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ABSTRACT

Experimental and numerical studies of a dense magnetically-twisted plasma and
their applications to solar plasmas are the subject of this dissertation. In the
corona, plasma lies in a low-beta, high Lundquist number regime, meaning that
it is magnetically dominated and the magnetic fields are well frozen into the plasma.
Understanding the dynamics of these plasmas help us predict and prevent damage
from future catastrophic solar eruption events. In situ measurements from satellite
and ground-based observation provide limited information that is not controllable
nor reproducible. The research objective in this thesis is to produce a miniature-
scaled plasma with the same dimensionless parameters as the space plasmas. Along
with numerical simulation, theoretical study, and observational data, the laboratory
plasma can give novel insights into the physics of solar plasma.

First, an experimental dip on a flux rope, previously thought to be caused by a
kink instability, is discussed and explained. We find that the apex cusp is in fact
caused by the differential acceleration due to a non-uniform density. The pileup
density results from a nonlinear interaction of the neutral gas. This result introduces
a new method to impose effective gravity on the arched plasma and explains the
suppression of kink instability. Second, a model for a morphology of CME and its
shock driving mechanism is investigated. In the experiment, the chamber is prefilled
with neutral gas, leading to an observation of a density cavity. Because the plasma
is flux conserving, injecting a current into the plasma induces an opposite eddy
current in front of the flux rope. The two opposing currents repel and leave a low
density region in between. This feature is often observed in CMEs. We propose this
mechanism to be the model of the CME 3-part structure formation. The opposite
eddy current acts as a current piston driving an MHD perturbation/shock, which is
often observed on the sun as an EUV wave.

AMagnetic Rayleigh-Taylor instability has been observed in the arched plasma loop.
For the first time, the magnetic effect of the MRT instability is shown when the
wavelength observed depends on the initial magnetic field initially injected into the
system. In several years of working with the experiment in the Bellan plasma group,
I designed and constructed several diagnostics, such as Langmuir probes, magnetic
probes, and a coded aperture camera. Together with fast multi-images camera and
spectroscopy techniques, plasma parameters are measured and compared to verify
the models.
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The 3D MHD numerical simulation was performed using the supercomputer from
the Los Alamos National Laboratory. The initial condition and injection routines
were modified to appropriately replicate the experiment. The code has been signifi-
cant in improving our understanding of the physical phenomena we observed in the
experiment. We attain a proper initial distribution of the mass density and the initial
and injected current density. In addition to simulating an arched flux rope experi-
ment, we use this tool to replicate MHD instabilities detected in the astrophysical
jet experiment. Specifically, both a sausage-to-kink and kink-to-Rayleigh-Taylor in-
stability have been reproduced using the numerical simulation. Each process thins
the plasma current channel to be below the ion skin depth. The kinetic effect then
gives rise to magnetic reconnection. An anomalous resistivity is added to simulate
this process.

In conclusion, an interdisciplinary approach, through experimental, numerical, ob-
servational, and theoretical studies, is presented. It improves our understanding
of the underlying mechanism for solar eruptions. A magnetically-twisted current-
carrying flux rope, once formed, could exhibit dips and cavity. Its evolution could
a drive shock and instabilities, which ultimately cause particle acceleration.
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C h a p t e r 1

INTRODUCTION

One of the most significant problems in solar physics is how stationary prominences
erupt into Coronal Mass Ejections (CMEs) and accelerate high energy particles.
Generally, the solar prominence — a large arched structure on the surface of the
sun — stays on the surface for a long time (weeks to months). A CME is a
large release of plasma (∼ 1012 kg) and associated magnetic field. It happens
quite often, i.e., of the order of 0.2-3 CMEs per day. CMEs are thought to be
associated with Solar Energetic Particles (SEPs), which pose a danger to spacecraft,
aircraft communications, and the electrical grid. The mechanism that describes
the whole process is still debated. Traditionally, theories have been developed
from observations and verified via numerical simulation. In the Caltech plasma
laboratory, we use a pulsed-power plasma experiment to simulate the plasmas that are
observed in space. The comparison is made possible by the equations governing the
dynamics of the plasma, i.e., the magnetohydrodynamics (MHD) description. The
system of MHD equations has no intrinsic scale and so can be used to explain events
in plasma systems having vastly different scales. The control and reproducibility of
the plasma shot and possibility of in situ diagnostics makes the laboratory plasma
experiment an appealing instrument to research plasma phenomena.

This dissertation includes the work that I have done in the Bellan plasma group
at Caltech in my graduate school years. The works, reported in Chapters 4 – 9,
were done in collaboration with multiple authors. My contributions are specified
at the beginning of each chapter. In Chapter 1, I will briefly go over the basic
concepts in plasma physics that will be relevant to understanding this thesis, i.e.,
Debye shielding, magnetohydrodynamics, frozen-in flux, dimensionless equations,
plasma instabilities, and magnetic reconnection. Then, I will provide examples of
phenomena observed on the sun that could be described by our understanding of
plasma physics. The tools to merge these basic ideas into the actual observable
phenomena are presented in Chapters 2 and 3. The dimensionless nature of the
MHD description, covered in Chapter 1, allows us to study the physics of the plasma
over vastly different scales. This concept permits one to simulate events on the sun
in the laboratory experiments at Caltech (Ch. 2) and using 3-dimensional numerical
simulation (Ch. 3).
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Solar prominences are commonly believed to have inhomogeneous density along
the axis and that the highest density is localized near the apex. We explore this
feature experimentally in Chapter 4 using the Caltech single loop experiment. The
density inhomogeneity plays an important role in the dynamics of the arched flux
rope and greatly affects the condition that causes eruption. Once erupted, the plasma
is ejected from the sun’s surface. A coronal mass ejection has a three-part structure
and produces a preceding shock wave. By adding plasma density in the background
in the Caltech single-loop experiment, Chapter 5 shows the evidence for a plasma
density cavity from current injection. Two possible causes for SEPs are shocks
and plasma instabilities; the two phenomena will be discussed in the following
chapters. Chapter 6 looks into the formation mechanism of the shock driven by
the expanding flux rope. When the plasma leaves the sun’s surface, the line-
tied magnetic field lines at the footpoint go through magnetic reconnection before
the detachment occurs and the plasma launches into space. During this process,
when the magnetic field changes topology, charged particles are accelerated to high
energy. The magnetic reconnection happens at the micro scale of ion-skin depth;
however, at the macro scale, the plasma is governed by MHD equations. There is
a path that connects the two phenomena. The following chapters present possible
mechanisms observed in both the experiment and simulation of the MHD process
that could lead to magnetic reconnection. Chapter 7 documents the first observation
of magnetic Rayleigh-Taylor instability on single loop experiment due to the hoop
force. Chapter 8 presents a numerical simulation for sausage-like pinching to kink
instability progression. Chapter 9 describes the numerical simulation for the kink-
driven Rayleigh-Taylor instability occuring when the Caltech plasma jet disrupts
from the electrode. Chapter 10 provides the summary of the thesis and the direction
for future research.

1.1 Plasma Physics
Plasma is an ionized gas that exhibits collective behavior. The ionized gas is
composed of electrons, ions, and neutrals, and responds to electromagnetic fields.
Researchers started investigation of this substance in the 1920s in the context of
ionospheric plasma for sending short-wave radio and gaseous electron tubes for
constructing electronic switches. Since then, plasma physics has been researched
in various contexts both terrestrial (e.g., thermonuclear fusion and plasma process-
ing) and in space (e.g., solar corona and astrophysical plasma). A comprehensive
discussion of plasma physics can be found in Ref. [12]. Here we briefly cover some
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topics that will be useful to follow the thesis work.

Debye Shielding
Many of the plasmas we studied are considered quasi-neutral, meaning that the total
number of electrons and ions are approximately equal. If a finite electric field was
to be imposed to the plasma, the electrons and ions, which are free to move around,
redistribute themselves to cancel out the external electric field. The scale length
associated with this shielding is called the Debye length λD.

Suppose that the quasi-neutral plasma is in thermal equilibrium and the two plasma
species are distributed according to the Maxwell-Boltzmann law,

nσ = n0 exp
(
−qσφ
κT

)
, (1.1)

where φ is the electrostatic potential, kB is the Boltzmann’s constant, qσ is the
charge of the species σ, and T is the plasma temperature. A positively charged test
ion of charge qT is placed inside the plasma. The plasma potential obeys Poisson’s
equation:

∇2φ = − 1
ε0

[
qTδ(r) +

∑
σ

nσ(r)qσ

]
, (1.2)

where δ is the Dirac delta function. Solving the Equation 1.2, one arrives at

φ(r) = qT

4πε0r
e−r/λD, (1.3)

where the Debye length is defined by 1
λ2
D

=
∑
σ

1
λ2
σ
and λ2

σ =
ε0κT

nσ0q2
σ
. The plasma

potential goes to zero exponentially and λD regulates the decay profile.

Models of Plasma Dynamics
The most elementary way to model the plasma is to simulate each particle’s motion
individually. As the particles move, the electromagnetic fields are updated using
Maxwell’s equations. The new fields then cause the particles to move via the
Lorentz equation. The interrelation between the two calculations can describe all
the dynamics of plasma. However, the number of particles involved is generally too
large for a current computer to keep track of every individual particle. We often opt
to use a simpler model for plasma dynamics. In this section, we will go over three
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descriptions of plasma dynamics, from the most complex to the simplest, namely
kinetic, two-fluids, and magnetohydrodynamics (MHD).

Kinetic

Astatistical approach that focuses on the distribution function of the plasma is instead
employed. At a given moment t, one could consider grouping all the particles with
the position between x amd x + dx and velocity between v and v + dv together. The
total number of that group is denoted as f (x, v, t)dxdv, where f is the distribution
function. Given the acceleration of the particles a, we can describe the evolution of
f using the Vlasov equation,

∂ f
∂t
+ v · ∂ f

∂x + a · ∂ f
∂v = 0. (1.4)

The left-hand-side of the Vlasov eqaution can be expressed as d
dt f (x(t), v(t), t) for a

given particle orbit. As a result, f is constant along the particle trajectory, so we can
choose f to depend on any quantities that are constant along the particle trajectory.
This is a useful technique for finding the solution to the Vlasov equation.

Two-Fluids

We can define a collision operator Cσα( fσ) as a rate of change of fσ due to colli-
sions of species σ with species α. Then by taking moments (

∫
dv,

∫
vdv) of the

distribution function f , we can derive the fluid equation for species σ,

nσmσ
duσ
dt
= nσqσ(E + uσ × B − ∇Pσ − Rσα), (1.5)

where nσ =
∫

fσdv, mσ, qσ is themass and charge of speciesσ, d/dt = ∂/∂t+uσ ·∇
is the convective derivative, uσ =

∫
v fσdv/nσ, E and B are the electromagnetic

fields, Pσ =
mσ

3

∫
v′ · v′ fσdv′, v′ is the random velocity, and Rσα = νσαmσnσ(uσ −

uα) is the drag force due to collision between species σ and species α. Traditionally,
σ represents electrons and ions; hence, the model is called two-fluids. Occasionally,
a third species is included.

Magnetohydrodynamics

One could further combine the two species as a single conducting fluid. By taking
moments from the Vlasov equation, multiplying it by mσ, and summing over the
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species, we could derive the continuity equation (Eq. 1.6) and equation of motion
(Eq. 1.7) for MHD. The list of MHD equations is

∂ρ

∂t
+ ∇ · (ρU) = 0, (1.6)

ρ

(
∂

∂t
+ U · ∇

)
U = J × B − ∇P, (1.7)

Pρ−5/3 = constant, (1.8)

∇ × E = −∂B
∂t
, (1.9)

∇ × B = µ0J, (1.10)

E + U × B = ηJ, (1.11)

where ρ =
∑
σ mσnσ,U =

∑
σ mσnσuσ/ρ, J =

∑
σ nσqσuσ. Equation 1.8 is the

equation of state of the fluid in the single adiabatic regime. Faraday’s (Eq. 1.9) and
Ampere’s (Eq. 1.10) law are taken from Maxwell’s equations. Ultimately, Ohm’s
law (Eq. 1.11) can be derived from the two-fluid electron equation of motion.
The MHD equations, roughly speaking, are valid when (i) the plasma is quasi-
neutral within a sphere of radius Debye length, (ii) the plasma is collisional, (iii) the
characteristic velocity is much slower than the speed of light, (iv) the characteristic
time is long comparing to the ion cyclotron period, and (vi) and the scale length is
large comparing to the ion skin depth. Although a number of approximations have
to be made to arrive at this most simplified description of the plasma, it is powerful
enough to explain numerous natural occurrences. Most of the analysis in this thesis
will be in the MHD regime.

Frozen-in Flux
For ideal MHD, the plasma is treated as a perfect conductor, i.e. η = 0. We can
combine Eq. 1.9-1.11 to get an induction equation,

∂B
∂t
= ∇ × (U × B). (1.12)

Consider the rate of change of magnetic flux Φ =
∫

S(t) B(x, t) · ds through a surface
S(t), bounded by a contour C(t). Then,
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DΦ
Dt
= lim

dt→0

∫
S(t+dt)

(
B + δt ∂B

∂t · ds
)
−

∫
S(t) B · ds

δt
(1.13)

= lim
dt→0

∫
S(t)

(
B + δt ∂B

∂t · ds
)
+

∮
C B · Uδt × dl −

∫
S(t) B · ds

δt
(1.14)

=

∫
S(t)

∂B
∂t
· ds +

∮
C

B · U × dl (1.15)

=

∫
S(t)

[
∂B
∂t
+ ∇ × (B × U)

]
(1.16)

= 0. (1.17)

This is called the magnetic flux frozen-in condition and is the essential property for
an ideal MHD plasma. Magnetic field lines move together with the plasma without
diffusion. A motion of plasma can then be visualized by a moving tube-like region
containing magnetic field. Magnetic flux is conserved in a cross section of this
region, so-called flux tube. A twisted magnetic flux tube is referred to as a flux rope.

Dimensionless MHD
Suppose we make the substitution x = Lx̄,U = vAŪ, t = (L/vA)t̄, ρ = ρ0 ρ̄,B =
B0B̄, J = (B0/µ0L)J̄, P = P0P̄, and vA = B0/

√
µ0ρ0 to theMHD system of equations

(Eq. 1.6-1.11). The normalized MHD equations are

∂ρ̄

∂ t̄
+ ∇̄ · (ρ̄Ū) = 0, (1.18)

ρ̄

(
∂

∂ t̄
+ Ū · ∇̄

)
Ū = J̄ × B̄ − β∇̄P̄, (1.19)

−∂B̄
∂ t̄
+ ∇̄ × (Ū × B̄) = 1

S
∇̄2B, (1.20)

where β ≡ 2µ0P0/B2
0 represents the ratio of thermal to magnetic pressure and

S ≡ µ0LvA/η, also known as Lundquist number, represents the relative timescale
of magnetic convection to diffusion. Table 1.1 shows the values of the two dimen-
sionless parameters in both solar and Caltech environments. The plasmas in both
systems have β � 1 and S � 1 and hence can be approximately modelled using the
same normalized MHD equations.
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Parameter Corona Laboratory

Density (m−3) 1015 1020−21

Temperature (K) 106 3 × 104

Magnetic Field (T) 10−3 3 × 10−2

Resistivity (Ω-m) 8 × 10−7 3 × 10−3

Characteristic Length (m) 106−8 5 × 10−2

Characteristic Time (s) 102−3 10−6

β � 1 10−3 − 10−2 10−2 − 10−1

S � 1 108 − 1012 102 − 103

Table 1.1: Lists of parameters in laboratory and corona

MHD Instabilities
The solutions to the MHD equations when ∂/∂t = 0 correspond to MHD equilib-
rium. There are two types of the equilibrium: stable and unstable. The difference
lies in the response to a small perturbation. An example of a stable equilibrium is
a ball sitting at the bottom of a valley. The perturbed ball experiences a restoring
force that pushes it back to equilibrium. On the contrary, a ball on top of a hill
experiences the force that pushes the ball further away from equilibrium. The lat-
ter case corresponds to instability, where the amplitude grows exponentially from
a certain perturbation. In ideal MHD, the plasma is susceptible to two distinct
types of instabilities based on two types of forces. Current-driven instability cor-
responds to the J × B force and pressure-driven instability corresponds to the ∇P

force. Figure 1.1a shows a common pressure-driven instability, the Rayleigh-Taylor
instability. It refers to an instability that occurs when a heavier fluid sits on top of
a light fluid in a gravitational field. Figure 1.1b displays two simplest modes of the
current-driven instability: sausage and kink. The sausage mode corresponds to a
situation where a cylindrical plasma column with surface current experiences small
changes in its minor radius. The kink mode happens when the axis of a cylindrical
plasma column becomes helical. Studying the condition when the plasma is prone
to these instabilities is a subject of interest for many research fields. Thermonuclear
fusion researchers wish to confine a hot-dense plasma by attempting to suppress any
instability that might occur. Solar physics community researchers examine these
instabilities as a mechanism for driving energetic particles.
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Figure 1.1: Illustration for different type of MHD instability

1.2 Solar Physics
The sun is our closest star and has been studied for thousands of years. It is a sphere
of hot plasma that produces strong magnetic fields on the surface through internal
convective motion. It is composed of mostly hydrogen and gains energy from the
nuclear fusion reaction in its core. It is the main source of energy for all life on
earth. Although the sun is essential to sustain life, its extensive magnetic activities
on the surface could pose dangers to us. We will describe some of these hazardous
events in the following sections.

Coronal Mass Ejections
The sun often ejects a significant mass of plasma (∼ 1012 kg) and associated
magnetic fields into the corona, also known as, coronal mass ejections (CMEs).
Typical CMEs originated from an eruption of large plasma structures, such as
long-standing stationary prominences (∼ weeks). These features stay in a static
equilibrium for many Alfvén crossing times and then abruptly erupt (Figure 1.2).
The event is frequent, occurring 0.2-3.0 times per day, and thus it is likely that one
would directly hit the earth in a reasonable amount of time.

The mechanism for the eruption is still a subject of a debate. Once erupted, the
CMEs show a three-part structure that is associated with (i) the prominence core,
(ii) the density cavity, and (iii) the leading edge. On the CME front, MHD shocks
are often observed. CMEs affect space weather significantly. A direct hit of Earth
by a CME could cause serious damage to spacecraft or electrical grids. We will be
studying several components that might affect this event. Figure 1.3 represents the
related topics that are explored in more detail in each chapter.
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Figure 1.2: Image of a solar prominence and a CME

Figure 1.3: Outline of the topics in the thesis. The associated chapters are labelled
in roman numerals.

Solar Energetic Particles
Solar energetic particles (SEPs) are energetic charged particles which consist of
mostly proton, electron, and sometimes heavier ions. They are often observed in
association with CMEs. The particles are accelerated up to energies between keV
to GeV and are believed to be driven to high energy through CME-driven shock
acceleration or plasma instabilities. Once these energetic particles reach the earth,
the radiation is hazardous to aircraft passengers and spacecraft.
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C h a p t e r 2

LABORATORY PLASMA

As discussed in the previous chapter, the MHD plasma has no intrinsic scale;
therefore, the events caused by plasma dynamics on the sun can be reproduced in
the laboratory. At Caltech, we simulate those phenomena by operating a pulse-
power experiment. The experimental system consists of a vacuum chamber, gas
supply systems, solenoids, and electrodes. Each of these systems replicates a
fundamental property of solar flux ropes: a vacuum chamber and a controlled gas
supply are needed to create plasma of appropriate density, the solenoids recreate the
background magnetic fields, and the electrodes drive current through the flux rope,
adding the appropriate twist to the magnetic field.

2.1 Single Loop Experiment
The primary experiment for the work in this dissertation is the arched plasma-filled
magnetically-twisted flux rope. The experiment is called the Single LoopExperiment
in constrast to other experiments operated by our group, i.e., double-loop [51] and
8-loop (jet; section 2.2) [13] experiments. It has gone through many iterations
in the past [46, 49, 125]. The current version consists of two D-shaped copper
electrodes of radius 10 cm, mounted at the end of a 1.5 m long, 0.92 m diameter
vacuum chamber with 10−7 Torr base pressure. Behind the electrode, two solenoids
generate an arched background magnetic field ∼ 0.1 T. Two fast gas valves inject
cones of neutral particles through the holes in the electrode over 5 ms [165]. A high
voltage of 3-5 kV is applied to the electrodes from a 59 µF capacitor driving 30 kA
current through the arched plasma of density 1021 m−3. A sketch of the experimental
setup is shown in Figure 2.1. This experimental setup is used for Chapters 4-7.

Two main settings are used in this thesis and they differ by the presence of initially
prefilled neutral gas. In the first setting, the chamber is not prefilled with neutral
gas; the only gas supply is from the nozzles on the electrodes. This is a traditional
setup for single loop experiment and it produces an arched flux rope that evolves
into the chamber as shown in Figure 2.2. Chapters 4 and 7 use this first setting.

In the second setting, the chamber is prefilled with a neutral gas of pressure 0.1 Torr.
The prefilled gas and the gas injected from the nozzles could be of different types,
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Figure 2.1: Diagram for Caltech Single Loop Experiment

Figure 2.2: Evolution of single loop N2 plasma without the initially prefilled neutral
(#5594). Times after plasma breakdown are labelled in white.

allowing for spectroscopic techniques to identify each component of the plasma.
Figure 2.3 shows a typical evolution of the flux rope with injected Ar and prefilled
H2.

The experiments in Chapters 5 and 6 were performed using this second setting.

2.2 Astrophysical Jet Experiment
The jet experiment consists of all the same systems as the single loopwith one caveat:
instead of one, eight loops are generated. The electrodes are now coaxial and the
electric fields are now generated in the radial direction. Each electrode contains 8
holes that let in the neutral gas stream from the fast gas valve. Compared to the single
loop experiment, there are minor differences in the experimental parameters. The
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Figure 2.3: Evolution of single loop argon plasma with the initially prefilled hy-
drogen neutral gas. The image series are superimposed from 2 shots with the same
experimental settings: with (#3221; red) and without (#3222; cyan) 656 nm filter
(Hα). Times after breakdown are labelled in white.

electrodes are 0.2 m and 0.5 m in diameter, mounted on one end of a 1.4 m diameter
and 1.6 m long cylindrical vacuum chamber. The mass density and magnetic field
strength is roughly 8 times larger than that of the single loop experiment. The
capacitor bank, charged up to a similar voltage as the single loop experiment, drives
90 kA current through the plasma. This experimental setup simulates not only
astrophysical jets, but also solar prominences. This experimental configuration [59,
98, 120, 161] creates an MHD-driven plasma jet which spontaneously develops as
a result of magnetic helicity, plasma, and magnetic energy being injected by biased
electrodes intercepting poloidal magnetic flux.

The magnetic fields of the axisymmetric jet are topologically similar to that of a
footpoint of an arched plasma loop.

Chapters 8 and 9 describe simulations of this experiment.

2.3 Diagnostics
The main advantage of laboratory study is the reproducibility and the ability to
perform in situ measurement. The following sections display several devices for
inferring plasma parameters.

Fast Camera Imaging
The visible light emission of the plasma is captured via a DRS Hadland Imacon
200 high speed camera. The camera consists of seven intensified charge-coupled
(ICCD) cameras that each take two frames from each shot. A beam splitter is used
to direct the incoming light into one of the seven ICCD’s. In the usual setting of our
experiment, the plasma can be photographed using an exposure time of 20 ns. The
interframe time of the camera can be as low as 5 ns. Each ICCD produces a 10 bit
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Figure 2.4: Diagram for Caltech Jet Experiment

image with resolution 1200 × 980.

Magnetic Probes
Magnetic fields are measured using an array of coils. Changing magnetic field
induces electromotive forces across the two ends of a coil according to Faraday’s
law. Three coils form a cluster and are oriented perpendicularly to each other to
measure a vector B(r) at a location r. Several of these clusters can be put together
to form an array. We mount the array on a movable stalk and can scan the probe
through the spatial domain r to get the time series B at different locations. The
magnetic field through the coil B(t), given the measured voltage across the coilV(t),
is then

B(t) = B0 −
1

N A

∫ t

0
V(t′)dt′, (2.1)

where B0 is the initial magnetic field, N is the number of turns, and A is the area of
the coil.
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Langmuir Probes
The density and temperature of a plasma can be determined locally by a Langmuir
probe. One could make such measurement by putting a metal wire into the plasma
and biasing it with a certain potential φ. If such potential is different from the
plasma potential, there would be an imbalance in the ion and electron flux, resulting
in the probe picking up a net current. The pickup current I depends on the probe
potential, the plasma density n0 and electron temperature Te.

I = n0cseA − n0eA

√
κTe

2πme
exp

{
−e

��φ̄(x)��/κTe
}
, (2.2)

where cs =
√
κTe/mi is the ion acoustic velocity, e is the elementary charge, A is the

probe area, and φ̄ = φ − φplasma is the relative potential.

Spectroscopy
Since the plasma that we study is generally hot, we observe line emissions from the
elements that constitute the plasma. We can collect the light emission from plasma,
put it through a spectrometer. The light with different wavelength is diffracted to
a different angle and then captured by an ICCD camera. We obtain knowledge
of the plasma local state by comparing the spectrum of the emitted light with a
thermodynamic model. Doppler shift and Stark broadening can infer the plasma
flow velocity and density respectively.
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C h a p t e r 3

3D MAGNETOHYDRODYNAMICS SIMULATION

While diagnostics provide us with a real time-series measurement, plasma parame-
ters often are obtained locally. Although total current and voltage across the plasma
are the two obtainable global parameters, the associated electric field E and current
density J are unknown in the 3-dimensional space. 3D numerical simulation can
help us understand how these parameters evolve in the 3D spatial domain. Numeri-
cal simulation alone usually leads to working with the wrong physical assumptions.
Therefore, together with the experiment, the simulation betters our understanding
to provide a more complete picture.

The 3D MHD numerical simulation was performed on the Los Alamos Turquoise
supercomputer cluster using part of the Los Alamos COMPutational Astrophysical
Simulation Suite [80] which is a collection of several modern, high resolution,
Godunov-type, MHD codes. The code tracks the evolution of 8 dimensionless
parameters namely: density ρ, velocity v, magnetic field B, and pressure P inside a
Cartesian box of size [−L, L]3.

3.1 Normalization
The dimensionless resistive MHD equations in conservative form are

∂ρ̄

∂ t̄
+ ∇̄ · (ρ̄v̄) = 0 (3.1)

∂(ρ̄v̄)
∂ t̄
+ ∇̄ ·

(
ρ̄v̄v̄ +

(
P̄ +

B̄2

2

)
←→I − B̄B̄

)
= 0 (3.2)

∂ē
∂ t̄
+ ∇̄ ·

[(
ē + P̄ +

B̄2

2

)
v̄ − B̄(v̄ · B̄)

]
= Û̄einj (3.3)

∂B̄
∂ t̄
− ∇̄ × (v̄ × B̄) − 1

S
∇̄2B̄ = B̄inj, (3.4)

where the total energy density is ē ≡ ρ̄v̄2/2 + P̄/(γ − 1) + B̄2/2 with γ = 5/3.

The normalization constants are chosen to scale the simulation to the desired plasma
system. For the reference parameters ρ0, L, and vA, we pick the other reference
parameters as B0 = vA

√
µ0ρ0, p0 = ρ0v

2
A, τA = L/vA, e0 = p0L3, and S = µ0vAL/η.

Û̄einj represents the dimensionless energy injection, i.e.,
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Û̄einj = Û̄Binj · B̄. (3.5)

The following two sections describe the initial conditions and injection profiles
for two configurations. Section 3.2 provides the information for the arched flux
rope for the simulation of the single loop experiment; this configuration is used in
Chapters 4-6. Section 3.3 describes an axisymmetric system. The simulation is
used to replicate the astrophysical jet experiment or the footpoint of the single loop
experiment. This configuration is used in Chapter 8-9.

3.2 Arched Configuration
In an arched flux rope configuration, the nozzles on the electrodes create a constraint
for the distribution of plasma. The initial neutral gas density is largest at the nozzle
and falls off further away. The current density right after the breakdown is also
mostly concentrated since the breakdown condition depends on the plasma density.
Moreover, the axial magnetic flux is strongest at the nozzle because of the location
of the solenoid and the attenuation from the copper electrodes.

Initial Conditions
Previous neutral gas measurements by a fast ion gauge [97, 165] give an empirical
density profile as an exponential cone with an expression

ρ(x, y, z) = ρ0

(
z0

|z | + z0

)2
exp

[
−K(x2 + y2)
(|z | + z0)2

]
, (3.6)

where K = tanα
√

log 2 = 1.1, α ≈ 54◦ is the half cone angle, z0 = 0.01 m, and
ρ0 = 2 × 10−3 kg m−3 is the density at the footpoints.

The initial background magnetic field (bias field) is generated by specifying a set of
loop currents in a half-circle configuration below the electrode plane. This ensures
that all field lines emerge and terminate at the footpoints. This topology is closer
to that of the experimental field (i.e., where Bz does not change sign on a given
electrode) than a simple dipole and is scaled to match the measured field strength at
the loop apex. The resulting initial bias field is shown in Figure 3.1.

Injection Routine
Diffuse poloidal flux is continuously injected into the simulation domain correspond-
ing to the electric current measured in the experiment. The diffuse current profile
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Figure 3.1: Plot of the initial conditions for the simulation. Source currents for the
background magnetic field consist of 10 thin loops arranged in a semi-circle (red),
B-field lines are shown in blue. The high density plasma wall boundary is shown in
black.

is constructed from the superposition of 110 thin circular current loops, where each
loop has a simple analytic magnetic field expression [124]. A corresponding vector
potential in spherical coordinates (r, θ, φ) is

Aφ(r, θ) =
µ0
4π

4Ia
√

a2 + r2 + 2ar sin θ

[
(2 − k2)K(k2) − 2E(k2)

k2

]
, (3.7)

k2 =
4ar sin θ

a2 + r2 + 2ar sin θ
, (3.8)

where I is the loop current, a is the loop radius, K and E are the complete elliptic
integral of the first and second kind respectively.

To avoid singularities, the elliptic integrals are approximately evaluated using trun-
cated power series. This injected distribution, shown in Figure 3.2a, is physically
motivated by experimental current density measurements which indicate that the
current profile begins as a flared diffuse structure and maintains this outer diffuse
current during helicity injection. Figure 3.2c shows the current path of 10 loops in
yz-plane with apexes equally spaced from 1.2y0 to 2.6y0, where ±y0 are locations
of the footpoints and y0 = 4 cm. Figure 3.2b shows another view of the profile
in xz-plane with 11 sets of 10 current loops distributed over θyz ∈ [−54◦, 54◦]
with respect to the yz-plane. The injected current profile is stationary throughout
the simulation. Since we are principally interested in the formation phase, we do
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not attempt to model the helicity extraction or the decreasing current after toff=20
µs. The experimentally measured current undergoes a damped oscillation with the
period T = 40 µs, so we model the temporal dependence of the injection as

d
dt

B(t) = ÛB0 cos
(
2πt
T

)
H(toff − t), (3.9)

where ÛB0 has only spatial dependency and H is a Heaviside step function.

Figure 3.2: Illustration of spatial profile of the current injection. Each red circle
represents a thin circular current loop. (a) The 3 dimensional view showing all 110
loops. (b) The 2 dimensional cross section in xz-plane. (c) The 2 dimensional cross
section in yz-plane. The spatial units are in centimeters.
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3.3 Axisymmetric Configuration
In this configuration, the spatial domain is still the same as in the previous config-
uration, i.e., box of size [−L, L]3. However expressions for initial parameters are
now in cylindrical geometry; (x, y, z) → (r, θ, z).

Initial Condition
The initial condition is that of an axisymmetric flux rope with uniform axial current
density Jz = I/(πa2) for r < a and Jz = 0 for r > a. In one configuration (extreme
paramagnetism) a uniform axial magnetic field Bz exists only inside the current
channel (r < a)while in another configuration Bz exists over the entire domain. The
code evolves the vector potential A = (Ax, Ay, Az) to maintain the divergenceless
condition of the magnetic field, ∇ · B = 0. The density is set to have a Gaussian
profile that decays radially from the flux rope axis which is located at position r0. A
small uniform background density ρb was added to avoid requiring an infinitely small
time step. The plasma is initially at rest with a uniform temperature, T = P/ρ = 1.
The initial density, pressure, velocity, and vector potential are specified as

ρ = ρ0 exp
(
−(r − r0)2/2σ2

)
+ ρb (3.10)

P = ρ, v = 0, Ax = 0, Ay = Bz x (3.11)

Az =


−(I/4π)(r/a)2 , r < a

−(I/4π)(1 + 2 ln(r/a)) , r > a.
(3.12)
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C h a p t e r 4

APEX DIPS OF EXPERIMENTAL FLUX ROPES

Pakorn Wongwaitayakornkul, Magnus A Haw, Hui Li, Shengtai Li, and Paul M
Bellan. “Apex Dips of Experimental Flux Ropes: Helix or Cusp?” In: The Astro-
physical Journal 848.2 (2017), p. 89. doi: https://doi.org/10.3847/1538-
4357/aa8990.

P.W. designed and conducted the experiment. P.W. and M.A.H developed the
simulation. H.L. and S.L. provided the simulation source code. P.W., M.A.H., and
P.M.B discussed and wrote the manuscript.

We present a new theory for the presence of apex dips in certain experimental
flux ropes. Previously such dips were thought to be projections of a helical loop
axis generated by the kink instability. However, new evidence from experiments
and simulations suggest that the feature is a 2D cusp rather than a 3D helix. The
proposed mechanism for cusp formation is a density pileup region generated by
nonlinear interaction of neutral gas cones emitted from fast-gas nozzles. The results
indicate that density perturbations can result in large distortions of an erupting flux
rope, even in the absence of significant pressure or gravity forces. The density
pileup at the apex also suppresses the m=1 kink mode by acting as a stationary node.
Consequently, more accurate density profiles should be considered when attempting
to model the stability and shape of solar and astrophysical flux ropes.

4.1 Introduction
Several experiments in the past decades [46, 48, 49, 101, 125, 133, 141] have sought
to improve understanding of solar flux ropes by recreating scale models in the
laboratory. Experiments are relevant because the MHD equations have no intrinsic
length scale and can be expressed in a non-dimensional fashion. Many mechanisms
for flux rope stability [46, 49, 101], formation [7, 125, 141], particle acceleration
[140], and reconnection [48] have been discovered and tested in these experiments.

However, a particular feature common to several of these experiments [46, 49, 125,
133] has not been well understood: this feature is a downward dip present at the loop
apex as shown in Fig. 4.1a. The interpretation until now has been that the dip seen
in images is the projection of a helical loop axis generated by the kink instability

http://dx.doi.org/https://doi.org/10.3847/1538-4357/aa8990
http://dx.doi.org/https://doi.org/10.3847/1538-4357/aa8990
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[3, 49, 125]. However, there are several problems with this interpretation. First,
the observed dip is always downwards, whereas the kink instability should generate
both upward and downward helical perturbations. Second, images from other angles
show no evidence for helical structure in the third dimension (Fig. 4.1b). Third,
kink modes should grow but the dip remains a constant size. Lastly, the dip feature
only appears in certain experiments [3, 46, 49, 125] but not others with similar
physics [101, 141]. Alternative to the helical interpretation is that the dip is a sharp
downward cusp, but this interpretation has no obvious formation mechanism and
has consequently not been considered until now.

Figure 4.1: (a) Side view of lab experiment flux rope showing dip at apex, (b) top
view of lab flux rope showing no evidence of helical shape, (c) sketch of side view
for helix interpretation, (d) sketch of side view for downward cusp interpretation

This chapter identifies a formation mechanism for the cusp shape sketched in Fig-
ure 4.1d and provides detailed evidence from theory, experiment, and simulation
supporting the cusp interpretation. The proposed mechanism is that neutral gas,
injected from fast-gas valves at both footpoints, collides at the loop midplane cre-
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ating a density pileup region. This causes the loop apex to have a greater linear
mass density than the rest of the loop and, since the apex and the rest of the loop
experience equivalent forces, the apex will have a slower acceleration, leading to the
formation of a downward cusp during expansion. This theory explains why the dip
is always downward, why there is no helical structure or dip growth, and why the
feature only appears in experiments with gas injection from both footpoints. The
results indicate that density perturbations can greatly distort the shape of an erupting
flux rope and that introducing such perturbations may suppress external kink modes.
These results are applicable to all MHD flux ropes with density perturbations (solar
prominences, tokamaks, astrophysical jets etc.) and are especially relevant to the
morphology of solar eruptions. Furthermore, other plasma experiments which use
fast-gas valves [46, 49, 84, 96, 107, 111, 125, 127, 133] should be aware of the
potential for non-linear interaction between multiple gas valves.

4.2 Experimental Apparatus
Experiments simulating solar flux ropes all share certain systems: a vacuum cham-
ber, gas supply systems, solenoids, and electrodes. Each of these systems replicates
a fundamental property of solar flux ropes: a vacuum chamber and a controlled gas
supply are needed to create plasma of appropriate density, the solenoids recreate the
background magnetic fields, and the electrodes drive current through the flux rope,
adding the appropriate twist to the magnetic field.

Caltech Single Loop Experiments
The primary experiments of interest are the different iterations [46, 49, 125] of the
Caltech single loop experiment, introduced in Section 2.1. All of these experiments
exhibit the apex dip feature and have similar designs. The latest incarnation of the
Caltech single loop experiment [46] has a single pair of electrodes with internal
solenoids and fast-gas valves [160]. The system is mounted at the end of a 1.5 m
long, 0.92mdiameter vacuum chamberwith 10−7 Torr base pressure. The solenoids,
located behind the electrodes, generate an arched background magnetic field (< 0.1
T). Fast valves then release cones of neutral particles over 5 ms [165] through holes
in the electrodes into the vacuum chamber. High voltage applied to the electrodes
by a 59 µF capacitor ionizes the gas to form an arched plasma of density n ∼ 1021

m−3. The capacitor is typically charged to 2.5-5 kV driving 30 kA of current for 10
µs. The schematic diagram of the experimental setup is shown in Figure 4.2.
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Figure 4.2: Schematic diagram of the experimental setup showing cones of neutral
gas (blue) ejected from holes in electrodes (copper), plasma loop (red), solenoids
(green) for providing background magnetic field, and gas injection system.

Other Experiments
The FlareLab experiment at Ruhr University Bochum was designed based on the
Caltech apparatus and has similar gas supply, timescales, electrodes, and magnetic
fields [133]. This experiment also observes a downward apex dip.

ThePPPLapparatus is located in theMRXfacility [101]. It uses uniformbackground
gas injection as well as fast-gas valve injection at a single footpoint. Plasma is also
generated via high voltage breakdown from the electrodes. However, the timescale
for this experiment is ∼ 1 ms, 100 times longer than the Caltech loop, and is
comparable to the gas diffusion time. This experiment does not observe apex dips.

The UCLA single loop experiment [141] is generated in a uniform pre-ionized
plasma and utilizes LaB6 electrodes with much lower currents (600 A). Additional
density is added from laser ablation of targets at the footpoints to trigger eruptions.
No apex dips are observed in this experiment.

For comparison, Figure 4.3 shows the white light images for the solar flux rope in
all 4 experiments.
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3

is mounted at the end of a 1.5 m long, 0.92 m diam-
eter vacuum chamber with 10−7 Torr base pressure.

The solenoids, located behind the electrodes, generate
an arched background magnetic field (< 0.1 T). Fast
valves then release cones of neutral particles over 5 ms
(Yun 2008) through holes in the electrodes into the vac-

uum chamber. High voltage applied to the electrodes
by a 59 µF capacitor ionizes the gas to form an arched
plasma of density n ∼ 1021 m−3. The capacitor is typi-

cally charged to 2.5-5 kV driving 30 kA of current for 10
µs. The schematic diagram of the experimental setup is
shown in Figure 2.

Figure 2. Schematic diagram of the experimental setup
showing cones of neutral gas (blue) ejected from holes in
electrodes and plasma loop (red)

2.2. Other Experiments

The FlareLab experiment at Ruhr University Bochum

was designed based on the Caltech apparatus and has
similar gas supply, timescales, electrodes, and magnetic
fields (Tenfelde et al. 2014). This experiment also ob-
serves a downward apex dip.

The PPPL apparatus is located in the MRX facility
(Myers et al. 2016). It uses uniform background gas
injection as well as fast-gas valve injection at a single

footpoint. Plasma is also generated via high voltage
breakdown from the electrodes. However, the timescale
for this experiment is ∼ 1 ms, 100 times longer than
the Caltech loop, and is comparable to the gas diffusion

time. This experiment does not observe apex dips.

The UCLA single loop experiment (Tripathi & Gekel-
man 2013) is generated in a uniform pre-ionized plasma

and utilizes LaB6 electrodes with much lower currents
(600 A). Additional density is added from laser ablation
of targets at the footpoints to trigger eruptions. No apex
dips are observed in this experiment either.

For comparison, Figure 3 shows the white light images
for the solar flux rope in all 4 experiments.
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Figure 3. Comparison of white light images for solar flux
rope experiments with their gas supply. Only experiments
with fast-gas valves (FGV) at both footpoints observe dip
feature.

3. THEORY

3.1. Single Gas Valve

The Caltech experiment has detailed measurements of

the neutral density profile emerging from a single foot-
point (Moser 2012). This measured profile is that of an
exponential cone:

ρn(r, z) = ρ0

(
z0

|z|+ z0

)2

exp
[
−
( Kr

|z|+ z0

)2]
(1)

where K = tanα
√

log 2 = 1.1 and α ≈ 54◦ is the half
cone angle. z0 = 0.01 m is an offset distance in the z

direction to avoid singularities. ρ0 = 2 × 10−3 kg m−3

is the density at the footpoints.

Figure 4.3: Comparison of white light images for arched flux rope experiments with
their gas supply. Only experiments with fast-gas valves (FGV) at both footpoints
observe dip feature
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4.3 Theory
Single Gas Valve
The Caltech experiment has detailed measurements of the neutral density profile
emerging from a single footpoint [97, 165]. This measured profile is that of an
exponential cone:

ρ(x, y, z) = ρ0

(
z0

|z | + z0

)2
exp

[
−K(x2 + y2)
(|z | + z0)2

]
, (4.1)

where K = tanα
√

log 2 = 1.1, α ≈ 54◦ is the half cone angle, z0 = 0.01 m, and
ρ0 = 2 × 10−3 kg m−3 is the density at the footpoints.

Two Gas Nozzles
The two gas nozzles (1 cm apertures) are equally spaced in the y direction (y0 = ±4
cm) and point in the z direction. This gas injection from both nozzles creates
overlapping gas cones. If the mean free path is large, the neutral gas in the two
cones will not interact and the final distribution is simply a linear superposition of
two cones (Figure 4.4a). However, if the neutral gas has amean free path comparable
to the system size (∼ 10 cm), the gases will interact and a density pileup will form
between the two cones. The mean free path is defined as: `mfp = (σn)−1 where σ
is the cross-section and n is the number density. Calculations of `mfp for the three
main gases used in the experiment are shown in Table 4.1.

Under standard experimental conditions all three gases have a mean free path less
than 3 mm. Since the overlap region is several centimeters wide, there should be
significant interaction between the two cones.

H2 He N2
n (m−3) 1020-1021 1020-1021 1020-1021

σ (10−19 m2) 2.62 2.35 4.16
`mfp(m) 0.0027-0.027 0.003-0.03 0.0017-0.017

Table 4.1: Parameters for Density Pileup

Pileup Region Model
Estimating the extent and magnitude of the pileup involves evaluating how the
density from cone 1 penetrates into cone 2. To first order, this pileup should be
confined to the scale of the mean free path, `mfp and conserve mass. To satisfy these
basic constraints, the pileup model is constructed such that the interpenetrating
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Figure 4.4: Density profiles for (a) direct superposition of two gas cone profiles and
(b) modeled gas profile with finite neutral mean free path (Eq. 4.2)

density is compressed to an exponential profile with local characteristic length,
`mfp(z):

ρpileup(x, y, z) = M(x, z)e
−|y |/`mfp

`mfp
(4.2)

M(x, z) =
∫ ∞

0
ρ(x, y′ + y0, z) dy′. (4.3)

This corresponds to integrating the density from cone 1 (e.g. left cone at y = −y0)
that penetrates the X Z-plane at each height, and redistributing it in an exponential
profile with characteristic length, `mfp(x, 0, z). The process is mirrored for cone
2. The estimated density pileup from this exponential profile increases the apex
density by a factor of 1.6 relative to the non-interacting case. Figure 4.4 highlights
the difference between the case of no interaction `mfp > 0.1 m, and the pileup
region model, `mfp � 0.1 m: a pileup region creates peaked density contours as
distinct from the flat profile of a direct superposition. For the gas cones and densities
described here, this model predicts that the pileup effect is only significant for valve
separation distances less than 12 cm.

Although this is an ad hoc model, 2D measurements of the FlareLab initial density
profile [89, 90, 132] show a peaked density distribution, with contours very similar
to Figure 4.4b, indicating a comparable pileup region at the loop apex. This pileup
model is used in Section 4.5 for the initial conditions of a 3D MHD simulation of
the experiment.



27

Hoop Force
The hoop force is an outward radial force present in all curved current channels.
This force exists because the internal magnetic pressure of a current loop is greater
than the exterior magnetic pressure. The equation of motion for an infinitesimal
segment of a circular current (length ds, major radius R, minor radius a, and average
mass density ρ̄) is given by

Fhoop ds = ÜR ρ̄πa2 ds (4.4)

Fhoop =
µ0I2

4πR

[
ln

(
8R
a

)
− 2 +

li

2

]
, (4.5)

where I is the current flowing through the plasma loop, and li is a constant of order
unity related to the internal current distribution [46, 125]. Approximating the term
in square brackets in Eq. 4.5 as constant and assuming a linearly rising current,
the major radius expands quadratically with time: R(t) ∝ t2/

√
ρ̄ [125]. However,

sections of the loop with higher density will accelerate more slowly and lag behind
the global expansion.

4.4 Experimental Results
Several observed features on the Caltech experiment indicate the presence of a
density pileup at the loop apex. The first of these is the presence of a localized
bright region at the loop apex; this bright region can be detected from fast camera
images as early as 500 ns after the breakdown. Since the apex is 6 cm away from
each footpoint, the plasma at the footpoints does not have time to travel to the apex
in 500 ns (vA = 3 · 104 m/s, 6 cm/vA= 2 µs). Consequently, this feature must already
be present in the neutral density. Figure 4.5 shows an image of this bright apex
feature for a Nitrogen loop 1.5 µs after breakdown. This bright feature at the loop
apex extends beyond the major radius in an expanding cone. This expansion of the
pileup region width at greater heights is consistent with the increasing mean-free
path further away from the fast-gas nozzles.

The second observation is that the loop apex always lags behind during expansion,
forming a heart-shaped dip. This expansion is driven by the hoop force described
in Section 4.3. This dip is unusual as it is a large, extremely reproducible feature.
It is always pointed downward, remains a similar size, and appears consistently for
all gases used (H2, He, Ar, N2). The dip moves slower than the leading edge of
the loop and creates a significant deformation from circular expansion. Figure 4.6a
shows the evolution of this apex dip for a N2 loop.
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Figure 4.5: Photograph of the loop at 1.5 µs after breakdown. The white dashes
mark the bright feature at the loop’s apex and pileup cone at the midplane

We can also control the shape and location of this apex dip by varying the gas output
of each fast-gas valve. For the symmetric gas output, the dip appears to be sharper
and larger when the gas density output is higher, as shown in Figure 4.7. If the
output of the fast-gas valves differ significantly, the pileup region is shifted away
from the footpoint with greater gas output and towards the footpoint with weaker
gas output. Figure 4.8 shows superimposed images of a shot with higher gas output
on the right footpoint (red) and a shot with higher gas output on the left footpoint
(cyan). The shift of the bright apex feature is about 3 cm and highly reproducible.

Lastly, when creating plasma loops from a uniform gas backfill, both the bright apex
feature and the heart shape are not observed. Figure 4.6b shows the evolution of a
loop created with uniform Hydrogen backfill.

These observations demonstrate that the apex dip depends strongly on the initial
neutral gas profile.

4.5 MHD Simulation of the Apex Dip
Simulations of density profiles with a pileup region were performed to confirm that
this perturbation would reproduce the shape and velocity of the experimental loop.



29

Figure 4.6: Plot shows the evolution of two different initial density profiles. (a)
Standard initial conditions with two colliding cones of gas supplied by nozzles in
electrodes. (b) Non-standard conditions with uniform background gas supplied from
sources on opposite side of chamber. Without the gas cones from the nozzles, the
apex dip feature disappears

Figure 4.7: Comparison of dip shape for two different gas outputs. Loop axis is
manually traced with white lines to highlight differences (Gas = H)
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Figure 4.8: (top) Plot of vertically integrated pixel values. (bottom) Superimposed
images of a shot with higher gas output on the right footpoint (red) and a shot with
higher gas output on the left footpoint (cyan) (Gas = He)

The spatial domain is a mesh cube with 96 grid points in each Cartesian dimension
and non-reflecting outflow boundary conditions. The description of the simulation
can be found in Section 3.2.

The simulation uses the initial density profile shown in Figure 4.4. In addition
to the two gas cones, a high density wall region is added below the footpoints to
simulate the anchoring effects of the electrodes. The initial background magnetic
field (bias field) is generated by specifying a set of loop currents in a half-circle
configuration below the electrode plane. Diffuse poloidal flux is continuously
injected into the simulation domain corresponding to the electric current measured
in the experiment. A detail of the initial magnetic field and the current injection
were described in Section 3.2.
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Figure 4.9: Comparison of the cusp shape between experiment (left) and simulation
(right)

Simulation Results
Using an initial density with a pileup region, the simulation replicates the shape and
expansion velocity of the loop. Figure 4.9a shows the image of the loop with the
dip at the apex and Figure 4.9b shows a synthetic image from the simulation where
intensity is proportional to current density and number density squared (I ∝ Jρ2).
Figure 4.10 shows that the apex position of the simulated loop also closely matches
that of the experiment. The evolution comprises of three stages. First, after the
initial brightening of neutral gas as shown in Figure 4.5, magnetic forces generate
axial flow and pinch to form a collimated loop [7], resulting in the initial decrease in
apex height. Subsequently, the apex is accelerated by the hoop force [125], colliding
with the neutral pileup region. Lastly, the apex is accelerated to its terminal velocity
from the high magnetic curvature forces, illustrated in Figure 4.11, present in the
cusp.

Given the good match in shape and velocity, the simulation demonstrates that a
pileup region is consistent with the observed loop evolution.

4.6 Discussion
The data presented provide strong evidence that the dip feature is in fact a cusp
rather than a helix. The proposed cusp formation mechanism (a neutral pileup
region) resolves all of the inconsistencies with the helical interpretation and achieves
excellent agreement with observation and simulation. This new understanding of
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Figure 4.10: Evolution of the loop apex position in 3 stages: (i) the minor ra-
dius undergoes pinching before expansion (ii) the loop collides with the pileup
region temporarily slowing down (iii) the magnetic curvature forces of the cusp
re-accelerate the apex to a terminal velocity

the experiment has implications for both future experiments and solar flux ropes.

Neutral Pileup Regions
Most other experiments with fast-gas valves do not have the appropriate densities
or length scales necessary to create density pileup regions. However, as in our
experiments, such an effect can greatly perturb the initial conditions and should be
considered in the design of future plasma experiments. The high reproducibility
and simple control of the feature suggests that future experiments could utilize such
pileup regions to study the effect of density perturbations, instabilities, or localized
collisions between plasma and neutral gas.

Relevance of Dip Feature in Solar Context
Since the plasma loop can be described by ideal MHD, its behavior can be scaled.
This scaling allows for three free parameters a1, a2, a3 with the following invariant
transformations: L0/a1 → L′, ρ0/a2 → ρ′, B0/

√
a3 → B′, P0/a3 → P′,

1
a1

√
a3
a2

t0 → t′,
√

a2
a3
v0 → v′, a1a2

a3
g → g′ [116]. These transformations provide a

one-to-one correspondence between systems allowing simulated and experimental
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plasmas to be scaled to an equivalent system at the space plasma scale. Table
4.2 shows the characteristic parameters of the experiment, typical coronal loop
parameters, and experimental parameters scaled to the solar environment using
a1 = 2.5 · 10−8, a2 = 108 and a3 = 104. With the notable exception of gravity, the
experimental parameters scale well to the solar case. However, the effective gravity
associated with the acceleration provides useful insight into gravitational effects.

Experiment B = 3000 G L = 0.5 m
ρ = 10−4 kg m−3 τ = 20 µs
g = 10 m s−2 P = 300 Pa

vA=3×104 m s−1 β = 0.01
Scaled Exp. B = 30 G L = 2×107 m

ρ = 10−12 kg m−3 τ = 7 s
g = 3 × 10−3 m s−2 P = 0.03 Pa
vA=3×106 m s−1 β = 0.01

Coronal Loop B = 50 G L = 2×107 m
T= 1.5 MK ρ = 10−12 kg m−3 τ = 5 s

g = 300 m s−2 P = 0.01 Pa
vA=4×106 m s−1 β = 0.002

Table 4.2: Dimensionless scaling of Caltech parameters to solar loops. g here refers
to an actual gravitational acceleration not the effective one.

The presence of a dense, cusp feature in the experimental flux rope is similar to
common features of solar prominences. It is well established that solar prominences
have inhomogeneous density along their axis and that the highest density is localized
near the apex [4, 77, 110]. Despite thesemeasurements of density modulation, many
models of coronal structures assume constant density [3, 60, 62, 137, 151]. The
experimental results indicate that density perturbations can result in large distortions
of an erupting flux rope, even in the absence of significant pressure or gravity forces.
Consequently, a more realistic density profile should be considered when attempting
to precisely model erupting flux ropes or CME’s.

Furthermore this denser apexmaterial is thought to sit in a shallowmagnetic dip [45,
54], a similar but less extreme version of the experimental cusp. Many of the models
simulating this apex density are purely hydrodynamic [1] and ignoremagnetic effects
from changes in minor radius. In future experiments, these theories could be tested
by appropriate acceleration of the loop apex, imposing an effective gravity with
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Figure 4.11: Magnetic tension forces (B · ∇B, arrows) plotted for an apex dip of
a thin flux rope (blue line). Central cusp area has strong vertical magnetic forces
because of the high curvature

appropriate scaling to solar gravity. The acceleration from loop expansion with
current parameters (5 · 107 m/s2) scales to an effective gravity of 104 m/s2 at the
coronal scale, 40 times larger than solar gravity (270 m/s2).

Suppression of Kink Instability
The last mechanism of interest is the effect of the pileup region on the kink instability.
The kink instability is a current-driven instability which drives exponential growth
of long-wavelength helical perturbations. The instability threshold is reached when
the magnetic field lines complete more than one twist around the major axis. The
kink stability is usually defined with respect to the safety factor, q:

q =
2πaBφ

LBθ
, (4.6)

where q is the safety factor, L is the length of the major axis, a is the minor radius,
Bφ is the toroidal field, and Bθ is the poloidal field. Full toroids and other line-tied
flux-rope experiments [15, 108], become unstable for q < 1. B-field measurements
of the loop from t = 10 − 14 µs give Bφ(a) = 250 − 560 G, Bθ(a) = 200 − 350
G, a = 2 − 4 cm. From images we know that the length of the loop is between
40-56 cm in this time-frame. These values imply an unstable safety factor, q ≈ 0.5.
Consequently, it is surprising that the loop does not exhibit more violent kinking
behavior.

We propose that the high density region at the loop apex suppresses the kink since
the unstable kink mode has an anti-node at the apex and the high density region acts
like a stationary node. This effectively halves the axial length available to kink and
doubles the safety factor. Similar suppression of the longest wavelength kink modes
by high density regions has been seen before in astrophysical jet simulations [103]
and experiments [59].
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C h a p t e r 5

REVERSE CURRENT MODEL FOR CORONAL MASS
EJECTION CAVITY FORMATION

Magnus A Haw, PakornWongwaitayakornkul, Hui Li, and Paul M Bellan. “Reverse
Current Model for Coronal Mass Ejection Cavity Formation”. In: The Astrophysical
Journal Letters 862.2 (2018), p. L15. doi: https://doi.org/10.3847/2041-
8213/aad33c.

M.A.H. proposed the initial idea of the model inspired by the simulation. P.W. and
M.A.H developed the simulation. P.W. designed and conducted the experiment.
H.L. provided the simulation source code. P.W., M.A.H., and P.M.B discussed and
wrote the manuscript.

We report here a new model for explaining the three-part structure of coronal mass
ejections (CMEs). The model proposes that the cavity in a CME forms because
a rising electric current in the core prominence induces an oppositely directed
electric current in the background plasma; this eddy current is required to satisfy the
frozen-in magnetic flux condition in the background plasma. The magnetic force
between the inner core electric current and the oppositely directed induced eddy
current propels the background plasma away from the core creating a cavity and
a density pileup at the cavity edge. The cavity radius saturates when an inward
restoring force from magnetic and hydrodynamic pressure in the region outside
the cavity edge balances the outward magnetic force. The model is supported
by (i) laboratory experiments showing development of a cavity as a result of the
repulsion of an induced reverse current by a rising inner core flux rope current,
(ii) 3D numerical MHD simulations that reproduce the laboratory experiments in
quantitative detail, and (iii) an analytic model that describes cavity formation as a
result of the plasma containing the induced reverse current being repelled from the
inner core. This analytic model has broad applicability because the predicted cavity
widths are relatively independent of both the current injection mechanism and the
injection timescale.

http://dx.doi.org/https://doi.org/10.3847/2041-8213/aad33c
http://dx.doi.org/https://doi.org/10.3847/2041-8213/aad33c
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5.1 Introduction
Coronal cavities were first observed in white light images in the late 1960’s as dark,
croissant shaped regions above stable and erupting solar prominences [118, 148,
150]. These density cavities are of significant interest because they are observable
features that could give insight into the magnetic structure of prominences and so
provide better predictability for coronal mass ejections (CMEs). Understanding and
predicting CMEs is of increasing importance given the potential danger they pose to
spacecraft, aircraft communications, and the electrical grid. Despite limited mag-
netic measurements, there exist extensive white light observations of CMEs from
satellite coronagraphs. These images consistently display a three-part structure: (i)
a bright shock-like leading edge followed by (ii) a dark, croissant-shaped density
cavity and (iii) a bright core corresponding to the core prominence [25, 26, 38, 118].
The second frame of Figure 5.1a identifies these parts on a typical CME. Although
several numerical simulations of CMEs have successfully reproduced a three-part
structure [32, 63, 87, 137, 138], it is still unclear how and why the cavity structure
forms [41].

The formation of a similar density cavity structure was evident in cylindrical shock
tube experiments [58, 144]. In these experiments, an increasing axial current
induces a reverse current shell, which expands outwards due to the mutual repulsion
of the anti-parallel currents, leaving behind a density cavity between the core and
reverse currents. This induced reverse current layer is a consequence of the frozen-
in condition of MHD: the increasing azimuthal field from the current channel
necessarily induces an equal and opposite shell of reverse current to preserve the
magnetic flux in the background plasma. This reverse current mechanism was first
described in Greifinger and Cole [44] but has never before been applied to CMEs.

In this chapter, we presentmeasurements of this reverse currentmechanism in arched
flux rope experiments and 3D MHD flux rope simulations which dimensionlessly
scale to CMEs. These results show the formation of a density cavity between an
increasing core current and a reverse current shell. A simple analytic model for the
cavity formation is derived by extending the shock solution fromGreifinger and Cole
[44] to a layer of finite width. This model is then shown to be in good agreement
with experiment, simulation, and CME observations.
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Figure 5.1: (a) Image sequence of the three-part CME captured by LASCO-C3 on
2011 October 4. This sequence shows a nearly edge on view of the current channel
instead of the perpendicular views shown from the experiment. (b) Image sequence
of composite multiwavelength fast camera images of laboratory experiment. Each
image consists of two bandwidths: filtered Hα in blue (H-dominated) and visible
light in red (Ar-dominated). (c) Cross-sectional plots of simulated current density in
the horizontal direction (Jy) showing the propagation of the main current (red) and
an induced reverse current layer (blue). For each case, the height evolution of leading
edge/reverse current (blue), core/current channel (red) and cavity width/separation
(yellow) are plotted in the last column.

5.2 Prefilled Single Loop Experiment
The experiment generates an expanding flux rope (argon) which collides with a
background plasma (hydrogen). The apparatus consists of a magnetized plasma gun
mounted at the end of a 1.6 meter-long, 0.92meter-diameter vacuum chamber [8, 46,
125, 157]. Figure 5.2a shows the apparatus and Cartesian coordinate system. Two
solenoids, one beneath each electrode, are pulsed to produce an arched magnetic
field, similar to a horseshoe magnet. This background field ranges from 0.3 T at the
footpoints to 0.06 T at the loop apex. Above each solenoid there are gas nozzles
connected to fast valves. These valves are pulsed, releasing diverging flows of argon
neutral gas in two expanding cones with number density 1019 − 1022 m−3. A neutral
hydrogen prefill, n = 3 × 1021 m−3, is added to provide a background gas. Finally,
a 59 µF capacitor charged to 3.6 kV is discharged across the electrodes, ionizing
the neutral gas and driving up to 30 kA for ∼ 10 µs through the plasma. Less
than 2 kA is carried by the bright collimated loop structure with the remainder of
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the current traveling in a broad, diffuse outer envelope. The collimated loop has
β = 2µ0niκT/B2 ∼ 0.1, for ni = 5 × 1019 m−3, κT = 2 eV, and B = 200 G.

Figure 5.2: (a) Schematic diagram of the experimental setup showing the primary
current channel (red), the induced reverse current layer (blue), electrodes (copper),
solenoid (green), magnetic probe array (yellow), and Langmuir probe (grey). (b)
Plot of density from Langmuir probe at three locations shows formation of density
cavity

The dynamics of the current channel and the reverse current are captured by cor-
relating a sequence of visible light images using a multiple-frame fast camera with
measurements made by Langmuir probes and magnetic probes. The false color
images are superimposed with filtered Hα in blue (H-dominated) and visible light
in red (Ar-dominated). Using hydrogen gas for the expanding flux rope produced
equivalent cavity structures (i.e., ∼2 cm separation) but argon was chosen due to
its slower expansion speed and better imaging properties. Figure 5.1b shows the
formation and subsequent separation of the reverse current layer from the driving
current channel. Langmuir probe measurements shown in Fig. 5.2b confirm that
the dark cavity region in the experimental images is a region of density depletion
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(30-50% lower than the core and reverse current layer). Magnetic measurements
from B-dot probes show that the blue feature in Figure 5.1b contains a current oppo-
sitely directed to that of the primary injected current channel (red feature). The time
dependence of apex positions of the current channel and reverse current layer are
tracked from the images and plotted in the far right of Figure 5.1b and are labelled as
current channel (i.e., core as in Fig. 5.1a) and reverse current (i.e., leading edge as
in Fig. 5.1a). Since these features have a non-negligible thickness, the locations of
the apexes are chosen to be at the center of the feature on the z-axis. The separation
(i.e., cavity width as in Fig. 5.1a) between the two features is also plotted. The
cavity width, defined by the distance between the two apexes, grows quickly and
reaches an asymptotic value of 2 ± 0.5 cm. The projected emission in the yz-plane
shows that the curvature of the reverse current layer is similar to that of the current
channel. The following paragraph describes how the reverse current is calculated
from magnetic probe data.

The time dependence of B seen by the probe is from convection rather than diffusion
and images show little change in the different features as they move by the probes,
i.e., ∂/∂z ↔ v−1

z ∂/∂t. The horizontal current density can therefore be estimated
from the time dependence of the magnetic field, i.e., Jy = (∇×B) · ŷ/µ0 = (∂zBx −
∂x Bz)/µ0 ≈ (∂t Bx)/(µ0vz) where vz ≈ 13 − 15 km s−1 as measured from feature
tracking in fast camera images. Additional magnetic measurements in the xz-plane
confirm that the center of the flux rope has spatial variation principally in the z-
direction with much less variation in the x-direction (∂x Bz � ∂zBx). Figure 5.3
shows experimental Jy profiles calculated from Bx(t) measurements at 3 locations
(x, y = 0, z =17.5, 19.5, and 21.5 cm); the inset shows a zoomed-in view of the
reverse current, and indicates that this reverse current layer appears spatially ahead
of the main current. The spatial distribution and motion of the primary and reverse
currents match the features observed in the fast camera images.

The current channel in the experiment expands due to the hoop force, a consequence
of greater magnetic pressure on the inboard side of the loop than on the outside
[125]. During this expansion, the current channel collides with the background gas,
inducing a reverse current layer of ionized hydrogen.

5.3 Simulation
To gain further insight into this reverse current layer, the experimental setup was
simulated using a 3D MHD equation solver code, a subset of the Los Alamos
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Figure 5.3: (Left) Calculated Jy(t) profiles at three locations show the distribution
and propagation of the reverse current and the current channel in the experiment.
Inset shows reverse currents in more detail. (Right) The equivalent plot of Jy
obtained from the simulation at 3 locations analogous to those in the experiment.

COMPutational Astrophysics Simulation Suite (LA-COMPASS) [80]. This code is
described in previous papers simulating the Caltech plasma jet experiment [167]
and the arched flux rope experiment [157]. The ideal MHD code evolves a set of
dimensionless parameters: density ρ, pressure P, magnetic field B, and velocity v

on a Cartesian grid with non-reflecting outflow boundary conditions.

The initial density profile consists of (i) exponential cones emerging from the gas
nozzles at each footpoint1, (ii) a uniform background gas ρb = 1.0 × 10−5 kg m−3,
and (iii) a high density region below z = 0 to simulate the anchoring effect of the
electrode boundary. The neutral density in the z > 0 region is

ρ(x, y, z) = ρ0

(
z0

z + z0

)3
( ∑

i=−1,1
exp

{[
−K(x2 + (y − (−1)iy0)2)

(z + z0)2

]})
+ ρb, (5.1)

where ρ0 = 4.8×10−3 kg m−3 is the density at the footpoint, K = tanα
√

log 2 = 1.1,
α ≈ 54◦ is a half cone angle, y0 = 0.04 m is the footpoint location, z0 = 0.01 m
is an offset to avoid singularities, and ρb = 1.0 × 10−5 kg m−3 is the background
density. Initial pressure is defined such that P = (ρ − ρb)κT/mi where mi = mass
of hydrogen ion, and κT = 2 eV; the term ρb is subtracted because the background
plasma is cold. The plasma is assumed to be initially at rest.

1Without background gas, the cone density decays as z−2 [165]. The presence of background gas
impedes the expansion of gas exiting from the nozzles so the gas cone density decays more rapidly
with increasing z; this more rapidly decaying density was modeled as having a profile scaling as z−3.
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The backgroundmagnetic field is constructed from a set of 10 current loops arranged
in a half-circle below the footpoints, each with a current of I = 631 kA (see Figure
9 of Wongwaitayakornkul et al. [157]). This arrangement produces a horseshoe-
magnet field topology with a magnitude ranging from 0.2 T at the footpoints to 10−3

T at the upper edge of the simulation. The field from each current loop is calculated
from a truncated series approximation for the vector potential of an infinitely thin
loop [124]. This truncation gives an analytic expression for a current loop which is
non-singular and divergence-free.

From t = 0 to t = 10 µs, azimuthal flux is added to the domain to match the rising
experimental current, Iexp(t) ≈ I0 sin(2πt/T) where T = 40 µs and I0 = 30 kA.
This azimuthal magnetic field corresponds to a diffuse arched current constructed
from the superposition of 110 current loops and conforms roughly to the shape of
the gas cones (i.e., a 54◦ flared angle at the footpoints). The spatial distribution of
the injected current was selected to match the experimental initial conditions, but
due to the self-collimating property of parallel currents, the precise spatial profile of
the injected current is not critical. The diffuse current is injected via a source term
added to the induction equation [80, 167]. This incremental addition of flux does
not significantly perturb the system at a given time step but slowly increases the
poloidal flux, corresponding to a rising current. This is the same injection profile
as mentioned in 3.2.

This setup simulates a flux rope with increasing current that expands into a back-
ground plasma. As observed in the experiment, the simulated current channel
produces a reverse current layer as the current channel collimates and expands out-
ward. Figure 5.1c plots a time series of Jy from the numerical simulation in the
yz-plane, showing a reverse current layer propagating in front of the main current.
The shape and position of themain current and reverse current layer are in reasonable
agreement with the experiment (±20%) as can be seen by comparing Figure 5.1b
and 5.1c. Figure 5.3 compares the current density Jy in the simulation and in the
experiment at the three magnetic probe locations. The experimental current density
Jy (left) is broader than in the simulation (right) because of magnetic diffusion from
finite resistivity in the experiment. However, the morphology of the profiles are
quite similar, as both show a reverse current layer propagating ahead of the core
current channel.
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5.4 Snowplow Model for Reverse Current
This model extends the infinitely thin snowplow analysis from Greifinger and Cole
[44] to a finite-width reverse current layer and has three key features: an increasing
current channel, an expanding reverse current layer, and a density cavity between
the current channel and the reverse current layer.

Assumptions
Figure 5.4 illustrates the model. The configuration consists of a vertical (ŷ) cylindri-
cal current channel with finite radius a and increasing total current I(t) in a uniform
plasma of density ρ0, magnetic field B0 ŷ, and pressure P0. The current channel is
surrounded by a shell/layer of induced reverse current at position b(t), correspond-
ing to the shielding effect of the background plasma. The inner radius of this shell
of reverse current is initially at position b(0) = a and the shell is assumed to have
a constant thickness δ and a uniform current density Jy = −I/σ across its width,
where σ = π(2δb + δ2) is the cross-sectional area of the shell. The motion of the
reverse current shell is governed by an expansive force resulting from the mutual
repulsion of the oppositely directed currents competing with a restoring force from
the background pressure and background magnetic field external to the shell. The
cavity region is assumed to have negligible density and pressure (i.e., snowplow
assumption). Consequently, there is no outward force on the reverse current from
pressure inside the cavity.

The total expansive force-per-length fe is obtained by integrating −JyBφ over the
reverse current layer:

fe = −
∫ r=b+δ

r=b
JyBφ2πrdr

= −2π
µ0

∫ r=b+δ

r=b
Bφ

∂

∂r
(
rBφ

)
dr

=
µ0I2

σ

∫ r=b+δ

r=b

(
1 − π(r

2 − b2)
σ

)
dr

=
µ0I2

3π
3b + 2δ
(2b + δ)2

. (5.2)

Taking the limit δ→ 0 recovers the expression from Greifinger and Cole [44], i.e.,

lim
δ→0

fe =
µ0I2

4πb
. (5.3)

The total confining force fc is calculated as the product of the background pressure
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(axial)

(azimuthal)

Figure 5.4: Illustration of the model. The current I is in the +y direction in the main
current channel (red) and in the -y direction in the reverse current shell (blue). The
reverse current shell has thickness δ and expands radially forming a cavity region
between a and b(t). The plot shows the radial dependence of both the normalized
axial field (By, blue) and normalized azimuthal field (Bφ, red). The table lists radial
ranges with their corresponding magnetic fields.

and the shell outer perimeter:

fc = 2π(b + δ)
[

B2
0

2µ0
+ P0

]
. (5.4)

This gives the equation of motion for the expansion of the current layer to be

d
dt

(
M

db
dt

)
= fe − fc. (5.5)

Using the “snowplow" assumption, the mass-per-length M scales with the swept
area, so

M = ρ0π
(
(b(t) + δ)2 − a2

)
. (5.6)
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The full equation of motion for the current layer can therefore be written as

M Üb = µ0I(t)2
3π

3b + 2δ
(2b + δ)2

− 2π(b + δ)
[

B2
0

2µ0
+ P0

]
− ÛM Ûb. (5.7)

The last term on the right hand side is a consequence of momentum conservation
from the increasing mass of the layer. A complete void with By = 0 and zero plasma
pressure is not observed in the experiment. However, even without many of the
features present in the continuous 3D system, the analytic model can characterize
the bulk forces and predict cavity widths and internal currents for the experiment
and simulation.

Non-Dimensional Form and Equilibrium
Equation 5.7 can be put in dimensionless form to compare plasmas having different
scales. The characteristic velocity is chosen to be the Alfvén speed vA = B0/

√
µ0ρ0

and the characteristic time is chosen to be the Alfvén crossing time τ = a/vA. This
choice of normalization has three free parameters: B0, a, and ρ0 so Eq. 5.7 becomes

M̄ Ǖb = Ī2

3π
3b̄ + 2δ̄
(2b̄ + δ̄)2

− π(b̄ + δ̄) [1 + β] − Û̄M Û̄b, (5.8)

where normalized values are indicated with a bar, (i.e., Ī = I/I0 = Iµ0/(B0a),
M̄ = M/(ρ0a2)) and β = 2µ0P0/B2

0). In both the experiment and the simulation,
the cavity width prescribed by Eq. 5.8 reaches equilibrium within a few Alfvén
crossing times (i.e., t ∼ 5a/vA). This fast equilibration time implies that cavity
widths are relatively independent of the current injection timescale. Solving for this
equilibrium ( Ûb = 0, Üb = 0) gives

π(b̄eq + δ̄) [1 + β] =
Ī2

3π
3b̄eq + 2δ̄
(2b̄eq + δ̄)2

, (5.9)

b̄eq =
Ī

2π
√

1 + β
− 2

3
δ̄ +

(
π
√

1 + β
12Ī

)
δ̄2 +O[δ̄3]. (5.10)

For δ � beq, the solution is a simple pressure balance where Bφ(beq) = B0
√

1 + β.
In dimensioned quantities, the equilibrium cavity size is beq = µ0I/(2πB0

√
1 + β)

where I is the main current and B0 is the background field. Since the dependence
on plasma β is weak, and the mechanism is independent of the collisional mean free
path, the effects should be similar across a wide range of plasma parameters.
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Core Acceleration
The effects of an accelerating frame can be quantified by substituting [b(t) − h(t)]
for b(t) in the expansive term, where h(t) represents the height of the loop apex as
a function of time, so Eq. 5.2 becomes

fe =
µ0I2

3π
3[b(t) − h(t)] + 2δ
(2[b(t) − h(t)] + δ)2

. (5.11)

This substitution effectively shifts the central current channel (the red cylinder in
Figure 5.4) off-axis with speed ∂t h(t). However, for speeds ∂t h(t) � vA, the cavity
width is not significantly affected and the cavity again reaches an equilibrium width
within a few Alfvén crossing times. Equivalently, the system reaches a similar
equilibrium width in a moving frame if the momentum conservation term Û̄M Û̄b is
small compared to the magnetic terms. This limit is a reasonable approximation for
the cases of interest and the next section will show that the cavity widths predicted
by the stationary model agree well with the experiment, simulation, and CME
observations. Consequently, the model can be used to infer the internal current
I ≈ 2πbeqB0

√
1 + β/µ0 from cavity width for both stationary flux ropes and flux

ropes moving at sub-Alfvénic speeds.

5.5 Scaling to CMEs
The understanding gained from the experiment, simulation, and theory provide new
insights for interpreting the three-part structure of CMEs. The leading edge, cavity,
and core elements of a CME respectively correspond to the reverse current layer,
the cavity and the central current channel of the model. This new interpretation
is a flux rope model which identifies where currents are flowing: the main current
channel is the core, the cavity is a region of expanding azimuthal flux around the
main current channel, and the leading edge corresponds to a compressed reverse
current layer between the core current and background plasma.

It is important to evaluate how the experiment and simulation scale to the solar
situation. To do this, we follow the MHD scaling method in Ryutov, Drake, and
Remington [116] and so normalize each system using the current channel minor
radius a as a reference length, a reference magnetic field B0, and a reference density
ρ0. The reference time for normalization is then given by τ0 = a

√
µ0ρ0/B0. The

reference parameters for both the simulation and experiment are a = 5.0 × 10−3 m,
B0 = 0.01 T, ρ0 = 2 × 10−7 kg m−3, τ0 = 2.5 × 10−7 s. The reference parameters
for the 2011 October 4 CME event are a = 1.0 × 109 m, B0 = 1.0 × 10−5 T [6, 91],
ρ0 = 3.0 × 10−17 kg m−3, τ0 = 710 s. The density is estimated from a typical CME
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mass M = 1012 kg [145] divided by the core volume, πa2πR, using major radius
R = 5a. The laboratory, simulation and CME event can then all be expressed in
terms of the same dimensionless variables.

Figure 5.5 compares the scaled height and time of the leading edge and core, as
well as the separation between the leading edge and core, for theory, simulation,
experiment, and CME observations. Separation is defined as the center-to-center
distance between the main current channel and the reverse current shell. The center
of the reverse current shell is at b̄ + δ̄/2. The theoretical black line is calculated by
solving Equation 5.8 with δ̄ = 0.25, b̄(t̄ = 0) = 1, Û̄b(t̄ = 0) = 0, and a sinusoidal
ramping current, Ī = [Ī0 + 20 sin(πt̄/60)], where Ī0 ∼ 2π

√
1 + β is set such that

the system is initially at equilibrium. This dimensionless current corresponds to an
experimental current of 1 kA and a solar current of ∼ 5× 1012 A. This agreement of
normalized parameters in Figure 5.5 indicates that the reverse current mechanism
can reproduce the observed three-part structure at the solar scale.

Figure 5.5: Comparison of the cavity width for all the different scenarios, taken
from the right column of Figure 5.1. Color: (blue) Reverse current, (red) current
channel, (yellow) separation, and (black) theory (b̄(t) + δ̄/2). Style: (o) CME on
2011 October 4, (x) laboratory, and (�) simulation. In this plot, the separation is
defined as the center-to-center distance between the main current and the reverse
current layer. Vertical errorbars are ±0.5 for all traces. The black line represents a
numerical solution to Eq. 5.8 with δ̄ = 0.25 and Ī = [Ī0 + 20 sin(πt̄/60)].
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C h a p t e r 6

MAGNETICALLY INDUCED CURRENT PISTON FOR
GENERATING EXTREME-ULTRAVIOLET FRONTS IN THE

SOLAR CORONA

Pakorn Wongwaitayakornkul, Magnus A Haw, Hui Li, and Paul M Bellan. “Mag-
netically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the
Solar Corona”. In: The Astrophysical Journal 874.2 (2019), p. 137. doi: https:
//doi.org/10.3847/1538-4357/ab09f2.

P.W. designed and conducted the experiment. P.W. and M.A.H developed the
simulation. H.L. provide the simulation source code. P.W., M.A.H., and P.M.B
discussed and wrote the manuscript.

In this chapter, we generalize the model from Chapter 5 by letting the plasma mass
thickness ∆ be different from the current layer thickness δ. This study emphasizes
the relationship between the reverse current layer motion and the properties of the
plasma density shock.

Single-pulse, globally-propagating coronal fronts called EUV (or EIT) waves were
first observed in 1995 by the Extreme-ultraviolet Imaging Telescope (EIT) and every
observed EUV wave since has been associated with a coronal mass ejection (CME).
The physical mechanism underlying these waves has been debated for two decades
with wave or pseudo-wave theories being advocated. We propose a hybrid model
where EUV waves are compressional fronts driven by a reverse electric current
layer induced by the time-dependent CME core current. The reverse current layer
flows in a direction opposite to the CME core current and is an eddy current layer
necessary to maintain magnetic flux conservation above the layer. Repelled by the
core current, the reverse current layer accelerates upwards so it acts as a piston
that drives a compressional perturbation in the coronal regions above. Given a
sufficiently fast piston speed, the compressional perturbation becomes a shock that
separates from the piston when the piston slows down. Since the model relates the
motion of the EUV front to CME properties, the model provides a bound for the
core current of an erupting CME. The model is supported and motivated by detailed
results from both laboratory experiments and ideal 3D MHD simulations. Overlaps
and differences with other models and spacecraft observations are discussed.

http://dx.doi.org/https://doi.org/10.3847/1538-4357/ab09f2
http://dx.doi.org/https://doi.org/10.3847/1538-4357/ab09f2
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6.1 Introduction
Globally-propagating coronal fronts, were first observed in 1995 by the Extreme-
ultraviolet Imaging Telescope (EIT) on the Solar and Heliospheric Observatory
(SOHO). These ‘wave’-like structures, now called EIT waves or EUVwaves, exhibit
bright, nearly-circular fronts in the EUV spectrum, with velocities in the range 200-
500 km s−1 [71, 99, 134]. In this work, we will follow the convention of Cohen et al.
[30] and describe these features as EUV waves. Spectral observations across a large
temperature range (1-4MK) indicate that these fronts are compressive perturbations
[73, 88, 149]. Additionally, there is evidence for adiabatic heating implying modest
temperature increases of 5-10% [43, 119, 142, 154]. To date, every observed EUV
wave has been associated with a coronal mass ejection (CME) [18, 143, 149]. Since
failed eruptions and non-eruptive flares do not produce these fronts, the generation
mechanismmust be related to the CME expansion. EUVwaves are also occasionally
coincident with Type II radio bursts indicating the presence of a shock [21].

Reviews of EUV waves [28, 86, 155] have divided the proposed theories into two
groups: wave theories and pseudo-wave theories. A pseudo-wave is a phenomenon
that behaves similarly to a wave, but is not prescribed by a wave equation. This sep-
aration characterizes a fundamental physical difference: waves are self-propagating
and pseudo-waves require a driving mechanism. In the wave interpretation, EUV
waves are commonly thought to be fast mode Alfvén waves/shocks [135, 146] or
some form of slow-mode soliton [153]. The three pseudo-wave theories propose
that the bright front is either (i) a current shell [32], (ii) the wake of a Moreton wave
[27], or (iii) reconnection at the expanding CME surface [5]. The different theories
are categorized in Figure 6.1, based on feature speed and timescale of the driver.

Unfortunately, none of the wave or pseudo-wave theories are consistent with all of
the observed properties of EUVwaves [86, 153]. A suitable theorymust explainwhy
EUV waves (1) are observed as single pulses, (2) propagate at sub-Alfvénic speeds,
(3) have coherence across solar diameter scales, and (4) can produce shocks. Due to
these varied properties, many papers [29, 30, 34, 83, 106] have called into question
the stark separation between the wave and pseudo-wave theories, instead calling for
a hybrid model where both pseudo-wave and wave components are present.

The work in this chapter is an extension of the cavity model in Chapter 5 with
an emphasis on the piston-driven shock mechanism. We describe in Section 6.2 a
simple analytic model for an expanding compressional current layer at the surface
of a CME and show that this model is consistent with all the observed properties
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Figure 6.1: Classification of previous literature by feature speed and driving
timescale. The trend of the proposed theories goes from wave, to shock, then
to pseudo-wave, and finally to hybrid model. vms represents the local wave speed.

of EUV waves. This hybrid model quantifies the magnetic driving mechanism, the
dynamical evolution of the compressional front, and the generation of fast mode
waves/shocks. The model is supported and motivated by an experiment of an
erupting flux rope and by a 3D MHD simulation of this experiment, described in
Sections 5.2 and 6.4 respectively. The experiment shows a visible Hα front with
associated reverse current layer propagating ahead of the main current channel. The
simulation shows the generation of a propagating compressional layer which can be
simultaneously classified as a fast mode shock, a current shell, and the expanding
surface of the CME. Section 6.5 discusses the degree to which the competing EUV
wave theories are physically equivalent.

6.2 Theory
Piston-Driven Shock
A shock is a discontinuity in plasma parameters which occurs when the plasma
flow velocity exceeds the characteristic wave speed. In the frame moving with the
shock, the plasma conserves mass flux, momentum, magnetic flux, and energy,
while entropy increases across the shock. Equating the conserved quantities across
the shock yields the Rankine-Hugoniot (R-H) jump conditions. In magnetohydrody-
namic (MHD) fluids, information can be carried via three possible waves: (i) shear
Alfvénwave, and (ii) fast and (iii) slow branch ofmagnetosonic wave, which result in
three different shock types according to the associated wave. The fast magnetosonic
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shock is the only possible type for a configuration with magnetic field perpendicular
to the shock normal. In this case, the characteristic velocity of a perpendicular fast
magnetosonic wave is vms =

√
c2

s + v
2
A, where cs =

√
γP/ρ and vA = B/√µ0ρ are

respectively the local sound and Alfvén speeds. Consider a 1D planar shock and
suppose a tangential magnetic field Bt is perpendicular to the normal flow velocity
vn; the following 4 quantities are conserved across the shock so their upstream (u)
and downstream (d) values in the shock frame are equal: (i) mass, (ii) flux, (iii)
momentum, and (iv) energy. Using [Q]du to denote the difference of a quantity Q at
upstream and downstream locations, the conservation equations can be written as

[ρvn]du = 0 (6.1)

[Btvn]du = 0 (6.2)[
ρv2

n + p +
B2

t

2µ0

]d

u
= 0 (6.3)[

1
2
ρv3

n +
γ

γ − 1
pvn + vn

B2
t

µ0

]d

u
= 0. (6.4)

Solving the system of equations above [37] gives the relations

ρd

ρu
=

vn,u

vn,d
=

Bt,d

Bt,u
= X (6.5)

pd

pu
= Y = 1 + γM2(1 − X−1) + β−1(1 − X2), (6.6)

where X is the positive root of

2(2 − γ)X2 + (2β + (γ − 1)βM2 + 2)γX − γ(γ + 1)βM2 = 0, (6.7)

where M = vn,u/
√
γpu/ρu is the upstream acoustic Mach number, and β =

2µ0pu/B2
t,u is the ratio of the gas pressure to the magnetic pressure of the unshocked

plasma. The expression for compression ratio simplifies to X = (γ + 1)M2/[2 +
(γ − 1)M2] for a hydrodynamic shock (β >> 1,M) and X = (γ + 1)/(γ − 1) for a
strong shock (M >> 1, β).

We can also show that the change of entropy, defined by S = ln(p/ργ), can be
expressed as [S]du = lnY − γ ln X . The second law of thermodynamics requires
[S]du > 0. Since d[S]du/dX ≥ 0 everywhere and [S]du = 0 when X = 1, it follows
that X > 1, i.e. the shock has to be compressive. Consequently, Bt,d > Bt,u always,
implying the existence of a current sheet.
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The large amplitude wave driven by the piston steepens into a shock due to nonlinear
evolution of the wavefront [92, 147]. The large amplitude wave continues to steepen
until the width of the discontinuity reduces to either a dissipative or a dispersive
length scale. The steepening and disspative (or dispersive) effects balance out each
other and the shock is formed. This implies that the shock will ultimately be formed
in every wave with decreasing density in the direction of propagation [78]. The
shock can form even when the piston moves below the characteristic wave speed
[171], but it might not be observable due to the formation time being larger than
the time of observation. When the piston travels at a speed above the characteristic
wave speed, the shock is guaranteed to occur. When the piston decelerates, the
shock retains its shape and propagation, separating from the piston.

Return Current Layers as Magnetic Pistons
This section outlines a simple analytic model for the generation and expansion of a
compressional current layer at the surface of a CME. Consider a stable flux rope in
the solar corona and suppose that, through some form of photospheric driving, the
net current through this flux rope is increasing. This increasing current will also
induce a thin anti-parallel current in the background plasma to shield the increasing
azimuthal flux of the rising flux rope (Fig. 6.2). This induced reverse current
effectively creates a coaxial current distribution. Reverse currents are generated
for all simulation boundary driving mechanisms including flux injection, shearing
motion, and rotational motion [24, 32, 87, 137].

Any coaxial current distribution tends to have separation between the forward and
reverse currents since anti-parallel currents repel. Consequently, the return current
layer will be forced away from the core current, forming a cavity region in between
[53]. The expanding reverse current layer effectively serves as a magnetic piston
pushing background plasma out in the radial direction (Fig. 6.2). If the expansion
velocity of the current layer approaches the magnetosonic speed, the layer can
develop a shock front. This mechanism was used in shock tube experiments in the
1960’s to study high-Mach number shocks [44, 58] and is sometimes referred to as
the inverse-pinch effect.

The inverse-pinchmechanism can be analyticallymodeled as a vertical (ŷ) increasing
current I(t) of radius a in a uniform plasma of density ρ0, magnetic field B0 ŷ, and
pressure P0. This rising current induces an anti-parallel shell current of width δ,
total current −I, and a constant current density Jy = −I/[π(2b + δ)δ] across its
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Figure 6.2: Illustration for the analytic model of the current layer generation and
propagation. Here, we extend the model so the thickness of current layer δ and the
thickness of plasma mass ∆ could be different.

width. The central and return currents correspond to the respective red and dark
blue features in Fig. 6.2. The current shell (dark blue) pushes out plasma that is
compressed into a density shell (light blue) of thickness ∆, bounded by a shock front
at b + ∆.

The motion of the plasma density shell is controlled by two opposing forces: an
expansive magnetic force ( fe) which is proportional to the square of the central
current I and a confining force from background pressure ( fc). Assuming an
axisymmetric expansion of the current layer, we can express the 1D equation of
motion in units of force-per-length as

d
dt

(
M

d
dt

b(t)
)
= fe − fc, (6.8)

where M = ρ0π
(
(b(t) + ∆)2 − a2) is the total mass per-length compressed into the

reverse current annulus, b(t) is the inner radius of the reverse current annulus, fc
is the confining force-per-length, and fe is the expansive force-per-length. The
compression of all mass in the swept area into a dense exterior layer is called the
“snowplow assumption” (i.e., δ,∆→ 0) and represents the limiting behavior at high
Mach number.

For a more general case comparing to the Chapter 5, we differentiate the thickness of
the current layer δ̄ and the thickness of the plasma mass ∆̄. The total expansive force
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and confining force can be calculated as shown in Eq. 5.7 giving the normalized
integrable equation of motion for the magnetic piston to be

M̄ Ǖb = Ī2

3π
3b̄ + 2δ̄
(2b̄ + δ̄)2

− π(b̄ + ∆̄) [1 + β] − Û̄M Û̄b, (6.9)

where normalized values are indicated with a bar i.e. b̄ = b/a, δ̄ = δ/a, ∆̄ = ∆/a,
t̄ = (B0/a

√
µ0ρ0)t, Ī = I/I0 = Iµ0/(B0a), M̄ = M/(ρ0a2) = π((b̄ + ∆̄)2 − 1), and

β = 2µ0P0/B2
0 . This choice of normalization has three free parameters: background

magnetic field B0, core current radius a, background plasma density ρ0.

In this form, the values of Ī, δ̄, ∆̄, β, and γ fully determine the evolution. For δ̄, ∆̄ =
0.2, β = 136, and γ = 5/3, numerical solution ofEq. 6.9 shows that the peak velocity
is reached early in the evolution and then quickly decays. For a constant current
Ī(t) = Īc, the dynamics of the reverse current layer depends on how Īc compares to
two critical values Īe and Īs. When Īc = Īe = π(δ̄ + 2)

√
3(∆̄ + 1)(1 + β)/(2δ̄ + 3) ∼

83, b̄(t) stays stationary, i.e. Ǖb = 0 and Û̄b = 0 at b̄ = 1. Below this value, the
reverse current layer radially collapses inward due to insufficient internal magnetic
pressure to balance out the external one. Above this value, the current piston
pushes out the plasma and drives the compressional front. The internal magnetic
pressure is initially larger than the external one and decreases as the piston expands.
Let the two pressures be equal at b̄ = b̄0; at that location, Û̄b reaches maximum
( Ǖb = 0). When Īc = Īs = π(2b̄0 + δ̄)

√
3(b̄0 + ∆̄)(3 + (γ + 1)β)/(3b̄0 + 2δ̄) ∼ 161,

themaximum speed of piston exceeds the normalizedmagnetosonic speed, vms/vA =√
1 + (cs/vA)2 =

√
1 + γβ/2, and the piston generates a travelling shock wave, i.e.

Ǖb = 0 and Û̄b =
√

1 + γβ/2 at b̄ = b̄0. Û̄M = 2π(b̄ + ∆̄) Û̄b is used for the third term
of the right hand side of Eq. 6.9. Numerical solution shows that b̄0 ∼ 1.3 for
100 < Īc < 200. Given the expression for the total mass of the density shell, the
compression ratio can be expressed as X = ρ̄ = ((b̄ + ∆̄)2 − 1)/((b̄ + ∆̄)2 − b̄2).

This hybrid model exhibits both wave and pseudo-wave characteristics. Since the
feature motion is determined by physical forces rather than by a dispersion relation,
the layer will move at a range of possible speeds depending on the driving current
and the local background conditions. The model also generates shocks for initial
conditions (namely Īc > Īs) where the driving velocity exceeds the magnetosonic
speed at early times. Thus, if Īe < Īc < Īs the phenomenonwill bewave-like and sub-
Alfvénic whereas if Īc > Īs the phenomenon will be shock-like and super-Alfvénic.
This range of possible behaviors from low speed (sub-Alfvénic) to high speed (shock)
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satisfies the major observational constraint that sometimes sub-Alfvénic wave-like
behavior is observed and sometimes, as manifested by Type II radio bursts, fast
shock-like behavior is observed.

The theory in the previous section is motivated by measurements of a plasma flux
rope experiment. This experiment was designed to produce an arched flux rope with
dimensionless parameters similar to those of solar prominences (µ0LvA/η � 1,
β ∼ 0.1 inside the loop and β ∼ 100 in the background) [46, 125, 157]. This
dimensionless equivalence allows solar prominences to be simulated in the lab with
high repetition and control. A description of free parameters and constraints on
dimensionless scaling in MHD is given in Ryutov, Drake, and Remington [116];
this shows that the experiment can be readily scaled to solar situations.

The experiment combines three subsystems to generate flux ropes: solenoids to
provide a background bipolar magnetic field, gas ports to supply neutral argon gas,
and electrodes which drive current through the plasma (Fig. 5.2a). The resulting
arched flux rope then expands outwards due to the hoop force. For a more detailed
description of the experimental apparatus see Ha and Bellan [46], Stenson and
Bellan [125], and Wongwaitayakornkul et al. [157].

The experiments described in this chapter use an additional hydrogen background
prefill (n ∼ 1021 m−3) not present in previous experiments [46, 125, 157]. This
background gas serves two purposes: it creates a background hydrogen plasma for
the flux rope to interact with and it enables distinguishing the motion of the flux rope
(Ar) and background plasma (H) from each other through spectroscopic filtering of
images. This technique is exhibited in the left halves of the image sequence shown
in Figure 6.3. This sequence shows the formation and propagation of a density front
in the background hydrogen plasma. This layer (cyan) propagates ahead of the flux
rope (red) with an increasing separation over time.

A fast ICCD movie camera, a magnetic probe array and Langmuir probes are used
to diagnose spatial and temporal characteristics of the plasma. The optically filtered
fast ICCD camera provides the series of spectroscopic images shown in the left
half of Figure 6.3. The magnetic probe array measures the magnetic field along
the z axis from voltages induced by changing magnetic fields. Assuming that the
internal evolution is much slower than the global expansion, the time evolution
can be converted [53] to spatial position with ∂/∂z ↔ v−1

z ∂/∂t, with vz = 15 km
s−1. Then Jy = (∇ × B) · ŷ/µ0 = (∂zBx − ∂x Bz)/µ0 ≈ (∂t Bx)/(µ0vz), since spatial
variation of the flux rope is mostly in z direction (∂zBx � ∂x Bz). Negatively biased
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Figure 6.3: The left dark background halves are the image sequence of multiwave-
length fast camera images of the experiment, composing of two band passes: visible
(red) and filtered Hα (cyan). The right white background halves are the cross-
sectional plots of simulated current density in horizontal direction (Jy) of the ideal
3D MHD simulation. The colorbar indicates the value of Jy. In both cases, the
snapshots are taken at the same time (labelled in white) after the plasma breakdown.
The simulated images are taken at different times fromHaw et al. [53]. The temporal
and spatial quantities are scaled into solar environment as labelled in the parentheses

.

Langmuir probes measured ion saturation current from the plasma at a given time
along the z axis. The ion density can be inferred from ion saturation current Isat,
with an isothermal assumption, i.e., ni = Isat/(0.6eAcs) with cs =

√
2κTe/mi = 20

km s−1 and probe tip area A = 7.6 × 10−6 m2.

The solid lines in Figs. 6.4a and 6.4c are example plots of the measured time
dependence of probes at three different values of z̄. This data was fitted with
analytic functions which are plotted as dashed lines in Figs 6.4a and 6.4c. J̄y(t̄)
was modeled as two Gaussian peaks and ρ̄(t̄) was modeled as a piecewise function
that increases linearly and decreases exponentially. The Langmuir probe data was
taken from 164 shots at 24 different locations (z̄ = 10–30). The magnetic data was
taken from 83 shots at 4 different locations (z̄ = 16–22). Space-time contour plots
of J̄y(z̄, t̄) and ρ̄(z̄, t̄) were constructed from the measurements and are shown in
Figs. 6.4b and 6.4d. The positive and negative component of J̄y contour are scaled
differently to enhance the negative component. A detailed description of the method
for construction of these contour plots is given in Section 6.3. These measurements
along with the lower brightness of optical line emission in between the two opposite
current features from the images imply that there is a depletion in density in the
region between the two opposite currents. The Langmuir probe signals show a clear
jump in density indicating a shock in ion density with thickness δ = 0.8 ± 0.3 cm
and compression ratio X = 1.8 ± 0.4. Let t0 and t1 be the time in which Langmuir
probe data first increase from the background level and reach the peak respectively.
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Figure 6.4: (a) and (c) show the experimental sample time series of the magnetic
and Langmuir probes (solid line) with the reconstructed fitted profiles (dashed line).
(b) and (d) plot the space-time profiles of the dashed line of J̄y and ρ̄ in (a) and (c).
The normalized parameters for the experiment are a = 1.1 cm, vA = 0.43 km s−1,
τ = a/vA = 130 µs, ρ0 = 9.1× 10−9 kg m−3, B0 = 0.46 G and J0 =

√
ρ0/µ0/τ= 3.3

kA m−2. These parameters can be scaled to the solar context using a = 6.25 Mm,
vA = 41.7 km s−1, τ = 135 s, ρ0 = 7.0 × 10−12 kg m−3, B0 = 1.2 G, and J0 = 16.7
µA m−2. The method for scaling to the solar context is given in Chapter 5.

Then δ is deduced from the difference in the arrival times and from the speed of the
feature as δ = vz(t1 − t0). X is determined by the ratio of the signal at those two
times, X = ρ̄(t1)/ρ̄(t0).

The following section describes results from a 3D ideal MHD numerical simulation
of the experiment. This numerical simulation confirms that the reverse current
mechanism can generate shocks and also allows a shock analysis with high spatial
resolution.

6.3 Experimental Contour Reconstruction
The following steps are used to create the space-time contour plots shown in Figs.
6.4b and 6.4d:
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1. A single point measurement at location z̄ = z∗j and z∗ρ gives experimental time
series J̄y,exp(t̄) and ρ̄exp(t̄) respectively.

2. A constructed time series profile for both parameters are defined as two
Gaussian peaks for J̄y,con(t̄) and a piecewise function that increases linearly
and decreases exponentially for ρ̄con(t̄). The analytic expressions are given by
Eqs. 6.10 and 6.11.

J̄y,con(t̄; J±, t±, τ±) = J+ exp
(
−(t̄ − t+)2

2τ2
+

)
− J− exp

(
−(t̄ − t−))2

2τ2
−

)
, (6.10)

ρ̄con(t̄; ρi, ti, λ)i=0,1,2,3 =



(ρ0/t0)t̄ , t̄ < t0
(ρ1 − ρ0)(t̄ − t0)/(t1 − t0) + ρ0 , t0 < t̄ < t1
ρ1(ρ2/ρ1)(t̄−t1)/(t2−t1) , t1 < t̄ < t2
(ρ3 − ρ2)(t̄ − t2)/(t3 − t2) + ρ2 , t2 < t̄ < t3
ρ3 exp(−(t̄ − t3)/λ) , t̄ > t3.

(6.11)

3. For a given pair of (z∗j, z∗ρ), the comparison between the experimental and
constructed profile gives fitting parameters for this particular pair of z̄.

{
J̄y,exp(t̄) ↔ J̄y,con(t̄; J±, t±, τ±)
ρ̄exp(t̄) ↔ ρ̄con(t̄; ρi, ti, λ)

}
extract−−−−−→

{
J±, t±, τ±
ρi, ti, λ

}
, at z̄ = z∗j .
, at z̄ = z∗ρ.

(6.12)

4. The pair (z∗j, z∗ρ) is varied through its domain to determine the z̄ dependency
of each parameter. The Cj’s are determined by best fit to the measured data.
The models are chosen as follows:

a) J± is modeled as an exponential decay, i.e. J±(z̄) = C1 exp(−C2 z̄). The
current is assumed to decay exponentially due to the magnetic diffusion.
The extrapolation of J̄y(z̄) to small z̄ is consistent with the expected
value, i.e. Jy,expected = 1 kA/(π(0.5 cm)2) ∼ 40 MA m−2 → J̄y,expected ∼
8 × 103.

b) ρi and ti for i = 0, 1, 2, 3 are fitted as second degree polynomials with
respect to z̄, for example, t0(z̄) = C3 z̄2 +C4 z̄ +C5. The Langmuir probe
data covers most of the range of z̄. Therefore, we choose the simplest
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smooth curve function to fit these parameters. t± lie well with the best fit
of t1 and t3 within their domain, so we set t−(z̄) = t1(z̄) and t+(z̄) = t3(z̄).

c) τ± and λ are chosen to be constants, i.e. τ±(z̄) = 0.01 and λ(z̄) = 0.1.
From observations, the widths do not change with z̄ as much as the other
parameters. Thus, for simplicity, the widths are assumed to be constant
for all z̄.

5. Figures 6.4b and 6.4d are obtained by plotting contours in the space-time
domain using the constructed functions.

J̄y(z̄, t̄) = J̄y,con(t̄; J±(z̄), t±(z̄), τ±(z̄)), (6.13)

ρ̄(z̄, t̄) = ρ̄con(t̄; ρi(z̄), ti(z̄), λ(z̄)). (6.14)

6.4 MHD Numerical Simulation
The 3D ideal MHD simulation of the experiment was performed on the Los Alamos
Turquoise cluster as part of the Los Alamos COMPutational Astrophysical Simu-
lation Suite (LA-COMPASS) to reproduce the Caltech solar loop experiment [53,
80, 167]. The simulation follows the evolution of 8 parameters: mass density ρ,
pressure p, velocity v, and magnetic field B inside a numerical Cartesian box of size
32a. The initial parameters are set to emulate the experimental setup shown in Fig
5.2a. The initial density consists of two conic-shape density profiles as produced
by the gas nozzles at the footpoints when there is a substantial pre-filled uniform
background density. The initial magnetic field is the bipolar potential field from the
two solenoids behind the electrodes. The pressure is calculated from the isothermal
assumption and the plasma is initially at rest. Electric current is injected into the
system by adding azimuthal magnetic field corresponding to a group of circular
current loops [53, 124, 157] with a sinusoidal time dependence that mimics that in
the experiment. Figure 6.3 shows the time dependence of the loop expansion as
observed in the experiment (left halves of figures) and as calculated in the simulation
(right halves of the figures). The simulation is in reasonable agreement with the
laboratory plasma in terms of the loop’s evolution and magnetic field. The full diag-
nostic capability of the simulation allows for more detailed analysis than possible in
the experiment of the temporal and spatial dependence of the main current channel
(red) and the reverse current layer (blue).

The evolution of the system can be broken down into three stages: formation,
driving, and decoupling. Figure 6.5 shows the evolution of the apex, defined as the
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z coordinate of local maxima of |Jy |. Let t̄ = vAt/a and z̄ = z/a, where a is the
minor radius of the flux rope and the nominal length for normalization and vA is the
Alfvén speed. In the formation stage (t̄ < 0.22), a current flowing in the positive y

direction is injected into the system. The curved current channel expands in major
radius due to its hoop force and compresses in the positive z direction, forming a
flattened current channel flowing mainly in the positive y direction. Later in the
driving stage (0.22 < t̄ < 0.40), a reverse current layer is formed above the original
expanding current channel; this reverse current is formed to satisfy the magnetic
flux conservation condition in the stationary conducting background plasma above
the current channel. The increased azimuthal magnetic field in between the main
and reverse currents pushes the reverse current layer out radially and leaves behind
a region of depleted density (region between red and blue regions in Fig. 5.2a and
in Fig. 6.3). The plasma boundary, or contact front (bottom of blue region in Fig.
6.3), acts as a magnetic piston, compressing the swept-out plasma. With sufficiently
strong current, the piston expands faster than the magnetosonic speed in the plasma.
As a result, a shock is formed ahead of the piston and all the mass swept up by the
shock is compressed into a thin layer immediately behind the shock. The current
layer and the shock are indistinguishable at this stage. The thin current layer is
repelled by the core current and quickly reaches the equilibrium standoff distance as
prescribed by Eq. 6.9. The full dynamics of the induced current sheet is governed
by the force balance of fe and fc, described in Section 6.2. At t̄ ∼ 0.40, the current
injection stops, causing the driver and the contact front to decelerate. With the
condition described in Section 6.2, the contact front and the shock separate. The
shock remains in motion, while the contact front decelerates with the driver. Thus
for t̄ > 0.40 the shock is decoupled from the piston and propagates freely.

The analytic theory presented in Section 6.2 used the cylindrical coordinate system
shown in Fig. 6.2. In this section we present a result of a numerical simulation
where Cartesian coordinates are used instead. The correspondence follows {r →
z, y → y, θ → x}. Since the apex moves in the z direction, it is convenient to plot
the parameters along the z axis. Figure 6.6a plots contours of J̄y as a function of z̄

and t̄. Recall that J̄y is the horizontal component of the current at the apex as shown
in Fig. 5.2a. Figure 6.6a shows the main current channel in red and the reverse
current in blue slightly to the right of the red. The experimental J̄y contour in Fig.
6.4b shows a larger decay of amplitude in z̄ compared to its simulated counterpart
in Fig. 6.6a. This is expected due to a higher resistivity in the experiment. The
slope, dt̄/dz̄, of the reverse current layer in Fig. 6.6a implies a propagation speed
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Figure 6.5: Evolution of apex locations of the simulation during the three stages

v̄s = dz̄/dt̄ = 25, which exceeds the local fast magnetosonic speed v̄ms= 10 of the
unshocked plasma.

The transition is therefore a fast mode shock and should obey the R-H relations
given in Section 6.2. Figure 6.6b plots the temperature T̄ , showing that the loop
becomes cooler as its size increases. This is expected from the adiabatic equation
of state. The main current channel, however, remains the hottest part even after the
shock forms. The density ρ̄, in Figure 6.6c, shows that the density amplification is
largest at the location of the shock front. Behind the shock, the density depletes to
a value lower than the background (black region). Contrary to the experiment (Fig.
6.4c), the simulated density contour (Fig. 6.6c) appears to contain a single peak at
most times. A two peaks profile can only be observed when the shock is initially
formed, i.e. t̄ ∼ 0.56. The density peak of the main current decays abruptly, while
the density peak of the shock remains more or less constant. As the system expands,
the volume increases. However, only the shock acquires the additional material
from the background plasma. In the experiment, the plasma behind the electrode
most likely supplies material to sustain the density of the main current loop. Lastly,
the velocity plot, shown in Figure 6.6d, exhibits the initially fast expanding loop due
to the strong flow of material behind the loop. At t̄ < 0.38, the plasma behind the
loop experiences a large magnetic force in the positive z direction from the current
injection indicated by its large vz. For t̄ > 0.44, the shock front and its plasma flow
reach constant terminal speeds.

Figure 6.7 displays the set of quantities, in the frame moving with the shock of
speed v̄s, on the shock boundaries at time t̄ = 0.56 from the simulation; this time is
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Figure 6.6: Time evolution of 4 quantities from the MHD simulation in z along the
apex. The plots consist of (a) current density, (b) temperature, (c) mass density, and
(d) flow speed. For coronal environment, the normalization quantities are a = 6.25
Mm ∼ 0.01R�, vA = 41.7 km s−1, τ = a/vA = 135 s, ρ0 = 7.0 × 10−12 kg m−3,
B0 = 1.2 G, J0 =

√
ρ0/µ0/τ = 16.7 µA m−2, and T0 = mHv

2
A/2κ = 9.7 × 104 K

(mH = 1 u).

denoted as “shock" in Fig. 6.6. ρ̄ is the plasma density, p̄ is the gas pressure, v̄z is
the velocity in z direction, and B̄t is the tangential magnetic field in the xy-plane.
The flow speed in the shock frame is defined as v̄′z = v̄s− v̄z. This relation is obtained
by (i) move to shock frame v̄z → v̄z − v̄s and (ii) flip the sign v̄z − v̄s → v̄s − v̄z to
have v̄′z be positive in −ẑ direction. The subscripts u and d represent the upstream
and downstream value of the parameters, which are taken from the boundary of
the shocks denoted by the vertical dashed lines in Fig. 6.7. Given that the fast
magnetosonic speed is always greater than the Alfvén speed vms =

√
v2

A + c2
s > vA,

the background colors specify three regions in velocity phase space based on v′z: (i)
v′z > vms, (ii) vms > v′z > vA, and (iii) v′z < vA. The shock takes the plasma flow
from region (i) to (ii), which is the characteristic of the fast magnetosonic type.

Given the characteristic of the background plasmaM and β, we may now calculate
the expected compression ratios X and Y using Eqs. 6.5-6.6. For the simulation
at the time t̄ = 0.56, the compression ratios can be determined from the upstream
parameters ρ̄u = 1, v̄′z,u = 1, B̄t,u = 1, p̄u = 1, which gives M = 1.8, β = 136.
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Figure 6.7: The plot tracks the transition of 4 variables in the MHD simulation:
flow velocity in shock frame v̄′z = v̄s − v̄z, mass density ρ̄, pressure p̄, and tangential
magnetic field B̄t across the shock. The z̄ range and time for this plot are shown
as the magenta line in Fig. 6.6. The background colors represent the three regions
in velocity phase space: (i) v′z > vms, (ii) vms > v′z > vA, and (iii) v′z < vA. The
two vertical dash lines indicate the boundaries of the shock. Each parameter is
normalized to their upstream value. The expected compression ratios are labelled
as Y , X , and X−1 on the downstream boundary. z̄s is the location of shock center
and δ̄ is the shock thickness.

Using these values in Eqs. 6.5 and 6.6 gives X = 2.1 and Y = 3.8 as indicated with
diamond markers in Figure 6.7. The simulated compression ratios are ρ̄d/ρ̄u = 1.8,
v̄′z,u/v̄′z,d = 2.1, B̄t,d/B̄t,u = 1.9, and p̄d/p̄u = 3.9, where up and downstream values
are measured at the locations of the vertical dashed lines. These compression
ratios are also consistent with the analytic expression in Section 6.2. The simulated
compression ratios match well with the analytic expression for X = ρ̄d/ρ̄u and
Y = p̄d/p̄u, indicating that the perturbation front is a fast magnetosonic shock.
For M = 1.8, β = 136, and γ = 5/3, the magnetosonic mach number Mms =

M/
√

1 + 2/γβ > 1. The normalized entropy, S̄ = ln(p̄/ρ̄γ), also increases across
the shock (∆S̄ = 0.4).

The simulation shows that a flux rope erupted from the injection of the electrical
current induces a layer of reverse current that acts as a magnetic piston. Impulsive
expansion of the piston produces a fast mode shock that is also a current layer due
to the compression of the background magnetic field. The dynamics of the piston
is described in Section 6.2 and is compared to the simulation in Haw et al. [53]. In
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the driving phase, the shock and piston are attached. Thus, the shock evolution is
governed by the movement of the driver, displaying the characteristic of a pseudo-
wave. In the decoupling stage, the shock detaches from the piston because the piston
decelerates to a speed below the local fast magnetosonic wave speed. The piston
and shock separate and so the shock escapes the driving influence of the piston.
The shock is then self-propagating, representing the wave behavior. The presence
of both wave and pseudo-wave behavior of the simulated shock supports the hybrid
theory of CME-driven EUV wave.

6.5 Discussion
Despite the variety of different models to explain EUV waves, the physical mani-
festation of all proposed models is a propagating, compressive current layer. This
current layer is caused by compression of the background magnetic field but in
previous models this current has not been identified as being in the reverse direction
with respect to the current in the erupting flux rope. Fast mode pulses/shocks are,
by definition, compressive current layers. The current layer model in Delannée
et al. [32] has been previously characterized purely in terms of the electric current;
however, it is also co-spatial with a compressive density pulse. The wake model in
Chen et al. [27] identifies the EUV wave as a compressive front but does not take
into account that a compressional front must necessarily contain electric current.
Finally, the successive magnetic reconnection model in Attrill et al. [5] creates an
expanding density enhancement with electric current. This is not implying that all
the models are equivalent but highlights the overlap instead of the differences. In
some cases, such as the current layer [32] and wake models [27], it is not clear if
there is a physical distinction between these two models [86]. Table 1 in Long et al.
[86] presented predictions of pulse physical properties from six previous theories
and Table 2 of Long et al. [86] showed how these predictions compare to observa-
tions. Table 6.1 presented here shows the predictions given by the model presented
in this chapter for the properties listed in Long et al. [86]. vCME⊥ and aCME⊥ rep-
resents the lateral velocity and acceleration of the erupting CME. ACME represent
the area bounded by the CME bubble. These predictions are similar to the previous
fast mode wave/shock and current shell theory, which are in good agreement with
observations. The physical manifestation of the pulse would then be dictated by
whether the time of observation is in the driving or decoupling phase of the event.

The hybrid model proposed here is consistent with existing observations. The main
observation supporting the fast mode shock model is the strong correlation between
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Pulse properties
This Hybrid Model

Driving Phase
Decoupling Phase

Small amp. Large amp.
linear wave wave/shock

Phase velocity [v] & vCME⊥ vms > vms

> vCME⊥ > vCME⊥
Acceleration [a] & aCME⊥ 0 < 0
Broadening f (aCME⊥ ) ≈ 0 > 0
∆B > 0 > 0 > 0
∆T Adia.+QJoule Adia. Adia.+Q
∆ne Compression Compression Compression
Height f (CME bubble) f (B, ne) f (B, ne)
Area bounded ACME > ACME > ACME
Rotation Possible Possible Possible
Reflection No Yes Yes
Refraction No Yes Yes
Transmission No Yes Yes
Stationary fronts Yes Yes Yes
Co-spatial Type II No No Possible
Moreton wave No No Possible

Table 6.1: Prediction from this model for properties listed in Long et al. [86].

the type II radio burst and the EUV waves [18, 71, 146]. Assuming the density
profile of the corona, one could deduce the speed of the emitter from the radio
signals, which turns out to be faster than the coronal Alfvénic speed, suggesting that
the emitter is a coronal shock front. In addition, CMEs are strongly correlated with
the observation of EUV waves [18, 143, 149]. Figure 6.8 shows a system of flux
rope and shock for both an AIA observation on Jun 13, 2010 and our laboratory
experiment in reverse grayscale (i.e., black is maximum value and white is minimum
value). We have shown that an erupting flux rope can generate a fast magnetosonic
shock. The fast magnetosonic shock generated by an erupting CME should then be
able to produce the type II radio burst.

Previously measured compression ratios of the observed global EUVwave, deduced
from the intensity ratios of line emission, are 1.05–1.30 [85, 100, 170]. In the
numerical MHD simulation shown in Figs. 6.5 – 6.7, we obtain the compression
ratio of X = 1.9, which is different from the observed values due to differentM and
β of each events; Eq. 6.7 shows the relation between X ,M, and β. For example,
substitutingM = 4.36 (Note thatM =Mms

√
1 + 2/γβ) and β = 0.1 into Eq. 6.7

gives X = 1.27 as presented for May 19th, 2007 event in Muhr et al. [100]. While
a uniform β = 0.1 is commonly used at z ∼ 70-200 Mm (0.1R� − 0.2R� [85, 88])
above the solar surface as suggested by Gary [40], a more recent simulation [19]
proposed that a varying β = 20 − 200 is more suitable in that region. This range



65

Figure 6.8: Comparison of (left) the low coronal EUV (193 Å) shock wave observed
with AIA/SDO on 2010 June 13 (adapted from Ma et al. [88]) and (right) visible
emission from the Caltech experiment in reverse grayscale.

of β is used in our simulation. If we were to use M = 1.19 and β = 136, the
corresponding X according to Eq. 6.7 would also be X = 1.27. Figure 6.9 shows
the contour of compression ratio X in (M, β)-space. X = 1.27 is drawn with a
solid line. The two points (M = 4.36, β = 0.1) and (M = 1.19, β = 136) both
correspond to X=1.27 and are plotted with green and blue markers respectively. For
β >> 10, X is no longer sensitive to β and the shock approaches thehydrodynamic
limit. While β and vms are the properties of the background plasma, the expanding
speed of the structure depends on the internal current of the CME’s core as discussed
in Section 6.2. Consequently, the observation of the global EUV waves and their
measured compression ratios could give us insight into the eruption mechanism of
the CME.
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Figure 6.9: Contour of the compression ratio X(M, β) as determined by Eq. 6.7.
The compression ratio of the May 19th, 2007 event in Muhr et al. [100] X = 1.27
is plotted as a solid line. The two points corresponding to β = 0.1 and 136 along
X = 1.27 are plotted with green and blue markers. The value used in the simulation
of this work is plotted with a red marker.
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C h a p t e r 7

MAGNETIC RAYLEIGH-TAYLOR INSTABILITY IN AN
EXPERIMENT SIMULATING A SOLAR LOOP

Yang Zhang, PakornWongwaitayakornkul, and PaulMBellan. “Magnetic Rayleigh-
Taylor Instability in an Experiment Simulating a Solar Loop”. In: The Astrophysical
Journal Letters 889.2 (2020), p. L32. doi: https://doi.org/10.3847/2041-
8213/ab6b2d.

P.W. andY.Z. conducted the initial stage of the experiment, obtaining theMRTI. Y.Z.
conducted a further characterization showing that the observed MRTI wavelength
is consistent with theory. P.W. participated in the discussion. Y.Z. and P.M.B.
discussed and wrote the manuscript.

Chapter 7 to 9 discuss MHD instabilities that are observed in the Caltech plasma
experiment. Chapter 7 describes an observation from the single loop experiment
without prefill gas as mentioned in Section 2.1 and Chapter 4. Chapter 8 and
9 describe the observation from the astrophysical jet experiment, mentioned in
Section 2.2.

In this chapter, a hoop force driven Magnetic Rayleigh-Taylor Instability (MRTI) is
observed in a laboratory experiment that simulates a solar coronal loop. Increase of
axial wavelength λ is observed when the axial magnetic field increases.

7.1 Introduction
The Rayleigh-Taylor Instability (RTI) is an important instability in many astrophysi-
cal and laboratory systems, such as supernova explosions [47, 55], solar prominences
[14, 56, 117], and inertial confinement fusion [17, 129]. RTI occurs when a heavy
fluid is initially on top of a light fluid. If the low-density fluid is vacuum and the inter-
face is planar and there is no magnetic field, the growth rate of this one-dimensional
instability is

γ =
√
gk, (7.1)

where g is the gravitational acceleration and k is the spatial wavenumber. The insta-
bility grows as exp(γt)with a ripple structure initially followed by later development

http://dx.doi.org/https://doi.org/10.3847/2041-8213/ab6b2d
http://dx.doi.org/https://doi.org/10.3847/2041-8213/ab6b2d
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of plumes and finger-like structures. For a plasma supported above vacuum by a
magnetic field parallel to the planar interface [74], the growth rate generalizes to

γ2 = gk − 2 (k · B0)2

µ0ρ
, (7.2)

where B0 is the unperturbed magnetic field. For a perturbation with k⊥B0, also
known as an interchange mode, the growth rate is the same as the RTI without a
magnetic field. However, for a perturbation with k ‖ B0, known as an undular mode,
the growth rate is

γ2 = gk − 2 (kB0)2

µ0ρ
. (7.3)

The undular mode has a critical wavelength

λc =
4πB2

0
µ0ρg

(7.4)

at which γ = 0. If λ < λc, γ2 < 0, which implies that only perturbations with
wavelength λ > λc can grow. Equation 7.3 also shows that there is a fastest growing
wavelength which is given by

λm = 2λc =
8πB2

0
µ0ρg

(7.5)

and which corresponds to a maximum growth rate

γm =

√
gk
2
. (7.6)

Zhai and Bellan [166] derived the MHD theory of the MRTI on the surface of a
magnetically confined cylindrical plasma flux rope. The Rayleigh–Taylor instability
is found to couple to the classic current-driven instability, resulting in a new type
of hybrid instability. We can see that the instability wavelength λm depends on the
magnetic field B0 according to Eq. 7.5. The MRTI is thought to be the mechanism
for the formation and dynamics of plumes in solar prominences. Berger et al.
[14] observed the upflows from plumes caused by the MRTI. Ryutova et al. [117]
described how the theoretically predicted growth rates and behaviors for the MRTI
matched observations of quiescent prominence plumes. Hillier et al. [57] verified
the MRTI mechanism for upflows from simulations. Keppens, Xia, and Porth [70]
found the indications of secondary Kelvin–Helmholtz instabilities due to shear flows
at the bubbles. However, the dependence on magnetic field strengths and how this
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dependence affects observed differences are still not determined. An example of
such differences is that some prominences produce many small plumes while others
produce only large plumes [14]. RTI has been observed in the past in astrophysical
jet experiment [98], but has never been observed in the solar loop experiment.

7.2 Experimental Setup
The single loop experiment (Sec. 2.1) involves several parameters that could be
adjusted to produce a flux rope with different dynamics. A specific setting is
needed for the production of RTI. Since the flux rope does not involve a helical
kink instability as discussed in Chapter 4, a strong lateral acceleration is required
for generation of a strong effective gravity. This can be achieved by using

1. Higher voltage applied across the plasma, V = 3.1 → 4.3 kV, to create a
stronger axial current Jz.

2. Smaller bias field Bz, so that the plasma pinches down to a smaller minor
radius.

3. Nitrogen gas with pressure 80 psi empirically displays the clearest images.

An observed RTI is shown in Figure 7.1.

Figure 7.1: MRTI in a time series images of N2 plasma loop evolution.

7.3 Result
An axial magnetic field provided to the flux rope can be adjusted through changing
the voltage Vb across the bias solenoids. An observed wavelength for the MRTI
appears to be dependent on this axial magnetic field, as displayed in Figure 7.2.

A further characterizationwas done byYang Zhang [168], showing that the observed
MRTI wavelength is consistent with both the planar MRTI theory and the more
detailed cylindrical MRTI theory.
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Figure 7.2: Time series images of N2 plasma loop evolution (upper shot# 7385 and
Vb = 30 V, lower shot# 7281 and Vb = 60 V). Images were taken by Yang Zhang.
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C h a p t e r 8

SIMULATION OF A SAUSAGE-LIKE PINCHING TO KINK
INSTABILITY PROGRESSION LEADING TO A MAGNETIZED

PLASMA DISRUPTION

Byonghoon Seo, Pakorn Wongwaitayakornkul, Magnus A Haw, Ryan S Marshall,
Hui Li, and Paul M Bellan. “Determination of a macro- to micro-scale progression
leading to a magnetized plasma disruption”. In: Physics of Plasmas 27.2 (2020),
p. 022109. doi: https://doi.org/10.1063/1.5140348.

B.S. conducted the experiment, P.W. performed the simulation, M.A.H. measured
whistlerwave signal, R.S.M. detected hard x-ray signal, H.L. provided the simulation
source code, B.S., P.W., and P.M.B. discussed and wrote the manuscript.

In this chapter, a numerical simulation of an MHD instability cascade is reported.
It provides a feasible pathway that connects the MHD and kinetic scale.

We observe a plasma jet evolving through a macro- to micro- scale progression
sequence. This leads to a fast magnetic reconnection that results in the jet breaking
off from its originating electrode and forming a force-free state. A sausage-like
pinching occurs first and squeezes an initially fat, short magnetized jet so that
it becomes thin. The thin jet then becomes kink unstable. The lengthening of
the jet by the kinking thins the jet even more since the kink is an incompressible
instability. When the jet radius becomes comparable to the ion-skin depth, Hall
and electron inertial physics become important and establish the environment for
fast magnetic reconnection. This fast reconnection occurs, disrupting the jet and
establishing a force-free state. X-ray bursts andwhistler waves, evidence ofmagnetic
reconnection, are observed when the plasma jet breaks off from the electrode. This
experimentally observed sequence of successive thinning from pinching followed
by kinking is reproduced in a three-dimensional ideal MHD numerical simulation.
The results of the experiment and the numerical simulation together demonstrate a
viable path frommacro-scaleMHD physics to micro-scale non-MHD physics where
fast reconnection occurs.

http://dx.doi.org/https://doi.org/10.1063/1.5140348
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8.1 Introduction
Magnetohydrodynamic (MHD) current-driven instabilities [2, 104, 123] have long
been known to be fundamental to the behavior of magnetically confined plasmas.
Another type of instability, magnetic reconnection, is also fundamental because
it enables magnetic field topology-changing events such as spheromak formation
[59, 131] and solar eruptions [122, 126]. These instabilities are also associated
with tokamak stability [114, 156] and impulsive natural phenomena such as solar
quasi-periodic pulsations [33, 136]. While finite resistivity enables reconnection in
the MHD framework, resistive MHD reconnection is too slow to explain observa-
tions. Instead, in most cases of interest, reconnection is governed by much faster
microscopic non-MHD processes involving Hall and electron inertia physics [113]
missing from the more macroscopic MHD description. These Hall and electron in-
ertia effects only become important at spatial scales smaller than the ion skin depth
di = c/ωpi, which is microscopic and not resolved by MHD. However, because of
the large scale separation it is unclear howMHD instabilities can couple to this Hall
and electron inertia physics. One possibility is a cascade of MHD instabilities to
successively smaller scales until the ion skin depth is reached [11, 98, 166].

Current-driven MHD instabilities are frequently observed in both laboratory and
space plasmas [59, 115, 123] and are known to be associated with magnetic re-
connection [98]. While it is unclear how macroscopic current-driven instabilities
can couple to microscopic magnetic reconnection, previous theoretical and com-
putational studies have suggested the possibility of a cascade through a transition
of successively smaller scale current-driven instabilities. For example, a compu-
tational study on current-driven instabilities that used a 3D particle-in-cell code
predicted the possibility of a sausage-to-kink cascade in the context of high energy
particle production by a dense plasma focus [50]. Similarly, a recent analytic study
by von der Linden and You [82] suggested a current-driven instability cascade but
in an opposite path, i.e., as a kink-to-sausage cascade. These studies suggest that if
an MHD cascade results in progressively finer scales, the ion inertia scale and its
associated fast non-MHD reconnection might be accessed.

We report here experimental observations showing a sausage-like pinching-to-kink
cascade that progresses to the ion inertia scale and then triggers a mechanism
that results in fast magnetic reconnection. The observations show that sausage-like
pinching leads to a kink instability and that because of the inherent incompressibility
of the kink instability, the kinking leads to further thinning. This thinning attains
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Figure 8.1: Time series of a nitrogen plasma shot taken by the fast movie camera.
Images were taken by Byonghoon Seo.

the ion inertia scale and so results in fast magnetic reconnection. The observations
of sausage-like pinching to kinking and thinning are reproduced in a 3D numerical
MHD simulation.

8.2 Experimental Observation of Sausage-like to Kink Instability
The Caltech jet experiment is described in Section 2.2. A cylindrical coordinate
system {r , θ, z} is used in this chapter with the axis defined by the vacuum chamber.
The poloidal direction corresponds to {r , z} and the toroidal direction is in θ. This
electrode setup is topologically identical to that used in spheromak experiments [31,
61, 64, 95, 102] and what is new here is the resolution of the distinct sequence
wherein the plasma undergoes sausage-like pinching, then kinks, and then detaches
from the originating electrode resulting in magnetic reconnection and, in a sub-
microsecond time scale, formation of a force-free state (spheromak). The sausage-
like pinch to kink sequence followed by kinking leading to further thinning to attain
the ion inertia scale has been reproduced with high space and time resolution in a
3D numerical MHD simulation.

Most of the data reported here was obtained from hydrogen plasma shots except for
the visible-light images in Fig. 8.1 which were obtained from nitrogen plasma shots.
The reason for using these two gases is that as the plasma is radially compressed, its
temperature increases and it becomes fully ionized. Since a hydrogen ion is just a
proton and so has no bound electrons, a fully ionized hydrogen plasma emits no line
radiation making it difficult to obtain a sharp visible-light image, whereas a nitrogen
plasma has a sharp image.
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Figure 8.1 shows a sequence of visible-light images of an evolving nitrogen plasma
jet obtained using a fast movie camera. A cylindrical coordinate system {r, θ, z} is
used with the electrode plane defined to be z = 0 (see 5 µs frame in Fig. 8.1). At 1.5
µs eight initial plasma-filled arched flux tubes merge to form a single axially moving
current-carrying plasma-filled flux tube, i.e., a jet propagating in the z direction (to
the left in Fig. 8.1). At the time of merging the jet has a large radius a and a small
length L so at 1.5 µs the jet aspect ratio L/a is small. Initial small perturbations
grow exponentially during the time interval from 1.5 µs to 3.0 µs and pinch the
jet so as to reduce a while maintaining L constant; this constitutes a sausage-like
instability. This observed pinching is denoted sausage-like because strictly speaking
it is not a sausage instability since it does not originate from a perturbation of an
initial axisymmetric equilibrium as in the textbook analysis of a sausage instability.
However, since MHD force-balance is lost as soon as a textbook sausage instability
initiates, the evolution of the observed sausage-like pinching is exactly the same as
that of a textbook theoretical sausage instability. Moreover, there is by definition
no initial steady state plasma in a coaxial gun configuration powered by a capacitor
bank because this configuration necessarily involves a ramping up of a current and so
cannot provide an initial steady-state equilibrium. This situation is likely occurring
in other experiments having an analogous set-up [31, 61, 64, 95, 102], i.e., none start
from an initial textbook MHD equilibrium. On the other hand, results of the MHD
simulation which will be described below show that although the initial condition is
set to be the same as the experiment so that there is no initial steady-state equilibrium,
a short-lived equilibrium (i.e., force balance) briefly develops just before onset of
the sausage instability.

As a result of the sausage-like pinching decreasing the jet radius a, the jet becomes a
thin flux ropewith increased aspect ratio L/a as seen at 3.5 µs. The jet becomes kink-
unstable at 4 µs and the helical deformation caused by the kinking now substantially
increases L. Moreover, because the kink is an incompressible instability [104], the
jet volume remains constant during the kink, so this increase of L necessitates a
further reduction in a to maintain constant volume ∼ a2L. At 4 µs the jet length L is
approximately three times longer than at 3.5 µs and a is reduced by approximately a
factor of two. At 4.5 µs the jet radius a decreases to be order of the ion-skin depth;
at this time the jet disrupts and detaches from the electrode indicating that magnetic
reconnection occurs. This disruption is manifested by several distinct simultaneous
phenomena, namely, X-ray emission, whistler wave emission, sudden change in the
visible-light image indicating the plasma jet has detached from the electrode, and a
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Figure 8.2: Time sequence of current density iso-surfaces obtained from simulation
# 471. The two back planes at each time respectively show cross-sections of the
current density at x = 0 and at y = 0 . The surface plots contain three iso-surfaces
at levels 0.19 (blue), 0.32 (green), and 0.41 (red) of the maximum current density
at each time.

change in magnetic topology as indicated by magnetic probes.

The fast magnetic reconnection occurs when vd/vA ' O(1) where vd = J/ne is the
electron drift velocity relative to ions and vA is the Alfvén velocity which is compara-
ble to the ion flow velocity; in this limit Hall and electron inertia terms in the electron
equation of motion become important [11]. Using Bθ = µ0I/2πa and Bz = ψ/πa2

gives the vd/vA ratio as vd/vA =
(
I/πa2ne

) (√
µ0min/

√
(µ0I/2πa)2 + (ψ/πa2)2

)
=

λdi/
√
(λa/2)2 + 1where di is the ion skin depth. The numerator λdi ' O(1) because

λ ∼ 100 m−1 and di ∼ 10−2 m. Thus, the regime a � di corresponds to vd/vA ' 0
and the regime a ' di corresponds to vd/vA ' O(1); hence shrinking of the flux
rope radius to di satisfies the condition for fast magnetic reconnection to occur.
Stark-broadening spectroscopy of the hydrogen plasma jet shows that the electron
density is 5 × 1021 m−3 which implies a 3 mm ion skin depth. The observations
show that reconnection indeed occurs when the kink self-thinning reduces a to be
comparable to the ion skin depth. The resistive skin depth ∼

√
η/(µ0 f ) is about

15 mm for Te = 2 eV and 4.6 mm for Te = 10 eV (ne = 5 × 1021 m−3, ln λ = 10,
using 1/ f = 0.5 µs), and so the resistive skin depth is the same order of magnitude
as the ion skin depth. However, resistive effects cannot be dominant because the
observations of X-rays and whistler waves discussed below are inconsistent with
resistive effects being dominant [11].

8.3 Simulation
The numerical simulation solves the 3-D ideal MHD equations and traces the evo-
lution of mass density ρ, pressure p, velocity ®v, and magnetic field ®B in a numerical
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Cartesian box of size 2R0 where 0.7R0 is the initial flux tube radius. Initial condi-
tions are based on the experimental jet parameters at 2 µs and are as follows: (i) a
uniform skin current with I ' 90 kA is introduced at r = 5 cm; (ii) the plasma mass
density in the flux tube is set to be ρ0 = nmH = 5.0 × 1021 u/m3 where n is the
density in m−3 and mH is the hydrogen mass in u and the temperature is 2 eV; (iii)
a z-directed magnetic field Bz,sim = 224 G is uniformly applied in the simulation
domain; (iv) small perturbations are added to the density to induce the instabilities.
The total initial density is ρ(r) = ρmain+ ρsausage+ ρkink, where the main loop density
and the respective perturbations for the kink and sausage modes are

ρmain = ρ0 exp

(
−r2

2σ2
0

)
,

ρsausage = 0.1ρ0 exp
(

−r2

2(σ0 − σs cos
(
ksausagez

)
)2

)
,

and
ρkink = 0.1ρ0 exp

(
−(r − r′)2/R2

0

)
exp

(
−r2/2σ2

k

)
.

Here r′ = r0[cos(kkinkz)x̂ + sin(kkinkz)ŷ] , σ0 = 3.6 cm, σs = 0.36 cm, σk = 2.2
cm, and r0 = 0.7 cm. Respective wavenumbers kkink = 1.4 × 10−2 m−1 and ksausage

= 1.3 × 10−2 m−1 are chosen corresponding to the unstable modes observed in the
experiment. The plasma column is initially at rest and a small flow velocity (6 km/s
at the top and bottom and linearly decreases on approaching the center (z = 0)) in
the ±z directions is initially imposed to simulate the axial motion of the jet; this
flow velocity does not play a major role, but provides imbalance between periodic
bulged structures to mimic the axial motion of the pressure gradient in ±z direction.

Figure 8.2 shows the simulation results as a time sequence of current density iso-
surfaces. A flux tube evolves with an initial skin current configuration and initial
small aspect ratio L/a. The initial condition was set to be the same as the experiment
so the flux tube is initially not in equilibrium and the inward radial force pinches
the flux tube. Since the magnetic and thermal pressure increase by the radial
pinching, a radial force balance is established at 2.7 µs and the flux tube becomes
stable (see Fig. 8.3). Then, the flux tube develops a sausage instability at 3.3 µs.
The sausaging increases L/a to form a highly collimated current channel. A kink
instability spontaneously starts at 3.6 µs. The numerical simulation thus confirms
that the flux tube can transition from being sausage unstable to being kink unstable.

In addition, the simulation shows that regions where vd/vA ∼ O(1) develop when
the jet kinks implying that non-ideal MHD physics and resulting fast reconnection
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Figure 8.3: Time-dependent radial force obtained from numerical simulation. Ini-
tially the flux tube is not in equilibrium so the direction of the radial force at 2.3 µs
is inward. By pinching the flux tube, a temporary radial force balance is established
at 2.7 µs. Sausage instability occurs at 3.3 µs.

should occur at these locations (see Fig. 8.4). Being MHD, the simulation does not
replicate the fast non-MHD physics, but simply indicates when and where the MHD
physics has accessed the ion skin depth scale.

In conclusion, we have experimentally observed a plasma jet transition from a
sausage-like pinching to a kink instability which then leads to magnetic reconnec-
tion. The sausage-like pinching occurs first and pinches a fat, short magnetized jet to
become a thin, long magnetized jet. The thin, long jet then becomes kink unstable.
The incompressible kinked jet further lengthens and to maintain constant volume,
the kinked jet thins even more. Because of this thinning, the jet radius becomes
comparable to the ion-skin depth setting off Hall and electron inertial physics that
result in fast magnetic reconnection, jet disruption, and establishment of a nearly
force-free state. X-ray bursts and whistler waves, evidence of fast magnetic re-
connection, are observed during this process validating that non-MHD physics has
been accessed. The experimentally observed progression to ion-skin depth scales
has been confirmed by a three-dimensional ideal MHD numerical simulation. The
experiment and its numerical confirmation together establish a mechanism linking
macroscale ideal MHD (no reconnection, scale exceeding ion skin depth) to mi-
croscale physics (fast reconnection, scale less than ion skin depth, X-rays, whistler
waves).
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Figure 8.4: Time sequence of J̄, ρ̄, B̄, and vd/vA in the y-z (x = 0) plane obtained
from simulation # 471. The J̄ plots are the same as the back right planes in Fig.
5 but are shown with continuous color contours. The flux rope becomes sausage
unstable at 3.31 µs and then kink unstable so the flux rope kinks into and out of the
page after 3.63 µs. The regions where the flux rope passes through this plane are
indicated by red circles. The ratio vd/vA becomes large at the locations indicated
by yellow arrows at 3.80 µs because J̄ becomes large at these locations as indicated
by green arrows.



79

C h a p t e r 9

3D NUMERICAL SIMULATION OF KINK-DRIVEN
RAYLEIGH-TAYLOR INSTABILITY LEADING TO FAST

MAGNETIC RECONNECTION

PakornWongwaitayakornkul, Hui Li, and PaulMBellan. “3DNumerical Simulation
ofKink-DrivenRayleigh-Taylor Instability Leading to FastMagneticReconnection”.
In: Under Review (2020).

P.W. performed the simulation. H.L. provided the simulation source code. P.W. and
P.M.B discussed and wrote the manuscript.

In this chapter, we look at the last instability cascade that could provide a pathway
to magnetic reconnection. The instability was first observed in 2012 [98]. This is
the first numerical simulation for the mechanism.

While fast magnetic reconnection involving non-MHD micro-scale physics is be-
lieved to underlie both solar eruptions and laboratory plasma current disruptions,
the process by which large-scale MHD couples to the micro-scale physics is not
understood. An MHD instability cascade from a kink to a secondary Rayleigh-
Taylor instability in the Caltech astrophysical jet laboratory experiment provides
new insights into this coupling and motivates a 3D numerical simulation of this
transition from large to small scale. A critical finding from the simulation is that
the axial magnetic field inside the current-carrying dense plasma must exceed the
field outside. In addition, the simulation verifies a theoretical prediction and experi-
mental observation that, depending on the strength of the effective gravity produced
by the primary kink instability, the secondary instability can be Rayleigh-Taylor
or mini-kink. Finally, it is shown that the kink-driven Rayleigh-Taylor instability
generates a localized electric field sufficiently strong to accelerate electrons to very
high energy.

9.1 Introduction
Plasma stability has long been a subject of great interest in many situations. As
notable examples, a stable plasma is essential to achieve nuclear fusion and, in
the solar corona, plasma instabilities are considered to be the cause for energetic
phenomena. Bernstein et al. [16] were the first to study ideal magnetohydrodynamic
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(MHD) stability of plasma via the MHD energy principle which states that if a
perturbation lowers the total potential energy of a non-dissipative (ideal) MHD
plasma, the perturbation is unstable. The energy principle involves assuming a
small displacement from an initial equilibrium, then deriving linearized equations
formulated as a normal-mode eigenvalue problem, and finally showing that plasmas
governed by ideal MHD are susceptible to two distinct types of instabilities, denoted
as pressure-driven and current-driven. A common example of pressure-driven
instability, the Rayleigh-Taylor instability (RTI) [75, 112, 130], takes place at the
interface between a heavy fluid sitting on top of a light fluid in a gravitational field.
A common example of current-driven instability, the kink instability (KI), involves
a flux rope with initially straight axis having the axis become helical (writhing of
flux rope) so as to lower overall magnetic energy and tend towards a force-free state.
Both the KI [115] and the RTI [22] have been observed in the solar corona.

Magnetic reconnection, a microscopic instability involving physics beyond ideal
MHD, is thought to be responsible for many solar eruptive events such as flares,
and coronal mass ejections. The simplest reconnection model is based on taking
into account finite resistivity in MHD and was proposed by Sweet [128], Parker
[109], and Furth, Killeen, and Rosenbluth [39]. However, the predicted rate for this
“resistive” reconnection is far too slow to describe actual solar eruptive events and
many laboratory plasma reconnection observations so a more sophisticated, faster
microscopic model is needed. Models for fast reconnection are the subject of much
ongoing research [35, 36, 159] and typically involve microscopic physics beyond
the scope of resistive MHD. This fast reconnection physics involves finite ion skin
depth, finite electron inertia, and Hall terms all of which are small scale and omitted
from MHD. However, it is unclear how MHD, a macroscopic description, couples
to the microscopic non-MHD scale where fast reconnection occurs.

The Caltech astrophysical jet experiment [9] has provided some insights into this
coupling because both the macroscopic MHD scale and the microscopic non-MHD
scale can be resolved. AnMHD-driven dense plasma jet is created in this experiment
by a coaxial magnetized plasma gun located inside a large cylindrical vacuum
chamber. The motion is described using a cylindrical coordinate system {r, θ, z}
where the z axis is along the vacuum chamber axis, the r, z directions are denoted
poloidal, and the θ direction denoted toroidal. The sequence of operation starts with
establishment of a dipole-shape bias poloidal magnetic field (peak value ∼ 0.1 T).
Neutral gas is then injected into the vacuum chamber using fast gas valves connected
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to discrete nozzles located on coaxial disk and annulus electrodes at z = 0. After gas
injection, a high-voltage (3 kV) is applied across the electrodes from a capacitor bank
to breakdown the gas to form plasma. The capacitor discharge ramps up 50 − 150
kA current that flows along poloidal magnetic field flux surfaces and produces an
associated toroidal magnetic field. Magnetic forces associated with this current
squeeze together poloidal flux surfaces radially and distend these surfaces axially
so plasma frozen to these flux surfaces collimates and becomes a ∼40 km s−1 jet
that propagates in the z direction from the electrodes into the chamber. The jet lasts
about 20 µs and its flow and collimation agree with predictions based on detailed
analytical and numerical consideration of MHD forces [9, 10, 76, 164, 167]. The jet
formation, collimation, and axial lengthening have been observed using a fast movie
camera. Hsu and Bellan [59] observed a clear KI using the fast movie camera while
Moser and Bellan [98] detected a secondary RTI that happened on the inner (trailing)
side of the KI. The KI growth means that the plasma jet moves laterally from the
z-axis with exponentially increasing displacement and so undergoes a large lateral
acceleration perpendicular to the z-axis. In the frame of this laterally accelerating
plasma, the system of heavy fluid (plasma) and light fluid (vacuum) thus experience
a strong effective gravity g pointing towards the z-axis. As seen in Figure 9.1 the
Kink-Driven Rayleigh-Taylor instability (KDRT) occurs on the trailing side of the
KI corresponding to the dense plasma being “on top of” the diffuse external region.
The time scale of the RTI is about three times shorter than the KI time scale so the
two instabilities are decoupled other than the KI providing g. The minor radius of
the current-carrying flux rope decreases with spatial periodicity as a result of the
choking effect of the RTI ripples. Fast reconnection takes place when the flux rope is
choked to a radius comparable to the ion skin depth di = c/ωpi. When this happens
several simultaneous phenomena occur, namely: a strong localized EUV emission
[23], a strong localized reduction of visible light, a voltage spike, a hard x-ray burst
[94], and a whistler wave burst [52]. These non-MHD phenomena indicate that the
choking of the jet radius by the KDRT is the macroscopic ideal MHD mechanism
that allows the initially MHD-governed plasma to access the microscopic di length
scale where fast reconnection occurs.

While extensive numerical studies of both KI [15, 139] and RTI [162, 163] indi-
vidually exist, no numerical simulation of KDRT has been demonstrated. Since
the lab experiments indicate that KDRT provides a cascade path from macroscopic
ideal MHD to microscopic fast reconnection, it is likely that KDRT can also explain
many energetic events observed in nature. This suggests that a numerical simula-
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tion would be extremely valuable and could be checked against the experiment and
existing analytic models. For example, Zhai and Bellan [166] proposed a quanti-
tative analytic model for how lateral acceleration of a cylindrical current-carrying
plasma could result in either RTI or a mini-kink depending on the ratio of lateral
gravitational acceleration to the pinch force resulting from the current. However,
this model did not arrange for the lateral acceleration to be from a primary KI and
there was no numerical simulation showing the RTI being driven by a KI. Similarly,
a statistical model of electron acceleration from a reconnecting electric field was
developed [93], but there was no numerical verification using actual geometry.

Simulating the KDRT numerically poses many challenges. First, the code must
include finite β, since the equilibrium preceding the RTI involves a balance between
magnetic and hydrodynamic pressure. Equally important, there must be a density
jump or gradient to have a heavy fluid on top of a light fluid when the effective
gravity is developed by the KI. Second, the code has to capture the instability in full
3D at high resolution because multiple length scales are involved and because the KI
and RTI are fundamentally three-dimensional as they involve a writhing flux rope.
The code also has to resolve three different time scales, namely the jet collimation
time scale (τcol), the KI time scale (τkink), and the RTI time scale (τRT), where
τcol >> τkink >> τRT.

We report here 3D numerical simulation of the KDRT. This simulation, achieved
using resistive MHD, is in good agreement with the experimental observations and
alsowith the predictions of Zhai and Bellan [166] regarding the secondary instability
being either RTI or mini-kink. Section 9.2 describes the simulation model by
presenting the system of equations and the initial and boundary conditions. Section
9.3 discusses the circumstances leading to KDRT and specifically shows that spatial
localization of the axial magnetic field Bz is a key requirement. This localization
is achieved experimentally via the collimation process and corresponds to the jet
being paramagnetic [81]. Section 9.4 numerically validates the analytic results
predicted by Zhai and Bellan [166], showing that the secondary instability could be
either RTI or mini-kink depending on the dimensionless parameter Φ2 = ga/v2

Aθ

where vAθ , an Alfvén velocity calculated using Bθ only, serves as a measure of the
pinch force. Section 9.5 discusses the assumptions made regarding resistivity and
the acceleration of test particles injected into a resistive MHD plasma; this section
shows that particles will be accelerated to high energy when there is a localized
anomalous resistivity imposed as a proxy for the micro-physics associated with
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fast magnetic reconnection. Section 9.6 relates the simulation to the laboratory
observations and the applicability of the simulation to the solar corona.

Figure 9.1: The evolution of KDRT instability development on argon plasma jet
(shot#11,225) shows an inner ripple RTI on the inner side of a helical kink. The
white label indicates the time after the plasma breakdown.

9.2 3D Resistive MHD Simulation
The 3D MHD numerical simulation was performed on the Los Alamos Turquoise
supercomputer cluster using part of the Los Alamos COMPutational Astrophysical
Simulation Suite [80] which is a collection of several modern, high resolution,
Godunov-type, MHD codes. This Suite had been previously used to model the
Caltech astrophysical jet and solar loop experiments [158, 167]. An important
difference here is that a spatially and temporally dependent finite resistivity is
included. The initial situation is a flux rope (finite radius cylinder with helical
magnetic field and embedded finite density plasma) surrounded by extremely low
density plasma. The code tracks the evolution of 8 dimensionless parameters
namely: density ρ, velocity v, magnetic field B, and pressure P inside a Cartesian
box of size [−L, L]3 where L = 10a and a is the flux rope initial radius. The
dimensionless parameters are obtained by normalizing to associated dimensioned
reference parameters. These reference parameters are the azimuthal magnetic field
just outside the plasma column B0 = Bθ(r = a), the initial density on the flux
rope axis ρ0 = ρ(r = 0), the domain half-length L, the Alfvén velocity associated
with the azimuthal magnetic field vA = B0/

√
µ0ρ0, the Alfvén time τA = L/vA, the

initial on-axis pressure p0 = ρ0v
2
A, and the initial hydrodynamic energy p0L3. The

Lundquist number is defined as S = µ0vAL/η.

The dimensionless resistive MHD equations in conservative form are
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∂ρ

∂t
+ ∇ · (ρv) = 0 (9.1)

∂(ρv)
∂t
+ ∇ ·

(
ρvv +

(
P +

B2

2

)
←→I − BB

)
= 0 (9.2)

∂e
∂t
+ ∇ ·

[(
e + P +

B2

2

)
v − B(v · B)

]
= 0 (9.3)

∂B
∂t
− ∇ × (v × B) − 1

S
∇2B = 0, (9.4)

where the total energy density is e ≡ ρv2/2 + P/(γ − 1) + B2/2 with γ = 5/3.
The initial condition is that of an axisymmetric flux rope with uniform axial current
density Jz = I/(πa2) for r < a and Jz = 0 for r > a. In one configuration (extreme
paramagnetism) a uniform axial magnetic field Bz exists only inside the current
channel (r < a)while in another configuration Bz exists over the entire domain. The
code evolves the vector potential A = (Ax, Ay, Az) to maintain the divergenceless
condition of the magnetic field, ∇ · B = 0. The density is set to have a Gaussian
profile that decays radially from the flux rope axis which is located at position r0. A
small uniform background density ρb was added to avoid requiring an infinitely small
time step. The plasma is initially at rest with a uniform temperature, T = P/ρ = 1.
The initial density, pressure, velocity, and vector potential are specified as

ρ = ρ0 exp
(
−(r − r0)2/2σ2

)
+ ρb (9.5)

P = ρ, v = 0, Ax = 0, Ay = Bz x (9.6)

Az =


−(I/4π)(r/a)2 , r < a

−(I/4π)(1 + 2 ln(r/a)) , r > a,
(9.7)

where ρ0 = 1, r0 = 0, ρb = 0.01, σ = 0.1, I = 1, a = 0.1, and Bz = 0.3.
For the paramagnetic configuration Bz is finite inside the flux rope (r < a) only.
The parameters are chosen so that P(r = 0) ∼ Bθ(r = a)2/2 and the flux rope
is in approximate radial equilibrium since Bz � Bθ . Resistivity is set to zero
(η = 0) in Sections 9.3–9.4 but then is set to be finite and spatially dependent
in Section 9.5. Seed perturbations for both KI and RTI are added to the initial
state by setting r0 = sin(2πz/λKI)ı̂ + cos(2πz/λKI) ̂ to provide a KI seed, and by
setting σ = a(1 + 0.1 sin(2πz/λRTI)) to provide a RTI seed. The seed perturbations
have λRTI = 0.1 and λKI = 1. Spatial boundary conditions are current-conserving
non-reflecting outflow at the bounding surfaces.
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Figure 9.2 shows the time evolution of the numerical simulation. On the left
(t = 0.3τA), the plasma is initially in a near straight cylinder equilibrium with the
small KI and RTI seed perturbations visible. The KI takes place on the Alfvén time
scale and so appears at t = 0.9τA (middle in Figure 9.2). The lateral acceleration of
the kink produces the effective gravity that sets off the RTI which grows on a much
shorter time scale (∼ 0.2τA). The density isosurfaces at t = 1.1τA show that the
RTI has approximately e-folded and has the same short wavelength as the RTI seed
perturbation.

Figure 9.2: SimulatedKDRT at three different timesteps. τA is the Alfvén time of the
simulation. The isosurfaces represent {0.2ρ0, 0.3ρ0, 0.4ρ0} with {blue,green,red}
respectively.

On using imputed experimental parameters n0 = 1023 m−3, B0 = 1.9 T, L = 10
cm, κT = 2 eV, and mi = 40 u (Ar), it follows that vA = 20 km s−1 and τA = 5
µs. The predicted time scale for each process matches well with the observed time
scale, i.e., τcol = 2τA → 10 µs, τkink = 0.9τA − 0.3τA = 0.6τA → 3 µs, and
τRT = 1.1τA − 0.9τA = 0.2τA → 1 µs where the arrow represents converting the
dimensionless quantity to its associated dimensioned value. The word ‘imputed’ is
used here because the minor radius of 1 cm is too small for a probe measurement and
the kink dynamics is too fast and unpredictable for an interferometer measurement.

9.3 Conditions for KDRT
As demonstrated in Figure 9.3, the simulation shows that Bz must be localized in
the flux rope for the kink-driven RTI to develop. Having Bz much larger inside the
flux rope than outside corresponds to the flux rope being highly paramagnetic [81].
Figure 9.3 compares the localized Bz case (i.e., paramagnetic) to the case where Bz

exists everywhere. In Figure 9.3a, Bz is applied everywhere in the domain, while in
Figure 9.3b, Bz is finite only inside the flux rope. Even though all other parameters
are identical, KDRT is only observed when Bz is localized to be inside the flux
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rope. This paramagnetic situation corresponds to the natural state of the experiment
because the jet collimation process squeezes together axial magnetic field lines that
were initially spread apart [59]. Since magnetic field strength is just the density of
field lines, the squeezed together field lines are by definition paramagnetic. This
non-uniformity and paramagnetism is also expected in the solar corona context
because the collimation of solar flux ropes similarly requires the gathering together
of axial magnetic field lines that were initially spread apart [72].

Figure 9.3: Isosurfaces snapshot of density in two cases: (a) with uniform Bz = 0.3
and (b) with Bz = 0.3 only inside the flux rope (r < a). Both cases are taken at the
same time t = 1.1τA. The colors {blue,green,red} indicate the levels {0.5,0.7,0.9}
of the maximum density of that time frame accordingly. The planes show cross-
sectional contour of the density in the midplane.

This requirement for axial magnetic field paramagnetism demonstrated in Figure
9.3 suggests that axial magnetic field outside the flux rope has a stabilizing effect
and inhibits the RT ripples from developing. An analytical growth rate of the RTI
in a slab geometry on an interface between a plasma with density ρ and a vacuum is

γ = gk − α (k · B)
2

µ0ρ
, (9.8)

where g is a gravitational acceleration, k is the RTI wavenumber, andB is a magnetic
field parallel to the interface. α = 1 when this magnetic field is present on only one
side of the interface and α = 2 when this magnetic field is present on both sides
[42, Sec. 6.6.4]. The predicted growth rate is smaller when α = 2, so the uniform
magnetic field across the interface provides a stronger stabilization to the instability.
Although the RTI developed here is on a cylindrical geometry, the stabilizing trend
should also apply to a RTI developed in a slab geometry.
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9.4 Effect on Φ2

Zhai and Bellan [166] proposed that, under certain conditions, a current-carrying
flux rope immersed in a gravitational field should exhibit an instability intermediate
between current-driven and pressure-driven. This hybrid instability depended on
a cross-coupling between members of the broad spectrum of azimuthal modes
required to accommodate both the Cartesian geometry {x, y, z} of lateral gravity
and the cylindrical geometry {r, θ, z} of a flux rope. This situation is both more
complicated and more realistic than the traditional Cartesian model of the RTI
and the traditional cylindrical model of the KI. Zhai and Bellan [166] defined a
dimensionless parameter Φ2 = ga/v2

Aθ where vAθ = B0/
√
µ0ρ0 and showed that if

Φ2 � 1 the flux rope was more susceptible to RTI and if Φ2 � 1 the flux rope was
more susceptible to KI. Figure 9.4 compares theΦ2 regimes for the analytic solution,
the experiment, and the 3D MHD numerical simulation (the analytic solution and
experiment are from Zhai and Bellan [166] and the 3D numerical solution is the
new result presented here). In the illustration column, two curved flux ropes are
shown. The upper row shows a flux rope with Φ2 � 1, the RTI-dominated case,
while the lower row shows a flux rope with Φ2 � 1, the KI dominated case. The
parameter Φ2 can be expressed as Φ2 = ga/v2

Aθ = µ0ρga/B2
θ = µ0miniga/B2

θ .
In the experiment [166], the two cases (Φ2 � 1 and Φ2 � 1) have comparable
g, a, Bθ , and ni. The difference in value of Φ2 comes from ion mass: argon
(mi = 40 u) is used in the Φ2 � 1 case and hydrogen (mi = 1 u) is used in
the Φ2 � 1 case. In the simulation, the normalization constant for temperature
is defined as κT0 = miP0/ρ0. Therefore, lowering mi is equivalent to lowering T0

while keeping the other parameters fixed. Increasing the pressure, whilemaintaining
the plasma density, increases the numerical value of the temperature. Suppose in
the experiment the temperature of both argon and hydrogen plasma are the same
(κT ∼ 2 eV), varying the background pressure pb is equivalent to varying mi in the
experiment. Consequently, Φ2 can be tuned by changing mi in the experiment and
pb in the simulation. In the simulation column of Figure 9.4, pb = 10−4 in the upper
row and pb = 1 in the lower row.

9.5 Electron Acceleration
Numerical and theoretical investigations [20, 65] have shown that microphysical
kinetic instabilities are triggered when the electron drift velocity relative to ions, i.e.,
vd = J/ne, exceeds a threshold value. When this happens, electrons are scattered
by the microscopic wave turbulence leading to a reduction in directed electron
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Figure 9.4: The table shows the two limits of the instability: (a) Φ2 � 1 and (b)
Φ2 � 1. The instability is shown in the Illustration column, where the shape of the
instability is calculated analytically. Secondly, the different regimes are captured
with fast camera. The right hand column shows the 3D numerical simulation. The
numerical plots are isosurfaces of density. The figures in Illustration and Exper-
imental Image columns are adapted from Zhai and Bellan [166]. The Numerical
Simulation column is the result of this work.

momentum and hence an increase in the effective plasma resistivity. This section
addresses the effect of this “anomalous” resistivity. Section 9.5 describes how such
an anomalous resistivity affects the MHD simulation; the anomalous resistivity η is
switched on in the region where vd exceeds some threshold. Section 9.5 describes
the trajectory of test electrons in the presence of the simulation magnetic field and
the electric field created by the anomalous resistivity. Because the test electrons
have very fast trajectories, we assume the plasma does not change when calculating
these trajectories. The justification for this “frozen plasma” assumption is that the
cyclotron period is τc = 2πme/eB0 and the electron thermal speed is vT =

√
2κT/me

so τA/τc = eL
√
µ0mini/2πme = 2.6 × 105 and vT/vA =

√
2κT µ0mini/me/B0 = 40.

On defining the test electron transit time τT = L/vT , it is seen that τA/τT >> 1.
Initially, the ion skin depth di = (c/e)

√
ε0mi/n = 0.5 cm < a. Then, KDRT chokes

down the current cross-section to be below di prompting fast reconnection.
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Anomalous Resistivity
Fast reconnection occurs at themicroscopic di scale when non-MHDkinetic physics
becomes important and the concept of resistivity is an oversimplification. Because
of the complexity of the micro-scale physics, it is not computationally feasible to
describe these effects in correct detail in a code that also describes the 3D MHD
physics. However, by making some simplifying physical arguments [152] one
can gain insights into the effect of the microphysics. These arguments consist of
adding a large ad hoc localized anomalous resistivity to the 3D MHD code. While
this addition does not accurately describe the microphysics of the fast magnetic
reconnection, it does give insight into the accelerating process of the electrons.

The condition to trigger the ad hoc anomalous localized resistivity ηa is for the
current density J to exceed a certain threshold Jc. This is quantitatively expressed
as

η(J, t) = ηaH(J − Jc)H(t − tc), (9.9)

where ηa = µ0LvA/Sa is the normalized anomalous resistivity, Sa is the anomalous
Lundquist number, Jc and tc are the critical current density and time at which
microphysics kinetic instabilities are triggered, and H is the Heaviside step function.
The normalization constant for Jc is J0 = B0/µ0L = 1.4 × 107 A m−2. Using the
Caltech jet parameters where 6 keVX-rays are observed [94] in association with RTI
we assume an electron is accelerated to 6 keV in 1 cm. This implies the existence
of a localized parallel electric field E| | = 6 × 105 V m−1. We choose Jc = 15 and
tc = 1.2 so that the large resistivity is turned on at the same time and locations
as the reconnection event in the experiment. This defines ηa ≡ E| |/Jc and implies
Sa = 1.0. In addition to a J-dependent factor, a time-dependent factor is included
to properly trigger the reconnection due to the discrepancy between the boundary
conditions in the simulation and experiment.

Particle Simulation
The trajectory of test electrons is calculated using a snapshot of theMHD simulation
with a localized parallel electric field provided by the anomalous resistivity. Figure
9.5 shows the contour of the parallel electric field E| | = ηJ ·B/B. The guiding center
approximation [105] is used to describe the test electron motion.
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du| |
dt
=

q
m

E| | −
µ

mB
(B · ∇)B, (9.10)

dr
dt
=

u| |
B

B + E × B
B2 +

µ

qB2 B × ∇B +
mu2
| |

qB4 B × (B · ∇)B, (9.11)

where µ = mu2
⊥/2B = constant. The parallel electric field is generated at the

location of high current density where the anomalous resistivity is turned on via
Equation 9.9. From the simulation, we measure E| | = 6× 105 V m−1. The electrons
have initial thermal speed vT =

√
2kT/me. For κT = 2 eV, n = 1023 m−3, mi = 40

u, B0 = 1.9 T, vT/vA =
√

2κT µ0mini/me/B0 = 40. The initial pitch angles are
chosen at random and the initial positions are (xp, yp, zp). The 1000 particles are
randomly placed inside a cube defined by −0.2 ≤ xp ≤ 0.0, −0.4 ≤ yp ≤ −0.2,
−0.5 ≤ zp ≤ −0.3; this cube is shown by black lines in Figure 9.5a.

Figure 9.5: (a) Isosurfaces of E| | = ηJ ·B/B. The color {green,blue,red} represents
the level {0.1,0.4,0.6} of the maximum value of this time step respectively. The
gray lines shows 100 random particle trajectories. The red lines shows the trajectory
of the highly accelerated particles. The cube indicates the domain of the initial
position. (b) Distribution of the test particles initial and final energies.

The red lines in Figure 9.5a show the trajectory of particles that are accelerated to
high energy on passing through the large resistive region. The other non-accelerated
particles are indicated by gray lines. The particle energy distribution, shown in
Figure 9.5b, indicates that 10% of the particles are accelerated to energy above 1
keV. The largest energy observed is 2.3 keV. With E| | = 6 × 105 V m−1 and δ = 0.4
cm, the observed electron final kinetic energy agrees with our expected energy, i.e.
∆K = E| |δ = 2.4 keV. While highly simplified, this particle simulation nevertheless
indicates that high energy X-rays could come from the electric field generated by
the KDRT-induced magnetic reconnection; it thus gives insight into the acceleration
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process creating high energy electrons. This description of the electron acceleration
process is very simplified and macroscopic; a more physically realistic description
that takes into account changes in collisionality of electrons as they accelerate was
given in Marshall and Bellan [93].

9.6 Discussion
There was an uncertainty regarding the actual jet radius at the time and location of
the RTI in the Caltech jet experiment. In the past [167], the actual magnetic radii of
the jets are believed to be larger than the visible images shown in Figure 9.1 (a ∼ 3-5
cm). However, the result of the 3D simulation here suggests that the jet radius might
be closer to the observed radius from the visible light emission than we previously
thought. For a plasma jet with an azimuthal magnetic field Bθ = 1.9 T and a minor
radius a =1 cm, the corresponding axial current is I = 2πaBθ/µ0 = 95 kA. For this
same shot, Moser and Bellan [98] reported a consistent peak current of I = 110
kA. Furthermore, a recent study of magnetic RTI by Zhang, Wongwaitayakornkul,
and Bellan [169] on the arched plasma loop experiment with similar parameters
(a, λRT = 1 cm and κT = 2 eV) also supports that the expected minor radius is close
to the observation from the images, a ∼ 1 cm. In that study, the wavelength of the
observed magnetic RTI depends on the axial magnetic field. The RTI from that
experiment is driven from a lateral acceleration, which is a special case of KDRT
with Bz � Bθ . The kink instability grows such that k · B = 0 and hence the lateral
acceleraton in Zhang, Wongwaitayakornkul, and Bellan [169] corresponds to the
mode with small kz or long axial wavelength λz,kink. The accurate jet radius will be
important for the future study of this phenomenon; conversely, by understanding its
physical mechanism, knowing plasma dynamics and density allows us to estimate
the plasma jet radius.

Many models of the solar corona are based on the zero-β approximation and yet
describe the corona in terms of the evolution of reconnecting magnetic fields. A
zero-β code is only able to capture the current-driven instability but not the pressure-
driven one. Although a path to the reconnection scale by only current-driven
instability exists, it disregards the possibility of fast reconnection due to pressure-
driven instability. For example, Seo et al. [121] observed a cascade progression
sequence from sausage-like pinching to KI that leads to fast reconnection in a
different regime of the same Caltech jet experiment. In order to take into account the
possible role that KDRT might play in fast reconnection and particle energization
in the solar corona, it would be necessary to extend the reconnection model to
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include finite-β, collimation physics with associated paramagnetism, the di scale,
and anomalous resistivity associated with localized high current density.

In summary, the experimentally observed cascade of instabilities from KI to RTI
was simulated using a resistive MHD code. We found that (1) spatial localization
(paramagnetism) of Bz is crucial to achieve the KDRT, (2) the dependence on Φ2

given in Zhai and Bellan [166] was verified, and (3) electrons can be accelerated to
high energy through this process.
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C h a p t e r 10

SUMMARY

In this thesis, we studied several mechanisms exhibited by an arched plasma-filled
magnetically-twisted current-carrying flux rope. The investigation is done with
laboratory experiments and numerical simulations. The scalability property of
MHD plasmas allow us to compare these phenomenon with observations on the
sun. Chapter 2 describes the relevant experiments and the diagnostics. Chapter 3
explains the numerical simulation setup, initial conditions, and the injection routine.
Chapter 4 outlines the characterization of the apex dip on the experimental flux rope.
Chapter 5 depicts the density cavity from current injection. As a result of cavity
formation by the reverse current layer, Chapter 6 shows that this current layer
drives a plasma perturbation that could steepen into a shock. In the following few
chapters, observations of MHD instabilities are described. Chapter 7 displays the
observation of the magnetic Rayleigh-Taylor instability observed on the single loop
experiment. Chapter 8 demonstrates the progression of sausage-to-kink instability
via the simulation. Chapter 9 reports the simulation of kink-driven Rayleigh-Taylor
instability, leading to fast magnetic reconnection.

10.1 Future Direction
We have investigated the dynamics of the arched magnetically-twisted flux rope and
learned its mechanism for the formation of dip, cavity, shock, and instability. The
following sections provide some ideas that could be further examined.

Deflected Flux Rope
The single loop experiment is equipped with solenoids inside the vacuum chamber
for applying a localized strapping magnetic field. In the past experiment by Ha
and Bellan [46], a strapping field is shown to slow down a part of the flux rope.
Since the solenoids could be moved around the mounting relatively easily, it would
be interesting to see the effect of the localized strapping field on the dynamic and
morphology of the flux rope. A preliminary result is breifly described in App. B.
The study of rotation and deflection of CMEs is a subject of interest in the solar
physics community because incident CMEs play a significant role in the prediction
of space weather [66–69].
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Model for Initial Current Density
Amore detailmeasurement and numerical simulation gives us a better understanding
of the dynamics of the arched flux rope. In Chapter 4, the model for initial neutral
density is developed and is supported by observations. The numerical simulation
uses an ad-hoc current profile with equal spacing as an initial current density profile.
This current profile accurately mimics macro-dynamics of the flux rope, but fails
to reproduce micro-dynamics. A more precise approach would be to calculate the
initial current density from the plasma breakdown condition, i.e., Paschen’s law [79].
Given a known boundary (electrodes’ voltage), an electric field could be calculated
everywhere inside the chamber. Given the initial neutral density, the current density
can then be deduced from the Paschen’s law. Accurate knowledge for the initial
current path would be useful for understanding the plasma microscopic dynamics
and designing future plasma pulse experiments.

Numerical Simulation for MHD Instability-Driven Magnetic Reconnection
with Extended Physics
The importance of MHD instabilities on the fast magnetic reconnection mechanism
is evident as illustrated in Chapters 7 — 9. However, so far the previous numerical
simulations performed in this dissertation are all MHD simulations. The experimen-
tally observed magnetic reconnection event occurs at a much faster timescale than
the resistive MHD reconnection theory could predict. To capture the kinetic effect
properly, one could extend the physical model to include the Hall term, −J×B/nee,
in the MHD equation or use particle-in-cell simulations. The connection between
these micro-instabilities and the macro-instabilities (MHD) will give us insight into
the magnetic reconnection and mechanism for particle acceleration.
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A p p e n d i x A

ADDITIONAL MATERIAL ON DIPS ON FLUX ROPE

Let (A|B) denote a situation with injected gas ‘A’ and prefilled gas ‘B’. In addition
to the (Ar|H) case shown in Figure 2.3 1, the experiment could be conducted using
different sets of gas. A choice of gas type affects the shape of the flux rope as
demonstrated in Figure A.1.

Figure A.1: Shapes of the flux rope with the initially prefilled neutral gas of various
types.

The shape depends on the neutral gas interaction (collisional cross-section), a phe-
nomenon described in Chapter 4. The only difference here is that an injected neutral
gas interacts with a prefilled neutral, as oppose to a injected gas from the other
footpoint. Therefore, a dip location is not necessarily at the top of a flux rope. This
effect is illustrated in Figure A.2; locations of a dip shift as we change an amount of
gas injection.

Consequently, we can use this technique to create customizable flux ropes with dips
at various location. An extra nozzle could be added to generate a localized density
pileup. Figure A.3 shows three classes of flux rope with 0, 1, and 2 dips.

1#5917 of (Ar|H) has lower hydrogen input and hence looks different than Figure 2.3
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Figure A.2: Images show different shots of (Ar|H) plasma with varying gas injection
from the footpoints (#3749-3753). As a result, a dip location on the flux rope is
differed. The labels are fast-gas-valve voltages, corresponding to amounts of argon
gas injection from the footpoints. White dashed lines indicate the locations of the
dip.

(a1) (a2)

(b1) (b2)

(c1) (c2)

Figure A.3: Time sequences of illuminated neutral pileups and their corresponding
flux rope with various number of dips: (a) 0, (b) 1, and (c) 2.
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A p p e n d i x B

ADDITIONAL MATERIAL ON DIAMAGNETIC CAVITY

The strapping coils, described in Ref. [46], are installed to test the effect of strapping
magnetic field on the cavity size. The coils are located off-axis with 10 cm offset in
the y-direction. FigureB.1 shows the fast camera images of the cavitywithmaximum
strapping fields Bs =0 G, 375 G, and 750 G. From Eq. 5.10, the equilibrium cavity
size is beq = µ0I/(2πB0

√
1 + β); a stronger background field results in a smaller

cavity size,as depicted in Figure B.1.

Cavity Width

Strapping
Coils

Figure B.1: False color images of three cases with different strength of the strapping
fields at t =10.5 µs after the breakdown: (a) Bs = 0 G, (b) Bs = 375 G, and (c)
Bs = 750 G. The cavity widths are labelled with black lines and the strapping coils
are contoured with white lines
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