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ABSTRACT 

Advantageous systems are frequently utilized for solar water splitting sometimes are 

not the most well-understood. Based on fundamental understandings of 

semiconductor physics, certain combinations of materials should never be 

advantageous for applications in solar water splitting. (Un)fortunately, these 

expectations are unrealized. Specifically, we address herein how photogenerated 

current is able to pass through a-TiO2 from n-Si as well as the formation of a barrier 

height from electroless-deposited Pt on p-Si.  

Chapter 2 addresses how charge is able to pass through thick layers of atomic layer 

deposited a-TiO2 even though the deep valence band of the a-TiO2 should make the 

a-TiO2 act as a blocking layer. It was found that the presence of mid-gap defect states, 

observable by x-ray photospectroscopy (XPS) valence band spectrum and electron 

paramagnetic resonance (EPR), in the a-TiO2 act as a channel for current to pass. The 

implications of the current traversing through the mid-gap defect states are that global 

and local changes to the mid-gap defect concentration will strongly affect the amount 

of current able to pass at all potentials. Thus, the choice of top contacts is limited to 

metals that have a work-function less than ~5.2 eV else the resistivity would increase.  

Chapter 3 focuses on explaining the origin of the barrier height for electroless Pt on 

p-Si during hydrogen evolution. The work function of Pt should create an ohmic 

contact which is observed when Pt is e-beam deposited to p-Si. The origin of the 

barrier height was found to be dependent on the route for charge transfer. Facile redox 

couples showed that the solution potential of the redox couple controlled the barrier 

height as charge transferred occurred favorably at the h-terminated surface. While 

performing hydrogen evolution reaction, the barrier height is formed through the 

formation of a hydrogen dipole layer that occurs at the interface of the SiOx|Pt 

interface.  
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1 
C h a p t e r  1  

INTRODUCTION 

1 Results 

In order to mitigate and maybe even reverse the adverse effects of anthropogenic CO2 

production, replacing fossil fuels with fuel produced by solar energy is an attractive 

option. The amount of energy from the Sun that irradiates the entire Earth in an hour 

and a half could have powered the world for the year 2001. Solar energy is an 

attractive alternative due its overwhelming abundance. However, solar energy is a 

very intermittent energy source. Thus, having a way to capture, convert and efficiently 

store solar energy is required in order for it to be a large-scale solution. Solar water 

splitting is a potential solution to the intermittency of solar energy which could further 

its wide-scale adoption in order to decrease or even reverse the anthropogenic 

production of CO2. 

As attractive an option as solar water splitting is, many challenges exist that prevent 

its wide-scale adoption. First and foremost, a solar water splitting device must be 

efficient, inexpensive, and stable. Currently, at best, only two of the three 

aforementioned criteria can be attained in a single device. Several methods exist to 

‘circumvent’ the necessary requirements for a successful water splitting device. One 

such method is to tack-on stability through a protection layer to make efficient, 

inexpensive, but unstable semiconductors a viable option. The second method is to 

improve the efficiency of inexpensive and stable semiconductors through the addition 

of catalysts without the formation of expensive buried-junctions. 

Many methods to tacking-on stability have been explored and have achieved some 

levels of success. One of the most successful protections, to date, has been the atomic 



 

 

2 
layer deposited (ALD) amorphous TiO2 (a- TiO2). This protection layer greatly 

enhances the stability of various n-type semiconductors (e.g. n-Si, n-GaAs, n-GaP, n-

CdTe). However, the stability achieved by using this protection is not the only 

remarkable trait about the a-TiO2. The a-TiO2 protection layer should never have 

worked as well as it did with the aforementioned n-type semiconductors for the 

thicknesses that was deposited.  

The deep valence band of TiO2 should have made the protection layer act as a 

blocking layer for charge-transfer. Previous iterations of TiO2 protection layers have 

observed this blocking layer behavior, as layers have to be ultra-thin (< 5 nm) to allow 

for current to pass. However, devices with the ALD a-TiO2 were able to operate 

efficiently for thickness greater than 100 nm without affecting the current. Although 

the result did not follow previous predictions of its behavior, this did not stop 

researchers from using the protection layer without fully understanding the nuances 

around the a-TiO2. Chapter 2 investigates the source of the discrepancy and how to 

efficiently utilize the uncovered information to design more efficient photoanodes 

using the a-TiO2 for solar water splitting. 

Just like the a-TiO2 defying expectations, the addition of Pt to p-Si via the 

electroless deposition for solar hydrogen production has a large discrepancy that has 

never been fully addressed. Although, Pt is an excellent catalyst for the hydrogen 

evolution reaction, the work function of Pt is so large compared to the band 

positions of p-Si that the combination of the two materials is expected to create an 

ohmic contact. Thus, this ohmic contact should render the p-Si|Pt device useless for 

solar hydrogen production.  

This expectation is met whenever Pt is physically deposited to p-Si by means of 

physical depositions like sputtering or e-beam evaporation. The junction that is 

produced is ohmic and is unable to use light to drive hydrogen production. However, 
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Pt deposited by the electroless deposition method to p-Si violates the expectation as 

the junction that is produced is rectifying and able to use light to drive hydrogen 

production. Many hypotheses exist to explain the origin of the apparent rectifying 

junction that is formed by electroless deposition. However, no hypothesis has been 

systematically proven to be the origin of the apparent rectifying junction. Chapter 3 

investigates the origin for the rectification and provides a model to explain the origin 

of the rectification as well as gives guidance on how to further enhance the rectifying 

junction. 

Between these two systems, they have the common theme in which they are 

unexpectedly performant integrated systems. These systems are more complex than 

the simple models used to predict their behavior. This thesis provides guidance and 

slightly more complex models that can be used to explain the behavior of these 

systems and indicate potential next steps to further improve their performance.
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C h a p t e r  2  

CHARACTERIZATION OF ELECTRONIC TRANSPORT THROUGH 

AMORPHOUS TIO2 PRODUCED BY ATOMIC LAYER DEPOSITION 

Nunez, P.D., Richter, M. H., Piercy, B. D., Roske, C. W., Cabán-Acevedo, M., 

Losego, M. D., Konezny, S. J., Fermin, D. J., Hu, S. & Brunschwig, B. S. 

Characterization of Electronic Transport through Amorphous TiO2 Produced by 

Atomic-Layer Deposition. J. Phys. Chem. C, doi:10.1021/acs.jpcc.9b04434. 

2  

2.1 Abstract 

Electrical transport in amorphous titanium dioxide (a-TiO2) thin films, deposited 

by atomic layer deposition (ALD), and across heterojunctions of p+-Si|a-TiO2|metal 

substrates that had various top metal contacts has been characterized by ac 

conductivity, temperature-dependent dc conductivity, space-charge-limited current 

spectroscopy, electron para- magnetic resonance (EPR) spectroscopy, X-ray 

photoelectron spectroscopy, and current density versus voltage (J−V) 

characteristics. Amorphous TiO2 films were fabricated using either 

tetrakis(dimethylamido)-titanium with a substrate temperature of 150 °C or TiCl4 

with a substrate temperature of 50, 100, or 150 °C. EPR spectroscopy of the films 

showed that the Ti3+
 concentration varied with the deposition conditions and 

increases in the concentration of Ti3+ in the films correlated with increases in film 

conductivity. Valence band spectra for the a-TiO2 films exhibited a defect-state peak 

below the conduction band minimum (CBM), and increases in the intensity of this 
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peak correlated with increases in the Ti3+ concentration measured by EPR as well 

as with increases in film conductivity. The temperature-dependent conduction data 

showed Arrhenius behavior at room temperature with an activation energy that 

decreased with decreasing temperature, suggesting that conduction did not occur 

primarily through either the valence or conduction bands. The data from all of the 

measurements are consistent with a Ti3+ defect-mediated transport mode involving 

a hopping mechanism with a defect density of 1019 cm−3, a 0.83 wide defect band 

centered 1.47 eV below the CBM, and a free-electron concentration of 1016 cm−3. 

The data are consistent with substantial room-temperature anodic conductivity 

resulting from the introduction of defect states during the ALD fabrication process 

as opposed to charge transport intrinsically associated with the conduction band of 

TiO2.  

2.2 Introduction 

Water oxidation to evolve O2(g) is a key process in the (photo-)electrochemical 

production of carbon-neutral fuels. Semiconductors with band gaps, Eg, that allow 

substantial absorption of sunlight (Eg < 2 eV) typically corrode either through 

dissolution or through the formation of an insoluble insulating surface oxide, when 

placed in contact with an aqueous electrolyte and poised at a potential sufficiently 

positive to drive the water-oxidation half-reaction.1 Such corrosion impedes the 

development of fully integrated solar fuel devices that involve immersion of 

semiconductors in an electrolyte2 and is especially rapid in strongly acidic or 

strongly alkaline electrolytes that are compatible with efficient operation of 

electrochemical cells and with existing ion-exchange membranes.3 Coating such 

semiconductors with films that combine transparent, conductive oxides with active 

catalysts for the oxygen evolution reaction (OER) has been shown to extend the 

lifetime of semiconductor anodes in aqueous electrolytes from seconds to hours or 
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months,4−13 depending on the specific materials and test conditions. 

Coatings of amorphous TiO2 (a-TiO2) supporting a Ni OER catalyst provide 

stability against corrosion of technologically important n-type semiconductors, 

including n-Si, n-GaAs, and n-CdTe, in strongly alkaline electrolytes under water 

oxidation conditions.4,14 The relative alignment between the valence band maximum 

(VBM) of these n-type materials and the VBM of n-type TiO2 (Eg ≈ 3.3 eV) predicts 

an ∼2 eV barrier to the transport of holes from the smaller band gap material into a-

TiO2.15 Nevertheless, these heterojunction devices support high anodic current 

densities (>100 mA cm−2).4,14 Conduction through a-TiO2 films has been shown to 

be essentially independent of the film thickness, with high conductance observed 

for films as thick as 143 nm; however, the interfacial conductance is strongly 

dependent on the top contact. Specifically, to drive anodic current densities of 

50−120 mA cm−2, an Ir top contact increased the voltage required by ∼400 mV 

relative to devices with Ni top contacts.4 X-ray photoelectron spectroscopic (XPS) 

data indicate a band alignment that produces rectifying behavior for a-TiO2 

interfaces with n-Si and n+-Si surfaces and an Ohmic contact between a-TiO2 and 

p+-Si.16 Ambient-pressure XPS (AP-XPS) data of p+-Si|a-TiO2 electrodes under 

potential control indicate that the addition of Ni to the surface of a-TiO2 changes the 

electrical behavior of the a-TiO2|liquid junction. Bare a-TiO2 electrodes in contact 

with the solution are “rectifying” for the oxidation of water or Fe(CN)6
4−. This 

rectifying behavior is also observed for contact between a Hg droplet and bare a-

TiO2. The addition of a Ni layer to a-TiO2 makes the junction Ohmic, removing a 

large energetic barrier to conduction across a-TiO2.17 

These data provide a detailed picture of the energetics at n-Si|a-TiO2|Ni|1.0 M KOH 
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(aq) interfaces. However, the mechanism of conduction across the n-Si|a-TiO2|Ni 

junctions, despite the unfavorable band alignment energetics, remains to be 

elucidated. XPS valence band data show a weak peak ∼2 eV above the VBM, 

suggesting the possibility of defect-based transport.4 However, subsequent studies 

have observed anodic conduction by TiO2 films synthesized using various 

techniques, including crystalline films, and did not yield a dependence of 

conduction on defect states.18 For TiO2-coated photocathodes, conduction occurs 

via electron transport in the TiO2 conduction band.19−21 Such electron transport 

mediated by the conduction band has been hypothesized to be a generic mechanism 

applicable to photoanodes, with TiO2 operating as an Ohmic contact to the 

underlying n-type semiconductor, with electrons being transported from solution 

via the TiO2 conduction band recombining with holes at the semiconductor|TiO2 

junction.22 

Ti3+ states [observable by electron paramagnetic resonance (EPR) and XPS valence 

band spectra] play a large role in the conductivity, light absorption, and many other 

properties of TiO2.23−30 The mechanism of facile hole conduction through a-TiO2, 

despite the 3.0 eV band gap and unfavorable band edge energetics for either electron 

or hole conduction from small band gap inorganic semiconductors, has not yet been 

elucidated. A greater understanding of the transport mechanism would provide 

insight into the utility and mechanism underpinning the use of atomic layer 

deposition (ALD) of a-TiO2 as a protection layer for a wide variety of photoanodes. 

We describe herein a detailed investigation of conduction across p+-Si|a-TiO2 

junctions, including temperature-dependent dc conductivity, ac conductivity, space-

charge-limited current (SCLC) spectroscopy, EPR spectroscopy, and XPS. 
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The experiments were designed to elucidate the mechanism of anodic conduction in 

a-TiO2 layers as well as the factors that control the observed conductivity as the 

metal contact to the a-TiO2 layer is varied. We consequently have explored the role 

of defect states in conduction across a-TiO2 films fabricated by a variety of methods 

as well as the importance of the energy-band positions of Si and the top contact 

relative to the TiO2 band positions. We have moreover applied the information 

gained from these studies to aid in the design of stable Si|a-TiO2 photoanodes with 

high fill factors for solar-driven water oxidation in contact with acidic aqueous 

electrolytes. 

2.3 Experimental Section 

2.3.1 Sample Preparation 

Materials and Chemicals 

Water with resistivity, ρ, > 18 MΩ cm was obtained from a Barnstead Millipore 

purification system and was used throughout. All chemicals, including sulfuric acid 

(99.999%, Sigma-Aldrich and ∼18 M, ACS Reagent Grade, J.T. Baker), hydrogen 

peroxide (∼30%, ∼13 M, VWR), hydrochloric acid (ACS Grade, VWR), and 

buffered HF (aq) (semiconductor-grade, Transene) were used as received, unless 

otherwise noted. Two types of crystalline, single-side polished Si substrates were 

used: p+-Si(100) (boron-doped, ρ < 0.002 Ω cm, Addison Engineering) and n-

Si(100) (phosphorus-doped, ρ = 2−3 Ω cm, Addison Engineering).  

Preparation of Substrates 

The Si wafers were cleaned using an RCA SC-1 procedure that consisted of a 10 

min soak in a 3:1 (by volume) solution made from 3 parts H2SO4 (aq) (∼18 M) and 

1 part H2O2 (aq) (∼13 M). The samples were then briefly etched in a solution of 

buffered HF (aq) (Transene). The Si samples were cleaned using an RCA SC-2 
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procedure by soaking the samples for 10 min at 75 °C in a 5:1:1 (by volume) solution 

of H2O, HCl (aq) (∼11 M), and H2O2 (aq) (∼13 M). The RCA SC-2 procedure left a 

thin passivating oxide layer on the Si surface.  

ALD of TiO2 Thin Films 

TiO2 films were grown using two different precursors, tetrakis(dimethylamido)-

titanium (TDMAT) and TiCl4. For TiO2 films prepared from the TDMAT precursor, 

a Cambridge Nanotech S200 or Fiji F200 ALD system was used to deposit TiO2 

films onto Si wafers or onto Pyrex micro cover glass slides (VWR). The defect 

characteristics of TiO2 were similar for films prepared from either reactor. Each 

ALD cycle consisted of a 0.10 s exposure to TDMAT (Sigma-Aldrich, 99.999%), a 

N2(g) (Airgas, 99.999%) purge, a 0.015 s exposure to H2O, and a final N2(g) purge. 

Research grade 20 sccm N2(g) was used for the N2(g) purges, and each N2(g) purge 

was 15 s in duration. During deposition, the substrate and the TDMAT precursor 

were heated to 150 and 75 °C, respectively, while the H2O remained at room 

temperature. Most samples were prepared with 1500 cycles, giving a nominal 

thickness of 68 nm. The thickness was chosen to be consistent with a previous work. 

At this thickness, a-TiO2 minimizes the reflection as a single-layer antireflection 

coating while still providing facile electronic conduction and corrosion protection 

of the underlying photoanode.31  

TiO2 films from the TiCl4 precursor were deposited onto p+-Si substrates in a hot-

wall, flow-tube reactor with custom-designed sequencing software.32 The precursor 

gas lines were maintained at 110 °C, whereas the precursor was maintained at room 

temperature. Each ALD cycle consisted of a 0.20 s exposure to TiCl4 (Strem, 99%), 

a 45 s N2(g) purge, a 0.10 s exposure to H2O, and a final 30 s N2(g) purge, and the 

N2(g) flow rate was 150 sccm. Films were deposited to a predetermined thickness 
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of ∼60 nm at chamber temperatures of 50, 100, or 150 °C. The film thickness and 

refractive index were measured via spectroscopic ellipsometry (J.A. Woollam Co., 

alpha-SE) and were fit to a Cauchy model.  

Electron-Beam Metal Deposition 

Samples were patterned via optical lithography, mounted with a double-sided 

carbon tape, and pumped down to a base pressure of <10−5 Torr in an electron-beam 

evaporator system (Angstrom Engineering Inc.). Ti, Mg, Ni, Au, Ir, Pt, and Pd were 

evaporated from the source metals that had a purity of at least 4 N. Deposition rates 

ranged from 0.020 to 0.080 nm s−1, as monitored by a quartz crystal microbalance. 

Deposition was stopped when the film thickness exceeded ∼35 nm.  

Electrode Fabrication 

Electrodes were fabricated by using a scribe to cleave the e-beam deposited samples 

into ∼0.1 cm2 pieces. The samples were patterned into isolated pads for solid-state 

measurements or into islands for electrochemical measurements. A positive 

photoresist, S1813 (Shipley), was patterned, metal pads or islands were deposited, 

and then the photoresist was removed by gently sonicating in acetone for ∼1 min to 

leave the desired pattern. Ohmic contact was made by scratching the back of the p+-

Si or n-Si sample with an In−Ga eutectic (Alfa Aesar, 99.999%), and the back 

contact to the sample was affixed to a Cu wire with a double-sided Cu tape. The Cu 

wire was threaded through a glass tube (Corning Incorporation, Pyrex tubing, 7740 

glass), and all but front of the sample was encapsulated with Loctite epoxy (Hysol 

9462). After curing overnight, the electrode was scanned with an Epson scanner 

(V370) and analyzed with ImageJ software to determine the area of the exposed 

region, which was ∼0.1 cm−2.  
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2.3.2 Conductivity Measurements 

Current density versus voltage (J−V) data were collected on solid-state samples that 

had various combinations of metal contacts on degenerately boron-doped p+-Si 

substrates coated with a-TiO2. The electrical data were collected using a Bio-Logic 

SP-200 potentiostat in a two-electrode setup, with the working electrode lead 

connected to the bottom contact (Si back-side) and the counter and reference 

electrode leads connected to the top contact (metal pad). For electrical contact, 

In−Ga eutectic was scratched onto the back of Si as well as onto the top side of the 

double-sided Cu tape that had been affixed to a glass slide for structural support. 

J−V data were collected at 100 mV s−1, starting at an applied bias of 0 V versus the 

counter electrode.  

Temperature-Dependent Conductivity 

The substrates for the measurements were p+-Si wafers coated with 1500 cycles 

(∼68 nm) of ALD a-TiO2 that was then patterned with Ni islands. During the variable 

temperature measurement, the samples were loaded into a Janis CCS-100/204N 

cryostat, and J−V data were obtained from 10 to 310 K using an Agilent B1500A 

semiconductor device analyzer with medium-power source-measurement modules 

as well as atto-sense and switch units for high-resolution current sensing. The 

conductivity was obtained by fitting the measured resistance data to a computational 

model using the ac/dc module in COMSOL Multiphysics software.  

For resistance measurements from 180 to 300 K, the samples were loaded into 

another cryostat. In both temperature-dependent measurements, the temperature of 

the sample was controlled using a Lake Shore auto-tuning temperature controller 

with a Si diode temperature sensor placed in thermal contact with the sample.  

Potential-Dependent Conductance Measurements on Electrochemical Field-
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Effect Transistors 

The conductance of a-TiO2 films in contact with an electrolyte solution was 

measured with interdigitated electrodes (IDEs) in an electrochemical field-effect 

transistor (EC-FET) configuration.33,34 The substrates for the measurements were 

clean glass microscope slides that had been lithographically patterned with 224 

interdigitated Ti fingers of dimensions 20 μm × 2 mm × 100 nm (width × length × 

thickness). Alternate fingers were spaced 20 μm apart from one another. The 

substrate had 1500 cycles (∼68 nm) of a-TiO2 deposited via ALD. The front contacts 

were kept free of the deposited material by means of a glass slide as a physical mask. 

The conductance of a-TiO2 in contact with 1.0 M H2SO4 (aq) was measured using a 

Bio-Logic SP-300 bipotentiostat that allowed control of the potential of each 

electrode (channels) of the IDE array independently with respect to the reference 

electrode in the solution. Both channels were set to the desired gate potential (Vgate), 

and the capacitance current was allowed to decay for 30 s to establish the electron 

occupancy in the film and to set the potential of the film relative to the reference 

potential. The potential of channel 2 was then offset by ±25 mV with respect to 

channel 1, and the source−drain potential (VSD) was varied in 10 mV increments. 

Under the conditions investigated, the source−drain current (ISD) was proportional 

to VSD, allowing an estimate of the film conductance as a function of Vgate. Vgate was 

varied across the potential range between the onset of accumulation and deep 

depletion. The film conductivity was calculated using an IDE cell constant, KIDE, of 

0.045 cm−1, which was estimated from the geometry of the IDE35 using eq 1  

 
𝐾"#$ =

2 𝑆/𝑊 */+		
𝑙(𝑛 − 1)

 (1) 

 

where s is the spacing between the electrode digits (20 μm), w is the width of the 
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electrode (20 μm), l is the length (2 mm), and n is the number of digits (224). This 

process produced a cell constant of Kide = 0.045 cm−1. The measured conductance, 

Gecfet, was converted to units of conductivity using eq 2  

 
𝜎45647 = 𝐾894𝐺45647 (2) 

 

2.3.3 Physical Characterization of a-TiO2 

EPR Spectroscopy 

EPR spectra were collected at 77 K using a Bruker EMX X-band continuous-wave 

spectrometer. Data were collected for samples in liquid N2 in a finger Dewar. 

Samples were prepared by depositing 1500 ALD cycles of a-TiO2 onto VWR micro-

cover glass slides (0.15 ± 0. 02 micron thick). The slides were then diced into 2 × 2 

mm2 pieces using a Dynatex GST-150 scriber-breaker. The diced samples were then 

placed in EPR tubes.  

Because of sample variations, all of the TiO2 (50, 100, and 150 °C TiCl4 and 

TDMAT) films were of slightly different thickness as measured by ellipsometry. To 

ensure that a uniform amount of TiO2 was maintained between samples, the total 

area was varied. For instance, if TDMAT and 50 °C TiCl4 TiO2 had a thickness of 

68 and 62 nm, respectively, then the area ratio of TDMAT:50 °C TiCl4 TiO2 was 

adjusted to 1.0:1.1 to ensure an equivalent amount of TiO2.  

Photoelectron Spectroscopy 

XPS data were collected on ALD-deposited a-TiO2 on p+-Si using a Kratos Axis 

Ultra system with a base pressure of 1 × 10−9 Torr. The X-ray source was a 

monochromatic Al Kα line at 1486.6 eV. Photoelectrons were collected at 0° from 
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the surface normal with a retarding pass energy of 160 eV for survey XPS scans, 10 

eV for high-resolution core levels, and 20 eV for valence band XPS scans.  

Work function measurements were performed using He I ultraviolet photoelectron 

spectroscopy (UPS) on a Kratos Axis Ultra system. A pass energy of 5 eV was used 

in conjunction with an aperture of 110 μm. Prior to the measurements, pure metal 

samples (>99.99%) were sputter-cleaned for 30 min with 4 kV argon ions. The work 

function (φWF) was calculated from the measured spectra on a kinetic energy scale 

using eq 3  

 
Φ<= = 𝐸?45,A4B? − 𝐸=,A4B? (3) 

 

where Esec, meas and EF, meas are the measured energy of the secondary electron cutoff 

and the Fermi energy, respectively, and 21.21 eV is the photon energy for He I 

excitation. The secondary electron cutoff and the Fermi energy were obtained by 

calculating the intercept of a linear fit of the steep electron cutoff to that of the 

background and by fitting a Fermi distribution to the VBM, respectively.  

Secondary-Ion Mass Spectroscopy 

Secondary-ion mass spectroscopy (SIMS) data were collected on a Cameca SIMS-

7f GEO instrument. A 100 μm × 100 μm area of the sample surface was ionized and 

sputtered by a 7 keV Cs+ primary ion beam with no substrate biasing. A mass 

spectrometer collected and analyzed the ejected secondary ions. The count rates of 
30Si, 48Ti, 12C + 133Cs, and 14N + 133Cs were collected as a function of the sputtering 

cycle. SIMS data were collected for all TDMAT and TiCl4 a-TiO2 films.  

Attenuated Total Reflection Infrared Spectroscopy 

Attenuated total reflection infrared spectroscopy (ATR-IR) spectra were collected 
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using a Thermo Scientific Nicolet 6700 optical spectrometer equipped with a 

thermoelectrically cooled deuterated L-alanine-doped triglycine sulfate detector, an 

electronically temperature-controlled EverGlo mid-IR source, a N2(g) purge, a KBr 

beam splitter, and a diamond ATR crystal single-reflection Smart-iTR accessory. 

After data collection, the spectra for ALD films on the glass substrate were corrected 

using pristine glass as the background. Air was used as the background for ALD 

films deposited on the silicon substrate. In addition, the baseline was flattened when 

needed. TIRS data collection and processing was performed using OMNIC software 

v.9.2.41.  

2.3.4 Electrochemical Characterization 

Electrochemical data were obtained using a Bio-Logic SP-200 potentiostat in a 

three-electrode configuration with 1.0 M H2SO4 (aq) as the electrolyte. A carbon 

rod (Strem Chemicals, 99.999%) was used as the counter electrode, and a 

Hg/HgSO4 electrode (Gamry Instruments) was used as the reference electrode. An 

ELH-type tungsten-halogen lamp provided light that passed through a quartz 

diffuser to reach the Pyrex electrochemical cell. The illumination intensity was 

measured by a Si photodiode (Thorlabs), and the light intensity was adjusted to 

produce the same current on the photodiode as was produced by illumination with 

100 mW cm−2 of Air Mass 1.5 sunlight. Cyclic voltammetric (CV) data were 

collected at a 40 mV s−1 scan rate.  

2.4 Results 

2.4.1 Work Function of the Metals 

Figure S1 shows the representative work function measurements by UPS for Ni, Pd, 

Pt, Ir, and Au. The spectra allowed determination of the work functions for these 

polycrystalline metals (purity > 99.99%) as 5.09 ± 0.4, 5.27 ± 0.2, 5.56 ± 0.07, 5.32 

± 0.2, and 5.05 ± 0.3 eV for Ni, Pd, Pt, Ir, and Au, respectively. These work function 
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values are in good agreement with prior work function measurements on 

polycrystalline metals.36−38 The work functions of Mg and Ti were taken to be 3.66 

± 0.2 and 4.33 ± 0.2 eV, respectively.36  

2.4.2 Conductivity of p+-Si|a-TiO2|metal Devices 

J−V Characteristics of p+-Si|a-TiO2|metal Devices 

Figure 1 shows the representative solid-state J−V characteristics for p+-Si|a-

TiO2|metal devices with a-TiO2 grown on p+-Si substrates via 1500 ALD cycles 

using a TDMAT precursor and a substrate temperature of 150 °C. The ALD 

procedure yielded ∼68 nm-thick a-TiO2 films. The J−V characteristics showed 

Ohmic (linear) behavior at biases <50 mV. Figure S2 shows the normalized 

differential conductance as a function of the applied bias for a p+-Si|a-TiO2|Ni 

device, which is consistent with the behavior typical of dielectric films.39,40  

The current density passed as a function of the applied bias depended on the top 

contact, Figure 1, with devices having Ti, Mg, or Ni top contacts behaving almost 

mutually identically, especially at low biases. At the same applied bias, devices with 

Au, Ir, Pt, or Pd top contacts passed ≤10% of the current densities of devices having 

Ti, Mg, or Ni as a top contact. For example, at an applied bias of 0.1 V, devices with 

Ti, Mg, or Ni top contacts passed current densities of ∼60 mA cm−2, as compared to 

the current densities passed by devices with Au (8.7 mA cm−2), Ir (5.5 mA cm−2), 

Pt (3.6 mA cm−2), or Pd (1.5 mA cm−2) contacts. Compared to devices with Ti, Mg, 

or Ni top contacts, the devices with Au, Ir, Pt, or Pd top contacts required an 

additional 90−250 mV of bias to pass current densities of 10 mA cm−2 as well as an 

additional 150−330 mV of bias to pass current densities of 30 mA cm−2. The 

conductivities at low applied biases (<50 mV) were determined from linear fits of 

the data (Figure 1) and tabulated in Table 1. The contact resistances were determined 
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by transmission line measurements, and the compensated voltages between different 

metal contacts were measured for representative devices (Table S1). Although the 

contact resistance increased as the work function of the metal increased, the metals 

with higher work functions yielded sufficiently low current densities that the total 

voltage compensation would not create a noticeable change in the J−V behavior 

over the measurement range depicted in Figure 1.  
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Figure 1. Current density (J) vs applied bias (V) for solid-state p+-Si| a-TiO2|metal 
devices. a-TiO2 was ~ 68 nm thick. The devices were tested in a two-electrode 
configuration, and the bias was applied across the device using the p+-Si side as 
the working electrode and the metal side as the counter electrode. 

 
Table 1. Conductivities for the devices with varied metal contacts as determined 
from a fit of the J-V behavior in the low-bias regions.  At least 5 samples with each 
metal were tested, and error estimates represent one standard deviation.   
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Top Contact Conductivity (S cm-1) Work Function (eV) 
Ti (85 ± 18) ´ 10-5 4.33 ± 0.20 

Mg (85 ± 1.2) ´ 10-5 3.66 ± 0.20 
Ni (95 ± 4.0) ´ 10-5 5.09 ± 0.39 
Au (13 ± 1.7) ´ 10-5 5.05 ± 0.30 
Ir (4.0 ± 1.6) ´ 10-5 5.32 ± 0.18 
Pt (8.3 ± 1.8) ´ 10-5 5.56 ± 0.07 
Pd (2.3 ± 0.45) ´ 10-5 5.27 ± 0.18 
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SCLC Spectroscopy 

Figure 2a shows the plot of the J−V characteristics for a p+-Si|a-TiO2|Pt device, 

extended to 5 V of applied bias. At ∼5 V, the current increased abruptly, consistent 

with a SCLC in the trap-free regime.41−44 Similarly, extended J−V characteristics 

can be seen in Figure S3 for devices with Au, Ir, or Pd contacts. The number of 

traps, the majority charge-carrier mobility, and the charge-carrier concentration 

were calculated from the threshold voltages for trap filling, the J−V behavior in the 

trap-free regime, and the J−V behavior in the Ohmic regime, respectively, according 

to eqs 4−641−44  

 
𝑉D= =

𝑞𝑁D𝐿H

𝜀J𝜀
 (4) 

 

 
𝐽D= =

9𝜀𝜇𝑉H

8𝐿+
 (5) 

 

 
𝐽O =

𝑞𝑛µ𝑉
𝐿

 (6) 

 

where VTF is the threshold voltage for trap filling, JTF is the current density in the 

trap-free region, JΩ is the current density in the Ohmic region, q is the absolute 

charge of an electron, NT is the trap density, L is the thickness of the sample, ε0 is 

the permittivity of free space, ε (=112) is the dielectric constant of TiO2, μ is the 

mobility of the majority carriers, and n is the mobile charge-carrier density. The 

calculated trap densities, mobilities, and effective mobile charge-carrier densities 

for p+-Si|a-TiO2|metal devices with various metal top contacts are tabulated in Table 
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S2.  

Figure 2b shows the dependence of the number of traps measured by SCLC 

spectroscopy on the work function of the top contact used for the p+-Si|a-TiO2|metal 

device.36,45,46 The number of traps measured by SCLC decreased only slightly as the 

work function of the top contact increased. For low-work-function metals, the trap 

concentration could not be measured before the voltage limits of the potentiostat 

were reached, implying trap densities >1.5 × 1019 cm−3.  

Figure 2c shows the variation of the calculated free-carrier concentration for each 

metal contact as a function of the work function of each metal. The free-carrier 

concentration was calculated by using the value of the mobility found in the trap-

free regime (eq 5) with a Pt contact (6.5 ± 3 × 10−4 cm2 V−1 s−1), in conjunction with 

the slopes of the Ohmic regions for various top contacts, according to eq 6. Below 

a work function of ∼5.2 eV, the (averaged) carrier concentration was essentially 

independent of the work function of the top metal contact, whereas for a work 

function >5.2 eV, the (averaged) free-carrier concentration becomes dependent on 

the work function and thus decreased by 101 to 102 cm−3. Although the mobility is 

not a constant for different dopant concentrations, the mobility was approximated 

to be independent of the free-carrier concentrations. This approximation is in 

agreement with the free-carrier density measured previously by Hall measurements 

with In contacts (Figure 2c).4 In addition, the mobility measured is in agreement 

with the predicted mobility of 2 × 10−4 cm2 V−1 s−1 by Pham and Wang using density 

functional theory (DFT) + U methods.47  
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Figure 2. (a) J−V characteristics of a solid-state p+-Si|a-TiO2|Pt device extended 
to applied biases >5 V. a-TiO2 was ∼68 nm thick. The inset is a plot of the 
crossover into the trap-filled regime. Linear regressions are shown for the Ohmic 
region at a low bias (blue dashed line) and for the trap-filled space-charge-limited 
regimes (red dashed line in the inset). (b) Concentration of trap states for devices 
with top contacts to high-work-function metals. (c) Calculated free-carrier 
concentrations for varied metal top contacts.  

ac Conductivity 

Figure 3 shows the ac conductivity as a function of frequency for a p+-Si|a-TiO2|Ni 

device at room temperature and under an applied bias of 300 mV. The conductivity 

of the sample was 3.0 × 10−6 S cm−1 for frequencies ≤105 Hz and increased 

exponentially at frequencies >1 × 104 Hz.  
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Figure 3. ac conductivity of a solid-state p+-Si|a-TiO2|Ni device measured in a 
two-electrode configuration with a bias of 300 mV applied between the p+-Si side 
and the Ni side of the device. The blue line shows a fit of the frequency-dependent 
region of the data to a power-law model, σ(ω) = σdc + Aωs, where σdc = 2.99 × 
10−6 S cm−1,        A = 9.9 × 10−17 S cm−1 s1.95, and s = 1.95.  

Temperature-Dependent Conductivity Ni|a-TiO2|Ni Devices 

Figure 4 shows the conductivity as a function of temperature for a Ni|a-TiO2|Ni 

through-layer device in which the thickness of the a-TiO2 layer was 68 nm, 

measured at temperatures between 10 and 310 K. The data showed two regions, 

each with an Arrhenius-type exponential temperature dependence. Activation 

energies for charge transport were calculated from the slopes of the linear fits. The 

model yielded an activation energy of 350 ± 15 meV for charge transport at 

temperatures in the 250−310 K range, which is substantially larger than the ∼7 meV 

activation energy calculated for charge transport at temperatures in the 100−125 K 

range. The activation energy continuously decreased as the temperature decreased.  
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Figure 4. Temperature-dependent conductivity of a Ni|a-TiO2|Ni device in which 
the thickness of the a-TiO2 layer was 68 nm. The inset shows the same data for 
the 100−310 K temperature range; the blue and red dashed lines are linear fits of 
the data for temperatures in the range of 250−310 and 100−125 K, respectively.  

Potential-Dependent Conductivity of a-TiO2 Devices 

Figure 5 shows the dependence of conductivity on the gate potential (Vgate) for an 

a-TiO2 film with Ti contacts in the EC-FET configuration in contact with 1.0 M 

H2SO4 (aq), which allowed the conductivity of TiO2 to be measured as a function of 

the potential, or Fermi level, of the gate electrode. Vgate was referenced against a 

reversible hydrogen electrode (RHE) and was varied across a potential range 

relevant to water splitting (−0.4 to +1.75 V vs RHE). The data showed a sharp 

increase in conductivity as Vgate became more negative than −0.3 V versus RHE, 

indicating a sharp increase in electron transport in the conduction band. At these 

potentials, TiO2 is in accumulation. At more positive potentials, the conductivity 

showed a weak dependence on Vgate and decreased by ∼1% over a range of 2 V. 

These data suggest the presence of a finite density of states at potentials extending 
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for >2 eV below the TiO2 conduction band edge. These results generally agree with 

the data for Si|a-TiO2 and Si|a-TiO2|Ni samples observed under electrochemical 

conditions in 1.0 M KOH (aq). Si|a-TiO2 showed a flat-band potential of −0.9 versus 

Ag/AgCl, that is, +0.1 V versus RHE, whereas the Si|a-TiO2|Ni sample showed 

Fermi level pinning over a broad potential range (0− 1.4 V vs RHE).17,48  

The conductivity measured for a-TiO2 using the IDE in 1.0 M H2SO4 (aq) was 1.17 

± 0.45 × 10−5 S cm−1, with three samples measured (Table S3). Measurements made 

in air using one of the IDEs used in the EC-FET experiments showed a dry 

conductivity equal to that for the electrode in contact with the electrolyte, suggesting 

that the IDE electrode was unaffected by immersion in the electrolyte and indicating 

negligible electrolyte-induced effects on the conductivity.  

 

Figure 5. Conductivity of a-TiO2 as a function of the gate voltage (Vgate) applied 
to interdigitated contacts covered by 1500 cycles (approximately 68 nm) of a-
TiO2.  
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2.4.3 Effects of ALD Process on the Physical Characteristics of ALD a-TiO2 

J−V Characteristics of p+-Si|a-TiO2|Ni Devices 

Figure 6 shows the J−V characteristics of p+-Si|a-TiO2|Ni devices, with the a-TiO2 

films prepared via ALD using either a TDMAT precursor with the substrate held at 

150 °C or a TiCl4 precursor with the substrate held at 50, 100, or 150 °C. Films 

deposited from TDMAT at 150 °C or from TiCl4 at 50 or 100 °C had undetectable 

levels of crystallinity, whereas small fractions of crystallinity were detected from 

films prepared at 150 °C, as measured by Raman spectroscopy (Figure S4a) and 

glancing incidence X-ray diffraction (Figure S4b).49,50 In addition, the main phase 

of the films was probed by Fourier transform infrared spectroscopy. No evidence 

was found to support the presence of H2TiO3 in the films deposited on glass (Figure 

S5a) and Si (Figure S5b).  

All of the TiO2 devices exhibited Ohmic regions at low biases, however, for the 

same applied bias, the TDMAT−TiO2 film passed more than an order of magnitude 

higher current density than the least resistive TiCl4−TiO2 film. The conductivities 

of the TiCl4−TiO2 films increased with the growth temperature. The mobilities of 

the various TiO2 films were calculated according to eq 5, and the free-carrier 

concentrations were calculated using eq 6. The free-carrier concentrations for the 

TiCl4−TiO2 films were smaller by 1−3 orders of magnitude than that of the TDMAT 

film.  
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Figure 6. (a) J−V characteristics and (b) free-carrier concentrations calculated for 
various TiO2 films grown on p+-Si substrates and contacted with Ni. The film grown 
from TDMAT at 150 °C was ∼68 nm thick; the films grown from TiCl4 were ∼60 
nm thick and were grown at varied temperatures of 50, 100, or 150 °C.  
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Valence Band Spectra 

Figure 7a shows the XPS valence band spectra for an a-TiO2 film prepared by ALD 

using a TDMAT precursor at 150 °C. The observed signal was in accordance with 

the previously reported valence band spectra of identically prepared a-TiO2.4,18 

After a Shirley background was subtracted, the spectra showed a peak centered at 

1.07 ± 0.07 eV with a full width at half-maximum (fwhm) of 0.83 eV. Using the 

previously determined position of the Fermi level in TiO2 as 0.40 eV below the 

conduction band minimum (CBM), the defect band was centered at 1.47 eV and 

extended from ∼1 to 1.9 V below the CBM, that is, from ∼0.6 to 1.5 eV below the 

Fermi level.16 Previous analysis located the center of the defect band at ∼1.34 eV 

below the CBM, with a fwhm of 0.83 eV, consistent with the results described 

herein.16  

Figure 7b presents the valence band spectra of ALD-TiO2 films prepared using 

different precursors and growth temperatures. All of the valence band spectra 

showed a peak at 1.07 ± 0.07 eV, with mutually similar fwhms. The TDMAT−TiO2 

film exhibited the largest valence band signal, whereas the TiCl4−TiO2 films 

exhibited weaker signals that increased with growth temperature. The relative peak 

intensities (normalized to the largest signal) were 0.62 ± 0.2, 0.69 ± 0.2, 0.71 ± 0.3, 

and 1 ± 0.6 for the TiCl4−TiO2 films grown at 50, 100, and 150 °C and 

TDMAT−TiO2, respectively. The averaged spectra and the respective standard 

deviation can be seen in Figure S6.  
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Figure 7. (a) X-ray photoemission spectra (without background subtraction) for the 
valence band of a-TiO2 grown via ALD using a TDMAT precursor at 150 °C. (b) 
Comparison of the X-ray photoemission valence band spectra of ALD a-TiO2 films 
grown using a TDMAT precursor at 150 °C or a TiCl4 precursor at 50, 100, or 150 
°C.  

EPR Spectroscopy 

Figure 8 compares the EPR spectra for the various ALD-TiO2 films. The isotropic 

g-values extracted from the spectra were 1.939 and 2.000. The broad signal at 1.939 

is consistent with the presence of Ti3+ as the signal is within the range of previously 

reported g-values, g = 1.92−2.00, for Ti3+ sites.30,51−55 The TDMAT−TiO2 films 

exhibited a substantially larger Ti3+ signal than the TiCl4−TiO2 films. The 

TiCl4−TiO2 films grown at 150 and 100 °C exhibited a detectible signal for Ti3+, 

whereas TiCl4−TiO2 grown at 50 °C showed no appreciable Ti3+ signal.  

The signal at 2.000 observed in the spectra for the 150 °C TiCl4−TiO2 film is 

attributable to either the variations of impurities within the glass substrate or 

electrons trapped at the oxygen vacancy sites.26,56 The sharpness of the signal as 
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well as the appearance at g-values greater than the broad Ti3+ signal are consistent 

with the electrons trapped at the oxygen vacancy sites. Additional control 

experiments showed that only a decrease in the signal at this g-value was observed 

with the substrate-only and EPR silent Al2O3 signal, as can be seen in Figure S7a. 

The same decrease was present in all other TiO2 films but was not observed in the 

background (cavity-only) signal, which had no prominent features.  

In addition, EPR measurements were performed at various angles of rotation. No 

shift was observed when the TDMAT a-TiO2 sample was rotated within the EPR 

instrument. This result is expected, as a-TiO2 samples have an amorphous structure 

and the samples are macroscopically arranged randomly in the EPR tube. The results 

of the control experiments are presented in Figure S7b.  
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Figure 8. (a) EPR spectroscopy for a-TiO2 films grown via ALD using a TDMAT 
precursor at 150 °C or a TiCl4 precursor at 50, 100, or 150 °C. (b) EPR spectra rescaled 
to show the details of the smaller peaks. The background spectrum includes the EPR tube 
and the glass substrate.  

2.4.4 Application to Photoelectrochemical Water Oxidation in Acidic 

Aqueous Electrolytes 

Figure 9 shows the voltammetric behavior of non-photoactive p+-Si|a-TiO2|Ir 

anodes and n-Si|a-TiO2|Ir photoanodes under 1 Sun illumination in 1.0 M H SO 

(aq). Ir was deposited on a-TiO2 as catalytic islands 3 μm in diameter on a 7 μm 

pitch. The Ir islands were 35 nm-thick and were deposited either directly on a-TiO2 

or onto 35 nm of Ti on a-TiO2. Ti was selected as an intermediate contact because 

p+-Si|a-TiO2 devices with Ti contacts had exhibited high conduction relative to 

devices with Ir contacts. The samples with the Ti interconnect performed 

substantially better than those without the Ti interconnect, as evidenced by a 

reduction in the overpotential required to reach 10 mA cm−2 of current density of 
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280 mV for the Ti|Ir n-Si devices and of 460 mV for the Ti|Ir p+-Si devices.  

 

 

Figure 9. CV of non-photoactive p+-Si|a-TiO2 anodes and n-Si|a-TiO2 

photoanodes in contact with 1.0 M H2SO4. The samples were p+-Si and n-Si 
substrates coated with 1500 ALD cycles of a-TiO2 onto which metal-island top 
contacts were deposited. The metal top contacts to the a-TiO2 layer were 35 nm-
thick islands of Ir, 3 μm in diameter pitched 7 μm apart, deposited either directly 
on a-TiO2 or onto a 35 nm-thick Ti island interconnect. The CV sweep was 
conducted in the dark and 1 Sun illumination for p+-Si and n-Si, respectively, from 
1.1 V vs RHE to 2.5 V vs RHE at a scan rate of 40 mV s−1.  

2.5  Discussion 

2.5.1 Identity and Position of Defect States in ALD a-TiO2  

The valence band spectra for a-TiO2 deposited via ALD showed a small peak within 

the band gap of TiO2, centered at 0.94 eV below the Fermi level.18,39 The band had 

a fwhm of 0.83 eV, indicating that a wide energy band exists within the band gap. 

Defect bands in TiO2 have been observed both for amorphous films grown by ALD 

as well as for crystalline films grown by various methods.57−63 The bands have been 
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associated with oxygen and/or other defects on the surface of the TiO2. Oxygen 

vacancy sites are often implicated and have been observed by transmission electron 

microscopy (TEM).58 The defect band has been correlated with the introduction of 

imperfections into the crystal.47,64 Oxygen vacancies would provide doping and 

produce Ti3+ sites by the trapping of free electrons into localized Ti−O octahedra 

with an oxygen vacancy.65 Theoretical calculations favor oxygen vacancies as the 

structural origin of the defect sites, and calculations moreover have been used to 

calculate conduction by small-polaron hopping.47,66−69  

Oxygen defects and Ti3+ sites dominate the physical and chemical properties in 

TiO2.47,63−65,67,70−73 The bulk structure of reduced crystalline TiO2−x contains defects 

of doubly charged oxygen vacancies, interstitial titanium defects, and other 

defects.74 The defects vary with the amount of the oxygen deficiency,23 and the 

vacancies on the surface were imaged by scanning tunneling microscopy.74,75 The 

number of vacancies can be controlled by the method of annealing, and the surface 

vacancies can be healed by dosing with oxygen.23 Additionally, self-doping of TiO2 

from oxygen vacancies yields Ti3+ sites.28  

ALD TiO2 grown at substrate temperatures <300 °C has been shown to be 

amorphous when annealed below 350 °C but becomes crystalline when annealed 

above 350 °C.76,77 XPS studies of ALD a-TiO2 have observed both a Ti3+ shoulder 

on the Ti 2p core level and a small shoulder on the O 1s spectra that is assigned to 

−OH groups on the surface.61,62 Both normal and resonant valence band spectra 

show a peak at ∼1 eV below the Fermi level that is due to titanium and attributable 

to Ti3+ states. The band is much weaker in crystalline TiO2.62  

XPS depth profiling was forgone because the Ti 2p XPS spectrum is heavily altered 
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after Ar-ion bombardment. Oxygen is preferentially removed thus reducing the 

TiO2. The reduced states observed in the spectrum generated from the Ar-ion 

bombardment are thus not an accurate representation of the underlying composition 

of TiO2.78 Instead, we focused on angle-dependent XPS spectroscopy where, with 

increased electron emission angle Θ to the surface normal, the inelastic mean free 

path for electrons is reduced. The values for Al Kα radiation are given in Table S4.  

The concentration of the defect states (and Ti3+ states) was investigated by angle-

dependent XPS.17 No change in the Ti 2p core level and the defect band was 

detected. However, with increasing surface sensitivity, a shoulder at 532.5 eV at the 

O 1s core level (attributed to dumbbell di-oxygen species, OH-groups, and/or to the 

reconstruction of TiO2) was visible, which increased in intensity with increased Θ. 

Here, we performed scans for Θ = 0 and 70 with an improved signal-to-noise ratio, 

which are shown in Figure S8. Again, no difference between the bulk or surface 

sensitive spectra could be observed, indicating no surface reoxidation of the defect 

band.  

EPR spectra provided direct evidence of Ti3+ within the bulk a-TiO2 films (Figure 

8). The correlation between the strength of the Ti3+ signals in the EPR spectra and 

the strength of the defect band peaks in the XPS valence band spectra supports the 

assignment of the defect peak in the XPS valence band spectra to localized Ti3+ 

sites. The films are amorphous, so the Ti3+ sites can be expected to show a dispersion 

in energy because of the differences in Ti−Ti and Ti−O bond lengths,79 consistent 

with the wide peak (fwhm = 0.83 eV) observed for the defect band.  

The Ti3+ sites in the ALD a-TiO2 films were however not directly detectable by 

XPS.4,18 Hence, either the concentration of Ti3+ sites near the surface is below the 
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detection limit of XPS or such sites may not be present on the surface of air-exposed 

samples because of oxidation of Ti3+ in the presence of water and air.4,30,53 The 

oxidation of surface Ti3+ sites would likely create a surface layer that is more 

resistive than the bulk of the film, consistent with the low conductance values 

measured when nonpenetrative, soft contacts (e.g., Hg droplet or liquid electrolyte 

contacts) were made to the ALD-TiO2 films. Deposition of metal contacts by 

electron-beam evaporation or sputtering would thus allow low-resistance contacts 

to be made to the ALD-TiO2,4,16 consistent with expectations for penetration of a 

native resistive surface layer on these a-TiO2 films.  

The J−V behavior for p+-Si|TiO2|Ni devices formed with TiO2 from varied ALD 

processes shows that conduction through films of ALD a-TiO2 is not limited to films 

produced from TDMAT, although the conductivity of a-TiO2 formed using TDMAT 

is greater than for films formed using TiCl4. Increases in the conductivities of the 

films correlated with increases in the strengths of the EPR signals for Ti3+ as well 

as with increases in the amplitude of the defect peak in the valence band spectra. In 

combination, these data suggest that Ti3+ sites are important contributors to the 

conductivities of the films.  

Previously, the high conductivities of TDMAT−TiO2 films were hypothesized to 

directly arise from an increased density of C and N impurities.4,18 The C and N 

impurities were measured for all films (TDMAT and 150, 100, and 50 °C TiCl4 

films) via SIMS, which revealed very similar concentrations of C and N impurities 

in all of the samples despite the large range in observed film conductivity. The C 

and N impurities thus appear to be independent of the precursor and preparation of 

the a-TiO2 film, unlike the concentration of Ti3+ sites. The normalized SIMS spectra 

for C and N are displayed in Figure S9.  
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2.5.2 Conduction through the a-TiO2 Bulk 

Temperature-Dependent Conductivity 

The temperature-dependent conductivity for temperatures >250 K of Ni|a-TiO2|Ni 

layered stacks showed Arrhenius-type behavior, with an activation energy of 350 

meV and a prefactor of ∼4 S cm−1. The observed activation energy suggests a 

Marcus-type of reorganization energy of 1.4 eV.80 A transition was observed from 

Arrhenius-type behavior in the high-temperature limit (>250 K) to temperature-

independent tunneling type behavior at low temperatures (<50 K). Similar behavior 

has been observed with NiO.81 In addition, analogous behavior has also been 

observed for sputtered TiO2 films, even though the sputtered TiO2 films had 3−4 

orders of magnitude higher conductivities than the a-TiO2 films produced 

herein.82,83 For crystalline rutile and anatase TiO2, small-polaron or variable-range 

hopping between Ti3+ sites and adjacent Ti4+ sites is most commonly thought to be 

the primary conduction mechanism, and theory has been used to model small-

polaron hopping in both crystalline and amorphous TiO2.47,57,69,84−86 Pham and 

Wang used DFT + U methods to calculate a reorganization energy of 1.14 eV for 

charge transfer between Ti3+ and Ti4+ sites in a-TiO2, whereas Deskins and Dupuis 

used similar methods to estimate an activation energy of ∼0.3 eV for polaron 

hopping in both rutile and anatase TiO2.47,72 Both estimates are consistent with the 

results reported herein.47 Assuming that the density of Ti3+ sites is equal to the 

measured trap-site density (∼1019 cm−3) yields an average distance between Ti3+ sites 

of ∼4 nm, whereas Ti−Ti distances in TiO2 rutile or anatase crystals are 0.30−0.46 

nm.87,88  

Frequency-Dependent Conductivity 
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The ac conductivity of Ni|a-TiO2|p+-Si devices was constant (3.0 × 10−6 S cm−1) for 

frequencies ≤105 Hz and increased rapidly for frequencies above 106 Hz. For charge 

transport within the conduction band or valence band of a semiconductor, the ac 

conductivity can be described by the Drude model,44,89,90  

 
𝜎 𝜔 =

𝜎J
1 + 𝜔H𝜏H

 (7) 

 

where 𝜎J is the dc conductivity, ω is the ac radial frequency, and τ is the relaxation 

time. This model predicts a decrease in conductivity with increases in the ac 

frequency and hence is not consistent with the behavior reported herein.  

For charge transport via hopping, isolated hopping sites do not contribute to the dc 

conductivity. However, as the frequency increases, these isolated hopping sites 

increasingly contribute to the ac conductivity. The frequency dependence of the 

conductivity in a wide variety of disordered materials obeys a power law91−94 and 

can be written as  

 𝜎 𝜔 = 𝐴𝜔? + 𝜎#U  (8) 

where A is a constant, ω is the angular frequency, s is the exponent of the angular 

frequency, and σdc is the dc conductivity.40 The data reported herein are consistent 

with this model, and a fit of the data to eq 8 yielded σdc = 2.99 × 10−6 S cm−1, A = 

9.9 × 10−17 S cm−1 s1.95, and s = 1.95 (Figure 3).  

Potential-Dependent Conductivity 

The potential-dependent conductivity measured by the EC-FET experiments 

showed only a 1% decrease in conductivity as the potential of the gate was moved 
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positively toward the valence band of TiO2. If conduction across a-TiO2 relied upon 

electrons tunneling into the TiO2 conduction band through a shallow space-charge 

region at the interface, then the EC-FET experiments would be expected to exhibit 

a strong dependence of the conductivity on the gate voltage. Specifically, a sharp 

decrease in conductivity would be observed at potentials positive of the conduction 

band of a-TiO2. The results are thus not consistent with conduction via tunneling of 

electrons into the conduction band of a-TiO2.  

The TiO2 conductivity at positive potentials is sufficient to support faradaic current 

densities in the range of 10 mA cm−2 without substantially affecting the OER 

overpotential. As illustrated in Figure S10, for a-TiO2 conductivities of ∼10−5 S cm, 

the potential drop across the p+-Si|a-TiO2|Ni interface is smaller than the potential 

drop at the a-TiO2|Ni|electrolyte interface. The simulation also shows that 

decreasing conductivity will affect the transport properties across the protecting 

layer, thus increasing the OER overpotential.  

2.5.3 Conduction across a-TiO2 Interface with Varied Metal Contacts 

Contacts between a-TiO2 and Ti (φ = 4.3 ± 0.2 eV) or Mg (φ = 3.7 ± 0.2 eV), which 

have smaller work functions than that of a-TiO2 (φ = 4.7 eV) and have mutually 

similar VFB values, exhibited mutually similar J−V characteristics (Figure 1). 

Contacts between a-TiO2 and Au (φ = 5.1 ± 0.30 eV), Pd(φ = 5.3 ± 0.2 eV), Ir(φ = 

5.3 ± 0.2 eV), or Pt (φ = 5.6 ± 0.07 eV), which have work functions greater than 

that of a-TiO2, passed ≤10% of the current densities of devices that have low-work-

function top contacts. The contact between a-TiO2 and Ni (φ = 5.1 ± 0.4 eV) was a 

notable exception, exhibiting J−V characteristics similar to those with low-work-

function metals but with a work function similar to the aforementioned high-work-
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function contacts. Contacts to low-work-function metals moreover showed less 

resistance than contacts to high-work-function metals.  

Some differences in the J−V behavior among devices with high-work-function 

contacts were evident; specifically, at biases <100 mV, devices with Pd contacts 

passed only ∼10% of the current passed by devices with Au contacts. In the 

decreasing order, devices with Au, Ir, Pt, and Pd top contacts exhibited a reduction 

in current that matched (except for Pd) the order in which the work functions of the 

metal contacts increase (Au, Pd, Ir, and Pt).  

The work functions for the various clean metals were measured by UPS under high-

vacuum conditions, whereas the conduction was measured for the e-beam-deposited 

metal in contact with the TiO2 substrate. Polycrystalline metals have multiple crystal 

faces exposed, so the measurements give an average over the various crystal faces. 

The averaging is expected to be different depending on the phenomenaused. Also, 

the fraction of each exposed face may not be the same for the clean metal compared 

to that of the metal sputtered onto a TiO2 surface. Thus, only a rough correlation is 

expected between the work functions measured by UPS and the measured J−V 

behavior.  

SCLC spectroscopy was used to determine the mobility and trap density in the 

TDMAT a-TiO2 films. The trap density and mobility were found for Au, Ir, Pt, and 

Pd as well as for Ir, Pt, and Pd. As can be seen in Figure 2b and Table S2, the trap 

density and mobility were found to be 1 × 1019 cm−3 and 6.5 ± 3 × 10−4 cm2 V−1 s−1, 

respectively, and essentially independent of the top contact. The mobility value used 

was assumed to be independent of the top contact’s work function and was thus used 

to determine the effective carrier concentration for all of the top contacts. The 

effective carrier concentration found using this mobility value is in agreement with 
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the carrier concentration observed when measuring the carrier concentration by the 

Hall effect with In contacts (Figure 2c). In addition, the mobility measured is in 

agreement with the predicted mobility found by DFT + U methods of 2 × 10−4 cm2 

V−1 s−1 by Pham and Wang.47  

Devices with a top contact less than ∼5.2 eV had the (effective) free-carrier 

concentration of the device independent of the work function. Greater than ∼5.2 eV, 

the devices’ (effective) free-carrier concentration decreases by 101 to 102 cm−3 and 

is dependent on the work function. The former devices with contacts to metals that 

have work functions less than the work function of a-TiO2 had the (effective) free-

carrier concentrations on the order of 1016 cm−3. Conversely, the effective free-

carrier concentrations in a-TiO2 for devices with contacts greater than the work 

function of a-TiO2 were ∼1014 to 1015 cm−3, again with the exception of Ni, which 

showed free-carrier concentrations similar to those measured for contacts with the 

low-work-function metals.  

The dependence on the work function can consistently be ascribed to band-bending 

in TiO2 induced by the respective top contact. Metals with a work function greater 

than the Fermi level of a-TiO2 bend the defect band away from the Fermi level, 

which will not change the occupancy of the defect band. Conversely, metals with a 

work function less than the Fermi level of a-TiO2 will cause the defect band to bend 

toward and even above the Fermi level. With states above the Fermi level, mobile 

charge carriers (electrons) will empty these states, thus converting Ti3+ into Ti4+.  

These free-carrier concentrations are an effective average for a-TiO2 because the 

depletion width can extend through roughly half the thickness of the film. The 

conductivity of a-TiO2 correlates with the Ti3+ concentration in the a-TiO2 films, so 
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any local change to the Ti3+ concentration will affect the conductivity of a-TiO2.  

Conduction through the defect band can occur by hopping between sites (e.g., 

Ti4+/Ti3+). If defect sites exist above the Fermi level of the system, then those sites 

would have fewer free electrons that can hop between sites, and hence conduction 

is expected to be less favorable in that part of the band.  

The J−V behavior of the films with different metal contacts is consistent with an 

equilibration process between a-TiO2 and the metal contact in conjunction with 

Fermi level pinning in TiO2. During equilibration, low-work-function metal (e.g., 

Mg, Ti) contacts inject electrons into a-TiO2, whereas high-work-function contacts 

extract electrons from a-TiO2. In this process, most of the electrons would be 

expected to come from, or enter, the near-surface states of the TiO2 defect band that 

are responsible for the Fermi level pinning; thus, the number of Ti3+ sites close to 

the surface remain the same or decrease.  

The very low work functions of Mg and Ti suggest that TiO2 is forced into 

accumulation, primarily producing charge mostly on or near the surface, as opposed 

to substantial band bending. The Ti3+ defect sites would thus be available for 

conduction through TiO2. Alternatively, the noble metals, with high work functions, 

are expected to remove electrons from the near-surface states and thus reduce the 

numbers of Ti3+ sites close to the surface.16,42 This process would produce bending 

of the defect band, and Ti3+ sites at higher energy than the Fermi level would be lost, 

thus decreasing conduction through that part of the band. The near-surface states 

would be more affected, resulting in relatively few Ti3+ sites on the surface and thus 

forming a barrier to conduction between TiO2 and the metal.  

Attempts have been made to observe the “draining” of the defect band by both EPR 
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and valence band spectra. The density of states for any deposited metal would 

overlap and quickly overpower the Ti3+ signal for the valence band spectra, even for 

<1 nm of the deposited metal. The analogous experiment for EPR was attempted 

using <10 nm of the deposited metal. However, the small amount of metal was so 

strongly absorbing of the incoming microwaves that the instrument could not be 

tuned to collect the spectrum.  

This simple band-bending picture does not fully explain the observations regarding 

changes in the measured a-TiO2 film conductivity with different metal contacts. The 

work function of Ni (5.1 ± 0.4 eV) is greater than that of a-TiO2 (4.7 eV) and closer 

to that of Au (5.1 ± 0.3 eV) than to Ti or Mg (≤4.3 eV). Furthermore, the data support 

a wide dispersion in energy (∼0.8 eV) for the defect band associated with Ti3+ states, 

which would allow a substantial density of defect states to remain below the a-TiO2 

Fermi level, for all high-work-function contacts examined herein. However, after 

subtraction of a Shirley-type background, the defect band peak was fitted with a 

Gauss−Lorentz peak profile with a 40% Gaussian contribution and a 60% 

Lorentzian contribution. The obtained peak broadening of ∼0.8 eV can thus be split 

into 0.32 eV instrumental broadening (Gaussian) and 0.48 eV intrinsic lifetime 

broadening (Lorentzian).  

Differences in chemical reactivity might also contribute to the observed differences 

in behavior of the metal contacts; specifically, noble metals (Au, Ir, Pt, and Pd) 

showed lower conduction across interfaces with a-TiO2 than non-noble metals (Mg, 

In, Ti, and Ni). Thus, the contact interface between the metal and TiO2 may also 

play a role in providing low-resistance contacts. Ir, an active catalyst of the OER in 

acidic electrolytes, does not form a highly conductive contact to a-TiO2; however, 

deposition of an acid-stable metal (Ti) that does form a highly conductive contact 
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to a-TiO2 prior to deposition of the Ir catalyst allowed beneficial integration of the 

Ir catalyst with the a-TiO2 coating, yielding photoanodes that exhibit high fill factors 

for water oxidation in 1.0 M H2SO4 (aq).  

In the expected behavior of Ni when comparing its work function to the work 

function of a-TiO2, it has been shown that the interface is not the source of 

discrepancy. The Si|TiO2|Ni| electrolyte interface has been probed via AP-XPS.17,48 

It has been shown that for ultrathin layers of Ni (<1 nm), no conduction was 

observed in Fe(CN)6
3−/4− (aq) and 1.0 M KOH (aq). Conductivity and OER 

performance were observed and greatly increased for dNi > 1 nm. For thin Ni layers 

under oxidative conditions, only oxidized Ni phases are expected (NiOx, NiOOH is 

the catalyst phase, and under the OER conditions at pH 14, no metallic Ni can exist). 

However, small amounts of metallic Ni phases for dNi > 0.6 nm were observed 

[using AP-XPS under potential control in 1.0 M KOH (aq)], which increased in 

intensity for increased deposition of Ni. This behavior led to the proposed picture 

of a TiO2|Ni|NiOx structure under OER, analogous to the structure of a TiO2|Ti 

interface.48 Separate ex situ ultrahigh vacuum measurements using different 

excitation energies and varying the electron emission angle confirmed the presence 

of a metallic Ni phase below the surface. In addition, cross-sectional TEM and 

scanning electron microscopy images of the TiO2|Ni interface region further support 

the presence of metallic Ni at the interface of TDMAT a-TiO2.4,18  

The reason for Ni’s divergence from the expected behavior is attributed to its work 

function. Although the work function of Ni is more positive than that of a-TiO2, it 

is not sufficiently positive enough to cause a significant reduction of Ti3+ 

concentration at the interface but rather a slight reduction of the concentration at the 

interface because of the broad width of the Ti3+ defect band.  
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2.6 Conclusions 

a-TiO2 films deposited via ALD contained a broad (∼0.8 eV) defect band between 

the TiO2 Fermi level and the TiO2 valence band. For ALD TiO2 films deposited 

under varied conditions and using varied precursors, the size of the defect band 

correlated with both the bulk conductivity of the a-TiO2 films and the Ti3+ 

concentration observed via EPR spectroscopy. In combination with a variety of 

solid-state measurements, including temperature-dependent conductivity, the data 

show that conduction through the bulk TiO2 films is consistent with the hopping 

mechanism between Ti3+ and adjacent Ti4+ sites as opposed to conduction via the 

conduction or valence bands. The wide defect band associated with Ti3+ sites spans 

an energy level comparable to the valence bands of light-absorbing semiconductors 

such as Si. Thus, allowing anodic conduction across that would otherwise present a 

∼2 eV barrier to anodic conduction.  

The conduction across interfaces between metal contacts and a-TiO2 films depended 

on the metal. For the metals examined, interfaces with metals having work functions 

less than that of a-TiO2 generally provided higher conductivities than interfaces with 

metals having work functions greater than that of a-TiO2. These observations are 

mostly consistent with Ti3+/4+ conduction that makes use of defect sites close to the 

surface both to reduce the band bending in the bulk of TiO2 and to provide either an 

insulating or conducting interface between TiO2 and the metal. Thus, for metals with 

a low work function, a low resistance path is provided by Ti3+ sites, whereas for 

high-work-function metals, the Ti3+ sites are depleted and the resistance 

consequently increases. Ni, while having a relatively high work function, acts like 

a low-work-function metal and thus constitutes a notable exception. Properties of 

the metal contact other than the work function may thus contribute to the different 
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conductivities of interfaces with a-TiO2. The observations provide guidance for a 

synergistic choice for contacts to a-TiO2 films, showing that improved performance 

can be obtained for sunlight-driven water oxidation using an n-Si|a-TiO2 

photoanode integrated with an Ir catalyst when a Ti interconnect is inserted between 

a-TiO2 and the Ir catalyst relative to the situation in which the Ir catalyst is deposited 

directly onto a-TiO2.  
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2.9  Supplementary Information 

 
Figure S1 Ultraviolet photoelectron spectra for Ni, Pd, Pt, Ir, and Au. The work 
function for each element is indicated. The intersections of the two red lines on 
the low and high kinetic energy sides indicate the positions of energy of the 
secondary electron cutoff and the Fermi energy, respectively. 
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Figure S2 Normalized differential conductance for a p+-Si|a-TiO2|Ni device and J-V 
data plotted to show specific regions. The ohmic regime (region I) is depicted in a) 
and b), with the Schottky regime (region II) as well as the Fowler-Nordheim (like) 
transport (region III) depicted in c) and d).  The normalized differential conductance 
is defined as 9V

9W
W
V

. 
 
 
Table S1. Contact resistance measured by transmission line measurement method for 
various metal contacts. The compensated voltage was using the current respectively 
listed to the left.  
Top 
Contact 

Contact 
Resistance 

(W) 

Current 
@ 10-2 V 

(A) 

Compensated 
Voltage (V) 

Current @ 
0.1 V (A) 

Compensated 
Voltage (V) 

Ti 945 ± 44 ~8´10-6 7.6´10-3 ~100´10-6 9.5´10-2 
Ir 5450 ± 750 ~1´10-6 5.5´10-3 ~10´10-6 5.5´10-2 
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Figure S3 - J-V characteristics of a solid-state (a) p+-Si|a-TiO2|Au, (b) p+-Si|a-TiO2|Ir and 
(c) p+-Si|a-TiO2|Pd device, extended to applied biases > 5 V.  The a-TiO2 was ~ 68 nm 
thick.  The inset is a plot of the crossover into the trap-filled regime. Linear regressions 
are shown for the ohmic region at low bias (blue dashed line), and the trap-filled space-
charge-limited regimes (red dashed line in the inset). All devices had a secondary region 
except the p+-Si|a-TiO2|Pd device which exceeded the current limit of the potentiostat. 
 
 
Table S2. Calculated trap densities, mobilities, and effective mobile charge-carrier 
densities for p+-Si|a-TiO2|metal devices with various metal top contacts. 

 Trap Density 
(cm-3) 

Mobility 
(cm2 V-1 s-1) 

Effective Mobile 
Charge-carrier Density  

(cm-3) 
Mg N/A N/A (1.64±1.0) ´1016 
Ti N/A N/A (2.54±1.2) ´1016 
Ni N/A N/A (2.88±1.5) ´1016 
Au (1.40±0.17)´1019 (2.08±0.02)´10-4 (3.83±2.4) ´1015 
Ir (9.65±0.32)´1018 (9.45±0.26)´10-4 (2.66±1.3) ´1015 
Pd (1.14±0.081)´1019 N/A (6.38±3.29) ´1014 
Pt (9.36±0.26)´1018 (5.67±0.15)´10-4 (6.35±4) ´1014 
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The interdigitated electrodes (IDEs) were used to measure the potential 

resolved conductance (EC-FET) in the a-TiO2 (Figure 5). The conductance, G, was 

obtained from the conductivity by use of the cell constant, (𝜎45647 = 𝐾 ∙ 𝐺45647) 

where K is the cell constant and was estimated from: 

 𝐾 =
2

𝑙 𝑛 − 1
𝑠
𝑤

*/+
 (S1) 

 

where s is the spacing between the electrode digits, w is the width of the electrode, l 

is the length, and n is the number of digits, 20 µm, 20 µm, 0.2 cm, and 224, 

respectively. This relationship produced a cell constant of K = 0.045 cm-1.  Samples 

showed a weak potential dependence of the conductance (Gecfet) in the potential range 

-0.25 to 1.75 V vs RHE. 

 
Table S3. Conductance and conductivity for the corresponding IDE samples. 

Sample Gecfet / S secfet / S cm-1 
1 2.2×10-4 9.8×10-6 
3 3.8×10-4 1.7×10-5 
4 1.9×10-4 8.6×10-6 
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Figure S4 – a) Raman measurement of the various ALD deposited TiCl4 precursor 
TiO2 films and the same films measured by b) glancing incident x-ray diffraction 
(GIXRD).  TiCl4 films deposited at 50 and 100 ºC as well as the TDMAT film had an 
undetectable amount of crystallinity as evident in the lack of signal in the appropriate 
region of the Raman and GIXRD measurements. The film deposited at 150 ºC had a 
small fraction of crystallinity (Anatase) from the regions marked in both the Raman 
and GIXRD measurements.   
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Figure S5 shows the ATR-IR spectra for ALD TiO2 films deposited using glass and 

silicon as the substrates, and TiCl4 and TDMAT as the titanium precursor. On the 

ATR-IR spectra we observed that main peak features can be assigned to IR 

absorptions coming from the substrate. Furthermore, we observed the absence of Ti-

OH absorption peaks related to metatitanic acid (H2TiO3) within the IR region of 3310 

cm-1 and 1200–1071 cm–1, indicating that the ALD TiO2 films deposited in this work 

are free of H2TiO3 species.1 

 
Figure S5 – ATR-IR spectra for ALD TiO2 films on a) glass and b) silicon substrate. 
 

 

Figure S6. Average XPS (a) Ti 2p and (b) valence band spectra for TDMAT, TiCl4-
150, TiCl4-100 and TiCl4-50 ºC for 10 different sample for each species. The average 
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spectra and respective standard deviation has been calculated for the valence band 
spectra and is visible in (b).  

 

Figure S7. a) Comparison of the EPR spectra of TDMAT TiO2 to the EPR spectra of 
ALD-deposited Al2O3, substrate-only and the background (an empty EPR tube). The 
broad peak was only present in the TDMAT TiO2 whereas the slight bend at ~3300 
G was due to the substrate. b) Comparison EPR spectra of TDMAT TiO2 at various 
angles of rotation. The signal was independent of any rotation that the sample had 
with respect to the magnetic field.  
 

 

Table S4. Attenuation length d for valence band states depending on take-off angle 
Q. l was calculated with QUASES-IMFP-TPP2M. 
 d for Q=0° d for Q=70° 
AlKa (1486.6eV) 28.23 Å 9.66 Å 
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Figure S8. XPS spectra of the Ti 2p core levels of TDMAT TiO2 and of the valence 
band for different emission angles (Q=0° and 70°) relative to the surface normal. 
With increased surface sensitive (increased Q), an increase in the oxygen shoulder 
at 532.5 eV was observed.2 

 

 

Figure S9. Normalized SIMS spectra of (a) 12C and (b) 14N for all a-TiO2 samples. The 
first 30 sputter cycles are measuring the a-TiO2 while the remaining cycles are measuring 
the underlying p+-Si substrate. When comparing the SIMS spectra with the respective 
conductivity, no trend is apparent. 
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The charge transfer across the Ti|a-TiO2|Ti|Ir|electrolyte junction can be modeled in 

terms of a double barrier generating a potential drop across the metal-insulator-

catalyst (VW) and catalyst-electrolyte junctions (Vtafel),3-5 

 𝑉7[7B\ = V^ + 𝑉DB64\ =
𝐿

𝑞𝜇𝑁#
𝑖 + 𝛼×2.303 ln

𝑖
𝑖J

 (S2) 

 

where L, 𝛼, and i0 are the a-TiO2 film thickness, Tafel slope, and the exchange current 

density, respectively.  We assumed that the current is kinetically controlled across the 

potential range.  
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Figure S10.  Comparison of the current-voltage curve obtained for p+-Si|a-
TiO2|Ti|Ir films in 1 M H2SO4 with the values obtained from eq. S2, taking 𝛼 = 41 
mV dec-1 and I0 = 0.07 mA cm-2. It should be noted that the current has been 
renormalized with respect to the area covered by the Ir islands (14% coverage), 
since charge transfer is negligible in the absence of the catalysts. The orange trace 
shows the Tafel limit (charge transfer unhindered by the TiO2 layer), which is very 
close to the experimental values though somewhat lower than on state-of-the-art Ir 
catalysts.6-7 The simulations show that a-TiO2 conductivity of the order of 10-5 S 
cm-1 has very little influence on the voltammetric responses, while significant 
current damping can be observed upon decreasing the conductivity by one order of 
magnitude. These trends demonstrate that the characteristic conductivity measured 
for the a-TiO2 film obtained by ALD are capable of sustaining current in the range 
of 10 mA cm-2 without the need for invoking mediation by the valence or 
conduction bands. 
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C h a p t e r  3  

INVESTIGATION OF THE ORIGIN OF THE ELECTRONIC BARRIER 
IN ELECTROLESS DEPOSITED PLATINUM NANOPARTICLES ON P-

SI 

Nunez, P.D., Cabán-Acevedo M., Yu W., Richter M. H., Kennedy K., Villarino A. 

M., Brunschwig B. S., & Lewis N. S. “ Investigation of the Origin of the Electronic 

Barrier in Electroless Deposited Platinum Nanoparticles on p-Si,” in preparation.  

3  

3.1 Abstract 

Inhomogeneous junctions between Pt and p-Si has been characterized by impedance 

spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron 

microscopy (TEM), scanning electron microscopy (SEM), and electrochemical 

current density versus voltage (J-V) characteristics. The inhomogeneous junctions 

were formed by either electroless deposition onto a p-Si substrate. SEM 

spectroscopy showed that the films deposited particles with an average area of 1300 

± 1500 nm2 and fractional coverage of 0.35 ± 0.02. XPS and TEM showed that the 

junction between the metal particle and the silicon are separated by an ultra-thin 

SiOx layer. Electrochemical open circuit potential measurements with vanadium 

species at various solution potentials showed that the junction is not fixed but scales 

with the solution potential. In order to recreate a similar junction by e-beam 

deposition, it was required the SiOx to be present before deposition to have the 

junction not pinned by the deposited Pt and controlled by either the solution 

potential or hydrogen present. Utilizing this information, a model for barrier height 

formation for p-Si|electroless Pt is constructed which indicates that the barrier 

height is determined based on the pathway the electrons traverse.  



 

 

70 
3.2 Introduction 

The hydrogen evolution reaction by water splitting is a key process in the 

photoelectrochemical production of carbon-neutral fuels. P-type semiconductors with 

band gaps, Eg, that allow substantial absorption of sunlight (Eg < 2 eV) to enable the 

light-driven electrochemical reaction typically forms an ohmic junction, when placed 

in contact with a typical high-performing HER electrocatalysts and even newer 

generations of electrocatalysts.1-2 This ohmic contact is unable to effectively convert 

harvested photons to a chemical bond in the form of H2. In order to mitigate the 

formation of an ohmic contact, the junction must not be dominated by the high-

performing electrocatalysts (HPEC).1 Thus, energy-intensive buried junctions are 

formed by creating a p-n junction in order to mitigate the formation of an ohmic 

contact.2-4 Less energy intensive processes like electrodeposition or electroless 

deposition of HPEC has been shown to produce a usable junction that performs better 

than the ohmic junction but worse than the buried junction.1, 5-7 

Electrodeposition or electroless deposition of Pt has been shown to demonstrate 

this favorable junction when combined with p-Si or p-InP even though the valence 

band maximum (VBM) is significantly more positive than the work function of Pt.1, 

6-7 The relative alignment between the VBM of these p-type materials and the work 

function of Pt predicts that an ohmic contact should form which is the case for e-beam 

or sputter deposited Pt.1, 3, 8 However, devices that are comprised of electroless and 

electrodeposited Pt onto p-Si are able to generate sizable photovoltages (~300 mV). 

Photovoltages from these types of systems appear to be somewhat independent of the 

VBM. XPS data indicate a band alignment that produces ohmic behavior for Pt on p-

Si. The evaporation of Pt to the surface of p-Si confirms that the contact should be 

ohmic.1, 3, 8 
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These data hint at the energetics of p-Si with Pt deposited at the surface. However, 

the mechanism for the formation of a barrier height via electrodeposition and 

electroless deposition, despite the unfavorable band alignment energetics, remains to 

be elucidated. XPS data shows a weak peak in the Si 2p spectrum suggesting the 

formation of SiOx after electrodeposition or electroless deposition that is not present 

after e-beam deposition of the same metal.1 Other studies have investigated other 

deposition techniques and found similarly physical vapor deposition techniques 

create ohmic contacts while chemical deposition techniques do not.8 Previous work 

utilizing these junctions have hypothesized that the formation of the barrier to be due 

to hydrogen amalgamation or the pinch-off effect.1 However, no study to date has 

effectively proven or disproven either hypothesis. By having a greater understanding 

of the formation of the barrier height, then it could allow for more intelligently design 

photocathodes. 

We describe herein a detailed investigation of the formation of the barrier height 

across a p-Si|Pt junctions formed in various manners, including impedance 

spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron 

microscopy (TEM), scanning electron microscopy (SEM), and electrochemical 

current density versus voltage (J-V) characteristics. The experiments were designed 

to elucidate the formation of the barrier height as well as the factors that control the 

observed barrier as the solution junction to the system is varied. We consequently 

explore the role of the size of the catalyst to p-Si by fabricating analogous 

photocathodes by e-beam deposition. We have moreover applied the information 

gained from these studies to aid in the design of a more efficient Si photocathode for 

solar-driven hydrogen evolution. 
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3.3 Experimental Section 

3.3.1 Sample Preparation 

Materials and Chemicals 

FeCl3 (97%), FeCl2·4H2O (>99%), CoCp2PF6 (98%), CoCp2 (recrystallized), CH3CN 

(anhydrous) were all purchased from Sigma-Aldrich®. Compressed H2 gas purchased 

from Air Liquide America Specialty Gases LLC. Water with a resistivity, ρ, >18 

MΩ·cm was obtained from a Barnsted Millipore purification system and was used 

throughout.  All chemicals, including sulfuric acid (99.999%, Sigma-Aldrich and ~18 

M, ACS Reagent Grade, J.T. Baker), hydrogen peroxide (~30%, ~13 M, VWR), 

hydrochloric acid (ACS Grade, VWR), and buffered HF (aq) (semiconductor-grade, 

Transene), were used as received, unless otherwise noted.  Two types of crystalline, 

single-side polished, Si substrates were used: p-Si(111) (Boron-doped, ρ = 7 – 8 

Ω·cm, Addison Engineering). 

Preparation of Substrates 

The Si wafers were cleaned using an RCA SC-1 procedure that consisted of a 10 min 

soak in a 3:1 (by volume) solution made from 3 parts H2SO4 (aq) (~18 M) and 1 part 

H2O2(aq) (~13 M).  The samples were then briefly etched in a solution of buffered 

HF(aq) (Transcene). The Si samples were cleaned using an RCA SC-2 procedure by 

soaking the samples for 10 min at 75 °C in a 5:1:1 (by volume) solution of H2O, 

HCl(aq) (~11 M), and H2O2(aq) (~13 M).  The RCA SC-2 procedure left a thin 

passivating oxide layer on the Si surface. 

Electroless Deposition 

Before each experiment, the electrodes were individually subjected to a 1 min 

buffered hydrofluoric acid (BHF, Transcene Inc.) treatment, followed by a 2 min 1 

mM H2PtCl6/0.5 M HF electroless platinization procedure, similar to as previously 

published work.1 Each electrode was thoroughly rinsed with deionized water before 
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and after each chemical treatment, and characterized immediately, to avoid excess 

electrode aging. 

Electron-Beam Metal Deposition 

Samples were patterned via optical lithography or placed onto a shadow mask, 

mounted, and pumped down to a base pressure of <10-5 Torr in an electron-beam 

evaporator system (Ångstrom Engineering Inc.).  Pt was evaporated from source 

metals that were at least 4N purity.  Deposition rates ranged from 0.020 to 0.080 nm 

s-1, as monitored by a quartz-crystal microbalance.  Deposition was stopped when the 

film thickness reached a thickness of 7.5 ± 2.5 nm and ~35 nm for electrochemical 

and solid-state samples, respectively.  

Electrode Fabrication  

Electrodes were fabricated by using a scribe to cleave the e-beam deposited 

samples into ~0.1 cm2 pieces. The samples were patterned into islands for 

electrochemical measurements.  A positive photoresist, S1813 (Shipley), was 

patterned, metal pads or islands deposited, and then the photoresist was removed by 

gently sonicating in acetone for ~1 min to leave the desired pattern.  Ohmic contact 

was made by scratching the back of the Si sample with an In-Ga eutectic (Alfa-Aesar, 

99.999%), and the back contact to the sample was affixed to a Cu wire with double-

sided Cu tape. The Cu wire was threaded through a glass tube (Corning Incorporation, 

Pyrex tubing, 7740 glass), and all but the front of the sample was encapsulated with 

Loctite epoxy (Hysol 9462).  After curing overnight, the electrode was scanned with 

an Epson scanner (V370) and analyzed with ImageJ software to determine the area 

of the exposed region, which was ~0.1 cm-2.  
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3.3.2 Physical Characterization 

3.3.3 Photoelectron Spectroscopy 

X-ray photoelectron spectroscopic (XPS) data were collected on p-Si after 

electroless platinization using a Kratos Axis Ultra system with a base pressure of 

1×10-9 Torr.  The x-ray source was a monochromatic Al Kα line at 1486.6 eV.  

Photoelectrons were collected at 0° from the surface normal with a retarding pass 

energy of 160 eV for survey XPS scans, 10 eV for high-resolution core levels, and 20 

eV for valence-band XPS scans.  

Work function measurements were performed using He I ultraviolet 

photoelectron spectroscopy (UPS) on the Kratos Axis Ultra system. A pass energy of 

5 eV was used in conjunction with an aperture of 110 µm.  Prior to the measurements, 

pure metal samples (>99.99%) were sputter cleaned for 30 min with 4 kV Argon Ions. 

The work function (φWF) was calculated from the measured spectra on a kinetic 

energy scale using eq 1: 

 𝜙<= = 𝐸?45,A4B? − 𝐸=,A4B? + 21.21 (1) 

where Esec, meas and EF, meas are the measured energy of the secondary electron cutoff 

and the Fermi energy, respectively, and 21.21eV is the photon energy for He I 

excitation. The secondary electron cutoff and Fermi energy were obtained by 

calculating the intercept of a linear fit of the steep electron cutoff to that of the 

background and by fitting a Fermi distribution to the valance-band maximum, 

respectively. 

Transmission Electron Microscopy 

Transmission electron microscopy (TEM) lamella samples of p-Si|electroless Pt and 

p-Si|SiOx|e-beam Pt were prepared by focused Ga-ion beam (FIB) using a FEI Nova-

600 Nanolab FIB/FESEM. The surface was coated with a carbon protection layers 
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prior to the deposition of a Pt capping layer and exposure to the FIB. The lamella was 

thinned using 30 kV Ga ions and the damaged zone of the lamella was reduced by 

performing the final thinning steps using 8 kV Ga ions. High-resolution TEM 

(HRTEM) data was collected using a FEI Tecnai Polara (F30) TEM at an accelerating 

voltage of 300 keV. 

3.3.4 Electrochemical Characterization 

Electrochemical data were obtained using a Bio-Logic SP-200 potentiostat in a 

three-electrode configuration with 1.0 M H2SO4(aq) as the electrolyte.  A carbon rod 

(Strem Chemicals, 99.999%) was used as the counter electrode, and a Hg/HgSO4 

electrode (Gamry Instruments) was used as the reference electrode.  An ELH-type 

tungsten-halogen lamp provided light that passed through a quartz diffuser to reach 

the Pyrex electrochemical cell.  The illumination intensity was measured by a Si 

photodiode (Thorlabs) and the light intensity was adjusted to produce the same 

current on the photodiode as was produced by illumination with 100 mW cm-2 of Air 

Mass 1.5 sunlight.  Cyclic voltammetric data were collected at a 40 mV s-1 scan rate. 

Sample characterization consisted of cyclic voltammetry (CV) under illumination 

and no illumination, and electrochemical impedance spectroscopy (EIS) in the dark. 

The EIS data was then fitted using the instrument’s software (EC-Lab®) to produce 

capacitance-voltage, or more commonly Mott-Schottky, plots. Before each complete 

experiment, a CV was run using a Pt disk working electrode to confirm a stable 

solution potential (ERef ≈ 0 V), and the light source was calibrated as previously 

mentioned. In addition, the cobaltocene CV data was corrected for 85% of the 

uncompensated resistance calculated from the slope of the straight line of the 

reduction wave in the Pt disk data. 

Vanadium Redox Couple 
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The open-circuit potential of various p-Si electrodes was measured under 1 sun of 

illumination in a solution of 1.0 M H2SO4 saturated with V2O5 in an oxygen-free 

glovebox. Since vanadium has three well-defined redox couples (V2+/3+, V3+/4+ and 

V4+/5+), the electrochemical potential was varied by reducing the solution with a zinc 

rod or by pipetting in fresh solution of 1.0 M H2SO4 saturated with V2O5 until the 

desired solution potential was reached.9-11 Once the desired solution potential was 

reached, the light source was calibrated to ensure an equivalent light flux for each 

measurement. 

Photoelectrochemical Hydrogen Evolution 

The cyclic voltammogram (CV) of all photoelectrodes were obtained in a custom-

made two-compartment glass (pyrex) cell with a flat bottom, separated by a Nafion 

membrane (Fuel Cell Store). All electrodes were etched in buffered HF for 60 s prior 

to CV tests. All tests were performed in 1.0 M H2SO4(aq) electrolyte (VWR 

Chemical) under continuous H2 purging, vigorous stirring and ~1-Sun illumination. 

The ELH-type tungsten-halogen lamp with a custom housing was used as a light 

source and its illumination intensity at the position of working electrode was 

calibrated using a calibrated Si photodiode (FDS100, Thorlab). The mercury sulfate 

electrode (MSE) (CH Instrument) was used as the reference electrode, the potential 

of which was calibrated to be +0.687 V vs. RHE under the same condition. A Pt wire 

was used as the counter electrode. The CV data were obtained on a MPG-2-44 

potentiostat (Bio-Logic Science Instrument) at a scan rate of 40 mV/s. The CV tests 

start from measuring the values of open-circuit potentials (OCP) under illumination 

for 10-20 s, followed by scanning from -0.025 V to the OCP potential towards more 

negative potentials so as to avoid passing anodic currents. 
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3.3.5 Conductivity Measurements 

Current density versus voltage (J-V) data were collected on solid-state analogous 

samples that consisted of p-Si with an RCA-2 SiOx layer and a 35 nm Pt top contact 

(p-Si|SiOx|Pt). For electrical contact, In-Ga was scratched on to the back of Si and the 

exposed Cu of Cu double-sided tape affixed to a glass slide. The electrical data were 

collected using either a Bio-Logic SP-200 or SP-300 in a two-electrode setup with 

the working electrode lead connected to the bottom contact (Cu tape) and the 

reference electrode lead connected to the top contact (Pt). J-V data were collected at 

100 mV s-1. 

Temperature-Dependent Conductivity 

The samples used for the measurement were the same as the aforementioned 

sample used to measure the J-V characteristics. Using a home-built cryostat, dry N2(g) 

was flowed at temperatures ranging from 100 to 290 K. The temperature of the sample 

was monitored by a type K thermocouple. The sample was allowed to thermally 

equilibrate for 5 minutes prior to each measurement in the dark. The data were 

collected using a Bio-Logic SP-200 or SP-300. 

Impedance Measurements 

Impedance measurements were conducted in the dark using a Bio-Logic SP-200. 

The flat-band potential, dopant density and barrier height were determined from the 

impedance data using Mott-Schottky analysis. The 25 mV (peak-to-peak) AC signal 

was swept through a frequency range of 1 KHz to 1 MHz with a DC bias of -1.5 to 0 

V in 31 equal steps. The area normalized differential capacitance of the space-charge 

region was determined by fitting the data to a Randles circuit, a resistor in series with 

a parallel capacitor and resistor. 
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3.4 Results 

3.4.1 Effect of the Solution Potential 

Figure 1 shows the dependence of the open circuit potential (Voc) on the measured 

solution potential for H-terminated p-Si (red, squares), p-Si|e-beam Pt islands (green, 

circles), and p-Si|electroless Pt (blue, triangles) in contact with 1.0 M H2SO4 saturated 

with V2O5 under 100 mW cm-2 of illumination. In the case of the p-Si|e-beam Pt island 

sample, 2 nm of platinum were deposited to prepare a discontinuous film with a 

morphology that more closely resembles the Pt islands deposited by electroless 

deposition which can be seen in Figure S1. Each point represents an average of at 

least 5 electrodes. The response of the H-terminated p-Si is in relative agreement with 

previous works that used various non-aqueous redox couples.12 Three regions exist 

that are present in the H-terminated p-Si and p-Si| electroless Pt electrodes: low, 

intermediate, and high Voc regimes. Both the low and high Voc regimes are insensitive 

to changes in the solution and maintain a potential of 50 ± 25 mV and 470 ± 20 mV, 

respectively. The intermediate regime scales directly with changes to the solution 

potential. The p-Si|e-beam Pt islands electrodes were insensitive to the changes in the 

solution potential and maintained a Voc of 80 ± 20 mV. The p-Si|electroless Pt 

electrodes consistently produced a smaller Voc compared to the H-terminated p-Si 

electrodes. 
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Figure 1. Voc of H-terminated p-Si, p-Si|e-beam Pt islands and p-Si|electroless Pt in 
contact with 1.0 M H2SO4 saturated with V2O5 at various solution potentials under 
100 mW cm-2 of illumination. 
 

3.4.2 Effect of the Solution Potential 

Structure of the Electroless Pt Photocathode 

Figure 2 scanning electron micrographs show that 2 min of electroless deposition of 

Pt onto the p-Si surface produces discontinuous nanoparticles. Coalesced particles 

were considered to be single particle if there was contact. The particles have a large 

range of areas (1300 ± 1500 nm2) and cover 35 ± 2 % of the surface. When the area 

of the particle is converted to a circular patch the effective diameter was found to be 

41 ± 24 nm with an effective pitch of 61 ± 24 nm in a square configuration. 
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Figure 2. SEM micrograph of Pt deposited on the surface of p-Si. Coverage was 
found to be 0.35 ± 0.02. Overall the average area for each particle was found to be 
1300 ± 1500 nm2 which results in an effective diameter of 41 ± 24 nm and pitch of 
61 ± 24 nm. 
 

X-ray Photo-spectroscopy  

Figure 3 shows the XPS spectra of the p-Si surface after various surface treatments 

that consisted of etching and/or Pt electroless deposition. Samples that had Pt 

deposited on the surface from exposure to a solution of 1.0 mM K2PtCl6 and 0.1 M 

HF showed significantly higher levels of oxidation as compared to the surface after 

chemically-producing silicon oxide by RCA-2 cleaning. Samples that had Pt 

deposited on the surface underwent the same HF etching process that produced the 

H-terminated surface. The level of surface oxidation experienced a slight decrease 

after etching; however, the levels of silicon oxide remained greater than the 

chemically-produced silicon oxide. The Si 2p peaks shift towards higher binding 

energies by 130, 320, and 130 meV relative to the H-terminated Si 2p peak for the 

RCA-2 cleaned, electroless Pt deposited and electroless Pt deposited after further HF 
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treatment, respectively. The relative oxide peak for the electroless Pt deposited 

surface before and after HF etching remains higher than the fully oxidized RCA2-

cleaned surface. The Si 2p peaks show no evidence of silicide formation. The Pt 4f 

peaks show that the Pt deposited by electroless deposition is metallic Pt. 

 
Figure 3. XPS spectra of Si 2p core levels for H-terminated, post RCA-2 cleaning, 
post electroless Pt deposition and post HF etching after electroless Pt deposition as 
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well as Pt 4f after electroless Pt deposition and subsequent HF etching after the 
electroless Pt deposition. 
 

Transmission Electron Microscopy  

Figure 4 show an HRTEM image of the surface interface for p-Si|electroless Pt. In 

the HRTEM image for p-Si|electroless Pt we also observed the presence of an 

interfacial amorphous SiOx layer between the Pt layer and the silicon surface while 

the underlying silicon surface is rough. We attribute both the presence of the SiOx 

layer and the roughening of the silicon surface to be a byproduct of the electroless Pt 

deposition reaction. The roughening of the silicon surface makes it difficult to make 

an accurate determination of the thickness of the SiOx layer, but the thickness is 

estimated to be ~ 2 nm. 

 
 
  

 
Figure 4. High-resolution electron microscopy (HRTEM) images of the p-
Si|electroless Pt surface interface. Dashed red lines were added to highlight the 
boundary of the interfacial silicon oxide (SiOx) layer.  
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3.4.3 Analogous Photocathode 

Figure 5 shows that p-Si|SiOx|e-beam Pt electrodes were fabricated and 

achieved similar levels of performance to the p-Si|electroless Pt electrodes in light-

driven hydrogen evolution. The Pt catalyst were patterned into a 3 x 7 µm square 

pattern and isolated from the p-Si by a thin oxide layer grown by RCA-2 cleaning the 

wafer. HF etching of the the p-Si|SiOx|e-beam Pt samples was required prior to testing 

to achieve a similar level of performance as the p-Si|electroless Pt samples. If etching 

was not conducted on the p-Si|SiOx|e-beam Pt sample then the performance was 

similar to the p-Si|electroless Pt dark performance. Pt deposited directly to the p-Si 

using e-beam (p-Si|e-beam Pt), performed similarly to the Pt disk, and showed no 

difference between illuminated and dark conditions. The presence of the SiOx after 

etching was confirmed by HRTEM in Figure S2. 

 

 
Figure 5. Electrochemical J-V measurement in 1.0 M H2SO4 and 1 
atmosphere of H2 comparing the performance for 3 x 7 µm analogous 
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electrodes with and without the SiOx isolating the Pt catalyst to the 
electroless Pt.  

 

Single Pt Island Electrical Characterization  

Figure 6 shows the solid-state J-V characteristics for a p-Si|SiOx|Pt device with a pad 

size of 0.016 cm2. It can be seen that the electrode does not exhibit an ohmic response 

as would be expected without the SiOx as is in the case of the p-Si|e-beam Pt. The 

asymmetric J-V characteristics show that applying a bias is met with a large 

resistance. This resistance is consistent with observations for performing HER and 

nanoelectrical measurements with p-Si|electroless Pt samples.1, 13 

 
Figure 6. Solid-state J-V measurement of p-Si|SiOx|Pt and p-Si|Pt devices. 
The p-Si|Pt device exhibits an ohmic J-V characteristic while the p-
Si|SiOx|Pt device has an asymmetrical J-V characteristic. 
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Impedance Spectroscopy 

Impedance spectroscopy was conducted to determine the differential capacitance of 

the p-Si|SiOx|Pt device. Figure 7 shows the resulting C-2-V characteristics. The slope 

of the linear region indicates a dopant density 1.6 ± 0.2 ×1015 cm-3 which corresponds 

to a resistivity of ~9 Ω·cm, close to the manufacturer’s specified rating of 7-8 Ω · cm. 

By extending the linear region, the x-intercept indicates a flat-band potential -0.48 ± 

0.1 eV which, combined with the dopant density, yields a barrier height of -0.17 eV 

± 0.1 eV. The negative barrier height indicates that the junction directly underneath 

the Pt contact is in accumulation. The SiOx between the deposited Pt and the p-Si does 

not force the junction to produce an effective usable barrier height.  

 
Figure 7. Mott-schottky plot of p-Si|SiOx|Pt solid-state device. From the 
slope and x-intercept the number of holes, flat-band potential and barrier 
height is found to be 1.6 ± 0.2 ×1015 cm-3, -0.48 ± 0.1 and -0.17 eV, 
respectively. 

 

3.4.4 Influence of Catalyst Size 

Ensemble Pt Islands Electrochemical Characteristics 
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Since the patterned 3 x 7 µm p-Si|SiOx|Pt structured electrode had similar 

characteristics to the p-Si|electroless Pt electrode, the dependence of the electrode 

relative to the catalyst size was investigated in light-driven hydrogen evolution. The 

results can be seen in Figure 7. The diameter and pitch of the catalyst islands were 

scaled, but held to a constant coverage of ~14%. The performance of the devices was 

found to be independent of the size of the catalyst even though the p-Si|SiOx|Pt 

structured electrodes scaled over ~3 orders of magnitude. If the effective diameter 

and pitch of the p-Si|electroless Pt electrodes are taken into account then the 

performance independence scales for 5 orders of magnitude. The Voc of the same 

electrodes were measured against various solution potentials using the same 

vanadium redox couples at low, intermediate, and high solution potentials. No visible 

trend was apparent with the resulting Voc and the catalyst size. The resulting Voc was 

very similar to the electroless Pt which can be seen in Figure 8. 

      
Figure 8. Electrochemical J-V measurement in 1.0 M H2SO4, 1 
atmosphere of H2 and 1 sun of illumination comparing the performance of 
various diameter and constant coverage for p-Si|SiOx|Pt structured 
electrodes. All electrodes that were HF etched prior to the measurement. 
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3.4.5 Influence of Hydrogen 

The structure p-Si|SiOx|e-beam Pt solid-state device exhibited a response in the J-V 

characteristics once exposed to H2 (g). The response before and during exposure can 

be seen in Figure 9. The exposure to hydrogen gas is exhibiting not just a resistive 

response but also a change in the barrier height. The impedance-spectroscopy of the 

MOS-structured electrode while exposed to hydrogen gas shows that the flat-band 

potential shifts by 0.8 ± 0.1 eV underneath the Pt catalyst as seen in Figure 10. This 

change in the barrier height translates into a usable barrier as the MOS-structured 

device exhibits a sizable photoresponse when measuring the Voc (Figure S3). 

 

 
Figure 9. a) Solid-state J-V characteristics of p-Si|SiOx|Pt solid-state device before 
and during exposure to H2 (g) and b) zoomed in of a). 
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Figure 10. Mott-schottky plot of p-Si|SiOx|Pt solid-state device before and during 
exposure to H2 (g). The dopant densities derived from the slope of the linear regions 
agree with each other and the manufacturer’s specification. Upon exposure to H2 (g), 
the flat-band potential shifts by 0.8 ± 0.1 eV resulting in a final flat-band potential 
and barrier height of 0.35 ± 0.1 eV and 0.58 ± 0.1 eV, respectively. 
 
3.5 Discussion 

3.5.1 Solution Potential Controlled Barrier Height 

Figure 1 shows the dependence of the Voc on the measured solution potential for H-

terminated p-Si, p-Si|e-beam Pt islands, and p-Si|electroless Pt in contact with 1.0 M 

H2SO4 saturated with V2O5 under 100 mW cm-2 of illumination. The response of the 

H-terminated p-Si is in agreement with previous works that used various non-aqueous 

redox couples even though only one solution is used and the solution potential was 

adjusted through the addition of metallic zinc.12 As was observed by Grimm et al., 
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three regions are present in the H-terminated: low, intermediate and high Voc regimes. 

Both the low and high Voc regimes are relatively insensitive to changes in the solution 

while the intermediate regime scales directly with changes to the solution potential.  

These results validate the use of the vanadium electrolyte solution as an alternative to 

using various redox couples in order to probe the response of a semiconductor 

electrode to a change in the solution potential. A slight difference exists though 

between the two methods. The amount Voc generated from the H-terminated p-Si 

using the vanadium electrolyte solution was slightly lower than the various redox 

couples at an equivalent solution potential. This difference is likely due to the 

reduction of oxidized species that are able to collect the photogenerated electrons 

from the surface of the semiconductor electrode.14 

The three Voc regimes of respond to the solution potential are also present in the p-Si| 

electroless Pt electrodes which would indicate that the barrier height of the electroless 

Pt is controlled by the solution potential. In addition, the p-Si|electroless Pt electrodes 

exhibits a consistent level of Voc when compared to the same electrodes performing 

light-driven HER.1, 3, 5-8, 13 This consistency between the Voc attained when performing 

HER with the p-Si|electroless Pt electrode and the Voc attained when at similar 

solution potential further validates the use of the vanadium redox couple. 

It was found that the p-Si|e-beam Pt islands electrodes were insensitive to the changes 

in the solution potential and maintained a Voc of 80 ± 20 mV. The p-Si|electroless Pt 

electrodes consistently produced a smaller Voc compared to the H-terminated p-Si 

electrodes. The consistently smaller Voc of the p-Si|electroless Pt electrode compared 

to the H-terminated p-Si can be attributed to partial attenuation of light by Pt particles 

on the surface as seen in Figure 3. 
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3.5.2 Structure of the Electroless Pt Photocathode 

Figure 2 shows the morphology of the deposited discontinuous Pt particles after 2 

min of electroless deposition the p-Si surface. Coalescing particles were considered 

to be single particle if there was sufficient contact between them. The particles have 

a wide range of areas (1300 ± 1500 nm2) and cover 35 ± 2 % of the surface. When 

the area of the particles and their coverage is converted to a circular patch the effective 

diameter was found to be 41 ± 24 nm with an effective pitch of 61 ± 24 nm in a square 

configuration. 

Figure 3 shows the XPS spectra of the p-Si surface after HF etch and Pt deposition 

treatments. Samples that had Pt deposited on the surface from exposure to the 

deposition solution showed significantly higher levels of oxidation as compared to 

the surface after chemically-producing silicon oxide by RCA-2 cleaning. Samples 

that had Pt deposited on the surface underwent the same HF etching process that 

produced the H-terminated surface. The level of surface oxidation experienced a 

‘slight’ decrease after etching; however, the levels of silicon oxide remained greater 

than the chemical-produced silicon oxide. The relative oxide peak for the electroless 

Pt deposited surface before and after HF etching remains higher than the oxidized 

RCA-2 cleaned Si surface. This would suggest that the silicon oxide resides 

underneath the Pt particle and that the Pt particle acts as an etch barrier, thus 

preventing the removal of the SiOx. Since the surface is covered by 35 ± 2% Pt 

particles, this can be a proxy for the silicon oxide coverage. Since the signal for silicon 

oxide is greater than after the entire surface is oxidized after the RCA-2 cleaning 

process, this would suggest that there is a greater volume of silicon dioxide that is 

detectable by XPS. Thus, the silicon dioxide underneath the Pt particle should extend 

further into the Si beyond the ~2 nm layer produced by the RCA-2 cleaning step or 

that the surface should be highly roughened. 
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The Si 2p peaks shift towards higher binding energies by 130, 320, and 130 meV 

relative to the H-terminated Si 2p peak for the RCA-2-cleaned, electroless Pt 

deposited and electroless Pt deposited after further HF etching, respectively. The Si 

2p peaks show no evidence of silicide formation. The Pt 4f peaks show that the Pt 

deposited, by electroless deposition is metallic Pt. In addition, this shift would 

indicate that the bands of the p-Si are in accumulation and bent in an unfavorable 

direction for extraction of photogenerated carriers. 

The structure of the p-Si|electroless Pt surface interface was further probed by 

HRTEM which can be seen in Figure 4. The HRTEM image corroborates the 

inferences made by XPS by showing the presence of an interfacial amorphous SiOx 

layer between the Pt deposition and Si. The thickness of the amorphous SiOx layer 

happened to be ~2 nm; however, the surface was roughened considerably. This 

surface roughness after the electroless deposition of Pt would be reflected in the XPS 

spectra as there would be a greater volume of SiOx in the same area compared to 

smooth SiOx interface. 

 

3.5.3 Analogous Structured Electrode 

Upon exposure to H2 (g), the p-Si|SiOx|e-beam Pt solid-state device exhibited a 

noticeable response in the resulting J-V characteristics. The difference in the J-V 

characteristics in air and under H2 (g) can be seen in Figure 9. The change in the J-V 

characteristics is not just a resistive response but also a change in the barrier height. 

The impedance-spectroscopy of the p-Si|SiOx|e-beam Pt solid-state device shows the 

flat-band potential shifts from -0.48 ± 0.1 eV to 0.35 ± 0.1 eV as seen in Figure 10. 

This change in the barrier height translates into a usable barrier as the p-Si|SiOx|e-

beam Pt solid-state device exhibits a photoresponse in the Voc when is present H2 (g) 
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and none when H2 (g) is not present. The photoresponse of the device in H2 (g) can 

be seen in Figure S3.  

This voltage shift observed in the capacitance and subsequently band-bending for 

metal-oxide-semiconductor (MOS) devices has been well documented and studied 

for hydrogen sensing applications.15-21 While various mechanisms exist and are 

dependent on the atmosphere and catalytic metal, all of the mechanisms involve a 

measurable shift in the capacitance-voltage (C-V) characteristics. This measurable 

shift originates from a dipole that is caused by the disassociation of hydrogen into 

protons and electrons. The protons migrate into the oxide while the electrons remain 

at the catalyst thus forming the dipole at the Pt-SiOx interface.22 In order for the shift 

to occur silicon oxide, catalytic metal, and H2 (g) must be present and the change is 

reversible upon exposure to oxygen. The reversibility has been observed in which 

further supports the hydrogen-induced dipole being present. The measurement barrier 

height change from the p-Si|SiOx|e-beam Pt solid-state device under H2 (g) and the 

Voc response (Figure S3) are consistent with typical results for performing light-

driven HER on a p-Si|electroless Pt electrode.  

The hydrogen-induced dipole origin for the barrier-height would suggest room for 

improvement as well as translation. For the p-Si|electroless Pt electrode because of 

the logarithmic dependence between the dipole strength and the hydrogen pressure, 

the barrier-height shift couple be increased by increasing the overall pressure of the 

system.23In addition, this effect is not limited to just Pt but also a host of other catalytic 

metals such as Pd and Ir.18 However, there’s no indication that newer generation of 

HER catalysts such as NiMo or CoP could generate the hydrogen-induced dipole. 

Thus, further investigation is necessary to determine how general the formation of the 

hydrogen-induced barrier is to high-performing HER catalysts. 
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3.5.4 Influence of Hydrogen 

Upon exposure to H2 (g), the p-Si|SiOx|e-beam Pt solid-state device exhibited a 

noticeable response in the resulting J-V characteristics. The difference in the J-V 

characteristics in air and under H2 (g) can be seen in Figure 9. The change in the J-V 

characteristics is not just a resistive response but also a change in the barrier height. 

The impedance-spectroscopy of the p-Si|SiOx|e-beam Pt solid-state device shows the 

flat-band potential shifts from -0.48 ± 0.1 eV to 0.35 ± 0.1 eV as seen in Figure 10. 

This change in the barrier height translates into a usable barrier as the p-Si|SiOx|e-

beam Pt solid-state device exhibits a photoresponse in the Voc when is present H2 (g) 

and none when H2 (g) is not present. The photoresponse of the device in H2 (g) can 

be seen in Figure S3.  

This voltage shift observed in the capacitance and subsequently band-bending for 

metal-oxide-semiconductor (MOS) devices has been well documented and studied 

for hydrogen sensing applications.15-21 While various mechanisms exist and are 

dependent on the atmosphere and catalytic metal, all of the mechanisms involve a 

measurable shift in the capacitance-voltage (C-V) characteristics. This measurable 

shift originates from a dipole that is caused by the disassociation of hydrogen into 

protons and electrons. The protons migrate into the oxide while the electrons remain 

at the catalyst thus forming the dipole at the Pt-SiOx interface.22 In order for the shift 

to occur silicon oxide, catalytic metal and H2 (g) must be present and the change is 

reversible upon exposure to oxygen. The reversibility has been observed in which 

further supports the hydrogen-induced dipole being present. The measurement barrier 

height change from the p-Si|SiOx|e-beam Pt solid-state device under H2 (g) and the 

Voc response (Figure S3) are consistent with typical results for performing light-

driven HER on a p-Si|electroless Pt electrode.  
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The hydrogen-induced dipole origin for the barrier-height would suggest room for 

improvement as well as translation. For the p-Si|electroless Pt electrode because of 

the logarithmic dependence between the dipole strength and the hydrogen pressure, 

the barrier-height shift couple be increased by increasing the overall pressure of the 

system.23In addition, this effect is not limited to just Pt but also a host of other catalytic 

metals such as Pd and Ir.18 However, there’s no indication that newer generation of 

HER catalysts such as NiMo or CoP could generate the hydrogen-induced dipole. 

Thus, further investigation is necessary to determine how general the formation of the 

hydrogen-induced barrier is to high-performing HER catalysts. 

3.5.5 Mechanism for Barrier Height Formation 

The data presented herein suggests that are two mechanisms for the formation of the 

barrier height in p-Si|electroless Pt electrodes that is dependent on the path traveled 

for the current. Name, for fast redox couples, the barrier-height is solution potential 

dependent and the J-V characteristics most closely resemble that of the H-terminated 

Si. For HER, the barrier-height is controlled by the generated barrier from H2 (g) 

exposure and the J-V characteristics are of the p-Si|SiOx|Pt.  

First is the case in which the electrode is performing electrochemistry on a fast redox 

couple that requires no catalyst. These redox couples would entail redox couples like 

V2+/3+/4+/5+, Fe2+/3+ or CoCP0/+. With these redox couples, the barrier height is 

determined by the solution potential which is what is observed in Figure 1. 

 It can be seen that as the solution potential increases, so does the Voc. Since the Voc 

is directly dependent on the barrier height and the Voc scales with the solution 

potential then this indicates that the barrier height is scaling with the solution 

potential. Since the V2+/3+/4+/5+ redox couple is sufficiently fast, no catalyst is required 

to perform the reaction and thus the reaction is not limited to being reduced or 

oxidized at the deposited Pt catalyst sites. It is more preferential for electrons to 



 

 

95 
perform the reaction at exposed H-terminated Si sites rather than traverse to the Pt 

catalyst because of the large resistance formed by the SiOx underneath the Pt. The 

electron pathway for fast redox couples is illustrated in Figure 11a. 

On the other hand, slow, catalyst-necessary reactions like HER differ from the facile 

redox couples since the exposed H-terminated Si no longer catalytically significant. 

Because the deposited Pt requires the least overpotential to drive reaction, then 

electrons enter/exit most favorably through the SiOx to reach the Pt catalyst. 

Therefore, the J-V characteristics that are observed are of the junction directly 

underneath the Pt catalyst. The electron pathway for HER is illustrated in Figure 11b. 

 
Figure 11. Schematic for a) solution-potential and b) hydrogen-dipole 
controlled pathways for electrons to traverse. 

  
A mixed system was investigated in order to demonstrate that the least resistance 

pathway dominates the effective barrier-height. A fast, low barrier-height redox 

couple was used in order to demonstrate the favorable pathway. The with or without 

H2 (g), the p-Si|electroless Pt electrode demonstrated an ohmic contact which shows 

that the most preferential exit pathway was throught the p-Si|H-terminated Si instead 

of through the SiOx to reach the Pt catalyst. 

3.6 Conclusions 

Pt particles deposited onto p-Si via an electroless deposition method were 

characterized in order to determine the origins of the systems barrier height. From 
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physical characterization, the metallic Pt particles were deposited and separated from 

the p-Si via a thin amorphous SiOx which was observable by XPS and HRTEM. The 

position Pt particle relative to the SiOx makes it such that the Pt particle acts as an 

etch barrier, thus preventing the removal of the interfacial SiOx. This SiOx layer 

proved to be crucial in the formation of a usable barrier-height and was confirmed by 

creating analogous patterned electrodes.  

Patterned anaologous p-Si|SiOx|Pt electrodes after etching exposed SiOx attained a 

similar level of performance as the p-Si|electroless Pt electrodes in light-driven HER 

as well as Voc attained in the vanadium electrolyte solution. Excess SiOx proved to be 

detrimental to the overall performance of the device. Without the interfacial, SiOx, p-

Si|Pt electrodes demonstrated no barrier-height formation and was insensitive to 

illumination. 

Depending on the redox couple, the reaction will either occur at the exposed Si sites 

or at the Pt particle for both p-Si|electroless Pt and patterned p-Si|SiOx|Pt electrodes. 

In the case of fast redox couples, the reaction preferentially occurs at the exposed Si 

sites, thus the observed barrier-height is solution-potential controlled. For slow redox 

couples that require a Pt catalyst, the reaction will preferentially occur at the Pt 

particle sites, thus making the observed barrier-height controlled by the junction 

underneath the Pt particle. In the case that hydrogen is present then the hydrogen-

induced dipole will dominate the observed barrier-height underneath the Pt particle. 

The hydrogen-induced dipole shifts the observed barrier-height by 0.8 ± 1 eV such 

that the final barrier-height is 0.58±0.1 eV. This shift is observable in the J-V and C-

V characteristics of the p-Si|SiOx|Pt solid-state device. This shift in the barrier height 

enabled the junction underneath the Pt to be photoactive. For either mechanism for 

barrier-height formation, the performance of the device is independent of the size of 

the catalysts size. 
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3.8 Supplementary Information 

 
Figure S1. SEM micrograph of “2 nm” of Pt deposited by e-beam deposition on 
the surface of p-Si. Coverage was found to be 0.05 ± 0.01. Overall the average area 
for each particle was found to be 74 ± 61 nm2, which results in an effective diameter 
of 4.8 ± 4.4. 
 

  

1 micron
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Figure S2 show an HRTEM image of the surface interface for p-Si|SiOx|e-beam Pt. In the 
HRTEM image for p-Si|SiOx|e-beam Pt we observed the presence of an interfacial 
amorphous SiOx layer which was formed by RCA treatment. The interfacial amorphous 
SiOx has a uniform thickness of 1.7-1.9 nm between the e-beam Pt layer and the silicon 
surface. In addition, the surface of the underlying Si surface is smooth. 
 

 
Figure S2. High-resolution electron microscopy (HRTEM) images of the that p-
Si|SiOx|e-beam Pt surface interface. Dashed red lines were added to highlight the 
boundary of the interfacial silicon oxide (SiOx) layer.  
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Figure S3. Open circuit potential (Voc) of a p-Si|SiOx|Pt solid-state device under 
chopped 1 sun of illumination in air and H2 (g). Under an atmosphere of air, the 
device produces no Voc. Under H2 (g), a barrier-height is generated which can 
produce a Voc of ~100 mV.  
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