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ABSTRACT

This thesis presents an innovative solution to the shape measurement of large struc-
tures for space applications. The current state-of-the-art heavily relies on optical
solutions such as cameras or lasers to recover the shape of a surface. Because of the
impracticality of placing a system in front of a large structure flying in space, new
solutions need to be developed. The proposed solution is to embed angular sensors
(such as sun sensors) directly on the surface. The sensors provide a collection of
distributed measurements that form a discrete map of the angular orientation of the
structure. An integration scheme can then estimate the 3D shape of the surface.

A mathematical model to perform the integration from angle measurements to the
shape of a 3D surface is presented first. This model is purely geometric and serves
as a basis for similar concepts. The surface is known in a reference configuration
and is assumed to have deformed inextensibly to its current shape. Inextensibility
conditions are enforced through a discretization of the metric tensor generating a
finite number of constraints. Thismodel parameterizes the shape of the surface using
a small number of unknowns, and thus requires a small number of sensors. We study
the singularities of the equations and derive necessary conditions for the problem
to be well-posed. The limitations of the algorithm are highlighted. Simulations are
performed on developable surfaces to analyze the performance of the method and
to show the influence of the parameters used in the algorithm. Optimal schemes
which lower the RMS error between the reconstructed shape and the actual one are
presented.

An experimental validation of the proposed solution and algorithm is performed on
a 1.3 × 0.25 m structure with 14 embedded sun sensors. The sensors measure the
two local angles of the surface from a light source placed in front of the surface.
A small, lightweight and expandable design of the sensors is shown in this thesis.
A calibration procedure accurately correlates the output of the sensor with a 0.5°
precision. The procedure also highlights the limitations of the design. The structure
was deformed in bending and torsion with amplitudes of a few centimeters, and its
shape was reconstructed to an accuracy on the order of a millimeter.

The accuracy of the initial algorithm is found to be limited by local shape deforma-
tions caused by themechanical response of the structure. A new algorithm, replacing
the discrete inextensibility conditions with the equilibrium equations derived from
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a finite-element model, is shown. This new algorithm is tested on the experimental
structure and the accuracy of the reconstruction is increased by a factor of 2. The
RMS error is under a millimeter on average over the different applied shapes and
goes as low as 0.3 mm.

To understand how this solution can apply to large space structures, simulations are
performed on amodel of a large planar spacecraft. A 25×25m structure representing
the current concept for the Caltech Space Solar Power Project satellite is used as an
example. Sensors with similar noise properties as the ones built for the experiment
are placed on the spacecraft. A finite-element model combining the vibration of
the spacecraft with large rigid body rotations is presented. This model is used in a
Kalman filter that estimates the shape of the structure by iterative prediction from
the dynamic finite-element model and correction from the angle measurements.
Simulations are performed around the thruster actuation applied at the corner of the
structure to follow a specific guidance scheme that is optimal for space solar power
satellites. The actuation creates both vibrations of the structure with amplitudes
of few centimeters and large rotations of the spacecraft. The designed Kalman
filter can accurately estimate both effects and it is shown that millimeter accuracy
is achievable. The relationship between the number of sensors, the reconstructed
shape error, as well as potential stiffness deviations in the FE model is studied. The
results provide first order estimates of the performance of this measurement system,
in order to enable the design of future space missions.
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[

v̂ j
]

= (−2,−1, 0, 1, 2). . . . . 31
2.15 Variation of the RMS error between the reconstructed shape and the

perfect cylinder by varying the size of the grid in the u-direction from
3 to 11 control points. . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.16 Variation of the RMS error between the reconstructed shape and the
analytical cone by varying the size of the grid from 3 × 3 to 11 × 11
control points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.17 RMS error of the reconstructed cylinder while varying different pa-
rameters of the algorithm using a 5 × 5 grid of control points and
Lagrange polynomials. The red line represents the minimum RMS
error achievable using such basis functions (6.2 × 10−4). . . . . . . . 34



xii

2.18 RMS error of the reconstructed cone while varying different pa-
rameters of the algorithm using a 5 × 5 grid of control points and
Lagrange polynomials. The red line represents the minimum RMS
error achievable using such basis functions (4.0 × 10−3). . . . . . . . 35

2.19 Norm of the error of the length equations (first 2 equations of system
2.31) on the algorithm solution and optimal solution. . . . . . . . . . 37

3.1 Definition of the problem. The surface is parametrized by two co-
ordinates (u, v). The 3D surface is a mapping of the 2D coordinates
to 3D. The shape of the reference configuration is known while the
current configuration needs to be reconstructed. . . . . . . . . . . . . 42

3.2 Parameters of the algorithm defined in the uv-space. . . . . . . . . . 43
3.3 Offset of a sensor from the mid-plane of the structure. The fixed

offset tS is defined in the local reference system (in red). . . . . . . . 45
3.4 Drawing of a light sensor made from a quad-photodiode (red) and a

square aperture of length d. The thickness of the aperture is t while its
distance from the photosensitive plane is h. Each square photodiode
has a length L and is separated by a distance e from its neighbours. . 46

3.5 Two different cases defining the field-of-view of the sensor. Top: the
spot hits the inside boundary of the photodiode. Bottom: the spot
hits the outside boundary of the photodiode. The color red represents
the photodiodes, grey represents the mask, and yellow represents the
light. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 The aperture mask for the OPR5911 quad photodiode. . . . . . . . . 51
3.7 Photodiode amplifier circuit: (a) transimpedance amplifier, also

known as current-to-voltage converter, and (b) inverting amplifier. . . 52
3.8 The finished PCB of the light sensor. . . . . . . . . . . . . . . . . . 54
3.9 Grounding problem: (a) power supply and signal reference share a

common ground, (b) a real ground conductor may contain little re-
sistance and inductance; therefore, a returning current passing the
ground path creates a voltage drop which can interfere with the ref-
erence ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.10 Photo of the experiment. The plate with a black and white DIC
pattern holds 14 sensors placed on rigid supports. The plate is held
by tensioned cables at each end and two linear actuators in the middle
(the actuator attached to the center of the structure is not visible).
Targets all around the setup are used to define the reference frame. . . 56



xiii

3.11 Schematic of the setup. The surface with 14 sensors is at one end
of an optical table with an Arduino retrieving the measurements, and
the LED light is in an enclosed box at the other end. DIC cameras
produce a secondary measurement of the shape of the surface. . . . . 57

3.12 Closeup view of the top-right sensor mounted on its rigid support.
The aluminum sheet is sandwiched by another support where a ten-
sioned cable passes through and is pinched to hold the structure. . . . 58

3.13 Stage used to calibrate the sensors. The T-slotted frames allow the
stage to move sideways and up and down. . . . . . . . . . . . . . . 61

3.14 Intensity of the photodiodes as function of the angles of the calibration
stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.15 Noise of the intensities of each photodiode based on 100 measure-
ments at each point. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.16 Calibration surfaces. The colors show the difference in degrees
between the calibrated angles and the theoretical response. . . . . . . 63

3.17 Noise of the reconstructed angles from the calibration data. . . . . . . 63
3.18 Repeatability error between two 2° calibrations. . . . . . . . . . . . . 64
3.19 Accuracy of a 2° calibration using a 0.5° calibration as reference. . . 64
3.20 Error between two 2° calibrations under different light intensities. . . 65
3.21 FaroArm shape (top) and optimally reconstructed shape (bottom) that

was used to compute the bias of each sensor. . . . . . . . . . . . . . 66
3.22 DIC shape (top) and mean reconstructed shape from the sensor data

(bottom) for a 20 mm bending of the structure. The black outline
represents the boundaries of the DIC result to ease comparison. . . . 68

3.23 Difference between the DIC shape and the mean reconstructed shape
from the sensor data for a 20 mm bending of the structure. . . . . . . 68

3.24 Histogram of the RMS error between the 1000 reconstructed shapes
and the DIC result for a 20 mm bending of the structure. . . . . . . . 69

3.25 DIC shape (top) and mean reconstructed shape from the sensor data
(bottom) for a 5.2° torsion of the structure. The black outline repre-
sents the boundaries of the DIC result to ease comparison. . . . . . . 69

3.26 Difference between the DIC shape and the mean reconstructed shape
from the sensor data for a 5.2° torsion of the structure. . . . . . . . . 70

3.27 Histogram of the RMS error between the 1000 reconstructed shapes
and the DIC result for a 5.2° torsion of the structure. . . . . . . . . . 70



xiv

3.28 Mean RMS error of the reconstructed shapes for different deflection
and torsion of structure. . . . . . . . . . . . . . . . . . . . . . . . . 71

3.29 DIC shape (top) and mean reconstructed shape from the sensor data
(bottom) for a 20 mm deflection and −5.2° torsion of the structure.
The black outline represents the boundaries of the DIC result to ease
comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.30 Difference between the DIC shape and the mean reconstructed shape
from the sensor data for a 20 mm deflection and −5.2° torsion of the
structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.31 Superposition of the DIC shape and the mean reconstructed shape
from the sensor data for a 5.2° “pure” torsion of the structure. . . . . 72

4.1 Definition of the reference frames of the problem. One has the light
at its origin and the other one is used to define the FE model of the
structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Definitions of the degrees of freedom used in the formulation of the
DKT element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Picture of the experiment showing the surface to reconstruct, its
boundary conditions and the light sensor system. . . . . . . . . . . . 83

4.4 Boundary conditions of the FE model. The amplitude of each load is
left as an unknown, solved by the angle measurements. . . . . . . . . 84

4.5 Measured and reconstructed shapes for a 20 mm deflection of the
structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 Error of reconstructed shapes for a 20 mm deflection of the structure. 87
4.7 Measured and reconstructed shapes for a “pure” 5.2° torsion of the

structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.8 Error of reconstructed shapes for a “pure” 5.2° torsion of the structure. 89
4.9 Measured and reconstructed shapes for a -20 mm deflection and 5.2°

torsion of the structure. . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.10 Error of reconstructed shapes for a -20mmdeflection and 5.2° torsion

of the structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.11 Measured and reconstructed shapes for a 20 mm deflection and 5.2°

torsion of the structure. . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.12 Error of reconstructed shapes for a 20 mm deflection and 5.2° torsion

of the structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.13 Mean RMS error of the reconstructed shape for different applied

deflections and torsions. . . . . . . . . . . . . . . . . . . . . . . . . 93



xv

5.1 Pictures taken by the cameras on board IKAROS. Credit: JAXA. . . . 95
5.2 Model spacecraft. The square planar structure is homogeneous in

terms of mass and stiffness, except possibly a point mass at its center.
The axes of the structure are defined in the middle and pointing along
its edges. Thrusters at each corner provide the necessary actuation
for guidance purposes. . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Description of the Floating Frame of Reference Formulation (FFR).
The deformation of the structure is defined locally in (x, y, z). It is
then moved rigidly in the inertial frame (X,Y, Z). . . . . . . . . . . . 99

5.4 Definition of the element layout on the plate-like spacecraft as well
as the 4 corner forces. . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Definition of the triangular element and its degrees of freedom. . . . 106
5.6 Kalman filter loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.7 Definition of the angles α and β measured by a sensor. The sunlight

comes from the Z-direction (intertial reference frame) and the sensor
is aligned towards the x and y axes of the structure and follows its
deformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.8 Observability index in function of the number of sensors. The re-
duced order model retained 30 modes of vibration. Sensors are
distributed linearly on the structure in both directions. The first point
corresponds to a 2 × 2 array of sensors; the last point to a 25 × 25 one. 115

5.9 Architecture of a 1.7 m concept of the Space Solar Power Spacecraft
structure [30] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.10 External force applied at one corner of the structure. Two short
impulses at t = 0 have the sole purpose of introducing vibrations in
the structure. The longer, 30s impulses force the satellite to rotate
around the x-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.11 Rigid body rotation of the spacecraft around the x-axis. . . . . . . . . 119
5.12 Z-coordinate of the corner node of the structure (inertial reference

frame). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.13 z-coordinate of the corner node of the structure (local reference frame).120
5.14 Rigid body angle of the spacecraft around the x-axis. Zoom of figure

5.11 around the second actuation. . . . . . . . . . . . . . . . . . . . 121
5.15 RMS error of the estimated shape for different standard deviations of

the forces time derivative used in the process noise covariance matrix. 122



xvi

5.16 Estimated corner force for different standard deviations of the forces
time derivative used in the process noise covariance matrix. . . . . . 123

5.17 Evolution of the Z-coordinate (inertial reference frame) of the esti-
mated shape of the spacecraft calculated by the Kalman Filter using
a 7 × 7 sensor array. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.18 Evolution of difference between the Z-coordinate (inertial reference
frame) of the estimated shape of the spacecraft calculated by the
Kalman Filter using a 7 × 7 sensor array and the true shape of the
spacecraft. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.19 Evolution of difference between the z-coordinate (local reference
frame) of the estimated shape of the spacecraft calculated by the
Kalman Filter using a 7 × 7 sensor array and the true shape of the
spacecraft. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.20 Evolution of difference between the rigid body angle of the estimated
shape of the spacecraft calculated by the Kalman Filter using a 7 × 7
sensor array and the true shape of the spacecraft. . . . . . . . . . . . 126

5.21 Evolution of the RMS error of the estimated shape of the spacecraft
calculated by the Kalman Filter using a 7×7 sensor array (blue). The
black curve shows the result of a model assuming the spacecraft as a
rigid body and only measuring the rigid-body angle. The red curve
is the result using the algorithm introduced in chapter 2. Dark colors
represent 30s averages of the actual results in lighter color. . . . . . . 127

5.22 Histogram of the RMS error of the estimated shape of the spacecraft
calculated by the Kalman Filter using a 7 × 7 sensor array. A fit by a
Generalized Extreme Value Distribution is also plotted. . . . . . . . . 128

5.23 Evolution of the average RMS error in function of the number of
sensors. The light blue region defines the 3σ confidence interval. . . 129

5.24 Evolution of the average RMS error in function of the ratio of bending
stiffness used to calculate the true response of the spacecraft and the
one used in the Kalman filter. A 7 × 7 array of sensors is used in the
filter. The light blue region defines the 3σ confidence interval. . . . . 130

5.25 Evolution of the average RMS error in function of the ratio of bending
stiffness in the x and y directions in the finite element model used to
calculate the true response of the spacecraft. A 7× 7 array of sensors
is used in the Kalman filter. The light blue region defines the 3σ
confidence interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



xvii

5.26 Evolution of the RMS error of the estimated shape of the spacecraft
calculated by the Kalman Filter using a 7 × 7 sensor array and 4
force sensors (blue). The black curve shows the result of a model
assuming the spacecraft as a rigid body and only measuring the rigid-
body angle. Dark colors represent 30s averages of the actual results
in lighter color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



1

C h a p t e r 1

INTRODUCTION

1.1 Motivation
In his book Surfaces and Their Measurement [93], David J. Whitehouse categorizes
the usefulness of surface measurement from two roles:

one to help control the manufacture, [...] and the other to help optimize
the function.

While this book mainly focuses on manufacturing and surface quality which is
usually referred as the field of surface metrology, this quote is valid for many more
applications.

An example of shape measurement helping control the manufacture are microsopic
shape measurements to measure surface quality in applications such as optics [16].
Material testing also makes great use of shape measurement with samples ranging
from few millimeters to meters. These tests characterize the mechanical properties
of materials or the response of structures, and eventually assist in the design of more
complex geometries [48, 64]. Examples of such measurements can be seen in figure
1.1. Measuring the shape of a mirror (figure 1.1a) can help identify manufacturing
errors in order to correct the process. Figure 1.1b shows thematerial characterization
of a carbon fiber sample. The results of the test will help design complex structures.

A wide range of applications falls into the second category, surface reconstruction to
help optimize the function. Shape measurements are used in entertainment, gaming,
security, etc [78, 96, 98, 99]. Figure 1.2 shows some examples of such applications.
Body tracking using gaming hardware shown in figure 1.2a can recreate human
motion and expression which can be integrated in immersive virtual environments.
Face recognition techniques such as the one shown in figure 1.2b has applications
in biometric security.

Historically, optical methods have been the major tool used to perform shape mea-
surements. An extensive list of techniques can be found in [18]. Laser scanning,
interferometry, photogrammetry, digital image correlation [83], structured light are
among the many methods that have been studied. Field of view, accuracy and prac-
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(a) Shape of a deformable mirror mea-
sured using a reverse Hartmann proce-
dure [82].

(b) Carbon Fiber Reinforced Polymer
(CFRP) sample under mechanical bend-
ing test. Its shape is measured using a
digital image correlation system [92].

Figure 1.1: Examples of shape measurements helping the manufacturing process.

(a) Measurement of the shape of a human body using a Microsoft Kinect for gaming and
multimedia applications [99].

(b) Real-time shape detection of a face for potential security applications [98].

Figure 1.2: Examples of shape measurements providing the functionality of gaming
and security applications.
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ticality are one of the main drivers to choose the appropriate technology. Micron
level accuracy is now standard for many systems. Figure 1.3 shows two examples
of measurement techniques. The scanning laser (figure 1.3a) measures the position
of points on a structure. The output point cloud can then be integrated into a sur-
face. Digital image correlation systems (figure 1.3b) use photos of a structure from
different angles to estimate the position of features (usually painted speckles) from
triangulation.

(a) Measurement of the shape of a solar re-
flector using a scanning laser [12].

(b) Digital image correlation (DIC) setup
to measure the shape of rotating membrane
[22]. A laser vibrometer is also used to mea-
sure the displacement of the edge of the struc-
ture.

Figure 1.3: Optical shape measurement systems commonly used for relatively large
structures.

One of the limitations of optical systems is the work space required to perform the
shape measurement. Such systems require a certain depth of view to project light
and record its scattered reflection. Their accuracy is also usually linked to the size
of the surface: the larger the structures the larger the measurement error. As a result,
their application to large structures involves a trade-off between the precision of the
measurement and the space required in front of the structure.

Recent applications have highlighted these limitations. Large deployable structures
for space application, for instance, have been of increasing interest over the last
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(a) Conceptual image of IKAROS.
Credit: JAXA.

(b) In-flight picture of IKAROS from
an on-board camera located in the
central hub. Credit: JAXA.

Figure 1.4: Images of the IKAROS mission.

decades. Large solar panels, antenna arrays, solar sails are a few examples of
concepts being currently tested or designed [3, 30, 88]. The measurement of the
shape of these large space structures can be critical for their application. The use of
an optical system such as the ones described in the previous paragraph is extremely
complicated due to the large dimensions of the structure and the fact that it is free
flying in space. Figure 1.4b for example, shows an image of the solar sail IKAROS
(figure 1.4a) taken from an on-board camera. The depth of view of the structure is
too small to be utilized for shape reconstruction purposes.

Embedded systems provide an alternative solution for the estimation of the shape
of a structure. Sensors are directly integrated in the surface instead of requiring
an external system. This approach has been studied for different applications [10,
38–40, 80, 81]. The sensors usually measure the angles of the surface at discrete
location from a fixed direction (such as the gravity vector of the Earth’s magnetic
field). For space applications, sun sensors provide angle measurements from the
direction of the Sun.

1.2 Research Goals
The overall objective of this thesis is to show the feasibility, accuracy, and limitations
of a system capable of measuring the shape of large structures for space applications
using embedded, distributed angle measurements. Other applications may use the
proposed solutions, but space structures are used as a driving example throughout
the work detailed in the thesis.

Such a system requires advancement in the state-of-the-art in two main categories:
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1. Develop efficient algorithms that reconstruct the shape of a surface from
distributed angle measurements.

Different solutions are investigated which present various pros and cons. A
static, geometry-based algorithm is first presented. Its general formulation
makes it suitable for many applications. A more powerful algorithm is pre-
sented next. This second algorithm is augmentedwithmechanical equilibrium
equations that predict the response of the structure under different loads. This
shows more accurate for structures with non-negligible bending stiffness. Fi-
nally a dynamic algorithm is implemented, accounting for inertial loads to
better reconstruct the shape of a vibrating structure.

2. Engineer sensors suited for space structures and design an experimental
system.

State-of-the-art sensors are not suited for application in ultralight space struc-
tures and new solutions need to be engineered. Developing the design of an
experimental system provides a deeper understanding of the challenges that
need to be tackled to apply the presented solution to a future space mission.

1.3 Layout of the Thesis
The layout of the thesis shows the steps undertaken to address the research goals.

Chapter 2 of this thesis details a geometric algorithm to reconstruct the shape
of a surface with embedded angle sensors. Because the measurements cannot
determine the in-plane stretching of the surface, it is assumed that the deformation
is inextensible. Such an assumption is valid for relatively thin structures with small
bending stiffness. Inextensibility equations are derived from differential geometry
and discretized over the structure. The measurement equations of the sensors are
explicitly introduced and are applicable to most types of angular sensors, especially
light sensors which are used in most of the thesis. Combining the inextensibility and
measurement equations leads to a non-linear systemof equations. By parameterizing
the shape of the surface over a set of 2D basis functions, one can solve for their
amplitude by solving these equations. Stability studies are conducted to understand
the possible singularities associated with the algorithm. Finally, simulations are
performed to show its performance when reconstructing cylindrical and conical
shapes.

Chapter 3 shows an experimental validation of the algorithm presented in chapter
2. Light sensors are designed to perform the angle measurement. They are based
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on a quad-photodiode with a square aperture placed on top, effectively acting as
a 4-pixel pinhole camera. This design creates an accurate sensor that is small,
light and inexpensive. Details are provided about the design as well as the full
calibration process of the sensors. The experimental structure consists of a 1.3×0.25
m aluminum sheet. A total of 14 sensors are embedded on the surface whose
deformation is also measured with a camera system to evaluate the performance of
the proposed solution. The accuracy of the system is on the order of a millimeter
RMS. Such an accuracy is suitable if an antenna array functioning at a 10 GHz or
less would be placed on the structure which is the case of the Space Solar Power
Project. Noticeable increases in the error are present for complex shapes where
the relative smoothness of the reconstruction introduced by the algorithm fails to
capture local effects.

In order to capture the local deformation of the structure which limits the perfor-
mance of the previous approach, a new algorithm is introduced in chapter 4. A
structural-mechanics model of the structure is used instead of the inextensibility
conditions. This model aims to accurately capture the shape of the surface subject
to external loads. A finite-element model used to estimate the mechanical response
of the structure is presented. The algorithm introduced in chapter 2 is generalized
to generate a new, finite-element based shape reconstruction algorithm. Its perfor-
mance is demonstrated on the experimental data from chapter 3 and the results are
compared to the previous algorithm. A significant decrease in the RMS error is
obtained which is primarily due to the ability to capture local deformations.

Chapter 5 expands on the previous finite-element based algorithm to reconstruct the
dynamic shape of a structure. A Kalman filter is used to minimize the RMS error of
the estimated dynamic shape of a surface. A simple modelization of the structure
combines the local vibration of a plate-like satellite structure and the large rigid
rotations needed for its operation in orbit. Sun sensors are placed on the spacecraft
and integrated with the dynamic model of the structure using the Kalman filter
formulation. Multiple studies are presented to analyze the accuracy of the system
for different numbers of sensors or under different modelization errors that can be
present in the finite-element model. The formulation is detailed for a conceptual
25×25 m solar power spacecraft developed as part of the Caltech Space Solar Power
Project. It is shown that millimeter accuracy is achievable for such a large spacecraft
which is within the requirements of the mission to use the 10 GHz antenna array.
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C h a p t e r 2

INEXTENSIBLE SURFACE RECONSTRUCTION FROM
DISTRIBUTED ANGLE MEASUREMENTS

Talon, T. and Pellegrino, S. (2019) “Inextensible Surface Reconstruction From
Distributed Angle Measurements.” Manuscript submitted for publication.

2.1 Introduction
Recovering the shape of a 3D surface often requires a measurement system with a
certain depth of view. Cameras, scanning lasers or radars are often used to generate
a point cloud of the surface. Methods exist to convert this cloud into a more or less
smooth 3D surface [8, 46].

Many solutions focus on reconstructing the shape of a surface from a set of mea-
surements and a reference configuration (also called a template). The 3D shape of
the reference is known either from a previous measurement or by construction of
the structure. For instance, the surface depicted in Figure 2.1 is known to be flat as
it is a sheet of paper and its dimensions are dictated by a predefined printed pattern.
Monocular reconstruction of a surface is a well-known approach [15, 59, 73].

Figure 2.1: Example of images used on monocular, template-based reconstruction
of inextensible surface [59]. The left image represents the reference configuration
(a flat sheet of paper) and the other images represent two configurations of the sheet
that will be reconstructed.

In some cases, these methods are not suited to measure the shape of a specific
surface. For instance, the surface can be too large to accommodate the field of
view or range of the system, there may be little or no space available in front of the
structure, or the accuracy of the system may not be sufficient.
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Reference Con�guration Current Con�guration

Inextensible Deformation

Figure 2.2: Definition of the problem. The surface is parametrized by two coordi-
nates (u, v). The 3D surface is a mapping of the 2D coordinates to 3D. The shape
of the reference configuration is known while the current configuration needs to be
reconstructed.

The approach investigated in this chapter is based on embedding angle sensors
directly on the surface to be reconstructed.

Different technologies exist to perform such measurements. Most state-of-the-art
technologies use inertial sensors (a combination of accelerometers and magnetome-
ters) to measure angles from the gravity vector and Earth’s magnetic North and have
been investigated to reconstruct both 3D curves and surfaces [38–40, 80, 81]. Note
that if the surface experiences large accelerations, the accelerometers fail to detect
the direction of gravity. Magnetic fields are easily affected by magnets, currents, or
ferrous materials, which limits the usage of magnetometers.

Sun sensors have recently been studied mostly for space applications where gravity
is near-zero [10, 84, 85]. Different sensor technologies exist. The simplest ones
use quad-photodiodes behind an aperture, effectively acting as a 4-pixel pinhole
camera [85]. More complex architectures involve cameras with a large photosensor
array that locate the centroid of the spot created by the light source using image-
processing algorithms [87]. They can also identify features in the image (such as
stars) to improve their accuracy.

The angle measurements of these sensors are fed in an algorithm that will be
described in this chapter, and the algorithm reconstructs the shape of an inextensible
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support surface that holds the sensors.

This study is limited to inextensible deformations. This requires a reference con-
figuration, also called template in the literature, to be fully known in order to define
the conservation of lengths upon deformation. The overall problem is described in
figure 2.2. Imposing inextensibility of the deformation of the surface usually serves
two purposes: 1) to eliminate singularities in the algorithms and 2) to improve the
results by adding some knowledge of the deformation. Manymethods used to recon-
struct inextensible surfaces employ a triangular [72, 73] or quadrilateral [33] mesh
to map the surface. Each edge of the mesh can be defined as a straight, rigid line
which implicitly enforces inextensibility. This method requires a fine mesh in order
to achieve a smooth mapping; this means that many degrees of freedom must be
computed from a large amount of data (for instance, high resolution images) which
can be computationally expensive. Tangential and normal vectors are undefined
at the intersection of edges which can cause issues in defining angles. Previous
research involving embedded sensors does not strongly impose inextensibility of
the deformation. The surface is reconstructed by integrating along inextensible
lines where the angle sensors are placed uniformly [38, 80]. The inextensibility is
either imposed explicitly, by enforcing conservation of lengths between sensors, or
implicitly by connecting sensors by means of rigid lines. The surface is then filled
by different techniques such as Coon’s methods in [40] or using a quad mesh in [38].
While inextensibility is imposed along the lines of integration, the reconstructed
surface usually stretches in between as the filling techniques only create a smooth
surface without imposing inextensibility. The presented method improves the ex-
isting state-of-the-art by applying inextensibility conditions across the surface with
only a limited number of equations.

Our approach is to reconstruct the shape of the surface in its current configuration by
only assuming an inextensible transformation from the reference configuration (or
template) and the measurement of angles at discrete locations along the structure.

In order to estimate the shape of a surface, we parameterize it on a set of basis
functions. This is presented in section 2.2. Different sets of basis functions relevant
to this problem are introduced. We define the inextensibility of the deformation in
section 2.3 using the conservation of the metric tensor. The general mathematical
relations are discretized in order to generate a finite set of constraints. The singu-
larities associated with this first system of equations are analyzed. A set of angle
measurements is defined in section 2.4. Their singularities are analyzed separately
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from the inextensibility conditions, and we especially investigate requirements on
the placement of the sensors. The complete system of equations including inexten-
sibility and angle measurement conditions is obtained in section 2.5. It is generally
an overconstrained system that can be solved using the Levenberg-Marquardt al-
gorithm. Singularities of this complete system are studied based on the remarks
made on the singularities of each set of equations. Finally, the approach is tested in
simulation focusing on developable surfaces, where the reference configuration can
be a flat plane. We show the results of the reconstruction of a cylinder and a cone
and investigate the influence of different parameters of the algorithm.

Table 2.1: Nomenclature

u, v Curvilinear coordinates of a surface

r(u, v) Position of the surface in the
current configuration

r0(u, v) Position of the surface in the
reference configuration

∂r
∂u (u, v)

First tangential vector of the surface
parameterized by r(u, v)

∂r
∂v (u, v)

Second tangential vector of the surface
parameterized by r(u, v)

n(u, v) Normal of surface parameterized by r(u, v)
qk Position of the control point k
φk(u, v) Basis function k
Nu Number of control points in the u-direction
Nv Number of control points in the v-direction
M0, M Metric tensor in reference, and current configurations

[ûi]
Coordinates of inextensibility grid in the
u-direction[

v̂ j
] Coordinates of inextensibility grid in the

v-direction
N̂u Size of [ûi]
N̂v Size of

[
v̂ j

]
uS, vS Curvilinear coordinates of sensor S
NS Total number of sensors

αS
Angle around the first tangent vector
at the location of sensor S

βS
Angle around the second tangent vector
at the location of sensor S



11

2.2 Surface Model
Definition of Parametric Surface
A 3D surface can be described explicitly by the mapping r : X ⊂ R2 → R3.
Only two curvilinear coordinates (u, v) are needed to uniquely define a point on the
surface as shown in figure 2.2. The image of this two-coordinate point through the
mapping represents the location of that point in 3D space.

For instance, a flat surface (or plane) can be represented by:

r(u, v) =

u

v

0

 (2.1)

A cylindrical surface of radius R along the z-axis can be represented by:

r(u, v) =

R cos u

R sin u

v

 (2.2)

Basis Function Decomposition
We consider a finite dimension mapping defined by basis functions. The mapping
r can be written as:

r : X ⊂ R2 −→ R3

(u, v) 7−→ r(u, v) =
N∑

k=1
qkφk(u, v)

(2.3)

where φk : X → R are basis functions, qk are unknown 3D points called control
points and define the weight of the basis functions, and N is the dimension of the
function space.

This basis representation is common for such problems [54, 59, 73, 86]. Many
sets of functions can be used to describe the mapping r . Perriollat et al. [59] use
Thin-Plate Splines, Metaxas et al. [54] use Finite Element basis functions which
are piecewise polynomials defined over local supports. B-Splines are used to fit
a surface to data points [24]. Note that B-Splines and the more complicated 2D
Non-Uniform Rational Basis Splines (NURBS) are often used in computer-aided
design to draw complex surfaces. Other basis functions such as rational Gaussian
functions can also be used [34]. They have the advantage of being able to capture
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Current Con�guration

Figure 2.3: Parameterized mapping defining the surface to be reconstructed. Circles
represent the 3D position of the control points.

both global and local deformations with one set of basis functions by varying the
standard deviation of each Gaussian. Simple polynomial series have also been used
in [10].

In order to define angles of the surface at specific locations (see Section 2.4), the
basis functions used in our problem need to be differentiable. We limit this study
to simple polynomial basis functions: 2D Lagrange polynomials. They are defined
over a grid of control points aligned with the curvilinear coordinates (see figure 2.3).
Let Nu and Nv be the size of the grid in each direction and note that N = Nu × Nv.
We can rewrite equation 2.3 as:

r(u, v) =
Nu∑
k=1

Nv∑
l=1

qk,lφk,l(u, v) (2.4)

Lagrange polynomials are often used to interpolate functions based on known values
at discrete locations [2]. They are easy to compute and physically understandable
as the control points lie on the surface to be reconstructed. Unfortunately, for a
large number of control points, which corresponds to a large polynomial order, they
are susceptible to Runge’s phenomenon where a function can have large oscillations
near the boundaries of the domain [27]. The basis functions are written as:

φk,l(u, v) = Lu
k (u)L

v
l (v) (2.5)
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Figure 2.4: Lagrange basis function φ4,3(u, v) = Lu
4 (u)L

v
3(v) on a regular grid of

interpolation coordinates [uk] = [vl] = (−2,−1, 0, 1, 2).

where Lu
k (resp. Lv

l ) is the Lagrange polynomial in the u-direction (resp. v-
direction):

Lu
k (u) =

Nu∏
p=1
p,k

u − up

uk − up
and Lv

l (v) =
Nv∏

p=1
p,l

v − vp

vl − vp
(2.6)

where uk (resp. vl) are interpolation coordinates defined in the uv-plane. Figure
2.4 shows the Lagrange basis function φ4,3(u, v) = Lu

4 (u)L
v
3(v) on a uniform grid of

interpolation coordinates [uk] = [vl] = (−2,−1, 0, 1, 2).

2.3 Inextensibility Constraints
Definition of the constraints
Curvilinear distances on a surface in 3D Euclidian space can be calculated using the
metric tensor [47, 66]. It is the tensor representation of the first fundamental form
in differential geometry [1]. For the parametric surface defined in equation 2.4, the
associated metric tensor is:

M(u, v) =

∂r
∂u ·

∂r
∂u

∂r
∂u ·

∂r
∂v

∂r
∂u ·

∂r
∂v

∂r
∂v ·

∂r
∂v

 (2.7)

where a · b is the inner product between vectors a and b.

The length of a curve defined in the uv-space by (u(t), v(t)), t ∈ [t0, t1] can be
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Reference Con�guration Current Con�guration

Inextensible Deformation

Figure 2.5: Inextensibility constraints on the grid defined by [ûi] and
[

v̂ j
]

. The red
and blue segments remain the same length after deformation. The angle around the
node defined by the green arc also remains the same.

calculated as:

s =
∫ t1

t0

√√√[
u′(t), v′(t)

]
M(u(t), v(t))

[
u′(t)
v′(t)

]
dt (2.8)

As a result, the deformation between two surfaces defined by r0 and r is inextensible
if any curve has the same length on both surfaces, or if and only if the metric tensor
is conserved upon deformation M =M0:

∂r
∂u ·

∂r
∂u

∂r
∂u ·

∂r
∂v

∂r
∂u ·

∂r
∂v

∂r
∂v ·

∂r
∂v

 =

∂r0

∂u ·
∂r0

∂u
∂r0

∂u ·
∂r0

∂v

∂r0

∂u ·
∂r0

∂v
∂r0

∂v ·
∂r0

∂v

 (2.9)

Note that M0 is fully known since the reference configuration is known. The
inextensibility of the transformation leads to the following 3 equations:

∂r

∂u
· ∂r
∂u
=





∂r∂u





2
=





∂r0

∂u





2

(2.10)

∂r

∂v
· ∂r
∂v
=





∂r∂v 



2
=





∂r0

∂v





2

(2.11)

∂r

∂u
· ∂r
∂v
=
∂r0

∂u
· ∂r

0

∂v
(2.12)
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Equations 2.10 and 2.11 impose the condition that the square of the local strain in
both directions u and v is zero. Equation 2.12 imposes the condition that the angle
between the two tangent directions remains constant.

Equations 2.10, 2.11, and 2.12 form a system of three non-linear differential equa-
tions for three unknowns (the components of r). The family of solutions represents
all possible inextensible deformations from the initial configuration r0. The com-
plexity of this system makes it impossible to solve analytically. As a result, we
derive a finite subset of constraints inspired from these PDEs.

We define a regular grid called Inextensibility grid aligned with the curvilinear
coordinates u and v. It is parameterized by the coordinates [ûi] = (û1, ..., ûi, ..., ûN̂u

)
and

[

v̂ j
]

= (v̂1, ..., v̂ j, ..., v̂N̂v
). This grid is shown in Figure 2.5. It is usually different

from the grid used to define the Lagrange polynomials shown in Figure 2.3.

Equations 2.10, 2.11, and 2.12 are discretized into a finite number of constraints
on this grid. The strain constraints are applied on average between two nodes of
the grid. This is equivalent to conserving the length of each edge of the grid. The
dot product constraint is taken at the nodes of the grid. This leads to the following
equations: ∫ ûi+1

ûi





∂r∂u
(u, v̂ j)





 du =
∫ ûi+1

ûi





∂r0

∂u
(u, v̂ j)





 du (2.13)∫ v̂j+1

v̂j





∂r∂v (ûi, v)




 dv =

∫ v̂j+1

v̂j





∂r0

∂v
(ûi, v)





 dv (2.14)

∂r

∂u

T
(ûi, v̂ j)

∂r

∂v
(ûi, v̂ j) =

∂r0

∂u

T

(ûi, v̂ j)
∂r0

∂v
(ûi, v̂ j) (2.15)

where the right hand-side is known.

These constraint equations can be physically interpreted by considering a 2D struc-
ture made of rods and rigid joints. The length constraints represent the inextensibil-
ity of the rods while the angle constraints represent the fixed angles between rods
imposed by the joints.

A similar approach is used in [15]. The metric tensor is constrained to be equal to
the identity tensor at discrete locations on the surface (nodes of a grid). The length
constraints in equations 2.13 and 2.14 are replaced by simply imposing the norm of
the tangent vectors to be 1 at these nodes while their dot product is equal to 0. This
approach limits the problem to developable surfaces where u and v are Cartesian
coordinates of a point in the flat configuration. Our methodology can be applied
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to any kind of surface, developable or not, and using lengths in the constraints as
opposed to the norm of the tangent vectors makes it easier to define the reference
configuration.

Rank Deficiencies
The inextensibility conditions defined in equations 2.13, 2.14, and 2.15 applied over
the whole inextensibility grid define a system of 3N̂uN̂v − N̂u − N̂v equations

f (q1, ..., qN ) = 0 (2.16)

where qk is defined in equation 2.3, f is a vector containing all the inextensibility
conditions, written as:

fu,i, j =
∫ ûi+1

ûi






 N∑
k=1

qk
∂φk

∂u
(u, v̂ j)






 du

−
∫ ûi+1

ûi





∂r0

∂u
(u, v̂ j)





 du = 0

(2.17)

fv,i, j =
∫ v̂j+1

v̂j






 N∑
k=1

qk
∂φk

∂v
(ûi, v)






 dv

−
∫ v̂j+1

v̂j





∂r0

∂v
(ûi, v)





 dv = 0

(2.18)

fA,i, j =

N∑
k=1

N∑
l=1

qk
T ql

∂φk

∂u
(ûi, v̂ j)

∂φl

∂v
(ûi, v̂ j)

−∂r
0

∂u

T

(ûi, v̂ j)
∂r0

∂v
(ûi, v̂ j) = 0

(2.19)

The Jacobian of this system of equations is defined as the tensor:

J =
[
∂ f

∂q1
...

∂ f

∂qN

]
(2.20)

Let (q∗1, ..., q
∗
N ) be a solution of equation 2.16 and r∗ the associated surface. Let

qk = q∗
k
+ δqk with ‖δqk ‖ � 1. One can calculate ∂ f

∂qk
by calculating the first

order term of the Taylor expansion of f (q∗1, ..., q
∗
k
+ δq∗

k
, ..., qN ). This leads to:

∂ fu,i, j
∂qk

=

∫ ûi+1

ûi

∂r∗

∂u (u, v̂ j)

 ∂r∗
∂u (u, v̂ j)



 ∂φk

∂u
(u, v̂ j)du (2.21)

∂ fv,i, j
∂qk

=

∫ v̂i+1

v̂i

∂r∗

∂v (ûi, v)

 ∂r∗
∂v (ûi, v)



 ∂φk

∂v
(ûi, v)dv (2.22)
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∂ fA,i, j

∂qk
=

(
∂φk

∂v

∂r∗

∂u
+
∂φk

∂u
∂r∗

∂v

)
(ûi, v̂ j) (2.23)

Singularities of the Jacobian (deformations associated with a null singular value)
describe the possible inextensible motions of the surface around the current config-
uration.

It is easy to show that any rigid-body translations and infinitesimal rigid-body
rotations are singularities of the Jacobian (Equations 2.21, 2.22, and 2.23 are equal
to 0).

One can also show that because equations 2.21, 2.22, and 2.23 are functions of the
basis function derivatives in u and v, the inextensibility grid has to cover the whole
surface. The value of the basis function derivatives decreases as the distance from
a control point increases. If the grid is localized in a certain region, the motion of
a control point far from this region can create a numerical singularity as equations
2.21, 2.22, and 2.23 become close to 0, hence creating a near-zero column in the
Jacobian matrix.

Additionally to rigid-body motions, it is possible to have non-rigid singularities.
These are important since they correspond to actual deformations of the surface.

We decide to study the case of an initially flat surface. It is interesting since it has
no curvature, which results in no preferred motion. Without loss of generality, we
assume that the surface is perpendicular to the z-axis. The last coordinate of r∗ is
constant over the surface. One can show that the last coordinate of ∂r∗

∂u and ∂r∗

∂v is
0. As a result, ∂ fu,i, j

∂qk
, ∂ fv,i, j

∂qk
, and ∂ fA,i, j

∂qk
are normal to the z-axis and any vector δqk

along the z-axis leads to a singularity.

It is easy to prove that such a surface has a total of NuNv + 3 singularities. This
corresponds to the local singularity of each control point (movement along z) plus
the rigid translations in x and y and the rigid rotation around z. One can also show
that this represents the maximum number of singular deformations. Any curved
surface has fewer singularities because the non-zero curvatures force the surface to
deform in certain directions only.

Figure 2.6 shows a singular motion for an initially cylindrical shape using Lagrange
polynomials as defined in figure 2.4 (5 × 5 uniform grid of control points). Since
the polynomials cannot exactly reconstruct a cylinder, the initial shape is not exactly
a cylinder, but the result of constraining each control point to its position on the
perfect cylinder (see equation 2.41). This singularitywas obtained numerically using
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Figure 2.6: Numerical singularity of the inextensibility constraints for a cylinder
of radius 5 using 5 × 5 regularly spaced control points on an inextensibility grid
[ûi] =

[

v̂ j
]

= (−2,−1, 0, 1, 2). The black shape represents the initial cylinder and
the red shape represents the added singularity.

a Singular Value Decomposition (SVD) of the Jacobian matrix inMATLAB. A total
of 15 singularities were found (6 rigid-body motions and 9 non-rigid deformations).
Identical grids on an initially flat shape led to 28 singularities.

2.4 Angle Measurement Constraints
Definition of the measurement
In order to measure the deformation of the surface, we introduce local angle mea-
surements at several points on the surface. These measurements determine the
angles between the normal to the surface at discrete points and a specific direction.

We assume that the angles are measured to the line from the sensor location and
the origin of R3 which coincides with the vector r . This can be done in practice by
placing a light source at the origin and light sensors on the surface.

At each sensor location, two angles α, β are measured along the curvilinear coor-
dinates, that is along ∂r

∂u and ∂r
∂v from the normal of the surface as, shown in figure

2.7.

The location of the sensors is defined by (uS, vS) ∈ RNS×2 where NS is the total
number of sensors. They do not need to lie on a specific grid as required by previous
research [38, 80]. Figure 2.8 shows an example of the location of the sensors in
the uv-space and their position in the current configuration. The local coordinate
system at the location of a sensor is also shown.
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∂r

∂v

∂r

∂u

n

r(u,v)

α>0

β<0

Figure 2.7: Definition of the angles in the local coordinate system of a sensor.
r(uS, vS) represents the direction to which the angles are measured. Note that the
angle β is negative in the figure (positive angles are defined from n to ∂r

∂u ).

The angles at a sensor location (uS, vS) are defined as:

tanαS =
r(uS, vS) · ∂r∂v (uS, vS)
r(uS, vS) · n(uS, vS)

‖n(uS, vS)‖

 ∂r
∂v (uS, vS)



 (2.24)

tan βS = −
r(uS, vS) · ∂r∂u (uS, vS)
r(uS, vS) · n(uS, vS)

‖n(uS, vS)‖

 ∂r
∂u (uS, vS)



 (2.25)

where n(uS, vS) is the normal to the surface:

n =
∂r

∂u
× ∂r
∂v

(2.26)

Note that similar equations can be written when the angle measurement is taken
from a fixed direction such as the gravity vector g. Then equations 2.24 and 2.25
become:

tanαS =
g · ∂r∂v (uS, vS)
g · n(uS, vS)

‖n(uS, vS)‖

 ∂r
∂v (uS, vS)



 (2.27)

tan βS = −
g · ∂r∂u (uS, vS)
g · n(uS, vS)

‖n(uS, vS)‖

 ∂r
∂u (uS, vS)



 (2.28)

Rank Deficiency
The equations 2.24 and 2.25 are invariant for any rotation around the origin. Uniform
scaling (multiplying r by a non-zero coefficient) also creates a singularity.

Numerical rank deficiencies (singular values close to 0) can occur when sensors are
concentrated on a specific part of the structure. This has similar effect to localizing
the inextensibility grid on one part of the surface (see section 2.3).
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Current Con�guration

Figure 2.8: Example position of the angle sensors on the surface (green circles).
The vector defining the position of a sensor r(uS, vS) is collinear with the light ray
seen by the sensor (the light source is positioned at the origin). The local coordinate
system at that sensor location is also shown.

To show this, we calculate the derivatives of the equations 2.24 and 2.25 with
respect to qk . Because of the complexity of these equations, it is assumed that
the deformation is perfectly inextensible. This means that



 ∂r
∂u



, 

 ∂r
∂v



, and ‖n‖
are constant. Without loss of generality, they are set to 1. Additionally, the light
source is assumed to be very far from the surface and along the z-direction. The dot
products involving r(uS, vS) can be replaced by dot products with z (as in equations
2.27 and 2.28 by replacing g with z)

With these simplifications, one can show that the derivatives about an initial shape
r∗ can be written as:

∂ tanαS

∂qk
=

tanα∗S
z · n∗


∂r∗

∂v
∂φk
∂u −

∂r∗

∂u
∂φk
∂v

∂r∗

∂u
∂φk
∂v −

∂r∗

∂v
∂φk
∂u

1
tanα∗

S

∂φk
∂v

 (2.29)

∂ tan βS

∂qk
=

tan β∗S
z · n∗


∂r∗

∂v
∂φk
∂u −

∂r∗

∂u
∂φk
∂v

∂r∗

∂u
∂φk
∂v −

∂r∗

∂v
∂φk
∂u

1
tan β∗

S

∂φk
∂u

 (2.30)
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From these equations, we can see that if



 ∂φk∂u




 � 1 and/or



 ∂φk∂v




 � 1 for all
(uS, vS) ∈ RNS×2, then both derivatives have components close to 0 and some
columns of the Jacobian will be close to 0 leading to a numerical singularity. This
would be the case if, for example, only a part of the surface is covered with angle
sensors. The shape functions associated with the control points located far away
from the sensors will have near-zero derivatives at the sensor locations.

2.5 Surface Reconstruction as a Least-Squares Problem
System of Equations
Equations 2.13, 2.14, 2.15, 2.24, and 2.25 form a system that solves the problem
of reconstructing a surface from angle measurements undergoing an inextensible
deformation from a template:∫ ûi+1

ûi





∂r∂u
(u, v̂ j)





 du −
∫ ûi+1

ûi





∂r0

∂u
(u, v̂ j)





 du = 0

∀i = 1, ..., N̂u − 1, ∀ j = 1, ..., N̂v

∫ v̂j+1

v̂j





∂r∂v (ûi, v)




 dv −

∫ v̂j+1

v̂j





∂r0

∂v
(ûi, v)





 dv = 0

∀i = 1, ..., N̂u, ∀ j = 1, ..., N̂v − 1

∂r

∂u

T
(ûi, v̂ j)

∂r

∂v
(ûi, v̂ j) =

∂r0

∂u

T

(ûi, v̂ j)
∂r0

∂v
(ûi, v̂ j)

∀i = 1, ..., N̂u, ∀ j = 1, ..., N̂v

tanα −
r(uS, vS) · ∂r∂v (uS, vS)
r(uS, vS) · n(uS, vS)

‖n(uS, vS)‖

 ∂r
∂v (uS, vS)



 = 0

∀S = 1, ..., NS

tan β +
r(uS, vS) · ∂r∂u (uS, vS)
r(uS, vS) · n(uS, vS)

‖n(uS, vS)‖

 ∂r
∂u (uS, vS)



 = 0

∀S = 1, ..., NS

(2.31)

Replacing r with equation 2.3 everywhere, the system is a function of the unknown
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control point coordinates, and can be written as:

fk(q̄) = 0 ∀k = 1, ..., Neq (2.32)

where fk(·) represents the equations defined in 2.31, Neq = 3N̂uN̂v − N̂u − N̂v + 2NS

is the number of equations in the system, and q̄ is the unknown vector defined
as the vertical concatenation of the control points. Since this system is (usually)
overconstrained, we rewrite the problem as a least-squares minimization:

q̄∗ = arg min
q̄

Neq∑
k=1

f 2
k (q̄) = arg min

q̄
‖ f (q̄)‖2 (2.33)

where f (q̄) = [ f1(q̄), ..., fNeq (q̄)]T .

Solution of Overconstrained System
In order to solve the least-squares problem defined in equation 2.33, we use the
Levenberg-Marquardt algorithm in MATLAB [26].

This iterative algorithm starts with an initial guess q̄0, finds increments of the
unknown vector, δ q̄k , such that at the next step, q̄k+1 = q̄k + δ q̄k . The increment
at each step solves the equation:(

JT J + λkI
)
δ q̄k = −JT f (q̄k) (2.34)

where J = ∂ f
∂ q̄ is the Jacobian of the system and λk is a non-negative damping

factor that is optimized at each step to maximize the decrease in the residual. If
λk = 0, this algorithm is equivalent to the Gauss-Newton algorithm (GNA). It is,
however, more robust than GNA when the initial guess is far from the solution.
When λk → ∞, the algorithm tends to the gradient descent algorithm. As a result,
the Levenberg-Marquardt method is a hybrid of the two algorithms.

The Levenberg-Marquardt algorithm stops when the increment is smaller than a
prescribed tolerance , i.e. when:

‖δ q̄k ‖ < ε (2.35)

It is important to note that since the system is over-constrained and the stopping
criterion involves the norm of the increment, the scaling of the equations 2.31
matters. This will be shown through examples in the next section.



23

Rank Deficiencies
The Jacobian of the system can be calculated as the vertical concatenation of the
Jacobian studied in section 2.3 and 2.4. In order to use the Levenberg-Marquardt
algorithm, the Jacobian needs to be full rank, i.e., its columns need to be independent.

A first requirement is to have more equations than unknowns: Neq = 3N̂uN̂v − N̂u −
N̂v + 2NS > 3NuNv.

From the previous observations in sections 2.3 and 2.4, all equations are invariant
for rigid-body rotations around the origin. Without loss of generality, we constrain
3 coordinates among the control points to be fixed. For instance, one point is
restrained frommoving along the x-axis and y-axis, and another point is constrained
from moving along the x-axis.

Additionally, the inextensibility conditions can have up to N = NuNv singularities
as explained in section 2.3. These are mutually exclusive with the singularities of
the angle equations. As a result, a minimum of N angle measurements are needed
to have a full rank Jacobian, i.e. at least as many angle measurements as control
points.

It is important to notice that when the distance from the origin to the surface becomes
large, another numerical singularity emerges. It corresponds to a spherical motion.
Figure 2.9 shows a schematic of this singularity in 2D. A line perpendicular to the
light source can conform to any circle, hence there are infinitely many solutions. In
3D, this is not a singularity as its associated singular value is not exactly 0: conform-
ing a section of a sphere to a sphere of different radius is an extensible deformation.
This singularity is however orders of magnitude lower than the next higher which
causes numerical issues. We call this singularity a spherical singularity.

To remedy this issue, the distance of a point on the surface to the origin can be fixed
or bounded.

In the case where the direction of the angle measurement is fixed (equations 2.27
and 2.28), this numerical singularity becomes an actual singularity corresponding
to the rigid-body translation along that direction. Fixing a point in 3D space can be
done without loss of generality.

2.6 Applications to Developable Surfaces
Developable surfaces are simple to reconstruct as they can be mapped onto a plane
where the reference configuration can easily be defined. Such shapes include
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Light Source

Figure 2.9: 2D representation of the spherical singularity of the system of equations.
The black and red lines have the same length and angles to the light source, but their
shapes are different.

cylinders, cones, tangent developable surfaces, etc.

We apply the presented method to reconstruct a cylinder and a cone from an initially
flat surface. The initial surface is described by:

r0(u, v) =

u

v

z

 (2.36)

where z is a non-zero constant.

The surface then deforms inextensibly into a cylinder or cone. The measured
angles are extracted from the analytical expressions of the cylinder or cone r̃ using
equations 2.24 and 2.25. These angles are used as inputs to the algorithm, together
with the inextensibility constraints, and 3 coordinates are fixed to prevent rigid-body
rotations, as described in section 2.5.

The accuracy of the method will be evaluated for the two test cases (cylinder and
cone). The error is calculated as the norm of the vector joining the points with equal
coordinates (u, v) in the reconstructed and exact shapes:

Error(u, v) = ‖r(u, v) − r̃(u, v)‖ (2.37)

The inextensibility of the surface deformation is also evaluated by plotting the error
of the 3 elements of the metric tensor from their nominal values defined in equations
2.10, 2.11, and 2.12. Note that in this case, M0 = I, the 2 × 2 identity tensor.
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To better understand the elements of the tensor, we plot the Lagrangian normal and
shear strains of the surface [52]. They are given by:

εu =
1
2
(M11 − 1) (2.38)

εv =
1
2
(M22 − 1) (2.39)

γuv =M12 (2.40)

The convergence of the method when increasing the number of basis functions is
shown. The different parameters defining the algorithm are varied and studied. We
show the existence of optimal parameters that minimize the error of the reconstruc-
tion.

Reconstruction of a Cylinder
The equation of the inextensible transformation of a flat plane onto a cylinder of
radius R aligned with the y-axis is:

r̃(u, v) =


R sin
( u

R

)
v

−R cos
( u

R

)
 (2.41)

The local angles associated with this shape are:

tanαS = −
vS

R
(2.42)

tan βS = 0 (2.43)

These angles were evaluated at the 25 points shown in figure 2.10a and their values
were fed to the algorithm in order to reconstruct the cylinder. The reconstructed
shape was defined by Lagrange polynomials built from a uniform grid of interpo-
lation points [uk] = [vl] = (−2,−1, 0, 1, 2). Figure 2.10a shows the reconstructed
cylinder based on a 5× 5 uniform inextensibility grid [ûi] =

[

v̂ j
]

= (−2,−1, 0, 1, 2)
and angle measurements (shown by green circles) placed at the nodes of the same
grid. This ensures that the number of angle constraints is greater than the number
of control points to avoid the singularities shown in section 2.3. The central point
(of curvilinear coordinates (u, v) = (0, 0)) was constrained along the z-axis (x and
y coordinates set to 0) and the x-coordinate of the point of curvilinear coordinate
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(a) Reconstructed shape of the cylinder. The black grid repre-
sents the inextensibility grid and the green circles represent the
location of the angle measurements.

(b) Error between reconstructed cylinder shown in figure 2.10a
and cylinder defined by equation 2.41.

Figure 2.10: Reconstruction of a cylinder of radius 2 aligned with the y-axis
using Lagrange polynomials on uniform grids [uk] = [vl] = [ûi] =

[

v̂ j
]

=

(−2,−1, 0, 1, 2).

(u, v) = (0, 1) was constrained to x = 0. The initial shape of the algorithm was a flat
plane perpendicular to the z-axis:

r0(u, v) =


u

v

−2

 (2.44)

It was found that the algorithm converges if this initial plane is close enough to the
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(a) Normal strain in the u-direction,
equation 2.38.

(b) Normal strain in the v-direction,
equation 2.39.

(c) Shear strain, equation 2.40.

Figure 2.11: Strains of the reconstructed cylinder of radius 2 aligned with the y-
axis using Lagrange polynomials on uniform grids [uk] = [vl] = [ûi] =

[

v̂ j
]

=

(−2,−1, 0, 1, 2).

solution. If it is too far, the spherical singularity discussed in section 2.5 will force
the shape to translate far away along the −z direction.

Figure 2.10b shows the error between the reconstructed shape and the analytical
cylinder. We see that the algorithm reconstructs the overall shape of the cylinder
with great accuracy. The error is independent in v since there is no deformation
in this direction. It is close to 0 at the center of the reconstructed shape where the
two points constraining rigid-body rotations are located (and fixed to their exact
coordinates) and increases towards the edge of the surface.

Figure 2.11 shows the strain components across the surface. The normal strains are
close to 0 on average along each segment of the inextensibility grid. However, they
still vary across the surface. A similar observation can be made for the shear strains
that are also close to 0 at each node of the inextensibility grid, but are non-zero
elsewhere.

The normal strain in the u-direction is dominant and mostly varies along u. Since
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Lagrange polynomials cannot perfectly reconstruct a circle, the algorithm needs to
stretch the surface in order for the measured angles to better match their set values.
More precisely, the algorithm does a tradeoff between slightly stretching the surface,
and adding some bias to the measured angles.

The shear strain variations are related to the normal strains: the small non-uniform
accumulated strain displaces the points of the surface forcing it to shear. Figure
2.11b shows that the maximum strain occurs along the outer edges in the v-direction
which is where the shear is also maximum.

Reconstruction of a Cone
As a next step, we reconstruct a more complex developable shape. A cone is a more
demanding test because a flat surface has to deform in both directions to conform to
a conical shape [47]. The equation of a cone around the y-axis is:

r̃(u, v) =

[H − t(u, v)] sin γ sin θ(u, v)

t(u, v) cos γ
[H − t(u, v)] sin γ cos θ(u, v)

 (2.45)

where θ is the circumferential angle around the y-axis, H is the distance from the
‘center’ of the surface to the tip of the cone, t is the additional distance of a point
from H, and γ is the half opening angle. These parameters are shown in figure 2.12.
The expressions for t(u, v) and θ(u, v) can be found by analyzing the cone’s base
shape which is a circular sector:

t(u, v) = H −
√

u2 + (H − v)2 (2.46)

θ(u, v) = 1
sin γ

arctan
( u

H − v

)
(2.47)

The tangents of the local angles are defined in equations 2.24 and 2.25, and can be
calculated from equation 2.45:

tanαS = −
(H − v)

[
H sin2 γ − t(u, v)

]
[H − t(u, v)]H cos γ sin γ

(2.48)

tan βS = −
u

[
H sin2 γ − t(u, v)

]
[H − t(u, v)]H cos γ sin γ

(2.49)

The reconstructed conical surface in this example lies on a cone with an opening
angle of γ = 20° and a distance from the center of the surface to the tip of the
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Figure 2.12: Definition of the conical surface parameters. The origin of the 3D
coordinate system is the circle aligned with the ‘center’ of the surface located at a
distance H from the tip. A point on the surface (grey circle) is parametrized by the
distance t and the angle θ.

cone of H = 5. Figure 2.13a shows the reconstructed shape calculated using
Lagrange polynomials and identical grids as in the previous example. As before, to
avoid singularities (rigid-body rotations) the central point of curvilinear coordinates
(u, v) = (0, 0) has its x and y coordinates fixed to 0 while the point with curvilinear
coordinates (u, v) = (0, 1) has its x-coordinate fixed to 0. The reference configuration
of the surface is a flat plane perpendicular to the z-axis:

r0(u, v) =


u

v

−H sin γ

 (2.50)

The z-coordinate is equal to the distance of the center of the surface to the axis of
the cone. This reference configuration prevents the spherical singularity to affect
the convergence of the algorithm.

Figure 2.13b shows the error of the reconstruction compared to the analytical conical
shape r̃ . It is minimal at the center of the surface where the two constrained points
are located. Contrary to the cylinder case (Figure 2.10b), the error varies along u

and v as the surface has to deform in both directions.

Figure 2.14 shows the distribution of the strain components. The strain errors
increase as the curvature of the surface increases. This is due to the fact that
Lagrange polynomials cannot perfectly reconstruct an ellipse. A Taylor expansion
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(a) Reconstructed shape of the conical surface. The black grid
represents the inextensibility grid and the green circles represent
the location of the angle measurements.

(b) Error between reconstructed conical surface shown in figure
2.13a and cone defined in equation 2.45.

Figure 2.13: Reconstruction of a conical surface with half-opening angle γ = 20°
and height H = 5 aligned with the y-axis using Lagrange polynomials on uniform
grids [uk] = [vl] = [ûi] =

[

v̂ j
]

= (−2,−1, 0, 1, 2).

shows that this error is on the order of κn−1 where κ is the local curvature and n is
the degree of the Lagrange polynomial.

Convergence of the Solution
In order to lower the errors, we studied the effect of refining the mesh of control
points, but continuing to use uniform grids. Since the number of control points
is increased, the number of angle measurements needs to increase to avoid any
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(a) Normal strain in the u-direction,
equation 2.38.

(b) Normal strain in the v-direction,
equation 2.39.

(c) Shear strain, equation 2.40.

Figure 2.14: Strains of the reconstructed conical surface of half-opening angle 20°
and height H = 6 aligned with the y-axis using Lagrange polynomials on uniform
grids [uk] = [vl] = [ûi] =

[

v̂ j
]

= (−2,−1, 0, 1, 2).

rank deficiency. The same grid is used for the interpolation points of the Lagrange
polynomials, inextensibility constraints and angle measurements.

The convergence results for the cylinder of radius 2 are shown in figure 2.15. The
mesh was only refined in the u-direction as the result does not depend on v. It was
varied from a 3 × 5 grid to an 11 × 5. The x-axis shows the size of the grid in
the u-direction. The y-axis shows the RMS error between each reconstructed shape
and the analytical cylinder in log scale. We see that, as the grid gets more refined,
the accuracy of the algorithm is improved, as expected. The relation is inversely
exponential.

The convergence results for the cone are shown in figure 2.16. The mesh is refined
in both u and v directions using grids ranging from 3 × 3 to 11 × 11. The accuracy
also improves as the mesh gets denser.
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Figure 2.15: Variation of the RMS error between the reconstructed shape and the
perfect cylinder by varying the size of the grid in the u-direction from 3 to 11 control
points.

Figure 2.16: Variation of the RMS error between the reconstructed shape and the
analytical cone by varying the size of the grid from 3 × 3 to 11 × 11 control points.

Variation of Algorithm Parameters
For a fixed number of control points, the solution depends on three sets of parameters:
the number and position of the angle sensors, the coordinates of the inextensibility
grid, and the weight of each equation of system 2.31. By changing these parameters,
the algorithm converges to different solutions that will have different RMS errors.
We varied all parameters for a fixed 5 × 5 grid of control points, and studied their
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impact on the RMS error of the reconstructed cylinder and cone.

The results are shown in figures 2.17 and 2.18, where the red lines show the
minimum RMS error possible. It corresponds to the optimal position of the 5 × 5
control points that minimizes the RMS error between the reconstructed shape and
the exact cylinder or cone. This optimal result was obtained from an unconstrained
minimization algorithm (fminunc in MATLAB).

The size of the inextensibility grid was varied from 4× 4 to 10× 10. The minimum
grid size was dictated by the minimum number of equations needed in order to have
more constraints than unknowns. The grid of control points and anglemeasurements
were maintained at 5 × 5 for each calculation. Figure 2.17a shows the RMS error
of the reconstructed cylinder of radius 2 for different grid sizes. Figure 2.18a shows
the RMS error of the reconstructed cone. Note that both curves reach a minimum
error and then the error increases.

Varying the number of angle measurements was performed by spreading the sensors
on a uniform grid whose size ranges from 4 × 4 to 10 × 10 while using fixed 5 × 5
control points and inextensibility grids. The minimum grid size is again dictated by
the minimum number of equations needed for a well-posed problem. Figure 2.17b
shows the evolution of the RMS error of the reconstructed cylinder while figure
2.18b shows the evolution of the RMS error of the reconstructed cone. Note that the
same trend noted above is seen in the error variation. The increase of RMS error
after the minimum is however not monotonic for the conical shape. The error starts
decreasing again for denser grids.

As stated in section 2.5, the weight of each equation of the system is important. We
investigate the difference of weight between the first 3 equations, which relate to
the inextensibility of the surface and the last two, which impose constraints on the
measured angles.

It is important to note that the equations are not adimensional and different size of
grids can affect the scaling of the inextensibility constraints. The first two equations
of system 2.31 can easily be made adimensional by dividing by the length of the
edges of the inextensibility grid in the reference configuration. Note that in our
examples, the length of the edges is on the order of 1 and this division has almost no
impact. The 3rd inextensibility equation could be made adimensional by dividing
by the norm of the tangent vectors. The angle measurement constraints are properly
scaled and do not depend on the size of the grids.
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(a) RMS error of the reconstructed cylinder
while varying the size of the inextensibility
grid from 4 × 4 to 10 × 10.

(b) RMS error of the reconstructed cylinder
while varying the size of the grid of angle
measurements from 4 × 4 to 10 × 10.

(c) RMS error of the reconstructed cylinder
while varying the weight of the angle con-
straints to the inextensibility constraints.

Figure 2.17: RMS error of the reconstructed cylinder while varying different param-
eters of the algorithm using a 5×5 grid of control points and Lagrange polynomials.
The red line represents the minimum RMS error achievable using such basis func-
tions (6.2 × 10−4).



35

(a) RMS error of the reconstructed cone while
varying the size of the inextensibility grid from
4 × 4 to 10 × 10.

(b) RMS error of the reconstructed cone while
varying the size of the grid of angle measure-
ments from 4 × 4 to 10 × 10.

(c) RMS error of the reconstructed cone while
varying the weight of the angle constraints to
the inextensibility constraints.

Figure 2.18: RMS error of the reconstructed conewhile varying different parameters
of the algorithm using a 5×5 grid of control points and Lagrange polynomials. The
red line represents the minimum RMS error achievable using such basis functions
(4.0 × 10−3).
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Figure 2.17c shows the influence of scaling the constraints when reconstructing a
cylinder of radius 2. The tolerance limit ε defined in equation 2.35 was set to 10−6

for all simulations. The inextensibility conditions weremultiplied by a scaling factor
λI = 1 and the angle constraints by λA which varied from 10−3 to 103. Results for
the cone are shown in figure 2.18c. The curves follow similar trends as the previous
graphs and we notice that changing weights has only a small effects on the RMS
error, especially for the cylinder.

The variations of the RMS error for these 3 different studies can be explained by
analyzing the first two equations of system 2.31. The extension of the edges of the
inextensibility grid is the main source of error variations in this system. Figure
2.19 shows how the norm of the error of the length equations varies between the
algorithm and optimal solutions while reconstructing the cylinder:

Norm of the error =


 f u,v(q̄∗∗) − f u,v(q̄∗)



 (2.51)

where f u,v represents the vector of the first two equations of system 2.31, q̄∗∗ is the
optimal solution that minimizes the RMS error (red line in figures 2.17 and 2.18),
and q̄∗ is the solution of the algorithm. We see that the curve is very similar to
figure 2.17.

Changing the size of the inextensibility grid has a direct impact on this error. The
optimal grid can be calculated on the optimal solution by making sure each edge
retains its length from the reference configuration. As a result, the optimal solution
will satisfy the defined inextensibility conditions and will be very close to the
solution of the algorithm.

Increasing the number of angle measurements or the weight associated with their
constraints forces the algorithm to violate the inextensibility conditions in order
to satisfy an increasing number of angle constraints (or a more weighted set of
equations). Because Lagrange polynomials cannot precisely fit circular segments,
even the optimal solution is not perfectly inextensible. The solution of the algorithm
is close to the optimal one if it violates these constraints by the same magnitude.
There is an optimal algorithm where the amplitude of the error of the inextensibility
conditions coincides with the error of the optimal solution.

Finally, an optimization program could be developed to optimize the parameters
of the algorithm to minimize the RMS error for specific, desired shapes. Results
presented in this chapter show that matching the inextensibility grid with the control
points and the angle sensors leads to a near optimal scheme.
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(a) Norm of the error of the length equations
while varying the size of the inextensibility
grid from 4 × 4 to 10 × 10.

(b) Norm of the error of the length equations
while varying the size of the grid of angle
measurements from 4 × 4 to 10 × 10.

(c) Norm of the error of the length equations
while varying the weight of the angle con-
straints to the inextensibility constraints.

Figure 2.19: Norm of the error of the length equations (first 2 equations of system
2.31) on the algorithm solution and optimal solution.

2.7 Conclusion and Discussion
In this chapter, we have presented a mathematical model to reconstruct the shape
of a 3D surface based on a template and the angle measurements from embedded
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sensors. The template is a known configuration of the surface and it is assumed that
it deforms inextensibly to its current configuration.

One of the advantages of this model is to be able to use a relatively small number of
data to reconstruct the surface. The number of equations to solve is therefore small
which can reduce computational times making this algorithm solvable in real time.

Aerospace is one of the application areas for this method. Sun sensors are already
widely used in this industry for attitude control, and together with this algorithm,
could be used to measure the shape of a deployable or reconfigurable structure in
space (such as solar sails or large antenna arrays).

The main limitation of the algorithm resides in a numerical singularity associated
with the distance of the surface to the light source. This is why practical applications
usually require the light to be at an infinite distance (like the Sun) or the use of
sensors that measure the angles from a fixed direction. Wearable technologies used
for augmented reality, medical purposes or robotics are other applications of this
method using such sensors (usually IMUs).

Only developable surfaces have been considered in this study. More work should be
done to understand the performance of the presented algorithm on more complex
shapes such as doubly curved surfaces and surfaces with localized deformations like
kinks or buckles.



39

C h a p t e r 3

INEXTENSIBLE SURFACE RECONSTRUCTION FROM
DISTRIBUTED ANGLE MEASUREMENTS: EXPERIMENT

USING LIGHT SENSORS

3.1 Introduction
Measuring the shape of a surface often requires an imaging system placed in front of
the structure. Sets of cameras or laser ranging devices have been used to generate a
point cloud of the surface which can be reconstructed into a surface [8, 46]. Simpler
hardware such as a single camera can also be used in what is called monocular
surface reconstruction [15, 59, 73].

Such techniques require a minimum depth of view in front of the surface to measure.
In some cases, however, this space might not be available. The surface can be too
large compared to the field of view of the instruments or there might be no space
available in front of the surface. Shallow angle cameras have been used to measure
the displacement of trackers on a surface with millimeter accuracy [17, 51]. Such
methods are, however, susceptible to shading (physical blocking of the view of the
camera due to the deformation), light conditions and use relatively complex image
processing softwares which can limit their application.

This chapter presents a different approach with embedded vision sensors inside the
surface to be reconstructed. They measure the local angles at specific locations in
the structure, whose shape can then be recovered by spatial integration. Similar to
monocular shape reconstruction algorithms, ambiguities appear as shown in chapter
2. Angle measurements alone are not sufficient to reconstruct the shape of the
surface as depth effects cannot be solved for: the distance between sensors needs
to be known to perform a spatial integration. To remove these singularities, the
deformation is assumed inextensible from a known reference configuration (see
figure 3.1). This approach was used in similar research [15, 38, 40, 59, 73, 80].

Different embedded sensors have been used to reconstruct surfaces. Inertial sensors
(a combination of accelerometers and magnetometers) for instance, measure the
angles from the gravity directions and Earth’s magnetic field. Both 3D curves
and surfaces have been reconstructed by distributing such sensors on the support
structure [38–40, 80, 81].
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Inertial Measurement Units (IMUs), or light sensors have been used mostly as
standalone components to measure the orientation of a spacecraft [61] or a solar
panel [23, 95]. Recently, sun sensors have been investigated to reconstruct large
surfaces in space [10, 84, 85]. Compared to IMUs, they have the advantage of
being insensitive to accelerations or magnetic field disturbances, hence being able
to measure shapes in space.

Many light sensor designs exist. A review of different designs is available in [71].
Single photodiodes can estimate the angle from a known light as the measured
intensity varies with the cosine of the angle. They can only measure the angle of the
light source from their normal direction and more complex architectures as in [5]
require a 2-angle measurement. Most solutions combine an array of photodiodes
or pixels with an aperture on top [19, 23, 25, 60, 61, 91]. The photo-sensitive
element ranges from a simple quad-photodiode to a CMOS or CCD image sensor
(in miniature camera systems) [11, 50, 57, 94]. Their precision can vary from a few
degrees to under an arc minute. Usually limited by their field-of-view, techniques
exist to expand the field-of-view by having multiple aperture holes [23, 91]. Such
sensors are precise but can be relatively large and power hungry. While many
designs have been engineered, most of them tend to be bulky and expensive. The
presented application requires many sensors to be placed on a flexible structure. A
small, simple, lightweight design that still achieves good performance and is better
suited for this type of application is introduced in this chapter.

Section 3.2 summarizes the algorithm that is used to reconstruct the shape of a
surface assuming inextensibility of the deformation from an initially flat surface,
and the anglemeasurements from the light sensors. It has been previously introduced
in chapter 2.

The light sensor designed for the experiment is introduced in section 3.3. It consists
of a quad-photodiode placed under a square aperture, effectively recreating a simple
pinhole camera. The theoretical behavior of the sensor is detailed to understand the
correlation between the measured intensities of the photodiodes and the angles and
geometry of the sensor. From these equations, the optimal design that maximizes
the sensitivity of the sensor is presented. The electronic and software architecture
that reduces and filters the noise of the sensor is detailed.

Section 3.4 describes the experimental setup. The surface to be reconstructed is a
1.3 m × 0.25 m sheet of aluminum integrated with 14 light sensors. Its boundary
conditions, the communication architecture between sensors and the illumination
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system are detailed. A second measurement setup is used to measure the shape
of the surface with better accuracy in order to assess the performance of the light
sensor system.

Before performing the experiment, each sensor is calibrated as described in section
3.5. The calibration is used to estimate the error between the actual response of
the sensor and its theoretical behavior described in section 3.3. The noise of the
sensor is also investigated. A calibration was eventually performed on all sensors
to increase their precision. The repeatability and accuracy of the calibrations are
assessed to understand the performance limits of the sensor.

Finally the results of the experiment are presented in section 3.6. The surface is
deformed in bending and torsion. To understand the overall accuracy of the system,
the RMS error is calculated by comparing the reconstructed shape to an accurate
measurement provided by a secondary, optical measurement system. The RMS
error follows a Generalized Extreme Value distribution and, on average, is on the
order of a millimeter and can be as low as 0.5 mm. We show the evolution of the
RMS error with the complexity of the shape and identify different factors that limit
the accuracy of the system.

3.2 Reconstruction Algorithm
The algorithm used to reconstruct the shape of a surface from angle measurements
was first studied in chapter 2. It consists of a set of equations constraining the surface
to match the measured angles at the sensor location while forcing its inextensibility
from a reference configuration. These equations are summarized in the first sub-
section.

The second sub-section details the modifications required to adapt the algorithm to
real-world applications and specifically to the experiment introduced in this chapter.
The thickness of the structure, the offset of the sensors from the surface and the size
of the sensors are all taken into account to reconstruct the experimental structure.

Reconstruction of a Theoretical Surface
The following algorithm reconstructs a 3D surface whose shape is discretized on
a finite set of basis functions. It was first introduced in chapter 2. A point on the
surface is described by its two curvilinear coordinates u, v (see figure 3.1). The
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Reference (Flat) Con�guration Current Con�guration

Inextensible Deformation

Figure 3.1: Definition of the problem. The surface is parametrized by two coordi-
nates (u, v). The 3D surface is a mapping of the 2D coordinates to 3D. The shape
of the reference configuration is known while the current configuration needs to be
reconstructed.

current 3D position of that point is written as r(u, v) such that:

r : X ⊂ R2 −→ R3

(u, v) 7−→ r(u, v) =
N∑

k=1
qkφk(u, v)

(3.1)

where φk : X → R are basis functions, qk are unknown 3D points called control
points, and N is the dimension of the function space.

The basis functions selected for the reconstructions shown in this chapter are 2D
Lagrange functions weighted by the control points qk arranged in a 2D grid in the
(u, v)-space (see grid in figure 3.2a).

The position of the control points is calculated from a set of constraints derived
from the measurement of the sensors and the inextensibility of the deformation.

Sensors measure the angles between the local normal of the structure and the light
rays coming from a point source located at the origin of 3D coordinate system. If
the sensor is located on the surface at a location (uS, vS) (see figure 3.2b), the tangent
of these angles can be calculated from:

tanαS =
r(uS, vS) · ∂r∂v (uS, vS)
r(uS, vS) · n(uS, vS)

‖n(uS, vS)‖

 ∂r
∂v (uS, vS)



 (3.2)



43

(a) Location of the control points of the 2D Lagrange polynomi-
als.

(b) Location of the sensors on the surface. They do not need to
be aligned with any grid.

(c) Inextensibility grid. Each edge retains its length upon trans-
formation while the angle around each vertex is constant.

Figure 3.2: Parameters of the algorithm defined in the uv-space.

tan βS = −
r(uS, vS) · ∂r∂u (uS, vS)
r(uS, vS) · n(uS, vS)

‖n(uS, vS)‖

 ∂r
∂u (uS, vS)



 (3.3)

where α is the angle around the u-direction, β around the v-direction, n(uS, vS) =
∂r
∂u (uS, vS)× ∂r∂v (uS, vS) is the normal of the surface at the sensor location, and r(uS, vS)
coincides with the direction of the light.
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Inextensibility conditions are derived from a discretization of the metric tensor.
This tensor is used in differential geometry to measure the length of segments on
curved surfaces [1, 47]. By imposing the condition that the metric tensor does not
change before and after the transformation, the length of any segment drawn on
the surface stays the same. Such an implementation requires the knowledge of the
shape of the surface before the transformation. This configuration is called reference
configuration and it is assumed to be flat, as shown in figure 3.1.

A discretization of the metric tensor is performed by defining a regular grid on
the surface (see figure 3.2c). The coordinates of the grid are ûi and v̂ j . Each
edge of the grid is constrained to have the same length in the current and reference
configurations. The angles at each vertex of the grid are also conserved. This is
done by conserving the dot product of the tangent vectors of the surface. As a result,
the following constraints are written:∫ ûi+1

ûi





∂r∂u
(u, v̂ j)





 du =
∫ ûi+1

ûi





∂r0

∂u
(u, v̂ j)





 du (3.4)

∫ v̂j+1

v̂j





∂r∂v (ûi, v)




 dv =

∫ v̂j+1

v̂j





∂r0

∂v
(ûi, v)





 dv (3.5)

∂r

∂u

T
(ûi, v̂ j)

∂r

∂v
(ûi, v̂ j) =

∂r0

∂u

T

(ûi, v̂ j)
∂r0

∂v
(ûi, v̂ j) (3.6)

where r0 is the reference, known configuration of the surface.

By gathering the measurement equations 3.2 and 3.3 written at each sensor location
and the inextensibility equations 3.4, 3.5, and 3.6 for each segment or node of the
inextensibility grid, a system of equations with 3N unknowns can be written (the
three coordinates of the control points). It is usually overconstrained and can be
solved using a Levenberg-Marquardt algorithm.

Practical Implementations
Modifications to the previous equations need to be implemented to account for the
thickness of the surface, the offset of the sensors from the surface and their size.
Section 3.4 details the design of the experiment, where these dimensions can be
better understood and appreciated.

The surface previously defined by r(u, v), where both the control points and the
inextensibility grid are located, now corresponds to the mid-plane of the structure.
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This ensures that the mid-plane strains in the surface remain zero. As a result, the
inextensibility constraints remain valid.

If the top of the structure is of interest rather than its mid-plane, an offset of half the
thickness along the local normal can be applied (assuming the Kirchhoff hypothesis
for thin plates [21]):

s(u, v) = r(u, v) + t
2

n(u, v)
‖n(u, v)‖ (3.7)

where s(u, v) is the top surface, t is the thickness of the structure, and n(u, v) is the
local normal.

Mid-plane

Sensor support

Sensing location

Surface

Figure 3.3: Offset of a sensor from the mid-plane of the structure. The fixed offset
tS is defined in the local reference system (in red).

The only equations that need to be modified are the ones related to the angle
measurements (equations 3.2 and 3.3). The sensor is not located on the mid-plane,
but is offset by a fixed distance. Figure 3.3 defines the offset of a sensor from the
mid-plane. Furthermore, the sensors are assumed to be rigid which locally prevents
the surface from curving. This effect cannot be captured by the Lagrange basis
functions. As a result, the local tangent and normal vectors needed in the equations
are calculated in the middle of the rigid support of the sensors. This approximates
the actual direction of the sensor. The sensing element is offset in this local reference
system by a fixed vector tS (see figure 3.3). The angle equations become:

tanαS =
dS · ∂r∂v (uS, vS)
dS · n(uS, vS)

‖n(uS, vS)‖

 ∂r
∂v (uS, vS)



 (3.8)

tan βS = −
dS · ∂r∂u (uS, vS)
dS · n(uS, vS)

‖n(uS, vS)‖

 ∂r
∂u (uS, vS)



 (3.9)
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with dS the vector between the center of the 3D reference system (where the light
source is located) and the center of the light sensor, offset by tS in the local reference
system. This vector can be written as:

dS = r(uS, vS) + RS tS (3.10)

where RS is the local rotation matrix at the sensor location which is defined as the
concatenation of the tangent and normal unit vectors:

RS =

[
∂r
∂u (uS,vS)
‖ ∂r∂u (uS,vS)‖

∂r
∂v (uS,vS)
‖ ∂r∂v (uS,vS)‖

n(uS,vS)
‖n(uS,vS)‖

]
(3.11)

3.3 Light Sensor Design
Basic Principles
A schematic of the sensor used for the experiment is shown in figure 3.4. It consists
of an aperture placed on top of a quad-photodiode. The square aperture is placed at
a height h above the photosensitive area. The aperture has a thickness t and a size
d. It is located above the center of the array. Each photodiode is square and has a
length L. It is separated by a gap of size e from its neighbor. The sensor is rotated
from the incoming light by the angles α and β (defined in figure 3.4). It is assumed
that there is no intermediate layer (glass or clear plastic) between the aperture and
the photodiodes that would refract the light at another angle.

2

3

4

1
L

h

dt

x

y

z

β

α

e

Figure 3.4: Drawing of a light sensor made from a quad-photodiode (red) and a
square aperture of length d. The thickness of the aperture is t while its distance
from the photosensitive plane is h. Each square photodiode has a length L and is
separated by a distance e from its neighbours.

It is assumed that all the photodiodes have the same responsivity and that the gain
applied on their output is also identical. Let A be the responsivity of the photodiodes
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in amperes per watt (A/W), W0 the incoming light intensity in watts (W) and K the
gain of the amplification circuit in arbitrary unit per amperes. Using the naming
convention of figure 3.4, and assuming that the light is coming uniformly from the
z-direction, the measured light intensity of each photodiode is:

I1 = K AW0 cos γ
(

d − e
2
+ (h + t H(−α)) tanα

)
×(

d − e
2
+ (h + t H(−β)) tan β

) (3.12)

I2 = K AW0 cos γ
(

d − e
2
− (h + t H(α)) tanα

)
×(

d − e
2
+ (h + t H(−β)) tan β

) (3.13)

I3 = K AW0 cos γ
(

d − e
2
− (h + t H(α)) tanα

)
×(

d − e
2
− (h + t H(β)) tan β

) (3.14)

I4 = K AW0 cos γ
(

d − e
2
+ (h + t H(−α)) tanα

)
×(

d − e
2
− (h + t H(β)) tan β

) (3.15)

where H(·) is the Heaviside step function, and γ is the angle of the light from the
normal of the sensor which can be calculated from the angles α and β using the
Pythagorean theorem:

tan(γ)2 = tan(α)2 + tan(β)2 (3.16)

The coordinates of the centroid of the light spot can be calculated from these
intensities. Let Rβ (resp. Rα) be the normalized coordinates in the x-direction (resp.
y-direction):

Rα =
(I1 + I4) − (I2 + I3)

I1 + I2 + I3 + I4
=

(2h + t) tanα
d − e − t sgnα tanα

(3.17)

Rβ =
(I1 + I2) − (I3 + I4)

I1 + I2 + I3 + I4
=

(2h + t) tan β
d − e − t sgnβ tan β

(3.18)

where sgn(·) is the sign function. Each centroid is a function of only one of the angles.
Additionally, the centroids do not depend on the light intensity or gains, hence a
sensor can be used in various light environments without the need for calibrating it
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each time. The non-zero thickness of the aperture creates a non-linearity between
the centroids and the tangent of the angles. The thinner the aperture mask, the more
linear the response.

Because of the gap between photodiodes, it is important to have a square aperture
in order to decouple the response of the sensor from the measured angles α and β,
as seen in equations 3.17 and 3.18. This keeps the amount of light trapped in the
gap constant when the angles of the sensor vary.

One can invert equations 3.17 and 3.18 to compute the tangent of the angles of the
sensor in function of the measured centroids Rα and Rβ:

tanα =
(d − e) Rα

2h + t + t sgn(Rα)Rα
(3.19)

tan β =
(d − e) Rβ

2h + t + t sgn(Rβ)Rβ
(3.20)

where Rβ and Rα are calculated from the measured intensities (equations 3.17 and
3.18).

These equations are only valid while the light spot is within the boundaries of each
photodiode. The field-of-view (FOV) of the sensor is defined as the maximum angle
before the light spot hits the boundary of a photodiode. This can happen in two
ways: 1) the spot can hit the inside boundary which is at a distance e/2 from the
center or 2) the spot hits the outside boundary which is at a distance e/2 + L from
the center as described in figure 3.5. As a result, the field of view can be written as
the minimum of the two angles represented by each situation:

tan FOV = min
(

d − e
2 (h + t),

2L + e − d
2h

)
(3.21)

The quad-photodiode selected for this experiment was the TE Electronics OPR5911,
in which the space between the photodiodes and the aperture is filled with a trans-
parent polymer. Therefore, the previous equations need to be modified to account
for the refractive index of the polymer:

tan
[
arcsin

(
sinα

n

)]
=

(d − e) Rα
2h + t + t sgn(Rα)Rα

(3.22)

tan
[
arcsin

(
sin β

n

)]
=

(d − e) Rβ

2h + t + t sgn(Rβ)Rβ
(3.23)

where n is the refractive index of the polymer, estimated to be 1.56 (see section 3.5).
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Figure 3.5: Two different cases defining the field-of-view of the sensor. Top:
the spot hits the inside boundary of the photodiode. Bottom: the spot hits the
outside boundary of the photodiode. The color red represents the photodiodes, grey
represents the mask, and yellow represents the light.

Optimal Design
The previous sub-section has identified five parameters that control the response of
the light sensor to changes in angles: d, e, h, t, and L. Some of these parameters
can be varied in order to change the field-of-view or the sensitivity of the output.
The size of the photodiode array (L and e) are fixed by the manufacturer. In our
case, the TE Electronics OPR5911 was selected where L = 1.27 mm and e = 0.25
mm as measured under a microscope.

We study the influence of the 3 remaining parameters: the size d, height h and
thickness t of the aperture hole. The sensitivity is defined as:

Sensα(tanα) = dRα
d tanα

=
(2h + t) (d − e)

(d − e − t sgnα tanα)2
(3.24)

Sensβ(tan β) =
dRβ

d tan β
=

(2h + t) (d − e)
(d − e − t sgnβ tan β)2

(3.25)

The goal is to maximize the sensitivity under a fixed field-of-view. Since the
sensitivity depends on the angle, we decide to maximize the average sensitivity over
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the range [tan (−FOV) , tan (+FOV)] which is equal to:

Sens =
Rα/β(FOV) − Rα/β(−FOV)

2 tan FOV

=
2h + t

d − e − t tan FOV

(3.26)

Depending on the two cases defining the field-of-view (see figure 3.5), we end up
with two different average sensitivities. It is possible to show that the maximum
average sensitivity is equal to:

Sens =
1

tan FOV
(3.27)

and corresponds to a field-of-view dictated by the light spot hitting the inside
boundary of a photodiode.

We note that for a specific field-of-view and aperture height h, there is a maximum
value for the thickness of the aperture (which corresponds to the two limits of the
FOV being equal):

tmax =
L

tan FOV
− 2h (3.28)

As a result, in order to maximize the sensitivity of the sensor, the geometric param-
eters h, t, and d need to satisfy the following equations:

d = e + 2(h + t) tan FOV

t < L
tan FOV − 2h

(3.29)

and any set of parameters solving these equations corresponds to a sensor with
maximum average sensitivity which is inversely equal to the tangent of the field-of-
view (equation 3.27). Note that, because of the transparent polymer between the
photodiodes and the aperture, the field-of-view in the previous equations need to be
replaced by:

FOV∗ = arcsin
(
sin FOV

n

)
(3.30)

For our specific sensor, we chose h = 0.43 mm which corresponds to the height
of the OPR5911 chip. As a result, the aperture can simply be put on the device
which simplifies its assembly. The field-of-view of the sensor is set to 45° which
is about 50% larger than the maximum angle seen during the experiment which
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leaves enough room for alignment errors. In order to be even more conservative,
we neglected the refractive index of the polymer (n = 1). The aperture (figure
3.6) is manufactured out of a black anodized aluminum foil (Thorlabs BKF12) of
0.002" (50 µm) thickness which is less than the maximum thickness of 0.95 mm.
The anodization prevents reflections inside the sensor. The size of the hole can be
computed from equation 3.29 and is equal to 1.3 mm. The hole is cut by a Universal
Laser System XLS10 laser cutter using 1.06 µm fiber laser.

Figure 3.6: The aperture mask for the OPR5911 quad photodiode.

Electronics Design (Contributed byDr. LukeChen and based on previous work
published in [85])
The light sensor electronic circuit consists of three major function blocks – the quad-
photodiode, the amplifier circuit, and the microcontroller. The quad-photodiode
is composed of four independent photodiodes arranged in the form of a 2-by-2
array. Each photodiode can convert light energy into electrical signal which can
be measured in current and converted to a voltage using a common current-to-
voltage converter implemented with an operational amplifier (figure 3.7a). The
photodiode connected to the operational amplifier could have a reverse bias voltage
(photoconductive mode) or zero bias voltage (photovoltaic mode). In general, the
photoconductive mode has a faster and linear response, but could easily generate
noisy signal because of the dark leakage current created by the reverse bias voltage,
especially in low-light condition. The photovoltaic mode having slower response
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time, but less noise and temperature effect, meets the high-precision and low-
frequency requirements of this research [62].

Figure 3.7: Photodiode amplifier circuit: (a) transimpedance amplifier, also known
as current-to-voltage converter, and (b) inverting amplifier.

The amplifier circuit is utilized not only to amplify a small signal generated by
a photodiode, but also to convert the current into the voltage for an Analog-to-
Digital Converter (ADC). The amplifier circuit is composed of two operational
amplifier stages. The first stage is a transimpedance amplifier (also called current-to-
voltage converter), which is shown in figure 3.7a. Since a photodiode is connected
to the inverting input of the operational amplifier, and the input impedance is
infinite, the output voltage V1 is the negative product of the photocurrent i1 and the
feedback resistor R1; that is V1 = −i1 × R1. The ADC needs to receive positive
voltage, hence an inverting amplifier is required in the second stage to convert
the negative voltage to a positive voltage. The gain of the inverting amplifier is
V2
V1
= −R2

R3
. The transimpedance amplifier and inverting amplifier circuits also need

feedback capacitors in parallel with feedback resistors to reduce noise by limiting
the bandwidth [44]. The capacitance can be computed from with the formula
C1 =

1
2×π× f3dB×R1

, where f3dB is the desire circuit bandwidth.

The ADC pin of a microcontroller is used in the sensor design. The microcontroller
has two main functions — data acquisition and sensor network communication. It
can acquire four channels of analog signals, which are generated by the photodiodes,
amplified by the amplifier circuits, and converted into digital signals in situ. The
microcontroller also provides different communication protocols (e.g., I2C, SPI,
UART) that enable the sensor node to receive commands or send data in a sensor
network system. The 8-bit AVR-based microcontroller – ATtiny84A is employed
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in this research. To minimize the size of the light sensor, the 14-pin small-outline
(SOIC) package is chosen. Most I/O ports of the ATtiny84A microcontroller have
alternative functions. The light sensor uses four I/O ports as 10-bit A/D converter
and three I/O ports (pin 7 to 9) as a MOSI (Master Out/Slave In) pin, a MISO
(Master In/Slave Out) pin, and a clock pin for Serial Peripheral Interface (SPI)
communication. Using SPI communication, multiple light sensors can be connected
in a daisy chain configuration to form a sensor network.

The finished product of the light sensor shown in figure 3.8 is a 1.57" × 1.57" (4
cm × 4 cm), 4-layer FR-4 printed circuit board (PCB). The top layer and the bottom
layer are signal planes. The two middle layers are the ground plane and the power
plane. The major electronic components include – a surface mount OPR5911 quad-
photodiode, two SOIC LMC660 CMOS quad operational amplifiers, and a SOIC
ATtiny84A 8-bit AVR microcontroller. Two important points regarding the PCB
design for the light sensor need to be mentioned here: 1) The use of decoupling
capacitors to stabilize DC current from the power supply [55]. The DC current
may contain transient spikes or high-frequency noise. Decoupling capacitors can be
placed between the power pins and the ground pins of ICs to shut unwanted current
(i.e., AC current) to ground. 2) Digital and analog ground separation [28]. The
problem known as a ground loop is illustrated in figure 3.9, where a photodiode is
connected to the negative input of an operational amplifier; besides the photodiode,
the positive input of the amplifier, and the DC power supply share a common ground
on the circuit board. Mixing the power supply ground, which creates a return path
for the DC supply current, and the reference ground, which is a reference point for
signal measurement, causes a problem. Because in reality the ground plane is not a
perfect conductor, but has a small resistance Rg and inductance Lg (figure 3.9 (b)),
when a returning supply current passes the ground path, it produces a voltage drop.
Since the power supply ground and the reference ground are connected together,
the signal is interfered with by the voltage drop. Moreover, the DC supply current
containing high-frequency noise can also cause the signal to be unstable. Hence,
the power supply ground and the reference ground are separated in the PCB of the
light sensor to break the problematic ground loop. The two grounds are merged at
the power supply unit.

Software Design
The on-board microcontroller (MCU) manages the recording of the measurement,
which are then filtered and communicated to a laptop through an Arduino Due.
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Figure 3.8: The finished PCB of the light sensor.

The on-chip 10-bit analog-to-digital converter (ADC) of the ATtiny84A is used
to read the four outputs of the analog amplifiers. To minimize the noise during a
readout from the ADC, the MCU goes into a sleep mode disabling the CPU, Flash
and I/O clocks. The code also prevents the ADC to make measurements while a
communication is on-going as the clock signal strongly affect the readouts.

After reading its value through the ADC, each intensity is filtered by a simple Infinite
Impulse Response filter (IIR) [65]:

Ik(tn) =
(
1 − 1

2m

)
Ik(tn−1) +

1
2m ADCk(tn)

= Ik(tn−1) +
ADCk(tn) − Ik(tn−1)

2m

(3.31)

where Ik is the intensity of photodiode k, tn is the nth-measurement time, ADCk(tn)
is the ADC readout of channel k at time tn, and m is a positive integer.

This filter is very efficient in terms of computation time and memory space. It does
not require floating number calculations as the division by a power of two simply
corresponds to a bit-shift operation. It can be used at high frequency (over 1 kHz)
and with smallMCUs such as the one used in this circuit. Its C++ implementation is:
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Figure 3.9: Grounding problem: (a) power supply and signal reference share a
common ground, (b) a real ground conductor may contain little resistance and
inductance; therefore, a returning current passing the ground path creates a voltage
drop which can interfere with the reference ground.

intensity[k] += (ADC - intensity[k]) >> m;

where ADC points to the register where the reading of the analog-to-digital con-
verter is stored.

To communicate the filtered intensities, the sensors transfers them to an Arduino
Due using the SPI protocol. Contrary to the normal use of SPI which requires
each slave to have its own slave select line (see [49]), we only use a single line for
all the sensors and differentiate them by an address byte at the beginning of the
transmission. SPI was used for its reliability, speed and easy scalability compared
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to I2C or UART, the other options available on the microcontroller.

3.4 Experimental Setup
Plate with Integrated Sensors
A simple thin plate made out of aluminum was chosen as the surface for the experi-
ment, the goal being to reconstruct its shape using embedded light sensors and the
algorithm described in section 3.2. The plate is 0.016" (0.41 mm) thick, 50" (127
cm) long and 10" (25.4 cm) wide. It can be seen in figure 3.10. The relatively small
thickness allows the structure to undergo large bending deformations while keeping
small in-plane forces guaranteeing the inextensibility of the deformations. It is
however thick enough to prevent wrinkling or buckling. Its dimensions were chosen
so that it fits on an optical table while still being large enough to accommodate
multiple sensors.

Figure 3.10: Photo of the experiment. The plate with a black and white DIC pattern
holds 14 sensors placed on rigid supports. The plate is held by tensioned cables at
each end and two linear actuators in the middle (the actuator attached to the center
of the structure is not visible). Targets all around the setup are used to define the
reference frame.

Sensors were mounted on 2”×2” rigid supports made of aluminum (see figure 3.12).
These supports prevent deformation of the circuit boards when the aluminum plate
bends, which could damage the solder joints. They also prevent the sensor from
moving during the experiment which would introduce errors in the measurements.
The center of the support is separated by 8" (20.32 cm) in both directions as seen in
figure 3.10.
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Figure 3.11: Schematic of the setup. The surface with 14 sensors is at one end of an
optical table with an Arduino retrieving the measurements, and the LED light is in
an enclosed box at the other end. DIC cameras produce a secondary measurement
of the shape of the surface.

The structure is held at both ends by tensioned steel cables. Each cable passes
through two aluminum supports that are attached at the top and the bottom of the
structure (see figure 3.12). The cables are pinched by a set screw in the middle
of the top support to prevent the structure from sliding down. These boundary
conditions allow rotations and easy bending of the surface and effectively create
simply supported boudary conditions. The steel cables were tensioned by a spring
to about 35 N.

Deformation of the structure is imposed by two linear actuators placed in the middle
(see figure 3.10). The top one, placed at the center of the structure is attached using
a pivot while the bottom one is connected using a pivot and a slide mechanism.
As a result, when both actuators are actuated together, the structure undergoes pure
deflection and when only the bottom one is actuated, the structure undergoes pure
torsion. Each actuator contains an encoder to measure its extension. The actuators
were calibrated using a laser ranging system (Keyence LK-G157) to achieve an
accuracy of 0.5 mm. They are controlled using a P-controller loop programmed in
an Arduino Uno.

A total of 14 sensors are placed on the structure. They are all connected in a daisy
chain using Flat Flexible Cables (FFC) which have a much lower bending stiffness
than the aluminum sheet and do not contribute to its deformation. The sensors



58

Figure 3.12: Closeup view of the top-right sensor mounted on its rigid support. The
aluminum sheet is sandwiched by another support where a tensioned cable passes
through and is pinched to hold the structure.

share the same power lines: 3.3V for the on-board microcontroller, +/- 12V for
the operational amplifiers, and digital and analog grounds which are provided by a
power supply.

The top and bottom rows of sensors connect to an Arduino Due through an interface
board fixed to the optical table (see right side of picture 3.10). The Arduino then
relays the measurement data to a laptop via Serial communication. The Arduino
effectively acts as a custom Serial to SPI converter. A MATLAB-based software
was written to retrieve measurements from all sensors as well as changing their
filtering parameters.

The light source used in the experiment is a white LED (SSR-90 from Luminus
Devices Inc.). It generates about 1000 lumens which is matched with the gains of
the sensors to generate a readable output. The light intensity varies along the span
of the structure and decreases by about 10% on the edges relative to the center. It
is placed about 2 m in front of the structure as shown in figure 3.11. In order to
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avoid light reflections which could affect the reading of the sensors, the whole setup
is covered in blackout fabric (BK5 from ThorLabs). A mask was placed in front of
the LED in order for the light to only direct towards the sensors and hence avoiding
polluting the setup with unnecessary light (see figure 3.11).

Secondary Measurement Setup
In order to estimate the performance of the shape reconstruction method, a second
measurement system is introduced to measure the shape of the surface. A digital
image correlation (DIC) system from Correlated Solution was used. It consists of
two cameras (Point Grey Grasshopper3, 5MP, Mono), pointed to the structure from
two opposite directions (see figure 3.11). The Vic2D software was used to combine
pairs of images taken by both cameras at the same time to triangulate each point
on the surface. A calibration is performed to know the position and angles of each
camera relative to each other as well as their internal parameters.

A black and white pattern needs to be drawn on the surface before taking any image.
The size of the features needs to be more than 3 pixels to avoid aliasing, and it
is preferable to have the same amount of black and white in random shapes. A
computer generated pattern was created using Perlin Noise [56, 58]. While this
noise was initially used in computer-generated imagery (CGI), it has been proven
very efficient to generate a random pattern, compatible with a DIC system [56]. A
grid of 6 mm was used in the algorithm and a binary filter was applied to the results
(all negative pixel values were set to black and positive set to white). The surface
was first painted with a flat black spray paint and then was covered with painter’s
tape cut according to the computer generated pattern on a laser cutter (Universal
Laser Sytem XLS10MWH, 75 W 10.6 µm CO2). The exposed structure was then
painted with a white flat spray paint and the remaining tape was removed exposing
the black layer of paint. The result can be seen in figure 3.10.

The error from the DIC system using such pattern was assessed on a rigid 8” × 8”
plate. Images of this plate placed at different locations were taken. Rigid-body
transformationswere removed by software and the remaining displacements between
each image were computed. The error was less than 50 µm RMS. This number was
also assessed on the experimental surface by measuring it with a FaroArm laser
scanner. Such system has a similar error as the DIC. By comparing the shapes
given by both systems, we were able to estimate a standard deviation in the order of
100 µm which agrees with the previous error.
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Finally, it is important to notice that the reconstructed shape from the algorithm is
located in a reference frame with the light at its origin. In order to place the DIC
shape in the same reference frame, the location of the LED light needs to be known.
This is the goal of the 30 targets placed around the structure (see figure 3.10). Their
position has been precisely measured relative to the LED by a FaroArm. The shape
of the structure is then measured in reference to these targets by the DIC system and
translated to fit in the reference frame with the light at its origin.

3.5 Calibration of the Sensors
Relative Calibration
A calibration was performed to check the response, performance, and accuracy of
the sensors. Different effects can impact equations 3.19 and 3.20 describing the
response of a perfect sensor. The gains of the analog circuits may be different from
one channel to the other as the resistance values may differ. The aperture placed on
top of the sensor may not be perfectly square nor placed exactly in the middle of the
photodiode array.

A 2-axis stage was designed using two Newport PR50 rotation stages (figure 3.13).
They have a precision of 0.01° which is an order of magnitude lower than the
expected precision of the sensors. The rotation stages are placed at a right angle
from each other and their rotation axes intersect at the center of the aperture hole of
the sensor. The sensor is placed in a slot to guarantee its precise alignment. Sensors
were calibrated from −20° to 20° in both directions with increments ranging from
0.5° to 2°. A total of 100 measurements (10 sec at 10 Hz) was gathered to average
out the noise of the sensor.

Figure 3.14 shows the intensity of the four photodiodes during a calibration with
0.5° increments. The intensities increase as the light spot covers more area of each
photodiode. Note that the light source was slightly higher than the sensors hence
the light intensity is higher for the bottom photodiodes. Figure 3.15 shows the
standard deviation of the intensities of each photodiode calculated from the 100
measurements at each point. The figure shows a circular pattern where the noise is
larger for a constant intensity. This pattern appears on all photodiodes for the same
intensities.

Figure 3.16 shows the angles α and β imposed by the rotation stages as a function of
the averaged output of the sensors Rα and Rβ. The color scale shows the difference
between the measurement and the expected calibration output, equations 3.22 and
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Figure 3.13: Stage used to calibrate the sensors. The T-slotted frames allow the
stage to move sideways and up and down.

3.23. The refractive index of the aperture n was left unknown as well as possible
shifts of the aperture. These shifts simply add a constant to the numerator of each
equation. These equations were fitted to the result which led to a refractive index
of 1.56 which is typical for polymers [13] and a shift of less than 50 µm in both
directions. Overall, the experimental results agree qualitatively and quantitatively
well with the theory. The output of the sensors Rα and Rβ are mainly dependent on
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Figure 3.14: Intensity of the photodiodes as function of the angles of the calibration
stages.

Figure 3.15: Noise of the intensities of each photodiode based on 100measurements
at each point.

one of the angles, as predicted. The difference between the theory and the calibration
can be up to 1.5° and a circular pattern is noticeable in the error. These features
mainly correspond to slight gain variations between the photodiodes. These features
are few degrees in size, hence a calibration with 2° increments is deemed sufficient
to capture them which considerably accelerates the calibration process.
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(a) Calibration surface of the angle α. (b) Calibration surface of the angle β.

Figure 3.16: Calibration surfaces. The colors show the difference in degrees between
the calibrated angles and the theoretical response.

(a) Noise in reconstructed angle α. (b) Noise in reconstructed angle β.

Figure 3.17: Noise of the reconstructed angles from the calibration data.

Using the calibration curves, the noise in intensities (or equivalently in Rα and Rβ)
can be converted to noise in α and β (figure 3.17). The figure follows the noise
pattern of the intensity of the photodiodes with circular features. The peaks in noise
correspond to the intersection of the noise circles seen in figure 3.15. On average,
the noise in the angles is on the order of 0.1°.

As the error of the calibration curves is an order of magnitude higher than the noise
of the sensor and relatively unpredictable, a calibration with 2° increments was
performed for all sensors.

The repeatability of the calibration was first tested by conducting two identical
calibrations with 2° increments. The difference between the results are shown in
figure 3.18. The error is around 0.2° RMS. Note that the output of the sensor is
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(a) Repeatability error on α. (b) Repeatability error on β.

Figure 3.18: Repeatability error between two 2° calibrations.

averaged from 100 measurements at each step, effectively suppressing the noise of
the sensor. This error is possibly due to variations in the response of the sensor
from thermal effects, electronics noise or variations in the light intensity. These
repeatability errors are on the order of the noise of the sensors, hence no further
work was conducted to try to eliminate them.

(a) Accuracy on α. (b) Accuracy on β.

Figure 3.19: Accuracy of a 2° calibration using a 0.5° calibration as reference.

The accuracy of the 2° calibration is verified by comparing it with the 0.5° calibration
shown in figure 3.16. The 2° calibration is fitted with a 2D linear interpolation
method (linearinterp option in the function fit in MATLAB). The fit is used to
predict the angles at each step of the 0.5° calibration using the output of the sensor
only. This result is compared to the actual angles imposed by the rotation stages
during the 0.5° calibration. Figure 3.19 shows the results of that comparison. The
angle error is 0.3° RMS. Part of this error can be due to the stability issuesmentioned
above. Finer calibrations (1° increments for instance) did not improve the accuracy
significantly.
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(a) Error in α (b) Error in β.

Figure 3.20: Error between two 2° calibrations under different light intensities.

It has been shown in section 3.3 that the centroid of the light spot Rα and Rβ

is independent of the incoming light intensity. To prove this statement, another
calibration with 2° increments, but with a higher light intensity was performed
and compared to the original one. The intensity was increased by about 50%
by increasing the voltage across the LED light source. Errors between the two
calibrations are shown in figure 3.20. We observe errors much larger than the
previously mentioned ones. As a result, the output of the sensor is dependent on the
light intensity. This is due to different sensitivities and gain between the photodiodes
and their respective electronics. As a result, some terms do not cancel out in the
calculation of the spot centroids (equations 3.17 and 3.18).

In order to limit the errors due to different light intensities across the surface, the
sensors were calibrated near their position during the experiment.

Bias Calibration
In the algorithm described in section 3.2, a sensor should measure 0° if the surface
on which it is mounted is locally perpendicular to the incoming light ray. This is,
however, not the case for the stage-calibrated sensors.

The first reason is related to the alignment of the calibration stage during the
calibration process. While each sensor was calibrated near its position during the
experiment, the stage was always pointing along the Z-axis when set to 0° in both
directions (the coordinate system for the experiment can be seen in figure 3.11).
There is a geometric offset between the Z-direction and the direction of the light
during calibration. It can be corrected by measuring the position of the sensor
and the light source in the reference frame of the experiment and subtracting the
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calculated angles from the calibration data.

In addition to this effect, the sensors were not carefully aligned with the structure
when they were mounted on it. There may have been some tip and tilt due to
uneven paint thickness, machining tolerance, etc. A similar effect happens when
mounting the sensor on the calibration stage (which was furthermore not perfectly
aligned to the Z-axis). All these small effects can add up to create a bias error in the
measurement of each sensor. As shown in the previous sub-section, even an offset
of 0.5° is larger than the accuracy of the sensors.

To circumvent this effect, the surface was measured using a FaroArm laser scanner.
It was then possible to estimate the local slope of the structure around each sensor
in the reference frame of the experiment by performing a local linear fit around
each sensor. Different sizes of windows were considered and their influence was
investigated. Errors on the order of 0.5° between window sizes were observed. To
further gain confidence about the actual angle seen by the sensors, the reconstruction
algorithm described in section 3.2 was applied, solving for the sensor angles that
minimize the RMS error between the reconstructed surface and the point cloud of
the surface generated by the FaroArm. The algorithm parameters displayed in figure
3.2 were used (5 × 3 grid of control points and 13 × 5 inextensibility grid). The
results are shown in figure 3.21. The RMS error between the algorithm and the
point cloud converged to 0.2 mm.

Figure 3.21: FaroArm shape (top) and optimally reconstructed shape (bottom) that
was used to compute the bias of each sensor.
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3.6 Experimental Results
Multiple experiments were conducted to show the performance and accuracy of the
surface reconstruction algorithm described in section 3.2 using the light sensors
presented in section 3.3 on the structure introduced in section 3.4. All the sensors
were calibrated and corrected for their bias, as shown in section 3.5, prior to the
experiments.

During each experiment, the structure remained static. The calibrated DIC system
was used to take photos of the surface with the two cameras to estimate the shape of
the structure with great accuracy. A total of 1000 measurements were taken with the
sensors (100 secs @ 10Hz) which were converted into 1000 separate reconstructed
surfaces. Such a large number of measurements gives statistically accurate results.

Fifteen control points were used in the reconstruction algorithm. They were uni-
formly spaced on a 5 × 3 grid as shown in figure 3.2. An inextensibility grid of
13 × 5 was used. The modifications of the algorithm presented in section 3.2 were
implemented. Because the surface was located relatively far from the light (about 2
m), the algorithm was not able to accurately estimate the distance, which could have
lead to large errors in the reconstruction. To prevent what is a numerical singularity
of the algorithm (see chapter 2), the central point of the surface was fixed to its 3D
position extracted from the DIC data. This is explained in more detail in chapter 2.

The two actuators placed in the middle of the structure applied bending and torsional
deformations. If they were both moved together, the surface undergoes “pure”
bending. Torsion can be applied by moving the bottom actuator relative to the
top one. The performance of the algorithm was studied for different amplitudes of
bending and torsion.

Bending of the Surface
The structure was deflected at its center by applying the same motion to both
actuators.

Figure 3.22 shows the comparison between the DIC shape (on top) and the mean
result of the reconstruction algorithm (at the bottom) after bending the structure by
20 mm (both actuators were driven 20 mm forward). The mean was calculated by
averaging the 1000 reconstructed shapes. The DIC can only measure the shape of
the central part of the structure as the cable connecting the sensors obstructs the
view of the cameras. Figure 3.23 shows the difference between the shapes. The
error varies along the surface in range ±1 mm. It is 0 at the center since this point
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is constrained to be equal to its position measured by the DIC.

The RMS error of each reconstructed shape can be calculated and a histogram of
the error can be plotted (figure 3.24). The histogram was accurately fitted with a
Generalized Extreme Value distribution. The mean error is around 0.7 mm.

Figure 3.22: DIC shape (top) and mean reconstructed shape from the sensor data
(bottom) for a 20 mm bending of the structure. The black outline represents the
boundaries of the DIC result to ease comparison.

Figure 3.23: Difference between the DIC shape and the mean reconstructed shape
from the sensor data for a 20 mm bending of the structure.

Torsion of the Surface
Figure 3.25 shows a similar reconstruction with the structure undergoing “pure”
torsion. The bottom actuator was moved by 20 mm forward while the middle
actuator remained at its 0 position. This imposes a 5.2° rotation between the
actuators. Because of the compliance of the aluminum plate, only the bottom part
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Figure 3.24: Histogram of the RMS error between the 1000 reconstructed shapes
and the DIC result for a 20 mm bending of the structure.

deforms while the top remains mostly flat. The figure shows that the algorithm is
capable of qualitatively reconstructing this more complex shape. The error shown
in figure 3.26 is concentrated in the central region that deforms the most and where
localized deformation happens. On average, the RMS error is about 0.8 mm as
shown in the histogram figure 3.27. The Generalized Extreme Value distribution is
again suited to estimate the performance of the system.

Figure 3.25: DIC shape (top) and mean reconstructed shape from the sensor data
(bottom) for a 5.2° torsion of the structure. The black outline represents the bound-
aries of the DIC result to ease comparison.
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Figure 3.26: Difference between the DIC shape and the mean reconstructed shape
from the sensor data for a 5.2° torsion of the structure.

Figure 3.27: Histogram of the RMS error between the 1000 reconstructed shapes
and the DIC result for a 5.2° torsion of the structure.

Combination of Deflection and Torsion
To further understand the evolution of the mean RMS error of the reconstruction for
different deformations, the deflection was varied from -20 mm to 20 mm and the
torsion from −5.2° to 5.2°. The deflection of the surface (in millimeters) is defined
by the position of the central actuator, while the torsion (in degrees) is defined by
the angle between the actuators. For all cases, 100 measurements were recorded
from the sensors leading to 100 reconstructed shapes that are then compared to the
DIC.

The mean RMS error across the surface is plotted against the imposed deflection
and torsion, figure 3.28. The minimum error happens for the flat case (no bending.
nor torsion) which is simply due to the fact that the bias of the sensor was calibrated
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Figure 3.28: Mean RMS error of the reconstructed shapes for different deflection
and torsion of structure.

to minimize the RMS error of this shape. The error is on the order of 1 mm for
small deformations, but increases for larger deformations. This can be explained by
the increased complexity of the shape of the surface for large actuation. More local
features appear which cannot be reconstructed by the algorithm. Figure 3.29, for
instance, shows the DIC and reconstructed shapes of the bottom right load case of
figure 3.28 (Deflection of 20 mm and Torsion of −5.2°). While the overall shape
with displacements over 25 mm is reconstructed, local features appear around the
center of the structure which leads to errors of up to 5 mm (figure 3.30). The
shape is eventually recovered at the edges. Other deformed shapes are very well
reconstructed such as 5.2° pure torsion which has a mean error of 0.5 mm. Figure
3.31 shows the superposition of the DIC shape over the mean reconstructed surface.
The difference between the shapes is hard to notice as both agree very well with
each other.

3.7 Conclusion and Discussion
In this chapter, we have demonstrated the accuracy of an algorithm that reconstructs
the shape of a surface with embedded light sensors. An experiment was designed
to validate the performance of a real system and understand the practical limitations
of the proposed solution.

Light sensors were designed to measure the two relative angles between the sensor
and a light source. Their simple architecture recreates a pinhole camera using
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Figure 3.29: DIC shape (top) and mean reconstructed shape from the sensor data
(bottom) for a 20mm deflection and−5.2° torsion of the structure. The black outline
represents the boundaries of the DIC result to ease comparison.

Figure 3.30: Difference between the DIC shape and the mean reconstructed shape
from the sensor data for a 20 mm deflection and −5.2° torsion of the structure.

Figure 3.31: Superposition of the DIC shape and the mean reconstructed shape from
the sensor data for a 5.2° “pure” torsion of the structure.
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a quad-photodiode. They were developed internally in order to understand their
functioning, and tailor them to the need of the experiment. The accuracy of the
sensors is mostly limited by the noise which varies depending on the angles and
the non-linearity of the response. Their accuracy is about 0.5° after calibration,
including calibration errors and noise. The calibration process remains complicated
and time consuming. Further work is needed to improve their performance, increase
their linearity, while simplifying their calibration technique.

The algorithmwas tested on a 1.3m× 0.25m aluminum thin plate with 14 embedded
sensors. It was deformed at the center by up to two centimeters in a combination
of bending and torsion. It was shown that this system can reconstruct the shape
of the plate with an accuracy of 0.5 mm RMS for the case of simple deflection
and torsion and about 1 mm RMS on average for all the experiments that were
conducted. For more complex deformations, local deformations of the surface
cannot be captured accurately by this algorithm, as it can only compute smooth
surfaces. It is important to keep this limitation in mind while developing such a
system. Structural considerations need to be investigated to guarantee the relative
smoothness of the structure while it deforms in order to accurately reconstruct its
shape. This will be improved with a new algorithm in the next chapter.
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C h a p t e r 4

FINITE ELEMENT BASED ALGORITHM TO RECONSTRUCT
THE SHAPE OF A SURFACE FROM DISTRIBUTED ANGLE

MEASUREMENTS

4.1 Introduction
The previous chapter demonstrated a system of distributed angle measurement sen-
sors to reconstruct the shape of a relatively large structure. The 1.3 × 0.25 m2

aluminum sheet with 14 embedded light sensors was reconstructed to an accuracy
ranging from 0.5mm for simple deformations up to 2.5mm for complex shapes. Rel-
atively inexpensive and simple sensors were calibrated and used in the experiment.
Their precision of 0.5° is average compared to existing light sensor technology [19,
23, 25, 61, 91], but it is sufficient to precisely reconstruct the overall shape of the
test structure.

The algorithm is limited by the complexity of the shape of the structure. It was shown
that more complex shapes create local deformations that were not fully captured by
the algorithm. This is mostly due to the relative smoothness of the shape functions
(Lagrange polynomials in this case) and the small number of sensors which limits
the resolution of the system.

The algorithm has the advantage of being purely based on geometric considerations,
making it easy to be applied to many different applications (as long as the deforma-
tion of the surface remain inextensible). Even if some parameters can be tuned, as
seen in chapter 2, the simplicity and smoothness of the reconstruction can limit the
accuracy of the system as demonstrated experimentally (chapter 3).

In order to more accurately represent the deformation of the structure, especially
local deformations, a structural mechanics model is used instead of geometric con-
siderations. Specifically, a finite element (FE) model is designed which predicts
the shape of the structure from boundary conditions. While many singularities
appear from the geometric conditions (inextensibility equations of the algorithm,
see chapter 2), the FE model is well-posed as long as the boundary conditions are
well defined.

This approach is inspired from the literature on finite-element modeling which
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can accurately estimate the shape of a structure from a small number of boundary
conditions, effectively creating an accurate representation of the shape from a small
number of inputs. This seems appropriate for our problem that uses a relatively
small number of sensors.

This approach will be used to generate a new algorithm where the previous inex-
tensibility conditions are now replaced by the state equation of an accurate finite
element model of the structure. This new set of equations, together with the mea-
surement equations of the sensors, generates a new, finite element based algorithm.
It will be tested on the same experiment described in the previous chapter and the
results will be compared with the initial algorithm.

Section 4.2 details the formulation of the finite element based algorithm. It shows
how the state and measurement equations are combined to generate a well-posed
algorithm.

The details of the finite element model are presented in section 4.3. A small-
deformation, plate bending model can accurately describe the deformation of the
structures considered for this problem. The model generates a stiffness matrix based
on Discrete Kirchoff Elements.

Finally, the new algorithm has been applied to the experiment presented in chapter
3. Results show a net increase in performance over the whole range of deformations
undergone by the experimental structure. The accuracy improvements are especially
noticeable for complex shapes: the relatively local deformations of the structure,
missed by the geometric algorithm are nowwell taken into account. Little correlation
is now present between the complexity of the shape and the accuracy of the method.

4.2 Finite Element Based Algorithm
In order to increase the accuracy of the solution, the inextensibility conditions of the
algorithm presented in chapter 3 have been replaced with the static state equation
generated from a finite element model. The parametrization of the deformation of
the shape is also generated from this finite element formulation, following a very
similar approach to that presented in chapter 2.

The study is limited to small deformations, plate-like structures like the one used in
the experiment shown in chapter 3. A static, linear finite element model using plate
elements is designed to capture the behavior of the structure.

The shape of the surface is defined locally in the (x, y, z) reference frame (see figure
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Figure 4.1: Definition of the reference frames of the problem. One has the light at
its origin and the other one is used to define the FE model of the structure.

4.1). It is initially planar in the x-y plane. The shape of the deformed surface
is defined by the degrees of freedom of the nodes of the finite element mesh.
Triangular elements connect all the nodes and shape functions are defined locally
on each element to interpolate the shape from the nodal degrees of freedom. For
a plate bending model, by neglecting the transverse shear deformation (Kirchhoff
plate theory), the degrees of freedom of a node are the out-of-plane displacement
and the rotation components of the node in both directions:

q f i =


wi

w,xi

w,yi

 (4.1)

where w is the out-of-plane deflection of the surface, w,x = ∂w
∂x , and w,y =

∂w
∂y .

The reconstructed surface is translated to fit in a reference framewith the light source
at its origin in order to use the measurement equations in chapter 2: equations 2.24
and 2.25 (see figure 4.1). The position of a point on the surface in the light reference
frame (X,Y, Z) is:

r(x, y) = t +


x

y

0

 +


0
0

N(x, y)

 q f (4.2)

where t is a translation vector, N(x, y) is the row vector of the shape functions
evaluated at (x, y) and q f is the vector of all degrees of freedom of the model. Note
that since the problem is invariant for any rotation around the light, no rotation
matrix is necessary.

Kinematic boundary conditions are necessary to ensure small deformations in the
(x, y, z) reference frame, that is, removing any possible rigid-body motion. Clamp-
ing a node (all its degrees of freedom are set to 0) is an example of a sufficient
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condition. Restraining the out-of-plane deflection of 3 non-aligned nodes to 0 is
another example.

A state equation links the displacement components for all degrees of freedom to
any external loads in a linear system:

Kq f = F (4.3)

where K is the stiffness matrix of the FE model, q f is the vector of all the degrees
of freedom, and F is the vector of external nodal loads (interpolation of the external
loads to the nodal d.o.f.).

Both kinematic and load boundary conditions can be applied to the model (see
[21]). Without loss of generality, only loads are applied as boundary conditions
(other than the kinematic b.c. used to remove rigid motions). Only concentrated
loads are studied in this chapter. The location of the concentrated loads is assumed
to be known, but not their amplitude which will be left as an unknown and solved
by the angle measurements of the sensors. Let N be the total number of external
loads (forces or moments). The force vector F can be re-written as:

F = FdF̃ (4.4)

where F̃ is a vector of dimension N concatenating the amplitude of the external
concentrated loads and Fd is a known conversion matrix that redistributes the loads
to their nodal values. From equations 4.2, 4.3, and 4.4, one can summarize the
unknowns of the algorithm as:

1. the degrees of freedom of the nodes

2. the amplitudes of the forces

3. the translation of the shape

which can be written as:
q = [qT

f F̃T tT ]T (4.5)

The dimension of this vector can be large for dense meshes but it is determined by
an equally large number of equations.

The FE model in equation 4.3 replaces the inextensibility equations defined in the
original algorithm in chapter 2. The equations for the algorithm are therefore:
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1. the static equation of the FE model 4.3:

Kq f = FdF̃ (4.6)

2. the measurement equations which can be written as:

tanαS =
r(xS, yS) · ∂r∂y (xS, yS)
r(xS, yS) · n(xS, yS)

‖n(xS, yS)‖


 ∂r∂y (xS, yS)



 (4.7)

tan βS = −
r(xS, yS) · ∂r∂x (xS, yS)
r(xS, yS) · n(xS, yS)

‖n(xS, yS)‖

 ∂r
∂x (xS, yS)



 (4.8)

where r(xS, yS) is obtained from equation 4.2. The angle αS corresponds to
the angle around ∂r

∂y and βS is the angle around ∂r
∂x (see figure 2.7 of chapter

2).

Note that if the sensors are attached to the nodes of the FE model, the local
tangent and normal vectors are expressed from the degrees of freedom:

∂r

∂x
(xS, yS) =


1
0

w,xS


∂r

∂y
(xS, yS) =


0
1

w,yS

 n(xS, yS) =

−w,xS

−w,yS

1


(4.9)

which are all unit vectors in a first order approximation.

Because equation 4.6 generates as many equations as the number of degrees of
freedom of the FE model, the number of measurement equations needs to be at least
greater than the number of unknown loads N plus 3 (size of the translation vector).

Solution Method. The equations 4.6, 4.7, and 4.8 create a system of equations
whose unknown is the vector q (equation 4.5). This system is often overconstrained
and is solved using the Levenberg-Marquardt algorithm.

4.3 Stiffness Matrix
Discrete KirchoffTriangular Elements (DKT) are used to generate the linear stiffness
matrix in equation 4.6. They have been reliably one of the best types of Kirchoff
plate elements for decades [6, 21]. A complete, detailed formulation is presented in
[21]. A summary is given in this section.

DKT elements resembleMindlin elements where the transverse shears are accounted
for in the degrees of freedom. The DKT element, however, explicitly enforces zero
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transverse shear strains at selected locations. As a result, shear strains are not strictly
equal to 0 across the surface as stated in Kirchoff theory, but only at discrete points.
This relaxation allows the use of complete polynomial fields which guarantees
continuity of the deflection and rotations across the structure.

The formulation starts by assuming independent fields for out-of-plane displace-
ments and rotations of a midsurface normal line. In this formulation, the strains of
the element are fully calculated by the rotations and the field for the out-of-plane
displacement is not explicitly introduced. The triangular element is straight-sided
with vertex and midside nodes (see figure 4.2).

1 2

3

(0,0) (1,0)

(0,1)

4

56

(a) Reference 6 node triangular element.

x

y

1

4

2

5

3

6

(b) Degrees of freedom used in the formula-
tion of the DKT element.

x

y

DKT

element

1

2

3

(c) Final DKT element.

Figure 4.2: Definitions of the degrees of freedom used in the formulation of the
DKT element.
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Rotation components of the midsurface-normal line are given by complete quadratic
polynomials, interpolated from the 6 nodal components:

ψx =

6∑
i=1

Niψxi and ψy =

6∑
i=1

Niψyi (4.10)

where the shape functions are defined by:

N1 = (1 − ξ − η)(1 − 2ξ − 2η) N2 = ξ(2ξ − 1) N3 = η(2η − 1)
N4 = 4ξ(1 − ξ − η) N5 = 4ξη N6 = 4η(1 − ξ − η)

(4.11)

with ξ and η the coordinates of the reference triangular element (see figure 4.2a)

These additional 12 degrees of freedom (ψxi and ψyi for i = 1..6) are constrained by
12 equations:

1. the first six equations impose zero shear strains at the vertex of the element:

ψxi = w,xi and ψxi = w,yi for i = 1, 2, 3 (4.12)

2. the next 3 equations impose that the transverse shear strain is zero at the
midsides.

ψsi = w,si for i = 4, 5, 6 (4.13)

where w,si is extrapolated from the out-of-plane displacement and transverse
rotations at each vertex. For instance, the transverse slope at node 5 is:

w,s5 =
3

2L23
(w3 − w2) −

1
4
(w,s2 +w,s3 ) (4.14)

with w,s = −w,x sin β23 +w,y cos β23, β23 the angle between the normal of the
edge between nodes 2 and 3 and the x-axis, and L23 the length between nodes
2 and 3 (see figure 4.2b). The transverse rotation is calculated identically
ψs5 = −ψx5 sin β23 + ψy5 cos β23.

3. finally, the last three equations impose the normal shear strain to be 0 at the
midsides, assuming linearity of the normal slopes between vertices:

ψn4 =
1
2
(w,n1 +w,n2 ) ψn5 =

1
2
(w,n2 +w,n3 ) ψn6 =

1
2
(w,n1 +w,n3 )

(4.15)

where w,n = w,x cos β + w,y sin β and ψn = ψx cos β + ψy sin β.
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These equations can be gathered in matrix form:[
ψx1 ψy1 ψx2 ... ψy6

]T
= T

[
w1 w,x1 w,y1 w2 ... wy3

]T (4.16)

where:

T =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

3
2

s12
L12

c2
12
2 −

s2
12
4

3
4c12s12 −3

2
s12
L12

c2
12
2 −

s2
12
4

3
4c12s12 0 0 0

−3
2

c12
L12

3
4c12s12

s2
12
2 −

c2
12
4

3
2

c12
L12

3
4c12s12

s2
12
2 −

c2
12
4 0 0 0

0 0 0 3
2

s23
L23

c2
23
2 −

s2
23
4

3
4c23s23 −3

2
s23
L23

c2
23
2 −

s2
23
4

3
4c23s23

0 0 0 −3
2

c23
L23

3
4c23s23

s2
23
2 −

c2
23
4

3
2

c23
L23

3
4c23s23

s2
23
2 −

c2
23
4

−3
2

s31
L31

c2
31
2 −

s2
31
4

3
4c31s31 0 0 0 3

2
s31
L31

c2
31
2 −

s2
31
4

3
4c31s31

3
2

c31
L31

3
4c31s31

s2
31
2 −

c2
31
4 0 0 0 −3

2
c31
L31

3
4c31s31

s2
31
2 −

c2
31
4


(4.17)

with ci j = cos βi j and si j = sin βi j .

It follows that the midplane curvatures can be calculated from the rotations only:


w,xx

w,yy

w,xy

 =

ψx,x

ψy,y
ψx,y+ψy,x

2

 =

N1,x 0 N2,x 0 ... N6,x 0
0 N1,y 0 N2,y ... 0 N6,y

N1,y
2

N1,x
2

N2,y
2

N2,x
2 ...

N6,y
2

N6,x
2




ψx1

ψy1

ψx2
...

ψy6


(4.18)


w,xx

w,yy

w,xy

 = [∂N]



ψx1

ψy1

ψx2
...

ψy6


(4.19)

Since the shape functions are defined in the reference coordinates ξ and η, the
Jacobian matrix is needed to calculate the derivatives as a function of the actual
coordinates x and y: [

Ni,x

Ni,y

]
= J−1

[
Ni,ξ

Ni,η

]
(4.20)
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where [J] is the Jacobian matrix which is equal to:

J =

[
x2 − x1 y2 − y1

x3 − x1 y3 − y1

]
(4.21)

where xi (resp. yi) is the x-coordinate (resp. y-coordinate) of the node i of the
triangular element.

Equations 4.16 and 4.19 can be gathered to calculate the midplane curvatures in
function of the degrees of freedom:


w,xx

w,yy

w,xy

 = [∂N]T



w1

w,x1

w,y1

w2
...

wy3


(4.22)

The moments are calculated from the curvatures using Kirchhoff Plate Theory:


Mx

My

Mxy

 = D


w,xx

w,yy

w,xy

 = D [∂N]T



w1

w,x1

w,y1

w2
...

wy3


(4.23)

where D is the flexural rigidity matrix for a homogeneous, isotropic material:

D = D


1 ν 0
ν 1 0
0 0 1 − ν

 (4.24)

with D, the bending stiffness, and ν the Poisson’s ratio.

The element stiffness matrix is equal to:

[ke] =
∫

Se
TT [∂N]T D [∂N]TdS (4.25)

where Se is the surface of the element. This integral can be calculated using a Gauss
quadrature rule. The global stiffness matrix can be assembled from each element
stiffness matrix by adding the contributions at each node.
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Figure 4.3: Picture of the experiment showing the surface to reconstruct, its bound-
ary conditions and the light sensor system.

4.4 Experimental Validation
This new algorithm formulation is tested on the experiment presented in chapter 3
of this thesis. The surface to reconstruct is an aluminum plate (0.016” thick, 50”
long and 10” wide) fitted with 14 light sensors (see figure 4.3). A LED light is
placed about 2 m in front of the structure to generate the angle measurement from
the light sensors.

More details can be found in chapter 3, especially about the calibration of the sensors
which measure angles from the light with a precision of 0.5°. They are positioned
on rigid aluminum mounts to prevent them from moving during the deformation of
the structure. This offset is included in the measurement equations in the algorithm
(see chapter 3).

The reconstructed shape from the algorithm is compared to a secondary measure-
ment systemwhich also measures the shape of the structure with a better precision of
about an order of magnitude (50 µm RMS). This system uses two cameras to image
the random pattern printed on the structure. The position of a point is triangulated
using Digital Image Correlation (DIC). This comparison estimates the accuracy of
the reconstructed shape of the algorithm.

The shape of the structure is controlled by two linear actuators placed in the middle
of the structure: one at the center, linked to the surface by a pivot and one below the
structure linked by a pivot and slider system. The actuators can impose two types
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of motion: bending which is characterized by the motion of the top actuator, and
torsion which is characterized by the difference of motion between the actuators.

Multiple deformed shapes are imposed by the actuators, combining different bending
and torsion modes. For each static shape, 100 measurements were taken by the
sensors leading to 100 slightly different reconstructed shapes due to their noise. The
RMS error of each shape is calculated to obtain an understanding of the overall error
of the reconstruction.

Out-of-plane force

Out-of-plane displacement to 0

Bending moment around x Bending moment around y

x

y

Figure 4.4: Boundary conditions of the FE model. The amplitude of each load is
left as an unknown, solved by the angle measurements.

Figure 4.4 shows the different load boundary conditions that are integrated with
the new reconstruction algorithm. Their location is used to generate the matrix
Fd (equation 4.4). A total of 5 loads are considered and recreate the boundary
conditions applied to the experimental structure. In order to fix the shape to its local
reference frame, the out-of-plane deflection of the nodes shown in figure 4.4 in blue
are fixed to 0. Note that these constraints are associated with reaction forces that are
load boundary conditions (but not explicitly calculated by the model).

The algorithm has a numerical singularity which is associated with the distance from
the surface to the light. More details on this singularity can be found in chapter
2. To circumvent this issue, the distance of the central point of the surface (which
coincides with the origin of the reference system, see figure 4.1) is measured with
the DIC camera system. The translation vector of equation 4.2 is then generated by
two rotation matrices:

t = RxRyt0 (4.26)

where t0 is the original position of the center of the structure, Rx is the rotation
matrix around the x-axis, and Ry is the rotation matrix around the y-axis. The two
angles defining the rotation matrices are used in the unknown vector (equation 4.5)
instead of the 3 coordinates of the translation vector. Note that in order to match
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the results of the algorithm to the DIC measurement, the position vector r (equation
4.2) is rotated by the opposite angles during post-processing:

rfinal = RT
yRT

x r (4.27)

The original algorithm performed well for simple deformation such as pure bending
or pure torsion. Figure 4.5 shows the results of the experiment for a 20 mm
deflection of the structure. The reconstructed shapes of both algorithms (figures
4.5b and 4.5c) are compared to the DIC shape (figure 4.5a). The results are very
similar qualitatively. A detailed map of the average error across the surface is shown
in figure 4.6. The FE based algorithm does a better job on the left of the structure
and lower right which leads to a slightly better accuracy (0.91 mm vs. 1mm).
Similar results are shown for pure torsion of the structure in figure 4.7. The results
are almost identical with an RMS error of about 0.55 mm for both. The error maps
shown in figure 4.8 display relatively similar results. While the FE based algorithm
performs better on the left, the geometric, inextensible one seems to be best on the
right.

Figures 4.9 and 4.11 show the results for more complex shapes that combine torsion
and bending. The error of the reconstruction using the geometric, inextensible shape
reconstruction algorithm were dominated by the deformation around the center of
the structure. The new, FEM based algorithm does a much better job capturing these
local inflections which leads to a smaller RMS errors. This is especially noticeable
in figure 4.11 where the yellow line follows a relatively smooth arc for the solution
of the geometric, inextensible shape reconstruction algorithm. The solution of the
FEM based algorithm creates a yellow line with an inflection point as measured by
the DIC.

This point is highlighted by the error maps of the reconstructed shape (figures 4.10
and 4.12). In both cases, the FE based algorithm is more accurate around the center
of the structure which leads to a better RMS error overall.

Figure 4.13 shows the average RMS error for all the different shapes reconstructed
for this experiment. Overall, the FEM based algorithm provides much better results
than the geometry based one with about a factor 1.5 increase in accuracy (about 42
%). The average RMS error for the original algorithm over the different experiments
is 1.25 mm and decreases to 0.9 mmwith the finite element approach. The accuracy
improvements go as high as 70% in the case of the 10 mm / 5.2° shape. Higher
errors still appear for more complex shapes, but the difference is much smaller.
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(a) Shape measured by the DIC system.

(b) Shape reconstructed from the geometric, inextensible shape reconstruction algorithm.

(c) Shape reconstructed from the finite-element based shape reconstruction algorithm.

Figure 4.5: Measured and reconstructed shapes for a 20 mm deflection of the
structure.

Computational time
The geometric, inextensible shape reconstruction algorithm takes about 150 ms to
calculate the position of the control points. The FE based algorithm takes about
30 s to estimate all the entries of the vector of unknowns. The difference in
computational time is mostly due to the number of unknowns (45 vs. 1690) and that
a finite difference scheme was used to compute most of the Jacobian matrices. More
work could be done to optimize the speed of the algorithm for applications in which
timing is crucial. Simpler and faster methods than the Levenberg-Marquardt one,
explicit calculation of the Jacobian matrix, or linearizations of the constraints are
some of the possible ways to increase the speed of the presented shape reconstruction
algorithms.
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(a)Mean error of shapes reconstructed from the geometric, inextensible shape reconstruction
algorithm.

(b) Mean error of shapes reconstructed from the finite-element based shape reconstruction
algorithm.

Figure 4.6: Error of reconstructed shapes for a 20 mm deflection of the structure.

4.5 Conclusion and Discussions
This chapter presented an updated version of the shape reconstruction algorithm
introduced in chapter 2. Experimental results using this original algorithm in
chapter 3 showed that local shape deformations due to the boundary conditions on
the structure cannot be accurately solved for. This consequently limited the accuracy
of the results.

By introducing a structural mechanics model of the structure, these local deforma-
tions can be predicted. The equilibrium equations effectively replace the intextensi-
bility conditions previously introduced to remove the singularities of the measure-
ment equations. The framework of the algorithm remains mostly unchanged and
only these inextensibility equations are replaced with the static equilibrium derived
from a finite-element model.

The new algorithm is used on the raw measurement data from the experiment
detailed in chapter 3 and the reconstructed shapes are compared to the results shown
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(a) Shape measured by the DIC system.

(b) Shape reconstructed from the geometric, inextensible shape reconstruction algorithm.

(c) Shape reconstructed from the finite-element based shape reconstruction algorithm.

Figure 4.7: Measured and reconstructed shapes for a “pure” 5.2° torsion of the
structure.

in the paper. A net improvement of accuracy by over 40% was shown. The local
shape deformations are better estimated and while the error previously increased
when the deformed shape became more complex, this sensitivity has been reduced.

The finite element model is however restricted to small deformations. More work
needs to be done to make this algorithm more general and include a geometrically
nonlinear finite element model instead. This would add complexity to the system
of equations and make the algorithm potentially slower, but more suited to a wider
range of applications. The performance of the algorithm should then be tested to
more complex geometries to better understand its limits.

The system of equations generating the algorithm can be linearized for small defor-
mations and if the incident light on the structure is collimated (the direction of the
light is identical across the structure). This linear system would greatly simplify and



89

(a)Mean error of shapes reconstructed from the geometric, inextensible shape reconstruction
algorithm.

(b) Mean error of shapes reconstructed from the finite-element based shape reconstruction
algorithm.

Figure 4.8: Error of reconstructed shapes for a “pure” 5.2° torsion of the structure.

accelerate the solving process which could be advantageous for space applications
where computational resources are limited.
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(a) Shape measured by the DIC system.

(b) Shape reconstructed from the geometric, inextensible shape reconstruction algorithm.

(c) Shape reconstructed from the finite-element based shape reconstruction algorithm.

Figure 4.9: Measured and reconstructed shapes for a -20 mm deflection and 5.2°
torsion of the structure.
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(a)Mean error of shapes reconstructed from the geometric, inextensible shape reconstruction
algorithm.

(b) Mean error of shapes reconstructed from the finite-element based shape reconstruction
algorithm.

Figure 4.10: Error of reconstructed shapes for a -20 mm deflection and 5.2° torsion
of the structure.
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(a) Shape measured by the DIC system.

(b) Shape reconstructed from the geometric, inextensible shape reconstruction algorithm.

(c) Shape reconstructed from the finite-element based shape reconstruction algorithm.

Figure 4.11: Measured and reconstructed shapes for a 20 mm deflection and 5.2°
torsion of the structure.
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(a)Mean error of shapes reconstructed from the geometric, inextensible shape reconstruction
algorithm.

(b) Mean error of shapes reconstructed from the finite-element based shape reconstruction
algorithm.

Figure 4.12: Error of reconstructed shapes for a 20 mm deflection and 5.2° torsion
of the structure.
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(a) Mean RMS error using the geometric,
inextensible shape reconstruction algorithm.
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(b)MeanRMSerror using the finite-element
based shape reconstruction algorithm.

Figure 4.13: Mean RMS error of the reconstructed shape for different applied
deflections and torsions.
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C h a p t e r 5

DYNAMIC SHAPE MEASUREMENT OF A LARGE
SPACECRAFT USING A KALMAN FILTER

5.1 Introduction
The size of spacecrafts is limited by the size of the rocket placing them into orbit.
Large structures in space involve either the assembly or the deployment of parts
which is often complicated, heavy or expensive. Relatively simple and conservative
designs often using joints are usually considered. Large structures are key of the
future of space as they open a large field of applications [9, 43].

Many applications are driven by the shape accuracy of the structure. This is usually
achieved by designing stiff structures [37] which tend to make the satellite heavy
(primary apperture of JWST), but more aggressive designs are being investigated
(solar sails such as IKAROS (JAXA), NanoSail (NASA), or LightSail (Planetary
Society)). Such gossamer structures are very light and highly packageable which is
advantageous when launching them into space.

New concepts are trying to use gossamer structures while still requiring high shape
accuracy. To do so, some enforce the flatness of the structure by tensioning it
[90]. This however requires tens of newtons of force which eventually have to be
carried as compression in some structural elements, which tend to be bulky and
heavy to avoid buckling. Vibration suppression is another method being studied to
maintain a stable shape [70]. Bending stiff elements can be included in the design to
limit the deformation of the structure. The roll-out solar array experiment (ROSA)
demonstrated a new design for lightweight solar panels [4]. The Space Solar Power
Project at Caltech is developing a deployable spacecraft structure that, once deployed
to its planar configuration, can generate DC power from the sunlight and beam it
back to Earth using an RF antenna array [3, 30].

Measuring the shape of these lightweight deformable structures can greatly improve
their performance and may enable their use in some applications. For example,
the shape of a solar sail directly correlates with the direction and amplitude of its
acceleration. This measure becomes useful for guidance and navigation controllers
especially for long duration missions [10]. Large antenna arrays such as those
envisaged in the Space Solar Power Project at Caltech do not require a rigid support
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(a) Picture from the body-mounted cam-
era of IKAROS.

(b) Picture from the detachable camera of
IKAROS.

Figure 5.1: Pictures taken by the cameras on board IKAROS. Credit: JAXA.

structure, provided a phase shift is introduced to correct for the relative displacement
of the antennas. This phase correction needs an accurate measurement of the shape
of the structure [35].

Cameras have usually been used to measure the shape of large structures in space.
IKAROS, for instance, had both body-mounted and detachable cameras (figure
5.1b. The images taken by the cameras were used to retrieve the shape of the sail a
posteriori [67, 74, 89]. The vibrational shape and frequency of the ISS solar panels
was also measured in space in an experiment aboard the space shuttle using cameras
tracking the location of targets [75]. Recently, new concepts have been studied to
measure the shape of large structures using sun sensors [10, 84]. These systems are
not limited by the small incidence angle of on-board cameras (figure 5.1a) or the
short time during which detachable cameras can provide images (figure 5.1b).

We wish to reconstruct the shape of a large planar spacecraft orbiting around the
Earth and maneuvering to stay relatively aligned to the Sun. This type of orbit is
applicable to solar sails or space solar power satellites [29, 53]. Sun sensors are
distributed on the structure and will be used to reconstruct its shape.

Both large rotations and vibrations are to be measured. A Kalman filter is used to
estimate the shape of the structure by combining the measurements with a dynamic,
mechanical model.

The first section defines the problem that will be studied in this chapter. The study is
limited to a simple spacecraft modeled as a thin plate. The approach is adequate to
understand the performance and limitations of the measurement system rather than
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to consider the detailed performance of a specific space structure.

Section 5.3 will detail the dynamic model of the structure. The out-of-plane defor-
mation and vibration of the spacecraft are captured by a linear plate bending finite
element model. Because the spacecraft can undergo large rotations, this model
includes such rigid-body effects [76, 77]. Initially non-linear, a linear dynamic
model of the spacecraft can be achieved from simple assumptions that will be de-
tailed. The number of degrees of freedom of the model is largely reduced using
a Craig-Bampton model reduction which becomes computationally useful for the
implementation of a Kalman filter [32, 68].

The equations of the Kalman filter are detailed in section 5.4. The finite element
model is integrated to generate a discrete time state model used in the filter [14, 20].
A state vector represents the degrees of freedom of the model that are computed
through this filter and updated by the measurements. The measurement equations
defining the relation between the state vector and the angles measured by the sun
sensors are also explained.

Finally, the performance of such a system is analyzed for a model of the Space Solar
Power Satellite in section 5.5 . While the architecture of this satellite is complex
[30, 31, 45], its dynamics are simplified according to the model detailed in section
5.3. Simulations are done on a 25 × 25 m version of the spacecraft. The accuracy
of such a system and the gain in performance compared to a rigid-body model is
determined, and the influence of the number of sensors is shown. Studies have also
been conducted to show the robustness of the filter to possible errors in the modeled
stiffness matrix. The effects of errors in the bending stiffness parameters on the
accuracy of the system are computed. Finally, it is shown that adding force sensors
at the thruster locations would greatly improve the accuracy of the system.

5.2 Definition of the Problem
We assume that the spacecraft is square with its mass uniformly distributed except a
possible point mass at its center (this represents a central hub). Its bending stiffness
is also assumed homogeneous and isotropic such that the mechanical behavior of
the planar spacecraft resembles a plate in bending. A simple schematic of such a
spacecraft is shown in figure 5.2.

The spacecraft can rotate off the Sun axis either for guidance, station keeping or to
optimize its output (in the case of a space solar power satellite). The Sun is assumed
to remain within the field of view of the sensors. For simplicity, we assume that
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Figure 5.2: Model spacecraft. The square planar structure is homogeneous in terms
of mass and stiffness, except possibly a point mass at its center. The axes of the
structure are defined in the middle and pointing along its edges. Thrusters at each
corner provide the necessary actuation for guidance purposes.

these large rotations only happen around the x-axis and that the rotations around the
other axes are small.

The attitude of the spacecraft is controlled by thrusters placed at each corner of the
structure. They are considered massless. When firing, they create a moment that
either accelerates the rotation of the spacecraft or decelerates it. Additionally to the
rigid rotation, these thrusters will force vibration of the structure whose amplitude
can be large enough to affect the performance of the satellite. Note that other type
of actuators could be considered such as Reflectivity Control Device that were used
on IKAROS to control the solar sail [29].

The large rigid-body rotation and the vibration of the spacecraft are the only phe-
nomenon included in this study. Other effects, not considered in the rest of this
chapter, can deform such lightweight, deployable structure: jamming of compo-
nents during the deployment, thermal loads, or the solar pressure which is often
non-negligible for such large structures [37].

In order to reconstruct the vibrating shape of the spacecraft, we will use a Kalman
filter which merges the measurements and a dynamic model of the structure.
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5.3 Finite Element Model of the Spacecraft
A model of the spacecraft is needed by the Kalman filter that will be presented in
section 5.4, in order to predict the behavior of the system between measurements.
These predictions are then corrected at every measurement interval. The shape of
the spacecraft is dictated by a large rigid rotation around its center of mass and
off-plane vibrations, both generated by external loads such as thruster forces. We
assume that the structure was designed to stay relatively planar, i.e. any out-of-plane
deflection is assumed small.

Both the vibration of the structure and its large rotation are captured in a single
model. A finite displacement model can capture both effects by assuming large
displacements of the nodes [7]. This formulation is, however, geometrically non-
linear and can be complicated especially when off-plane vibrations can be assumed
small and accurately modeled by a linear, small displacement model. An extended
model can be formulated by integrating a finite element model with large rigid-
body motions and will be presented in the next sub-section. While non-linear, this
combined model can be linearized under certain assumptions that will be presented.

This linearized model is further reduced to decrease its number of degrees of
freedom. Only low frequency modes are sufficient to capture the vibrating shape
of the structure. This reduced order model is very advantageous in a Kalman filter
formulation as it greatly accelerates numerical calculations.

Floating Frame of Reference Formulation
In this sub-section, we detail the formulation that combines a local finite-element
model with large rigid-body motions. It has been originally developed for multi-
body systems in [76] and is called the Finite Element Floating Frame of Reference
Formulation. The details of the derivation can be found in [76], and only the main
definitions and results are presented here.

Let (X,Y, Z) be an inertial reference frame and (x, y, z) be the local, non-inertial
reference frame of the spacecraft as shown in figure 5.3. The position of a point P
on the structure rP is defined in the inertial reference frame (X,Y, Z) by:

rP = AuP + t (5.1)

where A is the rigid-body rotation matrix, uP is the position of point P in the local
reference frame (x, y, z), and t is the rigid-translation of the structure expressed in
(X,Y, Z).
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Figure 5.3: Description of the Floating Frame of Reference Formulation (FFR). The
deformation of the structure is defined locally in (x, y, z). It is then moved rigidly in
the inertial frame (X,Y, Z).

Small vibrations of the structure are defined by a finite element model in the local
reference frame. Any rigid body mode of this model has to be suppressed to avoid
redundancies with the translation vector and rotation matrix of equation 5.1.

The position of a point on the structure in the local reference frame is parametrized
by the shape functions of the finite element model:

uP = uP
0 + uP

f = uP
0 + NPq f (5.2)

where uP
0 is the initial position of point P in the undeformed state, NP is the matrix

of space-dependent shape functions used in the local finite element model evaluated
at point P and q f is the time-dependent vector of degrees of freedom of the finite
element model.

The rotation matrix A can be defined according to different conventions: Euler
angles, Rodrigues’ parameters, Euler parameters, quaternions, etc [41]. Let qθ be
the vector of the chosen parameters. The rotation matrix is explicitly defined by
these parameters: the x − y − z Tait–Bryan angles sequence generates a rotation
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matrix as follows:

A = Az (θz)Ay

(
θy

)
Ax (θx) =


cxcz −cysz sy

czsxsy + cxsz cxcz − sxsysz −cysx

−cxczsy + sxsz czsx + cxsysz cxcy

 (5.3)

where Ax (resp. Ay, Az) is the basic rotation matrix around the x-axis (resp. y, z-
axis), cx,y,z = cos θx,y,z, sx,y,z = sin θx,y,z. The angles θx , θy and θz are commonly
known as the roll, pitch and yaw angles. The rotation parameters can be gathered in
vector form: qθ = [θx θy θz]T .

The coupling between the rigid motion and the local deformation of the structure is
fully captured by the mass matrix and a quadratic velocity force vector. To estimate
the mass matrix, the expression for velocity vector at point P needs to be written. It
can be written by taking the time derivative of equation 5.1:

ÛrP = ÛAuP + ANP Ûq f + Ût =
[
I3×3 −A[uP]×G ANP

] 
Ût
Ûqθ
Ûq f

 (5.4)

where I3×3 is the 3× 3 identity matrix, [uP]× is the skew-symmetric tensor of vector
uP, and G is the linear operator that transforms the time derivative of the rotation
parameters Ûqθ to the angular velocity vector ω = G Ûqθ .

The linear operator G depends on the parametric representation of the rotation qθ .
For the x − y − z Tait–Bryan angles sequence, one can show that it is equal to:

G =


cycz −sz 0
cysz cz 0
−sy 0 1

 (5.5)

Equations of motion

The general form of the equations of motion of the spacecraft can be written as:

MÜq +Kq = Fa + Fv (5.6)

where q = [tT qT
θ qT

f ]
T is the vector of degrees of freedom of the model, M is

the mass matrix, K is the stiffness matrix, Fa is the vector of applied forces, and Fv

is the quadratic velocity vector which represents the Coriolis and centrifugal forces.
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Mass Matrix

ThemassmatrixM can be calculated bywriting the expression for the kinetic energy
in the inertial reference frame. This leads to a highly non-linear expression:

M =


mtt mtθ mt f

mθt mθθ mθ f

m f t m f θ m f f

 (5.7)

where:

• mtt is the mass of the spacecraft:

mtt = m I3×3 (5.8)

• mθt is the first moment of mass and vice versa, mtθ = mT
θt is the acceleration

created by the angular acceleration of the local reference frame:

mtθ = −
∫

V
ρA[uP]×GdV (5.9)

note that this term is 0 if the origin of the local reference system coincides
with the center of mass. This is usually not the case as the deformation of the
plate moves the center of mass.

• mt f = mT
f t represents the mass associated with each degree of freedom of the

finite element model:
mt f =

∫
V
ρANPdV (5.10)

• mθθ is themoment of inertia (expressed in function of the rotational parameters
accelerations):

mθθ =

∫
V
ρGT [uP]T×[uP]×GdV (5.11)

• mθ f = mT
f θ represents the torque generated by the acceleration of the d.o.f.

of the finite element model (m f θ represents the Euler force):

mθ f = −
∫

V
ρGT [uP]T×NPdV (5.12)

• m f f is the classical mass matrix of the finite element model:

m f f =
(
NP

)T
NP (5.13)
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Stiffness Matrix

Rigid motions do not induce any strains, hence do not contribute to the stiffness
matrix. Its expression is directly derived from the finite element model of the
structure:

K =


0 0 0
0 0 0
0 0 K f f

 (5.14)

where K f f is the classical stiffness matrix of the finite element model:

K f f =

∫
V

(
[∂]NP

)T
D[∂]NPdV (5.15)

with [∂], the differential operator that calculates the strains from the displacements,
andD, the constitutivematrix of elastic constants which, in a case of a homogeneous,
isotropic plate model, is the flexural rigidity matrix:

D = D


1 ν 0
ν 1 0
0 0 1 − ν

 (5.16)

Applied Forces

Let fP be a force acting at point P, defined in the local reference frame (x, y, z). fP

is, for example, the force generated by a thruster attached to the spacecraft. The
applied force vector can be expressed by 3 sub-vectors, each associated with the 3
sets of degrees of freedom:

Fa =


Fta

Fθa

F f a

 =


AfP

−GT [uP]T×fP(
NP)T fP

 (5.17)

where Fta = AfP is the rigid-body force component in the inertial reference frame,
Fθa = −GT [uP]T×fP represents the rigid-body moment of the force, and F f a =(
NP)T fP is the discretization of the force onto the nodal coordinates of the finite
element model. A similar expression can be written for discrete applied moments.
Surface or body forces can also be introduced through integrals over the boundary
surface or interior volume of the structure. Finally, if multiple forces are applied,
the total force vector is the sum of each individual contribution.
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Quadratic Velocity Vector

The quadratic velocity vector corresponds to the Coriolis and centrifugal forces
generated by the rotation of the structure in the inertial reference frame. They create
body forces equal to:

fv = −[ω]2×uP − 2[ω]×NP Ûq f (5.18)

where the first term corresponds to the centrifugal force and the second to the
Coriolis force. Note that the Euler force is included in the mass matrix, equation
5.12. The quadratic velocity vector is simply expressed as:

Fv =


Ftv

Fθv
F f v

 =
∫

V
ρ


Afv

−GT [uP]×fv(
NP)T fv

 dV (5.19)

Assumptions and Linearization of the Equations of Motion
The following assumptions are made to simplify the equations of motion:

1. The out-of-plane displacements of the structure are small. As a result, only
the out-of-plane component varies, while the x, y-displacement components
of a point remain approximately zero (see figure 5.3). The position of a point
P in the local reference system (or floating frame of reference) is:

uP = uP
0 + NPq f =


xp

yP

0

 +


0
0

ÑP

 q f (5.20)

The third coordinate zP = ÑPq f is considered small compared to the dimen-
sions of the structure, hence second-order terms in zP are neglected.

2. The applied forces are assumed to be only along the z-axis (see figure 5.3).
They are symmetric around the x-axis such that they only create large rotations
around x, small rotations around y (included into the local finite-element
model), and no rotation around z. Without loss of generality, the angle around
z is set to zero.

3. Due to the symmetry of the actuation and the structure, the translation of the
center of mass is negligible. This leads to t = 0. Note that this assumption
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is equivalent to placing a relatively heavy point mass at the center of mass of
the structure (This physically would corresponds to a hub at the center of the
structure which is common for this type of satellite). This mass contributes
enough to neglect the acceleration of the center of mass of the structure.

4. The angular velocities of the spacecraft are small (slow maneuvers). The size
of the spacecraft is relatively large so that the frequency and amplitude of the
first modes of vibrations are small (compared to its size) which leads to small
out-of-plane velocities of the structure. Both assumptions are used to neglect
the quadratic velocity vector where all the terms are second order: Fv = 0.

One can show that, with the aforementioned assumptions, the vector of degrees of
freedom is q = [θx qT

f ]
T . The mass matrix reduces to:

M = µ


L4

12

∫
S yÑPdS∫

S y
(
ÑP)T dS

∫
S

(
ÑP)T ÑPdS


(5.21)

where µ is the area density (assumed constant across the spacecraft), and L is the
width and length of the structure. Note that the off-diagonal terms correspond to
the moments generated by the acceleration of the degrees of freedom of the finite
element model (Euler forces). The first diagonal term is the moment of inertia of a
rigid structure.

The stiffness matrix is simply derived from the finite element model and is linear,
assuming small displacements:

K =

[
0 0
0 K f f

]
(5.22)

The force vector can be approximated by:

Fa =
∑

F

[
yF f F(

NF )T f F

]
(5.23)

where the index F represents one of the applied forces at (xF, yF). The first entry is
the moment of the forces around the center of mass which coincides with the origin
of the reference systems.
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The linear equation of motion is therefore:

MÜq +Kq = Fa (5.24)

Note that the only difference with a classical small deformation finite-element model
is the coupling between the rigid-body angular acceleration and the vibration of the
structure (and vice versa).

Local Finite-Element Model
The Floating Frame of Reference Formulation introduced in the previous sub-
section merges a local finite element model with a large rigid-body motion. This
finite element model characterizes the small deformation of the spacecraft.

A linear plate-bending finite element model is designed to model the out-of-plane
vibrations of the spacecraft. This coincides with the assumptions made in the
previous sub-section to linearize the equations of motion.

The deformation of the mid-plane of the plate structure is considered. The mid-
surface corresponds to the neutral surface where the in-plane strain components
remain zero throughout the deformation. The underformed configuration of the
plate is flat and lies in the xy-plane. Deformations only occur along the z-axis. We
further assume that the structure behaves as a homogeneous, isotropic Kirchoff plate
(no shear deformation across the thickness). The moment-curvature relationship is
therefore of the type: 

Mx

My

Mxy

 = D


1 ν 0
ν 1 0
0 0 1 − ν



−w,xx

−w,yy
−w,xy

 (5.25)

where D is the bending stiffness and ν is the Poisson’s ratio.

Each node of the structure contains three degrees of freedom: its out-of-plane
displacement w and the surface slopes w,x and w,y. The nodes are uniformly
distributed on the square spacecraft and triangular elements between the nodes are
defined. The finite element mesh is shown in figure 5.4. The 4 corner forces from
the thrusters are also shown. The nodal degrees of freedom are defined in figure
5.5.

Shape functions are defined over each element in order to reconstruct the out-of-plane
coordinate of a point on the structure. Different functions are used to reconstruct
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Figure 5.4: Definition of the element layout on the plate-like spacecraft as well as
the 4 corner forces.
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Figure 5.5: Definition of the triangular element and its degrees of freedom.
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the mass and stiffness matrix. A simple 3rd order polynomial is used to build the
mass matrix (equation 5.13). The out-of-plane displacement within an element is
written as:

w = a0 + a1x + a2y + a3x2 + a4xy + a5y
2 + a6x3 + a7x2y + a8xy2 + a9y

3 (5.26)

where the coefficients ak are computed from the nodal degrees of freedom. Because
only 9 d.o.f. are available and 10 coefficients need to be computed, we impose the
following relation to enforce continuity of the normal slopes across elements:

a7 + a8 = 2(a6 + a9) (5.27)

As mentioned in [21], this formulation can be singular for some element geometries.
The simple element layout shown in figure 5.4 results in a well-posed formulation
and is used to compute the mass matrix in equation 5.21. It is also used to compute
the vector of external forces in equation 5.23.

Discrete Kirchhoff Triangular Elements (DKT) are used to compute the stiffness
matrix. DKT is considered one of the best three-node plate elements [6, 21]. The
complete formulation can be found in [21]. After assembling the different element
contributions, the classical stiffness matrix, equation 5.15, fully defines the full
model matrix equation 5.22.

Reduced Order Model
The equation of motion (equation 5.24) while linear can contain a large number
of degrees of freedom: 3 × (Number of nodes) + 1. As shown in section 5.4, the
matrices used in the Kalman filter are even larger (over double the number of d.o.f.)
which leads to slow computations. This can be problematic especially if such an
algorithm is to be programmed on the on-board computer of a spacecraft.

The finite element model aims to capture the vibrations of the spacecraft. In the
current form, it contains high order vibration modes which in most cases are not
necessary. Indeed, these high frequency modes are usually not excited, especially
in the case of slow maneuvers.

A Craig and Bamptonmodel reduction is performed on equation 5.24. This method-
ology replaces the classical element-basedmodel with a super-element. The degrees
of freedom of the super-element are a subset of d.o.f. from the original formulation
and a set of modal amplitudes corresponding to the eigenmodes of the structure the
user wishes to retain [32, 68].
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Let qB be the retained degrees of freedom and qI the other (also called internal)
degrees of freedom. The equation of motion can be re-written by separating the
contribution of each set:[

MBB MBI

MIB MI I

] [
ÜqB

ÜqI

]
+

[
KBB KBI

KIB KI I

] [
qB

qI

]
=

[
FB

0

]
(5.28)

where FB is the vector of possible applied forces or reaction forces. In the presented
formulation, qB contains the out-of-plane displacement of the corner nodes where
the thruster forces are applied, and the out-of-plane displacement and the slope
around y of the central node that are set to zero to eliminate redundant rigid-body
motions as explained in the previous sub-section. All other d.o.f. are contained in
qI .

The vector of internal d.o.f. qI can be written as a superposition of two solutions:
the static response from the retained d.o.f. qB and the dynamic response calculated
by fixing qB:

qI = qS
I + qD

I (5.29)

where qS
I is the static response:

qS
I = −K−1

I I KIBqB (5.30)

and qD
I is the dynamic response calculated by fixing qB to 0. It solves the eigenvalue

problem:
KI IqD

I = ω
2MI IqD

I (5.31)

The solutions of equation 5.31 can be set into a matrix ΦI . Each solution is scaled
such that:

ΦT
I KI IΦI =


ω2

1 0
. . .

0 ω2
nI

 = ΩI (5.32)

ΦT
I MI IΦI = I (5.33)

The dynamic contribution of qI can be written as:

qD
I = ΦIaI (5.34)

with aI the vector of amplitude of each eigenmodes. Instead of adding all possible
frequency contributions, only a subset of eigenmodes is chosen:

Φm = [Φ(1)I ... Φ
(m)
I ] (5.35)

am = [a(1)I ... a(m)I ]
T (5.36)
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The initial equations ofmotion can be then re-written in terms of the retained degrees
of freedom and the chosen vibration mode amplitudes:[

MBB MFm

MmF I

] [
ÜqB

Üam

]
+

[
KBB 0

0 Ωm

] [
qB

am

]
=

[
FB

0

]
(5.37)

with,

MBB =MBB −MBIK−1
I I KIB −KBIK−1

I I MIB +KBIK−1
I I MI IK−1

I I KIB (5.38)

MmF =MT
Fm = Φ

T
m

(
MIB −MI IK−1

I I KIB

)
(5.39)

KBB = KBB −KBIK−1
I I KIB (5.40)

The initial vector of degrees of freedom can be reconstructed as follows:[
qB

qI

]
= L

[
qB

am

]
(5.41)

where

L =

[
I 0

−K−1
I I KIB Φm

]
(5.42)

5.4 Kalman Filter Formulation
A Kalman filter [14] is a recursive filter that uses a dynamic model to predict the
behavior of the state variables, in combination with measurements of these variables
to correct the prediction. This filter is optimal in the sense that it minimizes the
RMS error of the solution considering the noise of the sensors and errors of the
dynamic model.

We present a brief summary of the equations used in the filter and define the main
matrices. Details can be found in [14].

The first step in the development of a Kalman filter is a recursive dynamic model
that captures the actual shape of the structure in the following form:

xk+1 = Adxk + wk (5.43)

where xk is the state vector at time tk , Ad is the state transition matrix, and wk is
the process noise which characterizes the errors of the model. This process noise is
assumed to be zero-mean, gaussian with a covariance matrix Qd .

In the Kalman filter, the predicted state x̂ propagates as the mean of the dynamic
model:

x̂k+1 = Ad x̂k (5.44)
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The covariance of the state Pk can also be estimated and propagated:

Pk+1 = AdPkAT
d +Qd (5.45)

The measurements at time tk can be written as a linear combination of the entries
of the state vector:

zk = Hxk + vk (5.46)

whereH is the measurement matrix and vk is the noise of the measurement, assumed
to be zero-mean, gaussian with covariance R.

After each measurement, the predicted state x̂k obtained from the propagation
equation 5.44 can be corrected using the formula:

x̂k ⇐ x̂k +Kk (zk −Hx̂k) (5.47)

where Kk is the Kalman gain, an optimal gain calculated from the covariance of the
state and measurement:

Kk = PkHT
(
HPkHT + R

)−1
(5.48)

The covariance of the state Pk also needs to be updated after a measurement using
the equation:

Pk ⇐ (I −KkH)Pk (I −KkH)T +KkRKT
k (5.49)

The updated state x̂k and covariance Pk are then used as inputs of the propagation
equations 5.44 and 5.45. This creates a loop whose input is the measurement zk and
output is the predicted state x̂k . Figure 5.6 summarizes the Kalman filter loop.

Discrete Time State Model
The discrete time state model is generated from the finite element model. The
detailed derivation of the equations can be found in [14, 20]. [20] specifically
details the formulation of a Kalman filter from a finite element model. We recall the
dynamic equation of the finite element model (equation 5.24):

MÜq +Kq = Fa (5.50)

where M is the mass matrix, q is the vector of degrees of freedom, K is the stiffness
matrix, andFa is the vector of nodal forces. Thesematrices and vectors are generated
from the floating frame of reference formulation 5.3 and further reduced to produce
a reduced order model.
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Propagation:
Measurement Update:

Kalman Gain:

Covariance Update:

Measurements:

Estimated State:

Figure 5.6: Kalman filter loop.

The force vector mostly contains zeros. We can rewrite it as Fa = FdF̃ where Fd is
commonly called the control distribution matrix and F̃ = [F1 F2 F3 F4]T is the
vector of force amplitudes. The forces are defined in figure 5.4.

We first modify equation 5.50 to create the first order ODE:

Ûx = Ax + w̃ (5.51)

where w̃ is the noise or uncertainty of the model and

x =


q
Ûq
F̃

 and A =


0 I 0

−M−1K 0 M−1Fd

0 0 0

 (5.52)

Note that the forces are included in the state vector x (as opposed to being included
as a control term as in [20]). A simple zeroth order integrator characterizes their
behavior (last row of A) and their time derivative Û̃F is assumed to be pure zero-mean
gaussian noise (contained in the last rows of w̃).

Equation 5.51 can be integrated to create the propagation equation 5.44 with:

Ad = eAdt (5.53)

where dt = tk+1 − tk .

The covariance of the process noise Qd can also be calculated from the covariance
of w̃. We assume that the noise of the model comes from the applied forces only.
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The covariance of the process noise w̃ can be written as:

Q =


0

M−1Fd

0

 QF

[
0 M−1Fd 0

]
+


0
0

I4×4

 Q ÛF
[
0 0 I4×4

]
(5.54)

where QF is the covariance matrix of the forces and Q ÛF is the covariance matrix of
the forces time derivatives.

QF is calculated from the maximum amplitude of the applied forces by the thrusters.
The amplitude ofQ ÛF is a tuning parameter that characterizes howmuch the estimated
forces from the state vector can be modified by the measurement. A small value
restrains the forces to remain fairly constant in time posing the risk of missing the
different actuations. A high value lets the noisy measurement dictate the force
amplitude which could lead to a noisy estimation of the state vector. This effect will
be studied in the next section.

The covariance of the process noiseQd is calculated from the integration of equation
5.51 from tk to tk+1. A first order approximation will be used such that:

Qd = dtQ (5.55)

Measurement Equations
The sun sensors measure the local angles of the structure from the sun axis. We
assume that the Sun is a point source at infinity along the Z-axis (inertial reference
frame). The sensors are aligned on the structural coordinate system, as shown in
figure 5.7. The angles measured by sensor S are derived in chapter 2, equations 2.24
and 2.25:

tanαS =
Z · ∂r

∂y

��
S

Z · nS

‖nS‖


 ∂r
∂y

��
S




 (5.56)

tan βS = −
Z · ∂r

∂x

��
S

Z · nS

‖nS‖

 ∂r
∂x

��
S



 (5.57)

where n = ∂r
∂x ×

∂r
∂y is the normal to the structure.

The position of the sensor can be written using the model formulation detailed in
5.3:

rS = Ax
©­­«

xS

yS

0

 +


0
0

ÑS

 q f

ª®®®¬ (5.58)
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Sensor

Structure

Sun

Figure 5.7: Definition of the angles α and β measured by a sensor. The sunlight
comes from the Z-direction (intertial reference frame) and the sensor is aligned
towards the x and y axes of the structure and follows its deformation.

where Ax is the rotation matrix around the x-axis:

Ax =


1 0 0
0 cos θx − sin θx

0 sin θx cos θx

 (5.59)

Let us assume that there is a node at the location of the sensor. The derivatives of
the position of the sensor are:

∂r
∂x

����
S
= Ax


1
0

w,xS

 (5.60)

∂r
∂y

����
S
= Ax


0
1

w,yS

 (5.61)

These can be plugged back into themeasurement equations 5.56 and 5.57. Assuming
small deformations, the measurement equations can be written as functions of αS
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and βS directly:
αS = θx + w,yS (5.62)

βS = −w,xS (5.63)

The two measurements for all the sensors can be concatenated to create a linear
measurement system:

zk = Hxk + vk (5.64)

where zk is the measurement vector, concatenation of all measured angles αS and
βS, H is the measurement matrix, xk is the state vector of the Kalman filter defined
in equation 5.52, and vk is the zero-mean gaussian noise of the sensors.

Observability of the State
To ensure that the Kalman filter is well behaved, it is necessary to make sure that
the system is observable. This means that all entries of the state vector can be
inferred from a sequence of measurements. Different methods exist to measure the
observability of the system such as checking the singular values of the observability
matrix or the observability grammian [97]. Generally, the Kalman filter system is
observable if the observability matrix has full rank [79]. Let n be the size of the
state vector. Then the observability matrix is defined by:

On =



H
HAd

HA2
d

...

HAn−1
d


(5.65)

Note that the number of columns of the matrix is n, hence the observability matrix
On needs to have a rank equal to n.

It is sufficient that rank(Oν) = n with ν ≤ n. The minimum ν is called the observ-
ability index and corresponds to theminimumnumber of independentmeasurements
required to infer the whole state vector. This allows for the observability criterion
to be calculated iteratively which is helpful when the dimension of the state vector
n is large and numerical errors can quickly interfere with the rank calculation.

For the structure presented in the section 5.5, a 25 × 25 m structure with a 25 × 25
grid of nodes is used to generate the finite element model. The model is reduced to
only keep the first 30 vibration modes, the rigid-body angle around the x-axis, and
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Figure 5.8: Observability index in function of the number of sensors. The reduced
order model retained 30 modes of vibration. Sensors are distributed linearly on the
structure in both directions. The first point corresponds to a 2 × 2 array of sensors;
the last point to a 25 × 25 one.

the necessary degrees of freedom associated with external forces. The observability
index was calculated for 8 different sensor configurations: 1 × 1, 2 × 2, 3 × 3, 4 × 4,
5 × 5, 7 × 7, 13 × 13, and 25 × 25.

The results of the study are shown in figure 5.8. The system is not observable with
only 1 sensor placed on the structure as the system cannot differentiate between the
4 modes of actuation created by the 4 thrusters. The system is observable for all
other configurations, and the larger the number of sensors, the faster the system is at
observing the state vector. The observability index eventually converges to 3. This
corresponds to the number of iteration needed to propagate the force amplitudes
(last entries of the state vector) to the measured angles.

It is important to note that some assumptions made in the finite element model
(section 5.3) are actually crucial when it comes to observability. If translation
modes were to be included, the system set up for the Kalman filter becomes ill-
posed as any translation will be unobservable. It is easy to show that the first
columns of Oν, associated with the translation of the structure, are zero, hence
reducing the order of the matrix. This is due to the fact that the measurements are
invariant by translation of the structure. For the same reason, any rotation around
the Sun axis (Z-axis as defined in the previous sub-section) is also not observable.



116

Figure 5.9: Architecture of a 1.7 m concept of the Space Solar Power Spacecraft
structure [30]

5.5 Application to a Proposed Space Mission: the Caltech Space Solar Power
Project (SSPP)

The Kalman filter detailed in section 5.4 was applied to a model of the Space Solar
Power Satellite under development at Caltech. More details about this spacecraft
can be found in [3, 30, 31, 35, 45, 53]. The aim of this satellite is to collect energy
from sunlight in space, convert it to radio frequency and beam it back to Earth,
eventually creating a solar power station.

Figure 5.9 shows the architecture of the spacecraft. It is composed of 4 quadrants
made of multiple strips. The yellow area is filled with solar panels on one side and
antennas on both sides while the black elements are carbon fiber longerons which
provide bending stiffness to the structure in order to maintain its planarity. Different
sizes of the spacecraft have been considered ranging from a few meters up to 60 m
side length.

While the structure has some bending stiffness and is very lightweight, large concepts
can still deform to tens of centimeters out-of-plane, due to the thruster forces required
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to maneuver the satellite [53]. While small compared to the size of the satellite,
these deformations are large enough to interfere with the antenna array placed on
the structure. Errors in the position of the antennas need to remain below 1/10th of
the operating wavelength. If larger, they can however be accounted for by locality
adding a phase shift to each antenna. The shape of the spacecraft needs to be
measured to less than 1/10th of the antenna array wavelength (3 cm for a 10 GHz
array) for this system to work.

A simple model of this spacecraft under the loads required to maintain its attitude is
studied. Thrusters at each corner of the structure can fire up or down along the z-axis
to generate the moments required for the maneuvers. The main axis of rotation is
the x-axis as shown in figure 5.4 which is aligned with the side of the spacecraft.

We study a 25 × 25 m structure using the model in section 5.3. A finite element
model is generated using a grid of 25 × 25 nodes. Its bending stiffness is derived
from a detailed model of the SSPP structure, which has a bending stiffness of
approximately 14 Nm2 [69]. The mass density, extrapolated from small scale
models of the structure, is equal to 420 g/m2.

An array of sensors is uniformly distributed on the structure (it is not optimized
to fit on the a structure similar to figure 5.9). The noise properties of the sensors,
necessary for the Kalman filter, are derived from an actual sensor manufactured
using a quad-photodiode (see chapter 3). The 3σ noise of the sensors is assumed
equal to 0.5° for both measured angles.

Actual Deformation of the Structure
In order to implement the Kalman filter, the input measurement of the sensors
need to be simulated. The complete shape of the spacecraft under the thruster loads
required for maneuvering is computed. The measurement is calculated by extracting
the angles of the structure at the sensor locations and by adding gaussian noise.

An approach similar to the discrete time state model used for the Kalman filter is
used to simulate the actual shape of the spacecraft (see section 5.4), and a finite
element model using the Floating Frame of Reference Formulation and the local
small deformation plate model is created. This model is not reduced to capture a
more complete behavior of the vibrating spacecraft.

A first order ODE system is then developed to solve the equation of motion of the
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model (equation 5.24): [
Ûq(t)
Üq(t)

]
= At

[
q(t)
Ûq(t)

]
+ BtF̃actual(t) (5.66)

with,

At =

[
0 I

−M−1K −M−1C

]
and Bt =

[
0

M−1Fd

]
(5.67)

where M and K are the non-reduced mass and stiffness matrices, q is the vector
of degrees of freedom of the finite element model, Fd is the control distribution
matrix introduced in 5.4, and F̃actual are the actual forces imposed in the structure.
C = 10−4K is a Rayleigh stiffness damping matrix (artificial damping) that prevents
the contribution of high order vibration modes which are induced by sudden changes
in external loads which does not happen in reality but happen in discrete time
simulations.

Equation 5.66 can be integrated in time to generate a discrete time state model.
More details of the derivation can be found in [20].

F̃actual is a column vector of four entries corresponding to the 4 thruster forces applied
at the corner of the structure. They are calculated from the optimal maneuvers of the
spacecraft [53]. They consist of 30 s impulses of 3.3 mN (millinewtons) amplitude
that eventually rotate the spacecraft around the x-axis. A first impulse starts the
maneuver while a second, about 1 hour and 10 mins later terminates it. Figure 5.10
shows the profile of F1 defined in figure 5.4. Note that F1 = F2 = −F3 = −F4 to
generate a large rotation around the x-axis only. The rigid-body angle θx is plotted
in figure 5.11. An initial angle and velocity are used to match the optimal attitude
of the spacecraft before the maneuver [53].

Figure 5.12 shows the Z-coordinate (inertial reference frame) of the corner node
where F1 is applied. We see that its behavior is mostly dictated by the rigid rotation
of the structure. Figure 5.13 shows the z-coordinate (local reference frame) of the
same corner node. We can better appreciate the amplitude of the vibrations which
are in the order of a few centimeters. Note that an initial vibration of the structure
was set up by applying 2 opposite, 5 sec impulses of 6.6 mN at the start of the
simulation (see figure 5.10).

Finally, we can notice the coupling of the dynamics of the rigid-body angle θx and
the vibration of the structure by zooming into figure 5.11. Figure 5.14 shows the
behavior of this angle at the end of the maneuver. We clearly see oscillations in θx .
They are relatively small due to the large inertia of the structure.
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Figure 5.10: External force applied at one corner of the structure. Two short
impulses at t = 0 have the sole purpose of introducing vibrations in the structure.
The longer, 30s impulses force the satellite to rotate around the x-axis.

Figure 5.11: Rigid body rotation of the spacecraft around the x-axis.
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Figure 5.12: Z-coordinate of the corner node of the structure (inertial reference
frame).

Figure 5.13: z-coordinate of the corner node of the structure (local reference frame).
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Figure 5.14: Rigid body angle of the spacecraft around the x-axis. Zoom of figure
5.11 around the second actuation.

Tuning the Process Noise of the Kalman Filter
As shown in section 5.4, the dynamicmodel of the spacecraft is associatedwith some
uncertainty. This is captured by the process noise which, as detailed in equation
5.54 is the sum of two contributions: the uncertainty in the force amplitude QF and
the uncertainty in their time derivative Q ÛF .

As the forces can vary by up to about 3 mN, a gaussian noise of 1 mN standard
devation is chosen such that QF = 0.0012 × I4×4 [N2].

The second contribution Q ÛF is left as a tuning parameter. To show the effect of high
and low values, we conduct two simulations of the Kalman filter. A grid of 7 × 7
sensors is used and we plot the RMS error between the estimated shape (output of
the filter) and the actual shape of the structure presented in the previous sub-section.
The results are shown in figure 5.15. For small values of Q ÛF (figure 5.15a) the
error suddenly increases when force impulses are applied. This is to be expected
as a small noise indicates to the filter that the forces should vary slowly effectively
increasing the response time of the system. When no force is applied, however, this
constraint reduces the impact of the sensor noise onto the results, hence the RMS
drops to relatively low values. When Q ÛF is larger (figure 5.15b), the filter is faster
to respond such that there is no difference whether a force is applied or not. The
RMS is however higher on average.

These results can also be inferred by looking at the amplitude of the estimated forces
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(a) Standard deviation of the forces time derivative equal to 0.1 mN/s.

(b) Standard deviation of the forces time derivative equal to 1 mN/s.

Figure 5.15: RMS error of the estimated shape for different standard deviations of
the forces time derivative used in the process noise covariance matrix.
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(a) Standard deviation of the forces time derivative equal to 0.1 mN/s.
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(b) Standard deviation of the forces time derivative equal to 1 mN/s.

Figure 5.16: Estimated corner force for different standard deviations of the forces
time derivative used in the process noise covariance matrix.

in the state vector. Figure 5.16 shows the estimation of the corner force F1 for the
two different values of Q ÛF . When the process noise is small, the filter is slow to
converge, but stays close to its converged estimation. A large noise leads to the
opposite conclusion.

Unless specified, a standard deviation of 1 mN/s (Q ÛF = 0.0012 × I4×4 [N2/s2]) is
chosen. Depending on the operation of the satellite, an optimized value can be
calculated. The process noise could also be actively controlled and set to higher
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values before firing the thrusters.

Response of the Kalman Filter Using a 7 × 7 Array of Sensors
We study the accuracy of the Kalman filter introduced in section 5.4. The filter
tries to reconstruct the simulated shape of the spacecraft presented in a previous
sub-section. The simulated angle measurements are inputted into the Kalman filter
which outputs the estimated shape of the spacecraft.

The the state vector x (see equation 5.52) contains the degrees of freedom of the
reduced finite element model plus the 4 external forces. The first 30 vibration modes
of the structure are retained in the reduced model. The number of d.o.f. of the FE
model is equal to 35 which corresponds to:

1. the 30 vibration mode amplitudes

2. the displacement of the 4 corner nodes where the forces are applied (this is
necessary to apply the boundary conditions)

3. the large rigid-body angle θx .

The size of the state vector is equal to 74 (double the number of d.o.f. plus the 4
corner forces).

A 7 × 7 array of sun sensors is placed on the structure. They are equally spaced
from each other to cover the whole spacecraft.

Figure 5.17 shows the Z-coordinate (inertial reference frame) of the corner node
where F1 is applied. The overall trend of the curve is similar to figure 5.12 and is
dominated by the rigid angular motion. Figure 5.18 shows the error between the
estimated and true Z-coordinate of that point. The noise of the estimated shape of
the structure can clearly be seen which is the result of the noisy measurements. It
is stable in time with an amplitude of about a centimeter and is not affected by the
force impulses.

The error in the z-coordinate (local reference frame) can also be computed and is
plotted in figure 5.19. We see that the error is higher than in figure 5.18. This has
to do with the fact that the rigid-body angle is not perfectly computed either (see
figure 5.20) and eventually compensates some of this error.

In order to better study the overall accuracy of the estimated shape, the RMS error
across the surface is computed. The error corresponds to the distance between each
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Figure 5.17: Evolution of the Z-coordinate (inertial reference frame) of the estimated
shape of the spacecraft calculated by the Kalman Filter using a 7 × 7 sensor array.

Figure 5.18: Evolution of difference between the Z-coordinate (inertial reference
frame) of the estimated shape of the spacecraft calculated by the Kalman Filter using
a 7 × 7 sensor array and the true shape of the spacecraft.



126

Figure 5.19: Evolution of difference between the z-coordinate (local reference
frame) of the estimated shape of the spacecraft calculated by the Kalman Filter
using a 7 × 7 sensor array and the true shape of the spacecraft.

Figure 5.20: Evolution of difference between the rigid body angle of the estimated
shape of the spacecraft calculated by the Kalman Filter using a 7 × 7 sensor array
and the true shape of the spacecraft.
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Figure 5.21: Evolution of the RMS error of the estimated shape of the spacecraft
calculated by the Kalman Filter using a 7 × 7 sensor array (blue). The black curve
shows the result of a model assuming the spacecraft as a rigid body and only
measuring the rigid-body angle. The red curve is the result using the algorithm
introduced in chapter 2. Dark colors represent 30s averages of the actual results in
lighter color.

node of the model between the estimated shape and the true shape computed in a
previous sub-section. The RMS of these errors is calculated for each time step and
shown in figure 5.21. While it varies in function of time, it is relatively constant on
average and is not affected by the force impulses. It is compared to a simple rigid
model where the vibrations of the structure are discarded and only the rigid-body
angle is measured with great accuracy, and the result of the shape reconstruction
algorithm introduced in chapter 2 (named GISRA for Geometric Inextensible Shape
Reconstruction Algorithm). Digitally filtered measurements were used for the later
(using a 5th order yulewalk IIR filter with cutoff frequency of 0.2 Hz, above the
main modes of excitations at 0.057 Hz and 0.091 Hz). The Kalman filter improves
the accuracy of the shape estimation by an order of magnitude, hence proving its
importance. The average RMS error of the reconstructed shape is about 2.5 mm.
The performance of the initial algorithm is mainly limited by the phase shift due
to the filter even if the noise of the measurmeent is reduced. Figure 5.22 shows
an histogram of the RMS error as well as a fit by a Generalized Extreme Value
distribution. This distribution fits the results very well and can be used in stochastic
calculations of the performance of the spacecraft.
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Figure 5.22: Histogram of the RMS error of the estimated shape of the spacecraft
calculated by the Kalman Filter using a 7 × 7 sensor array. A fit by a Generalized
Extreme Value Distribution is also plotted.

Influence of the Number of Sensors
The number of sensors influences the accuracy of the Kalman filter estimation. An
averaging effect appears where more measurements of a fixed number of variables
reduce the noise of the calculated variables.

Figure 5.23 shows the average RMS error of the estimated shape for different
numbers of sensors. The average is calculated from the RMS plot (see figure
5.21). The first 100 seconds of the simulations are discarded to make sure the filter
has converged. A total of 10 simulations were performed for each data point to
evaluate the 3σ confidence interval. Each data point corresponds to the following
configurations of sensors: 2 × 2, 3 × 3, 4 × 4, 5 × 5, 7 × 7, 13 × 13, and 25 × 25.

As expected, the error decreases as the number of sensors increases which shows
convergence of this solution. The number of sensors required to achieve millimeter
level accuracy is reasonable, as just a few sensors are sufficient to get an accuracy
of 5 mm. In this range, the curve can be approximated by a power function:

RMSavg =
10

N0.35
S

[mm] (5.68)

where NS is the total number of sensors.
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Figure 5.23: Evolution of the average RMS error in function of the number of
sensors. The light blue region defines the 3σ confidence interval.

Influence of the Error in the Estimation of the Stiffness
The true (simulated) shape of the structure and the estimated shape from the Kalman
filter are both computed using the same finite element model. Even if the model for
the Kalman filter is reduced, the stiffness and mass properties are identical.

In a real world application, there may be discrepancies between the actual stiffness
of the structure and the one used in the computational models. While measuring
the mass is rather simple, estimating the stiffness is more complicated, especially
for complex structures.

Simulations are performed to show the robustness of the presented method under
different stiffness errors. The finite element model used in the Kalman filter remain
identical with homogeneous and isotropic properties and a bending stiffness of 14
Nm2. The finite element model used to calculate the true shape of the spacecraft
will have different stiffness properties.

First, we investigate the effect of varying the bending stiffness, while still using
homogeneous and isotropic properties. The stiffness is varied from 7 Nm2 to 28
Nm2 (factors of 0.5 and 2 from the finite elementmodel used in theKalman filter 5.4).
An array of 7×7 sensors is used for all simulations. Figure 5.24 shows the evolution
of the average RMS error of the estimated shape in function of the stiffness ratio
between the finite element model used to calculate the true response of the spacecraft
and the one used in the Kalman filter. We see that it is minimum when the ratio
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is 1 and larger otherwise. The error is mostly dominated by the accumulated error
between measurements resulting from the difference of frequency of the vibration
modes.

Figure 5.24: Evolution of the average RMS error in function of the ratio of bending
stiffness used to calculate the true response of the spacecraft and the one used in the
Kalman filter. A 7 × 7 array of sensors is used in the filter. The light blue region
defines the 3σ confidence interval.

Second, we investigate the influence of the anisotropy of the stiffness matrix. The
values of the bending stiffness in the x and y directions remain the same on average,
but their ratio differs from 1. The stiffness matrix of the finite element model used
to calculate the true response of the spacecraft becomes:

D = D


2α

1+α 0 0
0 2

1+α 0
0 0 1

 (5.69)

where α = D11/D22. It is varied from 0.5 to 2. An array of 7×7 sensors is again used
for all simulations. Figure 5.25 shows the evolution of the average RMS error of
the estimated shape in function of the ratio α = D11/D22. Similarly to the previous
result, the RMS error gets worse as α differs from 1.

For both studies, the error increases and yet remains in the same order of magnitude
even for relatively large discrepancies in the estimation of the stiffness parameters
(factor of 2 between the actual and estimated values). This study can help the design
process of such structures and inform the design team how accurate their model
needs to be.
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Figure 5.25: Evolution of the average RMS error in function of the ratio of bending
stiffness in the x and y directions in the finite element model used to calculate the
true response of the spacecraft. A 7× 7 array of sensors is used in the Kalman filter.
The light blue region defines the 3σ confidence interval.

Sensor Fusion: Adding Force Sensors to the Sun Sensor System
To complete this study, we investigate the impact of adding different sensors to the
Kalman filter. The simplicity of the formulation of the filter allows to add different
kinds of sensors without changing the equations. The only requirement is for the
measurement to be able to be derived from the state variables.

For instance, strain gauges can be added to measure local extensions or curvatures,
RF antennas can be used to measure relative distance, etc.

We study the impact of adding force sensors to the current system. Theymeasure the
applied forces from the thrusters at each corner of the structure. Different systems
can be used to measure millinewtons [36, 42, 63]. A 10% accuracy is selected for
the sensors included in the simulation (3σ error of 0.3 mN) which is representative
of the state-of-the-art.

Figure 5.26 shows the RMS error of the estimated shape of the structure calculated
by the Kalman filter integrating sun and force sensors. An array of 7×7 sun sensors
is used and 4 force sensors (1 at each corner of the structure) measure the thruster
impulses. The average RMS error is 1.3 mm, twice better than the solution without
force sensors (figure 5.21) with only a little number of sensors added. More than
100 sun sensors would be needed to produce the same results (figure 5.23).
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Note that in order for the Kalman filter to make the most of the force measurement,
the process noise in the time derivative of the force is increased toQ ÛF = 0.0032×I4×4

[N2/s2].

Figure 5.26: Evolution of the RMS error of the estimated shape of the spacecraft
calculated by the Kalman Filter using a 7×7 sensor array and 4 force sensors (blue).
The black curve shows the result of a model assuming the spacecraft as a rigid body
and only measuring the rigid-body angle. Dark colors represent 30s averages of the
actual results in lighter color.

5.6 Conclusion and Discussion
This chapter has demonstrated the feasibility and first order accuracy of a solution
to measure the shape of a large space structure. Sun sensors are attached and
distributed over the structure and measure the two local angles from the Sun. A
Kalman filter that uses a dynamic mechanical model of the structure has been used
to estimate the vibration and rigid-body angle of the structure.

This concept has been demonstrated by simulating the shape of a 25×25m structure,
which is a conceptual design for the Space Solar Power Project satellite under devel-
opment at Caltech. The square spacecraft is maneuvered with 4 thrusters, 1 at each
corner, and follows an optimal guidance path to maximize its functionality. Each
time the thrusters fire, the satellite rotates and vibrations of few centimeters appear.
The vibration amplitudes are accurately estimated by the presented algorithm/filter,
and it is shown that millimeter level accuracy is achievable for such large structures.

Studies on the number of sensors, modelization errors on the stiffness of the structure
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and fusion with other type of sensors were presented. This gives first order results
that provides an understanding of the behavior of the presented solutions and can
be used to design future space missions.

A more detailed algorithm needs to be studied and validated experimentally if this
is to be implemented on real hardware. The mechanical model presented in this
chapter is simplified to make it linear. The main features were kept, that is the
large rigid-body rotation and vibrations of the structure, but actual applications will
require a more detailed model. This will likely result in non-linear equations both
for the mechanical equilibrium and measurement. A simple Kalman filter such as
the one presented in this chapter is no longer valid, and extended Kalman filter
formulations will need to be considered. This leads to potential stability issues that
will need to be addressed.

Furthermore, practical considerations such as the effects of time delays, especially
when the number of sensors increases, have not be considered. Data communication
and computation processing hardware may drive some limitations on the use and
accuracy of the solution.
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C h a p t e r 6

CONCLUSION

6.1 Summary and Contributions
The work presented in this thesis establishes the building blocks for a new type of
shape measurement applicable to large space structures. By embedding distributed
angle measurements directly on the surface to reconstruct, an alternative solution to
optical based methods is introduced and is more suited for this type of application.

Current systems rely on external, optical solutions which usually limit the size
and accuracy of the reconstructed shape. Some applications such as large planar
spacecraft cannot rely on such systems. Measuring the shape of such satellites is
vital for the expansion of the field of large space structures. Large solar arrays, solar
sails and especially antenna arrays can benefit from the knowledge of the shape of the
structure. Using this technology, new, ground breaking concepts can be imagined
to push the limits of space applications. For instance, space solar power satellites,
which have long been deemed impossible because of their mass and cost, can now
be re-engineered using ultra-light support structures such as the Caltech Space Solar
Power Project.

Space is not the only field where the presented solution can help with future ap-
plications. Wearable technologies, for instance, which can be used for medical,
entertainment or multimedia purposes, can benefit from this system. Not relying
on optical solutions to measure the shape of a person means that the system is not
bounded to a specific location where cameras would be placed, for example.

In order to be able to show the functionality and performance of a system of
embedded angle sensors, different steps have been undertaken and shown in this
thesis. The three main contributions that have been made are as follows:

1. The development of algorithms to integrate the distributed angle mea-
surements into the shape of the support structure. Different algorithms are
introduced that can fit different applications. A geometry-based algorithm can
reconstruct the static shape of most structures, but is limited by the smooth-
ness of the estimated shape. A mechanically based algorithm has been proven
more suited for structures that are subjected to more local deformations. Fi-
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nally, a dynamic algorithm can estimate the vibrating shape of the structure
using a Kalman filter. The filter combines the measurement of the sensors
with a dynamic model of the structure to accurately estimate its shape.

2. The experimental validation of the proposed solution. A new type of sun
sensor specifically suited for ultralight deployable space structures has been
designed. It consists of a quad-photodiode underneath a square aperture. The
full electronic and software design was performed in order to understand and
solve the challenges associated with this new design. The calibration process
was also detailed to understand the limitations of the current sensor and high-
light the main areas of research required to continue its future development.
The design of the experiment also highlighted the challenges and considera-
tions that needs to be taken into account when implementing such a system.
A 1.3 m long structure with 14 embedded sensors was used. Results of the
experiment showed millimeter accuracy in the reconstruction of the shape of
the structure and as low as 0.3 mm RMS.

3. The beginning of the design process to apply the proposed solution to a
planned space mission: the Caltech Space Solar Power Project Satellite.
A simplified mechanical model merging local vibrations of the structure and
large rigid angles is presented and provides a basis for future models with
similar applications. Initial studies have been conducted to get first order
estimates on the accuracy of the solution. The density of sensors, errors in
the mechanical models, and fusion of different sensors have been investigated.
Such studies have demonstrated that, for example, an accuracy of 1 mm is
achievable for a 25 × 25 m2 structure with a 7 × 7 grid of sun sensors and 4
force sensors at the corners.

It is important to highlight the current limits of the proposed solution that have been
identified through the different chapters of this thesis:

1. By embedding sensors directly on the surface to reconstruct, they become part
of the design of the structure. This adds complexity to the overall system that
is not present when using an external optical measurement tool. This solution
is only advantageous when the measurement is vital to the application and
when optical systems are not suited.
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2. The reconstruction algorithms can only recreate relatively smooth surfaces.
The system cannot measure highly complex shapes such as wrinkled surfaces.
The periodicity of the deformation of the surface is limited by the spatial
frequency of the sensors.

3. The more sensors, the more data needs to be communicated and analyzed.
This can cause implementation issues as the hardware needs to be designed
to enable communication over large distances and process large amount of
measurements.

6.2 Future Work
Some areas of research are proposed to expand on this initial work. They are closely
related to the current limits of the system and try to iteratively bring it closer to a
real commercial application.

1. Decreasing the noise and error of the sensors has a direct impact on the
accuracy of the solution. More work can be conducted to create more precise
sun sensors while maintaining a relatively small package and mass. Different
technologies or designs can be studied from the one presented in the thesis.

2. Relatively small deformations and smooth surfaces were studied in this thesis.
Large deformations which could possibly shade few sensors might be of
interest for some applications or simply to study the robustness of the solution.
More complex geometries can be analyzed, especially structures with low
bending stiffness that can create highly localized deformations.

3. Experimental demonstrations were limited to 14 sensors. For larger structures
with a greater amount of sensors, implementations issues will arise. Specifi-
cally, a robust and fast communication architecture needs to be implemented
without requiring heavy hardware.

4. A real-time version of the algorithms needs to be studied and experimented
on spacecraft avionics. Low computational capabilities are available on a
spacecraft and the actual implementation of the presented algorithms might
be difficult.
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