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ABSTRACT

Shell structures with cutouts are widely used in architectural and engineering appli-
cations. For thin, lightweight, and deployable space structures, cutouts are cleverly
positioned to fold and store the structure in a small volume. To maintain shape
accuracy, these structures must fold without becoming damaged and must be stiff
in their deployed configurations. Intuitive designs often fail to satisfy these two
requirements. This research proposes solutions to the topology optimization of
composite, thin shell structures with cutouts.

A novel optimization algorithmwas developed that makes no assumptions on the ini-
tial number, shape, and location of cutouts on deployable thin shells. The algorithm
uses a density-based approach, which distributes the material within the structure by
assigning a density parameter to discretized locations. This parametrization of the
design domain allows for the finding of new features and the connectivity of the do-
main, thus providing a completely general formulation to the optimization problem.
The goal is to study the effects of volume and stress constraints imposed in a de-
formed configuration of thin shell structures. While classical topology optimization
studies focus on finding solutions to linear problems, this method is applicable to ge-
ometrically nonlinear problems and implements stress constraints in the deformed,
and hence most stressed, configuration of these shells. A mathematical formulation
of the optimization problem and interpolation schemes for stiffness tensor, volume,
and stress are presented. A sensitivity analysis of objective function, volume, and
stress constraints is provided. Finally, solutions for a thin plate and a tape spring are
proposed.

Density-based methods are computationally expensive when applied to large struc-
tures and complex shapes because of the large number of design variables. To
address these challenges, two optimization methods that provide more specific solu-
tions to the problem of composite, deployable shells are proposed. The first method
uses level sets to parametrize the cutouts, thereby restricting the design space and
simultaneously limiting the number of design variables. This greatly reduces the
computational cost. Using this approach, successful solutions are found for stiff,
composite, thin shells with complex shapes that can fold without becoming dam-
aged. The second method uses a spline representation of the contour of a single
cutout on the shell, thus performing fine tuning of the shape of the cutout. Modeling
techniques that simulate localized strain and experimental methods for studying the
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quasi-static folding of these composite shells are developed. A laminate failure
criterion suitable for thin, plain-weave composites is used in simulations to predict
the onset of failure in folded shells. Numerical results are validated with folding
experiments that demonstrated good agreement with numerical solutions.

Lastly, it was discovered that many of the best performing solutions have multiple
closely spaced cutouts, as opposed to current designs for deployable space structures
that have fewer large cutouts. This leads to the formation of small strips of material
between cutouts. Hence, the behavior of thin, plain-weave composite material was
characterized and the first study on size-scaling effects at small length scales (� 15
mm) in this type of material was performed. Size-scaling effects on stiffness and
strength shown in this study were introduced in numerical simulations of deployable
thin shells. The study demonstrates that the prediction of the onset of failure in
folded shells strongly depends on these size effects. Numerical predictions are
corroborated by an experimental investigation of localized damage in thin strips of
material forming between cutouts. Deployable shells resulting from the optimization
studies are built and tested and localized damage is measured via digital volume
correlation techniques.
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1

C h a p t e r 1

INTRODUCTION

1.1 Motivation and Background

Shell structures are widely used in di�erent architectural and engineering applica-

tions. They are lightweight and can serve multiple purposes, as shown in Fig. 1.1.

NASA's Orbit Pavilion, Fig. 1.1a, is an example of shells used in architectural in-

stallations. Shells are also used in robotic applications, for instance as soft actuators

in robots that can crawl (Rafsanjani, Zhang, et al., 2018), like the ones shown in

Fig. 1.1b. Thin shells are broadly used in deployable space structures. An example

of doubly curved thin shells developed for a deployable re�ector antenna is found in

Fig. 1.1c, which shows the Mobile Satellite (MSAT-2) spacecraft. Another example

of a partially folded, doubly curved shell is shown in Fig. 1.1d. This shell can

be folded, without a�ecting its geometric integrity, because surface discontinuities,

namely cutouts, are introduced.

A classical example of shells with cutouts, needed not to fold the structure but to

provide windows in an aircraft fuselage, is shown in Fig. 1.1e. The de Havilland

Comet, �rst commercial airliner to use jet engines, embodies some of the challenging

aspects of placing cutouts in shells. Its thin exterior skin was subject to metal fatigue,

due to the pressurisation-depressurisation cycle during landing and take-o�. This

led to development of cracks from the corner of one of the square cabin windows and

a consequent catastrophic depressurisation of the cabin during commercial service.

Finally, Fig. 1.1f shows the radar antenna used on the Mars Express mission,

launched by the European Space Agency (ESA) in 2003. This is another example

of thin shells used for deployable space structures and how cutouts can be cleverly

placed on a cylindrical shell, namely a boom, to fold it and store it in a smaller

volume. Shells made of high modulus materials, like the Mars Advanced Radar for

Subsurface and Ionospheric Sounding (MARSIS) antenna, are di�cult to fold, due

to strain localization near the hinge area, and also to deploy (Mobrem and Adams,

2009a; Mobrem and Adams, 2009b).

All the examples shown have cutouts to ful�ll di�erent purposes. While in many

applications one cannot avoid placing cutouts in shells, the number, position, and

shape of such cutouts is often a designer's choice. This choice can be made intu-
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