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ABSTRACT

Measurements in biology have reached a level of precision that demands quantitative
modeling. This is particularly true in the field of gene regulation, where concepts

from physics such as thermodynamics have allowed for accurate models to be made.

Many issues remain. DNA sequencing is routine enough to sequence new genomes
in days and cheap enough to use deep sequencing to perform precision measure-
ments, but our ability to interpret the wealth of genomic data is lagging behind,
especially in the realm of gene regulation. The primary reason is that we lack any
information what so ever as to the basic regulatory details of = 65 percent of operons
even in E. coli, the best understood organism in biology. As a result we cannot use

our hard won modeling efforts to understand any of these operons.

This work takes steps to address these issues. First we use 30 Lacl mutants as a test
case to prove that we can make quantitatively accurate models of gene expression and

sequence-dependent binding energies of transcription factors and RNA polymerase.

Next we note that much of the quantitative insight available on transcriptional
regulation relies on work on only a few model regulatory systems such as Lacl as
was considered above. We develop an approach, through a combination of massively
parallel reporter assays, mass spectrometry, and information-theoretic modeling that
can be used to dissect bacterial promoters in a systematic and scalable way. We
demonstrate that we can uncover a qualitative list of transcription factor binding sites
as well as their associated quantitative details from both well-studied and previously

uncharacterized promoters in E. coli.

Finally we extend the above method to over 100 E. coli promoters using over 12
growth conditions. We show the method recapitulates known regulatory informa-
tion. Then, we examine regulatory architectures for more than 80 promoters which
previously had no known regulation. In many cases, we identify which transcrip-
tion factors mediate their regulation. The method introduced clears a path for fully
characterizing the regulatory genome of E. coli and advances towards the goal of
using this method on a wide variety of other organisms including other prokaryotes

and eukaryotes such as Drosophila melanogaster.
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Chapter 1

INTRODUCTION

We live in the "genomic era" where DNA sequencing is routine enough to sequence
new genomes in days and deep sequencing is used to get precision measurements.
One of the myriad examples of these measurements comes from measuring ribosome
occupancy (Ingolia et al., 2009), where measurements are taken of the probability
that a ribosome, the key piece of machinery for producing new proteins, is bound to
its target sequence. As the number of ribosomes bound will be directly proportional
to protein produced, this provides a useful measure of how much of that protein
exists in the cell. Another application of sequencing technology is in measuring
gene expression directly (Melnikov et al., 2012). Cheap sequencing has led to the

development of over one hundred sequencing-based methods (Pachter, 2013).

We also live in a growing era of quantitative biology. Measurements in biology are
growing increasingly precise. Massively parallel reporter assays (MPRASs) can use
hundreds of thousands of designed DNA constructs to make measurements (Kinney
and McCandlish, 2019) where a few decades ago creating and testing a single piece
of mutant DNA inside cells would be a project in and of itself. As the ability to
assess a huge number of perturbations has revolutionized the inputs to quantita-
tive biology experiments, RNA-seq combined with deep sequencing revolutionized
measurement of the outputs. RNA-seq can measure the gene expression of those
hundreds of thousands of designed promoter constructs in parallel. Super resolution
microscopy techniques can measure in vivo protein dynamics of objects on the order
of nanometers (Cisse et al., 2013), and the interactions between transcription factors
and RNAP, both crucial factors for gene regulation, can be measured on the order of
thousandths of an eV (Forcier et al., 2018). Furthermore, there are phenomenologi-
cal findings such as phase separation contributing to gene regulation in eukaryotes
(Cisse, 2020). Such measurements demand commensurate theory, a theory which
in large part still lags behind. Ideas borrowed from physics have contributed greatly
to theory in biology. Theory on gene regulation in particular has benefited greatly
from the power of statistical mechanical thinking in the biological setting, and in
this dissertation we discuss our efforts to extend our ability to quantitatively model
gene regulation throughout E. coli. We validate a method for recovering a base pair

resolution map of gene regulation in E. coli and develop it into a high throughput
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tool that in the future can be utilized on other organisms to provide the quantitative
data and qualitative details necessary to unravel the continuing mystery of gene

regulation.

1.1 Chapter Summaries

In Chapter 1 we discuss the necessary background to understand gene regulation,
namely the central dogma of biology and the action of transcription factors and RNA
polymerase (RNAP). We derive some of the models from statistical mechanics we
use to model gene expression, and discuss the woeful lack of basic regulatory
knowledge in E. coli that hinders our efforts to understand gene regulation and
completely stops us from applying quantitative modeling across the larger E. coli

genome.

In Chapter 2 we discuss the modeling of DNA sequence-specific transcription factor
binding energies in vivo. We create models that allow us to predict the binding energy
between a transcription factor and a mutated version of its binding site using Lac
repressor as a test bed. We demonstrate our ability to generate accurate models by
comparing model predictions from Sort-Seq to independent measurements of DNA
transcription factor interactions using microscopy. We then show that this modeling
technique can be used to address a number of scientific questions. For example, we
observe how the preferred DNA sequence for transcription factor binding changes
when amino acid mutations are made to the transcription factor’s DNA binding
domain, which helps us to understand how transcription factors and their binding
sites co-evolve. This provides yet another example of the importance of quantitative
models for deeply understanding biological mechanisms. A summary of what we

will discuss is displayed in Fig 1.1(A).

In Chapter 3 we acknowledge that despite an ability to build models based on
statistical mechanics for gene regulation, these models cannot be used in the vast
majority of cases. This is because to build models we must first know some crucial
details of the regulatory context. Specifically, to even begin to make predictions we
need to know what transcription factors bind to the DNA for a given operon. Even
for E. coli, the best understood organism in biology, we know nothing about the
regulatory details for ~ 65 % of operons (Gama-Castro et al., 2016). Past efforts
to understand regulatory sequences and solve the regulatory ignorance problem
on a large scale have failed to solve the problem. One such method is to use

computational methods to "sequence gaze", or in other words, to search the E. coli
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Figure 1.1: Applying quantitative models of gene regulation across the genome.
(A) In Chapter 2 we used in vivo techniques to infer energy matrices in absolute
energy units (k; 7). We used these energy matrices to predict the binding energies
of Lac O1 binding site mutants and confirmed our predictions with experimental
measurements (right). (B) In Chapter 3 we identified regulatory architectures for
unannotated promoters. We quantified the mutual information between gene
expression and mutation at each sequence position in the promoter (left) and
combined these observations with DNA affinity chromatography and mass
spectrometry to infer regulatory architectures (right). (C) In Chapter 4 we take the
success of Sort-Seq and adapt it for use across orders of magnitude more genes.
We go over the regulatory elements from the over 100 E. coli promoters studied.
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genome for sequences that are similar to known examples of transcription factor
binding sites (Compan and Touati, 1994; Kumar and Shimizu, 2011; Easton and
Kushner, 1983). As any computational method searches through 4.6 megabases of
DNA, and therefore an equal number of possible binding sites, it is unsurprising
that these methods tend to yield some false positives. We disprove several of
these computationally discovered binding sites in Chapter 4. Other methods for
discovering binding sites on a wide scale such as chromatin immunoprecipitation
(Bonocora and Wade, 2015) do not provide base pair resolution and cannot determine
how transcription factors interact with RNAP or each other. Lastly, while in vitro
methods such as protein-binding microarrays (Berger et al., 2006), SELEX (Fields et
al., 1997; Jolma et al., 2013) and MITOMI (Maerkl and Quake, 2007; Shultzaberger
et al., 2012) can provide useful insights, they can never fully account for in vivo

effects.

To tackle the regulatory ignorance problem and get a base pair resolution picture of
regulation, we apply Sort-Seq (Kinney and Callan, 2010), to characterize the reg-
ulatory DNA. We further develop the method as a way to systematically approach
the regulation of any promoter quantitatively. Here we first apply Sort-Seq across 6
different bacterial promoters to uncover the functional binding sites where transcrip-
tion factors bind to regulate gene expression. Using DNA affinity chromatography
and mass spectrometry we then identify the transcription factors that bind these
sites, and apply information-theoretic modeling to infer energy matrix models of
binding by each transcription factor. We validate the approach by applying it to the
well-characterized promoters of lacZYA, relBE, and marRAB. We then demonstrate
that it can work equally well to uncover the previously uncharacterized regulatory
architectures for the promoters of purT, xylE, and dgoRKADT. A summary of what
we will discuss is displayed in Fig 1.1(B).

In Chapter 4 we take the success of the Sort-Seq methodology and scale up by an
order of magnitude to show that it can be applied across the genome. In Sort-Seq,
only one gene at a time could be investigated, which made it extremely difficult to use
the method on a wide scale. One bottleneck in the process was our measurement
method itself. While using fluorescence based cell sorting (FACS) on a single
gene was a short process, it was not readily parallelizable, and when trying to
tackle even tens of operons under multiple growth conditions, the sorting time alone
would make it difficult to carry out the experiment. We transition the fluorescence

based measurement methodology of Sort-Seq to an RNA-seq based measurement
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methodology. Using RNA-seq as a measurement tool we were able to measure
expression for 100 genes of interest simultaneously, and there is no limit to scaling

up to measuring the expression of every operon in E. coli simultaneously.

In Chapter 4, we discuss how we produced a base pair resolution dissection of
more than 100 E. coli promoters in 12 growth conditions. We show the method
recapitulates known regulatory information. Specifically we once again examine
several of the genes investigated using Sort-Seq, namely lacZYA, relBE, marRAB,
and dgoRKADT. The correspondence is demonstrated in Fig B.2. Then, we examine
regulatory architectures for more than 80 promoters which previously had no known
regulation. In many cases, we identify which transcription factors mediate their
regulation. An summary of what we will discuss is displayed in Fig 1.1(C). Tech-
niques in DNA-synthesis and microbiology are becoming sufficient to use Reg-Seq
throughout E. coli and also on other organisms such as Drosophilia or Pseudomonas
aeruginosa. Not only could these new systems eventually become model organisms
in their own right, but elucidating regulatory details in eukaryotic systems is one of

the necessary steps in extending the modeling success of prokaryotes to eukaryotes.

1.2 The central dogma of molecular biology
The hard won knowledge of the genetic code has been the greatest accomplishment
of molecular microbiology. We can see in Fig. 1.2 the "central dogma" of molecular

biology.

To translate DNA, the hereditary material of the cell, into a proteins, which perform
most of the useful tasks in the cell, the protein coding region, known as a "gene",
must first be copied into a message that can be read by the ribosomes which then
build the proteins. In a process known as transcription, an RNA polymerase (RNAP)
recognizes and binds to a region upstream of the gene known as a promoter, and
then copies the gene into a single-stranded RNA message known as mRNA. Next,
the mRNA is read by a ribosome in a process known as translation to produce the

final protein.

The remarkable thing about this process is that it is conserved throughout all organ-
isms, even those as distantly related as bacteria and vertebrates, earning it the title

of “central dogma.”

It was the culmination of a decades-long search to unravel the mechanism by which
genetic information is passed down from generation to generation in living organisms

and then to discover how the steps of the central dogma are carried out to produce



useful products.

Oswald Avery discovered that DNA (and not protein) is the molecule by which
genetic information is propagated (Avery, MacLeod, and McCarty, 1944). Watson
and Crick discovered the helical structure of DNA, which immediately suggested
a possible copying mechanism for the genetic material (Watson and Crick, 1953).
Crick, Brenner, and coworkers arrived at the now familiar result that a protein coding
sequence consists of a series of trinucleotide codons (F. Crick, 1961). Subsequent
work was able to provide a codon table that can translate any three base pair sequence
into a corresponding amino acid. As a result, we have a deep understanding of the

protein coding regions of the genetic code.

However, in many ways the central dogma remains a mystery. The non-coding re-
gions of the genome have no such corresponding mapping. These regulatory regions
control the levels of protein expression and are important to how organisms respond
to the environment and are crucial for the fitness of the organism. The functions of
the regulatory regions are as much of a mystery as they were decades ago. For an
arbitrary DNA sequence in a regulatory region we have no knowledge whatsoever
as to its function. While there are several ways in which protein copy number can
be controlled, this dissertation focuses on how the DNA sequence of the regula-
tory region controls how DNA is transcribed into mRNA, called transcriptional

regulation.

In general transcriptional regulation is accomplished by modulating the probability
that RNAP will bind to the promoter and proceed to copy the gene, which is known
as the occupancy hypothesis (Ackers and Johnson, 1982). The probability of RNAP
binding depends in part on the sequence of the promoter itself, as the polymerase
has DNA sequence binding preferences and deviating from these preferences will
reduce the probability of binding. The DNA binding preference of a protein is often
displayed as a "consensus sequence". A consensus sequence is the ideal series of
nucleotides for protein binding, generally calculated by looking across all binding
sites in the genome and finding the most common base pair at each position in
the binding site. For example, the consensus sequence of the RNAP -10 region is
—15TGNTATAAT_7, where N represents having no nucleotide preference at that site
and the numbers —15 and —7 represent locations of that base pair as compared to

the transcription start site (TSS).

However, the promoter sequence is static and cannot respond to changes in environ-

ment or growth state. In order to enact transcriptional regulation that can change
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in response to an external stimulus, the cell produces DNA-binding proteins known
as transcription factors that bind to the promoter near the RNAP binding site and
control RNAP binding probability. For example, transcription factors known as
repressors often will bind to DNA near the RNAP site. This will physically occlude
the RNAP from binding, decreasing the RNAP occupancy, and therefore decreasing
protein production. Similarly, activators are DNA-binding proteins that interact
with RNAP, forming favorable energetic interactions, and therefore making it more
likely for RNAP to be bound to its binding site.

DNA template
p \/ | RNA polymerase

\>

1

NN pNa - Transcription
RNA message

L

Growing
polypeptide chain Ribosome

mRNA Translation

W Protein

Figure 1.2: The central dogma of molecular biology. Genes are encoded as DNA
sequences within the genome. RNA polymerase (RNAP) copies the DNA as a
single-stranded mRNA transcript. Then, ribosomes translate the mRNA into
protein by facilitating the pairing of tRNAs with the mRNA transcript and joining
the associated amino acids together into a polypeptide chain. This polypeptide
chain then generally self-assembles into a protein.

1.3 Thermodynamic models and gene regulation

A primary tool that has been borrowed from physics to quantify gene expression is
the use of equilibrium statistical mechanics. While life is one of the most interesting
examples of a dynamic, out of equilibrium system, gene regulation is one of many
examples in biology in which equilibrium formulations of ideas from physics have
surprising utility (Phillips, 2015). We see in Fig. 1.3 that these classes of models
have allowed us to quantitatively predict output (gene expression) over several orders

of magnitude in input (transcription factor copy number).
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Figure 1.3: Input-output function for simple repression. For a simple repression
architecture, with one RNAP site, and one repressor binding site, Garcia and
Phillips, 2011 measured the output of lacZ for transcription factor binding sites of
different DNA-protein binding strength. Figure data taken from Garcia and
Phillips, 2011

Statistical mechanics concerns itself with the probability of different microstates
in systems containing a large number of interacting particles. A microstate is a
unique arrangement of particles, which may or may not have properties that are
distinguishable from other microstates. The probability of a specific microstate is

given by the Boltzmann distribution,

1
p(e) = Ze Fe:, (1.1)

where g; is the energy of microstate i. Z is the partition function, and S is equal to
1 = kT where ky, is the Boltzmann constant and 7 is the temperature of the system.
The quantity e #%i is referred to as the Boltzmann factor. The partition function can
be thought of the sum of the statistical mechanical weights of all microstates in the

system, and is given by
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Figure 1.4: Modeling transcription using statistical mechanics. To model gene
expression, we make the assumption that gene expression is proportional to the
probability that RNAP is bound to the promoter, ppouna (Ackers and Johnson,
1982). (A) To determine the value of pj,,,q We then enumerate all of the states
available to the system and assign statistical mechanical weights based on the
energy associated with each state and the multiplicity of each state. Renormalizing
the weights such that the unbound state has a weight of 1 then provides us with a
clean set of statistical mechanical weights that can be used to determine the value
of ppound- (B) The value of pp,unq is equal to the statistical mechanical weight of
the RNAP bound state divided by the sum of the weights of all possible states.

When modeling transcription, our goal is to determine the probability that an RNAP
will bind to a promoter and initiate transcription. We assume that RNAP occupancy
is proportional to total gene expression, an assumption known as the occupancy
hypothesis. When using a statistical mechanical approach, we identify the various
states that a system can adopt, where a state is a set of microstates with indistinguish-
able properties. We assign statistical mechanical weights to each state and use these
weights to determine the probability of RNAP binding, ppounq. This identification
of states and weights is modeled for the case of constitutive transcription in Fig. 1.4
(A).

Any combination of regulatory proteins and RNAP can be modeled using statistical

mechanics. Next, we provide a derivation of a statistical mechanical expression
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Figure 1.5: States and weights for a simple repression architecture. Simple
repression occurs when a single transcription factor binds in the vicinity of the
RNAP binding site and prevents RNAP binding.

for the probability of RNAP binding at a constitutive promoter. We show how this
derivation can be represented by a states and weights diagram, an approach which

can then be generalized to more complex regulatory scenarios.

In the case of constitutive transcription, there are many copies of RNAP and many
DNA binding sites available to the RNAP. A microstate can be thought of as a
“snapshot” of the positions of all RNAP relative to the genome at a given time. If
we are interested in the transcription of a specific gene, then we wish to know the
probability that a single copy of RNAP is bound to that gene’s promoter. We can
determine this probability using Equation 1.1 provided we know the energy &; of
the state, the multiplicity of the state (i.e., the number of possible microstates in
which RNAP is bound to the promoter of interest) and the partition function Z that

represents all possible microstates of the system.

To simplify the problem, we abstract the genome as a single specific RNAP binding
site and a series of nonspecific binding sites that bind weakly with the RNAP. In
reality, there are many specific RNAP binding sites in the genome with a distribution
of strengths, and 10% of 100 bp regions have at least one active RNAP site (Yona,
Alm, and Gore, 2018). For the purpose of this problem, we will view DNA aside
from our binding site of interest as being part of a “pool” of DNA binding sites with

some average weak binding energy. There are Nygs of these nonspecific binding
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Figure 1.6: States and weights for a simple activation architecture. Simple
activation occurs when a single transcription factor binds in the vicinity of the
RNAP binding site and promotes RNAP binding.

sites, where we assume that Ny is approximately equal to the length of the genome.
We define & as the energy of an RNAP bound to the specific binding site and £3°
to an RNAP bound to any of the nonspecific sites.

The energy of any microstate i in which an RNAP is bound to the specific site must
account for both the energy of one RNAP binding to the specific site and P — 1
RNAPs binding to nonspecific sites, where P is the total number of RNAPs in the
system, such that g; = (P — 1)811\,’ 54 sf,. The Boltzmann factor for such a microstate
is thus e B(P~Dep° p=BeL  The value of Pbound i given by the sum of the Boltzmann

weights for all microstates in which an RNAP is bound to the specific site, giving us

Zf\il e—,B(P—l)sl}\,’Se—,Bs‘;

= , 1.3
Pbound th ( )
where we define Z,,; as the total partition function. We can rewrite ppounq as
-Bey _
e P?rZys(P —1,Nys)
Pbound = s (14)

Zl‘Ol‘

where Zys(P — 1, Nys) is a partial partition function representing all microstates

in which P — 1 RNAP are distributed among Nys nonspecific binding sites, as will
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occur when one RNAP is specifically bound. We can further define Z;,; as
_ RS
Zior = € PP Zys(P = 1, Nys) + Zs(P, Nws), (1.5)
which gives us

e Pe» Zys(P — 1, Nys)
- )
e Per Zns(P = 1, Nys) + Zys(P, Nys)

Phound = (1.6)
We can now see that the Equation for pp,y,q is of the form a Boltzmann distribution
where the states are either RNAP bound, which consists of all microstates in which an
RNAP is bound to the specific site and has a weight given by e PerZ ns(P—1,Nys)
or RNAP unbound, which consists of all microstates in which no RNAP is bound
to the specific site and has a weight given by Zys(P, Nys). A illustration of these

states is shown in the states column of Fig. 1.4.

Next we wish to rewrite Equation 1.6 using measurable parameters. A partition
function can be thought of as the product of a state’s Boltzmann factor and the
state’s multiplicity, or the number of microstates where, for example, RNAP is
bound. We have already determined the Boltzmann factors for each state in our
model, and the multiplicities can be determined combinatorially. Doing so gives us

the statistical mechanical weight of the bound state,

| NS _5.S
Bep Zys(P — 1, Nys) = (Nns)! S 17
e ns( . Nns) P-DI(Nys—P+1)] (L.7)
and the weight of the unbound state,
(Nys)! _gpeNS
Zns(P, Nys) = FPep”. 1.8
ns(P,Nys) (P)I(Nys - P (1.8)
These weights can be simplified using the approximation
Nys)! Nys)”
(Nns)! (Nns) (1.9)

P!(Nys—P)! P!~

where Nygs >> P. The simplified weights are represented in the weights column of

Fig. 1.4. We can write ppounag as
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i v

(1\(1%5)1’)"“ o—BP-1elS ,—pe | (l\gz}l)fepe—ﬁPegs.

Pbound = (1.10)

Finally, we can greatly simplify the form of the equation by dividing the weight
for each state by the weight of the unbound state. The unbound state then has a
renormalized weight equal to 1, and the bound state has a renormalized weight of
NL;Se‘ﬁ (=22 We define Asp = & — el where Agp represents the difference in
RNAP binding energy between the specific binding site and the nonspecific genomic
background. The renormalized weights for each state are illustrated in Fig. 1.4 in
the renormalized weights column. Substituting the renormalized values into Eq.

1.10 gives us

P e—IBAap

_ Nns
Pbound = 1+Le‘ﬁ_AsP. (1.11)
Nns

The process of deriving the equation for pp,,,q is identical to that used for more
complex regulatory scenarios. Results for many architectures are considered in
Bintu et al., 2005, and we now consider the cases of simple activation and simple

repression in detail.

Simple Repression

We consider the case of simple repression, in which a repressor binds adjacent to
an RNAP binding site and prevents RNAP from binding. In this case there are three
states available to the system: no proteins bound, repressor bound, and RNAP bound.
These states and their associated weights are displayed in Fig. 1.5. The expression
for the probability of RNAP binding, ppoung in a simple repression architecture is
found in a manner identical to that of the consitutive expression scenario, namely
we divide the statistical weight of all states with RNAP bound by the total partition

function, which yields

P_,~pAsp

_ Nns
Pbound = 1+Le_ﬁA8P+Le—ﬂA8R‘ (1.12)
Nns Nns

As noted previously, it is assumed that gene expression is proportional to ppouna-
However, it is difficult to determine the exact proportionality between these quan-

tities, and we lack a straightforward way to measure ppo,unq in vivo in order to fix
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unknown parameters. It is therefore more convenient to think about gene regulation
using fold-change. For a constitutive promoter, the fold change is shown in Fig.
1.4 (B). Fold-change quantifies the change in expression due to regulation. This
quantity is straightforward to measure experimentally and has a clear interpretation

in regards to regulatory strength. For repression the fold-change is given by

oun R
fold-change = —PbewdR®) (1.13)
Poound (R =0)
We can substitute Eq. 1.12 into Eq. 1.13, which gives us
NLe_,BAgP 1+ NLe_ﬁAEP
fold-change = NS NS . (1.14)
1+ L_e-Brep 4 R ,—BAsck P o-BAep
Nns Nns Nns

To simplify this expression,we make use of the weak promoter approximation, where
we assume RNAP binds weakly to the promoter which implies that NLI;Se‘ﬁAg P<< .

We can then simplify to

1

R ,—BAsg’
1+ Nas €

fold-change ~ (1.15)

Simple Activation

The case of simple activation is similar to simple repression, though it incorporates
the additional factor of cooperative interactions between proteins (namely the RNAP
and the activator). In simple activation, an activator and RNAP can bind to the
promoter simultaneously, as noted in the states and weights diagram for simple
activation shown in Fig. 1.6. The binding of multiple proteins gives this state a
multiplicity of NLNSNLI;S’ where A is the number of activators in the system. An
interaction energy between the activator and RNAP, &,, must be included in the
Boltzmann factor and for activators is always a favorable interaction which will serve
to make the doubly bound state more likely. A typical value for g, is ~ —4k,T
which is then represented as e #(Aea*Aer+eap) where Agy represents the binding

energy of the activator to its binding site.

Given these adjustments, pp,unq can then be written as

P BAep , _A P ,—B(AeatAepteqp)
NNSe + Nns NNSe (1.16)

A, BAes o P ,—BAep 4 _A P —B(Asp+Aepteqp)”
1+NNse +NNSe +NNSNNSe

Pbound =
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We can use the weak promoter approximations —e 27 << 1and NLI;Se_B (Asp+eap) <<

Nns
1 to simplify to

Le_ﬁAEP + iLe—ﬂ(ASA+ASP+8ap)

Nns Nns Nns
x . 1.17
Pbound 1+ A e—ﬂAé‘A ( )
Nns

As in Eq. 1.13, the fold-change for the activator can be written as

pbound(A)

fold-change = —————,
£ pbound(A = 0)

(1.18)
and then simplified to

1 + A BAeateap)
Nns

fold-change ~ (1.19)

1+ NLNSe—ﬁ(A«SA)
The examples of simple repression and simple activation show how statistical me-
chanical models can be applied to simple architectures. One can write quantitative
models for any combination of interacting transcription factor binding sites, and
such models have been written for each of the transcription factor architectures
found in this work (Bintu et al., 2005). Further Refs. (Boedicker et al., 2013; Scott
et al., 2010) apply the states and weights approach to the case of DNA looping in

the lac operon.

1.4 Quantitative modeling of gene regulation

As previously mentioned a core principle of this work is the power of quantitative
modeling for developing an understanding of gene regulation. As biology advances,
measurements get more and more precise. Biology as a field, and gene regulation
in particular has traditionally focused on qualitative questions such as the effect on
phenotype of knocking out a particular protein. However, advances in measure-
ment technology allows for quantitative models to make falsifiable predictions of a
system’s behavior. Additionally, analytically-derived quantitative models allow us
to test our understanding of the essential mechanisms that drive a system. As an
example, for regulation of transcription we typically use models that rely on the oc-
cupancy hypothesis Ackers and Johnson, 1982, namely that the probability of RNAP
binding to the promoter, ppouna, iS proportional to gene expression. The occupancy
hypothesis posits that binding of RNAP or a transcription factor to a binding site
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indicates that the protein is actively playing a role in transcription. This means
that for RNAP, occupancy of a promoter implies that transcription is taking place;
We often apply this assumption when writing models for transcriptional regulation,
such as that shown for simple activation and repression above, but it is not always
valid. In Phillips et al., 2012 it was found that the occupancy hypothesis could not
adequately describe the mechanism of repression a single repression architecture
where the repressor bound upstream of the RNAP and could bind simultaneously to
the RNAP. In this case gene regulation occurred independent of the occupancy of
RNAP.

1.5 Lack of current regulatory knowledge

THE REGULATORY GENOME OF ESCHERICHIA COLI: PROMOTER STUDIED

E. coli
genome

4.6 Mbp
—+—oriC
regulated operons (33%)

operons with no
known regulation (67%)

Figure 1.7: Identification of operons in E. coli with and without regulatory
annotation. The plot identifies the genomic location of different operons with
annotated TF binding sites, and those lacking regulatory descriptions. The
identification of regulated operons was performed using data from RegulonDB
(Gama-Castro et al., 2016), which are based on manually curated experimental and
computational data. All operons listed in the database were considered, where an
operon was assumed to be regulated if it had at least one transcription factor
binding site associated with it.

Much of the insight we have on gene regulation relies on careful and extensive
work of a few model regulatory systems (Daber and Sochor, 2011; Kuhlman et al.,
2007; Buchler, Gerland, and Hwa, 2003; Vilar and Leibler, 2003); Much of the

quantitative work that has come from the efforts of the Phillips group has been
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Figure 1.8: Distribution of regulatory architectures in E. coli. The percentage
prevalence of each type of regulatory architecture in RegulonDB before the work
in this dissertation. (A) Examples of some types of regulatory architectures in E.
coli. The type of architectures are given as (A, R) where A is the number of
activator binding sites and R is the number of repressor binding sites. (B) We plot
the frequencies of different regulatory architectures as reported by RegulonDB
(Gama-Castro et al., 2016). Note that many promoters lack complete regulatory
annotations, which can often mean they are understudied rather than truly
constitutive, which skews the data towards (0,0).

exclusively focused on the lac operon (Oehler et al., 1990; Schleif, 2010; Garcia and
Phillips, 2011; Brewster, Jones, and Phillips, 2012; Boedicker et al., 2013; Brewster,
Weinert, et al., 2014; Forcier et al., 2018). Other quantitative work has been has been
focused on artificial promoters (Urtecho et al., 2019). In the case of E. coli and other
prokaryotes, the failure to extend quantitative methods to other promoters come not
from a failure of the theory of gene regulation, but rather a failure in knowledge of

basic regulatory information as displayed in Fig. 1.7. While impressive advances in
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molecular biology have made it possible to map thousands of gene interactions and
create genetic networks for a variety of organisms. We see statistics for the different
types of regulatory architectures from RegulonDB displayed in Fig. 1.8. Even so,
all the knowledge of gene regulation still leave us with a regulatory landscape that is
qualitative, and the vast majority of the "regulated" genes alluded to in Fig. 4.1 have
none of the quantitative details, such as interaction energies between proteins, that
are necessary for the formation of strong predictions about gene regulation under
perturbations such as mutation or changes in growth condition. The poor state
of regulatory knowledge is the primary stumbling block to applying the hard-won
knowledge of quantitative models based on statistical mechanics and motivates the

work in the following chapters.

Furthermore, Fig. 1.7 identifies the positions of each operon on the E. coli genome
and whether it contains annotated transcription factor binding sites (blue) or not
(red). It is striking that over half of the operons lack any listed transcription factor
binding sites. One hypothesis is that the majority of operons express constitutively
(i.e., no transcription factors regulate these operons). Alternatively, transcription
might be controlled through changes in o~ factor concentrations, which would provide
an alternative mechanism of regulation. o factors are necessary for transcription
and, especially for some specialty o factors, such as 0-54, which responds to heat
shock, they can increase gene expression in response to stimuli. As another example,
in stationary phase there is an increase in the cellular concentration of stationary
phase sigma factor, RpoS (o 38), which decreases the level of functional sigma
factor RpoD (o 70) and alters the genome-wide transcription output (Jishage et al.,
1996). A motivation for our work and our assertion that there is a huge amount of
missing regulatory knowledge is a recent proteome-wide census that was taken in E.
coli across 22 growth conditions (Schmidt et al., 2016). In this work Schmidt e? al.
measured the copy number of more than half the E. coli proteome across a variety

of relevant conditions such as different growth media.

As reported by Schmidt ef al., we also find that the GalE protein shows significantly
higher expression when cells were grown in galactose, which is displayed in Fig
1.9 (A). GalE is known to be regulated, which is relieved when grown in galactose
(Irani, Orosz, and Adhya, 1983; Semsey et al., 2007). We display how expression
tends to vary among growth conditions. Among promoters without any known
regulation, we show the expression of dgoD in Fig. 1.9 (B) in several carbon

sources. This is only one of many examples where a protein showed a large change
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Figure 1.9: Proteome Data from Schmidt et al., 2016. (A)The expression of the the
galE gene under different growth conditions. galE is known to be regulated. (B)
Expression of dgoD under different growth conditions. dgoD was not known to be
regulated. (C) The coefficient of variation for all proteins in the Schmidt et al.,
2016 dataset. Several of the genes that are discussed in detail in Chapters 3 and 4
are highlighted.

in expression level across growth conditions and suggests that there is missing
regulation. In addition, we see in Fig. 1.9 (C) that the expression variability
for unannotated genes appears visually almost as variable as those with known
regulation, further suggesting that many of the unannotated operons have missing
regulation. In Chapter 3, we prove there was missing regulation for the xy/E and
dgoRKADT operons that were displayed in 1.9 (C). Additionally, in Chapter 4 we
show that this missing regulation is widespread across the more than 100 E. coli

promoters that were studied.
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Chapter 2

MAPPING DNA SEQUENCE TO TRANSCRIPTION FACTOR
BINDING ENERGY IN VIVO.

A version of this chapter originally appeared as S. L.Barnes, N. M. Belliveau,
W. T. Ireland, M. J. Sweredoski, J. B. Kinney, and R. Phillips (2018). Mapping
DNA sequence to transcription factor binding energy in vivo. PLOS Computational
Biology, http://doi.org/10.1371/journal.pcbi.1006226.

Author contribution note: for this chapter, I (WI) assisted with experimental design,

data analysis, and manuscript writing.

2.1 Introduction

High-throughput sequencing has delivered on the promise that we can sequence
the genome of nearly any species at will. The amount of genome data available
is already enormous and will only continue to grow. However, this mass of data
is nearly useless without the appropriate methods of analyzing it. Despite decades
of research, genomic data still defies our efforts to “read” it. When faced with an
entirely new genome, we can guess that a stretch of DNA contains a gene, and then
use the codon table for amino acids to translate that hypothetical gene into an amino
acid sequence. In some cases, we can also guess at, or measure with techniques
like RACE (Mendoza-Vargas et al., 2009), the locations of transcription start sites.
In some cases we can even make guesses as to the locations of transcription factor
binding sites, but these guesses tell us little about how the details of a putative site
lead to its downstream effects on gene expression. A more detailed understanding of
the sequence dependence of gene expression and transcription factor binding sites is
needed in order to improve the accuracy of such predictions. An important avenue
for developing this level of understanding is to propose models that map sequence
to function and perform experiments that test these models, which will hopefully

lead to an understanding of gene regulation.

Past efforts have found it difficult to unravel the mysteries of gene regulation, even
on a single gene, much less the thousands of genes that it would take to gain a full
regulatory understanding of even E. coli. Over half of the genes in E. coli, which

is arguably the best-understood model organism, lack any regulatory annotation
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(Gama-Castro et al., 2016). Those operons whose regulation is well described
such as the lac, rel, and mar operons (Oehler et al., 1990; Grainger et al., 2005;
Alekshun and Levy, 1997) required decades of work, often involving laborious
genetic and biochemical experiments (Minchin and Busby, 2009). A wide variety
of new techniques have been proposed and implemented to simplify the process
of determining how a gene is regulated. ChIP-based methods such as ChIP-chip
and ChIP-seq make it possible to determine the genome-wide binding locations
of individual transcription factors of interest. Massively parallel reporter assays
(MPRAs) have made it possible to read out transcription factor binding position
and occupancy in vivo with base-pair resolution, and provide a means for analyzing
non-binding features such as “insulator” sequences (Levo, Avnit-Sagi, et al., 2017;
Melnikov et al., 2012; Levy et al., 2017). in vitro methods such as protein-binding
microarrays (Berger et al., 2006), SELEX (Fields et al., 1997; Jolma et al., 2013),
MITOMI (Maerkl, 2007; Shultzaberger et al., 2012), and binding assays performed
in high-throughput sequencing flow cells (Jung et al., 2017; Nutiu et al., 2011)
have made it possible to measure transcription factor affinity to a broad array of
possible binding sites and develop detailed records of transcription factor sequence

specificities.

In spite of this progress, it remains difficult to integrate the various aspects of tran-
scriptional regulation revealed by such experiments into a cohesive understanding
of a given promoter or transcription factor. While in vitro methods may provide
accurate measurements of transcription factor sequence specificities and binding
affinities, including insight into the effects of flanking sequences (Dror et al., 2015;
Levo, Zalckvar, et al., 2015), they cannot fully account for the in vivo consequences
of binding site context and interactions with other proteins. Current in vivo methods
for determining transcription factor binding affinities, such as bacterial one-hybrid
(Christensen et al., 2011; Xu and Noyes, 2015), require a restructuring of the pro-
moter so that it no longer resembles its genomic counterpart. Additionally, while
computational efforts to “read” the genome by scanning for DNA sequences that
resemble known transcription factor binding sites provide a promising avenue for un-
derstanding transcriptional regulation in its native context, these efforts frequently
produce false positives (Weirauch et al., 2013; Djordjevic, 2003) as we also see
during Chapter 4. Furthermore, a common assumption underlying many of these
methods is that transcription factor occupancy in the vicinity of a promoter im-
plies regulation, but it has been shown that occupancy cannot accurately predict the

effect of a transcription factor on gene regulation (Garcia, Sanchez, et al., 2012;
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Wunderlich and Mirny, 2009).

An ideal technique would be capable of interrogating multiple aspects of tran-
scriptional regulation at once, from locating transcription factor binding sites to
identifying the sequence specificity of these binding sites. As previously noted,
massively parallel reporter assays have shown a great deal of promise for this rea-
son. In Brewster, Jones, and Phillips, 2012, we showed that the MPRA Sort-Seq
(Kinney and Callan, 2010), combined with a simple linear model for protein-DNA
binding specificity, can be used to accurately predict the binding energies of multiple
RNAP binding site mutants, serving as a jumping off point for the use of such mod-
els as a quantitative tool in synthetic biology. Here we adopt a similar philosophy
to explore whether this technique can be more broadly applied to other regulatory

components such as transcription factor binding sites.

Specifically, we use Sort-Seq to map sequence to binding energy for the repressor-
binding site interaction, and we rigorously characterize the variables that must be
considered in order to obtain an accurate sequence-binding energy map. We show
how such a mapping can be used to characterize how sequence controls protein
binding and, ultimately, gene expression. We validate the approach via comparisons
with microscopy data and explore the limits of the simple linear models of binding
energy that we use. As concrete applications of this approach, we show that our
sequence-energy mapping can be used to precisely design a series of binding sites
with a hierarchy of precisely controlled binding energies. With this suite of different
binding energies in hand, we then show how those binding sites can be used to design
a wide range of induction responses with different phenotypic properties such as
leakiness, dynamic range and [ ECsq]. Finally, we use Sort-Seq when single amino
acid perturbations to the Lacl protein have been introduced, and we characterize
how this affects the mapping of DNA sequence specificity. This broad collection of
case studies provides a rigorous test of the quantitative mapping between regulatory

sequence and function offered by the Sort-Seq approach.

2.2 Results

In order to map regulatory sequence to binding energy in vivo, we applied Sort-Seq
(Kinney and Callan, 2010) to synthetically constructed promoters with binding sites
for RNA polymerase (RNAP) and lac repressor (Lacl). As shown in Fig. 2.1(A),
Sort-Seq works by first generating a library of cells, each of which contains a mutated

promoter that drives expression of GFP from a low copy plasmid (5-10 copies per
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Figure 2.1: Process flow for using Sort-Seq to obtain energy matrices. (A) A
simple repression motif was designed in which a Lacl repressor binding site is
placed immediately downstream of the RNAP site. RNAP binding probability will
be proportional to GFP production. The RNAP and Lacl binding sites were both
randomly mutated at a rate of approximately 10% and the resulting plasmid library
was transformed into cells such that each cell contains a different mutant. We then
sort the cell population into bins based on fluorescence level, and then sequence the
cells in each bin to map sequence to expression. (B) We analyze simple repression
constructs using each of the three lac operators that are found in E. coli, O1, O2,
and O3, and performed Sort-Seq in E. coli strains with mean copy numbers of Lacl
per cell of 22 + 4, 60 + 20, 124 + 30, 260 + 40, 1220 + 160, and 1740 + 340 (using
strains from Garcia and Phillips, 2011). The resulting Sort-Seq data was used to
infer energy matrices that describe the sequence-dependent repression by Lacl. An
example energy matrix and sequence logo (G. D. Stormo, 2000) are shown for
Lacl, with the convention that the wild-type nucleotides have zero energy.

cell; Lutz, 1997). GFP is a fluorescent protein that allows expression level of the
protein to be observed by measuring the fluorescence level. We use fluorescence-
activated cell sorting (FACS) to sort that library of cells into multiple bins gated
by their fluorescence level and then sequence the mutated plasmids from each bin.
Binding by Lacl to the promoter physically occludes binding by RNAP (Ackers and
Johnson, 1982; Buchler, Gerland, and Hwa, 2003), and mutations to both binding

site sequences will influence what bin each cells is sorted into.

One of the important aspects demonstrated by Kinney and Callan, 2010, is that
we can use the large sequence data set from Sort-Seq (0.5-2 million sequences) to
perform information-based modeling and extract quantitative information from the
data. In particular, it is possible to infer energy matrix models that describe the

sequence dependent energy of interaction between transcription factors and their
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binding sites (Kinney and Callan, 2010; Ireland and Kinney, 2016). Here we set
out to test the accuracy of the models that come from Sort-Seq experiments in the
context of the simple repression architecture (Bintu et al., 2005), with repression by

Lacl as noted above.

In order to be more representative of the range in both transcription factor and
protein-DNA binding energies observed in E. coli more generally, but also to test
the capabilities of the approach more broadly, we constructed a set of strains with a
range of repressor copy numbers and DNA binding energies. Both of these factors
are key determinants of gene expression for a simple repression architecture as can
be seen in Eq. 1.15. We performed a set of separate Sort-Seq experiments in E. coli
with mean Lacl dimer copy numbers ranging from 22-1740 copies per cell (Fig.
2.1(B)). We varied the binding site sequence of the Lacl binding site in our promoter
library, using the three natural sites found at the lac operon (O1 with binding energy,
-15.3 k,T; O2, the second strongest, -13.9 k;T; and O3 the weakest at -9.7 k;,T
(Garcia and Phillips, 2011)).

Sequence-dependent thermodynamic model of the simple repression architec-
ture

We begin by defining the thermodynamic model of simple repression that we will
apply to our Sort-Seq data. We will also define energy matrices that describe the

sequence-dependent interaction energies of RNAP and Lacl to their binding sites.

We consider a cell with P copies of RNAP per cell and R copies of Lacl per cell, and
begin by enumerating all possible states of the promoter and their corresponding
statistical weights. As shown in Fig. 2.2, the promoter can either be empty,
occupied by RNAP, or occupied by Lacl. In addition to these specific binding sites,
we assume that there are Nyg = 4.6 x 10° non-specific binding sites elsewhere on
the chromosome where RNAP and Lacl may bind non-specifically. We define our
reference energy such that all specific binding energies are measured relative to the
average non-specific binding energy. For simplicity, our model explicitly ignores
the complexity of the distribution of non-specific binding affinities in the genome
and makes the assumption that a single parameter can capture the energy difference

between our binding site of interest and the average site in the reservoir.

Thermodynamic models of transcription assume that gene expression is proportional
to the probability that the RNAP is bound to the promoter pp,,nq, and as we have
found in Chapters 1, this is given by
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Figure 2.2: States and weights for the simple repression motif. There are P RNA
polymerase (blue) and a R repressors (red) per cell that compete for binding to a
promoter of interest. The difference in energy between a repressor bound to the
promoter of interest versus another non-specific positions elsewhere on the DNA
equals Aeg; the P RNA polymerase have a corresponding energy difference Aep
relative to non-specific binding on the DNA. Ny¢ represents the number of
non-specific binding sites for both RNA polymerase and repressor.
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with 8 = ,%LT, where k;, is the Boltzmann constant and 7 is the temperature of the
system. Here we have included the allosteric aspect of Lacl through the term, p 4 (c),
which indicates the fraction of active Lacl in the presence of inducer. ¢ denotes the

concentration of inducer present in the cell (p4(c) = 1 when no inducer is present).

We describe the sequence-dependent binding energies for RNAP, Agp, and Lacl,
Agg, using linear energy matrix models. The define the binding energy associated
with each protein z, Ag, (z = P for RNAP, and z = R for Lacl), by
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Ae; = & mar + A&z, (2.2)

where €, 4 is the energy value obtained by summing the matrix elements associated
with a sequence (further defined below), e is a scaling factor that converts the matrix
values into kT units, and Ag_ ,,, is the binding energy associated with the wild-type

operator.

Energy matrices treat each base pair position j along a binding site as contributing a
certain amount to the binding energy. Mathematically the energy matrix is described
by a 4xL matrix, where each column j of matrix parameters will represent the
energies for each nucleotide i = A, C, G, T associated with position j of the binding
site. For example, index (i=C,j=3) represents the energy parameter for nucleotide C
at position 3. The binding energy of a sequence from an energy matrix will then be

given by

Oij - ij» (2.3)

L
Ezmart = Z

T
i=1 j=A

where 6;; represents the parameters of the energy matrix and s;;, at position j of
the binding site, with base identity 7, and the subscript z represents the matrix either
being a Lacl or RNAP matrix. Although we only refer to linear matrices in 2.3, these
models can be extended to allow for non-additive contributions from each position,
though linear models appear to be sufficient to describe transcription factor binding
in bacteria in general (Berg and Hippel, 1987; Benos, Bulyk, and Gary D. Stormo,
2002; Brewster, Jones, and Phillips, 2012). By convention, we have fixed the values
of the matrix positions associated with the wild-type sequence to 0 k,T, so that
emar = 0 for a wild-type sequence. Thus, ag,,,, can be interpreted as the change in
binding energy relative to the wild-type energy caused by specific mutations in the

sequence of interest.

Inferring models of the simple repression architecture using Sort-Seq

We use the MPAthic software to infer the parameters of the energy matrices and
thermodynamic parameters of ppounqg (Kinney and Callan, 2010; Ireland and Kin-
ney, 2016). The software uses Markov-Chain Monte Carlo (MCMC) to determine
the set of parameters that maximize the mutual information between the distribu-
tion of sequences in the binned sequence data and the model’s predictions. More

specifically, the inference approach samples the probability distribution
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Here 6 is the set of model parameters that define our model (e.g. entries in the energy
matrices), S,b represents our data set of sequences S and the sorted bin b where they
were found. N is the number of sequences in the data, and /(b, model predictions)
is the mutual information between the distribution of binned sequences and the

model’s predictions, which we discuss further below.

Due to the computational burden of fitting a large number of parameters by MCMC
(all parameters), we find it convenient to first infer the energy matrices (in arbitrary
units) for Lacl and RNAP from the Sort-Seq data. Fig 2.3 (A) summarizes the
result for one of the Lacl energy matrices (using an O1 binding site library, and
E. coli strain with R = 1740 Lacl per cell). Fig. 2.3 (B) shows an energy matrix
after the energy scale is fixed (in k,7 units) using the thermodynamic model in
2.1 to make model predictions. Mutual information is estimated from the joint
probability distribution between model prediction and binned sequence data, which
is estimated by performing kernel density estimation. Note that in this instance,
we are estimating a joint distribution to calculate the mutual information between
sequence bin and energy prediction, /(b, energy (a.u.)). We repeat this procedure

to generate an energy matrix for the RNAP binding site.

With our energy matrices in hand, we use Sort-Seq sequence data to determine
the scaling parameter of Eq. 2.2 by fitting the data against the thermodynamic
model defined by Eq. 2.1. In fitting the thermodynamic model we must use a
parallel tempering Monte Carlo method. This is because the likelihood landscape
from fitting the scaling parameters can be quite rough, with many local maxima.
Parallel tempering uses multiple MCMC runs with different "temperatures". In
other words, there will be some MCMC chains that are very permissive in which
MCMC steps they accept and so widely explore the parameter landscape. These high
temperature walkers are able to escape local minima in the likelihood landscape.
The low temperature walkers are able to locally explore areas of high likelihood well.
Parallel tempering algorithms periodically exchange the model parameters between
the MCMC chains running at different temperatures with a probability related to
the relative difference in temperature. We use the Emcee package to perform the

parallel tempering algorithm (Foreman-Mackey et al., 2013).

In Fig. 2.4 (A) we summarize the energy matrices for Lacl for the strains with
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Figure 2.3: Inference of Lacl energy matrices. (A) Using the aligned sequence
data for the Lacl binding site, information-based modeling was performed with the
MPAthic software (Ireland and Kinney, 2016) to determine the parameters of the
Lacl energy matrix (in arbitrary units). By convention, the energies are defined
such that the O1 wild-type sequence has zero energy. Kernel density estimation
was performed to estimate the joint probability distribution between sequence bin
and rank-ordered energy predictions from the inferred matrix. (B) Sort-Seq data
was fit to the thermodynamic Eq. 2.1, where binding energies were calculated
from the separately inferred energy matrices for Lacl and RNAP. The entire
promoter sequence from each mutated sequence was used in this inference. This
allowed determination of the scaling factors for binding by Lacl and the energy
matrix shown in absolute k;7" energy units. A joint probability distribution
between sequence bin f and rank-ordered predictions of ppuna is shown using the
inferred model. Data is from the Sort-Seq experiment using an O1 Lacl binding
site and performed in a strain with R = 1740 repressor copies per cell.
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Figure 2.4: Energy matrices for the natural lac operators from Sort-Seq data. (A)
Energy matrix models are shown for the Lacl binding site from experiments
performed with O1, O2, and O3 libraries, and in strains with R = 1740 repressor
copies per cell. All energy matrices are plotted such that an O1 binding site
sequence will have zero energy. (B) Pearson correlation coefficients were
calculated relative to the energy matrix found using the O1 library in a strain with
R = 1740 repressor copies per cell. Each marker represents the correlation
coeflicient for a matrix from a separate Sort-Seq experiment. Data is overlayed on
a plot of expected expression fold-change (calculated assuming 10 plasmid copies
per cell (Weinert et al., 2014)) to provide a reference for the expected influence of
Lacl on expression under each particular Sort-Seq experiment.

the highest repressor copy number, R = 1740. Here we plot the energy matrices
generated from each operator and compare the sequence specificity of each matrix.
We find that the energy matrices from the O1 and O2 binding site data are quite
similar, while the matrix from the O3 binding site data is somewhat less consistent
(Pearson correlation coefficients: r = 0.91 between Ol and O2; r = 0.69 between
O1 and O3).

The entire set of Lacl matrices generated from the Sort-Seq experiments are sum-
marized if Fig. 2.4 (B). Here we calculate the correlation of each matrix (relative to
the R = 1740, O1 energy matrix), and overlay these values on a plot of the expected
fold-change as a function of repressor copy number. Fold-change here refers to
the ratio of gene expression in the presence of repressor relative to expression in
the absence of repressor and provides a useful measure for the extent of repression
expected by Lacl in each Sort-Seq experiment. We find each matrix from the Ol
and O2 binding site data sets to be quite consistent. Notably however, those from
the O3 binding site data sets are less similar. Given the low repression expected by
Lacl in strains with an O3 binding site, this result may be due to the Sort-Seq data

containing less information content associated with binding of Lacl. Though it is
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also useful to note that we also find some correlation among matrices based on the
same binding library (r > 0.94 across Ol matrices; r > 0.91 across O2 matrices,

and r > 0.80 across O3 matrices).

Sort-Seq energy matrices provide accurate prediction of Lacl binding energy
In order to test the binding energy predictions that are provided by our Lacl energy
matrices, we constructed a set of simple repression constructs where the O1 binding
site was mutated at 1, 2, or 3 positions (summarized in Table 2.1). These were
placed into our E. coli strains containing different Lacl copy numbers (R = 22 + 4,
60 + 20, 124 + 30, 260 + 40, 1220 = 160, and 1740 + 340, where errors denote
standard deviation of at least three replicates as measured in (Garcia and Phillips,
2011), and measured expression as a function of transcription factor concentration

for each of the designed Lacl binding sites.

Here we find it more convenient to use the fold-change in gene expression instead
of expression alone. As we noted earlier fold-change is defined as the ratio of
gene expression in the presence of repressor relative to expression in the absence of

repressor (i.e. constitutive expression), namely

pbound(R > 0)

fold-change = ,
8 pbound(R = 0)

(2.5)

where ppouna Was defined in Eq.  2.1. In section 1.3 we derived that, under the

weak promoter approximation, this reduces to the form

fold-change ~ |1 + p A(c)ie—ﬁAsR 1 . (2.6)

Nns
For now we are only concerned with the case where no inducer is present in the
growth media (i.e. where p4(c) = 1). Using our Lacl energy matrix to predict Aeg,
we find that we can make parameter-free predictions of fold-change for each Lacl
binding site sequence as a function of the repressor copy number associated with

each of our E. coli strains.

We use flow cytometry to measure fluorescence of each strain, as explained more
thoroughly in 2.4. Briefly, cells were grown to exponential phase in M9 minimal me-
dia with 0.5% glucose. Following a 1:10 diluation in fresh media, the fluorescence
was measured by flow cytometry and automatically gated to include only single-cell

measurements. We then calculated fold-change from the mean fluorescence level of



Lacl binding site sequence

prediction (k,T)

AATTGTGAGCGGAGAACAATT
AATTGTGAGCGCATAACAATT
AATTGTGAGCGGATCACAATT
AATTGTGAGCGGAAAACAATT
AATTGCGAGCGGATAACAATT
AATTGTGAGGGGATAACAATT
AATTGTGAGCGGATATCAATT
AATTGTGAGCAGATAACAATT
AATTGTGAGAGGATAACAATT

-11.9
-15.6
-15.2
-11.5
-10.0
-12.2
-12.8

-9.8

-6.3

AAATGTGAGCGGGTAACAATT
AATTGTGAGCGGGTAACAACT
AAATGTGAGCGGATAACAACT
AATTGTGAGCGAGTAACAATT

ATTTGTGAGCGGAGAACAATT
CATTGTGAGCGCATAACAATT

AATTGTGAGCGGAACACAATT
AATTGTGAGCGGAATACAATT

AATTGCGAGCGGATAACAAAT
AATTGTGAGGGGATAACAATC

-14.6
-13.6
-13.3
-14.0
-11.9
-15.3
-11.7

-9.6
-10.5
-14.1

AAATGTGAGCGAGTAACAATT
AATTGTGAGCGAATAACAACC
AAATGTGAGCGAATAACAACT
AATTGTGAGCGAGTAACAACT
ATTTGTGAGCGAAGAACAATT
AATTGTGAGCGGAACACAATG
AATTGTGAGCGGGATACAATT
AATTGTCAGCGGATAACAAAG
AATTGTGAGGGTATAACAATC

-13.6
-14.6
-12.2
-12.6
-10.8
-12.3

-9.5
-11.2
-13.5

34

Table 2.1: Summary of Lacl binding site mutant energy prediction for designed O1

sites.

The binding energies displayed are the average of inferred matrices. Mutated bases

are in bold.
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Figure 2.5: Fold-change data reflects expected values from predicted fold change
curves. (A) Fold-change data were obtained for each of the mutant operators by
measuring their respective fluorescence levels at multiple Lacl copy numbers. The
solid lines in each plot represent the expected fold-change curve for each binding
energy as predicted by the O1 energy matrix. A subset of data sets are shown for
the 1 bp (left), 2 bp (middle), and 3 bp (right) mutants. Approximately 30 mutants
were measured in total, with five replicate measurements performed for each strain.
Predicted energies are based on the average predictions from the different O1
energy matrices. (B) The measured binding energy values Aeg (y axis) are plotted
against binding energy values predicted from an energy matrix derived from the
O1 operator (x axis). While the quality of the binding energy predictions does
appear to degrade as the number of mutations relative to Ol is increased, the O1
energy matrix is still able to approximately predict the measured values. (C)
Binding energies for each mutant were predicted using both the O1 and O2 energy
matrices and compared against measured binding energy values. The amount of
error associated with each of these predictions is plotted here against the number of
mutations relative to the wild-type sequence whose energy matrix was used to
make the prediction. For sequences with 4 or fewer mutations, the median
prediction error is consistently lower than 1.5 k7.

each strain relative to a strain where Lacl has been deleted. In Fig 2.5 (A) we show
fold-change measurements for a subset of the 1 bp, 2 bp, and 3 bp mutants, overlaid

with the parameter-free curves using our Lacl energy matrix predictions of Aeg.

Since we performed fold-change measurements for each O1 mutant at several re-

pressor copy numbers, it was also possible to use these measurements to directly
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estimate the Lacl binding energies for each binding site sequence. In Fig 2.5 (B) we
compare the measured binding energies against those predicted by our Lacl energy
matrix. For single base pair mutations most predictions are accurate to within 1
kpT, with many predictions differing from the measured values by less than 0.5 k7.
Though we do note that one of the sequences whose predicted binding was -6.3 kT,
was instead found to have a binding energy of about -10.5 k;T. Predictions are less
accurate for 2 bp or 3 bp mutations, although the majority of these predictions are

still within 1.5 k,T of the measured value.

While not completely unexpected, we find that the quality of matrix predictions
decreased as we predict the energy of sequences further from the wild type sequence
of the binding site used to generate the energy matrix. To evaluate predictions for a
wide variety of sequences, we made predictions using energy matrices made from
both the O1 and O2 wild type operator sequences. The wild type O2 matrix has 5
mutations relative to O1. As a result, the tested sequences measure vary by many
mutations relative to the wild type. As shown in Fig 2.5 (C), we find that predictions
remain relatively accurate for mutants that have as many as 4 differences from the
wild type sequence, with mean deviation of 1.5 k,T or less. For a system with R =
60 Lacl dimers, this mismatch in binding energy would imply that a prediction of
fold-change would be inaccuate by ~ 0.10 - 0.35 (depending on the mutant binding
site). by contrast, the median mismatch of 0.5 k;, 7T shown for 1 bp mutants implies
that our fold-change predictions are only inaccurate by 0.04 - 0.12, highlighting that

predicted binding energies for single-point mutations will be far more reliable.

Regulatory sequence can be used to tune the simple repression induction curve.
A common desire in synthetic biology is to design regulatory circuits that provide
specific input-output characteristics. A common strategy to design output levels
is to use trial and error with many designed sequences until the desired level of
response is obtained (Kosuri et al., 2013). Previous work however has also shown
that rather than rely on such trial and error approaches, it also is possible to use
thermodynamic models of regulation to acccurately predict specific input-output
characteristics (Bintu et al., 2005; Garcia and Phillips, 2011). Such models also
provide non-obvious insight into what characteristics can be designed. We have
shown how we can use regulatory sequence, through the design of specific Lacl
binding site sequences, to further control the level of gene expression. We can use a
similar method to tune the RNAP sequence or any future transcription factor which

is analyzed with Sort-Seq.
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Figure 2.6: Energy matrix predictions can be used to design precise phenotypic
responses. (A) Phenotypic parameters (leakiness, saturation, and dynamic range)
exhibit trade-offs as Aep is varied. Maximizing saturation or minimizing leakiness
can only be achieved by reducing the dynamic range below its maximum. (B)
Operators with different values of Agg were chosen to have varying induction
responses based on the phenotypic trade-offs shown in Part A. The induction
responses predicted based on energy matrix predictions (solid lines) generally
agree well with IPTG induction data obtained for each of the binding sites in a

background strain with R = 260.

As a future step, we were interested in whether our sequence-energy mapping
could be used to precisely design different induction responses. Induction is well
described by the Monod-Wyman-Changeux (MWC) model (Monod, Wyman, and
Changeux, 1965), with Lacl in equilibrium between two conformations, termed the
inactive and active states. In our formulation of fold-change as a function of inducer
concentration, given in Eq 2.6, p4(c) is well described by

(1+4)?

: —> 2.7
(1+ )2 + e Phear(l + £)? 7

pa(c) =

where c is the concentration of inducer, K4 and K; are the dissociation constants
of the inducer and repressor when the repressor is in its active or inactive state,
respectively, and Ae,; is the difference in free energy between the repressor’s
active and inactive states. Many of the parameters in Eq. 2.7 can and have been
independently measured. Specifically, K4 = 139 uM, K; = 0.53 uM, and Aey; =
—4.5kpT.

We note that an induction response can be described by four key phenotypic pa-
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rameters. The leakiness is the minimum fold-change when no inducer is present,
given by fold-change(c — 0) from Eq. 2.6. The saturation is the maximum fold-
change when inducer is present at saturating concentrations, given by fold change
(¢ — o0). The dynamic range is the difference between the saturation and leakiness,
and represents the magnitude of the induction response. Figure 2.6 (A) shows how
these three phenotypic parameters vary with Agg given the values of K4, K;, and
Aey listed above and the repressor copy number R = 260. Lastly in Fig. 2.6 (B),
the [ECsp] of an induction response denotes the inducer concentration required to

generate a response that is halfway between the minimum and maximum values.

There is an inherent trade-off between phenotypic parameters. For instance, tuning
Aep to be comparatively strong (—8kT"), will increase the leakiness significantly.
Mutating the DNA can adjust Aep and Aeg, while to adjust K4 or K; the protein
itself must be mutated.

To show how energy matrices can be used to design specific induction responses,
we used the phenotypic trade-offs shown in Fig. 2.6 (A) to choose four different
values of Aeg that would provide distinct outputs. These values were Aeg ~ —16
kpT, which would provide a minimal leakiness level but not reach full saturation;
Aeg = =13 kT, which would maximize dynamic range; Ae ~ —11.5 k;T, which
would maximize saturation but have an intermediate dynamic range; and Aeg = —10
kT, which is close to the threshold between specific binding and nonspecific
binding, and would provide a narrow dynamic range. Four of the single base-
pair mutants designed in the previous section had predicted binding energies that
matched these approximate values. Induction responses for each of the mutants were
determined by growing cultures in the presence of varying IPTG concentrations
and measuring the fold-change at each concentration. Fig 2.6 (B) shows how
the induction data compare against fold-change curves plotted using Aegr values
predicted from the energy matrix, and fold-change as defined in Eq. 2.1 and Eq. 2.7.
The measured induction responses were found to match the theoretical predictions
quite well, though for the sequence with a predicted energy of Aeg ~ —11.5k,T, we
find that the [ECsq] is shifted toward a higher IPTG concentration. This is at least
in part due to a higher measured binding energy (-12.5 kT instead of -11.5 kgT)

than predicted by our Lacl energy matrix.
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Sort-Seq can be used to probe both the DNA and amino acid interactions

So far we have examined how energy matrices provide us with a quantitative mapping
between DNA sequence and binding energy, and how this can allow us to predict
specific input-output characteristics. In this final section we show how we can
also use energy matrices to investigate the effects of amino acid mutations on a
transcription factor’s sequence specificity. Specifically, we make individual amino
acids changes to the repressor’s DNA-binding domain and through additional Sort-
Seq experiments, observe how those mutations modify the Lacl energy matrix. This
approach in particular makes it possible to determine how changing the amino acid

composition of the DNA-binding domain alters DNA sequence preference.

We performed Sort-Seq using strains containing one of three Lacl mutants, Y201,
Q21A, or Q21M, where the first letter indicates the wild-type amino acid, the
number indicates the amino acid position, and the last letter indicates the identity of
the mutated amino acid. These mutants have previously been found to alter Lacl-
DNA binding properties without entirely disrupting the repressor’s ability to bind
DNA (Milk, Daber, and Lewis, 2010; Daber and Sochor, 2011). We note that we
use a slightly different version of Lacl from the one used in Refs. (Milk, Daber, and
Lewis, 2010; Daber and Sochor, 2011), so that the residue numbers in our version

of Lacl are shifted upward by 3 bp.

Sequence logos for each Lacl mutant are shown in Figure 2.7, along with the wild-
type sequence logo for comparison. As with the wild-type repressor, for each of the
mutant repressors we find that the left half-site of the sequence logo has a higher
information content. for both Y20I and Q21M, the same sequence is preferred in
the left half-site as the wild-type sequence logo. This contrasts with the results
from Milk, Daber, and Lewis, 2010, in which it was found that Y20I prefers an
adenine at sequence position 7, rather than the guanine preferred at this position
by the wild-type repressor. As in Milk, Daber, and Lewis, 2010, we find that an

adenine is preferred at sequence position 8 for the Q21A mutant.

Some more subtle features can be observed when comparing the right half-sites.
Within the right half-site, the most important base positions consistently appear
to be 12, 13, 16, and 17. All mutants, along with the wild-type repressor, prefer
cytosine and adenine at sequence positions 16 and 17. The wild-type, Q21A, and
Q21M mutants all prefer an adenine and a tyrosine at positions 12 and 13, while
the Y20I mutant prefers tyrosine and cytosine. For all mutants, the preferred bases

at positions 16 and 17 are symmetrical to the corresponding bases in the left half-
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Figure 2.7: Point mutations to Lacl DNA-binding domain cause subtle changes to
sequence specificity. Mutations were made to residues 20 and 21 of Lacl, both of
which lie within the DNA-binding domain. The mutations Y20I and Q21A weaken
the repressor-operator binding energy, while the mutation Q21M strengthens the
binding energy. Y20I exhibits minor changes to specificity in low-information
regions of the binding site, and Q21A experiences a change to specificity within a
high-information region of the binding site. Specifically, Q21A prefers A at
operator position 7 while the wild-type repressor prefers G at this position.

site (positions 4 and 5). By contrast, position 12 is consistently not symmetrical
to position 8 in the right half-site, and position 13 for Y20I is not symmetrical
to position 7 in the right half-site. Thus we see that the lac repressor’s notable
preference for a pseudo-symmetric binding site is preserved in each of the mutants

we tested.

2.3 Discussion

We have shown how the massively parallel reporter assay, Sort-Seq (Kinney and
Callan, 2010), can be used to generate a mapping between regulatory sequence and
transcription factor binding energy using linear energy matrix models. By using a
simple thermodynamic model, we find that this mapping provides further control
over the input-output gene expression characteristics through finer control of the Lacl
DNA-binding energy. This work follows from a previous effort in our group to test
the validity of such energy matrix models that describe binding of RNAP (Brewster,
Jones, and Phillips, 2012). Here we explore whether the approach can be applied

more broadly to other regulatory components. Specifically, we first used Sort-Seq
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to map sequence to binding energy by inferring energy matrices for the repressor
Lacl. We preform this work in the context of a simple repression architecture, which
represents a widespread bacterial regulatory architecture (Rydenfelt et al., 2014)
that is commonly employed in synthetic biology (Brophy and Christopher A. Voigt,
2014; Khalil and Collins, 2010; Purnick and Weiss, 2009). We then demonstrate the
validity of our model by designing roughly 30 mutant Lacl binding site sequences,
where we then demonstrate control over fold-change in gene expression, and show
how such regulatory sequences can be used to optimize the inducible response
of Lacl by IPTG. Lastly, we show how Sort-Seq can also be used to probe the
amino acid-DNA interactions. Here we perform Sort-Seq in several E. coli strains
containing mutant Lacl proteins and find only minor perturbations to the Lacl
sequence specificity following single amino-acid changes to the Lacl DNA-binding

domain.

While we focused on the regulatory component of Lacl, we believe it will be
possible to use regulatory sequence to predict gene expression more broadly across
the bacterial genome and to other synthetic regulatory constructs, assuming that
a thermodynamic model is in hand that can adequately describe the regulatory
architecture. It is clear from our work that although we could accurately design
regulatory sequences with a predictable fold-change, there were a variety of instances
with notable discrepancies between the measured and predicted fold-change. This
may suggest the need to consider more complex models than our linear energy
matrices that incorporate non-additive contributions (Benos, Bulyk, and Gary D.
Stormo, 2002). Deep-learning algorithms may provide an alternative approach to
model the DNA-protein interactions (Sun et al., 2017). Future work on applying
neural networks is discussed in B.9. Another consideration is that while Sort-
Seq was performed on plasmids, our designed promoters were integrated on the
chromosome, and aspects related to chromosomal context and DNA compaction are
not considered in our model. Landing pad technologies for chromosomal integration
(Kuhlman and Cox, 2010; Zhang et al., 2016; St-Pierre et al., 2013) could enable
massively parallel reporter assays to be performed on chromosomes instead of
on plasmids, and enable more accurate descriptions of chromosomally integrated
promoters. Even when predicted fold-change did not match the observed fold-
change, we still find a clear correlation between the predicted and measured Lacl
binding energies, and we have shown how regulatory sequence and a thermodynamic

model can be used to guide our design of optimized inducible regulatory systems.
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2.4 Methods

Sort-Seq libraries

To generate promoter libraries for Sort-Seq, mutagenized oligonucleotide pools were
purchased from Integrated DNA Technologies (Coralville, IA). These consisted of
single-stranded DNA containing the lacUV5 promoter and Lacl operator plus 15 bp
on each end of PCR amplification. Either the lacUV5 promoter and Lacl binding
site, or only the Lacl binding site was mutated with a ten percent mutation rate per
nucleotide. These oligonucleotides were amplified by PCR and inserted back into the
pZS25-operator-Y FP construct using Gibson Assembly. This plasmid is maintained
in low copy (5-10 copies per cell) with the SC101 origin of replication (Lutz, 1997).
To achieve high transformation efficiency, reaction buffer components from the
Gibson Assembly reaction were removed by drop dialysis an cells were transformed
by electroporation of freshly prepared cells. Following an initial outgrowth in
SOC media, cells were diluted with 50 mL. LB media and grown overnight under
kanamycin selection. Transformation typically yielded 10° — 107 colonies and were
assessed by plating 100 uL of cells diluted 1 : 10* onto an LB plate containing

kanamycin.

DNA Constructs for fold-change measurements

Simple repression motifs used in Sort-Seq experiments and fold-change measure-
ments were adapted from those in Garcia and Phillips, 2011. Briefly, the Lacl
operator (01,02, or O3) and YFP reporter gene were cloned into a pZS25 back-
ground directly downstream of a lacUV5 promoter, driving expression of the YFP
gene where the operator is not bound by Lacl. This plasmid contains a kanamycin
resistance gene for selection. Mutant Lacl operator constructs were generated by
PCR amplification of the lacUV5 O1-YFP plasmid using primers containing the
point mutations as well as sufficient overlap for re-circularizing the amplified DNA

by Gibson Assembly.

A second construct was generated to provide expression of lacl gene. Here, lacl
was cloned into a pZS3*1 background the provides constitutive expression of Lacl
from a Py zetO — 1 promoter (Lutz, 1997). This plasmid contains a chloramphenicol
resistance gene for selection. To produce strains with different mean copy number
of Lacl that differ from the wild-type value of about 11 tetramers per cell, the
ribosomal binding site for the lacl gene was mutated as described in (Salis, Mirsky,
and Christopher A Voigt, 2009) using site-directed mutagenesis (Quickchange II;
Stratagene, San Diego, CA) and further detailed in (Garcia and Phillips, 2011).
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Bacterial Strains

E. coli strains used in this work were derived from K-12 MG1655. To generate
strains with different Lacl copy number, the lacl constructs were integrated into
a strain that additionally has the entire lacl and lacZYA operons removed from
the chromosome. These were integrated at the ybcN chromosomal location. This
resulted in strains containing mean Lacl copy numbers of R = 30, 62, 130, 610, 870,
which were measured previously by quantitative western blots (Garcia and Phillips,
2011).

For Sort-Seq experiments, plasmid promoter libraries were constructed as described
below and then transformed into the strains with different Lacl copy number. For
fold-change measurements, only the native O1 operator and associated mutants were
considered. These simple repression constructs were chromosomally integrated
at the galK chromosomal location. Generation of the final strains containing a
simple repression motif and a specific Lacl copy number was achieved by P1
transduction. For each Lacl titration experiment, we also generated a strain where
the entire lacl and lacZYA operons were removed, but with only the operator-YFP
construct integrated. This provided us with a fluorescence expression measurement

corresponding to R = 0, which is necessary for calculation of fold-change.

Sort-Seq fluorescence sorting

For each Sort-Seq experiment, cells were grown to saturation in lysogeny broth (LB)
and then diluted 1 : 10, 000 into minimal media (M9 + 0.5% glucose) for overnight
growth. Once these cultures reached an OD 0.2-0.3 the cells were washed three
times with PBS by centrifugation at 4000 rpm for 10 minutes and at 4°C. They were
then diluted two-fold with PBS to reach an approximate OD of 0.1-0.15. These
cells were then passed through a 40 um cell strainer to eliminate any large clumps

of cells.

A Beckman Coulter MoFlo XDP cell sorter was used to obtain initial fluorescence
histograms of 500,000 events per library, which were used to set four binning gates
that each covered 15% of the histogram. During sorting of each library, 500,000
cells were collected into each of the four bins. Finally, sorted cells were regrown

overnight in 10 mL of LB media, under kanamycin selection.

Sort-Seq sequencing and data analysis
Overnight cultures from each sorted bin were miniprepped (Qiagen, Germany),

and PCR was used to amplify the mutated region from each plasmid for Illumina
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sequencing. The primers contained Illumina adapter sequences as well as barcode
sequences that enable pooling of the sorted samples. Sequencing was performed
by either the Millard and Muriel Jacobs Genetics and Genomics Laboratory at
Caltech or NGX Bio (San Fransisco, CA). Single-end 100 bp or paired-end 150
bp flow cells were used, with about 500,000 sequences whose PHRED score was
greater than 20 for each base pair, the total number of useful reads per bin was
approximately 300,000 to 500,000 per million reads requested. Energy weight
matrices for binding by Lacl and RNAP were inferred using Bayesian parameter
estimation with a error-model-averaged likelihood as previously described (Kinney
and Callan, 2010; Kinney and Atwal, 2014).

Fold-change measurements by flow cytometry

Fold-change measurements were collected as previously described (Razo-Mejia
et al.,, 2018) on a MACSquant Analyzer 10 Flow Cytometer (Miltenyi Biotec,
Germany). Briefly, YFP fluorescence measurements were collected using 488nm
laser excitation, with a 525/50 nm emission filter. Settings in the instrument panel
for the laser were as follows: trigger on FSC (linear, 423V), SSC (linear, 537 V),
and B1 laser (hlog, 790V). Before each experiment the MACSquant was calibrated
using MACSQuant Calibration Beads (Miltenyi Biotec, CAT NO. 130-093-607).
Following growth of cells to OD 0.2-0.3, they were diluted ten fold in ice-cold
minimal media (M9 + 0.5% glucose). Cells were then automatically sampled from a
96-well plate kept at approximately 4°C - 10°C using MACS Chill 96 Rack (Miltenyi
Biotec, CAT NO. 130-094-459) at a flow rate of 2,000 - 6,000 measurements per

second.

The fold-change in gene expression was calculated by taking the ratio of the mean
YFP expression of the population of cells in the presence of Lacl repressor to that
in the absence of Lacl repressor. Since the measured fluorescence intensity of each
cell also includes autofluorescence which is present even in the absence of YFP, we

account for this background by computing the fold change as

Irso) — (I
fold-change = {Tr=0) = {auio) (2.8)

<IR=O> - <Iauto’>

where (Ig-0) is the average cell YFP intensity in the presence of repressor, (Ig-¢) is
the average cell YFP intensity in the ansencce of repressor, and (I, ) is the average

cell autofluorescence intensity.
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Data curation

All data was collected, stored, and preserved using the Git version control software in
combination with off-site storage and hosting website GitHub at url https://github.com/RPGroup-
PBoC/seq_mapping. Sequencing data is available through the NCBI website under

accession number SAMNO08930313.
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Supplemental Information: Summary of designed O1 binding site mutant

Mutated binding sites were created for the O1 binding site with 1, 2 or 3 mutations.
All the designed sites are listed in Table 2.2. Each of these sequences have three
predicted energies listed. Sort-seq matrices were generated starting from mutated
libraries based on the WT sequences for the O1, O2, and O3 binding sites. There
are 8 mutations between the O1 and O3 wild type sequences, and as such, these two
generating libraries are very distant in sequence space. We can see that the predicted

energies are different, but are generally within a few k,7.
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Ol matrix ~ O2 matrix O3 matrix
Identifier Lacl binding site sequence prediction  prediction  prediction
mut005  AATTGTGAGCGGAGAACAATT -11.929881 -13.428262 -12.243772
mut007  AATTGTGAGCGCATAACAATT -15.633221 -14.197103 -15.296422
mut008  AATTGTGAGCGGATCACAATT -15.520049 -14.133914 -14.986353
mut009 AATTGTGAGCGGAAAACAATT -11.459789 -12.924778 -12.498838
mut010  AATTGCGAGCGGATAACAATT  -9.968247 -11.878477 -11.299124
mutOll  AATTGTGAGGGGATAACAATT -12.230209 -13.455658 -12.344994
mut012  AATTGTGAGCGGATATCAATT -12.787483 -13.642761 -12.996080
mut013  AATTGTGAGCAGATAACAATT -9.760610 -12.692912 -10.091807
mut014  AATTGTGAGAGGATAACAATT -6.331624  -8.997448 -10.615486
mutl02 AATTGTGAGCGGGTAACAACT -13.641728 -13.896787 -14.788271
mutl03  AAATGTGAGCGGATAACAACT -13.328345 -13.584199 -14.401196
mutl04 AATTGTGAGCGAGTAACAATT -14.044856 -14.070952 -15.122752
mutl0S  ATTTGTGAGCGGAGAACAATT -11.911801 -13.428375 -11.523189
mutl07  CATTGTGAGCGCATAACAATT -15.302753 -14.016493 -14.797621
mutl08  AATTGTGAGCGGAACACAATT -11.679837 -12.712688 -13.305983
mutl09 AATTGTGAGCGGAATACAATT -9.647010 -12.138189 -12.030819
mutlll  AATTGTGAGGGGATAACAATC -14.118290 -14.046511 -12.149832
mut20l  AAATGTGAGCGAGTAACAATT -13.558126 -13.874477 -14.571139
mut204  AATTGTGAGCGAGTAACAACT -12.559931 -13.505622 -14.673368
mut205  ATTTGTGAGCGAAGAACAATT -10.830003 -13.037210 -10.827536
mut207  CATTGTGAGCGCATAACATTT -15.171401 -14.057285 -14.182531
mut208 AATTGTGAGCGGAACACAATG -12.337016 -13.053090 -12.175545
mut209  AATTGTGAGCGGGATACAATT  -9.473663 -12.254301 -11.857128
mut210  AATTGCGAGCGGATAACAAAG -11.139112 -11.827513 -10.621422
mut21l  AATTGTGAGGGTATAACAATC -13.464516 -13.934262 -11.784251

Table 2.2: Summary of all energy predictions for mutant constructs.
We make these predictions as the average of Lacl energy matrix created from Sort-
Seq experiments where the mutated libraries are generated from either the O1, O2,
or O3 wild type binding site sequences.
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Chapter 3

A SYSTEMATIC APPROACH FOR DISSECTING THE
MOLECULAR MECHANISMS OF TRANSCRIPTIONAL
REGULATION IN BACTERIA.

A version of this chapter originally appeared as N. M. Belliveau, S. L.Barnes, W.
T. Ireland, D. L. Jones, M. J. Sweredoski, A. Moradian, S. Hess, J. B. Kinney, R.
Phillips (2018). A systematic approach for dissecting the molecular mechanisms
of transcriptional regulation in bacteria. Proceedings of the National Academy of
Sciences, http://doi.org/10.1073/pnas.1722055115.

Author contribution note: for this chapter, I (WI) assisted with experimental design,

data analysis, and manuscript writing.

3.1 Introduction

The sequencing revolution has left in its wake an enormous challenge: the rapidly
expanding catalog of sequenced genomes is far outpacing a sequence-level under-
standing of how the genes in these genomes are regulated. This ignorance extends
from viruses to bacteria to archaea to eukaryotes. Even in E. coli, the model
organism in which transcriptional regulation is best understood, we still have no
indication if or how more than half of the genes are regulated (Fig 1.7; Gama-Castro
et al., 2016; Keseler et al., 2013). In other model bacteria such as Bacillus subtilis,
Caulobacter crescentus, Bibrio harveyii, or Pseudomonas aerguinosa, far fewer
genes have established regulatory mechanisms (Munch, 2003; Cipriano et al., 2013;
Kilig et al., 2014).

New tools are needed for studying regulatory architecture in these and other bacteria.
Although an arsenal of genetic and biochemical methods have been developed for
dissecting promoter function at individual bacterial promoters (reviewed in Minchin
and Busby, 2009), these methods are not readily parallelized. As a result, they
will likely not lead to a comprehensive understanding of full regulatory genomes
anytime soon. RNA sequencing, chromatin immunoprecipitation, and other high
throughput techniques are increasingly being used to study gene regulation in E.
coli (Grainger et al., 2005; Bonocora and J. T. Wade, 2015; Latif et al., 2018;
Zheng et al., 2004; Singh et al., 2014; Vvedenskaya, Goldman, and Nickels, 2015;
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THE REGULATORY GENOME OF ESCHERICHIA COLI: PROMOTER STUDIED
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known regulation (67%) N xylE
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Figure 3.1: Summary of transcriptional regulatory knowledge in E. coli. left panel:
Well-characterized promoters considered in this work. The schematics highlight
the known regulatory architectures for the annotated promoters of marRAB, relBE,
and lacZYA. The center plot identifies the genomic location of different operons in
E. coli. Operons with annotated TF binding sites are shown in light blue, while
those lacking regulatory descriptions are shown in light red (Gama-Castro et al.,
2016). The genomic location of the promoters considered in this work are labeled.

Wade, 2005)), but these methods are incapable of revealing either the nucleotide
resolution location of all functional transcription factor binding sites, or the way in
which interactions between DNA-bound transcription factors and RNA polymerase

modulate transcription.

In recent years a variety of massively parallel reporter assays have been developed
for dissecting the functional architecture of transcriptional regulatory sequences in
bacteria, yeast, and metazoans. These technologies have been used to infer bio-
physical models of well-studied loci, characterize synthetic promoters constructed
from known binding sites, and search for new transcriptional regulatory sequences
(Kinney, Murugan, et al., 2010; Melnikov et al., 2012; Kheradpour et al., 2013;
Patwardhan et al., 2012; Sharon et al., 2012; Kosuri et al., 2013; Arnold et al.,
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2013; Maricque, Dougherty, and Cohen, 2016). CRISPR assays have also shown

promise for identifying longer range enhancer-promoter interactions in mammalian
cells (Fulco etal., 2016). However, no approach for using massively parallel reporter
technologies to decipher the functional mechanisms of previously uncharacterized

regulatory sequences has yet been established.

Here we describe a systematic and scalable approach for dissecting the functional ar-
chitecture of previously uncharacterized bacterial promoters at nucleotide resolution
using a combination of genetic, functional, and biochemical measurements. First, a
massively parallel reporter assay, Sort-Seq (Kinney and Callan, 2010) is performed
on a promoter in multiple growth conditions in order to identify functional tran-
scription factor binding sites. DNA affinity chromatography and mass spectrometry
(Mittler, Butter, and M. Mann, 2008; Mirzaei et al., 2013) are then used to identify
the regulatory proteins that recognize these sites. In this way one is able to iden-
tify both the functional transcription factor binding sites and cognate transcription
factors in previously unstudied promoters. Subsequent massively parallel assays
are then performed in gene-deletion strains to provide additional validation of the
identified regulators. In many cases, the reporter data thus generated can further be

used to infer quantitative models of transcriptional regulation.

In what follows, we first describe the application of this approach to four previously
annotated promoters: lacZYA, relBE, marRAB, and yebG. This illustrates the over-
arching logic of our method and provides a benchmark for how well these methods
work. We then describe this strategy applied to the previously uncharacterized pro-
moters of purT, xylE, and dgoRKADT. These results demonstrate the ability to go
from complete regulatory ignorance to an explicit quantitative model of a promoter’s

input-output behavior.

3.2 Results

To dissect how a promoter is regulated, we begin by performing Sort-Seq (Kinney
and Callan, 2010). As shown in Fig 3.2, Sort-Seq works by first generating a library
of cells, each of which contains a mutated promoter that drives expression of GFP
from alow copy plasmid (5-10 copies per cell; Lutz, 1997) and provides a read-out of
transcriptional state. We use fluorescence-activated cell sorting (FACS) to sort cells
into multiple bins gated by their fluorescence level and then sequence the mutated
plasmids from each bin. We found it sufficient to sort the libraries into four bins and

generated data sets of approximately 0.5-2 million sequences across the sorted bins
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(Fig. 3.12 (A)-(D)). Putative binding sites were identified by examining expression
shift plots which show the average change in fluorescence when each position is
mutated (Fig. 3.2(B)). Mutations to the DNA will disrupt binding of transcription
factors, so regions with a positive shift are suggestive of binding by a repressor,

while a negative shift suggests binding by an activator or RNA polymerase (RNAP).

The identified binding sites are further interrogated by performing information-based
modeling with the Sort-Seq data. Here we generate energy matrix models (Kinney
and Callan, 2010; Ireland and Kinney, 2016) that describe the sequence-dependent
energy of interaction of a transcription factor at the putative binding site. For each
matrix, we use a convention that the wild-type sequence is set to have an energy of
zero (see example energy matrix in Fig. B.4. Mutations that enhance binding are
identified in blue, while mutations that weaken binding are identified in red. We
also use the energy matrices to generate sequence logos (Berg and Hippel, 1987;
Schneider and Stephens, 1990; Stormo, 2000) which provides a useful visualization

of the sequence-specificity (see above matrix in Fig. 3.2(B)).

We next perform DNA affinity chromatography experiments using DNA oligonu-
cleotides containing the binding sites identified by Sort-Seq. Here we apply a stable
isotopic labeling of cell culture (SILAC) approach (Ong et al., 2002), which enables
us to perform a second reference chromatography experiment that is simultaneously
analyzed by mass spectrometry to identify the target transcription factor. As shown
in Fig.3.2(C), we begin by preparing two cell lysates: one with cells supplemented
with natural lysine and the other with a heavy isotopic form of lysine. We then
perform chromatography using magnetic beads with the tethered oligonucleotides.
Our reference experiment is performed identically, except that the binding site has
been mutated away from the original sequence (and is performed using the light
lysate). The abundance of each protein is determined by mass spectrometry and
used to calculate protein enrichment ratios, with the target transcription factor ex-
pected to exhibit a ratio greater than one. Most proteins detected will exhibit a

protein enrichment near one due to non-specific binding in both purifications.

The energy matrix models and results from each DNA affinity chromatography
experiment provide insight into the identity of each regulatory factor and hypotheses
about potential regulatory mechanisms. In some instances we are able to test these
hypotheses further with additional information-based modeling of thermodynamic
models on our Sort-Seq data. Finally, to confirm binding by an identified regulator

we perform Sort-Seq experiments in gene deletion strains, which no longer show
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Figure 3.2: Overview of approach to characterize transcriptional regulatory DNA,
using Sort-Seq and mass spectrometry. (A) Schematic of Sort-Seq. A promoter
plasmid library is placed upstream of GFP and is transformed into cells. The cells
are sorted into four bins by FACS and after regrowth, plasmids are purified and
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the positive or negative shift in expression along the binding site.

Sort-Seq recovers the known regulatory features of well-characterized promot-
ers

To first demonstrate Sort-Seq as a tool to discover regulatory binding sites de novo
we began by looking at the promoters of lacZYA, relBE, and marRAB (Oehler et al.,
1990; Grainger et al., 2005; Alekshun and Levy, 1997). These promoters have been
studied extensively and provide a useful test bed of distinct regulatory motifs to test
our approach. To proceed we constructed libraries for each promoter by mutating
their known regulatory binding sites. We also considered two different mutation
frequencies in our libraries. For lac, our library had a mutation rate of approximately
three percent per bp, while mar and rel had a rate of roughly nine percent per bp.
For a 20 bp binding site, this corresponds to an average of less than one mutation per
sequence at the low mutation rate, and about two mutations at the high mutation rate

(See Supplemental Section 3.8 and Fig. 3.12(E),(F) for additional characterization).

We begin by considering the lac promoter. It contains three lac repressor (Lacl)
binding sites, two of which we consider here, and a cyclic AMP receptor (CRP)
binding site. It exhibits the classic catabolic switch-like behavior that results in
diauxie when E. coli is grown in the presence of glucose and lactose sugars (Loomis
and Magasanik, 1967; Oehler et al., 1990; Busby and Ebright, 1999). We performed
Sort-Seq with cells grown in M9 minimal media at 37°C. The information footprints
and expression shifts at each position are shown in Fig. 3.3(A), with annotated
binding sites from RegulonDB noted above the plot. The expression shifts reflect
the expected regulatory role of each binding site, showing positive shifts for Lacl
and negative shifts for CRP and RNAP. The difference in magnitude at the two Lacl
binding sites likely reflect the different binding energies between these two binding
site sequences, with Lacl O3 having an in vivo dissociation constant that is almost
three orders of magnitude weaker than the Lacl O1 binding site (Oehler et al., 1990;
Garcia and Phillips, 2011).

Next we consider the rel promoter that transcribes the toxin-antitoxin pair RelBE and
RelB. It is one of about 36 toxin-antitoxin systems found on the chromosome, with
important roles in cellular physiology including cellular persistence (Grainger et al.,
2005; Yamaguchi and Inouye, 2011; Maisonneuve and Gerdes, 2014). When the
toxin, RelE, is in excess of its cognate binding partner, the antitoxin RelB, the toxin

causes cellular paralysis through cleavage of mRNA (Griffin, Davis, and Strobel,
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Figure 3.3: Sort-Seq identifies the regulatory landscape of the lac, rel, and mar
promoters. (A) Sort-Seq of the lac promoter. Cells were grown in M9 minimal
media with 0.5% glucose. Expression shifts are shown, with annotated binding
sites for CRP (activator), RNAP (-10 and -35 subsites), and Lacl (repressor) noted.
Energy matrices and sequence logos are shown for each binding site. (B) Sort-Seq
of the rel promoter. Cells were also grown in M9 minimal media with 0.5%
glucose. The information footprints and expression shifts identify the binding sites
of RNAP and RelBE (repressor), and energy matrices and sequence logos are
shown for these. (C) Sort-Seq of the mar promoter. Here cells were grown in
Lysogeny broth (LB) at 30°C. The expression shifts identify the known binding
sites of Fis and MarA (activators), RNAP, and MarR (repressor). Energy matrices
and sequence logos are shown for MarA and RNAP.
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2013). Interestingly, the antitoxin protein also contains a DNA binding domain and
is a repressor of its own promoter (Gotfredsen and Gerdes, 1998; Overgaard, Borch,
and Gerdes, 2009; Cataudella, Trusina, et al., 2012; Cataudella, Sneppen, et al.,
2013). We performed Sort-Seq with cells grown in M9 minimal media and at 37°C.
The expression shifts are shown in Fig. 3.3(B) and were consistent with binding by
RNAP and RelBE. In particular, a positive shift was observed at the binding site for
RelBE, and the RNAP binding site showed mainly a negative shift in expression.

The third promoter, mar, is associated with multiple antibiotic resistance since its
operon codes for the transcription factor MarA, which activates a variety of genes
including the major multi-drug resistance efflux pump, ArcAB-tolC, and increases
antibiotic tolerance (Alekshun and Levy, 1997). The mar promoter is itself acti-
vated by MarA, SoxS, and Rob (via the so-called marbox binding site), and further
enhanced by Fis, which binds upstream of this marbox (Martin and Rosner, 1997).
Under standard laboratory growth it is under repression by MarR (Aono, Tsuk-
agoshi, and M. Yamamoto, 1998). We found that the promoter’s fluorescence was
quite dim in M9 minimal media and instead grew libraries in lysogeny broth (LB)
at 30°C (Seoane and Levy, 1995). Again, the different features in the information
footprint and expression shift plot (Fig. 3.3(C)) appeared to be consistent with
the noted binding sites. One exception was that the downstream MarR binding
site was not especially apparent. Both positive and negative expression shifts were
observed along its binding site, which may be due to overlap with other features
present including the native ribosomal binding site. There have also been reported
binding sites for CRP (Ruiz and Levy, 2010; Zheng et al., 2004), Cra (Shimada,
K. Yamamoto, and A. Ishihama, 2011), CpxR/CpxA (Weatherspoon-Griffin et al.,
2014), and ArcR (Lee, Cho, and Kim, 2014). However these studies either required
overexpression of the associated transcription factor, were computationally identi-
fied, or demonstrated through in vitro assays and were not observed under the growth

condition considered here.

While each promoter qualitatively showed the expected regulatory behavior in each
expression shift plot, we were also interested in whether we could recover the
quantitative sequence specificity of each transcription factor from our data. We
inferred energy matrices and associated sequence logos for the binding sites of
RNAP, Lacl, CRP, RelBE, MarA, and Fis. These are shown in Fig. 3.3 (A)-(C) and
Fig. 3.4, and agreed with sequence logos generated from known genomic binding

sites for these transcription factors (Pearson correlation coeflicient r = 0.5 — 0.9;
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Binding site sequences were obtained from RegulonDB, where n identifies the
number of genomic binding sites that were used to construct the sequence logo.
The Sort-Seq RNAP logo is based on data from the re/ promoter. For the genomic
RNAP logo, sequences were taken from computationally predicted RNAP binding
sites on RegulonDB (top 3.3% scored sequences using their reported metric) for
the 6 bp regions of the -10 and -35 binding sites. Pearson correlation coefficients
are calculated with Equation 4.7 using the position weight matrices from the
Sort-Seq and genomic matrices. For LexA, the first four bp were not used in the
calculation due to overlap with the -10 RNAP binding site of the yebG promoter.

see Supplemental Section 3.9).

Identification of transcription factors with DNA affinity chromatography and
quantitative mass spectrometry.

For our purpose of completely dissecting a promoter, it was next important to show
that DNA affinity chromatography could indeed be used to identify transcription
factors in E. coli. In particular, a challenge arises in identifying transcription factors
due to their very low abundance. In E. coli the cumulative distribution in protein
copy number shows that more than half have a copy number less than 100 per cell,
with 90 Y% having copy number less than 1,000 per cell. This is several orders of

magnitude below that of many other cellular proteins (Li et al., 2014).

We began by applying the approach to known binding sites for Lacl and RelBE. For
Lacl, which is present in E. coli in about 10 copies per cell, we used the strongest
binding site sequence, Oid (in vivo K; = 0.05nM), and the weakest natural operator
sequence, O3 (in vivo K; =~ 110nM) (Oehler et al., 1990; S. Oehler, 2006; Kuhlman,
Z. Zhang, et al., 2007; Garcia and Phillips, 2011). In Fig. 3.5(A) we plot the protein
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Figure 3.5: DNA affinity purification and identification of Lacl and RelBE by mass
spectrometry using known target binding sites. (A) Protein enrichment using the
weak O3 binding site and strong synthetic Oid binding sites of Lacl. Lacl was the
most significantly enriched protein in each purification. The target DNA region
was based on the boxed area of the lac promoter schematic, but with the native O1
sequence replaced with either O3 or Oid. Data points represent average protein
enrichment for each detected transcription factor, measured from a single
purification experiment. (B) For purification using the ReIBE binding site target,
both RelB and its cognate binding partner RelE were significantly enriched. Data
points show the average protein enrichment from two purification experiments.
The target binding site is similarly shown by the boxed region of the rel promoter
schematic. Data points in each purification show the protein enrichment for
detected transcription factors. The gray shaded regions show where 95% of all
detected protein ratios were found.
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enrichments from each transcription factor identified by mass spectrometry. Lacl
was found with both DNA targets, with fold enrichment greater than 10 in each case,
and significantly higher than most of the proteins detected (indicated by the shaded
region, which represents the 95% probability density region of all proteins detected,
including non-DNA binding proteins). Purification of Lacl with about 10 copies
per cell using the weak O3 binding site sequence is near the limit of what would be

necessary for most E. coli promoters.

To ensure this success was not specific to Lacl, we also applied chromatography to the
RelBE binding site. RelBE provides an interesting case since the strength of binding
by RelB to DNA is dependent on whether RelE is bound in complex to RelB. There
is at least a 100 fold weaker dissociation constant reported in the absence of RelE
(G.-Y. Li et al., 2008; Overgaard, Borch, Jgrgensen, et al., 2008). As shown in Fig.
3.5(B), we found over 100 fold enrichment of both proteins by mass spectrometry.
As a consequence of performing a second reference purification, we find that fold
enrichment should mostly reflect the difference in binding energy between the DNA
sequences used in the two purifications, and be much less dependent on whether the
protein was in low or high abundance within the cell. This appeared to be the case
when considering other E. coli strains with Lacl copy numbers between about 10
and 1,000 copies per cell (Fig. 3.6 (C)). Further characterization of the measurement
sensitivity and dynamic range of this approach is noted in Supplemental Section
3.12.

Sort-Seq discovers regulatory architectures in unannotated regulatory regions.
Given that more than half of the promoters in E. coli have no annotated transcription
factor binding sites in RegulonDB, we narrowed our focus by using several high
throughput studies to identify candidate genes to apply our approach (Marbach et al.,
2012; Schmidtet al., 2016). The work by Schmidt et al., 2016 in particular measured
the protein copy number of about half the E. coli genes across 22 distinct growth
conditions. Using this data, we identified genes that had substantial differential
gene expression patterns across growth conditions, thus hinting at the presence of
regulation and even how that regulation is elicited by environmental conditions (see
further details in Supplemental Information Section A and Fig. 3.7(A)-(C)). On
the basis of this survey, we chose to investigate the promoters of purT, xylE, and
dgoRKADT. To apply Sort-Seq in a more exploratory manner, we considered three
60 bp mutagenized windows spanning the intergenic region of each gene. While it

is certainly possible that regulatory features will lie outside of this window, a search
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Figure 3.6: Identification of transcription factors using DNA-affinity
chromatography and mass spectrometry. (A) Characterization of stable isotopic
lysine labeling and mass spectrometry measurement sensitivity. Lysates from cell
cultures grown in either heavy (1*C 615N2—L—1ysine) or normal L-lysine were
combined at ratios between 0.1:1 to 1000:1 heavy:light and the measured ratios in
abundance are plotted for each protein. Note that for the 1:1 ratio we found a
median ratio of 0.71. We therefore renormalized the ratio values using this as a
correction factor. Data points represent the average values from n = 3 replicates.
The gray line represents the expected measurement under perfect labeling, while
the red line represents a 99.1% labeling efficiency (assuming that some fraction of
heavy lysate is unlabeled). (B) DNA-affinity purification using the same DNA
oligonucleotide to purify protein for both heavy and light cell lysates (n = 3). The
scatter plot shows the average enrichment values for each protein detected.
Proteins with DNA binding motifs (Keseler et al., 2013) are shown in red (n = 41),
while other detected proteins are in blue (n = 581). Error bars represent the
standard deviation, calculated from log protein enrichment values. The histogram
shows the distribution of the measured ratios for all detected proteins, with 95% of
the measurements contained between a log enrichment of -1.5 and 1.2, as indicated
by the shaded region. (C) DNA-affinity purification of Lacl using three different E.
coli strains. Operator strength was varied by purifying Lacl with either the weak
O3 or strong Oid operators. Lacl was detected as the most significantly enriched
protein among all proteins detected. (D) States and weights are shown for an
oligonucleotide in which a target transcription factor and other cellular proteins
compete for a DNA binding site.
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of known regulatory binding sites suggest that this should be sufficient to capture
just over 70% of regulatory features in E. coli and provide a useful starting point
(Fig. 3.7(D)).

The purT promoter contains a simple repression architecture and is repressed
by PurR.

The first of our candidate promoters is associated with expression of purT, one of
two genes found in E. coli that catalyze the third step in de novo purine biosynthesis
(Rolfes, 2006; Cho et al., 2011). Due to a relatively short intergenic region, about
120 bp in length that is shared with a neighboring gene yebG, we also performed
Sort-Seq on the yebG promoter (oriented in the opposite direction (Lomba et al.,
1997); see schematic in Fig. 3.8(A)). To begin our exploration of the purT and
yebG promoters, we performed Sort-Seq with cells grown in M9 minimal media
with 0.5% glucose. The associated expression shift plots are shown in Fig. 3.8(A).
While we performed Sort-Seq on a larger region than shown for each promoter, we

only plot the regions where regulation was apparent.

For the yebG promoter, the features were largely consistent with prior work, contain-
ing a binding sites for LexA and RNAP. However, we found that the RNAP binding
site is shifted 9 bp downstream from what was identified previously through a com-
putational search (Lomba et al., 1997), demonstrating the ability of our approach to
identify and correct errors in the published record. We were also able to confirm that
the yebG promoter was induced in response to DNA damage by repeating Sort-Seq
in the presence of mitomycin C (a potent DNA cross-linker known to elicit the SOS
response and proteolysis of LexA (Wade, 2005); see Fig. 3.10(A), (B), and (D)).

Given the role of purT in the synthesis of purines, and the tight control over purine
concentrations within the cell (Rolfes, 2006), we performed Sort-Seq of the purT
promoter in the presence or absence of the purine or adenine, in the growth media. In
growth without adenine (Fig. 3.8(A), right plot), we observed two negative regions
in the information footprint and expression shift plots. We infer and energy matrix
and examine the sequence preference of the site, these two features were identified
as the -10 and -35 regions of an RNAP binding site. While these two features were
still present upon addition of adenine, as shown in Fig. 3.8(B), this growth condition
also revealed a putative repressor site between the -35 and -10 RNAP binding sites,

indicated by a positive shift in expression (green annotation).

Following our strategy to find not only the regulatory sequences, but also their
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Figure 3.7: Identification of unannotated genes with potential regulation and
distribution of known transcription factor binding sites in E. coli. (A) Here we
show the protein copy numbers per cell for GalE across several carbon sources.
Expression was sensitive to the presence of galactose which is consistent with its
known regulation (with about 5000 copies per cell, versus about 500 for most other
growth conditions). (B) DgoD was also found to be sensitive to the presence of
galactose as the carbon source. The copy number was measured to be 675 copies
per cell when cells were grown in galactose, and 15 copies per cell or less in all
other conditions considered. For both (A) and (B), values are shown for growth in
M9 minimal media, with glucose, xylose, acetate, galactose, and glycerol as carbon
sources and obtained from (Schmidt et al., 2016). (C) Coeflicient of variation
(standard deviation divided by mean copy number) across the 22 growth conditions
for each protein measured in (Schmidt et al., 2016). Proteins are identified as either
having regulatory annotation (blue) or not (red) using the annotations in
RegulonDB (Gama-Castro et al., 2016). GalE is noted among the annotated genes
and provides a reference as a gene that is known to be regulated and be perturbed
in this study, as shown in (A). (D) The histogram shows the genome-wide
distribution of transcription factor binding sites relative to their respective
transcription start sites. Binding sites were compiled from RegulonDB and used to
calculate the number of overlapping binding sites at each position using the length
and position of each binding site sequence. The location of the 150 bp mutation
window used in this study is shown in blue, expected to capture upwards of 70% of
known transcription factor binding site position.
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Figure 3.8: Sort-Seq distinguishes directional regulatory features and uncovers the
regulatory architecture of the purT promoter. (A) A schematic is shown for the
approximately 120 bp region between the yebG and purT genes, which code in
opposite directions. Information footprints and expression shifts are shown for 60
bp regions where regulation was observed for each promoter, with positions noted
relative to the start codon of each native coding gene. The -10 and -35 RNAP
binding sites are identified in blue. (B) Expression shifts for the purT promoter, but
in M9 minimal media with 0.5% glucose supplemented with adenine (100 ug/ml).
A putative repressor site is annotated in green. (C) DNA affinity chromatography
was performed using the identified repressor site and protein enrichment values for
transcription factors are plotted. Cell lysate was produced from cells grown in M9
minimal media with 0.5% glucose. Binding was performed in the presence of
hypoxanthine (10 pg/ml). Error bars represent the standard error of the mean,
calculated using log protein enrichment values from three replicates, and the gray
shaded region represents 95% probability density region of all protein detected.
(D) Identical to (B) but performed with cells containing a A purR genetic
background. (E) Summary of regulatory binding sites and transcription factors that
bind within the intergenic region between the genes of yebG and purT.
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associated transcription factors, we next applied DNA affinity chromatography using
this putative binding site sequence. In our initial attempt however, we were unable
to identify any substantially enriched transcription factor (Fig. 3.10(C)). With
repression observed only when cells were grown in the presence of adenine, we
reasoned that the transcription factor may require a related ligand in order to bind
the DNA, possibly through an allosteric mechanism. Importantly, we were able
to infer an energy matrix to the putative repressor site whose sequence-specificity
matched that of the well-characterized repressor, PurR (r = 0.82; see Fig. 3.4). We
also noted ChIP-chip data of PurR that suggests it might bind within this intergenic
region (Cho et al., 2011). We therefore repeated the purification in the presence of
hypoxanthine, which is a purine derivative that also binds PurR (Choi and Zalkin,
1992). As shown in Fig. 3.8(C), we now observed a substantial enrichment of
PurR with this putative binding site sequence. As further validation, we performed
Sort-Seq once more in the adenine-rich growth condition, but in a A pur R strain. In
the absence of PurR, the putative repressor binding site disappeared (Fig. 3.8(D)),
which is consistent with PurR binding at this location.

In Fig. 3.8(E) we use a "regulatory cartoon" to summarize the regulatory features
between the coding genes of purT and yebG, including the new features identified by
Sort-Seq. With the appearance of a simple repression architecture (Bintu et al., 2005)
for the purT promoter, we extended our analysis by developing a thermodynamic
model to describe repression by PurR. This enabled us to infer the binding energies
of RNAP and PurR in absolute k;,T energies as was done in section 2.2, and we

show the resulting model in Fig. 3.8(E).

The xylE operon is induced in the presence of xylose, mediated through binding
of XylR and CRP.

The next unannotated promoter we considered was associated with expression of
xylE, a xylose/proton symporter involved in uptake of xylose. From our analysis
of the Schmidt ef al. (Schmidt et al., 2016) data, we found that xylE was sensitive
to xylose and proceeded by performing Sort-Seq in cells grown in this carbon
source. Interestingly, the promoter exhibited essentially no expression in other
media (Fig. 3.10(E)). We were able to locate the RNAP binding site between -80
bp and -40 bp relative to the xy/E gene (Fig. 3.9(A), annotated in blue). In addition,
the entire region upstream of the RNAP appeared to be involved in activating
gene expression (annotated in orange in Fig. 3.9(A)), suggesting the possibility of

multiple transcription factor binding sites.
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M9 minimal media with 0.5% xylose and binding was performed in the presence
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values from three replicates. The gray shaded region represents 95% probability
density region of all proteins detected. (C) An energy matrix was inferred for the
region upstream of the RNAP binding site. The associated sequence logo is shown
above the matrix. Two binding sites for XylR were identified (see also Fig. 3.4)
along with a CRP binding site. (D) Summary of regulatory features identified at
xylE promoter, with the identification of an RNAP binding site and tandem binding
sites for XyIR and CRP.
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We applied DNA affinity chromatography using a DNA target containing this entire
upstream region. Due to the stringent requirement for xylose to be present for any
measurable expression, xylose was supplemented in the lysate during binding with
the target DNA. In Fig. 3.9(B) we plot the enrichment ratios from this purification
and find XyIR to be most significantly enriched. From an energy matrix inferred for
the entire region upstream of the RNAP site, we were able to identify two correlated
15 bp regions (dark yellow shaded regions in Fig. 3.9(C)). Mutations of the XylR
protein have been found to diminish transport of xylose (Song and Park, 1997),
which in light of our result, may be due in part to a loss of activation and expression
of this xylose/proton symporter. These binding sites were also similar to those found
on two other promoters known to be regulated by XyIR (xy/A and xy/F promoters),
whose whose promoters also exhibit tandem XyIR binding sites and strong binding

energy predictions with our energy matrix (Fig. 3.10(F)).

Within the upstream activator region in Fig. 3.9(A) there still appeared to be a bind-
ing site unaccounted for with these tandem XylR binding sites. From the energy
matrix, we were further able to identify a binding site for CRP, which is noted up-
stream of the XyIR binding sites in Fig.3.9(C). While we did not observe a significant
enrichment of CRP in our protein purification, the most energetically favorable se-
quence predicted by our model, TGCGACCNAGATCACA, closely matches the CRP
consensus sequence of TGTGANNNNNNTCACA. In contrast to the lac promoter,
binding by CRP here appears to depend more on the right half of the binding site
sequence. CRP is known to activate promoters by multiple mechanisms (Browning
and Busby, 2016), and CRP binding sites have been found adjacent to the activators
XyIR and AraC (Song and Park, 1997; Laikova, Mironov, and Gelfand, 2001), in
line with our result. While further work will be needed to characterize the specific
regulatory mechanism here, it appears that activation of RNAP is mediated by both
CRP and XyIR and we summarize this result in Fig. 3.9(D). The topic is considered
further in Appendix A).

The dgoRKADT promoter is auto-repressed by DgoR, with transcription medi-
ated by class II activation by CRP.

As a final illustration of the approach developed here, we considered the unanno-
tated promoter of dgoRKADT. The operon codes for D-galactonate-catabolizing
enzymes; D-galactonate is a sugar acid that has been found as a product of
galactose metabolism (Cooper, 1978). We began by measuring expression from

a non-mutagenized dgoRKADT promoter reporter to glucose, galactose, and D-



70

10%
(A) pe 10 (B) s ©
M9 glucose L Lexa JebG, MitoC o 1%
-+ autofluorescence ﬁ
s GETGATTTCTCAACCGAAAAGAAATATACTG R —————— c 10! , GIpR
5 z g 100 i
TACTGTATAAAATCACAGTT § S o0 ]
A ©
- c un g ] = ¢
-0.4 0 0.4 G = 0 __} S
energy (a.u.) T | | 10° 10" 102 10° 10* 10° 102
Fluorescence (a.u.)
(E) (F) o
( ) Sort-Seq, yebG promoter scan energy matrix = gene
; ;
library 3 library 1 7
=5 -10 [LexA |
_5 library 2 e fy—
© =
= . . .
E J | (T e xylFG integenic region
EQ M., ol ..l-llnl-..nlu..,
£

Z60 40 20 WMWWMNWW
-
u

xylAB integenic region

Ll

xylE integenic region

predicted

— library 1, glucose

g _.III ..|||||III|| b, library 2, glucose
” | —-= library 3, glucose
—— library 1, xylose

. library 2, xylose

—-= library 3, xylose
—-= autofluorescence

+
(N
wh—o—

expression
shift

-60 -40 -20
position (relative to yebG gene )
c

predicted
energy (a.u.) energy (a.u.) energy (a.u.)
W —o—

-9 f
3= +mitoC ER.
S © > g ol
SE < 2 1
Es i b g8 32
w f R ] [T g ~, s 3 —
c £ -60 -40 -20 o 400  -300  -200  -100 0
S 9]
= P eyl L s == osition from start codon (bp)
e + g T et P! P,
0= " |||I'|'| ! ot 102 108 104 10° energy
o )
sV - fluorescence (a_u_) promoter  XylIR binding sites (a.u.)
x xyIFG AMATAMCCAAAAATCGTAATCGAAAGATAAAATCTGTAA  -3.0
-60 -40 -20 xylIAB ACACTTGTGAATTATCTCAATAGCAGTGTGAAATAACATAA  -3.0
position (relative to yebG gene) xylE ACAGAAAAGACATTACGTAMCGCATTGTAAMMAATGATAA ~ -3.4

Figure 3.10: /exA and yebG regulation. (A) Energy matrices were inferred for the
binding sites of LexA and RNAP. Data are from cells grown in M9 minimal media
with 0.5% glucose.

(B) Fluorescence histograms for a wild-type yebG promoter plasmid are shown for
cells grown in M9 minimal media with 0.5% glucose, and with or without mitomycin
C (1 pg/ml). Mitomycin C induces the SOS response (M. R. Lomba et al., 2006)
and dramatically increases expression from the yebG promoter. Autofluorescence
histograms refer to cells that did not contain the GFP promoter plasmid. (C) DNA
affinity chromatography performed using the identified repressor site on the purT
promoter. Cell lysate was produced from cells grown in M9 minimal media with
0.5% glucose and binding was performed in the presence of adenine (100 pg/ml)
to match the growth conditions where repression was observed. (D) Information
footprints and expression shift plots are shown for the yebG promoter in the presence
or absence of mitomycin C (1 ug/ml). Cells were grown in M9 minimal media 0.5%
glucose. (E) Fluorescence histograms are shown for the three xylE libraries (different
mutated regions), with cells grown in M9 minimal media with either 0.5% glucose
or 0.5% xylose. While xylose led to differential expression for the different libraries,
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galactonate. Cells grown in galactose exhibited higher expression than in glucose,
as found by Schmidt et al. (Schmidt et al., 2016) and even higher expression when
cells were grown in D-galactonate (Fig. 3.10(A)). This likely reflects the physi-
ological role provided by the genes of this promoter, which appear necessary for
metabolism of D-galactonate. We therefore proceeded by performing Sort-Seq with
cells grown in either glucose or D-galactonate, since these appeared to represent
distinct regulatory states, with expression low in glucose and high in D-galactonate.
Information footprints and expression shift plots from each growth conditions are
shown in Fig. 3.11 (A). We begin by considering the results from growth in glucose
(Fig. 3.11(A), top plot). Here we identified an RNAP binding site between -30
bp and -70 bp, relative to the native start codon for dgoR (Fig. 3.10(B). Another
distinct feature was a positive expression shift in the region between -140 bp and
-110 bp, suggesting the presence of a repressor binding site. Applying DNA affinity
chromatography using this target not apparent due to binding by DgoR. While only
one RNAP -10 motif is clearly visible in the sequence logo shown Fig. 3.11 (C) (top
sequence logo; TATAAT consensus sequence), we used simulations to demonstrate
that the entire sequence logo shown can be explained by the convolution of three
overlapping RNAP binding sites (See Fig. 3.10(F)).

Next we consider the D-galactonate growth condition (Fig. 3.11(A), bottom plot).
Like in the expression shift plot for the A dgoR strain grown in glucose, we no longer
observe the positive expression shift between -140 bp and -110 bp. This suggests
that DgoR may be induced by D-galactonate or a related metabolite. However, in
comparison with the expression shifts in the A dgoR strain grown in glucose, there
were some notable differences in the region between -160 bp and -140 bp. Here
we find evidence for another CRP binding site. The sequence logo identifies the
sequence TGTGA (Fig. 3.11(D), bottom logo), which matches the left side of the
CRP consensus sequence. In contrast to the lac and xylE promoters however, the
right half of the binding site directly overlaps with where we would expect to find
a -35 RNAP binding site. This type of interaction by CRP has been previously
observed and is defined as class Il CRP dependent activation (Browning and Busby,

2016), though this sequence-specificity has not been previously described.

In order to isolate and better identify this putative CRP binding site we repeated
Sort-Seq in E. coli strain JK10, grown in 500 uM cAMP. Strain JK10 lacks adenlyate
cyclase (cyaA) and phosphodiesterase (cpdA), which are needed for cAMP synthesis

and degradation, respectively, and is thus unable to control intracellular cAMP levels
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Figure 3.11: The dgoRKADT promoter is induced in the presence of D-galactonate
due to loss of repression by DgoR and activation by CRP. (A) Expression shifts
due to mutating the dgoRKADT promoter are shown for cells grown in M9
minimal media with either 0.5% glucose (top) or 0.23% D-galactonate (bottom).
Regions identified as RNAP binding sites (-10 and -35) are shown in blue and
putative activator and repressor binding sites are shown in yellow and purple,
respectively. (B) DNA affinity purification was performed targeting the region
between -145 to -110 of the dgoRKADT promoter. The transcription factor DgoR
was found most enriched among the transcription factors plotted. Error bars
represent the standard error of the mean, calculated using log protein enrichment
values from three replicates, and the gray shaded region represents 95%
probability density region of all proteins detected. (C) Sequence logos were
inferred for the most upstream 60 bp region associated with the upstream RNAP
binding site annotated in (A). Multiple RNAP binding sites were identified using
Sort-Seq data performed in a A dgoR strain, grown in M9 minimal media with
0.5% glucose. Below this, a sequence logo was also inferred using data from
Sort-Seq performed on wild-type cells, grown in D-galactonate, identifying a CRP
binding site (class II activation; Browning and Busby, 2004). (D) Summary of
regulatory features, with sequence logos, for features identified at dgoRKADT
promoter, with the identification of multiple RNAP binding sites, and binding sites
for DgoR and CRP. An initial estimate of -7.3 k;,T was determined for the
interaction energy between CRP and RNAP, ¢;.
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necessary for activation by CRP (derivative of TK310 (Kuhlman, Z. Zhang, et al.,
2007)). Growth in the presence of 500 uM cAMP provided strong induction from
the dgoRKADT promoter and resulted in a sequence logo at the putative CRP binding
site that even more clearly resembled binding by CRP (Fig. 3.10(E)). This is likely
because expression is now dominated by the CRP activated RNAP binding site.
Importantly, this data allowed us to further infer the interaction energy between
CRP and RNAP, which we estimate to be -7.3 k;,T (further detailed Appendix A).

We summarize the identified regulatory features in Fig. 3.11(D).

3.3 Discussion

We have established a systematic and scalable procedure for dissecting the functional
mechanisms of previously uncharacterized regulatory sequences in bacteria. A
massively parallel reporter assay, Sort-Seq (Kinney and Callan, 2010), is used to
first elucidate the locations of functional transcription factor binding sites. DNA
oligonucleotides containing these binding sites are then used to enrich the cognate
transcription factors and identify them by mass spectrometry analysis. Information-
based modeling and inference of energy matrices that describe the DNA binding
specificity of regulatory factors provide additional insight into transcription factor

identity and the growth condition dependent regulatory architectures.

To validate this approach we examined four previously annotated promoters. Our
Sort-Seq results were in good agreement with established knowledge for lacZYA,
relBE, marRAB (Oehler et al., 1990; Kinney and Callan, 2010; Garcia and Phillips,
2011; Bechetal., 1985; Gotfredsen and Gerdes, 1998; Overgaard, Borch, Jgrgensen,
et al., 2008; Seoane and Levy, 1995; Alekshun and Levy, 1997). For the yebG
promoter, our approach corrected an error in a previous annotation. DNA affinity
chromatography experiments on these promoters were found to be highly sensitive.
In particular, Lacl was unambiguously identified with the weak O3 binding site,
even though Lacl is present in only about 10 copies per cell (Garcia and Phillips,
2011).

Emboldened by this success, we then studied promoters having little or no prior
regulatory annotation: purT, xylE, dgoR. Through extensive modeling of the Sort-
Seq data and DNA affinity chromatography of many identified binding sites, our
analysis led to a collection of new regulatory hypotheses. For the purT promoter,
we identified a simple repression architecture (Bintu et al., 2005), with repression

by PurR. The xy/E promoter was found to undergo activation only when cells are
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grown in xylose, likely due to allosteric interaction between the activator XylR
and xylose, and activation by CRP (Song and Park, 1997; Laikova, Mironov, and
Gelfand, 2001). Finally, in the case of dgoR, the base pair resolution allowed us
to tease apart multiple overlapping binding sites. In particular, we were able to
identify multiple RNAP binding sites along the length of the promoter. Of these,
one set of RNAP binding sites were repressed by DgoR when cells were grown
in glucose, but activated through class II activation by CRP when D-galactonate
was used as the sole carbon source. We view these results as a critical first step
in the quantitative dissection of transcriptional regulation, which will ultimately be
needed for a predictive understanding of how such regulation works. The regulatory
cartoons shown in Fig. 3.8(D) and Fig. 3.9(D) will serve as a starting point for
further mathematical dissection of these promoters and will lead to a series of

quantitative predictions for how the different promoters work.

There are a number of ways to further increase the resolution and throughput of
the methods we have described. Microarray-synthesized promoter libraries allow
multiple loci to be studied simultaneously as we prove in Chapter 4. Landing pad
technologies for chromosomal integration (Kuhlman and E. C. Cox, 2010; H. Zhang
et al., 2016), should enable massively parallel reporter assays to be performed in
chromosomes ins