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ABSTRACT 

Melanoma is the most deadly form of skin cancer due to its great metastatic potential. 

Targeted therapy that inhibits the BRAF-V600E driver mutation has shown impressive initial 

responses in melanoma patients. However, drug resistance, as the universal phenomenon for 

any cancer therapy, always limits treatment efficacy and compromises outcomes. As the 

early-step of resistance development, non-genetic mechanisms enable cancer cells to 

transition into a drug-resistant state in as early as a few days after drug treatment without 

alteration of the genome. This early mechanism is, to a large extent, due to the heterogeneous 

and highly plastic nature of tumor cells. Therefore, it imperative to understand the plastic and 

heterogeneous nature of the melanoma cells in order to identify combination therapies that 

can overcome resistance.  

In this thesis, we investigate these two fundamental natures of non-genetic drug resistance 

using BRAF inhibition of BRAF-mutant melanomas as the model system. These melanoma 

cells undergo multi-step, reversible drug-induced cell-state transitions from the original 

sensitive phenotype to a drug-resistant one.  

We first conducted bulk analysis to characterize the detailed kinetics of the entire transition 

from drug-sensitive state towards drug-resistant state, revealing expression changes of 

thousands of genes and extensive chromatin remodeling. A 3-step computational biology 

approach greatly simplified the complexity and revealed that the whole cell-state transition 

was controlled by a gene module activated within just the first three days of drug treatment, 

with the RelA transcription factor driving chromatin remodeling to establish an epigenetic 

program encoding long-term phenotype changes towards resistance. From there, a detailed 

mechanism connecting tumor epigenetic plasticity with non-genetic drug resistance was 

resolved through in-depth molecular biology experiments. The mechanism was validated in 

clinical patient samples. 

We further investigated heterogeneity by moving from bulk cellular studies to single-cell 

analysis. The single-cell view further revealed that two driving forces from both cell-state 

interconversions and phenotype-specific drug selection control the cell-state transition 
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dynamics. The single-cell studies also pinpointed the signaling network hub, RelA, as the 

driver molecule of the initiation of the adaptive transition. These two competing driving 

forces were further quantitatively modeled via a thermodynamic-inspired surprisal analysis 

and a modified Fokker-Planck-type kinetic model. 

Finally, using integrated single-cell proteomic and metabolic technology I developed to 

characterize the early-stage signaling and metabolic changes upon initial drug responses, we 

further identified two distinct paths connecting drug-sensitive and drug-tolerant states. 

Melanoma cells exclusively traverse one of the two paths depending on the level of MITF in 

the drug-naïve cells. The two trajectories are associated with distinct signaling and metabolic 

susceptibilities and are independently druggable. 

In total, this thesis combines and synergizes various physical science and systems biology 

approaches together with several unique single-cell technologies and analysis to obtain a 

deep and comprehensive understanding of non-genetic drug resistance in cancer. The 

findings from this thesis provide several novel insights into the rational design of effective 

combination therapy for overcoming the development of resistance in response to cancer 

treatments. 



ix 

PUBLISHED CONTENT AND CONTRIBUTIONS 

[1] Su, Yapeng, Guideng Li, Melissa E. Ko, Hanjun Cheng, Ronghui Zhu, Min Xue, Jessica 

Wang et al. "Trajectories from Snapshots: Integrated proteomic and metabolic single-cell 

assays reveal multiple independent adaptive responses to drug tolerance in a BRAF-mutant 

melanoma cell line." Nature Communications (Under revision). doi: 10.1101/767988 

Y.S. participated in conception of the project, performed most of the experiments, lead the 

analysis and interpretation of the data, and participated in writing the paper. 

[2]  Su, Yapeng, Xiang Lu, Guideng Li, Chunmei Liu, Yan Kong, Jihoon W. Lee, Rachel Ng 

et al. "Kinetic Inference Resolves Epigenetic Mechanism of Drug Resistance in Melanoma." 

Cancer cell (Under revision). doi: 10.1101/724740 

Y.S. participated in conception of the project, performed most of the experiments, established 

the computational models, analyzed the data, and participated in writing the paper. 

[3]  Su, Yapeng, Marcus Bintz, Yezi Yang, Lidia Robert, Alphonsus HC Ng, Victoria Liu, 

Antoni Ribas, James R. Heath, and Wei Wei. "Phenotypic heterogeneity and evolution of 

melanoma cells associated with targeted therapy resistance." PLoS computational 

biology 15, no. 6 (2019): e1007034. doi: 10.1371/journal.pcbi.1007034. 

Y.S. participated in conceptualization, formal analysis, experimental investigation, 

methodology development, and writing the paper. 

[4]  Su, Yapeng, Wei Wei, Lidia Robert, Min Xue, Jennifer Tsoi, Angel Garcia-Diaz, Blanca 

Homet Moreno et al. "Single-cell analysis resolves the cell state transition and signaling 

dynamics associated with melanoma drug-induced resistance." Proceedings of the National 

Academy of Sciences 114, no. 52 (2017): 13679-13684. doi:10.1073/pnas.1712064115 

Y.S. participated in conception of the project, performed most of the experiment, developed 

the computational model, and participated in analysis of the data and writing of the paper. 

[5]  Su, Yapeng, Qihui Shi, and Wei Wei. "Single cell proteomics in biomedicine: High‐

dimensional data acquisition, visualization, and analysis." Proteomics 17, no. 3-4 (2017): 

1600267. doi: 10.1002/pmic.201600267. 

Y.S. participated in the conception of the study and writing of the manuscript. 

[6] Xue, Min, Wei Wei, Yapeng Su, Dazy Johnson, and James R. Heath. "Supramolecular 

probes for assessing glutamine uptake enable semi-quantitative metabolic models in single 

cells." Journal of the American Chemical Society 138, no. 9 (2016): 3085-3093. doi: 

10.1021/jacs.5b12187 

Y.S. participated in the conception of the study, experiments, and data analysis. 

[7] Xue, Min, Wei Wei, Yapeng Su, Jungwoo Kim, Young Shik Shin, Wilson X. Mai, David 

A. Nathanson, and James R. Heath. "Chemical methods for the simultaneous quantitation of 

metabolites and proteins from single cells." Journal of the American Chemical Society 137, 

no. 12 (2015): 4066-4069. doi: 10.1021/jacs.5b00944. 

Y.S. participated in the conception of the study, experiments, and data analysis. 



 x 

[8] Wei, Wei, Young Shik Shin, Min Xue, Tomoo Matsutani, Kenta Masui, Huijun Yang, Shiro 

Ikegami, Yuchao Gu, Ken Herrmann, Dazy Johnson, Xiangming Ding, Kiwook Hwang, 

Jungwoo Kim, Jian Zhou, Yapeng Su, Xinmin Li, Bruno Bonetti, Rajesh Chopra, C. David 

James, Webster K. Cavenee, Timothy F. Cloughesy, Paul S. Mischel, James R. Heath, 

Beatrice Gini. "Single-cell phosphoproteomics resolves adaptive signaling dynamics and 

informs targeted combination therapy in glioblastoma." Cancer cell 29, no. 4 (2016): 563-

573. doi: 10.1016/j.ccell.2016.03.012. 

 Y.S. participated in the conception of the study, experiments, and data analysis. 

[9] Zhou, Jing, Michael T. Bethune, Natalia Malkova, Alexander M. Sutherland, Begonya 

Comin-Anduix, Yapeng Su, David Baltimore, Antoni Ribas, and James R. Heath. "A kinetic 

investigation of interacting, stimulated T cells identifies conditions for rapid functional 

enhancement, minimal phenotype differentiation, and improved adoptive cell transfer tumor 

eradication." PloS one 13, no. 1 (2018): e0191634. doi: 10.1371/journal.pone.0191634. 

 Y.S. participated in the conception of the study, experiments, and data analysis. 

[10] Li, Guideng, Michael T. Bethune, Stephanie Wong, Alok V. Joglekar, Michael T. Leonard, 

Jessica K. Wang, Jocelyn T. Kim, Donghui Cheng, Songming Peng, Jesse M. Zaretsky, 

Yapeng Su, Yicheng Luo, James R. Heath, Antoni Ribas, Owen N. Witte and David 

Baltimore. "T cell antigen discovery via trogocytosis." Nature methods 16, no. 2 (2019): 183. 

doi: 10.1038/s41592-018-0305-7. 

 Y.S. participated in experiments and data analysis. 

[11] Li, Guideng, Alex Yick-Lun So, Reeshelle Sookram, Stephanie Wong, Jessica K. Wang, 

Yong Ouyang, Peng He, Yapeng Su, Rafael Casellas, and David Baltimore. "Epigenetic 

silencing of miR-125b is required for normal B-cell development." Blood 131, no. 17 (2018): 

1920-1930. doi: 10.1182/blood-2018-01-824540. 

 Y.S. participated in experiments and data analysis. 

[12] Peng, Songming, Jesse M. Zaretsky, Alphonsus HC Ng, William Chour, Michael T. Bethune, 

Jongchan Choi, Alice Hsu, Elizabeth Holman, Xiaozhe Ding, Katherine Guo, Jungwoo Kim, 

Alexander M. Xu, John E. Heath, Won Jun Noh, Jing Zhou, Yapeng Su, Yue Lu, Jami 

McLaughlin, Donghui Cheng, Owen N. Witte, David Baltimore, Antoni Ribas, James R. 

Heath. "Sensitive Detection and Analysis of Neoantigen-Specific T Cell Populations from 

Tumors and Blood." Cell reports 28, no. 10 (2019): 2728-2738. doi: 

10.1016/j.celrep.2019.07.106. 

 Y.S. participated in experiments and data analysis. 

[13] Xu, Alexander M., Qianhe Liu, Kaitlyn L. Takata, Sarah Jeoung, Yapeng Su, Igor 

Antoshechkin, Sisi Chen, Matthew Thomson, and James R. Heath. "Integrated measurement 

of intracellular proteins and transcripts in single cells." Lab on a Chip 18, no. 21 (2018): 

3251-3262. doi: 10.1039/c8lc00639c. 

 Y.S. participated in the conception of the study, experiments, and data analysis. 

 



xi 

TABLE OF CONTENTS 

Acknowledgements………………………………………………………….. iii 

Abstract ……………………………………………………………………...vii 

Published Content and Contributions……………………………………........ix 

Table of Contents…………………………………………………………….xii 

Chapter 1: Introduction ........................................................................................ 1 

Melanoma, BRAFi Targeted Therapy, and Drug Resistance ...................... 1 

Non-Genetic Drug Resistance and Cellular Plasticity.................................. 4 

Physical Science and Systems Biology Approaches to Understanding 

Cancer ............................................................................................................ 6 

Tumor Heterogeneity and Single-Cell Analysis ........................................... 7 

Thesis Overview .......................................................................................... 11 

References ................................................................................................... 14

Chapter 2: Kinetic Inference Resolves Epigenetic Mechanism of Drug 

Resistance in Melanoma .................................................................................... 20 

Introduction .................................................................................................. 21 

Results .......................................................................................................... 22 

Discussion .................................................................................................... 34 

Experimental Model and Subject Details ................................................... 38 

Quantification and Statistical Analysis ....................................................... 44 

Data and Software Availability ................................................................... 50 

Figures.......................................................................................................... 51 

Supplementary Information ........................................................................ 63 

References .................................................................................................... 80 

Chapter 3: Single Cell Analysis Resolves the Cell State Transition and 

Signaling Dynamics associated with Melanoma Drug-Induced Resistance .... 87 

Introduction .................................................................................................. 88 

Results .......................................................................................................... 89 

Discussion .................................................................................................... 94 

Materials and Methods ................................................................................ 96 

Figures.......................................................................................................... 97 

References .................................................................................................. 102 

SI Appendix ............................................................................................... 104 

Chapter 4: Phenotypic Heterogeneity and Evolution of Melanoma Cells 

associated with Targeted Therapy Resistance ................................................ 148 

Introduction ................................................................................................ 149 

Results ........................................................................................................ 150 

Discussion .................................................................................................. 157 

Materials and Methods .............................................................................. 160 

Figures........................................................................................................ 166 

Supplementary Information ...................................................................... 172 



 

 

xii 

References .................................................................................................. 186 

Chapter 5: Trajectories from Snapshots: Integrated Proteomic and Metabolic  

Single-Cell Assays Reveal Multiple Independent Adaptive Responses to  

Drug Tolerance in a Braf-Mutant Melanoma Cell Line ................................. 191 

Introduction ................................................................................................ 192 

Results ........................................................................................................ 193 

Discussion .................................................................................................. 199 

Methods ..................................................................................................... 202 

Figures........................................................................................................ 207 

Supplementary Information ...................................................................... 214 

References .................................................................................................. 223 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

1 

C h a p t e r  1  

INTRODUCTION 

Melanoma, BRAFi Targeted Therapy and Drug Resistance 

Cancer is a leading cause of death worldwide, accounting for an estimated 9.6 million deaths 

in 2018. With all of the cancer deaths, 90% care caused by metastases [1]. Melanoma, as one 

of the most metastatic of all cancers, is the most deadly form of skin cancer. It is the fifth 

most common type of new cancer diagnosis in American men and the seventh most common 

type in American women [2,3]. During 40 years of employing chemotherapy, radiation, and 

combinations of the two,  limited progress has been made in the treatment of metastatic 

melanoma [4].  

A deeper and more detailed understanding of the molecular drivers of cancer development 

facilitated a trend from the old "one-size-fits-all" chemo/radiotherapy towards a more 

personalized and less cytotoxic "molecular targeted therapy" [5–8]. Molecular targeted 

therapy is a class of medication that interferes with specific molecules that are critical for 

tumor progression to block the growth and spread of cancer [5,7]. Targeted therapy focuses 

on a specific abnormal molecular property present in cancer but not in normal cells. This 

potentially makes targeted therapy more effective and less toxic to normal cells given that 

traditional chemotherapy targets all rapidly dividing cells (Fig1.1) [4,5,7].  

 

 

Traditional 
chemotherapy

• Target all dividing
cells

• Cytotoxic

Targeted
therapy

• Target specific
tumor cell

• Cytostatic
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Figure1.1. Comparison of traditional chemotherapy and targeted therapy. The targeted therapy 

is superior to traditional chemotherapy in both increased specificity and less cytotoxicity. 

Targeted therapy tailored to specific mutations that dominantly activate mitogenic signaling 

of the tumor has been shown to be effective in several recent examples: ALK, EGFR, KIT, 

HER2, and ABL kinases inhibitor have unprecedented clinical activity in those tumors that 

are caused by a certain genetic mutation [9–11]. However, in most cases, the patient relapsing 

and the cancer progress after the significant but temporary clinical response. Melanoma with 

BRAF V600E driver mutation is one of the most remarkable illustrations of this 

phenomenon[12–14]. 

The RAS/RAF/MEK/ERK signaling pathway plays a key role in melanoma development 

making it an important therapeutic target [15]. In normal cells, the tightly regulated pathway 

relays extracellular proliferative signals from cell surface receptor into the nucleus via a 

cascade of protein phosphorylation. In melanomas, oncogenic mutations dysregulate the 

pathway which leads to increased signaling activity promoting cell proliferation, invasion, 

metastasis, migration, survival, and angiogenesis (Fig. 1.2) [16–18]. Among all mutated 

genes in the MAPK signaling cascade in melanoma, BRAF is the highest, with more than 

60% of advanced tumors expressing constitutively active mutant protein. Almost all of the 

BRAF mutants are the single substitution V600E, whose discovery spurred investigations 

into the development of targeted therapies for melanoma [13–15,19].  

 
Figure 1.2. BRAF-V600E oncogenic driver mutation and its effects. In normal cells, if 

growth signal exists, will BRAF become active and promote cell growth. In BRAF-V600E 

melanoma, the mutated BRAF is always activated even if there is no growth signal. This 

effect will cayse the cell to hyperactively proliferate and lead to cancer formation. (Figure is 

taken from [20]) 
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Inhibition of the oncogenic BRAF-V600E protein with the small, orally available molecule 

inhibitor PLX4032 (vemurafenib, also known as VEM) showed impressive initial responses 

in patients with BRAF mutant melanoma [13,14]. Patients treated with  vemurafenib had a 

significant response: the great majority of treated patients experienced a reduction in tumor 

volume and nearly half had a confirmed partial or complete response [12–14]. These led to 

the FDA (Food and Drug Administration)-approval of vemurafenib in 2011 and a dramatic 

improvement in the standard of care for the patients with BRAF-V600E oncogenic mutation 

[14]. 

 

 

 

Figure 1.3. Targeted therapy resistance in melanoma. It is a very common phenomenon that BRAF 

mutated melanoma patients treated with BRAFi targeted therapy will have a good initial response, 

but will almost always suffer from tumor reoccurrence. Figure adapted from [21]. 

However, in most of these patients, despite their initial tumor shrinkage, tumor relapse is 

inevitable after a median duration of around 5 to 7 months indicating resistance development 

(Fig. 1.3) [9,21]. A diverse range of molecular mechanisms have been reported in drug 

resistance; these include increased rates of drug efflux, mutation of drug targets, adaptive 

activation of survival signaling pathway, epigenetic changes, etc. [22–27] Moreover, the high 

plasticity and heterogeneity of melanoma make the investigation of resistance mechanism 

more complicated [28–30]. Therefore, it is imperative first to understand the plastic and 

heterogeneous nature of the tumor and the connections to drug resistance, and second to 

identify potential combination therapies that will overcome resistance. 

Non-Genetic Drug Resistance And Cellular Plasticity 

Before 
therapy

Initial 
response Resistance
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Traditionally, drug resistance was believed to derive from the selection of clones with 

secondary mutations or other genomic alterations that are generated by chance during the 

time course of treatment [31]. Although this genetic mechanism of resistance is still the 

dogma for explaining resistance development, recently, the non-genetic type of mechanism 

has also been recently recognized as another important alternative route for acquiring 

resistance without even alternating the genome [32–35]. In fact, these two types of 

mechanisms are not mutually exclusive, since the non-genetic resistance is believed to occur 

early on and provide a reservoir of drug-tolerant cells from which the genetic-resistant cells 

can be selected (Fig. 1.4) [36,37] (Fig.1.4). 

 

 
Figure 1.4. The relationship between genetic and non-genetic mechanisms of resistance. Upon 

drug treatment, the cancer cells will first enter a drug-tolerant state, which shares the exact same 

genome as the untreated cells but can tolerant the drug and survive. Cells at this drug-tolerant cell 

state can reversibly return to the drug-sensitive state upon drug removal. With prolonged drug 

treatment, this reservoir of drug-tolerant cells will have some chance to gain secondary mutations or 

other genetic alterations to become genetic-resistant cells. These genetic resistant cells once generated 

from the reservoir of tolerant cells can then be further enriched due to drug selection pressure as they 

are stable and are irreversibly different from the original tumor cells due to changes in the genome. 

Figures adapted from [38]. 

The non-genetic resistance is, to a large extent, caused by the plasticity of cancer cells, 

formally defined as the cells’ ability to change phenotype without alternating the genome. In 

fact, such an ability to change phenotype is not unique to cancer cells, but rather a universal 

process utilized in all healthy cells. A simple example is to consider the human body: as a 

multi-cellular organism, all humans have many different cell types (e.g. blood cell, skin cell, 

muscle cell, etc.), displaying different gene expression programs and performing very 

different functions; but considering the origin of life, those different cell types are all 

originally derived from the same single cell (a fertilized egg cell) and therefore share the 

exact same genome. It is the cellular plasticity that grants the diverse cellular phenotypes in 

our bodies. Many healthy cells, once committed to their respective phenotypes, will lose their 

ability to change phenotype (e.g. a skin cell cannot spontaneously change to a blood cell and 

vice versa). In contrast, cancer cells maintain their cellular plasticity and can easily switch 

phenotypes upon exposure to environmental changes. In particular, during the time course 
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of treatment the cancer cell can utilize this plasticity to survive by changing its phenotype 

from the original drug-sensitive one to a new drug-tolerant one.  

Several labs including the Heath group recently discovered that melanoma cells can utilize 

their innate plasticity to develop resistance to BRAF inhibitor drugs [30,39–41]. Upon 

BRAFi treatment, melanoma cells can acquire a new stem-cell-like phenotype simply by 

accessing the cell states of their developmental precursors. Melanoma is skin cancer that is 

originally derived from a healthy skin cell type called melanocyte, which are the cells that 

produce the skin-color pigment melanin. Heathy melanocytes are originally differentiated 

from healthy neural-crest stem cells [42]. In melanoma, the drug-resistance development 

process resembles the reverse process of such developmental biology. Before drug treatment, 

melanoma cells are typically in the melanocytic cell state with many melanocytic genes 

highly upregulated. However, upon BRAF inhibitor treatment, cells gradually lose their 

melanocytic features and gain neural-crest stem cell features to dedifferentiate into a neural-

crest-like cell state, which is a drug-tolerant and slow cycling cell state [39–41]. After 

prolonged BRAFi treatment, the cell can undergo further transition from the neural-crest-

like state to a fully dedifferentiated mesenchymal phenotype (Fig. 1.5), which is also a well-

known fully resistant phenotype in BRAFi treatment melanoma cells [43,44]. All three 

phenotypes involved in this multi-step cell state transition share the same genome but the last 

two phenotypes are not sensitive to the drug anymore. Investigating the molecular 

mechanism of such cell-state transitions is an unmet need in order to understand and prevent 

resistance development. This is the central topic of the thesis and will be discussed in more 

detail in the subsequent chapters. 

 
Figure 1.5 Melanocyte to neural-crest transition in BRAFi induced drug resistance of 

melanoma cell. Upon BRAFi treatment, melanoma cells will de-differentiate from a melanocytic 

phenotype to the neural-crest like phenotype and eventually move towards the mesenchymal 

phenotype to gain drug resistance.  

Physical Science and Systems Biology Approaches to Understanding 

Cancer 
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Non-genetic drug resistance and the associated cell state transitions are usually systems-

level changes accompanied by expression changes of thousands of genes, with a dramatic 

restructuring of the epigenome, as well as rewiring of many signaling pathways and 

reprogramming of the metabolism. Luckily, recent technological advances have enabled 

investigation of the major changes and the reprogramming of the epigenome [45,46], 

transcriptome [47], proteome [48], and metabolome [49] of either bulk cell populations or 

even single cells [50,51]. This capability enables researchers to have a more complete, 

unbiased view of complex biological events. 

From the perspectives of physical scientists and engineers, this thesis views biological 

processes as highly coordinated systems with many interacting units (genes, proteins, 

metabolites) functioning under the constraint of a regulatory network. The unbiased systems-

level view from many of the recent or emergent technologies is just starting to provide 

physical scientists and engineers with the proper foundation to better understand the 

biological complexity through statistical mechanics, thermodynamics and reaction kinetics.  

Such physical science and systems biology approaches, when utilized to investigate drug 

resistance in cancer, can have many unique advantages. First, it is highly unbiased since a 

systems-level view enables people to see many regulators simultaneously [52]. On the 

contrary, traditional approaches are a bit biased since they usually focus on no more than a 

few molecules of interest. Second, systems-level approaches can be predictive and 

preventative [53]. Instead of waiting until drug resistance occurs and proceeding to treat the 

resistant cells, these approaches anticipate how the cancer cell will become resistant by 

looking for the molecular drivers that initiate resistant early on. By drugging such molecular 

drivers, one could potentially prevent resistance before it actually establishes. With such 

advantages, an interdisciplinary physical science and systems biology approach is perfectly 

suited for understanding both the nature of resistance and the underlying mechanism. In fact, 

thermodynamics-inspired information-theoretical analysis (surprisal analysis) [54], is well 

as reaction kinetics (ordinary differential equations and partial differential equations), are the 

key systems-biology approaches utilized in this thesis in resolving the puzzles of drug 

resistance, which will be discussed in many of the following chapters. 

Tumor Heterogeneity and Single-Cell Analysis  

Biological processes under single-cell levels are rarely deterministic [55]. Such stochastic 

information it is very hard to gain from the traditional bulk assay, which is often based on 

lysis of complex cell populations into mixtures to enable an analysis of their component 

parts. The differences among cells, which have been recently repeatedly shown to be 

important, are often lost in traditional bulk biochemical approaches due to averaging cell 
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signals across the entire cell mixture sample. When it comes to a tumor with an immense 

amount of genetic and epigenetic heterogeneity the phenotypic differences among 

subpopulations (including renewal capacity and drug resistance, etc.) are far from fully 

characterized [56–58]. An incomplete understanding of the tumor was previously largely due 

to the lack of effective tools for characterizing the difference among individual cells [56].  

Luckily, many powerful single-cell technologies have just been developed in the past few 

years, including many from the Heath lab [59–62]. Now is the perfect time to utilize these 

novel single-cell tools to study heterogeneous tumor systems. A deeper understanding of 

resistance from single-cell tools can guide the rationale design of a more effective 

combination therapy to overcome the clinical negative effects of classic therapeutic 

approaches (including non-response to therapy or drug resistance after the initial response). 

In recent years, major advances in single-cell technology have mostly focused on the 

genomic and transcriptomic levels, which are both studying nucleic acids that can be 

amplified through PCR reactions for sequencing. Reported technologies include whole-

genome sequencing (WGS), whole mRNA transcriptome sequencing; and targeted 

sequencing of DNA regions (that is, exome sequencing) or mRNA transcripts [51,59,63,64]. 

Protein abundance and protein-phosphorylation states are also of great importance to study 

tumor heterogeneity, but are difficult to characterize because proteins cannot be amplified, 

in a manner similar to PCR, to provide enough material for analysis.  Currently, single-cell 

functional proteomics technologies are not as mature, with just a few technologies presently 

available, ranging from flow cytometry to microfluidics-based platforms (many of which are 

listed and briefly characterized in Table 1.) Within all of these single-cell proteomic 

techniques, this thesis primarily utilizes the single-cell barcode chip (SCBC) technology that 

has been developed and well used in the Heath group. 
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Table1.1 Single-cell proteomics technologies (adapted from[63]) 

Techniqu

e 
Numbers 

and types 

of protein 

assayed 

Through

put 

Detection 

limit 

Statistical 

accuracy and 

signal 

quantification 

Notes and feature 

Fluoresc

ence flow 

cytometry 

Up to 15 

proteins 

but mostly 

membrane 

protein 

10^4 

cell per 

second 

500 copies 

per cell 

90% phenotyping 

accuracy; relative 

protein abundance 

Standard for sorting and 

enumeration of cellular 

phenotypes. Secretion blocked 

and cell fixed for cytoplasmic 

protein 

Cytof Up to 

around40 

10^3 cell 

per 

second 

more than 

1000 

copies per 

cell 

good counting 

statistics; relative 

protein abundance 

cell handled in bulk prior to 

analysis. Secretion blocked and 

cell fixed for cytoplasmic protein 

Micro-

engravin

g 

3 secreted 

plus 3 

membrane 

proteins 

10^5 cell 

per chip 

Not 

available 

Very good cell 

number statistics; 

relative protein 

abundance 

Cells isolated in microwells; 

surface immunoassay: protein 

colorimetrically detected; 

secretome kinetics from single 

cells; proteomic and functional 

assays from the same cell 

Single-

cell 

barcode 

chips 

Up to 46 

secreted 

membrane 

or 

cytoplasmi

c proteins 

10^3 to 

10^5 cell 

per chip 

100 copies Good cell 

counting statistics, 

absolute 

quantification 

Cells isolated in microchambers 

miniature antibody arrays yield 

spatial separation of specific 

protein assay; proteomic and 

functional assay from the same 

single cell; adaptable for small 

cell group study 

 

 

SCBCs can connect genomic information to biological function via quantitative assays of a 

panel of functional proteins (typically 14 to 46 proteins) across hundreds to thousands of 

single cells[61,62,65,66]. The SCBC concept is simple: a single or defined number of cells 

are isolated within a small volume microchamber that contains a miniature antibody array 

for the capture and detection of a panel of proteins via sandwich ELISA-like assays. 

Although the amount of proteins from a single cell is very low and cannot be amplified 

directly through PCR reaction, the microfluidic device shrinks the reaction volume of the 

chamber to several nanoliter; therefore, the concentration is maintained at a high enough 

level for detection and quantification.  
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Figure 1.6. The workflow of a single-cell barcode chip. The single-cell suspension has flowed into 

the microfluidic device and cells will be captured into nano-liter-sized champers. Once the cells are 

captured, perturbing, lysing and analyzing single cells within the chamber is also feasible through 

programming the nano-liter fluid. As shown in the zoom-in view of an individual chamber, cells were 

trapped at the left-hand side of the chamber and the lysis buffer is at the other side of the chamber, 

separated by the blue valve in between. When releasing the blue valve, the lysis buffer will be able to 

diffuse to the other side and lyse the cell. The intracellular proteins will then be released into the 

chamber for quantification. At the bottom of each chamber, there are barcoded arrays of antibodies 

installed orderly. These antibodies will capture proteins of our interest in order. So, simply by adding 

stripes in the chamber we can increase the multiplicity all the way to more than 40 different analytes. 

After the proteins are capture onto the antibody, we will be loading another set of detection antibodies 

with dye on it to convert the captured protein abundance into fluorescent intensity readout. Based on 

such multi-functional, programmable, nano-chamber, many important regulators from each 

individual cell are quantified simultaneously, and hundreds to thousands of single-cells can be 

analyzed simultaneously on one chip. Figure adapted from [67,68] 

SCBCs have been developed into a robust tool with benchtop to bedside applications already 

demonstrated, and are currently being commercialized through a company called “IsoPlexis”. 

Applications of SCBC include predicting drug resistance in GBM tumors [67], predicting 

tissue structures [69], and patient monitoring for cancer immunotherapy trials [61,70]. 

SCBCs have also been validated against flow cytometry and various bulk immunoassays on 

cell lines and primary cells. Compared to flow cytometry or mass cytometry (cytof), SCBC 

offers the following advantages: (i) as few as 1000 cells can be studied [71], (ii) protein levels 

and measurement errors are both absolutely quantitated, in copy numbers of molecules[72], 

(iii) the local environment of the cell can be controlled z (iv) discrete cell populations can be 

assayed to measure cell-cell interactions [73] and (v) SCBCs are cost-effective. Absolute 

quantitation of protein levels enables direct comparisons across cell types, proteins, time 
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points, and patient samples, etc. While such quantitation is standard in the physical 

sciences, it is novel (and challenging) in biology. Absolute quantitation of protein level 

uantitation also opens up the possibility of using theories derived from physico-chemical 

principles and/or statistic methods to investigate cellular steady states, perturbations, etc. In 

fact, the combination of SCBC based single-cell proteomic measurement with physico-

chemical principle enables identification of the central regulators of drug resistance as early 

as a few days after drug treatment. It is further illustrated in Chapter 3 and Chapter 5 of the 

thesis. 

Meanwhile, compared to single-cell proteomic technologies, there are even fewer single-cell 

metabolic assays currently available. SCBC technology addresses this shortcoming, with its 

ability to co-measure metabolites from the same single cell together with many proteins or 

phosphor-proteins. Considering the importance of metabolic rewiring in drug resistance and 

the heterogeneous nature of the tumor, it is also worthwhile to investigate the metabolic 

phenotypes of single tumor cells, ideally in conjunction with their signaling activities. Since 

SCBC can co-measure the metabolites together with proteomics from the same single cell 

[65,68,74], we applied the SCBC-based integrated single-cell proteomic and metabolic assay 

to drug resistance development of melanoma. This technology provides us with a very deep 

insight into the signaling rewiring and metabolic reprogramming during the heterogeneous 

drug-response trajectories of tumor cells. We now have the capability to augment the 

paradigm of adaptive resistance development in an isogenic cell population and can use this 

information to offer insight into the design of more effective combination therapies.  

Thesis Overview 

This thesis investigated the fundamental plastic and heterogeneous nature of cancer cells and 

their connection with non-genetic drug-resistance development, using BRAF inhibition of 

BRAF-mutant melanomas as the model system. These melanoma cells undergo multi-step, 

reversible drug-induced cell-state transitions, ultimately yielding a drug-resistant 

mesenchymal-like phenotype.  

In Chapter 2, bulk analysis was conducted to characterize the detailed kinetics of the entire 

cell-state transition, revealing expression changes of thousands of genes and extensive 

chromatin remodeling. A 3-step computational systems biology approach greatly simplified 

the complexity, and revealed that the whole adaptive process was controlled by a gene 

module activated within just three days of treatment, with RelA driving chromatin 

remodeling to establish an epigenetic program encoding long-term phenotype changes. From 

there a detailed mechanism connecting tumor epigenetic plasticity with non-genetic adaptive 

resistance to therapy was resolved. These findings were confirmed across several patient-
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derived cell lines and in melanoma patients under MAPK inhibitor treatment. Co-targeting 

BRAF and histone-modifying enzymes arrest adaptive transitions towards drug tolerance in 

epigenetically plastic melanoma cells and may be exploited therapeutically. (Chapter 2 has 

been adapted from a manuscript currently under review in Cancer cell, doi: 

10.1101/724740). 

From Chapter 3, the resolution of the investigation went a step further by moving from bulk 

study to single-cell analysis. The single-cell view further uncovered the fundamental 

biophysical nature of the cell-state transition as joint efforts from both cell state 

interconversion and phenotype-specific drug selection. It also pinpointed to signaling 

network hubs, RelA, as the driver molecule of the initiation of the adaptive transition. 

Targeting those hubs halted the transition and arrested resistance development. (Chapter3 

has been taken in part from PNAS, doi: 10.1073/pnas.1712064115). 

In Chapter 4, the various driving forces of phenotypic changes and evolution of melanoma 

cells during the resistance development process were further quantitatively modeled and 

validated via a thermodynamic inspired surprisal analysis and a modified Fokker-Planck-

type kinetic model. Joint experimental and computational approaches were employed, using 

either bulk or single-cell measurements as input, to interrogate the epigenetic landscape of 

the phenotypic evolution. the observed stable phenotypic equilibria of multiple drug-resistant 

subpopulations were found to be established via competition between state-dependent net 

proliferation rates and landscape potential. The results reveal how the tumor cells maintain a 

phenotypic heterogeneity that facilitates appropriate responses to external cues. (Chapter4 

has been taken in part from PLOS Computational Biology, doi: 

10.1371/journal.pcbi.1007034) 

Finally, in Chapter 5 of the thesis, using integrated single-cell proteomic and metabolic 

analysis of the early stage signaling and metabolic changes upon initial drug responses, two 

distinct paths connecting drug-naïve and drug-tolerant states were identified. Cells are shown 

to exclusively traverse one of the two paths depending on the level of a master transcription 

factor MITF before drug treatment. The two trajectories are associated with distinct signaling 

and metabolic susceptibilities. The results update the paradigm of adaptive resistance 

development in an isogenic cell population and offer insight into the design of more effective 

combination therapies. (Chapter5 has been taken in part from a manuscript that is currently 

under review in Nature Communications, doi: 10.1101/767988). 

Notably, in addition to the above contents mentioned in the thesis, two other exciting projects 

are future directions of the thesis. One of the projects analyzed the transcriptome of drug-

induced resistant cell populations with single-cell resolution. We discovered, in addition to 
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the well-known drug-resistant mesenchymal phenotype, there is a novel drug-resistant 

subpopulation co-existing, which has not been reported before. Detailed molecular-

mechanism associated with the drug-resistant subpopulations are discovered which guided 

the co-blocking of both resistant subpopulations as effective combination therapy. The other 

project utilized Raman-based single-cell sub-cellular metabolomics as an effective tool for 

investigating the metabolic features of the highly-aggressive mesenchymal phenotype by 

imaging the metabolomics phenotype of its subcellular organelle, which resolved the 

metabolic susceptibilities unique to this previously undruggable phenotype. 

In total, this thesis combines various physical science and systems biology approaches with 

many single-cell technologies and analyses to obtain a deep and thorough understanding of 

the fundamental nature and underlying mechanisms of non-genetic drug resistance in cancer. 

It provides several novel insights into the rational design of better and more effective 

combination therapies for overcoming drug resistance.  
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C h a p t e r  2  

KINETIC INFERENCE RESOLVES EPIGENETIC MECHANISM 

OF DRUG RESISTANCE IN MELANOMA 

We resolved a mechanism connecting tumor epigenetic plasticity with non-genetic adaptive 

resistance to therapy, with MAPK inhibition of BRAF-mutant melanomas providing the 

model.  These cancer cells undergo multiple, reversible drug-induced cell-state transitions, 

ultimately yielding a drug-resistant mesenchymal-like phenotype. A kinetic series of 

transcriptome and epigenome data, collected over two months of drug treatment and release, 

revealed changing levels of thousands of genes and extensive chromatin remodeling. 

However, a 3-step computational algorithm greatly simplified the interpretation of these 

changes, and revealed that the whole adaptive process was controlled by a gene module 

activated within just three days of treatment, with RelA driving chromatin remodeling to 

establish an epigenetic program encoding long-term phenotype changes. These findings were 

confirmed across several patient-derived cell lines and in melanoma patients under MAPK 

inhibitor treatment. Co-targeting BRAF and histone-modifying enzymes arrests adaptive 

transitions towards drug tolerance in epigenetically plastic melanoma cells and may be 

exploited therapeutically. 

This chapter includes content from our previously published article: 

[1] Su, Yapeng, Xiang Lu, Guideng Li, Chunmei Liu, Yan Kong, Jihoon W. Lee, Rachel Ng et al. "Kinetic 

Inference Resolves Epigenetic Mechanism of Drug Resistance in Melanoma." Cancer cell (Under 

revision). doi: 10.1101/724740 
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Introduction   

The acquisition of therapy resistance in cancer patients remains a major clinical 

challenge [1–4]. While various genetic mutations have been reported to cause resistance 

[5,6], recent literature also points to the importance of epigenetic modulations to drug-

tolerance that can precede the emergence of drug-resistant genotypes in a variety of tumor 

types [7–14]. For such epigenetic processes, tumor cells adapt to the drug treatment by 

orchestrating master transcription factors and chromatin remodelers within a regulatory 

network. The resultant changes of chromatin profile via histone modifications eventually 

establish specific gene expression programs of the drug-tolerant state [15–24]. Unlike genetic 

mechanisms, epigenetic cell-state transitions can be reversed upon drug removal [10,25,26]. 

Indeed, such reversibility has been observed in in vitro and in vivo tumor models [10,25–28] 

and increasingly reported in clinical settings [29–32]. Nevertheless, the mechanistic details 

of these epigenetic modulations remain incompletely understood, thus limiting the options 

for therapeutic interventions designed to arrest the non-genetic resistance.  

Accumulating evidence suggests that phenotypic plasticity is an essential characteristic 

associated with non-genetic resistance [15,33–35]. Phenotypic plasticity, defined as the 

ability of cells to reside in distinct phenotypes and switch between them without genomic 

alterations, is an intrinsic property of cells to survive stressful conditions. Cancer cells can 

also exploit plasticity to survive drug treatment by transitioning from a drug-sensitive 

phenotype to drug-tolerant phenotypes [15,36]. Paradigmatic examples include certain 

BRAF-mutant melanomas under MAPK pathway inhibitor (MAPKi) treatment. The drug-

naïve melanoma cells initially reside as drug-sensitive melanocytic phenotypes (MITFhigh 

and elevated pigmentation genes).  Upon continuous MAPK inhibition, they can evolve into 

a transient, slow-cycling, neural-crest-like phenotype (MITFlow/NGFRhigh) [25,37] and 

eventually towards a mesenchymal phenotype (MITFlow, SOX10low, and elevated 

mesenchymal markers) [25,35,38,39]. The mesenchymal phenotype is notorious for its 

resistance to MAPKi as well as many other treatment regimens including immunotherapy 

[9,40,41]. 

Several studies have explored the molecular markers associated with the drug-tolerant 

or drug-resistant phenotypes including: down-regulation of SOX10 [21,26] and upregulation 

of JNK/c-JUN [37,40,42] in the mesenchymal phenotype, as well as upregulation of KDM5 

[28,43] in a slow-cycling (likely neural crest) drug-tolerant phenotype. However, there 

remains a clear unmet need to identify the early-stage adaptive processes that are triggered 

immediately following the drug exposure to lead the transition towards drug-tolerant 

phenotypes. Such an understanding may unveil the molecular nature of phenotypic plasticity 
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and compelling drug targets that can arrest the entire adaptive resistance process prior to 

the establishment of resistant phenotypes. 

We sought to resolve the early-acting regulatory process of adaptive resistance through 

kinetic characterizations of the transcriptome and functional epigenome of patient-derived 

BRAF-mutant melanoma cell lines featuring varying degrees of phenotypic plasticity. 

Systems-level analysis of the transition dynamics, followed by experimental validations, 

discerned the critical transcription factors and chromatin remodelers within a regulatory 

network that initiated and drove the adaptive cell state transition. The mechanism informed 

the design of combination therapies to disrupt the chromatin remodeling and to arrest the 

adaptive transition at a very early stage. The phenotypic plasticity was found to correlate 

with the efficacy of the drug combinations across multiple melanoma cell lines, implicating 

that the plasticity may be epigenetically encoded in the baseline chromatin profiles. The 

signatures of the adaptive mechanism were also found in sequential patient biopsies. 

Together, our study resolved an early-acting epigenetic mechanism of non-genetic 

resistance, which may be exploited to prevent targeted therapy resistance in melanoma.  

Results 

Reversibility of the adaptive transition in patient-derived BRAF-mutant melanoma cell 

lines 

We used an epigenetically plastic BRAFV600E-mutant melanoma cell line M397 as a 

model system to interrogate the kinetics of the adaptive cell state transition in response to 

continuous BRAF inhibition. We treated the cells with a BRAF inhibitor (BRAFi) for a 

month, then separated them into two sets: one with an additional month of continuous drug 

treatment, and the other untreated for one month (Figure 1A). Cells were collected for a time-

series transcriptome and functional characterization (Figures 1 and S1; Table S1). The 

resultant gene expression data after 29 days (D29) of drug exposure showed significant 

enrichments of mesenchymal signatures, cellular invasiveness, migration, and loss of MITF 

targets (Figures 1C and S1D; Table S2). The adapted cells were slow-cycling, as evidenced 

by reduced proportion of cells in the S and G2/M phases (Figure 1E). An additional month 

of drug exposure maintained the cells in a steady state with a relatively stable transcriptome 

profile (Figures 1B and S1C). Drug removal (DR) triggered a reversion to a state with a 

transcriptome profile that resembled the untreated (D0) state (Figures 1B, S1C and S1D), as 

illustrated by the fact that the molecular signature enrichments of D29 vs. D0 and DR30 vs. 

D29 were essentially mirror images of each other (Figure 1C). Furthermore, the reverted 

cells recovered their proliferative and cell cycle characteristics, and were re-sensitized to 

BRAF inhibition (Figures 1D-1F). These results suggest a fully reversible adaptive transition 
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at the transcriptomic, phenotypic, and functional levels. We further confirmed the 

existence of such reversibility, at the functional level, in other BRAF-mutant melanoma cell 

lines with varying sensitivities to BRAFi (Figures 1D, 1F, S1A, and S1D). Therefore, the 

BRAFi-induced adaptive resistance is reversible at both transcriptomic and functional levels 

with generality across a panel of patient-derived BRAF-mutant melanoma cell lines. 

Information theoretic analysis of the transcriptome kinetics resolved two gene modules 

associated with the reversible transition 

To extract the underlying regulatory modules that change coordinately in the reversible 

transition, we applied information theory-based surprisal analysis to the time-course 

transcriptome data (Eq. 1). Surprisal analysis was initially formulated to understand the 

dynamics of nonequilibrium systems [44]. It has been extended, in multiple publications [45–

52], to characterize biological processes in living cells. It approximates quantum state 

distributions of molecular species within a cell’s molecular ensemble in order to assess the 

maximum entropy of those biomolecules. Particularly, for a system characterized by a kinetic 

series of transcriptome, Equation 1 from surprisal analysis can de-convolute the changes of 

thousands of genes into one unchanged gene expression baseline and a series of gene 

expression modules. Each module contains a group of genes that are coordinately changing 

together across time points (an example gene list for module-1 is visualized in dashed-line, 

circled regions in Figure 2A). We applied this analysis, and then used the resulting gene 

modules to computationally estimate and visualize cell-state transition trajectories (STAR 

Methods).  

amplitude of contribution
module  at of transcript 

time t to module 

0

measured expression baseline
level of transcript expression level of deviati

at time t transcript 

ln ( ) ln ( ) ( )

j i
j

i i j ij

j

i
i

t t t G   

on terms from 
the baseline 

of transcript  (gene modules)i

 

 (Eq.1) 

Specifically, in Equation 1,  ln Xi t , the natural logarithm of the measured level of 

transcript i at time t, is defined as the expression baseline of transcript i (
0ln i ), minus the 

sum of gene module alterations weighted by the relative contribution to each module by 

transcript i (  j ij

j

t G ). Each gene module is represented by a time-dependent module 

amplitude (or score λj(t)) that denotes the importance of the gene module j to the global 
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transcriptome at time t. Module-specific contribution scores from each transcript Gij 

denote weight of gene i on module j. Thus, the biological functions of each module j can be 

inferred from genes with higher positive or negative module-specific contribution scores Gij. 

The gene expression baseline is the reference point for the entire transition.  

The application of Eq. 1 to the time-series of transcriptome data de-convoluted them 

into two time-dependent gene modules plus the gene expression baseline. To visualize the 

kinetic changes of the entire transcriptome and each gene module, we plotted the time-series 

transcriptome profiles and de-convoluted gene modules as self-organizing mosaic maps 

(SOMs) (Figures 2A and S2A). The gene expression baseline calculated from the surprisal 

analysis (top row of SOMs in Figures 2A and S2A) shows no time dependence.  This 

demonstrates the validity of surprisal analysis in analyzing this system [51]. The second and 

third rows are plots of the two resolved, time-varying gene modules. The SOMs for D0 and 

DR30 appear nearly identical, reflecting the reversibility of the adaptive response at the 

transcriptome level as well as at the resolved gene module level. When the baseline state and 

the two regulatory gene modules are summed (the row labeled ‘sum’ in Figures 2A and S2A), 

the resultant SOMs from surprisal analysis closely matched the experimental transcriptome 

data (bottom row of Figures 2A and S2A). Thus, the expression change of thousands of genes 

during the reversible transition can be delineated by a time-invariant expression baseline, 

plus the changes of two time-varying gene modules. 

The reduction of the transcriptome kinetic series into two gene modules enables 

visualization of drug-adaptation trajectories taken by the cells.  This is achieved by projecting 

the time-series transcriptome onto the 2-D cell-state space defined by the gene modules, with 

each axis representing the module score of each gene module. The plot is a cyclic loop 

(Figure 2B) comprised of a forward trajectory (blue), and a drug-removal, reverse trajectory 

(green), which indicates that the cells undertake a different return path to the original drug-

sensitive state. This cyclic shape suggests that the two gene modules operate sequentially.  

The first module, Mearly, was fully activated within the first 3 days of drug treatment (y-axis 

of Figure 2B), while the second module, Mlate, (x-axis of Figure 2B) gradually activated 

between days 3 and 29 (D3 and D29).  Continued treatment beyond D29 caused minimal 

change in either module (blue dash line circled region of Figure 2B), in agreement with the 

stable transcriptome profile observed from D29 to D59 (Figures 1B and S2A). Interestingly, 

upon drug removal, there was an immediate reduction in the first module, followed by a 

gradual reversion of the second module to its original pre-treatment module score. The 

different operational dynamics of these modules resulted in the cyclic transition trajectories 

that the cells took. 
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To further investigate the biological meaning of the two gene modules, we conducted 

gene set enrichment analysis (GSEA) on genes ranked by their module-specific contribution 

scores (Gij). Mlate was positively associated with melanocytic signatures (e.g. MITF targets) 

and negatively correlated with mesenchymal signatures, cell invasiveness, and NFκB, TGFβ, 

and JNK signaling pathways (Figure 2B; Table S3). Consequently, the gradual change of the 

Mlate score from positive to negative values between D3 and D29 indicates that the drug-

treated cells de-differentiated towards neural-crest and mesenchymal phenotypes, with loss 

of melanocytic signatures, and an increase of NFκB, TGFβ, and JNK signaling. Similarly, 

Mearly was positively associated with HDAC1 activity and negatively associated with cell 

cycle regulation (Figure 2B), suggesting that the initial drug exposure led to an immediate 

histone deacetylation and cell cycle arrest. Therefore, the two gene modules resolved from 

surprisal analysis delineated the stepwise, reversible dynamic changes of cellular functions 

during the cyclic transitions associated with adaptive resistance development. 

Dynamic system modeling discerned the regulatory relationship between the early- and 

late-gene modules  

A possible implication of the sequential operation of Mearly and Mlate is that the biological 

processes associated with the two modules are coupled where the completion of the Mearly 

gene program triggers the expression of Mlate genes. This implies a co-dependency of these 

two modules. We tested this hypothesis by fitting the dynamic dependence of the two 

modules to a coarse-grained model resembling a simple two-gene feedback circuit (Eq. 2). 

This approximation yields an estimate for how the two gene modules are coupled (Figure 2C; 

see STAR Methods).   
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 (Eq.2) 

Here, the brackets denote the averaged expression level of module-associated genes at 

a given time point. Be and Bl represent the basal production of Mearly- and Mlate-associated 

genes, respectively. Coefficients Me-e and Ml-l reflect self-regulation of Mearly and the Mlate 

expression, respectively, while coefficients Ml-e and Me-l reflect the Mlate regulation over the 

expression of Mearly genes and vice versa.  

The ODE fitting of gene expression associated with Mlate and Mearly for both forward and 

reverse trajectories revealed that Mearly exerted significant control over both itself and Mlate.  
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This is evidenced by the significantly larger pre-factors Me-e and Me-l (Figures 2D and S3; 

Table S4). By contrast, Mlate yielded only minimal influence over itself or Mearly. The strong 

influence of Mearly applied to both the drug-treated forward and drug-release reverse 

trajectories (Figures 2D, 2E, S2B and S3). In other words, Mearly dominated the entirety of 

the forward D0-D29 transition path towards drug resistance as well as the drug removal 

trajectory back to the drug-sensitive state. Further, the dependence of Mlate on Mearly 

suggested an orchestrated process whereby certain important transcription factors associated 

with Mearly played a key role in regulating downstream genes associated with Mlate, ultimately 

driving the adaptive transition towards the drug resistant phenotype. Thus, dynamic system 

modeling revealed the strong influence of the early-acting gene module on the late-acting 

gene module, and implied that Mearly may contain the key regulators that initiated the adaptive 

cell state transition.   

Inference of critical early-acting upstream transcriptional regulators based upon the 

inter-dependence of the two gene modules 

Guided by the importance of Mearly module in driving the adaptive resistance (Figure 

2D), we hypothesized that certain key transcription factors (TFs) or co-factors within Mearly 

regulate the downstream genes within Mlate and thus drive the adaptive transition. To test this 

hypothesis, we used two complementary approaches to infer the early-acting TFs in M397. 

For the first approach (Figures 3A and S4A), we hypothesized that functionally relevant TFs 

associated with Mearly should have their target effector genes enriched in the gene set 

associated with the subsequent action of Mlate. Therefore, we first filtered out all the possible 

TFs and co-factors within Mearly and then acquired their downstream targets from the TF 

targets database, followed by assessing their enrichment in the genes associated with Mlate 

(STAR Methods). This identified that subset of Mearly-related TFs whose downstream targets 

are overrepresented within the genes associated with Mlate module. Five statistically enriched 

TFs and co-factors were identified, with Pearson correlation coefficients ρ > 0.9 (Figures 3B, 

panel i).  These include MEIS3, which is required for neural-crest invasion [53], NKX3-2, 

which mediates the epithelial-mesenchymal  transition in neural crest development [54], and 

LEF1 whose down-regulation is related to non-genomic MAPKi resistance in melanomas 

[9]. These enriched TFs may regulate the cancer cell phenotype changes associated with the 

forward and reverse transitions (Figure 3C). Most interestingly, the histone modifying 

enzyme KDM5B (H3K4 demethylase), whose expression displayed a sharp increase by D3, 

was also found to have many target genes overrepresented in Mlate (Figure 3D).  Importantly, 

this histone modifier has been previously associated with reversible drug-tolerant states in 

several tumor types, including melanomas [28,43,55].  
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For the second inference approach, we performed enrichment analysis of cis-

regulatory elements in the promoter regions of all genes strongly associated with Mlate 

(Figure S4B). We ranked these elements according to their statistical significance (Figure 

3B, panel ii).  The top one ranked element was the binding motif of the NFκB family member 

RelA, which was recently identified as an important regulator associated with this adaptive 

transition [25]. The expression kinetics of RelA was not associated with either Mlate or Mearly. 

Instead, the expression level of RelA gradually increased from the start of BRAF inhibition 

to D29, implying its consistent activity over the entire adaptive transition towards the 

mesenchymal state (Figure 3D). Interestingly, NFKBIE, which is highly anti-correlated with 

Mearly (ρ = -0.88) and represses NFκB activation by preventing RelA nuclear translocation, 

displayed a sharp drop by D3 (Figure 3D).  This suggests that activation of RelA and 

associated downstream genes in Mlate might be mediated by the immediate down-regulation 

of NFKBIE, thus releasing RelA into the nucleus. A second transcription regulator similarly 

identified was AP-2α, which has been reported to be involved in melanoma progression and 

metastasis [56]. Taken together, these analyses greatly simplified the interpretation of the 

kinetic transcriptome data by inferring a few controlling, early-acting TFs and co-factors 

(Figures 3B and S4B), including RelA and KDM5B, from the large numbers of transcripts 

altered during the course of BRAF inhibition and drug release (Figures S5A and S5B). 

Reversibility of chromatin accessibility and histone modification profiles shed light on 

downstream transcription factors associated with the adaptive transition 

Information theory analysis and dynamic ODE modeling of transcriptome kinetics 

pinpointed a few key early-acting TFs that likely trigger the initiation of the cell state 

transition towards resistance. To obtain a complete mechanistic picture, we seek to further 

identify the late-acting driver regulators that are the downstream targets of those early-acting 

TFs via cellular epigenome characterization at different stages of the reversible transition 

(Figure 5A).  

Since the previous inference and enrichment analyses pointed to the fast activation of 

histone modifiers KDM5B and HDAC1 in Mearly that represses activation histone marks 

(Figures 2B and 3B), we first accessed the regulatory regions associated with open chromatin. 

We accomplished this via transposase-accessible chromatin with high-throughput 

sequencing (ATAC-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) against 

two activation histone marks, H3K4me3 and H3K27ac, which are targets of KDM5B and 

HDAC1. Similar to the transcriptome profiles, the overall chromatin accessibility displayed 

reversible changes during drug treatment and removal. That accessibility gradually decreased 

following BRAFi exposure, but after a month of drug removal reverted to a profile similar 

to that of untreated cells (Figures 4A, 4B and S5C). Overall modification levels of the two 
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histone marks displayed the same reversibility (Figure S5D and S5E).  However, the drop 

in these marks after 3-day BRAFi exposure was large relative to the corresponding small 

reduction of the ATAC-seq signal (Figures 4A and S5D), suggesting that these histone 

modifications may precede and perhaps drive the changes in chromatin accessibility. Further, 

the promoter region of many well-reported regulators for the adaptive resistance in 

melanoma also displayed reversible changes that aligned well with their reversible 

expression patterns (Figure S5E). We also tabulated the numbers of differential peaks of 

H3K4me3 and H3K27ac that changed between day 0 and subsequent time points (Figure 

4C). The differences between states at long-term drug removal (DR30) and at day 0 were 

minimal. This was especially true for H3K27ac, where only two peaks reflected acetylation 

differences between day 0 and long-term drug removal. These data demonstrated the 

genome-scale chromatin landscape underwent reversible changes upon drug treatment and 

removal, thus supporting a potential epigenetic mechanism of the reversible adaptive 

transition. 

To search for causal TFs driving the dynamic changes of the chromatin landscape, we 

used K-means clustering to analyze the genome-wide chromatin restructuring at four time 

points spread across the reversible transition (Figure 4B). We identified four clusters of 

chromatin accessibility peaks with unique kinetics, plus a fifth, time-invariant cluster. For 

these four clusters, we mined the underlying DNA sequences and searched for over-

represented TF binding motifs. The highly enriched motifs in the reversible transition (right 

side of Figure 4B) contain binding motifs of certain TFs reported previously to be involved 

in the adaptive resistance of melanomas, including MITF [57], SOX10 [26], Jun-AP1 

[37,40,42], and RelA [25].  Some of these TFs, such as RelA and AP-2, were overlapping 

with those inferred from the transcriptome data (Figure S4B). To further resolve whether 

these modifications were modulated by RelA whose motif is ranked top one in the common 

cis-regulatory element inference (Figures 3B and S4B), we quantified the H3K4me3 and 

H3K27ac ChIP-seq signals across all the RelA binding sites and found marked reduction 

after 3 days of drug exposure, with recovery upon drug removal (Figure 4D). It suggests that 

RelA binds primarily to distal sequences containing both activation histone marks H3K4me3 

and H3K27ac, and might regulate them through interactions with the KDM5B and HDAC1 

during the adaptive transition.  

In addition to confirming RelA as a critical early-acting regulator that may cause the 

epigenome changes, we further mined downstream regulators that may be the direct targets 

of RelA and showed consistent epigenome alteration patterns at the RelA binding region 

across the reversible transition. We achieved this by quantifying the changes in chromatin 

accessibility and two activation histone marks of all TFs/co-factors associated with Mlate that 

contain RelA binding motifs (STAR Methods). SOX10 was identified to display the most 
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significant changes across all three epigenome alterations at the RelA binding region 

(Table S5). Consider the importance of SOX10 in regulating mesenchymal phenotype in 

melanoma [21,26,58], we hypothesized that SOX10 is likely one key downstream regulator 

for the cell state transition towards resistance. Taken together, these data illustrated the 

reversibility of adaptive resistance at the level of the global chromatin landscape. The 

kinetics of the reversible epigenome profiles further pointed to a collection of early-acting 

and downstream-effector TFs, particularly RelA and SOX10, in regulating such adaptive 

epigenetic resistance. 

Mechanistic regulatory network of adaptive resistance 

Based on the transcriptional regulators inferred from gene module interactions and 

epigenome profiling, we tied these inferences together with prior knowledge and formed a 

mechanistic regulatory network (Figure 5A). We hypothesized that for drug-naïve cells, 

NFKBIE and SOX10 are both epigenetically activated and that downstream TGFβ signaling 

is repressed [26]. BRAF inhibition triggers a sharp drop in NFKBIE expression and a sharp 

increase in the expression of the histone demethylase KDM5B (Figure 3D). The reduction 

of NFKBIE would promote the nuclear translocation of RelA [59]. In the nucleus, RelA 

would then recruit KDM5B and HDAC1 to repress SOX10 and NFKBIE expression by 

erasing the activation histone marks in their promoter regions, consistent with the rapid 

decrease of activation histone marks at RelA binding sites (Figures 4D). The downregulation 

of SOX10 expression has been reported to promote BRAFi adaptive resistance through 

promoting the up-regulation of TGFβ signaling and mesenchymal transition (Figure 3C) 

[21,26]. Our mechanistic hypothesis provides a rationale for how this happens, and further 

indicates how the downregulation of NFKBIE promotes RelA nuclear translocation, thus 

establishing a positive feedback loop (Figure 5A). Drug removal reverses this process, 

starting with the gradual recovery of SOX10 expression (Figure 3D), the loss of 

mesenchymal signatures (Figure 3C), and the eventual re-opening of the chromatin (Figure 

4A).  We extensively tested this mechanism in the following ways.  

We first examined the change in overall chromatin accessibility and levels of the histone 

marks H3K4me3 and H3K27ac at the promoter regions of SOX10 and NFKBIE over the 

course of the adaptive transition. We found reduction of the overall chromatin accessibility 

and of the levels of both histone marks upon BRAF inhibition, and a recovery of these signals 

upon drug removal (Figure 5B). These observations confirmed the involvement of chromatin 

alterations in the gene expression changes of SOX10 and NFKBIE. We next explored the role 

of RelA in recruiting histone remodelers. We tested whether RelA, KDM5B and HDAC1 

simultaneously bind to the promoter regions of SOX10 and NFKBIE. We performed ChIP-

PCR experiments on untreated cells using primers targeting the promoter regions of SOX10 
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and NFKBIE. The results confirmed the co-localization of RelA, KDM5B, HDAC1, and 

the two histone marks (Figure 5C). Quantitative assessment of binding profiles via ChIP-

qPCR further revealed that BRAFi treatment elevated binding of RelA, KDM5B, and 

HDAC1 to the SOX10 and NFKBIE promoter sites and consequently diminished H3K4me3 

and H3K27ac histone marks (Figure 5D). These binding enrichment profiles reverted to the 

levels of the untreated cells after drug removal (Figure 5D). Co-immunoprecipitation (Co-

IP) assays confirmed the binding of RelA to KDM5B and HDAC1 (Figure 5E), suggesting 

that RelA can form a complex with either KDM5B or HDAC1. These findings support the 

role of RelA in recruiting histone remodelers in regulating the expression of SOX10 and 

NFKBIE.  

To further validate that SOX10 and NFKBIE are directly repressed by the recruitment of 

KDM5B and HDAC1 through RelA, we sought to perturb RelA with a drug that inhibits its 

nuclear translocation. According to our hypothesis, such inhibition should decrease the 

recruitment of the histone-modifying enzymes KDMB5 and HDAC1, which, in turn, will 

increase the H3K4me3 and H3K27ac levels at the promoter regions of SOX10 and NFKBIE. 

We first treated the M397 cells with BRAFi for 21 days to induce adaptive resistance with 

reduced SOX10 expression (Figure 5F). Under continued BRAFi treatment, we added a drug 

(JSH-23) to inhibit RelA nuclear translocation [60], and monitored short-term interval 

changes in SOX10 expression. SOX10 expression rapidly increased following JSH-23 

treatment and returned to the level originally observed at D0 after 24 hours of drug exposure 

(Figure 5F). Furthermore, we observed barely detectable binding of RelA, KDM5B, and 

HDAC1 and consequently increased binding of H3K4me3 and H3K23ac at the SOX10 and 

NFKBIE promoter regions after 24 hours of JSH-23 treatment (Figure 5G). The immediate 

increase of SOX10 expression and decrease of HDAC1 and KDM5B enrichment within 24 

hours of JSH-23 exposure further validated our hypothesis that the repression of SOX10 and 

NFKBIE is directly through RelA-mediated epigenetic silencing. 

We performed additional independent perturbations to validate the proposed molecular 

mechanism using genetically engineered M397 cells. We first triggered RelA nuclear 

translocation through CRISPR knockout (KO) of NFKBIE to release the cytoplasmic 

retention of RelA [61]. According to our proposed mechanism, this translocation should in 

turn enhance recruitment of the histone modifying enzymes HDAC1 and KDM5B, and thus 

diminish levels of activation histone marks H3K4me3 and H3K27ac at the promoter regions 

of SOX10. This prediction was confirmed by ChIP-qPCR result (Figure 5H).  The actual 

expression of SOX10 was consequently reduced in NFKBIE-KO cells relative to control cells 

(Figure 5I). Similarly, knockout of KDM5B partially upregulated H3K4me3 levels at the 

SOX10 and NFKBIE promoters (Figure 5J), thus increasing SOX10 and NFKBIE expression 

(Figure 5K). In addition, we also observed elevated H3K27ac at the SOX10 and NFKBIE 



 

 

29 

promoters, possibly through the decreased recruitment of HDAC1 by RelA due to the 

elevated NFKBIE expression. As a functional validation, we tested SOX10-KO and 

NFKBIE-KO M397 cells, expecting that both engineered cells would develop drug tolerance 

to BRAFi more rapidly than the wild type counterpart.  These engineered cell lines indeed 

behaved as expected according to our proposed mechanism (Figure 5L). Collectively, these 

experiments provide strong evidences for the proposed mechanism.  They validate the critical 

role of RelA as a rapid-acting regulator of resistance development by recruiting KDM5B and 

HDAC1 to epigenetically suppressed SOX10 and NFKBIE expression and consequently 

induce BRAFi drug tolerance (Figure 5A).  

Baseline epigenome states correlate with the phenotypic plasticity and drug response 

across melanoma cell lines  

We now turn towards understanding whether the mechanism of adaptive response of 

M397 cells to BRAF inhibition can be generalized to other BRAF-mutant melanoma cell 

lines that exhibit varying degrees of phenotypic plasticity and baseline level of resistance to 

BRAFi. We first tested the generality of Mearly and Mlate modules in other melanoma cell by 

evaluating the co-occurrence of gene sets associated with two modules across the CCLE 

melanoma cell lines. We observed higher co-occurrence score relative to random gene 

permutation (Figure S6A, see STAR Method), suggesting the various gene sets associated 

with two modules are not specific to the cell line we studied, but similarly modulated and co-

expressed across other cohorts of melanoma cells.  

Furthermore, we investigated the BRAFi-induced transcriptome changes in additional 

six patient-derived BRAF-mutant cell lines, each with a unique drug-naïve phenotypic 

composition that varies from largely mesenchymal (M381) to in-between neural crest and 

melanocytic (M263), to mostly melanocytic (M229) [25].  In order to permit comparisons 

between different cells, we projected the whole transcriptome kinetic data of each cell line 

onto the two-dimensional space defined by Mearly and Mlate, similar to the two-dimensional 

plot in Figure 2B (Figure 6A). Cell lines at the left side displayed much higher baseline IC50 

value than those at the right side, suggesting that cells at the BRAFi-induced dedifferentiated 

state are intrinsically resistant to BRAF inhibition. Similar trends were also observed across 

various BRAF-mutant melanoma cell lines from the GDSC database (Figure S6B), indicating 

cells with higher Mearly and lower Mlate scores are generally resistant to BRAFi. Similar to 

M397, upon BRAF inhibition, each cell line exhibited an initial change in the positive 

direction along Mearly, followed by a motion along the negative direction of Mlate (Figure 6A), 

which implied some mechanistic similarities between the cells. However, different cell lines 

also exhibited widely different amplitudes of motion along this 2D landscape, reflecting large 

variations in transcriptome plasticity (Figure 6A). Our hypothesis was that these different 



 

 

30 

amplitudes of transcriptome motion, particularly the motion along the controlling module 

Mearly, were related to the pre-treatment (baseline) epigenome state of the cells.  

Mearly was enriched with early-acting epigenetic modulations that dictate the subsequent 

adaptive transition in M397 (Figure 2B-2E).  Thus, for comparison across cell lines, motion 

along Mearly was chosen as a surrogate of transcriptome plasticity. We correlated the BRAFi-

induced motion along Mearly with the baseline epigenetic characteristics of the cells.  These 

correlations included the average chromatin accessibility (Figure 6B), the average levels of 

the two histone marks across all the enriched domains (Figures 6C, 6D, and S6C), and the 

levels of two histone marks on the TSS region of SOX10 (Figures 6E, 6F, and S6D). The 

strong correlations, particularly with SOX10-specific H3K4me3/H3K27ac signals, suggest 

that cellular plasticity is associated with the baseline chromatin state of the drug-naïve cells 

and implicate the generality of the chromatin remodeling mechanism in the adaptive 

resistance of melanoma cells. These findings also imply that cellular plasticity that permits 

adaptation to BRAFi may be encoded in cells before treatment through general and specific 

structural details of the chromatin.  

The relationships between cellular plasticity, chromatin accessibility (Figure 6G), and 

adaptive resistance to BRAFi suggest that drug targeting the chromatin remodeling 

machinery in combination with BRAFi would arrest the adaptive transition and inhibit the 

development drug resistance in the most plastic cell lines (e.g. M397 or M262) but should 

have little effect on the least plastic lines (e.g. M381). We used a recently-developed KDM5 

inhibitor CPI-455 [62] and a second generation HDAC1 inhibitor Quisinostat [63] to treat 

the cells in combination with BRAFi vemurafenib. We employed the minimal doses of CPI-

455 and Quisinostat that were sufficient to inhibit KDM5B and HDAC1 without significant 

cytotoxicity (Figures S6E and S6F). Clonogenic assays revealed that, in comparison with 

BRAFi monotherapy, both of the dual drug combinations (BRAFi + KDM5Bi or BRAFi + 

HDACi) could lead to a sustained growth inhibition across several epigenetically plastic 

melanoma cell lines, including M397 (Figure 6H). These results demonstrate the potential 

utility of co-targeting the driver oncogene BRAF along with chromatin-remodeling 

machinery to treat certain melanomas which demonstrate significant epigenetic changes 

upon BRAF inhibition. Importantly, the M381 and M233 cell lines, which exhibited the 

lowest levels of plasticity (Figure 6A) and chromatin accessibility (Figure 6G), did not 

respond to the therapy combinations (Figures 6H). Thus, the responsiveness towards 

combination therapy with epigenetic drugs can be predicted through the degree of cellular 

plasticity, which may be encoded by the baseline epigenome of cells prior to treatment. 

Collectively, the strong associations across different cell lines between transcriptome 

changes and the baseline chromatin permissiveness suggest both a generality and predictable 
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limitations of the molecular mechanism (Figure 5A), and also inform the use of epigenetic 

drugs across melanoma cells of different phenotypes.  

The presence of the epigenetic resistance mechanism in MAPKi-treated melanoma 

patients     

To determine whether the adaptive resistance mechanism identified in melanoma cell 

lines is present in melanoma patient samples, we collected paired tumor biopsies from 

patients bearing BRAFV600-mutant tumors prior to MAPKi treatment and at the onset of 

therapy resistance. Paraffin-embedded cross sections were stained for MITF, SOX10, 

NFKBIE, and KDM5B.  Prior to the therapy, these four protein markers showed relatively 

uniform spatial distributions (Figure 7A). After MAPKi exposure, some regions of the tumor 

tissues retained similar MITF, SOX10, and NFKBIE expression and loss of KDM5B, while 

other regions showed elevated KDM5B but loss of MITF and SOX10 (Figures 7A and 7B). 

The mutually exclusive spatial distribution of KDM5B and SOX10/MITF was consistent 

with the chromatin remodeling-mediated adaptive resistance mechanism observed (Figure 

5A), and suggested the presence of the adaptive resistance mediated by the epigenetic 

reprogramming in melanoma patients undergoing MAPKi treatments.  

To investigate the generality of our findings, we interrogated the expression levels of 

phenotypic markers and critical TFs using published transcriptome data of BRAF-mutant 

melanoma patients [9,64]. Gene expression levels from seven paired samples before and after 

MAPKi treatment were compared and enriched against curated gene sets (Figures 7C, and 

S7A; Table S6; STAR Methods). The reduced expression of MITF, NFKBIE, SOX10, and 

other melanocytic genes as well as the elevated expression of KDM5B, JUN, and other 

mesenchymal-related genes after treatment suggested the existence of the chromatin 

remodeling-mediated adaptive resistance in these patients. Furthermore, we also analyzed 

the published transcriptome data [64] of the paired melanoma patient samples by projecting 

them onto the two-dimensional plot defined by Mearly and Mlate and calculating the changes 

of Mearly and Mlate score upon MAPKi treatment. Like M397, Mearly score increased and Mlate 

score decreased after treatment, indicating the gene signatures associated with Mearly and Mlate 

displayed consistent changes with our cell line model (Figure S7B). In addition, we also 

evaluated the co-occurrence of gene sets associated with Mearly and Mlate modules across the 

TCGA melanoma patient samples (STAR Method). We observed higher co-occurrence score 

relative to random gene permutation (Figure S7C). This suggests that the various functional 

gene sets associated with two modules are not cell line specific, but similarly modulated and 

co-expressed across other cohorts of melanoma patient samples. We further performed 

Kaplan-Meier survival analysis using the melanoma dataset in TCGA (STAR Methods). 

Consistent with our mechanism, patients with either low baseline expression level of KDM5B 
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or higher level of NFKBIE are less likely to develop adaptive resistance to MAPK 

inhibition and consequently have longer overall survival (Figure 7D). Taken together, these 

results confirmed the existence of adaptive resistance in melanoma patients, and validated 

the clinical relevance of the epigenetic mechanism. 

Discussion 

Epigenetic plasticity is precisely titrated during normal development to stabilize cell fate 

commitment and facilitate appropriate cellular responses to external cues [15,17,65]. Cancer 

cells with dysfunctional epigenome homeostasis can exploit this built-in chromatin plasticity 

to survive drug challenges and other stressful conditions [24,66–68]. Accumulating evidence 

indicates that epigenetic dysregulation can vary across different tumor cells and can also give 

rise to all the classic hallmarks of cancer [15]. For example, for epigenetically plastic cancer 

cells, a highly permissive epigenetic landscape allows them to rapidly adapt to drug 

challenges by reversibly transitioning into a drug-tolerant state that fuels malignant 

progression. Such adaptive transitions have been recently observed in clinical biospecimens 

of glioblastoma [23], breast cancer [69], and many other tumor types [18,28,70]. Despite the 

strong influence of epigenetic plasticity on therapy resistance, the mechanistic underpinnings 

of the drug-induced epigenetic reprogramming that initiates the adaptive transition are less 

clear. A systems-level characterization aimed at capturing the dynamic drug adaptation is a 

pressing need for solving this mechanistic puzzle. 

Our goal was to establish a firm mechanistic link between epigenetic plasticity and the 

development of adaptive drug resistance in BRAF-mutant melanomas. Using BRAFi-treated 

patient-derived melanoma cell lines as models, our study revealed several properties of 

cellular plasticity. First, the drug-induced cell state changes were completely reversible upon 

drug removal at the transcriptome, epigenome, and functional levels. Second, the cell state 

changes proceeded via the sequential operations of two distinct gene expression programs, 

with the early-acting gene module setting in motion epigenetic and transcriptional programs 

that encode for longer-term changes associated with the late-acting gene module, ultimately 

yielding the drug-resistant mesenchymal-like phenotype. Finally, the activation of the early-

acting module upon BRAF inhibition is extremely rapid. For M397 cells, activation involves 

nuclear translocation of the key transcription factor RelA, aided by rapid down-regulation of 

NFKBIE and coupled with the rapid recruitment of histone modifiers.  These cells are thus 

poised with a ‘hair-trigger’ response to drug challenge.  

A mechanistic link between epigenetic plasticity and the development of adaptive drug 

resistance was successfully established through a systems-level, multi-omics approach that 

focused on the kinetics of the adaptive response. We first acquired time-resolved 
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transcriptome and epigenome data to track the kinetics of the reversible cell state transition 

over a two-month period. Critical regulators that underlie the adaptive transition were 

distilled from thousands of candidate TFs/co-factors through the sequential application of 

two distinct systems biology approaches followed by bioinformatics inferences. First, a top-

down information theoretic analysis [44,46,51,52,71] simplified the transcriptome changes 

into the changes of two gene modules, one of which (Mearly) was fully activated within the 

first 3 days of BRAF inhibition. Next, dynamic ODE modeling [72] precisely identified co-

dependencies between two modules and uncovered the dominating influence of Mearly over 

both itself and the second module, Mlate. Guided by these gene module relationships, 

bioinformatic inference further identified key TFs and epigenetic regulators from which we 

extracted and experimentally validated a mechanistic regulatory network for the adaptive 

resistance. Such mechanistic understanding would be difficult to uncover without the 

synergistic integration of this three-part systems-level computational analysis. This analytic 

methodology could potentially be adapted for the understanding of cell state changes in other 

biological contexts. 

We find that the adaptive response was not truly reversible, in that the trajectory that the 

cancer cells took upon drug exposure was not retraced following drug removal. Although 

drug release reversed the transcriptional changes, it did not reverse the order of the two 

modules, so that Mearly was deactivated first upon drug removal. Therefore, the cells took a 

cyclic route as they traversed from drug-naïve to drug-resistant and back (Figure 2B). Similar 

to the adaptive response to drugging, this finding implicates the involvement of Mearly-

associated epigenetic reprogramming in regulating the first step of the reverse transition as 

well. It emphasizes the importance of those epigenetic regulations that manifest as an early-

acting transcriptional program for the rapid adaptation to therapeutic challenges in 

melanomas. Indeed, the sequential operation of Mearly and Mlate modules associated with cell 

state regression was generally observed across several other melanoma cell lines, although 

with different magnitudes of motion (Figure 6A). By interpreting that magnitude of motion 

as a metric of transcriptome plasticity, we found that the plasticity was strongly correlated 

with baseline chromatin accessibility and with the levels of activation histone marks of 

untreated melanoma cell lines (Figure 6B-6F). These findings imply that transcriptome 

plasticity may be epigenetically encoded prior to drug exposure. The sequential operations 

of Mearly and Mlate also resemble observations of sequential transcriptional waves that guide 

cell differentiation in other biological systems [73–76]. The molecular causes of the 

differences in baseline epigenome profiles across cell lines are unclear. Deciphering the 

causes of the intertumoral epigenetic heterogeneity provides an important area for future 

investigation.  
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A distinct chromatin state was observed in the drug-induced resistant cells compared 

with untreated or long-term drug removal cells. We identified histone remodelers KDM5B 

and HDAC1 as important players for establishing the resistant epigenetic state. However, 

other epigenetic remodelers may also contribute to the cell state changes. In fact, the SIRT6 

and BET protein families have been reported as regulators of MAPKi resistance in other 

melanoma systems [20,37]. Histone remodelers are generally recruited by TFs to regulate 

specific downstream genes. While other TFs could potentially recruit histone remodelers to 

regulate downstream resistance-associated genes, we identified RelA as a key player in 

regulating SOX10, whose repression is well-documented to trigger the resistant 

mesenchymal phenotype in melanomas [21,26]. In fact, the immediate recovery of SOX10 

expression levels after inhibition of RelA nuclear translocation in drug-tolerant cells 

confirmed the critical role of RelA as a key upstream TF in regulating SOX10 expression and 

associated resistance development (Figure 5F). In addition, the rapid recruitment of histone 

remodelers by RelA to the promoter regions of SOX10 within as early as 3 days after BRAF 

inhibition confirmed the critical role of RelA for initiating the adaptive resistance early on. 

The question of how BRAF inhibition induces the subsequent RelA-dependent molecular 

circuit was not resolved. The elevated level of reactive oxygen species (ROS) in melanoma 

cells upon BRAF inhibition [11] might be relevant, since ROS is known to activate the 

proinflammatory NFκB signaling pathway [77]. Phosphoproteomics that can resolve early 

signaling events immediately after BRAF inhibition may prove useful for such endeavor 

[78,79]. 

One of the most exciting aspects of epigenetic therapy is the ability to potentiate 

responses to existing therapies, which effectively multiplies the drug arsenal against cancer 

progression [80]. The intimate role of epigenetic dysregulation in therapy resistance 

development suggested that the epigenetic regulators KDM5B and HDAC1 would be 

attractive targets for combining with BRAFi for arresting the development of adaptive 

resistance at least in epigenetically plastic melanoma cells. This hypothesis was validated in 

clonogenic assays (Figure 6H). It is worth noting that BRAF and HDAC inhibitors were 

reported to be used in sequential order to eliminate the melanoma cells that acquired 

resistance to BRAF inhibition by exploiting the lethal ROS levels [11]. However, our results 

pointed to an alternative therapeutic strategy that using them in combination at the very 

beginning could retain tumor cells in the drug-sensitive stage and thus lead to sustained 

growth inhibition. While in vitro models may not fully recapitulate the cellular behavior in 

vivo, evidence of our epigenetic mechanism was also observed in melanoma tissue samples 

from patients under MAPK inhibitor treatments. This implies a potential role for these 

combination therapies in treating BRAF-mutant melanomas, with the provocative goal of 

disrupting the development of adaptive resistance against MAPKi (Figure 7A). In an 

interesting parallel, the adaptive regression in melanoma towards the drug-tolerant state has 
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also been reported to contribute to resistance development in various immunotherapy 

regimens [9,25,33,81]. Indeed, by analyzing transcriptome data of melanoma patients from 

a recent trial of PD-1 checkpoint blockade [41], we observed lower Mlate module score in 

non-responders than responders (Figure S7D), implying the more dedifferentiated melanoma 

phenotype was less likely to respond to PD-1 checkpoint blockade. With the increasing 

options of immunotherapy in treating metastatic melanomas in the clinic, combinations of 

epigenetic drugs with drugs targeting immune modulations may warrant further exploration. 

Moreover, how to sensitize the melanoma cells with minimal epigenetic plasticity (e.g. 

M381) to combinatory targeted inhibitions also requires further studies. 
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Experimental Model and Subject Details 

Cell culturing 

M-series patient-derived cell lines used in this study were generated under UCLA 

institutional review board approval # 11–003254. Cells were cultured in a water-saturated 

incubator at 37 °C with 5% CO2 in RPMI 1640 with L-glutamine (Life Technologies), 

supplemented with 10% fetal bovine serum (Omega), and 0.2% antibiotics (MycoZapTM 

Plus-CL from Lonza). The cell lines were tested for mycoplasma and were periodically 

authenticated to its early passage using GenePrint 10 System (Promega). BRAF inhibitor 

(vemurafenib), KDM5B inhibitor (CPI-455), HDAC inhibitor (Quisinostat) and RelA 

translocation inhibitor (JSH-23), all from Selleck Chemicals LLC, were dissolved in DMSO 

at designated concentrations before applying to cell culture media. Cells were plated in 10 

cm tissue culture plate at 60% confluency and treated with certain drugs for the specified 

numbers of days. M397 cells were treated with 3 µM of vemurafenib for 59 days or for 29 

days followed by drug removal removed and cell culture with normal medium for another 

35 days. Gender of the patients from whom the cell lines were derived: M397, female; M229, 

male; M262, female; M249, female; M263, female; M233, male; M381, male. 

Patient samples 

Melanoma samples before treatment were obtained from surplus biopsies stored in the 

melanoma biobank at the Peking University Cancer Hospital and Institute (Beijing, China). 

The patient #1 received vemurafenib and patient #2 received dabrafenib and trametinib 

combinations. Both patients exhibited partial response (PR) to these MAPK inhibitors. The 

secondary biopsies were performed when patients showed progressive disease (PD). The 

patients consented to the use of their biopsy materials for scientific studies and all research 

was conducted in accordance to the guidelines and protocols approved by the institutional 

ethics review committee and abiding by all local laws for research on human derived tissue. 

Gender of the reported patient samples: patient#1, female; patient#2, female. 

Method Details 

RNA-seq 

Total RNA was extracted from cell pellets using RNeasy Mini Kit (Qiagen). RNA 

sequencing libraries were prepared with Kapa RNA mRNA HyperPrep kit (Kapa 

Biosystems) according to the manufacturer's protocol. Briefly, 100 ng of total RNA from 

each sample was used for polyA RNA enrichment using magnetic oligo-dT beads. The 
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enriched mRNA underwent fragmentation using heat and magnesium, and the first-strand 

cDNA was made using random priming. The combined 2nd cDNA synthesis with dUTP and 

A-tailing reaction generated the resulting ds cDNA with dAMP to the 3’ ends.  The barcoded 

adaptors (Illumina) finally were ligated to the ds cDNA fragments.  A 10-cycle of PCR was 

performed to produce the final sequencing library. The libraries were validated with the 

Agilent Bioanalyzer DNA High Sensitivity Kit and quantified with Qubit. 

ATAC-seq 

A previously published protocol [82] was used for cell lysis, tagmentation, and DNA 

purification. The Tn5 treated DNA was amplified with a 5-cycle PCR in 50µl reaction 

volumes. The tubes were removed from thermocycler and used 5 µl of a partially amplified 

library to perform qPCR to determine how many additional PCR cycles were needed. For 

the samples in this study, an additional 4-5 cycles of PCR was performed on the remaining 

45ul of each partially amplified product. 1.8X AmpurXP beads purification was used for the 

final PCR cleanup. The libraries were validated with the Agilent Bioanalyzer DNA High 

Sensitivity Kit, and quantified with qPCR. 

ChIP-seq, ChIP-PCR, and ChIP-qPCR 

H3K4me3, H3K27ac, NFkB p65, KDM5B, and HDAC1 ChIP were performed by using 

Magna ChIP A/G Chromatin Immunoprecipitation Kit. Briefly, cells were cultured to ~80% 

confluency in a petri dish containing 10 mL of growth media and then fixed in 1% 

formaldehyde by adding 275 μl of 37% formaldehyde for 10 minutes to cross-link protein–

DNA complexes at room temperature. The unreacted formaldehyde was quenched by adding 

glycine to a final concentration 0.125 M. Gently swirl dish to mix. The nuclear pellet was 

isolated with Cell Lysis Buffer. The pellet was resuspended with 500 μl SDS Lysis Buffer 

containing 1X Protease Inhibitor Cocktail II before sonication for 4 min (10 s on, 30 s off, 

10% strength in a Bioruptor to yield DNA fragments of 0.2-1.0 kb in length. The lysates 

were cleared by centrifugation (12,000g for 10 min at 4 °C) and diluted tenfold in ChIP 

dilution buffer to decrease the concentration of SDS. After keeping 10% of the sample as 

input, 500 μl supernatant was incubated overnight at 4 °C with antibody and 20 μL of fully 

resuspended protein A/G magnetic beads. The washing, elution, reverse cross-linking, and 

purification steps were performed according to the manufacturer’s description. Eluted DNA 

was quantified by Qubit dsDNA HS Assay Kit, and used for further PCR, qPCR or ChIP-

seq library preparation.  

ChIP-seq libraries were prepared with Kapa DNA HyperPrep Kit (Kapa, Cat KK 8700) 

according to the manufacturer's protocol. Briefly, 5-10 ng of immunoprecipitated DNA was 
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underwent end-repaired, A tailing and adaptor ligation. A 10 cycles of PCR was performed 

to produce the final sequencing library. The libraries were validated with the Agilent 

Bioanalyzer DNA High Sensitivity Kit and quantified with Qubit.  

ChIP-PCR was performed by using KAPA Taq ReadyMix PCR Kit on CFX96 Real Time 

PCR Detection System without adding plate read. ChIP qPCR was performed by using 

SsoAdvanced Universal SYBR Green Supermix on CFX96 Real-Time PCR Detection 

System. In each PCR/qPCR reaction, 2 μl eluted DNA was added. 

Sequencing of RNA-seq, ChIP-seq, and ATAC-seq library 

RNA and ChIP-seq library templates were prepared for sequencing using Illumina HiSeq SR 

Cluster V4 Kit. Sequencing runs were performed on Illumina Hiseq 2500 in the single read 

mode of 51cycle of read1 and 7 cycles of index read with SBS V4 Kits. ATAC-seq library 

templates were prepared for sequencing with Illumina HiSeq PE Cluster V4 Kit, sequencing 

runs were performed in the paired-end mode of 101cycle on Illumina HiSeq 2500 with HiSeq 

SBS V4 Kits. Real-time analysis (RTA) 2.2.38 software was used to process the image 

analysis and base calling. 

CellTiter-Glo 

5000k cells were seeded onto each well of a 96well plate and were treated with indicated 

drug concentrations for 72hours. ATP-based CellTiter-Glo (Promega) luminescent cell 

viability assay was utilized to quantify the cell number for constructing dose-response 

curves. IC50 values were calculated as standard from at least three biological replicates. 

Cell cycle and apoptosis assays 

For cell cycle analysis, 500k cells were plated and were then treated with EdU. After 

treatment, cells were washed with PBS and fixed. Next, cells were processed for EdU 

detection using the Click-iT EdU Alexa Fluor 488 Flow Cytometry Assay Kit (Thermo 

Fisher) according to the manufacturer’s protocol. DNA content was visualized using SYTOX 

AADvanced (Thermo Fisher). Gates were determined using an unstained control. All 

experiments were performed with at least two biological replicates. 

Cell apoptosis assays were performed by treating indicated cell lines cultured under 

respective conditions. Cells were stained with Annexin V–FITC and propidium iodide for 

15 minutes at room temperature before flow cytometry analysis. Gates were determined 

using an unstained control. All experiments were performed with at least two biological 

replicates. 
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Fluorescence imaging of cell lines 

Fluorescent micrographs of cells were acquired with a Nikon C2plus confocal microscope 

(Ti) using Plan Apo λ 20× objective (Nikon Inc., Melville, NY) controlled by NIS elements 

AR software (4.51.00) with the following settings: 30 μm pin hole, 12-bit acquisition, 25-30 

PMT gain, and laser power of 0.7% (405 nm), 1.0% (488 nm), or 0.4% (640 nm). The cells 

adhered on gelatin-coated glass surfaces in 96-well glass bottom plates (Greiner Sensoplate 

Plus, Cat# 655892). To prepare the surface, 100 µL of 0.1% gelatin solution was incubated 

in each well at room temperature for 10 minutes. After incubation, the solution was removed, 

and the wells were air-dried for at least 15 minutes. Typically, 10,000 cells were seeded per 

well in 100 µL culture media and grown to ~70% confluency. To fix the cells, equal volumes 

of 4% PFA solution was gently added to each well. After fixing for 20 minutes at room 

temperature, the cells were washed twice in wash buffer (0.1% BSA in PBS), and blocked 

and permeabilized in blocking buffer (10% normal donkey serum, 0.3% Triton X-100 in 

PBS) for 45 minutes at room temperature. After removing blocking buffer, cells were 

incubated in mouse anti-MITF primary antibodies (Thermo Fisher Scientific, Cat# MA5-

14154) diluted to 5 μg/mL in antibody diluent (1% BSA, 1% normal donkey serum, 0.3% 

Triton X-100 in PBS) for 4 hours at room temperature. After washing twice in wash buffer, 

cells were incubated in donkey anti-Mouse IgG, Alexa Fluor 647 secondary antibody 

(Thermo Fisher Scientific, Cat# A31571, RRID:AB_162542) diluted to 4 μg/mL in antibody 

diluent for 1 hour at room temperature. After washing twice in washer buffer, cells were 

counterstained for 20 min at room temperature with Alexa Fluo 488 Phalloidin (Thermo 

Fisher Scientific Cat# A12379), as per manufacturer’s instructions. After washing twice in 

wash buffer, cells were further counterstained for 5 min with 4',6-Diamidino-2-Phenylindole 

(DAPI) (Thermo Fisher Scientific Cat# D1306) diluted to 1 μg/mL in PBS. Finally, after 

washing twice in PBS, the wells were filled with 78% glycerol. 

Western blotting 

Histone proteins were extracted using the Histone Extraction Kit (ab113476). The Invitrogen 

precast gel system NuPAGE was used for SDS-PAGE. The 4–12% Bis-Tris gels were loaded 

with samples. After blotting, the membranes were blocked in 5% BSA with TBS + 0.1% 

Tween-20 (TBST) mix for at least 1 hour at room temperature. Membranes were then 

incubated overnight with the primary antibody in 5% BSA with TBST at 4°C. The next day, 

membranes were washed three times for 5 min in TBST, incubated with a suitable HRP-

coupled secondary antibody for 1 hour at room temperature, and washed three times and 

proteins were visualized with SuperSignal™ West Pico PLUS Chemiluminescent Substrate 

(Cat.No.34577) using the ChemiDoc™ XRS+ System. 
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RT-qPCR 

For quantitative reverse transcription-polymerase chain reaction (qRT-PCR), total RNA was 

extracted by TRIzol™ Plus RNA Purification Kit (Cat.No.12183555) and reversed to 

cDNAs. Real-time PCR was performed with gene-specific primers on the two-color real-

time PCR detection system (BIO-RAD) using the SsoAdvanced™ Universal SYBR® Green 

Supermix (Cat.No.1725272) to represent the relative expression levels. 

Co-IP and protein detection 

For cell lysis, cells were cultured to ~80% confluency in a petri dish containing 10 mL of 

growth media and were washed with ice-cold PBS three times. Then the cells were collected 

with a scraper in 1 mL ice-cold PBS supplemented with 1X proteinase inhibitor cocktail 

(Cell Signalling) and centrifuged. The cell pellets were resuspended in cell lysis buffer 

containing 50 mM Tris-HCl pH 7.5, 250 mM NaCl, 1 mM EDTA, 0.5% Triton X-100, 10% 

glycerol, and 1X proteinase inhibitor cocktail (Cell Signalling). The resuspended cell pellets 

were incubated in a cold room (4°C) for 30 min and sonicated in ice-water bath three times 

for 5-second pulses each. Then the cell lysates were cleared by 10,000 × g centrifuge at 4°C 

for 10 min. The protein was quantified by Qubit Protein Assay Kit (Invitrogen). 

For cross-linking antibody to magnetic beads, 20 μl magnetic protein A/G beads (Millipore) 

were washed with cell lysis buffer twice and resuspended in 100 μl cell lysis buffer without 

glycerol. 5 μg Anti-NFkB p65 (RelA) antibody was coupled to Magnetic protein A/G beads 

by incubation at 4°C overnight on a rotator. The RelA antibody-coupled Protein A/G beads 

were washed three times in 200 µL Conjugation Buffer (20 mM Sodium Phosphate, 0.15M 

NaCl, pH 7.5). Then the RelA antibody-coupled beads were suspended in 250 µL 5 mM BS3 

with conjugation buffer and incubated at room temperature for 30 min with rotation. The 

cross-linking reaction was quenched by adding 12.5 μl 1M Tris-HCl (pH 7.5) and incubated 

at room temperature for 15 min with rotation. The RelA antibody conjugated protein A/G 

beads were washed with Cell Lysis buffer three times.  

For co-immunoprecipitation (Co-IP) experiment, 200 μl pre-cleared cell lysates were added 

to RelA antibody conjugated protein A/G beads and incubated overnight at 4°C with rotation. 

The beads were then washed 5 times with 500 μl cell lysis buffer without glycerol. The pellet 

beads were collected by a magnetic stand and resuspended in 65 μl SDS buffer (50mM Tris-

HCl pH6.8, 2% SDS, 10% glycerol, 1% β-mercaptoethanol). 

For immunoblotting, the elutes were boiled for 10 min at 95 °C. The 20 μl boiled elutes were 

electrophoresed on 10% Mini-PROTEAN TGX Precast Gels with running buffer containing 
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SDS. Then the gels were transferred on the PVDF membranes in Bio-Rad Wet Blotting 

Systems. The membranes were blocked with 5% non-fat dried milk (Bio-Rad) dissolved in 

PBS for 1 h at room temperature and incubated at 4 °C overnight with the following primary 

antibodies: JARID1B/KDM5B (Bethyl Lab #A301-813A), NFkB p65 (Millipore # 17-

10060), HDAC1(Millipore # 17-608). After incubating with secondary Goat anti-

Mouse/Rabbit antibodies coupled with HRP (Thermo), membranes were visualized by 

ChemiDoc XRS+ Imaging Systems. 

CRISPR engineering of cell lines   

LentiCRISPR v2 plasmids targeting the coding sequence of KDM5B or NFKBIE, and control 

LentiCRISPR v2 plasmid were purchased from GenScript.  Lentiviruses were produced in 

HEK-293T cells by transient transfection of LentiCRISPR v2 plasmid and their packaging 

vectors psPAX2 and pMD2.G as previously described [83]. The virus was collected, filtered 

through a 0.45µm syringe filter after 48 hours and the M397 cells were spin-infected with 

viral supernatant supplemented with 10 µg/mL polybrene at 2,500 rpm and 30°C for 90 min. 

The transduced cells were selected using puromycin, starting at 3 days post-transduction. 

Genome editing in the respective locus was examined using a surveyor assay, which was 

performed according to the manufacturer’s instructions (Integrated DNA Technologies) [84]. 

Clonogenic assay 

Melanoma cells were plated onto six-well plates with fresh media at an optimal confluence. 

The media (with drug or DMSO) were replenished every two days. Upon the time of staining, 

4% paraformaldehyde was applied onto colonies to fix the cells and 0.05% crystal violet 

solution was used for staining the colonies.  

Patient multiplexed IHC and quantification 

Multiplexed IHC staining was performed on FFPE tissue samples from melanoma primary 

tumors and metastatic lesions. Multiplexed IHC staining and antibody validation were 

performed by PerkinElmer. Briefly, the slides were firstly deparaffinized in xylene, followed 

by treatment with microwave for epitope recovery. Hematoxylin and eosin (H&E) staining 

was performed for histopathological evaluation and multiplexed IHC staining was then 

conducted on the slides via an Opal 7-Color IHC Kit (NEL811001KT, PerkinElmer) and a 

panel of antibodies including anti-KDM5B (Sigma-Aldrich), anti-MITF (Sigma-Aldrich), 

anti-SOX10 (Sigma-Aldrich) and anti-NFKBIE (Sigma-Alrich). The protocol was based on 

the manual of PerkinElmer Opal staining Kit and previous studies [85]. Finally, DAPI 

(PerkinElmer) was stained to visualize cell nuclei. Images were acquired using a Vectra 
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Polaris Multispectral Imaging System (PerkinElmer) for whole-slide scanning. inForm 

Image Analysis software (inForm 2.4, PerkinElmer) was used to process and analyze all 

images. Image J was employed to quantitate the fluorescence intensities of cells in the 

designated areas.  

Quantification and Statistical Analysis 

RNA-seq analysis 

Reads were aligned against the human genome (hg19) using TopHat2 [86].  Read counts 

were quantified using htseq-count [87], with known gene annotations from UCSC [88] with 

anti-sense (AS) genes removed.  Fold-change values were calculated from Fragments Per 

Kilobase per Million reads(FPKM) [89] normalized expression values, which were also used 

for visualization (following a log2 transformation). Aligned reads were counted using 

GenomicRanges [90].  Separate comparison p-values were calculated from raw counts using 

limma-voom [91], and false discovery rate (FDR) values were calculated using the method 

of Benjamini and Hochberg [92].  Prior to p-value calculation, genes were filtered to only 

include transcripts with an FPKM expression level of 0.1 (after a rounded log2-

transformation) in at least 50% of samples [89].  Genes were defined as differentially 

expressed if they had a |fold-change| > 1.5 and FDR < 0.05. Candidate genes were selected 

based upon the inverse overlap between the early and late time series. The “Early Drug” time 

series included 5 samples from Day 3 to Day 29 (with active drug treatment).  The “Late No-

Drug” had 6 time-points after drug removal at Day 29 (4-35 days post-drug removal). There 

were also 3 samples with active drug treatment after Day 29, but no genes were differentially 

expressed for that comparison consistent with the expectation of similar gene expression 

patterns after developing resistance; however, those 3 late drug samples (along with an 

untreated control sample) were used for visualization in a heatmap of candidate genes 

(defined as genes with an significant increase in expression with drug treatment and a 

significant decrease in expression after drug removal, or a significant decrease in expression 

with drug treatment and a significant increase in expression after drug removal). 

A heatmap of log2(FPKM + 0.1) standardized expression (mean of 0, standard deviation of 

1, per-gene) was visualized using the ‘ggplots’ package in R.  More specifically, standardized 

expression was limited to be within the range of -2 and 2 (so, all values less than -2 were set 

to -2, and all values greater than 2 were set to 2), and clustering was only performed by genes 

(with samples ordered by time, within each category).  Hierarchical clustering was performed 

using Euclidian Distance as the distance metric. 
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Consensus clustering of M397 transcriptome 

To inspect the similarity of the transcriptome of M397 in different time points, we applied 

consensus clustering using the R package of ConsensusClusterPlus [93] to define clusters. 

The top 3,000 most varying genes were used for consensus clustering with the hierarchical 

clustering method.  

Analysis of differentially expressed transcription factors 

To annotate differentially expressed transcription factors/co-factors, the differential 

expression analysis was performed by Cuffdiff among D0, DR30, DR35, D29, and D33 

(FDR ≤ 0.05). Then we downloaded TFs/co-factors list from AnimalTFDB 3.0, and got the 

up/down-regulated TFs/co-factors by screened from the differential expression analysis. The 

result was visualized by a volcano plot. 

ChIP-seq analysis 

Reads were mapped to the human genome hg19 by bowtie2 [94]. The identical aligned reads 

were deduplicated to avoid PCR duplicates. Peaks were called on the merged set of all ChIP-

seq reads of M397 using MACS2 with the following parameters: --nomodel, --broad [95]. 

Peaks were assigned to the gene with closest TSS. Differential analysis between D0 and any 

other samples( D3, D32, DR) were performed using diffReps with a window size 1000.[96]. 

Differential binding regions were called if the absolute log value of the fold change was more 

than 1 and FDR <0.05. Then the differential binding regions were compared and merged to 

ChIP peaks called form MACS2 To visualize peaks in each sample, bed graph file was 

generated using MACS2 with following parametes: --nomodel, --broad, --bdg, --SPMR. 

Then the generated bed graph file was converted into bigwig file by bedGraphToBigWig 

tool. The average of ChIP-seq signal was calculated and visualized by deepTools v3.0.2 [97]. 

The read counts were normalized by RPKM. RPKM (per bin) = number of reads per bin / 

(number of mapped reads (in millions) * bin length (kb)). To assess how H3K4me3 and 

H3K27ac signal of differential binding regions in the cyclic transition of M397 changed in 

multiple cell lines, we calculated the normalized read counts around the differential binding 

peaks(+/- 1kb) at the window size of 10bp. The different peaks are called from the time-

series ChIP-seq data we generated at this paper. To evaluate the average H3K4me3 and 

H3K27ac signal at SOX10, we slid the 10bp window size from -3Kb to +10Kb around the 

TSS to counts the normalized reads and calculated the average value for 520-780 bins. 
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ATAC-seq analysis 

All experiments were performed once. First, adaptor sequences were trimmed form the reads 

using Cutadapt. Then Reads were aligned to hg19 with bowtie2 with standard parameters 

and a maximum fragment length of 2,000. [94]. The identical aligned reads were 

deduplicated to avoid PCR duplicates. These de-duplicated reads were then filtered for high 

quality (MAPQ ≥ 30). Peaks were called on the merged set of all ATAC-seq reads of M397 

using MACS2 with following parameters: --nomodel, -broad, -q 1e-5 [95] and filtered to 

remove putative copy number varied regions [98]. Differentially accessible regions between 

D0 and any other samples( D3, D32, DR) were identified using diffReps with a window size 

500. (Shen et al., 2013)). Differential binding regions were called if the absolute log value of 

the fold change was more than 1 and FDR <0.05. Then the differential binding regions were 

compared and merged to ChIP peaks called form MACS2.  To visualize peaks in each 

sample, the same routine in ChIP-seq analysis was applied. ATAC-seq profile of 

differentially accessible region in samples of M397 were generated by using ngs.plot.r with 

following parameters: -G hg19 -R bed -L 1000 -GO km -KNC 4 -SC 0,3.5.The profile of 

unchanged ATAC-seq peaks in samples of M397 was plotted by using ngs.plot.r with 

following parameters; -G hg19 -R bed -L 1000 -GO total -SC 0,3.5. HOMER was used to 

find over-represented motifs in the set of differentially accessible peaks by using a 

background set of peaks that did not significantly change, and using the parameter “-size 

given -len 6,8,10,12 -mset vertebrates -bg” [98]. The average of ATAC-seq signal was 

calculated and visualized by deepTools v3.0.2 [97]. The read counts were normalized by 

RPKM. RPKM (per bin)=number of reads per bin / (number of mapped reads (in millions) 

* bin length (kb)). For the calculation of the average ATAC-seq signal, we constructed the 

meaningful value around the different peaks (+/- 1Kb) at the window size of 10bp and 

calculated the average value for 140-160 bins. The different peaks are called from the time-

series ATAC-seq data we generated at this paper. 

Inference of RelA downstream transcription factors  

To identify RelA-binding TFs/co-factors in the Mlate process, we downloaded TF/co-factor 

list from AnimalTFDB 3.0. HOMER was used to annotate RelA-binding motif (HOMER 

Motif 208) at the whole genome level with the following parameters: annotatePeaks.pl tss 

hg19 -size -1800,400. Then, TF/co-factors containing RelA-binding-motif were selected out. 

Within this list of TF/co-factors, RelA-motif overlapped H3K4me3, H3K27ac and ATAC-

seq peaks were analyzed by bedtools v2.27.1. Thirty-six TFs showed changes in the RelA-

motif overlapped peaks across the adaptive transition (D32 vs D0). However, only two TFs, 

SOX10 and DNAJC1, displayed significant changes (p < 0.05) for all three epigenome 

alterations (Table S5). 
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Surprisal analysis and SOM visualization 

In order to analyze the dynamic transcriptome changes across all time points, we assume that 

many of them are coordinately changing together as a group (or gene module). Surprisal 

analysis has been well documented in deconvoluting the change of thousands of genes into 

the change of a couple of gene modules and one unchanged gene expression baseline 

[46,51,52,99]. 

When applied here, surprisal analysis simplified the transcriptome dynamics into two major 

gene modules and one unchanged gene expression baseline. Briefly, the natural logarithm of 

the measured level of a transcript i at a specific time point t, ln 𝑋𝑖(𝑡), is expressed as a sum 

of a log-transformed gene expression baseline, term ln 𝑋𝑖
0, and several gene modules 𝜆𝑗(𝑡) ×

𝐺𝑖𝑗, representing deviations from the common expression baseline. Each deviation term is a 

product of a time-dependent module score 𝜆𝑗(𝑡), and the time-independent module-specific 

contribution score 𝐺𝑖𝑗 of the gene i.  Gene i that displays large positive or negative 

contribution to a module j (high positive or negative Gij value) represents a gene that is 

functionally positively or negatively correlated with the module j. In other words, the 

biological function of the module j could be inferred by functional enrichment analysis of 

genes with positive and negative Gij values. 

To implement surprisal analysis, we first computed the singular value decomposition (SVD) 

of the matrix 𝑙𝑛 X(𝑡). As described previously [51], the SVD factored this matrix in a way 

that determined the two sets of parameters that are required in the surprisal analysis: the 

Lagrange multipliers (𝜆𝑗(𝑡)) for all gene modules at a given time point and for all times, as 

well as the module-specific contribution scores (𝐺𝑖𝑗)  for all transcripts i at each gene module 

j. Further enrichment analysis of the functions associated with each module were performed

based on the module-specific contribution scores of the genes associated with that module. 

The module-1 and module-2 scores of other published datasets on melanoma cell lines [25] 

or melanoma patients’ biospecimens [9,41] were calculated as ∑ (𝑙𝑛 𝑋𝑖 ) ∙ 𝐺𝑖𝑗𝑖  which

considered the both the gene expression as well as the respective gene contribution towards 

each gene module. 

Natural log-transformed transcriptome dataset and contributions from each gene module 

(𝜆𝑗(𝑡)𝐺𝑖𝑗 ) calculated from surprisal analysis were visualized using self-organized maps 

(SOMs). Here, the SOMs plotted individual sample as a single 2-dimensional heatmap and, 

at the same time, displayed high-resolution patterns. Thousands of input genes were assigned 

to 625 rectangular “tiles” (SOM nodes), each of which represented a mini-cluster of genes, 

arranged to form a pattern within a 2-dimensional mosaic map on the SOM grid. Each mini-
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cluster of genes was mapped onto the same tiles in each map, and the color of each tile 

represented the relative average expression of the gene mini-cluster within that tile. Most 

similar clusters were placed adjacent to each other in the mosaic map. Tiles at the same 

location represented the same group of genes across different conditions. Gene Expression 

Dynamics Inspector (GEDI) package was utilized to implement the SOM visualization [100]. 

Dynamic system modeling of two gene modules 

In order to more precisely infer the mathematical inter-regulation relationship between two 

gene modules, we performed dynamic systems modeling with regards to the average gene 

expression of the top 500 genes that have the highest positive or negative G values (weights). 

More specifically, for drug treatment condition, we have G1 positive genes and G1 negative 

genes (genes that are positive or negatively correlated with Mlate), which are paired with G2 

positive and G2 negative genes (genes that are positive or negatively correlated with Mearly) 

respectively. Therefore, we have 4 different scenarios for drug treatment condition. 

Similarly, we also have 4 different scenarios for the drug removal condition. 

We started with a system of first-order mass equations that can consider all possible 

interaction relationships between the two modules. This system initially included terms for 

baseline, constant basal regulation (Bl and Be) on each gene module, first-order 

autoregulation from itself (Me-e and Ml-l), and first-order regulation by the genes from the 

other module (Me-l and Ml-e). We simultaneously fitted all coefficients through unbiased 

search using Markov Chain Monte Carlo (MCMC) in Python 3.0 and Gaussian distribution 

of coefficient probability. Initial coefficients were set on random uniform distributions. We 

also constrained coefficients such that the resulting fit would not lead to artificial oscillations 

with a frequency beyond the Nyquist frequency of our experimental sampling. Using the 

fitted parameters, our simulated trajectories of module1 (Mlate) and module2 (Mearly) can 

recapitulate the original experimental data.  

Gene set enrichment analysis  

Gene Set Enrichment Analysis (GSEA) was conducted based on GSEA v2.2.3 software with 

1000 permutations and weighted enrichment statistics. Normalized enrichment score (NES) 

was assessed across the curated Molecular Signatures Database (MSigDB) Hallmark, C2 

curated gene sets, and MITF signature [34]. To calculate the single-sample gene set 

enrichment, we used the GSVA program [101] to derive the absolute enrichment scores of 

previously experimentally validated gene signatures. The normalized log2 RPKM values 

were utilized as input for GSVA in the RNA-seq mode. The patient transcriptomic data was 
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based on the patient transcriptomic data was obtained from [64]. GSEA v3.0 was used 

with the same parameters described above. 

Transcription factor target and motif enrichment analysis 

Two different approaches were utilized to identify driving transcription factor in module2 

(Mearly) process. For the first approach, we filtered the TF that are associated with module2 

(Pearson correlation with module2 amplitude (λ2) bigger than 0.8 or less than -0.8) and 

define them as module2 associated TFs. We then acquired the downstream targets genes for 

all module2 associated TFs using public database TFtargets 

(https://github.com/slowkow/tftargets). The KDM5B gene targets were manually verified by 

ChIP-seq data (GSE101045). We then further filter the module2-associated TFs based on the 

overlap of their downstream target gene with certain module1 (Mlate). More specifically, for 

a certain TF in module2 (Mearly), if its’ downstream-targeted genes are over-represented in 

module1 (Mlate) process (Hypergeometric test with Bonferroni correction, FDR<=0.05), then 

this TF is selected as a candidate for driving TF in module2. For the second approach, we 

use HOMER to find enriched motifs in the promoter sequence of module1 associated gene 

set (Pearson correlation with module2 amplitude (λ2) bigger than 0.8 or less than -0.8) with 

following parameters: -len 6,8,10,12 -start -1800 -end 100 -b -mset vertebrates. Then, we 

infer the potential TFs based on the enriched motif information.  

GDSC data analysis 

Cell lines from skin cutaneous melanoma (SKCM) samples, containing the BRAFV600E 

genetic mutation from the GDSC project, were selected to analyze the association between 

the transcriptional states before drug treatment and their drug responses [102]. Gene 

expression levels of the selected cell lines were projected to two gene modules (Mearly and 

Mlate). BRAF inhibitors Dabrafenib is selected to analyze the association of transcriptome 

state and drug response. Pearson correlation analysis and linear regression modeling for the 

two gene modules and the log-transformed IC50 values (Drug concentration that reduces 

viability by 50%) or AUC (area under the dose-response curve) values were carried out. 

CCLE and TCGA analysis  

GSVA analysis was utilized to analyze the pathway enrichment scores across RNA-seq data 

of melanoma patient from TCGA database [103] and from melanoma cell line data from 

CCLE [104] database. The enrichment score of Mearly and Mlate associated genesets across all 

samples within the (patient or cell line) dataset were utilized as input to calculate pairwise 

https://github.com/slowkow/tftargets
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Pearson correlations, and the average Pearson values of all possible pairwise correlations 

are used as co-occurrence score of Mearly and Mlate genesets within each dataset. 

Patient data analysis  

Paired patient data before and after the MAPKi treatments were used to evaluate relevant 

gene expression levels and gene sets enrichment. These data were collected from two 

published papers. The gene expression levels and associated patient identification numbers 

in the original papers were provided in Table S6. Patient survival analysis was performed 

with high expression vs. low expression of selected genes from the TCGA melanoma 

(SKCM) data set including all stage III and IV patients. Kaplan-Meier method was used to 

estimate the survival rate, along with a log-rank statistical test comparing the survival 

distribution. All tests were two-sided, and p values less than 0.05 were considered 

statistically significant. 

Data and Software Availability  

The accession number for the gene expression, ATAC-seq and ChIP-seq data reported in this 

paper is GEO: GSE134459. 
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Figures. 

Figure 1. Adaptive drug resistance and reversibility across a panel of melanoma cell 

lines. (A) An illustration of the melanocyte-to-mesenchymal transition and the experimental 

timeline. Cells were treated with BRAF inhibitor (BRAFi) vemurafenib for 29 days (D29). 

BRAFi treatment continued for some cells up to D59, while other cells were followed over 

a 35 day period of drug removal (DR35). Cells were harvested for RNA-seq at the time points 

specified. (B) Heatmap of differential expressed genes (DEGs) at a series of time points of 

drug treatment and drug removal for M397 cells. Sidebars denote consensus clustering 

results of the variated genes from the samples (6 clusters) and their treatment conditions. 

DR30 and DR35 fall into the same cluster with the control sample. (C) Enriched molecular 

signatures associated with the adaptive transition in M397 cells. (D) Increased drug tolerance 

and reversed drug sensitivity across multiple melanoma cell lines with varying baseline 

sensitivities to BRAF inhibition evaluated by IC50 values of vemurafenib. LT: long-term; 
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DR: drug release. Mean ± SD. (E) Cell cycle distribution across the reversible transition 

of M397 cells. (F) Cell viability and apoptotic profiles of untreated cells (Ctrl) and reverted 

cells (upon 30 days drug removal) after 3-day BRAFi exposure. DR: drug removal. See also 

Figure S1 and Table S1 
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Figure 2. Information theoretic analysis and dynamic systems modeling of the 

reversible adaptive transition in M397 cells. (A) Application of surprisal analysis to the 

time-series transcriptome data over the transition. The transcriptome data, decomposed into 

a time invariant gene expression baseline plus two time-dependent gene modules, are 

illustrated as self-organizing maps (SOMs). Adding the baseline and first 2 gene modules 

recapitulates the experimentally measured transcriptome profiles. (B) The cyclic trajectory 

of the reversible transition plotted in the landscape defined by the first two gene modules. 

The blue and green dash lines circled the milieu of the mesenchymal-like drug-resistant state 

and drug naïve state, respectively. Selected enriched molecular processes (nominal p < 0.05) 

associated with each gene module are listed. NES: normalized enrichment score. (C) 

Schematic illustration of the simplified model for two gene module interactions. (D) The 

module-module interaction coefficient in the ordinary differential equations (ODEs) 

determined by fitting the model to the average expression level of the top 500 genes 

associated with each gene module. (E) Experimentally measured and ODE fitted average 
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expression levels of genes associated with the two modules in the forward and reverse 

directions of the cyclic transition. See also Figures S2, S3 and Tables S2, S3, S4. 

 

Figure 3. Bioinformatic inference of the critical regulators that drive the initiation of 

the reversible adaptive transition. (A) A scheme showing the target gene inferences. (B) 

Bioinformatic inferences based on the dynamic relationships between the two gene modules.  

(i) The list of enriched transcription factors (TF) and co-factors from target gene enrichment 

are ranked according to their absolute correlation coefficients with Mearly scores with relative 

expression levels (z-score) shown as a heatmap. The target gene number and statistical 

significance (p values) for each enriched element are listed to the right. (ii) Enriched motifs 

from the cis-regulatory elements of genes highly correlated (ρ > 0.8) with Mlate. Top two 

significantly enriched motifs are listed. -Log2 p values are shown to the right. (C) Relative 

expression levels of cell-state specific genes over the course of the adaptive cyclic transition 

(D) Gene expression levels, normalized to D0, of the critical TFs/co-factors involved in the 

adaptive transition. See also Figure S4.   
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Figure 4. Epigenetic reversibility of the adaptive transition. (A) Chromatin accessibility 

change assessed by average peak signal of ATAC-seq across the entire genome. The x-axis 

shows flanking regions of +/- 1kb around the peak center. (B) Heatmap of chromatin 

accessibility changes assessed by average ATAC-seq peak signal across all peaks, at selected 

time points over the transition. K-mean clustering of rows identifies five chromatin regions 

that grouped into D3 enriched (group 1), D0/DR30 enriched (group 2), and independent of 

drug treatment (group 3). Color corresponds to the normalized ATAC-seq signal. Relevant 

transcription factor binding motifs are indicated for cluster groups 1 and 2. (C) Venn 

diagrams showing the numbers and overlaps of differential ChIP-seq peaks for H3K4me3 

and H3K27ac. Each circle represents changes in those peaks between two time points, while 

the intersection of the circles represent changes that are shared between circles. (D) ChIP-

seq profile plots show the average H3K4me3 (left) and H3K27ac (right) ChIP-seq signal 

across peaks identified by RelA ChIP-seq, with heatmap representation of each peak shown 
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below. The x-axis shows flanking regions of +/- 4kb around the peak center. See also 

Figure S5 and Table S5. 
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Figure 5. Molecular mechanism that underlies the reversible adaptive transition. (A) 

Illustration of the mechanism of epigenetic regulation before and after BRAF inhibition.  Left 
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panel: retention of RelA in the cytoplasm and open chromatin at the promoter regions of 

SOX10 and NFKBIE. Right panel: BRAFi induces translocation of RelA into the nucleus, 

allowing RelA to recruit histone modifiers KDM5B and HDAC1 to the target genes to reduce 

chromatin accessibility and epigenetically repress of SOX10 and NFKBIE expression. 

Functional consequences, such as increased TGFβ signaling and adaptive drug resistance, 

result in turn. The illustrations of the cell cycle reflect the measured cell cycle arrest observed 

upon short-term BRAF inhibition. (B) ATAC-seq and ChIP-seq profiles at the promoter 

regions of NFKBIE and SOX10, at selected time points across the reversible transition. (C) 

ChIP-PCR data illustrates the binding and co-localization of RelA, KDM5B, HDAC1, 

H3K4me3, and H3K27ac to promoter regions of SOX10 and NFKBIE (labeled NP1 and SP1, 

respectively). (D) ChIP-qPCR assessment of the binding profiles of RelA, KDM5B, 

HDAC1, H3K4me3, and H3K27ac on the promoter regions of NFKBIE and SOX10 at a 

series of time points across the reversible transition. (E) Co-immunoprecipitation of RelA 

with KDM5B and HDAC1, confirming the binding between RelA and the two histone 

modifiers (*P<0.05 compared to respective D0). (F) The recovery of SOX10 gene expression 

levels of M397 cells pretreated with BRAFi for 21 days (D21), and then co-treated for 0-24 

hours with BRAFi and JSH-23 (*P<0.05 compared to D0) (G) ChIP-qPCR assessment of 

the binding profiles of RelA, KDM5B, HDAC1, H3K4me3, and H3K27ac on the prompter 

regions of NFKBIE and SOX10 for control and JSH-23 24h-treated cells (*P<0.05 compared 

to respective control). (H) ChIP-qPCR of the binding profiles of H3K4me3 and H3K27ac on 

the promoter region of SOX10 from NFKBIE KO M397 cells (*P<0.05 compared to 

respective WT). (I) SOX10 expression levels after NFKBIE KO compared to wild type (WT) 

(*P<0.05 compared to WT) (J) ChIP-qPCR of the binding profiles of H3K4me3 and 

H3K27ac on the promoter regions of NFKBIE and SOX10 from KDM5B KO M397 cells 

(*P<0.05 compared to WT) (K) Expression levels of SOX10 and NFKBIE after KDM5B KO 

compared to WT (*P<0.05 compared to WT). (L) Clonogenic assays of NFKBIE KO or 

SOX10 KO cells related to respective controls.   
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Figure 6. The generality and molecular underpinning of the phenotypic plasticity of 

patient-derived melanoma cell lines in response to BRAF inhibition. (A) Quantification 
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of phenotypic plasticity upon BRAF inhibition across a panel of melanoma cell lines. The 

transcriptome data are projected to the 2D plane defined by the two gene modules (Mearly and 

Mlate) and connected by smooth lines. The data points denote 0-day (D0), D3, and D21 

BRAFi treatment in counterclockwise order, respectively. The color of the line encodes the 

baseline IC50 value of the cell line. (B-F) The correlation between short-term plasticity 

(motion along Mearly) and the (B) average ATAC-seq signal, (C) average H3K4me3 (D) and 

H3K27ac ChIP-seq signal across all peaks, as well as (E) average H3K4me3 and (F) 

H3K27ac ChIP-seq signal on the transcription start site (TSS) region of SOX10 across all 

cell lines with Pearson correlation coefficients and p-values as shown. The shaded regions 

of panels B-F denote 95% CIs of each linear fitting. (G) The chromatin accessibility of a 

panel of melanoma cell lines quantified by the average ATAC-seq signal across all peaks 

with heatmap view of each peak shown below. The x-axis includes flanking regions of +/- 

4kb around the peak center. (H) Clonogenic assays for BRAFi monotherapy and combination 

therapies simultaneously targeting the driver oncogene BRAF and histone modifiers 

KDM5B and HDAC1. The cell lines are ordered from left to right with increased plasticity. 

See also Figure S6.  
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Figure 7. The clinical relevance of the drug-induced chromatin remodeling mechanism. 

(A) Immunohistochemical (IHC) staining of melanoma tissue biopsies from two patients 

bearing BRAF-mutant melanoma before and after MAPKi treatment. Hematoxylin and eosin 

(H&E) staining shown in left column followed by a staining panel from pre-treatment or 

post-treatment biopsies. Post-treatment tissue was collected at the onset of tumor recurrence. 

The stains are DAPI nuclear stain (blue), NFKBIE (green), KDMB5 (yellow), SOX10 (red), 

MITF (cyan), and merge. The region highlighted by white dashed lines in the post-MAPKi 
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tissues display reduced MITF, NFKBIE, and SOX10 expression and elevated KDM5B 

expression, consistent with the adaptive resistance mechanism. The region highlighted by 

red dashed lines retained the MITF, NFKBIE, and SOX10 expressions but with loss of 

KDM5B after treatment. (B) Digitized mean fluorescence intensity (MFI) of the areas 

highlighted by white dashed lines for the selected markers in two patients. Data are 

represented as mean ± SD (*P<0.05 compared to respective pre-MAPKi). (C) Log-fold 

change in the expression of relevant genes (post-treatment vs baseline), collated from 

published datasets of BRAF-mutant melanoma patients treated with MAPK inhibitors 

(STAR Method). (D) Kaplan-Meier plots assembled using TCGA data sets of tumors from 

patients with stages III and IV melanomas with log-rank P values shown. See also Figure S7 

and Table S6. 
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Figure S1. Reversible adaptive resistance across melanoma cell lines. Related to 

Figure 1. 
A. Stacked bar plot shows the fraction of cells viable in G0/G1, S, and G2/M phases 

(y-axis) for different melanoma cell lines. Each cell line has two different assay 

conditions: observed either before treatment, or after pretreated with BRAFi for 30 

days and drug removal in normal medium for another 30 days. Cells in both 

conditions underwent cell cycle analysis at both drug-naïve condition and 

retreatment with BRAFi for another 3 days. Cells that have gone through drug 

treatment and drug removal have the same cell cycle distribution as cells that never 

receive drug treatment. 

B. Immunostaining of M397 cells at different stages of reversible adaptive drug 

resistance. M397 cells before treatment (D0, first row), after treatment with BRAFi 

for 59 days (D59, second row), and pretreated with BRAFi for 29 days and then 

cultured with normal medium for another 35 days (DR35, third row) were used for 

immunostaining of MITF (red), actin (green), and DAPI (blue). The cell 

morphology at D0 is very similar to that at DR35. Cell morphology at D59 is very 

different from the ones at the other two conditions. Left panel scale bar 100um, 

right panel scale bar 20um. 

C. Two-dimensional self-organizing maps (SOMs) of overall transcriptome profiles 

of cells collected at different stages across the reversible adaptive drug response.  

D. Enrichment scores of representative gene sets across different stages of the 

reversible adaptive response. Enrichment scores at different time points are shown 

as dots connected with solid lines. The scores stabilize after prolonged drug 

treatment (after 21 days of BRAFi, blue line) and return to the enrichment score of 

day 0 after long-term drug removal (green line). 
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Figure S2. Surprisal analysis of the reversible adaptive transition in M397. Related to 

Figure 2. 

(A) Application of surprisal analysis to the kinetic transcriptome profile with respect to the 

reversible adaptive transition. The transcriptome data, decomposed into a time-invariant gene 

expression baseline plus two time-dependent gene modules, are illustrated as self-organizing 

maps (SOMs). Adding the expressions of the baseline gene module and time-dependent 

module-1 and module-2 recapitulates the experimentally measured transcriptome profiles 

visualized by the fact that the patterns of the SOMs in the last row (experimentally measured 

transcriptome profiles) are almost identical to those at second last row (predicted 

transcriptome profiles from surprisal analysis by adding first three rows). 

(B) ODE predictions (smooth line) are consistent with the average expression levels of genes 

associated with module-1 and module-2 from experimental measurements (dots) in the 

forward and reverse directions of the adaptive transition. More specifically, for drug 

treatment conditions, we have G1 positive genes (genes that positively contribute to module-

1 or Mlate) and G1 negative genes (genes that negatively contribute to module-1 or Mlate), 

which are paired with G2 positive and G2 negative genes (genes that positively and 

negatively contribute to module-2 or Mearly) respectively. Therefore, we have four different 

scenarios for drug treatment and four different scenarios for drug removal.   
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Figure S3. Best fitted parameters from dynamic system modeling of the reversible 

adaptive transition in M397. Related to Figure 2. The module-module interaction 

coefficients in the ordinary differential equations (ODEs) determined from fitting the ODE 

model to the average expression level of the top 500 genes associated with each gene module. 

More specifically, for drug treatment condition, we have G1 positive genes (genes that 

positively contribute to module-1 or Mlate) and G1 negative genes (genes that negatively 

contribute to module-1 or Mlate), which are paired with G2 positive and G2 negative genes 

(genes that positively and negatively contribute to module-2 or Mearly), respectively. 

Therefore, we have four different scenarios for drug treatment. Similarly, we also have 

another four different scenarios for the drug removal. 
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Figure S4. Strategies for inference of the critical regulators that drive the initiation of 

the reversible adaptive transition. Related to Figure 3. 
(A) Target gene inference based on the dynamic relationships between the two gene 

modules. The TFs/co-factors whose expression kinetics are correlated with the 

module scores of Mearly (left panel) are mapped to their target genes, followed by 
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assessing the target gene enrichments in the genes correlated with Mlate scores 

(middle panel). The inferred transition-driving TFs/co-factors whose target genes 

are significantly overrepresented in Mlate are ranked by their absolute correlation 

coefficients with Mearly scores. The top-5 elements were listed.  

(B) Common motif inference to extract enriched motifs from genes highly correlated 

with Mlate (left panel) and to identify the TFs that bind to these motifs and regulate 

cell state regression (right panel). Seven significantly enriched motifs with p <0.01 

(i.e. -log2P > 6.64) were identified and listed. 
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Figure S5. Epigenetic reversibility of the adaptive transition. Related to Figure 4. 
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(A) Graphical illustration of our methodology that integrates systems biology, 

bioinformatics and molecular biology approaches for investigating the molecular 

mechanism of the adaptive resistance. 

(B) A volcano plot showing the transcription factors/co-factors that display significant 

alterations between the drug-resistant state and the drug-sensitive state. 

(C) Differential peaks of the ATAC-seq profiles between two different time points. D0, 

D3, D32, and DR30 denote day-0, day-3, day-32, and drug removal day-30 across 

the adaptive transition, respectively. 

(D) Average H3K4me3 (left) and H3K27ac (right) ChIP-seq signal at the transcription 

start sites (TSS) across all genes with heatmap representation of each peak shown 

below. The x-axis shows flanking regions of +/- 3kb around the TSS. 

(E) ATAC-seq and ChIP-seq profiles at the promoter regions of some representative 

cell state marker genes, at selected time points across the reversible transition 

  



 

 

70 

 

 

Figure S6. The generality and molecular underpinning of the phenotypic plasticity of 

patient-derived melanoma cell lines in response to BRAF inhibition. Related to Figure 

6. 
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(A) Co-occurrence score of Mearly-related gene sets (G2+ and G2- gene sets) and 

Mlate-related gene sets (G1+ and G1- gene sets) in comparison with randomly 

selected gene sets calculated from the transcriptome data across all melanoma cells 

from the CCLE database. 

(B) Correlations between Mearly or Mlate module scores and BRAFi resistance levels 

across BRAFV600E-mutant melanoma cell lines in the GDSC database. The BRAFi 

resistance levels are quantified by natural log-transformed IC50 (µM) values and 

AUC. 

(C) Average H3K4me3 (left) and H3K27ac (right) ChIP-seq signal across promoter 

regions of all genes for a panel of melanoma cell lines, with heatmap view around 

TSS shown below. The x-axis shows flanking regions of +/- 1kb around each peak 

center. The y-axis of the top panel represents the read counts normalized by RPKM.  

(D) Average H3K4me3 (left) and H3K27ac (right) ChIP-seq signal at the transcription 

start site (TSS) region of SOX10.  

(E) Short-term clonogenic assay of KDM5 inhibitor (left) and HDAC inhibitor (right) 

across a panel of melanoma cell lines showing no significant toxicity to the cells at 

the dose used. 

(F) Left, western blot of lysates from melanoma either untreated control (CT) or treated 

with KDM5B inhibitor (CPI) and HDAC inhibitor (Q). H3 is used as loading 

control. 
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Figure S7. Generality and clinical relevance of adaptive epigenetic mechanism in 

melanoma patients. Related to Figure 7. 

(A) Gene set enrichment analysis (GSEA) on published transcriptome data from a 

melanoma patient (P2 in Table S6) before and after MAPKi treatment for selected 

gene sets relevant to the reversible transition observed in our system. NES, 

normalized enrichment score. 

(B) The change in Mearly and Mlate module scores calculated by published transcriptome 

data from melanoma patients before and after MAPKi treatment.  

(C) Co-occurrence scores of Mearly-related gene sets (G2+ and G2- gene sets) and Mlate-

related gene sets (G1+ and G1- gene sets) relative to randomly selected gene sets 

calculated from transcriptome data across all melanoma patients from the TCGA 

database.  
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(D) Average Mlate module scores of responders and non-responders to PD-1 

checkpoint blockade calculated by published transcriptome data of melanoma 

patients under PD-1 checkpoint inhibitor treatment (see STAR Methods) 
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Supplemental Tables 

Table S1: RNA-seq data (in RPKM) for time-course experiments of M397 and relevant 

gene module scores from information theory analysis. Data are provided as Excel 

spreadsheets. (https://www.biorxiv.org/content/10.1101/724740v1) 

 

Table S2. GSEA analysis for selected gene sets between different time points. 
Statistically significant positive enrichments are highlighted in yellow and negative 

enrichments in blue. 

 

Table S3. GSEA analysis of the genes associated with Mearly (G2) and Mlate (G1) gene 

modules for selected gene sets. Statistically significant positive enrichments are highlighted 

in yellow and negative enrichments in blue. 

 

  

https://www.biorxiv.org/content/10.1101/724740v1
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Table S4. Fitting parameters used in the ODE modeling. 

 Input genes for ODE parameter fitting 
Basal 

term 

Influence on 

M
late

 

Influence on 

M
early

 

 M
early

 input M
late

 input B
l
 B

e
 M

e-l
 M

l-l
 M

l-e
 M

e-e
 

Drug 

ON 

M
early

_positive_genes M
late

_positive_genes 8.39 6.33 0.49 -0.05 0.09 0.38 

M
early

_negative_genes M
late

_positive_genes -9.6 7.59 -0.68 -0.15 -0.15 0.52 

M
early

_positive_genes M
late

_negative_genes -3.12 6.83 -0.17 -0.01 -0.09 0.25 

M
early

_negative_genes M
late

_negative_genes 2.75 1.49 0.31 -0.048 0.14 0.41 

         

Drug 

OFF 

M
early

_positive_genes M
late

_positive_genes 5.47 5.35 0.38 0.16 -0.12 0.53 

M
early

_negative_genes M
late

_positive_genes -3.46 6.2 -0.18 0.03 -0.05 0.22 

M
early

_positive_genes M
late

_negative_genes -1.83 0.93 -0.48 0.14 -0.01 0.15 

M
early

_negative_genes M
late

_negative_genes 10.23 3.23 0.45 0.03 0.04 0.16 
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Table S5. The statistical significance of the alterations of chromatin accessibility and 

histone marks across the adaptive transition. The epigenetic alterations were evaluated in 

the RelA binding regions of a list of TFs and co-factors that are strongly associated with Mlate 

and contain RelA binding motifs. The TFs/co-factors that show statistically significant 

changes across all three epigenome alterations are shown in black. 

 

TF name 
H3K4me3 H3K27ac ATAC-seq 

P values 

SOX10 3.2 × 10
-11

 1.7 × 10
-4

 5.9 × 10
-5

 

DNAJC1 5.9 × 10
-5

 1.2 × 10
-3

 9.5 × 10
-3

 

ACTN1 3.4 × 10
-9

 4.0 × 10
-5

 0.13 

MMS19 3.0 × 10
-9

 1.2 × 10
-4

 6.1 × 10
-2

 

REPIN1 7.0 × 10
-9

 7.3 × 10
-4

 0.18 

IKZF5 7.0 × 10
-7

 1.2 × 10
-4

 0.15 

SIX4 5.1 × 10
-8

 6.9 × 10
-4

 0.42 

VEGFA 5.8 × 10
-7

 5.5 × 10
-4

 0.48 

KLF10 1.1 × 10
-6

 8.8 × 10
-4

 0.73 

E2F3 5.4 × 10
-6

 1.3 × 10
-3

 0.16 

HIVEP2 2.1 × 10
-6

 6.5 × 10
-4

 0.95 

IRX3 1.9 × 10
-6

 1.4 × 10
-3

 0.60 

SGK1 4.1 × 10
-5

 3.1 × 10
-4

 0.14 

TADA3 1.1 × 10
-6

 4.0 × 10
-3

 0.97 

SERTAD3 7.0 × 10
-5

 3.8 × 10
-4

 0.44 

MAF 3.1 × 10
-5

 5.8 × 10
-3

 0.17 

SOX5 3.1 × 10
-6

 1.3 × 10
-2

 0.89 

PHTF1 3.2 × 10
-5

 4.2 × 10
-3

 0.32 

SATB2 6.3 × 10
-5

 2.6 × 10
-3

 0.49 

HOXA13 5.3 × 10
-5

 2.8 × 10
-3

 0.68 

ZBTB24 3.5 × 10
-5

 9.4 × 10
-3

 0.32 

FHIT 3.5 × 10
-5

 8.5 × 10
-3

 0.53 

IRF1 4.9 × 10
-5

 1.3 × 10
-2

 0.58 

ZNF670 3.2 × 10
-4

 2.6 × 10
-3

 0.53 

VDR 9.8 × 10
-5

 1.5 × 10
-2

 0.79 

YAF2 9.5 × 10
-5

 2.9 × 10
-2

 0.47 

RNF25 4.7 × 10
-4

 2.1 × 10
-2

 0.67 
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ZNF280B 1.3 × 10
-2

 3.4 × 10
-3

 0.55 

ETS1 1.9 × 10
-2

 4.1 × 10
-3

 0.36 

CTDSP1 4.5 × 10
-3

 1.7 × 10
-2

 0.85 

TAF10 2.0 × 10
-2

 7.5 × 10
-3

 0.89 

RFX2 6.1 × 10
-3

 0.12 0.53 

FOXP1 4.0 × 10
-3

 0.37 0.53 

STAT1 9.4 × 10
-2

 0.22 0.75 

TARBP1 0.18 0.14 0.94 

ZNF280A 0.16 0.61 0.53 

 

 

Table S6. Relevant gene expression levels (RPKM) of selected patients before and after 

the MAPKi treatments from published data. Data are provided as Excel spreadsheets. 
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C h a p t e r  3  

SINGLE CELL ANALYSIS RESOLVES THE CELL STATE 
TRANSITION AND SIGNALING DYNAMICS ASSOCIATED WITH 

MELANOMA DRUG-INDUCED RESISTANCE 

Continuous BRAF inhibition of BRAF mutant melanomas triggers a series of cell state 

changes that lead to therapy resistance, and escape from immune control, prior to 

establishing acquired resistance genetically. We used genome-wide transcriptomics and 

single-cell phenotyping to explore the response kinetics to BRAF inhibition for a panel of 

patient-derived BRAFV600-mutant melanoma cell lines. A subset of plastic cell lines, 

which followed a trajectory covering multiple known cell-state transitions, provided 

models for more detailed biophysical investigations. Markov modeling revealed that the 

cell state transitions were reversible and mediated by both Lamarckian induction and non-

genomic Darwinian selection of drug tolerant states. Single cell functional proteomics 

revealed activation of certain signaling networks shortly following BRAF inhibition, and 

prior to the appearance of drug resistant phenotypes. Drug targeting those networks, in 

combination with BRAF inhibition, halted the adaptive transition and led to prolonged 

growth inhibition in multiple patient derived cell lines.  

This chapter includes content from our previously published article: 

[1] Su, Yapeng, Wei Wei, Lidia Robert, Min Xue, Jennifer Tsoi, Angel Garcia-Diaz, Blanca Homet Moreno 

et al. "Single-cell analysis resolves the cell state transition and signaling dynamics associated with 

melanoma drug-induced resistance." Proceedings of the National Academy of Sciences 114, no. 52 (2017): 

13679-13684. doi:10.1073/pnas.1712064115 
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Introduction 

The high rate of both response and resistance to BRAF inhibitors (BRAFi) has made 

BRAF mutant melanomas and derived cell lines into paradigmatic models for exploring the 

challenges of targeted inhibitors. Epigenetic alterations and associated cell state transitions 

along the melanocytic lineage towards drug tolerant states appear to precede the emergence 

of clones that are genetically resistant to BRAF inhibition [1-5]. Specifically, brief BRAFi 

exposure (1-3 days) can trigger melanocytic differentiation in certain cell lines. This is 

accompanied by increased MITF (a melanocytic transcription factor) and upregulation of 

downstream melanosomal antigens MART-1 and gp100 [1, 2]. Slightly longer exposure (2-

9 days) can induce de-differentiation towards a slow-cycling neural crest-like phenotype, 

with a characteristic increase of Nerve Growth Factor Receptor (NGFR) and loss of MART-

1 [5]. Extended exposure (>2 weeks) can yield an invasive mesenchymal-like state with both 

MART-1 and NGFR loss [3]. The kinetics and molecular details of these cell state changes 

depend upon the drug treatment duration and dose, and the plasticity of the cancer cells [3-

5]. For some patient-derived cell lines, these drug-induced cell state transitions are reversed 

upon drug release [5, 6]. Observations on patient-derived cells have been shown to correlate 

with what is seen in patient tumors [3-5].  

Several studies have explored the biology of non-genetic BRAFi resistance in BRAF 

mutant melanomas [1-5], but the biophysical picture of this process is less resolved. 

Biophysical studies can yield predictive insights, but may lack the mechanistic detail of a 

biological investigation. Of particular interest here are the nature of the cell-state changes 

observed over the course of drug resistance development. We consider two scenarios. The 

first involves the enrichment of drug resistant cancer cell genotypes, or epigenotypes, with 

growth advantage upon drug exposure, akin to the Darwinian-type selection [7]. The second, 

Lamarckian induction [8], is when the drug treatment itself induces cell state changes 

towards a more drug tolerant state that can persist across cell generations through 

transcriptional reprogramming and signaling network rewiring. The second scenario is often 

loosely (and imprecisely) termed as an adaptive response to drugging.  

In principle, experimental measures of the trajectories of many single melanoma cells 

would discriminate between the different scenarios for drug resistance development. 

However, such trajectories are not feasible for the full, few month, reversible melanocyte to 

mesenchymal transition, although sub-regions of this cell state space may be so mapped [5]. 

Here, we utilize whole transcriptome analysis and single cell phenotype profiling to 

investigate the responses of a series of patient-derived BRAF mutant melanoma cell lines to 

BRAFi. Certain cell lines exhibit the full range of adaptive responses, and data from those 

cells is computationally modeled to investigate the transition kinetics and the nature of the 
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BRAFi-triggered cell-state changes. We further explore the signaling pathways associated 

with the induction of various sub-phenotypes via a kinetic single cell functional proteomic 

study [9]. These single cell assays uncover the emergence of drug-activated signaling, prior 

to the appearance of drug-tolerant phenotypes, and identify strategies for arresting the cell-

state transitions and prolonging cell growth inhibition. We demonstrate that our findings 

extend to less-plastic cell lines.  

Results 

The cellular transition trajectories of phenotypically plastic melanoma cells in 

adaptation to BRAFi.  

We interrogated 18 patient-derived BRAFV600E mutant melanoma cell lines by exposing 

them to BRAFi (vemurafenib) for periods of 3 days and 3 weeks at a concentration of 2×IC50 

for each cell line (SI Appendix, Table S1). Phenotypic changes were characterized by flow 

cytometry using well-established markers for melanocytic (MART-1) and neural crest-like 

cells (NGFR), respectively (SI Appendix, Figs. S1 and S2, and Table S2) [5, 6, 10]. Clustering 

of flow cytometry data classified the 18 cell lines into 4 clusters according to their phenotypic 

plasticity to BRAFi. Cluster C cells exhibited the highest plasticity upon drug treatment (SI 

Appendix, Fig. S1A).  

We further characterized these phenotypic changes at the whole transcriptome level. We 

randomly selected 9 cell lines from the 4 clusters for RNA-seq analysis at baseline, plus after 

3 days and 3 weeks of drug exposure (Fig. 1 and SI Appendix, Fig. S1B). Consistent with 

previous findings, the most drug resistant cell lines (defined by IC50>1μM) showed a 

relatively low melanocytic signature, elevated expression of neural crest and mesenchymal 

related genes, and activated signaling in JNK and NFκB pathways [3, 5]. AXL and c-JUN 

strongly correlate with the IC50 values while LEF1 and MITF are anti-correlated [3, 11, 12]. 

A clustering analysis of genome-wide expression of the 9 cell lines yielded partitions 

identical to those generated from two-marker flow cytometry data (SI Appendix, Fig. S1B). 

This confirmed NGFR and MART-1 as robust markers for characterizing the BRAFi-

induced phenotype transitions. The differentially expressed genes (DEGs) upon BRAFi 

treatment, as analyzed using Gene Expression Dynamic Inspector (GEDI) [13], pointed to 

cluster C again that exhibited the largest transcriptional alterations upon drugging (Fig. 1C). 

A common group of proliferation-related genes showed varying degrees of down-regulation 

in all clusters (SI Appendix, Fig. S3).  

We selected the highly plastic Cluster C cell lines (M397, M229, and M263) for a time-

course analysis for either a brief (3 days) to a prolonged (71-90 days) BRAF inhibition. The 
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three lines followed similar trajectories on the flow cytometry plots (Fig. 1B), starting with 

transient melanocytic differentiation (increased MITF/MART-1 expression) for 3 day 

treatment (Figs. 1B and SI Appendix, Table S2), followed by the appearance of the slow 

cycling neural crest-like (NGFRhigh/MART-1neg) state after 1-3 weeks of drug treatment. 

Prolonged BRAF inhibition yielded a double negative (NGFRlow/MART-1neg) state 

characterized by a sharp increase in cell proliferation [5]. The interpretation of these 

trajectories (Fig. 1B) was validated at the transcriptional level by scoring MITF activity [14] 

and neural crest signatures [15] of each cell line using curated gene sets (Fig. 1D and SI 

Appendix, Fig. S4 and Table S3). The trajectories also correlated with the development of 

adaptive resistance (SI Appendix, Fig. S5). Similarly, Gene Set Enrichment Analysis (GSEA) 

on the averaged gene expression of the three cell lines revealed significant enrichment in 

neural crest stem cell and EMT related genes with elevated invasiveness and migration 

signatures. Meanwhile, TNF/NFκB, JNK, and p38 MAPK signaling related genes were 

significantly enriched upon continuous BRAFi exposure (Fig. 1E), with down-regulation of 

MITF signature (Fig. 1E and SI Appendix, Fig. S6). These findings were confirmed by 

inspecting the expression levels (SI Appendix, Fig. S7A) and mining the GO terms of these 

DEGs (SI Appendix, Fig. S7B). The enrichment of neural crest-related genes was 

insignificant after prolonged drug exposure while the enrichment of EMT-associated genes 

held steady (Fig. 1E). Thus, the double negative state carried mesenchymal signatures, and 

exhibited the loss of neural crest state signatures. Analysis of other clusters showed similar 

enrichment in neural crest and mesenchymal signatures except for Cluster A, which 

contained innately resistant cells with MART-1neg/NGFRneg baseline expression (SI 

Appendix, Fig. S8). Similar enrichment patterns of the transcriptional programs were also 

found in published transcriptomic datasets involving 39 patient samples from pre-treatment, 

on-treatment, and/or emergence of acquired resistance to RAF/MEK inhibitors [16]. This 

suggests similar adaptive resistance in these BRAFi-treated patient tumors (SI Appendix, Fig. 

S9). Moreover, when cells were treated with BRAFi for 3 weeks or longer, we identified 

significant enrichment in most innate anti-PD-1 resistance (IPRES) signatures [17] (SI 

Appendix, Table S4), pointing to a potential rise of resistance to PD-1 blockade for cells 

adapted to the run-in BRAFi therapy. The BRAFi-induced cell state changes in Cluster C 

cells reflected a summation of the various types of adaptive transitions reported for 

melanomas in response to BRAFi [3-6]. Thus, Cluster C cell lines were carried forward for 

a detailed biophysical investigation of BRAFi-induced cell state transitions.  

Adaptive transition proceeds through drug-mediated cell state interconversion and 

phenotypic selection.  

Three factors can account for the drug-induced cell-state transition kinetics. The first is 

a deterministic factor that arises from cell state changes determined by the underlying 
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causative gene regulatory networks. The second factor arises from the stochastic nature of 

gene expression. Stochastic cell-state changes may be considered as a random walk diffusion 

process across the epigenetic landscape [18]. The third factor accounts for phenotype-

specific cell proliferation and survival upon drug exposure. To account for all three factors, 

we modified a published Markov kinetic framework [19] to model the BRAFi-induced cell 

state transitions (Fig. 2). Our model assumed that the cell population is comprised of four 

discrete cell states (Fig. 2A), and contains a non-symmetric cell state interconversion matrix 

to account for both deterministic (Lamarckian induction) and stochastic cell state transitions. 

For drug treated cells, a drug susceptibility matrix is introduced to quantify the third factor 

(See SI Appendix, Materials and Methods). Experimental inputs into the model are short-

time measures of the cell-state composition dynamics. Computational outputs are state-to-

state transition probabilities (Fig. 2B), and, for drug treated samples, state-dependent drug 

susceptibility (Fig. 2C).  

We sorted NGFRpos and NGFRneg subpopulations of two Cluster C cell lines (M397 and 

M229) at baseline, and seeded them separately in petri-dishes for in vitro expansion (Fig. 2A 

and SI Appendix, Figs. S10-S12), with and without BRAFi, thus providing 4 initial conditions 

for each cell line. For untreated samples, flow cytometry analysis of the phenotype 

compositions over the first 3 cycles of expansion provided input into the Markov model. The 

fitted Markov model parameters (Fig. 2C) were then used to predict longer-term phenotypic 

evolution. Without BRAFi, the NGFRpos and NGFRneg subpopulations of both cell lines were 

predicted and experimentally shown to return to their original unsorted phenotypic 

composition after several cell cycles (SI Appendix, Fig. S10B) [5, 18-20].  

BRAFi clearly altered the cell-state interconversion probabilities (Figs. 2B and SI 

Appendix, Fig. S13). The Markov model fits from phenotype dynamics of sorted populations 

(Fig. 2B) under BRAFi were used to predict the drug susceptibility of each cell state. The 

neural crest-like and double negative states were predicted, and experimentally shown, to be 

more resistant to drug treatment compared to melanocytic and double positive states (Fig. 

2C). We further used the interconversion and drug susceptibility matrices inferred from the 

cell-state kinetics of segregated populations to predict the phenotypic evolution of unsorted 

cells upon prolonged BRAFi exposure. The model predictions were in good agreement with 

the experiments (Fig. 2D and SI Appendix, Fig. S13C, Tables S5 and S6). Furthermore, the 

Markov model suggests that, upon drug removal, the cells should return to the original 

phenotypic compositions characteristic of drug naive cells. In fact, such a reversible 

transition was observed in both the Cluster C cells and the less plastic Cluster B cells (SI 

Appendix, Fig. S14A), and the reverted cells also exhibited a similar IC50 to BRAFi as the 

untreated cells (SI Appendix, Fig. S14B).  
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The Markov model predictions provide evidence for Lamarckian induction, since they 

show that BRAFi influences the specific rates of cell-state interconversion. The predictions 

also provide evidence of phenotype-dependent Darwinian selection, since cell states with the 

lowest drug susceptibility eventually win out. If only the drug susceptibility matrix is 

included in the Markov model, the resultant prediction is in poor agreement with the 

experiments (SI Appendix, Fig. S13D). Therefore, the combined actions of both cell state 

interconversion and drug selection contribute to the observed phenotypic kinetics.  

Single cell functional proteomics reveals the emergence of drug-activated signaling at 

the initiation of the adaptive transition.  

We utilized the microfluidics based SCBC technology to carry out single cell analysis 

of the M397 cells so as to interrogate those signaling pathways directly targeted by BRAFi 

[9]. Guided by the transcriptional analysis, we designed a protein panel that covers critical 

phenotypic markers, transcription factors and signaling effectors involved in the adaptive 

transition (SI Appendix, Tables S7 and S8). Each SCBC has 320 microchambers (1.5 

nanoliter volume) engineered for cell lysis, and each equipped with an antibody array for 

protein capture. Following cell lysis, specific proteins are captured, and each array element 

is developed as a sandwich immunofluorescent assay (SI Appendix, Fig. S15).  

Scatter plots of single cell data are shown in Fig. 3A with averaged protein abundance 

indicated by the black horizontal lines. The time-series data are projected onto a two-

dimensional plane using the t-SNE algorithm (Fig. 3B) [21]. SCBC assays from different 

time points cluster into different groups. The dispersion within a group and the distance 

between groups provide functional measures of how different the single cells are. Such 

dispersion can be quantified by the functional heterogeneity index (FHI) defined in our 

previous study [9]. Notably, BRAFi treatment increases the cellular heterogeneity in days 3 

and 6, indicating an elevated plasticity (Fig. 3C). This is reflected in the sharply increased 

dispersion of day-6 cells in the t-SNE plane. This increase in heterogeneity between days 3 

and 6 is reminiscent of the attractor destabilization and bifurcation prior to a cell-state 

transition in other systems [22, 23].  

We used the SCBC data to assess protein-protein correlations at each time point (SI 

Appendix, Fig. S16). The emergence of strong negative correlations between NGFR and 

MITF/MART-1 at day-3 points to the initiation of the cell state transition towards the neural 

crest-like phenotype with elevated NGFR and loss of MITF/MART-1. The overall activity 

of the network may be quantified by the signaling network activity index (SNAI) that 

accounts for both the numbers and strengths of statistically significant correlations (See SI 

Appendix, Materials and Methods). The SNAI is highest at day-6 (Fig. 3D), with particularly 
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strong signaling participation of p-ERK and p-NFκB p65 (SI Appendix, Fig. S16), 

suggesting a potential gain of function through MEK/ERK and NFκB p65 signaling that 

might lead to BRAFi drug tolerance by promoting the adaptive transition. The SNAI drops 

sharply between day 6 and day 10, but then recovers to an activity similar to that seen for 

untreated cells (Fig. 3D), albeit with altered active network components (SI Appendix, Fig. 

S16). This general behavior is reminiscent of cell-state transitions seen in other model 

systems [23], and indicates a possible cell-state switch between days 6 and 10. 

To quantify the influence of the functional proteins on the overall signaling coordination 

at the initiation of the transition, we performed Principal Component Analysis (PCA), using 

an analytical approach previously reported [9]. We calculated the correlations between the 

assayed proteins and first principal component (PC1) for untreated and 6 days BRAFi treated 

samples. PC1 captures the most essential feature of the signaling network, and thus identifies 

those proteins that participate most strongly in the signaling coordination. For the untreated 

sample, PC1 is populated by p-ERK, p-NFκB p65, p-JNK, and p-P38α (Fig. 3E). At day 6, 

these four proteins bifurcate into 2 groups, with the influence of p-JNK and p-P38α (blue 

group) signaling repressed, and MEK/ERK and NFκB p65 signaling (red group) elevated 

(Fig. 3E). This behavior suggests that combining BRAFi with MEK and NFκB p65 inhibition 

that might arrest the adaptive cell-state transition towards drug resistant phenotypes. 

Combined MEK/ERK and NFκB p65 inhibition with BRAFi arrests the adaptive 

transition and induced a sustained growth inhibition.  

The single cell analysis suggests that inhibiting the NFκB p65 and MEK/ERK signaling 

axes might keep the cells in the BRAFi sensitive state. To test this hypothesis, we used 

trametinib (T, MEK inhibitor) and JSH-23 (J, NFκB p65 translocation inhibitor) [24] in 

combination with vemurafenib (V) to treat the M397 cells in vitro, and compared the results 

against mono-therapies (V, T, and J) or dual combinations (V+T and V+J) over 23 days. 

Consistent with our prediction, all combination therapies induced considerable cell growth 

inhibition (Fig. 4A). The monotherapies T and J were much less potent compared to V, but 

both dual combinations and the triple combination significantly outperformed the 

monotherapies. Consistent with previous finding [5], while V+T yielded enhanced 

therapeutic effect relative to V, it did not halt the phenotypic transition towards the neural 

crest-like drug tolerant state (Figs. 4B, and SI Appendix, Fig. S17), and therapy resistance 

emerged after prolonged treatment (Fig. 4C, SI Appendix, Fig. S19A). However, both V+J 

and V+T+J successfully arrested the transition and kept the cells in the drug sensitive state 

(MART-1pos) (Figs. 4B), indicating NFκB p65 nuclear translocation is necessary for the 

adaptive transition towards the drug tolerant phenotypes. Drug dose-response assay under 

the Bliss independence assumption further confirmed that the sustained growth inhibition of 
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the triple combination was not simply a result of drug synergy, but due to the arrest of cell 

state transition (SI Appendix, Fig. S18). We further performed colonogenic assays to assess 

if the combination can induce sustained growth inhibition on four other BRAFV600E mutated 

melanoma cell lines. The results indicated that the V+T+J combination outperforms V+T 

over prolonged periods for all cell lines tested, while treatment with J alone showed no 

significant cytotoxicity (Fig. 4C and SI Appendix, Fig. S19).  

Discussion 

Adaptive resistance resulting from transcriptomic reprogramming permits BRAF 

mutant melanoma cells to survive BRAF inhibition. BRAFi exposure triggers a transient 

melanocytic differentiation program, followed by multiple de-differentiation programs that 

terminate in a drug-resistant mesenchymal-like state. Cells with distinct innate drug 

sensitivities may follow all or part of this transition trajectory upon BRAFi exposure (SI 

Appendix, Fig. S2). The full transition trajectory was observed within a highly plastic set 

of patient derived cells (SI Appendix, Fig. S1A, Cluster C), accompanied by an elevated 

IPRES gene signature associated with anti-PD-1 therapy-resistant melanomas [17]. These 

results challenge the notion of protocols with a run-in period of targeted BRAFi therapy 

followed by immune checkpoint therapy, as the adaptive response to BRAFi may also 

create a less friendly environment to immunotherapies in certain BRAFi sensitive tumors 

[25].  

The kinetics of the cell state transitions that occur from the drug naïve, melanocytic 

state to the drug resistant mesenchymal state was well-captured by a Markov model. This 

analysis revealed the critical role of drug induction, relative to the selection of drug tolerant 

phenotypes, in the adaptive response to BRAFi. Drug induction can enable the de novo 

generation of new cell states, while selection accelerates the enrichment of the drug tolerant 

states. The cell state interconversion probabilities over long periods of drug treatment were 

inferred from snapshots of flow cytometry data. However, the Markov model does have 

limitations. For example, the phenotype-dependent drug susceptibility determined from the 

Markov model is incomplete, as it groups the net effect of cell proliferation and cell death 

of each phenotype into a single diagonal term in the matrix. The relative contribution of 

each factor is not distinguished [20, 26]. Similarly, upon drug removal, the relative 

contribution of the cell state reversion versus regrowth of specific cellular phenotypes is 

also not resolved. Additionally, the Markov model oversimplifies the continuous cell state 

transitions by categorizing cells into discrete phenotypes based on their marker expression 

levels. Continuous kinetic models [18], coupled with experimental measures of single cell 

trajectories [26], may prove attractive for investigating these transitions at finer resolution.  
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Transcriptional analysis revealed several critical signaling pathways associated with 

cellular adaptation to BRAFi. This, in turn, informed the design of a second kinetic 

investigation of the transition via single cell functional proteomics. That study unveiled the 

BRAFi-induced activation of MEK/ERK and NFκB p65 signaling, prior to the emergence 

of the drug-resistant phenotype. NFκB can synergize with c-Jun in the transcriptional 

response to TNF-α [12]. Further, the c-Jun/JNK signaling axis has been reported to play a 

critical role in melanoma adaptive resistance to BRAFi [3, 4], and was also found here to 

be associated with the emergence of adaptive resistance when the cells were transitioning 

to the neural crest or mesenchymal-like states (SI Appendix, Fig. S20). However, 

TNF/NFκB signaling was activated at the beginning of the adaptive transition (prior to the 

c-Jun/JNK activation), implying that TNF/NFκB signaling might enable the neural crest 

transition program. This is further supported by the report that neural crest de-

differentiation can be triggered by pro-inflammatory cytokine TNF-α secreted from tumor 

infiltrating lymphocytes [10]. It echoes the observation that the MITFlow/NFκBhigh 

transcriptional state of melanomas is resistant to inhibition of BRAF and MEK, singly or 

in combination [11]. NFκB inhibitors are normally used as adjuvant to chemo- or targeted- 

therapies in clinical trials [27]. However, due to the host toxicity, identifying more 

clinically actionable targets downstream of the NFκB pathway may be an appealing option 

[28] for arresting BRAFi adaptive resistance. As similar enrichment patterns were recurrent 

in more than half of the on-treatment patient biopsies (SI Appendix, Fig. S9), we anticipate 

that combined therapy with inhibitors of this pathway may improve the durability of 

BRAFi therapy.  
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Materials and Methods 

Human melanoma cell lines (M series) were established from patient’s biopsies under 

UCLA IRB approval # 11–003254. Please refer to SI Appendix, SI Materials and Methods 

for cell lines and reagents used, experimental protocols and statistical analysis.  
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Figures. 

 
Fig. 1. Phenotypic and transcriptomic characterization of a panel of patient-derived 

melanoma cell lines while adapting to BRAF inhibition. (A) Heat map of baseline 

expression levels for critical genes involved in the adaptive BRAFi resistance across a 

panel of melanoma cell lines, ordered by averaged IC50 to BRAFi. An IC50 of 1 µM was 

set to be the threshold for resistant lines. Correlation coefficients between each gene’s 

expression and IC50 across cell lines were evaluated with statistically significant 

correlations listed in bold font (*p<0.05 and **p<0.005). (B) Phenotypic kinetics screened 

by flow cytometry shows how the three plastic cell lines from Cluster C experienced a 

phenotypic transition following a counter-clockwise trajectory over a 73 days BRAF 

inhibition. (C) Visualization of differentially expressed genes for all the cell line clusters 

relative to control by GEDI. Each mosaic map represents averaged genome-wide 

expression profile for a specific cluster of cell lines at a time point as labeled. Each pixel 
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in the same location within the mosaic maps represents the same minicluster of genes 

(red: up-regulation, blue: down-regulation, green: no change). (D) Plot of signature scores 

of MITF and neural crest for the 3 plastic cell lines across different time points upon BRAFi 

treatment. Counter-clockwise trajectories appear for all three lines (VC: DMSO control). 

(E) GSEA normalized enrichment scores (NES) show significant enrichment of curated 

gene sets in the relevant categories associated melanoma adaptive cell state transition for 

21 days and 73-90 days (NOM p values: *p<0.05, **p<0.005, ***p<0.0005, NS: not 

significant). 
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Fig. 2. Markov model of cell state transition predicts phenotypic evolution of 

melanoma cells upon BRAF inhibition. (A) Schematic illustration of phenotypic 

segregation and treatment conditions in Markov model. The cells were sorted to NGFR+ 

and NGFR- subpopulations and treated with or without vemurafenib. (B) Cell state 

transition probabilities of M397 at untreated and vemurafenib treated conditions. (C) 

Relative viability of different phenotypes for M397 inferred by the model (up), and 

measured IC50 values (normalized to control) at different time points (down) across the 

transition at which one phenotype is enriched as indicated by its respective color code 

(error bars: ±SD). (D) Model prediction of the phenotypic kinetics (solid lines) versus 

experimental data (dots connected with dash lines) for M397 with continuous exposure to 

vemurafenib.  
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Fig. 3. Single cell proteomic profiling of the M397 cell line during the course of 

adaptive cell state transition. (A) Background subtracted SCBC data represented as one-

dimensional scatter plot (mean ± SEM was overlaid for each protein by the black horizontal 

bar). Statistical uniqueness is evaluated by Kruskal-Wallis test comparison among multiple 

time points. All 13 markers are statistically significant with P < 0.0005. (B). Application 

of t-SNE algorithm to the single cell data separates the cells into spatially distinct clusters 

based on their proteomic profiles. Each point in the t-SNE plane represents a single cell 

measurement and its color is coded by a time point. (C) Quantification of the functional 

heterogeneity (FHI) of M397 cells across different time points along with the transition. 

(D) The Signaling Network Activity Index (SNAI) across different time points along with 

the transition, extracted from single cell proteomic measurements of M397 cells. (E) 

Change in signaling coordination quantified as correlations between key functional 

proteins and the first principal component for control and day-6 in which a bifurcation of 

signaling proteins is identified.  
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Fig. 4. In vitro validation of the mono- and combination therapies predicted by SCBC 

analysis. (A) In vitro cell proliferation assay of M397 for the mono- and combination 

therapies based upon the predictions from the SCBC data analysis. At each time point, cell 

number of each test condition is normalized to the number of vemurafenib monotherapy 

and plotted as Log 10 fold change (Error bars: ±SD). (B) Flow cytometry analysis of 

MART-1 and NGFR levels at single cell resolution for mono- and combination therapies 

on both M397 (23 days treatment) and M229 (28 days treatment). (C) Clonogenic assays 

of long-term drug treated samples confirm V+T+J induced a sustained growth inhibition. 
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SI Appendix 

 

Supplementary Materials and Methods 

Cell lines, reagents and cell culture 

Human melanoma cell lines (M series) were established from patient’s biopsies under UCLA 

IRB approval # 11–003254. Cells were cultured in RPMI 1640 with L-glutamine (Mediatech, 

Inc, Manassas, VA), 10% fetal bovine serum (Omega Scientific Tarzana, CA), and 1% 

penicillin, streptomycin and fungizone (Omega Scientific Tarzana, CA). Cultures were 

incubated in a water-saturated incubator at 37°C with 5% CO2. Cells were maintained and 

tested for mycoplasma as described before [1, 2]. Cell lines were periodically authenticated 

to their early passages using GenePrint® 10 System (Promega, Madison, WI). Presence of 

mutations in the genes of interest was checked by OncoMap 3 or Iontrone, and was confirmed 

by PCR and Sanger sequencing as previously described [1, 2].  

Vemurafenib (NC0621949, Selleck Chemicals LLC), trametinib (NC0592237, Selleck 

Chemicals LLC), and JSH-23 (S7351, Selleck Chemicals LLC) were dissolved in DMSO at 

designated concentrations before applying to cell culture media. All cell lines were plated in 

T-75 plates at 60% confluency and treated with vemurafenib at twice the 50% inhibition 

concentration (2 × IC50) of each cell line using their previously described IC50 (Table S1). 

The DNA-antibody conjugates were synthesized with previous protocols reported [3]. The 

list of ssDNA and antibodies used in this work is shown in Tables S6 and S7.  

Phenotype tracking by flow cytometry. 

Cell suspensions were stained for flow cytometry with PE conjugated anti human NGFR 

antibody from Biolegend (San Diego, CA). All cells were then fixed with Fix-Perm buffer 

from BD Bioscience (San Jose, CA) and stained for intracellular FITC conjugated anti 

human Melan-A antibody from Santa Cruz (Dallas, TX). Isotypes for mouse IgG1k and 

mouse IgG1 respectively were used to enable correct gating and to confirm antibody 

specificity. Blue live-dead staining from Life technologies (Waltham, MA) was used to 

discriminate alive. 10000 alive events were collected for each sample. Flow cytometry 

analysis was conducted using LSR-II from BD Biosciences (San Jose, CA), and the data was 

analyzed using FlowJo software (Tree Star, Inc., San Carlos, CA). The hierarchical clustering 

from the 18 cell lines, was performed using the expression levels in flow cytometry, with 

complete linkage and Euclidean distance metric. Gating of NGFR and Mart1 for defining 

cell states are all based on the staining of isotype controls. 

MITF Reporter Cell Line 

The human Tyrosinase Promoter (TP) was subcloned from pLightSwitch Prom S700747 

(SwitchGear Genomics, Carlsbad, CA), which was first digested with MluI (New England 

Biolabs; Ipswich, MA). Blunt ends were generated using T4 Polymerase (New England 

Biolabs) and the resulting fragment was digested again with Bgl II (New England Biolabs). 

Resulting 1057 bp Tyrosinase promoter insert was then cloned by standard methods [4] into 
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the BamH1 and HpaI sites of the lentiviral vector backbone Lenti-D-EN-fLUC, driving 

the expression of the firefly luciferase gene.  

Lentivirus particles were generated as previously described [5] to stably transduce M229, 

M263 and M397. Generated stable reporter cell lines M229TP, M263TP and M397TP from 

different conditions were trypsinized and seeded at a density of 100.000 cells per well in 96-

well white-bottomed plates. Luciferase activity was read out from white-bottomed plates 

using luciferin directly (1:10 Final dilution) and signal was normalized according to viability 

calculated using CellTiter-Glo (Promega, San Luis Obispo, CA) (1:2 final dilution), also 

plated in white-bottomed plates. Bioluminescence imaging was carried out with a Xenogen 

IVIS 200 Imaging System (Xenogen/Caliper Life Sciences). 

RNA-Seq 

RNA extraction was performed using AllPrep DNA/RNA Mini kit from Qiagen in 18 human 

melanoma cell lines samples and also in samples from M229, M263 and M397 treated under 

different conditions. Bioanalyzer confirmed correct integrity, library was constructed and 

Illumina 50 bp single-end RNA-seq data was collected for the samples described. RNA 

sequencing was performed using 50 bps single end sequencing on the Illumina HiSeq 2500 

platform. Libraries were prepared using the IlluminaTruSeq RNA sample preparation kit per 

the manufacturer’s instructions. Reads were mapped and aligned to the Homo sapiens NCBI 

build 37.2 reference genome using TopHat2 v2.0.9 [6]. Expression values in fragments per 

kilobase of exon per million fragments mapped (FPKM) were generated using Cufflinks 

v2.2.1 program and Cuffnorm to quantify and normalize aligned reads using the geometric 

library size normalization method [7].  

The stochastic cell transition model 

The stochastic cell-state transition model is built by assuming a time-homogeneous Markov 

chain process as described in a previous publication [8]. Two basic assumptions are made 

for the model: First, cells at four designated subpopulations transition randomly between 

states per certain unit time. Second, the transition probabilities depend only on a cell's current 

state, regardless of its prior states. The governing equations are listed below. 

  

Proportions of various states are listed as column vectors. The 4×4 state transition probability 

matrix with each element denoting the transition probability from one cell state to other states 

per unit time is pre-multiplied with a diagonal drug sensitivity matrix. The four diagonal 

elements of this matrix encode the relative viability of the two melanocyte, neural crest and 

double negative states in the presence of drug treatment. The calculated 4-element vector is 

normalized to have a summation of 1 to generate the new proportions vector. 

Kinetic flow cytometry data (Table S5) of segregated cell populations at different time points 

are used as input. Monte Carlo simulation is performed by random sampling differential 

transition probability and viability vectors to quantitatively infer the most probable values in 

the matrices that best recapitulate the experimental observations of sorted cells. The values 

Time
original treatment State transition new

proportions sensitivity matrix probability matrix proportions

        
        

        
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inferred from sorted cells are then utilized to predict the cell state dynamics and final 

steady-state composition of unsorted cells under drug treatment (Fig. 2D). 

Transcriptomic data analysis 

Heatmap and clustering analysis of transcriptomic dataset for all 9 cell lines was performed 

via MATLAB. Genes are pre-filtered by RPKM value with criteria of average value greater 

than1 and coefficient of variance greater than 0.3. Filtered gene expression values were 

standardized across each row (normalized for each individual gene) and represented by 

redblue colormap. Hierarchical clustering was performed with average linkage and 

Euclidean distance metric. Whole transcriptomic dataset for each cell line upon drug 

treatment was also plotted as self-organized mosaic maps with respective to its control via 

Gene Expression Dynamics Inspector (GEDI) [9]. Each tile in the maps represents a 

minicluster of genes with similar expression kinetics. Gene clusters with related expression 

kinetics are placed close together, while clusters exhibiting very different kinetic trajectories 

are placed far apart. The tile color encodes the average expression level of the genes in that 

minicluster at a given time point. By extracting genes in interesting regions (e.g. common 

regions that are changing in the same direction across all cell line clusters or unique regions 

that are only changing in only one cluster, etc.), one could further investigate their biological 

functions. Genes in regions of interest are further enriched in the Gene Ontology Biology 

Process database using Enricher [10].  

For generating the phenotypic trajectory in Figs. 1D and S4, the MITF activity and neural 

crest signature scores were determined by using genes identified as MITF targets [11] and 

chicken embryo neural crest genes from Gallus EST in situ hybridization analysis – 

GEISHA- [12] (Table S3) respectively. Signatures scores were calculated by taking the sum 

of all log2 fold changes from DMSO control for all signature genes and divided by the square 

root of the total number of genes. 

Gene Set Enrichment Analysis (GSEA) was performed using GSEA v2.2.3 software with 

1000 permutations and weighted enrichment statistics. For correlation enrichment, we used 

Pearson correlation of relevant pathways with MITF, L1CAM, NGFR, NFκB1, CCL2, and 

AXL expression across patient samples. For the pre-ranked option with log2 fold changes 

were used as the ranking metric. Normalized enrichment score (NES) was assessed across 

the curated Molecular Signatures Database (MSigDB) Hallmark, C2 curated gene sets, and 

MITF signature [11]. 

Using Database for Annotation, Visualization and Integrated Discovery (DAVID) 6.8, we 

looked at relevant Gene ontology (GO) terms for differentially expressed genes for M229, 

M263 and M397 at 21 days and 73-90 days of drug treatment with respect to DMSO control 

(Fig. S7).  

 

Microchip fabrication and single cell proteomic assay 

The fabrication of the SCBC devices and the protocol of the single cell proteomic assays 

were extensively discussed in our previous publications [13, 14]. Briefly, the DNA 
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microarrays at each microchamber were converted to antibody microarrays by flowing 

the DNA-antibody conjugate cocktail solution immediately prior to use. Cells were randomly 

loaded into the 310 microchambers of the SCBC. Each microchamber has an assay 

component, and a separate reservoir of lysis buffer, and was photographed after cell loading. 

The SCBC was then cooled on ice for cell lysis. Following a 2-hour protein capture period 

at room temperature, the microchambers were flushed and the antibody arrays were 

developed using a cocktail of detection antibodies. The developed antibody barcode arrays 

were digitized by a Genepix scanner. Each array is matched with the micrograph of that array 

for preparing a table that contains the microchamber address, the numbers of cells, and the 

measured fluorescence levels of each assayed protein. 

Clonogenic assay 

Clonogenic assays were performed by plating melanoma cells in six-well plates with fresh 

media at an optimal confluence. The media (with drug or DMSO) were replenished every 

2 days. Upon the time of staining, 4% paraformaldehyde was applied onto colonies to fix 

the cells and 0.05% crystal violet solution was used for staining the colonies.  

Drug dose-response SRB assay 

The 3 cell lines were pre-seeded into 96-well plates for 48 hours before the addition of drug. 

After that, cells were treated with drug for 72 hours, and cell viability was determined using 

In Vitro Toxicology Assay Kit (TOX6, SIGMA-ALDRICH) following the manufacturer's 

instruction. A Bliss independence model was used to evaluate the effect of drug combination 

[15].  

 

Statistical analysis of SCBC data 

The SCBC readouts from the microchambers with a single cell were collected to form a data 

table. Each row of the table corresponds to a measurement of a panel of functional proteins 

from a single cell and each column contains digitized fluorescence intensities that provide 

readout of the levels of each of the assayed proteins. Protein-protein Spearman’s rank 

correlation coefficients can be directly calculated from single cell data. Protein correlation 

networks were generated by running the calculation through all the protein pairs in panel 

(Fig. S12). Bonferroni corrected p-value was used to define the statistical significance level 

for the entire panel and only those significant correlations were shown in the networks.  

The t-SNE dimensionality reduction analysis was performed on SCBC dataset following a 

previous published algorithm [16].  

A normalized PCA was used to peel off layer after layer of systematic co-variations from 

the data, in terms of principal components (PCs). The correlations between functional 

protein levels and PCs were calculated to quantify the dominative protein pattern of the 

signaling network coordination and its response to external perturbations such as drug 

treatment. The signaling network activity index (SNAI) is a metric of the overall strength 

of the protein signaling coordination at a given condition, and is defined as the reciprocal of 

the determinant of the protein-protein correlations 
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Supplementary Figures 

 

 

Fig. S1. Phenotypic clustering of 18 BRAFV600 mutant melanoma cell lines upon 

BRAF inhibition. (A) Clustering of 18 cell lines based upon their partition percentages 

(color coded in red) in four phenotypic quadrants (inset) at baseline and upon BRAFi 

response identifies 4 groups. The quadrants are defined by the gate setting of NGFR and 

MART-1 expression levels for each cell line in the flow cytometry analysis. Cluster C cells 

show highest phenotypic plasticity upon BRAF inhibition. Hierarchical clustering is 

performed with complete linkage and Euclidean distance metric (ST: 3 days vemurafenib 

treatment, LT: 3 weeks vemurafenib treatment). (B) Heat map of the genome-wide 

expression levels of 9 cell lines randomly selected from each cluster at control, 3 days, and 

3 weeks vemurafenib treatment. Clustering is performed with average linkage by Euclidean 

distance metric. Four clusters are identified to be wholly consistent with the clustering results 

using MART-1 and NGFR markers in panel A. The clusters are labeled in lower case font, 

indicating that these cells represent a subset of those analyzed in panel A.  Up-regulated 

genes are colored in red and down-regulated genes in blue. 
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Fig. S2. Flow cytometry analysis of NGFR and MART-1 expression levels for 18 

BRAFV600 mutant melanoma cell lines treated with DMSO control and vemurafenib 

for 3 days and 21 days. The average NGFR and MART-1 levels across treatment conditions 

are as bar graphs on the right (mean ± SEM). The cell lines are ordered according to their 

respective clusters identified in Fig. S1A. 
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Fig. S3. Enrichment analysis of commonly down-reglated genes across all the cell line 

clusters and uniquely up-regulated genes in cluster C upon BRAFi exposure. (A) GEDI 

visualization of differentially expression genes relative to control for all the cell line clusters 

upon 21 days of vemurafenib treatment. Gene miniclusters circled in blue denote commonly 

down-regulated genes across all the cell line clusters at varying degrees. Gene miniclusters 

circled in red denote genes that are uniquely up-regulated in Cluster C cells. (B and C) Gene 

Ontology enrichment using Enricher for genes circled in blue (or red). The top 10 ontology 

terms with highest enrichment scores are listed from top to buttom with decreasing p values.  
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Fig. S4. Plot of MITF activity signature scores vs neuron differentiation (Molecular 

Signatures Database C5 Collection) signature scores for the 3 plastic cell lines across 

different time points upon vemurafenib treatment. Counterclockwise trajectories appear 

for all three lines (VC: DMSO control). 
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Fig. S5. Cell growth kinetics of M397, M229 and M263 under DMSO control or BRAFi 

treatment overlaid with phenotypic profiles (M397 only). BRAFi exposure moderately 

inhibited the cell growth for a short-term followed by a drug tolerant exponential growth 

phase characteristic of the adaptive resistance to BRAFi (data are shown as mean ± SD). 
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Fig. S6. MITF activity analyzed using a bioluminescence tyrosinase promoter (TP) 

reporter system through different time points of vemurafenib for M229TP, M263TP 

and M397TP. Each condition is normalized for 100,000 cells and viability. Data is 

representative of duplicate wells, and representative of an experiment done in two 

independent experiments. Error bars are standard deviation of the two wells. Luciferase 

representative images are shown underneath. 
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Fig. S7. Transcriptional signatures of three plastic cell lines in Cluster C. (A) Heat map 

of expression levels for critical genes involved in the adaptive BRAFi resistance at baseline 

(DMSO) as well as upon 3 days, 21 days, and 73-90 days of vemurafenib exposure. (B) Gene 

Ontology analysis of differentially expressed genes for the three plastic cell lines following 

21 days and 73-90 days drug treatment with respect to DMSO control. Relevant GO terms 

are listed with respective p-values, analyzed by DAVID. Blue terms denote GO term 

enrichment for down-regulated genes and red terms denote GO term enrichment for up-

regulated genes. 
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Fig. S8. GSEA shows enrichment of curated gene sets associated with the cell state 

regression towards neural-crest like and mesenchymal-like states upon 21 days 

vemurafenib exposure in other cell line clusters (NOM p values: *p<0.05; **p<0.005, 

***p<0.0005).  
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Fig. S9. Transcriptional signatures of the cell state transition associated with the 

adaptive resistance in melanoma patient biopsies (transcriptomes from ref. 16 in the 

main text). (A) Heat map of GSEA normalized enrichment scores (NES) of relevant curated 

gene sets involved in the adaptive transition for 11 paired pre-treatment and on-treatment 

patient biopsies. More than half of patient samples show acquisition of neural crest-like and 

mesenchymal phenotype signatures with up-regulated NFκB and JNK signaling as identified 

in the cell line studies. (B) Correlation of critical regulatory genes with relevant 

transcriptional signatures associated with the adaptive resistance across 39 melanoma patient 

biopsy samples. Genes involved in the ECM reprogramming, focal adhesion, collagen 

formation, stemness, EMT signatures were negatively correlated with MITF and positively 

correlated with NGFR, NFκB, CCL2 and AXL. Gray shadow denotes an insignificant 

enrichment with a p value > 0.05. (C) Gene expression levels of patient samples at baseline 

(pre-treatment), on-treatment and resistant stages for three curated gene sets for invasiveness, 

stem cell and mesenchymal transition signatures. It revealed that the genes involved in 

cellular invasiveness, stem cell signature and EMT were consistently up-regulated at on-

treatment stage and descending at acquired resistant stage, implying the existence of cellular 
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regression towards neural crest-like and mesenchymal-like phenotypes as a non-genomic 

adaptive response in these on-treatment patient biopsies prior to the disappearance of these 

signatures when cells acquired robust therapy resistance potentially genetically. 

 

Fig. S10. The Markov model prediction and the experimental validation of cell state 

kinetics for segregated M229 and M397 cells. (A) Experimental flow for sorting cells to 

obtain NGFR+ and NGFR- subpopulations, and culturing each subpopulation in fresh 

growth media with or without BRAFi treatment. (B) For both M397 and M229 cell lines, 

unsorted cells or sorted NGFR+ or NGFR- subpopulations are cultured with or without drug, 
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and their phenotype composition are monitored using flow cytometry until they reach to 

an equilibrium composition. The final equilibrium composition from unsorted, NGFR+/- 

subpopulations and model prediction are presented as bargraphs. DN – double negative 

mesenchymal-like state (NGFR-/MART-1-), NC – neural crest-like state (NGFR+/MART-

1-), DP – double positive plastic state (NGFR+/MART-1+), melanocytic state (NGFR-

/MART-1+).  
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Fig. S11 Experiments setting and flow cytometry plots of sorted M397 NGFR+ and 

NGFR- subpopulations under treatment naïve and drug treatment conditions. Time-
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series flow cytometry phenotyping of M397 sorted subpopulations cultured without 

BRAFi (A) and with BRAFi (B) treatment. The cell cycle for M397 is 3 days. 

 

Fig. S12. Experiments setting and flow cytometry plots of sorted M229 NGFR+ and 

NGFR- subpopulations under treatment naïve and drug treatment conditions. Time-
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series flow cytometry phenotyping of M229 sorted subpopulations cultured without 

BRAFi (A) and with BRAFi (B) treatment. The cell cycle for M229 is 1 day. 
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Fig. S13. Markov model of stochastic cell state transition predicts phenotypic 

evolution of melanoma cells upon BRAF inhibition. (A) Cell state transition 

probabilities of M229 at untreated and vemurafenib treated conditions. (B) Treatment 

sensitivity of different phenotypes for M229 inferred by the model. (C) Model prediction 

of the phenotypic kinetics (solid lines) versus experimental data (dots connected with dash 

lines) for M229 with continuous exposure to vemurafenib. (D) Model prediction of the 

phenotypic kinetics (solid lines) versus experimental data (dots connected with dash lines) 

for M397 and M229 when only drug selection is considered.  
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Fig. S14. Reversibility of the adaptive transition upon drug removal (A) Phenotypic 

reversibility for the plastic M397 cell line in Cluster C and less plastic M233 cell line in 

Cluster B. While starting at different baseline phenotypic composition, both M397 and M233 

cell lines follow the transition trajectory towards double negative state (NGFR-/MART-1-) 

upon drug exposure and return to their original composition upon drug removal. DR: drug 

removal. (B) The IC50 values for M397 cells at untreated, upon long-term drug exposure (46 

days), and after long-term drug removal (treatment discontinued for 33 days), confirming the 

reverted cells are re-sensitized to BRAF inhibition.  
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Fig. S15. The optical pictures of SCBC and its microchamber units: valves for chamber 

formation (red), valves for lysis buffer control (green), cell chamber compartment (blue), and 

lysis buffer reservoir (yellow) are delineated by food dyes. The sandwich 

immunofluorescence detection scheme with a scanned image is listed below the optical 

images. In the scanned image, the green stripes are used as alignment markers of a 

microchamber; each red stripe represents a functional protein measured and the fluorescence 

signal denotes the protein level from the single cells. 
  



 

 

132 

 

 

Fig. S16. Protein-protein correlation networks of M397 cells at different time points, 

extracted from SCBC data. The correlation (orange) / anti-correlation (blue) strength were 

reflected in the thickness of the edges (see keys). 
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Fig. S17. Immunofluorescence and flow cytometry analyses of NGFR and MART-1 

markers to BRAF inhibition. (A) Fold change of NGFR and MART-1 levels for mono- 

and combination therapies (23 days treatment) with respect to DMSO control on bulk M397 

and M229 populations quantified by sandwich immunofluorescence assay. The predicted 

effective combinations (V+J and V+T+J) keep the MART-1 and NGFR levels unchanged, 

while V or V+T induces significant NGFR up-regulation and loss of MART-1 (error bars: 

±SD). (B) Cell phenotype marker histograms from flow cytometry analysis of MART-1 and 

NGFR levels for mono- and combination therapies on both M397 (23 days drug treatment) 

and M229 (28 days drug treatment). 
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Fig. S18. Synergy effects of combining vemurafenib (V) and trametinib (T) with JSH-

23 (J). Percentage of excess activity over that expected under the Bliss independence 

assumption for each of the various dose combinations. Red indicates synergy; blue indicates 

antagonism. The red boxes outline the concentration ranges used in the long-term clonogenic 

assays in Fig. 4. *p<0.05 under Student's t-test. 
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Fig. S19. Clonogenic assays for long-term combination therapy and short-term 

monotherapies in a cohort of melanoma cell lines. (A) Clonogenic assays of long-term 

drug treated samples were quantified using ImageJ software and normalized to V+T. The 

statistical significance is evaluated by Student's t-test. **p<0.005, ***p<0.0005. Error bars: 
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±SD). (B) The same doses used in long-term combination treatments were used for 

monotherapies here. No significant toxicity to the cells was observed for using JSH-23 alone 

(treatment time: M263, 7 days; M229: 11 days; M308: 10 days; M249: 7 days).   
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Fig. S20. Change in signaling coordination quantified as correlations between key 

functional proteins and the first principal component for control, day-6 (initiation of 

the adaptive transition), and day-23 (establishment of adaptive resistance). The up-

regulation of JNK and p38α signaling axes is identified when the cells develop adaptive 

resistance to BRAFi. 
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Supplementary Tables 

Table S1. Characterization of 18 melanoma cell lines used in this study, where 9 

randomly selected cell lines from each cluster for transcriptomic studies are shadowed 

in red. 

 

Cell line Sensitivity IC50 (nM) Mutational Status   

M370 R >10000 BRAFV600E mutant 

Cluster A M381 R >10000 BRAFV600E mutant 

M410 R 3510 BRAFV600E mutant 

M233 R >10000 

BRAFV600E mutant   

3 copies BRAF   

AKT1 amplification   

CCN31 amplification    

EGFR amplification   

CDKN2A deletion   

PTEN deletion 

Cluster B M238 S 243 

BRAFV600E mutant        

2 copies BRAF   

CDKN2A deletion    

PTEN deletion 

M255 I 1625 

BRAFV600E mutant    

2 copies BRAF   

AKT2 amplification   

CCND1 amplification   

EGFR amplification   

CDKN2A deletion 

M395 S 131 BRAFV600E mutant 

M406 S 645 BRAFV600E mutant 

M409 I 1018 BRAFV600E mutant 

M411 S 171 BRAFV600E mutant 

M229 S 282 

BRAFV600E mutant   

4 copies BRAF  

MITF amplification   

AKT1 amplification   

PTEN deletion 

Cluster C 

M263 I 839 

BRAFV600E mutant    

2 copies BRAF   

CDKN2A deletion 

M397 S 132 BRAFV600E mutant 

M399 I 1155 BRAFV600E mutant 

M403 S 450 BRAFV600E mutant 
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M249 S 273 

BRAFV600E mutant   

3 copies BRAF    

MITF amplification   

AKT2 amplification  PTEN deletion 

Cluster D 
M262 S 150 

BRAFV600E mutant       

2 copies BRAF   

AKT1 mutation&amp   

CDKN2A deletion 

M308 R >10000 

BRAFV600E mutant   

3 copies BRAF   

MITF amplification   

AKT2 amplification   

EGFR amplification    

CDKN2A deletion 
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Table S2. Color coded table comparing normalized median fluorescence intensity 

values for  MART-1 and NGFR upon 3 days and 21 days of vemurafenib exposure with 

respect to DMSO control. The data are extracted from flow cytometry analysis (Fig. S2) 

across 18 cell lines. Fold changes are listed and color coded (red: increase, blue: decrease). 

 MART1 NGFR 

Cell lines Vem 3d Vem 21d Vem 3d Vem 21d 

M370 1.05 1.01 0.90 1.13 

M381 0.89 1.07 1.04 1.56 

M410 0.85 0.84 0.82 0.96 

M233 0.94 0.66 1.05 7.20 

M238 0.47 0.67 33.89 47.89 

M255 0.29 1.13 1.51 2.07 

M395 0.84 0.64 27.70 11.20 

M406 0.87 0.87 2.04 4.85 

M409 0.77 1.16 2.52 4.66 

M411 0.70 0.77 5.98 26.00 

M229 2.10 0.16 0.48 127.17 

M263 2.15 2.25 7.38 6.10 

M397 1.71 0.33 0.82 4.42 

M399 5.04 2.79 4.04 1.54 

M403 1.77 1.25 0.00 1.47 

M249 1.61 1.88 0.05 1.82 

M262 1.01 0.77 0.02 0.89 

M308 0.89 0.60 6.50 27.03 
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Table S3. Complete chicken neural crest gene set list from Gallus Expression in situ 

Hybridization Analysis (GEISHA) (12). 
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Chick_neural_crest	(GEISHA)

AARS HDAC2 PDGFD

ABCF2 HES1 PDGFRA

ACVR2B HES5 PEBP1

ADAM12 HES6 PENK
ADAM33 HEY1 PGK1

ADAMTS1 HEY2 PITX2

ADAMTS3 HK2 PLEKHG1
AGR2 HNRNPM POU3F4

AHCYL1 HOXA3 PTK7

ALK HOXB7 RAC1
ALX1 HS2ST1 RARA
ANGPTL4 HS3ST3A1 RARB

ANK3 HTRA1 RAR-GAMMA2

ANKRD6 ID2 RCC2

ANXA6 IPO9 RELT
AP2A2 IREB2 RERE

ARHGAP15 ISL1 RET

ARHGAP28 KDM4A RHOB

ASCL1 KIF4A RHOU
AUTS2 KLF10 RND3
B-G KTN1 ROBO1

BLNK LAMA5 ROBO2
BMP4 LECT1 RSPO3

BMP7 LFNG RXRA

BMPER LGR4 SALL4
BTBD11 LIMS1 SEMA3D
BTG2 LMNB2 SEMA7A

CADM3 LMO4 SIX1

CDH11 LOC100858038 SIX4
CDH6 LOC420041 SLC7A3

CRABP1 LZTS1 SLIT1

CXCL14 MAFA SMO

CXCR4 MAFB SNAI1
CYP26C1 MAFK SNAI2

DACH1 MAP3K5 SOX10

DACT2 MATN4 SOX2
DAD1 MCAM SOX8

DKC1 MECOM SOX9

DLL1 MEF2C SPRY2
DLL4 MKRN1 SREBF2

DLX3 MMP2 STOX1

DLX5 MOXD1 TBX1

DRGX MSX1 TBX3
DSC2 MSX2 TCF3

DSG2 MXI1 TFAP2A

EBF2 MYC TIAM1
EDNRB MYCN TIAM2
EFNB2 NCOA1 TIMP2

EGR4 NES TPD52L2
ELK3 NET1 TRIO

ENAH NEUROD4 TSHZ2
EPCAM NEUROG1 VSX1

ETS1 NHLH1 WIF1
EYA2 NKX2-5 WNT-1

FGF13 NOG WNT16
FGF3 NOLC1 WNT8A
FGFR2 NR6A1 ZEB2

FGFR3 NRP2 ZIC1

FLT4 OLFM1 ZRANB1
FOXD3 OSBP2
FRZB PALLD

FZD1 PAX3

GATA1 PAX7
GFRA2 PCDH15

GLG1 PCDH18
GTF2E2 PCDH8
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Table S4. GSEA enrichment across innate anti-PD-1 resistance (IPRES) signature 

at 3 days and 21 days of BRAFi exposure using averaged gene expression levels of the 

3 plastic cell lines. NES stands for normalized enrichment score. 
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Table S5. Cell state composition measured by flow cytometry across time, while 

being with or without BRAF inhibition. DN – double negative mesenchymal-like state 

(NGFR-/MART-1-), NC – neural crest-like state (NGFR+/MART-1-), DP – double positive 

plastic state (NGFR+/MART-1+), melanocytic state (NGFR-/MART-1+). 

     NGFR+   NGFR-  

    Cycle DN NC Melanocytic DP Cycle DN NC Melanocytic DP 

M397 

tr
ea

tm
en

t 
n

a
ïv

e 
co

n
d

it
io

n
 

0 0.0% 2.4% 0.0% 97.6% 0 0.5% 0.0% 99.5% 0.0% 

1 0.3% 29.4% 0.7% 69.7% 1 3.3% 7.7% 32.1% 57.0% 

3 0.2% 28.1% 0.9% 70.8% 3 2.4% 22.0% 18.1% 57.5% 

6 0.3% 34.8% 2.9% 62.0% 6 3.3% 30.0% 17.7% 49.0% 

10 0.3% 34.0% 2.5% 63.2% 10 1.4% 26.9% 11.7% 60.0% 

15 0.4% 22.3% 3.8% 73.5% 15 2.9% 11.7% 31.7% 53.7% 

d
ru

g
 t

re
a
tm

en
t 

co
n

d
it

io
n

 0 0.0% 2.4% 0.0% 97.6% 0 0.5% 0.0% 99.5% 0.0% 

1 0.2% 9.1% 1.3% 89.6% 1 2.1% 2.9% 55.3% 39.7% 

3 0.1% 15.3% 1.7% 82.9% 3 1.6% 8.2% 33.0% 57.3% 

6 0.2% 30.1% 4.1% 64.0% 6 16.3% 14.9% 18.2% 50.6% 

10 30.1% 44.0% 3.8% 22.1% 10 50.7% 13.9% 19.4% 16.0% 

15 65.2% 27.7% 3.7% 3.4% 15 82.0% 11.9% 4.4% 1.7% 

                        

M229 

tr
ea

tm
en

t 
n

a
ïv

e 

co
n

d
it

io
n

 

0 0% 59% 0% 41% 0 39% 0% 61% 0% 

7 20% 49% 19% 12% 7 34% 10% 55% 2% 

10 19% 46% 24% 12% 10 17% 12% 69% 2% 

15 38% 37% 20% 6% 15 28% 12% 58% 1% 

20 29% 25% 40% 5%           

d
ru

g
 t

re
a
tm

en
t 

co
n

d
it

io
n

 

7 6% 68% 3% 23% 7 10% 27% 35% 28% 

16 2% 82% 1% 16% 16 5% 51% 8% 37% 

38 10% 83% 0% 6% 38 25% 69% 1% 5% 

60 17% 72% 3% 8% 60 32% 56% 2% 11% 

71 38% 61% 0% 1% 71 68% 26% 5% 1% 
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Table S6. Phenotype proportion for M397 and M229 unsorted cells under drug 

treatment condition. 

 

Cell Line Cycle DN NC Melanocytic DP 

M
3
9
7

 

0 0% 7% 17% 76% 

2.3 0% 9% 25% 66% 

7 1% 44% 8% 46% 

14.3 53% 39% 1% 7% 

20.6 64% 32% 0% 4% 

22 76% 20% 0% 4% 

26 74% 21% 5% 1% 

 

     

M
2
2
9
 

0 6% 7% 76% 12% 

11 2% 28% 25% 46% 

21 2% 63% 2% 32% 

30 1% 62% 2% 34% 

38 3% 75% 1% 22% 

60 25% 59% 16% 0% 

71 42% 52% 5% 1% 
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Table S7. The sequences of the oligonucleotides used in the protein immunoassays. 

All oligonucleotides were synthesized by Integrated DNA Technology (IDT) and 

purified via high performance liquid chromatography (HPLC). The DNA coding 

oligomers were pre-tested for orthogonality to ensure that cross-hybridization between non-

complementary oligomer strands was negligible (<1% in photon counts).  

 DNA sequence used for pattering ssDNA microarray 

A 5'-AAAAAAAAAAAAAATCCTGGAGCTAAGTCCGTA-3' 

B 5'-AAAAAAAAAAAAAGCCTCATTGAATCATGCCTA-3' 

C 5'-AAAAAAAAAAAAAGCACTCGTCTACTATCGCTA-3' 

D 5'-AAAAAAAAAAAAAATGGTCGAGATGTCAGAGTA-3' 

E 5'-AAAAAAAAAAAAAATGTGAAGTGGCAGTATCTA-3' 

F 5'-AAAAAAAAAAAAAATCAGGTAAGGTTCACGGTA-3' 

G 5'-AAAAAAAAAAAAAGAGTAGCCTTCCCGAGCATT-3' 

H 5'-AAAAAAAAAAAAAATTGACCAAACTGCGGTGCG-3' 

I 5'-AAAAAAAAAAAAATGCCCTATTGTTGCGTCGGA-3' 

K 5'-AAAAAAAAAAAAATAATCTAATTCTGGTCGCGG-3' 

L 5'-AAAAAAAAAAAAAGTGATTAAGTCTGCTTCGGC-3' 

M 5'-AAAAAAAAAAAAAGTCGAGGATTCTGAACCTGT-3' 

N 5'-AAAAAAAAAAAAAGTCCTCGCTTCGTCTATGAG-3' 

 Complementary ssDNA Sequence for antibody conjugation 

A' 5'NH3-AAAAAAAAAAAAATACGGACTTAGCTCCAGGAT-3' 

B' 5'NH3-AAAAAAAAAAAAATAGGCATGATTCAATGAGGC-3' 

C' 5'NH3-AAAAAAAAAAAAATAGCGATAGTAGACGAGTGC-3' 

D' 5'NH3-AAAAAAAAAAAAATACTCTGACATCTCGACCAT-3' 

E' 5'NH3-AAAAAAAAAAAAATAGATACTGCCACTTCACAT-3' 

F' 5'NH3-AAAAAAAAAAAAATACCGTGAACCTTACCTGAT-3' 

G' 5'NH3-AAAAAAAAAAAAAAATGCTCGGGAAGGCTACTC-3' 

H' 5'NH3-AAAAAAAAAAAAACGCACCGCAGTTTGGTCAAT-3' 

I' 5'NH3-AAAAAAAAAAAAATCCGACGCAACAATAGGGCA-3' 

J' 5'NH3-AAAAAAAAAAAAACCTGCTCGACAACTAGAAGA-3' 

K' 5'NH3-AAAAAAAAAAAAACCGCGACCAGAATTAGATTA-3' 

L' 5'NH3-AAAAAAAAAAAAAGCCGAAGCAGACTTAATCAC-3' 

M' 5'Cy3-AAAAAAAAAAAAAACAGGTTCAGAATCCTCGAC-3' 

N' 5'NH3-AAAAAAAAAAAAACTCATAGACGAAGCGAGGAC-3' 
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Table S8. List of antibodies used for the SCBC multiplex protein assays.  

Antibody Manufacture 

 Human NGFR DuoSet R&D DY367 

 Human sTNF DuoSet R&D DY225 

 Human S100B Mab Mouse IgG2A R&D MAB1820 

 S100B Rabbit mAb Cell Signaling 9550 

 Melan-A Monoclonal  Sigma-Aldrich M6570 

 Human Melan-A/MART-1 Sheep IgG R&D AF8008 

 Human Phospho-JNK2 DuoSet R&D DYC2236 

 Human MITF Goat IgG R&D AF5769 

 MITF abcam ab80651 

 Human/Mouse/Rat Phospho-ERK1 R&D DYC1825 

 Human NFκB1 Mouse IgG R&D MAB2697 

 NFκB1 p105/p50 Cell Signaling 3035 

 Human/Mouse NFκB p65 Mouse IgG2B R&D MAB5078 

 Phospho-NFκB p65 Rabbit mAb Cell Signaling 4025 

 Phospho-IκB alpha (Ser32) ELISA Kit Cell Signaling 7343 

 Phospho-p38 alpha DuoSet R&D DYC869B 

 Slug (SNAI2) mouse IgG 
Sigma-Aldrich 

SAB1412527 

 Slug Rabbit mAb Cell Signaling 9585 
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Dataset S1. Kinetic RNA-seq data of the 9 randomly selected melanoma cell lines. 

(See “Dataset_S01 (XLSX)” from 

https://www.pnas.org/content/suppl/2017/12/06/1712064115.DCSupplemental). 
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C h a p t e r  4  

PHENOTYPIC HETEROGENEITY AND EVOLUTION OF 
MELANOMA CELLS ASSOCIATED WITH TARGETED THERAPY 

RESISTANCE 

Phenotypic plasticity is associated with non-genetic drug tolerance in several cancers. Such 

plasticity can arise from chromatin remodeling, transcriptomic reprogramming, and/or 

protein signaling rewiring, and is characterized as a cell state transition in response to 

molecular or physical perturbations. This, in turn, can confound interpretations of drug 

responses and resistance development. Using BRAF-mutant melanoma cell lines as the 

prototype, we report on a joint theoretical and experimental investigation of the cell-state 

transition dynamics associated with BRAF inhibitor drug tolerance. Thermodynamically 

motivated surprisal analysis of transcriptome data was used to treat the cell population as 

an entropy maximizing system under the influence of time-dependent constraints. This 

permits the extraction of an epigenetic potential landscape for drug-induced phenotypic 

evolution. Single-cell flow cytometry data of the same system were modeled with a 

modified Fokker-Planck-type kinetic model. The two approaches yield a consistent picture 

that accounts for the phenotypic heterogeneity observed over the course of drug tolerance 

development. The results reveal that, in certain plastic cancers, the population 

heterogeneity and evolution of cell phenotypes may be understood by accounting for the 

competing interactions of the epigenetic potential landscape and state-dependent cell 

proliferation. Accounting for such competition permits accurate, experimentally verifiable 

predictions that can potentially guide the design of effective treatment strategies. 

This chapter includes content from our previously published article: 

[1] Su, Yapeng, Marcus Bintz, Yezi Yang, Lidia Robert, Alphonsus HC Ng, Victoria Liu, Antoni Ribas, 

James R. Heath, and Wei Wei. "Phenotypic heterogeneity and evolution of melanoma cells associated 

with targeted therapy resistance." PLoS computational biology 15, no. 6 (2019): e1007034. doi: 

10.1371/journal.pcbi.1007034. 
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Introduction 

The phenotypic plasticity of many tumors can confound the identification of effective 

therapeutic strategies [1-4]. For such tumors, even if the cancer cells are isogenic, the 

cellular composition can be a heterogeneous mix of different cell states (phenotypes) that 

exhibit the capacity for dynamic interconversion. Each phenotype can have a characteristic 

gene expression profile, drug susceptibility, proliferation rate, and metastatic potential [5]. 

When this heterogeneous population is challenged with a physical or molecular 

perturbation, the cell states can rapidly evolve [6] to form a new population distribution 

better suited to survive the challenge. This adaption may proceed without genetic changes 

[7-9]. Removal of the challenge can lead to recovery of the original population distribution 

[5, 10, 11]. This behavior bears similarities to that of ‘phenotypic equilibria’ [1, 12, 13]. In 

those systems, if a subset of this population of microstates is physically separated from a 

stable, heterogeneous population and allowed to expand in culture, the phenotypic 

heterogeneity of the original culture will recover. This facile adaptability makes plastic 

tumors challenging to drug-target, and it highlights the importance of quantitative models 

that can provide predictive and mechanistic insights into the underlying driving force 

controlling such behaviors.  

Similarities between steady states in nonequilibrium biological systems and 

perturbation/relaxation scenarios in classical thermodynamics equilibria have prompted 

investigations into applying physicochemical models for describing phenotype dynamics 

within an epigenetic landscape [13-16]. Qualitative descriptive models have been explored 

for many years, but quantitative and predictive models have only been recently explored 

[14-20]. In one class of studies, epigenetic landscape models are explored, wherein stable 

cell states are described as local minima (attractors) within a metaphoric energy (or 

potential) cell-state landscape. In such models, the driving forces that influence the cellular 

composition and population dynamics are the gradients on that surface. As a result, cells 

tend to gravitate and remain in the local minima of such landscapes. However, in many 

other cases, this potential landscape does not predict the observed phenotypic heterogeneity 

[16], implicating other important factors that can influence the population dynamics are at 

play.  

To address this puzzle, we studied highly plastic patient-derived BRAFV600E mutant 

melanoma cell lines as models of cancer cell phenotypic plasticity. The high rate of both 

response [21] and resistance development [10] of BRAF-mutant melanoma patients to 

BRAF inhibitor (BRAFi) treatment has made such cell lines important models for 

understanding challenges associated with targeted inhibitors [9, 10]. BRAFi can trigger a 

series of nongenetic cell state changes along the melanocytic lineage towards drug-tolerant 

and eventually drug resistant states through epigenetic reprogramming. These include the 
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transition of drug-sensitive melanocytic cancer cells into a drug-tolerant neural crest-

like phenotype, which, under continued BRAF inhibition, can eventually transition into a 

fully drug-resistant, invasive mesenchymal-like phenotype [5, 9-11]. The cell biology of 

this BRAFi-induced phenotypic evolution has been extensively characterized [5, 22], and 

shown to correlate with what is observed in patient biopsies [9-11, 22]. However, a 

quantitative biophysical understanding of this type of epigenetic plasticity has not been 

fully explored.  

To this end, we carried out two sets of experiments, integrated with two theoretic 

approaches, on phenotypically plastic BRAFV600E mutant melanoma cell lines. At the 

macroscopic level, we measured a kinetic series of bulk transcriptomes over a 2.5-month 

course of low dose BRAF inhibition, during which time the cells evolve from a mostly 

melanocytic, drug-sensitive phenotype to a mesenchymal, drug-tolerant phenotype. This 

data set provides input into an information-theoretic surprisal analysis [23], which is used 

to identify the relative free energy-like potential over the entire course of cell state 

transition from drug response to drug tolerance. We also utilized microscopic inputs from 

flow cytometry to profile, at the single-cell level, the phenotypic evolution of the same 

system. These phenotypic evolution dynamic data cannot be described with conventional 

Fokker-Planck equation but can be well recapitulated using a modified Fokker-Planck-type 

(FP-type) kinetic model [17, 18, 24] which considered cell-state dependent proliferation 

differences. The model resolves relative cell state potential and cell-state proliferation 

differences were quantitatively validated through experiment. We further show that both 

approaches provide a self-consistent picture in which the combined effects from the 

relative stability of cellular phenotypes, together with the phenotype-specific net-

proliferative rate, act as the drivers to predictably influence the cell population dynamics 

of drug-induced phenotypic evolution over time. The results provide conceptual guidance 

for considering effective therapy combinations [5].  

Results 

Surprisal analysis of bulk transcriptome data resolves steady state and time-dependent 

constraints in the melanocytic to mesenchymal transition 

 We used two patient-derived BRAFV600E mutant cell lines (M397 and M229) with a 

prominent melanocytic to mesenchymal phenotypic evolution induced upon BRAF 

inhibition (Fig 1A and S1 Fig) [5]. We characterized this process by both a bulk 

transcriptome profiling (S1 Table) and a flow cytometry phenotyping using two protein 

markers (MART-1 and NGFR) that are established cell phenotype markers for this system 

[5, 9, 25]. The transcriptome was measured at Day 0 (D0), which served as an untreated 

control, and at a set of time points following BRAFi (vemurafenib) treatment (S2 Fig.). 

Following drug exposure, the relative location of the binning of cell populations expressing 
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different levels of the two markers followed a counterclockwise transition trajectory 

around the flow cytometry plots (S1(A) Fig), moving from the melanocytic phenotype 

(MART-1pos) towards a transiently enriched slow-cycling neural crest 

(MART1neg/NGFRhigh) population around day15 to day20 (D15–D20), and eventually 

terminating at a mesenchymal (MART1neg/NGFRneg) phenotype at around day62 (D62) with 

elevated expression of the mesenchymal marker N-cadherin (Fig 1A). This drug-resistant 

population stably persisted with extended drug treatment beyond D62 (S1(A) Fig). A similar 

transition trajectory was also observed for M229 (S1(B) Fig). These drug-induced 

phenotypic transitions agree with previous literature [5, 22]. 

 To assess the overall stability and transcriptomic eigenpatterns associated with the cell 

population distributions at various time points across the drug-induced phenotypic evolution, 

we first applied surprisal analysis (Eq. 1) to the transcriptome time series. Surprisal analysis 

extends the principles of maximum entropy and was initially formulated to understand the 

dynamics of nonequilibrium systems [26]. Using the method of Lagrange multipliers, it seeks 

the maximum entropy of molecules and identifies the global steady state with minimal free 

energy, as well as a series of time-dependent constraints that prevent the nonequilibrium 

system from reaching the global steady state [16, 23, 26, 27]. Surprisal analysis has been 

extended to characterize biological processes in living cells, where it assesses the maximum 

entropy of the biomolecules within the cell ensemble through using a simplified 

approximation of quantum state distributions of the molecular species [23]. Consequently, 

for a system with kinetic transcriptome data as input, it can extract the time-independent gene 

expression baseline (the global steady state), as well as a series of gene expression modules 

(constraints) that evolve with time [16, 23, 26, 28]. A full derivation and thermodynamic 

interpretation of Eq. 1 is provided within the supplementary materials of previous reports 

[23, 28]. 

 

state variable of contribution
constraint  at of transcript 

time t

0

measured expression global steady state
level of transcript expression level of

at time t transcript 

ln ( ) ln ( ) ( )

j i

i i j ij

i
i

t t t G   

to constraint 

deviation terms from 
the global steady state 

of transcript  (contrainsts)

j

j

i

     (1) 

In Eq. 1, is the measured level of transcript i at time t. This is considered to be the 

global steady-state level of transcript i (   0

0 0ln i iX t G  ), modified by the sum of the 

contributions arising from the constrained processes. The global steady state resolved by 

surprisal analysis is the cellular state with maximum entropy. If there were no constraints 

acting upon the cells, then Eq.1 predicts that the cells would be in the global steady state. 

However, there are non-zero constraints (with amplitudes given by the j values), which are 

iX (t)
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biological processes that move the system away from the global steady state. Transcripts 

associated with a constraint are identified through Eq. 1 as lowering the entropy of the 

system, presumably to maintain one or more biological functions. Data mining the set of 

transcripts associated with a given constraint can provide insight into those biological 

functions. Although we do not impose the condition that λ0 is time-independent, we neither 

expect nor find time-dependence (the λ0 variation is <0.7%) (Fig 1B).  

To capture the time evolution of the drug-treated cells, each constrained process is 

represented by a time-dependent amplitude λj(t) and constraint-specific contributions from 

each transcript Gij. In principle, analysis of the transcriptomic data across the time series from 

D0 to D73 could resolve several constraints, but we resolve only three for M397 (S3 and S4 

Figs). This is illustrated in Fig 1C, where we represent the whole transcriptome data as a self-

organized map (SOM) [29]. The map structure is determined using all data sets. Each tile 

represents a minicluster of genes with similar expression kinetics. Gene clusters with related 

expression kinetics are placed close together, while clusters exhibiting very different kinetics 

are placed far apart. The tile color encodes the average expression level of the genes in that 

minicluster at a given time point. For SOMs representing a specific constraint, that average 

gene expression level is also weighted by the participation of the genes in the constraint, as 

determined from Eq. 1. The gene expression profile for the global steady state remains 

unchanged throughout the transition, while the differentially expressed genes (termed 

eigengenes elsewhere [30]) specific to constraints λ1, λ2 and λ3 vary with time. Summing the 

global steady state and the three constraints reproduces the map of the measured 

transcriptome, indicating that, within the noise level of the data, the three major constraints 

are sufficient to accurately recapitulate gene expression levels globally across the transition. 

(Fig 1C and S5 Fig).  

The major biological processes involved in each constraint, at a given time point, can be 

inferred by enrichment on the gene lists ranked by the constraint-specific contributions from 

each gene Gij (Fig 2A, S4 Fig and S2 Table), and by the time-dependent amplitude λj(t) of 

that constraint. The first constraint shows monotonically increased amplitude (λ1) along the 

course of the transition (Fig 1B), with up-regulated mesenchymal signatures, migration, 

invasiveness and metastasis features, as well as NFκB signaling (G1 positive processes). It 

also reflects reduced glucose uptake and metabolism, MITF activity, and oxidative 

phosphorylation (G1 negative processes) (Fig 2A). Constraint 2 contains similar 

transcriptional signatures, but its amplitude (λ2) drops after 3 days of BRAFi exposure and 

slowly increases at later times (Fig 1B). It points to an elevated MITF activity (G2 negative 

process) and reduced cellular proliferation (G2 positive process) at day-3. This is consistent 

with previous observations that a brief BRAFi exposure can induce melanocytic 

differentiation and increased BRAFi sensitivity [31, 32]. The third constraint mainly involves 

oxidative phosphorylation and the TCA cycle, and has a near zero amplitude except for day 
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3 (Fig 1B), implying that initial BRAFi exposure leads to a sharply altered metabolic 

program. The three major constraints associated with M229 displayed similar dynamics and 

are functionally similar to those in M397 (S4 Fig), confirming the robustness of the BRAFi 

induced melanocytic to mesenchymal transition. To get a comprehensive view of the 

enriched transcriptional program, we plotted the enrichment maps of the GSEA results with 

respect to relevant gene function categories and highlighted representative gene sets in these 

categories (Fig 2B and S6 Fig). Overall, these transcriptional signatures are wholly consistent 

with previous reports [5, 9-11, 33], testifying the validity of our cell line model for 

recapitulating the known biology of the transition and confirming the power of surprisal 

analysis for dissecting the underlying biology of the transition.  

Fokker-Planck modeling of phenotypic evolution with single-cell flow cytometry 

phenotyping failed in recapitulating the evolution dynamics 

The same biological system was further characterized at the single-cell level using flow 

cytometry analysis of the established cell-state markers: NGFR and MART-1. The temporal 

transcriptomic signatures resolved by surprisal analysis result from the dynamics of the 

BRAFi-induced phenotypic evolution that can be characterized by MART-1 and NGFR 

marker proteins [5, 9, 25]. As shown in our previous report, these two marker proteins can 

yield the identical phenotypic classification to that of the whole transcriptome data [5]. 

Therefore, they can be used as robust phenotype markers during the course of the drug-

induced transition (Fig 1A and S1 Fig).  

To model the single cell data, we conceptualize cell population distributions as single 

cells moving on a configuration space delineated by the marker proteins. In this space, cell 

states correspond to stable or metastable attractors of a hypothetical potential landscape [34]. 

The dynamics of the protein markers for a single cell can be described by the Langevin type 

equation /d dt  z μ(z) , where z is the concentration vector of the protein markers 

(z1,...,zN), µ(z) is a drift vector in concentration space that describes all of the deterministic 

(non-random) dynamics and can be determined by the gradient of the potential landscape. 

The term ζ is the white noise term from random fluctuations in protein expression:
' '( ) ( ) 2 ( )t t t t   D  where D is the diffusivity tensor measuring the amplitude of those 

fluctuations [18].  

The potential landscape of a cellular system is context-specific. We hypothesized that 

drug treatment altered the original drug naïve landscape into a new landscape, which in turn 

yielded relaxation dynamics as each cell adjusts to this new drift field, potentially with 

motions towards new attractor states.  

Analyzing the dynamics arising from a multi-dimensional drift field is, in general, an 

intractable problem. However, the flow cytometry trajectory (Fig 1A and S1 Fig) upon 
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BRAF inhibition suggested the simplification that cell populations may be considered to 

evolve along a linear chain of a limited number of cell states. Therefore, for computational 

convenience, we projected the protein concentration vectors of the two dimensional (2D) 

flow cytometry data into a one-dimensional (1D) representation where the cell populations 

were constrained to move along in this characteristic 1D trajectory (Fig 3A). The distance 

along the trajectory x=x(z) serves as an effective reaction coordinate of the phenotypic 

evolution (see Methods). 

The flow cytometry data do not track an individual cell stochastic trajectory, but rather 

give statistical snapshots of marker protein expression levels across single cells. Thus, it is 

natural to transform the single-cell Langevin equation into the Fokker-Planck equation for 

resolving the time-dependent probability distribution p(x,t) along the reaction coordinate [35]: 

   
2

2

( , )
( ) ( , ) ( , )

p x t
x p x t Dp x t

t x x


  
  

  
       (2) 

Here, drift term µ(x) implies that motion along x is influenced by a potential landscape. 

D is a diffusivity that is assumed, for simplicity, to be a constant independent of x or drug 

treatment. Even in cases where the diffusivity depends on the reaction coordinate x, a Fokker-

Planck (FP) equation with constant diffusivity can be obtained by a simple coordinate 

transformation as shown in Ref. [17].  

Because the dynamics under consideration are 1D, the drift µ(x) can always be presented 

as the derivative of a scalar potential
0

( ) ( )

x

U x y dy  . This, in turn, is exactly related to the 

steady state solution of Eq. 2 through a Gibbs relation as 

 lim ( , ) ( ) exp 2 ( ) /
t

p x t p x C U x D


   where C is a normalization constant. Therefore, 

one can determine (up to proportionality to D) the potential U from measurement of the 

steady state distribution p∞(x) as ( ) ln ( )
2

D
U x p x

 
  

 
. This FP approach has been 

successfully applied to understanding the population heterogeneity of model biological 

systems [17, 18]. Here, we used a variation of this method to measure the diffusivity 

20.35 / dayD q (q the unit length of the reaction coordinate) from sorting-relaxation 

experiments in the drug-naïve condition (S7 Fig, See Materials and methods for details). 

Given this D and flow cytometry measurements of the final steady state distribution ( )p x

upon prolonged drug exposure, we inferred the potential U(x), and equivalently the drift µ(x) 

consistent with this model. 

To test the validity of the FP model, we performed direct numerical simulation of the 

FP equation with the inferred µ(x), the diffusivity D, and the measured initial distribution 
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p(x,0) to calculate the cell population distribution p(x,t) for subsequent days, which, as 

shown in Fig 3B (FP model), are in poor agreement with the experiments (green lines in Fig 

3B and S8 Fig). The disagreement indicated the existence of extra factors influencing 

phenotypic transitions which were not considered in Eq. 2. 

Modified Fokker-Planck-type kinetic model that incorporates cell-state-dependent 

proliferation recapitulates the phenotypic evolution and predicts cell-state proliferation 

rates. 

We hypothesized that the disagreement with experiments arose because the drug would 

influence not only the cell phenotypic evolution but also the cell autonomous proliferation 

and survival. In other words, the cells have drug susceptibilities – as reflected by the net 

effect of cell proliferation and cell killing – that vary along the reaction coordinate. These 

factors can also influence the phenotypic compositions, but are neglected in Eq.2. Thus, we 

modified Eq.2 to include a self-sourcing term: 

   
2

2

( , )
( ) ( , ) ( , ) ( ) ( , )

P x t
x P x t DP x t x P x t

t x x
 

  
   

  

 

 (3) 

Here the net growth rate α(x) (the net effect of cell proliferation and cell killing under 

drug treatment) was introduced to account for cell state-dependent drug susceptibility. As an 

additional ansatz, we considered α(x) as a double step function taking different values for the 

intermediate neural crest-like phenotype and late-stage mesenchymal phenotype relative to 

the early stage melanocytic phenotype. It is worthwhile to note that, with Eq. 3, we were no 

longer working with a probability distribution p(x,t), but instead a non-normalized population 

P(x,t). Both the differential drift and self-sourcing term act together to induce the cell number 

changes that are proportional to the population size of a specific cell state. For direct 

comparison between the model P(x,t) and experimentally accessible p(x,t) from flow 

cytometry data, we simply factored out the norm (

( , ) ( , ) ( ) ( , ) / ( , )p x t P x t N t P x t dxP x t



   ). 

In this model, due to the addition of the self-sourcing term, the Gibbs relation between 

the drug-induced steady state p∞(x) and the potential U(x) used in our analysis of the original 

FP equation no longer holds. To determine the parameters for this modified model, we 

therefore resorted to an unbiased numerical search for U(x) and α(x) that best fit the 

experimental data. The model prediction was obtained by numerically simulating Eq. 3 with 

the same experimentally measured diffusivity D and the initial distribution p(x,0) as before, 

together with all possible U(x) and α(x) values in the unbiased search. We determine 

goodness of fit using an un-weighted sum-of-square difference between all the predicted and 
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measured cell population distributions p(x,t). In both cell lines, we were able to find one 

set of U(x) and α(x) for the modified FP-type kinetic model that produced the best prediction 

of population distributions over time. When compared to original FP model, the modified 

model predictions are in much better agreement to experiments (red lines in Fig 3B and S8 

Fig). The agreement appears to confirm the validity of the self-sourcing term in Eq. 3, but 

the value of that term can be put to an independent experimental test. 

We treated the state-dependent net growth rate α(x) as a concrete prediction of the 

model, and found it to be in good agreement with experimentally measured cell growth rates: 

cell populations containing a higher fraction of the mesenchymal phenotype (day21-78) grow 

faster than those with a lower fraction (day0-21) (Fig 4, See Materials and Methods). The 

agreements between model-predicted growth rates and experiments (Fig 4) further confirmed 

the validity of Eq. 3 and show that differences in state-dependent growth rates are important 

in determining the drug-induced phenotypic evolution of the melanoma cells. 

In addition to predicting proliferation rates, Eq. 3 also yielded relative values of the 

epigenetic potential along the reaction coordinate U(x) (Fig 5A and S9(B) and S10(A) Figs), 

which yields an inference of the stability of different states along the coordinate. The scalar 

potential landscape was obtained by integration of μ(x) from Eq. 3 over the reaction 

coordinate x. The shape of the landscape indicates that the intermediate neural crest-like 

states (NGFRpos/MART-1neg) are more stable than both the MART-1pos melanocytic state 

and the mesenchymal-like state (NGFRneg/MART-1neg), and thus the intermediate states can 

be considered as an attractor. However, the net growth rate of those intermediate states is 

relatively low (Figs. 4 and 5A), and so the cells do not naturally populate just that state over 

the course of long-term drug treatment.  

Further confirmation of the concordance of the epigenetic potential landscapes 

calculated from macroscopic and microscopic inputs 

As demonstrated in previous work, surprisal analysis of the bulk RNA-seq data can also 

define a free energy-like potential corresponding to the drug-induced phenotypic evolution 

[16, 28]. This potential, for the entire transcriptome of a cell state at time t, is relative to the 

global steady state, and is given by ( ) ( )j j

j

F t t G , where j i ij

i

G X G (See 

Materials and Methods for details). It has a direct relationship to the entropy of the transcripts 

and thus evaluates, at a transcriptional level, the relative stability of a cell state (see Ref. [23] 

for theoretic details). Here we adopted the same definition to calculate the potential landscape 

over drug-induced phenotypic evolution in melanoma cells. For M397, this potential 

landscape calculated from surprisal analysis, similar to the landscape calculated by the 

modified Fokker-Planck-type (Eq. 3) model, indicates that the cells at D11 and D21, with 

mostly neural-crest like phenotypes are more stable than cells at earlier times (melanocytic 
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phenotypes) or D73 (predominantly mesenchymal phenotype) (Fig 5B). For M229, cells 

at D21 with mostly the neural-crest like phenotype are also more stable than the cells at D90 

(predominantly mesenchymal phenotype) (S10 Fig). Thus, the epigenetic potentials 

calculated from either surprisal analysis of bulk data or the Fokker-Planck kinetic model 

from single-cell data yield a consistent picture. 

Both analyses indicate that neural-crest like cells are more stable than the mesenchymal 

phenotype. This prediction was experimentally validated by sorting the mesenchymal 

(NGFRneg/MART1neg) subpopulation from the M397 D73 distribution (S11 Fig). We carried 

out surprisal analysis of transcriptome data from both the segregated mesenchymal 

subpopulation and the unsorted day-73 population (a mixture of mesenchymal phenotype 

and neural-crest phenotype). Free energy-like potentials were calculated and found to be 

consistent with the scalar potentials of both sorted and unsorted populations determined by 

the modified FP-type kinetic model. The pure mesenchymal phenotype displayed higher 

potentials than the unsorted cells (Fig. 5C). Hence, cell sorting and RNA-seq experiments 

confirmed the consistence between the two theoretic models, and indicated that the drug-

resistant mesenchymal cells are epigenetically unstable relative to the neural crest phenotype. 

Discussion 

Heterogeneous cancer cell populations can often exhibit a phenotypic equilibrium and 

evolution behaviors, meaning that a specific composition comprised of relative abundances 

of distinct cancer cell phenotypes can be a characteristic of the system, and in the meantime, 

this characteristic composition will evolve or recover following the application or release of 

molecular or physical perturbations designed to alter it [2, 5, 12-14]. This can, of course, 

confound the interpretation of responses to drug treatment, but it also provides a compelling 

biophysical puzzle. Here we investigated two statistical physics models to help build a 

predictive picture of such phenotypic equilibria. The models respectively utilize macroscopic 

and microscopic inputs, and we applied them towards understanding the population 

dynamics of phenotypically plastic patient-derived BRAF-mutant melanoma cancer cells 

following BRAFi treatment. During a few months period of drug treatment, the cells evolve 

from drug naïve, drug-sensitive melanocytic-dominated composition to a fully drug-resistant 

mesenchymal-dominated cell population. In an interesting parallel with state transitions in 

physical systems, the associated cell state transitions are fully reversible: upon drug removal, 

the mesenchymal cells revert back to a melanocytic state that is, for all intents and purposes, 

identical to the initial drug naïve state [5]. 

The first theoretical model, surprisal analysis, utilizes a bulk transcriptome kinetic series 

across the drug treatment course to provide a description of the global steady state (the state 

of maximum entropy) and to identify specific, time-dependent constraints that keep the 

system from reaching that steady state. The weights of the constrained processes can be 



 

 

159 

utilized to generate a free energy-like potential of the cell-state space sampled during 

drug treatment [16, 28]. It is worth noting that cells are open systems far from equilibrium. 

While a significant body of work has demonstrated the apparent parallel between equilibrium 

and nonequilibrium thermodynamics [36-38], the potential landscape across the cell state 

evolution in our study is still a metaphor of the real free energy landscape in an equilibrium 

system. However, the maximum entropy methods can infer the most probable distribution of 

a probabilistic system regardless of whether or not it is in equilibrium [39]. Surprisal analysis 

further extends the principles of maximum entropy to understand particularly small systems 

that are not in thermodynamic equilibrium [23, 26, 40]. Therefore, in analogy to entropy in 

equilibrium thermodynamics, the entropy (and free energy-like potential) of the cellular 

transcriptome calculated from surprisal analysis can be used to evaluate the overall stability 

of a cell state [28, 41]. 

The second theoretic approach consists of a modified Fokker-Planck-type kinetic model, 

which takes a kinetic series of single cell flow cytometry data as input. This model considers 

the Langevin dynamics of self-sourcing single cells moving within a configuration space. 

That motion is influenced by both (random) diffusion and drift along a potential gradient, 

thus permitting a potential surface of the traversed cell-state space to also be extracted.  

There are two primary considerations that allow results from these two theories to be 

directly compared. First, the flow cytometry data and the bulk transcriptome data sets capture 

the same essential biology. This is obviously not always true. However, for this particular 

case, the cell phenotype markers NGFR and MART-1 used in the single cell assays are 

known surrogates for drug-induced changes across the whole transcriptome [5]. It also 

implies that a more selective subset of the transcriptome might equally well recapitulate the 

underlying biology, which may be assessed by the contribution scores (Gij values) within 

each respective constraint. Second, the phenotypic evolution the melanoma cells proceeds 

stepwise from melanocytes  neural crest  mesenchymal phenotypes. This permits the 

cell response to BRAF inhibition to be considered as time-dependent motion along a linear 

reaction coordinate, and provides an equivalence between the Fokker-Planck reaction 

coordinate and the surprisal analysis time coordinate (Fig 5A and 5B).  

We do not directly compare the y-axes of the two landscapes (Fig 5A and 5B), but only 

the slopes of the curves. The FP scalar potential and the surprisal analysis free-energy like 

potential have very different origins. The free energy-like potential is derived by comparing 

transcriptional profiles at each time point with that of the time-independent global steady 

state. The FP potential is derived from the drift term of Eq. 3, and is, in fact, the only term in 

that equation that needs to be fitted, since both cell proliferation rate and diffusion along the 

FP reaction coordinate can be experimentally determined. However, both theories predict 

that the most stable cellular population is a largely neural crest phenotype. Surprisingly, that 

is not the cell population that is ultimately induced by the long-term drug exposure. That 

population is dominated by a mesenchymal phenotype with a minor neural crest component, 
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and is arrived at through competing interactions. On the one hand, the neural crest 

phenotype serves as an attractor, but those cells only slowly proliferate. The higher potential 

mesenchymal cells are more proliferative and that is the dominating factor. This highlights a 

major difference between open biological systems and equilibrium thermodynamic systems 

[42]. 

The analyses presented here for the BRAF-mutant melanoma cells might suggest that 

identifying drug susceptibilities in each of the cancer cell phenotypes might lead to a more 

effective therapy. However, such highly plastic cancer cells might eventually switch into cell 

states that are resistant to even broad combination therapies. A more fruitful approach might 

be to target those biological mechanisms that underlie the plastic nature of the cells [5, 43].  

  



161 

Materials and Methods 

Patient-derived melanoma tumor models and drug treatment conditions. 

Cells were cultured at 37 °C with 5% CO2 in RPMI 1640 with L-glutamine (Mediatech, 

Inc, Manassas, VA), 10% fetal bovine serum (Omega Scientific Tarzana, CA), and 1% 

penicillin, streptomycin and fungizone (Omega Scientific Tarzana, CA). Cells were 

maintained and tested for mycoplasma as previously described [44, 45]. Cell lines were 

periodically authenticated to their early passages using GenePrint 10 System (Promega, 

Madison, WI). Presence of mutations in the genes of interest was checked by OncoMap 3 

or Iontrone, and was confirmed by PCR and Sanger sequencing as previously described 

[44, 45].  

Vemurafenib (NC0621949, Selleck Chemicals LLC) was dissolved in DMSO at 

designated concentrations before applying to cell culture media. All cell lines were plated 

in 10cm dish at 60% confluency and treated with vemurafenib for the specified numbers 

of days at twice the 50% inhibition concentration (IC50) of each cell line as reported before 

[5]. At different time points after drug treatment, cells were harvest for RNA-seq and flow 

cytometry. Cell number was also counted for determining the growth rate. Cell growth rate 

was fitted as the parameter 𝛼 in the exponential growth curve equation 𝑁 (𝑡) = 𝑁0 ∙ 2(𝛼∙𝑡),

where 𝑁0 is the cell number at the starting time point, and 𝑁 (𝑡) is the cell number at time 

t. Cell numbers counted at day 0, 7, and 21 were used to fit for the proliferation rate at day

0-21 time period, and cell numbers at day 30, 43, 66, and 78 were used to fit for the one at 

day 21-78 time period. 

Flow cytometry analysis of cell phenotype. 

At different time points, cells were trypsinized from the dish, spun down and washed 

with PBS. Cell suspensions were stained for flow cytometry with PE-conjugated NGFR 

antibody from Biolegend (San Diego, CA). All cells were fixed with Fix-Perm buffer from 

BD Bioscience (San Jose, CA). Cells were then stained for intracellular Melan-A using 

FITC conjugated antibody from Santa Cruz (Dallas, TX). Isotypes for mouse IgG1k and 

mouse IgG1 respectively were used to enable correct gating and to confirm antibody 

specificity. Blue live-dead staining from Life technologies (Waltham, MA) was used to 

gate live cell events. 10000 alive events were collected for each sample. Flow cytometry 

analysis was conducted using LSR-II from BD Biosciences (San Jose, CA), and the data 

were analyzed using FlowJo software (Tree Star, Inc., San Carlos, California, USA).  

Immunofluorescence imaging 

The standard immunofluorescent protocol was implemented using cells grown on the 

gelatin-coated glass surface. Briefly, 10,000 cells/well were seeded in 96-well glass bottom 

plates (Greiner Sensoplate Plus, Cat# 655892) coated with 0.1% gelatin solution, and 
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grown in culture media to ~70% confluency. Cells were washed twice in PBS and fixed 

in 4% paraformaldehyde (PFA) solution for 10 min. After washing twice in wash buffer 

(0.1% BSA in PBS), cells were blocked and permeabilized in blocking buffer (10% normal 

donkey serum, 0.3% Triton X-100) for 45 minutes. After removing the blocking buffer, 

cells were incubated in primary antibody for 4 hours at room temperature. Mouse 

monoclonal anti-NGFR antibody (BioLegend Cat# 345106 RRID:AB_2152647) or sheep 

polyclonal anti-N-Cadherin (R&D Systems Cat# AF6426 RRID:AB_10718850) was 

diluted to 0.25 or 10 μg/mL, respectively, in antibody diluent (1% BSA, 1% normal donkey 

serum, 0.3 % Triton X-100). After washing twice in wash buffer (0.1% BSA in PBS), cells 

were incubated in secondary antibody for 1 hour at room temperature. Donkey anti-Mouse 

IgG, Alexa Fluor 647 (Thermo Fisher Scientific Cat# A-31571 RRID:AB_162542) or 

donkey anti-Sheep IgG Alexa Fluor 594 (Thermo Fisher Scientific Cat# A-11016 

RRID:AB_2534083) was diluted to 4 μg/mL in antibody diluent. After washing twice in 

wash buffer, cells were counter stained for 5 min with 4',6-Diamidino-2-Phenylindole 

(DAPI) diluted to 1 μg/mL in PBS. After washing twice in PBS, the wells were filled with 

78% glycerol. 

Fluorescent images were acquired with a Nikon C2plus confocal microscope (Ti) 

using Plan Apo λ 20× objective (Nikon Inc., Melville, NY). The microscope was controlled 

by NIS elements AR software (4.51.00) with the following settings: 30 μm pin hole, 12-bit 

acquisition, 0.62 μm pixel size, 60 gain, and laser power of 5% (405 nm), 0.3% (561 nm), 

or 0.6% (640 nm). Images were background and contrast adjusted using their respective 

control wells with no primary antibody staining. 

RNA-seq and transcriptomic data analysis 

Cells treated under specified conditions and time periods were trypsinized to harvest 

for cell pellets. RNA extraction was performed at cell pellets using AllPrep DNA/RNA 

Mini kit from Qiagen. Bioanalyzer confirmed correct integrity, the library was constructed 

and Illumina 50 bps single-end RNA-seq data was collected for the samples described. 

RNA sequencing was performed using 50 bps single end sequencing on the Illumina HiSeq 

2500 platform. Libraries were prepared using the IlluminaTruSeq RNA sample preparation 

kit per the manufacturer’s instructions. Reads were mapped and aligned to the Homo 

sapiens NCBI build 37.2 reference genome using TopHat2 v2.0.9 [46]. Expression 

values in fragments per kilobase of exon per million fragments mapped (FPKM) 

were generated using Cufflinks v2.2.1 program and Cuffnorm to quantify and normalize 

aligned reads using the geometric library size normalization method [47].  

Heatmap and clustering analysis of transcriptomic datasets was performed via 

MATLAB. Genes are pre-filtered by RPKM value with criteria of average value greater 

than 0.5 and coefficient of variance greater than 0.15. Filtered gene expression values were 
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standardized across each row (normalized for each individual gene) and represented by 

a redblue colormap. Hierarchical clustering was performed with average linkage and 

Euclidean distance metric. Whole transcriptomic dataset and fractions of contributions 

from each constraints are visualized using self-organized mosaic maps with respect to its 

control via Gene Expression Dynamics Inspector (GEDI) [29]. Gene Set Enrichment 

Analysis (GSEA) [48] was performed using GSEA v2.2.3 software with 1000 permutations 

and weighted enrichment statistics. GSEA enriched gene sets were visualized as interaction 

networks with Cytoscape [49] and Enrichment Map [50]. 

Surprisal analysis and free energy-like potential 

Surprisal analysis was applied as described previously [23, 28]. The measured 

expression level of mRNA i at time t, 𝑙𝑛 𝑋𝑖(𝑡), was expressed as a sum of a steady state 

term 𝑙𝑛 𝑋𝑖
0(𝑡)  and several constraints 𝜆𝑗(𝑡)𝐺𝑖𝑗  representing deviations from the steady

state. Each deviation term was a product of a time-dependent weight of the constraint 𝜆𝑗(𝑡), 

and the time-independent contribution of the transcript to that constraint 𝐺𝑖𝑗 . 

To implement surprisal analysis, we computed the singular value decomposition 

(SVD) of the matrix 𝑙𝑛 𝑋𝑖(𝑡). As well described previously [23], the SVD factored this 

matrix in a way that determined the two sets of parameters that are needed in surprisal 

analysis: the Lagrange multipliers (𝜆𝑗) for all constraints at a given time point, and for all 

times and the 𝐺𝑖𝑗  (time-independent) transcription patterns for all transcripts i at each 

constraint j. 

The free energy-like potential calculation based on the surprisal analysis result was 

implemented as in Ref. 33. Briefly, The steady-state expression level of transcript i at time 

t can be linked to its actual expression level by as
0 ( ) ( )exp( ( ) )i i j ij

j

X t X t t G  . Therefore,

as shown in Ref. 33, surprisal analysis defines the free energy-like potential of a transcript 

i relative to the global steady state at time t as ( ) ( )i j ij

j

f t t G . Taking all the transcripts

into account, the free energy-like potential of the entire transcriptome of a cell state at time 

t relative to the global steady state is given by ( ) ( ) ( )i i j j

i

F t X f t t G   , where 

j i ij

i

G X G [16].

Natural log transformed transcriptomic dataset and fractions of contributions from 

each constraints (𝜆𝑗(𝑡)𝐺𝑖𝑗) calculated from surprisal analysis are visualized using self-

organized maps (SOM). Self-organized map visualization of high-dimensional dataset in a 

form appropriate for human pattern recognition without discarding the global, higher-order 
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information. Here, they present individual samples as a single 2-dimensional heatmap 

and, at the same time, display high-resolution patterns. Thousands of input genes are 

assigned to 625 rectangular “tiles” (SOM nodes), each of which represents a mini-cluster 

of genes, arranged so as to form a pattern within a 2-dimensional mosaic map on the SOM 

grid. Tiles represent most similar clusters will be placed adjacent to each other in the 

mosaic. Gene Expression Dynamics Inspector (GEDI) package is utilized to implement the 

SOM visualization [29]. 

Modified Fokker-Planck-type kinetic model  

The dynamics of the protein markers for a single cell can be described by the Langevin 

type equation /d dt  z μ(z) , where z is the concentration vector of the protein markers 

(z1,...,zN), µ(z) is a drift vector in concentration space that describes all of the deterministic 

(non-random) dynamics and can be determined by the gradient of the potential landscape. 

The term ζ is the white noise term from random fluctuations in protein expression:
' '( ) ( ) 2 ( )t t t t   D , where D is the diffusivity tensor measuring the amplitude of 

those fluctuations [18].  

In the case of melanocytic to mesenchymal transition, for computational convenience, 

we projected the protein concentration vectors of the flow cytometry data into a one-

dimensional (1D) representation where the cell populations were constrained to move 

along in this characteristic trajectory. This converted each snap-shot of cell population 

distribution from the 2D flow cytometry plot onto a one-dimensional distribution along the 

linear trajectory. More specifically, we reduced the dimensionality of the flow cytometry 

data by calculating the principle curve of the full set of measurements using the R package 

princurve. The data points were projected onto the curve, and the distances of these 

projected points along the curve were used as the one-dimensional data for the two Fokker-

Planck models. These data points were converted into probability density functions (PDF) 

using kernel density estimation. 

Consider the fact that flow cytometry data do not track an individual cell stochastic 

trajectory but rather give statistical snapshots of marker expression levels across many 

single cells. Thus, it is natural to transform the single-cell Langevin equation into the 

Fokker-Planck equation for resolving the probability distribution of the protein markers. 

The 1D coordinate (Fig 3A) is defined as a reaction coordinate x(z) such that the Fokker-

Planck (FP) equation for the probability distribution p(x,t) has the following form: 

   
2

2

( , )
( ) ( , ) ( , )

p x t
x p x t Dp x t

t x x


  
  

  
       (M1) 

Here, x is the 1D flow cytometry (FC) coordinate, D is a diffusion constant of the cells 

along x, and drift term µ(x) implies that motion along x is influenced by a potential 
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landscape. In this model, the equilibrium distribution p∞(x)= lim
𝑡→ ∞

𝑝(𝑥, 𝑡)  and the 

potential 𝑈(𝑥) = − ∫ 𝜇(𝑥) ⅆ𝑥 are connected through the Gibbs relation 

( ) ln ( )
2

D
U x p x

 
  

 
 (M2) 

For the unmodified Fokker-Planck equation, this Gibbs relation was applied to the 

long-term drug treated cell population distribution data (day78 for M397 and day60 for 

M229) to infer a potential, whose gradient acted as the drift term driving the dynamic 

changes of the population distribution. This inferred potential and respective drift term, 

when coupled with diffusion constant D and the initial (day0) population distribution, 

generated the prediction results in Fig 3B. 

With regards to calculating diffusion constant D from cell sorting and relaxation 

experiments, the diffusion coefficient D was assumed to be a constant value independent 

of trajectory position x and drug treatment condition for simplicity. Based on this 

assumption, when calculating the diffusion constant, we used time-series flow cytometry 

data of cell sorting and relaxation experiments. In these experiments, we sorted out the 

untreated cells into NGFRpos and NGFRneg subpopulations. Both sorted subpopulations 

were cultured without drug treatment. At different days after sorting and culturing, the cells 

were harvested to quantify its abundance of NGFR and MART-1 using flow cytometry as 

shown S6 Fig.  

Consider the fact that variations of proliferation rates are small in the untreated cells, 

the Fokker-Planck model (Eq. M1) was considered valid and this data was used as input to 

fit the diffusion constant D. Varying D as a free parameter, the (drug-naïve) potential and 

hence drift were calculated with Eq. M2, using the original, untreated distribution as p∞(x). 

The Fokker-Planck equation with these parameters was simulated, with the initial condition 

p(x,0) set by the sorted population distribution. The simulated data were compared to the 

measured time-series distributions with an unweighted sum-of-squares measure. This 

measure was then minimized as a function of D, and yielded the best-fit diffusion constant 

D to be 0.35 q2/day where q represents the unit length on the flow cytometry coordinate. 

For the modified Fokker-Planck-type kinetic model described in equation (3) where 

the same reaction coordinate (x) as the unmodified equation is applied, the state-dependent 

proliferation rate α(x) was modeled as piecewise-constant with different values for the 

melanocytic, neural crest, and mesenchymal cell types. The cutoff locations in terms of the 

reaction coordinate x were chosen as the two local minima in an observed PDF with the 

coexistence of all three subpopulations. One can show that the time evolution of the PDF 

does not depend on an overall constant shift α(x)+c, so we set the proliferation rate of the 

starting melanocytic state to 0 for convenience, as the melanocytic cells were observed to 
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be cytostatic without significant proliferation or cell death upon drug treatment. This 

then left the proliferation rates of the neural crest (α1) and mesenchymal cells (α2) as two 

free parameters. 

Because the Gibbs relationship between the long-time density p∞(x) and the potential 

U(x) no longer held with this nontrivial proliferation rate, we resorted to fitting a cubic 

spline interpolation for the drift ( ) ( )x U x x    . Twenty spline points were used, with 

x values uniformly spaced along the curve and 𝜇 values as free parameters.  

Starting with an estimate of α1(x)= α2(x)=0 and μ ~ x, we calculated the prediction of 

this model using FiPy to numerically simulate the forward evolution with initial condition 

p(x,0) set by the experimentally measured distribution on day-0. To compare with the 

experimental data, we used the L2 norm on the difference between the predicted and 

experimental probability densities  
2

( , ) ( , )pred i exp i

i

L p x t p x t dx



  as the goodness-

of-fit metric. Gradient descent was performed on the proliferation and drift parameters to 

determine the best-fit values that minimize L. The calculated potential landscape results 

are robust to small variations in parameters for calculating the principal curve. (S12. Fig) 
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Figures 

 

Fig 1. Information theoretic analysis of time-series transcriptome data of a patient-

derived BRAF-mutant melanoma cells (M397) treated with a BRAFi. The cells 

responded to BRAFi by transitioning from a melanocytic to mesenchymal phenotype over 

the 2.5 month time course. (A) Top: Illustration of the BRAFi-induced phenotype 

transitions in M397. Middle: Flow cytometry profile of marker proteins MART-1 and 

NGFR along the course of the transition. Bottom: DAPI, NGFR and N-Cadherin staining 

of untreated, neural-crest like, and drug-tolerant mesenchymal cells. Scale bar: 100 μm. (B) 

The amplitude of the steady state and the top three constraints as determined by surprisal 

analysis of the kinetic series of transcriptome data. (C) The contributions of the steady state 

and 3 constraints to gene expression are visualized using a self-organizing map to divide 

the measured transcript levels into 625 (25×25) “miniclusters”. Each minicluster of genes 

is mapped onto the same pixel in each map. The predicted cell state profile appears as the 

sum of the steady state and the top three constraints. 
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Fig 2. Gene set enrichment of the three constrained processes for the phenotypic and 

functional changes over the drug-induced phenotypic evolution. (A) List of relevant 

enriched gene sets, and their relative association with each of the top three constraints. All 

these gene sets exhibit a nominal p value < 0.05.  (B) Cytoscape map that annotates the 

enriched gene sets associated with the G1 constraint with respect to their functional 

categories. Enriched gene sets are represented by nodes, which are grouped and annotated 

based on gene similarity within each gene set. The size of each node is proportional to the 

total number of genes within each gene set. The edge thickness is proportional to the number 

of shared genes between gene sets. Red (blue) gene sets are positively (negatively) correlated 

with G1. Gene sets with similar functions are boxed together with the group name overlaid. 

Ten specific gene sets are highlighted with thicker outline, and numbered. For example, gene 

sets 1 and 2 are labeled within the ‘signaling pathways’ box. The corresponding names for 

those numbered gene sets are provided in the key.  
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Fig 3. Single-cell flow cytometry analysis of the phenotypic evolution of the M397 cells 

from melanocyte to mesenchymal under BRAFi treatment, and results of Fokker-

Planck-type kinetic model. (A) A reaction coordinate (x), represented as a solid line that 

evolves from blue (for melanocytic phenotypes) to red (mesenchymal phenotypes), is fitted 

to the flow cytometry data across all time points. (B) The measured and predicted cell 

probability density distribution along the reaction coordinate x at representative time points 
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over the transition. Blue line: Experimentally measured distribution of cells. Green line: 

predicted cell distribution using the original Fokker-Planck model. Red line: predicted 

distribution from the modified kinetic model that includes a state-dependent cell net growth 

rate. 
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Fig 4. Cell-state-dependent relative net growth rates over the course of the phenotypic 

evolution for M397 cells. (A) Experimentally measured and predicted cell growth rates 

(bars). D0-D21 is associated with melanocytic and neural crest-like states, and D21-D78 is 

primarily associated with the mesenchymal state. Mean values and error bars are defined as 

mean and s.d., respectively. (B) Expression level of proliferation-related genes after short-

term (early) or long-term (late) BRAF inhibition. 
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Fig 5. Potential landscapes describing the drug-induced phenotypic evolution from 

melanocyte to mesenchymal phenotype for M397. (A) The landscape of scalar potential 

extracted from the modified FP-type (Eq. 3) kinetic model. The blue, cyan, and orange 

arrows indicate regions dominated by melanocytic (MART1+/NGFR±), neural-crest 

(MART1+/NFGR-) and mesenchymal (MART1-/NGFR-) phenotypes, respectively. (B) The 

free energy-like potential calculated by surprisal analysis shows the relative cell state stability 

with respect to the global steady state across different time points. The blue, cyan, and orange 

circles represent cell populations primarily at melanocytic, neural-crest and mesenchymal 

phenotypes at the respective time points. (C) Comparison between normalized free energy-

like potential (from surprisal analysis, orange bar) and scalar potential (from modified FP-

type kinetic model, blue bar) for D73, calculated from transcriptional profiles of unsorted 

and sorted NGFR-/MART-1- mesenchymal cells. (D) Cartoon illustration of the competition 

between state-dependent net growth and system stabilization towards the attractor state upon 

drug treatment. 
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Supplementary Information 

 

Supplementary figures 

 

S1 Fig. Kinetic flow cytometry data of drug-induced phenotypic evolution. A. Cartoon 

illustration of the BRAFi-induced transition where the melanoma cells take an approximately 

counterclockwise trajectory around the flow cytometry plot. B. Flow cytometry plots of 

NGFR and MART-1 protein markers for M397 at a set of the points over the drug-induced 

phenotypic evolution. Data are represented as a 2-dimensional density plot for each day. As 
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the de-differentiation transition occurs from day 0 to day 78, the cell population moves 

along a counterclockwise trajectory. C. Flow cytometry plots of NGFR and MART-1 protein 

markers for M229 at a set of the points over the drug-induced phenotypic evolution. 
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S2 Fig. Heatmap and hierarchical clustering for transcriptomic data of M397 and 

M229 cells under different drug treatment and/or sorting conditions. A is for M397 and 

B is for M229. Each Row of the heatmap indicates each gene. Each column is a sample 

condition, as indicated. Color represents gene expression level, with up-regulated genes 

colored in red and down-regulated genes colored in blue. Different molecular baselines of 

the two melanoma cell lines dictate distinct clustering patterns that require Surprisal analysis 

to resolve the altered molecular features shared by the two cell lines across the transition.  
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S3 Fig. Heatmap visualization of amplitudes for steady state and different constraints 

across different samples of M397 and M229. M397 data is shown in panel A and that of 

M229 is shown in panel B. Each row indicates a constraint, with λ0 the global stable state. 

Each column is a sample condition, as indicated. Positive valued constraints are red, and 

negative are blue.  
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S4 Fig. Comparison of surprisal analysis result between M397 and M229. A. The 

amplitude of steady state and top three constraints across different time points determined by 

surprisal analysis of M397 cell line. B. The amplitude of steady state and top three constraints 

across different time points determined by surprisal analysis of M229 cell line. C. Gene set 

enrichment of the three constrained processes for the phenotypic and functional changes of 

M397 (left) and M229 (right) over the drug-induced phenotypic evolution. Each bar 

represents one enriched gene sets associated with the top three constraints as indicated by 

their respective colors. Value represents the normalized enrichment score (NES) calculated 

from GSEA.  
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S5 Fig. Scatter plot comparison of the measured versus the predicted gene expression 

levels for M397 from surprisal analysis across different time points, using the global 

stable state and top three constraints. 
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S6 Fig. Enrichment map of the enriched gene sets in the second constraint, as 

identified by GSEA. 
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S7 Fig. Cell sorting and relaxation experiments of M397. A. Illustration of cell sorting 

experiments. Cells cultured without drug treatment are harvested and stained with NGFR 

antibody. A flow cytometer separates the NGFR+ live cell subpopulations and the sorted 

cells are then cultured in the same condition as before sorting. The NGFR and MART-1 

(not changing) expression levels are measured for subsequent days as the population re-

equilibrates towards the unsorted steady state distribution. B. Flow cytometry data of log 

NGFR level from cell sorting experiment. The relaxation dynamics of the sorted 

subpopulation is measured using flow cytometry. Dataset illustrated here was later 

modeled by a Fokker-Planck equation to determine the diffusion constant of the system. 
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S8 Fig. The measured and predicted cell probability density distribution of M229 along 

reaction coordinate x at various time points. Blue line: experimental data distribution. 

Green line: predicted distribution using the original Fokker-Planck model (FP model). Red 

line: predicted distribution from the modified FP-type kinetic model that includes a state-

dependent net growth rate. 
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S9 Fig. Comparison of potential calculated from unmodified and modified Fokker-

Planck-type kinetic models. Potential landscape calculated from unmodified Fokker-

Planck model is shown in panel A and the one from modified FP-type kinetic model is 

shown in panel B. 
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S10 Fig. The potential landscapes describing the drug-induced phenotypic evolution 

from melanocytic to mesenchymal phenotype for M229. A. Potential landscape 

extracted from modified FP-type kinetic model. B. The free energy-like potential 

calculated by surprisal analysis shows the relative change in stability with respect to the 

global stable state across different time points. 
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S11 Fig. Illustration of cell sorting for NGFR negative phenotype of M397 at day 73. 

To validate the free energy calculation from the surprisal analysis, pure NGFR-/MART- 

subpopulation was sorted using flow cytometry for RNA sequencing and compared against 

RNA-seq from unsorted cells. 
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S12 Fig. Sensitivity analysis of “Principal Curve”. A. Three principal curves calculated 

with different iteration number. B. Potential U calculated for all three different principal 

curves. 
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Supplementary tables 

S1 Table: Kinetic RNA-seq data for M397 and M229 cells.  

(https://doi.org/10.1371/journal.pcbi.1007034.s013) 

S2 Table: The top 100 genes that contribute positively and negatively to the top3 

constraints. (https://doi.org/10.1371/journal.pcbi.1007034.s014) 

https://doi.org/10.1371/journal.pcbi.1007034.s013
https://doi.org/10.1371/journal.pcbi.1007034.s014
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 C h a p t e r  5  

TRAJECTORIES FROM SNAPSHOTS: INTEGRATED 
PROTEOMIC AND METABOLIC SINGLE-CELL ASSAYS REVEAL 
MULTIPLE INDEPENDENT ADAPTIVE RESPONSES TO DRUG 

TOLERANCE IN A BRAF-MUTANT MELANOMA CELL LINE 

The determination of individual cell trajectories through a high-dimensional cell-state 

space is an outstanding challenge, with relevance towards understanding biological 

changes ranging from cellular differentiation to epigenetic (adaptive) responses of diseased 

cells to drugging. We report on a combined experimental and theoretic method for 

determining the trajectories that specific highly plastic BRAFV600E mutant patient-

derived melanoma cancer cells take between drug-naïve and drug-tolerant states. Recent 

studies have implicated non-genetic, fast-acting resistance mechanisms are activated in 

these cells following BRAF inhibition. While single-cell highly multiplex omics tools can 

yield snapshots of the cell state space landscape sampled at any given time point, individual 

cell trajectories must be inferred from a kinetic series of snapshots, and that inference can 

be confounded by stochastic cell state switching. Using a microfludic-based single-cell 

integrated proteomic and metabolic assay, we assayed for a panel of signaling, phenotypic, 

and metabolic regulators at four time points during the first five days of drug treatment. 

Dimensional reduction of the resultant data set, coupled with information theoretic 

analysis, uncovered a complex cell state landscape and identified two distinct paths 

connecting drug-naïve and drug-tolerant states. Cells are shown to exclusively traverse one 

of the two pathways depending on the level of the lineage restricted transcription factor 

MITF in the drug-naïve cells. The two trajectories are associated with distinct signaling 

and metabolic susceptibilities, and are independently druggable. Our results update the 

paradigm of adaptive resistance development in an isogenic cell population and offer 

insight into the design of more effective combination therapies. 

This chapter includes content from our previously published article: 

[1] Su, Yapeng, Guideng Li, Melissa E. Ko, Hanjun Cheng, Ronghui Zhu, Min Xue, Jessica Wang et al. 

"Trajectories from Snapshots: Integrated proteomic and metabolic single-cell assays reveal multiple 

independent adaptive responses to drug tolerance in a BRAF-mutant melanoma cell line." Nature 
Communications (Under revision). doi: 10.1101/767988 
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Introduction 

Cellular processes ranging from the development of drug-tolerant states in cancer cells 

to stem cell differentiation, can be described as cell state changes. Specifically, certain cancer 

cells that are initially responsive to targeted inhibitors that act against these oncogenic 

drivers[1–4] can evolve into a drug-tolerant state via non-genetic mechanisms, perhaps 

preceding the emergence of drug-resistant clones[5–7].  The molecular details of how the 

cancer cells transition between the two states can inform the use of additional drugs designed 

to arrest the transition[8–10] . Dating back to the epigenetic landscapes of Waddington[11], 

a prevalent picture is that cells take a single path that connects the initial to the final state, 

but this does not have to be the case. In fact, if cells can take multiple independent paths 

between the two states, then the challenge of finding drug combination that can arrest the 

unfavorable cell state transition is significantly increased. Here we investigate a highly 

plastic cancer cell line that, when treated with a targeted inhibitor, switches from a rapidly 

dividing, drug responsive state to a drug-tolerant, slow cycling state within a few days.  We 

show that the cells can take multiple classes of trajectories between the two states. Each 

trajectory class is characterized by a unique signaling and metabolic networks with distinct 

druggable susceptibilities.   

From a functional perspective, cell state changes are often accompanied by changes in 

gene expression[10,12–15], protein signaling[12,14,16–22] and cellular metabolism.[23–26] 

Highly multiplex single-cell methods[27–30] can provide powerful tools for mapping out 

cell-state landscapes associated with cell state changes[20,31–35].  However, capturing the 

trajectories that individual cells take as they traverse those landscapes is challenging, even 

for the case of an isogenic cell line. This is because multiplex single-cell omics methods only 

provide snapshots of the occupied cell state space at a given instant. Measured similarities 

between cells captured at successive time points can imply probable paths through the 

landscape[36–40]. However, cells may stochastically switch from one state to another, so an 

individual cell may not take a smooth trajectory between states. Time-lapse imaging methods 

can map individual cell trajectories, but for only a couple of analytes for each cell, and so 

provide a limited view of the cell state space[41–43]. Thus, the ability to extract cellular 

trajectories from a kinetic series of cell state space snapshots would have high value. Here 

we report on combined experimental and theoretical approaches towards addressing this 

fundamental challenge.  

We utilized a patient-derived BRAFV600E mutant melanoma cancer cell line as a model 

for the rapid development of drug tolerance against targeted inhibitors. Under BRAF 

inhibition, these highly plastic cells rapidly (and reversibly) transition from a drug-

responsive state to a drug-tolerant state[12,19]. We characterized this transition using 
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integrated single-cell functional proteomic and metabolic assays designed to broadly 

sample proteins and metabolites associated with selected cancer hallmarks and cell state-

specific processes. Dimensional reduction, information-theoretic analysis, and visualization 

of the time-series single-cell data uncovered a complex cell state space landscape, and hinted 

at the possibility of two distinct paths between drug-naïve and drug tolerant states. Further 

experiments tested whether these paths constituted independent (and thus independently 

druggable) cellular trajectories. In fact, we find that even isogenic tumor cells can undertake 

different, independent trajectories to drug tolerance. The two trajectories are associated with 

distinct signaling and metabolic networks, and are independently druggable. This finding 

challenges the current paradigm of targeted inhibitor resistance development, and also 

provides guidelines for assessing the value of combination therapies. 

Results 

Integrated single-cell proteomic and metabolic analysis characterizes early 

BRAFi adaptation in melanoma cells  

We characterized drug adaptation in individual melanoma cells by assaying for a panel 

of selected proteins, plus glucose uptake, in BRAFV600E mutant M397 cell cultures during the 

first five days of BRAFi treatment using the Single Cell Barcode Chip (SCBC)[12,20,29,44–

47] (Fig 1a). Following 0, 1, 3, and 5 days (D0 control, D1, D3, and D5) of drug treatment, 

individual cells were isolated into nanoliter-volume microchambers within an SCBC. Each 

isolated cell was lysed in situ to release the cellular contents. Each microchamber within an 

SCBC contains a full barcode array in which each barcode element is either an antibody for 

specific protein capture[48] or a molecular probe designed to assay for a specific metabolite 

via a competition assay[46,47] (Fig.1a). The design of this panel was informed by 

transcriptomic analysis of BRAFi-treated M397 cells (Supplementary Fig. 1) and existing 

literature[12,14,16,23,49,50]. The panel broadly samples various functional and metabolic 

hallmarks of cancer, as well as cell state markers.  

Single-cell profiling of BRAFi-naïve (D0) M397 cells revealed heterogeneous levels of 

many assayed markers at baseline. Referring to Fig. 1b,c and Supplementary Fig. 2, certain 

analytes exhibit high variability across the cell population. These include the melanocytic 

lineage transcription factor MITF and its downstream melanocytic cell state marker MART1, 

the metabolic regulators HIF1α  and p-AMPKα, and the proliferation marker Ki67. The 

variance in Ki67 implies that the population contains both rapid-cycling and slow-cycling 

cells.  By contrast, a high glucose uptake and the expression of metabolic enzymes LDH and 

PKM2 were relatively uniform from cell-to-cell. Drug treatment initially (at D1) inhibits 

glucose uptake and represses most metabolic regulators and signaling phosphoproteins, as 
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well as Ki67. The repression of these cancer hallmarks reflects blockage of the key 

oncogenic signaling pathway upon initial BRAF inhibition. The drug also promotes transient 

cell differentiation followed by dedifferentiation, as evidenced by an increase of MART1 

expression in D3 followed by its downregulation in D5. However, a small subpopulation of 

M397 cells remains Ki67-high in D1, implying a slower drug response in that subset of cells. 

At D3, most analytes exhibit a sharp and transitory increase in variance, which shrinks by 

D5. This change includes all of the metabolic regulators except p-LKB, all resistant state 

markers and regulators except Slug, all of the metabolic enzymes, and all of the signaling 

phosphoproteins. The increased magnitude of the fluctuations of many markers at D3, based 

upon previous reports[45,51], implies one or more cell state changes near this time point. By 

D5, glucose uptake has increased back to near D0 levels, but with increased variance. Ki67 

is further decreased, and with sharply decreased variance relative to D0. Additionally at this 

day, the variance and abundance of the epithelial–mesenchymal transition (EMT)-related 

transcription factor, Slug, has increased, indicating the emergence of some cells that are 

trending towards a mesenchymal phenotype. Further, the levels of the other assayed protein 

markers that are associated with drug resistance (AXL, N-cadherin, NGFR, and TNFR) are 

all higher by D5. The upregulation of glucose uptake and many resistance marker indicates 

that cells have initiated drug resistance programs by D5. Thus, single-cell integrated 

proteomic and metabolic analysis, when viewed at the level of individual analytes, provides 

evidence of initial drug response at D1, a drug-induced cell state change at D3, and emerging 

drug tolerance at D5, prior to an increase in cell proliferation (full drug resistance) which has 

been shown to occur a few weeks later. These observations are all consistent with existing 

literature[12,14,16,52,53].  

Dimensional reduction analysis implies multiple trajectories  towards drug 

adaptation  

Simultaneous visualization of the time-dependent, coordinated changes across multiple 

markers requires algorithms that can reduce the high-dimensionality of the dataset. We  

applied two such algorithms: the FLOW-MAP algorithm[54] and the t-SNE algorithm[32]. 

Both approaches provided an intuitive representation of the dataset (Fig. 2 and 

Supplementary Figs. 3 and 4). FLOW-MAP analysis revealed that melanoma cells 

clustered primarily based upon drug exposure time (Fig. 2, upper left plot) indicating 

chronological cell state trajectories. Most untreated M397 cells (in the lower left of the graph) 

were characterized by uniform levels of all measured analytes excepting N-cadherin, MITF, 

HIF1α, Ki67 and MART1 (see analyte-specific plots of Fig. 2 and Supplementary Fig. 3). 

Most of these non-uniformly expressed proteins exhibit differences that vary gradually from 

left-to-right across the D0 cluster of cells, with a small subpopulation of untreated cells (right 

hand side of D0 cluster) exhibiting lower expression of Ki67, MITF, and MART1. These 
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features point to a small group of dedifferentiated, slow-cycling cells. Upon BRAFi 

treatment, the cells initially split to occupy two regions of the FLOW-MAP. At D1 (green 

points), the majority of the cells cluster to the upper right of the D0 cells, while a small 

subpopulation clusters directly to the right of the D0 group. This trend continues at D3, with 

most cells clustering above the largest D1 mass, while a small number cluster to the right of 

the small D1 group. By D5 (purple), all cells cluster to the right hand side of the graph. The 

bifurcation of cells at Day 1 and 3 implies the possibility of “upper” and “lower” trajectories 

towards the drug-tolerant state. The possibility of two classes of trajectories was also 

indicated by t-SNE analysis[32] (Supplementary Fig.4). Thus, both computational analyses 

of the single-cell data set indicate a bifurcated drug response during the early stages of 

BRAFi adaptation.  

Surprisal analysis uncovers analyte modules of the bifurcated drug -

response trajectories 

To further dissect the dynamics of molecular changes associated with the bifurcated 

drug-response trajectories, we applied surprisal analysis[55–57] to our single-cell dataset. 

Surprisal analysis is a thermodynamics-inspired method that has been broadly applied to 

understanding large-scale bulk and single-cell omics data sets[51,55,57–59]. This approach 

is based on the identification of the steady state of the system (formally speaking the state of 

minimum free energy), and any constraints (analyte modules) that increase the free energy 

from this theoretical minimum[57,60]. Using this approach, we identified two main modules, 

each representing a set of analytes that are coordinately changing together across cells.  The 

predicted expression of all 20 analytes based on these two modules matched well with the 

measured single-cell dataset (Supplementary Figs. 5 and 6), demonstrating that modules 1 

and 2 recapitulate the overall changes of all molecular signatures across all cells over the 

five-day course of drug treatment.  

The influence score (the lambda values defined in ref [57]) of a module in a cell 

represents the extent to which the module-associated analytes are enriched or repressed in 

that cell.  Modules 1 and 2 were visualized by color-coding their influence scores onto each 

node in the FLOW-MAP graph (Fig. 3a). We found that the influence score of module 1 

gradually increased from negative (blue) to positive (red) value along both the upper and 

lower paths, with a clear “biophysical barrier” (lambda1 = 0) in the middle time points (Fig. 

3a, left panel). We have previously shown that such a sign change can imply a cell state 

transition[55]. The time-dependence of module 1 appears to reflect the transition from a 

drug-responsive state to a slow-cycling, drug-tolerant state between days 1 and 3. This 

observation is consistent with the negative correlation of Ki67 expression and positive 

correlation of NGFR/AXL expression with the module 1 score (Supplementary Fig. 7). The 
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module 2 projection on the FLOW-MAP also exhibits a sign change, or biophysical 

barrier (lambda2 = 0), which separates the upper and lower paths (Fig. 3a, right panel). In 

fact, module 2 distinguishes cell subpopulations for each of the analyzed time points. 

Notably, the expression of melanocytic phenotype transcription factor MITF and its 

downstream protein MART1 both showed negative correlations with module 2 score (Fig 

3b and Supplementary Fig. 8), indicating that the separation of the two paths may be related 

to the melanocytic lineage of the cells. In summary, surprisal analysis resolves both time-

dependent and path-specific modules. It also reveals that, as the cells advance from drug-

naïve to drug-tolerant, they occupy a rather complex landscape of cellular states separated 

by multiple biophysical barriers (Supplementary Fig. 9). 

Experimental validation supports bifurcated drug-response trajectories 

Surprisal analysis provides theoretical support for the existence of both the upper and 

lower paths from drug-naïve to drug-tolerant cell states. However, experimental validation 

is required to determine whether individual cells exclusively follow a single trajectory along 

one path or the other, or if cells stochastically switch between paths. The map of module2 on 

the D0 cells data hints at biological differences that separate even the untreated D0 cells into 

two subpopulations (Supplementary Fig. 9). The expression levels of the transcription 

factor MITF and its direct downstream target MART1 are among the top four markers that 

distinguish the two D0 subpopulations (Supplementary Fig. 10). This finding suggests that 

drug-treated MITFlow cells might follow the lower path, while MITFhigh cells might follow 

the upper path (Supplementary Figs. 11 a). We thus generated MITF-GFP reporter cell lines 

and sorted GFPhigh (MITFhigh) and GFPlow (MITFlow) subpopulations (Supplementary Figs. 

11 b and 12). Consistent with our hypothesis, MITFhigh cells displayed higher expression of 

Ki67 and MITF as well as a shorter doubling time relative to sorted MITFlow subpopulations 

(Fig. 3 c-f). This data is consistent with reported observations of melanoma phenotype 

switching from a melanocytic, highly proliferative state to a non-melanocytic, more invasive 

state[61]. It also confirmed that the two subpopulations in D0 cells can be separated using 

this reporter system, and further suggests that the MITFhigh and MITFlow subpopulations at 

D0 may represent cells destined to follow the upper and lower paths, respectively, following 

drug treatment.  

To quantify the frequency of stochastic interconversion between the sorted MITFhigh and 

MITFlow subpopulations during the drug treatment, we monitored the MITF activity within 

large numbers of single-cells, over a 5-day period of BRAFi treatment. As expected, the 

MITFhigh cells always displayed higher activity (quantified by the GFP-reporter) than did the 

MITFlow cells (Fig. 3g), with no significant stochastic switching between the two trajectories 

observed.  



 

 

198 

To further confirm that the sorted cells reach their respective destination states after 

five days of drugging, we quantified the markers that are differentially expressed between 

the upper and lower paths at D5. Mining of the single-cell data sets revealed that several 

markers, including Slug, MITF, MART1 and PFK are differentially expressed between the 

two paths (negative- and positive-valued module 2) at D5 (Fig. 3h, Supplementary Figs. 9 

and 13a). By analyzing the expression of these four genes in sorted MITFhigh and MITFlow 

D0 cells after five days of treatment (Supplementary Fig. 13b), we found that their 

expression levels in sorted MITFlow cells were significantly lower than those in MITFhigh 

cells after five days of treatment (Fig. 3i). These results experimentally support that, upon 

drug treatment, MITFhigh and MITFlow cells take distinct trajectories toward drug tolerance 

along the upper and lower paths respectively (Supplementary Fig. 13a, left panel).  

MITF is the molecular driver for the two drug response trajectories 

MITF is suggested to be an elicitor of intrinsic drug tolerance[62]. To investigate if 

MITF drives the bifurcation in drug response, we generated a M397 cell line with MITF 

stably knocked down. Before treatment, knockdown of MITF induced the cells to become 

slow-cycling with characteristic low Ki67 expression (Supplementary Fig. 14a, b), 

suggesting that downregulation of MITF will force these cells to transition along the lower 

path. Furthermore, upon five days of BRAFi treatment, MITF knockdown cells showed 

significantly lower levels of Slug, MITF, MART1 and PFK relative to control 

(Supplementary Fig. 14 c), suggesting that MITF-silenced cells did, in fact, follow a 

trajectory along the lower path. Thus, MITF is identified as an important molecular driver 

that discriminates between the two drug response trajectories we identified.   

Critical point analysis identifies central regulators along both trajectories  

Surprisal analysis of the single-cell data sets indicates that both the upper and lower 

paths are characterized by a cell state transition in the D1-D3 time window (Fig 3a, left 

panel). A critical point analysis of the single-cell data in different regions of the FLOW-

MAP can provide validation of this picture, and can also help identify the tipping points at 

which those cell state changes take place.[51,63,64] Furthermore, network analysis of those 

tipping points can be used to identify key regulators that drive the transition from drug-naïve 

to drug-tolerant[12,51,58,63,65,66].  

We first clustered the single-cell data from all time points into 14 different sub-clusters 

on the FLOW-MAP. Clusters 1, 6, 7, 8, 10, 11, and 12 align with the upper path, while 

clusters 2, 3, 9, 13, and 14 fall along the lower path (Fig. 4a). Two previously reported critical 

state transition indices, the signaling network activity index (SNAI)[12] and the critical 
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transition index (Ic)[64], were utilized to evaluate the tipping points associated with the 

lower and upper paths. We found cluster 7 in the upper path and cluster 9 in the lower path 

showed the highest values of these indices within their respective path (Fig.4 b, c and 

Supplementary Figs. 15, 16, and 17), suggesting that clusters 7 and 9 are closest to the 

tipping points.  

We next investigated the correlation networks[12,20,44] for clusters 7 and 9. These two 

networks are characterized by different structures (Fig. 4d, e), implying these transitions are 

regulated in different ways. We quantified the participation of each analyte (node) in the 

correlation networks by calculating the node degree and hub score for each node (See 

Methods). For cluster 7 (upper path), we found that several transcription factors and 

enzymes, including MITF, PFK, p-LKB, PKM2, LDH2 and Slug, showed high levels of 

network participation by both scoring metrics (Fig. 4f and Supplementary Fig. 18).  For 

cluster 9 (lower path), TNFR, N-cadherin and p-NFκB-p65 appeared dominant. An 

interesting observation was that the markers that exhibited a high score in cluster 7 often 

displayed a low score in cluster 9, and vice versa, indicating that the two paths are 

dissimilarly regulated. 

To examine if the transitions along the two paths are driven by distinct hub regulators, 

we perturbed the respective hub nodes identified within clusters 7 and 9, and probed for 

differential influence on the two trajectories. We hypothesized that inhibition of the 

glycolysis enzyme PKM2 and the signaling phosphoprotein p-NFκB-p65 would 

differentially influence the transitions along upper and lower paths respectively (Fig. 4f and 

Supplementary Fig. 18). Accordingly, we used a PKM2 inhibitor (PKM2i) or an NFκB 

inhibitor (NFκBi) in combination with the BRAFi to treat sorted MITFhigh and MITFlow cell 

subpopulations. Consistent with our hypothesis, the MITFlow subpopulation was more 

sensitive to the BRAFi + NFκBi combination (Fig. 5a), while the MITFhigh subpopulation 

was more sensitive to the BRAFi + PKM2i combination (Fig. 5b). This hypothesis was 

further validated by testing the same drug combinations on the MITF-knockdown cell line 

relative to unmodified M397 cells (Fig. 5c, d). Thus, cells passing along the different 

trajectories displayed differential sensitivities to PKM2 and NFκB inhibition. 

Considering the differential regulator dependence of the two trajectories, we further 

hypothesized that co-blocking both trajectories by simultaneously inhibiting PKM2 and 

NFκB signaling might show additive effects in preventing the transitions towards BRAFi 

tolerance. To test this hypothesis, we used the triple drug combination (BRAFi + PKM2i + 

NFκBi) to treat the M397 cells in vitro for five days and compared the resulting cell number 

against monotherapies (BRAFi only) and double-drug combinations (BRAFi + PKM2i and 

BRAFi + NFκBi) for five days. Consistent with our prediction, the triple-drug combination 
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significantly outperformed the double-drug combinations which in turn were superior to 

the monotherapy (Fig. 5e). Further, PKM2i or NFκBi monotherapy showed minimal growth 

inhibition on the M397 cells (Supplementary Fig.19), implying that these drugs likely 

function by selectively blocking the BRAFi-induced cell state transitions to the drug-tolerant 

state. These results demonstrate that the upper and lower paths are independent, have 

different regulators, and are independently druggable. 

Discussion 

We explored here whether cell trajectories connecting between the initial and final states 

of a cell-state transition could be determined from a kinetic series of static snapshots of the 

traversed cell-state space landscape. As a model system, we utilized a highly plastic, patient-

derived M397 BRAFV600E mutant melanoma cell line, which has been shown to reversibly 

transition between drug-naïve and drug-resistant states upon treatment with a BRAF 

inhibitor. While single-cell omics tools have proven immensely valuable for resolving the 

cellular heterogeneity of tissues at a single given time point, here we sought to quantitatively 

connect that cellular heterogeneity to dynamic heterogeneity of cell state changes.  

We utilized microfluidic-based SCBC technology to characterize the cellular 

heterogeneity during the first five days of drug-response. Because both metabolic activity 

and signaling pathways display functional changes during the early drug-response, SCBC is 

uniquely suited here since it is capable of simultaneously capturing both metabolites and 

cytoplasmic proteins (and phosphoproteins) from single cells. However, unlike single-cell 

RNA-seq, single cell proteomics is typically limited to assaying only tens of functional 

proteins and metabolites. In order to accurately capture the cell state space accessed by M397 

cells under BRAFi treatment, we first utilized transcriptomic analysis and literature guidance 

to define a panel of 20 analytes that included phenotypic markers, and markers of metabolic 

activity, oncogenic signaling, and cell proliferation, all of which are altered during the initial 

drug-response. Single cell analysis using this carefully selected panel readily resolved the 

complex cell-state space traversed by the cells during the first few days of BRAFi treatment. 

Of course, moving towards larger numbers of analytes would certainly provide for a deeper 

characterization.[67–69] 

We utilized computational and theoretical methods[32,33,36,37,70–73], integrated with 

additional cell biology experiments, to translate the SCBC kinetic series of snapshots in to 

classes of single cell trajectories.  Dimensional reduction of the dataset using the FLOW-

MAP algorithm revealed suggested that the cells might take one of two paths (labeled 

“upper” and “lower”) through cell-state space that connected the drug-naïve cells to the drug-

resistant cells. Surprisal analysis of the same data resolved both a time-dependent module 
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and a path-dependent module. The path-dependent module suggested that cells traveling 

along one path are separated from the other path by a biophysical barrier, which appeared to 

be associated with the transcription factor MITF and its downstream melanocytic marker 

MART1. These analyses further predicted that the trajectory a specific cell takes is 

determined by its MITF level prior to drug treatment. These predictions were verified 

experimentally, which supported the integration of computational visualization methods with 

theoretical biophysical approaches to gain insight into a complex biological system. Such an 

approach should be broadly applicable to other dynamic, complex biological systems, 

including studies of cellular differentiation, tumorigenesis, and more.  

Proliferative and invasive phenotypes are well-known in melanoma[61,74]. MITF, 

MART1, and Ki67 have been reported as robust markers for distinguishing these two 

phenotypes[61,74]. We have found that these two distinct phenotypes can co-exist even in 

the untreated, isogenic M397 cell line used in our study. The MITFhigh and MITFlow 

subpopulations not only displayed different doubling time without BRAFi treatment but also 

followed distinct drug-response trajectories upon treatment. This finding is consistent with 

the observations of melanoma phenotype switching from a melanocytic and highly 

proliferative state to a non-melanocytic and more invasive state61. In that study, proliferative 

or invasive cell lines displayed fixed gene expression profiles in culture, but when 

transplanted in vivo, each class generated heterogeneous tumors containing cells with both 

kinds of expression profile. Consistent with their observation of fixed gene expression 

profiles in vitro, we did not observe significant inter-conversion between cells traveling along 

different paths during the five-day treatment period. These findings suggested that these two 

phenotypes are relatively stable in short term period of BRAFi treatment in vitro. Of course, 

our in vitro study may not fully recapitulate in vivo melanoma biology in which the tumor 

microenvironment can wield a strong influence. Furthermore, we also found that transition 

towards MITF-low invasive-like phenotype can be easily induced by artificial knockdown 

of a single transcription factor: MITF. This indicates that the complex cell-state landscape is 

likely regulated by very few master-regulators. It also emphasizes the importance of MITF 

as a molecular driver in regulating melanoma phenotype determination[75]. These findings, 

which add significantly to our understanding of melanoma phenotype regulation, would not 

have been evident had it not been for single-cell analytics.   

The coexistence of two distinct drug-response trajectories even in an isogenic cell line may 

explain the so-called “mixed-responses”, which is commonly observed during the 

therapeutic treatment of melanoma in clinical settings.  Such alternative “escape paths” may 

also explain why melanomas are so refractory to BRAFi targeted therapy. Intriguingly, for 

each of the two paths, different drug-susceptibilities were identified by critical point analysis 

and network analysis: the upper path was found to be susceptible to inhibition of the 
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glycolysis enzyme PKM2, while the lower path is sensitive to NFκb-p65 inhibition. 

These differential drug sensitivity results are consistent with previous bulk studies on 

invasive phenotypes of melanoma: MITF-low, invasive (or mesenchymal) melanoma cells 

have been reported to be more dependent on NFκB signaling[12,76], and the single-cell 

resolution of our study reveals the exact molecular and cellular dynamics behind that 

observation. Co-inhibition of PKM2 and NFκB pathways demonstrated superior effects in 

inhibiting tumor growth, however, both genes are essential regulators in normal cells and 

their inhibition can cause toxicity to non-malignant tissue[77,78].  Nevertheless, the resolved 

heterogeneous drug response trajectories update the current understanding of resistance 

development, and can provide a powerful methodology for identifying effective therapy 

combinations. 
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Methods 

Cell lines, reagents and cell culture    

Patient-derived melanoma cell line, M397, used in this study was generated under 

UCLA IRB approval # 11–003254. Cells were cultured at 37 °C with 5% CO2 in RPMI 

1640 with L-glutamine (Life Technologies), supplemented with 10% fetal bovine serum 

(Omega), and 0.2% antibiotics (MycoZapTM Plus-CL from Lonza). The cell line was 

periodically authenticated to its early passage using GenePrint® 10 System (Promega). 

Presence of mutations in the genes of interest was checked by OncoMap 3 or Iontrone, and 

was confirmed by PCR and Sanger sequencing as previously described[79,80]. BRAF 

inhibitor (vemurafenib), PKM2 inhibitor (Compound 3K) and NFκB inhibitor (JSH-23), 

all from Selleck Chemicals LLC, were dissolved in DMSO at designated concentrations 

before applying to cell culture media. M397 cells were plated in 10cm tissue culture plate 

at 60% confluency and treated with 3 µM BRAF inhibitor for the specified numbers of 

days.  

Microchip fabrication and integrated single-cell proteomic and metabolic assay 

The fabrication of the SCBC devices and the protocol of the integrated single-cell 

proteomic assays were extensively discussed in our previous publications[44,46]. Briefly, 

the DNA microarrays within each microchamber were converted to antibody or Nano-

probe microarrays by flowing the DNA-antibody or DNA-probe conjugate cocktail 

solution immediately before use. Cells treated with Gluc-Bio[46] were randomly loaded 

into microchambers within the SCBC. Each microchamber has an assay component, and a 

separate reservoir of lysis buffer, and was photographed after cell loading. The SCBC was 

then cooled on ice for cell lysis. Following a 2-hour protein and metabolite capture period 

at room temperature, the microchambers were flushed and the captured protein or 

metabolite on the arrays were converted into fluorescent readout and digitized by a Genepix 

scanner (Molecular Devices).  

Data processing from Genepix scanner   

By a custom MATLAB code, the average fluorescence signals for all bars within a 

given barcode were extracted and matched with the micrograph of that array to prepare a 

table that contains the microchamber address, the numbers of cells, and the measured 

fluorescence levels of each assayed protein or metabolite. The SCBC readouts from the 

microchambers with a single cell were collected to form an m × n matrix table where each 

row (m) represents a specific microchamber address and each column (n) represents the 
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abundance of a specific analyte. This matrix table is used for further analysis. 

FLOW-MAP Visualizations  

All FLOW-MAP visualizations were created with the FLOWMAPR R package 

available on GitHub (https://github.com/zunderlab/FLOWMAP/). Graphs were produced 

with seed.X = 1 and no clustering or downsampling. Final figures were produced in Gephi 

(https://gephi.org/) either using the “bluered” palette described in the FLOWMAPR 

package or using the “jet” rainbow palette. The code used to generate the exact FLOW-

MAP graphs is available upon request. 

Surprisal Analysis  

Surprisal analysis was applied as previously described[57]. Briefly, the measured level 

of analyte i at cell c, ln 𝑋𝑖(𝑐), is expressed as a sum of a steady state term ln 𝑋𝑖
0(𝑐), and

several constraints (modules) 𝜆𝑗(𝑐) × 𝐺𝑖𝑗  representing deviations from the steady state. 

Each deviation term is a product of a cell-dependent weight (influence score) of the 

constraint 𝜆𝑗(𝑐), and the cell-independent contribution of the analyte to that constraint 

(module) 𝐺𝑖𝑗. To implement surprisal analysis, we compute the singular value 

decomposition (SVD) of the matrix ln 𝑋𝑖(𝑐) . This factors this matrix in a way that 

determines the two sets of parameters that are needed in surprisal analysis: the Lagrange 

multipliers (𝜆𝑗) for all constraints (modules) at a given time point, and for all times and the 

𝐺𝑖𝑗  (time-independent) analyte patterns for all analyte i at each constraint j. In figure 3, 

cells with the top 10% most positive module2 score are defined as Module2-High cells 

(M2-High cells), and the most negative 10% ones are defined as Module2-Low cells (M2-

Low cells). 

Time-lapse microscopy  

Movies were acquired on an Olympus IX8 inverted fluorescence microscope with 

hardware autofocus (ZDC2) and an environmental chamber maintaining a 37C, 5% CO2 

culture environment. Automated acquisition software (METAMORPH, Molecular 

Devices) was used to acquire differential interference contrast (DIC) and GFP images 

every 15 min from multiple stage positions. 

Image segmentation and single-cell fluorescence calculation 

Custom MATLAB code (R2017a, MathWorks) was used to pre-process the DIC 

images of each movie. DIC images were first corrected for uneven illuminations of the 

https://github.com/zunderlab/FLOWMAP/
https://gephi.org/
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field, then adjusted contrast to sharpen the cell edges. The processed DIC images were 

then segmented using image segmentation software ilastik[81] (version 1.3.2) to acquire 

segmented cell bodies. 6 frames (out of 474 frames) were used as the training set for image 

segmentation of each movie. Pixel Classification feature of ilastik 1.3.2 was used to 

segment pixels of all 474 frames into ‘Background’, ‘Cell edge’, and ‘Cell body’ based on 

the labeled 6-image training set of each movie. GFP fluorescence data was extracted from 

cell body segments using a custom Python code. In each movie frame, each separated ‘Cell 

Body’ pixel block from DIC segmentation was first labeled as separated individual single 

cell. Then GFP fluorescence of each single cell block was calculated by integrating 

fluorescence from the corresponding pixels from GFP images. Background GFP 

fluorescence was calculated by the median GFP values of ‘Background’ pixels, and was 

subtracted from GFP values of ‘Cell Body’ pixels. Mean and standard error of the mean 

(SEM) were calculated for each time point from ensemble single-cell GFP fluorescence. 

Single-Cell Clustering   

Prior to clustering, all single-cell data were separated by time point (i.e. day 0, day 1, day 

3, and day 5). Rclusterpp clusters then applied which cluster the cells into 14 

subpopulations. Rclusterpp clusters were produced using the Rclusterpp R package using 

all default settings (https://github.com/nolanlab/Rclusterpp). All clustering algorithms 

were performed with cells clustered on the following markers: Ki67, Mart1, HIF1a, LDH, 

AMPKA, p-ERK1, PFK, p-ACAC, Slug, and p-LKB. The code used for clustering is 

available upon request. 

Signaling Activity Indices   

The signaling network activity index (SNAI) value is defined as “the reciprocal of the 

determinant of the protein-protein correlations” in previous publications[12]. The Ic value 

or critical transition index is defined as “the ratio of the average of all pairs of protein-to-

protein correlation coefficients to the average of all pairs of cell-to-cell correlation 

coefficients” and was calculated as described previously[64]. The code used to calculate 

the SNAI/Ic indices for individual cell clusters is available upon request. 

Network Analysis   

Pair-wise correlation matrices were calculated on within each of the 14 clusters using the 

Hmisc R package (https://cran.r-project.org/web/packages/Hmisc/index.html). Spearman 

correlations were calculated. Correlation output from the Hmisc package produces the pair-

wise correlation values matrix. Bonferroni corrected p-value was used to filter the 

https://github.com/nolanlab/Rclusterpp
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correlation network through statistical significance, and the correlation networks were 

drawn using a custom MATLAB code. Hub score and node degree for each marker in each 

correlation network were calculated using the igraph R package. Both scores were rescaled 

from 0 to 1 for each marker for side-by-side comparison and plotted to visualize marker-

to-marker variation in hub behavior between methods of calculating correlation. The code 

used to perform the correlation network analysis is available upon request. 

mRNA extraction and qPCR    

RNA was extracted from cells using the RNeasy Mini Kit or RNeasy plus Micro Kit 

(Qiagen) according to the manufacturer's protocol. First-strand cDNA was synthesized 

from extracted total RNAs using the iScript cDNA Synthesis Kit (Bio-Rad). The 

expression of human Slug, MITF, MART1and PFK transcripts were analyzed by SYBR 

Green–based real-time quantitative RT-PCR (qRT-PCR) using specific primers purchased 

from Santa Cruz. Data were normalized to the expression of RPL19 and are expressed as 

fold changes. 

MITF knockdown cell line    

Short hairpin RNA (shRNA) targeting the coding sequence of MITF and control shRNA 

were purchased from Santa Cruz.  Lentiviruses encoding control shRNA and MITF shRNA 

were produced in HEK-293T cells by transient transfection of lentiviral based vectors and 

their packaging vectors psPAX2 and pMD2.G as previously described[82]. The virus was 

collected, filtered through a 0.45µm syringe filter after 48 hours and the M397 cells were 

spin-infected with viral supernatant supplemented with 10 µg/mL polybrene at 2,500 rpm 

and 30°C for 90 min.  The transduced cells were selected using puromycin, starting at 3 

days post-transduction.  

MITF Reporter Cell Line    

The human Tyrosinase Promoter (TP) was subcloned from pLightSwitch Prom S700747 

(SwitchGear Genomics, Carlsbad, CA) into the BamH1 and EcoRI sites of the lentiviral 

vector backbone, driving the expression of the Zsgreen gene. Lentivirus particles were 

generated as described above to stably transduced M397 cells. A clonal cell line was further 

generated via single cell sorting and expansion. Cells were then sorted as GFPhigh and 

GFPlow population by BD FACSAria Fusion Cell Sorter for further treatment and analysis.  

Fluorescence microscopy   

Images were acquired at 10X (Olympus, 10X FL PH, 0.3 NA) on an EVOS FL Auto 
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Imaging System (Fisher Scientific) in YFP and differential interference contrast (DIC) 

channel. Light or laser intensity, exposure and gain were set to be the same 

between MITFhigh well and MITFlow well. 

Clonogenic assay   

M397 cells were plated onto six-well plates with fresh media at an optimal confluence. The 

media (with drug or DMSO) were replenished every two days. Upon the time of staining, 

4% paraformaldehyde was applied onto colonies to fix the cells and 0.05% crystal violet 

solution was used for staining the colonies. 
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Figures 

 
Fig. 1. Single-cell proteomic and metabolic analysis of early drug response in M397 

cells. a. The single-cell integrated proteomic and metabolic analysis experiments design. 

Cells from different time points during BRAFi treatment are harvested and individually 

analyzed using the microfluidic based single-cell barcode (SCBC) technology. Each cell was 

characterized for the levels of 6 different categories of markers. b. Heatmap representation 

of integrated proteomic and metabolic analysis dataset. Each row represents an individual 

cell and each column (except the last column) represents an individual analyte, with the color 

in the heatmap representing measured level of the analyte. The last column represents the 

number of days after starting BRAFi treatment. On the X-axis, markers are colored 

corresponding to which of the six functional categories they belong to. c. Violin plot 

representation of distribution of certain representative markers across 4 time points. Y-axis 

represents natural log of measured marker level. Each plot is bordered by the color of the 

functional category of the measured marker. 

  



 

 

209 

 

 
Figure.2 Visualization of single-cell data by FLOW-MAP.   Each dot represents an 

individual cell. The distance between each pair of cells represents the overall multi-omic 

dissimilarity between them. Cell pairs that are close enough are linked with an edge in 

between. The colors of the dots in the main panel (upper-left) represent BRAFi exposure 

time (0, 1, 3, or 5 days) of the corresponding cells. Dot colors in the other panels represent 

the abundance of each marker in each cell. The dashed-line box in the panels for MITF, 

MART1, and Ki67 levels shows a small subpopulation of day-0 cells that are slow cycling 

with less melanocytic phenotype. 
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Fig. 3. Surprisal analysis identifies time-dependent and path-specific analyte modules 

that explain the bifurcated trajectories and identify MITF as a transcription factor 

regulating the bifurcation.  a. Visualization of the influence score of the two regulatory 

modules identified from surprisal analysis. Module1 is time-dependent, while module2 

exhibits a path-specific pattern. The dashed black lines indicate the region for which the 

respective module scores of each cell approach zero. b. Pearson correlation between 

individual marker levels and the module2 score. c, d. Ki67 and MITF expression level in 

module2 score-high and -low subpopulations at day 0. e. Ki67 relative expression, measured 

by q-PCR in sorted MITF-high and MITF-low cells at day 0. f. Doubling time measured in 

treatment-naïve condition, collected from sorted MITF-high and MITF-low cells at day 0. g. 

Single-cell time-lapsed microscopy analysis of MITF-activity during 5 days of BRAFi. Top 

panel: Time-lapse images of sorted GFP-High and GFP-low cells before and after 5 days of 

BRAFi. Bottom panel: Average trace representing MITF activity dynamics across single 

MITF-Low (blue trace) and MITF-High (orange trace) cells over 5 days of BRAFi. Shading 

indicates SEM of the mean. h. Slug, MITF, MART1, and PFK relative expression levels in 
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module2 score-high and -low subpopulations, collected from cells at day 5 and analyzed 

from single-cell dataset. i. Slug, MITF, Mart1, and PFK expression, measured by q-PCR in 

sorted MITF-high and MITF-low day-0 cells that have been treated with BRAFi for 5 days. 
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Figure 4. Critical point analysis (SNAI) and network analysis of two trajectories.  a. 

Clustering of all cells into 4 time point-defined subpopulations. Left panel is FLOW-MAP 

with cells color coded by drug exposure time. Right panel is FLOW-MAP with cell color-

coded as one of the 14 subpopulations defined from clustering analysis. b. Critical point 

transition analysis for upper path. Critical point index SNAI is calculated within each 

subpopulation associated with the upper path and color-coded onto the FLOW-MAP. Red 

indicates higher SNAI value, while blue represents lower SNAI value. Cluster7, shown 

where labeled, shows the highest SNAI value in the upper path. c. Critical point transition 

analysis for lower path. Critical point index SNAI is calculated within each subpopulation 

associated with the lower path and color-coded onto the FLOW-MAP. Red indicates higher 

SNAI value, while blue represents lower SNAI value. Cluster9, shown where labeled, shows 

the highest SNAI value in the lower path. d. Marker-marker correlation networks, extracted 

from SCBC data within cluster7 cells. The correlation strengths are reflected in the color of 

each edge (orange indicates positive correlation and blue indicates negative correlation).  e. 

Marker-marker correlation networks, extracted from SCBC data within cluster9 cells. The 

correlation strengths are reflected in the color of each edge (orange indicates positive 

correlation and blue indicates negative correlation). f. Importance score of each node within 

each network, as defined by node-degree. Colors indicate the node-degree value of each node 
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within cluster7 or cluster9 networks. Nodes labeled with stars were further-tested with 

drug perturbation. 

 
Figure 5. Differential drug sensitivity of cells associated with two trajectories. a. MITF-

GFP reporter cell line were sorted for MITF-high and MITF-low subpopulation before 

drugging. The sorted cells were then treated with BRAFi+NFΚBi combination for 5days and 

then harvest for cell number counting. Relative cell survival of sorted MITF-high and MITF-

low cells after undergoing BRAFi+NFΚBi combination therapy for 5 days were plotted. 

Survival data were normalized to MITF-high sample. b. MITF-GFP reporter cell line were 

sorted for MITF-high and MITF-low subpopulation before drugging. The sorted cells were 

then treated with BRAFi+PKM2i combination for 5days and then harvest for cell number 

counting. Relative cell survival of sorted MITF-high and MITF-low cells after undergoing 

BRAFi+PKM2i combination therapy for 5 days were plotted. Survival data were normalized 

to MITF-low sample. c. MITF knockdown cells and control cells were treated with 

BRAFi+NFΚBi combination for 5days and then harvest for cell number counting. Relative 

cell survival of sorted control and MITF-sh cells after undergoing BRAFi+NFΚBi 

combination therapy for 5 days were plotted. Survival data were normalized to control 

sample. d. MITF knockdown cells and control cells were treated with BRAFi+PKM2i 

combination for 5days and then harvest for cell number counting. Relative cell survival of 

sorted control and MITF-sh cells after undergoing BRAFi+PKM2i combination therapy for 

5 days were plotted. Survival data were normalized to MITF-KO sample. e. M397 cell treated 
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with BRAFi, BRAFi+NFΚBi, BRAFi+PKM2i, and BRAFi+NFΚBi+PKM2i for 5 days 

were harvest for cell number counting. Relative cell survival of cells after undergoing 

BRAFi, BRAFi+NFΚBi, BRAFi+PKM2i, or BRAFi+PKM2i+NFΚBi therapy for 5 days 

were plotted. Survival data were normalized to cells undergoing BRAFi monotherapy 

treatment. 

  



 

 

215 

Supplementary Information 

 

Supplementary Figures 

 

Supplementary Figure 1. Transcriptomic analysis guided panel marker selection 

a. Pathways that are differentially altered from day 0 to day 3 after BRAFi treatment. Each 

row represents a certain signaling pathway and each bar indicates normalized enrichment 

score (NES) calculated from geneset enrichment analysis (GSEA) of cells harvested at day 

3 versus day 0. Each pathway is color-coded by its functional category as described in Fig. 

S1b. 

b. Panel of markers per pathway selected to quantify with single-cell barcode chip (SCBC) 

analysis. 20 markers were selected for SCBC analysis. Markers with similar biological 

function are organized together and color-coded by functional category.  
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Supplementary Figure 2. Distribution of all 20 markers across 4 time points. 

Each of the 20 plots represents the distributions of a certain marker level across 4 time 

points. Y-axis represents natural log of measured marker level. Markers within the same 

functional category are boxed together. Border color of each plot corresponds to the 

functional category of each marker, as described in Fig. 1a.  
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Supplementary Figure 3. Visualization of integrated single-cell proteomic and 

metabolic analysis data by FLOW-MAP. 

Each dot represents an individual cell. The distance between each pair of cells represents the 

overall multi-omic dissimilarity between them. Cell pairs that are close enough are linked 

with an edge in between. The colors of the dots in the central panel represent BRAFi exposure 

time (0, 1, 3, or 5 days) of the corresponding cells. Dot colors in the other panels represent 

the abundance of each marker in each cell. Markers belonging to the same functional 

category, as described in the bottom of the figure, were assigned to a certain shape and color. 

The dashed-line box in the panels for MITF, MART1, and Ki67 levels shows a small 

subpopulation of day-0 cells that are slow cycling with less melanocytic phenotype. 
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Supplementary Figure 4. Dimension reduction with t-SNE and marker abundance 

visualization.  Each dot per plot represents an individual cell. The distance between each 

pair of dots represents the overall multi-omic dissimilarity between that pair of cells. The dot 

colors in the central panel represent the drug exposure time of each cell. Dot colors in the 

other panels represent the abundance of the specified marker in each cell. Markers that belong 

to the same functional category were assigned to a certain shape and color, as described in 

the bottom of the figure. T-SNE visualizations show both the heterogeneity that exists at 

baseline as well as the progression across time through two separate paths. 
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Supplementary Figure 5. Two modules from surprisal analysis recapitulated the 

original experimental measured marker levels.  Each plot represents an individual 

marker. Each dot within a single plot represents a single cell. The x-axis value of each dot 

represents the experimentally measured marker expression within a cell. The y-axis value 

of each dot represents the predicted marker level of the same cell as calculated by surprisal 

analysis of only module1 and module2. The strong positive correlation between the x- and 

y-axis values indicate that surprisal analysis of the two modules recapitulates 

experimentally measured marker levels per cell. 
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Supplementary Figure 6. Two modules from surprisal analysis recapitulated the 

overall experimental measured marker levels.  a. Schematic illustration of workflow to 

project raw data and surprisal analysis-predicted data onto the same 2-dimensional space. 

Each cell has measured levels of all 20 markers. Similarly, each cell also has predicted levels 

of all 20 markers as calculated from surprisal analysis. The raw and surprisal-predicted data 

matrices were combined to make a bigger matrix with double the original number of rows, 

each row representing a cell from raw data or predicted data. Each column represents a single 

marker, with each matrix value representing a single cell’s abundance of a marker. The 

combined, 20-dimensional dataset was projected onto a single t-SNE map where cells with 

similar levels of all 20 markers will be in nearby coordinates.   b. Each dot represents an 

individual cell. In the left panel, the x-axis represents the t-SNE x-value of the cell projected 

from raw data, while the y-axis represents the t-SNE x-value of the cell projected from 

surprisal analysis-predicted data. The right panel is similar to left panel, but instead compared 

t-SNE y-values. The linear, x = y plots indicate that single cells, as projected from raw data 

and from surprisal analysis-predicted data, are in the same location in a reduced dimension; 

therefore, the experimentally measured and surprisal analysis-predicted expression profiles 

of all 20 markers are similar. 
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Supplementary Figure 7. Lambda1 associated markers displayed time dependent 

changes. 

a. Pearson correlation of marker level vs. module1 score (lambda1) across cells from all 

timepoints of BRAFi exposure. Correlations that are not statistically significant (i.e. p > 0.05) 

are not shown. 

b. Representative markers that showed strongest positive (AXL, NGFR) or negative (Ki67) 

correlation with module1 score are shown in individual cells on FLOW-MAP. 
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Supplementary Figure 8. Lambda2 associated markers displayed path-specific 

expression patterns. 

a. Pearson correlation of marker level with module2 score (lambda2) across cells from all 

time points after BRAFi exposure. Correlations that are not statistically significant (i.e. p > 

0.05) were not shown. 

b. Representative markers that showed strongest negative correlation with module1 score are 

shown in individual cells on FLOW-MAP. 
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Supplementary Figure 9. Four different cell states inferred from Module1 and 

Module2 associated biophysical barriers. 

Module1 and module2-associated barriers, as defined by the points at which a module score 

changes sign, separate the cells into roughly 4 different states, labeled from 1 to 4. States 

1 and 2 are separated from states 3 and 4 by the module1-associated barrier. States 1 and 3 

are separated from states 2 and 4 by the module2-associated barrier. 
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Supplementary Figure 10. Day-0 cell analysis of marker correlation with module2, 

suggesting MITF as the driver for bifurcation in cell state transition trajectories. a. 

Pearson correlation of marker level and module2 score in day 0 cells from single-cell dataset. 

The four most highly-correlated markers are labeled with gray arrows. b. Scatter plots 

showing expression levels of the four most highly-correlated markers versus module2 score 

in day-0 cells from single-cell dataset. 
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Supplementary Figure 11. Illustration of MITF-reporter line sorting experiment on 

untreated cells.  a. Untreated cells in state 1 and state 2 showed significantly different levels 

of MITF and Ki67. b. For MITF-GFP reporter line, cells with higher GFP level and lower 

GFP level were sorted out using FACS. The sorted cells were then harvested for qPCR 

quantitation of MITF and Ki67 expression. 

  



 

 

226 

 
Supplementary Figure 12. Sorted state 1 and state 2 cells shows different MITF-GFP 

level and morphology. 
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Supplementary Figure 13. Illustration of MITF-reporter line sorting and drug 

treatment experiments.  a. Day-5 cells in state 3 and state 4 showed different levels of 

MITF, MART1, PFK and Slug. b. For MITF-GFP reporter line, cells with higher GFP level 

and lower GFP level were sorted out using FACS. The sorted cells were then treated with 

BRAFi for another five days, then harvested for qPCR quantitation of MITF, MART1, PFK 

and Slug expression. 
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Supplementary Figure 14. MITF knock-down cells showed similar phenotype as sorted 

state 2 day-0 cells which will follow the bottom trajectory to become state 4-like cells 

upon 5days of BRAFi.  a. Expression level of Ki67 from qPCR of MITF knockdown cells 

versus control cells. b. Measured doubling time of MITF-knockdown cells versus control 

cells. c. Expression level of MITF, MART1, PFK, and Slug after 5 days of BRAFi treatment 

in control cells and MITF-knockdown cells. 
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Supplementary Figure 15. Ic value of single cells for critical point transition analysis 

of each trajectory.  a. Critical point transition analysis for upper path. Critical point 

index Ic is calculated within each subpopulation associated with the upper path and color-

coded onto the FLOW-MAP. Red indicates higher Ic value. Blue represents lower Ic 

value. Cluster 7, circled and labeled, shows the highest Ic value in the upper path.  b. 

Critical point transition analysis for lower path. Critical point index Ic is calculated 

within each subpopulation associated with the lower path and color-coded onto the 

FLOW-MAP. Red indicates higher Ic value. Blue represents lower Ic value. Cluster 9, 

circled and labeled, shows the highest Ic value in the lower path.  
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Supplementary Figure 16. Network structure and respective SNAI and Ic values for 

subpopulations associated with the upper path.  a. Network of subpopulations associated 

with the upper path. Each network structure plot is bordered by the color label of the 

corresponding cluster.  b. SNAI and Ic values of networks associated with subpopulations 

in the upper path. 
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Supplementary Figure 17. Network structure and respective SNAI and Ic values for 

subpopulations associated with the lower path.  a. Network of subpopulations associated 

with the lower path. Each network structure plot is bordered by the color label of the 

corresponding cluster.  b. SNAI and Ic values of networks associated with subpopulations 

in the lower path. 
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Supplementary Figure 18. Hub-score of each node at networks for cluster7 (C7) and 

cluster9 (C9).  Colors in C7 and C9 columns indicate the hub-score value of each node 

found within the cluster 7 or cluster 9 networks, respectively. Nodes labeled with stars 

were further tested using drug perturbation. 
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Supplementary Figure 19. Short-term clongenic assay for 397 cells.  M397 was 

treated with either DMSO control or PKM2i or NFKBi or PKM2i+NFKBi or BRAFi. No 

significant toxicity to the cells was observed for using PKM2i or NFKBi or combination 

of both. 
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