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ABSTRACT

This thesis is concerned with presenting convex optimization based tractable
solutions for three fundamental problems:

1. Planted subgraph problem: Given two graphs, identifying the subset of
vertices of the larger graph corresponding to the smaller one.

2. Graph edit distance problem: Given two graphs, calculating the number
of edge/vertex additions and deletions required to transform one graph
into the other.

3. Affine inverse eigenvalue problem: Given a subspace E ⊂ Sn and a
vector of eigenvalues λ ∈ Rn, finding a symmetric matrix with spectrum
λ contained in E .

These combinatorial and algebraic problems frequently arise in various appli-
cation domains such as social networks, computational biology, chemoinfor-
matics, and control theory. Nevertheless, exactly solving them in practice is
only possible for very small instances due to their complexity. For each of
these problems, we introduce convex relaxations which succeed in providing
exact or approximate solutions in a computationally tractable manner.

Our relaxations for the two graph problems are based on convex graph invari-
ants, which are functions of graphs that do not depend on a particular labeling.
One of these convex relaxations, coined the Schur-Horn orbitope, corresponds
to the convex hull of all matrices with a given spectrum, and plays a prominent
role in this thesis. Specifically, we utilize relaxations based on the Schur-Horn
orbitope in the context of the planted subgraph problem and the graph edit
distance problem. For both of these problems, we identify conditions under
which the Schur-Horn orbitope based relaxations exactly solve the correspond-
ing problem with overwhelming probability. Specifically, we demonstrate that
these relaxations turn out to be particularly effective when the underlying
graph has a spectrum comprised of few distinct eigenvalues with high multi-
plicities. In addition to relaxations based on the Schur-Horn orbitope, we also
consider outer-approximations based on other convex graph invariants such as
the stability number and the maximum-cut value for the graph edit distance
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problem. On the other hand, for the inverse eigenvalue problem, we investi-
gate two relaxations arising from a sum of squares hierarchy. These relaxations
have different approximation qualities, and accordingly induce different com-
putational costs. We utilize our framework to generate solutions for, or certify
unsolvability of the underlying inverse eigenvalue problem.

We particularly emphasize the computational aspect of our relaxations through-
out this thesis. We corroborate the utility of our methods with various nu-
merical experiments.
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C h a p t e r 1

INTRODUCTION

Convex optimization is an applied subdiscipline of mathematics with a strong
theoretical foundation. Its powerful modeling capabilities and efficient numer-
ical solvers allow for tractably solving various problems arising from numer-
ous areas within the umbrella of computational and mathematical sciences.
Diverse applications of convex optimization range from classical fields such
as control theory and signal processing to relatively modern areas like ma-
chine learning and data analysis. Moreover, convex optimization constitutes
an effective tool for solving various real life problems such as scheduling, floor
planning, and supply chain management. The list of applications where tools
and techniques from convex optimization can provide a useful answer has been
steadily expanding. See books [11, 18] and surveys [2, 85, 111, 117] and refer-
ences therein for numerous examples.

Convex optimization continues to be a useful mathematical framework in ap-
plication domains where the underlying problem may not readily be expressible
as a minimization of a convex function subject to convex constraints. In partic-
ular, researchers frequently utilize convex relaxations of non-convex problems
by approximating an originally non-convex constraint set from outside with
a convex envelope. Oftentimes, such convex relaxations enable solving an
underlying difficult and non-convex problem either approximately or exactly.
A prominent example from the combinatorial optimization literature is the
convex relaxation for the eminent maximum-cut problem, which provably pro-
duces an approximate solution that is within a constant multiple of the exact
solution [59]. Convex relaxations for graph chromatic number [72] and graph
stability number [86] constitute other notable examples that can be utilized for
approximately solving related difficult graph problems. Furhermore, solutions
for numerous intractable problems arising from operations research (such as
the quadratic assignment problem [43]) can be effectively approximated via
convex relaxations. Convex relaxations can also be employed for recovering
structured solutions in various applications. For instance, the `1 norm can be
utilized as a convex relaxation for the size of the support of a vector with en-
tries in [-1,1] to find sparse solutions to underdetermined linear systems [25].
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Similarly, nuclear norm relaxation for the rank of a matrix can be utilized
for identifying low rank solutions to linear matrix equations [48], which has
important applications in machine learning, such as the PCA.

In this thesis we introduce convex relaxations for exactly or approximately
solving three difficult problems that frequently arise in various applications.
The first two of these — planted subgraph and graph edit distance problems
— are based on graphs, hence they are combinatorial in nature, whereas the
third problem we consider is the prominent inverse eigenvalue problem rooted
in linear algebra. For the two graph problems, we introduce convex relaxations
based on convex graph invariants, which are convex functions of an adjacency
matrix of a graph that are invariant to the graph’s particular labeling. A
prominent convex graph invariant whose utility is investigated in this thesis
is the spectrum of an adjacency matrix of the graph. This convex graph
invariant gives rise to the Schur-Horn orbitope, which is the convex hull of
all matrices with the given spectrum. We later show in this thesis that if
adjacency matrices of an underlying graph have few distinct eigenvalues with
high multiplicities, then the Schur-Horn orbitope constitutes a suitable outer-
approximation to the set of adjacency matrices corresponding to the graph. In
addition to the spectrum, in this thesis we also investigate convex relaxations
based on other convex graph invariants, such as the inverse stability number
of the graph, and the maximum-cut value of the graph. We demonstrate the
merit of these convex relaxations in the context of the graph edit distance
problem. On the other hand, our convex relaxations for the inverse eigenvalue
problem are based on the sum of squares optimization framework. Specifically,
we introduce a system of polynomial equations corresponding to affine inverse
eigenvalue problem, and investigate two convex relaxations arising from the
earlier levels of the corresponding sum of squares hierarchy.

1.1 Main Contributions

We now outline our findings regarding these problems. Details of our work
are presented in Chapters 2, 3, and 4 of this thesis. The relevant research
correspond to author’s papers [26], [27], and [28], respectively.
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Finding Planted Subgraphs with Few Eigenvalues using the Schur-
Horn Relaxation

In a wide range of application domains, experts wish to extract certain sub-
structures from a larger entity for various purposes. For instance, in biology,
researchers frequently attempt to identify repeated substructures in gene and
protein networks in order to reveal higher order biological activities. Often-
times, such problems are cast into a mathematical framework by representing
the underlying entities with graphs; the corresponding mathematical problem
is the notable planted subgraph problem. This problem is NP-hard in general,
and as a result, significant efforts have been directed towards development of
tractable procedures that succeed on specific families of problem instances,
with a particular focus on planted clique problems.

We propose a new computationally efficient convex relaxation for solving the
planted subgraph problem. Our approach is based on the “graph spectrum”
convex invariant, as we outer-approximate the (non-convex) set of adjacency
matrices representing the hidden graph with the convex hull of all matrices
which have the spectrum of an adjacency matrix. Crucially for our purposes,
this convex set — referred to as the Schur-Horn orbitope — admits a tractable
semidefinite description via majorization inequalities on the spectrum. Our
procedure generalizes previous convex relaxation techniques for finding planted
cliques. We mathematically demonstrate our procedure’s effectiveness in find-
ing planted subgraphs that consist of few distinct eigenvalues, and empirically
corroborate these findings with numerical experiments. Our analysis is geo-
metric in nature, as we identify conditions of optimality based on the geometry
of normal cones at the extreme points of the outer-approximation. The notion
of spectrally comonotone matrices, which are pairs of symmetric matrices that
can be transformed to diagonal matrices with sorted diagonal entries upon
conjugation by the same orthogonal matrix, plays a prominent role in our
investigation.

Convex Graph Invariant Relaxations For Graph Edit Distance

In a variety of applications graph similarity frequently arises as a central no-
tion. For instance, in image processing and pattern recognition, graph similar-
ity is frequently used as a primary tool for detecting repetitive substructures.
In chemoinformatics and biology, measuring graph similarity allows for deduc-
ing unknown functions of entities from similar ones with known functions. The
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edit distance between two graphs constitutes a widely used measure of similar-
ity that evaluates the smallest number of vertex and edge deletions/insertions
required to transform one graph to another. It is NP-hard to compute in gen-
eral, and thus exact computation of graph edit distance is only possible for
small sized graphs. Consequently, a large number of heuristics have been pro-
posed for approximating this quantity. With few exceptions, these methods
generally produce an explicit edit path transforming one graph to the other,
and hence they provide upper bounds on the edit distance between two graphs.

We propose a new family of computationally tractable convex relaxations for
obtaining lower bounds on the graph edit distance between two graphs. As be-
fore, we obtain these relaxations by constructing convex outer-envelopes to the
set of adjacency matrices representing a graph, based on convex graph invari-
ants. Consequently, these relaxations can be tailored to the structural proper-
ties of underlying graphs. The relaxations we investigate include constraints
on the graph spectrum (i.e., Schur-Horn orbitope discussed previously) as well
as (tractable approximations of) the stability number and the maximum-cut
values of graphs. We prove that our relaxation based on the Schur-Horn or-
bitope succeeds in exactly computing the graph edit distance when one of
the graphs consists of few eigenvalues, provided that suitable conditions on
graph eigenspaces and true number of edits hold. Furthermore, we identify
families of graphs for which our relaxations based on the stability number and
the maximum-cut values produce useful lower bounds on the true graph edit
distance. We validate the utility of our framework on synthetic problems as
well as real applications involving molecular structure comparison problems in
chemistry.

Sum of Squares Based Convex Relaxations for Inverse Eigenvalue
Problems

The problem of identifying matrices with a desired spectrum which satisfy ad-
ditional structural constraints — referred to as the inverse eigenvalue problem
— is a prominent question in linear algebra. This problem has attracted many
researchers in the past several decades due to its inherent difficulty and abun-
dant applications in various fields including pole placement in control theory
and frequency identification in vibration theory. Inverse eigenvalue problems
are often classified based on the structural constraints they impose. We in-
troduce the affine inverse eigenvalue problem, which is the problem of iden-
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tifying a symmetric matrix with a desired spectrum in a given affine space.
We express this problem in terms of a system of matrix valued polynomial
equations. Similar to constraints in combinatorial optimization for enforcing
particular scalar variables to be binary, our equations stipulate matrix vari-
ables to evaluate to projection matrices. Subsequently, we employ methods
from sum of squares optimization and real algebraic geometry literature to
obtain two convex semidefinite relaxations to the solution set of affine inverse
eigenvalue problem. These convex relaxations incur different computational
costs and offer different approximation qualities. In particular, the simpler of
these relaxations turn out to be equivalent to the intersection of the constraint
subspace with the Schur-Horn orbitope given by the desired vector of eigen-
values. On the other hand, the second convex relaxation imposes additional
constraints which essentially correspond to quadratic relations between the de-
cision variables. Our framework is capable of proving unsolvability of a wide
range of affine inverse eigenvalue problem instances. Moreover, we demon-
strate that if the underlying problem instance is feasible, a simple heuristic
of maximizing along random directions across the relaxation sets may be em-
ployed for constructing solutions to the affine inverse eigenvalue problem. We
corroborate our results with numerous numerical experiments.
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C h a p t e r 2

FINDING PLANTED SUBGRAPHS WITH FEW
EIGENVALUES USING THE SCHUR-HORN RELAXATION

2.1 Introduction

In application domains ranging from computational biology to social data
analysis, graphs are frequently used to model relationships among large num-
bers of interacting entities. A commonly encountered question across many
of these application domains is that of identifying structured subgraphs inside
larger graphs. For example, identifying specific motifs or substructures inside
gene regulatory networks is useful in revealing higher-order biological function
[6, 44, 88]. Similarly, extracting completely connected subgraphs in social net-
works is useful for determining communities of people that are mutually linked
to each other [81, 90, 100]. In this chapter, we propose a new algorithm based
on convex optimization for finding structured subgraphs inside large graphs,
and we give conditions under which our approach succeeds in performing this
task.

Formally, suppose Γ and G are graphs1 on k nodes and n nodes (here n > k),
respectively, with the following property: there exists a subset of vertices
V ⊂ {1, . . . , n} with |V | = k such that the induced subgraph of G correspond-
ing to the vertex set V is isomorphic to Γ. The planted subgraph problem is to
identify the vertex subset V given the graphs G and Γ; see Figure 2.1 for an
example. The decision version of the planted subgraph problem is known as
the induced subgraph isomorphism problem in the theoretical computer sci-
ence literature, and it has been shown to be NP-hard [73]. Nevertheless, as
this problem arises in a wide range of application domains as described above,
significant efforts have been directed towards the development of computation-
ally tractable procedures that succeed on certain families of problem instances.
Much of the focus of this attention has been on the special case of the planted
clique problem in which the subgraph Γ is fully connected. Alon et al. [3] and
Feige and Krauthgamer [49] developed a spectral algorithm for the planted
clique problem, and subsequently Ames and Vavasis [5] described an approach

1Throughout this chapter we consider undirected, unweighted, loopless graphs.
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(a) (b)

Figure 2.1: The Clebsch graph (16 nodes) on the left. An example on the right
of a 40-node graph containing the Clebsch graph as an induced subgraph; the
thick edges correspond to a 16-node induced subgraph that is isomorphic to
the Clebsch graph.

based on semidefinite programming with similar performance guarantees to
the earlier work based on spectral algorithms. Conceptually, these methods
are based on a basic observation about the spectrum of a clique, namely that
the adjacency matrix of a clique on k nodes has two distinct eigenvalues, one
with multiplicity equal to one and the other with multiplicity equal to k − 1.
We describe a new semidefinite programming technique that generalizes the
method of Ames and Vavasis [5] to planted subgraphs Γ that are not fully
connected, with the spectral properties of Γ playing a prominent role in our
algorithm and our analysis.

Our Contributions

Let AΓ ∈ Sk and AG ∈ Sn represent the adjacency matrices of Γ and of G,
with Sq denoting the space of q×q real symmetric matrices. Given any matrix
M ∈ Sk, we let [M ]k→n ∈ Sn for n > k denote an n×n symmetric matrix with
the leading principal minor of order k equal to M and all the other entries
equal to zero. The following combinatorial optimization problem is a natural
first approach to phrase the planted subgraph problem in a variational manner:

Âco = arg max
A∈Sn

Tr(A · AG)

s.t. Ai,j = 0 if (AG)i,j = 0 and i 6= j

A ∈ {Π[AΓ]k→nΠ′ | Π is an n× n permutation matrix}.
(2.1)

Assuming that there is no other subgraph of G that is isomorphic to Γ, one can
check that the optimal solution Âco of this problem identifies the vertices V ⊂
{1, . . . , n} whose induced subgraph in G is isomorphic to Γ, i.e., the unique
optimal solution Âco is equal to zero everywhere except for the principal minor
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corresponding to the indices in V and (Âco)V,V = Π̃AΓΠ̃′ for some k×k permu-
tation matrix Π̃. However, solving (2.1) is intractable in general. Replacing the
combinatorial constraint A ∈ {Π[AΓ]k→nΠ′ | Π is an n×n permutation matrix}
with the convex constraint A ∈ conv{Π[AΓ]k→nΠ′ | Π is an n×n permutation

matrix} does not lead to a tractable problem as checking membership in the
polytope conv{Π[AΓ]k→nΠ′ | Π is an n×n permutation matrix} is intractable
for general planted graphs Γ (unless P = NP).

We describe next a convex outer approximation of the set {Π[AΓ]k→nΠ′ |
Π is an n× n permutation matrix} that leads to a tractable convex program.
For any matrix M ∈ Sn, the Schur-Horn orbitope SH(M) ⊂ Sn is defined as
[107]:

SH(M) = conv{UMU ′ | U is an n× n orthogonal matrix}. (2.2)

The term ‘orbitope’ was coined by Sanyal, Sottile, and Sturmfels in their
work on convex hulls of orbits generated by the actions of groups, and the
Schur-Horn orbitope was so named by these authors due to its connection to
the Schur-Horn theorem in linear algebra [107]. In combinatorial optimiza-
tion, approximations based on replacing permutations matrices by orthogonal
matrices have also been employed to obtain bounds on the Quadratic As-
signment Problem [50]. The set SH(M) depends only on the eigenvalues of
M , and it is clearly an outer approximation of the set {ΠMΠ′ | Π is an n ×
n permutation matrix}. Crucially for our purposes, the Schur-Horn orbitope
SH(M) for any M ∈ Sn has a tractable semidefinite description via majoriza-
tion inequalities on the spectrum of a symmetric matrix [11, 107]; see Sec-
tion 2.4. Hence, we propose the following tractable semidefinite programming
relaxation for the planted subgraph problem:

Âsh = arg max
A∈Sn

Tr(A · AG)

s.t. Ai,j = 0 if (AG)i,j = 0 and i 6= j

A ∈ SH([AΓ − γIk]k→n).

(P )

Here Ik ∈ Sk is the k×k identity matrix. We refer to this convex program as the
Schur-Horn relaxation, and this problem can be solved to a desired precision
in polynomial time. This relaxation only requires knowledge of the eigenvalues
of the planted graph Γ. The parameter γ ∈ R is to be specified by the user,
and we discuss suitable choices for γ in the sequel. Note that changing AΓ to
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AΓ− γIk in the constraints of (2.1) essentially leaves that problem unchanged
(the nonzero principal minor of the optimal solution simply changes from Âco

to Âco − γIk). However, the additional degree of freedom provided by the
parameter γ plays a more significant role in the Schur-Horn relaxation as it
allows for shifts of the spectrum of AΓ to more favorable values, which is
essential for the solution of various planted subgraph problems; see Section
2.2 for further details, as well as the experiments in Section 2.4 for numerical
illustrations. We say that the Schur-Horn relaxation succeeds in recovering
the planted subgraph Γ if the optimal solution Âsh ∈ Sn satisfies the following
conditions: the optimal solution Âsh is unique, the submatrix (Âsh)V,V =

Π̃AΓΠ̃′− γIk for some k× k permutation matrix Π̃, and the remaining entries
of Âsh are equal to zero.

In Section 2.2 we study the geometric properties of the Schur-Horn orbitope as
these pertain to the optimality conditions of the Schur-Horn relaxation. Our
analysis relies prominently on the notion of spectrally comonotone matrices,
which refers to a pair of symmetric matrices that can be transformed to di-
agonal matrices with sorted diagonal entries upon conjugation by the same
orthogonal matrix. Spectral comonotonicity is a more restrictive condition
than simultaneous diagonalizability, and it enables a precise characterization
of the normal cones at extreme points of the Schur-Horn orbitope (Proposition
6). This discussion leads directly to the central observation of this chapter that
the Schur-Horn relaxation is useful for finding planted graphs Γ that consist of
few distinct eigenvalues. Cliques form the simplest examples of such graphs as
their spectrum consists of two distinct eigenvalues. There are numerous other
graph families whose spectrum consists of few distinct eigenvalues, and the
study of such graphs is a significant topic in graph theory [19, 46, 47, 92, 114–
116]. For example, strongly regular graphs are (an infinite family of) regular
graphs with three distinct eigenvalues; the Clebsch graph of Figure 2.1 is a
strongly regular graph on 16 nodes with eigenvalues in the set {5, 1,−3} and
degree equal to five. For a more extensive list of graphs with few eigenvalues,
see Section 2.2.

We state and prove the main theoretical result of this chapter in Section 2.3
– see Theorem 1. If the planted subgraph Γ and its complement are both
symmetric2– Γ and its complement are both vertex- and edge-transitive –

2The complement of a symmetric graph is not necessarily symmetric.
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and if Γ is connected, then this theorem takes on a simpler form (Corollary
20). Specifically, the success of the Schur-Horn relaxation (P ) relies on the
existence of a suitable eigenspace E ⊂ Rk of AΓ. Concretely, let PE ∈ Sk denote
the projection onto E , and let µ(E) = maxi,j, i 6=j

|(PE)i,j |√
|(PE)i,i||(PE)j,j |

denote the

coherence of E . Assuming that the edges in G outside the induced subgraph
Γ are placed independently and uniformly at random with probability p ∈
[0, 1

µ(E)k
) (i.e., the Erdős-Rényi random graph model), we show in Corollary 20

that the Schur-Horn relaxation (P ) with parameter3 γ = λE (the eigenvalue
associated to E) succeeds with high probability provided:

n . min
λ eigenvalue
of AΓ, λ 6=λE

min

{
|λ− λE |2

dim(E)2
(
1− kpµ(E)

)
k2 p

, (|λ− λE | − 2|λE |)2

}
+ k.

The coherence parameter µ(E) lies in (0, 1], and it appears prominently in
results on sparse signal recovery via convex optimization [45]. In analogy to
that literature, a small value of µ(E) is useful in our context (informally) to
ensure that the planted graph Γ looks sufficiently ‘different’ from the remainder
of G (see Section 2.3 for details). Thus, the Schur-Horn relaxation succeeds if
the planted graph Γ consists of few distinct eigenvalues that are well-separated,
and in which one of the eigenspaces has a small coherence parameter associated
to it. For more general non-symmetric graphs, our main result (Theorem 1) is
stated in terms of a parameter associated to an eigenspace E of AΓ called the
combinatorial width, which roughly measures the average conditioning over all
minors of PE of a certain size.

Specialization to the planted clique problem The sum of the adja-
cency matrix of a clique and the identity matrix has rank equal to one, and
consequently the planted clique problem may be phrased as one of identifying
a rank-one submatrix inside a larger matrix (up to shifts of the diagonal by
the identity matrix). In her thesis [48], Fazel proposed the nuclear norm as a
tractable convex surrogate for identifying low-rank matrices in convex sets, and
subsequent efforts provided theoretical support for the effectiveness of this re-
laxation in a range of rank minimization problems [24, 102]. Building on these
ideas, Ames and Vavasis [5] proposed a nuclear norm minimization approach
for the planted clique problem. The Schur-Horn relaxation (P ) specializes to

3In our experiments in Section 2.4, we set γ equal to the eigenvalue of AΓ with the
largest multiplicity. See Section 2.3 for further discussion.
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the relaxation in [5] when Γ is the clique. Specifically, letting Aclique ∈ Sk

denote the adjacency matrix of a k-clique, one can check that:

SH([Aclique + Ik]k→n) = {P ∈ Sn | trace(P ) = k, P � 0}. (2.3)

As the nuclear norm of a positive semidefinite matrix is equal to its trace, the
Schur-Horn orbitope SH([AΓ+Ik]k→n) is simply a face of the nuclear norm ball
in Sn scaled by a factor k. Thus, the Schur-Horn relaxation (P ) with γ = −1

is effectively a nuclear norm relaxation when the planted subgraph of interest
is the clique.4 Further, our main result (Theorem 1) can be specialized to the
case of a planted clique to obtain the main result in [5]; see Corollary 21.

Chapter Outline

In Section 2.2 we discuss the geometric properties of the Schur-Horn orbitope
and their connection to the optimality conditions of the Schur-Horn relaxation,
along with an extensive list of families of graphs with few eigenvalues. Section
2.3 contains our main theoretical results, while in Section 2.4 we demonstrate
the utility of the Schur-Horn relaxation in practice via numerical experiments.
We conclude in Section 2.5 with a discussion of further research directions.

Notation The normal cone at a point x ∈ C for a closed, convex set C ⊂ Rn

is denoted by NC(x) and it is the collection of linear functionals that attain
their maximal value over C at x [105]. The projection operator onto a subspace
E ⊂ Rn is denoted by PE . The restriction of a linear map A : Rn → Rn to
an invariant subspace E of A is denoted by A|E : E → E . The orthogonal
complement of a subspace E is denoted by E⊥. The notation dim(E) denotes
the dimension of a subspace E . The eigengap of a symmetric matrix M ∈ Sn

associated to an invariant subspace E ⊂ Rn of M is defined as:

eigengap(M, E) = min
{
|λE − λE⊥|

∣∣ λE an eigenvalue of M |E ,

λE⊥ an eigenvalue of M |E⊥
}
.

The smallest and largest eigenvalues of a symmetric matrix A are represented
by λmin(A) and λmax(A), respectively. The norms ‖·‖ , ‖·‖2, and ‖·‖F denote
the vector `2 norm, the matrix operator/spectral norm, and the matrix Frobe-
nius norm, respectively. The vector 1` ∈ R` denotes the all-ones vector of

4The nuclear norm relaxation in [5] is formulated in a slightly different fashion compared
to the Schur-Horn relaxation (P ) for the case of the planted clique; specifically, we show
in Appendix A that our relaxation succeeds whenever the nuclear norm relaxation in [5]
succeeds.
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length `. We denote the identity matrix of size k by Ik. The matrix IΩ ∈ R|Ω| × k

denotes the matrix whose rows are the rows of Ik indexed by Ω ⊂ {1, . . . , k},
so that the rows of IΩA are the rows of A indexed by Ω for any A ∈ Rk×q.
The matrix AΩ,Ω ∈ R|Ω|×|Ω| denotes the principal minor of A indexed by the
set Ω. The group of n×n orthogonal matrices is denoted by On ⊂ Rn×n. The
set relint(C) specifies the relative interior of any convex set C. The column
space of a matrix A is denoted by col(A). The quantity E[·] denotes the usual
expected value, where the distribution is clear from context.

2.2 Geometric Properties of the Schur-Horn Orbitope

In this section, we analyze the optimality conditions of the Schur-Horn re-
laxation from a geometric perspective. In particular, the notion of a pair of
spectrally comonotone matrices plays a central role in our development, and
we elaborate on this point in the next subsection. Based on this discussion, we
observe that the Schur-Horn relaxation is especially useful for finding planted
graphs consisting of few distinct eigenvalues, and we give examples of graphs
with this property in Section 2.2. The main theoretical results formalizing the
utility of the Schur-Horn relaxation are presented in Section 2.3.

Optimality Conditions of the Schur-Horn Relaxation

We state the optimality conditions of the Schur-Horn relaxation in terms of
the normal cones at extreme points of the Schur-Horn orbitope:

Lemma 1. Consider a planted subgraph problem instance in which the nodes
of G and Γ are labeled so that the leading principal minor of AG of order
k is equal to AΓ. Suppose there exists a matrix M ∈ Sn with the following
properties:

1. Mi,j = (AG)i,j if (AG)i,j = 1 or if i = j,

2. M ∈ relint
(
NSH([AΓ−γIk]k→n)([AΓ − γIk]k→n)

)
.

Then the Schur-Horn relaxation succeeds at identifying the planted subgraph
Γ inside the larger graph G, i.e., the unique optimal solution of the convex

program (P ) is Âsh =

(
AΓ − γIk 0

0 0

)
.
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Proof. From standard results in convex analysis [105], we have that(
AΓ − γIk 0

0 0

)
is the unique optimal solution of (P ) if AG can be decom-

posed as AG ∈ K + relint
(
NSH([AΓ−γIk]k→n)([AΓ − γIk]k→n)

)
for some matrix

K ∈ Sn that satisfies:

Ki,j = 0 if either (AG)i,j = 1 or i = j.

Letting K = AG −M we have the desired result.

The assumption on the node labeling is made purely for the sake of nota-
tional convenience in our analysis (to avoid clutter in having to keep track
of additional permutations), and our algorithmic methodology does not rely
on such a labeling. Based on this characterization of the optimality con-
ditions, the success of the Schur-Horn relaxation relies on the existence of
a suitable dual variable M ∈ Sn that satisfies two conditions. The first of
these conditions relates to the structure of the noise edges in G, while the
second condition relates to the structure of the planted graph Γ via the nor-
mal cone NSH([AΓ−γIk]k→n)([AΓ − γIk]k→n). From the viewpoint of Lemma
1, favorable problem instances for the Schur-Horn relaxation are, informally
speaking, those in which there are not too many noise edges in G (imply-
ing a less restrictive first requirement on M) and in which the normal cone
NSH([AΓ−γIk]k→n)([AΓ − γIk]k→n) is large (entailing a more flexible second con-
dition for M). The interplay between these two conditions forms the basis
of our analysis and results presented in Section 2.3. In the remainder of the
present section, we investigate spectral properties of planted graphs Γ that
result in a large normal cone NSH([AΓ−γIk]k→n)([AΓ − γIk]k→n).

The normal cones at the extreme points of the Schur-Horn orbitope are con-
veniently described based on the following notion (see Proposition 6 in the
sequel):

Definition 2. A pair of symmetric matrices A,B ∈ Sn is spectrally comono-
tone if there exists an orthogonal matrix U ∈ Rn×n such that U ′AU and U ′BU
are both diagonal matrices with the diagonal entries sorted in nonincreasing
order.

The stipulation that two matrices be spectrally comonotone is a stronger condi-
tion than the requirement that the matrices be simultaneously diagonalizable,
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due to the additional restriction on the ordering of the diagonal entries upon
conjugation by an orthogonal matrix.

Example 3. Consider the matrices A =

3 0 0

0 1 0

0 0 1

 , B =

1 0 0

0 0.5 0.5

0 0.5 0.5

 , C =

1 0 0

0 1 1

0 1 1

. The matrices A and B are spectrally comonotone, while A and

C are only simultaneously diagonalizable and are not spectrally comonotone.

As Proposition 1 states the optimality conditions of the Schur-Horn relaxation
in terms of the relative interiors of normal cones at extreme points of the Schur-
Horn orbitope, we need the following “strict” analog of spectral comonotonicity:

Definition 4. A matrix A ∈ Sn is strictly spectrally comonotone with a
matrix B ∈ Sn, if for every P ∈ Sn that is simultaneously diagonalizable with
B, there exists ε > 0 such that A+ ε P and B are spectrally comonotone.

Strict spectral comonotonicity is more restrictive than spectral comonotonicity.
Further, the definition of strict spectral comonotonocity is not a symmetric
one, unlike that of spectral comonotonicity, i.e., even if A ∈ Sn is strictly
spectrally comonotone with B ∈ Sn, it may be that B is not strictly spectrally
comonotone with A.

Example 5. Consider the matrices A =

3 0 0

0 2 0

0 0 1

 , B =

3 0 0

0 1 0

0 0 1

. The

matrix A is strictly spectrally comonotone with the matrix B, but B is not
strictly spectrally comonotone with A.

The following result provides a characterization of normal cones at extreme
points of the Schur-Horn orbitope in terms of spectrally comonotone matrices:

Proposition 6. For any matrix M ∈ Sn and the associated Schur-Horn or-
bitope SH(M), the normal cone NSH(M)(W ) and its relative interior at an
extreme point W of SH(M) are given by:

NSH(M)(W ) = {Q ∈ Sn | Q and W are spectrally comonotone}.

relint
(
NSH(M)(W )

)
= {Q ∈ Sn | Q strictly spectrally comonotone with W}.
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Note For any matrixM ∈ Sn, the extreme points of SH(M) are the elements
of the set {UMU ′ | U ∈ On}, as each of the matrices UMU ′ for U ∈ On has
the same Frobenius norm.

Proof. Let W = M without loss of generality. We have that:

NSH(M)(M) = {Y ∈ Sn | sup
Z∈SH(M)

Tr(Y Z) ≤ Tr(YM)}

= {Y ∈ Sn | sup
Z=UMU ′ for U∈On

Tr(Y Z) ≤ Tr(YM)}

= {Y ∈ Sn | sup
U∈On

Tr(U ′Y UM) = Tr(YM)}.

The last line follows from the inequality Tr(YM) ≤ supU∈On
Tr(U ′Y UM).

Considering the case of equality in the Von Neumann trace inequality [119],
we have that supU∈On

Tr(U ′Y UM) = Tr(YM) if and only if Y and M are
spectrally comonotone. The claim about the relative interior of the normal
cone follows immediately from the definition of strict spectral comonotonicity.

If a matrixM ∈ Sn has few distinct eigenvalues, the normal cone at an extreme
point UMU ′ (for U orthogonal) of SH(M) is larger as there are many more
matrices that are spectrally comonotone with UMU ′. Based on Proposition 6,
this observation suggests that planted graphs Γ with few distinct eigenvalues
have large normal cones NSH([AΓ−γIk]k→n)([AΓ− γIk]k→n), and such graphs are
especially amenable to recovery in planted subgraph problems via the Schur-
Horn relaxation. We make this insight more precise with our analysis in Section
2.3. Proposition 6 also points to the utility of employing the parameter γ in
the Schur-Horn relaxation (P ). Specifically, multiplicities in the spectrum of
the matrix [AΓ − γIk]k→n ∈ Sn may be increased via suitable choices of γ,
which in turn makes the normal cone NSH([AΓ−γIk]k→n)([AΓ − γIk]k→n) larger.
In particular, setting γ equal to an eigenvalue of AΓ increases the multiplicity
of zero as an eigenvalue of [AΓ−γIk]k→n. As detailed in Section 2.3, the success
of the Schur-Horn relaxation relies on the existence of an eigenspace E ⊂ Rk

of AΓ with small coherence parameter, and the appropriate choice of γ is the
eigenvalue λE associated to E . In our experiments in Section 2.4, we set γ
equal to the eigenvalue of AΓ with largest multiplicity, so that the multiplicity
of zero as an eigenvalue of [AΓ − γIk]k→n is as large as possible.
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To conclude, we record an observation on spectral comonotonocity that is
useful in Section 2.3. The claim is straightforward and therefore we omit the
proof.

Lemma 7. A pair of symmetric matrices A,B ∈ Sn is spectrally comonotone
if and only if A and B are simultaneously diagonalizable and

λmin(A|Ei) ≥ λmax(A|Ei+1
) ∀i ∈ {1, . . . , t− 1}, (2.4)

where Ei for i ∈ {1, . . . , t} are eigenspaces of B ordered such that the cor-
responding eigenvalues of B are decreasing. Further, A is strictly spectrally
comonotone with B if and only if A and B are simultaneously diagonalizable
and each of the inequalities (2.4) holds strictly.

Note that if A and B simultaneously diagonalizable, then any eigenspace E
of B is an invariant subspace of A. As a result, the restriction of A to the
eigenspaces of B in (2.4) is consistent with the notation described in Section
2.1.

Graphs with Few Eigenvalues

Building on the preceding section, we give examples of families of graphs con-
sisting of few distinct eigenvalues. Such graphs have received much attention
due to their connections to topics in combinatorics and design theory such as
pseudorandomness [74] and association schemes [9, 58].

(a) (b) (c)

Figure 2.2: From left to right: 8-triangular graph, 9-triangular graph, and
Petersen graph.

Triangular graphs The triangular graph Tm of order m is the line graph
of the complete graph on m nodes. The graph Tm has

(
m
2

)
nodes and it has

the three distinct eigenvalues 2(m − 2) (with multiplicity 1), m − 4 (with
multiplicity m − 1), and −2 (with multiplicity m(m−3)

2
). Figure 2.2 gives two

examples.
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Kneser graphs A Kneser graph K(m, `) is a graph on
(
m
`

)
nodes, each

corresponding to an `-element subset of m elements, and it consists of edges
between those pairs of vertices for which the corresponding subsets are disjoint.
The graph K(m, 1) is the complete graph on m nodes and the graph K(5, 2) is
the Petersen graph (Figure 2.2). The Kneser graph K(m, `) has `+ 1 distinct
eigenvalues in general.

(a) (b) (c)

Figure 2.3: From left to right: 5-Paley graph, 13-Paley graph, and 17-Paley
graph.

Paley graphs Let q be a prime power such that q ≡ 1(mod 4). The Paley
graph on q nodes is an undirected graph formed by connecting pairs of nodes
i, j ⊂ {0, . . . , q − 1} if the difference i− j is a square in the finite field GF(q).
Note that i− j is a square if and only if j − i is a square as −1 is a square in
GF(q). Paley graphs have eigenvalues 1

2
(q−1) (with multiplicity 1), 1

2
(−1+

√
q)

(with multiplicity 1
2
(q−1)), and 1

2
(−1−√q) (with multiplicity 1

2
(q−1)). Paley

graphs are also examples of pseudorandom graphs as they exhibit properties
similar to random graphs (in the limit of large q) [74]. Figure 2.3 shows the
three smallest Paley graphs.

(a) (b)

Figure 2.4: Generalized quadrangle-(2, 2) graph (left) and generalized
quadrangle-(2, 4) graph (right).
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Strongly regular graphs These are regular graphs with the property that
every pair of adjacent vertices has the same number da of common neighbors
and every pair of non-adjacent vertices has the same number dna of common
neighbors, for some integers da, dna [16]. Strongly regular graphs that are
connected have three distinct eigenvalues; conversely, connected and regular
graphs with three distinct eigenvalues are necessarily strongly regular. The
triangular graphs, Kneser graphs with parameter ` = 2, and the Paley graphs
mentioned above are examples of strongly regular graphs. The Clebsch graph
shown in Figure 2.1a in the introduction is also a strongly regular graph with
degree 5 and eigenvalues 5 (with multiplicity 1), −3 (with multiplicity 5), and
1 (with multiplicity 10). The generalized quadrangle graphs shown in Figure
2.4 are additional examples of strongly regular graphs. Strongly regular graphs
form a significant topic in graph theory due to their many regularity properties
[21, 23, 108].

(a) (b)

Figure 2.5: Hamming-(3, 3) graph with 4 distinct eigenvalues (left) and 6-
hypercube graph with 7 distinct eigenvalues (right).

Other examples Unlike regular graphs with three distinct eigenvalues,
graphs with four (or more) eigenvalues do not appear to have a simple combi-
natorial characterization [115]. Nonetheless, there are many constructions of
such graphs in the literature [62, 114, 115], most notably those derived from
distance-regular graphs [20] and from association schemes. Indeed, there are
infinitely many graphs with exactly d+1 distinct eigenvalues for d = 3, 4 which
arise from association schemes with d classes. The two graphs shown in Figure
2.5 are obtained from the Hamming scheme.

2.3 Recovering Subgraphs Planted in Erdős-Rényi Random Graphs

In this section we discuss our theoretical results on the performance of the
Schur-Horn relaxation in recovering subgraphs planted inside Erdős-Rényi ran-



19

dom graphs. Formally, suppose without loss of generality as in the previous
section that the nodes of G and of Γ are labeled so that the leading principal
minor of AG of order k is equal to AΓ. The Erdős-Rényi model for the planted
subgraph problem specifies a distribution on the edges in the remainder of the
graph G via a probability parameter p ∈ [0, 1]; for each i, j ∈ {1, . . . , n} with
i < j and k < j, the graph G contains an edge between nodes i and j with
probability p (independent of the other edges):

(AG)i,j = (AG)j,i =

1, with probability p,

0, with probability 1− p.

We begin with a sufficient condition for the optimality condition described in
Lemma 1, which suggests a natural approach for constructing suitable dual
variables for certifying optimality. These sufficient conditions point to the
importance of the existence of an eigenspace of AΓ with certain properties
to the success of the Schur-Horn relaxation; these properties are discussed in
Section 2.3. In Section 2.3 we state and prove the main theorem (Theorem 1)
of this chapter, with Section 2.3 giving specializations of this result (e.g., to
the planted clique problem).

A Simpler Sufficient Condition for Optimality

The following proposition provides a simpler set of conditions than those in
Lemma 1 on dual variables that certify the success of the Schur-Horn relax-
ation. This result continues to be deterministic in nature, and the probabilistic
aspects of our analysis – due to the Erdős-Rényi model – appear in the sequel.

Proposition 8. Consider a planted subgraph problem instance in which the
nodes of G and Γ are labeled so that the leading principal minor of AG of
order k is equal to AΓ. Suppose there exists an eigenspace E ⊂ Rk of AΓ with

eigenvalue λE , and suppose there exists a matrix M =

(
M11 M12

M ′
12 M22

)
∈ Sn with

submatrices M11 ∈ Sk,M12 ∈ Rk×(n−k),M22 ∈ Sn−k such that the the following
conditions are satisfied:

(i) Mi,j = (AG)i,j, if (AG)i,j = 1 or if i = j,

(ii) The submatrix M11 ∈ Sk is strictly spectrally comonotone with AΓ,

(iii) λmax(M11|E) ≥ λE and λmin(M11|E) ≤ λE ,
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(iv) Each column of the submatrix M12 ∈ Rk×(n−k) lies in the subspace E,

(v) eigengap(M11, E) > ‖M12‖2 + ‖M22‖2 + |λE |.

Then the Schur-Horn relaxation (P ) with parameter γ = λE succeeds at iden-
tifying the planted subgraph Γ inside the larger graph G.

Proof. We establish this result by showing that the given matrix M ∈ Sn sat-
isfies the requirements of Lemma 1. The first condition of Lemma 1 is identical
to that of this proposition, and therefore it is satisfied. We prove next that the
remaining conditions of this proposition ensure that the second requirement of
Lemma 1 is also satisfied, i.e.,M ∈ relint

(
NSH([AΓ−λEIk]k→n)([AΓ − λEIk]k→n)

)
.

Based on Proposition 6, this entails showing that M is strictly spectrally
comonotone with [AΓ − λEIk]k→n. Our strategy is to employ Lemma 7.

Let Ei ⊂ Rk, i = 1, . . . , t be the eigenspaces of AΓ ordered such that the corre-
sponding eigenvalues λEi are strictly decreasing, and suppose Ej = E , λEj = λE

for some j ∈ {1, . . . , t}. As 0 is an eigenvalue of AΓ − λEIk, one can check
that the eigenspaces of [AΓ − λEIk]k→n are Ẽi = Ei × {0} ⊂ Rk × Rn−k, i =

1, . . . , t, i 6= j (with corresponding eigenvalues λEi −λE) and Ẽj = E ×Rn−k ⊂
Rk×Rn−k (with eigenvalue 0). We now need to show thatM and [AΓ−λEIk]k→n
are simultaneously diagonalizable, and that λmin(M |Ẽi) > λmax(M |Ẽi+1

) for
i ∈ {1, . . . , t− 1}.

First, as E is an eigenspace of AΓ−λEIk with eigenvalue 0 and as every column
of M12 belongs to E , one can check that (AΓ − λEIk) ·M12 = 0 ∈ Rk×(n−k).
Further, from Lemma 7 we note that M11 and AΓ − λEIk are simultaneously
diagonalizable because M11 is strictly spectrally comonotone with AΓ (and
hence with AΓ − λEIk). From these two observations one can check that M
and [AΓ−λEIk]k→n commute with each other, and therefore are simultaneously
diagonalizable.

As M and [AΓ−λEIk]k→n are simultaneously diagonalizable, we have that the
eigenspaces Ẽi, i = 1, . . . , t of [AΓ − λEIk]k→n are invariant subspaces of M .
Similarly, as M11 is strictly spectrally comonotone with AΓ, the eigenspaces Ei
are invariant subspaces of M11. Based on the structure of these eigenspaces as
described above, one can check that the eigenvalues of M |Ẽi are equal to those
of M11|Ei for each i = 1, . . . , t, i 6= j. Hence, λmin(M |Ẽi) > λmax(M |Ẽi+1

) for
i > j and for i < j − 1.
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All that remains to be verified is that λmin(M |Ẽj) > λmax(M |Ẽj+1
) and that

λmin(M |Ẽj−1
) > λmax(M |Ẽj). As each column of M12 belongs to E and as

Ẽj = E × Rn−k ⊂ Rk × Rn−k, we have for x ∈ E , y ∈ Rn−k that:

M |Ẽj

(
x

y

)
=

[(
M11|E 0

0 0

)
+

(
0 M12

M ′
12 M22

)](
x

y

)
=

(
M11|Ex+M12y

M ′
12x+M22y

)
∈ Ẽj.

(2.5)
Consequently, recalling that Ej = E we have:

λmax(M |Ẽj) ≤ max{λmax(M11|E), 0}+ ‖M12‖2 + ‖M22‖2

< max{λmax(M11|E), 0} − |λE |+ eigengap(M11, E)

≤ max{λmax(M11|E), 0} − |λE |+ λmin(M11|Ej−1
)− λmax(M11|E)

= max{0,−λmax(M11|E)} − |λE |+ λmin(M11|Ej−1
)

≤ max{0,−λE} − |λE |+ λmin(M11|Ej−1
)

≤ λmin(M11|Ej−1
)

= λmin(M |Ẽj−1
).

The first inequality follows from (2.5), the second inequality from condition
(v), the third inequality from the definition of eigengap (see Section 2.1) as
Ej = E , the fourth inequality from condition (iii), and the second equality
from the fact that the eigenvalues of M |Ẽi are equal to those of M11|Ei for each
i = 1, . . . , t, i 6= j. Similarly, one can check that λmin(M |Ẽj) > λmax(M |Ẽj+1

).
This concludes the proof.

This result provides a concrete approach for constructing dual variables to
certify the optimality of the Schur-Horn relaxation (P ) at the desired solution.
In the remainder of this section, we give conditions on the eigenstructure of
the planted graph Γ, the probability p of the Erdős-Rényi model, and the size
n of the larger graph G under which the Schur-Horn relaxation (P ) succeeds
with high probability.

Invariants of Graph Eigenspaces

In this section, we investigate properties of eigenspaces of graphs which ensure
that the conditions of Proposition 8 can be satisfied. For notational clarity
in the discussion in this section, we let Ωj ⊂ {1, . . . , k} for j = 1, . . . , n − k
denote the locations of the entries equal to one in the submatrix (AG)i,j+k, i =

1, . . . , k; j = 1, . . . , n− k, i.e., (AG)i,j+k = 1⇔ i ∈ Ωj.
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A requirement of Proposition 8 is the existence of a suitable eigenspace E ⊂ Rk

of AΓ such that one can obtain a matrix M12 ∈ Rk×(n−k) (a submatrix of a
larger dual certificate) that satisfies three conditions: (i) Every column of
M12 lies in E , (ii) For each i = 1, . . . , k and j = 1, . . . , n − k we have that
(M12)i,j = 1 if (AG)i,j+k = 1, and (iii) The operator norm ‖M12‖2 is as small
as possible.

We begin by analyzing the first two conditions and the restrictions they impose
on E . Consider the j’th column of M12 for a fixed j ∈ {1, . . . , n − k} as an
illustration. Then conditions (i) and (ii) are simultaneously satisfied if the
coordinate subspace of vectors in Rk with support on the indices in Ωj has a
transverse intersection with E⊥. More generally, a natural sufficient condition
for the first two requirements on M12 to be satisfied (for every column) is for
E⊥ to have a transverse intersection with the coordinate subspaces specified by
each of the subsets Ωj for j = 1, . . . , k. This observation leads to the following
invariant that characterizes the transversality of a subspace with all coordinate
subspaces of a certain dimension:

Definition 9. [76] The Kruskal rank of a subspace S ⊆ Rk, denoted
kruskal(S), is the largest m ∈ Z such that for any Ω ⊆ {1, . . . , k} with |Ω| = m

we have:
S⊥ ∩ {v ∈ Rk | vi = 0 if i /∈ Ω} = {0}.

In other words, the Kruskal rank of a subspace S ⊂ Rk is one less than the
size of the support of the sparsest nonzero vector in Rk that is orthogonal to
S. The Kruskal rank of a matrix – the largest m such that all subsets of m
columns of the matrix are linearly independent – was first introduced in [76]
in the context of tensor decompositions. This version in terms of matrices
is equivalent to our definition in terms of subspaces. One can check that all
principal minors of PS of size up to kruskal(S) are non-singular.

Recall that the entries (AG)i,j+k for i = 1, . . . , k and j = 1, . . . , n−k correspond
to edges (or lack thereof) between nodes in G outside the induced subgraph
corresponding to Γ and those of Γ. Therefore, if we employ the Schur-Horn
relaxation with parameter γ = λE (the eigenvalue associated to E), then the
Kruskal rank of E provides a bound on the number of noise edges that can be
tolerated between these two sets of nodes. As such kruskal(E) plays a central
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role in our main result (see Theorem 1) in providing an upper bound on the
probability of a noise edge in G under the Erdős-Rényi model.

Returning to the three conditions on M12 stated at the beginning of this sec-
tion, if an eigenspace E of AΓ has large Kruskal rank and if the size of each
Ωj, j = 1, . . . , n − k is smaller than kruskal(E), then there is an affine space
(of dimension potentially larger than zero) of matrices in Rk×(n−k) that satisfy
the first two requirements on M12. The third condition on M12 requires that
we find the element of this affine space with the smallest spectral norm:

M̂ spectral
12 = arg min

X∈Rk×(n−k)

‖X‖2

s.t. Xi,j = 1 if i ∈ Ωj for j = 1, . . . , n− k

col(X) ⊆ E .

As long as |Ωj| ≤ kruskal(E) for each j = 1, . . . , n−k, this problem is feasible.
However, analytically characterizing the optimal value and solution of this
problem is challenging, especially in the context of problem instances that
arise from the Erdős-Rényi model, as the subsets Ωj, j = 1, . . . , n − k, are
random. As a result, a common approach is to replace the objective in the
above problem with the Frobenius norm:

M̂ frobenius
12 = arg min

X∈Rk×(n−k)

‖X‖F

s.t. Xi,j = 1 if i ∈ Ωj for j = 1, . . . , n− k

col(X) ⊆ E .

(2.6)

One of the virtues of this latter formulation in comparison to the earlier one is
that the spectral norm of the optimal solution ‖M̂ frobenius

12 ‖2 is more tractable
to bound, primarily since the optimization problem (2.6) decomposes into
n − k separable problems, one for each column of the decision variable X.
In particular, for any subspace S ⊆ Rk and any Ω ⊂ {1, . . . , k} with |Ω| ≤
kruskal(S), consider the following minimum Euclidean-norm completion:

qΩ(S) , arg min
q∈Rk

‖q‖ s.t. q ∈ S and qi = 1 for i ∈ Ω

= PSIΩ
′((PS)Ω,Ω)−11|Ω|.

(2.7)

With this notation, the j’th column of M̂ frobenius
12 is given by qΩj

(E). Fur-
ther, under the Erdős-Rényi model, the entries (AG)i,j+k, i = 1, . . . , k; j =
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1, . . . , n−k are independent and identically distributed Bernoulli random vari-
ables. In such a family of problem instances, the columns of M̂ frobenius

12 , i.e.,
qΩj

(E) ∈ Rk, j = 1, . . . , k, are independently and identically distributed ran-
dom vectors. These observations in conjunction with the following tail bound
on the spectral norm of a random matrix suggest a natural invariant of E that
leads to bounds on ‖M̂ frobenius

12 ‖2:

Lemma 10. [118] Let A be a d×N matrix (d < N) with columns Ai and let
Σ = E[AiAi

T ] denote the correlation matrix of the Ai’s. Further, suppose
there exists m ∈ R such that ‖Ai‖ ≤

√
m almost surely for all i. Then

∀x ≥ (N‖Σ‖2)1/2 we have that

P(‖A‖2 ≥ x) ≤ 2d exp
(
− 3(x2 −N‖Σ‖2)2

4m(x2 + 2N‖Σ‖2)

)
. (2.8)

Proof. The proof follows that of Theorem 5.41 in [118] with minor modifica-
tions. We apply the non-commutative Bernstein Inequality to 1

N
x2 − ‖Σ‖2

rather than to max(δ, δ2) on p.27 of [118], and we don’t make the isotropy
assumption.

To apply Lemma 10 to obtain a bound on ‖M̂ frobenius
12 ‖2, we describe next the

second key invariant of E , which is essentially the correlation matrix in Lemma
10.

Definition 11. Let S ⊆ Rk be a subspace. Then the combinatorial width of
S for each ` = 1, . . . , kruskal(S) and p ∈ [0, 1) is defined as:

ω(S, `, p) ,
∥∥∥E[qΩ(S) qΩ(S)′

∣∣ |Ω| ≤ `]
∥∥∥

2
,

with the expectation taken over Ω, where each element of {1, . . . , k} is con-
tained in Ω independently with probability p.

The conditioning in the definition ensures that qΩ(S) is well-defined as |Ω| ≤
kruskal(S). We utilize this terminology as a parallel to analogous notions such
as ‘mean width’ that are prominent in the convex geometry literature. The
explicit appearance of ` in this definition allows for a more fine-grained analysis
in our main result Theorem 1; see Section 2.3. Based on the following result,
the Kruskal rank and the combinatorial width play a central role in Theorem
1 as the success of the Schur-Horn relaxation (P ) relies on the existence of an
eigenspace E of AΓ that has large Kruskal rank and small combinatorial width.
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Proposition 12. Consider a planted subgraph problem instance in which the
nodes of G and Γ are labeled so that the leading principal minor of AG of
order k is equal to AΓ, and the remaining edges in G are drawn according
to the Erdős-Rényi model with probability p ∈ [0, kruskal(E)

k
). Fix any ` ∈ Z

satisfying kp < ` ≤ kruskal(E), and denote ζ := min
Ω⊂{1,...,k}
|Ω|≤`

λmin

(
(PE)Ω,Ω

)
. For

any δ ≥
√

(n− k)ω(E , `, p), there exists a matrix M12 ∈ Rk×(n−k) satisfying
the following properties:

1. Each column of M12 lies in E,

2. (M12)i,j = (AG)i, j+k if (AG)i, j+k = 1,

3. ‖M12‖2 < δ,

with probability at least
(

1 − 2k exp
(
− 3ζ(δ2−(n−k)ω(E,`,p))2

4 `(δ2+2(n−k)ω(E,`,p))

))(
1 −

exp (− (`−kp)2

`+kp
)
)n−k.

Proof. We bound the probability that M̂ frobenius
12 obtained as the optimal solu-

tion of (2.6) satisfies the requirements of this proposition.

We begin by bounding the cardinality of each Ωj for j = 1, . . . , n−k. Under the
Erdős-Rényi model, each |Ωj| follows a binomial distribution. Consequently,
using the Chernoff bound we have for each j = 1, . . . , n− k that:

P(|Ωj| ≥ `+ 1) ≤ P(|Ωj| ≥ `) = P

(
|Ωj| ≥

(
1 +

`− kp
kp

)
kp

)

≤ exp

(
− (`− kp)2

`+ kp

)
.

The first inequality is not essential and it is simply used to avoid notational
clutter. Based on the independence of the Ωj’s,

P(|Ωj| ≤ `, j = 1, . . . , n− k) ≥

(
1− exp

(
− (`− kp)2

`+ kp

))n−k

. (2.9)

This inequality provides a bound on the probability that the optimization
problem (2.6) is feasible.
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In our next step we bound ‖M̂ frobenius
12 ‖2 via Lemma 10. As ` ≤ kruskal(E) one

can check that ζ > 0. Further, from (2.7) we have that ‖qΩj
‖2 ≤ |Ωj |

ζ
. Thus,

by applying Lemma 10, we deduce that

P(‖M12‖2 < δ
∣∣ |Ωj| ≤ ` ∀j) ≥ 1− 2k exp

(
− 3ζ(δ2 − (n− k)ω(E , `, p))2

4 `(δ2 + 2(n− k)ω(E , `, p))

)
.

(2.10)

The final result follows by combining (2.9) and (2.10).

Properties of Kruskal Rank and Combinatorial Width

Beyond the utility of the Kruskal rank and combinatorial width in characteriz-
ing the performance of the Schur-Horn relaxation, these graph parameters are
also of intrinsic interest and we discuss next their relationship to structural
properties of Γ.

Invariance under Complements for Regular Graphs

Both the Kruskal rank and the combinatorial width are preserved under graph
complements for connected regular graphs. Suppose Γ is a connected regular
graph on k vertices, and let AΓ ∈ Sk be an adjacency matrix representing Γ

for some labeling of the nodes. Then the eigenspaces of AΓ are the same as
those of the adjacency matrix AΓc of the complement Γc based on the following
relation:

AΓc = 1k1
′
k − Ik − AΓ. (2.11)

As Γ is connected and regular, the vector 1k is an eigenvector of AΓ. Thus,
the Kruskal ranks and the combinatorial widths associated to the eigenspaces
of AΓ are the same as those associated to the eigenspaces of AΓc .

Combinatorial Width for Symmetric Graphs

For graphs Γ that are symmetric – vertex- end edge-transitive – and also have
symmetric complements Γc, the combinatorial width of any eigenspace E of
AΓ can be characterized in terms of the minimum singular values of minors of
PE . In particular, we establish our result by demonstrating that the correlation
matrix E[qΩ(S) qΩ(S)′

∣∣ |Ω| ≤ `] in the definition of the combinatorial width has
the property that all its nonzero eigenvalues are equal to each other, which
leads to bounds on the combinatorial width via bounds on the trace of the
correlation matrix.
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Proposition 13. Let AΓ ∈ Sk be an adjacency matrix of a (connected) sym-
metric graph Γ with a symmetric complement Γc, and let E ⊂ Rk be an
eigenspace of AΓ. Fix any ` ∈ Z and p ∈ [0, 1) such that kp ≤ ` ≤ kruskal(E),
and let ζ := min

Ω⊂{1,...,k}
|Ω|≤`

λmin

(
(PE)Ω,Ω

)
. Then,

ω(E , `, p) ≤ 2kp

ζ dim(E)
.

Proof. Denote the correlation matrix in the definition of the combinatorial
width as follows:

Σ = E [qΩ(E)qΩ(E)′
∣∣ |Ω| ≤ `] =

∑̀
i=0

cp,` p
i(1− p)k−i

∑
|Ω|=i

qΩ(E)qΩ(E)′, (2.12)

where the term cp,` =
( ∑̀
i=0

(
k
i

)
pi(1− p)k−i

)−1 is the normalization constant.

The main element of the proof is to show that the rank of Σ ∈ Sk is equal to
dim(E) (it is easily seen that col(Σ) ⊆ E) and that all the nonzero eigenvalues
of Σ are equal to each other. After this step is completed, one can bound the
combinatorial width using the following relation:

ω(E , `, p) =
Tr(Σ)

dim(E)
. (2.13)

In particular, we have qΩ(E) = PEIΩ
′((PE)Ω,Ω)−11|Ω| with |Ω| ≤ kruskal(E).

One can check that ‖qΩ(E)‖2 ≤ |Ω|
ζ
, and then obtain that:

Tr(Σ) =
∑̀
i=0

cp,` p
i(1− p)k−i

∑
|Ω|=i

‖qΩ‖2 ≤ 2
∑̀
i=0

(
k

i

)
pi(1− p)k−i i

ζ
≤ 2 k p

ζ
.

(2.14)
The first inequality follows from the implication that kp ≤ ` ⇒ cp, ` ≤ 2. The
second inequality is obtained by bounding the sum from above with the ex-
pectation of a binomial random variable with parameters k and p. Combining
(2.13) and (2.14) we have the desired result.

To complete the proof, we need to show that rank(Σ) = dim(E) and that all the
nonzero eigenvalues of Σ are equal to each other. For each i ≤ ` denote S(i) :=∑
|Ω|=i

IΩ
′((PE)Ω,Ω)−11|Ω|1|Ω|

′((PE)Ω,Ω)−1IΩ so that
∑
|Ω|=i

qΩ(E)qΩ(E)′ = PES(i)PE .

Let Π ∈ Rk×k be a permutation matrix such that ΠAΓΠ′ = AΓ, i.e., Π corre-
sponds to an element of the automorphism group of Γ. It is easily seen that
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ΠPEΠ = PE . Consequently, if a vertex subset Ω ⊂ {1, . . . , k} is mapped to
Ω̂ under the automorphism represented by Π, then we have that (PE)Ω,Ω =

(PE)Ω̂,Ω̂. In turn, one can check that Π IΩ
′((PE)Ω,Ω)−11|Ω|1|Ω|

′((PE)Ω,Ω)−1IΩ Π′

= IΩ̂
′((PE)Ω̂,Ω̂)−11|Ω̂|1|Ω̂|

′((PE)Ω̂,Ω̂)−1IΩ̂. Based on these observations and the
fact that |Ω| = i ⇔ |Ω̂| = i, we note that a summand of S(i) gets mapped to
another summand of S(i) under conjugation by Π. Moreover, automorphisms
are injective functions, and hence distinct summands of S(i) must be mapped
to distinct summands of S(i). Thus, we conclude that ΠS(i)Π′ = S(i) for each
i ≤ ` and for any permutation matrix Π ∈ Rk×k representing an automorphism
of Γ.

As Γ is vertex- and edge-transitive, and as Γc is also edge-transitive, each S(i)

is of the following form:

(S(i))p,q =


α1, if (AΓ)p,q = 1 and p 6= q

α2, if (AΓ)p,q = 0 and p 6= q

α3, if p = q

=⇒ S(i) = α1AΓ + α2AΓc + α3Ik,

(2.15)

for some α1, α2, α3 ∈ R. Since Γ is vertex-transitive it is also a regular graph,
and consequently the discussion from Section 2.3 implies that the eigenspaces
of AΓ and AΓc are the same. As Γ is assumed to be connected, we have from
equations (2.11), (2.15) and from the equality

∑
|Ω|=i

qΩ(E)qΩ(E)′ = PES(i)PE

that:∑
|Ω|=i

qΩ(E)qΩ(E)′ =

[α1λE + α2(k − λE − 1) + α3]1k1k
T

k
, if E = span{1k1′k},

[α1λE − α2(λE + 1) + α3]PE , otherwise.

Since this holds for each index i ≤ `, we deduce that every summand of
Σ in equation (2.12) is a scalar multiple of PE , and consequently, so is Σ.
Furthermore, by construction, Σ cannot be the all zeros matrix. Therefore,
rank(Σ) = dim(E) and all nonzero eigenvalues of Σ are equal to each other.
The result follows immediately.

Simplifications based on Coherence

The Kruskal rank of a subspace is intractable to compute in general; as a
result, a number of subspace parameters have been considered in the litera-
ture to obtain tractable bounds on the Kruskal rank. The most prominent
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of these is the coherence parameter of a subspace. In our context, the addi-
tional analytical simplification provided by the coherence of a subspace along
with Proposition 13 lead to simple performance guarantees on the Schur-Horn
relaxation for symmetric planted graphs.

Definition 14. Let S ⊆ Rk be a subspace. The coherence of S, denoted µ(S),
is defined as:

µ(S) := max
1≤i,j≤k
i 6=j

|(PS)i,j|
((PS)i,i)

1/2((PS)j,j)
1/2
.

The coherence parameter of a subspace can be computed efficiently, and it can
be used to bound the Kruskal rank from below:

Proposition 15. [45] For any subspace S ∈ Rk, kruskal(S) ≥ 1
µ(S)

.

Further, for symmetric planted graphs Γ, the following result provides a bound
on the minimum eigenvalue of minors of PE for eigenspaces E of AΓ. Recall
that this result is directly relevant in the context of Proposition 13.

Proposition 16. Suppose Γ is a vertex-transitive graph with adjacency matrix
AΓ ∈ Sk, and let E denote an eigenspace of AΓ. For any ` ∈ Z with ` < 1

µ(E)
+1,

we have that min
Ω⊂{1,...,k}
|Ω|≤`

λmin

(
(PE)Ω,Ω

)
≥ dim(E)

k

(
1− (`− 1)µ(E)

)
.

Proof. One can check that ΠPEΠ′ = PE for permutation matrices Π ∈ Rk×k

that correspond to automorphisms of Γ. Therefore, by vertex transitivity, the
diagonal entries of PE are all equal to each other. As Tr(PE) = dim(E), we
conclude that (PE)i,i = dim(E)

k
for each i = 1, . . . , k. Every row of (PE)Ω,Ω has

at most `− 1 off-diagonal entries, and each of these entries is bounded above
by dim(E)

k
µ(E). We obtain the desired result by applying the Gershgorin circle

theorem.

Main Result

Building on the preceding discussion, we state and prove our main result The-
orem (1). The proof of this result relies on an intermediate step regarding the

M22 submatrix of the dual variable M =

(
M11 M12

M ′
12 M22

)
from Proposition 8.

From that result, we are required to obtain an M22 ∈ Sn−k such that (i) for
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each i, j = 1, . . . , n− k we have (M22)i,j = 1 if (AG)i+k,j+k = 1 or if i = j, and
(ii) the operator norm ‖M22‖2 is as small as possible.

We present the following result from [8], which we utilize subsequently in
Lemma 18 to establish a bound on ‖M22‖2:

Lemma 17. [8] Let X ∈ Sd be a symmetric matrix whose entries Xi,j are
independent and centered random variables. For each ε ∈ (0, 1/2], there exists
a constant c̃ε such that for all x ≥ 0:

P(‖X‖2 ≥ (1 + ε)2σ̃ + x) ≤ d exp

(
− x2

c̃εσ̃2
∗

)
,

where σ̃ := max
i

√∑
j

E[X2
i,j] and each |Xi,j| ≤ σ̃∗ almost surely.

Lemma 18. Consider a planted subgraph problem instance in which the nodes
of G and Γ are labeled so that the leading principal minor of AG of order
k is equal to AΓ, and the remaining edges in G are drawn according to the
Erdős-Rényi model with probability p ∈ [0, 1). For constants c1 =

√
9p

1−p and c2

depending only on p and for α ≥ c1

√
n− k, there exists M22 ∈ Sn−k satisfying

1. (M22)i,j = 1 if (AG)i+k,j+k = 1 or i = j,

2. ‖M22‖2 < α,

with probability at least 1− (n− k) exp
(
− c2

(
α− c1

√
n− k

)2
)
.

Proof. Our proof is inspired by the approach in [5]. Consider the following
matrix M22 ∈ Sn−k:

(M22)i,j =


1, if (AG)i+k,j+k = 1, i 6= j

−p
1−p , if (AG)i+k,j+k = 0, i 6= j

0, if i = j.

(2.16)

As the submatrix (AG)i+k,j+k, i, j = 1, . . . , n− k consists of independent and
centered entries (in the off-diagonal locations) and zeros on the diagonal, one
can check that M22 is a random matrix that satisfies the requirements of
Lemma 17. Further, the first part of the present lemma is satisfied. The
second claim follows from an application of Lemma 17 with ε = 1/2.
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Combining Proposition 8, Proposition 12, and Lemma 18, we now state and
prove the main result of this chapter:

Theorem 1. Consider a planted subgraph problem instance in which the nodes
of G and Γ are labeled so that the leading principal minor of AG of order
k is equal to AΓ, and the remaining edges in G are drawn according to the
Erdős-Rényi model. Suppose E ⊂ Rk is an eigenspace of AΓ with associated
eigenvalue λE , and we employ the Schur-Horn relaxation (P ) with parameter
γ = λE . Further suppose that:

1. p ∈ [0, kruskal(E)
k

),

and for some ` ∈ Z satisfying kp < ` ≤ kruskal(E),

2. n < min
( eigengap(AΓ,E)2

4ω(E,`,p) , (eigengap(AΓ,E)−2|λE |)2

4c21

)
+ k.

Then the Schur-Horn relaxation succeeds at identifying the planted subgraph

Γ inside G with probability at least 1 − p1 − p2, where p1 = 1 −

[(
1 −

exp (− (`−kp)2

`+kp
)
)n−k × (1 − 2k exp

(
− 3ζ

(
1
4

eigengap(AΓ,E)2−(n−k)ω(E,`,p)
)2

4`
(

1
4

eigengap(AΓ,E)2+2(n−k)ω(E,`,p)
)))] and

p2 = (n − k) × exp
(
− c2

(
1
2
eigengap(AΓ, E) − |λE | − c1

√
n− k

)2
)
. Here

ζ = min
Ω⊂{1,...,k}
|Ω|≤`

λmin

(
(PE)Ω,Ω

)
, and the constants c1 =

√
9p

1−p and c2 depend only

on p.

Proof. As discussed previously, since ` ≤ kruskal(E) we have that ζ > 0.
We establish the result by constructing a dual certificate M satisfying the
conditions of Proposition 8.

We start by setting M11 = AΓ. This ensures that conditions (ii) and
(iii) of Proposition 8 are satisfied. Next, we choose M12 as discussed in
Proposition 12, with the parameter δ = 1

2
eigengap(Γ, E), which satisfies

δ ≥
√

(n− k)ω(E , `, p) due to the upper bound on n. Such an M12 exists with
probability at least 1−p1, and it satisfies condition (iv) of Proposition 8 as well
as the bound ‖M12‖2 <

1
2
eigengap(AΓ, E). Finally, we set M22 as discussed in

Lemma 18, with α = 1
2
eigengap(AΓ, E) − |λE |, which satisfies α ≥ c1

√
n− k
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due to the upper bound on n. Such an M22 exists with probability at least
1− p2 and satisfies the bound ‖M22‖2 <

1
2
eigengap(AΓ, E)− |λE |.

Based on this construction, the matrix M =

(
M11 M12

M ′
12 M22

)
satisfies conditions

(i) and (v) of Proposition 8. Thus, if M12 and M22 with the stated properties
exist, then all the conditions of Proposition 8 are satisfied. By the union
bound, the desired M12 and M22 exist concurrently with probability at least
1− p1 − p2.

Remark 19. The parameter ` arises in multiple aspects of this result. We
discuss specific choices of ` in the corollaries in the next section.

Theorem 1 provides a non-asymptotic bound on the performance of the Schur-
Horn relaxation (P ). In words, this relaxation succeeds with high probability
in identifying a subgraph Γ planted inside a larger graph G (under the Erdős-
Rényi model) provided AΓ has an eigenspace E satisfying four conditions: (i)

The eigenspace E has large Kruskal rank, (ii) The eigenspace E has small
combinatorial width, (iii) AΓ has a large eigengap with respect to E , and (iv)

The projection matrix PE has the property that all sufficiently large principal
minors are well-conditioned. In practice, larger dimensional eigenspaces of AΓ

may be expected to satisfy these conditions more easily, and therefore we set
γ equal to the eigenvalue of AΓ of largest multiplicity in our experimental
demonstrations in Section 2.4.

Specializations of Theorem 1

We appeal to the discussion in Section 2.3 on the properties of the Kruskal
rank and the combinatorial width to obtain specializations of Theorem 1 to
certain graph families. We begin by considering the case of symmetric planted
graphs with symmetric complements:

Corollary 20. Consider a planted subgraph problem instance in which the
nodes of G and Γ are labeled so that the leading principal minor of AG of
order k is equal to AΓ, and the remaining edges in G are drawn according to
the Erdős-Rényi model. Suppose E ⊂ Rk is an eigenspace of AΓ with associated
eigenvalue λE , and we employ the Schur-Horn relaxation (P ) with parameter
γ = λE . Further suppose that the following three conditions hold:

1. Γ is a connected symmetric graph with a symmetric complement,
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2. p ∈ [0, 1
µ(E)k

),

3. n < min
(

eigengap(AΓ,E)2 dim(E)2
(

1−kpµ(E)
)

16k2p
, (eigengap(AΓ,E)−2|λE |)2

4c21

)
+ k.

Then the Schur-Horn relaxation succeeds in identifying the planted subgraph
Γ inside the larger graph G with probability at least 1 − p1 − p2, where p1

and p2 are as stated in Theorem 1 (one can substitute 4k2p

dim(E)2
(

1−kpµ(E)
) for the

ω(E , `, p) term appearing in p1).

Proof. This result follows by a combination of Theorem 1, and Propositions
13, 15, 16. Set ` = d1

2
(kp + 1

µ(E)
)e. This choice satisfies kp < ` ≤ kruskal(E)

based on Proposition 15. One can also check that the inequality ` < 1
µ(E)

+ 1

holds. The vertex transitivity of Γ implies that one can appeal to Proposition
16 to conclude that

min
Ω⊂{1,...,k}
|Ω|≤`

λmin

(
(PE)Ω,Ω

)
≥ dim(E)

k

(
1− (`− 1)µ(E)

)
>

dim(E)

2k
(1− kpµ(E)).

(2.17)
Based on the condition on p, this lower bound is strictly positive. As Γ is
symmetric and has a symmetric complement (and is connected), we conclude
from Proposition 13 that ω(E , `, p) ≤ 4k2p

dim(E)2(1−kpµ(E))
.

Finally, one can check that conditions (2) and (3) of the corollary imply that
both of the requirements of Theorem 1 are met, and hence the Schur-Horn
relaxation succeeds in identifying the planted subgraph Γ with probability at
least 1−p1−p2, where p1 and p2 are as stated in Theorem 1 – one can substitute

4k2p

dim(E)2
(

1−kpµ(E)
) as an upper bound for ω(E , `, p) and dim(E)

2k
(1 − kpµ(E)) as a

lower bound for ζ, which yields a lower bound on 1 − p1 − p2 from Theorem
1.

As the coherence parameter of an eigenspace is more tractable to compute than
the Kruskal rank, this result provides an efficiently verifiable set of conditions
that guarantee the success of the Schur-Horn relaxation (P ) for symmetric
planted graphs Γ. This result specialized to the case of the planted clique
problem yields the result of Ames and Vavasis [5].

Corollary 21. Fix p ∈ [0, 1) and consider a family of planted clique problem
instances {Γk,Gk}∞k=1 generated according to the Erdős-Rényi model, where Γk
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is the k-clique and Gk is a graph on nk nodes. There exists a constant β > 0

only depending on p such that if nk ≤ βk2, the Schur-Horn relaxation with
γ = −1 succeeds in identifying Γk inside Gk with probability approaching one
exponentially fast in k.

Proof. The k-clique is a connected symmetric graph with a complement that
is also symmetric; hence the first condition of Corollary 20 is satisfied. Each
AΓk

∈ Sk has a (k − 1)-dimensional eigenspace E such that µ(E) = 1
k−1

,
dim(E) = k − 1, and eigengap(AΓ, E) = k.

Based on the choice ` = d1
2
(kp+ 1

µ(E)
)e as in Corollary (20), one can check that

dim(E)
2k

(
1−kpµ(E)

)
= Θ(1), that ω(E , `, p) ≤ 4k2p

dim(E)2
(

1−kpµ(E)
) = Θ(1), and that

`− kp = Θ(k).

Set nk = k2

32
min(1−kpµ(E)

2p
, 1
c12 ) + k. One can check that the third condition

of Corollary 20 is satisfied with this choice. Moreover, this value of nk (or
any smaller value) yields 1

4
eigengap(AΓ, E)2 − (nk − k)ω(E , `, p) = Θ(k2) and

1
2
eigengap(AΓ, E)− 1− c1

√
nk − k = Θ(k).

By Corollary 20, we conclude that the Schur-Horn relaxation (P ) with param-
eter γ = −1 identifies a hidden k-clique with probability 1− p1 − p2, where

p1 = 1−
(
1− exp(−c4k)

)n−k(
1− 2k exp(−c3k)

)
−→ 0, as n, k →∞, and

p2 = (n− k) exp(−c5k
2) −→ 0, as n, k →∞,

for some constants c3 > 0, c4 > 0, and c5 > 0.

Thus, Theorem 1 can be specialized to obtain the result presented in [5].

Remark 22. Theorem 1 can also be specialized to obtain recovery results for
other families of planted subgraph problems. As an example, for some fixed
integer t > 1 and probability p, consider a family of planted subgraph problem
instances {Γk,Gk}k=t,2t,... in which Γk is the complete t-partite graph on k

vertices whose independent sets each contain k/t vertices – this graph is the
complement of a disjoint union of t cliques with size k/t – and Gk is a graph
on nk vertices. By suitably specializing Theorem 1, one can show that the
Schur-Horn relaxation succeeds in identifying the planted complete t-partite
graph with probability approaching 1 exponentially fast as k → ∞ provided
that p ∈ [0, 1

t
) and nk . k2.
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2.4 Numerical Experiments

Semidefinite Descriptions of the Schur-Horn Orbitope

We begin with a discussion of semidefinite representations of the Schur-Horn
orbitope SH(M) for M ∈ Sn. Specifically, suppose s` : Sn → R denotes the
sum of the `-largest eigenvalues of a symmetric matrix for ` = 1, . . . , n. Then
the Schur-Horn orbitope SH(M) can be described via majorization inequalities
on the spectrum [107]:

SH(M) = {N ∈ Sn | s`(N) ≤ s`(M) for 1 ≤ ` ≤ n− 1, and Tr(N) = Tr(M)} .
(2.18)

As the sublevel sets of the convex functions s` have tractable semidefinite
descriptions [11], one can obtain a lifted polynomial-sized semidefinite repre-
sentation of SH(M) for arbitrary M ∈ Sn. However, specifications of SH(M)

via semidefinite representations of the sublevels sets of s` involve a total of
O(n) additional matrix variables in Sn and O(n) semidefinite constraints (one
for each of the majorization inequalities in (2.18)); in particular, these do not
take advantage of any structure in the spectrum of M , such as multiplicities
in the eigenvalues.

We discuss next an alternative semidefinite representation of SH(M) that is
based on a modification of the description of SH(M) presented in [43], and it
exploits the multiplicities in the eigenvalues of M so that both the number of
additional matrix variables and semidefinite constraints scale with the number
of distinct eigenvalues of M rather than the ambient size n of M . Suppose M
has q distinct eigenvalues λ1, . . . , λq with multiplicities m1, . . . ,mq. Then one
can check that [43]:

SH(M) =
{
N ∈Sn | ∃Yi ∈ Sn, Yi � 0, i = 1, . . . , q such that

N =

q∑
i=1

λiYi,

q∑
i=1

Yi = In, Tr(Yi) = mi for i = 1, . . . , q
}
.

(2.19)
In this latter description of the Schur-Horn orbitope, both the number of
additional matrix variables in Sn and the number of semidefinite constraints
are on the order of the number of distinct eigenvalues of M , which can be far
smaller than n for the adjacency matrices of graphs considered in this chapter.
In the numerical experiments presented next, we employ the description (2.19)
of the Schur-Horn orbitope.
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Planted graph Γ Eigenvalues Kruskal rank of the
[with # vertices] [with multiplicity] largest eigenspace
Clebsch [k = 16]

5[×1],−3[×5], 1[×10] 5(Figure 2.1a)
Generalized

10[×1],−5[×6], 1[×20] 8
quadrangular-(2, 4)

[k = 27]
(Figure 2.4b)

8-Triangular [k = 28]
12[×1], 4[×7],−2[×20] 6(Figure 2.2a)

9-Triangular [k = 36]
14[×1], 5[×8],−2[×27] 7(Figure 2.2b)

Figure 2.6: Planted subgraphs (and associated parameters) for which we
demonstrate the utility of the Schur-Horn relaxation. See Figure 2.7 for the
associated phase transitions.

Experimental Results

We investigate the performance of the Schur-Horn relaxation (P ) in planted
subgraph problems with the four planted subgraphs Γ listed in Figure 2.6. For
each of these graphs, we set γ equal to the eigenvalue corresponding to the
largest eigenspace of the corresponding graph. We vary n (the size of the larger
graph G inside which Γ is planted) and p (the probability of a noise edge in
G), and we obtain 10 random instances of planted subgraph problems for each
value of n and p. In Figure 2.7, we plot the empirical probability of success
of the Schur-Horn relaxation for these random trials; the white cells represent
a probability of success of one and the black cells represent a probability of
success of zero. Our results were obtained using the CVX parser [60, 61] and
the SDPT3 solver [112]. In each of the four cases, the Schur-Horn relaxation
(P ) succeeds in solving the underlying planted subgraph problem for suitably
small n and p.

2.5 Discussion

In this chapter, we introduce a new convex relaxation approach for the planted
subgraph problem, and we describe families of problem instances for which our
method succeeds. Our method generalizes previous convex optimization tech-
niques for identifying planted cliques based on nuclear norm minimization [5],
and it is useful for identifying planted subgraphs consisting of few distinct
eigenvalues. There are several further directions that arise from our investiga-
tion, and we mention a few of these here.
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(a) (b)

(c) (d)

Figure 2.7: Phase transition plots based on the experiment described in Section
2.4 for the (a) Clebsch graph, (b) Generalized quadrangle-(2, 4) graph, (c) 8-
Triangular graph, and (d) 9-Triangular graph.

Spectrally comonotone matrices with sparsity constraints One of
the ingredients in the proof of our main result Theorem 1 is to find a matrix
M11 ∈ Sk that is spectrally comonotone with AΓ ∈ Sk, and that further satisfies
the condition that (M11)i,j = 1 whenever (AΓ)i,j = 1. In the proof of Theorem
1 we simply choose M11 = AΓ. This choice does not exploit the fact that the
entries of M11 corresponding to those where (AΓ)i,j = 0 are not constrained
(and in particular can be nonzero). With a different choice of M11, one could
replace eigengap(AΓ, E) in Theorem 1 by eigengap(M11, E) (recall that E is
an eigenspace of AΓ). Consequently, our main result could be improved via
principled constructions of matrices M11 ∈ Sk that satisfy the conditions of
Theorem 1 and for which eigengap(M11, E) > eigengap(AΓ, E).

Sparse graphs with eigenspaces with large Kruskal rank One of the
central questions concerning the planted subgraph problem is the possibility of
identifying ‘sparse’ planted subgraphs inside ‘dense’ noise via computationally
tractable approaches. Concretely, suppose Γ is a regular graph with degree d.
Under the Erdős-Rényi model for the noise, the average degree of any k-node
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subgraph of the larger graph G is about (k − 1)p. From Theorem 1, we have
that the Schur-Horn relaxation succeeds (with high probability) in identifying
Γ if p ∈ [0, kruskal(E)

k
), where E ⊂ Rk is one of the eigenspaces of Γ. In other

words, (for suitably large k) if d < kruskal(E) then the Schur-Horn relaxation
succeeds in identifying Γ inside G despite the fact that Γ is sparser than a
typical k-node subgraph in G. Of the graphs we have investigated in this
chapter, the Clebsch graph from Figure 2.1a is an example in which both the
degree and the Kruskal rank of the largest subspace are equal to 5. For some
of the other small graphs discussed in this chapter, the degree is larger than
the Kruskal ranks of the eigenspaces. For larger graphs, the computation of
the Kruskal rank of the large eigenspaces quickly becomes computationally
intractable. Therefore, it is of interest to identify graph families in which
(by construction) the degree is smaller than the Kruskal rank of one of the
eigenspaces.

Convex geometry and graph theory In developing convex relaxations
for the planted subgraph problem (based on the formulation (2.1)) as well
as other inverse problems involving unlabeled graphs, the key challenge is
one of obtaining tractable convex outer approximations of the set A(B) =

{ΠBΠ′ | Π is an n × n permutation matrix} for some given adjacency ma-
trix B ∈ Sn. In particular, a convex approximation C that contains A(B)

is useful if the normal cone NC(B) is large; as an example, the Schur-Horn
relaxation SH(B) has this property for adjacency matrices B with few dis-
tinct eigenvalues. More generally, what is an appropriate convex relaxation
for other structured graph families such as low-treewidth graphs (arising in
inference in statistical graphical models), or graphs with a specified degree
distribution (arising in social network analysis)? Recent work [30] provides
a catalog of convex graph invariants that are useful for obtaining computa-
tionally tractable convex relaxations of A(B). A deeper investigation of the
interaction between convex-geometric aspects of these invariants (such as the
normal cones of the associated convex relaxations) and the structural prop-
erties of the graph specified by the adjacency matrix B has the potential to
yield new convex relaxations for general inverse problems on graphs.

Finding subgraphs vs. induced subgraphs A planted clique is both a
subgraph and an induced subgraph of an underlying graph G. However, for



39

other planted graphs, this is not necessarily the case, as there could be addi-
tional noise edges between the vertices of the planted graph Γ. In this chapter
we focus on identifying planted subgraphs that are induced subgraphs, and
we investigate the theoretical properties as well as the empirical utility of the
Schur-Horn relaxation (P ) for this task. For identifying planted subgraphs
that may not be induced subgraphs, the experimental results in Figure 2.8
suggest that Schur-Horn relaxation (P ) continues to be useful. Specifically,
Figure 2.8a gives the performance of the Schur-Horn relaxation in a setting in
which the generalized quadrangle-(2, 4) graph is a subgraph of a larger graph
on n nodes and noise edges (both outside the planted graph and between
disconnected vertices of the planted graph) occur with probability p. In com-
parison with the result of Section 2.4 (when the generalized quadrangle-(2, 4)

graph is an induced subgraph), we notice that the Schur-Horn relaxation per-
forms slightly worse. A reason for this is that identifying structured subgraphs
is inherently harder than identifying induced subgraphs due to the additional
noise edges. Analyzing the performance of the Schur-Horn relaxation (P ) –
both theoretically and empirically – in a more extensive manner for identifying
subgraphs that may not be induced remains an open question.

(a) (b)

Figure 2.8: Phase transition plot for the problem of identifying the generalized
quadrangle-(2, 4) graph: On the left is a plot in which this graph is a subgraph
and on the right is a plot in which this graph is an induced subgraph (as in
Section 2.4).
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C h a p t e r 3

CONVEX GRAPH INVARIANT RELAXATIONS FOR GRAPH
EDIT DISTANCE

3.1 Introduction

Graphs are widely used to represent the structure underlying a collection of
interacting entities. A common computational question arising in many con-
texts is that of measuring the similarity between two graphs. For example, the
unknown functions of biological structures such as proteins, RNAs, and genes
are often deduced from structures which have similar sequences with known
functions [67, 69, 89, 109, 110]. Evaluating graph similarity also plays a central
role in various pattern recognition applications [35, 95], specifically in areas
such as handwriting recognition [51, 87], fingerprint classification [68, 94], and
face recognition [121].

Figure 3.1: An instance of a graph edit distance problem in which we wish to
calculate minimum number of edit operations required for transforming graph
G1 to graph G2. The edit operations are encoded by line style: the dashed
graph elements are to be removed from G1 and the zigzagged graph elements
are to be added to G1 for transforming G1 to G2. Assuming a cost of 1 for every
edit operation, we conclude that the graph edit distance between G1 and G2 is
3.

The notion of similarity that is the most commonly considered is the graph
edit distance [106]. The edit distance GED(G1,G2) between two graphs G1 and
G2 is the smallest number of operations required to transform G1 into G2 by a
sequence of edits or changes applied to the vertices and edges of G1. A particu-
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lar sequence of edit operations transforming G1 into G2 is usually referred to as
an edit path. For unlabeled graphs, the permissible set of edit operations are
usually insertions/deletions of vertices/edges. For labeled graphs, the set of
permissible edit operations can also include vertex/edge relabelings. In some
situations, certain types of edits are considered more ‘severe’ than others and
different edits have different costs associated to them; in such cases, the edit
distance is the smallest cost over all edit paths that transform one graph to
another, where the cost of an edit path is the sum of the costs of the edits
that compose the path. See Figure 3.1 for an illustration of a simple graph
edit distance problem.

The problem of computing the graph edit distance is NP-hard in general [55],
and in practice exact calculation of the edit distance is only feasible for small-
sized graphs. Thus, significant efforts have been directed towards develop-
ing computationally tractable heuristics for approximating the edit distance
[1, 17, 38, 71, 80, 84, 103, 104, 122] or for exactly computing the edit distance
for graphs from specific families such as planar graphs [93]. These methods
are largely combinatorial in nature, and most of them aim at identifying an
edit path that transforms one graph to the other. Consequently, much of the
prior literature on this topic provides techniques that lead to upper bounds on
the edit distance between two graphs. In contrast, far fewer approaches have
been proposed for obtaining lower bounds on the edit distance. We are aware
of three notable examples; in [71] and [104] the authors propose tractable
linear programming relaxations of intractable combinatorial optimization for-
mulations of the edit distance based on 0/1 optimization and the quadratic
assignment problem, respectively, while in [122] the authors propose a combi-
natorial algorithm based on a multiset representation of the graph that enables
the efficient computation of upper and lower bounds of the graph edit distance.

In this chapter, we develop a computationally efficient framework for obtaining
lower bounds on the graph edit distance. Our contributions differ qualitatively
from the prior literature in two aspects. First, our approach can be tailored to
the structural properties of the specific graphs at hand based on the notion of a
convex graph invariant. These lead to useful lower bounds on the edit distance
if one of the graphs is ‘suitably structured’. Second, we give a theoretical
analysis of conditions on pairs of graphs under which a tractable semidefinite
relaxation based on the spectral properties of a graph provably computes the
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edit distance, i.e., our lower bound is tight.

Our Framework

Much of the focus of our development and our analysis is on the edit dis-
tance between two unlabeled graphs on the same number of vertices, with
edge deletions and insertions being the allowed edit operations. We discuss in
Section 3.5 an extension of our framework to settings in which the number of
vertices in the two graphs may be different and in which vertex deletions and
insertions are also allowed. Let A1 ∈ Sn and A2 ∈ Sn represent the adjacency
matrices of two unweighted, unlabeled, simple and loopless graphs G1 and G2

on n vertices. (Here Sn denotes the space of n × n real symmetric matrices.)
The following optimization problem gives a combinatorial formulation of the
computation of the edit distance between G1 and G2:

GED(G1,G2) = min
X,E∈Sn

∑
1≤i<j≤n

1Eij 6=0

s.t. X + E = A2

X ∈ {ΠA1ΠT : Π is an n× n permutation matrix.}

Eij ∈ {−1, 0, 1} ∀ i, j ∈ {1, . . . , n}.
(3.1)

The function 1{·} denotes the usual indicator function, the decision variable X
is an adjacency matrix representing G1, and the decision variable E specifies
the edge deletions and insertions made to G1 to obtain G2. One aspect of the
problem (3.1) is that its formulation is not symmetric with respect to G1 and
G2, although the optimal value remains unchanged if A1 and A2 are swapped
in the problem description, i.e., GED(G1,G2) = GED(G2,G1); we revisit this
point in the sequel. Unsurprisingly, solving (3.1) is intractable in general, as
calculating the graph edit distance is an NP-hard problem. Our approach in
this chapter is to obtain tractable convex relaxations of (3.1). Relaxing the
objective to a convex function is a straightforward matter; specifically, as the
absolute value function constitutes a lower bound on the indicator function in
the range [−1, 1]; we replace the objective of (3.1) with the convex function
1
2
‖E‖`1 , where ‖ · ‖`1 denotes the (entrywise) `1 norm that sums the absolute

values of the entries of a matrix.

The main remaining source of difficulty with obtaining a convex relaxation
of (3.1) is to identify a tractable convex approximation of a set of the form
{ΠAΠT : Π is an n×n permutation matrix} for a given matrix A ∈ Sn. When
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A specifies an adjacency matrix of a graph, this set consists of all the adjacency
matrices that describe the graph, thus highlighting the structural attributes
of the graph that remain invariant to vertex relabeling. Consequently, we seek
a convex approximation that similarly remains invariant to vertex relabeling.
We describe next a notion from [30] that aims to address this challenge:

Definition 23. [30] A set C ⊂ Sn is an invariant convex set if it is convex
and if M ∈ C implies that ΠMΠT ∈ C for all n× n permutation matrices Π.

Invariant convex sets provide a useful convex modeling framework to constrain
graph properties that remain invariant to vertex relabeling. In particular,
suppose that CG1 ⊂ Sn is an invariant convex set that contains {ΠA1ΠT :

Π is an n×n permutation matrix} and has an efficient description. Then, the
following convex program provides a lower bound on GED(G1,G2):

GEDLB(G1,G2; CG1) = min
X,E∈Sn

1
2
‖E‖1

s.t. X + E = A2

X ∈ CG1

(P )

It is evident that this problem provides a lower bound on GED(G1,G2)

as the objective function here is a lower bound of the objective of (3.1)
over the constraint set of (3.1), and further the constraint set of (P ) is
an outer approximation of the constraint set of (3.1). Unlike the opti-
mal value GED(G1,G2) of (3.1), the optimal value GEDLB(G1,G2; CG1) of
(P ) is not symmetric; specifically, if CG2 is some invariant convex set con-
taining {ΠA2ΠT : Π is an n × n permutation matrix}, then in general
GEDLB(G1,G2; CG1) 6= GEDLB(G2,G1; CG2). Therefore, in practice we propose
computing both GEDLB(G1,G2; CG1) and GEDLB(G2,G1; CG2) for some invari-
ant convex sets CG1 and CG2 corresponding to G1 and G2 respectively, and taking
the larger of these quantities as both constitute lower bounds on GED(G1,G2).

This discussion leads naturally to the following question – which invariant
convex set CG best captures the structural properties of a graph G? Employ-
ing such a set in the relaxation (P ) would provide better lower bounds on
the edit distance. Letting A ∈ Sn be an adjacency matrix of G, the ‘tight-
est’ invariant convex set that contains the collection {ΠAΠT : Π is an n ×
n permutation matrix} is simply the convex hull of this collection. However,
this convex hull is intractable to describe for general graphs G (unless P=NP).
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As a result, it is of interest to obtain computationally tractable invariant con-
vex relaxations that reflect the structure in G. In the next subsection, we give
a list of invariant convex sets that are tractable to compute and that can be
‘tuned’ to the structure of G. These invariants can either be used individually
or combined (at increased computational expense), thus yielding a flexible and
powerful framework for obtaining bounds on the graph edit distance. The fo-
cus of the rest of the chapter is on investigating the utility of these invariants
theoretically as well as via numerical experiments; we give a summary of our
main contributions in Section 3.1.

Convexity and Graph Invariants

We list here a few examples of invariant convex sets that play a prominent role
in this chapter; we refer the interested reader to [30] for a more exhaustive list
as well as additional properties of invariant convex sets.

Loopless and edge weight constraints Looplessness and edge weight
bounds are not especially powerful constraints, but they nonetheless serve as
simple examples of invariant convex sets. Looplessness corresponds to the
constraint set {M ∈ Sn | Mii = 0 for i = 1, . . . , n}, and bounds on the
edge weights for unweighted graphs (for example) can be specified via the
set {M ∈ Sn | 0 ≤Mij ≤ 1 for i, j = 1, . . . , n}.

Spectral invariants Let G be a graph represented by an adjacency matrix
A ∈ Sn with eigenvalues λ(A) ∈ Rn. The smallest convex set containing all
graphs that are isospectral to G is given by the following Schur-Horn orbitope
associated to A [107]:

CSH(G) = conv{M ∈ Sn | λ(M) = λ(A)}.

This set consists precisely of those matrices whose spectra are majorized by
λ(A). One can replace the list of eigenvalues in this example with the degree
sequence of a graph, and in a similar vein, consider the convex hull of all
adjacency matrices representing graphs with the same degree sequence; see
[30] for more details.

A prominent way in which invariant convex sets can be constructed is via
sublevel sets of convex graph invariants:

Definition 24. [30] A function f : Sn → R is a convex graph invariant if it
is convex and if f(M) = f(ΠMΠT ) for all M ∈ Sn and all n× n permutation
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matrices Π.

As with invariant convex sets, convex graph invariants characterize structural
properties of a graph that are invariant to vertex relabeling. The following
convex graph invariants play a prominent role in our work:

Inverse of the stability number A stable set (also known as independent
set) of a graph G is a subset of vertices of G such that no two vertices in the
subset are connected. The stability number of a graph G is a graph invariant
that is equal to the size of the largest stable set of G. It was shown by Motzkin
and Straus [91] that the inverse of the stability number admits the following
variational description, where A ∈ Sn is an adjacency matrix representing G:

inv-stab-number(A) = min
x∈Rn

x′(I + A)x

s.t.
∑
i

xi = 1, xi ≥ 0 for i = 1, . . . , n.

As the stability number of a graph is NP-hard to compute for general graphs
(the above program may be reformulated as a conic program with respect
to the completely positive cone), the following tractable relaxation based on
doubly nonnegative matrices is widely employed:

f(A) = min
X∈Sn

Tr(X(I + A))

s.t. X � 0, 1′X1 = 1, Xij ≥ 0 for i, j = 1, . . . , n.
(3.2)

One can check that both inv-stab-number(A) and f(A) are concave graph
invariants.

Maximum cut The maximum cut value of a graph is the maximum over all
partitions of the vertices of the sum of the weights of the edges between the
partitions. For a graph G specified by adjacency matrix A ∈ Sn, the maximum
cut value is given as:

max-cut(A) = max
y∈{−1,1}n

1
4

∑
i,j

Ai,j(1− yiyj).

As this value is NP-hard to compute for general graphs, the following cele-
brated efficiently-computable relaxation is commonly used [59]:

g(A) = max
X∈Sn

1
4

Tr(A (11T −X))

s.t. X � 0, Xii = 1 for i = 1, . . . , n.
(3.3)
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Both max-cut(A) and g(A) are convex graph invariants as they are each in-
variant under conjugation of the argument by a permutation matrix and they
are each expressed as a pointwise maximum of affine functions.

Our Contributions

The invariant convex sets listed in the previous section when used in the con-
text of the optimization problem (P ) all lead to valid lower bounds on the edit
distance between two graphs. The question then is whether certain invariants
are more naturally suited to particular structural properties of graphs. The
main focus of this chapter is on identifying attributes of graphs for which the
invariants described above are well-suited, and evaluating in these contexts
the quality of the bounds obtained via (P ) both theoretically and through nu-
merical experiments. Specifically, we say that an invariant convex constraint
set CG is well-suited to the structure of a graph G if GEDLB(G,G ′; CG) provides
a tight (or high-quality) lower bound of GED(G,G ′) for all graphs G ′ that are
obtained via a small number of edge deletions and insertions applied to G (here
‘small’ is interpreted relative to the total number of edges in G).

In Section 3.2, we investigate theoretically the effectiveness of the Schur-Horn
orbitope as an invariant convex set in providing lower bounds on the graph
edit distance via (P ). We consider a stylized setting in which a graph G
on n vertices is modified to a graph G ′ by adding or removing at most d
edges incident to each vertex of G. We prove in Theorem 2 (see Section
3.2) that the optimal value of the convex program (P ) with a Schur-Horn
orbitope constraint set equals the graph edit distance between G and G ′, i.e.,
GEDLB(G,G ′; CSH(G)) = GED(G,G ′) provided: 1) d is sufficiently small, 2) G
has eigenspaces with the property that there exists a linear combination of the
associated projection operators onto these spaces so that the largest entry in
magnitude is suitably bounded, and 3) any matrix supported on entries cor-
responding to edits of G has only a small amount of its energy on each of the
eigenspaces of G; see Theorem 2 for precise details. Conditions similar to the
third requirement appear in the authors’ earlier work on employing the Schur-
Horn orbitope in the context of the planted subgraph problem [26]. However,
the second condition is novel and is motivated by the context of the present
chapter on graph edit distance. Under the additional assumption that G is
vertex-transitive, Corollary 31 provides a simple formula on the maximum al-
lowable number d of edge additions/deletions per vertex of G; we illustrate the
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utility of this formula by computing bounds on d for many graph families such
as Johnson graphs, Kneser graphs, Hamming graphs and other strongly regu-
lar graphs. Indeed, for some of these families, our results are ‘order-optimal’
in the sense that our bounds on d are on the order of the degree of G. The
proofs of the main results of Section 3.2 are given in Section 3.3.

In Section 3.4, we conduct a detailed numerical evaluation of the power and
limitations of convex invariant relaxations based on the inverse stability num-
ber (via the tractable approximation (3.2)) and the maximum cut value (via
the tractable approximation (3.3)). We do not provide precise theoretical
guarantees due to a lack of a detailed characterization of the facial structure
of the associated convex sets. Nonetheless, we identify classes of graph edit dis-
tance problems for which these constraints produce high-quality lower bounds.
Specifically, we observe that a convex relaxation based on the Motzkin-Straus
approximation of the inverse of the stability number provides useful lower
bounds on graph edit distance if one of the graphs has the property that the
removal of any edge increases the graph’s stability number; graphs with such
a property have been studied in the extremal graph theory literature [70] and
we refer the reader to Section 3.4 for further details. Similarly, in Section 3.4,
we observe that a convex relaxation based on the Goemans-Williamson ap-
proximation of the maximum cut value produces effective lower bounds on the
graph edit distance if the addition of any edge to one of the graphs increases
that graph’s maximum cut value; windmill graphs are a prominent example
that possess such a property. In both Sections 3.4 and 3.4, we present empirical
results that corroborate our observations.

In Section 3.5 we demonstrate the utility of our framework in providing lower
bounds on the average pairwise graph edit distance in two chemistry datasets
consisting of a collection of molecules known as Alkanes and Polycyclic Aro-
matic Hydrocarbons (PAH). The PAH dataset in particular consists of large
structures for which exact computation of graph edit distance is prohibitively
expensive. The best-known upper bound on the average graph edit distance
over all pairs of graphs in this dataset is 29.8, and to the best of our knowl-
edge, the exact value of this quantity is not known [17]. Indeed, much of the
literature featuring the PAH dataset aims at providing an upper bound on the
average pairwise graph edit distance. Our framework provides a lower bound
of 21.6 on the average pairwise graph edit distance of PAH, which appears to
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be the best available bound to date. In obtaining these results, we combine
invariant convex sets based on the Schur-Horn orbitope, the Motzkin-Straus
approximation of the inverse stability number, and the Goemans-Williamson
approximation of the maximum-cut value.

Notation We denote the normal cone at a point x ∈ C of a closed convex
set C by NC(x). The projection map onto a subspace E ⊂ Rn is denoted by
PE : Rn → Rn. For a collection of subspaces Ei ⊂ Rn, i ∈ {1, . . . ,m}, the
operator Pij : Sn → Sn is defined as Pij := PEj ⊗ PEi , i.e., Pij(A) = PEiAPEj .
The restriction of a (usually self-adjoint) linear map f : Rn → Rn to an
invariant subspace E of f is denoted by f |E : E → E .

3.2 Theoretical Guarantees for the Schur-Horn Orbitope Con-
straint

In this section, we give theoretical guarantees that describe conditions under
which employing the Schur-Horn orbitope as an invariant convex constraint
set in (P ) leads to the associated lower bound on the graph edit distance being
tight, i.e., the optimal value of (P ) equals the graph edit distance. Concretely,
we consider conditions on a graph G and the structure of the edits that trans-
form G to another graph G ′ so that GED(G,G ′) = GEDLB(G,G ′; CSH(G)). We
begin with a description of our main theoretical results in Section 3.2, some
consequences of these results for specific graph families in Section 3.2, and fi-
nally an experimental demonstration on the utility of the Schur-Horn orbitope
on stylized problems in Section 3.2. The proofs of the results of this section
are deferred to Section 3.3.

As the normal cones at extreme points of the Schur-Horn orbitope play a
prominent role in the optimality conditions of (P ), we state the relevant result
here:

Lemma 25. [26] Let G be any unweighted graph with m eigenvalues. A matrix
W is an extreme point of SH(G) if and only if it has the same eigenvalues as
G (counting multiplicity). Further, the relative interior of the normal cone
relint(NSH(G)(W )) at an extreme point W consists of those matrices Q that
satisfy the following conditions:

1. Q is simultaneously diagonalizable with W ,
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2. λmin(Q|Ei) > λmax(Q|Ei+1
) ∀ i ∈ {1, . . . ,m− 1},

where Ei for i ∈ {1, . . . ,m} are eigenspaces of W ordered such that the corre-
sponding eigenvalues are sorted in a decreasing order.

From Lemma 25 we observe that the relative interior of the normal cones of
the Schur-Horn orbitope at extreme points are ‘larger’ if the underlying graph
G consists of few distinct eigenvalues. This observation along with various
properties of the eigenspaces of G play a prominent role in the analysis in this
section.

Main Results

We present here the statements of our main theoretical results concerning the
performance of the Schur-Horn orbitope as a constraint set in (P ). In addition
to various structural properties of G, our results are described in terms of
a parameter d that denotes the maximum number of deletions/additions of
edges that are incident to any vertex of G. Informally, we should expect the
Schur-Horn orbitope constraint to be effective in exactly computing the graph
edit distance if a matrix representing the edits from G to G ′ has only a small
amount of its energy on each of the eigenspaces of G. The reason behind this
observation is that if the edits were largely concentrated in the eigenspaces of
G, then the eigenspaces of G ′ would be close to those of G. This would result
in an identifiability problem from the perspective of the Schur-Horn orbitope,
which is based purely on the spectral properties of G. To formalize this notion,
we present the following definition which plays a key role in our analysis:

Definition 26. Let G be a graph on n vertices with m distinct eigenvalues. Let
Pi, i = 1, . . . ,m represent projection maps onto the eigenspaces of G indexed
by decreasing order of the corresponding eigenvalues and let Pii = Pi⊗Pi. Fix
a positive integer d and α ∈ [0, 1]m. Define the parameter ξ(α, d,G) to be the
smallest value ∥∥∥∥∥[I −

m∑
i=1

αiPii](W )

∥∥∥∥∥
∞

≤ ξ(α, d,G) ‖W‖∞

for all W ∈ Sn with at most d nonzero entries per row/column.

Remark 27. The maps Pi represent projections onto eigenspaces of an adja-
cency matrix representing G, but we simply refer to these as eigenspaces of G
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with an abuse of terminology. The reason is that the quantity ξ(α, d,G) is a
graph parameter (for each fixed α, d) and does not depend on a specific labeling
of the vertices of G.

Remark 28. The parameter ξ(α, d,G) is a restricted version of the induced
(entrywise) infinity norm ‖I −

∑m
i αiPii‖∞→∞, with the key difference being

that ξ(α, d,G) computes the induced gain of the operator I−
∑m

i αiPii restricted
to inputs that have at most d nonzeros per row/column.

The quantity ξ(α, d,G) helps quantify the idea described previously about the
energy of the edits not being confined excessively to the eigenspaces of G. As
the specific edit pattern is not known in advance, this quantity is agnostic
to the particular edits and is parametrized only in terms of the maximum
number of edge deletions/additions that are incident to any vertex. In our main
results described next, larger values of ξ make it harder to satisfy our sufficient
conditions on tightness of our lower bounds. As the value of ξ depends on the
selection of the parameter α, our main results allow for flexibility in the choice
of this parameter, and we describe in Section 3.2 how specific choices lead to
concrete consequences on the exactness of the relaxation (P ) with the Schur-
Horn orbitope constraint for various graph families. We present next a result
that establishes basic optimality conditions of the convex program (P ):

Lemma 29. Let G be a graph on n vertices with m distinct eigenvalues, and
let G ′ be a graph that is obtained from G via edge deletions/additions such that
each vertex is incident to at most d edits. Let A,A + E∗ ∈ Sn represent the
graphs G and G ′, respectively; that is, E∗ consists of at most d nonzeros per
row/column. Let Ω ⊂ Sn denote the subspace consisting of all matrices with
nonzeros contained within the support of E∗. Suppose a vector α ∈ [0, 1]m and
a matrix Q ∈ Sn satisfy the following conditions:

1. PΩ(Q) = sign(E∗),

2. ||PΩc(Q)||∞ < 1,

3. Q ∈ relint(NSH(G)(A)),

4. ξ(α, d,G) < 1.
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Then we have that the convex relaxation (P ) with the Schur-Horn orbitope con-
straint exactly computes the edit distance between G and G ′, i.e., GED(G,G ′) =

GEDLB(G,G ′; CSH(G)), with the optimal solution being unique and achieved at
a matrix that specifies an optimal set of edits.

Proof. The proof is presented in Appendix B.1.

Conditions 1, 2, and 3 of this lemma essentially require that the subdifferential
at a matrix specifying the edits with respect to the `1 norm has a nonempty
intersection with the relative interior of the normal cone at an adjacency matrix
representing G with respect to the Schur-Horn orbitope. In papers on the topic
of low-rank matrix completion and matrix decomposition [24, 29], a convenient
approach to ensuring that such types of conic intersection conditions can be
satisfied is based on requiring that nullspace (the eigenspace corresponding to
an eigenvalue of zero) of the low-rank matrix is suitably ‘incoherent’, i.e., that
there are no elements of this nullspace with energy concentrated in a single
location. In our context, all of the eigenspaces of G play a role rather than just
a single distinguished eigenspace, and accordingly we describe next a weighted
form of an incoherence-type condition:

Definition 30. Let G be a graph on n nodes with m distinct eigenvalues and let
P1, . . . , Pm ∈ Sn denote the projection matrices onto the associated eigenspaces
indexed by decreasing order of the corresponding eigenvalues. Fix any γ ∈ Rm.
We define the parameter ρ(γ,G) as follows:

ρ(γ,G) :=

∥∥∥∥∥
m∑
i=1

γiPi

∥∥∥∥∥
∞

.

Here the matrix ‖·‖∞ norm is the largest entry of the argument in magnitude.
In the literature on inverse problems involving low-rank matrices, one typically
considers the infinity norm of the projection map onto the nullspace as well
as variants of this quantity. Thus, in this sense the parameter ρ(γ,G) is a
weighted generalization that is more suited to our setup. We state next our
main theorem in terms of sufficient conditions involving the two parameters
we have introduced in this section:

Theorem 2. Let G be a graph on n vertices with m distinct eigenvalues, and
let G ′ be a graph that is obtained from G via edge deletions/additions such that
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each vertex is incident to at most d edits. Suppose the following two conditions
are satisfied for some γ ∈ Rm and α ∈ [0, 1]m:

1. 2 ξ(α, d,G) + ρ(γ,G) < 1,

2. (αi+αi+1) (1+ρ(γ,G)) d
1−ξ(α,d,G)

< γi+1 − γi, ∀ i ∈ {1, . . . ,m− 1}.

Then the convex relaxation (P ) with the Schur-Horn orbitope constraint
exactly computes the edit distance between G and G ′, i.e., GED(G,G ′) =

GEDLB(G,G ′; CSH(G)), with the optimal solution being unique and achieved at
a matrix that specifies an optimal set of edits.

This theorem states that the relaxation (P ) with the Schur-Horn orbitope
constraint set succeeds in calculating the graph edit distance exactly if 1)
d is small enough, 2) there exists a vector α with small entries such that
ξ(α, d,G) is also suitably small, and 3) there exists an ordered vector γ with
well-separated entries that yields a small value of ρ(γ,G). As discussed in
the next subsection, graphs with a small number of well-separated eigenvalues
offer an ideal candidate. Specifically, for such graph families, we give concrete
consequences in terms of bounds on the maximum number d of edits per vertex
via particular choices for α and γ in Theorem 2.

Consequences for Graph Families with Few Eigenvalues

Theorem 2 constitutes our most general result on the tightness of the Schur-
Horn orbitope constraint in computing the graph edit distance when employed
as a constraint set in the context of (P ). The generality of the result stems
from the wide range of flexibility provided by the vectors γ and α. In Corollary
31, we consider specific choices of these parameters to obtain concrete bounds
in terms of graph parameters that can be computed easily:

Corollary 31. Let G be a vertex-transitive graph on n vertices consisting of
m distinct eigenvalues, and let κ denote the multiplicity of the eigenvalue with
the second-highest multiplicity. Suppose G ′ is a graph on n vertices that can
be obtained from G with the addition or removal of at most d edges incident to
each vertex of G. Then there exists a constant c depending only on m so that
the optimal value GEDLB(G,G ′; CSH(G)) of (P ) equals GED(G,G ′) provided

d ≤ c
n

κ
.
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The particular dependence on the multiplicity of the eigenvalue with second-
largest multiplicity is due to the choices of α and γ in Theorem 2 that we have
employed in our proof; see Section 3.3 for more details. In the sequel we give
consequences of this result for specific graph families in which the number of
distinct eigenvalues is small (for example, three or four). In the context of
such graphs, the relaxation (P ) is tight even when the number of edits per
vertex is large so long as the value of κ is suitably small. Indeed, for several
graph families we observe that Corollary 31 produces ‘order-optimal’ bounds
as the largest value of d that is allowed is on the same order as the degree of
the underlying graphs.

(a) (b) (c)

Figure 3.2: From left to right: Hamming graph H(3,4), 9-Triangular graph,
generalized quadrangle-(2,4) graph.

Johnson Graphs A Johnson graph J(k, `) with ` > 0 is a graph on n =
(
k
`

)
vertices that correspond to the `-element subsets of a set of k elements. Two
vertices of a Johnson graph are connected if the corresponding subsets of these
vertices contain `− 1 common elements. The Johnson graph J(k, `) is vertex-
transitive and contains `+1 distinct eigenvalues. For k ≥ 2` and j ∈ {0, . . . , `},
the multiplicity of its j’th eigenvalue is

(
k
j

)
-
(
k
j−1

)
for j > 0 and one for j = 0.

For small values of `, the multiplicity of the second most repeated eigenvalue
is about k`−1. As a result, for small fixed values of `, Corollary 31 states that
the convex relaxation (P ) is tight provided

d . n
1
` .

Kneser Graphs A Kneser graph K(k, `) with ` > 0 shares certain aspects
with Johnson graphs. Specifically, the vertices of K(k, `) coincide with the `-
element subsets of a set of k elements, as with Johnson graphs. However, two
vertices of a Kneser graph are connected if the subsets corresponding to these
vertices are disjoint. Kneser graphs are vertex-transitive, and their eigenvalues
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exhibit the same multiplicities as those of the Johnson graphs J(k, `). As a
result, for small fixed values of `, Corollary 31 implies that the relaxation (P )
is tight provided:

d . n
1
` .

Hamming Graphs A Hamming graph H(`, q) consists of q` vertices (see
Figure 3.2a for a depiction of H(3, 4)). Each vertex of H(`, q) corresponds to
a sequence of length ` from a set with q distinct elements. Two vertices are
connected if their associated sequences differ in exactly one coordinate, i.e.,
their Hamming distance is equal to 1. Hamming graphs are vertex-transitive,
and the spectrum of H(`, q) consists of ` + 1 distinct eigenvalues with mul-
tiplicities

(
`
i

)
(q − 1)i, i ∈ {0, . . . , `}. Therefore, for a small fixed value of `,

Corollary 31 states that the relaxation (P ) is tight provided:

d . n
1
` .

Vertex-Transitive Strongly Regular Graphs A strongly regular graph
on n vertices with degree r is defined by the property that every pair of
adjacent vertices has da common neighbors and every pair of nonadjacent
vertices has dna common neighbors. Such graphs are generally denoted
srg(n, r, da, dna). Due to their rich algebraic structure, strongly regular graphs
have only three distinct eigenvalues with multiplicities equal to one and
1
2

[
(n − 1) ± 2r+(n−1)(da−dna)√

(da−dna)2+4(r−dna)

]
. Furthermore, many strongly regular graphs

are also vertex-transitive and as a result, our Corollary 31 is applicable. We
highlight two prominent examples:

• A k-Triangular graph Tk on n =
(
k
2

)
vertices is a vertex-transitive

strongly regular graph with parameters srg(k(k−1)/2, 2(k−2), k−2, 4)

(in fact, Tk is also isomorphic to the Johnson graph J(k, 2)); see Figure
3.2b for the 9-Triangular graph. Corollary 31 states that the convex
relaxation (P ) is tight provided:

d . n
1
2 .

Incidentally, the degree of Tk also scales as n
1
2 ; as a result, Corollary 31

is tight for this family up to constant factors.
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• A generalized quadrangle is an incidence relation satisfying certain ge-
ometric axioms on points and lines. A generalized quadrangle of order
(s, t) gives rise to a strongly regular graph with parameters srg((s +

1)(st+1), s(t+1), s−1, t+1) denoted by GQ(s, t) on n = (s+1)(st+1)

vertices – see Figure 3.2c for an illustration of the vertex-transitive graph
GQ(2, 4). Considering generalized quadrangle graphs GQ(s, s2) when
they are vertex-transitive, Corollary 31 implies that the relaxation (P )
is tight provided

d . n
1
4 .

In Section 3.2 we demonstrate the utility of our framework via numerical
experiments on edit distance problems involving the graphs T9 and GQ(2, 4).

(a) (b)

(c) (d)

Figure 3.3: Performance of our framework (P ) with the Schur-Horn constraint.
Left: empirical probability of discovering the true graph edit path. Right:
ratio of average calculated graph edit distance to number of edit operations.
The first row corresponds to the 9-triangular graph and the second row to the
generalized quadrangle-(2,4) graph.
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Numerical Experiments

We demonstrate the utility of the Schur-Horn orbitope as a constraint set in
(P ) in obtaining bounds on the graph edit distance between graphs G and G ′.
In our experiments, we fix G to be either the 9-triangular graph T9 (Figure
3.2b) or the generalized quadrangle-(2,4) graph GQ(2, 4) (Figure 3.2c) intro-
duced previously. The graph T9 consists of 36 vertices and 252 edges and
the graph GQ(2,4) consists of 27 vertices and 135 edges. Both of these are
strongly regular graphs. In each case, the corresponding graph G ′ is obtained
by adding/deleting edges randomly (both addition and deletion occur with
equal probability) to achieve a desired number of edits. When G is T9 we vary
the number of edits from four to 200 in increments of four, and when G is
GQ(2, 4) we vary the number of edits from two to 100 in increments of two.
For each number of edits, we consider 1000 random trials and we report the
probability that GED(G,G ′) = GEDLB(G,G ′; CSH(G)) and the ratio of the av-
erage computed lower bound GEDLB(G,G ′; CSH(G)) to the number of edits. In
particular, we declare that GED(G,G ′) = GEDLB(G,G ′; CSH(G)) if the infinity
norm (maximum entrywise magnitude) of the difference between the optimal
solution Ê and the true edit matrix E∗ is less than 0.01. The results are
shown in Figure 3.3 and they were obtained using the CVX parser [60, 61] and
the SDPT3 solver [112]. As these plots demonstrate, the convex relaxation
(P ) with a Schur-Horn orbitope as an invariant convex constraint set is tight
when the number of edits is small and leads to effective lower bounds when
the number of edits is large.

3.3 Proofs of Results from Section 3.2

Constructing a Dual Certificate

We describe here a method for constructing a suitable dual certificate satisfying
the conditions of Lemma 29, and we prove that this construction is valid
whenever certain conditions involving the parameters ξ and ρ from Section
3.2 are satisfied. Our proofs are presented in the context of two intermediary
lemmas, which are then used to prove Theorem 2. Specifically, our approach to
constructing Q ∈ Sn that satisfies the requirements of Lemma 29 is to express
Q as follows:

Q = R + ∆.
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Here R ∈ Sn plays the role of a ‘reference’ matrix that depends purely on
the underlying graph G, while ∆ ∈ Sn is a perturbation that additionally
depends on the specific edits that transform G to G ′. We begin by stating an
easily-proved result that serves as the basis for our subsequent development:

Lemma 32. Let G be a graph on n vertices with m distinct eigenvalues, and
let G ′ be a graph that is obtained from G via edge deletions/additions such that
each vertex is incident to at most d edits. Let A,A + E∗ ∈ Sn represent the
graphs G and G ′, respectively; that is, E∗ consists of at most d nonzeros per
row/column. Let Ω ⊂ Sn denote the subspace consisting of all matrices with
nonzeros contained within the support of E∗. Let Pi ∈ Sn, i = 1, . . . ,m denote
projection maps onto the eigenspaces of A indexed by decreasing order of the
corresponding eigenvalues. Suppose a vector α ∈ [0, 1]m, a vector γ ∈ Rm, and
a matrix ∆ ∈ Sn satisfy the following conditions with R =

∑
i γiPi:

1. PΩ(∆) + PΩ(R) = sign(E∗),

2. ||PΩc(∆)||∞ + ||PΩc(R)||∞ < 1 ,

3. Pij(∆) = 0, ∀i, j ∈ {1, . . . ,m}, i 6= j,

4. ||Pii(∆)||2 + ||Pi+1,i+1(∆)||2 < γi+1 − γi, ∀i ∈ {1, . . . ,m− 1},

5. ξ(α, d,G) < 1.

Then the convex relaxation (P ) with the Schur-Horn orbitope constraint
exactly computes the edit distance between G and G ′, i.e., GED(G,G ′) =

GEDLB(G,G ′; CSH(G)), with the optimal solution being unique and achieved at
a matrix that specifies an optimal set of edits.

Proof. One can check that the conditions of Lemma 29 are satisfied by setting
Q = R + ∆.

This lemma highlights the role of the parameter γ, in particular demonstrat-
ing that larger separation among the values of γ makes condition 4 easier to
satisfy but may also increase the value of ||PΩc(R)||∞, thus making condition
2 potentially harder to satisfy.

We now move on to the perturbation term ∆. As this matrix must satisfy
several of the constraints discussed in Lemma 32, its construction is somewhat
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delicate. We build on the ideas developed in [32] in the context of low-rank
matrix recovery, but with certain adaptations that are crucial to our setting.
We construct ∆ as an element in the range of an operator Lα : Sn → Sn that
is parametrized by α ∈ [0, 1]m:

Lα :=

(
m∑
i=1

αiPii

)
PΩ

[
I −

(
I −

m∑
i=1

αiPii

)
PΩ

]−1

.

All of the operators here are as defined before. A point of the departure
in the description of this operator relative to the ideas in [32] is that our
version allows for ‘fractional’ contractions (as well as integral ones) based on
the choice of α. When it is well-defined (i.e., the term involving the inverse is
indeed invertible), the operator Lα possesses a number of properties that lead
to a convenient approach for constructing a suitable dual variable:

(P1) PijLα = 0 ∀i, j ∈ {1, . . . ,m}, i 6= j

(P2) PΩLα = PΩ.

In the context of Lemma 32, property (P1) ensures that that ∆ is completely
contained in a desired subspace, as stipulated by condition 3 of Lemma 32.
Further, property (P2) implies that condition 1 of Lemma 32 is satisfied – in
particular, we make use of this property to ensure that ∆ takes on a desired
value when restricted to Ω. Conditions 2 and 4 of Lemma 32 require that the
quantities ‖Pii(∆)‖2 and ‖PΩc(∆)‖∞ to be sufficiently small – these conditions
are satisfied by the operator Lα as well, as documented next:

Lemma 33. Consider the same setup as in Lemma 32. Fix any α ∈ [0, 1]m

such that ξ(α, d,G) < 1. Then the operator Lα : Sn → Sn is well-defined
(i.e., the term containing the inverse is indeed invertible) and the following
inequalities hold:

1. ‖[PΩcLα](X)‖∞ ≤
ξ(α,d,G)‖X‖∞

1−ξ(α,d,G)
,

2. ‖[PiiLα](X)‖2 ≤
αid‖X‖∞
1−ξ(α,d,G)

.

In addition to providing upper bounds that serve as a foundation for the proof
of our main theorem, Lemma 33 conveys the significance of the parameter
ξ(α, d,G). Specifically, a suitably small value of ξ(α, d,G) guarantees that Lα
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is well-defined, along with the conclusion that elements in the range of Lα

have small infinity norm (when restricted to Ω) and small operator norm (re-
stricted to eigenspaces of G). The lemma also suggests that the operator norm
of the restriction of Lα(X) to any eigenspace of G scales with the correspond-
ing entry of α. Consequently, one can adjust α and γ to ensure that every
inequality in Lemma 32 condition 4 is satisfied. Identifying the best values of
α and γ to achieve this may be accomplished in special cases based on under-
lying structure in G, as demonstrated by Corollary 31 and the many concrete
consequences that are described in Section 3.2. In particular, in the proof of
Corollary 31, we choose γ such that the separation between consecutive γi’s is
proportional to the sum of consecutive αi’s and we demonstrate that this ap-
proach yields easily-computable bounds based on properties of the underlying
graph G on the highest number d of tolerable edits per vertex.

Proofs

Proof of Lemma 33

Our proof is analogous to that of [32, Lemma 8]. In order to avoid nota-
tional clutter, we denote (I −

∑m
i=1 αiPii) as PT . Then from the definition of

ξ(α, d,G), we have:

‖[PTPΩ](X)‖∞ ≤ ξ(α, d,G) ‖X‖∞ . (3.4)

Due to the assumption that ξ(α, d,G) < 1, we have that the series I+PTPΩ +

PTPΩPTPΩ + . . . converges geometrically with rate 1
1−ξ(α,d,G)

and equals (I −
PTPΩ)−1. As such, the operator Lα is well-defined.

Next, we proceed to the upper bounds. First we have that:

‖[PΩcLα](X)‖∞ =
∥∥[PΩcPTPΩ(I − PTPΩ)−1](X)

∥∥
∞

≤
∥∥[PTPΩ(I − PTPΩ)−1](X)

∥∥
∞

≤ξ(α, d,G)
∥∥(I − PTPΩ)−1(X)

∥∥
∞

≤ξ(α, d,G) ‖X‖∞
1− ξ(α, d,G)

.

One can check that the first equality holds based on a term-by-term compar-
ison. The first inequality follows by dropping the projection PΩc . Bounding
the resulting quantity from above using ξ(α, d,G) yields the second inequality.
The last inequality follows from the geometric convergence of (I − PTPΩ)−1.
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Next we bound the quantity involving the operator norm:

‖[PiiLα](X)‖2 =
∥∥[αiPiiPΩ(I − PTPΩ)−1](X)

∥∥
2

≤ αi
∥∥[PΩ(I − PTPΩ)−1](X)

∥∥
2

≤ αid
∥∥[PΩ(I − PTPΩ)−1](X)

∥∥
∞

≤ αid
∥∥[(I − PTPΩ)−1](X)

∥∥
∞

≤ αid ‖X‖∞
1− ξ(α, d,G)

.

The first inequality holds by dropping the projection Pii. The second inequal-
ity holds due to the fact that the operator norm of a matrix with at most
d entries per row/column can be bounded above by d times the maximum
element in magnitude of the matrix. The third inequality holds by dropping
the operator PΩ. The final inequality follows from geometric convergence, as
before.

Proof of Theorem 2

We prove that under the assumptions of this theorem the sufficient conditions
of Lemma 32 are satisfied. Set R =

∑m
i=1 γiPi where Pi ∈ Sn is the projection

matrix corresponding to the i’th eigenspace of G. Denote the edits by a matrix
E∗ ∈ Sn, and let the subspace of matrices with nonzero entries contained inside
the support of E∗ be denoted Ω. Set M = sign(E∗) − PΩ(R) and note that
M ∈ Ω. Condition 5 of Lemma 32 is satisfied based on assumption 1 of
Theorem 2. As a result, the operator Lα is well-defined by Lemma 33. Set
∆ = Lα(M). We prove that Q = R + ∆ satisfies the requirements of Lemma
32.

Condition 1 of Lemma 32: One can check that:

PΩ(∆) + PΩ(R) = PΩ(Lα(M)) + PΩ(R) = PΩ(M) + PΩ(R) = sign(E∗).

Here the second equality holds due to property (P1) of the operator Lα.

Condition 2 of Lemma 32: We have that:

‖PΩc(∆)‖∞ + ‖PΩc(R)‖∞ ≤
ξ(α, d,G) ‖M‖∞

1− ξ(α, d,G)
+ ‖R‖∞

≤ ξ(α, d,G) + ρ(γ,G)

1− ξ(α, d,G)
< 1.
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The first inequality employed assertion 1 of Lemma 33, the second inequality
follows from the triangle inequality and the definition of M , and the last
inequality holds by assumption 1 of the theorem.

Condition 3 of Lemma 32: Follows from property (P2) of operator Lα.

Condition 4 of Lemma 32: One can check that:

‖Pii(∆)‖2 + ‖Pi+1,i+1(∆)‖2 = ‖[PiiLα](M)‖2 + ‖[Pi+1,i+1Lα](M)‖2

≤ (αi + αi+1)(1 + ρ(γ,G)) d

1− ξ(α, d,G)

< γi+1 − γi, ∀ i ∈ {1, . . . ,m− 1}.

Here the first inequality follows from assertion 2 of Lemma 33 and the trian-
gle inequality, and the second inequality follows from the assumption of the
theorem.

Proof of Corollary 31

For this proof we require the notion of incoherence of a subspace, which mea-
sures how well the subspace is aligned with the standard basis vectors. This
notion appears prominently in results on sparse signal recovery via convex
optimization [45].

Definition 34. Let S ⊆ Rn be a subspace and let PS be the corresponding
projection onto S. The incoherence of S is denoted µ(S) and is defined as

µ(S) := max
i
‖PSei‖2.

Here ei is the i’th standard basis vector.

For any projection matrix PS, one can check that the inequality ‖PS‖∞ ≤
µ(S)2 is satisfied.

Remark 35. For vertex-transitive graphs, the diagonal entries of a projection
matrix associated to any eigenspace of the graph are identical. As a result,
the incoherence of an eigenspace E of a vertex-transitive graph on n vertices
is equal to

µ(E) =

√
dim(E)

n
.
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We now proceed to the proof of the corollary. Denote the eigenspaces of G
by Ei for i ∈ {1, . . . ,m} ordered by decreasing eigenvalue order. Remark 35

implies that µ(Ei) =
√

dim(Ei)
n

. Denote the second largest coherence of the
eigenspaces of G by µ̄ =

√
κ
n
, and denote the index of the eigenspace with

the highest incoherence by `. Set α` = 1 and the remaining entries of α to 0.
Furthermore, choose γ such that:

γi+1 − γi = c1
αi + αi+1

µ̄2
+ ε, ∀ i ∈ {1, . . . ,m− 1}, for some c1 > 0, ε > 0.

Here c1 and ε are positive constants that can be as small as desired. To
establish condition 2 of Theorem 2, we prove that the inequality below holds
for all i ∈ {1, . . . ,m− 1}:

(αi + αi+1) (1 + ρ(γ,G)) d

1− ξ(α, d,G)
≤ γi+1 − γi − ε

= c1
αi + αi+1

µ̄2
, ∀ i ∈ {1, . . . ,m− 1}.

Clearly, if αi + αi+1 = 0 for some i, then the corresponding inequality is
satisfied. On the other hand, all the remaining inequalities can be collapsed
to a single one by dividing both sides of all such inequalities by αi + αi+1:

(1 + ρ(γ,G))d

1− ξ(α, d,G)
≤ c1

n

κ
,

a sufficient condition for which is:

(1 + ρ(γ,G))c

1− ξ(α, d,G)
≤ c1. (3.5)

In the remainder of the proof, we show that our particular choice of γ and α
satisfy inequality (3.5) and Theorem 2 condition 1.

We bound ρ(γ,G) from above via a change of variable. Setting γ̃ = γ1
µ̄2

c1
, we
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have that:

ρ(γ,G) =

∥∥∥∥∥
m∑
i=1

γiPi

∥∥∥∥∥
∞

=

∥∥∥∥∥
m∑
i=1

[
γ1 +

i−1∑
j=1

(
c1(αj + αj+1)

µ̄2
+ ε)

]
Pi

∥∥∥∥∥
∞

(3.6)

≤

∥∥∥∥∥
m∑
i=1

[
γ1 +

i−1∑
j=1

c1(αj + αj+1)

µ̄2

]
Pi

∥∥∥∥∥
∞

+
m∑
i=1

i−1∑
j=1

ε ‖Pi‖∞ (3.7)

≤ c1

µ̄2

∥∥∥∥∥
m∑
i=1

[
γ̃ +

i−1∑
j=1

(αj + αj+1)
]
Pi

∥∥∥∥∥
∞

+ εc3 (3.8)

≤ c1

µ̄2

m∑
i=1

[
|γ̃ +

i−1∑
j=1

(αj + αj+1)| ‖Pi‖∞
]

+ εc3 (3.9)

≤ c1c2 + εc3. (3.10)

Here (3.7) follows by grouping all terms with ε and using the triangle inequality,
(3.8) follows by the change of variables described above and bounding all the
terms in the right summand from above by one, and (3.9) follows from the
triangle inequality. We choose the remaining degree of freedom γ̃ to eliminate
the contribution of the subspace with the highest incoherence parameter in the
left summand. Consequently, (3.10) follows by bounding the infinity norms of
the remaining projection matrices from above by µ̄2. Crucially, the fact that
α ∈ [0, 1]m and m are viewed as fixed enables us to bound the sum from above
with positive constants c2 and c3 that depend only on m.

Next, we use our particular choice for α to bound ξ(α, d,G) from above. In
particular, for any W ∈ Sn we have:∥∥∥∥∥[(I −

m∑
i=1

αiPii)PΩ

]
(W )

∥∥∥∥∥
∞

=

∥∥∥∥∥∥∥∥
m∑
i=1
i 6=`

(
PiPΩ(W ) + PΩ(W )Pi − PiPΩ(W )Pi

)
−

m∑
i=1
i 6=`

m∑
j=1
j 6=i,`

PiPΩ(W )Pj

∥∥∥∥∥∥∥∥
∞

≤
m∑
i=1
i 6=`

(
‖PiPΩ(W )‖∞ + ‖PΩ(W )Pi‖∞ + ‖PiPΩ(W )Pi‖∞

)
+

m∑
i=1
i 6=`

m∑
j=1
j 6=i,`

‖PiPΩ(W )Pj‖∞
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≤

 m∑
i=1
i 6=`

2µ(Ei)
√
d+

 m∑
i=1
i 6=`

µ(Ei)2 +
m∑
i=1
i 6=`

m∑
j=1
j 6=i,`

µ(Ei)µ(Ej)

 d

 ‖W‖∞
≤ (c4µ̄

√
d+ c5µ̄

2d) ‖W‖∞

= (c4

√
κd

n
+ c5

κd

n
) ‖W‖∞

≤ (c4

√
c+ c5c) ‖W‖∞ , (3.11)

for some positive real numbers c4 and c5 depending only on m. Here the
first equality is obtained by rearranging the sum in terms of the projection
matrices Pi, the first inequality is due to the triangle inequality, and the second
inequality is a consequence of the following inequalities:

‖PiPΩ(W )‖∞ ≤ µ(Ei)
√
d ‖W‖∞ ,

‖PΩ(W )Pi‖∞ ≤ µ(Ei)
√
d ‖W‖∞ ,

‖PiPΩ(W )Pj‖∞ ≤ µ(Ei)µ(Ej)d ‖W‖∞ ;

which hold for all i, j ∈ {1, . . . ,m}.

Equations (3.10) and (3.11) assert that ρ(γ,G) and ξ(α, d,G) can lowered as
desired by reducing the constants c1, ε and c. Consequently, one can check that
both condition 1 of Theorem 2 and equation (3.5) (which implies condition 2 of
Theorem 2) can be satisfied by first choosing a sufficiently small c1 and ε (both
depending on m) to bound ρ(γ,G) from above, and then suitably choosing a
sufficiently small c depending on m, c1 and ε.

3.4 Numerical Illustrations with Invariants based on Stable Sets
and Cuts

In this section we evaluate the utility of two invariant convex sets based on
(tractable relaxations of) the inverse of the stability number and the maximum
cut value, both of which are described in Section 3.1. Our investigation is via
numerical experiments rather than theoretical bounds as in Section 3.2. The
primary reason for this choice is that we do not have a detailed understanding
of the face structure of the invariant convex sets considered in this section;
in contrast, we have a precise (and convenient for the purposes of analysis)
characterization of the geometry of the Schur-Horn orbitope, which played a
crucial role in the theoretical results of the previous section. Nonetheless, we
pursue a systematic approach in the present section by identifying classes of
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graphs that are ‘brittle’ in the sense that deleting / adding a small number of
edges results in large changes in their stability number / maximum cut value.
Such graph families present excellent examples for which invariant convex sets
based on the inverse of stability number and the maximum cut value are
particularly well-suited to obtaining useful bounds on the graph edit distance.
More broadly, our discussion in this section highlights the larger point that
our framework (P ) can be tailored to the particular structural properties of
the underlying graphs to yield useful lower bounds on the edit distance.

Constraining the Inverse of the Stability Number

The function f(A) described in Section 3.1 is an efficiently computable lower
bound on the inverse of the stability number of a graph, and further it is a
concave graph invariant. Consequently, super-level sets of this function provide
tractable invariant convex sets that may be employed in our framework (P ).
Given a graph G, we denote the associated set by CIS(G):

CIS(G) : = {M ∈ Sn | f(M) ≥ f(A)}

= {M ∈ Sn | ∃µ ∈ Sn, µ ≥ 0, I +M − µ− f(A)11T � 0}. (3.12)

Here A is any adjacency matrix representing G. From this description, it is
immediately clear that for any edit to G that corresponds to an increase in
the value of the function f , the constraint CIS(G) is inactive. Adding edges
to a graph can only reduce the stability number, and hence can potentially
only increase the inverse of the stability number. Although the function f

is only a lower bound on the inverse of the stability number, it satisfies a
similar monotonocity property in that the value of f is non-decreasing with
the addition of edges to a graph. The following lemma formalizes matters by
describing the tangent cone at an adjacency matrix of a graph G with respect
to the set CIS(G):

Lemma 36. For any graph G on n vertices and associated adjacency matrix
A ∈ Sn, let α∗ = f(A), i.e., the value corresponding to the Motzkin-Straus
relaxation of the inverse of the stability number. Then we have that:

TCIS(G)
(A) = {T ∈ Sn|∃µ,Λ ∈ Sn, µ ≥ 0,Λ � 0, T + I + A− α∗11T = µ+ Λ}.

Proof. The proof of this lemma follows from a direct application of convex
duality.
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The description of the tangent cone in Lemma 36 is based on the dual of the
cone of doubly nonnegative matrices; see [12] for more details on this connec-
tion. In particular, this lemma implies that entrywise nonnegative matrices
belong to the tangent cone at an adjacency matrix A representing a graph G
with respect to the set CIS(G); consequently, edits to G consisting purely of
addition of edges are feasible directions with respect to the set CIS(G) and for
such edits this set does not provide useful lower bounds on the edit distance.
Thus, we investigate the utility of the constraint CIS(G) in settings in which
the edits consist mainly of edge deletions. Such problems arise in the context
of graph completion in which the objective is to add edges to a given graph so
that the resulting graph satisfies some desired property.

Building on this discussion, the constraint set CIS(G) is most likely to be useful
for graphs G in settings in which the deletion of even a small number of edges
of G results in an increase in the stability number. Graphs that have a large
number of stable sets with cardinality equal to the stability number offer a
natural prospect for further exploration. Fortunately, such graphs have been
studied in extremal graph theory literature, from which we quote the following
result [70]:

Theorem 3. [70] For s, n ∈ N with n ≥ 6, let

h(n) =


2× 3s−1 + 2s−1, if n = 3s,

3s + 2s−1, if n = 3s+ 1,

4× 3s−1 + 3× 2s−2, if n = 3s+ 2.

Let G be any connected graph on n vertices, and denote the cardinality of the
set of all maximum independent sets of G by φ(G). Then φ(G) ≤ h(n) with
equality if and only if G is isomorphic to one of the graphs shown in Figure
3.4.

This theorem states that the graphs E(n) shown in Figure 3.4 are precisely the
connected graphs that have the largest number of distinct maximum indepen-
dent sets. As such, they present a natural test case to investigate the utility
of the constraint set CIS(G) in providing bounds on the graph edit distance,
at least in settings in which the edits are composed predominantly of edge
deletions. We illustrate here the results of numerical experiments conducted
on the graph E(30), which is a sparse graph with 39 edges and 396 nonedges.
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(a) (b) (c)

Figure 3.4: Left to right, E(n) for n = 3s, n = 3s + 1, n = 3s + 2. For
n = 3s + r, these graphs are formed by connecting (s − r)K3’s and r K4’s
through edges connecting to a specific vertex.

The setup of this experiment is the same as that described in Section 3.2 with
one notable exception: in the present experiment, we assume asymmetric edits
rather than symmetric edits so that 80% of the edits are edge deletions while
20% are edge additions. We range the total number of edits from 5 to 45

with increments of 5, and for each number of edits we repeat our experiment
1000 times. In each iteration, we obtain a bound on the graph edit distance
between E(30) and the modified graph using our framework (P ) with three
different constraint sets: the Schur-Horn orbitope, the constraint set CIS(G),
and an invariant convex set based on the Goemans-Williamson relaxation of
the maximum cut value (which is discussed in greater detail in the next sub-
section). Figure 3.5 reports the ratio of the average computed lower bound on
the graph edit distance to the number of edit operations for each constraint
set. (The number of edits is an upper bound on the true graph edit distance.)
As one might expect, the relaxation based on the constraint CIS(G) yields the
best lower bounds of the three approaches. Specifically, even when a major-
ity of the edges of E(30) are removed, the constraint set CIS(G) continues to
provide lower bounds that are at least 40% of the number of edit operations.
In contrast, the bounds provided by the Schur-Horn orbitope constraint are
much weaker, and those obtained using the Goemans-Williamson relaxation
of the maximum cut value are ineffective.

Constraining the Maximum Cut Value

In analogy with the inverse of the stability number, the function g(A) due
to Goemans and Williamson [59] that is described in Section 3.1 provides an
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Figure 3.5: Ratio of average computed lower bound on graph edit distance to
number of edit operations. Experiment conducted on E(30) graph. The edit
operations are 80% edge deletions and 20% edge additions.

efficiently computable upper bound on the maximum cut value of a graph.
As this function is invariant to conjugation of its argument by permutation
matrices, its sublevel sets are invariant convex sets. For a graph G, we denote
the associated set by CMC(G):

CMC(G) :={M ∈ Sn | g(M) ≤ g(A)}

={M ∈ Sn | ∃D ∈ Sn diagonal, M −D � 0,
1

4
Tr(M11′ −D) ≤ g(A)},

(3.13)

where A is an adjacency matrix representing G. Reasoning in a similar manner
as in the previous subsection, we observe that edits corresponding to a decrease
in the value of the function g represent feasible directions with respect to the
set CMC(G), and for such edits the constraint CMC(G) is inactive. Deleting edges
from a graph reduces its maximum cut value, and one can check that directions
represented by entrywise nonpositive matrices belong to the tangent cone at
an adjacency matrix A representing G with respect to CMC(G). Consequently,
we should only expect the constraint CMC(G) to potentially provide useful lower
bounds on the graph edit distance in settings in which most of the edits to
a graph G correspond to edge additions. In some sense, this type of a graph
inverse problem – removing the smallest number of edges from a graph so
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(a) Windmill graph D(4, 7) (b) Windmill graph D(5, 5)

Figure 3.6: Two sample Windmill graphs.

that it satisfies a desired property – is a complement of the graph completion
problem discussed in the previous subsection.

Building further on the preceding discussion, we remark that the constraint
set CMC(G) is most likely to be effective if adding even a small number of edges
to G increases the value of the function g. A prominent example of such graphs
are the so-called Windmill graphs shown in Figure 3.6. The Windmill graph
D(m,n) is constructed by taking m copies of the complete graph Kn and
intersecting them at a single vertex. Due to the ample amount of symmetry
in these graphs, there are many partitions of the vertices into two sets that
achieve the maximum cut value – the number of such partitions is

(
n−1
n/2

)m for
even n and

(
n

(n−1)/2

)m for odd n. Thus, Windmill graphs present a natural test
family to evaluate the power of the constraint set CMC(G) when the graph edits
consist primarily of the addition of edges. We present the results of numerical
experiments on the Windmill graphD(4, 7) in a setting that closely mirrors the
one in the previous subsection. The Windmill graph D(4, 7) is a graph on 25
nodes with 84 edges and 216 non-edges. The edits made to this graph consist
mostly of edge additions – 80% are edge additions and the remaining 20% are
edge deletions. We vary the number of edits from 10 to 200 with increments
of 5 and consider 1000 random instances of perturbations for each number of
edits. For each problem instance, we obtain a lower bound on the edit distance
by utilizing our framework (P ) with the Schur-Horn orbitope constraint, the
Motzkin-Straus relaxation from the previous subsection, and the constraint
CMC(G). We report the average ratio of the computed lower bound on the
graph edit distance to the number of edit operations in Figure 3.7. (As before
the number of edits is an upper bound on the graph edit distance.)
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Figure 3.7: Ratio of average computed lower bound on the graph edit dis-
tance to number of edit operations. Experiment conducted on Windmill graph
D(4, 7). The edit operations are 80% edge additions and 20% edge deletions.

From Figure 3.7 we see that the Schur-Horn orbitope constraint produces
the best lower bounds for the graph edit distance when the number of edits is
small, whereas the constraint CMC(G) produces the best lower bounds when the
number of edits is large. On average, both of these constraints provide bounds
that are consistently better than 50% of the total number of edits. As the edits
consist mainly of edge additions, the constraint based on the Motzkin-Straus
relaxation of the inverse of the stability number performs poorly.

3.5 Experiments with Real Data

In this section, we present experimental results that demonstrate the utility
of our framework on real data. We begin by introducing an extension of our
framework to allow for edits that include vertex additions and deletions. We
then describe the bounds obtained on two widely studied datasets consisting
of molecular structures.

Enabling vertex additions and deletions

In many situations, one wishes to obtain bounds on the edit distance between
two graphs consisting of different numbers of vertices. In such cases one al-
lows vertex insertions and deletions in addition to the usual operations of edge
insertions and deletions that we’ve considered thus far. To extend our frame-
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work to this setting, we allow an adjacency matrix to take on nonzero values
on the diagonal to denote the presence or absence of a vertex. Specifically,
we consider a “vertex-indexed adjacency matrix” A ∈ Sn with entries equal to
either zero or one and in which Aij = 1, j 6= i implies that Aii = 1. In words,
a value of one on the i’th diagonal entry implies that a vertex corresponding
to that index is ‘present’ in the graph, and an edge being incident on a vertex
implies that the vertex must be present in the graph. (Note that a value of
one on a diagonal entry does not represent a “vertex weight” but instead the
presence of a vertex in a graph.) With this notation in hand, we are now in
a position to describe a generalization of our framework that allows for ver-
tex deletions and insertions. Let G1 and G2 be two unweighted and unlabeled
graphs on n1 and n2 vertices, respectively, and let n := max{n1, n2}. Letting
A2 ∈ Sn specify a vertex-indexed adjacency matrix for G2 with zeros on the
diagonal corresponding to those indices that do not correspond to a vertex
(when n2 < n), consider the following convex optimization problem:

GEDLB(G1,G2; CG1) = min
X,E∈Sn

∑
1≤i≤j≤n

|Eij|

s.t. X + E = A2 (Pext)

X ∈ CG1

Xij ≤ Xii, Xij ≤ Xjj ∀i, j ∈ {1, . . . , n}.

Here the set CG1 is an invariant convex set associated to G1, and the matrices
X, A1, and A2 are to be interpreted as vertex-indexed adjacency matrices.
There are two main differences between the convex program (Pext) and the
convex problem (P ). The first is in the objective function in which we only
sum the upper triangular elements of the matrix E in the program (Pext), as
we do not wish to double-count the edge edits relative to vertex edits. The
second modification arises in the constraint in the last line of (Pext) based
on the observation that if edges are incident to a vertex, then this vertex
must be ‘present’. Using a line of reasoning similar to that following the
presentation of (P ), one can conclude that the optimal value of the convex
program (Pext) provides a lower bound on the graph edit distance between G1

and G2 with the permissible edit operations being vertex additions/deletions
and edge additions/deletions. Finally, we note that our framework can also
accommodate situations in which the cost of a vertex edit operation is different
from that of an edge edit operation.
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Experimental Results on Chemistry Datasets

We employ the convex program (Pext) to obtain lower bounds on graph edit dis-
tance problems arising in chemistry. Specifically, we conduct experiments on
two datasets known as the Polycyclic Aromatic Hydrocarbons (PAH) dataset
and the Alkane dataset.1 Both of these datasets consist of unlabeled, un-
weighted graphs representing chemicals, with the vertices of the graphs corre-
sponding to carbon atoms in a molecule and edges specifying bonds between
two carbons. These datasets have been used as benchmarks for evaluating the
performances of graph edit distance algorithms; for example, see [1] and [38]
for comparisons of the performance of various algorithms on these datasets.
For each dataset, we compare upper bounds on the average edit distance taken
over all pairs of graphs (obtained using other procedures) with lower bounds
on the average obtained using our method.

The Alkane dataset consists of 150 unlabeled, acyclic graphs representing alka-
nes, with the number of vertices ranging from 1 to 10 vertices (the average is
8.9) and an average degree of 1.8. As these graphs are relatively small in size,
the average pairwise graph edit distance for this dataset can be calculated ex-
actly using combinatorial algorithms such as the A∗ procedure [65]. The PAH
dataset consists of 94 graphs representing polycyclic aromatic hydrocarbons.
As with the Alkane dataset, the vertices of the graphs in this dataset denote
carbon atoms, and two vertices are connected if there exists a bond between
the corresponding carbons. Unlike the Alkane dataset, the chemicals in the
PAH dataset represent large compounds: the smallest graph in PAH has 10
vertices, the largest graph has 28 vertices, and the average number of vertices
is 20.7. The average degree of the graphs in the PAH dataset is 2.4. Due to
this larger size, calculating the exact average pairwise graph edit distance of
the PAH dataset is prohibitively expensive. In fact, to the best of our knowl-
edge, the exact average pairwise graph edit distance of the PAH dataset is
unknown to this date [17]. Consequently, obtaining guaranteed lower bounds
on the average graph edit distance of the PAH dataset is especially useful as
a way to compare to known average upper bounds.

For each pair of graphs, we employ the convex program (Pext) twice by switch-
ing the roles of G1 and G2, and take the larger optimal value as our lower
bound. In each case we utilize four different types of invariant convex set

1Available online at https://brunl01.users.greyc.fr/CHEMISTRY/.
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constraints: the Schur-Horn orbitope (CSH), the Motzkin-Straus bound on
the inverse of the stability number (CIS), the Goemans-Williamson bound on
the maximum cut value (CMC), and finally the intersection of all these three
constraints (CSH ∩ CIS ∩ CMC). In our experiments, we follow the convention
adopted in the graph edit distance literature with these two datasets, namely
that the cost of an edit operation is equal to three.2 The average pairwise
lower bounds obtained using our convex program (Pext) on the Alkane and
PAH datasets are given in Table 3.1.

Dataset Best known upper Lower bounds on avg. GED via (Pext)
Name bound on avg. GED CMC CIS CSH CMC ∩ CIS ∩ CSH
Alkane 15.3 (exact) [38] 4.66 6.12 9.58 10.72
PAH 29.8 [38] 12.01 14.52 20.29 21.60

Table 3.1: Average pairwise graph edit distances of the Alkane and PAH
datasets. Edit operations are limited to edge and vertex additions and re-
movals. Every edit operation incurs a cost of 3.

There are a number of interesting aspects to these results. For both datasets,
a constraint based only on the Goemans-Williamson relaxation seems to pro-
duce the worst lower bounds (4.66 and 12.01), while the Schur-Horn orbitope
constraint produces the best lower bounds (9.58 and 20.29) when only a single
type of invariant convex constraint is employed. As expected, the combination
of all three individual constraint sets produces the best overall lower bounds
(10.72 and 21.60). More broadly, these results demonstrate the effectiveness of
our approach in producing useful lower bounds for graph edit distance prob-
lems arising from real data in a computationally tractable manner. Specifically,
for the Alkane dataset the average lower bound 10.72 is obtained using our
convex programming framework and the exact value of the average graph edit
distance is 15.3 (which is obtained via combinatorial approaches). Our results
have more interesting implications for the PAH dataset as it is prohibitively
expensive to compute the exact average graph edit distance for this dataset
due to the large size of its constituents. In particular, the best-known upper
bound on the average graph edit distance of PAH is 29.8 [38]. Our convex
relaxation framework produces a lower bound of 21.6 on the average graph

2The reason for this choice in that community is that vertex/edge deletions/insertions
are considered more significant edit operations than vertex/edge label substitutions which
have a lower cost of one associated to them (in this chapter, we do not consider such edits
based on substitutions).
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edit distance over all pairs of graphs in PAH, which provides a floor on the
possible improvement that one should expect to obtain via better algorithms
for computing graph edit distances.

3.6 Discussion

In this chapter we introduce a framework based on convex graph invariants for
obtaining lower bounds on the edit distance between two graphs. Much of the
literature on this topic provides methods for computing upper bounds on the
edit distance between two graphs by identifying a feasible sequence of edits to
transform one graph to the other. Our approach is qualitatively different in
that it is based on convex relaxation and it leads to guaranteed lower bounds
on the edit distance. Further, our approach can be adapted to the structure
underlying the two graphs. We provide both theoretical and empirical support
for our method.

There are a number of potential directions for further investigation arising
from this chapter. First, our analysis of the performance of the Schur-Horn
relaxation could potentially be tightened in order to obtain sharper conditions
for the success of our algorithm. For example, Corollary 31 only utilizes in-
formation about the second most-repeated eigenvalue, and while this provides
order-optimal scaling results for families such as triangular graphs, it may
be possible to improve our analysis to obtain order-optimal bounds for other
families as well. More broadly, a key step in carrying out a precise theoretical
analysis of the power of an invariant convex constraint set is to obtain a full
understanding of the facial structure of the set, and it would be of interest to
develop such a characterization for a larger suite of invariant convex sets than
those presented in this chapter. Finally, a commonly encountered question in
many applications is to test whether a given graph is a minor of another graph,
and it would be useful to extend the framework described in this chapter to
address this problem.
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C h a p t e r 4

SUM OF SQUARES BASED CONVEX RELAXATIONS FOR
INVERSE EIGENVALUE PROBLEMS

4.1 Introduction

The affine inverse eigenvalue problem (IEP) consists of identifying a real sym-
metric matrix with a prescribed set of eigenvalues in an affine space. IEPs arise
in a range of applications in engineering and physical sciences, such as natural
frequency identification in vibrating systems [10, 37, 56, 101], pole placement
[22], factor analysis [64], reliability testing [52], estimation of the Earth’s con-
ductivity [97], graph partitioning [36], and nuclear and molecular spectroscopy
[57, 113]. Further, there are many situations in which a question of interest is
to solve a discrete inverse Sturm-Liouville problem [63, 82], which is a special
case of an affine IEP. Due to its ubiquity, IEPs have received much attention
in the literature over the past several decades (see the surveys [15, 33, 34]).
On one end of the spectrum, there have been several efforts aimed at providing
necessary and sufficient conditions for the existence of a solution of a given
IEP [40–42, 53, 66, 77, 124]. For example, Landau proved that there always
exists a symmetric Toeplitz matrix with a desired set of eigenvalues [77]; how-
ever, computing such matrices in a tractable manner remains a challenge. At
the other end of the spectrum, several efforts have been aimed at developing
efficient procedures for numerically finding solutions to particular types of the
inverse eigenvalue problems [13, 39, 54, 120], including some recent approaches
based on convex optimization [7, 83, 96, 123]. Our work differs from these ap-
proaches in two prominent ways. First, our framework is applicable to general
affine IEPs, while some of the previous convex approaches are only useful for
certain structured problem instances; see Section 4.3 for the broad range of
examples to which we apply our methods. Second, we describe a family of
convex relaxations for IEPs rather than just a single convex program, and our
work allows for a tradeoff between computational cost and solution quality.

We begin by first reformulating the affine IEP as a question of checking the
existence of a real solution to a system of polynomial equations. Formally, an
instance of an affine IEP may be stated as follows:
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Affine Inverse Eigenvalue Problem. Given (i) a desired spectrum Λ =

{(λi,mi)}qi=1 ⊂ R × Z+ of eigenvalue-multiplicity pairs with
∑

imi = n, and
(ii) an affine space E = {X ∈ Sn : Tr (CkX) = bk, k = 1, . . . , `}, find an
element of E with spectrum given by Λ or certify that such a matrix does not
exist. Here Sn denotes the space of n× n real symmetric matrices.

This problem may be reformulated as checking whether the following system
has a real solution:

Siep :=



f1 :=
∑q

i=1 Zi − I = 0,

f
(i)
2 := Tr (Zi)−mi = 0 for i = 1, . . . , q,

f
(i)
3 := Z2

i − Zi = 0 for i = 1, . . . , q,

f
(k)
4 :=

∑q
i=1 λiTr (ZiCk)− bk = 0 for k = 1, . . . , `.

(4.1)

The variables in this system are the matrices Z1, . . . , Zq ∈ Sn. The matrix
I denotes the n × n identity. We are concerned with whether the system of
polynomials Siep = {f1, f

(1)
2 , . . . , f

(q)
2 , f

(1)
3 , . . . , f

(q)
3 , f

(1)
4 , . . . , f

(`)
4 } has a com-

mon zero over the reals, or in other words checking whether the associated
real variety VR(Siep) is empty. It is clear that the system of equations (4.1)
encodes the IEP. The equations f1, {f (i)

2 }
q
i=1, {f

(i)
3 }

q
i=1 specify that the Zi’s are

projection matrices that partition the identity, and the equations {f (k)
4 }`k=1 re-

quires that the matrix
∑

i λiZi belongs to E . As such, an affine IEP is feasible
if and only if VR(Siep) 6= ∅.

The advantage of this polynomial reformulation is that it allows us to leverage
results from the optimization literature to systematically obtain convex re-
laxations for the affine IEP. Specifically, Parrilo [98, 99] and Lasserre [78, 79]
developed hierarchies of semidefinite programming relaxations for polynomial
optimization problems using results from real algebraic geometry. These relax-
ations entail the solution of increasingly larger convex optimization problems
that search over successively more complex collections of certificates that prove
the infeasibility of the system defined by Siep. From a dual perspective, these
relaxations may also be viewed as providing a sequence of convex outer ap-
proximations R1(Λ, E) ⊇ R2(Λ, E) ⊇ · · · ⊇ conv (VR(Siep)), which leads to a
natural heuristic for attempting to obtain solutions of the system Siep. We
describe the mechanism to obtain these relaxations in Section 4.2. As an il-
lustration, searching over a simple class of infeasibility certificates gives the
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following convex outer approximation to VR(Siep):

R1(Λ, E) =
{

(Z1, . . . , Zq) ∈ ⊗qSn |
q∑
i=1

Zi = I; Tr (Zi) = mi, Zi � 0 ∀i;

Tr

(
q∑
i=1

λiZiCk

)
= bk ∀k

}
.

(4.2)
In Section 4.2 we relate the set R1(Λ, E) to the Schur-Horn orbitope [107]
associated to the spectrum Λ, which is the convex hull of all real symmetric
matrices with spectrum Λ. If R1(Λ, E) = ∅, then it is clear that VR(Siep) = ∅;
otherwise, VR(Siep) may or may not be empty, and one can either attempt to
find an element of VR(Siep) or search over a larger family of infeasibility cer-
tificates (see Section 4.2). In Section 4.2 we describe a convex outer approxi-
mation R2(Λ, E) to conv (VR(Siep)) that is in general tighter than R1(Λ, E).

The description of R1(Λ, E) in (4.2) consists of q semidefinite constraints on
matrix variables of size n × n. The description of R2(Λ, E) in Section 4.2 in-
volves a semidefinite constraint on a matrix variable of size

(
n+1

2

)
q ×

(
n+1

2

)
q.

Tighter relaxations to conv (VR(Siep)) thanR1(Λ, E) andR2(Λ, E) require even
larger semidefinite descriptions, and they become prohibitively expensive to
solve for large n. Consequently, although we describe the general mecha-
nism by which semidefinite relaxations of increasing size may be generated,
we restrict our attention in numerical experiments to the performance of the
relaxations R1(Λ, E) and R2(Λ, E). As the affine IEP includes (co-)NP-hard
problems as special cases, these two relaxations generally do not solve every
instance of an affine IEP (as expected); nonetheless, we demonstrate their ef-
fectiveness in Section 4.3 on stylized problems such as certifying non-existence
of planted subgraphs, solving discrete Sturm-Liouville equations, and comput-
ing Toeplitz matrices with a desired spectrum.

Connection to combinatorial optimization A number of combinatorial
problems such as computing the stability number of a graph or the knapsack
problem may be formulated as checking feasibility of a system of equations in
a collection of variables that take on values of 0/1. As many of these problems
are NP-hard, a prominent approach to developing tractable approximations
is to first specify the problems via polynomial equations and to then employ
the methods referenced above to obtain semidefinite relaxations [14]. The
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polynomial reformulations consist of a system of equations defined by affine
polynomials and quadratic equations of the form x2

i − xi = 0 for each of the
variables xi to enforce the Boolean constraints. Our system (4.1) for the affine
IEP may be viewed as a matricial analog of those arising in the literature on
combinatorial problems, as the idempotence constraints Z2

i −Zi = 0 represent a
generalization of the scalar Boolean constraints x2

i − xi = 0. The present note
describes promising experimental results of the performance of semidefinite
relaxations for the affine IEP. As with the significant prior body of work on
combinatorial optimization, it is of interest to investigate structural properties
of our relaxations for specific affine spaces E and spectra Λ. We outline future
directions along these lines in Section 4.4.

4.2 Semidefinite Relaxations for Affine IEPs

From Polynomial Formulations to Semidefinite Relaxations

We summarize here the basic aspects of obtaining semidefinite relaxations
for certifying infeasibility of a polynomial systems over the reals; we refer
the reader to the survey [14] for further details. Let R[x] denote the ring
of polynomials with real coefficients in indeterminates x = (x1, . . . , xn). A
polynomial ideal I is a subset of R[x] that satisfies the following properties:
(i) 0 ∈ I, (ii) f1, f2 ∈ I ⇒ f1 + f2 ∈ I, and (iii) f ∈ I, h ∈ R[x] ⇒ hf ∈ I.
The ideal generated by a collection of polynomials f1, . . . , ft ∈ R[x] is the
set 〈f1, . . . , ft〉 = {

∑t
i=1 fihi : hi ∈ R[x]} – here, f1, . . . , ft and h1, . . . , ht

are referred to as generators and coefficients, respectively. The real variety
corresponding to polynomials g1, . . . , gr ∈ R[x] is denoted VR (g1, . . . , gr) =

{x ∈ Rn : gi(x) = 0, i = 1, . . . , r}. Finally, the set of polynomials that can be
expressed as a sum of squares of polynomials is denoted Σ := {p ∈ R[x] : p =∑

i p
2
i , pi ∈ R[x]}. We state next the real Nullstellensatz due to Krivine for

certifying infeasibility of a system of a polynomial equations over R:

Theorem 4 (Real Nullstellensatz). [75] Given any collection of polynomials
f1, . . . , ft ∈ R[x], we have that:

−1 ∈ Σ + 〈f1, . . . , ft〉 ⇐⇒ VR (f1, . . . , ft) = ∅.

Here −1 ∈ R[x] refers to the constant polynomial. The implication that −1 ∈
Σ + 〈f1, . . . , ft〉 ⇒ VR (f1, . . . , ft) = ∅ is straightforward. The reverse direction
may be proved by appealing to Tarski’s transfer principle. In general, the best-
known bounds on the size of infeasibility certificates – i.e., the degrees of the
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polynomials in Σ, 〈f1, . . . , ft〉 that sum to −1 – are at least triply exponential.
This is to be expected as many co-NP-hard problems can be reformulated as
certifying infeasibility of a system of polynomial equations.

Obtaining tractable relaxations based on the real Nullstellensatz relies on three
key observations. First, one fixes a subset Ĩ ⊂ 〈f1, . . . , ft〉 by considering
polynomials

∑
i hifi in which the coefficients hi ∈ R[x] have bounded degree

(sets of the form Ĩ are sometimes called truncated ideals, although they are
not formally ideals). In searching for infeasibility certificates of the form −1 =

p + q, p ∈ Σ, q ∈ Ĩ, one can check that without loss of generality the search
for p can also be restricted to sum-of-squares polynomials of bounded degree;
formally, if every element of Ĩ has degree at most 2d, one can restrict the
search to elements of Σ with degree at most 2d. Second, a decomposition
−1 = p +

∑
i hifi where the p and the h′is all have bounded degree is a

linear constraint in the coefficients of p and the hi’s. Finally, checking that a
polynomial p ∈ R[x] in n variables of degree at most 2d is an element of Σ can
be formulated as a semidefinite feasibility problem; letting mn,d(x) denote the
vector of all

(
n+d
d

)
monomials in n variables of degree at most d, we have that:

p ∈ Σ ⇔ ∃P ∈ S(n+d
d ), P � 0, p(x) = mn,d(x)′ P mn,d(x).

The relation p(x) = mn,d(x)′ P mn,d(x) is equivalent to a set of linear equations
relating the entries of P to the coefficients of p. Thus, the search over a
restricted family of infeasibility certificates via bounding the degree of the
coefficients of the elements of 〈f1, . . . , ft〉 is a semidefinite feasibility problem.

By considering a sequence of degree-bounded subsets I ′ ⊂ I ′′ ⊂ · · · ⊂
〈f1, . . . , ft〉, one can search for more complex infeasibility certificates at the ex-
pense of solving increasingly larger semidefinite programs. Associated to this
sequence of semidefinite programs is a sequence of dual optimization problems
that provide successively tighter convex outer approximations to VR(f1, . . . , ft)

(assuming strong duality holds), i.e., R′ ⊇ R′′ ⊇ · · · ⊇ conv (VR(f1, . . . , ft)).
This dual perspective is especially interesting for attempting to identify ele-
ments of VR(f1, . . . , ft). Concretely, fix a subset I ′ ⊂ 〈f1, . . . , ft〉, and suppose
that the search for an infeasibility certificate of the form −1 ∈ Σ + I ′ is un-
successful. Then VR(f1, . . . , ft) may or may not be empty. At this stage, one
can attempt to find an element of VR(f1, . . . , ft) by optimizing a random linear
functional over the setR′ (obtained by considering the dual problem associated
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to the system −1 ∈ Σ + I ′), and checking whether the resulting optimal solu-
tion lies in VR(f1, . . . , ft); this heuristic is natural asR′ ⊇ conv (VR(f1, . . . , ft)),
and if these sets were equal then the heuristic would generically succeed at
identifying an element of VR(f1, . . . , ft). If this approach to finding a solution
is also unsuccessful, one can consider a larger subset I ′′ ⊂ 〈f1, . . . , ft〉 and
an associated tighter approximation R′′ ⊇ conv (VR(f1, . . . , ft)) (here I ′ ⊂ I ′′

and R′ ⊇ R′′), and repeat the above procedure at a greater computational
expense.

In Sections 4.2 and 4.2, we employ the methodology described above to give
concrete descriptions of two convex outer approximations of the variety spec-
ified by the system Siep associated to the affine IEP.

A First Semidefinite Relaxation

As our first example, we consider the following truncated ideal associated to
the system Siep:

I1 =
{

Tr (h1f1) +

q∑
i=1

[
h

(i)
2 f

(i)
2 + Tr

(
h

(i)
3 f

(i)
3

)]
+
∑̀
k=1

h
(k)
4 f

(k)
4 : h

(i)
2 , h

(k)
4 ∈ R,

h1, h
(i)
3 ∈ Sn ∀i, kh1, h

(i)
2 , h

(i)
3 , h

(k)
4 do not depend on Zi

}
.

(4.3)
In words, the truncated ideal I1 ⊂ 〈Siep〉 is obtained by restricting the coeffi-
cients to be constant polynomials (i.e., degree-zero polynomials). As a result,
the elements of I1 consist of polynomials with degree at most two. Conse-
quently, in searching for infeasibility certificates of the form −1 ∈ I1 + Σ one
need only consider quadratic polynomials in Σ, which in turn leads to checking
feasibility of the following semidefinite program:

−Tr (A)−
q∑
i=1

midi −
∑̀
k=1

bkξk = 1;

A+ diI + λi
∑̀
k=1

ξkCk −Bii = 0,

Bii � 0, i = 1, . . . , q

(4.4)

in variables A ∈ Sn, di ∈ R and Bii ∈ Sn for i = 1, . . . , q, and ξk ∈ R for
k = 1, . . . , `. The elements of the truncated ideal I1 can be associated to the
above problem via the relations h1 = −A, h(i)

2 = −di, h(i)
3 = −Bii, h

(k)
4 = −ξk,

and then observing that the constraints in (4.4) are equivalent to checking that
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the polynomial Tr (h1f1)+
∑q

i=1 h
(i)
2 f

(i)
2 +

∑q
i=1 Tr

(
h

(i)
3 f

(i)
3

)
+
∑`

k=1 f
(k)
4 h

(k)
4 in

variables (Z1, . . . , Zq) can be decomposed as −1−Σ. Next we relate R1(Λ, E)

and the system −1 ∈ I1 + Σ via strong duality:

Proposition 37. Consider an affine IEP specified by a spectrum Λ and an
affine space E ⊂ Sn. Let I1 be defined as in (4.3) and R1(Λ, E) as in (4.2).
Then exactly one of the following two statements is true:

(1) R1(Λ, E) is nonempty, (2) − 1 ∈ I1 + Σ.

Proof. The feasibility of the system (4.4) is equivalent to the condition −1 ∈
I1 + Σ. One can check that the system (4.4) and the constraints describing
R1(Λ, E) are strong alternatives of each other, which follows from an appli-
cation of conic duality – strong duality follows from Slater’s condition being
satisfied.

As a consequence of this result, it follows that R1(Λ, E) is a convex outer
approximation of the variety VR(Siep). A more direct way to see this is to
consider any element (Z1, . . . , Zq) ∈ VR(Siep) and to note that the idempotence
constraints Z2

i − Zi = 0 in Siep imply the semidefinite constraints Zi � 0 in
R1(Λ, E).

The set R1(Λ, E) is closely related to the Schur-Horn orbitope associated to
the spectrum Λ [107]:

SH(Λ) = conv{M ∈ Sn | λ(M) = Λ}

=
{
X ∈ Sn | ∃(Z1, . . . , Zq) ∈ ⊗qSn s.t.

q∑
i=1

Zi = I;

Tr (Zi) = mi, Zi � 0 ∀i; X =

q∑
i=1

λiZi

}
.

(4.5)

The second equality follows from the characterization in [43]. The Schur-Horn
orbitope was so-named by the authors of [107] due to its connection with the
Schur-Horn theorem. A subset of the authors of the present note employed
the Schur-Horn orbitope in developing efficient convex relaxations for NP-hard
combinatorial optimization problems such as finding planted subgraphs [26]
and computing edit distances between pairs of graphs [27]. In the context of
the present note, the Schur-Horn orbitope provides a precise characterization
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of the conditions under which −1 ∈ I1 + Σ is successful. Specifically, from
Proposition 37 and (4.5) we have that:

−1 ∈ I1 + Σ ⇔ R1(Λ, E) = ∅ ⇔ SH(Λ) ∩ E = ∅. (4.6)

Hence, if −1 /∈ I1 + Σ, we have that R1(Λ, E) 6= ∅. In particular, the variety
VR(Siep) may or may not be empty. At this stage, as discussed in Section 4.2
one can maximize a random linear functional over the set R1(Λ, E); the result-
ing optimal solution (Ẑ1, . . . , Ẑq) is generically an extreme point of R1(Λ, E),
and one can check if (Ẑ1, . . . , Ẑq) satisfies the equations in the system Siep.
If this attempt at finding a feasible point in VR(Siep) is unsuccessful, one can
repeat the preceding steps at attempting to certify infeasibility or to find a
feasible point in VR(Siep) via a larger semidefinite program, which we describe
in the next subsection.

We present here a result on guaranteed recovery of a solution to an affine IEP
when the affine space is a random subspace:

Proposition 38. Let X? ∈ Sn have a spectrum Λ with n distinct eigenvalues,
and suppose E = {X | Tr(CkX) = Tr(CkX

?), k = 1, . . . , `} is an affine space
with the Ck ∈ Sn being random matrices with i.i.d. standard Gaussian entries.
If ` >

(
n+1

2

)
−Hn where Hn =

∑n
j=1

1
j
is the n’th harmonic number, then with

high probability the unique element of R1(Λ, E) is the set of n projection maps
onto the eigenspaces of X?. (Recall that log(n) ≤ Hn ≤ log(n) + 1.)

Proof. As Gaussian random matrices constitute an orthogonally invariant en-
semble, we can assume without loss of generality that X? is a diagonal matrix
with the eigenvalues in descending order on the diagonal. From (4.2), (4.5),
and (4.6), we need to ensure that SH(Λ) ∩ E = {X?}. From the results in
[4, 31], we have that if η is the expected value of the square of the Euclidean
distance of a Gaussian random matrix to the normal cone at X? with respect
to SH(Λ), then SH(Λ) ∩ E = {X?} with high probability provided ` > η.
From [26] we have that the normal cone at X? with respect to SH(Λ) is the
set of diagonal matrices with the diagonal entries sorted in descending order.
From [4] we have that the expected squared Euclidean distance of a random
Gaussian matrix to such a cone of sorted entries is equal to

(
n+1

2

)
−Hn.
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A Tighter Semidefinite Relaxation

Next we consider a larger truncated ideal I2 ⊂ 〈Siep〉 with larger degree coef-
ficients than in I1:

I2 =
{

Tr (h1 (Z1, . . . , Zq) f1) +

[
q∑
i=1

h
(i)
2 (Z1, . . . , Zq) f

(i)
2 + Tr

(
h

(i)
3 f

(i)
3

)]
+

l∑
k=1

f
(k)
4 h

(k)
4 (Z1, . . . , Zq) : h1 (Z1, . . . , Zq) , h

(i)
3 ∈ Sn, h(i)

2 (Z1, . . . , Zq) ,

h
(k)
4 (Z1, . . . , Zq) ∈ R, ∀i, k, h1 (Z1, . . . , Zq) , h

(i)
2 (Z1, . . . , Zq) ,

h
(k)
4 (Z1, . . . , Zq) affine in Zi, h

(i)
3 does not depend on Zi

}
.

(4.7)
The coefficients h(i)

3 are constrained in the same way as in I1 but the other
coefficients h1, h

(i)
2 , h

(k)
4 are allowed to be affine polynomials (in the case of

h1, more precisely a matrix of affine polynomials). The resulting collection I2

consists of polynomials of degree at most two, and therefore we can restrict our
attention to elements of Σ of degree at most two in searching for infeasibility
certificates of the form −1 ∈ I2 + Σ. However, I2 is in general larger than I1

so that I2 + Σ offers a richer family of infeasibility certificates than I1 + Σ.
The convex relaxation R2(Λ, E) obtained as an alternative to the system −1 ∈
I2 + Σ in turn provides a tighter approximation in general than R1(Λ, E) to
the convex hull conv(VR(Siep)). We require some notation to give a precise
description of R2(Λ, E). Let δk,l denote the usual delta function which equals
one if the arguments are equal and zero otherwise. Additionally, for s, t =

1, . . . , n let

fs,t =

eseTt , if s = t,

1
2
(ese

T
t + ete

T
s ), otherwise.
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Here, es, et ∈ Rn are the s’th and t’th standard basis vectors in Rn. The set
R2(Λ, E) is then specified as:

R2(Λ, E) ={
(Z1, . . . , Zq) ∈ ⊗qSn | ∃Wi,j : Sn → Sn, i, j = 1, . . . , q, ∃W : ⊗qSn → ⊗qSn,

W � 0, [W(X1, . . . , Xq)]i =

q∑
j=1

Wi,j(Xj) i = 1, . . . , q, Zi � 0 i = 1, . . . , q

q∑
i=1

Zi = I, Tr (Zi) = mi, i = 1, . . . , q,

q∑
i=1

λiTr (ZiCk) = bk, k = 1, . . . , l,

q∑
j=1

Wi,j(fs,t) = δs,tZi, s, t = 1, . . . , n, i = 1, . . . , q,

n∑
s=1

Wi,j(fs,s) = mjZi, i, j = 1, . . . , q,

n∑
r=1

Tr (fs,rWi,i(ft,r)) = (Zi)s,t, i = 1, . . . , q, s, t = 1, . . . , n,

q∑
j=1

λjWi,j(Ck) = bkZi, i = 1, . . . , q, k = 1, . . . , `
}
.

(4.8)
Our next result records the fact that R2(Λ, E) does constitute a strong alter-
native for −1 ∈ I2 + Σ.

Proposition 39. Consider an affine IEP specified by a spectrum Λ and an
affine space E ⊂ Sn. Let I2 be defined as in (4.7) and R2(Λ, E) as in (4.8).
Then exactly one of the following two statements is true:

(1) R2(Λ, E) is nonempty, (2) − 1 ∈ I2 + Σ.

Proof. The proof is identical to that of Proposition 37, and it follows from an
application of conic duality.

It is clear that R1(Λ, E) ⊇ R2(Λ, E) as the constraints defining R2(Λ, E) are a
superset of those defining R1(Λ, E). Further, for any (Z1, . . . , Zq) ∈ VR(Siep),
one can check that the constraints defining R2(Λ, E) are satisfied by setting
the linear operators Wi,j(X) = Tr (ZjX)Zi ∀X ∈ Sn. Thus, there are addi-
tional quadratic relations among the Zi’s that are satisfied by the elements
of VR(Siep) and are implied by R2(Λ, E), but are not captured by the set
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R1(Λ, E). This is the source of the improvement of the relaxation R2(Λ, E)

compared toR1(Λ, E), although the improvement comes at the expense of solv-
ing a substantially larger semidefinite program. In particular, R1(Λ, E) entails
checking q semidefinite constraints on n × n real symmetric matrices, while
the description of R2(Λ, E) involves a semidefinite constraint on the operator
W : ⊗qSn → ⊗qSn, which is equivalent to stipulating that a

(
n+1

2

)
q ×

(
n+1

2

)
q

real symmetric matrix is positive semidefinite. Thus, optimizing over R2(Λ, E)

is much more computationally expensive than R1(Λ, E).

4.3 Numerical Illustrations

Here we present experiments illustrating the performance of the relaxations
R1(Λ, E),R2(Λ, E) on random problem instances and stylized instances aris-
ing in applications. Our results are obtained using the CVX parser [60, 61]
and the SDPT3 solver [112]. Before describing these, we present an approach
to strengthen the relaxation R2(Λ, E) by adding valid constraints without in-
creasing the size of the semidefinite inequality.

Strengthening the Relaxations

A prominent approach in the optimization literature for obtaining improved
bounds on hard nonconvex problems is to add redundant constraints. The
procedure presented in Section 4.2 of considering a sequence of truncated ideals
I1 ⊆ I2 ⊆ · · · ⊆ 〈Siep〉 is a systematic method to add valid constraints; in
particular, the elements of I1 and I2 represent polynomials that vanish at all
the points in VR(Siep). As I1 ⊆ I2, the relaxation R2(Λ, E) offers (in general)
a tighter convex outer approximation of VR(Siep) than R1(Λ, E) as R2(Λ, E) is
derived from the incorporation of a larger collection of redundant constraints.

Here we present a simple alternative approach to adding redundant constraints
for the affine IEP by augmenting the original system Siep with additional poly-
nomials that vanish on VR(Siep), and which are not contained in the truncated
ideals I1, I2. Specifically, we consider the following modified system of equa-
tions:

S+
iep = Siep ∪ {ZiZj, i, j = 1, . . . , q, i 6= j}. (4.9)

The matrix equations ZiZj = 0 are satisfied for i 6= j by every solution of Siep

as a consequence of the vanishing of f1, f
(i)
2 , f

(i)
3 . However, despite being of

low degree, the matrix polynomials ZiZj, i 6= j are not contained in I1, I2.
Consequently, incorporating these degree-two equations offers the prospect of
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strengthening our relaxations without a significant additional computational
expense. We define truncated ideals I+

1 , I+
2 corresponding to S+

iep in an iden-
tical fashion to I1, I2 by restricting the coefficients corresponding to the addi-
tional polynomials ZiZj, i 6= j to be matrices of constant polynomials (as in
the restriction of the coefficients h(i)

3 of f (i)
3 ), with the coefficients of the other

polynomials f1, f
(i)
2 , f

(i)
3 , f

(k)
4 being as in I1, I2.

The semidefinite relaxation R+
1 (Λ, E) obtained as a strong alternative to the

system −1 ∈ I+
1 + Σ is identical to R1(Λ, E), i.e., the additional redundant

constraints do not strengthen the relaxation. However, the strong alterna-
tive to the system −1 ∈ I+

2 + Σ leads to a convex outer approximation
R+

2 (Λ, E) of VR(Siep) that is in general tighter than R2(Λ, E); in addition
to all the constraints that define R2(Λ, E) in (4.8), the set R+

2 (Λ, E) consists
of the additional constraints

∑n
r=1 Tr (fs,rWi,j(ft,r)) = 0, i, j = 1, . . . , q, i 6=

j, s, t = 1, . . . , n on the variables Wi,j. Thus, a notable feature of the relax-
ation R+

2 (Λ, E) is that it is of the same size as R2(Λ, E), despite providing a
tighter convex outer approximation in general to VR(Siep). We demonstrate
the merits of this relaxation in the numerical experiments in this section.

Experiments with Random Affine IEPs

We present two series of experiments on random problems instances in this
subsection.

In the first set of results, we compare the relative power of the two relaxations
described in Section 4.2 in certifying infeasibility, or from a dual viewpoint,
in approximating conv(VR(Siep)). To provide a visual illustration, we consider
affine IEPs involving matrices in S3, with a desired spectrum of {−1, 0, 1}. We
begin by considering an affine space defined by ` = 3 random linear equations,
i.e., E = {X ∈ S3 | Tr (CkX) = 0, Ck ∈ S3, k = 1, . . . , `}, where the
Ck’s have random entries. Given the spectrum (which fixes the trace) and
the affine space E , the solution set VR(Siep) is constrained to lie in an affine
space of dimension at most two in S3. We then set the entries X11, X22 to
fixed values in the range [−1, 1], and check whether there exists a matrix
in S3 with these values for X11, X22 that can be expressed as

∑
i λiZi for

(Z1, Z2, Z3) ∈ R1(Λ, E) and for (Z1, Z2, Z3) ∈ R2(Λ, E). Figures 4.1a and
4.1b represent two different problem instances obtained by generating two
affine spaces E as described above, and they illustrate graphically when the
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relaxations succeed or fail at certifying infeasibility. Evidently, the relaxation
R2(Λ, E) is successful in certifying infeasibility over a larger range of values
of X11, X22 than the relaxation R1(Λ, E), thus illustrating its increased power
(at a greater computational expense). From a dual perspective, we have in
both cases that R1(Λ, E) ) R2(Λ, E). In particular, the feasibility regions
corresponding to R1(Λ, E) and R2(Λ, E) in Figures 4.1a and 4.1b represent
the projections of these sets onto the (X11, X22)-plane of S3. In each of the
two settings, we maximized 1000 random linear functionals over R2(Λ, E) and
in all cases obtained an element of VR(Siep). Consequently, it appears at
least based on numerical evidence that R2(Λ, E) = conv(VR(Siep)) in both
examples. Figures 4.1c and 4.1d give two examples based on the same setup
as above, but with ` = 2 random linear equations defining the affine space
E . Here the dimension of the solution set VR(Siep) is at most three, and the
feasibility regions corresponding to R1(Λ, E) and R2(Λ, E) in Figures 4.1c and
4.1d represent two-dimensional projections (onto the (X11, X22)-plane of S3) of
these sets. As with the previous examples, we maximized 1000 random linear
functionals over R2(Λ, E) and in all cases obtained an element of VR(Siep).
Consequently, it again appears that R2(Λ, E) = conv(VR(Siep)).

Next, we consider higher-dimensional examples in which the solution set
VR(Siep) is, by construction, non-empty. We assess the performance of our
heuristic of maximizing random linear functionals over the approximations
R1(Λ, E),R2(Λ, E),R+

2 (Λ, E) in recovering solutions to the underlying IEPs.
Concretely, for each ` ∈ {2, 4, 6, 8, 10} and for a given spectrum Λ, we con-
sider Ck ∈ Sn with random entries and we generate a random X? ∈ Sn

with spectrum Λ; with these in hand, we set E = {X ∈ Sn | Tr (CkX) =

Tr (CkX
?) , Ck ∈ Sn, k = 1, . . . , `}. For each ` and for a given Λ, we

consider 100 random problem instances and for each instance we maximize
100 random linear functionals over the sets R1(Λ, E),R2(Λ, E),R+

2 (Λ, E). Ta-
ble 4.1 gives the average number of successes in obtaining elements of VR(Siep)

for three different choices of the spectrum Λ. As expected, the relaxations
R1(Λ, E),R2(Λ, E),R+

2 (Λ, E) are successively better, withR+
2 (Λ, E) being par-

ticularly useful in cases in which the eigenvalues have small multiplicities.

Discrete Inverse Sturm-Liouville Problem

Next, we demonstrate an application of our framework to certify infeasi-
bility of, or produce a solution to, the extensively studied discrete inverse
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(a) (b)

(c) (d)

Figure 4.1: Comparison of feasible/infeasible regions of R1(Λ, E) and R2(Λ, E)
for four random problem instances as described in Section 4.3. The points
marked with black circles, red crosses, and blue stars correspond, respectively,
to settings in which R1(Λ, E) and R2(Λ, E) are both infeasible; R1(Λ, E) is
feasible andR2(Λ, E) is infeasible; and bothR1(Λ, E) andR2(Λ, E) are feasible.
Thick black squares represent (X11, X22) values of solutions to the affine IEP.

Sturm-Liouville problem [63, 82]. This problem arises as a discretization of
a continuous differential boundary problem of the form −u′′(x) + p(x)u(x) =

λu(x), u(0) = u(π) = 0. Here, u(x) and p(x) are functions, and λ is a pa-
rameter that is an eigenvalue of the system. A particular discretization of
this differential equation gives rise to the linear system

(
(n+1)2

π2 J +D
)
u = λu,

where J is a Jacobian matrix with diagonal entries equal to 2 and the nonzero
off-diagonal entries equal to −1 [63]. Hence, given a collection λ1, . . . , λn ∈ R,
one wishes to identify a diagonal matrix D so that this linear system has a
solution for each setting λ = λi, i.e., λ1, . . . , λn are eigenvalues of the matrix
(n+1)2

π2 J +D. This is clearly an instance of an affine IEP.

We consider two different instantiations of the problem with n = 5. First,
we consider the set of eigenvalues {1, 2, 3, 4, 5}. In this instance, there ex-
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R1(Λ, E) R2(Λ, E)

l=2 94.11 98.91
l=4 69.28 92.56
l=6 37.03 79.52
l=8 12.81 54.36
l=10 2.59 27.05

(a)

R1(Λ, E) R2(Λ, E)

l=2 94.30 98.57
l=4 69.32 92.03
l=6 38.02 77.35
l=8 14.03 54.65
l=10 3.90 30.76

(b)

R1(Λ, E) R2(Λ, E) R+
2 (Λ, E)

l=2 95.64 97.57 99.68
l=4 75.95 85.97 97.77
l=6 45.87 61.95 91.83
l=8 18.00 30.48 72.18
l=10 3.43 8.28 41.18

(c)

Table 4.1: The average over 100 random problem instances and 100 random
linear functionals for which our heuristic succeeds in identifying a feasible solu-
tion. The problem settings are (a) n = 6, Λ = {(−1, 2), (0, 2), (1, 2)}, (b) n =
8,Λ = {(−1, 4), (1, 4)}, and (c) n = 5,Λ = {(1, 1), (2, 1), (3, 1), (4, 1), (5, 1)}.

ists a decomposition −1 ∈ I1 + Σ which certifies that the discrete inverse
Sturm-Liouville problem is infeasible with the given spectrum. Next, we con-
sider eigenvalues in the set {1, 4, 9, 16, 25}. In this case, the discrete inverse
Sturm-Liouville problem turns out to be feasible. Specifically, we attempt to
produce a solution to the inverse discrete Sturm-Lioville problem by maximiz-
ing 100 random linear functionals over the convex sets R1(Λ, E), R2(Λ, E), and
R+

2 (Λ, E); our approach succeeds 14 out of 100 times over R1(Λ, E), 26 out of
100 times over R2(Λ, E), and 55 out of 100 times over R+

2 (Λ, E). These results
suggest that our semidefinite relaxations may offer a useful solution framework
across the range of applications in which the discrete inverse Sturm-Liouville
problem arises.

Induced Subgraph Isomorphism

We present next the utility of our framework in the context of a problem in
combinatorial optimization, namely the induced subgraph isomorphism prob-
lem. Here we are given two undirected, unweighted graphs G and G ′ on n and
n′ vertices, respectively, with n′ < n. The problem is to determine whether G ′

is an induced subgraph of G. This problem is NP-complete in general and has
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received considerable attention [73].

Suppose G ′ is an induced subgraph of G. Letting A ∈ Sn and A′ ∈ Sn′ be
adjacency matrices representing the graphs G and G ′, respectively, such that
A′ is equal to a principal submatrix of A, there must exist a matrix M ∈ Sn

that satisfies the following conditions:

Tr (AM) =
n′∑

i,j=1

(A′)i,j ; (M)i,j = 0 if (A)i,j = 0, i, j = 1, . . . , n. (4.10)

This consequence follows because we may choose M to be equal to A′ on the
n′ × n′ principal submatrix corresponding to corresponding to G ′ and zero
elsewhere. Thus, a sufficient condition to certify that G ′ is not an induced
subgraph of G is to certifying the infeasibility of an affine IEP in which the
spectrum is equal to that of A′ along with an eigenvalue of zero with multi-
plicity n− n′ and the affine space is given by (4.10).

With this approach, we prove that the octahedral graph with 6 nodes and
12 edges (shown in Figure 4.2a) is not contained as an induced subgraph in
either of the larger graphs shown in Figure 4.2b (on 20 nodes with 44 edges)
and Figure 4.2c (on 15 nodes with 38 edges). Both of these larger graphs are
randomly generated Erdös-Renyi random graphs where any two vertices are
independently and randomly connected with probability 0.2 for Figure 4.2b
and 0.4 for Figure 4.2c. For the first graph, there exists a decomposition
−1 ∈ I1 + Σ, thus certifying that the octahedral graph is not an induced
subgraph. For the second graph, there is no infeasibility certificate of the form
−1 ∈ I1 + Σ but there is one of the form −1 ∈ I+

2 + Σ, thus providing a
certificate that the octahedral graph is again not an induced subgraph.

Constructing a Real Symmetric Toeplitz Matrix with Desired Spec-
trum

Finally, we describe how our framework can be utilized for constructing real
symmetric Toeplitz matrices with a desired spectrum. As Toeplitz matrices
form a subspace, this question is an instance of an affine IEP. Landau showed
that there exists a Toeplitz matrix with a desired spectrum, but his proof was
non-constructive [77], and numerically constructing such matrices continues to
remain a challenge.

In our first experiment, we set n = 5 and consider the problem of constructing
a symmetric Toeplitz matrix with eigenvalues {1, 2, 3, 4, 5}. We maximize
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(a) (b) (c)

Figure 4.2: From left to right: the octahedral graph, an Erdös-Renyi random
graph on 20 nodes with p = 0.2, an Erdös-Renyi random graph on 15 nodes
with p = 0.4. Our first convex relaxation certifies that the octahedral graph is
not an induced subgraph of the graph shown in Figure 4.2b. A tighter convex
relaxation proves the same result for the graph shown in Figure 4.2c.

random linear functionals over the sets R1(Λ, E), R2(Λ, E) and R+
2 (Λ, E), and

we succeed at identifying a Toeplitz matrix with the desired spectrum 4 out
of 100 times with R1(Λ, E), 12 out of 100 times with R2(Λ, E), and 41 out of
100 times with R+

2 (Λ, E). In our second experiment we set n = 8 and we seek
a Toeplitz matrix with eigenvalues −1 (with multiplicity four) and 1 (with
multiplicity four). With the same approach as before of maximizing random
linear functionals, we identify a Toeplitz matrix with the desired spectrum 17

out of 100 times with R1(Λ, E), and 84 out of 100 times with both R2(Λ, E)

and R+
2 (Λ, E). In summary, our framework provides a numerical counterpart

to Landau’s non-constructive existence result.

4.4 Conclusions

In this short note we describe a new framework for the affine IEP by first
formulating it as a system of polynomial equations and then employing tech-
niques from the polynomial optimization literature to obtain several semidef-
inite relaxations. These relaxations offer increasingly tighter approximations
at the expense of solving larger semidefinite programming problems. We com-
pare these relaxations both in random problem instances as well as in stylized
examples in the context of various applications.

A number of future directions arise from our work. First, it is of interest to
identify conditions on a spectrum Λ and an affine space E so that a particular
relaxation such as R1(Λ, E) is tight, i.e., R1(Λ, E) = conv(VR(Siep)). These
would correspond to families of instances of the affine IEP that are exactly
solved by a tractable semidefinite program. A related second question is that
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in considering a sequence of truncated ideals that are subsets of 〈Siep〉, does
there exist a truncated ideal I of bounded (but possibly large) degree coeffi-
cients for which the alternative of the system −1 ∈ I + Σ is exactly equal to
conv(VR(Siep))? Such a property is sometimes called finite convergence in the
polynomial optimization literature; it has been shown to be true if VR(Siep) is
finite, but more generally, depends on the particular structure of the problem
at hand. If this finite convergence property is true for the affine IEP setting
considered in this note, then our heuristic for obtaining a solution to the sys-
tem Siep (if it is feasible) based on maximizing random linear functionals over
convex outer approximations of VR(Siep) is guaranteed to succeed after finitely
many steps.



93

C h a p t e r 5

CONCLUSIONS

In this section we highlight our main contributions and discuss some future
research directions.

5.1 Summary of Contributions

Finding Planted Subgraphs with Few Eigenvalues using the Schur-
Horn Relaxation

In Chapter 2 we study the planted subgraph problem, which is a fundamen-
tal problem in graph theory whose complexity is NP-hard in general. We
introduce a new computationally tractable convex relaxation for it based on
majorization inequalities on graph spectrum. We demonstrate that this pro-
cedure is particularly effective in finding planted subgraphs if their spectrum
comprises of few distinct eigenvalues. Our approach generalizes earlier nuclear
norm based convex optimization methods for identifying planted cliques. We
demonstrate the utility of our framework via various numerical experiments
conducted on various strongly regular graphs.

Convex Graph Invariant Relaxations For Graph Edit Distance

Graph edit distance is a prevalent metric of similarity between two graphs.
Calculating the graph edit distance is NP-hard in general due to the underlying
combinatorial setting. Building up on our ideas from Chapter 2, we introduce
a family of tractable convex relaxations for exactly calculating, or providing
lower bounds on the graph edit distance between two graphs. Our relaxations
are based on convex graph invariants including the graph spectrum (as in
Chapter 2), stability number and maximum-cut value. We present conditions
in terms of certain graph parameters under which our relaxation based on the
graph spectrum calculates the edit distance between two graphs exactly. We
validate the usefulness of our method via numerical experiments on real and
synthetic graph edit distance problems.
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Sum of Squares Based Convex Relaxations for Inverse Eigenvalue
Problems

We study the affine inverse eigenvalue problem, where the goal is to identify a
matrix with a given spectrum contained in a given subspace. We express this
problem in terms of polynomial equations and investigate convex relaxations
for it arising from the earlier levels of the corresponding sum of squares hi-
erarchy. The two convex relaxations we consider vary in their approximation
qualities and associated computational costs. We demonstrate that our frame-
work can be utilized for finding solutions for, or certifying infeasibility of the
underlying inverse eigenvalue problem. We establish the utility of our frame-
work by conducting numerical experiments on various instances of the affine
inverse eigenvalue problem, such as discrete inverse Sturm-Liouville problem.

5.2 Future Directions

Identifying Additional Useful Convex Graph Invariants

In Chapters 2 and 3 we employ convex graph invariants based on graph spec-
trum, stability number and maximum-cut value for producing effective convex
relaxations to two difficult problems arising from graphs. Evidently many
other convex graph invariants may be useful in this context. Extending the
list of suitable convex graph invariants would increase the applicability and
approximation quality of relaxations arising from our framework.

Theoretical analysis of relaxations based on stability number and
maximum-cut

In this thesis we extensively study optimality conditions pertaining to opti-
mizing over the Schur-Horn orbitope, which is an invariant convex set based
on the graph spectrum. Our analysis is based on Schur-Horn orbitope’s ge-
ometric aspects, as we closely investigate the structure of its normal cones.
However, our analysis for the relaxations based on the stability number and
the maximum-cut invariants are mainly expository and limited in depth, since
we do not have an as deep understanding of these invariants’ geometric/facial
structures. Obtaining a better understanding of the geometric properties of
these constraint sets may facilitate producing theoretical results regarding the
optimality conditions of the corresponding convex relaxations.
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Extending our results to nonsymmetric matrices

In Chapters 2 and 3 we investigate problems arising from undirected graphs
which can be represented by symmetric adjacency matrices. Similarly, in
Chapter 4, our focus is solely limited on inverse eigenvalue problems aris-
ing from symmetric matrices. However, in various applications nonsymmetric
matrices are of significant importance, and questions similar to the ones we
have investigated in this thesis can be raised for their nonsymmetric counter-
parts. It may be possible to adapt some of the methods described in this thesis
to answer such questions. For instance, in order to solve a particular “inverse
singular value problem” on nonsymmetric n× n matrices, one might consider
utilizing majorization inequalities on the eigenvalues of the 2n × 2n matrix
whose eigenvalues correspond to plus and minus of the desired singular val-
ues. Such approaches may enable extending the applicability of our framework
from undirected graphs to directed graphs.
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A p p e n d i x A

APPENDIX FOR CHAPTER 2

In the appendix, we further investigate the connection between our method
and Ames and Vavasis’ nuclear norm minimization approach [5], for the special
case of the planted k-clique problem. In order to identify a k-clique, Ames and
Vavasis propose solving the following optimization problem:

min
A∈Sn

‖A‖∗

s.t.
∑

i,j∈{1,...,n}

Ai,j ≥ k2,

Ai,j = 0 if (AG)i,j = 0, i 6= j.

(AV)

We establish the claim below:

Proposition 40. Consider an instance of the planted k-clique problem. The
Schur-Horn relaxation (P ) succeeds in uniquely identifying the planted k-clique
whenever the optimization program (AV) succeeds.

Proof. We establish the result by presenting a sequence of optimization prob-
lems which relate the optimization problem (AV) to the Schur-Horn relaxation
(P ). Assume that the hidden k-clique (with 1’s on the diagonal) is the unique
optimal solution of (AV). Consider the first intermediate optimization problem
below:

max
∑

i,j∈{1,...,n}

Ai,j

s.t.
∑

i,j∈{1,...,n}

Ai,j ≥ k2,

Ai,j = 0 if (AG)i,j = 0, i 6= j,

‖A‖∗ = k.

(I1)

If the k-clique is the unique optimal solution of (AV), then (I1) has a single
feasible point. That is because of the additional constraint on the nuclear
norm of the variable, and the fact that the nuclear norm of the k-clique (with
1’s on the diagonal) is equal to k. Further, the only feasible point of (I1) is
the adjacency matrix of the planted clique.



107

Given that the optimization problem (I1) is feasible, its first constraint is
redundant, as that constraint and the objective function overlap. More-
over, one can replace the objective function with Tr(A · AG), since by the
planted model, AG is equal to 1 on every index where A is equal to 1, i.e.,∑
i,j∈{1,...,n}

Ai,j = Tr(A · 1k1Tk ) = Tr(A · AG). These modifications lead to the

second intermediate optimization problem given below:

max Tr(A · AG)

s.t. Ai,j = 0 if (AG)i,j = 0, i 6= j,

‖A‖∗ = k.

(I2)

The optimization problem (I2) is feasible in a potentially bigger set than the
optimization problem (I1), but its unique optimal value is still attained by the
same matrix – the adjacency matrix of the planted clique.

Now consider adding the constraint A � 0 to the constraint set of the opti-
mization problem (I2). Since the adjacency matrix of the k-clique (including
the 1’s on the diagonal) satisfies this constraint, it is still the unique optimal
solution of the resulting problem. Furthermore, under the positive semidef-
initeness of A, one can replace the nuclear norm constraint ‖A‖∗ = k with
the trace constraint Tr(A) = k. With this final change, we obtain exactly the
Schur-Horn relaxation (P ), where the Schur-Horn orbitope is as described in
equation (2.3).
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A p p e n d i x B

APPENDIX FOR CHAPTER 3

B.1 Proof of Lemma 29

Proof of Lemma 29. The optimality of E∗ follows from a direct application of
the KKT conditions. Below, we establish the uniqueness. For this result, we
first introduce subspaces SΩ and ST :

SΩ = {M | PΩ(M) = M},

ST = {M | Pii(M) = 0, ∀i ∈ {1, . . . ,m}}.

First, we show that if ξ(α, d,G) < 1, then SΩ ∩ ST = {0}. Let M ∈ SΩ ∩ ST .
Then, it is easy to see that [(I−

∑m
i=1 αiPii)PΩ](M) = (I−

∑m
i=1 αiPii)(M) =

M for any α. However, we have ξ(α, d,G) < 1 for some α. As such, M = 0.

Now, let T be a tangent direction from an extreme point X∗ of CSH(A1) into
CSH(A1), i.e., X∗ + T ∈ CSH(A1). Suppose that E∗ − T is another optimal
solution of convex program (P). Given that Q is a subgradient of ‖·‖1 at E∗,
we have:

‖E∗ − T‖1 − ‖E
∗‖ ≥ Tr(Q ∗ (−T )). (B.1)

Suppose that Pii(T ) 6= 0 for some i ∈ {1, . . . ,m}. Consider some matrix B =

Pii(B). Since Q ∈ relint(NSH(A)(A)), we have that Q+εB ∈ NSH(A)(A). As a
result, Tr((Q+εB)T ) ≤ 0⇒ Tr(QT ) < 0; suggesting that ‖E∗ − T‖1 > ‖E∗‖1

by equation (B.1). Therefore, we have that T ∈ ST , and Tr(QT ) = 0.

Now consider QE, let PΩ(QE) = E∗ and PΩc(QE) = sign(PΩc(−T )). Note
that QE is a subgradient of ‖·‖1 at E∗. Then:

Tr(QE(−T )) = Tr((PΩc(QE) +Q− PΩc(Q))(−T ))

= Tr((PΩc(QE)− PΩc(Q))(−T ))

= Tr((PΩc(QE)− PΩc(Q))PΩc(−T ))

= ‖PΩc(−T )‖1 − Tr(PΩc(Q)PΩc(−T ))

≥ ‖PΩc(−T )‖1 − ‖PΩc(−T )‖1 ‖PΩc(Q)‖∞
= ‖PΩc(−T )‖1 (1− ‖PΩc(Q)‖∞)
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Since ‖PΩc(Q)‖∞ < 1, we have that Tr(QE(−T )) > 0 unless PΩc(−T ) 6= 0.
However, Tr(QE(−T )) > 0 would imply that ‖E∗ − T‖1 > ‖E∗‖1 by the
subgradient condition suggested by QE. Hence, PΩc(−T ) = 0, i.e., T ∈ SΩ.
This suggests T ∈ SΩ ∩ ST = {0}, indicating that E∗ must be the unique
optimal solution.


