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ABSTRACTS

Part I. Dynamics of Energized Harmonic Molecules

The classical equations of motion of some bent triatomic har-
monic molecular models are integrated numerically to investigate the
assumptions underlying contemporary theories of unimolecular reaction
rates. The small vibration and weak coupling approximations are
shown to be inadequate for energies near dissociation, but reaction
frequencies, based upon a modification of the former approximation,
are seen to be in good agreement with the model's actual reaction fre-
quencies. The effects of rotation upon intramolecular energy exchange
are shown to be non-negligible. The effects of bond anharmonicity were

not included in this paper.
Part II. Dynamics of Energized Anharmonic Molecules

The classical equations of motion of two anharmonic bent tri-
atomic molecular models are integrated numerically. It is found that
at dissociative energies, the intramolecular energy transfer rate is the
frequency with which any two bonds compress. The normal mode des-
cription of the motion is observed to be entirely inadequate. Molecular
lifetimes are shown to be unstable to small perturbations in the initial
conditions for the molecular trajectory. This instability may imply
gross differences in the classical and quantal lifetimes of energized

molecules.



Part III. The H + DX Reactions

A Sato surface, free of spurious wells, is proposed for the
reaction H + DBr. The abstraction fraction, the ratio of abstraction
to total reaction rate, is shown to have similar large temperature de-
pendence from activated complex theory that is found from classical
trajectory results. The latter yield broad product energy distributions
and reaction cross sections which peak (at ~1 eV relative energies) at

3 and 13 ao2 for abstraction and exchange, respectively.
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Part I. Dynamics of Energized Harmonic Molecules



DYNAMICS OF ENERGIZED HARMONIC MOLECULES

1, Introduction

Theories of thermal unimolecular decomposition or
isomerization rates of molecules (1-6) make heavy use of harmonic
models. Harmonic oscillators are attractive for their relative
mathematical tractability in both classical and quantum mechanics.
In either formulation, harmonicity lends itself to separation (7) of
the total Hamiltonian into a sum of normal mode Hamiltonians in
the limit of vibrations of vanishingly small amplitude. The re-
sultant normal mode energies, which, in this case, are constants
of the motion, allow dynamical attacks on the problem of decompo-
sition rates in energized molecules.

For non-linear molecules, even if their bonds are per-
fectly harmonic, the normal mode energies are constants of the
(classical or quantum mechanical) motion only in the limit of in-
finitesimal displacements of the atoms from their equilibrium
configuration. One of Slater's theories (8) assumes, among other
things, that the normal mode energies are rigorous constants of
the motion even for large displacements, This is the small
vibration approximation (hereinafter designated as SVA) to the
nuclear motion of molecules. This paper examines the applica~
bility of this approximation in some classical harmonic molecular
models when their energies approach those necessary for reaction.
In Slater's treatment (8), reaction occurs when some critical co-
ordinate (or co-ordinates (9) ) is stretched or compressed to a

critical value. The reaction rate becomes, in part, a measure



of the frequency with which the critical co-ordinate attains its
critical value. We wish to test the sensitivity of this frequency
to the failure of the SVA. We will also test the perturbing effect
of rotation, which is neglected in Slater's treatment of the model's
vibrations.

The Rice-Ramsberger-Kassel- Marcus (RRKM) theory
(2, 8) of unimolecular decomposition considers molecules to be
sets of harmonic oscillators coupled together in such a way as
to allow energy to flow freely between them but not so furiously
that the oscillator energies fail to sum to the total vibration energy
(10). Since the terms in the Hamiltonian which couple these
oscillators will contribute to the energy of the system, one

assumption in RRKM theory is that these terms are small encugh

to be ignored in summing contributions to the model's total energy

and large enough to allow facile scrambling of the energy among

the oscillators. The validity of this assumption is tested in this
paper. The RRKM oscillators have never been defined (11) more
closely than as "harmonic degrees of freedom. ' The term
"oscillator' might apply to the interatomic bonds or the normal
modes, and both of these interpretations are examined here.

Since harmonic springs cannot be broken, these models
are fated never to dissociate in the sense that, at some time,
restoring forces become and remain arbitrarily small. We expect
the anharmonicity, which allows actual molecules to decompose,
will render the normal mode description a poor one (12-15). Thus,
aside from any question of activation/deactivation mechanisms,
the theories will disagree with experiment in both the artificial

choice of potential and the approximate way they solve the dynamic



problem for this potential. Direct comparison of these theories
with experiment is an inadequate test of the validity of the dynamic
treatment, A better comparison, for this problem, is to do a
rigorous and an approximate calculation with the same assumed
harmonic potential. Discrepancies between these results may
provide information about the magnitude and direction of errors
made in applying these approximations to real molecules.

The simplest system of interest in unimolecular decompo-
sition studies is the triatomic molecule. As the equations of
motion of three-body systems in general cannot be solved analyti-
cally in either classical or quantal formulations, they must be
solved numerically. An accurate quantum mechanical solution
is not necessary for verification of the constancy of dynamical
functions. For conservative systems, the correspondence
principle insures that a dynamical function is a quantum mechanical
constant of the motion, simultaneously knowable with the
Hamiltonian, if and only if it is a classical constant of the motion
as well (16). Thus classical nuclear trajectory calculations
suffice to test the constancy of normal mode energies assumed
in Slater's theory and the constancy of total oscillator energy
required for RRKM theory.

In the present paper, we analyze the high energy dynamics
of two harmonic models to test the assumptions of the unimolecular
theories mentioned above. The first model is a fairly artifical one
called M3 and consisting of three point particles of equal mass
connected pairwise by three identical, massless, harmonic
springs. In their equilibrium configuration, the mass points are

located on the vertices of an equilateral triangle, Since the



equations of motion of this and other models were solved in
dimensionless form (see Section 3. 2.) there exist infinitely
many sets of model parameters which correspond to the dimension-
less parameters used. We shall discuss M3 in te;*éns of only one
such set, wherein the masses all correspond to O™, the spring
force constants and equilibrium lengths all correspond to the O2
molecule (17), and the dissociation energy, 2DO, is taken to be
twice that of molecular oxygen.

The second model is a more realistic one for nitrosyl

chloride, wherein the experimental structure (18), central (pair-

wise) force constants (19), and dissociation energy (20) are
employed. In a subsequent paper (15), we shall examine the
dynamic behavior of anharmonic versions of these two models.
Some studies were made of the low energy dynamics of
harmonic H,0, HOD, D,S, HySe, NO,, SO,, F,0 and CINO (18).
The model and molecular parameters of the pertinent triatoms

studied are given in Table L
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2. Previous Trajectory Calculation Studies of Unimolecular
Reactions

Thiele and Wilson (12) used classical mechanical tra-
jectory calculations to comment upon the impropriety of the
application of the SVA to the in-line vibrations of linear anhar-
monic molecules. The in-line vibrations of linear harmonic
molecules follow rigorously the same vibration equations (see
Section 4. 1.) for all vibration amplitudes. However, whenThiele
and Wilson introduced chemically interesting energies into an
anharmonic model for COz, the rigorous solution of the equations
of motion gave normal mode co-ordinates which were aperiodic
functions of time. Although the normal mode energies were not
given in the paper, they must surely have reflected this failure
of the SVA. Similar anharmonicity effects for non-linear mole-
cules will be reported in a separate paper.

Kuppermann and Porter (21) reported preliminary tra-
jectory calculation results of the research to be described in this
paper.

In the first of his trajectory calculation papers, Bunker
(13) briefly investigated the kinetics of three classical harmonic
molecular models, two of linear N20 and one of bent 03. He
found that the normal mode co-ordinates appeared to be almost
periodic functions of time. His harmonic models apparently had
metrically decomposable (22) phase spaces. Large numbers of
initial conditions, which gave the molecules suificient energy to
"dissociate, "' failed to produce dissociation, as the energy did

not accumulate in the reaction co-ordinate within about 50



symmetric stretch periods over which the trajectories were
observed. The metric decomposability persisted under rotation
(14) as well.

It developed (13, 14) that Slater's frequency factor (23),
~\3, was in good agreement with k_, the high pressure limit of
the rate constant obtained from the trajectory calculations. This
implies to us that Slater's treatment correctly calculates the
distribution of model lifetimes as they become arbitrarily short.
Hence the SVA to the model's trajectory does not diverge immedi-
ately from the true trajectory. Although they do diverge eventually,
the SVA would still be a useful approach if it reproduced the reaction
frequencies of the harmonic model. One of the motivations of the

present work is to verify whether or not this is the case.



3. The Classical Mechanical Equations of Motion

3. 1. Harmonic Triatomic Model

Let m, and X, (i=1,2,3) be the masses and the

Cartesian position vectors of the nuclei of a triatomic molecule

in a center-of-mass system of reference. The Xi are then

related by the expression

3
), ™% = 0.

.

i=1

We take X1 and X3 to be the independent co-ordinates.

corresponding conjugate momenta are

T
]

m, 1+ ml/mz) }51 + m,mg }53/m2
P, = m,m Xl/m2 + my 1+ m3/m2) §3 .

~3 173~

The Hamiltonian for this system is

ﬂ = T+V

where

(3.1.-1)

The

(3.1.-2)

(3.1.-3)

(3.1.-4)



-10-

and
V = V(rl, r,, r3) . (3.1.-5)
3
Here M= ¢ m, and r, is the internuclear distance opposite
i=1

nucleus i. Hamilton's equations of motion for this system are

3H/3P, (24) (3.1.-6)

and

- af/3X, . (3.1.-7)

Performing the partial differentiation in equation (3. 1.-6) is

equivalent to inverting equations (3. 1.-2) and furnishes

Xy = [(m2 + m3)APil/m1 - P, 1/ M (3.1.-8)
and

X3 = [mg+my)Py/my- Py I/M .

Since the expression for the kinetic energy, T, in equation (3.1.-4)

is independent of }51, equation (3. 1.-7)becomes

3
B, = -aV/oX; =~ ) GV/or)er/sX).  (3.1.-9)
j=1
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The ar]./ agi follow from the expressions for the r]. in terms of

the independent co-ordinates, viz.,

ry = [myX, + (my + m)Xg[/m,

i

1%, - Xal (25) (3.1.-10)
rg = l(m1 + m2)§1 + m3)53l/m2 .

Differentiation of equations (3. 1.-10)with respect to §1 and X

23
yields
3ry/3Xy = my Yy/my
3ry/0Xy = X
ar3/a;§1 = (1+ ml/mz) Y3 (3.1.-11)
arl/a§3 = (1+ m3/m2) Yy
3ry/2X3 = - Xy
3r3/2Xy = My Y3/my
where

1

Y1 = [m1§1/m2 + (1 + m3/r7r12))53]/1'1

= (%1 - %3)/1‘2 : (3. 1.-12)

<
V]
I
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and
X3 = [(1+ ml/m2)§1 + m3)£3/m2]/r3

The complete specifications of Hamilton's equations
(3.1.-6) and(3.1.-9) requires only a choice of the potential,
which, in this work, will be taken to be

3
vV = Z v, (3.1.-13)
i=1

where
. _ eq,2 -
2V, = ki(ri r, ) - (3.1.-14)

The ki are internuclear harmonic force constants and the rfq are

the equilibrium internuclear distances in the molecule.

3.2, Dimensionless Equations of Motion

The twelve first order coupled differential equations of
motion symbolized by (3.1.-6)and (3. 1.-7) were reduced to
dimensionless form for solution by the numerical integration
procedure outlined in Section 5.1. One advantage of using dimension-
less formulae is that every trajectory produced is associated with
an infinite set of molecular models,

Let the units of any quantity, q, be given by g*. We may
define the dimensionless quantity q by



~13-

q = q/g* . (3.2.-1)
The conversion of equations (3. 1. -9) to dimensionless form yields
dgi/df = -a aV/a;’gi (3.2.-2)
where a is a dimensionless parameter given by
a = VFr/XF P* (3.2.-3)

and will be called the dimensionality factor for equations (3, 2.-2) .

Similarly, the dimensionality factor for the dimensionless form of
equations (3. 1. -8) is

b = Pk t¥/m* X* | (3.2.-4)

The expression for angular momentum is
3
= ) ’ e2.,-5
L Z mi(}Si X ;Si) . (3 )
i=1

With the aid of equations (3, 1.-1) and (3. 1.-8) , it can easily be
shown that

L =X xP+X,xPy, (3. 2.-6)

The dimensionality factor for the dimensionless form of the last
equation is



-14-

c = X*¥ px/L¥x | (3.2.-7)

Clearly, any molecular model, which differs from the
ones discussed below by a change in its parametric units such that
the values of a, b, and ¢ are preserved, will exhibit the same
trajectory in the configuration space of the dimensionless co-
ordinates as do the models discussed, so long as the same di-
mensionless initial conditions are used. We have taken our units,
a*, from the parameters of the oxygen atom and molecule (17).

Let the Morse function for O2 be (26)

2
_ eq
Vo = D02{1 - exp[-Bg (r - roz)]} (3.2.-8)

2 2

where

1

0_
DO = 119, 43 kcal/mole and By = 2,663 A
2 2

We used the following arbitrary choices for the dimensionality
factors: a=1/64, b=1/16, and ¢ = 1. One set of ¢g*s which
give these values to the dimensionality factors and which was
used in our calculations is

m* = mg = 2. 656 x 10723 gms = 16 awu

Xk

(0]
16/ = 6.008 A
2

V¥ 4D

]

0. = 477,12 kcal/mole
2
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P* = 4(m.D )1/2 = 5,937 x 10-17 gm cm/sec
O O2
1/2
x =
t (mq/Dg )"/ 48,
2 2
= 1.6795 x 10”12 sec
and
) 1/2
L* = 64(mODO ) /BO
2 2
= 5.707 x 10”22 gm cmz/sec

We feel it to be much more instructive to quote results
for a single member of the set of models which satisfy the chosen
values of a, b, and c. Inthe remainder of the article, familiar
units will be employed as they apply to the chosen member of the
set. It should be borne in mind that the dynamical results given
below are therefore more general than the accompanying discussions
imply.
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4, The Small Vibration Approximation (SVA)

4,1, Assumptions in the SVA

It is necessary that we discuss these assumptions in
some detail in order to understand the nature of the errors intro-
duced when we apply it to large vibrations. Let us use the M3
molecular model, described in the Introduction, to demonstrate
how the SVA equations are derived. In M3, all the masses are
the same and will be denoted by m without a subscript. Similarly,
all the force constants and equilibrium internuclear distances will
be denoted by k and 4 respectively, With these parameters,

the equations of motion (3. 1.-8) and (3. 1, -9) for this model become

X, = (2P, - P,)/3m (4.1.-1)
X, = (2P, - P,)/3m (4.1.-2)

_ eq _ &4 - o4
Py = -kllry =270y /1y + (rg = x700y/1y + 2(rg - r7)r,/T4]
(4.1.-3)

_ eq _.eq _.eq
P3 = -k[2(r1- r )El/rl - (r2 r )3:2/r2 + (r3 r )53/r3] .

(4.1.-4)
The internuclear vectors, I are
r, = X, + 2%,

r, = X, - X (4.1.-5)

1 =3
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Ty = 2%; + Xg

and the corresponding distances, r;, are

r, = l£1| = (Ei . Ei) . (4.1.-6)
Due to the presence of the r, in equations (4. 1.-3) and (4. 1.-4) ,
which are non-linear in the X,, equations (4. 1. -1) through (4, 1. -4)
cannot be solved analytically.

If we define a "'displacement vector, " A’gi’ such that

- €q
X =A%t % (4. 1.-7)
and substitute all Zgi in equations (4. 1. -1) through (4, 1, -4) by the
rhs of (4.1.-7), the resulting equations are still not soluble
analytically. However, if we make the basic assumption of the SVA,

namely that all AXi / % are so small that we may ignore terms of

gz;q_g_l_'(AXi / req)Z or higher , which arise in expansions of functions of
AXi, the problem reduces to a linear one.

At time t = 0, let the molecular plane be coincident with
the X - Y plane in our center-of-mass reference system, If we
force the nuclei to stay in this plane (by having the initial values
of the Z component of their velocities vanish) we may omit the
equations involving the Z components of )51 and Ei’ In that event,

we may define the column vectors
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X = AX (4.1.-8)

(4.1.-9)

in terms of which the SVA form of the equations of motion (4. 1.-1)
through (4. 1.-4) becomes

2% = /A P/3m (4.1.-10)
Ii’ = kB /r

(4.1.-11)

The fourth order square symmetric matrices /A and B are

easily seen to be given by

2 0 -1 0
0 2 0 -
/A = _1 O 2 0 (4. 1."12)
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and B = (bij) i,j=1, 2, 3, 4 where the bij are functions of the
)qu components given in Appendix 1. By making convenient
choices for the gfq, B simplifies appreciably, without loss of
generality. Let the initial equilibrium positions for the nuclei of
M3 be such that nucleus 2 lies on the positive Y axis and nuclei
1 and 3 are symmetric with respect to this axis as indicated in

Figure 1. In this case

X{" = X3l = e = %2
and
veh = vl = -d = /316 . (4.1.-13)

With this choice for the equilibrium configuration, B becomes

92 -9ed 0 0

~9ed 454> 0  364°

B - ) (4.1.-14)
0 0 9e 9ed
2 2

0 36d 9ed 45d

Substituting equation (4. 1.-11) into (4, 1. -10), one obtains

%.

= -k€CX/m , (4.1.-15)

where

A B/3r°% 2 (4.1.-16)

a
il
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FIG. 1. Equilibrium configuration of M3.
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2e” -2ed —e2 ~-ed
3 -%ed 642 -ed  3d°
C = —2_ . (4.1.-17)
reqz -e2 ed 2e 2ed
2 2

ed 3d 2ed 6d

Equation (4, 1. -15) is a form of the SVA egquations of
motion equivalent to equations (4.1.-10,11),

A consequence of the small vibration approximation is
that when it is applied to large vibrations, it violates conservation
of angular momentum. Indeed, let the row vectors of € be
defined by

for i=1, 2, 3, 4
It can be seen from (4, 1, -17)that

3d¢1+eﬂ:3+3d(ﬁ3-eC4=O. (4.1.-19)

The rows of € are not linearly independent. Thus for any given
X , there exists a linear dependence among the components of

¥ obtained through equation (4. 1.-15), viz.,

3dAX, + erY; + 3dbX, - eAY, = 0 . (4.1.-20)
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Integrating equation (4. 1.-20)once with respect to time, there
results

eq ey, < eq ey, eq Ay,
-y, %+ v Yex, v @xT+ xSYny, - (v] +2Y§ X,

(=594 2x§q)A§(3 =« (4.1.-21)

where o is an integration constant determin=d by the initial
conditions of a given trajectory.

On the other hand, for the planar motion being con-
sidered, the only non-vanishing component of the angular momentum
(3.2.-5) of M, is the Z one, and it is given by

LZ = 2(X1Y1 - Y1X1) + 2(X3Y3 - Y3X3) + (X1Y3 - Y1X3)

+ (X3Y1 - Y3X1) . (4.1,-22)
Substitution of equations (4, 1.-7) into (4. 1. -22) gives

_ ed | €y, eq  edy < _ (ved edy , v
LZ = [-(2Y1 + Y3 )AXl + (le + X3 )AYl (Y1 + 2Y1 )AX3

eq eq o . L]
+ (X1 + 2X3 )AY3] + [--(ZAY1 + AY3)AX1 + (2AX1 + AXB)AY1

- (AY1 + 2AY3)AX3 + (AX1 + 2AX3)AY3] . (4.1.-23)
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Substitution of (4, 1. -21) into (4. 1. -23) yields

LZ =+ [-(2AY1 + AY3)AX1 + (2AX1 + AX3)AY1

- (AY1 + 2AY3)AX3 + (AX1 + ZAX3)AY3] . (4.1,-24)

For vanishingly small AX AYI’ AX3, AY,, the bracket in the

9 ?

equation above vanishes a111d a = LZ. Howgver, for non-vanishing
A's, that bracket is non-zero and time dependent, even if we use,
in its evaluation, the A's obtained from solving the SVA equations
of motion. If we call o the SVA angular momentum, equation
(4. 1.-21) says that o, rather than LZ given by equation (4.1.-23)
is a constant of the motion.

As a result of (4. 1. -21) , we can reduce the number of

independent component equations implied in (4. 1. -15) from four to

three. Indeed, taking initial conditions for which the first integration
constant @ =0 (i.e., no SVA angular momentum) and the second integration
constant is zero (27), the integrated form of equation (4.1.-21) becomes

<€ eq eq eq €q q
-@Y] 7+ Yo X (0) + (2X]% + XSy (0) - (v7 2Y‘§ JAX,(0)

+ (x‘jq + 2X§q)AY3(O) =0, (4.1.-25)

If we substitute equations (4, 1, -13) into the integrated form of
equation (4. 1.-21), we get that at all times

AY, = /3 AX

3 +AY1+/3AX

(4.1.-26)

1 3 °
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Therefore, eliminating the equation for AY3 and defining X' as

1
X' = | sy, (4.1.-27)
AX3
we obtain
X' = -kDX/m (4.1.-28)
where

3/4  -3/3/4 -3/2
D = | /3/4 9/4 /3/2 (4.1.-29)

3/4  3/3/4 3

The problem is summed up in equations (4. 1. -28)and (4, 1. -26) .
We have merely to uncouple these linear differential equations to
solve the problem in the SVA,

4.2. Normal Mode Co-ordinates and Energies for M3

We choose a mass weighted displacement vector,
=/mX ’ for convenience in describing the energies below.
qU

We must then solve
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ql = -kDgq/m . (4.2.-1)

This system of equations can be separated into three independent
ones by an adequately chosen linear transformation from the

variables g, to the variables Qi(i = 1,2,3). Such a transformation

S| -
Q = IN c“ (4.2.-2)

must diagonalize ID, reducing equation (4, 2.-1) to

Q = -k D N)Q/m = -k AQ/m. (4.2.-3)

The matrices IN and /\ can be obtained by the usual matrix

diagonalization methods (28), and the final results are

1/2 0  /3/3
N = |-/3/6 J/3/3 0 (4.2.-4)
-1/2  -1/2  -/3/6

i 2

results separate equation (4.2, -3) into

and (/A )i'j = A, Gij where Ay =3 and Ay =2y = 3/2. These

;Z;)

;= -3k Ql/m

Qz = -3k Q2/2m (4. 2.-5)
and .o

Q = -3kQy/2m .
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Because Ag = Mg, the second and third normal mode eigenvectors
are degenerate. Any linear combination of QZ and Q3 results in
an acceptable normal mode. The pair of Q2 and Q3 which come
from the matrix, equation (4.2.-4) , were not chosen with any
special symmetry considerations in mind. Some linear combi-
nation of Q2 and Q3 will result in a new pair Q'2 and Qé, which
have sz (bend) and asymmetric stretch symmetries, These
primed normal mode co-ordinates will be discussed in Section

4,.3.2, Equations (4. 2.-5) are readily integrated to give

Qi = Ai cos Zn(vit + 61) (4.2.-6)

where

1/2

v, = (xik/m) /2

b

and Ai and 6i are integration constants to be determined by the
molecule's initial conditions.

Multiplication of Q1 = -kxiQi/ m by éi followed by a
single integration results in

2
2, = Q +k)\iQi/m (4.2.-7)

where the e, are integration constants and therefore constants of
the motion. They may be related to the Ai through application of
equation (4. 2.-6) and its first derivative to equation (4. 2.-7) .
There results

A, = (zmei/.mi)l/2 ) (4. 2. -8)
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From the relations given, it can be shown (see Appendix 1) that

the kinetic energy

3
| ° 2
oT = 2 Q (4.2.-9)
i=1
and the potential energy
3
2V = k }: xiQiz . (4.2.-10)
i=1

Thus the total energy of the system, in the SVA, is the sum of the

constant normal mode energies

3
E = Z c. . (4.2.-11)
1=

When the complete Hamiltonian equations of motion,
(3.1.-8,9) , for harmonic triatomic molecules are integrated
numerically (see Section 5. 1.) from initial conditions consistent
with the SVA, i.e., very small normal mode amplitudes, Ai’
from very small normal mode energies, €5 the resulting displace-
ment co-ordinates approximately obey the relation (4. 1.-26) .
For example, when M3 is one-third of 0. 01 DO in each of its
normal modes, equation (4. 1. -26) gives Y, s which are slightly

different from those obtained from the trajectories., These former,
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SVA to Y3 s can be used to define a configuration for the molecule.
The bond lengths in this SVA configuration differ from those in the
actual configuration by only about 0.4%. Furthermore, the normal
mode co-ordinates and velocities, Qi and éi’ resulting from the
trajectory calculated A}Ei yield normal mode energies, €5 which
are constants of the motion. However, when the molecular
energies approach those necessary for reaction, the solution of the
actual equations of motion give ,é}fi which produce normal mode
energies which are no longer even approximately constant in time,
For example, when the initial normal mode energies (see Section

5.2.1.) in M, are each one-third D (totalling one-half the
2
dissociation energy for M3), the trajectory calculation gives

normal mode energies which show large fluctuations, peaking,

for one mode, at over 20 DO ! In addition, their sum deviates
2
from the initial energy by as much as 33 DO . It should be noted
2
that this does not mean that conservation of total energy is violated.

The numerical integration of the equations of motion conserves that
energy to about 5 digits (see Section 5.1.4.). The large fluctuations
in the total normal mode energy imply that the total energy becomes
a small difference between large normal mode energies and large
normal mode interaction energies. Therefore, the concept of
normal mode energies looses its utility under these conditions.

In this high energy example, the SVA configuration of

the molecule, taken from the Y, approximated by equation (4. 1.-26)

3
has bond lengths which differ by more than 5% from those in the

actual configuration.
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This complete failure of the SVA stems, in part, from
the fact that the small vibration angular momentum does not
remain constant for the large displacements of the nuclei resulting
from the high energy vibrations. Part of the fluctuation of the €
with time can be eliminated by choosing a system of molecular
(or body-fixed) axes which actually rotate or oscillate with respect
to the laboratory-fixed axes, The molecular axes may be chosen
in such a way as to reduce the length of the displacement vectors
measured in the body-fixed system. Several different ways of
doing this have been devised. One such system (29) uses the
molecule's instantaneous principal axes of inertia. Another is
the Eckart (30) system, which will be discussed in the next section.
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4.3. Normal Mode Analysis for the General Bent Harmonic

Triatomic Molecule

4.3.1. Eckart Rotating Axes

Let us consider a general non-linear harmonic triatomic
molecule consisting of three mass points pairwise interconnected
by three massless harmonic springs. As seen in Section 4. 2. that,
partly as a consequence of the incorrectly assumed constancy of
the approximate SVA angular momentum, the constancy of the
normal mode energies breaks down, when the vibration amplitudes
of the symmetric M:3 molecule are not vanishingly small. This
breakdown is independent of the triangular symmetry of M3 and
should occur for any non-linear molecule. Eckart (30) has defined
a system of reference which rotates with the molecule, so as to
minimize the values of the displacement co-ordinates, components
of the é}éi. This system is useful not only when the molecule is
actually rotating but also when its angular momentum is zero. In
this case, Eckart's axes follow the apparent rocking of the molecule
which results from large vibration amplitudes,

The equation defining the Eckart axes is (31b)

3

Z m, (% x x.) = 0 (4.3.1.-1)
1 ~1 ~1

i=1

where % is the position vector of nucleus i in the Eckart (rotating/
center-of-mass) system. It should be noted that X and §i are

geometrically the same vector (connecting the center-of- mass with
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nucleus i). The different notation indicates that when we represent
them in column matrix form, the elements of }éi are its components
in the laboratory system whereas those of X, are the Eckart ones.
The equilibrium position vectors, 5;3(1, in the Eckart system have
the same components as did the }Sti?q (of Section 3. 1,) in the
laboratory system. Therefore 5(.13(1 and )A(qu represent vectors
which are geometrically different, and although the Etieq are inde-
pendent of time (meaning that the corresponding equilibrium position
are fixed in the Eckart system), they move with the Eckart axes
with respect to the laboratory ones. With the other molecules to
be discussed in this paper, as with M3, the 5‘.3(1 will be com-
pletely defined by requiring that ziq = zgq = 0 and that giq - i(g‘q
= £eq be parallel to and in the same sense as the x unit vector.

The transformation from )éi to % is achieved by a

rotation matrix, U, such that

% =U ZSi . (4.3.1.-2)
U is obtained by substituting this equation into (4. 3.1.~1) and
requiring the resultant expression to be valid for all )Si at all
times, The elements of this three by three matrix involve the
three Euler angles (31c¢) 6, ¢, and §, which relate the (center-
of-mass) laboratory axes to the instantaneous Eckart axes. Using
the conventions of Wilson, Decius, and Cross (31a), hereinafter

referred to as WDC, we have

Uu=u, U, u (4.3.1.-3)

where
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cos §y sinv¢ O

U\U = -sin ¥ cosy O

cos 8 0 -sin 8

sin 8 O cos 6
and

cos @ sinyw O

UCp = -sino coso O .

For a planar molecule, we make the Eckart é\ axis be
perpendicular to the instantaneous plane of the molecule., Then
the 6 and ¢ Euler angles are simply the spherical polar angles

of 2 in the laboratory XYZ system. The unit vector, :zj, is given

by

A §3X§1 2 5 2
z = X, 7K, =sindcospX+singsing Y+cos 6 Z (4.3.1.-4)

from which 6 and ¢ and therefore U, and Ucp are uniquely

0
determined in terms of the laboratory co-ordinates of the nuclei.
The remaining Euler angle, ¥, can be obtained from the Eckart

condition (4.3.1,-1) . Let us define
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Xy = Ug U, X (4.3.1.-5)

8

As can easily be verified, the }Si’ vectors lie in the plane of the
molecule, as do the X; and the X,. From (4.3.1.-2) , (4.3.1.-3)
and (4. 3. 1. -5) we have

x. = U, X! (4.3.1.-6)

and therefore

"
]

X'i’ cos ¥ + Y'i' sin ¢

!
i

-Xi’ sin § + Y'i' cos | (4.3.1.-7)
and

z. = Z!'" = 0 .,
i

Substitution of (4. 3.1.-7) into (4.3.1.-1) yields

¢y = arctan (n/d) (4.3.1.-8)
where
3
e (A e 1"
n = Z mi(qu Yi = Yini) (4.3.1.-9)
i=1
and
3
o 1 eq 12} eq 1
d= ) mixtxr+ ylvy) . (4.3.1.-10)

i=1
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Thus, given the instantaneous center-of-mass laboratory co-
ordinates of the nuclei of the molecule, ZSi’ and the co-ordinates

of its equilibrium configuration, A}gfq

, all the Euler angles for the
Eckart axes are specified up to an additive = in V.

The choice between 0 < §y < mand 7 < ¥ < 21 can be
made as follows, Rotation of X4 by o aboutg gives % since

A
X, has no z component, Then

3
eq =
i=1

if and only if equation (4. 3.1.-1) holds. However, the displacement

vectors
AX. = x, - x4 (4.3.1.-11)

will be very sensitive to which of the two values satisfying (4.3.1.-1)
we choose. We could do it in such a way that these ér}fi are as

small as possible, For convenience, we have chosen between the

two values of ¥ by taking the one which maximizes Xy i‘iq““ Xg qu,

thereby insuring that the X lie near and not opposed to the 5‘13(1 .
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4,3,2. Normal Mode Co-ordinate Transformation

For the triatomic molecules considered, a normal mode
analysis was made according to the powerful @ IF method (31d).
The results of this treatment follow below. Let @ be the three
by one column vector whose elements are Ql’ QZ’ and Q3, the
normal mode co-ordinates in the Eckart system. (As usual, the
kinetic and potential energies of the molecule in this system are
sums of square terms in the éi and Qi respectively. The
vector is given by

1

Q =mwlimay=-m)ylax.

Similarly

» .

Q = @t A% . (4.3.2.-1)

Here, A X is the three by one column vector whose elements are
Axl, Ayl, Ax3. Ay3 is determined from t.hem by the Eckart condition
(4.3.1.-1) . Clearly, the elements of AX are AScl, Aifl, and AS{3.
The Ay, comes from the first derivative of equation (4.3.1.-1).
The IL and IM are three by three matrices defined in terms of the
force constants, masses, and equilibrium configuration of the mole-
cule, Associated to the IL matrix there is a three by three diagonal

~/\ matrix, whose diagonal elements are )‘1’ xz, and )\,, related

3,
to the normal mode frequencies according to

A, = 4nm vy (4.3.2.-2)
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The procedure we follow for determining the normal mode
co-ordinates is as follows. Once the molecular parameters are
chosen, we determine IL, M, and /\ as described in Appendix 2.
We then solve the equations of motion for chosen initial conditions
by the numerical procedures described in Section 5. 2. and deter-
mine the laboratory vectors X and X as a function of time.
Substitution of this result for X into(4.3.1.-2) and (4. 3.1.-11)
furnishes the Eckart displacement vector A% as a function of time,
according to (4.3.1.-1) . The 4% follow from the differentiation
of equations (4.3.1.-6) . The required Xi‘ and § expressions will
be derived in Section 5. 3. below.

When the A ; are not all different, a certain ambiguity
arises in the definition of the corresponding Qi' We have seen
that for M,, for example, A, = Aq (Section 4.2.). I we use the
Q, and Q, defined by equations (4.2.-2) and (A1-9) | except
that we replace the lab. displacement vectors by the corresponding
Eckart ones, any linear combination of Q2 and Q3 furnish new
normal mode co-ordinates of the same frequency. To lift this
arbitrariness in this case, it is customary to choose Q2 and Q3
so as to make them correspond to motions with certain symmetries.
For example, in the M3 case, just mentioned, one can impose the
condition that Q2 correspond to a (C 2V) symmetric bend and Q3
correspond to an asymmetric stretch. The procedure for obtaining
the corresponding IL is given in Appendix 2, With this choice,
equations (4.2.-2) and (A1-9) get replaced by

Q = (IN')'1 A X (4.3.2.-3)
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where

) s ml-2 -3 -1 . (4.3.2.-4)

These are the normal mode co-ordinates of M3 used in most of
the M3 calculations, to be discussed in Section 7. It should be
noted that the last two rows of (]N')_1 are linear combinations

of the corresponding ones of ]N“1 given in equation (A1-9).
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5. Molecular Energies

5.1. Normal Mode Energies

The normal mode energies, mentioned in Section 4. 2.,
are the €5 given by

_ 2 2 . i
2¢, = Q + 1, Q) (=1,2,3). (5.1.-1)

In the SVA, the ¢; are constants of the motion and sum to the total

Eckart vibration energy (see Section 5. 3.)
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As rotation of the molecule is expected to be coupled with the
internal vibrations, Slater's assumption of constancy of the €

is expected to fail for two reasons: the presence of high amplitude
vibrations and of vibration-rotation coupling. Both these effects

will be considered in subsequent sections.

5.2. Bond Energies

The RRKM treatment requires that the sum of oscillator
energies be constant in time. If the oscillators are taken to be
normal modes, this amounts to assuming that igl €5 is a good
constant of the motion. The RRKM oscillators are often associated

with the molecule's bonds, Some intuitive definition of bond energy
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would be useful to test the RRKM assumption for this choice of
oscillators,

Let us define the energy of bond i as

Ei = TBi + Vi (5.2.-1)
where the Vi are given in equation (3. 1.-~14) and TB is the
i
kinetic energy of bond i given by
2Ty = il (- k) o] 2 (5. 2.-2)
B, MWk R - o

where i,j,k is a cyclic permutation of 1,2, 3, 8 is a unit vector
along the bond i between atoms k and j, and My is the reduced
mass of this bond:

Hy

= m, mk/ (m:i + mk) . (5.2.-3)
It should be noticed that ( i‘k - :}_gj) " 85 is simply the component of
the Eckart velocity of atom k with respect to atom j along the
bond i connecting these two atoms. The expression is equal to
the speed with which the length of this bond changes. We call it
the bond velocity.

Equation (5.2.-2) gives the same TB when the vectors

i

in it are measured in either the center-of-mass laboratory or the
Eckart rotating reference frame., Indeed, the relation between the

corresponding velocities is
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= X - WXX (5.2.-4)

~i
where w is the instantaneous angular velocity of the Eckart axes
with respect to the laboratory ones. Therefore,

}Sj")fk S s S (w x ,Bi) . (5. 2. -5)

The bond velocity in terms of the laboratory nuclei velocities is

(}Sj-},gk).ﬁi = Q‘j‘ﬁk)'ﬂi’ri(i’,’xﬂi)'ﬁi

= (% - %) " 8 (5. 2.-6)

and the independence of TB. on the system of reference is an
immediate consequence of t;is expression and equation (5.2.-2) .

The terms Vi in equation (5.2.,-1) are the pairwise
potentials of the problem, defined by equation (3.1.-14) . Atall
times, their sum is the total potential energy of the molecule.
Unfortunately, the bond kinetic energies do not necessarily sum to
the molecule's total vibrational kinetic energy, Tv (see Section 5.3.).
A decomposition of the atomic velocities resulting from various

normal mode kinetic energies in M3 shows that TB =i=21 TB. will

differ with T_ by +50%, +41%, -40%, and +13%, when the normal
modes excited are Ql’ QZ’ Q3, and when all three modes have
equal excitation energy, respectively. In this calculation, the

molecule was assumed to be at its equilibrium configuration, i e.,
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all the normal mode energy was kinetic. With this assumption,
the percentages given above are independent of total energy,

which means that the % error in the T, will not go to zero in

the limit of small vibration amplitudesl? Consequently, it is
expected that the sum of the bond energies, Ei’ will differ from
that of the normal mode energies, €;» s well as from the total
vibrational energy, E_=T_+V (see Section 5, 3.). Whether

z Ei or ¥ €; are better approximate constants of the motion can
be determined only from an exact solution to the dynamic problem.
This was done in this paper, and the results are described in
Section 7. 1,

Improvements might be made in the definition of the TB
i

S0 as to bring their sum into closer agreement with Tv‘ For
example, one might weight the quantities i{i + gy and 3:{1 * oy by
the factors, fi’ defined by

2 2 : 2. _ -2 i
f, [uj(}ji gj) (% e 0] = mx (5.2.-7)

in an attempt to decompose the Eckart energy —;— m, 353 into the

energies of the two bonds involving atom i. Such a decomposition

B,
i

previous definition, but it would do so at the expense of violating

should resulf in T sums closer to the Tv than did those of the

the spirit of the RRKM oscillators. I we are trying to associate
them with the molecule's bonds, we do not want to use a non-local
definition like (5.2.-7) , wherein the energy in bond i lying

between nuclei j and k is dependent on velocity vector of nucleus i.
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In neither of the above definitions do the component
velocities along adjacent bonds always add up to the velocity of
the common atom. This is a result of the perpendicular projections
in equations (5.2.-2) and (5.2.-7) . Only when these adjacent
bonds meet at right angles will perpendicular projections yield
components which sum to the original vector, An alternative
atomic velocity decomposition, using projections parallel to bond
i when calculating components along adjacent bond j, will make
the component velocities sum correctly. This velocity analysis
must be carried out in the Eckart system to avoid rotational
"contamination' in the bond energies., Though this paraliel pro-
jection scheme makes the bond component velocities sum to the
atomic velocities, it still does not necessarily sum the bond
energies to the total vibration energy, Ev' This bond energy
definition is also non-local, as it makes i'th bond energy dependent
on i'th nucleus position.

Hereafter in this paper, "bond energy'' will be taken with
reference to equation (5.2.-2) .

5.3. Eckart Energies

The total kinetic energy of the molecule can be expressed
in terms of the co-ordinates and velocities of the nuclei with respect
to the Eckart axes and the angular velocity of these axes with respect
to the laboratory system (31e). This expression is

T=T +T_ +T (5.3.-1)
v r vr
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where Tv’ Tr’ and Tvr are the kinetic energies of vibration,
rotation, and vibration-rotation interaction (i.e., Coriolis

energy) respectively, given by

3
= Y mix-x (5.3.-2)
i=1
3
Z m, (w x 51)-('9)1 X 51) (5. 3.-3)
i=1
and
3
z (ax x x) . (5. 3. -4)

The vector w is the angular velocity vector of the rotating Eckart
axes with respect to the laboratory ones. It can be expressed as

_ A A A (53‘5)
g—wxi§+wyz+wzg o Jol~

where the 2{, 3, and g are the unit vectors of the Eckart system,
and the corresponding components Wes. wy’ and w, of w are given
by (3ie)

gsiny -~ c@sinecosw

e
i

e
1l

6 cos +c;.>si.nesin¢ (5. 3.-6)

W= q‘)COSG +¢; .
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The expressions for 6, ¢, and § in terms of the instantaneous
laboratory co-ordinates of the nuclei are given in equations
(4.3.1.-4) and (4. 3.1.-8) . Differentiation of these equations
leads to the following expressions for 6 y cg'), and \{r :

® e A
% = (-8 cos 8 cos ¢ + ¢ sin 6 sin ) X
. . A
+ (6 cos 6 sing + ¢ sin 6 cos ¢) Y (5.3.-17)
. A
- 0 sinb Z
and . .
b= Lo eos?y (5.3.-8)
d
where

n and d refer to time derivatives of equations
(4.3.1.-9) and (4. 3.1.-10). The components of the X!, appearing

in those equations, are given by (4. 3. 1. -5)

X'i' = Xicose cos o + Yicose siny - Zisine
Yy = -X,sing + Y, coso (5.3.-9)
Zz!' = 0

i

and because of the constancy of the ;Vc?q in equations (4.3.1.-9,10),

we need only
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X' =X, cos8cosy - Xi(é sinf coso + cp cos 9 sing)

+ Y, cos6sing + Yi(é cosfcose - ¢ sin6 sing)

(5. 3.-10)

Z.sing + Z. 9 cos®H
i i

Yi - Xismcp - XicpCOScp + Yicoscp - Yicp sineg .
Consequently, the Xi‘ and Yi’ are now known in terms of the Xi
and Xi‘ As a result, so is V.

All the energies to be discussed in this paper have now

been defined in terms of the center-of-mass laboratory co-

ordinates and velocities (or momenta).
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6. Numerical Methods
6.1. Adams-Moulton Integration

6.1.1. Definition

The numerical integration of the twelve first-order,
coupled, differential equations of motion (3, 1. -8, 9) was carried
out with an Adams- Moulton 5th Order Predictor (32)/6th Order
Corrector integrator. The Adams-Moulton method (33) involves
a difference polynomial approximation to each first order
differential equation. Let u, = ui(t) be defined by a first-order

differential equation

u, = du/dt = g(U, t) (6.1.1.-1)

where U = Ugs Ugy eon p Uy g5 Ui Wy 0y e, U Thus, in order

to solve (6. 1.1.-1)we must simultaneously s.olvrI;I the other N-1
equations as well. For notational convenience, let y = .. The
Adams-Moulton n'th order Predictor makes use of the last n values
of y taken at successive equal intervals, h = At, of the independent
variable, t. The value of the dependent variable, y, at step

= j 1 Sk :
t tO + (m+1)h, is predicted to be Vi1 according to

p*teee vy ). (6.1.1.-2)

v 1° ym + h(a‘n+1ym + anym-

m+ m-n
This predicted value, Y*m+1’ is used in equation (6, 1.1.-1) to obtain

the predicted value, §*m+1’ as
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= *
y*m+1 gi (Um+1’ tm+1) (6. 1. 1. "3)
where the U* Tae1 2T also predicted values at t m+1t The
corrected value, y +17 is taken to be
c : .
Ym+1 ™ ¥Ym * h(bn+2 1t bn+1ym e F bl ) (6.1.1.-4)

The coeff1c1ents 2; and b are determined in Appendix 3.

The y +1 could be considered a new prediction for Y+l
and as such it could be recycled through equations (6. 1. 1. -3, 4)
any number of times. This procedure will converge not to the
correct answer, but to the best n'th order approximation thereto.

In practice, only one correction cycle is employed.

6.1.2. Truncation Error Analysis

Let us look at the prediction of the Y1 value, assuming
that all the y (=0,1,2,...,n) are correct. Equation (6.1.1.- 2)
becomes

yaIkl+1 = yn + h(an+1yn + .. + aIYO) . (6¢ 1.2. m1)

We may perform a Taylor series expansion for 3.7]. in terms of the
higher derivatives of y taken at j=0. Since the intervals in the

independent variable, t, are all the same size, h,
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@, G
yj—y0+ —iTy0+§Ty0+...

(6.1.2.-2)

Substitution of equation (6. 1. 2, -2) into (6. 1. 2. -1) will give an

expression for Ay* = y* o

derivatives of y about time zero,

- ¥, in terms of powers of (jh) times

The true value of Ay (if y is a sufficiently well-behaved

function) may be obtained from the difference of two other Taylor

series
” k .k
g jih .
V. =Vt ) %2 2V (j=n,n+1) . (6.1.2.-3)
] k=1 ot
‘ t=0
Thus
. K
_ _ v h k k .3y
bY = Vp,1- Y= ) Fil@+l) -n ]_a;E (6.1.2.-4)
k=1 -0
where, for example, a3y/at3 ’t=0 =¥, - When equation (6. 1. 2. -4)

is compared term by term with its approximation, Ay*, described

below equation (6. 1. 2.-2) , the n'th order Adams-Moulton Predictor

is validated up to the hn+2

term. This error analysis is inde-

pendent of the nature of the differential equation (6. 1. i.-1) as long

as it yields well-behaved y's.

I we were to continue this standard approach to analyze

the error in the corrector, we would run into difficulty. y’I"H_l =

Yt Ay* would have to be passed through equation (6.1.1.-1), and
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the Taylor series expansion for Ay* would become unmanageable

in the resultant expression for ir’r"Hl unless the differential equation
were some simple polynomial in y. Coupling of the other dependent
variables, U, in the differential equation (6. 1. 1.-1) would invalidate
this procedure altogether. This error analysis therefore terminates
at the predictor level.

6.1.3. b5th Order Predictor/6th Order Corrector

The coefficients for this, the Adams-Moulton routine used

in this work, are given in Table 2, When the 5th order predictor

(5)

Section 6. 1. 2., the 5th order predictor is shown to have a truncation

coefficients, a; 7, are used in the error analysis described in

error of

7
19687 .7 3'y
50450 h g tm n<t<tm. (6.1.3.-1)

at -

The seventh derivative may be thought of as having its maximum
value over the range of the preceding five integration steps.

In order to test the accuracy of the methods used a 5th
order Predictor/5th order Corrector was given the correct y table

for
y = 2m cos 2nt (6.1.3.-2)

beginning at tO = —2_4' and taking intervals of h = At = 2_5 through

t5 =3 X 2_5. The integrator was allowed to take a single predictor/
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corrector step. Equation (6. 1. 3. -1) gave an expected predictor
accuracy of about 5 % decimal digits for y(t=2" 3), whereas the
integration step gave y to better than 6 -;— digits. When the step
size was reduced to h = At = 2_8, the expected predictor accuracy
(12 digits) and the actual predictor/corrector performance (13
digits) were again very close to one another.

Stepping the order of the corrector up by one unit to 6th,
takes advantage of all the past values of y available to the inte-
grator at a given step, but it does not markedly improve accuracy.
From tests other than equation (6. 1.3.-2), the Adams-Moulton
routine with 6th order correction was observed to make less than
1/2 digit improvement over accuracy obtained with the 5th order

corrector.

6.1.4., Application to Trajectory Study

The Adams-Moulton (AM) integrator of Section 6. 1. 3. was
applied to the solution of the dimensionless Hamilton differential
equations (3. 1.-8,9) altered as per Section 3. 2.). A corresponding
program was written for an IBM 7094 in 16 decimal digit, floating-
point arithmetic (double precision). The double precision arithmetic
was found to be necessary in order to delay the growth of round-off
error in the integration and in consequence allow us to follow
trajectories over many (100) molecular vibration periods. The first
five integration steps were taken with a routine which does not
require a table of past values of derivatives. This "self-starting"
integrator was a 16 decimal digit Runge-Kutta-Gill (34) 4th order
integrator (RKG)., The RKG was given a step size 1/2 that of the

AM routine, which took over from it., This difference in step size
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matched the accuracy of the starting routine to that of the AM. The
starter RKG was not used for the remainder of the integration
because (a) it required twice as many integration steps to maintain
the same accuracy as AM, (b) the basic integrator algebra in RKG
took almost twice as long to execute for a single step as did that of
the AM, but primarily, (c) RKG required twice as many evaluations
of derivatives (four) as did AM (two). All these considerations
conspired to outweigh RKG's major advantage: its ability to change
step size at every step, if necessary.

As suggested by the form of equation (6. 1. 3.-1) , integrator
accuracy is a function of the size of the derivatives of the dependent
variables, In trajectory calculations, these derivatives are small
when the forces are small and large when the forces are large.

Near turning points in the nuclei trajectories, where forces are the
highest, the integrator time step sizes should be smaller than when
the nuélei are near their equilibrium positions. Changes in inte-
gration interval step size require re-starting of AM routines. RKQG,
not being dependent on tables of past values, can be given different
step sizes at each integration cycle. This property was not found

to be sufficiently compensatory to warrant the use of the slower
integrator.

The AM 5th Order Predictor/6th Order Corrector inte-
grated 1000 steps in all 12 equations of motion in 28 seconds.
Typical trajectories involved 4000 steps or less than 2 minutes on
the computer.

The accuracy of the integration was determined in a number
of ways. Since angular momentum vectors and total energy are
rigorous constants of the motion, their values were monitored during

the course of the integration, These values were typically conserved
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to 0.001% or better. Conservation of the momentum components
was usually better than conservation of total energy. However,
conservation of these quantities was found to be a necessary but
insufficient condition for accuracy of the co-ordinates and
momenta.,

Hamilton's equations of motion satisfy time reversal.
Therefore, a necessary condition for trajectory accuracy is that,
under a reversal of all momenta at the end of an integration, the
initial positions and momenta should be recovered on integrating
in reverse for a number of steps equal to that in the forward inte-
gration, From the anharmonic analogs to these equations of
motion (15), it was found that recovery of 4 or 5 significant figures
indicated that the trajectory had been accurate to 3 significant
figures in the forward integration. This was determined by reducing
step sizes until the final molecular co-ordinates and momenta were
independent of step size. In these tests it was observed that energy
and angular momentum conservation were satisfied at larger step
sizes than was convergence of the final co-ordinates and momenta.

From the anharmonic analogs, a linearloss of significant
digits was observed during the integration. The harmonic tra-
jectories exhibited strange error propagation characteristics. The
rate of loss of digits (measured by the rate of divergence of the
reverse integration from the forward one) was a monotone descending
rather than constant function of number of time steps. We have not
found a satisfactory explanation for this behavior. I was not
observed in the harmonic trajectories integrated by Bunker (13).

The difference may lie in the fact that his computer word length

was twice ours.
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When an M3 (harmonic) trajectory was initiated (see
gle; 1=€2=€3=40
kcal/mole, and integrated for 3. 36 x 10 seconds (molecule
time) at a step size of 0. 84 x 10—15 seconds for a total of 4000

integration steps, momentum reversal lead to recovery of 4

Section 6. 2, 1. ) from normal mode energies of ¢

decimal digits of the initial co-ordinates and momenta. Thus the
integration could probably have been trusted to 6.72 x 10~ 12

seconds (8000 steps) with similar accuracy.

6. 2. Trajectory Initialization

In order to integrate the equations of motion (3. 1. -8, 9)
one needs initial values for the twelve quantities Xl’ Yl’ Z1 , X3,
Y,, 2., P. ,P. , P, , P, , P, , P, corresponding to

3’ 73 1X 1Y 1Z 3% 3Y 3Z
desired initial properties. In the following subsections, we

describe the methods used to calculate those initial values in
terms of different kinds of initial propasrties. Initially, the
molecule is taken to lie in the X-Y laboratory plane, and the
Eckart and lakoratory axeg are coincident without loss of
generality. Hence Zl(O) = Z3(0) = 0. The equilibrium position
vectors, gfq, are taken such that £§q is parallel to and in the
same sense as X. Figure 1 shows the equilibrium configuration
of M3. Figure 2 shows the equilibrium configuration (and normal

modes) of nitrosyl chloride. In both cases, it is clear that
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FIG. 2. Equilibrium configuration and Normal Modes of C1N018.

Arrows represent distortion of the molecule due to normal

mode motion at 8 times the dissociation energy.
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6.2.1. Normal Mode Energies

For each normal mode, i,

€ = TQi + VQ. (6.2.1.-1)
i
where
9T . =Q°  and W. =1 Q2. (6.2.1.-2)
Qi i Qi ii” e
In the SVA
e /2 1/2 v o .
Q = (2e i/)‘i) cos (Ai T+ 6i) 6.2,1.-3)

where the 6i are arbitrary phase angles depending on initial
conditions, By definition of the éi we make equation (6.2, 1.-3)
valid at t=0 even for large vibrations. (This does not imply
that éi or e. are independent of t for such vibrations,) There-
fore,

sin6, = # (TQi/e:i)l/2

(6.2.1.-4)
_ 1/2
cos 6, = = (VQi/ei) .

We may choose the signs in the above equations arbitrarily. Once

this is done, TQ (0) and VQ (0) determine Qi(O) and Qi(()) uniquely.
i i
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In all the calculations reported in this paper, we made T, (0) = 0,

Q

i

VQ (0) = e, and 61(0) = 0, The resultant Qi(O) yield initial values
i

of AX through equation (4, 3.2.-1). The initial values of the Xy

V10 X35 and Vg follow from equation (4. 3.1.-11). By the coincidence
of the Eckart and lab, axes, )N(i(()) = 51(0). In general, the Eckart
axes are rotating with respect to the laboratory ones and

X,0) = %(0) + uxx,(0) . (6.2.1.-5)

The angular velocity vector, w, is calculated from the expression
for total laboratory angular momentum, L.

Expressing the components of L in the Eckart system, we
may write (31f)

3
L=Hy+ ) m(xxx) (6.2.1. -6)
i=1

where II is the moment of inertia matrix, whose elements are
defined in terms of the Eckart axes, Equation (6.2.1.-6) can be

rearranged to give

3

}8 = H-l[I;:IJ'*' y mi(’z’.{i xz'{i)], (6.2.1."7)
i=1
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which, with equation (6. 2. 1. -5) completes the initialization of
trajectories from normal mode kinetic and potential energies.
Note that when L = 0 and 3’51 é 0, w=0 ._(_)_I_}_l_j_l under the special
configurations which render Z1 mi( X, X r§i) = 0, In general,

w # 0 even when L = 0, and the Eckart system rocks with respect
to the labo.ratory system in this case. The Bi can be obtained
from the X, through (3.1.-2) . In the following section, we
show how to pick  to give a desired initial rotational energy

around a chosen axis.

6. 2. 2. Rotational Energies

For non-rigid rotors like our triatomic molecules, the
definition of rotational energy depends on the choice of rotating
co-ordinate axes. Regardless of that choice, the rotational energy
is not usually a constant of the motion. It is coupled to the mole-
cule's vibrations because the latter make the moments of inertia
be functions of time. Given an instantaneous configuration for the
molecule and the Eckart velocity vectors of the nuclei, one can
find an angular velocity, w, around some chosen axis defined by the
unit vector @ such that the instantaneous rotational energy, Tr’
has a desired value., Then,

3
e 1/2

w=l ) m(Bxx)’2T ) B (6.2.2.-1)
i=1

Substitution of equation (6. 2.2.-1) into (6. 2. 1.-5) gives the initial
nuclei velocities consistent with the chosen energy and axis of
rotation,



-61-

7. Results and Discussion

7.1. Normal Mode and Bond Energies in the Absence of Rotation

The Slater and RRK theories mentioned in the introduction
assume rotation has a negligible effect on the rates of intra-
molecular energy transfer in unimolecular reactions. In Section
7.2., we will investigate that assumption. Here we study the
dynamics of molecules undergoing vibrations only. These studies
will suffice to check the validity of the small coupling and small
vibration approximations.

The initialization of all trajectories to be discussed in
Section 7. 1. is accomplished by giving the molecules varying
amounts of normal mode potential energy (see Section 6. 2. 1. ).
This results in, initially, in-phase vibrations of the normal modes.
In the notation of Section 6.2.1., 6, =0 (i=1,2,3).

7.1.1. Small Amounts of Vibrational Energy

We initially tested the accuracy of the SVA by introducing
into the molecules zero point energies in each of their three
normal modes. The parameters for these molecules were taken
from the literature (35) and the pertinent ones are summarized in
Table I, The molecules studied were divided into two categories.
The first contained all the sz molecules HZO’ Dzs, HZSe, FZO’
NOZ’ and SO2, and the Cs molecule HOD, which still has a sz
configuration and force field. The second category consisted of the

asymmetric FOO and CINO18 molecules. The classification
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criterion was not the symmetry but the dynamic behavior, as seen
below,

The zero point vibration of HZO exemplified the charac-
teristics of the sz molecules. The total initial normal mode
(potential) energy was 13. 43 kcal/mole. Without resorting to any
dynamics whatsoever, the total energy of the molecule
E =% m, §1 + 2 z k,[r, - iequ) may be calculated. It is

i=1 i=1
found to be 14,65 kcal/mole. The difference in these energies,
1. 22 kcal/mole, is called the normal mode energy defect or normal
mode interaction energy and is itself a measure of the initial failure
of the SVA for non-linear molecules. The non-zero defect is a
direct result of the approximate expressions (Al-2) for internuclear
distances implied in getting normal mode energies from displace-
ment co-ordinates. If the molecule were linear, those expressions
would have been correct and the energy defect would be zero.

The O-H bond distances, obtained from solving the equations
of motion, are given as functions of time in Figure 3a. These bond
distances appear to exchange amplitude with one another, They
seem to behave as do tuned, coupled pendulums (36) when one is
started swinging while the other is at rest. The pendulums exchange
the total energy available, and, as is seen in Figure 3b, the O-H
bonds in the water molecule do the same, Thus, our intuitive
definition of bond energy (see Section 5. 2.) is shown to represent
the gross behavior of the bonds adequately.

The penduluin analogy is a good one, for it suggests the
mechanism for this exchange. When weakly coupled pendulums are

started swinging with energy in only one of the normal modes for
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Zero-point energy dynamics of HZO‘ Tsym is the
symmetric stretch vibration period of 7. 62 X 10-15

seconds for the model,

a. Bond Lengths OH, —— -~ OH, — —— HH.
b. Bond Energies. HH omitted for clarity.
c. Kinetic energy of vibration.

symmetric stretch,

d. Normal Mode Energies.

— — —asymmetric stretch, — — — bend.
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that system, no energy transfer between the pendulums takes place.
It is only when two normal modes are excited that the pendulum
energy exchange occurs, and it results from the beat frequency

(i. e. , frequency difference) between the two modes.

The normal modes in the water molecule which have the
strongest effect on the ry, T'g bond lengths are the symmetric and
asymmetric stretches. The pendulum analogy would predict that
those bonds should exchange energy with the period of 7.5 x 10~ 14
seconds, which is associated with the symmetric-asymmetric beat

13 seconds™!. This is precisely the

frequency of 1.33 x 10"
observed bond energy exchange period. The phenomenon will
persist, even under the perturbation of the bending motion, as long
as the symmetric and asymmetric mode energies are good constants
of the motion. The vibrational kinetic energy of the molecule, Tv’
shown in Figure 3¢ clearly demonstrates the beat. When the
energy of one of the O-H bonds is zero, TV oscillates with twice
the frequency of the excited bond. The factor two comes from the
existence of two turning points in the bond oscillation. As the other
bond becomes equally excited, the O-H bonds oscillate w/2 out-of-
phase with one another, such that the sum of the nuclear kinetic
energies is approximately constant. Since the O-H bonds acquire
equal energy twice in every beat cycle, the envelope of TV has twice
the beat frequency.

From Figure 3d it is clear that even at zero point energies,

normal mode energies are not rigorously conserved! However, the

fluctuations in normal mode energies are small (less than about
+ 10%) relative to the total energy. There appears to be no long-

term exchange of energy among the normal modes. The ordering



-66-

of their energies is conserved, i.e., symmetric stretch always
has the most and bend the least energy. The short-term (10~ 14
second) derivations in the normal mode energies are clearly not
large enough to obscure the bond energy beat. Thus, the dynamics
of the harmonic zero point vibrating water molecule are approxi-
mately described by the SVA,

The bond energy beat phenomenon, described above, is
observed in all the sz molecules studied, and it is not a function
of their symmetry properties. It follows from the fact that the
wsym and wasym frequencies happen to be close to one another in
these molecules. This propinquity insures beat frequencies much
lower than and well separated from the vibration fundamentals.

When the mass symmetry is broken, as in HOD, the
character of the zero point motion is not significantly altered.
Figure 4a shows that the dynamics has now become a detuned
coupling problem (36). The O-H and O-D bonds do not exchange
the total amount of energy available to them, but they still wax
and wane with an overall period (5.6 x 10~ 14 seconds) which is
related to the symmetric/asymmetric beat period (2.8 x 10~ 14
seconds) and the asymmetric/bend beat period (1.87 x 10~ 14
seconds)., The periodicity of bond energy exchange observed in
Figure 4b is due to the frequency difference in these two beat
frequencies. Thus, the two beat frequencies themselves beat
against one another to produce the bond energy exchange period.

The initial normal mode energy defect in zero point
vibrating HOD between the total energy (12. 80 kcal/mole) and the
total initial normal mode energy (11. 63 kcal/mole) is about 1,17
kcal/mole. This is very close to what it was in HZO’ so we anti-

cipate that the normal mode energies in HOD will show a similar
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behavior to that in the former molecule. Figure 4c verifies this
expectation. Note that the sum of the normal mode energies is a
much better "constant' of the motion than the sum of the bond
energies (Figure 4b). The bond energy sum is in error by as
much as 60% with respect to the total energy, whereas the sum

of normal mode energies deviates from the total energy by less
than 10% of the latter. If the RRKM oscillators are construed to
be the internuclear bonds, then they appear to be strongly coupled
(i. e., have a large bond interaction energy) even in the small
vibration limit. Since the potential for the problem is a pairwise
one, the choice of the three internuclear distances as bond
oscillators is an obvious one. If instead of using the r, (H-D)
distance, which does not correspond to a bond in the HOD molecule,

we had chosen the bond angle opposite r, as one of the oscillators,

the angle energy would have been like thit of the bending normal
mode, i,e., nearly constant. Use of this bond angle energy would
improve the constancy of the sum of bond energies only if the sum
of the ry and ro bond energies was nearly constant. From Figure
4b, it can be seen that this is not the case. Thus, neither inter-
nuclear nor valence bond energies sum to the total energy of the
molecule, At least for the small, zero point vibrations considered
up to now, the RRKM oscillators should be associated with the
normal modes. This insures small coupling energies and
oscillator energies which approximately sum to the total energy.

The two asymmetric molecules CINO18 (35¢c) and FOO
(35d) fall into the second category of small vibration dynamics.
Only the latter exhibited any long-term periodicity---a period of
5.25 x 1013 seconds arising from the beating of fundamental

asymmetric stretch against first overtone bend. The lack of
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Zero-point energy dynamics of HOD. ’Tsym, the

symmetric stretching period for the model is

7.99 X 10"15 seconds,

a. Bond Lengths OH, — -—-OD, — — — HD.
b. Bond Energies. — — —-— sum of the three bond energies.
c. Normal Mode Energies. — symmetric stretch,

— — — asymmetric stretch, — — — bend, — — —— sum

of normal mode energies.
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periodicity in these molecules is due to their widely separated
fundamental frequencies. These provide high frequency beats
which are lost in the fundamentals themselves. Both of these
molecules have very low bending force constants and one very
high stretching force constant. They both correspond to an atom
(C1 and F, respectively) loosely attached to a strongly bound di-
atom (NO and 02 , respectively). Their molecular vibrations are
expected to consist of low amplitude, high frequency vibration of
the strongly bound diatom and high amplitude, low frequency
motion of all other parts of the molecule. I is the latter, loose
vibrations which are expected to render the normal mode description
of the molecule a poor one.

Nitrosyl chloride containing oxygen-18 (to maximize the
mass differences) was given zero point energy in each of its normal
modes for a total normal mode energy of 3.7 kcal/mole. The
corresponding total energy was 4. 6 kcal/mole, As shown in Figure
5c¢, within 4 x 10~ 13 seconds (about 20 asymmetric stretch periods)
the bending mode (see Figure 2 for a diagram of the ClNO18 normal
modes) had extracted sufficient energy from the symmetric
stretching mode to yield bend amplitudes large enough to cause an
erratic behavior of the asymmetric stretch energy. For comparison,
CINO 18 was given 1/10 of its zero point energy in its normal modes.
The resulting normal mode energies were good constants of the
motion, showing fluctuations of only a few percent.

These studies indicate that we should not expect rigorous
constancy of molecular normal mode energies even for zero point
energies in these modes. For the set of molecules studied, the

normal mode energies were constant to within + 1. 5 kcal/mole.
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FIG. 5. Zero-point energy dynamics of CIN
asymmetric stretch period for the model, is 1.905 X

10-14 seconds.

a. Bond Lengths. — NO'® —__c10!®, — _ _ ncL
b. Bond Energies. — —— — sum of bond energies.
c. Normal Mode Energies. —— asymmetric stretch,
— — — symmetric stretch, — — — bend, — — — — sum of

normal mode energies.
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Thus, the small vibration approximation furnishes an approximate
description of the zero point energy mechanics, However, the
fluctuations observed in the normal mode energies could be of
importance in the quantum mechanical case as well and therefore

in the interpretation of vibrational spectra.

7.1,2. Large Amounts of Vibrational Energy in M3

In order to investigate the dynamics of molecules at
energies approaching those necessary for reaction, the rigid,
symmetric M, and the loose, asymmetric ciNo18 molecules
were given half their respective dissociation energies in four
ways. First, all this energy was put into one mode at a time,
and the dynamics of an initially pure normal mode vibration were
followed. Then the same energy was partitioned equally among
the three normal modes. In all cases, as in the previous section,
normal mode energy was input as normal mode potential energy.
Thus, the equipartition energy input resulted in normal modes
initially in-phase, The results for CINO 18 are described in
Section 7. 1.3. What follows now are observations on the high
energy vibration dynamics of M3.

The "dissociation' of M3 requires the rupture of two
02—1ike bonds with the expenditure of at least 119. 43 kcal/mole
for each bond (17). Since the actual dissociation energy of ozone
is 24 kcal/mole (37), it is clear that M, is a much more tightly
bound molecule than O,. In what follows, half the dissociation

3

energy of M, will be denoted by DO = 119. 43 kcal/mole,

3



T4~

From the symmetry of Mg, it is clear that any energy
input to the molecule as pure symmetric stretch causes it to
execute that normal mode motion forever. Pure symmetric
stretch energy is rigorously conserved in M3. This fact is of
value in checking the accuracy of integration routines but does
not help in the elucidation of the normal mode coupling phenomenon.

When M, is given D, in its bending mode (see Figure 6),
the molecule cannot but retain the initial C2v symmetry in its
vibrations. Hence, M3 is fated to bend forever with these initial
conditions. The corresponding normal mode energy, however,
changes appreciably with time, for while the exchange of energy
with symmetric stretch is confined to less than 0, 035 Do’ the
bending mode energy fluctuates with a period equal to that of the
bending motion. The bond angle opens to a maximum of about 95°
and closes to a minimum of about 33°. These angles are to be
compared with the equilibrium angle of 600. At the 95° extension,
the bending as well as the total normal mode energy are 1. 26 D0
with very little energy in the other two modes. The normal mode
interaction energy is therefore about -0. 26 D0 = -31 kcal/mole.
When the bond angle closes to 330, the total normal and bending
mode energies both drop to 0. 96 Do' Thus, the normal mode
energy changes by as much as 0. 3 D0 = 36 kcal/mole! Fluctuations
of this magnitude could have serious consequences.

When the energy D0 is put into asymmetric stretch, the
molecular vibrations are not confined to that mode (see Figure 7).
Due to the rocking of the Eckart axes (see Section 4. 3. 1.) under
the asymmeiric stretching M,, small Coriolis forces act on the
molecule. Since such forces on nucleus i (38) are directed along
the vector i{i x w, they convert asymmetric stretch into bend

motion and vice versa. Asymmetric normal mode energy is



FIG. 6. High Energy bending motion in M
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3 Twend ~ Tasym’ the

degenerate mode periods in M3, are 2,43 x 10-14 seconds.

Initial bend mode potential energy = D, =119. 43 kcal/mole.

a.
b.

C.

Bond Lengths. — — — bonds 1 and 3, bond 2.
Bond Energies. ———— sum of bond energies.
Normal Mode Energies. — bend, — — — sum of all

three normal mode energies.
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observed (Figure 7c) to decay as the small, self-induced Coriolis
forces convert it to bend energy. The asymmetric energy cannot
go to zero by this mechanism because bend motion, by virtue of its
symmetry, does not rock the Eckart axes, As the symmetric bend
energy rises to 0,7 Do’ the weakened Coriolis forces begin to
convert bend energy back into asymmetric stretch energy. Since
half this slow oscillation takes about 7.5 x 10~ 13 seconds, we pre-
sume (our integration didn't extend far enough to verify this) that
the complete exchange period is about 1.5 x 10~ 12 seconds. This
time is two orders of magnitude smaller than that associated with
collision frequencies for gas molecules at standard temperature
and pressure, (STP). [COZ’ for example, collides (39) with c1>i(;)her
002 molecules, under these conditions, once every 2.2 x 10
seconds on the average. ] Thus, when Slater assumes normal mode
energies are constant between collisions, he may apply the
assumption to asymmetrically stretching M3 only if the product,

p T1/ 2
400 times greater than at STP, Experimental conditions like that

3 had sufficient

energy to dissociate, (i.e., 2 DO), in its asymmetric normal mode,

, Of the pressure by the square root of the temperature is
would be very difficult to obtain. Furthermore, if M

it would probably exchange asymmetric and bend mode energy faster
than 1.5 x 10—12 seconds. Thus, for an asymmetrically stretching
M3 not to go beyond the first quarter ofl%e faster excllma;gge cycle

> 400 (P T °
When all the normal modes in M3 are excited with Do/ 3

between collisions, we should have P T

energy apiece, the bend and asymmetric stretch modes are again

weakly coupled and exchange energy with a period of 1.6 x 10'12

seconds. The detailed nuclear motions as well as the overall energy
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exchange are very nearly periodic. This may be further evidence
of the metric decomposability of harmonic phase spaces suggested
by Bunker's results (13).

Neither the sum of bond nor normal mode energies is a
good constant of the motion. These two sums are presented in
Figure 8 for the case of initially equipartitioned M3 normal mode
energy. The fluctuations in these sums taken over 8 symmetric
stretch periods (about 1.4 x 10~ 13 seconds) are representative of
the entire trajectory. It can be seen that RRKM oscillator energies
do not sum to the total energy whether the oscillators are associated
with the molecule's bonds or its normal modes, though the latter
yield energies whose sum is slightly less variable than the bond
energy sum.

Thus the high energy vibrations of the M3 molecule do
not satisfy either Slater's assumption of constant normal mode
energies or the RRKM assumption that the oscillators are so
weakly coupled that their energies sum with small error to the
total energy of the molecule. It is unlikely that these conclusions
are a function of the high symmetry of the M3 molecule, In view
of the artificiality of M3 , however, the study of a more realistic
harmonic model is warranted. The next section describes the

high vibration energy dynamics of nitrosyl chloride.
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7.1.3. Large Amounts of Vibration Energy in ClNO18

The dissociation energy of the N-C1 bond in nitrosyl
chloride is 38. 4 kcal/mole (40). For comparison with the results
of Section 7.1, 2., we will introduce only half this energy, or 19, 2
kcal/mole, into its normal modes.

The high frequency mode of this molecule is an asymmetric
stretch-like motion involving, primarily, the vibration of the N=018
bond. Solution of the equations of motion show that 19, 2 kcal/mole
of energy in this normal mode is conserved to within 0. 7% for the
0.84 x 10~ 12 seconds over which we integrated the trajectory.

Nitrosyl chloride's symmetric stretching (diagrammed in
Figure 2) is not a stable mode of motion for energies as high as
19. 2 kcal/mole (Figure 9). During the first 5 x 16~ 13 seconds of
the trajectory, the symmetric stretch normal mode energy is
reasonably constant, However, a steady increase in bend mode
energy gives rise to bend amplitudes large enough for the molecule

-13

to pass through linearity at 7. 25 x 10 seconds (Figure 9a). As

a result, the normal mode energies fluctuate chaotically from about
7x 1073 t0 10 x 10713

Note that the molecule's asymmetmc stretch energy rlses off the

seconds after initialization (Figure 9c).

scale, while the corresponding (N—O ) bond energy does not vary

by more than about 1 kcal/mole (Figure 9b). This disparity comes
about because bond energies measure the projection of atomic
displacements along the instantaneous bond configuration, whereas
normal mode energies measure projection of the same displacements
along the equilibrium configuration. As seen from Figure 2, the
velocity vectors in the asymmetric stretch mode, if translated to

nuclei which lay on the x axis, would still be assigned to excitation
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of the asymmetric stretch mode whereas they would appear to
produce bending in the linear molecule. Conversely, bending
motion in the linear molecule would be assigned, in part, to
excitation of the asymmetric stretch mode. This kind of failure
in the decomposition of displacement and velocity vectors renders
normal mode energy a useless concept when applied to grossly
distorted molecules. Such distortions are clearly not rare, even
in molecules with energies less than dissociative.

Returning to Figure 9¢, we observe that the symmetric
stretch mode eventually recovers its initial energy and the bend
energy dies away. We continued the trajectory beydnd the terminus
of the figure to about 12.6 x 10~ 13 seconds and the bend energy was
still dwindling at that time. Although the trajectory is not perfectly
symmetric in time about the instant 7. 8 x 10713 seconds, this
exchange of energy between the symmetric stretch and bend modes
appears to have a period of about 15.6 x 10~ 13 seconds.

The definition of nitrosyl chloride's bending mode is so
poor that when this mode is given 19, 2 kcal/mole of potential energy,
the total energy of the molecule is 50. 6 kcal/mole. This constitutes
a normal mode energy defect of over 150%! In addition, this total
energy exceeds the dissociation energy by over 12 kcal/mole. No
figure is given for this case as all the energies vary wildly. The
significant aspects of the dynamics are summarized in the following
discussion. The bond angle opens with such vehemence that all the
molecular modes are highly excited within one bend period. Oddly
enough, within two more bend periods, the other two modes have
drained most of the energy firom the bending mode, leaving the

molecule in highly excited stretching modes. Since the bond angle
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is executing only small amplitude bends, the distortions from
equilibrium configuration are not great and a temporary stability
is achieved, wherein the normal mode energies are fair constants
of the motion. This stability last for only 5 x 10-13 seconds, after
which the bend mode has regained sufficient amplitude for the
molecular energies to scramble rapidly. The ensuing chaos in
the normal mode energies persisted to the termination of the
trajectory integration at 1.68 x 10~ 12 seconds after initiation.

When each of nitrosyl chloride's normal modes is given
6.4 kcal/mole (one-sixth of the dissociation energy), the bending
mode energy defect gives rise to a total energy of 40. 8 kcal/mole,
or 2.4 kcal/mole greater than the dissociation energy. As in the
pure bend initiation, the molecule soon deposits most (30 kcal/mole)
of its energy in the asymmetric (N=0) stretch. The remainder of
the energy shuffles back and forth between the other two modes with
a rough 4 x 10"13 second period. Neither the sum of bond nor
normal mode energies (Figure 10) indicate small coupling in the
molecule. The coupling energies in the RRKM oscillators can be
as large as 15 kcal/mole, or almost half the energy of the molecule!

Thus for energies of chemical interest, the normal mode
energies in our harmonic model for ClN018 are not conserved over
periods of time sufficiently long to be used as constants of the
motion between collisions in the gas phase, Furthermore, coupling
between RRKM oscillators (either normal modes or bonds) is so
strong that the sum of their energies can differ from the total energy
by a factor of 2.

Apparently, the consequences of the SVA regarding normal

mode energies are approximately correct for zero point energies
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FIG. 10. Bond and Normal Mode energy sums in ClN018. Initial

energy of 6.4 kcal/mole in each normal mode.
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but fail for dissociative energies. I is of interest to determine
through what energy range the SVA can be trusted. The following
section investigates this point.

7.1.4. Onset of Instability in Nitrosyl Chloride’'s Symmetric
Stretching Mode

One suspects that the mixing of one mode into another is
an exponential process, Small perturbations yield small admixtures
of modes of different symmetries, which, in turn, yield larger
perturbations in an ever-accelerating growth. As we have seen
in Section 7. 1. 3., when 19, 2 kcal/mole is input to the symmetric
stretching mode of C1N018, the molecule's bending mode becomes
excited., When the logarithm of the rising bend energy is plotted
against time, as in Figure 11, the fit to a straight line (exponential
growth) is seen to be good. That line may be taken to represent an
average exponential growth. The time it takes the bending mode
energy to rise to the total energy of the molecule is a measure of
the coupling between the two modes. We shall take the inverse of
this time to represent the coupling frequency related to the period
of growth and decay of bend energy mentioned in reference to
Figure 9c.

We plot a few such symmetric/bend coupling "frequencies"
against total energy in Figure 12, It becomes apparent, from this
figure, that the SVA, which predicts that these frequencies are
zero, fails at energies greater than about 10 kcal/mole in ClN018.
The point in Figure 12 at 7. 76 kcal/mole total energy represents a

case where the bending mode energy did not rise to usurp the total
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FIG. 11. Growth of bending mode energy from pure symmetric
stretch in ClN018. Initial symmetric stretch potential
energy = 19. 2 kcal/mole. Semilog plot.
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FIG. 12. Coupling frequencies for bend mode arising from

pure symmetric stretch in C1N018.
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energy of the molecule within the time (1.68 x 10~ 12

seconds)
observed. For this case (Figure 13), the bend energy fluctuated
rapidly within double envelopes which rose and fell between 0. 01
and 0. 001 kcal/mole, The period of the double envelope variation
was about 10'12 seconds, hence we observed only two of these

slow oscillations.

7.1.5. Critical Co-ordinate Dissociation Frequencies

In order to predict dissociation or isomerization rate
constants, Slater's harmonic theory requires an expression for
the frequencies of excursions of some critical co-ordinate past
some critical configuration. The formula he uses comes from an
analysis of the reactive excursion frequencies of a sum of sinu-
soidally varying normal modes of constant energy. This sum
weights the normal mode co-ordinates as in footnote 23. The
weighting coefficients, a.; are obtained from the definition of the
critical co-ordinate, A and the normal mode co-ordinates, Qi‘
If the critical co-ordinate is some linear combination of the internal

bond displacement co-ordinates (see Appendix 2) such that
q, = U S (7.1.5.-1)

where IU is a one by three matrix, then by $ = IL. @ and

(7.1.5.-1) , the elements of the one by three matrix IU IL are
the coefficients Qe Since the equatioﬁs of motion of non-linear
harmonic molecules do not conserve the normal mode energies,

we suspected that the reactive excursion frequencies calculated
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by Slater would not agree with those taken directly from tra-
jectory calculations.

The normal mode defect in the trajectories described in
Sections 7.1.3. and 7. 1. 4. lead to total energies as much as a
factor of 2.5 higher than the initial normal mode energies.
Because of the square root relation between potential energy and
bond displacement co-ordinates, the normal mode defect can
lead to initial bond displacement co-ordinates different from the
SVA ones by a factor as large as 1. 6 in the molecules studied.
There are two sources of difference between bond distances calcu-
lated from the SVA and from the actual harmonic trajectories;
both are manifestations of the same approximation, and they can-
not be discussed separately with any rigor. First, there is the
variation of the normal mode energies with time, which will make
the SVA and trajectory calculated %i diverge. Second, the SVA
linear approximation, which expresses bond displacements as
linear combinations of the components of the fAffi? will give different
instantaneous bond distances to the molecule than if they were
calculated properly as square roots of squares of differences in
the X The SVA rests upon this linear approximation to inter-
nuclear distances. Without it, one could not make the potential
and kinetic energy functions be simultaneous sums of square terms
of normal mode co-ordinates and their derivatives, respectively.
As a result, the transformation of the equations of motion into non-
coupled normal mode equations could not be performed. Hence,
the two effects just mentioned are, in reality, inseparable. How-
ever, for comparison purposes, we will consider these two sources

of difference to be independent of one another, To achieve this, we
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introduce the IVA, which might stand for Intermediate Vibration
Approximation, or, in view of the above discussion, the
Inconsistent Vibration Approximation. With the IVA, we hope to
separate the effects which were inseparable in the SVA., The IVA
will retain the same linear relation between the normal mode and
Eckart displacement co-ordinates but will use the correct (non-
linear) expressions for the internuclear distances. In this way,
we may initiate an actual and an IVA trajectory with equal initial
normal mode energies from the same molecular configuration and
observe the divergence of trajectories due, primarily, to the mixing
of normal modes.

We calculated the %_}IVA = (é}y{iSVA from the inverse of
equation (4. 3. 2. -1) and the sinusoidal Qj(t) at the same normal
mode energies used for the trajectories mentioned earlier. These
Ax, were converted to X5 via equation (4. 3. 1. -11)and thence to

r.IVA yia the Eckart counterpart to equations(4.1.-5,6) . The
SVA

rj were calculated from the bond displacement co-ordinates,
S]. (see Appendix 2), via r].SVA = Sj + rjeq where
3
Sj(t) = g (IL)ji Qi(t). The resultant approximations for the inter-

i=1
nuclear bond distances as a function of time were compared with

the actual rj(t) obtained from the corresponding computed tra-

jectories. A counting procedure was employed to find the frequency

with which the function rj (t) - 1‘.01‘1‘(109‘1 passed through zero in the

J -
direction of reaction. The long-time (2 x 10 12 seconds) averages

of this frequency for the actual, SVA, and IVA function were plotted

critical

against assumed values for r]. The comparison is described

below,
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When a single normal mode is excited, all the %iSVA

components oscillate sinusoidally with the same frequency as

that of the excited normal mode. They all move in- or 180° out-
of-place with one another. This usually means that the molecule's
bonds all execute simple oscillations of this same frequency.

Hence, the reactive excursion frequency [the frequency with which

r.(t) - r critical
] ]

abbreviated REF throughout this paper] for a bond is equal to the

frequency of the single excited mode for choices of rjcmtlcal within

max

= 0 occurs with rj(t) moving toward reaction,

the range rjmm to rj
The REFs for M3, asymmetrically stretching with D0
energy are shown in Figure 14a, The SVA and IVA REFs, when
plotted against assumed critical stretch are step functions, as
explained in the last paragraph. I is clear from Figure 14a that
neither vibration approximation matches the actual excursion
frequencies, but the IVA is not as far wrong as is the SVA. The .
REFs from the trajectory calculations show the effect of the
exchange of energy between the asymmetric stretch and bend modes
of the molecule. The trajectory-derived REFs for bonds 1 and 2
would have been coincident in a truly long-time average, i.e.,
long with respect to the coupling period of 1.5 x 10_12 seconds.
However, the average was taken over only 10"12 seconds, corre-
sponding to about 58 symmetric stretch periods.
3
3 bonds
in the IVA and the actual trajectory are expected to be very much

Since M3'S bend mode is a stable mode of motion (i. e

maintenance of Cy, Symmetry is exact), the REFs for M

alike. Figure 14b verifies this expectation. Note that the bond

displacement co-ordinates in the SVA are almost three times those
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of the IVA. The amplitudes of molecular motion are still not
correctly calculated in the latter because the bend mode energy
is not a constant of the motion (see Figure 6c) in the actual
molecule,

Figure 15 shows the bond distances as a function of time
in both the actual and the IVA trajectory wherein the initial normal
mode excitation is Do/ 3 potential energy in each mode. The SVA
bond distances (not shown) are within about 2% of the IVA ones
over the course of the trajectory. The nuclear motions in the IVA
are clearly divergent from those in the actual trajectory after
about 3 x 10-13 seconds. The REFs (Figure 14c) of bonds 2 and
3 show the behavior, intermediate to their IVA counterparts, that
was observed for bonds 1 and 2 in Figure 14a. The explanation is
the same in both cases --bend and asymmetric stretch are coupled
modes. What is surprising about Figure 14c is the good agreement
between the actual, SVA, and IVA reactive excursion frequencies
for bond 1. Figure 15 shows that the IVA is no better an approxi-
mation to the oscillations of bond 1 than it is to either of the other
bonds, and yet the IVA calculates the correct excursion frequency
for large rlcritical in this bond. It is conceivable that this might
be an accidental result stemming from M3’s high symmetry.

The long-time averages for the actual, SVA, and the IVA
bond excursion frequencies are strictly comparable with one
another. They follow from the same initial conditions for the
molecule, However, none of these averages is comparable with
Slater's phase averaged excursion frequencies (41), since the M

3

molecule's vibration frequencies are linearly dependent (wasym =

Woen d)’ which means that Qasym and Qben q always have the same
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phase relation to one another that they had initially. A long-time
average does nothing to break this synchronization, and one expects
that the phase averaged frequencies may be different. Indeed, when
the IVA to the case of equal normal mode excitation was initiated
with the normal modes all 120° out-of- phase with one another, the
IVA excursion frequencies were quite different from those with in-
phase initiation. The same test was applied to ClNO18 with equal
normal mode excitation, and it was found that the different initial
phases had no appreciable effect on the IVA excursion frequencies.
This result follows readily from the fact that nitrosyl chloride has
linearly independent molecular frequencies.

The high energy bending mode in CINC)18

, with its 150%
energy defect and instantaneous energy scrambling, does not bear
any resemblance to either its SVA or IVA, It is not surprising,
then, that the corresponding SVA and IVA REF's in Figures 16abc

do not follow those of the actual trajectory, although again the IVA
bond displacement amplitudes are better than the SVA, Note that
the IVA excursion frequency curve for the N=Obond in Figure 16a

is a two step function, with the frequencies being once and twice

the bend frequency. A glance at Figure 2 confirms the following
argument. As the nuclei are moved along the arrows in the diagram
for 2% in Figure 2, the bond angle opens from its equilibrium
value, and the N=Obond stretches to some magnitude r(lzlpoen.

bond is also stretched to a different magnitude rchgsed as the nuclei

The

are moved along vectors with senses opposite those for Wg in Figure
2, that is, as the bond angle closes from its equilibrium value. This
means that the N=Obond is opened and closed twice in every bend
period. This produces the observed frequency doubling in the IVA
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REF for N=Q, and the fact that rﬁ%’n # rlc\Ilgsed leads to the two
step function for this REF. Frequency doubling, of this nature,
should be associated with other loose molecular bending modes,
as for the case of initially pure symmetric stretch of 19, 2 kcal/
mole, as depicted in Figure 17a,

Another observation drawn from Figure 16a is that if a
normal mode involves motion in some bond whose natural frequency
if much higher than that of the mode itself, one expects it to vibrate
with its natural frequency rather than that of the normal mode. This
is not the case in the limit of infinitesimal amplitude motion, as all
but one of the normal modes would be orthogonal to this bond
vibration. Inthe case of large amplitude motion, as in the excited
symmetric stretch of CINO18 (Figure 9a), the N=Ovibration takes
place at its natural frequency and not that of the symmetric stretch.
I, on the other hand, low frequency bonds are stimulated by high
frequency modes, one does not expect to find low frequency
oscillations observed, as they will be entirely obscured by the
rapid normal mode motion.

Since CINO18 with 19. 2 kcal/mole as symmetric stretch
(see Figure 9c¢) is stable about 70% of its assumed coupling period
(the bend energies being important between 6 and 11 x 10'13 seconds
from initiation), the SVA and IVA excursion frequencies in Figures
17abc are a better fit to the actual excursion frequencies than they
were in Figure 16. Even the IVA is still far from adequate for a
description of the excursion frequencies in either case. However,
high energy pure normal mode molecular motions are expected to
be produced by collisions only rarely. Errors made in calculating
their lifetimes would not greatly affect a unimolecular reaction

rate, because such initial conditions have very low statistical weight.
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Of greater concern is the way the IVA describes molecules with
mixed excitation modes,

When all the modes of nitrosyl chloride are excited with
only 6. 4 kcal/mole, IVA trajectories (see Figure 18), which differ
from the SVA ones by ~ 10%, diverge more rapidly from the actual
trajectories than in the case of M, with 39. 8 kcal/mole energy in

3
each mode (Figure 15). One would then anticipate the IVA excursion

frequencies for CINO18 to be less representative of the actual
excursion frequencies than they were in M3. Figure 19 shows that
this is not the case, The SVA and IVA reactive excursion frequen-
cies for the bonds which break on dissociation, N--Cl and Cl1--O,
are good approximations to the actual excursion frequencies
exhibited by these bonds. The agreement implies that, although

the dynamics of ClNO18 are not at all reproduced by either approxi-
mation, the molecular quantities of greatest significance to its
reaction rate, the reactive excursion frequencies, are accurately

calculated in both the SVA and IVA.

7.2. Effects of Rotational Energy

The Slater and RRK theories of unimolecular reaction rates
ignore the effect of rotation. Marcus (6) extended the RRK theory
to take account of rotations in its statistical part, including their
contribution to the density of activated states. The RRKM theory
still preserves the assumption of separation of vibration and rotation
in the evaluation of partition functions. In using such a rigid rotor
treatment, this theory ignores the dynamical effects of rotation.
The assumption made in all the theories mentioned is that rotation
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does not materially enhance intramolecular energy transfer. In
this section, we will test this assumption for rotational energies
comparable to a) those found in gases at reasonable temperatures

and b) dissociation energies.

7.2.1. Small Amounts of Rotational Energy

By the method outlined in Section 6. 2, 2., a rotational
energy of 2. 39 kcal/mole was superimposed on the vibrationally
excited molecules of Sections 7.1.2. and 7.1.3. This energy
corresponds to g— kKT, where T = 800°K. At this temperature
many gas phase reaction rates are appreciable. For a symmetric-
top, rigid-rotor M3, this energy (42) is close to the level with
quantum numbers K = J = 33. The rotations of this energy to be
discussed below were in plane, i.e., taken about the axis perpen-
dicular to the plane of the molecule (g ).

Calculations on symmetrically stretching M3 were not
performed since an in-plane rotation cannot break this symmetry,
As a result, this rotation cannot couple the symmetric motion to
other vibrational modes.

The bending mode, which is stable in non-rotating M

3
(Figure 6), is coupled to the asymmetric stretch under this rotation

(Figure 20). When the initial bending mode energy is D_, and 2. 39
kcal/mole of in-plane rotational energy are added, all tl're vibrational
energy is exchanged between these modes with a period of 4. 4 x 10'13
seconds, The bending symmetry is broken by the rotational

Coriolis forces as discussed in Section 7. 1. 2.
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These forces augment those already present in the
asymmetric stretch and when this mode has Do initial energy,
the 1.5 x 1()'1:2 second coupling period observed in the absence
of rotation is reduced to 0.37 x 10”2 seconds. Thus, this
moderate molecular rotation has more than quadrupled the intra-
molecular energy transfer rate in this case., This is not a minor
perturbation.

When all three of the vibration modes in M3 are excited
to Do/ 3 energy each and the molecule is given 2. 39 kcal/mole of

in- plane rotation, the pure vibration coupling period of 1.6 x 10” 12

seconds is reduced to 0.32 x 10~ 12 seconds, Here the intra-
molecular energy transfer rate increases by a factor of 5.

In summary, there can be no justification for ignoring
rotation when treating intramolecular energy exchange in M3.

The high energy vibrations in cino'® (Section 7.1.3.)
exhibit, in the main, intramolecular energy transfer rates which
are of the order of the molecules frequencies. It is difficult to
imagine how rotation could increase these rates by a factor of 4
or 5, in a molecule that is already "scrambling saturated.' Aside
from the N=O stretch, nitrosyl chloride's pure symmetric stretch
is the only mode with any stability to it. Initially pure 19. 2 kcal/
mole symmetric stretch energy stays approximately constant for
about (Figure 9d) 6 x 10713 seconds, As seen in Figure 21, the
addition of 2. 39 kcal/mole of in-plane rotation reduces this meta-
stable lifetime to about 3.7 x 10"13 seconds. The rotation has
enhanced the growth of the bending mode by a factor of about 1.6 ---

non-negligible, but hardly as impressive as the M3 rotation results.



FIG. 21.
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Vibrating, rotating ClNOlg. Initial symmetric stretch mode

potential energy = 19. 2 kcal/mole. Initial in-plane rotational

energy = 2. 39 kcal/mole. Cf. Fig. 9.

a. Bond lengths. — No!® ___ cio!8, —___ nqi,
— — —— sum of two smallest bond lengths.

b. Bond energies. — ——— sum of bond energies.

c. Eckart energies. — —— vibration kinetic, — — — rotation,
—— Coriolis or vibration-rotation interaction.

d. Normal Mode energies. —— asymmetric stretch, — — —
symmetric stretch, —— —-— bend, — — — — sum of

normal mode energies.
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_ One would expect rotation to enhance large bending ampli-
tudes, by virtue of centrifugal forces. In the absence of rotation,
initially pure symmetrically stretching (19. 2 kcal/mole) CINO18
eventually gained enough bend energy to open the valence angle
past 1800. As seen in Figure 21a, the rotation changes the course
of the coupling such that the bend energy peaks at a value less than
sufficient to make the molecule go through linearity. Thus, the
rotation did not automatically enhance bend amplitudes. Its action
is more subtle,

Rotation alters the character of the vibrations after the
rise of the bend energy. In the non-rotating case, this energy
decayed as if the molecule were going to exchange bend and
symmetric stretch energy periodically, Even having passed
through linearity, the molecule seemed in possession of a memory
to allow the reconstruction of the symmetric stretching vibrations.
Figure 21c shows that the rotation has erased this memory. K the
non-rotating near periodicity of motion was a manifestation of the
metric decomposability of harmonic phase spaces, it appears as if
rotation destroys this property. This is in contradiction with
Bunker's discovery that rotation did not release the sufficiently
energized, yet non-dissociating trajectories from their phase
space prisons.

With regard to the neglect of rotational effects in the
contemporary unimolecular reaction rate theories, the following
may be stated with some certainty for harmonic molecules. In
rigid complexes, that is, dissociating species whose molecular
parameters are not much different from their rigid bound state

ones, rotational effects are expected to be large, because their
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energy scrambling rates are not saturated by their vibrations. On
the other hand, in loose complexes, rotation is likely to alter the
details of the nuclear trajectories more seriously than the rate of
intramolecular energy transfer,

There is a competing effect mentioned by Marcus (6¢)
that in energized loose complexes, the moment of inertia in
dissociative configurations (called +) is much larger than in non-
dissociative configurations (called *). From equation (5. 3. -3)
and the definition of the moment of inertia matrix, II, it can be
shown that

2T = w. (I w) . (7.2.1.-1)

To the rigid rotor approximation, w = ]I_l L, where g is the

~

angular momentum vector. Then to this approximation,

2T, = (I'L)- L . (7.2.1.-2)

. . . +
Since the angular momentum is rigorously conserved, T]c < Tr*’

because the elements of II' are larger than those of ]I*,

rendering the elements of 1+ smaller than those of I 1 *,

The
decrease in rotational energy in + must have been accomplished by
a gain in its vibrational energy, since vibration-rotation energies

are usually small and total energy is conserved. Larger initial
+

rotational energies will therefore produce a larger AE = Tr* - Tr ’

which will contribute to the molecule's vibrations in +. At the

relatively low energy rotations we have been discussing, AE is
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likely to be a negligible contribution to the already high energy
vibrations. (This effect would be appreciable if the rotational
energies were comparable to the vibrational ones.) Therefore,
for small amounts of rotational energy, the major effect of

rotation should be on the rate of intramolecular energy transfer,

7.2.2, Large Amounts of Rotational Energy

When the total rotational energy is taken to be 38. 2 kcal/
mole (about Do/ 3), the corresponding rotational temperature is
about 13, OOOOK. Clearly, we are sampling molecules in the far
tail of the rotational energy distribution. If we give these rotations
to the highly energized molecules of Section 7. 1., such molecules
are going to have negligible statistical weight in a gas reacting at
temperatures normally attainable in the laboratory, even in high
temperature ovens or shock tubes. We sample them not to suggest
that they are representative but to examine the effects of large
amounts of rotation on vibrating systems, For a symmetric-top,
rigid-rotor MS’ this 38. 2 kcal/mole of rotation energy corresponds
closely to that of the K = J = 135 quantum level.

The bending mode in M3 is stable under rotations about
the g and g axes (see Figure 1) in the molecular plane. Neither
of these rotations breaks the C 9y symmetry of the bending motion
(43). They will, however, couple with the bending vibration to
make its energy fluctuate with time. In the case of rotation about
the ﬁ axis, a bend energy initially equal to Do oscillates from
0.9 to 1.65 Do' The Coriolis (vibration-rotation interaction) energy

remains zero to as many digits as the computer calculates it,
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indicating that the residual angular momentum in the Eckart
system is zero or that the Eckart axes are rotating perfectly

with the molecule. This does not imply, however, that we have
made the best choice of displacement co-ordinates in the rotating
system. Just as the normal mode energies were defined in the
Eckart system to reduce the magnitudes of the model's displace-
ment vectors, so too, Wolfsberg (44) suggests, the model's equi-
librium vectors should be reset to their centrifugally distorted
values, when the model is rotated. The model, so distorted, would
rotate without vibrating, which should therefore be a more consistent
choice of the equilibrium configuration. Were our equilibrium
vectors to be so redefined, the displacement vectors and resultant
normal mode energies would doubtless be smaller. But as the SVA
normal mode energies were not rigorous constants of the motion,
even in the absence of rotation, the improved definition would not
affect our conclusions in this regard.

In plane 38. 2 kcal/mole rotation is expected to develop very
large Coriolis forces on vibrating systems. These forces couple
the bend asymmetric stretch symmetries. It is seen from Figure
22c that D0 bend energy, which gave stable motion without rotation
(Figure 6), exchanges all available energy with the asymmetric
stretch with a period of only 10'13 seconds. The Coriolis energy
fluctuates in Figure 22b, rising as high as 0.1 Do' This too
indicates strong interaction between all the internal degrees of
freedom.

High energy tumbling (rotation about the g or /i axes)
causes the asymmetric stretch in M3 (for an initial asymmetric

stretch energy of Do) to couple with the bend mode with a period



FIG. 22.
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High energy vibrating, rotating M3. Initial bend mode
potential energy = 119. 43 kcal/mole. Initial in-plane

rotational energy = 38. 2 kcal/mole.

a. Bond lengths, —bond 1, ———-bond 2, — — — bond 3.

b. Eckart energies. —— vibration kinetic, — — — —rotation,
— — — Coriolis.

c. Normal mode energies. —— symmetric stretch, — — ——
bend, — — — asymmetric stretch, — — — — sum of

normal mode energies.
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of 4.2 x 10_13 seconds when the rotational energy is about 38, 2
kcal/mole (Do/ 3). The inefficiency of tumbling to enhance energy
scrambling is now apparent, since a mere 2. 39 kcal/mole (0. 02
Do) of in-plane rotation energy caused the asymmetric and bend
modes to couple faster than this with a period of only 3. 72 x 10~ 13
seconds. As anticipated then, in-plane 38.2 kcal/mole rotation
couples these two modes with great speed. The energy exchange
period under this rotation is now 4.3 x 10~ 14 seconds. Since the
natural periods of both bend and asymmetric stretch are 2,44 x 10 14
seconds, this massive in-plane rotation energy seems to have almost
saturated the coupling rate in this stiff model.

The degree of enhancement of intramolecular energy
exchange rate for this rotation is extremely high, Consider that
Coriolis forces vary directly (38) with the angular velocity, By
equation (7. 2, 1, -1), the angular velocity varies with the square
root of the rotational energy. Thus, Coriolis forces vary with the
square root of the rotational energy (to a zeroth order approxi-
mation), The Coriolis forces in the 38. 2 kcal/mole rotation should
be four times as large as those in the 2. 39 kcal/mole rotation. Yet,
the coupling frequency is not 4 but almost 9 times greater in the
former,

Being separated in frequency from the other modes, the
symmetric stretch in M3 does not couple well with them. It
couples to all the rotations since symmetric stretch produces
large changes in all the moments of inertia. For example, when
D0 is introduced into the symmetric stretching mode of M3 which
is then rotated about the ﬁ axis with an additional Do/ 3 energy, the

symmetric mode energy fluctuates by about 0.3 Do‘ Nevertheless,
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all vibration and/or rotation combinations mentioned thus far fail
to excite any appreciable energy in the symmetric mode, I is
then fairly surprising to find that under Do/ 3 energy rotation
about either the X or 2 axes, M,, initialed with D_/3 in each

of its normal modes, exhibits evidence of coupling of its symmetric
stretch to the other modes. This is most clear for the % axis
rotation (Figure 23), wherein the strongly coupled bend and
asymmetric stretch modes exchange energies rapidly (2 x 10~ 14
seconds) within an energy envelope which appears coupled to the
symmetric stretch energy. The latter varies slowly (2 x 10'13
seconds) over a 0.5 D range.

In summary, we conclude that massive rotational energies
are capable of producing intramolecular energy scrambling on time
scales of the order of the molecular vibration periods themselves.
Modest rotational energies enhance the scrambling rate in vibration-
ally excited molecules by factors of 1.5 for loose to 5 for rigid

complexes.
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8. Summary

We have shown that Slater's small vibration approach to
the classical dynamics of bent triatomic molecules is inapplicable
at energies approaching those necessary for reaction, Slater's
assumption of constancy of the normal mode energies fails for the
harmonic CINO18 model at energies above 25% of the dissociation
energy for the molecule. This failure is due to the breakdown of
the small vibration approximation at these energies. Despite this
failure, Slater's formulae for reaction frequencies is shown to give
values in good agreement with the actual reaction frequencies in
our harmonic models.

The assumption of weak coupling between molecular
harmonic oscillators, used in the RRKM theories, is shown to
be a poor one at all energies, if the oscillators are taken to be
the interatomic bonds., If, instead, the RRKM oscillators are
assumed to be the normal modes, they are indeed weakly coupled
at low energies (of the order of zero-point energies), As the
energy in the molecule approaches that necessary for reaction,
the oscillators couple strongly, and not only their individual
energies but also the sum of those energies fail to be constants
of the motion. The difference between this sum and the constant
total energy is the oscillator coupling energy, which is not
negligible, as assumed in the RRKM theories.

None of the theories mentioned treats the effect of rotation
on the intramolecular energy transfer rates. These effects can be
quite large. At rotational energies corresponding to SOOOK, the
energy scrambling rates in ClNO18 (vibrating with 19. 2 kcal/mole)
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are increased by 60%. The enhancement is expected to be larger
in molecules more rigid than nitrosyl chloride.
Thus, some basic assumptions in contemporary theories
of unimolecular reaction are shown to be inadequate when applied
to the high energy dynamics of this simplest of molecular models ---

the bent harmonic triatom.
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The notation used in these equations will be defined by the
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. . N . N . N
.= XX + Y.Y + Z.7Z
~1 1~ 1~ 1~
A A A
and Pi=P. X+Pi Y+Pi %
~ Y™ 7

Then the equation X, = ot/ P, will be taken to mean

X, = au/aPiXEn_g Y, = au/aPiY:_agq zZ, = afc/aPiZ.

_ ) 1/2
As an example, l)ﬁl - §3| = [(?51 - )53) (?51 - )53)] .
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of Motion M3

General Form for the SVA Solution of the Equations

The internuclear distances can be obtained as functions

of the displacement vectors for M
into (4.1.-5):

3

eq eq
AX  + 240X + X 7+ 2Xg

(+3
ok
i

r = AX, -2X, +X%9 . x®d

Lo T2%1"2%3+ %1 - 23

IAX, +AX, +2X°%9 . x4 |

i
i

~3 ~~l o RR3 ~1 =3

by substitution of (4. 1.-17)

(A1-1)

The length of these vectors, to first order in the components of

é}},i/ req, are given by

1'1__

. (A}E + 23}53) . ()Siq + 2§§q)/req

e (X - a%y) - (X7 - X/

3)

P I (2’9}51 +£§3) . (2}~{§q + §§q)/req .

(A1-2)

Substitution of these equations into (4,1.-3) and (4.1.-4) and

retaining only first order terms in é)éi/ r¢d gives
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k
P, ~ -
~1 reqz

eq eq . eq eq
{05,1 + 2% [(0X, +20X,) - (X{7+ 2X09)]
eq _ y€q . (x4 _ xeq _

eq eq . eq eq
+ 202X 17+ X ) 128X, +0Xo) - (X7 + X, )]}
and

L)

.. €q eq . (x84 eq
P3 = L€q 2 {2()31 + 2% [EXy + 20X ) - (X7 + 2X57)]
_ eq _ w€a _ . eq _ €q _
Xy - X3 )L0X, - aXg) (X7 - X57)] (A1-4)

+ X7+ XS LX) +£Xg) - (X7 + Xy}

These are the small vibration approximation to the equations of
motion for P, They can be rewritten as

P = -kBX/r%2 (4.1.-11)

where B = (bij) is given by

(o2
il

eq e q,2 eq eq,2 eq eq,2
11 (X1 + 2X, )"+ (X1 - Xg )"+ 4(2X1 + Xg )
= = (x4 €qy (v€a €q €q €y ca _ €4
b12 = b21 (X1 + 2X3 )(Y1 + 2Y3 ) + (X1 X3 )(Y1 Y3 )

+ 4(2}(‘1301 + ng)(zyelzq 4 qu)
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o
I
=2
]

_ eq eqy2  (€q _ €02 eq eq,2
13 31 2(X1 + 2X3 ) (X1 X3 )"+ 2(2X1 + X3 )

b,, =b

eq eq\ /€4 eq eq eq
14 41 = 2(X1 +2X3 )(Y1 + 2Y3 ) - (X1 - X3 )

(YT - YY) 20kt - x5V - YY)

boo = (Y94 2v8H2 4 (v39 . vON2 | 4(2v57 4 ¥89)2
22 1 3 1 3 1 3
(A1-5)
_ = o(x€d eqy e ey (¢ _ €Uy ved _ eq
byg = bgy = 204 + 2x N (¥]T + 239 - (X7 - xEN(vS Yg )

+ Z(ZX?]1 + ng)(ZYciq + qu)

_ B eq eq 2 eq eq,2 eq Oy 2
boy = byg = 2(¥{" +2¥,)7 - (¥4~ .+ 202v] +Y§)

(o)
i

4()(‘1"q + zxgq)2 + (X‘iq - x‘:;’q)2 + (2)(*1’q + ng)2

- _ a(x€d edy € eq eq _ eqy veq  eq
34 = bgg = 4K+ 2XCN(Y{ + 2v, Y+ T - KED(V]Y - v

o€, € oved , el
+ (ZX1 +X3 )(2Y1 + Y3 )

_ eq eq,2 eq eq 2 eq eq, 2
b44 = 4(Y1 +2Y3) +(Y1 - 3) +(:ZY1 +Y3) .
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matrix € defined by (4.1,-16) is therefore given by
2 .
(cij)/(req) , (i=1, 2, 3, 4) where

= (x{%- xgq)2 +202x]%+ ng)z

- (% €9 _ el ved  oeq eq €Uy /oved el
Coq (X1 X3 )(Y1 Y3 ) + 2(2X1 +X3 )(2Y1 + Y3 )

i

2(2){‘;01 + xgq)2 - (X‘;q - ng‘)2

= (5x%9 . %y (0ved . ved eq  eq . eq  eq
Cog = (2X1 +X3 )(2Y1 + Y3 ) - (X1 - X3 )(Y1 - Y3 )
_ (qu eq)z 2(2qu qu)z
RS L T 1 T3
= @vilevg 2 (v§d- vgY? (A1-6)
= (x%9 4 ax%%2 | (x4 . x°%)2

1 3 1 3

cyp = (Xiq + 2}:8‘1)(3(‘13q +2vS9) (X“l"q - ng)(Y‘;q - Y'gq)

= (=59 x3H? 4 a4 zxgq)2

= = (x4 eqy (vC1q eq €q €4y €9 €q
= Cyq = (X1 - Xg )(Y1 - Yq ) + 2(X1 + 2X, )(Y1 +2Y, )
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_ (v&d eqy2 _ (ed _ eq
(Y1 +2Yq ) (Y1 3 )
= (259 w324 2v$Y 4 275

Using the initial equilibrium positions given by (4.1.-13) , we may
reduce C to

3/2 -/3/2 - 3/4 -/3/4
-/3/2 3/2 -/3/4 3/4

C = (A1-7)
- 3/4 /3/4 3/2  /3/2

/3/4  3/4  /3/2  3/2

from which (4. 1,-29) can easily be obtained.
The physical significance of the €5 given in equation

(4.2.-7) becomes clear when we return to the CH notation.

2 2

3 3
e a1y K -1
2e, = N ds| + gL ® )y (A1-8)
j=1 =1
-1 ~/3 -2\
Nl - -1/2 /3/2 -1 : (A1-9)

3/3/2  3/2 /3
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2
3 3 .
The expansion of % n (IN” 1).. q. in terms of the AX,

=1 |j=1 M !

gives the same expression as does the kinetic energy

2T = m[Z(AXl)z + 20X 0, + Z(AX3)2 + 2(AY1)2 + 20Y,0Y

3 3

+ Z(A‘Y?’)2 ] (A1-10)

when the AY3
of the rhs of equation (4.1.-26) . We conclude that

in the latter are substituted by the first derivative

9T = Q2. (4.2.-9)

Similarly, substituting the SVA expressions for the
rj from (A1-2) into the expression for the potential energy
(3.1.-14) , it may be shown that

3
k 2
2V = o A Qi . (4. 2.-10)
i=1
Therefore,
3
E = z e (A1-11)
i=1

in the SVA,
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Appendix 2, The GGIF Treatment for Triatomic Molecules with
Pair-wise Bonds

In Section 4. 3, 2., matrices transforming Eckart dis-
placement co-ordinates into normal mode ones were discussed.
In this appendix, we outline the procedures used to obtain these
matrices,

The GG IF method of Wilson, Decius, and Cross (31d)
utilizes a set of co-ordinates intermediate to the transformation
from displacement to normal mode ones. This new set is made
up of the internal co-ordinates, Si’ the bond displacement co-
ordinates. Inthe SVA, they are approximated by equations (A1-2),
wherein the laboratory co-ordinates, %i’ are replaced by the
Eckart ones, X Those equations are specific to M3. In our

more general case

3
S. = ) s. - Ax. (A2-1)

where S is the unit vector in the direction of greatest increase
of S, due to displacements of nucleus j. In view of our numbering

system (see Figure 1),

_ (84 _ .eqy, eq _ i
517 & - x )ty and s = -8y (A2-2)
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where i, j, kis a cyclic permutation of 1, 2, 3.

Equation (A2-1) may be rewritten as
$' = M aA¥ (A2-3)

where %' is the four by one matrix with elements Sl’ SZ’ S3,
and zero. The elements of the four by one matrix, A%’ are
AXqys AV AXg, and Ay 3. The fourth row of the four by four
matrix, IM', contains the coefficients of the A, in the Eckart
condition, If we then replace Ay3 by using the Eckart relation

between the displacement co-ordinates, we may rewrite (A2-3) as
= mMma % (A2-4)
where these matrices have dimensions 3 x 1, 3 x 3, and 3 x 1

respectively. The general elements of the IM matrix, (]M)ij =

Mij’ become

Mij = Mij + M'i M 4]./M21 4 (A2-5)
where
t — /
My = my8; /my
X
Miq = m1s1y/ m,

M'13 = (1 + m3/m2)s1x
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M'14 a1+ m3/m2)s1

My

1= My ; My, = My, =0

!

M'31 = (1+ ml/mz)s3X

Méz = (1 + ml/mz)s3 (A2-6)
y
Myq = mgsg /mg
X
M3y = mgSg /m,
y
. eq
Myq = my83 T3
y
.o eq
My = -mySg I'y
X
. eq
Myg = mgsy Ty
y
_— eq
Myy = 351 T1

and

Slx = [mlx(laq/m2 + (1 + m3/m2)xeq]/r(1eq

_ eq eq., , eq
sly = [mly1 /m2 + (1 + m3/1112)y3 ,]/rl
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- eq eq eq
s3X [(1+ ml/mz)x1 + MyXg /m2]/r3

- €q eq eq
s3y ra+ ml/mz)y1 + Mgy, /mzj/r3 .

When we substitute equations (4. 1. -13) into the above, we obtain

the IM matrix for M3 as

-1/2  -3/3/2 -4
M = 1 0 -1 . (A2-7)
-1/2  -3/3/2 -1

For our problem, the matrix of force constants, I, is

diagonal, (]F)if =k, éij’ and

=) (@),
ij

i S, ] . (A2-8)

Defining a matrix @G by the elements

3

Gij = ) St Syfmy (A2-9)
v=1

the total kinetic energy of vibration may be expressed as

2T = ) (@ )1J ; 8; (A2-10)
ij
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where
3 3
5; = ,7 Sy 0% 7 Z S50 % (A2-11)
i=1 i=1
since ég?q = 0. In matrix notation, equations (A2-8) and (A2-10)
become
. t -1
oT = §'aa ™ % (A2-12)
and
oW =8 F § (A2-13)

We wish to obtain a set of normal mode co-ordinates, @
and velocities, @ , such that

oT = Q' Q (A2-14)
and
2w =Q AQ . (A2-15)

@Q will be related to $ according to

=L Q (A2-16)
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where IL must satisfy
L'FL = A (A2-17)
and

IL L = E (A2-18)
E being the identity matrix and /A a diagonal matrix. Following
the treatment in WDC (31g), substitution of equation (A2-18) into
(A2-17) yields

G IFL=1LAN (A2-19)

where /A is the diagonal matrix of eigenvalues of GG IF, (A )ij =
}‘i 6ij (45). The elements are the solutions to the cubic equation

|G F - 2 IE|= 0. (A2-20)

For M3, IF = k IE, where k is the single force constant common

to all three pairwise bonds. In this case

1
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where m is the mass common to all nuclei in M3. The eigen-

values, A, of the resultant G F matrix for M, are 3k/m, 3%/2m,
and 3k/2m (cf. footnote 45 and Section 4. 2.).

In general, once the eigenvalues are determined, the
elements, Ljn’ of the matrix IL can be obtained from equations
(A2-19) and (A2-17). The first of these gives

3
z (@ F)y; - 2 0300y =0 (1,051,2,3) . (A2-22
i=1

But since its determinant is zero (A2-20), the matrix GG F - . IE
is singular, and the equations (A2-22) for Ljn are linearly
dependent,

We now choose two linearly independent equations for
Ljn (j=1, 2, 3) from among the three linearly dependent ones in

(A2-22). Let the independent equations be

w

]

nj jn

il
i

]
and (A2-23)

Ypjljn = O

>~ w

=1

The coefficients in (A2-23) are
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. Pp.. 5.,
nj ij  “n ij
and (A2-24)

Ypj = ij -\, 6kj’ where 1i# k.

Simultaneous solution of equations (A2-23) gives

LZn - —Lln(YlnBSn - B111\(311)/(\(2116311 h BZnY3n)

(A2-25)

L3n - Lln(YlnBZn - B1n\(2n)/(Y2nB3n B BZnY3n) .

The expression for L1n comes from the equation (A2-17), and, can

be written

3

2 _ _
}: kL= Ay (n=1,2,3) . (A2-26)
=1

Substitution of equations (A2-25) into (A2-26) gives

1

— 5
2 2
(V1nP3n~BinYsn) (V1nBan~B1nY o

2 3 2
(Y2nB3n—B2nY3r)___

(A2-27)

L = 4 k, + k + k

2
(Y2nB3n_ aZnYSn)
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We choose the plus sign in the last equation so that, for example,
positive symmetric stretching normal mode co-ordinates will
increase the bond displacement co-ordinates.

Once the three eigenvalues, Ay have been found,
equations (A2-25,27) produce the required IL, if none of the A
are equal, In the case of M >‘2 = x3, and the procedure breaks

3’
down. One is then free to choose any sz (j=1, 2, 3) which satisfy
equations (A2-22,26). Once this choice is made, Lj3 (=1, 2, 3)
must satisfy (A2-26) and the orthogonality conditions
3
}: Lig Ly = 0 (i=1, 2). (A2-28)
i=1

If we impose the condition thatthe Q2 normal mode co-ordinate

in M, have C,  symmetry about 9, we find

1 1/2  3/2

L = 1 1 -1 0 (A2-29)

/m
1 1/2 -3/2
and

1 1 1

! - s 1 -2 1 (A2-30)
1 1/2 -3/2

It is readily verified that the matrices IL_1 and IM of equations
(A2-17,30) give the product (]N’)_1 whose elements are given in
equation (4. 3. 2, - 4},
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Appendix 3. Adams-Moulton Integrator Coefficients

In order to find the best Predictor/Corrector orders for
our calculation, we developed a recursion method for the deter-
mination of the a and bi of equations (6.1.1.-2) and (6.1.1.-4).
This method is described below.

Using the notation of Section 6. 1. 1.,

n

ybkm+1 - ym+h[ym+2 g}(Aiym] : (A3-1)
i=1

The Ai Y, are differences in y at various times t and are defined
by

B Ym = %5-1Ym " %51 Ym-1° (A3-2)
where

Ay Y. = Tim Ve 4 A3-3
1% = Y57 Y51 | (A3-3)

It is clear from equation (A3-2) that

i

® _ i L

by Ve = E‘ cj Y- (A3-4)

where
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c, = c:; - c]._1 O0O<j<i)
o=l =0 G>0) (A3-5)
-1 i+l
and
i 1 _
Cg = ~€1 = 1
Scarborough (33) shows that
1
g’.1'< = Tl'- f u (u+1) + -« (u+i-1) du, (A3-6)
0]
Thus . .
i
_ 1 i-j+1
g1 ) T (43-7)
=1
where
i i-1 . i-1
dJ = d]. +  (i-1) dj-l G=1, ..., 1)
(A3-8)
i _ S | _
d1 =1 and d0 = di+1 0

Tables of ¢ and d may be made up from the recursion relations
(A3-5,8). Given these coefficients and equations (A3-4, 7),
equation (A3-1) becomes
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i

_ L] i .
y*mr1+1 " Ym h Ym* Z ? Ck g’; Ym-x ° (A3-9)
i=1 k=0

=)

A comparison of equations (6.1, 1.-2) and (A3-9) shows that
for n'th order prediction

i
. ) _ RS )

i T T Z g’rkm+1—j n+1- 1(1 1,2,...,n)

=1
and (A3-10)
n
2
1 T a1 T Z n+1 i’

"':

<

If one is interested in tabulating the a§n) for various orders, n,

it is useful to note that

a(n+1) _ a(n) N Cn+1 ot

: : i (A3-11)

The correction coefficients may be derived in a similar

orr

way. The gi‘ are replaced by gg’ which come from

0
corr 1.1, [ u(u+l) *++ (uti-1) du (A3-12
I 4
and
i
.o ..
icorr - & 2 (_1)3 d;_-+1 (A3-13)

=1 ]+
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The db still obey equations (A3-8). Thus the difference formula

for corr
Yme1
n+1
corr _ LR corr
m+l = Im * h(yakm+1 * & 8 ym+1) (A3-14)
i=1
becomes, via equations (A3-4),
i
corr _ : ¥ 1 corr
m+l " Ym T h(y;km+1 * z / k& Ym- k+1) (A3-15)
i=1 k=0
By comparison of equations (6. 1. 1. -4) and (A3-15),
i
. (n) _ corr n+l-j 4.
b= b = ) i Cneay (1,200,
=1
(A3-16)
n
_p) | ©corr
bn+1 lDn+1 L+ Z gn+1-j ’
i=1
As with the predictor coefficients, the use of
(n+1) b(n) n+1 gcorr (A3-17)

j j ] n+1

results in a more efficient tabulation of bj for sequential orders,

(n).
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Part II. Dynamics of Energized Anharmonic Molecules
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DYNAMICS OF ENERGIZED ANHARMONIC MOLECULES

1. Introduction

The accepted mechanism for unimolecular reaction, proposed
by Lindemann (1), involves three elementary processes: collisional
activation to and collisional deactivation from molecular states with
energy in excess of that required for reaction (hereafter called energized
states) and the reactive process itself. When this mechanism is expanded
by adoption of the strong collision assumption, whereby energized mole-
cules are deactivated by a single collision with heat bath molecules,
Slater (2) shows that the fate of energized molecules can be described by

a probability of reaction

Prxn = T, (1.-1)

Here w is the heat bath collision frequency, and 7 is the lifetime of the
energized molecule which a prior collision has left in the state s. This
is a deterministic, classical-mechanical formulation. Only in classical
mechanics will a specific energized state, determined by s = s(q?, coey
qg, pg, ceey pg), with the q?, p(i) being the set of initial coordinates and
momenta of the n degrees of freedom of the molecule, react in some
definite time, 7(s). The applicability of classical mechanics to reacting
molecules is discussed in Section 3. If 7(s) is known and the fraction,
f(s)ds, of molecules in energized states s to s + ds can be found, then
the first-order rate constant for thermal unimolecular reaction becomes
(2)

k = wff(s)e'“”(s)ds , (1.-2)
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where the integral is taken over all values of s corresponding to unreacted

molecules.

The problem of calculating f(s) has been considered by many
workers (3, 4). Slater (5) evaluates this quantity in terms of the action-
angle variables of the system using the small vibration approximation

7(8) {0 the

(SVA). He then relates the vibration phase average of we ¥
"asymptotic frequency of up-zeroes' or reactive excursion frequency
(REF) of a critical coordinate. In the preceding paper (6), hereafter
called Paper I, it has been shown that for harmonic molecules, the REF
is adequately described by its SVA analog. However, for an ensemble of
energized anharmonic molecules, the SVA is not expected to furnish a
good REF for reasonable values of critical coordinates. It would be use-
ful, then, to develop other methods for evaluating 7(s) as a function of
state, s, in order to apply equation (1.-2) to unimolecular reactions. In
part, this paper shows the behavior of 7(s) in some regions of the classical
phase space of anharmonic bent triatomic molecules.

When a polyatomic molecule is given energy slightly in excess
of that required for dissociation, it executes large amplitude internal
motions before decomposing (7). During these motions, energy exchanges
among the bonds until the requisite amount finds its way into the modes
which yield dissociation. The fact that energized molecules do not
necessarily decompose within a single characteristic vibration period
suggests that the motion on the constant energy hypersurface in the phase
space for these molecules is fairly complex. The representative point in
phase space does not head directly to the dissociative regions but may
pass near them several times before passing into them (7). Still, as the

energy of the molecule is raised above that required for dissociation,
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one expects the passage into the dissociative regions to increase in cross-
sectional hyperarea faster than does the non-dissociative region of the
constant energy hypersurface. Since the lifetime of the excited molecule
is inversely related in some way to the ratio of hyperareas in phase

space corresponding to dissociated and non-dissociated states, molecu-
lar lifetimes might be expected to be monotonically decreasing functions
of molecular energy. This simple model will be tested in this paper.

The molecule models used are the relatively rigid equilaterally
symmetric 1\/13 and the loose asymmetric CINO18 ones of Paper I. In the
present paper, both these bent triatoms have three pairwise Morse bonds
connecting the nuclei. The Morse parameters were chosen to yield the
proper dissociation energy and harmonic force constants and are given

h ]

in Sections 6.1. and 5.3. for Mg and C1N018, respectively.
2. Equations of Motion

The classical equations of motion of our triatomic models are
given in equations (3. 1. -8 through 13) of Paper 1. Instead of the harmonic
internuclear potential, Vi , of equation (3. 1.-14) in that paper, we will

use the Morse potential

v, = D.{1- exp[-Bi(ri - rfq)]}z.

. 2.-1)

In this equation, Di is the dissociation energy of bond i measured from

the bottom of the potential well, and Bi is chosen such that

2
k, = 26:D,, (2.-2)

where ki is the harmonic force constant for bond i. Equation (2. -2) is
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obtained by expanding (2. -1) in a power series in (ri - r?q) and equating
the result with equation (3.1.-14) of Paper I in the limit of vanishingly
small (riL - rfq).

It is clear that a sum of pairwise Morse functions like (2. -1)
gives only an approximation to the potential surface of molecules. The
assumption that the bond potential parameters of the free diatom and the
diatom in the molecule are the same is a very poor one. A more realistic
potential would take into account the perturbations on the diatom by other
atoms in the molecule. Thus, when we solve the equations of motion for
the dynamical behavior of molecular models held together by Morse
bonds, we cannot claim that the real molecules they are to represent
will exhibit the same dynamical behavior in every particular. The
present paper concerns itself with the dynamics of these classical Morse

models.
3. Validity of Classical Molecular Mechanics

The avowed purpose of Paper I was the study of the time depend-
ence of dynamical variables which were constants of the motion in the
SVA or weak coupling approximation. It was shown (see footnote 16 of
that paper) that a classical mechanical study was sufficient to determine
xXpectation value of a dynamical variable was time
independent for the corresponding quantum mechanical system. In this
paper, however, we cannot fall back on this property to justify the use
of classical equations of motion. We want to study the evolution of the

paths of representative points in phase space in order to determine their

residence time in the regions which we declare to be non-dissociated.



-165-

In the quantum analog of these studies, we would determine the time
evolution of the wave packets in configuration space representing analo-
gous initial conditions. If the wave packets didn't broaden excessively
during the molecule's lifetime, the passage of their centers through a
dissociated configuration would furnish lifetimes. If, on the other hand,
the spread is appreciable, the concept of a unique classical lifetime
breaks down and one is reduced to a discussion of distribution functions
of reactive decay times.

In the classical case, a uniquely energized molecule will
decompose in a definite time to a definite final state. The quantal
description of unimolecular decomposition (8) involves excitation of an
ensemble of molecules to some metastable resonance state followed by
decay into the many continuum states coupled to it. Classically, the
existence of many product channels for each initial state can be ration-
alized by the fact that the quantal state specification does not set the
relative vibration phases, and different initial phases can dissociate
into different product channels. It is also clear that classical mechanics
cannot define the metastable resonance states a priori. However, this
defect does not guarantee that the results of quantal and (suitably

averaged) classical mechanical decomposition studies will disagree.
3.1. Mechanics of Bound States

Classical mechanics cannot, of course, be used to derive the
quantized states of bound molecules. Thus, it is surprising that a
minimum wave packet displaced from the center of a harmonic well

executes the classical sinusoidal motion without change of shape (9).
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However, the harmonic potential is unique in classical mechanics as
well; it is the only force field in which the characteristic frequencies
are not functions of the energy of the system. This means that the
probability distribution for a swarm of one-dimensional classical
harmonic trajectories will recover its initial shape in contrast to the
anharmonic analog (10). Their studies in the quantum dynamics of
anharmonic oscillators have led Wilson and co-workers (11) to the con-
clusion that the similarity of the classical and quantum dynamics of
"harmonic oscillators is an accidental peculiarity of the system and
does not imply that corresponding similarities exist between classical
and quantal anharmonic oscillators' (11a). In particular, the similari-
ties were not found in one-dimensional linear well, square well, and
Morse oscillators nor in two-dimensional square wells. While the
potential models were not sufficiently complex to serve as approxima-
tions to bent triatomic molecules, we believe the evidence gathered thus
far indicates that classical and quantal dynamics of these systems will
show the divergences found in the one-dimensional cases.

The results obtained by Wilson et al. (11) tend to indicate that
if, in a classical trajectory the energy of some oscillator in a polyatomic
molecule is well below (30%, for example) that oscillator's dissociation
energy for a time which is long compared to the oscillator's natural
period, then that classical frajectory would be divergent from its
quantum analog. If, on the other hand, the oscillators of the energized
polyatomic molecule exchange large amounts of energy in times com-
parable to oscillator periods, then no single oscillator would remain in

its low energy bound states long enough for the classical and quantal
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trajectories to diverge appreciably. The question then becomes whether
the small differences in the two dynamics yield trajectories stable in
the sense used by Born and Hooten (10). I.e., are small changes in the
initial conditions of classical or quantal trajectories amplified or
dampened by the subsequent dynamics? Amplification of the divergence

between two initially similar trajectories would indicate instability.

Directing their attention to classical anharmonic dynamics, Born and
Hooten make the statement that ""all motion is unstable' (10). The results

of Section 5.1 will be seen to bear them out.
3.2. Mechanics in the Continuum and in Metastable Molecules

The usual justification (11a) for the use of classical trajectories
in chemical dynamics involves appeal to the correspondence principle.
When the density of quantum levels becomes so high that energy eigen-
values need no longer be considered discrete, the solutions to the quan-
tum and classical equations of motion for the system approach one
another (12). Thus, classical mechanics should be adequate to describe
the dynamics of polyatomic molecules with sufficient energy to undergo
complete decomposition into its constituent atoms. But such molecules
are not of primary interest in chemical kinetics. Tt is rather molecules
with energy distributions sufficient to break but one or two bonds that
are of most concern in chemistry. Such decompositions yield at least
one molecular fragment or isomeric species. In this case, the use of
classical mechanics is questionable because the problem calls for the
solution of the dynamics of at least one bound oscillator. However, the

formalism developed recently (8, 13ab) for quantum mechanical solutions
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to the unimolecular reactions of these metastable molecules require
detailed knowledge of the position and broadening of the quasi-stationary
(resonance) states above chemically realistic potential wells. As such
information is not yet available, the only mechanics capable of solving
the dynamics of unimolecular reaction at present is classical. In the
absence of direct evidence to the contrary, one can only hope that it
provides a fair first approximation to the dynamics of unimolecular
chemistry. If and when subsequent quantum mechanical calculations are
done, the present classical results will furnish an interesting basis for

comparison.
4., Numerical Methods
4.1. Integration

Some of the trajectories to be describéd in this work were ob-
tained by integrating the classical equations of motion with an Adams-
Moulton integrater described in Section 6.1. of Paper I. The predictor
series was 5th order and the corrector was 6th order. The coefficients
for these orders in the Adams-Moulton formulae were given in Table II,
Section 6.1.3. of Paper I. Many of the earlier trajectories determined
in this study came from Adams-Moulton 11th Order Predictor/11th Order
Corrector integrations. In the results, the distinction between these
integraters is dropped because they give solutions of comparable accuracy
when applied to the differential equations of motion of our anharmonic

molecules.
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4.1.1. Adams-Moulton Eleventh Order Predictor/Corrector Integrater
(AM11)

The basic equations for Adams-Moulton integration were given
in Section 6.1.1. of Paper I. A method for obtaining the n'th order pre-
diction and correction coefficients, agn) and bgn) (i=1, -++, n+1), was
given in Appendix 3 of that paper, and the results for orders one through
eleven are given here in Table I. The formulae utilizing these coef-
ficients are given in Paper I as equations (6.1.1.-2) and (6.1.1.-4).
The truncation error analysis appears in Section 6.1.2. of that paper.
However, truncation error in the n'th order predictor is related to the
coefficient of the first ignored term which appears explicitly in the
n + 18t predictor. A comparison of the 5th order error, given as
%%—2—3% h' &y/ot” in equation (6.1.3.-1) of Paper I, with the coefficient
afs) from Table I gives the following relation for the truncation error,

& (n) , of the n'th order Adams-Moulton predictor as

E(n) _ ‘a(1n+1)l 2 an+2y/atn+2' (4.1.1.-1)

In this equation, as in (6.1.3.1-1) of Paper I, h = At is the integration
step size and y and t are the dependent and independent variables of the first
order differential equation being solved. Thus, the truncation error of

the eleventh order Adams-Moulton predictor is found to be

(11) _ 703604254357 h13 yXIII

3 (4.1.1.-3)

itd

0.260 nl3 X
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The eleventh order integrator was chosen because it minimized
the error in a single integration step of size h = 27 in the double preci-

sion (sixteen significant decimal digits) solution of

y = 2 cos 2nt . (4.1.1.-3)

For n < 11, the accuracy of such an integration increases exponentially

with order, n, as is to be expected from the hn+2

form of the truncation
error of equation (4.1.1.-1). For 11 <n < 17, howevér, the double
precision Adams-Moulton predictor/corrector integration step gives a
constant eleven significant digit answer. This ié due to the limitation of
word length. The integrater coeificients were supplied correct to + 3 in
the sixteenth significant figure. As can be seen from Table I, these co-
efficients for eleventh order differ among themselves by about 5 orders
of magnitude. This means that truncation in the computer's arithmetic
operations reduce the accuracy to 16 - 5 = 11 significant figures.
Optimization of order is a function of step size, h. When
h =2"*, the optimal order for a single step of (4.1.1.-3) is about n = 20.

The eleventh order was chosen because we anticipated small step sizes

for the anharmonic equations we were to solve.
4.1.2. Application of AM11 to Trajectories

Since Adams-Moulton integrators are not self-starting (see
Paper I, Section 6.1.4.), an integration initiation routine is required.
The 12th integration step is taken by the 11th order routine, AM11,

which derives its table of past y values from a 10th order routine, AM10,
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operating at a step size of h/2. AMI10 derives its past value table from
AM9, which takes steps of h/4. The cascade of integrators reaches
down to AM4, a fourth order Adams-Moulton routine, operating at a step
size of h/128. The first entries in the y table come from a 4th order
Runge-Kutta-Gill (RKG) integrator (see Paper I, Section 6.1.4.) running
at this same h/128 step size. Thus, by the time the independent variable,
t, reaches the value 11h, the initiation routine has taken 72 integration
steps of increasing sizes and supplied AM11 with a set of past values of
y which is roughly compatible with its own accuracy.

The accuracy compatibility requirement relating the step size of

Adams-Moulton integrators of order n and n+1 is by equation (4.1.1.-1).

l (n+2) |

a n+3 n+3

h, = hr21+1 (1n+1) | an+‘2 ¥/ tn+2
aj 2 %y/at

(4.1.2.-1)

The ratio of al’s is always near unity. If we assume that the maximum
values of the n + 20d and n + 34 derivatives of y are the same, then

2

hn = hrl +1 insures compatible accuracies. It can be shown that when

h =1h

a0 ne1» compatible tables of past values of y are obtained when

hy; = 27°. Typically, the anharmonic trajectory integrations were

carried out with hyy = 275 =3 5.25x 107" seconds of molecule time.

4.1.3. Comparison of Integraters

The integrater accuracies discussed in the previous section
involve a single integration step. Trajectory calculations, for anhar-
monic molecules at chemically interesting energies, involve six to

twelve thousand such steps. Thus, overall accuracy in such integra-
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tions is greatly affected by truncation characteristics of the computer,
stability of the equations to be solved, and other factors which do not
significantly influence the accuracy of a single step. The merit of a
numerical integrater is best tested by observing its long-term accuracy.
The Adams-Moulton 11th Order (AM11) and Runge-Kutta-Gill
4th Order (RKG) integraters were used to solve the equations of motion
of M3 , an equilaterally symmetric molecular model with masses equal
to that of O'° and pairwise Morse potentials whose parameters are those
of Oy. The initial conditions in these comparison test integrations cor-
responded to in-phase compressional potential energy in the three bonds
of 0.0197 D, 1.40 D, and 0.90 D, respectively, where D = De(Oz) =
119.43 kcal/mole. This trajectory is dissociative. After about 3.2 X
107*® seconds of high amplitude vibrations, the molecule begins to decom-
pose. Bonds 2 and 3 break, leaving bond 1 as the molecular fragment.
The point in the trajectory at which the molecule is said to have disso-
ciated may be taken as the point when the two breaking bonds are
stretched to at least some minimum length. This minimum length was
taken to be 4 r®4 = 4.828 A. The molecular lifetime, 74, is the time it
takes any two bond lengths to exceed this value. It was found that none
of our trajectories lead to "healing' bonds beyond Ty It is not dyna-
mically impossible to create such a trajectory, but they are rare.
Since the potential surface has a long-range attractive tail, it would be
possible to create a healing trajectory beyond 7_ , but the probability of
encountering such cases becomes negligible for Tn with n = 4. Less

ambiguous reaction criteria involving minimum kinetic energy of frag-

ment separation, passage over rotational barriers or through phase
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space "bottlenecks' (14) have been suggested, but T4 is adequate for our
purposes in this paper.

Table II shows the effect of integration step size on Ty for both
integraters. The superiority of AM11 over RKG is manifest. The usual
test of integration accuracy is the comparison of the initial co-ordinates
and momenta with those obtained by integrating the equations of motion
backward from the final to the starting time.  Although AM11, inte-
grating at a step size of h =7x 277 t*, preserves almost 3 digits in all
the co~ordinates and momenta on reverse integration, the lifetime of
this trajectory is in error by about 6% or 135h! When the step size is
dropped to h = 3 X 27° t*, 4 digits are recovered and T4 is still off by 36h
It is clear that the lifetime of this (and other) anharmonic metastable
molecule cannot be trusted unless reverse integration recovers at least
6 or 7 significant digits for each of the initial co-ordinates and momenta.
Such accuracy is obtained with AM11 operating at a step size of about
h =27t =5.25x 107" seconds. (t* is the reduced time unit for our
equations of motion. See Paper I, Section 3.2.) Integrater accuracy
begins to fall off for step sizes smaller than 27° t* as the number of
steps necessary to reach a constant molecular time increases beyond
n =12000.

The accuracy is alsc a function of the total energy of the mole-
cule. Higher energies lead to more vigorous vibrations with larger
changes in momenta at turning points. The larger momentum derivatives
make for larger integration error. The test cited above involves an M3

molecule with 277.1 kcal/mole total energy. If we raise the total

energy to 290 kcal/mole, we expect larger errors. This latter energy
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Table II. Metastable Lifetime (74) vs Integrater
and Integration Step Size (h) for an M, Trajectory™

h AM11 RKG
Ty Digits® Ty Digits®

t* 1077 sec 107** sec | Recovered | 107 sec | Recovered
27° 20.96 4.0996 1.9

g.27 | 18.34 4.1316 2.8

3.2 15.72 4.3214 3.8
27 10.48 4.3801 6.0
27° 5.24 4.3786 7.9 4.6690 2.6
27° 2.62 4.3786 6.9 4.4120 3.9

aISee text for initial conditions for M3.

b

Number of decimal digits recovered by reverse integration from
dissociation back to initial state.
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was given to anharmonic Mg as symmetric stretch. The equilateral
symmetry of the equations forbids any but D3h motion. However, RKG,
AM11, and the AM5/6 of Paper I all integrating at a step size of h = 27° tx
give appreciably asymmetric solutions after 3.6 to 3.9 X 107" seconds.

This failure is integration order independent and must result from the

truncation to 16 decimal digit arithmetic.

Other accuracy criteria, such as constancy of total energy and
angular momentum components, for AM11 and RKG are essentially as
useless as they were for the AM5/6 integrater of Paper 1.

Finally, one thousand steps taken with each of the three inte-
graters, RKG, AM11, and AM5/6, required 51, 38, and 28 seconds of

IBM 7094 computer time, respectively.
4.2. Trajectory Initiation
4.2.1. Vibration Initiation

The few trajectory initiations from normal mode energies were
accomplished via the algebra of Section 6.2.1. in Paper I. The remainder
of the pure vibration trajectories were initiated from bond potential
energy conditions, i.e., the bonds were stretched or compressed indiv-
idually to specified potential energy values. Solving equation (2.-1)

for r;, we obtain

1 .
r, = rfq "B log (1 +YV/D;) (i=1,2,3) (4.2.1.-1)

which produces the three required bond lengths satisfying the three given

potential energies as long as no V, = D; when the minus sign is used
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before the square root. As all such initiations in this paper are made
with compressed bonds, the plus sign is used before the radical, and no
initial r; exceeds r{l. With the three bond lengths determined, the co-
ordinates of the molecule are specified by assuming that bond 2 lies
parallel to and in the same sense as the g axis of the laboratory (non-
rotating) center of mass system. This does not sacrifice generality.

Commencing all trajectories from a turning point in all the
vibrations forces them to be in-phase with one another initially. This is
done for convenience, but it is not necessary. The results show that for
asymmetric initial configurations, the phase lock is broken in less time
than the fastest vibration period. It is felf that these trajectories are
representative ones for the model inspite of the unique initialization.

Had out-of-phase initiation been deemed necessary, it would
have been accomplished via the input of non-zero values for bond kinetic
energy, TBi. The definitions governing TBi are given in Paper I, Sec-
tion 5.2. Briefly, the required bond kinetic energies specify three bond
velocities to within a sign, which determines whether the bond is opening
or closing. The three velocities and the Eckart condition (15)

3

€ « ¢ =
Y omy % %) = 0 (4.2.1.-2)
i=1

suffice to determine the four required atomic velocities }.{1 , §71 ) }23 , and
5'73 in the Eckart co-ordinate frame. These are related to the laboratory
atomic velocities via equation (5.2.-4) of Paper I. The angular velocity

in that equation is determined by the gi and the choice of angular momen-
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tum vector through equation (6.2.1.-7) of the same source.
4.2.2. Initial Rotation

The initiation from rotational energies is described fully in

Paper I, Section 6.2.
4.3. Dynamic Variables for Decomposition Products

In our trajectory calculations, reaction is recognized when two
molecular bonds stretch to greater than some factor n times their equili-

brium values. The lifetime, 7_, is then measured from initiation to

n’
this point. When such dissociations are found, the dynamical variables
of the fragments are calculated from the final generalized co-ordinates
and momenta of the system. These are the Cartesian co-ordinates of
two of the three atoms and their conjugate momenta. The items of
interest are the internal energies of the diatomic fragment and the ki-
netic energy of separation of the fragments. The latter quantity is of
importance in guaranteeing that reaction has taken place. If the sum of
the potential energy of the breaking bonds and the kinetic energy of sepa-
ratioﬁ is not greater than the dissociation energy, the molecule is
merely undergoing a high amplitude stretch.

The atomic velocity vectors in the non-rotating center of mass
system are obtained from the momenta via equations (3.1.-8) of Paper I
and the time derivative of equation (3.1.-1). The kinetic energy of

separation of the fragments, T_, may be shown to be

S,
m M
a : 5 \2
2T, R T X, - X)) (4.3.-1)



-179-

where Xa is the unit vector in the direction of the fragment atom, a, and

Z(a is the atomic velocity vector of a. Once the velocity of the center of

mass of the diatomic fragment,
Xpe = (mpX +m X )/ (mp+m,), (4.3.-2)

is subtracted from the velocities of the atoms in the diatom fragment,
the resulting atomic velocities with respect to the diatom center of mass,
;'gb and fgc, may be used to obtain the instantaneous diatomic internal
energies. The kinetic energy of vibration becomes

_ m, (mb+ mc)

2 Thc mb (ESC

(4.3.-3)

o

where X, = (X, - X,,)/|X, - X,/ - The total instantaneous vibration

energy is

+ Ve (4.3.-4)

where Vbc is the potential energy of the bc diatom. The rotational

energy becomes

m , (m,, + m )
_ c b c -2 PSR-
2Epot = g (% - e &I, (4.3.-5)
or the difference between the total diatomic kinetic energy,
E, . -V = (m %2 + m }22)/2 (4.3.-6)
be be b~ che T e

and the vibration kinetic energy, equation (4.3.-3).
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5. Results and Discussion

5.1. Vibration Dynamics of Anharmonic Molecules

The molecules to be discussed are Mg and CINO'®. Their
assumed pairwise potential parameters are given in Table III. These
parameters give the molecules the same harmonic force constants they
had in Paper I. The experimental structure (16) is used for C1N018.
The D values are constrained by the experimental dissociation energy

such that D(ClOls) + D(NCI1) = 38.4 kcal/mole. If we use the free diatom

dissociation energy (17) for NO18

and Johnston's rare gas analogue (18)
approach to estimate D(NC1), then D(C1018) and the Morse parameters
follow from D(ON---~Cl) and the experimental central field force constants

(19).
5.1.1. Normal Mode Energies Below Dissociation

Trajectories for harmonic models in Paper I were initiated with half
the ABC — A + BC dissociation energy either in one molecular mode or
divided equally between the three modes. It was shown that initially pure
asymmetric stretch in harmonic Mg exchanged half its initial energy with
the bending mode in about 5 X 107" seconds. When the same initial con-
figuration is used to start a trajectory for anharmonic M3, the asymmetric
stretch mode (see Figure 1) exchanges half its energy with the other modes
in about 5 x 107*° seconds, which is about 1/4 of the fastest (symmetric
stretch) period. It is clear that anharmonic M,, oscillating with half its
dissociation energy, is not executing normal mode motion. It does not

show even the short term stability of motion (lack of normal mode inter-
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action) exhibited by the harmonic counterpart in Figure 7c of Paper I.
While the total energy of the anharmonic Mé remains 144. 32 kcal/mole

throughout the integration, the total normal mode energy at times ex-

ceeds 900 kcal/mole. It is evident that a normal mode description of
energized anharmonic M3 is highly inaccurate.

When the harmonic model for CINO18

is given half its dissocia-
tion tion (ON---Cl) energy in its symmetric stretching mode, that mode
is stable for about 5 X 107*® seconds (see Figure 9c of Paper I). When

an anharmonic ClNO18

trajectory (see Figure 2) is given the same initial
conditions, the symmetric stretching mode is stable for only about half
that length of time. In contrast to the harmonic case, the symmetric
stretch energy is not even an approximate constant of the motion over its
range of stability. It varies by about 75% of its initial value, 19.2 kcal/
mole. The normal mode defect (as defined in Paper I) is very large for
these initial conditions, as the total energy is only about half the initial
symmetric stretch energy. It is this low total energy which is respon-
sible for the reasonably well-behaved normal mode energies in Figure 2.
One expects that the normal mode energies in trajectories with total
energies nearer dissociation will be at least as chaotic as those of Figure
1. Figure 2 cannot be used as evidence that the small vibration approxi-
mation (SVA), which underlies the normal mode analysis, is better for
the loose ClNO18

model than it is for the relatively rigid M3 one. Their

relative energies are not comparable.
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5.1.2. Vibration Dynamics of M3 Above Dissociation

All the M3 trajectories to be discussed in this section are
initiated with constant amounts of potential energy in compression of
bonds 1 and 3. These energies are Vi(O) = 0.0197 D0 = 2.35 kcal/mole
(which is close to the 2.26 kcal/mole zero-point energy for an M2 bond)
and V4(0) = 0.90 D o =107.49 kcal/mole. All the initial momenta (and
hence the initial kinetic energy) are zero, and Vz(O) is varied from run
to run. Its lowest value is 1.10 D_ = 131.37 kcal/mole, corresponding
to a lowest total energy of 2D o 2.35 kcal/mole. This exceeds the dis-
sociation energy of M3 (2D o= 238.86 kcal/mole) by about the zero-point
energy of MZ'

As VZ(O) is varied systematically, the point in phase space,
representative of the initial conditions for the trajectory, traces out
some continuous curve, the total energy, E, increasing linearly with
VZ(O). When V2(O) >1.581 D, = 188 kcal/mole, the distance between the
fragment atom (atom 1) and the center of mass of the fragment molecule
(bond 1, in the numbering system of Paper I) increases monotonically
with time during the entire trajectory, indicating direct decomposition.
At these high energies (E > 2. 5DO), the My molecule is not observed to
execute any vibrations as a whole before decomposing.

The product diatom, Mz, comes away from the reaction site
excited both vibrationally and rotationally. As V2(O) is raised above the
critical energy for direct decomposition, the M2 internal energies (see
Figure 3) increase linearly but only 1/5 as fast as the total energy. Thus,

this direct decomposition apparently yields a molecular fragment of almost
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constant internal excitation. The excess energy appears preferentially
as relative translation of the products. This phenomenon is probably
due to the fact that the molecular lifetime of excited M3 approaches a
constant value at very high energies. This constant is of the order of
half the period of a molecular vibration, corresponding to the expansion
time from the compressed initial configuration to dissociation. Appar-
ently, only a constant 60 - 70 kcal/mole can be transferred into the
molecular fragment in this time.

When V4(0) < 1.58 D, the energized M3 molecule executes
several molecular vibrations before dissociation, indicating delayed
decomposition. (See, for example, Figure 4b.) The molecule vibrates
until sufficient energy (= D o) has accumulated in each of two bonds (1
and 3 in Figure 4b) which then break. It had been supposed that increas-
ing the total molecular energy systematically, via increases in VZ(O)’
would result in a monotonic decrease of molecular lifetimes. This is
found not to be the case. Figure 4a represents the trajectory of an an-
harmonic M3 with VZ(O) =170.03 kcal/mole and E = 279.87 kcal/mole.
The lifetime, 74, of this energized molecule is about 3.4 X 1074
seconds, corresponding to almost 20 harmonic symmetric stretch
periods. When the total energy is raised by about one part in 10,000,
by increasing VZ(O) to 170. 06 kcal/mole, the lifetime (see Figure 4b)
does not decrease by some small amount but increases to about 4.8 X
107" seconds or almost 28 symmetric stretch periods. Therefore,
an increase in the total energy of about 0.01% increases the lifetime of

this molecule by about 40%.

Figure 4 points up a general property of the unimolecular tra-
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jectories we encountered. They are almost always highly sensitive to
changes in their initial conditions. This is direct evidence in support of
the statement by Born and Hooten (10) that '*all motion is unstable."
An additional indication of this sensitivity is the vibrational phase de-
pendence in inter-bond energy transfers. Such exchanges of energy
among the bonds occur when two or more of them are near their com-
pressed turning points. The magnitude and direction of such transfers
depend strongly upon the relative phase of the oscillators involved.
For example, in Figure 4b at t = 4 X 107" seconds, the high energy
bond 2 has just contracted and is beginning to expand, while the low
energy bond 1 is just about to reach its compressed turning point.
Thus, at this time, bond 2 is vibrating slightly out-of-phase with bond
1 and ahead of it by a few degrees. Such conditions are always associated
with excitation of the lagging oscillator by the leading one. Indeed, in
Figure 4b for t > 4 x 107 seconds, bond 1 extracts sufficient eneréy
from bond 2 to dissociate. The slightly different phase relation between
bonds 2 and 3 at t =2.1 x 107"° seconds in the same figure yields a dif-
férent degree of excitation for the laggard bond 3. Thus, small per-
turbations introduced in the initial conditions are amplified by every
energy transfer event. This high sensitivity may lead to strong dif-
ferences between classical and quantum mechanical lifetimes, as dis-
cussed in Section 3.

For V2(O) < 186.7 kcal/mole, the first energy transfer event,
which occurs as all the bonds are expanding, does not transfer enough
. energy into bonds 2 and 3 for them to break. Thus, they must both con-

tract at least once more to redistribute the oscillator energies. The
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second energy transfer event (for V‘z(O) < 182.7 kcal/mole) occurs
when bond 3 contracts and exchanges energy with bond 1. Since the
bonds are anharmonic, their periods are functions of their energy.
Thus, the period of bond 3 and the time to the second transfer event
increases with increasing VZ(O), as seen in Figure 5. For successively
higher values of V4(0), the second transfer event catches bond 1 in a
different phase of its vibration, rendering the subsequent sections of the
trajectory different from one another.

The molecular lifetime (20) is found to be a chaotic function of
VZ(O)’ as Figure 6 attests. Aside from the region of direct decomposi-

tion for VZ(O) > 1.58D_, only three regions of relative stability of life-

0’
time with respect to V2(O) are found. These are shown in Figure 6
centered about V,(0) =1.34, 1.43, and 1.51 D,, respectively. All the
trajectories in these regions led to dissociation in the same manner,

that is, the last energy transfer event was the same. Outside these
regions, no two neighboring Vz(O) values, given by the abscissas of
points in Figure 6, led to the same reactive event. Continuity, within
the scale of the grid used for V2(0), exists only within these three zones.
The zonal boundaries consist of dissociations in which the last energy
transfer event leaves the breaking bonds with no energy in excess of

that required for dissociation. In other words, reactive events near

the zonal boundaries are characterized by near zero relative transla-
tional energy. Hence, these lifetimes become arbifrarily long as one
approaches these boundaries from either side. Thus, there exist poles

in these plots of lifetime vs energy. Furthermore, one suspects that

there must exist more narrow zones of continuous dynamic character,
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FIG. 5. Vibration period of bond 3 in M3 vs initial potential energy

of bond 2. Other initial conditions as in Figure 4.
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visible with a finer grid in V2(O) than that used in this work. These
will also exhibit arbitrarily long lifetimes at their boundaries. Indeed,
regions of V2(0) might be found over which molecular lifetimes are dis-
continuous on any practical V2(O) grid size even if the equations of
motion could be solved over indefinitely long times. In practice, our
integrators fail at molecular times beyond about 6 X 107 seconds, so
that this prediction cannot be verified.

Classical mechanical solutions of anharmonic molecular dyna-
mics appears to involve extreme variations of lifetime with oscillator
energy and, probably, any other progress variable. Hence, it is im-
practical, at this time, to obtain analytic or even numerical values for
7(s) from the classical equations of motion. This does not imply that
unimolecular rate constants cannot be obtained from classical trajectory
calculations. The Monte Carlo calculations of Bunker et al. (14) prove
otherwise, at least for the high pressure limit. However, it seems
unlikely that equation (1.-2), in its present form, will be useful in con-
nection with the decomposition of anharmonic molecules. In view of the
observed instability, accurate classical expressions for 7(s) will not be
forthcoming. It is possible that 7(s’), where s’ represents a vibration
phase average over s, may show the continuity sought in this paper for
7(s). The number of trajectories performed in this work does not per-
mit statistically significant phase averaging for our 7 (s) to test this

important point.
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5.1.3. Vibration Dynamics of CINO18 Above Dissociation

The extreme sensitivity of classical trajectories to perturba-

tions, discussed in the last section for Mé, is found in the model for
18

18

CINO™ "~ also. Figure 7 shows a representative trajectory for anharmonic

CINO™" at an energy of 46.1 kcal/mole, or about 7.5 kcal/mole above

dissociation into C1 + N018.

Figure Tb confirms the fact that energy
transfers among the oscillators when they are near their contracted
turning points. Note that the high frequency NO bond exchanges energy

with the other bonds much more readily in this anharmonic CINO®

than
it did in the harmonic model of Paper I. In that work, it was observed
that modes of very different frequency rarely interact. The harmonic
frequency of the NO bond is almost three times that of the next highest
one (NC1). Hence, resonance coupling of these bonds should be poor.
In the anharmonic situation, however, the force ''constant' of a bond
varies throughout its vibration cycle and its frequency is a function of
its energy. These factors help couple oscillators which were relatively
independent in the harmonic force field.

Figure 7c strongly confirms the inapplicability of normal modes
or the SVA to highly energized anharmonic molecules. To that approxi-
mation,; the normal mode energies are constants of the motion. Accord-
ing to Figure Tc, these energies vary by as much as 80 times the total
energy of the molecule while it remains undissociated. The use of
results from harmonic theories in describing anharmonic dynamics is

clearly hazardous.



FIG. 1.
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Dynamics of anharmonic C1N018. Initial conditions VNO(O) =

VCIO(O) =12.86 kcal/mole, VNCI(O) = 20.37 kcal/mole.
a) Bond lengths: — NO; - - - - C10; — - —— NCI;
—— - - —— sum of the two shortest lengths used as a

check for linear configurations.

b) Bond energies: - - sum of bond energies.

c) Normal mode energies:

asymmetric stretch;

- - - - bend; - symmetric stretch.
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5.2. Vibration-Rotation Dynamics of Anharmonic Molecules

In Paper I it was discovered that any rotation of harmonic mol-
ecules enhanced the rate of intramolecular energy exchange, thereby
increasing the reaction rate. From Figure b, it is obvious that anhar-
monic molecules change their oscillator energies at every contraction
of the molecule. With no significant barrier to free flow of anharmonic
molecular energies to overcome, rotation is not expected to have as
marked an effect on anharmonic dynamics as it had on the harmonic one.
We tested this expectation by subjecting some of the vibrating M3 cases
mentioned in Section 5.1.2. to systematic increase in rotational energy
about the laboratory axes. In all these studies, the high sensitivity of
metastable lifetime to perturbations in the initial conditions was again
evident.

When M3 is given potential energy in compression such that
V4(0) =2.35, V5(0) = 160.72, and V4(0) = 107.49 keal/mole, the mole-
cule dissociates, expelling atom 2, with a metastable lifetime, 7 4> of
about 1.7 X 107*® seconds, as shown in Figure 8a. (This lifetime in
insensitive to changes in VZ(O) on the order of 8 kcal/mole. It lies in
the first zone of dynamic continuity found in Figure 6.) When the same
initial configuration is given less than 0.01 kcal/mole of rotational
energy, T.(0), about the axis normal to the molecular plane, the re-
action to give different products (atom 3 is released) occurs in 4.7 X
107" seconds as can be seen in Figure 8b. This rotational energy falls
between the first and second rotational levels of the symmetric top

molecule Ms. Thus, it is clear that there is no general continuity of
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(classical) molecular lifetimes even on the smallest scale of energy
differences allowed by quantum mechanics.

It is found that when Vl(O) and V3(0) have the constant values
used in Section 5.1.2., and the variable V2(O) is in the range 188.69 <
V2(O) < 188.84 kcal/mole, the transition between delayed and direct de-
composition takes place. Table IV gives the corresponding ranges found
for various vibrating-rotating anharmonic Mg molecules. For the
higher values of V2(0), it appears as if rotation about the Z axis (ini-
tially normal to the molecular plane) facilitates direct decomposition,
that is, the molecule decomposes directly at lower total energies if it
is rotating as well as vibrating. However, when the molecule has
barely enough vibration energy to dissociate (a mere 2.35 kcal/mole
excess), it requires an additional 119 kcal/mole of in-plane rotational
energy for direct decomposition, whereas 57 kcal/mole of extra vibra-
tional energy (in the absence of rotation) would make the molecule de-
compose directly. From this, it might be implied that rotational energy
is somehow less available for the breaking of bonds than is vibrational
energy. However, a change in the axis of rotation can reduce the rota-
tional energy required for direct decomposition to values below the ad-
dition vibrational energy necessary to accomplish the same end. Hence,
rotational energy cannot be dismissed as ineffective in the dissociation
process. This corroborates a similar conclusion reached in connection

with the harmonic molecules of Paper I.



Table IV. Minimum Direct Decomposition Energies‘r’l for M
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3

Vz(O)b Erot(o) Axis Total Energy
188.69 - 188.84 0 - 298.52 - 298.67
180.33° 0- 1.19 A 290.16 - 291.35
171.97° 0- 4.78 2 281.80 - 286.58
160.62° 13.14 - 14.33 7 283.59 - 284.78
131. 374 119.42 - 131.37 5 360.21 - 372.15

" 71.65 - 74.64 % 312.85 - 315.84

59.71 - 62.70 ¥ 300.91 - 303.90

" 35.83 - 41.80 R+ ¥ 277.03 - 283,00

" 38.81 - 40.31 &+§+2z  280.01 - 281.51

aRanges in energies imply that the trajectory with the high value de-

composed the molecule directly while its nearest neighbor, with the

low value, did not.

PV,(0) =2.35, V4(0) = 107.48. All energies in keal/mole.

€+ stable with respect to variation in VZ(O) near this value.

3
d ZVi(O) =2D, +2.35 kcal/mole (D, =119.42 kcal/mole).

i=1
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6. Summary

Classical-mechanical anharmonic trajectories differ from
harmonic ones in the expected ways. At energies above dissociation,
anharmonic bonds exchange vibrational energy at rates governed by the
frequency of bond compression. Modes of very different harmonic
frequency appear to exchange energy as rapidly as degenerate ones.
The usual definitions of normal modes lead to normal mode energies
which fluctuate widely as does their sum. As with the harmonic models
(6), rotational energies have a strong effect upon the detailed dynamics
of anharmonic molecules.

Metastable classical-mechanical lifetimes of anharmonic mole-~
cular models are not monotonic functions of vibrational-rotational
energies. The great sensitivity of lifetime to (0.01%) perturbations in
vibration-rotation energies renders calculation of 7(s), lifetime as a
function of initial (classical) energized state, impractical as a means
of obtaining unimolecular rate constants. The general instability of an-
harmonic classical dynamics suggests that there may be a serious di-
vergence between classical and quantum trajectories for the same
energized states. Confirmation of this suspicion awaits investigation
of the behavior of classical trajectory swarms (11) for these systems.
The averaging process inherent in such swarms may moderate the in-

stabilities observed in this paper.
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These lifetimes, 7, are not the T4 discussed in Section 4.3 .,
but rather the average of 74 and 7 o> the time to the last con-

traction of the last bond to break. Thus 7 < 74 but still a good

measure of the molecule’s stability.
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Part III. The H + DX Reactions
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THE H + DX REACTIONS

1. Introduction

Detailed information about the progress and outcome of elemen-
tary bimolecular chemical reactions is rapidly becoming available through
ab initio calculations. The solution of classical and quantum mechanical
equations of motion of various intra- and intermolecular models provide
predictions to be tested against the results of the new, sophisticated
experiments in beams, chemiluminescence, hot atom studies, and photo-
chémistry. The system of highest interest for the theoretician is the
ortho-para conversion of molecular hydrogen. Ab initio calculations of
the forces of the Hq intermediate (1) are possible due to the simplicity
of the system. For the same reason, the quantum dynamics of the re-
action may be attempted (2). At present, however, in systems with many
more than three electrons, ab initio potential surface calculations are
prohibitively expensive. They may yield total electronic energies correct
to within a per cent, but chemical energies are of the order of magnitude
of the errors. Thus, even these small errors in molecular potentials
render them untrustworthy for the very demanding chemical reaction
purposes. Furthermore, given the correct force fields, quantum mech-
anical solution of the many-body problem posed by chemical reactions is
a formidable task. Thus, to date, the majority of effort expended in the
study of the dynamics of reacting molecules has been in obtaining clas-
sical-mechanical solutions to reactions between atoms and molecules
taking place on ad hoc or semi-empirical potential surfaces.

The earliest such work was Hirschfelder's (3a) laborious hand
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calculation of part of the trajectory of a hydrogen atom incident upon a
hydrogen molecule. The co-linear collision took place on the London-
Eyring-Polanyi (LEP) potential surface (3b) for Hg. That pioneering
effort stood alone for 22 years before the availability of high speed elec-
tronic computers obviated the human labor of numerical integration.
Many of the recent bimolecular trajectory studies have been reviewed
by Bunker (4).

This paper includes some of the results of a trajectory study
of the abstraction and exchange reactions occuring when hydrogen atoms
strike deuterium bromide. The motivation for the study came from re-
cent photolysis experiments (5) involving monochromatic photo-dissocia-
tion of DX (X = Br or I). The resultant monoenergetic D atoms react
with hydrogen molecules releasing hydrogen atoms. The latter attack
undissociated DX and complicate the HD yield analysis with their sub-
sequent reactions. The experiments have shown that at room tempera-

ture, the reactions
k

H + DX —2» HD + X (1.-1)
and
ke
H+ XD — HX + D (1.-2)

have an abstraction fraction, k_/(k, + k o)» of 0.88 and 0.85 for X = Br
and I, respectively. Such quantities are used here to calibrate a semi-
empirical HDX potential surface for transition state and trajectory cal-
culations. The results of these calculations aid in understanding the
experiments in a kind of chemical bootstrap operation.

Phase space theory calculations have been carried out on these
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reactions (6). Comparison of the details of these calculations with the

trajectories provides further incentive for the present studies.
2. Methods

The classical equations of motion of the three-body system,
the Monte Carlo methods for the choice of initial trajectory parameters,
the calculation of final state properties, and reaction cross-sections are
all taken, with slight modifications, from Section II of the monumental
work of Karplus, Porter, and Sharma (7). Vibration-rotation constants
for DBr, given in Table I, were calculated from those for the hydrogen
isotope (8) through Dunham's formulae (9). The test for trajectory
termination outlined in Ref. 7 was modified to accomodate unequal atomic
masses, and a single precision (eight significant decimal digits) Adams-
Moulton 5th order Predictor/Correcter integration routine (10) was
employed to solve Hamilton's equations of motion. The potential function
used in this work was a modified London-Eyring-Polanyi-Sato (11,12)
(LEPS) one discussed in the next section.

With the chosen potential, it was found that H + DBr trajectories
could be followed for about 1.5 X 107*° seconds (molecule time) with an

integration step size of about 3 x 107*°

seconds. These figures pertain
to cellisions with relative energies of about 0.5 eV. Collisions at higher
energies required somewhat smaller step sizes to maintain the desired
accuracy (10) over the course of the encounter. Computer time was a
function of both step size and relative energy. For example, a batch of

200 trajectories of 0.25 eV collisions integrated with a step size At =

3.25 x 107"° seconds (molecule time) took about 13 minutes of IBM 7094
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Table I. Vibration-Rotation Constants for DBr2’P

G, = 0.23363 Gy = -2.837x 107 Gy = -1.3x107"
Fyq = 5.311x 107 Fo; = -1.5%x107 Fqy = 2% 107
Fio = -7.41x107° Fog = 9% 107" Fgg = -9x107°
Fiq = 1.4x 107 Foq = -4x 1077 Fgq = 0

4Durham isotope calculations (9) on the HBr data of Rank, Fink, and
Wiggins (8).

bAll values are in eV. See Eqn. 15 in Ref. 7 for the energy expression

involving these coefficients. Durham (9) uses W(v,J) = = Ymn(v +
m ,n#0

1

5™+ 33 + 1)", where Y, =G, and Yo g 5= Fy,
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time. Collision trajectories with relative energies near 1 eV had to be
integrated with step sizes of only 2.5 X 107'® seconds. Two hundred
such trajectories were generated by the computer in about 11 minutes.

The programs were written in FORTRAN IV.
3. Potential Surface for H + DX

Potential surfaces are defined only within the Born-Oppenheimer
approximation for separation of nuclear and electronic motions. If this
approximation fails, the potential is not a function of atomic co-ordinates
alone but becomes a function of momenta as well, destroying the conser-
vative system so far as the nuclei are concerned. But to the extent to
which the Born-Oppenheimer approximation is valid (relative energies
of chemical interest fall within this domain), potential energies are in-
dependent of isotopic substitution. Thus, a potential surface valid for

H + DBr 'Y 81

will be satisfactory for T + HBr = and so on. The generic
name to be applied in this paper to all reactions involving one halogen
isotope and two hydrogen isotopes will be H2X. The H2X potential sur-

faces should vary only with X.
3.1 Previous HZX Potential Surfaces

To date, all H‘ZX potentials have been obtained from approxi-
mate three-electron valenée bond methods. Glasstone, Laidler, and
Eyring (GLE) (13) describe LEP surfaces for HoX (X = Cl, Br, I).
These are obtained, in part, from the London equation specialized to
three s electrons. This expression is derived from the valence bond

method when triple exchange integrals and overlap of atomic orbitals
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are ignored. It has been argued (14) that the terms, which have been
dropped, give rise to energies larger than some of the unique features
in the LEP surfaces. These potentials characteristically show deep
minima corresponding to stable or metastable HFZX complexes. For
example, HCIH is found to be stable with respect to Cl + H, by 0.75 eV.
As no such molecule as HCIH has been found spectroscopically, it must
be concluded that these minima are at best analomously deep and, at
worst, artifacts of the LEP approximations.

GLE (13) claimed that support for these minima arose from
the calculations of Magee (15). He applied the valence bond method to
one p and two s electrons hoping to obtain a better three-electron model
for H2X. Magee's calculation also ignored triple exchange and approxi-
mated three-center integrals. With an invariant orbital exponent of 2
for the p electron (a propos fluorine), he obtained a potential surface for
H,Cl1, which rendered one isoceles symmetric configuration of the com-
plex over 1 eV stable with respect to Cl + H2.

In an effort to eliminate the rather modest 1.5 kcal/mole mini-
mum, comprising "Lake Eyring,' in the LEP surface (3b) for Hg, Sato
(11,16) postulated an "anti-Morse' function for any diatom's lowest re-
pulsive electronic state. When this function was coupled with the standard
Morse function for the ground electronic state of the diatom, Sato obtaine
the valence bond coulomb and exchange energies directly, without the LEP
assumption of a constant ratio between them. This ratio had been LEP's
empirical parameter, which allowed for fitting of the potential surface to
some experimental datum, such as "activation energy.' Sato introduced

such a parameter, which he associated (16) with the square of a single
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constant overlap integral.

It has long been supposed (17) that Sato's method and modifica-
tions (12) thereof yield potential surfaces which are free of the spurious
wells mentioned above. Persky and Klein (18), Timmons and Weston (19),
and Sullivan (20) have all used Sato surfaces to correlate isotope effects
in the reactions of X + HiH'j (i,j =1,2, and sometimes 3 and X = Cl, Br,
I, respectively, in these three papers). Timmons et al. and Sullivan ob-
tained rather poor fits to their experimental data of activated complex
theory (ACT) isotope effects using a Sato surface with a single adjustable
parameter. Persky and Klein, however, using the multi-parameter mod-
ification suggested by Polanyi (12) were able to reproduce the effects of
five of the isotopic combinations in Cl + HiHj very well. Their calcula-
tions, as well as those of Sullivan and Timmons et al., dealt only with the
linear XHH complexes. The present work required the potential surface
for these three atoms for all possible geometric configurations, including,

for example, linear HXH.
3.2. Present Sato Surface for H2X

It was found that the Sato parameters a propos Cl + Hy used
by Persky and Klein (18) (their Sato IT) gave a potential well for HCIH
over 6 kcal/mole deep with respect to the most stable products, CI + Hz.
This ""Lake Sato' was over 9 kcal/mole stable with respect to the linear
dissociation giving HC1 + H. The Sato surfaces for HBrH (19) and HIH (20) with
the single parameter set to 0.2 were also found to harbor basins of

over 5 and 4 kcal/mole depth with respect to HBr + H and HI + H, respec-
tively.
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Some of the three-dimensional trajectories, which we had
planned to investigate, would have probed these basins. In the absence
of a fourth body to carry away energy, our computer simulated collisions
would never have produced stable HXH molecules, but the existence of
wells in the potential surface would have led to metastable, long-lived
HXH complexes. It has been suggested (21) that such metastable classical
mechanical trajectories are less likely to follow the results of an accurate
quantum mechanical scattering treatment than would the classical tra-
jectories of direct collisions. With this (and the hope that such basins
were indeed spurious) in mind, we varied the Sato parameters kH and

2
kHX independently to remove the wells and retain agreement with experi-

ment.

The modified (12) Sato potential for A + BC is

2
V. = V, + Qg * Qe + Qca - [loyg-age) +

1

+ (aBC - O‘CA)Z + (aCA - OéAB)z] 2/N2 (3.2.-1)
where

o - DXy [y + 3)Xy; - 23Ky + 1)
ij 4(k.. + 1)
ij
Di' Xi'
M7 4.+ 1) LBk + DXy - 2005 + 3)] (3.2.-2)
i)

and

- - - . 5%
Xij = exp [ 51] (rij rij )]

The kij in the above equations are the Sato parameters for the diatoms ij.
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The Dij’ rijeq, and Bij are the ijth diatom's potential energy of dissocia-
tion equilibrium internuclear distance, and Morse parameter, respective-

ly. If we set V0 equal to the largest D,., the zero of energy lies at the

j b
bottom of the channel with the most stable diatom. The diatom constants

(and final Sato parameter choices) are given in Table II.

3.2.1. Stable and Unstable HXH

Since the potential surface for linear HXH is symmetric about
the line r(HX) = r(XH), we need only find the minimum value of the po-
tential along that line and we have located an extremum. If a normal
mode analysis of this extremum gives characteristic frequencies which
are all real, the extremum is a basin. If one of the frequencies is ima-
ginary, the extremum is a symmetric col or saddlepoint. We used
Newton's Method of Slopes (22) to search out these symmetric extrema on
Sato surfaces defined by points in a two-dimensional grid of Sato para-
meters for H2 and HX. The parameters were varied independently from
0 to 1, and the nature of the symmetric extrema for HXH (X = Cl, Br, I)
was determined as a function of grid location. The results of this investi-
gation are shown in Figure 1. Any k(HX) > 0.08 gives rise to a Sato
surface with a stable or metastable HXH complex. The larger the value
of k(HX), for a given k(Hz), the deeper is the resulting basin. For
k(HX) ~ 0.2, the bottom of the basin is at a lower potential than HX + H,
and for X = C1 the well is even deeper than the Cl + H, channel! Clearly,
only small k(HX) parameters give chemically sensible potential surfaces
if we hold that the Sato parameters are not functions of the geometry of

HoX.
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Table II. Sato Potential Parameters®
Diatom ij H,, HBr HI
D;; (kcal/mole) 109.43 90.33 73.178
rijeq (A) 0.7417 1.4138 1.604
Bij (A7 1.942 1.8109 1.750
ky; 0.225 0.076 0.0915

A5ee text for definitions.
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FIG. 1. Sato Parameters which give Rise to Basins in the Potential
Surface for Linear HXH. Vertical hatching, X = Cl. Horizon-
tal hatching, X = Br. Dots, X =1. Basins become deeper as

the HX Sato parameter increases.
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3.2.2. Activation Energies Calibration

Little is known about the activation energy for H attack on the
halogen end of hydrogen halides. It is assumed that these energies are
small, probably no greater than the 5 kcal/mole value found by Steiner
and Rideal (23) using the LEP technique. However, the activation energies
of X + Hy reactions are better documented (24).

It is not clear what aspects of the chosen potential surface per
se should be considered in comparison with experimental Arrhenius
activation energies. Ideally, one calculates the rate constant as a func-
tion of temperature from reaction cross-sections obtained by accurate
solution of the collision dynamics on the given surface. This rate con-
stant data is fit to an Arrhenius form as is the experimental data. Thus
the dynamics are central to activation energy calculation. Such a method
would prove tedious if used to calibrate the surface by matching the ex-
perimental and calculated Arrhenius activation energies.

A more common (13,25) calibration procedure is comparison

of a calculated "'activation energy at absolute zero,”" E_, with the experi-

0}

mental Arrhenius activation energy, E,.

The quantity E0 has no dynamic
dependence and represents the classical potential energy barrier height,
Vi , corrected for zero point energies of the reactants and complex. A
potential surface, so calibrated, is usually used in a transition state cal-
culation to derive reaction rates or isotope effects. However, transition
state theory (or ACT) yields rate constants with temperature-dependent

pre-exponential factors, that is, non-Arrhenius forms. If the potential

surface is to be calibrated to a level of approximation consistent with its
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subsequent use, Ea should be compared with an activation energy (26)
derived from the ACT rate expression, an energy which we shall call
Ea'(T). Table III shows that E o» Which is equal to E o (0°K), can differ
significantly from EO'(T) when T lies in the range of interest for chemi-
cal reactions.

Since trajectory calculations on simple potential surfaces
(without basins) have shown molecular collisions to be impulsive rather
than "sticky,' the activation energy calculated rigorously from the dy-
namics may be very different (27) from either E or E/ (T). However,
we calibrated (see Appendix 1) our HoX surfaces, in part, by matching
the calculated Ea’(lOOOOK) to the experimental E, for Br + H, and Br +
D2 to within their experimental errors. The loci of points of constant
E(1000°K) are essentially straight lines in the regions of interest in the
Sato parameter plane. In other words, when the Sato parameters, k(Hz)
and k(HBr), are varied in such a way that the resulting Sato surfaces yield
constant ACT activation energies (26), evaluated at 1000°K, it turns out
that the variation relates the parameters to one another almost linearly.
The lines corresponding to the experimental activation energies (Table
III) for Br + H2 and Br + D2 cross in the Sato parameter plane near the
point k(Hz) = 0.245, k(HBr) = 0.058. The Sato surface determined by
these parameters yields E / (1000°K) which satisfy both experimental

values simultaneously.
3.2.3. Abstraction Fraction Calibrations

Unfortunately, no reasonable variation of the Sato parameters

gives E /(1000°K) in agreement with the experimental Arrhenius activa-
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Table III. Activation Energies for X + Hza

. Experimqnt%l i Sato® _
Reaction Arrhenius A4 E o Ez’l(IOOO K)
Br + H, 19.7 £ 0.4 20.85 18.28 20.02 d
Br + D, 91.4 + 0.4 20.85 19.04 21.54 d
I+ Hy' 32.80+ 0.25 | 35.71 33.04 35.88 d
Cl+H, 5.48 + 0.14 7.16 5.50 6.48 e

2All values in kcal/mole.

Ppet. 24.

CSee text for definitions of Vi , E_, and Eé .

07

drhis paper's Sato surface (see Table II).

eSingle parameter Sato surface (k = 0.177) from Ref. 25.

fEa, experimental Arrhenius activation energy taken from J. H. Sullivan,

J. Chem. Phys. 36, 1925 (1962).
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tion energy for I + HZ' However, experimental values of rate ratios for
reactions (1.-1,2) are available (5) from photochemistry experiments.
ACT rate ratios may be fit to these values to calibrate the surfaces. If

we let the ACT rate for a reaction, r, be given by

k(T) = B(T)exp(-VL/RT) . (3.2.3.-1)
Then the abstraction fraction (AF) from ACT becomes

i k)
-V e/ RT —Va/ RT

AF = 1/(1+Bee /B, e ). (3.2.3.-2)

In this expression, V'Jé is the potential barrier to the exchange reaction
(1.-2) and Vi the barrier to abstraction (1.-1). Equation (3.2.3.-2)

may be inverted to give

Vi—Vi - RT In gi [KIT - 1] (3.2.3.-3)
enabling one to calculate the difference in potential barrier heights given
the ACT pre-exponential factors and the abstraction fraction (see Section
1) at some temperature. In general, this potential difference will not
agree with that taken from the surface whose saddlepoint I gave rise to
the ACT B's. The Sato parameters are varied until this discrepancy
vanishes, whereupon the potential surfaces consistent with a given AF to
the ACT approximation have been found.

The loci of points in the Sato parameter plane which satisfy the
above condition for X = Br is a curve which crosses the lines of experi-

mental Ea at almost right angles. Thus there is only a small area in the



~228-

parameter plane which gives rise to Sato surfaces which simultaneously
satisfy the experimental AF and activation energies to within their uncer-
tainties. The Sato surface with k(HZ) = 0.225 and k(HBr) = 0.076 is such
a one and will be taken as the potential surface for HyBr throughout this
paper.

If we insist that the Sato parameters for both HX diatoms in
an arbitrary configuration of H2X are the same constant, we may trans-
fer the Sato parameter for H, from the HoBr surface to the Hol surface
with the same degree of approximation. Thus, the experimental AF for
X =1 serves to calibrate the Sato Hzl potential surface. The resultant
best fit parameters appear in Table II. The characteristics of both sur-
faces are given in Table IV.

The chosen potential surfaces were used to determine the tem-
perature dependence of the abstraction fractions for both halides, X = Br
and I, with some of the possible hydrogen isotopic combinations. ACT
calculations (see Appendix 2) gave the results shown in Figures 2 and 3.
Although ACT provides better predictions for rate ratios than for the
rates themselves (through some cancellation of errors), these AF's
should be regarded as more indicative of general trends than as reliable
absolute values. Caution should be exercised in interpreting the AF at
the extreme temperatures in the range shown, because for low tempera-
tures (less than 300°K for Br or 200°K for I) the parabolic tunneling ap-
proximation breaks down, while for high temperatures (above 800°K for
Br or 300°K for I) the classical bending vibration amplitude (28) of the
linear HXH complex sweeps out over 7 radius, a physical impossibility.

Nevertheless, it is clear from the figures that there is a marked tempera-



-229-

"V GL'T = (HI)M = (IH)1 1%

pPajemIs (JYSTaY JIo1adeq 9y} 03 108dsal Ym STOW /TBIY G /T >) UISB( OTIJoWWAS MO[[RYS AIaA © ST 1YL,

‘O—g + ‘sjueioral pue ‘H—g-— ‘x91dwoo ay) usamiaq douaaajyIp A8asua 1eQ3Us)Od [BOTSS®BIO 2Y) ST A
A4 A4 A

L1°2 62¢¢°0 Ger'0 (474 4 9¢0°0 ¢S9°1 8¢0°¢ leHlm
90°0 10L°0 1¥0°0 L90°¢ 700 '0- 809°1 786°T I—=H—H
g6°¢ 889°0 G86°0 ¥86°0 78670 LLSTT LLGTT H—ad—H
GL'T 00G6°9 86670 LLg 2 $90°0 06%°1 8vI'1 1d—H—H
arow /1e0y et /s8aa__ 01 Y /ubpu @ xo1dwo)
e .> Avr-H €T NHr_H NN...H .—..Hrm” NMH .—...m .H\Nmﬁ:.‘w.H

i So1STI0OBIRYY Jurodaippes XCH AT o1qel,



-230-

FIG. 2. Abstraction Fraction for H' + H'Br vs Temperature. Upper
curve, i =1andj=1,2,3; lower curve, i =2 andj =1,2,3.
Dashed line indicates failure of parabolic tunneling. ACT treat-

ment of bending vibrations in HBrH breaks down above T =

785°K.
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FIG. 3. Abstraction Fraction for H' + H'I vs Temperature. Upper

curve, i =1,2,3 and j = 2; lower curve, i =1,2,3 and j = 1.



//

-235-

| | _ _ l |

100 300 500 700 900

©c o ® ~ 9 u
- o o o o o

NOILOVHd NOILOVYLSEY

04

TEMPERATURE (°K)



~-234-

ture dependence in both abstraction fractions, indicating very different
energetics for the two reactions (1.-1 and 2). The difference in poten-

tial energies of activation (Table IV) insures the dominance of abstrac-

tion at low energies, while the very low bending force constant of HXH
enhances exchange at the higher ones. The latter effect follows from the

fact that partition functions for low frequency vibrations are larger than

those for high ones at the same temperature. Since the bending vibrations in a
linear complex are doubly degenerate, the exchange rate enhancement

goes as the square of the larger partition function.
3.2.4. Properties of the Potential

The contour diagram (29) of the potential surface of linear
H—H-—Br is shown in Figure 4. This surface is quite repulsive in
Polanyi’'s terminology (12,30). Since the majority of the potential drop
occurs after the "'reaction path' (31) has "turned the corner,' one expects
little product excitation in abstraction. The same situation prevails on
the H—H—I potential energy surface, which has the same general shape
as Sullivan's (20). On our HHI surface, the energy release is only 9%
attractive (32) and 91% repulsive, leading again to the expectation of
vibrationally cold Hz product. Of course, for the thermoneutral exchange
reactions, there is no energy release. One anticipates cold products
from these reactions due to their thermoneutrality.

In the preceding section, the dominance of exchange at high
temperatures was related to the difference in bending frequencies between
the linear HHX and HXH complexes. A more physical explanation is

available from the potential surfaces themselves. If we hold the target
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Potential Energy Surface for Linear H—H—Br. Sato parameters
given in Table II. Contour values from 5.5 to 30.0 kcal/mole

in steps of 0.5 kcal/mole. Product channel, lower right, drops
to 0 kcal/mole as x — «. Reactant channel, top left, drops to
19.1 keal/mole as y — . Saddlepoint potential V* = 20.85

kcal/mole with respect to product, Hy + Br.
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HBr diatom at a constant bond length of 1.58 A (the value it has at the
symmetric HBrH complex) and determine the potential energy as a func-
tion of the distance between the Br and incident H atoms and the H—Br—H
external angle, we obtain the diagram in Figure 5. A strong orientation
force is evident. There is a potential ridge lying along 6 = 146" which
divides the abstraction domain from the exchange. The ridge becomes
more evident when one views the surface in 3-D perspective (33), as in
Figure 6.

In a simple-minded view of the dynamics, one suspects that
hot hydrogen atoms incident upon DBr within a solid angle of 146° half-
width about the Br are deflected to collide with that end of the molecule.
Incident H atoms falling within a solid angle of only 34° half width about
the D atom will be directed to that end of the molecule. (Clearly the more
energetic hydrogen atoms will experience less deflection for a given force.
The assumption that any deflection suffices to direct the incoming atom
to one end of the DBr or the other breaks down at high energies.) If we
make the further assumption that once a hot hydrogen atom (with trans-
lational energy significantly above either potential barrier) "strikes'
either end of the DBr molecule, the probability of reaction is the same,
then abstraction fraction is simply the ratio of the area associated with
the 34° solid angle to that of the unit sphere. With this naive picture,

the high energy abstraction fraction should be

1 - cos (7 - Qr)

2

(3.2.4,-1)

AF

where Hr is the angle associated with the spine of the ridge in figures
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like 5 and 6. Thus AF(X = Br) — 0.08 when the collision energy ex-
ceeds both barrier heights.

The fixed 1.58 A target HBr bond distance corresponds to a
diatomic potential energy of about 6.3 kcal/mole, that is, 2.5, 3.6, and
4.1 keal/mole in excess of the zero point energies of HBr, DBr, and
TBr. Thermal hydrogen halide target molecules should be in their
ground vibrational state. (This was assumed for the trajectories of
Section 4.2.) The fixed bond length for the target HBr was thus too
large. The distance was reduced to 1.49 A (H—Br distance in the linear
HHBr complex), corresponding to a diatomic potential of only 1.4 kcal/
mole. With this bond distance held fixed 9r became 150°, changing
AF (X =Br) — 0.07 for high energy collisions.

During the course of a collision, the target diatom would not
be frozen at some stretched or compressed configuration as is assumed
for Figures 5 and 6. The way in which the target diatom bond length
would change would surely depend on the initial conditions and subsequent
dynamics of each collision. In order for the target diatom to appear
stationary, the incident H atom would have to have a flyby time at least
an order of magnitude shorter than the diatom vibration period. If we
use the HBr vibration period and its equilibrium bond length to deter-
mine this minimum velocity (vH =10 rqur VHBr)’ the H atom must have
over 65 eV translational energy! This is high indeed; in fact, it is un-
attainable in the monochromatic photochemical studies (5) mentioned in
the introduction. If, instead, we assume that the target diatom is always
relaxed, that is, for every position of the approaching H atom, the

target HBr bond length (but not orientation angle) adjusts to the value
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which minimizes the total potential energy, we obtain the potential sur-
face (see Appendix 3) shown in Figure 7. From this diagram, 0, = 155°.
Thus, for case of the perpetually relaxed target, AF (X = Br) — 0.05 at
relative energies high with respect to the potential barriers, yet low
enough to allow the target to equilibrate to each position of the advancing
H atom. These last are mutually exclusive criteria, no doubt.

The fixed and relaxed target angular potentials for X =1 are
shown in Figures 8 and 9. These diagrams give 8 as 146° and 148°,
respectively. The corresponding high energy abstraction fractions are

AF (X =1I) — 0.08 and 0.075.
3.2.5. Disadvantages

The disadvantage to any potential energy surface used in a
classical trajectory calculation is that only one such surface may be used.
All classical trajectories are adiabatic; they cannot cross over to surfaces
leading to electronically excited products. When the excited state sur-
faces are well separated from the ground state, or when the reactions
producing electronically excited products are highly endothermic, we
may be justified in ignoring their contribution to the dynamics. Unfor-
tunately, the assumption of electronic adiabaticity is a poor one for the
reactions at hand. Free ground state halogen atoms are 2P3/2. The
lowest excited state for halogens is the 2P1 /2 state at an energy (6) of
0.11, 0.46, and 0.94 eV above the ground state for X = Cl, Br, and I,

respectively. These values render the heats of reaction to produce X*

(2P1/2) as +1.5, -6.0, and -11.0 kcal/mole for X = Cl, Br, and I, re-

spectively (34). Thus X* should be important even in thermal reactions.
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Potential Energy Surface for Bent H—Br—H. Sato parameters
given in Table II. x and @ have the same meaning as in Figures
5 and 6, but the target diatom bond distance varies to minimize
total potential energy at every point. Contour values from 19.5
to 24.0 in 0.5 kcal/mole steps. Highest contour is left most.

All potential energies relative to zero at Br + Hoy.
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FIG. 9.
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Potential Energy Surface for Bent H—I—H. Sato parameters
given in Table II. x and 6 have the same meaning as in Figure
8, but the target diatom bond distance varies to minimize total
potential energy at every point. Contour values from 35.5 to
40.0 in steps of 0.5 kcal/mole. Highest contour is left most.

All potentials are relative to zero for I + H2'
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Indeed, Cadman and Polanyi (35) have found Br* as a product in these re-
actions, but it constitutes less than 2% of the total Br product. While
this may appear negligible at low relative energies, there are phase space
calculations (36) indicating the percentage of product excitation may rise
above 20% at relative energies of 1 eV and more. Clearly the inability
to predict any such excitation in a classical trajectory calculation is a
serious disadvantage, not only because of the inherent interest in such
results but also because transitions between surfaces of different electronic
energies during the course of a trajectory could have serious effects on
its dynamics.

Even for the ground state surface, the Sato method itself has
the disadvantage that it is neither a straightforward approximation to nor
a truncation of any rigorous quantum mechanical calculation. The inclu-

sion of the semi-empirical parameters, k.., in equations (3.2.-1 and 2)

ij?
does not result from any improvement in tl]1e approximations used in the
derivation of valence bond potentials like the LEP. The success or
failure of Sato surfaces cannot be used to comment on the ignorability or
importance of "higher order'" terms included in a more complete deriva-
tion. The utility of the Sato surface lies only in the hope that its general
topology can be adjusted to match that of the true surface well enough to
allow trajectory calculations to reproduce the basic features of reaction
dynamics.

A third disadvantage inherent in this work is the lack of a long
range attractive potential due to dispersion forces. Such forces would

lead to larger reaction cross sections than those found for our Sato sur-

face and would also yield more impulsive collisions and a closer approach
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to the behavior of the statistical models.
4. Dynamics of H + DBr Reactions

All of the trajectories to be discussed in this paper were ini-
tiated with DBr in its zero-point vibrational state, i.e., with 2.7 kcal/
mole of vibration energy in the target molecule. While this energy is
more than 1.2 kcal/mole below the potential barrier to exchange, it is
almost 1 kcal/mole above the potential barrier to abstraction. This means
that, in principle, the abstraction threshold energy is zero. This point
will be discussed further in Section 4.2. Initiation from the vibration-
rotation quantum states rather than the classical distribution of internal
energies in the DBr target facilitates comparison with forthcoming phase
space theory results (36), and, as pointed out by Karplus, Porter, and
Sharma (7), this ""quasi-classical” initiation simplifies establishment

of the thermal distribution of DBr internal energies.
4.1. Reaction Probability vs Impact Parameter

Trajectory calculations are costly. Large numbers of trajec-
tories are necessary to average over target orientation, vibration phase,
and impact parameter in order to obtain cross sections for various events
at a single relative energy and initial energy state of the target. If re-
action cross sections are to be measured, maximum impact parameters,

b must be chosen such that reaction probabilities for collisions with

max’
larger impact parameters are negligible. What is really desired is the

least upper bound on b since we wish to minimize fruitless collisions

max’
without missing any potential reactive events. The optimal bmax for
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H + DBr was found as follows. Energetic H atoms were shot at normal
incidence to the bond direction in zero-point-vibrating, non-rotating DBr
molecules as in the diagram in Figure 10. The impact parameter was
increased systematically until no reactions occurred. In this way, bmax
(er el = 1 eV), the maximum impact parameter for 1 eV barycentric energy
collisions, was found (37) to be about 4.6 a,. This is a fairly high value,
considering that the Sato surface has no long-range attractive forces.

At similar barycentric energies (1.3 eV), Karplus, Porter, and Sharma
(7) found that H atoms ceased to react with hydrogen molecules at impact
parameters larger than 2.5 a o The difference between these two b ax
lies not in any fundamental differences in the surfaces involved but rather
with the location of the centers of mass and force. In the symmetric H2
molecule, the center of mass lies midway between the centers of force at
a distance of 0.7 a, from either nucleus. Thus a bmax of 2.5 a, (mea-
sured from the center of mass) implies a maximum distance for reaction
of 1.8 a, from a center of force, i.e., one of the hydrogen nuclei. In
DBr, however, the center of mass is essentially buried in the Br atom.
When undergoing zero-point vibration, the D atom is 2.7 + 0.2 a, from
both the Br atom and the center of mass. Thus, for this system, a bmax
of 4.6 a o implies a maximum separation of 1.9 a, between the incident H
and target D atoms in order for abstraction to take place at 1 eV relative
energy. The agreement between these values in the two different chemi-
cal systems may be significant, implying some dynamic justification for
transferable hard sphere radii.

The normal incidence collisions themselves merit some atten-

tion. It may be seen from Figure 10 that high impact parameter collisions
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Product Diatom Internal Energy vs Impact Parameter in 1 eV
Normal Incident Collisions of H Atoms with DBr (v =0, J = 0)
Molecules. Circles, DBr product; triangles, HD product; open
symbols, reactant DBr extended at instant of collision; filled
symbols, reactant DBr compressed at collision instant. Ar
indicates the bond vibration amplitude. Maximum energies
available: DBr, 1.116 eV; HD, 1.944 eV. The curves are

merely smooth fits through the data points.
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(b=6a 0) hardly perturb the DBr molecule. It is left with almost the
same internal energy as it had initially, viz, 0.116 eV, zero point energy,
regardless of the vibration phase at the instant of collision (point of
closest approach). However, as the impact parameter drops to 5 255 the
dynamics of the collision become more sensitive to the DBr vibration
phase. If the DBr bond is near its compression turning point (solid circles
in Figure 10) at the instant of impact, it loses energy to the passing H
atoms. The molecule apparently expends some of its energy by pushing
the atom away during its expansion cycle. On the other hand, if, at the
time of impact, the DBr bond is near its expansion turning point (open
circles), it gains energy from the incident H atom. The mechanism for
this exchange is no doubt a weakening of the DBr bond restoring forces
preparative to an abstraction which never takes place because of the rapid
transit of the atom. In its weakened condition, the DBr bond stretches
beyond its zero-point vibration turning point. Hence, upon departure of
the H atom, the DBr bond snaps closed with more than its original energy.
If this reasoning is valid, one would expect the right hand branch of the
dashed curve to rise smoothly to 1.116 eV (the maximum energy available
to a DBr molecule at this relative energy) near b = 4.6 a,.

At slightly smaller impact parameters, the DBr bond is so
weakened that D is just able to break away, forming excited HD {open
triangles). As the impact parameter, b, falls to about 3.8 a, the re-
action becomes more direct but product HD excitation energy never drops
below 0.68 eV = 35% of the available energy. This is not what is expected
of our ""repulsive' surface, and the discrepancy between expectations and

performance is due to our reliance on the linear complex map (Figure 4)
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to predict the outcome of 3-D collisions.
HD product excitation appears to be maximized at both ends of

the range in b which leads to abstraction, viz., 3.2 b < 4.6 a for

abs
normal incidence 1 eV collisions of H upon stretched DBr. One assumes
that at high b, in this range, the H atom flys by, dragging the D in its
wake, whereas the low b collisions involve significant rebound of the H
atom before the heavier D can break away from Br and follow. In either
mechanism, highly excited HD molecules are produced. In the range

1.8 s b <3.2a, the collisions leave excited DBr regardless of the vibra-
tion phase of that molecule. The exchange reaction appears to take over
atb 1.8 ag, again independent of the DBr phase. If we accept this last
figure as the radius of a disk within which exchange is 100% guaranteed,
the cross-section for exchange at this relative energy is approximately
10.2 a02 . The cross section for abstraction is not as straightforward.

Since 3.2 < b < 4.6 a,, let us assume that abstraction may not take

abs ~
place within 3.2 a, of Br and is possible only within a disk of radius

4.6 - (rglg}; =2.9)=1.17 a, about the D atom. The area of the half moon

defined by these overlapping disks is 3. 64 ao"‘, but abstraction only occurs
when DBr is stretched. Thus, the cross section for abstraction at 1 eV

2

o The abstraction fraction at

relative energies should be around 1.8 a
this energy (no temperature average) should be about 0.15, close to the
solid angle minimum of 0.08 found in the last section.

Clearly, these cross sections should be taken with a grain of
salt. They are not the proper average over all orientation angles and

vibration phases. Indeed, when the relative energy of normal incidence

collisions was dropped to 0.57 eV, no reactions took place at any b =
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1.34 a, (the lowest impact parameter used). The low reaction barriers
would lead one to expect some reaction at this high a~ energy. When the
proper averages are taken at this relative energy, the exchange proba-
bility is almost 0.6 at b = 0 and drops to ~0.3 at b =2.0 a, and to zero
between 2 and 3 . Abstraction probability stays ~ 0.06 for the range
0<b<3 a, and drops to ~ 0.01 between 3 and 4 a,-

Because of the small number of trajectories studied, the statis-
tical fluctuations in the impact parameter studies were too large to make
meaningful fits to simple functions. The reaction possibilities were mono-

tone decreasing functions of impact parameter within their (2/3 confidence)

error bars even though the average values of the abstraction probabilities
appeared to peak off zero impact parameter. At least four times the num-
ber of trajectories used at each impact parameter (~ 150) would have been
required to document or destroy this analomous behavior, but we felt the
effort was best made elsewhere, as in the reaction cross-section studies

to follow.
4.2. Reaction Cross Sections and Product Energy Distributions

Reaction cross sections were obtained as per the methods of

Section I1d of Ref. 7. First, the probability of reaction, Prxn(erel,v,J),
at constant values of relative energy, €,.e1» and DBr initial quantum state,

v, J, was determined by randomizing DBr orientation, vibration phase,
and b® over many (N = 200 to 250) trajectories. The reaction cross sec-

tion, S ,V,J) was approximately

rxn(€re1

2

v,J) =~ ”bmax Prxn (erel,v,J) .

S xn (erel’ (4.2.-1)
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The standard (2/3 confidence) error was taken as

1
o - (1/N2_ )8
- rXn’ “rxn
lim Nr < N

(4.2.-2)

for a given set of trajectories. The same € v, and J were then used

rel’
in another set of trajectories (N =200 to 250) and the average of the two

values for Sr*(n was used in the figures of Sections 4.2.1. and 4.2.2.

The halfwidth of the error bars in these figures is the larger of the fol-

lowing numbers: |S_ - (S_. )|, the deviation of each S rxp from their

average, or o(2N) 7 N <N (ern>/err21; thus these errors bars

are fairly pessimistic, being = 84% confidence limits.
4.2.1, DBr(v=0,J=0)

The circles in Figure 11 represent abstraction cross sections
derived from at least 400 trajectories at each relative energy. The re-
action threshold appears to be very close to zero relative energy. The
lowest value shown is for €, ; = 0.063 eV ~1.45 kcal/mole. (Collisions
with smaller relative energies are rarely reactive and thus require larger
numbers of trajectories for accuracy in the dynamics and statistical sig-
nificance in the cross sections.) Within 1 eV of the threshold energy, the
abstraction cross section has peaked and begun to fall off. In the range
0 < €,.5 S1eV, the abstraction cross section, Sabs(erel,0,0), is a simple
function of €, with a single maximum of ~2.3 a* around €.o1 = 0.6 eV.

The cross section value of 1.6 302 for €., =1.0 eV compares well with

e
the 1.8 ao2 value calculated by the normal incident collisions. The agree-

ment is probably fortuitous. Sabs(erel > 1.14 eV,0,0) is also a simple
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function, monotone decreasing with € rel’ However, there appears to be

a discontinuity in Sabs between €rel = 1.0and 1.14 eV. The cross sec-
tion for the latter relative energy was re-determined, using a total of

800 trajectories. The Sy, (1.14,0,0) value of 2.46 a_ shown in Figure
11 is the result of this double sized sample. No function with a single
maximum can be made to fit the data to within the error bars. Therefore,
Sabs(ér el,O,O) appears to have something more than trivial structure.

The cross section for exchange (Figure 12) suffers the same
discontinuity at the same values of € el Rising from a ~ 0.15 eV thres-
hold, the exchange cross section appears to peak at ~12 a02 near € ., =
0.9 eV. There follows a statistically significant falloff to ~9.2 aoz at
€. =1€V(38), arisetoll.62a at e, =1.14 eV, and monotone de-
creasing behavior thereafter. It is not clear to what dynamic effects we
owe this structure. The only discontinuity observed in other reaction
parameters is that the average reactive collision time (39) in the 1.142 eV
collisions (2.38 x 107** seconds) was about 7/10 of a DBr vibration period
longer than average reactive collision times for 0.81, 0.90, and 1.0 eV
collisions. In the absence of an exhaustive study of the detail of the re-
active trajectories, this fact does not do much to illuminate the cause of
the structure in cross section curve.

We may calculate abstraction fraction as a function of energy
from these cross sections, if we're willing to assume relatively small
dependence of ern ond. The AF falls from 0.54 + 0.07 at €rel = 0.20 eV
to 0.09 + 0.03 (2/3 confidence) at the highest relative energy used, €rel

=4 eV. This high energy value agrees very well with the solid angle

calculations of AT in Section 3.2.4.
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The average internal (vibration + rotatipn) energies of both
product diatoms (HD and HBr) increase with relative energy in such a
way as to leave an almost constant fraction of the total available (40)
energy in the diatom. This fraction is about 0.3 for HD and about 0.5 for
HBr. Over 25% of the abstraction events give HD excited with 40-60%
the available energy. This seems analamously high for our "repulsive'"
(in the Polanyi (30) sense) surface. The spread in internal energies is
rather broad and fairly symmetric about the average as seen in Figure
13a. This results in a broad range of product kinetic energies, 40-80%
of the available energy for HD + Br and 7-85% of that for HBr + D.

At relative energies in excess of about 3.8 eV, it is energetically
possible for the HDBr collision complex to break up into three atoms, that
'is, possible for H atoms to collisionally dissociate DBr. None of the 400

trajectories integrated at 4 eV relative energy gave rise to atomization.
4.2.2. DBr(v=0,J =6)

The population of the rotation states of DBr peaks at J =4 for a
temperature of 300°K. This state is almost six times as probable as J =1
or 12, for example. However, in view of the slow falloff of population
number with J value, it was concluded that J = 6 (92% as probable as J = 4)
would be a better representative of room temperature rotation effects.
Moreover, the J = 6 state was one of six J states chosen for a recent phase
space theory calculation (6) on this system, and the overall results for
J =6 was found to agree with the results obtained by averaging over a
room temperature distribution of rotational levels.

The cross section for abstraction of D from DBr (v = 0, J = 6)
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FIG. 13. Differential Cross Section for Product Excitation.
a) €.0] = 1.142 eV. Initial DBr state v =0, J =0. Number

of reactions involved: 34 abstractions, 155 exchanges.

b) €, =0.57 eV. Initial DBr state v =0, J = 6. Number of

rel
reactions involved 35 abstractions, 117 exchanges.
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is given as a function of relative energy, € in Figure 14. The sub-

rel’
stantial minimum around 0.8 eV is statistically significant. It cannot be
due to a resonance between the rotation and flyby periods as this occurs

at relative energies near 0.01 eV. There is no statistically significant
structure in average collision times, average reaction impact parameters
or average product energies over the relative energy range from 0 to 1 eV.
The average collision times at low energies are negative (39) indicating
strong repulsive deflections of the H atom, even during abstraction. They
become less negative with increasing relative energy, which is consistent
with a smaller deflection of more energetic particles. The average HD
product internal energies are again about 0.3 of the total available energy,
and again the distribution of product energies is broad (Figure 13b). The
differences in the shapes of the abstraction product energy distributions
for J = 0 or 6 cannot be laid to the rotation of the target diatom, for,
although 1000 trajectories were investigated at €rel = 0.57 eV, the num-
ber of abstractions recorded was a paltry 35. In consequence, the HD
energy distributions are more a function of statistical fluctuation than dy-
namics, and all that may be profitably drawn from them is that their re~
lative breadths are comparable.

Figure 15 shows the cross section for exchange of hydrogen
isotopes in rotating DBr. If is not significantly different from the non-
rotating case of Figure 12. The average collision times are about the
same as for the non-rotating exchanges and are again about one DBr
vibration period longer than the abstractions. The average HBr product
energies do not vary significantly from the 0.5 fraction of available

energy also found in the J = 0 trajectories, and the breadths of the distri-
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bution, relative to the available energy, are the same in either case (see
Figure 13b). Again there was no record of atomization at 4 eV , the
highest relative energy investigated.

In short, except for the unexplained structure in the abstrac-
tion cross section, the dynamics of collisions between H atoms and rota-
ting DBr molecules appears to be the same as for the non-rotating case.
Confirmation of this statement awaits extension of these trajectories to
collisions with J > 6 and a four-or fivefold increase in the number of tra-
Jectories run at each relative energy to increase our confidence in the

results which depend on the statistics.
4.3. Abstraction Fraction

If, as suggested in the last section, the cross section for either
reaction (1.-1 or 2) is independent of the J state of DBr, then we may be
justified in combining S

v=0,J=0)and S v=0,J=86)

rxn(erel’ rxn(erel’

to obtain an average ern(erel’ v = 0) from, essentially, a double-sized
sample of trajectories. If, in addition, we assume a negligible contribu-
tion from ern(e rel» ¥V # 0) to the thermal reaction rates, we may attempt

to fit a simple functional form to the S v = 0) data to obtain ther-

rxn(erel’
mal abstraction fractions. The statistical fluctuation in even the double

sampled S

‘rxn(er o1 ¥ = 0) is too large to find any detailed functional form,

but it is found that linear and quadratic fits satisfy the data over energy
ranges of about 0.2 and 0.8 eV, respectively. Consequently, the linear

dependences
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SHD = 7.5 €rel €rel = 0
SHBr = 0 0< €rel S 0.17 eV
= 35.6 erel-6.06 er61>0.17 eV
and the quadratic ones
Sup = 2.4-8“0(61,61—0.55) €re] = 0
SHBr =0 0<ere1<0.18
= 11.8—2.0(€re1—0.95) er8120.18

. . 2
(erel inev, s _ in ao)
were used in the following calculation. The abstraction fraction was

taken as

AF = 1/(1 +R)

where
[~ o)
-€/k
) fo eSHBr(e)e €/ T de

R
o0
- T
fo € Syp (€) e e/k de

The resultant AF as a function of temperature, T, are given in Table vV,
along with those from the transition state calculation (described in Sec-
tion 3.2.3.) and from statistical phase space theory (6).

It is clear from the table that both crude fits to ern give sur-

prisingly similar abstraction fractions. They differ from the ACT cal-
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culations primarily in the fact that they predict non-monotonic depend-
ence of AF on T around T = 750°K. But the otherwise good agreement
(41) suggests that some ACT calculations may agree with trajectory re-
sults without the reactions proceeding through long-lived transition states.
The collisions observed here, as in most other trajectory studies, in-
volved complexes too short-lived to come to equilibrium in all their
degrees of freedom.

The phase space theory (PST) calculations contained no non-
statistical corrections. Also, there were no valence electronic potential
energy barriers to reaction in the reported PST results (6). However,
both these assumptions can be and indeed are being removed from the
PST. Preliminary results (36) indicate closer agreement with the tra-

jectory studies in all particulars.
5. Summary

It has been shown that Sato surface is not necessarily free of
the spurious wells found in other semi-empirical potentials. However,
in the case of H2X, these wells may be avoided by judicious choice of the
Sato parameters. Furthermore, a Sato surface for HoBr may be found
which fits the experimental values for Br + H2 and Br + D2 activation
energies as well as the experimental ratio of abstraction to total reaction
rate. The latter fit is made via activated complex theory, which may be
used to demonstrate a large temperature dependence for the abstraction
fraction. This dependence is very similar - to that obtained from the

classical trajectory calculations on the same Sato surface.
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The large separation between the centers of mass and force in
the DBr molecule (as opposed to a homonuclear diatomic) lead to large
impact parameters for abstraction reactions. The large impact parameters
require very many Monte Carlo trajectories for statistical significance
in cross sections and other dynamic properties. The maximum reaction
Cross sections occur at relative energies about 1 €V. They are about
3 ao2 for abstraction and about 13 a02 for exchange. The product internal
energies show a broad energy distribution centered about 30% and 509% of

the energy available to HD and HBr, respectively.
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Appendix 1. Saddlepoint Search

Activation energy determination from potential surface data
requires (26) a knowledge of (a) the minimum potential energy barrier to
the reaction, Vi , and (b) the frequencies of the normal modes of the
activated complex. These quantities are obtained from the saddlepoint
region of the potential surface. If but one surface is involved, this
information is found by evaluating the potential expression at various
geometric configurations for the atoms in the complex until the col is
located. One then obtains force constants at the col as described in
Appendix B of Ref. 26 and vibration frequencies via the formulae of
Appendix D in the same work. However, if one wants activation energies
and other ACT data from several thousand potential surfaces, as required
by the calibrations performed in this paper, automation is essential.

Since the Sato surface has an analytic form, the required force
constants can be determined exactly given the location of the saddlepoint.
In principle, one could write down the expressions for the first derivatives
of the potential with respect to the interatomic distances and solve for the
saddlepoint through the transcendental equations obtained by setting these
derivatives to zero. This procedure would locate any of four or more
extrema, the saddlepoint of interest being recognized by its characteristic
imaginary frequency. Such transcendental equations are often solved by
Newton's Method of Slopes (22). In one dimension, the method corrects a
good guess about the location of an extremum by subtracting the ratio of
the first derivative over the second from the guess. At the extremum,

the first derivative vanishes and with it, the correction. Saddlepoints
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represent extrema in two dimensions. Position guesses may be corrected
by applying the one-dimensional method simultaneously in both dimen-
sions. Unfortunately, as one turns a co-ordinate system centered in a
saddlepoint, the second derivatives change sign. Clearly, orientation
angles may be found where at least one of the second derivatives vanishes.

Since the correction term in the method

Ar = -V'/V7 (A1-1)

bears that derivative in its denominator, the correction may become
arbitrarily large, destroying the convergence. Such a situation occurs
without co-ordinate axis rotation in the search for some HHBr saddle-
points and indeed for many saddlepoints occuring outside the reactant
channel.

The solution to this problem rests in rotating the co-ordinate
system so that | V”| is large. Let the original co-ordinates be x and y.
Another pair, u and v, are rotated by angle 6 with respect to x and y.

By the chain rule and the formulae governing rotation of axes,

oV A oV

é‘ﬁ' = é—i Cos o - —a"s—,' Sin @
and (A1-2)
Vv . oA
v = "gxsine + g cosa.
Using the shorthand F, =3 V/3sdt,
2 . . 2
Fiu = Fygcos a+ 2ny sin & cos o + Fyy sin”" @ . (A1-3)
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We may now use Newton's method to maximize Fuu with respect to «.
Actually, all we need do is enlarge Fuu’ so we needn't carry the method
to convergence. Since the method finds only extrema, we must take

steps to avoid minima. The obvious modification to the method results in

@F._ /aa)
Ao = ——zml—-——~—————2— sign (azFuu/aozz) (A1-4)
(@°F /2a%)
where
aF““-z- (F_-F_)+2F._ (cos’ in” a)
5o = 2sinacosa (Fo - F.,)+2F, (cos o -sin" a
and (A1-5)
azFuu 2 2
o = 2 (cos® a - sin® o) (Fyy - F) - 4ny sin @ cos « .

Alternation of "maximizing" Fuu with Newton's method correc-
tion of guesses to the saddlepoint location suffices to locate the saddle-
point on all but the most pathological surfaces, those with reaction paths
along nearly perfect parabolic channels, i.e. , hear thermoneutral re-

actions with very broad cols.
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Appendix 2. Pre-Exponential Term Ratios

Calculation of abstraction fractions, ka/ (ka +k e) in reference
to equations (1.-1,2), to the activated complex theory (ACT) approxi-
mation requires a ratio of temperature dependent pre-exponential
factors. In this paper, these were evaluated by the local properties
method (42). The ratio of the pre-exponential factors, B(T), for two

reactions x + yz and x + zy with linear complexes Xyz and xzy, reduces

to
' * (T.T
Bx z _ wxyz ny Ryz 1_‘b Xyz ( S *) xyz
Xzy Aw;:zy sz Rzy 1_‘b xzy (I"SI"*) xzy

2
Fgxzy [ Fgg - Fyy)
F(nyz

1
F
ZXZYJ . (A2-1)
(F11F99 - F19)yyz

The w* are the imaginary frequencies associated with the reaction path
through the complexes. The Fij are azv/aRia Rj evaluated at the complex
éonfiguration. The I terms (28a) are ratios of the quantum to classical
partition functions for s,b, the stretching and bending vibrations, and

*, the reaction co-ordinate. The latter term is calculated in this paper
for one-dimensional tunneling through a parabolic barrier (43). This
approximation to the actual tunneling through the true barrier in three
dimensions is good only at relatively high temperatures or for rela-
tively broad cols; in other words, where u, = hcw,/kT « 27.

The B ratio requires not only the force constants (Table IV) but

also the frequencies, w, of the complex. These frequencies are given
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in Table VI for some of the isotopically substituted complexes of interest.

Table VI. Complex Frequencies for H + HX?

Complex W Wy W,
H—H-Br 1420 588 1034 i
H-D—-Br 1164 463 897 i
D—H—-Br 1257 552 8311
H—~H-I 2256 135 88 i
H—-D-I 1602 103 88 i
D—H~I 2256 129 63 i
H—Br—H 1826 98 391
D—-Br-—H,

H—Br—-D 1581 85 321
H-I-H 1947 49 321 i
H-I-D 1405 41 315 i
D—I-H 1929 44 230 i

A1l values incm™'. i=v-1.
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Appendix 3. Discontinuous Potentials

The relaxed target angular potential energy surfaces (Figures
7 and 9) have discontinuities in them (middle top) where the contour lines
close abruptly. The reason for this real discontinuity is best shown by
an examination of the surface for linear H—H—Br (Figure 4). The re-
actant channel is upper left. Minimization of the potential at fixed
values of x + y by variation of x is accomplished by locating energy
minima along a family of lines with -45° slope in Figure 4. The criti-
cal line passes through the saddlepoint. All lines in the family above
this one have two energy minima, one each in the reactant and product
channel. The minimum of interest is the one in the reactant channel.
The critical line has one in the product channel and an energy inflexion
point at the col. All lines in the family below the critical line have only
the product channel minimum. Thus as one passes smoothly through
the family, i.e., toward the smaller values of x along 6 = 180° in Fig-
ures 7 and 9, one encounters a discontinuity in the minimum energy at
the saddlepoint. The argument is unaltered for other values of 6.

The algebra for obtaining relaxéd target potential energies

follows. One solves

oaV/orp | = 0 (A3-1)
BC ‘.LAB, 9

for e via Newton's method (22), where if ?Bé is a good guess for the

solution to (A3-1), a better guess, rgd is obtained by
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L (aVv/3 rBC)

r = rnpd - sign
BC BC
(0°V/argQd)

2
A . (A3-2)
arBC

LN

Differentiating equation (3.2.-1) with respect to g, We obtain

oV _ %%, e 1 {(ZQ e )
e .y . 'pc | am BC "~ ¥AB "~ %Ac
AB’
oo
BC
BC
where
Qpc Quc Tyc 0apc  3@pe Orpq
arBC arAC arBC ? arBC arAC arBC ’

and, of course,

O]

TpAc = (rAﬁ + rBé - erBrBC cos 6)2,
The symbol R stands for the radical

2 2 2
lapg - age) + (@pc-acp) + (@cp -~ app)]

Equations (3.2.2-2) provide the partials, such as,
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=By Dy X;;
and (A3-4)
oo s B33 D X
1

Thus equation (A3-3) can be expanded with the aid of (A3-4) and given

arAC

. = (rBC - Tp €OS t9)/rAC . (A3-5)

Newton's method requires one further differentiation, namely,
2

3V
arBC

2 2
_%9%c | %c 1 (ape - ayp - apc) -
8rBé arBé V2R BC AB AC

rAB,B

2 2 2 2
Oapc 5|12 ¥BC dapc) [dxsc LN
N | PR ? ? " Noran
Irgc I'BC IBC BC TBC
8204 r Ja
AC BC
(Qapc-appg -ape) - - |@agg-apg - o0 - +
BC L 'sc
Cas~-a - Q) c | 2
AC " %AB " ?BC / R . (A3-6)
'sc

It is readily shown that
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azQAC
or

BINe
or

2
"Qpc

2
oQ or
) 2 . Qac AC
BC 0TpC

2 b
BC 0rpc  9rge

. . 2
and a similar form holds for a"‘aAC/a rBé, where 3°r, /3 rBé =
1-(3 rAC/a rBC)z]l/rAC.Thus all that is required to expand (A3-6) is

2%Q.. B Dy Xy
£ R i ) e [20k;; + 3) X5 - (3K +1)]
ar.’ 2(1 + ky5) i]
ij
and (A3-7)
.. B2 D.. X..
—2 = H 4 [203k;; + 1)Xy; - (ky; + 3)]
arﬁ 2(1 +k.1j) ] ]

The method used to obtain Figures 7 and 9 was to solve (A3 2)

for a given 6, starting at large r AB with the good assumption that r

BC
= rBCeq The solution for rgc was used as the rBé for the next smaller

T'AB at the same 9.
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D. G. Truhlar, unpublished data.

Of course, b isa function of the relative energy, € It

ax rel’

would be expected to be smaller for lower € rel values and larger
for high ones.

This value of the cross section compares with the 10.2 aé esti-
mated from the normal incidence collisions of Section 4.1.

The collision time is not merely the duratior. of a trajectory inte~
gration. Since the H atoms are shot at DBr at different impact
parameters and initial separations (the latter to randomize vibra-
tion phase), and since the end test stops the integration when an
atom is further than some chosen distance from a diatom, the
collision time is the difference between the actual trajectory dura-
tion and the time it would have taken the H atom to fly by DBr in
the absence of any intermolecular forces. Thus we are describing
the amount of time the collision delays the hot atom in its flight.
The heat of reaction, 0.828 eV, was included in that energy avail-
able to HD. It is of course not available to HBr since this product
is isoelectronic to the reactant DBr.

It must be remembered that the potential surface upon which the
trajectories were observed was chosen to give the exp'l. AF(300°K)
~ 0.88 in an ACT calculation. This fit to experiment in no way
detracts from the observed agreement between the ACT and trajec-
tory AF's.

Ref. 26, p. 188.

Ref. 26, p. 190.



~290-

Part IV. Propositims
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Abstracts of Propositions

by Christopher Alan Parr

It is proposed that quartic contributions to bending forces in linear
triatomic reaction intermediates be included in transition state

theory. An example is given.

It is proposed that the bond-energy-bond-order (BEBO) method be
used to obtain isotope effects in the H + H2 reaction. Modifications

of the method are suggested.

It is proposed that free, ultra-thin films may be obtained by vacuum
deposition on substrates which may be removed by sublimation.

The uses of such films are reviewed.

It is proposed that the time-dependent Schroedinger equation be
solved for unibound minimum wave packets in the square well poten-
tial. The analytic nature of the corresponding classical trajectory
swarms makes comparison of quantal and classical results especially

simple.

It is proposed the potassium metaborate (KBOz) be investigated

The utility of such a poison is described.
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Proposition A. Harmonic-Quartic Vibrations in Reaction Rate Theory

It is proposed that quartic contributions to bend-
ing forces in linear triatomic reaction intermediates be
included in transition state theory. An example is given.

Molecular vibrations are usually anharmonic. Often, however,
when one deals with states near extrema in a molecule's potential sur-
face, satisfactory results are obtained for spectral, thermochemical,
and even '"absolute reaction rate' calculations with harmonic approxi-
madtions to the potential. This is especially true for large harmonic
force constants, which swamp the higher order contributions, and for
low temperatures where only the lowest vibrational states are involved.
High frequency stretching vibrations are very well represented by har-
monic models at chemically‘ interesting temperatures, since their har-
monic force constants, F, are large. They range (1a) from 2 to 20

millidynes/A and yield Boltzmann average classical amplitudes (2a),

+ 0o

Ly = [ exp (-FX’/2kt)dx = (anT/F)%, (A-1)

smaller than 0.21 A at 1000°K. However, bending force constants for
stable molecules are considerably weaker, ranging between 0.1 and
0.7 millidynes/A, when tabulated (1a) as F <p/ r(fqrgq. The r_ieq cor-
respond to the equilibrium lengths of the bonds enclosing the valence
angle, ¢.

One of the stronger bending force constants is that of CO,.

Here F<p =0.77 x 107" ergs/radian’. Over 99% of the potential comes

from the quadratic term for zero-point bending CO, (3). At 1000°K,



-293-

the classical bending vibration amplitude,

+ o0 N
by = L. e (-F¢"/2kD)dp = (21KT/Fy)?, (A-2)

is about 19° for 002. The weaker bending force constant for HCN
(0.246 x 10~ ergs/radian®) leads to a 34° angular deformation at the
same temperature. The potential function for weak angular bonds like
that of HCN probably contain anharmonic terms which become important
at deformations as large as 34°.

However, there are species of chemical interest with still
smaller harmonic force constants and larger Boltzmann average defor-
mations at a given temperature. These are the reaction intermediates,
or transition states, of absolute rate theory. The literature values for
properties of most of these short-lived species are conjectural. This
may be seen from the many estimates for the bending force constant of
the H3 intermediate, collected in Table I. At 1000°K, the largest of
these force constants gives a 44° deformation while the smallest yields
an average angular amplitude of almost 79°.

Mayer et al. (10a) show that many H atom abstraction reactions
involve weak bending force constants. In reference 10a and subsequent
papers (10b and c), the authors warn against application of absolute rate

~16 o

theory to a reaction at temperatures above Fq)/ 1.38 x 1077 °K (F in
ergs/ radianz). At that temperature, the doubly degenerate bending vi-
brations in a linear reaction intermediate sweep out a 27 solid angle,
or half the unit sphere. This restricts the application of activated com-

plex theory (ACT) in the H + H, reaction to temperatures below 3260°K.
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Similarly, ACT cannot be applied to the O + NH — OH + N reaction at
temperatures above 150°K (10a). This is a serious handicap to an
otherwise useful tool. Mayer and Schieler (10c) show that BEBO-ACT
rate constants are in much better agreement with known rates than are
the collision theory results to which the authors turn when <I>H becomes
too large. The ACT agreement with experiment appears (10c) to be
improving even as the temperature approaches the maximum consistent
with the ACT model.

It is clear that the introduction of higher powers in the potential
of the bending mode may reduce the Boltzmann average deformation,
<I>H, and widen the range of applicability of the ACT. It is therefore
proposed that the quartic contribution to the potential energy of (at
least) the bending vibrations of these intermediate species be included
to correct the ACT rate constant. As an example of the possibilities

of this approach, the harmonic-quartic bending potential,

o F oo + 47 Q¢ (A-3)

V=31 F

for the linear H3 complex will be determined and used to obtain (I)HQ
and the correction to the ACT rate constant via harmonic-quartic parti-
tion functions. The latter are readily obtained from the energy eigen-
values available through Truhlar's variation-perturbation method (11).

The quartic force constant, @ , for H3 may be estimated by a

(P b
number of methods, some of which have already been mentioned in
Table I. Numerical potential surfaces may be {fit to polynomials in (p?‘ ,

and the coefficient of ¢* is identified with Q(p/4 . For example,
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Harris et al. (9) give a numerical surface for Hg in a form convenient
for numerical fitting. Using a fifth order fit to all nine data points in
HMP (9), one finds Q p = 0.35 % 107" ergs/radian*. This means that
at one radian deformation, 17% of the potential energy comes from the
quartic term. Other methods give analytic expressions for the poten-
tial energy, from which @ @ may be derived by differentiation. In
Appendix 1, the BEBO (2c) expression for the potential energy of the
general linear ABC complex is differentiated to obtain Q 0 Again for
the Hy complex, BEBO predicts Q, = 0.122 x 107 ergs/radian®. This
implies that about 10% of the potential energy comes from the quartic
term at one radian deformation, in fair agreement with HMP (9).

The Boltzmann average vibration amplitude for the mixed

harmonic-quartic oscillator is (12)

lyq Or Pyq = 2 exp [-Fx/2 + Qx*/24)/kT] dx

L(a/b)* exp(a®/Bb) K; /4(a’/8) (A-4)

where a = F/2kT, b = Q/24kT and Ky is the ¥'th order modified Bessel
function of the 2d kind. Tables of K, /4 do not yet exist. They may be

generated from Basset's formula (13)

K (2) = I'ly +rl({%)(2z)7 L°° cos u au

by numerical integration, but for a simple estimate, approximate
values of eXK1 / 4(x) are obtained by linear interpolation between the

values in the existing tables for eXKO(x) and eXK1 /3(x) in Watson (14).
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Table II gives the multiplicative factor for the bending modes in the
classical ACT rate for H + Ho, $*/2w, as a function of temperature.
Note that for low temperatures, which correlate with small angular
displacements, the quartic perturbation is negligible, whereas at
3260°K, where the harmonic ACT fails, the harmonic-quartic ACT
factor is 26% smaller than the quartic one. Table II indicates that when
the quartic nature of H3 bends are taken into account, the range of ap-
plicability of the ACT is extended by more than 1200°K.

The harmonic-quartic correction to the classical harmonic
ACT rate expression is (@HQ/@H)2 as far as the bending modes are con-
cerned. The quantum mechanical rate expression involves quantum
partition functions, pf. The correction, mentioned above, becomes

(prQ/ pr)z. The well-known harmonic oscillator partition function is
pfy = exp(-hv/2kT)/[1 - exp(-hw/kT)] , (A-5)

where v is the frequency of the harmonic oscillator. The partition func-

tion for the mixed, harmonic-quartic oscillator is

o0
"
Plug = ), e®(-WEYKkT), (4-6)
n=1
where WEQ are the harmonic-quartic energy levels. These may be

approximated (to better than 0.5%) by a variation-perturbation method

due to Truhlar (11).

wiQ Q, (oM

o= B0 ) v =gl ol (A-7)
W 24 W

n n



Table II. Temperature Dependence of Bending Deformations in H3

~298-~

TCK) Ko MKy (0° €Ky a0* s/ a2
45 0.279 0.28,  ----- 0.0138 0.0138
100 0.412 0.41, 0.415 0.030 0.031
300 0.698 0.70, 0.709 0.087 0.096
600 0.958 0.98 0.98 0.168 0.184
900 1.144 1.17 1.191 0.241 0.276
1000 1.20 1.24 1.25 0.269 0.307
1125 1.258 1.30 1.320 0.298 0.346
1500 1.417 1.48 1.503 0.386 0.46
2250 1.663 1.77 1.799 0.55 0.69
3260 1.91 2.05 2.11 0.74 1.00
4500 2.141 2.35 2.418 0.97 1.38
“Ref. 14.

PRy sy = 1 Kyx) + 3 MKy 5.
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where
H
Q, (%
A o- A - -J2~—Trlk- = 0. (A-8)
6 W,

With the aid of reference 15, it may be shown that
(pHE = SHZG;¢(qu-m1+1y%F¢. (A-9)

The Gfp ® is the valence angle element of the G matrix (1b) for the general

linear triatom,

G = 12+]“2+1
ve maTLy mearyg My

2
I'1Ty

4

1.1 ), (A-10)
1 T2

where the triatom is m - (rq)e- "My * °(r2) ***mc. When the para-
meters of the BEBO Hg complex are inserted in the above equations,
the resulting energy levels are those found in Table III. The energy
units (°K) are for convenience in evaluation of exp(—WEQ/ kT).

Table IV shows the quantum partition functions for the H3 bend-
ing vibrations and the multiplicative correction factor for the quantum
version of the ACT rate. Thus, the proposed treatment of quartic terms
not only expands the utility of the ACT but also makes a significant cor-
rection to the rate constant itself. For exam
pancy between the BEBO-ACT and Karplus, Porter, and Sharma (2d,16)
computer-similated rates for H + H2' The effect on rates involving

complexes with still weaker harmonic force constants is expected to be

even more important.
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Table III. Bending Vibration Energy Levels
n *n Wy (°K) Wi (°K)
0 1.000 525 554
1 1.005 1575 1724
2 1.218 2625 2936
3 1.282 3675 4240
4 1.329 4725 5600
5 1.410 5775 7090
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Table IV. Hq Bending Mode Partition Functions and
Quantum Correction Factor for Harmonic ACT Rates

T(°K) piy Plag (P g/ )’
500 0.40 0.365 0.84
1000 0.91 0.83 0.83

2000 1.88 1.68 0.80




-302-
Appendix 1
The BEBO potential (2¢) can be expressed as

V = Vg + Vqo., (A-11)

where VB is the bonding contribution from ry and ro, while VTr is the
antibonding triplet repulsion between the end atoms in the ABC complex.

VTr is a function of rq, wWhere
r23 = rz1 + rzz - 2 ryry cos 9 , (A-12)

by the law of cosines, and 6 =7 - ¢. At constant ry and Iy, the only

variable part of the potential will be

Vop = (Dg/2) exp(-Brg) [1+ 3 exp (-prg)] (4-13)

where De and B8 are the dissociation energy and Morse parameter for
the AC molecule. Substitution of (A-12) into (A-13) and repeated dif-

ferentiation yields

F, = (a?‘V/awz)i = a[1+eXp(-Br§)] (A-14)

Q, = @V/3¢"); = a{3p rf ré [1+2 exp(-Brg)] /rg +

b3 eped/e® 1) 1 emp(prb ) (A-15)

where

o = (D,/2)p (v} rh/ry) exp(-pr}) . (A-16)
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The I sign means that all quantities are evaluated at the saddlepoint in

the potential surface. The values a propos the Hy surface are D =

109.43 kcal/mole, 8 =1.94208™, and rji = r‘g =% r§ = 0.92A.
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Proposition B. Isotopic Reaction Rates

It is proposed that the bond-energy-bond-order

(BEBO) method be used to obtain isotope effects in the

H + H2 reaction. Modifications of the method are sug-

gested.

In an earlier proposition (1), it was suggested that the empirical
BEBO method (2) be used to evaluate the rates of all the isotopic varia-
tions of the H + Hy reaction. It was shown (1) that the BEBO potential
was better justified for ground state hydrogen atom interactions than
for any other and that the method was intended for linear triatomic com-
plexes, such as Hs. Since that writing, it has become apparent that it
will soon be possible to obtain such rates a priori. Configuration inter-
action methods (3) are slowly converging on the actual Hq potential.
Finite-difference quantum dynamics methods (4) are being developed
which can handle the linear H3 reaction on any of the existing or forth-
coming potential surfaces. When available, these a priori rates may
be compared with the very accurate (error < 10%) ESR detection re-
sults (5) for A + BC — ABC — AB + C where A = C. In view of the
factor of 2 uncertainty in the experimental A + A2 rate constants avail-
able from thermal conductivity (6) and mass spectrometric (7) detection
methods, the ESR results probably provide a finer test of the theories.

The a priori theories mentioned above have not yet been pushed
to their ultimate accuracies. Furthermore, they require a great deal
more computer time than the simple BEBO method. Recently, several
suggestions have been made for improving the BEBO rates. A more

appropriate fit of the Sato anti-Morse function (8) to theoretical Hy
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triplet data has been suggested (9). Quartic corrections to the bending
vibrations have been proposed (11). The least certain aspect of the
method, however, is the quantum correction to the reaction co-ordinate,
that is, the tunneling correction. The original method was to make one-
dimensional Eckart barrier (12) corrections on a reaction path from the
zero point of the reactants to the zero point of the products through the
classical potential pass. The zero-point energy of the complex was not
taken into account because, in Johnston's words (13), 'the quantum cor-
rection for one supposedly separable co-ordinate does not constitute
potential energy for the reaction co-ordinate.'’

It has been demonstrated (14) that the assumption of vibrational
adiabaticity in the H3 reaction satisfactorily reproduces all but the very
high energy reaction cross sections. This implies that at least the
symmetric stretching mode of the H3 complex has a good quantum num-
ber, which is the same as that of the reactant and product Hy molecule
for vibration. The representative trajectories must pass over the
saddle with at least zero-point symmetric stretch energy in addition
to the classical barrier height. It is not yet clear (14) whether the
other vibration-rotation modes of the complex exhibit adiabaticity. It
is therefore proposed that the tunneling correction for the H + H, iso-
topic reactions (1) be made for the one-dimensional Eckart reaction
path (15) through the symmetric stretching zero point at the complex.
As the bending mode frequencies are only about one-third that of the
symmetric stretching mode, the latter accounts for about 60% of the

total zero-point energy of the complex.
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Mortensen (4b) has obtained a two~dimensional ""transmission
coefficient' (tunneling correction) for the Sato-Weston (8,17) Hq poten-
tial. Comparison of this with his one~dimensional zero point path Eckart
and Johnston's (13) 1-D Eckart ignoring all zero-point energy in the com-
plex, shows non-negligible two-dimensional effects (see Table I).

Proper accounting of the bending motion may yield even larger differ-
ences. The inclusion of only symmetric stretch zero-point energy in
the 1-D Eckart barrier height would probably lead to better agreement
with the 2-D tunneling correction than full complex zero-point energy

at the low temperatures (~ 300°K) but poorer agreement at the inter-
mediate temperatures (~ 500°K). No change in the amount of zero-point
energy available to the complex is likely to bring the 1-D Eckart tunnel-
ing correction into accord with the 2-D one at the higher temperatures.

Mortensen (4b) found that he could bring the 1-D and 2-D ''per-
meabilities' (Eyring's transmission coefficient (18)) as functions of
energy into good agreement by shifting the 1-D values upscale by some
energy ES ~ zero-point energy of the reactants and reducing the ima-
ginary frequency of the complex. The first alteration follows Marcus'
suggestion (19) for comparing the one and two-dimensional "permeabilities'
at comparable translational energies. The second alteration, however,
is interpreted by Mortensen (4b) as evidence of the need for effective
reaction co-ordinate frequencies, obtained by some average of the actual
potential surface frequencies over the possible crossing points at along
the col. The imaginary frequency is maximized along the reaction path

and any averaging of off-path crossings will necessarily reduce it.
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Table I. H, Tunneling Corrections

T(°K) 333 500 1000

2-D 16 4.72 1.90
1-D Eckart

7PE} 19 3.69 1.45

no ZPE+ 6.7 3.0 1.5

Classical path 23.0 3.9 1.4
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It is clear from the above discussion that the tunneling correc-
tion is almost wholly unknown. Until exact numerical studies (16) are
made, it is not obvious which approximate method should be employed.
The one-dimensional Eckart tunneling is surely no more crude an approxi-
mation to the quantum correction in the reaction co-ordinate than the anti-
Morse function fit is to the H3 triplet potential. One finds (2) the isotope
effects to be less sensitive to these simplifications than are the absolute
rates. It is in the spirit of this last observation that this proposition is

put forth.
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Proposition C. Volatile Substrates for Ultra-Thin Films

It is proposed that free, ultra-thin films may be
_ obtained by vacuum deposition on substrates which
may be removed by sublimation. The uses of such
films are reviewed.

It has been proposed (1) that volatile substrate techniques be
developed to allow separation of vacuum deposited thin films by cryo-
genic pumping. This would yield a minimum of damage to the films
during the separation process and allow one to produce ultra-thin films
free of substrate effects at temperatures well below annealing or even
most Debye temperatures. The technique suggested (1) was (a) conden-
sation of Ne gas on a helium-cooled window followed by (b) slow vapor
phase condensation of the film material from a well-baffled oven source
(2) and finally (c) separation of the film-substrate from the window and
sublimation of the neon substrate by cryogenic pumping.

The prime motivation for the production of free, cold, ultra-
thin films is the hope of obtaining information on their intrinsic (non-
thermal) stresses. In the words of R. W. Hoffman (3), "a satisfactory
theory for the origin of intrinsic stresses has yet to be formulated."
There are, however, almost as many models for intrinsic stress in
thin films as there are investigators in the field. The notion that a
significant temperature differential between the film and substrate leads
to tensile stresses during growth (4) has largely been put aside due to
the findings of Pashley et al. (5) indicating that even the surface exposed
to the hot source is likely to be at substrate temperatures. Intrinsic

stresses are likely to arise (3) from phase changes when amorphous
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film crystallize, surface contamination (especially by oxidizing sub-
étances (6)), interfacial dislocations, and the migration of vacancies,
but the role of surface tension is not expected to be significant in films
over 200 A thick (3).

Since the geometric surfaces increase much more slowly than
the volume of the film, as it grows, the surface effects might be ex-
pected to disappear in thick films. However, the actual surface of a
film is rarely its geometric surface. It would only be so for perfect
films, which have never been found. Instead, from gas adsorption
studies, it has been discovered (3,7) that the surface grows linearly
with accumulated mass, indicating a very porous structure. Tensile
strength (per unit area) is found to be independent (7) of film thickness
beyond about 100-2001&, where the nucleated islands of film material
begin to bridge together. All this suggests that the bulk of the film is
very similar in its mechanical properties to its '""surface.'" In order to
test this idea, it would be of value to compare the known properties of
free, thick (several thousands of A's) films with those of ultra-thin
(several hundreds of A's) films in the absence of what may be a large
substrate perturbation. The volatile substrate proposed here and
earlier (1) would afford the opportunity for such a comparison. Physi-
cal stripping techniques presently employed for separating film and
substrate would rupture the ultra-thin films we are considering, as they
are little more than two-dimensional filigree at thicknesses less than
1000A. Sublimation of the substrate would provide the most gentle
separation possible.

Sublimation would not require exposure of the film to the
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atmosphere or to elevated temperatures. Thus it would be possible to
study uncontaminated free films in the amorphous states they exhibit
before coalition of the crystallites takes place. Or one could observe
this coalition (as when annealing the film) without the hindrance the sub-
strate offers to surface mobility. Also the influence of the substrate on
the bonded surface could be examined under conditions where the separa-
tion mechanism is not expected to distort the interface.

The proposal is not without its hazards. For example, most
contemporary substrates are vacuum cleaved crystals or highly polished
glass or quartz. It is unlikely that solid Ne would have a structure
amenable to cleaving, nor is it imagined that it would take a polish.
Thus the surface of vacuum deposited neon is likely to be very rough on
an atomic scale. Extensive experimentation may be necessary to get a
workably smooth neon surface for film deposition. Perhaps very slow
growth in ultra-high vacuum would provide a satisfactory substrate sur-

face.
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Proposition D. One-Dimensional Decomposition

It is proposed that the time-dependent Schroedinger
equation be solved for unbound minimum wave packets
in the square well potential. The analytic nature of the
corresponding classical trajectory swarms makes com-
parison of quantal and classical results especially simple.

The quantum mechanical concept of Heisenberg's uncertainty
principle has no classical mechanical analogue. Thus in a constant poten-
tial the average position of the wave packet evolves in time as does the
position of a classical particle. However, the width of the wave packet
grows in time (1a). The position and momentum of the corresponding
classical particle have zero uncertainties for all time. The obvious dis-
parity may be removed by considering a swarm of classical trajectories
with a (continuous) distribution in phase space matching that of the quantal
wave packet. I.e., the initial classical distribution in the (one-dimensional)

space co-ordinate is

fx,t =0) = Yox) o) (D-1)

while the initial distribution in the momentum co-ordinate

gD,t=0) = ¢op) ¢4(P) (D-2)

where ll/O(X) and qbo(p) are the co-ordinate and momentum representation
of the wave packet at time zero. If the wave packet is the "minimum wave

packet,*" with the Gaussian form (1b,2)
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Vo =~ exp {-[x - (0 I/20% + Kp)gx} (D-3)
(mo?)*
then
fx,t=0) = —Lo exp {-[x - (x) 1"/} (D-4)
(mo™)2
and
glp,t =0) = z—l;)g exp {-[p - (p) o1*/7} - (D-5)

Here 11 =1/0, the rms deviation of the momentum.

Since we are dealing with a free particle {(p) and n remain con-
stant in time for both quantum and classical mechanics. Thus for all the
trajectories in the swarm associated with a single momentum, p, their
distribution changes in time by translating (without change of shape) by

pt/m, hence

f(x,p,t) = —-12—)1 exp {-[x - ((x)0 + %)]2/02} ; (D-6)
mo~)?2

The distribution of the entire swarm is found by weighting (D-6) by the
proposition of the swarm trajectories with momenta p to p + dp, i.e., by

go(P)dp, and integrating over all values of p. Thus

0
tx,t) = [, &) tx,p,t)dp , (D-7)
which, for the case at hand, results in

>t 2 2
f(x,t) = Z;z;—)—_zt: GXp{—[X - ((X)O+<];on0 )7/ & } (D-8)
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where & = ¢® + n°t’/m®. It may be shown (1c) that £ has the same time
dependence in quantum mechanics as well. Thus, the quantal and swarm-
averaged classical co-ordinate and momentum distributions for the free
minimum wave packet are identical for all time. Such results encourage
the hope that suitably averaged classical trajectories may be used to
follow atoms and molecules through bimolecular exchange and unimole-
cular decomposition reactions.

Chemical reactions do not take place in uniform potential fields.
Quantum interference effects for non-constant potentials eventually
destroy the agreement (3) between quantal and swarm-averaged classical
probability distributions. What is the time scale for such divergence?
Recent calculations (4) of the evolution of wave packets in the bound
energy regions of some one- and two-dimensional anharmonic potentials
show serious deviations between the two distributions after a few vibra-
tion cycles. Bimolecular exchanges occur in the strongly bound regions
of the potential surface, but, for unstable intermediates, the collisions
are direct and the products (or reactants) separate in times on the order
of a single characteristic vibration period. Because of their brevity, bi-
molecular collisions may be quasi-classical. Their quantum dynamics

may be adequately represented by the swarm-averaged or "'classical

Unimolecular decomposition is characterized by relatively long
molecular lifetimes. The deviation of the quantal from the swarm-average
results are likely to be more serious in this case. However, the energies
of interest in unimolecular decomposition lie in the continuum for at least

one molecular mode. Thus it would be very useful to see how adequate
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the swarm-average distributions are when applied to energies near the
dissociation limit. Beyond this limit lies the domain of metastable states.
There are also effective potential (centrifugal) barriers to contend with.
Both increase the lifetime of dissociative modes.

Frey and Thiele (2) have dealt with the probability of decay of
metastable wave functions behind one-dimensional square barriers of the

form:

o for x<0
V(x) 0 for 0<x<a and x> b

beora<x<b

Their equations are sufficiently general to handle dissociation wells inside
the barrier as well. They demonstrated that a minimum wave packet dis~
tribution loses its Gaussian shape on the first collision with the inner
(infinite) potential wall. This is in contrast to the swarm-averaged clas-
sical distribution, which recovers its Gaussian shape after the first few
collisions (5). However, for a barrier described only as "so thin that
almost total penetration occurs on the first encounter' (2), the probability

of remaining behind the barrier

Po(t) = [ ¥ (x,1) ¥lx,1) dx, (D-9)

the solid line in Figure 1, very much resembles its classical counterpart

a
Py(t) = fo f(x,t) dx | (D-10)
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given by the double dashed line in the same figure (6). Clearly, the
comparison is questionable. Since the height of the barrier was not
specified in the paper (2), it was assumed to be zero, and the entire
range for p was used in equation (D-7). If this figure represents barrier
tunneling, then (p) < (2me)%, where V is the barrier height. Since
all trajectories with p < (2me)% reflect, the integral in (D-7) should only
be taken over the range (2me)% to ©». Nevertheless, for such a thin
barrier, its neglect in the classical case leads to near agreement with
the quantal result. Had the barrier vanished in the quantal case, the
agreement would, doubtless, have been better still, and this is for a wave
packet which has struck the inner wall, destroying the Gaussian form.
Perhaps, maintainence of the shape of the quantal distribution is not a
necessary condition for swarm-averaged classical behavior. This could
easily be tested with equation (D-8) and further application of the formulae
in Ref. 2.

It is proposed that the time-~dependent wave packets of Ref. 2
be investigated at energies above the barrier and with realistically deep

wells behind the barrier, i.e., for

( o for x< 0

-D for 0<x<a
+Vb for a<x<b
L 0 for x> b

1
At any (p) > (2me)2 , the effect of reflection above the barrier will be
seen in the quantal/swarm-average comparison. The effects of the meta-

stable states should be amplified when (p) = E_, where Eo is some quasi-

O’
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stationary level. The effect of the spacing of these levels will be im-
portant, for in chemically realistic potentials the spacing is thought (7)
to be smaller than the half-widths of the quasi-stationary states. The
inclusion of the non-zero dissociation energy, D, will probably have little
effect, but will necessitate (2) a solution for the bound states of the poten-
tial (D-11).

The wave function for that potential is discontinuous in 2nd
derivative over three boundaries. It may be obtained as follows, for
E <O

’JJI(X) = Al sin klx for 0 <x< a

z//H(x) = Age + Bye for a<x<b (D-12)

and -
"K3X
Ypx) = Age for x> b.

The wave numbers, k, are

kl = (-ZmE)%/ﬁ
k, = [2m(V, - E)%/K (D-13)
ky = [2m(D —E)]%/H

The continuity conditions on the first and second derivatives of y(x) lead

to
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—kza —kza
(sin kla) Ay - (e ) Ay - (e )B2 = 0
| —kza —kza
(kl cos kla) A+ (k2e )A2 - (k2e )B2 = 0
(D-14)
—kzb -kzb —k3b
(e )A2+(e )BZ—(e )A3 = 0
"'kzb -kzb "k3b
—(k2e ) Ay + (koe ) By + (k3e )A3 = 0

which has non-trivial solutions only when the determinant is zero. The

latter condition leads to the quantization formula

o _ 2ky(b-a)

which, by equations (D-13), is a transcendental equation in En’ the bound
state energy levels, i.e., quantization of the ki' The equations (D-14)

lead to Az, Bz, and A3 in terms of A1 , wWhich is fixed by the normaliza-

tion condition,

a b <0
fO "U;wldx + fa "P’;Ill/ndx * fb ‘P;II‘PIIIdX = 1. (D-16)

The quasi-stationary levels are given in Ref. 2 for D = 0. They will have
to be solved again for two more cases, viz., 0 < E < Vh and E > Vh’
with a non-zero D.

It is hoped that comparisons of the quantal and swarm-averaged
classical results at these energies will enable some definitive statements
to be made about the validity of the use of classical trajectories in chemi-

cal dynamics.
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This is evident since the classical trajectory has a constant velocity,
+ p/m, over the length of the square well. After some time elapses,
the natural spread in the distribution increases beyond the length

of the well and the "folding' of the ends of the classical distribution
into the well gives a non-Gaussian shape.

The figure (without the doubled dashed line) was taken from Ref. 2.
The abscissa scale mark for 0.8 is in error. In its present position
it should read 0.825. T is the period of the classical trajectory

with momentum (p), i.e., T =amAp), where a is the length of the
well behind the barrier.
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Proposition E. High Temperature Wall Poison for H and X Atoms

It is proposed the potassium metaborate
(KBO,) be investigated as a wall poison to recom-

bination of hydrogen and halogen atoms. The utility of

such a poison is described.

Recently, flow systems have been developed for more-or-less
direct measurements of radical reaction‘kinetics (1,2,3). Molecule A,
is dissociated upstream by microwave discharge (1) or hot filament (2,3).
Molecule BC is bled into the reaction tube and analysis is made down-
stream for the amount of AB, AC, B, C, or attenuation of A resulting
from A + BC reactions. The detection of the molecules is usually by gas
chromatography (2,3). The atoms are measured by ESR (1) or wire
calorimetry (2). When A's are oxygen or nitrogen atoms, it is found (1a)
that clean quartz tubing suffices, as O and N radical recombination rates
on such a surface are relatively low. However, when A is a hydrogen or
halogen atom, the wall of the reaction tube must be 'poisoned,’ coated to
changed its surface reactivity, otherwise few H or X atoms are detected
downstream of their source.

Surface poisons for H atom are discussed in Ref. 4. Such
poisons include boric acid, HgBO, (1b), and teflon (3). Some materials
which poison Cl or Br atom recombination are listed in Ref. 5. The
latter paper includes boric acid but finds teflon ineffective. Of these
wall coatings, boric acid A B203 seems most attractive, for it can be
used in H atom reactions (1b) at temperatures up to about 720°K, where
it melts and is flushed out of the reaction tube. In Cl atom reactions,

however, the glassy boric oxide is stripped off the walls at temperatures
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above 460°K (1c). All other known, chemically inert, poisons soften at
temperatures below the melting point of B203 . Thus high temperature
radical reaction studies by these flow techniques require a tougher poison.
It is proposed that potassium metaborate (KBOZ) be used as a
surface poison in these experiments. It is readily dissolved in hot water,
making application to the tube surface simple. (The hot solution is allowed
to stand in the reaction tube for an hour say, after which the tube is baked
out to drive off the water.) The poisoning properties of KBO

2
similar to those of B203, but the melting point of the metaborate is

should be

1220°K or 500°K in excess of that of the glassy boric oxide. This higher
melting point enables one to extend the range of the H atom studies.

The greater cohesion implied by the higher melting point of the
metaborate may also lead to higher resistivity to halogen attack for the
metaborate over the oxide. There is very little literature on the reactivity
of metaborates. The trigonal BZO3 resists attack by all halogens and
halogen acids except fluorine. Tetrahedral borates are generally ob-
served to be less reactive than trigonal ones (6). The bonding in KBO,
is still a matter of speculation. X-ray studies find evidence of trigonal
boron, while NMR results suggest tetrahedral co-ordination. In either
case, the metaborate should be no less inert than the glassy oxide. Since
the B—Cl bond energy is some 60 kcal/mole below the B—O bond energy
of 164 kcal/mole, the chlorine replacement reaction is seen to be highly
endothermic (6). Nevertheless, the report that Cly streams erode boric
acid surfaces (1c) at temperatures 300°K below the melting point of B,Og,
while Hy streams do not, implies some chemical effect. There may be

an opening of the B203 structure at temperatures so near the melting
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point. This would facilitate Cl penetration of and attack upon the oxide.

If metaborate poisons remain on the walls to within 300°K of their melt-

ing points, the Cl atom experiments should become feasible up to 900°K.
In that event, the predictions of activated complex theory (ACT)

and classical trajectory calculations for the H + DBr abstraction and ex-

change reactions could be tested in a region where they differ. It has

been shown (7) that a Sato surface for HDBr, which fits experimental

activation energies and room temperature abstraction fractions,

AF = k,/(k, +k) (E-1)
where
ks
H+ DBr —>» HD + Br (E-2)
and
ke
H + DBr ———— HBr + D , (E-3)

yields ACT and trajectory calculated AF's which have very similar tem-
perature dependences up to about 700°K. In the range 800 < T < 900°K,
the trajectory AF's are some 30-50% higher than the ACT ones. This
difference is larger than the accuracies claimed for the flow methods.
For example, ESR detection (1) yields absolute rate constants for

A + BC — AB + C type reactions to within 10%. It is readily seen that
when the abstraction fraction (equation E-1) is about 0.2 (the ACT value
for 900°K), a 10% uncertainty in the rate constants, ke and ka’ leads to
a 17% error limit (95% confidence) in the experimental AF. Thus the
experimental AF at temperatures approaching 8900°K could be used to

comment on the theoretical predictions of Ref. 7.
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This is but one small example of the utility of high tempera-
ture poisons. The reactions of H atoms hold even greater theoretical
interest, and with the aid of potassium metaborate, they may be observed

up to the 1220°K melting point in these flow experiments.
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