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ABSTRACT

This thesis presents novel boundary integral equation (BIE) and associated opti-
mization methodologies for photonic devices. The simulation and optimization of
such structures is a vast and rapidly growing engineering area, which impacts on
design of optical devices such as waveguide splitters, tapers, grating couplers, and
metamaterial structures, all of which are commonly used as elements in the field of
integrated photonics. The design process has been significantly facilitated in recent
years on the basis of a variety of methods in computational electromagnetic (EM)
simulation and design. Unfortunately, however, the expense required by previous
simulation tools has limited the extent and complexity of the structures that can be
treated. The methods presented in this thesis represent the results of our efforts
towards accomplishing the dual goals of 1) Accurate and efficient EM simulation
for general, highly-complex three-dimensional problems, and 2) Development of
effective optimization methods leading to an improved state of the art in EM design.

One of the main proposed elements utilizes BIE in conjunction with a modified-
search algorithm to obtain the modes of uniform waveguides with arbitrary cross
sections. This method avoids spurious solutions bymeans of a certain normalization
procedure for the fields within the waveguides. In order to handle problems includ-
ing nonuniform waveguide structures, we introduce the windowed Green function
(WGF) method, which used in conjunction with auxiliary integral representations
for bound mode excitations, has enabled, for the first time, accurate simulation of
a wide variety of waveguide problems on the basis of highly accurate and efficient
BIE, in two and three spatial dimensions. The “rectangular-polar” method pro-
vides the basic high-order singular-integration engine. Based on non-overlapping
Chebyshev-discretized patches, the rectangular-polar method underlies the accuracy
and efficiency of the proposed general-geometry three-dimensional BIE approach.
Finally, we introduce a three-dimensional BIE framework for the efficient computa-
tion of sensitivities—i.e. gradients with respect to design parameters—via adjoint
techniques. This methodology is then applied to the design of metalenses including
up to a thousand parameters, where the overall optimization process takes in the
order of three hours using five hundred computing cores. Forthcoming work along
the lines of this effort seeks to extend and apply these methodologies to some of the
most challenging and exciting design problems in electromagnetics in general, and
photonics in particular.
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C h a p t e r 1

INTRODUCTION

The understanding of electromagnetic phenomena has revolutionized the way we in-
terpret and interact with the world. With the advent of computational tools, applied
electromagnetics has seen an exponential growth—devices that were designed using
these tools are now ubiquitous in our lives. With increasing improvements in com-
putational resources, new simulation capabilities continue to emerge, and although
the governing electromagnetic laws have been known for more than 150 years, new
discoveries and developments continue to be obtained at an ever increasing pace.

1.1 Maxwell’s equations
Classical electrodynamics, if had to be described in one sentence, is the study

of how charged particles interact with other charged particles. All of the extremely
rich electromagnetic theory stems, either directly or indirectly, from this concept.
In fact, quoting the popular undergraduate text by Griffiths [42, p. 438-439]:

“[...] if we could only write down the formula for the force one
charge exerts on another, we would be done with electrodynamics, in
principle. That, together with the superposition principle, would tell us
the force exerted on a test Q by any configuration whatsoever. Well..
here we are: [...]”

and then proceeds to show the formula for the force between two charges. Use of this
formula ([42, equation 10.67]) for every relevant moving and stationary charge in
a given configuration, fully encapsulates all of the predictions of electromagnetism
for the configuration at hand.

From a historical perspective, it was the experiments byMichael Faraday—which
established the relation between electricity and magnetism— that marked a turning
point in the understanding of electromagnetism. It was then the Scottish physicist
James Clerk Maxwell who, in a set of publications [29, 30, 59, 60], unified and
expanded the known theory to what we now call the Maxwell’s equations, which
encompass the description of all classical electromagnetic phenomena.



1.1. Maxwell’s equations 3

The concept of electromagnetic (EM) fields were introduced to make the cal-
culation of EM forces more manageable. In essence, the EM fields are quantities
that describe how much of a force, and in what direction, would a charged particle
experience if put at a given point in space. Since EM forces are between two charged
particles, then it is natural to think of the EM fields as produced by some source,
which is either static or moving charges—the latter also know as electric currents.
In its differential form, Maxwell’s equations for the electromagnetic fields are given
by [42, p. 330]

∇ · D =
1
ε0
ρ f , Gauss’s law

∇ · B = 0, Gauss’s law for B

∇ × E +
∂B
∂t
= 0, Faraday’s law

∇ ×H −
∂D
∂t
= J f , Ampère’s law with

Maxwell’s correction

(1.1a)

(1.1b)

(1.1c)

(1.1d)

where the electromagnetic and auxiliary fields are denoted by

• E: Electric field
• B: Magnetic induction field
• D ≡ ε0E + P: Electric displacement field
• H ≡ 1

µ0
B −M: Magnetic (H) field

The specific constitutive relations between the EM and auxiliary fields depend on
the material properties defined by the quantities:

• P: Polarization→ electric dipole moment per unit volume
• M: Magnetization→ magnetic dipole moment per unit volume

The EM fields are created by sources that can either be distributed over volumes
or surfaces. These quantities are usually denoted by the following notation:

• ρ f : Free charge (volumetric) density
• σ f : Free charge (surface) density
• J f : Free current (volumetric) density
• K f : Free current (surface) density
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As with any other system of partial differential equations, to solve Maxwell’s
equations (1.1), we need corresponding initial and boundary conditions. In partic-
ular, the boundary conditions are given by

D⊥1 − D⊥2 = σ f , (1.2a)

B⊥1 − B⊥2 = 0, (1.2b)

E‖1 − E‖2 = 0, (1.2c)

H‖1 −H‖2 = K f × n, (1.2d)

which themselves can be derived from the integral form of Maxwell’s equations.

These relationships hold in general for any material. However, in most of the
cases we deal with linear media, which satisfy the constitutive relations

P = ε0χeE, (1.3a)

M = χmH, (1.3b)

where χe and χm are the electric and magnetic—respectively—susceptibility ten-
sors. In this case, the auxiliary fields depend linearly on the EM fields:

D = εE, (1.4a)

H =
1
µ

B, (1.4b)

where ε and µ are the electric permittivity and magnetic permeability tensors,
respectively. If, additional to the medium being linear, it is also isotropic, then ε and
µ are just constants (or a diagonal tensor with all diagonal entries equal). And if the
medium obeys Ohm’s law with conductivity σ, the free current density is then [42,
eq. 9.117]

J f = σE. (1.5)

Maxwell’s equations in Eq. (1.1) are the mathematical model of how charged
particles produce electric fields, currents produce magnetic fields, and how time-
varying electric (resp. magnetic) fields produce magnetic (resp. electric) fields.

1.2 Time-harmonic solutions: The frequency domain
In this thesis, we are interested in the solution of electromagnetic problems that

involve linear, piecewise homogeneous media. A standard technique for simplifying
Maxwell’s equations is to take time-harmonic solutions—solutions that have a e−iωt
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time-dependence—given that a time-domain solution can then be reconstructed via
a Fourier transform in time.

Time-harmonic solutions are not just useful as an intermediate tool to the full
time-domain solution, but in fact they provide the full solution when the problem
has sources with only one frequency—which is the case in many real-life applied
settings.

Mathematically, a time-harmonic solution is an electromagnetic field of the form

E(r, t) = Re
(
Ẽ(r)e−iωt

)
, (1.6a)

H(r, t) = Re
(
H̃(r)e−iωt

)
. (1.6b)

Since for the remaining of the thesis we’ll be working with time-harmonic solutions,
we use a well-known notational abuse by dropping the time dependence from the
notation, and we thus write

Ẽ = E, (1.7a)

H̃ = H. (1.7b)

Then, by defining the (complex) wavenumber k:

k ≡ ω

√
µ

(
ε + i

σ

ω

)
(1.8)

(where the branch of the square root is taken so that the imaginary part of k is
negative), and substituting into equation (1.1), under the assumption of absence of
free charges and currents (other than the ones induced by Ohm’s law), we obtain the
time-harmonic version of Maxwell’s equations [63]

∇ ×H + iω
(
ε + i

σ

ω

)
E = 0, (1.9a)

∇ × E − iωµH = 0, (1.9b)

with boundary equations (1.2) which, in the present context, are generally expressed
in the forms 1

E+ × n − E− × n = 0, (1.10a)

H+ × n −H− × n = 0. (1.10b)
1For conductors that satisfy Ohm’s law, the free surface current vanishes. See Griffiths [42,

p. 397]



Chapter 1. Introduction 6

1.3 Units and electromagnetic parameters
For frequency domain problems, the relevant material properties are the electric

permittivity ε and magnetic permeability µ. In vacuum, these quantities are denoted
by ε0 and µ0. In many instances, nonmagnetic materials are consider, for which µ =
µ0 and then the material is fully characterized by the permittivity, or equivalently,
by the refractive index n. Additionally, the frequency ω of the problem (sometimes
called the “pulsation”) must be specified. Then, letting c0 and c denote the speed of
light in vacuum and inside a medium, respectively, we have the relations

c =
1
√
µε
, (1.11a)

n =
√

εµ

ε0µ0
=

c0

c
, (1.11b)

λ =
λ0

n
, (1.11c)

k0 =
2π
λ0
=

c0

ω
, (1.11d)

k = n k0. (1.11e)

Typically, one of the quantitiesω, λ0 or k0 is selected; the remaining electromagnetic
parameters can be found given the permittivities and permeabilities for each relevant
dielectric domain.

Throughout this thesis, we utilize units for which ε0 = µ0 = 1. In the present
context, we typically measure wavelengths in microns (1µm = 10−6 m)—a unit that
is quite common for photonic applications—so that c0 = 1 [µm/T], where T is the
unit of time that makes c0 consistent with the SI value of the speed of light of
exactly 299 792 458 m/s [46]. For this example, the relevant unit of time is then
T = 10−6/299 792 458 s. The other quantities can be then found from these time
units—e.g. the frequency f = c0/λ0 = 1 [T−1] = 2.998 × 1014 Hz.

1.4 Boundary integral equation methods
The problem of wave scattering by obstacles plays a central role in theoretical

and computational electromagnetism. In a scattering configuration, an incom-
ing wave impinges upon a set of obstacles (the “scatterers”), and is subsequently
“scattered”—in accordance with a generally quite complex process governed by
Maxwell’s equations. Only in the simplest cases can closed-form expressions be
found for the solution—most notably, scattering by a sphere can be expressed in a
series solution that relies on spherical Bessel functions.
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For more complex scatterers, however, evaluation of solutions requires use of
computational methods. Notably, the finite-difference time-domain method [76] has
been one of the most widely used techniques due to its robustness and conceptual
simplicity. In the context of scattering problems, these methods require of artifi-
cially absorbing boundaries to simulate the infinite propagation domain within the
necessarily-bounded computational domain. The class of numerical methods that
rely on discretizing the truncated volumetric simulation domain are usually called
“volumetric solvers.”

Examination of the physical phenomena that underlies the scattering problem,
however, gives rise to important alternative solution techniques. We thus consider
the sequence of events inherent in the scattering process: as an incoming wave hits
the scatterer, the fields induce currents on the scattering boundaries—giving rise
to an additional EM field—which, in turn, affect the currents, etc. Importantly,
the surface currents can be utilized to completely determine the electromagnetic
state of a system: the EM fields can be computed from such current distributions.
Boundary integral equations (BIE) for scattering problems provide a description
of this phenomenology that relies solely on surface currents—and, thus provides a
mathematical formulation which is spatially restricted to the scattering boundaries,
and which, as discussed in what follows, gives rise to significant advantages from a
computational standpoint.

Both volumetric and BIE methods have pros and cons. Volumetric methods tend
to be simpler to implement, they can handle linear and nonlinear materials alike,
and they either do not require solution of linear systems of equations, when used in
the time domain or, at worst, when directly used in the frequency domain, require
only sparse linear systems. However, these methods do require discretization of
the entire volume, and their time-domain versions are restricted by CFL time-step
constraints. BIE methods, on the other hand, only require discretization of the
scattering boundaries, thus reducing by one the dimensionality of the problem, and
they additionally naturally incorporate the “boundary condition at infinity” (the so-
called outgoing radiation conditions) on the scattered fields. The caveat is that they
tend to be more complicated to implement, they result in full (non-sparse) matrices,
and they also require additional algorithms (so called accelerators) to eliminate
the substantial cost (quadratic or worse in the number of unknowns) that arises
from the associated, non-sparse, matrix equations. In spite of this caveat, however,
integral-equation methods do provide significant advantages in terms of accuracy
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and computing costs.

1.5 Dielectric waveguides
One of the central themes in this thesis concerns the propagation of fields in

the presence of dielectric waveguide structures. In brief, a dielectric waveguide is
composed of at least two dielectric regions; the core of the waveguide has the higher
refractive index, and the lower-refractivity cladding material surrounds the core.
Dielectric waveguides significantly differ from perfectly electric conducting (PEC)
waveguides, since in the PEC case the fields are fully contained inside the structure,
while in the dielectric case, nonvanishing fields exist outside of the waveguide
core. Although the first studies of dielectric waveguides date back to 1910 [45],
the interest in these structures was not significant until the sixties and seventies
where optical fibers (a class of dielectric waveguides) found their applications in
telecommunications [75].

A uniformwaveguide consists of a single infinite cylindrical structure of arbitrary
cross section. Uniformwaveguides, with distinctive core (interior) and cladding (ex-
terior) regions, can support electromagnetic fields that propagate without loss along
the waveguide core all the way to infinity. Such solutions, which lie at the heart of
the usefulness of these structures, are known as the “bound modes” of the waveg-
uide. A nonuniform waveguide structure, on the other hand, is partly comprised of
uniform semi-infinite waveguides (SIW)—a half of an infinite uniform waveguide
that carries energy to and/or from infinity—joined at junctions, terminations or
additional bounded scatterers (devices) that perform desired optical operations.

Chapters 2, 3 and 6 in this thesis treat a variety of waveguide problems on the
basis of boundary integral equations. The unbounded character of these problems,
which had previously been found challenging in the context of integral-equation
based solvers, is tackled here by means of a novel “windowing” concept which is
described in the following section.

1.6 Windowing of improper integrals
Boundary integral equation methods have been mostly used in the context of

bounded obstacles. However, recent advances in “windowing” methods [13, 18, 20,
21, 23, 55, 61, 68] have demonstrated that integral equations provide a powerful tool
for problems that involve unbounded obstacles. In brief, the windowing approach is
based on the observation that, along infinite boundaries, the relevant integral equa-
tions involve oscillatory and slowly decaying integrands (that result as the products



1.6. Windowing of improper integrals 9

of a non-decaying oscillatory current density times a decaying and oscillatory ker-
nel). In fact, this behavior can be characterized by an idealized integration problem
consisting on approximating the integral2

I =
∫ ∞

1
eikz z e−ik0z

√
z

dz, (1.12)

where we can interpret the term eikz z to be representative of the boundary densities,
while e−ik0z/

√
z accurately represents the character of the integral-equation kernel

asymptotics. The integral in equation (1.12) is in fact not absolutely integrable, and
the convergence results only because of the oscillatory harmonic factor. From a
numerical perspective, a simple truncation followed by straight-forward numerical
evaluation of the form

Itr(A) =
∫ A

1
eikz z e−ik0z

√
z

dz, (1.13)

using a finite value A, might at first be viewed as a potentially useful numerical
approximation. Unfortunately, however, the convergence of this approximation is
extremely slow: a simple integration-by-parts argument provides the error esti-
mate [13, 61]

|I − Itr(A)| = O
(

1
|k0 − kz |

√
A

)
, (1.14)

which shows that one additional digit of numerical accuracy requires an increase
in the size of the computational domain by a factor of one-hundred—which is
clearly prohibitive given that each increase in the size of the computational domain
corresponds, in the integral-equation version, to a proportional increase in the
number of unknowns used for the solution of the problem. But in fact, consideration
of the error analysis just presented suggests a possible solution to the problem,
namely, use of a smooth and slowly-rising truncation window to eliminate the
boundary terms (and, therefore, the slow decay), to as many orders as desired in the
integration by parts procedure, showing that the error is “super-algebraically” small.

In detail, the windowing method utilizes a window function wA(z) that satisfies
the following properties:

(i) wA(z) vanishes for z outside the interval [−A, A].
2Here we use the variable z since in the context of waveguides, the optical axis is usually aligned

with the z-axis.
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(ii) wA(z) = 1 for z ∈ (−αA, αA) for some α satisfying 0 < α < 1.

(iii) All of the derivatives w
(p)
A (z) (p a positive integer) vanish at z = ±A and

z = ±αA.

(iv) wA(z) enjoys a “slow-rise.” (I.e., when rescaled to a unit interval, all of the
derivatives of wA(z) remain uniformly bounded for all A; see Chapter 2.)

Then, the approximation

Iw(A) =
∫ A

1
wA(z)eikz z e−ik0z

√
z

dz, (1.15)

which is only minimally more expensive than equation (1.13), incurs a super-
algebraically small error, that is to say, for all positive integers p we have

|I − Iw(A)| = O
(

1

|k0 − kz |
p Ap− 1

2

)
. (1.16)

The significant convergence improvement that results from use of the windowing
method is demonstrated in Figure 1.1, where k0 = 2π and several values of kz were
used. An important observation from this numerical experiment is that in general,
the convergence of the windowed integrals depends on the parameter A/λ̃, where

λ̃ =
2π

|k0 − kz |
. (1.17)

Indeed, as illustrated by when kz is close to k0, the error, although still super-
algebraically small, has a much larger proportionality constant, which could require
use of extremely large windows. This observation is in line with the tenet that the
oscillatory character is what makes the windowed integrals rapidly convergent.
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Figure 1.1: Convergence of the integrals from equations (1.12), (1.13) and (1.15).
In Figure (a), the plot of the windowed integrand is shown. Figure (b) displays the
slow convergence of the direct truncation method. On the other hand, (c) and (d)
demonstrate the great improvement introduced by the window function.

1.7 Thesis outline
This thesis is divided into five parts, namely: (1)Background, (2) Two-Dimensional

Problems, (3) Three-Dimensional Problems, (4) Shape Optimization of Electromag-
netic Devices, and (5) Concluding Remarks. In the “Two-Dimensional Problems”
part, Chapter 2 introduces the two-dimensional windowed Green function (WGF)
method for nonuniform open-waveguide problems; Chapter 3 presents a boundary
integral equation computational method for the two-dimensional problem of evalu-
ation of bound modes on three-dimensional waveguides of arbitrary cross-section.

The “Three-Dimensional Problems” part starts with Chapter 4, which presents a
novel high-order “rectangular-polar” integral equationmethod for acoustic problems
in three-dimensional space. This methodology is based on Chebyshev representa-
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tions of the surface densities for geometrical obstacles described by a set of non-
overlapping patches. Chapter 5 then presents the well-known integral representation
formulas of the theory of electromagnetic scattering, and it uses them in conjunc-
tion with the “rectangular-polar” technique from Chapter 4 to solve problems of
scattering by three-dimensional dielectric obstacles. Chapter 6 uses the dielectric
solver developed in Chapter 5 to generalize the WGF method from Chapter 2 to the
three-dimensional waveguide problem.

The “Shape Optimization of Electromagnetic Devices” part only contains Chap-
ter 7, which presents a novel boundary integral equation approach for the problem
of photonic-device optimization which is based on the integral methodologies de-
veloped in previous chapters of this thesis as well as novel adjoint-optimization
methods. The “Concluding Remarks” part, finally, summarizes the main findings
of this thesis, and it proposes related additional work in this area.



Two-dimensional problems
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C h a p t e r 2

WINDOWED GREEN FUNCTION METHOD FOR 2D
WAVEGUIDES

This chapter1 considers the problem of evaluation of wave propagation and scatter-
ing in nonuniform open-waveguide structures. This is a problem of fundamental
importance in a wide range of areas, including modeling and design of dielectric
antenna systems, photonic and optical devices, dielectric RF transmission lines,
etc. The numerical simulation of such structures presents significant challenges—in
view of the unbounded character of the associated dielectric boundaries and prop-
agation domains as well as the presence of radiating fields, inhomogeneities, and
scattering obstacles.

The present contribution introduces an effective methodology for the solution
of such nonuniform open-waveguide problems. Based on use of Green functions
and integral equations akin to those used in the Method of Moments [37, 73], and
incorporating as a main novel element a certain “slow-rise” windowing function, the
proposed windowed Green function approach (WGF) can be used to model, with
high-order accuracy, highly-complex waveguide structures without recourse to use
of mode matching (which can be quite challenging in the open-waveguide context),
absorbing boundary conditions, staircasing or time-domain simulations.

The finite-difference time-domain method (FDTD) is one of the simplest and
most reliable existing methods for solution of open-waveguide problems. In the
FDTD approach, unbounded domains are truncated by relying on absorbing bound-
ary conditions or absorbing layers such as the PML [9]. Further, subpixel smoothing
techniques [38] are often used in FDTD implementations to model material inter-
faces while maintaining second order accuracy—in spite of the staircasing that
accompanies Cartesian discretization of curved boundaries. In order to obtain the
frequency response from a FDTD simulation, finally, Fourier transforms in time
are typically used. In spite of its usefulness, the FDTD approach does present

1This chapter is based on the published article: Oscar P. Bruno, Emmanuel
Garza, and Carlos Pérez-Arancibia. Windowed Green function method
for nonuniform open-waveguide problems. IEEE Transactions on Antennas
and Propagation, 65(9):4684�4692, Sep. 2017. ISSN 0018-926X. doi:
10.1109/TAP.2017.2728118. © IEEE 2017. Some excerpts have been taken verbatim.

http://doi.org/10.1109/TAP.2017.2728118
http://doi.org/10.1109/TAP.2017.2728118
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a number of difficulties in the context of waveguide problems [76, p. 223] con-
cerning (i) Illumination by specified waveguide modes and inadvertent excitation
of unwanted modes; (ii) Necessary use of sufficiently large computational domains
to allow decay of reactive fields; (iii) Need for substantially prolonged simulation
times in order for spectral energy above the waveguide cutoff frequency to reach
a given interaction structure of interest; and (iv) Necessary use of fine spatial and
temporal discretizations to mitigate the numerical dispersion associated with the
second-order accuracy of the method.

A few Green function methods for open-waveguide problems have also been
proposed. The recent boundary-element method [81], for example, in which a
conductive absorber is used to truncate the unbounded waveguide structure, requires
the excitation source to lie within the computational domain. The source then
produces a radiation field that decays as O(1/r) and thus limits the accuracy of
the implementation. Other approaches for open-waveguide problems based on
perturbation and transform methods [27, 28, 56] can effectively handle limited
types of (sufficiently small) localized inhomogeneities.

Relying on the free space Green function and associated integral equations along
the dielectric boundaries, the WGF method presented here utilizes a slow-rise win-
dow function to truncate the infinite integrals while providing super-algebraically
small error (that is, errors smaller than any negative power of the window size). The
method can easily incorporate bound modes and arbitrary beams as illuminating
sources, and it can treat general inhomogeneities and multiple arbitrarily oriented
waveguides without difficulty.

The proposed use of slow-risewindow functions has been previously found highly
effective in the contexts of scattering by periodic rough surfaces [13, 21, 61] and
obstacles in presence of layered-media [20, 22, 68] as well as long-range volumetric
propagation [24]. The implementation details vary from problem to problem; in the
present open-waveguide context, for example, the treatment of incident fields and
windowed integral operators differs significantly from those used previously.

This chapter is organized as follows: Notations and mathematical background
on the open-waveguide problem are presented in section 2.1. The WGF method is
then introduced in section 2.2, which includes, in particular, an integration example
which demonstrates in a very simple context the properties of the slow-rise win-
dowing function. A variety of applications of the open-waveguide WGFmethod are
presented in section 2.3, demonstrating applicability to waveguide junctions (includ-
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Figure 2.1: The open-waveguide problem and geometrical structures utilized in the
WGF method presented in this chapter.

ing couplers and sharp bends), dielectric antennas, focused beam illumination, and,
for reference, an unperturbed waveguide for which the exact solution is known. In
all cases, theWGFmethod provides high accuracies in computing times of the order
of seconds. Significant additional acceleration could be incorporated on the basis
of equivalent sources and Fast Fourier Transforms, along the lines of reference [21];
such acceleration methods are not considered here in view of the fast performance
that the unaccelerated method already provides in the present two-dimensional case.

2.1 Mathematical Framework for 2D Open Waveguides
This chapter considers the problem of electromagnetic wave propagation and

scattering induced by two-dimensional (zx-plane) nonuniform open (dielectric)
waveguides, with application to nonuniformities such as waveguide junctions, il-
lumination and termination regions. In Figure 2.1, a schematic depiction of the
problem is presented.

General two-dimensional structures consisting of spatial arrangements of two-
dimensional dielectric waveguides and bounded dielectric structures can be consid-
ered within the proposed framework—including, for example, configurations which
are constructed as a combination of a given finite number of “semi-infinite waveg-
uide” structures (SIW) and additional bounded dielectric bodies. Here a SIW is one
of the two portions that result as a fully uniform waveguide is cut by a straight line
(plane) orthogonal to the waveguide axis. A simple such configuration is depicted
in Figure 2.1.

Additionally, it is useful to identify connected (bounded or unbounded) regions
that are occupied by a given dielectric material; as illustrated in Figure 2.1, these
regions are denoted by Ω j ( j = 1, . . . , N). The electrical permittivity, magnetic
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permeability, refractive indices and wavenumbers in Ω j are denoted ε j , µ j , n j and
k j = ω

√
ε j µ j = n jω/c (c being the speed of light in vacuum), respectively.

The structure may be illuminated by arbitrary combinations of bound waveguide
modes supported on a single component SIW (or, more precisely, by the restriction
to the given SIW of a mode of the corresponding fully uniform waveguide). By
linearity, simultaneous illumination by several SIWs can be obtained directly by
addition of the corresponding solutions for single SIW illumination. Letting r =

(z, x) and denoting by χinc the indicator function of a SIW region Ωinc that contains
the prescribed illuminating field,

χinc(r) =


1 for r ∈ Ωinc

0 for r < Ωinc,
(2.1)

the total electric field E is given by E = Eincχinc + Escat. (See Figure 2.1b, where
the regionΩinc = {z < 0} is such that the waveguide boundaries are flat withinΩinc,
and thus, a bound mode can be prescribed in this region as an incident field.) The
scattered field Escat is assumed to satisfy an appropriate radiation condition (which,
roughly, states that the scattered field propagates away from all inhomogeneities
as either outward waveguide modes or cylindrical waves; see [67, equation (24)]
for details) in each component Ω j that is not bounded—in addition to the Maxwell
equations which, in the two-dimensional case considered in what follows, reduce to
the Helmholtz equation.

Assuming a time-harmonic temporal dependence of the form e−iωt (which is
suppressed in all subsequent expressions) and letting u (resp. uscat) denote either
the y-component of the total (resp. scattered) electric field in TE-polarization or
the y-component of the total (resp. scattered) magnetic field in TM-polarization,
the field component u = uincχinc + uscat is the unique [67] radiating solution of the
problem 

∆u + k2
j u = 0 in Ω j,

u+ − u− = 0 on Γj` ( j < `),

∂u+
∂n
− ν j`

∂u−
∂n

= 0 on Γj` ( j < `).

(2.2)

Here ν j` = 1 in TE-polarization and ν j` = (k j/k`)2 in TM-polarization; for each
pair ( j, `) with j < `, Γj` denotes the boundary between Ω j and Ω`; for r ∈ Γj`,
n = n(r) denotes the unit normal vector to Γj` which points into the “plus side” Ω j

of Γj` (the plus side of Γj` is defined by the aforementioned condition j < `); and
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for r ∈ Γj`, finally,

u±(r) = lim
δ→0+

u(r ± δn(r)), (2.3)

∂u±
∂n
(r) = lim

δ→0+
∇u(r ± δn(r)) · n(r). (2.4)

Remark 2.1.1 A few comments concerning notations are in order: (i) Γj` may
be empty for a number of pairs ( j, `): for example Γ12 = ∅ for the geometry
displayed in Figure 2.1a, and Γj` is necessarily empty, by definition, whenever
j ≥ `. (ii) The use of indicator functions in equation (2.1) makes it possible
to conveniently specify incident fields in an adequately selected SIW region Ωinc

(which equals the half plane containing the SIW that supports the incident field).
(iii) Once u is determined by solving equation (2.2), the total electromagnetic field
in the domain Ω j ( j = 1, 2 . . . N) is given by E = (0, u, 0), H = i

ωµj

(
∂u
∂z , 0,−

∂u
∂x

)
in

TE-polarization, and E =
iωµj

k2
j

(
− ∂u
∂z , 0,

∂u
∂x

)
, H = (0, u, 0) in TM-polarization.

2.2 Windowed Green Function Method (WGF)
2.2.1 Integral Equation Formulation

This section presents an integral equation formulation for the propagation and
scattering problem considered in section 2.1. For simplicity (and without loss of
generality) throughout this chapter, it is assumed that the structure is illuminated
by means of an arbitrary superposition of bound modes incoming from a single
SIW whose optical axis coincides with the z−axis; the generalization to structures
containing multiple arbitrarily-oriented waveguides is straightforward. Under this
assumption, the incident field is prescribed by

uinc(z, x) =
M∑

m=1
Ainc

m um
⊥(x) e

ikmz z, (2.5)

where M is the total number of bound modes supported by the waveguide structure,
Ainc

m denotes the m-th modal coefficient, um
⊥(x) is the transverse profile of the mode,

and km
z is the corresponding propagation constant for the m-th mode. Note that

um
⊥(x) and km

z can be easily found by solving a one dimensional eigenvalue problem
by means of the method of separation of variables [56]. For example, the bound
mode solutions for a single waveguide centered at x = 0, with half-width h and with



2.2. Windowed Green Function Method (WGF) 19

core and cladding wavenumbers kco > kcl respectively, are given by [56]

um
⊥(x) =


v (γco h) e−γcl(x−h) , x > h

v (γco x) , |x | ≤ h

v (−γco h) eγcl(x+h) , x < −h,

(2.6)

where γco =
√

k2
co − (km

z )
2 and γcl =

√
(km

z )
2 − k2

cl. Here v(τ) = cos(τ) for the
symmetric modes, v(τ) = sin(τ) for the antisymmetric modes, and km

z (kcl < km
z <

kco) is the m-th solution of the transcendental equation
γcl = νwgγco tan (γcoh) (symmetric mode),

νwgγco = −γcl tan (γcoh) (antisymmetric mode),
(2.7)

with νwg = 1 for TE-polarization and νwg = (kcl/kco)2 for TM-polarization. As
indicated in section 2.3, additional incident fields such as plane waves, and finite
beams can also be incorporated easily in this context.

In order to introduce the desired system of integral equations, let

Γj =

( j−1⋃̀
=1
Γ` j

) ⋃©«
N⋃

`= j+1
Γj`

ª®¬ (2.8)

denote the boundary of the domain Ω j and let Γ =
⋃N

j=1 Γj denote the union of all
domain boundaries. Then, calling

ϕ(r) ≡ u+(r) and ψ(r) ≡
∂u+
∂n
(r), r ∈ Γ, (2.9)

and using Green’s theorem in a manner akin to [37] together with the boundary
conditions in equation (2.2), the representation formula

u(r) = D[β jϕ](r) −S
[
β jν
−1
j ψ

]
(r), r ∈ Ω j (2.10)

results, where

[β j(r), ν j(r)] =


[1, 1], for r ∈ Γj` ( j < `)

[−1, ν` j], for r ∈ Γ` j ( j > `)
, (2.11)
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and where, letting G j(r, r
′) = i

4 H(1)0 (k j |r − r′|) denote the free-space Green func-
tion for the Helmholtz equation with wavenumber k j , the single and double layer
potentials S and D for a given density η defined in Γ are given by

S [η](r) =

∫
Γj

G j(r, r
′)η(r′)dsr ′, r ∈ Ω j, (2.12)

D[η](r) =

∫
Γj

∂G j(r, r
′)

∂n(r′)
η(r′)dsr ′, r ∈ Ω j . (2.13)

The densities ϕ and ψ in the representation formula in equation (2.10), which,
in view of equation (2.9), are given in terms of the total field, can be expressed as
a sum of their incident and scattered components. In other words, ϕ = ϕinc + ϕscat

and ψ = ψinc +ψscat where, using the indicator function in equation (2.1), for r ∈ Γ

ϕinc(r) ≡ χinc(r)uinc+ (r) and ψinc(r) ≡ χinc
∂uinc+ (r)
∂n

, (2.14)

ϕscat(r) ≡ uscat+ (r) and ψscat(r) ≡
∂uscat+ (r)
∂n

. (2.15)

Note the important difference that originates from having an incident field given
by bound modes (compared to incident plane waves): the total field—not just the
scattered component—has an integral equation representation.

The desired integral equations for the unknown densities ϕscat and ψscat are
expressed in terms of certain free-space Green functions and various associated
integral operators. The particular Green function used in the definition of each one
of these operators depends on r : for r ∈ Γj`, a “plus” (resp. “minus”) operator uses
the Green function G j (resp. G`) corresponding to the refractive index on the plus
side (resp. minus side) of Γj`. To streamline the notations in this context, for r ∈ Γ
let Γ±(r) be defined as follows: if r ∈ Γj`, then Γ+(r) = Γj and Γ−(r) = Γ` (cf.
Remark 2.1.1). The necessary integral operators are thus defined by

S±[η](r) =
∫
Γ±(r)

G±(r, r′)η(r′)dsr ′, r ∈ Γ,

D±[η](r) =
∫
Γ±(r)

∂G±(r, r′)
∂n(r′)

η(r′)dsr ′, r ∈ Γ,

K±[η](r) =
∫
Γ±(r)

∂G±(r, r′)
∂n(r)

η(r′)dsr ′, r ∈ Γ,

N±[η](r) =
∫
Γ±(r)

∂2G±(r, r′)
∂n(r)∂n(r′)

η(r′)dsr ′, r ∈ Γ.

(2.16)
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As is known (cf. [32] theorems 3.1 and 3.2), the layer potentials from equa-
tion (2.13) satisfy the jump conditions at r ∈ Γ:

lim
δ→0+

S [η](r ± δn(r)) = S±[η](r),

lim
δ→0+

D[η](r ± δn(r)) = ±
1
2
η(r) + D±[η](r),

lim
δ→0+

∂

∂n
D[η](r ± δn(r)) = N±[η](r),

lim
δ→0+

∂

∂n
S [η](r ± δn(r)) = ∓

1
2
η(r) + K±[η](r).

(2.17)

Thus, adding the limits of the fields in equation (2.10) (resp. the normal derivatives
of the fields in equation (2.10)) on the plus and minus sides of Γ, the system of
integral equations for r ∈ Γ

E(r)Φscat(r) + T[Φscat](r) = −E(r)Φinc(r) − T[Φinc](r), (2.18)

results, where E(r) = diag
[
1,

1 + ν(r)
2ν(r)

]
and

ν(r) = ν` j, for r ∈ Γj` ( j < `), (2.19)

T =

[
D− − D+ S+ − (1/ν)S−

N− − N+ K+ − (1/ν)K−

]
, (2.20)

and where the density vectors are given by

Φscat = [ϕscat, ψscat]T, and Φinc = [ϕinc, ψinc]T. (2.21)

2.2.2 Oscillatory integrals and the slow-rise windowing function
Special considerations must be taken into account in order to solve the system of

equations (2.18) numerically—mainly in view of the slow decay of the associated
integrands (equation (2.16)) for a fixed target point r ∈ Γ as r′ → ∞. A direct
truncation of the integration domain (i.e., replacement of the integrals in (2.16) by
corresponding integrals over the domain Γ±(r)∩{|r | ≤ A}) yields slow convergence,
on account of edge effects, as the size A of the truncation domain tends to infinity.
Relying on a certain slow-rise windowing technique that smoothly truncates the
integration domain, the proposed approach addresses this difficulty—and, in fact, it
gives rise to a super-algebraically convergent algorithm. The resulting windowed
integral equations can be subsequently discretized by means of any integral solver,
including, in particular, the Method of Moments [73], or, indeed, any Nyström,
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Galerkin or collocation approach. The particular implementations presented in this
chapter are based on the high-order Nyström method described in [32, Sec. 3.5].

The proposed methodology is based on use of an infinitely smooth function
w̃A(d), defined for d ∈ R, which satisfies the following properties: (i) w̃A(d)

vanishes for d outside the interval [−A, A]; (ii) w̃A(d) equals 1 for d ∈ (−αA, αA)

for some α satisfying 0 < α < 1; (iii) All of the derivatives w̃(p)A (d) (p a positive
integer) vanish at d = ±A and d = ±αA; and (iv) w̃A(d) exhibits a “slow-rise” from
0 to 1 as |d | goes from |d | = A to |d | = αA—in the sense that each derivative of w̃A,
of any given order, tends to zero everywhere (and, in particular, in the rise intervals
αA ≤ |d | ≤ A) as d →∞. The windowing function used is given by

w̃A(d) =


1, s < 0

exp
(
− 2

exp (−1/|s |2)
|1 − s |2

)
, 0 ≤ s ≤ 1

0, s > 1

, (2.22)

where s(d) = |d |−αA
A(1−α) , but other choices could be equally suitable [13]. (In fact,

window functions that only satisfy condition (iii) up to a certain tolerance could be
used, such as e.g. window functions based on the error function or the hyperbolic
tangent.) As shown in [13] and demonstrated by means of a simple example in
section 2.2.3, the properties (i) through (iv) ensure that certain improper integrals
with slowly decaying oscillatory integrands—like the integrands in equation (2.16);
see Remark 2.2.1—can be evaluated, with super-algebraic accuracy, via windowing
based on the function w̃A(d). Suitable centered versions wA(r) (Figure 2.1b) of
the window function w̃A(d) are used in section 2.2.4 to window integral operators
defined on general waveguide structures.

Remark 2.2.1 In view of the asymptotic expressions for the Hankel function, each
one of the integral kernels involved in the equation system (2.18) can be expressed
in the form h(t) exp (it) where t = k |r − r′| = k |z − z′|

√
1 + ( x−x′

z−z′ )
2 and where

h(t) ∼ t−1/2 (t → ∞) is a function whose derivatives of any order are bounded for
all t > 1 [54, Sec. 5.11] (see also [20, 35]). On the other hand, the scattered
densities ϕscat approach oscillatory asymptotic functions as r′ = (z′, x′) tends to
infinity along Γ±(r) [67]: ϕscat ∼

∑
m Ascat

m um
⊥(x
′)e−ikmz z′ as z′ → −∞ and ϕscat ∼∑

n Bscat
n un

⊥(x
′)eiknz z′ as z′ → +∞, with similar expressions for the density ψscat.

Combining the kernel and density asymptotics, it follows that the net integrands
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in the operators (2.16) equal sums of slowly decaying oscillatory functions with
wavenumbers ±(k + kn

z ).

2.2.3 Error estimates for a simplified windowed integral
In order to illustrate the properties of the windowed-integration method, it is

useful to consider here a simple integration problem presented in [13], namely, the
problem of numerical evaluation of the integral

I =
∫ ∞

1

eiκz
√

z
dz, (2.23)

where κ is a real constant; see, in particular, [13, theorem 3.1]. Letting Itr(A) =∫ A
1

eiκz√
z dz, Iw(A) =

∫ A
1 w̃A(z) e

iκz
√

z dz, then, by definition I = limA→∞ Itr(A). As is
known, the value of I is finite—in spite of the slow decay of the integrand (the
integral of the function 1/

√
z in the same domain is infinite!). The finiteness

of the improper integral between 1 and ∞, which results from cancellation of
positive and negative contributions arising from the oscillatory factor eiκz, may
be verified by integrating by parts the integral Itr(A) (differentiating 1/

√
z and

integrating eiκz). This procedure produces two terms: (i) An integral with a more
rapidly decaying integrand and whose convergence does not rely on cancellations,
as well as (ii) Boundary contributions at z = 1 and z = A. Besides establishing the
existence of the limit limA→∞ Itr(A), this expression tells us that the z = A boundary
contribution 1/(iκ

√
A) eiκA equals the error in the approximation of I by Itr(A). On

the other hand, use of integration by parts on Iw(A) does not give rise to a boundary
contribution for z = A—on account of the fact that w̃A(A) = w̃′A(A) = 0. In fact,
since all the derivatives of w̃A(z) vanish at z = A, the integration by parts procedure
can be performed on Iw(A) an arbitrary number p of times without ever producing a
boundary contribution—a fact which lies at the heart of the accuracy resulting from
the slow-rise windowing approach. As shown in [13, theorem 3.1], this procedure
leads to the error estimates

|I − Itr(A)| = O
(

1
κ
√

A

)
, |I − Iw(A)| = O

(
1

√
κ(κA)p−

1
2

)
, (2.24)

for every p ≥ 1. These estimates are corroborated by the results in Table 2.1.

2.2.4 Windowed integral equations
Per Remark 2.2.1, for a fixed r ∈ Γ, the integrands associated with the operators

on the left-hand side of equation (2.18) are oscillatory and slowly decaying at
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Table 2.1: Convergence of the windowed integrals Itr(A) and Iw(A)with κ = 2π and
window parameter α = 0.5

A |I − Itr(A)| |I − Iw(A)|
10 5.0 × 10−2 3.6 × 10−3

20 3.6 × 10−2 5.8 × 10−5

25 3.2 × 10−2 9.3 × 10−6

50 2.2 × 10−2 3.1 × 10−9

75 1.8 × 10−2 3.1 × 10−12

100 1.6 × 10−2 1.0 × 10−14

infinity—just like the integrand in the simplified example presented in section 2.2.3.
Thus, it is expected that use of windowing in the integrands of these operators
should result in convergence properties analogous to the ones described in that
section. Since the integrands on the right-hand side (RHS) of equation (2.18)
are known functions, and since, as shown below, the full RHS can be evaluated
efficiently (by relying on equation (2.27)), the use of windowing may be restricted
to the left-hand side operators.

These considerations lead to the following system of “windowed” integral equa-
tions on the bounded domain Γ̃ = Γ ∩ {wA(r) , 0}:

E(r)Φscat
w (r) + T[wAΦ

scat
w ](r) = −E(r)Φinc(r) − T[Φinc](r), (2.25)

for r ∈ Γ̃. A discrete version of equations (2.25) can be obtained by substituting
all left-hand side integrals by adequate quadrature rules (as mentioned above, the
Nyström method [32, Sec. 3.5] is used for this purpose). The windowing function
wA(r) used here is selected as follows: (i) wA(r) = 1 on any portion of Γ that is not
part of a SIW; (ii) wA(r) = w̃A(dq(r)) along any portion of Γ that is contained in the
q-th SIW, and where dq(r) is the distance to the edge of the aforementioned SIW
(see Figure 2.1b). As demonstrated in section 2.3 through a variety of numerical
results, the solutionΦscat

w of equation (2.25) provides a super-algebraically accurate
approximation to Φscat throughout the region {wA(r) = 1}.

Note that the net wavenumber of the integrands in the RHS of equation (2.25)
can be arbitrarily small, since the phase of the exponentials in (2.5) can be arbitrarily
close to the negative of the phase of the kernels (see Remark 2.2.1). Thus a direct
windowed computation of T[Φinc](r) generally presents a considerable challenge.
In order to obtain these integrals, a strategy that doesn’t rely on the oscillatory nature
of the integrands was devised. To introduce this alternative strategy, consider the
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discussion leading to equation (2.18). Clearly, the first (resp. second) component
in the quantity [ξ, η]T = T[Φinc](r) for r ∈ Γ̃ is given by the limit as r tends to Γ̃ of
the field u (resp. the normal derivative of the field u) that results as the pair [φ, ψ]T

in (2.10) is replaced by the incident densities [φinc, ψinc]T(= Φinc). Note that, per
equation (2.14), Φinc vanishes identically outside Γincj = Γj ∩ Ω

inc. Now, given
that the illuminating structure is a single SIW whose optical axis coincides with the
z−axis (as indicated in section 2.2.1), the corresponding integration domain Γincj can
be decomposed as the union Γincj = Γ̃

inc
j ∪ Γ

∞
j of the two disjoint segments Γ̃incj =

Γincj ∩ {wA(r) , 0} and Γ∞j = Γ
inc
j ∩ {wA(r) = 0}. (With reference to Figure 2.1b

note that Γincj =
(⋃ j−1

`=1 Γ
inc
` j

) ⋃ (⋃N
`= j+1 Γ

inc
j`

)
where Γincj` = Γj` ∩Ω

inc; similarly, Γ̃incj

and Γ∞j are decomposed as the unions of the curves Γ̃incj` = Γ
inc
j` ∩ {wA(r) , 0} and

Γ∞j` = Γ
inc
j` ∩ {wA(r) = 0}, respectively. Figure 2.1b only displays the independent

components Γ̃incj` and Γ∞j` .) Using the fact that the incident densities ϕinc and ψinc

vanish outside Γincj , for r ∈ Ω j the relation

D[β jϕ
inc] −S

[
β jν
−1
j ψinc

]
=

∫
Γ̃incj ∪Γ

∞
j

β j

×

[
∂G j(r, r

′)

∂n(r′)
ϕinc(r′) − G j(r, r

′)ν−1
j ψinc(r′)

]
dsr ′, (2.26)

results. The evaluation of the right-hand integral is discussed in what follows.

The integral over the bounded curve Γ̃incj in (2.26) can be computed using any
of the standard singular-integration techniques mentioned in section 2.2.2. The
curve Γ∞j extends to infinity, on the other hand, with an integrand that decays
slowly (see Remark 2.2.1). Fortunately, however, the Γ∞j integration problem can
be significantly simplified by relying on the fact that [ϕinc, ψinc]T(= Φinc) actually
coincides with the boundary values of the incident field and its normal derivative,
as indicated in equation (2.14). To evaluate the Γ∞j integral, consider the identity∫

Γ∞j

β j

[
∂G j(r, r

′)

∂n(r′)
ϕinc(r′) − G j(r, r

′)ν−1
j ψinc(r′)

]
dsr ′

= −

∫
Γ⊥j

β j

[
∂G j(r, r

′)

∂n(r′)
uinc(r′) − G j(r, r

′)
∂uinc

∂n
(r′)

]
dsr ′, (2.27)

for r ∈ {z > −A} that results by using Green’s theorem in a manner akin to [37]
(the corresponding bounded-domain result can be found e.g. in [31, theorem 3.1]).
(Here Γ⊥j = Ω j ∩ {z = −A} is such that Γ⊥j ∪ Γ

∞
j is the boundary of the region

Ω j ∩ {z < −A}, see Figure 2.1b.) Equation (2.27) provides an alternative approach
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for the evaluation of the integrals over Γ∞j in equation (2.26). While some of the Γ⊥j
curves are unbounded, along such unbounded curves the fields decay exponentially
fast (see equation (2.6)), and, thus, arbitrary accuracy can efficiently be achieved in
the corresponding integrals by truncation of the integration domain to a relatively
small bounded portion of Γ⊥j . It is worthwhile to emphasize that the substitution of
the right-hand side of (2.25) by quantities evaluated in terms of equations (2.27)
and (2.26), as explained above in this section, amounts to a non-standard procedure
which significantly facilitates the implementation of the proposed methodology in
the case of bound-mode excitations.

The overall WGF method for open waveguides is summarized in points (1) to (3)
below. As mentioned above, the bounded-interval numerical integrations men-
tioned in the points (1) to (3) can be effected by means of any numerical integration
method applicable to the kinds of singular integrals (with singular kernels and, at
corners, unknown singular densities) associated with the problems under considera-
tion. The implementation used to produce the numerical results in section 2.3 relies
on numerical integration methods derived from [32, Sec. 3.5].

The WGF algorithm proceeds as follows:

(1) Evaluate the RHS of equation (2.25) by decomposing the integrals in the
operators (2.20) into integrals over Γ̃incj and Γ∞j . The integrals involving
the bounded integration domains Γ̃incj are computed by direct numerical in-
tegration. Relying on the exponential decay of the integrands of the RHS
of equation (2.27), on the other hand, the integrals over Γ∞j are obtained by
truncation of the integrals over Γ⊥j .

(2) Solve forΦscat
w in equation (2.25) by either inverting directly the corresponding

discretized system (as is done here), or by means of a suitable iterative linear-
algebra solver, if preferred.

(3) Evaluate the approximate fields uw using the representation formula (2.10) in
conjunction with equation (2.27):

uw(r) =D[β jwAϕ
scat
w ](r) −S

[
β jν
−1
j wAψ

scat
w

]
(r)

+D[β jϕ
inc](r) −S

[
β jν
−1
j ψinc

]
(r), (2.28)

for r ∈ Ω j , andwhere the layer potentials involving ϕinc andψinc are computed
as in point 1, that is, by direct evaluation of the integrals over Γ̃incj and via
equation (2.27) for the integrals over Γ∞j .
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It can be seen [20] that, as A → ∞, the fields in point 3 are super-algebraically
accurate in any bounded region in the plane.

2.3 Numerical examples
This section demonstrates the character of the WGF method introduced in sec-

tion 2.2 through a variety of numerical results. These results were obtained by
means of a MATLAB implementation of the algorithms described in section 2.2.4
on a six-core 3.40 GHz Intel i7-4930K Processor with 12 Mb of cache and 32 GB
of RAM. As mentioned in section 2.2.2, a Nyström method was utilized, where
the number of points per wavelength was selected in such a way that the dominant
error arises from the windowed truncation. The simulations in this section resulted
from discretizations containing a number of eight to twelve points per wavelength,
as needed to guarantee the accuracy reported for each numerical solution. The
reported errors were evaluated via the expression

Error =

√√√∑Nd

i=1 |uw(r i) − uref(r i)|
2∑Nd

i=1 |u
ref(r i)|

2
(2.29)

with Nd = 100, and where the Nd points r i lie along certain curves, selected
in different manners for each test case, along which significant features of the
numerically computed fields were observed. The errors in all the nonuniform
waveguide problems were evaluated on the basis of equation (2.29) with reference
solutions uref produced by means of window functions wA with A/λ > 20. In what
follows, for a length unit [L] relevant in a given application, the quantities A, λ and
h (resp. k) below are taken to quantify lengths in the unit [L] (resp. [L]−1). If
the selection [L] = µm were made for the COUPLER test case, for example, the
quantities kco and kcl would equal 2π µm−1 and π µm−1, while h and the waveguide
separation would equal 0.5 µm and 0.2 µm, respectively. Of course, any other
length units could be used, e.g. [L] = λ0, where λ0 denotes the electromagnetic
wavelength in vacuum.

The first numerical example considered here is a simple uniform waveguide—for
which, physically, a single mode (equation (2.6)), or even a superposition of such
modes, can propagate from −∞ to +∞ without disturbance. This simple problem
provides a direct test for the accuracy of the proposed WGF approach, for which
errors were evaluated by using exact solutions as references: uref = u in this case.
The incident field was prescribed on the region Ωinc = {z ≤ 0}. The observed error
as a function of the window size is displayed in Figure 2.2 under the label “FLAT.”
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Figure 2.2: Super-algebraic convergence of the WGF method for various test con-
figurations. In all cases, a sufficiently fine numerical grid was used (eight to
twelve points per wavelength) to ensure the leading error is caused by the WGF’s
slow-rise boundary truncation. Here the scaled window size A/λ is varied while
λ = max j(2π/k j) is kept fixed. The values of k j are described in the text for each
test case.

Error curves for a number of additional configurations are also included in
Figure 2.2, and corresponding near field images are displayed in Figures 2.3 and 2.4.
(The “trivial” near field image for the uniform waveguide mentioned above is not
included in Figures 2.3 and 2.4.) The configurations considered (under TE or TM
polarizations, as indicated in each case) are as follows:

• COUPLER (TE). Optical coupler illuminated by the first symmetric mode in-
coming from the top-left SIW. Waveguide core wavenumber kco = 2π, cladding
wavenumber kcl = π andwaveguide half-width h = 0.5were used. Thewaveguide
separation in the cross-talk region was set to 0.2.

• BRANCH (TE). Branching waveguide structure illuminated by the first antisym-
metric mode incoming from the left SIW. The half-widths of the horizontal,
top-right and bottom-right SIWs are 1, 0.5 and 0.25, respectively, and the angle
between the two branching waveguides is 5π/12 radians. The bottom-right SIW
is a single-mode waveguide: only one specific mode can propagate along this
structure. The wavenumbers in the core, cladding and circular obstacle regions
are kco = 2π, kcl = π and kob = 5π/2, respectively.
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(a) COUPLER (b) COUPLER

(c) BRANCH (d) BRANCH

(e) HORN (f) HORN

Negative Positive
(g) Colormap for Re(u)

0 Max
(h) Colormap for |u|

Figure 2.3: Real part and absolute value of uw (left and right columns, respectively)
produced by the WGF method for several open-waveguide problems.

• HORN (TE). Terminated waveguide horn antenna illuminating a dielectric circu-
lar obstacle. The system is illuminated by the first antisymmetric mode of the
waveguide. The core and cladding wavenumbers are kco = 2π and kcl = 4π/3
respectively, and the circular obstacle wavenumber is kob = 4π. The half-width
of the waveguide is h = 0.5 and the radius of the obstacle is 2.
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(a) DISK (b) DISK

(c) ILLUM (d) ILLUM

(e) L-BEND (f) L-BEND

Negative Positive
(g) Colormap for Re(u)

0 Max
(h) Colormap for |u|

Figure 2.4: Real part and absolute value of uw (left and right columns, respectively)
produced by the WGF method for several open-waveguide problems.
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• DISK (TE). Circular disk resonator [76, Sec. 16.5] illuminated by the first
symmetric mode incoming from the top-left waveguide. The core and cladding
wavenumbers in both waveguides are kco = 250π/127 and kcl = 125π/127,
respectively, and the disk wavenumber equals kco. The waveguide half-widths are
both h = 0.2, the disk has radius 5, and separation between the waveguides and
the disk is 0.2. The wavenumbers were selected to excite a near resonance in the
circular cavity.

• ILLUM (TE). Excitation of waveguide modes in a terminated waveguide. The
structure is illuminated by a beam incoming from the left at an angle π/10 radians
below the horizontal. (A description of the illuminating field is presented below.)
The core and cladding wavenumbers are given by kco = 2π and kcl = 4π/3
respectively, while the half-width of the waveguide is h = 0.5.

• L-BEND (TM). Sharp L−bend illuminated by the first antisymmetric mode in-
coming from the left waveguide. The core and claddingwavenumbers are kco = 2π
and kcl = 2π/3 respectively, and the waveguide half-width is given by h = 0.5.

The labels used here (COUPLER, BRANCH, etc.) correspond to those used in
Figure 2.2 and Figure 2.3. The computing times required to achieve an accuracy
better than 1.0 × 10−6 are presented in Table 2.2.

The illuminating field used for the configuration ILLUM is given by the angular
spectrum representation [37, equation (49)]

uinc(r, θ) =
∫ π/2

−π/2
F(α)eik1r cos (θ+α)dα, (2.30)

with F(α) = e−12.5(α+π/10)2 . Note that equation (2.18) does not directly apply in this
case since the illuminating field used here is not a waveguide mode. But only slight
modifications are necessary: the relevant windowed equation in this case is

E(r)Φ(r) + T[wAΦ](r) = Φ
inc(r), r ∈ Γ. (2.31)

This equation can be solved by a procedure analogous to that presented in sec-
tion 2.2.4.
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Table 2.2: Computing times (in seconds) required by the WGF method to produce
the densities Φscat and to evaluate the fields uw (on a 128 × 128 evaluation grid),
with an accuracy better than 1.0 × 10−6, for the various test cases mentioned in the
text.

Problem #-Unknowns A/λ Time-Φscat Time-uw
FLAT 1752 9 1.06 3.47
COUPLER 6450 12 13.05 9.23
BRANCH 5978 14 13.82 8.13
HORN 2902 15 3.28 7.69
DISK 6556 16 11.62 5.09
ILLUM 1374 15 0.83 3.34
L-BEND 2516 12 2.03 3.80
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C h a p t e r 3

MODE FINDER ALGORITHM FOR ELECTROMAGNETIC
WAVEGUIDES

In Chapter 2, we described a methodology to model non-uniform two-dimensional
electromagnetic waveguides, which approximate finite-sized slab waveguides when
the width is much larger compared to the height. However, many applications
require three-dimensional waveguides whose cross section has similar dimensions
in all directions—hence the two-dimensional approximation does not provide a
meaningful result.

The accurate simulation of dielectric waveguide problems presents significant
challenges since the fields are not bound to the interior of the waveguide. Further-
more, the boundaries between the dielectric materials extend to infinity. Hence, it’s
natural to tackle different parts of the waveguide problem in separate ways. For
instance, the WGF method from Chapter 2 deals with nonuniform two-dimensional
waveguides. Conversely, for the more complex three-dimensional problem, we’ll
separate it into two problems: (1) find the modes of uniform waveguides with ar-
bitrary transverse shape, and (2) model nonuniform waveguides. The first problem
is the subject of this chapter, while the second one is left to Chapter 6—where the
WGF method is generalized for the three-dimensional case.

This chapter describes an adaptation of the method presented in [2, 3] to find the
bound modes of dielectric waveguides of arbitrary transverse shape. The method
in [3] was designed to find eigenpairs of the Zaremba problem using integral equa-
tions, together with a modified method to avoid spurious solutions which was
introduced in [10]. We show that these ideas can be successfully applied to elec-
tromagnetic waveguides by reformulating the mode equations into a set of integral
equations with appropriate boundary conditions. In particular, the method can han-
dle arbitrarywaveguideswithC2 boundaries, and it can handlemodes corresponding
to multiple eigenvalues.

3.1 Mode equations
Consider a dielectric material with infinite boundaries along the z−axis—which

we will take as the optical axis—and a constant, finite shape across any xy-plane
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(see Figure 3.1). Let the interior and exterior domains of the structure be denoted
as Ω1, and Ω2, with respective refractive indices n1 and n2, and boundary Γ. In
order to have a guiding dielectric structure—i.e. a waveguide—we require n1 > n2,
which ensures that total internal reflection can occur inside the waveguide [46]. In
the optics literature, the domain Ω1 is often referred as the waveguide core, while
Ω2 is the waveguide cladding [75].

Figure 3.1: Illustration of a uniform dielectric waveguide with arbitrary cross sec-
tion.

The electromagnetic fields satisfy Maxwell’s equations with the relevant bound-
ary conditions at the interface between dielectrics. Throughout a time-harmonic
dependence with angular frequency ω is assumed but suppressed (see e.g. sec-
tion 1.2). Furthermore, since we are looking for guided fields, i.e. fields that do not
decay inside the core as they propagate, we can also assume a harmonic factor in the
z−direction, that is, we have that the total electromagnetic fields Ẽ = (Ẽx, Ẽy, Ẽz),
and H̃ = (H̃x, H̃y, H̃z) are given by the ansatz

Ẽ(x, y, z, t) = E(x, y) exp (ikzz − iωt), (3.1a)

H̃(x, y, z, t) = H(x, y) exp (ikzz − iωt), (3.1b)

where kz denotes the propagation constant.

It is important to note that not all solutions to Maxwell’s equations for this
problem can be written in the form of equation (3.1). In fact, those that do sat-
isfy equation (3.1) for some propagation constant, together with the appropriate
boundary conditions and the Silver-Müller radiation condition [63], are known as
the bound modes (or guiding modes) of the waveguide [75]. The bound modes enjoy
the unique property of concentrating all the energy to a vicinity of the waveguide
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core—a bound mode propagating in a waveguide has zero loss, independently of
the propagation distance.

To find the bound modes, we need to identify the values of kz and modal fields
E, H so that equation (3.1) satisfy Maxwell’s equations with the right boundary and
radiation conditions. Using the ansatz equation (3.1), and defining the transverse
wavenumbers

γi(kz) ≡

√
n2

i
ω2

c2 − k2
z for i = 1, 2 , (3.2)

we have that Maxwell’s equations reduce to a set of PDEs for the longitudinal (with
respect to the optical axis) components of the fields [46]1

∆Hz + γ
2
i Hz = 0

∆Ez + γ
2
i Ez = 0

}
in Ωi , for i = 1, 2 , (3.3)

coupled by the boundary conditions

E+z − E−z = 0 , on Γ, (3.4a)

H+z − H−z = 0 , on Γ, (3.4b)

ε1

γ2
1

∂E−z
∂n
−
ε2

γ2
2

∂E+z
∂n
+
ωµ0

kz

(
ε1

γ2
1
−
ε2

γ2
2

)
∂Hz

∂T
= 0 , on Γ, (3.4c)

1
γ2

1

∂H−z
∂n
−

1
γ2

2

∂H+z
∂n
+
ω

kz

(
ε2

γ2
2
−
ε1

γ2
1

)
∂Ez

∂T
= 0 , on Γ, (3.4d)

where n denotes the outward normal vector, T is the tangential vector in counter-
clockwise direction, and the fields at the boundaries are defined by

E±z ≡ lim
δ→0

Ez(r ± δn) , (3.5a)

H±z ≡ lim
δ→0

Hz(r ± δn) . (3.5b)

Once the longitudinal components of the field are found, the transverse components
can be computed from the relation

(Ex, Ey) =
i
γ2

(
kz∇Ez − ωµ0 ẑ × ∇Hz

)
, (3.6a)

(Hx,Hy) =
i
γ2

(
kz∇Hz + ωε0n2 ẑ × ∇Ez

)
, (3.6b)

1The differential operators used are to be understood depending on the dimension of the field for
which they act on. For example, ∆u is the Laplacian in Rn if u is an n-dimensional field.
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with

γ(r) = γi, r ∈ Ωi , (3.7a)

n(r) = ni, r ∈ Ωi . (3.7b)

In order for the modal fields to be purely propagating modes, the propagation
constant needs to be within the bounds n2ω/c < kz < n1ω/c—a condition that
ensures that total internal reflection can take place [75], or, mathematically, that
γ1 is purely real, while at the same time γ2 is purely imaginary. This results
in equation (3.3) being the Helmholtz equation for Ω1, and the modified Helmholtz
equation [8] for Ω2, for which the fundamental solution decays exponentially, and
thus ensures that all of the energy of the electromagnetic fields is restricted to a
neighborhood of the waveguide core.

3.2 Bound modes of a circular waveguide
One extremely important case, for both theoretical and applied settings, is that

of a circular waveguide, which provides a practical model to optical fibers used
in telecommunications. Another key point on why this problem is of great conse-
quence, is that a solution can be found using the method of separation of variables—
consequently the fields can be expressed in terms of special functions.

Inside the core of the waveguideΩ1, the longitudinal fields satisfy the Helmholtz
equation, and enforcing the fields to be finite at the center of the core, the solution
is then given in terms of the Bessel function of the first kind. For the cladding
region Ω2, and imposing the fields to be bounded at infinity, results in the solution
being in terms of the modified Bessel function of the second kind—alternatively,
in terms of the Hankel function with imaginary argument [1, Eq. 9.6.4]. Using the
cylindrical coordinate system r =

√
x2 + y2, θ = arctan(y/x), a bound mode for a

circular waveguide of radius one is given by [46, 75]

[
Ez, Hz

]T
=


[
A1, B1

]T
Jm(|γ1 |r) exp (imθ), r ≤ 1[

A2, B2

]T
H(1)m (i |γ2 |r) exp (imθ), r > 1

, (3.8)

for an integer m and constants A1, A2, B1, B2 so that the boundary conditions
in equation (3.4) are satisfied. However, a solution exists only for certain combina-
tions of kz and m. In order to find the admissible values of these parameters, we can
formulate the problem as finding the values of kz and m for which a certain 4 × 4
matrix Am(kz), derived in what follows, has a non-trivial null space.
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In order to obtain the matrix Am(kz), we apply the boundary conditions equa-
tion (3.4) to the separation-of-variables solution equation (3.8), and using the short-
hand notations

Jm ≡ Jm(γ1), (3.9a)

Hm ≡ H(1)m (γ2), (3.9b)

∆Jm ≡ Jm−1 − Jm+1, (3.9c)

∆Hm ≡ Hm−1 − Hm+1, (3.9d)

we obtain

Am(kz) ≡



Jm −Hm 0 0
0 0 Jm −Hm

ε1
2γ1
∆Jm −

ε2
2γ2
∆Hm

imωµ0
kz

(
ε1
γ2

1
−

ε2
γ2

2

)
Jm 0

imω
kz

(
ε2
γ2

2
−

ε1
γ2

1

)
Jm 0 1

2γ1
∆Jm − 1

2γ2
∆Hm


,

(3.10)

which, in order to have a waveguide mode, must satisfy the condition

Am(kz)

[
A1, A2, B1, B2

]T
= 0 (3.11)

for a non-trivial vector [A1, A2, B1, B2]
T .

Then, to find the modes of the circular waveguide, one has to find the values of m

and kz for which Am in equation (3.10) has non-trivial null space. This can be done
by performing a root search on the minimum singular value of Am as a function
of kz—the corresponding right-singular vectors can be used to find the values of
A1, A2, B1 and B2 that can be used to compute the longitudinal fields of the mode
using equation (3.8).

The specific implementation of the mode-finding algorithm used for the circular
case is shown in Algorithm 3.1, and in fact, it serves as a simplified case of the
mode-finding algorithm that is shown in section 3.4. The method is a variation of
the methodology presented in [3].
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Algorithm 3.1Mode finder algorithm for a circular waveguide
1: Set mmax: Maximum number of integer angular frequencies m
2: Set ∆kz: Resolution for σmin sampling
3: Set tolσ: Tolerance for zero singular value
4: Nkz = b(k2 − k1)/(∆kz)c

5: c = 0: Mode counter
6: for m = 0, 1, . . . ,mmax do→ Angular frequencies
7: for ` = 1, 2, . . . , Nkz − 1 do→ Initial σmin sampling
8: k`z = k2 + `∆kz,
9: s` = σmin(Am(k`z ))
10: end for
11: for ` = 2, 3, . . . , Nkz − 2 do→ Estimate intervals for the minima
12: if s` ≤ s`+1 & s` ≤ s`−1 then
13: (kmin

z , smin) = Golden-section search with interval [k`−1
z , k`+1

z ]

14: if smin < tolσ then
15: c = c + 1
16: kmode

z (c) = kmin
z

17: mmode(c) = m
18: end if
19: end if
20: end for
21: end for
22: return kmode

z ,mmode

Figure 3.2: Minimum singular value as a function of the propagation constant
obtained using Algorithm 3.1. The parameters for this circular waveguide of radius
equal one are nco = 1.47, ncl = 1.00, λ0 = 1.0.
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3.3 Integral equation formulation
We now turn our attention to the more general case of a step-index waveguide

with an arbitraryC2 curve as the boundary at any given cross section. In this section,
we use integral equations to reformulate the problem, finding a system analogous to
that in equation (3.10) for which a mode search algorithm—such as that in [3]—can
be applied.

The integral representation used here is based on a combined field that results
in only weakly-singular kernels—allowing us to use standard techniques for the
numerical computation of integral equations such as those described in [32, Ch. 3].

Given that Ez and Hz satisfy the Helmholtz equation (3.3), these fields can be
expressed in terms of the single- and double-layer potential [32]:

Ez(r) =


S1[µ

E ](r) + (CE )−1D1[η
E ](r), r ∈ Ω1

S2[µ
E ](r) +D2[η

E ](r), r ∈ Ω2
(3.12a)

Hz(r) =


S1[µ

H](r) + (CH)−1D1[η
H](r), r ∈ Ω1

S2[µ
H](r) +D2[η

H](r), r ∈ Ω2
(3.12b)

where the kz-dependent quantities

CE (kz) ≡

(
γ2(kz)

γ1(kz)

)2
ε1

ε2
, (3.13a)

CH(kz) ≡

(
γ2(kz)

γ1(kz)

)2
, (3.13b)

are chosen so that the system of integral equations involves only weakly singular
kernels. (We’ll drop the explicit dependence on kz, but it is worth keeping in mind
that γ1,2 are functions of this variable.)

Define the values

FE ≡
γ2

2ωµ0

ε2kz

(
ε1

γ2
1
−
ε2

γ2
2

)
, (3.14a)

FH ≡
γ2

2ω

kz

(
ε2

γ2
2
−
ε1

γ2
1

)
, (3.14b)

and the vector density

ϕ ≡
[
ηE ηH µE µH

]T
, (3.15)
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and the operator matrices

Ĩ ≡



1
2

(
1 + 1

CE

)
I 0 0 0

0 1
2

(
1 + 1

CH

)
I 0 0

0 0 −1
2
(
1 + CE )

I 0
0 0 0 −1

2
(
1 + CH )

I


, (3.16a)

M ≡



D2 −
1

CE D1 0 S2 − S1 0
0 D2 −

1
CH D1 0 S2 − S1

N2 − N1 − FE

CH T
(
−1

2 I + D1

)
K2 − CE K1 −FETS1

−FH

CE T
(
−1

2 I + D1

)
N2 − N1 −FHTS1 K2 − CHK1


,

(3.16b)

Ã(kz) ≡ Ĩ + M . (3.16c)

Then, using the jump conditions [32, Theorem 3.1] together with the boundary
conditions in equation (3.4) we obtain that for a bound mode, the following integral
equations must be satisfied

Ãϕ = 0. (3.17)

We will denote as AB—for boundary—the discrete version of Ã.

3.4 Mode-finding algorithm
A first approach to find the modes of a waveguide on the basis of the integral

representation of the previous section could be attempted via an algorithm similar
to the one we used for the circular case (Algorithm 3.1), but instead of taking the
minimum singular value of equation (3.10), one would take the minimum singular
value of AB. Unfortunately, doing so introduces some spurious modes that are not
true bound modes. These spurious solutions are a consequence of the Riemann-
Lebesgue lemma (see [3, Remark 6.3]), which, roughly speaking, implies that
highly-oscillatory densities can produce small integral values. In [10], a method
to avoid spurious solutions of a similar kind was introduced for the method of
particular solutions, and in [3] the same idea was successfully implemented to
regularize the σmin curve in the context of the integral-equation formulation of the
Zaremba eigenvalue problem. We will show that for the problem considered in this
chapter, the aforementioned modified method provides an effective tool to bypass
the undesired spurious modes in the root finding search.
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The modified method laid out by [10, section 5] is based on extending the matrix
A by a set of rows on which the fields are evaluated. In the context of our problem,
we have

A(kz) =

[
AB(kz)

AI(kz)

]
(3.18)

where AI is a rectangular matrix that evaluates Ez and Hz in a set of interior (of the
core’s waveguide) points2. Then, the QR factorization of A has the form

Q(kz) =

[
QB(kz)

QI(kz)

]
. (3.19)

By performing a root-finding search on the smallest singular value of QB, one can
ensure that the resulting densities of the mode produce fields that have close to
unit norm on the sampled interior values of the fields, thus avoiding the spurious
solutions that are characterized by high-oscillations at the boundary, but close to
zero field values away from it.

Algorithm 3.2 Integral-equation mode finder algorithm for waveguides with arbi-
trary cross section.
1: Set ∆kz: Resolution for σmin sampling
2: Set tolσ: Tolerance for zero singular value
3: Nkz = b(k2 − k1)/(∆kz)c

4: c = 0: Mode counter
5: for ` = 1, 2, ..., Nkz − 1 do→ Initial σmin sampling
6: k`z = k2 + `∆kz,
7: s` = σmin(QB(k`z )) → Equation (3.19)
8: end for
9: for ` = 2, 3, ..., Nkz − 2 do→ Estimate intervals for the minima
10: if s` ≤ s`+1 & s` ≤ s`−1 then
11: (kmin

z , smin) = Golden-section search with interval [k`−1
z , k`+1

z ]

12: if smin < tolσ then
13: c = c + 1
14: kmode

z (c) = kmin
z

15: end if
16: end if
17: end for
18: return kmode

z

2The underscores B and I refer respectively to “boundary” and “interior.”
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3.5 Numerical examples
This section presents some numerical examples that demonstrate the effectiveness

of the integral-equation mode finder algorithm for open waveguides described in
section 3.4 and summarized in Algorithm 3.2.

3.5.1 Circular waveguide
In our first example, we consider the circular waveguide problem, whose exact

solution—derived in section 3.5.1—is used for reference. Figure 3.3 displays the
smallest singular values for the modified and the unmodified method (in solid
black and red respectively), together with the kz values found by the separation of
variables method—presented in the colored vertical dashed lines. We can see that
the modified method successfully removes the spurious solutions, and at the same
time smoothens out the σmin curve, which consequently improves the performance
of the root-finding algorithm. Additionally, Figure 3.4 presents the convergence of
the propagation constants for each one of the modes considered. In particular, the
figure demonstrates the exponential rate of convergence provided by the integral
solver for the propagation constant kz.

Figure 3.3: Comparison between the direct andmodifiedmode searchmethods. The
solid black shows the minimum singular value for the matrix QB in equation (3.19),
which provides a modified method that gets rid of the spurious solutions. On the
other hand, the solid red line is the minimum singular value for AB, the discretized
version from equation (3.16c). The dashed lines represent the values obtained from
the mode search using the analytical expressions. In this case, the parameters are
nco = 1.47, ncl = 1.00, λ0 = 1.0.
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Figure 3.4: Convergence in the 13 different propagation constants for the case
of a circular waveguide. In this case, the waveguide parameters are nco = 1.47,
ncl = 1.00, λ0 = 1.0.

3.5.2 Flower waveguide
In our second example, we consider a waveguide whose cross section is a four-

petal “flower.” The shape of this boundary, which includes some symmetries as
well as sharp curvatures at the edges between petals, makes it an interesting case
study. Figure 3.6 presents the results for the mode search and the z−fields for two
corresponding modes. We see that the σmin curve behaves similarly to that of the
circular waveguide, while the field values associated with the various modes reflect
the geometrical symmetry. The electromagnetic parameters used for this simulation
are nco = 1.47, ncl = 1.00, λ0 = 2.0.
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Figure 3.5: Results of the integral-equation mode search algorithm applied to a
circular waveguide of radius equal one. In this case, we used a total number of 60
boundary points, and the parameters nco = 1.47, ncl = 1.00, λ0 = 1.0 were used.
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Figure 3.6: Results of the mode search algorithm using a total number of 200
boundary points, and with parameters nco = 1.47, ncl = 1.00, λ0 = 2.0. The values
of σmin as a function of the propagation constant kz are shown in (a), Ez and Hz for
the second mode are displayed in (b) and (d), while (c) and (e) show also the Ez and
Hz fields for the fifth mode found.
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3.5.3 Multiple core waveguide
For the purpose of demonstrating the versatility of the method we presented

in this chapter, the last example is that of a waveguide consisting of two separate
cores. The two cores considered here have the shapes of a four-petal “flower” and
a “kite” shape. Figure 3.7 displays the geometry, as well as the interior points
we selected for this case—which were arbitrarily chosen to lie on spiral curves
near the centers of the cores. Having multiple waveguide cores located near each
other provides an interesting case given that the modal solutions are not just the
modes of each waveguide, but rather solutions that include perturbations caused by
coupling effects. In fact, this is the well-known phenomenon in fiber optics known
as crosstalk. The results of applying Algorithm 3.2 to this problem are presented in
Figure 3.8 which clearly demonstrates the aforementioned coupling effects.

Figure 3.7: Illustration of the two-core example. For this case, we used a set of
interior points—for the modified algorithm—along spiral curves in the interiors of
both cores.
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Figure 3.8: In (a), the σmin curve is shown for the two-core waveguide from Fig-
ure 3.7. The Ez and Hz fields for the fourth mode found are shown in (b) and
(d) respectively, while (c) and (e) depict the Ez and Hz fields (respectively) of the
seventh mode. The parameters nco = 1.47, ncl = 1.00, λ0 = 1.5 were used.
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C h a p t e r 4

RECTANGULAR-POLAR METHOD FOR SINGULAR
INTEGRAL OPERATORS

The solution of scattering problems by means of boundary integral representations
has proven to be a game-changer when the ratio of volume to surface scattering is
large, where volumetric solvers become intractable due to memory requirements
and computational cost. At the heart of every boundary integral equation (BIE)
solver lies an integration strategy that must be able to handle the weakly singular
integrals associated with the integral formulations of e.g. acoustic and electromag-
netic scattering. Several approaches have been proposed to deal with this difficulty,
most notably those put forward in [12, 15, 40, 50, 69, 70].

For the problem of scattering by two-dimensional surfaces in three-dimensional
space, which reduces to two-dimensional weakly-singular integral equations over
the scatterer’s surface, there is no simple high-order quadrature rule of the type
put forth in [32, 52, 58] for evaluation of weakly-singular operators associated
with curves in two-dimensional space. This makes the three-dimensional problem
considerably more difficult than its two dimensional counterpart. Therefore, a num-
ber of approaches have been proposed—including, notably, Nyström, collocation
and Galerkin methodologies—for the evaluation of integral operators over two-
dimensional surfaces. Nyström methods use a quadrature rule to evaluate integrals
from a point-mesh discretization, with testing on the set of integration points; the
collocation approach finds a solution on a finite-dimensional space which satisfies
the continuous BIE at a set of collocation points; the Galerkin approach solves the
BIE in a discrete weak form, using finite-element spaces for both solution represen-
tation and testing.

In this contribution, a Nyström method is presented in which, as in [78], the far
interactions are computed via Fejér’s first quadrature rule, which yields spectrally
accurate results for smooth integrands. On the other hand, the integrals involv-
ing singular and near-singular kernels are obtained by relying on highly-accurate
precomputed integrals (which are produced by means of rectangular-polar changes
of variables that vary with the observation point) of the kernels times Chebyshev
polynomials, together with Chebyshev expansions of the densities. The derivatives
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of the rectangular-polar change of variables vanish at the kernel-singularity and
geometric-singularity points, producing respectively “floating” and fixed cluster-
ing around those points, and thus giving rise to high-order accuracy. The floating
changes of variables are analogous to those in the polar integration method [15],
but differ in the fact that it is applied on a rectangular mesh, hence the “rectangular-
polar” terminology we use. The sinh transform [47, 48] was also tested as an
alternative to the change of variables we eventually selected: the latter method was
preferred as the sinh change of variables does not appear to allow sufficient control
on the distribution of discretization points along the integration mesh, which is
needed in order to accurately resolve the wavelength without use of an excessively
fine discretization mesh near singularities.

The proposed rectangular-polar approach, which yields high-order accuracy,
leads to several additional desirable properties. The proposed use of Chebyshev
representations for the density, for example, allows for the evaluation of differential
geometry quantities needed for electromagnetic BIE by means differentiation of
corresponding Chebyshev series. Additionally, the nodes for Fejér’s first quadrature
are the same as the nodes for the discrete orthogonality property of Chebyshev poly-
nomials, which make the computation of the Chebyshev transforms straightforward.
In addition to scattering by a bounded obstacle, this integral equation solver can
also be used in the context of the Windowed Green function method for scattering
by unbounded obstacles such as layered media [18, 20, 68] and waveguides [22].

This chapter is organized as follows. After basic preliminaries are put forth in
section 4.1, the proposed surface representation structure is described in section 4.2.
The overall rectangular-polar integration strategy, including details concerning the
methodologies used to produce integrals for smooth, singular and near-singular
kernels as well as edge-singular integral densities, is presented in section 4.3. A
variety of numerical results for open and closed scattering surfaces are then presented
in section 4.4, emphasizing the convergence properties of both the forward map
(which evaluates the action of the integral operator for a given density) as well as
the full scattering solver, and demonstrating the accuracy, generality, and speed of
the proposed approach. Results of an application to a problem of scattering by a
geometry generated byCAD software is also presented in that section, demonstrating
the applicability of the proposed method to complex geometrical designs in science
and engineering.
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4.1 Preliminaries
For conciseness, we consider the problem of acoustic scattering by a sound-soft

obstacle, though the methodology proposed is also applicable to electromagnetic
scattering and other integral-equation problems involving singular kernels.

Let Ω denote the complement of an obstacle D in three-dimensional space, let Γ
denote the boundary of the obstacle, and call Uinc, Uscat and U = Uscat + Uinc the
incident, scattered and total fields, respectively. Then, the total fieldU = Uscat+Uinc

satisfies the Helmholtz equation

∆U(r) + k2U(r) = 0, r ∈ R3 \ Γ, (4.1)

with wavenumber k = 2π/λ, and the scattered field Uscat satisfies the Sommerfeld
radiation condition as well as the boundary condition

Uscat(r) = −Uinc(r), r ∈ Γ. (4.2)

As is well known [32], the scattered field can be represented in terms of layer
potentials—which reduce the scattering problem to a boundary integral equation
that contains singular kernels. The single- and double-layer potentials are defined
by

S [ ϕ̃ ](r) =

∫
Γ

G(r, r′) ϕ̃ (r′) dσ(r′), r ∈ R3 \ Γ, (4.3)

D[ ϕ̃ ](r) =

∫
Γ

∂G(r, r′)
∂n(r′)

ϕ̃ (r′) dσ(r′), r ∈ R3 \ Γ, (4.4)

respectively, where G(r, r′) = exp (ik |r − r′|)/4π |r − r′| is the free-space Green
function of the Helmholtz equation, n is the outward-pointing normal vector, and
ϕ̃ is the surface density.

In this chapter, we demonstrate the proposed methodology through applications
to two main scattering problems under a unified scheme, namely, the problems of
scattering by closed and open surfaces. These two important scattering problems
are briefly described in the following two sections.

4.1.1 Closed surfaces
For the case of a closed, bounded obstacle, we use a standard combined-field

formulation [32]

Uscat(r) = D[ ϕ̃ ](r) − ikS [ ϕ̃ ](r), r ∈ R3 \ Γ, (4.5)
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which leads to the second-kind integral equation at the boundary

1
2
ϕ̃ (r) + D[ ϕ̃ ](r) − ikS[ ϕ̃ ](r) = −Uinc(r), r ∈ Γ, (4.6)

where the single- and double-layer boundary operators are defined as

S[ ϕ̃ ](r) =
∫
Γ

G(r, r′) ϕ̃ (r′) dσ(r′), r ∈ Γ, (4.7)

D[ ϕ̃ ](r) =
∫
Γ

∂G(r, r′)
∂n(r′)

ϕ̃ (r′) dσ(r′), r ∈ Γ, (4.8)

respectively.

This formulation is guaranteed to provide a unique density solution to the scatter-
ing problem considered here [32], and due to the nature of this second-kind integral
equation, the number of iterations for GMRES remains essentially bounded as k is
increased.

4.1.2 Open surfaces
The combined field formulation (4.5) is not applicable for problems of scattering

by open surfaces—since, for example, the jump conditions for the double-layer
potential over Γ imply different field values on the two sides of Γ; hence, this
potential cannot satisfy a nontrivial Dirichlet boundary value problem on Γ. A
single-layer formulation can be used for such purpose, however; in this case we
have

Uscat(r) = S [ ϕ̃ ](r), r ∈ R3 \ Γ, (4.9)

which, for the boundary conditions (4.2), leads to a first-kind integral equation

S[ ϕ̃ ](r) = −Uinc(r), r ∈ Γ. (4.10)

This is in fact the formulation recommended in [17] for the Dirichlet problem (see
e.g. [section 12]), even in the presence of the better-conditioned, but more expensive
second-kind formulation introduced in that contribution. (In the Neumann case,
which, for definiteness we do not consider here, the second-kind formulation is
highly beneficial [17, section 12].)

We use the formulation (4.9), as recommended, but it adopts an alternative
quadrature approach, which is based once again on the proposed rectangular-polar
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paradigm. An important aspect of the open-surface case is that the solution ϕ̃ (r) is
singular at the edge, with a singularity of the form

ϕ̃ ∼
Φ
√

d
, (4.11)

where d is the distance to the edge and Φ is an infinitely differentiable function
throughout the boundary, including the edge, as reviewed in [17]. In that paper, a
strategy based on quadrature rules for the exact singularity form were introduced,
together with the polar integration method [15]. We propose an alternative ap-
proach in which, in addition of the polar-rectangular setup, a change of variables
is introduced in the parametrization of the surface, whose derivatives vanish at the
edges and thus smoothens the integrands. Although not specifically tailored to the
exact form of the singularity at open-surface edges, the proposed algorithm does
provide a robust, highly-accurate, efficient and simple approach for the treatment of
the density-singularities that arise for open surfaces—which, importantly, applies
seamlessly to the closed-surface edge case, for which the degree of the singularity
depends on the edge angle, which may itself vary along the edge.

4.2 Surface representation
The proposed method assumes that the scattering surface, whether closed or

open, is described by a set of M non-overlapping “logically-quadrilateral” (LQ)
parametrized patches. This geometrical description is particularly well suited for
designs generated by CAD software, which generally can export surface represen-
tations in terms of NURBS-based models—that is, parametrizations expressed in
terms of certain types of Rational B-Splines. In fact, the potential afforded by direct
use of CAD-exported representations (without the expense, difficulty and accuracy
deterioration inherent in the use of surface triangulations) provided the driving force
leading to this chapter: each NURBS trimmed surface can be “quadrilateralized”
without great difficulty, which lends the method an essentially complete geometric
generality and a remarkable ease of use.

In the proposed approach, then, the scattering surface Γ is partitioned on the
basis of a finite number M of parametrizations

r̃ q : [−1, 1]2 → R3 (q = 1, 2, . . . , M),

each one of which maps the unit square [−1, 1]2 in the (s, t)-plane onto an LQ
patch within Γ. Since we require the system of LQ patches to cover Γ, we have, in
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particular

Γ =

M⋃
q=1

{
r̃ q
(s, t)

�� (s, t) ∈ [−1, 1]2
}
. (4.12)

Clearly, any r-dependent combination I = I(r) of integrals over Γ, of the types
considered in sections 4.1.1 and 4.1.2, can be decomposed as a sum of integrals Iq(r)

over the various patches. In particular, the integral representations and boundary
operators considered in those sections can be expressed in the form

I(r) =
M∑

q=1
Iq(r), where (4.13)

Iq(r) =

∫
Γq

H̃(r, r′) ϕ̃ (r′) dσ(r′), (4.14)

with

H̃(r, r′) =


∂G(r, r′)
∂n(r′)

− ikG(r, r′), (Closed surface),

G(r, r′), (Open surface).
(4.15)

In the following section, we propose a methodology for accurate numerical
evaluation of the integrals Iq(r) for a given discrete approximation of the density
ϕ̃ (r′). The solution to the integral equation problem then follows via an application
of the iterative linear-algebra solver GMRES.

4.3 Integration strategy
The integration scheme we present consists of three main components: (1) Use

of Fejér’s first quadrature rule to compute integrals between patches that are “far”
away from each other, (2) A rectangular-polar high-order accurate quadrature rule
for self-patch and near-patch singular integrals, and (3) A change of variables that
resolves the density singularities that arise at the edges.

Using, for each q, the parametrization r̃ q, the integral (4.14) can be expressed in
the form

Iq(r) =

∫ 1

−1

∫ 1

−1
H̃

q
(r, s, t)J̃q(s, t)ϕ̃q(s, t)ds dt, (r ∈ Γ), (4.16)

where J̃q(s, t) denotes the surface Jacobian, and where

H̃
q
(r, s, t) = H̃

(
r, r̃ q
(s, t)

)
, (4.17)

ϕ̃q(s, t) = ϕ̃
(̃
r q
(s, t)

)
. (4.18)
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The strategy proposed for evaluation of the integral in equation (4.16) depends
on the proximity of the point r to the q-th patch. For points r that are “far”
from the patch, Fejér’s first quadrature rule is used as detailed in section 4.3.2. A
special technique, the rectangular-polar method, is then presented in section 4.3.3
to treat the case in which r is either “close to” or within the q-th patch. Prior to
the presentation of these smooth, singular and near-singular integration methods,
section 4.3.1 describes the singular character of integral-equation densities at edges,
and proposes a methodology, which is incorporated in the subsequent sections, for
edge treatment in a high-order accurate fashion.

4.3.1 Density singularities along edges
The sharp edges encountered in general geometric structures have provided a

persistent source of difficulties to integral equation methods and other scattering
solvers. The presence of edges leads to (integrable) singularities in the density
solutions in both the open-surface [17] and closed-surface [33, 57] cases. The
strength of the singularity, however, depends on the formulation and, for closed-
surfaces, on the angle at the edge, which is generally not constant.

In order to tackle this difficulty in a general and robust manner, we introduce
a change of variables on the parametrization variables (s, t), a number of whose
derivatives vanish along edges. Such changes of variables can be devised on the
basis of mappings such as the one presented in [32, Sec. 3.5], which is given by

w(τ) = 2π
[v(τ)]p

[v(τ)]p + [v(2π − τ)]p
, 0 ≤ τ ≤ 2π, (4.19)

where

v(τ) =

(
1
p
−

1
2

) (π − τ
π

)3
+

1
p

(τ − π
π

)
+

1
2
. (4.20)

It is easy to check that the derivatives of w(τ) up to order p − 1 vanish at the
endpoints. The function w(τ) can then be used to construct a change of variables to
accurately resolve the edge singularities while mapping the interval [−1, 1] to itself.
The change-of-variable mappings we use are given by

s = η q
s (u) =



u, No edge on s

−1 + 1
πw (π[u + 1]) , Edges at s ± 1

−1 + 2
πw

(
π
2 [u + 1]

)
, Edge at s = −1 only

−3 + 2
πw

(
π + π

2 [u + 1]
)
, Edge at s = 1 only

(4.21)
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and similarly

t = η q
t (v) =



v, No edge on t

−1 + 1
πw (π[v + 1]) , Edges at t ± 1

−1 + 2
πw

(
π
2 [v + 1]

)
, Edge at t = −1 only

−3 + 2
πw

(
π + π

2 [v + 1]
)
, Edge at t = 1 only

(4.22)

Incorporating the changes of variables (4.21) and (4.22), the integral in equa-
tion (4.16) becomes an integral in which a weakly singular kernel is applied to
a finitely smooth function:

Iq(r) =

∫ 1

−1

∫ 1

−1
Hq(r, u, v)Jq(u, v)

dη q
s

du
(u)

dη q
t

dv
(v)ϕq(u, v)du dv, r ∈ Γ, (4.23)

where

Hq(r, u, v) = H̃
q (

r, η
q
s (u), η

q
t (v)

)
, (4.24)

ϕq(u, v) = ϕ̃q (
η

q
s (u), η

q
t (v)

)
, (4.25)

r q(u, v) = r̃ q (
η

q
s (u), η

q
t (v)

)
, (4.26)

Jq(u, v) = J̃q(s, t). (4.27)

(The high-order edge-vanishing factors in the integrand smooth-out any possible
edge singularities in the density ϕq [32].) The proposed algorithm evaluates such
integrals by means of the “smooth-density methods” described in sections 4.3.2
and 4.3.3 below.

-1 -0.5 0 0.5 1
u

-1

-0.5

0

0.5

1

2
sq
(u

)

No Edge
Edge at u= '1
Edge at u=-1
Edge at u=+1

Figure 4.1: Changes of variables (equations (4.21) and (4.22)) used to resolve
edge-singularities in the density.
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4.3.2 Non-adjacent integration
The algorithm we use for the evaluation of the quantity Iq(r), defined by (4.16),

is based on the reformulation (4.23)—which, in view of (4.21) and (4.22), takes
into account all the possible edge/no-edge combinations that may occur within an
integration patch. (The algorithm does assume that geometric singularities may
only appear along patch boundaries.)

In the “non-adjacent” integration case considered in this section, in which the
point r is far from the integration patch, the integrand in (4.23) is smooth—in view
of the changes of variables inherent in that equation, which, in particular, give rise
to edge-vanishing derivative factors that smooth out any possible edge-singularity in
the density ϕq itself. (Using well known asymptotics of edge singularities it is easy
to check [19, 32] that the vanishing derivatives indeed smooth out all possible edge
singularities, to any desired order of smoothness, provided a sufficiently high value
of p is used. Values of p as low as p = 2 are often found to be adequately useful,
for accuracies of the order of 1%. Use of larger values of p, of the orders of four to
six or above, can enable significantly faster convergence and lower computing costs
for higher accuracies. But use of such values do require special treatment of certain
types of Green-function cancellations that occur in the case of the double-layer
operator. Such discussions lie beyond the scope of the present chapter, and will be
left for future work.

In view of the smoothness of the integrands for the non-adjacent cases consid-
ered presently (r is far from the integration patch), the integral in (4.23) can be
evaluated accurately on the basis of any given high-order quadrature rule. Our
implementation utilizes Fejér’s first quadrature rule [79], which effectively exploits
the discrete orthogonality property satisfied by the Chebyshev polynomials in the
Chebyshev meshes used. The Chebyshev discrete orthogonality property also en-
ables straightforward computation of the two-dimensional Chebyshev transforms
that are required as part of the singular and near-singular integration algorithms
described in section 4.3.3.
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Figure 4.2: Figures (a) and (b) show the changes of variables (equation (4.40)) used
to resolve the kernel singularity for two different values of α. Figure (c) presents the
mesh, in both parameter and, in inset, real space, produced by the rectangular-polar
change of variables to resolve the kernel singularity located at the point marked in
red. Figure (d) presents the case for which the target point in red is off-patch from
the near source patch (in yellow), with the projection point depicted in blue.

For a discretization using N points, the nodes and weights of Fejér’s first quadra-
ture rule are given by

x j = cos
(
π

2 j + 1
2N

)
, j = 0, . . . , N − 1, (4.28)

w j =
2
N

(
1 − 2

bN/2c∑̀
=1

1
4`2 − 1

cos
(
`π

2 j + 1
N

))
, j = 0, . . . , N − 1, (4.29)

respectively. Then using theCartesian-product discretization {ui = xi |i = 0, . . . , N q
u −

1} × {v j = x j | j = 0, . . . , N q
v − 1}, the integral in (4.16) can be approximated by the
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quadrature expression

Iq(r) ≈

N q
v −1∑
j=0

N q
u −1∑
i=0

Hq(r, ui, v j)Jq(ui, v j)
dη q

s

du
dη q

t

dv
wiw j ϕ

q(ui, v j), r ∈ Ω
f
q .

(4.30)

where Ω f
q represents the set of points that are “sufficiently far” from the q-th inte-

gration patch.

4.3.3 Singular “rectangular-polar” integration algorithm and a new edge-
resolved integral unknown

Like section 4.3.2, the present section concerns the problem of evaluation of
the quantity Iq(r) on the basis of the reformulation (4.23). In contrast with sec-
tion 4.3.2, however, the treatment presented here concerns the singular and near-
singular cases—in which the evaluation point r is either on the q-th integration
patch or “sufficiently close” to it—for which the Green function singularity cannot
be ignored without compromising accuracy. The set of all singular and near-singular
points will be denoted by Ωc

q. The problem of evaluation of Iq for r ∈ Ωc
q presents

a significant challenge in view of the singularity of the kernel H̃(r, r′) at r = r′.

In order to deal with this difficulty, we utilize once again smoothing changes of
variables whose derivatives vanish at the singularity or, for nearly singular prob-
lems, at the point in the q-th patch that is closest to the singularity. In previous
implementations [15, 17], such changes of variables required interpolation of the
density ϕq from the fixed nodes (ui, v j) to the new integration points. The interpola-
tion step, though viable, can amount to a significant portion of the overall cost. We
thus propose, instead, use of a precomputation scheme for which integrals of the
kernel times Chebyshev polynomials are evaluated with high accuracy (cf. (4.35)).
Since Chebyshev polynomials can easily be evaluated at any point in their domain
of definition, this approach does not require an interpolation step. And, since these
integrals are independent of the density, they need only be computed once at the
beginning of any application of the algorithm, and reused in the algorithm as part
of any necessary integration processes in subsequent linear-algebra (GMRES) iter-
ations. Thus, for a given density ϕq, the overall quantity Iq(r) with r ∈ Ωc

q can be
computed by first obtaining the Chebyshev expansion

ψq(u, v) =
N q
v −1∑

m=0

N q
u −1∑
n=0

aq
n,mTn(u)Tm(v), (4.31)
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of the modified edge-resolved (smooth) density

ψq(u, v) =
dη q

s

du
(u)

dη q
t

dv
(v)ϕq(u, v),

and then applying the precomputed integrals for Chebyshev densities.

In detail, the necessary Chebyshev coefficients aq
n,m are given by the relation [72]

aq
n,m =

αnαm

N q
u N q

v

N q
v −1∑
j=0

N q
u −1∑
i=0

ψq(ui, v j)Tn(ui)Tm(v j) (4.32)

that results from the discrete-orthogonality property enjoyed by Chebyshev polyno-
mials, where

αn =


1, n = 0,

2, n , 0.
(4.33)

As is well known, the Chebyshev coefficients aq
n,m can be computed in a fast manner

either by means of the FFT algorithm or, for small expansion orders, by means of
partial summation [11, Sec. 10.2]. In practice, relatively small orders and numbers
of discretization points are used, and we thus opted for the partial summation
strategy.

Using the expansion (4.31), we then obtain

Iq(r) =

∫ 1

−1

∫ 1

−1
Hq(r, u, v)Jq(u, v) ©«

N q
v −1∑

m=0

N q
u −1∑
n=0

aq
n,mTn(u)Tm(v)

ª®¬ du dv (4.34)

from which, exchanging the integrals with the sum, it follows that

Iq(r) =

N q
v −1∑

m=0

N q
u −1∑
n=0

aq
n,m

∫ 1

−1

∫ 1

−1
Hq(r, u, v)Jq(u, v)Tn(u)Tm(v) du dv. (4.35)

As mentioned above, the double integrals on the right-hand side of this equation
are independent of the density: for each q, they only depend on the geometry, the
kernel, and the target point r ∈ Ωc

q. For the computation of the forward map, we
need, in particular, to evaluate Iq(r) for all discretization points r ∈ Ωc

q. Thus, in
the proposed strategy, the integral in (4.35) must be precomputed for each q and
for each combination of a target point r ∈ Ωc

q and a relevant product of Chebyshev
polynomials. Denoting the set of all discretization points by

χ =
{
r̃ q (

η
q
s (ui), η

q
t (v j)

) �� q = 1, . . . , M, i = 0, . . . , N q
u − 1, j = 0, . . . , N q

v − 1
}
,

(4.36)
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and using the weights

β
q,`
n,m =

∫ 1

−1

∫ 1

−1
Hq(r`, u, v)Jq(u, v)Tn(u)Tm(v) du dv, for each r` ∈

{
χ ∩Ωc

q
}
,

(4.37)

equation (4.35) becomes

Iq(r`) =

N q
v −1∑

m=0

N q
u −1∑
n=0

aq
n,m β

q,`
n,m . (4.38)

We now turn our attention to the accurate evaluation of the integrals in equa-
tion (4.37). The previous method [15] utilizes (in a different context, and without
precomputations) a polar change of variables that cancels the kernel singularity
and thus gives rise to high-order integration. Reference [15] relies on overlapping
parametrized patches and partitions of unity to facilitate the polar-integration step.
In the case in which non-overlapping LQ patches are utilized, the use of polar in-
tegration requires design of complex quadratures near all patch boundaries [17].
To avoid these difficulties, we propose use of certain “rectangular-polar” changes
of variables which, like the edge changes-of-variables utilized in section 4.3.2, are
based on use of the functions (4.19)–(4.20) for suitable values of p.

We thus seek to devise a rectangular-polar integration strategy that can accurately
treat the kernel singularity for both the self-patch problem (in which the singularity
lies on the integration patch and forwhich changes of variables should have vanishing
derivatives at the target point r`), and the near-singular problem (in which vanishing
change-of-variable derivatives should occur at the point in the q-th patch that is
closest to the observation point r). To achieve this, it is necessary to consider the
value (

u q
`
, v

q
`

)
= arg min
(u,v)∈[−1,1]2

| r` − r q(u, v) | , (4.39)

which can be found by means of an appropriate minimization algorithm. In view
of its robustness and simplicity, our method utilizes the golden section search
algorithm (see [72, Sec. 10.2]) for this purpose, with initial bounds obtained from
a direct minimization over all of the original discretization points r` in the patch.
Relying on the coordinates (4.39) of the projection point in the near-singular case,
and using the same notation

(
u q
`
, v

q
`

)
for the coordinates of the singular point in

the self-patch problem, the relevant rectangular-polar change of variable can be
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constructed on the basis of the one-dimensional change of variables

ξα(τ) =



α +

(
sgn(τ) − α

π

)
w (π |τ |) , for α , ±1,

α −

(
1 + α
π

)
w

(
π

����τ − 1
2

����) , for α = 1,

α +

(
1 − α
π

)
w

(
π

����τ + 1
2

����) , for α = −1.

(4.40)

Figure 4.2 depicts the rectangular-polar change of variables for α values of (a) 0
and (b) 0.5, as well as the resulting two-dimensional grids for the case where the
target point lies in the source patch (c) and when the target point is off-patch (d).

Indeed, a new use of Fejér’s first quadrature rule now yields

β
q,`
n,m ≈

Nv
β−1∑
j=0

Nu
β−1∑
i=0

Hq
(
r`, u

q,`
i , v

q,`
j

)
Jq

(
uq,`

i , v
q,`
j

)
Tn

(
uq,`

i

)
Tm

(
v

q,`
j

)
µ

u,q,`
i µ

v,q,`
j wi w j,

(4.41)

where

uq,`
i = ξu q

`
(xi) , for i = 0, . . . , Nu

β − 1, (4.42)

v
q,`
j = ξv q

`

(
x j

)
, for j = 0, . . . , Nv

β − 1, (4.43)

are the new quadrature points, and where

µ
u,q,`
i =

dξu q
`

dτ
(xi) , for i = 0, . . . , Nu

β − 1, (4.44)

µ
v,q,`
j =

dξv q
`

dτ
(
x j

)
, for j = 0, . . . , Nv

β − 1, (4.45)

denote the corresponding change-of-variable weights. Using sufficiently large num-
bers Nu

β and Nv
β of discretization points along the u and v directions to accurately

resolve the challenging integrands, all singular and near-singular problems can be
treated with high accuracy under discretizations that are not excessively fine (see
Figure 4.3). For points that are closer than a certain prescribed tolerance, usually of
the order 10−14, the kernel values are set to zero to avoid zero denominators.
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Figure 4.3: Forward-map convergence for the combined field formulation over the
unit sphere. Figure (a) displays the error as the number N of points per patch per
dimension is increased for different values of Nβ. Figure (b) demonstrates the high-
order convergence for the singular integrals as Nβ is increased. Figure (c) displays
the optimal values of N and Nβ for a given prescribed error. In (a)-(c), we have
k = 2π. Figure (d) demonstrates the convergence for a range of values of k while
keeping the number of patches fixed.

4.3.4 Computational cost
Let us now estimate the computational cost for the proposed method, focusing

on the adjacent (singular and near-singular) integration problem. (The cost of the
non-adjacent interactions arises trivially from a double sum, and can be accelerated
by means of either an equivalent source scheme [15, 16] or by a fast multipole
approach [43].)
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Figure 4.4: (a)Mesh, (b) Forwardmap, and (c) Pointwise error for a (5, 2)-spherical-
harmonic density using a mesh with N = 50 and Nβ = 850. The error is uniformly
close to machine precision.

For the purposes of our computing-time estimates, let N denote the maximum
of the one dimensional discretization sizes N q

u and N q
v over all patches (1 ≤ q ≤

M), and let N′close denote the maximum, over all the patches, of the numbers of
discretization points that are close to the patch (i.e., that are contained in Ωc

q), but
which are not contained in the q-th patch. Additionally, let Nu

β = Nv
β = Nβ denote

the number of quadrature points used for singular precomputations. With these
notations, we obtain the following estimates in terms of the (bounded) integer N (of
the order of one to a few tens); the (large, proportional to the square of the frequency,
for large frequencies) number M of patches, and the related (bounded) parameters
Nβ (of the order of one to a few hundreds):

• Cost of precomputations: O(MN2
βN(N2 + N′close)) (partial summation).

• Cost of forward map:

– Chebyshev transform (partial summation): O(MN3)

– Singular and near-singular interactions: O(MN2(N2 + N′close))

– Non-adjacent interactions O((M−1)2N4) (or MαN4 with α significantly
smaller than two if adequate acceleration algorithms are utilized).
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Figure 4.5: (a) Mesh, (b) Forward map, and (c) Pointwise error for the (10, 5)-
spherical-harmonic density. The figures demonstrate the effect of the patch splitting
strategy for high frequencies. In this case k = 100 which corresponds to scattering
by a sphere 31.8λ in diameter, using 6× 8× 8 patches (8× 8 subpatches in each one
of 6 initial patches) with N = 14.

4.3.5 Patch splitting for large problems
Each patch requires creation and storage of a set of self-interaction weights

β
q,`
n,m, for q = 1, . . . , M , n = 1, . . . , N , m = 1, . . . , N and ` = 1, . . . , N2, at a total

storage cost of O(MN4) double-precision complex-valued numbers. Additionally,
weights also need to be stored for the N′close near-singular points for each patch,
and are dependent on the target point. Hence, the total storage for the singular and
near-singular weights is O(MN4 + MN2N′close).

In order to eliminate the need to evaluate and store a large number of weights
that result as N is increased, it is possible to instead increase the number of patches
M—which causes the necessary number of weights to grow only linearly. In these
regards, it is useful to consider the following rule of thumb: in practice, as soon
as the wavelength is accurately resolved by the single-patch algorithm, due to the
spectral accuracy of Fejér’s first quadrature, only a few additional points per patch
are needed to produce accuracies of the order of several digits. In view of the
estimates in this and the previous section, parameter selections can easily be made
by seeking to optimize the overall computing time given the desired accuracy and
available memory.

4.4 Numerical results
This section presents a variety of numerical examples demonstrating the ef-

fectiveness of the proposed methodology. The particular implementation for the
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numerical experiments was programmed in Fortran and parallelized using OpenMP.
The runs were performed on a single node of a dual socket Dell R420 with two Intel
Xenon E5-2670 v3 2.3 GHz, 128 GB of RAM. Unless otherwise stated, all runs
where performed using 24 cores. Visualization of the three-dimensional geometries
and acoustic fields was done using VisIt [26].

4.4.1 Forward map convergence
The accuracy of the overall solver depends crucially on the accuracy of the

forward map computation. In this section, we verify that the proposed method-
ology yields uniformly accurate evaluations of the action of the integral operator
throughout the surface of the scatterer. To do so, we consider the eigenfunctions and
eigenvalues of the single- and double-layer operators for Helmholtz equation [63,
Sec. 3.2.3]:

S[Y m
` (θ, ϕ)] = k j`(k)h

(1)
`
(k)Y m

` (θ, ϕ), (4.46)

D[Y m
` (θ, ϕ)] =

k2

2

[
j`(k)

d
dk

h(1)
`
(k) + h(1)

`

d
dk

j`(k)
]

Y m
` (θ, ϕ), (4.47)

where j`(k) and h(1)
`
(k) are the sphericalBessel function of the first kind and spherical

Hankel function, respectively, and where Y m
`
(θ, ϕ) are the spherical harmonics.

(For the spherical Hankel function h(1)
`
(z), we have used the convention in [63]:

h(1)
`
(z) = −y`(z) + i j`(z), where y` is the `-th Neumann function.)

Figure 4.3 demonstrates the convergence that results as the proposed discrete
combined field operator is applied to the spherical-harmonic (5, 2), demonstrating,
in particular, that themethod is capable of obtaining accuracies close tomachine pre-
cision in the evaluation of forward maps. Figure 4.4 displays the spatial distribution
of the (near-machine-precision) forward-map error resulting from the discretization
described in the figure caption. It is worth noting that for the double-layer operator,
the evaluation of the quantity n(r′) · (r − r′)/|r − r′|2 is particularly prone to can-
cellation errors, and to achieve small errors (10−6 or smaller), special treatment is
required. For the particular case of the sphere, the aforementioned quantity can be
computed exactly (which is used to obtain the plots in Figure 4.3), while for more
complex geometries, a special treatment based on the curvature of the surface can
be used [15].

As indicated in section 4.3.5, for high-frequency problems it is beneficial to split
the patches into smaller ones rather than increasing the number of points per patch,
given that the storage only grows linearly as the number of patches is increased
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N Nβ Patches Points per λ Unknowns Time (prec.) Time (1 iter.) Error
8 50 6 × 5 × 5 1.7 9600 1.39 s 0.18 s 71.3%
12 60 6 × 5 × 5 2.6 21600 3.40 s 0.83 s 2.16%
16 80 6 × 5 × 5 3.5 38400 9.26 s 2.41 s 0.0814%
8 50 6 × 10 × 10 3.5 38400 16.74 s 2.78 s 0.336%
12 70 6 × 10 × 10 5.2 86400 47.26 s 13.01 s 0.0238%
16 90 6 × 10 × 10 6.9 153600 126.09 s 40.29 s 0.000355%

Table 4.1: Errors in the forwardmap (relative to themaximum forwardmap value) of
the combined field operator for various patch splitting configurations and a spherical
harmonic density (5,2). For the results in this table, k = 100, a sphere of diameter
31.8λ was used, and all times reported where obtained using 24 computing cores.

while keeping the number of points per patch constant. In order to determine the
optimal balance between accuracy and efficiency, it must be considered that there
are two factors that determine the accuracy of the method: (1) The order N of the
Chebyshev expansions used (i.e. the number of points per patch per dimension), and
(2) The number of points per wavelength. Figure 4.5 displays the pointwise error
in the forward map for a high frequency case, and Table 4.1 presents test results
for several simple patch-splitting configurations, where the number of points per
wavelength is calculated by the formula

Points per λ =
N

L/λ
, (4.48)

where L2 = 4π/M is the average area of the quadrilateral patches for the sphere.
Clearly the method rapidly produces very high accuracies for small numbers of
points-per-wavelength.

4.4.2 Edge geometries
As mentioned previously, the important problem of scattering by obstacles con-

taining edges and corners presents a number of difficulties, including density and
kernel singularities at the edges. In Figure 4.6(a), we demonstrate the performance
of the method for a cube geometry, by computing the error in the far field with re-
spect to a reference solution obtained by using a very fine discretization. Figure 4.7
shows the scattering solution by a cube of side 5λ.
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Figure 4.6: (a) Maximum (absolute) far-field error for the problem of scattering by
a cube of size 2 × 2 × 2 with k = 1. The plot shows results obtained excluding use
of an edge change of variables (in green triangles) and including an edge change
of variables with p = 2 (in blue circles). The maximum value of the far field for
the reference solution equals 2.144. (b) Maximum (absolute) far-field error for the
problem of scattering by a disk of radius 1 with k = 1. The plot shows both the
curve excluding changes of variables (in green) and including a p = 4 change of
variables (in blue). The maximum value of the far field for the reference solution
equals 0.7284.

Figure 4.7: Scattering by a 5λ × 5λ × 5λ cube. The intensity profile |U |2 is shown
in (a) and (b), while (c) shows the real part of the total field.

4.4.3 Open surfaces
Methods for open surfaces typically suffer from low accuracies, or, alternatively,

they require complex treatment at edges. The approach presented here is a straight-
forward application of the rectangular-polar method, with a change of variables at
the edges, as described in section 4.3.3. As demonstrated in Figure 4.6(b), which
presents the convergence plot for the far field solution scattered by a disk, the method
is robust and high-order accurate. Figure 4.8 shows the scattering solution for the
problem of scattering by a disk 5λ in radius.
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Figure 4.8: Scattering by a disk of diameter 10λ with an incident field perpendicular
to the disk. Figure (a) displays the patch discretization, Figure (b) presents the real
part of the field, and Figures (c)-(e) display three different views of the intensity
|U |2. In particular, these figures demonstrate the appearance of the well-known
Poisson spot (also known as Arago spot and Fresnel bright spot) clearly visible at
the center of Figure (c).

4.4.4 CAD geometries
As indicated in section 4.2, CAD designs can be re-expressed as a union of

logically-quadrilateral explicitly parametrized patches, and they are thus particu-
larly well suited for use in conjunction with the proposed rectangular-polar solver.
To demonstrate the applicability of the solver to such general type of geometry
descriptions, Figure 4.9 presents a convergence test for the acoustic scattering by a
glider CAD design [39] consisting of 148 patches. Figure 4.10 shows the resulting
fields by an incident plane wave incoming from above the glider—in this case, the
patches where split into a total of 334 patches to have pairwise similar dimensions
and accurately resolve the wavelength.
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Figure 4.9: Figure (a) shows the maximum (absolute) far-field error for the problem
of scattering by a glider geometry with k = 1. The reference density solution is
shown in (b), and (c) shows the 148 patch discretization. For this convergence
test, the longest distance between any two points on the aircraft surface is ∼ 2.09
wavelengths, while the wingspan is ∼ 1.43 wavelengths.

Figure 4.10: Scattering by the glider geometry. In this case, λ = 0.5 which results
in about 26 wavelengths from the nose to the tail of the aircraft, and 18 wavelengths
across the wingspan. The patches were subdivided to obtain, in all, 334 patches
of pairwise similar dimensions. Figures (a) and (b) display the discretization and
patch structure of the geometry. The real part of the density is shown in Figure (c).
Figure (d) displays the real part of the scattered field along with the absolute value
squared of the density at the surface. The intensity of the fields are presented in
Figures (e) and (f) for two different view angles.
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C h a p t e r 5

ELECTROMAGNETIC BOUNDARY INTEGRAL EQUATIONS

This chapter presents the electromagnetic boundary integral formulations we use
for three-dimensional problems of scattering by dielectric materials. First, we
present some backgroundmaterial needed for the electromagnetic boundary integral
equations (EM-BIE)—which is primarily a summary of key content from [63,
section 2.5.6 and Chapter 5]. This background content is the backbone of the
integral formulations for the three-dimensional electromagnetic problem, which are
used throughout this thesis. In section 5.5, we explain how the rectangular-polar
method can be used to solve theEM-BIE. Finally, section 5.6 briefly demonstrates the
applicability of the rectangular-polar algorithm presented in Chapter 4 for dielectric-
scattering problems.

5.1 Background on three-dimensional EM-BIE
This section presents key elements and tools that are used in the formulation

and solution of three-dimensional electromagnetic integral equations. Two main
subsections are included: one covering basic differential-geometry concepts, and
a second one which, relying on the first one, presents the basic electromagnetic
potentials and boundary integral operators. These operators are subsequently used
in section 5.2 to present the electromagnetic representation theorems and associated
integral equations we use.

5.1.1 Some concepts from differential geometry
Although the solver for the three-dimensional acoustic case (Chapter 4) requires

some simple differential geometry quantities—mainly the normal vector and surface
area element—the electromagnetic integral equations depend upon vector calculus
quantities over surfaces. These concepts are introduced in what follows; a more
detailed description can be found in [63, section 2.5.6].

Just as in Chapter 4, we assume the surface description is given by a set of M

non-overlapping patches r p(u, v) for p = 1, ...M . Based on this representation of
the surface Γ, we introduce the following definitions:
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Basis for the tangent plane:

e1(r
p(u, v)) =

∂r p

∂u
, (5.1a)

e2(r
p(u, v)) =

∂r p

∂v
. (5.1b)

Any vector w in the tangent plane (contravariant vector) can be written as

w = w1e1 + w
2e2. (5.2)

The unit normal vector is given by

n = αe1 × e2, (5.3a)

|α | = |e1 × e2 |
−1, (5.3b)

where the sign of α depends on the orientation of the normal.

Metric tensor:

gi j = (ei · e j), (5.4)

and its inverse g−1 with components

(g−1)i j = gi j . (5.5)

Basis for the cotangent plane:

ei = gi j e j, (5.6)

Any vector w in the cotangent plane (covariant vector) can be expressed in the
form

w = w1e
1 + w2e

2. (5.7)

Orthogonality:
The vector basis for the tangent and cotangent planes satisfy the orthogonality
condition:

ei · e j = δi j, (5.8)

where δi j denotes the Kronecker delta.
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Surface area element:

dσ(r′) = |e1 × e2 |du dv =
√
detg du dv. (5.9)

Surface gradient:

∇Γ f =
∂ f
∂u

e1 +
∂ f
∂v

e2. (5.10)

Surfacic divergence of a contravariant vector:

divΓw =
1√
detg

(
∂

∂u

[√
detg w1

]
+

∂

∂v

[√
detg w2

] )
. (5.11)

5.1.2 Electromagnetic potentials and integral operators
For a wavenumber k and a density d in the tangent plane of the surface Γ, we

define the vector potential operators [63]

S [d](r) ≡

∫
Γ

G(r, r′)d(r′) dσ(r′), (5.12a)

D[d](r) ≡ ∇ ×

∫
Γ

G(r, r′)d(r′) dσ(r′), (5.12b)

K [d](r) ≡ ∇

∫
Γ

G(r, r′) divΓd(r′) dσ(r′), (5.12c)

where, as in Chapter 4, G(r, r′) = exp (ik |r − r′|)/(4π |r − r′|) is the free-space
Green’s function of the Helmholtz equation. These potentials play an analogous
role to that of the single- and double-layer of the acoustic scattering case.

Associated with the potentials in equation (5.12) are the tangential boundary
integral operators

S[d](r) ≡ −n(r) ×
∫
Γ

G(r, r′)d(r′) dσ(r′), (5.13a)

R[d](r) ≡ −n(r) × ∇ ×
∫
Γ

G(r, r′)d(r′) dσ(r′), (5.13b)

T[d](r) ≡ −n(r) × ∇
∫
Γ

G(r, r′) divΓd(r′) dσ(r′), (5.13c)
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which are defined on the boundary r ∈ Γ. Along with these tangential operators,
we will also need the operators

Ss[ϕ](r) =

∫
Γ

G(r, r′)ϕ(r′) dσ(r′), (5.14a)

−→
S [d](r) =

∫
Γ

G(r, r′)d(r′) dσ(r′), (5.14b)

−→
K [d](r) =

∫
Γ

∂G
∂n(r)

(r, r′)d(r′) dσ(r′). (5.14c)

5.2 Representation theorems
As stated above, the treatment of the three-dimensional time-harmonicMaxwell’s

equations by means of integral equations resembles the treatment for the acoustic
scattering case. The main difference lies in the vectorial character of the elec-
tromagnetic fields—which makes the integral representations more complex. The
representation formulas are central to this thesis, hence in what follows we present
a summary of the necessary details [63, Theorem 5.5.1].

Denote Ωi a bounded interior domain, Ωe the complementary exterior domain,
and Γ the boundary between the two domains, with n the normal unit vector pointing
towards Ωe. Consider also E and H to be solutions to Maxwell’s equations, in both
Ωi and Ωe with the same wavenumber k, where additionally, E and H satisfy the
Silver-Müller radiation conditions [63] in the exterior domain. Define also the
boundary tangential densities

j = H− × n −H+ × n, (5.15a)

m = E− × n − E+ × n, (5.15b)

where 
E±(r) = lim

δ→0
E(r + δn(r)),

H±(r) = lim
δ→0

H(r + δn(r)),
r ∈ Γ. (5.16)

The densities j and m are known as the electric and magnetic currents, respectively.

Then, the electromagnetic fields admit the following representation formula for
both the interior and exterior domains:

E(r) = iωµS [ j](r) +
i
ωε

K [ j](r) +D[m](r), r < Γ, (5.17a)

H(r) = −iωεS [m](r) −
i
ωµ

K [m](r) +D[ j](r), r < Γ. (5.17b)
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Moreover, the interior and exterior values of the tangential components of the
electromagnetic fields at the boundary (r ∈ Γ) satisfy1

(E± × n)(r) = ∓
m(r)

2
+ R[m](r) + iωµS[ j](r) +

i
ωε

T[ j](r), (5.18a)

(H± × n)(r) = ∓
j(r)

2
+ R[ j](r) − iωε S[m](r) −

i
ωµ

T[m](r). (5.18b)

Remark 5.2.1 In these representation formulas, the wavenumber is the same for
both the interior and exterior, and the solutions inside and outside are independent
from each other in the sense that, as long as one uses the definitions of the densities
in equation (5.15), the representation formula in equation (5.17) and limiting values
in equation (5.18) hold.

5.3 Dielectric integral equations
In this section, we present a derivation of the integral equations for a transmis-

sion problem defined in what follows. For conciseness, we limit the problem to two
dielectric materials, one immersed in the other, occupying the interior and exterior
regionsΩi andΩe, respectively. Together with a wavelength λ0 and the correspond-
ing refractive indices ni and ne for the interior and exterior materials, we seek a
solution of the scattering problem for incident electromagnetic fields Einc and Hinc

impinging on the obstacle. The total electromagnetic field—that is, the sum of the
incident and the scattered field—satisfy the transmission boundary conditions.

As in the acoustic case, various kinds of integral formulations exist for the
electromagnetic problem. In some cases, formulations are preferred which involve
only weakly-singular kernels. This is one of the driving motivations leading to
the Müller formulation [62, 80]. Throughout this thesis we use a direct2 Müller
formulation—such as the one presented in [63, section 5.6.3]. For the sake of clarity,
we make the following assumptions:

• We only have two domains, each representing a linear homogeneous dielectric
material: Ωi bounded with a refractive index of ni, and the associated exterior
domain Ωe with a refractive index of ne.

• The incident fields Einc and Hinc are non-zero only in the exterior domain.
1For the limiting expressions of the normal components of the fields, and a proof of the repre-

sentation theorem, we refer the reader to [63, Chapter 5.5].
2A direct formulation is one that uses directly the representation formulas.



Chapter 5. Electromagnetic Boundary Integral Equations 76

These two assumptions can easily be generalized to multiple domains and incident
fields on every domain.

In order to find the total electromagnetic fields that satisfy the transmission
boundary conditions (see equation (1.10)), we use two auxiliary formulations—one
for each domain—directly from the representation theorem:

Formulation 1. Let ki denote the interior wavenumber, and let Ei and Hi denote the
scattered fields inΩi and choose the exterior field in this case to be zero everywhere
in Ωe. The representation formula in equation (5.17) yields

ji = Hi × n, (5.19a)

mi = Ei × n, (5.19b)

iωµiSi[ ji](r) +
i
ωεi

Ki[ ji](r) +Di[mi](r) =


Ei(r), r ∈ Ωi,

0, r < Ωi,
(5.20a)

−iωεiSi[mi](r) −
i

ωµi
Ki[mi](r) +Di[ ji](r) =


Hi(r), r ∈ Ωi,

0, r < Ωi .
(5.20b)

Formulation 2. Let ke denote the exterior wavenumber, and letEe andHe denote the
scattered fields inΩe and choose the interior field in this case to be zero everywhere
in Ωi. In this case, the representation equation (5.17) becomes

je = −He × n, (5.21a)

me = −Ee × n, (5.21b)

iωµeSe[ je](r) +
i

ωεe
Ke[ je](r) +De[me](r) =


Ee(r), r ∈ Ωe,

0, r < Ωe,
(5.22a)

−iωεeSe[me](r) −
i

ωµe
Ke[me](r) +De[ je](r) =


He(r), r ∈ Ωe,

0, r < Ωe.
(5.22b)
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These two formulations can be linked by using the fact that the total electromag-
netic fields are given by a sum of the incident and scattered fields:

E =


Ei in Ωi,

Ee + Einc in Ωe,
(5.23a)

H =


Hi in Ωi,

He +Hinc in Ωe.
(5.23b)

For an interface along dielectricmaterials, the boundary conditions in equation (1.10)
state that the tangential components of the fields must be continuous:

Ei × n = Ee × n + Einc × n, (5.24a)

Hi × n = He × n +Hinc × n, (5.24b)

and by defining the incident densities

j inc = −Hinc × n, (5.25a)

minc = −Einc × n, (5.25b)

and the total densities

j = ji, (5.26a)

m = mi, (5.26b)

we have that the exterior densities can be written in terms of the total and incident
densities:

je = −( j + j inc), (5.27a)

me = −(m + minc). (5.27b)

Having used the boundary conditions to relate the interior and exterior densities,
a first set of integral equations can be obtained as indicated as follows:

1. Evaluate the exterior electric field using equation (5.18). Multiply the result by
ωεe.

2. Evaluate the interior electric field using equation (5.18). Multiply the result by
ωεi.
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3. Add the results from steps (1) and (2).

4. Use the definitions of the densities to simplify E × n.

These steps yield the following vectorial integral equation:(ωεe + ωεi

2

)
m(r) + ω (εe Re −εi Ri) [m](r) + i

(
k2

e Se −k2
i Si

)
[ j](r)

+ i (Te −Ti) [ j](r) = −

(
ωεe

2
minc(r) + ωεe Re[m

inc](r)

+ ik2
e Se[ j

inc](r) + i Te[ j
inc](r)

)
(5.28)

where the subscript in the operators indicate the wavenumber to be used in the
definitions in equation (5.13)—namely, e for ke and i for ki. Additionally, the right-
hand side in equation (5.28) can be simplified by using a third auxiliary formulation
involving the incident field.

Formulation 3. Define auxiliary fields to be such that they satisfy Maxwell’s
equations in Ωi with wavenumber ke (note that these are reversed), and in the
interior they are the continuation of the incident fields. Then, these auxiliary fields
satisfy the following representation formulas

iωµiSi[ j
inc](r) +

i
ωεi

Ki[ j
inc](r) +Di[m

inc](r) =


−Einc(r), r ∈ Ωi,

0, r < Ωi,
(5.29a)

−iωεiSi[m
inc](r) −

i
ωµi

Ki[m
inc](r) +Di[ j

inc](r) =


−Hinc(r), r ∈ Ωi,

0, r < Ωi,

(5.29b)

where the negative sign in the right-hand side comes from the opposite signs from
the definition of the incident densities. Evaluating the electric field on the exterior
side, we obtain the relation

0 = −
minc

2
+ Re[m

inc] + iωµe Se[ j
inc] +

i
ωεe

Te[ j
inc] (5.30)

which simplifies equation (5.28) to(ωεe + ωεi

2

)
m(r) + ω (εe Re −εi Ri) [m](r) + i

(
k2

e Se −k2
i Si

)
[ j](r)

+ i (Te −Ti) [ j](r) = ωεe Einc × n. (5.31)
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Using the same procedure for the H field, but multiplying by ωµ instead of ωε,
and defining

R∆α ≡
2

αe + αi
(αe Re −αi Ri) , (5.32a)

S∆α ≡
2i

ω(αe + αi)

(
k2

e Se −k2
i Si

)
, (5.32b)

T∆α ≡
2i

ω(αe + αi)
(Te −Ti) , (5.32c)

where the subindex α represents either the dielectric constant symbol, α = ε, or the
magnetic permeability symbol, α = µ, we arrive to the system of integral equations
for the dielectric problem:

m(r) + R∆ε [m](r) + S∆ε [ j](r) + T∆ε [ j](r) =
2εe

εe + εi
Einc × n, r ∈ Γ (5.33a)

j(r) + R∆µ[ j](r) − S∆µ[m](r) − T∆µ[m](r) =
2µe

µe + µi
Hinc × n, r ∈ Γ. (5.33b)

Remark 5.3.1 The system of integral equations in equation (5.33) involves only
weakly-singular kernels in view of the kernel cancellations that arise in the operator
difference T∆α ∝ Te −Ti.

5.4 Incident electromagnetic fields
Any solution to the time-harmonic Maxwell’s equations can play the role of an

incident field; in this section, we present well-known expressions that are often
used to model external excitations in electromagnetic scattering. We divide them
into three groups: (1) multipole solutions, (2) plane waves, and (3) electromagnetic
beams.

5.4.1 Multipole solutions
Out of the multipole solutions, the best know solution is that of the electric

dipole—which represents the fields produced by two charges, one positive and one
negative, placed in very close proximity of each other. At the same time, Maxwell’s
equations allow for higher-order solutions of a similar type, and these multipole
solutions can be classified into two different groups, namely, transverse electric and
transverse magnetic multipoles.
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In order to present these multipole solutions, we first introduce the spherical
harmonics [63, p. 24]:

Y m
` (θ, φ) = (−1)m

[
(` + 1/2)

2π
(` − m)!
(` + m)!

]
eimφPm

` (cos θ) (5.34)

and the vector spherical harmonics [63, pp. 37-38]:

Im
` (r) = ∇SY m

`+1(r) + (` + 1)Y m
`+1(r) r, (5.35)

Tm
` (r) = ∇SY m

` (r) × r, (5.36)

Nm
` (r) = −∇SY m

`−1(r) + `Y
m
`−1(r) r . (5.37)

Thereupon, the multipole solutions are given as follows.

Transverse electric multipole solutions [63, p. 186] and [32, p. 218]3:

Em
` (r) = h(1)

`
(kr)Tm

` (θ, φ), (5.38a)

Hm
` (r) = −

i
ωµ
∇ × Em

` (5.38b)

= −
i
√
ε/µ

(2` + 1)

[
(` + 1)h(1)

`−1(kr)Im
`−1(θ, φ) + `h(1)

`+1(kr)Nm
`+1(θ, φ)

]
, (5.38c)

which satisfy E · r = 0, hence the name.

Transverse magnetic multipole solutions [63, p. 186] and [32, p. 218]:

Hm
` (r) = h(1)

`
(kr)Tm

` (θ, φ), (5.39a)

Em
` (r) =

i
ωε
∇ × Em

` (5.39b)

=
i
√
µ/ε

(2` + 1)

[
(` + 1)h(1)

`−1(kr)Im
`−1(θ, φ) + `h(1)

`+1(kr)Nm
`+1(θ, φ)

]
, (5.39c)

which satisfy H · r = 0.

Remark 5.4.1 Both the transverse and magnetic multipole solutions satisfy the
Silver-Müller radiation conditions. They also form a basis for the radiating solutions
of Maxwell’s equations—consequently, any solution on the exterior of a sphere
that fully contains all the scatterers can be written in terms of a superposition of
multipoles [63].

3We use the definition of the spherical Hankel function given by Nedelec [63], in which h(1)
`
(z) =

−y`(z) + i j`(z).
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5.4.2 Plane waves
Plane wave solutions model the behavior of the fields generated by sources that

are located far away from the observation region. The electromagnetic plane wave
fields are given by [63, p. 5]: 

Epw(r) = E0eik ·r,

Hpw(r) = H0eik ·r,
(5.40)

where E0 and H0 are constant (complex-valued) vectors, k is the wavevector, and
where, in view of Maxwell’s equations, the following relations must be satisfied:

ωεE0 + k ×H0 = 0,

−ωµH0 + k × E0 = 0.
(5.41)

Remark 5.4.2 The direction of the wavevector k can be freely chosen, and the
polarization E0 can then be specified as any constant vector orthogonal to k.
Because of equation (5.41), H0 can be expressed in terms of k and E0. If E0 is a
real vector, or a multiple of a real vector times a complex number, then the plane
wave is said to be “linearly polarized”. Otherwise, circular or, more generally,
elliptical polarization, takes place [63].

5.4.3 Electromagnetic beams
While plane waves provide a good representation of fields from far away sources,

in many applications—such as in photonics—other types of incident excitations,
such as optical beams, need to be considered. In optical applications, incident beams
obtained by means of the paraxial approximation and resulting Gaussian beams are
often used. Yet, it may be desirable to utilize incident fields that fully satisfy
Maxwell’s equations, such as the vector electromagnetic beam of the form [25] (or
suitable rotations thereof):

Ex(r) =

∫ ∞

−∞

∫ ∞

−∞

Ax(kx, ky) exp
[
ik

(
kx x1 + kyx2 + kzz

) ]
dkxdky, (5.42a)

Ey(r) =

∫ ∞

−∞

∫ ∞

−∞

Ay(kx, ky) exp
[
ik

(
kx x1 + kyx2 + kzz

) ]
dkxdky, (5.42b)

Ez(r) = −

∫ ∞

−∞

∫ ∞

−∞

[
kx

kz
Ax(kx, ky) +

ky
kz

Ay(kx, ky)
]

× exp
[
ik

(
kx x1 + kyx2 + kzz

) ]
dkxdky, (5.42c)
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where Ax and Ay are the (arbitrarily prescribable) angular spectra for the x− and
y−components of the E−field; the z−component of the wave vector is then given
by

kz =


√

1 − k2
x − k2

y, if k2
x + k2

y ≤ 1,

sign(z)i
√

k2
x + k2

y − 1, if k2
x + k2

y > 1,
(5.43)

where the wavenumber value has been chosen to yield evanescent waves—instead
of waves that grow exponentially at infinity.

Equation (5.42) yields great generality, as it represents an infinite superposition
of plane waves. In a more concrete setting, given an initial profile for the transverse
fields Ex and Ey, the amplitudes Ax and Ay can be found by means of an inverse
Fourier transform. In the particular case of the fields at the z = 0 plane given by a
Gaussian profile

Ex(x1, x2, 0) = exp

(
−

x2
1 + x2

2

2ω2
0

)
, (5.44)

Ey(x1, x2, 0) = 0, (5.45)

which correspond to a linearly polarized Gaussian profile at the z = 0 plane, we
get [25]:

Ax(kx, ky) =
1

2π f 2 exp

(
−

k2
x + k2

y

2 f 2

)
, (5.46)

Ay(kx, ky) = 0, (5.47)

where f = (kω0)
−1. Then, the x−component of the electric field is

Ex(r) =

∫ ∞

0

1
f 2 exp

(
−

b2

2 f 2

)
exp (ikkz x3)J0

(
kb

√
x2

1 + x2
2

)
b db (5.48)

where b =
√

k2
x + k2

y , and the y− and z−components of the electric field can be
found from equation (5.42)—in particular Ey = 0 everywhere.

5.5 Rectangular-polar electromagnetic solver
Now that we have obtained a system of boundary integral equations for the

electromagnetic problems, we can proceed to extend the rectangular-polar method—
introduced in Chapter 4—to the present electromagnetic context. The most direct
approach to obtain such an implementation would be to apply the scalar rectangular-
polar method presented in Chapter 4 to each component of the electromagnetic
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vectorial integral equation (5.33). Using this procedure, however, one would incur
a larger number of precomputations than is strictly necessary. In detail, the simple-
minded approachwould require precomputed applications of the following operators
to the relevant set of products of Chebyshev polynomials:

• T∆µ, T∆ε and R∆µ, R∆ε . (These operators require six precomputations in total
per Chebyshev product, which arise from the scalar components of the kernels
∇rGe(r, r

′) and ∇rGi(r, r
′). Note that for R∆α, we can use the vector calculus

identity ∇r × [G(r, r′)d(r′)] = [∇rG(r, r′)] × d(r′).)

• S∆µ and S∆ε . (One component that comes from the kernel k2
e Ge(r, r

′)− k2
i Gi(r, r

′).)

This approach thus requires a total of seven operator precomputations per Chebyshev
product. As shown in what follows, however, the operators can be manipulated into
a form that requires only four sets of precomputations.

To do this, we re-express the T operator by using the following identity for a
scalar function f (u, v) defined over Γ:

−n(r) × ∇ f (r) = −α(r) [e1(r) × e2(r)] × ∇ f (r)

= α(r) × ∇ f (r) × [e1(r) × e2(r)]

= α(r) [(e2(r) · ∇ f (r))e1 − (e1(r) · ∇ f (r))e2]

= α(r)

[
∂ f (r)
∂v

e1(r) −
∂ f (r)
∂u

e2(r)

]
, (5.49)

where α is as defined in equation (5.3). Then, if we let f (u, v) denote the integral
after the gradient in equation (5.13c), we obtain

T[d](r) = α(r)
(
e1(r)

∂

∂v
− e2(r)

∂

∂u

)
(Ss[divΓd](r)) , r ∈ Γ, (5.50)

which only requires precomputations for the single-layer operator, since all other
operations in this expression can efficiently be obtained whenever needed.

Next, we turn our attention to the R operator. For shorthand, we denote

f (r(u, v)) ≡
∫
Γ

G(r(u, v), r′)d(r′) dσ(r′). (5.51)

Then, we can re-express the R operator in the form

R[d](r) = (n(r) · ∇) f (r) − ∇n [n(r) · f (r)] , (5.52)
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where we used the Feynman notation ∇n, which indicates that the differentiation
takes n as constant. Now, by using the decomposition of the gradient into the tangent
and normal planes:

∇g =
∂g

∂ξ1
e1 +

∂g

∂ξ2
e2 +

∂g

∂n
n, (5.53)

we get

R[d](r) =
−→
K [d](r) −

[
n(r) ·

−→
K [d](r)

]
n(r) −

(
e1(r)

[
n(r) ·

∂

∂u

]
+e2(r)

[
n(r) ·

∂

∂v

] ) (
−→
S [d](r)

)
, r ∈ Γ. (5.54)

In the context of the rectangular-polar integration method, the expression in equa-
tion (5.54) only requires two sets of precomputations—one for the single-layer and
another for the normal derivative of the single-layer.

Finally, the S operator is given by

S[d](r) = −n(r) ×
−→
S [d](r), r ∈ Γ, (5.55)

which only requires precomputations for the single-layer potential.

Using these alternative expressions for the operators, we have the following
count for the sets of precomputations in equation (5.33) within the rectangular-polar
paradigm:

•
−→
S e and

−→
S i: Two precomputations.

•
−→
K e and

−→
K i: Two precomputations.

This leaves us with a total of four sets of precomputations—saving up a factor of
3/7 in computing time and storage in comparison to the direct approach.

Putting it all together, the solution to the dielectric system in equation (5.33)
using the rectangular-polar method is summarized in Algorithms 5.1 and 5.2. In
particular, Algorithm 5.1 presents a high-level description of the solver, which is an
almost straightforward application of the iterative solver GMRES.On the other hand,
Algorithm 5.2 presents the steps needed to perform one forward map (the action)
of the right-hand side in equation (5.33), which is needed for the GMRES solver.
Once the electromagnetic densities are found, the total fields can be computed using
the representation formulas in equations (5.20) and (5.22).
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Algorithm 5.1 High-level description of the dielectric rectangular-polar solver.
1: procedure Electromagnetic Solver(Geometry, Incident Fields)
2: Discretize geometry
. Precomputations

3: for q = 1, . . . , M do→ For all patches
4: Determine which points are close to patch q and precompute

singular and near-singular weights for the single-layer and its derivative
with both wavenumbers ke and ki.

5: end for
6: Use GMRES to solve equation (5.33), where the action of the operator

is given by the procedure Forward Map in Algorithm 5.2
7: return Solution densities
8: end procedure

Figure 5.1: Scattering by a dielectric sphere of radius 2λ0. The convergence in the
far field is shown in (a). On the other hand, (b) and (c) show the discretization and
resulting density solution (one component) from the 50×50 discretization that gives
an error of order 10−8. The far field pattern for this problem is shown in (d).



Chapter 5. Electromagnetic Boundary Integral Equations 86

Algorithm 5.2 Algorithmic steps to compute one forward map of the electromag-
netic integral operators.

1: procedure Forward Map( m̃, j̃ )
2: m̃, j̃: Input densities
3: Denote the set of operators:

Q = {
−→
S e,i[m̃],

−→
S e,i [̃ j],

−→
K e,i[m̃],

−→
K e,i [̃ j], Ss

e,i[divΓm̃], Ss
e,i[divΓ j̃]}

4: Initialize elements in Q→ 0
. Compute Chebyshev transforms and surface divergences

5: for q = 1, . . . , M do→ For all patches
6: Compute Chebyshev transforms of the Cartesian components of m̃q, j̃

q

7: Compute divΓm̃q and it’s Chebyshev transform
8: Compute divΓ j̃

q
and it’s Chebyshev transform

9: end for
. Evaluate operators in Q

10: for qtrg = 1, . . . , M do→ For all target patches
11: for (i, j) = 1, . . . , Nq do→ For all target points in patch
12: for qsrc = 1, . . . , M do→ For all source patches
13: if Target point close to source patch then→Singular integration
14: Use precomputations and Chebyshev transforms to add

the contributions on each operator in Q
15: else → Non-singular integration
16: Add contributions using Fejér’s quadrature
17: end if
18: end for
19: end for
20: end for

. Compute EM operators using the Q operators
21: for q = 1, . . . , M do→ For all patches
22: Compute R∆α, S∆α, T∆α from the operators in Q

using equations (5.50), (5.54) and (5.55)
23: end for
24: return Evaluated left-hand side in equation (5.33)
25: end procedure

5.6 Implementation validation: Scattering by a sphere
The method described in this chapter will be the foundation for subsequent

chapters, and thus this section presents only one numerical example to provide a
verification of the implementation. Figure 5.1 demonstrates the convergence of the
far field pattern scattered by a sphere of diameter 4λ0, with exterior and interior
refractive indices 1 and 1.47, respectively, under plane-wave illumination. For
reference, theMie solution was used; we can see that, as long as the precomputations



5.6. Implementation validation: Scattering by a sphere 87

are accurate enough, the convergence is super-algebraically fast with respect to the
discretization of the geometry.
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C h a p t e r 6

WINDOWED GREEN FUNCTION METHOD FOR 3D
WAVEGUIDES

As mentioned in Chapter 2, the use of boundary integral equations for scattering
problems with unbounded obstacles has previously been somewhat limited given
the edge-errors that arise from direct truncation of an infinite surface. Some efforts
towards tackling this difficulty have been studied in different contexts. Notably,
in [37] it is shown that for the two-dimensional Helmholtz equation, boundary
integral representations exist for unbounded obstacles. For the problem considered
in this chapter – scattering by three-dimensional waveguides—a boundary element
methodology based on conductive absorbers was developed in [81] which, however,
does not address the important case of direct mode excitation—only point sources
and Gaussian beams are considered in this paper—and which demonstrates the
absorption properties of the method, but it does not present any estimates of the
method’s accuracy.

Recent progress in windowing techniques have established that boundary integral
equations can be efficiently used to accurately solve a wide range of scattering
problems that involve unbounded obstacles. For instance, in [13, 55, 61] windowing
is used to model scattering by rough surfaces. Scattering by arrays using the
quasi-periodic Green function together with the window function was presented
in [21, 23], while in [14] the problem of scattering by arrays of cylinders is solved
using the shifted Green function method in conjunction with windowing. Markedly,
in [18, 20, 68] the windowed Green function (WGF) method was introduced for
the problem of layer-media scattering in both two- and three-dimensional spaces,
demonstrating improvements in several orders of magnitude for the computing times
against competing methods. In [22] (see also Chapter 2), the WGF method was
adapted for two-dimensionalwaveguides, including the notoriously problematic case
of exact mode excitation. Interestingly, the WGFmethod can be used in conjunction
with any kind of integral-equation solutionmethodology—e.g. Nyström, collocation
and Galerkin, all work within the WGF paradigm—and, as shown in this chapter,
the method effectively generalizes to the three-dimensional case.

This chapter presents a three-dimensional implementation of the WGF method
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for dielectric waveguides by generalizing the two-dimensional methodologies intro-
duced in Chapter 2. Even though the development of the three-dimensional WGF
method presents significant implementation challenges, there is a three-dimensional
correspondence for every key component of the two-dimensional algorithm. Im-
portantly, as in the two-dimensional case, the kernels of the three-dimensional EM
integral equations display the slowly-decaying oscillatory asymptotics from which
the windowing approach derives its accuracy and super-algebraic convergence as
the window size increases.

Throughout this chapter, we present two different types of waveguide excitations,
namely:

1. Beam illumination: In this case an optical beam is used to illuminate the
waveguide structure. The illuminating beam is taken to be a Gaussian in this
chapter, but beams of other types can be used as well; see section 5.4.3.

2. Mode illumination: Under mode illumination, a propagating mode from a
semi-infinite waveguide (SIW) impinges upon a nonuniformity in the waveguide
structure—such as a bend, taper, split, termination, etc.

For the sake of simplicity, we require all the wavevectors of the plane wave expansion
of illuminating beams to have a non-negative dot product with the optical waveguide
axis—a natural assumption in the present waveguide context. The occurrence of
negative dot products could give rise to vanishing oscillations which would affect the
overall convergence if left untreated. (Such vanishing oscillations could nevertheless
be treated by means of an approach similar to the one used in [18, 20, 68] for layered
media.)

6.1 Radiation conditions for 3D EM waveguides
Asmentioned inChapter 5, the scattered fields for the bounded-obstacle dielectric

transmission problem decay at infinity in accordancewith the Silver-Müller radiation
conditions. As in the two-dimensionalwaveguide case, a revised radiation condition
applies to three-dimensional dielectric waveguides [67, equation 36]—which allows
for energy to propagate inside the waveguide without decay, and which, more
precisely, states that the fields behave as a sum of two components: (1) a field that
decays as 1/R, where R is the distance to the inhomogeneity, and (2) a superposition
of outgoing bound modes.
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When solving bounded-obstacle scattering problems via integral equations, the
radiation condition is built into the kernels themselves, so that, provided correct
kernels are used, the Silver-Müller radiation condition is automatically enforced.
For the waveguide problem, in contrast, we must account for the fact that bound
modes can appear in both the incident and scattered fields. These modes admit an
integral representation over the infinite boundaries, and thus they require special
treatment when formulating the waveguide integral equations.

6.2 Window function for 3D SIWs
As in the two-dimensional problem considered in Chapter 2, we make use of

semi-infinite waveguides (SIWs) as a main building block for general nonuniform
problems. The SIW are structures with a defined optical axis, and whose transverse
shape—with respect to the optical axis—remains invariant. On the other hand, the
nonuniformities can be either junctions or terminations of arbitrary shape between
SIWs.

The window function used in the present context is analogous to the one used in
the two-dimensional problem. As in that case, for a point r ∈ Γ we let d(r) denote
an auxiliary function whose definition depends on whether or not r is an element
of one of the underlying SIWs. If r is not an element of any of the SIWs, then
d(r) = 0, and if r is an element of one of the SIWs, then d(r) equals the distance
from r to the edge of that SIW.

A suitable choice for the window function is given by:

wA(r) =


1, s < 0

exp
(
− 2

exp (−1/|s |2)
|1 − s |2

)
, 0 ≤ s ≤ 1

0, s > 1

, (6.1)

where s(r) = |d(r)|−αA
A(1−α) . Additionally, since the electromagnetic operators involve

vectorial densities, we also utilize the matrix-valued window function given by

WA(r) =


wA(r) 0 0

0 wA(r) 0
0 0 wA(r)

 . (6.2)

6.3 Beam illumination
We now turn our attention to the specific case of beam illumination. Given the

non-negative dot product condition imposed on the beam in the introduction to the
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present chapter, the dielectric formulation derived in Chapter 5 can be used for this
problem. When combined with the windowing function described in Section 6.2
the following three-dimensional windowed integral equations result:

m(r) + R∆ε [WAm](r) + S∆α[WA j](r) + T∆α[WA j](r) =
2εe

εe + εi
Einc × n, (6.3a)

j(r) + R∆µ[WA j](r) − S∆α[WAm](r) − T∆α[WAm](r) =
2µe

µe + µi
Hinc × n, (6.3b)

for r ∈ Γ.

In order for the system (6.3) to provide a good approximation in the vicinity of
the windowed region, it is necessary for the integrands in these operators to have
non-vanishing oscillations as d(r) → ∞. Remark 6.3.1 addresses this important
point.

Remark 6.3.1 In view of the definitions of the densities j and m in terms of the
interior scattered fields, together with the radiation conditions, the densities behave
asymptotically as the tangential components of a superposition of outgoing bound
modes. The m-th mode contribution contains a factor of e+ikmz |z | (where km

z denotes
the propagation constant of the m-th mode). Since the kernels oscillate with a factor
of e+ik |r−r ′ |, and since both km

z and k are positive, the product of the kernels and the
densities result in non-vanishing oscillations as d(r) → ∞.

6.4 Mode illumination
In many instances, illuminating a waveguide with an incoming bound mode is

desirable—this can model incoming fields from other structures that are connected
through a waveguide. Historically, the sourcing of bound modes has been a non-
straightforward matter, and alternative approximations are usually used—such as
mode bootstrapping, illumination by Gaussian beams that approximate the mode,
or by exciting the modes with point sources [76, 81]. These techniques usually
require either additional simulations or large propagation distances for the incoming
waves to shed away the undesired radiative or modal components, or the simulation
is restricted to single-mode waveguides to avoid spurious modes being excited.
However, it is highly advantageous to be able to directly source any mode at will,
incurring into as little extra computationwork and error as possible. With this goal in
mind, this section proposes an integral equation methodology to accurately simulate
the scattering of incident bound modes. In particular, we can use as incident field
any given bound mode of the relevant waveguides—on the basis of an auxiliary
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representation for the incident fields which, at minimal expense, incur errors that
are exponentially smaller with regards to a certain approximation parameter.

To describe the proposed incident-mode approach, let us consider a three-
dimensional nonuniform waveguide structure composed of one or more SIWs. For
clarity, we consider the case in which there is only one exterior and one interior
domain, denoted as usual by Ωe and Ωi, respectively. Let one of the SIW carry
an incoming bound mode as an incident excitation. The region Ωinc wherein the
incoming mode is defined coincides with the SIW itself—including both the core
and cladding region. Thus, using the associated indicator function

χinc(r) =


1 for r ∈ Ωinc,

0 for r < Ωinc,
(6.4)

the total fields are given by E = Eincχinc + Escat and H = Hincχinc + Hscat. Next,
define the interior incident and scattered densities

minc ≡ minc
i = χincEinc

i × n, (6.5a)

j inc ≡ j inci = χincHinc
i × n, (6.5b)

mscat ≡ mscat
i = Escat

i × n, (6.5c)

jscat ≡ jscati = Hscat
i × n, (6.5d)

and the exterior incident and scattered densities

minc
e = −χ

incEinc
e × n, (6.6a)

j ince = −χ
incHinc

e × n, (6.6b)

mscat
e = −Escat

e × n, (6.6c)

jscate = −Hscat
e × n, (6.6d)

respectively. Additionally, given the necessary continuity of the tangential compo-
nents of the field induced by the boundary conditions, we obtain that the relations

minc
e = −m

inc
i , (6.7a)

j ince = − j
inc
i , (6.7b)

mscat
e = −mscat

i , (6.7c)

jscate = − jscati , (6.7d)

hold.
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Using these definitions and the representation formulas1 presented in Chapter 5,
we obtain the representation for the total fields:

iωµiSi[ j
inc
i + jscati ](r) +

i
ωεi

Ki[ j
inc
i + jscati ](r) +Di[m

inc
i + mscat

i ](r) =
Ei(r), r ∈ Ωi,

0, r < Ωi,
(6.8a)

−iωεiSi[m
inc
i + mscat

i ](r) −
i

ωµi
Ki[m

inc
i + mscat

i ](r) +Di[ j
inc
i + jscati ](r) =
Hi(r), r ∈ Ωi,

0, r < Ωi .

(6.8b)

iωµeSe[ j
inc
e + jscate ](r) +

i
ωεe

Ke[ j
inc
e + jscate ](r) +De[m

inc
e + mscat

e ](r) =
Ee(r), r ∈ Ωe,

0, r < Ωe,
(6.9a)

−iωεeSe[m
inc
e + mscat

e ](r) −
i

ωµe
Ke[m

inc
e + mscat

e ](r) +De[ j
inc
e + jscate ](r) =

He(r), r ∈ Ωe,

0, r < Ωe.

(6.9b)

Following the same steps as in the bounded-obstacle case discussed in section 5.3,
we obtain the following system of integral equations

m(r) + R∆ε [m](r) + S∆ε [ j](r) + T∆ε [ j](r) =

−

(
minc(r) + R∆ε [m

inc](r) + S∆ε [ j
inc](r) + T∆ε [ j

inc](r)
)
, (6.10a)

j(r) + R∆µ[ j](r) − S∆µ[m](r) − T∆µ[m](r) =

−

(
j inc(r) + R∆µ[ j

inc](r) − S∆µ[m
inc](r) − T∆µ[m

inc](r)
)
, (6.10b)

1Although the representation theorems presented are for bounded obstacles, a limiting form akin
to that in [67] can be used to justify that an integral representation exists for waveguide structures
with infinite boundaries.
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where all the operators involved are given by integrals along the complete infinite
boundary Γ of the waveguide. The operators on the left-hand side act only on the
scattered densities; in virtue of section 6.1, the product of the densities times the
relevant kernels have non-vanishing oscillations along the surface of the waveguide,
hence the windowing technique provides an effective way to numerically truncate
and evaluate these operators. On the contrary, the operators on the right-hand side
act on the incident densities, for which the waves travel in the direction opposite
to those inherent in the kernels, so that the net oscillations of the integrands may
vanish. A strategy designed to evaluate these right-hand operators in spite of the
potential loss of integrand oscillatory character is presented in the following section.

6.4.1 Evaluation of incident contributions
In order to overcome the difficulty associated with the evaluation of the right-

hand side expressions in equation (6.10), we make use of an auxiliary representation
for the incident mode. To do this, we denote by Γw the portion of the waveguide for
which the window function is greater than zero,

Γ
w = Γ ∩ {r : wA(r) > 0}, (6.11)

and we let Γ∞ denote the portion of the SIW that carries the incident mode that is
not contained in Γw:

Γ
∞ = Ωinc ∩ (Γ \ Γw) . (6.12)

Further, we define the auxiliary (infinite) boundary Γ⊥ to be the plane perpendicular
to the SIW with the incident mode, and that crosses the waveguide exactly at the
junction between Γw and Γ∞. Additionally, we considerΩ∞ to be the portion ofΩinc

that goes from Γ⊥ to infinity in the direction opposite to the incoming mode—this
notation is analogous to that used for the one presented in Chapter 2 and depicted in
Figure 2.1 for the two-dimensional case. Using these definitions together with the
representation formulas from section 5.2, we obtain

iωµi(S
∞

i +S ⊥
i )[ j

inc
i ](r) +

i
ωεi
(K ∞

i +K ⊥
i )[ j

inc
i ](r) + (D

∞
i +D⊥i )[m

inc
i +](r) =

Ei(r), r ∈ (Ωi ∩Ω
∞),

0, r < (Ωi ∩Ω
∞),

(6.13a)
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iωµe(S
∞
e +S ⊥

e )[ j
inc
e ](r) +

i
ωεe
(K ∞

e +K ⊥
e )[ j

inc
e ](r) + (D

∞
e +D⊥e )[m

inc
e +](r) =

Ee(r), r ∈ (Ωe ∩Ω
∞),

0, r < (Ωe ∩Ω
∞),

(6.13b)

where the superscripts ∞ and ⊥ in the potential operators denote integration over
Γ∞ and Γ⊥ (normal pointing away from Ω∞), respectively. Similar expressions for
Hi and He hold by exchanging E→ H, j → m, m → j and µ→ −ε.

The idea of this auxiliary formulation for the field was introduced for the
two-dimensional case in Chapter 2 (see also [22]), and in its three-dimensional
variant—equation (6.13))—can be used to evaluate the challenging right-hand
side in equation (6.10). In detail, consider a point r ∈ Γw, then, in view of
r < ((Ωe ∩Ω

∞) ∪ (Ωi ∩Ω
∞)), together with equation (6.13), we have

R∆ε [m
inc](r) + S∆ε [ j

inc](r) + T∆ε [ j
inc](r) = (R∆,wε −R∆,⊥ε )[m

inc](r)+

(S∆,wε −S∆,⊥ε )[ j
inc](r) + (T∆,wε −T∆,⊥ε )[ j

inc](r), (6.14a)

R∆µ[ j
inc](r) − S∆µ[m

inc](r) − T∆µ[m
inc](r) = (R∆,wµ −R∆,⊥µ )[ j

inc](r)−

(S∆,wµ −S∆,⊥µ )[m
inc](r) − (T∆,wµ −T∆,⊥µ )[m

inc](r), (6.14b)

where, again, the superscripts ∞ and ⊥ in the integral operators denote integration
over Γ∞ and Γ⊥, respectively. The identity in equation (6.14) is an important result
from this thesis in view of Remark 6.4.1.

Remark 6.4.1 The operators in the right-hand side of equation (6.14) involve inte-
grals that can be accurately computed. The integrals over the bounded surface Γw

can be treated as in the bounded obstacle case. On the other hand, the integrals over
Γ⊥, in spite of involving an infinite surface, the integrands are exponentially de-
caying towards infinity—along Γ⊥—due to the nature of the incident bound modes.
This exponential decay allows us to truncate Γ⊥ to perform the integrals, incurring
in an exponentially small truncation error.
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Putting it all together, we obtain the following WGF system of integral equations
for a waveguide structure illuminated by a bound mode:

m(r) + R∆ε [WAm](r) + S∆ε [WA j](r) + T∆ε [WA j](r) = b⊥m(r), r ∈ Γw, (6.15a)

j(r) + R∆µ[WA j](r) − S∆µ[WAm](r) − T∆µ[WAm](r) = b⊥j (r), r ∈ Γw, (6.15b)

where

b⊥m(r) = −
(
minc + (R∆,wε −R∆,⊥ε )[m

inc](r)+

(S∆,wε −S∆,⊥ε )[ j
inc](r) + (T∆,wε −T∆,⊥ε )[ j

inc](r)

)
, (6.16a)

b⊥j (r) =
(
j inc + (R∆,wµ −R∆,⊥µ )[ j

inc](r)−

(S∆,wµ −S∆,⊥µ )[m
inc](r) − (T∆,wµ −T∆,⊥µ )[m

inc](r)

)
. (6.16b)

6.5 Numerical examples
To illustrate the accuracy and applicability of the WGF method, this section

presents several numerical examples. Each example was selected so as to highlight
a particular signature difficulty arising in waveguide simulations. For all simulations
in this problem, we take ne = 1.0 and ni = 1.47 (SiO2). Throughout this section,
to illustrate where the electromagnetic energy is concentrated, we use the complex
Poynting vector S = 1

2 (E ×H∗); see [46, section 6.9].

Our first example concerns a uniform circular waveguide. As indicated in sec-
tion 3.2, the fields, mode profiles and propagation constants for this problem are
given in terms of Bessel functions. Figure 6.1 compares the WGF mode solution
(d-e) to the corresponding result obtained without use of a window function (f-g).
Figure 6.1 (a) presents the error of the solution along the center of the waveguide
core; for this particular case, where a discretization of 18×18 (∼ 9 points per mode’s
wavelength) is used, accuracies of order 10−4 are achieved by theWGFmethod. The
un-windowed solution does match some qualitative features of the field, but it is
otherwise clearly wrong: not just the field values in the center of the waveguide are
off (as indicated by Figure 6.1 (a)), but Figure 6.1 (f-g) displays incorrectly curved
wave fronts which arise as the physical (straight) wavefronts are superimposed to
the unphysical reflections arising from the truncation edge.
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Figure 6.1: Mode propagation along a uniform circular waveguide. The error in
Ez along the center of the waveguide is presented in (a). In (b), (d) and (f), the
values of Ez are displayed for the exact, windowed and un-windowed solutions,
respectively. On the other hand, (c), (e) and (g) concern the logarithm of the
magnitude of the Poynting vector, also for the exact, windowed and un-windowed
solutions, respectively.
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For our second example, in Figure 6.2 we present the simulated fields for a
waveguide with elliptical cross-section illuminated by an electromagnetic beam
of the form of equation (5.42), showing in particular, in Figures 6.2 (c) and (d),
that a certain amount of energy is coupled to the waveguide. At the same time, the
logarithmic scale reveals that the beam also reflects and passes through the structure.
In fact, this example is representative of the “mode launching” problem, for which
one illuminates a waveguide with the purpose of producing such a coupling with
propagating modes in the waveguide.

Figure 6.2: Illumination of an elliptical waveguide by an electromagnetic beam. In
this mode launching problem, several modes get excited, and the simulation shows
the “bouncing” of the trapped fields inside the waveguide.

Figure 6.3 presents the simulation of a circular waveguide with a 90◦ bend
illuminated by a bound mode. Figure 6.3 (a) shows the patch structure, as well
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as the discretization of Γ⊥ used in this example, which corresponds to a disk. In
Figure 6.3 (b), one of the components of the scattered density is displayed, showing
a discontinuity at the point at which the horizontal straight portion of the waveguide
meets the curved structure. The incident field is prescribed in this horizontal section,
and the scattered field in this region only results from the (weak) reflections that
arise from scattering from the curved portion. Figure 6.3 (c) shows that the mode
is mostly preserved across the curved region: the discrepancy in character of the
field shown in the vertical and horizontal sections is only a matter of appearance,
reflecting the fact that the x-component of the field is the tangential component in
the vertical section, but it is the normal component in the horizontal section. A
different type of transition is demonstrated in Figure 6.4. In this case, the structure
is illuminated by a bound mode and a waveguide taper is used to provide a transition
between waveguides of two different radii.

Our last example concerns a dielectric antenna fed by a bound mode. Figure 6.5
displays the fields resulting in this case. In particular, Figures 6.5 (c) and (d) show
that the energy is mostly bound within the waveguide core. The logarithmic plot in
Figure 6.5 (d) clearly demonstrates the energy distribution in the near field.
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Figure 6.3: Mode propagation along a 90◦ bend.
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Figure 6.4: Simulation of a taper structure on which a circular waveguide transitions
to another with a bigger diameter.
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Figure 6.5: Modeling of a dielectric antenna by a terminated waveguide.



Shape optimization of
electromagnetic devices
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C h a p t e r 7

BIE GRADIENT-BASED OPTIMIZATION OF
ELECTROMAGNETIC DEVICES

In the previous chapters, we developed fast, accurate algorithms for a variety of
electromagnetic simulation problems. While simulation can be a challenging task,
it has significant merits for real-life applications, including as an effective means to
guide the design of electromagnetic devices for a wide range of applications.

In the field of photonics, design on the basis of gradient-based optimization has
seen a significant increase in use in recent years, in great part due to the proven
advantages of the adjoint techniques for gradient evaluation [36, 41, 44, 53, 64–
66, 71, 82]. In brief, most design problems for photonic devices can be modeled
by maximizing or minimizing a functional of the electromagnetic fields, which
in turn, depend on the incident excitations and a set of design parameters that
characterize the refractive-index function n(r) throughout the simulation domain.
Within volumetric solver paradigms used by other authors, this typically means
that the design parameters are the values of the refractive index function at all the
discretization points. Although these techniques have been quite useful, they tend
to incur significant thresholding errors that occur as an optimized refractive-index
function nopt(r) that varies continuously, and which spans an infinity of refractive-
index values, is approximated by a discontinuous refractive-index function that only
takes two (or small finite number) values.

Many such photonic devices are mostly comprised of piecewise constant dielec-
tric materials, which can be efficiently simulated using boundary integral equation
methods. Yet, we are not aware of any previous contributions (except for this au-
thor’s collaborative work in [74]) that rely on use of boundary integral methods as a
simulation engine for optimization of photonic devices. In this chapter, we introduce
such an integral methodology for the simulation and the efficient computation of
the gradient of functionals that arise in electromagnetic device design. Relying on
boundary parametrization that smoothly depend on a set of design parameters, we
derive a continuous adjoint problem from which the gradient can be efficiently com-
puted. We pay close attention to the implementation details, given that significant
computational time can be saved by exploiting the non-trivial underlying sparsity of
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some matrices associated to this problem.

7.1 Device optimization in a boundary integral setting
Consider the problem of three-dimensional scattering by a collection of Nobj

dielectric obstacles Ω j for j = 1 . . . Nobj within an “exterior” dielectric matrix Ωe –
which carries the incident fields Einc and Hinc. Denote by α = [α1, α2, · · · , αM]

T ∈

RM the vector of design parameters, and let the boundary of the j−th obstacle be
Γj(α), and Γ = ∪ jΓj . Let us also introduce the following notation for the dielec-
tric integral equations from Chapter 5, which will be needed for the optimization
problem.

Let us define the extended vector

Ψ =

[
Ψm(r)

Ψ j(r)

]
, r ∈ Γ(α), (7.1)

whereΨm andΨ j are the integral densities associated with themagnetic and electric
currents, so that the operator associatedwith the dielectric integral equations is given
by

A(Ψ, α) =

[
Ψm(r) + R∆ε [Ψm](r) + S∆ε [Ψ j](r) + T∆ε [Ψ j](r)

Ψ j(r) + R∆µ[Ψ j](r) − S∆µ[Ψm](r) − T∆µ[Ψm](r)

]
, r ∈ Γ(α), (7.2)

while the associated right-hand side is given by

b(α) =


2εe

εe + εi
Einc(r) × n(r)

2µe

µe + µi
Hinc(r) × n(r)

 , r ∈ Γ(α). (7.3)

Defining the operator

T(Ψ, α) ≡ A(Ψ, α) − b(α), (7.4)

then, letting S denote the solution map (that produces the solution Ψ for any given
parameter vector α), we clearly have

T(S(α), α) = 0, (7.5)

or equivalently, in the reduced form

T̃(α) ≡ T(S(α), α) = 0. (7.6)
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Consider the inner product defined by〈
Φ,Ψ

〉
Γ
=

∫
Γ

Φm(r′) · Ψm(r′) dσ(r′) +
∫
Γ

Φ j(r′) · Ψ j(r′) dσ(r′). (7.7)

Furthermore, we seek to maximize objective functions of the form

J(Ψ, α) = |I(Ψ, α)|2, (7.8)

with

I(Ψ, α) = ainc(α) +
〈
K(α),Ψ

〉
Γ
, (7.9)

and where the specific forms of ainc(α) and K(α) depends on the desired objective
function. In its reduced form [34, 77], we have that the objective functional f (α) is
given by

f (α) ≡ J(S(α), α). (7.10)

Then, the optimization problem considered here can be defined as
max J(Ψ, α),

subject to:

T(Ψ, α) = 0, α ∈ RM .

(7.11)

Although this optimization problem is generally quite challenging, in view of an
optimization landscape which generally contains large numbers of local maxima, in
practice “sufficiently optimal” local maxima may provide significant improvements
over designs based on human expertise alone. With this in mind, we seek to use a
gradient-based optimization approach.

The most direct way to numerically approximate the gradient is to apply a finite
difference approximation [51] to equation (7.10), which yields

[∇ f (α)]i =
f (α + δei) − f (α)

δ
, (7.12)

where ei is i-th vector of the standard basis ([ei] j = δi j). The approximation in
equation (7.12) has a very simple expression and is a good black-box method; the
method only requires an adequate solver for the forward problem and a procedure
for the evaluation of the objective function. However, we can see that this approach
can be quite expensive if we consider problems with parameters numbering from
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M ≈ 10 to M ≈ 1000, or even M ≈ 106 and beyond. Indeed, equation (7.12) requires
M + 1 forward simulations, where, in general, each forward simulation can be quite
expensive, specially in the three-dimensional case considered here. Instead, in the
following section we present a variant of the classical adjoint-based method that
is applicable in the context of electromagnetic boundary integral equations, which
provides valuable continuous adjoint formulation towhich accelerationmethods [16]
can be naturally applied. Under this framework, the full gradient can be evaluated
on the basis of merely two simulations—one for the forward system, and one for a
related adjoint problem—as opposed to M + 1 forward simulations required under
the direct approach in equation (7.12). (In addition to two simulations, the adjoint
approach additionally requires M+1 sparse, and, therefore, inexpensively computed
forward maps, see section 7.2.1.)

Remark 7.1.1 An appealing feature of the integral-equation approach to photonic
device optimization arises precisely from its focus on discretization of interfaces. In
such a setup, the optimization parameters are used to control the parametrizations
in terms of (u, v) parameters and geometry controlling parameters α, and the actual
electromagnetic discretization takes place on a fixed computational grid. For volu-
metric approaches, in contrast, the variation of a portion of an interface implies a
change in thematerial properties of portions of the structure being simulated—which
presents significant challenges.

7.2 Adjoint computation of the gradient
In order to provide a consistent framework for the computation of the gradient

via the adjoint method, let us call U the domain of the operator A in equation (7.2),
which, in each one of the available existence and regularity theories for integral-
equation contexts, is a Banach space, as well as a vector subspace of L2(Γ). Addi-
tionally, denoteV = RM with the usual inner product. Then, the objective functional
in equation (7.8) is a mapping of the form J : U × V → R. We assume J to be
Gâteaux differentiable (an assumption that is often trivially verified in practice), and
we denote the directional derivative of J at (Ψ, α), in the direction (Φ, β) by [34, 77]

dJ(Ψ, α;Φ, β) = lim
t→0+

1
t

(
J(Ψ + tΦ, α + tβ) − J(Ψ, α)

)
. (7.13)

With this notation, we can write the directional derivative of the reduced cost
functional at α in the direction β

df (α; β) = dJ(S(α), α; dS(α; β), 0) + dJ(S(α), α; 0, β), (7.14)
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where

dS(α; β) = lim
t→0+

1
t

(
S(α + tβ) − S(α)

)
. (7.15)

Then, the gradient can be written in the form

[∇ f (α)]i = df (α, ei). (7.16)

Similarly, we can take the directional derivative of the governing integral equa-
tion (7.6), which in turn must be zero independent of the direction:

dT(S(α), α; dS(α; β), 0) + dT(S(α), α; 0, β) = 0, (7.17)

and to use this expression in conjunction with equation (7.14), we take the inner
product of equation (7.17) with an arbitrary function ψ ∈ U〈

ψ, dT(S(α), α; dS(α; β), 0)
〉
Γ
+

〈
ψ, dT(S(α), α; 0, β)

〉
Γ
= 0. (7.18)

We can also simplify some of the expressions from above. In view of equa-
tion (7.4) and the linearity of A(Ψ, α) on the first argument, we have

dT(S(α), α; dS(α; β), 0) = A(dS(α; β), α). (7.19)

At the same time, using equation (7.8), we have explicitly

dJ(S(α), α; dS(α; β), 0) =Re
(
2 I(S(α), α)

〈
K(α), dS(α; β)

〉
Γ

)
=Re

(〈
2 I(S(α), α)K(α), dS(α; β)

〉
Γ

)
(7.20)

Because the variation in equation (7.14) has to be real, we can then combine
equations (7.14), (7.18) and (7.19) to get

df (α; β) = Re
[(〈

ψ,A(dS(α; β), α)
〉
Γ
+

〈
2I(S(α), α)K(α), dS(α; β)

〉
Γ

)
+(〈

ψ, dT(S(α), α; 0, β)
〉
Γ
+ dJ(S(α), α; 0, β)

)]
, (7.21)

which, using the properties of the inner product and the adjoint operator A†(· , α) of
A(· , α), yields

df (α; β) = Re
[(〈

A†(ψ, α) + 2I(S(α), α)K(α), dS(α; β)
〉
Γ

)
+(〈

ψ, dT(S(α), α; 0, β)
〉
Γ
+ dJ(S(α), α; 0, β)

)]
. (7.22)
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Remark 7.2.1 In equation (7.22), two contributing terms are present: one that
relates to the variations of the solution density dS, and another that concerns
variations of the parameters α while keeping the solution density constant. The first
term is indeed the one that carries most of the computational cost—it requires a new
solution of the system of integral equations for each direction needed. On the other
hand, the second term can be approximated via certain evaluations of the forward
map—i.e. the action—of the boundary integral operators, which are considerably
cheaper to evaluate than a full solve.

Using the solution ψ to the adjoint problem

A†(ψ, α) = −2I(S(α), α)K(α), (7.23)

(which will be discussed in detail in section 7.3) then, equation (7.22) simplifies to

df (α; β) = Re
[〈
ψ, dT(S(α), α; 0, β)

〉
Γ
+ dJ(S(α), α; 0, β)

]
. (7.24)

In the context of our integral equation problem, the directional derivatives in
equation (7.24) depend nonlinearly on the explicit parametrization of the dielectric
obstacles, which is defined by the parameter vector α. Hence, approximations
of these derivatives is inexpensively and accurately obtained by means of finite
difference approximations by relying on use of certain sparse surface parametrization
methods, as discussed in the following section.

7.2.1 Numerical approximation of directional derivatives
The directional derivatives in the β direction on the right-hand side of equa-

tion (7.24), along which the solution S(α) remains unchanged and does not need
to be recalculated, can be obtained as indicated in what follows. The definition of
these directional derivatives, together with equations (7.4) and (7.8), leads directly
to the finite difference approximations

dT(S(α), α; 0, β) ≈
A(S(α), α + δβ) − A(S(α), α)

δ
−

b(α + δβ) − b(α)
δ

, (7.25)

and

dJ(S(α), α; 0, β) ≈
J(S(α), α + δβ) − J(S(α), α)

δ
, (7.26)

for an adequately chosen value of the parameter δ. Of course, higher-order ap-
proximations can be used at the cost of the additional necessary forward map
computations.
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Remark 7.2.2 The quantities associated to b in equation (7.25) can be quickly
computed since they only involve the sourcing term of the integral equations. On
the other hand, A(S(α), α) and J(S(α), α) are readily known and independent of
the direction β taken. Furthermore, to compute each component of the gradient,
we must consider β = ei for i = 1, . . . , M , and thus for the evaluation of the
gradient, one needs to compute M additional froward maps for A(S(α), α + δei),
and M additional objective functions J(S(α), α + δβ), the latter being considerably
cheaper to compute.

Although in equation (7.25), we have that A(S(α), α) − b(α) = 0, we note that
the explicit form on which the equation is written can be used to exploit the sparsity
of the mapping given by

Aδ(α, β) = A(S(α), α + δβ) − A(S(α), α). (7.27)

To show the sparsity pattern, we first decompose all the boundary integral operators
into the contributions from each and every one of the P patches from the geometry
parametrization

L(m, α) =


L11 . . . L1P
...

. . .
...

LP1 . . . LPP



m1
...

mP

 (7.28)

where L represents any of the relevant integral operators (L = R∆ε , S∆ε ,T∆ε . . . ) acting
on a density m, and Li j(m j, α) denotes the contribution by the density at the j-th
patch evaluated at the target i-th patch.

Consider also an auxiliarymapping that takes as argument an index i = 1, · · · , M ,
and returns a vector of integers −→q (i) = [q1(i), . . . , qp(i)] that contains the indices
of all the parametrization patches that are affected when the i-th parameter αi is
modified. Then, taking the direction β = e`, as needed for the gradient computation,
we have that the discretization of each one of the operators A(S(α), α + δβ) and
A(S(α), α) cannot be sparse. However, because the only components of the linear
operators that change are those that correspond to perturbed portions of Γ, then the
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following sparsity structure is induced in the underlying integral operators in A:

[L(m,α + δe`) − L(m, α)]i j =
Li j(m, α + δe`) − Li j(m, α + δe`), if either i ∈ −→q (`) or j ∈ −→q (`) ,

0, otherwise.

(7.29)

Appropriate use of this sparse structure can enable gradient evaluations that would
otherwise prove overwhelmingly expensive.

7.3 Adjoint operators
Wenow turn our attention to the solution of the adjoint problem in equation (7.23).

In principle, one could compute the adjoint operator A† by taking the discretized
version of A and then construct A† by doing the conjugate transpose. This process,
however, would require explicitly knowing the entries of these matrices, which can
be unfeasible for medium to large sized problems. Instead, to solve the adjoint
problem, we follow the same approach as in the case of the direct forward problem.
In order to do so, we then have to find a way to compute the action of the adjoint
operator.

To derive the action of A†, we note that A is composed of integral operators that
are all in terms of the operators R, T and S defined in equation (5.13). Hence, A†

can be constructed from the simpler adjoint operators of R, T and S. Indeed, if we
take the expressions from equation (5.14) and define their adjoint counter parts

Ss†[ϕ](r) =

∫
Γ

G(r, r′)ϕ(r′) dσ(r′) (7.30a)

−→
S†[d](r) =

∫
Γ

G(r, r′)d(r′) dσ(r′), (7.30b)

−→
K†[d](r) =

∫
Γ

∂G
∂n(r)

(r, r′)d(r′) dσ(r′), (7.30c)

for r ∈ Γ, then, it can be shown that the adjoints of the electromagnetic operators
are given by

S†[d](r) =
−→
S †

[
n(r′) × d(r′)

]
(r), (7.31a)

T†[d](r) =
(
e1(r)

∂

∂u
+ e2(r)

∂

∂v

) (
Ss†

[
divΓ[n(r′) × d(r′)]

]
(r)

)
, (7.31b)
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R†[d](r) =
(
e1(r)

∂

∂u
+ e2(r)

∂

∂v

)
×

(
−→
S †

[
n(r′) × d(r′)

]
(r)

)
+

n(r) ×
−→
K †

[
n(r′) × d(r′)

]
(r). (7.31c)

The action of the adjoint operator of the overall system is then given by

A†(Ψ, α) =

[
Ψm(r) + R†∆ε [Ψm](r) + S†∆ε [Ψ j](r) + T†∆ε [Ψ j](r)

Ψ j(r) + R†∆µ [Ψ j](r) − S†∆µ [Ψm](r) − T†∆µ [Ψm](r)

]
, r ∈ Γ(α),

(7.32)

where, analogous to equation (5.32), we have

R†∆α ≡
2

αe + αi

(
αe R†e −αi R†i

)
, (7.33a)

S†∆α ≡
2i

ω(αe + αi)

(
k2

e S†e −k2
i S†i

)
, (7.33b)

T†∆α ≡
2i

ω(αe + αi)

(
T†e −T†i

)
, (7.33c)

where the subindex α represents either the dielectric constant symbol, α = ε, or the
magnetic permeability α = µ.

Remark 7.3.1 The solution of the adjoint problem in equation (7.23) can be ob-
tained using the rectangular-polar method just as the forward problem (see Chap-
ters 4 and 5). Furthermore, in view of the form of the adjoint operators (7.31), the
precomputations needed are exactly the same as those needed for the direct problem
in equation (7.5).

7.4 Numerical examples: Metasurface design
In this section, we apply a standard gradient-descent method in conjunction with

the adjoint method described in the previous sections to simulate and optimize
optical devices based on multilayer metasurfaces. In brief, a metasurface is a struc-
ture that contains dielectric inclusions—of sizes comparable to the wavelength—in
arrangements designed to manipulate light in prescribed ways. Metasurface-based



7.4. Numerical examples: Metasurface design 113

devices have been shown to provide an exceptional control on light atmicro scales [4–
7, 49, 71].

The particular setting for the problem considered here is that of multilayered
metasurfaces used to construct optical metalenses. Each “meta atom” consists of
a rounded cylinder of given height, and the radii are the design parameters α. In
our examples, we illuminate the structure with a plane wave (x−polarized), and
we take as objective function the square of the x−component of the total electric
field at a focal point r0, but other types of illumination and objective functions
can analogously be considered. All the forward and adjoint solves were performed
using an accelerated version of the rectangular polar integration method, relying
on the parallel accelerated implementation previously produced, on the basis of
serial accelerator method [16], by former group member Dr. Agustin Fernandez-
Lado, who also contributed to the overall code implementation used in this section.
The particular implementation of the overall solution and optimization method was
produced in Fortran with MPI; all runs were done on Caltech’s EMSCAT cluster.

Figure 7.1 presents the results of an optimized lens design consisting of ten
layers, each layer consisting of a metasurface of ten by ten nanoposts. In this case
the electromagnetic parameters are given by λ0 = 400 nm, ne = 1.0, ni = 1.46. The
height of all the nanoposts is 400 nm, with separation between layers of 700 nm.
The posts in each layer are arranged on a Cartesian array, with a separation of 350
nm in both the x- and y-direction; the corresponding optimization problem involves
a total of one thousand optimization parameters. For this particular problem, the
optimization was capped to 20 gradient-descent iterations. Using 501 cores, each
system solve required approximately 260 seconds for each the direct and adjoint
problems, and 60 seconds for the evaluation of all necessary sparse forward maps
needed to compute the inner products in equation (7.24)—for a total of≈ 10minutes
for one full gradient computation. Use of the simple (non-sparse) version of this
algorithm would have required ≈ 2.2 hours instead of ≈ 10 minutes. Further, use
of the direct finite-difference gradient approximation equation (7.12), without any
recourse to the adjoint strategy, would have increased the gradient computation
time from ≈ 10 minutes to ≈ 3 days (or two months for the twenty optimization
iterations).

The ideas presented in this chapter are easily extensible to multiobjective prob-
lems, such as the one presented in Figure 7.2, for which five focal points were used
to spell the letter “C.” In this case, the metasurface consists of three layers of 14×14
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nanoposts with the same parameters as those of Figure 7.1.

Finally, in Figure 7.3, we present the optimized design of an array consisting
of ten layers, each of metasurfaces of 5 × 12 nanoposts. The design consists of
nanoposts made of TiO2 (ni = 2.50) immersed on SiO2 (ne = 1.47) and the objective
function is designed to induce light-focusing at two different points, depending on
the illumination wavelength of either 700 nm or 500 nm.

Figure 7.1: Metasurface consisting of an array of 10 × 10 × 10 nanoposts. The
design is optimized to focus light at a point in a given focal plane.
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Figure 7.2: Optimized metasurface to focus light on the shape of the letter “C.” The
size of the array is of 10 × 10 × 4 nanoposts.
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Figure 7.3: Two-wavelength splitter. The size of the array is of 6×12×10 nanoposts.



Concluding remarks
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C h a p t e r 8

CONCLUSIONS AND FUTURE WORK

This thesis presents a variety of integral-equation methods that effectively tackle a
range of problems in computational electromagnetism, with application to problems
in electrical engineering and applied physics. In particular, the developed techniques
were used to solve problems concerning waveguides in two and three dimensions
and metamaterial-design problems, demonstrating the value of the integral-equation
approach in this context. We conclude this thesis with a brief summary of the
proposed methodologies and a discussion of potentially valuable follow-on work.

The WGF method for waveguide problems introduced in Chapters 2 and 6,
enables efficient treatment of complex waveguide structures. This approach has al-
ready facilitated the design of two-dimensional structures such as waveguide tapers,
splitters and grating couplers such as those shown in Figures 8.1 and 8.2 (see [74] for
details). This computational method provides super-algebraically accurate approxi-
mations as the window sizes are increased and, as a result, the method can be orders
of magnitude faster than solvers considered presently in engineering practice [74].
The proposed approach retains the attractive qualities of boundary integral equation
methods, such as reduced dimensionality, efficient parallelization, and high-order
accuracy for arbitrary geometries. And, while the present implementation is based
on use of Nyström integral-equation solvers (which we heartily recommend), any
available boundary integral method for transmission problems, such as, e.g., those
based on the Method of Moments, can be easily modified to incorporate the WGF
methodology.

Many problems in areas of electrical engineering require knowledge of the bound
modes of three-dimensional dielectric waveguides, considered in Chapter 3, as these
are used as feeds for photonic structures. In practice, a wide variety of waveguide
cross sections have been used, and the evaluation of the types of open waveguide
modes treated in this chapter have generally been considered challenging. As
demonstrated by the numerical examples in Chapter 3, the proposedmethod provides
an accurate and reliable tool for treatment of a problem for which other approaches
have experienced difficulties.

The boundary integral equation framework for the optimization of electromag-
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netic devices developed in Chapter 7 provides significant advantages. On the basis
of its fast and highly-accurate electromagnetic solvers, as well as the new powerful
adjoint techniques for gradient evaluation, the methods enable solution of challeng-
ing three-dimensional simulation and optimization problems that would otherwise
require prohibitively high computing costs.

The rectangular-polar method for singular integrals introduced in Chapter 4 un-
derlies much of the work presented in this thesis. In view of its ability to effectively
integrate the types of singular kernels that arise in the context of boundary inte-
gral equations in scattering theory, the methodology was used in conjunction with
suitable FFT-based acceleration methods and the GMRES linear algebra solver to
produce solutions for highly-challenging three-dimensional waveguide problems
and three-dimensional metamaterial structures. The rectangular-polar method is it-
self demonstrated in the context of bounded obstacles, including examples for which
the scattering obstacles contain open, closed, smooth and non-smooth, scattering
surfaces. In all of these cases the solver produced results with high accuracy in
short computing times. In particular, the rectangular-polar method is well-suited for
application to general engineering configurations—where the scattering objects are
provided in standard (but generally highly complex) CAD representations.

The numerical examples presented throughout this thesis demonstrate the en-
abling character of the proposed approaches. We believe that the present and
subsequent works, as described in the following section, will lead to significant
improvements in the computational simulation and optimization capabilities in pho-
tonics.

8.1 Future work
A natural continuation of the work presented throughout this thesis concerns

use of the three-dimensional WGF method in Chapter 6 in conjunction with the
BIE optimization framework developed in Chapter 7 to design and optimize fully
three-dimensional waveguide structures. Significant advances have recently been
made precisely in this direction in the two-dimensional case [74].
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Figure 8.1: Illustrations of the two-dimensional mode splitter (a) and grating cou-
pler (b) problems [74].

Figure 8.2: In (a) and (b), we show the intensity and real part of the fields, respec-
tively, for the initial, non-optimized splitter. On the other hand, (c) and (d) present
the optimized counterparts [74].

Figure 8.3: Intensity (a) and real part (b) of the fields produced by the WGF adjoint
optimization algorithm for the problem of the grating coupler [74].
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For reference in this context we present Figures 8.1 to 8.3 from [74], which
demonstrate the character of the applied problems that can be treated by these
methods. In particular, Figure 8.1 (a) depicts the problem of mode splitting, on
which the boundaries of a waveguide junction are optimized to split the energy onto
two separate waveguides. In Figure 8.1 (b), the problem of the grating coupler is
depicted. In this case, a serrated structure is illuminated by a beam, and the sizes of
the grating “teeth” are designed to couple as much energy as possible to the output
mode. Figures 8.2 and 8.3 present the results of the optimization runs obtained for
the mode splitter and the grating coupler, respectively. Forthcoming work along the
lines of this effort seeks to extend and apply these methodologies to some of the most
challenging and exciting three-dimensional design problems in electromagnetics in
general, and photonics in particular.
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