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ABSTRACT

Shell structures with cutouts are widely used in architectural and engineering appli-
cations. For thin, lightweight, and deployable space structures, cutouts are cleverly
positioned to fold and store the structure in a small volume. To maintain shape
accuracy, these structures must fold without becoming damaged and must be stiff
in their deployed configurations. Intuitive designs often fail to satisfy these two
requirements. This research proposes solutions to the topology optimization of
composite, thin shell structures with cutouts.

A novel optimization algorithmwas developed that makes no assumptions on the ini-
tial number, shape, and location of cutouts on deployable thin shells. The algorithm
uses a density-based approach, which distributes the material within the structure by
assigning a density parameter to discretized locations. This parametrization of the
design domain allows for the finding of new features and the connectivity of the do-
main, thus providing a completely general formulation to the optimization problem.
The goal is to study the effects of volume and stress constraints imposed in a de-
formed configuration of thin shell structures. While classical topology optimization
studies focus on finding solutions to linear problems, this method is applicable to ge-
ometrically nonlinear problems and implements stress constraints in the deformed,
and hence most stressed, configuration of these shells. A mathematical formulation
of the optimization problem and interpolation schemes for stiffness tensor, volume,
and stress are presented. A sensitivity analysis of objective function, volume, and
stress constraints is provided. Finally, solutions for a thin plate and a tape spring are
proposed.

Density-based methods are computationally expensive when applied to large struc-
tures and complex shapes because of the large number of design variables. To
address these challenges, two optimization methods that provide more specific solu-
tions to the problem of composite, deployable shells are proposed. The first method
uses level sets to parametrize the cutouts, thereby restricting the design space and
simultaneously limiting the number of design variables. This greatly reduces the
computational cost. Using this approach, successful solutions are found for stiff,
composite, thin shells with complex shapes that can fold without becoming dam-
aged. The second method uses a spline representation of the contour of a single
cutout on the shell, thus performing fine tuning of the shape of the cutout. Modeling
techniques that simulate localized strain and experimental methods for studying the
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quasi-static folding of these composite shells are developed. A laminate failure
criterion suitable for thin, plain-weave composites is used in simulations to predict
the onset of failure in folded shells. Numerical results are validated with folding
experiments that demonstrated good agreement with numerical solutions.

Lastly, it was discovered that many of the best performing solutions have multiple
closely spaced cutouts, as opposed to current designs for deployable space structures
that have fewer large cutouts. This leads to the formation of small strips of material
between cutouts. Hence, the behavior of thin, plain-weave composite material was
characterized and the first study on size-scaling effects at small length scales (≤ 15
mm) in this type of material was performed. Size-scaling effects on stiffness and
strength shown in this study were introduced in numerical simulations of deployable
thin shells. The study demonstrates that the prediction of the onset of failure in
folded shells strongly depends on these size effects. Numerical predictions are
corroborated by an experimental investigation of localized damage in thin strips of
material forming between cutouts. Deployable shells resulting from the optimization
studies are built and tested and localized damage is measured via digital volume
correlation techniques.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation and Background
Shell structures are widely used in different architectural and engineering applica-
tions. They are lightweight and can serve multiple purposes, as shown in Fig. 1.1.
NASA’s Orbit Pavilion, Fig. 1.1a, is an example of shells used in architectural in-
stallations. Shells are also used in robotic applications, for instance as soft actuators
in robots that can crawl (Rafsanjani, Zhang, et al., 2018), like the ones shown in
Fig. 1.1b. Thin shells are broadly used in deployable space structures. An example
of doubly curved thin shells developed for a deployable reflector antenna is found in
Fig. 1.1c, which shows the Mobile Satellite (MSAT-2) spacecraft. Another example
of a partially folded, doubly curved shell is shown in Fig. 1.1d. This shell can
be folded, without affecting its geometric integrity, because surface discontinuities,
namely cutouts, are introduced.

A classical example of shells with cutouts, needed not to fold the structure but to
provide windows in an aircraft fuselage, is shown in Fig. 1.1e. The de Havilland
Comet, first commercial airliner to use jet engines, embodies some of the challenging
aspects of placing cutouts in shells. Its thin exterior skin was subject tometal fatigue,
due to the pressurisation-depressurisation cycle during landing and take-off. This
led to development of cracks from the corner of one of the square cabin windows and
a consequent catastrophic depressurisation of the cabin during commercial service.
Finally, Fig. 1.1f shows the radar antenna used on the Mars Express mission,
launched by the European Space Agency (ESA) in 2003. This is another example
of thin shells used for deployable space structures and how cutouts can be cleverly
placed on a cylindrical shell, namely a boom, to fold it and store it in a smaller
volume. Shells made of high modulus materials, like the Mars Advanced Radar for
Subsurface and Ionospheric Sounding (MARSIS) antenna, are difficult to fold, due
to strain localization near the hinge area, and also to deploy (Mobrem and Adams,
2009a; Mobrem and Adams, 2009b).

All the examples shown have cutouts to fulfill different purposes. While in many
applications one cannot avoid placing cutouts in shells, the number, position, and
shape of such cutouts is often a designer’s choice. This choice can be made intu-
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(a) (b)

(c) (d)

(e) (f)

Figure 1.1: (a) NASA’s Orbit Pavilion, an outdoor installation that produces sounds
representing the movement of the International Space Station and 19 Earth Science
satellites. Image courtesy of NASA Jet Propulsion Laboratory, (b) kirigami cylin-
drical shells, with triangular cuts, used as crawlers (Rafsanjani, Jin, et al., 2019),
(c) MSAT-2 spacecraft during ground testing with two spring-back reflectors, one
deployed and one folded. Image courtesy of Canadian Space Agency, (d) foldable
dish concept with surface discontinuities (Greschik, 1996), (e) de Havilland Comet,
world’s first commercial jet airliner (Withey, 1997), (f) MARSIS radar antenna
consisting of flattenable and foldable tubes (Mobrem and Adams, 2009a).
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itively, based on knowledge of the structure and its purpose (Footdale, Banik, and T.
Murphey, 2010), or it can be guided by optimization techniques. For instance, Tan
and Pellegrino (2006) and Mallikarachchi and Pellegrino (2010) provide examples
of shape optimization of composite thin shells with geometrical nonlinearities. The
objective of these optimization studies is to maximize the bending stiffness of the
deployed structure. Shape optimization is limited to modifying a few features of
the structure, which usually describe its geometric boundaries. A more general
technique to place cutouts in shells is topology optimization, which changes the
topology of the structure entirely. Studies performed by Maute and Ramm (1997)
use this approach to optimize shells with static loading and boundary conditions,
while Geiss et al. (2019) optimize shells undergoing large deformations.

(a) (b)

Figure 1.2: (a) strain concentration in fully folded boomwith hinges (Mallikarachchi
and Pellegrino, 2010), (b) compliant hinge concept (Footdale, Banik, and T. Mur-
phey, 2010).

A challenging problem for topology optimization techniques (Bendsøe and Sig-
mund, 2013) is optimizing structures that:

1. consist of very thin shells, for instance shells that are hundreds of microns
thick and centimeters or meters long;

2. are made of anisotropic material, like composite laminates often used in space
applications;

3. undergo large displacements, because one must account for geometrical non-
linearities;

4. form regions of localized strain when deformed, because a stress constraint
must be applied to the deformed configuration of the structure.
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Examples of this type of structures are shown in Fig. 1.2. A tape-spring hinge,
made by cutting small slots in a thin-walled tube (Mallikarachchi and Pellegrino,
2011), is shown in Fig. 1.2a. Tape-spring hinges are traditionally built in straight
tubes. However, this concept can be extended to build different types of hinges. For
instance, Fig. 1.2b shows a double hinge made entirely of fiber-reinforced polymers,
which can reliably self-deploy using the potential energy of its stowed configuration
(Footdale, Banik, and T. Murphey, 2010). The main advantage of this approach is
the implementation of a lightweight technology that can provide low-cost building
blocks for large space structures.

Another challenge in optimizing composite, foldable structures is to prevent local-
ization of strain near the cutouts, as shown in Fig. 1.2a, which can lead to failure.
To do so, one must employ suitable techniques for predicting failure and measuring
localized damage within the structure. Failure criteria for anisotropic (Tsai and Wu,
1971) and fiber reinforced (Hashin and Rotem, 1973) materials should be able to
provide an estimate for the onset of failure at a point of the foldable structure, but
Mallikarachchi and Pellegrino (2013) showed that when applied to the prediction
of failure of thin, plain-weave laminates, poor correlation between predictions and
experiments was found. While numerically predicting failure of such structures is a
challenge in itself, measuring localized damage via experiments is also difficult and
size effects must be considered (Bažant and J. L. Le, 2017).

1.2 Research Objective and Outline
The overall objective of the research presented in this thesis is to optimize the
topology of deployable thin shells with cutouts, so that they can be folded without
damage, while also maximizing the deployed stiffness. This study proposes the
first approach to the topology optimization of shells made of composite material,
modeled with geometrically nonlinear finite element analysis, and imposing stress
constraints in the deformed configuration.

To fulfill this research objective, three optimization methods are presented, starting
from the most general approach, applicable to thin shells in bending, and incremen-
tally building up to more specific solutions to the problem of composite, deployable
shells. The first method uses a density-based approach and makes no assumptions
on initial shape or location of cutouts, but it is limited by the large number of de-
sign variables, which makes it computationally expensive when considering larger
structures or complex shapes. The second method uses level-set functions to place
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cutouts on the shells and makes assumptions on the type of functions to be used,
thus restricting the design space. This method greatly reduces the number of design
variables and it is applied to composite thin shells with complex shape. Finally, the
third method uses a spline representation of the contour of a single cutout on the
shell, thus performing fine tuning of the shape of the cutout.

Chapter 2 presents the first optimization method and describes a new algorithm,
based on a density distribution approach, that is capable of assigning volume and
stress constraints in the deformed (hence most highly stressed) configuration of thin
shells in bending. Solutions to the topology optimization problem of a thin, bending
plate and tape spring are presented and three challenging aspects are considered:
first, geometrical nonlinearities, second, a global stress constraint, and third, de-
coupling of topology optimization and the corresponding computational mechanics
method, such as a finite element method.

Chapter 3 develops modeling and experimental techniques for studying the quasi-
static folding of composite shells with complex shape. A particular challenge
associated with these techniques is the simulation of localized strains. A laminate
failure criterion is used to predict the onset of failure in folded shells. First, prelimi-
nary designs obtained using physical intuition are presented. Then, two optimization
methods are detailed and solutions for thin shells forming a 90° corner and made
entirely of fiber reinforced composite material are proposed.

Chapter 4 presents the first experimental study of size-scaling effects on thin plain-
weave samples with width ranging between 15 and 1 millimeters. The results of
this work are combined with the previous optimization studies by introducing size-
scaling effects in the numerical analysis of deployable shells forming a corner and
analyzing how size affects the onset of damage in thin shells made of plain-weave
composite material. Additionally, experiments are performed to measure localized
damage near the cutouts using a digital volume correlation technique.

Chapter 5 concludes the thesis and discusses future research directions.
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C h a p t e r 2

DENSITY-BASED APPROACH TO TOPOLOGY
OPTIMIZATION OF BENDING DOMINATED SHELLS WITH

GEOMETRICAL NONLINEARITIES

2.1 Introduction
The problem of optimal placement of cutouts in thin shell structures to perform
designated tasks, such as reproducing certain sounds (Delgado and Goods, 2015)
or folding and deploying (Mobrem and Adams, 2009b), has been the object of
studies for many decades. Topology optimization provides a general solution to
this problem. Particularly, a density-based approach allows for the redistribution of
material within a design domain, thus changing the initial topology of a structure and
finding new features, such as cutouts. The main advantage is that no assumptions
on the initial shape or the location of the cutouts are necessary.

Open source topology optimization algorithms have been written (Andreassen,
Clausen, et al., 2011) and broadly used for different applications. While many
studies have demonstrated the large applicability of this method, few examples of
solutions are provided for thin shells undergoing large displacements. This chapter
introduces a density-based method for topology optimization, its mathematical for-
mulation, and implementation. The goal is to study the effects of volume and stress
constraints imposed in a chosen deformed configuration of a thin shell structure and
to develop an algorithm that can apply these constraints.

2.2 Background and Layout of the Chapter
Structural optimization methods can be grouped in two very general categories:
traditional shape optimization and topology optimization. In the first case, the
geometry of a structure is defined by contours or surfaces that enclose an area or
volume continuously filled with material. Hence, only the boundaries of the design
domain have to be parametrized by shape functions to solve the optimization prob-
lem. This leads to a reasonably small number of design variables used to optimize
the structure, which are the control nodes of the shape functions. However, the
optimization process cannot generate new boundaries. Only contours or surfaces
that are present in the initial layout can be varied and the topology of the structure
remains unchanged. Size optimization can be regarded as a subset of shape opti-
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mization problems. Here, a single or a few design variables are chosen to describe
the size of the structure or one of its members (e.g. the diameter of a rod in a
pin-jointed structure).

In the second case, there is an additional distinction to make between density-based
methods, first formalized by Bendsøe and Kikuchi (1988), and level-set methods,
introduced by S. Osher and Sethian (1988). A comprehensive review of topology
optimization approaches was done by Sigmund and Maute (2013). In a density-
based method, the material within the structure is distributed by assigning a density
parameter to discretized locations. The density parameter can vary continuously
between its limit values, 0 an 1. A density of 0 is a numerical description for a void.
This parametrization of the design domain allows to find new features, such as the
number, location, and shape of holes and the connectivity of the domain (Bendsøe
and Sigmund, 2013). The objective is to reach the optimal layout of a structure,
where the only known quantities are the initial domain, boundary conditions, and
applied loads.

Similarly, a level-setmethod allows to change the topology of a structure by providing
a way to describe the position and track the movement of its geometric boundaries
(Sethian andWiegmann, 2000; S. J. Osher and Santosa, 2001; M.Y.Wang, X.Wang,
and Guo, 2003; Allaire, Jouve, and Toader, 2004). A scalar level-set function is
constructed as follows. If a point within the design domain generates negative values
of the level-set function, the point belongs to a new domain defined as void. If it
generates positive values, the point belongs to a different domain defined as solid.
Finally, null values of the level-set function describe the boundaries of the structure.
In two dimensions, the level-set method corresponds to representing a closed curve Γ
using an auxiliary function φ, called the level-set function. The curve Γ is described
as the null values of φ using the equation Γ = {(x, y) | φ(x, y) = 0}. The level-set
method manipulates Γ implicitly (i.e. without an explicit parametrization of the
contour of the curve), through the function φ.

A set of solutions obtained performing topology optimization, via density-based
method, on thin shells in bending are presented here. Shell structures are some
of the most broadly used in engineering applications and they are very interesting
for lightweight deployable space structures applications (Pellegrino, 2015). Nev-
ertheless, topology optimization of shell structures, especially considering large
displacements and bending behaviour, is not a very explored field. Some early
examples of shell structures optimized via an adaptive scheme, including both ma-
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terial topology and shape optimization, are provided by Maute and Ramm (1997).
More recent developments in investigating topology optimization methods for shells
are provided by the following: Bendsoe et al. (2005), who discuss broader appli-
cations for density-based methods, including optimization of laminated composite
shell structures; Lund (2009) and Townsend and H. A. Kim (2019), who investigate
buckling problems; Geiss et al. (2019), who optimize and build shells undergoing
large deformations.

One important aspect of topology optimization is to find an analytical formulation
of the sensitivities of the objective function and the constraints. This is necessary
for implementing gradient-based algorithms that achieve faster convergence to an
optimal solution. An overview of design sensitivity analysis is provided by Tortorelli
andMichaleris (1994). Geometrical nonlinearities (hence large displacements) were
considered in the topology design of compliant mechanisms by different authors,
such as Buhl, Pedersen, and Sigmund (2000), Gea and Luo (2001), Bruns and Tor-
torelli (2001), Pedersen, Buhl, and Sigmund (2001), and Saxena and Ananthasuresh
(2001). Particularly interesting for the type of structures studied here, such as plates
in bending, is the work performed by Pajot and Maute (2006), which makes use
of a co-rotational finite element method that satisfies equilibrium equations in a
reference system that is local to each element.

Another important aspect is the implementation of stress constraints. One approach
is to assign stress constraints locally, on each element or group of elements of a finite
element discretization of the structure, thus generating a large number of constraints.
Local stress constraints are particularly useful to capture stress concentration in the
structure and limit a local stress measure to allowable values (Duysinx and Bendsøe,
1998; Pereira, Fancello, and Barcellos, 2004; Bruggi and Venini, 2008; Paris et
al., 2009). Nevertheless, a large number of constraints can be computationally
expensive. Therefore, a global stress measure is a common way to impose stress
constraint (Duysinx and Sigmund, 1998; Guilherme and Fonseca, 2007; De Leon
et al., 2015). C. Le et al. (2010) provide a list of algorithms and stress constraints
used to optimize 2D, L-bracket designs.

This chapter presents studies of the effects of volume and stress constraints in topol-
ogy optimization of thin shells. Both small and large displacements are considered.
An algorithm capable of performing topology optimization of thin shells undergo-
ing large displacements, and subject to volume and stress constraints in deformed
configuration, is shown. A significant advantage of the computational framework
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provided here is decoupling of the optimization solver, that provides a new topology
at each step, from the finite element software that performs a structural analysis of
any given topology. This allows to outsource the finite element analysis to com-
mercial software. A similar concept was developed by Chung et al. (2019) who use
OpenMDAO, an open-source computational framework for multidisciplinary design
optimization.

First, a mathematical formulation of the optimization problem and interpolation
schemes for stiffness tensor, volume, and stress are presented. The problem stud-
ied is to maximize the stiffness of shells in the initial configuration (deployed)
while constraining volume and stress in either initial or deformed configuration. A
sensitivity analysis of the objective function, volume, and stress constraints is pro-
vided. The new algorithm developed here is described in detail. First it is tested on
a classical benchmark problem, the Messerschmidt-Bölkow-Blohm (MBB) Beam
problem, and the result is compared to the one obtained by Andreassen, Clausen,
et al. (2011). Then a study of thin plates in bending is performed and solutions to
linear problems are examined against solutions obtained with the commercial tool
Abaqus Topology OptimizationModule (ATOM) 2017-HF5. Finally, geometrically
nonlinear problems are studied and solutions for a thin plate and a tape spring are
presented.

2.3 Optimization Problem and Interpolation Schemes
In a density-based approach the design domain is discretized by N finite elements
and the relative density ρe of material in each element is a design variable. An
N-vector containing the design variables is denoted ρ. Two sets of variables are to
be considered: design variables, ρ, and state variables, u. These are coupled by a
state equation that for given fixed values of the design variables returns values of
the state variables. An optimization formulation solving the problem of distributing
a limited amount of material in the design domain, such that the objective function
f is minimized and stress constraints are satisfied, can be written as:

min
ρ,u

: f (ρ, u)

subject to : V(ρ) ≤ V∗

: σ(ρ, u) ≤ σ∗

: 0 ≤ ρ ≤ 1
: R = 0

(2.1)
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where V(ρ) is the volume of the structure as function of design variables, V∗ is
the upper bound on material volume, σ(ρ, u) is the stress field in the structure as
function of both design and state variables, σ∗ is a vector of stress constraints, and
R is the residual in obtaining the structural equilibrium in a nonlinear finite element
formulation.

A classical topology optimization problem is theminimization of compliance (Bend-
søe and Sigmund, 2013), which will also be the focus of this chapter. This implies
finding the optimal density distribution to obtain the stiffest possible structure, given
certain applied loads or displacements and constraints. Hence, the objective function
in Eq. 2.1 can be written as:

f (ρ, u) = FT u (2.2)

where F and u are the load and displacement vectors, respectively.

Both objective function and constrains must be written as functions of the design
variables. Since the optimization problem written in Eq. 2.1 is continuous, i.e.
ρe ∈ [0, 1], the interpolation schemes must be defined so that stiffness, volume, and
stress can be interpolated between their possible minimum and maximum values. A
broad summary of interpolation schemes chosen by different authors is provided by
C. Le et al. (2010). Since the compliance can be written as a function of the stiffness
tensor (Andreassen, Clausen, et al., 2011), using the state equation, an interpolation
scheme for the stiffness would automatically allow to write the compliance as a
function of the design variables. The scheme chosen here follows the modified
Solid Isotropic Material with Penalization (SIMP) approach (Sigmund, 2007):

Ce
i jkl(ρe) = Cmin

i jkl + ρe
p(C0

i j kl − Cmin
i jkl) ρe ∈ [0, 1] (2.3)

where Ce
i jkl(ρe) is the stiffness tensor for element e, Cmin

i jkl is a very small stiffness
value assigned to void regions in order to prevent the stiffness matrix from becoming
singular, C0

i j kl is the stiffness tensor for solid isotropic material (where ρ = 1), and p

is a penalization factor (which was set equal to 3 in the results shown in this chapter).
Interpolation schemes for volume and stress are chosen as follows:

V(ρ) =
Nel∑
e=1

ρeve ρe ∈ [0, 1] (2.4)
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σi j(ρ, u) = ρq
e σ

0
i j ρe ∈ [0, 1] (2.5)

where Nel is the total number of elements that discretize the structure, ve is the
volume of each element, σ0

i j is the stress vector for solid isotropic material (where
ρ = 1), and q is a penalization factor.

2.4 Technique to Maximize the Stiffness of a Structure with Volume and
Nonlinear Stress Constraints

A problem of interest when optimizing foldable (and self-deployable) structures is to
maximize the stiffness in the deployed configuration while preventing the structure
from being damaged when it is folded. The same type of problem will be studied in
chapter 3, which investigates the shape and topology optimization using a level-set
method of self-deployable, composite joints. Hence, the set of solutions presented
herewill focus on eitherminimizing (force driven case) ormaximizing (displacement
driven case) the strain energy of the structure, calculated in the initial configuration,
while setting some constraints to either reduce the volume of the structure or prevent
it from being damaged by constraining the stress to a maximum allowable value.
Minimizing or maximizing the strain energy of a structure, depending on whether
the problem if force or displacement driven, leads to maximizing its stiffness. A
schematic description of the problem is presented in Fig. 2.1.

Let us assume that the structure is subject to an imposed rotation, θ. The blue curve
shows an incremental scheme to reach through a geometrically nonlinear solution
a folded configuration that satisfies the equilibrium condition between internal and
external loads. Since the goal is to maximize the stiffness of the structure in the
initial configuration (deployed), there is no reason to use a nonlinear formulation to
calculate the strain energy. A linear perturbation around the initial configuration is
used instead. The state equation for the linear finite element analysis is:

K u = F (2.6)

where K is the stiffness matrix of the structure and F and u are the load and
displacement vectors, respectively. Using this equation, the objective function
assumes the classical form of compliance (Andreassen, Clausen, et al., 2011),
which, except for a constant coefficient (1/2), is the strain energy of the structure .
Equation 2.2 can be rewritten as follows:
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Iterative FEM with 

nonlinear geometry

Impose stress constraint at 

end equilibrium state 

(nonlinear FEA)

M
o
m

en
t

Linear perturbation around 

initial configuration

Maximize stiffness in 

deployed configuration

(linear FEA)

Rotation

Impose volume constraint at 

any iteration (independent 

of state variables)

𝛝

Figure 2.1: Description of the type of problems solved in this chapter. The blue
curve is a representative plot of internal loads, G, and displacements, u, for nonlinear
problems. If an external load F is applied, the corresponding equilibrium displace-
ment u is found using an iterative solver. A linear perturbation around the initial
condition, red curve, allows to calculate the initial stiffness of the structure, while a
stress constraint is imposed at the end equilibrium state of a nonlinear formulation.
A volume constraint can be applied at any iteration, since it is independent of the
state variables.

f (ρ, u) = FT u = uTKu =
Nel∑
e=1

Ce
i jkl(ρe)uT

e k0ue (2.7)

where ue is the element displacement vector and k0 is the element stiffness matrix for
an element with unit stiffness tensor. Recall that the stiffness matrix K is symmetric,
hence KT = K.

A volume constraint is independent of the state variables and can be imposed at any
point during the finite element analysis. In this case, the nonlinear formulation is
only needed to impose a stress constraint in the folded configuration of the structure.
In fact, the stress distribution in the structure depends on the state variables and its
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values change at different iterations of the nonlinear finite element analysis.

In finite element-based, stress-constrained topology optimization problems one
would ideally enforce one or more stress constraints in each finite element or a
scalar stress-related constraint in each element, such as the highest expected com-
ponent of the stress in that element or a single stress value derived from a failure
criterion (e.g. von Mises stress). Using this approach, one would have to apply
as many constraints to the optimization problem as the number of elements, which
would be computationally expensive. Although efficient formulations for imposing
local stress constraints have been implemented (Silva, Beck, and Sigmund, 2019a;
Silva, Beck, and Sigmund, 2019b), a common way to deal with stress constraints
is to select one global stress measure (C. Le et al., 2010; De Leon et al., 2015).
An intuitive choice would be to use the maximum value of the stress in the de-
sign domain. Nevertheless, this choice would preclude the use of a gradient-based
algorithm, since the maximum function is not differentiable.

In this work, the global P-norm stress measure (Duysinx and Sigmund, 1998) is
applied in order to approximate the maximum stress in the design domain. This
formulation aims to control the stress level by capturing the global trend of the
maximum stress. However, for problems with very localized high stresses one
cannot assure that the stress is below the critical value in all areas. This stress
constraint can be written as:

σPN (ρ, u) =
(

Nel∑
e=1
(σV M,e)P

)1/P

≤ σ∗ (2.8)

σV M,e(ρ, u) = ρq
e σ

0
V M,e (2.9)

where σV M,e is the element von Mises stress measure, which can be written as a
function of the element von Mises stress measure for solid isotropic material σ0

V M,e

(where ρ = 1), using the interpolation scheme in Eq. 2.5, and P is the stress norm
parameter. It can be proven that for P → ∞, the P-norm approaches the maximum
stress. However, for high values of P the degree of nonlinearity and discontinuity of
the problem increases, thus increasing the chances of finding a poor local minima.
For the results shown in this chapter the value P = 6 was adopted.
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2.4.1 Sensitivity Analysis of Objective Function and Constraints
The optimization problem defined in Eq. 2.1 has a very large design space, with the
number of design variables equal to the number of elements in the structure. While
a global stress measure can be adopted to solve the issue of having many constraints,
as described before, the size of the design space remains a computational challenge.
A gradient-based optimization algorithm is desirable in this case, hence an analytical
formulation of derivatives of objective function and constraints must be found.

2.4.1.1 Adjoint Method to Calculate Derivatives of Objective Function

In adjoint methods the derivatives of the displacement are not calculated explicitly.
Hence the sensitivity analysis is simplified (Bendsøe and Sigmund, 2013). For the
problem at hand one can rewrite the objective function by adding a zero term:

f (ρ, u) = FT u − λT (Ku − F) (2.10)

where λ is a vector of Lagrangian multipliers. Assuming the external loads to be
independent from the displacement field, the derivative of the objective function
becomes:

f ′e (ρ, u) =
∂ f (ρ, u)
∂ρe

=
∂ f (ρ, u)
∂u

∂u
∂ρe
=

(
FT − λTK

) ∂u
∂ρe
− λT ∂K

∂ρe
u (2.11)

Because Ku − F = 0, from Eq. 2.6, the Lagrangian multiplier vector λ can be
chosen freely. To eliminate the unknown ∂u

∂ρe
from Eq. 2.11, λ is chosen such that:

(
FT − λTK

)
= 0 (2.12)

This equation is in the form of an equilibrium equation and for the chosen objective
function one obtains directly that λ = u, without any additional computations.
Hence, the derivative of the objective function becomes:

f ′e (ρ, u) = −λT
∂K
∂ρe

u = −uT ∂K
∂ρe

u (2.13)

Finally, given the form of the stiffness matrixK, from Eq. 2.3 and 2.7, this derivative
is of the particularly simple form:
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f ′e (ρ, u) = −pρe
p−1

(
C0

i j kl − Cmin
i jkl

)
uT

e k0u (2.14)

2.4.1.2 Derivatives of Constraints

Given the form of the volume of the structure, Eq. 2.4, the derivative can be written
as:

V ′e(ρ) =
∂V(ρ)
∂ρe

= ve (2.15)

The P-norm of the stress, Eq. 2.8, has a muchmore complex derivative. An example
of the sensitivity analysis of the von Mises equivalent stress for a linear finite
element formulation is given by Silva, Beck, and Sigmund (2019a). To simplify the
derivative and avoid the adjoint problem, this work assumes that σV M,e

0 is constant
and therefore:

∂σV M,e(ρ, u)
∂ρe

=
∂ (ρe

q)
∂ρe

σ0
V M,e + ρe

q

�
�
�
�
��>

0
∂

(
σ0

V M,e

)
∂u

∂u
∂ρe
≈ ∂ (ρe

q)
∂ρe

σ0
V M,e (2.16)

This assumption leads to a simpler form of the derivative of the P-norm of the stress:

σ′PN (ρ, u) ≈
1
P

(
Nel∑
e=1

(
ρ

q
eσ

0
V M,e

)P
) 1

P−1 Nel∑
e=1

(
Pq

(
ρ

q
eσ

0
V M,e

)P−1
ρ

q−1
e σ0

V M,e

)
(2.17)

A simplified sensitivity analysis of the stress constraint allows to run the geomet-
rically nonlinear finite element simulation only once for the initial guess, which is
usually a solid isotropic structure (ρ = 1). The advantage is to avoid well-known
problems, such as nonconvergence of solutions due to large element distortions
(Bruns and Tortorelli, 1998; Buhl, Pedersen, and Sigmund, 2000; Bruns and Tor-
torelli, 2003; Yoon and Y. Y. Kim, 2005; F. Wang et al., 2014). Additionally,
this assumption does not prevent the proposed algorithm from satisfying the stress
constraint when convergence is reached, according to Eq. 2.18.

2.4.2 Description of the Algorithm
A block diagram that describes the algorithm developed here is shown in Fig. 2.2.
The optimization loop starts with an initial guess where all density values are set
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equal to 1. Loads and boundary conditions are applied to the structure and a
finite element analysis is performed. The analysis is implemented in two steps, as
illustrated in Fig. 2.1. First, a geometrically nonlinear finite element analysis is
performed and the vonMises stress field for fully solid structure, σ0

VM , is calculated
in the deformed configuration. This analysis is only done once, at the first iteration,
for the fully solid structure (ρ = 1). Second a linear finite element analysis is
performed to calculate the objective function, f (ρ, u). The algorithm makes use of
commercial software, Abaqus 2017, to carry out the finite element analysis.

From equation 2.7, the objective function can be calculated as the sum of the strain
energies in each element. Hence, one set of variables extracted from Abaqus is the
strain energy density, called ’ESEDEN’, in each finite element. The second set of
variables is the von Mises stress, called ’MISESMAX’, in each finite element. For
a shell element ’MISESMAX’ represents the maximum Mises value among all the
section points in the layer. The next guess for the design variables in the optimization
loop is found using a gradient-based solver, which minimizes (or maximizes) the
objective function and imposes certain constraints. The solver chosen for this work
is the method of moving asymptotes (MMA) written by Svanberg (1987). The
convergence criterion is:

max (|ρi+1
e − ρi

e |) ≤ 0.01 e = 0, 1, 2...Nel (2.18)

where i is the current iteration counter.

The architecture of the algorithm is structured in a pattern similar to the 88 lines,
MATLAB code (Andreassen, Clausen, et al., 2011) developed as an extension and
improvement of the well-known code presented by Sigmund (2001). In order to
ensure the existence of solutions to the topology optimization problem and avoid
the formation of checkerboard patterns (Diaz and Sigmund, 1995; Jog and Haber,
1996; Sigmund and Petersson, 1998), a filter is applied to the sensitivities of the
compliance as follows:

�∂ f (ρ, u)
∂ρe

=
1

max(γ, ρe)
∑Ni

i=1 Hei

Ni∑
i=1

Heiρi
∂ f (ρ, u)
∂ρi

(2.19)

where Ni is the set of elements i for which the center-to-center distance ∆(e, i) to
element e is smaller than the filter radius rmin, γ is a small positive number (e.g.
10−3) that avoids division by zero, and Hei is a weight factor defined as:
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start iteration:    i = 1

assign density vector: 𝛒 = 𝟏

run geometrically nonlinear FEA

calculate stress field (in deformed configuration): 𝛔𝐕𝐌
𝟎

run linear FEA

calculate objective function: f = σe=1
Nel Ee ρe 𝐮𝐞

𝐓𝐤𝟎𝐮𝐞

calculate stress norm constraint 

(in deformed configuration): σVM,e = ρe
q
σVM,e
0

σPN = σe=1
Nel σVM,e

P 1/P

calculate volume constraint: V = σe=1
Nel ρe ve

calculate sensitivities: f ′, 𝐕′, 𝛔𝑷𝑵
′

update density vector using MMA: ρe
i+1 = ρe

i + ∆ρe(f
′, Ve

′ , σPN,e
′ )

iteration: i + 1

Figure 2.2: Block diagram of the algorithm developed in this study.

Hei = max(0, rmin − ∆(e, i)) (2.20)

One key feature of the algorithm developed here is the decoupling of the finite
element formulation from the optimization step. By doing so, the finite element
formulation can be outsourced to a software of choice, hence opening many possi-
bilities for studying complex structures undergoing large displacements and/or large
deformations. Figure 2.3 describes how the algorithm is implemented. A Python
script interfaces with Abaqus and MATLAB software. The first part of the script
assigns the geometry of the structure, boundary conditions, mesh discretization,
and optimization parameters such as material and stress penalization factors, etc. A
material distribution is also assigned and each element is associated with a different
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Python Script

Abaqus Software

perform finite element analyses with 

shell elements

Assign user defined parameters:

geometry, boundary conditions, mesh 

size, optimization parameters

Extract quantities of interest:

elements strain energy, stress field 

MATLAB Software

perform optimization using method of 

moving asymptotes

Figure 2.3: Algorithm implementation.

elastic tensor. Subsequently, a finite element analysis of the structure is performed
by Abaqus and quantities of interest are extracted from the result of the analysis.
Finally, a new material distribution is generated according to the results from the
MMA solver through the optimization process, implemented in MATLAB.

2.5 Reference Problem: Messerschmidt-Bölkow-Blohm (MBB) Beam
Awell-known benchmark problem for topology optimization algorithms is theMBB
beam. A solution to this problem is provided by Andreassen, Clausen, et al. (2011)
and replicated in Fig. 2.5a, using the 88 lines, MATLAB code. The design domain,
shown in Fig. 2.4, is rectangular and discretized with square elements. This is
a two-dimensional problem. The beam is simply supported at the bottom right
corner, thus constraining the vertical displacement, and is symmetric. Symmetry is
exploited using simply supported boundary conditions at the center of the full beam.
Hence, only half beam is analyzed. A concentrated force pushes down the center of
the full beam.

A compliance minimization problem (hence minimizing strain energy and max-
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F

Figure 2.4: Design domain of an MBB beam with boundary conditions.

imizing stiffness) with volume constraint is solved. The finite element analysis
is linear and uses CPS4 (plane-stress, 4-nodes, and bi-linear) elements in Abaqus
2017. Mesh and elements are chosen to match the finite element formulation used
by Andreassen, Clausen, et al. (2011) so that results can be compared. The results
shown in Fig. 2.5 were obtained for a mesh of 675 (45 × 15) elements. The side
of each element is 1 mm long, hence, the full structure is 45 mm in length and 15
mm in height. The structure is isotropic and hence the material parameters are the
Young’s modulus and Poisson’s ratio. Equation 2.3 can be rewritten as:

Ee(ρe) = Emin + ρe
p(E0 − Emin), ρe ∈ [0, 1] (2.21)

where E stands for Young’s modulus. The Young’s modulus of the fully solid
material is E0 = 1 GPa and the Poisson’s ratio is ν = 0.3. The concentrated force
is F = 1 N. The stiffness penalization parameter is p = 3 and the minimum radius
for compliance sensitivity filtering is rmin = 1.4 mm. Finally, the upper bound on
material volume isV∗ = 0.5V0, which corresponds to eliminating half of the material
from the solid structure (where V0 is the volume of the solid structure).

As we can see in Fig. 2.5 the two results obtained from the 88 lines, MATLAB code
and the algorithm presented here are comparable. The solution obtained with the
MATLAB code is presented in grey scale values of the density parameter in each
element, Fig. 2.5a. This is a default output and it was not modified to distinguish
its results from the ones generated by the algorithm developed in this study. Darker
elements possess a higher density value. Hence, elements in black have density
ρe = 1 and elements in white (which blend with the background) have density ρe

= 0. This choice allows to easily visualize the optimal topology of the structure
with black cross beams appearing in the design domain. Some grey elements are
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(a)

(b)

Figure 2.5: A solution to the MBB problem (a) MATLAB code (Andreassen,
Clausen, et al., 2011), (b) new algorithm developed here.

still present, but they can be eliminated using different filtering schemes (Sigmund,
2007).

The solution obtained with the algorithm developed in this study is presented in Fig.
2.5b. The values of the density in each element range from 0, corresponding to a dark
blue color, to 1, corresponding to a red color. Ideal results for a binary representation
of the optimal topology, where each element either exists (ρe = 1) or doesn’t (ρe =
0), would only show a dark blue background with a red structure appearing once the
optimization has converged. Because of sensitivity of solutions to filtering schemes,
some results presented in this chapter will be more binarized than others. When
using the algorithm developed here, elements with intermediate density values will
be represented in different colors other than blue or red. The intermediate values
are reported in a legend next to each new solution. For this benchmark, MBB beam
problem, the solution generated by the new algorithm matches well the reference
solution, including elements with intermediate densities.

2.6 Thin Plate in Bending
Aclass of problems that is less explored by existing topology optimization techniques
but is of great interest to find optimal topologies for deployable space structures,
is that of thin, bending structures undergoing large displacements. Some examples
are found in Pajot and Maute (2006), Rupp et al. (2009), and Geiss et al. (2019).
Recently, a level-set method has been used to find topologies that maximize the first
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u

Figure 2.6: Design domain of a plate in bending with boundary conditions.

buckling mode of shell structures subject to a mass constraint (Townsend and H. A.
Kim, 2019). These types of structures are discretized with shell elements in a finite
element-based analysis of the problem.

One straightforward example of this class of problems is shown here. The design
domain, shown in Fig. 2.6, is a thin, flat plate, which is clamped at one end.
An out-of-plane nodal displacement u is imposed at the middle node of the other
end of the plate. Shell elements type S4R where chosen for this study. This is a
commonly used type of shell element and it did not give any convergence issueswhen
performing implicit finite element simulations using Abaqus 2017. The elements
have in-plane dimensions of 1 mm × 1 mm and thickness of 0.1 mm. A mesh of
720 (45 × 16) elements was used to obtain the following results. Hence, the full
plate is 45 mm long, 16 mm wide, and 0.1 mm thick. The material is isotropic with
Young’s modulus E0 = 70 GPa and Poisson’s ratio is ν = 0.33. The imposed end
displacement is u = 10 mm. Since the problem is displacement driven (instead of
force), the objective function in Eq. 2.7, which is a sum of strain energy in each
element, must be maximized instead of being minimized.

ThemaximumMises stress distribution on the plate is shown in Fig. 2.7. Both linear
and geometrically nonlinear finite element formulations were used to analyze the
structure. Geometrical nonlinearity in this case only changes the stress distribution
slightly. Hence, it is interesting to study whether this change affects the results of a
stress constrained topology optimization analysis.

Three cases of topology optimization were performed. The first case aims to find
a topology that maximizes the stiffness of the structure in the initial (undeformed)
configuration, while applying a volume constraint. For this case, a linear finite
element analysis is sufficient. The second case aims to find a topology that maxi-
mizes the stiffness of the structure in the initial (undeformed) configuration, while
simultaneously applying a volume and a stress constraint in the initial configuration.
Also, in this case, a linear finite element analysis can be used. Finally, the third
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(b)

Figure 2.7: Maximum Mises stress distribution in a plate of uniform thickness
with boundary conditions shown in Fig. 2.6 and analyzed with (a) linear FEM, (b)
geometrically nonlinear FEM.

case aims to find a topology that maximizes the stiffness of the structure in the
initial (undeformed) configuration, while simultaneously applying a volume and a
stress constraint in the deformed configuration. For this last case, both linear and
geometrically nonlinear finite element analysis are used.

For the first two case studies, a comparison between the algorithm developed here
and the commercially available Abaqus Topology Optimization Module (ATOM)
2017-HF5 is provided. ATOM 2017-HF5 can efficiently perform size, shape, and
topology optimization of isotropic shell structures. Hence, it can be used to examine
the results obtained with the algorithm proposed in this study. Particular care
was taken to assign the same optimization parameters to both algorithms, such as
stiffness penalization factor, p, convergence criterion, and material interpolation
scheme (SIMP). It was not possible to assign a stress penalization factor, q, and a
stress norm parameter, P, to ATOM 2017-HF5. This indicates that it imposes stress
constraints differently from the method used here. The values of these parameters
are provided later in this chapter in each subsection describing the specific case
study.

For the last case study, no comparison is provided, since ATOM 2017-HF5 cannot
assign a stress constraint in a deformed configuration to a structure discretized with
shell elements.

A summary of the results is shown in Table 2.1, while the following subsections
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provide the details of the study. First, the table shows that the maximum Mises
stress value for the volume constrained example is always higher than the maximum
Mises stress value for examples with both volume and stress constraints (although
the volume constraint remains the same in each case). For a thin plate in bending, a
volume constraint does reduce the maximum Mises stress on the plate, if compared
to the initial structure. Nevertheless, it does not automatically satisfy the imposed
stress constraint.

Second, the table shows that the maximum stress reached when imposing a stress
constraint on the deformed configuration is lower than the one reached when im-
posing the same constraint on the initial configuration, although the strain energy is
slightly higher.

Finally, run-time values show one of the limitations of the algorithm proposed here,
which takes much longer to reach convergence when compared to a commercial
software like ATOM 2017-HF5. The added time is occupied by assigning new
density values, ρe, to each element, and by the interaction between the different
parts of the algorithm, such as a MATLAB script for the MMA optimization solver
and Abaqus software for the finite element analysis.

Table 2.1: Topology optimization of thin plate in bending: summary of results

Constraint ATOM Our Algorithm

Strain Energy [N mm]

Vol. 43.78 44.74
Vol. + Init. Stress 39.90 39.12
Vol. + Def. Stress - 41.29

Volume Fraction

Vol. 0.499 0.500
Vol. + Init. Stress 0.498 0.500
Vol. + Def. Stress - 0.500

Maximum Stress [MPa]

Vol. 205.0 199.7
Vol. + Init. Stress 190.6 176.6
Vol. + Def. Stress - 173.9

Run-Time 6 CPUs [s]

Vol. 64 8505
Vol. + Init. Stress 72 7983
Vol. + Def. Stress - 14291

2.6.1 Application of Volume Constraint
Results from the first case study are shown in Fig. 2.8. The stiffness penalization
parameter chosen for this problem is p = 3 and the minimum radius for sensitivity
filtering is rmin = 1.4 mm. Finally, the upper bound on material volume is V∗ =
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[MPa]

(b)

Figure 2.8: Solutions to thin plate in bending problem with volume constraint
obtained with (a) algorithm presented here, (b) ATOM 2017-HF5 software.

0.5 V0, which corresponds to eliminating half of the material available in the fully
solid structure. Figure 2.8a shows the results obtained using the algorithm proposed
here. Both an upper view of the density distribution, with an optimal topology of
the structure outlined in red, and maximum Mises stress field on the same topology
are presented. Figure 2.8b shows the results obtained using ATOM 2017-HF5.

The values of objective function (strain energy) and volume fraction, V(ρ)/V0, are
plotted in Fig. 2.9 for each iteration of the algorithm developed here. In the
first few iterations the strain energy decreases and the volume fraction reaches its
constrained value of 0.5. Afterwards, the volume fraction remains constant while
the strain energy is maximized.
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Figure 2.9: Convergence plot for a thin plate in bending with volume constraint.
Values of objective function (strain energy) and constraint (volume fraction) are
plotted at each iteration of the algorithm presented in this study.

2.6.2 Application of Volume and Stress Constraints in Initial Configuration
Results from the second case study are shown in Fig. 2.10. Stiffness penalization
and filtering parameters are the same as in the volume-constrained example. In
addition to a volume constraint, which corresponds to removing 50% of the material
in the solid plate, a stress constraint in the initial configuration is applied. A stress
penalization parameter q = 1/2 and a norm parameter P = 6 were chosen. The
constraint limits a global stress measure of the final topology to be less than (or
equal to) 70% of the same global stress measure of the solid plate (set as initial
guess).

Figure 2.10a shows the results obtained using the algorithm proposed here. Both
an upper view of the density distribution and maximum Mises stress field are
presented. The density distribution is similar to the one obtained imposing only a
volume constraint, but themaximumMises stress value is lower. To reduce the stress
values at the clamped edge, the new topology distributes material along the edge,
leaving only a smaller cutout in the center. This happens because all the elements
that discretize the structure are part of the design domain, including elements with
boundary conditions. Hence, these elements may vanish. Figure 2.10b shows
the results obtained using ATOM 2017-HF5. Also in this case the elements with
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(b)

Figure 2.10: Solutions to thin plate in bending problem with volume and stress
constraints in initial configuration obtained with (a) algorithm presented here, (b)
ATOM 2017-HF5 software.

boundary conditions were included in the design domain.

The values of the objective function (strain energy), volume fraction, V(ρ)/V0,
and linear stress fraction, σPN (ρ, u)/σ0

PN , calculated at the initial configuration are
plotted in Fig. 2.11 for each iteration of the algorithm developed here.

2.6.3 Application of Volume and Stress Constraints in Deformed Configura-
tion

The results for the third case study are shown in Fig. 2.12. Stiffness penalization,
filtering, stress penalization, and norm parameters are kept the same as in the second
case study. The key difference is that this time the stress constraint was applied in the
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Figure 2.11: Convergence plot for thin plate in bending with volume and linear stress
constraints. Values of objective function (strain energy) and constraints (volume
fraction and stress fraction in initial configuration) are plotted at each iteration of
the algorithm presented in this study.

[MPa]

Figure 2.12: A solution to the thin plate in bending problem with volume and stress
constraints in deformed configuration obtained with the algorithm presented here.

deformed configuration. Hence, a geometrically nonlinear finite element analysis
was used to calculate the maximum Mises stress field on the solid plate, σ0

VM .

Although for this particular problem the stress field on the solid plate calculated
with a linear finite element analysis is not very different from the one calculated
with a nonlinear finite element analysis, Fig. 2.7, this small difference does affect
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Figure 2.13: Convergence plot for thin plate in bending with volume and nonlinear
stress constraints. Values of objective function (strain energy) and constraints
(volume fraction and stress fraction in deformed configuration) are plotted at each
iteration of the algorithm presented in this study.

the results of topology optimization. Figure 2.12 shows both optimized density
distribution and maximum Mises stress field on this new shape. For this example,
more material was removed from the sides of the plate, instead of creating a cutout
in the middle of the plate as in the previous examples, thus forming a triangular
shape. Since ATOM 2017-HF5 cannot apply a stress constraint in the deformed
configuration on structures discretized with shell elements, the only result available
is the one obtained using the algorithm developed in this study.

The values of objective function (strain energy), volume fraction, V(ρ)/V0, and
nonlinear stress fraction, σPN (ρ, u)/σ0

PN , calculated in the deformed configuration
are plotted in Fig. 2.13 for each iteration of the algorithm developed here.

2.7 Thin Folding Tape Spring
Applying a stress constraint in deformed configuration is particularly important for
shell structures that exhibit snap through during the course of the folding process, and
thus develop very different stress fields when analyzed with linear and geometrically
nonlinear finite element formulations. An example of this type of structures are tape
springs, which are thin-walled, elastic strips with curved cross-section. Tape springs
are most commonly used as tape measures, known as carpenter tapes. Because they
can self-deploy using the strain energy formed in their folded configuration, tape
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𝛝
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Figure 2.14: Design domain of a folding tape spring with boundary conditions.

springs have also been used for space applications, e.g., antennas for CubeStats
(Dontchev, 2009) or a type of deployable boom known as STEM (Rimrott, 1966).
Hence, maximizing the stiffness of a deployable tape spring, while limiting its weight
and preventing it from being damaged when folded, is a very relevant problem for
the space structures community.

The design domain is shown in Fig. 2.14 and it is a tape spring with transverse
radius of curvature of 6 mm, aperture angle of 120°, and uniform thickness of 0.1
mm. The tape spring is 45 mm long and discretized with 585 shell elements. The
material is isotropic with Young’s modulus E0 = 70GPa and Poisson’s ratio ν = 0.33.
Two equal and opposite rotations, θ, are applied at the two ends of the cylindrical
shell. Each rotation is 30°, for a total folding angle of 60°. Since the problem is
rotation driven, the objective function must be maximized.

The maximum Mises stress distribution on the plate is shown in Fig. 2.15. Both
linear and geometrically nonlinear finite element formulations were used to analyze
the structure and the results are shown respectively in Fig. 2.15a and 2.15b.

The problem of maximizing the stiffness of the tape spring in the initial configu-
ration, while imposing a volume constraint and a stress constraint in the deformed
configuration, was solved using the algorithm developed in this study. A volume
constraint was set to remove half of the material from the solid structure. Concur-
rently, a stress constraint was set to limit a global stressmeasure (which approximates
the maximum Mises stress value), calculated in the deformed configuration, to half
the value of the same stress measure in the solid structure. Stiffness penalization
is p = 3, filtering radius ir rmin = 1.3 mm, stress penalization is q = 1/2, and norm
parameter is P = 6. To provide a comparison, a similar problem was solved using
ATOM 2017-HF5 software, but imposing volume and stress constraints in the initial
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Figure 2.15: Maximum Mises stress distribution on a tape spring with boundary
conditions shown in Fig. 2.14 and analyzed with (a) linear FEM, (b) geometrically
nonlinear FEM.

configuration. The results are shown in Fig. 2.16 and are summarized in Table 2.2.

Table 2.2: Topology optimization of a thin folding tape spring: summary of results

ATOM Our Algorithm
Strain Energy [N m] 2.56 3.65
Volume Fraction 0.500 0.500

Maximum Stress [MPa] 1948 387.6
Run-Time 6 CPUs [s] 83 9120

To plot the maximum Mises stress field in deformed configuration, the elements
with lowest density values (ρe ≤ 0.125) were removed. In fact, the presence
of low density elements causes computational problems, such as nonconvergence
of the solution, particularly in structures that exhibit geometrical nonlinearities.
This problem is discussed by Bruns and Tortorelli (2003), who implement element
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(b)

Figure 2.16: A solution to the folding tape spring problem with volume and stress
constraints. (a) Algorithm presented here with constraints in deformed configura-
tion. Elements with lowest density values (ρe ≤ 0.125) were removed to plot the
maximum Mises stress field. (b) ATOM 2017-HF5 software with constraints in
initial configuration.

removal and reintroduction techniques to be able to run geometrically nonlinear
topology optimization algorithms, and by F. Wang et al. (2014), who model the
strain energy of low stiffness regions using small displacement theory and then use
interpolation schemes to connect the strain energy in these regions with the one
calculated in rest of the structure.

One advantage of the algorithm presented here is that a geometrically nonlinear
finite element analysis is only performed once, for the solid structure, to calculate the
maximum Mises stress field in deformed configuration. Afterwards, the algorithm
performs linear simulations, as discussed in section 2.4.2. This approach ensures
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Figure 2.17: Convergence plot for folding tape spring with volume and nonlinear
stress constraints. Values of objective function (strain energy) and constraints
(volume fraction and stress fraction in deformed configuration) are plotted at each
iteration of the algorithm presented in this study.

convergence of the finite element simulation at each iteration of the optimization
loop.

Figure 2.17 shows the values of objective function (strain energy), volume fraction,
V(ρ)/V0, and nonlinear stress fraction, σPN (ρ, u)/σ0

PN , calculated in deformed
configuration, for each iteration of the algorithm. The optimization study reaches
convergence after 76 iterations and both volume and stress constraints are satisfied.

2.8 Conclusion
This chapter presented a study on the effects of volume and stress constraints imposed
in a deformed configuration of thin shell structures using density-based topology
optimization and proposed a new algorithm capable of applying these constraints.
The advantage of density-based algorithms is that no assumptions on the position
or the shape of the cutouts in the structure are necessary.

In particular, solutions for a thin plate in bending and a tape spring were provided.
Three challenging aspectswere considered: first, geometrical nonlinearities, second,
a global stress constraint, and third, decoupling of topology optimization and the
corresponding computational mechanics method, such as a finite element method.
An algorithm for topology optimization, using a density-based method, was devel-
oped. Decoupling the finite element analysis of a structure at each optimization loop
allowed to use Abaqus commercial software.
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A simplified sensitivity analysis of the stress constraint was found. This allowed to
run the geometrically nonlinear finite element simulation only once for the initial
guess and avoid well-known problems, such as nonconvergence of solutions due to
large element distortions. The results show that the assumption made to simplify
the sensitivity analysis did not prevent the proposed algorithm from finding new
topologies that satisfy the stress constraint.

First, a solution to a reference problem, the Messerschmidt-Bölkow-Blohm (MBB)
Beam problem, was used to compare results from the algorithm developed through
the present work and solutions provided in literature. A second case study was a thin
plate in bending subject to volume, global stress, and combined volume and global
stress constraints. The results obtained using linear FEM were examined against a
commercial tool for topology optimization, ATOM 2017-HF5. Finally, solutions
for a thin folding tape spring with volume and stress constraints in both initial and
deformed configuration were provided. The solution obtained using the algorithm
developed here shows a 30% increase in strain energy (hence deployed stiffness)
compared to the solution obtained using ATOM 2017-HF5. Most importantly, this
solution significantly reduced the maximum stress in deformed configuration.

The algorithm developed here can be used and adjusted to generate a wide range
of solutions, but there are improvements that could be made. First, it could be
generalized to study more complex materials, such as fiber reinforced composites,
which are more interesting for deployable space structures. Second, since an ap-
proximation wasmade for the derivative of the global stress measure in the deformed
configuration, additional studies can be performed to determine whether more op-
timal solutions can be found with different approximations, or without making this
approximation. Finally, the algorithm can be written to interact more efficiently
with the commercial finite element solver used here (Abaqus 2017), which would
result in shorter run-times.
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C h a p t e r 3

TOPOLOGY AND SHAPE OPTIMIZATION OF COMPOSITE
SELF-DEPLOYABLE THIN SHELLS

3.1 Introduction
The optimization method presented in chapter 2 has the advantage of not needing
any assumptions on the initial position or shape of the cutouts. In theory, this
makes the method generally applicable to any structural problem. In practice, a
limitation of the method is having a large number of design variables, equal to the
number of elements in a finite element discretization of the structure. Hence, it
becomes computationally expensive for larger structures or more complex shapes,
which require many elements. Recent studies have proposed solutions to increase
the computational efficiency of a density-based approach to topology optimization
(Aage et al., 2017). This field of research is beyond the scope of the studies presented
here.

This chapter proposes two optimization methods applicable to self-deployable, thin
shells forming a 90° corner andmade entirely of fiber reinforced composite material.

The first method uses level-set functions to place cutouts on the shells, so that they
can be folded without being damaged, while also maximizing the deployed stiffness.
Although the type of functions used were of a specific kind, thus restricting the
design space, this approach provides unique solutions to the concurrent optimization
problem of composite, thin-shell structures with complex shapes and geometrical
nonlinearities.

The second method uses a spline representation of the contour of a single cutout on
the shell, thus performing a shape optimization of the cutout (Haftka and Grandhi,
1986). The cutout is placed in a convenient location on the shell, based on prior
knowledge of its deformed shape. This approach is often used for fine tuning of
solutions obtained using topology optimization methods (Maute and Ramm, 1997).

3.2 Background and Layout of the Chapter
Self-deployable structures made of composite materials have several advantages
over traditional deployable structures with mechanical joints. Distinctive benefits
are their lightweight, lower cost due to a smaller number of components, and friction-
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insensitive behavior. Mechanical hinges can be replaced with lighter, smaller, and
cheaper continuous elements made from thin composites.

Concepts for lightweight joints were previously proposed. Two examples are tape-
spring rolamite (TSR) hinges (Watt and Pellegrino, 2002) and compliant hinges
(Footdale, Banik, and T. Murphey, 2010). Hinges incorporating elastic memory
composites have also been shown to be a viable approach for lightweight, cost-
effective mechanisms, providing controlled, low-shock deployment and structural
efficiency (Francis et al., 2003; Barrett et al., 2006). While concepts using tape
spring hinges have been incorporated within straight tubes (Mobrem and Adams,
2009b; Mallikarachchi and Pellegrino, 2011), thin shells forming a corner that
exploit cutouts to achieve foldability have not been studied before. Some examples
of foldable thin shells are shown in Fig. 3.1. This chapter presents two methods to
position cutouts on this type of shells and optimize their shape.

(a)

(b) (c)

Figure 3.1: Examples of foldable thin shells with cutouts (a) tape spring hinge in
straight tube (Mallikarachchi and Pellegrino, 2010), (b) concept of shells forming a
corner, (c) concept of shells forming a three-way miter joint.

Shape optimization is chosen when a structural design solution already exists and
studies are performed to explore the sensitivity of the existing solution to design
variables, with the objective of improving the current solution. Some examples of
shape optimization of composite, ultra-thin shells with geometrical nonlinearities
are provided byTan and Pellegrino (2006) andMallikarachchi and Pellegrino (2010).
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Like the work shown here, these studies also aim to maximize the deployed stiffness
of the structure subject to a maximum stress limit in the packaged configuration.
The design variables for the optimization problem are a few geometrical features of
the structure under consideration. For example, Tan and Pellegrino (2006) optimize
the angle and width of stiffeners and the angle of slits within thin-shell, deployable
reflectors; while Mallikarachchi and Pellegrino (2010) optimize length, width, and
diameter of slots for composite tape-spring hinges. Shape optimization requires
a deep understanding of the mechanics of deformation of the structure and good
engineering intuition to choose the parameters to be considered in the optimization.

Topology optimizationmakes no assumptions on the layout of the structure (Bendsøe
and Sigmund, 2013; Andreassen, Clausen, et al., 2011). A review of different
methodologies that use this approach was completed by Sigmund andMaute (2013).
Level-set methods play an important role amongst these techniques (M. Y. Wang,
X. Wang, and Guo, 2003). Different studies have tackled various challenges for
topology optimization. First, geometrical nonlinearities were taken into account by
Buhl, Pedersen, and Sigmund (2000), Pedersen, Buhl, and Sigmund (2001), Bruns
and Tortorelli (2003), Cho and Jung (2003), and F. Wang et al. (2014).

The challenge of performing topology optimization using shell elements was ad-
dressed by Pedersen, Bose, et al. (2017) and Ye et al. (2019). For example, Pedersen,
Bose, et al. (2017) uses a commercial software, Abaqus 2017, to optimize a car
bumper, modeled with shell finite elements, by creating a structure with variable
thickness. Since the thickness is not allowed to become zero, cutouts cannot be
formed in the structure. Nevertheless, interesting results are shown for nonlinear
sizing of shell thicknesses using adjoint sensitivities and including the simultaneous
modeling of three nonlinearities: large deformations, plasticity, and contact.

A different study by Ye et al. (2019) uses a level-set method, which allows for
formation of cutouts, to optimize shell structures, but without including geometrical
or material nonlinearities. Level-set topology optimization methods were also used
by Maute, Tkachuk, et al. (2015) to optimize 3D printed composites, and by Geiss
et al. (2019), for shell structures undergoing large deformations. Finally, topology
optimization problems including composite materials were analyzed by Sigmund
and Torquato (1996) and Sigmund (2000) using numerical homogenization. This
technique is also used to compute composite materials’ properties (Andreassen and
Andreasen, 2014).

This chapter presents topology and shape optimization studies on composite, thin
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shells forming a corner that can fold and self-deploy. First, a design with no cutouts
is presented and the choices of a particular material and laminate are discussed.
Then, techniques to analyze the shell are introduced: specifically, we present a
geometrically nonlinear finite element analysis, to study the folding behaviour of
the shell, and a failure criterion, which will be discussed in greater detail in chapter
4. The criterion is used to extend finite element simulations and predict the onset
of failure in folded shells.

The problem of finding the number, location, and shape of cutouts to place in a shell
so that it can be folded without being damaged, while maximizing their deployed
stiffness, is studied. First, preliminary design choices based on physical intuition are
shown. Second, an optimization approach that uses level-set functions is proposed.
Third, shape optimization of a single cutout is implemented. Finally, thin shells
forming a corner, with cutouts derived from the optimization studies, are built and
tested.

3.3 Design of Self-Deployable Thin Shells Forming a Corner
Self-deployable thin shells forming a structural element with a 90° corner were cho-
sen as a case study. The structure is composed of two thin-walled tubes intersecting
at 90°, Fig. 3.2. This shape, although quite simple, introduces the geometrical
complication of non-zero Gaussian curvature at the intersection of the two tubes.
The structure must fold, with the two tubes rotating towards each other, and the total
folding angle is the sum of the folding angles of the two tubes. The total folding
angle, geometry of the shell, and composite material were chosen as follows:

• Total folding angle is 45°.

• Diameter of each thin-walled tube is 32 mm and length is 200 mm.

• Thickness of the shell ranges between 90 and 390 µm depending on layup.

• Material is plain-weave 525 Astroquartz® II fabric (quartz fiber), from JPS
Composite Materials (JPS, 2017), pre-impregnated with PMT-F6 cyanate
ester resin, from PATZ Materials & Technologies (PATZ, 2019).

The folding angle was chosen based on convergence of geometrically nonlinear
finite element simulations, described later in this chapter, to allow fast numerical
simulations needed to perform optimization studies. Nonconvergence of iterative
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finite element solvers is an issue when implementing large displacement simulations
of composite, thin shells. Many authors have addressed this issue by running explicit
simulations with very small increments, to obtain accurate results (Soykasap, 2009;
Banik and T. Murphey, 2010; Mallikarachchi and Pellegrino, 2011; Stabile and
Laurenzi, 2014).

Benchmark problems have been used to compare implicit and explicit solver of
Sierra Solid Mechanics code (Peterson and Mobrem, 2017; Mobrem, Peterson,
et al., 2017). Generally, the drawback of choosing an explicit solver is longer
simulation times, which is not a viable option when running optimization studies.
Therefore, an implicit solver is adopted in this study, and the largest folding angle
is restricted to 45°. Resolving nonconvergence issues for larger folding angles is
beyond the scope of this study.

A plain-weave, quartz fiber composite was chosen because of its higher ultimate
strain (2.6% measured in tensile tests of [0pw]2 and [0pw]4 samples) compared to
carbon fiber (0.95% from technical data sheet by NTPT (2018)), which is useful
to fold the shell. More details on material characterization are provided in chapter
4. Considering that the 0° direction of the fibers corresponds to the axial direction
of each tube, the layup is composed of four regions of two, three, four and six
plies respectively, as shown in Fig. 3.2. The plies are oriented as follows: two-ply
regions [45pw]2, three-ply regions [45pw/0pw/45pw], four-ply regions [45pw]4, and
six-ply regions [45pw/45pw/0pw]s, where 0pw and 45pw indicate plain-weave laminae
consisting of fibers oriented respectively at 0/90° and +45/−45°. A single ply is 90
µm thick.

This layup was chosen based on preliminary folding experiments. A two-ply region
with fibers oriented at 45° was placed at the corner. This thinner region makes
the shell more compliant and therefore easier to fold. Because the shell must also
be stiff when deployed, an additional ply oriented at 0° was added to each tube,
thus forming a three-ply region. Finally, four-ply and six-ply regions exist because
of manufacturing capabilities, described in Appendix A, used to build thin shells
forming a corner.

3.4 Analysis Techniques
Two techniques were adopted to study these thin shells. First, a finite element
model was used to analyze the folding behavior and to locate the areas where stress
concentrations occur when the shells are folded. This analysis allowed us to identify
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(a) (b)

(c) (d)

Figure 3.2: Regions of shell forming a corner, with different laminates (a) 3 plies,
(b) 6 plies, (c) 2 plies, (d) 4 plies.

where to place the cutouts. Second, a failure criterion for thin, plain-weave, FRP
laminates was implemented to numerically detect the onset of failure.

Geometrically nonlinear finite element simulations were carried out using the com-
mercial software Abaqus 2017. Different types of shell elements (S3, S4, and S4R)
were tested and S4R shell elements were chosen to run the simulations because
the results obtained using S4R shell elements produced a better match with the
experimental results shown in section 3.7.3.

The four different layups described before were defined in the model, using a
feature provided in Abaqus and called "general section properties", which allows
to manually input the ABD stiffness matrix of a composite material. The provided
ABD matrix was tuned to match the bending stiffness matrix, D, of each layup.

The full ABD matrix was calculated using Soykasap’s micromechanical models
(Soykasap, 2006), which extend classical lamination theory to woven composites.
Additionally, a correction to the Dmatrix was applied to match the results of 4-point
bending experiments. The experiments measured the terms D11 = D22 and found
that the micromechanical models over-predict these terms for ultra-thin composites.
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Using the experimental results, correction factors were calculated for each layup
and applied to every term of the D matrix, while the matrices A and B were left
unchanged. Chapter 4 shows the experimental results and a summary of correction
factors for each layup, in Table 4.4.

Figure 3.3 shows the boundary conditions applied to the finite element model.
Three massless reference points, RPcenter , RPle f t , and RPright , were defined. Two
rectangular patches, shown in red, were coupled to the left and right reference points
such that the in-plane rotations of the patches, θx , match the rotations imposed to
the reference points. The rotations of the three points were coupled so that the sum
of the rotations of the left and right reference points equals the rotation of the center
one, which was set at 45°. This technique was implemented to keep the reaction
moments equal at both ends of the shell, to simulate the boundary conditions applied
in the experimental characterization of the shell, section 3.7.3. Finally, two nodes
at the bottom of the shell, shown by red dots in Fig. 3.3, were constrained to remain
in the y-z plane and all the translations of the node at the top were set to zero.

RPcenter

RPleft

RPright

XZ

Y

Ux = 0

Ux = 0

Ux, Uy, Uz = 0

 θx_RPleft + θx_RPright = θx_RPcenter

 θx_RPcenter = 45º

Figure 3.3: Finite element model and boundary conditions.

The simulations were carried out with an implicit solver, where after each increment
the analysis starts Newton-Raphson iterations to enforce equilibrium of the internal
forces with the external loads. Convergence settings based on "half-increment
residual tolerance" were used. This tolerance represents the equilibrium residual
error (out-of-balance forces) halfway through a time increment. If the half-increment
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residual is small, it indicates that the accuracy of the solution is high and that the
time step can be increased; conversely, if the half-increment residual is large, the
time step used in the solution should be reduced. The Abaqus default half-increment
residual tolerance was used, which is set at 1000 times the time average force and
moment values, for applications without contact. A result from the finite element
model simulations is shown in Fig. 3.4.

Figure 3.4: Contour plot of stress resultants in shell without cutouts folded 45°.

The laminate failure criterion by Mallikarachchi and Pellegrino (2013), described
in detail in chapter 4, is used to predict the onset of failure in folded shells. The
criterion applies to layups with same orientation plies. Therefore, only regions with
two and four plies can be analyzed, since all the plies are oriented at ± 45°. This
limitation is acceptable because the numerical result in Fig. 3.4 shows localized
stress resultants where the region with two plies is located.

The three failure indices in Eq. 4.16-4.18 were calculated at each step of the
simulations and contour plots were obtained. For all cases examined in this study,
the largest values of the failure indices are reached in the two-ply regions and the
first failure index FI1 is the most critical. Therefore, the rest of this study will only
examine FI1 in the two-ply regions.

As an example, a shell with a circular cutout was analyzed and is shown in Fig. 3.5.
According to the failure criterion, any failure index exceeding the value of 1 predicts
the onset of failure on the shell. Black areas plotted in Fig. 3.5 are regions where
the first failure index is smaller than 1. White areas are regions corresponding to
cutouts or parts of the shell that were excluded from the failure analysis. Finally, all
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the elements plotted with a color other than white or black have reached a failure
index greater than 1.

(a) (b)

Figure 3.5: Contour plots of in-plane failure index FI1 corresponding to a shell
folded 45°. FI1 has been mapped onto a deployed shell.

3.5 Preliminary Designs Based on Physical Intuition
An initial attempt to place cutouts was guided by the results from the finite element
analyses. A contour plot of the circumferential curvature change kc in each of the
tubes is shown in Fig. 3.6a. An intuitive design approach to reduce the stress peaks
is to simply place cutouts where the highest localized curvature changes are reached.
A first design was obtained by placing circular cutouts with 14 mm diameter and
centered on the region of highest localized curvature change, Fig. 3.6a.

(a) (b)

Figure 3.6: Shells with sharp corners folded 45° (a) contour plot of circumferential
curvature change, Kc, on shell with circular cutout, (b) contour plot of FI1 on shell
with cutout made of intersecting ellipses. Both Kc and FI1 have been mapped onto
deployed shells.

A second class of cutout shapes, Fig. 3.6b, was obtained by intersecting two ellipses
and symmetrically varying the major and minor axes of each ellipse. Elliptical
cutouts were chosen to eliminate wider areas of the shell, following the contour plot
in Fig. 3.6a . The areas on the shell with FI1 > 1 are circled in red in Fig. 3.6b and
show that the elliptical cutouts do not prevent the shell from being damaged.
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Figure 3.7: Contour plot of FI1 on shell folded 45° with cutout inspired by cylin-
drical booms with slotted hinges (Mobrem and Adams, 2009b; Mallikarachchi and
Pellegrino, 2010). FI1 has been mapped onto a deployed shell.

The cutout shape in Fig. 3.7 was inspired by designs previously developed for
thin-shell, cylindrical booms with slotted hinges (Mobrem and Adams, 2009b;
Mallikarachchi and Pellegrino, 2010) and shown in Fig. 3.1a. A contour plot of
the first failure index shows that this kind of shape does not prevent damage of the
shell. Therefore, larger cutouts were explored. A successful design, shown in Fig.
3.8, was found by partially removing the two-ply region. Figure 3.8b shows that
localized fold lines form near the edges of the cutout, thus allowing the shell to
fold 45° while FI1 < 1. Partially removing the two-ply region of the shell resolved
the issue of material damage, but also greatly reduced the stiffness of the shell in
comparison to other cutout shapes. The bending stiffness and the maximum value
of the first failure index for the cutouts considered in this section are summarized at
the end of the chapter, in Table 3.1 and Fig. 3.18.

(a) (b)

Figure 3.8: Successful shape with smooth corners and partially removed two-ply
region. (a) Contour plot of FI1 on deployed shell, (b) contour plot of FI1 on shell
folded 45°.

3.6 Optimization Problem Formulation
The problem of finding a better shape, number, and position of cutouts to fulfill
the stiffness requirements and failure constraints of a self-deployable shell forming
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a corner was studied by a numerical optimization. The minimization problem is
defined as follows:

min
x1...xn

: −KB

subject to : αi < xi < βi, i = 1, 2, 3, ..., n

: max (FI1) < 1

(3.1)

where n is the number of design variables. The objective function in Eq. (3.1) is
the bending stiffness of the shell in the deployed configuration. Successful cutouts,
generated via optimization techniques that will be discussed in the next two sections,
must satisfy two constraints. First, they must remain within specified boundaries, α
and β, defined by the geometry of the shell. Second, they must prevent damage of
the shell, thus constraining the maximum value of the first failure index in the folded
configuration to be less than one. Two optimization approaches are presented. The
first approach uses level-set functions for topology optimization of the shell, and
the second approach applies a shape optimization technique (Haftka and Grandhi,
1986).

3.7 Topology Optimization using Level-Set Functions
Level-sets were introduced in chapter 2. Here, a topology optimization approach
using level-set functions was studied. This method has the advantage of reducing the
number of design variables when compared to a density-based approach (Bendsøe
and Sigmund, 2013) discussed in chapter 2. It also allows for a broad exploration
of shapes, number and position of cutouts. First, the algorithm assigns values to the
design variables, then generates new shapes of cutouts based on those values. Once
these shapes are created, a Python script generates an input file for the finite element
software, Abaqus 2017, which runs a finite element analysis and returns the values
of the first failure index and the overall bending stiffness of the structure.

3.7.1 Method Description
A 3-D basis function, z = f (xp, yp), is defined on a projection plane tangent to the
side of the shell. The basis function is chosen such that it vanishes at the boundaries
of its domain. Hence, the geometrical constraints of the optimization problem in
Eq. (3.1) are automatically satisfied. A cutting plane, parallel to the xp− yp plane, is
then introduced such that contour shapes are formed. The z-coordinate of the plane
directly influences the contour shapes that are generated through the intersection of
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the plane and the chosen basis function.

The method is divided into four steps, shown in Fig. 3.9. The first step, Fig.
3.9a-3.9b, consists in finding a mapping between a convenient domain, on which
the basis function is described (in this case a square), and the domain on which the
contours of the cutouts are generated. The latter was chosen as an L-shaped, smooth
domain that represents a portion of the side view of the shell. The second step, Fig.
3.9c, involves choosing a basis function and applying the mapping to it. Two basis
functions were investigated, a series of cosines squared:

z =
Nh∑

h=1

Nl∑
l=1

an

[
cos (2h + 1)

πxp

2
× cos (2l + 1)

πyp

2

]2

, n = 1, 2, 3, ..., NhNl (3.2)

and a series of cosines and sines squared:

z =
Nh∑

h=1

Nl∑
l=1

an

[(
cos (2h + 1)

πxp

2
+ sin (hπxp)

)
(

cos (2l + 1)
πyp

2
+ sin (lπyp)

)]2

, n = 1, 2, 3, ..., NhNl

(3.3)

These functions were chosen because they vanish at the boundaries of their domain,
which is a square bounded between -1 and 1 along xp and yp, and because they form
a different number of peaks by changing the numbers of terms in the series. The
third step, Fig. 3.9d, consists in intersecting the chosen basis function with a plane
parallel to the xp − yp plane. Once the basis function is chosen, the only design
variables used to define the problem and carry out the optimization analysis are the
z-coordinate at which the cutting plane is set, z = c, and the numbers of terms in
the series, Nh and Nl , which define how many peaks the function will have, thus
defining the number of separate cutouts.

Because there are three design variables, no particular optimization algorithm was
chosen. Instead, the entire design space was evaluated. In this study, the coefficients
of the series, an, where chosen equal to 1 for simplicity. Additionally, the inclination
angles between the cutting plane and the xp−yp plane were set at 0° (parallel planes),
but could also be chosen as design variables to generate a wider range of shapes.

Examples of shapes of cutouts that can be obtained by intersecting a mapped basis
function with different planes, z = c1 and z = c2, are shown in Fig. 3.10.
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Figure 3.9: Steps of topology optimization method using level-set functions: (a)
choose a convenient domain to generate a basis function, (b) define a mapping, (c)
choose basis function and apply mapping, (d) cut function at z = constant, and (e)
project cutout onto the shell.
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Figure 3.10: Examples of cutout shapes obtained by intersecting a chosen basis
function, Eq. 3.2, with planes z = 1 and z = 2.6.

3.7.2 Results from Level-Set Method
Three examples of shell designs generated using the level-set optimization approach
are shown in Figs. 3.11a - 3.11c. The first design, Fig. 3.11a, was obtained using
Eq. (3.2) and hence, the shapes of the cutouts are symmetric. This design produced
the highest bending stiffness, while satisfying the constraint placed on the maximum
value of the first failure index, and was obtained for the choice Nh = 0 and Nl = 2.
The boomerang-shaped cutouts leave strips of material connecting the right and left
parts of the shell, thus providing additional bending stiffness.

The second design, Fig. 3.11b, was again obtained using a series of cosines squared,
but choosing Nh = 1 and Nl = 2. The cutout at the center removes areas of localized
stresses, while thin slits on the sides help releasing stress when the shell is folded.

Finally, the third design, Fig. 3.11c , was obtained using Eq. (3.3), and this results
in a non-symmetric cutout. The shape in Fig. 3.11c was obtained by choosing Nh =

2 and Nl = 0. Despite being the best result obtained using a non-symmetric basis
function, the cutout is larger, therefore the shell has a lower bending stiffness when
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compared to shells with symmetric cutouts. A summary of the bending stiffness
and the maximum value of the first failure index for these three designs is provided
in Table 3.1 and in Fig. 3.18.

(a)

(b)

(c)

Figure 3.11: Results from level-set method, obtained using (a) Eq. (3.2) and Nh=0,
Nl=2, (b) Eq. (3.2) and Nh=1, Nl=2, (c) Eq. (3.3) and Nh=2, Nl=0.
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3.7.3 Experimental Verification of Level-Set Method Results
To experimentally verify the results from the level-set optimization method, a self-
deployable shell was built using the silicon molding manufacturing technique de-
scribed in Appendix A. The cutouts in Fig. 3.11a were laser-cut onto the shell.

A quasi-static folding experiment was conducted using the setup shown in Fig.
3.12a. Two 35 mm × 15 mm curved clamps that conformed to the curvature of the
cylindrical tubes were used. The clamps constrained a small region at the end of
each tube, thus leaving the end cross-sections free to ovalize. The same boundary
conditions were applied in the numerical simulations. The clamps also connected
the tubes to brackets that were initially aligned at 45°, to mount the shell in a stress
free configuration.

The experiment was rotation controlled, to match the numerical simulations, and the
rotations were imposed manually, through two gear boxes. One of the brackets was
mounted on ball bearings and it was free to slide towards the other. The bracketswere
mounted on gearboxes, connected to strain gauges and a data acquisition system.
Once the sliding bracket had been rotated by a small angle (1-3°), the reaction
moment from the tube connected to that bracket was recorded. The second, fixed
bracket was then rotated until the reaction moment recorded on the attached tube
equaled the one recorded on the other tube. This process was repeated until the shell
was folded to 45°.

(a) (b)

Figure 3.12: Folding experiment (a) setup, (b) test data and comparison to simulation
results. The graph shows the reaction bending moments plotted against the folding
angle; a folding angle of 0° corresponds to a fully deployed shell.

At the end of the test, the moment-rotation profile was obtained by plotting the
folding angle and the corresponding moment at each step, Fig. 3.12b. The moment-
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rotation profile resulting from numerical simulations was then superposed to the
experimental results. The two curves show good agreement for the first 30° of
folding, but deviate from each other for the last 15°, possibly due to manufacturing
imperfections of the physical shell and to the fact that the simulation was built using
a linear material model.

Two results stand out from this experiment. First, the bending stiffness of the
deployed shell predicted by the simulation matches the bending stiffness of the shell
in the deployed configuration, defined by the tangent at the origin of the moment-
rotation curve as follows:

KB =
∆M0
∆θ0

(3.4)

where ∆M0 is the linear increment in bending moment measured on the tangent to
the moment-rotation curve at the initial point (M = 0, θ = 0), and ∆θ0 is the linear
increment in folding angle, measured in radians, on the same tangent. Second,
no damage was observed after folding the shell 3 times and the deployed bending
stiffness, experimentallymeasured viamoment-rotation curve, did not change before
and after the shell had been folded.

(a) (b)

Figure 3.13: Deformed shape of the shell near the cutout (a) experiment, (b) simu-
lation.

Figure 3.13 shows the deformed shape of the shell near the cutout. While the actual
deformed shape and the finite element simulation are quite similar, thus further
validating the numerical simulation, some differences can be noted. For example,
the strips of material between the cutouts develop an inward buckled shape in the
experiment, while in the simulation they bend uniformly. This is most visible in
the center strip, as pointed by red arrows in Fig. 3.13a-3.13b, and it occurs because
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of a slight shape imperfection of the mold used to build the shell, which creates a
localized, concave bend at corner.

3.8 Shape Optimization of Single Cutout
Finite element simulations, discussed in section 3.4, showed that stress tends to
concentrate at the corner of the thin shell. Using this information we can reduce
the problem to studying the shape of a single cutout. A contour was defined on a
projection plane, tangent to the side of the shell, using control points and a spline
fit between all the points. The projection plane provides a convenient Cartesian
coordinate system to describe the control points. The contour was then projected
onto the shell. The coordinates of each control point, xi, on the projection plane
were chosen as design variables of the minimization problem. A visualization of
the design space is provided in Fig. 3.14.

Figure 3.14: Description of design space for shape optimization of a single cutout.

The geometrical constraints in Eq. (3.1) were initially defined so that the control
points remain within the red contour, Fig. 3.14, corresponding to the cutout in Fig.
3.8, which allowed the shell to fold without any damage. Constraining the control
points to fit within this contour not only ensures that the cutout will remain within
the physical boundaries of the shell, but it also limits the design space to shapes that
have a smaller area than the one found in Fig. 3.8, thus improving the possibility of
finding solutions with higher bending stiffness in the deployed configuration.

Since the control points can be placed anywhere within the red contour, and the
position of each point is independent of the others, two issues emergewhen imposing
geometrical constraints. First, the red contour is non-convex, hence the spline
connecting the control points can escape the contour, while the points remain inside.
For example, if control points 1 and 8 in Fig. 3.14 were positioned respectively at the
top-right and middle-right corners of the contour, the spline connecting those two
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points would not follow the L-shape, thus remaining within the contour, but would
cut across the L-shape and fall outside the contour. To prevent this, the control points
were originally defined on a square domain, Fig. 3.15a, with Cartesian coordinates
xp and yp, and then transformed to an L-shaped domain, Fig. 3.15b, via a mapping,
with Cartesian coordinates x and y.

Another issue was preventing the spline from intersecting itself. The issue was
resolved by constraining each control point to remain within its own sub-domain of
the square domain, displayed with dotted lines in Fig. 3.15a. This approach limits
the design space but does not prevent the chosen algorithm from finding a solution
to the optimization problem, as described in section 3.8.2.
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Figure 3.15: Geometrical constraints for shape optimization problem (a) control
points and spline defined on a square domain, (b) control points and spline mapped
to and L-shaped domain.

3.8.1 Mesh Convergence Studies
The objective function in Eq. (3.1) and the associated constraint on the maximum
failure index were studied using different mesh sizes for the finite element formu-
lation. The resulting trends are shown in Fig. 3.16. Starting from the initial guess
in Fig. 3.16a, a circular cutout whose contour is described by 8 control points,
connected by a spline, one coordinate of a single control point was modified in-
crementally to achieve the final configuration in Fig. 3.16b. This corresponds to
varying only one design variable xi of the minimization problem in Eq. (3.1), while
the other variables are kept constant. The results from this study are plotted in Figs.
3.16c and 3.16d for four mesh sizes. Each data point was obtained by running a
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Figure 3.16: Mesh convergence studies (a) initial guess, (b) final shape of cutout
after modifying one coordinate of a single control point (one design variable, here
named x), (c) objective function plotted against the design variable x for different
mesh sizes, (d) maximum value of the first failure index plotted against the design
variable x for different mesh sizes, and (e) an example of S4R shell elements mesh
distribution.

geometrically nonlinear finite element simulation of the folding process.

An example mesh size of 0.125 mm is shown in Fig. 3.16e. The mesh size near the
cutout has been decreased by adding extra nodes. The size of the elements far away
from the cutout is determined by the largest distance allowed between consecutive
nodes such that a smooth transition region between larger and smaller elements can
be generated. Finally, the aspect ratio of each element was set to be no larger than 3.
The trend studies show that the bending stiffness is almost completely insensitive to



54

mesh size variations, for a mesh size smaller that 0.5 mm near a cutout, indicating
mesh convergence; while the maximum value of the first failure index reaches mesh
convergence only for a mesh size of 0.125 mm near a cutout, displayed by yellow
and purple curves in Fig. 3.16d.

After completing these initial studies, a minimization was performed with Con-
strained Optimization BY Linear Approximation (COBYLA) (Powell, 1994), an
optimization algorithm for constrained problems that does not utilize gradient in-
formation. During an iteration, a linear approximation of the objective function
is solved to obtain a candidate for the optimal solution. The candidate solution
is evaluated using the original objective and constraint functions, yielding a new
data point in the optimization space. This information is used to improve the linear
approximation for the next iteration of the algorithm. When the solution cannot be
improved anymore, the step size is reduced, refining the search. When the step size
becomes sufficiently small, the algorithm stops.

The COBYLA algorithm is publicly available in Python libraries (Perez, Jansen,
and Martins, 2012) and it was incorporated within the shape optimization method
described here. A Python script generates an input file for Abaqus 2017, with a
chosen cutout shape for the shell, defined by a set of specific values for the design
variables. A finite element analysis of the prescribed shell design is then carried out
with Abaqus and the values of first failure index and overall bending stiffness are
returned. The Python script evaluates the objective function and calls the COBYLA
algorithm to update the design variables. Each set of design variables defines a new
cutout shape, and therefore a new shell design. The optimization iteration is run
until the convergence criterion is satisfied:

|K i
B − K i−1

B | ≤ 10−6 (3.5)

where KB is the objective function in Eq. 3.1, corresponding to the bending stiffness
of the shell in the deployed configuration, and i is the current iteration counter.

3.8.2 Results from Shape Optimization
The optimized shape of the cutout and the bending stiffness at each iteration of the
optimization study are shown in Fig. 3.17. The contour plot of the first failure index
in Fig. 3.17a shows that the cutout generated with shape optimization successfully
prevents the shell from being damaged. In fact, every element of the finite element
discretization of the shell has a value of the first failure index less than 1.
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Figure 3.17: Shape optimization of a single cutout (a) contour plot of FI1 on shell
folded 45°. FI1 has been mapped onto a deployed shell, (b) objective function
plotted at each iteration of the optimization study.

A particular drawback of this method is that it can require a significant number of
design variables; in this case, 8 control points and therefore 16 design variables. If
two cutouts were considered, instead of one, the number of design variables would
be more than doubled (considering the position of the two cutouts as additional
degrees of freedom for the optimization problem). Hence, if the number of cutouts
under consideration increases, the optimization problem becomes computationally
more expensive.

3.9 Summary and Comparison of Results
Different designs for thin shells with cutouts have been obtained via physical intu-
ition, topology optimization using level-set functions, and shape optimization. A
comparison of the deployed bending stiffness of the shells and the maximum value
of the first failure index for all the designs discussed in this chapter is provided in
Table 3.1 and shown in Fig. 3.18. The shaded region in the plot marks the region
of design with a safe value of the failure index. The most desirable design would
lie near the upper left corner of the plot, thus providing high bending stiffness and
preventing damage of the shell. Unfortunately, when the bending stiffness of the
deployed shell increases, the shell is also more likely to be damaged when folded
and vice versa.

The bending stiffness and the maximum failure index for a shell without cutouts,
A1, are provided as baseline. Placing circular cutouts in areas of localized stress,
A2, might appear to be a suitable, intuitive solution, instead it decreases the bending
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Table 3.1: Summary of the deployed bending stiffness and the maximum value of
the first failure index for shell designs studied in the chapter. The corresponding
shell designs are shown in Fig. 3.18.

Name max(FI1) Stiffness [Nm]

In
tu
iti
ve

A1 7.06 5.33
A2 4.47 2.02
A3 8.64 1.79
A4 10.35 1.53
A5 0.99 1.05

O
pt
im

iz
ed B1 0.95 2.06

B2 0.85 2.08
B3 0.98 1.90
B4 0.53 1.44

stiffness to less than half the initial value without preventing damage of the shell.
Two results obtained using physical intuition, A3 and A4, have bending stiffness lower
than 2000 Nmm and maximum first failure index higher than 8. This is partially
due to the fact that these designs have sharp corners, which lead to higher stress
concentrations. The first successful, intuitive design, A5, adopts smooth corners
and much larger cutouts. This solution satisfies the failure constraint but suffers a
substantial penalty in bending stiffness.

Shape optimization studies produced a new design, B1, which concurrently satisfies
the failure constraint and maximizes the overall bending stiffness of the deployed
shell, using only one cutout on each side of the shell. Finally, three resulting designs
from topology optimization using level-set functions are also plotted. Amongst
these, B2 is the most promising, since it provides the highest bending stiffness while
keeping the maximum failure index below 1. In fact, a physical shell with this design
was tested (section 3.7.3) and showed no signs of damage.

3.10 Conclusion
This chapter presented methods to place cutouts on thin shells forming a 90° corner
and made entirely of fiber reinforced composite material, so that they can fold
without being damaged, while also maximizing the deployed stiffness.

Designs obtained using physical intuition were shown and a first shape of cutout that
satisfies the failure constraint was found. Since the cutout removed a large area of
the shell, the deployed bending stiffness was greatly reduced. Hence, optimization
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(a)

(b)

Figure 3.18: Deployed bending stiffness plotted against max (FI1) for shell designs
studied in the chapter (a) all shell designs, (b) only shell designs that satisfy failure
criterion.

studies to improve this result were carried out.

First, a novel topology optimization method that uses level-set functions was pro-
posed. The only assumptionsmade are on the type of functions to be used. Although
these assumptions restricted the design space, the results of this study show unique
solutions to the concurrent optimization problem of composite, thin-shell structures
with complex shapes and geometrical nonlinearities. A considerable advantage of
the level-set method presented here is a reduction in the number of design variables
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for a broad design space (e.g. multiple cutouts), if compared to the density-based
approach discussed in chapter 2.

Second, a shape optimization method that uses a spline representation of the contour
of a single cutout was presented. This method relied on prior knowledge of the
mechanics of deformation of the shell, thus starting from an initial guess with a
cutout placed in a convenient location to remove areas with stress concentration.
The scope of the method was not to find an optimal number or location of cutouts
on the shell, but to optimize the shape of a single cutout.

Finally, thin shells forming a corner were built and tested, and the experiments
achieved good agreement with the numerical prediction.

Having demonstrated the design capabilities of both optimization methods, a few
aspects could be addressed in future work. First, a perfect geometry of the shell
was used to carry out numerical simulations. This assumption neglects randomly
distributed manufacturing imperfections, thus resulting in minor deviations of nu-
merical prediction from experimental results.

Second, only shells in bending were considered and therefore the cutouts obtained
are optimized for specific load conditions. Perhaps, different load conditions, such
as twisting or combined bending and twisting, could be considered to obtain different
cutouts.

Finally, further studies are needed to understandwhether localized damage occurs on
the shell during experiments. Some results from this study show cutouts positioned
very close to each other, thus forming this strips of material. These may behave
differently than the rest of the shell, due to size effects. Chapter 4 investigates size-
scaling effects of thin, plain weave composites applied to self-deployable shells, as
well as localized damage detection in the experiments.
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C h a p t e r 4

SIZE-SCALING EFFECTS ON SOFTENING AND FAILURE OF
PLAIN-WEAVE ASTROQUARTZ ® LAMINATES AND

LOCALIZED DAMAGE MEASUREMENT

4.1 Introduction
The results from the optimization studies on thin shells forming a corner, discussed
in chapter 3, provided successful designs of thin shells that can fold 45° without
being damaged, while maximizing the deployed bending stiffness. The design with
highest stiffness is shown again in Fig. 4.1. The cutouts are positioned very close
to each other leaving thin strips of plain-weave composite material. Since stress
concentrates near the cutouts when the shell is folded, the structural behavior of
these thin strips was studied.

This chapter presents results on size-scaling effects on stiffness and strength of
thin, plain-weave Astroquartz ® laminates. While a wealth of literature exists on
size-scaling effects on brittle materials, including unidirectional fiber reinforced
composites, there is no experimental data on thin, plain-weave composite material.
The laminates studied here, discussed in chapter 3, are: two-ply [45pw]2, three-ply
[45pw/0pw/45pw], four-ply [45pw]4, and six-ply [45pw/45pw/0pw]s.

The experiments focused on thin samples with widths ranging from 15 mm to 1
mm. Studies on unidirectional composites, discussed in the next section, focus on
size effects on larger scales. Hence, the results presented in this chapter provide the
first collection of experimental data on size-scaling effects on thin and small plain-
weave samples. Additionally, results showing measurement of localized damage in
experiments are presented.

4.2 Background and Layout of the Chapter
The effect of structural size on stiffness and strength has been the scaling problem
of main interest in solid mechanics since the 1500s (Bažant and Chen, 1999). More
recently, composite materials have led to advancements in military, commercial, and
space applications because of their high specific strength and stiffness, combined
with light weight, increasing the importance of understanding size-scaling effects on
different types of composite materials. Both a statistical approach based on Weibull
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Figure 4.1: Thin shell forming a corner with optimized shape of cutouts and different
layups: blue, 2 plies; red, 3 plies; green, 4 plies; yellow, 6 plies.

distributions (Weibull, 1939; Bullock, 1974; A. S. D. Wang, Tung, and Sanders,
1980; Zweben, 1981; Wisnom, 1991) and a fracture mechanics model (Atkins and
Caddell, 1974; Carpinteri and Bocca, 1987; Bažant, J. J. H. Kim, et al., 1999)
have been used to analyze scale effects on the strength of fiber-reinforced composite
materials. A comprehensive review of both statistical and deterministic size effects
is provided by Bažant and J. L. Le (2017).

The application of the statistical approach for modeling size-scaling effects on the
strength of brittle materials is based on the probabilistic assumption that larger
specimens will inherently exhibit a higher number of imperfections, causing a
reduction in nominal strength. A concise formulation of this theory was proposed
by Bullock (1974):

σc
m

σc
p
=

(
Vp

Vm

) 1
β

(4.1)

where the subscriptsm and p refer to "model", as in laboratory scale, and "prototype",
as in full-scale, respectively; σc is the ultimate stress; V is the volume of the sample;
β is a parameter that provides a measure of the scatter in the strength data.

A simple fracturemechanicsmodel provided byAtkins andCaddell (1974) describes
the size-strength relationship for notched, brittle, and isotropic materials:

σc
p =

σc
m√
λ

(4.2)
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where λ is a geometric scaling parameter, defined as the ratio of the model length
to the prototype length.

Jackson, Kellas, andMorton (1992) compare the statistical approach and the fracture
mechanics model to experimental results obtained from testing different graphite-
epoxy laminates in both tension and flexure. A plot from Jackson, Kellas, and
Morton (1992) is shown in Fig. 4.2. The laminates used in the experiments were
manufactured from unidirectional plies, in different stacking sequences, chosen to
highlight individual and interacting failure modes. For example, Fig. 4.2 shows
experimental results from cross-ply laminates, [+45n/−45n/+45n/−45n]s, where
the subscript n indicates the number of plies used in one orientation, tested under
flexural loading. The smallest samples were 12.7 mm wide and made of 8 plies (n
= 1) of AS4/3502 graphite-epoxy.

Figure 4.2: Plot from Jackson, Kellas, and Morton (1992) showing a comparison of
normalized failure load versus scale factor with statistical and fracture mechanics
based analytical models for graphite-epoxy, cross-ply samples from 50.8 mm wide
and 32 plies (Scale Factor = 1) to 12.7 mm wide and 8 plies (Scale factor = 0.19),
tested under flexural loading.

Generally, both theoretical and experimental studies on size-scaling effects on
strength of brittle materials, including fiber-reinforced composites (Weibull, 1939;
Bullock, 1974; Jackson, Kellas, andMorton, 1992; Bažant and Chen, 1999), predict
an increase in strength for smaller scales. Another example is shown in Fig. 4.3
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from Bažant (2019), which plots the evolution of structural strength probability
distribution with increasing structure size, D.

Figure 4.3: Plot from Bažant (2019) showing size-scaling effects on structural
strength of quasibrittle structures.

While experimental data provided in the literature focuses on larger scales, as seen
in Fig 4.2, thin samples at smaller scale are of interest because cutouts are often
placed on thin, composite structures to fulfill different purposes. Amongst those are
tape-spring hinges, traditionally incorporated within straight tubes (Mobrem and
Adams, 2009b; Mallikarachchi and Pellegrino, 2011). When there are multiple
cutouts next to each other, small regions of material can form. Often, these regions
must withstand high localized strain.

Figure 4.4 shows a contour plot of the in-plane strain component ε11, on a thin shell
folded 45°. When folding a high-strain, composite structure, strain can localize
in very small regions around the hinges (Mallikarachchi and Pellegrino, 2010),
thus causing the material to fail and cracks to form and propagate. Similarly, the
shell forming a corner studied in chapter 3 shows localized high strain along the
small strips of material separated by cutouts. The width of these strips of material
ranges from 3 mm to 1 mm. The part with highest strain, red contour in Fig. 4.4,
concentrates in an area measuring less than 0.2 mm2.

The following sections provide details on the numerical and experimental character-
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Figure 4.4: Contour plot of in-plane, axial strain ε1 on a shell folded 45°. ε1 has
been mapped onto a deployed shell. The strain is localized in small areas near the
cutouts.

ization of the stiffness and strength of ultra-thin, plain-weave laminates at different
scales. First, laminate stiffness and strength will be measured at macro-scale. Ex-
periments on samples that are either 12.7 mm or 15 mm wide will be discussed.
Second, size-scaling effects will be addressed and the results from experiments
conducted on samples that are less than 15 mm wide will be presented. Third, a
self-deployable shell forming a corner will be used to demonstrate how size-scaling
effects, introduced in numerical simulations, influence the results of failure anal-
ysis. Finally, localized damage on the shell will be experimentally measured via
computed tomography scans and digital volume correlation techniques. A study of
measurement noise from computed tomography and digital volume correlation will
also be presented and procedures to reduce the baseline noise will be addressed.

4.3 Laminate Stiffness and Strength Parameters at Macro-Scale
A linear elastic model of plain-weave, Astroquartz ® laminates was built using Clas-
sical Lamination Theory (CLT) (Daniel and Ishai, 1994), micromechanical models
for bending behavior of woven composites (Soykasap, 2006), and experimental re-
sults. CLT assumes material linearity and is used to predict the mid-plane strains
and out-of-plane curvature changes of a laminate under load. Given a laminate
consisting of n plies, the 6 × 6 ABD stiffness matrix relates the stress resultants,
forces and moments N and M , to the mid-plane strains and out-of-plane curvatures,
ε and κ, respectively,

[
N

M

]
=

[
A B

B D

] [
ε

κ

]
(4.3)
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Since all the laminates under study ([45pw]2, [45pw/0pw/45pw], [45pw]4, and [45pw/45pw/0pw]s)
are symmetric, the B matrix is null. The material used is plain-weave 525 As-
troquartz ® II fabric (quartz fiber), from JPS Composite Materials (JPS, 2017),
pre-impregnated with PMT-F6 cyanate ester resin, from PATZ Materials & Tech-
nologies (PATZ, 2019). Its material properties collected from technical data sheets
(JPS, 2017; PATZ, 2019) are listed in Table 4.1.

Table 4.1: Astroquartz ® fiber and cyanate ester matrix properties collected from
technical data sheets.

Fiber
Vf 0.62

E1 f = E2 f 72 (GPa)
ν12 f 0.16
G12 f 31 (GPa)

thickness f 80 (µm)
Matrix

Em 3.64 (GPa)
νm 0.35
Gm 1.35 (GPa)

Both the in-plane shear modulus of plain-weave fibers, G12 f , and the shear modulus
of cyanate ester matrix, Gm, are calculated using the isotropic relation:

G =
E

2(1 + ν) (4.4)

Following the procedure described in Soykasap (2006), the longitudinal modulus
and major Poisson’s ratio of each yarn are calculated using the rule of mixtures
(Daniel and Ishai, 1994):

E y
1 = Vf E1 f + (1 − Vf )Em (4.5)

ν
y
12 = Vf ν12 f + (1 − Vf )νm (4.6)

The transverse modulus and the in-plane shear modulus are obtained from the
Halpin-Tsai semiempirical relations (Haplin and Tsai, 1969) as follows:
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E y
2 =

Em(1 + ξηEVf )
1 − ηEVf

(4.7)

Gy
12 =

Gm(1 + ξηGVf )
1 − ηGVf

(4.8)

with:

ηE =
E2 f − Em

E2 f + ξEm
(4.9)

ηG =
G12 f − Gm

G12 f + ξGm
(4.10)

The parameter ξ is a curve-fitting parameter, which experimentally falls within the
values 1 < ξ < 2. This study assumes a value of ξ = 1, usually used for laminates
with high fiber volume ratios. Finally, the minor Poisson’s ratio of the yarn is
calculated from reciprocity relationship:

ν
y
21 = ν

y
12

E y
2

E y
1

(4.11)

The thickness of each yarn is assumed to be half the thickness of a single plain-
weave lamina. Hence, to estimate the homogenized material properties of a woven
lamina one can simply use the rule of mixtures, assuming that half the fibers are in
the longitudinal direction while the other half are in the transverse direction. For
example, the longitudinal modulus of a lamina is calculated as:

E1 = E2 = 0.5Vf E1 f + (1 − Vf )Em (4.12)

Table 4.2 lists the measured thickness of each pre-impregnated laminate, cured in
autoclave on a flat mandrel.

Using the material properties described above, the mosaic model (Soykasap, 2006)
provides an accurate estimate of the A matrix for each of the four laminates. For
example, the results obtained for the thinnest laminate, [45pw]2, are shown in Eq.
4.13.



66

Table 4.2: Thickness of pre-impregnated laminates, cured in autoclave on a flat
mandrel.

Laminates Thickness in µm
1 ply 90
2 plies 160
3 plies 230
4 plies 280
6 plies 390

A[45pw ]2 =


3403.2 1872.0 0
1872.0 3403.2 0

0 0 2150.3

 (N/mm) (4.13)

A correction to the bending stiffness matrix, D, was applied as a result of four-point
bending experiments, shown in Fig. 4.5. The experiments measured the terms
D11 = D22 and found that the micromechanical models over-predict these terms for
ultra-thin composites. The samples tested are 12.7 mm wide and loaded with a
four-point bending fixture. The distance between the loading noses, namely the load
span, is one half of the support span, as per ASTM Standard (Standard D6272-02,
2008). Results from the experiments are summarized in Table 4.3.

Figure 4.5: Typical bending response from four-point bending experiments.
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Table 4.3: D11 component of matrix D in Nmm.

Laminate Layup Average
Value

Samples
Tested

Population
SD

[45pw]2 3.1 3 0.26
[45pw/0pw/45pw] 10.0 5 0.34
[45pw]4 23.0 5 1.10

[45pw/45pw/0pw]s 69.8 5 1.30

Using the experimental results, correction factors were calculated for each layup,
from Eq. (4.14), and applied to every term of the D matrix, while matrices A and
B were left unchanged. Table 4.4 shows the correction factors for each layup. As
expected, the gap between the prediction made with micromechanical models and
experimental results decreases as the number of plies, and thus the thickness of
the layup, increases. It must be clarified that this correction has no relation with
size-scaling effects. In fact, it is mostly due to a mismatch between the geometry
assumed by the mosaic model (Soykasap, 2006), which neglects the undulation in
the yarns and introduces discontinuities in the fibers, and the real, three-dimensional
geometry of plain-weave laminates.

Correction Factor (C.F .) =
D11calculated
D11measured

(4.14)

Table 4.4: Correction factors for matrix D of thin, plain-weave laminates.

Laminate C.F .
[45pw]2 2.34

[45pw/0pw/45pw] 2.19
[45pw]4 1.69

[45pw/45pw/0pw]s 1.53

Finally, new D matrices were calculated for the laminates under study. An example
of D matrix for the two-ply laminate, [45pw]2, is:

D[45pw ]2 =


3.10 1.71 0
1.71 3.10 0

0 0 1.96

 (Nmm) (4.15)
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Failure predictions for a folded shell forming a corner were made using a laminate
failure criterion (Mallikarachchi and Pellegrino, 2013) for ultra-thin, plain-weave
composites. The criterion applies to layups with same orientation plies and uses
three non-dimensional failure indices to capture in-plane, bending, and coupled
in-plane and bending failure, defined as follows:

FI1 = f1(Nx + Ny) + f11(N2
x + N2

y ) + f12Nx Ny + f33N2
xy < 1 (4.16)

FI2 = f44 × max(M2
x , M2

y ) + f66M2
xy < 1 (4.17)

FI3 = max

(
Nx

Fx
,

Ny

Fy

)
+

max(|Mx |, |My |)
F4

< 1 (4.18)

The failure coefficients, fi and fi j , are a combination of physical strength parameters
that must be measured or calculated. Tables 4.5 and 4.6 show the resulting strength
parameters for two-ply and four-ply laminates.

Table 4.5: Material strength parameters for two-ply laminates of Astroquartz ® fiber
and cyanate ester resin.

Strength Parameter Average
Value

Samples
Tested

Population
SD

F1t = F2t [N/m] 76.16 5 2.83
F1c = F2c [N/mm] 34.50 - -

F3 [N/mm] 14.55 5 0.12
F4 [N] 3.26 4 0.28
F6 [N] 1.10 4 0.06

For both tensile and compressive strengths the subscripts 1 and 2 refer to the
directions parallel and perpendicular to the fibers respectively. Hence, for plain-
weave material F1t = F2t and F1c = F2c. The tensile strength was measured as the
smallest failure value obtained from tensile tests of plain-weave [0pw]2 and [0pw]4
laminates. 15 mmwide test samples were pulled under tension at a rate of 2 mm/min
until failure, according to ASTM Standard (Standard D3039/D3039M, 2009). The
compressive strength was calculated using elasto-plastic fiber microbuckling theory
byFleck andBudiansky (1991), where γy is derived from shear strength experiments.
The equations used are the following:
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Table 4.6: Material strength parameters for four-ply laminates of Astroquartz ® fiber
and cyanate ester resin.

Strength Parameter Average
Value

Samples
Tested

Population
SD

F1t = F2t [N/mm] 150.00 4 1.47
F1c = F2c [N/mm] 65.69 - -

F3 [N/mm] 30.88 5 0.21
F4 [N] 8.78 4 1.28
F6 [N] 3.65 4 0.10

F1c =
G

1 + φ0
γy

(4.19)

γy =
τy

G
(4.20)

G =
Gm(G12 f + Gm + Vf (G12 f − Gm))

G12 f+Gm−Vf (G12 f −Gm)
(4.21)

whereG is the shearmodulus of the composite laminate, φ0 is the fibermisalignment
angle, and γy and τy are in-plane yield shear strain and stress respectively. The fiber
misalignment angle was measured from micrographs of samples with one, two, and
four plain-weave plies, shown in Fig. 4.6.

The in-plane shear strength, F3, was measured as the smallest failure value ob-
tained from tensile tests of plain-weave [45pw]2 and [45pw]4 laminates, divided by
2 because:

Nxy = cosα sinαNx′ =
1
2

Nx′ (4.22)

where where x′ and y′ are loading directions, x and y are fiber directions, and α =
45° is the fiber orientation angle. The test samples are 15 mm wide and were pulled
under tension at a rate of 2 mm/min until failure, according to ASTM Standard
(Standard D3518/D3518M, 2007).

A typical shear response, obtained by applying the transformation in Eq. 4.22 to
the measurements obtained from the experiments, is shown in Fig. 4.7. The plot
shows a first region where the shear stress increases with strain with a higher slope.
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𝜑𝜑0 = 9.81°

𝜑𝜑0 = 14.9°

Figure 4.6: Micrographs of one and four-ply laminates showing measurements of
fiber misalignment angle, φ0.

Then, there is a second region with a much lower slope. Finally, the slope increases
again until failure. This behaviour is characteristic of a toughened interface system
(Nguyen et al., 2019). The lower slope in the second region is associated with matrix
shear cracks between fibers and the length of this region depends on the evolution
of macro-cracking, finally reaching a saturated state.

Usually, an untoughened composite should exhibit stiffness degradation due to
micro-crack accumulation, leading to failure due to delamination. Hence, the
composite under study behaves as a toughened interface system, which exhibits
intralaminar micro-cracking and macro-cracking, thus delaying the onset of delam-
ination and prolonging the ultimate failure. This behavior could be explained by
the three-dimensional pattern of the plain-weave, which acts as the particles that are
dispersed within resin rich regions of toughened interface systems.

The bending strength, F4, was measured as the smallest failure value obtained from
platen bending tests (Mallikarachchi and Pellegrino, 2013; Yee and Pellegrino, 2005;
T. W. Murphey et al., 2015) of plain-weave [0pw]2 and [0pw]4 laminates. Finally,
the twisting strength, F6, was measured as the smallest failure value obtained from
platen bending tests of plain-weave [45pw]2 and [45pw]4 laminates, divided by 2
because:
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Figure 4.7: Typical shear response.

Mxy = cosα sinαMx′ =
1
2

Mx′ (4.23)

The failure criterion is used to predict the onset of failure on a self-deployable shell
forming a corner, as discussed in chapter 3. A contour plot of the in-plane failure
index, FI1, on the two-ply region of a self-deployable shell optimized in chapter 3
is shown in Fig. 3.11a. Here, strength parameters measured at macro-scale were
used to implement the failure criterion. The contour plot shows that the shell was
not damaged when folded.

4.4 Size-Scaling Effects on Laminate Stiffness and Strength
The dominating effects in the experiments on thin and small plain-weave samples
performed in this study are:

1. Edge effects due to dry spots in the laminate. These are common types of
imperfections in pre-impregnated composites with high fiber volume ratio.
When the edge of the sample cuts through a dry spot, the void between con-
secutive weaves of fibers is exposed, thus creating a notch on the edge.

2. Fiber pull-out due to short fibers in the laminate. Since the experiments were
performed on [45pw]2 samples, the laminates are essentially made of short
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fibers, which are pulled out of the surrounding matrix as a tension load is
applied.

Figures 4.8 and 4.9 show two images of a 3 mm wide Astroquartz ® and cyanate
ester sample, [45pw]2, taken with a manual, nosepiece type microscope (Nikon
Eclipse LV150N). The objective lens used to take the images is a Nikon TU Plan
Fluor 5X/0.15, with a magnification of 5X and a numerical aperture of 0.15. The
exposure time that was used is 7.9 ms. The edges of the thin strip of composite
material were laser cut. The two figures show the edge of the same sample in two
different locations. While the image in Fig. 4.8 was taken at a location without
visible imperfections near the edge, Fig. 4.9 shows many imperfections. They are
mostly caused by dry spots forming while the composite is curing. This kind of
imperfection is common in the material under study, because of its high fiber volume
ratio, Vf = 0.62.

Circled in red in Fig 4.9 is a notch visible on the edge of the laminate. This type
of defect appears frequently at the edges, whenever the laser cuts through a dry
spot, thus exposing the void between consecutive weaves of fibers. While these
edge defects measure only tens of microns, they can propagate and cause premature
failure of the sample under tension. These effects are particularly important when
testing samples only a few millimetres wide.

Figure 4.8: Edge of 3 mm wide, laser cut laminate, made of Astroquartz ® and
cyanate ester resin, without visible defects.

Another effect to take into account is fiber pull-out. Fibers oriented at ±45°, in
samples that are 3 mm wide or less, can only be as long as 4.25 mm. There are no



73

Figure 4.9: Edge of 3 mm wide, laser cut laminate, made of Astroquartz ® and
cyanate ester resin, with defects, mostly due to dry spots.

fibers running through the entire length of the sample, as it would happen if fibers
were oriented at 0°. Hence, when these samples are loaded in tension, bundles of
fibers can pull out of the surrounding matrix, thus causing failure of the sample.
Figure 4.10 shows a sketch that captures this process.

Figure 4.10: Illustration of fiber pull-out due to short fibers in the samples under
study.

Seven different values of samples width, 25 mm, 20 mm, 15 mm, 3 mm, 2 mm,
1.5 mm, and 1 mm, were considered. Five to ten samples of each width were
tested. The samples were laser cut, to replicate the manufacturing procedure used
to place cutouts on the self-deployable shell. Tension tests were performed to
measure the in-plane shear strength, F3, following the procedure described in section
4.3. The dimensions of each sample were scaled according to ASTM Standards
(Standard D3518/D3518M, 2007; Standard D3039/D3039M, 2009). The samples
have constant, rectangular cross-section and a minimum length defined by the sum
of gripping length (2×10 mm), two times the width of the sample, and gage length
(11 mm). The width tolerance is ±1%. Figure 4.11 shows the typical test setup.
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Failure must occur within the gauge length for a test to be considered successful, as
shown for the 1.5 mm wide sample in Fig. 4.11.

Figure 4.11: Tensile test setup.

Average shear stress curves for two-ply samples, plotted against the longitudinal
strain, are shown in Fig. 4.12. Size-scaling effects in the shear strength are noticeable
when decreasing the width of the samples tested. The shear strength of 1 mm wide
samples is approximately one third of the shear strength of the 15 mmwide samples.
Shear strength results are presented in Fig. 4.13. The results show that the shear
strength of 1 mm wide samples is even lower than the typical shear strength of
toughened cyanate ester resin. This result is coherent with the assumption that
edge effects, which mostly appear while cutting through dry spots of composite
material, trigger premature failure. Whereas, degassed, pure resin samples have
less imperfections due to voids that can cause failure.

Figure 4.13 displays two different effects due to size-scaling. For larger samples,
25−15 mm, the data shows an increase in strength at smaller scales as predicted
by theoretical and experimental studies on size-scaling effects on strength of brittle
materials (Weibull, 1939; Bullock, 1974; Jackson, Kellas, andMorton, 1992; Bažant
and Chen, 1999; Bažant, 2019). For smaller samples, 15−1 mm, the trend changes
and the shear strength decreases with the size of the samples.

By focusing on the initial section of the shear response, Fig. 4.14, size-scaling
effects on the slope of the curves are also visible. A linear approximation to the
curves was chosen to estimate their slopes. This behavior was treated as a reduction
in shear stiffness of the material, when cut in narrow strips. Hence, stiffness scaling
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Figure 4.12: Average shear stress curves for [45pw]2 laminates at different scales,
plotted against the longitudinal strain.

Figure 4.13: Shear strength of [45pw]2 laminates at different scales. Pure cyanate
ester resin strength plotted as reference.

factors, s fi, were derived and are summarized in Table 4.7. The shear coefficient,
A66, of the A matrix of the material was scaled according to the results found. A
stiffness scaling factor is applied to the shear coefficient, depending on the average
size of the sample, as follows:
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
A11 A12 0
A12 A22 0
0 0 Anew

66

 =

A11 A12 0
A12 A22 0
0 0 s fi × A66

 (4.24)

Figure 4.14: Initial part of shear stress curves and their linear trendlines.

The experimental results provided here show that both the shear strength and the
stiffness of Astroquartz ® and cyanate ester resin laminates decrease with the size
of the samples tested. Yet, another scaling effect must be considered. Equations
4.19-4.21 relate the compressive strength of the material to the yield shear stress.
Therefore, we will assume that the same shear stiffness reduction can be assumed
in scaling of compressive strength prediction, F1c. The results are summarized in
Table 4.7.

4.5 Introducing Size-Scaling Effects in Numerical Analysis of Shells Forming
a Corner

Geometrically nonlinear simulations of a thin shell forming a corner were carried
out using the commercial finite element software Abaqus 2017. A finite element
model was built in Abaqus 2017 with S4R shell elements, as discussed in chapter
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Table 4.7: Size-scaling on shear strength, compressive strength, and softening of
ultra-thin, plain-weave Astroquartz ® laminates.

Sample Width
[mm]

Shear Strength
F3 [N/mm]

Compressive
Strength F1c
[N/mm]

Stiffness
Scaling

Factor, s fi
15 14.55 34.50 1
3 10.34 29.07 0.902
2 6.91 25.94 0.739
1.5 6.76 25.70 0.717
1 4.27 19.37 0.520

3. Size-scaling effects in stiffness and strength of the material were defined in the
model dividing into different sections the two-ply region of the shell, Fig. 4.15.
A feature provided in Abaqus and called "general section properties" allowed to
manually input the ABD stiffness matrix of each material section. The Amatrix of
laminates of different sizes was calculated according to Eq. 4.24.

Figure 4.15: Sections of two-ply region simulated at different stiffness and strength
scales.

The failure criterion described in section 4.3 was introduced in the simulations and
size-scaling effects on strength parameters were considered, as listed in Table 4.7.
A new contour plot of the in-plane failure index, FI1, on the two-ply region of the
shell was produced and it is shown in Fig. 4.16. Black areas plotted in Fig. 4.16
are regions where the first failure index is smaller than 1. White areas are regions
corresponding to cutouts or parts of the shell that were excluded from the failure
analysis. Finally, all the elements plotted with a color other than white or black have
reached a failure index greater than 1.

While the analysis carried out without considering size-scaling effects, Fig. 3.11a,
showed no signs of damage on the folded shell, this new analysis shows that a
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few, localized elements fail on one of the thin strips of material that separate the
cutouts. Each localized area of failed elements measures approximately 0.2 mm2.
This result is consistent with the contour plot of axial strain on the two-ply region
of the self-deployable shell, Fig. 4.4, which shows a concentration of higher strain
on the same area.

Figure 4.16: New contour plot of in-plane failure index, FI1, on two-ply region of
self-deployable shell. Size-scaling effects were included in this analysis.

4.6 Experimental Analysis of Deployed Stiffness of Shells and Localized Dam-
age

The stiffness reduction due to size-scaling effects raises concerns on whether the
overall bending stiffness of the self-deployable shell is also reduced. Additionally,
predictions of localized damage, obtained by introducing size-scaling effects on
stiffness and strength of materials in numerical simulations, have highlighted the
importance of being able to experimentally measure localized damage. Both these
issues were addressed.
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4.6.1 Overall Bending Stiffness of Shells Measured via Folding Tests
From the quasi-static folding experiments described in chapter 3, a moment-rotation
profile was obtained by plotting the folding angle and the corresponding moment at
each step, Fig. 4.17. Moment-rotation profiles resulting from numerical simulations
were then superposed to the experimental one to validate the results.

The curves obtained from numerical simulations are perfectly overlapped, thus
showing as a single curve in the plot. The blue curve, hidden behind the green
one, was obtained by simulating a folding shell with stiffness and strength from
results at macro-scale. Conversely, the green curve was obtained by introducing
the size-scaling effects shown in Fig. 4.15. Although size-scaling effects on the
strength of the material change the results from the failure criterion, as seen in Fig.
3.11a and 4.16, the effects on stiffness do not modify the overall bending stiffness
of the shell, calculated from the moment-rotation curves using Eq. 3.4.

Figure 4.17: Test data compared to simulation results. The plot shows the reac-
tion bending moments plotted against the folding angle; 0° corresponds to a fully
deployed shell and the angle grows as the two tubes rotate towards each other.

4.7 Measurement of Localized Damage Near Cutouts
X-ray computed tomography (CT) allows to image structures in three dimensions
with high spatial resolution (Stock, 2008; Bale et al., 2013), by combining X-ray
measurements of a specific area of a scanned sample, taken from different angles,
to produce cross-sectional images, called "slices". Using commercially available
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software, the slices are then combined to produce a three-dimensional (3D) image.
An example of a scan done on a self-deployable shell is shown in Fig. 4.18. The CT
scanner is a ZEISS Xradia VersaXRM-510. The settings for the scan are: optical
magnification 4X, exposure time 1 s, voltage 80 kV, power 7 W, and number of
projections 3001. The area of interest is the same one showing elements with FI1 >

1 in Fig. 4.16. The slices were reconstructed in a 3D rendering using Dragonfly
software. The resolution chosen to scan the sample is:

1 voxel = 4.38 × 4.38 × 4.38 (µm3) (4.25)

where a voxel is a 3D generalization of a pixel. Since each fiber measures approxi-
mately 9 µm in diameter (JPS, 2017), the chosen resolution only allows for 2 pixels
per fiber. Hence, a single fiber cannot be fully resolved. The advantage of this
choice is a larger field of view in a single scan, which allows to inspect an area of
approximately 4.5 × 4.5 mm2.

Strain components are measured via digital volume correlation (DVC) techniques
(Xu, 2018). DVC is the three-dimensional extension of digital image correlation
(DIC), which allows to obtain quantitative measurements of internal 3D material
displacement fields (Bay, 2008). Two tomographic images, a reference image
and a target image, are used to estimate the displacement field by finding a unique
correspondence between features in the two images. A correlation between intensity
patterns within interrogation windows allows to find the displacement vector at each
measurement point, from which the strain components can then be calculated. To
solve the correlation problem uniquely, the object volume must exhibit certain
properties (Sutton, Orteu, and Schreier, 2009), such as: texture with no preferred
orientation, non-periodic structures, and information for pattern matching available
everywherewithin the volume. These requirements usually lead to the use of random
speckle patterns applied to the object volume.

Since the two-ply laminate used in this study is very thin, see Table 4.2, artificial
speckles could both compromise the integrity of the test samples and cause compli-
cations in the manufacturing process. Hence, the weave pattern from the laminate
itself was used, although it did not provide ideal conditions for correlation and
caused measurement noise, discussed later in this chapter.

DVC begins by selecting a region of interest, populated by points where the dis-
placement components are sought. Hence, tomographic images must be cropped
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Figure 4.18: Computed tomography scan of two-ply, plain-weave laminate, focused
on a region near one of the cutouts of the self-deployable shell, and portion of the
tomographic image converted into a 3 rd order tensor.

accordingly, not to include voids, such as cutouts, within the region of interest, since
voids do not carry any information for pattern matching. Subsequently, tomographic
images must be converted into 3rd order tensors that store intensity values of each
voxel.

Figure 4.18 shows the mid-planes of a portion of a tomographic image, centered
on a thin strip of material between cutouts of a self-deployable shell, converted
into a 3rd order tensor. A publicly available MATLAB based software for fast
iterative digital volume correlation (FIDVC) (Bar-Kochba et al., 2015) was used to
calculate the residual strains on the folded shell. This open source software was
chosen because it allows for 3D full-field measurement of large-deformation internal
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displacement fields. Once the displacements are known, the Lagrange strain tensor
can be calculated as follows (Bower, 2011):

E =
1
2
(C − I ) (4.26)

C = FT · F (4.27)

F = I + u ⊗ ∇ (4.28)

where C is the right Cauchy-Green deformation tensor, I is the identity matrix, F
is the deformation gradient tensor, and u is the displacement field.

4.7.1 Measurement Noise and Calibration of Digital Volume Correlation Al-
gorithm

A threshold for measurement noise was estimated by correlating a reference tomo-
graphic image and a target image of a flat sample. Both the scan region and the
measurement are shown in Fig. 4.19. The sample has the same layup, [45pw]2,
as the region of the shell forming a corner that was investigated. A first, reference
image was taken by scanning an area of the sample, red box in Fig. 4.19, at the same
spatial resolution used to scan the shell. A second, target image was taken after re-
moving the sample from the CT scanner and replacing it inside the chamber without
applying any strain to it. Hence, the sample scanned has nominally zero residual
strain. A coarse alignment within the chamber was sufficient to scan approximately
the same area.

The in-plane E11 component of the residual strains, calculated on the mid-plane,
is shown in Fig. 4.19. The contour plot shows fictitious residual strain as high
as 0.43%. Measurement noise is expected in this kind of tomographic images
and it is mostly due to inconsistent speckle patterns (Liu and Morgan, 2007) and
periodicity of the image, due to the pattern formed by the plain-weave, which can
lead to misregistration problems (Sutton, Orteu, and Schreier, 2009) as previously
mentioned.

When calibrating the FIDVC algorithm for the 3D images used in this study, the
fictitious residual strain was initially in the 15% range. Several steps were taken to
reduce the baseline noise, finally achieving the value of 0.43% mentioned above.
There are four key steps, which can be summarized as follows:
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Figure 4.19: Measurement noise on tomographic images of a flat, unstrained sample,
correlated via FIDVC. The contour plot shows the first, in-plane component of the
Lagrange strain, E11.

• Step 1. Find correct size of interrogation window and mesh grid spacing on
numerically strained images (no experimental measurement noise).

• Step 2. Measure baseline noise from numerical rigid body motion and esti-
mate admissible rigid body displacements.

• Step 3. Reduce noise from rigid body motion using registration of images by
decreasing rigid body offset to an admissible range.

• Step 4. Reduce residual noise from experimental measurement using a low-
pass Gaussian filter.

Here we will discuss in detail how the four steps were implemented. Each tomo-
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graphic image is a spatial domain discretized in units of volume, i.e. voxels. The
region of interest is defined within the global voxel domain and meshed using stan-
dard meshing tools. The nodes of the mesh become the displacement measurement
points. Hence, the spacing of the mesh grid is one variable that must be tuned.
Subsequently, the displacement vector at each measurement point is estimated via a
correlation algorithm, which subdivides the region of interest into interrogation win-
dows of specified overlap ratios, i.e. voxel subvolumes. The size of the interrogation
window is another variable that must be adjusted.

Step 1 of the calibration procedure for the chosen FIDVC algorithm aims to find the
appropriate values for these two variables. To do so, no experimental measurement
noise is introduced in the tomographic images, and the correlation pair is simply
obtained by applying a numerical strain to a reference image. Figure 4.20 shows the
example of a 15% strain applied to a reference tomographic image, although only one
slice of the image is displayed for clarity. In this case, an affine transformation was
applied to the reference image, using the imwarp function provided in MATLAB.
The image was subjected to uniform strain in the X1 direction.

The range of strain that is interesting for this study is within 2%, as shown in Fig. 4.4.
Both reference and strained imageswere processed using the FIDVC software and the
results are shown in Fig. 4.21. Contour plots of the displacement field, particularly
the u1 component, were generated for different values of the interrogation window
size and the mesh grid spacing.

The first image, 4.21a, shows results for a window size of 32 × 32 × 32 voxels
and a mesh grid spacing of 4 voxels. The displacement field is visibly noisy and
does not uniformly increase along the X1 direction, as expected. Some of the noise,
corresponding to the blue contours in Fig. 4.21a, localizes in regions of the image
that do not show any speckles, because of voids between consecutive weaves of
fiber.

The second image, 4.21b, was obtained using a window size of 64 × 64 × 32
voxels and a mesh grid spacing of 4 voxels. The window size was increased in the
X1 and X2 directions, but left unchanged in the X3 direction, which runs through
the thickness of the material. Since the samples scanned are very thin, there are
on average only 40 pixels in the X3 direction for each image. While a uniformly
increasing displacement field starts emerging from the data, the contour plot is still
noisy.
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Figure 4.20: Example of numerical strain of 15% in X1 direction, applied to one
slice of a tomographic image.

The third image, 4.21c, shows the results for a window size of 128 × 128 × 32
voxels and a mesh grid spacing of 4 voxels. The displacement field is less noisy,
especially in the regions 0 < X2 < 100 and 450 < X2 < 550. Finally, the last image,
4.21d, was obtained using a window size of 128 × 128 × 32 voxels and a mesh grid
spacing of 8 voxels. The data is greatly improved and shows a uniform increase of
the displacement component u1 along the X1 direction. This displacement field was
used to calculate the Lagrange strain tensor, using Eq. 4.26-4.28. Figure 4.22 shows
the resulting contour plot of the in-plane E11 component of the Lagrange strain. An
average 2% strain is recovered from the correlation, thus indicating that a correct
choice had been made for the values of the interrogation window size and the mesh
grid spacing.

Two factors must be taken into account when analyzing the results presented here.
First, optimal values of interrogation window size and mesh grid spacing change
depending on the global voxel domain of a tomographic image. Hence, if the size
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of the image changes, for example because void regions must be cropped out, the
optimal values also change. Second, the FIDVC algorithm produces the largest
errors near the edges of the image. Hence, the in-plane contour plots shown here
do not include values near the edges. The size of the region near an edge, in
the X1-X2 plane, on which data is discarded equals the interrogation window size.
The same rationale cannot be applied to through-thickness data, since there aren’t
enough pixels in the X3 direction. Hence, results for out-of-plane components of
the Lagrange strain are not presented here because they are not accurate enough.

(a) (b)

(c) (d)

Figure 4.21: Contours of u1 component of the displacement field plotted on mid-
thickness slice. Interrogationwindow size, sSize, andmesh grid spacing, dm used to
correlate reference and target tomographic images are as follows: (a) sSize = [32×
32× 32], dm = 4; (b) sSize = [64× 64× 32], dm = 4; (c) sSize = [128× 128× 32],
dm = 4; (d) sSize = [128 × 128 × 32], dm = 8.
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Figure 4.22: Contour plot of E11 component of Lagrange strain resulting from
cross-correlation for numerically applied E11 strain of 2%.

Rigid registration pre-processing is not performed by the FIDVC algorithm. Hence,
reference and target tomographic images are not aligned prior to their cross-
correlation. Since the images processed in this study produce a periodic speckle
pattern, rigid body motion can cause misregistration problems. Hence, in calibrat-
ing the FIDVC algorithm, studies were performed to measure the baseline noise
produced by pure rigid body motion of the image, without any experimental mea-
surement noise. Two cases were studied. First, a numerical translation of the image,
with absolute value smaller than the interrogation window size, Fig. 4.23. Second,
a numerical translation with absolute value larger than the interrogation window
size, Fig 4.25.

For the first case, an in-plane translation of 50 pixels in the−X1 directionwas applied
to the reference image. A contour plot of the u1 component of the displacement
field is shown in Fig. 4.24a. The ideal result would be a uniform distribution of
u1 = − 50 pixels. In reality, an error up to 5 pixels occurs. The E11 component of
the Lagrange strain was calculated from the displacement field and the results are
plotted in Fig. 4.24b. Since no numerical strain was applied to the reference image,
every component of the Lagrange strain calculated from DVC data should be null.
Nevertheless, fictitious strain values reach peaks of 15%, as shown in Fig. 4.24b.

The second case of numerical rigid body motion that was analyzed is a translation of
200 pixels in both −X1 and −X2 directions, as shown in Fig. 4.25. Since this motion
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Figure 4.23: Example of numerical translation of an image where the applied
displacement, u1 = 50 pixels, is smaller than the interrogation window size, sSize =
[128 × 128 × 32].

(a) (b)

Figure 4.24: Contour plots of (a) u1 component of displacement field and (b)
E11 component of Lagrange strain resulting from cross-correlation for numerically
applied displacement u1 = 50 pixels and nominally zero strain.

is larger than the interrogationwindow size, inaccurate results were expected. Figure
4.26 shows the u1 component of the displacement field, which is visibly incorrect.
The Lagrange strain tensor was also calculated form this displacement field and
showed peak strain values of 100%. This study shows that the effects of rigid body
motions on the reference images of interest are not negligible.
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Inaccurate measurement of displacement field when the absolute value of the im-
posed translation is larger than the interrogation window size was expected. Nev-
ertheless, it was shown that large, fictitious strain values are also measured when
the absolute value of the imposed translation is smaller than the interrogation win-
dow size, which is not an intuitive result. Hence, the need for a rigid registration
pre-processing was clearly established. A preregistration of the reference and tar-
get images was performed. The process consisted of aligning the markers in the
reference and target volumes. This helped greatly in reducing rigid body motion
between the two tomographic images to an admissible range of less than 10 pixels.

Figure 4.25: Example of numerical translation of an image where the applied
displacements, u1 = u2 = 200 pixels, are larger than the interrogation window size,
sSize = [128 × 128 × 32].

The calibration efforts described so far did not include any noise from experimental
measurements. The process of acquiring two different tomographic images by
scanning the same sample twice introduces noise. Part of the noise comes from
temperature fluctuation within the CT scanner chamber. The most common source
of noise from an image acquisition system can be modeled as Gaussian random
noise. Numerous image denoising models have been introduced in the past few
decades. Conventional filters such as averaging filter, median filter, and Gaussian
filter are efficient in smoothing the noise (Jain, 1989). Therefore, after feeding the
two images to the FIDVC algorithm and calculating residual strain, an additional
spatial filter is applied to the strain values. The purpose of the filter is to eliminate
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Figure 4.26: Contour plot of u1 component of displacement field resulting from
cross-correlation for numerically applied displacements u1 = u2 = 200 pixels.

high spatial frequency features, using the repeating wavelength of the weave, λc,
shown in Fig. 4.27, as cutoff value. A low-pass Gaussian filter was implemented as
follows:

GLP(u, v) = 1 − e
−(u2+v2)

2σ2
c (4.29)

σc =
1
λc

(
1
µm

)
(4.30)

where u, v are the spatial frequencies in the X1 and X2 directions, respectively;
σc is the "floor frequency" defining the width of the Gaussian function and there-
fore the range of frequencies to be filtered. To show the effects of the Gaussian
filter, two consecutive scans of the same sample were taken. The sample was not
removed from the chamber between scans, thus eliminating errors resulting from
rigid body motions. The two scans targeted exactly the same volume, and hence no
preregistration of the tomographic images was needed.

Figures 4.28a and 4.28b show contour plots of the E11 component of the Lagrange
strain measured before and after applying a low-pass Gaussian filter. The noise from
experimental measurement was reduced by an order of magnitude.
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Figure 4.27: Repeating wavelength of plain-weave pattern used for DVC.

(a) (b)

Figure 4.28: Contour plots resulting from cross-correlation of tomographic images
of two consecutive scans of the same sample. No rigid body motion or strain was
applied, hence only experimental measurement noise is present. (a) E11 component
of Lagrange strain, (b) E11 component of Lagrange strain with a low-pass Gaussian
filter applied to the results.

By applying steps 1-4 of the calibration procedure, the measurement noise was
reduced to the example shown in Fig. 4.19. The baseline noise is related to
the speckle pattern in the tomographic images. Since the fiber weave itself was
used, without any artificial speckles added to the images, the spatial resolution
at which the images are acquired can change the noise level. Particularly, the
images used for calibration have the same spatial resolution as the images taken
from scans of a self-deployable shell, Eq. 4.32, to keep the calibration consistent.
But, as mentioned before, this resolution does not allow to fully resolve a single
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fiber. Hence, another study was conducted to clarify whether increasing the spatial
resolution of a tomographic image, with the same weave pattern, would reduce the
level of noise.

Figure 4.29 shows a CT scan of a two-ply, plain-weave, flat laminate and its con-
version into a 3rd order tensor. The spatial resolution used to conduct the scan is as
follows:

1 voxel = 0.7 × 0.7 × 0.7 (µm3) (4.31)

While each fiber is well resolved, as can be seen from the tomographic reconstruction
of the scanned volume, the field of view is reduced to less than 1 mm. Consequently,
each slice of the tomographic image lacks the presence of speckles in large areas
of the slice. This is visible in the mid-thickness slice shown in Fig. 4.29. Since
a crucial property of the object volume for DVC is to carry information for pattern
matching everywhere within the volume, inaccurate results can be expected when
correlating these kind of images.

Two consecutive scans at high resolution of the same flat sample were taken. The
calibration procedure described before was applied, except for manual registration,
which was not needed since the sample was not removed from the chamber between
scans. Figure 4.30 shows a contour plot of the E11 component of the Lagrange strain
measured via FIDVC. Fictitious residual strain reaches values of 3.5%, much higher
than the peak baseline noise of 0.43% obtained when correlating images at lower
spatial resolution. Hence, lack of information for pattern matching in tomographic
images of plain-weave samples with high spatial resolution produces greater errors
than poorly resolved fibers in images at lower spatial resolution.

4.7.2 Digital Volume Correlation Algorithm Applied to Tomographic Images
of a Self-Deployable Shell

Scans of selected areas of the self-deployable shell forming a corner were taken
before and after folding the shell. The reference tomographic images, from scans
taken before folding the shell, were then correlated to deformed images, from scans
of the same areas on the shell but taken after folding it. Results obtained on two
regions of interest (ROI) are presented here.

Figure 4.31 shows a contour plot of the first failure index on the two-ply region of
the shell, where a minimum value of FI1 = 0.1 was set for the color bar. Two regions
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Figure 4.29: Tomographic reconstruction of CT scan of a two-ply, plain-weave, flat
laminate acquired with a spatial resolution of 0.7 µm and its conversion into a 3rd
order tensor.

Figure 4.30: Contour plot of E11 component of Lagrange strain resulting from
cross-correlation of tomographic images of two consecutive scans at high resolution
of the same sample. Although a calibration procedure was applied to the images,
fictitious residual strain reaches values of 3.5% because of lack of information for
pattern matching in tomographic images.

of interest, ROI 1 and ROI 2, are marked with a red box. The onset of failure was
numerically predicted for ROI 1, see Fig. 4.16. Note that ROI 1 lies in a thin strip of
material between two cutouts of the self-deployable shell. The same area of interest
is shown in Fig. 4.18.
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Figure 4.31: Contour plot of first failure index on two-ply region of self-deployable
shell. A minimum value of FI1 = 0.1 was set for the color bar. Two regions of
interest (ROI) are identified.

Figure 4.32: Contour plot ofE11 component of Lagrange strain resulting from cross-
correlation of tomographic images from ROI 1, obtained before and after folding a
self-deployable shell. Localized damage was detected.

Figure 4.32 shows the residual strain measured on ROI 1. The contour plot of the
in-plane component of the Lagrange strain, E11, calculated on the mid-plane, shows
a residual strain as high as 0.81%. This value of the residual strain is higher than the
measurement noise value, of 0.43%, thus indicating that localized damage occurred
on this region of the shell. This experimental finding is in agreement with numerical
predictions, Fig. 4.16, of localized damage in the same thin strip between cutouts.
Additionally, the size of the areas affected by numerically predicted damage and
experimentally measured damage are comparable.

Numerically predicted damage is localized near the edge of the thin strip, in areas
measuring approximately 0.2 mm2, and defined with a spatial resolution equal to
the average element size near the cutouts of 125 µm. The highest residual strain,
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Figure 4.33: Contour plot ofE11 component of Lagrange strain resulting from cross-
correlation of tomographic images from ROI 2, obtained before and after folding a
self-deployable shell.

measured experimentally, is also localized near the edge of the thin strip in an area
measuring approximately 0.04 mm2, with a spatial resolution of 35 µm. The spatial
resolution for the results obtained via DVC is calculated as the product between the
spatial resolution of the tomographic images (voxel size) and the mesh grid spacing
(Xu, 2018) chosen to run the FIDVC algorithm. Since a voxel measures the same
length in all three directions, X1, X2, and X3, and the mesh grid spacing is also the
same, the spatial resolution resulting from DVC can be written as:

r = px × dm = 4.38 (µm) × 8 = 35 (µm) (4.32)

where px is the size of the pixel in the tomographic images and dm is the chosen
mesh grid spacing for the FIDVC algorithm.

Figure 4.33 shows the residual strain measured on ROI 2. The contour plot of the
E11 component of the Lagrange strain shows that the magnitude of the residual
strain field is comparable to the measurement noise value, of 0.43%. Hence, it is
not possible to establish whether localized damage occurred in this region.

4.8 Conclusion
Previously published experimental studies have provided evidence of size-scaling
effects in unidirectional composite material with length ranging between 50.8 mm
and 12.7 mm, but no studies were found that investigate size-scaling effects on thin,
plain-weave composite material with smaller length.
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The results presented in this chapter confirm literature studies on size-scaling effects
on strength of brittle materials, which predict an increase in strength at smaller
scales. Additionally, they provide evidence of size-scaling effects in small plain-
weave samples, with length ranging between 15 mm and 1 mm. Two dominating
effects in experiments on these kind of samples have been identified. First, edge
effects due to dry spots in pre-impregnated composites with high fiber volume
ratio. Second, fiber pullout due to the short length of the fibers oriented at ± 45°
with respect to the loading direction. A reduction in shear strength was observed.
Similarly, a softening behavior was measured when loading the samples in tension.
These effects are summarized in Table 4.7.

A case study of a self-deployable shell was used to demonstrate how size-scaling,
introduced in numerical simulations, influences the results of failure analysis. The
scope of this case study was to show the results of two concurrent effects on thin
strips of material that form of foldable structures because of cutouts: first, strain
localization, and second, a reduction in strength and stiffness of the strips because
of size-scaling. It was demonstrated that if size-scaling is not taken into account
then the failure analysis can be inaccurate and lead to non conservative predictions.

Finally, methods for measuring localized damage were discussed. Although accept-
able in many situations, because of the negligible area of the small region it affects,
localized damage is measurable in high-strain composite structures with thin strips
of material. The work presented here showed the existence of localized damage,
which occurs as a consequence of size-scaling effects studied on plain-weave lam-
inates, in both numerical and experimental results. A laminate failure criterion,
suitable for ultra-thin, plain-weave composites, was used to predict damage of a
folded shell. A localized area of elements with FI1 > 1, measuring approximately
0.2 mm2, was calculated on a thin strip of material between cutouts, once the size-
scaling effects had been introduced in the numerical simulations. Additionally,
residual strains of 0.81% were measured on the same strip of material using com-
puted tomography scans and digital volume correlation techniques. The magnitude
of the residual strains exceeded the baseline measurement noise, thus indicating that
localized damage had taken place.
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C h a p t e r 5

CONCLUSIONS AND FUTURE WORK

5.1 Summary and Contributions
This research has presented the first extensive study on topology optimization of
deployable, composite thin shells using a geometrically nonlinear model and im-
posing stress constraints in the deformed configuration. The objective was to find
non intuitive shapes of thin shells that can fold without being damaged, while also
maximizing the deployed stiffness. The work has demonstrated that size-scaling
effects in thin, plain-weave composites at small length scales produce a reduction in
stiffness and strength of this type of material, thus affecting predictions of the onset
of failure on deployable shell structures.

5.1.1 Density-Based Approach to Topology Optimization of Bending Domi-
nated Shells with Geometrical Nonlinearities

An approach to topology optimization of thin shells in bending based on density
distribution methods has been proposed. First, a mathematical formulation of the
optimization problem and interpolation schemes for stiffness tensor, volume, and
stress have been presented. Second, a sensitivity analysis for a gradient based op-
timization algorithm has been performed. The algorithm has been first tested on
a classical benchmark problem, the Messerschmidt-Bölkow-Blohm (MBB) Beam
problem, and the result has been compared to a solution found in literature. Then, a
study of thin plates in bending has been performed and solutions to linear problems
have been examined against solutions obtained with a commercial topology opti-
mization tool. Finally, geometrically nonlinear problems with volume and stress
constraints in the deformed configuration have been studied and successful solutions
to a thin plate and a tape spring have been presented.

Contributions from this work are:

• A novel optimization algorithm that makes no assumptions on initial number,
shape, and location of cutouts on deployable thin shells and that can impose
volume and stress constraints in the deformed configuration of the shells,
while also maximizing the deployed stiffness.
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• An optimization analysis of the structure that is decoupled from the structural
analysis, thus allowing the use of a commercial software to build the finite
element model.

• A study of the effects of volume and stress constraints imposed in the deformed
configuration of thin shell structures using both linear and geometrically
nonlinear finite element models and a comparison of the solutions from the
linear analysis to the results obtained with a commercial tool for topology
optimization.

5.1.2 Topology and Shape Optimization of Composite Self-Deployable Thin
Shells

Two optimization methods that provide more specific solutions to the problem of
composite, deployable shells have been proposed. The first method uses level-
set functions to place cutouts on the shells, so that they can fold without being
damaged, while also maximizing the deployed stiffness. The second method uses a
spline representation of the contour of a single cutout on the shell, thus performing
fine tuning of the shape of the cutout. First, a design of a thin shell forming a
corner with no cutouts has been presented and the choices of a particular material
and laminate have been discussed. Then, techniques to analyze the shell have been
introduced. Specifically, a geometrically nonlinear finite element analysis, to study
the folding behavior of the shell, and a failure criterion. Preliminary design choices
based on physical intuition have been shown and a first successful shape of cutout
that satisfies the failure constraint has been found. Since the cutout removed a large
area of the shell, the deployed stiffness was greatly reduced. Optimization studies
have been carried out to maximize the stiffness of the shell.

Contributions from this work are:

• A topology optimization method that can find solutions to the concurrent
optimization problem of composite, thin-shell structures with complex shapes
and geometrical nonlinearities, while limiting the number of design variables
to only 3, thus greatly restricting the computational cost of the analysis.

• A shape optimization method for fine tuning the contour of a single cutout on
deployable thin shells.
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• Fast and high-fidelity numerical simulations of the quasi-static folding be-
havior of thin, composite shells forming a corner that can accurately capture
localized stress concentration.

• Experimental studies of the folding behavior of shells with cutouts derived
from the optimization analysis that have demonstrated very good agreement
with numerical simulations.

5.1.3 Size-Scaling Effects on Softening and Failure of Plain-Weave Astro-
quartz ® Laminates and Localized Damage Measurement

The behavior of thin, plain-weave composite material has been characterized and
the first study of size-scaling effects at small length scales (≤ 15 mm) in this type of
material has been performed. Size-scaling effects on stiffness and strength have been
introduced in numerical simulations of deployable thin shells. It has been shown
that these effects influence the results of the failure analysis. First, the laminate
stiffness and strength have been measured at macro-scale (12.7 mm - 15.0 mm).
Then tensile tests of plain weave samples oriented at ±45° have been performed and
a reduction of both shear stiffness and strength has been found in smaller samples.
Finally, both numerical and experimental studies of deployable, thin shells forming
a corner have been conducted and good agreement within the two has been found.

Contributions from this work are:

• Evidence that size-scaling effects in ±45° thin, plain-weave composites at
length scales smaller than 15 mm produce a reduction in stiffness and strength
of this type of material.

• Data demonstrating that these size effects influence the prediction of the onset
of failure on deployable shell structures with cutouts forming small strips of
material made of thin, plain-weave laminates.

• Measurement of localized damage in shells after quasi-static folding experi-
ments that confirm the results from numerical simulations, which show the
location on the shell where damage is predicted.

5.2 Future Work
The work reported in this thesis can be extended in several ways to improve upon
current designs of deployable thin shells with cutouts. Key elements, which deserve
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to be investigated further, have been identified in all three chapters, and suggestions
for two future directions are provided here.

The first future direction concerns the optimization aspect of this research. Re-
cent studies have proposed solutions to increase the computational efficiency of a
density-based approach to topology optimization (Aage et al., 2017). Algorithms
based on density distribution methods provide a very general approach to structural
optimization because no assumptions are needed on the initial topology of the struc-
ture. Therefore, reducing the computational cost of these types of algorithms and
applying them to more complex shapes of deployable thin shell structures would be
extremely beneficial.

Additionally, the density-based algorithm proposed in this research uses a modified
Solid Isotropic Material with Penalization (SIMP) approach to interpolate the stiff-
ness tensor and studies are performed on shell structures made of isotropic material.
The algorithm can be generalized to study more complex materials, such as fiber
reinforced composites, which are more interesting for deployable space structures.

Finally, since an approximation has been made for the derivative of the global
stress measure in deformed configuration, additional studies could be performed
to determine whether more optimal solutions can be found without making this
approximation. Current studies show that it is possible to efficiently assign local
stress constraints and provide a sensitivity analysis of these constraints (Silva, Beck,
and Sigmund, 2019a; Silva, Beck, and Sigmund, 2019b). These studies use a linear
finite element analysis and further research is needed to generate solutions using a
geometrically nonlinear formulation.

The second future direction concerns the failure analysis and material characteri-
zation aspect of this research. The failure criterion used in this study predicts the
onset of failure on the shell, but the material model used in numerical simulation is
not modified accordingly. For example, a crack propagation model could be used
to propagate the numerical results once the maximum value of the failure index has
reached its threshold value of 1.

Topology optimization methods that promote a design with a minimal amount
of damaged material have been proposed (Verbart, Langelaar, and Van Keulen,
2016). A similar method could be applied to topology optimization of deployable
shell structures once a model for damaged elements is introduced in the numerical
simulations.
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A p p e n d i x A

SILICONE MOLDING MANUFACTURING TECHNIQUE

A novel manufacturing technique was developed to build thin shells forming a
corner. Silicone rubber was used to build the internal (male) and external (female)
molds needed to support, shape, and apply pressure on a composite layup. An
investigation into different silicone materials resulted in the final use of Mold Max
XLS II liquid silicone rubber, from Reynolds Advanced Materials. This material
has acceptable pour time (40 min), low mixed viscosity (30,000 cP), and low impact
cost on the manufacturing procedure. Silicone rubber thinning fluid, from the same
vendor, was also added as 5% of the total weight to lower the viscosity.

The steps involved in manufacturing the silicone molds are shown in Fig. A.1. The
male mold is composed of an intersection piece and two cylindrical tubes. The tree
parts are connected through two internal aluminum rods. A 3D printed, L-shaped
mandrel is used to build the mold intersection piece. The piece features a smooth
joint between the two cylindrical surfaces and two holes that do not connect at the
center, thus leaving a small, solid silicone region. The holes host the two thinner
aluminum rods, which connect the intersection piece to the two tubes. Uncured
silicone rubber, with low viscosity, was poured with a syringe through a small,
circular cavity placed in one of the caps of the 3D printed mandrel. The silicone
was then cured at room temperature for 24 hours. Afterwards, the resulting silicone
part was easily removed from its mandrel.

The tubes are hollow cylinders obtained pouring silicone into a mandrel built with
3D printed base and top caps and commercially availablematerials. The same curing
process was applied. The female mold was built of two identical components, which
were used to enclose the layup. A low-density foam mandrel and an aluminum cage
were used to manufacture each component. The silicone rubber molds can be reused
multiple times.

The composite manufacturing procedure is shown in Fig. A.2. Pre-impregnated
fiber is assembled directly on themale mold, which is stiff enough to provide support
for assembling the layup. The stiffness comes from the two aluminum rods that run
through its core. One ply of the layup is cut into four geometric patterns, thus creating
overlapping strips of material along the axial direction of each tube. Subsequent
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(a) Design of L-shaped, 3D printed mandrel used to build the intersection
of a male silicone mold.

(b) Assembly of 3D printed caps and commercially available hollow tubes
used to build two tubes of a male silicone mold.

(c) Assembly of low-density foam base and aluminum cage used to build
two halves of a female silicone mold.

Figure A.1: Design of mandrels used to build male and female silicone molds.

plies are assembled following an identical procedure. The male mold and the
composite layup are positioned inside the female mold. An external aluminum
cage is used to constrain the expansion of the silicone during the curing process.
The high coefficient of thermal expansion of the silicone makes it expand much
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more compared to the aluminum cage when subjected to high temperatures. This
provides enough pressure for the layup to cure without the need of an autoclave.
A high temperature, 180°C, curing cycle performed in oven completes the curing
process. Once the cure is complete, the aluminum rods can be removed and the
silicone mold, remaining inside the composite, is compliant enough to be squeezed
out.

An example of thin shells built using this manufacturing technique is shown in Fig.
A.3.

Figure A.2: Composite manufacturing procedure to build thin shells forming a
corner.

Figure A.3: Example of thin shell built using the silicone molding manufacturing
technique.
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