), and it is particularly infamous for residing in the lungs of cystic 

fibrosis patients where it can cause lung function decline and ultimately death. This organism 

is difficult to treat because it forms heterogeneous biofilms that resist desiccation, antibiotic 

treatment, and nutrient limitation. Biofilms are groups of cells attached to a surface, 

encapsulated in matrix composed of extracellular polymeric substances (EPS) such as 

extracellular DNA (eDNA), polysaccharides, lipids, and proteins (Flemming 2010). This 

biofilm lifestyle confers many advantages, but cells must also cope with the metabolic 

challenges of living in dense, sessile communities. Even in human lungs, evidence suggests 

that P. aeruginosa biofilms actually use anaerobic metabolisms to survive (Cowley 2015). 

Despite an atmosphere of 21% O2, a steep oxygen gradient forms as cells at the periphery of 

the biofilm respire faster than the gas can diffuse to the center of the community, leaving 

oxygen levels below ~8 µM required for aerobic respiration (Wimpenny 1979, Glasser 2014, 

Kempes 2014). Consequently, cells use alternative metabolisms, such as nitrate respiration, 

pyruvate fermentation, and a poorly understood strategy called electron shuttling to survive.  

Phenazines are redox-active metabolites produced by P. aeruginosa that serve as electron 

shuttles, enabling survival during electron acceptor limitation. Pyocyanin, phenazine-1-

carboxylate (PCA), phenazine-1-carboxamide (PCN), and 1-hydroxyphenazine (1-OHPHZ) 

are the four phenazines produced by P. aeruginosa, and their distribution is tightly regulated 

by environmental conditions. These molecules are heterocyclic aromatic rings with two 

nitrogens in the center ring that undergo redox reactions accepting up to two electrons and 
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two protons. They have variable midpoint potentials and reactivities dependent on their 

side groups, for example, pyocyanin has a midpoint potential -40mV (vs. NHE at pH 7) and 

reacts fastest with O2 (Wang 2008). This redox activity is central to phenazines’ role as 

electron shuttles that transfer metabolic electrons to external electron acceptors. The 

conceptual model of electron shuttling involves four cyclical steps (see Figure 1A-B): 1) 

Oxidized shuttle (phenazine) is reduced intracellularly, which is coupled to substrate 

oxidation and energy generation, 2) Reduced shuttles are expelled from the cell into the 

biofilm matrix, 3) A reduced shuttle reacts with an electron acceptor (e.g. oxygen) 

abiotically, 4) The cell uptakes an oxidized shuttle, which can now accept more metabolic 

electrons.  

This electron shuttling model has been supported by two key experiments with P. aeruginosa 

and its phenazine metabolites. The first experiment uses the colony biofilm as a model 

system, where cells are grown as colonies on agar plates containing a red dye. Wildtype 

(WT) and a mutant in phenazine biosynthesis (∆phz) exhibit dramatically different colony 

morphologies in this assay, where WT is relatively thick and smooth, while ∆phz is thin and 

wrinkles drastically (Dietrich 2013). It was shown that WT biofilms have a steep oxygen 

gradient, but ∆phz biofilms are thin enough to allow oxygen to diffuse relatively uniformly. 

An analogous experiment called the Phenazine Cycling Survival Assay (PCSA), 

approximated the conditions of a biofilm, but used liquid media and allowed for control and 

measurement of several key parameters. The PCSA forces all cells to use an electron 

shuttling metabolism, since the only electron acceptor is exogenous phenazine and an 

electrode reoxidizes phenazine (Glasser 2014, Wang 2010). In this highly controlled system, 

cells can survive for 2-3 days independent of phenazine cycling, and then exhibit phenazine-

dependent survival for several weeks (see Figure 1C). These results show that phenazine 

electron shuttling plays important roles in biofilm development and anaerobic survival. 

This study seeks to leverage the significant advantages of working with the model organism 

Pseudomonas aeruginosa, but also to elucidate a broader electron shuttling paradigm that 

may apply to the shocking variety of microorganisms that exist. Over 36,000 microbial 
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isolates have sequenced genomes available on the Integrated Microbial Genomes 

database, and these genomes are predicted to contain more than 600,000 biosynthetic clusters 

encoding capabilities to synthesize ‘secondary metabolites’ (Hadjithomas 2016). For many 

years, people believed that phenazines were merely ‘secondary metabolites’ of lesser 

importance than other metabolites used by the cell for energy generation. It is clear that these 

molecules are essential for bacteria in the environment, and it is very likely that diverse 

secondary metabolites in other organisms play critical physiological roles for their producers. 

Perhaps even some of them are electron shuttles too. 

Approach 

To efficiently shuttle electrons, phenazines must be reduced and transported across the cell 

membrane, but the molecular mechanisms underpinning these activities are almost entirely 

unknown.  A major challenge to identifying such genes has been the inability to perform a 

genetic screen specific for phenazine cycling. This was because of the technical complexity 

of the PCSA, and the fact that phenazine cycling only supports survival, not growth. During 

my first year in the Newman Lab, I planned and executed a method to genetically screen for 

genes involved in phenazine cycling. 

Because survival requires efficient phenazine cycling in the PCSA, knocking out genes 

important for the process should cause cells to die, even when phenazine and electrode are 

both present. Several mutants have been characterized individually in this manner, and 

Glasser et al. showed that certain metabolic genes are required to couple phenazine cycling 

to energy generation (Glasser 2014). I performed a high throughput genetic screen using the 

PCSA and a method known as Tn-seq (Opijnen 2014). This method makes use of a highly 

saturated transposon library and Illumina sequencing libraries to simultaneously track 

transposon mutants’ relative abundance under a condition of interest in a single vessel. This 

method is described in detail in the paper and thesis by David Basta (Basta 2017 & 2019) 

and the same wildtype transposon library was used. I compared samples from the phenazine-

dependent survival phase to the control condition (phenazine-independent survival), see 

Figure 1C. Illumina libraries from transposon–genome junctions were sequenced, and reads 
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were processed bioinformatically, yielding a relative abundance of individual transposon 

mutants falling in each gene. Adjusted p-values were calculated using DeSeq. 

 

Results 

The Tn-seq screen recapitulated previously known phenotypes and successfully quantified 

relative abundance of nearly all non-essential P. aeruginosa genes. With clean deletions, 

Glasser et al. showed that ackA and pta play essential roles in energy generation coupled to 

phenazine cycling (Glasser 2014). In my preliminary Tn-seq screen, the corresponding Tn-

seq mutants had strong disadvantages as expected (Fig. 2).  Over 5200 genes had transposon 

Figure 1. Phenazine cycling and survival. (A) (Top left). Electron shuttling in an oxygen-
limited biofilm. (B) (Right). Electron shuttling conceptual model at the molecular level. 
Orange figures represent putative transporters. (C) (Bottom left). PCSA results showing 
phases of survival from single chambers. Error bars are standard error of CFU counts. 
Arrows indicate times when Tn-seq samples were taken.  
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mutants in the population with more than 100 reads at Day 0. Of those, mutants in 68 

genes showed decreases in relative abundance by more than two-fold and mutants in 51 

genes showed increases greater than two-fold (comparing day 2 to day 7). These data suggest 

that the screen was effective and specific, and it is exciting to think that the dataset may 

contain many of the phenazine cycling mechanisms outlined in Figure 1. 

 

Figure 2. Tn-seq read counts for every gene. Blue lines show positive control genes ackA 
and pta. 

The tables below show some of the strongest effects observed in the screen. Table 1 reports 

transposon mutants that had at least 4-fold disadvantages from day 2 to day 7 with high 

enough read counts to yield low adjusted p-values. There are many other genes that had at 

least 2-fold advantages. Please refer to the supplemental data files to fully explore the data. 

Table 2 reports transposon mutants that had at least a 2-fold statistically significant 

advantage. As suggested by Figure 2 and Table 2, more mutants had disadvantages than 

advantages, although most mutants have no effect (neutral). For each entry in the table, there 

is a PA14 locus number that can be searched in various databases by appending the number 

(e.g. ‘PA14_00000’). Next, there is a product name which may be useful for well 
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characterized genes. For poorly characterized genes, these descriptions are less useful, 

but with some basic searches more specific information can often be found. There are also 

raw read counts for the four different time point libraries. Total read counts were similar 

between libraries, so no normalization was performed. 

There are countless interesting hits in this screen that are worth exploring, but we can try to 

make sense of the effects broadly as a starting point. Besides the known phenazine-dependent 

survival metabolism genes, ackA and pta, there are many genes that are likely connected to 

central metabolism. The PCSA is well documented in Suzanne Kern’s thesis (Kern 2013) 

and it requires cells to metabolize glucose. This condition might explain the effect of mutants 

in glucokinase (PA14_22930), transaldolase B (PA14_27960), phosphoenolpyruvate 

synthase (PA14_41670), glyceraldehyde-3-phosphate (PA14_25250), aldolase 

(PA14_23090), ribose-5-phosphate isomerase (PA14_04310), and others with weaker 

disadvantages. Simple realities of the medium condition may explain other genes in these 

lists, for example. The putative ABC transporter (PA14_69060-69090) also showed up in 

David Basta’s pyruvate survival Tn-seq (Basta 2017 & 2019) and may transport a carbon 

compound or do something entirely different. Argininosuccinate lyase (PA14_69500) may 

be important for synthesizing arginine (which can also be used for survival), but it may be 

an ammonia detoxification mechanism, since the PCSA is done at high ammonium 

concentrations. Similarly, the sulfate transporter (PA14_43200) and phosphate uptake 

regulator phoU (PA14_70800) may affect cell’s ability to utilize sulfur and phosphorus 

sources effectively. 

There are well-known broad effectors that could control many relevant genes – fleN 

(PA14_45640), anr (PA14_44490), lasR (PA14_45960), ftsH (PA14_62860), lon protease 

(PA14_41220), pseudomonas quinolone signal pqsA-E, and others. However, more 

specifically there are two repressors of efflux pumps nfxB (PA14_60860), mexR 

(PA14_05520) and a transporter associated oxidoreductase, mexS (PA14_32420). 

Phenazines are likely pumped by many redundant RND efflux pumps (mex prefixes), so it 

seems possible that mutation of these repressors either overexpresses the pumps that do not 
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actually affect phenazines or overexpresses the cognate pumps at such high levels that 

the phenazines cannot be effectively reduced for metabolism. It is also possible that there is 

simply a high burden of expressing these efflux systems. Lastly, there are poorly 

characterized transcriptional regulators that may be interesting if they are specific to this 

condition. 

Perhaps the most exciting hits in the screen are the hypotheticals. There are many, but one 

set is particularly compelling: PA14_17550, 17570, 17580. These mutants are all in table 1 

below and therefore have very strong, statistically significant disadvantages. Their 

annotations are relatively vague, but PA14_17550 does have ortholog group members that 

are annotated as ubiquinol oxidase subunits. PA14_17570 has a beta lactamase domain 

among others. PA14_17580 may bind thiamine and be involved in carbohydrate metabolism. 

There is no obvious connection, but maybe one day their strong effects will be clear. 

In pursuing specific hits from this screen to look for phenazine-related genes, I would suggest 

a few general strategies. First, look for strong effects with >100 reads. One simple way to do 

this is to color-code the effect size and the adjusted p-value. Furthermore, promising hits’ 

read counts should follow the phenazine dependence of survival, where counts remain 

similar from day 0 to 2, and then decline successively on days 5 and 7. Second, look for 

multiple genes in an operon. This is simple by sorting the supplemental spreadsheet by locus 

number. Certainly, there are real effects on just one gene of an operon, but higher confidence 

can be placed on entire operons that have significant effects for every gene. Third and most 

important, compare this Tn-seq dataset to David Basta’s Tn-seq datasets. (Basta 2017). In 

particular, his pyruvate survival is quite similar to the PCSA. Therefore, genes that are 

specific to this dataset are more likely to be specific to phenazines. Related to this suggestion, 

this Tn-seq dataset can also be compared to other genome-wide datasets acquired in the 

Newman Lab: colony biofilm morphology screen, phenazine reduction screen (Price-

Whelan 2009), RNAseq. 
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Locus Product_Name time_0 time_2 time_5 time_7 
log2 
fold 

change 
p-value 

17570 hypothetical_protein_beta_lactamase 589 421 149 34 -3.66 1.20E-16 

05520 multidrug_resistance_operon_repressor_MexR 7822 6114 1616 508 -3.62 3.29E-50 

45640 flagellar_synthesis_regulator_FleN 186 77 23 8 -3.30 1.02E-03 

44490 transcriptional_regulator_Anr 257 288 109 30 -3.29 1.40E-09 

17550 hypothetical_protein_cytochrome D ubiquinol oxidase subunit 
II 582 519 140 55 -3.27 1.89E-15 

00210 lysin_domain-containing_protein 2086 1753 514 189 -3.24 3.16E-30 

53470 acetate_kinase 1575 902 314 99 -3.22 1.22E-23 

07730 dimethyladenosine_transferase 3639 3992 1040 477 -3.09 6.69E-35 

53480 phosphate_acetyltransferase 3848 3817 1144 479 -3.02 1.08E-33 

25050 hypothetical_protein 144 176 35 23 -2.96 8.01E-05 

27960 transaldolase_B 768 867 291 124 -2.83 1.20E-16 

69060 ABC_transporter_permease 883 151 34 22 -2.81 6.12E-08 

62860 cell_division_protein_FtsH 3718 2275 966 354 -2.71 8.74E-26 

65750 outer_membrane_efflux_protein 1325 952 232 151 -2.69 3.45E-17 

16790 TetR_family_transcriptional_regulator 424 578 179 93 -2.66 4.01E-11 

69090 hypothetical_protein 1992 344 256 57 -2.62 2.48E-13 

17580 hypothetical_protein 2250 1341 497 235 -2.54 3.00E-19 

22930 glucokinase 1379 938 391 169 -2.50 1.17E-15 

41670 phosphoenolpyruvate_synthase 486 388 185 72 -2.46 1.56E-08 

18080 TetR_family_transcriptional_regulator 8825 7897 3385 1623 -2.31 6.14E-24 

60860 transcriptional_regulator_NfxB 1122 451 200 95 -2.28 6.48E-10 

45960 transcriptional_regulator_LasR 1371 1317 772 278 -2.27 4.77E-15 

69500 argininosuccinate_lyase 1711 1194 422 268 -2.18 1.00E-13 

32420 oxidoreductase mexS 78803 78471 34437 18479 -2.12 1.39E-22 

04310 ribose-5-phosphate_isomerase_A 240 241 118 57 -2.11 3.57E-04 

43200 sulfate_transporter 423 273 117 67 -2.06 5.54E-05 

25250 glyceraldehyde-3-phosphate_dehydrogenase 164 158 98 40 -2.01 1.13E-02 

Table 1. Transposon mutants with disadvantages. Entries contain PA14 locus numbers, 
putative product names, read counts from each timepoint, log2 transformed fold changes 
from days 2 to 7, and adjusted p-values for multiple testing.  
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Locus Product_Name time_0 time_2 time_5 time_7 
log2 
fold 

change 
p-value 

23090 keto-hydroxyglutarate-aldolase/keto-deoxy-
_phosphogluconate_aldolase 259 398 782 1225 1.59 1.37E-06 

15830 GntR_family_transcriptional_regulator 587 814 1537 2432 1.55 2.01E-08 

47540 outer_membrane_protein 428 926 1630 2520 1.42 4.61E-07 

41680 hypothetical_protein 194 205 452 528 1.34 5.77E-03 

18230 DNA-binding_transcriptional_regulator_FruR 446 636 1061 1545 1.25 1.06E-04 

44470 coproporphyrinogen_III_oxidase 768 1047 1986 2517 1.24 1.47E-05 

70800 phosphate_uptake_regulatory_protein_PhoU 152 265 440 626 1.21 1.37E-02 

23060 DNA-binding_transcriptional_regulator_HexR 706 802 1221 1741 1.09 8.83E-04 

41220 Lon_protease 744 757 1390 1528 0.98 5.77E-03 

Table 2. Transposon mutants with advantages. Entries contain PA14 locus numbers, putative 
product names, read counts from each timepoint, log2 transformed fold changes from days 
2 to 7 and adjusted p-values for multiple testing. 

One interesting gene from the Tn-seq screen is hemN1, which codes for a 

coproporphyrinogen oxidase in heme biosynthesis (see Figure 3). Heme is of particular 

interest because it is known to play an essential role in extracellular electron transfer via 

multiheme cytochromes that transport electrons across membranes in Geobacter and 

Shewanella (Snider 2012). Transposon mutations in hemN1 conferred a strong fitness 

advantage, while most other mutants in the heme biosynthesis pathway had few reads or 

were disadvantageous, see hemC in Table 1. hemN1 is redundant, so it is expected that the 

mutation would increase flux to a heme precursor, coproporphyrin III without totally 

eliminating heme production (Rompf 1998). Coproporphyrin is known to bind 

bacterioferritin in rare cases, which scavenges iron (Ramao 2000). However, it is unclear 

how this change affects heme biosynthesis or other processes. 

As an example workflow, the hemN1 gene and the importance of heme more broadly can be 

characterized by many techniques already available in the Newman lab. 1)Transposon 

mutants from an existing library can be used to quickly confirm phenotypes. 2) Clean 

deletions can be made to avoid unintended transposon effects, such as polarity on 

downstream genes. 3) Whole cell phenazine reduction rate can be quantified. 4) Intracellular 

redox pools can be quantified by measuring the NAD+/NADH ratio. 5) Porphyrins and heme 
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can be quantified spectrophotometrically by HPLC and staining of cell lysate. These assays 

would indicate whether heme proteins are responsible for phenazine reduction activity and 

coupled to intracellular redox pools, and would determine whether a strategy to identify 

specific porphyrin-binding proteins is warranted. It is reasonable to look at the heme cofactor 

because past genetic and biochemical evidence from the Newman lab suggests that multiple 

proteins could play a role in phenazine reduction (Glasser 2017). 

Conclusion 

P. aeruginosa and other microorganisms evolved to live in biofilm communities where they 

can masterfully survive in an unpredictable world. By characterizing the cellular mechanisms 

and extracellular electrochemistry of phenazine cycling, paradigms of electron shuttling will 

be concretely developed. This mode of anaerobic metabolism could be an important 

mechanism by which this opportunistic pathogen survives, and knowledge from this project 

could directly inform clinical studies.  Lastly, the protein sequences of cycling mechanisms 

and chemical properties of phenazines will lay the foundation for the exploration of the 

diverse microbial world for this amazing metabolism.  

Data availability 

Supplemental files are included in this thesis containing tables with read counts. Raw 

sequencing data is available on the Newman Lab NAS. 

Figure 3. Heme biosynthetic pathway of P. aeruginosa with Tn-seq data color-coded. Grey 
boxes indicate that there was a neutral or undetermined effect of the transposons. 
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