
High-Cycle Dynamic Cell Fatigue with Applications on
Oncotripsy

Thesis by
Erika Figueroa-Schibber

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy in Space Engineering

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2020
Defended September 27, 2019



ii

© 2020

Erika Figueroa-Schibber
ORCID: 0000-0002-6629-297X

All rights reserved



iii

ACKNOWLEDGEMENTS

I would like to express my most profound appreciation to my advisor Professor
Michael Ortiz, for his guidance and unparalleled support. Without his advice and
expertise, this research and dissertation would not have happened.

Moreover, I would like to thank the members of my committee, Professors Domniki
Asimkai, Guruswami Ravichandran, and Morteza Gharib, for their encouragement,
support, and feedback. I also want to acknowledge Professor Mikhail Shapiro for
his helpful advice throughout my project. His suggestions and invaluable insight
into the experimental observations have enabled me to build a better model of
Oncotripsy.

In addition, I want to thank Stefanie Heyden for introducing and guiding me at the
early stages of this project. Special thanks to David Mittelstein for his collaboration
and invaluable work on the Oncotripsy experiments. Particularly helpful during his
visit to Caltech was Professor Laurent Stainier, who spend hours with me looking
for bugs in my code. I very much appreciate Mauro Rodriguez’s help, who taught
me about bubble dynamics.

I gratefully acknowledge the funding sources towards my Ph.D. The Keck Institute
for Space Studies fundedme throughmy first year at Caltech. My research would not
have been possible without the support of the Jones Family Trust Caltech Innovation
Initiative and the funding of the Amgen Bioengineering Research Program.

My years at Caltech would not have been the same without the members of my
group. Thanks to Lydia, who went above and beyond to make my stay at Caltech
better. I will always cherish the coffee breaks with Trent and Will, in which we will
start talking about math problems and finish on how to make our plots look pretty.
Being a teaching assistant would not have been the same without the other A-Team
members, Arnold and Will. I also want to thank Amir for the time we spent talking
about my research and on the ideas that came with such conversations.

I have always been amazed by Caltech’s fantastic staff. Everyone I met has always
been willing to help me. Christine Ramirez has welcomed me in her office with a
smile since the first day I stepped in Galcit. Erin-Kate Escobar has supported and
helped me in every attempt to make Caltech a more inclusive place. Working with
her in the Women’s Engagement Board has been one of the best experiences I had in



iv

grad school. Laura Flower and Daniel Yoder have made my life easier as I navigated
the U.S. as an international student.

My deepest gratitude goes to my friends, who filled one of the most stressful times in
my life with happymemories. My first year wouldn’t have been the same without the
support of my classmates. In particular, I recall all those evenings doing homework
or studying for quals with Fabien and Simon. I also feel very fortunate to have cross
paths with my loving friends Ana, Becky, Kavya, Tori, and Ying-Shi. Caltech would
not have been the same without them, and I will treasure their friendship forever.

Finally, I want to express my most profound gratitude to my family, in particular to
my dad, sisters —Connie and Evelyn—, and brothers-in-law—Gaston and Pablo—
for their continuous encouragement and support throughout my years of study. They
are my biggest fans and cheerleaders, and I would not have come to Caltech and
accomplished this without them.



v

ABSTRACT

The method of oncotripsy (from Greek, onco- meaning “tumor” and -tripsy “to
break”) exploits aberrations in the material properties and morphology of cancerous
cells in order to target them selectively by means of tuned low-intensity ultra-
sound. Compared to other noninvasive high-intensity ultrasound treatments that
ablate unhealthy tissue, such as lithotripsy (which utilizes shock waves to fragment
stones within the kidney and ureter) and histotripsy (which uses pulsed cavitation
ultrasound to destroy tissue) oncotripsy is a cancer treatment with the capability
of targeting unhealthy tissue with minimal damage to healthy cells in the ablation
process.

We propose a model of oncotripsy that follows as an application of cell dynamics,
statistical mechanical theory of network elasticity, and ’birth-death’ kinetics to
describe processes of damage and repair of the cytoskeleton. We also develop
a reduced dynamical model that approximates the three-dimensional dynamics of
the cell and facilitates parameter studies, including sensitivity analysis and process
optimization.

The dynamical system encompasses the relative motion of the nucleus with respect
to the cell membrane and a state variable measuring the extent of damage to the
cytoskeleton. The cell membrane is assumed to move rigidly according to the
particle velocity induced in the water by the insonation. The dynamical system
evolves in time as a result of structural dynamics and kinetics of cytoskeletal damage
and repair. The resulting dynamics is complex and exhibits behavior on multiple
time scales, including the period of vibration and attenuation, the characteristic
time of cytoskeletal healing, the pulsing period, and the time of exposure to the
ultrasound. We also account for cell variability and estimate the attendant variance
of the time-to-death of a cell population. We show that the dynamical model predicts
— and provides a conceptual basis for understanding — the oncotripsy effect and
other trends observed in experiments.
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mated mean value of the experiments at 500 and 670 kHz, respectively. 89
5.4 Normalized sensitivity parameters D f . . . . . . . . . . . . . . . . . 89
5.5 Geometry, mass and effective mechanical properties used in the com-

parison of the reduced model to the finite element model. . . . . . . . 90
5.6 Frequency shift between the finite element model and the reduced

model. The displacement and damage were obtained from a fre-
quency response analysis up to 0.1ms. There is a shift in frequency
between the maximum of the displacement and the damage. The
maximum damage occurs at the undamped frequency. . . . . . . . . 92

5.7 Error in the displacement between the finite element model and the
reduced model, with T=0.1ms, V=1mm/ms and tr=2ms. This com-
parison is performed at each model respective frequency of reso-
nance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.8 Error in the damage between the finite element model and the reduced
model, with T=0.1ms, V=1mm/ms and tr=2ms. This comparison is
performed at each model respective frequency of resonance. . . . . . 92



xvii

6.1 Mean and variance for the cancerous cell parameters from calibration
to experiments tr , ω0, ξ and qc. . . . . . . . . . . . . . . . . . . . . 103

6.2 Proposed mean and variance for the healthy cell parameters tr , ω0, ξ
and qc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Variability in cell-dead (CD) ratio of healthy (h) to cancerous cell (c)
for different conditions of frequency, pressure and exposure time. . . 107

6.4 Summary of cell properties and the corresponding resonant frequen-
cies f0. Note: when the diameter of a specific cell line was not found
in the literature, we use the diameter of another cell from the same
tissue. We also compute a second frquency of resonance, related to
a two-degrees of freedom system. . . . . . . . . . . . . . . . . . . . 119



1

C h a p t e r 1

INTRODUCTION

The method of oncotripsy (from Greek, onco- meaning “tumor” and -tripsy “to
break”) exploits aberrations in the material properties and morphology of cancerous
cells in order to target them selectively by means of tuned low-intensity ultra-
sound. Compared to other noninvasive high-intensity ultrasound treatments that
ablate unhealthy tissue, such as lithotripsy (which utilizes shock waves to fragment
stones within the kidney and ureter) and histotripsy (which uses pulsed cavitation
ultrasound to destroy tissue) oncotripsy is a cancer treatment with the capability
of targeting unhealthy tissue with minimal damage to healthy cells in the ablation
process.

A wealth of observational evidence reveals that healthy and cancerous cell have
different morphologies and material properties, cf., e.g., Figs. 1.1 and 1.2. A
substantial size difference between normal nuclei, with an average diameter of 7 to
9 microns, and malignant nuclei, which can reach a diameter of over 50 microns,
often characterizes malignancy [7]. It has also been found that the cell stiffness of
metastatic cancer cells ismore than 70%softer than the benign cells that line the body
cavity [13]. This was found using atomic force microscopy to measure the stiffness
of live metastatic cancer cells taken from pleural fluids of patients with suspected
lung, breast, and pancreas cancer. Swaminathan et al. [76] found that cells with
the highest invasion and migratory potential are up to five times softer than healthy
cells using a magnetic tweezer system to measure the stiffness of human ovarian
cancer cell lines. Smolyakov et al. [72] experiments showed increasing cytoskeletal
disorganization as cells invasiveness grows (Fig. 1.3). Experimental investigations
of hepatocellular carcinoma cells (HCC) have also found that an increase in stiffness
of the extracellular matrix (ECM) promotes HCC proliferation [70] and advances
malignant growth [43]. This implies that altered mechanics properties are not just
a diagnosis, but possibly a causal mechanism for cancer cell growth.

Owing to these and other similar observed aberrations in material properties and
morphology attendant to malignancy, the cell resonance frequencies occurs are ex-
pected to differ markedly between healthy and cancerous cells. In a recent numerical
study [29], Heyden and Ortiz have shown that HCC natural frequencies lie above
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Figure 1.1: Optical images showing deformability on three breast cells due to a
constant stretching laser power of 600mW. Deformability increases in the cancerous
MCF-7 and ModMCF-7 cells in comparison to the healthy cell MCF-10. Reprinted
from [75], with permission from Elsevier.

Figure 1.2: (a-d) Healthy lymphocyte cells from non-Acute Lymphoblastic
Leukemia patients. (e-h) Probable lymphoblast cells showing marked differences
in size and morphology with respect to the healthy cells. Reprinted from [39].
Copyright © 2011 IEEE.

those of healthy cells, with a typical gap in the lowest natural frequency of about
37 kHz. For instance, they computed the fundamental frequency of HCC and health
cells to respectively be on the order of 80 kHz and 43 kHz. Heyden and Ortiz [29]
posited that, by exploiting this spectral gap between cancerous and healthy cells,
oncolysis, or killing of cancerous cells, can be induced selectively using carefully
tuned ultrasound while simultaneously leaving normal cells intact, an effect that
they referred to as oncotripsy. Specifically, by studying numerically the vibrational
response of HCC and healthy cells, Heyden and Ortiz [29] found that, by carefully
tuning the frequency of the harmonic excitation, lysis of the HCC nucleolus mem-
brane could be induced selectively at no risk to healthy cells. They also estimated
the acoustic density required for oncotripsy to operate to be in a low-intensity ul-
trasound range of the order of a few W/cm2. This low-intensity requirement sets
oncotripsy apart from High-Intensity Focused Ultrasound (HIFU), which acts via
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Figure 1.3: Cytoskeletal organization in breast tumor cells varies with the level of
invasiveness. In the SKBR3 cell (left), the least invasive, the filaments are well-
organized (short solid arrow). On the contrary, in the MDA-MB231 cell (right) the
fibers are of unequal thickness and lengths, and there is no preferred organization.
Reprinted with permission from [72]. Copyright © 2016 American Chemical
Society.

thermal ablation and is non-specific as to cancer cell selectivity.

The first numerical calculations of Heyden and Ortiz [29] neglected viscoelasticity
and damping in the cell and ECM. Under these conditions, the resonant response of
the cells exhibits rapid linear growth in time, and the cells are predicted to attain lysis
relatively quickly. However, experimental studies suggest that the material behavior
of the different cell constituents is viscoelastic [24, 32, 63, 84]. In a subsequent
study, Heyden and Ortiz [28] investigated the influence of viscoelasticity on the
oncotripsy effect. They assumed Rayleigh damping and estimated the damping
coefficients from dynamic atomic force microscopy (AFM) experiments on live
fibroblast cells in buffer solutions [9]. They concluded that, for these cells, the main
effect of viscoelasticity is a modest reduction in the natural frequencies of the cells
and an equally modest increase of the time to lysis of the cancerous cells. Based on
these results, they speculated that oncotripsy remains viable when viscoelasticity is
taken into account.

Following these leads, Mittelstein et al. [54] have endeavored to assess the on-
cotripsy effect in carefully designed laboratory tests involving several cancerous cell
lines in aqueous suspension. They have developed a system for testing oncoptripsy
that includes a tunable source of ultrasonic transduction in signal communication
with a control system that allows control of several parameters, including frequency
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and pulse duration of the ultrasonic transduction. Transducers were selected to pro-
duce ultrasound pulses in the frequency range of approximately 100 kHz to 1 MHz,
a pulse duration range of 1 ms to 1 s, acoustic intensity up to 5 W/cm2, and output
pressure up to 2 MPa. The instrumentation of the system allows the measurement of
estimated cell death rates as a function of frequency, pressure, pulse duration, duty
cycle, and the number of cycles.

In agreement with the original oncotripsy concept, the experiments confirm that
the application of low-intensity pulsed ultrasound (LIPUS) can indeed result in
high death rates in the cancerous cell population selectively, i. e., simultaneously
with small or zero death rates among healthy cells. The death and survival rates
depend critically on the frequency of the ultrasound, indicative of the dynamical
response of the cells. The oncotripsy effect is observed to be maximized at a
single measured frequency for a given type of cells, and diminishes at both larger
and smaller frequencies. This behavior is consistent with a resonant response in
cells. However, under the conditions of the experiments, cell death is observed to
require the application of a much larger number of ultrasound cycles than anticipated
by either [29] or [28], suggesting that the cell dynamics is much more heavily
damped than estimated in [28] based on the AFM measurements of [9]. The
observations reported by Mittelstein et al. [54] suggest that, under the conditions
of the experiment, cell death occurs through a process of slow accumulation of
damage over many cycles. This contrasts with the rapid rupture of cell membranes,
as hypothesized in [29].

Figure 1.4: Live yellow fluorescent protein (YFP) tagged actin network staining of cells
before and 5 min after exposure to 290 kPa acoustic pressure showing massive fiber disrup-
tion. Scale bar 10 µm. Reproduced from Ref. [55] with permission from The Royal Society
of Chemistry.
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Several experimental investigations suggest a mechanistic basis for the oncotripsy
effect observed by Mittelstein et al. [54]. The susceptibility of the cytoskeleton
dynamics to therapeutic ultrasound, at strains of the order of 10−5 and frequencies
in the MHz range, has been noted by [55]. At low acoustic intensities, no struc-
tural network changes are observed throughout the experiments. By contrast, at
sufficiently high acoustic intensities the actin network is progressively disrupted and
disassembles within three minutes following exposure, Fig. 1.4. This disruption is
accompanied by a 50% reduction in cell stiffness. Remarkably, after exposure to
moderate acoustic intensities, the stiffness of the cell gradually recovers and returns
to its initial value. The mechanisms of actin stress-fiber repair have been exten-
sively studied and reasonably well-understood at present, cf., e. g., [57, 71] and
references therein. By contrast, at high acoustic intensities, no recovery takes place
after cessation throughout the observation.
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Figure 1.5: Confocal microscopy of CT-26 cells immediately after LIPUS treatment at
500kHz, focal pressure of 1.4MPa and pulse durations 0 ms (control), 1 ms and 30 ms
(reproduced from [54]). Dead cells stained red with fixable LIVE/DEAD, actin cytoskele-
ton stained green using phalloiding, and nucleus stained blue with DAPI. Confocal images
shows disrupted actin cytoskeleton ring and significantly decreased actin stain intensity. Mi-
croscopy suggests LIPUS cytodisruption is coupled with persistent cytoskeletal disruption.

To gain insight into the biomolecular mechanisms of LIPUS cytodisruption, Mittel-
stein et al. [54] examined CT-26 cells after 2-minute LIPUS treatment at 500 kHz
and focal pressure of 1.4 MPa. To evaluate the effect of LIPUS on the cytoskeleton,
they plated CT-26 cells after LIPUS and performed confocal microscopy immedi-
ately after insonation. Confocal images show the actin cytoskeleton, stained with
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phalloidin-conjugated green dye, as a ring on the cell periphery, Fig. 1.5. This
ring is disrupted and shows diminished fluorescence for a 30 ms pulse duration,
suggesting that cytodisruption is coupled with persistent cytoskeleton disruption.
These observations are consistent with reports for other systems that LIPUS dis-
rupts the cellular cytoskeleton [59, 66]. In contrast, with 1 ms pulse duration, the
actin cytoskeleton appears unchanged from the negative control. Mittelstein et al.
[54] conclude that these observations suggest that LIPUS induces actin cytoskeletal
disruption and activates apoptotic cell-death pathways.

In the present work, we argue that these competing mechanisms of cytoskeletal
disruption and self-repair, when coupled to the—possibly resonant—dynamics of
the cells over many insonation cycles, underlie the oncotripsy observations of Mit-
telstein et al. [54]. Based on this hypothesis, we develop a plausible theoretical
model of oncotripsy that accounts for several of the key experimental observations
of Mittelstein et al. [54], including the dependence of the cell death rates on fre-
quency, pulsing characteristics and number of cycles. The goals are to explain the
mechanism of resonance of cells in suspension theoretically, determine the con-
trol parameters for the low-intensity focused ultrasound, and predict the bounds in
which cancerous cell death is likely. We posit that, under the conditions of the
experiments, cells in suspension subjected to LIPUS act as frequency-dependent
resonators and that the evolution of the cells is the result of competing mechanisms
of high-cycle cumulative damage and healing of the cytoskeleton. We recall that
structural materials can fail at load levels well below their static strength through
processes of slow incremental accumulation of damage when subjected to a large
number (millions) of loading cycles, a phenomenon known as mechanical fatigue
[74]. Likewise, whereas one single LIPUS pulse is unlikely to cause significant
cytoskeletal damage, we posit that over millions of cycles damage can accumulate
to levels that render the cell unviable and cause it to die. By analogy to struc-
tural materials, we refer to the hypothesized necrosis mechanism as mechanical cell
fatigue.

We note that, whereas the elasticity, rheology, and remodeling of the cytoskeleton
have been extensively studied in the past (cf., e. g., [18, 33, 47, 56]), no model of cu-
mulative damage and mechanical cell fatigue appears to have been as yet proposed.
The model proposed in this work follows as an application of cell dynamics, statis-
tical mechanical theory of network elasticity, and ’birth-death’ kinetics to describe
processes of damage and repair of the cytoskeleton. We also develop a reduced



7

dynamical model that approximates the three-dimensional dynamics of the cell and
facilitates parameter studies, including sensitivity analysis and process optimization.
The reduced dynamical system encompasses the relative motion of the nucleus to
the cell membrane and a state variable measuring the extent of damage to the cy-
toskeleton. The cell membrane is assumed to move rigidly according to the particle
velocity induced in the water by the insonation. The dynamical system evolves
in time as a result of structural dynamics and kinetics of cytoskeletal damage and
repair. The resulting dynamics are complex and exhibits behavior on multiple time
scales, including the period of vibration and attenuation, the characteristic time of
cytoskeletal healing, the pulsing period and the time of exposure to the ultrasound.
We show that this multi-time scale response can adequately be accounted for by
recourse to Wentzel–Kramers–Brillouin (WKB) asymptotics and methods of weak
convergence. We also account for cell variability and estimate the attendant variance
of the time-to-death of a cell population using simple linear sensitivity analysis. The
reduced dynamical model predicts, analytically up to quadratures, the response of a
cell population to LIPUS as a function of fundamental cell properties and process
parameters. We show, by way of partial validation, that the reduced dynamical
model indeed predicts—and provides a conceptual basis for understanding—the
oncotripsy effect and other trends in the data of Mittelstein et al. [54], including the
dependence of cell-death curves to pulse duration and duty cycle. Finally, employ-
ing the reduced model, we explore a practical application of the theory by creating
bounds on the parameters for LIPUS that guarantee the demise of the cancerous cell
while keeping healthy cells intact.
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C h a p t e r 2

EXPERIMENTAL BASIS ON ONCOTRIPSY

In the last years, low-intensity ultrasound has gained attention for its potential
in therapies that promote physiological processes without significant changes in
temperature. Bone healing, neural stimulation, and enhancement of drug uptake are
just some of the possible applications. Low-intensity pulsed ultrasound (LIPUS)
is a form of ultrasound delivered at low intensities (<3mW/cm2) and in pulses that
control the dosage of acoustic energy deposited. The ultrasound is described in terms
of its pressure (or intensity), frequency, duty cycle, pulse length, and exposition time.
Figure 2.1 and Figure 2.2 show schematics of these measures. On a pulsed wave,
the duty cycle refers to the ratio of time the ultrasound is ON between the beginning
of two consecutive pulses. The ON time is known as the pulse duration, and the
OFF time as the listening time. The number of pulses in the exposure time, i.e., over
the length of the experiment, is known as the pulse repetition frequency.

Following the leads on the oncotripsy effect, Mittelstein et al. [54] have designed
laboratory tests involving several cancerous cell lines in aqueous suspension under
LIPUS. In this chapter, we present a brief summary of the experimental system
they developed, as well as data and observations resulting from the study that are
directly relevant to the present work. Their original publication may be consulted
for a complete account.

Pulse duration Listening time

Peak
Negative
Pressure

Pulse repetition period

Figure 2.1: Schematic of pulsed ultrasound period.
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Figure 2.2: Schematic of pulsed ultrasound period for different pulse durations and two
duty cycles (DC). (a) DC=10%. (b) DC=50%.

2.1 Experimental system
In order to best proceed in understanding the nature of oncotripsy, we begin by first
describing the experimental setup that will allow us to excite the system of interest
and provide data for analysis. The experimental setup, Fig. 2.3a, was developed to
investigate the response of cells in aqueous suspension to ultrasound insonation.

Mittelstain et al. [54] placed suspension cells within a mylar film pocket that is
submerged in a water bath. The cells then mantain acoustic contact with the

Pulse duration

Listening time

Pulse repetition period

Figure 2.3: Experimental setup of Mittelstein et al. [54]. Schematic drawing of the LIPUS
system and high frame-rate camera setup enabling cellular imaging at a frame rate of 5
MHz. (HFR: high-framerate. FUS: focused ultrasound.) Inset: Schematic of pulse duty
cycle.
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ultrasound transducer. Their investigation indicates that the cell disruption effect,
seen through low-intensity pulsed ultrasound (LIPUS), requires the presence of
spatial standing waves. Such waves are generated by the reflection of the ultrasound
wave off of an acrylic or metal acoustic reflector. Several hypotheses were proposed
within referenced paper to justify this observed requirement, but they fall outside
the scope of this thesis. In summary, under the effect of standing waves, the
cytodisruption was significantly higher than without them. In tests without the
standing wave and double PNP ( Peak Negative Pressure), the level of cytodisruption
was still substantially lower. Additionally, they observed that, only under the effect
of standing waves, the cells generated both stable and inertial cavitation, which
acted as local amplifiers of the acoustic pressure and cytodisruption effect. They
suggested that the presence of standing waves and cavitation is required for cell
death to happen. However, cavitation is not a sufficient condition on cell killing,
as peripheral blood mononuclear cells (PBMCs) generate similar cavitation to the
other tested cells, and were not strongly disrupted by LIPUS.

The transducer in the water tank is positioned directly adjacent to the mylar pocket
such that the acoustic axis is perpendicular to the optical axis, which illuminates the
sample via laser light. The mylar pocket is supported by a three-sided acrylic frame
with one of the three sides serving as an acoustic reflector to induce the required
standing waves. A water immersion pan-fluor objective is lowered into a water
bath, and a series of prism mirrors and converging lenses deliver the image into a
high-speed camera. Images are acquired 100 ms after the arrival time of the pulse,
to observe the effect of prolonged ultrasound exposure.

The experiments performed to investigate the oncotripsy theory aim to isolate the
mechanical effects of ultrasound from other bioeffects, and thus prevent local heat-
ing. To maintain low-intensity ultrasound conditions (Ispta < 5 W/cm2), pulsed
ultrasound tests were performed, as shown in Fig. 2.4a. LIPUS was applied at a
10% duty cycle; however, the pulsing parameters were varied to investigate their role
on ultrasound cytodisruption. The pulse duration corresponds to the length of each
pulse during which the ultrasound is active. By varying the pulse duration, while
maintaining a constant duty cycle, the pulsing pattern of the ultrasound applied to
the cells can be modified while maintaining constant acoustic energy deposition
within the cells. To further investigate the effects of changing ultrasound parameters
on cytodisruption, three different transducers that operate at 300 kHz, 500 kHz, and
670 kHz were used during this investigation. To provide consistent comparisons,
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Figure 2.4: a) Typical high frame-rate camera recordings showing minimal K-562 cell drift
after 100ms of 670 kHz ultrasound exposure (scale bar 20 microns). b)Measured velocity of
K-562 cell under an incident plane wave of pressure amplitude P0 = 1.4 MPa and excitation
frequency f0 = 670 kHz. Video captured by Mittelstein et al. [54] and processed with
Ncorr[8] (scale bar 10 microns).

they were configured to produce a negative peak pressure of 0.7 MPa at their focus
in free water.

Cell motion
Recordings from experiments show that the entire field-of-view oscillates in the
direction of ultrasound propagation (see Fig. 2.4a). The observed membrane de-
formation was minimal, which is consistent with the damping expected for the
exceedingly low Reynolds number characteristic of cells in aqueous suspension.
Fig. 2.4b shows the measured trajectory of a K-562 cell upon insonation of focal
pressure of P̄0 = 2P0 = 1.4 MPa, frequency f0=670 kHz and wavelength λ = 2.2
mm. As may be seen from the figure, the cell undergoes an ostensibly harmonic
motion. The period of the motion is T = 1.4 µs, which corresponds to a fre-
quency of f = 714 kHz. In addition, the amplitudes of the motion in the x- and
y-directions are ux = 0.23 µm and uy = 0.022 µm, respectively, for a total dis-
placement amplitude of u =

√
u2x + u2y = 0.231 µm and a velocity amplitude of

v = 2π f u = 1.037 m/s. By way of reference, the particle velocity amplitude of the
medium is v0 = P̄0/ρ0c0 = 0.97 m/s, where ρ0 = 1000 Kg/m3 is the mass density
of water and c0 = 1450 m/s is its sound speed. We thus conclude that, as expected
for the long wavelength of the insonation relative to the cell size, the cells move
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Cell
Line

Morphology Tissue Disease Source

K-562 Lymphoblast Lymphocyte Chronic myeologeneous
leukemia

Human cell line

U-937 Monocyte Lymphocyte Pleura/pleural effusion,
lymphocyte, myeloid

Human cell line

T-Cells Lymphocyte Peripheral blood
cells, isolated
CD3+

Human primary cells

Table 2.1: Haematopoietic and lymphoid malignancies tumor cells used in the
experiments of Mittelstein et al. [54] classified by morphology, type and disease.
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Figure 2.5: Tests of cancerous K562 and U937 cells and healthy CD4 T-cells at
a PNP of 0.7MPa and a time of exposure of 60 seconds, showing the effect of
frequency and pulse duration on cell death rates. In call cases, the pulse duration is
10% of the total pulse repetition period. (a) Cell death fraction vs pulse duration,
and (b) cell death fraction at 20 ms pulse duration vs type. Reproduced from [54].

Cell-death data
The experimental study of Mittelstein et al. [54] observed that LIPUS conditions at
specific frequencies and pulsing parameters can achieve cell selective cytodisruption.
This capability to tune ultrasound parameters to cause selective disruption in cancer
cells while sparing healthy cells is a novel finding, and fits with many of the
predictions of the oncotripsy project. The morphology, type, and related disease for
each cell line are listed in Table 2.1.

Figure 2.5 demonstrates that cells can have a varied response to ultrasound based
upon the ultrasound waveform. All data points in this figure represent cell death
assessed using LIVE/DEAD assays after exposure to an equal dosage of acoustic
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Figure 2.6: Tests of cancerous cell K562 at a free field pressure of 0.7 MPa, pulse
duration of 100 ms and duty cycle of 10%, showing the effect of frequency and
number of cycles. (A) Cell death vs number of cycles (B) Cell death at 1.8 million
cycles. Unpublished data from Mittelstein et al. [54].

energy, though administered with different signal frequencies and pulse durations.
These tests were all performed on cells in suspension for an exposure time of 60
seconds, a duty cycle of 10%, and in a spatial standing wave setup with a free
field pressure of 0.7 MPa. Remarkably, high cell-death rates are observed for
both the cancerous K-562 and U937 lines at 500 kHz signal frequency and 20 ms
pulse duration while, under identical conditions, the control T-cells remain nearly
unaffected (see Fig. 2.5b). As a frequency-dependent resonant response, these
observations bear out the oncotripsy effect —and its associated selective lethality—
for cells under harmonic excitation. The data in Fig. 2.5 also shows a strong
dependence of the cell response on pulse duration, with cell death enhanced at
higher pulse durations. We take this dependence to suggest that the cell response is
the result of two competing effects with vastly different characteristic times: damage
accumulation during the on-part of the cycle and cell repair and healing during the
entire time of exposure. The efficiency of the duty cycle may then be expected to
depend sensitively on the relative values of the pulsing period and the characteristic
times for damage accumulation and healing.

Figure 2.6 shows data from tests of cancerous K562, that we will model as being
exposed to acoustic pressure waves with a peak negative pressure of 0.7 MPa in
free water and a pulse duration of 100 ms, showing the effect of frequency and
the number of cycles. In all cases, the pulse duration is 10% of the total pulse
repetition period, or a duty factor of 0.1. As may be seen from these figures, cell
death does not occur instantly but requires a certain exposure time to occur. We take
this observation to suggest that death occurs by a process of damage accumulation
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over many insonation cycles. It is also evident from the figures that some cells die
relatively early whereas others require considerably large number of cycles to die.
These observations are suggestive of a broad variability in the susceptibility of the
cell population to LIPUS.

2.2 Discussion of experimental outcomes and concluding remarks
The oncotripsy effect is based on the hypothesis that differences in mechanical
properties and geometries of normal and abnormal cells can be exploited to target
the latter at their resonance frequency to break them down.

Mittelstein et al. [54] built an oncotripsy experiment set up to test this hypothesis.
In agreement with this concept, the experiments confirm that the application of
LIPUS can result in high death rates in the cancerous cell population at certain
frequencies with low death rates among healthy cells. The death and survival rates
depend critically on the parameters of the ultrasound, such as frequency and pulse
duration, indicative of the dynamical response of the cells.

The cause of cell death in the experiments is still unknown, but through confocal
microscopy, it was shown that the cytoskeleton undergoes a persistent disruption
during LIPUS (see Fig.1.5). The issue of cavitation in Mittelstein et al. [54] is
intriguing and should be explored in further computational research. Cavitation, as
the process of mechanically-driven vaporization, is of stochastic nature and could
be extra or intracellular. A spectrogram of the scattered signal showed significant
cavitation at high pulse duration or high focal pressures, but only in the presence of
cells. It could be indicative that cells could act as impurities in the media, increasing
the probability of bubble formation. Interestingly, among all the cells tested, cell
death has not been observed for PBMCs. Finally, the final cause of cell-death could
be an interplay between oncotripsy and cavitation.
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C h a p t e r 3

FREQUENCY RESPONSE OF WHITE BLOOD CELLS

In this chapter, we study the frequency response of cancerous and healthy cells. The
experiments by Mittelstein et al. [54] show through high-speed camera recordings a
cell oscillating in the direction of the ultrasound propagation with minimal observ-
able cell membrane deformation. Furthermore, cancerous cells under the influence
of a harmonic excitation, with constant energy intensity, have a higher cell-dead
fraction at 500kHz than at any other neighboring frequency. This observation sug-
gests that the driving force is working in the range of the natural cellular frequency.
Based on experimental observations of a dense and stiffer nucleus, we hypothesize
that this natural frequency is the first longitudinal mode of the cell, in which the
nucleus acts as a resonator.

This chapter is organized as follows. First, we review the mechanical properties and
morphologies of the white blood cells involved in the experiments of Mittesltein et.
al. [54]. Second, we perform a finite element modal analysis on these cells with
varying elasticity, nucleus, and cell sizes, and make observations on their influence
of the natural frequencies of the cell. Finally, we calibrate the shear modulus of a
cancerous and healthy cell to the experiments and analyze the highest modal stresses
and strains location.

3.1 Histology of white blood cells
In this section, we explain the morphology, dimensions, and shape of healthy and
cancerous white blood cells (WBC). The first subsection is concerned with the
different types of WBC and their typical characteristics, whereas the second one is
a review of the mechanical properties and morphology of cancerous white blood
cells.

White blood cells morphology, dimensions and shape
Blood is composed of the plasma and blood cells, with the latter divided into three
major groups: red blood cells (RBC) or erythrocytes, white blood cells (WBC) or
leukocytes, and platelets or thrombocytes. The primary function of the first group
is to transport oxygen and release it into tissues and conforms by number the most
substantial elements in the blood. White blood cells are part of the immune system
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and are present in a ratio of 1 WBC to 500-1000 RBC [23].

WBC are found not only in the bloodstream but also in tissues. In the body, they can
be shaped differently, but in suspension, these cells become almost spherical. They
are conformed by cytoplasm and nucleus, being the latter the densest constituent of
the cell. In adults, RBC and platelets are non-nucleated, while the size and number
of the nucleus in WBC depend on the type.

Based on the characteristics of their constituents, WBC can be classified into two
groups: (1) granular cells, granulocytes or polymorphonuclear leukocytes, and (2)
non-granular cells, or mononuclear leukocytes [23]. In the first group, granules
— small particles released as an immune response — can be found throughout the
cytoplasm, and the nucleus is lobed or segmented. In the second group, instead,
there are no granules, and there is only one defined nucleus.

Figure 3.1: Blood Cells Development

Granulocytes or polymorphic cells

• Neutrophil. It is the leukocyte that is in blood in the largest concentration [1].
Its diameter varies between 10 to 12 µm. The granules are fine and evenly
distributed throughout the cell. The nucleus shape depends on the stage of life,
and transitions from an unsegmented cylindrical or banana-shaped nucleus,
to a segmented form of two to five lobes, joined by a nuclear filament [23].

• Eosinophil. Its diameter varies between 10 to 14 µm, and it is very fragile.
The nucleus of the eosinophil is larger but less dense than the neutrophil, and
it evolves from an unsegmented band to a two-lobed or three-lobed form [23].
The granules are 1µm length-ovoids.



17

• Basophil. Its the smallest of the granulocytes, with a diameter between 8 to
10 µm. It also is the one with the least concentration in human blood [1]. The
nucleus has an irregular shape, and the granules vary in size (0.5-1µm ) and
closely packed [23].

Non-Granular or monomorphic cells

• Lymphocytes. These cells are divided into two main groups due to their
variability in size, though no clear division exists between both: small and
large lymphocytes. The large lymphoblast is about 13.5µm, and it has one
large spherical, ovoidal, or bean-shaped nucleus [23]. The small lymphoblast
varies in size from 6µm to 8µm, and it also has one large spherical nucleus,
which frequently has a small indentation [23]. Lymphocytes can also be
divided in subtypes B and T, with the first ones making antibodies and the
latter killing infected cells and regulating other white blood cells.

• Monocytes. According to the shape of their nucleus, these cells are divided
into monocytes and the transitional cell. The first ones vary in size from 16
to 22 µm with a very irregular surface, and the nucleus is “spherical, ovoidal,
slightly indented, or bean- or kidney-shaped" [23]. The transitional cell is
larger than the monocyte, with a usual size of at least 20µm and an elongated,
twisted, and E-shaped nucleus.

White blood cells lines type, size and mechanical properties
Leukemia is a type of cancer that starts in blood-forming tissue, whereas Lymphoma
starts in the lymphatic system. Both of them involve white blood cells (WBCs). In
our study, we used T-Cells, K-562, and U-937, which are WBCs from the family
of the Non-Granular or Monomorphic Cells. The morphology, type, and related
disease for each cell line can be seen in Table 3.1.

Morphology A criterion for malignancy is the size difference between normal
nuclei, with an average diameter of 7 to 9 microns, and malignant nuclei, which
can reach a diameter of over 50 microns [7]. Early studies [25] showed that the
nuclear-nucleolar volume ratios in healthy tissues and benign as well as malignant
tumors, do not differ quantitatively. Nucleoli volumes of normal tissues, however,
are found to be significantly smaller than the volume of nucleoli in cancerous tissues
[25]. In the family of haematopoietic and lymphoid malignancies tumor cells,
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Cell
Line

Morphology Tissue Disease Source

K-562 Lymphoblast Lymphocyte Chronic myeologeneous
leukemia

Human cell line

U-937 Monocyte Lymphocyte Pleura/pleural effusion,
lymphocyte, myeloid

Human cell line

T-Cells Lymphocyte Peripheral blood
cells, isolated
CD3+

Human primary cells

Table 3.1: Haematopoietic and lymphoid malignancies tumor cells used in the
experiments of Mittelstein et al. [54] classified by morphology, type and disease.

Downey et al. [17] measured cell size with a flow cytometer, and reported mean
diameters of 8.3±0.05 µm, 6.05±0.039 µm and 8.13±0.042 µm for neutrophils,
lymphocytes and monocytes, respectively. In the same veins, Rosenbluth et al. [65]
found diameters of 12.4±1.2 µm for HL60 (myeloid cells), 11.5±1.5 µm for Jurkat,
an acute lymphoblastic T-cell leukemia cell line, and 8.3±0.6 µm for neutrophils.
Li et al. [45] measured the diameter of K-562 to be 28 µm, much larger than the
size of normal lymphocytes (6-20µm) and neutrophils (10-12 µm). The ratio of
nucleus-to-cell differs among cells, but in resting lymphocytes, the cell is mostly
occupied by its nucleuset al. [53]. The average volume of lymphocytes is 130 µm3

and for neutrophils 300 µm3 [53]. Zipursky et al. [86] measured the density of
monocytes (1.067-1.077 g/ml) and lymphocytes (1.073-1.077 g/ml) and found that
70% of the patients with acute leukemia had high-density lymphoblast.

Mechanical properties Themechanical properties of various cell components are
found to vary significantly in healthy and diseased tissues. Cross et al. [13], inves-
tigated the stiffness of live metastatic cancer cells using atomic force microscopy,
showing that cancer cells are more than 70% softer than healthy cells. Other cancer
types, including lung, breast, and pancreas cancer, display similar stiffness charac-
teristics. Using magnetic tweezers, Swaminathan et al. [76] found that cancer cells
with the lowest invasion and migratory potential are five times stiffer than cancer
cells with the highest potential. Likewise, increasing stiffness of the extracellular
matrix (ECM) promotes hepatocellular carcinoma (HCC) cell proliferation, thus
being a strong predictor for HCC development [70]. Enhanced cell contractility due
to decreased matrix stiffness results in an enhanced transformation of mammary
epithelial cells [64]. By contrast, a decrease in tissue stiffness impedes malignant
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growth in a murine model of breast cancer [43]. Various experimental techniques
have been employed to characterize the material properties of individual cell con-
stituents in both healthy and diseased tissues. Kim et al. [37] estimated the elastic
moduli of both cytoplasm and nucleus of hepatocellular carcinoma cells based on
force-displacement curves obtained from atomic force microscopy. Increased com-
pliance of cancerous and pre-cancerous cells was reported by Furhmann et al. [21],
who used atomic force microscopy to determine the mechanical stiffness of nor-
mal, metaplastic, and dysplastic cells, showing a decrease in the Young modulus
from normal to cancerous cells. The inhomogeneity in stiffness of the living cell
nucleus in normal human osteoblasts has been investigated using a non-invasive
sensing system Konno et al. [38]. These measurements show that the stiffness of
the nucleolus is three times larger than other nuclear domains. Dahl et al. [14]
measured the network elastic modulus of the nuclear envelope, independently of the
nucleoplasm, using micropipette aspiration. Their measurements suggest that the
nuclear envelope is much stiffer and stronger than the plasma membranes of cells.

With the use of atomic forcemicroscopy (AFM), Rosenbluth et al. [65] compared the
deformability of leukemia cells at low deformation rates. Fitting the experimental
data to a Hertzian contact model, they obtained an apparent stiffness of 855±670 Pa
forHL60 (myeloid cells), 48±35 for Jurkat cells, and 156±87 for neutrophils at 25oC.
Using a liquid droplet model, they obtained a cortical tension of 155±81 pN/µm,
21±13 pN/µm, and 48±20 pN/µm for the HL60, Jurkat and neutrophil, respectively.
Thompson et al. [78] found that, for indentations higher than 0.5microns, the average
Young modulus is 130 Pa for U-937, a diffuse large B-cell lymphoma cell line, and
40 Pa for Jurkat when they fit the atomic force microscopy curves data to a Hertzian
contact model. By a similar procedure, Li et al. [45] obtained a Young modulus of
0.2-0.4 kPa for Raji cells, a Burkitt’s lymphoma cell line, and 0.6-0.7kPa for K-562.
Downey et al. [17] measured the deformability of leukocytes using a cell poker at
20oC, and found out that lymphocytes and monocytes are stiffer than neutrophils.
Their force-displacement curves reported values of approximately 0.06 mdyn/µm
(600 pN/µm) for neutrophils, 0.095 mdyn/µm (950 pN/µm) for lymphocytes, and
0.14 mdyn/µm (1400 pN/µm) for monocytes. Zhou et al. [85] obtained the elastic
modulus of leukocytes through the rate-jump optical-tweezers indentation method.
This method yields a stiffness that is rate-independent. The authors reported values
of elastic modulus of approximately 68 Pa for K-562, 130 Pa for the K-562 nucleus,
92 Pa for HL-60, 45 Pa for macrophages, 30 for monocytes, and 19 for granulocytes.
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Numerous experimental studies have additionally suggested that the material behav-
ior of the different cell constituents is viscoelastic. Schmid-Schönbein et al. [69]
analyzed neutrophils stiffness employing micropipette aspiration experiments and
fitted the data to a standard linear solid viscoelastic model of the cell. The study
generated a long-term stiffness of k1 = 275±119 dyn/cm2 and a stiffness of k2 =
737±346 dyn/cm2 and a viscosity of µ=130±54 dyn-s/cm2 for the Maxwell ele-
ment. They additionally report that monocytes and eosinophils fall in the same
range. Based on particle-tracking microrheology, Panorchan et al. [63] determined
the viscoelastic properties of the cytoplasm of human umbilical vein endothelial
cells. Using micropipette aspiration techniques, Guilak et al. [24] quantified the
viscoelastic properties of isolated nuclei of articular chondrocytes and found that the
nucleus is almost twice as viscous as the cytoplasm. In an investigation involving
both cancerous and healthy cells, Zhang et al. [84] showed that human hepatocytes
and hepatocellular carcinoma cells have approximately identical viscoelastic prop-
erties. Measurements of individual cytoskeletal biopolymers have been presented
by Janmey [32], where the stress versus strain response and storage modulus are
reported for three primary cytoskeletal fibers.

3.2 Frequency response
This section is concerned with the computation of the modal vectors and the ef-
fective mass of the first longitudinal mode of vibration of the cell-nucleus system.
First, we study the influence of the mechanical properties and their size on the
eigenfrequencies. Second, we analyze the modal stresses and strains of a healthy
and cancerous cell.

The finite element model and analysis presented in this section are carried out in
ABAQUS [15].

Parameter analysis
To study the sensitivity of the cell longitudinalmode to themechanical properties and
size, we build several finite element models with varying sizes and stiffnesses. We
assume the cell to be spherical and composed by their major constituents: cytoplasm
and a concentric nucleus, and we neglect the effect of the plasmamembrane, nuclear
envelope, and other organelles.

Neglecting viscous effects, we model the cell constituents to follow a Neo-Hookean
strain energy density. We consider three different cell radii: 4.5µm, 9µm and 18µm,
with nucleus-to-cell ratio constant. At constant cell diameter of 9 µm, we study
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three different nucleus diameters: 3.6, 5.4, and 7.2 µm, equivalent to 0.06, 0.2, and
0.5 nucleus-to-cell volume ratios. Owing to the large variability of shear modulus
reported, we vary the shear modulus of the constituents in the range 50Pa to 50kPa.
For these computations, we consider the cells to be almost incompressible and set
the poisson ratio to 0.45 .

The results of the parameter analysis are presented in Figure 3.2. The plots indicate
that, under all the combinations under study, the first longitudinal mode varies within
the range 20kHz to 1.5MHz. A closer inspection shows that a stiffer cytoplasm and
nucleus result in a higher natural frequency, independently of the size and nucleus-
to-cell ratio. At decreasing nucleus-to-cell ratio (Fig. 3.2a and b) or smaller cells
(Fig. 3.2c and d) the frequency of resonance increases.

Eigenfrequencies and eigenmodes of a healthy and cancerous cell
In this subsection, we study the behavior of a cancerous cell and a healthy cell. For
these computations, we consider the cell to be spherical with an average diameter of
18µm and a concentric nucleus of 9µm. For simplicity, we assume that healthy and
cancerous cells to have the same size. Owing to the symmetric nature of the problem
and that we are only interested in the translational mode of vibration, we build an
axisymmetric model of the cell with 1740 hybrid elements. The cell geometry, as
used in the finite element calculations, is shown in Fig. 3.3.

The effective shear modulus is recovered from the experimental paper byMittelstain
et al. [54]. We refer to the frequency tests in Fig. 2.6 showing a peak in a cancerous
cell-dead fraction at 500kHz, and we hypothesize that this behavior is due to a
translational eigenmode of the nucleus.

Based on experimental evidence suggesting the nucleus to be 5 to 10-folds stiffer
than the cytoplasm [40], we infer the nucleus stiffness. For the bulk modulus of the
constituents, we resort to small-strain elastic moduli conversion for the Poisson ratio
of 0.45. The density is 1.5 g/cm3 for the nucleus and 1 g/cm3 for the cytoplasm [29].
Furthermore, following [29], we introduced the cancerous potential as a scaling
factor for the nucleus and cytoplasm according to

pcell = pcell + (1 − χ)pcell, (3.1)

where p refers to the material parameter, and carcinogenic potential χ of 100% cor-
responds to the cancerous cell. The calibrated material properties of the cancerous
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Figure 3.2: Influence of elasticity and size on the first translation eigenfrequency. a)
Effect of nucleus stiffness at constant cytoplasm shear modulus for varying nucleus-
to-cell ratio a/b; b) effect of cytoplasm stiffness at constant nucleus shearmodulus for
varying nucleus-to-cell ratio a/b; c) effect of nucleus stiffness at constant cytoplasm
shear modulus for varying cell size (scaling 1 refers to a=5.4µm and b=9µm ); and,
d) effect of cytoplasm stiffness at constant nucleus shear modulus for varying cell
size (scaling 1 refers to a=5.4µm and b=9µm ).

and healthy cells (χ = 0.2) are collected in Table 3.2.

Figure 3.4 presents the three eigenfrequencies with the highest effective mass con-
tribution in the longitudinal direction for cells with different cancerous potential.
On average, the first two eigenfrequencies corresponds to ∼60% of the modal mass,
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Figure 3.3: Geometry and mesh used in the modal analysis of a cancerous and
healthy cell.

and the third mode to ∼10%. As can be seen in the figure, the first eigenmode of the
most cancerous cell is 500kHz. As the cancer potential decreases, the cell becomes
stiffer, which increases the frequency of resonance of the cell. The gap between the
most cancerous and healthy cells is 110kHz for the first eigenmode, 230kHz for the
second, and 450kHz for the last one.

Contours plots of modal displacements, stresses, and strains for the cancerous cell
are shown in Fig. 3.5, Fig. 3.6, and Fig. 3.7. The contours show that the distribution
of stresses and strains is heterogeneous. The stresses will be mostly compressive
and tensile along the nucleus direction of motion. In addition, high shear stresses
are expected next to the nucleus. Similar results can be identified for the strains.

Table 3.2: Calibrated material properties of a cancerous (µc) and healthy (µh) cell

µh µc ν

Cytoplasm 0.015 MPa 0.0225 MPa 0.45
Nucleolus 0.15 MPa 0.225 MPa 0.45
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Figure 3.4: Geometry and mesh used in the modal analysis of a cancerous and healthy cell.

(a) (b)

Figure 3.5: Modal displacements for a cancerous cell at the principal longitudinal
mode f=500kHz.
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(a) (b)

(c) (d)

Figure 3.6: Modal strains for a cancerous cell at the principal longitudinal mode
f=500kHz.
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(a) (b)

(c) (d)

Figure 3.7: Modal stresses for a cancerous cell at the principal longitudinal mode
f=500kHz.
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C h a p t e r 4

CYTOSKELETON CONSTITUTIVE LAWWITH DAMAGE AND
RECOVERY OF FIBERS

In this chapter, we develop a theoretical framework to provide an understanding of the
physical basis for the oncotripsy effect. We hypothesized that the cytodegeneration
observed in the experiments of Mitteslstein et al. [54] results from cumulative
damage to the cell over a large number (millions) of ultrasound cycles, mitigated by
the recovery of the loss during the off periods between ultrasound pulses.

The first section is dedicated to reviewing existing cytoskeleton models. The model-
ing of the mechanical properties of living cells is currently an active area of research.
Most models acknowledge the multiscale character of tissue mechanics and identify
explicitly several scales, from continuum to subcellular components. Cell failure is
usually taken as thresholds of strains or stresses. However, as this thesis is written,
a cumulative damage model of cytoskeleton disruption has not been proposed yet.

Next, we develop a constitutive law for the cytoskeleton that describes the process of
cytodegeneration due to a pulsed harmonic excitationwhich accounts for damage and
recovery of cytoskeleton fibers, and it is based on the theory of network elasticity.
The proposed model of oncotripsy follows as an application of cell dynamics,
statistical mechanical theory of network elasticity, and ’birth-death’ kinetics to
describe processes of damage and repair of the cytoskeleton.

The numerical discretization to solve the system employing the finite element model
is treated in Section 4.4. We propose a variational constitutive updated formulation
of the cytoskeleton to characterize the damage and recovery of fibers.

The following section is dedicated to material point calculations. We discuss the
damage and repair of the cytoskeleton fibers for awide variety ofmaterial parameters
and loading conditions. The study offers some vital insight into the understanding
of the oncotripsy effect under the conditions of the experiments of Mitteslstein et
al. [54].

We conclude with a complete mechanistic study on a finite element model that
accounts for elasticity, viscosity, and kinetics of a healthy and cancerous cell, and
we compare the results to the experimental trends observed byMitteslstein et al. [54].
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4.1 Previous mechanical modelling of the cytoskeleton on living cells
Themechanical models of living cells can be based on observations at the continuum
level (i.e., viscoelastic or biphasicmodels) or in themicro-/nano- structural level (i.e.,
cytoskeleton models in adherent cells, or spectrin-network in the erythrocytes) [47].
In the first group, the length-scale of interest is much larger than the cytoskeleton
fibers whereby the filament structure can be modeled, for instance, as a viscoelastic
continuum. The continuum approach is straightforward if the mechanical properties
at the cellular level are of interest. However, to study the microstructural response
of the cell and its stiffness degradation, it is crucial to incorporate the intracellular
filament network. This network is called cytoskeleton, and it is a system of filaments
radiated from or to the nucleus and anchored to the plasmamembrane. In eukaryotic
cells, the cytoskeleton has three major components: microtubules, intermediate
filaments, and microfilaments. Microfilaments are polymers of the protein actin,
microtubules are composed of the protein tubulin, and intermediate filaments are
composed of various proteins, depending on the type of cell. The cytoskeleton
proportions resistance to cell shape distortion, is responsible for the movement of
cells, helps to support the cytoplasm, and responds against external mechanical
stimuli. In particular, microfilaments and intermediate filaments act like cables
to support tension loads while microtubules act as beams in compression [46],
in analogy to tensegrity structures [5, 31, 35, 44]. The contribution of physical
factors in a hierarchical study is necessary to predict the distribution of stresses and
strains from the cell to the tissue level, and relate it to the cytoskeleton mechanics.
Therefore, a detailed understanding of the cytoskeleton is required to determine the
response of cells under the effect of low-intensity pulsed ultrasound.

Several lines of evidence suggest that the cytoskeleton behaves like a discrete me-
chanical network [31], such as prestressed tensegrity structure which could explain
how shape and movement of cells are controlled, and how it senses and respond
to the environmental, mechanical loads. Kardas et al. [35], proposed a computa-
tional model of the osteocyte cytoskeleton based on this idea, which simulated the
behavior of cells in-vivo under physiological mechanical loading. Their findings
support the idea that external stimuli are mechanically transduced — i.e., the term
mechanotransdution — to the nucleus through the cytoskeleton. In the same lines
of research, Barreto et al. [5] suggested that the tensegrity approach is effective in
modeling the overall behavior of cells but cannot predict the response of individual
components of the cytoskeleton. Thus, they proposed a model combining a discrete
model, which represented the cytoskeleton network, to a continuum model, which
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acted as the cytoplasm and plasmamembrane. This approach yielded a framework to
study the distribution of stresses and strains in individual elements of the cytoskele-
ton and to correlate them to the mechanical properties of cells to resist external
forces [5]. On efforts to model the cytoskeleton at the spectrin-level — proteins
forming lattices responsible of the plasma membrane — Li et al. [44] formulated
an algorithm that generates the cytoskeleton structures consistent with experimental
observations. Their approach incorporates the effects of random network models in
which spectrin links are used to populate different surfaces and shapes. The system
is finally solved using coarse-grained molecular dynamics simulations [44].

By drawing on the concept of cytoskeleton dynamics, Deshpande et al. [16] built a
continuum model that accounts for the biochemistry of an active cell that generates,
supports, and responds to mechanical forces. In this bio-chemo-mechanical model,
the dynamic rearrangement of the cytoskeleton is incorporated through the kinetics
of biochemical state parameters and fiber orientation. The cytoskeleton is general-
ized to two- and three-dimensional networks by a homogenization analysis which
assumes that the cell dimensions are much larger than the length-scale of the fibers.

As regards as models on cells under harmonic excitation, Meir and Kimmel [61]
proposed a linear model of a cell, in which an organelle (the nucleus) oscillated
within a viscoelastic medium (the cytoplasm) and computed the resonance frequen-
cies. They suggested that a cumulative effect of the oscillatory strains transfers into
biological alterations. Following on this mathematical approach, Fraldi et al. [20]
studied the difference in resonance frequencies among cancerous and healthy cells.
Similarly to Heyden and Ortiz [29], they proposed that these mechanical aberrations
can be exploited to target and selectively kill cancer cells.

4.2 Constitutive Modeling
This section is concerned with the definition of the constitutive law of the cytoskele-
ton.

Cytoskeleton elasticity
At finite and constant temperature (T), the Helmholtz free energy (A) can be written
as the change in the internal energy of a chain (U) and the change of entropy (S) as

A = U − T S. (4.1)

Whereas the internal energy is the energy stored in chemical bonds and is dominant
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Figure 4.1: Sketch of the end-to-end vector ξ of a polymer chain. Each chain is
composed by n links of size b.

in hard solids, the contribution of the entropy due to fluctuations is dominant in
elastomers. The considerable disordered of the chains is measured by the number
of configurations that these can adopt, and the entropy quantifies it.

According to the shape network theory of elasticity in statistical mechanics [19, 81],
the cytoskeleton may be modeled as an amorphous network of cross-linked fibers.
We consider that the fibers consist of many freely-jointed segments and are far from
full extension (see Fig. 4.1). Subsequently, the end-to-end vector ξ will be given by
the sum of each individual segment

ξ =

N∑
i=1

ξi . (4.2)

Following the path of these segments in a volume, the probability of returning to
the initial volume is a random process and results in a normal probability density
function p(ξ) of the form,

p(ξ) =
( 3
2πnb2

)3/2
exp

(
−3ξ2

2nb2

)
, (4.3)

where n is the number of fibers per unit volume, and b is the segment length. It is
essential to notice that, because we are considering every direction in space equally
distributed, the probability density is found within a spherical shell of radius ξ and
thickness dξ [80] (see Fig. 4.2).

If we consider that the probability density is proportional to the number of configu-
rations, then we can write the entropy Z as

Z = γp(ξ), (4.4)

with γ a volumetric constant. It follows that the entropy contribution of the energy
per unit volume of a single chain can be computed as

F = −kBT log(Z ). (4.5)
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Figure 4.2: The probability density of fibers with respect to the end-to-end vector ξ
is equally distributed in a spherical shell of thickness dξ: (left) sketch of the end-to-
end vector of a polymer chain (adapted from [80]) and (right) uniformly distributed
numbers on a sphere surface.

Figure 4.3: The cross-linking points of the polymer network move according to the
local macroscopic deformation (adapted from [81]).

It is further assumed that the cross-linking points move according to the local
macroscopic deformation (see Fig. 4.3). Under these assumptions, the change in
entropy of the network can be written as

∆Z =
−3kBT
2nb2

(ξ2 − r2) =
−3kBT

nb2
KI J EI J, (4.6)

where kB is Bolzmann’s constant, r is the end-to-end vector upon deformation, EI J is
the material strain tensor and KI J is a property of the undeformed network. For both
tensors, the uppercase letter subscripts refers to tensor components in the reference
configuration.

A standard analysis (cf., e. g., [81]) for a general probability density p(ξ) then gives
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the free-energy density per unit volume of the network as

A(F,T ) =
µ(T )
2

KI J (CI J + C−1I J ), (4.7)

where µ(T ) is a temperature-dependent shear modulus, F is the local deformation
gradient and C = FT F is the right Cauchy-Green deformation tensor and T is the
absolute temperature (cf., e. g., [52, 81] for background on continuum mechanics).
An analysis of the configurational entropy of the fibers [19, 81] gives the shear
modulus as

µ(T ) =
2nl2

b2
kBT, (4.8)

where l is the end-to-end distance of the fibers. In addition, the structure tensor K

in (4.7) follows as
KI J =

ˆ
S2

p(ξ)ξIξJ dΩ, (4.9)

where ξ is the unit vector pointing from one end of the fiber to the other, or fiber
direction, p(ξ) is the fraction of chains in the ensemble of direction ξ, S2 is the
unit sphere and dΩ is the element of solid angle. The density p(ξ) is subject to the
normalization condition ˆ

S2
p(ξ) dΩ = 1. (4.10)

The distribution function p(ξ) describes the structure of the cytoskeletal network
and is assumed fixed and known. For instance, Smolyakov et al. [72] used single-cell
force spectroscopy to test mechanical properties of four breast cancer 11 cell lines
and found that the most invasive cells, MDA-MB231, contain actin fibers that are
distributed randomly throughout the cell without any particular structure of preferred
direction. By considering the underformed configuration, from a macroscopic
perspective, homogeneous and isotropic on average, it follows that KI J must be
isotropic. Then,

KI J = KI JδI J =
1
3

KI I . (4.11)

For an isotropic fiber distribution of this type, p = 1/4π, and the structure tensor
(4.9) reduces to the identity. Under these conditions, the free-energy density (4.7)
specializes to

A(F,T ) =
µ(T )
2

(
tr(C) + tr(C−1)

)
, (4.12)

where tr denotes the matrix trace.
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An interesting aspect is that, as in tensegrity structures, the free energy density
comprises of elements under tension (tr(C)) and compression (tr(C−1)). We can see
that, if we consider a chain in a volume under the deformation mapping x1 = 1

λ1
X1,

x1 = 1
λ1

X1 and x1 = 1
λ1

X1, where XI refers to the reference configuration, xi to
the deformed configuration with i=1..3, and λi a stretch larger than 1, the change in
entropy is given by

∆Z =
−3kBT
2nb2i

(ξ2 − r2) (4.13)

=
−3kBT
2nb2i

(X2
1 + X2

2 + X2
3 − (x21 + x22 + x23)) (4.14)

=
−3kBT
2nb2i

(
X2
1 + X2

2 + X2
3 −

(( 1
λ1

X1

)2
+

( 1
λ2

X2

)2
+

( 1
λ3

X3

)2))
(4.15)

=
3kBT
2nb2i

(( 1
λ21
− 1

)
X2
1 +

( 1
λ22
− 1

)
X2
2 +

( 1
λ23
− 1

)
X2
3

)
. (4.16)

Now, suppose that this particular volume has n chains of type p=1...P .The change
in entropy of all the chains type p results in

∆Z =
n∑

i=1

3kB

2nb2p

(( 1
λ21
− 1

)
X2
1 +

( 1
λ22
− 1

)
X2
2 +

( 1
λ23
− 1

)
X2
3

)
. (4.17)

For a particular volume, the number of chains n is very large. In addition, if we
consider thematerial is homogeneous and isotropic, there is no directional preference
on X1, X2 and X3, so

n∑
i=1

X2
1 =

n∑
i=1

X2
2 =

n∑
i=1

X2
3 =

1
3

nl2 and
X2
1 + X2

2 + X2
3

n
= l2, (4.18)

with ξ̄2 the root mean square distance given by

ξ̄2 =

´ ∞
0 ξp(ξ)dξ´ ∞
0 p(ξ)dξ

=
3
2b2
= nl2. (4.19)

Using eq.(4.18) in eq.(4.17), the free energy for the elements under compression
can be written as

A(F,T ) =
µ(T )
2

( 1
λ21
+

1
λ22
+

1
λ23
− 3

)
(4.20)

=
µ(T )
2

(
tr(C−1) − 3

)
, (4.21)
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with µ(T ) given by eq.( 4.8). Similarly, one can suppose that, at the same time, some
elements are in tension. It follows that the deformation mapping can be assumed to
be x1 = λ1X1, x1 = λ1X1 and x1 = λ1. The energy of this elements result can be
easily show to be

A(F,T ) =
µ(T )
2

(
λ21 + λ

2
2 + λ

2
3 − 3

)
(4.22)

=
µ(T )
2

(
tr(C) − 3

)
. (4.23)

Finally, the total free energy will be the sum of the elements in compression and in
tension, which results in eq. 4.12.

Cytoskeletal damage and healing
The experimental observations of Mittelstein et al. [54], Section 2 reveal that cell
death requires the application of a large number (millions) of insonation pulses,
which suggests that, under the conditions of the experiment, cell death is the result
of a process of slow damage accumulation. Indeed, Mizrahi et al. [55] observed
that the cytoskeletal actin fibers are catastrophically disrupted under the action of
ultrasound stimulation of sufficiently high intensity, Fig. 1.4. In contrast, under low-
intensity ultrasound, cellular responses exhibit gradual and sometimes complete
recovery.

Whereas cytoskeletal elasticity has been extensively studied in the past, processes
of damage accumulation in the cytoskeleton under LIPUS actuation, or high-cycle
cell fatigue, appear to be as yet poorly understood. Building on past work on failure
of polymer networks [4, 26, 27], we develop a model of cumulative cell damage
that accounts for the gradual deterioration and recovery of cytoskeletal fibers. This
competition between disruption (‘death’) and repair (‘birth’) is a classic example of a
‘birth-death’ process in evolutionary dynamics (cf. e.g., [60]). Birth-death processes
are Markov processes characterized by two-state transitions: ‘birth’, which adds an
element to the population, and ‘death’, which removes a component. Birth-death
processes have many applications in demography, queueing theory, epidemiology,
and other areas. In the present study, a ‘death’ occurs when a filament breaks, which
results in a gradual loss of stiffness of the cytoskeleton. We hypothesize that when
the stiffness degradation exceeds a critical threshold, the cell becomes unviable and
dies.

We assume that the mechanism of damage accumulation to the cytoskeleton is the
progressive disruption of the actin fibers. In order to account for the attendant loss
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of stiffness, we introduce a damage variable q(ξ) ranging from 0 to 1 such that
q(ξ) = 0 when all the fibers with direction ξ are intact and q(ξ) = 1 when all the
fibers with direction ξ are broken. We additionally assume that the breaking of the
fibers requires a certain energy to be supplied. We represent these effects employing
a free-energy density of the form

A(F,T, q) =
ˆ

S2
p(ξ)

( µ(T )
2

(1−q(ξ))2
(
λ2(ξ)+λ−2(ξ)−2

)
+
β

2
q2(ξ)

)
dΩ, (4.24)

where
λ(ξ) =

√
CI JξIξJ (4.25)

is the stretch ratio of the fibers of direction ξ and β is a constant. We note from
(4.24) that the effect of a damage field q(ξ) is to decrease the free-energy density
of the fibers of direction ξ by a factor (1 − q(ξ))2 at an energy cost of (β/2)q2(ξ).
Additionally, damage relaxes the stresses in the network by reducing the stiffness of
the fibers. Evidently, in the absence of damage, q(ξ) = 0, (4.24) reduces to (4.7),
as required.

Following the method of Coleman and Noll [11], the thermodynamic driving forces
for damage follow as

f (ξ) = −
∂A
∂q(ξ)

= p(ξ)
(
µ(T )(1 − q(ξ))

(
λ2(ξ) + λ−2(ξ) − 2

)
− βq(ξ)

)
. (4.26)

We see from this expression that, by choice (4.24) of free-energy density, the driving
force (4.26) comprises two terms. The first term represents the energy-release rate
due to the disruption of the fibers and, therefore, promotes damage. The second term
represents the energetic cost of disrupting the filaments, which hinders deterioration
and promotes healing. Assuming linear kinetics, we obtain the damage evolution
law

α q̇(ξ) = f (ξ), (4.27)

where α is a kinetic coefficient. The kinetic relation (4.27), in combination with
the driving forces (4.26), define an evolution of the cytoskeletal state as a balance
between ’birth’ and ’death’ processes. Thus, the energy-release term µ(T )(1 −
q(ξ))

(
λ2(ξ)+λ−2(ξ)−2

)
in the driving force induces progressive damage (’death’)

of the fiber population proportionally to the energy µ(T )
(
λ2(ξ) + λ−2(ξ)

)
of the

fibers. The additional factor (1−q(ξ)) brings the driving force to zero at full damage
q(ξ) = 1 and ensures that q(ξ) ≤ 1 at all times. By contrast, the energetic cost term
−βq(ξ) in the driving force tends to restore (’birth’) the fiber population and thus



36

accounts for healing. Built into the form of (4.26) is the assumption that the rate
of healing is proportional to the extent of damage. In particular, the healing rate
vanishes for q(ξ) = 0, which it ensures that q(ξ) ≥ 0 at all times.

Cell viscosity
Another source of resistance to cell deformation arises from the viscosity of the cy-
toplasm. This viscosity is likely to significantly damp resonant vibrations within the
cell and limit their amplitude. On average, the cytoplasm viscosity does not differ
considerably from that of water [22, 51]. However, the distribution of intracellular
viscosity is highly heterogeneous. Full maps of subcellular viscosity have been
successfully constructed via fluorescent ratiometric detection and fluorescence life-
time imaging [48]. However, this degree of detail is beyond the scope of this study.
Instead, we assume an average viscosity uniformly distributed over the cytoplasm.

Further assuming linear viscosity, may be expressed explicitly as a function of Ḟ
and F in the form

σv (Ḟ, F) = λtr(ḞF−1)I + η(ḞF−1 + F−T Ḟ
T ) (4.28)

with
d = sym(ḞF−1). (4.29)

Here σv is the viscous part of the Cauchy stress tensor, and

d = sym(ḞF−1) (4.30)

is the rate of deformation tensor, λ = (κ − 2/3η), η is the shear viscosity, and κ is
the bulk viscosity.

The corresponding viscous part of the first Piola-Kirchoff stress tensor is

Pv (Ḟ, F) = JσvF−T, (4.31)

where J = det(F). The total stress is then

P(Ḟ, F) = ∂FW (F) + Pv (Ḟ, F). (4.32)

A simple calculation reveals that the Newtonian viscosity law possesses the potential
structure

Pv = ∂ḞΦ(Ḟ, F), (4.33)
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where that the viscous potential per unit undeformed volume is

Φ(Ḟ, F) = J
{
λ

2
tr(d)2 + ηd · d

}
. (4.34)

For later reference we also introduce the viscous potential per unit deformed volume
as

φ(d) = J−1Φ(Ḟ, F) =
λ

2
tr(d)2 + ηd · d. (4.35)

which has the property that
σv = ∂φ(d), (4.36)

i.e., that it acts as kinetic potential for the viscous component of the Cauchy stress.

4.3 Variational constitutive updates in finite deformations
In this section, we present a variational constitutive update framework for the cy-
toskeleton network undergoing damage and repair of fibers. The formulation used
in this section is based on the framework proposed by Ortiz and Stainier [62].

Field equations
Let Ω ∈ R3 be a continuous body and ϕ : Ω → R3 a deformation mapping. We
consider the body deforms due to the action of body forces B and tractions t. In
order to characterize the change of the material state due to deformation processes
we introduce a constitutive relation which utilize internal variables. Let the strain
energy density be given by

W = A(F, q) (4.37)

with F = ∇ϕ the deformation gradient, q ∈ RN is a collection of internal vari-
ables. For this calculations, we will not consider dependency on other variables as
temperature, though it can be extended later.

In the presence of inertia effects, the deformation on the cell due to the low-intensity
ultrasound excitation can be solved by the following governing equations pertaining
to the dynamic deformations of a deformable body Ω:

F = Gradϕ in Ω × (0,T )

DivP + ρB = ρA in Ω × (0,T )

ϕ(t) = ϕ̂(t) in Ω1 × (0,T )

P · N = T̂ in Ω2 × (0,T )

ϕ(0) = ϕ(t) in Ω
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where P is the first Piola-Kirchhoff stress tensor, B is a body force density per unit
of undeformed volume, ϕ̂ is the prescribed value of the deformation mapping over
the Dirichlet part of the boundary ∂Ω1, and T̂ is the prescribed traction applied to
the Neummann part of the boundary ∂Ω2. In this analysis, the effect of gravity or
other body forces are not considered, thus B = 0. In addition, we are interested on
wavelengths of the ultrasound that are long compared with the diameter of the cell.
For instance, at 1MHz in water the wavelength results in ∼100 times larger than a
living cell of 15 microns. Because of this, the resulting pressure at the circunference
of the cell will be equal to the intensity of the plane wave. Based on these and on the
observations of Mittelstein et al. [54] presented in Chapter 2, we assume that the cell
sloshes in suspension at the particle velocity of the media, reducing the boundary
conditions to a displacement field applied on the surface of the cell.

Constitutive relations
The First Piola-Kirchoff stress tensor is given by

P = Pe + Pv, (4.38)

where we assume an additive decomposition of the equilibrium part Pe and a
viscous part Pv. The equilibrium part follows fromColeman&Noll thermodynamic
equations as

Pe =
∂W
∂F

(4.39)

and the viscous part follows as
Pv =

∂ϕ

∂Ḟ
. (4.40)

The evolution of the internal variables is determined by a suitable kinetic law of the
form

∂W
∂q
+
∂ψ∗

∂q̇
3 0, (4.41)

where ψ∗ denotes the dissipation (dual) potential and we assume that such potential
exists. In the case of rate-dependent problems, the differential inclusion is replaced
by an equality. Alternatively, we can write eq.( 4.41) in the minimization form

q̇ = arg inf{Ẇ + ψ∗}. (4.42)

Introducing a discretization in time tα with constant time steps ∆t = tα+1 − tα, and
using a backward-Euler rule, the strain energy and internal variables result in

Ẇ =
Wα+1 −Wα

∆t
and q̇ =

qα+1 − qα

∆t
, (4.43)
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respectively, with Wα ≡ W (Fα, qα). Then,

qα+1 − qα

∆t
= arg inf

{Wα+1 −Wα

∆t
+ ψ∗

(qα+1 − qα
∆t

)}
. (4.44)

Reorganizing, leads to an incremental variational constitutive update of the form

qα+1 = arg inf
{
Wα+1 + ∆tψ∗

(qα+1 − qα

∆t

)}
. (4.45)

Finally, we define the right-hand side as an effective incremental potential

F α+1(Fα+1, qα+1) = arg inf
{
Wα+1 + ∆tψ∗

(qα+1 − qα

∆t

)}
(4.46)

and the stresses can be computed as

Pα+1 =
∂Wα+1

∂Fα+1 =
∂F α+1

∂Fα+1 . (4.47)

Integration scheme
The system is solved via the Newmark’s scheme,

ϕn+1 = ϕn + ∆t ϕ̇n +

(1
2
− β

)
∆t2ϕ̈n + β∆t2ϕ̈n+1 (4.48)

ϕ̇n+1 = ϕ̇n + (1 − γ)∆t ϕ̈n + γ∆t ϕ̈n+1, (4.49)

where ϕn, ϕ̇n, and ϕ̈n are the approximations of ϕ(tn), ϕ̇(tn) and ϕ̈(tn), respectively.
The parameters β and γ determine the accuracy and stability of the algorithm (cf.
[30]). We choose an explicit solver, i.e., β = 0 and γ = 0.5.

4.4 Numerical implementation
In this section, we present the numerical integration scheme for the initial boundary
value problem implemented as a finite element model. For a detailed description of
the finite element method, please refer to [30].

The surface integral in eq. (4.24) is computed by cubature rules as derived by Cools
in [12]. In particular, we choose n=14 cubature points with weights {w1, ...,wn} and
locations {ξ1, ..., ξn}. These are provided in Table 4.1. In our computations, each
fiber direction corresponds to a cubature point as shown in Figure 4.4.

The first Piola-Kirchoff stress tensor of the cytoskeleton follow as

∂Wα

∂F
(Fα+1,T ) =

∑
λp,α+1

wpµ(T )(1 − qp,α+1)2(1 − λ−4p,α+1)(Fα+1ξp) ⊗ ξp (4.50)
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Table 4.1: Weights w and locations ξ for n=14 cubature points with w1 = 1/15,
w2 = 7.5e−2, r1 = 0 and r2 =

√
3/3.

n w ξ

1 w1 {1, r1, r1}
2 w1 {-1, r1, r1}
3 w1 {r1, 1, r1}
4 w1 {r1, -1, r1}
5 w1 {r1, r1, 1}
6 w1 {r1, r1, -1}
7 w2 {r2, r2, r2}
8 w2 {r2, r2, -r2}
9 w2 {r2, -r2, r2}
10 w2 {r2, -r2, -r2}
11 w2 {-r2, r2, r2}
12 w2 {-r2, r2, -r2}
13 w2 {-r2, -r2, r2}
14 w2 {-r2, -r2, -r2}

Figure 4.4: Location of the quadrature points on the surface of a unit sphere.

with ⊗ the dyadic or outer product.
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The second Piola-Kirchoff stress tensor is

Sα+1 = F−1α+1Pα+1 =
∑
λp,α+1

wpµ(T )(1 − qp,α+1)2(1 − λ−4p,α+1)ξp ⊗ ξp. (4.51)

In the undeformed configuration we have F = I, leading to a stress free material in
the reference configuration.

For completeness, the Cauchy stress tensor results in

σα+1 = J−1F−1α+1Pα+1. (4.52)

The derivation of the tangent matrix is cumbersome and not needed as we are solving
the system explicitly, so the derivation can be found in appendix A.1.

At each material point, the damage state is characterized by n number of fiber
directions which results in a vector of the form,

q = {q(ξ1), ..., q(ξp), ..., q(ξn)}. (4.53)

The state of damage update follow as

qp,α+1 =
α qp,α + µ(λ2p,α+1 + λ

−2
p,α+1 − 2)∆t

α + β∆t + µ(λ2p,α+1 + λ
−2
p,α+1 − 2)∆t

, (4.54)

which can also be written as

1 − qp,n+1 =
α + β∆t − α qp,α

α + β∆t + µ(λ2p,α+1 + λ
−2
p,α+1)∆t

. (4.55)

The evolution of the damage at an element with N number of quadrature points is
given by a weighted average as

qe(ξp, t) =
1
Ve

ˆ
Ve

q(ξp, t)dx =
1
Ve

∑
N

µN q(ξp, t) (4.56)

with Ve the volume of the element in the undeformed configuration and µN the
quadrature weight. The average guarantees qe ∈ [0, 1] at each element.

The state of damage on a mesh in the fiber direction ξp is computed as follows:

q̄(ξp, t) =
1
V

ˆ
Ω

q(ξp, t)dx =
1
V

∑
K

Veqe(ξp, t) (4.57)

with V the volume of the cytoskeleton, K the cytoskeleton elements, and qe the
damage at the element. Again, this guarantees that q̄ ∈ [0, 1] at each fiber direction.
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The evolution of the maximum damage is

q̄max (ξ, t) = max{q̄(ξ, t)}. (4.58)

The total weighted average results in

〈q(t)〉 =
1
|S2 |

ˆ
S2

q̄(ξ, t)dx =
1
|S2 |

∑
N

µN q̄(ξ, t). (4.59)

Notice that we consider the total weighted average on the underformed surface area.
However, one could also consider a different form of the average, in which the
highest weight belongs to the most damaged fiber.

Finally, for these computations, the failure criterion is a threshold which the mean
average damage cannot surpass:

〈q(t)〉 = qc. (4.60)

The critical value is a material parameter, and its upper bound qc = 1 corresponds to
the complete braking of all microstructural elements. Nevertheless, the cell may die
before reaching this upper bound; thus, the critical damage will have to be adjusted
to experimental results with qc ∈ [0, 1].

The failure criterion quantifies the maximum average change of the shear modulus
under which the cytoskeleton can sustain loads under harmonic excitation. This is,

qc = 1 −
√
µc

µ0
, (4.61)

where µc is the minimum shear modulus and µ0 is its value at the reference config-
uration (i.e., µ(t=0)=µ0). Fig. 4.5 shows the fraction of change between the critical
shear modulus µc to the initial or reference shear modulus µ0.

As regards the viscosity, we adopt a constitutive update by means of the method of
incremental deformations. By these, the gradient of deformation is given by

Fα+1 = F̄Fα (4.62)

with F̄ the incremental deformation gradient.

It follows that the change of the energy density per unit time is

1
∆t

W (F̄) =
1
∆t

W0(Fα+1Fα−1) (4.63)
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Figure 4.5: The failure criterion limits the change in shear modulus with respect to
its reference configuration.

and the Piola Kircchhoff stresses,

Pi J (F̄) =
1
∆t

∂W0

∂Fα+1
jB

∂Fα+1
jB

∂F̄i J
(4.64)

=
1
∆t

∂W0

∂Fα+1
jB

∂(F̄j M Fα−1
MB )

∂F̄i J
(4.65)

=
1
∆t

∂W0

∂Fα+1
jB

Fα−1
JB . (4.66)

Thus,

Pi J (F̄) =
1
∆t

[P0(Fα+1Fα−1)]iBFα−1
JB . (4.67)

Likewise, the stiffness matrix update is given by

Ti JkL =
∂Pi J

∂FkL
=
∂(P0)iB

∂Fα+1
lD

∂Fα+1
lD

∂F̄kL
Fα−1

JB (4.68)

= (T0)iBlD
∂(F̄lN Fα−1

N D )

∂F̄kL
Fα−1

JB = (T0)iBlDFα−1
JB Fα−1

LD . (4.69)

Thus,
Ti JkL = [T0(Fα+1Fα−1)]iBlDFα−1

JB Fα−1
LD . (4.70)
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4.5 Model verification and parameter analysis
This section presents a numerical study at the material point level to understand the
softening behavior of the cytoskeleton and the influence of the material parameters
on the damage evolution. In these examples, we assume the load is applied quasi-
statically, the cytoskeleton is isotropic and non-viscous, and it fails at critical damage
qc=1.

Stretch
Triangular Pulse In this example, thematerial point is subject to a uniaxial stretch
history in the form of a triangular pulse with an increasing amplitude of λ. The
uniaxial condition establishes that P22 = P33 = 0.

The energy density, as presented in the previous section, is used with an effective
shear modulus of µ = 0.15MPa, and damage parameters α = 0.001 MPa ms and
β = 0.001 MPa. For a triangular uniaxial stretch (Fig. 4.6a), we present the stress-
stretch, stress vs. time, and mean damage vs. time in Fig. 4.6b, c and d, respectively.
As can be observed in the stress-stretch curve, the cytoskeleton response differs
from a material without damage. As stress increases, the material deviates from
linearity. This is not only associated with the deviation from small deformations,
but also to the rearrangement of the cytoskeleton. In addition, the stress-strain
curve shows the energy dissipated by the rupture of the fibers. As seen in Fig 4.7,
the effect of the stretch on the fibers is quite complex. During one cycle of the
triangular pulse, the damage state undergoes moments of damage and recovery. As
the stretch increases (or diminishes) away from equilibrium, the ’death’ of fibers
is preponderant. However, as the stretch is unloaded to its initial configuration, a
damage-recovery trade-off results in the ’birth’ of fibers. These complex behavior
during the loading-unloading phases result in a wavy damage curve.

Apart from studying the mean damaged state, it is of interest to study the damage
along each fiber (see Fig. 4.8). As expected, the fibers along the direction of the
uniaxial stretch (ξ1 and ξ2) are the ones carrying most of the load and, for enough
cycles and stretch amplitude, will eventually fail. However, it is also interesting to
notice that, because of the competition between damage and recovery, the damage
state can result in a well-defined steady-state amplitude, as seen in Fig 4.6d. In this
way, for low enough strain amplitude, the balance between damage accumulation
and healing prevents the cytoskeleton from attaining failure even under a very large
number of cycles.
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(a) (b)

(c) (d)

Figure 4.6: Damage evolution at a material point for a triangular stretching history.
(a) Applied triangular stretching history; (b) nominal stress (P11) evolution; (c)
nominal stress (P11) vs. stretch (λ) curve, (d) mean damage evolution.

Square Pulse In this second example, we subject a unidimensional cube to a
uniaxial stretch history in the form of a square pulse and analyze the mean damage
curve under several parameters µ, α, and β. The results of the numerical experiments
are shown in Fig. 4.9 and Fig. 4.10.

Fig. 4.9 presents an example of how the model behaves under two different shear
modulus. From these plots, it is clear that the stiffest cytoskeleton will attain higher
levels of damage. Recall, however, that failure is determined by the ability of the
structure or material to support loads. Therefore, the material to fail will be the one
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Figure 4.7: Damage evolution depends on the shape of the applied load. As the
stretch increases (or diminishes) away from equilibrium, there is a damage-recovery
trade-off which will result in ’death’ or ’birth’ of fibers.

to reach their critical damage first.

Fig. 4.10 shows the evolution of the damage for different combinations of kinetic
parameters. While fibers break during the loading and hold phase, they are also able
to recover. The parameters α and β are responsible for the interplay between these
two phases. At a constant ratio of α to β, increasing both parameters by the same
factor reduces the mean damage. At constant α, lower β increases the recuperation
time and the damage, which leads to a longer time for the system to reach its initial
shear modulus. In contrast, smaller α values lead to a higher amount of broken
fibers but faster recovery.

Finally, the force vs. time plots (Fig. 4.11a.) shows that the force carried by the
fibers reduces with increasing damage, reflecting the reduction of stiffness by the
disruption of fibers (Fig. 4.11b).
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Figure 4.8: Damage evolution of the fibers with respect to their direction. In
particular, ξ1 and ξ2 are parallel to the load.

Shear
The same numerical experiments are performed for simple shear at the material
point, and the results are shown in Fig 4.12. For the same material parameters, the
cytoskeleton does not experience as a high damage state as for the uniaxial case.
However, the softening could be non-negligible, and under many cycles, its effect
could play an important role in the overall failure of the material.



48

(a) (b)

(c) (d)

Figure 4.9: Damage state for an uniaxial stretch of a 1x1x1mm3 cube fixed on the
bottom for two different shear modulus. (a) Strain history applied on the top; (b)
damage evolution; (c) reaction force vs. time; and, (d) reaction force vs. nominal
strain.
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(a) (b)

(c) (d)

Figure 4.10: Damage state for an uniaxial stretch of a 1x1x1mm3 cube fixed on the
bottom. (a) Strain history applied on the top; (b) damage evolution for a constant
ratio α to β, and α = β = 0.1{100, 101, 102} (Units: kPa ms and kPa for α and β
respectively); (c) damage evolution for α = 1kPa ms; and, (d) damage evolution for
β = 10kPa.
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(a) (b)

Figure 4.11: Uniaxial stretch of a 1x1x1mm3 cube fixed on the bottom. (a) Evolution
of the reaction force and, (b) force vs. strain curve for different kinetic parameters
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(a) (b)

(c) (d)

Figure 4.12: Damage state for a simple shear of a material point. (a) Applied
triangular stretching history; (b) nominal stress (P12) evolution; (c) nominal stress
(P12) vs. nominal strain (F12) curve, (d) mean damage evolution.
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4.6 Validation of the oncotripsy effect
In this section, we validate the constitutive law by simulating the cancerous and
healthy cells under harmonic excitation and comparing the predicted damage-time
histories against the trends observed experimentally. In the first part of this section,
we describe the geometry and properties used in the simulation. The damage
evolution is then validated against the experiments, showing a very good prediction.

The analysis was set-up in EurekaLite, a finite element code developed in the
Computational Mechanics Group at Caltech.

Description of the model
We build a finite element model of a spherical eukaryotic cell subject to a harmonic
oscillation. In mammalian cells, the nucleus, as the largest cellular organelle,
occupies between 10% and 20% of the total cell volume [2, 49]. It is surrounded
by the cytosol, a viscoelastic solid containing several subcellular structures such
as the Golgi apparatus, the mitochondrion, and the endoplasmic reticulum. The
cytosol and other organelles contained within the plasma membrane, for instance,
mitochondria and plastids, form the so-called cytoplasm. The nucleus is bounded
by the nuclear envelope and contains the nucleoplasm, a viscoelastic solid similar
in composition to the cytosol. It furthermore comprises the nucleolus, which
constitutes the largest structure within the nucleus and consists of proteins and
RNA. In the present work, we neglect the organelles within the cytosol, which is
idealized as a uniform viscous matrix containing the cytoskeleton. The nucleus is
likewise idealized as rigid and omits explicit consideration of the nucleoplasm. In
particular, the nucleus strain energy follows aNeo-Hookean, which is also embedded
in a Newtonian fluid. Given the focus on cytoskeletal dynamics, we additionally
neglect the effect of nuclear and cellular membranes.

For these computations, the cell under consideration has a diameter of 18µm and a
concentric nucleus of 9µm. The cell is loaded by imposing a sinusoidal displacement
at the membrane applied as a train of pulses, with ON and OFF periods. Owing to
the symmetric nature of the problem around the prescribed displacement, we built
an axisymmetric model of the cell. To guarantee convergence, we consider two
different meshes: a fine mesh consisting of ∼2500 linear axisymmetric triangular
elements and a coarser mesh of ∼900 triangular elements. The geometry and two
meshes used for the calculations are shown in Fig. 4.13. The system is solved
explicitly with a constant timestep proportional to the Courant-Friederichs-Lewy
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Table 4.2: Geometry, mass and effective mechanical properties of a lymphoma cell
type K562. The mechanical properties are tuned so that resonance occurs at 500kHz
and qmax is reached at t=20ms.

Charactersitic Value Unit

a nucleus radius 0.0045 mm
b cell radius 0.009 mm
α kinetic damage parameter 1 0.0001 MPa ms
β kinetic damage parameter 2 0.0005 MPa
µc shear modulus of the cytoskeleton (cancerous) 0.033 MPa
µn shear modulus of the nucleus(cancerous) 0.3 MPa
µc shear modulus of the cytoskeleton (healthy) 0.066 MPa
µn shear modulus of the nucleus(healthy) 0.6 MPa
η shear viscosity of the cell 1e-5 MPa ms
ρc density of the cytoskeleton 0.001 gr/mm3

ρn density of the nucleus 0.0015 gr/mm3

ν Poisson ratio 0.25

condition.

The effective material parameters — i.e., shear modulus of the cytoskeleton and
nucleus, kinetic damage parameters α and β and viscosities —were recovered from
the experimental paper by Mittelstain et al. [54] and certain hypotheses. We refer
to the frequency tests in Fig. 2.6 showing a peak in cell death at 500kHz. We
hypothesize that this behavior is due to a longitudinal mode of the nucleus located in
the neighborhood of this frequency. By means of frequency response analysis, we
obtain the modal shear modulus of the cytoskeleton such that a longitudinal mode
occurs at 450kHz and, for purposes of validation, we choose the kinetics parameters
that generate considerable damage in an exposure time of 2ms. For the healthy
cell, we choose the shear modulus to be 1.70 times stiffer, which results in a mode
at 680kHz, and keep the kinetic parameters constant. The density is 1.5 g/cm3

for the nucleus and 1 g/cm3 for the cytoplasm [29]. The effective viscosity of the
cytoplasm has been reported to be between 2 to 6 times the one of water (∼10−3Pa
s at 200C) [50]. For the bulk modulus, we resort to small-strain elastic moduli
conversion. The material properties, geometry, and mass of the cell are collected in
Table 4.2.

Due to the wavelength of the ultrasound being much longer than the cell length, we
hypothesize the cell responds with the particle velocity of the applied field. Then,
the performed simulations concerned an applied displacement field at the external
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(a) (b)

Figure 4.13: Axysimmetric element meshes used in the simulations: (a) Coarse
902-element mesh and (b) fine 2464-element mesh. Color legend: (white) nucleus
and (gray) cytoplasm.

surface of the cell. In particular, the prescribed displacement field ū

ū =
P0

ωρ f c f
sin(ωt), (4.71)

where P0 is the pressure, ω is the excitation frequency,and ρ f and c f are the density
and wave speed velocity of water.

Results and Analysis
The experimental loading conditions of Mittelstain et al. [54] were considered as
load cases. In particular, we study the evolution of damage, stresses and nucleus
displacement on a healthy and cancerous cell in the frequency range 300-800kHz,
focal pressure of 1.4MPa and duty cycle 10%. We solve the system for an ultrasound
exposure of 2ms.

Nucleus displacement The displacement on the nucleus is computed as

ū(t) =
1
|Ω|

ˆ
Ω

u(t)dx =
1
|Ω|

∑
K

veue(t) (4.72)
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with
ue(t) =

∑
Ke

Naua (t) (4.73)

where u is the displacement, Na is the shape function at node a, K is the set of the
nucleus elements ve is the volume of the element in the deformed configuration, and
Ω is the total volume of the nucleus in the deformed configuration

Fig. 4.14 and Fig. 4.15 shows the nucleus displacement evolution for a cancerous
and healthy cell, respectively. The displacements show clearly the ON/OFF periods
of the ultrasound. Because the accumulated damage in 2 ms is very low, there is
minimal change in the maximum displacement over time. However, at resonance,
the nucleus displacement changes dramatically, leading to higher amplitudes and,
eventually, to the highest possible accumulated damage. If we consider the stretch
of the cytoplasm to be of the form,

λ = 1 −
u

b − a
(4.74)

with b and a the cell and nucleus radius, respectively, the axial stretch at resonance
is in the range λ=0.88-1.22. However, far away from the resonant frequency, the
stretch can be as low as 0.98-1.02, i.e., the cell behaves in the small strain regime.

In addition, there exists a phase lag of the displacement with respect to the driving
force as result of the viscosity.

Damage evolution The simulated displacements, stresses and damage evolution
for one cycle is shown in Fig. 4.16, Fig. 4.17, Fig. 4.18, Fig. 4.19, and Fig. 4.20.
We exhibit the meridional section of each state of the cancerous cell through level
contours. The damage at the element q̄e is computed as the weighted average of the
damage in each direction ξ at the material point.

Shortly after initiation, the damage on the cytoskeleton propagates from the outside
of the cell to its interior, driven by the local stretch of the fiber at direction ξ.
Eventually, the cell structure reaches regions of large damage along the path of the
nucleus displacement. These regions correspond to the location of the highest axial
tensile and compressive stresses, as shown in Fig. 4.18. After the release of the load,
the healing process occurs at constant recuperation time until the following pulse
initiates. Even though the cell damage relaxes during each off-cycle, it accumulates
due to the recovery time being longer. This slow damage accumulation over many
(thousands or millions) of cycles is known as fatigue, and it will be treated in the
following chapter.
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(a) (b)

(c) (d)

Figure 4.14: Nucleus displacement for a cancerous cell between t = 0 ms and 2
ms, with pulse duration 0.1ms and pressure 1.4MPa. The response shows resonant
behavior at 500 kHz. (a) f = 300 kHz. (b) f = 500 kHz. (c) f = 670 kHz. (d) f = 800
kHz.

Weproceed to study the influence of the process parameters, i.e., pressure, frequency,
pulse duration, and duty cycle, on the oncotripsy effect:

• Frequency: In Fig. 4.21, we compare the damage evolution for a cancerous and
healthy cell in the frequency range 300 to 800 kHz. For each cell, the damage
is the highest in the neighborhood of their respective resonance frequency:
500kHz for the cancerous cell and 700kHz for the healthy cell. Far away from
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(a) (b)

(c) (d)

Figure 4.15: Nucleus displacement for a healthy cell between t = 0ms and 2ms, with
pulse duration 0.1ms and pressure 1.4MPa. The response shows resonant behavior
at 670 kHz. (a) f = 300 kHz. (b) f = 500 kHz. (c) f = 670 kHz. (d) f = 800 kHz.

resonance, the maximum damage attained is reduced. These results indicate
that cancerous cells could be targeted at their eigenfrequencies while keeping
healthy cells mostly intact.

• Pressure: In Fig. 4.22, we show the damage evolution for different pres-
sures. Recall that the pressure increases the particle velocity of the field and,
therefore, the axial load on the cell. As expected, the effect of increasing the
pressure results inmuch greater accumulated damage, which implies that large
pressures could lead to the death of both cancerous and healthy cells. There-
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(a) (b)

(c) (d)

Figure 4.16: Displacements evolution (in mm) in a cycle for a cancerous cell at
500kHz, P=1.4MPa, DC=10% and PD=0.1ms. (a) t=0.0104 ms (b) t=0.0110 ms;
(c) t=0.0116 ms; and (d) t=0.0119 ms.
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fore, the pressure selection should guarantee that the accumulated damage on
the cell is lower than the critical damage.

• Pulse duration and duty cycle: In Fig. 4.23a, we show the damage evolution
for different pulse duration and equal duty cycle. As regards the duration
of the pulse, it can be observed that even though the sinusoidal load exerts
the same number of cycles on the cell at the same intensity, the cell reaches
a different final state. At long pulse durations, the cell accumulates more
damage than at a shorter pulse duration. This implies that, for a given critical
damage qc, a cell under a longer pulse duration would fail at a shorter time.
This is a possible explanation for the same observation in the experimental
results of Mittelstein et al. [54] work.
In Fig. 4.23b, we show the damage evolution for different duty cycles and
equal pulse duration. It is clear from these that increasing the duty cycle
increases the accumulated damage.
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(a) (b)

(c) (d)

Figure 4.17: Evolution of the cauchy radial stress σrr (in MPa) in a cycle for a
cancerous cell at 500kHz, P=1.4MPa, DC=10% and PD=0.1ms. (a) t=0.0104 ms
(b) t=0.0110 ms; (c) t=0.0116 ms; and (d) t=0.0119 ms.
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(a) (b)

(c) (d)

Figure 4.18: Evolution of the axial cauchy stress σyy (in MPa) in a cycle for a
cancerous cell at 500kHz, P=1.4MPa, DC=10% and PD=0.1ms. (a) t=0.0104 ms
(b) t=0.0110 ms; (c) t=0.0116 ms; and (d) t=0.0119 ms. The maximum stresses are
located back and forth of the nucleus.
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(a) (b)

(c) (d)

Figure 4.19: Evolution of the cauchy shear stress σry (in MPa) in a cycle for a
cancerous cell at 500kHz, P=1.4MPa, DC=10% and PD=0.1ms. (a) t=0.0104 ms
(b) t=0.0110 ms; (c) t=0.0116 ms; and (d) t=0.0119 ms. The maximum shear stress
attained is located at (x,y)=(0,0.0045)mm.



63

(a) (b)

(c) (d)

Figure 4.20: Evolution of the damage state in a cycle for a cancerous cell at 500kHz,
P=1.4MPa, DC=10% and PD=0.1ms. (a) t=0.0104ms (b) t=0.0110ms; (c) t=0.0116
ms; and (d) t=0.0119 ms. The damage is non-uniform, propagating from the outside
of the cell to the interior, and has maximums along the direction of the displacement
of the nucleus.
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(a) (b)

(c) (d)

Figure 4.21: Mean damage for a cancerous and healthy cell between t = 0 ms and 2
ms, with pulse duration 0.1ms and pressure 1.4MPa. The response shows resonant
in the neighborhood of 500 kHz for the cancerous cell and 700 kHz for the healthy
cell. (a) f = 300 kHz. (b) f = 500 kHz. (c) f = 670 kHz. (d) f = 800 kHz.
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Figure 4.22: Mean damage for a cancerous and healthy cell between t = 0 ms and 2ms,
with pulse duration 0.1ms and pressures 0.6 and 1.4MPa.

(a) (b)

Figure 4.23: Mean damage for a cancerous cell between t = 0 ms and 2 ms, under
1.4MPa and at 500kHz. (a) duty cycle 50% and pulse durations 0.1 and 0.5 ms with
pulse repetition time of 0.2 and 1 ms, respectively. (b) duty cycle of 10% and 50%
and pulse duration of 0.1ms with pulse repetition time of 1 and 0.2 ms, respectively.
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4.7 Discussion and concluding remarks
In this chapter, we proposed a dynamical model that provides a rational basis for
understanding the oncotripsy effect posited by Heyden and Ortiz [29] under the
conditions of the experiments of Mittelstein et al. [54]. An important difference
between those experiments and the scenario initially contemplated in [29] is that
in the experiments of Mittelstein et al. [54] the cells are in aqueous suspension,
whereas the analysis of Heyden and Ortiz [29] is concerned with cells embedded in
a solid extracellular matrix (ECM). In aqueous suspension, the cells experience an
exceedingly vicious environment, which is likely to suppress any vibrations of the
cell membrane. The response of the cells to ultrasound stimulation is thus reduced
to that of an internal resonator.

We also develope a finite element model (FEM) of oncotripsy mechanics. The FEM
has the capability of examining the damage onset on the cytoskeleton, as well as
detailed analysis of the local damage, strain, and stresses on the cell. The dynamical
model exhibits the oncotripsy effect, i.e., the insonation-frequency dependence of the
cell response and the window of opportunity for selective cell killing. In addition, it
predicts the dependence of the dead-cell fraction curves on pulse duration observed
experimentally, Fig. 2.5. Indeed, this trend is exhibited by the damage evolution
curves shown in Fig. 4.23. A careful inspection of these curves shows that the
maximum level of damage attained within the insonation cycles decreases as the
pulse duration decreases. Thus, for long pulses, the cells have time to accumulate
large amounts of damage during the on-period of the pulse. For shorter pulses,
the extent of damage accumulation is comparatively less. If the pulse duration is
comparable to—or smaller than—the recovery time for healing, the cell does not
have sufficient time to recover during the off-period of the cycle, and the trend
persists over repeated cycles. Therefore, according to the model the dependence of
the dead-cell fraction curves on pulse duration is the result of a delicate interplay
between the pulse repetition period and pulse duration, the cell dynamics, which
determines the rate at which damage accumulates and the kinetics of cell healing,
which determines the rate at which damage is restored.

The nature of the slow degeneration of the cell in the experiments is unknown. As
observed in our computations, relative nucleus translation with respect to the plasma
membrane probably plays an important role. Damage may onset in the plasma
membrane of the cell, in particular along the direction of wave propagation, with
the rupture of F-Actin and membrane failure. Sloshing of the nucleus may produce
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a breakage of the internal structure. Subsequently, this complex damage evolution,
which is heterogeneously distributed, implies that a cell could face several modes
of death: membrane rupture, rapid cytoskeleton degeneration, or even nucleus
fragmentation.

Nevertheless, this model has some limitations. One the one hand, the theoretical
analysis is performed for a very simplified cell structure. For instance, the cytoskele-
ton was considered to respond with an effective elasticity. However, the network is
far more complex, with fibers varying in thickness, length, and stiffness. The plasma
membrane, nuclear envelope, and other large organelles were not considered either.
On the other hand, the calculations at high frequencies and a long time of exposure
are very expensive. As a reference, a simulation of the coarse axisymmetric mesh
that solves for 2ms of exposure at 500kHz takes ∼ 4 hours in the high-performance
computer at Caltech. Thus, sensitivity analysis and calibration should be performed
by means of a reduced model and, subsequently, use these results as parameters for
the full finite element model calculation.
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C h a p t e r 5

REDUCED MODEL OF ONCOTRIPSY

In this chapter we develop a reduced dynamical model that approximates the three-
dimensional dynamics of the cell and facilitates parameter studies, including sen-
sitivity analysis and process optimization. The reduced dynamical system encom-
passes the relativemotion of the nucleuswith respect to the cellmembrane and a state
variable measuring the extent of damage to the cytoskeleton. The cell membrane
is assumed to move rigidly according to the particle velocity induced in the water
by the insonation. The dynamical system evolves in time as a result of structural
dynamics and kinetics of cytoskeletal damage and repair. The resulting dynamics
is complex and exhibits behavior on multiple time scales, including the period of
vibration and attenuation, the characteristic time of cytoskeletal healing, the pulsing
period and the time of exposure to the ultrasound. We show that this multi-time
scale response can effectively be accounted for by recourse to WKB asymptotics
and methods of weak convergence. We also account for cell variability and estimate
the attendant variance of the time-to-death of a cell population using simple lin-
ear sensitivity analysis. The reduced dynamical model predicts, analytically up to
quadratures, the response of a cell population to LIPUS as a function of fundamental
cell properties and process parameters. We show, by way of partial validation, that
the reduced dynamical model indeed predicts—and provides a conceptual basis for
understanding—the oncotripsy effect and other trends in the data of Mittelstein et
al. [54], including the dependence of cell-death curves to pulse duration and duty
cycle.

5.1 Reduced model of Oncotripsy
Elasticity
In Chapter 4, we obtained the free-energy density per unit volume of the cytoskeleton
as

A(F,T ) =
µ(T )
2

KI J (CI J + C−1I J ), (5.1)

where µ(T ) is a temperature-dependent shear modulus, F is the local deformation
gradient, C = FTF is the right Cauchy-Green deformation tensor, and T is the
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absolute temperature. In addition, the structure tensor K in (5.1) follows as

KI J =

ˆ
S2

p(ξ)ξIξJ dΩ, (5.2)

where ξ is the unit vector pointing from one end of the fiber to the other, or fiber
direction, p(ξ) is the fraction of chains in the ensemble of direction ξ, S2 is the
unit sphere and dΩ is the element of solid angle. The density p(ξ) is subject to the
normalization condition ˆ

S2
p(ξ) dΩ = 1. (5.3)

The distribution function p(ξ) describes the structure of the cytoskeletal network
and is assumed fixed and known. In addition, the thermodynamic driving forces for
damage followed as

f (ξ) = −
∂A
∂q(ξ)

= −α∗q(ξ) = p(ξ)
(
µ(T )(1−q(ξ))

(
λ2(ξ)+λ−2(ξ)−2

)
− β∗q(ξ)

)
(5.4)

with α∗ and β∗ the kinematic parameters.

Viscosity
Another source of resistance to cell deformation arises from the viscosity of the
cytoplasm. Assuming linear viscosity, the viscous Cauchy stress in the cytoplasm
follows as

σv
i j = η(vi, j + v j,i) +

(
κ −

2
3
η

)
div v δi j, (5.5)

where η is the shear viscosity, κ is the bulk viscosity, v is the velocity field, a comma
denotes partial differentiation, and div v is the divergence of the velocity field.

Displacements
We develop a reduced dynamical model of cell deformation and damage based on
the following assumptions:

i) Spherical geometry of cell and nucleus.

ii) Rigid translational motion of the cell membrane.

iii) Heavy and rigid nucleus.

iv) Ansätze for the cytoplasm deformation and damage fields.
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(a) (b)

Figure 5.1: Deformation ansatz used in model reduction. a) Cross section of the reference
configuration of the cell, showing nucleus (inner circle) and two concentric material spheres
to aid in the visualization of the deformation. b) Deformed configuration of the cell after a
displacement of the nucleus.

We note that, under the conditions of interest here, a Rayleigh treatment of the
cell dynamics is justified in view of the large wavelength of the ultrasound waves
compared to the cell size.

We specifically consider a spherical cell of radius b containing a concentric spherical
nucleus of radius a. We assume that the cell moves under the action of planar waves
and executes a translational motion according to the particle velocity of the aqueous
medium. We attach a moving cartesian reference frame to the center of the cell such
that the x3 axis is aligned with the direction of motion. We additionally introduce a
spherical coordinate system (r, ϕ, θ), such that

x1 = r sin θ cos ϕ, x2 = r sin θ sin ϕ, x3 = r cos θ, (5.6)

where r is the radius, ϕ is the azimuthal angle, and θ is the inclination. In these
spherical coordinates, the domain of the cytoplasm in its undeformed configuration
is ϕ ∈ [0, 2π), θ ∈ [0, π), and r ∈ [a, b]. The nucleus is assumed to translate
rigidly through a time-dependent displacement u(t) relative to the cell membrane.
In addition, a material point in the cytoplasm initially at location (x1, x2, x3) in the
undeformed configuration is assumed to be at location

y1 = x1, y2 = x2, y3 = x3 +
b − r
b − a

u(t), (5.7)
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following the displacement of the nucleus. In this ansatz, a spherical material shell
of radius r in the undeformed configuration translates rigidly to another spherical
shell of the same radius centered at u(t) (b− r)/(b− a) following the displacement
of the nucleus, cf. Fig. 5.1.

Dynamics without damage

Inserting this ansatz into the free-energy density (5.1) and assuming small relative
displacements u(t), we obtain, after a trite calculation,

A =
µ

2
u2(t)

(b − a)2
(3 + cos θ), (5.8)

and the total free energy of the cytoskeleton evaluates to

A(u(t)) =
ˆ 2π

0

ˆ π

0

ˆ b

a
Ar2 sin θ dr dθ dϕ =

16π
9

(b3 − a3)µ
u2(t)

(b − a)2
, (5.9)

which, in the absence of damage, supplies a potential for the relative displacement
of the nucleus. Likewise, the velocity field of the cytoplasm follows by time
differentiation of the ansatz (5.7), with the result

v1 = 0, v2 = 0, v3 =
b − r
b − a

u̇(t). (5.10)

Inserting this velocity field into the viscosity law (5.5) and assuming small rel-
ative displacements of the nucleus gives, after a straightforward calculation, the
dissipation per unit undeformed volume is

D =
1
2
σi jvi, j =

1
24

(
5η + 6κ − (η − 6κ) cos(2θ)

) u̇2(t)
(b − a)2

, (5.11)

and the total dissipation follows as

D (u̇(t)) =
ˆ 2π

0

ˆ π

0

ˆ b

a
Dr2 sin θ dr dθ dϕ =

2π
27

(b3 − a3)(4η + 3κ)
u̇2(t)

(b − a)2
.

(5.12)
Finally, the total kinetic energy of the cell follows as

K (t, u̇(t)) =
1
2
(
m0 +

2π
15
ρ(b − a)(6a2 + 3ab + b2)

)
(v(t) + u̇(t))2, (5.13)

where m0 is the mass of the nucleus, ρ is the density of the cytoplasm and v(t) is the
prescribed velocity of the cell membrane. An appeal to the Lagrange-D’Alembert
principle gives the equation of motion

d
dt
∂K

∂u̇
(t, u̇(t)) +

∂D

∂u̇
(u̇(t)) +

∂A

∂u
(u(t)) = 0. (5.14)
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Inserting (5.9), (5.12) and (5.13) into (5.14), we obtain

mü(t) + cu̇(t) + ku(t) = −mv̇(t), (5.15)

where

m = m0+
2π
15
ρ(b−a)(6a2+3ab+b2), c =

4π
27

b3 − a3

(b − a)2
(4η+3κ), k =

32π
9

b3 − a3

(b − a)2
µ,

(5.16)
are the total mass, damping coefficient and stiffness of the cell. Eq. (5.15) represents
a damped and forced harmonic oscillator, with the material velocity v(t) of the
aqueous medium supplying the forcing.

Dynamics with damage

Suppose now that the cell undergoes damage. In general, damage patterns may be
expected to arise at two levels: inhomogeneously over the cytoplasm; and damage
along with preferential directions at every material point. Such a degree of com-
plexity requires a full three-dimensional analysis for its elucidation. In order to
simplify the dynamics, we simply assume that damage is isotropic at all material
points, i.e., the damage parameter q is independent of direction ξ; and independent
of position over the cytoskeleton. By this simple ansatz, the state of damage of the
cell is characterized by a single state variable q(t). An immediate extension of (5.9)
then gives the total free energy of the cell as

A(u(t), q(t)) =
16π
9

(b3− a3)(1− q(t))2µ
u2(t)

(b − a)2
+
4π
3

(b3− a3)
β∗

2
q2(t). (5.17)

Likewise, the total dissipation (5.12) extends to

D (u̇(t), q̇(t)) =
2π
27

(b3 − a3)(4η + 3κ)
u̇2(t)

(b − a)2
+
4π
3

(b3 − a3)
α∗

2
q̇2(t). (5.18)

The Lagrange-D’Alembert principle then gives the coupled equations

d
dt
∂K

∂u̇
(t, u̇(t)) +

∂D

∂u̇
(u̇(t), q̇(t)) +

∂A

∂u
(u(t), q(t)) = 0, (5.19a)

∂D

∂q̇
(u̇(t), q̇(t)) +

∂A

∂q
(u(t), q(t)) = 0. (5.19b)

Inserting (5.17), (5.18) and (5.13) into (5.19), we now obtain

mü(t) + cu̇(t) + (1 − q(t))2ku(t) = −mv̇(t), (5.20a)

αq̇(t) + βq(t) = (1 − q(t))ku2(t), (5.20b)
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with m, c and k as before, and the kinematic parameters, α and β are

α =
4π
3

(b3 − a3)α∗ and β =
4π
3

(b3 − a3) β∗. (5.21)

The first of these equations represents a forced and damped harmonic oscillator
in which the stiffness depends on the instantaneous state of damage. The second
governs the kinetic evolution of damage state, including damage accumulation and
healing.

WKB dynamics
Under the conditions of interest here, the dynamics described by the system (5.19)
is characterized by two disparate time scales: the period of oscillation and the char-
acteristic time for damage evolution, the former much smaller than the latter. This
two-time structure suggests analyzing the problem by means of WKB asymptotics
[6].

We consider a generic duty cycle such as shown inset in Fig. 2.3a, starting at time t0
and consisting of an on-period ending at time t1 and an off-period ending at time t2.
The duration of the on-period, or pulse duration, is T1 = t1 − t0, the duration of the
off-cycle, or listening time, is T2 = t2 − t1 and the total duration of the duty cycle, or
pulse repetition period, is T = t2 − t0. We specifically assume harmonic excitation
of the form

v(t) = Veiωt, (5.22)

during the on-period and v(t) = 0 during the off-period. In (5.22), V is a complex
amplitude and ω is the insonation frequency.

We begin by analyzing the equation of motion (5.20a), which we rewrite in the form

ü(t) + 2ζω0u̇(t) + (1 − q(t))2ω2
0u(t) = −v̇(t), (5.23)

where ω0 =
√

k/m is the natural frequency of the undamaged cell and ζ is the
damping ratio. During the on-period of the duty cycle, we have

ü(t) + 2ζω0u̇(t) + (1 − q(t))2ω2
0u(t) = −iωVeiωt, (5.24)

where, for convenience, we extend the equation to the complex domain. Assume
now that the period of oscillationT0 = 2π/ω0 is much smaller than the pulse duration
T1. Assume additionally that the frequency ω of insonation is comparable to ω0.
Finally, suppose that the variation of the damage state variable q(t) is slow and on
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the scale of the pulse duration ofT1. Under these conditions, the solution u(t) can be
obtained by performing a WKB asymptotic analysis in the small parameter T0/T1.
We note that for fixed q(t), eq. (5.24) is a linear second-order ordinary differential
equation and, therefore, its solution is the sum of the general homogeneous solution
and a particular solution. Because of the presence of damping, with damping
coefficient ζ of O(1), the homogeneous solution decays on the scale of T0 and can
be safely neglected. We seek a particular equation of the form

u(t) = A(t)eiωt, (5.25a)

u̇(t) = ( Ȧ(t) + iωA(t))eiωt, (5.25b)

ü(t) =
(
Ä(t) + 2iω Ȧ(t) − ω2A(t)

)
eiωt . (5.25c)

Inserting these expressions into (5.24) and retaining leading-order terms only, we
obtain

−ω2A(t) + 2iζω0ωA(t) + (1 − q(t))2ω2
0A(t) = −iωV . (5.26)

Solving for the amplitude A(t), we find

A(t) =
iωV

ω2 − (1 − q(t))2ω2
0 − 2iζω0ω

. (5.27)

Finally, inserting into (5.25a) we obtain

u(t) =
iωVeiωt

ω2 − (1 − q(t))2ω2
0 − 2iζω0ω

, (5.28)

asymptotically as T0/T1 → 0. We observe from (5.28) that the nucleus executes
rapid oscillations relative to the cell membrane over the pulse duration in sync with
the ultrasound excitation, with amplitude modulated by the damage variable q(t).

Next, we turn to the damage evolution equation (5.20b). Inserting solution (5.28)
into (5.20b) gives

αq̇(t) + βq(t) = k
(1 − q(t))ω2 |V |2(

ω2 − (1 − q(t))2ω2
0
)2
+ 4ζ2ω2

0ω
2
, (5.29)

which is now fully expressed in terms of the damage variable q(t). Conveniently,
eq. (5.29) is separable and admits the explicit solution

t = t0 +
ˆ q

q0

α dξ

k
(1 − ξ)ω2 |V |2(

ω2 − (1 − ξ)2ω2
0
)2
+ 4ζ2ω2

0ω
2
− βξ

, (5.30)
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where we write q0 = q(t0). Alternatively, the equation of evolution (5.29) can be
recast in terms of dimensionless variables as

dq
dτ

(τ) + q(τ) =
(1 − q(t))w4ε(

w2 − (1 − q(τ))2
)2
+ 4ζ2w2

, (5.31)

where
τ =

t − t0
tr

, tr =
α

β
, w =

ω

ω0
, ε =

k |V |2

βω2 (5.32)

whereupon (5.30) becomes

τ =

ˆ q

q0

dξ
(1 − ξ)w4ε(

w2 − (1 − ξ)2
)2
+ 4ζ2w2

− ξ

. (5.33)

From this reparametrization, we observe that the evolution of damage depends
on the following dimensionless parameters: i) the ratio of the elapsed time to the
relaxation time tr for healing, ii) the ratio w between the frequency of insonation and
the undamaged natural frequency, iii) the energy deposited by insonation relative to
the energy cost of repair, and iv) the cell damping ratio. It is also interesting to note
that the damage state variable attains a steady-state maximum value qmax when

qmax =
(1 − qmax)w4ε(

w2 − (1 − qmax)2
)2
+ 4ζ2w2

, (5.34)

which expresses a balance between damage accumulation and healing. From this
relation, the energy intensity required to attain a maximum level of damage qmax

follows as

ε(qmax) =
(
w2 − (1 − qmax)2

)2
+ 4ζ2w2

w4
qmax

1 − qmax
. (5.35)

As expected, ε(qmax) reduces to zero as qmax → 0 and diverges to infinity as
qmax → 1. We also note that, by virtue of the existence of a steady state at qmax, the
integral in (5.33) is well-defined and finite in the range q0 ≤ q < qmax and diverges
to infinity at q = qmax, indicating that the steady state is attained only asymptotically
at infinite time.

Fig. 5.2 shows an example of the WKB dynamics just elucidated for parameters:
tr = 1, ω = ω0 = 100, ζ = 1, qmax = 1/2. As may be seen from Fig. 5.2, the state of
damage of the cell evolves on the scale of the relaxation time tr for healing and tends
asymptotically to qmax. The relative displacement of the nucleus is damped out on
the shorter time scale 1/ζω0 and simultaneously amplified by the loss of stiffness
due to damage on the time scale tr . The competition between these two opposing
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Figure 5.2: Example of cell response to harmonic excitation. a) Damage state vari-
able vs. time. b) Relative nucleus displacement and amplitude vs. time. Parameters:
tr = 1, ω = ω0 = 100, ζ = 1, qmax = 1/2.

effects results in a well-defined steady-state amplitude, which follows from (5.26)
by taking the limit of q(t) → qmax. Correspondingly, the phase-space trajectory
(u(t), u̇(t)) converges to a stable limit cycle. The ability of WKB asymptotics to
characterize the fast oscillations of the system and their slow modulation in time is
remarkable.

During the off period, the governing equations (5.20) reduce to

mü(t) + cu̇(t) + (1 − q(t))2ku(t) = 0, (5.36a)

αq̇(t) + βq(t) = 0. (5.36b)

Again, we assume that the duration T2 of the off-period is much larger than the
natural period of vibration T0. Under these assumptions, in off-period we have

u(t) = 0, q(t) = q1e−(t−t1)/tr , (5.37)

outside a short transient decaying on the scale of T0 immediately following t1. Thus,
modulo short transients during the off-period the cell is quiescent and repairs itself
exponentially on the time scale of tr .

Fractional-step approximation of high-cycle limit
Of special interest is the case in which the amount of damage accumulated over
each duty cycle is small. Thus, in the experiments of Mittelstein et al. [54] the
death of a significant fraction of the population requires the application of a large
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number of duty cycles of insonation. Correspondingly, the number of insonation
pulses required to cause cell death is large, i.e., T/tr � 1. We proceed to obtain a
combined equation of evolution describing the evolution of the system over larger
numbers of duty cycles, or high-cycle limit. The combined equation of evolution
follows by an appeal to the method of fractional steps [83].

We recall that the duty cycle under consideration consists of an on-period of scaled
duration τ1 = T1/tr and an off-period of scaled duration τ2 = T2/tr . The entire scaled
duration of the duty cycle is τ1 + τ2. Assuming τ1 � 1, over a single on-period
(5.31) gives

q1 ≈ q0 + τ1 *
,

(1 − q0)w4ε(
w2 − (1 − q0)2

)2
+ 4ζ2w2

− q0+
-
. (5.38)

Likewise, with τ2 � 1 over the subsequent off-period (5.36b) gives

q2 ≈ (1 − τ2)q1. (5.39)

Compounding the preceding relations and keeping terms of first order in τ1 and τ2
gives

q2 ≈ q0 + τ1 *
,

(1 − q0)w4ε(
w2 − (1 − q0)2

)2
+ 4ζ2w2

− q0+
-
− τ2q0. (5.40)

Rearranging terms gives the relation

q2 − q0
τ1 + τ2

≈ λ *
,

(1 − q0)w4ε(
w2 − (1 − q0)2

)2
+ 4ζ2w2

− q0+
-
− (1 − λ)q0, (5.41)

where
λ =

τ1
τ1 + τ2

, 1 − λ =
τ2

τ1 + τ2
, (5.42)

are the on-time fraction of the duty cycle, or duty factor, and the off-time fraction,
respectively. Formally passing to the limit in (5.41) gives the differential equation

dq
dτ

(τ) + q(τ) =
λ(1 − q(τ))w4ε(

w2 − (1 − q(τ))2
)2
+ 4ζ2w2

, (5.43)

which approximates slow damage evolution over larger numbers of duty cycles, or
high-cycle limit. Again, the differential equation (5.43) is separable with solution

τ =

ˆ q

0

dξ
λ(1 − ξ)w4ε(

w2 − (1 − ξ)2
)2
+ 4ζ2w2

− ξ

, (5.44)
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which is explicit up to a quadrature. As in the case of persistent insonation, we note
that the system attains a steady state at a maximum level of damage

qmax =
λ(1 − qmax)w4ε(

w2 − (1 − qmax)2
)2
+ 4ζ2w2

, (5.45)

at which point damage accumulation and healing balance each other. The energy
intensity required to attain a maximum level of damage qmax follows as

ε(qmax, λ) =
(
w2 − (1 − qmax)2

)2
+ 4ζ2w2

λw4
qmax

1 − qmax
. (5.46)

As expected, ε(qmax, λ) reduces to zero as λ → 0 and reduces to (5.35) for λ = 1.
We also note that the integral in (5.44) is well-defined and finite in the range
q0 ≤ q < qmax and diverges to infinity at q = qmax, indicating that the steady state
is attained only asymptotically.

The convergence of the damage evolution to the high-cycle limit as the pulse rep-
etition period T becomes much smaller than the characteristic time tr for healing
is illustrated in Fig. 5.3, which corresponds to the choice of parameters: tr = 10,
λ = 1/10, ω = ω0 = 100, ζ = 1/10, qmax = 1/2. Figs. 5.3a-c show the evolu-
tion of the damage state variable obtained by solving directly the WKB eq. (5.31)
and eq. (5.36b) for T = 1, 1/10 and 1/100, respectively. As expected, damage
accumulates during the off-period and otherwise relaxes at all times, resulting in a
characteristic saw-tooth profile. Fig. 5.3d shows the corresponding evolution of the
damage state variable predicted by the effective fractional-step eq. (5.43). Evidently,
the high-cycle limiting curve is smooth and represents a weak limit of the damage
evolution curves as the number of duty cycles tends to infinity, respectively, the
pulse duration cycle tends to zero.

Cell death
We recall that the state variable q(t) measures the amount of damage sustained by a
cell at time t. A plausible assumption is that a cell becomes unviable and dies when
q(t) attains a critical value qc. In light of our previous discussion, this condition
cannot be met if qmax ≤ qc, i.e., if the maximum accumulated damage induced by
insonation is less that the critical value. Conversely, it follows from (5.46) that cell
death requires a minimum level of energy deposition

ε ≥ ε(qc, λ). (5.47)
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Figure 5.3: Convergence of the damage evolution to the high-cycle limit as pulse
repetition periodT becomes much smaller than the characteristic time tr for healing,
cf. Fig. 2.3a (inset). Parameters: tr = 10, λ = 1/10, ω = ω0 = 100, ζ = 1/10,
qmax = 1/2. a) T = 1. b) T = 1/10. c) T = 1/100. d) Damage evolution predicted
by the high-cycle limit equation (5.43).

If this condition is met, then in the high-cycle limit the time-to-death of a cell follows
from (5.44) as

τc =

ˆ qc

0

dξ
λ(1 − ξ)w4ε(

w2 − (1 − ξ)2
)2
+ 4ζ2w2

− ξ

, (5.48)

otherwise τc = +∞ and the cell survives for all time. The corresponding number of
insonation pulses is

Nc =
α

β

τc

T
, (5.49)

where T is the total pulse duration.
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As noted in the introduction, this type of system failure by slowdamage accumulation
over many cycles is observed in other systems, notably inert structural materials, in
which context it is known as high-cycle mechanical fatigue. The number of loading
cycles to failure is correspondingly known as the fatigue life of the material. In this
analogy, cell death by slow damage accumulation over many cycles may be thought
of as a form of mechanical cell fatigue, and the number of cycles Nc to death as the
fatigue life of the cell.

Variability within a cell population
A typical population of cancerous cells exhibits broad variation in geometry and
mechanical properties. This variability is strongly suggested by the cell-death
curves observed by Mittelstein et al. [54], which show that some cells die much
earlier than others. In order to capture this gradual cell necrosis, we regard the
parameters governing the evolution of the cells as random and a cell population as a
sample drawn from the probability distribution of the parameters. By virtue of the
variability of the sample, parts of the population have a relatively short time-to-death
and die early, whereas other parts have a comparatively longer time-to-death and die
later, resulting in the gradual estimated cell death curves observed experimentally,
Fig. 2.6.

The statistics of the time-to-death can be estimated simply by means of a linear
sensitivity analysis (cf., e. g., [73]). We see from (5.62) that the time-to-death
tc = τctr depends on the cell parameters (tr, ω0, ζ, qc), respectively, the relaxation
time for healing, the natural frequency of vibration, and the damping ratio; and
on the process parameters (ε, ω, λ), respectively, the energy intensity, frequency,
and on-period fraction of the insonation. For simplicity, we assume that the process
parameters can be controlled exactly and are uncertainty-free. Contrariwise, the cell
parameters define a random variable X ≡ (tr, ω0, ζ, qc), with probability distribution
reflecting the variability of the cell population.

Owing to the randomness of the cell population, the time-to-death tc itself defines a
random variable Y . In terms of these random variables, (5.62) defines a relation of
the form

Y = f (X ). (5.50)

In order to estimate the variability in the time-to-death random variable Y , we make
a small-deviation approximation

Y ≈ f (X̄ ) + D f (X̄ )(X − X̄ ) + h.o.t., (5.51)
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where
X̄ = E(X ) ≡ (t̄r, ω̄0, ζ̄, q̄c) (5.52)

is the mean value of the cell parameters and D f (X̄ ) are sensitivity parameters. The
average time-to-death then follows as

Ȳ = E(Y ) ≈ f (X̄ ) + h.o.t. (5.53)

In addition, a measure of the variability of Y is given by the variance

σ2 = E((Y − Ȳ )2) = D f (X̄ )TE((X − X̄ ) ⊗ (X − X̄ ))D f (X̄ ) = D f (X̄ )T
ΣD f (X̄ ),

(5.54)
where

Σ = E((X − X̄ ) ⊗ (X − X̄ )) (5.55)

is the covariance matrix of the cell parameters.

We note that, for small deviations, the mean time-to-death of the cell population
is obtained by evaluating (5.62) at the mean value X̄ = (t̄r, ω̄0, ζ̄, q̄c) of the cell
parameters, cf. eq. (5.53), with the result

t̄c = t̄r

ˆ q̄c

0

dξ
λ(1 − ξ)w̄4ε(

w̄2 − (1 − ξ)2
)2
+ 4ζ̄2w̄2

− ξ

, (5.56)

where we write w̄ = ω/ω̄0 and we assume that (5.47) is satisfied with qc = q̄c.
Likewise, the requisite sensitivity parameters D f (X̄ ) follow by differentiating (5.53)
with respect to the cell parameters and evaluating the resulting integrals at their mean
value.

Simple forms of the probability distribution of tc are fully determined by the statistics
Ȳ and σ2. For instance, if we hypothesize a gamma distribution

p(Y ) =
1

Γ(k)θk Y k−1e−Y/θ, (5.57)

then the parameters of the distribution follow as

Ȳ = kθ, σ2 = kθ2. (5.58)

The fraction of the cell population with a time-to-death less or equal to t is given by
the cumulative distribution function

F (t) = P(Y ≤ t). (5.59)
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Figure 5.4: Dead-cell fraction vs. time curves obtained from the Gamma-
distribution. a) σ2 = 1, t̄c = 1/2, 1, 2, 4 and 8. b) t̄c = 1, σ2 = 1, 1/2, 1/4,
1/8 and 1/16.

For the gamma distribution (5.57), we have

F (t) = 1 −
Γ (k, t/θ)
Γ(k)

, (5.60)

where Γ is the gamma function. The resulting dead-cell fraction vs. time curves are
illustrated in Fig. 5.4.

5.2 Qualitative comparison with experiments
We proceed to assess the ability of the proposed dynamical model to account
for the experimentally observed trends summarized in Section 2. Evidently, the
experimentally observed dead-cell fraction vs. time curves exhibit the sigmoidal
form predicted by the proposed dynamical model, cf. Figs. 2.6 and 5.4, which can
be used to fit the experimental curves. More importantly, the model explains the
observed dead-cell fraction curves as a result of cell-to-cell variability, specifically,
the random distribution of times-to-death in the cell population. Furthermore, the
time-to-death of an individual cell is predicted by the model explicitly as a function
of cell parameters (tr, ω0, ζ, qc) and process parameters (ε, ω, λ), e. g., through
eq. (5.62) in the high-cycle limit. Owing to the variability of the cell population,
the cell parameters may be assumed to be random and, by an appeal to linear
sensitivity analysis, the mean and variance of the cell time-to-death can be related
to the mean values and covariance matrix of the cell parameters, eqs. (5.62) and
(5.54). Thus, if the statistics of the cell parameters are known, the time-to-death
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statistics and, correspondingly, the dead-cell fraction curves, are given explicitly by
the model. In this manner, the model relates the observed dead-cell fraction curves
to fundamental mechanical properties of the cell such as mass, stiffness, viscosity
and damage tolerance.

The dynamical model also predicts the dependence of the dead-cell fraction curves
on pulse duration observed experimentally, Fig. 2.5. Indeed, this trend is exhibited
by the damage evolution curves shown in Fig. 5.3. A careful inspection of these
curves shows that the maximum level of damage attained within the insonation
cycles decreases as the pulse duration decreases relative to the characteristic time
for healing. Thus, for long pulses the cells have time to accumulate large amounts of
damage during the on-period of the pulse. For shorter pulses, the extent of damage
accumulation is comparatively less. If the pulse duration is comparable to—or
smaller than—the relaxation time for healing, the cell does not have sufficient time
to recover during the off-period of the cycle, and the trend persists over repeated
cycles. Therefore, according to the model the dependence of the dead-cell fraction
curves on pulse duration is the result of a delicate interplay between the pulse
repetition period and pulse duration, the cell dynamics, which determines the rate
at which damage accumulates and the kinetics of cell healing, which determines the
rate at which damage is restored.
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Figure 5.5: Damage accumulation rate as a function of insonation frequency. Pa-
rameters: ω0 = 1, ε = 1, λ = 1, tr = 1, ζ = 1/10, 2/10, 3/10, 4/10, 5/10. a)
Pristine cell, q = 0. b) Damaged cell, q = 1/10.

The dynamical model also exhibits the oncotripsy effect, i.e., the insonation-
frequency dependence of the cell response and the window of opportunity for
selective cell killing. Fig. 5.5 shows the damage accumulation rate q̇ computed
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from (5.43) as a function of insonation frequency, damping ratio, and state of dam-
age. The parameters used in the figure are: ω0 = 1, ε = 1, λ = 1, tr = 1, ζ = 1/10,
2/10, 3/10, 4/10, 5/10, q = 0, 1/10. As may be seen from the figure, the damage
rate peaks sharply in the vicinity of the undamped resonant frequency ω = ω0.
The damage accumulation rate is largest for a pristine cell, q = 0, and persists,
albeit somewhat reduced, after the cell sustains damage, q = 1/10. This frequency
dependence is clearly apparent in the experimental data (see Fig. 2.5).

5.3 Quantitative comparison with experiments
In this section, we proceed to simulate cell-death histories by means of the reduced
model theory explained throughout this chapter. In this context, we are not interested
in the average cell-death time, but rather on its variance due to the variability of the
cell parameters.

In particular, we aim to reproduce the cell-death lifetime data of a leukemia cell
K-562. Figure 5.6 shows the fit of the Gamma distribution Y ∼ Γ(k, θ) to lifetime
data obtained in experiments [54] (not published) for the cell line type K-562 at free
field peak negative pressure 0.7 MPa, pulse duration of 100 ms and 10% duty cycle.
The mean and deviation standard are provided in Table 5.1.
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Figure 5.6: Γ-distribution fit of cell-death time data [54] for cell line K-562 at
focal pressure 1.4 MPa, pulse duration 100ms, 10% duty cycle at two insonation
frequencies 500 kHz and 670 kHz. The mean and deviation standard is tabulated
in 5.1
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Table 5.1: Mean and deviation standard for cell-death lifetime data for K-562 at
PNP=0.7MPa, 100ms pulse duration, 10% duty cycle and frequencies (1) 500kHz
and (2) 670kHz

Ȳ1 σ1 Ȳ2 σ2

30.5 sec 46.6 sec 49.4 sec 71.36 sec

Simulation of cell-death time
We model heterogeneous cell responses by simulating the behavior of a population
of cells. First, we run sets of many simulations representative of cell-to-cell vari-
ability on cell parameters. Let X1, ..., XN be the random sampling drawn from the
probability distribution of the physiological parameters of the cell given by F , such
that

X = {X1, X2, ...Xi, ..., XN } with Xi = {tri, ω0i, ξi, qci }. (5.61)

The cell-death time is computed by means of the reduced model with

tc = tr

ˆ qc

0

dξ
λ(1 − ξ)w4ε(

w2 − (1 − ξ)2
)2
+ 4ζ2w2

− ξ

, (5.62)

which leads to a vector of cell-death times,

tc = {tc1, tc2, ..., tci, ..., tcN }. (5.63)

Then, the simulated (or empirical) distribution function (SDF), Ŷ , is a cumulative
distribution function,

Ŷ (T |X ) =
#elements in sample ≤ T

N
=

1
N

N∑
i=1

I (ti < T ), (5.64)

where I (·) is the indicator function. The SFD first and second moments can then be
compared to the experimental CDF.

Ideally, the distribution for each parameter would come from independent tests at
the conditions of the experiments. However, as this information is not available, we
will assign independent log-normal distributions with mean and variance based on
the following information gathered from the biological literature:
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1. The highest cell fraction death of the cell K-562 occurs at 500kHz as observed
in Fig. 2.6.b;

2. For Human Airway Smooth Muscle (HASM) cells affected by LIPUS, the net
contractile moment drops to 50% of its initial value and recuperates almost
completely in 200sec when insonated at moderate acoustic pressures [55].

3. Cells are highly viscous structures. For example, the apparent viscosity for
fibroblast and endothelial cells is ∼ 104 Pa.s. [58]. However, the apparent
viscosity has been shown to decrease in cancerous cells, and it has been
associated with the disorganized arrangement of the F-actin filaments [79].

4. Probability densities of cells stiffness and viscosity are skewed and usually
show large deviations from the mean [58].

These hypotheses lead to search for the mean value of the parameters in the neigh-
borhood of t̄r = 200 sec, ω̄0 = 500 kHz and ξ̄ = 0.8. In addition, as both damage
parameters, α and β are unknown, we assume ε to be larger than the capability of
the cytoskeleton to repair itself (i.e., β small) and we set (ω2ε)=10.

We search for the mean value of the parameters X by solving a least squares (LSQ)
optimization problem. This is, we search for the parameter values that minimize the
squared differences between the model and the observations,

X̄∗ = argmin
X̄

1
2

Ȳ1 − Ŷ1(X̄ )
2
2
+
1
2

Ȳ2 − Ŷ2(X̄ )
2
2 (5.65)

with Ŷ1(X̄ ) and Ŷ2(X̄ ) the estimated values of the experimental mean at 500 and
670 kHz, respectively. Finally, we find X̄∗ ≡ (100sec, 2π 500kHz, 0.70, 0.136) with
Ŷ1 = 30.5 sec and Ŷ2 = 40.3 sec (see Table 5.3 ). The resulting mean damage curves
q̄(t) can be seen in Fig. 5.7, as well as the change of natural frequency with respect
to time. As expected, the damage increases along time and impacts on the natural
frequency as it deviates from the excitation. In particular, the mean critical damage
refers to a 26% change of the initial stiffness and a 14% decrease of the natural
frequency upon cell-death.

To asses the influence of the recuperation time, natural frequency, damping and crit-
ical damage over the mean value of cell-death time, we compute the dimensionless
sensitivity coefficients (see Table 5.4) as
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Sp = D f (X̄p)
X̄p

f (X̄ )
(5.66)

with X̄p the parameter of interest in the vector (t̄r, ω̄0, ζ̄, q̄c) while the other pa-
rameters are held constant. The coefficients show the fraction of change in the
mean cell-death by the fraction of change of a cell parameter. Under the process
parameters of the study, the sensitivity analysis shows that cell-death time is the
most sensitive to the critical damping of the cell, followed by the critical damage
and natural frequency. Contrary, small deviations from the recuperation time do not
have a major effect on the mean time-to-death.

Next, we are interested in assesing the variability of the cell-death fraction, and not
only in its mean value. We carefully select a deviation standard for each parameter
based on the literature and constraint the maximum deviation of the parameters to
be σ2

ω0 < 0.25 ω0, σ2
ξ < 0.25 ξ, σ2

tr < 0.1 tr and σ2
qc < 0.1 qc. The standard

deviation for the cell parameters is optimized such that,

X∗σ = argmin
Xσ

1
2

 Y1(t) − Ŷ1(X̄, t) +
1
2

 Y2(t) − Ŷ2(X̄, t) . (5.67)

The parameters tr , ω0, ξ and qc follow a log-normal distribution (see Fig. 5.2) with
mean and variance listed in Table 5.2. It is worth noticing that the fit parameters are
not unique, and further data collection should be gathered to reduce the uncertainty
and validate these probability densities.

Finally, we are in a position to compare predicted cell-death curves with the experi-
mental data. Fig. 5.8 shows computed cell-death curves for log-normal independent
cell population parameters, withmean values and standard deviations as in Table 5.2,
together with experimental data from [54]. The predicted curves are computed di-
rectly via Monte Carlo based on a sample of size N = 1000 and by means of the
linearized-sensitivity approximation. Asmay be seen from the figure, the linearized-
sensitivity curve closely approximates the Monte Carlo curve, which establishes the
validity of the linearized-sensitivity approximation under the conditions of the ex-
periments. In addition, both the linearized-sensitivity and the Monte Carlo curves
match closely the experimental data, which provides a measure of validation of the
model.
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Figure 5.7: Cytoskeleton damage along exposure time with parameters X̄ ≡

(105sec, 2π 500kHz, 0.5, 0.285) with Ȳ = 40.5 sec for the process parameters
(ε, ω, λ) = (10, 2π 500kHz, 0.1).
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Figure 5.8: Comparison of predicted cell-death fraction with experimental data
from [54] for a focal pressure of 1.4MPa, pulse duration 100ms, duty cycle 10% and
frequencies 500kHz and 670kHz. The experimental data is represented through the
Γ-distribution fit shown in Fig. 5.6.

Table 5.2: Mean and variance for the simulation parameters tr , ω0, ξ and qc.

tr ω0 ζ qc

Mean 100 sec 1000π kHz 0.7 0.136
Variance 10 sec2 125 π kHz2 0.175 0.0136
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Figure 5.9: The parameters tr , ω0, ξ and qc are assumed to be random variables
log-normally distributed with mean and variance in Table 5.2 . (A) Recuperation
time in seconds, (B) natural frequency in KHz, (c) critical damping and (D) critical
damage.

Table 5.3: Simulated mean parameters with Ŷ1 = f (X̄ ) and Ŷ2 = f (X̄ ) the estimated
mean value of the experiments at 500 and 670 kHz, respectively.

t̄r ω̄0 ζ̄ q̄c Ŷ1 Ŷ2

100 sec 1000π kHz 0.7 0.136 34.6 sec 45.3 sec

Table 5.4: Normalized sensitivity parameters D f

D f ¯tr D fω̄0 D f ζ̄ D f q̄c

1.0 1.48 2.34 1.71
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5.4 Comparison to the finite element model
This section addresses the domain of validity of the reduction hypotheses against
simulations of the finite element model. We simulate the cell under a variety of
frequencies, and we compare the damage state variable between the finite element
model (FEM) and reduced model (RM). The comparison is made under the same
conditions of mass, stiffness, damping and kinetic parameters using the conversion
equations 5.16 and 5.21. These are shown in Table 5.5. For an explanation on how
to setup the finite element model, please refer to Chapter 4.

Table 5.5: Geometry, mass and effective mechanical properties used in the compar-
ison of the reduced model to the finite element model.

Charactersitic Value Unit

a nucleus radius 0.0045 mm
b cell radius 0.009 mm
m effective cell mass 1.18e-9 gr
k effective cell stiffness 0.012 MPa
c effective cell viscosity 5.86e-7 MPa ms
α∗ kinetic damage parameter 1 1.0 MPa ms
β∗ kinetic damage parameter 2 0.5 MPa
µc shear modulus of the cytoskeleton 0.033 MPa
µn shear modulus of the nucleus 0.3 MPa
η shear viscosity of the cell 1e-5 MPa ms
ρc density of the cytoskeleton 0.001 gr/mm3

ρn density of the nucleus 0.0015 gr/mm3

P pressure 1.4 MPa
λ duty cycle 0.1

For dynamic models, the corresponding of the eigenfrequencies is crucial. For
the case of a leukemia cell, we compute the relative error of the finite element
eigenfrequencies ω∗, obtained in EurekaLite,

e =
|ω − ω∗ |

ω∗
. (5.68)

Likewise, the finite element solutions q∗(t) and u∗y (t), obtained in EurekaLite, were
considered as reference values for computing the relative errors for damage and
displacements of the reduced model.

We compute the error of the finite element model displacements u∗y (t) against the
reduced model displacements uy (t) on the time (0,T),
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error =

√ˆ T

0
(uy (t) − u∗y (t))2

dt
t2
. (5.69)

We nondimensionalize this error with respect to the finite element excitation fre-
quency ω∗, the applied displacements U and the time T, so that

error
f actor

=
1

ω∗
√

TU

√ˆ T

0
(uy (t) − u∗y (t))2

dt
t2
. (5.70)

Notice that the applied displacements depend on the excitation frequency through
U = V

ω∗ , where V is the particle velocity.

error
f actor

=
1
√

TV

√ˆ T

0
(uy (t) − u∗y (t))2

dt
t2
. (5.71)

Similarly, we compute the error of the finite element model damage q∗(t) against
the reduced model displacements q(t) on the time (0,T),

error =

√ˆ T

0
(q(t) − q∗(t))2

dt
t
. (5.72)

We nondimensionalize this error with respect to the finite element the time T and
the relaxation time tr , so that

error
f actor

=
tr
√

T

√ˆ T

0
(q(t) − q∗(t))2

dt
t

(5.73)

with tr the recuperation time. The damage corresponds to maximum at the end of
the time. The damage in the finite element model corresponds to the damage of the
fiber on the direction of the nucleus translation.

The computed relative error for the resonance frequencies, displacements and dam-
age are shown in Table 5.6 through 5.8. For the cancerous cell, the resulting
frequency of resonance is located at 450kHz (FEM) and 500kHz (RM), which re-
sults in an 11% error. The healthy cell has its eigenfrequency at 675kHz (FEM) and
705 (RM), which leads to an error of 4%. As regards the nuclear displacements and
average cytoskeletal damage predicted by the reduced model, the errors are found
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to be within 7% of the full-field finite-element calculations. The frequency in the
RM seems to be concentrated around resonance, whereas the FEM spreads out over
the frequency domain. This is not observed in the FEM at a lower pressure and no
viscosity (see Fig. 5.10), indicative of the higher viscous dissipation in the FEM.

Table 5.6: Frequency shift between the finite element model and the reduced model.
The displacement and damage were obtained from a frequency response analysis up
to 0.1ms. There is a shift in frequency between the maximum of the displacement
and the damage. The maximum damage occurs at the undamped frequency.

Displacement Damage
Cancerous Healthy Cancerous Healthy

Finite Element Model 455 675 490 700
Reduced Model 499 705 499 705
Error 0.096 0.044 0.017 0.007

Table 5.7: Error in the displacement between the finite element model and the
reduced model, with T=0.1ms, V=1mm/ms and tr=2ms. This comparison is per-
formed at each model respective frequency of resonance.

Displacement
Cancerous Healthy

Error 0.021 0.019
Error/Factor 0.066 0.0599

Table 5.8: Error in the damage between the finite element model and the reduced
model, with T=0.1ms, V=1mm/ms and tr=2ms. This comparison is performed at
each model respective frequency of resonance.

Damage
Cancerous Healthy

Error 0.00043 0.00087
Error/Factor 0.0027 0.0054

Further on, the damage evolution for the finite and reduced element models can be
found in Fig. 5.11. It can be noticed that the damage in the direction of the wave
propagation Y has a higher fidelity than with the mean damage. Fig. 5.12 shows
the comparison of the models for the frequency response of the maximum damage
in a pulse of 0.1ms. Evidently, the maximum damage between models is different
pointwise.

Overall, the results presented in this section shows that the reduced model follows
the trends of the finite element model. The nuclear displacements and average
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Figure 5.10: Displacement of the nucleus at T=0.1ms for P=0.2MPa and no viscous
effects.

cytoskeletal damage predicted by the finite element model is smaller than that for
the reduced model. The difference is mostly associated to (a) large displacements
during resonance, (b) gap betwen the resonant frequencies and (c) non-homogeneous
damage on the finite element model in contrast to homogeneously distributed in the
reduced model. Given the level of observational error, this accuracy may reasonably
be deemed adequate for all practical purposes.
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(a) (b)

(c) (d)

Figure 5.11: Mean damage for a cancerous and healthy cell between t = 0 ms and 2
ms, with pulse duration 0.1ms and pressure 1.4MPa. The response shows resonant
in the neighborhood of 500 kHz for the cancerous cell and 700 kHz for the healthy
cell. (a) f = 300 kHz. (b) f = 500 kHz. (c) f = 670 kHz. (d) f = 800 kHz.
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(a) (b)

Figure 5.12: Displacement of the nucleus at T=0.1ms for P=1.4MPa. (a) FEM. (b)
RM.
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5.5 Discussion and concluding remarks
The proposed dynamical model provides a rational basis for understanding the
oncotripsy effect posited by Heyden and Ortiz [29] under the conditions of the
experiments of Mittelstein et al. [54]. An important difference between those
experiments and the scenario initially contemplated in [29] is that in the experiments
of Mittelstein et al. [54] the cells are in aqueous suspension, whereas the analysis
of Heyden and Ortiz [29] is concerned with cells embedded in a solid extracellular
matrix (ECM). In aqueous suspension, the cells experience an exceedingly viscous
environment, which is likely to suppress any vibrations of the cell membrane.
The response of the cells to ultrasound stimulation is thus reduced to that of an
internal resonator. Heyden and Ortiz [29] pointed out that the spectral gap between
cancerous and healthy cells depends sensitively on the mechanical properties of the
ECM and that the changes in those properties experienced by the cancerous tissue
are a key contributing factor to the opening of a spectral gap. In addition, for cells
embedded in an ECM, membrane rupture provides an additional lysis mechanism
which is absent in cells in suspension. These considerations suggest the need for an
independent experimental assessment of the oncotripsy effect in cancerous tissues,
preferrably in vivo.

The proposed dynamical model also reveals the dependence of oncotripsy on funda-
mental cell parameters and on process parameters. The cell parameters of the model
can be calibrated from cell-death data for specific cell lines. Alternatively, funda-
mental cell properties such as stiffness and viscosity can bemeasured independently.
The calibrated model can then be used as a tool for optimizing process parameters
for maximum therapeutic effect. Most importantly, theoretical understanding such
as provided by the proposed dynamical model is key for interpreting experimental
observations and formulating new and improved clinical therapies.
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C h a p t e r 6

METHOD OF ONCOTRIPSY

6.1 Introduction
In this chapter, we develop a theoretical framework to evaluate the effect of On-
cotripsy employing the reduced model presented in Chapter 5.

The first section is dedicated to reviewing the reduced dynamical model of On-
cotripsy. The reduced model of oncotripsy is a mathematical tool that facilitates
parameter studies, including sensitivity analysis and process optimization of the
oncotripsy effect. The model predicts the response of a cell population to Low-
Intensity Pulsed Ultrasound (LIPUS) as a function of fundamental cell properties
and process parameters. Dead-cell fraction curves can be obtained as a result of
cell-to-cell variability.

The second section is dedicated to numerical experiments for different process
parameters. We discuss damage, mean time-to-death, and a cell-dead fraction
under a wide variety of pressures, frequencies of excitation, and duty cycle. The
study offers valuable insight into understanding the complex interaction of these
parameters influence on cell death.

Next, we propose a framework to determine the optimal process parameter that
maximizes the oncotripsy effect. Based on the idea of Ashby charts for the design
and selection of materials, we create charts for oncotripsy with the aim of selection
of process parameters for in-vitro and, potentially, tissue applications.

Finally, this section provides a comprehensive Ashby-type process parameter selec-
tion charts to maximize the oncotripsy effect. Due to the variability of mechanical
and kinetic properties, it is excepted that some overlap of natural frequencies exists
between healthy and cancerous cells. For a given set of free parameters — i.e.,
pressure, duty cycle and exposure time — a performance index can be plotted into
the chart to show the efficiency of each frequency for a given cell population.

6.2 Theory
In this section, we present a summary of the theoretical basis of the oncotripsy
effect. While Subsection 6.2 is concerned with the derivation of the damage state
and time-to-death of a single cell, details on the resulting cell-dead fraction of a



98

population of cells is given in Subsection 6.2. Further details may be consulted in
Chapter 5.

Damage and time-to-death of a single cell
In our previous work, we developed a reduced model of oncotripsy as an application
of cell dynamics, statistical mechanical theory of network elasticity and ’birth-
death’ kinetics to describe processes of damage and repair of the cytoskeleton. The
failure mechanism of oncotripsy is the damage accumulation over many (million)
of insonation cycles under which a progressive disruption of the actin fibers occurs.

The reduced dynamical model of cell deformation and damage was based on the
following assumptions:

i) Spherical geometry of cell and nucleus.

ii) Rigid translational motion of the cell membrane.

iii) Heavy and rigid nucleus.

iv) Ansätze for the cytoplasm deformation and damage fields.

Based on the network theory of elasticity in statistical mechanics, an energy density
per unit volume for the cytoskeletonwas proposed. We introduced a damage variable
q(ξ) whereby accounts for the attendant loss of stiffness of the cytoskeleton. This
variable ranges from 0 to 1 such that q(ξ)=0 when all fibers in direction (ξ) are
intact and q(ξ)=1 when all fibers in direction (ξ) are broken. Further, we assume a
linear viscosity uniformly distributed over the cytoplasm.

Assuming the damage is isotropic, i.e., q is independent of direction ξ, and that the
cell translates rigidly through a time-dependent displacement u(t) relative to the cell
membrane, one can compute the total free energy, dissipation, and kinetic energy
of the system. Finally, an appeal to the Lagrange-D’Alambert principle gives the
following system of coupled equations:

mü(t) + cu̇(t) + (1 − q(t))2ku(t) = −mv̇(t), (6.1a)

αv q̇(t) + βvq(t) = (1 − q(t))u2(t), (6.1b)

with m, c, k, αv and βv the total mass, damping coefficient, stiffness, and kinetic
parameters of the cell given by,
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m =m0 +
2π
15
ρ(b − a)(6a2 + 3ab + b2), c =

4π
27

b3 − a3

(b − a)2
(4η + 3κ), k =

32π
9

b3 − a3

(b − a)2
µ,

(6.2)

with a as the nucleus radius, b the cell radius, m0 the nucleus mass, η the shear
viscosity, κ the bulk viscosity, and µ the shear modulus. In particular, eq. (6.1a)
represents a damped and forced harmonic oscillator, with the material velocity v(t)
of the aqueous medium supplying the forcing which the stiffness depends on the
instantaneous state of damage. The second eq. (6.1b) governs the kinetic evolution
of damage state, including damage accumulation and healing.

We note that under the conditions of interest here, the dynamics described by the
system (6.1) is characterized by two disparate time scales: the period of oscillation
and the characteristic time for damage evolution, the former much smaller than the
latter. This two-time structure suggests analyzing the problem by means of WKB
asymptotics [6], which reduces the damage evolution equation to be fully expressed
in terms of the damage variable q(t)

αq̇(t) + βq(t) =
k
2

(1 − q(t))ω2 |V |2(
ω2 − (1 − q(t))2ω2

0
)2
+ 4ζ2ω2

0ω
2
, (6.3)

where ω is the excitation frequency and ω0 is the undamaged natural frequency.
Conveniently, eq. (6.3) is separable and admits the explicit solution

t = t0 +
ˆ q

q0

α dξ
k
2

(1 − ξ)ω2 |V |2(
ω2 − (1 − ξ)2ω2

0
)2
+ 4ζ2ω2

0ω
2
− βξ

, (6.4)

where we write q0 = q(t0). Alternatively, the equation of evolution (6.3) can be
recast in terms of dimensionless variables as

dq
dτ

(τ) + q(τ) =
(1 − q(t))w4ε(

w2 − (1 − q(τ))2
)2
+ 4ζ2w2

, (6.5)

where
τ =

t − t0
tr

, tr =
α

β
, w =

ω

ω0
, ε =

k |V |2

2βω2 (6.6)

whereupon (6.4) becomes

τ =

ˆ q

q0

dξ
(1 − ξ)w4ε(

w2 − (1 − ξ)2
)2
+ 4ζ2w2

− ξ

. (6.7)
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From this reparametrization, we observe that the evolution of damage depends
on the following dimensionless parameters: i) the ratio of the elapsed time to the
relaxation time tr for healing, ii) the ratio w between the frequency of insonation and
the undamaged natural frequency, iii) the energy deposited by insonation relative to
the energy cost of repair, and iv) the cell damping ratio.

In particular, eq. 6.7 and 6.5 result in the damage evolution for one insonation pulse
of LIPUS. To obtain a combined equation of evolution describing the evolution of
the system over larger numbers of duty cycles, we analyze the problem by means
of fractional time stepping. The duty cycle under consideration consists of an on-
period of scaled duration τ1 = T1/tr and an off-period of scaled duration τ2 = T2/tr .
The entire scaled duration of the duty cycle is τ1 + τ2. Finally, it can be shown that
the time-to-death of a single cell is given by

t = tr

ˆ qc

0

dξ
λ(1 − ξ)w2ε(

w2 − (1 − ξ)2
)2
+ 4ζ2w2

− ξ

, (6.8)

where
λ =

τ1
τ1 + τ2

, 1 − λ =
τ2

τ1 + τ2
, (6.9)

are the on-time fraction of the duty cycle, or duty factor, and the off-time fraction,
respectively.

Cell-dead fraction due to cell-to-cell variability
A typical population of cancerous cells exhibits broad variation in geometry and
mechanical properties. In order to capture this gradual cell necrosis, we regard the
parameters governing the evolution of the cells as random and a cell population as
a sample drawn from the probability distribution of the parameters.

We see from eq. (6.8) that the time-to-death tc = τctr depends on the cell parameters
(tr, ω0, ζ, qc), respectively, the relaxation time for healing, the natural frequency of
vibration, and the damping ratio; and on the process parameters (ε, ω, λ), respec-
tively, the energy intensity, frequency, and on-period fraction of the insonation. For
simplicity, we assume that the process parameters can be controlled exactly and
are uncertainty-free. Contrariwise, the cell parameters define a random variable
X ≡ (tr, ω0, ζ, qc), with probability distribution reflecting the variability of the cell
population.

Owing to the randomness of the cell population, the time-to-death tc itself defines
a random variable Y . In terms of these random variables, (6.8) defines a relation of
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the form
Y = f (X ). (6.10)

In order to estimate the variability in the time-to-death random variable Y , we make
a small-deviation approximation

Y ≈ f (X̄ ) + D f (X̄ )(X − X̄ ) + h.o.t., (6.11)

where
X̄ = E(X ) ≡ (t̄r, ω̄0, ζ̄, q̄c) (6.12)

is the mean value of the cell parameters and D f (X̄ ) are sensitivity parameters. The
average time-to-death then follows as

Ȳ = E(Y ) ≈ f (X̄ ) + h.o.t. (6.13)

We note that, for small deviations, the mean time-to-death of the cell population
is obtained by evaluating (6.14) at the mean value X̄ = (t̄r, ω̄0, ζ̄, q̄c) of the cell
parameters, cf. eq. (6.13), with the result

t̄c = t̄r

ˆ q̄c

0

dξ
λ(1 − ξ)w̄4ε(

w̄2 − (1 − ξ)2
)2
+ 4ζ̄2w̄2

− ξ

, (6.14)

where we write w̄ = ω/ω̄0 and we assume that (5.47) is satisfied with qc = q̄c.

However, for large deviations, we model heterogeneous cell responses by simulating
the behavior of a population of cells. First, we run sets of many simulations repre-
sentative of cell-to-cell variability on cell parameters. Let X1, ..., XN be the random
sampling drawn from the probability distribution of the physiological parameters of
the cell given by F , such that

X = {X1, X2, ...Xi, ..., XN } with Xi = {tri, ω0i, ξi, qci }. (6.15)

The cell-death time is computed by means of the reduced model with

tc = tr

ˆ qc

0

dξ
λ(1 − ξ)w4ε(

w2 − (1 − ξ)2
)2
+ 4ζ2w2

− ξ

, (6.16)

which leads to a vector of cell-death times,

tc = {tc1, tc2, ..., tci, ..., tcN }. (6.17)
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Then, the simulated (or empirical) distribution function (SDF), Ŷ , is a cumulative
distribution function,

Ŷ (T |X ) =
#elements in sample ≤ T

N
=

1
N

N∑
i=1

I (ti < T ), (6.18)

where I (·) is the indicator function. The SFD first and second moments can then
be compared to the experimental CDF. Ideally, the distribution for each parameter
would come from independent tests at the conditions of the experiments.

6.3 Influence of cell and process parameters on the oncotripsy effect
In this section, we aim to understand the influence of the mechanical properties and
process parameters on the response of a single cell and cell population. We perform
numerical experiments on healthy and cancerous cells for different conditions of
pressure (or deposited energy), duty cycle, excitation frequency, and time of exposure
and observe the influence on damage and cell-death fraction. First, we provide a
summary of the cell parameters and its variability obtained in Chapter 5 by fitting the
simulated cell-dead fraction to the empirical cell-dead fraction. Next, we analyze
pressure vs. damage, damage vs. time and cell-dead fraction vs. frequency ratio,
which provide bounds to the ultrasound insonation parameters.

Definition of cell parameters
The cell parameters exhibits a broad variability in geometry and mechanical prop-
erties. To capture the cell-death evolution in a cell population, we estimated the
mean of cell parameters X̄ to the experimental cell-death fraction of Mittelstein et
al. [54] presented in Chapter 2. Subsequently, the variability of the cell parameters
was calibrated to the experimental variance by establishing suitable upper and lower
bounds from the biological literature. Finally, the cancerous cell parameters follow
a log-normal distribution with mean and variance tabulated in 6.1.

As regards the healthy cell parameters, we do not count with cell-death fraction
experiments for healthy cells. However, we know that at 500kHz, P=1.4MPa and
λ = 1/10, the T-cell death is of 39.5%. In addition, experimental observations have
shown that the viscosity of healthy cells is higher than for cancerous cell. Further,
we assume that the healing kinetics of the cell are faster. Even though healthy cells
posses less variability than cancerous cell, for this analysis we will consider them
to be the same, and the mean values to be a shifted from the cancerous cell. In
addition, we assume that β, and therefore ε, is equal among this cells. This implies
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that, for the same energy deposited, the healthy cell will attain larger damage, but
with faster recovery. Finally, for a healthy cell, we obtain the parameters tabulated
in 6.2.

Table 6.1: Mean and variance for the cancerous cell parameters from calibration to
experiments tr , ω0, ξ and qc.

tr ω0 ζ qc

Mean 100 sec 1000π kHz 0.7 0.136
Variance 10 sec2 125 π kHz2 0.175 0.0136

Table 6.2: Proposed mean and variance for the healthy cell parameters tr , ω0, ξ and
qc.

tr ω0 ζ qc

Mean 50 sec 2000 π kHz 1.0 0.2
Variance 10 sec2 125 π kHz2 0.175 0.0136

Bounds on the insonation parameters through numerical simulations
Figure 6.1 shows the total damage vs. pressure (in MPa) at 60 seconds of exposure,
for a duty cycle of 10% and 50% and different frequency ratios w. In general, the
healthy cell attains less damage than the cancerous cell. Cell death will only occur
if the total damage surpasses a critical value of qc. At low pressures, the maximum
damage is reached at resonance, i.e., w=1. On the contrary, at high pressures — 2
MPa (λ = 1/10) for the cancerous cell and 2.25 MPa (λ = 1/10) for the healthy cell
— the total damage is large enough to shift the damaged natural frequency of the
cell to be in resonance with the excitation. Increasing the duty cycle brings forward
the frequency shift to 1 MPa for the cancerous and healthy cells. Figure 6.2 shows a
closer inspection of the damage evolution at 3MPa. At 60 seconds, for the cancerous
and healthy cell, the greatest damage occurs at a natural frequency above resonance.
The previous figures imply that, depending on the time of exposure and insonation
pressure, different strategies could be considered. For low pressures/low insonation
times one may expect the change of the damaged natural frequency to be small,
i.e., wd ≈w —with wd the excitation to damaged natural frequency ratio— and not
influence the oncotripsy effect. Furthermore, the gap between healthy and cancerous
cells is not expected to change. On the contrary, for large pressures/exposure times,
the damaged ratio will drastically change so that wd � w and affect the frequency
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gap between the cells. In this case, the best solution would be to work further away
from the resonant frequency of the healthy cell.
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Figure 6.1: Total damage vs. pressure (in MPa) at 60sec exposure time and duty
cycles of λ = 1/10 and λ = 1/50 for a cancerous cell with parameters ξ = 0.7,
tr = 100sec, qc = 0.1 and a healthy cell with parameters ξ = 1, tr = 50sec,
qc = 0.2. The damage is shown for different ratio w. (a) Cancerous and (b) healthy
at λ = 1/10. (c) Cancerous and (d) healthy at λ = 1/50.

Figure 6.3 presents the mean time-to-death (in sec) vs. pressures (in MPa) for
a duty cycle of 10% and 50% for the ratio w=1. These plots remind us of the
typical S-N or Wöhler curve for high-cycle fatigue, which describes the relationship
between the cyclic stress amplitude (S) and the number of cycles to failure (N).
Here, we choose to represent a curve given by the cyclic pressure amplitude at the
focus (P) and mean time-to-death (tc). The P-tc curve presents some important
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Figure 6.2: Damage vs. time on a cancerous cell with parameters w = 0.5, 1, 1.5,
ξ = 0.7, tr = 100sec, qc = 0.1 and a healthy cell with parameters w = 0.5, 1, 1.5,
ξ = 1, tr = 50sec, qc = 0.1. The process parameters are P=3MPa and λ = 1/10. a)
Cancerous. b) Healthy.

characteristics. For both cancerous and healthy cells, even if both have the same
natural frequency, it is suggested that there is a pressure level or threshold below
the which cell death would not be observed (in the mean sense). In these particular
examples, the pressure limit is ∼1.5MPa for healthy and ∼0.75MPa for cancerous.
In mechanics, this threshold is known as the fatigue limit or endurance limit, and
it depends on the cell parameters, the process parameters, and other factors not
considered in the model, such as residual damage from a previous process or the
chemical composition of the environment. Below this limit, the cell exhibits an
"infinite" life. In engineering, this "infinite" life is considered to be 1 million cycles,
beyond which the material would fail. For a cell initially in resonance, i.e., w = 1,
the limit would be located at N = 2π

ω λt∞ where t∞ is the infinite time-to-death.
Thus, for our test cases and considering 300 sec to be at infinity, the limit would
be at Nc = 15million and Nh = 21million cycles for cancerous ( f0 = 500kHz) and
healthy ( f0 = 1000kHz) cells, respectively. This observation implies that healthy
and cancerous cells will eventually die after very long exposure times. A comparison
of both limits displays a significant pressure gap, implying there are pressures for
which one could kill abnormal cells while leaving the normal intact (in the mean
sense). Moving on to the effect of the duty cycle, Figure 6.3a and b show that the
limit threshold and pressure gaps decrease while increasing the duty cycle. It can
also be observed that the fatigue limit initiates at an earlier time, suggesting that the
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infinite time-to-death has been reduced. These observations are related to the duty
cycle increasing the on-period, thus increasing the total damage on the fibers, while
decreasing the off-period, i.e., reducing the time to recover.
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Figure 6.3: Mean time-to-death (in sec) at different pressure (inMPa) for a cancerous
cell with parameters w = 1, ξ = 0.7, tr = 100sec, qc = 0.1 and a healthy cell with
parameters w = 1, ξ = 1, tr = 50sec, qc = 0.1 a) λ = 1/10. b) λ = 1/2.

Lastly, Figure 6.4a. and b. shows the cell-dead fraction vs. excitation frequency
for the duty cycle and pressure of the experiments [54]. As expected, the viability
of the cell population decreases towards resonance. Even at resonance, the healthy
population shows larger survival because of its higher viscosity. Regardless of the
frequency gap between cells, as the applied pressure is near the pressure limit of
the healthy cell at 1.5MPa (see Fig. 6.3), its cell-dead fraction at 60 seconds is not
negliglible (∼37%). An optimized solution will require to work at lower exposure
time or pressures (see Figure 6.4 c and d). Table 6.3 shows different possibilities
to guarantee the demise of the cancerous without damage of healthy cells. In this
particular example of only two unimodal cells, the best option is to reduce the
frequency of the excitation to 270kHz which leads to 60% to 0.2% cell-dead of
cancerous to healthy. However, if the healthy cell has another resonant frequency
below the cancerous cell, then the optimal solution would be to reduce the pressure
to 1MPa.
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Figure 6.4: Cell-dead fraction for a cancerous and healthy cell for a duty cycle 10,
exposure times of 25 and 60 seconds, and pressures of 1 and 1.4 MPa.

Table 6.3: Variability in cell-dead (CD) ratio of healthy (h) to cancerous cell (c) for
different conditions of frequency, pressure and exposure time.

Frequency Pressure Exposure Time λ CDh CDc ∆CD CDh/CDc
(kHz) (MPa) (sec)

500 1 25 0.1 0.018 0.376 0.358 0.05
500 1 60 0.1 0.104 0.583 0.479 0.18
500 1.4 25 0.1 0.121 0.569 0.447 0.21
500 1.4 60 0.1 0.366 0.758 0.392 0.482
270 1.4 60 0.1 0.02 0.609 0.589 0.03
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6.4 Quantitative oncotripsy
In this section we study which values of ultrasound frequency are more desirable to
minimize death of healthy cells. As observed in the experiments of Mittelstein et
al. [54], even thought healthy cells present minimal death at the frequencies studies,
their death still occurs and is also frequency and time dependent. Therefore, given
two cells, one cancerous and another healthy, we ask the question: which is the best
combination of pressure, time of exposure, and frequency, such that we minimize
the death of healthy cells and we maximize the one for cancerous cells.

In this study, our attention will be focused on understanding the susceptibility of the
cell-dead fraction through contour plots on the frequency domain. Our observations
will be based on the following assumptions:

• The ultrasound loading parameters are known and deterministic.

• The probability distribution, mean and standard deviation of the material
parameters are known.

• The cancerous and healthy cell are unimodal, i.e., they only have one principal
natural frequency.

• The damage q(t) on the cell is homogeneous and follows the dynamical reduced
model of oncotripsy.

• The range of pressures is below the cavitation threshold. If inertial cavitation
is present, we consider that amplifies the effect of oncotripsy by modifying
the pressure surrounding the cells, which effectively affects the coefficients α
and β.

Oncotripsy charts
To aid the selection of ultrasound parameters, this section provides a comprehensive
Ashby-type ultrasound parameter selection charts to maximize the therapeutic effect
on cell populations. Due to the variability of mechanical and kinetic properties, it
is expected that some overlap of natural frequencies exist between healthy and
cancerous cells. For instance, under the same ultrasound conditions, Mittelstein et
al. [54] found 100% cell-dead fraction of leukemia cell lines K-562 and U-937 and
≈50% of breast normal cells. As observed in Fig. 6.4, the cell-dead amplification
due to resonance extends along with the frequency domain which suggests that any
frequency in the neighbor of the natural frequency could potentially be used for
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oncotripsy. What is more, as seen in Fig. 6.1, high enough pressures or duty cycles
leads to high cell-dead fraction on normal and unhealthy cells, overshadowing the
oncotripsy effect.

To address the difficulty of ultrasound parameter selection, we create Oncotripsy
charts, where we employ the previously explained reduced dynamical model to
quantify the effectiveness of oncotripsy in the frequency domain under several
process attributes. Through numerical simulations, we analyze the cell-dead fraction
on the frequency domain under the influence of several process parameters. The
cells are modeled following the properties presented in section 6.3. Through these
charts, we will be able to quantify the frequencies that results in maximum demise
of cancerous cells while keeping healthy cells intact. We define this region as the
optimal therapeutic ultrasound frequency. Generally, this can be represented as an
optimization problem of the form,

min
ω∈Ω,p∈P

f (ω) =
fh(ω)
fc(ω)

, (6.19)

where fc(ω), fh(ω) are positive, continuous and concave and represent the cell-
dead fraction of the cancerous and healthy cells for a excitation frequency ω in a
nonempty convex setΩ and certain process parameters p in a set P. For a collection
of cell types, this optimization is multi-objective.

Contours plots showing the cell-dead fraction in the frequency domain for three
different pressures, P = 0.5MPa, P = 1MPa, and P = 1.5MPa, for 10% duty
cycle and after 10, 25 and 60 seconds of exposure to ultrasound are presented next.
The plots indicate the dead-cell fraction against the ratio between the excitation and
resonance frequencies, at constant pressure, duty cycle, and exposure time. We recall
that the cell-dead fraction ranges from 0 to 1, where 1 represents the full demise of
the cell. We remark that the dead-cell fraction is computed with the aforementioned
reducedmodel by sampling the random variable X = (ω0, tr, ξ, qc) from a log-normal
distribution. The ranges for both therapeutic and natural frequencies span from 100
kHz to 1.5 MHz. These charts demonstrate several patterns in the demise of both
healthy and cancerous cells that are targeted by therapeutic ultrasound. For a fixed
set of ultrasound parameters, the maximum dead-cell fraction in cancerous cells
is higher compared to healthy cells (see Fig.6.5, 6.6, and 6.7). We also observe
that for longer exposure to ultrasound frequency and higher pressure increases the
probability of cell death. Moreover, we observe the highest cell-dead fraction occurs
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along the resonance line f / f0 = 1. Additionally, it is shown that the susceptibility
to the oncotripsy effect increases with increasing excitation frequency.

We remark that the quantitative results could be partially altered by changing certain
assumptions in the computational model. This could stem from different physical,
biological, or mathematical considerations. These possible changes, originating
from employing a distinct model or set of assumptions, in turn, might lead to a
different set of oncotripsy charts. Nevertheless, similar patterns will prevail.
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Figure 6.5: Oncotripsy charts for ultrasound pressure P = 0.5 MPa. (a), (c) and (e)
demonstrate the dead-cell fractions for cancerous cells after 10, 25 and 60 seconds
of exposure to ultrasound, respectively. Similarly, (b), (d) and (f) demonstrate the
dead-cell fractions for healthy cells after 10, 25 and 60 seconds of exposure to
ultrasound, respectively.
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Figure 6.6: Oncotripsy charts for ultrasound pressure P = 1 MPa. (a), (c) and (e)
demonstrate the dead-cell fractions for cancerous cells after 10, 25 and 60 seconds
of exposure to ultrasound, respectively. Similarly, (b), (d) and (f) demonstrate the
dead-cell fractions for healthy cells after 10, 25 and 60 seconds of exposure to
ultrasound, respectively.
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Figure 6.7: Oncotripsy charts for ultrasound pressure P = 1.5 MPa. (a), (c) and (e)
demonstrate the dead-cell fractions for cancerous cells after 10, 25 and 60 seconds
of exposure to ultrasound, respectively. Similarly, (b), (d) and (f) demonstrate the
dead-cell fractions for healthy cells after 10, 25 and 60 seconds of exposure to
ultrasound, respectively.
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6.5 Discussion:parameters selection and performance indices
The objective of this section is to demonstrate the means of incorporating oncotripsy
analysis into realistic and clinical applications. While we primarily deal with human
cells and tissues, oncotripsy procedures are general and potentially applicable to
other living organisms. We will focus on constructing an index which could be
utilized in determining optimal therapeutic ultrasound frequencies, for a given type
of cell or tissue. We then present clinical oncotripsy charts as a potential guide for
treating different tissues in human subjects.

DHCR: death of healthy to cancerous cell ratio
Asmentioned in the previous section, we aim to characterize the optimal therapeutic
ultrasound frequency for in vivo clinical applications. In clinical cases that the
cancerous cells are clustered at a region, that region would be the target of ultrasound
focus, and healthy cells would remain intact for the most part. In this case, which
dominates the advanced stages of cancer, oncotripsy charts could be utilized to treat
the cancerous cells with an ultrasound frequency that leads to the maximum demise
of cancerous cells. Based on the results presented in the previous section, for a
given cell type, therapeutic ultrasound frequencies that are equal or very close to
the corresponding resonant frequency will cause maximum death in the cancerous
cells.

On the other hand, particularly in the early stages of cancer, cancerous cells are
not segregated from the healthy ones [77]. The ultrasound focus will target both
cancerous and healthy cells in this case, whereas we naturally aim to minimize the
annihilation of healthy cells. This raises up the question of ‘what is the optimal
therapeutic ultrasound frequency?’ where we define optimal therapeutic frequency
as the excitation frequency that simultaneously maximizes the demise of cancerous
cells and minimizes the healthy cell deaths.

Prior to obtaining the optimal frequency for a specific tissue, one needs to char-
acterize the frequencies of resonance for both the corresponding cancerous and
healthy cells. Additionally, it often occurs that several types of cells are adjacent to
each other, in which case obtaining the optimal frequency requires a multi-objective
analysis. For instance, if cancerous and healthy cells of a specific tissue -such as
breast- lie adjacent to each other in a neighborhood where white blood cells and
other cell types exist, one needs to obtain the resonant frequencies for all of them
and look for optimal frequencies that lead to the minimal demise of healthy cells.
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Here we consider the case that only one pair of cancerous and healthy cells with
similar frequency of resonance exists at the focus of therapeutic ultrasound. In this
case, response to the above question, for the case, lies in defining an index I which
represents the death of healthy to cancerous cells ratio (DHCR)

I =
Dh
√

Dc
, (6.20)

where Dc and Dh respectively represent the death-cell fraction for cancerous and
healthy cells. This index prevents Dh from outweighing Dc by including the square
root in the denominator. Note that since 0 ≤ Dh < Dc < 1, we will have

√
Dc > Dc.

Let us clarify this with an example. Consider the comparison of two cases, one
with Dh = 0.03 and Dc = 0.15 and the other with Dh = 0.1 and Dc = 0.5. Had we
defined the ratio as a simple ratio of the cell-dead fractions, i.e., I = Dh/Dc, then
both cases would be labeled identically. Yet in the second case, half of the cancerous
cells are demolished with ultrasound, which is very desirable. The current definition
of the healthy-to-cancerous death ratio leads to values of 0.0775 and 0.1414 for the
first and second cases, respectively. Therefore, the index presented favors the second
scenario.We emphasize that the choice of index is non-unique. We then compute
this index for three different pressures: P=0.5 MPa, P=1 MPa, and P=1.5 MPa.
We choose a threshold value, Im, which corresponds to the maximum desirable
DHCR. Without loss of generality, we have chosen Im = 0.1 meaning that all the
scenarios (i.e., ultrasound parameters) that lead to I < Im are labeled as desirable,
and anything above that value is considered as unfavorable. The results for each
pressure after 10 and 60 seconds of exposure to ultrasound are presented in Fig. 6.8,
where the desired frequency ranges are shown in black.

Our results essentially show that optimal frequency ranges lie in a region away from
the f = f0 line. As shown previously, increasing the pressure will significantly
increase the death probability of both cancerous and healthy cells. This occurs in
a way that leads to a shrinkage of the optimal therapeutic frequencies, as seen in
Fig. 6.8. We remark here that the size of this optimal region evidently depends
on pressure level and threshold value Im. In fact, we repeated our calculations for
different values of Im and observed that the demonstrated patterns remain invariant.
We thus propose a new framework for the oncotripsy procedure in which, for the
case of desegregated cancerous and healthy cells or when the cluster of cancerous
cells is ’smaller’ than the ultrasound focus, the optimal frequencies lie in a region
distinct from the f = f0 neighborhood.
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For this optimization problem, the maximum pressure threshold for minimum
healthy cell-dead fraction can be found by computation of the P-tc curve, as shown
in Fig. 6.3 in section 6.3. Simultaneously, the damage curves — parameterized by
the frequency ratio — can be compared between healthy and cancerous cell.

Clinical Charts
Frequency of resonance, which is rarely measured directly in the experiments, is
the primary physical property of a cell which plays the key role in the oncotripsy
analysis. Therefore, in order to incorporate the oncotripsy procedure and the cor-
responding charts in clinical applications, one needs to compute the resonance
frequency for the cell of interest indirectly. This significantly hinges on gathering
accurate experimental data for the elastic properties and geometry of each cell. In
this section, we aim to look into resonance frequencies for both cancerous and
healthy cells in certain tissues of human subjects and adopt the previously obtained
oncotripsy charts to suggest effective therapeutic ultrasound frequencies for each
type of cell.

In order to compute the resonance frequency, we borrowed experimental data for
elastic properties and cell diameter from the literature. We also made the following
relevant assumptions: (i) we assume that cells have spherical shapes, and (ii) their
densities are identical to water. Based on the diameters reported in experiments, we
then compute mass for each type of cell. Moreover, among the elastic properties of
a cell, its Young modulus is often computed from the experiments. With recourse
to the linear elasticity theory, we can obtain the corresponding shear modulus as

µ =
E

2(1 + ν)
, (6.21)

where E, µ and ν are the Young modulus, shear moduli, and Poisson ratio, respec-
tively. For these computations, we consider the shear modulus from experiments is
the effective modulus of the cell. Finally, we compute the frequency of resonance
for several cell types by incorporating the data acquired from literature, as sum-
marized in Table 6.4. Note that each type of cell has a non-negligible variation in
its mechanical properties. This primarily stems from the complexity of conducting
mechanical experiments, such as atomic force microscopy, on the cellular level as
well as the biphasic nature of cells.

With recourse to the data presented in Table 6.4 and our previous findings, we
propose oncotripsy clinical charts. The primary idea in this approach is to map the
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Figure 6.8: Death of healthy to cancerous cell ratio (DHCR) plots. The ultrasound
values leading to DHCR less than 10% are shown in black, while the red region
corresponds to larger values. In the white region, cells with the corresponding
resonant frequency are not affected by the therapeutic ultrasound. (a) P=0.5 MPa
and after 10 seconds of exposure; (b) P=0.5 MPa and after 60 seconds of exposure;
(c) P=1 MPa and after 10 seconds of exposure; (d) P=1 MPa and after 60 seconds
of exposure; (e) P=1.5 MPa and after 10 seconds of exposure; (e) P=1.5 MPa and
after 60 seconds of exposure,
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effect

Oncotripsy
effect

Ovary

WBCProstate

Figure 6.9: Sketch presenting delimitation of resonance frequencies (in kHz) for
different tissues, combining healthy and cancerous. The resonant ranges were
obtained theoretically using mechanical properties and sizes from the biological
literature. The area is delimited in colors: (black) cell-dead fraction larger than
a desired threshold Dt , (gray) cell-dead fraction in the range 0-Dt and (white) no
oncotripsy effect.

resonance frequencies computed from experimental data to the oncotripsy charts
and determine the effective ranges for excitation frequency in therapeutic ultrasound
procedures. Fig. 6.9 represents schematics of this interpretation, where each band
demonstrates a type of cell within tissue in human subjects.
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Table 6.4: Summary of cell properties and the corresponding resonant frequencies
f0. Note: when the diameter of a specific cell line was not found in the literature, we
use the diameter of another cell from the same tissue. We also compute a second
frquency of resonance, related to a two-degrees of freedom system.

Tissue Cell line Young modulus (kPa) Diameter (µm) f0 (kHz) References

Bladder Healthy- HCV29 7.5 ± 3.6 20 123-213 [36, 42]
Healthy- Hu 609 9.7 ± 3.6 20 140-242 [36, 42]
Cancerous- BC3726 1.4 ± 0.7 20 53-92 [36, 42]
Cancerous- T24 1 ± 0.5 20 45-77 [36, 42]
Cancerous- Hu 456 0.4 ± 0.3 20 28-50 [36, 42]

Breast Healthy- 184A 2.4 ± 0.3 18 81-141 [3, 41]
Cancerous- MCF7 1.5 ± 0.4 18 ± 2 64-112 [3, 41]
Cancerous- T47D 1 ± 0.1 15 69-120 [3, 41]

Prostate Healthy- PZHPV-7 3 ± 0.5 30 42-13 [34, 41]
Cancerous- LNCaP 0.5 ± 0.1 30 17-30 [34, 41]
Cancerous- PC-3 2.4 ± 0.3 30 38-66 [34, 41]
Cancerous- Du145 2 ± 0.3 30 35-60 [34, 41]

Ovary Healthy- IOSE 2.5 ± 0.2 8 281-486 [10, 82]
Cancerous- OVCAR-4 1.1 ± 0.2 8 0.04-0.07 [10, 82]
Cancerous- HEY 0.9 ± 0.1 8 0.04-0.07 [10, 82]
Cancerous- OVCAR-3 0.6 ± 0.1 8 0.02-0.03 [10, 82]

White Blood Cells Healthy-Neutrophil 0.156 ± 0.067 8.3 ± 0.6 70-121 [65]
Lymphoblast-Jurkat 0.855 ± 0.670 11.5 ± 1.5 102-176 [65]
Lymphoblast-K-562 0.6-0.7 28 23-39 [45]
Cancerous-U-937 0.130 8.13 62-108 [17]

6.6 Conclusion
In this work, we have presented numerical experiments using a reduced-order model
that captures the dynamic response of a cell subjected to ultrasound waves.

The dynamical model is used to study the effect of focused ultrasound on the demise
of cancerous cells. Under this framework, we identify a particular cell with its
frequency of resonance and encodes both its mechanical and geometrical properties.
We showed through pressure vs. mean time-to-death curves that working below a
specific level of pressure, the viability of normal cells can be maximized. In the
same lines, for specific pressures, the frequency of resonance may be shifted by
the rate of damage on a given cell-population. Therefore, the optimal frequency
gap between two cells may not be given by the simple comparison of their natural
frequencies. We then proposed oncotripsy charts as a guide for clinical applications,
which demonstrates the probability of cell demise against therapeutic ultrasound
frequency, duty cycle, and resonance frequency. We presented these charts for both
cancerous and healthy cells at three distinct values of ultrasound pressure and after
different exposure times. These Ashby-type plots play a key role in determining the
’optimal’ therapeutic ultrasound parameters for a given cell type in a patient-specific
manner.

With the objective of maximizing and minimizing the demise of cancerous and
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healthy cells, respectively, we have proposed distinct regimes of frequency depend-
ing on the stage of cancer in a patient. In the advanced stages of cancer where
cancerous cells form clusters larger than the focus size of the incorporated ultra-
sound system, therapeutic frequencies which are equal to the resonance frequency
of the cancerous cells are suggested by oncotripsy analysis. However, in the earlier
stages of cancer where it has been shown that the cancerous and healthy cells are
desegregated [77], ultrasound can lead to the undesirable death of healthy cells. In
this case, oncotripsy charts are crucial to obtain regimes of ultrasound parameters
that lead to optimal results. We showed that this regime of optimal parameters
may lie away from the resonance line (i.e., f = f0). Finally, we adopted different
cell types as presented examples of Oncotripcy clinical charts that could serve as
a selection method for the ultrasound parameters, which is based on experimental
data for a wide range of cell morphology and types.

We emphasize that while altering the incorporated model might lead to changes
in the quantitative results, the observed patterns would remain invariant for the
most part. The provided oncotripsy charts suggest a new framework for bridging
the chasm between the academic studies and clinical applications, which could be
incorporated in further studies with another set of assumptions and models.
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C h a p t e r 7

CONCLUSIONS AND FUTURE WORK

In this investigation, the aimwas to develop a mathematical framework to effectively
target the resonance frequency of the cells under a predetermined pressure, duty
cycle, and timing settings as well as to design numerical experiments that lead to
medical applications. The goals were to explain the mechanism of resonance of cells
in suspension theoretically, determine the control parameters for the low-intensity
focused ultrasound, and predict the bounds in which cancerous cell death was likely.

In this work, we propose a damage accumulation constitutive model of the cy-
toskeleton under high-cycle cell fatigue. The developed model of oncotripsy is an
application of cell dynamics, statistical mechanical theory of network elasticity, and
’birth-death’ kinetics to describe processes of damage an repair of the cytoskele-
ton. Based on experiments by Mittelstein et al. [54] that show a cell sloshing in
suspension and cytoskeleton disruption of cancerous cells while being exposed to
low-intensity pulsed ultrasound excitation, we hypothesized that cell death occurs
as a progressive disruption of the actin fibers.

The computational model accounts for a competition between the damage and
healing of the same fiber during on and off-periods of pulsed ultrasound excitation.
Furthermore, we hypothesize that the effect of the filament results in a gradual loss of
cytoskeleton stiffness and that after sufficient stiffness degradation, the cell becomes
unviable and dies. In addition, we assume that healing occurs predominantly in the
off-periods of LIPUS, based on the idea that failed filaments heal faster when
unstretched or at slightly stretched configurations and that, conversely, the ability to
recover is diminished with increasing filament stretch.

Based on the theory of network elasticity, we introduced a free energy per unit
volume which utilizes an internal variable that accounts for damage and recovery of
fibers in particular directions. We determine the evolution of the internal variables
at each material point by a linear kinetic law. Additionally, we assume a linear
viscosity formulation to characterize the viscoelastic behavior of a cell. Further
on, we proposed a variational constitutive update and applied the model to the
study of a healthy and cancerous cell through the finite element method. We found
that the model predicts the trends observed in the experiments of Mittelstein et
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al. [54]. For a healthy and cancerous cell with different resonant frequencies, but
the same viscosity and kinetic parameters, we show that the damage evolution varies
concerning the frequency of excitation, pressure, time of exposure, pulse duration,
and duty cycle. As expected, each cell was the most susceptible at resonance. The
damage is not homogeneous and maximum in the fiber along the nucleus trajectory,
and it propagates from the exterior surface of the cell to its interior, implying several
potential modes of death: membrane perforation, cytoskeleton degeneration, or even
nucleus fragmentation. Increasing the time of exposure, duty cycle, and pressure
increases the overall damage on the cell. Nevertheless, the finite element model
results to be very expensive, and it is not possible to investigate the long-term
cytodisruption, as well as perform sensitivity analysis, parameter space studies, and
calibration to experiments. In this regard, we propose a reduced dynamical model
of oncotripsy that solves these limitations.

The reduced dynamical model is based on the assumption that the damage is
isotropic, i.e., is independent of the direction, and that the cell translates rigidly
through a time-dependent displacement relative to the cell membrane. Based on
these ideas, the total free energy, dissipation energy and kinetic energy of the sys-
tem can be computed, and, by an appeal to the Lagrange D’Alambert principle,
obtained a system of two coupled equations which accounts for cell dynamics and
damage accumulation. The first equation represents a damped and forced harmonic
oscillator, with the material velocity of the aqueous medium supplying the forcing,
which stiffness depends on the instantaneous state of damage. The second equation
governs the kinetic evolution of damage state, including damage accumulation and
healing. We note that under the conditions of interest, the dynamics described by the
system is a multiscale problem: the period of oscillation is much smaller than the
characteristic time for damage evolution. This two-time structure suggests analyzing
the system of coupled equations employing WKB asymptotics, which reduces the
damage evolution equation to be fully expressed in terms of the damage variable.
Furthermore, we can recast the equation of damage evolution for one duty cycle in
terms of dimensionless variables and conclude that the damage evolution depends
on (a) the ratio of the elapsed time to the relaxation time for healing, (b) the ratio
between the frequency of insonation and the undamaged natural frequency, (c) the
energy deposited by insonation relative to the energy cost of repair, and (d) the cell
damping ratio.

To obtain the combined equation of evolution describing the damage of the system
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over many duty cycles, we analyze the problem through fractional stepping. Finally,
we obtain a damage evolution equation that accounts for every duty cycle, and that,
conveniently, is separable and from which we obtain the time-to-death of a single
cell.

The proposed dynamical model reveals the dependence of oncotripsy on fundamen-
tal cell and process parameters. The foremost can be calibrated from cell-death data
for specific cell lines. Alternatively, structural cell properties such as stiffness and
viscosity can be measured independently. Tests to determine the kinetic parameters
would measure the evolution of stiffness for different insonation conditions. The
calibrated model can then be used as a tool for optimizing process parameters for
maximum therapeutic effect.

Through pressure vs. mean time-to-death curves, we found that working below
a specific level of pressure maximizes the viability of normal cells. In the same
lines, for specific pressures, the frequency of resonance may be shifted by the
rate of damage on a given cell-population. Therefore, the optimal frequency gap
between a healthy and cancerous cell may not be given by the simple comparison
of their undamaged resonant frequency. Contour plots of cell-dead fraction over
the frequency domain at specific pressures and exposure times showed that there
are bands which guarantees the minimum healthy to cancerous cell-dead ratio. The
problem is then reduced to an optimization of the healthy to the cancerous cell-dead
ratio on the frequency domain over a range of pressures and exposition times.

An extension of the reduced dynamical model would be to include the effects of
added mass and virtual friction as proposed by Or & Kimmel [61]. Further studies
regarding the role of recovery could explore other kinetic laws that incorporate a
restriction in the amount of energy available for healing. Othermodels could account
for thermal fluctuations in the cytoskeleton filaments due to the oscillations and the
effect of these fluctuations effect on their rupture. In addition, in order to elucidate the
application of oncotripsy in patient-specific treatments, future work should extend
themathematical study to solid tumors. In this regards, the constitutive law proposed
here could result useful to model the damage and recovery of fibers. Special care
should be taken with the stiffness of the tissue or cells. Such as in reinforced
composite materials, the cytoskeleton — in particular the intermediate fillaments
— act as a reinforcement at the junctions among cells, increasing their apparent
stiffness. Also, adherent cells have smaller nucleus that when in suspension. Both
this observations indicate that the frequency of resonance in tissues and gel-models
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may be different to those obtained for suspensions.

Further experiments should explore the cell-dead fraction evolution in time for dif-
ferent cell populations at lower pressures and a wider variety of frequencies. These
curves are essential to calibrate the model and obtain the critical damage and kinetic
parameters. These experiments would also serve to identify an optimal ultrasound
intensity and validate and verify the reduced model. The issue of cavitation in
Mittelstein et al. [54] is intriguing and should be explored in further computational
and experimental research.

This theoretical and computational contribution will be fundamental to guide labo-
ratory research in the prediction of bounds for targeted frequencies and to develop
a patient-specific noninvasive cancer treatment without risking damage to healthy
tissue. Theoretical understanding, such as provided by the proposed dynamical
model, is critical for interpreting experimental observations and formulating new
and improved clinical therapies. In this regard, several possible therapies suggest
themselves as potential clinical applications of oncotripsy. Thus, due to genomic
instability and being in different states within the cell cycle, cancer cells are highly
heterogeneous at any given moment. As such, it is unlikely that a single set of
acoustic parameters can kill an entire cancer cell population. This observation
suggests exploiting oncotripsy in connection with other synergistic cancer therapies
such as immunogenic cell death (ICD). In this combination, oncotripsy does not
need to kill every last cancer cell to be effective, as long as it can induce ICD of
sufficient cancer cells to trigger the host immune system to destroy the remaining
cancer cells (abscopal effect). In this vein, research could usefully explore the effect
of oncotripsy on tumor growth to estimate tumor progression and evaluate on the
effectivity of oncotripsy against other cancer treatment therapies. Again, these and
other fundamental questions suggest helpful directions for further research.
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A p p e n d i x A

APPENDICES

A.1 Tangent matrix
The tangent matrix can be found as

DDWi JkL (Fn+1,T ) =
∂2Wn

∂Fi J∂FkL
= 4

∂2Wn

∂CI J∂CK L
FiI FkK + δik SJL, (A.1)

which leads to

DDWi JkL (Fn+1,T ) = 4µ
∑
λp,n+1

wp
∂

∂CJL

(
(1 − qp,n+1)2(1 − λ−4p,n+1)

)
(Fn+1ξi)i (Fn+1ξi)k + δik SJL .

(A.2)

The partial derivative with respect to the first term,

∂
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=
∂
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*
,
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−2
p,n+1)∆t

+
-

2

= −
(A + B∆t − A qp,n)2

(A + B∆t + µ(λ2p,n+1 + λ
−2
p,n+1)∆t)3

2µ∆t(1 − λ−4p,n+1)(ξp)J (ξp)L

= −(1 − qp,n+1)2
2µ∆t(1 − λ−4p,n+1)(ξp)J (ξp)L

A + B∆t + µ(λ2p,n+1 + λ
−2
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.

(A.3)

Finally, the tangent matrix results in

DDWi JkL (Fn+1,T ) =

− 4µ
∑
λp,n+1

wp

2µ∆t(1 − qp,n+1)2(1 − λ−4p,n+1)2

A + B∆t + µ(λ2p,n+1 − 1)∆t
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+ 4µ
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wp(1 − qp,n+1)22λ−11/2(1 − λ−4)(Fn+1ξp)i (Fn+1ξp)k (ξp)J (ξp)L
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