
Thermal conduction in amorphous materials and the role
of collective excitations

Thesis by
Jaeyun Moon

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2020
Defended December 11, 2019



ii

© 2020

Jaeyun Moon
ORCID: 0000-0001-8199-5588

All rights reserved



iii

ACKNOWLEDGEMENTS

Looking back through a little over 5 years of my Ph. D. journey, it is crystal clear
that I couldn’t have finished this thesis without the support I have received during
this time.

I would like to first thank my advisor and mentor, Prof. Austin J. Minnich for his
guidance and endless support. I am grateful for the countless discussions we have
had for the last 5 years. I learned a lot about how to do research and how to ask
good questions from working with him. I am extremely fortunate that he had given
me a lot of scientific freedom and independence and that he allowed me to pursue
projects that excite me. Because I am very interested in X-ray sciences and ultrafast
phenomena, he allowed me to be away for a year at SLAC National Accelerator
Laboratory and Stanford University to learn about these topics. For that, I owe a
debt of gratitude to my advisor. I am also very fortunate that I was able to tackle
scientific questions from several angles from calculations to experiments under his
guidance.

I have had many enriching experiences at SLAC and Stanford. Due to close interac-
tions between SLAC and Stanford researchers, there are many specialized courses
regarding X-ray sciences, and I was fortunate to take some of these courses that are
directly related to my current Ph. D. research and my future work as a post-doc
at Oak Ridge National Laboratory. I would like to thank Profs. David Reis and
Evan Reed for hosting me and for allowing me to pursue my scientific interests. I
am also grateful that I was able to participate and do research projects there that
were outside of my research area. I would also like to express my gratitudes to my
lab members and friends at SLAC and Stanford: Dr. Peter Schindler, Dr. Rodrigo
Freitas, Kenji Oyama, Dr. Austin Sendek, Evan Antoniuk, Gowoon Cheon, Vin-
cent Dufour-Decieux, Aditi Krishnapriyan, Brandi Ransom, Yanbing Zhu, Jaclyn
Schillinger, Viktor Krapivin, Dr. Mariano Trigo, Dr. Samuel Teitelbaum, Yijing
Huang, Dr. Gilberto Antonio de la Pena Munoz, and Prof. Jerry Hastings. I am
profoundly thankful for all the enriching and fun experiences with these wonderful
people.

The help I have received from my collaborators has also been monumental in my
thesis. I would like to express my gratitude to Drs. Raphäel P Hermann andMichael
E. Manley from Oak Ridge National Laboratory and Ahmet Alatas and Ayman H.



iv

Said from Argonne National Laboratory for their help in scattering measurements
and for their fruitful scientific discussions.

I would like to thank my current and former lab members at Caltech: Dr. Benoit
Latour, Taeyong Kim, Dr. Lina Yang, Dr. Ruiqiang Guo, Dr. Bo Sun, Dr. Nina
Shulumba, Prof. Ole Martin Løvvik, Dr. Andrew Robbins, Dr. Nick Dou, Dr.
Nathan Thomas, Peishi Cheng, Alex Choi, Adrian Tan, Erika Ye, Yang Gao, Zoila
Jurado, Dr. Chengyun Hua, Dr. Navaneetha Ravichandran, Dr. Ding Ding, Dr.
Hang Zhang, Dr. Xiangwen Chen, Dr. Junlong Kou, and Nachiket Naik. Being
a member of our group has been a great learning experience. We had a lot of
constructive discussions in the group meetings and in our offices in Gates Thomas
Laboratory. Outside of the lab settings, we also had manymemorable times in group
socials. I would like to especially extend my gratitude to Andrew and Benoit who
helped me get started with my research at the beginning of my Ph. D.

I am also grateful for the opportunities to have been the co-mentor to three under-
graduate students in their summer projects as SURF students from IIT, Gandhinagar:
Akash Pallath, Sowill Dave, and Ayushman Tripathi who have now gone to a grad-
uate school to pursue a Ph. D. and to space agencies. It was a unique experience to
teach and advise students on their projects.

Last but not least, the support from my close friends and family has been the
linchpin of my Ph. D. I would like to thank my friends Andre da Silva, Peter
Schindler, Gowoon Cheon, Evan Antoniuk, Vincent Dufour-Decieux, Joe Ahn,
ConnorMcMahan, Camille Bernal, AbhishekKwatra, KienNguyen, SungwonAhn,
Louisa Avellar, Taeyong Kim, Takafumi Oyake, Vidyasagar, Radhika Kashyap, and
William Rapin. I am profoundly grateful to my parents and my brother for their
lifelong support and for teaching me to pursue excellence.

I would like to thank the Samsung Scholarship, Acosta Fellowship, and Resnick
Sustainability Institute at Caltech for their graduate fellowships and I would like
to thank the Kavli Nanoscience Institute at Caltech and its staff members for their
support in my projects.



v

ABSTRACT

The atomic vibrations and thermal properties of amorphous dielectric solids are of
fundamental and practical interest. For applications, amorphous solids are widely
used as thermal insulators in thermopile and other detectors where low thermal
conductivity directly sets the sensitivity of the detector. Amorphous solids are of
fundamental interest themselves because the lack of atomic periodicity complicates
theoretical development. As a result, the lower limits of thermal conductivity in
solids as well as the nature of the vibrational excitations that carry heat remain active
topics of research.

In this thesis, we use numerical and experimental methods to investigate the thermal
conduction in amorphous dielectrics. We begin by using molecular dynamics
to investigate the thermal conductivity of amorphous nanocomposites. We find
that mismatching the vibrational density of states of constituent materials in the
composite is an effective route to achieve exceptionally low thermal conductivity in
fully dense solids.

We then transition to examining the properties of the atomic vibrations transporting
heat in amorphous solids. For decades, normal mode methods have been used ex-
tensively to study thermal transport in amorphous solids. These methods naturally
assume that normal modes are the fundamental vibrational excitations transporting
heat. We examine the predictions from normal mode analysis that are now able to
be tested against experiments, and we find that the predictions from these methods
do not agree with experimental observations. For instance, normal mode methods
predict that the low frequency normal modes are scattered by anharmonic inter-
actions as in single crystalline solids. However, temperature dependent thermal
conductivity measurements demonstrate a typical glassy temperature dependence
inconsistent with normal modes scattering through anharmonic interactions. These
discrepancies suggest that normal modes are not the fundamental heat carriers in
amorphous dielectrics.

To identify the actual heat carriers, we draw on fundamental concepts from many-
body physics and inelastic scattering theory that dictate that the excitation energies of
a many-body interacting system are given by the poles of the single-particle Green’s
function. The imaginary part of this function is proportional to the dynamic struc-
ture factor that is directly measured in inelastic scattering experiments. Collective
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excitations of a given energy and wavevector can thus be identified from peaks in
the dynamic structure factor; their damping is given by the broadening of the peak.
Using these concepts from many-body physics, the physical picture that emerges is
that heat is carried in large part by a gas of weakly interacting collective excitations
with a cutoff frequency that depends on the atomic structure and composition of the
glass.

We test this picture using numerical and experimental inelastic scattering measure-
ments on amorphous silicon, a commonly studied amorphous solid. We observe
collective excitations up to 10 THz, well into the thermal spectrum, and far higher
than previous inelastic scattering measurements on other glasses. Our numerical
and experimental evidence also confirms that the collective excitations are damped
by structural disorder rather than anharmonic interactions and that they dominate
the thermal conduction in amorphous silicon. Subsequent analysis shows that these
high frequency acoustic excitations are supported in amorphous silicon due to a
large sound velocity and monatomic composition, suggesting that other monatomic
amorphous solids with large sound velocities may also support these thermal exci-
tations.

Overall, our results provide strong evidence that the heat carriers in amorphous di-
electrics are collective excitations rather than normalmodes. This change in physical
picture advances our understanding of atomic dynamics in glasses and also provides
a foundation for realizing dielectric solids with ultralow thermal conductivity.
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C h a p t e r 1

PHENOMENOLOGY OF THERMAL PROPERTIES OF GLASSES

The term, amorphous, comes from ancient Greek, ámorphos, which means "without
form". Amorphous or non-crystalline solids are, therefore, defined as solids that
lack the long-range order. Various classifications of solids fall into the "amorphous"
category ranging from amorphous polymers and ceramics to random alloys and
metallic glasses. For clarification, glasses are technically amorphous solids that go
through the glass transition from their liquid states, but the terms amorphous solids
and glasses are often used interchangeably and this is also the case in this thesis.
Despite the abundance of glasses and millenia of glass usage, it may come as a
surprise that we understand very little about them. Nobel Laureate Philip Anderson
famously wrote a viewpoint in Science [1] in 1995 saying, "The deepest and most
interesting unsolved problem in solid state theory is probably the theory of the nature
of glass and the glass transition." Decades later, this statement still remains relevant
to this day in atomic dynamics and thermal properties in amorphous materials.

As a starting point of this thesis, a high level picture of some of the universal
features of amorphous solids (non-metals) in their thermal properties is described.
Comparing with crystals, we find that there exist some anomalous temperature
dependent thermal properties. Some phenomenological models including tunneling
two level systems (TLS) and minimum thermal conductivity models to explain these
features are explored in this chapter.

1.1 Temperature dependent thermal conductivity and heat capacity of glasses
Temperature dependent thermal conductivity of various crystals and glasses is shown
in Fig. 1.1 [2]. Some metals are also shown for reference, but the focus of
the discussion is with regards to non-metallic solids in which phonons dominate
the thermal conduction rather than electrons as in metals. In the temperature
range shown, we see a wide range of thermal conductivity values of ∼ 7 orders
of magnitude. There are large variations of thermal conductivity among crystals
depending on the composition and atomic structure. Take sapphire and black
phosphorus at 30 K, for instance. A factor of 104 differences in thermal conductivity
is observed. On the other hand, we see a stark difference for amorphous solids
in that they exhibit more uniform thermal conductivity in all temperature ranges
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Figure 1.1: Temperature dependent thermal conductivity of various crystals and
glasses [2].

regardless of the composition and local atomic structures. Another obvious trend
we see from Fig. 1.1 is that crystals have orders of magnitude larger thermal
conductivity than amorphous solids, which highlights the role of disorder in reducing
the thermal conductivity. For instance, crystalline silicon (c-Si) has two orders of
magnitude higher thermal conductivity compared to amorphous silicon (a-Si) at
room temperature, while they have the same composition and similar density (2.3
gcm-3 for c-Si and 2.1 to 2.2 gcm-3 for a-Si). Because of the intrinsically low
thermal conductivity, amorphous solids are considered to set the lower boundary of
thermal conductivity for fully dense solids, also known as the amorphous limit, and
motivated the development of minimum thermal conductivity models [3–6], which
will be discussed in detail in a later section.

A signature thermal conductivity trend for a crystal is demonstrated in crystalline
silicon (c-Si). At very low temperatures below a few K, phonon population is scarce
and with the lack of disorder scattering for a perfect crystal and small phonon-
phonon interactions, phonons can travel far distances on the order of bulk sample
sizes; hence the thermal conductivity closely follows temperature dependence of the
heat capacity at these temperatures (Cv α T3). As the temperature increases further,
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more phonons are populated and they start to scatter with each other more strongly,
leading to a reduction in thermal conductivity. The above qualitative description of
temperature dependent thermal conductivity in crystals is widely accepted and is
written in many standard solid state physics textbooks [7, 8].

Figure 1.2: Thermal conductivity of various glasses at low temperatures from Zeller
and Pohl [9]. Below around 1K, we see aT2 dependence in the thermal conductivity.

We see a different temperature dependent thermal conductivity for glasses: a contin-
uously increasing thermal conductivity with some materials exhibiting a plateau at
around 10 K is observed. This strikingly different temperature dependence in ther-
mal conductivity was first pointed out by Eucken more than a century ago in 1911
[10] and ignited decades of subsequent research efforts to understand the underlying
physics of thermal properties in glasses.

Other commonly observed features in glasses are the thermal conductivity being



4

quadratic in temperature as shown in Fig. 1.2 while the specific heat being linear
with temperature at low temperatures below around 1 K, first observed by Zeller
and Pohl in 1971 [9]. Prior to this work, it was long thought that because the
dominant phonons have low frequencies � 1 THz and macroscopic wavelengths,
vibrational properties of glasses could be treated as aDebye solid as in crystals where
phonons are insensitive to microscopic structure in these temperatures. Subsequent
phenomenologicalmodel called tunneling two level systems proposed independently
by Phillips [11] andAnderson et al. [12]was able to explain these anomalous thermal
properties below 1K, which is to be discussed further in a next section.

In addition to different temperature dependence in the specific heat, we generally
see larger specific heat in glasses compared to their crystalline counterparts at low
temperatures below 20 to 30 K. As an example, temperature dependent specific heat
of silica glass and crystal is shown in Fig. 1.3 (A). The additional specific heat is
related to a distinct feature in the vibrational density of states g(E) called the Boson
peak located around 5 meV when plotted in a reduced form g(E)/E2 as depicted in
Fig. 1.3 (B). The Debye model of density of states is plotted as a guide to the eye.
Crystals such as α-quartz shown follow the Debye model for low energy excitations.
The excess of specific heat and the boson peak are observed in many glasses and
have been the focus of decades of work, but the conclusions do not yet converge to
a unified answer to the origin of these anomalies [13–18].
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Figure 1.3: (A) Specific heat [9] and (B) reduced density of states [18] of amorphous
silica (a-SiO2, blue circle) and α-quartz (c-SiO2, orange circle). Debye density of
states is plotted as a guide to the eye. Excess of specific heat is clearly seen in a-SiO2
at low temperatures below 20 to 30 K due to additional vibrational states over the
α-quartz below a few meV.
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1.2 Minimum thermal conductivity models
Now that some big differences in thermal properties between glasses and crystals
are explored, we next discuss the minimum thermal conductivity models described
briefly before.

Different trends in the temperature dependent thermal conductivity of crystals and
glasses led to the interpretation by Kittel that the mean free paths are dominated by
the disordered nature of the structure rather than the anharmonic lattice interactions
in glasses [3]. Hence, it was hypothesized that average mean free paths are constant
with temperature, and thermal conductivity closely follow the specific heat tem-
perature dependence. Using the kinetic theory, the average mean free paths were
calculated to be a few Å in glasses and comparing the calculated average mean free
paths of quartz glass, crown glass, and flint glass, Kittel concluded that impurities
give additional scattering.

In 1911, Einstein [19] was trying to understand the thermal conductivity of crystals
rather than glasses from the measurements by Eucken [10]. He considered a simple
cubic lattice and each atom to be a harmonic oscillator with the same frequency of
vibration. The harmonic oscillator coupling was extended up to the third nearest
neighbors. Requiring that the phases of the oscillators to be uncorrelated, the energy
diffuse from an oscillator to the other during half the period of oscillation. It was
later shown, however, that the lattice vibrations of crystals are better described by
elastic waves traveling at the speed of sound in a correlated motion of neighboring
atoms by Born and von Kármán [20] and Debye [21]. Nonetheless, Einstein’s model
of energy diffusion in the harmonic oscillators became useful to describe thermal
conductivity of glasses as described below.

Plugging in half the period of oscillators as the phonon lifetime, Einstein specific
heat, and the average distance between atoms as the phonon mean free paths to the
kinetic theory of thermal conductivity, Cahill and Pohl expressed the Einstein model
of thermal conductivity as [4]

kEins =
k2

Bn1/3

~π
ΘE

x2ex

(ex − 1)2
(1.1)

where kB is the Boltzmann constant, n is the number density, ΘE is the Einstein
temperature, and x = ΘE/T . The Einstein model of thermal conductivity can quali-
tatively describe the temperature dependence of thermal conductivity measurements
of glasses where we see a positive correlation with temperature as seen in Fig. 1.4.
However, the predicted thermal conductivity can vary by a few orders of magnitude
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with measurements at low temperatures below 50 K [4] and the determination of the
Einstein frequency or temperature is arbitrary [22]. It is worth mentioning here that
recently an apparent discrepancy between thermal conductivity measurements and
the calculations based on the correlated motion of atoms as mentioned previously
were observed in a single crystal with low thermal conductivity (<∼ 1 Wm-1K-1)
and Einstein model of thermal conductivity has been successfully implemented to
fill this gap as a second channel of heat conduction on top of the correlated atomic
motion [23].

To circumvent the arbitrariness of the Einstein frequency, Cahill and Pohl combined
the Debye model and Einstein model to express the thermal conductivity as

kmin =
π

6
1/3

kBn2/3
∑

i

vi

(
T
Θi

)2 ∫ Θi
T

0

x3ex

(ex − 1)2
dx (1.2)

where the sum is taken over the three branches of sound each with speed of sound
vi, Θi = vi(~/kB)(6π2n)1/3 is the Debye cut-off frequency for each branch. This
thermal conductivity model (also known as the minimum thermal conductivity),
therefore, describes each vibration traveling at the speed of sound with the lifetime
equal to the half the period of the oscillation [4]. Despite the simplicity of the model
(only density, sound velocities, and temperature needed as input), it has become
quite successful in predicting the thermal conductivity measurements of various
amorphous solids at room temperature as shown in Fig. 1.5. However, similar
to kEins, the minimum thermal conductivity model fails by orders of magnitude
at low temperatures as shown in Fig. 1.4, emphasizing that more sophisticated
atomic dynamics models are necessary to fully describe the thermal conductivity of
amorphous solids.

1.3 Two level systems
As mentioned before, the tunneling two level systems (TLS) can explain low tem-
perature (≤ ∼1 K) anomalies in the thermal properties of glasses well. The central
assumption of the TLS model is that there are a number of atoms or groups of
atoms which can sit in two nearly degenerate asymmetric equilibrium positions as
shown in Fig. 1.6. In this model, there are two ways that phonons can attenuate via
interacting with TLS: resonance absorption and structural relaxation.

The Hamiltonian that describes the TLS with the ground states in the double-well
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Figure 1.4: Thermal conductivity of crystalline and amorphous SiO2 [4]. The solid
circles are from Eucken [10] and the open circles are from [24, 25]. ΛEins and
Λmin denote Einstein model of thermal conductivity (kEins) and minimum thermal
conductivity (kmin) by Cahill and Pohl [4] as discussed in the text.
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Figure 1.5: Thermal conductivity comparison of the calculations from Eq. (1.2)
and measurements of various amorphous solids at 300 K [5]

potential can be written as

H0 =

(
ε ~ω0e−λ

~ω0e−λ −ε

)
where ε is the sum of the energy difference between two local minima potential
energies and the energy difference between the zero-point motion energies about
these local minima, ~ω0 is an energy of the order of the zero-point energy, and
e−λ denotes the overlap between the wavefunctions with λ =

( 2mV
~2

)1/2
∆x. The

off-diagonal matrix elements, therefore, gives rise to tunneling from one position to
the other. The eigenstates of H0 then have energies

E1,2 = ±
1
2

E with E =
√
ε2 + (~ω0e−λ)2. (1.3)

The coupling between TLS eigenstates and phonons occurs through the deformation
of the double-well potentials caused by an elastic wave. The deformation in potential
in turn introduces a perturbation Hamiltonian H′ as

H′ =
1
2

(
δε 0
0 −δε

)
.
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Figure 1.6: The double-well potential as a function of a generalized coordinate x
[12]

Writing δε in terms of a deformation potential parameter B and the elastic strains
by phonon creation and annhilation operators, the matrix elements for absorption of
a phonon with wavevector k and polarization α can be obtained through

〈k, α,2|H′|1〉 =
(

k
2ρvα

) 1
2 B~ω0e−λ

E
. (1.4)

where ρ is the density of the glass and vα is the sound velocity in the given polar-
ization. Using the Fermi’s golden rule, the phonon lifetime τres via the resonance
absorption by the TLS can be then written as

τ−1
res =

A~ωvα
kB

tanh
(
~ω

2kBT

)
. (1.5)

Here A = πB2g0kB
ρv3

0~
and the energy density of two-level systems has been assumed to

have the constant value g0 and it is this assumption that leads to the linear dependence
in the specific heat as

C(T) =
∫ ∞

0
n0

E2

4kBT2 sech2
(

E
2kBT

)
dE (1.6)
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where n0 is the constant density of states. Evaluating the integral leads to

C(T) =
π2

6
n0k2

BT (1.7)

which recovers the experimentally observed linear dependence in temperature.
These tunneling states scatter the phonons which gives the quadratic dependence
in temperature for the thermal conductivity below 1 K, consistent with experiments
[26].

At higher temperatures, the relaxation of the tunneling states results in additional
phonon attenuation. Briefly, the mean free paths (lrel) of phonons by the relaxation
process can be obtained by solving two coupled Boltzmann transport equations of
the TLS and phonon distribution functions [27] and can be expressed as [28]

l−1
rel =

A
2

(
kB

~ω
+

1
DT3

)−1
(1.8)

with D = π2k2
B

12ρ~3

∑
α

B2

v5
α
. Combining the phonon attenuation from the absorption and

relaxation, we obtain an overall inverse mean free paths from TLS as

l−1
T LS(ω,T) =

A
2

[
2~ω
kB

tanh
(
~ω

2kBT

)
+

(
kB

~ω
+

1
DT3

)−1]
. (1.9)

The calculated thermal conductivity from the TLS mean free paths above [28] and
the measurements [9] below 1 K for amorphous silica are shown in Fig. 1.7. We see
a good agreement between the two and k ∼ T2 is observed for the TLS predictions in
this temperature range. Besides the good agreement between the predictions of heat
capacity and thermal conductivity with measurements, there are other experimental
evidences to support the TLS predictions such as the saturation and non-linear
effects of the resonant absorption when the ultrasonic waves have large amplitudes
[27, 29]. Despite the huge success, it is currently unknown if the TLS model is the
unique explanation of the low-temperature properties of glasses [30].

It is worth mentioning here that not all glasses exhibit the "typical" temperature
dependence of glasses mentioned in §1.1. For instance, an ultra-stable glass of in-
domethacin (IMC) synthesized by a physical vapor deposition at a high temperature
close to the glass transition temperature (∼ 0.85 Tg) lacks the linear dependence in
the specific heat at temperatures below 1 K. Instead, T3 dependence, reminiscent of
crystals are demonstrated in these temperatures as shown in Fig. 1.8. The dashed
lines represent the corresponding linear fits Cp = clinT + ccubT3; hence, the y-axis
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Figure 1.7: Temperature dependent thermal conductivity of amorphous silica from
calculations (blue line) [28] based on Eq. (1.9) and from experiments (black circle)
[9]

intercept in the Fig. 1.8 represents the degree of the linear specific heat contribution.
The lack of the linear specific heat below 1 K in the ultra-stable IMC glass has been
ascribed to the suppression of the TLS. The absence of TLS has also been reported
in amorphous silicon (a-Si) synthesized at a high growth temperature of 673 K using
e-beam evaporation [31]. The internal friction of a-Si which is proportional to the
tunneling strength in the TLS model was measured to be within the experimental
uncertainty of the background noise, indicative of the absence of the TLS. It will
be, therefore, interesting to see if the specific heat of these a-Si at low temperature
also lacks the linear dependence.

With these experimental evidence then, it is clear that the tunneling two level system
is a very successful phenomenological model to describe the low temperature ther-
mal properties in glasses where dominant phonons have macroscopic wavelengths
and periods. However, for higher temperatures and for vibrations with mesoscopic
wavelengths comparable to interatomic distances, TLS alone is not enough to cap-
ture the rich atomic dynamics in amorphous solids. For instance, an additional
strong scattering regime such as τ ∼ ω−4 is needed to explain the plateau region at
a few tens of K in thermal conductivity [28].



13

Figure 1.8: Specific heat measurements for several types of indomethacin (IMC)
glass and crystal [32]. The conventional IMC (solid blue circle) was created by a
melt-quench method with the cooling rate of 10 Ks-1. USG stands for ultra-stable
glass that is made by physical vapor deposition at a high temperature ∼ 0.85 Tg.
DegradedUSG represents a glass that was stored in a poor vacuum for 2months. The
dashed lines represent the corresponding linear fitsCp = clinT+ccubT3. USG glasses
show no y-intercept, indicating that there is no linear specific heat contributions,
similar to crystals.

1.4 Conclusion
Atomic dynamics in amorphous solids has been studied immensely for more than a
century after anomalous thermal properties in glasses were first measured in 1911.
Successful phenomenological models such as minimum thermal conductivity and
tunneling two level states were developed to explain some of these anomalous
features, but more complete theories are needed to fully describe the rich atomic
dynamics in amorphous solids.

Subsequent efforts have utilized normal mode based methods to study thermal
transport in amorphous solids. Assuming atoms vibrating around their equilibrium
positions, these methods decompose atomic vibrations into normal modes and treat
them as the fundamental heat carriers. Using some of these methods, we identify
mechanisms to achieve ultralow thermal conductivity in fully dense amorphous
nanocomposites in the next chapter and some common normal mode based methods
are thoroughly introduced.
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In our recent works, however, a careful analysis shows that there exist numerous
discrepancies between the thermal conductivity predictions from the normal mode
methods and measurements in amorphous solids. Pinpointing the precise origin of
these discrepancies is challenging, but in the next chapters, it is demonstrated that
some of the intrinsic assumptions made in normal modes, such as vibrating around
equilibrium positions and normal modes being fundamental heat carriers, may not
be valid. Instead, it is shown that collective acoustic excitations from the standard
inelastic scattering theory, which do not rely on these assumptions, are consistent
with experiments.
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C h a p t e r 2

SUB-AMORPHOUS THERMAL CONDUCTIVITY IN
AMORPHOUS HETEROGENEOUS NANOCOMPOSITES

This chapter has been adapted from [33]:

Moon, J., Minnich, A. J., Sub-amorphous thermal conductivity in amorphous het-
erogeneous nanocomposites, RSC Advances, 2016

As previously mentioned in Chapter 1, pure amorphous solids are traditionally con-
sidered to set the lower bound of thermal conductivity due to their disordered atomic
structure that impedes vibrational energy transport. However, the lower limits for
thermal conductivity in heterogeneous amorphous solids and the physical mecha-
nisms underlying these limits remain unclear. In this chapter, we use equilibrium
molecular dynamics to show that an amorphous SiGe nanocomposite can possess
thermal conductivity substantially lower than those of the amorphous Si and Ge con-
stituents. To understand the low thermal conductivity, we first review some common
normal mode methods such as normal mode lifetimes, Green-Kubo modal analysis,
and Allen-Feldman theory. Using Allen-Feldman theory, it is demonstrated that the
presence of the Ge inclusion localizes vibrational modes with frequency above the
Ge cutoff in the Si host, drastically reducing their ability to transport heat. This
observation suggests a general route to achieve exceptionally low thermal conduc-
tivity in fully dense solids by restricting the vibrational density of states available
for transport in heterogeneous amorphous nanocomposites.

2.1 Introduction
Low thermal conductivity materials are desired for a wide range of applications
ranging from thermoelectric power generators [34–39] to thermopile detectors [40].
As mentioned in Chapter 1, amorphous materials are considered to set the lower
limit of thermal conductivity due to the disordered atomic structure that impedes
the formation of propagating vibrations [2, 25, 41]. While in crystals heat is carried
by propagating lattice waves, or phonons, in amorphous solids the lack of a periodic
atomic structure results in other modes of thermal transport such as non-propagating
vibrations for energy transport.
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Allen and Feldman introduced categories of normal modes in amorphous solids
known as propagons, diffusons, and locons [42, 43] (discussed more in detail in
Chapter 3). Propagons are propagating and delocalized phonon-like planewaves that
typically possess long wavelengths compared to the interatomic spacing. Diffusons
are modes that scatter over a distance less than the interatomic distance and thus
transport heat as a random-walk. Locons are non-propagating and localized modes
that are unable to transport heat in harmonic solids [43, 44].

Although pure amorphous solids are typically assumed to achieve the lower limit of
thermal conductivity, some works have examined how this limit may be broken. In
semi-crystalline solids, it is well known that composites can possess exceptionally
low thermal conductivity due to thermal boundary resistance [45]. This effect has
been exploited by Chiritescu et al. [46] to achieve ultralow thermal conductivity
in disordered WSe2 nanolaminates below thermal conductivity predicted by the
minimum thermal conductivity model [5], although a recent theory work suggests
that the experiments agree with this model if anisotropy is taken into account [47].
Wingert et al. reported that crystalline silicon nanotubes with shell thicknesses
as thin as 5 nm have a low thermal conductivity of 1.1 W/m-K, lower than that
of the amorphous counterpart via a phonon softening effect [48]. Dechaumphai
et al. experimentally observed an ultralow thermal conductivity of 0.33 ± 0.04
W/m-K at room temperature in amorphous multilayers made of Au and Si [49].
Computationally, Norouzzadeh et al. used MD to study the thermal conductivity of
an a-SiGe alloy with different Ge content and observed thermal conductivity values
below those of the constituent materials [50]. Giri et al. used NEMD to examine the
role of the interface of amorphous SiGe superlattices and amorphous Si/heavy-Si
superlattices, concluding that increasing mass-mismatch in amorphous superlattices
results in higher Kapitza resistances, leading to low thermal conductivity [51].

Although these works have suggested that thermal conductivities of heterogeneous
amorphous solids below those of the pure constituents are achievable, key questions
remain. Some of these works have interpreted their results with a phonon gas model,
which is of questionable validity for non-propagating vibrations, and others have
used the concept of thermal boundary resistance to explain their observations. In
particular, the latter approach implicitly assumes that vibrational modes of the two
solids composing the interface are well defined. However, if the inclusion in the
nanocomposite is sufficiently small, the vibrational modes of the composite may
not coincide with the vibrations of the pure materials. In this case, the nature of the
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vibrations in the composite solids, and hence the lower limits of thermal conductivity
in heterogeneous amorphous solids, remain unclear.

Here, we examine heat transport in amorphous SiGe nanocomposites consisting
of a Ge inclusion in a Si host matrix. We find that these structures can possess
thermal conductivities that are significantly smaller than those of the constituent
materials, with the minimum thermal conductivity reaching as low as 32% of that
of the amorphous Si host. Normal mode analysis demonstrates that the presence of
the Ge cluster drastically enhances localization of vibrational modes with frequency
above the Ge cutoff in the Si host, leading to a remarkable decrease in thermal
conductivity. These results demonstrate a mechanism for achieving remarkably low
thermal conductivity in fully dense amorphous materials that may be useful for
solid-state thermal insulation and highly sensitive thermopile detectors.

2.2 Normal mode methods
In normal mode analysis, the atomic displacements around an equilibrium position
for atom j in unit cell l are expanded in plane wave solutions in harmonic oscillator
approximation as shown below.

u( jl, t) =
∑
k,ν

U( j, k, ν)ei[k ·r( jl)−ω(k,ν)t] (2.1)

where k is the wave vector,ω is the angular frequency, ν is the branch, andU( j, k, ν)
is the amplitude vector. More commonly in phonon transport literature, the above
equation is re-written as

u( jl, t) =
1

(Nm j)
1/2

∑
k,ν

e( j, k, ν)eik ·r( jl)Q(k, ν, t) (2.2)

where N is the number of atoms, e( j, k, ν) is the mode eigenvector, m is the mass
and Q(k, ν, t) is the Fourier transform of (2.2) as shown below

Q(k, ν, t) =
1

N1/2

∑
jl

m1/2
j e−ik ·r( jl)e∗( j, k, ν) · u( jl, t). (2.3)

The complex quantity, Q(k, ν, t), is named the normal mode coordinate. Many
thermodynamic and dynamic properties such as heat capacity and root-mean-square
displacements can then be decomposed in terms of these normal modes with the
caveat that explicit assumption of vibration around equilibrium position and plane
wave solutions has been made. For interested readers for more details about normal
mode decomposition of such properties, Ref. [52] and [2] are recommended.
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In subsequent subsections, three commonly used normal mode methods such as
normal mode lifetimes, Green-Kubo modal analysis, and Allen-Feldman theory
are introduced in detail. In addition to the assumption that atoms vibrate around
their equilibrium positions, these methods treat normal modes as fundamental heat
carriers.

Normal mode lifetimes
The Hamiltonian of a system of harmonic oscillators can be expressed equivalently
in both the real space and the normal mode space as follows

H =
1
2

∑
jl

m j | Ûu( jl, t)|2 +
1
2

∑
j j ′,ll ′

uT ( jl, t) · Φ( j j′, ll′, t) · u( j′l′, t) (2.4)

and

H =
1
2

∑
k,ν

ÛQ(k, ν, t) ÛQ(−k, ν, t) +
1
2

∑
k,ν

ω2(k, ν)Q(k, ν, t)Q(−k, ν, t). (2.5)

where dot over a variable represents time derivative, superscript T represent trans-
pose, and Φ( j j′, ll′, t) is the force constant matrix. The first terms and the second
terms in the above Hamiltonian expressions are kinetic energy and potential energy,
respectively. The instantaneous, total energy of each mode of a classical system is
then

Hk,ν =
1
2
ÛQ(k, ν, t) ÛQ(−k, ν, t) +

1
2
ω2(k, ν)Q(k, ν, t)Q(−k, ν, t). (2.6)

However, the harmonic expression above is not exact at finite temperature as vibra-
tional modes start interacting with one another. One can imagine that for harmonic
oscillators, there is no damping of the vibration, leading to infinite lifetime and ther-
mal conductivity, which is not physical for real materials at finite temperature. To
account for the mode interactions, displacements from molecular dynamics (MD)
at a desired finite temperature which account for all degrees of anharmonicities are
used instead and projected to the normal mode coordinates, the temporal decay of
the autocorrelation of Hk,ν is then related to the relaxation time of that mode by [2,
53]

Hk,ν(t)Hk,ν(0)
Hk,ν(0)Hk,ν(0)

= e
− t
τk ,ν (2.7)

A typical normalized total energy autocorrelation for a mode is shown in Fig. 2.1
[2]. As expected, we see an exponential decay in the normalized energy autocorre-
lation and the lifetime can be extracted as discussed. Normalized potential energy
autocorrelation is also plotted in the same figure. The vibration frequency of the
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Figure 2.1: A typical normalized energy autocorrelation for the relaxation time
calculations as adapted from [2]. Blue and orange solid lines correspond to nor-
malized total energy and potential energy autocorrelations of a mode, respectively.
We see an exponential decay in the total energy autocorrelation as expected. The
vibration frequency of the mode is one half of the oscillation frequency observed in
the potential energy autocorrelations.

mode is half of the oscillation frequency in the potential energy autocorrelation.
The normal mode lifetime calculations can also be done in the frequency space
in which we see a peak with a Lorentzian linewidth (full width at half maximum)
which corresponds to the peak frequency and the inverse of lifetime of the mode,
respectively.

The normal mode lifetime calculation scheme mentioned above is general for both
crystals and amorphous solids. However, it is important to note that for amorphous
solids all the normal mode analysis is done at the Γ(k = 0) point due to the lack
of translational symmetry, which is equivalent to treating the entire computational
domain as one supercell. Hence, group velocities ( dω

dk ) of these normal modes are
not directly found and some assumptions have to be made to calculate the thermal
conductivity utilizing normal mode lifetimes, which will be discussed further in
the next chapter. Now that the essence of the normal mode lifetime calculations is
introduced, we next explore the Green-Kubo modal analysis (GKMA).
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Green-Kubo modal analysis
Green-Kubo modal analysis is a method to decompose the heat flux into the time
derivative of normal mode coordinates in the Green-Kubo formalism to calculate
the thermal conductivity [54]. According to the Green-Kubo formalism, thermal
conductivity tensor is given by

kαβ =
V

kBT2

∫
〈Jα(t + t′)Jβ(t)〉dt′ (2.8)

where the angled bracket notation is the ensemble average, subscripts α and β denote
cartesian directions, V is the volume of the system, kB is the Boltzmann constant, T

is the temperature, and J is the heat flux and is expressed as [55]

J =
1
V

[∑
i

Eivi +
1
2

∑
i,j

(Fi j · vi)r i j

]
(2.9)

where the summation is over atoms. It is worth mentioning that sometimes in
literature, the Green-Kubo thermal conductivity is written in terms of heat current,
S = V J . So far, the Green-Kubo thermal conductivity with the above heat flux
equation is general in that it can be used to calculate thermal conductivity of solids,
liquids, and gases. Assuming atoms vibrating with respect to their equilibrium
positions, velocity in (2.9) is decomposed into time derivative of normal modes as
[54]

vi(t) =
∑

n

vi(n, t) =
1

m1/2
i

∑
n

e(i,n) ÛQ(n, t) (2.10)

where the sum is over all the modes. To reach this expression, we have treated the
entire computational domain as one supercell as mentioned before. Substituting
(2.10) into (2.9), we obtain the individual modal contribution to heat flux as

J(n, t) =
1
V

[∑
i

Ei

(
1

m1/2
i

e(i,n) ÛQ(n, t)
)
+

1
2

∑
i,j

{
Fi j ·

(
1

m1/2
i

e(i,n) ÛQ(n, t)
)}

r i j

]
.

(2.11)
Decomposition of heat flux into individualmode contribution enablesmode resolved
thermal conductivity as

kαβ,nn′ =
V

kBT2

∫
〈Jα(n, t + t′)Jβ(n′, t)〉dt′. (2.12)

One can, therefore, examine how the correlation between pairs of modes contributes
to thermal conductivity. The total thermal conductivity is then

kαβ =
V

kBT2

∑
n,n′

∫
〈Jα(n, t + t′)Jβ(n′, t)〉dt′. (2.13)
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It is important to note that the thermal conductivity calculations based on GKMA
account for all degrees of anharmonicity as the velocities which are decomposed
into normal modes are from classical molecular dynamics.

Allen and Feldman theory
Allen and Feldman proposed a quantum mechanical theory in which heat is carried
by decoupled harmonic oscillators [42, 56]. Extensive derivation of the theory is
well-documented in Ref. [56]. Hence, only the important aspects of the derivations
are covered here.

Heat flux is written with respect to the heat flux operator as

J = tr(ρS) = −k · ∇T (2.14)

where tr is the trace. Assuming a system in steady state with a local space-dependent
temperature T(x) = [kBβ(s)]−1, the local density matrix is given by

ρ =
e−

∫
d3 xβ(x)h(x)

Z
(2.15)

where h(x) is the Hamiltonian density operator and Z is the partition function.
Hamiltonian can, therefore, bewritten in terms of h(x) as, H =

∫
d3xh(x). Under the

harmonic approximation, the Hamiltonian is equivalent to (2.4). The Hamiltonian
density operator, h(x) and the heat flux density operator S(x) obey the condition of
local energy conservation as

∂h(x)
∂t
+ ∇ · S(x) = 0. (2.16)

Now, recalling that the heat flux J vanishes in equilibriumwhen β(x) is constant and
assuming that the temperature fluctuations, δT(x), is small, β(x) can be expanded
as

β(x) = β
(
1 −

δT
T

)
(2.17)

where β and T are corresponding average constants. Substituting the expression
back to the local density matrix,

ρ =
e−β(H+H ′)

Z
(2.18)

H′ = −
1
T

∫
d3xδT(x)h(x) (2.19)



22

using the energy conversion condition to replace h(x) by S = 1
V

∫
d3xS(x) and with

some algebra,

H′ = −
1
T

∫ 0

−∞

dt
∫

d3x∇T(x) · S(t) (2.20)

taking ∇T(x) as a constant,

H′ = −
V∇T

T

∫ 0

−∞

dtS (2.21)

recognizing that the density matrix can be expanded in powers of the Hamiltonian
perturbation,

ρ =
e−β(H+H ′)

Z
=

e−βH

Z

(
1 +

∫ β

0
dλeλH H′e−λH + ...

)
. (2.22)

When carrying out tr(ρS), the first term is zero due to constant β and the perturbation
from the equation above leads to −k · ∇T . The thermal conductivity can, therefore,
be written as

kαβ =
V
T

∫ β

0
dλ

∫ ∞

0
〈eλHSα(t)e−λHSβ(0)〉 (2.23)

Time shifting the time integral and taking the Fourier transform of the above equa-
tion, we obtain

kαβ =
V
T

∫ β

0
dλ

∫ ∞

0
ei(ω+iη)t 〈Sα(−i~λ)Sβ(t)〉 (2.24)

where S(−i~λ) ≡ eλHSe−λH . It’s worth mentioning that no assumption of normal
modes have beenmade so far and the above equation is the Kubo formula for thermal
conductivity. The classical version of theGreen-Kubo thermal conductivity has been
derived in Appendix C for completeness. Decomposing the heat current operator
in terms of normal modes in the harmonic approximation, expressing the time
dependence of the heat current operator in Heisenberg picture, and taking the real
part of the thermal conductivity, we obtain

k =
1
V

∑
i

Ci(T)Di (2.25)

where Ci(T) is the specific heat and Di is the mode diffusivity given by

Di =
πV2

3~ω2
i

∑
i, j

|Si j |
2δ(ωi − ω j). (2.26)
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The matrix elements of the heat current operator is given by

Si j =
~

2V
vKi j(ωKi + ωK j)

vKi j =
i

2√ωKiωK j

∑
α,β,m,κ,κ′

eα(κ; K, i)Dκ′κ
βα (0,m)(Rm + Rκκ′)eiK ·Rmeβ(κ′; K, j)

(2.27)

where K is the wavevector, α, β are the cartesian directions, m labels a unit cell, κ, κ′

denote the atoms in the cell m, e with subscripts is the eigenvector, Dκ′κ
βα (0,m) is the

Hermitian force constants. The above expression for vKi j is written for a periodic
system, but can be simplified to amorphous solids by considering the entire domain
as one unit cell.

The above thermal conductivity expression in Eq. 2.25 is termed Allen-Feldman
thermal conductivity also denoted as kAF . To summarize the derivations, temper-
ature gradient in a disordered solid couples different harmonic eigenstates through
the heat current operator (off-diagonal elements) which lead to the finite thermal
conductivity while the diagonal elements contribute zero to the overall thermal con-
ductivity confirming that the thermal conductivity using the above expressions is
from non-propagating modes.

2.3 Results
Now that the fundamentals of commonly used normal mode analysis methods are
discussed, we next look at how these standard normal mode methods can be used
to study the origin of ultralow thermal conductivity in amorphous nanocomposite
materials.

We calculated the thermal conductivity of amorphous Si and amorphous SiGe
nanocomposites using equilibrium MD with the Stillinger-Weber (SW) interatomic
potential [57]. The two types of structures studied are shown in Figure 2.2. The
atomic configuration consisting of 4096 atoms was provided by N. Mousseau and
was generated from the modified Wooten-Winer-Weaire (WWW) algorithm [58].

For na-SiGe structures, a cubic domain in the middle of the structure with side
length a was replaced with heavier germanium atoms with appropriate coefficient
changes in SW potential. SW potential coefficients for silicon and germanium
interactions are described in Refs. [57, 59, 60] The side length, a, was chosen
to be 10, 20, 25, 30, 35, 40, and 46.4 Å. These lengths represent 1, 10, 20, 35,
55, 82, and 100% Ge fraction, respectively. Periodic boundary conditions were
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Figure 2.2: 4096-atom configurations of (A) amorphous silicon and (B) nanostruc-
tured amorphous silicon germanium. Blue atoms represent silicon and orange atoms
represent germanium. The germanium cubic side length, a, varies from 10 Å to the
side length of the entire domain, L = 46.4 Å.

imposed for all the structures. The MD simulations were performed with Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [61] with a time
step of 0.5 fs. The simulation procedure began with an anneal at 1000 K for 20 ns
using the NPT ensemble to reduce metastabilities [44, 62]. We observed a decrease
and plateau of the potential energy during the annealing process for each structure
indicating a reduction of metastability.

Subsequently, the domainwas quenched at a rate of 10K/ps to 300K and equilibrated
in an NPT ensemble at 300 K for 20 ns to relax the structure to equilibrium pressure.
Because volume and pressure fluctuate inMD simulations, we computed the average
atom positions over the last 100 ps to ensure the domain was not under strain.
The resulting mean pressure was on the order of 0.1 bar. This domain was then
thermostatted in an NVT ensemble for 10 ns using a Nose-Hoover thermostat. After
an additional NVE equilibration for 50 ps, the heat fluxes were computed for 1.6 ns
in NVE ensemble.

We computed the thermal conductivity of the various structures using the Green-
Kubo (GK) formalism, which relates the thermal conductivity to the heat current
autocorrelation function as in Eq. (2.8). The thermal conductivity calculations
reported in this study are based on the average of the integrals of the heat current
autocorrelation functions (HCACF) from 10 simulations and the autocorrelations
were calculated by the Wiener-Khinchin theorem derived in Appendix B.
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Figure 2.3: (A) Normalized heat current autocorrelation function versus time. (B)
Thermal conductivity integral calculated by Eq 2.8 versus time. The thermal con-
ductivity of a-Si is determined by taking the average between 5 and 20 ps. (C)
Thermal conductivity versus temperature (blue circles), comparison with the works
by Larkin and McGaughey (black squares) [44], and Lv and Henry (red crosses)
[54] utilizing 4096 atoms, SW potential, and GK formalism at temperatures from
300 K to 1000 K. Negligible temperature dependence is observed.

Figure 2.3(A) shows the HCACF normalized by 〈J(0) · J(0)〉 for a-Si. The autocor-
relation function converges quickly to 0 in less than 0.5 ps for a-Si. The HCACF
convergence times of na-SiGe are on the order of 10 ps. The resulting thermal con-
ductivity of a-Si obtained from the integral of the autocorrelation function versus
integration time is depicted in Figure 2.3(B). The thermal conductivity of a-Si is
determined by taking the average between 5 and 20 ps. The thermal conductivity
of a-Si with respect to temperature for 4096 atoms with SW potential is plotted in
Figure 2.3(C) and compared with works by Larkin and McGaughey [44] and Lv
and Henry [54]. At 300 K, thermal conductivity from this work is 1.55 ± 0.20
W/m-K which is in agreement with these works. Consistent with Ref [54], weak
temperature dependence of thermal conductivity is observed.

We now examine the thermal conductivity of na-SiGe versus Ge content, shown
in Figure 2.4. Pure amorphous Si and Ge have thermal conductivities of 1.55
± 0.20 W/m-K and 0.99 ± 0.21 W/m-K, respectively. Interestingly, we observe
thermal conductivities substantially smaller than either of these values for na-SiGe
composites with Ge content ranging from 35% to 82%, with the minimum thermal
conductivity of 0.50 ± 0.17 W/m-K achieved with 55% of Ge content. This value
is less than a third of the original a-Si thermal conductivity and half that of a-
Ge. Interestingly, it is even lower than the thermal conductivity of an amorphous
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Figure 2.4: Thermal conductivity of na-SiGe versus Ge content. The minimum
thermal conductivity of 0.50 ± 0.17 W/m-K is observed with 55% Ge content.

SiGe alloy with the same Ge content, which has a thermal conductivity of 0.78 ±
0.16 W/m-K. The percentage decrease of thermal conductivity in na-SiGe is nearly
twice that in a-Si/a-Ge superlattices by an NEMD study by Giri et al. utilizing SW
potential despite similar geometry [51].

To understand the mechanism behind the reduction in thermal conductivity, we first
examine the vibrational density of states (vDOS) of the a-Si and a-Ge constituents
in na-Si0.45Ge0.55 shown in Figure 2.5(A). The vDOS is computed from

g(ω) =

3Natom∑
m=1

δ(ω − ωm) =
1

3kBT

∫ ∞

0

Natom∑
n=1

mn〈v(t) · v(0)〉eiωt dt (2.28)

where Natom is the number of atoms, T is the temperature, mn is the mass of atom
n, and Vn(t) is the velocity of atom n at time t [63]. The vDOS of a-Si and a-Ge is
similar to that of c-Si and c-Ge with distinct peaks at certain frequencies [51]. Due
to absence of strong anharmonicity, only weak vibrational interaction of Si and Ge
atoms is expected for frequencies greater than the frequency cutoff of a-Ge of 10
THz. In other words, we expect the vibrational modes with frequencies exceeding
10 THz to be confined to a-Si.



27

Figure 2.5: (A) The vibrational density of states of Si (blue dashed line) and Ge
(red dashed line) constituents in na-Si0.45Ge0.55 along with the total density of states
(black line). Inverse participation ratio (IPR) for (B) a-Si, (C) na-Si0.90Ge0.10, and
(D) na-Si0.45Ge0.55. (E) Zoomed-in view of IPR of na-Si0.45Ge0.55 for frequencies
from 5 to 15 THzwheremodes above the bold line are defined as locons. Vibrational
modes start to be localized at 9 THz and are completely localized above 10 THz.

We confirm this hypothesis by first calculating the inverse participation ratio (IPR),
which is a measure of how many atoms participate in the motion of a particular
eigenmode. The IPR is given by

p−1
n =

∑
i

(
∑
α

e∗iα,neiα,n)
2 (2.29)

where eiα,n is the eigenvector component for atom i in α direction for the mode n.
[64] The eigenvectors for each mode and atom are calculated by harmonic lattice
dynamics in GULP [65] with relaxed structures from MD at 300 K. The IPR is
defined so that it equals 1/Natom if all atoms are participating, or 1 if the vibration
is completely localized to one atom. Defining a specific IPR value that uniquely
distinguishes locons is not possible, but vibrational modes with participation ratio
less than 0.2 (corresponding to IPR greater than 0.0012 here) have been defined
previously as localized modes [66, 67]. We therefore define locons according to this
convention.
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Figures 2.5(B)-(E) show the IPR for a-Si, na-Si0.90Ge0.10, na-Si0.45Ge0.55, and a
zoomed-in view of the IPR of na-Si0.45Ge0.55 from 5 to 15 THz. The IPR for a-Si,
Figure 2.5(B), shows that locons are observed primarily over around 17 THz, con-
sistent with prior works [43, 54]. As Ge atoms are introduced in the nanocomposite
in na-Si0.90Ge0.10, we observe locons in the medium-frequency region around 10
THz. For na-Si0.45Ge0.55, all the vibrational modes above around 10 THz are lo-
calized. The corresponding locon mode fractions are 7%, 9%, and 31% for a-Si,
na-Si0.90Ge0.10, and na-Si0.45Ge0.55, respectively. In other words, na-Si0.45Ge0.55
has the lowest thermal conductivity and also more than 4 times the number of lo-
cons than a-Si, suggesting localized modes in Si are associated with the low thermal
conductivity of the nanocomposite. We also note that vibrational modes with higher
IPR than 0.0012 are present at low frequencies. We have verified that these modes
are due to the finite size of the computational domain and disappear as the size of
the system increases.

We next confirm that these localized modes reside in silicon by calculating the local
vibrational density of states, defined as [68]

Di(ω) =
∑

n

∑
α

e∗iα,neiα,nδ(ω − ωn) (2.30)

where the sum is over Cartesian directions α and vibrational modes n for atom i.
Furthermore, the spatial distribution of energy can be described as[67]

Ei =
∑
ω

(nBE +
1
2
)~ωDi(ω) (2.31)

where nBE is the occupation number given by the Bose-Einstein distribution. We
identify where the vibrational modes are localized by performing the sum only for
vibrational modes that correspond to locons as identified by the IPR.

The spatial energy distribution is shown inFigures 2.6(A)-(C) for a-Si, na-Si0.90Ge0.10,
and na-Si0.45Ge0.55, respectively. The distribution has been normalized by the maxi-
mum energy of an atom in the domain. We plot cross section x-y plane in the middle
of z axis for clear visualization. It is apparent that for a-Si the spatial distribution
of locons is randomly distributed. As Ge content is increased, however, we observe
that locons are located in Si atoms. This result confirms that vibrational modes over
around 10 THz are increasingly localized as Ge content grows and that these locons
are indeed localized in a-Si atoms.

The drastic increase in locon population in na-SiGe suggests that the origin of the
low thermal conductivity in na-SiGe is due to conversion of delocalized modes in
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Figure 2.6: Normalized spatial energy distribution of the cross section XY plane in
the middle of z axis for (A) a-Si, (B) na-Si0.90Ge0.10, and (C) na-Si0.45Ge0.55. Indi-
vidual circles in the figure represent atoms and dashed lines represent the boundaries
between Si and Ge atoms. Color indicates the degree of localization at an atom with
red indicating high localization. (D) Spectral thermal diffusivities of a-Si and na-
Si0.45Ge0.55 versus mode frequency. Thermal diffusivities decrease significantly for
vibrational modes with frequencies higher than 10 THz in na-Si0.45Ge0.55 compared
to those in a-Si.

a-Si to locons. To verify this hypothesis, we calculate the thermal diffusivities using
the harmonic heat flux operator from Allen-Feldman theory discussed earlier. The
thermal conductivity of a solid is given by

k =
1
V

∑
i

C(ωi)Dth(ωi) (2.32)

where V is the volume of structure, C(ωi) is the specific heat, Dth(ωi) is the thermal
diffusivity of frequency ωi, and the summation is over modes. For diffusons under
harmonic Allen-Feldman (AF) theory, the thermal diffusivity is calculated by

DAF(ωi) =
πV2

~2ω2
i

∑
j,i

|Si j |
2δ(ωi − ω j) (2.33)

where Si j is the heat current operator in the harmonic approximation [56]. Feldman
et al. demonstrated that diffusivity calculations based on Peierls-Boltzmann theory
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(phonon gas model) for low frequency propagon modes coincide reasonably well
with DAF in the low frequency range [68]. Therefore, we calculate DAF for all
the vibrational modes for a-Si and na-Si0.45Ge0.55 as shown in Figure 2.6(D). We
observe that, for vibrational modes defined as locons by IPR (& 17 THz for a-Si
and & 10 THz for na-Si0.45Ge0.55), the thermal diffusivities decrease significantly.
For vibrational modes with frequencies between 10 THz to 17 THz, we observe an
order of magnitude decrease in diffusivity from a-Si to na-Si0.45Ge0.55, contributing
to the decrease in thermal conductivity. For low frequency propagating modes . 2
THz, no apparent changes in diffusivity occur among different structures, and we
are unable to conclude how propagons with frequencies less than 1 THz are affected
in the nanocomposite due to limitations in the size of the domain.

The results suggest a simple explanation for the low thermal conductivity of the
nanocomposite. In a-Si, nearly the full vibrational spectrum contributes to heat
conduction as indicated by the calculated thermal diffusivities and associated small
locon population. In the nanocomposite, diffusons with frequencies above the soft
Ge cutoff frequency become localized, impeding their ability to transport heat. In
effect, the soft inclusion restricts the vibrational spectrum available to conduct heat
because many Si vibrational modes are not supported in the inclusion.

Another interesting consideration is why the thermal conductivity of the composite
is less than the intrinsic thermal conductivity of the amorphous Ge. The explanation
can again be identified from the locon population and the density of vibrational states.
The locon population of a-Ge is found to be 8% compared to 31% of na-Si0.45Ge0.55,
which means there are more vibrational modes that are able to transport heat than
in na-Si0.45Ge0.55. Although the a-Ge has a lower cutoff frequency than a-Si, its
density of states is the same as that of a-Si because the atomic number densities
are identical. However, in the nanocomposite, only a fraction of the modes in Si
with frequencies below that of the Ge cutoff are able to conduct heat; therefore, the
composite contains fewer states with non-negligible thermal diffusivities than a-Ge.
As a result, the thermal conductivity of the composite may be lower than those of
both the stiff host and softer inclusion.

Many prior works have interpreted thermal conductivity reductions in amorphous or
disordered heterogeneous solids using the concept of thermal boundary resistance
between the adjacent layers [37, 49, 51]. However, this interpretation relies on
the vibrational mode properties of individual constituents separately. Our analysis
shows that the vibration mode characters change drastically from a-Si to na-SiGe,
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suggesting that thermal boundary resistance is not a well-defined concept in the
amorphous nanocomposites studied here as the vibrational modes of the constituent
materials cannot be separated. Instead, it is the change in character of the overall
vibrational modes of the composite that leads to the low thermal conductivity.

2.4 Conclusion
In this chapter, we studied thermal transport in ultralow thermal conductivity in
amorphous nanocomposites and found that mismatching the density of states of the
constituent atoms is a promising way to achieve exceptionally low thermal conduc-
tivity. Popular normal mode methods such as normal mode lifetimes, Green-Kubo
modal analysis, and Allen-Feldman theory to study thermal transport in amorphous
solids have been reviewed. These methods explicitly assume that atoms vibrate
around their equilibrium positions and that normal modes are the fundamental heat
carriers in amorphous solids. However, as we will discuss in Chapter 3, a careful
analysis of the predictions from the normal mode methods shows that there exist
clear discrepancies with the experiments in some amorphous materials. While the
conclusion we obtained from studying amorphous nanocomposites above is not
likely to change, the normal mode analysis of vibrations in these materials may need
to be revisited.
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C h a p t e r 3

NORMAL MODES AND THE VIBRATIONAL EXCITATIONS IN
GLASSES

This chapter has been adapted from [69]:

Moon, J., Minnich, A. J., In preparation.

Normal mode methods discussed in the previous chapter have been used to study
thermal transport in a variety of amorphous solids from polymers [70] and hydrates
[71] to amorphous silicon [42–44, 54, 56, 62, 72–77] and others [33, 44, 78–
81]. As mentioned previously, normal mode methods rely on the assumptions that
atoms vibrate around their equilibrium positions and that normal modes are the
fundamental heat carriers. In this chapter, a detailed literature review of normal
mode studies in widely studied amorphous a-Si is carried out. Subsequent careful
analysis of the results from these studies demonstrates that the assumptions that
normalmodes are heat carrying excitations leads to direct conflictswith experiments.

3.1 General consensus of thermal transport of a-Si by normal mode methods
Historically, thermal transport in amorphous silicon has been studied extensively as a
model amorphous solid due to its relatively simpler monatomic composition and for
their wide industrial applications such as solar cells [82, 83] and gravitational wave
detectors [84]. It further gained a lot of interests due to their anomalously strong
thickness dependence in thermal conductivity measurements that are not typically
observed in most amorphous solids [85–89]. Allen and Feldman showed that their
thermal conductivity model could not capture the thermal conductivity of a-Si and
ascribed this discrepancy to the contribution from the long mean free path, low
frequency modes [42]. As mentioned briefly in the last chapter, Allen and Feldman
further proposed to categorize the normal modes into three types of "particles":
propagons, diffusons, and locons as shown in Fig. 3.1 [43]. Propagons (≤∼ 2 THz)
are propagating modes, similar to phonons in crystals, that can travel over distances
larger than ∼ interatomic distance. Diffusons (>∼ 2 THz and ≤∼ 17 THz) are
modes that are neither propagating, nor localized. Hence, the concepts of mean free
paths and wavevector lose meaning. Locons (> 17 THz) are localized modes that
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Figure 3.1: Vibrational density of states of amorphous silicon (Stillinger-Weber
potential [57], 4096 atoms). Each shaded area represents propagon, diffuson, and
locon regions from lighter to darker grey according to Allen and Feldman proposed
taxotomy [43].

are thought to contribute negligibly to thermal conductivity. For interested readers,
methods to find these crossover frequencies are briefly summarized in Appendix
D. This taxonomy of vibrations used in amorphous silicon has also been applied to
many different amorphous solids [44, 76, 80].

Each normal mode work has some variations in their conclusions, but the general
consensus is that propagons contribute from 20 to 50 % of thermal conductivity
despite their small population consisting of only ∼ 3 % of the density of states
[43, 44, 54, 62, 76], and that they are scattered by anharmonicity [44, 62]. Here,
anharmonicity refers to typical phonon-phonon interactions such as normal and
Umklapp scattering in absence of disorder scattering [44, 62].

Despite decades of these efforts, however, numerous discrepancies in the general
consensus are found when comparing the normal mode results from one work to
the other and when directly comparing with experiments as discussed in the next
section.
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3.2 Discrepancies found in the predictions from normal mode methods
We first examine the general consensus that propagons exist up to 2 to 3 THz. If this
assertion is true, we should not observe any size effects in the thermal transport by
diffusons that supposedly exist from ∼ 2 THz to ∼ 17 THz. GKMA was utilized to
study the size effect of a-Si by comparing the spectral thermal conductivity of bulk
a-Si [54] and a 14 nm thick a-Si film [77] as shown in Fig. 3.2. To clarify, bulk
a-Si here denotes the same 4096-atom domain with periodic boundary conditions
in all cartesian directions as in Ref. [54] and the 14 nm film has dimensions of 14
nm by 2 nm by 2 nm. In the long direction (cross-plane), the structure is exposed to
vacuum, while in the in-plane directions, periodic boundary conditions are imposed.
A stark difference in the spectral thermal conductivity of both structures is observed.
A suppression of the propagon (< 2 THz) thermal conductivity is observed in the
cross-plane direction as expected. What is unexpected here is the clear suppression
of diffuson thermal conductivity. By the definition of diffusons by Allen and
Feldman [43], they are normal modes with mean free paths below distances on the
order of interatomic distances (a few Å). Hence, if the normal modes from 2 THz to
17 THz are indeed diffusons, the diffuson spectral thermal conductivity should not
be affected in the cross-plane direction of the 14 nm thick a-Si structure. A clear
discrepancy is, therefore, observed here.

We next discuss the prediction that the lifetimes of few THz vibrations are governed
by anharmonicity [44, 62]. If that is the case, explaining the low thermal conductivity
of a-Si is challenging because the same vibrations contribute 75Wm-1K-1 to thermal
conductivity in c-Si. Accounting for the low thermal conductivity of a-Si only by
changes in anharmonicity requires either unphysically large increases in anharmonic
force constants or in the scattering phase space. These changes would in turn affect
other properties like the heat capacity of a-Si that have not been observed [90]. Along
similar lines, if lifetimes of few THz vibrations are governed by anharmonicity, the
reported thermal conductivities of films of the same thickness should be reasonably
uniform, yet the data vary widely [85, 86, 90].

To elucidate the discrepancy further, some of the normal mode lifetimes evaluated
at Γ(k = 0) in amorphous silicon (a-Si) from several research groups spanning
a couple decades [44, 62, 73–75, 91] are illustrated in Fig. 3.3. In this figure,
lifetimes from molecular dynamics [44] and from perturbation theory [74, 75] that
use Stillinger-Weber potential [57] are adopted. ω−2 scaling is plotted as a guide to
the eye, which signifies the anharmonic scattering [44, 92]. We see that at 300 K, the
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Figure 3.2: Spectral thermal conductivity of bulk a-Si (solid black line) and 14 nm
a-Si thin film (solid red line) at 300 K using GKMA [77]. A clear suppression in
the thermal conductivity from both propagons and diffusons is seen.

lifetimes derived from both methods coincide well with the exception of a few points
at low frequencies due to a smaller structure size of PT method. At 10 K, one to two
orders of magnitude increase in the lifetimes for frequencies below around 5 THz is
clearly observed, which is consistent with their conclusion that propagating waves
are scattered by anharmonicity. This prediction, therefore, indicates that thermal
diffusivity and conductivity should necessarily have a significant and continuous
increase from 300 K to 10 K. Taking into account the temperature dependent
phonon occupation and assuming that the lifetimes increase on average by a factor
of 100 in these frequencies, one can estimate that the propagon thermal conductivity
increases by a factor of 40 from 300 K to 10 K. However, large increase in thermal
conductivity going from room temperature to low temperatures on the order of 10
K is not observed in several experiments [85, 86, 89]. Rather, the opposite trend
closely following specific heat temperature dependence is apparent. Our recent
thermal diffusivity measurements using transient grating spectroscopy further show
that thermal diffusivity is on the same order going from room temperature to 40 K
[93].

One may think that the discrepancy in the normal mode lifetime works mentioned
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Figure 3.3: Normal mode lifetimes calculated from molecular dynamics at 300 K
(black solid square) [44] and perturbation theory at 10 K (blue solid circle) and
300 K (red solid circle) [75]. For all cases, Stillinger-Weber potential [57] was
used and WWW continuous random network algorithms were used to construct
the structure. At 300 K, molecular dynamics and perturbation theory calculations
produce consistent lifetimes and at 10 K, one to two orders of magnitude increase in
the lifetimes are observed for modes with frequency less than 5 THz. ω−2 is plotted
as a guide to the eye, which signifies the anharmonic scattering [44, 92].

above may be the result of using unphysically anharmonic interatomic potentials
rather than the normal mode lifetime methodology itself. However, using the
same interatomic potentials, we find that thermal conductivity from Green-Kubo
formalism follows a typical glass temperature dependent thermal conductivity, which
signifies that the high anharmonicity found in the normal mode lifetime does not
originate from the interatomic potentials themselves.

We next discuss the predictions that the diffusons dominate thermal conduction in
amorphous silicon. To elucidate this prediction, recent normal mode works [54, 77]
utilizing Green-Kubo modal analysis that calculates spectral thermal conductivity
is reviewed here. In Ref. [54], 4096-atom structure and Tersoff potential [94] were
used in the classical molecular dynamics. Due to the decomposition of the thermal
conductivity into individual mode contributions, modal quantum correction to the
specific heat is possible and both the classical and the quantum corrected results at
300 K are shown in Fig. 3.4 (A).We see an apparent effect of the quantum correction
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in the spectral thermal conductivity at high frequencies above 8 THz. Due to the
small size of the computational domain, no contribution from long wavelength,
long period vibrations (< 1.2 THz) is observed. Setting 2 THz as the propagon
to diffuson crossover using the eigenvector periodicity method, about 20 % of the
thermal conductivity is found to be from propagons [76].

Temperature dependent thermal conductivity from the quantum corrected GKMA
predictions and experiments are displayed in Fig. 3.4 (B). In the original paper [54],
only the 3ωmeasurements [85] of the 0.52 µm thick, sputtered samplewas compared
with the predictions. Despite the lack of vibrations < 1.2 THz in the calculation, an
excellent agreement is clearly seen. On the other hand, when comparingwith another
3ω measurements [86] of 80 µm thick sample made from hot-wire chemical vapor
deposition (HWCVD), we see a large discrepancy, which signifies the dominant
contribution to thermal conductivity by long mean free path propagons.
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Figure 3.4: (A) Spectral thermal conductivity of a-Si at 300 K using GKMA with
(solid red line) and without (solid blue line) the quantum correction to the specific
heat [54]. Tersoff potential [94] and 4096 atoms are used in the calculations. A
clear effect of the quantum correction is shown for vibrationswith frequencies higher
than 8 THz. (B) Temperature dependent thermal conductivity comparisons between
quantum corrected GKMA (solid red line) [54] and thermal conductivity measure-
ments of 0.52 µm thick a-Si film (solid black circle) synthesized by sputtering [85]
and 80 µm thick a-Si film (solid blue square) synthesized by hot-wire chemical
vapor deposition (HWCVD) [86] using the 3ω technique. Both films are reported
to have a very small amount of hydrogen atoms (1%) While an excellent agreement
is observed between the simulation and the 0.52 µm sample, a large discrepancy is
shown for the 80 µm measurements, which signifies the role of propagons.
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3.3 Testing the normalmode assumption that atomsmove around equilibrium
positions in glasses

Here, we examine the fundamental assumption of normal mode analysis that atoms
vibrate around their equilibrium positions.

Two types of amorphous silicon simulation domains were prepared. The first
structure (4096 atoms) was created using the Stillinger Weber potential [57] and the
timestep of 0.5 fs in classical molecular dynamics (LAMMPS [61]). The crystalline
structure was first melted at 3500 K for 500 ps in an NVT ensemble. Next, the
liquid silicon was quenched to 1000 K with the quench rate of 100 K/ps. The
structures were annealed at 1000 K for 25 ns to reduce metastabilities. Finally,
the domain was quenched at a rate of 100 K/ps to desired temperatures (300 K,
500 K, 700 K, and 900 K) and equilibrated at these temperatures for 10 ns in an
NPT ensemble using a Nose-Hoover thermostat. The atomic locations were then
collected for the next 150 ps. Another structure (216 atoms) was also created by
ab-initiomolecular dynamics (AIMD). AIMD simulations were performed with the
projector augmented wave approach [95] and the Perdew-Burke-Ernzerhof (PBE)
[96] generalized-gradient approximation to the density functional theory (DFT) as
implemented in the Vienna ab-initio simulation package (VASP) [97]. The time
step was the same as classical MD. Only Γ was adopted for the wavevector grid and
the energy cutoff of 245 eV was used. Crystalline silicon (c-Si) was first melted
at 3500 K for 30 ps followed by quenching to desired temperatures at 100 K/ps.
The structure relaxed for 10 ps. Then, the atomic locations were recorded for the
next 25 ps at the desired temperatures. The radial distribution function of these two
structures compared to neutron diffraction measurements on a-Si [98] is shown in
Fig. 3.5. Generally, good agreement between the computational structures and the
experiment is observed, but a better match is demonstrated for the MD structure,
especially at the second peak.
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Figure 3.5: Radial distribution function of two a-Si structures made from MD and
ab-initioMD is compared to neutron diffraction of a-Si [98].

The maximum distances away from the initial positions for each atom during the
500 ps data collection for both c-Si and a-Si in classical MD are plotted in Fig. 3.6.
It is clear that at all temperatures, atoms in a-Si explore significantly more volume
compared to those in c-Si during the simulation. While having more volume
to move around does not necessarily mean that atoms are diffusing, some atoms
move as much as 1.4 Å, 2.1 Å, and 3.9 Å which is comparable to the interatomic
distance (∼ 2.4 Å) of a-Si at 300 K, 500 K, and 900 K, respectively. For simplicity,
the maximum atomic distances from ab-initio MD are not plotted. It is worth
mentioning, however, that they had closely overlapping results with classical MD.
To gain further insight into atomic displacements, temporal movement of an atom
at 300 K having maximum distance of 0.7 to 0.8 Å away from the initial position in
Fig. 3.6 A is shown in Fig. 3.7. Also plotted is the results from ab-initio MD. We
can clearly see that in both cases, atoms initially vibrate around their equilibrium
positions. Some time later, however, these atoms hop to new equilibrium positions
and vibrate around these positions. When examining the temporal movements of
atoms in a-Si at higher temperatures, more atoms were found to hop and diffuse to
new equilibrium positions due to their higher kinetic energy as expected. For c-Si,
atoms had greater distance amplitude at higher temperatures, but they still vibrated
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around their equilibrium positions during the entire simulations.

Figure 3.6: Histogram of maximum distance from initial position of each atom for
both c-Si and a-Si from classical MD at (A) 300 K, (B) 500 K, and (C) 900 K. Red
arrows denote the maximum value to which the distribution is extended to. We see
that atoms in a-Si have consistently larger displacements than those in c-Si.
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Figure 3.7: Temporal movement of an atom at 300 K for (A) classical MD and (B)
ab-initio MD. These atoms have maximum distance of 0.7 to 0.8 Å shown in Fig.
3.6 (A). Clear atomic hopping is observed in both cases.



43

Similar results were also experimentally observed recently in neutron reflectometry
in 29Si/natSi isotope multilayers [99, 100]. Isotope multilayers are stacks of 10 layers
of [29Si (5 nm) /natSi (16 nm)] deposited by ion-beam sputtering. In the neutron
reflectometry, Bragg peaks are formed by the reflection of the neutrons at the isotope
interfaces. Changes in the Bragg peak intensities at various temperatures compared
to that of the as-deposited sample intensity leads to the self-diffusion measurements.
This apparatus is sensitive to low diffusivities down to 10−25 m2/s and very small
diffusion lengths of 1 nm and below. Several temperature dependent diffusivity
measurements under argon at ambient pressure during various time periods were
done. The diffusivity measurements after 60 seconds of annealing at 673 K, 723 K,
and 773 K are depicted in Fig. 3.8 [100]. Diffusion lengths, d = (2Dt)1/2, are also
represented on top of each data point. As the diffusivity is an ensemble averaged
measurement, the distribution of the diffusion lengths for each atom is unknown,
but it is apparent that on average atomic diffusion is quite significant in a-Si at these
temperatures.

Quantitative comparison between experiments [100] and our computations is dif-
ficult due to the large differences in simulation times (on the order of ps to ns)
compared to experiments (minutes to hours). Nonetheless, it is evident from both
experiments and calculations that the fundamental assumption in normal mode anal-
ysis that atoms vibrate around their equilibrium positions may be unsatisfied. As
normal mode decomposition methods are routinely used for amorphous solids at
high temperatures up to 1200 K [79, 91], caution is needed to interpret the results
from these methods.

3.4 Conclusion
Amorphous silicon has been a model glass to study thermal transport in glasses
due to its relatively simpler monatomic composition and industrial applications. In
this chapter, decades of research efforts utilizing normal mode methods in a-Si have
been reviewed and the general consensus from these works has been discussed. A
careful analysis of various works, however, clearly shows that there exist numer-
ous discrepancies in the consensus, from results invalidating assumptions made in
these methods to explicit inconsistencies when comparing to the measurements.
Pinpointing the exact origin of these discrepancies is challenging, but the common
aspects that these methods share are the assumptions that i) atoms vibrate around
their equilibrium positions and that ii) normal modes are the fundamental heat car-
riers in amorphous solids. We show through calculations that some atoms are prone
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Figure 3.8: Atomic diffusivity in a-Si after 60 seconds of annealing at 673 K, 723
K, and 773 K [100]. Numbers above each data point represent diffusion lengths at
that temperature.

to diffusion even at room temperature, contrasting the first assumption of normal
modes mentioned above. It may be the case that at sufficiently low temperatures or
for some special atomic configurations, atoms do not have enough kinetic energy
to overcome their local potential well and they do vibrate around their equilibrium
positions. However, are normal modes good representations of atomic dynamics
in the amorphous solid in general? It is important to note that the degree of error
that the atomic diffusion brings to the normal mode analysis is unexplored, but an
alternative scheme of studying atomic dynamics that does not rely on normal modes
or assumptions of equilibrium positions is highly needed. Historically, atomic dy-
namics in amorphous solids was investigated using the ideas and concepts that were
applied to crystals and recently, a unified theory of thermal transport of crystals and
glasses was published [101]. However, perhaps amorphous solids should instead be
treated as highly viscous liquid when studying their atomic dynamics and thermal
transport.

In the next chapter, we use inelastic scattering theory to study the vibrational exci-
tations of glasses which does not assume that the excitations are normal modes.



45

C h a p t e r 4

INELASTIC X-RAY SCATTERING TO PROBE COLLECTIVE
EXCITATIONS IN AMORPHOUS SOLIDS

In this chapter, inelastic scattering through light-matter interactions to probe directly
collective excitations without the assumptions of normal modes is reviewed thor-
oughly. Due to the lack of kinematic constraints and with the development of high
brilliance X-ray sources and high quality optics, inelastic X-ray scattering has been
extensively used to probe several aspects of materials dynamics as shown in Fig.
4.1. Methods range from quasi-elastic scattering which probes diffusive motion to
compton scattering that probes electron momentum densities. In this chapter, we
explicitly focus on non-resonant inelastic X-ray scattering (IXS) which is relevant
to atomic dynamics. Many different forms of condensed matter have been studied
from crystals [102, 103] and glasses [104–109] to liquids [109–111] via IXS, but
the focus of this chapter lies in glasses.

The rest of this chapter is structured as follows. First, the theory of inelastic

Figure 4.1: Schematic of excitations that can be probed by inelastic X-ray scattering
[112].
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scattering is derived and the concept of dynamic structure factor is discussed. Then,
the results from IXS on atomic dynamics in some extensively investigated glasses,
such as amorphous silica and glycerol, are discussed. For interested readers, in-
depth reviews in Ref. [113–117] are recommended. Knowledge of instrumentation
is certainly crucial for successful measurements. However, the goal of this chapter
is rather to introduce the background of IXS and the new physical insights on
atomic dynamics in amorphous solids gained from IXS. For more information on
instrumentation, Refs. [114, 117–119] are recommended.

4.1 Theory of non-resonant inelastic X-ray scattering
The Hamiltonian for a system of non-relativistic electrons in a condensed matter
interacting with an electromagnetic field is expressed by

H =
1

2m

∑
i

(
pi −

q
c
Aδ(r − r i)

)2
+

∑
i

V(r i) + V e−e
int (4.1)

where c is the speed of light, q is the electric charge, m is the electron mass,
sum is over all electrons, V(r i) is the atom-electron potential, and V e−e

int describes
the electron-electron interaction. Spin contribution is neglected. Rearranging the
Hamiltonian,

H = He + H(1)int + H(2)int (4.2)

where

He =
∑

i

[ p2
i

2m
+ V(r i)

]
+ V e−e

int (4.3)

H(1)int = −
q

2mc

∑
i

[pi · Aδ(r − r i) + Aδ(r − r i) · pi] (4.4)

H(2)int =
q2

2mc2

∑
i

A · Aδ(r − r i) (4.5)

A =
∑
k,α

2π

√
~

ωk L3 cεα
[
a+k,εe

ik ·r + a−k,εe
−ik ·r

]
. (4.6)

Here k and α refer to the photon wave vector and polarization state, respectively.
L3 is the normalization box volume, ωk is the photon angular frequency, a+

k,ε
is the

photon annhilation operator and a−
k,ε

is the photon creation operator for the photon
state |k, α〉. We can see that to the first order, H(1)int is related to one photon emission
or absorption. To the second order, we have scattering. On the other hand, we have
scattering from the first order of H(2)int due to its quadratic vector potential. When
considering only the first order theory, we can, therefore, neglect H(1)int . If, however,
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the incident photon energy is near an X-ray resonance, scattering from H(1)int can
become significant. In the rest of the derivation of the double differential IXS cross
section, we only consider up to the first order: the scattering of photons only comes
from H(2)int . We explicitly assume adiabatic approximation and the electronic part of
the total wave function unaffected by the scattering process.

Recall that the density of states of a single photon with polarization α and k pointing
into the solid angle dΩ is given by

g(k, α) =
k2L3

(2π)3
dΩ
~c

(4.7)

and that the incident photon flux Φ = c
L3 . Now, consider a situation in which a

photon |k, α〉 is scattered by a state |λ〉 in the sample via H(2)int to create a photon
|k′, β〉 and a sample state |λ′〉 as shown in Fig. 4.2. Hence, the initial state prior to
the scattering is denoted as |k, α, λ〉 and the final state after the scattering is denoted
as |k′, β, λ′〉.

Figure 4.2: Scattering a photon |k, α〉 by a state |λ〉 in the sample through the
Hamiltonian, H(2)int , which creates a photon |k

′, β〉 and a new state |λ′〉 in the sample.

The differential cross section of this process into a solid angle dΩ is written as(
dσ
dΩ

)
=

1
Φ

1
dΩ

dΩ∑
k ′

W|k,α,λ〉→|k ′,β,λ′〉 (4.8)

where the number of transitions per unit time, W|k,α,λ〉→|k ′,β,λ′〉 is expressed using
the Fermi’s golden rule as

dΩ∑
k ′

W|k,α,λ〉→|k ′,β,λ′〉 =
2π
~
|〈k′, β, λ′|H(2)int |k, α, λ〉|

2g(k′, β). (4.9)

The bra-ket square term above can be simplified as

|〈k′, β, λ′|H(2)int |k, α, λ〉|
2 =

q4~2π2

m2L6
|εk ′ · εk ′ |

2

ωk ′ωk
〈λ′|

∑
i

e−iQ·r i |λ〉〈λ |
∑

j

eiQ·r j |λ′〉

(4.10)



48

where the momentum transfer Q = k′ − k . To obtain the above equation, only the
term involving a−

k ′,βa+
k,α

in the H(2)int was considered as it annihilates the photon |k, α〉
and creates a photon in the |k′, β〉 state. Plugging in the expression for the flux and
the photon density of states mentioned earlier, the differential cross section can be
written as(

dσ
dΩ

)
= r2

o

(
k′

k

)
|εk ′ · εk |

2〈λ′|
∑

i

e−iQ·r i |λ〉〈λ |
∑

j

eiQ·r j |λ′〉 (4.11)

where ro =
q2

mc2 is the classical electron radius. Finally, requiring the energy
conservation and thermally averaging over all initial and final states λ,λ′ we have
the double differential cross section

d2σ

dΩdE′
= r2

o
k′

k
|εk ′ ·εk |

2
∑
λλ′

∑
i,j

pλ〈λ′|e−iQ·r i |λ〉〈λ |eiQ·r j |λ′〉δ(~ω+E−E′) (4.12)

where pλ = e−Eλ/kBT

Z and Z is the partition function, ~ω = E′ − E is the energy
transferred from the photon to the sample. Assuming the adiabatic approximation,
the atomic quantum state |S〉 = |Se〉|Sn〉 where the subscript e and n denote the elec-
tronic and nuclear states, respectively. When the exchanged energies by scattering
is small (1 to ∼ 100 meV) compared to that of the electronic excitation energies,
the contributions of core electrons to the total scattering is dominant. Therefore,
the exchange of momentum and energy is mostly due to the excitations of the ions.
With these hypotheses, the double differential cross section can be written as

d2σ

dΩdE′
= r2

o
k′

k
|εk ′ ·εk |

2
∑
λλ′

∑
i,j

pλ〈λ′| fi(Q)e−iQ·Ri |λ〉〈λ | f j(Q)eiQ·R j |λ′〉δ(~ω+E−E′)

(4.13)
where fi(Q) is the atomic form factor of the ith atom, Ri is the atom position vector,
and the sample states, λ,λ′ refer to the nuclear states. Assuming that all atoms
scatter identically (same form factor), we can take out the atomic form factors and
simplify as

d2σ

dΩdE′
= r2

o
k′

k
|εk ′ · εk |

2 | f (Q)|2S(Q,ω) (4.14)

where the dynamic structure factor, S(Q,ω) is defined as

S(Q,ω) =
∑
λλ′

∑
i,j

pλ〈λ′|e−iQ·Ri |λ〉〈λ |eiQ·R j |λ′〉δ(~ω + E − E′). (4.15)

By interpreting the operators in the Heisenberg picture andwriting the delta function
in integral representation, the dynamic structure factor can be written in a compact
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form as
S(Q,ω) =

1
2π

∫ ∞

−∞

dte−iωt 〈ρ†(Q, t)ρ(Q,0)〉 (4.16)

where the ρ(Q, t) is the spatial Fourier transform of the density operator ρ(R, t) as

ρ(Q, t) =
∑

i

e−iQ·Ri =

∫
dRe−iQ·R

∑
i

δ(R − Ri) =

∫
dRe−iQ·Rρ(R, t). (4.17)

Hence, the dynamic structure factor is the temporal Fourier transform of the cor-
relation of the spatial Fourier component of the density operators. In deriving the
dynamic structure factor, it is important to note that no assumption of the normal
modes has been made. When the form factors of atoms are different in Eq. (4.13)
(for instance, in non-monatomic systems), the double differential cross section can
be expressed in terms of the fluctuations and the mean of the atomic form factor
[114].

The measured scattered intensity is then proportional to the double differential cross
section as [114]

I = KIo
∂2σ

∂Ω∂E′
∆Ω∆E′nte−µt (4.18)

where K accounts for detector efficiency and all other geometrical and spurious
intensity effects, Io is the incident beam intensity, n is the number of scatterers per
unit volume, t is the sample thickness, µ is the total absorption coefficient. Since
∂I
∂t = 0 when t = 1

µ , it is ideal to have the sample thickness equal to the absorption
depth of a given X-ray beam.

Another way to calculate the dynamic structure factor is using the velocity currents
as demonstrated below.

ω2S(Q,ω) =
ω2

2π

∫ ∞

−∞

e−iωt 〈ρ∗(Q, t)ρ(Q,0)〉

=
i2

2π

∫ ∞

−∞

d2e−iωt

dt2 〈ρ∗(Q, t)ρ(Q,0)〉

= −
1

2π

∫ ∞

−∞

dte−iωt
〈[
∂2ρ∗(Q, t)

∂t2

]
ρ(Q,0)

〉
=

1
2π

∫ ∞

−∞

dte−iωt
〈[
∂ρ∗(Q, t)

∂t

] [
∂ρ(Q, t)
∂t

]
t=0

〉
.

(4.19)

To get to the third equation, integration by parts was used twice with the correlation
function going to zero at the boundaries. The last step is from an identity for the
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Liouville operator being a Hermitian first-order differential operator [120]. Here
the time derivative of the density operator is given by

∂ρ(Q, t)
∂t

= −i
∑

i

(Q · vi)e−iQ·Ri (4.20)

where vi is the velocity of the atom i. The dynamic structure factor is then expressed
as

S(Q,ω) =
1

2π

(
Q
ω

)2 ∫ ∞

−∞

dt〈 jL(Q, t) · j
∗
L(Q,0)〉e

−iωt (4.21)

where the longitudinal velocity current is given by

jL(Q, t) =
N∑
i

[vi(t) · Q̂]Q̂eiQ·Ri(t) (4.22)

where Q̂ denotes Q unit vector.

Using molecular dynamics, time dependent atom locations and velocities can be
recorded. With either Eq. (4.16) or Eq. (4.21), the dynamic structure factor can be
readily calculated and compared directly to the inelastic scattering experiments. It is
worth mentioning that sometimes in literature, dynamic structure factor is calculated
without the factor in front of the integral in Eq. (4.21). It is again emphasized here
that no assumption of the normal modes is used in the dynamic structure factor
derivations.

4.2 Meaning of dynamic structure factor
Now, what does the dynamic structure factor tell us about the atomic dynamics in
amorphous solids? To answer this question, we look at the relationship between
the dynamic structure factor and retarded Green’s function via the fluctuation-
dissipation theorem given by

S(Q,ω) = −
1
π
(nBE + 1)Im(GR(Q,ω)) (4.23)

where nBE is the Bose-Einstein distribution and GR(Q,ω) is the retarded Green’s
function in frequency and wavevector space. The retarded Green’s function of an
interacting systemcan in principle be obtained in amany-body perturbation approach
using Feynman diagrams [121–123]. The real part of the pole of GR(Q,ω) gives
the excitation energy and the imaginary part of the pole of GR(Q,ω) represents the
lifetime of the excitation. In the dynamic structure factor, these translate to the peak
frequency of the inelastic peaks being the collective excitation energy with the finite
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broadening proportional to the inverse lifetime of collective excitations. Here, it is
emphasized that inelastic scattering can, therefore, probe collective excitations of
matter without the assumptions of normal modes.

A typical IXS spectrum of a glass is shown in Fig. 4.3. This measurement was
done for glassy glycerol at 175 K at the momentum transfer Q = 2 nm-1 [109].
We see a large quasi-elastic peak at zero energy representing no energy transfer to
the sample followed by two asymmetric inelastic peaks on the sides representing
collective excitations in the sample with ± 4.2 meV energy and linewidths (∼2 meV)
representing inverse of lifetimes at the momentum transfer of Q = 2 nm-1. The
asymmetry of the inelastic peaks arise according to the detailed-balance principle.
To extract useful information, a Lorentzian and two damped harmonic oscillator
(DHO) models were convolved with the experimentally determined resolution func-
tion to fit the quasi-elastic peak and inelastic peaks, respectively as clearly seen in
Fig. 4.3 (B).

With some fundamentals of inelastic scattering gone over, we now move onto new
physical insights gained from IXS on widely studied amorphous solids, such as
amorphous silica and glycerol.
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Figure 4.3: (A) IXS spectrum of glassy glycerol at 175 K and Q = 2 nm-1 [109].
The dotted line and dashed lines show quasi-elastic and inelastic contributions,
respectively. Inelastic peaks represent the collective excitations with excitation
energy of ± 4.2 meV with linewidths being the inverse lifetimes at this momentum
transfer. The quasi-elastic peak was fitted with a Lorentzian and the inelastic peaks
were fitted with a damped harmonic oscillator (DHO) model. Solid line is the
superposed fit. (B) Enlarged view of the inelastic spectra. The inset in (A) shows
the residuals of the fit to the data in standard deviation units, σ.
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4.3 Overview of IXS measurements on glassess
Amorphous silica
A representative momentum transfer dependent IXS spectra of amorphous silica
is shown in Fig. 4.4 [109]. The solid line represents the resolution function in
Fig. 4.4 (A) and IXS spectra with the resolution function subtracted show clear
inelastic signal in Fig. 4.4 (B). We can see that as the momentum transfer doubles,
the peak frequencies of the inelastic peaks also double, demonstrating that these are
propagating excitations dispersing with a linear relation as indicated by arrows in
Fig. 4.4 (B).

It is worth mentioning here that due to the instrument energy resolution of ∼ 1 to 2
meV, which is still remarkable considering that the hard X-rays used in IXS typically
have energies of 10 to 20 keV, Q = 1 nm-1 is close to the lower bound that IXS can
probe. For lower Q’s, Brillouin light scattering and inelastic ultraviolet scattering
can be used.

Peak frequencies and the broadening of the temperature dependent inelastic excita-
tions are demonstrated in Fig. 4.5. It can be seen that the peak frequencies are not
affected by the temperature as they are within the error bars with each other. Similar
observation is shown for the broadening where a clear temperature dependence is
not observed as shown in Fig. 4.5 (B); therefore, the role of structural disorder
is dominant in sound attenuation in these frequency and wavevector regimes. By
comparing the lifetimes which are inversely proportional to the broadening and the
peak frequency, the Ioffe-Regel crossover has been determined to be around 1 to 2
THz in a-SiO2. Another point to take away from Fig. 4.5 (B) is the apparent power
law Γ α Q2 which has also been observed "universally" in these high momentum
transfer regimes in many types of glasses [125–128]. However, the precise origin
of this power law is still unclear.

Brillouin light scattering (BLS) and inelastic ultraviolet scattering (IUVS) mea-
surements were also done on a-SiO2 to investigate the attenuation of the acoustic
excitations at lower momentum transfers as shown in Fig. 4.6 [105, 129]. The Q2

scaling from the IXS data shown in Fig. 4.5 is also shown for comparisons. While
we also observe a Q2 dependence for acoustic excitations with Q ≤ 0.1 nm-1, there
is a clear discontinuity between the two. At the higher Q values above 0.1 nm-1,
we see an intermediate strong scattering regime with Q4 dependence which seems
to connect the two Q2 lines. The frequencies at which the transitions (Q2 → Q4

and Q4 → Q2) occur are reported at 100 GHz and 140 GHz, respectively [105].
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Figure 4.4: (A) IXS spectra of amorphous silica at 1075 K at Q = 1 nm-1 and Q = 2
nm-1 [109]. The solid line is the scaled resolution function. (B) IXS spectra with
the scaled resolution function subtracted out to signify the inelastic peaks. Arrows
denote the peaks of the inelastic signal.
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Figure 4.5: (A) Momentum transfer dependence of the excitation energies from IXS
spectra of a-SiO2 at 293 K [124] and 1050 K [106]. (B) Broadening of the excitation
versus momentum transfer at 293 K and 1050 K. Q2 is plotted as a guide to the eye.
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Figure 4.6: Momentum transfer dependence of the excitation energies fromBrillouin
light scattering (black diamond at 300K and blue diamond at 5K) [129] and inelastic
ultraviolet scattering spectra of a-SiO2 at 300 K [105]. Q2 scalings extended from
the IXS data Fig. 4.5 (B) and for the BLS and IUVS data below 0.1 nm-1 are shown
as black dashed lines. Also plotted is the Q4 scaling for IUVS data above 0.1 nm-1

as red dashed line.

In another work, the frequency at which Q4 to Q2 transitions has been reported at
a much higher frequency around 1 THz which is where the boson peak frequency
lies [130]. The underlying physics of the strong scattering regime is a matter of a
debate. It has been attributed to Rayleigh-like scattering [131, 132] due to density
fluctuations and elastic constant fluctuations and to a resonant interaction between
soft modes and sound waves predicted by the soft potential model [133, 134]. Un-
like the high momentum transfer IXS measurements that follow the Q2 scaling, the
BLS measurements show a strong temperature dependence in the broadening of the
inelastic peak as shown in Fig. 4.6 (B), which signifies the role of anharmonicity in
scattering these acoustic excitations.

Vibrations in densified amorphous silica (d-SiO2) have also been studied [135, 136]
and compared to those of powderized crystalline α-quartz [136]. In Ref. [136], d-
SiO2 was synthesized under high pressure up to 8GPa resulting in the density of 2.67
gcm-3, very close to that of α-quartz at 2.65 gcm-3. The grain size of the polycrystal
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was reported to be a few microns which is significantly larger than the wavelengths
of vibrational excitations probed by the IXS. The spectra of the glass were measured
at 570 K while those of the polycrystal were done at room temperature and the
extracted inelastic peak and broadening by fitting the DHO model are shown in Fig.
4.7. Interestingly, at lowmomentum transfers below 2 nm-1 (Qc), the polycrystal has
wider inelastic peaks compared to glass which has been attributed to the additional
contributions from the quasi-transverse modes in the polycrystal and the broadening
exhibits Q dependence. On the other hand, in the same momentum transfer range
we see a Q4 dependence in the broadening for densified silica glass, consistent with
prior IUVS and IXS spectra of regular amorphous silica at low momentum transfers
as mentioned before. Above the Qc, we see that the broadening of both polycrystal
and glass have similar magnitude and show the signature Q2 dependence. However,
it is questionable if a single DHO is sufficient to fit the inelastic peaks in this Q

range as the spectra are highly asymmetric as shown in Fig. 4.8 (D) and (E) and
multiple peaks are clearly observed for the polycrystal.

The inelastic peak spectra of the glass and polycrystal at variousmomentum transfers
are shown in Fig. 4.8. The instrument resolution function is plotted as a magenta
dashed line in Fig. 4.8 (A) and the DHO fits are shown in 4.8 (A) and (B) as a solid
green line. The inelastic peak predicted by the ab-initio lattice dynamics of the
polycrystal is also shown as the solid red curve and the vertical red lines represent
the predicted phonon branches of a single-crystal. As mentioned before below Qc,
the polycrystal has wider inelastic peaks compared to glass. Above the Qc, the
overall inelastic peaks of glass and polycrystal are similar; hence, it was concluded
that the momentum transfer resolved vibrations for the glass arise from the linear
combination of the crystal eigenstates with wavevectors within the Q resolution of
the given Q [136]. However, this conclusion may be premature and oversimplified
as there are some quantitative differences in the inelastic spectra of the polycrystal
and glass: a large number of peaks arising from different branches of the polycrystal
are clearly observed whereas they are absent in the glass spectra.

Glassy glycerol
Along with amorphous silica, glassy glycerol has also been studied extensively [108,
109, 137–139]. Glycerol shares similar characteristics of acoustic excitations with
amorphous silica: temperature independence of the inelastic peak broadening Γ at
high momentum transfer of a few nm-1, Q4 → Q2 transition regime, and excitations
at low Q < 0.1 nm-1 having temperature dependent broadening. For this reason,
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Figure 4.7: Momentum transfer dependent inelastic peak broadening of densified
silica glass (solid red triangle) and polycrystal (open black circle) [136]. Various
Q scalings are plotted as a guide to the eye. The crossover momentum transfer
Qc marks the transition from the strong scattering (Q4) to the Q2 regimes. In the
inset, excitation frequency dependent broadening is shown and the black solid line
represents the Ioffe-Regel crossover criteria. The Ioffe-Regel crossover for glass is
at 10 meV or ∼ 2 THz.

only a concise review on the inelastic scattering studies of glycerol is described here.

Inelastic peak frequency and broadening of IXS spectra of glycerol at 150 K are
shown in the inset of Fig. 4.9 (A) [108]. The dashed red line represents the
macroscopic sound limit. All the IXS data points lie slightly below this limit.
Longitudinal phase velocity is plotted in Fig. 4.9 (A) and it is again apparent
that the phase velocity does not reach the macroscopic sound velocity vL even at
the lowest momentum transfer ∼ 1 nm-1. There is a rapid decrease of vL with
momentum transfer (softening) until ∼ 2.2 nm-1 and then a plateau up to ∼ 4.5 nm-1.
Above the plateau, we start to see the expected decrease of the phase velocity due
to the bending of the dispersion curve on approaching the first sharp diffraction
peak. It is interesting to observe that the softening of the vibrational excitations in
the low momentum transfer correspond to the strong scattering region as shown in
Fig. 4.9 (B). Transition momentum transfer from the initial softening to the plateau
region also coincides with the Q4 → Q2 transition at 2.2 nm-1. It is evident that the
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Figure 4.8: Momentum transfer dependent IXS spectra of densified amorphous
silica (Solid black diamond) and α-quartz polycrystal (open blue circle) [136].
Measurements were done at 570 K (glass) and room temperature (polycrystal).
Instrument resolution function is shown as magenta dashed lines in (A). Solid green
lines in (A) and (B) are the DHO fit to the spectra. Red solid curves are obtained
from ab-initio lattice dynamics calculations for the polycrystal and the vertical red
lines represent the location of single-crystal branches.
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softening of sound in the strong scattering regime directly implies the existence of
acoustic-like excitations in excess of the Debye level and therefore, contributes to the
boson peak which is at 4 meV or 1.7 nm-1. The softening of the transverse acoustic
excitations has also been shown in the strong scattering regime up to 3.5 nm-1 in MD
simulation of glycerol glass at 150 K [138]. On the other hand, a dicrepancy with
IXS experiments was reported in Ref. [138] that in the strong regime, the power
law scaling is Γ α Q3 rather than the Q4 for both the longitudinal and transverse
excitations and the origin of this discrepancy is currently unknown.

Figure 4.9: (A) Phase velocity of the acoustic excitations of glassy glycerol at 150
K from IXS [108]. The inset shows the dispersion of these excitations. The dashed
red line represents macroscopic sound limit. (B) Momentum transfer dependent
broadening. Similar to amorphous silica, we see a strong scattering regime up to
2.2 nm-1 followed by the signature Q2 power law. A correlation between the sound
softening in (A) and the strong scattering in (B) is observed.
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4.4 Conclusion
In this chapter, theory of non-resonant inelastic scattering was derived and the
dynamic structure factor arising from light-matter interaction was discussed. In the
derivations, no assumption of the normal mode was made and unlike normal mode
methods, inelastic scattering can be directly used to study collective excitations
in any phases of matter. The peak frequency of the inelastic peaks represents
the collective excitation energy at a particular momentum transfer with the finite
linewidths representing the inverse of the collective excitation lifetimes. Results
from inelastic scattering studies in amorphous silica and glycerol were discussed
and some common features of the acoustic excitations such as the power laws and
the temperature (in)depedence in the inelastic peak broadening were reviewed.

In the next chapter, we use molecular dynamics to calculate the dynamic structure
factor to study collective excitations in amorphous silicon instead of the conventional
normal mode methods metioned in Chapter 3.
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C h a p t e r 5

COLLECTIVE ACOUSTIC EXCITATIONS DOMINATE
THERMAL CONDUCTION IN AMORPHOUS SILICON

This chapter has been adapted from [140]:

Moon, J., Latour, B., Minnich, A. J., Propagating elastic vibrations dominate ther-
mal conduction in amorphous silicon, Physical Review B, 2018

While in-depth overview of thermal transport in a-Si from normal mode methods
was discussed in Chapter 3, the results from normal mode based methods on a-
Si are reiterated [42–44, 54, 56, 62, 72, 74–76] and some experimental results
[85, 86, 88, 89] are discussed for completeness. Decades of work using normal
mode methods have led to a general consensus that the propagating waves (in the
normal mode picture, these are propagons) contribute from 20 to 50 % of thermal
conductivity despite their small population existing only up to 2 to 3 THz, and that
they are scattered by anharmonicity. Here, anharmonicity refers to typical phonon-
phonon interactions such as normal and Umklapp scattering [44, 62]. However, we
saw that there were numerous discrepancies with each one of the consensus. Size
dependent thermal conductivity measurements have shown that propagating waves
instead contribute a majority of the thermal conduction in amorphous silicon [85,
86, 89] and temperature dependent measurements [85, 86, 89] show a typical glass-
like thermal conductivity in contrast to some predictions of crystal-like thermal
conductivity due to anharmonic scattering [44, 62, 74, 75]. In addition, spectral
thermal conductivity calculations of bulk a-Si [54] and thin film (14 nm thick) a-
Si [77] have revealed significant suppression of spectral thermal conductivity for
diffusons in the thin film which violates the definitions that diffusons are normal
modes with mean free paths less than a few Å. It is difficult to locate the exact origin
of the discrepancies, but these normal mode methods rely on two assumptions
that atoms vibrate around their equilibrium positions and that normal modes are
fundamental heat carriers in glasses.

In this chapter, we instead investigate the collective acoustic excitations in amor-
phous silicon by dynamic structure factor using molecular dynamics simulations
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that can be directly probed by IXS. Our results support a qualitatively different
picture from the predictions from the normal mode methods mentioned above. We
explicitly demonstrate the propagating nature of waves up to around 10 THz that are
scattered by structural disorder rather than anharmonicitity, and further show that
these collective acoustic excitations dominate the thermal conduction in amorphous
silicon, consistent with experiments.

5.1 Computational approach
We used lattice and molecular dynamics to examine the atomic vibrations of var-
ious amorphous domains. The molecular dynamics calculations were performed
using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
with a timestep of 0.5 fs [61]. Periodic boundary conditions were imposed and
the Stillinger-Weber interatomic potential was used [57]. The initial structure we
considered contained 4096 atoms and was created by first melting crystalline silicon
at 3500 K for 500 ps in an NVT ensemble. Next, the liquid silicon was quenched
to 1000 K with the quench rate of 100 K/ps. The structures were annealed at 1000
K for 25 ns to reduce metastabilities [33]. Finally, the domain was quenched at a
rate of 100 K/ps to 300 K and equilibrated at 300 K for 10 ns in an NVT ensemble
using a Nose-Hoover thermostat. The structure was then equilibrated at 300 K for
500 ps in an NVT ensemble. After an additional equilibration in an NVE ensemble
for 500 ps, the heat fluxes were computed for 1.6 ns in the same NVE ensemble. To
check the amorphous nature of our structure, we calculated the radial distribution
function, bond angle distribution, and the coordination number and compared them
with those of c-Si. As mentioned in Chapter 2, radial distribution function (RDF)
is given by

g(r) =
1

4πr2Nρ

N∑
i,k

〈δ(r − |rk − ri |)〉 (5.1)

where r represents a distance from a reference atom, N is the number of atoms,
ρ is the number density, and 〈...〉 denotes ensemble average. Intuitively, radial
distribution function represents a normalized number of atoms that are distance r

away from each other. If a structure is periodic, such as in c-Si, we would expect
to see sharp peaks as the distances between atoms have low spread. On the other
hand, we would expect broadened peaks for amorphous solids as demonstrated in
Fig. 5.1. We can see that the bond length is around 2.35 Å for both crystalline and
amorphous silicon, which is consistent with scattering experiments.

From the radial distribution function, we can calculate the coordination numberCN ,
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Figure 5.1: Radial distribution function comparisons between crystalline (red) and
amorphous (blue) silicon. It is clear that a-Si has broadened peaks due to a spread
in bond lengths.

the average number of the nearest atoms by

CN =
∫ rc

0
4πr2ρg(r)dr (5.2)

where rc is the first minimum of g(r) after the first peak. By comparing the
coordination number of crystals with that of their amorphous counterparts, we can
gain insight into how the local structure changed due to amorphization. For c-Si, we
have the coordination number of 4 as expected for tetrahedrally bonded crystalline
solids. On the other hand, we observe the coordination number of 4.2 for a-Si, which
indicates that on average, local structures have more than 4 nearest neighbors.

Another important parameter to characterize the local structure is the bond angle
distribution of atoms within rc. For crystalline materials, we expect to observe delta
function-like sharp peaks with small broadening resulting from thermal fluctuations.
For disordered materials such as amorphous materials or liquids, a wide range of
bond angles are observed due to the lack of symmetry as clearly seen in Fig. 5.2.
We see a significantly broadened peak for amorphous silicon with about four times
the full width at half maximum.

With the confirmation from several structural parameters that our structure is amor-
phous, dynamic structure factor was calculated in two ways: i) using the general
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Figure 5.2: Bond angle distribution comparisons between crystalline (blue) and
amorphous (orange) silicon. Both have peak the bond angle at ∼ 109.5°, but we see
a large difference in the spread of the bond angles between c-Si and a-Si. a-Si has
about four times larger full width at half maximum.

definition of dynamic structure factor with velocity currents frommolecular dynam-
ics at 300 K as derived from Eq. (4.21), and ii) using the projections of the density
correlation function onto the normal modes in the harmonic approximation at 0 K
given by

SL,T (q,ω) =
∑
ν

EL,T (q, ν)δ(ω − ω(q = 0, ν)) (5.3)

where the q is phonon wavevector, ω is frequency, and the summation is over all
the modes ν at gamma point. EL and ET refer to the longitudinal polarization and
transverse polarization, respectively and are defined as

EL,T (q, ν) =

�����∑
i

uL,T
i eiq·r i

�����2 (5.4)

where the summation is over all atoms indexed by i in the domain, and r i is the equi-
librium position. Here uL

i = q̂ · e(ν, i) and uT
i = q̂ × e(ν, i), where q̂ is a unit vector

and e(ν, i) is the eigenvector. Comparisons of the results from these two methods
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will give us useful information about the relationship between normal modes and
the collective excitations. In crystals, normal modes are the collective excitations;
therefore, we would expect delta peaks in the harmonic case and broadened peaks
in the velocity current formalism with the linewidths inversely proportional to the
lifetime. Similarly, as prior normal mode works in a-Si have concluded, if low fre-
quency normal modes are collective excitations that are scattered by the anharmonic
interactions with one another, we should observe qualitatively similar observations
to normal modes in crystals where we observe temperature induced broadening.

We calculated the eigenvectors of the 4096 atom structure using the General Utility
Lattice Program (GULP) with equilibrated structures fromMD [65]. As amorphous
Si is isotropic, we average the dynamic structure factor over all wavevectors of the
same magnitude. If collective acoustic excitations exist despite the atomic disorder,
the dynamic structure factor will exhibit a clear band with a dispersion; if collective
acoustic excitations are not supported, the vibrational modes will appear diffuse
without an apparent dispersion.

5.2 Results
Dynamic structure factor
We first calculated directionally dependent harmonic dynamic structure factors for
crystalline silicon and compared with lattice dynamics predictions [141] using the
same SW potential for consistency. We see a very good agreement between dynamic
structure factors and lattice dynamics as shown in Fig. 5.3 (A).We further performed
the dynamic structure factor calculations from the velocity currents at 300 K and
comparisons of these to those fromharmonic approximation at [0.875 0 0] in reduced
wavevector units for a transverse branch are shown in Fig. 5.3 (B). We see delta
peaks for the harmonic case and broadened peaks at 300 K arising from anharmonic
interactions of normal modes as expected. With this confirmation, we next calculate
dynamic structure factors for a-Si.

The harmonic dynamic structure factor for longitudinal waves is presented in Fig.
5.4 (A). The figure demonstrates that despite the atomic disorder, a clear dispersion
exists up to frequencies as high as 10 THz for longitudinal waves, corresponding to a
wavelength of 6.5 Å. In the transverse direction, a clear dispersion with broadening
is also observed up to ∼ 5 THz, with a similar transition wavelength at 6.6 Å . For
sufficiently high frequency vibrations with wavelengths comparable to interatomic
distances, the structure factor is very broad, and identifying acoustic excitations
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Figure 5.3: (A) Dispersion comparisons for crystalline silicon from our dynamic
structure calculations in the harmonic approximation (red circle) and lattice dy-
namics predictions (blue dashed lines) by Broughton and Li [141] using the same
SW potential. We see a very good agreement. (B) Dynamic structure factor for
transverse waves for crystalline silicon with (red cross) and without (blue dot) an-
harmonicity at [0.875 0 0] in reduced wave vector units. For the harmonic case, we
have two delta peaks for transverse acoustic and optical modes. With anharmonicity,
we see a clear broadening in the peaks.

with well-defined frequency and wavevector is not possible. However, the figure
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clearly shows that collective acoustic excitations comprise a substantial portion of
the vibrational spectrum. Specifically, by calculating the density of states of the
collective acoustic excitations with a Debye model, we estimate that about 24% of
all vibrations are collective acoustic excitations. Our observation is consistent with
prior calculations of dynamical structure factor [44, 142] but is inconsistent with
prior conclusions that propagons have frequencies less than 2 ∼ 3 THz in amorphous
silicon [43, 44, 54, 62, 76, 91].

We also observe that the lines are not narrow but have a clear broadening indicating
the presence of a scattering mechanism. In crystals, this broadening is typically due
to anharmonic interactions. In the harmonic lattice dynamics calculations of amor-
phous silicon, anharmonic interactions cannot play any role. Instead, the broadening
must be due to structural disorder such as point defects and elastic modulus fluctu-
ations. To assess how broadening due to elastic fluctuations compares to that from
anharmonic interactions, we also calculate dynamic structure factors using veloc-
ity outputs from MD at 300 K [14]. The longitudinal dynamic structure factor at
q = 6.0 nm-1 with only harmonic, and harmonic and anharmonic forces are depicted
in Fig. 5.4 (B). The two curves are nearly identical. Anharmonic broadening has
essentially no effect on the lifetimes, and therefore the broadeningmust be solely due
to structural disorder such as point defects and elastic modulus fluctuations. This
is strikingly different from phonons in crystals as clearly observed in Fig. 5.3 (B)
where anharmonicity broadening is apparent. Therefore, the picture that emerges
from our calculation of dynamical structural factor of a-Si is a vibrational spectrum
that is dominated by collective acoustic excitations that are scattered by structural
disorder.

We next aim to extract quantitative information from the observed broadened lines
for amorphous silicon. Prior works used normal mode analysis to extract lifetimes
from molecular dynamics simulations [44, 62] or perturbation theory [74, 75].
Here, we use the standard scattering theory approach to obtain lifetimes by fitting a
constant wavevector slice of the dynamic structure factor with a damped harmonic
oscillator (DHO) model [14, 58, 142–145]. The lifetime τ at a certain frequency is
related to the full-width at half-maximum Γ by τ = 1/πΓ [146]. By multiplying the
lifetimes by the group velocity given by the slope of the dispersion, we also obtain
mean free paths.

The results are shown in Fig. 5.5 (A). We see that the mean free paths span from
0.5 nm to 10 nm. At still lower frequencies that cannot be included in the present
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Figure 5.4: Dynamic structure factor for (A) longitudinal waves and (B) transverse
waves for 4096-atom pure a-Si domain. Bright yellow indicates a high intensity
of vibrations with the given frequency and wavevector. A clear phonon band is
observed up to around 10 THz despite the atomic disorder. (C) Constant wavevector
slice of the dynamical structure factor at q = 6.0 nm-1 in the longitudinal direction.
Anharmonic broadening is negligible at 300 K.
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simulations, mean free paths are likely even longer, as suggested by experiment [89].
In addition, Fig. 5.5 (B) plots the product of lifetime and vibrational frequency.
In this plot, the Ioffe-Regel (IR) crossover from propagons to diffusons, defined as
when the lifetime is equal to the period of a wave, can be indicated as a horizontal
line [144]. For longitudinal waves, the IR crossover is observed at ∼ 10 THz and ∼
5 THz for transverse waves (not shown); both of these values are in good agreement
with the qualitative estimate of the transition frequency from the structure factor.

Having established that propagating acoustic excitations comprise a substantial frac-
tion of the vibrational spectrum, we next estimate the propagating acoustic excita-
tions contribution to thermal conductivity given knowledge of the linear, isotropic
dispersion, the group velocity, and the mean free paths from Figs. 5.4 and 5.5 using
a Debye model. In this model, we separate thermal conductivity contributions into
longitudinal and transverse branches with group velocities obtained from the disper-
sion as 8000 and 3610 m s-1, respectively. Recalling the bulk thermal conductivity
of 1.5 Wm-1K-1 from the Green-Kubo calculation, we estimate that the acoustic
excitations contribute about 1.35 Wm-1K-1 (classical), or 90 % of the GK thermal
conductivity and 1.25 Wm-1K-1 (quantum) by taking into account temperature de-
pendent phonon occupation. The primary uncertainty in this estimate is the role of
vibrations of frequency less than 2 THz that are challenging to include in both the
Green-Kubo and structure factor calculations; however, our conclusion still holds,
even in the absence of these additional propagating vibrations in our analysis. This
contribution is much larger than the values reported previously and suggests that,
counterintuitively, heat transport in a-Si is dominated by a gas of collective acoustic
excitations despite the atomic disorder.
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Figure 5.5: (A) Spectral mean free path and (B) lifetime multiplied by frequency
versus frequency for longitudinal waves with harmonic and anharmonic forces for
the 4096-atom pure a-Si domain. We observe an excellent agreement between mean
free paths obtained from dynamic structure factors, and tuning fork calculations
that explicitly simulate the damping of acoustic collective excitations. The Ioffe-
Regel criterion occurs when lifetime multiplied by frequency equals 1. Propagons
are observed up to around 10 THz for longitudinal waves as predicted from the
dispersion.
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Calculations using Tersoff potential
In addition to the SW potential to describe the interatomic interactions in a-Si, we
have calculated thermal conductivity values from the GK formalism and dynamic
structure factors using the Tersoff potential. Figure 5.6 shows the dispersion of
longitudinal and transverse directions using the Tersoff potential [94] for 4096 atoms
from dynamic structure factor calculations. As observed in the dispersions for the
Stillinger-Weber potential, we see clear and well-defined phonon bands up to around
10 THz and 5 THz for longitudinal and transverse directions, respectively. The
Ioffe-Regel crossover frequencies using Tersoff potential and the lifetimes from the
structure factor agree well with those from Stillinger-Weber potential calculations.

The thermal conductivity of amorphous silicon was then calculated using the Debye
model with longitudinal sound velocity of 8179m/s and transverse sound velocity of
4198 m/s for the propagons from the structure factors (SF) and Allen and Feldman
(AF) diffusivities for diffusons, and is tabulated among the works by He et al. and
Lv and Henry as shown in Table 5.1 [54, 62]. For the frequency range between
longitudinal and transverse Ioffe-Regel frequencies, we multiplied a factor of 2/3
to the Allen and Feldman diffusivities to account for transverse vibrations only. We
can see that our thermal conductivity prediction from structure factor and Allen and
Feldman diffusivities agree well with the available data. About 90 % of thermal
conductivity is calculated to be from propagating acoustic excitations and the rest
from non-propagating vibrations. Calculations using the Tersoff potential also
confirm that propagating acoustic excitations dominate the thermal conduction in
amorphous materials as predicted by our calculations using the Stillinger-Weber
potential.

Table 5.1: Thermal conductivity comparison for a-Si at 300K using Tersoff potential
without the quantum correction in the specific heat.

Source Thermal conductivity (Wm-1K-1)
This work (GK) 2.32 ± 0.30

This work (SF + AF) 2.61
He et al. (GK) [62] 2.4 ± 0.35

Lv and Henry (GK) [54] 2 ± 0.32
Lv and Henry (GKMA) [54] 1.75
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Figure 5.6: (A) Dispersion for longitudinal waves and (B) for transverse waves for
4096-atom pure a-Si domain using Tersoff potential from dynamic structure factor
calculations. Bright yellow indicates a high intensity of vibrations with the given
frequency and wavevector. A clear phonon band is observed up to around 10 THz
for longitudinal and 5 THz for transverse directions.

Triggered wave analysis
We provide further support for our conclusions with two additional calculations.
First, we explicitly demonstrate the propagating nature of vibrational modes by
conducting a "tuning fork experiment" in which imposed oscillatory atomic motions
at one edge of the atomic domain triggers a longitudinal wave through the a-Si. To
perform this calculation, we first create a domain by repeating 4096-atom cell 10
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times along one direction, resulting in a supercell of size 4.3 × 4.3 × 43 nm. In
the long dimension, the domain is divided into 80 slabs of width 5.431 Å. Periodic
boundary conditions are applied and the temperature is set at 0.1K to avoid additional
thermal displacements. The calculation begins by rigidly displacing the first slab
in the longitudinal direction for 2 ps with a sinusoidal wave with amplitude 0.01 Å
and a specified frequency ranging from 2 to 10 THz. We computed the longitudinal
displacements of every atom for time durations less than 2 ps to prevent edge effects,
and subsequently averaged the atomic displacements within each slab.

The wave propagation in a-Si at different frequencies is shown in Fig. 5.7. It
is apparent that waves do indeed propagate through a-Si at 3 THz and 8 THz as
predicted by the dynamic structure factor calculations. We obtain mean free paths
from these simulations by identifying the location at which the wave amplitude has
decreased to 1/e of its original value. These mean free paths are in quantitative
agreement with those from dynamic structure factor calculations as shown in Fig.
5.5 (A). On the other hand, the excited wave at 16 THz is damped very quickly, and
by the second slab, the amplitude is already less than 1/e of the original value. This
observation indicates that at 16 THz the vibration is non-propagating. Therefore,
the "tuning fork experiment" explicitly confirms that longitudinal collective acoustic
excitations exist up to a high frequency of around 10 THz in a-Si and the broadening
of the inelastic peaks can be identified with broadening.

Role of elastic fluctuations
Second, we examine how the thermal conductivity is affected by the partial elim-
ination of elastic modulus fluctuations. If our assertion regarding scattering by
elastic fluctuations is true, we should observe a marked increase in thermal con-
ductivity when these fluctuations are partially eliminated along with a temperature
dependence of thermal conductivity that reflects the renewed dominance of phonon-
phonon interactions. To test this hypothesis, we generated two additional domains
designed to possess reduced elastic fluctuations consisting of 512 and 64-atom amor-
phous unit cells (AUCs) tiled to create 4096-atom structures as shown in Fig. 5.8.
The 512 and 64 AUC domains were created using the same melt-quench procedure
described earlier. Elastic fluctuations over a length scale equal to the AUC domain
size should be eliminated because the same unit cell is tiled repeatedly in space to
form the 4096 atom final structure.

We followed the same procedure as described earlier to obtain dynamic structure
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Figure 5.7: Temporal displacement of atoms in each slab with triggering frequencies
(A) 3 THz, (B) 8 THz, and (C) 16 THz in the longitudinal direction. Each sinusoidal
wave represents the averaged displacements of the atoms in a slab. By observing
where the amplitudes of the displacement decrease by 1/e, we estimate that the
mean free paths are around 9 and 2 nm for 3 THz and 8 THz waves, respectively.
The mean free path of the 16 THz wave is comparable to the interatomic spacing
and hence the vibration is non-propagating.
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Figure 5.8: 4096-atom structures created from (A) 64-atom, (B) 512-atom, and (C)
4096-atom amorphous unit cells. The black box signifies the unit cell. 64-atom and
512-atom unit cell generated structures visually look more sparse than the orignal
4096-atom structure due to periodicity.

factors for the tiled structures. The structure factor for the 512-atom AUC tiled
structure appears almost identical to that of the original calculation (not shown).
That for the 64-atom AUC tiled structure are shown in Fig. 5.9 (A). We observe
discrete points rather than a continuous broadening, indicative of the dynamic
structure factor having delta-function-like peaks as occurs in c-Si. From a constant
wavevector slice of the dynamic structure factor for the 64-atom AUC tiled structure
in Fig. 5.9 (B), we observe that anharmonicity broadens those individual peaks of
the modes from the harmonic calculations, indicating that anharmonicity plays a
role in scattering these modes. Overall, these calculations indicate that the 64-atom
AUC structure possesses vibrations that are characteristic of a semi-crystalline solid
while the 512-atom AUC remains effectively amorphous.

We now compute the thermal conductivity of the three structures using Green-Kubo
theory. The resulting thermal conductivity calculations of these structures are shown
in Fig. 5.9 (c). The figure shows that the pure a-Si and the 512-atom AUC tiled
structure have identical thermal conductivity with little temperature dependence.
This result confirms that the 512-atom AUC structure is effectively amorphous.
However, we observe a significant increase in thermal conductivity of the 64-atom
AUC tiled structure, by more than a factor of 2 at room temperature, along with
a marked temperature dependence. At 100 K, the thermal conductivity of the 64-
atom AUC tiled structure is ∼ 10 Wm-1K-1, more than 6 times that of pure a-Si.
Therefore, the 64-atom AUC tiled structure exhibits characteristics of crystals, and
the key disorder length scale that sets the transition of thermal vibrations from
crystalline to amorphous character lies between 10-20 Å.
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Figure 5.9: (A) Dynamic structure factor for longitudinal vibrations for the 64 AUC
tiled structure. (B) Constant wavevector slice of the dynamical structure factor at q
= 6.0 nm-1 with harmonic and anharmonic forces for the 64 AUC structure. While
the harmonic calculation indicates the presence of closely spaced, discrete modes
as occurs in crystals, the anharmonic case exhibits a single broadened mode due
to phonon-phonon interactions. (C) Thermal conductivity versus temperature for
three amorphous structures. No temperature dependence is observed for 512 and
4096-atom AUC structures while a noticeable dependence in temperature for the
64-atom AUC tiled structure is evident.
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5.3 Discussion
Our analysis differs from prior normal mode works in two key respects. First,
we identify heat carriers as the collective excitations instead of normal modes;
therefore, we use a standard definition of lifetime from inelastic scattering theory as
the broadening of the inelastic peak of the dynamic structure factor that arise from
acoustic collective excitations that interact rather than the typical normal-mode
lifetimes that assume normal modes as fundamental heat carriers.

Our tuning fork analysis explicitly shows that the physical lifetime corresponding
to the damping of collective excitations is given by the lifetime from the dynamic
structure factor. Those given by normal-mode analysis give lifetimes that are 3
to 10 times higher than those observed in the tuning fork calculation. It is also
important to note that the tuning fork analysis was done at 0.1 K. If the triggered
low frequency collective excitations were indeed governed by anharmonic scattering
as predicted by some normal mode works [44, 62, 74, 75], no damping of these
collective excitations should have been observed in the length scale of the com-
putational domain. However, the fact that these excitations are damped explicitly
demonstrates that they are scattered by structural disorder such as point defects and
elastic fluctuations, consistent with our dynamic structure factor calculations and
temperature dependent thermal conductivity measurements [85, 89].

Second, we determine the propagating to non-propagating transition frequency using
the standard Ioffe-Regel criterion with the lifetimes from the structure factor, leading
to transition frequencies of around ∼ 5 THz and ∼ 10 THz for transverse and
longitudinal excitations, respectively. Prior works used different criteria to identify
the transition frequency, such as the frequency at which diffusivities calculated by
different methods are equal [44] or by looking at the degree of periodicities in the
eigenvectors [76], leading to the commonly cited transition frequency of 2-3 THz
(See Appendix D for more details). Our tuning fork analysis in Figs. 5.5 and 5.7
explicitly shows that modes that were previously considered to be non-propagating
by the latter criterion are in fact propagating. Our conclusion that propagating
acoustic excitations dominate thermal conduction in amorphous Si is a direct and
unavoidable consequence of these observations.

The picture of a gas of delocalized acoustic excitations transporting heat in amor-
phous solids suggests follow-on experiments as well as new strategies to realize
exceptional thermal materials. First, our prediction of propagating acoustic ex-
citations existing up to around 10 THz can be verified with additional thermal
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measurements on amorphous nanostructures with characteristic dimensions of less
than 10 nm as well as with scattering methods such as inelastic X-ray scattering.
Second, our analysis suggests that fully dense solids with exceptionally low thermal
conductivity can be achieved by disrupting the propagating vibrations via enhance-
ment of variations of local elastic modulus, expanding the physical range of thermal
conductivity of solids.

5.4 Conclusion
In this chapter, instead of assuming that normal modes being the fundamental heat
carriers, we draw on fundamental concepts from many-body physics and inelastic
scattering theory that dictate that the collective excitation energies of a many-body
interacting system are given by the poles of the single-particle Green’s function.
The imaginary part of this function is proportional to the dynamic structure factor
that is directly measured in inelastic scattering experiments. Our results show that
collective acoustic excitations can exist up to 10 THz which is significantly larger
than previously predicted 2 to 3 THz by normal mode methods and that they are
scattered by structural disorder such as point defects and elastic fluctuations rather
than anharmonicity consistent with tuning fork calculations and temperature de-
pendent thermal conductivity measurements. By extracting the collective acoustic
excitation lifetimes from the inelastic peaks of the dynamic structure factor, the col-
lective acoustic excitations are shown to dominate thermal conduction in amorphous
silicon in agreement with size dependent thermal conductivity measurements.

In the next chapter, we show recent inelastic X-ray scattering measurements of
amorphous silicon at theAdvancedPhotonSource andwefind that themeasurements
are consistent with our dynamic structure factor calculations. The physical picture
that emerges is, therefore, heat being carried in large part by a gas of weakly
interacting collective excitations with a cutoff frequency that depends on the atomic
structure and composition of the glass.
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C h a p t e r 6

THERMAL ACOUSTIC EXCITATIONS WITH ATOMIC-SCALE
WAVELENGTHS IN AMORPHOUS SILICON

This chapter has been adapted from [98]:

Moon, J., Hermann, R. P., Manley, M. E., Alatas, A., Said, A. H., Minnich, A.
J., Thermal acoustic excitations with atomic-scale wavelengths in amorphous sili-
con, Physical Review Materials, 2019

In the previous chapter, we reached a qualitatively different picture of atomic dy-
namics in amorphous silicon by calculating the dynamic structure factor, compared
to the general consensus from normal mode methods that rely on normal modes
as the fundamental heat carriers. It is interesting to see that despite the extensive
theoretical, numerical, and experimental works in a-Si discussed in Chapter 2 and
Chapter 4, inelastic X-ray scattering studies to directly probe THz collective acoustic
excitations are lacking. Perhaps, the absence of the IXS measurements is due to the
long attenuation lengths of hard X-rays (a few mm) for silicon and the difficulty to
make bulk a-Si samples. We circumvented this problem by powderizing a-Si films
to meet the attenuation lengths in the transmission geometry of IXS and dynamic
structure factor of amorphous silicon was then measured at the Advanced Photon
Source (APS) at Argonne National Laboratory.

In this chapter, we report the direct observation of acoustic excitations with fre-
quencies up to 10 THz in amorphous silicon, confirming our predictions from MD
simulations. The excitations have atomic-scale wavelengths as short as 6 Å and
exist well into the thermal vibrational frequencies. Further simulations indicate that
these high frequency collective excitations are supported due to the high group ve-
locity and monatomic composition of a-Si, suggesting that other glasses with these
characteristics may also exhibit such excitations. Our findings demonstrate that a
substantial portion of thermal vibrational excitations in amorphous materials can
still be described as a phonon gas despite the lack of atomic order.
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6.1 Sample preparation
We prepared two samples (A1 and A2) by depositing amorphous Si onto sapphire
substrates by plasma enhanced chemical vapor deposition (PECVD) at separate
times with silane gas diluted (5%) in argon gas at a deposition table temperature
of 473 K. To make a sample suitable for the 21.657 and 23.71 keV X-ray beams
for the IXS measurements (corresponding to absorption lengths of ∼ 2 mm [147]),
a-Si thin films (3 µm thick) were powderized in the glovebox under either nitrogen
or argon and placed in 2 mm outer diameter quartz capillary tubes with 10 µm
wall thickness as shown in Fig. 6.1. Due to the small packing factor of powders,
we placed additional capillary tube with powders from the same sample filled to a
different height to obtain optimal scattering measurements.

Figure 6.1: (A) Photon energy dependent attenuation lengths of silicon [147]. The
attentuation lengths of a-Si at 21.657 and 23.71 keV are about 2 mm. (B) a-Si
powder sample (A2) filled in two 2mm thick quartz capillary tubes, each with wall
thickness of 10 µm.

The structural characterization of sample A1 is shown in Fig. 6.2. The radial
distribution function (RDF) of this sample was measured by neutron scattering at
Nanoscale-OrderedMaterialsDiffractometer (NOMAD), SpallationNeutron Source
(SNS) atOakRidgeNational Laboratory. The neutron total scattering structure func-
tion was produced by normalizing the sample scattering intensity to the scattering
intensity from a solid vanadium rod and subtracting the background of an empty
2 mm quartz capillary. The radial distribution function was obtained through the
Fourier transform of the total scattering function with momentum transfer between
0.1 and 31.4 Å-1. The RDF and X-ray diffraction pattern show broadened features,
indicating that the samples are disordered. The RDF indicates that residual hydro-
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gen (∼ 20 at.%) is present in the sample as indicated by the negative peak at the
Si-H 1.4 Å distance, but we expect little influence on our measurements considering
that prior work observed no systematic change in thermal conductivity of PECVD
amorphous silicon films with hydrogen content varying from 1 at. % to 20 at. %
[85].

Figure 6.2: Structural characterization of a-Si powders. (A) Radial distribution
function (blue circles) of the sample A1 compared to a calculation using an amor-
phous structure from molecular dynamics (line) [140]. (B) X-ray diffraction pattern
measured at 300 K. Each tick mark represents 2θ = 2.5◦ at X-ray energy of 21.657
keV. Broadened features in both the RDF and XRDmeasurements indicate an amor-
phous atomic structure.

6.2 Results
Inelastic X-ray scattering measurements
Dynamic structure factors from both samples (A1 and A2) were independently
measured using spectrometers at sector HERIX-3 and HERIX-30 with energies
of 21.657 and 23.71 keV at the Advanced Photon Source (APS) [119, 148–150],
respectively. The measurements for the longitudinal branch at different momentum
transfers at room temperature are shown in Figs. 6.3 (A) and (B), respectively. For
simplicity, elastic peaks are not shown for each measurement. For both samples,
distinct inelastic peaks are clearly visible at thermal frequencies up to around 10
THz, indicating the presence of collective acoustic excitations with well-defined
frequencies and wave vectors. The wavelengths of these excitations are as small
as 6 Å, comparable to the interatomic spacing in a-Si. A sudden increase in the
broadening of the inelastic peaks is observed between 7.79 nm-1 and 11.12 nm-1

for A1 and between 10.0 nm-1 and 12.0 nm-1 for A2, respectively. This visual
observation indicates that collective excitations with well-defined wave vector and
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frequency are not supported beyond these wave vectors and frequencies.

To determine the center frequencies and the broadening of the collective excitations
at each momentum transfer, the dynamic structure factor spectra were modeled with
a function S(q, ν) consisting of a Lorentzian for the central elastic peak and a damped
harmonic oscillator for the inelastic peaks:

S(q, ν) = I0(q)
Γ0(q)2

Γ0(q)2 + ν2 + [n(ν) + 1]I(q)
νΓ(q)2Ω(q)

[Ω(q)2 − ν2]2 + Γ(q)2ν2 (6.1)

where q is the wave vector, ν is the frequency, I0(q) and Γ0(q) are the intensity
and width of the central peak, I(q) and Γ(q) are the intensity and full width half
maximum of the inelastic peak with the peak frequency Ω(q), and n(ν) is the Bose
factor [110]. The function S(q, ν) is then convoluted with the pseudo-Voigt function
representing the resolution function to fit to the experimental data [119].
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Figure 6.3: Inelastic X-ray scattering spectra of (A) sample A1 (black circles) and
(B) sample A2 (blue circles) along with the fit (red lines). For both samples, sharp
inelastic peaks are observed at frequencies approaching 10 THz, above which a
significant increase in the broadening is seen.
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Figure 6.4: Dispersion relation from IXS measurements (diamonds from A1 using
HERIX sector 3 and filled circles from A2 using HERIX sector 30) and calculated
dynamic structure factor fromMoon et al. [140]. Vertical bars represent the FWHM
of the inelastic peaks. The sound velocity from the measurements is 7850 m s-1,
within 4% of the predicted sound velocity of 8179 m s-1.

The dispersion relations of the measured acoustic excitations are plotted in Fig. 6.4
along with the calculated dynamic structure factor from Ref. [140]. The vertical
bars represent the full width at half maximum of the inelastic peaks. Excellent
agreement between the simulation and the IXS measurements is observed, with
the sound velocities agreeing to within 4%. We attempted to include the 20 at.%
hydrogen present in the sample in MD simulations using available interatomic
potentials [151]; however, the thermal conductivity of the structure was inconsistent
with experiments [86]. This discrepancymay arise because the interatomic potential
was optimized for structural rather than dynamic properties. The good agreement
between simulations with pure a-Si and experiments suggests that the presence
of hydrogen does not affect the dispersion of the acoustic excitations. In both
simulations and experiments, vibrations with frequencies less than ∼ 10 THz have
a well-defined frequency and wave vector. It’s worth mentioning that the calculated
dynamic structure factors of Ref. [44] and [142] are also in good agreement
with the measurements. These works also utilized Stillinger-Weber potential [57].
Comparison with other theoretical studies that focus on quantities of relevance to
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Figure 6.5: Temperature dependent IXS measurements for sample A1 (A) Inelastic
peak frequency and (B) broadening at wave vectors of 7.79 (blue circles), 11.12 (red
diamonds), and 14.44 nm-1 (black squares) across the temperature range from 35 to
500 K. A slight softening of the peak frequencies with temperature is observed, but
no clear temperature dependence is found for the broadenings.

Allen-Feldman theory [43, 56] is difficult because such quantities are not directly
measured in an IXS experiment.

Next, we performed additional temperature dependent IXSmeasurements on Sample
A1 at 35 K and 500 K. Beryllium dome was used to insulate the samples and liquid
Helium was used to cool the sample. The IXS signal arising from the Beryllium
dome was removed from the overall signal by measuring the IXS spectra of an
empty Beryllium dome. The extracted inelastic peak frequencies and broadenings
are shown in Fig. 6.5. We observe a slight softening with temperature for the
peak frequency, Ω(q), but no temperature dependence of the broadening is seen.
This observation indicates that the origin of the broadening of the inelastic peaks is
structural rather than anharmonic. The temperature independence of the broadening
has also been reported in other amorphous solids such as glycerol and silica as
mentioned in Chapter 3 [106, 109, 137].
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6.3 Dynamic structure factor of various atomic configurations
We note that a-Si does not have a uniquely determined structure. Prior calculations
[152, 153] have shown that paracrystalline amorphous silicon structures yield an
RDF that is indistinguishable with that of experiments. We therefore generated 3 dif-
ferent amorphous silicon configurations (continuous random network, melt-quench,
and crystal seed nucleation) that closely match with our RDF from neutron scatter-
ing. All three structures contain 4096 atoms and use the same SW potential with
a time constant of 0.5 fs. The continuous random network model was provided by
N. Mousseau and was generated from the modified Wooten-Winer-Weaire (WWW)
algorithm [58]. The description of the melt-quench method is provided in detail in
Moon et al. [140]. For the crystal seed nucleation method, the crystalline silicon
was first melted at 3500 K at constant volume for 50 ps while the spherical crystal
seed atoms (1 at.%) are kept fixed at their positions. We then quenched the structure
to 1000 K at 100 K ps-1. The entire structure was then annealed at 1000 K and 0
bar for 2.75 ns in NPT followed by quenching to room temperature at the same rate
as before. The resulting structure from the crystal seed nucleation, therefore, has a
crystalline region as shown in Fig. 6.6 (A). Only the crystallite atoms are displayed
in the otherwise amorphous domain.

A zoomed-in view of the crystallite is depicted in Fig. 6.6 (B). The red atoms
denote the initial crystal seed (1 at.%) and the black atoms represent the crystal
growth from the seed during the annealing process. The crystalline region with well-
defined tetrahedral local structures is easily observed and is estimated to be 8 at.%
by dividing the number of atoms in the crystallite by the total number of atoms. The
radial distribution functions of the above-mentioned structures are plotted against the
experimental data from neutron scattering in Fig. 6.6 (C) and show good agreement.
A larger crystal seed with 3 at.% was also used to create a paracrystalline silicon
structure with the same procedure above, but additional distinctive peaks were
clearly seen in the RDF, suggesting that the structural heterogeneity is large enough
to affect the sample average of atomic density fluctuations.

The dispersion relations for longitudinal waves from dynamic structure factor cal-
culations of these 3 amorphous silicon structures are depicted in Fig. 6.7. We
observe that all structures exhibit crisp phonon disperion line up to around 10 THz
above which significant broadening is clearly observed, consistent with our IXS
measurements. Comparisons of the RDFs and dynamic structure factor calculations
between the PECVD a-Si and three amorphous silicon models suggest that acoustic
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Figure 6.6: (A) Paracrystalline amorphous silicon structure with only the crystalline
region displayed. (B) Zoomed-in view of the crystallite. The red atoms denote the
initial crystal seed and the black atoms represent the crystal growth from annealing.
The crystallite is estimated to compose 8 at.% of the structure. The crytal order is
clearly observed. (C) Radial distribution function of continuous random network
(black line), melt-quench (blue line), and paracrystalline (red line) amorphous silicon
structures compared to that of experimental data (green circles).

excitations with frequencies up to 10 THz with atomic scale wavelengths exist in
several possible atomic configurations of a-Si.
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Figure 6.7: Dispersion relations for longitudinal waves for (A) continuous random
network, (B) melt-quench, and (C) crystal seed nucleation amorphous silicon struc-
tures. All of them show a crisp phonon dispersion line up to around 10 THz above
which a significant broadening is observed.
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6.4 IXS measurement comparison among several amorphous materials
The broadening of the inelastic peaks, Γ(q), of a-Si at 300 K versus wave vector
are shown in Fig. 6.8 (a) along with those of various types of amorphous materials
from metallic glasses to polymers studied by IXS [106, 125, 127, 128] and the
computational work of Ref. [140]. A Γ(q) α q2 scaling is also shown as a guide
to the eye. Previous works in other materials show a clear power law dependence.
In contrast, the broadening of a-Si for both the IXS and dynamic structure factor
calculations [140, 142] demonstrate a sudden increase rather than a power law
dependence. This sudden increase in the broadening can also be visually observed
in the raw data shown in Fig. 6.3. The origin of this increase is at present not clear
and will be the subject of future work.

Figure 6.8: Inelastic peak broadening for a-Si (A1 and A2) and other amorphous
materials. (a) Broadening Γ versus wave vector q of various amorphous materials
from IXS: present measurements at 300 K (black filled triangles for A1 and black
filled circles for A2), simulations from Ref. [140] (solid black line), silica at 1050 K
(blue crosses) [106], polybutadiene at 140 K (PB, orange squares) [125], Ni33Zr67
metallic glass at room temperature (MG, yellow diamonds) [127], and amorphous
drugs of Indomethacin (IMC, purple circles) and Celecoxib (CXB, green crosses)
at room temperature [128]. A temperature dependence of the broadenings were
not observed in these materials; therefore, direct comparison of our measurements
at 300 K is possible. The q2 dependence of broadening on wave vector for these
materials is not observed in amorphous silicon. (b) Broadening versus frequency for
the same materials as in (a). The dotted line is the Ioffe-Regel crossover defined by
Ω = πΓ. The Ioffe-Regel crossover occurs at around ∼ 10 THz for a-Si, well into the
thermal frequencies. The vertical bars in the measured data are the uncertainties of
fitting the damped harmonic oscillator model to the measurements. The simulated
broadening lies within the vertical bars.

The definition of the frequency at which an acoustic excitation is no longer well-
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defined is conventionally taken to be when the broadening Γ(q) = Ω(q)/π, known
as the Ioffe-Regel crossover [14, 144]. Using this criterion, we find a strikingly
high crossover frequency of around 10 THz, as shown in Fig. 6.8 (b). This
crossover frequency (corresponding to ~ω/kB = 480 K) is well within the portion
of the vibrational spectrum thermally occupied at 295 K and implies that acoustic
excitations are supported for wavelengths as small as ∼ 6 Å, only a few times larger
than the interatomic distance of amorphous silicon (∼ 2.4 Å).

Our simulations show that this unusually high crossover frequency can be explained
by two features of a-Si. First, acoustic excitations cease to possess a well-defined
wave vector and frequency if the disorder is sufficiently strong. a-Si is monatomic
with only minor isotopic mass disorder and hence lacks the degree of disorder
present in polyatomic glasses such as mass or force constant disorder. Using Tersoff
potentials [154, 155], dynamic structure factors of a-SiO2 and a-SiCwere calculated.
The longitudinal sound velocities of a-SiO2 and a-SiC fromdynamic structure factors
are calculated to be 5567 and 9844 m s-1 which are within 5% of the experimental
results of 5800 and 9462 m s-1, respectively [106, 156]. Clear additional broadening
in the dispersions is observed compared to a-Si as shown in Fig. 6.9.

Figure 6.9: Calculated dynamic structure factor for longitudinal vibrations in (A)
a-SiO2 and (B) a-SiC. Noticeable broadening is observed for frequencies below 10
THz. The Ioffe-Regel crossover frequency is ∼ 1.5 THz and ∼ 8 THz for (a) and
(b), respectively.

Second, a-Si has a high group velocity due to the low atomic mass of Si and stiff
covalent bonds. Thus for a given wave vector, a-Si supports higher frequency
excitations than for a heavier and weaker bonded amorphous material like glassy
selenium. Inelastic neutron and x-ray scattering studies on glassy selenium reported



92

a longitudinal sound velocity of around 2000m s−1 leading to a Ioffe-Regel crossover
frequency of around 1-2 THz [157, 158]. For a given wave vector, a-Si supports a
vibrational frequency around four times larger than that of a-Se owing to its higher
group velocity.

These factors explain the presence of acoustic excitations at frequencies up to 10 THz
in a-Si. Other glasses with similar characteristics, such as tetrahedral amorphous
carbon, may exhibit such excitations as well, a prediction that can be verified with
further inelastic scattering experiments.

Amorphous diamond is a good candidate that meets these criteria to test this asser-
tion. Amorphous diamond (3.3 gcm-3) with a very high coordination number of 3.9
has been synthesized by melting under high pressure using lasers in diamond anvil
cell and quenching [159]. Our preliminary dynamic structure factor calculations
of longitudinal vibrations in amorphous diamond (3.3 gcm-3) that has larger sound
velocity than a-Si (13.1 kms-1 in a-diamond vs 8 kms-1 in a-Si) is shown in Fig.
6.10. Remarkably, we see a crisp phonon dispersion all the way up to 50 THz. In the
transverse direction, a linear, narrow dispersion is observed up to ∼ 25 THz. Con-
sidering that in our density of states calculations vibration spectra exist up to ∼ 50
THz, a majority of vibrations can, therefore, be described by collective excitations
despite the intrinsic atomic disorder in amorphous diamond, a prediction that has
never been made in any amorphous solids. If these predictions are confirmed, there
will be a paradigm shift for how we understand the transport of heat in amorphous
solids. Efforts have been made to measure the dynamic structure factor of amor-
phous diamonds during our more recent beamtime at APS. However, due to a very
high X-ray attenuation lengths of around 1 cm and difficulty to make bulk samples
and to powderize, we were unfortunately unable to obtain meaningful data.
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Figure 6.10: Calculated dynamic structure factor for longitudinal excitations in
amorphous diamond with density of 3.3 gcm-3. We see a crisp phonon dispersion
up to 50 THz.

6.5 Conclusion
Despite decades of intense theoretical, numerical, and experimental works to char-
acterize thermal transport in amorphous silicon, there has not been an inelastic scat-
tering work to probe THz range collective excitations in a frequency and wavevector
resolved manner. In this work, the first IXS measurements to directly probe these
collective acoustic excitations in amorphous silicon are reported. Ourmeasurements
confirm our predictions that collective acoustic excitations are supported up to 10
THz corresponding to wavelengths as small as 6 Å, in contrast to prior predictions
from normal mode methods that they only exist up to 2 to 3 THz. Comparing with
other polyatomic amorphous solids, we find that these high frequency collective
excitations are supported in amorphous silicon due to the monatomic composition
and high group velocity. Our findings, therefore, demonstrate that the description of
thermal vibrations in a-Si as a gas of acoustic excitations is unexpectedly accurate
despite the lack of crystalline order, suggesting that other monatomic glasses with
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high sound velocity may also support acoustic waves in the thermal spectrum.
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C h a p t e r 7

SUMMARY AND OUTLOOK

Historically, normal mode methods have been used extensively to study thermal
transport in amorphous solids. Amorphous silicon has been the proving ground
to develop these methods and study thermal transport of glasses due to its simpler
monatomic composition and its wide usage in many applications such as solar cells
and gravitational wave detectors. Decades of normal mode analysis in amorphous
silicon have led to a general consensus that collective excitations exist up to 2 to 3
THz and are scattered by anharmonic interactions with one another as in crystals,
and that non-propagating vibrations dominate thermal conduction. However, after
a careful analysis of these works in this thesis, we find that there exist a number
of discrepancies with experiments such as a strong size effects in thermal conduc-
tivity indicating that collective excitations dominate thermal transport and a weak
temperature dependent thermal conductivity that are not consistent with collective
excitations scattering through anharmonic interactions. Pinpointing the precise ori-
gin of these discrepancies is challenging; however, the common assumptions made
in these normal mode methods are that atoms vibrate around their equilibrium po-
sitions and that normal modes are the fundamental heat carriers. We show from
classical and ab-initio molecular dynamics simulations of amorphous silicon that
atoms diffuse even at room temperature and more severely so at higher temperatures
consistent with high temperature atomic diffusion measurements.

In this thesis, we have instead used inelastic scattering theory to study collective
excitations in amorphous silicon that does not require the use of normal modes.
We find that collective acoustic excitations dominate the thermal conduction in
amorphous silicon and they are scattered by structural disorder rather than anhar-
monic interactions, consistent with above mentioned experimental findings. We
further show that collective acoustic excitations can exist up to 10 THz, well into
the thermal spectrum. These predictions were directly confirmed by our recent
non-resonant inelastic X-ray scattering (IXS) measurements of amorphous silicon
and our subsequent calculations demonstrate that these high frequency propagating
excitations are supported in amorphous silicon due to a large sound velocity and
monatomic composition, suggesting that other monatomic amorphous solids with
large sound velocities may also support these thermal excitations.
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A p p e n d i x A

HAMILTONIAN FOR INELASTIC SCATTERING

Toderive an explicit expression for the double differential cross section, we start from
the Hamiltonian describing the interaction between electrons in the sample and the
time dependent electromagnetic field. We treat the matter quantum mechanically,
and treat the electromagnetic field classically. For the electromagnetic field, we
assume that only light influences the matter through a time-dependent interaction
potential and that the matter does not affect the light. Non-relativistic electrons are
assumed. Here are some comments and summaries from classical electrodynamics:

1. Maxwell’s equations describe the electric and magnetic fields (E,B).

2. The time-dependent interaction between light and matter must be described
in terms of a potential rather than a field.

3. To describe E and B, a vector potential A(r, t) and a scalar potential φ(r, t)
are used.

4. Since the potentials are not uniquely determined, Coulomb gauge is used for
this derivation:

−∇2A(r, t) +
1
c2
∂2A(r, t)
∂t2 = 0 (A.1)

∇ · A(r, t) = 0 (A.2)

. With the Coulomb gauge, the electric field and the magnetic field can be
expressed as

E = −
∂A(r, t)
∂t

(A.3)

B = ∇ × A(r, t). (A.4)

Now, we find a classical Hamiltonian that describes charged particles in the EM
field in terms of the vector potential. The Lorentz force acting on a particle with
charge q is given by

F = q(E + v × B) (A.5)
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where v is the velocity of the particle. The Lorentz force can also be written in
terms of the total potential energy, U, in Lagrangian mechanics as

F = −∇U +
d
dt
∇vU. (A.6)

Equating the above two expressions, we obtain

U = qφ − qv · A. (A.7)

Now, the Lagrangian can be written in terms of the kinetic and potential energy of
the particle

L = T −U

=
1
2

mv2 + qv · A − qφ.
(A.8)

In addition, the Hamiltonian is

H = p · v − L

= p · v −
1
2

mv2 − qv · A + qφ
(A.9)

where
p =

∂L
∂v
= mv + qA. (A.10)

Velocity, v, can then be written in terms of p as

v =
1
m
(p − qA). (A.11)

Plugging in the velocity into the Hamiltonian,

H =
1
m
p · (p − qA) −

1
2m
(p − qA)2 −

q
m
(p − qA) · A + qφ

=
1

2m
[
p − qA

]2
.

(A.12)

In the second step, we assume that the scalar potential, φ is negligible. Above
derivations have used the SI units. However, many condensed matter theorists
typically use the CGI units, and the Hamiltonian including the electromagnetic
wave and electron interaction derived above in CGI units, can be written as

H =
1

2m

∑
i

(
pi −

q
c
Aδ(r − r i)

)
·
(
pi −

q
c
Aδ(r − r i)

)
+

∑
i

V(r i) + V e−e
int (A.13)

where c is the speed of light, sum is over all electrons, V(r i) is the potential field,
andV e−e

int describes the electron-electron interaction. Spin contribution is neglected.
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A p p e n d i x B

AUTOCORRELATION FUNCTIONS

We have seen that many vibrational properties of materials can be found from
autocorrelation functions. In this chapter, basics and properties of autocorrelation
functions are briefly reviewed.

Let us first define a time-limited stationary stochastic signal x(t) for 0 ≤ t ≤ T . For
t > T , x(t) is zero. Its autocorrelation can be defined as

ACxx(t, t + τ) = E[x(t)x(t + τ)]

≈
1
T

∫ T

0
x(t)x(t + τ)dt

(B.1)

where E refers to the expectation value. The first line is valid for stochastic signals
and the second line is more general and can be used for deterministic processes as
well. Some important properties of autocorrelation functions of stationary stochastic
processes are listed below.

• For wide-sense stationary stochastic processes, the autocorrelation is shift-
invariant and their expectation values are constant.

ACxx(t, t + τ) = ACxx(τ) (B.2)

• The autocorrelation function is symmetric

ACxx(τ) = ACxx(−τ). (B.3)

• The autocorrelation function is at its maximum at τ = 0 and its value is equal
to the variance of the signal.

• The derivative of the autocorrelation function can be written as
d(ACxx(τ))

dτ
= E[x(t) Ûx(t + τ)] = ACx Ûx(τ)

= −E[x(t − τ) Ûx(t)] = −AC Ûxx(τ)

d(ACxx(τ))

dτ
= −

d(ACxx(−τ))

dτ
.

(B.4)

• The second derivative of the autocorrelation function can be written as

d2(ACxx(τ))

dτ2 =
d(ACx Ûx(τ))

dτ
= ACx Üx(τ) = −AC Ûx Ûx(τ). (B.5)
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B.1 Weiner Khinchin’s Theorem
The autocorrelation, R(t), of a function, f (x) is defined as

R(t) ≡
∫ ∞

−∞

f̄ (τ) f (t + τ)dτ. (B.6)

Recall that the inverse Fourier transform of F(ν) is defined by

f (τ) =
∫ ∞

−∞

F(ν)ei2πντdν (B.7)

with a complex conjugate of

f̄ (τ) =
∫ ∞

−∞

F̄(ν)e−i2πντdν. (B.8)

Plugging in Ē(τ) and E(t + τ) into the autocorrelation gives

R(t) =
∫ ∞

−∞

[ ∫ ∞

−∞

F̄(ν)e−i2πντdν
] [ ∫ ∞

−∞

F(ν′)ei2πν′(t+τ)dν′
]
dτ

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

F̄(ν)F(ν′)e−i2πτ(ν−ν′)ei2πν′t dτdνdν′

=

∫ ∞

−∞

∫ ∞

−∞

F(ν)F(ν′)δ(ν′ − ν)ei2πν′t dνdν′

=

∫ ∞

−∞

|F(ν)|2ei2πνt dν

= IFT
[
F(ν)2

]
.

(B.9)

Weiner Khinchin’s theorem can be used to calculate Green-Kubo thermal conduc-
tivity, vibrational density of states, and dynamic structure factors as they are based
on autocorrelation functions.
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A p p e n d i x C

GREEN-KUBO THERMAL CONDUCTIVITY

The Green-Kubo formalism is based on classical statistical thermodynamics. There
are several derivations that result in the same formula but in this chapter, I will
mainly adapt the derivations by Helfand and Kaviany.

The energy equation can be written as

ncv
∂Eo(r, t)

∂t
= k∇2Eo(r, t) (C.1)

whereEo(r, t) = E(r, t)−〈E(r, t)〉, the time and position dependent energy deviation.
E(r, t) is the actual energy and 〈E(r, t)〉 denotes the expectation energy. n and cv
correspond to density and specific heat. For discrete particle systems, Eo(r, t) =∑

j Eo,j(r, t)δ[r − r j(t)] where index j denotes the atom identity.

Let us define the Fourier transform of Eo(r, t) as Ẽ(r, t)

Ẽ(r, t) =
∫

Eo(r, t)eiκ ·rdr =
∑

j

Eo,j(t)eiκ ·r j (t) (C.2)

The energy equation can then be written in terms of Ẽ(r, t) as

∂Ẽ(r, t)
∂t

= −
κ2k
ncv

Ẽ(r, t) (C.3)

by using the Fourier transform identity that FT( df
dx ) = −iκF(κ) where FT is the

Fourier transform operation and F(κ) is the Fourier transform of f (x). The solution
with the initial condition, Ẽ(r,0), is then

Ẽ(r, t) = Ẽ(r,0)e−
κ2kt
ncv (C.4)

Multiplying the complex conjugate of the initial condition to both sides, we have

Ẽ(r, t)Ẽ∗(r,0) =
∑

j

Eo,j(t)eiκ ·r j (t)
∑

l

Eo,l(0)eiκ ·r l(0) (C.5)

and we can further write∑
j

Eo,j(t)eiκ ·r j (t)
∑

l

Eo,l(0)eiκ ·r l(0) =
[∑

j

Eo,j(0)eiκ ·r j (0)
∑

l

Eo,l(0)eiκ ·r l(0)
]
e−

κ2k
ncv

(C.6)
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Applying ensemble average on both sides and rearranging,

〈∑
j

∑
l

Eo,j(t)Eo,l(0)eiκ ·(r j (t)−r l(0))
〉

=
〈∑

j

∑
l

Eo,j(0)Eo,l(0)eiκ ·(r j (0)−r l(0))
〉
e−

κ2k
ncv (C.7)

Next, we expand both sides as a Taylor series about κ = 0 and assuming small
perturbations, we keep up to the second order. For simplicity, we will only consider
the x direction without losing generality. The left hand side is then

〈∑
j

∑
l

Eo,j(t)Eo,l(0)
〉
+ iκ

〈∑
j

∑
l

Eo,j(t)Eo,l(0)
[
x j(t) − xl(0)

]〉
−
κ

2

〈∑
j

∑
l

Eo,j(t)Eo,l(0)
[
x j(t) − xl(0)

]2
〉

(C.8)

We now examine each term. In equilibrium, the expectation value at time t of a
dynamic property that depends on the particle positions and velocities is same as
that at t = 0.〈∑

j

∑
l

Eo,j(t)Eo,l(0)
〉
=

〈∑
j

∑
l

(E j − 〈E j〉)(El − 〈El〉)

〉
=

〈∑
j

∑
l

(E j El − E j 〈El〉 − El 〈E j〉 + 〈E j〉〈El〉)

〉
=

〈
E2

t − 2Et 〈Et〉 + 〈Et〉
2
〉

=
〈
(Et − 〈Et〉)

2
〉

= NcvkBT2

(C.9)

where Et =
∑

n En is the total energy of the system and N is the total number of
atoms. In the last step, I have used the fact that for canonical ensemble systems,〈

(Et − 〈Et〉)
2
〉
=
∂2lnZ
∂β2 (C.10)

where Z is the partition function and β = kBT .

The first order expansion term can be written as

iκ
〈∑

j

∑
l

Eo,j(t)Eo,l(0)
[
x j(t) − xl(0)

]〉
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= iκ
[〈∑

j

∑
l

Eo,j(t)Eo,l(0)x j(t)
〉
−

〈∑
j

∑
l

Eo,j(t)Eo,l(0)x j(0)
〉]

= iκ
[〈∑

j

∑
l

Eo,j(0)Eo,l(0)x j(0)
〉
−

〈∑
j

∑
l

Eo,j(0)Eo,l(0)x j(0)
〉]

= 0

(C.11)

The second order term can be written as

−kappa2

2

〈∑
j

∑
l

Eo,j(t)Eo,l(0)
[
x j(t) − xl(0)

]2
〉

=
−κ2

2

[〈∑
j

∑
l

Eo,j(t)Eo,l(0)x j(t)2
〉
− 2

〈∑
j

∑
l

Eo,j(t)Eo,l(0)x j(t)xl(0)
〉

+
〈∑

j

∑
l

Eo,j(t)Eo,l(0)xl(0)2
〉]

=
−κ2

2

[〈∑
j

∑
l

Eo,j(t)Eo,l(t)x j(t)2
〉
− 2

〈∑
j

∑
l

Eo,j(t)Eo,l(0)x j(t)xl(0)
〉

+
〈∑

j

∑
l

Eo,j(t)Eo,l(0)xl(0)2
〉]

(C.12)

If we assume that the particles are densely populated, we can write〈∑
j

∑
l

Eo,j(t)Eo,l(t)x j(t)2
〉
=

〈∑
j

Eo,j(t)x j(t)
∑

l

Eo,l(t)xl(t)
〉

(C.13)

Therefore, the second order correction term becomes

−κ2

2

〈(∑
j

x j(t)Eo,j(t) − x j(0)Eo,j(0)
)2

〉
(C.14)

The left hand side of the Eq. C.7 is then

NkBT2cv −
κ2

2

〈(∑
j

x j(t)Eo,j(t) − x j(0)Eo,j(0)
)2

〉
(C.15)

Now, we consider the right hand side of Eq. C.7 and expand up to the second order
about κ = 0. With the same argument as the zeroth term on the left hand side, the
zeroth term on the right hand side,〈∑

j

∑
l

Eo,j(0)Eo,l

〉
= NkBT2cv (C.16)
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For κ = 0, the first order term can be written as

iκ
〈∑

j

∑
l

Eo,j(0)Eo,l[x j(0) − xl(0)]
〉

(C.17)

With the same argument as the first term on the left hand side, the first order term
on the right hand side is equal to 0.

If we define

a =
〈∑

j

∑
l

Eo,j(0)Eo,l(0)eiκ ·(r j (0)−r l(0))
〉

b = e
−κ2k
ncv

(C.18)

For the secord order term, we need to evaluate the derivative

∂2(ab)
∂κ2 = a

∂2b
∂κ2 + 2

∂a
∂κ

∂b
∂κ
+
∂2b
∂κ2 (C.19)

The derivative of the exponential is zero at κ = 0. Carrying out the algebra (not
shown here), the second order term is equal to −V kBT2kxκ

2. Therefore, the right
hand side of Eq. C.7 is

NkBT2cv − V kBT2kxκ
2 (C.20)

Equating the left hand side and the right hand side of Eq. C.7 and solving for k x,

kx =
1

kBT2V

〈(∑
j

[E j,o(t)x j(t) − E j,o(0)x j(0)]
)2

〉
(C.21)

In order to obtain the Green-Kubo formula, we transform the summation to the
integral form. We use the fact that〈(∑

j

[E j,o(t)x j(t) − E j,o(0)x j(0)]
)2

〉
=

∫ t

0

d
dt

∑
j

E j,o(t′)x j(t′)dt′ (C.22)

and we define S(t) in x-direction as

Sx(t) =
d
dt

∑
j

E j,o(t)x j(t) (C.23)

Here S(t) is often referred to as the heat current or energy current. However, this
is misleading as S(t) has the units of Wm. The Green-Kubo formula I have used
in previous chapters use actual heat currents with the units of Wm−2. Hence, the
volume, V , is located in the numerator instead.
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Using the heat current as defined above, the ensemble average can be written as〈(∑
j

[E j,o(t)x j(t) − E j,o(0)x j(0)]
)2

〉
=

〈 ∫ t

0
Sx(t′)dt′

∫ t

0
Sx(t′′)dt′′

〉
=

∫ t

0

∫ t

0

〈
Sx(t′)Sx(t′′)

〉
dt′dt′′

=

∫ t

0

∫ t

0

〈
Sx(t′′ − t′)Sx(0)

〉
dt′dt′′

= 2t
∫ t

0
(1 −

τ

t
)

〈
Sx(τ)Sx(0)

〉
dτ

(C.24)

In the last step, I have the used the identity that∫ t

0

∫ t

0
f (t′′ − t′)dt′dt′′ = 2t

∫ t

0
(1 −

τ

t
) f (τ)dτ (C.25)

Therefore, the thermal conductivity in x-direction can be written as t →∞,

kx =
1

V kBT2

∫ ∞

0

〈
Sx(t)Sx(0)

〉
dt (C.26)

For three dimensional systems, the thermal conductivity tensor can be written as

ki j =
1

V kBT2

∫ ∞

0

〈
Si(t)Sj(0)

〉
dt (C.27)

where the indices i, j refer to the cartesian directions and heat current vector is

S(t) =
d
dt

∑
j

E j,o(t)r j(t) (C.28)

Once the heat current vectors are calculated (e.g. using LAMMPS [61]), thermal
conductivity can be calculated using the Green-Kubo formalism outlined above.
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A p p e n d i x D

NORMAL MODE METHODS TO DETERMINE PROPAGON TO
DIFFUSON AND DIFFUSON TO LOCON CROSSOVER

FREQUENCIES

Crossover frequencies from propagon to diffuson (Ioffe-Regel) and diffuson to locon
(mobility edge) crossover frequencies from several works in amorphous silicon are
summarized in Table D.1. One way to determine the Ioffe-Regel (IR) frequency was
to find the frequency at which propagon diffusivity using the Debye sound velocity
and normal mode lifetimes is equal to the Allen-Feldman diffusivity [44]. Using
this method, the propagon to diffuson crossover frequency was reported at 1.8 THz.
However, utilizing this method may lead to an over-simplification in characterizing
the IR frequency as there is no theory to support that longitudinal propagons and
transverse propagons must have the same IR frequency. Another way to determine
the IR frequency is to use the equilibrium atomic positions and eigenvectors of
individual normalmodes then look for planewave-like periodicity in the eigenvectors
[76]. The eigenvector periodicity (EP) of a mode is further normalized by a fictitious
normal mode that has pure sinusoidal modulation, which provides information about
the degree of propagation of that particular mode. However, the EP method also
has some flaws. It only provides the information of periodicity of a normal mode
frozen at 0 K without interacting with any other normal modes; therefore, the degree
of the periodicity of a normal mode at finite temperatures is not known. Inverse
participation ratio (IPR) which has been used to find the diffuson to locon crossover
frequency (mobility edge) is also based on eigenvectors from the lattice dynamics.
In brief, it measures the number of atoms participating in an individual mode. In the
most ideal case where only one atom is participating in a normal mode, the normal
mode is then a locon. On the other hand, if the normal mode is delocalized, there
will be many other atoms participating in that mode. Then again, this calculation
is done at 0 K and it is unknown how finite temperature will affect the predictions
from the IPR.
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Work IR frequency (THz) Method Mobility edge (THz) Method
Ref. [62] 3 - - -
Ref. [44] 1.8 Dpr = DAF - DAF → 0
Ref. [54] 2 - 16.5 IPR
Ref. [76] 2 EP 17 IPR

Table D.1: Propagon to diffuson (IR frequency) and diffuson to locon crossover
(mobility edge) frequencies and the corresponding methods to determine them in
amorphous silicon by various works [44, 54, 62, 76]. Dpr and DAF represent
propagon and Allen and Feldman diffusivities, respectively. IPR is the inverse
participation ratio and EP is the eigenvector periodicity. "-" denotes items not
explicitly mentioned. All works mentioned employed Tersoff potentials [94, 155]
except Ref. [44] which used Stillinger-Weber potential [57]. All works employed a
4096-atom structure.
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