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ABSTRACT

Quantum information has the potential to disrupt the present computational landscape. Much
of this potential rests on the existence of efficient quantum algorithms for classically intractable
problems and of quantum cryptographic protocols for tasks that are provably impossible to realize
classically. At the heart of many quantum advantages is one of the most counterintuitive features
of quantum mechanics, known as entanglement. The central motivating question of this thesis
is the following: if quantum devices will perform tasks that are beyond the reach of classical
devices, can we hope to certify that they are performing these tasks correctly? Bell’s theorem, a
landmark result in physics, provides a partial answer to this question: it asserts that measurements
on spatially isolated, but entangled, particles can result in outcomes that are correlated in a way
that cannot be explained by any local hidden variable theory (such as Newtonian physics). A
direct operational consequence of this theorem is that one can devise a statistical test to certify the
presence of entanglement (and hence of genuine quantumness). Remarkably, nature allows us to
take this certification one step further: in some cases, the correlation of measurement outcomes is
sufficient to single out a unique quantum setup compatible with this correlation. This phenomenon
is often referred to as self-testing, and is the central topic of this thesis. In recent years, the theory of
self-testing has developed significantly, and has found many applications in quantum cryptography,
in the complexity of multiprover interactive proofs, as well as strong connections to foundational

questions in the theory of entanglement.

In the first part of this thesis, we review the basic terminology and results in the theory of self-
testing. We then explore a concrete application to the problem of verifiably delegating a quantum
computation. Our main technical contribution is a test that robustly certifies products of single-
qubit Clifford measurements on many EPR pairs. We employ this test to obtain a protocol which
allows a classical user to verifiably delegate her quantum computation to two spatially isolated
quantum servers. The overall complexity of our protocol is near-optimal, requiring resources that

scale as O(glog ¢) to delegate a quantum circuit of g gates.

In the second part of this thesis, the driving question is the following: what is the class of quantum
states and measurements that can be certified through self-testing? Does self-testing only apply
to a few special cases, like EPR pairs or copies of EPR pairs, or are these instances of a more
general phenomenon? One of the main results of this thesis is that we settle this question for the
case of bipartite states. We show the existence of a self-testing correlation for any pure bipartite
entangled state of any finite local dimension. We then move on to explore the multipartite case,
and we show that a significantly larger class of states can be self-tested than was previously known.

This includes all multipartite partially entangled GHZ states, and all multipartite qudit states which
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admit a Schmidt decomposition.

In the final part of this thesis, we explore connections of the theory of self-testing to basic questions
about entanglement and quantum correlation sets. In particular, we set out to understand the
expressive power of infinite-dimensional quantum systems. We consider two questions: can
spatially isolated quantum systems of infinite dimension produce correlations that are unattainable
by finite-dimensional systems? Does there exist a correlation that cannot be attained exactly by
spatially isolated quantum systems (not even infinite-dimensional ones), but can be approximated
arbitrarily well by a sequence of finite or infinite-dimensional systems? The first question was posed
by Tsirelson in 1993, and its answer has been elusive. One of the main results of this thesis is a
resolution of this question. We provide an explicit example of a correlation that is attained (exactly)
only by infinite-dimensional systems. The second question is better known as the “non-closure of
the set of quantum correlations”, and was answered affirmatively in a breakthrough of Slofstra. We
give a new proof of this result by constructing a strikingly simple correlation. In contrast to previous
proofs, which involved the representation theory of finitely presented groups and C*-algebras, our
proof is elementary, and leverages one of our self-testing results and a phenomenon known as

embezzlement.
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Chapter 1

INTRODUCTION

Advances in the field of computing have profoundly shaped our society. In recent years, guantum
computing has received increasing attention as a novel paradigm for computation with the potential
to disrupt the current landscape. We expect that quantum computers will achieve dramatic speed-
ups for many computational problems. An example of an area that will benefit drastically from
these speed-ups is computational chemistry [15]], where numerical simulations are employed to
understand and predict properties of molecules, and to guide the design of new nanomaterials:
quantum computers are expected to be able to efficiently perform simulations that are completely
intractable for classical computers. The power of quantum computers can also be leveraged for
cryptographic purposes. On the one hand, we know of quantum algorithms that can efficiently
factor large numbers [85]], a problem whose computational hardness is at the basis of the security
of many cryptographic systems in use today: this urges us to redesign our cryptographic systems
in a way that is secure against quantum attacks. On the other hand, quantum mechanics can be
harnessed to design “unbreakable” cryptographic systems and realize cryptographic tasks that are

provably impossible to realize using classical computers alone.

The ongoing race to build a universal quantum computer and realize this potential has fueled re-
markable experimental advances. The current setting inevitably raises the following basic question:
once we have a universal quantum computer, how do we test that it is functioning correctly? Or
more generally, how can a classical verifier test any quantum device at all? If quantum computers
are meant to perform computations and tasks beyond the reach of classical computers, can we
hope to verify the outcomes of these computations? The verifier might be an experimentalist with
specialized knowledge about a certain experimental setup and the technical equipment involved,
or it could be a consumer who has purchased a professed quantum device and has nothing but a
laptop and the quantum device itself. There are several possible ways to approach this problem. For
example, the experimentalist may attempt to perform a series of measurements on the device, and
conduct some statistical analysis on the outcomes by applying techniques from state and process
tomography [76] or randomized benchmarking [52]. However, both of these approaches assume
that the measurement apparatus is trusted. For the layman consumer, any measurement apparatus
is just as untrusted as the quantum device to be tested. For a classical verifier to unequivocally
test and certify a quantum system, that system should be modeled in a device-independent way,
i.e. as a black-box having classical inputs (e.g. measurement settings) and classical outputs (e.g.

measurement outcomes).
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Bell’s theorem [9]], a profound discovery in physics published in 1964, provides a partial solution
to this problem. It asserts that measurements on spatially isolated quantum systems can produce
statistics that are not compatible with any local hidden variable theory (such as Newtonian physics).
Such statistics are only possible if the two quantum systems are entangled, a characteristically
quantum phenomenon that is central to many quantum advantages in computational tasks. The
operational consequence of Bell’s theorem is that one can design a statistical test to detect the
presence of entanglement. Assuming quantum mechanics is correct, this allows a classical verifier

to at least certify that her device is exhibiting a genuine quantum behaviour.

Remarkably, it is possible to go beyond merely detecting the presence of entanglement. In some
special cases, the measurement statistics can be attained exclusively by a unique quantum apparatus
(up to some irreducible degrees of freedom). In such cases, a single (a priori very modest)
physical assumption about the device to be tested, namely that it consists of two spatially isolated

components, allows to characterize the device entirely.

This realization has led to important advances in the field of quantum cryptography, including the
first fully device-independent security proofs for quantum key-distribution [96, 64], randomness

expansion [64]], and delegated quantum computation [[82].

The problem of certifying the behaviour of quantum devices is at the heart of this thesis. It is not
only compelling from a practical standpoint, but has deep connections to fundamental questions
about the nature of entanglement, some of which I hope will be unveiled to the reader of this
thesis. It is also a problem that has fascinated me since the start of my PhD: one can think of
such a certification procedure (or certificate), whenever it exists, as a “classical fingerprint” of a
quantum system, in the sense that the classical transcript obtained by the verifier’s interaction with
the quantum device singles out a unique quantum apparatus that is compatible with it. It is not
obvious at all that such a certificate should exist, and it is remarkable that it does even in special

cases.

1.1 This thesis

Several natural questions arise when thinking about the device-independent certification of quantum
devices: does the set of quantum apparatus that can be certified by a classical verifier consist of a
few exceptions, or is such a certification a more general phenomenon? If so, can it be exploited not
only to certify a fixed quantum apparatus, but to orchestrate a full-fledged quantum computation in
a verifiable way? Crucially, it is entanglement that makes these certifications possible at all. Does
the answer to these questions yield a more refined understanding of entanglement as a fundamental
resource in quantum information? This thesis makes progress on these questions, and provides a

resolution to some of them. Before outlining the contents of this thesis, we will informally introduce



the framework in which we study these questions.

1.1.1 The framework: device-independent self-testing

The framework that we work in was first introduced by Bell [9], who at the time was not explicitly
concerned with the problem of certifying quantum devices, but rather with exhibiting the non-
locality of quantum mechanics. The setup consists of a verifier and her quantum device. The
verifier wishes to certify properties of her, a priori uncharacterized, quantum device by interacting
classically with it, by probing it with classical questions and expecting classical answers in return.
As mentioned earlier, we make just one physical assumption about the system to be tested: that
it consists of two spatially isolated components (usually referred to as the players, the provers, or
Alice and Bob) that are unable to communicate throughout the experiment. The behaviour of the
provers is captured by the joint distribution of their answers as a function of their questions. We
refer to this data as a bipartite correlation. Formally, a bipartite correlation captures the scenario
where there is one round of interaction between the verifier and the provers, but this notion can
be generalized naturally to more rounds of interaction. Typically, the two provers are thought of
as cooperatively playing a game refereed by the verifier (i.e. they are cooperatively trying to pass
the verifier’s test), which is traditionally referred to as a non-local game. Subject to the constraint
that the provers cannot communicate and do not share any entanglement (i.e. they are classical), it
is possible to efficiently compute a tight upper bound on the expected winning probability of the
provers in the game. Such a bound is referred to as a Bell inequality. According to Bell’s theorem
[9], in some cases, it is possible for provers who share entanglement to violate such a bound. This

implies that the violation of a Bell inequality can be regarded as a certificate of entanglement.

The area of device-independent self-testing seeks to make even stronger statements about the
quantum system under study, by identifying which measurements are being performed, and on
which state. The device-independent approach exploits the fact that certain correlations can be
uniquely achieved (up to local isometries) by particular measurements on a particular quantum
state. When this is the case, we say that the correlation self-tests the state and the measurements.
The term “self-testing”, in the context of Bell experiments, was coined by Mayers and Yao [58]], and
the most famous example of a self-test is given by the CHSH game [17]. In this game, a classical
verifier selects uniformly random questions x,y € {0,1}, and sends x to Alice and y to Bob. The
players return answers a and b respectively. They win the game if the questions and answers satisfy
a®b = x-y. Itis easy to see that the players win with probability % if they always return the
answer 0. In fact, a simple convexity argument shows that this is also the best that classical players
can do. Surprisingly, players who share entanglement can outperform their classical counterparts,
and can win the game with probability as high as COSZ(%) ~ (0.85! Sharing a maximally entangled

pair of qubits (also known as an EPR pair) before the game begins, allows the players to correlate
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their answers optimally, and to achieve a winning probability of ~ 0.85. However, the real raison
d’etre of this thesis is that Cosz(%) is a “fingerprint” of an EPR pair: one can show that this is the
unique state that is compatible with such a winning probability. By observing a winning probability
of cosz(%), a classical verifier can certify that the quantum device under study contains an EPR
pair. Of course, in practice it is not possible to “observe” a correlation, or a winning probability,
directly. Rather, one can only repeat the experiment several times and make an estimate with some
statistical confidence. It is thus important that the self-testing statement also holds “approximately”
[62,82], meaning that a close-to-optimal winning probability still implies that the underlying state
and measurements are close to ideal. This property is often referred to as “robustness”.

1.1.2 Outline
In Chapter [2] we cover some preliminary notions, and we give a formal introduction to quantum

correlations and non-local games.

In Chapter |3 we introduce the formalism of self-testing, and lay the foundations for much of the
work in this thesis. This chapter gives a relatively self-contained introduction to the basics of the
theory of self-testing. We start by reviewing the CHSH game, and we provide a (detailed sketch)
proof that maximal violation of the CHSH inequality is uniquely attained by an EPR pair. We
introduce the concept of a “swap isometry”, a technique that is used to extract EPR pairs from
states and measurements that satisfy certain natural constraints. We then describe the tilted CHSH
inequality, which generalizes the CHSH inequality to partially entangled qubits, and is a building
block for later chapters. In the final section of this chapter, we introduce another famous non-local
game: the Magic Square game. We take this as an opportunity to introduce a representation-
theoretic framework for self-testing, based on an approach developed by Cleve, Liu and Slofstra,
and extended in the original work [24]]. The framework applies to the Magic Square game and to
a wider class of non-local games, known as Linear Constraint System (LCS) games. In an LCS
game, questions represent equations from a system of linear equations, and the players’ answers are
assignments to the variables appearing in the queried equation: the condition for winning the game
is that the players’ assignments should satisfy their respective equations, and should be consistent
with each other (players assign the same value to common variables). In this section, we build
up to a general self-testing theorem that applies to a broad class of LCS games. We apply this
theorem to deduce that a perfect winning probability in the Magic Square and Magic Pentagram

games self-tests two and three EPR pairs respectively.

In Chapter[d] we explore a concrete application of self-testing to the problem of verifiably delegating
a quantum computation. We address the following question. How can a classical verifier exploit

self-testing results to delegate her computation to a potentially malicious server in a way that allows
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her to verify the correctness of the outcome? We will lead up to this question by discussing a
necessary ingredient for such a task: the certification of many EPR pairs. Orchestrating a full-
fledged quantum computation requires at the very least an amount of resources that scales linearly
with the size of the computation. For this reason, it is essential that a classical verifier be able
to certify not just one, but many EPR pairs. The most natural way to do this is by repeating a
single self-test (say the CHSH game) many times in sequence, and requiring that a high-enough
fraction of the games be won. A more round-efficient way of doing this is by repeating the CHSH
game in parallel, i.e. asking all the questions for many copies of the game simultaneously, and
requiring all the answers at once. We start by reviewing the Pauli Braiding test of Natarajan and
Vidick [69], which allows to test products of Pauli X and Pauli Z measurements on many EPR
pairs, with a robustness that scales independently of the number of EPR pairs tested. Our main
technical contribution is to extend the Pauli Braiding test first to include Pauli Y measurements,
and subsequently to test any measurement that is a product of single-qubit Clifford observables.
Finally, we apply this test to obtain a protocol whereby a classical verifier can verifiably delegate her
quantum computation to two spatially isolated provers. The complexity overhead of our protocol
for delegating a g-gate quantum circuit scales as O(glog g). Such a scaling is near optimal (the
complexity of the delegation has to be at least (2(g)), and marks a dramatic improvement over the

first scheme by Reichardt, Unger and Vazirani [[82], whose overall complexity scaled as O( g8192).

Chapter [5]is devoted to one of the main results of this thesis. We address the question of whether
self-testing is a property of a few special states, for example EPR pairs, tilted EPR pairs and copies
of these, or if such examples are just instances of a more general phenomenon. A number of special
cases have been solved over several years, providing examples of states that can be self-tested [102,
7, 183, (103, (101}, [75, 60]. These include all partially entangled pairs of qubits, some particular
states of qutrits, and a few multipartite states. Hence, while it seems clear that self-testing is
not an exclusive characteristic of maximally entangled states nor qubit states, for some time little
was known about self-testing higher-dimensional entangled states (i.e. pairs of entangled qudits
for d > 2). In this chapter, we address this question, and we settle it completely: we show that
for any pure bipartite entangled state of any finite local dimension there exists a correlation that
self-tests it. In the maximally entangled case, we are also able to extract an explicit family of Bell
inequalities whose maximal violation is attained precisely at the self-testing correlation. Such a
family generalizes the CHSH inequality to any local dimension, and is the first example of a family
of Bell inequalities self-testing the maximally entangled pair of qudits, for any d > 2. In the final
part of the chapter, we move on to the multipartite case, which is mostly unexplored. The main
difficulty with multipartite states is that they do not necessarily admit a Schmidt decomposition.
As a consequence of this, there exist multipartite states that are not related by a local isometry

to their complex conjugate (in some basis). These states cannot possibly be self-tested, in the
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traditional sense, since taking the complex conjugate of a state and some measurements leaves the
correlation invariant. In this section, we show that any multipartite partially entangled GHZ state
can be self-tested, and we use this as a building block to show that any multipartite state of qudits

that admits a Schmidt decomposition can be self-tested.

In the final chapter of this thesis, Chapter [0 we draw a connection between the self-testing
results discussed so far and basic questions about quantum correlation sets and entanglement. Even
though quantum correlations are central objects in the theory of self-testing and throughout quantum
information more generally, our understanding of these is far from complete. Several fundamental
questions about quantum correlation sets are unanswered. One example is the following: does
the set of attainable correlations change if we allow the provers to share infinite-dimensional
entanglement, as opposed to just finite-dimensional entanglement? In other words, does there exist
a correlation that requires infinite-dimensional quantum systems to be attained exactly? One of the
main results of this thesis is a resolution of this question: we show that there exists a correlation
which is attained exclusively by infinite-dimensional quantum systems. We describe our solution in
the first half of the chapter. In the second half, we focus our attention on the problem of certifying
high-dimensional entanglement via non-local games. In this context, we do not necessarily seek to
characterize exactly the states and measurements of a quantum apparatus. Rather, we are looking to
provide a lower bound on the dimension of the quantum system. Thus, the characterization that we
seek is less specialized than for a self-testing statement, but we seek a test that is, in some sense, as
efficient as possible. To this end, we describe a strikingly simple non-local game with the property
that an e-close to optimal strategy requires the players to share an entangled state of dimension at
least ZQ(W). This matches the best known tradeoff between precision and dimension, and it
does so via a very simple and direct construction. As a corollary, the existence of such a game gives
a new proof of the non-closure of the set of quantum correlations, a recent breakthrough result
in quantum information [[89]]. In contrast to previous proofs, which relied on the representation
theory of finitely presented groups and C*-algebras, ours is elementary, and is based on one of our

previous self-testing results and on a phenomenon known as embezzlement.

A few organizational remarks. Starting from Chapter [3| each chapter begins with a few sentences
that introduce the topic, followed by a brief overview of the structure of the chapter. Chapters[2and
B3] (except Section [3.5)) are essential to the rest of the thesis. Chapter []is not needed to understand
Chapters[5|and[6] Chapter[5|(excluding Section|[5.3) is helpful in understanding Chapter[6] although

not strictly essential if one is willing to accept a few results from Chapter [5]



Chapter 2

PRELIMINARIES

2.1 Notation

For an event E, we use 1 to denote the indicator variable for that event, so 1z = 1 if E is true, and
1g = 0 otherwise. We write poly(e) for O(e°), where c is a universal constant that may change
each time the notation is used. For a positive integer 1, we denote by [n] the set {1,..,n}. ¢;; is the
Kronecker delta.

For a Hilbert space H, L(H) is the space of linear operators on H. We denote by U(H ) the set
of unitary operators, Obs(#) the set of binary observables, i.e. self-adjoint operators with +1
eigenvalues, Proj(H) the set of projectors on H, D(H) the set of density operators on #, i.e.
positive semi-definite operators with unit trace. For an operator X, we denote its trace by Tr[X].

Define the Pauli matrices
- 10 - 01 (7 0 —i d - 1 0
- 7 - 7 - an = °
o 1o oo #~ o -1
(2.1)
For an operator A, we denote by A" its adjoint.

We let |©1) denote an EPR pair:
1
V2

We will sometimes also denote this by |[EPR).

[©7) = —=(/00) +[11)) .

An isometry is a linear map V : H — H’ such that VIV = I,.

By local isometry we mean a channel ® : L(Ha ® Hp) — L(H'y ® H}p) which factors as
®(p) = (Va® Vg)p(Va ® Vi)', where Vs : Ha — H'y, Vg : Hp — HJ; are isometries.

For some unitary or isometry V, 6 > 0, states |) , |§), we write |¢p) =y 5 |¢) if |V |¢) — |¢) || <
0, where || - || is the Euclidean norm. We write [p) =5 |¢) if || |¢) — |¢) || < 6. We use the same
1, where ||Alj; = Tr[v AA*]

notation for mixed states, except we consider the trace norm || -

For an introduction to the basics of quantum information, we refer the reader to [71] or [81]].

2.2 Quantum correlations
Quantum correlations are the fundamental object of study of this thesis. We introduce them formally

in this section.
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Informally, let Alice and Bob be two non-communicating provers. Consider the scenario in which a
verifier sends one question to each prover and receives an answer from each prover. The behaviour
of the provers is captured by the joint distribution of their answers as a function of their questions.

We refer to this data as a bipartite correlation.

Formally, given sets XY, A, B, a (bipartite) correlation is a collection {p(a, b|x,y) :a € A,b €
B} (xy)exxy» Where each p(-,-|x,y) is a probability distibution over .A x B. We interpret the
correlation as describing the outcomes of a measurement scenario with two parties, say Alice and
Bob. p(a,b|x,y) is the probability that Alice outputs a and Bob outputs b, given that Alice used
measurement setting x and Bob used setting y. X and ) are referred to as the question sets, while

A and B are referred to as as the answer sets.

Given question sets and answer sets X', Y, A, B, a quantum strategy is specified by Hilbert spaces
Ha and Hp, astate p € D(H 4 ® Hp), and projective measurements {I1% :a € A} on Hy for
x € X, and {H%y :b € B} on Hp fory € V. We say that it induces correlation p if

p(a,blx,y) = Tr[ ‘;‘x ®H%yp] foralla e A, be B,xe X,ye ).

Sometimes we refer to a quantum strategy as a triple (p, {H‘Ax ca € Alyex, {H%y :b e B}y€y>.
If we wish to emphasize the wunderlying Hilbert space, we  write
(,0 € D(Ha®Hp), {11} :a € A}rex, {H%y S B}yey>. Notice that we have cho-
sen our measurements to be projective. This choice is without loss of generality. The most
general measurements are modeled by POVMs, but Naimark’s dilation theorem implies that any
correlation attained using POVMs can also be attained using projective measurements (possibly of
larger dimension). We sometimes describe a quantum strategy by specifying an observable for

each question. The observables in turn specify the projectors through their eigenspaces.

A correlation is said to be quantum if there exists a quantum strategy that induces it (we will
use the verbs “induce” and “attain” interchangeably). We refine this, and we say that a quantum
correlation is finite-dimensional (infinite-dimensional) if it is induced by a quantum strategy on
finite-dimensional (infinite-dimensional and separable) Hilbert spaces. In the rest of this thesis,
when we refer to infinite-dimensional Hilbert spaces we always assume that they are separable.
We denote by C,"""* and Cy¢"" respectively the sets of finite and infinite-dimensional quantum

correlations on question sets of sizes 7, n and answer sets of sizes 7, s.

Correlation tables A convenient way to describe correlations is through correlation tables. A
correlation p on X, ), A, B is completely specified by correlation tables Ty, for x € X,y € ),
with entries Tyy(a,b) = p(a, b|x,y). See Table 2.1 for an example.



0 1

0 | p(0,0x,y) | p(0,1|x,y)
1| p(1,0[x,y) | p(1,1]x,y)

Table 2.1: The correlation table on question (x, i) of a correlation on answer sets A = B = {0,1}.

For w € [0,1] and a correlation table Txy, we write w - Txy to denote entry-wise multiplication of

Tyy by w. We may refer to w as a weight.

2.3 Non-local games
Definition 1. A non-local game G is a tuple G = (X,Y, A, B,D,V), where X,Y, A, B are sets,
D is a distribution over X X Y, and V : X x Y x A x B — R. X and ) are referred to as

question sets, and A and B as answer sets. V is referred to as the scoring function.

We denote by D(x,y) the probability of outcome x, y according to distribution D. Note that we
use the term non-local game to refer to games in which the scoring function V' can take any real
value, not just values in {0, 1} like is sometimes the case in the literature. With this nomenclature,

non-local games and Bell inequalities are equivalent.

Definition 2 (Quantum strategy for a non-local game). A quantum strategy for a non-local game
G=(X,)Y,A,B,D,V)isatriple

(p € D(Ha®Hp) Ty, :a € A}ren, {TTh, b€ B}y@,) ,

where H 4, Hp are Hilbert spaces, {qux :a € A}ycy is a set of projective measurements on
Ha, and {H%y :b € B}ycy on Hp.

Definition 3 (Value of a quantum strategy in a game). Ler G = (X,), A, B, D, V) be a non-local
game, and S = (|Y) € Ha® Hp, {11} :a € Alcex, {H%y : b € B}yey) a quantum strategy
for G. The value of S in G is

w(S,G) = Z D(x,y)-V(x,y,a,b) -Tr[ ’qu ®HbBy p} )
xekX,yey

Note that the value w(S, G) corresponds to the expected score of strategy S in game G, assuming

that questions are distributed according to D, and that the score is determined by the function V.
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Definition 4 (Quantum value of a game). The quantum value w*(G) of a game G =
(X,Y,A,B,D,V) is defined as follows:

w*(G) :=supw(S,G),
S
where the supremum is taken over all quantum strategies for G.

Since the closure of the set of finite-dimensional quantum correlations contains the set of infinite-
dimensional quantum correlations [84], it does not matter whether the supremum in the definition
of w™ is taken over finite or infinite-dimensional strategies (i.e. whether H 4 and Hp are finite or

infinite-dimensional).

We define the value of a correlation in a game.

Definition 5 (Value of a correlation in a game). Let G = (X, ), A, B, D, V) be a non-local game,
and p = {p(a,blx,y) : a € A, b € B}, )ecxxy a correlation. The value w(p,G) of p in G is
defined as

w(p,G):= Y. D(xy)-V(x,y,ab) pablxy).
xeX,yey

Clearly, if p is the correlation induced by a quantum strategy S for game G, then w(p,G) =
w(S,G).
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Chapter 3

SELF-TESTING: A REMARKABLE PHENOMENON

The term device-independent self-testing refers to a situation in which the statistics of an interaction
between a classical verifier and the two spatially isolated components of a quantum device are
sufficient to characterize the state of the device and the measurements in each component. The
area of self-testing and its theoretical foundations have developed significantly in recent years. The
theory of self-testing has been fruitfully applied to quantum cryptography [96, |64, [82, [27]], to the
foundations of entanglement and the study of quantum correlation sets [26,[20], and to the study of
the complexity of multiprover interactive proofs with entangled provers [70]. In this section, our
aim is to give a relatively self-contained introduction to the basics of the theory of self-testing. This
will serve as the basis for much of the work in this thesis. For a thorough survey of the self-testing

literature, we recommend [93]].

Organization In Section [3.1) we define the term self-testing formally in its two variants, from
correlations and from non-local games. We define the notion of robust self-testing. In Section[3.2]
we formally introduce the CHSH game and the CHSH inequality. We then give a detailed sketch
of the proof that maximal violation of the CHSH inequality self-tests an EPR pair. In Section
[3.3] we introduce a basic tool, known as the “swap isometry”, which plays a role in several of the
self-tests appearing in later chapters. In Section [3.4] we introduce the tilted CHSH inequality and
its self-testing properties (without proof). In Section [3.5] we introduce a representation-theoretic
framework for studying the self-testing properties of Linear Constraint System (LCS) games, like
the Magic Square game. We build up to a general self-testing theorem for a broad class of LCS
games, which we apply to prove self-testing of the Magic Square and Magic Pentagram games.
Section is not required to understand the rest of the thesis (although it is helpful to understand
our self-test from Chapter [4)).
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3.1 Definitions
Definition 6 (Self-testing). We say that a correlation {p*(a,blx,y) : a € A, b € Blrexyecy
self-tests a strategy S = <|‘P)<‘I’| , {ﬂix ta € Abyex, {l:[%y RS B}y€y> if, for any strategy

S = (p, {IT}, :a € A}ren, {H%y :b e B}yey> that attains p*, there exists a local isometry
D = Oy ® Op and an auxiliary state Pextra such that, forallx € X,y € Y,a € A,b € B,

O(p) = [¥) (Y| ® pextra 3.1
P(IT, @ TTh, p1T, @ 1Th) = (1T, @ ITh, [¥) (¥ 1), & 15, ) @ pera. (32)

Sometimes, we refer to self-testing of the state when we are only concerned with the guarantee
of equation (3.1), and not (3.2)). We remark that the reason why we only defined self-testing of
a strategy S specified by a pure state is that it is known that mixed states cannot be self-tested

according to this definition [86].

In the definition above, one typically assumes that the quantifier is over all finite-dimensional
strategies S. However, our results in later chapters also hold when quantifying over all possibly
infinite-dimensional strategies (on separable Hilbert spaces). This distinction is only of importance
for Corollary [/l When proving our self-testing results, we will highlight the parts of the proofs in
which this distinction is important.

When a quantum strategy S is approximately related by a local isometry (and tensoring with some
auxiliary state) to a strategy S, just like the two strategies in equations (3.3) and (3.4)), we say that
S is equal to S up to local isometry. Notice that such a relation is not symmetric (the state in S
could be tensored with a lot of entanglement which is not actually used, and would result in a very

entangled pextra)-

We can similarly define self-testing for non-local games.

Definition 7 (Self-testing for non-local games). We say that a non-local game G self-tests a quantum
strategy S if any quantum strategy S that achieves the quantum value w*(G) is equal to S up to

local isometry.

Remark 1. Notice that self-testing from a non-local game (as in Definition [/]) implies self-testing
via a correlation (as in Definition @ This is because the correlation induced by strategy S in
Definition [7|clearly also self-tests S according to Definition @ The reverse is not necessarily true.
It is not clear that for any correlation p* that self-tests some strategy S according to Definition |§|,
there exists a non-local game whose entangled value is attained precisely at p*. In fact, we know

of explicit counterexamples in which this reverse implication does not hold [41].
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Robust self-testing

In practice, probabilities cannot be estimated exactly, but only approximately up to some statistical
error. In order for self-testing results to be useful in practice, it is essential that they be robust:
a close-to-ideal correlation should certify a close-to-ideal strategy. We first define a notion of

distance between two correlations.

Definition 8. (Distance between correlations) Let {p(a, b|x,y) : (a,b) € AX B}y yexxy and
{p'(a,blx,y) : (a,b) € Ax B}(x,y)e)(xy be correlations on the same question and answer sets
X,Y, A, B. Define their distance | . ‘corr as

P = P'lcorr :=sup ) |p(a,blx,y) — p'(a,blx,y)].
XY ab

Definition 9 (Robust self-testing). We say that a correlation {p*(a,blx,y) : a € Ab €
B}icxycy self-tests a strategy S = (\‘I’)(‘ﬂ ,{ﬁqu ca € Abyex, {fl%y b€ Blyey
with robustness 06, where 6(e) — 0, as € — 0, if for any strategy S =
(p, {qux ca € Alyex, {H%y b e B}y€y> inducing a correlation p such that |p — p*|corr < €,
there exists a local isometry ® = ®, ® $p, and an auxiliary state Pextrq such that, for all
xeX,yeY,aec AbehB,

D(p) Xp2(e) [Y) (] ® pextra (3.3)
o( ‘Ax®nbypnax®ngy) R (o) (qux@ﬂ%y ) <\1f|1’1§gx®ﬁgy) ® Oextra- (3.4)

Notice that the distance is 6> (¢) in (3.3) and (3.4) rather than the more natural &(¢). This is just a

convention that we pick so that the distance is 6(e) when comparing Euclidean norms.

When a quantum strategy S is approximately related by a local isometry (and tensoring with some
auxiliary state) to a strategy S, just like the two strategies in equations (3.3) and (3.4), we say that
S is 6(€)-approximately equal to S up to local isometry.

The definition of robust self-testing for non-local games is similar.

Definition 10 (Robust self-testing for non-local games). We say that a non-local game G self-tests
a quantum strategy S with robustness 6, where & () — 0, as € — 0, if for any strategy S such that
w(S,G) > w*(G) — €, it holds that S is 5(€)-approximately equal to S up to local isometry.

Remark 2. In the rest of this thesis, when we fix an arbitrary quantum strategy, we will often restrict
ourselves to strategies that consist of a pure state. In most cases this is without loss of generality,
since any correlation that is attained by a mixed state can be attained exactly by considering a

purification (on a system of possibly larger dimension). This is the case for example in Chapters
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M and [6] where the end goal is not to prove a self-testing result, but rather self-testing is used as a
tool (to achieve a delegated quantum computation protocol in Chapter @ and to prove separation of
certain quantum correlation sets in Chapter|[6). In the case of Chapter[5] however, this restriction is
not without loss of generality because what we prove is a self-testing result according to definition[6]
(and it is not clear a priori if the restriction to pure states is without loss of generality). In this case,
the restriction that we make is for notational convenience, but it will be apparent from the proofs
that the same arguments go through virtually unchanged when one allows for strategies consisting

of mixed states.

3.2 The CHSH game
The CHSH game is the simplest example of a non-local game. It was discovered in 1969 by Clauser,

Horne, Shimony, and Holt [[17]], and it is the most famous witness of Bell’s theorem [9].

In the CHSH game, Alice and Bob receive single-bit questions x and y respectively, sampled
uniformly at random, and return single-bit answers a and b respectively. So X =Y = A =B =
{0,1}. Alice and Bob win the game if a & b = x - y. It is well-known that the optimal winning
probability of any strategy that does not use entanglement is ;5;. The two players can achieve this by
always answering 0. It is not difficult to show that this is also optimal: by a convexity argument,
it suffices to consider deterministic strategies of Alice and Bob. One can enumerate them all, and

see that each deterministic strategy must fail on at least one question pair.

When the players are allowed to share entanglement, they are able to surpass this classical bound,

and win with probability up to cos?(F) ~ 0.85. A strategy that achieves this is the following:

Definition 11 (Ideal strategy for CHSH). The ideal strategy for CHSH consists of the joint state
) = \%(|OO> + |11)) and observables Ay, A1 and By, By with Ay = 0%, A1 = 0¥, By = UZJFT;X

and By = %. For each observable, we associate the projection onto the +1-eigenspace with

answer 0 and the projection onto the —1-eigenspace with answer 1.

The CHSH inequality

The winning probability in the CHSH game is equivalently captured by the following operator:
§::A0®B0+AQ®B1+A1®30—A1®31, (3.5)

where the Ay and By, are respectively Alice and Bob’s observables in the game. For a joint state
|¥) of Alice and Bob, it is easy to check that (| S |¢) = 4 - (Pr[Alice and Bob win CHSH] —
Pr[Alice and Bob lose CHSH]|). The upper bound of % on the winning probability for classical

players translates to:

(| Slp) <2, (3.6)
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for any product state |). The upper bound of cos®(%) = 2+T\ﬁ translates to:

(| Sly) <2v2. 3.7)

One can verify that this upper bound is attained by the strategy of Definition [IT] We say that this
strategy attains the maximal quantum violation of the CHSH inequality (3.6)).

Inequalities of the kind of (3.6), which separate classical from quantum behaviour are referred to
as Bell inequalities, and S is referred to as a Bell operator. Notice that S is a linear functional
in the probabilities p(a, b|x,y), and thus defines a family of hyperplanes in the space of quantum
correlations for the given question and answer set sizes. The hyperplane corresponding to S =22

is tangent to the quantum correlation set C§'2’2'2 at a correlation whose value in the game is optimal.

The bound from (3.7) is also known as Tsirelson’s bound. We give a proof of it here.

Theorem 1 (Tsirelson’s bound). Consider any bipartite state | ) and binary observables Ay, A1 on
the first tensor factor and By, By on the second. Let S be defined as in (3.5). Then (| S |¢) < 21/2.

Proof. We prove the claim by giving an upper bound on the largest eigenvalue of S, i.e. ||§ ||oo- Since
o = |[Byl[eo =1
and A% = 14, and B; = 14,, where the dimensions d 4 and dp of the Hilbert spaces are left

the Ay and B, are Hermitian with £1 eigenvalues by construction, we have || Ay|

unspecified, and may be infinite. The easiest way to obtain the bound is to consider the square of
S , which one can verify to be:

2 =41®1 — [Ay, A1) ® By, B1].
Finally, we observe that

[1[Ao, A1llleo = [|A0A1 = A1 Ao[lee < [[A0A1l]eo + [|A1A0]loo < 2[|Aol[eo [|A1]]e0 = 2,

(3.8)
where the last inequality uses |xy| < |x||y|. Similarly, we get ||[Bo, B1]|| < 2. Therefore
115?|c0 < 8, which proves the claim. O

Given that the ideal strategy from Definition [I1] attains Tsirelson’s bound, we conclude that this

bound is tight.

CHSH self-tests an EPR pair

We are now ready to discuss the very first self-testing result of this thesis, which dates back to a work
of Summers and Werner [92] and Popescu and Rohrlich [80]: not only does the ideal strategy from
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Definition [IT] attain maximal violation of the CHSH inequality (or equivalently optimal winning
probability in the CHSH game), but it is also the unique strategy to do so, up to a degree of freedom
of applying a local isometry. In other words, maximal violation of the CHSH inequality self-tests

an EPR pair.

Theorem 2 (CHSH self-test). The CHSH game self-tests the ideal strategy of Definition |l I| with
robustness O(\/€).

We give a detailed sketch of the proof of Theorem 2] For fully detailed proofs, we refer the reader
to either [62] or [82]]. Even though they share some common ground, the two proofs are somewhat

different in flavour, and each contains worthwhile intuition. Our proof is closer to the latter.

Detailed proof sketch. Let (|ip),{Ax}, {By}) be a quantum strategy attaining maximal violation
of the CHSH inequality. In order to prove Theorem[2] according to Definition[7, we need to exhibit a
local isometry @ such that ®(|y)) = \%(|OO> + |11)) ® |extra) for some auxiliary state |extra),

and similar statements involving the observables Ay, By.

From the proof of Tsirelson’s bound, we already know that any quantum strategy that maximally
violates the CHSH inequality must saturate inequality (3.8). Hence, it must be ||[Ag, A1]||c = 2.
It is not difficult to see that the saturation of the triangle inequality in (3.8) implies that for any state
|¢) that attains maximal violation, it must hold that [Ag, A1] |¢) = £2A0A1 |). This implies
that {Ag, A1} |¢) = 0, i.e. Ag and A anti-commute when acting on |¢p). Similarly, we obtain
{Bo, B1} |[¢) = 0. We can now invoke Jordan’s Lemma, a tool that is quite frequently used in
quantum information, and which allows us to reduce the analysis to the qubit case. For this part of
the argument, we assume for simplicity that Alice and Bob’s Hilbert spaces are finite-dimensional
(although we do not assume any other bound on the dimension). This is required in order to apply
Jordan’s Lemma. For the full details of the argument for arbitrary Hilbert spaces, which is technical
and does not provide particular additional insight, we refer the reader to [82]]. Jordan’s Lemma

states the following:

Lemma 1 (Jordan). Let Ag and Aq be two Hermitian operators on a finite-dimensional Hilbert
space with eigenvalues —1 and +1. There exist a basis in which both operators are block-diagonal,

in blocks of dimension 2 X 2 at most.

Applying Jordan’s Lemma to both Alice and Bob’s Hilbert space allows us to decompose the joint
Hilbert space (of a priori unknown dimension) of |¢) into blocks of dimension 2 X 2 (i.e. a qubit

on Alice tensor a qubit on Bob),2 X 1,1 x 2 and 1 x 1. Formally, in an appropriate basis, we can
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write: Ay = @; A x ,By EBj By), and

p) = @“zj 7
ij

Then,

(WIS 1) = Lol (i

where $(7) = A(()i) ® B(()j) + A(()I) ® B§’) + Agl) ® B(()]) - Agi) ® ng)'

)| 4G ‘lp(z’j)>,

In order to achieve the maximal expected value of S, the CHSH operator in each block has to be
maximized. This implies that each ‘w(i/ ) >, such that jj # 0, has Schmidt rank 2. In particular,
there areno 1 X 2,2 x 1 or 1 x 1 blocks, except corresponding to pairs 7, j with a;; = 0.

Furthermore, earher we deduced that {AO, Al} |¢) = 0and {By, B1} |p) = 0. This implies that
it must be {A(l } ’1,0 if > = O and {B (])} ‘1/J(if)> = Oforall i, j with a;; # 0. Since both

the A,(C) s and the B( ) s are 2 X 2 matrices, and ‘1/J(ij)> € C2 ® C2 has Schmidt rank 2, then it is

straightforward to see that it must be {Aéi), g )} = O and {BO , § )} = O forall £, j with a;; # 0

(without the restriction of the operators acting on the state).

Since there is, up to unitary equivalence, a unique two-dimensional representation of the single-
qubit Pauli group (i.e. the group generated by 0 and ox), we deduce that, up to a local change of
basis, A(()) =0y A() = 0y and B() =0y B() = o for all 7, j with a;; # 0.

We are now able to explicitly write the CHSH operator S (i) for the i 7 block in this basis as:
07 Q07 +07 Q0x +0x X0z —0x K 0x.

Since this is just a 2 qubit operator, we can directly compute the (normalized) eigenvector corre-

where |[(pT) and |~ ) are respectively the +1 and —1 (unit) eigenvectors of % In addition,

one can check that % |pt) = |p~) and % lp~=) = [YpT).
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It is easy to check, then, that one can pick a local unitary @) such that

(il (‘4](1‘;‘)» _ \Lf(|oo> +11))

q) ( )—0’2@1

CD ( ) ox Q1
Uz—|—0'X

o) (1 BY)) = @ L

0z —0x

V2

The desired self-testing local isometry is & = EBZ-]-:M].#O o) @ I (up to the natural local isomor-
phism D;; C? ® C? ~ (C? ® C?) ® CK, where k is the number of blocks, and where we assume
that blocks of size 1 are trivially extended to blocks of size 2). U

o) (I ng)) =I®

3.3 The “swap” isometry

In this section, we introduce a basic tool which we refer to as the swap isometry. This tool comes
in the form of a theorem giving sufficient conditions, in terms of binary observables on Alice and
Bob’s side, for the existence of an isometry that “extracts” an EPR pair. We will first state the
theorem, then explain the intuition behind it, and finally provide a proof. This section is adapted in

large part from [62].

Theorem 3. Suppose that there exists a bipartite state ) € H o @ Hp, binary observables X 4,
Z 4 on Hp and X, Zg on Hp such that:

XaZa ) = —ZaXa |9) (3.9)
XpZp|p) = —ZpXp |P) (3.10)
Xalp) = Xg ) (3.11)
Zaly) =Zply) . (3.12)

Then there exists a local isometry ® = ® 4 @ Op and a state |extra) 45 such that
®(M4N5 [9)) = lextra) s © (om) © ON) [¢7) p1p

for M,N € {I,X,Z}.

Let the SWAP gate be the two-qubit gate the swaps the content of the qubit registers. The intuition
behind Theorem [3is the following: from conditions (3.9)-(3.12), the operators X 4,Z 4, Xp, Zp act
on |¢) in the same way as 0x ® I, 0z ® I, I ® 0, I ® 07 act on the EPR pair. The idea of the
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swap isometry is the following: if the uncharacterized operators were exactly the Pauli operators,
and |¢) was indeed the EPR pair, then one could add two ancilla qubits in the state |00) 4/, apply
the gate SWAP 4 4» @ SWAPgp:, and (trivially) obtain the state |00) 4,5 ® (op ® ON) [¢T) 4rp-
Such a circuit is depicted in Fig. 3.1} The idea of the proof of Theorem [3]is to build the desired

0) 4 —{Hf—4—{H}—¢—
X

[0

oM @ ON |97 45

X
0)p —{H}—*—{H]—*—

Figure 3.1: A true SWAP gate. Here M, N € {[, X, Z}.

SN

isometry ® by replacing oy ® oy [¢T) 45 With M4 ® Np |), and replacing the real 07 and o
on register A with Z4 and X 4, and replacing the real 0 and ox on B with Zg and Xg. The hope
is that the constraints (3.9)-(3.12)) are enough to capture the essence of the real operators and state.

We show that this intuition magically works.

Proof. The isometry is constructed as in figure[3.2] For the case where M = N = I, the isometry

Figure 3.2: Local isometry @, where M, N € {I, X, Z}.

gives
o(|p)) = %(I+ZA)(I+ZB)|¢’> |00)
+ }LXB(I+ Z)(1— Zp) ) |01)
n }LXA(I—ZA)(I+ZB)I¢>I10>
n }LXAXB(I—ZA)(I—ZB)|1P'>|11>-
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Now, for the “11” term, for example, one can use equations (3.9), (3.10) and (3.11) to deduce that
XaXp(I—Za)(I—2Zp) |$) [11) = 2(I+ Za)(I+ Zp) |) |11). For the “01” and “10” terms,
one can apply (3.12) and deduce that these terms vanish. All in all, we obtain

®(|y)) = lextra) |p7) ,

|¢p). The other cases are similar. O

(I+Z4)(I+Zg)
V2

where |extra) =

It is not difficult to prove an “approximate” version of Theorem [3| which holds when (3.9)-(3.12))
hold e-approximately, and guarantees that the final output is O(+/€)-close to an EPR pair. Such a
calculation can be found in [62]. There, a robust version of Theorem 3]is used to prove that CHSH
robustly self-tests the ideal strategy from Definition |11{ with O(+/€) robustness. The strategy of
the proof is to construct, from the observables used by the provers, operators X4,Z 4, Xg, Zp
satisfying the hypothesis of Theorem On Alice’s side, one sets Z4, = Ap and X4 = Aj.
Notice that we already know that these commute from our proof outline for Theorem 2] (this was a
consequence of the saturation of Tsirelson’s bound). On Bob’s side, we cannot mirror Alice because
this would not satisfy (3.11)) and (3.12). One instead defines Zg = (Bg + By)|Bo + B1|~! and
Xp = (Bo — B1)|Bg — By| !, where |X| = v/ XX*. This step is necessary in order to “unitarize”
By £ Bq, which a priori need not be unitary. Formally, if By + Bq is not invertible, we first add

an identity on the kernel of By + B, to obtain By + By + lge(p, +B,)> Where lger(p, ;) is the
projection on Ker(Bg + B1). One can verify that this does not affect the action on |¢p) if the strategy
maximally violates CHSH. Then, we take a polar decomposition of By + By + Ige(p,+p,): let

U, IT be respectively a unitary and a positive-definite operator such that

BO + Bl + IlKer(Bo-l—Bl) = UIL

Then, we define Zg = U. Similarly for Xp.

It is not hard to prove that Zg and Xp as defined anticommute (notice that By = By already anti-
commute exactly). With more calculations, one can establish conditions (3.11]) and (3.12)) (we refer
to [62]] for more details).

3.4 The tilted CHSH inequality
The CHSH inequality can be generalized to a one-parameter family of inequalities which allow
to self-test any partially entangled pair of qubits. Such a generalization was discovered by Acin,
Massar and Pironio [[1]], and is a building block for several of the correlations that appear in this
work. Given a real parameter § € [0,2], for a product state |¢) = |pa) @ |¢p), the following
holds:

(¢ |BAy)+ AoBo+ ApB1 + A1By — A1B1 | ) <2+ B.
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For entangled |1), we have instead:

(| BAo+ AoBo+ AgB1 + A1By — A1By | 1) < /8 +22. (3.14)

The maximum in the tilted CHSH inequality is attained by the following strategy:

Definition 12 (Ideal strategy for tilted CHSH). Given parameter B, let sin20 = | %, U=

arctan sin 26, and « = tan 6. Define the w-tilted Pauli operators as
0y i= COs po* + sin puo*, and oy = cos po* — sin po* .

The ideal strategy for tilted CHSH with parameter B (i.e. achieving maximal violation of (3.14))
consists of the joint state |'¥) = cos 0(]|00) + « |11)) and observables Ay, A1 and By, B with
Ag = 0%, A1 = 0%, By = 0} and By = 0. For each observable, we associate the projection onto

the +1-eigenspace with answer 0 and the projection onto the —1-eigenspace with answer 1.

We will refer to the tilted CHSH inequality that self-tests the state [¥) = cos 0(]|00) + a |11)) as
“tilted CHSH for ratio a”, as this will be the parameter of interest in later sections, rather than S.

We will state, without proof, the following property of the tilted CHSH inequality.

Lemma 2 ([7|]). The tilted CHSH correlation for ratio « self-tests the strategy of Definition[I12|with
O(+\/€)-robustness.

We refer the reader to [7]] for the proof.

In Chapter 5, we will need the following technical lemma about quantum strategies which achieve
maximal violation of the tilted CHSH inequality. This establishes that, from the observables of the
strategy, one can construct unitary operators which behave like Pauli X and Pauli Z’s when acting
on the ideal state. The conditions that such unitary operators satisfy are a generalization of the

conditions from Theorem 3] This lemma is a consequence of the analysis of [[7].

Lemma 3. Let |{p) € Ha ® B. Let Ay, A1 and By, By be binary observables, respectively on H 4
and Hp, with +1 eigenvalues. Suppose that

($| BAo + AoBo + AoB1 + A1By — A1By [p) = /8 + B2

Let 0,1 € (0,%) be such that sin20 = 1/% and y = arctansin26. Then, let Zy = Ay,

Xa = Aq. Let By + By +1Ker(BO+B1) = UTII" and By — By +]1Ker(Bo—Bl) = U I be
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polar decompositions, where U™ are unitaries and T1F are positive-definite. Let Zg = U™ and
Xg = U~. Then, we have

ZalY) =Zply)
cos0XA (1 — Z4) |¢) =sin0Xp(1+ Z4) |¢)

Parallel self-testing For practical applications, like the one we will explore in Chapter @, where
a classical verifier wishes to delegate a quantum computation to two potentially untrusted quantum
servers, it is not enough to test a single EPR pair. If g is the size of the computation (as measured in
terms of the number of gates), then the verifier likely needs a quantum device of size at least ()(g),
say ()(g) EPR pairs, and she should be able to certify measurements on a tensor product of these
EPR pairs. Such a certification could be performed by sequential repetition, or in parallel, where
the verifier asks all of her questions at once, and receives each player’s answers all at once. The
main technical obstacle in such a setting, is that the players can always induce arbitrary correlations
between different copies of the game. Concretely, this obstacle translates into the difficulty of

establishing a tensor product structure in the players’ a priori unstructured registers.

For the cases of CHSH and tilted CHSH, one can obtain self-testing theorems for a direct correlation-
based parallel repetition of these games, based on the original work [22]. The ideas in the proofs
expand on some of the concepts discussed here, like the swap isometry, and can be useful to the
reader interested in familiarizing with the concepts in this section. We leave a formal description

of these results and their proofs in Appendix [A]

3.5 A representation-theoretic point of view: the Magic Square game

We conclude this chapter by reviewing another famous non-local game: the Magic Square game
[63] (and the qualitatively similar, but less well-known, Magic Pentagram game). Unlike the
CHSH game, the Magic Square game has perfect completeness, meaning that there exists a quantum
strategy that wins the game with probability 1, while the best classical strategy wins with probability
g. The magic square game belongs to a class of non-local games known as Linear Constraint System
(LCS) games. Because of their clean algebraic structure, the Magic Square game, and LCS games
more generally, can be studied fruitfully via a representation-theoretic approach. In this section,
we outline the representation-theoretic framework for LCS games developed by Cleve, Liu and
Slofstra [18]. We extend this framework following our original work [24], where we obtain a
general self-testing theorem which applies to a broad class of LCS games. Applying this to the
Magic Square game yields a proof that the latter self-tests two EPR pairs, and applying it to the
Magic Pentagram game yields a proof that the latter self-tests three EPR pairs. In this section, we

only describe and prove the exact version of this self-testing theorem (Theorem [I8)). Most of the
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work, however, goes into obtaining an approximate version of this theorem, but is not included in
this thesis. Nonetheless, we elected to include a review of the representation-theoretic framework
in this chapter, as we believe it provides an enlightening, and more abstract, perspective on self-
testing. The content of this section is helpful, but certainly not essential, to understand the proof of
the robust parallel self-testing theorem from Chapter 4] and is not otherwise required for any other

section of the main text.

Magic Squares and Pentagrams In [79, 63]], Mermin and Peres discovered an algebraic coinci-
dence related to the 3 x 3 “Magic Square” of operators on C> © C? in Figure

If we pick any row and take the product of the three operators in that row (note that they commute, so
the order does not matter), we get the identity operator. Similarly, we can try this with the columns.
Two of the columns give identity while the other gives —1 times identity. Thus, the product of
these nine operators depends on whether they are multiplied row by row or column by column.
This can be exploited to define a non-local game known as the Mermin—Peres Magic Square game
[5]] (see Definition [22]and Figure [3.7]for a formal definition). Informally, the Mermin—Peres Magic
Square game mod 2 is as follows. The players claim to have a 3 X 3 square of numbers in which
each row and each of the first two columns sums to 0 (mod 2), while the third column sums to 1
(mod 2). The referee asks the first player to present a row of the supposed square and the second
to present a column. They reply respectively with the 3 entries of that row and column in {0, 1}.
They win if their responses sum to 0 or 1 as appropriate, and they give the same number for the
entry where the row and column overlap. This game can be won with probability 1 by provers that
share two pairs of maximally entangled qubits of dimension 2, but provers with no entanglement
can win with probability at most g. Games which are won in the classical case with probability

< 1 but are won in the quantum case with probability 1 are known as pseudotelepathy games.

How special is this “algebraic coincidence” and the corresponding game? Arkhipov [6] gives a
partial answer to this question by introducing the framework of magic games. Starting from any
finite graph, one can construct a magic game similar to the Magic Square game. Arkhipov finds
that there are exactly two interesting such magic games: the Magic Square (derived from Kj 3,
the complete bipartite graph with parts of size 3) and the Magic Pentagram (derived from Ks, the

complete graph on 5 vertices).

Linear Constraint System (LCS) games Linear Constraint System games (hereafter referred to
as LCS games were introduced by Cleve and Mittal [19], and can be thought of as a generalization
of Arkhipov’s magic games from graphs to hypergraphs (a connection that we will explain shortly).
In an LCS games, questions represent equations from a system of linear equations modulo d, for

some d € Z, and answers correspond to assignments to all variables in the equation. Alice and Bob
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win if they return assignments that satisfy the queried equations and, moreover, their answers are
consistent, meaning that they assign the same value to overlapping variables. It is not difficult to see
that a classical strategy winning with perfect probability exists if and only the system of equations
has a solution. In the quantum case, this is not true, and the Magic Square game described earlier
is a counterexample. In Subsections and we introduce the necessary group
and representation theoretic background and notation. In Subsection [3.5.4] we give a more formal
introduction to LCS games. In Subsection[3.5.5] we prove our self-testing theorem for LCS games
satisfying certain properties. In Subsection we apply this theorem to the Magic Square and
Magic Pentagram games.

3.5.1 Groups
We work with several groups via their presentations. For the basic definitions of group, quotient

group, etc. see any abstract algebra text, e.g. [32]].

Definition 13. Let S be a set of letters. We denote by F(S) the free group on S. As a set, F(S)

1 -1

consists of all finite words made from {S,s’1 ‘ s € S} such that no ss™ " or s” s appears as a

Figure 3.3: On the left are the operators of the Magic Square. X and Z are the Pauli operators (we
use this notation here instead of ¢z and o as it is visually clearer). Across any solid line, the three
operators commute and their product is identity. Across the dashed line, the operators commute
and their product is —1 times identity.

IQZ — @ 7l =——Z ]I

' ZTXX -------- XZTX-- XXTZ --------- Z*ZZ
Xtez ZX® X7 AR Y

! IIX HZ
X@—— XX —— I X IXI

Figure 3.4: On the right are the operators of the Magic Pentagram. These are operators on (CZ) ®3,
the tensor product symbols are omitted. Across any line, the four operators commute. Across any
solid line, the alternating product ABYCD" of the four operators is identity. Across the dashed
line, the alternating product (computed from left to right) is —1 times identity.
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substring for any s. The group law is given by concatenation and cancellation.

Definition 14 (Group presentation). Let S be finite and R a finite subset of F (S). Then G = (S : R)
is the finitely presented group generated by S with relations from R. Explicitly, G = F(S)/ (R),
where / is used to denote the quotient of groups, and (R) denotes the subgroup generated by R.
We say that an equation w = w' is witnessed by R if w'w ™! (or some cyclic permutation thereof)

is a member of R.

We emphasize that in this work, we sometimes distinguish between two presentations of the same
group. If G = (S : R),G’ = (S’ : R) are two finitely presented groups, we reserve equality for
the case S = S’ and R = R/, and in this case we’ll say G = G’. We'll say that G = G’ if there is a

group isomorphism between them.

Definition 15. Let G = (S : R) be a finitely presented group and can : G — F(S) be an injective
function. We say that can is a canonical form for G if the induced map can : G — F(S)/ (R) is
an isomorphism. In other words, we require that can(g) can(h) = can(gh) as elements of G, but

not as strings.

Now and throughout the paper, for a group G, we’ll denote by 1 its identity, and we’ll let [a, b] :=
aba~1b~! denote the commutator of 2 and b. The group presentations of interest in this paper will

take a special form extending the “groups presented over Z,” from [90].

Definition 16 (Group presentation over Z4). Let d € IN and let Z.; = < J:T d> be the finite cyclic
group of order d. A group presented over Z; is a group G = (S’ : R'), where S’ contains a

distinguished element | and R’ contains relations [s, ]| and s? forall s € S.

For convenience, we introduce notation that suppresses the standard generator | and the standard

relations:

G:(S:R)Zd:<SU{]}:RU{sd,]d,[S,]]‘SES}>.

27i/d

In the group representations of interest, we’ll have | — e —we should always just think of

J as a d" root of unity. We’ll think of relations of the form J~![a, b] as “twisted commutation”

relations, since they enforce the equation aba—1b~1 = ¢27i/4.

Example 1. The Pauli group on one d-dimensional qudit can be presented as a group over Z.;:

7;591 = (x,z: ][x,Z]>zd :
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3.5.2 Group pictures

Suppose we have a finitely presented group G = (S : R) and a word w € F(S) such that w = 1
in G. Then by definition, there is a way to prove that w = 1 using the relations from R. How
complicated can such a proof get? Group pictures give us a way to deal with these proofs graphically,
rather than by writing long strings of equations. In particular, we will use group pictures to get
quantitative bounds on the length of such proofs. (For a more mathematically rigorous treatment

of group pictures, see [90]. These are dual to what are usually known as van Kampen diagrams.)

Definition 17 (Group picture). Let G = (S : R) z, be a group presented over Z.;. A G-picture is
a labeled drawing of a planar directed graph in the disk. Some vertices may lie on the boundary.
The vertices that do not lie on the boundary are referred to as interior vertices. A G-picture is valid
if the following conditions hold:

e Each interior vertex is labeled with a power of |. (We omit the identity label.)
e Each edge is labeled with a generator from S.

® At each interior vertex v, the clockwise product of the edge labels (an edge labeled s should
be interpreted as s if it is outgoing and as s~V if it is ingoing) is equal to the vertex label,
as witnessed by R. (Since the values of the labels are in the center of the group, it doesn’t

matter where you choose to start the word.)

Note that the validity of a G-picture depends on the presentation of G. Pictures cannot be associated

directly with abstract groups.

If we collapse the boundary of the disk to a point (“the point at infinity”), then the picture becomes
an embedding of a planar graph on the sphere (see Figure[3.5). The following is a kind of “Stoke’s
theorem” for group pictures, which tells us that the relation encoded at the point at infinity is always

valid.

Definition 18. Suppose P is a G-picture. The boundary word w is the product of the edge labels
of the edges incident on the boundary of ‘P, in clockwise order.

Lemma 4 (van Kampen). Suppose P is a valid G-picture with boundary word w. Let |* be the
product of the labels of the vertices in P. Then w = |* is a valid relation in G. Moreover, we say

that the relation w = |? is witnessed by the G-picture P.

The proof is elementary and relies on the fact that the subgroup (J|]) is abelian and central, so that

cyclic permutations of relations are valid relations.
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Figure 3.5: This is a directed version of Figure 3 from [90] . The interior vertices are drawn with
dots, while the edge labels and the non-interior vertices are suppressed.

Example 2. Recall the group P‘;@l from Example|l| It’s easy to see that (xz)d = 1 in this group.
In Figure we give two proofs of this fact, for the case d = 3. The examples are chosen to

illustrate that shorter proofs are more natural than longer proofs in the group picture framework.

(zx)zxzx

= Jxz(zx)zx
= J%x(zx)zzx
= xx(zzz)x

= (xxx)
=1
Figure 3.6: The first picture uses a minimal number of relations, and corresponds (in an imprecise

sense) to the equation manipulations on the left. The second picture corresponds to the equation
manipulations on the right, in which each z is commuted all the way to the end of the string.
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3.5.3 Representation theory of finite groups
We’ll study groups through their representations. We collect here some basic facts about the
representation theory of finite groups. For exposition and proofs, see e.g. [32]. Throughout, G

will be a finite group. It should be noted that some of these facts are not true of infinite groups.

Definition 19. A d-dimensional representation of G is a homomorphism from G to the group of
invertible linear operators on C%. A representation is irreducible if it cannot be decomposed as
a direct sum of two representations, each of positive dimension. A representation is trivial if its
image is {1}, where I is the identity matrix. The character of a representation o is the function
defined by ¢ — Tr(0(g)). Two representations p1 and py are equivalent if there is a unitary U
such that for all g, Up1(g)UT = p2(g).

Notice that a 1-dimensional representation and its character are the same function, and that 1-
dimensional representations are always irreducible. We sometimes write “irrep” for “irreducible

representation.” The next fact allows us to check equivalence of representations algebraically.

Fact 1. pq is equivalent to p, iff they have the same character.

The following is immediate:

Lemma 5. Let 0 = @, 0; be a direct sum decomposition of o into irreducibles. Let o denote
composition of maps, and let x = Troo, x; = Troo; be the characters corresponding to the

representations 0. Then X =Y ; Xi.

Furthermore, define X = dilw xand X; = ﬁ Xi as the normalized characters of o, 0;. Then the
1

normalized character of 0 is a convex combination of the normalized characters of 0.

There is a simple criterion to check whether a representation of a finite group is irreducible:

Fact 2. ¢ is an irreducible representation of G iff

G| =Y Tro(g) Tro(g ™).
geG
Definition 20. The commutator subgroup [G, G| of G is the subgroup generated by all elements
of the form [a,b] := aba='b~! for a,b € G. The index |G : H| of a subgroup H < G is the
number of H-cosets in G. Equivalently for finite groups, the index is the quotient of the orders

G
G+ H| = {
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Fact 3. G has a number |G : [G, G|| of inequivalent 1-dimensional irreducible representations,

each of which restricts to the trivial representation on |G, G|.

Fact4. For a finite group G, the size of the group is equal to the sum of the squares of the dimensions

of the irreducible representations. In other words, for R any set of inequivalent irreps,

G| = Y (dimo)? iff R is maximal. (3.15)

0ER

By “maximal”, we mean that any irreducible representation is equivalent to one from R. This fact
can be used to check whether one has a complete classification of the irreducibles of G. This is a

special case of the following for x = 1.

Fact 5 (Second orthogonality relation for character tables). Let x € G. Let 0 vary over a maximal

set of inequivalent irreps of G, and let n, be the dimension of 0. Then
1
E an— TT(U(X)) = §X,1 .
Gl 5

Fact 6 (Schur’s lemma). Let T : G — U(C?) be an irrep and X € L(C?) be a linear operator.
Suppose that XT(g) = 1(g)X for all ¢ € G. Then X = Al is a scalar multiple of identity.

3.5.4 Linear constraint system games over Z;
We recall several definitions from previous works of Cleve, Liu, Mittal, and Slofstra [90, |18, [19].

Following a suggestion from [18], we define the machinery over Z; instead of Z;.

Definition 21. A hypergraph H = (V, E, H) consists of a finite vertex set V, a finite edge set E

and an incidence matrix H : V X E — Z.

We think of V as a set of Z-linear equations, E as a set of variables, and H(v, e) as the coefficient
of variable e in equation v. Following Arkhipov [|6], some of our hypergraphs of interest will be
graphs. Unlike previous works, we introduce signed coeflicients (outgoing edges have a positive
sign in the incidence matrix, while ingoing edges have a negative sign). This is because previous

works considered equations over Zp, where 1 = —1.

Definition 22 ([19], [90]). Given hypergraph H, vertex labelling | : V- — Z, and some modulus
d € Z, we can associate a nonlocal game which we’ll call the linear constraint game LCS(H, 1, Z ;).
Informally, a verifier sends one equation x to Alice and one variable y to Bob, demanding an
assignment a : E — Z; to all variables from Alice and an assignment b € Z; to variable y from
Bob. The verifier checks that Alice’s assignment satisfies equation x (mod d), and that Alice and

Bob gave the same assignment to variable y.
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Formally, we have the following question and answer sets: X =V, Y = E, A = Zg, B =27,
The win condition selects those tuples (a,b, x,vy) satisfying:

a(y) ="b (Consistency)

Y H(x,e)a(e)

ecE

I(x) (mod d). (Constraint satisfaction)

We introduce the two primary LCS games of interest in this paper.

Example 3. The magic square LCS (mod 2) has vertex set {v1,...,0¢}, edge set {e1,...,e9},
vertex labeling 1(vs) = 1,1(v;) = 0 for i # 5. See Figure [3.7) for the full description of the

hypergraph and the associated set of linear equations.

(1) esr+ex+e3=0 (4) —(eg+es+ey) =0

(2) es+e5+e5=0 (5) —(€2+65+€8):1

(3) ez +eg+eg =0 (6) —(€3+66+€9):0

Figure 3.7: The magic square LCS, presented both in terms of equations (mod 2) and in terms of a
labelled hypergraph. The two line segments labeled e3 are parts of the same edge, as are the pair
of line segments labeled e;. The underlying graph is K3 3, the smallest bipartite non-planar graph.
The direction of the edges emphasizes the bipartition.

Example 4. The magic pentagram LCS (mod 2) has vertex set {v1, ..., vs}, edge set {e1, ..., e10},
vertex labeling 1(vs) = 1,1(v;) = 0 for i # 5. See Figure [3.8] for the full description of the

hypergraph and the associated set of linear equations.

The following is the main tool we use to understand linear constraint system games.

Definition 23 (Solution group over Z;, [18]). For an LCS game LCS(H,1,Z;) with H =
(V,E,H), the solution group I'(H,I,Z;) has one generator for each edge of H (i.e. for each
variable of the linear system), one relation for each vertex of H (i.e. for each equation of the linear
system), and relations enforcing that the variables in each equation commute. Formally, define the

sets of relations R, the local commutativity relations, and Req, the constraint satisfaction relations
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(1) e1—ert+eg—e9g=0
(2) er —e3+eq—ey =0
(3) e3—eg+eg—en=0
(4) e —es+e;—eg=0
(5) es —eg+epo—e1 =1

Figure 3.8: The magic pentagram LCS, presented both in terms of equations (mod 2) and in terms
of a labelled hypergraph. The two line segments labeled ey are parts of the same edge, as are the
pair of line segments labeled eg. The underlying graph is Ks, the smallest complete non-planar
graph.

as

R := {[e,e']| H(v,e) # 0 # H(v,¢') for somev € V'}

Req = {]_Z(v) HeH(v'e) RS V} .

ecE
T(H,1,Z4) = (E: ReUReq) -

Then define the solution group as

(Notice that the order of the products defining R.q is irrelevant, since each pair of variables

appearing in the same Req relation also have a commutation relation in R..)

When the LCS game is clear from context, we’ll just write I" to denote its solution group.

Our aim is to prove that for some specific linear constraint system games, strategies that win with
high probability are very close to some ideal form. We start by observing that for any LCS game,

any strategy already has a slightly special form.

Lemma 6 (Strategies presented via observables). Suppose that p(a,b||v,e) = Tr, A% ® BL is a
quantum strategy for an LCS game over Z; with hypergraph H = (H,V,E). Then there are
unitaries {Aﬁ”) ‘e €Eve V} and {B, |e € E} such that for all v, e, (Agv))d = I = BY; for

any fixed v, the A(E”) pairwise commute; moreover, the provers win with probability 1 iff

forallv,e, Tr, AY”) @ B, = 1, and (3.16)

H(v,e
forallv, Tr, [ ] (Aé”)) ©) o 1y = W', (3.17)
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We refer to the operators {AS’)} ,{B.} together with the state p as a strategy presented via
observables. Typically the word “observable” is reserved for Hermitian operators. Nonetheless, we
call our operators observables because they capture properties of the projective measurements from
which they’re built in a useful way. Operationally, we think of Bob as measuring the observable
B, and reporting the outcome when asked about variable e and of Alice measuring the observables
Aév) and reporting the outcome for each e when asked about equation v. The fact that Alice’s
observables pairwise commute at each equation means that Alice can measure them simultaneously

without ambiguity.

A version of this lemma is proved in the course of the proof of Theorem 1 of [19]. We give

essentially the same proof, just over Z.

Proof of Lemmalf] Define the observables as

B.:=Y w, /B AP =YW Y AL
j i aa(e)=i

It’s clear that each of these operators is a unitary whose eigenvalues are d™ roots of unity. To see

that AS’) commutes with Aé,v), notice that they are different linear combinations of the same set of

projectors. Now we compute, for any v, e,

Tr, AV @B =Y /T, | Y A%| @Bl

i,j a:a(e)=i

=Y whPra(e) — b =k | questions x = v,y = e].
k
Notice that the last line is a convex combination of the 4™ roots of unity. Hence, it equals 1 if and
only if Pr[a(e) = b | questions x = v,y =¢] = 1.

A similar computation reveals:
_ H(v,e)
w, ", T (AS’)) ®1
e

= Zws_l(v) Tr, ) Al
k Y. H(v,i:)a(e)zk

:Zws_l(v) Pr [ZH(v,e)a(e) =k

k

question x = v] .

Again, the last line is a convex combination of the d" roots of unity. Hence it equals 1 if and only
if Pr[Y, H(v,e)a(e) = I(v)|question x = v] = 1. O
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Note that we can always recover the original strategy in terms of projective measurements by
looking at the eigenspaces of the observables. Therefore, we restrict our attention to strategies

presented by observables without loss of generality.

Next, we state a simple sufficient condition for the existence of a perfect quantum strategy for an
LCS game.

Definition 24 (Operator solution). An operator solution for the game LCS(H,1,2Z;) is a unitary
representation o of the group T'(H,1,7Z;) such that o(]) = wyl. A conjugate operator solution is

a unitary representation sending | — wyl.

Notice that if ¢ is an operator solution, then for any choice of basis the complex conjugate

7 : g — 0(g) is a conjugate operator solution. The existence of an operator solution is sufficient

to construct a perfect quantum strategy.

Example S (Operator solution for magic square). See the square of group generators in Figure
Let Iy be the solution group of the Magic Square. Consider the map I'y — U(C2 Q Cz) generated
by sending each generator in this square to the operator in the corresponding location of Figure

[3.3} This map is an operator solution.

€1 €2 €3
1 67
| ]
1
1
1
1
1
1
1
1
1 el mmmmmmm €6 mmmm== €5 mmmmmmmm—— ewl
1
€4 €5 €6 \ / \ /
1
] €2 €4
1
: \ /
| ]
1 €9
1
1
1
1
1
' e3 es
€7 €g €9

Figure 3.9: On the left-hand figure, the product of the generators on any solid line is equal to 1 in
the solution group of the magic square. The product of the operators on the dashed line is equal to
J. Similarly, on the right-hand figure, the alternating product ab~'cd~! is equal to 1 on the solid
lines and | on the dashed line.

Example 6 (Operator solution for magic pentagram). See the pentagram of group generators in
Figure Let T'3 be the solution group of the Magic Pentagram. Consider the map I's —
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U(Cz RC*® Cz) generated by sending each generator in this pentagram to the operator in the

corresponding location of Figure[3.3} This map is an operator solution.

Proposition 1. Letr o : T — U(CP) be an operator solution. Define a strategy by setting

|¢) = |EPRp), Agv) = o(e) forall e,v, and B, = o (e) for all e. Provers using this strategy win
with probability 1.

Proof. By a well-known property of the maximally entangled state, we have

(lo(e) @ a(e) [¢) = (p|ole)ole) @1]y) =1,

where T denotes the transpose. Therefore, the consistency criterion (3.16) is satisfied. Since ¢ is

an operator solution, we have

I1(4)"™" = e([Tote) o)

= o (J'))

= w;(v) I,

so the constraint satisfaction criterion (3.17) is satisfied. O
We will see an exact converse to this proposition in the next section.

3.5.5 Exact self-testing
In this section, we build up to our self-testing theorem for LCS games (in its exact form), Theorem
Ml We refer the reader to [24] for the approximate version. The statement of the theorem is the

following:

Theorem 4. Let G be an LCS game over Z ; with vertex set V, edge set E, and constraints given by
H:VXE—Zjandl :V — Z,. Let T be the solution group of G. Suppose that T is finite and
all of its irreducible representations with | — wyl are equivalent to a fixed irrep o : I’ — U(Cd).
Then G self-tests the strategy AE”) =ol(e),B. = c(e), |) = |EPRyn).

Throughout, let LCS(H,1,Z;),H = (V,E, H) be an LCS game with solution group I'. We start
with a theorem that characterizes the observables. We will then characterize the state in Subsection
3.5.5

Theorem 5 (Characterizing the observables). Suppose 1 is finite and all of its irreducible rep-
resentations with | — wgl are equivalent to a fixed irrep 0 : I — U(Cd ). Suppose
{AS’)} ,{Be},p € L(Ha® Hp) is a perfect strategy presented via observables for the game.

Then there are local isometries V 5, Vg such that
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o forall e,0, VaAS ' VE = o(e) @ 1@ ALY, where ALY VoVt = 0, and

e foralle VBBeVg =o(e) ® I © B, where ]EABQVBIOVJ;r =0.

Formally, we must pick a basis to take the complex conjugate in. Fortunately, we only care about
our operators up to isometry. So to make sense of the theorem statement, we pick the basis for

complex conjugation first, and then the isometry V3 depends on this choice.

We break the proof into two lemmas.

Lemma 7. Suppose I is finite and all of its irreducible representations with | — wyI are equivalent
to a fixed irrep 0 : I’ — U(Cd). Then every operator solution is equivalent to o @ I and every
conjugate operator solution is equivalent to 0 Q I, where the complex conjugate can be taken in

any basis.

Lemma 8 (Adapted from Lemma 8, [18]]). Suppose {AS’) } ABe},p € L(Ha® Hp) is aperfect
strategy presented via observables for the game. Then, there are orthogonal projections Py, Pg
such that

1. (P4 ® Pp)p(P4 ® Pg) = p;

2. for each e, PAAgv)PA = PAAgvl)PA, provided that H(v,e) # 0 # H(v',e) (we now write
Pp A.Py without ambiguity);

3. the map 04 : I — ran Py generated by e — PaA.P4 (and j — wyl) is an operator

solution;

4. the map op : I — ran Pp generated by e — PpB.Pp (and j — wyl) is a conjugate operator

solution.

Proof of Theorem 5| assuming the lemmas. Take the maps 04 and op from Lemma [§ note that
their ranges are the subspaces determined by P4, Pg. From Lemma(7|we get partial isometries Wy,
Wp such that Wao 4 (e)Wh = o(e) ® I and Wgop(e)W} = o(e) @ I. To complete the proof,
let V4 and Vg be any isometric extensions of W, and Wp, and set Agv) = Va(l - PA)A(EU) (I—
P4)V}, B, = V(I — Pg)B.(I — Pg) V3. Checking that these operators satisfy the equations in

the theorem is a simple computation. U

Proof of Lemmal[/] Let T be an operator solution, i.e. a representation of I' with 7(]) = wyI. Let
T= @5.‘:117 be a decomposition of T into k irreducibles. Asin Lemma lety:g— ﬁ Trt(g)
be the normalized character of T and j; be the same for 7;. One can check that |{;(g)| < 1 for all
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¢ € T. Furthermore, {(g) is a convex combination of the x;(g). Therefore, ¥;(J) = w, for each
i. Then also T;(]) = wyl for each i, since this the only d-dimensional unitary with trace dw,;. We

conclude that T is equivalent to @le c=0Q .

Now suppose that T’ is a conjugate operator solution. Then taking the complex conjugate in any
basis, T/ is an operator solution. By the above, T’ is equivalent to o ® I. Therefore, T’ is equivalent
to 0 ® I. O

Proof of Lemma(8 This is essentially the same proof as given in [[I8] (their treatment is a bit more

complicated since they wish to cover the infinite-dimensional case).

Let A be the set of finite products of unitaries from {Aﬁ”) } and similarly let B be the set of finite

products of unitaries from {B.}. Let p4 = Trp p and pp = Try4 p. Define

H = supppa,and Hp = supp o5,

and let P4 and Pp be the projectors onto these spaces. Notice that (P4 ® Pg)o(Pa ® Pg) = p.
From the consistency criterion (3.16)), we have

1=Tr, AY @ Be, s0 ALY |p) = BT |¢) for |¢) € suppp. (3.18)

Let A € A be arbitrary. Then, the above implies that there is B € 3 be such that (A ® I)p(AT ®
I) = (I®B"p(I ® B). We compute

AppaAT =Trg(A® Dp(AT® 1) = Trg(I® BNo(I®B) = Trgp = pa,

from which we conclude that A fixes 4. This implies that (PA;P)(PAyP) = PA{A,P for
A1, Ay € A. Next, we compute

1=Tr, AV (A" @ 1 =Tr,, AP (AN,
from which we conclude that P4 AS’) Py = PAAgvl) P4. We now write P4 A.P4 without ambiguity.

Finally, we compute
-1 -1
1=Tr,w,"” [] Acl=Tywo,'" ] A,
e:H(v,e)#0 e:H(v,e)#0

from which we conclude that the map e — P4 A.Pj4 is an operator solution. The same argument
shows that e — PgB,Pp is a conjugate operator solution. (The conjugation comes from equation

(3.18).) n
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Stabilizer state bounds We show that if a state is stabilized by the simultaneous action of
an irreducible group representation on two tensor factors, then the state is maximally entangled
between those factors. This will allow us to deduce self-testing of the provers’ state from the

characterization of their observables from Theorem

Lemma9. LetT: 1 — U(Cd) be an irreducible representation with I a finite group. Then the
maximally entangled state can be characterized as a uniform combination of operators from the

image of T ® T. In particular,

|[EPR;)(EPR4| = glgrf(g) ®T(g).

Proof. We show four intermediate equations via simple computations.

1. pap =php

2. TrpAB =1

3. 0%p = PaB

4. Trp p oA is maximally mixed.

The first two items assert that p 4p is a density matrix. The third shows that it is in fact pure. The
fourth tells us that the state is maximally entangled across the A/B cut. This characterizes the
state.

Our main trick for the whole proof will be to relabel the index of summation defining p4p. To

prove the first item, we use the relabeling x — x 1.

PAB = ]];3 T(x) 4 ® T(X)p

—Er(x )0 T(x 1
= Et(x)h ©T(x),

— [Et@a 070,
= Phg-

(Notice we’ve used the fact that T(x) is unitary; this is one of several parts of the proof that relies
on the finiteness of I'.) Now define the character x(x) := Tr T(x) to compute:

Trpap = Tr]];ZT(x)A ®T(x)g

=Ex(x)x(x)
~1.
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The final equation is true for the character of any irreducible representation character, and is referred

to as the “second orthogonality relation" in Dummit and Foote [32]. For the second item,

0op = <1§ T(x)a ®WB>2

= IEIET(X)ATW)A R T(x)pT(¥)p

In the last line, we used the relabeling y — xy. Continuing, we have
=Epap
= PAB-

Now define p4 = Trg pap. Let y € T be arbitrary and use the relabeling x — yxy 1

So p4 commutes with T(y) for all y. By Schur’s lemma (Fact@), 0 4 is a scalar multiple of identity.

Since Tr p4 = 1, we know that p 4 is in fact the maximally mixed state.

Since the maximally entangled state of local dimension d on systems A and B is the unique pure
state such that the partial trace over either system gives a maximally mixed state, this concludes our

proof. U

Corollary 1. Let H 4 = Hp = C. Let p aopc be astateon Hp @ Hp @ He. Let pap = Trc papc.

Let T be a finite group. Suppose that for each ¢ € T, T(g) ® T(8)pap(t(8) ® T(g))" = paB.
Then there is a state Pqyy such that pppc = |EPR;)(EPR;| ® paux -

Proof. This follows from an application of Lemma 9] and the monogamy of entanglement. U

Proof of Theorem |4, We have all the ingredients we need. The theorem follows straightforwardly
from putting together Theorem |5 Corollary 1} and the consistency condition of the LCS game G.
O
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3.5.6 Self-testing of specific games

We now put our general self-testing theorem to use. We apply it to the Magic Square and Magic
Pentagram games. We must both understand the representation theory of their abstract solution
groups and the combinatorics of the presentations for those groups.

Even though our general self-testing theorem holds for LCS games mod d, we are currently only
aware of applications of it to examples of LCS games mod 2. In the next subsection, we study the
representation theory of the n-qudit Pauli group for a general d, even though we will only make use
of it for the case of d = 2 and n = 2, 3.

3.5.6.1 The qudit pauli group

Definition 25. The n-qudit Pauli group of local dimension d is denoted 7353’” = (S:R) z, and

presented with generators and relations
S={xj,zi|i <n} R = {]_1[961',21'], [x;, x]-], [Zi,Z]'], [xi,z]'] ‘ i#7< 1’1}
We aim to show that the Pauli group is suitable for applying the results from Section [3.5.5]
Definition 26. We now define maps Tl(n) : PI — U(CH)®m as
Tl(n)(]) = wyl,
Tz(n)(xi) = ]@...[@XZ@)[@...@[’
~—— ~—— /

—~——
i—1 n—i
Tl(n)(zi) IR IRZRIR---R]I.
~—— ———
i—1 n—i
where X is the generalized Pauli X operator, i.e. the unitary operator on C¢ which maps i) —
li4+1modd), and Z is the generalized Pauli Z operator, i.e. the unitary operator on C“ which

maps |i) — wl, |i).

Lemma 10. The {Tl(n) ’ leZy\ {0}} are d — 1 inequivalent representations of dimension d".

Proof. To see that they are representations, it suffices to check the commutation and anticom-

mutation relations. To see that they are inequivalent, see that their characters differ at |, since
My —

Trr /(]) = wyd". O

Proposition 2. 7759” has exactly d — 1 irreducible representations of dimension d", each sending
to a different nontrivial d™ root of unity. All other irreducible representations are 1-dimensional
D
and send | to 1.
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To prove this, we first establish the following lemma, which will let us count the elements of 7359”.

Lemma 11. There is a canonical form can : 7359" — F(S) which sends each element to a string
of the form

n
a azi A2i41 .
Ja [x#z% a0 € Z,.
i=1
Proof. First, we see that each element can be written this way. Start with an arbitrary word
representing the element and apply the commutation and anticommutation relations to get the x;
and z; in order. Finish by commuting all of the [s to the front and applying the relations s9=1to

get all of the exponents to lie in Z,;.

Next, we see that different words represent different group elements. Suppose that
1 a b L by; b
@i o b
]al Hxi212i21+1 — ] 1 Hxi21zi21+1 )
Then by various applications of the (twisted) commutation relations, we have

n
b Gniin —bo
]c1 — | |x?21 bZzZ?ZH—l 2i+1 (3.19)
i=1

for some c; € Z;. The left hand side is always central, but the right hand side is central only if
a; = b; for all i € [2,2n + 1]. (Suppose for example that a3 — bz # 0, so that the power of z7 is
nonzero. Then the right hand side fails to commute with x1.) In this case, we can see that in fact
c1 = a1 — by, so equation (3:19) holds only if [ = 1 in the group. But Proposition [10] gives us
a representation in which | and 1 are represented by distinct matrices. Therefore, equation (3.19)

holds only when a; = b; for all i. O

Thanks to the canonical form, we can easily compute the size of 7359”.

Corollary 2. P has d*" 1 elements.

Proof of Proposition[2] We will complete the character table of 73’53’”. Now that we know the size

of the group, we can check via Fact 2] that the representations of Lemma [I0]are irreducible.

Next, we notice that the commutator subgroup [P, P$"] is equal to (J|]), the cyclic subgroup
generated by [. This has order d, so by Fact there are d%" irreps of dimension 1 which send |
to 1. Now we add the squares of the dimensions of our irreps and see that they saturate equation
@.13).

}Pf”{ =42+l = (d—1)- (d”)2 + (dzn) . (1)2 = Z(dima)z.

ag

Therefore, we have found all irreducible representations of 7759". O
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3.5.6.2 Self-testing the Magic Square

Recall the definition of the Magic Square game from Example

Definition 27 (Ideal strategy for the Magic Square LCS game (mod 2)). See Figure Let
A, be the operator which appears on the right-hand side in the same spot as variable e appears on
the left-hand side. Set Aﬁ”) := A, for all v. Then set B, = A, (where any choice of basis works
for the conjugation). Set i) = |EPR)®%. We define {AS’) } {Be}, [1h) to be the ideal strategy for
the Magic Square game (mod 2).

Notice that the B, are defined only up to local isometry, because of the freedom in the choice of

basis for conjugation.

The robust self-testing theorem for the Magic Square game is the following.

Theorem 6. The Magic Square game mod 2 self-tests the ideal strategy with perfect completeness
and O(+/€)-robustness.

We will only prove the exact version. The robust version can be found in [24]. We will make a
direct application of Theorem 4 Throughout, let I'; be the solution group for the Magic Square
game over Zp. The crux of the proof is identifying I'; as a group of Pauli operators. We will prove

the following:

Proposition 3. T, = P52

Proof of Theorem [0} assuming Proposition[3] We can apply Proposition [2]to deduce that I'; has a

(up to equivalence) a single irreducible representation that maps | to —1, and this is of dimension

é €2 €3 Iez AV zelI
eq e e Xtez IX@XZ Zte Xt
er es e Xol Xt xt 19X

Figure 3.10: The standard operator solution for the Magic Square.
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22 = 4. The operators from Figure constitute a representation of I',. This implies Theorem
6l O

We now prove Proposition [3 with two lemmas.

Lemma 12. The commutator subgroup [I'2, T3] is (), the cyclic subgroup generated by J.

Proof. First, note that | commutes with everything by construction. Next, see that each pair of
generators of I’y has a commutator which is a power of |, and that ] commutes with all generators.
If wq, wy are words in the generators, then it holds by induction on the lengths of the words that
wiwy = [*wyrwq for some a € Z,. This proves the inclusion F’2 C (J). The reverse inclusion is

immediate. O

Lemma 13. For generators s1,s; € Ty, say that the pair {s1, s, } is intersecting if the corresponding
edges in the constraint graph are incident on a common vertex. Let X1, X2, 21, 2 be any generators of
[y suchthat {x1,x2},{z1,22},{x1,22} , {21, x2} are interesecting pairs, while {x1,z1} ,{x2,22}

are not. Then

1. [x1,z1] = ] = [x2,22], and

2. {x1,x2,21,22, ]} generates ', .

Proof. [I} If xq and z; are any pair of edges not sharing a vertex, then the group picture of Figure
[3.1T]establishes the twisted commutation relation. If x; and z; are any other pair of edges which do
not share a vertex, then there is an automorphism of the graph K3 3 sending x1 — x5 and z1 > z5.
Therefore, we can draw the same group picture with a different labeling to prove that x, and z;

share the same twisted commutation relation.

2] See Figure Suppose some vertex has only one black edge. Then the group element labeling
the black edge is equal to some product of | and the group elements labeling the blue edges at that
vertex. So the group generated by the blue edges and | contains the black edge. By the sequence
of pictures in Figure we see that the four blue edges, together with |, generate all nine of the
edges. Therefore, they generate all of ', . 0

From here on, we fix the identification x1 = ey, X, = e9,z1 = e3,zp = e1 (c.f. Figure [3.10).

Proof of Proposition |3} We have the same set of generators for both groups. This gives a surjective
function 77592 — I'p. We’ve seen that the generators of I', satisfy the relations defining 73592; this

implies that the function is a group homomorphism. All that remains to check is that the map is
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injective, i.e. has trivial kernel. This holds if the relations of I'; hold for the preimages of the ¢; in
7359 2 This follows from the fact that the square of operators (3.10) is a Mermin—Peres magic square
in the usual sense, i.e. operators in the same row or column commute, the products across each row
and down the first two columns are I, and the product down the last column is —I. *Notice that

this step fails for the Magic Square game mod d # 2.*
0J

3.5.6.3 Self-testing the Magic Pentagram
Recall the definition of the Magic Pentagram game from Example [4]

Definition 28 (Ideal strategy for Magic pentagram (mod 2)). In Figure associate each
operator in the left-hand pentagram with the corresponding variable in the right-hand pentagram.
Set AE’) to the operator corresponding to e, and denote the latter by A,, so that we have Aé”) = A,

for all v. Then set B, = A, (where any choice of basis works for the conjugation).

Set | ) = |EPRy)®>. We define {AE”) }, {Be}, |¢) to be the ideal strategy for the Magic Pentagram

game.

The robust self-testing theorem for the Magic Pentagram game is the following.

Theorem 7. The Magic Pentagram game mod 2 self-tests the ideal strategy with perfect complete-
ness and O(\/€)-robustness.

Again, we will only prove the exact version, and we will refer the reader to [25] for the robust

version.

1

Figure 3.11: The group picture proves that x1z1x; 1zf = | in the solution group for the magic
square with the identification x; = e7,xo = e€9,21 = e3,z0 = e;. (Compare Figure [3.10])
The blue-colored edges illustrate that {xq,z1, X2, 2, ]} generates the solution group for the magic
square.
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er

z*xx---<l-lzzfx ---xxf\lzj Z 7fzz e \ez/w ------ P\e 4/610
\ZH/ \ y
N N

Figure 3.12: The standard operator solution for the Magic Pentagram.

Let I'3 be the solution group for the Magic Pentagram. The crux is again identifying I'3 as group

of Pauli operators. We will prove the following.

Proposition 4. T3 & P53

Theorem [7|follows immediately from Proposition ] analogously to the Magic Square case.
We prove proposition
Lemma 14. The commutator subgroup [I'3, T3] is (J), the cyclic subgroup generated by ].

Lemma 15. Let x1, x2, X3, 21, 22, 23 be any generators of I'3 such that in the linear constraint graph,
the edge pairs {x,', x]-} , {Zi,Z]'} , {xi, z]'} ,1 # j are intersecting (see Lemma , while the edge

pairs {x;,z;} are not. Then

1 [xi,zl-] = ], and

2. {xj,zi, ] |i <3} generates I's.

Proof. [1] If x1 and z; are any pair of edges not sharing a vertex, then the group picture of Figure
[3.13]establishes the twisted commutation relation. If x; and z; are any other pair of edges which do
not share a vertex, then there is an automorphism of the graph K5 sending x; — x; and z1 — z;.
Therefore, we can draw the same group picture with a different labeling to prove that x; and z; share

the same twisted commutation relation.

[2l See Figure [3.13] which is interpreted the same way as Figure [3.11] from the Magic Square case.
O
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Figure 3.13: The leftmost group picture proves that x1z1x; 121_ T— JinI'3, with x; = ey, z1 = eo.

Identifying further xo, = eg,zo = e3,x3 = ¢€p,z3 = ¢4 and following the color of the edges shows
that {x;,z;, J | i < 3} generates I's.

) can(eqg)~!

Figure 3.14: The rightmost figure is a I'3-picture showing can(eqg) = lezzgl .

We fix the identification X1 = ey, z1 = eg, X = €g, 2o = €3, X3 = 2,23 = ¢4 (c.f. Figure[3.12])

Proof of Propositiond} As in the Magic Square case, all that remains to check is that the generators
of 7759 3 satisfy the relations of I's. This amounts to checking that the pentagram of operators in
Figure [3.12] is a 2-dimensional Mermin Magic Pentagram in the usual sense, i.e. operators on
the same line commute, the alternating products across the four solid lines are each I, and the

alternating product across the dashed line is —1I. U
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Chapter 4

A CONCRETE APPLICATION: DELEGATING A QUANTUM
COMPUTATION

In the previous chapter, we learnt that certain quantum correlations have the property of characteriz-
ing uniquely the quantum state and measurements that achieve them. Such states and measurements,
however, are certainly not arbitrary and a given self-testing correlation certifies a very specific setup.
In this chapter, we investigate the question of whether and how the self-tests described in Chapter
[3] can be exploited or augmented to allow a classical verifier to orchestrate an arbitrary full-fledged

quantum computation.

Organization In Section we give an overview of the problem and of our solution. In Section
4.2 we give an informal overview of our main technical contribution, a robust self-test for products
of single-qubit Clifford observables on many EPR pairs. We then set up the formal notation for
the next two sections. In Section 4.3 we describe the Pauli Braiding test of Natarajan and Vidick
[69]] which allows to test products of Pauli X and Z measurements. In Section we extend this
test first to account for Pauli Y measurements, and then to account for any single-qubit Clifford
observable. In Section 4.5 we describe our delegation protocols and prove their completeness and

soundness.
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4.1 Introduction

For the foreseeable future, making use of a quantum computer will likely require delegating the
computation to a potentially untrusted cloud service, such as that of IBM [48]]. Recent progress
towards implementing limited quantum computers has added urgency to the already important
question of how a classical verifier can test the correctness of the computations she delegates. In
this chapter, we will investigate this question by making one crucial assumption on the system to
be tested: that it consists of two spatially isolated components that are unable to communicate
throughout the experiment. This will allows us to exploit some of the self-testing theory developed
in Chapter 3] Certainly, two things seem essential in order for self-testing results to be helpful in

verifiably delegating a quantum computation:

* They should be robust, in the sense that close-to-optimal correlations, should still allow us to
conclude that the quantum apparatus under study is close to the ideal apparatus (see Definition
[9for a formal definition). This is essential because in practice one never “observes” an optimal

winning probability, but one can only make statements up to some statistical confidence.

* They should be applicable to higher-dimensional states, not just one or two EPR pairs, but

potentially many copies.

For the first question, the results of [62] and [[82] showed that the CHSH game provides a robust
self-test of a single EPR pair, wherein an e-close to optimal winning probability requires an
O(y/€)-close to optimal state. For the second question, the most natural approach to certifying
many EPR pairs is to repeat the CHSH game sequentially and requiring that the players win a
high-enough fraction of the games played. In 2012, Reichardt, Unger and Vazirani proved a robust
self-testing theorem for playing a sequence of n CHSH games [82]. The main technical difficulty
that needs to be overcome to prove such a result is to establish a tensor product structure in the
provers’ registers, in spite of the fact that they might try to correlate their answers for a certain
round with their questions and answers from previous rounds. The sequential test of [82] is not a
non-local game in the traditional sense, since there is more than one round of interaction between
the verifier and the players. Nonetheless, the result showed that the only way for the players to
play optimally in the n-sequentially repeated CHSH game is to be making certain Pauli X and Z
measurements on a state that is close to n EPR pairs. Aside from its intrinsic interest, this theorem
had two important consequences. One was the first device-independent protocol for quantum
key distribution. The second was a protocol whereby a completely classical verifier can test a
universal quantum computer consisting of two spatially isolated devices. The resulting protocol

for delegating quantum computations has received a lot of attention as the first classical-verifier
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delegation protocol. We believe that this attention is especially justified in light of the current race

for building a quantum computer and the recent experimental advances.

Unfortunately, the complexity overhead of the delegation protocol from [82], in terms of both
the number of EPR pairs needed for the provers and the overall time complexity of the provers
as well as the (classical) verifier, while polynomial, is prohibitively large. Although the authors
of [[82]] do not provide an explicit value for the exponent, in [44] it is estimated that their protocol

requires resources that scale like Q(¢%19?)

, where ¢ is the number of gates in the delegated circuit
(notwithstanding the implicit constant, this already makes the approach thoroughly impractical for
even a 2-gate circuit!). The large overhead is in part due to a very small (although still inverse
polynomial) gap between the completeness and soundness parameters of the rigidity theorem; this
requires the verifier to perform many more Bell tests than the actual number of EPR pairs needed

to implement the computation, which would scale linearly with the circuit size.

Subsequent work has presented significantly more efficient protocols for achieving the same, or
similar, functionality [59, |40, 44]. We refer to Table [4.1] for a summary of our estimated lower
bounds on the complexity of each of these results (not all papers provide explicit bounds, in which
case our estimates, although generally conservative, should be taken with caution). Prior to our
work, the best two-prover delegation protocol required resources scaling like g2048 for delegating
a g-gate circuit. Things improve significantly if we allow for more than two provers, however,
the most efficient multi-prover delegation protocols still required resources that scale as at least
Q(g* log ¢) for delegating a g-gate circuit on 72 qubits. Since we expect that in the foreseeable future
most quantum computations will be delegated to a third-party server, even such small polynomial
overhead is unacceptable, as it already negates the quantum advantage for a number of problems,

such as quantum search.

The most efficient classical-verifier delegation protocols known [36, 69], with poly(n) and 7
provers, respectively, require resources that scale as O( g3 ), but this efficiency comes at the cost
of a technique of “post-hoc” verification. In this technique, the provers must learn the verifier’s
input even before they are separated, so that they can prepare the history state for the computation ]
As a result, these protocols are not blind?l Moreover, while the method does provide a means for
verifying the outcome of an arbitrary quantum computation, in contrast to [[82] it does not provide
a means for the verifier to test the provers’ implementation of the required circuit on a gate-by-gate
basis. Other works, such as [45], achieve two-prover verifiable delegation with complexity that

scales like O(g*log ¢), but in much weaker models; for example, in [45] the provers’ private system

!Using results of Ji [49], this allows the protocol to be single-round. Alternatively, the state can be created by a
single prover and teleported to the others with the help of the verifier, resulting in a two-round protocol.

2Blindness is a property of delegation protocols, which informally states that the prover learns nothing about the
verifier’s private circuit.
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is assumed a priori to be in tensor product form, with well-defined registers. General techniques
are available to remove the strong assumption, but they would lead to similar large overhead as

previous results.

In contrast, in the setting where the verifier is allowed some limited quantum power, such as the
ability to generate single-qubit states and measure them with observables from a small finite set,
efficient schemes for blind verifiable delegation do exist. In this case, only a single prover is needed
[3,137,165, |11} 46,(66,39,|67] (see also [35] for a recent survey), and the most efficient single-prover
quantum-verifier protocols can evaluate a quantum circuit with ¢ gates in time O(g). The main
reason these protocols are much more efficient than the classical-verifier multi-prover protocols is
that they avoid the need for directly testing any of the qubits used by the prover, instead requiring

the trusted verifier to directly either prepare or measure the qubits used for the computation.

New rigidity results We overcome the efficiency limitations of multi-prover delegation protocols
by introducing a new robust rigidity theorem. Our theorem allows a classical verifier to certify
(in parallel as opposed to in sequence) that two non-communicating provers apply a measurement
associated with an arbitrary m-qubit tensor product of single-qubit Clifford observables on their
respective halves of m shared EPR pairs. This is the first result to achieve self-testing for such a
large class of measurements. The majority of previous works in self-testing have been primarily
concerned with certifying the state and were limited to simple single-qubit measurements in the
X-Z plane. Prior self-testing results for multi-qubit measurements only allow to test for tensor
products of 0x and oz observables. While this is sufficient for verification in the post-hoc model
of [36], testing for oy and oz observables does not directly allow for the verification of a general
computation (unless one relies on techniques such as process tomography [82], which introduce

substantial additional overhead).

Our first contribution is to extend the “Pauli Braiding test” of [69]], which allows to test tensor
products of ox and oz observables with constant robustness, to allow for ¢y observables as well.
This is somewhat subtle due to an ambiguity in the complex phase that cannot be detected by any
classical two-player test; we formalize the ambiguity and show how it can be effectively accounted
for. Our second contribution is to substantially increase the set of elementary gates that can be
tested, to include arbitrary m-qubit tensor products of single-qubit Clifford observables. This is
achieved by introducing a new “conjugation test”, which tests how an observable applied by the
provers acts on the Pauli group. The test is inspired by general results of Slofstra [90], but is

substantially more direct.

A key feature of our rigidity results is that their robustness scales independently of the number of

EPR pairs tested, as in [69]. This is crucial for the efficiency of our delegation protocols. The
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robustness for previous results in parallel self-testing typically had a polynomial dependence on the

number of EPR pairs tested. We give an informal statement of our robust rigidity theorem.

Theorem 8 (Informal). Letm € Z~. Let G be afixed, finite set of single-qubit Clifford observables.
Then there exists an efficient two-prover test rigip(G,m) with O(m)-bit questions (a constant

fraction of which are of the form W € G™) and answers such that the following properties hold:

o (Completeness) There is a strategy for the provers that uses m + 1 EPR pairs and succeeds
with probability at least 1 — e~ M) in the test.

o (Soundness) For any ¢ > 0, any strategy for the provers that succeeds with probability 1 — ¢
in the test must be poly(e)-close, up to local isometries, to a strategy in which the provers
begin with (m + 1) EPR pairs and is such that upon receipt of a question of the form W € G™

the prover measures the “correct” observable W.

Although we do not strive to obtain the best dependence on ¢, we believe it should be possible to
obtain a scaling of the form C+/¢ for a reasonable constant C. We give a detailed overview of the
test in Section 4.4

New delegation protocols We employ the new rigidity theorem to obtain two new efficient two-
prover classical-verifier protocols in which the complexity of verifiably delegating a g-gate quantum

circuit scales as O(glog g)

We achieve our protocols by adapting the efficient single-prover quantum-verifier delegation proto-
col introduced by Broadbent [11] (we refer to this as the “EPR protocol”), which has the advantage
of offering a direct implementation of the delegated circuit, in the circuit model of computation
and with very little modification needed to ensure verifiability, as well as a relatively simple and

intuitive analysis.

Our first protocol is blind, and requires a number of rounds of interaction that scales linearly with
the depth of the circuit being delegated. The second protocol is not blind, but only requires a con-
stant number of rounds of interaction with the provers. Our work is the first to propose verifiable
two-prover delegation protocols which overcome the prohibitively large resource requirements of

all previous multi-prover protocols, requiring only a quasilinear amount of resources, in terms of

3The log g overhead is due to the complexity of sampling from the right distribution in rigidity tests. We leave the
possibility of removing this by derandomization for future work. Another source of overhead is in achieving blindness:
in order to hide the circuit, we encode it as part of the input to a universal circuit, introducing a factor of O(log g)
overhead.
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number of EPR pairs and time. However, notwithstanding our improvements, a physical imple-
mentation of verifiable delegation protocols remains a challenging task for the presently available

technology.

We introduce the protocols in more detail. The protocols provide different methods to delegate the
quantum computation performed by the quantum verifier from [11] to a second prover (call him
PV for Prover V). The rigidity test is used to verify that the second prover indeed performs the
same actions as the honest verifier, which are sequences of single-qubit measurements of Clifford
observables from the set X = {X, Y, Z, F,G} (where F and G are defined in (@.2)).

In the first protocol, one of the provers plays the role of Broadbent’s prover (call him PP for Prover
P), and the other plays the role of Broadbent’s verifier (we refer to this as PV). The protocol is
divided into two sub-games; which game is played is chosen by the verifier by flipping a biased

coin with appropriately chosen probabilities.

* The first game is a sequential version of the rigidity game riGip(%,m) (from Theorem
described in Figure[d.21] This aims to enforce that PV performs precisely the right measure-

ments;

* The second game is the delegation game, described in Figures.18 [4.19] and[4.20] and whose

structure is summarized in Figure 4.16] Here the verifier guides PP through the computation

in a similar way as in the EPR Protocol.

We remark that in both sub-games, the questions received by PV are of the form W € X™, where
Y = {X,Y,Z,F, G} is the set of measurements performed by the verifier in Broadbent’s EPR
protocol. The questions for PV in the two sub-games are sampled from the same distribution. This
ensures that PV is not able to tell which kind of game is being played. Hence, we can use our
rigidity result of Theorem [§]to guarantee honest behavior of PV in the delegation sub-game. We

call this protocol Verifier-on-a-Leash Protocol, or “leash protocol” for short.

The protocol requires (2d 4+ 1) rounds of interaction, where d is the depth of the circuit being
delegated (see Section [4.5.1.2] for a precise definition of how this is computed). The protocol
requires O(n + g) EPR pairs to delegate a g-gate circuit on 7 qubits, and the overall time complexity
of the protocol is O(glog g). The input to the circuit is hidden from the provers, meaning that the

protocol can be made blind by encoding the circuit in the input, and delegating a universal circuit.

The completeness of the protocol follows directly from the completeness of [11]. Once we ensure
the correct behavior of PV using our rigidity test, soundness follows from [11] as well, since the

combined behavior of our verifier and an honest PV is nearly identical to that of Broadbent’s verifier.
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The second protocol also starts from Broadbent’s protocol, but modifies it in a different way to
achieve a protocol that only requires a constant number of rounds of interaction. The proof of
security is slightly more involved, but the key ideas are the same: we use a combination of our
new self-testing results and the techniques of Broadbent’s protocol to control the two provers, one
of which plays the role of Broadbent’s verifier, and the other the role of the prover. Because of
the more complicated “leash” structure in this protocol, we call it the Dog-Walker Protocol. Like
the leash protocol, the Dog-Walker Protocol has overall time complexity O(glogg). Unlike the
leash protocol, the Dog-Walker protocol is not blind. In particular, while PV and PP would have to
collude after the protocol is terminated to learn the input in the leash protocol, in the Dog-Walker

protocol, PV simply receives the input in clear.

Based on the Dog-Walker Protocol, it is possible to design a classical-verifier two-prover protocol
for all languages in QMA. This is achieved along the same lines as the proof that QMIP = MIP*
from [82]. The first prover, given the input, creates the QMA witness and teleports it to the second
prover with the help of the verifier. The verifier then delegates the verification circuit to the second
prover, as in the Dog-Walker Protocol; the first prover can be re-used to verify the operations of the

second one.

Related work and directions for future work We have introduced a new rigidity theorem and
shown how it can be used to transform a specific quantum-verifier delegation protocol, due to
Broadbent, into a classical-verifier protocol with an additional prover, while suffering very little
overhead in terms of the efficiency of the protocol. We believe that a similar transformation could
be performed starting from delegation protocols based on other models of computation, such as
the protocol in the measurement-based model of [37]] or the protocol based on computation by

teleportation considered in [82], and would lead to similar efficiency improvements.

Recently, [47] provided an experimental demonstration of a two-prover delegation protocol based
on [[82] for a 3-qubit quantum circuit based on Shor’s algorithm to factor the number 15; in order to
obtain an actual implementation, necessitating “only” on the order of 6000 CHSH tests, the authors
had to make the strong assumption that the devices behave in an i.i.d. manner at each use, and could
not use the most general testing results from [82]. We believe that our improved rigidity theorem

could lead to an implementation that does not require any additional assumption.

We note that both our protocols require the verifier to communicate with one prover after at least one
round of communication with the other has been completed. This means that the requirement that
the two provers do not communicate throughout the protocol cannot be enforced through space-like
separation, and should rather be taken as an a priori assumption. Since the protocol of [42] is not

blind, it is still an important open question whether there exists a multi-prover delegation protocol
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that consists of a single round of simultaneous communication with each prover, and is both blind
and verifiable. A different avenue to achieve this is to forego information-theoretic security, and rely
on computational assumptions on the power of the provers to achieve protocols with more properties
(single-server, non-interactive, blind) [31} 4, 54, 55]. In particular, in a recent breakthrough result
[55], Mahadev showed that a classical-verifier can verifiably delegate her computation to a single

computationally bounded quantum prover (albeit not necessarily in a truly efficient manner).

Finally, due to its efficiency and robustness, our ridigity theorem is a potentially useful tool in many
other cryptographic protocols. For instance, an interesting direction to explore is the possibility
of exploiting our theorem to achieve more efficient protocols for device-independent quantum key
distribution, entanglement certification or other cryptographic protocols involving more complex

untrusted computation of the users, in parallel.

Provers  Rounds Total Resources Blind

RUV 2012 [82] 2 poly(n) > ¢%192 yes
McKague 2013 [59] poly(n) poly(n) > 2198¢22 yes
GKW 2015 [40] 2 poly(n) > g%048 yes
HDF 2015 [44] poly(n) poly(n) ©O(g*logg) yes
Verifier-on-a-Leash Protocol (Section 4.5.2)) | 2 O(depth) ©(glogg) yes
Dog-Walker Protocol (Section 2 O(1) O(glogg) no

Table 4.1: Resource requirements of various delegation protocols in the multi-prover model. We
use 71 to denote the number of qubits and ¢ the number of gates in the delegated circuit. “depth”
refers to the depth of the delegated circuit. “Total Resources” refers to the gate complexity of the
provers, the number of EPR pairs of entanglement needed, and the number of bits of communication
in the protocol. To ensure fair comparison, we require of each protocol that it produces the correct
answer with probability 99%. For all protocols except our two new protocols, this requires a
polynomial number of sequential repetitions, which is taken into account when computing the total
resources.
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4.2 Robust self-testing in parallel

In this section, we give an overview of our robust self-test, and we establish some notation.

Each of our delegation protocols includes a self-test, or rigidity test that is meant to verify that one
of the provers measures his half of shared EPR pairs in a basis specified by the verifier, thereby
preparing one of a specific family of post-measurement states on the other prover’s space; the
post-measurement states will form the basis for the delegated computation. This will be used to
certify that one of the provers in our two-prover schemes essentially behaves as the quantum part

of the verifier in Broadbent’s EPR protocol.

The main rigidity game is given in Section|4.4.3| while Sections 4.4.4)and 4.4.5|contain variants of

it, which we later employ in the Leash and Dog-Walker protocols; here we give a brief overview of
the structure of the test. The test is parametrized by the number 1 of EPR pairs to be used. The test
cLirr(X, m) is a single round of classical interaction between the verifier and the two provers. With
constant probability the verifier sends one of the provers a string W chosen uniformly at random
from X" where the set . = {X,Y,Z,F, G} contains a label for each single-qubit observable to
be tested. With the remaining probability other queries, requiring the measurement of observables

not in £ (such as the measurement of pairs of qubits in the Bell basis).

In general, an arbitrary strategy for the provers in the rigidity game consists of an arbitrary entangled
state |1p) € Ha ® Hp (which we take to be pure), and measurements (which we take to be projective)
for each possible question This includes an m-bit outcome projective measurement { W" } {0,1}m
for each of the queries W € X™. Our rigidity result states that any strategy that succeeds with
probability 1 — ¢ in the test is within poly(e) of the honest strategy, up to local isometries (see
Theorem [ for a precise statement). This is almost true, but for an irreconcilable ambiguity in the
definition of the complex phase v/—1. The fact that complex conjugation of observables leaves
correlations invariant implies that no classical test can distinguish between the two nontrivial
inequivalent irreducible representations of the Pauli group, which are given by the Pauli matrices
0x, 0y, 0z and their complex conjugates 0x = 0y, 0z = 0z, 0y = —0y respectively. In particular,
the provers may use a strategy that uses a combination of both representations; as long as they
do so consistently, no test will be able to detect this behavior[s], The formulation of our result
accommodates this irreducible degree of freedom by forcing the provers to use a single qubit, the
(m + 1)-st, to make their choice of representation (so honest provers require the use of (m + 1)

EPR pairs to test the operation of m-fold tensor products of observables from ., acting on m EPR

4We make the assumption that the players employ a pure-state strategy for convenience, but it is easy to check
that all proofs extend to the case of a mixed strategy. Moreover, it is always possible to consider (as we do) projective
strategies only by applying Naimark’s dilation theorem, and adding an auxiliary local system to each player as necessary,
since no bound is assumed on the dimension of their systems.

3See [82, Appendix A] for an extended discussion of this issue, with a similar resolution to ours.
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pairs).

We introduce here the language required to formulate our testing results in Section 4.4

4.2.1 Testing
In this section, we recall some standard notions, which we use throughout the chapter, including
state-dependent distance measure, local isometries, etc. We also introduce a framework of “tests

for relations” that will be convenient to formulate our results.

4.2.1.1 Distance measures

Ultimately our goal is to test that a player implements a certain tensor product of single-qubit or
two-qubit measurements defined by observables such as o, oy, or 0. Since it is impossible to
detect whether a player applies a certain operation X on state 1), or VXV on state V [¢p), for
any isometry V : L(H) — L(H’) such that VTV = 1, we will (as is standard in testing) focus on
testing identity up to local isometries. Towards this, we introduce the following important piece of

notation:

Definition 29. For finite-dimensional Hilbert spaces Hpa and Hp, 6 > 0, and operators R €
L(Ha) and S € L(H 4) we say that R and S are 6-isometric with respect to |(p) € Ha ® Hp, and
write R ~; S, if there exists an isometry V : Ha — H 4 such that

I(R—V'sV)@1gly) > = 0(5).

If V is the identity, then we further say that R and S are d-equivalent, and write R ~5 S for
I(R—=$)®1g[p)[I> = O(s).

The notation R ~; S carries some ambiguity, as it does not specify the state |¢). The latter should
always be clear from context: we will often simply write that R and S are J-isometric, without
explicitly specifying |¢) or the isometry. The relation is transitive, but not reflexive: the operator
on the right will always act on a space of dimension at least as large as that on which the operator
on the left acts. The notion of J-equivalence is both transitive (its square root obeys the triangle

inequality) and reflexive, and we will use it as our main notion of distance.

4.2.1.2 Tests

We formulate our tests as two-player games in which both players are treated symmetrically. We
often use the same symbol, a capital letter X, Z, W, ..., to denote a question in the game and the
associated projective measurement {W?} applied by the player upon receipt of that question. To

a projective measurement with outcomes in {0,1}" we associate a family of observables W ()
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parametrized by n-bit strings u € {0,1}", defined by W(u) = Y_,(—1)**W*". If n = 1 we simply
write W = W(1) = W% — W1; note that W(0) = 1.

With the exception of the Tomography Test Tom presented in Section[4.4.5] all the games, or tests,
we consider implicitly include a “consistency test” which is meant to enforce that whenever both
players are sent identical questions, they produce matching answers. More precisely, let T be any
of the two-player tests described in the paper. Let Prr(W, W’) be the distribution on questions
(W, W) to the players that is specified by T. Since the players are always treated symmetrically,
Prr(-,-) is permutation-invariant. Let Prr(-) denote the marginal on either player. Then, instead

of executing the test T as described, the verifier performs the following:

(i) With probability 1/2, execute T.

(ii) With probability 1/2, select a random question W according to Pry(W). Send W to both
players. Accept if and only if the players’ answers are equal.

Then, success with probability at least 1 — ¢ in the modified test implies success with probability
at least 1 — 2¢ in the original test, as well as in the consistency test. If {W4} and {W3} are the
players’ corresponding projective measurements, the latter condition implies

YIWARL—1@WE) [9)ag > =2-2) (y| WA @ WE[9)
< de, (4.1)

so that W3 ® 1 =, 1 ® Wg (where the condition should be interpreted on average over the choice
of a question W distributed as in the test). Similarly, if Wa, Wpg are observables for the players that
succeed in the consistency test with probability 1 — 2¢ we obtain Wa ® 1 ~, 1 ® Wg. We will
often use both relations to “switch” operators from one player’s space to the other’s; as a result we

will also often omit an explicit specification of which player’s space an observable is applied to.

4.2.1.3 Strategies

Given a two-player game, or test, a strategy for the players consists of a bipartite entangled state
[¢) € Ha ® Hp together with families of projective measurements { W3 } for Alice and {Wg } for
Bob, one for each question W that can be sent to either player in the test. As already mentioned, for
convenience we restrict our attention to pure-state strategies employing projective measurements.
We will loosely refer to a strategy for the players as (W, 1)), with the symbol W referring to
the complete set of projective measurements used by the players in the game; taking advantage of
symmetry we often omit the subscript A or B, as all statements involving observables for one player

hold verbatim with the other player’s observables as well.
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4.2.1.4 Relations

We use R to denote a set of relations over variables X, Z, W, ..., such as
R = {XZXZ =—-1, HX=Z7ZH, X,Z,H € Obs}.

We only consider relations that can be brought in the form either f(W) = (—1)"Wy--- W, = 1,
where the W; are (not necessarily distinct) unitary variables and a € Zj, or f(W) = Wy -
(¥, waW5) = 1, where Wj is a unitary variable, {WWJ} a projective measurement with s possible

outcomes, and w, are (arbitrary) s-th roots of unity.

Definition 30 (Rigid self-test). We say that a set of relations R is (c,6(g))-testable, on average
under the distribution D : R — [0, 1], if there exists a game (or test) G with question set Q that
includes (at least) a symbol for each variable in ‘R that is either an observable or a POVM and
such that:

e (Completeness) There exists a set of operators which exactly satisfy all relations in R and
a strategy for the players which uses these operators (together possibly with others for the

additional questions) that has success probability at least c;

e (Soundness) For any € > 0 and any strategy (W, i) 45) that succeeds in the game with
probability at least ¢ — ¢, the associated measurement operators satisfy the relations in R up
10 6(¢), in the state-dependent norm. More precisely, on average over the choice of a relation
f(W) = 1 from R chosen according to D, it holds that ||1 @ (f(W) — 1) [¢) 45 ||* < (e).

If both conditions hold, we also say that the game G is a robust (¢, d(¢)) self-test for the relations
R.

Most of the games we consider have perfect completeness, c = 1, in which case we omit explicitly
mentioning the parameter. The distribution D will often be implicit from context, and we do not
always specify it explicitly (e.g. in case we only measure J(¢) up to multiplicative factors of order

|R| the exact distribution D does not matter as long as it has complete support).

Definition 31 (Stable relations). We say that a set of relations R is 6 (¢)-stable, on average under the
distribution D : R — [0, 1], if for any two families of operators Wy € L(H ) and Wg € L(Hp)

that are consistent on average, i.e.

EfpEweys||(1@Ws —Wa1)|p)|* <e,



58

where W €y f is shorthand for W being a uniformly random operator among those appearing in
the relation specified by f, and satisfy the relations on average, i.e.

E UMW -Detp| <,

f(W)=1€R
there exists operators W which satisfy the same relations exactly and are 5 (¢)-isometric to the W
with respect to | ), on average over the choice of a random relation in R and a uniformly random

W appearing in the relation, i.e. there exists an isometry V 4 such that
~ 2
EpEweys|(Wa — VAWAVA) @ L 1y) |~ = O(5(e)) -

4.2.2 Some simple tests
4.2.2.1 Notation

We often write x = (x1,...,%,) € {0,1}" for a string of bits, and W = Wy - - - W,,, € X" for
a string, where ¥ is a finite alphabet. If S C {1,...,m} we write Ws for the sub-string of W
indexed by S. For an event E, we use 1f to denote the indicator variable for that event, so 1p = 1

if E is true, and otherwise 1 = 0.

4.2.2.2 Observables.

We use capital letters X, Z, W, . .. to denote observables. We use greek letters ¢, T with a subscript
ow, Tw, to emphasize that the observable W specified as subscript acts in a particular basis. For
example, X is an arbitrary observable but oy is specifically the Pauli X matrix defined in (2.1).

For a € {0,1}" and commuting observables oy, .. ., ow,, we write oy (a) = [Ti_; (ow,)%. The
associated projective measurements are oy, = agvi — U%Vi and oy, = Ea(—1)""ow(a). Often
the oy, will be single-qubit observables acting on distinct qubits, in which case each is implicitly

tensored with identity outside of the qubit on which it acts.

4.2.2.3 Pauli and Clifford groups.

The single-qubit Weyl-Heisenberg group
HY = H(Zs) = { (-1)°ox(a)o(b), a,b,c € {0,1} }

is the matrix group generated by the Pauli ox and oz. We let H = H (Z}%) be the direct product
of n copies of HD) . The n-qubit Clifford group is the normalizer of H") in the unitary group, up
to phase:

GiY = {G eU((€®)®"): GoGt e HM Vo e HM).
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Some Clifford observables we will use include

_0x+o0z _0x — 0z —0x + 0y _ 0x + oy

oy =—F—- oy = ——— op = ———— g = —7—— 4.2)
v2 v2 v2 V2
Note that oy and o are characterized by oxoyox = oy and 0z0yoz = —opp. Similarly, of
and o are characterized by oxorox = —0g and 0yoroy = 0g.

4.2.2.4 The Magic Square game

We have already encountered the Magic Square game in Section[3.5] We will use the Magic Square
game as a building block for more complex tests in the next sections, noting that it provides a robust
self-test test for the two-qubit Weyl-Heisenberg group (see Section 4.2.2.1] for the definition). We
recall the game here for convenience. Questions are specified by a triple of labels corresponding
to the same row or column from the square pictured in Figure 4.1 (so a typical question could
be (IZ,XI,XZ); there are 6 questions in total, each a triple). An answer is composed of three
values in {£1}, one for each of the labels making up the question. Answers from the prover
should be entrywise consistent, and such that the product of the answers associated to any row or
column except the last should be +1; for the last column it should be —1. The labels indicate the
“honest” strategy for the game, which consists of each prover measuring two half-EPR pairs using

the commuting Pauli observables indicated by the labels of his question.

17 | ZI | ZZ
XI | IX | XX
XZ | ZX | YY

Figure 4.1: Questions, and a strategy, for the Magic Square game

The following lemma states some properties of the Magic Square game, interpreted as a self-test
(see e.g. [100]).

Lemma 16. Suppose a strategy for the provers, using state |) and observables W, succeeds with
probability at least 1 — ¢ in the Magic Square game. Then there exist isometries Vp : Hp —
(C2® C?)p® Hp, for D € {A, B} and a state |avx) y5 € H @ Hp such that

2= 0(Ve),

2
| (Va @ VB) |9) a5 — |EPR) 4 |aux) 4

andfor W € {I,X,Z}>U{YY},

|(W = ViowVa) @ 15 9) || = O(Ve).
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4.3 The Pauli Braiding test

In this section, we review the Pauli Braiding test from Natarajan and Vidick [69], which tests

products of Pauli X and Z measurements on many EPR pairs.

We start with some elementary tests, and we build up to the Pauli Braiding test. Our treatment is

quite detailed but we do not provide the full proofs. We refer to [69] for a fully detailed analysis.

More precisely, in Subsection[4.3.1] we review some elementary tests whose analysis is immediate.
In Subsection|4.3.2] we formulate a simple test for measurements in the Bell basis and the associated
two-qubit SWAP observable. In Subsection 4.3.3] we describe (a slight extension of) the Pauli
Braiding test of [69].

4.3.1 Elementary tests

Figure[}.2]summarizes some elementary tests. For each test, “Inputs” refers to a subset of designated
questions in the test; “Relation” indicates a relation that the test aims to certify (in the sense of
Section 4.2.1)); “Test” describes the certification protocol. (Recall that all our protocols implicitly
include a “consistency” test in which a question is chosen uniformly at random from the marginal

distribution and sent to both provers, whose answers are accepted if and only if they are equal.)
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Test ib(A, B):
* Inputs: A, B two observables on the same space H.
e Relation: A = B.

 Test: Send W € {A,B} and W' € {A, B}, chosen uniformly at random, to the first and
second prover respectively. Receive an answer in {41} from each prover. Accept if and only
if the answers are equal whenever the questions are identical.

Test ac(X, Z):
* Inputs: X, Z two observables on the same space H.
* Relation: XZ = —ZX.

» Test: Execute the Magic Square game, using the label “X” for the “XI” query, and “Z” for
the “ZI” query.

Test com(A, B):
* Inputs: A, B two observables on the same space H.
* Relation: AB = BA.

* Test: Send W € {A, B} chosen uniformly at random to the first prover. Send (A, B) to the
second prover. Receive a bit c € {1} from the first prover, and two bits (a’,b") € {4-1}2
from the second. Acceptif and only ifc = a’if W = A,andc = b’ if W = B.

Test prop(A, B, C):
* Inputs: A, B and C three observables on the same space H.
* Relations: AB = BA = C.

o Test: Similar to the commutation game, but use C to label the question (A, B).

Figure 4.2: Some elementary tests.

Lemma 17. Each of the tests described in Figure is a robust (1,0) self-test for the indicated
relation(s), for some 6 = O(e!/?).

Proof. The proof for each test is similar. As an example we give it for the commutation test
com(A, B).

First we verify completeness. Let A, B be two commuting observables on Hp = Hg = H, and

|EPR) pg the maximally entangled state in #a ® Hpg. Upon receiving question A or B, the prover
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measures the corresponding observable. If the question is (A, B), he jointly measures A and B.

This strategy succeeds with probability 1 in the test.

Next we establish soundness. Let i) € Ha ® Hp be a state shared by the provers, A, B their
observables on questions A, B, and {C*"} the four-outcome PVM applied on question (A, B).
Assume the strategy succeeds with probability at least 1 — e. Recall that this includes both the
test described in Figure and the automatic consistency test. Let C4 = Za,b(—l)”C”'b and
Cp = Y,5(—1)PC*. Then C, and Cg commute. Thus

ApBa®@1g = ; Ap® (Cp)B
~ e 1a® (Cp)B(Ca)B
= 1A ® (Ca)s(Ch)B
~ e Ba®(Ca)s
N BpAAp @ 1.
Here each approximation uses the consistency condition provided by the test, as explained in (#.1)).

Thus [A, B] = (AB — BA) =~ /; 0, as desired. O

We will often make use of the following simple lemma, which expresses an application of the above

tests.

Lemma 18. Let |¢p) € Ha® Hpand A, X observables on H a such that there exists an isometry
Ha~CZH 2 under which the following conditions hold, for some 61, 62, 53.@

(i) There exists an observable A’ on H g such that A @ 1 ~ 5 1® Al;
(ii) |p) ~5, |EPR) |aux) and X ~5 ox @ 1;
(iii) [A,X] =5, 0;
(ZV) {A, X} %(53 0.

Then there exist Hermitian A1, Ax, Ay, Az on Hy such that A ~5 5, 1 @ A; +0x ® Ax and
A ~5 45 0y @ Ay + 07 @ Az. (A similar claim holds with X replaced by Z.)

Proof. After application of the isometry, an arbitrary observable A on C? @ H A has a decomposi-
tion A = Ype{1X,Y,z} 0P ® Ap, for Hermitian operators Ap on H 4. We can compute

[A,ox ©1] = —2ioy @ Ay +2i0y ® Ag, (4.3)
{A,ox @1} =205 ® Aj+ 207 ® Ax. (4.4)

®Note that we allow either ; to equal 1, leading to a vacuous condition.
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Assumptions (i) and (ii) imply [A, X] ~, [A, 0x @ 1], so by (iii) and [@3) we get || Ay |aux) ||* +
| Az |aux) ||> = O(8; + &). Similarly, (iv) and @&4) give || A |aux) ||?> + || Ax |aux) [|> =
O(d1 + 43). O

4.3.2 The Bell basis

Given two commuting pairs of anti-commuting observables { X1, Z1 } and {Xp, Z,} we provide a
test for a four-outcome projective measurement in the Bell basis specified by these observables, i.e.

the joint eigenbasis of X X5 and Z1Z,. The same test can be extended to test the “SW” observable,
1
SW = 5 (1 + X1 X0 + Z1Zy — (X1Z1)(X2Z2)), 4.5)

which exchanges the qubits specified by each pair of observables. The Bell measurement test
described in Figure 4.3 tests for both.

Test BeLL( Xy, Xp, Z1, Z2):

e Inputs: For i € {1,2}, {X;, Z;} observables, {®"}, {01} a four-outcome projective
measurement, and SW an observable, all acting on the same space H.

* Relations: foralla,b € {0,1}, ¥ = (1 + (—1)"Z1Z;) (1 + (—1)?X1X,), and SW =

* Test: execute each of the following with equal probability:

(a) Execute the Magic Square game, labeling each entry of the square from Figure [4.1]
(except entry (3,3), labeled as Y7Y>) using the observables X1, Z1 and X3, Zo.

(b) Send @ to one prover and the labels (X1X5,Z17Z,,Y1Y>) associated with the third
column of the Magic Square to the other. The first prover replies with a,b € {0,1},
and the second with c¢,d,e € {£1}. The referee checks the provers’ answers for the
obvious consistency conditions. For example, if the first prover reports the outcome

(0,0), then the referee rejects if (¢, d) # (+1,+1).

(c) Send @ to one prover and SW to the other. The first prover replies with a,b € {0,1},
and the second with ¢ € {+1}. Accept if and only ¢ = (—1).

Figure 4.3: The Bell measurement test.

Lemma 19. The test BeLr(Xq, Xo, Z1, Z3) is a robust (1,0) self-test for

. a 1 a
R = {{®"} e (01) € Proj, SW € Obs [ U{®" = 2(1+ (=1)"Z1 2) (1 + (~1)' X1 X2) |

U{sw =%+ 3% + @ — @'},

for some §(¢) = O(+/e).
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Proof. Completeness is clear: the provers can play the honest strategy for the Magic Square game,
use a measurement in the Bell basis on their two qubits for ®, and measure the observable in (4.5])
for SW.

For soundness, let |p) € Ha ® Hg, {WiW5 : W, W' € {I,X,Z}}, {P"} and SW denote a
state and operators for a strategy that succeeds with probability at least 1 — ¢ in the test. From the
analysis of the Magic Square game (Lemma it follows that the provers’ observables X; X> and
/175 associated to questions with those labels approximately commute, and are each the product
of two commuting observables X I, [X, and Z11, IZ; respectively, such that X1 and Z11, and
IX; and I1Z;, anti-commute; all approximate identities hold up to error O(+/¢).

Since X7 X, and Z1Z, appear together in the same question (the last column of the Magic Square,
Figure , each prover has a four-outcome projective measurement {WC'd} cde{o,1} such that
Y (=)W = X Xy and Y. (—1)? W = Z, Z,, from which it follows that W& = (1/4)(1 +
(—1)Z1Z2) (1 + (=1)" X1 X2).

The prover’s success probability in part (b) of the test is then

1
2 (@M W™ |p) =} (9| @7 @ L (1+(=1)"Z1Z2) (14 (=1)" X1 X2) [9) .
a,b a,b
Using that, by assumption, {q)“b } is a projective measurement, the condition that this expression

be at least 1 — O(¢) implies
1
PRI~ 10 Z(l +(—1)"Z1Z2) (14 (—1)" X1 X3).

Combining this with the implicit consistency test yields the first relation. The last is guaranteed by
part (c) of the test, which checks for the correct relationship between SW and ®; the analysis is

similar. [l

4.3.3 The m-qubit Pauli group
In this section we formulate a robust self-test for the m-qubit Pauli group. The result is a slight

extension of the results from [|69]] to allow testing of oy observables.



65
4.3.3.1 The m-qubit Weyl-Heisenberg group

We start by giving a self-test for tensor products of ox and 0z observables acting on m qubits, i.e.
the m-qubit Weyl-Heisenberg group H (M) (see Section4.2.2.1). Let P(™) denote the relations

m
PItx, 7} = {W(a) € Obs, W e [[{Xi, Zi}, a € {0,1}’“}
i=1

U {W(a)W’(a’) = (—1){EWAW =1 W ("YW (a), Va,a’ € {o,1}m}
U {W(a)W(a’) = W(a+4d'),Va,a € {o,1}m}.

Recall the notation W(a) for the string that is W; when a; = 1 and I otherwise. The first set of
relations expresses the canonical anti-commutation relations. The second set of relations expresses
the obvious relations o1 = Loy and 03, = 1, for W € {X, Z}, coordinate-wise. It is easy to
verify that P forms a defining set of relations for ™) Our choice of relations is suggested
by the Pauli Braiding test introduced in [69], which shows that the relations are testable with a
robustness parameter 6 (¢) that is independent of m. The underlying test is called the Pauli Braiding
test, and denoted PBT(X, Z ) . For convenience here we use a slight variant of the test, which includes

more questions; the test is summarized in Figure 4.4]

Test pBT(X, Z):
* Inputs: (W,a), for W € [T 1{X;, Z;} anda € {0,1}".

* Relations: P[;@{X,Z}.
o Test: Perform the following with probability 1/2 each:

(a) Select W,W’' € [1;{X;, Zi}, and a,a’ € {0,1}", uniformly at random. If {i :
W; # W/ Aa; = a} = 1} has even cardinality then execute test com(W(a), W'(a")).
Otherwise, execute test ac(W(a), W (a')).

(b) Select (a,a’) € {0,1}" and W € T 1{Xj, Z;} uniformly at random. Execute test
proD(W (a), W(a'), W(a +a")).

Figure 4.4: The Pauli Braiding test, pe1(X, Z).

The following lemma follows immediately from the definition of the relations Pf{X, Z} and the

analysis of the tests com, proD and Ac given in Sectiond.3.1]

Lemma 20 (Theorem 13 [69])). The test per(X, Z) is a robust (1,8) self-test for Pf{X, Z}, for
some 6(g) = O(g!/2).
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In addition we need the following lemma, which states that observables approximately satisfying
the relations Pf{X, Z} are close to operators which, up to a local isometry, behave exactly as a

tensor product of Pauli oy and oz observables.

Lemma 21 (Theorem 14 [69]). The set of relations P") is 5-stable, with 5(¢) = O(e).

Lemma [21]is proved in [69] with a polynomial dependence of 6 on €. The linear dependence can

be established by adapting the results of [98] to the present setting; we omit the details (see [97]).

The following lemma is an extension of Lemma [18| to the case of multi-qubit Pauli observables;
the lemma avoids any dependence of the error on the number of qubits, as would follow from a

sequential application of Lemma|I8§]

Lemma 22. Let n be an integer,

Y) € Ha® Hgand Aand X(a), fora € {0,1}", observables on
H 4 such that there exists an isometry Hp ~ (C2)®" @ H 2 under which the following conditions
hold, for some 61,05, 93

(i) There exists an observable A’ on H g such that A @ 1 s 1® A';
(ii) |) =5, |EPR)Y®™ |aux), and X (a) ~5, 0x(a) ® 1;
(iii) [A, X(a)] =4, 0;

(iv) Forsomec € {0,1}" anda-c =1, {A, X(a)} ~4, 0,

where the first two conditions are meant on average over a uniformly random a € {0,1}™, and the
last over a uniformly random a such thata -c¢ = 1. ForP € {I,X,Y,Z}" let xp € {0,1}" be such
that (xp); = 1ifand only if P; € {Y,Z}. Then there exists Hermitian Ap, for P € {I,X,Y,Z}™,
on H y such that
A =546, Z 0'p®Ap, and A 6+03 Z 0'p®Ap.
Pe{I,X}n Pe{L,X,Y,Z}":
Ci:1:>PiE{Y,Z}
Ci=0:>Pi€{I,X}

(A similar claim holds with X replaced by Z.)

Proof. After application of the isometry, an arbitrary observable A on (C?)®"™ @ H has a de-
composition A = ¥ p. (1,x,y,z}m 0P @ Ap, for Hermitian operators Ap on # ;. Then the analogue

of @.3)is

[A,ox(a)®1] =2 Y opox(a)® Ap.

P:a-xp=1
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Using that any string xp which is not the 0™ string satisfies a - xp = 1 with probability almost 1/2
for a uniform choice of a, orthogonality of the opox (a) for distinct P lets us conclude the proof of

the first relation as in Lemma(I8] Similarly, the analogue of (4.4) gives

{A,Ux(ﬂ)@)]l} =2 Z Upﬁx(a)@)Ap.
P:a-xp=0
Using that any string xp which is not c satisfies a - xp = 0 with probability almost 1/2 for a
uniform choice of a such that a - ¢ = 1, orthogonality of the cpox (a) for distinct P lets us conclude

the proof of the second relation. U

4.3.3.2 The m-qubit Pauli group

We will use an extended version of the Pauli Braiding test introduced in Sectiond.3.3.Twhich allows
to test for a third observable, Y;, on each system. Ideally we would like to enforce the relation
Y; = /—1X,Z;. Unfortunately, the complex phase cannot be tested from classical correlations
alone: complex conjugation leaves correlations invariant, but does not correspond to a unitary

change of basis (see [82, Appendix A] for a discussion of this issue).

We represent the “choice” of complex phase, v/ —1 or its conjugate —+/—1, by an observable A
that the prover measures on a system that is in a tensor product with all other systems on which the
prover acts. Informally, the outcome obtained when measuring A tells the prover to use Y = iXZ
orY = —iXZ.

We first introduce Y and test that the triple {X,Y,Z} pairwise anticommute at each site. This
corresponds to the following set of relations:

PmIX Y, 7} = {W(a) € Obs, W€ {X,Y,Z}", a € {0,1}"}
U {W(a)W’(a’) = (—1)EWAW Naai=D W (oYW (a), Va,a’ € {0,1}"}

u {W(a)W(a’) =W(a+d),Va,a € {O,l}”}.
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Test (X, Y, Z):
 Inputs: W € [T 1{X,Y,Z}

 Relations: Pf{X, Y,Z}.
* Test: Perform the following with equal probability:

(a) Execute test pBT(X™, Z™).
(b) Execute test pBT(Y™, X™) or test pT(Y™, Z™), chosen with probability 1/2 each.

(c) Select arandom permutation o € &,, /5, and W € {I, Y }"" uniformly at random. Write
W = Wi W,, where Wy, W, € {I,Y}"/2. Let WY be the string Wy with its entries
permuted according to ¢. Do the following with equal probability:

(i) Send one prover W1 Wy and the other either W; W, or W, WY (chosen with proba-
bility 1/2), and check consistency of the first or second half of the provers’ answer
bits.

(ii) Send one prover W1 W7, and the other [T; ®; ;(;), where each ®, ;) designates
a measurement in the Bell basis for the (i,m/2 + (i) pair of qubits. The first
prover replies with a € {£1}™, and the second with b € {00,01, 10, 11}m/2. For
eachi € {1,...,m/2} such that b; = 00, check that a; = a,, /5 +(;)-

(iii) Execute m/2 copies of test BELL (in parallel), for qubit pairs (i,m/2 + o(i)), for
ie{l,...,m/2}.

Figure 4.5: The extended Pauli Braiding test, pBT(X, Y, Z).

The test is described in Figure 4.5] It has three components. Part (a) of the test executes
pT(X™,Z™), which gives us multi-qubit Pauli X and Z observales. Part (b) of the test intro-
duces observables labeled Y(c), and uses tests peT(Y™, X™) and pBT(Y™, Z™) to enforce appro-
priate anti-commutation relations with the Pauli X and Z observables obtained in part (a). Using
Lemma this part of the test will establish that the Y(c) observables approximately respect the

same 11-qubit tensor product structure as X(a) and Z (D).

Part (c) of the test is meant to control the “phase” ambiguity in the definition of Y (c) that remains
after the analysis of part (b). Indeed, from that part it will follow that Y (¢) ~ oy (c) ® A(c), where
A(c) is an arbitrary observable acting on the ancilla system produced by the isometry obtained in
part (a). We would like to impose A(c) =~ A‘; | for a fixed observable Ay which represents the
irreducible phase degree of freedom in the definition of Y, as discussed above. To obtain this, part
(c) of the test performs a form of SWAP test between different Y'(¢) observables, enforcing that
e.g. Y(1,0,1) is consistent with Y(0,1,1) after an appropriate Bell measurement has “connected”

registers 1 and 2. The swapping is defined using Pauli cx and 0, which leave the ancilla register
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invariant; consistency will then imply A(1,0,1) ~ A(0,1,1).

Lemma 24| (restated). Suppose |¢p) € Ha @ Hgand W(a) € Obs(Ha), for W € {X,Y,Z}™

and a € {0,1}™, specify a strategy for the players that has success probability at least 1 — € in

the extended Pauli Braiding test per(X,Y, Z) described in Figure Then there exist isometries
p:Hp— ((C)¥™)p® Hp, for D € {A, B}, such that

1(Va ® Vi) [9) a5 — [EPR)SS |avx) a5 | = O(Ve),

and on expectation over W € {X,Y,Z}™,

2
Eqefoayn]| (W(a) = Vi(ow(a) ® Aw(a))Va) ® 15 9} [|© = O(Ve),
where Ay (a) = T1; A?,f,i € Obs(H ) are observables with Ax = Az = 1 and Ay an arbitrary

observable on H such that

|Ay ® Ay |aux) — |aux) HZ = 0(Ve).

Proof sketch. The existence of the isometries V4 and Vp follows from part (a) of the test and
the combination of Lemma [20] and Lemma 21}, see e.g. [69] for an explicit construction. Under
this isometry we have X(a) ~ ; ox(a) and Z(b) =~ ; 07z(b), on average over a,b € {0,1}".
Applying the second part of Lemma [22} the anti-commutation relations between Y (c) and X(a)
and Z(b) verified in part (b) of the test imply that under the same isometry,

Y(c) ~ oy(c) ® Ac),

for some observable A(c) on H 4. Using the linearity relations that are verified in the pBT test, we
may in addition express A(c) = []; A}’ for (perfectly) commuting observables A;. Using Claim
below, success at least 1 — O(¢) in part (c) of the test then implies that on average over a random

permutation o € S,, /7,

m/2

Eo Eccqo1ym22 " Tr (0y(c,¢”)) (avx| (H (AiAm/Z—&—a(i))Ci) laux) =1—0(Ve), (4.6)
i1

where we wrote (c, ¢”) for the m-bit string (c1, ..., Cn/2,Co(1), - - - Co(m/2))- Defining

A;

Ay = ]Eie{%+1,...,m}“Ei—Ai|/

4.7)

Eq. readily implies that A(c) ~ Ve Alf‘. In slightly more detail, we first observe that

e oo (3(6) <1E,-e{g+1,...,m}/si>'6') ) |

< BB, g1 +1..m | (86) =TT, ) lnox) | (4.8)
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where the first inequality is by convexity, with the expectation taken over a random function g. We
would like to relate this last term to the expectation over a random permutation ¢ € S, /». One way
to do this is to observe that with probability 1 — O(1/m) over the choice of a uniformly random g

it is possible to write
Ci
HAg( (HAm/Z—i—T’ ) (HAm/Z—l—T“ )
1

where ¢} + ¢/ = ¢; for all i, T/, 7" are permutations such that m /2 + t'(i) = g(i) if ¢} = ¢;, and
m/2+ 7"(i) = g(i) if ¢/ = c;; this is possible because ¢ might have two-element collisions, but
is unlikely to have any three-element collisions. Moreover, for uniformly random ¢ and ¢ we can
ensure that the marginal distribution on (¢/, 7’) and (¢, t”’) is uniform. This allows us to use (#.6)
twice to bound the right-hand side of @.8)) by O(+/¢) (after having expanded the square). As a
consequence, [E;A; is close to an observable, and it is then routine to show that Ay defined in (4.7

satisfies A(c) =~ NG A'; |, on average over a uniformly random c.

The last condition in the lemma follows from the consistency relations, which imply that
X(a)® X(a), Z(b) ® Z(b) and Y(c) ® Y(c) all approximately stabilize |ip); then A‘{;‘ ® A‘;‘
X(a)Z(a)Y(a) ® X(a)Z(a)Y(a) also does.

0O &

Claim 1. Ler A € Obs(Cy ®---®C; @ H) and B € Obs(Ch ®---®@ Cy @ H) be k-
qubit observables acting on distinct registers A]-, Bj, as well as a common space H, and ®p g =

H};l |EPR) (EPR)| 2 the the projector on k EPR pairs across registers A’; and B’j. Then

() (EPR|pp: (EPR|gg, @ 1) ((AAH ©15) (14 ® Bey) © Pap) ( Q) [EPR) g, [EPR) g g, @ 1)
] ]

=i

7 ZTr (A;B;) A/B; (4.9)
where we write A =Y ; A; @ Al and B =Y ; B; ® B], for Aj on Ha, Bj on Hpg, and Al, B! on H.

Proof. We do the proof for k = 1, as the general case is similar. Using that for any operators Xag
and YA’B"

1
(EPR|y (EPR|gg (Xas @ Yag) [EPR) ap [EPR)gg = ; Tr (xx7),
the left-hand side of (4.9) evaluates to
41 Trag ((AA’H &® ]lB) (]lA & BBH) (CI)KB’ & ]lfH)),

which using the same identity again gives the right-hand side of (4.9). U
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4.4 Testing products of Clifford observables
This subsection contains our main original extension of the Pauli Braiding test to certify the

measurement of any product of single-qubit Clifford observable on many EPR pairs.

In Section 4.4.1] we give a test for the conjugation of one observable to another by a unitary, the
Conjugation Test. In Section [4.4.2] we will apply the Conjugation Test to test the relations that
dictate how an arbitrary m-qubit Clifford unitary acts by conjugation on the Pauli matrices. In
Section [4.4.3] we specialize the test to the case of unitaries that can be expressed as the m-fold
tensor product of Clifford observables taken from the set 2. In Sections and.4.5] we decribe
variants of the test from Section 4.4.3] which are later employed in the Leash and Dog-Walker

protocols.

4.4.1 The conjugation test

We give a test which certifies that a unitary (not necessarily an observable) conjugates one observ-
able to another. More precisely, let A, B be observables, and R a unitary, acting on the same space
H. The test cons(A, B, R), given in Figure certifies that the players implement observables of

the form
0 Rt A0
X = and C:C = 4.10
R (R 0) A,B (O B) (4.10)

such that Xg and C commute. The fact that Xy is an observable implies that R is unitary[’] while
the commutation condition is equivalent to the relation RART = B. The test thus tests for the

relations
C{R,C} = {XR, C X, Z e Obs} U {XZ = —ZX} U {XRC =CXg, XpZ = —7ZXg, CZ = ZC}.

Here the anti-commuting observables X and Z are used to specify a basis in which Xz and C can
be block-diagonalized. The anti-commutation and commutation relations with Z enforce that Xy
and C respectively have the form described in (4.10). These relations are enforced using simple
commutation and anti-commutation tests that are standard in the literature on self-testing. For
convenience, we state those tests, com and ac, in Appendix[#.2.2] The conjugation test, which uses
them as sub-tests, is given in Figure[4.6] Here, “Inputs” refers to a subset of designated questions in
the test; “Relation” indicates a relation that the test aims to certify; “Test” describes the certification
protocol. (Recall that all our protocols implicitly include a “consistency” test in which a question is
chosen uniformly at random from the marginal distribution and sent to both players, whose answers

are accepted if and only if they are equal.)

"Note that R will not be directly accessed in the test, since by itself it does not necessarily correspond to a
measurement.
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Test coni(A,B,R)

e Inputs: A and B observables on the same space #, and X and Z observables on H'. X and
C observables on H @ H'.

* Relations: C{R, C}, with R defined from Xg, and C related to A and B, as in (4.10).
 Test: execute each of the following with equal probability

(a) With probability 1/8 each, execute tests ac(X,Z), com(C,Z), com(Xg,C),
Ac(XRg,Z) and com(A, X), com(B, X), com(A, Z), com(B, Z).
(b) Ask one player to measure A, B, C or Z (with probability 1/4 each), and the other to

jointly measure A or B (with probability 1/2 each) and Z. The first player returns one
bit, and the second two bits. Reject if either:

— The first player was asked C, the second player was asked (A, Z), his second
answer bit is 0, and his first answer bit does not match the first player’s;

— The first player was asked C, the second player was asked (B, Z), his second answer
bit is 1, and his first answer bit does not match the first player’s.

— The first player was asked A, B, or Z and his answer bit does not match the
corresponding answer from the second player.

Figure 4.6: The conjugation test, cony(A, B, R).

Lemma 23. The test cons(A, B, R) is a (1,0) self-test for the set of relations C{R, C}, for some
8 = O(\/€). Moreover, for any strategy that succeeds with probability at least 1 — ¢ in the test it
holds that C ~5 A(1+ Z)/2+ B(1 — Z) /2, where A, B, C and Z are the observables applied

by the prover on receipt of a question with the same label.

Proof. Completeness is clear, as players making measurements on a maximally entangled state on
Ha ® Hp, tensored with an EPR pair on C? ® C? for the X and Z observables, and using Xg and
C defined in (.10) (with the blocks specified by the space associated with each player’s half-EPR

pair) succeed in each test with probability 1.

We now consider soundness. Success in ac(X, Z) in part (a) of the test implies the existence of local
isometries V4, Vp such that V4 : Hao — Hi ® Ci,, with X ~ s 1a®@ox and Z ~ 1y ®07.
By Lemmal|l 8| approximate commutation with both X and Z implies that under the same isometry,
A ~ /e A;®1 and B >~ /e B; ® 1, for observables Aj, Bf on H,. Similarly, the parts of the
test involving C and Xy imply that they each have the block decomposition specified in (4.10).
In particular, anti-commutation of Xg with Z certifies that Xz has a decomposition of the form

XR ~ Rx ® ox + Ry ® oy. Using that Xg is an observable, we deduce that there exists a
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unitary R on Hz such that R &~ Rx + iRy. Similarly, commutation of C with Z implies that
C~C;®I+ Cy® oy, for Hermitian C;, C such that C; = C, are observables.

Next we analyze part (b) of the test. Let {Wfé} be the projective measurement applied by the
second player upon query (A, Z). Success with probability 1 — O(¢) in the first item ensures that

[{yIC® (Waz — W) [p) | = OCe),

and a similar condition holds from the second item, with Wg, instead of W,47. Success with
probability 1 — O(e) in the third item ensures consistency of {W7} (resp. {Wg7}) with the
observable A (resp. B) when marginalizing over the second outcome, and Z when marginalizing
over the first outcome. Using the decompositions for A, B and C derived earlier, we obtain
Ci~ (A+B)/2and Cz = (A — B)/2, giving the “Moreover” part of the lemma.

Finally, success in test com( Xy, C) certifies the approximate commutation relation [Xg, C] &~ NAY
which, given the decomposition of Xg and C obtained so far, implies RA ~ BR, as desired. [

4.4.2 Testing Clifford unitaries
Let m > 1 be an integer, and R an m-qubit Clifford unitary. R is characterized, up to phase, by its

action by conjugation on the m-qubit Weyl-Heisenberg group. This action is described by linear
functions hg : {0,1}™ x {0,1}" — Z4 and hx, hz : {0,1}"™ x {0,1}"™ — {0,1}" such that

Rox(a)oz(b)RT = (=1)5@V oy (hy(a,b))oz(hz(a, b)),  Va,be {0,1}".  (4.11)

Using that (ox(a)oz(b))" = (=1)*Pox(a)oz(b), the same condition must hold of the right-
hand side of ({@.I1), thus hx(a,b) - hz(a,b) = a-b mod 2. To any family of observables
{X(a), Z(b), a,b € {0,1}"} we associate, fora,b € {0,1}",

A(a,b) = i"X(a)Z(b), B(a,b) = i*"X(hx(a,b))Z(hz(a,b)), (4.12)
where the phase i*?
C(a,b) in terms of A(a,b) and B(a,b) as in @10). The Clifford conjugation test aims to test for

the conjugation relation RA(a, b)R™ = B(a, b), for all (in fact, on average over a randomly chosen)

is introduced to ensure that A(a,b) and B(a,b) are observables. Define

(a,b). For this, we first need a test that ensures A(a,b) and B(a, b) themselves have the correct
form, in terms of a tensor product of Pauli observables. Such a test was introduced in [[69]], where

it is called “Pauli Braiding test”. The test certifies the Pauli relations
PmIxXy,z} = {W(a) €Obs, We {X,Y,Z}", a e {o,1}m}
U {W(a)W’(a’) = (—1)/EWAW Na=1 W ("YW (a), YW, W' € {X, Y, Z}", Va,a’ € {o,1}m}

U {W(a)W(a’) = W(a+ad'),Va,a € {0,1}M}.
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The Pauli Braiding test is recalled in Appendix and we refer to the test as pT(X, Y, Z).

The original test from [69] only allows to test for tensor products of oy and oz Pauli observables,
and we extend the test to include Pauli ¢y. This requires us to provide a means to accommodate
the phase ambiguity discussed earlier. The result is described in the following lemma; we refer to
Appendix {.3.3.2] for the proof. (In some cases a simpler variant of the test, which does not attempt

to test for the Y observable, will suffice. This is essentially the original test from [69], which we
call pBT(X, Z) and is introduced in Appendix )

Lemma 24. Suppose |) € Ha® Hp and W(a) € Obs(Hp), for W € {X,Y,Z}" and
a € {0,1}™, specify a strategy for the players that has success probability at least 1 — € in the
extended Pauli Braiding test pr(X,Y, Z) described in Figure Then there exist a state |AUX) 2
and isometries Vp : Hp — ((C?)*™) py @ Hp, for D € { A, B}, such that

2= 0(Ve),

| (Va ® Vi) [$) a5 — |EPR) 3/ |aUx) a5

and on expectation over W € {X,Y,Z}™,

(W(a) — Vi (ow(a) @ Aw(a))Va) @ 15 |9) |* = O(Ve),

Eseqo,1ym

where Ay (a) = TT; A% € Obs(H y) are observables with Ax = Az = 1 and Ay an arbitrary

observable on H such that

HAY ® Ay |aux) — |aux) Hz = 0(Ve).

Building on the Pauli Braiding test and the conjugation test from the previous section, the Clifford

conjugation test cons-cLIFF(R) described in Figure provides a test for the set of relations

Tnonon AR} = PEAX,Y,Z} U{R € U} U{Ay € Obs}
U {RX(a)Z(b)R" = AP X(hx(a,b))Z(hz(a,b)), Va,b € {0,1}"}
U{AyX(a) = X(a)Ay, AyZ(b) = Z(b)Ay, Va,b € {0,1}"}.  (4.13)

Note the presence of the observable Ay, which arises from the conjugation ambiguity in the
definition of Y (see Lemma [24).
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Test coni-cLIFE(R):

e Input: R an m-qubit Clifford unitary. Let hg, hx,hy be such that .11 holds, and
A(a,b),B(a,b) the observables defined in (#.12)).

* Relations: Jj 1, {R} defined in (.13).
* Test: execute each of the following with equal probability

(a) Execute test pBT(X, Y, Z) on (m + 1) qubits, where the last qubit is called the “control”
qubit;

(b) Selecta,b € {0,1}"™ uniformly at random. Let C(a, b) be the observable defined from
A(a,b) and B(a,b) in (.10), with the block structure specified by the control qubit.
Execute test cons{A(a,b), B(a,b), R}. In the test, to specify query A(a,b) or B(a, b),
represent each as a string in {I, X, Y, Z}"™ and use the same label as for the same query
when it is used in part (a).

Figure 4.7: The Clifford conjugation test, cons-cLIFF(R).

Lemma 25. Let R be an m-qubit Clifford unitary and hg, hx, hy such that holds. Suppose
a strategy for the players succeeds with probability at least 1 — € in test cons-cLiFF(R). Let
Va:Ha— ((C2)®(m+1)) A ® Hy be the isometry whose existence follows from part (a) of the
test, and Ny the observable on 'H W that represents the phase ambiguity (see Lemma |24)). Then

there exists a unitary AR on H A commuting with Ay, such that
|AR ® Ag Jaux) — |avx) || = O(poly(e)). (4.14)

Moreover, let TR be any m-qubit Clifford unitary, acting on the space (C2)®m into which the
isometry V4 maps, which satisfies the relations specified in (4.13)), where for any location i &
{1,...,m} such that a; = b; = 1 we replace ox0z7 by Ty = 0y ® (iAy). Then, letting TR =
Tr(1 x4 ® AR) we have that under the same isometry,

R zpoly(s) TR.

Note that T is only defined up to phase in the lemma. Any representative will do, as the phase

ambiguity can be absorbed in Ag. As an example, in this notation we have

1 1
tr = —(—0ox+0oy®Ay), tc = —=(ox + oy ® Ay),

V2 V2

where the “honest” single-qubit Clifford observables or and o are defined in (4.2)).

Completeness of the test is clear, as players making measurements on (m + 1) shared EPR pairs
using standard Pauli observables, R, and C(a,b) defined in (#.10) with A(a,b) and B(a,b) as
in (4.12) will pass all tests with probability 1.
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Proof sketch. For D € {A, B} let Vp be the isometries that follow from part (a) of the test and
Lemma According to (#.12), A(a,b) and B(a,b) can each be expressed (up to phase) as a
tensor product of X, Y, Z operators, where the number of occurrences of Y modulo 2 is a - b for
A(a,b) and hx(a,b) -hz(a,b) = a-b mod 2 for B(a,b). Thus the labels used to specify the
observables in A(a,b) and B(a, b) in part (b), together with the analysis of part (a) and Lemma
imply that

A(ll, b) ~ /e Ux(a)Uz(b) & (iAY)a-b and B(a,b) S Ux(hx(ll, b))Uz(hz(ll,b)) ® (iAy)a'b+hS(a’b),

under the same isometry. Applying the analysis of the conjugation test given in Lemma [23|shows
that Xz must have the form in (@.10), for some R that approximately conjugates A(a,b) to B(a, b),
on average over uniformly random a,b € {0,1}™.

Let Tg be as defined in the paragraph preceding the lemma. Note that Tg acts on H s and Hj.
After application of the isometry, R has an expansion

(ZUX b) @ Ar(a,b)),

for arbitrary Ag(a,b) on H,; since T is invertible such an expansion exists for any operator.

Using the approximate version of (4.11)) certified by the conjugation test (Lemma [23)),
RV} (0% (a)07(b) @ ALY\ VA = Vi (0x (hx(a,b))oz (hz(a, b)) @ ALTSED) vy R,

where the approximation holds on average over a uniformly random choice of (a, b) and up to error
that is polynomial in € but independent of m. Expanding out R and using the consistency relations

between the two provers,

L te(0x(0)oz(d) © Ane.d)) © ((-1*"ox(@)oz(t) © 85")

~ L (x(xln0))ozllz(n,0)) © 877 e (ox(c)oe(d) © Anled)) 1
(4.15)
where the factor (—1)?? comes from using

(ox(a)oz(b) ® 1) [EPR)®™ = (1® (0x(a)oz(b))") |EPR)®™

Using the conjugation relations satisfied, by definition, by T, the right-hand side of (4.13) simpli-

fies to

Y & (ox(a)az(b)ox(c)oz (d) @ AT Ar(c,d)) @1 (4.16)
c,d
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Next using the fact that the state on which the approximations are measured is maximally entangled
across registers A and B, together with the Pauli (anti-)commutation relations, to simplify the
left-hand side of (4.195)), together with (.16)) we arrive at the approximation

Zd: ((—1)a.d+b-cax(a +c)oz(b+d)® AR(c,d)> ® (11 Q Ag’/’b>

~Y (UX(a to)oz(b+d)® A“Y‘bAR(c,d)> ®1.
c,d

If (c,d) # (0,0) a fraction about half of all (a,b) such thata-b = O satisfya-d+b-c = 1.
Using that {ox(a)oz(b) ® 1 |EPR)} are orthogonal for different (a,b), the above then implies
that Ag(c,d) = —ARg(c,d), on average over (c,d) # (0,0). Hence Ag(c,d) ~ 0, on average
over (c,d) # (0,0). Considering (a,b) such that a - b = 1 implies that Ag(0,0) approximately
commutes with Ay. Finally, the relation follows from self-consistency of Xg implicitly
enforced in the test. O

4.4.3 Tensor products of single-qubit Clifford observables

We turn to testing observables in the m-fold direct product of the Clifford group. Although the test
can be formulated more generally, for our purposes it will be sufficient to specialize it to the case
where each element in the direct product is an observable taken from the set ¥ = {X,Y,Z,F, G}
associated with the single-qubit Pauli observables defined in Section #.2.2.1] Recall that the
associated operators satisfy the conjugation relation oy oroy = o, which will be tested as part of

our procedures (specifically, item (c) in Figure {.§).
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Test cLirr(X, m):
* Input: An integer m and a subset . = {X, Y, Z, F, G} of the single-qubit Clifford group.

o Test: Select W € X™ uniformly at random. Execute each of the following with equal
probability:

(a) Execute the test cons-cLIFF(W);

(b) Send one player either the query W, or Xy and the other (W, X (e, 1)), where ey, 11
indicates the control qubit used for part (a). Receive one bit from the first player, and
two from the second. If the query to the first player was W, check that the first player’s
answer is consistent with the second player’s first answer bit. If the query to the first
player was Xy, then: If the second player’s second bit is 0, check that his first bit is
consistent with the first player’s; If the second player’s second bit is 1, check that his
first bit is different than the first player’s.

(c) Let S and T be subsets of the positions in which W; = F and W; = G respectively,
chosen uniformly at random. Let W’ equal W except W/ = G fori € S, and W/ = F
fori € T. Let R = Y(Y;csut €i)- Execute test consy(W, W/, R).

(d) Set W/ = X (resp. Y) whenever W; = Y (resp. X), W/ = F (resp. G;) whenever
W; = G (resp. F), and W/ = X whenever W; = Z. Execute test (W, W') on m
qubits.

(e) Let S and T be subsets of (non-overlapping) pairs of positions in which W; = F and
Wi = G respectively, chosen uniformly at random. Send one player the query W, with
entries (7,j) € SU T removed and replaced by ®; ; (indicating a measurement in the
Bell basis).

— With probability 1/2, send the other player the query W. Check consistency of
outcomes associated with positions notin S U T. For outcomes in S U T, check the
natural consistency as well: e.g. if the Bell measurement indicated the outcome
D, then the two outcomes reported by the other player at those locations should
be identical.

— With probability 1/2, execute an independent copy of the Bell measurement test
BeLL (Figure d.3) between the first and second players in each of the pair of qubits
inSUT.

Figure 4.8: The m-qubit Clifford test, cLirr(X, m).

The test is described in Figure 4.8] It is divided in five parts. Part (a) of the test executes
cons-cLIFF(W) to verify that an observable W € X satisfies the appropriate Pauli conjugation
relations (@.11)). Note that a priori test cony-cLirr(W) only tests for the observable Xy obtained
from W in blocks as Xy from R in (4.10) (indeed, in that test W need not be an observable). Thus
part (b) of the test is introduced to verify that Xy ~ WX(e,, 1), where the (m + 1)-st qubit is



79

the one used to specify the block decomposition relating Xy to W. The result of parts (a) and
(b) is that, under the same isometry as used to specify the Pauli X and Z, W ~ Ty - (1 ® Aw),
according to the same decomposition as shown in Lemma [25] The goal of the remaining three
parts of the test is to verify that Ay = Agi:WiE{F’G}H, for a single observable Af. For this, part
(c) of the test verifies that Ay only depends on the locations at which W; € {F, G}, but not on the
specific observables at those locations. Part (d) verifies that Aw ~ [ [;.w.e{F,g} /i for commuting
observables A;. Finally, part (e) checks that A; is (approximately) independent of 1.

Theorem 9. Suppose a strategy for the players succeeds in test cLirr(X, m) (Figure with
probability at least 1 — e. Then for D € {A, B} there exists an isometry

Vp:Hp— (Cz)%,m ® Hp

such that

= 0(Ve), (4.17)

|(Va ® Vi) [) a5 — |EPR) o'y |aux) 55
and
Ewesn,ce(o1yn[|1a ® (VEW(c) — tw(c)VB) [¢) ap HZ = O(poly(e)). (4.18)

Here Ty is defined from W as in Lemma with Ay, = 1if W; € {X,Y,Z} and Ay, = Ar if
W; € {F, G}, where Ar is an observable on H g that commutes with Ay.

Proof sketch. The existence of the isometry, as well as and for W e {[,X,Y,Z}",
follows from the test pBT(X, Y, Z), executed as part of the Clifford conjugation test from part (a),
and Lemma 24} Using part (a) of the test and Lemma [23]it follows that every W € £™ is mapped
under the same isometry to

W~ 1w = Tw(l® Aw), (4.19)

where Tyy is as defined in the lemma and Ayy is an observable on H 4 which may depend on the
whole string W; here we also use the consistency check in part (b) to relate the observable Xy
used in the Clifford conjugation test with the observable W used in part (c). Note that from the

definition we can write Ty = ®; Ty, where in particular Tx = 0x, Tz = 0z and Ty = 0y ® Ay.

The analysis of the conjugation test given in Lemma shows that success with probability 1 — O(¢)

in part (c) of the test implies the relations
f'wTR(]l X Aw) = Twa(]l X Aw)
%\/E fW/TR(]l & AW’)/

where the first equality is by definition of R, and uses that Ty = 0y ® Ay and Ay commutes with

Aw; the approximation holds as a consequence of the conjugation test and should be understood
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on average over a uniformly random choice of W € ¥™. Thus Ay depends only on the locations

at which W; € {F, G}, but not on the particular values of the observables at those locations.

Part (d) of the test and Lemma [24]imply that the observables W (a) satisfy approximate linearity
conditions W(a)W(a’) ~ W(a + a’), on average over a uniformly random choice of W € X"
and a,a’ € {0,1}". Using the form for W and the fact that the Ty (a) satisfy the linearity
relations by definition, we deduce that Ay ) Aw(y) = Aw(a4a) as well. Using the analysis of
the Pauli Braiding test (Lemma , this implies that for each i and W; there is an observable A;
such that the A;w, pairwise commute and Aw = []; A;w,. Using the preceding observations,
Aijw, = N if Wy € {F,G},and Ay, = Tif W; € {X,Y, Z}.

Success in part (e) of the test implies the condition Eyy (| W ® W |¢p) > 1 — O(¢), where W is
distributed as in the test, and W is the observable applied by the second player upon a query W,
with some locations, indexed by pairs in S and T, have been replaced by the & symbol (as described
in the test). Let U be the set of i such that W; € {F, G}. Since Ay commutes with all observables
in play, for clarity let us assume in the following that Ay = 1. From the decomposition of the
observables W obtained so far and the analysis of the test BELL given in Lemma[19]it follows that

W ~ <®i f—wi) ® (l—l[lAi), and We ~ <®i¢SUT fwi) ® <®(i,j)eSuT SWi,j> ® ( }g TAi);
: icl\SuU

where the ordering of tensor products does not respect the ordering of qubits, but it should be clear

which registers each operator acts on. Using that for any operators A, B and A,
(EPR|*? (A ® B ® |®go) (Pgo| ) |EPR)? = % Tr (ABT),
the above conditions imply
Bs— (s} Br=((t, )y Asids Ay ~ 1,

where the expectation is taken over sets S and T specified as in part (e), for a given W, and on
average over the choice of W. Let A = [E;A;. By an averaging argument it follows that for U the
set of locations such that W; € {F, G}, [T;cyy A = Al8!, again on average over the choice of W.

To conclude we let A = A/|A|, which is an observable and satisfies the required conditions. [J

4.4.4 Post-measurement states

We give a first corollary of Theorem [ which expresses its conclusion (4.18) in terms of the post-
measurement state of the first player. This corollary will be used in the analysis of the leash protocol
from Section To obtain a useful result we would like to “lift” the phase ambiguity Ay which

remains in the statement of Theorem [9] (in contrast to the ambiguity Ay, which itself cannot be
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lifted solely by examining correlations). This ambiguity means that the provers have the liberty of
choosing to report opposite outcomes whenever they apply an F or G observable, but they have
to be consistent between themselves and across all of their qubits in doing so. To verify that the
provers use the “right” labeling for their outcomes we incorporate a small tomography test in the
test, described in Figure Note that an inconvenience of the tomography is that the test no longer

achieves perfect completeness (although completeness remains exponentially close to 1).

Test riGID(X, m):
* Input: An integer m and a subset . = {X, Y, Z, F, G} of the single-qubit Clifford group.
* Test: execute each of the following with equal probability:

(a) Execute the test cLIFF(Z, m);

(b) Send each player a uniformly random query W, W' € ™. Let T C {1,...,m} be the
subset of positions 7 such that W; € {X,Y} and W/ € {F,G}. Reject if the fraction
of answers (a;, b;), for i € T, from the provers that satisfy the CHSH correlations (i.e.
a; # b; if and only if (W;, W!) = (X, F)) is not at least cos? £ — 0.1.

Figure 4.9: The n-qubit rigidity test, RIGID(X, m).

For an observable W € %, let oy = UVJ\;l — le be its eigendecomposition, where oy are the

“honest” Pauli matrices defined in (Z.1) and #.2). For u € {£1} letow = o}y, for W € X, and

u _ u u _ u u _ —u u _ —Uu u _ —Uu
ox _=0x, 0Oz =0z, 0y =0y 0p_=05" 05 _ =0p".

Corollary 3. Let ¢ > 0 and m an integer. Suppose a strategy for the players succeeds with
probability 1 — ¢ in test ricip(X, m). Then for D € {A, B} there exists an isometry

Vb : Hp = (CHE" @ Hp
such that
1(Va © VB) [19) a5 — |EPR)™™ @ |avx) 5 |* = O(Ve), (4.20)

and positive semidefinite matrices T) on A with orthogonal support, for A € {+, —}, such that
Tr(t4) + Tr(t-) = 1 and

E Y |[VaTes (4@ W) [9) (9las (1a @ WEHVE— T (® V; Jon|
WeE" | Ty re{+} =1 !
4.21)
= O(poly(e)).

Moreover, players employing the honest strategy succeed with probability 1 — e~ M) in the test.
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Proof. From Theorem E] we get isometries V4, Vp and commuting observables Ay, Ar on H4
such that the conclusions of the theorem hold. Write the eigendecomposition Ay = A;r — Ay and
Ap=Af — Ap.For A € {+,—}?let

T =Trg (14 ® A@A?z) |aux) (aux| (1 ® A?Al)ﬁz)).
Using that Ay and Ar commute and satisfy
Ay ® Ay |aux) = Ar ® Af |AUX) = |AUX)

it follows that the (sub-normalized) densities 7, have (approximately) orthogonal support. In
particular the provers’ strategy in part (b) of the test is well-approximated by a mixture of four
strategies, labeled by (Ay,Ap) € {£1}2, such that the strategy with label (Ay, Ar) uses the
observables

(X,Z,Y,F,G) = <(Tx, 0z, Ay0y, %AF( —0x + Ayoy), %)\F(UX + AYW))-

Among these four strategies, the two with A = —1 fail part (b) of the test with probability
exponentially close to 1. Success in both parts of the test with probability at least 1 — 2¢ each thus
implies

Tr (t4—) + Tr (1——) = poly(e). (4.22)

For W € £ and ¢ € {0,1}" the observable W(c) = ®;W;’ can be expanded in terms of a
2" -outcome projective measurement {W"} as

W)= ) (1" w

ue{0,1}m

Similarly, by definition we have that the projective measurement associated with the commuting
Pauli observables Ty (c) = ®;Tyi., ¢ € {0,1}", is

Ty = ® (lEce{O,l}m (—1)M'CTW(C))'
Thus,

IECE{O,l}mH]lA ® (W(C) - VgTW(C)VB> |lP>AB Hz
Y (1) 1a® (W' = Vit VB) [¥)ap

2 (4.23)

i

=Ecco1m

= L [lta® (W= VETiVe) [9)as
ue{0,1}m
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where the third line is obtained by expanding the square and using [E.. {0’1}111(—1)0.(: = 1if
v = 0™, and 0 otherwise. Using (4.18)), the expression in (4.23), when averaged over all W € L™,
is bounded by O(poly(¢)). Using the Fuchs-van de Graaf inequality and the fact that trace distance

cannot increase under tracing out, we get that the following is O(poly(¢)):

Ewesn Y
u

VaTrg ((1a @ W) [9) (9] (1a @ W)V —Trs (La@ i) [9) (9] (L@ 7))
4.24)

Using that Ty = oy, Tz = 0z, and Ty = 0yAy, we deduce the post-measurement states for
ue {1}

X =0%  Tz=07 T =0y@(Tr+ + T )+, " @ (T4 + 7).

Similarly, from 1 = (—7x + Ty)Afr and 7 = (Tx + Ty) Ap we get that e.g. the +1 eigenspace
of T is the combination of:

The simultaneous +1 eigenspace of o = (—ox + 0y)/ V2, +1 eigenspace of Ay, and +1

eigenspace of Afr;

The simultaneous —1 eigenspace of or, 41 eigenspace of Ay, and —1 eigenspace of AF;

The simultaneous —1 eigenspace of 0g = —(—0ox — 0y)/ V2, —1 eigenspace of Ay, and
+1 eigenspace of Ar;

The simultaneous +1 eigenspace of o, —1 eigenspace of Ay, and —1 eigenspace of Ar.

Proceeding similarly with 75, we obtain

T =0 QT4+ 0" QT4 +05" T 4 +06RT -,

TC=06RT +0" T4+ 0" QT 4 +0p®@T__.

Starting from (4.24) and using (4.17) we obtain

Ewesm )
u

VaTrs (1a® W) [} (9] (1a @ W)V}
— Trg ((1a ® ) [EPR) (EPR|™" © |aux) (aux|ag (1a @ 7iy)") | = O(poly(e)).

Since Trg (1 ® B |EPR) (EPR |55 1 ® BT) = (B'B)T /2 for any single-qubit operator B, to conclude
the bound claimed in the theorem it only remains to apply the calculations above and use to
eliminate the contribution of 7 and 7__; the factor % comes from the reduced density matrix of
an EPR pair. U
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4.4.5 Tomography

Theorem |§] and Corollary [3|show that success in test RiGID(X, 1) gives us control over the players’
observables and post-measurement states in the test. This allows us to use one of the players to
perform some kind of limited tomography (limited to post-measurement states obtained from mea-

surements in X.), that will be useful for our analysis of the Dog-Walker Protocol from Section4.5.3

Let 1 < m’ < m and consider the test ToM(X, m’, m) described in Figure In this test, one
player is sent a question W € X chosen uniformly at random. Assuming the players are also
successful in the test rRiGID(X, m) (which can be checked independently, with some probability),
using that the input distribution u in RiGID(X, 1) assigns weight at least |[X|~™ /2 to any W/ € ¥,
from Corollary [3] it follows that the second player’s post-measurement state is close to a state
consistent with the first player’s reported outcomes. Now suppose the second player is sent a
random subset S C [m] of size |S| = m/, and is allowed to report an arbitrary string W' € £,
together with outcomes u. Suppose also that for each i € S, we require that u; = a; whenever
W! = W;. Since the latter condition is satisfied by a constant fraction of i € {1,...,m’'},
irrespective of W/, with very high probability, it follows that the only possibility for the second
player to satisfy the condition is to actually measure his qubits precisely in the basis that he indicates.
This allows us to check that a player performs the measurement that he claims, even if the player

has the choice of which measurement to report.

Tomography Test tom (X, m’, m):

e Input: Integer 1 < m’ < m and a subset & = {X,Y, Z, F,G} of the single-qubit Clifford
group.

e Test: Let S C [m] be chosen uniformly at random among all sets of size |S| = m’. Select
W € X™ uniformly at random. Send W to the first player, and the set S to the second.
Receive a from the first player, and W’ & >™" and u from the second. Accept only if a; = u;
whenever i € S and W; = W/.

Figure 4.10: The m-qubit tomography test Tom(X, m’, m).

Corollary 4. Let ¢ > 0 and 1 < m’ < m integer. Suppose a strategy for the players succeeds
with probability 1 — € in both tests ricip(%, m) (Figure 4.9) and rom(X, m', m) (Figure . Let
V4, Vg be the isometries specified in Corollary Let {QWI'”} be the projective measurement
applied by the second player in tom(X, m',m). Then there exists a distribution q on o {4}
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such that

YL || Tras (1@ VBQY ™) 9) (9l ag (14 © VEQ"Y )Y

Wesm ye{+1}m’

- q(W’A)(é%a&,ﬁHl:o<poly<e>>,
i=1

Ae{t}
where the notation is the same as in Corollary|3]

Moreover, players employing the honest strategy succeed with probability 1 in tomography part of
the test.

Proof. Success in rRiGID(X, m) allows us to apply Corollary For any (W', u) let PKY,/XH be the
post-measurement state on the first player’s space, conditioned on the second player’s answer in
Tom(X, m’, m) being (W', ), after application of the isometry V4, and conditioned on H 4 being
in a state that lies in the support of T, (note this makes sense since 7, T— have orthogonal support).
Using thatforany i € S, W; = W/ with constant probability |Z| L, it follows from [@-20) and #21))

in Corollary [3|that success in Tom(%, m) implies the condition

£-1, 1 N Wi

E ) Tr(n) Tr( (e L+ 57 @ies Oy, Joai ) =1 —O(poly(e)). (425

S} it (o) T (S 1+ gy ies O Jok ) (poly(e))- (4.25)
=m

Eq @23)) concludes the proof, for some distribution g(W/,A) ~ Y, Tr (px\,]/’f) Tr(7)) (the ap-

proximation is due to the fact that the latter expression only specifies a distribution up to error

O(poly(e))- O
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4.5 Delegating a quantum computation

We are finally ready to describe our new delegation protocols.
4.5.1 Preliminaries
4.5.1.1 Quantum circuits

We use capital letters in sans-serif font to denote gates. We work with the universal quantum gate

set {CNOT, H, T}, where the controlled-not gate is the two-qubit gate with the unitary action
CNOT |by, by) = |b1, b1 @ ba),

and the Hadamard and T gates are single-qubit gates with actions
1
V2

respectively. We will also use the following gates:

Hb) = —= (10) + (~1)"[1)) and T b) = e*™/*|p),

X|by =|b®1), Z|b) = (—1)" |b), and P |b) = i’ |b).

Measurements in the Z basis (or computational basis) will be denoted by the standard measurement

symbol:

To measure another observable, W, we can perform a unitary change of basis Uy, so that the

following circuit meaures in the eigenbasis of W:

We assume that every circuit has a specified output wire, which is measured at the end of the
computation to obtain the output bit. Without loss of generality, we can assume this is always the
first wire. For an n-qubit system, we let IT,, for b € {0,1}, denote the orthogonal projector onto
states with |b) in the output wire: |b) (b| ® 1. For example, the probability that a circuit Q outputs
0 on input |x) is |TToQ |x)||%.

We can always decompose a quantum circuit into layers such that each layer contains at most one
T gate applied to each wire. The minimum number of layers for which this is possible is called the
T depth of the circuit. We note that throughout this work we will assume circuits are compiled in a
specific form that introduces extra T gates (see the paragraph on the H gadget in Section 4.5.1.2).
The T depth of the resulting circuit is proportional to the depth of the original circuit.
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4.5.1.2 Broadbent’s EPR Protocol

In this section we summarize the main features of a delegation protocol introduced in [11], high-
lighting the aspects that will be relevant to understanding our subsequent adaptation into two-prover
protocols. The “EPR Protocol” from [11] involves the interaction between a verifier Vgpg and a
prover P. We write Prpr for the “honest” behavior of the prover. The verifier Vepg has limited
quantum powers. Her goal is to delegate a BQP computation to the prover P in a verifiable way.
Specifically, the verifier has as input a quantum circuit Q on 7 qubits and an input string x € {0, 1}",
and the prover gets as input Q. The verifier and prover interact. At the end of the protocol, the
verifier outputs either accept or reject. The protocol is such that there exist values pgyoung and
Peompl With Psound < Peompl such that peompl — Psound. called the soundness-completeness gap,

is a constant independent of input size, and moreover:

Completeness: If the prover is honest and ||TToQ |x)||* > 2/3, then the verifier outputs accept
with probability at least peompis

Soundness: If ||IToQ |x)||* < 1/3, then the probability the verifier outputs accept is at most

Psound-

In Section[4.5.4] we show that sequential repetition can be used to turn any such protocol, including
our two-prover variants, into one in which the verifier outputs 0, 1, or abort, and we have the
following: (1) If the prover(s) is/are honest, the verifier outputs abort with probability at most .01;
and (2) If ||TT,Q |x) |2 > 2/3 for some b € {0,1} then the probability that the verifier outputs
1 — b is at most .01.

In the EPR protocol, Vepg and Prpg are assumed to share (7 + t) EPR pairs at the start of the
protocol, where t is the number of T gates in Q and n the number of input bits. (In [11] the EPR
protocol is only considered in the analysis, and it is assumed that the EPR pairs are prepared by
the verifier.) The first n EPR pairs correspond to the input to the computation; they are indexed by
N = {1,...,n}. The remaining pairs are indexed by T = {n +1,...,n + t}; they will be used

as ancilla qubits to implement each of the T gates in the delegated circuit.
The behavior of Vepr depends on a round type randomly chosen by Vgpr after her interaction with

Prpr. There are three possible round types:

* Computation round (r = 0): the verifier delegates the computation to Prpr, and at the end

of the round can recover its output if Prpg behaves honestly;

e X-test round (r = 1) and Z-test round (» = 2): the verifier tests that Prpr behaves honestly,
and rejects if malicious behavior is detected.
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For some constant p, V chooses r = 0 with probability p, and otherwise chooses r € {1,2} with
equal probability. Since the choice of round type is made after interaction with Prpgr, Prpr’s
behavior cannot depend on the round type. In particular, any deviating behavior in a computation
round is reproduced in both types of test rounds. The analysis amounts to showing that any deviating
behavior that affects the outcome of the computation will be detected in at least one of the test

rounds.

In slightly more detail, the high-level structure of the protocol is the following. Vgppgr measures
her halves of the n qubits in N in order to prepare the input state on Prpgr’s system. As a result
the input is quantum one-time padded with keys that depend on Vrpr’s measurement results. For
example, in a computation round, Vppgr measures each input qubit in the Z basis, and gets some
result d € {0,1}", meaning the input on Pgpg’s side has been prepared as X9 |0)*". In [11], the
input is always considered to be 0, but we can also prepare an arbitrary classical input x € {0,1}"
by reinterpreting the one-time pad key as a = d @ x so that the input state on Pgpr’s side is X? |x).
In a test round, on the other hand, the input is prepared as the one-time pad of either |O>®” or
|—|—>®". Note that as indicated in Figure this choice of measurements will be made after the
interaction with Prpr has taken place.

The honest prover Prpr applies the circuit Q, which we assume is compiled in the universal gate
set {H, T, CNOT}, to his one-time padded input. We will shortly describe gadgets that Prpg can
apply in order to implement each of the three gate types. The gadgets are designed in a way that in
a test round each gadget amounts to an application of an identity gate; this is what enables Vrpr
to perform certain tests in those rounds that are meant to identify deviating behavior of a dishonest
prover. After each gadget, the one-time padded keys can be updated by Vgpr, who is able to keep
track of the keys at any point in the circuit using the update rules in Table 4.2l We now describe

the three gadgets, before giving a complete description of the protocol.

4.5.1.3 CNOT Gadget

To implement a CNOT gate on wires j and j', Pepg simply performs the CNOT gate on those wires
of his input qubits. The one-time pad keys are changed by the update rule in Table [4.2] because
CNOT - X%2z% @ X' 2% = X% z"™ @ X% 7" . CNOT. Note that CNOT |0) [0) = |0) |0)
and CNOT |+) |[4+) = |+) [+). so in the test runs, Pgpg is applying the identity.

4.5.1.4 H Gadget

To implement an H gate on wire j, Prpr simply performs the H on wire j, and the one-time-pad
keys are changed as in Table Unlike CNOT, H does not act as the identity on |0) and |+),
so it is not the identity in a test round. To remedy this, assume that Q is compiled so that every H
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Key Update Rule
Computation Round (aj,bj) < (aj+ci,bj+e; +aj+c;+ (a; + ¢;)z;)
T X-Test, even parity; or Z-test, odd parity (a]-, bj) « (e;,0)
Z-Test, even parity; or X-test, odd parity (aj,b;) < (0,b; +e; + z;)
H (a]-, b]> — (b], ﬂ])
CNOT (Cl]',b]',a]'/,bv) — (ll]', b]-+b]~/,a]-+aj/, b]/)

Table 4.2: Rules for updating the one-time-pad keys after applying each type of gate in the EPR
Protocol, in particular: after applying the i-th T gate to the j-th wire; applying an H gate to the j-th
wire; or applying a CNOT gate controlled on the j-th wire and targeting the j’-th wire.

gate appears in a pattern H(TTH )k, where the maximal such k is odd. This can be accomplished
by replacing each H by HTTHTTHTTH, which implements the same unitary. In test rounds, the
T gadget, described shortly, implements the identity, and since H (]lH)k for odd k implements the
identity, H(TTH)¥ will also have no effect in test rounds.

4.5.1.5 Parity of a T Gate

Within a pattern H(TTH)¥, the H has the effect of switching between an X-test round scenario (the
state |0)) and a Z-test round scenario (the state |+)). In order to consistently talk about the type of
a round while evaluating the circuit, we can associate a parity with each T gate in the circuit. The
parity of the T gates that are not part of the pattern H(TTH )k will be defined to be even. A H will
always flip the parity, so that within such a pattern, the first two T gates will be odd, the next two

will be even, etc., until the last two T gates will be odd again.

4.5.1.6 T Gadget

The gadget for implementing the i-th T gate on the j-th wire is performed on Pgpr’s j-th input
qubit, and his i-th auxiliary qubit (indexed by n + i), which we can think of as being prepared in a
particular auxiliary state by Vppgr measuring her half of the corresponding EPR pair, as shown in
Figure The gadget depends on a random bit z; that is chosen by Vrpr and sent to the prover.
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Figure 4.11: The gadget for implementing the i-th T gate on the j-th wire. The gate Uy, imple-
menting the change of basis associated with observable W; is applied as part of the procedure Vi,
(see Figure and is determined by the round type r, the parity of the i-th T gate, z;, ¢;, and af
(the X-key going into the i-th T gate), as in Table

Uw, (observable W;)
. a§ Bz, =0 HT (observable G)
Computation Round af @c;®z;=1 |HPT (observable F)
even T gate 1 (observable Z)
X-Test Round z;i = 0 | H (observable X)
odd T gate zZi = HP (observable Y)
odd T gate 1 (observable Z)
Z-Test Round even T cate 21— 0 | H (observable X)
& z;i = 1 | HP (observable Y)

Table 4.3: The choice of Uy, in the T gadget. We also indicate the observable W; associated with
the final measurement W; = U;r,viZUWl..

/\

VEPR

ze {01}
C C {0,1}t PEPR
X,C,Zcf S {0,1}
VErPR
ab,e

Figure 4.12: This figure describes how different
pieces of the protocol fit together. Vgpr and
Prpgr share n + t EPR pairs. The honest prover
Prpr can be seen as a procedure that acts on
n + t qubits — the EPR pair halves — depend-
ing on a t-bit string z. We have separated the
quantum part of VEpr into its own procedure,
called Vg, where r € {0,1,2} indicates the
round type, which Vepg runs on her n 4+ t EPR
halves, and the 2f bits ¢ and z. Aside from
running V7 pp, VEpR is classical.
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4.5.1.7 The EPR Protocol.
We show how the gadgets just described are used in the complete protocol. We first describe the

protocol for Vepr below. For later convenience we have divided the action of Vgpp into classical

actions and a single quantum subroutine V depending on the round type.

1. Vgpgrchoosesz €g {0,1}, sendsitto PEpRﬂandreceives back ¢ € {0,1} andcf € {0,1}.

2. Vepr chooses a random round type r € {0,1,2} and runs Vipg (see Figure j on her
EPR halves, x, ¢ and z, to obtain bits a,b € {0,1}" and e € {0,1}'.

3. VEpr applies the update rules from Tableon the initial keys (a, b), gate-by-gate, to obtain,
for every i € [t], the X-key before the i-th T gate is applied, 4}, and the final X key for the
output wire, a}. If r = 1 (X-test round) and there exists an i such that the i-th T gate is even

and c; # a’ @ e;, output reject. If r = 2 (Z-test round) and there exists an i such that the i-th
T gate is odd and ¢; # ag @ e;, output reject. If r € {0,1} (computation or X-test round)
and o &b a} # 0, output reject. Otherwise, output accept.

Figure 4.13: The EPR Protocol: VEpr’s point of view.

“We note that in the original EPR Protocol of [11], this is accomplished by Prpgr and Vgpr both measuring { EPR
pairs in the Z basis to get a shared random string z.

The procedure Vi, measures each of the n + ¢ EPR halves according to some observable that
depends on 7, ¢, and z. In the case of a computation round, VSPR measures the qubits in T

adaptively.

Input: A circuit Q with ¢ T gates, x € {0,1}", ¢,z € {0, 1}!, an n-qubit system indexed by N,
and a t-qubit system indexed by T.

1. If r € {0, 1}, measure each qubit in N in the Z basis, and otherwise measure in the X basis,
to getresults d € {0,1}". If r = 0, set (a,b) = (d ® x,0"); if r = 1, set
(a,b) = (d,0"); and if r = 2 set (a,b) = (0",d).

2. Going through Q gate-by-gate, use the update rules in Table 4.2[to update the one-time-pad
keys. For every i € [t], when the i-th T gate is reached, let a; be the X key before the i-th T
gate is applied. Choose an observable W; according to Table 4.3|in which to measure the
i-th qubit in T, corresponding to the i-th T gate, obtaining result e;.

Figure 4.14: The procedure V., employed by Vepg.

Finally, we describe the behavior of an honest prover, Prpg.
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1. Receive z € {0,1}! from Vgpg.

2. Evaluate Q gate-by-gate using the appropriate gadget for each gate. In particular, use z; to
implement the i-th T gadget, and obtain measurement result c;.

3. Measure the output qubit to obtain ¢, and return ¢ and ¢ to Vepg.

Figure 4.15: The EPR Protocol: Honest prover strategy Prpg.

4.5.1.8 Completeness and Soundness.

We summarize the relevant part of the analysis of the EPR protocol from [11]. First suppose Pgpr
behaves honestly. If ||[TToQ [0")]|* = p, then in a computation round, Vgpg outputs accept with
probability p, whereas in a test round, Vgpr outputs accept with probability 1. This establishes

completeness of the protocol:

Theorem 10 (Completeness). Suppose the verifier executes the EPR Protocol, choosing v = 0 with
probability p, on an input (Q, X)) such that | T1oQ |x)||* > 1 — 6. Then the probability that Vg pg
accepts when interacting with the honest prover Pppg is at least (1 — p) + p(1 — 9).

The following theorem is implicit in [11} Section 7.6], but we include a brief proof sketch:

Theorem 11 (Soundness). Suppose the verifier executes the EPR Protocol, choosing r = 0 with
probability p, on an input (Q, |X)) such that |[TToQ |x)||* < 6. Let P%pg be an arbitrary prover
such that Pfpy is accepted by VEpr with probability q; conditioned on v # 0, and q. conditioned
onr = 0. Then the prover’s overall acceptance probability is pq. + (1 — p)qs, and

Ge < 2(q:0+ (1 —q¢)) — 0.

Proof sketch. Using the notation of [11], let A = }; Y e B, |ock,Q|2. For intuition, A should
be thought of as the total weight on attacks that could change the outcome of the computation,
called non-benign attacks in [[11]. By [11], the probability of rejecting in a computation round is
1—gc > (1—06)(1— A), whereas the probability of rejecting in a test round is 1 — q; > 1 A.
Combining these gives g, < 2(q:5 + (1 —q¢)) — 6. O

4.5.2 The Verifier-on-a-Leash Protocol
4.5.2.1 Protocol and statement of results

The Verifier-on-a-Leash Protocol (or “Leash Protocol” for short) involves a classical verifier and

two quantum provers. The idea behind the Leash Protocol is to have a first prover, nicknamed PV
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for Prover V, carry out the quantum part of Vgpg from Broadbent’s EPR Protocol by implementing
the procedure Vip. (See Section for a summary of the protocol and a description of
Vepr. Throughout this section we assume that the circuit Q provided as input is compiled in
the format described in Section [4.5.1.2]). A second prover, nicknamed PP for Prover P, will play
the part of the prover Pppgr. Unlike in the EPR Protocol, the interaction with PV (i.e. running
VEpgr) will take place first, and PV will be asked to perform random measurements from the set
Y. ={X,Y,Z,F,G}. The values z, rather than being chosen at random, will be chosen based on
the corresponding choice of observable. We let n be the number of input bits and t number of T

gates in Q.

The protocol is divided into two sub-games; which game is played is chosen by the verifier by
flipping a biased coin with probability (p,, pg = 1 — pr).

* The first game is a sequential version of the rigidity game ricip(X, m) (from Section
described in Figure[d.21] This aims to enforce that PV performs precisely the right measure-

ments;

* The second game is the delegation game, described in Figures.18 4.19] and[4.20] and whose
structure is summarized in Figure Here the verifier guides PP through the computation

in a similar way as in the EPR Protocol.

We call the resulting protocol the Leash Protocol with parameters (py, ps). In both sub-games the
parameter m = ©(n + t) is chosen large enough so that with probability close to 1 each symbol
in X appears in a random W € X" at least n + t times. It is important that PV is not able to tell
which kind of game is being played. Notice also that in order to ensure blindness, we will require
that the interaction with PV in the delegation game is sequential (more details on this are found in
Section 4.5.2.4). In order for the two sub-games to be indistinguishable, we also require that the
rigidity game ricip(X, m) be played sequentially (i.e. certain subsets of questions and answers are
exchanged sequentially, but the acceptance condition in the test is the same). Note, importantly,
that the rigidity guarantees of riGip(X, m) from Sectionhold verbatim when the game is played
sequentially, since this only reduces the number of ways that the provers can cheat. The following

theorem states the guarantees of the Leash Protocol.

Theorem 12. There are constants py, pg = 1 — py, and A > 0 such that the following hold of the

Verifier-on-a-Leash Protocol with parameters (py, pg), when executed on an input (Q, |x)).

e (Completeness:) Suppose that ||T1oQ |x) ||* > 2/3. Then there is a strategy for PV and PP
that is accepted with probability at least peompr = pr(1 — e~ Q1)) 1 8y, /9.
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e (Soundness:) Suppose that |T1oQ |x) ||> < 1/3. Then any strategy for PV and PP is
accepted with probability at most Psound = Pcompl — D

Further, the protocol leaks no information about X to either prover individually, aside from an

upper bound on the length of x.

The proof of the completeness property is given in Lemma [26] The soundness property is shown
in Lemma [29] Blindness is established in Section [4.5.2.4] We first give a detailed description

of the protocol. We start by describing the delegation game, specified in Figures .18 4.19] and

@], which describe the protocol from the verifier’s view, an honest PV’s view, and an honest PP’s

view respectively. This will motivate the need for a sequential version of the game riGID(X, 1),

described in Figure 4.21] As we will show, the rigidity game forces PV to behave honestly. Thus,

for the purpose of exposition, we assume for now that PV behaves honestly, which results in the

joint behavior of PV and V being similar to that of the verifier Vgpg in the EPR Protocol.

A Wy € 34l
es € {0,1}14l
Bi, Wp, € ZlBil
ep, € {0,1}/P1l

Prover V

B;, Wg, € ¥.|Bdl
€p, € {0,1}|Bd‘

Verifer TN C [m]

cr, € {0,1}1
Zr, € {O,l}Tl

: T Prover P
cT, € {0,1} ¢

Zr, € {0,1}TZ
Cr S {0,1}

Figure 4.16: Structure of the delegation game.

From the rigidity game we may also assume
that PV and PP share m EPR pairs, labeled
{1,...,m}, form = O(n+t). We will as-
sume that the circuit Q is broken into d layers,
Q = Qq...Qy, such that in every QJy, each
wire has at most one T gate applied to it, after
which no other gates are applied to that wire.
We will suppose the T gates are indexed from

1 to t, in order of layer.

The protocol begins with an interaction be-
tween the verifier and PV. The verifier selects
a uniformly random partition A, By, ..., By of
{1,...,m}, with |A| = ©®(n), and for every
¢ e {1,...,d}, |B)| = O(ty), where t; is
the number of T gates in Q. The verifier also
selects a uniformly random W € X", and parti-
., Wpg D

meant to contain observables to initialize the

tions it into substrings W and Wpg, ..

computation qubits and auxiliary qubits for each

layer of T gates respectively. The verifier in-

structs PV to measure his halves of the EPR pairs using the observables W, first, and then

Wp,, ..., Wg,, sequentially. Upon being instructed to measure a set of observables, PV measures
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the corresponding half-EPR pairs and returns the results e to the verifier. Breaking this interaction
into multiple rounds is meant to enforce that, for example, the results output by PV upon receiving
Wp,, which we call ep,, cannot depend on the choice of observables Wjp, e This is required for

blindness.

Once the interaction with PV has been completed, as in the EPR Protocol, V selects one of three
round types: computation (¥ = 0), X-test (r = 1), and Z-test (r = 2). The verifier selects a subset
N C A of size n of qubits to play the role of inputs to the computation. These are chosen from
the subset of A corresponding to wires that PV has measured in the appropriate observable for the
round type (see Table 4.4). For example, in an X-test round, PV’s EPR halves corresponding to
input wires should be measured in the Z basis so that PP is left with a one-time pad of the state
10)*", so in an X-test round, the computation wires are chosen from the set {i € A : W; = Z}.
The input wires N are labeled by A7, ..., &),.

The verifier also chooses subsets Ty = T,? U Tl} C Byofsizestygand tyq = ty — ty o respectively,
where t/ is the number of odd T gates in the /-th layer of Q (recall the definition of even and
odd T gates from Section . The wires T? and Tl} will play the role of auxiliary states
used to perform T gates from the /-th layer. They are chosen from those wires from B, whose
corresponding EPR halves have been measured in a correct basis, depending on the round type.
For example, in an X-test round, the auxiliaries corresponding to odd T gates should be prepared
by measuring the corresponding EPR half in either the X or Y basis (see Table[d.3)), so in an X-test
round, Tl} is chosen from {i € By : W; € {X,Y}} (see Table . We will let 77, ..., 7T label
those EPR pairs that will be used as auxiliary states. In particular, the system 7; will be used for
the i-th T gate in the circuit, so if the i-th T gate is even, 7; should be chosen from T0 = UgTO,
and otherwise it should be chosen from T7; = Ungl. The verifier sends labels 77,...,7; and
Xy, ..., X, to PP, who will act as Pppgr on the n 4 t qubits specified by these labels.

Just as in the EPR Protocol, the input on PP’s system specified by &7, ..., X}, is a quantum one-
0)*", or |+)®", depending on the round type, with V holding the keys
(determined by e). Throughout the interaction, PP always maintains a one-time pad of the current

time pad of either |x),

state of the computation, with the verifier in possession of the one-time-pad keys. The verifier

updates her keys as the computation is carried out, using the rules in Table

From PP’s perspective, the protocol works just as the EPR Protocol, except that he does not receive
the bit z; needed to implement the T gadget until during the T gadget, after he has sent V his

measurement result ¢; (see Figure 4.17).

To perform the i-th T gate on the j-th wire, PP performs the circuit shown in Figure As
Figure shows, PV has already applied the observable specified by V to his half of the EPR
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Computation Round X-test Round Z-test Round

N, input/computation qubits|{i € A : W; = Z} {icA:W; =27} {iec A:W; =X}
T?, even T gate auxiliaries [{i € B;: W; € {G,F}} {i € By: W; = Z} {ieBy:W; € {X,Y}}
T}, o0dd T gate auxiliaries |{i € Bj: W; € {G,F}} {i€ B: W, e {X,Y}} {i € B,: W; = Z}

Table 4.4: How the verifier chooses index sets T = T° U T' and N for each type of round. These
index sets determine which of the m systems are labeled by {7;}_; and {Xj}?:l, respectively.

pair. The T gadget requires interaction with the verifier, to compute the bit z;, which depends on
the measured c;, the value W;, and one-time-pad key aj, however, this interaction can be done in

parallel for T gates in the same layer.

| M P
Llj—l—Ci if W; =
************ Elj—l—Ci—Fl if W; =
' . Z €ER {O,l} if W; =
W; € {X,Y,Z,G,F : W
\Y A/ 1 if W, =

Figure 4.17: The gadget for implementing the i-th T gate, on the j-th wire.

It is simple to check that the T gadget in Figure 4.17]is the same as the T gadget for the EPR
Protocol shown in Figure In the case of the leash protocol, W is chosen at random, and then

z is chosen accordingly, whereas in the case of the EPR Protocol, z is chosen at random and then

W is chosen accordingly.

We now give the precise protocols for V (Figure 4.18) and honest provers PV (Figure 4.19) and PP
(Figure 4.20). To see how these fit together, refer to Figure #.16] For a string v and an ordered set

of indices I, we denote by v the substring corresponding to indices in I.
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Let (Q, x) be the input to the verifier, where Q is compiled in the form described in Section4.5.1.2
Let 1 be the size of the input to Q. Let d be the T-depth, and for ¢ € {1,...,d} let t; be the
number of T gates in the /-th layer.

1. The verifier selects W €g ™. She partitions {1,...,m} arbitrarily into non-overlapping
subsets A and Bi, ..., B; such that W, contains at least n copies of each symbol in 2, and
foreach ¢ € {1,...,d}, Wp, contains at least t, copies of each symbol in X.

2. The verifier sends A, W, to PV, who returns e € {0,1}“. The verifier sequentially sends
(B1, Wg,), ..., (Bs, Wg,) to PV, each time receiving e, € {0,1}5 as answer.

3. The verifier selects a round type uniformly at random. She selects sets N C A and T C By,
for ¢ € {1,...,d}, of sizes [IN| = n and |T;| = t,, as follows:

Computation Round: N is chosen at random from {i € A : W; = Z}. T, is chosen at
random from {i € By: W; € {G,F}}. Shesetsa = ey +xand b = 0".

X-test Round: N is chosen at random from {i € A : W; = Z}. T, = T{ U T}, where T
is of size t4 chosen at random from {i € By : W; = Z} and T} is of size ;1 chosen
at random from {i € By : W; € {X,Y}}. She setsa = ex and b = 0".

Z-test Round: N is chosen at random from {i € A : W; = X}. T, = T{ U T}, where T}
is of size t; chosen at random from {i € By : W; € {X,Y}} and T} is of size 4,
chosen at random from {i € By : W; = Z}. She setsa = 0" and b = ey.

The verifier sends the sets N and T?, Tgl, forall ¢ € {1,...,d}, to PP.
4. For{ =1,...,d,
a) For each Clifford gate in the ¢-th layer, perform the appropriate key update from Table
4.2l

b) The verifier receives ¢ = {c;}cr, from PP. If it’s an X-test round and i € T, orit’s a
Z-test round and i € T}, reject if c; # aj + e;, where j is the wire to which the i-th T
gate is applied.

c¢) Foreachi € Ty, the verifier computes z = {Zi}ieT[ as follows:
Computation Round z; = a; + 1w,—f +¢; ;
X-test Round if i € T}, z; €g {0,1}; elseifi € T}, z; = lyw.—y;
Z-test Round ifi € T), z; = 1y _y; elseif i € T}, z; €g {0,1}.
d) The verifier sends z to PP and updates keys (a]', b]') for each wire j that had a T gate
applied, according to Table[4.2]

5. The verifier receives a bit ¢ from PP. She outputs reject if it’s a computation or X-test round
and cy +ay # 0, where a ¢ is the final X-key on the output wire; and accept otherwise.

Figure 4.18: The Delegation Game: Verifier’s point of view.
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1. For/ =0,1,...,d,

a) PV receives a string Wg € X5, for some subset S of {1,...,m}, from V.

b) Fori € S, PV measures his half of the i-th EPR pair using the observable indicated by
W;, obtaining an outcome ¢; € {0,1}.

¢) PV returns eg to V.

Figure 4.19: The Delegation Game: Honest strategy for PV.

1. PP receives subsets N and Tg, Tl} of {1,...,m}, for ¢ € {1,...,d}, from the verifier.
2. For/=1,...,d,

a) PP does the Clifford computations in the /-th layer.

b) For eachi € T, = Tg U T}, PP applies a CNOT from 7; into the input register
corresponding to the wire on which this T gate should be performed, &, and measures
this wire to get a value c¢;. The register 7; is relabeled AX;. He sends ¢7, = {Ci}ieTg to

V. (See Figure 4.17).

c) PP receives z7, = {Zi}ieTé from V. For each i € T}, he applies P# to the correspond-
ing X;.

3. PP performs the final computations that occur after the d-th layer of T gates, measures the
output qubit, A7, and sends the resulting bit, ¢ f.to V.

Figure 4.20: The Delegation Game: Honest strategy for PP.

Finally, we describe the sequential version of the game riGID(X, 1) in Figurem It is no different
than riGID(X, m), except for the fact that certain subsets of questions and answers are exchanged
sequentially, but the acceptance condition is the same. As mentioned earlier, running the game
sequentially only reduces the provers’ ability to cheat. Hence, the guarantees from riGID(X, ) in

Section 4.4/ hold verbatim for the sequential version.
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Let m, n, and t1, ..., t; be parameters provided as input, such that m = @(n 4+t + - - - + t3).

1. The verifier selects questions W, W' € X™, for the first and second player respectively,
according to the distribution of questions in the game riGID(%, m). She partitions {1,...,m}
at random into subsets A and By, for ¢ € {1,...,d}, of size |A| = ©(n) and |By| = O(ty),
exactly as in Step 1 of the Delegation Game.

2. The verifier sends (A, Wa), (B1, W,), .., (B4, Wg,) and (A, Wy), (B1, Wg,), .., (Ba, Wy )
in sequence to the first and second prover respectively. They sequentially return re-
spectively e4 € {0,1}14], e5, € {0,1}B1],  ep, € {0,1}Bl and &/, € {0,1}14,
ep € {0,1}/P1l, e € {0,1}IBl.

3. The verifier accepts if and only if e, e’ and W, W’ satisfy the winning condition of
RIGID(X, ).

Figure 4.21: Sequential version of rRiGID(X, 7).

4.5.2.2 Completeness

Lemma 26. Suppose the verifier executes the rigidity game with probability p, and the delegation
game with probability py = 1 — p,, on an input (Q, |x)) such that ||[TToQ |x) ||> > 2/3. Then
there is a strategy for the provers which is accepted with probability at least Peompl = pr(1—
e—Q(n—H)) + %Pd‘

Proof. The provers PV and PP play the rigidity game according to the honest strategy, and the
delegation game as described in Figures [4.19] and {.20] respectively. Their success probability
in the delegation game is the same as the honest strategy in the EPR Protocol, which is at least
% + %% = g, by Theorem |10|and since in our protocol the verifier chooses each of the three types

of rounds uniformly. 0

4.5.2.3 Soundness

We divide the soundness analysis into three parts. First we analyze the case of an honest PV, and
a cheating PP (Lemma [27). Then we show that if PV and PP pass the rigidity game with almost
optimal probability, then one can construct new provers PV’ and PP/, with PV’ honest, such that the
probability that they are accepted in the delegation game is not changed by much (Lemma [2§). In
Lemma we combine the previous to derive the desired constant soundness-completeness gap,
where we exclude that the acceptance probability of the provers in the rigidity game is too low by
picking a p, large enough.
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Lemma 27 (Soundness against PP). Suppose the verifier executes the delegation game on input
(Q, |x)) such that ||T1oQ |x) ||*> < 1/3 with provers (PV, PP*) such that PV plays the honest
strategy. Then the verifier accepts with probability at most 7 /9.

Proof. Let PP* be any prover. Assume that PV behaves honestly and applies the measurements
specified by his query W on halves of EPR pairs shared with PP*. As a result the corresponding
half-EPR pair at PP* is projected onto the post-measurement state associated with the outcome
reported by PV to V.

From PP*, we define another prover, P*, such that if P* interacts with Vepg, the honest verifer for
the EPR Protocol (Figured.13)), then Vgpr rejects with the same probability that V would reject on
interaction with PP*. The main idea of the proof can be seen by looking at Figure and noticing
that: (1) the combined action of V and PV is unchanged if instead of choosing the W;-values at
random and then choosing z; as a function of these, the z; are chosen uniformly at random, and
then the W; are chosen as a function of these; and (2) with this transformation, the combined action

of V and PV is now the same as the action of Vgpg in the EPR Protocol.

We now define P*. P* acts on a system that includes 7 + f qubits that, in an honest run of
the EPR Protocol, are halves of EPR pairs shared with Vepg. P* receives {Zi}le from VEgpg.
P* creates m — (n + t) half EPR pairs (i.e. single-qubit maximally mixed states) and randomly
permutes these with his 7 4-  unmeasured qubits, n of which correspond to computation qubits on
systems X7,..., X;; — he sets N to be the indices of these qubits — and t of which correspond
to T-auxiliary states — he sets T and T" to be the indices of these qubits. P* simulates PP* on
these m qubits in the following way. First, P* gives PP* the index sets N, T9, and T!. In the
{-th iteration of the loop (Step 2. in Figure , PP* returns some bits {c; }c 1,» and then expects
inputs {Zi}iGTp which P* provides, using the bits he received from Vgpg. Finally, at the end of the
computation, PP* returns a bit ¢, and P* outputs {c; };e7 and cy.

This completes the description of P*. To show the lemma we argue that for any input (Q, |x)) the
probability that V outputs accept on interaction with PV and PP* is the same as the probability that
VEpr outputs accept on interaction with P*, which is at most 3g; + 3. whenever |[ITpQ |x) ||> <
1/3, by Theorem Using 6 = %, Theorem gives g, < % — %qt, which yields

2 1 5 2 7

- g, <4<

3T T3le=5T N =g
There are two reasons that Vrpr might reject: (1) in a computation or X-test round, the output
qubit decodes to 1; or (2) in an evaluation of the gadget in Figure (either an X-test round for
an even T gate, or a Z-test round for an odd T gate) the condition ¢; = a; & e; fails.
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We first consider case (1). This occurs exactly when ¢y © ay = 1, where a;y is the final X key of
the output wire, held by Vepr. We note that a; is exactly the final X key that V would hold in
the Verifier-on-a-Leash Protocol, which follows from the fact that the update rules in both the EPR
Protocol and the leash protocol are the same. Thus, the probability that Vgpg finds v @ ay =1
on interaction with P* is exactly the probability that V finds c r@®ay = T1inStep 5 of Figure m

Next, consider case (2). The condition ¢; # a; & e; is exactly the condition in which a verifier
interacting with P* as in Figure would reject (see Step 4.(b)).

Thus, the probability that Vgpr outputs reject upon interaction with P* is exactly the probability
that V outputs reject on interaction with PP*, which, as discussed above, is at most 7/9. O

The following lemma shows soundness against cheating PV*.

Lemma 28. Suppose the verifier executes the leash protocol on input (Q,|x)) such that
ITToQ |x) ||> < 1/3 with provers (PV*, PP*), such that the provers are accepted with proba-
bility 1 — ¢, for some € > 0, in the rigidity game, and with probability at least q in the delegation
game. Then there exist provers PP' and PV’ such that PV' applies the honest strategy and PP' and
PV’ are accepted with probability at least g — poly(e) in the delegation game.

Proof. By assumption, PP* and PV* are accepted in the rigidity game with probability at least
1 —e. Let V4, Vp be the local isometries guaranteed to exist by Corollary 3| and {7} the sub-
normalized densities associated with PP*’s Hilbert space (recall that playing the rigidity game
sequentially leaves the guarantees from Corollary [3] unchanged, since it only reduces the provers’
ability to cheat).

First define provers PV and PP” as follows. PP” and PV” initially share the state
[¢")ap = ®IL1 [EPR)(EPR[pg ® ) [A) (Al @ [A)(Alg @ (Ta)ar,
Ae{x}
with registers AA’A” in the possession of PP” and BB’ in the possession of PV, Upon receiving a
query W € X, PV" measures B’ to obtaina A € {£}. If A = + he proceeds honestly, measuring
his half-EPR pairs exactly as instructed. If A = — he proceeds honestly except that for every honest
single-qubit observable specified by W, he instead measures the complex conjugate observable.
Note that this strategy can be implemented irrespective of whether W is given at once, as in the
game RIGID, or sequentially, as in the Delegation Game. PP” simply acts like PP*, just with the

isometry V4 applied.

First note that by Corollary [3, the distribution of answers of PV” to the verifier, as well as the
subsequent interaction between the verifier and PP, generate (classical) transcripts that are within

statistical distance poly () from those generated by PV* and PP* with the same verifier.
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Next we observe that taking the complex conjugate of both provers’ actions does not change their
acceptance probability in the delegation game, since the interaction with the verifier is completely
classical. Define PP’ as follows: PP’ measures A’ to obtain the same A as PV”, and then executes
PP” or its complex conjugate depending on the value of A. Define PV’ to execute the honest

behavior (he measures to obtain A, but then discards it and does not take any complex conjugates).

Then PV’ applies the honest strategy, and (PV’, PP’) applies either the same strategy as (PV”, PP”)
(if A = 4) or its complex conjugate (if A = —). Therefore they are accepted in the delegation
game with exactly the same probability. U

Combining Lemma [27|and Lemma [28] gives us the final soundness guarantee.

Lemma 29. (Constant soundness-completeness gap) There exist constants p,, pg = 1 — p, and
A > 0 such that if the verifier executes the leash protocol with parameters (py, p4q) on input
(Q, |x)) such that |[T1oQ |x) ||> < 1/3, any provers (PV*, PP*) are accepted with probability at

most Psound = Pcompl — A.

Proof. Suppose provers PP* and PV* succeed in the delegation game with probability g + w for
some w > 0, and the testing game with probability 1 — ¢, (w), where €, (w) will be specified
below. By Lemma this implies that there exist provers PP’ and PV’ such that PV’ is honest
and the provers succeed in the delegation game with probability at least 5 + w — g(e.(w)),
where g(e) = poly(e) is the function from the guarantee of Lemma 28 Let ¢, (w) be such that
g(ey(w)) < %. In particular, § + w — g(e«(w)) > 5 + % > Z. This contradicts Lemma

Thus if provers PP and PV succeed in the delegation game with probability g + w they must succeed
in the rigidity game with probability less than 1 — e, (w). This implies that for any strategy of the

provers, on any no instance, the probability that they are accepted is at most

oo+ 0203+ ) {1 () 001}

Since & (11—8) is a positive constant, it is clear that one can pick p, large enough so that

pe(i-e(55)) + =P 1< p+ 0=p) 5+ 35).

Select the smallest such p,. Then the probability that the two provers are accepted is at most

7 1 _ 8
Psound = Pr + (1 —p;) <§ + E) < p”(l —¢€ Q(nH)) +(1— Pr)§ = Pcompl »

which gives the desired constant completeness-soundness gap A. U
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4.5.2.4 Blindness

We now establish blindness of the Leash Protocol. In Lemma we will prove that the protocol
has the property that neither prover can learn anything about the input to the circuit, x, aside from
its length. Thus, the protocol can be turned into a blind protocol, where Q is also hidden, by
modifying any input (Q,x) where Q has g gates and acts on 1 qubits, to an input (U ., (Q, X)),
where Uy, is a universal circuit that takes as input a description of a g-gate circuit Q on 7 qubits,
and a string x, and outputs Q |x). The universal circuit Uy , can be implemented in O(glogn)
gates. By Lemma [30} running the Leash Protocol on (Ug,x, (Q,x)) reveals nothing about Q or x

aside from ¢ and n.

In the form presented in Figure [4.18] the verifier V interacts first with PV, sending him random
questions that are independent from the input x, aside from the input length 7. It is thus clear that

the protocol is blind with respect to PV.

In contrast, the questions to PP depend on PV’s answers and on the input, so it may a priori seem
like the questions can leak information to PP. To show that the protocol is also blind with respect
to PP, we show that there is an alternative formulation, in which the verifier first interacts with
PP, sending him random messages, and then only with PV, with whom the interaction is now
adaptive. We argue that, for an arbitrary strategy of the provers, the reduced state of all registers
available to either prover, PP or PV, is exactly the same in both formulations of the protocol — the
original and the alternative one. This establishes blindness for both provers. This technique for
proving blindness is already used in [82] to establish blindness of a two-prover protocol based on
computation by teleportation.

Lemma 30 (Blindness of the Leash Protocol). For any strategy of PV* and PP*, the reduced state
of PV* (resp. PP*) at the end of the leash protocol is independent of the input X, aside from its
length.

Proof. Let PV* and PP* denote two arbitrary strategies for the provers in the leash protocol. Each

of these strategies can be modeled as a super-operator
Tev : L(Hrp, ® Hpv) = L(Hp, @ Hev), Tepad  L(H1 ® Hep) — L(H1py, @ Hep).

Here Hr,, and Mgy (resp. Hry, and Hyy ) are classical registers containing the inputs and outputs
to and from PV* (resp. PP*), and Hpy (resp. Hpp) is the private space of PV* (resp. PP*). Note
that the interaction of each prover with the verifier is sequential, and we use Tpy and Tpp 44 to
denote the combined action of the prover and the verifier across all rounds of interaction (formally

these are sequences of superoperators).
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Consider an alternative protocol, which proceeds as follows. The verifier first interacts with PP.
From Figure we see that the inputs required for PP are subsets N and T, ..., T, and values
{zi}ier, for each £ € {1,...,d}. To select the former, the verifier proceeds as in the first step
of the Delegation Game. She selects the latter uniformly at random. The verifier collects values

{ Ci}iGT[ from PP exactly as in the original Delegation Game.

Once the interaction with PP has been completed, the verifier interacts with PV. First, she selects
a random string Wy € XN, conditioned on the event that Wy contains at least 7 copies of
each symbol in X, and sends it to PV, collecting answers ey. The verifier then follows the
same update rules as in the delegation game. We describe this explicitly for computation rounds.
First, the verifier sets a = ey. Depending on the values {c;}icr, and {z;};c7, obtained in the
interaction with PP, using the equation z; = aj + lw.—F + ¢; she deduces a value for 1y, —p for
eachi € Ty C By. She then selects a uniformly random Wp, € ¥B1, conditioned on the event
that Wp, contains at least t; copies of each symbol from X, and for i € Tj it holds that W; = F
if and only if z; = a4; + 1+ ¢;. The important observation is that, if Ty is a uniformly random,
unknown subset, the marginal distribution on Wpg, induced by the distribution described above is
independent of whether z; = a; +1+¢; or z; = a; + 0 + ¢;: precisely, it is uniform conditioned
on the event that Wp, contains at least t; copies of each symbol from 2. The verifier receives
outcomes ep, € {0, 1}31 from PV, and using these outcomes performs the appropriate key update
rules; she then proceeds to the second layer of the circuit, until the end of the computation. Finally,

the verifier accepts using the same rule as in the last step of the original delegation game.

We claim that both the original and alternative protocols generate the same joint final state:
Top,ad © Tov(Porig) = Tpv,ad © Tep(Pair) € Hep @ Hyy @ Hy @ Hpy @ Hpy,  (4.26)

where we use p,ig and pg¢ to denote the joint initial state of the provers, as well as the verifier’s
initialization of her workspace, in the original and alternative protocols respectively, and 7py ,4 and
7Tpp are the equivalent of Tpy and Tpp ,4 for the reversed protocol (in particular they correspond to
the same strategies PV* and PP* used to define Tpy and 7pp ,4). Notice that Tpy 4 and Tpp are
well-defined since neither prover can distinguish an execution of the original from the alternative
protocol[f] To see that equality holds in (.26)), it is possible to re-write the final state of the
protocol as the result of the following sequence of operations. First, the verifier initializes the
message registers with PP* and PV* using half-EPR pairs, keeping the other halves in her private
workspace. This simulates the generation of uniform random messages to both provers. Then,

the superoperator Tpy ® Tpp is executed. Finally, the verifier post-selects by applying a projection

80ne must ensure that a prover does not realize if the alternative protocol is executed instead of the original; this
is easily enforced by only interacting with any of the provers at specific, publicly decided times.
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operator on Hr,, ® HT{)V Q@ Hpp @ HT{»p that projects onto valid transcripts for the original
protocol (i.e. transcripts in which the adaptive questions are chosen correctly). This projection can
be implemented in two equivalent ways: either the verifier first measures Hr,, ® HT{)V, and then
Hrpp @ HTEP; based on the outcomes she accepts a valid transcript for the original protocol or
she rejects. Or, she first measures Hr,, ® %Tép’ and then ‘Hr,, ® %Tév; based on the outcomes
she accepts a valid transcript for the alternative protocol or she rejects. Using the commutation
of the provers’ actions, conditioned on the transcript being accepted, the first gives rise to the first
final state in (4.26)), and the second to the second final state. The two are equivalent because the
acceptance condition for a valid transcript is identical in the two versions of the protocol.

Since in the first case the reduced state on HT{»V ® Hpy is independent of the input to the compu-
tation, x, and in the second the reduced state on Hpp ® HT;’rp is independent of x, we deduce that
the protocol hides the input from each of PV* and PP*. 0J

4.5.3 The Dog-Walker Protocol

4.5.3.1 Protocol and statement of results

The Dog-Walker Protocol again involves a classical verifier V and two provers PV and PP. As
in the leash protocol presented in Section PP and PV take the roles of Prpr and VEpgr
from [11] respectively. The main difference is that the Dog-Walker Protocol gives up blindness in
order to reduce the number of rounds to two (one round of interaction with each prover, played
sequentially). After one round of communication with PP, who returns a sequence of measurement
outcomes, V communicates all of PP’s outcomes, except for the one corresponding to the output
bit of the computation, as well as the input x, to PV. With these, PV can perform the required
adaptive measurements without the need to interact with V. It may seem risky to communicate
bits sent by PP directly to PV — this seems to allow for communication between the two provers!
Indeed, blindness is lost. However, if PP is honest, his outcomes {ci}i in the computation round
are the result of measurements he performs on half-EPR pairs, and are uniform random bits. If he
is dishonest, and does not return the outcomes obtained by performing the right measurements, he
will be caught in the test rounds. It is only in computation rounds that V sends the measurement
results {c; }; to PV.

To guarantee that PV behaves honestly, we combine the rigidity test rigip (X, m) from Sectionm
with the tomography test tom(X, n + £, m) from Section m Part of the latter test requires PV
to announce what measurements he has performed and the corresponding outcomes he obtained.

He has to do so honestly in order to pass the test.

Throughout this section we let ¥ = {X,Y,Z,F,G}, and let m = ©@(n + t) be chosen large

enough so that each symbol in X appears at least n 4 ¢ times in a uniform random W € ¥, with
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probability close to 1. Let (W) denote the probability that a player receives input W while playing
RIGID(X, m) (recall that both players have the same marginals in riGID). Let 1/(W’|W) denote the

probability that one player receives W’ given that the other player receives W.

The full protocols are presented in Figure 4.22] (verifier’s point of view), Figure 4.24] (PV’s point
of view) and Figure (PP’s point of view). The protocol has two types of rounds: EPR and
Rigidity. Within an EPR round are three types of sub-rounds: Computation sub-round, X-test
sub-round, and Z-test sub-round. We will generally think of X- and Z-test sub-rounds as one sub-
round type (Test sub-round). Within a Rigidity round are two types of sub-rounds: Tomography
sub-round, which should be thought of as the Rigidity version of the EPR-Computation round; and
Clifford sub-round, which should be thought of as the Rigidity version of the EPR-Test round. With
some probability pq, V runs a Rigidity round, Clifford sub-round; with some probability p, V
runs an EPR round, Test sub-round; with some probability p3, V runs an EPR round, Computation
sub-round; and with probability p4 = 1 — p; — p2 — p3, V runs a Rigidity round, Tomography
sub-round. We call this the Dog-Walker Protocol with parameters (p1, p2, P3, P4)-

The following theorem states the guarantees of the Dog-Walker Protocol.

Theorem 13. There exist constants p1, pa, p3, pa = 1 — p1 — p2 — p3, and A > 0 such that
the following hold of the Dog-Walker Protocol with parameters (p1, P2, P3, P4), when executed on

input (Q,|x)).

o (Completeness: ) Suppose that ||[T1pQ |x) HZ > 2/3. Then there is a strategy for PV and PP
that is accepted with probability at least pcomp) = p1(1— e_Q(”+t)) + p2 + %Ps + pa.
e (Soundness: ) Suppose that ||I1pQ |x>||2 < 1/3. Then any strategy for PV and PP is

accepted with probability at most Psound = Pcompl — A

The proof of completeness is given in Lemma[31] and proof of soundness is given in Lemma [36]
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1. Select a round type EPR or Rigidity, and disjoint sets N, T, T* C {1,...,m} of sizes n, tg
and t — tg.

EPR Choose z uniformly at random from {0, 1}t and send it, along with N, TO and T!, to PP.
Receive measurement outcomes ¢ € {0,1}" and ¢ € {0,1} from PP.

Rigidity Choose W’ according to () and send it to PP. Receive e’ € {0,1}" from PP.
2. Select a sub-round type at random from Computation, X Test or Z Test.
Computation Based on whether it’s an EPR or a Rigidity Round:

EPR (i) Send x, z, ¢ and sets N, TY and T! to PV, and receive measurement outcomes
a,be {0,1}"ande € {0,1}".
(ii) Apply the update rules from Table 4.2| gate-by-gate to obtain the final X key for the
output wire a}. Ifcp + a} # 0, reject.

Rigidity (Tomography) (i) Choose uniform random strings ¢,z € {0,1},x € {0,1}" to
send to PV, along with N and T, and receive measurement outcomes d € {O, 1}”
ande € {0,1}".
(i) From x, ¢, z, d, and e, determine the adaptive measurements W € X"+ that Vgp R
would have performed (based on Figure [4.14)), and reject if the input-output pairs
(W', e’)and (NUT, (W, e)) do not satisfy the winning criterion for Tom(X, n +
t,m).

X-Test Based on whether it’s an EPR or a Rigidity Round:

EPR (i) Choose W € 2™ uniformly at random among all strings satisfying: W; = Z for
alli € N;W; = Zforalli € T';and W; € {X,Y} foralli € T'. Send W to PV
and receive measurement results e € {0,1}". Let (a,b) = (en,0").

(ii) Apply update rules from Table 4.2 gate-by-gate to obtain Vi € [¢] the X key before
the i-th T gate is applied, a/, and the final X key for the output wire, a}. If Ji s.t.

the i-th T gate is even and ¢; # a; + e;, reject. If ¢ + a} # 0, reject.

Rigidity (Clifford) Choose W according to the marginal conditioned on W', u(-|W’). Send
W to PV and receive e € {0,1}". Rejectif (W’/,e’, W, e) doesn’t win riGID(X, m).

Z-Test Based on whether it’s an EPR or a Rigidity Round:

EPR (i) Choose W € X™ uniformly at random among all strings satisfying: W; = X for
allie N;W; € {X,Y} foralli € TY and W; = Z foralli € T'. Send W to PV
and receive measurement results e € {0,1}". Let (a,b) = (0", en).

(ii) Apply update rules from Table 4.2 gate-by-gate to obtain Vi € [t], the X key before
the i-th T gate is applied, a}. If Ji s.t. the i-th T gate is odd and ¢; # a; + ¢;, reject.

Rigidity (Clifford) Identical to X-Test case.

Figure 4.22: The Dog-Walker Protocol: Verifier’s point of view.
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1. If PP receives a question W’ from V (he is playing Tom or RIGID):

Measure the m qubits in the observable indicated by W/ — for example, if W/ € X",
fori € {1,...,m}, measure the i-th qubit in the basis indicated by W/ — and report
the outcomes e’ to V.

2. If PP receives z, and sets N, T? and T from V (he is playing the role of Pgpg from the EPR
Protocol):

Run the prover Prpr from Figure on input z, the n qubits in N, and the t qubits in
T% U T, Report the outputs ¢ € {0,1}' and ¢ € {0,1} of Pepg to V.

Figure 4.23: The Dog-Walker Protocol: Honest strategy for PP.

1. If PV receives a question W from V (he is playing riGip or an X- or Z-Test Round):

Measure the m qubits in the observable indicated by W — for example, if W € £, for
i € {1,...,m}, measure the i-th qubit in the basis indicated by W; — and report the
outcomes e to V.

2. If PV receives X, z, ¢ and sets N, T? and T! from V (he is playing Tom or a Computation
Round):

Run the procedure VSPR from Figure on input X, ¢, z, the n qubits in N, and the ¢
qubits in T® U T'. Report the outputs d and e of VSPR to V.

Figure 4.24: The Dog-Walker Protocol: Honest strategy for PV.

4.5.3.2 Completeness

Lemma 31. Suppose V executes the Dog-Walker Protocol with parameters (p1, p2, P3, Pa). There
is a strategy for the provers such that, on any input (Q, |x)) such that |[IIoQ |x)||* > 2, Vaccepts
with probability at least peomp) = p1(1—0:) + pa+ %pg + pa, for some 6, = e~ Qn+t)

Proof. The provers PV and PP play the strategy described in Figures and respectively. In
the Rigidity-Tomography round, the verification performed by V amounts to playing tom(%, n +
t, m) with the provers (with an extra constraint on the output W of PV that is always satisfied by the
honest strategy). This game has perfect completeness, which makes the V accept with probability
1 in the Rigidity-Tomography round. In the Rigidity-Clifford round, V plays ricip(X, m) with the
provers. The game has completeness at least 1 — d, for some ., = e~ 1t since m = Q(n+t),

and therefore their success probability in this round is at least 1 — &..
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In the EPR round, the provers are exactly carrying out the EPR Protocol, with V using PV to run
VEpgr» and PP playing the role of Pgpg. Thus, test rounds result in acceptance with probability 1,

and the computation round results in acceptance with probability ||TIoQ |x) 2, by Theorem ]

4.5.3.3 Soundness

Figure .25 summarizes the high-level structure of the soundness analysis. Intuitively, our ultimate
goal is to argue that both provers either apply the correct operations in EPR-Computation rounds,
or are rejected with constant probability. This will be achieved by employing a form of “hybrid
argument” whereby it is argued that the provers, if they are not caught, must be using the honest
strategies described in Figure [4.23] and Figure 4.24]in the different types of rounds considered in

the protocol. Towards this, we divide the round types into the following four scenarios:

1. Rigidity-Clifford: The round type is Rigidity and the sub-round type is either X-Test or
Z-Test. (When the provers are honest) PV behaves as in Item 1 of Figure §.24] and PP
behaves as in Item 1 of Figure d.23]

2. EPR-Test: The round type is EPR and the sub-round type is either X-Test or Z-Test. PV
behaves as in Item 1 of Figure [4.24] and PP behaves as in Item 2 of Figure 4.23]

3. EPR-Computation: The round type is EPR and the sub-round type is Computation. PV
behaves as in Item 2 of Figure [4.24] and PP behaves as in Item 2 of Figure 4.23]

4. Rigidity-Tomography: The round type is Rigidity and the sub-round type is Computation.
PV behaves as in Item 2 of Figure[d.24] and PP behaves as in Item 1 of Figure 4.23]

Examining Figure .22] we can see the following. In the Rigidity-Clifford scenario, the verifier
is precisely playing the game riGID with the provers, as the provers receive questions W' and W
distributed according to (-, ), the distribution of questions for riGID(X, m); their answers are
tested against the winning conditions of riGiD(X, m). In the Rigidity-Tomography scenario, the
verifier plays a variant of the game Tom with the provers, in which PV’s choice of observable W is
uniquely determined by his inputs x, ¢ and z: it should match the observable implemented by Vgp R
on these inputs. In EPR rounds, PV plays the part of V. from the EPR Protocol, and PP play the
partof Pppr. The EPR-Test scenario corresponds to X- and Z-tests from the EPR Protocol, whereas
the EPR-Computation scenario corresponds to computation rounds from the EPR Protocol.
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Figure 4.25: Overview of the soundness of the Dog-Walker Protocol

The structure of the proof is as follows (see also Figure {.25)):

@)

(ii)

(iii)

@iv)

v)
(vi)

By the game riGiD, in the Rigidity-Clifford rounds, both PP and PV must be honest, or they

would lose the game.

Since PV can’t distinguish between Rigidity-Clifford and EPR-Test (both are Figure4.24]Item
1 from his perspective, and the input distributions, while not identical, are within constant

total variation distance), PV must be honest in the EPR-Test rounds, by (i).

Since PP can’t distinguish between Rigidity-Clifford and Rigidity-Tomography (both are
Figure 4.23] Item 1 from his perspective), PP must be honest in the Rigidity-Tomography
rounds, by (i).

Since PV is honest in EPR-Test rounds by (ii), PP must be honest in EPR-Test rounds or he
will get caught, but in particular, he must output values {ci}igm that are uniform random
and independent of z. Since PP can’t distinguish between EPR-Test and EPR-Computation
rounds, this is also true in EPR-Computation rounds, when the verifier sends the values {Ci}i
to PV.

PV must be honest in Rigidity-Tomography rounds, or the provers would lose the game Tom.

Since PV can’t distinguish between Rigidity-Tomography rounds and EPR-Computation
rounds (both are Figure .24 Item 2 from his perspective), PV must be honest in EPR-
Computation rounds, by (v), and his input distribution to both rounds is within constant total

variation distance, by (iv).
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(vii) Since PV is honest in EPR-Test rounds by (ii), and EPR-Computation rounds by (vi), the
combined behavior of V and PV in the EPR rounds is that of Vepg in the EPR Protocol, so
by the soundness of the EPR Protocol, PP must be honest in EPR-Computation rounds, or
get caught in the EPR-Test rounds with high probability.

The following lemma establishes (i), (ii) and (iii).

Lemma 32. Suppose the verifier executes the Dog-Walker Protocol with provers (PV*, PP*) such
that the provers are accepted with probability g1 > 1 — ¢ in the Rigidity-Clifford Round, q; in the
EPR-Test Round, q3 in the EPR-Computation Round, and q4 in the Rigidity-Tomography Round.
Then there exist provers (PV', PP") such that:

e PV' and PP’ both apply the honest strategy in the Rigidity-Clifford rounds, PV' applies the
honest strategy in the EPR-Test rounds, and PP’ applies the honest strategy in the Rigidity-
Tomography rounds; in particular, the state shared by the provers at the beginning of the
protocol is a tensor product of the honest state consisting of m shared EPR pairs and an

arbitrary shared ancilla;

e The provers are accepted with probability q,, = g2 — O(poly(e)) in the EPR-Test Round,
q5 = q3 in the EPR-Computation Round, and q) = q4 — O(poly(e)) in the Rigidity-
Tomography Round.

Proof. Using a similar argument as in Lemma 28] the strategy of PV* in Rigidity-Clifford rounds,
which is also his strategy in EPR-Test rounds (Figure Item 1); and the strategy of PP* in
Rigidity-Clifford rounds, which is also his strategy in Rigidity-Tomography rounds (Figure 4.23|
Item 1); can both be replaced with the honest strategies. Since the distribution of inputs to PP* in
the Rigidity-Tomography rounds and Rigidity-Clifford rounds is the same, the success probability
in the Rigidity-Tomography rounds is changed by at most O(poly(¢)) by using the honest strategy.
On the other hand, PV*’s input distribution in EPR-Test rounds is uniform on X", whereas his
distribution in Rigidity-Clifford rounds is given by p. However, from the description of the test
RIGID it is clear that for all W € X™, y(W) > ﬁ for some constant ¢ > 1, thus the total
variation distance between the two distributions is at most 1 — % Thus, replacing PV* with the

honest strategy in the EPR-Test rounds will change the success probability by at most O(poly(¢)).
Finally, since the provers’ strategy in the EPR-Computation round has not changed, the acceptance

probability in it remains unchanged. U

Next, we will show that whenever PV* is honest in the EPR-Test rounds this forces PP* to output

(close to) uniformly random {ci}ie[t] that are independent of the round type, even given z. This
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will allow us to verify that PP* is unable to signal to PV* whether the round is an EPR Round in

the EPR-Computation round, when PV* is sent z and c¢. This establishes (iv).

Lemma 33. Suppose the verifier executes the Dog-Walker Protocol with provers (PV*, PP*) such
that the initial shared state of the provers consists of m shared EPR pairs, together with an
arbitrary shared auxiliary state; PV* plays the honest strategy in the EPR-Test rounds, the provers
are accepted with probability qy in the Rigidity-Clifford Round, q; = 1 — €' in the EPR-Test Round,
q3 in the EPR-Computation Round, and q4 in the Rigidity-Tomography Round. Then the input
(¢, z) given by the verifier to PV* in the EPR-Computation rounds has a distribution that is within
O(¢") total variation distance of uniform on {0,1}! x {0,1}.

Proof. Let ag denote the X key of the wire to which the i-th T gate is applied, just before the i-th T
gate is applied, and let D; be a random variable defined as follows. If the i-th T gate is even, let
D; = e; + a}, where we interpret e; and a} as the random variables representing the measurement
result and key V would get if she chooses to execute an X-Test round. If the i-th T gate is odd, let
D; =e; + ag, where we interpret ¢; and al’- as the measurement result and key V would get if she
chooses to execute an Z-Test round. Since PV* is assumed to play honestly in EPR-Test rounds, D

is uniformly distributed in {0, 1} . In particular, we have, for any d, z € {0, 1},

1
PrD=d,Z=z] =

Let C; be the random variable that corresponds to the measurement output of the i-th T gadget by
PP* in X-Test round if the i-th T gate is even, or the measurement output of the i-th T gadget by
PP* in Z-Test round if the i-th T gate is odd.

Let T C [t] be the set of even T gates and T' C [t] the set of odd T gates. In an X-Test Round,
the provers are rejected whenever i € T° and ¢; # d;, and in a Z-Test Round, they are rejected
whenever i € T' and ¢; # d;. An EPR-Test Round consists of running one of these two rounds
with equal probability, so:

Pr[C # D] < 2¢'. (4.27)

We can express (4.27) as
Pr[(C,Z) # (D,Z)] < 2¢.

We conclude by using the easily verifiable fact that for any random variables X and Y such that
Pr[X = Y] > 1 — 2¢/, the total variation distance between the marginal distributions on X and Y

is at most 2¢’. dJ
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Next, we can use the tomography test Tom to establish (v), and then the fact that by Lemma [33] the
input to PV is not very different in EPR-Computation and Rigidity-Tomography rounds to establish

(vi):

Lemma 34. Suppose the verifier executes the Dog-Walker Protocol with provers (PV*, PP*) such
that: PV* applies the honest strategy in EPR-Test rounds; PP* applies the honest strategy in the
Rigidity-Tomography rounds; and the provers are accepted with probability qy in the Rigidity-
Clifford Round, g» = 1 — €' in the EPR-Test Round, g3 in the EPR-Computation Round, and g4 =
1 — e in the Rigidity-Tomography Round. Then there exist provers (PV', PP') such that PV’ applies
the honest strategy in the Rigidity-Tomography rounds and EPR-Computation rounds, PP’ applies
the honest strategy in Rigidity-Tomography rounds, and the provers are accepted with probability
q1 in the Rigidity-Clifford Round, go = 1 — €' in the EPR-Test Round and g3 — poly (&) — O(¢') in
the EPR-Computation round.

Proof. The Rigidity-Tomography rounds can be seen as V playing the Tomography Game with
the provers, except that whereas PV* gets no non-trivial input in the Tomography Game, in the
Rigidity-Tomography round, he gets random values ¢ and z on which his strategy can depend. Fix
x, and let {Qf:‘,z}u be the projective measurement that PV* applies upon receiving ¢, z, x, where
u = (d, e) is the string of outcomes obtained by PV on the n + ¢ single-qubit measurements he is

to perform according to Step 2 in Figure [4.24]

By Corollary |4, since the provers win the Rigidity-Tomography round with probability 1 — ¢,
for every ¢,z € {0,1}!, there exist distributions g, on ™ x {+} such that the following is

O(poly(e)):

Ecz. ), ||Trag ((]lA ® VBQez) [¥) (¥]ap (1A ® VBQZ,Z)-'-) - Y W) R >

ue{0,1}m re{£} i=1
(4.28)

Here we use the notation from Corollary [3|and 4} The string W' = W(c,z,u) € £™ is uniquely
determined by ¢, z, and the outcomes u reported by PV*; indeed it is using this string that PV*’s

Uj
m 0,

answers are checked against the measurement outcomes obtained by PP*, who by assumption
applies the honest strategy. For any fixed (W', A) the distribution on outcomes u# obtained in the
“honest” strategy represented by the right-hand side in (4.28)) is uniform. Thus the outcomes u
reported by PV* are within poly(¢) of uniform. From this it follows that the joint distribution on
transcripts (¢, z,u, W = W(c,z,u)) that results from an interaction with PV* is within statistical
distance poly(s) of the distribution generated by an interaction with the honest PV; furthermore,
by (@.28) the resulting post-measurement states on PP* are also poly(e) close to the honest ones,

on average over this distribution.

W/,A

Hl'
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We can now consider two provers PV’ and PP’ who, in Rigidity-Tomography rounds, first apply
the isometries V4, Vg from Corollary @ then measure their auxiliary systems A and B using Ay,
obtaining a shared outcome A € {=£}, and finally apply the honest strategy shown in Item 2 of
Figure (A = +) or its conjugate (A = —). Furthermore, conjugating the honest strategy
produces exactly the same statistics as the honest strategy itself, so we may in fact assume that PV’

and PP’ both apply the honest strategy in Rigidity-Tomography rounds.

A consequence of PV’ applying the honest strategy in Figure Item 2 is that PV’ also plays
the honest strategy in EPR-Computation rounds. Since PV’ is still honest in the EPR-Test round
and g = 1 — ¢/, Lemma 33| implies that the distribution of the input to PV’ in EPR-Computation
rounds is within poly(e) + O(¢') total variation distance of his input in Rigidity-Tomography
rounds, therefore the provers’ success probability in EPR-Computation rounds changes at most by

poly(e) + O(¢'). O

Finally, we show that if PV is honest, then PP must be honest in EPR computation rounds, or the

acceptance probability would be low, establishing (vii):

Lemma 35. Suppose V executes the Dog-Walker Protocol on an input (Q,|x)) such that
IT1Q [x)||*> < 1/3, with provers (PV, PP) such that PV plays the honest strategy. Let qo be
the provers’ acceptance probability in EPR-Test rounds. Then the verifier accepts with probability
at most p1(1 — dc) + paga + p3(5/3 —442/3) + pa.

Proof. With probability p» + p3, V executes an EPR round, in which case, he executes EPR-
P3 B . .1 P2

17 and EPR-Test with probability T In the former case,

since PV is honest, he is executing VSPR. In fact, the behavior of an honest PV in the EPR-Test

rounds is also that of V5. Thus, the combined behavior of V and PV is that of Vgpr. Then the

result follows from Theorem [111 O

Computation with probability

We can now combine Lemmas[32] [34] and [35]to get the main result of this section, the “‘soundness”
part of Theorem[13]

Lemma 36 (Constant soundness-completeness gap). There exist constants p1, P2, P3, Pa =
1—p1—p2—p3 and A > 0 such that if the verifier executes the Dog-Walker Protocol with
parameters (p1, p2, p3, pa) on input (Q,|x)) such that |T1oQ |x)||*> < 1/3, then any provers
(PV*, PP*) are accepted with probability at most Psound = Pcompl — O

Proof. Suppose the provers PV* and PP* are such that the lowest acceptance probability in either
the Rigidity-Clifford round or the Rigidity-Tomography round is 1 — ¢, and they are accepted with
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probability 1 — ¢’ in the EPR-Test round, and with probability 1/3 + w in the Computation Round.
Applying Lemma [32] and Lemma [34] in sequence, we deduce the existence of provers (PV’, PP’)
for which

Clll =1- O(‘SC)/
7, =1—¢ —poly(e),
1
73 = 3 tw—poly(e) - O(¢),
0 =1,

where g, 45, 45 and g}, are their success probabilities in the four types of rounds, and 1 — ¢, is the

n+1)  Moreover PV’ applies

completeness of the riGID test; from Corollary |3| we have 6, = 2~
the honest strategy in all rounds, while PP’ applies the honest strategy in the Rigidity-Clifford and

Rigidity-Tomography rounds. Applying Lemma [33] it follows that
w < O(¢) +poly(e) + p1 - O(5c).

Therefore the prover’s overall success probability is at most

i 1
min(py, pa)(1 — €) +max(p1, pa) + p2(1 —€) + ps (5 + w)

<peompt = (5 +&'p2 +emin(py, pa) ) + p3 (O() +poly(e)) + (p1 + pap1) - O(2c),

where recall from Lemmathat Pcompl = P1 (1—=6c)+p2+pat % p3. Fixing p> to be a large
enough multiple of p; and of p3 we can ensure that the net contribution of the terms involving ¢’
and o on the right-hand side is always non-positive. Choosing p; = p4 and p3 so that the ratio
p3/p1 is small enough we can ensure that the right-hand side is less than peompr — A, for some

universal constant A > 0 and all ¢,¢ > 0. ]

The Dog-Walker Protocol can be easily extended to a classical-verifier two-prover protocol for all
languages in QMA. Along the same lines of the proof that QMIP = MIP* from [82], one of the
provers plays the role of PP, running the QMA verification circuit, while the second prover creates
and teleports the corresponding QMA witness. In our case, it is not hard to see that the second
prover can be re-used as PV in the Dog-Walker Protocol, creating the necessary gadgets for the
computation and allowing the Verifier to check the operations performed by the first prover. We
refer the reader to the Appendix of [27] for the full details.

4.5.4 Running our protocols in sequence
In order to make a fair comparison between previous delegated computation protocols and ours

(see Figure . 1)) we analyzed their resource requirements under the condition that they produce the
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correct outcome of the computation with 99% probability. For most protocols, this is achieved by

sequentially repeating the original version, in order to amplify the completeness-soundness gap.

In this section, we describe a sequential procedure that, starting from our protocols in Sections

4.5.2] and 4.5.3] ensures that either the verifier aborts, or she obtains the correct outcome of the

computation with probability 99%. Moreover, for honest provers, the probability that the procedure
aborts is exponentially small in the number of sequential repetitions. Our sequential procedure
has a number of rounds which depends on the desired soundness. As long as one only requires
amplification of an arbitrarily small, but constant, soundness, to a fixed constant, the number of

sequential repetitions remains constant.

To emphasize the importance of having such a sequential procedure, we note that, firstly, the current
completeness-soundness gap between acceptance probability on yes and no instances, for both the
leash and the Dog-Walker protocol, is a very small constant. Secondly, if a classical client wishes
to employ our protocols to delegate a computation, we need to specify what the client interprets, at
the end of the protocol, as the outcome of the delegated computation. The natural approach is to
have the verifier interpret accept as a yes outcome and reject as a no outcome. However, this is not
enough, as our security model based on the constant gap between acceptance probability for yes
and no instances means that, while the provers have a low probability of making the verifier accept
a no instance as a yes, they can always make the verifier accept a yes instance as a no, simply by

behaving so that they are rejected.

The first point is addressed by running copies of the original protocol in sequence to amplify
the completeness-soundness gap. The second point is addressed by having the verifier run the
protocol twice: once for the circuit Q, and once for the circuit Q' defined by appending an X gate
to the output wire of Q. If f : X — {0,1} for some X C {0,1}" is defined by f(x) = 1 if
ITTHQ |x)]|* > 2/3, and f(x) = 0 if [[TTQ|x)||* < 1/3, i.e. Q decides f with bounded error
1/3, then it is easy to see that Q" decides 1 — f with bounded error 1/3. Thus, the verifier will
accept x as a yes instance of f if the protocol outputs accept when running Q on x and outputs
reject when running Q' on x. The verifier accepts x as a no instance of f if the protocol outputs
reject when running Q on x and outputs accept when running Q' on x. The verifier aborts if she

sees accept-accept or reject-reject.

4.5.4.1 Sequential version of our protocols

Let P denote either the Verifier-on-a-leash or the Dog-Walker protocol from Sections and
4.5.3| respectively, and let ¢ and A denote the completeness and completeness-soundness gap. Let
K be a security parameter.
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Protocol Seq(P, ¢, A, x): Let (Q, x) be the verifier’s input.

1. The verifier runs x copies of protocol P in sequence on input (Q, x) with PP and PV. Then
she runs x copies in sequence on input (Q’, x).

2. Let 0,0 € {0,1}" be such that o; = 1 iff the i-th copy on input (Q,x) accepts, and
d; = 1iff the i-th copy on input (Q’, x) accepts. Let wt(0) and wt(d) be their Hamming
weights. Then, the verifier accepts 1 as the outcome of the delegated computation if wt(0) >
(c— %) xand wt(8) < (c — %) - «, and she accepts 0 as the outcome of the computation

if wt(o) < (c — %) -xand wt(8) > (c — 5) - k. Otherwise the verifier aborts.

Figure 4.26: Sequential version of our protocols

We state and prove completeness and soundness for the sequential protocol.

Theorem 14. Let ¢ and A be respectively the completeness and completeness-soundness gap of
protocol P. On input (Q, x):

e [f the provers are honest,

A“k

Pr (Seq(P,c, A, x) outputs f(x)) > 1—2exp (_T) .

e For any cheating provers,

2
Pr (Seq(P,c, A, ) outputs 1 — f(x)) < exp (—%) :

Proof. We first show completeness. Let s = ¢ — A be the soundness of protocol P. Suppose
f(x) =1 (the case f(x) = 0 is analogous). If the provers are honest, then the probability that the

verifier outputs 1 is:

A A
Pr(Verifier outputs 1) = Pr (wt(o) > (c— E) Kk A wt(d) < <c— E) -K)

>1_pr (wt(o) < (c—%) -K) P (wt(()) > G-%) -K)
> 1 2exp (_%")

by Hoeffding’s inequality.

Next we show soundness. Again suppose f(x) = 1 (the case f(x) = 0 is analogous). Let W; be
an indicator random variable for the event 6; = 1, and let F; = W; —s. One might be tempted to



118

immediately assert that IE(F]-]Fj,l, .., F1) < 0. However, because of the sequentiality of the runs
of protocol P, this is not in general true, and an analysis that treats protocol P as a black-box does
not suffice when P is the verifier-on-a-leash protocol (because such a protocol is blind). We argue
more precisely that E(Fj|F;_1, .., F1) < 0:

* When P is the dog-walker protocol from Section (which is not blind): suppose for a
contradiction that there were provers PV and PP, and a j such that E(F;|F;_y,.., F;) < 0.
Then one can construct provers PV’ and PP’ which break the soundness of protocol P. Namely
PV’ and PP’ simulate j — 1 runs of protocol P. They then respectively invoke PV and PP
and forward to them the transcripts previously generated. PV’ and PP’ then participate in the
challenge protocol P by forwarding all of the incoming messages to the invocations of PV
and PP respectively. By the initial hypothesis, such PV’ and PP’ would break the soundness
of P.

» When P is the verifier-on-a-leash protocol from Section 4.5.2} the key observation is that
protocol P remains sound even when x is revealed to the provers. Then, notice that if it is
possible for provers to force E(Fj|Fj_1,.., F1) < 0 when x is not revealed, it is clearly also
possible to do so when x is revealed. However, the latter is not possible, by an analogous

reduction to the one for the dog-walker protocol.

Define X; = Z§:1 E, for I = 1,.,x. The sequence of X;’s defines a super-martingale with
|X; — X;_1| = |F| < 1Vj. Hence, by Azuma’s inequality, for any x > 1, Pr(X, >t) <

t2

exp| — 5. ). This implies that

K K tZ
Pr ( 1WJ'_K'SZt> = Pr ( 11-"th) =Pr (X >1t) <exp <—§)
j= j=

Then, for any provers PP and PV,

A
Pr(Verifier outputs 0) < Pr <wt(6) > (c— =) ~K>
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Finally, one can check that when P is the verifier-on-a-leash protocol, then Seq(P, c, A, K) remains

blind. This follows from a similar argument as in the proof of Lemma [30]
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Chapter 5

SELF-TESTING AS A MORE GENERAL PHENOMENON

In the previous chapters, we have familiarized ourselves with some of the basic results in the theory
of self-testing, and with one important application, namely the delegation of quantum computations.
In this chapter we address the following natural question: is self-testing a phenomenon that is limited
to a few isolated examples, like EPR pairs, copies of EPR pairs, partially entangled pairs of qubits,

or are these instances of a more general phenomenon?

A few other examples of self-testable quantum states are known: the maximally entangled pair of
qutrits [[83]] (via numerical evidence), the partially entangled pair of qutrits that violates maximally
the CGLMPj3 inequality (28, |2, [103]], and a small class of higher dimensional partially entangled
pairs of qudits, through our result on parallel self-testing of tilted EPR pairs from Appendix A}l For
the multi-partite case, it is known that the three-qubit W state [101} [75]] and graph states [59, [75]]
can be self-tested. Hence, it is clear that self-testing is not an exclusive characteristic of maximally
entangled states nor qubit states. However, little is known about self-testing of higher-dimensional

entangled states (i.e. pairs of entangled qudits for d > 2).

In this chapter, we consider the outstanding open question of whether all bipartite pure entangled
quantum states (of finite local dimension) can be self-tested. Building on the framework of Yang
and Navascués [102], we answer this question affirmatively with an explicit construction of a family
of self-testing correlations, with question sets of size 3 and 4 for Alice and Bob respectively, and
answer sets of size d for both (where d is the local dimension). This is one of the main results
of this thesis. We argue, additionally, that our correlations self-test not only the state, but also
certain ideal measurements. We then extend this result by explicitly describing the first example
of a family of Bell inequalities, parametrized by an integer d > 2, which generalizes the CHSH
inequality and self-tests the maximally entangled state of any local dimension d (we refer the
reader to Remark [1] for the difference between a self-test via a correlation and a self-test via a Bell
inequality or non-local game). In the last part of the chapter, we move to the multipartite setting.
The primary difficulty in the case of multipartite states is that they are not guaranteed to have a
Schmidt decomposition. The first consequence of this is that there exist multipartite states which
are not local-unitary-equivalent to their complex conjugates in some basis (something that can
never happen in the bipartite case). Since taking the complex conjugate of a quantum strategy is an
operation that does not affect the correlation induced by the strategy, we infer that such multipartite

states cannot be self-tested. Nonetheless, we describe a simple approach to self-test multipartite
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states, based on projecting degrees of freedom for all parties but two, and considering the correlation
restricted to two parties, inspired by [101]]. We show that for any multipartite partially entangled
GHZ state, there exists a correlation on question sets of size 2 which self-tests it. We use this
result as a building block, combined with techniques from Section[5.1] to show that all multipartite

entangled Schmidt-decomposable qudit states, of any local dimension d, can be self-tested.

Organization In Section we show the main result of this chapter, that all pure bipartite
entangled states can be self-tested. In Section we extend this result by formulating it in terms
of a Bell inequality, for the maximally entangled case. In Section [5.3] we study the multipartite

case.
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5.1 All pure bipartite entangled states can be self-tested

5.1.1 The main result
For a state |p) € H ® Hp, let its local dimension be max{dim(# 4),dim(Hg)}. Our main
result is the following.

Theorem 15. For every pure bipartite entangled state |¥) of local dimension d > 2, there exists a

correlations p* € C;A’d’d that self-tests |¥). Moreover, p* also self-tests the ideal measurements

described in Subsection

A O(poly(d, €))-robust version of this result also holds. We refer the reader to the appendix of

[25]] for the details, which are not included in this thesis.

We will describe the family of correlations that makes Theorem [I5] true. We will first give a

high-level description. We will follow this by a formal description.

5.1.2 The self-testing correlation
5.1.2.1 The high-level idea

For clarity, in this paragraph we assume d to be even, but the proof will apply to odd d as well.

Since any pure bipartite entangled state possesses a Schmidt decomposition (i.e. is related by a
local unitary to a state in Schmidt form), the question of self-testing all pure bipartite entangled

states reduces to the question of self-testing an arbitrary bipartite state of the form:

d—1
hbtarget> = Z Ci ‘ii> ’
i=0

where 0 < ¢; < 1foralliand Y71 c? = 1.

The approach, inspired by [102], is to use d-outcome measurements on Alice and Bob’s side such
that, for some measurement settings, the correlation tables Tx,y are block-diagonal with 2 x 2
blocks. More precisely, for questions x,y € {0,1}, the 2 x 2 blocks will correspond to outcomes
a, b respectively in {0,1}, in {2,3},.., in {d —2,d — 1}; the idea is that the m-th 2 x 2 block
“self-tests” the portion cpy, |2m 2m) + i1 |2m 4+ 1 2m + 1) of the target state. Intuitively, if
we were to project the target state onto the subspace spanned by the 211, 2m 4 1 computational basis
vectors, we would know how to test this state: we can do so by using the tilted CHSH inequality

for the appropriately chosen angle.

Similarly, for questions x € {0,2},y € {2,3}, we let the 2 x 2 blocks correspond to outcomes
a,b respectively in {1,2}, in {3,4},.., in {d — 1,0} (i.e. the blocks are shifted forward by
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one), again the idea being that the mth block “self-tests” the portion ¢y, 11 [2m +12m+1) +
Com+2 |2m 42 2m + 2) of the target state.

The 2 x 2 blocks in our block-diagonal correlation tables, for both subsets of questions, will

naturally correspond to ideal tilted CHSH correlations for appropriately chosen angles.

See Fig. [5.1]for an illustration of the concept.

O+ @@+ @@ +
i

Figure 5.1: In blue, the block-diagonal structure of the correlation tables for questions x, y € {0,1}
“certifies” the “even-odd” pairs, while, in red, the block-diagonal structure of the correlation tables
for questions x € {0,2},y € {2,3} certifies the “odd-even” pairs.

It will become clearer, once we describe the self-testing correlation, why the interweaving pattern

of the blocks is required.

5.1.2.2 A formal description of the correlation

In order to self-test the target state |(rarger) = Zd L¢; |ii), where 0 < ¢; < 1, we will not need
to specify the entire self-testing correlation, but it will be enough to specify the correlation tables
corresponding to measurement settings x, y € {0, 1}, and those for settings x € {0,2},y € {2,3}
(recall the definition of a correlation table from Section [2.2). We will show that any correlation
satisfying these constraints self-tests |1,btarget). In Subsection we will explicitly provide ideal
measurements that satisfy such constraints when acting on ]lptarget). We will refer to the correlation
specified by these measurements as the self-testing correlation or the ideal correlation. The reader
may find the description of the ideal measurements achieving these constraints, from Subsection
[5.1.2.3] helpful in visualizing the ideal correlation.

Building on an idea of Yang and Navascués [[102], the constraints that we impose on the correlation

are:

(i) For x,y € {0,1}, the correlation tables are block diagonal with 2 x 2 blocks. The ta-
bles for measurement settings x,y € {0,1} are given in Tables and [5.2 E for even

and odd d respectively. The 2 x 2 blocks Cy ., are given by (¢35, + 3. 41) C;Cd;aém
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where the C;d;;aém are the 2 X 2 correlation tables which correspond to the maximal viola-
tion of the tilted-CHSH inequality which self-tests the state cos (6y,) |00) + sin (6,,) |11),
where 0,, := arctan (%—m“) € (0,%). They are given precisely in Tables _ with

€2

tm 2= arctan (sin (260,,)).

L a\b O] 1 2] 3 [---[d-2]d—1]
0 ¢ 0] 0 [---] 0 0
1 Xym=0 "o 0 [ [ 0 0
2 0] 0 |, 0 0
3 [0 0 rym=1""""T770 0

d—2 o [0 o0 [~~~
d—1 0 [0 O [-- xym=3-1

Table 5.1: Ty for x,y € {0,1} for even values of d > 2

"B O] 1 [2] 3 |- [d-3]d—2][d—1]
0 [ 0] 0 |---] O 0 0
1 Xym=0 "o [0 0 0
2 ol o |~ 0 0 0
3 o] 0 xym=1 0 0 0

0

i—300] 0 [0] O c .. 0

i—2o0ol o [0 0 | - Xy =52 0

d—1/o0o] o [o] o [---] O 0 |5,

Table 5.2: Ty, for x,y € {0,1} for odd values of d > 3

| a\b | 2m \ 2m+1 |
2m C%m cos? (Vzﬂ) c%m sinZ (%)
2m+1 | ¢34 sin” (1) 3 g €08 (1531)

Table 5.3: 2 x 2 block correlation table szo,yzolm and szolyzllm
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[ a\b | 2m \ 2m+1 |
2m %(cm cos (B) + oy sin (5))? %(szﬂ cos (5B) — copy sin (5))?
2m+1 %(czm cos (5) — ey sin (5))? %(C2m+1 cos (5) + cop sin (551))?
Table 5.4: 2 x 2 block correlation table Cy—1,y—0,m
| a\b || 2m | 2m+1 |
2m %(cz,n cos (”7’”) — Cppt1 SIN (’17"1))2 %(sz_t'_l cos (”7’”) + Coy SIN (”7’”))2
2m+1 %(cm cos (B) + copy sin (5))? %(C2m+1 cos (B) — oy sin (551))?

Table 5.5: 2 x 2 block correlation table Cy—1,y=1,m

(ii) Similarly, for measurement settings x € {0,2} and y € {2,3} the correlation tables Ty,
are also block-diagonal, but “shifted down” appropriately by one measurement outcome.
The 2 X 2 blocks are Dy, (corresponding to outcomes 2m + 1 and 2m + 2) for x €
{0,2} and y € {2,3}, defined as Dy,ym = (€3,,.1 + C3sp) - Cid?! where 6], :=

F(x)8(y)itm’
arctan (22) € (0,%), and f(0) = 0, f(2) = 1,8(2) = 0,¢(3) = 1. The correlations,

Ty,y, for C;mg {0,2} and y € {2,3} are given precisely in Tables |5.6to where puj, :=
arctan(sin(26},)).
a1 2 (3] & [ [d1] 0]
N et e
T o
O 0 0] Pt

Table 5.6: Ty, for x € {0,2} and y € {2,3}, for even values of d > 2
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La\b [[1] 2 [3] 4 [~ [d-2[d-1[0]
L, 0 -1 0 0 |0
2 xym=0 7970 0 0 |0
3 o0 T, 0 0 |0
4 [0 0 xym=1 0 0 |0

: 0

A—210 0] 0 0
dA—1]0 0o 0 |- xym==452 5
0 o] o [of] o |---] 0 [ 0 |

Table 5.7: Ty for x € {0,2} and y € {2,3}, for odd values of d > 3

a\b | 2m+1 | 2m+2 |
2m+1 C%mH cos? (Lm) C%m+1 sin? (5)
2m+2 c%m 42 sin? (“7’”) C%m+2 cos? (%)

NF

~

Table 5.8: 2 x 2 block correlation table szolyzz,m and szolyzg,m

| a\b | 2m+1 \ 2m+2 |
2m+l | 1 i Enyy2 [ 1 By _ )2
m+1 || 3(cp41 cos (& ; ) + Cama2 sin ( ; ) | 5(camy2cos ( ; ) — Camaq sin ( ; )
2m+2 || % (comi1 cos (B2) — comrosin (12))? | L(comyn cos (B22) + copryq sin (22))2

Table 5.9: 2 x 2 block correlation table szzlyzz,m

| a\b | 2m+1 \ 2m+2 |
m 5 Com+1 COS 5 )~ Com+2 sin 5 Com+2 COS e Com+1 sin e
2o | $(camrcos () (507 | Heamezc0s (F) + e sin ()
2m+2 || 3 (copi1c0s (52) + copya sin (” ))? | A(cam2 cos (E2) — copyyq sin (532))?

Table 5.10: 2 x 2 block correlation table Dy— y=3,m

5.1.2.3 The ideal measurements

We now explicitly provide the ideal measurements on |Wreet) = Z?;OI c; |ii) that satisfy the
constraints described above, and we refer to the correlation produced by the ideal measurements as

the ideal correlation.
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Let 0z and o be the usual Pauli matrices. For a single-qubit observable A, we denote by [A],, the
observable defined with respect to the basis {|2m mod d), [(2m +1) mod d)}. For example,
l0z]m = |2m) (2m| — |2m + 1) (2m + 1|. Similarly, we denote by [A]/, the observable defined
with respect to the basis {|(2m +1) mod d),|(2m +2) mod d)}. We use the notation @ A;

to denote the direct sum of observables A;.
For x = 0: Alice measures in the computational basis (i.e. in the basis {|0),[1),---,|d = 1) }).
d
. . 5—1
For x = 1 and x = 2: for d even, she measures in the eigenbases of observables @ _,[ox]m
41
and P _, [0x]}, respectively, with the natural assignments of d measurement outcomes; for d

a-1_
odd, she measures in the eigenbases of observables @,” ! [ox|m @ |d —1) (d — 1| and |0) (0| B

d—1

o |ox]y, respectively.

In a similar way, for y = 0 and y = 1: for d even, Bob measures in the eigenbases of

d_ d_
,31:10 [cos (im)oz + sin (um)ox]m and @;1:% [cos (ptm )0z — sin (um)0x]m respectively, with

the natural assignments of d measurement outcomes, where here y,, = arctan(sin(26,,)) and

Com+1

. : 11
o >; for d odd, he measures in the eigenbases of @, , [cos (um)oz +

0, = arctan(

d—1_
Sin (i )ox)m @ [d — 1) (d — 1] and @, % ' [c0s (sm) 07 — sin () o] & |d — 1) (d — 1| re-
spectively.

For v = 2 and y = 3: for d even, Bob measures in the eigenbases of
d_ d_

EBfn:t [cos (p),) 07 + sin (p},)ox]), and @;7:% [cos (i, )0z — sin (p),)ox ]}, respectively, where

u,, = arctan(sin(20;,)) and 6, = arctan Ei’ﬁf), for d odd, he measures in the eigen-

d—1_ a—1_
bases of [0) (0] @ @, ' [cos (juf,)oz + sin (i, )ox], and [0) (0] & @,2, ' [cos (jh,)oz —
sin (u},)ox],, respectively.

Before proceeding to the proof of Theorem [I5] we state a technical lemma that we will employ in

the proof.

5.1.3 Sufficient conditions for self-testing an entangled pair of qudits
Before proceeding to the proof of Theorem[I5] we state state a (slightly more general) version of a
Lemma from Yang and Navascués [102], which gives a sufficient criterion for self-testing a general

pure bipartite entangled state.

Lemma 37. Let |(arger) = Z?:_Ol C; ]gi)), where 0 < ¢; < 1 for all i and Z?:_Ol c? = 1. Suppose

there exist unitary operators XX() , XBk and projections {Pzgk)}kzo,..,dfl and {P[(}k)}k:(),..,dfl of

which {Pz(qk)}kzo,..,d—l is a complete orthogonal set, while {Pék)}k:o,..,d_1 need not be, and they
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satisfy the following conditions:

P [y = P |p) i, (5.1)
k k) 5 (k c
XX B gy = B ) 52)
Then there exists a local isometry ® such that ®(|¢)) = |extra) & |Prarger), for some auxiliary
state |extra).
0, — - HEH
4 S R

S = R
Op | EH HAFHA

Figure 5.2: Diagram of the isometry ®(|))

The complete proof of this is given in Appendix The Lemma also holds when |1} is replaced
by a general mixed state p, and equalities between vectors are naturally replaced by equalities
between density matrices, as is clear from the proof in Appendix Here we just describe how
the local isometry & is constructed (Fig. [5.2). The local isometry adds two ancilla qudits in the
zero state, and is a generalization of the swap isometry that we encountered in Section for the

qubit case. More precisely,

O(|9)) = (Raar @ Rppr)(Far @ Fpr)(Saar @ Spp) (Far @ Fgr) [99) o [0) 4/ [0) 5

where F is the quantum Fourier transform, F is the inverse quantum Fourier transform, R4 4//pp/
is defined as Raar/pp [¥) ap k) a4/ = XX(}B |¥) ag [K) 41y and Saar/pp is defined as
Saaryp | W) ap k) ar /= ZZ/B |¥) A |k) 41 p- Yang and Navascués [102] did not provide,
or prove the existence of, correlations from which one can construct operators satisfying the

conditions of Lemma 37} and this is our main contribution.

5.1.4 Proof of self-testing
This section is dedicated entirely to proving Theorem [I5] Most of the work in the proof is aimed at

constructing operators satisfying the sufficient conditions from Lemma[37] This, explicitly, means
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constructing appropriate projections P(k), Pl(;k) and unitaries XX(), Xl(;k). In Subsection|5.1.4.1, we

. . . : 13 20 / 1
construct the projections, and, moreover, certain unitary “flip” operators X A X Am- InSubsection

() 5

5.1.4.2, we show how to obtain unitaries X, X" as appropriate alternating products of the flip

operators. Finally, we argue that the same local isometry given by Lemma[37]works also to self-test

the ideal measurements from Subsection

5.1.4.1 Constructing the projections and the “flip”’ operators

Recall that we denote by H * the proj ectlon corresponding to Alice obtaining outcome i on
measurement setting x, and similarly for the g ;7 on Bob’s side. We will first derive consequences
that follow from the constraints in item (i) of Subsection[5.1.2.2] that we imposed on our correlations.

The constraints in item (ii) of Subsection [5.1.2.2]have similar implications.

We define the operators Axm = HA" HA’“ 1 and Bym = H —II By

ot for x,y € {0,1}.

Clearly, (Aym)? = TIA + T2 | = 14 and (By,)? =TI, +r12m+1 =1,

d-1 1B
Now, [[TIg5|9)]| = <‘/’ ‘ Iy, ‘/J> = \/<¢ ‘ Iy - i) 1P> =
\/C%m cos? (&) + 3 sin® (%) = cyp, and ||H2er1 |9) || = coms1. With similar other

calculations we deduce that

. B; ..
15 ) | = 10l [9) 1| = /Gy + Gin Virj € {0,1}. (5.3)

Moreover, notice that <1[J ’ ]léi]lf{ ‘ l/)> = 3+ Gpiq = 1120 ) || - H]lf{ |¢) ||. Hence, by

Cauchy-Schwarz, it must be the case that
Ai B] ..
L' [¢) = L [) Vi, j €{0,1}. (54)
By design, the correlations are such that

(| “mAO,m + AO,mBO,m + AO,mBLm + Al,mBO,m - Al,mBl,m W) = \/ 8 +2a3, - (C%m + C%mﬂ) ,

-2
142 tan? (26,,)
(since |¢) has unit norm). However, we can get around this by defining the normalized state |,,) =

140 . A A A oA 5
W) Since Aj ) = Al [#) = Aiuli |9). and By [9) = Byl [9) =

2
T Comp1

Bi,m]lflo |), by , then implies =

<¢’m| lxmAO,m + AO,mBO,m + AO,mBLm + Al,mBO,m - Al,mgl,m |¢’m> =\ 8+ 2“%1 . (5-5)

where o, = . As such, this is not a maximal violation of the tilted CHSH inequality
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Now, define the “unitarized” versions of the operators in (5.3): Aim =1 - ]lnA;i + Ai,m and
Ei m = 1= ]15{ + Bi,m~ Then clearly equation (5.5) holds also with the unitarized operators,
by definition of |y,). Now, let Z, = A, , X, = A

need to perform the following unitarization step. Let BO mt Bl m T ]lKer(ﬁO 1B, ) = U+rIIt
7 7 ,m Jm

Then, on Bob’s side, we again

0,m> 1,m:

and BO,m — B1 m T llKer( B, = U~ TI" be polar decompositions. Define Zg,, = U™ and
Xpm = U~. Then, by Lemma the above maximal violation of the tilted CHSH inequality

implies that

ZA,m |l[Jm> = ZB,m |l[1m> (5.6)
XA,m(]l o ZA,m) ij> = tan(em)XB,m(]l + ZA,m) |1/)711> . (5.7)

Define the subspace B, = range(]l ) + range(]l '), and the projection 13 onto subspace By;.
Then, notice from the way ZB,m is defined, that it can be written as ZB,m =1-1p, + ZB,m,
where ZB,m is some operator living entirely on subspace B,,. This implies that Zg |Pm) =
ZBm | Wm) = Zpm |), where we have used and the fact that

1LY [y) =10 [9) = 1g, |p) =1 [p) .

Hence, from (5.6) we deduce that A, |¢)) = Zp,, |#). Define projections Pz(fm) = (111’20 +

Aom)/2 = T8, P = (10 = Ag)/2 = 11904, PP = (1g, + Zgu)/2 and
2m+1 =

P = (g, — Zpm)/2.

Note that Pézm), Pf(;zmﬂ)

to subspace B, and is zero outside. We also have, for all m and k = 2m,2m + 1,

are indeed projections, since Z B,m has all =1 eigenvalues corresponding

1) = (1m0 + (—1) Ao ) /2[9) = (150 4+ (—1)%Ag ) /2]9)
= (g, + (=1)*Zgm)/2]9) = P |g) . (5.9)

Further, notice that (1 + (—1)kZA,m) 1Y) = (10 + (=D Agm) [pm) = (100 +
(—1)*Ag ) [w) = PI(“k) |¢). Plugging this into (5.7), gives
(2m+1) C2m+1 (2
Xa P2 19) = tan () X, P2 ) = LK B2 |y

Now, we turn to the constraints on our correlations that we imposed in item (ii) of Subsection

These have similar implications to the ones we just derived.

We can similarly define the operators A} == Hfrg + HZm 42 A’ = H;‘qu +1 HZm 2 B0 "=
2
B, B, / B3 Bs _ / y _ /
1 = W0 Bl = Mg g = Tlgy, 45, and 15 = (Ax,m) and L, = <By,m) - Using
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the argument employed earlier and following the same procedure, we can analogously construct

! / ! / ~ A
unitary operators Z , ., X, .. Zp ,, and X from operators A}, and B;,m

Zy i \0m) = Zm [m)
Al Al
X (L = Z0y ) [ = tan(0,,) Xp (L + Z0y ) [

where |¢),) = — L ¥)  And from here, with the same steps as above, we deduce that
" C%m+1+C%m+2
(2m+2) 2 1) C2m+2 2m+1)
XanPi" 2 19) = tan(6,) Xp, P |9 = 222, P ) 5.10)
m

5.1.4.2 Constructing the unitaries

/

For notational convenience, we drop the superscript from the unitary operators X, , B,m’X A/Bm D

equations (5.7) and (5.10) of the previous subsection. We also rename X;‘ /Bm 8 YA B,m- Then,

we recall equations (5.7) and (5.10):

C
X PA L ) = i’;le P3| ) (5.11)
Y P22 [y) = Ei:i jy P2l |y (5.12)

Recall that we ultimately wish to produce unitary operators satisfying condition (5.2)) from Lemma
. The operators X 4/p,, and Y4B, can be can be intuitively thought of as “flip operators”,
(2m+1) |1,L7> (which is equal to P(ZmH) |¢y) when condition (5.1)
is satisfied) and turns it into XB m |1p) up to an appropriate factor. On the other hand, the
2m=1) ]1/J> up to a factor. The idea is, then, that

in the sense that X4 ,,, acts on P

flip operator Y4 ,, will turn P |gb> into Yp, P(
the approprlate alternating product of these umtary flip operators will turn P |¢) into precisely
o Xy ( ))+P |}, which is the behaviour requlred from condition (5.2)) of Lemma | when we let

these alternating products be the Xz(ﬁ) and X from (5.2).

We have already shown, in (5.9), that the Pz(‘l/)B’ as defined in the previous subsection, satisfy
(k) ) = Plgk) |y) fork =0,..,d — 1, i.e. condition (5.1)) from Lemma with the PI(L‘k) forming,

by definition, a complete set of orthogonal projections.
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We are ready to define X, /B as follows:

1,

XE =0 X, YaoXalY

A A40Ya0Xa1YA1---
XaoYa0Xa1Yan---

and

1,

<) _

B XB0YB0XB1YB1---
XB,0YBoXB1YB,1---

132

ifk =0
XamoYamoXam iftk=2m+1
Xam-1YAm—1, if k = 2m

if k=0
Xgm1Ygm1Xpm ifk=2m+1
Xgm—1YBm-1, ifk =2m.

Note that Xg{) and Xék) are unitary since they are product of unitaries. Finally we check that

condition (5.2) holds, namely

Vo) = L0a) e ) (513
For the case k = 0,
XyPY y) =12, |y)
c
= X5 P )
Fork =2m + 1,
9 19) = XaoYaoXaiYai-- Xam1Yam 1Xa,mPy ) |y
€10 Cz:XA,oYA,oXAJYAA o XA,mfIYA,mfIXB,mPA ™) 1P)
CZC’Z: XemXa0Ya0Xa1Yan - XA,m—1YA,m—1PIE12m) [P)
D 2l S X a0Ya0Xa1 YA Xam 1 Y PP )
Com Com—1

= Czc?;q: : Czcimle,mYB,m1XA,0YA,OXA,1YA,1 X PE" Y )

= szjl /;/zni % %O(XBmYBm 1XB,m-1- YBlXBlYBOXBOP !lli>

= 2500 P )

which is indeed (5.13)), as 2m + 1 = k. The case k = 2m is treated similarly. This completes the
construction of the local isometry @, by Lemma([37] To conclude the proof of Theorem [I5] we just
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need to show that this isometry also self-tests the ideal measurements given precisely below. The
rest of the proof is included in Appendix [B.2]

We emphasize that the whole proof goes through in the same way if we replace |¢) with a general
mixed state. In particular, one simply replaces all equalities between vectors with equalities between
density matrices. Moreover, the Euclidean inner product is replaced by (-,-) : L(suppp, Ha ®
Hp) x L(suppp, Ha ® Hp) — C such that

(A,B) := Tr(AB%p),

where suppp = {|¢) € H : p|¢) # 0}, and L(suppp, Ha ® Hp) is the space of linear maps
from suppp to H4 @ Hp. Notice that the product defined above doesn’t in general satisfy the
symmetric property of inner products. Nonetheless, Cauchy-Schwarz still holds on instances that
satisfy the symmetry property (in particular when A and B commute). So, as an example, we
would replace the expression <L[J ‘ ]lﬁiﬂ,ij ‘ l/J>, after equation (3:3), with (15 |suppo- ]lf{ |suppp) =

. B; . B;
Tr(]l,‘z’ |suppo Lt |suppp ) and deduce, through Cauchy-Schwarz, that ]1,‘21 |suppe = Lot |suppp-
Finally, Lemmas [2]and [3] from Bamps and Pironio [7]], as well as Lemma [37] hold analogously in

corresponding mixed state form.

5.1.5 Discussion

b
a\ 012345 d—1
0 []
ey
5 :
3 Legend
4
5 Cay,m
Da:’y7m
d—1l{[ |

Figure 5.3: Block-diagonal structure of the correlation tables

In our proof, we described explicit self-testing correlations for the 2 x 2 blocks, in Tables [5.3}5.5|
and [5.8}{5.10l However, we remark that this is not the only choice of correlations that can be made
to self-test all bipartite entangled states. In fact, as a natural consequence of our work, it is the case
that any block-diagonal correlations (as in Fig. [5.3)) suffice as long as the 2 x 2 “un-normalized"

correlations Cy y, , and Dy, y, ., imply the existence of reflections Z 4, X 4 on Alice’s side and Zp, Xp
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on Bob’s side such that

Zalw) = Zp|p) (5.14)
Xa(l—2Zy) ) =tan (0)Xp(1 + Z4) |9) (5.15)

for appropriate angles 6. For instance, in order to self-test bipartite maximally entangled states, we
can invoke any correlation in the class given by Wang et al. [99] where Ag |¢) = Bp |¢) (in the
notation of Ref [99]], oo = 0). These correlations satisfy equations (5.14]) and (5.13) for tan 6 = 1:

thus, they can be used to self-test the maximally entangled pair of qudits, for any d, as is suggested

by Yang and Navascués [102]]. For these correlations, notice, moreover, that for x = 0,y = 0, the
correlation table is diagonal and hence, we can drop Bob’s fourth measurement setting because a
diagonal correlation can fulfil its role as both Cx,y,m and Dy y, . Thus, one can self-test maximally

entangled states of arbitrary dimension with question sets of size 3 and answer sets of size d.
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5.2 A generalization of the CHSH inequality self-testing maximally entangled states of any
local dimension
In the previous section, we saw that for any pure bipartite entangled state, there exists a correlation
that self-tests it. In this section, we seek to upgrade the self-test via a correlation to a self-test
via a non-local game. In practice having a self-test via a non-local game is useful, because one
only needs to estimate a single number, namely the Bell violation or the value in the game, as
opposed to having to estimate the full correlation. Our plan is the following: for each bipartite
entangled state |¥'), we wish to write down a Bell inequality (or equivalently a non-local game),
which achieves its maximum violation uniquely at the self-testing correlation p* from the previous
section. This would guarantee that such a Bell inequality self-tests |'¥'). Geometrically, we wish to
find a hyperplane tangent to the appropriate quantum correlation set precisely at p*. We succeed
at finding such a Bell inequality for the case where |¥) is the maximally entangled pair of qudits
for any d > 2. Such a Bell inequality can be thought of as a generalization of CHSH to the qudit
case. We note that this is not the first generalization of the CHSH inequality (or the CHSH game):
a more natural algebraic generalization of the CHSH game over fields of order g was introduced
by Buhrman and Massar [14], and studied by Bavarian and Shor [8]]; another generalization was
introduced by Tavakoli et al. and studied in the context of random access codes [94]]. However,
the self-testing properties of these generalizations are not known. On the other hand, we will
understand completely the self-testing properties of our generalization: the inequality parametrized
by the integer d > 2 self-tests the maximally entangled state of local dimension d. In Section[5.2.2]
we also provide a conjecture for the general case: a family of Bell inequalities that self-tests any

bipartite entangled state.

5.2.1 The Bell inequality

The family of Bell inequalities that we are about to introduce is over question sets X = {0,1,2} and
Y =10,1,2,3}, and answer sets A = B = {0, ..,d — 1} (where d > 2 corresponds to the local
dimension). We introduce some notation. For a correlation p € C“;’A’d’d andm € {0,1,.. {%J -1},
define

[CHSH,,|, := Y (—=1)"®*=%Yp(a,b|x,y), (5.16)
x,y€{0,1},a,b€{2m,2m+1}

where a © b — xy is intended modulo 2. Note that for m = 0, this is the usual CHSH Bell
functional. For m > 0 the form is the same, but the answers are in {2m, 2m + 1}. In what follows,
we will use the term “standard CHSH” to refer to the standard CHSH inequality or Bell functional
on binary question and answer sets. This is to distinguish it from the new functionals we have just

defined. We will also use the terms Bell operator and Bell functional interchangeably.

We can define a similar functional to (53.16) for questions x € {0,2} andy € {2,3} and answers in
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{2m +1,2m + 2}. Here questions x € {0,2} and y € {2,3} take the role of the {0,1} questions
in (5.16). So, for convenience of notation define a relabelling map f : {0,2} — {0,1} to be such
that f(0) = 0, f(2) = 1, and a relabelling map ¢ : {2,3} — {0,1} to be such that g(2) = 0,
2(3) = 1. Then, define

[CHSH},], := Y (—1)*®0=f)8W) p(a mod d, b mod d|x, y) .
xe{0,2},ye{2,3},abe{2m+1,2m+2}

From now onwards, we omit writing “mod d” for ease of notation, and the answers are intended
mod d.

Denote by C and C’ the sets

[2]-1
C=<(abxy):(xy) €{0,1} x{0,1}A(a,b) ¢ |J {2m,2m+1} x {2m,2m+1} ¢,
m=0
(5.17)
[2]-1
C'=<(a,bxy): (x,y) €{0,2} x{2,3} A(a,b) ¢ [J {2m+1,2m+2} x {2m+1,2m + 2}
m=0
(5.18)
Then, define the cross terms
[CROSS], = ) p(a,blx,y),
a,b,xy:(abxy)eC
[CROSS'],, := ) p(a,b|x,y).

a,b,x,y:(ab,xy)eC’
We are ready to define the family of Bell operators for our inequalities.

Definition 32 (The Bell operator). Let d > 2 € Z and 1y4-5y and 14 44y be the indicator
functions for the cases d > 2 and d odd respectively. Let 6 > 0 be a constant. For a correlation

p, the Bell operator takes the form:

[5]-1 [5]-1
[Blp:= ) [CHSHu]p+1y4=0 - Y, [CHSH,], — & ([CROSS], + [CROSS'],)

V2
+ Ldoaay - - Y, pd—1,d-1xy)+ ) p(0,0lx,y) | (5.19)
x,y€{0,1} x€{0,2},ye{2,3}

Intuitively the terms CROSS and CROSS'’ can be thought of as “penalty” terms: they are meant to

enforce that any correlation maximizing the value of the Bell operator must put zero probability
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mass on the cross terms from C and C’. We will argue that it is enough to multiply these penalty
terms by any arbitrarily small but positive constant ¢ to ensure that maximal violation is attained
exclusively by the maximally entangled state. On the other hand, with a zero penalty, it is still the
case that the corresponding Bell inequality can be maximally violated using a maximally entangled

state, but we are unable to show that the self-testing result still holds true (i.e. the converse).

Theorem 16 (Classical bound). For any d > 2 and any p € CC3’4’d’d:

[Blp <2-(1+150)-

Proof. For d = 2 we recover the classical case of the standard CHSH inequality, so assume d > 2
from now on. Finding the best classical strategy is equivalent to finding the best deterministic
strategy. Let f4 : {0,1,2} — {0,..,d —1} and fp : {0,1,2,3} — {0,..,d — 1} be functions
specifying a deterministic strategy. Now, suppose fa(0) € {2k, 2k + 1}, fa(1) € {21,2] +1}
and f4(2) € {2I',2I' + 1}.

* Ifk = I, It’s easy to see that the best choice for f5(0) and fp(1) is to have also f5(0), fg(1) €
{2k, 2k + 1} and get a contribution of at most 2 (this is from the standard CHSH classical
bound)

 if k # [, it’s also easy to see that the best choice for f5(0) and fg(1) is to have one of
three possibilities: f5(0), fg(1) € {2k, 2k + 1}; fp(0), fp(1) € {21,2] + 1}; or one in
{2k, 2k + 1} and the other in {21,2] + 1}. They all achieve a contribution of at most 2.

Similarly, the best possible choice for f5(2) and f5(3) gives a contribution of 2. This yields the
desired bound. O

We turn to quantum correlations. We have the following two theorems:

Theorem 17 (Quantum bound). For any d even and any p € C;;’A’d’d:

By <2v2- (14 1(gs0)) - (5.20)

Theorem 18 (Exact self-testing). For any d > 2, there is a unique correlation which achieves the

quantum bound of B, and it self-tests the state |¥) = \/LE Y3 i),
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5.2.1.1 Proof overview

At a high level, the proof of Theorems|l/|and |18 goes through the following steps:

@

(i)

(iii)

@iv)

The correlation from [23] (in the maximally entangled case), achieves the RHS of (5.20)
(Lemma [38));

Any correlation achieving the maximal quantum value of the Bell operator must have zero
probability mass on the cross terms. This is proved by starting from a correlation which
achieves the maximum but has non-zero cross terms, and modifying this into a strategy for
qubit CHSH which achieves a value strictly higher than 2+/2, which is a contradiction. (This

is the content of Lemma [39);

Having zero cross-terms forces the correlations to have the block-diagonal form of [23]]. The
2 X 2 blocks are across pairs of answers {2m, 2m + 1} for questions x, y € {0,1} and across
pairs of answers {2m + 1,2m + 2} for questions x € {0,2},y € {2,3} (Lemma [40);

Finally, the freedom in the value of the weights of the blocks is fixed by the requirement that
the block-diagonal structure is both over pairs of answers {2m,2m + 1}, for x,y € {0,1},
and also over pairs of answers {2m +1,2m + 2}, for x € {0,2},y € {2,3}, and these two
subsets of questions have in common the question x = 0.

5.2.1.2 The ideal correlation

We will now describe ideal correlations achieving the quantum bound of (5.20). For a single-

qubit observable A, we denote by (A), the observable defined with respect to the basis
(|12m) ,|2m + 1)). For example, (0z)m = |2m) (2m| — |2m + 1) (2m + 1|. Similarly, we denote
by (A),, the observable defined with respect to the basis (|2m + 1), [2m + 2)).

Lemma 38 (Ideal correlation from [23] achieving the quantum bound). The correlation p* €
C,;’A’d’d specified by the following quantum strategy (|'¥) , {11 }a,{ H%y}b}) achieves the RHS of
(5.20):

o [¥) = L ¥t i

e Form=20,.., L%J —1:

- Hi”g, Hi"g“ are the projectors respectively onto the +1, —1 eigenspaces of (07 )m. (in

other words, the measurement for x = 0 is in the computational basis);
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- Hi‘"f, H%{’;H onto the +1,—1 eigenspaces of (0x)m- If d is odd, Higl =
|d—1)(d—1|

- Hi";“, Hi{’;ﬁ onto the +1, —1 eigenspaces of (0x)),. If d is odd, H%Z =10) (0|
e Form =20,.., L%J —1:

- For y € {0,1}, H%’;l, H%’;H are the projectors respectively onto the +1,—1
eigenspaces of(w)m. If d is odd, H‘éy_l =ld—1)(d—-1

)

V2
- Fory € {2,3}, H%?’;H’ HZB;”JFZ onto the +1, —1 eigenspaces of (%)% Ifd
is odd, H%y =10) (0|
Proof. This is a straightforward check. U

5.2.1.3 Proof of Theorems 17 and

Lemma 39 (Zero mass on the cross terms). Let p € Cg’4’d’d be a quantum correlation achieving

maximal quantum value of B. Then, p(a,b|x,y) = 0V (a,b,x,y) € CUC', where C and C' are
as in equations (5.17) and (5.18).

This establishes that any correlation maximally violating the Bell inequality must have the same

block-diagonal form of the self-testing correlation from Lemma 38|

Proof. We argue first for the case of d even. We will show that any correlation achieving maximal
value of B must have p(a,b|x,y) = 0 V(a,b,x,y) € CUC’. Suppose for a contradiction that

a correlation p € CS’A/d/d

achieves the maximal value of 3 and p(a,b|x,y) = v > 0 for some
(a,b,x,y) € CUC'. In order to compensate for the negative contribution due to the presence of
the cross terms in (5.19) (which are multiplied by an arbitrary small but positive constant J), it
must be the case that either Zi;t [CHSH,,], > 2v/2 or Z?H;}] [CHSH],], > 2v/2 (since we know
from Lemma |38| that the maximal value of B3 is at least 2 - 2\/5.). Assume the former (the other

case being similar).

Let S = (|y) ,qux,Hléy) be a quantum strategy producing correlation p. We will use this to
construct a correlation p € C§’2’2’2 that achieves a value of CHSH greater than 2+/2, which
would be a contradiction. This is achieved by starting from strategy S and mapping each pair
of answers (2k,2k 4+ 1) in {2,..,d — 1} to either their parity or the opposite of their parity, i.e
either (2k,2k + 1) — (0,1) or (2k,2k + 1) — (1,0). More precisely, for o € {O,l}%’1 let
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o[m] denote the mth bit of o, and define a new quantum strategy for standard CHSH S (0) =
(ly), {lzIfL‘x Yaxe{01}s {ﬁ%y}b,ye{o,l}) on the same state |¢), with projectors, for x,y € {0,1},

d d
2" 2"
), =115, + Y e Iy, =1ty + 3 el
m=1 m=1
S — S ——
0 _ 170 m-+to|m ~1 _ 171l m+1—o\m
I} =11} +Z_:1H3y [Ty, = I +mZ_:1HBy

Let ;5(0) be the resulting correlation. Now, let [CHSH] 7(0) be the CHSH value of correlation ﬁ(").

Since CHSH is an XOR game (i.e. only the xor of the answers matters), it’s easy to see that for any
0oc{01}71

a1
[CHSH] ;o) = ) _ [CHSHu], +C,

m=0

NI

where C is a (possibly negative) contribution which comes from the cross terms of the form
(W11 @ H%y |y) for (a,b,x,y) € C. However, there exists a choice of 0 € {0, 1}%_1 such that
C > 0. In fact, notice that the contributions to C coming from cross terms involving (2m,2m + 1)
when one chooses o[m] = 0 or o[m] = 1 (and keeps the other choices fixed) are the negative of
each other. Hence at least one of the two choices gives a non-negative contribution. Then, pick
o € {0, 1}%’1 as follows: for m =1, ..,3—1 — 1, in this order, choose a value of o[m]| for which
the contribution from cross terms involving pairs (2m,2m + 1) and (2m’,2m’ + 1) for m’ < m is

non-negative. This gives C > 0.

So, for this choice of 0, one gets [CHSH] plo) > 2+/2, which is the desired contradiction.

34,d,d
Cq

The case of d odd is similar but requires slightly more effort. Suppose p € achieves

the maximal value of B and p(a,b|x,y) = ¢ > 0 for some (a,b,x,y) € CUC'. Then
d_
it must be the case that either 251:% [CHSH,,,], + @ Layeony p(d—1,d—1|x,y) > 2V/2

or 21%1:) [CHSH,, ], + 4 Yrefo2}yef23y P(0,0lx,y) > 21/2. Suppose the former (the lat-
ter case being similar). Let S = (|y), qux, H%y) be a quantum strategy producing cor-
relation p. For a string o € {0, 1}%_1, we construct the following strategy for CHSH
s = (|9), {f[qu} a,xe{01}/ {ﬁ%,/}b,ye {0,1}): intuitively, the two parties share the original state
tensored with an EPR pair. They map outcomes {0,..,d — 2} to outcomes in {0,1} (similarly as
before). If one sees outcome d — 1, they measure the shared EPR pair with an appropriate ideal

CHSH measurement. More precisely, let {P}_}, ef0,1}/ {ng}b,ye (0,1} be the ideal CHSH qubit
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measurements. Then, |{) = |¢) ® [EPR), and

4)-

=, + 3 e r+ng e rg,
m=1
4]
=1 1 ; 2m+1—o[m] d—1 1
I, = [T, + 2 I, ]®I+HAX ® Py,
m=1
o
=0 __ 0 H2m+0[m] [+ 1171 po
Ip, = [ITp, + m; B, ©I+Ip ®P,
4]
i = [y + Y 2 6 14 @ Pl
B, = [, + m; B, J@I+1T; " @ Pg,.

One can check, then, that with the appropriate choice of o (chosen similarly to the d even case),

this gives a strategy for CHSH which achieves a value strictly greater than 2+/2.

O

The following lemma establishes that if a correlation p has zero cross-terms, then this implies that
the restriction of p to the subset of questions (x,y) € {0,1}? and to answers a,b € {2m,2m + 1}
is still a correlation (multiplied by some weight). Likewise for the restriction to the subset of
questions (x,y) € {0,2} x {2,3} and to answers a,b € {2m +1,2m + 2}.

Lemma 40. Any correlation p € Cg’4’d’d with zero cross-terms (i.e of the form of Lemma ,

induced by some strategy <|l/J> AT e, {H%y }b) , satisfies the following:

o [fd is even, for each m = 0, ..,% — 1, there exist weights wm,w;n > 0with ), wy, =1,
Y. Wy, = land correlations py, p;, € C,?’Z’Z’Z (with questions in {0,1}? and {0,2} x {2,3}
respectively, and answers in {0,1}) such that V'm, Va,b € {2m,2m 4+ 1},x,y € {0,1}:

p(a,blx,y) = wy - pm(a mod 2,b mod 2|x,y) = (Y| 11} ® H%y lp)  (5.21)
and'm, ¥a,b € {2m+1,2m +2},x € {0,2},y € {2,3}:
p(a,blx,y) =W, - plyla mod 2,b mod 2lx,y) = (|15, © 11}, [¢)
e If d is odd, the analogous statement holds, except that the weights Wy, W), are such that

YW +p(d—1,d-1/0,0) =Y, w,, + p(0,0]2,2) =1, AND

- pd—1,d—1x,y) =p(d—1,d—-1|X,y) Vx,y,x'y € {0,1}
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- p(0,0lx,y) = p(0,0]x",y") Vx,x" € {0,2},y, v € {2,3}

Proof. Letp € C3’4’d’d be of the form of Lemma and let (|y), {I1% 1}, {I—I%y}), be a strategy

reproducing p. Then, for m = 0 — 1 define:

VA /2
- (m) _ 2 2m-+1 (m) _ 12 2m+1
(i) forx,y € {0,1}, A; —HA’Z—HA"; and B, —HB’:—HB’:

(i) for x € {0,2},y € {2,3}, AL = [13"+1 — [13"+2 and B,") = 113"+ — 113"+

y

Define the subspaces U, = Range(A(()m)) - Range(Agm)) and V,, = Range(B(()m)) +
Range(Bgm)), and let 17, and 1y, be projections onto these subspaces. Let |i,,,) := 1y, 1y, [9P)

We will check that Ty, 1) = Lo o [9) = L [9) = T, [9) = 9.
compute
angetat) 90 = (T T2 ) [)
_ <H2m +H2m+1> i
_ ( 2m+1> <_ 2m+1> ) (5.22)
g ) 9 52

where the third line follows from the hypothesis that the correlation has the form of

Lemma |39, The same calculation starting from ]lRamge (B(’">) |¢> gives ]lRange(B(m)) |1/J) =
which, together with (5.23), implies ]lRange( A0 |1[J> =
my 19):

Range |1’b> Slm_
@ |1[J> Altogether, we

]lRange(A( '))]lRange |1P>
|1p> Wlth similar calculations, we also deduce ]lRange(Agm)) |1p> =

|1P> Range () |1p> and hence ]lu lp) =
Range o) |l[J> and hence 1y, |¢) =

]lRange
which 1mp11es ]l
ilarly ]lRange |1p>

have deduced that

Range
Alm)
0

Range

Lu,, [9) = my |9) = wy 1) = 1w, [$) = [$m) -

Range Range

Finally, set wy,, = || |$) ||? to get the desired weights, and take the correlations p,, as in (3.21).
We argue similarly for the weights w), and the correlations p),. A very similar argument yields the

conclusion for the case of odd d.

O
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Corollary 5. Any correlation p € C(‘;’A’d’d with zero cross-terms (i.e. of the form of Lemma
satisfies the following:

e Ifd is even, there exist weights wy,, w,, > 0,m =0, .., % — 1L withy,,wy, =1, %, w, =1,
such that, for all m,

and
[CHSH,,], < w), -2V/2

e If d is odd, the analogous statement holds, except that the weights wy,, w,, are such that
Y wm +p(d,d40,0)=1Y,, w,+r(0,02,2) =1

Proof. This follows immediately from Lemma 40| U

Proof of Theorems[[7|and Assume d > 2, as the d = 2 case corresponds to standard CHSH.
We start with d even (the odd case being similar). Let p € C;A’d’d be a correlation that achieves the
maximal quantum value of 5. By Lemma p must have zero cross-terms. Then, from Lemma
we deduce, for m = 0, ..,% — 1, the existence of weights wm,w;n and correlations py;,, p;n
satisfying the statement of the Lemma. This implies

1 1

[CHSH ], = Y wy - [CHSH],, < 2V2,
0 m=0

I
\
I
\

m

where we have bounded each term with the standard CHSH bound. Similarly, we also get

da_
72;1:10 [CHSH;,, ], < 24/2, which implies the desired upper bound of Theorem

Such upper bound is achieved if and only if [CHSH],,, = w,, - 2v/2 for all m, and [CHSH],], =
w!, - 2+/2 for all m. This is if and only if:

e for all m, w,; = 0 OR py, is the ideal qubit CHSH correlation, AND

e for all m, w}, = 0 OR p)}, is the ideal qubit CHSH correlation

We want to argue that the only way that this can happen is if the weights are all equal (and non-zero).
Once we have shown this, we notice that we have specified the correlation p completely for the
two subsets of questions x,y € {0,1} and x € {0,2},y € {2,3}. From [23], we know this is
enough to uniquely determine the self-testing correlation for the maximally entangled state of local
dimension d presented in [23] (and in Lemma , and we thus deduce that maximal violation of
the Bell inequality self-tests |'¥).
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Let (|), {I1%_}a, {H%y }» be a quantum strategy for p (which achieves the upper bound). Then, by

what we have argued above, for all m we have ||H%4"01+1 ) ||* = wy - 3, and this holds both when

W 7 0 (and pyy, is the ideal qubit CHSH correlation) and when w,, = 0. Likewise, we have that
2m+1 -

I ) P = w), - 5. And similarly [T [¢) [|* = wp - 5 and [T [) [> = w),_; - 5.

Clearly this, together with the constraint ¥, wy, = Y, w), = 1, implies w,, = w}, = 2 Vm.

The proof is similar for the case of d odd, where we instead deduce w,,, = w/, = 2 Vm (there are
L values of m) and p(d — 1,d — 1|x,y) = p(0,0|x’,y") = J Vx,y € {0,1},x' € {0,2},y/ €
(2,3}, O

A robust version of the self-testing result via the correlations of [23]] was shown in [25]], where,
informally, the authors prove that a strategy producing a correlation that is e-close to the ideal one,
must be O(d3e% )-close (according to some measures of distance) to the ideal strategy from Lemma
[38] However, this does not trivially translate to a robust self-test via our Bell inequality, for which
we require that a close-to-maximal violation certifies a close-to-ideal strategy. Since translating
the exact analysis to a robust analysis is not particularly illuminating, we leave the details to the
appendix. For the robust self-testing theorem via our Bell inequality, refer to Theorem [36]in the

Appendix.

5.2.2 Generalizing the tilted CHSH inequality (a conjecture)

Let I, = /8 + 2a2 be the maximal quantum violation of the tilted CHSH inequality, for coefficient
«. The family of candidate Bell inequalities which we will describe is a very natural generalization
of the Bell inequality from the previous section to the tilted case. We introduce some notation. For

a correlation p € 03’4"1"1, define
[tCHSH,,,(a)]p := a[p(a = 2m|x = 0) — p(a = 2m + 1|x = 0)] + [CHSH,,],

where [CHSH,;;|, was defined earlier. This can be thought of as a tilted CHSH Bell operator
restricted to answers in {2m,2m + 1}. Note that the above involves only questions x,y € {0,1}.

We can define a similar term for questions in x € {0,2} and y € {2,3} and answers in {2m +
1,2m +2}. Let

[tCHSH, (x)], := af[p(a =2m +1|x =0) — p(a = 2m + 2|x = 0)] + [CHSHy,], .
The sets C and C’ of questions and answers corresponding to cross terms are defined as in the

previous section. Then our candidate family of Bell operators generalizing the family of tilted

CHSH inequalities is the following:

Definition 33 (The family of Bell operators). Each inequality in the family is specified by:
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(i) 0<c<1€R i=0,.d-1withyJc?=1,

(i) d>2€N

Let 6, = arctan 21, wy = ay(6) € [0,2) be defined by sin26, = /4%, 6], =

SN

arctan 2042 o/ = o (0 ) € [0,2) defined by sin26), = | 1=~

Coms1’ Tral Let 6 > 0 be a constant. For

a correlation p € Cg”4’d’d, the Bell operator takes the form:

L%Jil 1 L%Jfl 1
[tB(co, -, ca-1)]p := Z I—[tCHSHm(u(m)]p—|—]1{d>2}. Z :

m=0 ‘%m m=0 &

— 5+ ([CROSS], + [CROSS'],,)

[tCHSH;, (a7,,)],

1
oy 7| X pA=-Ld=1xy)+ ), p00lxy)
x,y€{0,1} xe{0,2},ye{2,3}

(5.24)

Note that to put the Bell operator for the maximally entangled case in this form one just needs to

divide (5.19) by 2+/2.

Conjecture 1 (Quantum bound and self-testing). For any d even and any p € C,?’A"d’d:

[tB(co, - ca-1)]p S 1+ Lygsy-

Moreover, there is a unique quantum correlation achieving the bound, and it self-tests the state

[¥) = £ o i),

The lack of symmetry in the tilted case seems to make the analysis surprisingly less straightforward,

and the arguments we employed in the maximally entangled case do not directly carry over.

An open question that applies to both the maximally entangled and the tilted Bell operators is to

determine if cross terms are necessary for the self-testing property to hold true (i.e. whether, in
(5.19) and (5.24), 6 > 0 is necessary or 6 = 0 suffices).



146

5.3 Self-testing multipartite states through projections onto two systems

In this section, we move to the multipartite setting. In contrast to the bipartite setting, only a handful
of self-testing results are known in the multipartite setting, but we expect the question of self-
testing multipartite states to become increasingly relevant as quantum cryptographic applications

that involve a network of quantum parties become viable.

Here, we significantly expand the class of self-testable multipartite states. More precisely, in
Subsection [5.3.2.1] we show that all multipartite partially entangled GHZ (qubit) states can be
self-tested with two measurements per party. Then, we make use of this result as a building block
to extend self-testing to all multipartite entangled Schmidt-decomposable qudit states, of any local
dimension d and for any number of parties. We do so with a correlation on question sets of size 3
and answer sets of size 2 (except one party has 4 questions). To the best of our knowledge, this is
the first self-test for multipartite states of qudits for d > 2.

5.3.1 Preliminaries

We have to introduce some additional notation for the multipartite case. There are now N non-
communicating parties sharing an N-partite state |¢/). Each party i, on its share of this state,
can perform one of several projective measurements {Miz Z.},Zi, labelled by x; € A&}, with possible
outcomes a; € A;. Here X; and A; stand for finite alphabets of possible questions and answers
for party i. We refer to |¢), together with {Miil}al as an N—partite quantum strategy. The
N —partite correlation that it induces is {p(ay, ..., an|x1, ..., xn) : a; € A;}y,cx,, Where

p(ay, ..., an|x1,...,xN) = <1P|M;2,1 ®...Q MiZ,N"W

is the probability of obtaining answers a3, . . ., 4y upon receiving questions x1, ..., X[} Asin the
bipartite case, it is often convenient to describe correlations using observables with eigenvalues
£1. The definition of self-testing for the multipartite case is the natural extension of the definition

for the bipartite case.

Definition 34  (Self-testing,  multipartite case). We say that a correlation
{p(ar,...,an|x1, ..., xn) @ a; € Aj}ycx, self-tests the state |Y) and measurements
{M?ci,i}“i’ i =1,...,N, if for any state and measurements |{) and {Mizl}al i=1,...,N,

reproducing the correlation, there exists a local isometry ® = &1 ® ... ® Oy and an auxiliary

'We take the parties’ measurements to be projective, invoking Naimark’s dilation theorem. We take the joint state
to be pure for ease of exposition, but we emphasize that all of our proofs hold analogously starting from a joint mixed
state.
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state |extra) such that

QM @, @ MN \|9)) = (M}, ®...@ MY | |¢) @ |extra) .

In some cases the existence of an isometry obeying (34) can be proven solely from the maximal
violation of some Bell inequality. For instance, as we have seen several times by now, all two-qubit
pure entangled states can be self-tested with a one-parameter class of tilted CHSH Bell inequalities
[7] given by

a(Ag) + (AoBo) + (AoB1) + (A1Bo) — (A1B1) <2 +a,

where « > 0 and A; and B; are observables with outcomes +1 measured by the parties. As will
be using it later on, Let us recall the following result, which is a step in the proof of the self-testing
theorem for tilted CHSH.

Lemma 41 ([7]). Suppose a bipartite state |p) and dichotomic observables A; and B; achieve
the maximal quantum violation of the tilted CHSH inequality V8 + 242, for some .
Let 0,u € (0,71/2) be such that sin20 = /(4 —a2)/(4+ a?) and y = arctansin26. Let
Za = Ao, Xa = A1 Let Z}, and X3, be respectively (By + B1)/2cos y and (By — B1) /2sin pu,
but with all zero eigenvalues replaced by one, and define Zp = Z§|Z§|_1 and Xp = X§|X§|_1.

Then, we have

Zaly) = Zply),
cosO0XA (1 —Z4) |¢p) =sin0Xp(1+ Z4) |¢) .

Moreover, there exists a local isometry ® such that ®(A; ® B;|y)) = |extra) ® (A; @ Bj) |yy),
where |g) = cos 0 |00) +sin 0 |11), and Ay = 07, A1 = 0x, and By, = cos po, + sin uoy.

A typical construction of the isometry @ is the one encoding the SWAP gate, as illustrated in Fig.
5.4

5.3.2 Self-testing N-partite states by projecting onto two parties

Our aim in this paper is to exploit the above result to develop methods for self-testing multipartite
entangled quantum states. Given an N-partite entangled state |¢), the idea is that N — 2 chosen
parties perform local measurements on their shares of |i) and the remaining two parties check
whether the projected state they share violates maximally (5.3.1)) for the appropriate & (we can
think of this as a sub-test). This procedure is repeated for various subsets of N — 2 parties until the

correlations imposed are sufficient to characterize the state |i). Our approach is inspired by Ref.
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ljunk) t¢0)

Figure 5.4: Example of a circuit that takes as input a state |ip) satisfying 1 , adds two ancillas,
each in |0), and outputs the state i) in tensor product with an auxiliary state |extra). Here H is
the usual Hadamard gate.

[101], which shows that any state in the class (]100) 4 |101) 4 & [001))/+/2 + a2, containing
the three-qubit W state, can be self-tested in this way. We will show that this approach can be
generalized in order to self-test new (and old) classes of multipartite states. The main challenge
is to show that all the sub-tests of different pairs of parties are compatible. To be more precise,
for a generic state there will always be a party which will be involved in several different sub-
tests and, in principle, will be required to use different measurements to pass the different tests.
Consequently, isometries (Fig. [5.4) corresponding to different sub-tests are in principle constructed
from different observables. However, a single isometry is required in order to self-test the global
state. Overcoming the problem of building a single isometry from several different ones is the key
step to achieve a valid self-test for multipartite states. For states that exhibit certain symmetries,
this can be done efficiently with few measurements. We leave for future work the exploration for

states that do not have any particular symmetry.

In the N-partite scenario, parties will be denoted by numbers from 1 to N and measurement
observables by capital letters with a superscript denoting the party. For a two-outcome observable
W, we denote by W& = (I + W) /2 the projectors onto the +1 eigenspaces. We use the notation
|2 to denote the biggest integer n such that n < a, while [a] is the smallest n such that n > a.

5.3.2.1 All multipartite entangled qudit Schmidt states

While in the bipartite setting all states admit a Schmidt decomposition, in the general multipartite
setting this is not the case. We refer to those multipartite states that admit a Schmidt decomposition

as Schmidt states. These, up to a local unitary, can be written in the form
= ®N
¥) =) )",
j=0

where 0 < ¢; < 1 for all i and 2}1;& C]Z =1.
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Our proof that all multipartite entangled Schmidt states can be self-tested follows closely the ideas
from [23]], while leveraging as a building block our novel self-testing result for partially entangled
GHZ states. Thus, we proceed by first proving a self-testing theorem for multipartite partially
entangled qubit GHZ states.

Multipartite partially entangled GHZ qubit states Multipartite qubit Schmidt states, also

known as partially entangled GHZ states, are of the form
IGHZx(0)) = cos 00N +sin 6 1)V,

where 6 € (0, 77/4] and |GHZN(7t/4)) = |GHZy) is the standard N-qubit GHZ state. The
form of this state is such that if any subset of N — 2 parties performs a ¢y measurement, the
collapsed state shared by the remaining two parties is cos 0 |00) &+ sin 6 |11), depending on the
parity of the measurement outcomes. As already mentioned, these states can be self-tested with
the aid of the tilted CHSH inequality from Section [3.4] which is the main ingredient of our self-test
of |GHZy(6)). In the next Theorem, we describe constraints on an N-partite correlation that are
obtained by post-selecting based on measurement outcomes for all but two parties’, and imposing
a maximal violation of the appropriate tilted CHSH inequality for the remaining two parties. From

a multipartite strategy that satisfies these constraints, we construct operators, for each party, which
behave like Pauli X and Pauli Z.

Theorem 19. Let |{) be an N-partite state, and let A ;, A1 ; be a pair of binary observables for
the i-th party, fori =1,..., N. Suppose the following correlations are satisfied:

(| AT [w) = (W] AT ASY [9) = cos?0,  Vije{1,...,N-1}
R (a;) 1 N-—2

<1P| H Al,i |¢> = 2N—2’ va € {+1_}
i=1

N—2
(Y] H A§”;) (xAgN—1+ Ao N—140N + Ao N—1A1N + (_1)h(a)A1,N—1A0,N

i=1
. V8 + 242 _
— (—1)" A N2 A N-1) [9) = —HoN—2 s VA€ {+ -2

where h(a) denotes the parity of the number of “—” in a, and x = 2c0s20/+/1 + sin?20. Let
H be such that tan . = sin26. Define Z; = Ag; and X; = Ay, fori = 1,...,N — 1. Then, let
Zy = (AoN + Ai1N)/2cosy, and let Z3; be Z); with zero eigenvalues replaced by 1. Define
ZN = Z|Z3| L. Define Xy similarly starting from X}, = (Ao,n — A1N)/2sinp. Then,

Zy|yp)=--=2Znlyp), (5.25)
X1XD(I—Z1) |l[)> :tan9(1+Z1) ‘l[)> (526)



150
Proof: We refer the reader to Appendix for the formal proof of this Theorem, while providing

here an intuitive understanding of the correlations given above. The first equation (I9) defines the
existence of one measurement observable, whose marginal carries the information of angle 6. The
straightforward consequence of it is Eq. (5.25), which is analogue to Eq. (#I)). On the other hand,
eq. involves a different measurement observable with zero marginal, while eq. shows that
when the first N — 2 parties perform this zero marginal measurement the remaining two parties

maximally violate the corresponding tilted CHSH inequality, i.e. the reduced state is self-tested to
be the partially entangled pair of qubits. Eq. is analogue to Eq. (#1).

As a corollary, any correlation satisfying the constraints of Theorem [I9] self-tests the state
IGHZ (0)).

Corollary 6. Let |i) be an N-partite state, and let A ;, A1 ; be a pair of binary observables for
the ith party, fori = 1,...,N. Suppose an N-partite correlation p* satisfies the constraints of

Theorem[19, Then, p* self-tests |GHZN(6)).

Proof: This follows as a special case (d = 2) of Lemma [42| stated below, upon defining Pi(k) =
(14 (=1)%Z;]/2, for k € {0,1}.

As one can expect, ideal measurements that achieve these constraints are: Ag; = 0z, A1, = 0¥,
fori =1,...,N—1,and Agn = cosboz + sinfox, A1 n = cosfoyz —sinfox. We refer to
the correlation induced by these ideal measurements as the ideal correlation for the multipartite
entangled GHZ states (with these parameters).

All multipartite entangled qudit Schmidt states The generalisation of Theorem [I9]to all multi-
partite qudit Schmidt states is then an adaptation of the proof in [23]] for the bipartite case, with the
difference that it uses as a building block the |GHZy (0)) self-test that we just developed, instead
of the tilted CHSH inequality.

We begin by stating a straightforward generalisation to the multipartite setting of the criterion from
[102] which gives sufficient conditions for self-testing a Schmidt state. Then, our proof that all
multipartite entangled qudit Schmidt states can be self-tested goes through showing the existence

of operators satisfying the conditions of such criterion.

Lemma 42 (Generalisation of criterion from [102]]). Let |¥) be a state of the form (5.3.2.1).

Suppose there exist sets of unitaries {Xl(k) Z;(l), where the subscript | € {1,...,N} indicates

that the operator acts on the system of the l-th party, and sets of projections {Pl(k) }Z;g, that are
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complete and orthogonal forl = 1,...,N — 1 and need not be such for | = N, and they satisfy:

k k
Py = ... = P |9),
k k k c
X 1) = )

forallk =1,...,N. Then, there exists a local isometry ® such that ®(|)) = |extra) @ [¥).

Proof. The proof of Lemma2]is a straightforward generalisation of the proof of the criterion from
[102], and is included in the Appendix for completeness.

We now describe the self-testing correlations for |¥) = Z?:_g ¢ | j)©". Their structure is inspired
by the self-testing correlations from [23] for the bipartite case, and they consist of three d-outcome
measurements for all but the last party, which has four. We desribe them by first presenting the ideal
measurements that achieve them, as we believe this aids understading. Subsequently, we extract
their essential properties that guarantee self-testing. For a single-qubit observable A, denote by
[A]m the observable defined with respect to the basis {|2m mod d),[(2m + 1) mod d)}. For
example, [07], = |2m) (2m| — |2m + 1) (2m + 1|. Similarly, we denote by [A];, the observable
defined with respect to the basis {|(2m + 1) mod d), [(2m 4+ 2) mod d) }. We use the notation
& A, to denote the direct sum of observables A;.

Let AX; denote the question set of the i-th party, and let X; = {0,1,2} fori = 1,...,N — 1,
and Xy = {0,1,2,3}. Let x; € X} denote a question to the i-th party. The answer sets are
A ={0,1,...,d—1},fori=1,...,N.

Definition 35 (Ideal measurements for multipartite entangled Schmidt states). The N parties make

the following measurements on the joint state [¥) = Z?:_& cilf) o

Fori=1,...,N—1:

e For question x; = 0, the i-th party measures in the computational basis

{|0),|1),---,|d — 1)} of its system,

e For x; = 1 and x; = 2: for d even, in the eigenbases of observables 1%1:) [ox]m and

,%1_:%) [0x]}, respectively, with the natural assignments of d measurement outcomes; for

d odd, in the eigenbases of observables @Zio—l[gx]m @ |d—1)(d—1] and |0) (0| &
,j?:l(; ! lox]}, respectively.

Fori = N:



152

eFor xy« = 0 and xy = 1, the party N measures in the eigenbases of

41 . g1 :

a _olcos (m)oz + sin (pm)ox|m and @2,_ylcos (um)oz — sin (pm)ox|m respec-
tively, with the natural assignments of d measurement outcomes, where Wy =
arctan[sin (20, )] and 0,, = arctan(cp,;+1/ com); for d odd, he measures in the eigenbases

=1 . 1l
of B,y [cos(pm)oz + sin (pm)ox)m ®|d—1)(d—1| and B, [cos (pm)oz —
sin (Um)ox|m ® |d — 1) (d — 1] respectively.

e For xn = 2 and xy = 3: for d even, the N-th party measures in the eigen-
bases of GBT%H;B [cos (), )0z + sin (), )ox]), and @r%n;t [cos (), )0z — sin (u),)ox ], TE-
spectively, where u,, = arctan[sin(20},)] and 0], = arctan(cop+2/Coms1); for d
odd, in the eigenbases of |0) (0| ® @jio_l[cos (uy,)07 + sin (u},)ox],, and |0) (0] &

Zi(; ! [cos (uy, )0z — sin (u},)ox],, respectively.
We refer to the correlation specified by the ideal measurements above as the ideal correlation for

multipartite entangled Schmidt states.

Next, we will highlight a set of properties of the ideal correlation that are enough to characterize it,
in the sense that any quantum correlation that satisfies these properties has to be the ideal one. This
also aids understanding of the self-testing proof (Proof of Theorem 20). In what follows, we will
employ the language of correlation tables, which gives a convenient way to describe correlations. In
general, let X; be the question sets and A; the answer sets. A correlation specifies, for each possible
question x € X; X --- X X, a table Ty with entries Ty(a) = p(a|x) fora € A; x --- x Ay.
For example, we denote the correlation tables for the ideal correlations for multipartite entangled

GHZ states from Theoremﬂ as T,‘?hZN (Om) , where x € {0,1}" denotes the question.

Definition 36 (Self-testing properties of the ideal correlations for multipartite entangled Schmidt
states). Recall that X; = {0,1,2} fori = 1,...,N—1, and Xy = {0,1,2,3}. A; =
{0,1,...,d—1},fori=1,...,N.

The self-testing properties of the ideal correlations are:

e For questions x € {0, 1}N , we require Ty to be block-diagonal with 2*N plocks Cym =

(B + Bi) Té hzyy (6n) corresponding to outcomes in {2m,2m + 1}N, where the multi-

plication by the weight is intended entry-wise, and 8,, := arctan <C2m+1 / sz).

e For questions with x; € {0,2}, fori = 1,...,N — 1 and x5 € {2,3} we require Ty to

be block-diagonal with the 2N blocks "shifted down" by one measurement outcome. These

. 8NN 6))

should be Dy, := (C%m T C%m 42) £ ) f(xn1),2 () corresponding to measurement
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outcomes in {2m + 1,2m + 2}N, where 6, := arctan (c2m+2/c2m+1) and f(0) = 0,
f(2)=1¢(2)=0g(3) =1

We are now ready to state the main theorem of this section.

Theorem 20. Let |¥) = Z}i:_ol Cj ’j>®N, where 0 < ¢; <1 forall i and Z}t& C]2 = 1. Suppose N
parties exhibit the ideal correlations for multipartite entangled Schmidt states from Definition
by making local measurements on a joint state ). Then there exists a local isometry ® such that

D(|y)) = |extra) ® |'F).

As we mentioned, the proof of Theorem [20] follows closely the method of [23], and uses as a
building block our self-testing of the n-partite partially entangled GHZ state. For the details, we
refer the reader to Appendix

5.3.3 Discussion

We investigated a simple, but potentially general, approach to self-testing multipartite states,
inspired by [101], which relies on the well understood method of self-testing bipartite qubit states
based on the maximal violation of the tilted CHSH Bell inequality. This approach allows one to
self-test, with few measurements per party, all partially entangled GHZ qubit states. In our work,
we also generalize self-testing of partially entangled GHZ qubit states to the qudit case, using
techniques from [23]. We obtain the first self-testing result for a class of multipartite qudit states,
by showing that all multipartite qudit states that admit a Schmidt decomposition can be self-tested.
Importantly, our self-tests have a low complexity in terms of resources as they require up to four
measurement choices per party, and the total number of expectation values of the observables
that one needs to determine scales linearly with the number of parties. Although this result is not
included in this thesis, our approach also allows to self-test all permutationally invariant Dicke
states, and it allows to recover self-testing of all graph states (a result which was previously known
through stabilizer state methods [[60]).

As a direction for future work, we are particularly interested in extending this approach to self-test
any generic multipartite entangled state of qubits (which is local-unitary equivalent to its complex
conjugate in any basis). The main challenge here is to provide a general recipe to construct a single
isometry that self-tests the global state from the different ones derived from various subtests (i.e.
from projecting various subsets of parties and looking at the correlations of the remaining ones).

This appears to be challenging for states that do not have any particular symmetry.



154
Chapter 6

FOUNDATIONAL QUESTIONS, AND THE QUEST FOR INFINITE
ENTANGLEMENT

In this chapter, we finally explore some of the connections of self-testing with foundational questions
in the theory of entanglement. One of the most basic questions one can ask about a correlation is
“in which models of physics can the correlation be realized?”. Some correlations can be realized
in classical physics if one allows the provers to share randomness ahead of time. However, at this
point in the thesis, we understand very well that some correlations require quantum resources to
realize [9]. In fact, different models of quantum mechanics admit different sets of correlations.

Characterizing the relationship between these sets is a long-standing problem.

We say that a correlation is in the set of quantum correlations Cy if there is a finite-dimensional

state |1p) and finite-dimensional projective measurements {H’;\ }, {H% } so that
x y

pla,blx,y) = (p| 11 11 [y) , (6.1)

where p(a,b|x,y) is the probability that Alice answers a and Bob answers b, given that Alice was
asked question x and Bob was asked question y. The correlations in Cq, are often referred to as

finite-dimensional quantum correlations

We say that a correlation is in the set of quantum spatial correlations Cgs if Equation (6.1) holds
with a state and measurements that are possibly infinite-dimensional, on separable Hilbert spaces.

These are often referred to as infinite-dimensional quantum correlations. Notice that Cq C Cgs.

We say that a correlation is in the set of quantum-approximate correlations Cq, if it is arbitrarily
well-approximated by correlations in C4. In other words, Cy, is the closure of C;. From [84], we
know that Cgs C Cy4, hence Cyj, is also the closure of Cps.

On the other hand, taking a step back, one can even drop the assumption of a tensor product
decomposition, and only require that measurements on spatially separated quantum systems com-
mute with each other. For instance, the latter approach is typical in algebraic quantum field theory
[43]]. The resulting set of correlations is known as the set of quantum commuting correlations, or
Cgc. A sequence of two breakthrough works by Slofstra [89, 90] has shed light on the relationship
between these variants and the tensor product model, culminating in a proof that the set of quantum
correlations is not closed. Following Slofstra’s work, the known hierarchy between these variants
is:

Cq C Cqs 9 an - ch . (6.2)



155

It is known that the last inclusion (Cq; C Cyc) is an equality if and only if Connes’ embedding

conjecture is true. The latter is a long-standing open question in operator algebras [73]].

This “four correlation sets” picture, along with the explicit study of Cgs, was introduced by Paulsen
and coauthors [78l,(77,(34].

Organization The main theorem for this chapter, and one of the main results of this thesis is that
the first inclusion in Equation (6.2)) is strict: C; # Cys. In particular, we give an explicit correlation
which can be attained in infinite dimensions, and we show that it cannot be attained in finite
dimensions. We cover this in Section [6.1] In Section [6.2] we exploit our novel generalization of
CHSH from Section[5.2] as well as the tilted CHSH inequality, to construct a strikingly simple non-
local game with the following property: any e-close to optimal strategy requires an entangled state
of dimension at least 2(1/P0ly(€)) " This matches the strongest known tradeoff between precision
and dimension. As a corollary, the existence of our game yields a new proof of the non-closure
of the set of quantum correlations, namely Cgs 7 Cyq. The proof is arguably elementary, and is
based on self-testing techniques and a phenomenon known as embezzlement, discovered in [30],

and which we will review.
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6.1 An inherently infinite-dimensional quantum correlation

6.1.1 Introduction

The question of whether C; = Cgs, i.e. whether the set of finite and infinite-dimensional quantum
correlations are equal or not, was first posed by Tsirelson in 1993 [95] (amongst other open
questions), and has been unresolved since then. A positive answer to this question would establish
that infinite-dimensional entanglement is a strictly more expressive resource than finite-dimensional
entanglement. This would imply, for example, that two entangled infinite-level systems (one can
think of two entangled harmonic oscillators) can exhibit correlations that cannot be reproduced

exactly by two entangled finite-level systems.

Interest in this question was further fueled by the discovery and the study of the I3377 Bell inequality
in [38]]. This corresponds to a scenario in which the two parties get one of three questions and
they respond with one of two possible answers. It exhibits the following peculiar behaviour:
no fixed finite-dimensional quantum strategy appears to attain the maximal quantum violation of
the inequality. In [74], P4l and Vértesi give extensive numerical evidence suggesting that finite-
dimensional states are not enough to attain maximal violation of the inequality, and they conjecture

that infinite-dimensional states suffice. However, an analytical proof has remained elusive.

Our result We settle the long-standing open question about the relationship between C; and Cyg,
asserting that C; # Cgs. In particular, we give an explicit correlation on five questions per party
and three answers per party, which can be attained exactly in infinite dimensions, and we show that
it cannot be attained in finite dimensions. In other words, we provide an example of an inherently
infinite-dimensional quantum correlation. This exhibits precisely the behaviour conjectured by Pal

and Vértesi [74]], on slightly larger question and answer sets.

More formally, letting Cllﬂ IS ( g;’”’r’s) be the set of finite-dimensional (resp. infinite-dimensional)

quantum correlations on question sets of sizes m and n and answer sets of sizes r and s, we show:

4/5/3/3 4,5,3,3
Theorem 21. C, # Coe.

Notice that we define Cj = Uy, rs<c0 Cq " and similarly for Cys, so the above implies Cq 7 Cgs.

Related work The problem we settle fits into a well-established line of research: the quest to
understand and to find correlations that require infinite entanglement to attain. In [56], Mancinska
and Vidick give the first example of a game whose optimal winning probability can be approximated
arbitrarily well, but not achieved perfectly, with finite-dimensional states. However, the set of
possible answers for the parties in this game is countably infinite. The first example of a game of

finite size exhibiting the same behaviour was provided by Slofstra [90], while a series of subsequent
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works [89, 33, |50, 91, |87, 68, 20] refined this result in various ways (for example reducing the
size of the game or quantifying the tradeoff between between winning probability in the game and

dimension required).

However, the sequences of ideal strategies for all of these games do not have a limit, since they
are produced by maximally entangled states of higher and higher dimension. Hence, the limiting
correlations separate Cgs from Cy, but do not shed any light on the relationship between C; and
Cgs- Ours is the first example of a correlation that is inherently infinite dimensional: it cannot be
attained in finite dimensions, but it can be attained exactly in infinite dimensions (in the tensor

product model).

The caveat on experimentally testing the existence of infinite-dimensional systems At first
sight it appears that our correlation provides a test that can tell apart an infinite-dimensional system
from a finite-dimensional one, and hence, in principle, a test that can assert whether nature allows
existence of systems with infinitely many degrees of freedom. However, this is not the case. In
fact, although our correlation can only be exactly attained by two entangled infinite-dimensional
systems, for example two entangled systems with infinite energy levels, it can be approximated
arbitrarily well by systems of high enough, but finite, dimension, or in other words, by projecting
onto subspaces of bounded energy. Thus, no experiment (which can only estimate statistics to a
finite precision) can tell the two cases apart. This is not a shortcoming of our separating correlation,
but rather a fundamental limitation that stems from the fact that the sets C; and Cys possess the

same closure.

It is striking that we observe such a fundamental theoretical difference between finite and infinite-
dimensional models of entanglement, yet we are inherently limited in our ability to distinguish the

two models by the finiteness of the data we can gather.

6.1.2 A brief overview of the proof of separation
We start with a very concise overview of the structure of the proof of our main result. To explain
the argument, we start by giving an idealized version that runs against a barrier, and then talk about

how to avoid the barrier.

We will start by introducing an ideal correlation p* of a particular form. Suppose we knew that
any quantum strategy achieving p* must satisfy the following two conditions: First, there is a local

isometry ® = ® 4 ® $p and an auxiliary state |aux) such that

(|00) + & [11)) ® |aux) . (6.3)

O(|y)) = ﬁ
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Next, there is another local isometry &’ and an auxiliary state |aux’) such that

1
P’ = |¢) P ———(]00) + a |11)) ® |aux’), (6.4)
(19) = 19) @ —=—(100) + a[11)) & aw¥)
where & denotes a direct sum and the state |¢) is separable, i.e. has Schmidt rank 1. Then suppose
towards a contradiction that |{) were finite-dimensional. Since Schmidt coefficients are preserved
under local isometries, from the first condition we see that the Schmidt rank of the state is even,

while from the second condition we see that the Schmidt rank of the state is odd; contradiction.

In the above, the “magic” happens when we assume that |¢) is separable. In general, any correlation
that is attained using a separable |¢) could also be attained by tensoring with extra entanglement and
not making use of it in the measurements, so we will not be able to assume that |¢) is separable.
A different way of arguing about the set of Schmidt coefficients of |ip) is required. Our main
argument will still decompose |¢) into two ways as in equations (6.3) and (6.4). In place of the
odd / even constraints, we will show that these decompositions partition the Schmidt coefficients
into two different ways so that the set of nonzero Schmidt coefficients of |¢) is in bijection with a

proper subset of itself.

Organization Section[6.1.3|covers some preliminary notions. Section[6.I.4]formalizes the notion
of a direct sum of correlations and proves that a certain block structure in a correlation implies
a similar direct sum decomposition of the state and measurements achieving the correlation. In
Section[6.1.5] we describe the separating correlation by specifying the infinite dimensional state and
measurements that attain it exactly. In Section[6.1.6.1] we apply self-testing techniques to establish
properties of any state and measurements achieving the separating correlation; these properties will

be similar to Equations and (6.4). Finally in Section we will use these properties of
the state to show that it has infinitely many nonzero Schmidt coefficients.

6.1.3 Preliminaries

For an operator T € £ () and a subspace H' C H invariant under T, we denote by T| € L(H')
the restriction of T to H'. Let CN denote the Hilbert space of square-summable sequences,
sometimes called /2(C). We endow it with a standard basis {|i) : i € N}. Formally, CN =

AN 2
{Siasli) X a2 < oo},
We denote by C,”""* and Cy¢""" respectively the sets of finite and infinite-dimensional quantum

correlations on question sets of sizes 7, n and answer sets of sizes 7, s.
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6.1.3.1 Tilted CHSH

We have already introduced the tilted CHSH inequality in Section Here, we recall for con-
venience its essential properties, as this is a building block for the separating correlation in this

section. For entangled |ip), we have:

<¢ | BAo + AoBo + AgB1 + A1Bg — A1Bq | I’IJ> <4/8+ 2‘32. (6.5)

The maximum in the tilted CHSH inequality is attained by the following strategy:

Definition 37 (Ideal strategy for tilted CHSH). Given parameter B, let sin20 = | %, U=

arctan sin 26, and « = tan 6. Define the wa-tilted Pauli operators as
0y i= COs po* + sin puo*, and oy = cos puo* — sin po*.

The ideal strategy for tilted CHSH with parameter B (i.e. achieving maximal violation of (6.5)))
consists of the joint state |'¥) = cos 0(]|00) + « |11)) and observables Ay, A1 and By, By with
Ag = 0%, A1 = 0%, By = 0} and By = 0. For each observable, we associate the projection onto

the +1-eigenspace with answer 0 and the projection onto the —1-eigenspace with answer 1.

Since in the present section we are primarily concerned with the ratio of the coefficients of the ideal
state, we refer to the correlation defined by the ideal strategy of Definition [37| as the ideal tilted
CHSH correlation for ratio «. In the remainder of the paper, we use the correlation along with the
ideal strategy, but we will forget the Bell inequality (6.3) that motivates them. In particular, we will

use the following lemma.

Lemma 43 ([[7]). The tilted CHSH correlation for ratio a self-tests the strategy of Definition

6.1.3.2 Correlation tables

Recall the definition of correlation tables from Section [2.2] As mentioned earlier, we will make
use of the ideal tilted CHSH correlation as a building block for our separating correlation. For
x,y € {0,1} and « € (0,1), we denote by CHSHY , the correlation table on question x, y for the
ideal tilted CHSH correlation for ratio «.

6.1.4 Direct sums of correlations

In this section, we introduce the notion of a direct sum of correlations. We will later use this to build
our desired correlation out of tilted CHSH building blocks. Lemma[39will allow us to characterize
the strategies for the desired correlation from self-testing results about its direct summands. In

particular, these strategies also decompose, in a sense made precise below, as a direct sum of
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strategies corresponding to the direct summands. The proof is somewhat technical, and the ideas in
the proof are not necessary to understand the rest of the paper. Some of the ideas in this proof have
already appeared in Sections[5.1]and [5.2] where they were used to establish properties of quantum
correlations constructed block-by-block [23]], [21]. We package these arguments into a lemma since

it may be of independent interest. First, we define formally a direct sum of correlations.

Definition 38 (Direct sum of correlations). Let p be a correlation on X,Y, A, B. Suppose for
some positive integer 1, for i € [l], there exist partitions A = |_|f~:1 A;, B = |_|§:1 B;, real
numbers w; > 0 with 2521 w; =1, and correlations p; on X,), A;, B; such that for all i,j € [I],
ae A;,be Bj,xe X,ye),

p(a,blx,y) = é;jwipi(a,b|x,y). (6.6)

Then we say that p is a direct sum of the p;, and we write p = @lewi pi. We sometimes refer to the

p; as blocks of p and the w; as weights of the blocks. We give a visual interpretation of condition

(6.6) in Table[6.1)

; By e B,
At | w T 0| 0

0 - 0
A, 0 0 | w- Tg/)

Table 6.1: The correlation table for p = @;w;p; on questions x, V. T,E;) is the correlation table for
correlation p; on questions X, V.

Lemma 44. Let p € C,';;’”’d’d be a correlation on X,Y,A,B, induced by a strategy
(ly) € Ha ®HB,{HQX}Q,{H%}/}I9). Suppose for some positive integer 1, there exist parti-
tions A = |_|f~:1 A;, B = |_|§:1 B;, with |A;| = |B;| = d;, and correlations p; € C;Z’n’di’di
on X,Y,A;,B; such that p = @521 w;pi. Then there exist direct sum decompositions
Ha =M & @ HY, Hp = HE" ® @; Hiy and strategies

( H :ii; H € Hi‘l ® Hi ’ {Ha X |’Hf4}a6.Ai/ {Hllg’y |7—[%}b€6i> (6.7)

such that:

(i) Strategy is well-defined, i.e. the restricted operators f4x|,Hf4 and Hlj“y|7"i3 are projec-

tions.
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(@) || i) | = w:.
(iii) p; is induced by strategy (6.7).
(iv) Forallx € X,y € Y,a € A;,b € B;:
Dl 1) =TI 19), TIE Ly |y) = TTg, [y)
Proof. For the remainder of the proof, when an operator acts only on one tensor factor we omit
writing the identity on the other factors.

Our first goal is to construct the subspaces H!,, ”HiB. We first study the action of the projectors
corresponding to answers in .A; and B; on the state ). We will use these properties to define the
states |¢;). Then from these, we will construct !, and HE.

For x € X,y € Y, define Hﬁi = Yaea, 1Y and Hg; = YpeB, I—I%y . We will show that
Hﬁi lp) = Hg; |y) foralli,x,y. Foranyi € [l],x € X,y € ),

Iy [i) = gjvx®1w>
acA;
= | LI, )@ (Z H%y> ) (6.8)
acA; beB
NEAr (2 n%y) "
acA; beB;
=1y ® [Ty ). (6.9)

The second equality follows from the fact that {H%y} forms a complete measurement. The third
equality comes from the block structure of the correlation. More specifically, suppose that a € A;
butb & B;. Then the block structure demands that p(a, b|x, y) = 0 forall x, y. So we conclude that

2
HI—I“ . ® H%y |) H = p(a, b|x,y) = 0. This forces the appropriate terms of the sum in Equation
(6.8) to vanish. The same argument with the roles of .A and B reversed gives

B; _ 1TA B;
e 1g) = 1 o 118 |y).

Combined with Equation (6.9), this implies that, for any i, x, y,
Aj _ 1B
T ) =1, [9) - (6.10)

In particular, the action of Hﬁ; on |¢p) is the same for all x, and similarly for the 3 operators. This

lets us define

;) = 1Ty [y),
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where the choice of x does not matter.

Now we compute the norm of |¢;). The block structure p = @;w;p; of the correlation gives us

that for any fixed x and v,
wi= Y, plablxy)
aceA; beB;
= L (v[m ey
aceA; beB;
A; B;
- <¢ ‘ Ty, ®H3y ll]>
2
= |llea I,

where the last line follows from Equation 1i This establishes condition (ii). Now let p’A =
Trp |1P1><7~P1‘ - Z]/\ |]><

are guaranteed to exist even if \%) is infinite-dimensional, because the existence of a Schmidt

/) the eigenvectors of p;. These

decomposition for any bipartite state holds also in infinite-dimensional Hilbert spaces. Notice that

— i 2 _
YA = Teply = [90)]* = w
]
We wish to compute the action of Hﬁi on the eigenstates of pil. We calculate

= (|t ot]v)
= Tr [T}’ ply
—ZAﬁH )il

sl
]

2
Since w; = }; Aj, we must have HHA 17) H = 1 for each j. In other words, I1 ﬁi |]> = |j). This

motivates us to define the space 7-[1 as the span of the nontrivial eigenvectors of p "4+ Define also

P; as the projection onto subspace Hiq-

It follows from the definition of the |¢f;) and the ', that

Pi|;) = 6ij i) - (6.11)

Furthermore, notice that Hji P; = P;. Thus the 7—[1;4 are suitable spaces for the new strategies to be
defined on. In particular, the restricted operators qux |Hi‘ are projectors. To see this, notice that
they are orthogonal for distinct 4 and that they sum to identity.
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Let H%!! be the orthogonal complement of @; il in H4. Define Hi and H3! analogously.
Clearly, 6, Hiq and P, ’HiB are topologically closed. This implies that H 4 = H“A““ D DP; ”qu and
Hp = Hil e @, H.

Thus, we have established condition (i) of the lemma.

It follows straightforwardly from the Definition of [¢;) and (6.T1) that fora € A;, Il ’Hix ;) =
IT% |¢), and similarly for B. This establishes condition (iv). Finally, we show condition (i),
that the strategies in each block induce the appropriate correlations. We fix arbitrary a € A;, b €
Bi,x € X,y € ), and calculate

1
o (|
g1 <

)= Lo, o)

b
A la, © g, |y

1
= —plabxy)

1

= pi(a/b|x1y)-

In the above, the first quantity is the correlation induced by the strategy defined in Equation (6.7),

and the last quantity is the desired correlation p;. Thus, we have shown condition (fii).

O

6.1.5 The separating correlation

In this section, we describe the correlation p* that separates Cq and Cqs. The correlation is on
question sets X = {0,1,2,3} and ) = {0,1,2,3,4} and answer sets A = B = {0,1,2}.
Hence, the smallest classes we separate are C3’5’3’3 and ng5’3’3. We define p* by describing the
ideal infinite-dimensional strategy that induces it. In the following section, we will prove that no

finite-dimensional strategy induces p*.

Recall the definition of CN from Section For each m > 0, we define two isometries
yeven yodd . 2 — CN as follows:

Ve |0) = 2m), V" 1) = [2m + 1), and V9 |0) = |2m + 1), Vol |1) = [2m + 2).

We use these isometries to define observables on CN. By abuse of notation, for an isometry
V : C2 — CN and an operator O on C2, we write V(O) to refer to the pushforward VOV of
O along V. For example, V5" (0%) = |2m) (2m| — |2m 4 1) (2m + 1|. For O an operator with
+1,0, —1 eigenvalues, we write O for the projection onto the +1 eigenspace and O~ for the
projection onto the —1 eigenspace. One can check that with this notation O = O™ — O~. We use
the notation @ A; to denote the direct sum of observables A;. We will make use of the «-tilted
Paulis 07, 0, from Definition The following is the ideal strategy in detail.
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Definition 39 (Ideal state and measurements for p* € ng5’3’3). Fixa € (0,1). The correlation
p* € C45 33 is specified by the quantum strategy (|¥) € CN @ CN, {114 Sa {I—I%1 }o}), where
¥) = V1 — a2 Y2, &' |ii), and the ideal measurements are described in Tables|6.2|and

; 4 0 1 2
0 || [@mzo Vi (0] | [Bm=o Vi (03]~ | 0
L [@—o Vi (e)]F | [@m—o Vi (@)~ | 0
2 | [@®h=o Via(eH)]™ | [Bm=o V(e | 10)(0]
3| (@m0 V()] | [@m—o V()] | [0)(0]

Table 6.2: Alice’s ideal measurements. The entry in cell x, a4 is the projector qux.

y b 0 1 2
0 | D=0 Vi (@D)]" | [Bh=o V" (e)]~ | 0
U | [@5=o Vi ()] " | [@h=o Vi (03)] " | 0
2 || (@m0 V(o)) | [B=o Va'd(eD)] ™ | 10)(0]
3 || [Bm=o Vald(o)]™ | (@0 V' (e)] " | 10)(0]
4 [@m Oveven( Z)]-‘r [@m Oveven Z)] 0

Table 6.3: Bob’s ideal measurements. The entry in cell y, b is the projector H%y.

Intuitively, for questions x,y € {0,1}, Alice and Bob decompose the space into a direct sum of
2 x 2 blocks and perform the ideal tilted CHSH measurements for ration « on each block. For
X,y € {2, 3}, they do the same, but with a block structure which is shifted forward by one standard
basis element. Additionally, Bob has a fifth question on which he performs the same measurement

as Alice performs on question x = 0.

The ideal state and measurements defining p* specify correlation tables Ty, for all pairs of questions

x€{0,1,2,3},y € {0,1,2,3,4}. We explicitly report some of them, as we will later make use of

1
1—a2

the relations that these impose on the measurement projectors. For ease of notation let C =
in the tables below (note C > 1).
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Table 6.4: On the left, Ty, for x,y € {0,1}. The top-left 2 x 2 block contains ideal tilted CHSH
correlations for questions x, y.

b 0 1 2 b 1 0 2

a a
O ' chsmr, |2 L1 cHsHy,
1 X,y 0 0 C X,y 0
2 o | o |o 2 | o 0 |2

Table 6.5: On the right, Ty, for x,y € {2,3}. Let %, 7 be x, y modulo 2. The top-left 2 x 2 block

contains the ideal tilted CHSH correlation table for questions X, i/, weighted by % (notice that
we have flipped the 0 and 1 labels in the rows and columns.)

Table 6.6: On the left, Ty, for x = 0,y =4

b 0 1 2 b 0 1 2
a a
1 1
0 || ¢ Za| O O O llc (-] 0 |0
1 2
1 0 L0 ! 0 cra |0
2 0 0 0 2 L 0 0

Table 6.7: On the right, Tyy forx =2,y =4

6.1.6 Proof of separation

In this section, we prove Theorem 2T We start from a (finite-dimensional) strategy that induces
p*: in Subsection we prove properties of the state and the measurement operators, and in
Subsection [6.1.6.2] we characterize the non-zero Schmidt coefficients, concluding that there must

be infinitely many (thus giving a contradiction).

6.1.6.1 Characterizing the state and the projectors

The following lemma establishes the existence of two local isometries which decompose any state

achieving p* into two different ways (as anticipated in the proof overview of Section|6.1.2).

Lemma 45 (Characterizing the state and projectors). Let (|) € Ha @ Hp, {115 }, {H%y }) bea

strategy inducing the ideal correlation p* from Definition Let C = ﬁ. Then there exist two

aux') and |aux'") such that

local isometries ® and ' and (normalized) states |aux),
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(i) o ®([y)) = ﬁuom +a[11)) @ |aux)

e oI @1[¢)) = == |00) ® |aux)

o O(IT) @1p)) =

\/1+7 111) ® |aux)

(ii) o dD'(|Jy)) = f|22>®|aux @4/ \/— (J11) + «]00)) ® |aux")
0 D/(I15,  119)) = /Sy 00) & ared)

o O'(IT, ®I|yp)) =/ ﬁ|11 ® |aux’)
o (I ®1|p)) = f|22 ® |aux") .

Proof. (il): Let p’ be the restriction of p* to questions x,y € {0,1}. From Table we know
that p’ is the ideal tilted CHSH correlation for ratio a (except that it has an extra answer “2”
which has zero probability mass). Applying the block decomposition lemma (Lemma [44)) with
w1 = 1 and wy = 0, we have that there exist subspaces ’Hh C H 4 and 7-[%3 C "Hp such that the
strategy (|¢) € HL ® H}, {H%JH% Yacfoys {H%y|7-%}be{0,l}) induces the ideal tilted CHSH

correlation.

By Lemma [3] the tilted CHSH correlation self-tests its ideal strategy, i.e. there exists a local
isometry @1 = @1 4 ® Py g with g 4 : 7—[1 — 7-l ®HAWX and @4 p : ’;'—[%g — 7—~l ®HBWX,
and a (normalized) state |aux) € HY aux @ H aux Such that @y (|9p)) = \/117(|00> +alll)) ®
|aux). Moreover, by Lemma3] it is also the case that

1
0 11! —
D, ((HAO|H% Iyl ) @ 1 |¢>) =Zel +“2(|oo> +a11)) @ |aux).

Since (I+Z)/2=10)(0| and (I — Z)/2 = |1)(

, we deduce by linearity that

1 (10,5, @ 1]y)) = \/7|00>®|aux> and @1 (T} |y @ 1[9)) = \/7|11>®|aux>.

Letting ® be any isometric extension of ®; to H4 ® Hp and applying condition of Lemma

A4 gives ().

(ii): Let p” be the restriction of p* to questions x,y € {2,3}. Then from table we have

that p”" = wyp1 @ wap, where p1 is the ideal tilted CHSH correlation (for ratio «) and p; is the

C-1

correlation in which answer (2,2) has probability 1 on all question pairs, and wq = =, Wy = é
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By Lemma there exist subspaces HW!, HL 4L 12 HL HEZ withHp = HEM & HY & HA
and Hp = ”H%”“ &5 "H%; @® H2, and strategies S and S, with

= <H||(fb1>>!| € Hy ® Hp AT, Ly Yac oy, {H3y|’z‘-l1 }be{Ol})

_( _ly2) 2 (12 )
= (n |¢2> [ € P ® M (T by b 1T g}

such that || [¢1) ||? = 2) |12 = & and [¢) = |¢1) + |¢2). Moreover, Sy induces the
ideal tilted CHSH correlatlon for ratio a (with the roles of the 0 and 1 answers flipped — see Table

[6.5). As in the proof of (i), we can apply Lemma[43|to obtain local isometries @1 = @1 4 @ @1 3
with ®; 4 : 7—[1 — 7—2 ® %A auy @nd P1p 7—[1 — 7—[1 ® 7—[3 x> and a (normalized) state
|aux") € HY 4 © Hi 4y SUCh that

@ @1(|p1)) = /< \/11?(|11> + «|00)) ® |aux’), (we have flipped the zero and one basis
elements for later convenience)

(b) @1(ITy, o ® 1)) =/ G' o [11) @ Jaux’), and

(©) @1(I1), |51 @ 1]91)) = |/ h 52— |00) © |aux’) ,

where (b) and (c¢) are obtained similarly as in part ({ij) of this proof.

Now, let &, = q)Z/A ® (DZ,Ba with q)2A : 7‘[2 — 7:[ ® HA aux and CDZ,B : ’H% — 7:[ ® HB aux
be a local isometry, and |aux") € H> Aqux © ak: B aux @ (normalized) state such that

(@) @o([ipn)) = = [22) © |aux”)

Such ®; and |aux”) trivially exist.

Define
-0, 1Y oHE - (HY o AN Yo #HY

el ot - AV oA"Y e #P m;

B,aux

Let @’} be any isometric extension of &, to 7 4, and let & be any isometric extension of ®} to
Hp. Let @ = @} @ ®F. Then (a) (b), (¢) and (d), together with condition (iv)) of Lemma
imply that ®’ satisfies condition (fi) of Lemma as desired.

O
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We also need the following properties, obtained using the ¥ = 4 question on Bob’s side.

Lemma 46. Let (|y), {11, }, {H%y}) be a strategy inducing p*. The following properties hold:

(i) T |) = TG, |y) = (T3, + 119, ) |9)
(ii) ITy |) =TT}, [y) =TT, |y)

(iii) |¢) = 119 @ IIy |y) + 1T @I |¢) .

Proof. From correlation table we read out that (¢ H%OH%4 lp) = HH?40 1) |2 =
||H%4 ly) ||2. By the Cauchy-Schwarz inequality, this implies that H%O lp) = H%4 |¢). Simi-
larly, from correlation table we deduce (Hfle + H%z) lp) = H%4 |¢), which yields (). We

derive (ii) analogously. Item follows from combining the previous two items with the equality

6.1.6.2 Characterizing the Schmidt coefficients

b . . . .

From now onwards, let (|y) , {I1% }, {I1 B, }) be a strategy inducing p*. In the previous subsection,
we gave a partial characterization of the operators and state. In this subsection, we make use of
these properties to show that |¢) must have infinitely many Schmidt coefficients, and therefore
deduce that any strategy inducing the separating correlation defined in Subsection [6.1.5] must be

infinite-dimensional.

For a bipartite state |) , 5, we denote by Sch (|¢) , 5) the multise{'|of non-zero Schmidt coefficients
of |¢) 45. Recall that the Schmidt coefficients {A;} are the unique nonnegative real numbers so
that [¢) .5 = X_; Ai i) 4 ® |i) g for some bases of the A and B registers. Any such pair of bases is
called a pair of Schmidt bases with respect to |¢). Usually the tensor product decomposition of the
Hilbert space will be clear, in which case we’ll simply write Sch(|¢)) without the subscripts. We

will use the following basic fact about Schmidt coefficients; we provide a proof for completeness.

Lemma 47. Let |¢),|¢),|1) be states on Ho @ Hp with |p) = |¢) + |n). Define reduced

densities
pa = Trg [P) (|, 04 = Trp |P)(P|, Ta = Trp |17) (1]

on M 4. Define pp, 0, Tg similarly. Suppose that |¢) and |n) are “orthogonal on both subsystems”
in the sense that coT4 = 0 = opTp. Then Sch(|¢)) = Sch(|¢)) U Sch(|n)), where U denotes

disjoint union.

'Here by multiset we mean a set with multiplicity, sometimes called an unordered list. For example, the multiset
of Schmidt coefficients of the EPR pair is (%, % ).
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Proof. A Schmidt basis for 7 4 with respect to |ip) is the same as an eigenbasis for the reduced
density operator Trp 1) (¢|. Using the orthogonality of |¢) and |7), one can check that the three
densities p 4,04, T4 commute. Therefore, the densities have a common eigenbasis. This is also a
common Schmidt basis. After repeating the argument to find a common Schmidt basis on Hp, we

can write the states as
) =Y Ailii), |9) = Y ailii), and |n) = Y b i),
1 1 i

with a; + b; = A;. By the orthogonality of |#) and |¢), we have a;b; = 0 for each i. This implies
that for each 7, exactly one of the following two equalities holds: A; = a; or A; = b;. This yields

the lemma. O

Lemma 48. Let ®, &' and |aux), ",
from Lemma Let S = Sch (|4)), and let Sy = Sch <% 122) ® |aux”>>. Then there exists a
partition S = So U Sq such that:

"\ be the local isometries and auxiliary states

e So = Sch (ﬁ 100) ® \aux)) = S, USch ( CL s 00) ® |aux’>>

* S1 = Sch (52 [11) @ |aux) ) = Sch <,/ L 1) @ Jaux! >)

Notice that these two equalities give us two different correspondences between the Schmidt coef-

ficients of |aux) and |aux’), where one involves multiplying by « and the other involves dividing
by a.

Proof. Recall from Lemma 46| that |¢) = H%O ® H%4 lp) + H}% ® H}i; |¢) . We deduce by
Lemma7that S can be partitioned into two sets Sp and Sq, where

So = Sch (Hgo |¢>) and $; = Sch <H}40 y¢>> . (6.12)

Since local isometries preserve Schmidt coefficients, ®(|)), ®'(|¢)) and |¢) have the same set
of Schmidt coefficients S. Moreover, Lemma 45| gives

(I, [¢)) = \/—|00> ® |aux) and D(ITy ) = \/—|11> ® |aux) .

By direct substitution,

So = Sch < and S; = Sch (

ﬁ 00) © |aux)> \/% 1) @ yaux>) .



170

By Lemma we also have H%O lp) = (H%q2 + H%z) |p) and H}% lp) = H}h |¢). Moreover,
=

from Lemma43} we also have @' (113, +119 ) [¢)) = LC 122) @ |aux") + 4/ %\/1";7 100) ®

|aux’) and @' (IT),_|)) = 4/ %\/%7 |11) ® |aux’). Then this implies

1 C-1 o
So =Sch | —=122) ® |aux"") + 4/ 00) ® |aux’
0 (\/E‘ > ‘ > C /—1+0(2| > ‘ >
C-1 o
= S, USch | 4/ 00) ® |aux’) |, and
C—-1 1
S1=Sch | 4/ 11) ® |aux") | . 6.13

Putting together Equations (6.12)) through (6.13)) gives the statement of the Lemma. O

Theorem 22. Let p* be the ideal correlation introduced in Definition|39 Let (|) , {I1% ) }, {H%y 13
be any strategy inducing p*. Then |\) has infinitely many non-zero Schmidt coefficients.

Proof. Let |aux), |aux'), So, S1 and Sy be as in Lemma[48] Recall from Lemmal48]that

1 ®
Sg =Sch | —— |00) ® aux) and S :Sch(— 11) ® aux).
o= (g 000 b)) s = b (LS5 ) o)

Then we can rewrite these sets as

A:AeSch(|aux>)} and S = { oA /\ESCh(|aux>)} .

1 1
Sp=4 o -
0 {\/1+0c2 V14 a?

Notice that there is a bijection f : So — S1 such that f(A) = aA. Again from Lemma 48 we have

CcC-1 o C—-1 1
So = S,USch | 4/ 00) ® |aux") | and S; = Sch | 4/ 11) ® |aux") | .

Then we can rewrite Sg \ Sy and Sy as

C—1 «a
SO\SZ:{\/ c mA:/\ESCh(]aux’»}and

51 = {\/Cgl\/ﬁ)\:/\é&h(!awﬂ)}.

Notice that there is a bijection g : S| — Sp \ Sz such that g(A) = aA.

Composing the maps f and g yields a bijection between Sy and Sg \ Sy. Since Sy is nonempty, this
implies that So must be infinite. O
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One can extend this proof a bit farther. Repeated applications of the map f o g show that Sy has an
infinite descending sequence of the form (A, w2, atA, .). One more application f then shows
that S has an infinite sequence (A, A, 2N, aBA, .. .) This can be used to obtain some quantitative
bounds on the dimension required to induce a correlation close to the ideal one. We do not prove
this quantitative bound because much more useful bounds already exist for correlations witnessing
the separation Cys # Cga.
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6.2 Non-closure of the set of quantum correlations: an elementary proof from self-testing
and embezzlement

6.2.1 Introduction

We started our journey by discovering Bell’s theorem [9], which asserts that there exist games
for which players who share entanglement can outperform players who do not, the most famous
example being the CHSH game [17]. The most immediate application of non-local games is to “test
quantumness”: a referee who observes a winning probability in a non-local game which exceeds
what is attainable classically can have high confidence that the players (or devices) she is interacting
with were sharing entanglement. As we have seen throughout this thesis, a more refined analysis of
non-local games allows the referee to obtain more precise characterizations of the devices involved.

In many cases, it is possible for the referee to obtain almost-exact characterizations of the devices.

In this work, we take a step back, and we focus on the study of non-local games as witnesses of
high-dimensional entanglement. In other words, we are interested not necessarily in characterizing
a quantum device fully, but just in certifying that the associated quantum system has at least a
certain dimension. The study of dimension witnesses has had on the one hand fruitful applications
in quantum cryptography, and on the other it has shed light on basic questions in the theory of

entanglement.

6.2.1.1 Certifying high-dimensional entanglement - previous work and state of the art

Non-local games with the property that a near-optimal score provides a lower bound on the dimen-
sion of the players’ quantum systems are referred to as dimension witnesses. The study of games
(or correlations) with such a property was initiated by Brunner et al. [13]], who coined the term.
In this work, we focus on dimension witnesses that can certify entanglement of arbitrarily high

dimension.

The first example of a game which cannot be won perfectly with any finite amount of entanglement
was proposed by Leung, Toner and Watrous [53]], and is intimately connected to our result. The
game that they introduced is not a non-local game in the usual sense, since it involves quantum
questions and answers. However, it has the property that in order to succeed with high probability,
the players have to perform a coherent state exchange which requires them to share an embezzling
state of high dimension. More precisely, the game forces the two players to coherently transform a
product state of two qubits into an EPR pair, using only local operations. This task is, of course,
impossible to perform exactly, but can be performed to arbitrarily high precision if the two players

share an auxiliary entangled state of sufficiently high dimension (referred to as an embezzling state).

Subsequently, several examples of dimension witnesses for entanglement of arbitrarily high di-

mension have been proposed over the years consisting of non-local games with classical questions
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and answers [10, 88, [12, 57, (16 29, 22, |24, 69, 25]. However, all of these examples involve

families of non-local games whose questions and answers increase as the witnessed dimension
increases. For some time, it was an open question to determine whether there exists a non-local
game, with a finite number of questions and answers, whose optimal value cannot be attained by
any finite-dimensional strategy (in the tensor product model), but which can be attained in the limit
of finite-dimensional strategies. This question was answered recently by Slofstra in a sequence of
two breakthrough works [90, 89]], where he introduces novel techniques based on the representation
theory of finitely-presented groups. Slofstra’s result implies that the set of quantum correlations is

not closed.

An alternative proof of the latter result was given subsequently by Dykema, Paulsen, and Prakash
[33], and more recently by Musat and Rgrdam [68]], using techniques based on the representation
theory of C*-algebras. The games constructed in [33]] and [68]] have significantly smaller question

and answer set sizes, namely 5 and 2.

In contrast, the result that we described in Section [6.1] gives an example of a point in the set of
quantum correlations on question sets of size 5 and answer sets of size 3 which cannot be attained
using finite-dimensional entanglement but can be attained exactly using infinite-dimensional en-
tanglement, in the tensor product model. This asserts that the the set C; of quantum correlations
attainable with finite-dimensional entanglement is strictly contained in the set Cys of correlations

attainable with possibly infinite-dimensional entanglement.

All of the above results are not explicit or quantitative about the tradeoff between winning probability
(or expected score in the game) and the dimension required to attain it. What we desire from a
dimension witness is a quantitative statement of the following form: if the players’ score is e-
close to optimal, then their strategy has dimension at least f(e), where f(€) is a function that
tends to infinity as € tends to zero. In [91]], Slofstra and Vidick analyze such a tradeoff for the
machinery introduced by Slofstra in [90]], and they relate such tradeoff to a quantity called the
hyperlinear profile of a group. In a subsequent work [87]], Slofstra provides a finitely-presented
group whose hyperlinear profile is at least subexponential. As a corollary, this yields a two-player
non-local game, with question and answer sets of finite size, with the property thata 1 — € winning
probability requires dimension at least 2€Ue™) (o attain for some constant 0 < ¢ < 1. The caveat
of such a non-local game is that its description is quite involved and the size of question and answer
sets is large. Moreover, it is not clear whether a winning probability of 1 in the game can be attained
in the limit of finite-dimensional strategies or not (although it can be attained in the commuting-
operator model). These caveats not only make an experimental demonstration of such a dimension
witness infeasible, but, more importantly, they somewhat conceal what is truly happening behind

the scenes: the resulting non-local game, although remarkable for its behaviour, does not arguably
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provide much intuition about what is causing the exponential blow-up of the dimension.

A much simpler game with a similar exponential tradeoft between optimality and dimension, and
without this caveat, but involving three players, was proposed recently by Ji, Leung and Vidick
[SO]. Their work constitutes, in some sense, a return to the original ideas of Leung, Toner and
Watrous’coherent state-exchange game [53|], which are cleverly translated to a setting in which all
questions and answers are classical. At the heart of the three-player non-local game of Ji, Leung and
Vidick is the idea of delegating the actions of the quantum verifier of the coherent state-exchange
game to a third player. By combining different non-local tests, the verifier is still able, using only
classical communication, to enforce that two of the three players must be performing a coherent

state-exchange which involves a high-dimensional embezzling state as a resource.

6.2.1.2 Our result

In this work, we show, strikingly, that the third player is not required. We design a much more
direct two-player non-local game with an (improved) exponential trade-off between optimality and
dimension: one of the key ideas is the introduction of a simple additional sub-test which can
guarantee the coherence of a state-exchange between the two players even in the absence of a
“physical” third register that forces coherence, like in the games of [53]] and [S50]]. Our result is the

following:

Theorem 23. (informal) There exists a two-player non-local game on question sets of size 5 and 6,

and answer sets of size 3, with the property that:

. : . -1 .
e (completeness) For any € > 0, there exists a strategy of dimension 20(¢™) that is e-close to

optimal.

(/%)

o (soundness) Any e-close to optimal strategy has at least 2 dimension.

Our game can be thought of as a direct de-quantization of the coherent state-exchange game. It is by
far the simplest non-local game (in terms of question and answer set size) with such an exponential

tradeoff. For a comparison, even with three players, the question and answer sets are of size 12 and
8 respectively in [50].

Our game provides a new proof of the non-closure of the set of quantum correlations. However,
strikingly, compared to the proofs in [[89], [33] and [[68]], our proof is arguably elementary, and does
not involve any representation-theoretic machinery. We point out, additionally, that an exponential

tradeoff between optimality and dimension does not hold for the game in [33]], where a strategy of
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dimension 1/ poly(e) can be e-close to optimal (and we suspect that this is also the case for the

game in [|68]]).

Next, we sketch the main ideas in the design of our two-player non-local game.

6.2.1.3 A sketch of our two-player non-local game

Our game consists of sub-tests (a), (b) and (c), executed by the verifier with equal probability:

(a) A non-local game G3.cysyg whose unique optimal strategy requires the provers to share the
state |00) + |11) + |22). Gs.cush is an instance (for d = 3) of a more general family of
non-local games from [21]. Gs.cysy contains a special “computational basis” question for

Alice which requires her to measure her half of the state in the computational basis.

(b) The well-known “tilted CHSH” non-local game, which we denote by Gcgsu [1 [7]. This
requires, for the appropriate choice of parameters, that the provers share the state |00) +
V2 |11). Gycpsu contains a special “computational basis” question for Bob, which requires

him to measure in the computational basis.

(c) A sub-test in which Alice is asked the “computational basis” question from (a), and Bob is
asked the “computational basis” question from (b). Alice and Bob win if: either they both

answer “0”, or they both answer different from “0”.

The intuition behind the game is the following: Alice and Bob could share the state (|00) + |11) +
122))ag ® (]00) + v/2|11))ar. This would allow them to win parts (a) and (b) optimally, but
they would fail in part (c). The power of part (c) is that Alice is uncertain about whether she is
being asked a question from part (a) or (c), and Bob is uncertain about whether he is being asked
a question from part (b) or (c). Magically, the condition of part (c) is sufficient to enforce that
Alice and Bob cannot keep the two optimal states from part (a) and (b) into two separate registers,
but rather they should coherently transform one into the other in order to achieve consistency in
answering part (c). This coherent transformation is what requires an exponentially growing amount
of entanglement dimension to perform to increasing precision. We refer the reader to Section[6.2.4]

for a formal description of our game.

Organization Section [6.2.2] reviews two non-local games which are used as sub-tests in our
non-local game. Section [6.2.3|briefly introduces embezzlement. Section [6.2.4] describes our non-
local game. Section [6.2.5] covers completeness: we give a family of strategies that approximates

arbitrarily well the optimal value in our non-local game. Section [6.2.6]covers soundness: we show
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that any close to optimal strategy requires high-dimensional entanglement. Section [6.2.7] briefly

discusses how our non-local game implies the non-closure of the set of quantum correlations.

6.2.2 Two sub-tests
In this section, we review the two non-local games which we will employ as sub-tests in our

non-local game.

Tilted CHSH We have already introduced the tilted CHSH inequality in Section [3.4] For the
purposes of the current section, we will recast tilted CHSH as a non-local game (recall that Bell
inequalitied and non-local games are equivalent. Here we make this equivalence explicit). First,

we will recall here, for convenience, the form of the ideal strategy for tilted CHSH.

The maximum in the tilted CHSH inequality is attained by the following strategy:

Definition 40 (Ideal strategy for tilted CHSH). Given parameter p € [0,2), let 0 € (0, §| be such
that sin 20 = \/g, y = arctansin 26, and « = tan 6. Define the a-tilted Pauli operators as

0y i= COs po* + sin puo*, and oy = cos puo* — sin po.

The ideal strategy for tilted CHSH with parameter 3 (i.e. achieving maximal violation of (3.14)))
consists of the joint state |'¥) = cos 0(|00) + « |11)) and observables Ay, A1 and By, By with
Ag = 0% A1 = 0% By = 07 and By = 0.

B and « are related by an invertible function, and « is typically the parameter of interest, so we choose
to denote by tCHSH(«) the tilted CHSH game whose ideal state is [¥) = cos 6(|00) + « |11)).

We can equivalently formulate the tilted CHSH inequality as a non-local game, as follows:

Definition 41 (Tilted CHSH as a non-local game). Fora € (0, 1], the tilted CHSH game GicHsH(w)
is
Gicnst(w) = (X, Y, A, B, D, Vicush(a) ),

where X,Y, A, B = {0,1}, D is uniform on X x Y, and Vicysu(a) = (—1)m@b—xy 4 O{x=y=0} °
B - (—1)%, where B and « are related as in Definition 40}

Proposition 5 (Quantum value of the tilted CHSH game). For & € (0, 1], the value of Gicpsp(a)
is wt*CHSH(“) = % - /8 + 2B2, where B and w are related as in Definition

Proof. Notice that for any strategy S, the value w(S, Gicysu(a)) takes precisely the form of
the LHS of (3.14) (upon associating, for each observable in (3.14), the projection onto the +1-
eigenspace with answer 0 and the projection onto the —1-eigenspace with answer 1, and up to a

factor of % from sampling the questions uniformly). U
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In other words, the LHS of the tilted CHSH inequality and the value of the tilted CHSH game are

equivalent reformulations of one another. The following theorem asserts a robust self-testing result
for tilted CHSH, i.e. that any strategy that attains a value close to the quantum value of the game,
must be close to the ideal strategy of Definition 40 (in the following statement we only write down

the conditions that we make use of later).

Theorem 24 (Self-testing with tilted CHSH ([102, 7). Leta € (0, 1]. Maximal value in Gicygp(q)
self-tests the ideal strategy ofDeﬁnitionwith robustness O(+/€), i.e. forany strategy S = (|¥) €
Ha®Hp, {P2}, {QS}) withvalue w (S, Gicusn(a)) > wt*CHSH(oL) — € there exists a local isometry
V and an auxiliary state |aux) such that:

o [¥) Ry o) 7= (100) +a[11) ® |aux)
« P |¥) =y o) 7 100) ® |aux)

The last condition means that the first player’s measurement on question “0” is equivalent (up to a

change of basis) to a computational basis measurement.

For clarity of notation and exposition in later sections, it is convenient for us to define the game
G cHsH(a)» for & € (0,1]. This is an equivalent version of Gicust(a) With the only difference
. . L bh— . .
that the scoring function is V_cusu(a) := (—1)"®"7 — ¢, oy - B+ (—1)* (notice the minus
sign). It is easy to see that this game is equivalent to the original tilted CHSH up to a flip of the

*

answer labels (so in particular WiCHSH(x)

A for G ichsH(a) s as follows:

Theorem 25. Let a € (0,1]. Maximal value in G icHsH(«) S€lf-tests the ideal strategy of Definition
with robustness O(+/€), i.e. for any strategy S = (|[¥) € Ha @ Hp, {P?}, {Qg}) with value
w(S, GNtCHSH(a)) > w*NtCHSH(a) — € there exists a local unitary V and an auxiliary state |aux)

. The corresponding version of Theorem

*
thCHSH(a))

such that:

o [¥) =y o(e12) Jz (@ [00) +[11)) ® |aux)

o« P [¥) =y oe12) 77 100) @ |awx)

Generalization of CHSH self-testing states of local dimension d In Section|5.2} we introduced
a family of Bell inequalities, or non-local games, parametrized by d > 2 € IN, which generalizes
the CHSH game [21]]. For convenience, we recall here the essential properties of this family which
we will need in this section. The games in this family have the property that, for the game with

parameter d, maximal score in the game self-tests the maximally entangled state of local dimension
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d. Each of the games in this family is a 2-player game in which question sets are of size 2 + 1 -, and
2 +2-1,4+7, and answer sets are of size d. When d = 2, the game coincides with the usual CHSH
game. We denote by G,_cysy the game in the family with parameter d. We do not describe this
family of games in full detail here (for details we refer to [21]). We will just recall the self-testing
properties of the game that we need in the following theorem, and describe the ideal strategy for

the case of d = 3 (we will use Gs.cysy later as a sub-test in our non-local game).

Theorem 26 ([21]). There exists a family of non-local games {G.cush } >2cN With the following

properties:

e Question sets are:

- X=)Y={01}, ford =2
X =1{0,1,2},Y = {0,1,2,3), ford > 2.

Answer sets are A = B = {0,1,..,d — 1}. For all d, the distribution over questions is
uniform. Denote by V. cysy the scoring function for Gi.cyspy-

o (Self-testing) Let W} ~ysy be the value of the game with parameter d. There exists a constant
C > 0 such that the following holds. Any strategy S = ([¥),{P?}, {QS}) with value

w(S,Gy.cusn) > W opysy — € for some 0 < € < is such that there exists a local

<
a3’
unitary V and an auxiliary state |aux) such that:

N d—1 1
= [¥) =y oserss) \/ngi:()l |ii) @ |aux)

; ~ 1 .
= Bo[%) =y o(serrsy g lii) @ |aux).
Again, the last condition means that the first player’s measurement on question “0” is equivalent
(up to a change of basis) to a computational basis measurement.
Next, we describe the ideal strategy for Gs3_.cysy. First, we fix some notation.

We define an isometry V : (C?)4 — (C®) 4 as follows:

Vi) =11, V1) =1[2)

For an operator O on C2, we write V(O) to refer to the pushforward VOV of O along V.
For example, V(0?) = [1) (1] — |2) (2|. If O has +1,0, —1 eigenvalues, we write O™ for the
projection onto the +1 eigenspace and O~ for the projection onto the —1 eigenspace. One can
check that with this notation O = O — O~. We use the notation @ A; to denote the direct sum
of observables A;. If H 4 &~ C°, we still write 0% to mean 0% = [0)(0] 4 — |1)(1| ;. On the other
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hand, in accordance with the notation above, we write V(0%) 4 tomean V (0%) 4 = |1) (1] — |2)(2].
We adopt an analogous notation for all other Paulis and tilted Paulis, and projections onto their

eigenspaces. (We will make use of the a-tilted Paulis 07, oy from Definition [40).

Definition 42 (Ideal strategy for Gs.cgsu [21]). The ideal strategy for Gs.cysy IS
(|‘I’>,{Pf§},{Q5}), where |¥) = \%(|00> + |11) 4 |22)), and the ideal measurements are
described in Tables[6.8 and

a
X

0 1 2

0 111000z | Mz | [2)(24
1| ()" | ()" | 2){2]
2 || [0)0] | [V(e))]" | [V(e")]”

Table 6.8: Alice’s ideal measurements for Gs3.cysy. The entry in cell x, a is the projector Py.

b 0 1 2
¥
0 || (g5=)™ | (039)” 12)(2|
Lo (o)™ | (ogmq)” 12)(2]
2 | 10)(0] | [V(gg_)]T | [V(ez_y)]™
3| 10){0] | [V(og_I™ | [V(ez_1)]™

Table 6.9: Bob’s ideal measurements for G3.cysg. The entry in cell y, b is the projector P;’ .

We emphasize, as it will be important later, that both the ideal strategies for Gycpsp () and Gg.cusn

include a computational basis measurement for the first player on question “0”.

6.2.3 Embezzlement
The phenomenon of embezzlement was first discovered by van Dam and Hayden [30]. A family
of embezzling states can be used to coherently transform a product state into an EPR pair (or

viceversa). The fidelity of this transformation increases with the dimension of the embezzling state.

Definition 43 (Embezzlement). Let {|T ;) }acn be a collection of states, where |Tz) € (C?)57 ®

(Cz)gd. We say that {|T';)}seN is an “embezzling family” if there exist unitaries Wa a1 on
Ci® (Cz)%’l and Wyp on C3 ® (C2)57 such that

1
[Waa ® Wpr [EPR) p [Ta) g = [11) 4 |Ta) arpr || = O (ﬁ) |
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Example 7. Let |T'y) = \/LNfd 2?21 |11>§ZB/ |EPR>§,(gfj), where Ny is a normalizing constant.

Then, the family of states {|T )} is an embezzling family. The unitaries W 4 4r and Wypr are the
“left-shift” unitaries, which act on C3 ® (Cz)f,‘i and C3 ® (Cz)?,d respectively, by shifting by one
1o the left each of the d + 1 qubit registers. It is easy to check that the family of states {|T ;) }sen

satisfies Definition

6.2.4 The non-local game
The following is our non-local game. We describe it informally first, and then we give a precise

description in Fig. [6.1] We refer to Alice and Bob as the two players in our non-local game.

The non-local game consists of three tests, run with equal probability.

(a) In the first test, the verifier sends both players questions from the game Gs.cysy, and they

obtain a score according to its scoring function.

(b) In the second test, the verifier sends both players questions from the (flipped) tilted CHSH

game GNICHSH(\%). Importantly, their roles are also switched: Alice is sent the questions of
player 2 in GNtCHSH(\%), and Bob the questions of player 1. They obtain a score according

to the scoring function of GNtCHSH(%).

(c) In the third test, Alice receives the “computational basis” question (question “0” of the
first player) from the game Gs.cysy, and Bob receives the “computational basis” question
(question “0” of the first player) from the game GNtCHSH(\/LE). The players’ score is 1 if:

Alice answers 0 if and only if Bob answers 0. They score 0 otherwise.

The intuition behind this game is the following.

If Alice and Bob’s strategy attains an e-close to optimal expected score overall (where optimally
here means playing perfectly in all three tests), then it must attain a 3e-close to optimal expected
score in each of the three tests. By the self-testing result of Theorem [26] in order to play 3e-close
to optimally in (a), the players need to be sharing a state close to a maximally entangled state
of qutrits, up to a local isometry, and moreover one of Alice’s measurements is a “computational
basis” measurement. By Theorem in order to play 3e-close to optimally in (b), Alice and
Bob must be measuring a state close to a tilted EPR pair with ratio %, up to a local isometry.
Moreover one of Bob’s measurements must be a “computational basis” measurement. Crucially,
Alice cannot distinguish her question in (¢) from a “computational basis” question in (a), while
Bob cannot distinguish his question in (¢) from a “computational basis™ question in (b). In order to

play close to optimally in (c), Alice and Bob’s computational basis measurements need to satisfy
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a consistency condition. It is this consistency condition that forces the two players to “agree” on a

computational basis element |00) € Ci} ® C3, and to perform a coherent state exchange such that:

1 1
——(100Y + [11) + [22)) 4 — —=(]00) + V2 [11)) 43, (6.14)
ﬁ(|>\>|>) \/§(I> 11))
with |00) 45 — |00) 45 and %(Hl} +122)) ap — |11) 4. The LHS of (6.14) is the state that
the players need in order to play part (a) perfectly, while the RHS is the state that they need to play
part (b) perfectly. Part (c) ensures that players have to “agree” on the term |00), and this enforces
that they must perform coherently the exchange in (6.14)) to high accuracy if they are to perform

well in all three parts.

Next, we give a precise description of our non-local game G,,,;. We denote by V,,,; its scoring

function. Recall that V3 cysy and VNtCHSH(%) are the scoring functions for games Gs3.cysy and

GcusH( \/Li ) respectively.

Question sets: X' := ({“3-CHSH”} x {0, 1,2}) U ({“NtCHSH(\/Lz)”} X {0,1}), and

V= <{“3—CHSH”} x {0, 1,2,3}> U ({“NtCHSH(%)”} X {0,1}). Answer sets:
A=B=1{01,2}.

The game consists of the following three parts, executed with equal probability.

(a) Pick uniformly random x’ € {0,1,2} and y/ € {0,1,2,3}. Send x = (“3-CHSH”, x) to
Alice and y = (“3-CHSH”,y’) to Bob. Let a and b be the players’ answers. The players’
score is Vop(a,b,x,v) = Va.cusu(a, b, x',y').

(b) Pick uniformly random x” € {0,1} and v’ € {0,1}. Send x = (“N'[CHSH(\%)”, x') to
Alice and y = (“NtCHSH(\/LE)”, y') to Bob. Let a and b be the players’ answers. The
players’ score is V,,,(a,b, x,y) = VNICHSH( 1 )(b, a,y’,x") (notice that the roles of the two

S

players is switched in the last expression).

(c) Send question x = (“3-CHSH”,0) to Alice, and question y = (“NtCHSH(%)”, 0) to Bob.
Let a and b be the players’ answers. Their score is

1, if (a,b) € {(0,0)} U ({1,2} x {1,2})

0, otherwise

V(a,b,x,y) = {

Figure 6.1: Our non-local game G,,,;,

Proposition 6. The value of the non-local game G,,,;, of Fig. is W*(Gepp) = %(w;‘_CHSH -+

*
C‘)NtCHSH(Lz) +1).
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*

Proof. Clearly, w* < %(a);_CHSH +w + 1). Otherwise, there would exist a strategy S

NtCHSH(\%)
such that the value w (S, Gepp) > 3(W}.cpsy + @ cusp(L) T 1)- This would imply that at least
~ (\7@)

one of the following holds:

* The restriction of S to part (a) has value greater than w3 ~yqy-
* The restriction of S to part (b) has value greater than W, cygp-

* The restriction of S to part (c) has value greater than 1.

All three of the above are clearly impossible.

On the other hand, we will construct in the next section a sequence of strategies whose value in G

gets arbitrarily close to %(a)g‘_CHSH + w* crsa( 1) T 1). This completes the proof. O
~t (ﬁ)

6.2.5 Completeness

In this section, we describe a family of strategies whose value in our non-local game G,,,;, gets

*

NtCHSH(%)

[6). A strategy in the family is parametrized by d € IN. The provers start with the state
1

V3

where |I';) is an embezzling state. We give first an informal description of the ideal measurements,

arbitrarily close to %(wz‘:—CHSH +w + 1) (which also completes the proof of Proposition

(100) +111) +122)) 45 @ [Ta) arpyr (6.15)

and we follow this by a formal description.

» Upon receiving a question with prefix “3-CHSH”, Alice and Bob perform the corresponding
ideal measurement for 3-CHSH. In particular on question (“3-CHSH”,0), Alice measures
her half of the state in (6.15)) in the computational basis.

* Upon receiving a question with prefix “NtCHSH(\%)”, Alice and Bob first apply embezzling
unitaries W 4 ,» and Wy respectively, such that (approximately) %(Hl) +122)) — |11)
and |00) — |00). So the resulting state is

2 /(1
2 AB

They then perform the corresponding ideal measurements for NtCHSH(\%) on registers
A, B (where Alice takes the role of the second player, and Bob takes the role of the first
player). In particular, on question (“NtCHSH(%)”, 0), Bob measures his half of the state
in (6.16) in the computational basis.
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A key observation is that when Alice and Bob are asked questions (“3-CHSH”,0) and
(“N‘[CHSH(%)”,O) respectively, then it is straightforward to see that, if they follow the above
strategy, they reply with answers (a4,b) which attain a score of 1 in part (c) of Fig. ie.

(a,0) € {(0,0)} U ({1,2} x {1,2}).

Next, we define the players’ ideal measurements precisely. Recall the isometry V : C2 — C3
defined in Subsection as follows:

VI§0)y=11), V1) =[2)

Recall also the notation introduced in Subsection along with V. In particular, we write V(O)
to refer to the pushforward VOV of O along V. For O an operator with +1,0, —1 eigenvalues,
we write O™ for the projection onto the +1 eigenspace and O~ for the projection onto the —1
eigenspace. If 4 ~ C, we still write 0% to mean 0% = [0)(0[ 4 — |1)(1| 4. On the other hand,
in accordance with the notation above, we write V (0%) 4 to mean V (0%) 4 = [1) (1|4 — 2)(2] 4.

Let {|T4) sparp: } be the embezzling family from Example 7, and W4/ @ (C?)4 ® (Cz)i’fl —
(C?) 4 ® (C?)37, Wppr 1 (C?)p @ (C2)57 — (C?) 4 ® (C?)37 be the left-shift unitaries over the
d + 1 qubit registers. Define W4 ,, : (C?) ; ® (Cz)f,d — (C) ;1 ® (Cz)ff,d as

Wan = (1000 @ Iy) @ [(VO Wau (VI )],

and define WB g analogously.

The following is the family of ideal strategies for G,,,;, achieving a value arbitrarily close to

1 * *
3 (W3 cusu + “’NtCHSH(%) +1).

Definition 44 (Ideal strategy for G,,,,). The family of ideal strategies is {S;}acN, with Sy =
(1¥a), {P2},{Qy}). where

1
V3
and the ideal measurements are described in Tables[6.10 and

[¥a) = —=(]00) +[11) + |22)) 45 ® |Ta) orpr s



‘ 0 1 2
X
(“3-CHSH”, 0) 10)(0] 4 1) (14 12) (2] 4
13 99 + — ~
(“3-CHSH”, 1) (ax)A (ax)A 12)(2| 4
(“3-CHSH”, 2) |0)(0] 4 V()] 5 [V(e)] 5
(“tCHSH(%), 0) | Wt A,([ax(aj‘:%)*ax] A®TIa)Wia | Wh A,([U"(UZ:%)*U"] AQLAWia | Prest
(“tCHSH(%), 1) || Wi A,([aX(aof:%)*ax] A®Ia)Wia | Wh A,([aX(a;C:%)wX] ® Lo )W u Prest
Table 6.10: Alice’s ideal measurements for G,,,;,. The entry in cell x, a is the projector Py (tensored
identities are implied where omitted, and P,.s; completes the set of orthogonal projections in a row).
b 0 1 2
Y
(“3-CHSH”, 0) (Uizl)g (ajzl)g 12) (2|5
(“3-CHSH”, 1) ((T;‘:l)'g (aof:l)g 12) (2|5
(“3-CHSH”, 2) 10)(0[3 Vel V(=)
(“3-CHSH”, 3) 10)(0[3 Vel Vgl
(“tCHSH(%), 0) WEB/([UX(UZ)_UX]B ® Ig ) Wgp WgB,([Ux(O'Z)*(Tx]B ® Ig ) Wgp Prest
(“tCHSH(\L@), D) || WEa ([0%(0%) "0 @ I )Wpp | Wh ([0 (0)T0¥]5 © Ip) Wy Prest

Table 6.11: Bob’s ideal measurements for G,,,,;,. The entry in cell y, b is the projector P;’ (tensored
identities are implied where omitted, and P,.s; completes the set of orthogonal projections in a

Iow).

Proposition 7 (Completeness). Let {S;} e be the family of strategies from Definition 44} and
Gemp the non-local game from Fig. ﬂ Then, w(S4, Gemp) = W* (Gep) — O(%)

Proof. The value of strategy Sy in part (a) is exactly w3 ~ygy- This is because the starting state
is the ideal state for w3 gy and measurements are the ideal ones from Definition The

value in part (b) is w* 1y — O(l). This is because the joint state resulting from the
~CHSH(75) d

embezzling transformation has fidelity 1 — O(%) with the ideal state for N‘[CHSH(%) (from
Theorem [25)), and the measurements for part (b) are also ideal. The value in part (c) is easily
seen to be exactly 1. Thus, w(Sy, Gemp) = 3 (W5 cpsy + witCHSH(%) +1) — O(}). Together
with the upper bound in the proof of Proposition [0] this completes the proof of Proposition [6]
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(. W*(Gomp) = (w3 cpsy + witCHSH(%) + 1)), and gives w(Sg, Gemp) = 3(Wh.cpsy +
witCHSH(%) + 1) - O(%), as desired. 0

6.2.6 Soundness
Theorem 27. There exists a constant C > 0 such that any quantum strategy S for the game G,

of Fig. with value w (S, Gopp) > W*(Gemp) — €, for some 0 < € < C, must have dimension
20(671/8)‘

The proof of Theorem [27|can be broken down into two parts:

(i) First, we will show that performing well in parts (a), (b) and (c) of the game imposes a certain

structure on the strategy of the provers.

(ii) Second, we show that such a structured strategy can be used to play well also in the “coherent
state exchange” game of Leung, Toner, and Watrous [53]]. This reduction allows us to translate
the lower bounds on the dimension of an approximately optimal strategy in the “coherent
state exchange” game to lower bounds on the dimension of an approximately optimal strategy

for our game.

Proof of Theorem[27] Let <|tp) € Ha® Hp, {P¢}, {Qz}) be a strategy whose value in G, is
e-close to W*(Gppp) = +(Wiepsy + Wicusy + 1) This implies that, for each part of the game,
the strategy’s expected score is 3e-close to optimal. From each part, we deduce the following
consequences. Note that these hold also for infinite-dimensional strategies (on separable Hilbert

spaces), since the self-testing results we invoke also do.

(a) From Theorem[26](the case d = 3), upon picking an appropriate constant C > 0, there exists
a local isometry @ : Ha ® Hp — (C3) 4, ® (C3)p, ® H 4 @ Hp, and an auxiliary state
laux) € H o @ Hp such that

= [¥) mo o) 5(100) + [11) +[22)) @ |aux)
- P(q‘g-CHSH”I()) ) ~e,0(e1/8) \% 00) @ [aux)

(b) From Theorem there exists a local isometry @ : Hq @ Hp — (C?)a, ® (C?)p, ®
H 4n ® Hpr, and an auxiliary state |aux’) € H 4» @ Hpr such that

= [¥) e 0(e12) 5(100) + V2[11)) @ |aux’)

- Qecustt o ¥ Fov o) 5100 @ faux’)
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0 ~ 0
(C) P(“3—CHSH”,O) |l/]> NO(Gl/Z) Q(“NtCHsH(%)”/O) |ll)>

Notice that (a), (b), (¢) = the local isometry ® := (®')(D)": (C3) 4, @ (C)p, @ Hpr @ Hp —
(Cz)Az X (C2)32 X HA” X HB” is such that

1 1 /
ﬁ(|00> +[11) + [22)) ® [aux) =g o(1/s) ﬁ(|00> +V2(11) ® |aux", (6.17)

and moreover , ,
e |00) ® |aux) ~g o3 Ve 00) ® |aux") . (6.18)

\/_ \/—
and (6.18)) immediately imply that
1
V2

We claim that the local isometry & can be used to approximately win the “coherent state exchange”

(111) + |22)) @ |aux) =g ocs) [11) @ [aux’) . (6.19)

game of Leung, Toner and Watrous [53]. More precisely, since Equation (6.19) is O(e!/®)-
approximate (with respect to Euclidean norm), we claim that one can construct a strategy which
employs @, and in which the provers initial state is |aux), which wins the game of [53] with
probability 1 — O(e? / 4). Assuming this claim is true, the rest of the proof is straightforward: it

was shown in [53]] that the winning probability of any strategy in the “coherent state exchange

1
32log?(3d)

1
3210g?(3d)
To conclude the proof of Theorem 27, we prove the above claim.

game” is upper bounded by 1 — , where d is the dimension of the states used; this implies

that it must be )
= O(eV/*) = d =200 %),

The “coherent state exchange” game of 53] between a quantum referee and two non-communicating

provers, proceeds as follows:

* The referee initializes a qubit register R and qutrit registers S and T in the state
1
E(|O>R 00)st + 1R ¢ )gr)s (6.20)

where |[pT) =

respectively.

%(\OO) + |11)). The referee sends registers S and T to Alice and Bob

* Thereferee receives single-qubit registers A and B from Alice and Bob respectively. The triple

(R, A, B) is measured with projective measurement {11y, Iy }, where ITy = I — |y) (7| and
Iy = [7) (y|. and ) = J5(|000) + [111)).
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Consider the following strategy of the provers for this game. They start by sharing the state
laux) € H 4 @ Hp. Upon receiving the qutrit registers S and T of the state (6.20), they apply
® to registers (C3)g ® (C3)1 ® H 4 ® Hp (up to relabelling registers A; and By as S and T),
obtaining a state in (C2) 4, ® (C?)p, ® H s» @ Hpr. Equations (6-18) and (6-19) imply that the
resulting state on registers R, Ay, By, A”, B is O(e'/8)-close to \%(|OOO> +[111)) ® |aux’).
And hence the state on R, Ay, B; is O(el/ 8)—close to the desired state (in Euclidean norm). Qubit
registers A and B are then sent back to the referee as A and B. Converting the O(el/ 8)-closeness
to a probability of winning in the game, gives a lower bound of 1 — O(el/ 4), and thus concludes

the proof.

6.2.7 Non-closure of the set of quantum correlations

A corollary of Proposition [/| and Theorem [2/| (completeness and soundness for our game) is that

the set Cys of quantum correlations induced by quantum strategies in the tensor product model, on

possibly infinite-dimensional and separable Hilbert spaces, is not closed, i.e. Cgs 7 Cqq (see the

beginning of Chapter|[6|for formal definitions of these sets). We use superscripts to denote question
m,m,r,s

and answer set sizes. For instance, Cqs is on question sets of size m, n and answer sets of size

r,8.

Corollary 7. C;§61313 £ 03&6,3,3.

Proof. In the proof of Theorem we argued that any strategy with value w*(G,,,;) — € in our
game G,,,; can be used to construct a strategy that embezzles an EPR pair into a product state, up
to O(e'/8) error in Euclidean norm. This implies that no strategy has value exactly w*(Gepp).
Suppose otherwise for a contradiction. Then, by the reduction in the proof of Theorem we can
construct a strategy that wins the game of [53]] with probability 1. From [53], this is known to imply
existence of a strategy that embezzles perfectly (the argument that shows this implication in [53]] is
phrased for finite-dimensional strategies, but it holds also for infinite-dimensional ones). A perfect
embezzling strategy consists of a state |¥) € H o ® Hp and a local unitary U = Uy 4 ® Upp
such that U |¢T) 45 @ |¥) 4 = |00) 45 @ [¥) 4. Since Schmidt coefficients are preserved
under local unitaries, it is clear that, whatever the Schmidt coefficients of |‘P) are, the Schmidt

coefficients of the LHS and RHS are different. This gives a contradiction.

On the other hand, Proposition gives a sequence of strategies whose value tends to w*(G,,p ). If
one considers the sequence of correlations induced by such strategies, it is clear that such a sequence
has a limit, and that the limiting correlation has value w*(G,,;;). Such a limiting correlation is

thus in C;&6’3'3 but not in C;§6’3'3.
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We emphasize that strictly stronger separations (for question sets of size 5 and answer sets of size 2)
are known [33,68]. The latter appeared after the original breakthrough proof of Slofstra, for much
larger question and answer sets [89]. What stands out about our proof is that, unlike all previous

proofs, it does not involve any representation-theoretic machinery.
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Appendix A

PARALLEL SELF-TESTING VIA COPIES OF (TILTED) CHSH AND THE
MAGIC SQUARE GAME

In this chapter, we show a very natural result: namely that playing n copies of the CHSH game
in parallel with ideal winning probability self-tests 7 EPR pairs. This is covered in Section [A.T]
(subsection [A.T.1] shows the result in the ideal case, and Subsection [A.1.2] extends the analysis to
the robust case). In Section[A.2] we generalize the result to copies of tilted CHSH.

A.1 Self-Testing via n copies of CHSH in parallel

A.1.1 Ideal self-testing of n EPR pairs

Let Alice and Bob’s Hilbert spaces be H 4 & H p respectively. They receive questions x, i, to which
they reply with answers a, b respectively. We denote their projective measurements by {Ha| L} on
Ha for Alice, and {I1,), } on Hp for Bob. Let their joint state be [¢). We take Alice and Bob’s
joint state to be pure for ease of exposition, but it is straightforward to check that all the proofs go

through in the same way if one assumes a mixed state.

For the case of n copies of CHSH, we have 4,b, x,y € {0,1,..,2" — 1}. We set:

x=2""1x 4+ . 4 2x,1 + xn y= 2”_1]/1 + .+ 21+ Yn
a=2"tay + .. 4+2a, 1+ay, b=2""1p+ . +2b, 1+ by,

with the a;, b;, x;,y; € {0,1}. The idea is that we are splitting the inputs and outputs as if they

were received from n different CHSH tests.

In what follows, foraw = (wq, wy, .., wy,) € {0,1}", we will denote w = 2"~ 1wy +.. + 2w, _1 +
wy,. Next, generalising the setup of Wu et al. [100] (in a similar fashion to what is also done by

McKague in [61]) we introduce the operators
Z(k) _ Z HA . Z HA
i alx alx’
a=(ay,..,4;_1,0,8;11,-,4n) a=(ay,..a;_1,1,8;11,-,0n)
where x is the kth smallest element of the set {x : x = (x1,..,x;_1,0,X;1,..,X,) }, and
X(k) _ Z HA . Z HA
i alx alx”’
a=(aq,..,4;_1,0,a;11,-,0n) a=(ay,..,a;_1,1,8;11,-,4n)

where x is the kth smallest element of {x : x = (x1,..,x;_1, 1, Xj 11, .., Xn) }.
In the above, i € {1,.,n},and k € {1,..,2"1}. Here, Zl.(k) is the operator that Alice measures to
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get her ith output bit when her ith input bit (i.e. question) is 0, and the other n — 1 input bits are such
that the overall question x is the kth smallest element of the set {x : x = (x1,..,x;_1,0,X; 41, .., Xn) }
(this is just a convenient-to-state choice of ordering of questions, but there is no other particular
reason for choosing this). There are 2"~ ! possible choices for the remaining 7 — 1 input bits once
the ith one is fixed to be zero, and that is why k ranges from 1 to on-1 Similarly, Xi(k) is the

operator that Alice measures to get the ith output bit when her ith input bit 1 (instead of zero), and

(k)

Z' .

the index k has a meaning analogous to that for Z
Now fori = 1, ..,n we define

1 2n—1 1 2n—1
Vi/ - on—1 Z Zi(k)’ Wi/ - on—1 Z Xz'(k)'
k=1 k=1

Intuitively, one can think of Vi/ as the operator that Alice measures to obtain her ith output bit when
her ith input bit is 0 and she forgets about the other input bits, but assumes that they are uniformly
distributed. WZ.’ is similarly defined with the difference that the ith input bit is 1.

Construct V; and W/ analogously for Bob, but let the subscript 7 run from 7 + 1 to 21 (we avoid
defining the X;’s and Z;’s on Bob’s side just yet, as we’ll use these symbols differently in a moment).
Notice, now, that the condition of Alice and Bob having optimal CHSH correlations in the ith game

can be written as:
@I Vi(Vii + Wid) + WiV = Wi )] [9) = 2v2.

Now, we can state our first parallel self-test.

Theorem 28. Consider the setup (and the notation) described in this section, with Alice and Bob
each receiving n-bit questions and producing n-bit answers, and suppose that each of the n pairs

of Alice and Bob’s answers has optimal CHSH correlations, i.e. fori =1,..n
@I Vi(Vias + W) + WiVis = W)l 9) = 2V2.

Then there exist reflections {XX), ZX), X](;), Zg) }iz1.n and a local unitary U = Uy @ Up, where
Up € L(Hp ® (Cz)gﬁ).'D(n))for D either A or B, and a state |extra) , 5 such that

®2 ®n
U([$) ap [0) 30 510 atpm) = extra) ag [ ®F) 1y pa) ampon

[ ®2 ®n
U(Mg) 19) 45 10) 50 ) _ampon) = lextra) 45 (@50 |@T)™7) sy g, ammpon /

where (M,m) € {(X,x),(Z,z)} and 07 and 07 are Pauli operators acting on qubit
subsystem D,
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In the rest of this subsection, we will be proving Theorem [2§]

Now, for each of the n subtests, the optimal CHSH correlations give, fori =1, ..,n

2n1 an

W[ 200w+ DX 0w )ig) =22,

where we have only substituted in the definition of V; and W; on Alice’s subsystem.

We also have 7 - 2"~ separate CHSH inequalities (one for each pair (i, k)):

<1’b| [ " ( nti T W/-H) + X( )(Vriﬂ n—s—z)} |¢> < 2\/—

It’s easy to see that since equality holds in (A.I.T)), equality must also hold in all of the above
n - 2"~1 separate CHSH correlations. This will be exploited shortly.
First, fori =1, .., n, let

-1
ZJ/H—I = (Vi’/l—l-l + W, nti T ﬂKer Vi it W, )| nti T W/—i—l + ]lKer(V’ A+ W

n+i n+1) | /

l’l+l
and
! / / -1
Xn—l—z = (Vn—l—z Wn+z + ]lKer (Viei=Wiii) )| n+i n—l—z + ]1Ker(V,;+l W;1+1)| :

This is the same unitarization step that we discussed at the end of Section

Now, we state a generalization of the swap isometry (Theorem [3] from Section [3.3) to n sets of
observables and 7 singlets. The extra condition we require is that operators on the same side, but
corresponding to different indexes i and j, commute. Actually, and this is a crucial point for what

we will be able to derive in our analysis in the next sections, we only require that they commute on

).

Proposition 8 Let |lp> ap € Ha ® Hp be a bipartite state. Suppose there are reflections
{X A 1(4 ; B ,Z }l o acting on subsystems A and B as indicated by the subscripts), such

that Vi, j(i # j) M |lp> |l[J> where M, N € {X,Z}, and similarly for subsystem
B. Suppose, moreover, that foralli the followmg holds:
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Then there exist a local unitary U = U, ® Up, Up € L(Hp ® (Cz)gﬁ) D(n))for D either A or
B, and a state |extra) 4 such that

®2 ®n
U(1$) 4 10) 4@y gy _aempem) = lextra) 45 [®7) 40500 e g
2 ®Tl
U(Mpa) |$) ap |0>§<1;;B<1>_,A<n>3< ) = lextra) o5 (0} |q’+> ) A BM_Al) B

for (M,m) € {(X,x),(Z,z)}, where ¢}, is a Pauli operator on qubit subsystem D and an
identity is implied on the other subsystems.

Proof: We include a proof of this proposition in the Appendix. Note that this is an ideal case result
(meaning that the operator relations required in the hypothesis are exact). For our robust result, we

make use of a robust version of this proposition, which follows almost directly from results in [16].

Next, we appeal to the following Lemma from [62]], which is just a specialization of Lemma 3| from
Chapter

Lemma 49. ([62|]) Let )5 € Ha ® Hp be a bipartite state. Suppose the reflections
z,, Xy, Vg, W satisfy

(Y| Z4 (Vg + Wp) + X, (Vg — Wp) ) = 2V2.

Then, defining Z]/B = (Vl/? + Wi? + ﬂKer(Vl';—&-Wg)”Vl/? + WI/B + 11Kf:r(\/1’3—|—Wl’3)|_1 and X% = V]é o
Wi + Tker(vy—wy) )|V — Wh =+ Tker(v—wy) |~ we have

Zylp) = Zp|p)
X ) = Xp|¢)
Zy Xy [9) = =XuZy )
ZpXp|p) = —XpZp|¢) -
Applying this Lemma 7 times for i = 1, .., n with Zl.(k), XZ( ) V,;Jrl and WnJrZ, gives
k)
2 |y) = Zii 1)
k)
X [p) = W |¢>
k) k
28X 1) = X129

n—H +1 W)> n+z —|—z |l[J>

where the first three hold fork = 1,.., 2" L.
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We will use the above Lemma to prove some commutation relations (on |i)) between operators
corresponding to different subscripts. This will allows us to exploit Proposition [8] stated earlier.
Recall, also, that we already have commutation between the operators indexed with subscripts up
to 7 and those indexed from #n + 1 to 2n, since the former act on Alice’s side and the latter on Bob’s

side.

Consider subscripts 7, j, (i # j). Then notice, for example, that Zl-( )

commutes with Z (thlS
is actual commutation, not just on \gb)), because, by construction, both operators are sums of the
same set of orthogonal projections (the ones corresponding to question x = 0), appearing possibly
with a different sign. In fact, there are 22 pairs of superscripts (k, ) such that [Zi(k) , Z](l) | =0.
Consider one such pair. Then,

k) (I )~ (k
=79200 |y) = 22 |p)

=29z, " ) =27, - ) by Eq.
=720 [§) = Z ] U ly)
:>Zrl1+] nti|¥) = n+z n+] ) by Eq. (A.LT) (A.1)

And this holds for all i, j € {1,..,n}. But it’s easy to see that this then implies
l 1 k _
Dlyy =20z |y) wki1e {1,271 (A2)

Similary, we also get, forall i,j € {1,..,n},

nﬂ +1!¢> i ’+j!¢> (A3)
= xFxW |p) = ey ke {1,271} (A4)
and
nﬂ +z|¢> j ’+]~|¢> (A5)
= zFxV|y) = D9y) vk ile {1,271, (A.6)

We have all we need in order to apply Proposition [8l As our testing measurement operators we
choose

(xW,zW;x! ., 70 ) fori=1,.,n.
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Notice that there is no particular reason for choosing superscript 1, and we could replace it with

any other k € {1, ., 2n1 } Now, for each i, the conditions of Proposition [8| are met:

z ) = Z) 4 |9)

XV [y) = W |¢>

zVxV ) = -xVz) )
Zy X)) = =X 20 W)

Moreover, for each 7, j (i # j), we have the commutation relations (on |¢)) required by Proposition

8

zVz 1) = 2VZ" |y) by Eq. (&2)

xVxV ) = XX |p) by Eq.

zVxM ) = x Mz ) by Eq. (A6)
and

ZyyiZ +] ) = n+] nvi [9) by Eq.

XX +] ¥) = X5 i X si [9) by Eq. (A.3)

Zy i Xy [9) = X0 Z0si W) by Eq. (A.5).

So we can apply Proposition[§]to deduce that there exists a local unitary U = U4 ® Up and a state
lextra) ,p such that

®2 ®n
U(1$) ap 10) 4T gy ampm) = lextra) 45 \‘1>+> ) A B
2 ®
D(Mpiy [¥) a5 |O>§)(17)IB(1)_,A(”)B( ) = lextra) o5 (0 ")

) A1) ampm (A7)

for M € {X,Z}, where (TTD”(i) is a Pauli operator on qubit subsystem D, Thus, we have proved
Theorem 28]

A.1.2 Robust self-testing of 7 EPR pairs

In this subsection, we make the self-testing result of the previous subsection robust. We show that
if Alice and Bob’s correlation is close-to-optimal in each of the n copies of the CHSH game, then
the state that they share is close to n EPR pairs.

Just as we constructed operators satisfying the conditions of Proposition [§] exactly, in the case

that Alice and Bob’s correlations are perfect in each of the n copies of the CHSH game, we will
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show, next, how to construct operators that are close to satisfying those conditions when Alice and
Bob exhibit close-to-optimal correlations. We will find such operators by looking (more carefully)
amongst the ones we constructed earlier. We will then call on a robust version of Proposition [§]

namely Theorem [30] to deduce the existence of the desired isometry.

Here, we will assume without loss of generality that Alice’s and Bob’s spaces H 4 and Hp are of
even dimension, and that their observables are balanced (meaning that the +1 and —1 eigenspaces
have equal dimension). This assumption is required in the proof, and notice that it can always be
satisfied by taking the direct sum with another space of appropriate dimension on which |i) has

no mass, and extending the original operators via a direct sum with an appropriate reflection.

We state, for completeness and clarity, the robust version of the self-test of Theorem [28] that we

will prove.

Theorem 29. Consider the same setup (and the notation) of Theorem[28] with Alice and Bob each
receiving n-bit questions and producing n-bit answers, and suppose that each of the n pairs of

Alice and Bob’s answers has CHSH correlations that are €-close to optimal, i.e. fori =1,..n
<ll)’[ ( n+z+wl+z) +W(V1;+z n+1)]|lI]> > 2\/—_€ (A.S)

Then there exist reflections {XA ,ZS‘),Xg3 ,Z }1 1,.n @ local unitary U = U @ Up where

: Hp ® (CHEH" — (C2)5" ® Hp for D either A or B, and a state |extra) € H, ® Hp
such that, letting [') = |¢) @ | @) 5 @ | O3 € Ha® (C2)57" @ Hp @ (C2) 5", we have
that Vi

u y¢'> _ 1@+>§g ® |extra) || = O(n¥/e)
luxy |y - ®”®\extm>||=0(n%ﬁ)
luzy) |¢') - )| = O(n2ve),

where D) is the ith qubit subsystem of (CZ)%”, and Ulg(f) and ‘7123(1‘) are Pauli operators acting on

subsystem D).

Note that here the local isometry adds, as ancillae, 7 EPR pairs to Alice’s subsystem and 7 to Bob’s
(these EPR pairs are not shared between the two provers, but each prover has n pairs separately),
while in Theorem 28] instead, the isometry added simply a product of zeros. In the remainder of

this subsection, we will prove Theorem [29]

Let S denote the correlation value of a CHSH game corresponding to a certain quantum strategy.
Recall that —21/2 < S < 24/2 and that S = 4[2Pr[Win] — 1], where Pr[Win] is the winning
probability of said strategy.



203

Let S; denote the correlation value of the ith CHSH game, which is given by the LHS of equation
(A.8). So, with Sl(k) given by the LHS of equation (A.1.1)), we have S; = zn = Zzn ' and also
Pr[Win game i| = 2,,%1 2%:11 Pr[Win game i|k]|.

Now, by hypothesis we have that S; > 2v/2 —e fori = 1,..,n, i.e. for each of the n games Alice
and Bob win with probability Pr[Win game i] > (\f +1) — § := ps — §, where p, is the ideal
winning probability for CHSH.

Claim: For each i, there are at most 2”3 — 1 values of k s.t. Pr[Win game i|k] < p. — g—’e
Proof: Suppose for a contradiction that there are at least 2" ~3 values of k s.t. Pr[Win game i|k] <
Px — ge. Then

1 n— n— n— 5
(2" =2+ 2" (p. — e

. Be_ e
—PeTag s PTg

Pr[Win game i] <

N
=

which is a contradiction.
Hence, for each i, there are at least 272 4 2"~3 + 1 values of k s.t. Pr[Win game i|k] >
p.— 3¢ = 5" >8p, —5¢—4=2v2—5e.

For each i denote by G; this set of "good" values of k.

Now, we call on a special case of Lemma[50, whose proof is found in [7] (we will use this Lemma
again in its full generality in Section[A.2).

Lo . . +W;
The setup and notation is the same as in Subsection |A.1.1} and again let Zn = W’WT’,W and
v W'

n+z|

X;l = W Then, Lemma L with 0 = 4 , implies that for each i = 1, .., n and for each

n+i

k € G; we have

k k
1% = X 9y | < e 1Z® —Z ) | < e
K)ok k) (k
1(zFx® 4 xB 20y 1y || < e W(Z, X+ X2 ) ) | < e,

where €1 = O(\/€).

Next, consider i, in {1,..,n} with (i # j). Just as we mentloned in the analysis of the ideal
case, there are 22 pairs of superscripts (k,[) such that [Zl.(k) ] = 0, (in each pair the two
superscripts correspond to the same overall questions, so for any two different pairs (k,[) and (k, l)
it is also the case that k # kand] # l=). It is easy to see, then, that since there are at most 2n=3 _1q
values of k € {1,..,2" "'} such that k ¢ G; and at most 2”’3 — 1 values of [ € {1,..,2""1} such
that! ¢ G;j, there must be at least one palr (k,I) such that [Z z! )] = 0 and such that both k € G;

and I € G;. So, Z |¢> . |l[J> and using equatlon A.1.2) and triangle inequalities
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we have:
1Z0 2z~ 2070 ) ) | < 26

H(Z;H—]Z;H-z Zil1+1 n+]) |17L7> H < 4e;

= 2Pz -z |y) || <8ey forallk € Gl € G;.

Similarly we also find

||(X1,1+]X;z+z Xll’l+l n+]) ) || < 4eq

= [[(x9x = xVx" ) || < 8e1 forallk € G;1 € G

and

H(X:H-]Z;—H Z1/1+1 n+]) |ll]> ” < 4€

= [(ZOx) = XDz ) || < 81 forallk e Gl € G,

Now, we state a robust version of Proposition[§] which follows almost directly from results in [16],

upon straightening out small details. The results from [[16] are stated precisely in the Appendix

(Theorems [34] and [35)).

Theorem 30. Let |¢) 5 € Ha @ Hpbea bipartite state where H 4 and H g have even dimension.
Suppose there are balanced reflections {XA , ZS), XB , }1 1,..n Such that, for D either A or B
and for all i # j, they satisfy
1M ly) — M [y) || <e

14X, 5 ) || < e

| 1M NGV l) || <e,
where M,N € {X,Z}.
Then, letting |¢') = ) @ |®1)5) @ |®T) " € Ha® (C)" @ Hp ® (Cz)gzn, there exist
a local unitary U = Uy ® Ug where Up : Hp ® (CZ)%,Z” (CHE" ® Hp and a state
lextra) € Ha ® Hp such that Vi

|u \gb’> \<D+> ® |extra) || = O(nle)

Jux; [9') - )
||LIZ ") — q)+>AB ® |extra) || = O(nle),

where D) is the ith qubit subsystem of (Cz)%n, and (Tl’;(i) and (le_)@ are Pauli operators acting on

NI

" @ |extra) || = O(n

subsystem DO,
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Proof: Except for one small detail (which is dealt with in the Appendix), this Theorem follows
already from results in [I6]. These are stated precisely in the Appendix (as Theorems [34] [33),
although we refer the reader to their source ([[16]]) for their proof.

We are now in the position to apply Theorem [30] to the following choice of operators. For each
i=1,.,n fixak; € G;. The choice of operators is then {Xi(ki), Zi(ki), X;IH, Z;z+i}’ fori =1,..,n.
These, as we have shown, satisfy all conditions of Theorem with O(€71) bound. Now, recall that
€1 = O(y/€). This implies, by Theorem [30} that there exists a local isometry, which adds n EPR
pairs on each side (separately) as ancillae, sending |) to a state that is O(n%\/g) -close to a product
of n EPR pairs shared between Alice and Bob, with the action of the constructed operators on |)

mapping to that of the appropriate Pauli operators. This completes the proof of Theorem [29]

A.2 Self-Testing via n copies of tilted CHSH
In this section, we generalize self-testing of n EPR pairs in parallel via n copies of CHSH to
self-testing of n tilted EPR pairs via n copies of tilted CHSH. To aid exposition, we will treat the

ideal case (subsection [31]) before the robust case (subsection [32)).

A.2.1 Ideal self-testing of 7 tilted EPR pairs
First, recall that we already know ([102]], [[7]) how to self-test a single pair of partially entangled
qubits |¢g) := cos6|00) + sin6|11). In fact, observing maximal violation of the tilted CHSH

inequality, i.e.
aAy + AgBy + AgB1 + A1By — A1B1 = /8 + 2,32
1-p2

4+p2
We naturally extend this to the parallel setting, and ask whether observing n pairs of answers

self-tests the state |g), where sin(26) =

that individually maximally violate the tilted CHSH inequality for some 6;’s (possibly different)
self-tests a tensor product of tilted EPR pairs with the corresponding angles 6;, namely @7, ‘1;791, >

Define Vi/ and Wi’ fori = 1,..,2n in the same way as in Section Then, our self-testing theorem

in the ideal case is the following.

Theorem 31. Consider the setup (and the notation) of Section [A.1| with Alice and Bob each
receiving n-bit questions and producing n-bit answers. Suppose that there are angles 0;,1 = 1, .., n,
such that the ith of the n pairs of Alice and Bob’s answers has optimal tilted CHSH correlations

with angle 0;, i.e. fori =1,..,n

(W [BiVi + Vi(Vari + Wypy) + Wi(Vys = Wi )] [9) = /8 + 287,
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where sin(26;) = P Then there exist reflections {X(i) zW x) Z(i)}- and a local
1 4"'512. ArLpa DB 4B Ji=1,.n

unitary U = Uy ® Up, where Up € L(Hp ® (CZ)?;Z) o) Jor D either A or B, and a state

lextra) 45 such that

n

U(|$) 5 |0>®2n | Ampm) = lextra) 45 (X

]‘_

] ®2
UM} [9) 45 10) 57 50)_scn o) = lextra) ag ( ® ‘¢9> )B<n>> /

¢ej> ) A B)_AG) B

where (M, m) € {(X,x),(Z,z)} and 07 ;) and 07, are Pauli operators acting on qubit subsystem
D),

Now, by hypothesis each of the 7 pairs of answers maximally violates the tilted CHSH inequality

for some angle 6;. Then, recalling the definitions of Z i(k) and Xl-(k) from Section |A.1} we have, for
i=1,.,n:

an 2n1 2n1
[Z,Bz +ZZ 1’l+z+W/+z +ZX n+z n+z)}|¢> \/8+2 12/

(A9)

: 42
where sin(26;) = [ ;= B

We also have 7 - 2" ! separate tilted CHSH inequalities (one for each pair (i, k)):

(] [IBiZz‘(k) + 2z )(Vr/erz + Wyypi) +X X" )(Vr/erz Wy )] 1) < 4/8+ 282 (A.10)

But we deduce that, since equality must hold in (A.9), then equality must hold in all of the above
n - 2"~ tilted CHSH inequalities. We will exploit this thanks to Lemma (from Bamps and Pironio
[7]), which we restate here for clarity:

Lemma 50. (/|7])Let )5 € Ha ® Hp be a bipartite state. ~ Suppose that reflections
Z', X'y, Vg, W satisfy
(] BZi + Za (Ve + Wg) + X, (Vs — We)[y) = /8 + 25,
Then, defining Z; = (Vi + Wp + ﬂKer(Vé+Wg))‘V1§ + Wp + lKer(Vl’;+WI’;)|_1 and X = Vg —
Wi + Tker(v—wi) )|V = Wh + Tker(vy—wiy |~ we have
Zy ) = Zg|y)
sin0X'y (I + Zg) |¢) = cos 0X5(I1 — Z/y) |¥)
ZyXalp) = =XuZyly),  ZpXply) = —XpZp|¢p) ,
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where sin(260) = :gz and tan y = sin(20).

Now, define

Z1/7+1 = (Vr/z+z + W,+z + ﬂKer Vi WL )| nti W/+z + IlKer(V’ AW -

n+1)| /

and

/ / /
Xn+z = (Vn+z Wn+z + ]1Ker _Wr/H»z )| n+i n+z +]1Ker( Wr’,+l)|

Then, by Lemmam we have thatforeachi = 1,..,,nandk = 1, ..,2" ! the following two relations

are satisfied:

2 \9) = 2} 1w) (A1D)
sin 0, X" (I + Z.,,) [) = cos 6, X", ;(T — 2" |y) . (A.12)

We will also make use of the following further generalization of Proposition [§]

Pr0p0s1t10n 9. Let |1/J> g € Ha ® Hp be a bipartite state. Suppose there are reflections
{XA , fq),Xg), }l 1,..n and angles 0;, i = 1,..,n, such that the following conditions are
satisfied for each i:

Z)19) =2 19) (A13)
sin0; X (1+ 2 [p) = cos X5 (1 — 1) ) . (A.14)
Suppose, in addition, that ¥i,j(i # j) we have M |l/)> ]lp> where M,N €

{X,Z}, and similarly for subsystem B.
Then, there exists a local unitary U = Uy @ Up, where Up € L(Hp ® (C2)§1(11> D<">) for D
either A or B, and a state |extra) 4 such that

n

U(19) ap 10) 4 r_acnpin) = lextra) 45 (&)

j=1

¢9j> ) AR At B

n

U(Mg) [¥) AB |O>§(21};B(1),,A(")B( ) = lextra) o (o ( (®
j=

Vo, > ) 4B, A0 B(”)) :

where (M, m) € {(X,x),(Z,z)} and 0f, and 07, are Pauli operators acting on qubit subsystem
DU,
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Proof: See the auxiliary results of Section

We have already argued above, that Z fk), X (k) Z,’1 4 and X,’1 4jas defined earlier satisfy conditions

(A13) and (A1d) fori =1,.nand k = 1,.,2" L.
Recall, that we already know that operators indexed with subscripts from 1 to # commute with
those indexed from 7 4 1 to 2n, since they act on Alice’s side and Bob’s side respectively. So, it is

sufficient for us to show that for each i we can make a choice of k (possibly depending on 7) such that

the commutation relations of Proposition @ are satisfied for each i # j when we set ZX) = Zl.(k) ,
XX) = XZ.(k), Z( ) — ZfH_Z and Xé) X;z—i—l’ fori = 1,..,n. This is what we will show next, in a

similar (although slightly more involved) fashion to the case of non-tilted CHSH in Section

First, notice, just as in Section that for each i # j one can pick kl e {1, . 2”_1} such that

[Zi(l_(), Z]@] = 0 (there are 22 such pairs k, [). Then

=72z y) =22 |y)
(k

=7 >Z,2+]-|¢>= ~ +i|lp> by Eq. (&1T)
:>Z1/1+] i |lp> n—l-z] |l[J>
=Zyy i Znsi|0) = ZysiZis i 19) by Eq. (ATT). (A.15)

But then equation (A.15)) implies, by condition (A.11)), that

! 1) (k B
Ny) = Z})Zf V) Wk 1€ {1,.,2"1}
and this holds for all 7 # j.

The same exact trick, as one can easily see, doesn’t quite work for pairs X, Z and X, X and things
are slightly trickier. First, we will show that, Vi # j and Vk, I,

xP(1-2{Nz ) = 0 xP (1 2) y) (A16)

xP+zz) gy =2 x0 1+ 2 y) (A17)
For any i # j one can pick k,[ € {1,..,2"~1} such that [X (k) ,Z(l_)] = 0. Then

>x(1 - Zﬁ"’)Z]“) v) =2"xP01 -z ) (A18)
since we have already shown that Z |l/J> = Z 1( & ) for all k, 1. Then, notice that by

multiplying both sides of (A.12)) by Xi( )X we also have

n—+i

sin0; X, ;(I+ Z,,.;) |§) = cosb; X( )( ) lp) . (A.19)
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Hence, using (A.19) and (A.TT)) in (A.18]), we get

tan 0; ZI/1+]X1,7+1(I + Zn+z) |IP> tan 0; X;erz(I + ZnJrz) 1/1+]' |¢> (A.20)
=X(1— 20Nz 1p) = 2 x[7 (1 - ) |p) again by (ET9) and (AT,

where the last line holds for all k, [.

Finally, if we start from

where we have only changed a plus to a minus from (A.18)), then we similarly obtain

cot 6; Z;/1+] n+z(I n+z) |l/)> = cot6; X1,1+z( Z1/1+z) ;Hrj |1P> ’ (A'21)

and the latter implies (A.17).
Relations (A.T6) and (A.17) also hold for subsystem B, as we have obtained along the way in (A.20)

and (A.21).
Hence now, summing up (A.16) and (A.17) gives precisely

SRV NN

and similarly we obtain
Z, —|—]X1/1—|—z ) = +iZ;/1+j- )

We are left to obtain the X, X commutatlon For any i # j one can pick k., € {1,..,2"1} such

that [X{7, X{V] = 0. Then X[ X" |y) = xVx{ |y).

Now, apply (I + Z;_;)(I+ Z,’H]) to both 51des to obtain

X1+ 2, x4z, ) 1wy = XD+ 2, )xP U+ Zi,0) v

where we have used commutativity of Z/, 4;and Z 4jon |).
=XV 1+ 2. [cot0X,, (1= Zp ) = X1+ Zy ) [cot0:X, (1 — Z4 )] 1)
= [cot§;X,, (I = Z,,j)][cot0:X (T = Z3,1)] [9)
= [cot 0;X;, (I — Zvl1+z)][C0t9'X1/1+j(I Z;/1+])] ¥)
= cotfieot; (X, X1 [¥) — Xy i Zng i X 19) — X0 i X iZnsi [9) + X0 Zng i X iZnsi [ 9)]
= cotfleot?; [i <], (A.22)
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where to get the second line we used Z,Z and X,Z commutativity and a simple trick from the
auxiliary results (Section [A.3]) which allows to commute operators when they are not directly in
front of |¢).

. (]) 5 z‘ x® .
Now, if we start from X;"' X |l[)> = X X;" |) by applying (I — Z] ,;)(I — Z, . ;) to both

n+i n+j
sides instead, then we obtam in a similar fashion,
ta/nai’tﬁn/e/ [X1/1+] n+i |l/)> + Xn+] n+] —H |lp> + X/ n+1 —H |lP> + Xn+]Z;1+] n—H +z |l[J>]
= tanb; il (A.23)
And now,
B2 + B2 =X Xy () + X Zh X i Zh |9)
- X;H-z n-+j |l[J> + Xn—&-zZ;H-zX/ +]Z1/1+] ‘l[)> (A'24)
. . . / / (k) 5 (1) _ (D5 (k)
Now, similarly starting by applying (I +Z, . ;)(I — Z,_;) to X; X; lp) = XX ), we
obtain
cot t; [ n+] —H |lIJ> + X/ n+] —|—1 |1/J> n+] n+z —|—1 |1/J> n+] n+] n—l—l —H |lp>]
= W[ n+z +] |lp> n+z n+1 +] |lp> + X/ 11+]Z1/’l+] |l[J> n+1Z1/1+1X1/1+]Z1/1+] |l/]>] :
(A.25)
I . . l' IE
And similarly, starting by applying (I — Z;_;)(I + Z,’1+]) to X |1,b> |l[)>
obtain
tan [X, +]X1,’l+l ) — n+]Z;z+]X;z+z ) + X, X1,1+zziz+z |7~P> n+]Z;z+]X;1+zZ;1+z )]
= W [X;H—z n+j |lrb> + Xn—H n+1 +] |¢> n—H n—l—j +] |1P> n+z n—|—1 n+] —|—] |l[J>] :
(A.26)
And so,
(A23) + (A26) =X Xpi |¥) — X Zyy i XosiZong |1/’>
= X1/1+z n+j ) — n—l—z n+1 n—l—] +] ) (A.27)
And finally,

(A.24) + (A.27) = X;/1+jX1/1+i ) = n—l—in/H—] ) -

And from this, simply by running the same calculations swapping the roles of subsystems A and B

we are able to also obtain

D ) = X](Z)ka) |¢) and this holds Vk, ! (not just k,I'!).
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Thus, we have shown that the commutation conditions of Proposition @ are satisfied for both
subsystems A and B for all i # j when we set ZS) = Zl.(k) XX) = Xl.(k), Z( i) = =7 i X( i) =X .
and Zz(‘l) = Z( ) X1(4) = X](l), Z( I — 7/ and XY = X’ . And this is true for any choice of

n+j B n+j-
k1€ {1,. ,2” n,

Hence, for instance, the set of operators {Zl-(l), X( ) Z,’1 . +l}l 1,.n satisfies the hypothesis of

Theorem([9] and this implies the existence of the desired isometry, completing the proof of Theorem

B1

A.2.2 Robust self-testing of 7 tilted EPR pairs

In a similar vein to Subsection [A.1.2] we show that if the correlation of Alice and Bob is close
to maximally violating # tilted CHSH inequalities for angles 0;, i = 1, .., n, then the joint state of
Alice and Bob must be close to a tensor product of 7 tilted EPR pairs with the angles 6;.

Again, we assume without loss of generality that Alice and Bob’s spaces H 4 and H g are of even
dimension, and that their observables are balanced.

The precise self-testing statement is the following:

Theorem 32. Consider the setup (and the notation) of Section with Alice and Bob each
receiving n-bit questions and producing n-bit answers. Suppose that there are angles 0;,1 = 1, .., n,
such that the ith of the n pairs of Alice and Bob’s answers has €-close to optimal tilted CHSH

correlations with angle 0;, i.e. fori =1,..,n
<¢|[.Bivi+v(vr,l+z+wi,1+i)+W(V1;+z n+z)}wj> \/8—1—2‘3%—6,

_n2
where sin(26;) = ng.

Then, there exist reflections {XA , Zz(qi),X](3 ,Z }l 1. a local unitary U = Up ® Up where

: Hp ® (C2)®2" (C*)3" ® Hp for D elther A or B, and a state |extra) € H, @ Hp
such that, letting [y = ) @ (QIy [¢o,) ) 4 @ (Rfy [¢e,) ) € Ha ® (CP)57" @ Hp @
(C2)57" we have that Vi

IU9) = (R [¢e,) ) 45 @ lextra) || = O(nA/e)

j=1
IUXE 3 = o8 (R0, ) 4 @ lextra) || = O(n?VVe)
j=1

IUZE) [¢) = 05 (R |96, ) ap @ lextra) | = O Ve),
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where D) is the ith qubit subsystem of (CZ)%”, and (71’;(1.) and (lej(i> are Pauli operators acting on
subsystem D,

In proving Theorem [32] we will naturally need robust versions of Lemmas[50]and [9] The former is
from [7], given below as Lemma [S1] while the latter follows almost directly from results in [16],

given below as Theorem
Lemma 51 ([7]). Let |¢) 45 € Ha @ Hp be a bipartite state. Suppose that reflections
Z;‘, X;‘, Vé, W]'g satisfy

(| BZy + Z4 (Vg + Wp) + X4 (Vg — Wp)[y) = /8 +2p% —€.

Vi+Wg
2cosyu

VB Wp
Zsmy

Then, defining Zf; = and X}, := and letting Z; = é,,| and X := |X,,| (here 2

is Zg with the 0 eigenvalues changed to 1, and similarly for XB ), we have

(Z4 = Z5 [¥) || < O(Ve)
I'sin 60X} (I+Zp) [¢) — cos OX5(I = Z) [¢) | < O(Ve)
(Z4 X4 + XaZ4) 1) || < O(Ve) I(ZpXp + XpZp) [9) || < O(Ve),

where sin(20) = 4/ :—gi and tan p = sin(26).

Theorem 33. Let |¢) 45 € H a4 ® Hp be abipartite state, where H 4 and H g are of even dimension.

Suppose there are balanced reflections {Xg), ZX), Xg), Z](;) Yic1,. nandangles0;,i =1, .., 1, such

that, for D either A or B and for all i # j, they satisfy:

||z ) —Zy [9) || <e (A.28)

Isin 0 XY (1+Z)) [1y) — cos 0,X5) (1 - 23) |9) || < e (A.29)
(x5, zg 1wy || < e
MY, NP ) || <e,

where M,N € {X,Z}.

Then, letting [¢') = |) ® (Qf1 |[$o,)) 4 @ (11 [We,) ) g € Ha @ (CH5" © Hp ®

(C2)57", there exist a local umtary U Ug @ Up where Up : Hp® (C?)57" — (CH)S" @ Hp
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and a state |extra) € H @ Hp such that Vi

n

1U9) = (| we,)) 4 © lextra) || = O(ne)
j=1

JUXE 197) = 0% (@ [#0,)) @ leatra) | = Olre)
j=1

Izl [y — o2 (Q 1p9j>)AB®|extm> | = O(n?e),
j=1

where DU s the ith qubit subsystem of (C®E", and 0l and 07,

D) are Pauli operators acting on

subsystem D,

Proof: All the ingredients are already present in [[16]], and we only straighten out one small detail.
We refer the reader to the the auxiliary results of Section for the precise statements of the
Theorems from [16] (included as[34]and [35)) and full detail.

/
Wn—l—z

in the same way. Let S; be the correlation value of

Now, the operators {Z Z( } and V; are defined just as in the ideal case of Subsection
and from the latter also Z’ ; and Xn 4
the ith game, i.e. the LHS of equatlon ll and let Sl(k) be given by the LHS of equation (A.10).

Then, again, we have S; = 2n = Zzn '

Now, denote by Ii ) = v/ 8+ Zﬁlz the maximum violation achievable by S;, then by hypothesis we
have S; > Iii) —eforeveryi =1,..,n.

Then we claim that for each i there are at most 2”3 — 1 values of k such that Szgk) < I,Ei) — be.

Proof- Suppose for a contradiction there were at least 2”3 values of k such that SZ-(k) <I ii) — be.
Then

— [(27171 . 2”73)1,&1‘) + 2”73(1* . 56)]

which is a contradiction. Hence for each i, there are at least 2”2 + 273 4+ 1 values of k s.t.
S;k) > LEZ) — 5e. Again, mimicking Subsection|A.1.2} let G; be the set of such "good" values of k.
By Lemma [51] the above implies that, Vk € G;,

120 ) — Zl 9) || < O(Ve)
||sin9'x-<k><1+zn+l>| ) —cos0,X,,,,(1— ) [g) || < O(Ve)
1(zHx® 4 xPZz0) gy | <O(Ve)  IZhyiXhyi+ XosiZhi) [9) || < O(Ve).
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And now, by the same argument used in Subsection |A.1.2} we deduce that Vi 7 j there must be

(k) Z(l)] = Q0 withboth k € G; and [ € Gj, and

at least one pair (k, I) of superscripts such that [Z;", ;

similarly for the X, Z and X, X commutation.

By running the same calculations as in the ideal case of Subsection [A.2.1], just by using triangle
inequalities where we do not have exact relations, much like we did in Subsection|A.1.2] we deduce
that, Vi # j,

|22 — 2 2) 1g) | < O(Ve)
1z x" = x{"2{) |y) || < O( Ve)
IxPxP = x %) gy | < O( Ve)

for all k, I such thatk € G;and ! € G;.

Now, foreachi = 1, .., n pick ak; € G;. Then our choice of operators is {Xl.(ki), Zi(k"), X1/1+if Z1/1+i}
fori = 1,..,n. We have shown that these satisfy the hypothesis of Theoremwith O(+/€) bound,
and this implies that there exists a local isometry sending | i) to a state that is O(n%/€)-close to a
product 7 tilted EPR pairs with angles 6;, and maps the action of our choice of operators on |§) to

that of Pauli operators appropriately. This concludes the proof of Theorem [32]

A.3 Auxiliary results

Proof of Proposition[8] We first prove the generalization to a self-test of two singlets. The leap
to a self test for 7 singlets will be straightforward to see after that. Given a bipartite state |¢) 45
and operators {XS),ZS) ;Xl(gl),ZI(gl)} and {Xff),ZEf) ;Xl(gz) ,Zlgz)} satisfying the conditions of
Proposition [8] we will construct an appropriate local unitary U = U4 ® Up that achieves the claim

of the proposition.

The construction of the isometry generalizes the “SWAP isometry” method described in Section
[3.3] The idea is to extract the entanglement from the unknown system AB into a known system
of four qubits AW AR BMLBE) by performing a circuit that would simply swap the content of A
with that of A A®) (if A were actually a system of two qubits) and similarly for B.

The explicit unitary U 4 (or rather the part of it that matters when the ancilla qubit is in the state
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|0)) is then

Ua =3 [(1+21) @10) (0] 40 + X (1= Z) @11) (0] 40 |

17
4l
[T+ 22 @ 10) (0] 40 + XD (1= Z) @ 11) (0] 0 |

_<1+z”><1+z ) ® 0) (0] 40 ® 10) (0] ye
+ (1 + 22X (1= 22 ©10) (0] 40y ® [1) (0] 42
+ XD (1= 21+ 22) @ 1) (0] 4y @ [0) (0] 4o

+x3(1-2zY) g><1_z§3>> @ [1) (0l4 @ 1) (Ol 40 | -

il

Up is then similarly defined. So, we have

U |) o5 [0000) 40 g1y 4@ g = Ua @ U [§) 45 10000) 41)51) 42 g2
! [(1+z”)(1+z<2>)(1+z )I+Z )Y 1) 10000)
I

+ o+
NN

(
<1+z Nx$ (1 -z ) 0001
hxg (1 - ”><1+ ) [) |0100)
ZgHxP (1 z3) |g) o101)
)

)

/N /N
~
\_/\/\/
Ud/‘\

1)

—~

N x
I-Z
I-Z

VUU

(I+Z ) |1p> |0010>
X312 |p) joot1)
><1 —ZM(1+2) |¢> 0110)

V(1 - ZIHXP (1 - z3) ) o111)

zyh)(1+2) |y) [1000)
zyhxP(1-z) ) oot)
1-Z)(1+ 2§ ) |1100)

- W)X (1 Z5)) 1) [1101)
)(1+2g) (1 + Zg) >|¢>|101o>

)1+ Zg ") X (1= Z) |y) [1011)

Nx (1 -z 1+ z§)) |y) 1110)

DXy (1 =z X (1= Z) lg) 1) | (A30)

(1-
(1+z
NI+

X
X

>
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Now, if we had actual commutativity relations, rather then just commutativity on |¢), it wouldn’t
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be hard to see that the expression above reduces to

U [§) 45 10000) 1) 1) g2 p2) =

116[(1+Z())(1+ NI+ z8 (1 + ZP) 1) [0000)
+ (T+ 2 x@2 (1= 21+ 2z xP (1 - 23 ) |0011)
) ) [1100)

+xW =201+ 2P (1 - 20y 1+ z@)
+ X (1= Z)xP - Zx 1 -z xP 1 -z [y ), a3

i.e. the only the terms to survive are the ones in which the subsystems A(l), B(M) have the same

value for their qubit, and so do subsystems A(z),B(z). This is because

(T—zDya+zW0) )y = 1=z a+ 2Py ) since ZU [y) = 2 |p)
= (I_( Al) )|¢> =0 since(ZS))2 =]

and similar other expressions.

The above result holds, in fact, also when the commutativity relations are only on |i). The reason
for this is the following. Operators on A and operators on B always commute with each other,
and notice that we can transform operators on A 1nt0 operators on B and Vlceversa (if they are
immediately in front of |i)) using the relations Z lp) = ]l/J> and X lp) = ](; ) ). So
for instance, if we look at the term corresponding to |1000> in (A.30), we have (spelling out the
calculation for the sake of clarity):

XPa -z a+z)a+ 20 +2§) )

=xy -2z >><1+z<2>><1+z<>><1+z”>|¢> using 2z [9) = 2025 1)
= (1+ 21+ )X (1 - 231+ Z) [y)

= (I+ 21 + 2§ >2<I ZEE>< ~Z) 1) wsing 2z 1) = 2Pz |y)
= I+ 2P+ Z)XP U+ 28 (1= Z2) ) using Z{{ |¢> zy |¢>
(I—l—Z )(I+Z )( Z](Bl))Xl)(I—i—Zf)W)) smceoperatorsonAandBCommute
= U+ 2z U+ 21— 281+ 28XV 1) wsing XPZD [y = 28 XY ()
= I+ zgh 1+ 21+ zHxP 1 - z3)) y)

= I+ 221+ Z) 1+ Z)XP (1= Z) ) again using 23 |9) = Z |9)
= 1+ 2P+ ZH)xP -z 1+ Z) )

= I+ 21+ ZD)XP (1= (Z)?) 1)

=0.
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It is clear, then, that using this technique we can permute the order of the operators on A at our
will, and similarly for those on B. And since operators on A and B commute with each other,
we can essentially permute all operators. Hence, for the purpose of our analysis, commutation
relations on |l[J> behave exactly as commutation relations on the whole space. Hence, going back
to equation , itis not difﬁcult to see, using the ability to permute operators and the fact that

x4 ) = \¢>:xx ) 1) = |p), that

U [$) 4510000) 1) 51) 42 52)

116 I+ 201+ Z22) 1+ 28 1+ Z2P) |9) 45 © (10000) + [0011) + [1100) + [1111) )

= lextra) 45 |7 )0 g g
where |extra) ,p = (I + ZS))(I + Zf))(l + Zél))(l + Zg)) |¢) o5 up to normalization. This
completes the proof for the case n = 2.
It is straightforward to see that the proof for arbitrary n follows in a very similar way. The unitary
(or rather the part of it that matters) naturally becomes U = U4 ® Up with
1 n

Us =

o LT[+ 20 @10) Ol + X001 = 20) @11) (00

and Up similarly defined.

It is easy to convince oneself that the order of all operators can be permuted at will, just like
it was possible for n = 2. Just as in the case n = 2, the only terms that don’t vanish in
U|Y) 45 |O>i)qu)B<1)A(2>B(2>..A(”>B(”) are the 2" terms in which each pairs of subsystems/qubits A (0,
B() have the same value (either both 0 or both 1). As one expects, the lextra) 4 state we end up

with is, up to normalization,

n

lextra) 45 = [ [(L+Z5)(1+ Z5)) 9) 4

i=1
The proof of equation also follows without difficulty. 0
Proof of Proposition @ Given a bipartite state |) , ; and operators {ZZ.(l), X; w, 32y Xyl =
1,..,n} satisfying the conditions of Proposition E], we will show how to construct an appropriate
local unitary U = U4 ® Up that achieves the claim of the proposition.
Again, the unitary is just a "SWAP" from the unknown system A to a system of 7 qubits AW A0
and similarly for B. It is defined in exactly the same way as in the case of maximally entangled

qubits. We then apply the local unitary to the state 1) ,; ® \0>§ﬁ .- We obtain a

)BM AR)B(2) .. A(m) B(
sum that includes all terms in the computational basis. For the terms such that for some 7 the values



218

on subsystems A’ and B! are different, let i, be the largest such index (i.e. the one whose operators
are further to the right). Then we can commute the operators corresponding to i, all the way to the
right (in this case the operators are Xf;(l — Zi{) (I+ ZE*), or this with A and B swapped) since
to the right of these there are only Z operators, and so we can apply the same commutation trick
that we used in the proof of But Xi*{(l - ZiA*) (I+ ZE‘) |¢) = 0 simply because terms like this
vanish even in the case n = 1, for which we know that the unitary works [102].

For the terms in which the values on subsystems AU and B are equal for all 7, we know, from
the proof of the case n = 1 in [102], that

(1+23)
2
(i)
I+ Z
% |)  (this is the 11 case).

}L(Hzf;))(uzg)) ) = $)  (this is the 00 case)

X012 xP(1 - 2 [p) = tans;

Thus, if we factor out a ﬁ, we see that a "00" term contributes a factor of cos 6;, while a "11"
1
term contributes a factor of sin 6;, which is precisely what we need.

Hence, we conclude that

®
U [) 45 @ 10) 41 gy @540 g0

n
= |extra) ® (X) (cos 6; |00) + sin ; [11) ,)
i=1

where |extra) = [T, (I + ZX)) |§) 4 up to normalization.

We state, here, the Theorems from [|16]] that, upon fixing one detail, with the help of Lemma@from
[72], directly imply the Theorems (30| and [33)) that we used in subsections (A.1.2) and (A.2.2) to

deduce the existence of the desired isometries, with robustness, from the operators we constructed

in the "non-tilted" and in the tilted case respectively. For the proofs of these Theorems we refer the

reader to their original source [16].

Merging the hypothesis of Theorem 2.1 and the conclusions of Corollary 2.2 from [16], we can

state the following:

Theorem 34. ([16]) Let |) .5 € Ha @ Hp be a bipartite state. Suppose there are reflections
{XI(;), ZX) ; Xg ), Z g ) }Yiz1.n acting on subsystems A and B respectively, such that, for D either A
or B and for all i # |, they satisfy {Xg), Zg)} = 0and
1M 1) — My [p) || < e
| M5 NG Ig) Il <,
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where M,N € {X,Z}.

Then, letting |') = ) @ |®1)5) @ |®T)p" € Ha® (C)" @ Hp ® (Cz)?zn, there exist
a local unitary U = Uy ® Ug where Up : Hp ® (C?)57" — (C?)3" ® flp and a state
lextra) € H a4 ® Hp such that Vi

| \lp'> [©+)5" @ [extra) || = O(n3e)
||UX ') — cI>+> ® |extra) || = O(n2e¢) (A.32)
\uzy |y — o7 " ® |extra) || = O(nle), (A.33)

NI

where D) is the ith qubit subsystem of (Cz)%n, and Ug(i) and UZDU) are Pauli operators acting on

subsystem D,

Note that we have adapted notation in the original statement to fit ours. And we also applied an
extra triangle inequality to obtain equations (A.32)) and (A.33).

In a nutshell, Theorem[34]says that given operators satisfying its hypothesis, there exists an isometry,
which adds an extra ancilla state to both Alice’s and Bob’s systems, namely 77 EPR pairs for each of
Alice and Bob, which maps the unknown quantum state to a state that is close to a tensor product
of n EPR pairs between Alice and Bob, and maps the action of the unknown operators on |i) to
that of Pauli operators accordingly. Note that the ancilla EPR pairs are not shared between Alice
and Bob, but each of the two provers has  EPR pairs separately.

The only difference between Theorem[30]in Subsection[A.T.2]and the Theorem we just stated is that
the latter requires exact anticommutation between X and Z operators on the same side corresponding
to the same superscript, while the former requires just approximate anticommutation when acting

on |P). We will show how to bridge this gap by using Lemma stated below, from [72].

The following result, is the generalisation of the Theorem above to tilted EPR pairs, and we state it
by combining the hypothesis of Theorem A.1 from [16] and the conclusions of Corollary A.3 from
[16]]. The robustness bound is slightly worse than that of Theorem [34] stated above.

Theorem 35. ([16]) Let |) .5 € Ha @ Hp be a bipartite state. Suppose there are reflections
{Xg), ZX) ; Xg ), Z g ) }Yiz1.n acting on subsystems A and B respectively, such that, for D either A
or B and for all i # j, they satisfy {Xg), Zg)} = 0 and, for some angles 0;,i = 1,..,n,

125 19) - z5) gy | < e (A34)
| sin 6 X'y (1+ Z§ >|¢>—cosex“< )yl <e (A.35)
| [MD ’ND ] lp) || <e,
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where M,N € {X,Z}. Then, letting |¢') = |P) ® ( i ‘lngi> )A’ ® (®?:1 ‘lngl.> )B’ €
Ha® (C2)®2n ® Hp (C2)§Z", there exist a local unitary U = U4 ® Ug where Up : Hp ®
(Cz)%,zn (C?)5" @ Hp and a state |extra) € H o @ Hp such that, for all i,

n

1U 19"y = (@ [ge,)) ap @ lextra) || = O(ne)
j=1

IUXE [97) = o3 (|6, ) ) 4 © lextra) | = O(ne)

j=1

1UzZE |9 = 50 (R |95,) ) 45 © lextra) | = O(n%e),
=1

where D) is the ith qubit subsystem of (C%)5", and 0 and 07

D) are Pauli operators acting on

subsystem D,

Here the isometry adds an extra ancilla state of # tilted EPR pairs on Alice’s side and 7 on Bob’s
side, with the appropriate angles. Again, note that these ancilla tilted pairs are not shared between
Alice and Bob, but they each have n separately (as stated in [16], the angles 6; are all equal; however,
the theorem is easily seen to hold true also when the 6; are different). Again, this Theorem requires
exact anticommutation between X, Z operators with the same superscript, while |33| that we used
in Subsection requires just approximate anticommutation when acting on |¢). So, we can
almost apply theorems [34{and |35|directly to our analysis, except that for the set of operators that we

construct in subsections[A.T.2]and [A.2.2]the anticommutation that we achieve is only approximate.

The following Lemma, from [72], helps bridge this gap.

Lemma 52. (/16|] [72]) Let X, Z be balanced reflections on a space of even dimension H 5, and
let |¢) € Ha ® Hp be such that ||{X,Z} @ I|) || < €. Then there exists a balanced reflection
Z' onH such that {X,Z'} =0and ||(Z —Z") @ I |¢) || < /3/2e.

Now, we just need to show that Theorem |34{ and Lemma |52 imply Theorem [30, and that Theorem
[35]and Lemma [52]imply Theorem [33] The only detail that we need to take care of in order to do so
is the following. As we have mentioned earlier, the hypotheses of Theorems [30|and [33]are the same
as those of Theorems [34] and [35] respectively, except for the fact that the anticommutation required
between X, Z operators with the same superscripts in the latter is exact. Now, given operators
satisfying the hypothesis of Theorem [30] (or Theorem [33), we can make use of Lemma [52] to
replace the operators {Z }Z 1,.,n With operators {Z }1 1,.n such that the exact anticommutation
conditions hold, and the existence of these is guaranteed by Lemma[52] However, in order to apply
Theorem@] (or Theorem@ to the new set of operators, we need to check that this still satisfies all

other conditions in the hypothesis (most of them are immediate). We will do this check for the tilted
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version (Theorems [33] and [35]), and then the "non-tilted" version follows, being just a particular

case.

Claim 2. Suppose that |{) and the set of operators {X A S), XB , }Z 1,..n satisfy the hy-
pothesis of Theorem 33| with bound €. For each i = 1,..n, and for D either A or B, let ZD()
be reflections such that {Xg), Zgi)} = 0 and || (Zg) - Zgi)) |Y) || < e. The existence of such
1(0) is guaranteed by Lemma Then, |¢), together with the new set of operators
{X Wz fgi), X](g. ,Z }1 1,.n Satisfies the hypothesis of Theorem

operators Z

Proof. Conditions (A.34) and (A.35)) of Theorem[35|hold for the new operators by applying triangle
inequalities, the fact that XI(;) and XI(; ) are unitary and that || (Zg) — Zgl) ) |¥) || < e. Next, we
need to check that the commutation between operators on the same side with different superscripts

still holds for the new operators. Obviously, commutation between X operators holds as we haven’t

changed those.
For Z,Z commutation, we have ||Z |1p> |1p) | = ||Z ) |1p> -
)0 it
N A |¢> | =~ ||z’ Zy 1) - z“zAf wl =~
HZ Z p) —Z, ()7 A |l/J> H O(e ) where the approximate equalities are up to an O(€)

error brought by the application of triangle inequalities. Recall that both Z and Z’ are reflections
and, hence, unitary. The second approximate equality is by condition (A.28)), and the final equality
is by hypothesis.

X, Z commutation is slightly more involved. We have

17 x 9 19) = xP 74 9) |
||§<1+z“> P 1)+ 51 -29)20x - xP79 |y |

~ ||§cot<9j>22§”xg><1 ~Z) )+ 5 tan(6) 2% (14 29) - XDz 9y |

~ ||1cot(9j)z§)x<f)(1 — 70 [) + %tan(ej)zg)xg)(l + 20 = xV 2z gy |

~ [|1220xP (14 2 >|¢>+ Z“XXRI—ZE;”)—XE{)ZQ ) |

2
~ 125X g = x 25 1) | = 0Ce).
The second approximate equality follows by Equation (A.29).
Hence, we have shown that the new set of operators {XX), qu(i), X g ), Zgi) }iz1,.n, indeed, satisfies
the hypothesis of Theorem [35] O

It follows, then, under the hypothesis of Claim P2} that the conclusion of Theorem [35] holds for
|¢) and the operators {XA ,ng , B ,Z }1_ _n- But it is clear that if this holds for |i)
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together with the new set of operators, then it also holds for |i) together with the original set of
operators {XX) , ZX) , X g ), Z g ) }i=1,n, simply by applying a few triangle inequalities. Notice that
the conclusion of Theorem [35]is the same as that of Theorem [33] (just the hypothesis of the former
is stricter). This completes the proof of Theorem [33]
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Appendix B

APPENDIX FOR “ALL PURE BIPARTITE ENTANGLED STATES CAN BE
SELF-TESTED”

B.1 Proof of Lemma 37
In this section, we provide a proof of Lemma We explicitly construct a local isometry & such
that ®(|1p)) = |extra) @ |{rarger), Where the ideal target state is |(Prarget) = 2?2—01 c; |ii), and |extra)

is some auxiliary state.

Proof. Recall that {Pz(ak)} is a complete orthogonal set of orthogonal projections by hypothe-
sis. Then, notice that for i # j we have, using condition (5.1, Pg) Pf(ij ) lp) = Pg)Pg) lp) =
PX)PX) |p) = 0,i.ethe P]gk) are “orthogonal when acting on |¢)”. Then, we can invoke a variation
of the orthogonalization lemma (Lemma 21 from Kempe and Vidick [51]]) to obtain projections on

Bob’s side that are exactly orthogonal, and have the same action on [¢).

Lemma 53. Let p be a density matrix on Hy @ Hp. Let Py, ..., Py be projections on Hp such
that, for all i # j,

Y Tr[I® PPiPp| <e.

i#]
Then, there exist orthogonal projections Q1, ..., Qi on Hp such that

=

Y Tr [1 ® (P — Qi)zp} = 0(e?).

i=1
Kempe and Vidick only considered the case of finite-dimensional Hilbert spaces. When we apply
the self-testing results of Chapter [5|to obtain the non-closure of the set of quantum correlations in
Chapter [6] (corollary [7), we need our self-testing results to hold (in the exact case) when Alice and
Bob’s Hilbert spaces are possibly infinite-dimensional (and separable). To clarify, the self-tested
state will still be finite-dimensional, but we will not assume that Alice and Bob’s starting Hilbert
spaces are finite-dimensional. Here, we provide a simple proof of the exact version of Lemma [53]

(i.e. € = 0), in the case of infinite-dimensional, separable Hilbert spaces.

Proof of Lemma 53| (for € = 0 and infinite-dimensional, separable Hilbert spaces). Let pp =
Tralp]. Let supp(pg) = Ker(pp)t. Fori € {1,.,k}, define Q; to be the projection onto
P;supp(pp) = {P;|v) : |v) € supp(pp)}. By the spectral theorem, since pp is compact and self-
adjoint, there is an orthonormal basis of supp(pp) consisting of eigenvectors of pp with non-zero
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eigenvalues. Together with the fact that, by definition, P; |v) = Q; |v) for all |v) € supp(pp), this
straightforwardly implies that
Tr [1 ® (P — Qi)zp} — 0.

Notice that Tr [PiP]-PipB] = Tr[[ ® PinPip} = 0 for any i # j, where the last equality is by
hypothesis. This implies P; [v) = O for any [v) € P;supp(pp) (where this is again seen via the
spectral decomposition of pg). It follows that [v) | P;supp(pp) forany |v) € P;supp(pop), which,
by definition of Q;, implies that Q; |v) = 0. Since Q; [v) = 0 for any v € (P;supp (pp))*, we
deduce that Q;Q; |v) for any |v). Similarly, one shows that Q;Q; [v) for any |v), which implies
that Q; and Q; are orthogonal, as desired. O

Applymg Lemma l yields a new set of orthogonal projections {P } on Bob’s side such that
]1[J> \gb) for all k.

Now, define Z4 := E kPI(q) and Zp := Zk Ow kplk )—l—]l —Ed 1PA/)B In particular, Z 4

and Zp are unitary. Notrce moreover, that (]l ZZ A / B) |p) = 0, again using condition (5.1).

Define the local isometry
@ := (Raa ® Rpp) (Far @ Fpr)(Saar @ Sppr) (Far @ Fpr),

where F is the quantum Fourier transform F is the inverse quantum Fourier transform, R 4 4 is
defined so that |¢) 4 k) 4, — X |cp>A k) o+ V' |¢), and similarly for Rgps, and S 44 is defined
so that |¢) 4 [k) o — ZK |¢) 4 |k) 4r V' |$), and similarly for Spp. We compute the action of

5(k)

on |§) 45 |0) 4+ |0) /. For ease of notation, we drop the tildes from the Py ’, while still referring to

the new orthogonal projections.

Fu®Fy1
945 10040 05 LY ) 00 1,

Kk
k K
1®S 5 1 g (il 2
P Son Z <Zw1P ) <Zw7 Pg) +1 - ZPE(;] )> 9) 4 1K) ar [K) 5
47 \5 7 k
1 111 ; i
= ¥ PP 1) a5 1K) [K)
k),
1
=7 Y. ]kW]k W>AB 1K) ar |K')
k)
1 - N (i
== ¥ IR ) 45 100 a0 (K

R
x
.
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®‘ 1 . / _ it 1
Fy®F = Wl ) o= theg= I U gy 11y 0 1)
kK LI
1 . I gl ]
=2 Z KU1 K (i l)pg) ) ag 1D |1 g
kK LI
—zprwﬁwmm ®.1)
R, 4,/ ®QRppr
AAZ BB ZX |¢’>AB D arli) e

_Z P |‘P Ap 17 ar 1) B

D [9) a5 ® 25 i li)e
)
= |extra) & |lPtarget> .

O

It is an easy check to see that the whole proof above can be repeated by starting from a mixed joint

state, yielding a corresponding version of the Lemma that holds for a general mixed state.

B.2 Self-testing the measurements

Not much work is required to extend self-testing to the measurement operators, using the same
local isometry ®, defined via the projections p! /) p and the unitary operators Z 4 /g and X;} s as
defined in the main text.

B B

. A A A » .
Consider Ay = Iy — T3, and By, = I, —TIL,/ ;. Let Ayu,Bym be the two-qubit

ideal measurements achieving maximal violation of tilted CHSH on the (2m,2m+1) subspace, i.e.
Ao = [0zlms Avm = [0x]ms Bom = [cos(pm)oz + sin(pm)ox|m, Bim = [cos(pm)oz —
sin(pm )ox]m,» with the notation from Subsection [5.1.2.31 We claim first that ®(A, , ) =
lextra) @ Axm [Prarger) and (I)(By,m [¥)) = |extra) @ By,m |rarget)-
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Following closely the proof in Appendix [B.I|up to Equation (B.T)), we have
O(Axn |9)) = Ran © Rppr Y PY A [$) a5 1) 0 115
]
=Ran ® RBB’( A [10) g5 2m) 40 |2) g, + P§
:Xl(szm)xz(&zm)Pl(azm) A [§) ap [21m) 1 |2m) gy
+ X" VX IBE A |9) g [2m A1) g0 2+ 1)

:Xéz"“Xffm)(PéZm>Ax,m|¢> g 120m) 40 12) g+ X X Py ) A 9) g (20 4+ 1) 50 [2m 4+ 1) )
2 om) 1
=X X B 1) 4 © A (cam [2) r |2)  + i [2m 1) g0 [2m 4 1) )
m

1 0
=P 19045 © A ) = [extra) © Avm [

where the second-to-last line follows from the definitions of X4 ,, and Xp , in the main text, and
from a proof following closely that in [7], that maximal violation of the tilted CHSH inequality self-
tests the ideal single-qubit measurements. One obtains analogous statements involving A6 Sim =

Ao/ Aoz By/3 By/3
I — 11,7, and BO/l m = oy tq = Ty s,

2m+1 2m+
From the above, we deduce that the measurements of Alice and Bob on |ip) are equivalent under

@, to the ideal measurements described in Subsection |5.1.2.3|on |l[Jtarget>.
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Appendix C

APPENDIX FOR “A GENERALIZATION OF THE CHSH INEQUALITY
SELF-TESTING MAXIMALLY ENTANGLED STATES OF ANY LOCAL
DIMENSION”

Robustness Obtaining a robust self-testing result is mainly a matter of going through the proof
and replacing exact statements with approximate statements, where necessary. Here, we first state
the robust self-testing theorem, then we give an outline of the proof pointing out the parts where it

differs from the proof for the exact case.

Theorem 36 (Robust self-testing). Let B be the Bell operator from Definition 32| with parameters
d>2,6>0. Let (|‘Y> AT Yo, {ﬁlfgy}b) be the ideal strategy from Lemma 38| where |¥) =
\/LH Z;i;Ol |ii). There exists a constant C > 0 such that the following holds. Suppose the strategy

(]l[]) AT Yo {H%y}b> attains a correlation p such that [B], > 2v/2 — €, for some € < d%

Then, there exists a local unitary ® and an auxiliary state |aux) such that

ool

[@(19)) — [¥) @ Jauz) | = O(d%
| (1T, @ 114, |y)) — 14, © T3 [¥) @ |aux) | = O(d

)
).

Qo=

In the rest of this section we sketch the proof of Theorem[36] In doing so, we will state approximate
versions of Lemma [39] and 40l from the main text.

Lemma 54 (Approximate version of Lemma [39). Let B be the Bell operator with parameters
d>2andé > 0. Letp € C;A’d’d be a quantum correlation such that [B], > 2v/2 — €. Then,
p(a,blx,y) < 3e for all (a,b,x,y) € CUC', where C and C' are as in equations (5.17) and
(5.18).

Proof. The proof is very similar to the proof of Lemma The only difference is that we now
suppose for a contradiction that p is such that [B], > 2v/2 — € and p(a, b|x,y) > 2e for some

(a,b,x,y) € CUC’. Thenin order to compensate for a negative contribution > ¢ - %e = 2¢, it must

d_ d_
be that either Zﬁq:t [CHSH,;,|p > 2v/2 or 257:%) [CHSH,,], > 21/2. In either case, analogously to
the proof of Lemma one can reduce this to a strategy that wins CHSH with value > 2v2. O

C,?A’d’d such that each cross

Lemma 55 (Approximate version of Lemma . Any correlation p €
term has size O(€) (i.e. of the form of Lemma|54|- we are thinking of 6 as a constant), induced by

some strategy <|1p> AT, ba, {H%y}b), satisfies the following:
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e [fd is even, then for eachm = 0, .., 2 — 1, there exist weights wy,, w), > 0 with 1 — O(e) <
Yo Wi, Yo Wiy < 1, and correlations pm, p), € C;ZZZ (with questions in {0,1}2 and
{0,2} x {2,3} respectively, and answers in {0,1}) such that ¥Y'm, Va,b € {2m,2m +

1},x,y € {0,1}:
p(a,b1x,9) ~oge) - pula mod 2,5 mod 2|x,y) ~o() (|1, © 115, [y)

and ¥Ym, Ya,b € {2m+1,2m +2},x € {0,2},y € {2,3}:

p(a,blx,y) ~oge) W - Piala mod 2,5 mod 2|x,y) ~o() (|1, © 115, [y)

e [f d is odd, the analogous statement holds, except that the weights wy,, w,, are such that
1-0(e) <Y, ,wm+p(d—1,4d-1]0,0),%, w, + p(0,0]2,2) <14 O(e), AND

- p(d—1,d—1|x,y) =) p(d—1,d - 1|x",y') Vx,y,x'y" € {0,1}
- p(0,0]x,y) =o(e) p(0,01x",y") Vx,x" € {0,2},y,y' € {2,3}

Proof. All equalities from (5.22)) to (5.23) now hold approximately, up to addition of orthogonal
vectors of norm O(+/€). The weights w,, are defined in the same way as in the proof of Lemma
40l The main difference is that now correlation py, is defined to be any correlation such that

Wy - pm(a mod 2,b mod 2[x,y) o) (Y| 1T ® 114 |(/J> foralla, b € {2m,2m+1},x,y €
{0,1} (note that with an exact equality pm would not be a well-defined correlation, but an O(¢)
correction is enough for existence of such a correlation p,,). We argue similarly for w), and p},.

The case of d odd is also similar. [l

Proof of Theorem[36] We look at the case of d even first. Using Lemma [55] we deduce

SN
—

41
2

[CHSHm]p ~0(de) Z Wy + [CHSH]pm < 2\/§
e

m\mﬁ
Ll

=0

41
Z [CHSH}, ], ~o(4e) Y Wy, - [CHSH],, < 2V2.
m=0 m=0

Hence,

INEN
I
—_

[CHSH,,], < 2v2+ O(de) (C.1)

N\m§
Ll

Z [CHSH,,], < 2V2+ O(de). (C.2)
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It is straightforward to see that (C.I)) and (C.2)) imply the existence of constants C’,C"” > 0 such
that

« for all m, wy, < C'v/de OR [CHSH],, > 2v/2 — C"\/de, AND

» for all m, w),, < C'\/e OR [CHSH],, >2v2—C"\/e.

From here, we deduce approximate equations like ||Hi"g+1 ) ||? Ro(/de) Wm 3 and
||Hi”g+l ) |7 ~ O(vae) w}, - 5, and similar other equations as in the proof of Theorem
These follow from a robust self-testing bound on CHSH. Now, such approximate equations imply,
by applying triangle inequalities, that, for all m,

2
Win Ro(p/2,/¢) w;ﬂ RO(d3/2,/E) a (C.3)

It is clear that there exists a constant C > 0 such that for € < <&, it must be that for all m

d_3’
Wy, > C'v/de and w),, > C'v/de. Hence, for € < %, it is the case that, for all m,

[CHSH],,,, [CHSH] ;, > 2v/2 — C"Vde. (C.4)

Finally, recall the form of correlation p from Lemma [55] This, combined with and
implies that p is O(d?+/€)-close to the ideal correlation f defined by the measurements of Lemma
(ie. foralla, b, x,y, p(a,b|x,y) ~o2, /e P(a,b, |x,y), where i is the ideal correlation). The
robust self-testing statement from [25] for the ideal correlation of Lemma 38| states that a strategy
producing a correlation that is e-close to ideal, must be O(d?’e%)—close (in the sense of Theorem

[36) to the ideal strategy. Applying this to our analysis yields the conclusion of Theorem 36

The case of d odd is handled similarly.
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Appendix D

APPENDIX FOR “SELF-TESTING MULTIPARTITE STATES THROUGH
PROJECTION ONTO TWO SYSTEMS”

D.1 Proof of Theorem

For ease of exposition, we prove the Theorem in the case N = 4, with the extension to general N

being immediate.

Let Ag, A1, By, B1, Co, Cq1, Dy, D1, be the pairs of observables for the four parties. For an observable
D, let P}, = [1 4 (—1)"D]/2, and for brevity let cy and sy denote respectively cos 6 and sin 6.
For clarity, we recall the correlations from Theorem for the case N = 4:

(| Pa, [w) = (W] Pg, |9) = (| P&, [9) = (9| P4, PE, [9) = (| P5, P, |¢) = c5,
(p| P4 Ph |p) = %, fora,b € 0,1

/8 +2B2
(P4 PY (BCo+ CoDo+ CoDy + (~1)™¥(CyDy — C1Dy)) ) = Tﬁ fora,b 0,1,

where tan 20 = | /é — % Equations (D.1a) imply, by Cauchy-Schwartz inequality, that

Pa [#) = Py, [9) = P, )
and consequently
Pp, [9) = Py, ) = P&, [) -

Notice that equation (D-Tb) implies ||Pfth1 ) || = 1/2, for a,b € {0,1}, and that the equa-
tions in (D.Ic) describe maximal violations of tilted CHSH inequalities by the normalized state
2P;, Pgl |¢), fora, b € {0,1} (the ones fora @ b = 1 are tilted CHSH inequalities upon relabelling
D1 — —Dy).

Let u be such that tany = spg. Define X4 := A, Xp := By and X¢c := C;. Then, let
Zb = (Do + D1)/2cos U, and let ZI*D be Zb where we have replaced the zero eigenvalues with
1. Define Zp = Z}|Z})|~!. Define Xp similarly starting from X}, = (Dy — Dy)/2cos . Let
P = [1+ (—1)"Zp]/2. The maximal violations of tilted CHSH from imply, thanks to
Lemma 1 [41] that

P¢ =Py, forac {01},
seP4 Ph XcXpPQ [¢) = (—1)""PcoP4 Py P |¢), fora,b € {0,1}. (D.2)
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If we introduce notation X4 = A1, Xg = By and X = Cq, then
1 _ 0 1 0 1 1
XaXpXcXpPy, l¢) = (Pa, — Pa,)(Pp, — Pg)XcXpPc, [¢)

= Py PR XcXpPE, 1) — Py Py XcXpPe, [) — Py PR Xc XpPE, )
+P}11P§1XCXDP}:O )

59 Sp 59 59
= PR PR PR, 1)+ PR Ph PG, Iy) + S0P PP, 19) + 2 PA, P PR [y)

SQ 0
— 2p
CQ AO ’ll]>,

where we used equation (D.2) to obtain the third line, and }_; yc (0,1} Py, Pgl = 1 to obtain the last.
Conditions (5.23)) and (5.26) of Theorem [[9]follow immediately from the above.

D.2 Proof of Lemma 42|

In this section, we provide a proof of Lemma We explicitly construct a local isometry & such
that ®(|¢)) = |extra) @ |¥) for any Schmidt state |¥) = Z c] 1))®N, where 0 < ¢j < 1for
all j and 2;1 (} ]2 =1, and |extra) is some auxiliary state.

Proof. Recall that {Pl(k) }Z;é are complete sets of orthogonal projections for I=1,. N —1by
hypothesis. Then, notice that fori # j we have, using condition (5.1, P |l[)> ]1./J>
Pl(j)Pl(i) |p) =0, 1ie., the PZ(\;() are “orthogonal when acting on |i)”.

Let A be the unital algebra generated by {Pl(k)}. Let H' = A|¢), where A|p) = {Q|y) : Q €
A}, Let Pz(f ) = PI(\;( ) |4y be the restriction of PI(\;( ) to H'. Then, {15](\5{ )}z;é is a set of orthogonal
projections. This is because, thanks to (5.1]), one can always move the relevant operators to be in

front of |1p), as in the simple example
P RY (P 19)') = YRR ) =0

Thus, the set {P(k), I — Pg}, where Py is the sum of all other projections, is a complete set of

orthogonal projections.

Now, define Z; := Y41 *P™ forl =1,...,N —1,and Zy _zk Owkp( . s P
In particular, the Z; are all unltary Notice, moreover, that (]l — 2k Py ) |¢) = 0, by using @
and the fact that the {Pl } are complete.

Define the local isometry

N
b= ® Rll/FllSll/Fl/Appl,
I=1
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where App; : H; — H; ® Hyp is the isometry that simply appends |0),, F is the quantum
Fourier transform, F is the inverse quantum Fourier transform, R;y is defined so that |¢), k), —
k) ¢, k), V|¢), and Sy is defined so that @), |k), — ZF |@), [k}, ¥ |p). We compute the

action of @ on |¢). For ease of notation with drop the tildes from the P (k , while still referring to

the new orthogonal projections.

1 by 1
9ol s T e @k
l

koo

N-1 A\ i o
%/ﬁ Y 1T <ijipi(]i)> (Zw]NP]N)+]1 ZP]N> [y @ Q) |ki)y
Ji :

ki kn | i=1 iN

dN/Z Z > Hw]’ kP ) ®®|kl

VSN JNZ
o, 5, flet oo
~z, I, TSR 1) s @
Qg/i Z 5 Z Wl (Eiki H“’ mrkr pU) | ) ®®|mz
kN j oM

dN Z Y Y [lef0mpy |¢>®<§>|ml>p

wokn j M MN

:ZP1 ) @ [j) =N
j

%’z(nx ) gy &

Z ]P Y@ )N (D.5)

:apl ) ® )¢ )N
]
= |extra) ® |1Ptarget> ’

where to get (D.5)) we used condition (5.1)). It is an easy check to see that the whole proof above can
be repeated by starting from a mixed joint state, yielding a corresponding version of the Lemma

that holds for a general mixed state. 0
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D.3 Proof of Theorem

As mentioned, we work in the tripartite case, as the general n-partite case follows analogously.
The measurements of Alice, Bob and Charlie can be assumed to be projective, since we make no
assumption on the dimension of the system. For ease of notation, the proof assumes that the joint
state is pure, but one easily realizes that the proof goes through in the same way by rephrasing

everything in terms of density matrices (see [23]] for a slightly more detailed discussion).

Let |¢) be the unknown joint state, and let P} be the projection on Alice side corresponding
obtaining outcome a4 on question x. Define ng and P(C:Z similarly on Bob and Charlie’s side. The
proof structure follows closely that of [23]], and goes through explicitly constructing projectors and

unitary operators satisfying the sufficient conditions of Lemma {2]

A _ p2m _ p2m+1 B _ p2m _ p2m+1 A _ p2m __ p2m+1
Define Ay, = PAX PAx » Bym = PBy PBy and C,; = PCZ PCZ , for x,y,z €

{0,1}. Let 1% = PZ‘T + Pf"?“ and similarly define ]l’gy and 1¢ for x,y,z € {0,1}. Now,

P2 = (e | Parhy
d—1 pi yvd—1 pj
= \/<¢‘P§1’Z,12i=0 Py X Pé0>1p
— C27’I’l/
and [|[P{"*1|| = capy1. Similarly, we derive |17 [¢) || = g, [w) I = 11E [9) | = (c3,, +

c3,,.1)/* for any m and x,,z € {0,1}. Notice then that

(wuang)e = (v|vh1g o P )y
= (|1 gy

_ 2 2
= T Comq1s

where the second last equality is from the block-diagonal structure of the correlations. Since
[ESN ||]l’gy W)y = (3, + c%mﬂ)l/z, then Cauchy-Schwartz inequality implies
) = g, |¢). So, we have

1 [p) = 13 |9) = 12 [9) D.$)

forall x,y,z € {0,1}. The correlations are, by design, such that Ag ,,, A1 1, Bo.m, B1m, Co.ms Coms
the associated projections P ,,P]]B,,P]C,, j € {2m,2m + 1} and |¢) reproduce the correlations

h
(B + Bpie) - C,%%Z;’Z’G’”. In order to apply Theorem |19, we need to define the normalized

state |¢y,) 1= (L%, [¥))/ (2, + 3, _H)l/ 2 and the “unitarized” versions of the operators above,
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namely Di, =110+ D; ., for D € {A,B,C}. Itis easy to check that then Az e Bl ., and

éi,m satisfy the conditions of Theorem. (for N = 3) on state |¢},). Thus, letting we have that,

Zp [0m) = Zp o W) = Ze W) (D.9)
}Cz‘l,m‘XB,m}<C,m(]1 - ZA,m) ‘1P1/71> = tan(em)(]l + ZA,m) ‘lp,ln> . (D.10)

Define the subspace C;;, = range(]l ) + range(ﬂ '), and the projection 1, onto subspace Cy,.
Then, notice from the way ZC,m is defined, that it can be written as ZC,m =1-1¢, + chm,
where Zc ,, is some operator living entirely on subspace Cp,. This implies that Ze | m) =
Zcm | Wm) = Zc m |1), where we have used (D.8)) and the fact that

12 [9) = 15 |¢) = 1¢, [¢) = Ly |¢) -

Hence, from it is not difficult to deduce that Ag ,,; |¥) = By |[¥) = Zcm |).

Constructing the projections of Lemma Define projections P(Zm) = (1, 10 + Ay m)/2 =
Pﬁ?7 PI(quJrl) = (14 140 AOm)/Z _ P2m—|—1 P(Zm) = (15 1580 +B0m>/2 _ P%m, P(2m+1) —
(150 — Bow) /2 = P21, PE™ = (¢, + Ze ) /2 and PE™Y = (1¢, — Zem) /2.

Note that Pézm), Pézmﬂ) are indeed projections, since Zc,m has all £+1 eigenvalues corresponding

to subspace Cy,;, and is zero outside. We also have, for all m and k = 2m,2m + 1,

1 A 1 A
9 19) =PI ) =S[00 + (—1)F Ao [9) = 5[0 + (=) o] 1)
= 2lts, + (-1 Zaul [9) = PX |y

Further, notice that [1 + (—1)¥Z, l1¢h) = [0 + (=D Aol [y}, = [15° +
(—D)*Ag ] |w) = Pi(qk) |t). Substituting this into (D.10), gives
(2m+1) 2 C2m+1 (2
XpmXanXenPs" ™ 0) = tan(0,)PL™ [9) = LR |y (D.12)

Now, for the "shifted" blocks, we can similarly define A/
Pim—l—Z

! Al A _ p2m+1
Bx,m and Cy a8 Ay = Py —

and similar. Then, analogously, we deduce the existence of hermitian and unitary operators

X,m>
Y > Y, and Y such that

Com+
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Constructing the unitary operators of Lemma {42, We will now directly construct unitary
operators satisfying conditions l,i of Lemma Define XI(Q B/C as follows:

1, itk=0,
(k) _ .
Xu' =9 XaoYaoXanYan--- Xam—1Yam-1Xam ifk=2m+1,
XaoYao0XaiYar--- Xam-1Yam-1, it k = 2m,

and analogously for X ék) and X(Ck). Note that Xg() and X ék) are unitary since they are product of

unitaries. Finally, we are left to check that
k k
XX xOPY gy = LY |y) (D.14)
The case k = 0 holds trivially. For k = 2m + 1, Fork = 2m + 1,

XXX

= XA0YA0XBoYBoXcoYco- - XAm—1YA,m-1XBm-1YBm—-1XC,m-1YC,m—1
2m—|—1

XXAmXBmXCm |1P>
c
= ZLHXA,OYA,OXB,OYB,OXC,OYC,O X pmtYam1X8m-1YBm-1Xcm-1Yem1 P 1)
m

GI3) C2m+1 Com
= - 5 1XA OYA OXB ()YB (JXC OYCO XA,m—ZYA,m—ZXB,mfzyB,mfz
m m—

(2m-1)
><XCm 2YCm ZP

1)

Com+1  Com

_ 7 1450
— L= 2 Ap
o Com=T ¢ o A )
_ Com+1 5(0)

= Py y)

which is indeed (D.14) as 2m + 1 = k. The case k = 2m is similar. This concludes the proof of
Theorem 201
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