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ABSTRACT

A closed quantum system never forgets its initial state, but the encoded information
can get scrambled and become inaccessible without measuring a large fraction of all
the system degrees of freedom. This scrambling can be diagnosed by studying the
spatial spreading of initially local operators under theHeisenberg time evolution, and
the decay of the out-of-time-ordered correlators (OTOC).What insights can OTOCs
provide to understand the dynamics of quantum many-body systems? What are the
characteristic behaviors of OTOCs during the time evolution? How is information
scrambling affected by the dissipation in open quantum many-body systems?

We first study slow scrambling in many-body localized systems via calculating
various correlators, two-point retarded correlators and OTOCs. Comparing with
retarded correlators, OTOCs provide more information about the dynamics. We find
that disorder slows and partially halts the onset of information scrambling. Instead
of ballistic spreading, propagation of information forms a logarithmic light cone.

Next, we study the finite-size scaling of OTOCs at late times in generic thermalizing
quantum many-body systems. When energy is conserved, the late-time saturation
value of the OTOC of generic traceless local operators scales as an inverse poly-
nomial in the system size. This is in contrast to the inverse exponential scaling
expected for chaotic dynamics without energy conservation.

We also study information scrambling in open quantum many-body systems. We
define a dissipative version of OTOC and study its behaviors in a prototypical chaotic
quantum chain with dissipation. We find that dissipation leads to not only the overall
decay of the scrambled information due to leaking, but also structural changes so
that the information light cone can only reach a finite distance even when the effect
of overall decay is removed.

Finally, we construct a family of local Hamiltonians for understanding the asym-
metric information scrambling. Our models live on a one-dimensional lattice and
exhibit asymmetric butterfly light cone between the left and right spatial directions.
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C h a p t e r 1

INTRODUCTION

Despite the huge success of statistical mechanics in describing the macroscopic
thermodynamic behaviors of classical systems, its relation to the underlying mi-
croscopic dynamics of quantum many-body systems has persisted as a subject of
controversy since the foundations were laid. The past decades have seen a great
revival of interest in the foundations of quantum statistical mechanics. Thermaliza-
tion and information scrambling are the subjects of much recent investigations from
the perspective of quantum many-body systems, quantum field theory, black holes,
and holography.

What will happen if a quantum system is isolated from the environment and evolves
according to the Schrödinger equation? Will the quantum system reach a thermal
equilibrium after long-time evolution? The time evolution of isolated quantum
systems is unitary and preserves all information about the initial state at any time.
However, a generic quantum many-body system contains a macroscopic number of
degrees of freedom, but can only be probed through measuring a few of the degrees
of freedom, which might be local measurements if the quantum system has spatial
locality. Then the meaningful questions become whether the encoded information
can get scrambled and become inaccessible without measuring a large fraction of
all the system degrees of freedom, and whether local subsystems can reach thermal
equilibrium. Information scrambling is a terminology describing the propagation
of quantum information in the process of thermalization.

These questions can be formalized by considering the density matrix ρ of the
quantum system. The evolution of the density matrix is ρ(t) = e−iHtρ0eiHt , where
ρ0 represents the initial state and H is the Hamiltonian. Assume the quantum system
is divided into two parts: a subregion A that will be probed, and its complement
B. All information can be extracted by local measurements made on A, hence is
encoded in the reduced density matrix ρA(t) = trB(ρ(t)).

At late times, if ρA(t) approaches a thermal ensemble density matrix at a tempera-
ture, then the quantum system has reached thermalization and no local information
about the initial state can be extracted via local measurements. Similar to classi-
cal systems, the process of quantum thermalization might be understood in terms
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of subsystem B acting as a reservoir for A. In this perspective, the entanglement
entropy SA(t) = − tr(ρA(t) log ρA(t)) plays the role of thermal entropy [1–3]. For
generic thermalizing quantum many-body systems, they obey the Eigenstate Ther-
malization Hypothesis (ETH) [4–6] and have volume-law entanglement entropy at
any nonzero temperature [7–9], i.e. the entanglement entropy scales with the vol-
ume of the subregion A. In these quantum many-body systems with thermalizing
dynamics, entanglement entropy grows as a power law in time starting from the low
entanglement of the initial state [10].

Not all quantum systems will reach thermal equilibrium after long-time evolution.
A well-known example is the Anderson localized single-particle system in the pres-
ence of disorder [11]. In Anderson localized systems, diffusion of waves is absent,
and conserved quantities, like energy and charge, are localized. Anderson local-
ized systems do not thermalize and therefore cannot be described using statistical
mechanics. The phenomenon of localization can also exist in interacting quantum
many-body systems. This is called as Many-Body Localization (MBL) [12–24].
MBL systems can remain perfect insulators at non-zero temperature. The energy
eigenstates of MBL quantum systems do no obey the ETH, and generically have
an area law for entanglement entropy, i.e. the entanglement entropy scales with
the surface area of the subregion A. In MBL systems, entanglement entropy grows
logarithmically in time starting from the low entanglement of the initial state [25–
33]. Many-body localization provides a mechanism for understanding the failure of
thermalization in interacting quantum many-body systems with strong disorder.

Recent studies have proposed to quantify thermalization and information scrambling
by investigating the spatial spreading of initially local operators under theHeisenberg
time evolution, and the decay of the out-of-time-ordered correlators (OTOC) [34–
63]. In the Heisenberg picture, the time-evolved operator of an initial local operator
A is A(t) = eiHt Ae−iHt which grows in size and becomes nonlocal as time increases.
As A(t) grows, it begins to overlap with local operator B at other spatial locations
and terminates to commute with them. The effect of information scrambling can be
diagnosed via the growth of the norm of the commutator [A(t),B]. Correspondingly,
it is also manifested as the decay of (the real part of) the OTOC 〈A†(t)B†A(t)B〉β
which is related to the commutator as

< 〈A†(t)B†A(t)B〉β = 1 −
1
2
〈[A(t),B]†[A(t),B]〉β, (1.1)

where the local operators A,B are assumed to be unitary for simplicity, 〈·〉β denotes
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the thermal ensemble average at the inverse temperature β = 1/T , and< represents
the real part.

In quantum many-body systems with thermalizing dynamics, the decay of OTOC is
usually expected to exhibit the following features.

First, in the long time limit, information initially encoded in A(t) becomes highly
nonlocal and cannot be accessed via local measurements. Thus, all OTOCs at
infinite temperature β = 0 decay to zero at late time [40, 43, 49, 51]

lim
t→∞
< 〈A†(t)B†A(t)B〉β=0 = 0, (1.2)

where the local operators A and B are traceless.

Secondly, in chaotic zero-dimensional systems with large N degrees of freedom, the
OTOC starts to decay at early time in an exponential way [36, 42, 43, 64]

< 〈A†(t)B†A(t)B〉β ∼ f1 −
f2
N

eλL t, (1.3)

where the constants f1, f2 depend on the choice of local operators A,B in the
system. The exponent of the exponential λL – the quantum Lyapunov exponent –
characterizes how chaotic the quantum dynamics is. Similar to classical systems, λL

can describe the sensitivity to the initial conditions. Quantum Lyapunov exponent
cannot be extracted from the reduced density matrix, entanglement entropy and
two-point correlators, thus OTOCs provide more insights for people to understand
the chaotic dynamics of thermalizing quantum many-body systems. Recent studies
[42–45] show that the Lyapunov exponent is bounded by λL ≤

2π
β and is expected

to be saturated by quantum systems corresponding to black holes. The maximally
chaotic systems saturating this bound are called as fastest scramblers [65, 66]. An
example of such systems is the SYK model [36, 45, 46, 64]

HSYK =
1
4!

N∑
i,j,k,l=1

χi χj χk χl, (1.4)

where χi are Majorana fermionic operators satisfying {χi, χj} = δi j , and the inde-
pendent disorders {Ji j kl} are randomly drawn from the Gaussian distribution with
mean zero Ji j kl = 0 and variance J2

i j kl =
3!J2

N3 (Fig. 1.1).

Thirdly, in a thermalizing quantummany-body systemwith spatial locality, quantum
information ballistically spreads at the butterfly velocity vB, leading OTOCs to start
to decay after a delay time dBA/vB, where dBA is the distance between local operators
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Figure 1.1: SYK model contains N � 1 Majorana fermions. The couplings are
four-fermion interactions.

A and B. OTOCs have the capability to demonstrate a ballistic light, which is called
as the butterfly light cone (Fig. 1.3). In the generalized SYK chain model [47], the
decay of OTOC is govern by

< 〈A†(t)B†A(t)B〉β ∼ f1 −
f2
N

eλL(t−
dBA
vB
)
, (1.5)

where N is the number of Majorana fermion per site (Fig. 1.2), and the quantum
Lyapunov exponent still can saturate the bound λL ≤

2π
β .

Figure 1.2: Generalized of one dimensional SYK model: each site contains N � 1
Majorana fermions with SYK four-fermion interactions, and the coupling between
nearest neighbor sites are also SYK four-fermion interactions with two from each
site.

Inspired by the decay of OTOCs in the generalized SYK model and the Lieb-
Robinson bound [67–69], some studies [42, 43] speculate that the early-time be-
havior of OTOC in generic thermalizing quantum systems can be approximately
described by

< 〈A†(t)B†A(t)B〉β=0 ∼ f ′1 − f ′2eλL(t−dBA/vB), (1.6)
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where f ′1, f ′2 are constants depending on the Hamiltonian, thermal ensemble average
is discussed at infinite temperature β = 0, and the quantum system does not have a
small parameter, such as 1

N in the generalized SYK model.

Figure 1.3: Ballistic butterfly light cone in the spacetime, where 1/J is the unit of
time and a is the unit of distance. Outside the light cone, OTOCs are constant (one
if local operators A and B commute with each other); inside the light cone, OTOCs
decay to zero. Left panel: it is plotted according to Eq. (1.5) or (1.6) with quantum
Lyapunov exponent. The boundary of the wave front is constant. Right panel: it is
plotted according to Eq. (1.7) without quantum Lyapunov exponent. The boundary
of the wave front is diffusively broadening.

However, in the exactly solvable random circuit model [70–76], the early-time decay
of OTOCs is expressed in the following equation

< 〈A†(t)B†A(t)B〉β=0 ∼ f ′1 − f ′2e−
(dBA−vBt)2

4Dt , (1.7)

where the butterfly velocity is vB =
q2−1
q2+1 , the diffusion constant is D = q2

(q2+1)2 , and
q is the dimension of local Hilbert space at each site (Fig. 1.4). The butterfly light
cone revealed by the OTOCs has not only ballistic spreading, but also diffusively
broadening boundary of the wave front

√
Dt.

In generic thermalizing quantum spin systems with small local Hilbert space dimen-
sions and short-range interactions, how does OTOC decay? Recently refs. [77, 78]
give an in-depth study and conjecture a universal form of the early-time decay of
OTOCs

< 〈A†(t)B†A(t)B〉β=0 ∼ f ′1 − f ′2eλ(t−
dBA
vB
)p/tp−1

, (1.8)

where the parameter p controls the broadening of the boundary of the wave front.
For example, p is equal to 1 in the generalized SYK model, and 2 in the random
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Figure 1.4: Random circuit model on an infinite 1D spin chain: each spin has local
Hilbert space dimension q. Its unitary evolution can be described by discrete-time
circuit: two-site unitary gates are applied to even bonds on even time steps and odd
bonds on odd time steps. Each brick represents a random unitary operator which is
independently drawn from the Haar random unitary group U(q2).

circuit model. When p , 1, there is no simple quantum Lyapunov exponent, so
velocity-dependent Lyapunov exponents are discussed in ref. [78] to characterize
the chaotic dynamics in generic thermalizing quantum many-body sytems.

Now let us list the questions we addressed and the results we obtained related to
information scrambling in quantum many-body systems.

In Chapter 2, we study the slow information scrambling in many-body localized
systems. In MBL systems, local changes in energy or other conserved quantities
typically spread only within a finite distance. However, propagation of information
forms a light cone that grows logarithmically with time. Information scrambling
is slowed down and partially halted. Is it possible to detect the logarithmic light
cone generated by a local perturbation from the response of a local operator at
a later time? We numerically calculate various correlators in the random-field
Heisenberg chain. While the equilibrium retarded correlator A(t = 0)B(t > 0) is
not sensitive to the unbounded information propagation, the out-of-time-ordered
correlator A(t = 0)†B(t > 0)†A(t = 0)B(t > 0) can detect the logarithmic light
cone. We relate out-of-time-ordered correlators to the Lieb-Robinson bound in
many-body localized systems, and show how to detect the logarithmic light cone
with retarded correlators in specially designed states. Furthermore, we study the
temperature dependence of the logarithmic light cone using out-of-time-ordered
correlators.
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In Chapter 3, we investigate the finite-size scaling of OTOCs at late times in generic
thermalizing quantum many-body systems. When the system size is finite, out-of-
time-ordered correlators do not decay to exact zero at late times. OTOC converges
to a small but finite value, which approaches to zero when the system size goes to
infinity. It is natural to expect that the residual value can provide useful insights into
the thermalizing dynamics. We demonstrate that approximation methods with and
without the law of energy conservation make different predictions about OTOCs
at late times. For thermalizing quantum systems that the unitary evolution can be
described by random matrix ensembles [49, 79–81], the law of energy conservation
does not hold, and late-time OTOC scales inverse exponentially with system size.
This is consistent with the intuition that the encoded information is scrambled over
all degrees of freedom which is exponentially large in the system size. For a
given time-independent Hamiltonian with thermalizing dynamics, its total energy
is conserved, and the scaling of OTOCs is inverse polynomial in the system size.
We provide both analytical arguments and numerical simulations to support these
conclusions.

In Chapter 4, we address the following questions: After understanding the character-
istic features of early-time decay of OTOCs in closed quantum many-body systems
with thermalizing dynamics, what can we expect from the information scrambling
in open quantum systems? How is information scrambling affected when the system
is coupled to the environment and suffers from dissipation? We address these ques-
tions by defining a dissipative version of OTOC and numerically study its behavior
in a prototypical chaotic quantum chain in the presence of dissipation. We find that
dissipation leads to not only the overall decay of the scrambled information due to
leaking, but also structural changes so that the ‘information light cone’ can only
reach a finite distance even when the effect of overall decay is removed. Based on
this observation, we conjecture a modified version of the Lieb-Robinson bound in
dissipative systems.

In Chapter 5, we try to understand asymmetric information scrambling. In generic
thermalizing quantum many-body systems with spatial locality, the butterfly veloc-
ity vB can depend asymmetrically on the direction of information propagation. In
one dimensional quantum systems, the asymmetry between the different directions
can be quantified by the butterfly velocities vr

B and vl
B, where the superscript r (l)

denotes propagation direction to the right (left). We construct a family of simple
2-local Hamiltonians for understanding the asymmetric hydrodynamics of operator
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spreading. Our models live on a one-dimensional lattice and exhibit asymmetric
butterfly velocities between the left and right spatial directions. For integrable
Hamiltonians, this asymmetry is transparently understood in terms of quasiparticle
velocities. For the constructed non-integrable Hamiltonian with thermalizing dy-
namics, we employ different methods to estimate the asymmetric butterfly velocities
vr

B and vl
B. Our methods are developed from a variety of measures including out-of-

time-ordered correlations, right/left weight of time-evolved operators, and operator
entanglement.
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C h a p t e r 2

SLOW SCRAMBLING IN MANY-BODY LOCALIZED SYSTEMS

In the presence of disorder, localization can occur not only in single-particle systems
[11], but also in interacting many-body systems [12–22]. The former is known as
Anderson localization (AL), and the latter is called many-body localization (MBL).
Neither AL nor MBL systems transfer energy, charge, or other local conserved
quantities: Changes in energy or charge at position x = 0 from equilibrium can
spread and lead to changes in the corresponding quantity only within a finite distance
|x | < L0, where L0 is the localization length.

A characteristic feature that distinguishes MBL from AL lies in the dynamics of
entanglement after a global quench. Initialized in a random product state at time
t = 0, the half-chain entanglement entropy remains bounded in AL systems [82],
but grows logarithmically with time in MBL systems [25–32]. In sharp contrast to
the transport phenomena, the unbounded growth of entanglement in MBL systems
suggests that information propagates throughout the system, although very slowly.

The propagation of information can be formulated by adapting the Lieb-Robinson
(LR) bound [67, 68, 83] to the present context. In particular, it is manifested as
the noncommutativity of a local operator A at x = 0 and t = 0 with another local
operator B at position x and evolved for some time t. In MBL systems, the operator
norm of the commutator [A(0,0),B(x, t)] is non-negligible inside a light cone whose
radius is given by |x | ∼ log |t |, and decays exponentially with distance outside the
light cone, i.e. [84],

‖[A(0,0),B(x, t)]‖ ≤ Ce−(|x |−vLR log |t |)/ξ (2.1)

after averaging over disorder. Here, B(x, t) = eiHt B(x,0)e−iHt is the time-evolved
operator; ‖ · ‖ is the operator norm (the largest singular value); and C, vLR, ξ are
positive constants.

Is it possible to detect the logarithmic light cone (LLC) with equilibrium correlators
of A(0,0) and B(x, t)? Arguably, the most straightforward approach is to measure
the commutator in the LR bound (2.1) on equilibrium states, i.e., thermal states or
eigenstates, using the Kubo formula in linear response theory:

〈U†B(x, t)U〉 − 〈B(x, t)〉 = τ〈i[A(0,0),B(x, t)]〉 +O(τ2), (2.2)
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where U = e−iAτ with τ � 1 is a local unitary perturbation if A is Hermitian. The
first and second terms on the left-hand side of (2.2) are the expectation values of B in
the presence and absence of the perturbation U, respectively. The difference is the
effect of U observed by measuring B. Note that U and B can be, but do not have to
be, chosen as the operators for changing and measuring local conserved quantities,
respectively. In this way, the effect of U cannot be detected outside the localization
length L0.

Instead, we consider the out-of-time-ordered (OTO) correlator

A(0,0)B(x, t)A(0,0)B(x, t).

Proposed long ago in the context of superconductivity [34], OTO correlators have
received renewed interest in the study of the AdS/CFT correspondence, black holes,
butterfly effect, quantum chaos, and scrambling [35–44]. Recently, several protocols
have been proposed for measuring OTO correlators in experiments [85–87]. In
MBL systems, we observe that OTO correlators can detect LLC. To understand this,
we relate the OTO correlator to the Frobenius norm of [A(0,0),B(x, t)], which is
expected to exhibit similar scaling behavior as the operator norm in the LR bound
(2.1). Furthermore, we study the temperature dependence of LLC using OTO
correlators.

The observation that the expectation value of the commutator [A(0,0),B(x, t)] with
respect to thermal states or eigenstates cannot detect LLC described by the LR bound
(2.1) raises the question of whether it is possible to saturate the bound (2.1) and thus
detect LLC by measuring the commutator on some states using the Kubo formula
(2.2). Of course, we can take the eigenstate of the commutator with the largest
eigenvalue in magnitude, but such states are arguably not physical. Is it possible
to detect LLC by measuring the commutator on physically motivated states? We
provide numerical and analytical evidence that this is not the case for eigenstates of
the Hamiltonian, any mixture of them, or random product states.

Finally, we compareALwithMBL. InAL systems, propagation of information forms
a non-expanding light cone [88]. We show this explicitly using OTO correlators in
the random-field X X chain. The distinction between AL and MBL systems, i.e.,
non-expanding versus LLC, is also manifested in quantum revivals [89], modified
spin-echo protocols [90], relaxation of local observables after a quantum quench,
growth of connected correlators [30, 91], etc.
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Figure 2.1: Color images of |〈i[σx
1 , σ

x
j (t)]〉th | for β = 0.1 (left) and |〈i[σx

1 , σ
x
j (t)]〉eig |

(right), averaged over 480 samples. LLC cannot be detected in this way.

2.1 OTO correlators detect logarithmic light cone
As a concrete model of MBL, we consider the spin-1/2 random-field Heisenberg
chain and calculate its dynamics using exact diagonalization. The Hamiltonian is

H =
L−1∑
j=1

(
σx

j σ
x
j+1 + σ

y
j σ

y
j+1 + σ

z
jσ

z
j+1

)
+

L∑
j=1

h jσ
z
j , (2.3)

where σx
j , σ

y
j , σ

z
j are the Pauli matrices at the site j, and h j’s are independent and

identically distributed (i.i.d.) uniform random variables on the interval [−h, h]. This
model is known to be in the MBL phase for h & 7 [92–94]. We take h = 16 so that
the localization length L0 is small, and L = 11 unless otherwise stated. We perform
a finite-size scaling analysis (data not shown for clarity) to ensure that finite-size
effects are negligible.

Preparing the system in thermal states or eigenstates, the expectation value of an
operator Ô is given by

〈Ô〉th = tr(e−βHÔ)/tr(e−βH), 〈Ô〉eig = 〈ψ |Ô |ψ〉, (2.4)

where β = 1/T ≥ 0 is the inverse temperature, and |ψ〉 is a random eigenstate of H.

Figure 2.1 shows the expectation value of the commutator [σx
1 , σ

x
j (t)] with respect

to thermal states and eigenstates as a function of j = 1,2, . . . , L and t. Explained
previously using the Kubo formula (2.2), this quantity measures the response at the
site j and time t to a perturbation at the first site and t = 0. We see that the effect
of perturbation spreads only within a small distance. We observe similar behavior
(data not shown) for other choices of local operators in the commutator.
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Figure 2.2: Color images of 1 − Re〈σx
1σ

x
j (t)σ

x
1σ

x
j (t)〉th for β = 0.1 (top left),

1 − Re〈σx
1σ

x
j (t)σ

x
1σ

x
j (t)〉eig (top right), 1 − Re〈σz

1σ
z
j (t)σ

z
1σ

z
j (t)〉eig (bottom left),

and 1 − Re〈(σx
1 + σ

z
1 )(σ

x
j (t) + σ

z
j (t))(σ

x
1 + σ

z
1 )(σ

x
j (t) + σ

z
j (t))〉eig/4 (bottom right),

averaged over 480 samples. We see LLC in all but the bottom left panels.

Let us consider the OTO operator σx
1σ

x
j (t)σ

x
1σ

x
j (t). It is close to the identity

operator if [σx
1 , σ

x
j (t)] ≈ 0, i.e., the site j at time t is outside the light cone generated

at the first site and t = 0; its expectation value may deviate from 1 if the site j is
in the light cone. The top panels of Fig. 2.2 show this OTO correlator. We see
LLC, in which the OTO correlator decays to zero. The bottom left panel shows the
OTO correlator σz

1σ
z
j (t)σ

z
1σ

z
j (t). We do not see a clear unbounded light cone. The

bottom right panel shows (σx
1 +σ

z
1 )(σ

x
j (t)+σ

z
j (t))(σ

x
1 +σ

z
1 )(σ

x
j (t)+σ

z
j (t)). We see

LLC, but in which the OTO correlator does not decay to zero.

The behavior of these OTO correlators can be understood from the local integrals
of motion [31, 95] in MBL systems. The operators σx

j , σ
z
j , σ

x
j + σ

z
j have vanishing,

large, moderate overlap with the local integrals of motion. Therefore, the corre-
sponding OTO correlator decays to zero, almost does not decay, or decays to a finite
value, respectively.
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Figure 2.3: Color images of ‖[σx
1 , σ

x
j (t)]‖F/2

L/2 (left) and ‖[σx
1 , σ

x
j (t)]‖ (right),

averaged over 480 samples. The left panel is essentially the same (see Eq. 2.5) as
the top right panel of Fig. 2.2. The right panel shows that the LR bound (2.1) is
tight.

Why do OTO correlators behave differently from normal (i.e., equilibrium retarded)
correlators? We have shown that normal correlators measure the response or spread
of physical quantities like energy or charge after a perturbation from equilibrium.
We now argue that OTO correlators describe the propagation of information.

The OTO correlator can be obtained by expanding the square of the commutator

−[σx
1 , σ

x
j (t)]

2 = 2 − σx
1σ

x
j (t)σ

x
1σ

x
j (t) − σ

x
j (t)σ

x
1σ

x
j (t)σ

x
1

⇒ 1 − 〈σx
1σ

x
j (t)σ

x
1σ

x
j (t)〉th = ‖[σ

x
1 , σ

x
j (t)]‖

2
F/2

L+1, (2.5)

where β = 0, and ‖A‖F =
√

tr(A†A) is the Frobenius norm. In comparison, the LR
bound (2.1) concerns ‖[σx

1 , σ
x
j (t)]‖. Figure 2.3 shows the Frobenius and operator

norms of the commutator. They exhibit similar scaling behavior in the sense of LLC
in both panels. Thus, we have related OTO correlators to the LR bound (2.1).

We emphasize the difference between the expectation values of i[σx
1 , σ

x
j (t)] and

−[σx
1 , σ

x
j (t)]

2 shown in Figs. 2.1, 2.2, respectively. The observation that the latter
detects LLC while the former does not can be understood as follows. The traceless
Hermitian operator i[σx

1 , σ
x
j (t)] has both positive and negative eigenvalues, which

may cancel themselves out upon taking the expectation value (with respect to either
thermal states or eigenstates of the Hamiltonian). The eigenvalues of the positive
semidefinite operator −[σx

1 , σ
x
j (t)]

2 are nonnegative and contribute additively when
taking the expectation value.

We now study the temperature dependence of LLC using OTO correlators (the
temperature dependence of the linear light cone in homogeneous systems has been
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Figure 2.4: LLC boundary j ∼ vB log10 t at various inverse temperatures β. The
values of vB are obtained by solving (3.12) for ε = 1/2. The top panels of Fig. 2.2
are the color images for β = 0,0.1, and the color images for other values of β are
not shown. We see that vB decreases as β increases.

studied; see, e.g., [42]). To determine the LLC boundary j ∼ vB log10 t, we choose
a threshold 0 < ε < 1 and solve the relationship between j and t in the equation

1 − Re〈σx
1σ

x
j (t)σ

x
1σ

x
j (t)〉th = ε . (2.6)

We see from the top panels of Fig. 2.2 that vB depends on both β and ε . For fixed
ε , Fig. 2.4 shows that vB decreases as β increases. This trend (faster information
propagation at higher temperatures) was also found in some quantum field theories
[42].

The model (2.3) for h . 7 has two mobility edges separating delocalized eigenstates
in the middle of the energy spectrum from localized ones on the sides [93, 94]. For
h = 16, (2.3) is deep in the MBL phase, and (almost) all eigenstates are localized.
However, eigenstates in the middle of the spectrum might still be less localized
than those on the sides. Therefore, we expect that vB decreases as |β | increases.
If a many-body localization-delocalization transition has mobility edges separating
localized eigenstates in the middle of the spectrum from delocalized ones on the
sides, we expect that vB increases as |β | increases on the MBL side of the transition.
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Figure 2.5: (top left) Color image of |〈ψ j |[σ
x
1 , σ

x
j (t)]|ψ j〉| for L = 12, averaged over

320 samples. Here, |ψ j〉 is the eigenstate of [σx
1 , σ

x
j (t = 100.3 j+1)] with the largest

eigenvalue in magnitude. (top right) The quantity maxt |〈[σ
x
1 , σ

x
j (t)]〉| on random

product states for L = 9 (blue), 10 (green), 11 (red), 12 (black), averaged over 960
samples. It appears to decay exponentially with distance in the thermodynamic
limit. (bottom) Color images of |〈[σx

1 , σ
x
j (t)]〉| on random product states for L = 8

and L = 12.

2.2 How to detect logarithmic light cone with retarded correlators?
Is it possible to saturate the LR bound (2.1) and thus detect LLC by measuring the
commutator on some states using the Kubo formula (2.2)? Of course, we can take
the eigenstate of the commutator with the largest eigenvalue in magnitude. In the
right panel of Fig. 2.3, the LLC boundary is roughly given by t = 100.3 j+1. The
top left panel of Fig. 2.5 shows |〈ψ j |[σ

x
1 , σ

x
j (t)]|ψ j〉|, where |ψ j〉 is the eigenstate

of [σx
1 , σ

x
j (t = 100.3 j+1)] with the largest eigenvalue in magnitude. Thus, however

far the measurement is from the perturbation, there is an initial state such that the
effect of the perturbation can eventually be detected. In this sense, we do see LLC.

Since the eigenstates of the commutator are arguably not physical, is it possible to
detect LLC by measuring the commutator on physically motivated states? As an
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Figure 2.6: Color images of 1 − Re〈σx
1σ

x
j (t)σ

x
1σ

x
j (t)〉eig (left) and ‖[σx

1 , σ
x
j (t)]‖

(right) in the AL system (2.8), averaged over 320 samples. We see a non-expanding
light cone in both panels. This confirms (2.7).

attempt, we consider (random) product states, which are the initial states in most
experiments on MBL [96–99]. The lower panels of Fig. 2.5 show the expectation
value of the commutator with respect to random product states. We do not see a very
clear unbounded light cone, but further analysis is necessary to draw a conclusion.

We consider the quantity maxt |〈[σ
x
1 , σ

x
j (t)]〉|, which is the maximum signal that

can ever be detected by measuring σx
j (see Eq. 2.2). This quantity is not a function

of t, and does not describe how the effect of a perturbation evolves in time. Rather,
it detects whether the perturbation has long-range effects. Performing a finite-
size scaling analysis, the top right panel of Fig. 2.5 provides evidence that in the
thermodynamic limit, maxt |〈[σ

x
1 , σ

x
j (t)]〉| decays exponentially with j. Thus, a

perturbation of random product states has only short-range effects at any time t,
and LLC cannot be detected in this way. In the Appendix, we analytically calculate
|〈[σx

1 , σ
x
j (t)]〉| on some product states in the phenomenological model of MBL [31].

The analytical results agree qualitatively with the numerical results in Fig. 2.5.

2.3 OTO correlators in Anderson localized systems
In AL systems, information propagation forms a non-expanding light cone formu-
lated by a strictly local LR bound [88]

‖[A(0,0),B(x, t)]‖ ≤ Ce−|x |/ξ . (2.7)

We now show this explicitly using OTO correlators. Thus, OTO correlators can
distinguish AL from MBL.

As a model of AL, we consider the random-field X X chain, which is equivalent to
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a model of free fermions hopping in a random potential. The Hamiltonian is

H =
L−1∑
j=1

(
σx

j σ
x
j+1 + σ

y
j σ

y
j+1

)
+

L∑
j=1

h jσ
z
j , (2.8)

where h j’s are i.i.d. uniform random variables on the interval [−h, h]. This model is
in the AL phase for any h > 0, and we still take h = 16. Figure 2.6 shows the OTO
correlator σx

1σ
x
j (t)σ

x
1σ

x
j (t) and the operator norm of the commutator [σx

1 , σ
x
j (t)].

We see a non-expanding light cone.

2.4 Discussion and conclusions
We have shown that OTO correlators can detect LLC in MBL systems, and thus
distinguish MBL from AL. Furthermore, we have studied the temperature depen-
dence of LLC using OTO correlators. In the random-field Heisenberg chain (2.3),
the LLC coefficient vB decreases as β increases. However, it may be possible to
construct models of MBL such that vB increases as β increases.

In the linear response regime (2.2), we have studied whether a local perturbation
of various initial states has long-range effects at a later time and thus can be used
to detect LLC. We have shown that this is indeed the case for specially designed
states, but may not be the case for thermal states, eigenstates of the Hamiltonian, or
random product states. It would be interesting to study whether this is the case for
other physically motivated states.

Beyond fully MBL systems, OTO correlators in a microcanonical ensemble can
detect mobility edges. When the energy density of the ensemble is in the localized
or delocalized region of the spectrum, we expect that OTO correlators demonstrate
a logarithmic or power-law light cone, respectively. Furthermore, the linear light
cone in diffusive non-integrable systems can be detected by measuring energy after
a local perturbation of specially designed states in the linear response regime (2.2).
To justify this, we have performed calculations (data now shown) as in the top left
panel of Fig. 2.5 for the model in Ref. [10].

Recently, OTO correlators have been used extensively in quantum gravity to study
chaos and scrambling of black holes via AdS/CFT duality. This chapter shows that
OTO correlators can provide insights into the dynamics of quantum many-body
systems without a holographic dual.
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C h a p t e r 3

FINITE-SIZE SCALING OF OUT-OF-TIME-ORDERED
CORRELATORS AT LATE TIMES

Nonintegrable quantum many-body systems are expected to exhibit chaotic dynam-
ics, which not only leads to thermalization, but also scrambles local information
into a nonlocal form. In the Heisenberg picture, the support of A(t) := eiHt Ae−iHt

for a local operator A should grow with time under the chaotic dynamics. This
growth is reflected in the noncommutativity of A(t) and another local operator B at a
different site, which leads to the decay of the out-of-time-ordered correlator (OTOC)
Re〈A†(t)B†A(t)B〉 [34–36, 38–44, 46, 47, 49, 85, 100]. Assume for simplicity that
A and B are unitary. Then,

Re〈A†(t)B†A(t)B〉 = 1 − 〈[A(t),B]†[A(t),B]〉/2 (3.1)

so that when the commutator [· · · ] grows, OTOC decays. The chaotic nature of the
dynamics is reflected in the fast decay of OTOC away from 1 in a relatively short
time period and the approaching of OTOC to 0 at late times.

Why does chaotic dynamics lead to such decaying behavior of OTOC? While it is
not possible to solve exactly the dynamics of nonintegrable systems in general, we
might be able to extract some universal features, at least in certain limits. In a large
class of chaotic systems without spatial locality (e.g., large-N theories), OTOC at
early time t is given by 1 − εeλL t , where ε is a small prefactor and λL is a constant.
Such an exponential deviation from the initial value is reminiscent of the so-called
sensitive dependence on initial conditions (i.e., nearby points in phase space separate
from each other over time at an exponential rate) in classical chaos. Thus, λL may be
interpreted as the Lyapunov exponent for quantum systems [35]. In chaotic systems
with spatial locality, OTOC of two local operators starts to decay only after a delay
that is proportional to the distance between the operators [41–43, 47, 100]. This is
a consequence of the Lieb-Robinson bound [67, 68, 83].

In this paper, we study the behavior of OTOC at late times. For simplicity, consider
a system of n qubits at infinite temperature so that 〈· · · 〉 = tr(· · · )/2n. In the limit
t →∞, a naive understanding of why OTOC approaches 0 is as follows. We expand
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the time-evolved operator in the n-qubit Pauli basis {σ0 = I, σx, σy, σz}
⊗n:

A(t) =
∑

(k1,k2,...,kn)∈{0,x,y,z}n
ak1k2···knσk1σk2 · · ·σkn . (3.2)

The unitarity of A(t) implies ∑
k1,k2,...,kn

|ak1k2···kn |
2 = 1. (3.3)

After undergoing chaotic evolution for a sufficiently long time, the support of A(t)

should be the whole system, and one might expect that the coefficients ak1k2···kn

behave like random variables due to the chaotic nature of the dynamics. If we
choose B to be the Pauli operator σx of qubit 1, then half of the terms in the
expansion (3.2) of A(t) commute with B and half of them do not. Thus,

〈[A(t),B]†[A(t),B]〉

= 4
∑

k2,k3,...,kn

|ayk2k3···kn |
2 + |azk2k3···kn |

2

≈ 4 · 0.5 = 2. (3.4)

The approximation step follows from Eq. (3.3) and the fact that we sum over half
of the random variables. Substituting Eq. (3.4) into Eq. (3.1), we see that OTOC
approaches 0 at late times.

Equation (3.2) with random coefficients is a very simple way to approximate A(t)

for large t in chaotic systems and it is oversimplified in some respects. For example,
one major difference between this approximation and the exact evolution A(t) =

eiHt Ae−iHt is that the latter preserves the spectrum of A while the former does not.
How does this discrepancy affect our understanding of the late-time behavior of
OTOC? Is it necessary to use more refined and sophisticated approximations in
order to fully capture the essence of chaotic dynamics at late times?

We focus on the scaling of late-time OTOC with system size. In finite-size systems,
OTOC may converge to a small but finite value, which goes to 0 when the system
size goes to infinity. One might expect this residual value to be exponentially
small in the system size because we sum over an exponential number of random
variables in Eq. (3.4). However, using a more refined approximation we show that
the finite-size scaling of generic late-time OTOC should be inverse polynomial. In
fact, the power-law scaling is closely related to energy conservation during the time
evolution, which is not captured by simply setting the coefficients in the expansion
(3.2) to be random.
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3.1 Results
In this section, we introduce basic definitions and provide a summary of results.

Throughout this paper, asymptotic notations are used extensively. Let f ,g : R+ →
R+ be two positive functions. One writes f (x) = O(g(x)) if and only if there exist
positive numbers M, x0 such that f (x) ≤ Mg(x) for all x > x0; f (x) = Ω(g(x))

if and only if there exist positive numbers M, x0 such that f (x) ≥ Mg(x) for all
x > x0; f (x) = Θ(g(x)) if and only if there exist positive numbers M1,M2, x0 such
that M1g(x) ≤ f (x) ≤ M2g(x) for all x > x0. To simplify the notation, we use a
tilde to hide a polylogarithmic factor, e.g., Õ( f (x)) := O( f (x) poly log f (x)).

For concreteness, consider a chain of n qubits or spin-1/2’s with total Hilbert space
dimension d = 2n governed by a translationally invariant Hamiltonian H =

∑n
i=1 Hi,

where Hi acts on spins i, i+1 (nearest-neighbor interaction). While our discussion is
based on a one-dimensional spin system, our results do not rely on the dimensionality
of the system or the degrees of freedom being spins. A minor modification of
our method leads to similar results in other settings, e.g., fermionic systems in
higher dimensions. Assume without loss of generality that tr Hi = 0 (traceless) and
‖Hi‖ ≤ 1 (bounded operator norm).

Let A,B,C,D be local (not necessarily unitary) operators with unit operator norm.
The residual value of late-time OTOC is

OTOC∞(A,B,C,D) := lim
τ→∞

1
τ

∫ τ

0
dt〈AB(t)CD(t)〉, (3.5)

where 〈X〉 := 1
d tr X denotes the expectation value of an operator at infinite temper-

ature.

Let {|1〉, |2〉, . . . , |d〉} be a complete set of eigenstates of H with corresponding
energies E1 ≤ E2 ≤ · · · ≤ Ed in nondescending order. Let X j k = 〈 j |X |k〉 be the
matrix element of an operator in the energy basis. Define

〈A,B,C,D〉 j = (AC) j j B j j D j j + A j jCj j(BD) j j − A j j B j jCj j D j j . (3.6)

In strongly chaotic systems, we propose the following formula for late-time OTOC:

OTOC∞(A,B,C,D) ≈
1
d

∑
j

〈A,B,C,D〉 j . (3.7)

Based on this formula, we argue for
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types of dynamics late-time OTOC references
Haar random unitary e−Θ(n) [49, 101]

chaotic Hamiltonian dynamics 1/poly n this work
many-body localization Θ(1) [55, 56, 58–60, 102]

Table 3.1: Finite-size scaling of generic late-time OTOC for various types of quan-
tum dynamics.

• OTOC∞(A,B, A†,B†) for traceless local operators A,B vanishes in the ther-
modynamic limit n→∞.

• In finite-size systems, OTOC 〈AB(t)A†B†(t)〉 saturates to Θ(1/n) if either A

or B (or both) has a finite overlap with the Hamiltonian H. We not only
derive the prefactor hidden in the big-Theta notation, but also provide a (not
necessarily tight) upper bound on the remainder:

OTOC∞(A,B, A†,B†) =
〈AA†〉|〈HB〉|2 + 〈BB†〉|〈H A〉|2

〈HHi〉n
+ Õ(n−1.5). (3.8)

This is our main result. It is an example where certain properties of quantum chaotic
systems can be calculated analytically. For comparison, Table 3.1 summarizes the
finite-size scaling of late-time OTOC of generic traceless local operators for various
types of quantum dynamics.

The remainder of this paper is organized as follows. In Section 3.2, assuming a
“generic” energy spectrum, we present a simple derivation of Eq. (3.8) for the
special case where the local operators in OTOC are terms in the Hamiltonian.
In Section 3.3, we extend the approach to the general case using the eigenstate
thermalization hypothesis (ETH) [4–6]. Thus, we give a rigorous proof of Eqs.
(3.7), (3.8) based on two very mild assumptions for chaotic systems: a generic
spectrum and ETH. In Section 3.4, we propose a heuristic physical picture for our
results from the perspective of interpreting chaotic dynamics with random unitaries.
We first introduce a previous approach, which takes into account the unitarity of
the dynamics by approximating the time evolution operator e−iHt with a random
unitary. Unfortunately, this approximation remains too crude, for it still suggests
that the residual value of late-time OTOC is exponentially small in the system size.
We show that once energy conservation is also taken into account by requiring the
random unitary to act within small energy windows, the finite-size scaling of late-
time OTOC becomes inverse polynomial. In Section 3.5, we support our analytical
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arguments with numerical simulations of a nonintegrable spin chain. The numerical
results suggest that the remainder in Eq. (3.8) can be improved to O(n−2).

3.2 Special case
In the case where the local operators in OTOC are terms in the Hamiltonian, we
give a simple rigorous proof of Eq. (3.8) assuming only a generic spectrum.

In strongly chaotic systems, one might expect that the energy spectrum satisfies the
“generic” condition:

Assumption 1 (generic spectrum; see, e.g., Ref. [103]).

Ep + Er = Eq + Es =⇒ ((p = q) and (r = s)) or ((p = s) and (r = q)). (3.9)

This assumption is necessary in the sense that it rules out certain integrable (e.g.,
free-fermion) systems.

Writing out the matrix elements,

〈AB(t)CD(t)〉 =
1
d

∑
p,q,r,s

ApqBqrCrsDspei(Eq−Er+Es−Ep)t . (3.10)

Substituting into Eq. (3.5), we obtain

OTOC∞(A,B,C,D) =
1
d

∑
p,q,r,s

ApqBqrCrsDspδEp+Er ,Eq+Es, (3.11)

where δ is the Kronecker delta. Assumption 1 implies

OTOC∞(A,B,C,D)

=
1
d

∑
j,k

A j j B j kCkk Dk j +
1
d

∑
j,k

A j k BkkCk j D j j −
1
d

∑
j

A j j B j jCj j D j j . (3.12)

Given a Hamiltonian H, there are multiple ways to write it as a sum of local terms:
H =

∑
i Hi. Without loss of generality, we fix this ambiguity by expanding H in

the Pauli basis and assigning all Pauli string operators starting at site i to Hi (see
Eq. (3.51) for an example). This convention implies tr(Hj Hk) = 0 for j , k.
Hence, 〈H2

i 〉 = 〈HHi〉 = 〈H2〉/n for any i due to translational invariance. Using
this convention,

Theorem 1. Assumption 1 implies

OTOC∞(H1,Hi,H1,Hi) = 2〈H2
i 〉

2/n +O(n−2). (3.13)
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Proof. We will use the observation that (Hi) j j = E j/n for any i due to translational
invariance. For the present choice of local operators in OTOC, the first term on the
right-hand side of Eq. (3.12) reads

1
d

d∑
j,k=1
(H1) j j(Hi) j k(H1)kk(Hi)k j

=
1

dn2

d∑
j,k=1

E j 〈 j |Hi |k〉Ek 〈k |Hi | j〉

=
1

dn2 tr ©­«
d∑

j=1
| j〉E j 〈 j |Hi

d∑
k=1
|k〉Ek 〈k |Hi

ª®¬
=

tr(HHiHHi)

dn2 =
1
n2

n∑
j,k=1
〈Hj HiHk Hi〉. (3.14)

In the last sum, there are n2 terms, most of which are zero because tr Hj = tr Hk = 0.
Furthermore, the convention stated above implies tr(Hj Hk) = 0 for j , k. Hence,
the number of nonvanishing terms in the last sum of Eq. (3.14) is n+O(1) (n comes
from the terms with j = k and O(1) accounts for the remainder). Equation (3.14)
equals

1
n2

n∑
j=1
〈Hj HiHj Hi〉 +O(n−2)

= 〈H2
i 〉

2/n +O(n−2) +O(n−2) = 〈H2
i 〉

2/n +O(n−2). (3.15)

The second term on the right-hand side of Eq. (3.12) gives the same result. The last
term on the right-hand side of Eq. (3.12) equals

1
dn4

∑
j

E4
j = Θ(n

−2), (3.16)

where we used Eq. (3.17) with m = 4. This completes the proof. �

3.3 General case: Implications of eigenstate thermalization
In this section, we provide an argument for Eqs. (3.7), (3.8). The argument is
rigorous assuming a generic spectrum and ETH.
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Lemma 1 (moments).
1
d

∑
j

Em
j = 〈H

m〉 = Θ(nm/2), ∀ even positive integer m, (3.17)������1d ∑
j

E3
j

������ = |〈H3〉| = O(n). (3.18)

Proof. Expanding H in the Pauli basis, it suffices to count the number of terms that
do not vanish upon taking the trace in the expansion of Hm or H3. �

Lemma 2 (concentration of eigenvalues). Almost all eigenstates have zero energy
density:

|{ j : |E j | ≥ n0.51}|/d ≤ O(n−0.01m), ∀m > 0. (3.19)

Proof. It follows from Eq. (3.17) and Markov’s inequality. �

This lemma allows us to upper bound the total contribution of all eigenstates away
from the middle of the spectrum, e.g.,

1
d

∑
j:|Ej |≥n0.51

E2
j ≤ O(n2−0.01m), ∀m > 0. (3.20)

Lemmas 2 and Eqs. (3.17), (3.20) are related to the fact that E j’s approach a normal
distribution in the thermodynamic limit n → ∞ [104, 105]. Indeed, |E j | = Θ(

√
n)

for almost all j.

It suffices to assume ETH for eigenstates in the middle of the spectrum.

Assumption 2 (eigenstate thermalization hypothesis in the middle of the spectrum).
Let δ be an arbitrarily small positive constant. For any local operator X with
‖X ‖ ≤ 1, there is a function fX : [−δ, δ] → [−1,1] such that

|X j j − fX(E j/n)| ≤ 1/poly n (3.21)

for all j with |E j | ≤ δn, where poly n denotes a polynomial of sufficiently high
degree in n. We assume that fX is smooth in the sense of having a Taylor expansion
to some low order.

It was proposed analytically [103] and supported by numerical simulations [106]
that the right-hand side of Eq. (3.21) can be improved to e−Ω(n). For our purposes,
however, a (much weaker) inverse polynomial upper bound suffices.
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Lemma 3. For any local operator X and traceless local operator A, Assumption 2
implies

fX(0) =
1
d

tr X, (3.22)

f ′A(0) = tr(H A)/tr(HHi), (3.23)
1
d

∑
j

|A j j |
2 =
| tr(H A)|2

dn tr(HHi)
+O(n−2), (3.24)

1
d

∑
j

|A j j |
4 = O(n−2). (3.25)

For a generic traceless local operator A, the right-hand side of Eq. (3.23) (the
normalized overlap between A and the Hamiltonian) is finite and the first term on
the right-hand side of Eq. (3.24) is Θ(1/n).

Proof of Eq. (3.22).

1
d

tr X =
1
d

∑
j

X j j ≈
1
d

∑
j:|Ej |<n0.51

X j j

≈
1
d

∑
j:|Ej |<n0.51

fX(0) ≈
1
d

∑
j

fX(0) = fX(0), (3.26)

where we used Lemma 2 in the second and fourth steps. The third step follows from
the continuity of fX(x) at x = 0. Taking the limit n → ∞, all errors in Eq. (3.26)
vanish and thus we obtain Eq. (3.22). In particular, fA(0) = 0 for any traceless local
operator A. �

Proof of Eq. (3.23).

1
d

tr(H A) =
1
d

∑
j

E j A j j

≈
1
d

∑
j:|Ej |<n0.51

E j A j j ≈
1
d

∑
j:|Ej |<n0.51

E2
j

n
f ′A(0)

≈
1
d

∑
j

E2
j

n
f ′A(0) = tr(HHi) f ′A(0)/d, (3.27)

where we used Lemma 2 and Eq. (3.20) in the second and fourth steps, respectively.
In the third step, we used Eq. (3.21) and the Taylor expansion

fA(E j/n) = fA(0) + f ′A(0)E j/n + 0.5 f ′′A (0)E
2
j /n

2 +O(|E j |
3/n3) (3.28)
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so that the approximation error in this step is upper bounded by

O(1)
d

∑
j:|Ej |<n0.51

|E j |
3

n2 ≤ O(n−0.47). (3.29)

Taking the limit n → ∞, all errors in Eq. (3.27) vanish and thus we obtain Eq.
(3.23). �

Proof of Eq. (3.24).

1
d

∑
j

|A j j |
2 ≈

1
d

∑
j:|Ej |<n0.51

|A j j |
2

≈
| f ′A(0)|

2

d

∑
j:|Ej |<n0.51

E2
j

n2 ≈
| f ′A(0)|

2

d

∑
j

E2
j

n2

=
| tr(H A)|2

dn tr(HHi)
, (3.30)

where we used Lemma 2 and Eqs. (3.20), (3.23) in the first, third, and last steps,
respectively. In the second step, we used Eqs. (3.21), (3.28) with the approximation
error upper bounded by

O(1)
d

������ ∑
j:|Ej |<n0.51

E3
j

n3

������ + O(1)
d

∑
j:|Ej |<n0.51

E4
j

n4 + 1/poly n

≈
O(1)

d

������∑j

E3
j

n3

������ + O(1)
d

∑
j

E4
j

n4

= O(n−2) +O(n−2) = O(n−2), (3.31)

where we used Eqs. (3.17), (3.18). �

Proof of Eq. (3.25).

1
d

∑
j

|A j j |
4 ≈

1
d

∑
j:|Ej |<n0.51

|A j j |
4

≈
O(1)

d

∑
j:|Ej |<n0.51

E4
j

n4 ≈
O(1)

d

∑
j

E4
j

n4 = O(n−2). (3.32)

�
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Let J ⊆ R be an energy interval. Define

PJ =
∑

j:Ej∈J

| j〉〈 j | (3.33)

as the projector onto J.

Lemma 4 ([107]). Let ε < ε′. For any local operator X ,

‖P(−∞,ε)XP(ε ′,∞)‖ ≤ ‖X ‖e−Ω(ε
′−ε). (3.34)

This lemma states that local operators cannot (up to an exponentially small error)
connect projectors that are far away from each other in the spectrum.

Justification of Eq. (3.7). Let c be a sufficiently large constant. Consider the first
term on the right-hand side of Eq. (3.12):

1
d

∑
j,k

A j j B j kCkk Dk j ≈
1
d

∑
j

∑
k:|Ej−Ek |<c ln n

A j j B j kCkk Dk j

≈
1
d

∑
j

∑
k:|Ej−Ek |<c ln n

A j j B j kCj j Dk j ≈
1
d

∑
j,k

A j jCj j B j k Dk j

=
1
d

∑
j

A j jCj j(BD) j j, (3.35)

where we used Lemma 4 in the first and third steps: Due to the presence of off-
diagonalmatrix elements B j k,Dk j , the total contribution of all termswith |Ek−E j | ≥

c ln n is upper bounded by 1/poly n. In the second step of Eq. (3.35), we replace
Ckk by Cj j using ETH (Assumption 2), which states that eigenstates with similar
energies have similar local expectation values. A detailed and rigorous error analysis
for Eq. (3.35) is given in Propositions 1, 2 below.

Equation (3.35) shows that the first term on the right-hand side of Eq. (3.12)
corresponds to the second term on the right-hand side of Eq. (3.6). Similarly, the
second term on the right-hand side of Eq. (3.12) corresponds to the first term on
the right-hand side of Eq. (3.6). Obviously, the last terms on the right-hand sides
of Eqs. (3.6), (3.12) are the same. Thus, we obtain Eq. (3.7). �

Proposition 1. The approximation errors in the first and third steps of Eq. (3.35)
are 1/poly n, where poly n denotes a polynomial of sufficiently high degree in n.
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Proof. Let
Q j =

∑
k:|Ej−Ek |≥c ln n

|k〉〈k |, C̃ =
∑

k

Ckk |k〉〈k |. (3.36)

Since C̃ is the diagonal part of C (in the energy basis), it is easy to see ‖C̃‖ ≤ ‖C‖.
The approximation error in the first step of Eq. (3.35) is

1
d

������∑j

∑
k:|Ej−Ek |≥c ln n

A j j B j kCkk Dk j

������
≤

1
d

∑
j

|A j j |

������ ∑
k:|Ej−Ek |≥c ln n

B j kCkk Dk j

������ ≤ ‖A‖d

∑
j

|〈 j |BQ jC̃Q j D | j〉|

≤
‖A‖

d

∑
j

‖Q j B† | j〉‖‖C̃‖‖Q j D | j〉‖ ≤ ‖A‖‖B‖‖C‖‖D‖/poly n, (3.37)

where we used Lemma 4. The approximation error in the third step of Eq. (3.35)
can be upper bounded similarly. �

Proposition 2. The approximation error in the second step of Eq. (3.35) is Õ(n−1.5).

Proof. Let n be sufficiently large such that n0.51 + c ln n < δn, and define

C̃( j) :=
∑

k:|Ej−Ek |<c ln n

(Cj j − Ckk)|k〉〈k |. (3.38)

For j, k such that |E j | < n0.51 and |E j − Ek | < c ln n, Assumption 2 implies

|Cj j−Ckk | ≤ | fC(E j/n)− fC(Ek/n)|+1/poly n = O(|E j−Ek |)/n+1/poly n. (3.39)

Hence, ‖C̃( j)‖ = Õ(1/n) for any j such that |E j | < n0.51. The approximation error
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in the second step of Eq. (3.35) is

1
d

������∑j

∑
k:|Ej−Ek |<c ln n

A j j B j k(Cj j − Ckk)Dk j

������
≤

1
d

∑
j

|A j j |

������ ∑
k:|Ej−Ek |<c ln n

B j kC̃( j)kk Dk j

������ = 1
d

∑
j

|A j j | |〈 j |BC̃( j)D | j〉|

≤
1
d

∑
j

|A j j |




C̃( j)



 = 1

d

∑
j:|Ej |<n0.51

|A j j |




C̃( j)



 + 1

d

∑
j:|Ej |≥n0.51

|A j j |




C̃( j)





≤
1
d

∑
j:|Ej |<n0.51

|A j j |Õ(1/n) +
1
d

∑
j:|Ej |≥n0.51

|A j j |O(1)

≤
Õ(1/n)

d

∑
j

|A j j | +
1
d

∑
j:|Ej |≥n0.51

O(1)

≤ Õ(1/n)
√

1
d

∑
j

|A j j |
2 + 1/poly n = Õ(n−1.5), (3.40)

where we used Eq. (3.24) in the last step. �

Justification of Eq. (3.8). Specializing to 〈AB(t)A†B†(t)〉, the derivation above yields

OTOC∞(A,B, A†,B†)

=
1
d

∑
j

(AA†) j j |B j j |
2 + |A j j |

2(BB†) j j − |A j j B j j |
2 + Õ(n−1.5). (3.41)

Consider the first term on the right-hand side:
1
d

∑
j

(AA†) j j |B j j |
2 ≈

1
d

∑
j:|Ej |<n0.51

(AA†) j j |B j j |
2

≈
1
d

∑
j:|Ej |<n0.51

fAA†(0)|B j j |
2 ≈

fAA†(0)
d

∑
j

|B j j |
2

≈
tr(AA†)| tr(HB)|2

d2n tr(HHi)
, (3.42)

where we used Lemma 2 in the first and third steps; the continuity of fAA†(x) at
x = 0 in the second step; and Eqs. (3.22), (3.24) in the last step. A rigorous error
analysis for Eq. (3.42) is given in Proposition 3 below.

The second term on the right-hand side of Eq. (3.41) can be estimated similarly.
The third term on the right-hand side of Eq. (3.41) is

1
d

∑
j

|A j j B j j |
2 ≤

1
2d

∑
j

|A j j |
4 + |B j j |

4 = O(n−2), (3.43)
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where we used Eq. (3.25). Thus, Eq. (3.8) is proved based on Assumptions 1,
2. �

Proposition 3. The error in Eq. (3.42) is O(n−2).

Proof. The approximation error in the last step of Eq. (3.42) is O(n−2) as given
by Eq. (3.24). Using the Taylor expansion of fAA†(x) at x = 0, we estimate the
approximation error in the second step of Eq. (3.42):

O(1)
d

������ ∑
j:|Ej |<n0.51

|B j j |
2E j

n

������ + O(1)
d

∑
j:|Ej |<n0.51

|B j j |
2E2

j

n2 + 1/poly n .
O(1)

d

������ ∑
j:|Ej |<n0.51

E3
j

n3

������
+

O(1)
d

∑
j:|Ej |<n0.51

(
E4

j

n4 + |B j j |
4

)
≈

O(1)
d

������∑j

E3
j

n3

������ + O(1)
d

∑
j

(
E4

j

n4 + |B j j |
4

)
≈ O(n−2) +O(n−2) +O(n−2) = O(n−2), (3.44)

wherewe used the Taylor expansion of fB(x) at x = 0 and the inequality of arithmetic
and geometric means in the first step; Lemma 2 in the second step; and Eqs. (3.17),
(3.18), (3.25) in the third step. �

3.4 Chaotic dynamics as random unitary
In this section, we rederive Eq. (3.7) using techniques from the theory of random
unitaries. The derivation is not rigorous, but provides a heuristic picture showing
the extent to which chaotic dynamics can be approximated by a random unitary.

To improve the approximation described by Eq. (3.2), we first take into account the
unitarity of the dynamics. In strongly chaotic systems, it is tempting to expect

Assumption 3. The time evolution operator e−iHt for large t behaves like a random
unitary.

Based on this assumption, late-time OTOC can be estimated from

OTOC∞(A,B,C,D) =
∫

dU〈A(U†BU)C(U†DU)〉, (3.45)

where U is taken from the unitary groupU(d) with respect to the Haar measure.

Lemma 5 ([49, 101]).∫
dU〈AU†BUCU†DU〉 = 〈A,B,C,D〉 −

〈AC〉c〈BD〉c
d2 − 1

, (3.46)
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where 〈XY〉c := 〈XY〉 − 〈X〉〈Y〉 is the connected correlator and

〈A,B,C,D〉 := 〈AC〉〈B〉〈D〉 + 〈A〉〈C〉〈BD〉 − 〈A〉〈B〉〈C〉〈D〉. (3.47)

Note that the right-hand side of Eq. (3.6) resembles that of Eq. (3.47) in the sense
of replacing every 〈· · · 〉 (expectation value at infinite temperature) by 〈 j | · · · | j〉
(expectation value in an eigenstate).

Corollary 1 ([49, 101]). Assumption 3 and Lemma 5 imply

OTOC∞(A,B,C,D) = 〈A,B,C,D〉 −
〈AC〉c〈BD〉c

d2 − 1
. (3.48)

Therefore,

• OTOC∞(A,B, A†,B†) for traceless operators A,B vanishes in the thermody-
namic limit n→∞.

• In finite-size systems, the saturation value of OTOC 〈AB(t)A†B†(t)〉 is expo-
nentially small in the system size (because d = 2n).

The approximation stated in Assumption 3 is still too crude. We propose a refined
version of Assumption 3 by incorporating energy conservation and argue (nonrig-
orously) that Eq. (3.7) follows from this refinement.

We observe that the time evolution conserves energy and that local operators can only
additively change the energy of a state byO(1) (Lemma4). Thus, the action ofOTOC
AB(t)CD(t) is approximately restricted to each microcanonical ensemble. This
observation motivates a refinement of Assumption 3 in strongly chaotic systems:

Assumption 4. The time evolution operator e−iHt for large t behaves like a random
unitary in each microcanonical ensemble.

Conceptually, this assumption is related to the notion of random diagonal unitaries
[108, 109].

Based on Assumption 4, we argue for Eq. (3.7). Since the bandwidth of H is Θ(n),
we decompose the energy spectrum into a disjoint union of Θ(n/∆) microcanonical
ensembles with bandwidth ∆. Let Jk := [k∆, (k + 1)∆) and define [A,B,C,D]k as
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the right-hand side of Eq. (3.47) with every 〈· · · 〉 replaced by the expectation value
tr(PJk · · · )/tr PJk in the microcanonical ensemble. We expect

lim
τ→∞

1
τ

∫ τ

0
dt

tr(PJk AB(t)CD(t))
tr PJk

≈ [A,B,C,D]k ≈
1

tr PJk

∑
j:Ej∈Jk

〈A,B,C,D〉 j .

(3.49)
The first step is a consequence of Lemma 5 and Assumption 4. Indeed, it is just Eq.
(3.48) restricted to the microcanonical ensemble PJk . The last step of Eq. (3.49)
used ETH. Equation (3.7) follows immediately from Eq. (3.49).

An important subtlety here, which does not appear in the derivation of Eq. (3.48),
requires further explanation. For an eigenstate | j〉 in a microcanonical ensemble
PJk , the state AB(t)CD(t)| j〉may not be completely in themicrocanonical ensemble.
As long as A,B,C,D are local operators, Lemma 4 implies

‖(1 − PJk )AB(t)CD(t)| j〉‖ ≤ ‖A‖‖B‖‖C‖‖D‖e−Ω(min{Ej−k∆,(k+1)∆−Ej }), (3.50)

i.e., the “leakage” out of the microcanonical ensemble PJk is exponentially small.
This is why Eq. (3.7) requires the locality of A,B,C,D, although Corollary 1 does
not.

3.5 Numerics
In this section, we support Eq. (3.8) with numerical simulations. Consider the
spin-1/2 chain

H =
n∑

i=1
Hi, Hi = σ

z
i σ

z
i+1 − 1.05σx

i + 0.5σz
i + gσ

y
i σ

z
i+1 (3.51)

with periodic boundary conditions (σz
n+1 := σz

1 ), where σ
x
i , σ

y
i , σ

z
i are the Pauli

matrices at site i. For g = 0, this model is nonintegrable in the sense of Wigner-
Dyson level statistics [10, 110]. Reference [41] calculated OTOC, focusing on the
butterfly effect rather than the late-time behavior. Note that for g = 0, most energy
levels are two-fold degenerate so that Assumption 1 does not hold.

We fix g = 0.1. Intuitively, the model is nonintegrable for any value of g. We have
numerically confirmed the validity ofAssumption 1 for n = 5,6, . . . ,12. Presumably,
Assumption 1 holds for any integer n ≥ 5. Let

F x
n := OTOC∞(σx

1 , σ
x
i , σ

x
1 , σ

x
i ), F z

n := OTOC∞(σz
1, σ

z
i , σ

z
1, σ

z
i ). (3.52)

Note that the values of F x
n ,F

z
n are independent of i. We compute F x

n ,F
z
n using exact

diagonalization. The results are shown in the left panel of Fig. 3.1.
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Figure 3.1: Upper panel: Finite-size scaling of late-time OTOC F x
n (blue), F z

n
(red) for n = 5,6, . . . ,15. The lines are power-law fits 0.4493n−0.7966 (blue),
0.2538n−1.0472 (red) to the last few data points. Lower panel: Finite-size scal-
ing of the errors |F x

n −Gx
n | (blue), |F z

n −Gz
n | (red) for n = 5,6, . . . ,15. The lines are

power-law fits 1.9984n−1.9462 (blue), 0.1170n−1.8508 (red) to the last few data points.
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The leading terms in the finite-size scaling of F x
n ,F

z
n are calculated analytically from

Eq. (3.8):

Gx
n :=

14
15n
≈

0.9333
n

, Gz
n :=

40
189n

≈
0.2116

n
. (3.53)

We expect that the noticeable differences between Gx
n,G

z
n and the power-law fits

to F x
n ,F

z
n are due to finite-size effects. To justify this claim, we perform a scaling

analysis of the errors |F x
n −Gx

n |, |F z
n −Gz

n | in the right panel of Fig. 3.1. The numerics
suggest that the errors should vanish as Θ(n−2) in the thermodynamic limit n→∞.

3.6 Conclusions and Discussions
We propose that in order to better approximate the late-time behavior of chaotic
dynamics generated by a time-independent Hamiltonian, one needs to take into
account energy conservation. In particular, we show that approximation schemes
with andwithout energy conservationmake different predictions about OTOC at late
times: without energy conservation, late-time OTOC scales inverse exponentially
with system size; with energy conservation, the scaling is inverse polynomial. The
latter prediction has been rigorously confirmed based on two very mild assumptions
and is consistent with numerical simulations of a nonintegrable spin chain.

An immediate open question is how good the energy-preserving approximation
scheme proposed in this paper is in predicting the late-time behavior of higher-order
time-ordered or out-of-time-ordered correlators. A more general problem for future
study is how to approximate the time evolution process and capture other universal
features of chaotic dynamics. See Refs. [75, 76, 111, 112] for recent progress in
this direction.
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C h a p t e r 4

INFORMATION SCRAMBLING IN CHAOTIC SYSTEMS WITH
DISSIPATION

Chaos happens not just in classical systems, but in quantum systems as well [79,
113–119]. One characteristic signature of quantum chaos is the scrambling of
quantum information which can be quantitatively described by the out-of-time-
ordered correlator (OTOC) [34–63]. More specifically, suppose that information is
encoded initially in a local operator A. Under the dynamics generated by a local
Hamiltonian H =

∑
i hi, A(t) = eiHt Ae−iHt grows in size and becomes non-local

as t increases. As A grows in size, it starts to overlap with local operators B at
other spatial locations and ceases to commute with them. The effect of information
scrambling is then manifested as the growth in the norm of the commutator [A(t),B].
Correspondingly, it is also manifested as the decay of (the real part of) the OTOC
〈A†(t)B†A(t)B〉β which is related to the commutator as

< 〈A†(t)B†A(t)B〉β = 1 −
1
2
〈[A(t),B]†[A(t),B]〉β, (4.1)

where local operators A,B are both unitary, 〈·〉β represents the thermal average at
the inverse temperature β = 1/T , and< denotes the real part.

In a chaotic system, the decay of OTOC is usually expected to exhibit the following
features: First, after time evolution for a very long time, information initially encoded
in A becomes highly nonlocal and cannot be accessed with any individual local
operator B. Therefore, all OTOCs at infinite temperature β = 0 decay to zero at late
time [40, 43, 49, 51]

lim
t→∞
< 〈A†(t)B†A(t)B〉β=0 = 0, (4.2)

where the local operators A and B are traceless.

Secondly, in chaotic zero-dimensional systems, the OTOC starts to decay at early
time in an exponential way [43]

< 〈A†(t)B†A(t)B〉β = f1 −
f2
n

eλL t +O
(

1
n2

)
, (4.3)

where the constants f1, f2 depend on the choice of operators A,B, and n is the total
number of degrees of freedom. The exponent of the exponential – the Lyapunov
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exponent – characterizes how chaotic the quantum dynamics is. It is bounded by
λL ≤

2π
β [42–45] and is expected to be saturated by quantum systems corresponding

to black holes.

Thirdly, in a system with spatial locality, information spreads at a certain speed,
giving rise to a delay time before OTOC starts to decay. In some simple cases
[42, 43, 47, 120, 121], the early-time behavior of OTOC is approximately described
by

f ′1 − f ′2eλL(t−dBA/vB) + higher-order terms (4.4)

with f ′1, f ′2 that depend on A,B and the local degrees of freedom. dBA is the distance
between the local operators A and B. The higher-order terms can be described
by O( 1

n2 ) in large-n systems [42] or O(e−2λLdBA/vB) in spin systems [43]. That is,
information spreads with a finite velocity vB – the butterfly velocity – and forms
a ‘light cone’ [41–43]. In general quantum chaotic spin systems with small local
Hilbert space dimensions and short-range interactions, like random circuit models
[70–76], the wave front of the light cone becomes wider while propagating out and
Refs. [77, 78] give an in-depth study of the general form of the early time decay of
OTOC. The deep connection between OTOC and quantum chaos generated a lot of
interest in the topic, both theoretically and experimentally. Several protocols have
been proposed to measure these unconventional correlators in real experimental
systems [85–87, 122–129].

The measurement of OTOC in real experimental systems is complicated by the fact
that the system is not exactly closed and suffers from dissipation through coupling
to the environment. How does dissipation affect the measured signal of OTOC?
More generally, we can ask how does dissipation affect information scrambling in
a chaotic system? Dissipation leads to leakage of information, and therefore it is
natural to expect that any signal of information scrambling would decay. Is it then
possible to recover the signatures of information scrambling in a dissipative system
and observe the existence of a light cone?

To address these questions, we numerically study a prototypical model of chaotic
spin chain [37, 41, 43, 110] – the Ising model with both transverse and longitudinal
fields – in the presence of some common types of dissipation: amplitude damping,
phase damping and phase depolarizing. Due to the lack of a “small parameter”
as explained in Ref. [78], there is no well-defined Lyapunov exponent in this
system. Thus, we focus on the structural changes of the light cone, which manifests
information scrambling.
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The Hamiltonian of the system with open boundary condition is

Hs = −J
[ N−1∑

i=1
σz

i σ
z
i+1 +

N∑
i=1
(hxσ

x
i + hzσ

z
i )

]
, (4.5)

where N is the number of spins, and we choose the parameters to be J = 1,
hx = −1.05, and hz = 0.5. This model, far from any integrability limits [110], is
believed to have chaotic dynamics. We find that if OTOC is measured using the
protocol given in Ref. [85], dissipation leads to the decay of the signal not only due
to information leaking into the environment, but also information re-structuring.
We define a corrected OTOC to remove the effect of leaking, so that the light cone
can be recovered to some extent. However, due to the re-structuring, the recovered
light cone only persists to a finite distance.

The paper is organized as follows. In Sec. 4.1, we review the dynamics of dissipa-
tive systems and define a dissipative version of OTOC based on the measurement
protocol given in Ref. [85]. In Sec. 4.2, after observing the fast overall decay of
the dissipative OTOC, we define a corrected OTOC to remove the effect of overall
information leaking in the hope of recovering the information light cone. However,
we see that the corrected light cone still only persists for a finite distance. In Sec. 4.3,
we point out that the corrected light cone is finite due to information re-structuring
and investigate the relationship between the width of the partially recovered light
cone and the strength of dissipation. In Sec. 4.4, we conjecture a modified Lieb-
Robinson bound for dissipative systems based on our observation regarding OTOC
in the previous sections.

4.1 Measurement of OTOC in dissipative systems
In this section, we provide a brief review of the dynamics of dissipative systems,
and then generalize the definition of OTOC to dissipative systems based on the
measurement protocol in Ref. [85].

A dissipative system is an open quantum system S coupled to its environment
E . In this coupled system, the total Hamiltonian is H = Hs + He + Hint , where
Hs(He) is the Hamiltonian of the system (environment) and Hint is the interaction
term. The reduced density matrix of the system S changes as a consequence of
its internal dynamics and the interaction with the environment E . In most cases,
the initial state is assumed to be a product state ρs(0) ⊗ ρe(0). Under the Born,
Markov and secular approximations, the dynamical evolution of a dissipative system
ρs(t) = tre[e−iHtρs(0) ⊗ ρe(0)eiHt] = V(t) · ρs(0) can be described by the Lindblad
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master equation [130]

dρs(t)
dt

= L · ρs(t) = −i[Hs, ρs(t)]+∑
k

Γ

2

(
2Lk ρs(t)L

†

k − ρs(t)L
†

k Lk − L†k Lk ρs(t)
)
, (4.6)

whereV(t) is the dynamical map that connects ρs(0) to ρs(t), L is the Liouvillian
super-operator, the first commutator with Hs represents the unitary dynamics, the
dissipation rate Γ is a positive number, and the Lindblad operators Lk describe the
dissipation. Some common types of dissipation [130, 131] act locally on each spin
via the Lindblad operators in three different scenarios:

amplitude damping: Lk =

√
1
2
(σx

k − iσy

k ), (4.7)

phase damping: Lk =

√
1
2
σz

k , (4.8)

phase depolarizing: Lk =
1
2
σx

k ,
1
2
σ

y

k ,
1
2
σz

k , (4.9)

where k denotes the k-th spin. Different pre-factors are selected to ensure that the
Liouvillian super-operator at site k has the same largest nonzero eigenvalue −Γ in
different dissipative channels.

In the Heisenberg picture, the adjoint dynamical mapV†(t) acting on the Hermitian
operators is defined by tr[O(V(t) · ρs)] = tr[(V†(t) · O)ρs] for all states ρs. If
the Lindblad operators do not depend on time, then the adjoint master equation
describing the evolution of the operator OH(t) = V†(t) · O is [130]

dOH(t)
dt

= L† · OH(t) = i[Hs,OH(t)]+∑
k

Γ

2

(
2L†kOH(t)Lk −OH(t)L

†

k Lk − L†k LkOH(t)
)
, (4.10)

where L† is the adjoint Liouvillian super-operator.

Given both the dynamical and the adjoint dynamical map, how should we define
the OTOC in a dissipative system? Should we just replace A(t) with V†(t) · A

or do something more complicated? In order to give a meaningful answer to this
question, we need to specialize to a particular measurement scheme of OTOC and
see how the measured quantity changes due to dissipation. We choose to focus on
the measurement scheme given in Ref. [85].
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Let us analyze in more detail how the measurement scheme would be affected if
dissipation is present. Without dissipation, the protocol involves the system whose
unitary dynamics generated by Hs is to be probed and a control qubit c. The
system is initialized in a thermal state ρs or eigenstate |ψ〉s and the control qubit is
initialized in state |+〉c = 1√

2
(|0〉c + |1〉c). Ignoring dissipation, the measurement

scheme involves the following steps of unitary operations:

(1) : U1 = Is ⊗ |0〉〈0|c + Bs ⊗ |1〉〈1|c,

(2) : U2 = e−itHs ⊗ Ic

(3) : U3 = As ⊗ Ic,

(4) : U4 = eitHs ⊗ Ic,

(5) : U5 = Bs ⊗ |0〉〈0|c + Is ⊗ |1〉〈1|c,

where As and Bs are both local unitary operators in the system. Finally, measurement
of σx

c is performed to get the real part of OTOC. A nice property of this protocol
is that it works for both pure states and mixed states, which allows straightforward
generalization to open systems.

Note that the above protocol involves both forward and backward time evolution.
With dissipation, we assume that only the Hamiltonian of the system is reversed
during the backward time evolutionwhile the effect of the environment is unchanged.
The reason is that He and Hint are usually out of control in experiments. Under this
setup, if forward time evolution is governed by H f = Hs +He +Hint , then backward
time evolution is governed by Hb = −Hs+He+Hint . Correspondingly, the backward
dynamical map Vb and adjoint dynamical map V†b differ from the forward ones
Vf = V,V†f = V

† by a minus sign in front of Hs.

This setup is different from the naive time reversal described by H′b = −H f =

−(Hs +He+Hint). Under the setup of naive time reverse, if the dynamics of the total
system is believed to be chaotic, then the expectation is that OTOCs F(t, As,Bs) of
local operators in subsystem s have the capability to detect the ballistic butterfly
light cone. Reference [76] confirms this expectation via investigating the OTOCs
of local operators in subsystem s in the random circuit model of composite spins.

In the presence of dissipation, and assuming that the dissipative part of the dynamics
cannot be naively reversed, the full protocol now proceeds as follows. Initially the
system is prepared with density matrix ρs(0). In addition, a control qubit c is
initialized in the state |+〉c = 1√

2
(|0〉c + |1〉c). The total initial state is ρinit =
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ρs(0) ⊗ |+〉〈+|c. The final state is ρ f after sequentially applying the following
super-operators

(1) : S1 = C(Is ⊗ |0〉〈0|c + Bs ⊗ |1〉〈1|c),

(2) : S2 = Vf (t) ⊗ Ic,

(3) : S3 = C(As ⊗ Ic),

(4) : S4 = Vb(t) ⊗ Ic,

(5) : S5 = C(Bs ⊗ |0〉〈0|c + Is ⊗ |1〉〈1|c),

ρ f = S5 · S4 · S3 · S2 · S1 · ρinit, (4.11)

where I is the identity super-operator, and the conjugation super-operator is defined
by C(U) · ρ = UρU†. Finally, we perform the measurement σx

c to get the real part
of OTOC

F(t, A,B) := tr(σx
c ρ f )

= < tr
((
V
†

b (t) · B
†
s

)
As

(
Vf (t) ·

(
Bsρs(0)

) )
A†s

)
. (4.12)

In this paper, we focus on the case where the initial state of the system is prepared
in the equilibrium state at infinite temperature, i.e. ρs(0) = Is/2N and the unitary
operators As and Bs are selected as local Pauli operators, for example, Bs = σ

z
1, As =

σz
i .

4.2 Dissipative OTOC corrected for overall decay
In this section, we observe that the information light cone disappears due to the fast
overall decay of OTOC in dissipative systems. In order to recover the light cone
as much as possible, we propose a corrected OTOC to remove the effect of overall
decay due to the information leaking in dissipative systems.

In a quantum systemwithout dissipation, theOTOCF(t, A,B) = <〈A†B†b(t)ABb(t)〉β=0

has the same capability to reveal the light cones with different time scaling as the op-
erator norm of the commutator [B†b(t), A

†] in the Lieb-Robinson bound [41, 42, 55],
where B†b(t) is the operator eitHb B†e−itHb = e−itHs B†eitHs in the Heisenberg pic-
ture. When t < dBA/vB, the support of B†b(t) and A† are approximately disjoint, so
F(t, A,B) is almost equal to 1, where dBA is the distance between the local operators
A and B and vB is the butterfly velocity. The OTOC begins to decay [40–44] when
the support of B†b(t) grows to A†. Furthermore, in chaotic systems, OTOC decays to
zero at late time in the thermodynamic limit [40, 43, 49, 51]. As shown in the upper
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left panel of FIG. (4.1), the OTOC F(t, A,B) is able to reveal the ballistic light cone
of information scrambling.
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Figure 4.1: OTOC F(t, σz
i , σ

z
1 ) in the chaotic Ising chain (4.5) with no dissipation

(upper left), amplitude damping (upper right), phase damping (lower left), and phase
depolarizing (lower right). The dissipation rate is Γ = 0.1 in these three dissipative
channels.

In the presence of dissipation, information is leaking into the environment while
being scrambled. Thus V†b (t) · B† and the OTOC begin to decay when t > 0.
Intuitively, dissipation destroys the light cone revealed by the OTOC F(t, A,B)

because the OTOC decays to zero in a short time which is independent of the spatial
distance between local operators A and B. In FIG. (4.1), our numerical calculations
confirm that the light cone is destroyed. The OTOC F(t, σz

i , σ
z
1 ) decays to zero for

all i approximately when t > 4/J.

In dissipative systems, there are two factors leading to the decay of F(t, A,B): (i)
the decay ofV†b (t) · B

† related to the information leaking caused by dissipation, and
(ii) the non-commutativity between V†b (t) · B

† and A†. Information scrambling is
manifested only in (ii), but it might be overshadowed by (i). Is it possible to remove
the effect of information leaking and recover the destroyed light cone? One natural
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idea is to divide the OTOC F(t, A,B) by a factor representing the decay related to
information leaking. The identity operator I commutes with arbitrary operator, and
therefore F(t, I,B) is a factor representing the overall decay of quantum information
due to leaking only. Therefore, we propose a corrected OTOC to detect the light
cone

F(t, A,B)
F(t, I,B)

. (4.13)

The numerical results in FIG. (4.2) show that the corrected OTOC is able to recover
the information light cone to some extent in small systems (N = 12), with either the
dissipation of amplitude damping, phase damping, or phase depolarizing.
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Figure 4.2: Corrected OTOC F(t, σz
i , σ

z
1 )/F(t, I, σ

z
1 ) in the chaotic Ising chain (4.5)

with no dissipation (upper left), amplitude damping (upper right), phase damping
(lower left), and phase depolarizing (lower right). The dissipation rate is Γ = 0.1 in
these three dissipative channels.

For small dissipation rate, does the corrected OTOC have the capability to recover
the destroyed light cone in the thermodynamic limit? The answer is no. Due to the
limited computational resources, we simulate a relatively large systemwith 24 spins.
FIG. (4.3) shows that the boundary of the light cone revealed by the corrected OTOC
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gradually disappears in space. Based on this result, we expect that the corrected
OTOC only has a finite extent in the thermodynamic limit.

Here, let us briefly talk about the numerical methods we used. When N = 12,
quantum toolbox in Python [132, 133] is used to numerically solve the master and
adjoint master differential equations [Eqs. (4.6) and (4.10)]. When N = 24, our
numerical simulations are based on the time-evolving block decimation (TEBD)
algorithm after mapping matrix product operators to matrix product states [134–
136], which is able to efficiently simulate the evolution of operators or mixed states.
In the singular value decomposition, we ignore the singular values sk if sk/s1 < 10−8,
where s1 is the maximal one. The bond dimension is enforced as χ ≤ 500. Due to
the presence of dissipation, the entanglement growth in the matrix product operator
is bounded. Therefore, the OTOC can be efficiently calculated using the TEBD
algorithm.
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Figure 4.3: Corrected OTOC F(t, σz
i , σ

z
1 )/F(t, I, σ

z
1 ) recovers some part of the light

cone in the channel of phase depolarizing with dissipation rate Γ = 0.1 and system
size N = 24.

4.3 The width of the partially recovered light cone
The finite extent of the light cone revealed by the corrected OTOC indicates that,
besides the overall decay of quantum information, dissipation also leads to structural
changes in the scrambled information. In this section, we are going to give a
qualitative argument as to why and how the structural change happens.
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In particular, we find that the re-structuring happens at late time in two aspects: (i)
few-body terms dominate when compared with many-body terms, and (ii) at fixed
time, the weight of few-body terms decays in space.

Let us define the few-body and many-body terms, and their weights. Consider the
operator B†b(t) = V

†

b (t) · B
† which can be written in the basis of products of Pauli

matrices as

B†b(t) =
∑

S

bS(t)S =
∑

i1i2···iN

bi1i2···(t)σ
i1
1 σ

i2
2 · · ·σ

iN
N , (4.14)

where the Pauli string S is a product of Pauli matrices σi1
1 σ

i2
2 · · ·σ

iN
N with ik = 0, x, y,

or z. In the above decomposition, a few-body (many-body) term is a Pauli string with
few (many) non-trivial Pauli matrices. |bS(t)|2/

∑
S′ |bS′(t)|2 represents the weight

of the Pauli string S.

Our qualitative arguments are mainly based on the Suzuki-Trotter expansion of the
adjoint propagator in the infinitesimal time steps

B†b(t + τ) = V
†

b (τ) · B
†

b(t) ≈ eL
†

Dτ · (B†b(t) − iτ[Hs,B
†

b(t)]), (4.15)

where L†D is the adjoint super-operator of the dissipation and τ is the infinitesimal
time interval. Based on this expression, we are able to qualitatively discuss the
operator spreading in the space of operators during the time evolution.

The nearest-neighbor interactions in Hs lead to operator growth in space. If there is
no dissipation, every term inside the light cone is expected to have approximately
equal weight at late time [51], so F(t, A,B) is approximately equal to zero inside the
light cone.

Intuitively, dissipation leads to operator decay. Many-body terms decay at a higher
rate than few-body terms, so few-body terms dominate at late time in dissipative sys-
tems. In the channel of phase depolarization, eL

†

Dτ · σki = e−Γτσki (ki = x, y, z). In
one step of evolution, the decaying factors of one-body, two-body and m-body terms
are respectively e−Γτ, e−2Γτ, and e−mΓτ. Many-body terms decay faster than few-
body terms. Amplitude and phase damping channels have similar behaviors. In the
dominating few-body terms, firstly we need to consider one-body terms. Secondly,
the nearest-neighbor two-body terms cannot be ignored because the nearest-neighbor
interactions in Hs [Eq. (4.15)] transform one-body operators into nearest-neighbor
two-body operators. Our simulations support these qualitative arguments. FIG.
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Figure 4.4: Color plot of the weights of few-body terms in the chaotic Ising chain
(4.5) with N = 12 spins and dissipation rate Γ = 0.1. Dashed (dotted) line denotes
the total weight of one-body (nearest-neighbor two-body) terms in the operator
V
†

b (t) · σ
z
1 , while the solid line is the sum of dotted and dashed lines. Black, blue,

and red lines are the results for dissipative channels of amplitude damping, phase
damping, and phase depolarizing, respectively.

(4.4) shows that the sum of the weights of one-body and nearest-neighbor two-body
terms approximately exceeds 90% at late time in the dissipative channels.

Moreover, because of dissipation, the weight of few-body terms decays in space at
the same time. In the time-evolved operatorV†b (t) ·σ

z
1 , few-body terms on the right

are sequentially generated from the ones on the left. For example, one-body term
σki+1

i+1 is generated via the path σki
i → σ

k ′i
i σ

k ′
i+1

i+1 → σki+1
i+1 , where ki, k′i, k

′
i+1, ki+1 are

non-trivial indicies x, y or z. Considering the generating paths and the different de-
caying rate of few-body terms, we find that extra spatial decaying factor exists when
comparing the coefficients of σki+1

i+1 and σki
i . Spacial decaying factors accumulate

during the scrambling of information, so the weight of few-body terms decays in
space at the same time. In FIG. (4.3), the corrected OTOC F(t, σz

i , σ
z
1 )/F(t, I, σ

z
1 )

approaches 1 from left to right at late time t. In the channel of phase depolarizing,
(1− F(t, σz

i , σ
z
1 )/F(t, I, σ

z
1 )) is proportional to the weight of few-body terms Si near

site i at late time, i.e. |bSi (t)|
2/

∑
S′ |bS′(t)|2. Thus the numerical result confirms that
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the weight of few-body terms decays in space at the same time.

Besides the qualitative discussions, we are going to quantitatively study the relation-
ship between the width d(Γ) of the partially recovered light cone and the dissipation
rate Γ. Appendix B provides a lower bound

√
εavLR/Γ, where a is the distance

between two nearest neighbor sites, vLR is the Lieb-Robinson velocity and ε is a
small number. This inequality is shown to be satisfied for the width of the light
cone revealed by the corrected OTOC in the channel of phase damping or phase
depolarizing. In general, we expect that d(Γ) obeys a power law c/Γα when the
dissipation rate Γ is sufficiently small.

Now, we discuss how to find the width d(Γ) of the partially recovered light cone
in the numerical calculations. Our criterion is that if the difference of corrected
OTOCs at (t1 = (dBA−w/2)/vB, dBA) and (t2 = (dBA+w/2)/vB, dBA) (see FIG. 4.3)
is less than a threshhold value δ, for example 0.1, then it is impossible to recognize
the boundary of the light cone and we identify the smallest such dBA as the width of
the recovered light cone. Here w is the width of the boundary of the light cone in
the system without dissipation and vB is the corresponding butterfly velocity.
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Figure 4.5: The log-log plot of d(Γ) and Γ.

Our numerical simulation supports that d(Γ) obeys a power law c/Γα. In FIG.
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(4.5), our fitting results are: α2 ≈ 0.45, α3 ≈ 0.44 when 0.05 ≤ Γ ≤ 0.1, and
α2 ≈ 0.43, α3 ≈ 0.40 when 0.1 ≤ Γ ≤ 0.16, where the subscripts 2,3 represent the
channels of phase damping and phase depolarizing respectively. If Γ is sufficiently
small, the power-law value c/Γα is expected to be greater than or equal to the lower
bound

√
εavLR/Γ. This implies that α should be greater than or equal to 0.5. Here

in our simulation, α2 and α3 are smaller than 0.5. The reason is that the dissipation
rates in the range of [0.05,0.1] are not small enough. Theoretically, the derivations
in Appendix B give the condition of sufficiently small Γ via comparing

√
εavLR/Γ

with ξ. Γ is sufficiently small if it is much less than εavLR/ξ
2. In this chaotic Ising

model, after selecting ε ∼ 0.1, and estimating the parameters vLR ∼ 2Ja, ξ ∼ a,
then we obtain that Γ � 0.1 is sufficiently small. Therefore, our numerical result
does not contradict the lower bound proved in Appendix B. Numerically, we see that
α decreases when the range of Γ increases.

Even though amplitude damping has different properties when compared with phase
damping and phase depolarizing, we numerically verify that d(Γ) still scales as a
power law of the dissipation rate Γ. In the channel of amplitude damping, the
corrected OTOC depends onV†b (t) andVf (t) which have different properties. The
identity is a fixed point of V†b (t) while Vf (t) is trace-preserving. The proof in

Appendix B does not apply to amplitude damping, thus the lower bound
√

εavLR
Γ

does not work for the corrected OTOC in this channel. In the numerical simulation,
we confirm that the general expectation of power-law decay is still correct. FIG.
(4.6) shows that d(Γ) scales as a power law of Γ with the power α1 ≈ 0.31 when
0.05 ≤ Γ ≤ 0.1, where the subscript 1 represents the channel of amplitude damping.

4.4 Lieb-Robinson bound in dissipative systems
Now we would like to discuss the Lieb-Robinson bound and its connections with
OTOC in open quantum systems. Based on the observation of corrected OTOC, we
conjecture a tighter Lieb-Robinson bound for dissipative systems.

The Lieb-Robinson inequality provides an upper bound for the speed of information
propagation in quantum systems with local interactions. Let us briefly review the
Lieb-Robinson bound.

Two observers, Alice and Bob, have access to the quantum system. The system
is initially in the state ρ(0) and its dynamics is governed by the dynamical map
Vb(t) related to the Hamiltonian Hb = −Hs + He + Hint . The sender Alice has
the option to perform some local actions in her region. After some time t, the
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Figure 4.6: The log-log plot of d(Γ) and Γ.

receiver Bob performs some measurements to detect the signal. No signal is sent
to Bob if Alice does nothing. In order to send a signal, Alice performs a small
local unitary perturbation UA = e−iεOA in her region, which maps the state ρs(0) to
ρ′s(0) = UAρs(0)U†A ≈ ρs(0)− iε[OA, ρs(0)], where OA is a local Hermitian operator.
At time t, Bob makes a measurement described by the local Hermitian operator OB.
The difference of outcomes describing the capability to detect the signal is���tr (

OBVb(t) ·
(
ρ′s(0) − ρs(0)

) )���
= ε | tr(ρs(0)[V†b (t) · OB,OA])|

≤ ε ‖ [V†b (t) · OB,OA] ‖, (4.16)

where the operator norm is defined by ‖O‖ = sup|ψ〉 ‖O |ψ〉‖/‖|ψ〉‖. Following the
Lieb-Robinson bound in closed systems [67–69], an inequality has been proved in
open quantum systems [137–142]

‖ [V
†

b (t) · OB,OA] ‖ ≤ c ‖OA‖ · ‖OB‖ e−
dBA−vLRt

ξ , (4.17)

where c, ξ are some constants, vLR is the Lieb-Robinson velocity, and dBA is the
distance between the local operators OA and OB. The Lieb-Robinson velocity vLR

is an upper bound for the speed of information propagation, so it is greater than or
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Figure 4.7: The operator norm of the commutator ‖ [V†b (t) · σ
z
1, σ

z
i ] ‖ in the chaotic

Ising chain (4.5) with no dissipation (upper left), amplitude damping (upper right),
phase damping (lower left), and phase depolarizing (lower right). The dissipation
rate is Γ = 0.2 in these three dissipative channels.

equal to the butterfly velocity vB at β = 0 in Eq. (4.4) [41]. Refs. [42, 43, 52, 53]
provide more discussions about the relationship between vB and vLR.

In dissipative systems, the left-hand side of Eq. (4.17) decays to zero at late time,
so Eq. (4.17) is not tight enough. One reason is that the operator V†b (t) · OB in
the Heisenberg picture is overall decaying because of the dissipation. Ref. [139]
has proved that the operator norm of V†b (t) · OB is non-increasing because of the
dissipation, i.e. ‖V†b (t + dt) · OB‖ ≤ ‖V

†

b (t) · OB‖, where dt is an infinitesimal
time step. This means that the non-trivial elements in the time-evolved operator are
decaying during the time evolution. Our numerical simulations (FIG. 4.7) show that
the left-hand side of Eq. (4.17) decays to zero at late time, and the boundary of the
light cone gradually disappears when the distance dBA increases.

Inspired by the corrected OTOC, we conjecture a tighter Lieb-Robinson bound in
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Figure 4.8: The corrected operator norm of the commutator ‖ [V†b (t) ·
σz

1, σ
z
i ] ‖/‖ V

†

b (t) · σ
z
1 ‖ in the chaotic Ising chain (4.5) with no dissipation (up-

per left), amplitude damping (upper right), phase damping (lower left), and phase
depolarizing (lower right). The dissipation rate is Γ = 0.2 in these three dissipative
channels.

dissipative systems

‖ [V
†

b (t) · OB,OA] ‖

‖OA‖ · ‖V
†

b (t) · OB‖
≤ c e−

dAB−vLRt

ξ , (4.18)

The above tighter bound has deep connections with the corrected OTOC. In the
channel of phase damping or phase depolarizing, the adjoint dynamical mapV†b (t)

is exactly equal to Vf (t). Then 2
(
1 − F(t,OA,OB)

F(t,I,OB)

)
=
‖ [V

†

b
(t)·OB,OA] ‖

2
F

‖V
†

b
(t)·OB ‖

2
F

holds when

the observables are also unitary, where ‖O‖F =
√

tr(OO†)/2N is the normalized
Frobenius norm of the operator O. We expect that the normalized Frobenius and
operator norms exhibit similar behaviors during the time evolution. Based on
this expectation, Eq. (4.18) is conjectured in dissipative systems via changing the
normalized Frobenius norm to the operator norm. Similar to the corrected OTOC,
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channels (N = 12,Γ = 0.2).

the left-hand side of the above modified version of the Lieb-Robinson bound is
able to partially recover the destroyed light cone in the chaotic Ising chain with
dissipation (see FIG. 4.8).

In the above tighter Lieb-Robinson bound, the correcting factor 1/‖V†b (t) ·OB‖ has
different behaviors in different dissipative channels. ‖V†b (t) · OB‖ decays to zero
in the channel of phase damping or phase depolarizing, but converges to a positive
constant in the channel of amplitude damping (see FIG. 4.9). In the channel of
amplitude damping, the adjoint dynamical map V†b (t) does not preserve the trace
of an operator, the identity operator I appears in the decomposition of V†b (t) · OB

in terms of Pauli operators when OB is traceless. Therefore, the operator norm of
V
†

b (t) · OB converges to a constant. This can also be observed in the upper right
panel of FIG. (4.8) which is distinct from the lower ones. The operator norm of
the commutator is decaying to zero while the denominator converges to a positive
constant when t > 7/J. In the channel of amplitude damping, the correcting factor
1/‖V†b (t) ·OB‖ does not play an essential role to remove the effect of overall decay
due to the information leaking.
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4.5 Conclusion and discussion
In this paper, we study the effect of dissipation on information scrambling in open
chaotic systems. By numerically calculating the measured OTOC signal in a chaotic
spin chain in the presence of common types of dissipation, we find that dissipation
leads to the decay of the signal not only due to information leaking, but also
information re-structuring. We define a corrected OTOC to remove the effect of
leaking and partially recover the information light cone. However, due to the re-
structuring, the recovered light cone only persists to a finite distance. Based on this
understanding of how dissipation affects information scrambling, we conjecture a
tighter version of the Lieb-Robinson bound in open systems, which we support with
numerical simulation.

As our study focuses on the overall shape of the light cone in OTOC and how it
changes with dissipation, we do not expect the result to depend on model parameters
either. The existence of a linear light cone shows up in both integrable and non-
integrable systems [143]. For example, Ref. [63] studied the OTOC in an integrable
Ising chain and found a linear shaped light cone just like in the random circuit
model case [73, 74]. Some details of the light cone might differ, for example, the
broadening of the wave front or the late time value of the OTOC. But if we focus
on the shape of the light cone, there is no intrinsic difference between the integrable
and the non-integrable case.

Given the observation we made in this paper, several open questions would be
interesting to explore in futurework. First, we qualitatively discussed the information
re-structuring during scrambling. A more accurate estimation of the size of the
light cone may be obtained by carefully modeling the dynamics as dissipative
quantum walks. Secondly, although we were able to partially recover the light cone
numerically, this is not practical experimentally, as the normalization factor we
divide out in Eq. (4.13) decays exponentially in time and quickly becomes too small
to be accessible experimentally. Is there a better way to see information scrambling
in the presence of dissipation? Are there quantities which are also sensitive to
information scrambling as OTOC, but more robust to the effect of dissipation? This
is an important question to be addressed in future work. Finally, we conjectured
the modified version of open system Lieb-Robinson bound based on numerical
observation. It would be nice to see if this bound can be analytically proved.

Recently, we learned of the work by Swingle and Yunger Halpern [144] which also
studies the problem of extracting OTOCs’ early-time dynamics in the presence of



53

error and decoherence.
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C h a p t e r 5

ASYMMETRIC INFORMATION SCRAMBLING IN 2-LOCAL
HAMILTONIANS

Understanding the quantum dynamics of thermalization in isolated many-body sys-
tems is a topic of central interest. While memory of a system’s initial conditions is
always preserved under unitary dynamics, this information can get “scrambled" and
become inaccessible to local measurements, thereby enabling local subsystems to
reach thermal equilibrium [4–6, 18]. This scrambling can be quantified by studying
the spatial spreading of initially local operators under Heisenberg time evolution.
Under dynamics governed by a local time-independent Hamiltonian H, an initially
local operator near the origin, A0, evolves into A0(t) = eiHt A0e−iHt . As A0(t)

spreads in space, it starts to overlap with local operators Bx at spatially separated
locations x. The effect of scrambling is thus manifested in the non-commutation
between A0(t) and Bx , which can be quantified via an out-of-time-ordered correlator
(OTOC): [34–61, 80, 85–87, 100, 122–129, 144–151]

C(x, t) = <〈A†0(t)B
†
x A0(t)Bx〉

= 1 −
1
2
〈[A0(t),Bx]

†[A0(t),Bx]〉, (5.1)

where A0,Bx are local unitary operators,< represents the real part, and the expec-
tation value 〈〉 is with respect to the infinite temperature thermal ensemble.

The OTOC is expected to exhibit the following features in systems with scrambling
dynamics [10, 35, 36, 40, 47, 64, 70–78, 81, 110, 145, 147, 152, 153]: At early times,
A0(t) approximately commutes with Bx and the OTOC is nearly equal to one. At late
times, A0(t) becomes highly non-local and spreads across the entire system, and the
OTOC decays to zero [40, 43, 49, 51]. At intermediate times, the operator has most
of its support within a region around the origin defined by left and right operator
“fronts” that propagate outwards, and generically also broaden in time [73, 74]. As
the operator front approaches and passes x, the OTOC C(x, t) decays from nearly
one to zero. We will restrict ourselves to translationally invariant systems where
operators spread ballistically with a butterfly speed vB, which is similar in spirit to
the Lieb-Robinson speed [67] characterizing the speed of information propagation.
In these cases, the operator fronts define a “light-cone” within which the OTOC is
nearly zero.
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A set of recent papers illustrated that the butterfly velocity can depend on the di-
rection of information spreading [154, 155]. In one dimension, the asymmetry
between the different directions can be quantified by the butterfly speeds vr

B and
vl

B, where the superscript r (l) represent propagation directions to the right (left).
While Ref. [154] showed how this asymmetry could be induced by anyonic par-
ticle statistics, Ref. [155] constructed models of asymmetric unitary circuits, and
Hamiltonians inspired from such circuits.

In this work [156], we present a complementary and physically transparent way for
constructing a family of Hamiltonians with asymmetric information propagation.
Our construction does not rely on particle statistics, nor is it inspired by unitary
circuits. Instead, we start with non-interacting integrable spin 1/2 models where the
butterfly speed is related to quasiparticle propagation velocities and can be analyt-
ically calculated [63, 77, 78, 143]. We show how the butterfly speed can be made
asymmetric in such models, before generalizing to non-integrable Hamiltonians by
adding interactions.

5.1 Integrable Hamiltonians
In this section, we construct time-independent integrable Hamiltonians for spin 1/2
degrees of freedom living on an infinite one dimensional lattice. The Hamiltonians
only have local terms acting on 2 spins at a time. These models are exactly solvable,
so the butterfly velocities can be analytically calculated, and demonstrated to be
asymmetric. This family of Hamiltonians parameterized by λ takes the form:

Hλ = −
J(1 − λ)

2

∑
j

[
hyzσ

y
j σ

z
j+1 + hzyσ

z
jσ

y
j+1

]
−Jλ

2

∑
j

[
hzzσ

z
jσ

z
j+1 + hxσ

x
j

]
, (5.2)

whereσx
j , σ

y
j , σ

z
j are the Pauli spin 1/2 operators located at site j, J > 0, hzz, hx, hyz, hzy

are constants, and the parameter λ lies in the range [0,1]. This model can be mapped
to a system of free fermions via a Jordan-Wigner representation. When λ = 1, the
Hamiltonian is the well-known transverse Ising model with inversion symmetry
about the center of the chain. On the other hand, for λ < 1, the Hamiltonian does
not have inversion symmetry when hyz , hzy.

In order to detect the ballistic light cone and asymmetric butterfly velocities, we
consider the OTOCs

Cµν( j, t) = <〈σ
µ
0 (t)σ

ν
j σ

µ
0 (t)σ

ν
j 〉β=0, (5.3)
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where µ, ν ∈ {x, y, z} and β = 0 represents the infinite temperature thermal state.
We note that the mapping to free fermions allows Pauli operators to be written in
terms of Majorana fermion operators which, in turn, allows an exact calculation of
the OTOC (Appendix C). These OTOCs are shown in FIG. (5.1). For the case of
λ = 0, the right and left butterfly velocities are equal to each other despite the lack of
inversion symmetry (upper panel). For λ = 1, the Hamiltonian H1 is the well-known
Ising model and butterfly velocities are symmetric, as shown in the middle panel of
FIG. 5.1. By contrast, for the general case λ ∈ (0,1), the Hamiltonian does not have
inversion symmetry and the OTOCs show asymmetric butterfly velocities (lower
panel).

The asymmetry in butterfly speeds for 0 < λ < 1 can be directly understood using the
quasiparticle description of the free model. It is known that the butterfly speed in an
integrable model is the maximum quasiparticle group velocity [77, 78, 143], and the
operator fronts generically broaden either diffusively or sub-diffusively depending
on whether the integrable system is interacting or not [143].

The quasi-particle dispersion for the Hamiltonian in Eq. (5.2) is ελ,1(2)(q) = J
[
(1 −

λ)(hyz−hzy) sin q+ (−)
(
(1−λ)2(hyz+hzy)

2 sin2 q+λ2(h2
zz+h2

x−2hzzhx cos q)
)1/2

]
.

The butterfly speed to the right (left) is the magnitude of the maximal (minimal)
quasi-particle group velocity [77, 78, 143]

vr
B,λ = max

q

dελ,1(2)(q)
dq

, vl
B,λ = −min

q

dελ,1(2)(q)
dq

. (5.4)

These are plotted in FIG. (5.2), where asymmetric butterfly velocities are clearly
observed when λ is ∈ (0,1). For the special cases of λ = 0 and λ = 1, the right and
left butterfly speeds are the same

vr
B,0 = vl

B,0 = 2J max(|hyz |, |hzy |), (5.5)

vr
B,1 = vl

B,1 = J min(|hzz |, |hx |). (5.6)

The above results are consistent with the butterfly velocities demonstrated via the
out-of-time-ordered correlations shown in FIG. (5.1).

5.2 Non-integrable Hamiltonians
In this section, we construct a non-integrable Hamiltonian by adding longitudinal
fields to the free Hamiltonian Hλ [10, 110]. The asymmetric butterfly velocities are
estimated from a variety of measures including out-of-time-ordered correlations,
right/left weight of time-evolved operators, and operator entanglement.
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Figure 5.1: OTOCsCxz( j, t) (upper panel) andCxx( j, t) (lower panel) in theHamilto-
nian Hλ [Eq. (5.2)] with parameters hyz = 0.5, hzy = −0.25, hzz = 1.0, hx = −1.05,
and λ = 0 in the upper panel, λ = 1 in the middle panel, and λ = 0.5 in the lower
panel. The asymmetric light-cone is clear in the lower panel.

The interacting Hamiltonian on a one-dimensional lattice with open boundary con-
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Figure 5.2: Quasi-particle dispersion relations ελ,1(q) (upper panel) and asymmetric
butterfly speeds (right panel) for the Hamiltonian Hλ [Eq. (5.2)]. The parameters
used are hyz = 0.5, hzy = −0.25, hzz = 1.0, hx = −1.05. In the lower panel, the star
? denotes the place where the dispersion relation has maximal or minimal slope, and
the solid lines represent the slope. In the right panel, asymmetric butterfly speeds
are directly determined from the quasi-particle dispersion relations [Eq. (5.4)].

ditions is

H =
−J(1 − λ)

2

L−1∑
j=1

[
hyzσ

y
j σ

z
j+1 + hzyσ

z
jσ

y
j+1

]
+
−Jλ

2

[
hzz

L−1∑
j=1

σz
jσ

z
j+1 +

L∑
j=1

hxσ
x
j

]
−

J
2

[ L∑
j=1

hzσ
z
j

]
, (5.7)
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where L is the system size, and hz is a longitudinal field strength. We select the
particular parameters λ = 0.5, hyz = 0.5, hzy = −0.25, hzz = 1.0, hx = −1.05, hz =

0.5, although none of our results are fine tuned to this choice.

The longitudinal field breaks integrability and is expected to thermalize the system.
For non-integrable Hamiltonians with thermalizing dynamics, the level statistics is
consistent with the distribution of level spacings in random matrix ensembles [79].
Let E0 < · · · < En < En+1 < · · · be the sequence of ordered energy eigenvalues and
sn = (En+1 − En) be the level spacings. One defines the ratio of consecutive level
spacings rn = sn/sn−1, and the distribution of rn can be described by theWigner-like
surmises for non-integrable systems [13, 157]

pW (r) =
1

ZW

(r + r2)W

(1 + r + r2)1+3W/2 , (5.8)

where W = 1, Z1 = 8/27 for Gaussian Orthogonal Ensemble (GOE), and W =

2, Z2 = 4π/(81
√

3) forGaussianUnitary Ensemble (GUE), while they are Poissonian
for integrable systems. As shown in FIG. (5.3), the ratio distribution provides
evidence supporting the non-integrability of the Hamiltonian. When λ = 0.5,
the Hamiltonian is complex Hermitian, and its ratio distribution agrees with the
GaussianUnitary Ensemble (GUE).When λ = 1, theHamiltonian is real, symmetric
and has the inversion symmetry with respect to its center, and its level statistics in
the sector with even parity agrees with the Gaussian Orthogonal Ensemble (GOE)
[10, 110].

We now characterize the asymmetric spreading of quantum information in this
model using a variety of different diagnostics that were discussed in [155].

Asymmetric butterfly velocities from OTOCs
In this subsection, we estimate the asymmetric butterfly velocities from OTOCs.

As discussed earlier, as the time-evolved operator spreads ballistically, OTOCs
can detect the light cone and butterfly velocities. The saturated value of OTOCs
equals approximately one outside the ballistic light cone and zero inside it. Near
the boundary of the light cone, the OTOCs decay in a universal form C( j, t) =

1 − f e−c( j−vBt)α/tα−1 [77, 78], where c, f are constants, vB describes the speed of
operator spreading, and α controls the broadening of the operator fronts. In a generic
“strongly quantum” system (i.e. away from large N/ semiclassical/weak coupling
limits) the operator front shows broadening which corresponds to α > 1 so that the
OTOC is not a simple exponential in t [78].
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Figure 5.3: The histogram of the ratio of consecutive level spacings. It is computed
from 32768 all energy eigenvalues of the Hamiltonian [Eq. (5.7)] with parameters
λ = 0.5, hyz = 0.5, hzy = −0.25, hzz = 1.0, hx = −1.05, hz = 0.5, and length L = 15.

Nevertheless, the decay can still look exponential along rays j = vt in space-
time, C( j = vt, t) = 1 − f eλ(v)t , defining velocity-dependent Lyapunov exponents
(VDLEs) which look like λ(v) ∼ −c(v − vB)

α near vB [78]. The VDLEs provide
more information about the operator spreading than the butterfly velocities alone.
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Figure 5.4: OTOCsCxz( j, t) (left panel) andCxx( j, t) (right panel) in theHamiltonian
H [Eq. (5.7)] with parameters λ = 0.5, hyz = 0.5, hzy = −0.25, hzz = 1.0, hx =

−1.05, hz = 0.5, and length L = 41.

First, as shown in FIG. (5.4), we observe asymmetric butterfly velocities in rela-
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tively large systems with L = 41 spins. In our numerical calculations, we use the
time-evolving block decimation (TEBD) algorithm after mapping matrix product
operators to matrix product states [134–136], which is able to efficiently simulate
the evolution of operators in the Heisenberg picture. The OTOCs shown in FIG.
(5.4) clearly demonstrate asymmetric butterfly velocities.
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Figure 5.5: OTOCs in the Hamiltonian H [Eq. (5.7)] with parameters λ = 0.5, hyz =

0.5, hzy = −0.25, hzz = 1.0, hx = −1.05, hz = 0.5, and length L = 14. The upper
(lower) panel shows the left (right) propagating OTOCs along rays at different
velocities. Exponential decay can be observed which is consistent with the negative
VDLEs for large v.

Second, we estimate the asymmetric butterfly velocities from the extracted VDLEs
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λ(v) ∼ −c(v − vB)
α. Because of the limited computational resources for exact

diagonalization, the right and left butterfly velocities are measured by setting the
initial local operator at the boundary j = 1 and j = L, respectively. In FIG. (5.5),
the OTOCs exponentially decay along the rays with different speed

C(1 + xr, xr/v) = 〈σ
x
1 (xr/v)σ

z
1+xr

σx
1 (xr/v)σ

z
1+xr
〉β=0, (5.9)

C(L − xl, xl/v) = 〈σ
x
L(xl/v)σ

z
L−xl

σx
L(xl/v)σ

z
L−xl
〉β=0. (5.10)

For a given velocity v, λ(v)/v is the slope of logarithm of the left and right prop-
agating OTOCs versus the distance x. After extracting the VDLEs λ(v) from the
OTOCs, here we give a rough estimation of the butterfly velocities via fitting the
curve λ(v) ∼ −c(v − vB)

α. In FIG. (5.6), we obtain the results vr
B ∼ 0.29J and

vl
B ∼ 0.66J.
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Figure 5.6: VDLEs fitted from the left and right propagating OTOCs in FIG. (5.5)
with the slope equaling λ(v)/v. The parameters c, vB, α can be fitted via the least
square method. Here the results of fitting the last 7 points are vr

B ∼ 0.29J, αr ∼ 1.52,
and vl

B ∼ 0.66J, αl ∼ 1.61.

Asymmetric butterfly velocities from right/left weights
Now we turn to the analysis of asymmetric butterfly velocities directly measured
from right and left weights of the spacial spreading operators.

To define the right/left weight, note that every operator in a spin 1/2 system with
length L can be written in the complete orthogonal basis of 4L Pauli strings S =
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⊗L
j=1Sj , i.e. O(t) =

∑
S aS(t)S, where Sj = I, σx, σy or σz. Unitary evolution

preserves the norm of operators, so
∑

S |aS(t)|2 = 1 holds for a normalized operator.
The information of operator spreading is contained in the coefficients aS(t). In order
to describe the spatial spreading, the right weight is defined by

ρr( j, t) =
∑

S:Sj,I,Sj ′> j=I

|aS(t)|2, (5.11)

where the left weight is defined analogously. Because of the conservation of operator
norm

∑
j ρr(l)( j, t) = 1, the weight can be interpreted as an emergent local conserved

density for the right/left fronts of the spreading operator.

Recent studies [73–76] showed that the hydrodynamics for the right/left weight can
be characterized by a biased diffusion equation in non-integrable systems, which
means that the front is ballistically propagating with diffusively broadening width.
Thus, when the time-evolved operator spreads, ρr moves to the right with velocity
vr

B, and ρl moves to the left with velocity vl
B.

Here in the numerical calculations of exact diagnolization, the right and left weights
are obtained by setting the initial local operator at the boundary j = 1 and j = L,
respectively. The right weight ρr(1+ xr, t) of σx

1 (t) is calculated in order to compare
the left weight ρl(L − xl, t) of σx

L(t), where xr(xl) is the distance between the right
(left) end and the location of initial operator. As shown in FIG. (5.7), the estimated
velocities are vr

B ∼ 0.34J and vl
B ∼ 0.77J by fitting the times when the weights

reach half of the maximum peak for given distances.

Asymmetric butterfly velocities from the operator entanglement growth
In this subsection, the growth of operator entanglement is investigated to estimate
the asymmetric butterfly velocities.

The entanglement of time-evolved operators encodes information about its spatial
spreading. Refs. [155, 158] discussed a coarse-grained hydrodynamic description
for the entanglement dynamics of a spreading operator under Heisenberg time
evolution. Let Ŝ(t, x) be the operator entanglement across bond x at time t. To
leading order, its growth depends on the local entanglement gradient

∂Ŝ
∂t
= 2seqΓ

(1
2
∂Ŝ
∂x

)
, (5.12)

where seq is the equilibrium entropy density at infinite temperature, and Γ(s) is a
non-negative growth function. Let us discuss the properties of the growth function



64

0 4 8 12 16 20 24 28 32 36 40
t (1/J)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ρ
r
(1
+

x
r
,t
),
ρ
l(
L
−

x
l,
t)

xr =2

xr =4

xr =6

xr =8

xr =10

xl =2

xl =4

xl =6

xl =8

xl =10

0 2 4 6 8 10 12
xr, xl

0

5

10

15

20

25

30

35

40

Ti
m

e 
of

 th
e 

ha
lf 

pe
ak

 (1
/J

)

vr
B =0.34J

v l
B =0.77J

Figure 5.7: Upper panel: the right weights (solid lines) of σx
1 (t) and the left weights

(dashed lines) of σx
L(t). The parameters in the Hamiltonian H [Eq. (5.7)] are

λ = 0.5, hyz = 0.5, hzy = −0.25, hzz = 1.0, hx = −1.05, hz = 0.5, and length L = 14.
The symbols ×/+ mark the times when the right/left weights reach half of the
maximum peak for given distances. Lower panel: time of the half-peak versus the
distance. The solid and dashed lines are the results of linear fitting.

Γ(s). First, the growth function equals zero in equilibrium. In thermal equi-
librium at infinite temperature, the operator entanglement Ŝ(t, x) has a pyramid
shape Ŝ(t, x) = 2seq min{x, L − x} in a one-dimensional system of length L. Thus,
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Γ(seq) = Γ(−seq) = 0 is satisfied. Second, the butterfly velocities are given by
the derivatives vr

B = −seqΓ
′(seq) and vl

B = seqΓ
′(−seq). Thus, this function Γ(s)

provides yet another way of obtaining butterfly velocities, and it follows that any
Γ(s) with asymmetries at its endpoints will have asymmetric butterfly speeds. FIG.
(5.8) shows the growth of operator entanglement across different spatial cuts in time,
showing the system approaching the late time equilibrium pyramidal shape.
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Figure 5.8: Operator entanglement of the time-evolved Pauli operator σx
(L+1)/2(t)

in the non-integrable Hamiltonian H [Eq. (5.7)] with parameters λ = 0.5, hyz =

0.5, hzy = −0.25, hzz = 1.0, hx = −1.05, hz = 0.5, and length L = 13. The times
are t = 4,8, . . . ,36,40 and 400 with unit 1/J. The dotted line is the center of the
system.

The statements above are obtained fromaminimal curve picture ofRef. [158], i.e. the
entanglement Ŝ(t, x) is theminimumof the sumof the initial entanglement Ŝ(0, y) and
the integral of a velocity-dependent line tensionE(v). Theminimal curve is a straight
linewith constant velocity v = (x−y)/t, so that Ŝ(t, x) = miny

(
tseqE(

x−y
t )+Ŝ(0, y)

)
.

Then one can get that the growth function is Γ(s) = minv
(
E(v) − v s/seq

)
, where

s is between −seq and seq. Applying the inverse Legendre transformation, the line
tension can be expressed as E(v) = maxv

(
Γ(s)+ v s/seq

)
. The line tension captures

the leading-order hydrodynamics of operator spreading, and the left/right butterfly
speeds can be obtained from the intersections of the line tension and the velocity

E(vr
B) = vr

B, E(−v
l
B) = vl

B. (5.13)
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Figure 5.9: Effective line tension Ee f f (v) of the Hamiltonian H [Eq. (5.7)] with
parameters λ = 0.5, hyz = 0.5, hzy = −0.25, hzz = 1.0, hx = −1.05, hz = 0.5, and
length L = 12 (upper panel) and L = 13 (lower panel). Here (x + y)/2 is located at
the center of the chain to minimize boundary effects, the velocity is v = (x − y)/t,
and the unit of time is 1/J.

Thus, the butterfly velocities can be estimated if one knows the growth function or
the line tension. According to Reference [158], the line tension can be estimated via
an effective one Ee f f (v) = 1/(seqt) ∗ SU(vt/2,−vt/2, t) obtained from the entangle-
ment SU(x, y, t) of the time evolution operator U(t) = exp(−iHt), where U(t) acting
on L spins is treated as a state on 2L spins. Looking at the intersections in FIG.
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(5.9) indicates vr
B ∼ 0.5J, vl

B ∼ 0.9J. This method gives a very rough estimation.
We expect that when the system size is large enough, there is a single speed char-
acterizing information propagation in every direction which agrees across different
methods of estimation.

5.3 Conclusion and Discussion
In summary, we have constructed 2-local integrable and non-integrable Hamiltoni-
ans with asymmetric ballistic information spreading. Exact solutions of the butterfly
velocities are obtained in the integrable models. The asymmetric butterfly velocities
are estimated from different quantities characterizing operator spreading including
out-of-time-ordered correlations, right/left weight of time-evolved operators, and
operator entanglement.

Given the constructions and studies in this paper, several open questions would be
interesting to explore in the future work. Here, we have focused on the information
spreading at infinite temperature. How does the asymmetric spreading change at
finite temperature? Additionally, it is worth studying how asymmetries encoded in
various quantities are intertwined with each other. For example, does the transport
of conserved quantities (like energy) inherit the same signatures of asymmetry as the
spreading of local operators? Is it possible to disentangle them? Finally, probing
the asymmetry of information propagation may also be interesting to explore in
many-body localized systems or disordered systems with Griffiths effects, where the
butterfly velocities are zero and the light cones are logarithmic or sub-ballistic.
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A p p e n d i x A

LINEAR RESPONSE FOR NON-EIGENSTATES

We compute analytically the linear response of a particular class of non-eigenstates
using the phenomenological description of the MBL system in terms of the “l-bits”
[31]. The analytical result supports our numerical observations in Fig. 2.5 in the
main text.

The Hamiltonian in the “l-bits” basis reads

H =
∑

i

hiτ
z
i +

∑
i j

Ji jτ
z
i τ

z
j + · · · , (A.1)

where Ji j decays exponentially with the distance between i and j. For simplicity
and w.l.o.g., we will ignore three- or more-body terms in the Hamiltonian.

We are going to compute the expectation value of [τx
1 (t), τ

x
j0
] on product states of

“l-bits” in the Y direction. Note that the expectation value on product states in
the Z direction is clearly zero, reflecting the absence of transport in eigenstates of
the Hamiltonian. By using product states in the Y direction, i.e. the initial state
is a direct product of τyj ’s random eigenstate, we hope to access the off-diagonal
elements of the commutator, although our result shows that the linear response of
such states still falls short of achieving the unbounded light cone.

The time evolution of τx
1 is given by

eiHtτx
1 e−iHt = eith1τ

z
1 eit

∑
j J1jτ

z
1 τ

z
j τx

1 e−it
∑

j J1jτ
z
1 τ

z
j e−ith1τ

z
1

= eith1τ
z
1 ×

∏
j

(
cos(t J1 j) + i sin(t J1 j)τ

z
1τ

z
j

)
× τx

1

×
∏

j

(
cos(t J1 j) − i sin(t J1 j)τ

z
1τ

z
j

)
× e−ith1τ

z
1 . (A.2)

Conjugating τx
1 with

∏
j(cos(t J1 j) + i sin(t J1 j)τ

z
1τ

z
j ) generates the following terms:

τx
1 , τ

y
1 τ

z
j , τ

x
1 τ

z
j τ

z
k, τ

y
1 τ

z
j τ

z
kτ

z
l , . . . . (A.3)

Conjugating these terms with eith1τ
z
1 = (cos(th1) + i sin(th1)τ

z
1 ) generates

τx
1
′, τ

y
1
′
τz

j , τ
x
1
′τz

j τ
z
k, τ

y
1
′
τz

j τ
z
kτ

z
l , . . . , (A.4)
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where τx
1
′ is the result of rotating τx

1 by (cos(th1)+ i sin(th1)τ
z
1 ) and τ

y
1
′ is the result

of rotating τy1 by (cos(th1) + i sin(th1)τ
z
1 ).

The commutator of these terms with τx
j0
involves terms

τ
y
1
′
τ
y
j0
, τx

1
′τ

y
j0
τz

k, τ
y
1
′
τ
y
j0
τz

kτ
z
l , . . . . (A.5)

The expectation value of these terms on product states in the Y direction is nonzero
only for the first term. The bare expectation value (up to ±1) is cos(2th1). The
norm of this term is tan(2t J1 j0)

∏
k cos(2t J1k). Putting together, the expectation

value of the commutator on product state of the “l-bits” in the Y direction is
cos(2th1) tan(2t J1 j0)

∏
k cos(2t J1k).

When t J1 j0 � 1, the second factor is proportional to t J1 j0 and hence the expectation
value decays exponentially with increasing j0. One might want to think of this as
the outside of the light cone. However, the expectation value on the boundary of
the supposed light cone jc ∼ log t also decays with jc, because cos(2t J1k) < 1 when
k < jc and cos(2t J1k) ∼ 1 when k > jc. Therefore, the supposed light cone “faints
out” with distance. This is exactly the behavior we see in Fig. 5 (lower panels) that
there seems to be a logarithmically growing light cone, but it disappears with time.
Because of this exponential decay of expectation values at light cone boundaries,
the expectation value for any j and t can be bounded by an exponentially decaying
function of j, indicating that there is in fact a localized light cone. If we calculate the
maximum achievable expectation value for any j, it decays exponentially, similar to
that shown in the upper right panel of Fig. 2.5.
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A p p e n d i x B

PROOF OF A LOWER BOUND

Here, we prove a lower bound
√
εavLR/Γ for the width d(Γ) of the partially recovered

light cone revealed by the corrected OTOC in the channel of phase damping or phase
depolarizing. The main ideas in the proof are comparing the difference between the
adjoint propagator in the dissipative channel and the unitary one without dissipation,
and employing the adjoint propagator of spatially truncated adjoint Liouvillians.

Lemma 6. Suppose L†1(t) and L
†

0(t) are the adjoint Liouvillian super-operators
describing Markovian dynamics of the same open quantum system with ‖L†1(t) −
L
†

0(t)‖ ≤ f (t), then the difference of adjoint propagators satisfies

‖V
†

1 (t,0) − V
†

0 (t,0)‖ ≤
∫ t

0
dτ f (τ), (B.1)

where V†k (t, s) = T→e
∫ t

s
L
†

k
(τ)dτ(t ≥ s, k = 0,1), and T→ or T← is the time-ordering

operator which orders products of time-dependent operators such that their time
arguments increase in the direction indicated by the arrow.

Proof.

‖V
†

1 (t,0) − V
†

0 (t,0)‖ = ‖V
†

0 (0,0)V
†

1 (t,0) − V
†

0 (t,0)V
†

1 (t, t)‖

=





∫ t

0
ds

∂

∂s

(
V
†

0 (s,0)V
†

1 (t, s)
)





≤

∫ t

0
ds‖V†0 (s,0)(L

†

0(s) − L
†

1(s))V
†

1 (t, s)‖

≤

∫ t

0
ds‖V†0 (s,0)‖ · ‖L

†

1(s) − L
†

0(s)‖ · ‖V
†

1 (t, s)‖

≤

∫ t

0
ds‖L†1(s) − L

†

0(s)‖ ≤
∫ t

0
ds f (s).

In the derivation, one uses the fact that the adjoint propagators V†k (t, s) are norm-
nonincreasing [130, 137, 139]. �

Here, we need to pay attention to the difference between the propagator V(t, s) =
T←e

∫ t

s
L(τ)dτ(t ≥ s) and its adjoint V†(t, s) = T→e

∫ t

s
L†(τ)dτ(t ≥ s). V(t, s) acts on
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the density matrix and is trace-preserving. V†(t, s) acts on the observables and the
identity is one of its fixed points. For unitary evolution, V†(t, s) and V(t, s) are
the inverse of each other and both norm-preserving. When dissipation exists, only
V†(t, s) is norm-nonincreasing for arbitrary observables, i.e. ‖V†(t, s) · O‖ ≤ ‖O‖
(∀O = O†).

Lemma 7. In a one-dimensional system, L†H =
∑

i L
†

Hi
is the sum of local adjoint

Liouvillian super-operators, and L†D = Γ
∑

k L
†

D,k is the sum of adjoint dissipative
super-operators acting on each site, where ‖L†D,k ‖ ≤ 1 and Γ is the dissipation rate.
During the evolution, the operator difference between the dissipative and unitary
channels is upper bounded by

‖V
†

1 (t,0) · B −V
†

0 (t,0) · B‖ ≤ ΓO(t2) + δ (B.2)

in the limit of small Γ and large t, where V†1 (t, s) = T→e
∫ t

s
(L
†

H (τ)+L
†

D(τ))dτ(t ≥ s),
V
†

0 (t, s) = T→e
∫ t

s
L
†

H (τ)dτ(t ≥ s), B is a local observable at site 0, and δ is an
arbitrarily small constant.

Proof. For an open quantum system described by short-range Liouvillians, the
Lieb-Robinson bound

‖ [V†(t) · B, A] ‖ ≤ c ‖B‖ · ‖A‖ e−(dAB−vLRt)/ξ (B.3)

implies the existence of an upper limit to the speed of quantum information propa-
gation. The outside signal is exponentially small in the distance from the boundary
of the effective light cone. Based on the Lieb-Robinson bound, Ref. [139] obtained
the quasi-locality of Markovian quantum dynamics: up to exponentially small error,
the evolution of a local observable can be approximately obtained by applying the
propagator of a spatially truncated version of the adjoint Liouvillian, provided that
the range of the truncated propagator is larger than the support of the time-evolved
observable. The truncated propagators we select are

Ṽ
†

0 (t,0) = T→e
∫ t

0 dτ
∑

i:Hi ⊂Λ(τ)
L
†

Hi
(τ)
, Ṽ†1 (t,0) =

T→e
∫ t

0 dτ
(∑

i:Hi ⊂Λ(τ)
L
†

Hi
(τ)+

∑d(τ)/a
k=−d(τ)/a

LD,k (τ)
)
,

where d(t) = vLRt+ξ log(c′′/δ) for some large constant c′′, a is the distance between
two nearest neighboring sites, and Hi ⊂ Λ(t) means the local term Hi is located in
the regime Λ(t) = (−d(t), d(t)). Let Bk(t) = V

†

k (t,0) · B and B̃k(t) = Ṽ
†

k (t,0) · B.
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Applying the triangle inequality, one obtains

‖B1(t) − B0(t)‖ ≤‖B̃1(t) − B̃0(t)‖+

‖B1(t) − B̃1(t)‖ + ‖B̃0(t) − B0(t)‖.

On the right-hand side, the first term is upper bounded by ‖B‖
∫ t
0 dτΓ(ξ/a +

vLRτ/a) = ‖B‖Γt(vLRt/2 + ξ)/a (Lemma 1). The second and third terms both
are less than or equal to c′ ‖B‖ e(vLRt−d(t))/ξ = c′ ‖B‖ δ/c′′ [139]. Thus we
get ‖V†1 (t,0) · B − V

†

0 (t,0) · B‖ ≤ ‖B‖(vLRΓt2/2 + ξΓt + 2c′δ/c′′)/a. Therefore,
‖V
†

1 (t,0) · B −V
†

0 (t,0) · B‖ ≤ ΓO(t2) + δ in the limit of small Γ and large t. �

In the chaotic Ising chain with dissipations acting on each site, the light cone
within the time range t ≤

√
εa

vLRΓ
can be revealed by ‖[V†1 (t,0) · B, A]‖, ‖[V

†

1 (t,0) ·

B, A]‖/‖V†1 (t,0) · B‖, ‖[V
†

1 (t,0) · B, A]‖F and ‖[V†1 (t,0) · B, A]‖F/‖V
†

1 (t,0) · B‖F ,
where vLR is the Lieb-Robinson velocity, a is the distance between two near-
est neighboring sites, ε is a small number (for example, ε ∼ 0.1), the dissipa-
tion rate Γ is sufficiently small (Γ � εavLR/ξ

2), ‖O‖ is the operator norm and
‖O‖F = limN→∞

√
tr(OO†)/2N is the normalized Frobenius norm of operators in

the thermodynamic limit. The width of the light cone is at least
√

εavLR
Γ

.

Proof. According to Lemma 2, the t2 term plays a dominant role in the inequality
for sufficiently small dissipation rate Γ � εavLR/ξ

2. If t ≤
√

εa
vLRΓ

, then one obtains

‖B1(t) − B0(t)‖ ≤ ε ‖B‖ when comparing the operators B1(t) = V
†

1 (t,0) · B in the
dissipative channel and B0(t) = V

†

0 (t,0) · B in the unitary channel. Applying the
triangle inequality, one obtains

(1 − ε)‖B‖ ≤ ‖B1(t)‖ ≤ (1 + ε)‖B‖,

‖[B0(t), A]‖ − ε ‖CA‖‖B‖ ≤ ‖[B1(t), A]‖ ≤ ‖[B0(t), A]‖ + ε ‖CA‖‖B‖,

(1 + ε)−1
(
‖[B0(t), A]‖
‖B‖

− ε ‖CA‖

)
≤
‖[B1(t), A]‖
‖B1(t)‖

≤

(1 − ε)−1
(
‖[B0(t), A]‖
‖B‖

+ ε ‖CA‖

)
,

where the super-operator CA is defined as CA ·O = [O, A]. The normalized Frobenius
norm is less than or equal to the operator norm, i.e. ‖O‖F ≤ ‖O‖, so we get

‖B1(t) − B0(t)‖F ≤ ‖B1(t) − B0(t)‖ ≤ ε ‖B‖

‖[B0(t), A]‖F − ε ‖CA‖‖B‖ ≤ ‖[B1(t), A]‖F ≤ ‖[B0(t), A]‖F + ε ‖CA‖‖B‖,
‖[B0(t), A]‖F − ε ‖CA‖‖B‖

‖B‖F + ε ‖B‖
≤
‖[B1(t), A]‖F
‖B1(t)‖F

≤
‖[B0(t), A]‖F + ε ‖CA‖‖B‖

‖B‖F − ε ‖B‖
.
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In the unitary channel, both ‖[B0(t), A]‖ and ‖[B0(t), A]‖F are able to detect the
ballistic light cone. Because ε is a small number, it is also small that the differ-
ence of the corresponding quantities between the dissipative and unitary channel.
Thus, ‖[B1(t), A]‖, ‖[B1(t), A]‖/‖B1(t)‖, ‖[B1(t), A]‖F and ‖[B1(t), A]‖F/‖B1(t)‖F
are both able to detect the light cone in the time range t ≤

√
εa

vLRΓ
. The width of the

light cone is at least
√

εavLR
Γ

for sufficiently small dissipation rate Γ � εavLR/ξ
2. �

Corollary 2. For sufficiently small dissipation rate Γ � εavLR/ξ
2, the lower bound√

εavLR
Γ

works for the width of the light cone revealed by the corrected OTOC in the
chaotic Ising chain with dissipation of phase damping or phase depolarizing.

Proof. In the channel of phase damping or phase depolarizing, the adjoint propagator
V
†

b (t) is exactly equal to the propagatorVf (t), then

2
(
1 −

F(t, A,B)
F(t, I,B)

)
=
‖ [V

†

b (t) · B, A] ‖
2
F

‖V
†

b (t) · B‖
2
F

. (B.4)

Based on Proposition 1, the lower bound
√

εavLR
Γ

works for the width of the light
cone revealed by the corrected OTOC in the channel of phase damping or phase
depolarizing. �
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A p p e n d i x C

ANALYTIC SOLUTION OF TIME-EVOLVED OPERATORS
AND OTOCS IN THE FREE MODEL

The Jordan-Wigner mapping allows spin operators to be written in terms of free
Majorana fermions as follows: : σx

j = iγ2 jγ2 j+1, σz
j = (

∏ j−1
k=−∞ iγ2kγ2k+1)γ2 j and

σ
y
j = (

∏ j−1
k=−∞ iγ2kγ2k+1)γ2 j+1. Then the Hamiltonian [Eq. (5.2)] is

Hλ = (1 − λ)
−J
2

∑
j

[
hyz(−iγ2 jγ2 j+2) + hzy(iγ2 j+1γ2 j+3)

]
+ λ
−J
2

∑
j

[
hzz(iγ2 j+1γ2 j+2) + hx(iγ2 jγ2 j+1)

]
. (C.1)

Below, we obtain analytic solutions for time-evolved operator for this Hamiltonian
[Eq. (5.2)] within the Heisenberg picture. Denoting γ0(t) =

∑
n fn(t)γn and γ1(t) =∑

m hm(t)γm, the time-evolved operator is σx
0 (t) = iγ0(t)γ1(t) = i

∑
n<m Fn,m(t)γnγm,

where Fn,m(t) = fn(t)hm(t)− fm(t)hn(t), and the out-of-time-ordered correlations are

Cxz( j, t) = 1 − 2
∑

n≤2 j,m≥2 j+1
|Fn,m(t)|2, (C.2)

Cxx( j, t) = 1 − 2
[ ∑

n<2 j

(
|Fn,2 j(t)|2 + |Fn,2 j+1(t)|2

)
+

∑
m>2 j+1

(
|F2 j,m(t)|2 + |F2 j+1,m(t)|2

) ]
. (C.3)

Next, we get the analytic solution of time-evolved operators γ0(t) =
∑

n fn(t)γn

and γ1(t) =
∑

m hm(t)γm in the integrable Hamiltonian [Eq. (5.2)]. Plugging the
candidate solution into the Heisenberg equation, it is straightforward to get the
differential equations for the coefficients fn(t)

df2n(t)
dt = −λJhzz f2n−1(t) + λJhx f2n+1(t)

+(1 − λ)Jhyz[− f2n+2(t) + f2n−2(t)],
df2n+1(t)

dt = −λJhx f2n(t) + λJhzz f2n+2(t)

+(1 − λ)Jhzy[− f2n−1(t) + f2n+3(t)],
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where the initial condition is fn(0) = δn,0. After applying the Fourier transformation
f2n(t) = 1

2π

∫ π

−π
dq e−inq A(q, t), f2n+1(t) = 1

2π

∫ π

−π
dq e−inqB(q, t), we get{

∂A(q,t)
∂t = λJ[hx − hzzeiq]B(q, t) + (1 − λ)2iJhyz sin(q)A(q, t),

∂B(q,t)
∂t = λJ[−hx + hzze−iq]A(q, t) − (1 − λ)2iJhzy sin(q)B(q, t).

(C.4)

Then, the analytic solution is
f2n(t) = 1

2π

∫ π

−π
dq e−inq ελ,1eiελ,1t−ελ,2eiελ,2t

ελ,1−ελ,2
,

f2n+1(t) = 1
2π

∫ π

−π
dq e−inqλJ[−hx + hzze−iq] ×

(−i)(eiελ,1t−eiελ,2t )
ελ,1−ελ,2

,
(C.5)

where ελ,1(2)(q) = J
[
(1−λ)(hyz−hzy) sin q+(−)

(
(1−λ)2(hyz+hzy)

2 sin2 q+λ2(h2
zz+

h2
x − 2hzzhx cos q)1/2

) ]
.

Similarly, the coefficients in the exact solution γ1(t) =
∑

m hm(t)γm are
h2m(t) = 1

2π

∫ π

−π
dq e−imqλJ[hx − hzzeiq] ×

(−i)(eiελ,1t−eiελ,2t )
ελ,1−ελ,2

,

h2m+1(t) = 1
2π

∫ π

−π
dq e−imq ελ,1eiελ,1t−ελ,2eiελ,2t

ελ,1−ελ,2
.

(C.6)
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