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ABSTRACT

Measurements in biology have reached a level of precision that demands quantitative
modeling. This is particularly true in the field of gene regulation, where concepts
from physics such as thermodynamics have allowed for accurate models to be made.

Many issues remain. DNA sequencing is routine enough to sequence new genomes
in days and cheap enough to use deep sequencing to perform precision measure-
ments, but our ability to interpret the wealth of genomic data is lagging behind,
especially in the realm of gene regulation. The primary reason is that we lack any
information what so ever as to the basic regulatory details of ≈ 65 percent of operons
even in E. coli, the best understood organism in biology. As a result we cannot use
our hard won modeling efforts to understand any of these operons.

This work takes steps to address these issues. First we use 30 LacI mutants as a test
case to prove that we canmake quantitatively accuratemodels of gene expression and
sequence-dependent binding energies of transcription factors and RNA polymerase.

Next we note that much of the quantitative insight available on transcriptional
regulation relies on work on only a few model regulatory systems such as LacI as
was considered above. We develop an approach, through a combination ofmassively
parallel reporter assays, mass spectrometry, and information-theoretic modeling that
can be used to dissect bacterial promoters in a systematic and scalable way. We
demonstrate that we can uncover a qualitative list of transcription factor binding sites
as well as their associated quantitative details from both well-studied and previously
uncharacterized promoters in E. coli.

Finally we extend the above method to over 100 E. coli promoters using over 12
growth conditions. We show the method recapitulates known regulatory informa-
tion. Then, we examine regulatory architectures for more than 80 promoters which
previously had no known regulation. In many cases, we identify which transcrip-
tion factors mediate their regulation. The method introduced clears a path for fully
characterizing the regulatory genome of E. coli and advances towards the goal of
using this method on a wide variety of other organisms including other prokaryotes
and eukaryotes such as Drosophila melanogaster.
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C h a p t e r 1

INTRODUCTION

We live in the "genomic era" where DNA sequencing is routine enough to sequence
new genomes in days and deep sequencing is used to get precision measurements.
One of themyriad examples of thesemeasurements comes frommeasuring ribosome
occupancy (Ingolia et al., 2009), where measurements are taken of the probability
that a ribosome, the key piece of machinery for producing new proteins, is bound to
its target sequence. As the number of ribosomes bound will be directly proportional
to protein produced, this provides a useful measure of how much of that protein
exists in the cell. Another application of sequencing technology is in measuring
gene expression directly (Melnikov et al., 2012). Cheap sequencing has led to the
development of over one hundred sequencing-based methods (Pachter, 2013).

We also live in a growing era of quantitative biology. Measurements in biology are
growing increasingly precise. Massively parallel reporter assays (MPRAs) can use
hundreds of thousands of designed DNA constructs to make measurements (Kinney
and McCandlish, 2019) where a few decades ago creating and testing a single piece
of mutant DNA inside cells would be a project in and of itself. As the ability to
assess a huge number of perturbations has revolutionized the inputs to quantita-
tive biology experiments, RNA-seq combined with deep sequencing revolutionized
measurement of the outputs. RNA-seq can measure the gene expression of those
hundreds of thousands of designed promoter constructs in parallel. Super resolution
microscopy techniques can measure in vivo protein dynamics of objects on the order
of nanometers (Cisse et al., 2013), and the interactions between transcription factors
and RNAP, both crucial factors for gene regulation, can be measured on the order of
thousandths of an eV (Forcier et al., 2018). Furthermore, there are phenomenologi-
cal findings such as phase separation contributing to gene regulation in eukaryotes
(Cisse, 2020). Such measurements demand commensurate theory, a theory which
in large part still lags behind. Ideas borrowed from physics have contributed greatly
to theory in biology. Theory on gene regulation in particular has benefited greatly
from the power of statistical mechanical thinking in the biological setting, and in
this dissertation we discuss our efforts to extend our ability to quantitatively model
gene regulation throughout E. coli. We validate a method for recovering a base pair
resolution map of gene regulation in E. coli and develop it into a high throughput
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tool that in the future can be utilized on other organisms to provide the quantitative
data and qualitative details necessary to unravel the continuing mystery of gene
regulation.

1.1 Chapter Summaries
In Chapter 1 we discuss the necessary background to understand gene regulation,
namely the central dogma of biology and the action of transcription factors and RNA
polymerase (RNAP). We derive some of the models from statistical mechanics we
use to model gene expression, and discuss the woeful lack of basic regulatory
knowledge in E. coli that hinders our efforts to understand gene regulation and
completely stops us from applying quantitative modeling across the larger E. coli
genome.

In Chapter 2 we discuss the modeling of DNA sequence-specific transcription factor
binding energies in vivo. We createmodels that allowus to predict the binding energy
between a transcription factor and a mutated version of its binding site using Lac
repressor as a test bed. We demonstrate our ability to generate accurate models by
comparing model predictions from Sort-Seq to independent measurements of DNA
transcription factor interactions using microscopy. We then show that this modeling
technique can be used to address a number of scientific questions. For example, we
observe how the preferred DNA sequence for transcription factor binding changes
when amino acid mutations are made to the transcription factor’s DNA binding
domain, which helps us to understand how transcription factors and their binding
sites co-evolve. This provides yet another example of the importance of quantitative
models for deeply understanding biological mechanisms. A summary of what we
will discuss is displayed in Fig 1.1(A).

In Chapter 3 we acknowledge that despite an ability to build models based on
statistical mechanics for gene regulation, these models cannot be used in the vast
majority of cases. This is because to build models we must first know some crucial
details of the regulatory context. Specifically, to even begin to make predictions we
need to know what transcription factors bind to the DNA for a given operon. Even
for E. coli, the best understood organism in biology, we know nothing about the
regulatory details for ≈ 65 % of operons (Gama-Castro et al., 2016). Past efforts
to understand regulatory sequences and solve the regulatory ignorance problem
on a large scale have failed to solve the problem. One such method is to use
computational methods to "sequence gaze", or in other words, to search the E. coli
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CHAPTER TWO: MAPPING DNA SEQUENCE TO TRANSCRIPTION FACTOR BINDING ENERGY

CHAPTER THREE: DISSECTING THE MOLECULAR MECHANISMS OF TRANSCRIPTIONAL REGULATION

CHAPTER FOUR: DECIPHERING THE REGULATORY GENOME ONE HUNDRED PROMOTERS AT A TIME

Figure 1.1: Applying quantitative models of gene regulation across the genome.
(A) In Chapter 2 we used in vivo techniques to infer energy matrices in absolute
energy units (:1)). We used these energy matrices to predict the binding energies
of Lac O1 binding site mutants and confirmed our predictions with experimental
measurements (right). (B) In Chapter 3 we identified regulatory architectures for
unannotated promoters. We quantified the mutual information between gene
expression and mutation at each sequence position in the promoter (left) and
combined these observations with DNA affinity chromatography and mass
spectrometry to infer regulatory architectures (right). (C) In Chapter 4 we take the
success of Sort-Seq and adapt it for use across orders of magnitude more genes.
We go over the regulatory elements from the over 100 E. coli promoters studied.
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genome for sequences that are similar to known examples of transcription factor
binding sites (Compan and Touati, 1994; Kumar and Shimizu, 2011; Easton and
Kushner, 1983). As any computational method searches through 4.6 megabases of
DNA, and therefore an equal number of possible binding sites, it is unsurprising
that these methods tend to yield some false positives. We disprove several of
these computationally discovered binding sites in Chapter 4. Other methods for
discovering binding sites on a wide scale such as chromatin immunoprecipitation
(Bonocora andWade, 2015) do not provide base pair resolution and cannot determine
how transcription factors interact with RNAP or each other. Lastly, while in vitro
methods such as protein-bindingmicroarrays (Berger et al., 2006), SELEX (Fields et
al., 1997; Jolma et al., 2013) andMITOMI (Maerkl and Quake, 2007; Shultzaberger
et al., 2012) can provide useful insights, they can never fully account for in vivo
effects.

To tackle the regulatory ignorance problem and get a base pair resolution picture of
regulation, we apply Sort-Seq (Kinney and Callan, 2010), to characterize the reg-
ulatory DNA. We further develop the method as a way to systematically approach
the regulation of any promoter quantitatively. Here we first apply Sort-Seq across 6
different bacterial promoters to uncover the functional binding sites where transcrip-
tion factors bind to regulate gene expression. Using DNA affinity chromatography
and mass spectrometry we then identify the transcription factors that bind these
sites, and apply information-theoretic modeling to infer energy matrix models of
binding by each transcription factor. We validate the approach by applying it to the
well-characterized promoters of lacZYA, relBE, and marRAB. We then demonstrate
that it can work equally well to uncover the previously uncharacterized regulatory
architectures for the promoters of purT, xylE, and dgoRKADT. A summary of what
we will discuss is displayed in Fig 1.1(B).

In Chapter 4 we take the success of the Sort-Seq methodology and scale up by an
order of magnitude to show that it can be applied across the genome. In Sort-Seq,
only one gene at a time could be investigated, whichmade it extremely difficult to use
the method on a wide scale. One bottleneck in the process was our measurement
method itself. While using fluorescence based cell sorting (FACS) on a single
gene was a short process, it was not readily parallelizable, and when trying to
tackle even tens of operons under multiple growth conditions, the sorting time alone
would make it difficult to carry out the experiment. We transition the fluorescence
based measurement methodology of Sort-Seq to an RNA-seq based measurement
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methodology. Using RNA-seq as a measurement tool we were able to measure
expression for 100 genes of interest simultaneously, and there is no limit to scaling
up to measuring the expression of every operon in E. coli simultaneously.

In Chapter 4, we discuss how we produced a base pair resolution dissection of
more than 100 E. coli promoters in 12 growth conditions. We show the method
recapitulates known regulatory information. Specifically we once again examine
several of the genes investigated using Sort-Seq, namely lacZYA, relBE, marRAB,
and dgoRKADT. The correspondence is demonstrated in Fig B.2. Then, we examine
regulatory architectures for more than 80 promoters which previously had no known
regulation. In many cases, we identify which transcription factors mediate their
regulation. An summary of what we will discuss is displayed in Fig 1.1(C). Tech-
niques in DNA-synthesis and microbiology are becoming sufficient to use Reg-Seq
throughout E. coli and also on other organisms such asDrosophilia or Pseudomonas
aeruginosa. Not only could these new systems eventually become model organisms
in their own right, but elucidating regulatory details in eukaryotic systems is one of
the necessary steps in extending the modeling success of prokaryotes to eukaryotes.

1.2 The central dogma of molecular biology
The hard won knowledge of the genetic code has been the greatest accomplishment
of molecular microbiology. We can see in Fig. 1.2 the "central dogma" of molecular
biology.

To translate DNA, the hereditary material of the cell, into a proteins, which perform
most of the useful tasks in the cell, the protein coding region, known as a "gene",
must first be copied into a message that can be read by the ribosomes which then
build the proteins. In a process known as transcription, an RNA polymerase (RNAP)
recognizes and binds to a region upstream of the gene known as a promoter, and
then copies the gene into a single-stranded RNA message known as mRNA. Next,
the mRNA is read by a ribosome in a process known as translation to produce the
final protein.

The remarkable thing about this process is that it is conserved throughout all organ-
isms, even those as distantly related as bacteria and vertebrates, earning it the title
of “central dogma.”

It was the culmination of a decades-long search to unravel the mechanism by which
genetic information is passed down fromgeneration to generation in living organisms
and then to discover how the steps of the central dogma are carried out to produce
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useful products.

Oswald Avery discovered that DNA (and not protein) is the molecule by which
genetic information is propagated (Avery, MacLeod, and McCarty, 1944). Watson
and Crick discovered the helical structure of DNA, which immediately suggested
a possible copying mechanism for the genetic material (Watson and Crick, 1953).
Crick, Brenner, and coworkers arrived at the now familiar result that a protein coding
sequence consists of a series of trinucleotide codons (F. Crick, 1961). Subsequent
workwas able to provide a codon table that can translate any three base pair sequence
into a corresponding amino acid. As a result, we have a deep understanding of the
protein coding regions of the genetic code.

However, in many ways the central dogma remains a mystery. The non-coding re-
gions of the genome have no such correspondingmapping. These regulatory regions
control the levels of protein expression and are important to how organisms respond
to the environment and are crucial for the fitness of the organism. The functions of
the regulatory regions are as much of a mystery as they were decades ago. For an
arbitrary DNA sequence in a regulatory region we have no knowledge whatsoever
as to its function. While there are several ways in which protein copy number can
be controlled, this dissertation focuses on how the DNA sequence of the regula-
tory region controls how DNA is transcribed into mRNA, called transcriptional
regulation.

In general transcriptional regulation is accomplished by modulating the probability
that RNAP will bind to the promoter and proceed to copy the gene, which is known
as the occupancy hypothesis (Ackers and Johnson, 1982). The probability of RNAP
binding depends in part on the sequence of the promoter itself, as the polymerase
has DNA sequence binding preferences and deviating from these preferences will
reduce the probability of binding. The DNA binding preference of a protein is often
displayed as a "consensus sequence". A consensus sequence is the ideal series of
nucleotides for protein binding, generally calculated by looking across all binding
sites in the genome and finding the most common base pair at each position in
the binding site. For example, the consensus sequence of the RNAP -10 region is
−15TGNTATAAT−7, where N represents having no nucleotide preference at that site
and the numbers −15 and −7 represent locations of that base pair as compared to
the transcription start site (TSS).

However, the promoter sequence is static and cannot respond to changes in environ-
ment or growth state. In order to enact transcriptional regulation that can change
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in response to an external stimulus, the cell produces DNA-binding proteins known
as transcription factors that bind to the promoter near the RNAP binding site and
control RNAP binding probability. For example, transcription factors known as
repressors often will bind to DNA near the RNAP site. This will physically occlude
the RNAP from binding, decreasing the RNAP occupancy, and therefore decreasing
protein production. Similarly, activators are DNA-binding proteins that interact
with RNAP, forming favorable energetic interactions, and therefore making it more
likely for RNAP to be bound to its binding site.

Translation

DNA

mRNA

mRNA

RNA polymerase

DNA

DNA template

RNA message

Ribosome
Growing

polypeptide chain

Protein

Transcription

Figure 1.2: The central dogma of molecular biology. Genes are encoded as DNA
sequences within the genome. RNA polymerase (RNAP) copies the DNA as a
single-stranded mRNA transcript. Then, ribosomes translate the mRNA into
protein by facilitating the pairing of tRNAs with the mRNA transcript and joining
the associated amino acids together into a polypeptide chain. This polypeptide
chain then generally self-assembles into a protein.

1.3 Thermodynamic models and gene regulation
A primary tool that has been borrowed from physics to quantify gene expression is
the use of equilibrium statistical mechanics. While life is one of the most interesting
examples of a dynamic, out of equilibrium system, gene regulation is one of many
examples in biology in which equilibrium formulations of ideas from physics have
surprising utility (Phillips, 2015). We see in Fig. 1.3 that these classes of models
have allowed us to quantitatively predict output (gene expression) over several orders
of magnitude in input (transcription factor copy number).
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Figure 1.3: Input-output function for simple repression. For a simple repression
architecture, with one RNAP site, and one repressor binding site, Garcia and
Phillips, 2011 measured the output of lacZ for transcription factor binding sites of
different DNA-protein binding strength. Figure data taken from Garcia and
Phillips, 2011

Statistical mechanics concerns itself with the probability of different microstates
in systems containing a large number of interacting particles. A microstate is a
unique arrangement of particles, which may or may not have properties that are
distinguishable from other microstates. The probability of a specific microstate is
given by the Boltzmann distribution,

?(Y8) =
1
/
4−VY8 , (1.1)

where Y8 is the energy of microstate 8. Z is the partition function, and V is equal to
1 = :1) where :1 is the Boltzmann constant and ) is the temperature of the system.
The quantity 4−VY8 is referred to as the Boltzmann factor. The partition function can
be thought of the sum of the statistical mechanical weights of all microstates in the
system, and is given by
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/ =

#∑
8=1

4−VY8 . (1.2)
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Figure 1.4: Modeling transcription using statistical mechanics. To model gene
expression, we make the assumption that gene expression is proportional to the
probability that RNAP is bound to the promoter, ?1>D=3 (Ackers and Johnson,
1982). (A) To determine the value of ?1>D=3 we then enumerate all of the states
available to the system and assign statistical mechanical weights based on the
energy associated with each state and the multiplicity of each state. Renormalizing
the weights such that the unbound state has a weight of 1 then provides us with a
clean set of statistical mechanical weights that can be used to determine the value
of ?1>D=3 . (B) The value of ?1>D=3 is equal to the statistical mechanical weight of
the RNAP bound state divided by the sum of the weights of all possible states.

When modeling transcription, our goal is to determine the probability that an RNAP
will bind to a promoter and initiate transcription. We assume that RNAP occupancy
is proportional to total gene expression, an assumption known as the occupancy
hypothesis. When using a statistical mechanical approach, we identify the various
states that a system can adopt, where a state is a set of microstates with indistinguish-
able properties. We assign statistical mechanical weights to each state and use these
weights to determine the probability of RNAP binding, ?1>D=3 . This identification
of states and weights is modeled for the case of constitutive transcription in Fig. 1.4
(A).

Any combination of regulatory proteins and RNAP can be modeled using statistical
mechanics. Next, we provide a derivation of a statistical mechanical expression
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P

1

NNS
e− β∆εA

R
NNS

e− β∆εR

State Weight

Figure 1.5: States and weights for a simple repression architecture. Simple
repression occurs when a single transcription factor binds in the vicinity of the
RNAP binding site and prevents RNAP binding.

for the probability of RNAP binding at a constitutive promoter. We show how this
derivation can be represented by a states and weights diagram, an approach which
can then be generalized to more complex regulatory scenarios.

In the case of constitutive transcription, there are many copies of RNAP and many
DNA binding sites available to the RNAP. A microstate can be thought of as a
“snapshot” of the positions of all RNAP relative to the genome at a given time. If
we are interested in the transcription of a specific gene, then we wish to know the
probability that a single copy of RNAP is bound to that gene’s promoter. We can
determine this probability using Equation 1.1 provided we know the energy Y8 of
the state, the multiplicity of the state (i.e., the number of possible microstates in
which RNAP is bound to the promoter of interest) and the partition function / that
represents all possible microstates of the system.

To simplify the problem, we abstract the genome as a single specific RNAP binding
site and a series of nonspecific binding sites that bind weakly with the RNAP. In
reality, there are many specific RNAP binding sites in the genomewith a distribution
of strengths, and 10% of 100 bp regions have at least one active RNAP site (Yona,
Alm, and Gore, 2018). For the purpose of this problem, we will view DNA aside
from our binding site of interest as being part of a “pool” of DNA binding sites with
some average weak binding energy. There are ##( of these nonspecific binding
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Figure 1.6: States and weights for a simple activation architecture. Simple
activation occurs when a single transcription factor binds in the vicinity of the
RNAP binding site and promotes RNAP binding.

sites, where we assume that ##( is approximately equal to the length of the genome.
We define Y(

%
as the energy of an RNAP bound to the specific binding site and Y#(

%

to an RNAP bound to any of the nonspecific sites.

The energy of any microstate 8 in which an RNAP is bound to the specific site must
account for both the energy of one RNAP binding to the specific site and % − 1
RNAPs binding to nonspecific sites, where P is the total number of RNAPs in the
system, such that Y8 = (% − 1)Y#(

%
+ Y(

%
. The Boltzmann factor for such a microstate

is thus 4−V(%−1)Y#(
% 4−VY

(
% . The value of ?1>D=3 is given by the sum of the Boltzmann

weights for all microstates in which an RNAP is bound to the specific site, giving us

?1>D=3 =

∑#
8=1 4

−V(%−1)Y#(
% 4−VY

(
%

/C>C
, (1.3)

where we define /C>C as the total partition function. We can rewrite ?1>D=3 as

?1>D=3 =
4−VY

(
%/#( (% − 1, ##()

/C>C
, (1.4)

where /#( (% − 1, ##() is a partial partition function representing all microstates
in which % − 1 RNAP are distributed among ##( nonspecific binding sites, as will



12

occur when one RNAP is specifically bound. We can further define /C>C as

/C>C = 4
−VY(

%/#( (% − 1, ##() + /#( (%, ##(), (1.5)

which gives us

?1>D=3 =
4−VY

(
%/#( (% − 1, ##()

4−VY
(
%/#( (% − 1, ##() + /#( (%, ##()

. (1.6)

We can now see that the Equation for ?1>D=3 is of the form a Boltzmann distribution
where the states are either RNAPbound, which consists of allmicrostates inwhich an
RNAP is bound to the specific site and has a weight given by 4−VY(%/#( (%−1, ##()
or RNAP unbound, which consists of all microstates in which no RNAP is bound
to the specific site and has a weight given by /#( (%, ##(). A illustration of these
states is shown in the states column of Fig. 1.4.

Next we wish to rewrite Equation 1.6 using measurable parameters. A partition
function can be thought of as the product of a state’s Boltzmann factor and the
state’s multiplicity, or the number of microstates where, for example, RNAP is
bound. We have already determined the Boltzmann factors for each state in our
model, and the multiplicities can be determined combinatorially. Doing so gives us
the statistical mechanical weight of the bound state,

4−VY
(
%/#( (% − 1, ##() =

(##()!
(% − 1)!(##( − % + 1)!4

−V(%−1)4Y
#(
% 4

−VY(
% (1.7)

and the weight of the unbound state,

/#( (%, ##() =
(##()!

(%)!(##( − %)!
4−V%Y

#(
% . (1.8)

These weights can be simplified using the approximation

(##()!
%!(##( − %)!

≈ (##()
%

%!
, (1.9)

where ##( >> %. The simplified weights are represented in the weights column of
Fig. 1.4. We can write ?1>D=3 as
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?1>D=3 =

(##()%−1

(%−1)! 4
−V(%−1)Y#(

% 4−VY
(
%

(##()%−1

(%−1)! 4
−V(%−1)Y#(

% 4−VY
(
% + (##()%(%)! 4−V%Y

#(
%

. (1.10)

Finally, we can greatly simplify the form of the equation by dividing the weight
for each state by the weight of the unbound state. The unbound state then has a
renormalized weight equal to 1, and the bound state has a renormalized weight of
%
##(

4−V(Y
(
%
−Y#(

%
) . We define ΔY% = Y(% − Y

#(
%

where ΔY% represents the difference in
RNAP binding energy between the specific binding site and the nonspecific genomic
background. The renormalized weights for each state are illustrated in Fig. 1.4 in
the renormalized weights column. Substituting the renormalized values into Eq.
1.10 gives us

?1>D=3 =

%
##(

4−VΔY%

1 + %
##(

4−VΔY%
. (1.11)

The process of deriving the equation for ?1>D=3 is identical to that used for more
complex regulatory scenarios. Results for many architectures are considered in
Bintu et al., 2005, and we now consider the cases of simple activation and simple
repression in detail.

Simple Repression
We consider the case of simple repression, in which a repressor binds adjacent to
an RNAP binding site and prevents RNAP from binding. In this case there are three
states available to the system: no proteins bound, repressor bound, andRNAPbound.
These states and their associated weights are displayed in Fig. 1.5. The expression
for the probability of RNAP binding, ?1>D=3 in a simple repression architecture is
found in a manner identical to that of the consitutive expression scenario, namely
we divide the statistical weight of all states with RNAP bound by the total partition
function, which yields

?1>D=3 =

%
##(

4−VΔY%

1 + %
##(

4−VΔY% + '
##(

4−VΔY'
. (1.12)

As noted previously, it is assumed that gene expression is proportional to ?1>D=3 .
However, it is difficult to determine the exact proportionality between these quan-
tities, and we lack a straightforward way to measure ?1>D=3 in vivo in order to fix
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unknown parameters. It is therefore more convenient to think about gene regulation
using fold-change. For a constitutive promoter, the fold change is shown in Fig.
1.4 (B). Fold-change quantifies the change in expression due to regulation. This
quantity is straightforward to measure experimentally and has a clear interpretation
in regards to regulatory strength. For repression the fold-change is given by

fold-change =
?1>D=3 (')

?1>D=3 (' = 0) . (1.13)

We can substitute Eq. 1.12 into Eq. 1.13, which gives us

fold-change =

(
%
##(

4−VΔY%

1 + %
##(

4−VΔY% + '
##(

4−VΔY'

) (
1 + %

##(
4−VΔY%

%
##(

4−VΔY%

)
. (1.14)

To simplify this expression,wemake use of the weak promoter approximation, where
we assumeRNAPbindsweakly to the promoterwhich implies that %

##(
4−VΔY% << 1.

We can then simplify to

fold-change ≈ 1
1 + '

##(
4−VΔY'

. (1.15)

Simple Activation
The case of simple activation is similar to simple repression, though it incorporates
the additional factor of cooperative interactions between proteins (namely the RNAP
and the activator). In simple activation, an activator and RNAP can bind to the
promoter simultaneously, as noted in the states and weights diagram for simple
activation shown in Fig. 1.6. The binding of multiple proteins gives this state a
multiplicity of �

##(

%
##(

, where � is the number of activators in the system. An
interaction energy between the activator and RNAP, Y0? must be included in the
Boltzmann factor and for activators is always a favorable interaction which will serve
to make the doubly bound state more likely. A typical value for Y0? is ≈ −4:1)
which is then represented as 4−V(ΔY�+ΔY%+Y0?) where ΔY� represents the binding
energy of the activator to its binding site.

Given these adjustments, ?1>D=3 can then be written as

?1>D=3 =

%
##(

4−VΔY% + �
##(

%
##(

4−V(ΔY�+ΔY%+Y0?)

1 + �
##(

4−VΔY� + %
##(

4−VΔY% + �
##(

%
##(

4−V(ΔY�+ΔY%+Y0?)
. (1.16)
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Wecan use theweak promoter approximations %
##(

4−VΔY% << 1 and %
##(

4−V(ΔY%+Y0?) <<

1 to simplify to

?1>D=3 ≈
%
##(

4−VΔY% + �
##(

%
##(

4−V(ΔY�+ΔY%+Y0?)

1 + �
##(

4−VΔY�
. (1.17)

As in Eq. 1.13, the fold-change for the activator can be written as

fold-change =
?1>D=3 (�)

?1>D=3 (� = 0) , (1.18)

and then simplified to

fold-change ≈
1 + �

##(
4−V(ΔY�+Y0?)

1 + �
##(

4−V(ΔY�)
. (1.19)

The examples of simple repression and simple activation show how statistical me-
chanical models can be applied to simple architectures. One can write quantitative
models for any combination of interacting transcription factor binding sites, and
such models have been written for each of the transcription factor architectures
found in this work (Bintu et al., 2005). Further Refs. (Boedicker et al., 2013; Scott
et al., 2010) apply the states and weights approach to the case of DNA looping in
the lac operon.

1.4 Quantitative modeling of gene regulation
As previously mentioned a core principle of this work is the power of quantitative
modeling for developing an understanding of gene regulation. As biology advances,
measurements get more and more precise. Biology as a field, and gene regulation
in particular has traditionally focused on qualitative questions such as the effect on
phenotype of knocking out a particular protein. However, advances in measure-
ment technology allows for quantitative models to make falsifiable predictions of a
system’s behavior. Additionally, analytically-derived quantitative models allow us
to test our understanding of the essential mechanisms that drive a system. As an
example, for regulation of transcription we typically use models that rely on the oc-
cupancy hypothesis Ackers and Johnson, 1982, namely that the probability of RNAP
binding to the promoter, ?1>D=3 , is proportional to gene expression. The occupancy
hypothesis posits that binding of RNAP or a transcription factor to a binding site
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indicates that the protein is actively playing a role in transcription. This means
that for RNAP, occupancy of a promoter implies that transcription is taking place;
We often apply this assumption when writing models for transcriptional regulation,
such as that shown for simple activation and repression above, but it is not always
valid. In Phillips et al., 2012 it was found that the occupancy hypothesis could not
adequately describe the mechanism of repression a single repression architecture
where the repressor bound upstream of the RNAP and could bind simultaneously to
the RNAP. In this case gene regulation occurred independent of the occupancy of
RNAP.

1.5 Lack of current regulatory knowledge

THE REGULATORY GENOME OF ESCHERICHIA COLI: PROMOTER STUDIED

E. coli
 genome

4.6 Mbp

regulated operons (33%)

operons with no
known regulation (67%)

oriC

Figure 1.7: Identification of operons in E. coli with and without regulatory
annotation. The plot identifies the genomic location of different operons with
annotated TF binding sites, and those lacking regulatory descriptions. The
identification of regulated operons was performed using data from RegulonDB
(Gama-Castro et al., 2016), which are based on manually curated experimental and
computational data. All operons listed in the database were considered, where an
operon was assumed to be regulated if it had at least one transcription factor
binding site associated with it.

Much of the insight we have on gene regulation relies on careful and extensive
work of a few model regulatory systems (Daber and Sochor, 2011; Kuhlman et al.,
2007; Buchler, Gerland, and Hwa, 2003; Vilar and Leibler, 2003); Much of the
quantitative work that has come from the efforts of the Phillips group has been
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Figure 1.8: Distribution of regulatory architectures in E. coli. The percentage
prevalence of each type of regulatory architecture in RegulonDB before the work
in this dissertation. (A) Examples of some types of regulatory architectures in E.
coli. The type of architectures are given as (A, R) where A is the number of
activator binding sites and R is the number of repressor binding sites. (B) We plot
the frequencies of different regulatory architectures as reported by RegulonDB
(Gama-Castro et al., 2016). Note that many promoters lack complete regulatory
annotations, which can often mean they are understudied rather than truly
constitutive, which skews the data towards (0,0).

exclusively focused on the lac operon (Oehler et al., 1990; Schleif, 2010; Garcia and
Phillips, 2011; Brewster, Jones, and Phillips, 2012; Boedicker et al., 2013; Brewster,
Weinert, et al., 2014; Forcier et al., 2018). Other quantitative work has been has been
focused on artificial promoters (Urtecho et al., 2019). In the case of E. coli and other
prokaryotes, the failure to extend quantitative methods to other promoters come not
from a failure of the theory of gene regulation, but rather a failure in knowledge of
basic regulatory information as displayed in Fig. 1.7. While impressive advances in
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molecular biology have made it possible to map thousands of gene interactions and
create genetic networks for a variety of organisms. We see statistics for the different
types of regulatory architectures from RegulonDB displayed in Fig. 1.8. Even so,
all the knowledge of gene regulation still leave us with a regulatory landscape that is
qualitative, and the vast majority of the "regulated" genes alluded to in Fig. 4.1 have
none of the quantitative details, such as interaction energies between proteins, that
are necessary for the formation of strong predictions about gene regulation under
perturbations such as mutation or changes in growth condition. The poor state
of regulatory knowledge is the primary stumbling block to applying the hard-won
knowledge of quantitative models based on statistical mechanics and motivates the
work in the following chapters.

Furthermore, Fig. 1.7 identifies the positions of each operon on the E. coli genome
and whether it contains annotated transcription factor binding sites (blue) or not
(red). It is striking that over half of the operons lack any listed transcription factor
binding sites. One hypothesis is that the majority of operons express constitutively
(i.e., no transcription factors regulate these operons). Alternatively, transcription
might be controlled through changes inf factor concentrations, whichwould provide
an alternative mechanism of regulation. f factors are necessary for transcription
and, especially for some specialty f factors, such as f54, which responds to heat
shock, they can increase gene expression in response to stimuli. As another example,
in stationary phase there is an increase in the cellular concentration of stationary
phase sigma factor, RpoS (f 38), which decreases the level of functional sigma
factor RpoD (f 70) and alters the genome-wide transcription output (Jishage et al.,
1996). A motivation for our work and our assertion that there is a huge amount of
missing regulatory knowledge is a recent proteome-wide census that was taken in E.
coli across 22 growth conditions (Schmidt et al., 2016). In this work Schmidt et al.
measured the copy number of more than half the E. coli proteome across a variety
of relevant conditions such as different growth media.

As reported by Schmidt et al., we also find that the GalE protein shows significantly
higher expression when cells were grown in galactose, which is displayed in Fig
1.9 (A). GalE is known to be regulated, which is relieved when grown in galactose
(Irani, Orosz, and Adhya, 1983; Semsey et al., 2007). We display how expression
tends to vary among growth conditions. Among promoters without any known
regulation, we show the expression of dgoD in Fig. 1.9 (B) in several carbon
sources. This is only one of many examples where a protein showed a large change
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Figure 1.9: Proteome Data from Schmidt et al., 2016. (A)The expression of the the
galE gene under different growth conditions. galE is known to be regulated. (B)
Expression of dgoD under different growth conditions. dgoD was not known to be
regulated. (C) The coefficient of variation for all proteins in the Schmidt et al.,
2016 dataset. Several of the genes that are discussed in detail in Chapters 3 and 4
are highlighted.

in expression level across growth conditions and suggests that there is missing
regulation. In addition, we see in Fig. 1.9 (C) that the expression variability
for unannotated genes appears visually almost as variable as those with known
regulation, further suggesting that many of the unannotated operons have missing
regulation. In Chapter 3, we prove there was missing regulation for the xylE and
dgoRKADT operons that were displayed in 1.9 (C). Additionally, in Chapter 4 we
show that this missing regulation is widespread across the more than 100 E. coli
promoters that were studied.
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C h a p t e r 2

MAPPING DNA SEQUENCE TO TRANSCRIPTION FACTOR
BINDING ENERGY IN VIVO.

A version of this chapter originally appeared as S. L.Barnes, N. M. Belliveau,
W. T. Ireland, M. J. Sweredoski, J. B. Kinney, and R. Phillips (2018). Mapping
DNA sequence to transcription factor binding energy in vivo. PLOS Computational
Biology, http://doi.org/10.1371/journal.pcbi.1006226.

Author contribution note: for this chapter, I (WI) assisted with experimental design,
data analysis, and manuscript writing.

2.1 Introduction
High-throughput sequencing has delivered on the promise that we can sequence
the genome of nearly any species at will. The amount of genome data available
is already enormous and will only continue to grow. However, this mass of data
is nearly useless without the appropriate methods of analyzing it. Despite decades
of research, genomic data still defies our efforts to “read” it. When faced with an
entirely new genome, we can guess that a stretch of DNA contains a gene, and then
use the codon table for amino acids to translate that hypothetical gene into an amino
acid sequence. In some cases, we can also guess at, or measure with techniques
like RACE (Mendoza-Vargas et al., 2009), the locations of transcription start sites.
In some cases we can even make guesses as to the locations of transcription factor
binding sites, but these guesses tell us little about how the details of a putative site
lead to its downstream effects on gene expression. Amore detailed understanding of
the sequence dependence of gene expression and transcription factor binding sites is
needed in order to improve the accuracy of such predictions. An important avenue
for developing this level of understanding is to propose models that map sequence
to function and perform experiments that test these models, which will hopefully
lead to an understanding of gene regulation.

Past efforts have found it difficult to unravel the mysteries of gene regulation, even
on a single gene, much less the thousands of genes that it would take to gain a full
regulatory understanding of even E. coli. Over half of the genes in E. coli, which
is arguably the best-understood model organism, lack any regulatory annotation
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(Gama-Castro et al., 2016). Those operons whose regulation is well described
such as the lac, rel, and mar operons (Oehler et al., 1990; Grainger et al., 2005;
Alekshun and Levy, 1997) required decades of work, often involving laborious
genetic and biochemical experiments (Minchin and Busby, 2009). A wide variety
of new techniques have been proposed and implemented to simplify the process
of determining how a gene is regulated. ChIP-based methods such as ChIP-chip
and ChIP-seq make it possible to determine the genome-wide binding locations
of individual transcription factors of interest. Massively parallel reporter assays
(MPRAs) have made it possible to read out transcription factor binding position
and occupancy in vivo with base-pair resolution, and provide a means for analyzing
non-binding features such as “insulator” sequences (Levo, Avnit-Sagi, et al., 2017;
Melnikov et al., 2012; Levy et al., 2017). in vitro methods such as protein-binding
microarrays (Berger et al., 2006), SELEX (Fields et al., 1997; Jolma et al., 2013),
MITOMI (Maerkl, 2007; Shultzaberger et al., 2012), and binding assays performed
in high-throughput sequencing flow cells (Jung et al., 2017; Nutiu et al., 2011)
have made it possible to measure transcription factor affinity to a broad array of
possible binding sites and develop detailed records of transcription factor sequence
specificities.

In spite of this progress, it remains difficult to integrate the various aspects of tran-
scriptional regulation revealed by such experiments into a cohesive understanding
of a given promoter or transcription factor. While in vitro methods may provide
accurate measurements of transcription factor sequence specificities and binding
affinities, including insight into the effects of flanking sequences (Dror et al., 2015;
Levo, Zalckvar, et al., 2015), they cannot fully account for the in vivo consequences
of binding site context and interactions with other proteins. Current in vivomethods
for determining transcription factor binding affinities, such as bacterial one-hybrid
(Christensen et al., 2011; Xu and Noyes, 2015), require a restructuring of the pro-
moter so that it no longer resembles its genomic counterpart. Additionally, while
computational efforts to “read” the genome by scanning for DNA sequences that
resemble known transcription factor binding sites provide a promising avenue for un-
derstanding transcriptional regulation in its native context, these efforts frequently
produce false positives (Weirauch et al., 2013; Djordjevic, 2003) as we also see
during Chapter 4. Furthermore, a common assumption underlying many of these
methods is that transcription factor occupancy in the vicinity of a promoter im-
plies regulation, but it has been shown that occupancy cannot accurately predict the
effect of a transcription factor on gene regulation (Garcia, Sanchez, et al., 2012;
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Wunderlich and Mirny, 2009).

An ideal technique would be capable of interrogating multiple aspects of tran-
scriptional regulation at once, from locating transcription factor binding sites to
identifying the sequence specificity of these binding sites. As previously noted,
massively parallel reporter assays have shown a great deal of promise for this rea-
son. In Brewster, Jones, and Phillips, 2012, we showed that the MPRA Sort-Seq
(Kinney and Callan, 2010), combined with a simple linear model for protein-DNA
binding specificity, can be used to accurately predict the binding energies of multiple
RNAP binding site mutants, serving as a jumping off point for the use of such mod-
els as a quantitative tool in synthetic biology. Here we adopt a similar philosophy
to explore whether this technique can be more broadly applied to other regulatory
components such as transcription factor binding sites.

Specifically, we use Sort-Seq to map sequence to binding energy for the repressor-
binding site interaction, and we rigorously characterize the variables that must be
considered in order to obtain an accurate sequence-binding energy map. We show
how such a mapping can be used to characterize how sequence controls protein
binding and, ultimately, gene expression. We validate the approach via comparisons
with microscopy data and explore the limits of the simple linear models of binding
energy that we use. As concrete applications of this approach, we show that our
sequence-energy mapping can be used to precisely design a series of binding sites
with a hierarchy of precisely controlled binding energies. With this suite of different
binding energies in hand, we then show how those binding sites can be used to design
a wide range of induction responses with different phenotypic properties such as
leakiness, dynamic range and [��50]. Finally, we use Sort-Seq when single amino
acid perturbations to the LacI protein have been introduced, and we characterize
how this affects the mapping of DNA sequence specificity. This broad collection of
case studies provides a rigorous test of the quantitative mapping between regulatory
sequence and function offered by the Sort-Seq approach.

2.2 Results
In order to map regulatory sequence to binding energy in vivo, we applied Sort-Seq
(Kinney and Callan, 2010) to synthetically constructed promoters with binding sites
for RNA polymerase (RNAP) and lac repressor (LacI). As shown in Fig. 2.1(A),
Sort-Seqworks by first generating a library of cells, each ofwhich contains amutated
promoter that drives expression of GFP from a low copy plasmid (5-10 copies per
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Figure 2.1: Process flow for using Sort-Seq to obtain energy matrices. (A) A
simple repression motif was designed in which a LacI repressor binding site is
placed immediately downstream of the RNAP site. RNAP binding probability will
be proportional to GFP production. The RNAP and LacI binding sites were both
randomly mutated at a rate of approximately 10% and the resulting plasmid library
was transformed into cells such that each cell contains a different mutant. We then
sort the cell population into bins based on fluorescence level, and then sequence the
cells in each bin to map sequence to expression. (B) We analyze simple repression
constructs using each of the three lac operators that are found in E. coli, O1, O2,
and O3, and performed Sort-Seq in E. coli strains with mean copy numbers of LacI
per cell of 22 ± 4, 60 ± 20, 124 ± 30, 260 ± 40, 1220 ± 160, and 1740 ± 340 (using
strains from Garcia and Phillips, 2011). The resulting Sort-Seq data was used to
infer energy matrices that describe the sequence-dependent repression by LacI. An
example energy matrix and sequence logo (G. D. Stormo, 2000) are shown for
LacI, with the convention that the wild-type nucleotides have zero energy.

cell; Lutz, 1997). GFP is a fluorescent protein that allows expression level of the
protein to be observed by measuring the fluorescence level. We use fluorescence-
activated cell sorting (FACS) to sort that library of cells into multiple bins gated
by their fluorescence level and then sequence the mutated plasmids from each bin.
Binding by LacI to the promoter physically occludes binding by RNAP (Ackers and
Johnson, 1982; Buchler, Gerland, and Hwa, 2003), and mutations to both binding
site sequences will influence what bin each cells is sorted into.

One of the important aspects demonstrated by Kinney and Callan, 2010, is that
we can use the large sequence data set from Sort-Seq (0.5-2 million sequences) to
perform information-based modeling and extract quantitative information from the
data. In particular, it is possible to infer energy matrix models that describe the
sequence dependent energy of interaction between transcription factors and their
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binding sites (Kinney and Callan, 2010; Ireland and Kinney, 2016). Here we set
out to test the accuracy of the models that come from Sort-Seq experiments in the
context of the simple repression architecture (Bintu et al., 2005), with repression by
LacI as noted above.

In order to be more representative of the range in both transcription factor and
protein-DNA binding energies observed in E. coli more generally, but also to test
the capabilities of the approach more broadly, we constructed a set of strains with a
range of repressor copy numbers and DNA binding energies. Both of these factors
are key determinants of gene expression for a simple repression architecture as can
be seen in Eq. 1.15. We performed a set of separate Sort-Seq experiments in E. coli
with mean LacI dimer copy numbers ranging from 22-1740 copies per cell (Fig.
2.1(B)). We varied the binding site sequence of the LacI binding site in our promoter
library, using the three natural sites found at the lac operon (O1 with binding energy,
-15.3 :1) ; O2, the second strongest, -13.9 :1) ; and O3 the weakest at -9.7 :1)
(Garcia and Phillips, 2011)).

Sequence-dependent thermodynamic model of the simple repression architec-
ture
We begin by defining the thermodynamic model of simple repression that we will
apply to our Sort-Seq data. We will also define energy matrices that describe the
sequence-dependent interaction energies of RNAP and LacI to their binding sites.

We consider a cell with % copies of RNAP per cell and ' copies of LacI per cell, and
begin by enumerating all possible states of the promoter and their corresponding
statistical weights. As shown in Fig. 2.2, the promoter can either be empty,
occupied by RNAP, or occupied by LacI. In addition to these specific binding sites,
we assume that there are ##( = 4.6 × 106 non-specific binding sites elsewhere on
the chromosome where RNAP and LacI may bind non-specifically. We define our
reference energy such that all specific binding energies are measured relative to the
average non-specific binding energy. For simplicity, our model explicitly ignores
the complexity of the distribution of non-specific binding affinities in the genome
and makes the assumption that a single parameter can capture the energy difference
between our binding site of interest and the average site in the reservoir.

Thermodynamicmodels of transcription assume that gene expression is proportional
to the probability that the RNAP is bound to the promoter ?1>D=3 , and as we have
found in Chapters 1, this is given by
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Figure 2.2: States and weights for the simple repression motif. There are % RNA
polymerase (blue) and a ' repressors (red) per cell that compete for binding to a
promoter of interest. The difference in energy between a repressor bound to the
promoter of interest versus another non-specific positions elsewhere on the DNA
equals ΔY'; the % RNA polymerase have a corresponding energy difference ΔY%
relative to non-specific binding on the DNA. ##( represents the number of
non-specific binding sites for both RNA polymerase and repressor.

?1>D=3 =

%
##(

4−VΔY%

1 + ?�(2)'
##(

4−VΔY' + %
##(

4−VΔY%
(2.1)

with V = 1
:1)
, where :1 is the Boltzmann constant and ) is the temperature of the

system. Here we have included the allosteric aspect of LacI through the term, ?� (2),
which indicates the fraction of active LacI in the presence of inducer. c denotes the
concentration of inducer present in the cell (?� (2) = 1 when no inducer is present).

We describe the sequence-dependent binding energies for RNAP, ΔY%, and LacI,
ΔY', using linear energy matrix models. The define the binding energy associated
with each protein I, ΔYI (I = % for RNAP, and I = ' for LacI), by



29

ΔYI = UYI,<0C + ΔYI,FC , (2.2)

where YI,<0C is the energy value obtained by summing thematrix elements associated
with a sequence (further defined below), UI is a scaling factor that converts thematrix
values into :1) units, and ΔYI,FC is the binding energy associated with the wild-type
operator.

Energy matrices treat each base pair position j along a binding site as contributing a
certain amount to the binding energy. Mathematically the energymatrix is described
by a 4x! matrix, where each column j of matrix parameters will represent the
energies for each nucleotide 8 = �,�, �,) associated with position 9 of the binding
site. For example, index (i=C,j=3) represents the energy parameter for nucleotide C
at position 3. The binding energy of a sequence from an energy matrix will then be
given by

YI,<0C =

!∑
8=1

)∑
9=�

\8 9 · B8 9 , (2.3)

where \8 9 represents the parameters of the energy matrix and B8 9 , at position 9 of
the binding site, with base identity 8, and the subscript I represents the matrix either
being a LacI or RNAPmatrix. Although we only refer to linear matrices in 2.3, these
models can be extended to allow for non-additive contributions from each position,
though linear models appear to be sufficient to describe transcription factor binding
in bacteria in general (Berg and Hippel, 1987; Benos, Bulyk, and Gary D. Stormo,
2002; Brewster, Jones, and Phillips, 2012). By convention, we have fixed the values
of the matrix positions associated with the wild-type sequence to 0 :1) , so that
Y<0C = 0 for a wild-type sequence. Thus, UY<0C can be interpreted as the change in
binding energy relative to the wild-type energy caused by specific mutations in the
sequence of interest.

Inferring models of the simple repression architecture using Sort-Seq
We use the MPAthic software to infer the parameters of the energy matrices and
thermodynamic parameters of ?1>D=3 (Kinney and Callan, 2010; Ireland and Kin-
ney, 2016). The software uses Markov-Chain Monte Carlo (MCMC) to determine
the set of parameters that maximize the mutual information between the distribu-
tion of sequences in the binned sequence data and the model’s predictions. More
specifically, the inference approach samples the probability distribution
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?(\ |(, 1) ∝ 2#� (1,model predictions). (2.4)

Here \ is the set of model parameters that define ourmodel (e.g. entries in the energy
matrices), S,b represents our data set of sequences ( and the sorted bin 1 where they
were found. # is the number of sequences in the data, and � (1,model predictions)
is the mutual information between the distribution of binned sequences and the
model’s predictions, which we discuss further below.

Due to the computational burden of fitting a large number of parameters by MCMC
(all parameters), we find it convenient to first infer the energy matrices (in arbitrary
units) for LacI and RNAP from the Sort-Seq data. Fig 2.3 (A) summarizes the
result for one of the LacI energy matrices (using an O1 binding site library, and
E. coli strain with ' = 1740 LacI per cell). Fig. 2.3 (B) shows an energy matrix
after the energy scale is fixed (in :1) units) using the thermodynamic model in
2.1 to make model predictions. Mutual information is estimated from the joint
probability distribution between model prediction and binned sequence data, which
is estimated by performing kernel density estimation. Note that in this instance,
we are estimating a joint distribution to calculate the mutual information between
sequence bin and energy prediction, � (1, energy (a.u.)). We repeat this procedure
to generate an energy matrix for the RNAP binding site.

With our energy matrices in hand, we use Sort-Seq sequence data to determine
the scaling parameter of Eq. 2.2 by fitting the data against the thermodynamic
model defined by Eq. 2.1. In fitting the thermodynamic model we must use a
parallel tempering Monte Carlo method. This is because the likelihood landscape
from fitting the scaling parameters can be quite rough, with many local maxima.
Parallel tempering uses multiple MCMC runs with different "temperatures". In
other words, there will be some MCMC chains that are very permissive in which
MCMC steps they accept and sowidely explore the parameter landscape. These high
temperature walkers are able to escape local minima in the likelihood landscape.
The low temperature walkers are able to locally explore areas of high likelihoodwell.
Parallel tempering algorithms periodically exchange the model parameters between
the MCMC chains running at different temperatures with a probability related to
the relative difference in temperature. We use the Emcee package to perform the
parallel tempering algorithm (Foreman-Mackey et al., 2013).

In Fig. 2.4 (A) we summarize the energy matrices for LacI for the strains with
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Figure 2.3: Inference of LacI energy matrices. (A) Using the aligned sequence
data for the LacI binding site, information-based modeling was performed with the
MPAthic software (Ireland and Kinney, 2016) to determine the parameters of the
LacI energy matrix (in arbitrary units). By convention, the energies are defined
such that the O1 wild-type sequence has zero energy. Kernel density estimation
was performed to estimate the joint probability distribution between sequence bin f
and rank-ordered energy predictions from the inferred matrix. (B) Sort-Seq data
was fit to the thermodynamic Eq. 2.1, where binding energies were calculated
from the separately inferred energy matrices for LacI and RNAP. The entire
promoter sequence from each mutated sequence was used in this inference. This
allowed determination of the scaling factors for binding by LacI and the energy
matrix shown in absolute :1) energy units. A joint probability distribution
between sequence bin f and rank-ordered predictions of ?1>D=3 is shown using the
inferred model. Data is from the Sort-Seq experiment using an O1 LacI binding
site and performed in a strain with ' = 1740 repressor copies per cell.
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Figure 2.4: Energy matrices for the natural lac operators from Sort-Seq data. (A)
Energy matrix models are shown for the LacI binding site from experiments
performed with O1, O2, and O3 libraries, and in strains with ' = 1740 repressor
copies per cell. All energy matrices are plotted such that an O1 binding site
sequence will have zero energy. (B) Pearson correlation coefficients were
calculated relative to the energy matrix found using the O1 library in a strain with
' = 1740 repressor copies per cell. Each marker represents the correlation
coefficient for a matrix from a separate Sort-Seq experiment. Data is overlayed on
a plot of expected expression fold-change (calculated assuming 10 plasmid copies
per cell (Weinert et al., 2014)) to provide a reference for the expected influence of
LacI on expression under each particular Sort-Seq experiment.

the highest repressor copy number, ' = 1740. Here we plot the energy matrices
generated from each operator and compare the sequence specificity of each matrix.
We find that the energy matrices from the O1 and O2 binding site data are quite
similar, while the matrix from the O3 binding site data is somewhat less consistent
(Pearson correlation coefficients: A = 0.91 between O1 and O2; A = 0.69 between
O1 and O3).

The entire set of LacI matrices generated from the Sort-Seq experiments are sum-
marized if Fig. 2.4 (B). Here we calculate the correlation of each matrix (relative to
the ' = 1740, O1 energy matrix), and overlay these values on a plot of the expected
fold-change as a function of repressor copy number. Fold-change here refers to
the ratio of gene expression in the presence of repressor relative to expression in
the absence of repressor and provides a useful measure for the extent of repression
expected by LacI in each Sort-Seq experiment. We find each matrix from the O1
and O2 binding site data sets to be quite consistent. Notably however, those from
the O3 binding site data sets are less similar. Given the low repression expected by
LacI in strains with an O3 binding site, this result may be due to the Sort-Seq data
containing less information content associated with binding of LacI. Though it is



33

also useful to note that we also find some correlation among matrices based on the
same binding library (A > 0.94 across O1 matrices; A > 0.91 across O2 matrices,
and A > 0.80 across O3 matrices).

Sort-Seq energy matrices provide accurate prediction of LacI binding energy
In order to test the binding energy predictions that are provided by our LacI energy
matrices, we constructed a set of simple repression constructs where the O1 binding
site was mutated at 1, 2, or 3 positions (summarized in Table 2.1). These were
placed into our E. coli strains containing different LacI copy numbers (' = 22 ± 4,
60 ± 20, 124 ± 30, 260 ± 40, 1220 ± 160, and 1740 ± 340, where errors denote
standard deviation of at least three replicates as measured in (Garcia and Phillips,
2011), and measured expression as a function of transcription factor concentration
for each of the designed LacI binding sites.

Here we find it more convenient to use the fold-change in gene expression instead
of expression alone. As we noted earlier fold-change is defined as the ratio of
gene expression in the presence of repressor relative to expression in the absence of
repressor (i.e. constitutive expression), namely

fold-change =
?1>D=3 (' > 0)
?1>D=3 (' = 0) , (2.5)

where ?1>D=3 was defined in Eq. 2.1. In section 1.3 we derived that, under the
weak promoter approximation, this reduces to the form

fold-change ≈
(
1 + ?� (2)

'

##(
4−VΔY'

)−1
. (2.6)

For now we are only concerned with the case where no inducer is present in the
growth media (i.e. where ?� (2) = 1). Using our LacI energy matrix to predict ΔY',
we find that we can make parameter-free predictions of fold-change for each LacI
binding site sequence as a function of the repressor copy number associated with
each of our E. coli strains.

We use flow cytometry to measure fluorescence of each strain, as explained more
thoroughly in 2.4. Briefly, cells were grown to exponential phase inM9minimal me-
dia with 0.5% glucose. Following a 1:10 diluation in fresh media, the fluorescence
was measured by flow cytometry and automatically gated to include only single-cell
measurements. We then calculated fold-change from the mean fluorescence level of
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LacI binding site sequence prediction (:1))
AATTGTGAGCGGAGAACAATT -11.9
AATTGTGAGCGCATAACAATT -15.6
AATTGTGAGCGGATCACAATT -15.2
AATTGTGAGCGGAAAACAATT -11.5
AATTGCGAGCGGATAACAATT -10.0
AATTGTGAGGGGATAACAATT -12.2
AATTGTGAGCGGATATCAATT -12.8
AATTGTGAGCAGATAACAATT -9.8
AATTGTGAGAGGATAACAATT -6.3
AAATGTGAGCGGGTAACAATT -14.6
AATTGTGAGCGGGTAACAACT -13.6
AAATGTGAGCGGATAACAACT -13.3
AATTGTGAGCGAGTAACAATT -14.0
ATTTGTGAGCGGAGAACAATT -11.9
CATTGTGAGCGCATAACAATT -15.3
AATTGTGAGCGGAACACAATT -11.7
AATTGTGAGCGGAATACAATT -9.6
AATTGCGAGCGGATAACAAAT -10.5
AATTGTGAGGGGATAACAATC -14.1
AAATGTGAGCGAGTAACAATT -13.6
AATTGTGAGCGAATAACAACC -14.6
AAATGTGAGCGAATAACAACT -12.2
AATTGTGAGCGAGTAACAACT -12.6
ATTTGTGAGCGAAGAACAATT -10.8
AATTGTGAGCGGAACACAATG -12.3
AATTGTGAGCGGGATACAATT -9.5
AATTGTCAGCGGATAACAAAG -11.2
AATTGTGAGGGTATAACAATC -13.5

Table 2.1: Summary of LacI binding site mutant energy prediction for designed O1
sites.
The binding energies displayed are the average of inferred matrices. Mutated bases

are in bold.
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Figure 2.5: Fold-change data reflects expected values from predicted fold change
curves. (A) Fold-change data were obtained for each of the mutant operators by
measuring their respective fluorescence levels at multiple LacI copy numbers. The
solid lines in each plot represent the expected fold-change curve for each binding
energy as predicted by the O1 energy matrix. A subset of data sets are shown for
the 1 bp (left), 2 bp (middle), and 3 bp (right) mutants. Approximately 30 mutants
were measured in total, with five replicate measurements performed for each strain.
Predicted energies are based on the average predictions from the different O1
energy matrices. (B) The measured binding energy values ΔY' (y axis) are plotted
against binding energy values predicted from an energy matrix derived from the
O1 operator (x axis). While the quality of the binding energy predictions does
appear to degrade as the number of mutations relative to O1 is increased, the O1
energy matrix is still able to approximately predict the measured values. (C)
Binding energies for each mutant were predicted using both the O1 and O2 energy
matrices and compared against measured binding energy values. The amount of
error associated with each of these predictions is plotted here against the number of
mutations relative to the wild-type sequence whose energy matrix was used to
make the prediction. For sequences with 4 or fewer mutations, the median
prediction error is consistently lower than 1.5 :1) .

each strain relative to a strain where LacI has been deleted. In Fig 2.5 (A) we show
fold-change measurements for a subset of the 1 bp, 2 bp, and 3 bp mutants, overlaid
with the parameter-free curves using our LacI energy matrix predictions of ΔY'.

Since we performed fold-change measurements for each O1 mutant at several re-
pressor copy numbers, it was also possible to use these measurements to directly
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estimate the LacI binding energies for each binding site sequence. In Fig 2.5 (B) we
compare the measured binding energies against those predicted by our LacI energy
matrix. For single base pair mutations most predictions are accurate to within 1
:1) , with many predictions differing from the measured values by less than 0.5 :1) .
Though we do note that one of the sequences whose predicted binding was -6.3 :1) ,
was instead found to have a binding energy of about -10.5 :1) . Predictions are less
accurate for 2 bp or 3 bp mutations, although the majority of these predictions are
still within 1.5 :1) of the measured value.

While not completely unexpected, we find that the quality of matrix predictions
decreased as we predict the energy of sequences further from the wild type sequence
of the binding site used to generate the energy matrix. To evaluate predictions for a
wide variety of sequences, we made predictions using energy matrices made from
both the O1 and O2 wild type operator sequences. The wild type O2 matrix has 5
mutations relative to O1. As a result, the tested sequences measure vary by many
mutations relative to the wild type. As shown in Fig 2.5 (C), we find that predictions
remain relatively accurate for mutants that have as many as 4 differences from the
wild type sequence, with mean deviation of 1.5 :1) or less. For a system with ' =
60 LacI dimers, this mismatch in binding energy would imply that a prediction of
fold-change would be inaccuate by ≈ 0.10 - 0.35 (depending on the mutant binding
site). by contrast, the median mismatch of 0.5 :1) shown for 1 bp mutants implies
that our fold-change predictions are only inaccurate by 0.04 - 0.12, highlighting that
predicted binding energies for single-point mutations will be far more reliable.

Regulatory sequence can be used to tune the simple repression induction curve.
A common desire in synthetic biology is to design regulatory circuits that provide
specific input-output characteristics. A common strategy to design output levels
is to use trial and error with many designed sequences until the desired level of
response is obtained (Kosuri et al., 2013). Previous work however has also shown
that rather than rely on such trial and error approaches, it also is possible to use
thermodynamic models of regulation to acccurately predict specific input-output
characteristics (Bintu et al., 2005; Garcia and Phillips, 2011). Such models also
provide non-obvious insight into what characteristics can be designed. We have
shown how we can use regulatory sequence, through the design of specific LacI
binding site sequences, to further control the level of gene expression. We can use a
similar method to tune the RNAP sequence or any future transcription factor which
is analyzed with Sort-Seq.
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Figure 2.6: Energy matrix predictions can be used to design precise phenotypic
responses. (A) Phenotypic parameters (leakiness, saturation, and dynamic range)
exhibit trade-offs as ΔY' is varied. Maximizing saturation or minimizing leakiness
can only be achieved by reducing the dynamic range below its maximum. (B)
Operators with different values of ΔY' were chosen to have varying induction
responses based on the phenotypic trade-offs shown in Part A. The induction
responses predicted based on energy matrix predictions (solid lines) generally
agree well with IPTG induction data obtained for each of the binding sites in a
background strain with ' = 260.

As a future step, we were interested in whether our sequence-energy mapping
could be used to precisely design different induction responses. Induction is well
described by the Monod-Wyman-Changeux (MWC) model (Monod, Wyman, and
Changeux, 1965), with LacI in equilibrium between two conformations, termed the
inactive and active states. In our formulation of fold-change as a function of inducer
concentration, given in Eq 2.6, ?� (2) is well described by

?� (2) =
(1 + 2

 �
)2

(1 + 2
 �
)2 + 4−VΔn�� (1 + 2

 �
)2
, (2.7)

where c is the concentration of inducer,  � and  � are the dissociation constants
of the inducer and repressor when the repressor is in its active or inactive state,
respectively, and ΔY�� is the difference in free energy between the repressor’s
active and inactive states. Many of the parameters in Eq. 2.7 can and have been
independently measured. Specifically,  � = 139 `M,  � = 0.53 `M, and ΔY�� =
−4.5:1) .

We note that an induction response can be described by four key phenotypic pa-
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rameters. The leakiness is the minimum fold-change when no inducer is present,
given by fold-change(2 → 0) from Eq. 2.6. The saturation is the maximum fold-
change when inducer is present at saturating concentrations, given by fold change
(2 →∞). The dynamic range is the difference between the saturation and leakiness,
and represents the magnitude of the induction response. Figure 2.6 (A) shows how
these three phenotypic parameters vary with ΔY' given the values of  �,  � , and
ΔY�� listed above and the repressor copy number ' = 260. Lastly in Fig. 2.6 (B),
the [��50] of an induction response denotes the inducer concentration required to
generate a response that is halfway between the minimum and maximum values.

There is an inherent trade-off between phenotypic parameters. For instance, tuning
ΔY% to be comparatively strong (−8:1)), will increase the leakiness significantly.
Mutating the DNA can adjust ΔY% and ΔY', while to adjust  � or  � the protein
itself must be mutated.

To show how energy matrices can be used to design specific induction responses,
we used the phenotypic trade-offs shown in Fig. 2.6 (A) to choose four different
values of ΔY' that would provide distinct outputs. These values were ΔY' ≈ −16
:1) , which would provide a minimal leakiness level but not reach full saturation;
ΔY' ≈ −13 :1) , which would maximize dynamic range; ΔY ≈ −11.5 :1) , which
wouldmaximize saturation but have an intermediate dynamic range; andΔY' ≈ −10
:1) , which is close to the threshold between specific binding and nonspecific
binding, and would provide a narrow dynamic range. Four of the single base-
pair mutants designed in the previous section had predicted binding energies that
matched these approximate values. Induction responses for each of themutants were
determined by growing cultures in the presence of varying IPTG concentrations
and measuring the fold-change at each concentration. Fig 2.6 (B) shows how
the induction data compare against fold-change curves plotted using ΔY' values
predicted from the energy matrix, and fold-change as defined in Eq. 2.1 and Eq. 2.7.
The measured induction responses were found to match the theoretical predictions
quite well, though for the sequence with a predicted energy of ΔY' ≈ −11.5:1) , we
find that the [��50] is shifted toward a higher IPTG concentration. This is at least
in part due to a higher measured binding energy (-12.5 :1) instead of -11.5 :�))
than predicted by our LacI energy matrix.
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Sort-Seq can be used to probe both the DNA and amino acid interactions
So farwe have examined how energymatrices provide uswith a quantitativemapping
between DNA sequence and binding energy, and how this can allow us to predict
specific input-output characteristics. In this final section we show how we can
also use energy matrices to investigate the effects of amino acid mutations on a
transcription factor’s sequence specificity. Specifically, we make individual amino
acids changes to the repressor’s DNA-binding domain and through additional Sort-
Seq experiments, observe how those mutations modify the LacI energy matrix. This
approach in particular makes it possible to determine how changing the amino acid
composition of the DNA-binding domain alters DNA sequence preference.

We performed Sort-Seq using strains containing one of three LacI mutants, Y20I,
Q21A, or Q21M, where the first letter indicates the wild-type amino acid, the
number indicates the amino acid position, and the last letter indicates the identity of
the mutated amino acid. These mutants have previously been found to alter LacI-
DNA binding properties without entirely disrupting the repressor’s ability to bind
DNA (Milk, Daber, and Lewis, 2010; Daber and Sochor, 2011). We note that we
use a slightly different version of LacI from the one used in Refs. (Milk, Daber, and
Lewis, 2010; Daber and Sochor, 2011), so that the residue numbers in our version
of LacI are shifted upward by 3 bp.

Sequence logos for each LacI mutant are shown in Figure 2.7, along with the wild-
type sequence logo for comparison. As with the wild-type repressor, for each of the
mutant repressors we find that the left half-site of the sequence logo has a higher
information content. for both Y20I and Q21M, the same sequence is preferred in
the left half-site as the wild-type sequence logo. This contrasts with the results
from Milk, Daber, and Lewis, 2010, in which it was found that Y20I prefers an
adenine at sequence position 7, rather than the guanine preferred at this position
by the wild-type repressor. As in Milk, Daber, and Lewis, 2010, we find that an
adenine is preferred at sequence position 8 for the Q21A mutant.

Some more subtle features can be observed when comparing the right half-sites.
Within the right half-site, the most important base positions consistently appear
to be 12, 13, 16, and 17. All mutants, along with the wild-type repressor, prefer
cytosine and adenine at sequence positions 16 and 17. The wild-type, Q21A, and
Q21M mutants all prefer an adenine and a tyrosine at positions 12 and 13, while
the Y20I mutant prefers tyrosine and cytosine. For all mutants, the preferred bases
at positions 16 and 17 are symmetrical to the corresponding bases in the left half-



40

A
C
G
T

A
C
G
T

A
C
G
T

A
C
G
T

Figure 2.7: Point mutations to LacI DNA-binding domain cause subtle changes to
sequence specificity. Mutations were made to residues 20 and 21 of LacI, both of
which lie within the DNA-binding domain. The mutations Y20I and Q21A weaken
the repressor-operator binding energy, while the mutation Q21M strengthens the
binding energy. Y20I exhibits minor changes to specificity in low-information
regions of the binding site, and Q21A experiences a change to specificity within a
high-information region of the binding site. Specifically, Q21A prefers A at
operator position 7 while the wild-type repressor prefers G at this position.

site (positions 4 and 5). By contrast, position 12 is consistently not symmetrical
to position 8 in the right half-site, and position 13 for Y20I is not symmetrical
to position 7 in the right half-site. Thus we see that the lac repressor’s notable
preference for a pseudo-symmetric binding site is preserved in each of the mutants
we tested.

2.3 Discussion
We have shown how the massively parallel reporter assay, Sort-Seq (Kinney and
Callan, 2010), can be used to generate a mapping between regulatory sequence and
transcription factor binding energy using linear energy matrix models. By using a
simple thermodynamic model, we find that this mapping provides further control
over the input-output gene expression characteristics through finer control of the LacI
DNA-binding energy. This work follows from a previous effort in our group to test
the validity of such energy matrix models that describe binding of RNAP (Brewster,
Jones, and Phillips, 2012). Here we explore whether the approach can be applied
more broadly to other regulatory components. Specifically, we first used Sort-Seq
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to map sequence to binding energy by inferring energy matrices for the repressor
LacI. We preform this work in the context of a simple repression architecture, which
represents a widespread bacterial regulatory architecture (Rydenfelt et al., 2014)
that is commonly employed in synthetic biology (Brophy and Christopher A. Voigt,
2014; Khalil and Collins, 2010; Purnick andWeiss, 2009). We then demonstrate the
validity of our model by designing roughly 30 mutant LacI binding site sequences,
where we then demonstrate control over fold-change in gene expression, and show
how such regulatory sequences can be used to optimize the inducible response
of LacI by IPTG. Lastly, we show how Sort-Seq can also be used to probe the
amino acid-DNA interactions. Here we perform Sort-Seq in several E. coli strains
containing mutant LacI proteins and find only minor perturbations to the LacI
sequence specificity following single amino-acid changes to the LacI DNA-binding
domain.

While we focused on the regulatory component of LacI, we believe it will be
possible to use regulatory sequence to predict gene expression more broadly across
the bacterial genome and to other synthetic regulatory constructs, assuming that
a thermodynamic model is in hand that can adequately describe the regulatory
architecture. It is clear from our work that although we could accurately design
regulatory sequenceswith a predictable fold-change, therewere a variety of instances
with notable discrepancies between the measured and predicted fold-change. This
may suggest the need to consider more complex models than our linear energy
matrices that incorporate non-additive contributions (Benos, Bulyk, and Gary D.
Stormo, 2002). Deep-learning algorithms may provide an alternative approach to
model the DNA-protein interactions (Sun et al., 2017). Future work on applying
neural networks is discussed in B.9. Another consideration is that while Sort-
Seq was performed on plasmids, our designed promoters were integrated on the
chromosome, and aspects related to chromosomal context and DNA compaction are
not considered in ourmodel. Landing pad technologies for chromosomal integration
(Kuhlman and Cox, 2010; Zhang et al., 2016; St-Pierre et al., 2013) could enable
massively parallel reporter assays to be performed on chromosomes instead of
on plasmids, and enable more accurate descriptions of chromosomally integrated
promoters. Even when predicted fold-change did not match the observed fold-
change, we still find a clear correlation between the predicted and measured LacI
binding energies, andwe have shown how regulatory sequence and a thermodynamic
model can be used to guide our design of optimized inducible regulatory systems.
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2.4 Methods
Sort-Seq libraries
To generate promoter libraries for Sort-Seq, mutagenized oligonucleotide poolswere
purchased from Integrated DNA Technologies (Coralville, IA). These consisted of
single-stranded DNA containing the lacUV5 promoter and LacI operator plus 15 bp
on each end of PCR amplification. Either the lacUV5 promoter and LacI binding
site, or only the LacI binding site was mutated with a ten percent mutation rate per
nucleotide. These oligonucleotideswere amplified byPCRand inserted back into the
pZS25-operator-YFP construct using Gibson Assembly. This plasmid is maintained
in low copy (5-10 copies per cell) with the SC101 origin of replication (Lutz, 1997).
To achieve high transformation efficiency, reaction buffer components from the
Gibson Assembly reaction were removed by drop dialysis an cells were transformed
by electroporation of freshly prepared cells. Following an initial outgrowth in
SOC media, cells were diluted with 50 mL LB media and grown overnight under
kanamycin selection. Transformation typically yielded 106 − 107 colonies and were
assessed by plating 100 `L of cells diluted 1 : 104 onto an LB plate containing
kanamycin.

DNA Constructs for fold-change measurements
Simple repression motifs used in Sort-Seq experiments and fold-change measure-
ments were adapted from those in Garcia and Phillips, 2011. Briefly, the LacI
operator (O1,O2, or O3) and YFP reporter gene were cloned into a pZS25 back-
ground directly downstream of a lacUV5 promoter, driving expression of the YFP
gene where the operator is not bound by LacI. This plasmid contains a kanamycin
resistance gene for selection. Mutant LacI operator constructs were generated by
PCR amplification of the lacUV5 O1-YFP plasmid using primers containing the
point mutations as well as sufficient overlap for re-circularizing the amplified DNA
by Gibson Assembly.

A second construct was generated to provide expression of lacI gene. Here, lacI
was cloned into a pZS3*1 background the provides constitutive expression of LacI
from a P!C4C$−1 promoter (Lutz, 1997). This plasmid contains a chloramphenicol
resistance gene for selection. To produce strains with different mean copy number
of LacI that differ from the wild-type value of about 11 tetramers per cell, the
ribosomal binding site for the lacI gene was mutated as described in (Salis, Mirsky,
and Christopher A Voigt, 2009) using site-directed mutagenesis (Quickchange II;
Stratagene, San Diego, CA) and further detailed in (Garcia and Phillips, 2011).
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Bacterial Strains
E. coli strains used in this work were derived from K-12 MG1655. To generate
strains with different LacI copy number, the lacI constructs were integrated into
a strain that additionally has the entire lacI and lacZYA operons removed from
the chromosome. These were integrated at the ybcN chromosomal location. This
resulted in strains containing mean LacI copy numbers of R = 30, 62, 130, 610, 870,
which were measured previously by quantitative western blots (Garcia and Phillips,
2011).

For Sort-Seq experiments, plasmid promoter libraries were constructed as described
below and then transformed into the strains with different LacI copy number. For
fold-change measurements, only the native O1 operator and associated mutants were
considered. These simple repression constructs were chromosomally integrated
at the galK chromosomal location. Generation of the final strains containing a
simple repression motif and a specific LacI copy number was achieved by P1
transduction. For each LacI titration experiment, we also generated a strain where
the entire lacI and lacZYA operons were removed, but with only the operator-YFP
construct integrated. This provided us with a fluorescence expression measurement
corresponding to ' = 0, which is necessary for calculation of fold-change.

Sort-Seq fluorescence sorting
For each Sort-Seq experiment, cells were grown to saturation in lysogeny broth (LB)
and then diluted 1 : 10, 000 into minimal media (M9 + 0.5% glucose) for overnight
growth. Once these cultures reached an OD 0.2-0.3 the cells were washed three
times with PBS by centrifugation at 4000 rpm for 10 minutes and at 4°C. They were
then diluted two-fold with PBS to reach an approximate OD of 0.1-0.15. These
cells were then passed through a 40 `m cell strainer to eliminate any large clumps
of cells.

A Beckman Coulter MoFlo XDP cell sorter was used to obtain initial fluorescence
histograms of 500,000 events per library, which were used to set four binning gates
that each covered 15% of the histogram. During sorting of each library, 500,000
cells were collected into each of the four bins. Finally, sorted cells were regrown
overnight in 10 mL of LB media, under kanamycin selection.

Sort-Seq sequencing and data analysis
Overnight cultures from each sorted bin were miniprepped (Qiagen, Germany),
and PCR was used to amplify the mutated region from each plasmid for Illumina
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sequencing. The primers contained Illumina adapter sequences as well as barcode
sequences that enable pooling of the sorted samples. Sequencing was performed
by either the Millard and Muriel Jacobs Genetics and Genomics Laboratory at
Caltech or NGX Bio (San Fransisco, CA). Single-end 100 bp or paired-end 150
bp flow cells were used, with about 500,000 sequences whose PHRED score was
greater than 20 for each base pair, the total number of useful reads per bin was
approximately 300,000 to 500,000 per million reads requested. Energy weight
matrices for binding by LacI and RNAP were inferred using Bayesian parameter
estimation with a error-model-averaged likelihood as previously described (Kinney
and Callan, 2010; Kinney and Atwal, 2014).

Fold-change measurements by flow cytometry
Fold-change measurements were collected as previously described (Razo-Mejia
et al., 2018) on a MACSquant Analyzer 10 Flow Cytometer (Miltenyi Biotec,
Germany). Briefly, YFP fluorescence measurements were collected using 488nm
laser excitation, with a 525/50 nm emission filter. Settings in the instrument panel
for the laser were as follows: trigger on FSC (linear, 423V), SSC (linear, 537 V),
and B1 laser (hlog, 790V). Before each experiment the MACSquant was calibrated
using MACSQuant Calibration Beads (Miltenyi Biotec, CAT NO. 130-093-607).
Following growth of cells to OD 0.2-0.3, they were diluted ten fold in ice-cold
minimal media (M9 + 0.5% glucose). Cells were then automatically sampled from a
96-well plate kept at approximately 4°C - 10°C usingMACSChill 96 Rack (Miltenyi
Biotec, CAT NO. 130-094-459) at a flow rate of 2,000 - 6,000 measurements per
second.

The fold-change in gene expression was calculated by taking the ratio of the mean
YFP expression of the population of cells in the presence of LacI repressor to that
in the absence of LacI repressor. Since the measured fluorescence intensity of each
cell also includes autofluorescence which is present even in the absence of YFP, we
account for this background by computing the fold change as

fold-change =
〈�'>0〉 − 〈�0DC>〉
〈�'=0〉 − 〈�0DC>, 〉

(2.8)

where 〈�'>0〉 is the average cell YFP intensity in the presence of repressor, 〈�'>0〉 is
the average cell YFP intensity in the ansencce of repressor, and 〈�0DC>〉 is the average
cell autofluorescence intensity.
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Data curation
All datawas collected, stored, and preserved using theGit version control software in
combinationwith off-site storage and hostingwebsiteGitHub at url https://github.com/RPGroup-
PBoC/seq_mapping. Sequencing data is available through the NCBI website under
accession number SAMN08930313.
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Supplemental Information: Summary of designed O1 binding site mutant
Mutated binding sites were created for the O1 binding site with 1, 2 or 3 mutations.
All the designed sites are listed in Table 2.2. Each of these sequences have three
predicted energies listed. Sort-seq matrices were generated starting from mutated
libraries based on the WT sequences for the O1, O2, and O3 binding sites. There
are 8 mutations between the O1 and O3 wild type sequences, and as such, these two
generating libraries are very distant in sequence space. We can see that the predicted
energies are different, but are generally within a few :1) .
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Identifier LacI binding site sequence
O1 matrix
prediction

O2 matrix
prediction

O3 matrix
prediction

mut005 AATTGTGAGCGGAGAACAATT -11.929881 -13.428262 -12.243772
mut007 AATTGTGAGCGCATAACAATT -15.633221 -14.197103 -15.296422
mut008 AATTGTGAGCGGATCACAATT -15.520049 -14.133914 -14.986353
mut009 AATTGTGAGCGGAAAACAATT -11.459789 -12.924778 -12.498838
mut010 AATTGCGAGCGGATAACAATT -9.968247 -11.878477 -11.299124
mut011 AATTGTGAGGGGATAACAATT -12.230209 -13.455658 -12.344994
mut012 AATTGTGAGCGGATATCAATT -12.787483 -13.642761 -12.996080
mut013 AATTGTGAGCAGATAACAATT -9.760610 -12.692912 -10.091807
mut014 AATTGTGAGAGGATAACAATT -6.331624 -8.997448 -10.615486
mut102 AATTGTGAGCGGGTAACAACT -13.641728 -13.896787 -14.788271
mut103 AAATGTGAGCGGATAACAACT -13.328345 -13.584199 -14.401196
mut104 AATTGTGAGCGAGTAACAATT -14.044856 -14.070952 -15.122752
mut105 ATTTGTGAGCGGAGAACAATT -11.911801 -13.428375 -11.523189
mut107 CATTGTGAGCGCATAACAATT -15.302753 -14.016493 -14.797621
mut108 AATTGTGAGCGGAACACAATT -11.679837 -12.712688 -13.305983
mut109 AATTGTGAGCGGAATACAATT -9.647010 -12.138189 -12.030819
mut111 AATTGTGAGGGGATAACAATC -14.118290 -14.046511 -12.149832
mut201 AAATGTGAGCGAGTAACAATT -13.558126 -13.874477 -14.571139
mut204 AATTGTGAGCGAGTAACAACT -12.559931 -13.505622 -14.673368
mut205 ATTTGTGAGCGAAGAACAATT -10.830003 -13.037210 -10.827536
mut207 CATTGTGAGCGCATAACATTT -15.171401 -14.057285 -14.182531
mut208 AATTGTGAGCGGAACACAATG -12.337016 -13.053090 -12.175545
mut209 AATTGTGAGCGGGATACAATT -9.473663 -12.254301 -11.857128
mut210 AATTGCGAGCGGATAACAAAG -11.139112 -11.827513 -10.621422
mut211 AATTGTGAGGGTATAACAATC -13.464516 -13.934262 -11.784251

Table 2.2: Summary of all energy predictions for mutant constructs.
We make these predictions as the average of LacI energy matrix created from Sort-
Seq experiments where the mutated libraries are generated from either the O1, O2,
or O3 wild type binding site sequences.
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C h a p t e r 3

A SYSTEMATIC APPROACH FOR DISSECTING THE
MOLECULAR MECHANISMS OF TRANSCRIPTIONAL

REGULATION IN BACTERIA.

A version of this chapter originally appeared as N. M. Belliveau, S. L.Barnes, W.
T. Ireland, D. L. Jones, M. J. Sweredoski, A. Moradian, S. Hess, J. B. Kinney, R.
Phillips (2018). A systematic approach for dissecting the molecular mechanisms
of transcriptional regulation in bacteria. Proceedings of the National Academy of
Sciences, http://doi.org/10.1073/pnas.1722055115.

Author contribution note: for this chapter, I (WI) assisted with experimental design,
data analysis, and manuscript writing.

3.1 Introduction
The sequencing revolution has left in its wake an enormous challenge: the rapidly
expanding catalog of sequenced genomes is far outpacing a sequence-level under-
standing of how the genes in these genomes are regulated. This ignorance extends
from viruses to bacteria to archaea to eukaryotes. Even in E. coli, the model
organism in which transcriptional regulation is best understood, we still have no
indication if or how more than half of the genes are regulated (Fig 1.7; Gama-Castro
et al., 2016; Keseler et al., 2013). In other model bacteria such as Bacillus subtilis,
Caulobacter crescentus, Bibrio harveyii, or Pseudomonas aerguinosa, far fewer
genes have established regulatory mechanisms (Munch, 2003; Cipriano et al., 2013;
Kılıç et al., 2014).

New tools are needed for studying regulatory architecture in these and other bacteria.
Although an arsenal of genetic and biochemical methods have been developed for
dissecting promoter function at individual bacterial promoters (reviewed inMinchin
and Busby, 2009), these methods are not readily parallelized. As a result, they
will likely not lead to a comprehensive understanding of full regulatory genomes
anytime soon. RNA sequencing, chromatin immunoprecipitation, and other high
throughput techniques are increasingly being used to study gene regulation in E.
coli (Grainger et al., 2005; Bonocora and J. T. Wade, 2015; Latif et al., 2018;
Zheng et al., 2004; Singh et al., 2014; Vvedenskaya, Goldman, and Nickels, 2015;
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THE REGULATORY GENOME OF ESCHERICHIA COLI: PROMOTER STUDIED

E. coli
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operons with no
known regulation (67%)
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Figure 3.1: Summary of transcriptional regulatory knowledge in E. coli. left panel:
Well-characterized promoters considered in this work. The schematics highlight
the known regulatory architectures for the annotated promoters of marRAB, relBE,
and lacZYA. The center plot identifies the genomic location of different operons in
E. coli. Operons with annotated TF binding sites are shown in light blue, while
those lacking regulatory descriptions are shown in light red (Gama-Castro et al.,
2016). The genomic location of the promoters considered in this work are labeled.

Wade, 2005)), but these methods are incapable of revealing either the nucleotide
resolution location of all functional transcription factor binding sites, or the way in
which interactions between DNA-bound transcription factors and RNA polymerase
modulate transcription.

In recent years a variety of massively parallel reporter assays have been developed
for dissecting the functional architecture of transcriptional regulatory sequences in
bacteria, yeast, and metazoans. These technologies have been used to infer bio-
physical models of well-studied loci, characterize synthetic promoters constructed
from known binding sites, and search for new transcriptional regulatory sequences
(Kinney, Murugan, et al., 2010; Melnikov et al., 2012; Kheradpour et al., 2013;
Patwardhan et al., 2012; Sharon et al., 2012; Kosuri et al., 2013; Arnold et al.,
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2013; Maricque, Dougherty, and Cohen, 2016). CRISPR assays have also shown
promise for identifying longer range enhancer-promoter interactions in mammalian
cells (Fulco et al., 2016). However, no approach for usingmassively parallel reporter
technologies to decipher the functional mechanisms of previously uncharacterized
regulatory sequences has yet been established.

Here we describe a systematic and scalable approach for dissecting the functional ar-
chitecture of previously uncharacterized bacterial promoters at nucleotide resolution
using a combination of genetic, functional, and biochemical measurements. First, a
massively parallel reporter assay, Sort-Seq (Kinney and Callan, 2010) is performed
on a promoter in multiple growth conditions in order to identify functional tran-
scription factor binding sites. DNA affinity chromatography and mass spectrometry
(Mittler, Butter, and M. Mann, 2008; Mirzaei et al., 2013) are then used to identify
the regulatory proteins that recognize these sites. In this way one is able to iden-
tify both the functional transcription factor binding sites and cognate transcription
factors in previously unstudied promoters. Subsequent massively parallel assays
are then performed in gene-deletion strains to provide additional validation of the
identified regulators. In many cases, the reporter data thus generated can further be
used to infer quantitative models of transcriptional regulation.

In what follows, we first describe the application of this approach to four previously
annotated promoters: lacZYA, relBE, marRAB, and yebG. This illustrates the over-
arching logic of our method and provides a benchmark for how well these methods
work. We then describe this strategy applied to the previously uncharacterized pro-
moters of purT, xylE, and dgoRKADT. These results demonstrate the ability to go
from complete regulatory ignorance to an explicit quantitativemodel of a promoter’s
input-output behavior.

3.2 Results
To dissect how a promoter is regulated, we begin by performing Sort-Seq (Kinney
and Callan, 2010). As shown in Fig 3.2, Sort-Seq works by first generating a library
of cells, each of which contains a mutated promoter that drives expression of GFP
from a low copy plasmid (5-10 copies per cell; Lutz, 1997) and provides a read-out of
transcriptional state. We use fluorescence-activated cell sorting (FACS) to sort cells
into multiple bins gated by their fluorescence level and then sequence the mutated
plasmids from each bin. We found it sufficient to sort the libraries into four bins and
generated data sets of approximately 0.5-2 million sequences across the sorted bins
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(Fig. 3.12 (A)-(D)). Putative binding sites were identified by examining expression
shift plots which show the average change in fluorescence when each position is
mutated (Fig. 3.2(B)). Mutations to the DNA will disrupt binding of transcription
factors, so regions with a positive shift are suggestive of binding by a repressor,
while a negative shift suggests binding by an activator or RNA polymerase (RNAP).

The identified binding sites are further interrogated by performing information-based
modeling with the Sort-Seq data. Here we generate energy matrix models (Kinney
and Callan, 2010; Ireland and Kinney, 2016) that describe the sequence-dependent
energy of interaction of a transcription factor at the putative binding site. For each
matrix, we use a convention that the wild-type sequence is set to have an energy of
zero (see example energy matrix in Fig. B.4. Mutations that enhance binding are
identified in blue, while mutations that weaken binding are identified in red. We
also use the energy matrices to generate sequence logos (Berg and Hippel, 1987;
Schneider and Stephens, 1990; Stormo, 2000) which provides a useful visualization
of the sequence-specificity (see above matrix in Fig. 3.2(B)).

We next perform DNA affinity chromatography experiments using DNA oligonu-
cleotides containing the binding sites identified by Sort-Seq. Here we apply a stable
isotopic labeling of cell culture (SILAC) approach (Ong et al., 2002), which enables
us to perform a second reference chromatography experiment that is simultaneously
analyzed by mass spectrometry to identify the target transcription factor. As shown
in Fig.3.2(C), we begin by preparing two cell lysates: one with cells supplemented
with natural lysine and the other with a heavy isotopic form of lysine. We then
perform chromatography using magnetic beads with the tethered oligonucleotides.
Our reference experiment is performed identically, except that the binding site has
been mutated away from the original sequence (and is performed using the light
lysate). The abundance of each protein is determined by mass spectrometry and
used to calculate protein enrichment ratios, with the target transcription factor ex-
pected to exhibit a ratio greater than one. Most proteins detected will exhibit a
protein enrichment near one due to non-specific binding in both purifications.

The energy matrix models and results from each DNA affinity chromatography
experiment provide insight into the identity of each regulatory factor and hypotheses
about potential regulatory mechanisms. In some instances we are able to test these
hypotheses further with additional information-based modeling of thermodynamic
models on our Sort-Seq data. Finally, to confirm binding by an identified regulator
we perform Sort-Seq experiments in gene deletion strains, which no longer show
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Figure 3.2: Overview of approach to characterize transcriptional regulatory DNA,
using Sort-Seq and mass spectrometry. (A) Schematic of Sort-Seq. A promoter
plasmid library is placed upstream of GFP and is transformed into cells. The cells
are sorted into four bins by FACS and after regrowth, plasmids are purified and
sequenced. The entire intergenic region associated with a promoter is included on
the plasmid and a separate downstream ribosomal binding site sequence is used for
translation of the GFP gene. (B) Regulatory binding sites are identified by
calculating the average expression shift due to mutation at each position. The
schematic shows the expression shift on a promoter region containing an activator
(orange), RNAP (blue), and repressor (green) binding site. Quantitative models
can be inferred to describe the associated DNA-protein interactions. An example
energy matrix that describes the binding energy between an as yet unknown
activator to the DNA is shown. By convention, the wild-type nucleotides have zero
energy, with blue squares identifying mutations that enhance binding (negative
energy), and where red squares reduce binding (positive energy).
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the positive or negative shift in expression along the binding site.

Sort-Seq recovers the known regulatory features of well-characterized promot-
ers
To first demonstrate Sort-Seq as a tool to discover regulatory binding sites de novo
we began by looking at the promoters of lacZYA, relBE, and marRAB (Oehler et al.,
1990; Grainger et al., 2005; Alekshun and Levy, 1997). These promoters have been
studied extensively and provide a useful test bed of distinct regulatory motifs to test
our approach. To proceed we constructed libraries for each promoter by mutating
their known regulatory binding sites. We also considered two different mutation
frequencies in our libraries. For lac, our library had amutation rate of approximately
three percent per bp, while mar and rel had a rate of roughly nine percent per bp.
For a 20 bp binding site, this corresponds to an average of less than one mutation per
sequence at the low mutation rate, and about two mutations at the high mutation rate
(See Supplemental Section 3.8 and Fig. 3.12(E),(F) for additional characterization).

We begin by considering the lac promoter. It contains three lac repressor (LacI)
binding sites, two of which we consider here, and a cyclic AMP receptor (CRP)
binding site. It exhibits the classic catabolic switch-like behavior that results in
diauxie when E. coli is grown in the presence of glucose and lactose sugars (Loomis
andMagasanik, 1967; Oehler et al., 1990; Busby and Ebright, 1999). We performed
Sort-Seq with cells grown inM9minimal media at 37°C. The information footprints
and expression shifts at each position are shown in Fig. 3.3(A), with annotated
binding sites from RegulonDB noted above the plot. The expression shifts reflect
the expected regulatory role of each binding site, showing positive shifts for LacI
and negative shifts for CRP and RNAP. The difference in magnitude at the two LacI
binding sites likely reflect the different binding energies between these two binding
site sequences, with LacI O3 having an in vivo dissociation constant that is almost
three orders of magnitude weaker than the LacI O1 binding site (Oehler et al., 1990;
Garcia and Phillips, 2011).

Next we consider the rel promoter that transcribes the toxin-antitoxin pair RelBE and
RelB. It is one of about 36 toxin-antitoxin systems found on the chromosome, with
important roles in cellular physiology including cellular persistence (Grainger et al.,
2005; Yamaguchi and Inouye, 2011; Maisonneuve and Gerdes, 2014). When the
toxin, RelE, is in excess of its cognate binding partner, the antitoxin RelB, the toxin
causes cellular paralysis through cleavage of mRNA (Griffin, Davis, and Strobel,
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Figure 3.3: Sort-Seq identifies the regulatory landscape of the lac, rel, and mar
promoters. (A) Sort-Seq of the lac promoter. Cells were grown in M9 minimal
media with 0.5% glucose. Expression shifts are shown, with annotated binding
sites for CRP (activator), RNAP (-10 and -35 subsites), and LacI (repressor) noted.
Energy matrices and sequence logos are shown for each binding site. (B) Sort-Seq
of the rel promoter. Cells were also grown in M9 minimal media with 0.5%
glucose. The information footprints and expression shifts identify the binding sites
of RNAP and RelBE (repressor), and energy matrices and sequence logos are
shown for these. (C) Sort-Seq of the mar promoter. Here cells were grown in
Lysogeny broth (LB) at 30°C. The expression shifts identify the known binding
sites of Fis and MarA (activators), RNAP, and MarR (repressor). Energy matrices
and sequence logos are shown for MarA and RNAP.
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2013). Interestingly, the antitoxin protein also contains a DNA binding domain and
is a repressor of its own promoter (Gotfredsen and Gerdes, 1998; Overgaard, Borch,
and Gerdes, 2009; Cataudella, Trusina, et al., 2012; Cataudella, Sneppen, et al.,
2013). We performed Sort-Seq with cells grown in M9 minimal media and at 37°C.
The expression shifts are shown in Fig. 3.3(B) and were consistent with binding by
RNAP and RelBE. In particular, a positive shift was observed at the binding site for
RelBE, and the RNAP binding site showed mainly a negative shift in expression.

The third promoter, mar, is associated with multiple antibiotic resistance since its
operon codes for the transcription factor MarA, which activates a variety of genes
including the major multi-drug resistance efflux pump, ArcAB-tolC, and increases
antibiotic tolerance (Alekshun and Levy, 1997). The mar promoter is itself acti-
vated by MarA, SoxS, and Rob (via the so-called marbox binding site), and further
enhanced by Fis, which binds upstream of this marbox (Martin and Rosner, 1997).
Under standard laboratory growth it is under repression by MarR (Aono, Tsuk-
agoshi, and M. Yamamoto, 1998). We found that the promoter’s fluorescence was
quite dim in M9 minimal media and instead grew libraries in lysogeny broth (LB)
at 30°C (Seoane and Levy, 1995). Again, the different features in the information
footprint and expression shift plot (Fig. 3.3(C)) appeared to be consistent with
the noted binding sites. One exception was that the downstream MarR binding
site was not especially apparent. Both positive and negative expression shifts were
observed along its binding site, which may be due to overlap with other features
present including the native ribosomal binding site. There have also been reported
binding sites for CRP (Ruiz and Levy, 2010; Zheng et al., 2004), Cra (Shimada,
K. Yamamoto, and A. Ishihama, 2011), CpxR/CpxA (Weatherspoon-Griffin et al.,
2014), and ArcR (Lee, Cho, and Kim, 2014). However these studies either required
overexpression of the associated transcription factor, were computationally identi-
fied, or demonstrated through in vitro assays and were not observed under the growth
condition considered here.

While each promoter qualitatively showed the expected regulatory behavior in each
expression shift plot, we were also interested in whether we could recover the
quantitative sequence specificity of each transcription factor from our data. We
inferred energy matrices and associated sequence logos for the binding sites of
RNAP, LacI, CRP, RelBE, MarA, and Fis. These are shown in Fig. 3.3 (A)-(C) and
Fig. 3.4, and agreed with sequence logos generated from known genomic binding
sites for these transcription factors (Pearson correlation coefficient A = 0.5 − 0.9;
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Figure 3.4: Comparison between Sort-Seq and genomic-based sequence logos.
Comparisons are shown for LacI, CRP, MarA, Fis, PurR, XylR, LexA, and RNAP.
Binding site sequences were obtained from RegulonDB, where n identifies the
number of genomic binding sites that were used to construct the sequence logo.
The Sort-Seq RNAP logo is based on data from the rel promoter. For the genomic
RNAP logo, sequences were taken from computationally predicted RNAP binding
sites on RegulonDB (top 3.3% scored sequences using their reported metric) for
the 6 bp regions of the -10 and -35 binding sites. Pearson correlation coefficients
are calculated with Equation 4.7 using the position weight matrices from the
Sort-Seq and genomic matrices. For LexA, the first four bp were not used in the
calculation due to overlap with the -10 RNAP binding site of the yebG promoter.

see Supplemental Section 3.9).

Identification of transcription factors with DNA affinity chromatography and
quantitative mass spectrometry.
For our purpose of completely dissecting a promoter, it was next important to show
that DNA affinity chromatography could indeed be used to identify transcription
factors in E. coli. In particular, a challenge arises in identifying transcription factors
due to their very low abundance. In E. coli the cumulative distribution in protein
copy number shows that more than half have a copy number less than 100 per cell,
with 90 % having copy number less than 1,000 per cell. This is several orders of
magnitude below that of many other cellular proteins (Li et al., 2014).

We began by applying the approach to known binding sites for LacI and RelBE. For
LacI, which is present in E. coli in about 10 copies per cell, we used the strongest
binding site sequence, Oid (in vivo  3 ≈ 0.05="), and the weakest natural operator
sequence, O3 (in vivo 3 ≈ 110=") (Oehler et al., 1990; S. Oehler, 2006; Kuhlman,
Z. Zhang, et al., 2007; Garcia and Phillips, 2011). In Fig. 3.5(A) we plot the protein
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Figure 3.5: DNA affinity purification and identification of LacI and RelBE by mass
spectrometry using known target binding sites. (A) Protein enrichment using the
weak O3 binding site and strong synthetic Oid binding sites of LacI. LacI was the
most significantly enriched protein in each purification. The target DNA region
was based on the boxed area of the lac promoter schematic, but with the native O1
sequence replaced with either O3 or Oid. Data points represent average protein
enrichment for each detected transcription factor, measured from a single
purification experiment. (B) For purification using the RelBE binding site target,
both RelB and its cognate binding partner RelE were significantly enriched. Data
points show the average protein enrichment from two purification experiments.
The target binding site is similarly shown by the boxed region of the rel promoter
schematic. Data points in each purification show the protein enrichment for
detected transcription factors. The gray shaded regions show where 95% of all
detected protein ratios were found.
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enrichments from each transcription factor identified by mass spectrometry. LacI
was found with both DNA targets, with fold enrichment greater than 10 in each case,
and significantly higher than most of the proteins detected (indicated by the shaded
region, which represents the 95% probability density region of all proteins detected,
including non-DNA binding proteins). Purification of LacI with about 10 copies
per cell using the weak O3 binding site sequence is near the limit of what would be
necessary for most E. coli promoters.

To ensure this successwas not specific toLacI,we also applied chromatography to the
RelBE binding site. RelBE provides an interesting case since the strength of binding
by RelB to DNA is dependent on whether RelE is bound in complex to RelB. There
is at least a 100 fold weaker dissociation constant reported in the absence of RelE
(G.-Y. Li et al., 2008; Overgaard, Borch, Jørgensen, et al., 2008). As shown in Fig.
3.5(B), we found over 100 fold enrichment of both proteins by mass spectrometry.
As a consequence of performing a second reference purification, we find that fold
enrichment should mostly reflect the difference in binding energy between the DNA
sequences used in the two purifications, and be much less dependent on whether the
protein was in low or high abundance within the cell. This appeared to be the case
when considering other E. coli strains with LacI copy numbers between about 10
and 1,000 copies per cell (Fig. 3.6 (C)). Further characterization of the measurement
sensitivity and dynamic range of this approach is noted in Supplemental Section
3.12.

Sort-Seq discovers regulatory architectures in unannotated regulatory regions.
Given that more than half of the promoters in E. coli have no annotated transcription
factor binding sites in RegulonDB, we narrowed our focus by using several high
throughput studies to identify candidate genes to apply our approach (Marbach et al.,
2012; Schmidt et al., 2016). The work by Schmidt et al., 2016 in particular measured
the protein copy number of about half the E. coli genes across 22 distinct growth
conditions. Using this data, we identified genes that had substantial differential
gene expression patterns across growth conditions, thus hinting at the presence of
regulation and even how that regulation is elicited by environmental conditions (see
further details in Supplemental Information Section A and Fig. 3.7(A)-(C)). On
the basis of this survey, we chose to investigate the promoters of purT, xylE, and
dgoRKADT. To apply Sort-Seq in a more exploratory manner, we considered three
60 bp mutagenized windows spanning the intergenic region of each gene. While it
is certainly possible that regulatory features will lie outside of this window, a search
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Figure 3.6: Identification of transcription factors using DNA-affinity
chromatography and mass spectrometry. (A) Characterization of stable isotopic
lysine labeling and mass spectrometry measurement sensitivity. Lysates from cell
cultures grown in either heavy (13�15

6 #2-L-lysine) or normal L-lysine were
combined at ratios between 0.1:1 to 1000:1 heavy:light and the measured ratios in
abundance are plotted for each protein. Note that for the 1:1 ratio we found a
median ratio of 0.71. We therefore renormalized the ratio values using this as a
correction factor. Data points represent the average values from n = 3 replicates.
The gray line represents the expected measurement under perfect labeling, while
the red line represents a 99.1% labeling efficiency (assuming that some fraction of
heavy lysate is unlabeled). (B) DNA-affinity purification using the same DNA
oligonucleotide to purify protein for both heavy and light cell lysates (n = 3). The
scatter plot shows the average enrichment values for each protein detected.
Proteins with DNA binding motifs (Keseler et al., 2013) are shown in red (n = 41),
while other detected proteins are in blue (n = 581). Error bars represent the
standard deviation, calculated from log protein enrichment values. The histogram
shows the distribution of the measured ratios for all detected proteins, with 95% of
the measurements contained between a log enrichment of -1.5 and 1.2, as indicated
by the shaded region. (C) DNA-affinity purification of LacI using three different E.
coli strains. Operator strength was varied by purifying LacI with either the weak
O3 or strong Oid operators. LacI was detected as the most significantly enriched
protein among all proteins detected. (D) States and weights are shown for an
oligonucleotide in which a target transcription factor and other cellular proteins
compete for a DNA binding site.
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of known regulatory binding sites suggest that this should be sufficient to capture
just over 70% of regulatory features in E. coli and provide a useful starting point
(Fig. 3.7(D)).

The purT promoter contains a simple repression architecture and is repressed
by PurR.
The first of our candidate promoters is associated with expression of purT, one of
two genes found in E. coli that catalyze the third step in de novo purine biosynthesis
(Rolfes, 2006; Cho et al., 2011). Due to a relatively short intergenic region, about
120 bp in length that is shared with a neighboring gene yebG, we also performed
Sort-Seq on the yebG promoter (oriented in the opposite direction (Lomba et al.,
1997); see schematic in Fig. 3.8(A)). To begin our exploration of the purT and
yebG promoters, we performed Sort-Seq with cells grown in M9 minimal media
with 0.5% glucose. The associated expression shift plots are shown in Fig. 3.8(A).
While we performed Sort-Seq on a larger region than shown for each promoter, we
only plot the regions where regulation was apparent.

For the yebG promoter, the features were largely consistent with prior work, contain-
ing a binding sites for LexA and RNAP. However, we found that the RNAP binding
site is shifted 9 bp downstream from what was identified previously through a com-
putational search (Lomba et al., 1997), demonstrating the ability of our approach to
identify and correct errors in the published record. Wewere also able to confirm that
the yebG promoter was induced in response to DNA damage by repeating Sort-Seq
in the presence of mitomycin C (a potent DNA cross-linker known to elicit the SOS
response and proteolysis of LexA (Wade, 2005); see Fig. 3.10(A), (B), and (D)).

Given the role of purT in the synthesis of purines, and the tight control over purine
concentrations within the cell (Rolfes, 2006), we performed Sort-Seq of the purT
promoter in the presence or absence of the purine or adenine, in the growthmedia. In
growth without adenine (Fig. 3.8(A), right plot), we observed two negative regions
in the information footprint and expression shift plots. We infer and energy matrix
and examine the sequence preference of the site, these two features were identified
as the -10 and -35 regions of an RNAP binding site. While these two features were
still present upon addition of adenine, as shown in Fig. 3.8(B), this growth condition
also revealed a putative repressor site between the -35 and -10 RNAP binding sites,
indicated by a positive shift in expression (green annotation).

Following our strategy to find not only the regulatory sequences, but also their
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Figure 3.7: Identification of unannotated genes with potential regulation and
distribution of known transcription factor binding sites in E. coli. (A) Here we
show the protein copy numbers per cell for GalE across several carbon sources.
Expression was sensitive to the presence of galactose which is consistent with its
known regulation (with about 5000 copies per cell, versus about 500 for most other
growth conditions). (B) DgoD was also found to be sensitive to the presence of
galactose as the carbon source. The copy number was measured to be 675 copies
per cell when cells were grown in galactose, and 15 copies per cell or less in all
other conditions considered. For both (A) and (B), values are shown for growth in
M9 minimal media, with glucose, xylose, acetate, galactose, and glycerol as carbon
sources and obtained from (Schmidt et al., 2016). (C) Coefficient of variation
(standard deviation divided by mean copy number) across the 22 growth conditions
for each protein measured in (Schmidt et al., 2016). Proteins are identified as either
having regulatory annotation (blue) or not (red) using the annotations in
RegulonDB (Gama-Castro et al., 2016). GalE is noted among the annotated genes
and provides a reference as a gene that is known to be regulated and be perturbed
in this study, as shown in (A). (D) The histogram shows the genome-wide
distribution of transcription factor binding sites relative to their respective
transcription start sites. Binding sites were compiled from RegulonDB and used to
calculate the number of overlapping binding sites at each position using the length
and position of each binding site sequence. The location of the 150 bp mutation
window used in this study is shown in blue, expected to capture upwards of 70% of
known transcription factor binding site position.
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regulatory architecture of the purT promoter. (A) A schematic is shown for the
approximately 120 bp region between the yebG and purT genes, which code in
opposite directions. Information footprints and expression shifts are shown for 60
bp regions where regulation was observed for each promoter, with positions noted
relative to the start codon of each native coding gene. The -10 and -35 RNAP
binding sites are identified in blue. (B) Expression shifts for the purT promoter, but
in M9 minimal media with 0.5% glucose supplemented with adenine (100 `g/ml).
A putative repressor site is annotated in green. (C) DNA affinity chromatography
was performed using the identified repressor site and protein enrichment values for
transcription factors are plotted. Cell lysate was produced from cells grown in M9
minimal media with 0.5% glucose. Binding was performed in the presence of
hypoxanthine (10 `g/ml). Error bars represent the standard error of the mean,
calculated using log protein enrichment values from three replicates, and the gray
shaded region represents 95% probability density region of all protein detected.
(D) Identical to (B) but performed with cells containing a Δ purR genetic
background. (E) Summary of regulatory binding sites and transcription factors that
bind within the intergenic region between the genes of yebG and purT.
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associated transcription factors, we next appliedDNA affinity chromatography using
this putative binding site sequence. In our initial attempt however, we were unable
to identify any substantially enriched transcription factor (Fig. 3.10(C)). With
repression observed only when cells were grown in the presence of adenine, we
reasoned that the transcription factor may require a related ligand in order to bind
the DNA, possibly through an allosteric mechanism. Importantly, we were able
to infer an energy matrix to the putative repressor site whose sequence-specificity
matched that of the well-characterized repressor, PurR (A = 0.82; see Fig. 3.4). We
also noted ChIP-chip data of PurR that suggests it might bind within this intergenic
region (Cho et al., 2011). We therefore repeated the purification in the presence of
hypoxanthine, which is a purine derivative that also binds PurR (Choi and Zalkin,
1992). As shown in Fig. 3.8(C), we now observed a substantial enrichment of
PurR with this putative binding site sequence. As further validation, we performed
Sort-Seq once more in the adenine-rich growth condition, but in a Δ ?DA' strain. In
the absence of PurR, the putative repressor binding site disappeared (Fig. 3.8(D)),
which is consistent with PurR binding at this location.

In Fig. 3.8(E) we use a "regulatory cartoon" to summarize the regulatory features
between the coding genes of purT and yebG, including the new features identified by
Sort-Seq. With the appearance of a simple repression architecture (Bintu et al., 2005)
for the purT promoter, we extended our analysis by developing a thermodynamic
model to describe repression by PurR. This enabled us to infer the binding energies
of RNAP and PurR in absolute :1) energies as was done in section 2.2, and we
show the resulting model in Fig. 3.8(E).

The xylE operon is induced in the presence of xylose, mediated through binding
of XylR and CRP.
The next unannotated promoter we considered was associated with expression of
xylE, a xylose/proton symporter involved in uptake of xylose. From our analysis
of the Schmidt et al. (Schmidt et al., 2016) data, we found that xylE was sensitive
to xylose and proceeded by performing Sort-Seq in cells grown in this carbon
source. Interestingly, the promoter exhibited essentially no expression in other
media (Fig. 3.10(E)). We were able to locate the RNAP binding site between -80
bp and -40 bp relative to the xylE gene (Fig. 3.9(A), annotated in blue). In addition,
the entire region upstream of the RNAP appeared to be involved in activating
gene expression (annotated in orange in Fig. 3.9(A)), suggesting the possibility of
multiple transcription factor binding sites.
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Figure 3.9: Sort-Seq identifies a set of activator binding sites that drive expression
of RNAP at the xylE promoter. (A) Expression shifts are shown for the xylE
promoter, with Sort-Seq performed on cells grown in M9 minimal media with
0.5% xylose. The -10 and -35 regions of an RNAP binding site (blue) and a
putative activator region (orange) are annotated. (B) DNA affinity chromatography
was performed using the putative activator region and protein enrichment values
for transcription factors are plotted. Cell lysate was generated from cells grown in
M9 minimal media with 0.5% xylose and binding was performed in the presence
of xylose supplemented at the same concentration as during growth. Error bars
represent the standard error of the mean, calculated using log protein enrichment
values from three replicates. The gray shaded region represents 95% probability
density region of all proteins detected. (C) An energy matrix was inferred for the
region upstream of the RNAP binding site. The associated sequence logo is shown
above the matrix. Two binding sites for XylR were identified (see also Fig. 3.4)
along with a CRP binding site. (D) Summary of regulatory features identified at
xylE promoter, with the identification of an RNAP binding site and tandem binding
sites for XylR and CRP.
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We applied DNA affinity chromatography using a DNA target containing this entire
upstream region. Due to the stringent requirement for xylose to be present for any
measurable expression, xylose was supplemented in the lysate during binding with
the target DNA. In Fig. 3.9(B) we plot the enrichment ratios from this purification
and find XylR to be most significantly enriched. From an energy matrix inferred for
the entire region upstream of the RNAP site, we were able to identify two correlated
15 bp regions (dark yellow shaded regions in Fig. 3.9(C)). Mutations of the XylR
protein have been found to diminish transport of xylose (Song and Park, 1997),
which in light of our result, may be due in part to a loss of activation and expression
of this xylose/proton symporter. These binding sites were also similar to those found
on two other promoters known to be regulated by XylR (xylA and xylF promoters),
whose whose promoters also exhibit tandem XylR binding sites and strong binding
energy predictions with our energy matrix (Fig. 3.10(F)).

Within the upstream activator region in Fig. 3.9(A) there still appeared to be a bind-
ing site unaccounted for with these tandem XylR binding sites. From the energy
matrix, we were further able to identify a binding site for CRP, which is noted up-
stream of the XylR binding sites in Fig.3.9(C).While we did not observe a significant
enrichment of CRP in our protein purification, the most energetically favorable se-
quence predicted by ourmodel, TGCGACCNAGATCACA, closelymatches theCRP
consensus sequence of TGTGANNNNNNTCACA. In contrast to the lac promoter,
binding by CRP here appears to depend more on the right half of the binding site
sequence. CRP is known to activate promoters by multiple mechanisms (Browning
and Busby, 2016), and CRP binding sites have been found adjacent to the activators
XylR and AraC (Song and Park, 1997; Laikova, Mironov, and Gelfand, 2001), in
line with our result. While further work will be needed to characterize the specific
regulatory mechanism here, it appears that activation of RNAP is mediated by both
CRP and XylR and we summarize this result in Fig. 3.9(D). The topic is considered
further in Appendix A).

The dgoRKADT promoter is auto-repressed by DgoR, with transcription medi-
ated by class II activation by CRP.
As a final illustration of the approach developed here, we considered the unanno-
tated promoter of dgoRKADT. The operon codes for D-galactonate-catabolizing
enzymes; D-galactonate is a sugar acid that has been found as a product of
galactose metabolism (Cooper, 1978). We began by measuring expression from
a non-mutagenized dgoRKADT promoter reporter to glucose, galactose, and D-
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Figure 3.10: lexA and yebG regulation. (A) Energy matrices were inferred for the
binding sites of LexA and RNAP. Data are from cells grown in M9 minimal media
with 0.5% glucose.
(B) Fluorescence histograms for a wild-type yebG promoter plasmid are shown for
cells grown inM9minimalmediawith 0.5%glucose, andwith or withoutmitomycin
C (1 `g/ml). Mitomycin C induces the SOS response (M. R. Lomba et al., 2006)
and dramatically increases expression from the yebG promoter. Autofluorescence
histograms refer to cells that did not contain the GFP promoter plasmid. (C) DNA
affinity chromatography performed using the identified repressor site on the purT
promoter. Cell lysate was produced from cells grown in M9 minimal media with
0.5% glucose and binding was performed in the presence of adenine (100 `g/ml)
to match the growth conditions where repression was observed. (D) Information
footprints and expression shift plots are shown for the yebG promoter in the presence
or absence of mitomycin C (1 `g/ml). Cells were grown inM9minimal media 0.5%
glucose. (E) Fluorescence histograms are shown for the three xylE libraries (different
mutated regions), with cells grown in M9 minimal media with either 0.5% glucose
or 0.5% xylose. While xylose led to differential expression for the different libraries,
cells grown in glucose were identical to autofluorescence.
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galactonate. Cells grown in galactose exhibited higher expression than in glucose,
as found by Schmidt et al. (Schmidt et al., 2016) and even higher expression when
cells were grown in D-galactonate (Fig. 3.10(A)). This likely reflects the physi-
ological role provided by the genes of this promoter, which appear necessary for
metabolism of D-galactonate. We therefore proceeded by performing Sort-Seq with
cells grown in either glucose or D-galactonate, since these appeared to represent
distinct regulatory states, with expression low in glucose and high in D-galactonate.
Information footprints and expression shift plots from each growth conditions are
shown in Fig. 3.11 (A). We begin by considering the results from growth in glucose
(Fig. 3.11(A), top plot). Here we identified an RNAP binding site between -30
bp and -70 bp, relative to the native start codon for dgoR (Fig. 3.10(B). Another
distinct feature was a positive expression shift in the region between -140 bp and
-110 bp, suggesting the presence of a repressor binding site. Applying DNA affinity
chromatography using this target not apparent due to binding by DgoR. While only
one RNAP -10 motif is clearly visible in the sequence logo shown Fig. 3.11 (C) (top
sequence logo; TATAAT consensus sequence), we used simulations to demonstrate
that the entire sequence logo shown can be explained by the convolution of three
overlapping RNAP binding sites (See Fig. 3.10(F)).

Next we consider the D-galactonate growth condition (Fig. 3.11(A), bottom plot).
Like in the expression shift plot for theΔ dgoR strain grown in glucose, we no longer
observe the positive expression shift between -140 bp and -110 bp. This suggests
that DgoR may be induced by D-galactonate or a related metabolite. However, in
comparison with the expression shifts in the Δ dgoR strain grown in glucose, there
were some notable differences in the region between -160 bp and -140 bp. Here
we find evidence for another CRP binding site. The sequence logo identifies the
sequence TGTGA (Fig. 3.11(D), bottom logo), which matches the left side of the
CRP consensus sequence. In contrast to the lac and xylE promoters however, the
right half of the binding site directly overlaps with where we would expect to find
a -35 RNAP binding site. This type of interaction by CRP has been previously
observed and is defined as class II CRP dependent activation (Browning and Busby,
2016), though this sequence-specificity has not been previously described.

In order to isolate and better identify this putative CRP binding site we repeated
Sort-Seq inE. coli strain JK10, grown in 500 `McAMP. Strain JK10 lacks adenlyate
cyclase (cyaA) and phosphodiesterase (cpdA), which are needed for cAMP synthesis
and degradation, respectively, and is thus unable to control intracellular cAMP levels
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Figure 3.11: The dgoRKADT promoter is induced in the presence of D-galactonate
due to loss of repression by DgoR and activation by CRP. (A) Expression shifts
due to mutating the dgoRKADT promoter are shown for cells grown in M9
minimal media with either 0.5% glucose (top) or 0.23% D-galactonate (bottom).
Regions identified as RNAP binding sites (-10 and -35) are shown in blue and
putative activator and repressor binding sites are shown in yellow and purple,
respectively. (B) DNA affinity purification was performed targeting the region
between -145 to -110 of the dgoRKADT promoter. The transcription factor DgoR
was found most enriched among the transcription factors plotted. Error bars
represent the standard error of the mean, calculated using log protein enrichment
values from three replicates, and the gray shaded region represents 95%
probability density region of all proteins detected. (C) Sequence logos were
inferred for the most upstream 60 bp region associated with the upstream RNAP
binding site annotated in (A). Multiple RNAP binding sites were identified using
Sort-Seq data performed in a Δ dgoR strain, grown in M9 minimal media with
0.5% glucose. Below this, a sequence logo was also inferred using data from
Sort-Seq performed on wild-type cells, grown in D-galactonate, identifying a CRP
binding site (class II activation; Browning and Busby, 2004). (D) Summary of
regulatory features, with sequence logos, for features identified at dgoRKADT
promoter, with the identification of multiple RNAP binding sites, and binding sites
for DgoR and CRP. An initial estimate of -7.3 :1) was determined for the
interaction energy between CRP and RNAP, Y8.
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necessary for activation by CRP (derivative of TK310 (Kuhlman, Z. Zhang, et al.,
2007)). Growth in the presence of 500 `M cAMP provided strong induction from
the dgoRKADT promoter and resulted in a sequence logo at the putative CRP binding
site that even more clearly resembled binding by CRP (Fig. 3.10(E)). This is likely
because expression is now dominated by the CRP activated RNAP binding site.
Importantly, this data allowed us to further infer the interaction energy between
CRP and RNAP, which we estimate to be -7.3 :1) (further detailed Appendix A).
We summarize the identified regulatory features in Fig. 3.11(D).

3.3 Discussion
Wehave established a systematic and scalable procedure for dissecting the functional
mechanisms of previously uncharacterized regulatory sequences in bacteria. A
massively parallel reporter assay, Sort-Seq (Kinney and Callan, 2010), is used to
first elucidate the locations of functional transcription factor binding sites. DNA
oligonucleotides containing these binding sites are then used to enrich the cognate
transcription factors and identify them by mass spectrometry analysis. Information-
based modeling and inference of energy matrices that describe the DNA binding
specificity of regulatory factors provide additional insight into transcription factor
identity and the growth condition dependent regulatory architectures.

To validate this approach we examined four previously annotated promoters. Our
Sort-Seq results were in good agreement with established knowledge for lacZYA,
relBE, marRAB (Oehler et al., 1990; Kinney and Callan, 2010; Garcia and Phillips,
2011; Bech et al., 1985; Gotfredsen andGerdes, 1998; Overgaard, Borch, Jørgensen,
et al., 2008; Seoane and Levy, 1995; Alekshun and Levy, 1997). For the yebG
promoter, our approach corrected an error in a previous annotation. DNA affinity
chromatography experiments on these promoters were found to be highly sensitive.
In particular, LacI was unambiguously identified with the weak O3 binding site,
even though LacI is present in only about 10 copies per cell (Garcia and Phillips,
2011).

Emboldened by this success, we then studied promoters having little or no prior
regulatory annotation: purT, xylE, dgoR. Through extensive modeling of the Sort-
Seq data and DNA affinity chromatography of many identified binding sites, our
analysis led to a collection of new regulatory hypotheses. For the purT promoter,
we identified a simple repression architecture (Bintu et al., 2005), with repression
by PurR. The xylE promoter was found to undergo activation only when cells are
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grown in xylose, likely due to allosteric interaction between the activator XylR
and xylose, and activation by CRP (Song and Park, 1997; Laikova, Mironov, and
Gelfand, 2001). Finally, in the case of dgoR, the base pair resolution allowed us
to tease apart multiple overlapping binding sites. In particular, we were able to
identify multiple RNAP binding sites along the length of the promoter. Of these,
one set of RNAP binding sites were repressed by DgoR when cells were grown
in glucose, but activated through class II activation by CRP when D-galactonate
was used as the sole carbon source. We view these results as a critical first step
in the quantitative dissection of transcriptional regulation, which will ultimately be
needed for a predictive understanding of how such regulation works. The regulatory
cartoons shown in Fig. 3.8(D) and Fig. 3.9(D) will serve as a starting point for
further mathematical dissection of these promoters and will lead to a series of
quantitative predictions for how the different promoters work.

There are a number of ways to further increase the resolution and throughput of
the methods we have described. Microarray-synthesized promoter libraries allow
multiple loci to be studied simultaneously as we prove in Chapter 4. Landing pad
technologies for chromosomal integration (Kuhlman and E. C. Cox, 2010; H. Zhang
et al., 2016), should enable massively parallel reporter assays to be performed in
chromosomes instead of on plasmids. Techniques that combine these assays with
transcription start site readout (Vvedenskaya, Goldman, and Nickels, 2015) may
further allow the molecular regulators of overlapping RNAP binding sites to be
deconvolved, or the contributions from separate RNAP binding sites, like those
observed on the dgoR promoter, to be better distinguished.

Although our work was directed toward regulatory regions of E. coli, there are no
intrinsic limitations that restrict the analysis to this organism. Rather, it should be
applicable to any bacterium that supports efficient transformation by plasmids. And
although we have focused on bacteria, our general approach should be feasible in
a number of eukaryotic systems – including human cell culture – using massively
parallel reporter assays (Melnikov et al., 2012; Kheradpour et al., 2013; Patwardhan
et al., 2012) and DNA-mediated protein pull-down methods (Mittler, Butter, and
M. Mann, 2009; Mirzaei et al., 2013) that have already been established.

3.4 Methods
Our intention was to construct a systematic and scalable experimental pipeline that
would be applicable to the general objective of discovering regulatory architectures
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in generic bacteria. In this section we describe the work flow required by this
pipeline with the aim of giving a sense of how each of the steps is carried out.
We begin with a description of how we construct the mutated promoters used in
the Sort-Seq experiment itself. Next we describe how the fluorescence levels are
measured in a FACS machine and how the sorting and sequencing are performed.
After that, the remainder of the Methods section focuses on the steps required to
perform DNA affinity chromatography and mass spectrometry, which is necessary
to identify the transcription factors that bind to the putative binding sites identified
in the Sort-Seq procedure.

Sort-Seq libraries
Mutagenized single-stranded oligonucleotide pools were purchased from Integrated
DNA Technologies (Coralville, IA), with a target mutation rate of 9%. In the case
of the lacZ promoter, the associated Sort-Seq data was also used in the analysis
in (Razo-Mejia et al., 2014). The mutation rate for this library was approximately
3%. Each oligonucleotide was PCR amplified in order to produce double-stranded
inserts, which were inserted into a PCR amplified plasmid backbone (i.e. vector)
of pJK14 (Kinney and Callan, 2010) by Gibson Assembly (Gibson et al., 2009)
(New England Biolabs, MA, USA). Note however that in the construction of the
lacZ promoter, assembly was performed using restriction cloning as in Kinney
and Callan, 2010. The template plasmid used for amplification of the backbone
contained the toxic gene ccdB in place where the library was to be inserted. In this
way any bacteria that took up any of the initial plasmid used in the PCR amplification
would be removed from the population via negative selection due to toxicity by the
ccdB gene (propagated in the immune strain DB3.1). This helped ensure that no
template plasmid was propagated into the final plasmid library (see methods in
reference (Kinney and Callan, 2010) for more detail). The plasmid is maintained
at low copy numbers (about 5 copies per cell) by the SC101 origin of replication
(Lutz, 1997).

For each library construction, 40 ng of insert and 50 ng of backbone were combined
in a 20 `L Gibson assembly reaction. To achieve high transformation efficiency,
reaction buffer components from the Gibson Assembly reaction were removed by
drop dialysis and cells were transformed by electroporation of freshly prepared cells.
Following an initial outgrowth in 1 mL of SOC media, cells were diluted into 50
mL of LB media and grown overnight under kanamycin selection. Transformation
typically yielded 106 − 107 colonies as assessed by plating 100 `L of cells diluted
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1 : 104 onto an LB plate containing kanamycin.

3.5 Bacterial strains
All E. coli strains used in this work were derived from K12 MG1655, with deletion
strains generated by the lambda red recombinase method (Datsenko and Wanner,
2000; Sawitzke et al., 2007). In the case of deletions for lysA (Δ;HB� :: :0=),
purR (Δ purR::kan), and xylE (ΔGH;� ::kan), strains were obtained from the Coli
Genetic Stock Center (CGSC, Yale University, CT, USA) and transferred into a fresh
MG1655 strain using P1 transduction (Thomason, Costantino, and Court, 2007).
The others were generated in house and include the following deletion strains:
Δ;02�/. �,ΔA4;�� ::kan, Δ<0A'��::kan, Δ<0A'::kan, Δ36>'::kan.

Here we describe the approach used to generate these deletion strains. Briefly,
an overnight culture of MG1655 containing the plasmid pSIM6 was diluted 1:100
in 50 mL LB media and grown to an OD600 of ≈ 0.4 at 30°C. The culture was
immediately placed in a water bath shaker at 43°C for 15 minutes and then cooled
in an ice bath for 10 minutes. Cells were then spun down for 10 minutes (4,000 6,
4°C) and resuspended on ice in 50 mL of chilled water. This was repeated three
times before resuspending in 200 `L of chilled water to generate competent cells.
Homologous primer extension sequences for the appropriate gene were obtained
from Baba et al., 2006 and used to generate linear DNA containing a kanamycin
resistance gene insert by PCR, which contained homology for the region on the
chromosome to be deleted (Datsenko and Wanner, 2000). Electroporation of the
competent cells was performed using 1 `L purified PCR product (about 100 ng
DNA), mixed with 50 `L cells. Cells were immediately resuspended in 750 `L
SOC media and placed on a shaker at 30°C for outgrowth, for 90-120 minutes.
Cells were then plated on an LB-agar plate containing kanamycin (30 `g/mL) and
grown overnight at 30°C. The deletions were confirmed by both colony PCR and
sequencing. After confirmation, the deletion was transferred to a clean MG1655
strain through P1 transduction and selection on kanamycin. In the case of the lysine
auxotrophic strain, we also confirmed deletion of lysA by checking that the cells
were unable to grow in M9 minimal media unless lysine was supplemented (40
Dg/mL).

To generate strains with different LacI tetramer copy numbers per cell (associated
with data in Supplemental Fig. 3.6(C)), the LacI constructs fromGarcia and Phillips,
2011 were P1 transduced into the Δ;02�/. � strain (integrated at the ybcN locus).
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Sort-Seq fluorescence sorting
Cells were grown to saturation in LB and then diluted 1:10,000 into the appropriate
growth media for the promoter under consideration. For cells grown in 0.23%
D-galactonate in M9 minimal media, D-galactonate appeared to form precipitates,
but cells otherwise appeared to grow normally. Upon reaching an OD600 of about
0.3, the cells were washed two times with chilled PBS by spinning down the cells
at 4000 rpm for 10 minutes at 4°C. After washing with PBS, they were then diluted
two fold with PBS to an OD of 0.1-0.15. This diluted cell solution was then passed
through a 40 `m cell strainer to eliminate large clumps of cells.

A Beckman Coulter MoFlo XDP cell sorter was used to obtain fluorescence his-
tograms of between 200,000 and 500,000 cell events per culture. For libraries, these
histograms were used to set the four binning gates, which each covered 15% of the
histogram. During sorting of each library, 500,000 cells were collected into each of
the four bins. Finally, sorted cells were re-grown overnight in 10 mL of LB media,
under kanamycin selection.

Sort-Seq sequencing
The contents of each bin were miniprepped following overnight growth (Qiagen,
Germany). PCR was used to amplify the mutated region from each plasmid for
Illumina sequencing. The primers contained Illumina adapter sequences as well as
barcode sequences that enabled pooling of the samples. Sequencing was performed
by either the Millard and Muriel Jacobs Genetics and Genomics Laboratory at Cal-
tech (HiSeq 2500) or NGXBio (NextSeq sequencer; San Fransisco, CA). Single-end
100 bp or paired-end 150 bp flow cells were used, with a target read count of about
500,000 sequences per library bin. Joining of paired-end reads was performed with
the FLASH tool (Magoc and Salzberg, 2011). For quality filtering, we collected
sequences whose barcodes had a PHRED score greater than 20 at each position.
Some libraries also contained non-mutagenized regions, and upon checking these,
sequences that did not contain the expected sequence were excluded from our anal-
ysis. The total number of useful reads available to produce information footprints,
fluorescence bin shift plots, energy weight matrices, and sequence logos from each
Sort-Seq experiment generally ranged between 300,000 to 2,000,000 reads. Energy
matrices were inferred using Bayesian parameter estimation with an error-model-
averaged likelihood as previously described (Kinney and Callan, 2010; Kinney and
Atwal, 2014), using the MPAthic software (Ireland and Kinney, 2016). A more
detailed description of the data analysis procedures is available in Appendix A.
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Lysate preparation and SILAC incorporation
SILAC labeling (Ong et al., 2002) was implemented by growing cells in either the
stable isotopic form of lysine (13�6�

15
14#2$2), referred to as the heavy label, or

natural lysine, referred to as the light label. By deferentially labeling cell lysates
we were able to simultaneously quantify the abundance of protein between two
DNA affinity purification samples (i.e. one using a target binding site sequence and
another as a reference control). This allows us to identify whether any protein shows
a preference for the target binding site sequence.

To confirm heavy lysine was being incorporated, MG1655 Δ;HB�::kan cells from
an overnight M9 minimal media culture were diluted 1:200 and 1:1,000, and grown
in 1 mL M9 minimal media supplemented with `g/mL heavy lysine. Following
approximately 7 and 10 cell divisions, cells were resuspended in lysis buffer (50
mMHEPES pH 7.5, 70mMpotassium acetate, 5mMmagnesium acetate 0.2% (w/v)
n-dodecyl-beta-D-maltoside, Roche protease inhibitor cOmplete tablet) and lysed
by performing 10 freeze-thaw cycles with dry ice. Cellular debris were removed by
centrifugation at 14000 g at 4°C on a tabletop centrifuge. Finally cellular lysates
were prepared for mass spectrometry by in-solution digestion with endoproteinase
Lys-C (Promega, Madison, WI). Digestion was performed as described elsewhere
(Wiśniewski et al., 2009) and labeling of the heavy isotope was confirmed by
mass spectrometry measurement. In addition, we also characterized the SILAC
enrichment ratio measurement by directly combining measurements from heavy
and light lysates over a range from 0.1:1 to 1,000:1 heavy:light (see Supplemental
Section 3.12).

To generate each lysate for DNA affinity purification experiments, an overnight
starter culture of cells was grown in LB media supplemented with kanamycin (30
`g/mL). An aliquot was washed twice in M9 minimal media and resuspended to an
OD600 of ≈ 1.0. For both heavy and light labeling, 500 mL M9 minimal media
was then inoculated at 1:5,000 and grown to an OD600 of ≈ 0.6 (supplemented with
the appropriate lysine; 40 `g/mL). Cultures were pelleted using an ultracentrifuge
(8,000 g, 40 minutes) at 4°C and resuspended in chilled 20 ml lysis buffer containing
1 % (w/v) n-dodecyl-beta-maltoside. The pellets could also be stored at -80°C for
later use. Cells were then lysed with a Cell Disruptor (CF Range, Constant Systems
Ltd., UK) and following removal of debris by centrifugation, concentrated to ∼
150 mg/ml using Amicon Ultra-15 centrifugation units (3kDaMWCO, Millipore).
This provided about 600 `L of lysate, suitable for about six 80 `L DNA affinity
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4 bins, 15 percentile gate per bin(B)

4 bins, 22 percentile gate per bin

8 bins, 10 percentile gate per bin(D)

(A)

(C)

sorted bin population

(E) (F)

Figure 3.12: Related to Fig. 3.2 and Fig. 3.3. Analysis of the library mutation
spectrum and effect of Sort-Seq sorting conditions. (A) Here we used our relBE
promoter library to test whether the sorting procedure influenced our Sort-Seq data
analysis. The fluorescence histogram of the wild-type promoter plasmid (single
clonal population) and the mutated library for the relB promoter are shown.
Expression shifts and information footprints are shown for cells sorted under three
different scenarios in (B)-(D). In (B) cells were sorted using the approach of the
main text where cells were sorted into 4 bins, each containing 15% of the
population.
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purifications. Total protein concentrations was assayed using the Bradford reagent
(Sigma-Aldrich, St. Louis, MO). Following adjustment of protein concentration,
sheared salmon sperm competitor DNA was added to the lysates (1 `g/mL; Life
Technologies, Carlsbad, CA) and incubated for 10 minutes at 4°C. Finally, following
centrifugation at 14,000 g to remove insoluble matter, lysates were either placed on
ice or stored at 4°C prior to use.

Preparation of DNA-tethered magnetic beads
DNAaffinity chromatographywas performed by incubating cell lysatewithmagnetic
beads (Dyanbeads MyOne T1, Life Technologies, Carlsbad) containing tethered
DNA. The DNA was tethered through a linkage between streptavidin on the beads
and biotin on the DNA. Note single-stranded DNA was purchased from Integrated
DNA Technologies with the biotin modification on the 5’ end of the oligonucleotide
sense strand. Briefly, DNA was suspended in annealing buffer (20 mM Tris-HCl,
10 mM MgCl2, 100 mM KCl) to 50 `M. Complementary strands were annealed
by mixing 30 `L of the sense strand and 40 `L of the complement strand. Excess
complement strand ensured all biotinylated-DNA would be in a double stranded
form. Annealing was then performed using a thermocycler: 90°C for 5 minutes,
gradient from 90°C to 65°C at 0.1 °C/sec, incubated from 10 minutes at 65°C and
allowed to return to room temperature on the thermocycler. Prior to attaching DNA,
150 `L beads were washed twice with 600 `L TE buffer (10 mM Tris-HCL pH 8.0,
1 mM EDTA) and then twice with DW buffer (20 mM Tris-HCL pH 8.0, 2 M NaCl,
0.5 mM EDTA (Mittler, Butter, and M. Mann, 2009)). Approximately 640 pmol
of DNA were then diluted to 600 `L in DW Buffer and incubated with the washed
beads overnight at 4°C and on a rotatory wheel. Bound DNA was measured by
determining the DNA concentration before and after incubation with beads using
a NanoDrop (Thermo Scientific, Waltham, MA). Finally, beads were washed once
with 600 `L TE buffer and three washes of 600 `L DW buffer, and resuspended in
150 `L DW buffer.

DNA affinity chromatography
Prior to DNA affinity purification the DNA tethered beads were incubated with
blocking buffer (20 mM Hepes, pH 7.9, 0.05 mg/ml BSA, 0.05 mg/ml glycogen,
0.3 M KCl, 2.5 mM DTT, 5 mg/ml polyvinylpyrrolidone, 0.02% (w/v) n-dodeyl-
V-D-maltoside; about 1.3 mL/mg beads (Mittler, Butter, and M. Mann, 2009) for
one hour at 4°C for passivation. Excess blocking buffer was removed by washing
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the beads twice with 600 `L lysis buffer. The cell lysates were also incubated with
washedmagnetic beads that contained no tethered DNA. Following removal of these
beads, cell lysates were incubated on a rotating wheel with the DNA tethered beads
for approximately five hours at 4°C. Beads were then recovered with a magnet and
washed three times using an equivalent volume of lysis buffer. The beads were then
washed once more, but with NEB Buffer 3.1 (New England Biolabs, MA, USA).
Both purifications (with the target DNA and reference control) were then combined
by re-suspending in 50 `L NEB Buffer 3.1. To this suspension, 10 `L of the
restriction enzyme PstI (100,000 units/mL, New England Biolabs) was added and
incubated for 1.5 hours at 25°C. PstI cleaves the sequence CTGCAG, which was
included between the biotin label and binding site sequence, allowing the DNA to
be released from the magnetic beads. The beads were then removed and the samples
diluted with 4x SDS-PAGE sample buffer. After incubation for five minutes at 95°C,
the samples were then loaded on a SDS-PAGE gel (Any :� Mini-PROTEAN TGX
Precast Protein Gels, 10-well, 50 `L; BioRad, CA, USA) and gel electrophoresis
was performed for 45-55 minutes (200V) to separate proteins by size. The gel
was stained using the Colloidal Blue Staining Kit (ThermoFisher Scientific, MA,
USA) for visualization. Note that in general, we purified proteins from a heavy
lysate using DNA containing the target binding site sequence, while devoting the
light lysate to a control DNA sequence. However, for our LacI and RelBE, we also
performed the alternative scenario (i.e. target binding site sequence purified with
the light lysate). We did not observe major differences between either approach and
therefore continued in our other experiments by purifying with the target binding
site sequence in the heavy lysate.

In-gel digestion for mass spetrometry
After destaining, the gel was cut into four sections, each of which was cut into small
pieces for in-gel digestion. The gel pieces were reduced, alkylated, and digested by
endoproteinase Lys-C overnight at 37°C. This enzymatically cleaves proteins after
lysine residues and is necessary for determining whether detected peptides are from
the light or heavy lysine labeled purification. Digested peptides were extracted from
gel and lyophilized. The peptide samples were further purified using StageTips to
remove residual salts (Rappsilber, Mann, and Y. Ishihama, 2007). The extracts were
re-suspended in 0.2% formic acid.
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LC-MS/MS analysis and protein quantification
Liquid chromatography-tandem-mass spectrometry (LC-MS/MS) experiments were
carried out as previously described (Kalli and Hess, 2012). The LacI target purifica-
tion experiments were performed on a nanoflow LC system, EASY-nLC II coupled
to a hybrid linear ion trap Orbitrap Classic mass spectrometer equipped with a
Nanospray Flex Ion Source (Thermo Fisher Scientific). The in-gel digested pep-
tides were directly loaded at a flow rate of 500 nL/min onto a 16-cm analytical
HPLC column (75 `m ID) packed in-house with ReproSil-Pur C18AQ 3 `m resin
(120 Å pore size, Dr. Maisch, Ammerbuch, Germany). The column was enclosed
in a column heater operating at 45°C. After 30 min of loading time, the peptides
were separated in a solvent gradient at a flow rate of 350 nL/min. The gradient was
as follows: 0-30 % B (80 min), and 100% B (10 min). The solvent A consisted of
97.8 % �20, 2%ACN, and 0.2% formic acid and solvent B consisted of 19.8% �2$,
80 % ACN, and 0.2 % formic acid. The Orbitrap was operated in data-dependent
acquisition mode to automatically alternate between a full scan (m/z=400–1600)
in the Orbitrap (resolution 100,000) and subsequent 15 CID MS/MS scans (Top
15 method) in the linear ion trap. Collision induced dissociation (CID) was per-
formed at normalized collision energy of 35 % and 30 msec of activation time.
All other measurements were performed on a hybrid ion trap-Orbitrap Elite mass
spectrometer (Thermo Fisher Scientific), which provided greater detection sensi-
tivity and other fragmentation techniques as described. The Orbitrap was operated
in data-dependent acquisition mode to automatically alternate between a full scan
(m/z=400–1,800) in the Orbitrap (resolution 120,000) and subsequent 5 MS/MS
scans also acquired in Orbitrap with 15,000 resolution. The MS/MS spectra were
acquired for the top 5 ions alternating between higher collision dissociation (HCD)
and electron transfer dissociation (ETD) fragmentations that are well suited for
higher charge peptides. Higher collision dissociation was performed at a normal-
ized collision energy of 30 % and electron transfer dissociation reaction time was
set to 100 msec. The analytical column for this instrument was a PicoFrit column
(New Objective, Woburn, MA) packed in house with ReproSil-Pur C18AQ 1.9 `m
resin (120Å pore size, Dr. Maisch, Ammerbuch, Germany) and the column was
heated to 60°C. The peptides were separated either with a 90 or 60 min gradient
(0-30% B in 90 min or 0-30% B in 60 min) at a flow rate of 220 nL/min.

Thermo RAW files were processed using MaxQuant (v. 1.5.3.30) (Jürgen Cox
and Mann, 2008; Jürgen Cox et al., 2009). Spectra were searched against the
UniProt E. coli K12 database (4318 sequences) as well as a contaminant database
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(256 sequences). Precursor ion mass tolerance was 4.5 ppm after recalibration by
MaxQuant. Fragment ion mass tolerance was 20 ppm for high-resolution HCD
and ETD spectra, and 0.5 Da for low-resolution CID spectra. Variable modifica-
tions included oxidation of methionine and protein N-terminal acetylation. Car-
boxyamidomethylation of cysteine was specified as a fixed modification. LysC was
specified as the digestion enzyme and up to two missed cleavages were allowed. A
decoy database was generated byMaxQuant and used to set a score threshold so that
the false discovery rate was less than 1 % at both the peptide and protein level. For
all experiments match between runs and re-quantify were enabled. One evidence
ratio per replicate per protein was required for quantitation. To calculate the overall
protein ratio, the un-normalized protein replicate ratios were log transformed and
then shifted so that the median protein log ratio within each replicate was zero (i.e.,
the median protein ratio was 1:1). The overall experimental log ratio was then
calculated from the average of the replicate ratios.

Data analysis, code, and data curation
Additional details about the data analysis and characterization of Sort-Seq and
DNA affinity chromatography can be found in the Supplemental material. The
identification of regulated operons shown in Fig. 3.1 was performed using the
annotated operons listed on RegulonDB (Gama-Castro et al., 2016), which are
based on manually curated experimental and computational data. An operon was
considered to be regulated if it had at least one transcription factor binding site
associated with it. All code used for processing data and plotting, as well as the final
processed data can be found on ourGitHub repository (https://github.com/RPGroup-
PBoC/Sort-seq_belliveau). Thermo RAW files for mass spectrometry are available
on the jPOSTrepo repository (Okuda et al., 2017) under accession code PXD007892.
Sort-Seq sequencing files are available on the Sequence Read Archive (accession
code SRP121362).
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3.6 Supplemental Information: Characterization of library diversity and
sorting sensitivity.

Sort-Seq of the rel promoter using different sorting conditions.
In the work of the main text, Sort-Seq was performed by sorting cell libraries
into four bins based on their fluorescence, each containing about 15 percent of the
population. The remaining population was not collected and was discarded to waste.
Due to the variability in expression of a single clonal population (Fig. 3.12(A)),
sorting into a larger number of narrower bins was not expected to provide significant
additional resolution for the sequence-dependent fluorescence distribution. Given
the success in identifying the known regulatory binding sites of the lacZ, relB, and
marR promoters, and agreement between the inferred sequences logos and available
sequence logos (see Supplemental Fig. 3.4), these conditions appeared to provide
sufficient information to accurately analyze our libraries.

However, in order to further confirm that our results were not being influenced by
the specific sorting scheme, we also tested several other sorting conditions using
our relB promoter library. Here cells were sorted into either 4 or 8 bins, with a
sorting gate containing between 10 and 22 percent of the population per bin. The
associated expression shift plots and information footprints (defined in Supplemental
Section are shown in Fig. 3.12(B)-(D). In general we found little difference between
each of these experiments. Energy matrices for the binding sites were similarly
in agreement, with a Pearson correlation coefficient between matrix parameters
generally greater than 0.9 across the different conditions tested.

3.7 Analysis of library diversity using data from the mar promoter.
Here we provide additional characterization of the mutagenized promoter libraries,
using a library from the marR promoter as a representative example (70 bp re-
gion containing RNAP and MarR repressor sites). With the exception of the lacZ
promoter, all library oligonucleotide pools were purchased from Integrated DNA
Technologies (USA) with a target mutation rate of nine percent per nucleotide po-
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sition. For the lacZ promoter library, we purchased an oligonucleotide pool using
their Ultramer branded technology to allow for a longer mutagenized region that
covered the known set of regulatory binding sites. While we intended to have a sim-
ilar mutation rate, we found a mutation rate closer to three percent per nucleotide
position. While unexpected, this allowed us to test two different mutation rates in
our initial validation of the methodology using well-characterized promoters.

To get a better sense of how the mutation rate varies across the libraries, we plot a
histogram of the number of mutations per base pair for the entire set of sequences
found in the marR promoter library (Fig. 3.12(E)). While we obtained an average
mutation rate of 10.4% in this library, close to our target rate of 9%, there is some
variability in this mutation rate as might be expected given that the incorporation of
mutations in the DNA synthesis procedure is a random process. Since we are using
these sequence data sets to infer sequence-specific models of binding between DNA
and transcription factors, it was also of interest to consider the mutational coverage
found within the library. As shown in Fig. 3.12(F), all single-point mutations and
a large fraction of two-point mutations were present within the library. Due to the
large number of possible three point mutants in a 60 bp region, only a small subset
of the possible sequences will be found in the library.

3.8 Supplemental Information: Generation of sequence logos.
Sequence logos provide a simple way to visualize the sequence specificity of a tran-
scription factor toDNA, aswell as the amount of information present at each position
(Schneider and Stephens, 1990). Here we describe how we generate them using
either known genomic binding sites or the energy matrices that were determined
from our Sort-Seq data. In each case we need to calculate a 4xL position weight ma-
trix for a binding site of length L, which is used to estimate the position-dependent
information content needed to construct a sequence logo.

3.9 Generating position weight matrices from known genomic binding sites.
FromRegulonDB, we find there are #6 = 260 known binding sites for CRP on the E.
coli genome (Gama-Castro et al., 2016). To construct a position weight matrix using
these genomic binding sites, we must first align all the sequences and determine the
nucleotide statistics at each position. Specifically, we count the number of each
nucleotide, #8 9 , at each position along the binding site. Here the subscript 8 refers
to the position, while 9 refers to the nucleotide, �,�, �, or ) . We can then calculate
a position probability matrix (also 4x!) where each entry is found by dividing these
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counts by the total number of sequences in our alignment,

?8 9 =
#8 9

#6
. (3.1)

Note that in situations where the number of aligned sequences is small (e.g., less than
five), pseudocounts (Nishida, Frith, and Nakai, 2009) are often added to regularize
the probabilities of the counts in the calculation of position probabilities,

?8 9 =
#8 9 + �?
#6 + 4 ¤�?

, (3.2)

where �? is the value of the pseudocount. The argument for their use is that
when selecting from a small number of binding site sequences, just by chance in-
frequent nucleotides will be absent, and assigning them a probability (?8 9 , noted
above) of zero may be too stringent of a penalty (Nishida, Frith, and Nakai, 2009).
We let �? = 0.1. In the limit of zero binding site sequences (i.e., with no se-
quences observed), this will result in probabilities ?8 9 approximately equal to the
background probability used in calculating the position weight matrix below (and a
non-informative sequence logo).

Finally, the values of the position weight matrix are found by calculating the log
probabilities relative to a background model (Stormo, 2000).

PWM8 9 = log2
?8 9

1 9
. (3.3)

The background model reflects assumptions about the genomic background of the
system under investigation. For instance, in many cases it may be reasonable to
assume each base is equally likely to occur. Given that we know the base fre-
quencies for E. coli, The background model reflects assumptions about the genomic
background of the system under investigation. For instance, in many cases it may
be reasonable to assume each base is equally likely to occur. Given that we know
the base frequencies are � = 0.246, � = 0.254, � = 0.254, ) = 0.246 for strain
MG1655 (BioNumbers ID 100528, http://bionumbers.hms.harvard.edu). From Eq.
3.3 we can see that the value at the 8Cℎ; 9 Cℎ position will be zero if the probability, ?8 9
, matches that of the background model, but non-zero otherwise. This reflects the
fact that base frequencies matching the background model tell us nothing about the
binding preferences of the transcription factor, while deviation from this background
frequency indicates sequence specificity.
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3.10 Generating position weight matrices from Sort-Seq data.
Next we construct a position weight matrix using the CRP energy matrix from our
Sort-Seq data. Here we appeal to the result from Berg and von Hippel, that the
logarithms of the base frequencies above should be proportional to their binding
energy contributions (Berg and Hippel, 1987; Stormo, 2000). Berg and von Hippel
considered a statistical mechanical system containing ! independent binding site
positions, with the choice of nucleotide 1 9 at each position corresponding to a
change in the energy level by Y8 9 relative to the lowest energy state at that position.
Y8 9 corresponds to the energy entry in our energy matrix, scaled to absolute units,
�\8 9+�, where \8 9 is the 8Cℎ, 9 Cℎ entry. An important assumption is that all nucleotide
sequences that provide an equivalent binding energy must have equal probability
of being present as a binding site. In this way, we can relate the binding energies
considered here to the statistical distribution of binding sites in the previous section.
The probability ?8 9 of choosing nucleotide 1 9 at position 8 for protein binding will
then be proportional to probability that position 8 has energy Y8 9 . Specifically, the
probabilities will be given by their Boltzmann factors normalized by the sum of
states for all nucleotides,

?8 9 =
1 94
−V�\8 9 ¤B8 9∑)

9=� 1 9 ¤4−V�\8 9 ¤B8 9
, (3.4)

where V = 1
:1)

, where :1 is the Boltzmann constant and ) is the temperature in
Kelvin.

One difficulty that arises whenwe use energymatrices that are not in absolute energy
units is that we are left with an unknown scale factor �, preventing calculation of
?8 9 . We appeal to the expectation that mismatches usually involve an energy cost of
1-3 :1) (Lässig, 2007). In other work within our group, we have found this to be a
reasonable assumption for LacI. Therefore, we approximate it such that the average
cost of a mutation

〈
� × \8 9

〉
= 2:1) . We can then calculate a position weight matrix

from Equation 3.3.

3.11 Supplementary Information:Additional data andanalysis for yebG, purT,
xylE, and dgoR

yebG
The yebG promoter is among a variety of genes known to increase expression
when cells are under DNA damage stress (Wade, 2005), and shared the intergenic
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region with the purT promoter. We see a similar case discussed in the context of
the Reg-Seq project and discussed in B.8. In Chapter 3 we considered the yebG
promoter in cells grown in standard M9 minimal media with 0.5% glucose (Fig.
3.8). While the information footprints and expression shifts appeared to align with
annotated binding sites for LexA (which acts as a repressor and so will have a
positive expression shift), and the RNAP binding site (negative shift), we did not
show evidence for the identity of each binding protein in the main text. Here we
present results from our inference of energy matrices using our Sort-Seq data, which
confirm the identity of the binding proteins. We also explore the regulation of yebG
by perturbing the regulatory state through induction of the SOS response (Lomba
et al., 1997; Wade, 2005). We begin by considering the Sort-Seq data from cells
grown in M9 minimal media with 0.5% glucose. In Fig. 3.10 we show the inferred
energy matrices associated with the annotated site for LexA. This was in excellent
agreement with the known sequence specificity of LexA (see Fig. 3.4 for a direct
comparison with the genomic sequence logos). We note, however, that the RNAP
binding site was shifted by 9 bp from the annotated binding site (M. R. Lomba et al.,
2006), with an overlap between the -10 RNAP site and 4 bp of the LexA binding
site. We were also interested in confirming that the yebG promoter responds DNA
stress and is induced as part of the SOS response. By repeating Sort-Seq in cells
grown in non-lethal concentrations of mitomycin C (1 `g/ml) (Lomba et al., 1997)
we observed a dramatic increase in expression relative to growth without mitomycin
C. Fluorescence histograms showing expression from our plasmid reporter in non-
mutagenized promoter constructs are shown in Fig. 3.10(B). From the expression
shift plots and information footprint in Fig. 3.10 we find that this is due to loss
of repression at the LexA binding site. This is consistent with the expectation that
LexA undergoes proteolysis as part of the SOS response (Wade, 2005).

The purT promoter
When cells were grown in the presence of adenine, we identified a putative repressor
site between the -10 and -35 regions of the RNAP binding site of the purT promoter.
In our initial attempt to identify the associated transcription factor we performed a
DNAaffinity purification using conditions thatmatched the growth conditionswhere
repression was observed. However, as shown in Fig. 3.10 (C), the most significantly
enriched protein (GlpR) only showed an enrichment of about 2.9, which was near
the shaded region associated with most other non-specific proteins detected. Only
upon repeating our purification in the presence of hypoxanthine (10 `g/ml) did we
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find enrichment of PurR (approximately 350 fold enrichment).

xylE
In themain text it was noted that we could not perform Sort-Seq on the xylE promoter
unless cells were grown in xylose. In Supplemental Fig. 3.10 (E), we show the
associated fluorescence histograms from libraries grown in either glucose or xylose.
Interestingly, each mutated window was essentially identical to autofluorescence
when cells were grown in glucose. In contrast, growth in xylose showed differential
expression for each of the mutated regions. While the promoter was expected to be
sensitive to the presence of xylose (Schmidt et al., 2016), this was still a non-obvious
result without prior knowledge of whether repressors or activators were involved.

In our analysis we also noted that the identified set of activator binding sites con-
formedwell with the two other promoters regulated by XylR and CRP, namely xylFG
and xylAB. Here we scanned our inferred energy weight matrix across the intergenic
regions of xylFG and xylAB, in order gain further confidence that the identified
feature matched the known binding specificity of these transcription factors. These
are shown in Fig. 3.10(F). At each position in these plots, we use the energy matrix
to calculate the binding energy of the putative transcription factors. For each we
identify a strong peak that does indeed align well with the annotated binding sites of
XylR and CRP. While our predicted binding energies are not in absolute :1) units,
they are much more negative than the promoter background and predict a similar
binding energy (in arbitrary units) to the binding site region of the xylE promoter.

dgoR
The last promoterwe consideredwas associatedwith the expression of thedgoRKADT
operon. Due to the complexity observed, we were unable to show all data in the
main text that supported our identification of the regulatory architecture. In par-
ticular, here we show the sensitivity to the different carbon sources considered and
additional analysis of the identified regulatory binding sites for DgoR, RNAP, and
CRP.

We confirmed that galactose and D-galactonate induce the operon (Cooper, 1978;
Schmidt et al., 2016) using fluorescence measurements. In Fig. 3.11 (A) we show
information footprints and expression shifts under growth in M9, galactose, and
D-galactonate. Additionally, 3 total RNAP sites are present in this promoter, each
overlapping. Their sequence logos can be found in 3.13 (B).
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Figure 3.13: Extended analysis of the dgoR promoter. (A) Sequence logos were
generated for the most upstream 60 bp region containing the putative RNAP and
CRP binding sites. Data is from Sort-Seq in strain JK10 (derivative of TK310
(Kinney and Callan, 2010)) and binding of CRP was induced through addition of
500 `M cAMP. Cells were grown in EZrich MOPS media (Teknova, CA, USA)
with D-galactonate as the carbon source. In comparison to the sequence logos
shown in Fig. 3.11 (D), the right side of the CRP binding site has become more
apparent. (B) Sequence logos are shown for simulated data for the upstream region
of the dgoR promoter assuming one, two, or three RNAP binding sites. The top
sequence logo shows the experimental result for Sort-Seq performed in a Δ36>'
genetic background, with cells grown in glucose.
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We also show additional evidence to support the claim of a putative binding site
for CRP. CRP binds to DNA by coactivation with cAMP. cAMP levels are low in
glucose containing media, and at a reasonable level in other growth media. cAMP
levels are usually regulated to be insensitive to external sources of cAMP, but, to
further enhance CRP binding we used the strain JK10 (based on TK310 Kinney
et al., 2010; MG1655 Δ2H0�Δ2?3�), where we can directly control cAMP to by
simple adding it to the growth media. Here we grew cells in EZrich MOPS media
(Teknova, CA, USA) with D-galactonate as the carbon source and supplemented
with 500 `M cAMP.

The match from the Sort-Seq data to a genomic CRP binding site, as seen in Fig
3.13(A) is enhanced under these high cAMP levels, further supporting that this is
a CRP binding site. This binding site is a class II activator. In the case of lower
cAMP levels, it is likely the binding signature is obscured by the presence of the
RNAP -35 site.
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C h a p t e r 4

DECIPHERING THE REGULATORY GENOME OF
ESCHERICHIA COLI, ONE HUNDRED PROMOTERS AT A

TIME

Aversion of this chapter originally appeared asW. T. Ireland, S.M. Beeler, E. Flores-
Bautista, N. M. Belliveau, M. J. Sweredoski, J. B. Kinney, and R. Phillips (2020).
Deciphering the regulatory genome of Escherichia coli, one hundred promoters at
a time. bioRxiv, http://doi.org/10.1101/2020.01.18.910323.

Author contribution note: for this chapter, I (WI) assisted with experimental de-
sign, sample processing, strain construction, RNA-seq measurements, data analysis,
mass-spectrometry measurements, and manuscript writing.

4.1 Introduction
DNA sequencing is as important to biology as the telescope is to astronomy. As
discussed in previous chapters, we are now living in the age of genomics, where
DNA sequencing has become cheap and routine. However, despite these incredible
advances, how all of this genomic information is regulated and deployed remains
largely enigmatic. Organisms must respond to their environments through regu-
lation of genes. Genomic methods often provide a “parts” list but often leave us
uncertain about how those parts are used creatively and constructively in space and
time. Yet, we know that promoters apply all-important dynamic logical operations
that control when and where genetic information is accessed. In this chapter, we
demonstrate how we can infer the logical and regulatory interactions that control
bacterial decision making across large numbers of promoters by tapping into the
power of DNA sequencing as a biophysical tool. The method introduced here pro-
vides a framework for solving the problem of deciphering the regulatory genome by
connecting perturbation and response, mapping information flow from individual
nucleotides in a promoter sequence to downstream gene expression, determining
how much information each promoter base pair carries about the level of gene ex-
pression.

The advent of RNA-Seq (Mortazavi et al., 2008) launched a new era in which se-
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quencing could be used as an experimental read-out of the biophysically interesting
counts of mRNA, rather than simply as a tool for collecting ever more complete
organismal genomes. The slew of ‘X’-Seq technologies that are available continues
to expand at a dizzying pace, each serving their own creative and insightful role:
RNA-Seq, ChIP-Seq, Tn-Seq, SELEX, 5C, etc. (Stuart and Satija, 2019). In con-
trast to whole genome screening sequencing approaches, such as Tn-Seq (Goodall
et al., 2018) and ChIP-Seq (Gao et al., 2018) which give a coarse-grained view of
gene essentiality and regulation respectively, another class of experiments known as
massively-parallel reporter assays (MPRA) has been used to study gene expression
in a variety of contexts (Patwardhan, Lee, et al., 2009; Kinney,Murugan, et al., 2010;
Sharon et al., 2012; Patwardhan, Hiatt, et al., 2012; Melnikov et al., 2012; Kwas-
nieski et al., 2012; Fulco et al., 2019; Kinney and McCandlish, 2019). One elegant
study relevant to the bacterial case of interest here by Kosuri et al., 2013 screened
more than 104 combinations of promoter and ribosome binding sites (RBS). Even
more recently, they have utilized MPRAs in sophisticated ways to search for regu-
lated genes across the genome (G. Urtecho et al., 2019; Guillaume Urtecho et al.,
2020), in a way we see as being complementary to our own. While their approach
yields a coarse-grained view of where regulation may be occurring, our approach
yields a base-pair-by-base-pair view of how exactly that regulation is being enacted.

One of the most exciting X-Seq tools based onMPRAs with broad biophysical reach
is the Sort-Seq approach developed by Kinney, Murugan, et al., 2010, with proof of
concept work on virgin genes discussed in the previous chapter. Sort-Seq uses fluo-
rescence activated cell sorting (FACS) based on changes in the fluorescence due to
mutated promoters to identify the specific locations of transcription factor binding in
the genome. Importantly, it also provides a readout of how promoter sequences con-
trol the level of gene expression with single base-pair resolution. The results of such
a massively-parallel reporter assay make it possible to build a biophysical model of
gene regulation to uncover how previously uncharacterized promoters are regulated.
In particular, high-resolution studies like those described here yield quantitative pre-
dictions about promoter organization and protein-DNA interactions as described by
energy matrices (Kinney, Murugan, et al., 2010). This allows us to employ the tools
of statistical physics to describe the input-output properties of each of these promot-
ers which can be explored much further with in-depth experimental dissection like
those done by Razo-Mejia et al., 2018 and Chure et al., 2019 and summarized in
Phillips et al., 2019. In this sense, the Sort-Seq approach can provide a quantitative
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framework to not only discover and quantitatively dissect regulatory interactions at
the promoter level, but also provides an interpretable scheme to design genetic cir-
cuits with a desired expression output as discussed in Chapter 2 (Barnes et al., 2019).

Earlier work discussed in Chapter 3 (Belliveau et al., 2018) illustrated how Sort-Seq,
used in conjunction with mass spectrometry can be used to identify which transcrip-
tion factors bind to a given binding site, thus enabling the mechanistic dissection
of promoters which previously had no regulatory annotation. However, a crucial
drawback of the Sort-Seq approach is that while it is high-throughput at the level
of a single gene and the number of promoter variants it accesses, it was unable to
readily tackle multiple genes at once, still leaving much of the unannotated genome
untouched. Given that even in one of biology’s best understood organisms, the
bacterium Escherichia coli, for more than 65% of its genes, we remain completely
ignorant of how those genes are regulated (Santos-Zavaleta et al., 2019; Belliveau
et al., 2018). If we hope to some day have a complete base pair resolution mapping
of how genetic sequences relate to biological function, we must first be able to do
so for the promoters of this “simple” organism.

What has been missing in uncovering the regulatory genome in organisms of all
kinds is a large scale method for inferring genomic logic and regulation. Here we
replace the low-throughput fluorescence-based Sort-Seq approach with a scalable
RNA-Seq based approach that makes it possible to attack multiple promoters at
once, setting the stage for the possibility of, to first approximation, uncovering the
entirety of the regulatory genome. Accordingly, we refer to the entirety of our
approach (MPRA, information footprints and energy matrices, mass spectrometry
for transcription factor identification) as Reg-Seq, which we employ here on over
one hundred promoters. The concept of MPRA methods is to perturb promoter
regions by mutating them and then using sequencing to read out both perturbation
and the resulting gene expression (Patwardhan, Lee, et al., 2009; Kinney, Murugan,
et al., 2010; Sharon et al., 2012; Patwardhan, Hiatt, et al., 2012; Melnikov et al.,
2012; Kwasnieski et al., 2012; Fulco et al., 2019; Kinney and McCandlish, 2019).
We generate a broad diversity of promoter sequences for each promoter of interest
and use mutual information as a metric to measure information flow from that dis-
tribution of sequences to gene expression. Thus, Reg-Seq is able to collect causal
information about candidate regulatory sequences that is then complemented by
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mass spectrometry which allows us to find which transcription factors mediate the
action of those newly discovered candidate regulatory sequences. Hence, Reg-Seq
solves the causal problem of linking DNA sequence to regulatory logic and infor-
mation flow.

To demonstrate our ability to scale up Sort-Seq with the sequencing based Reg-Seq
protocol, we report here our results for 113 E. coli genes, whose regulatory architec-
tures (i.e. gene-by-gene distributions of transcription factor (TF) binding sites and
identities of TFs that bind those sites) were determined in parallel. By taking the
Sort-Seq approach from a gene-by-gene method to a more whole-genome approach,
we can begin to piece together not just how individual promoters are regulated,
but also the nature of gene-gene interactions by revealing how certain transcription
factors serve to regulate multiple genes at once. This approach has the benefits
of a high-throughput assay while sacrificing little of the resolution afforded by the
previous gene-by-gene approach, allowing us to uncover a large swath of the E. coli
regulome, with base-pair resolution, in one set of experiments.

The organization of the remainder of the Chapter is as follows. In the Results
section, we provide a global view of the discoveries we made in our exploration
of more than 100 promoters in E. coli using Reg-Seq. These results are de-
scribed in summary form in the paper itself, with a full online version of the re-
sults (www.rpgroup.caltech.edu/RNAseq_SortSeq/interactive_a) show-
ing how different growth conditions elicit different regulatory responses. This
section also follows the overarching view of our results by examining several bio-
logical stories that emerge from our data and serve as case studies in what has been
revealed in our efforts to uncover the regulatory genome. The Discussion section
summarizes the method and the current round of discoveries it has afforded with
an eye to future applications to further elucidate the E. coli genome and opening
up the quantitative dissection of other non-model organisms. In the Methods sec-
tion and fleshed out further in the Appendices, we describe our methodology and
benchmark it against our own earlier Sort-Seq experiments to show that using RNA-
Seq as a readout of the expression of mutated promoters is equally reliable as the
fluorescence-based approach. Lastly, in the appendices for this chapter we discuss
innovations, that while they were not used for the Reg-Seq work discussed here,
are on the horizon and will be part of the next generation of Reg-Seq experiments,
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such as using neural networks to model DNA-protein interactions, and utilizing our
models to perform more accurate computational searches for transcription factor
binding sites.

4.2 Results
Selection of genes and methodology
As shown in Figure 4.1, we have considered more than 100 genes from across the
E. coli genome. Our choices were based on a number of factors (see Section B.1 for
more details); namely, we wanted a subset of genes that served as a “gold standard”
for which the hard work of generations of molecular biologists have yielded deep
insights into their regulation. The set includes lacZYA, znuCB, znuA, ompR, araC,
marR, relBE, dgoR, dicC, ftsK, xylA, xylF, dpiBA, rspA, dicA, and araAB. By using
Reg-Seq on these genes we were able to demonstrate that this method recovers
not only what was already known about binding sites and transcription factors for
well-characterized promoters, but also whether there are any important differences
between the results of the methods presented here and the previous generation of
experiments based on fluorescence and cell-sorting as a readout of gene expression.
These promoters of known regulatory architecture are complemented by an array of
previously uncharacterized genes that we selected in part using data from a recent
proteomic study, in which mass spectrometry was used to measure the copy number
of different proteins in 22 distinct growth conditions (Schmidt et al., 2016). We
selected genes that exhibited a wide variation in their copy number over the different
growth conditions considered, reasoning that differential expression across growth
conditions implies that those genes are under regulatory control.

As noted in the introduction, the original formulation of Reg-Seq termed Sort-Seq
was based on the use of fluorescence activated cell sorting one gene at a time as
a way to uncover putative binding sites for previously uncharacterized promoters
(Belliveau et al., 2018). As a result, as shown in Figure 4.2 we have formulated
a second generation version that permits a high-throughput interrogation of the
genome. A comparison between the Sort-Seq and Reg-Seq approaches for the same
genes is shown in Figure B.1. In the Reg-Seq approach, for each promoter interro-
gated, we generate a library of mutated variants and design each variant to express
an mRNA with a unique sequence barcode. By counting the frequency of each ex-
pressed barcode using RNA-Seq, we can assess the differential expression from our
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Figure 4.1: The E. coli regulatory genome and the genes studied with Reg-Seq.
Illustration of the current ignorance with respect to how genes are regulated in E.
coli, with genes with previously annotated regulation (as reported on
RegulonDB (Gama-Castro et al., 2016)) denoted with blue ticks and genes with no
previously annotated regulation denoted with red ticks. The 113 genes explored in
this study are labeled in gray.
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regulated. This process is as follows: After constructing a promoter library driving
expression of a randomized barcode (an average of 5 for each promoter), RNA-Seq
is conducted to determine frequency of these mRNA barcodes across different
growth conditions. By computing the mutual information between DNA sequence
and mRNA barcode counts for each base pair in the promoter region, an
"information footprint" is constructed yielding a regulatory hypothesis for the
putative binding sites. Energy matrices, which describe the effect any given
mutation has on DNA binding energy, and sequence logos are inferred for the
putative transcription factor binding sites. Next, we identify which transcription
factor preferentially binds to the putative binding site via DNA affinity
chromatography followed by mass spectrometry. Finally, this procedure culminates
in a coarse-grained cartoon-level view of our regulatory hypothesis for how this
given promoter is regulated.



107

promoter of interest based on the base-pair-by-base-pair sequence of its promoter.
Using the mutual information between mRNA counts and sequences, we develop an
information footprint that reveals the importance of different bases in the promoter
region to the overall level of expression. We locate potential transcription factor
binding regions by looking for clusters of base pairs that have a significant effect
on gene expression. Further details on how potential binding sites are identified
are found in the Methods section. Blue regions of the histogram shown in the in-
formation footprints of Figure 4.2 correspond to hypothesized activating sequences
and red regions of the histogram correspond to hypothesized repressing sequences.
With the information footprint in hand, we can then determine energy matrices and
sequence logos (described in the next section). Given putative binding sites, we
construct oligonucleotides that serve as fishing hooks to fish out the transcription
factors that bind to those putative binding sites using DNA-affinity chromatography
and mass spectrometry (Mittler, Butter, and M. Mann, 2009). Given all of this
information, we can then formulate a schematized view of the newly discovered
regulatory architecture of the previously uncharacterized promoter. For the case
schematized in Figure 4.2, the experimental pipeline yields a complete picture of a
simple repression architecture (i.e. a gene regulated by a single binding site for a
repressor).

Visual tools for data presentation
Throughout our investigation of the more than 100 genes explored in this study,
we repeatedly relied on several key approaches to help make sense of the immense
amount of data generated in these experiments. As these different approaches to
viewing the results will appear repeatedly throughout the paper, here we familiarize
the reader with five graphical representations referred to respectively as information
footprints, energy matrices, sequence logos, mass spectrometry enrichment plots,
and regulatory cartoons, which taken all together provide a quantitative description
of previously uncharacterized promoters.

Information footprints: From our mutagenized libraries of promoter regions, we
can build up a base-pair-by-base-pair graphical understanding of how the promoter
sequence relates to level of gene expression in the form of the information footprint
shown in the middle of Figure 4.2. In this plot, the bar above each base pair position
represents how large of an effect mutations at this location have on the level of
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gene expression. Specifically, the quantity plotted is the mutual information �1 at
base pair 1 between mutation of a base pair at that position and the level of expres-
sion. In mathematical terms, the mutual information measures how much the joint
probability ?(<, `) differs from the product of the probabilities ?<DC (<)?4G?A (`)
which would be produced if mutation and gene expression level were independent.
Formally, the mutual information between having a mutation at position 1 and level
of expression is given by

�1 =

1∑
<=0

1∑̀
=0
?(<, `) log2

(
?(<, `)

?<DC (<)?4G?A (`)

)
. (4.1)

Note that both < and ` are binary variables that characterize the mutational state
of the base of interest and the level of expression, respectively. Specifically, < can
take the values

< =


0, if 1 is a mutated base

1, if 1 is a wild-type base,
(4.2)

and ` can take on values

` =


0, for sequencing reads from the DNA library

1, for sequencing reads originating from mRNA,
(4.3)

where both < and ` are index variables that tell us whether the base has been
mutated and if so, how likely that the read at that position will correspond to an
mRNA, reflecting gene expression or a promoter, reflecting a member of the library.
The higher the ratio of mRNA to DNA reads at a given base position, the higher the
expression. ?<DC (<) in equation 4.1 refers to the probability that a given sequencing
read will be from a mutated base. ?4G?A (`) is a normalizing factor that gives the
ratio of the number of DNA or mRNA sequencing counts to total number of counts.

Furthermore, we color the bars based on whether mutations at this location lowered
gene expression on average (in blue, indicating an activating role) or increased gene
expression (in red, indicating a repressing role). Within these footprints, we look
for regions of approximately 10 to 20 contiguous base pairs which impact gene
expression similarly (either increasing or decreasing), as these regions implicate the
influence of a transcription factor binding site. In this experiment, we targeted the
regulatory regions based on a guess of where a transcription start site (TSS) will be,
based on experimentally confirmed sites contained in regulonDB (Santos-Zavaleta
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et al., 2019), a 5’ RACE experiment (Mendoza-Vargas et al., 2009), or by targeting
small intergenic regions. After completing the Reg-Seq experiment, we note that
many of the presumed TSS sites are not in the locations assumed, the promoters
have multiple active RNA polymerase (RNAP) sites and TSS, or the primary TSS
shifts with growth condition. To simplify the data presentation, the "0" base pair in
all information footprints is set to the originally assumed base pair for the primary
TSS, rather than one of the TSS that was found in the experiment. The locations of
the TSS are listed in Table A.1. As can be seen throughout the paper (see Figure
4.4 for several examples of each of the main types of regulatory architectures) and
the online resource, we present such information footprints for every promoter we
have considered, with one such information footprint for every growth condition.

Energy matrices: Focusing on an individual putative transcription factor binding
site as revealed in the information footprint, we are interested in a more fine-
grained, quantitative understanding of how the underlying protein-DNA interaction
is determined. An energy matrix displays this information using a heat map format,
where each column is a position in the putative binding site and each row displays
the effect on binding that results from mutating to that given nucleotide (given
as a change in the DNA-TF interaction energy upon mutation) (Berg and Hippel,
1987; Stormo and Fields, 1998; Kinney, Murugan, et al., 2010). These energy
matrices are scaled such that the wild type sequence is colored in white, mutations
that improve binding are shown in blue, and mutations that weaken binding are
shown in red. These energy matrices encode a full quantitative picture for how we
expect sequence to relate to binding for a given transcription factor, such that we can
provide a prediction for the binding energy of every possible binding site sequence
as

binding energy =
#∑
8=1

Y8, (4.4)

where the energy matrix is predicated on an assumption of a linear binding model
in which each base within the binding site region contributes a specific value (Y8 for
the 8Cℎ base in the sequence) to the total binding energy. Energy matrices are either
given in A.U. (arbitrary units), or if the gene has a simple repression or activation
architecture with a single RNA polymerase (RNAP) site, are assigned k�T energy
units following the procedure in Kinney, Murugan, et al., 2010 and validated on the
lac operon in Barnes et al., 2019.
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Sequence logos: From an energy matrix, we can also represent a preferred tran-
scription factor binding site with the use of the letters corresponding to the four
possible nucleotides, as is often done with position weight matrices (Schneider and
Stephens, 1990). In these sequence logos, the size of the letters corresponds to
how strong the preference is for that given nucleotide at that given position, which
can be directly computed from the energy matrix. This method of visualizing the
information contained within the energy matrix is more easily digested and allows
for quick comparison among various binding sites.

Mass spectrometry enrichment plots: As the final piece of our experimental pipeline,
we wish to determine the identity of the transcription factor we suspect is binding to
our putative binding site that is represented in the energy matrix and sequence logo.
While the details of the DNA affinity chromatography and mass spectrometry can be
found in the methods, the results of these experiments are displayed in enrichment
plots such as is shown in the bottom panel of Figure 4.2. In these plots, the relative
abundance of each protein bound to our site of interest is quantified relative to a
scrambled control sequence. The putative transcription factor is the one we find to
be highly enriched compared to all other DNA binding proteins.

Regulatory cartoons: The ultimate result of all these detailed base-pair-by-base-pair
resolution experiments yields a cartoon model of how we think the given promoter
is being regulated. A complete set of cartoons for all the architectures considered in
our study is presented in Figure 4.9. While the cartoon serves as a convenient visual
way to summarize our results, it’s important to remember that these cartoons are a
shorthand representation of all the data in the four quantitative measures described
above and are in fact backed by quantitative predictions of how we expect the sys-
tem to behave which can be tested experimentally. Throughout this paper we use
consistent iconography to illustrate the regulatory architecture of promoters, with
activators and their binding sites in green, repressors in red, and RNAP in blue.

Newly discovered E. coli regulatory architectures
Figure 4.3 (and Tables 4.1 and 4.2) provides a summary of the discoveries made
in the work done here using our next generation Reg-Seq approach. Figure 4.3(A)
provides a shorthand notation that conveniently characterizes the different kinds of
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regulatory architectures found in bacteria. In previous work (Rydenfelt et al., 2014),
we have explored the entirety of what is known about the regulatory genome of E.
coli, revealing that the most common motif is the (0,0) constitutive architecture,
though we hypothesized that this is not a statement about the facts of the E. coli
genome, but rather a reflection of our collective regulatory ignorance in the sense
that we suspect that with further investigation, many of these apparent constitutive
architectures will be found to be regulated under the right environmental conditions.
The two most common regulatory architectures that emerged from our previous
database survey are the (0,1) and (1,0) architectures, the simple repression motif
and the simple activation motif, respectively. It is interesting to consider that the
(0,1) architecture is in fact the repressor-operator model originally introduced in the
early 1960s by Jacob and Monod as the concept of gene regulation emerged (Jacob
and Monod, 1961). Now we see retrospectively the far-reaching importance of that
architecture across the E. coli genome.

For the 113 genes we considered, Figure 4.3(B) summarizes the number of simple
repression (0, 1) architectures discovered, the number of simple activation (1, 0)
architectures discovered and so on. A comparison of the frequency of the different
architectures found in our study to the frequencies of all the known architectures in
the RegulonDB database is provided in Figure B.9. Tables 4.1 and 4.2 provide a
more detailed view of our results. As seen in Table 4.1, of the 113 genes we con-
sidered, 32 of them revealed no signature of any transcription factor binding sites
and they are labeled as (0, 0). The simple repression architecture (0, 1) was found
26 times, the simple activation architecture (1, 0) was found 13 times, and more
complex architectures featuring multiple binding sites (e.g. (1, 1), (0, 2), (2, 0),
etc.) were revealed as well. Further, for 18 of the genes that we label “inactive”,
Reg-Seq didn’t even reveal an RNAP binding site. The lack of observable RNAP
site could be because the proper growth condition to get high levels of expression
was not used, or because the mutation window chosen for the gene does not capture
a highly transcribing TSS. The tables also include our set of 16 “gold standard”
genes for which previous work has resulted in a knowledge (sometimes only partial)
of their regulatory architectures. We find that our method recovers the regulatory
elements of these gold standard cases fully in 12 out of 16 cases, and the majority
of regulatory elements in 2 of the remainder. Overall the performance of Reg-Seq
in these gold-standard cases (for more details see Figure B.2) builds confidence in
the approach. Further, the failure modes inform us of the blind spots of Reg-Seq.
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Figure 4.3: A summary of regulatory architectures discovered in this study. (A)
The cartoons display a representative example of each type of architecture, along
with the corresponding shorthand notation. (B) Counts of the different regulatory
architectures discovered in this study. Only those promoters where at least one new
binding site was discovered are included in this figure. If one repressor was newly
discovered and two activators were previously known, then the architecture is still
counted as a (2,1) architecture. (C) Distribution of positions of binding sites
discovered in this study for activators and repressors. Only newly discovered
binding sites are included in this figure. The position of the TF binding sites are
calculated relative to the estimated TSS location, which is based on the location of
the associated RNAP site.

For example, we find it challenging to observe weaker binding sites when multiple
strong binding sites are also present such as in themarRAB operon. Additionally the
method will fail when there is no active TSS in the mutation window, as occurred
in the case of dicA. Further details on the comparison to gold standard genes can be
found in section B.1.

We observe that the most common motif to emerge from our work is the simple
repression motif. Another relevant regulatory statistic is shown in Figure 4.3(C)
where we see the distribution of binding site positions. Our own experience in
the use of different quantitative modeling approaches to consider transcriptional
regulation reveal that, for now, we remain largely ignorant of how to account for
transcription factor binding site position, and datasets like that presented here will
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Architecture
Total number
of promoters

Number of promoters
with at least one newly
discovered binding site

All Architectures 113 52
(0,0) 32 0
(0,1) 26 23
(1,0) 13 10
(1,1) 6 6
(0,2) 4 3
(2,0) 6 5
(2,1) 2 2
(1,2) 1 1
(2,2) 1 1
(3,0) 3 1
(0,4) 1 0
inactive 18 0

Table 4.1: All promoters examined in Reg-Seq, categorized according to type of
regulatory architecture.
Those promoters which have no recognizable RNAP site are labeled as inactive

rather than constitutively expressed (0, 0).

begin to provide data that can help us uncover how this parameter dictates gene
expression. Indeed, with binding site positions and energy matrices in hand, we can
systematically move these binding sites and explore the implications for the level of
gene expression, providing a systematic tool to understand the role of binding-site
position.

Figure 4.4 delves more deeply into the various regulatory architectures described in
Figure 4.3(B) by showing several example promoters for each of the different archi-
tecture types. In each of the cases shown in the figure, prior to the work presented
here, these promoters had no regulatory information in relevant databases such as
Ecocyc (Keseler et al., 2016) and RegulonDB (Santos-Zavaleta et al., 2019). Now,
using the sequencing methods explained above we were able to identify candidate
binding sites. For a number of cases, these putative binding sites were then used to
synthesize oligonuceotide probes to enrich and identify their corresponding putative
transcription factor using mass spectrometry. While Figure 4.4 gives a sense of the
kinds of regulatory architectures we discovered in this study, our entire collection
of regulatory cartoons can be found in Figure 4.9.
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Figure 4.4: Newly discovered or updated regulatory architectures. Examples of
information footprints, gene knockouts, and mass spectrometry data used to
identify transcription factors for five genes. (A) Examples of simple repression, i.e.
(0, 1) architectures where the locations of the putative binding sites are highlighted
in red and the identities of the bound transcription factors are revealed in the mass
spectrometry data. (B) An example of a (2, 0) architecture. During aerobic growth
FNR is inactive, but the DeoR site now has a significant effect on expression. (C)
An example of a (0, 2) architecture. yjjJ is regulated by MarA, which is only active
in growth with sodium salycilate, and an unknown repressor. (D) An example of a
(2, 1) architecture. (E) An example of a (2, 2) architecture.

A recent paper christened that part of the E. coli genome for which the function of
the genes is unknown the y-ome (Ghatak et al., 2019). Their surprising finding is
that roughly 35% of the genes in the E. coli genome are functionally unannotated.
The situation is likely worse for other organisms. For many of the genes in the
y-ome, we remain similarly ignorant of how those genes are regulated. Figures 4.4
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Figure 4.5: Examples of the insight gained by Reg-Seq in the context of promoters
with no previously known regulatory information. (A) From the information
footprint of the ykgE promoter under different growth conditions, we can identify a
repressor binding site downstream of the RNAP binding site. From the enrichment
of proteins bound to the DNA sequence of the putative repressor as compared to a
control sequence, we can identify YieP as the transcription factor bound to this site
as it has a much higher enrichment ratio than any other protein. Lastly, the binding
energy matrix for the repressor site along with corresponding sequence logo shows
that the wild type sequence is the strongest possible binder and it displays an
imperfect inverted repeat symmetry. (B) Illustration of a comparable dissection for
the phnA promoter.
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and 4.5 provide several examples from the y-ome, of genes and transcription factors
for which little to nothing was previously known. As shown in Figure 4.5, our study
has found the first examples that we are aware of in the entire E. coli genome of
a binding site for YciT. These examples are intended to show the outcome of the
methods developed here and to serve as an invitation to browse the online resource
(www.rpgroup.caltech.edu/RNAseq_SortSeq/interactive_a) to see many
examples of the regulation of y-ome genes.

The ability to find binding sites for both widely acting regulators and transcription
factors which may have only a few sites in the whole genome allows us to get
an in-depth and quantitative view of any given promoter. As indicated in Figures
4.5(A) and (B), we were able to perform the relevant search and capture for the
transcription factors that bind our putative binding sites. In both of these cases,
we now hypothesize that these newly discovered binding site-transcription factor
pairs exert their control through repression. The ability to extract the quantitative
features of regulatory control through energy matrices means that we can take a
nearly unstudied gene such as ykgE, which is regulated by an understudied tran-
scription factor YieP, and quickly get to the point at which we can do quantitative
modeling in the style that we and many others have performed on the lac operon
(Vilar and Leibler, 2003; Bintu et al., 2005; Kinney, Murugan, et al., 2010; Gar-
cia and Phillips, 2011; Vilar and Saiz, 2013; Barnes et al., 2019; Phillips et al., 2019).

One of the revealing case studies that demonstrates the broad reach of our approach
for discovering regulatory architectures is offered by the insights we have gained into
two widely acting regulators, GlpR (Schweizer, Boos, and Larson, 1985) and FNR
(Körner, Sofia, and Zumft, 2003; Kargeti and Venkatesh, 2017). In both cases, we
have expanded the array of promoters that they are now known to regulate. Further,
these two case studies illustrate that even for widely acting transcription factors,
there is a large gap in regulatory knowledge and the approach advanced here has
the power to discover new regulatory motifs. The newly discovered binding sites in
Figure 4.6(A) more than double the number of operons known to be regulated by
GlpR as reported in RegulonDB (Santos-Zavaleta et al., 2019). We found 5 newly
regulated operons in our data set, even though we were not specifically targeting
GlpR regulation. Although the number of example promoters across the genome
that we considered is too small to make good estimates, finding 5 regulated operons
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out of approximately 100 examined operons supports the claim that GlpR widely
regulates and many more of its sites would be found in a full search of the genome.
The regulatory roles revealed in Figure 4.6(A) also reinforce the evidence that GlpR
is a repressor.

For the GlpR-regulated operons newly discovered here, we found that this repressor
binds strongly in the presence of glucose while all other growth conditions result
in greatly diminished, but not entirely abolished, binding (Figure 4.6(A)). As there
is no previously known direct molecular interaction between GlpR and glucose and
the repression is reduced but not eliminated, the derepression in the absence of
glucose is likely an indirect effect. As a potential mechanism of the indirect effect,
gpsA is known to be activated by CRP (Seoh and Tai, 1999), and GpsA is involved
in the synthesis of glycerol-3-phosphate (G3P), a known binding partner of GlpR
which disables its repressive activity (Larsons et al., 1987). Thus in the presence of
glucose GpsA and consequently G3P will be found in low concentration, ultimately
allowing GlpR fulfill its role as a repressor.

Prior to this study, there were 4 operons known to be regulated by GlpR, each with
between 4 and 8 GlpR binding sites (Gama-Castro et al., 2016), where the absence
of glucose and the partial induction of GlpR was not enough to prompt a notable
change in gene expression (Lin, 1976). These previously explored operons seem-
ingly are regulated as part of an AND gate, where high G3P concentration and an
absence of glucose is required for high gene expression. By way of contrast, we have
discovered operons whose regulation appears to be mediated by a single GlpR site
per operon. With only a single site, GlpR functions as an indirect glucose sensor,
as only the absence of glucose is needed to relieve repression by GlpR.

The second widely acting regulator our study revealed, FNR, has 151 binding sites
already reported in RegulonDB and is well studied compared to most transcription
factors (Gama-Castro et al., 2016). However, the newly discovered FNR sites
displayed in Figure 4.6(B) demonstrate that even for well-understood transcription
factors there is much still to be uncovered. Our information footprints are in agree-
ment with previous studies suggesting that FNR acts as an activator. In the presence
of O2, dimeric FNR is converted to a monomeric form and its ability to bind DNA
is greatly reduced (Myers et al., 2013). Only in low oxygen conditions did we
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observe a binding signature from FNR, and we show a representative example of
the information footprint from one of 11 growth conditions with plentiful oxygen in
Figure 4.6(B).

We observe quantitatively how FNR affects the expression of fdhE both directly
through transcription factor binding (Figure 4.7(A)) and indirectly through increased
expression of ArcA (Figure 4.7(B)). Also, fully understanding even a single operon
often requires investigating several regulatory regions as we have in the case of
fdoGHI-fdhE by investigating the main promoter for the operon as well as the pro-
moter upstream of fdhE. 36% of all multi-gene operons have at least one TSS which
transcribes only a subset of the genes in the operon (Conway et al., 2014). Regula-
tion within an operon is even more poorly studied than regulation in general. The
main promoter for fdoGHI-fdhE has a repressor binding site, which demonstrates
that there is regulatory control of the entire operon. However, we also see in Figure
4.7(B) that there is control at the promoter level, as fdhE is regulated by both ArcA
and FNR and will therefore be upregulated in anaerobic conditions (Compan and
Touati, 1994). The main TSS transcribes all four genes in the operon, while the
secondary site shown in Figure 4.7(B) only transcribes fdhE, and therefore anaerobic
conditions will change the stoichiometry of the proteins produced by the operon.
At the higher throughput that we use in this experiment it becomes feasible to target
multiple promoters within an operon as we have done with fdoGHI-fdhE. We can
then determine under what conditions an operon is internally regulated. Figure 4.7
also makes it clear that for cases such as fdoGHI-fdhE, there are many subtleties both
in the interpretation of the information footprints and in the construction of regula-
tory cartoons that are simultaneously accurate and transparent. A crucial next step
in the development of these analyses is to move from manual curation of the data to
automated statistical analyses that can helpmake sense of these complicated datasets.

By examining the over 100 promoters considered here, grown under 12 growth
conditions, we have a total of more than 1000 information footprints and data sets.
In this age of big data, methods to explore and draw insights from that data are
crucial. To that end, as introduced in Figure 4.8, we have developed an online
resource (see www.rpgroup.caltech.edu/RNAseq_SortSeq/interactive_a)
that makes it possible for anyone who is interested to view our data and draw their
own biological conclusions. Information footprints for any combination of gene and
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growth condition are displayed via drop down menus. Each identified transcription
factor binding site or transcription start site is marked, and energy matrices for all
transcription factor binding sites are displayed. In addition, for each gene, we feature
a simple cartoon-level schematic that captures our now current best understanding
of the regulatory architecture and resulting mechanism.

The interactive figure in question was invaluable in identifying transcription factors,
such as GlpR, whose binding properties vary depending on growth condition. As
sigma factor availability also varies greatly depending on growth condition, study-
ing the interactive figure identified many of the secondary RNAP sites present. The
interactive figure provides a valuable resource both to those who are interested in
the regulation of a particular gene and those who wish to look for patterns in gene
regulation across multiple genes or across different growth conditions.

Regulatory cartoons
The final coarse grained output from Reg-Seq can be represented as regulatory
cartoons in Fig 4.9, which display the transcription factor binding sites and TF
identities if known. Binding site locations are coarse grained, along with RNAP
sites (in blue). In other words, if a repressor binding site is displayed overlapping
the RNAP site, then the repressor overlaps the RNAP site, and if the repressor is
displayed downstream of the RNAP site, then it is downstream of the RNAP site.
However, just the distance that the repressor is displayed downstream of the RNAP
site does not directly reflect the number of base pairs downstream that the repressor
binding site is from the RNAP.

4.3 Discussion
The study of gene regulation is one of the centerpieces of modern biology. As a re-
sult, it is surprising that in the genome era, our ignorance of the regulatory landscape
in even the best-understood model organisms remains so vast. Despite understand-
ing the regulation of transcription initiation in bacterial promoters (Browning and
Busby, 2016), and how to tune their expression, we lack an experimental framework
to unravel understudied promoter architectures at scale. As such, in our view one
of the grand challenges of the genome era is the need to uncover the regulatory
landscape for each and every organism with a known genome sequence. Given
the ability to read and write DNA sequence at will, we are convinced that to make
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that reading of DNA sequence truly informative about biological function and to
give that writing the full power and poetry of what Crick christened “the two great
polymer languages”, we need a full accounting of how the genes of a given organism
are regulated and how environmental signals communicate with the transcription
factors that mediate that regulation - the so-called “allosterome” problem (Lindsley
and Rutter, 2006). The work presented here provides a general methodology for
making progress on the former problem and also demonstrates that, by performing
Reg-Seq in different growth conditions, we can make headway on the latter problem
as well.

The advent of cheap DNA sequencing offers the promise of beginning to achieve that
grand challenge goal in the form of MPRAs reviewed in Kinney and McCandlish,
2019. A particular implementation of such methods was christened Sort-Seq (Kin-
ney, Murugan, et al., 2010) and was demonstrated in the context of well understood
regulatory architectures. A second generation of the Sort-Seq method (Belliveau et
al., 2018) established experiments through the use of DNA-affinity chromatography
and mass spectrometry which made it possible to identify the transcription factors
that bind the putative binding sites discovered by Sort-Seq. But there were critical
shortcomings in the method, not least of which was that it lacked the scalability to
uncover the regulatory genome on a genome-wide basis.

The work presented here builds on the foundations laid in the previous studies by
invoking RNA-Seq as a readout of the level of expression of the promoter mutant
libraries needed to infer information footprints and their corresponding energy ma-
trices and sequence logos followed by a combination of mass spectrometry and gene
knockouts to identify the transcription factors that bind those sites. The case studies
described in the main text showcase the ability of the method to deliver on the
promise of beginning to uncover the regulatory genome systematically. The exten-
sive online resources hint at a way of systematically reporting those insights in a way
that can be used by the community at large to develop regulatory intuition for bi-
ological function and to design novel regulatory architectures using energymatrices.

However, several shortcomings remain in the approach introduced here. First, the
current implementation of Reg-Seq still largely relies on manual curation as the
basis of using information footprints to generate testable regulatory hypotheses. As



121

described in the methods section, we have also used statistical testing as a way to
convert information footprints into regulatory hypotheses, but there clearly remains
much work to be done on the data analysis pipeline to improve both the power and
the accuracy of this approach. In addition, these regulatory hypotheses can also
be converted into gene regulatory models using statistical physics (Buchler, Ger-
land, and Hwa, 2003; Bintu et al., 2005). However, here too, as the complexity of
the regulatory architectures increases, it will be of great interest to use automated
model generation as suggested in a recent biophysically-based neural network ap-
proach (Tareen and Kinney, 2019).

A second key challenge faced by the methods described here is that the mass spec-
trometry and the gene knockout confirmation aspects of the experimental pipeline
remain low-throughput. To overcome this, we have begun to explore a new gen-
eration of experiments such as in vitro binding assays that will make it possible to
accomplish transcription factor identification at higher throughput. Specifically, we
are exploring multiplexed mass spectrometry measurements and multiplexed Reg-
Seq on libraries of gene knockouts as ways to break the identification bottleneck.

Another shortcoming of the current implementation of the method is that it would
miss regulatory action at a distance. Indeed, our laboratory has invested a signif-
icant effort in exploring such long-distance regulatory action in the form of DNA
looping in bacteria and VDJ recombination in jawed vertebrates. It is well known
that transcriptional control through enhancers in eukaryotic regulation is central in
contexts ranging from embryonic development to hematopoiesis (Melnikov et al.,
2012). The current incarnation of the methods described here have focused on con-
tiguous regions in the vicinity of the transcription start site. Clearly, to go further in
dissecting the entire regulatory genome, these methods will have to be extended to
non-contiguous regions of the genome.

The findings from this study provide a foundation for systematically performing
genome-wide regulatory dissections. We have developed a method to pass from
complete regulatory ignorance to designable regulatory architectures and we are
hopeful that others will adopt these methods with the ambition of uncovering the
regulatory architectures that preside over their organisms of interest.
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4.4 Methods
Library construction
Promoter variants were synthesized on a microarray (TWIST Bioscience, San Fran-
cisco, CA). The sequences were designed computationally such that each base in
the 160 bp promtoter region has a 10% probability of being mutated. For each
given promoter’s library, we ensured that the mutation rate as averaged across all
sequences was kept between 9.5% and 10.5%, otherwise the library was regenerated.
There are an average of 2200 unique promoter sequences per gene (for an analysis of
how our results depend upon number of unique promoter sequences see Figure B.5).
An average of 5 unique 20 base pair barcodes per variant promoter was used for the
purpose of counting transcripts. The barcode was inserted 110 base pairs from the
5’ end of the mRNA, containing 45 base pairs from the targeted regulatory region,
64 base pairs containing primer sites used in the construction of the plasmid, and
11 base pairs containing a three frame stop codon. All the sequences are listed in
Supplementary Table 1. Following the barcode there is an RBS and a GFP coding
region. Mutated promoters were PCR amplified and inserted by Gibson assembly
into the plasmid backbone of pJK14 (SC101 origin) (Kinney, Murugan, et al.,
2010). Constructs were electroporated into E. coli K-12 MG1655 (Blattner, 1997).

RNA preparation and sequencing
Cells were grown to an optical density of 0.3 and RNAwas then stabilized using Qia-
gen RNA Protect (Qiagen, Hilden, Germany). Lysis was performed using lysozyme
(Sigma Aldrich, Saint Louis, MO) and RNA was isolated using the Qiagen RNA
Mini Kit. Reverse transcription was preformed using Superscript IV (Invitrogen,
Carlsbad, CA) and a specific primer for the labeled mRNA. qPCR was preformed
to check the level of DNA contamination and the mRNA tags were PCR amplified
and Illumina sequenced. Within a single growth condition, all promoter variants for
all regulatory regions were tested in a single multiplexed RNA-Seq experiment. All
sequencing was carried out by either the Millard and Muriel Jacobs Genetics and
Genomics Laboratory at Caltech (HiSeq 2500) on a 100 bp single read flow cell or
using the sequencing services from NGX Bio on a 250 bp or 150 base paired end
flow cell.
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Analysis of sequencing results
To determine putative transcription factor binding sites, we first compute the effect
of mutations on gene expression at a base pair-by-base pair level using informa-
tion footprints. The information footprints are a hypothesis generating tool and we
choose which regions to further investigate using techniques such as mass spectrom-
etry by visually inspecting the data for regions of 10 to 20 base pairs that have high
information content compared to background. Our technique currently relies on
using human intuition to determine binding sites, but to validate these choices and
to capture all regions important for gene expression we computationally identify
regions where gene expression is changed significantly up or down by mutation
(p < 0.01), and discard any potential sites which do not fit this criteria. We infer
the effect of mutation using Markov Chain Monte Carlo, and we use the distribu-
tion of parameters from the inference to form a 99 % confidence interval for the
average effect of mutation across a 15 base pair region. We include binding sites
that are statistically significant at the 0.01 level in any of the tested growth conditions.

Many false positives will be secondary RNAP sites and we remove from consid-
eration any sites that resemble RNAP sites. We fit energy matrices to each of the
possible binding sites and use the preferred DNA sequence for binding to identify
the RNAP sites. We use both visual inspection to compare the preferred sequence
to known consensus sequences for each of the E. coli sigma factor binding sites (for
example, do the preferred bases in the energy matrix have few mismatches to the
TGNTATAAT extended minus 10 for f70 sites), and the TOMTOM tool (Gupta
et al., 2007) to computationally compare the potential site to examples of f70, f38,
and f54 sites that we determined in this experiment. For further details see Fig-
ure B.6. We discard any sites that have a p-value of similarity with an RNAP site of
less than 5G10−3 in the TOMTOM analysis or are deemed to be too visually similar
to RNAP sites. If a single site contains an RNAP site along with a transcription
factor site we remove only those bases containing the probable RNAP site. This
results in 95 identified transcription factor binding regions.

For primary RNAP sites, we include a list of probable sigma factor identities as
Supplementary Table 2 Sites are judged by visual similarity to consensus binding
sites. Those sites where the true sigma factor is unclear due to overlapping binding
sites are omitted. Overlapping binding sites (from multiple TFs or RNAP sites) in
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general can pose issues for this method. In many cases, looking at growth conditions
where only one of the relevant transcription factors is present or active is an effective
way to establish site boundaries and infer correct energy matrices. For sites where
no adequate growth condition can be found, or when a TF overlaps with an RNAP
site, the energy matrix will not be reflective of the true DNA-protein interaction
energies. If the TFs in overlapping sites are composed of one activator and one
repressor, then we use the point at which the effect of mutation shifts from activator-
like to repressor-like as a demarcation point between binding sites. We see a case
of a potentially overlooked repressor due to overlapping sites in Figure 4.4(B), as
there are several repressor like bases overlapping the RNAP -10 site and the effect
weakens in low oxygen growth. However, due to the effect of the RNAP site, when
averaged over a potential 15 base pair region, the repressor-like bases do not have a
significant effect on gene expression.

DNA affinity chromatography and mass spectrometry
Upon identifying a putative transcription factor binding site, we used DNA affinity
chromatography, as done in (Belliveau et al., 2018) to isolate and enrich for the
transcription factor of interest. In brief, we order biotinylated oligos of our binding
site of interest (Integrated DNA Technologies, Coralville, IA) along with a control,
"scrambled" sequence, that we expect to have no specificity for the given tran-
scription factor. We tether these oligos to magnetic streptavidin beads (Dynabeads
MyOne T1; ThermoFisher, Waltham, MA), and incubate them overnight with whole
cell lysate grown in the presences of either heavy (with 15N) or light (with 14N) ly-
sine for the experimental and control sequences, respectively. The next day, proteins
are recovered by digesting the DNA with the PtsI restriction enzyme (New England
Biolabs, Ipswich, MA), whose cut site was incorporated into all designed oligos.

Protein samples were then prepared for mass spectrometry by either in-gel or in-
solution digestion using the Lys-C protease (WakoChemicals, Osaka, Japan). Liquid
chromatography coupled mass spectrometry (LC-MS) was performed as previously
described by (Belliveau et al., 2018), and is further discussed in the A. SILAC
labeling was performed by growing cells (Δ LysA) in either heavy isotope form of
lysine or its natural form.
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It is also important to note that while we relied on the SILAC method to identify the
TF identity for each promoter, our approach doesn’t require this specific technique.
Specifically, our method only requires a way to contrast between the copy number
of proteins bound to a target promoter in relation to a scrambled version of the
promoter. In principle, one could use multiplexed proteomics based on isobaric
mass tags (Pappireddi, Martin, and Wühr, 2019) to characterize up to 10 promoters
in parallel. Isobaric tags are reagents used to covalently modify peptides by using
the heavy-isotope distribution in the tag to encode different conditions. The most
widely adopted methods for isobaric tagging are the isobaric tag for relative and
absolute quantitation (iTRAQ) and the tandem mass tag (TMT). This multiplexed
approach involves the fragmentation of peptide ions by colliding with an inert gas.
The resulting ions are resolved in a second MS-MS scan (MS2).

Only a subset (13) of all transcription factor targets were identified by mass spec-
trometry due to limitations in scaling the technique to large numbers of targets.
The transcription factors identified by this method are enriched more than any other
DNA binding protein, with p < 0.01 using the outlier detection method as outlined
by Cox and Mann, 2008, with corrections for multiple hypothesis testing using the
method proposed by Benjamini and Hochberg, 1995.

Construction of knockout strains
Conducting DNA affinity chromatography followed by mass spectrometry on puta-
tive binding sites resulted in potential candidates for the transcription factors that
are responsible for the information contained at a given promoter region. For
some cases, to verify that a given transcription factor is, in fact, regulating a given
promoter, we repeated the RNA sequencing experiments on strains with the tran-
scription factor of interest knocked out.

To construct the knockout strains, we ordered strains from the Keio collection (Ya-
mamoto et al., 2009) from the Coli Genetic Stock Center. These knockouts were put
in a MG1655 background via phage P1 transduction and verified with Sanger se-
quencing. To remove the kanamycin resistance that comes with the strains from the
Keio collection, we transformed in the pCP20 plasmid, induced FLP recombinase,
and then selected for colonies that no longer grew on either kanamycin or ampi-
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cillin. Finally, we transformed our desired promoter libraries into the constructed
knockout strains, allowing us to perform the RNA sequencing in the same context
as the original experiments.

Code and Data Availability
All code used for processing data and plotting as well as the final processed data,
plasmid sequences, and primer sequences can be found on the GitHub repository
(https://github.com/RPGroup-PBoC/RNAseq_SortSeq) doi:10.5281/zenodo.3628117.
Energy matrices were generated using the MPAthic software (Ireland and Kinney,
2016). All raw sequencing data is available at the Sequence Read Archive (acces-
sion no.PRJNA599253 and PRJNA603368 ). All inferred information footprints and
energymatrices can be found on the CalTech data repository doi:10.22002/D1.1331.
Allmass spectrometry rawdata is available on theCalTech data repository doi:10.22002/d1.1336
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Architecture Promoter

Newly
discovered
binding
sites

Literature
binding
sites

Identified
binding
sites Evidence

(0, 0) acuI 0 0 0
adiY 0 0 0
arcB 0 0 0
coaA 0 0 0
dnaE 0 0 0
ecnB 0 0 0
holC 0 0 0
hslU 0 0 0
htrB 0 0 0
modE 0 0 0
motAB-cheAW 0 0 0
poxB 0 0 0
rcsF 0 0 0
rumB 0 0 0
sbcB 0 0 0
sdaB 0 0 0
ybdG 0 0 0
ybiP 0 0 0
ybjL 0 0 0
ybjT 0 0 0
yehS 0 0 0
yehT 0 0 0
yfhG 0 0 0
ygdH 0 0 0
ygeR 0 0 0
yggW 0 0 0
ygjP 0 0 0
ynaI 0 0 0
yqhC 0 0 0
zapB 0 0 0
zupT 0 0 0
amiC 0 0 0

(0, 1) aegA 1 0 0

bdcR 1 0 1

Known binding
location (NsrR)

(Partridge et al., 2009)
dicC 0 1 0
fdoH 1 0 0
groSL 1 0 0
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Architecture Promoter

Newly
discovered
binding
sites

Literature
binding
sites

Identified
binding
sites Evidence

idnK 1 0 1
Mass-

Spectrometry (YgbI)

leuABCD 1 0 1
Mass-

Spectrometry (YgbI)
pcm 1 0 0

yedK 1 0 1
Mass-

Spectrometry (TreR)

rapA 1 0 1

Growth condition
Knockout (GlpR),

Bioinformatic (GlpR)
sdiA 1 0 0
tar 1 0 0

tff-rpsB-tsf 1 0 1

Growth condition
Knockout (GlpR),

Bioinformatic (GlpR),
Knockout (GlpR)

thiM 1 0 0

tig 1 0 1

Growth condition
Knockout (GlpR),

Bioinformatic (GlpR),
Knockout (GlpR)

ycgB 1 0 0
ydjA 1 0 0
yedJ 1 0 0
ycbZ 1 0 0

phnA 1 0 1
Mass-

Spectrometry (YciT)
mutM 1 0 0

rhlE 1 0 1

Growth condition
Knockout (GlpR),

Bioinformatic (GlpR),
Mass-

Spectrometry (GlpR)
uvrD 1 0 1 Bioinformatic (LexA)
dusC 1 0 0
ftsK 0 1 0
znuA 0 1 0

(1, 0) waaA-coaD 1 0 0
cra 1 0 0
iap 1 0 0
araC 0 1 0
minC 1 0 0
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Architecture Promoter

Newly
discovered
binding
sites

Literature
binding
sites

Identified
binding
sites Evidence

ybeZ 1 0 0
mscM 1 0 0
mscS 1 0 0
rlmA 1 0 0
thrLABC 1 0 0

yeiQ 1 0 1

Growth condition
Knockout (FNR),

Bioinformatic (FNR)

dgoR 0 1 0
Mass-

Spectrometry (DgoR)

lac 0 1 0
Mass-

Spectrometry (LacI)

(0, 2) yecE 2 0 1
Mass-

Spectrometry (HU)

yjjJ 2 0 1

Growth condition
Knockout (MarA),

Bioinformatic (MarA)

dcm 2 0 1
Mass-

Spectrometry (HNS)

marR 0 2 0
Mass-

Spectrometry (MarR)

(1, 1) ilvC 2 0 1
Mass-

Spectrometry (IlvY)
ybiO 2 0 0

yehU 2 0 1

Growth condition
Knockout (FNR),

Bioinformatic (FNR)

ykgE 2 0 2

Growth condition
Knockout (FNR),

Bioinformatic (FNR),
Mass-

Spectrometry(YieP)
Knockout (YieP)
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Architecture Promoter

Newly
discovered
binding
sites

Literature
binding
sites

Identified
binding
sites Evidence

ymgG 2 0 0
znuCB 1 1 0

(2, 0) aphA 2 0 2

Growth condition
Knockout (FNR),

Bioinformatic (FNR),
Mass-

Spectrometry (DeoR)

arcA 2 0 2

Growth condition
Knockout (FNR),

Bioinformatic (FNR),
Mass-

Spectrometry (FNR, CpxR)
asnA 2 0 0

fdhE 2 0 2

Growth condition
Knockout (FNR, ArcA),

Bioinformatic (FNR, ArcA),
Knockout (ArcA)

xylF 0 2 0
mscL 2 0 0

(2, 1) maoP 3 0 3

Growth condition
Knockout (GlpR),

Bioinformatic (GlpR),
Knockout (PhoP, HdfR, GlpR)

rspA 1 2 1
Mass-

Spectrometry (DeoR)
(1, 2) dinJ 3 0 0

(2, 2) ybjX 4 0 4

Bioinformatic (PhoP),
Mass-

Spectrometry (HNS, StpA)
(3, 0) araAB 0 3 0

xylA 0 3 0
yicI 3 0 0

(0, 4) relBE 0 4 0
Mass-

Spectrometry (RelBE)

Table 4.2: All genes investigated in this study categorized according to their
regulatory architecture
The architecture is given as (number of activators, number of repressors). The table
also lists the number of newly discovered binding sites, previously known binding
sites, and number of identified transcription factors. The evidence used for the
transcription factor identification is given in the final column.
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Figure 4.6: Reg-Seq analysis of broadly-acting transcription factors. (A) GlpR as a
widely-acting regulator. Here we show the many promoters which we found to be
regulated by GlpR, all of which were previously unknown. GlpR was
demonstrated to bind to rhlE by mass spectrometry enrichment experiments as
shown in the top right. Binding sites in the tff, tig, maoP, rhlE, and rapA have
similar DNA binding preferences as seen in the sequence logos and each TF
binding site binds strongly only in the presence of glucose. These similarities
suggest that the same TF binds to each site. To test this hypothesis we knocked out
GlpR and ran the Reg-Seq experiments for tff, tig, and maoP. We see that knocking
out GlpR removes the binding signature of the TF. (B) FNR as a global regulator.
FNR is known to be upregulated in anaerobic growth, and here we found it to
regulate a suite of six genes. In growth conditions with prevalent oxygen the
putative FNR sites are weakened, and the DNA binding preference of the six sites
are shown to be similar from the sequence logos displayed on the right.
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fdhE by both FNR and ArcA. A TOMTOM (Gupta et al., 2007) search of the
binding motif found that ArcA was the most likely candidate for the transcription
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Figure 4.8: Representative view of the interactive figure that is available online.
This interactive figure captures the entirety of our dataset. Each figure features a
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condition, there is a corresponding information footprint revealing putative binding
sites, an energy matrix that shows the strength of binding of the relevant
transcription factor to those binding sites and a cartoon that schematizes the
newly-discovered regulatory architecture of that gene.
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A p p e n d i x A

EXTENDED EXPERIMENTAL DETAILS

Extended details of experimental design
Choosing target genes for Reg-Seq
Genes in this study were chosen to cover several different categories. 29 genes
had some information on their regulation already known to validate our method
under a number of conditions. 37 were chosen because the work of Schmidt,
Kochanowski, Vedelaar, Ahrné, et al., 2016 demonstrated that gene expression
changed significantly under different growth conditions. A handful of genes such
as minC, maoP, or fdhE were chosen because we found either their physiological
significance interesting, as in the case of the cell division gene minC or that we
found the gene regulatory question interesting, such for the intra-operon regulation
demonstrated by fdhE. The remainder of the genes were chosen because they had
no regulatory information, often had minimal information about the function of the
gene, and had an annotated transcription start site (TSS) in RegulonDB.

Choosing transcription start sites for Reg-Seq
A known limitation of the experiment is that the mutational window is limited to 160
bp. As such, it is important to correctly target the mutation window to the location
around the most active TSS. To do this we first prioritized those TSS which have
been extensively experimentally validated and catalogued in RegulonDB. Secondly
we selected those sites which had evidence of active transcription from RACE
experiments (Mendoza-Vargas et al., 2009) and were listed in RegulonDB. If the
intergenic region was small enough, we covered the entire region with our mutation
window. If none of these options were available, we used computationally predicted
start sites.

Reg-Seq Sequencing
The total library was first sequenced by PCR amplifying the region containing the
variant promoters aswell as the corresponding barcodes. This allowed us to uniquely
associate each random 20 bp barcode with a promoter variant. Any barcode which
was associated with a promoter variant with insertions or deletions was removed
from further analysis. Similarly, any barcode that was associated with multiple pro-
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moter variants was also removed from the analysis. The paired end reads from this
sequencing step were then assembled using the FLASH tool (Magoc and Salzberg,
2011). Any sequence with PHRED score less than 20 was removed using the FastX
toolkit. Additionally, when sequencing the initial library, sequences which only
appear in the dataset once were not included in further analysis in order to remove
possible sequencing errors.

For all the MPRA experiments, only the region containing the random 20 bp bar-
code was sequenced, since the barcode can be matched to a specific promoter variant
using the initial library sequencing run described above. For a given growth con-
dition, each promoter yielded 20,000 to 500,000 usable sequencing reads. Under
some growth conditions, genes were not analyzed further if they did not have at least
20,000 reads.

To determine which base pair regions were statistically significant a 99% confidence
interval was constructed using the MCMC inference to determine the uncertainty.

Reg-Seq Growth conditions
The growth conditions studied in this studywere inspired by (Schmidt, Kochanowski,
Vedelaar, Ahrne, et al., 2015) and include differing carbon sources such as growth
in M9 with 0.5% Glucose, M9 with acetate (0.5%), M9 with arabinose (0.5%),
M9 with Xylose (0.5%) and arabinose (0.5%), M9 with succinate (0.5%), M9 with
fumarate (0.5%), M9 with Trehalose (0.5%), and LB. In each case cell harvesting
was done at an OD of 0.3. These growth conditions were chosen so as to span a wide
range of growth rates, as well as to illuminate any carbon source specific regulators.

We also used several stress conditions such as heat shock, where cells were grown in
M9 and were subjected to a heat shock of 42 degrees for 5 minutes before harvesting
RNA. We grew in low oxygen conditions. Cells were grown in LB in a container
with minimal oxygen, although some will be present as no anaerobic chamber was
used. This level of oxygen stress was still sufficient to activate FNR binding, and
so activated the anaerobic metabolism. We also grew cells in M9 with Glucose and
5mM sodium salycilate.

Growth with zinc was preformed at a concentration of 5mM ZnCl2 and growth with
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iron was preformed by first growing cells to an OD of 0.3 and then adding FeCL2

to a concentration of 5mM and harvesting RNA after 10 minutes. Growth without
cAMP was accomplished by the use of the JK10 strain which does not maintain its
cAMP levels.

All knockout experiment were preformed in M9 with Glucose except for the knock-
outs for arcA, hdfR, and phoP which were grown in LB.

Reg-Seq Constructs
The following mutated constructs were integrated into the plasmid.

fdoH,sdaB,thiM,yedJ,ykgE,sdiA

yqhC,yicI,ybjT,mtgA,aphA,bdcR

yncD,rumB,yagH,eco,y�G,htrB

iap,ygjP,yedK,holC,aegA,rapA

dusC,fdhE,dnaE,ycgB,yehS,yeiQ

ydhO,hslU,ymgG,rlmA,modE,ycbZ

yajL,yecE,ybiP,ybjL,ygdH,pcm

rcsF,sbcB,ygeR,mscK,mscS,ynaI

ybdG,hicB,arcB,minC,ybeZ,ydjA

yggW,acuI,yehU,yehT,ybiO,mscL

zapB,waaA-coaD,coaA,yjjJ,groSL,pyrLBI

�g,�f,maoP,poxB,rspA,mscM

arcA,tar,dpiBA,araAB,araC,xylF

xylA,dicA,dicC,dicB,ompR,xapAB

ilvC,asnA,idnK,dinJ,yjiY,motAB

�sK,cra,uvrD,adiY,znuCB,znuA

zupT,pitA,ecnB,leuABCD

RplKAJL-rpoBC,yodB,atpI,msyB,ndk,thrLABC

Genes Forward Integration Site 5’ RNA SequenceMutated Wild 
Type Sequence

Barcode

TTCGTCTTCACCTCGAGCACGCTTATTCGTGCCGTGTTAT

TTCGTCTTCACCTCGAGCACTTTGCTTCAGTCAGATTCGC

TTCGTCTTCACCTCGAGCACGTCGAGTCCTATGTAACCGT

TTCGTCTTCACCTCGAGCACGTAAGATGGAAGCCGGGATA

TTCGTCTTCACCTCGAGCACGGTGTCGCAACATGATCTAC

TTCGTCTTCACCTCGAGCACGTGCTAAGTCACACTGTTGG

TTCGTCTTCACCTCGAGCACTCTAAACAGTTAGGCCCAGG

TTCGTCTTCACCTCGAGCACGTCTTTATACTTGCCTGCCG

TTCGTCTTCACCTCGAGCACCACCGCGATCAATACAACTT

TTCGTCTTCACCTCGAGCACTTCGGATAGACTCAGGAAGC

TTCGTCTTCACCTCGAGCACCCATTGATAGATTCGCTCGC

TTCGTCTTCACCTCGAGCACTTTTCTACTTTCCGGCTTGC

TTCGTCTTCACCTCGAGCACATGACTATTGGGGTCGTACC

TTCGTCTTCACCTCGAGCACTCGACAATAGTTGAGCCCTT

TTCGTCTTCACCTCGAGCACGAGCCATGTGAAATGTGTGT

TTCGTCTTCACCTCGAGCACCGTATACGTAAGGGTTCCGA

TTCGTCTTCACCTCGAGCACTTATGATGTCCGGATACCCG

TTCGTCTTCACCTCGAGCACTCTTAGAAATCCACGGGTCC

TACTTTTGATTGCTGTGCCCTATTAGGCTTCTCCTCAGCGCTAGTCACTGGCCGTCGTTTTACATGACTGACTGANNNNNNNNNNNNNNNNNNNN

GTTCAATCACTGAATCCCGGTATTAGGCTTCTCCTCAGCGCTCCTCACTGGCCGTCGTTTTACATGACTGACTGANNNNNNNNNNNNNNNNNNNN

CAGGGGTCGTCATATCTTCATATTAGGCTTCTCCTCAGCGGGACTCACTGGCCGTCGTTTTACATGACTGACTGANNNNNNNNNNNNNNNNNNNN

CACCTCATAGAGCTGTGGAATATTAGGCTTCTCCTCAGCGTCGGTCACTGGCCGTCGTTTTACATGACTGACTGANNNNNNNNNNNNNNNNNNNN

CGGTTCCTAGTCATGTTTGCTATTAGGCTTCTCCTCAGCGCCAATCACTGGCCGTCGTTTTACATGACTGACTGANNNNNNNNNNNNNNNNNNNN

TTGTACTAATCTCGTCCCGGTATTAGGCTTCTCCTCAGCGTATCTCACTGGCCGTCGTTTTACATGACTGACTGANNNNNNNNNNNNNNNNNNNN

TTATGTTCACAACTGGCGTGTATTAGGCTTCTCCTCAGCGGAGTTCACTGGCCGTCGTTTTACATGACTGACTGANNNNNNNNNNNNNNNNNNNN

TGGAACTGATTTGGCCTTTGTATTAGGCTTCTCCTCAGCGAGTATCACTGGCCGTCGTTTTACATGACTGACTGANNNNNNNNNNNNNNNNNNNN

TATAGTTCCTCCCATGCACCTATTAGGCTTCTCCTCAGCGTTGGTCACTGGCCGTCGTTTTACATGACTGACTGANNNNNNNNNNNNNNNNNNNN

ACAATAGACAGACCCATGCATATTAGGCTTCTCCTCAGCGGCCTTCACTGGCCGTCGTTTTACATGACTGACTGANNNNNNNNNNNNNNNNNNNN

GAGTCGAGCTAGCATAGGAGTATTAGGCTTCTCCTCAGCGAATTTCACTGGCCGTCGTTTTACATGACTGACTGANNNNNNNNNNNNNNNNNNNN

TTGTGGGAGCTTCTTACCATTATTAGGCTTCTCCTCAGCGACAATCACTGGCCGTCGTTTTACATGACTGACTGANNNNNNNNNNNNNNNNNNNN

TCGTACGGGAATGACCATAGTATTAGGCTTCTCCTCAGCGTAAATCACTGGCCGTCGTTTTACATGACTGACTGANNNNNNNNNNNNNNNNNNNN

AGACACAACGTAGCCGATTATATTAGGCTTCTCCTCAGCGCGGTTCACTGGCCGTCGTTTTACATGACTGACTGANNNNNNNNNNNNNNNNNNNN

CGGACTAAAGGATCGAGTCATATTAGGCTTCTCCTCAGCGGCCATCACTGGCCGTCGTTTTACATGACTGACTGANNNNNNNNNNNNNNNNNNNN

CATCGGATAACACAAAGCGTTATTAGGCTTCTCCTCAGCGGGCCTCACTGGCCGTCGTTTTACATGACTGACTGANNNNNNNNNNNNNNNNNNNN

GATGTATACTCCACCGTGGTTATTAGGCTTCTCCTCAGCGCACCTCACTGGCCGTCGTTTTACATGACTGACTGANNNNNNNNNNNNNNNNNNNN

TGAGATATGTACCTGGTGCCTATTAGGCTTCTCCTCAGCGATTGTCACTGGCCGTCGTTTTACATGACTGACTGANNNNNNNNNNNNNNNNNNNN

Figure A.1: Promoter constructs for Reg-Seq. We show examples of the constructs
generated for the Reg-Seq project. Here we display the different 5’ mRNA
sequences that follow the mutated region for each gene. The mutated region will be
160 base pairs, with 115 base pairs upstream and 45 base pairs downstream of the
TSS for that gene listed in Table A.1.
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Gene Start Site Transcription Direction
fdoH 4085867 rev
sdaB 2928035 fwd
thiM 2185451 rev
yedJ 2033449 rev
ykgE 321511 fwd
sdiA 1996867 rev
yqhC 3155262 rev
yicI 3836664 rev
ybjT 909320 rev
mtgA 3350504 rev
aphA 4269355 fwd
bdcR 4474096 fwd
yncD 1523276 rev
rumB 897947 fwd
yagH 285350 fwd
eco 2303851 fwd
yfhG 2690181 rev
htrB 1116709 rev
iap 2876547 fwd
ygjP 3235915 fwd
yedK 2009866 fwd
holC 4484273 rev
aegA 2585570 rev
rapA 63358 rev
dusC 2230395 rev
fdhE 4081359 rev
dnaE 197026 fwd
ycgB 1237285 rev
yehS 2212241 rev
yeiQ 2266214 rev
ydhO 1734357 fwd
hslU 4122354 rev
ymgG 1223097 rev
rlmA 1907086 rev
modE 794644 rev
ycbZ 1018330 rev
yajL 443748 rev
yecE 1950778 fwd
ybiP 904523 rev
ybjL 889945 rev
ygdH 2926272 fwd
pcm 2870686 rev
rcsF 220022 rev
sbcB 2082728 fwd
ygeR 2999918 rev
mscK 486492 fwd
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Gene Start Site Transcription Direction
mscS 3069871 rev
ynaI 1395973 rev
ybdG 604684 rev
hicB 1509221 fwd
arcB 3353049 rev
minC 1226139 rev
ybeZ 693469 rev
ydjA 1848700 rev
yggW 3096620 fwd
acuI 3403446 fwd
yehU 2214673 rev
yehT 2212969 rev
ybiO 845736 rev
mscL 3438001 fwd
zapB 4118427 fwd
WaaA-coaD 3808516 fwd
coaA 4175107 rev
yjjJ 4621716 fwd
groSL 4370616 fwd
pyrLBI 4472553 rev
rplKAJL-rpoBC 4178354 fwd
yodB 2042294 fwd
atpIBEFHAGDC 3922525 rev
msyB 1114213 rev
ndk 2644913 rev
thrLABC 148 fwd
tig 455077 fwd
tff-rpsB-tsf 189712 fwd
maoP 3948058 fwd
poxB 911076 rev
rspA 1655186 rev
mscM 4390638 rev
arcA 4640508 rev
tar 1972716 rev
dpiBA 652172 fwd
araAB 70075 rev
araC 70241 fwd
xylF 3731069 fwd
xylA 3730807 rev
dicA 1647979 fwd
dicC 1647876 rev
dicB 1649597 fwd
ompR 3536707 rev
xapAB 2524910 rev
ilvC 3957912 fwd
asnA 3927129 fwd



145

Gene Start Site Transcription Direction
idnK 4494597 fwd
dinJ 246533 rev
yjiY 4591397 rev
motAB-cheAW 1977302 rev
ftsK 933138 fwd
cra 87969 fwd
uvrD 3997907 fwd
adiY 4338042 rev
znuCB 1942634 fwd
znuA 1942661 rev
zupT 3182433 fwd
pitA 3637612 fwd
ecnB 4376509 fwd
leuABCD 83735 rev

Table A.1: All TSS for all genes investigated in Reg-Seq.
There are 160 base pairs of mutated sequence for each regulatory region, 115 base
pairs upstream and 45 base pairs down stream of the transcription start site. The
TSS location is shown, as well as whether the gene is transcribed in a 5’ to 3’

direction or a 3’ to 5’ direction.
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A p p e n d i x B

EXTENDED ANALYSIS DETAILS

B.1 Validating Reg-Seq against previous methods and results
Reg-Seq is effectively a third-generation of the use of Sort-Seq methods for the dis-
covery of regulatory architecture. The primary difference between the present work
and previous generations (Kinney, Murugan, et al., 2010; Belliveau et al., 2018) is
the use of RNA-Seq rather than fluorescence and cell sorting as a readout of the
level of expression of our promoter libraries. As such, there are many important
questions to be asked about the comparison between the earlier methods and this
work. We attack that question in several ways. First, as shown in Figure B.1, we
have performed a head-to-head comparison of the two approaches to be described
further in this section. Second, as shown in the next section, our list of candidate
promoters included roughly 20% for which the community has some knowledge
of their regulatory architecture. In these cases, we examined the extent to which
our methods recover the known features of regulatory control about those promoters.

Comparison between Reg-Seq by RNA-Seq and fluorescent sorting
As the basis for comparing the results of the fluorescence-based Sort-Seq approach
with our RNA-Seq-based approach, we use information footprints, expression shifts
and sequence logos as our metrics. Figure B.1 shows examples of this comparison
for four distinct genes of interest. Figure B.1(A) shows the results of the two meth-
ods for the lacZYA promoter with special reference to the CRP binding site. Both
the information footprint and the sequence logo identify the same binding site.

Figure B.1(B) provides a similar analysis for the dgoRKADT promoter where once
again the information footprints and the sequence logos from the two methods are
in reasonable accord. Figure B.1(C) provides a quantitative dissection of the relBE
promoter which is repressed by RelBE. Here we use both information footprints
and expression shifts as a way to quantify the significance of mutations to different
binding sites across the promoter. Finally, Figure B.1(D) shows a comparison of the
two methods for the marRAB promoter. The two approaches both identify a MarR
binding site.
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Figure B.1: A summary of four direct comparisons of measurements using
fluorescence and sorting and using RNA-Seq. (A) CRP binds upstream of RNAP
in the lacZYA promoter. Despite the different measurement techniques for the two
inferred energy matrices and their corresponding sequence logos, the CRP binding
sites have a Pearson correlation coefficient of A = 0.98. (B) The dgoRKADT
promoter is activated by CRP in the presence of galactonate. The FACS
measurements were taken in the JK10 strain in the presence of 500mM cAMP. In
both cases, a type II activator binding site can be identified based on the signals in
the information footprint in the area indicated in green. Additionally the
quantitative agreement between the CRP binding preference matrices are strong,
with A = 0.9. (C) The relBE promoter is repressed by RelBE. The inferred
matrices between the two measurement methods have A = 0.8. (D) The marRAB
promoter is repressed by MarR. The features we can observe in the information
footprint reflect this under measurement with both FACS or RNA-seq. The
inferred energy matrices (data not shown) and sequence logos shown have
A = 0.78. The right most MarR site overlaps with a ribosome binding site. The
overlap has a stronger obscuring effect on the sequence specificity of the FACS
measurement, which measures protein levels directly, than it does on the output of
the RNA-seq measurement.
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Ability of Reg-Seq to recover known regulatory architectures
In total, we have tested over 20 genes for which there is already some substantial
regulatory knowledge reported in the literature. The successes and failures of this
test are detailed in Figure B.2. For those promoters which have strong evidence of a
binding site, as determined by RegulonDB (Santos-Zavaleta et al., 2019), we recover
all relevant transcription factor binding sites for 12 out of 16 cases, the majority of
relevant binding sites for 2 out of 16 cases, and miss all or most of the regulation for
just 2 promoters. We identify a total of 22 previously known high evidence binding
sites.

These results showcase that our method largely agrees with the established literature
but also highlights several areas in which our method is prone to missing regulatory
elements. One failure mode is caused by the presence of strong secondary binding
sites. For example, in the araC promoter, as shown in Figure B.2(C), the only
binding signatures that appear in the information footprint are from a secondary
RNAP site. The secondary site seems to be expressed constitutively, and in the
cases where the primary start site is even partially repressed, the secondary start
site will dominate transcription and obscure the many binding sites that are in this
promoter.

If there are large numbers of regulatory elements, the data will often only show the
few most important elements. If we look at themarR promoter in Figure B.2(C), we
can only see the signature of the twoMarR sites even though CpxR, Fis, and CRP are
all known to bind to the promoter. MarR is a strong enough repressor that mutating
any of the other transcription factor sites is unlikely to meaningfully change gene
expression unless the MarR site is also mutated. This illustrates that the regulatory
architectures discovered in this study represent a lower bound on what exists in each
promoter.

Finally, for some genes such as dicA there was no known TSS prior to the experi-
ment. Although there is a small regulatory region between dicA and its neighboring
gene, this does not ensure that we will include the strongest RNAP sites. Better
mapping of transcription start sites could improve our method.

We next consider low evidence binding sites. Other research determined the loca-
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Figure B.2: Reg-Seq analysis of “gold standard” promoters. (A) Information
footprints for known and properly recovered binding sites. (B) A summary of how
well the Reg-Seq results conform to literature results. The sites that are low
evidence in the literature are determined by RegulonDB (Santos-Zavaleta et al.,
2019). (C) The information footprint and known binding sites for the araC
promoter. Despite all the binding sites present, the only binding signature that
appears is for RNAP.

tions of the low evidence sites through gene expression analysis and sequence com-
parison to consensus sequences (Compan and Touati, 1994; Kumar and Shimizu,
2011; Easton and Kushner, 1983). For 5 promoters in our list, the binding sites
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location itself is not known, only that the TF in question regulates the gene. For
these promoters we recover the known regulation in only 2 out of 15 cases. Com-
parison to consensus sequences can be unreliable and generate false positives when
the entirety of the E. coli genome is considered. Gene expression analysis alone
has difficulty ruling out indirect effects of a given transcription factor on gene ex-
pression and regulation determined by this method may occur outside of the 160 bp
mutation window we consider. As our results recover high evidence sites well, the
poor recovery of sites based on sequence gazing and gene expression analysis most
likely indicates that these methods are unreliable for determining binding locations.

We note that the first aim of our methods is regulatory discovery. We would like to
be able to determine how previously uncharacterized promoters are regulated and
ultimately, this is a question of binding-site and transcription factor identification.
For that task, we do not require perfect correspondence between the two methods.
With regulatory sites identified, our next objective is the determination of energy
matrices that will allow us to turn binding site strength into a tunable knob that can
nearly continuously tune the strength of transcription factor binding, thus altering
gene expression in predictable ways as already shown in our earlier work in Chapter 2
(Barnes et al., 2019). The r-values between energy matrices range from 0.78 to 0.96,
indicating reasonable to very good agreement. Reg-Seq appears to be, if anything,
more accurate than previous methods as it has higher relative information content
in known areas of transcription factor binding and also does not have repressor-like
bases on CRP sites as in Figure B.1(A) and (B).

B.2 Information footprints
We use information footprints as a tool for hypothesis generation to identify regions
which may contain transcription factor binding sites. In general, a mutation within a
transcription factor site is likely to severely weaken that site. We look for groups of
positions where mutation away from wild type has a large effect on gene expression.
Our data sets consist of nucleotide sequences, the number of times we sequenced
the construct in the plasmid library, and the number of times we sequenced its
corresponding mRNA. A simplified data set on a 4 nucleotide sequence then might
look like
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Sequence Library Sequencing Counts mRNA Counts
ACTA 5 23
ATTA 5 3
CCTG 11 11
TAGA 12 3
GTGC 2 0
CACA 8 7
AGGC 7 3

�1 =

1∑
<=0

1∑̀
=0
?(<, `) log2

(
?(<, `)

?<DC (<)?4G?A (`)

)
. (B.1)

?<DC (<) in equation B.1 refers to the probability that a given sequencing read will
be from a mutated base. ?4G?A (`) is a normalizing factor that gives the ratio of the
number of DNA or mRNA sequencing counts to total number of counts.

The mutual information quantifies how much a piece of knowledge reduces the en-
tropy of a distribution. At a position where base identity matters little for expression
level, there would be little difference in the frequency distributions for the library
and mRNA transcripts. The entropy of the distribution would decrease only by a
small amount when considering the two types of sequencing reads separately.

We are interested in quantifying the degree to which mutation away from a wild type
sequence affects expression. Although their are obviously 4 possible nucleotides,
we can classify each base as either wild-type or mutated so that 1 in equation B.1
represents only these two possibilities.

If mutations at each position are not fully independent, then the information value
calculated in equation B.1 will also encode the effect of mutation at correlated po-
sitions. If having a mutation at position 1 is highly favorable for gene expression
and is also correlated with having a mutation at position 2, mutations at position 2
will also be enriched amongst the mRNA transcripts. Position 2 will appear to have
high mutual information even if it has minimal effect on gene expression. Due to the
DNA synthesis process used in library construction, mutation in one position can
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make mutation at other positions more likely by up to 10 percent. This is enough to
cloud the signature of most transcription factors in an information footprint calcu-
lated using equation B.1.

We need to determine values for ?8 (< |4G?) when mutations are independent, and
to do this we need to fit these quantities from our data. We assert that

〈<'#�〉 ∝ 4−V�4 5 5 (B.2)

is a reasonable approximation to make. 〈<'#�〉 is the average number of mRNAs
produced by that sequence for every cell containing the construct and �4 5 5 is an
effective energy for the sequence that can be determined by summing contributions
from each position in the sequence. There are many possible underlying regulatory
architectures, but to demonstrate that our approach is reasonable let us first consider
the simple case where there is only a RNAP site in the studied region. We can write
down an expression for average gene expression per cell as

〈<'#�〉 ∝ ?1>D=3 ∝
?

##(
4−V�%

1 + ?

##(
4−V�%

(B.3)

where ?1>D=3 is the probability that the RNAP is bound to DNA and is known to
be proportional to gene expression in E. coli (Garcia and Phillips, 2011), �% is the
energy of RNAP binding, ##( is the number of nonspecific DNA binding sites, and
? is the number of RNAP. If RNAP binds weakly then ?

##(
4−V�% << 1. We can

simplify equation B.3 to

〈<'#�〉 ∝ 4−V�% . (B.4)

If we assume that the energy of RNAP binding will be a sum of contributions from
each of the positions within its binding site then we can calculate the difference in
gene expression between having a mutated base at position 8 and having a wild type
base as



153

〈
<'#�,)8

〉〈
<'#�"DC8

〉 = 4−V�%,)8
4
−V�%"DC8

(B.5)〈
<'#�,)8

〉〈
<'#�"DC8

〉 =4−V(�%,)8 −�%"DC8 ) . (B.6)

In this example we are only considering single mutation in the sequence so we can
further simplify the equation to

〈
<'#�,)8

〉〈
<'#�"DC8

〉 = 4−VΔ�%8 . (B.7)

We can now calculate the base probabilities in the expressed sequences. If the
probability of finding a wild type base at position 8 in the DNA library is ?8 (< =

,) |4G? = 0) then

?8 (< = ,) |4G? = 1) =

?8 (< = ,) |4G? = 0) 〈<'#�,)8〉〈<'#�"DC8〉

?8 (< = "DC |4G? = 0) + ?8 (< = ,) |4G? = 0) 〈<'#�,)8〉〈<'#�"DC 〉

(B.8)

?8 (< = ,) |4G? = 1) =
?8 (< = ,) |4G? = 0)4−VΔ�%8

?8 (< = "DC |4G? = 0) + ?8 (< = ,) |4G? = 0)4−VΔ�%8
. (B.9)

Under certain conditions, we can also infer a value for ?8 (< |4G? = 1) using a linear
model when there are any number of activator or repressor binding sites. We will
demonstrate this in the case of a single activator and a single repressor, although a
similar analysis can be done when there are greater numbers of transcription factors.
We will define % = ?

##(
4−V�% . We will also define � = 0

##(
4−V�� where 0 is the

number of activators, and �� is the binding energy of the activator. We will finally
define ' = A

##(
4−V�' where A is the number of repressors and �' is the binding

energy of the repressor. We can write

〈<'#�〉 ∝ ?1>D=3 ∝
% + %�4−VY�%

1 + � + % + ' + %�4−VY�%
. (B.10)
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If activators and RNAP bind weakly but interact strongly, and repressors bind very
strongly, then we can simplify equation B.10. In this case � << 1, % << 1,
%�4−Y�% >> %, and ' >> 1. We can then rewrite equation B.10 as

〈<'#�〉 ∝%�4
−VY�%

'
(B.11)

〈<'#�〉 ∝4−V(−�%−��+�') . (B.12)

As we typically assume that RNAP binding energy, activator binding energy, and
repressor binding can all be represented as sums of contributions from their con-
stituent bases, the combination of the energies can be written as a total effective
energy �4 5 5 which is a sum of contributions from all positions within the binding
sites.

We fit the parameters for each base using a Markov Chain Monte Carlo Method.
Two MCMC runs are conducted using randomly generated initial conditions. We
require both chains to reach the same distribution to prove the convergence of the
chains. We do not wish for mutation rate to affect the information values so we set
the ?(,)) = ?("DC) = 0.5 in the information calculation. The information values
are smoothed by averaging with neighboring values.

B.3 Estimating mutual information from observed data and model predic-
tions

One difficulty with estimating the mutual information from model predictions is
that base pair identity �,�, �,) and the gene expression level ` are both discrete
variables, while binding energy predictions from the model (G) is a continuous
variable. Formally, the mutual information is given by

� (`, G) =
∫ G=+∞

G=−∞
3G

∑
D

?(G, `)log2

(
?(G, `)
?(G)?(`)

)
, (B.13)

where ` is a measure of the gene expression and is equal to the sorting bin number
1, 2, 3, 4 in the case of Sort-Seq and

` =


0, for sequencing reads from the DNA library

1, for sequencing reads originating from mRNA,
(B.14)
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during Reg-Seq (discussed in Chapter 4).

The probability distribution ? is not one that we have full access to, as we only have
a discrete set of predictions (one from each of the N unique DNA sequences in our
data set). To compensate for the issues that can arise from estimating a continuous
distribution from discrete data, we make use of the fact that any transformation
that preserves the rank order I@ (for instance multiplying all model predictions by a
constant) the mutual information is unchanged.

Wewill define I@ as the rank order in binding energy predictions of the @th sequence.
We estimate � (`, I) by first calculating binding energy predictions

G =

!∑
8=1

)∑
9=�

\8 9 · B8 9 , (B.15)

and then converting them to a rank order predictions I.

We then discretize the energy predictions into 1000 "bins" and convolvewith aGaus-
sian kernel to estimate the probability distribution ?(I, `). We can then calculate
the mutual information with

� (`, I)B<>>Cℎ43 =
1000∑
I=1

∑
`� (`, I)log2

� (`, I)
� (I) · � (`) , (B.16)

where � (`, I) is the probability distribution ?(`, I) estimated from finite data.

B.4 Markov Chain Monte Carlo fitting procedure
We will often want to infer parameter values under conditions where posterior
distributions are difficult to work with. In these difficult cases, Markov Chain
Monte Carlo (MCMC) methods can be used. MCMC gets its name from two
processes, Monte Carlo and Markov Chain. Monte Carlo is a method for estimating
features of a distribution by randomly drawing samples from the distribution. For
example, one could estimate the mean or standard

deviation of a distribution by drawing random samples and computing the mean
and standard deviation for those samples. Fig. B.3 (A) schematizes this process.
Markov Chain is a type of algorithm for drawing random samples. In this Monte
Carlo method, schematized in Fig. B.3 (B), a random value is added to current
parameter values to generate the next sample. In a Markov Chain there is no
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Figure B.3: Parameter inference using Markov Chain Monte Carlo. (A) A “Monte
Carlo” technique refers to the process of taking random samples from a
distribution and using these samples to estimate properties of the distribution. (B)
A “Markov Chain” refers to a process of generating random samples in which an
operation is performed only on the current sample to generate the next sample. The
identity of each sample depends only on the sample immediately preceding it, and
lacks memory of previous samples. (C) A short MCMC example chain for
inferring a parameter. (D)A histogram generated from the chain plotted in (C).

memory of any previous samples; new steps are calculated only with information
from the previous step. Each new step is accepted or rejected based on the relative
likelihood of the new model compared to the old model. Successive iterations of
MCMC will increase the mutual information to a plateau as shown in B.3 (C).
This early period is known as a "burn in" period and is discarded from the analysis.
Further samples can be used to determine the posterior distribution of the parameter,
an example of which is shown in B.3 (D).

A full discussion of Markov Chain Monte Carlo method is beyond the scope of this
study, but here we will provide a brief explanation. A full explanation of the method
can be found in Neal, 1993. Markov Chain Monte Carlo (MCMC) methods are
often used when functions are not amenable to analytical solutions or calculations.
MCMCmethods allow the expectation value of a given parameter, and its uncertainty
without requiring us to have full access to the underlying probability distribution.
As with many cases in biology, the true underlying probability distribution is often
complicated and difficult to access.
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As proven by Kinney, 2008, the likelihood of a model that predicts gene output is

! (\ |`B) ∝ 2#�B<>>Cℎ (`,I) , (B.17)

where # is the total number of independent sequences, �B<>>Cℎ is the smoothed
mutual information between gene expression (`) and DNA sequence (I).

The probability distributions ?(\) is very difficult to handle analytically. The reason
why we use MCMC is that you can estimate properties using the target probability
distribution without needing to know the distribution. For example, we can estimate
〈\〉 by drawing many samples of \ using MCMC and taking the mean of the
parameters.

We therefore need to construct a Markov Chain whose stationary distribution con-
verges to the distribution of interest ?(\). A Markov chain is a sequence of values
\1, \2, \3, ..., \# for N steps. We can then find 〈\〉 with

〈\〉 =
∑100
#=1 \#

#
, (B.18)

A Markov chain has no memory. That is the probability that the #th value in the
chain takes a value \# depends only on the (# − 1)th value in the chain. To make
things a bit more concrete, let’s leave aside \ for the time being. Imagine that we
have a light switch, and we know the switch is "on" 25% of the time and "off" 75%
of the time. For each "step" in our Markov chain, we can change the state of the
switch; if the switch is on, we turn it off with some rate :> 5 5 , and if the switch is
currently off, we turn it off with the rate :>=. A sequence of states will be generated.
One example would be off, off, off, on, on, on , off. These states constitute a Markov
chain and if the chain is continued for long enough, the stationary distribution will
converge such that ?>= = 0.25 and ?> 5 5 = 0.75 as we knew going in.

A Markov chain is stationary if detailed balance is satisfied between its states. The
condition of detailed balance obtains if the total rate of transitions from on to off is
the same as the total rate of transitions from off to on. Mathematically, this condition
can be written as

:>= × ?> 5 5 = :> 5 5 × ?>=. (B.19)

The above equation allows calculation of :>= and :> 5 5 .



158

:>=

:> 5 5
=
?>=

?> 5 5
=

1
3
. (B.20)

As long as the ratio of transition rates is satisfied and enough steps are taken, then
the stationary distribution will converge to the proper distribution.

For the far more complicated task of estimating ?(\) we can fall back on the standard
Metroplis-Hastings sampling algorithm. \ will be a matrix where \8 9 will be the
energetic contributions to the energy matrix for the 8th position and the 9 th base pair
where 8 ∈ 1, 2, 3, ..., ! and 9 ∈ �,�, �,) . We can then follow the procedure.

energy (kT)
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Figure B.4: An example energy matrix for the YieP binding site of the ykgE. An
example energy matrix that describes the binding energy between the transcription
factor YieP and DNA is shown. By convention, the wild-type nucleotides have
zero energy, and each other entry represents the change in binding energy upon a
mutation from the wild type nucleotide to a new nucleotide at that position.

1. Start with a random energy matrix \0.

2. Make a random perturbation 3\ to \0. This perturbation will have a small
adjustment to each element of \.

3. Compute the model likelihoods ! (\0) and L(\0 + 3\) using equation B.17.

4. If L(\0 + 3\) > L(\), accept the new parameter values \0 + 3\ as the next
element in the markov chain (\1). Otherwise accept \0 + 3\ with probability
! (\0+3\)
! (\0) . If the step is rejected, the next element \1 in the Markov chain reset
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to its previous value (\0). The acceptance/rejection probabilities mean that
detailed balance is satisfied between the states \0 and \0 + 3\.

5. Repeat steps 2-4 until the chain converges to the stationary distribution. In
practice this can be determined by monitoring when the mutual information
plateaus, as can be seen in Fig. B.3 (C).

6. To be certain that the distribution has in fact converged to the proper stationary
distribution, multiple Markov Chains should be run starting with step 1. If
all the chains converge to the same distribution, then they have properly
converged.

The end result of these model-fitting efforts is an optimized linear binding
energy matrix like the one shown in Fig. B.4. You can get a measure of
the uncertainty in \8 9 by forming a confidence interval out of the distribution
of parameters formed from the Markov Chain. This inference is performed
using the MPAthic software (Ireland and Kinney, 2016).

Uncertainty in Reg-Seq due to number of independent sequences
1400 promoter variants were ordered from TWIST Bioscience for each promoter
studied. Due to errors in synthesis, additional mutations are introduced into the
ordered oligos. As a result, the final number of variants received was an average of
2200 per promoter. To test whether the number of promoter variants is a significant
source of uncertainty in the experiment we computationally reduced the number
of promoter variants used in the analysis of the zapAB -10 RNAP region. Each
sub-sampling was performed 3 times. The results, as displayed in Figure B.5, show
that there is only a small effect on the resulting sequence logo until the library has
been reduced to approximately 500 promoter variants.

B.5 TOMTOMmotif comparison
In some cases, we used an alternative approach to mass spectrometry to discover the
TF identity regulating a given promoter based on sequence analysis using a motif
comparison tool. TOMTOM (Gupta et al., 2007) is a tool that uses a statistical
method to infer if a putative motif resembles any previously discovered motif in a
database. Of interest, it accounts for all possible offsets between the motifs. More-
over, it uses a suite of metrics to compare between motifs such as Kullback-Leibler
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Figure B.5: A comparison of RNAP -10 site sequence logos. (A) This figure
shows the Pearson correlation coefficient between the energy matrix models
inferred from the full dataset (2200 unique promoter variants) and that from a
computationally restricted dataset. (B) Sequence logos of the RNAP -10 region
from each sub-sampled dataset.

divergence, Pearson correlation, and euclidean distance, among others.

We performed comparisons of the motifs generated from our energy matrices to
those generated from all known transcription factor binding sites in RegulonDB.
Figure B.6 shows a result of TOMTOM, where we compared the motif derived from
the -35 region of the ybjX promoter and found a good match with the motif of PhoP
from RegulonDB.

The information derived from this approach was then used to guide some of the
TF knockout experiments, in order to validate its interaction with a target promoter
characterized by the loss of the information footprint. Furthermore, we also used
TOMTOM to search for similarities between our own database of motifs, in order
to generate regulatory hypotheses in tandem. This was particularly useful when
looking at the group of GlpR binding sites found in this experiment.

B.6 BioInformatic methods - TOMTOMmotif comparison
There have been many attempts to scan the E. coli genome using consensus matrices
built from the known binding sites of a transcription factor (Suzuki, 2003). However,
as we see in section B.1, these efforts often fall short. One important reason is that
a typical interaction energy between an activator and RNAP is ≈ −4 :1) (Forcier
et al., 2018). For CRP, the total protein DNA interaction energy is of a similar
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Figure B.6: Motif comparison using TOMTOM. Searching our energy motifs
against the RegulonDB database using TOMTOM allowed us to guide our TF
knockout experiments. Here we show the sequence logos of the PhoP transcription
factor from RegulonDB (top) and the one generated from the ybjX promoter
energy matrix. E-value = 0.01 using Euclidean distance as a similarity matrix.

magnitude. Without interacting with RNAP, a typical CRP site will have a difficult
time being differentiated from the non specific background, as a binding site like the
O3 operator for LacI only has a total binding energy of ≈ −10 :1) . O3 is typical of
a weak specific binding site.

For future work, we are interested in using computational tools like TOMTOM to
identify transcription factors. While, as we say, whole genome searches often cause
a lot of false positive, we may get better results in the future by restricting analysis to
only sites that we know are active transcription factor binding sites. Some examples
of this type of search can be seen in Fig. 4.10 for FNR and GlpR binding sites found
in the Reg-Seq project. We can draw a rough cutoff of a p-value of less than 10−4.
This cutoff does identify FNR and GlpR for these cases, and especially for the cases
of FNR, the binding sites we found in the Reg-Seq project are very similar according
to TOMTOM. This does imply that future attempts to "cluster" binding sites could
be a useful tool, but they are not perfect. For example, CRP cannot be differentiated
in any way from FNR. Not all binding sites cluster together well. The GlpR sites
in particular only worked for a subset of the 5 sites. In future work, refinements of
computational searches, possibly using deep learning methods, could be extremely
useful for identification.
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B.7 Sigma Factors
As discussed in the Introduction, each RNAP core protein must act in concert with
a bacterial f factor. The available f factors are f 70, f 54, f 38, f 32, f 28,
f E, and f FecI. f 70 is "housekeeping" f factor and by far the most common
f factor. f 38 is a general stress response f factor in E. coli. Its copy number
increases under stress and the onset of stationary phase, but it is available at lower
levels under ordinary growth conditions. f E is the envelope stress f factor, and
most relevantly, responds to heat shock conditions transiently.

f 32 also responds to heat shock, while f 54 responds to nitrogen starvation.
f 28 is a f factor involved in flagellar synthesis. It competes with f 70 and
preferentially binds the RNAP core enzyme, but under ordinary growth conditions
is only approximately half as prevalent as f 70.

f factor prevalence is a form of gene regulation in bacteria, generally at a wide
scale. Even for a minor f factor such as f 32, there are approximately 100 known
RNAP binding sites (Keseler et al., 2013). This is a similar scale to the number of
known CRP or FNR binding sites (Keseler et al., 2013).

The heat shock f factors have a large fold change when the cells are exposed to
a five minute heat shock at 42°C. Additionally, they have relatively low leakiness.
In contrast, other f factors, such as f 38, while also transiently upregulated under
stress conditions, has a very high leakiness and is still quite active under exponential
growth.

Despite using the same core enzyme when binding DNA as shown in B.7, the
sequence binding preference can be quite dissimilar between different f factors,
allowing RNAP to discriminate between different binding sites. The consensus
binding sequences are given in B.1.
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Figure B.7: Sequence logos for models fit using neural network fitting methods.
These types of fitting procedures are far more computationally efficient, and will
be important for the next generation of Reg-Seq.
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f Factor Consensus Sequence
f 70 TTGAC - ≈ 15 bp spacer - TGNTATAAT
f 38 TTGAC - ≈ 14 bp spacer - TGTGCTATACT
f 32 CTTGAA - ≈ 15 bp spacer - CCCCATATAT
f E CCCCATtTa
f H CTGGCACA - ≈ 3 bp spacer - ATTTGC(A/T)T
f 28 GCCGATAA

Table B.1: All consensus f factor binding sites
Consensus sites are taken from EcoCyc (Keseler et al., 2013)

We compare the consensus sequences for each f factor to the binding energy
matrices for each of the regulatory elements discovered. The most prevalent RNAP
binding sites are found by human inspection and are

B.8 Binding sites regulating divergent operons
In addition to discovering new binding sites, we have discovered additional func-
tions of known binding sites. In particular, in the case of bdcR, the repressor for the
divergently transcribed gene bdcA (Partridge et al., 2009), is also shown to repress
bdcR in Figure B.8(A). Similarly in Figure B.8(B) IvlY is shown to repress ilvC
in the absence of inducer. Divergently transcribed operons that share regulatory
regions are plentiful in E. coli, and although there are already many known exam-
ples of transcription factor binding sites regulating several different operons, there
are almost certainly many examples of this type of transcription that have yet to be
discovered.
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Figure B.8: Multipurpose binding sites. Two cases in which we see transcription
factor binding sites that we have found to regulate both of the two divergently
transcribed genes.

Multi-purpose binding sites allow for more genes to be regulated with fewer binding
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Gene Location compared to TSS f Factor
acuI -105 f 70
acuI -25 f 70
aegA -9 f 70
adiY 19 f 70
aphA -11 f 70
araAB -13 f 70
araC -32 f 70
arcA -99 f 38
arcA -12 f 70
arcB -11 f 70
asnA -10 f 70
bdcR -10 f 70
coaA -12 f 70
cra -12 f 70
dicC -11 f 70
dinJ -11 f 70
dnaE -11 f 24
dpiBA -24 f 70
dusC -23 f 70
ecnB -11 f 70
fdhE -12 f 70
ftsK -11 f 38
groSL -15 f 32
groSL 19 f 70
hicB -11 f 70
holC -14 f 32
hslU -10 f 32
htrB -10 f 38
iap -12 f 38
iap 33 f 38
ilvC -8 f 70
maoP -21 f 70
minC -12 f 70
modE -26 f 70
mscK -14 f 38
mscL -13 f 38
mscM 35 f 54
ompR -11 f 70
pcm -11 f 70
pit -13 f 70
poxB -12 f 38
rapA -10 f 70
rapA -103 f 38
rcsF -62 f 38
rcsF -11 f 70
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Gene Location compared to TSS f Factor
rlmA -9 f 70
rlmA -64 f 70
rspA 5 f 38
rumB -11 f 70
sbcB -11 f 70
sdaB -19 f 70
sdiA -54 f 70
tff-rpsB-tsf -12 f 70
tff-rpsB-tsf -84 f 70
thiM -11 f 70
thrLABC -14 f 70
tig -11 f 70
uvrD -12 f 70
WaaA-coaD -13 f 70
xylA -8 f 70
xylF -12 f 70
ybdG -11 f 70
ybeZ 29 f 70
ybeZ -14 f 32
ybiO 19 f 38
ybiO 2 f 70
ybjL -11 f 38
ybjL -58 f 70
ybjL 20 f 70
ybjT -12 f 70
ybjT 10 f 70
ycbZ -8 f 70
ycbZ -11 f 70
ycbZ -25 f 70
ycgB -11 f 38
ydhO 12 f 70
ydjA -13 f 70
ydjA 17 f 24
yecE -1 f 70
yecE -33 f 70
yedJ -30 f 70
yedJ -11 f 70
yedK 13 f 70
yedK 25 f 38
yehS 8 f 70
yehT -11 f 70
yehT 12 f 38
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Gene Location compared to TSS f Factor
yehU -8 f 70
yehU 36 f 70
yeiQ -12 f 70
yfhG 32 f 70
ygdH -12 f 70
ygeR -10 f 70
yggW -14 f 32
ygjP -23 f 70
yicI 5 f 70
yjjJ 12 f 70
ykgE -41 f 70
ykgE 25 f 70
ymgG -12 f 70
ynaI -11 f 70
yqhC 40 f 70
zapB -13 f 70
znuA 36 f 70
znuCB -11 f 70
znuCB -88 f 70

Table B.2: Identification of the f factors used for each RNAP binding site.

sites. However, they can also serve to sharpen the promoter’s response to environ-
mental cues. In the case of ilvC, IlvY is known to activate ilvC in the presence of
inducer. However, we now see that it also represses the promoter in the absence of
that inducer. The production of ilvC is known to increase by approximately a factor
of 100 in the presence of inducer (Rhee, Senear, and Hatfield, 1998). The magni-
tude of the change is attributed to the cooperative binding of two IlvY binding sites,
but the lowered expression of the promoter due to IlvY repression in the absence of
inducer is also a factor.

Comparison of Reg-Seq results to regulonDB
B.9 Neural network fitting
Although neural network models are still in development, they are a more efficient
fitting method than the Markov Chain Monte Carlo fitting methods used previously.
Additionally this fits the results in :1) units rather than arbitrary units as this method
fits thermodynamic models. The training set for one neural network fit comprises
DNA sequences from one promoter concatenated across all different experimental
conditions. The categorical variable ismeant to represent the experimental condition
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Figure B.9: Comparison of Reg-Seq architectures to RegulonDB. A comparison of
the types of architectures found in RegulonDB (Santos-Zavaleta et al., 2019) to the
architectures with newly discovered binding sites found in the Reg-Seq study.

(e.g. heat, M9 etc.). The training data are split as follows: 70% training, 20%
validation, 10% test.

A schematic of the architecture of the neural network is shown in Fig. B.10
(schematic adapted from (Tareen and Kinney, 2019)). The sequence dependence of
Δ�� and Δ�' is given by:

Δ�)� =
−−→
\)� · −→G )� + −→̀)� · −→I + 1)� (B.21)

Δ�' =
−→
\ ' · −→G ' + −→̀' · −→I + 1' . (B.22)

These Gibbs free energies are represented by the values of nodes in the first hidden
layer. −→G is a one-hot encoding of the input DNA sequence and −→I is the condition
categorical variable. One-hot encoding is a method to represent categorical vari-
ables. For example, if you were considering 3 growth conditions (M9, LB, Xylose),
instead of labeling the categories M9=1, LB=2, Xylose=3, one-hot encoding lables
M9= (1,0,0), LB=(0,1,0), and Xylose=(0,0,1). Without this encoding scheme, the
"Xylose" growth condition would be weighted more than the "M9" growth condition
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because the magnitude of the original label of "3" is larger than the magnitude of the
"1" label of M9. With one-hot encoding, the magnitude of each label is the same.

` represents the condition dependent part of the position weight matrix and 1
represents an overall bias/chemical potential. −→\ represents the PWMs of the RNAP
and the transcription factor. G' represents the one-hot encoded sequence of the
RNAP (similar for -)�). The microstates of the thermodynamic model (see Fig.
B.11), and equivalently the softmin acctivations of the second hidden layer, are
given by

%B =
4−Δ�B∑
B′ 4
−Δ�B′

(B.23)

The nodes from the second hidden layer feed into a single, linearly activated, noted
representing transcription rate. A dense feed-forward network, with a Relu activated
hidden layer and softmin activated output layer, maps transcription rate C to counts
in bins. This network represents the error model ?(18=|C). The promoter activity C
is given by Eq. B.24:

C = CB0C
4−Δ�' + 4−Δ�'−Δ�) �−Δ� �

1 + 4−Δ�) � + 4−Δ�' + 4−Δ�'−Δ�) �−Δ� �
(B.24)

To fit the network, we minimize negative log-likelihood, given by Eq B.25:

Loss Function = − 1∑
8 9 28 9

<∑
8=1

#∑
9=1
28 9 log

(
%(bin 9 |C (−→G ))

)
. (B.25)

Here 28 9 represents the counts of sequence 8 in bin 9 (# bins, and < sequences).
Eq. B.25 represents log-Poisson loss, minimizing which is equivalent, in the large
data limit, to maximizing mutual information � [C, 18=]. We use stochastic gradient
descent, in particular, the Adam optimizer, to back propagate losses.

For each promoter, the neural network model was fit 100 times; the two models with
the lowest losses (each) on a held out test set were chosen to be the best models.
The total procedure takes less than 15 minutes, which is a significant improvement
from the several hours that fitting models with Markov Chain Monte Carlo can take.
For future endeavors, where thousands of models will need to be fit, this is a crucial
advance.
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Figure B.10: Architecture of neural network used to fit data. −→G represent a one-hot
encoding of the input sequence. ‘condition’ is a categorical variable meant to
represent the experimental condition of the experiment for each sequence. The
condition variable feeds into in the energy nodes of the first hidden layer, and also
to the dense non-linear sub-network mapping C to bins; this latter skipped
connection has reduced opacity only to reduce visual clutter and does not represent
any constraint on these skipped weights. Gray lines connecting first hidden layer
weights to second hidden layer weights are fixed at 0. The weights linking nodes
%3 and %4 to node C are constrained to have the same value is a diffeomorphic
mode (Atwal, 2016).

B.10 Diffeomorphic modes
Diffeomorphic modes are parameters that we are unable to determine using maxi-
mization of mutual information because mutual information calculations are based
on the rank order of model predictions, and changing these parameters does not
change rank order of predictions. As one example there is a diffeomorphic mode
that allows arbitrary scaling of energy bindingmatrices. This iswhy ourmatrices are,
by default, reported using arbitrary units. However, more complex thermodynamic
models can break diffeomorphic modes, as changing the previously undetermined
parameters will now affect mutual information. A discussion of thermodynamic
model fitting can be found in section 2.2 When we fit models to our data we max-
imize the mutual information between our predicted expression (from our model)
and the actual binning. However, imagine the case where every cell’s fluorescence
was doubled. The previously lowest expression cells would still be in the lowest
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Figure B.11: The microstates of a one transcription factor promoter. We assume
that any state with RNAP bound will transcribe at the rate given by "activity". The
probabilities of each state can be calculated with a Boltzmann distribution.
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Figure B.12: A sequence logo of the tff which has one RNAP binding site and is
repressed by GlpR. Fitting a thermodynamic model to the regulatory sequence
allows absolute units (in :1) units) to be fit to the energy matrix for the GlpR site.

bin, and the highest would still be in the highest bin, etc. Therefore this change
would have no effect on the mutual information. Similarly, if we double our model’s
predicted expression for every cell, we would still predict they would be in the same
bin, and mutual information would once again be the same. Mutual information is
only sensitive to changes which affect the rank order of a cell’s expression, and we
are completely insensitive to any feature of our model which does not change rank
order.

For constitutive expression, the expression is given by
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Expression = U
%
#=B
4−Y%3

1 + %
#=B
4−Y%3

. (B.26)

We need to use the value of expression as opposed to fold change because during the
experiment we bin based on expression, not fold change, and the two measures are
not equivalent. I will show they are not equivalent in the following section where
we calculate the diffeomorphic modes for simple repression. One of the first thing
we notice about this expression is that changing the value of U will not affect the
rank order of any prediction (unless it is zero). This means we will not be able to
determine U for constitutive expression. The second thing that pops out is that %

#=B

could be absorbed into Y% as an energy shift. We can see this transformation as
follows

%

#=B
4−Y%3 = 4−Y%3+;=(

%
#=B
)
. (B.27)

We can then redefine

Y% = −Y%3 + ;=(
%

#=B
), (B.28)

where −Y%3 is the product of a linear energy binding matrix and the DNA sequence
in question, and \ is the energy binding matrix, and f represents the sequence.

Y%3 = f<1\<1 (B.29)

Y% = f<1\′<1 (B.30)

where \′<1 = \<1 +
;=( %

#=B
)

length of sequence
. (B.31)

In this case we cannot distinguish between an additive shift to the entire energy bind-
ing matrix and the contribution from the concentration of binding protein ;=( %

#=B
).

Therefore we can only ever determine one by setting a reference value for the other.

If we arbitrarily set U to 1, as its value is irrelevant, the expression equation can be
rewritten as

Expression =
1

1 + '−1 , (B.32)

where
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' = 4−Y%/:) . (B.33)

Cells with a higher value of R will always have a higher value of expression, and
therefore rank order is preserved. This means that looking at only R is equivalent
informationally to looking at the entire equation for expression. To be slightly more
rigorous, R is an invertible function of expression and Kinney, 2008 proved this
means they are informationally equivalent. If we look at only one binding site at a
time, only the binding energy of that site will affect the expression. This is because
all other features of the regulatory landscape can be treated as constants (albeit noisy
constants).

This mutual information maximization method is very resilient to noise, and there-
fore only the energy of the single binding site needs to be taken into account in the
model. It was proven by Kinney and Atwal, 2013 that in this one binding site case,
the two diffeomorphic modes are an additive constant to the entire energy binding
matrix, and a multiplicative scaling to the energy binding matrix. It was also shown
that for a more complex system (for example looping), any possible diffeomorphic
mode must also be a mode of one of the component transcription factors (i.e., for a
system of 2 binding sites related by a thermodynamic model the ONLY 4 possible
diffeomorphic modes are a multiplicative scaling of each binding matrix, and an
additive shift to each). The equation for determining diffeomorphic modes of an
arbitrary system is given by

6(\)∇\' = ℎ('). (B.34)

The components of the energy binding matrix are given by \8. The left side of the
expression gives a change in R when undergoing a transform g, the right side is an
arbitrary function of R. To understand this equation lets look at a one base pair long
energy matrix. In this case the binding matrix will be given by

A \�
C \�
G \�
T \) .
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We can define a transform to our energy matrix given by \′ → \ + Y6, where 6 is©­­­­­«
6�

6�

6�

6)

ª®®®®®¬
. Gene expression is then given by

Expression = U
1

1 + 4Y . (B.35)

Expression can equally be given by the value of Y because it is an invertible function

of expression. So we can define ' = −Y = −\ · f where \ =

©­­­­­«
\�

\�

\�

\)

ª®®®®®¬
and f is a vector

which describes the base identity of the cell in question and is, for example equal to©­­­­­«
1
0
0
0

ª®®®®®¬
if the base is A and

©­­­­­«
0
1
0
0

ª®®®®®¬
if it is a C. Then under the transformation of 6 → 6′, R

transforms from

' → '′ (B.36)

'′ = ' + Y6(\) · ∇\' (B.37)

'′ = ' + Y6 ·

©­­­­­«
m\�'

m\�'

m\�'

m\) '

ª®®®®®¬
. (B.38)

If we define b = base, then

m\8' = m\8Y (B.39)

m\8Y = X18 (B.40)

'′ = ' + Yf · 6 (B.41)

3' = Yf · 6. (B.42)

Therefore
'′ = ' + Yf · 6. (B.43)

If the differential change in R is a function of only the value of R, then there is no
way that the rank order of the cells can change, and therefore the transformation
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preserves information. If however, there is sequence dependence to the change in R
(for example if 6� = 6� = 6� = 0 and 6) = 1) then rank order can change.

So to find the diffeomorphic modes of this system we need 3' = ℎ('), where h is
any function of R.

6 · f = ℎ('). (B.44)

For any choice of f, this relation must hold true. One solution is that 6� = 6� =
6� = 6) = 2>=BC so that h(R) = R + const, corresponding to an additive energy
shift. Another solution is that ℎ(') = V' where V is some constant and ' = f · 6
Therefore the diffeomorphic mode is determined by

f · 6 = Vf · \ (B.45)

6 = V\. (B.46)

This corresponds to amultiplicative energy shift. It was shown in Kinney andAtwal,
2013 that the only two proper diffeomorphic modes for a single binding site are this
additive shift in binding energies and a multiplicative factor for the binding site. It
is easy to see however that in our above simple example we can adjust any of the
components of g up or down, as long as we do not change their rank order. This
is because our possible values for the energy are discrete. Typically however, for
energy matrices the size of a TF binding site, the possible energies will be nearly
continuous, so in our analysis we will neglect these.

Justin calculated diffeomorphic modes for the single binding site case, as well as the
simple activation case. I will do the same with simple repression, repressor looping,
and the two overlapping promoter case.

B.11 Diffeomorphic Mode Calculations
I will define < as the base pair position, ; as the length of the sequence, and 1 as the
base pair identity A,C,G,T.

Simple Repression We can define& as the statistical weight of repressor binding,
namely A

##(
4−VΔYA , where A refers to the number of repressors. Additionally we can

define % as a similar statistical weight for RNAP, namely ?

##(
4−VΔY? , where ? is the

number of RNAP. Additionally, we will arbitrarily set U = 1.



175

Expression =
%

1 + % +& (B.47)

Expression =
1

1 + '−1 (B.48)

' =
%

1 +& (B.49)

' and expression are information equivalent. Any diffeomorphic mode of this
system must be a diffeomorphic mode of one of the components. This is because
we can looking at a subset of data where the binding site sequences but one are
constant. In this case the remaining binding site energy will be an invertible
function of expression, and so the case is identical to the one binding site case.
Adding additional data can not cause mutual information to cease depending on a
particular parameter value. Therefore, although some of these modes will be broken
in the more complicated cases, we only need to consider the diffeomorphic modes
of each component.

Additive shift to the RNAP site

6(\%)∇\%' = ℎ(') (B.50)

where 6<1 = 0% = 2>=BC0=C (B.51)

ℎ(') = 6∇\%
%

1 +& (B.52)

% = f<1\%<1 (B.53)

∇\% = f<1m% (B.54)

ℎ = f<16<1m%
%

1 +& (B.55)

ℎ = ;0%m%
%

1 +& (B.56)

ℎ = ;0%
%

1 +& (B.57)

ℎ = ;0%' (B.58)

We see that 6(\)∇\' is a function of R only, therefore an additive shift to the
RNAP site energy is a diffeomorphic mode. We will not be able to determine the
concentration of RNAP.



176

Multiplicative Shift to the RNAP site

6(\%)∇\%' = ℎ(') (B.59)

where 6<1 = 1%\%<1 (B.60)

ℎ = f · 6m%
%

1 +& (B.61)

ℎ = 1%%m%
%

1 +& (B.62)

ℎ = 1%%
%

1 +& (B.63)

ℎ = 1%%' (B.64)

6(\)∇\' is a function not only of R but also of underlying sequence dependent
elements. Therefore amultiplicative transformof Pwill altermutual information and
we will be able to precisely pin down the value by maximizing mutual information.

Additive Shift to the Repressor Site

6(\&)∇\&' = ℎ(') (B.65)

where 6<1 = 0& = 2>=BC0=C (B.66)

ℎ = f · 6m&
%

1 +& (B.67)

ℎ = ;0&m&
%

1 +& (B.68)

ℎ = ;0&
'2&

%
(B.69)

(B.70)

This equation can not be expressed as only a function of R, therefore an additive
shift to the repressor site is not a diffeomorphic mode.

Multiplicative Shift to the Repressor Site

6(\&)∇\&' = ℎ(') (B.71)

where 6<1 = 1&\&<1 (B.72)

ℎ = f · 6m&
%

1 +& (B.73)

ℎ = 1&&m&
%

1 +& (B.74)

ℎ = 1&&
'2&

%
(B.75)
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This equation can not be expressed as only a function of R, therefore a multiplicative
shift to the repressor site is not a diffeomorphic mode. We can alternatively look at
the expression for fold change.

Fold-change =
1 + %

1 + % +& (B.76)

Fold-change =
1

1 + '−1 (B.77)

' =
&

1 + % (B.78)

The R for fold change has the repressor binding energy and RNAP binding energy
exchanged compared to the R for expression. Therefore by symmetry the diffeomor-
phic mode for this system will be an additive shift to the repressor binding energy.
Looking at fold change is not informationally equivalent to looking at expression,
and since we bin based on raw expression, we need to look at expression.

B.12 Genes
Below will be a series of snippets on several genes to highlight from the RegSeq
project, focusing on how features of the protein function and gene regulation can tell
us more about the system. The amount of prior information varies wildly, with the
genes newly found to be regulated by GlpR involved in the transcription, translation,
or replication machinery of the cell, while many of those genes newly found to be
regulated by FNR are members of the y-ome of E. coli and so have no knowledge
of their function.

tff-rpsB-tsf

rpsB and tsf are both ribosome associated genes (a part of the 30S subunit and an
elogation factor respectively). rpsB undergoes post transcriptional autoregulation.
We found that there is also regulation at the transcriptional level by GlpR. We see
that GlpR is affected by growth condition, particularly the presence of glucose.
As ribosome amount is mainly dependent on growth rate it does make sense that
some regulation would be dependent on glucose concentration. We see regulation
at multiple levels, which should give a more precise level of control. As many
genes must work together to produce the translational machinery it would be a very
interesting future direction to see how preserved the mechanisms of gene regulation
are across the different pieces of the machinery.
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tig

Tig is a one of the chaperones which cooperate in the folding of newly synthesized
cytosolic and secretory proteins (Keseler et al., 2013). As such, it is involved in the
translation process, as rpsB-tsf and rhlE all are. Similarly, it is also regulated by
GlpR.

rhlE

RhlE is involved in ribosome maturation (Jain, 2008) and is regulated by GlpR. As
such it is also a part of the group of translation related genes regulated by GlpR.
As GlpR will be induced by the presence of glucose or absence of glycerol, this
is most likely a feature of how both translation machinery and the presence of
glucose are correlated with growth rate. rhlE was known to have highly differential
regulation from Schmidt, Kochanowski, Vedelaar, Ahrné, et al., 2016, and we see in
our data that it repressed in glucose containing conditions compared to other growth
conditions.

maoP

MaoP contributes to the positioning of the Ori macrodomain (Valens, Thiel, and
Boccard, 2016), which is crucial for positioning the origin of replication. Addition-
ally, it is involved in stress induced mutagenesis (Al Mamun et al., 2012). MaoP is
an important protein for replication of DNA. We have found two new transcription
factors binding sites (GlpR, and PhoP) and with the addition of HdfR, for which we
have confirmed the binding location.

rapA

RapA interacts directly with RNAP and is involved in recycling stalled RNAP. RapA
is repressed by GlpR and as shown in Fig. 4.6 (A), and whenGlpR is active, the most
active RNAP site is changed to an upstream site at -105 bp from the original TSS.
The leakiness of transcription from rapA will be higher than it would be otherwise.

ybjX

Lipid A, is the hydrophobic moiety of lipopolysaccharide (LPS), a glucosamine-
containing saccharolipid that constitutes the outer layer of the outer membrane of
most gram-negative bacteria (Raetz et al., 2007). Lipid A synthesis is catalyzed by
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WaaA, HtrB, MsbB and PagP (regulated by PhoP). htrB or msbB knockouts have
been shown to cause growth defects in both S. enterica serovar Typhimurium (from
now on S. typhi) (Murray et al., 2001). The lipid A moiety of LPS is detected by the
TLR4/MD2 receptor of the mammalian innate immune system, and modifications
of lipid A can protect bacteria from antibiotics(Raetz et al., 2007).

YbjX is a relatively understudied protein in E. coli, and there is little information
available in knowledgebases like Ecocyc and RegulonDB. It is known however,
mutations in the YbjX homolog in S. tyhphi, SomA, caused partial suppression of
the growth defects of an ΔmsbB strain (Murray et al., 2001). In this sense, the somA
mutation partially compensates the loss of function mutation of the msbB gene in
S.typhi.

Interestingly, using data from Price et al. we found that ΔybjX mutants had a
fitness advantage when grown on 1mg/mL bacitracin- an antibiotic targeting cell
wall and peptidoglycan biosynthesis. However, the ΔybjX mutant also caused a
fitness penalty when grown on 0.001 mg/ml doxycycline-an antibiotic that inhibits
protein synthesis by binding to the 30S ribosomal subunit, and in 0.006 mg/ml
nalidixic acid-which blocks DNA replication (Price et al., 2018). Overall these
results suggest that a ybjX loss-of-function mutation confers a positive effect on cell
wall defense by an unknown mechanism.

Using RegSeq we found that the ybjX promoter is controlled by an activator. We
found that PhoP binds to the ybjX promoter using mass spectropetry. The PhoP
regulon comprises genes that act on the adaptation to low Mg+2, acid resistance
(Zwir et al., 2012), and antibiotic efflux pumps AcrAB and TolC . PhoP is also
related to virulence factors in S. typhi (Monsieurs et al., 2005). In this sense, YbjX
is a member of the antibiotic resistance and stress response regulon in E. coli K-12
via PhoP regulation (Monsieurs et al., 2005). Further studies need to be conducted
to elucidate the mechanism of action ybjX on cell wall synthesis and the overall
pleiotropic effects of this protein.

B.13 Construction of sequence logos
With our position weight matrices in hand we can now construct sequence logos by
calculating the average information content at each position along the binding site.
With our four letter alphabet there is a maximum amount of information of 2 bits
(log2 4 = 2 bits) at each position 8. The information content will be zero at a position
when the nucleotide frequencies match the genomic background, and will have a
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maximum of 2 bits only if a specific nucleotide is completely conserved. The total
information content at position 8 is determined through calculation of the Shannon
entropy, and is given by

�C =

)∑
9=�

?8 9 · log2
?8 9

18
, (B.79)

were the terms in the summation log2
?8 9
18

are the terms in the position weight matrix
(Schneider et al., 1986; Stormo, 2000). The total information content contained in
the position weight matrix is then the sum of information content across the length
of the binding site.

To construct a sequence logo, the height of each letter at each position i is determined
by

logo height8 9 = ?8 9 · �8, (B.80)

where h is the height displayed on the sequence logo and is in the units of
bits. The relative height of the bases �,�, �, and ) are displayed according to
their relative probabilities scaled by information content (Schneider et al., 1986).
We construct sequence logos using WebLogo (Crooks et al., 2004) and custom
code from Justin Kinney available on the GitHub repo for the Sort-Seq project
(https://github.com/RPGroup-PBoC/sortseq_belliveau).

Comparison of Sort-Seq sequence logos.
For the various annotated binding sites identified in this work we used our Sort-Seq
data to generate energymatrices. We have also found it easy to visualize the sequence
preference as sequence logos, and we can compare our generated sequence logos to
those created by studying several known sites in the E. coli genome. In Fig. 3.4 we
show a comparison of logos found via Sort-Seq for transcription factors with three or
more known genomic binding sites, with agreement more apparent when genomic
binding site logos are based on a larger number of known sequences. We also report
the Pearson correlation coefficient between the position weight matrices from the
Sort-Seq inference and the genomic alignment. To compare the two position weight
matrices we first apply gauge fixing to each matrix in a similar manner as our energy
matrix. Each column is set to have a mean energy of zero and the matrix norm (or
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inner product) is normalized to have value one. Under this constraint, the Pearson
correlation coefficient is simply given by the summed product of matrix entries,

A =

!∑
8=1

)∑
9=�

%,"′-,8, 9 ¤%,"′.,8, 9 , (B.81)

where - and . refer to the two different PWM being compared. We do a similar
comparison between models generated via Sort-Seq and Reg-Seq in Fig. B.2.

Reg-Seq Data
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