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Abstract 
 

Plasticity is widely studied across different sensory systems and behavioral paradigms, 

but the underlying mechanisms are varied and incompletely understood. Previous work 

in the fruit fly Drosophila melanogaster reported changes in odor preference and walking 

behavior after chronic odor exposure during early adulthood. Here, we investigated the 

hypothesis that changes in behavior reflect changes in how odors are encoded in the 

first two layers of the fly olfactory circuit. We chronically exposed flies to naturalistic odor 

stimuli that selectively and robustly activate a single olfactory receptor neuron (ORN) 

class. We then performed targeted intracellular recordings from genetically identified 

second-order olfactory projection neurons (PNs) that either receive direct input from the 

activated ORN class, or receive indirect activity (via local lateral circuitry), during chronic 

odor exposure. In addition, we used existing reagents to create a novel optical method to 

characterize ORN-PN synaptic strength. We find that the fly antennal lobe is resistant to 

plasticity, with a few exceptions. Of the odors we tested, we find that rearing in trans-2-

hexenal, a leaf aldehyde that selectively activates ab4a ORNs, weakly enhanced odor 

responses in some PNs. The effects of rearing on PNs were not explained by ORN odor 

responses or changes in ORN-PN synaptic strength. We find evidence that lateral 

excitation may increase across glomeruli following rearing, suggesting that some odors 

may alter PN responses globally. We discuss possible reasons for differences between 

our observations and prior work on olfactory plasticity in this circuit, which has been 

conducted primarily in the context of exposures to much higher, non-naturalistic 

concentrations of odor. Our results point to the stability of insect sensory circuits in the 

face of large perturbations in the sensory environment.  

 

During our optical stimulation experiments, we find that driving Chrimson expression 

may abolish odor responses in some ORNs. We include sample data highlighting this 

observation in a population of pb1a olfactory neurons. Lastly, we include antennal local 
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field potential recordings in response to a variety of odor concentrations to help guide 

future experiments seeking isointense odor panels.  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Chapter 1: Introduction 

The olfactory system is an ancient modality used to detect chemical compounds in the 

external environment. On land and in water, various organisms have adapted to 

recognize chemical ligands, integrate sensory cues, and produce a behavioral response. 

Historically, the field of chemosensation has used a rich diversity of species to study 

neuroanatomy, physiology and behavior such as cockroaches and locusts (Martin, J.P., 

et al., 2011). As the field has evolved and adopted cutting-edge genetic tools, mice and 

Drosophila have been the focus of most modern experiments and have elucidated 

interesting insights into the olfactory system. While the general structure of mammalian 

and insect olfactory system are conserved, the insect olfactory circuit is smaller and 

relatively less complex than mammalian systems. As such, studying olfaction in insects 

allows a relatively simpler viewpoint of a similar functional unit.  

The Drosophila olfactory circuit 

The olfactory system consists of multiple neuronal layers that are optimized for odorant 

detection, processing and multimodal integration. Odorant detection begins when 

chemical ligands interact with olfactory receptor neurons (ORNs) on the fly antennae 

and maxillary palp (Figure 1.1, 1.2). In the fly, there are ~1000 ORNs which express one 

of 50 genetically unique odorant receptor (OR) subtypes (Couto, A., et al., 2005; de 

Bruyne, M., et al., 2001; Hallem, E.A. et al., 2004). Odorant response properties of 

individual ORNs are shaped by the type of OR expressed. ORs respond to a breadth of 

chemicals including ketones, aldehydes, alcohols, esters and acetates. While most 

odorants activate many different ORs, some have been found to activate specific OR  

types. In addition to odorant tuning, ORN responses can vary in intensity as odorant 

concentration changes (Hallem, E.A. et al., 2004; Hallem, E.A. and Carlson J.R., 2006; 

de Bruyne, M., et al., 2001). ORN spike rates are quantified in response to odorant 
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stimulation and are measured using single-sensillar recordings. ORN spiking responses 

closely follow a logarithmic function of odor concentration, and this appears to be a 

feature of all ORNs investigated (Si, G.W., et al. 2019).   

 

Figure 1.1: Peripheral olfactory system of Drosophila melanogaster  1

A) Image of a Drosophila head showing the peripheral olfactory organs including the 

antennae (a) and proboscis (p). Scale bar 100µm. B) Image of the third antennal 

segment (arrow a in panel A) showing diversity of sensillar morphology. T: trichoid, C: 

coeloconic, B: basiconic, and s: spinules. Note that T, C, and B are sensillar subtypes 

while s sensilla represent uninnervated hairs. Scale bar 5µm. C) Example of two types of 

basiconic sensilla, S: small and L: large. Scale bar 2µm. (de Bruyne, M., et al., 2001).  

The antennae contain the majority of the ORNs, accounting for nearly 90% of all 

olfactory responses with the palp mediating the remaining 10%. ORNs are found within 

sensilla, or hair-like processes, that are identified by their morphology and location on 

 Reprinted from Neuron, Vol. 30, de  Bruyne, M., Foster, K., and Carlson, J.R., Odor 1

Coding in the Drosophila antenna, 537-552, © 2001, with permission from Elsevier. 
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the olfactory appendages (Figure 1.2). Within each sensillum are typically 1-4 different 

ORNs, the pairing of which does not appear to have any significance.  

 

Figure 1.2: Spatial map of sensillar subtypes on the antennae and palp  2

Top: Map of spatial arrangement of sensillar types on the Drosophila antenna and palp.   

LB: large basiconic, TB: thin basiconic, SB: small basiconic, T1-3: antennal tricoid, ac: 

antennal coelconic, pb: palp basiconic. Bottom: Glomerular identification of olfactory 

receptor neuron projections labeled by sensillar type using key used above. (Couto, A., 

et al., 2005).  

 

  

 Reprinted from Current Biology, Vol. 15., Couto, A., Alenius, M., and Dickson, B.J., 2

Molecular, Anatomical, and Functional Organization of the Drosophila olfactory system, 
1535-1547, © 2005, with permission from Elsevier. 
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ORNs expressing the same OR converge into a single antennal lobe glomerulus in the 

brain (Figure 1.3; Dobritsa, A.A, et al., 2003; Couto, A., et al., 2005). There, ORNs make 

synapses with projection neurons (PNs), local neurons (LNs) and neuromodulatory 

neurons before sending outputs to the mushroom body (Figure 1.4; Wilson, R.I. 2013; 

Keene, A.C., Waddell, S., 2007). The first stage of olfactory processing occurs between 

cholinergic ORN-PN synapses. PNs amplify ORN inputs and display broader tuning 

profiles than presynaptic ORNs (Wilson, R.I., 2013; Olsen, S.R., et al., 2010; Olsen, S.R. 

and Wilson, R.I., 2008). Previous work has characterized ORN odorant tuning and 

identified odorants that selectively activate a single ORN type (Hallem, E.A. and Carlson, 

J.R., 2006;  Olsen, S.R., et al., 2010; de Bruyne, M., et al., 2001). This allows a single 

olfactory glomerulus to be activated with an odorant. 
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Figure 1.3: ORNs target individual antennal lobe glomeruli  3

A) 3D spatial map of Drosophila antennal lobe glomeruli. Maps represent increasing 

antennal lobe depth from left to right. This map, along with other published maps, serve 

as a reference atlas for ongoing work in  Drosophila olfaction. B) Single-plane confocal 

images of GFP expression in ORN axon terminals in individual antennal lobe neuropil, 

termed glomeruli. GFP expression was targeted to genetically identical ORNs, 

highlighting that ORNs converge into a single glomerulus. The targeted ORN and the 

innervated glomerulus are written in each panel at the bottom left and right corners, 

respectively. (Couto, A., et al., 2005).  

 Reprinted from Current Biology, Vol. 15., Couto, A., Alenius, M., and Dickson, B.J., 3

Molecular, Anatomical, and Functional Organization of the Drosophila olfactory system, 
1535-1547, © 2005, with permission from Elsevier.
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Figure 1.4: Organization of the Drosophila olfactory system  4

About 1400 olfactory receptor neurons (ORNs; referred to as olfactory sensory neurons 

above) project from the periphery into regions of neuropil in the brain, called glomeruli, in 

the antennal lobe. While there are 1400 total ORNs, there are about 50 different ORN 

types that are characterized by the type of olfactory receptor expressed on the cell. 

ORNs expressing the same olfactory receptor converge into one of 50 antennal lobe 

glomeruli in the brain. There, ORNs make synapses with projection neurons (PNs), of 

which there are ~150. PNs typically innervate individual glomeruli, and form excitatory 

cholinergic synapses with ORNs. Excitatory local neurons are another source of 

excitation across the antennal lobe, and they broadly innervate different glomeruli. 

Inhibitory neurons are the main source of GABAergic inhibition in the antennal lobe, and 

these cells also broadly innervate the glomeruli. Both excitatory and inhibitory local 

neurons only signal within the antennal lobe. PNs receive both excitation and inhibition 

from all cell types to form the final output signal. PNs project out of the antennal lobe into 

the mushroom body and lateral horn. About 2500 Kenyon cells form synapses with PNs 

 Adapted by permission from Springer Nature Customer Service Centre GmbH: Nature 4

Publishing Group, Nature Reviews Neuroscience, Drosophila olfactory memory: single 
genes to complex neural circuits, Alex C. Keene et al., © 2007
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in the mushroom body calyx. The mushroom body is the main region of multimodal 

learning, memory and behavior in insects. The lateral horn is thought to mediate innate 

and sexually dimorphic behaviors. (Keene, A.C. and Waddell, S., 2007).  

  

Computational methods have been used to model PN responses to ORN inputs. Olsen 

et al. use a hyperbolic ratio function (Eq. 1) to describe the ORN-PN spiking transform 

across different glomeruli (Olsen, S.R., et al., 2010). In Eq. 1, σ represents the PN spike 

rate at the half maximal ORN spike rate, Rmax is a fitted constant that represents the 

maximum PN spike rate, and ORN represents the measured ORN spike rates in 

response to odor.  

!             Equation 1 

Olsen et al. add lateral inhibition into Eq. 1 by scaling the ORN input (Eq. 2; input gain 

control) or by scaling the output (Eq. 3; response gain control) with the parameter, s. In 

both equations below, s is a fitted parameter that can scale with odor concentration and 

may be unique to each glomerulus (Olsen, S.R., et al., 2010).  

!            Equation 2 

!           Equation 3 

In addition to PNs, inhibitory local neurons (iLNs) are an essential feature of olfactory 

circuits. iLNs broadly innervated the antennal lobe, and are broadly tuned to a panel of 

PN = Rmax ( OR N1.5

OR N1.5 + σ1.5 )

PN = Rmax ( OR N1.5

OR N1.5 + s1.5 + σ1.5 )

PN = ( 1
s1.5 + 1 ) Rmax ( OR N1.5

OR N1.5 + σ1.5 )
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odorants (Hong, E.J. and Wilson, R.I., 2015). The majority of glomerular inhibition occurs 

presynaptically on ORN dendrites, but previous work identified that PN dendrites also 

receive weak lateral inhibitory inputs (Olsen, S.R. and Wilson, R.I., 2008). In Drosophila, 

LNs form GABAergic synapses that contain both GABAA and GABAB receptors and are 

thus sensitive to the pharmacological reagents picrotoxin, bicuculline, and CGP. LN 

inputs into glomeruli increase as the total antennal local field potential (LFP) increases 

(Hong, E.J. and Wilson, R.I., 2015; Olsen, S.R. and Wilson, R.I., 2008; Nagel, K.I., et al., 

2015). Another, albeit weak, source of excitation is lateral excitation through excitatory 

LNs (eLNs) and multiglomerular ventral PNs (vPNs) (Yaksi, E. and Wilson, R.I., 2010;  

Shimizu, K. and Stopfer, A., 2017). eLNs form electrical synapses within the antennal 

lobe and provide subthreshold excitation into PNs. The strength of lateral excitation 

varies among glomeruli and the total depolarization amplitude has some variation across 

odors. Less work has been done to investigate vPNs, but these are thought to be 

predominately GABAergic and recruited by broad odors. 

Prior work in sensory plasticity  

Olfactory cues guide insects towards nutritive food sources, viable oviposition sites, and 

potential mates (Linz et al., 2013; Keesey et al., 2015). Adaptive behavior is important 

for the success of populations and allows animals to succeed in new or unexpected 

environments. An animal’s sensory experience can shape how the external environment 

is encoded within the brain, as shown in work by Blakemore and Cooper in 1970 and 

other recent works (Hensch, T.K., 2005; Turrigiano, G., 2011; Geramita, M., and Urban, 

N.N., 2016). But a cellular- and synaptic-level understanding of how sensory experience 

changes layers of a sensory circuit is not well described. In the context of an olfactory 

system, how are persistent odorants encoded? What computations are required by the 

early olfactory circuit, and which cell types are responsible for plasticity? Prior work has 

attempted to address this question, but results across studies are contradictory. In the 
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field of olfactory plasticity, there are several dimensions in which experiments tend to 

vary, including the stimuli used for exposure, the design of the exposure paradigm and 

the methods used to assess plasticity. Below, details of a few studies of importance are 

discussed.  

 Early work in sensory neuroscience has demonstrated that neural circuits are 

capable of undergoing plasticity. Many such early studies characterized behavioral and 

neurophysiological effects of visual experience because of the well-characterized circuits  

and stimuli involved. In a hallmark experiment performed by Blakemore and Cooper in 

1970, kittens were placed in barrels that restricted their visual experiences during early 

life (Blakemore, C. and Cooper, G.F., 1970). The kittens were housed in complete 

darkness from birth to two weeks of age. Afterwards, the kittens were placed in barrels 

containing only black and white vertical stripes or horizontal stripes for five hours each 

day until an age of five months. Behaviorally, the kittens did not any responses to stripes 

perpendicular to the orientation they experienced, suggesting that the kittens were 

virtually blind to a particular orientation. The authors then wanted to determine if there is 

a neurophysiological basis for this difference in behavior between kittens reared in 

vertical versus horizontal stripes. To do this, recording electrodes were placed into the 

visual cortex in anesthetized kittens and bars of different orientations were presented. 

Nearly 125 neurons were recorded from two kittens that were exposed to either vertical 

or horizontal stripes during the study. Interestingly, the authors found that neurons fired 

only to the stripe orientation the kitten was exposed to during early life, and zero neurons 

responded to the perpendicular orientation. The data suggests that the behavioral data 

may be explained by the physiological recordings in the visual cortex (Blakemore, C. and 

Cooper, G.F., 1970). The study leaves a critical open question: at which stage in the 

visual circuit is the plasticity occurring? Is the primary visual cortex inheriting tuning 

properties from upstream neurons?  
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 An elegant study from 2003 demonstrated that experience-dependent plasticity 

can occur in the retina in retinal ganglion cells (RGCs) (Tian, N. and Copenhagen, D. R., 

2003). In young mice, 77% of all RGCs have ON-OFF responses. As the mice mature 

and experience normal light conditions, the percentage of RGCs exhibiting ON-OFF 

tuning drops to 40%. The cells then develop strong ON or OFF responses. To determine 

whether normal visual experience may explain this reduction in ON-OFF tuning in RGCs, 

the authors dark-reared mice from 0 to 29 days of age and recorded RGC single-unit 

responses to light stimulation. They found that dark-reared mice had more ON-OFF 

RGCs than similarly aged control mice. The finding that ON-OFF RGCs remain elevated 

comparable to young mice aged 10-12 days suggests that visual experience can affect 

RGC tuning (Tian, N. and Copenhagen, D. R., 2003). All in all, work from the mammalian 

visual cortex suggest that sensory plasticity occurs as early as in the second synapse in 

the visual circuit.  

 More recent work in fruit-fly suggests that olfactory circuits can undergo 

experience-dependent plasticity. A study from 2007 raised flies in a constant CO2 

environment to see whether the V glomerulus, narrowly tuned to CO2, could change 

anatomically and physiologically (Sachse et al., 2007). To expose flies to CO2, the group 

placed standard fly food vials containing groups of flies into a 5% CO2 incubator for 2-5 

days. The incubator maintained a constant CO2 concentration. Control flies were raised 

in ambient conditions consisting of 0.25% CO2. Anatomical analysis revealed that the 

size of the V glomerulus increased selectively after CO2 rearing (Sachse, S. et al., 

2007). Fluorescence imaging of GCaMP revealed that odor-evoked projection neuron 

(PN) responses were decreased while a subpopulation of local neuron (LN) responses 

were increased (Figure 1.5). The group proposed that greater LN innervation within the 

glomerulus may have contributed to the greater glomerular volume in CO2 reared flies. 

The increase in glomerular volume was only observed within a critical window and could 

not be induced in flies that were exposed to CO2 beginning at 7 days post-eclosion. 
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Changes in glomerular volume due to CO2 rearing were also reversible when flies were 

placed back in ambient conditions for 5 days post-exposure. Exposure paradigms lasting 

longer than 5 days did not produce greater changes in glomerular volume suggesting 

that the effect saturates within a critical window of around 5 days. Interestingly, the group 

performed exposure paradigms in other odors including ethyl butyrate, to target DM2. 

While they did not perform physiological measurements, constant exposure to 1% ethyl 

butyrate significantly increased DM2 volume selectively. To further confirm that the effect 

of odor exposure is selective to the targeted glomerulus, animals were reared in 10-2 

cyclohexanol and Or43a was ectopically expressed in Gr21a-expressing ORNs which 

are responsive to CO2. Interestingly, they found that after rearing in cyclohexanol, flies 

with ectopic expression of Or43a in Gr21a ORNs showed an increase in the V 

glomerulus volume, whereas control flies without ectopic expression showed no effect. 

This experiment suggests that the effects of odor rearing on glomerular volume are 

selective. 
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Figure 1.5: Effects of CO2 odor exposure on PNs  5

A) CO2 exposure paradigm. Flies were placed in CO2 incubator from 2-5 days post-

eclosion. Imaging was performed on day 5 post-eclosion. B) Representative imaging 

plane of PN terminals in the lateral horn. PNs projecting into the V glomerulus were 

labeled with the fluorescent calcium indicator, GCaMP. C)  Odor responses were imaged 

to increasing CO2 concentrations. D) Average PN fluorescence vs. time (seconds) to 

increasing CO2 concentrations. E) Average PN fluorescence response for CO2-exposed 

(solid line) and air-exposed (dotted line) flies. A concentration series of CO2 was 

presented to the fly. On average, PNs in CO2-exposed flies show a decrease in 

fluorescence responses to high concentrations of CO2. (Sachse, S., et al., 2007). 

 Reprinted from Neuron, Vol. 56, Sachse, S., Rueckert, E., Keller, A., Okada, R., 5

Tanaka, N.K., Ito, K., Vosshall, L.B., Activity-Dependent Plasticity in an Olfactory Circuit, 
838-850, © 2007, with permission from Elseiver. 
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Figure 1.6: Effects of CO2 odor exposure on LNs  6

A) CO2 exposure paradigm. Flies were placed in CO2 incubator from 2-5 days post-

eclosion. Imaging was performed on day 5 post-eclosion. LN fluorescence was 

measured in the V glomerulus. B, G) Confocal image of (b) LN1 neurites (GFP; green) , 

(g) LN2 neurites (GFP; green), and glomeruli (nc82; magenta). C, H) Left to right: 2-

photon image of GCaMP expression in (c) LN1 and (h) LN2; olfactory sensory neurons 

 Reprinted from Neuron, Vol. 56, Sachse, S., Rueckert, E., Keller, A., Okada, R., 6

Tanaka, N.K., Ito, K., Vosshall, L.B., Activity-Dependent Plasticity in an Olfactory Circuit, 
838-850, © 2007, with permission from Elseiver. 
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(OSNs) in V glomerulus via RFP; heatmaps of LN1 fluorescence to 0% and 5% CO2, 

respectively. D, I)  Fluorescence vs. time (seconds) to increasing CO2 concentrations in 

(d) LN1 and (i) LN2. E, J) Average fluorescence in air- vs. CO2-exposed conditions to the 

test odor, CO2, in LN1 (e) and LN2 (j). F, K) Average fluorescence in air- vs. CO2-

exposed conditions to the control odor, ethyl acetate in LN1 (f) and LN2 (k). (Sachse, S., 

et al., 2007).  

Why might odor exposure alter glomerular volume and selectively tune PN and LN 

responses? The study further assessed walking distance to a CO2 odor source to 

determine if the changes they observed translated into noticeable behavioral differences.  

Flies that were reared in CO2 walked less than control flies when exposed to high 

concentrations of CO2 (Figure 1.6). The authors suggest that CO2 walking behavior 

could be a proxy of CO2-mediated search behavior. It could be that CO2 exposure 

induces flies behavioral response by decreasing central sensitivity via an increase in LN 

inhibition.   



!15

 

 

Figure 1.7: Effects of CO2 exposure on fruit fly walking behavior  7

A) Schematic of odor exposure paradigm. Flies are placed in a CO2 incubator from 2-5 

days post-eclosion. Flies are kept in ambient conditions and behavior is assessed on 

day 6 post-eclosion. B-G) Walking behavior of flies after CO2 exposure (solid line) or air 

exposure (dotted line)  assayed on day 6 to a (b) 3% CO2, (c) 6% CO2 (d) 10% CO2 or 

(e) control odor ethyl acetate. (f) Fly walking behavior to 6% CO2 on day 10 and (g) late 

adulthood exposure and behavioral assay on day 11. (Sachse, S., et al., 2007).  

 

 Reprinted from Neuron, Vol. 56, Sachse, S., Rueckert, E., Keller, A., Okada, R., 7

Tanaka, N.K., Ito, K., Vosshall, L.B., Activity-Dependent Plasticity in an Olfactory Circuit, 
838-850, © 2007, with permission from Elseiver. 
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A more recent study using a different odor, geranyl acetate, selective for the VA6 

glomerulus, finds that odor exposure increases PN responses (Kidd, S., et al., 2015). 

This result is in direct contrast to the Sachse et al. study discussed above. The odor 

exposure paradigm used by this group was similar to the previous study with some key 

distinctions. Flies were reared on food and placed in an incubator. A microcentrifuge tube 

containing the odorant used for exposure was placed in proximity to the fly vials within 

an incubator. Geranyl acetate was diluted to 1% in paraffin oil for the odor exposure 

group and to just the paraffin oil solvent for the control group. Flies were housed within 

the incubator for 4 days before dissection, staining and imaging experiments were 

conducted. This exposure paradigm did not guarantee that the strength of the stimulus 

remained consistent throughout the course of odor exposure. 

 Similarly to CO2 rearing, Kidd et al. found that geranyl acetate exposure 

selectively increases the VA6 glomerular, volume but this effect was reversible as early 

as 2 days after odor exposure. Kidd et al. found that PN responses were selectively 

increased after chronic exposure (Kidd et al., 2015). Interestingly, the effects of PN 

enhancement were seen during calcium influx and efflux, meaning the maximum 

GCaMP fluorescence was increased and the magnitude of the minimum peak was also 

enhanced relative to control flies. There were no differences in ORN responses, 

suggesting that the enhancement in PN responses are not inherited by the cognate 

ORNs. It is unclear whether differences between the two studies arise because of the 

odorants used (CO2 is suggested to be aversive in lab conditions while geranyl acetate is 

innately appetitive) or if there are confounds in the experimental techniques used. 

 A recent study from the Broadie lab reared flies in ethyl butyrate to target the 

VM7 glomerulus. This odor was chosen for its selectivity for VM7 (Golovin, R.M., et al.,

2019). The group reared flies by attaching a mesh-covered vial containing 15% and 25% 

ethyl butyrate (EB) to the top of a standard Drosophila food vial. Individual food vials 

were stored in an airtight glass container to prevent background odors from interfering 
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with their exposure paradigm. Similarly, their control group consisted of flies raised in 

identical conditions, but a paraffin oil control vial used for rearing in replacement of the 

odor vial. Surprisingly, while the studies mentioned above observed an increase in 

glomerular volume after rearing, this group observed a significant decrease in VM7 

glomerular volume. Odor-evoked changes were seen in flies that were reared 0-2 days 

post-eclosion for 2-4 days, and was not observed in older flies that were reared starting 

at 7-9 days post-eclosion. This suggests that odor-evoked plasticity occurs within a 

critical window in early adulthood. The decrease in VM7 glomerular volume was stronger 

following exposure to 25% EB than to 15%, suggesting that the effect can be modulated 

in a concentration dependent-manner. Because a stronger effect was observed with 

25% EB, this concentration was used throughout the remainder of the study. The 

decrease in glomerular volume was abolished when the Or42a ORNs, the cells that 

project into the VM7 glomerulus, were mutated. This suggests that Or42a is necessary 

for the effect to occur. Further, the group explored what might be the cause of the 

decrease in glomerular volume. To investigate whether a change in ORN synaptic 

innervation might explain the decrease in glomerular volume following rearing, the group 

expressed a Drosophila pre-synaptic marker, bruchpilot (brp), in Or42a ORNs. 

Interestingly, rearing in EB caused a significant decrease in ORN pre-synapses, 

suggesting that the decrease in glomerular volume may be a result of a decrease in 

synapses made with downstream neurons within the VM7 glomerulus. 

 Older work done on Drosophila olfactory plasticity by Devaud et al. reared flies in 

benzaldehyde and isoamyl acetate diluted to 10-1 in paraffin oil (Devaud, J.M., et al., 

2001; Devaud, J.M., et al., 2003). In these experiments, odorants were placed in 

eppendorf tubes and attached to the cap of fly vials for four days. Surprisingly, the group 

found that odor exposure decreased the volume of certain olfactory glomeruli, notably 

DM2 and V after exposure to benzaldehyde. It is likely that the odor concentrations used 

by this group were toxic to the animal and comprised ORN function. Overall, odor 
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exposure seemed to reduce flies behavioral responses to odors. It is unclear how 

ethologically relevant using such high concentrations of odor is and whether there is 

damage done to the physiology of flies.  

 Recent work in mice from the Urban lab observed olfactory bulb plasticity after 

mice were exposed to methyl salicylate, a mint-like odor (Geramita, M. and Urban, N.N., 

2016; Liu, A. and Urban, N.N., 2017; Geramita, M. and Urban, N.N., 2017). Here, methyl 

salicylate was added to standard mouse food, and mice were exposed to odor during 

food consumption throughout development. The group found that exposure to mint 

increased the number of excitatory projection neurons within a single olfactory 

glomerulus. The effect of mint-scented food consumption appeared to increase calcium 

responses of individual mitral cells. When the group exposed mice to hexenal and 

acetylaldehyde, they identified an increase in interglomerular lateral inhibition. Overall, 

the results summarized in this section highlight the uncertainty and confounds within the 

field of olfactory plasticity. Each study attempted to understand sensory plasticity using 

physiological and anatomical methods, but did not develop a general theory of olfactory 

plasticity. It is possible that there are several factors governing olfactory plasticity, and it 

might depend on the rearing odor, concentration, as well as specific plasticity rules within 

different glomeruli. In general, the previous studies highlight that the effects of odor 

exposure are indeed unique, and cannot be explained by a single plasticity rule.  

 In summary, the first and second layers of the olfactory circuit are thought to be 

hard-wired. Previous work investigated the effect of long-term odor exposure on PN 

odorant responses after exposing flies to high concentrations of CO2 (Sachse, S., et al., 

2007). Imaging revealed that PN responses decreased as a result of an increase in LN 

responses after rearing, but it was unclear if this finding is a general feature of olfactory 

plasticity following odorant rearing. Another group reared flies in geranyl acetate and 

imaged PN terminals from the VA6 glomerulus. This group observed the opposite effect, 

and instead saw a slight increase in PN calcium fluorescence after rearing (Kidd., S., et 
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al., 2015). In all of these studies, earlier generations of calcium indicators were used and 

the rearing environments were poorly controlled. We aimed to investigate whether 

chronic odor rearing invokes plasticity in olfactory PNs and identify the underlying 

cellular and synaptic mechanisms. Unlike previous studies that utilized low resolution 

calcium imaging, we performed patch-clamp electrophysiology to measure single-cell 

spiking in response to odor stimulation. We designed an odorant rearing paradigm to 

precisely control the odorant environment during rearing and validated the stability of the 

rearing stimulus over long time-scales.  

  

Overview of our approach and results 

We took advantage of the well-characterized olfactory system by selecting odors that are 

known to activate a single ORN type. We chose odorant concentrations that activate 

PNs near saturation, and we avoided PN habituation to odorant stimulation by pulsing 

the odorant into the rearing chamber. Unlike prior studies which only rear in a specific 

odor, we test the effects of rearing in three different odors. Odors were chosen to 

specifically activate a single olfactory glomerulus, which we term “direct rearing” 

throughout the text. In a complementary set of experiments, we performed physiological 

recordings from PNs that do not receive direct excitation by the rearing odorants, which 

we term “indirect rearing”. We find that there isn’t a general rule for experience-

dependent plasticity in the antennal lobe, and the effects of odor exposure are small. We 

saw the strongest effect of rearing after directly and indirectly rearing flies in trans-2-

hexenal. The direct glomerulus had increased odor responses to low concentrations of 

odor. Surprisingly, indirectly rearing in this same odor tended to increase excitation 

across other glomeruli as well. This effect has been previously reported by the Urban lab 

(Liu, A. and Urban, N.N., 2017), which may suggest that certain odorants may be better 

at evoking changes in olfactory coding than others. Overall, we found that other 

glomeruli maintain stable odor-evoked firing rates after direct rearing, suggesting that the 
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early stages of olfactory processing may indeed be hard-wired to encode a set odorant 

response. Any behavioral changes that have previously been shown to occur as a result 

of olfactory exposure are likely not a result of changes in ORNs and PNs but instead by    

neurons in the mushroom bodies such as KC and MBONs.   

 We perform an in-depth analysis of PN and ORN odor responses following 

chronic odor exposure to selective monomolecular ligands. PN responses are measured 

using whole-cell patch-clamp physiology using genetically labeled GFP+ PNs in publicly 

available fly lines. The odors we use for rearing include trans-2-hexenal, 2-butanone, 

and geranyl acetate at concentrations that allow the PN to fire at saturating levels. 

Trans-2-hexenal is a known selective ligand for the Or7a receptor (in ab4a ORNs 

located on the antennae) and directly activates DL5 PNs. This odorant naturally occurs 

as a leaf aldehyde and is also used as a defensive odorant by stink bugs (Staples, J.K., 

et al., 2002). 2-butanone activates the Or42a receptor (in pb1a ORNs located on the 

maxillary palp) and directly activates VM7 PNs. This odorant is widely used by olfactory 

papers in Drosophila as a selective odor ligand (Olsen, S.R., et al., 2010), and we chose 

this odor because of its known specificity towards the Or42a receptor. Lastly, we use 

geranyl acetate to activate Or82a (in antennal ab5a ORNs) which directly innervate the 

VA6 glomerulus (Couto, A., et al., 2005). This odor was used to chronically rear flies in 

prior works, and we were interested to see of our use of naturalistic rearing 

concentrations would generalize across published findings (Kidd, S, et al., 2015).  

 In general, we find that the effects of chronic odor exposure on the early olfactory 

circuit are most prominent in PN responses to dilute monomolecular odorants. Trans-2-

hexenal direct exposure increased DL5 responses to low odor concentrations. 

Interestingly, trans-2-hexenal exposure changed PN odor responses in off-target 

channels as well. VM7 PNs had an increased afterhyperpolarization amplitude whereas 

VA6 PNs showed a small change in odor-evoked membrane depolarization. This 

observation suggests that chronic odor exposure does not only change the directly 
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stimulated channel, but can alter unstimulated PNs across different antennal lobe 

glomeruli as well. It will be interesting to determine whether the effects of rearing 

generalize across more glomeruli or odorants spanning chemical classes. While we 

found effects from trans-2-hexenal exposure on different PNs, we only saw weak effects 

of direct 2-butanone rearing on VM7 odor-evoked membrane potential. The effects of 

rearing appeared significantly different in responses to a subset of dilute odor 

presentations of 2-butanone. In contrast, direct odor rearing in geranyl acetate did not 

have any effects on VA6 PNs. Our findings suggest that the effects of odor rearing are 

complex and likely depend on glomerular identity and rearing odor. We also performed 

patch-clamp measurements of PN odor responses to mixtures and found that broad 

odors suppress any effects of rearing. In effect, enhancements in feedforward excitation 

were likely counteracted by an increase in inhibition into a subset of glomeruli.  

 We wanted to determine whether the effects of rearing on PNs could be 

explained by a change in presynaptic input arising from the ORNs. To do this, we 

repeated our rearing experiments and measured ORN spike rates to a concentration 

series of monomolecular odorants. We confirmed that ORN activity is not changed 

following odor rearing. In addition to measuring responses at the ORN, we used a 

genetic strategy to recruit unitary excitatory postsynaptic currents (uEPSCs) in PNs 

using light stimulation. We compared the peak current amplitude and decay rate 

between odor exposed and control flies and concluded that there was no effect on the 

EPSC features. This suggests that rearing does not alter the synaptic strength between 

ORNs and PNs. 

 Given that we saw effects of trans-2-hexenal rearing on PN odor responses that 

are not explained by changes in the inputs, we reasoned that central circuits may be 

mediating the effects. We focused our final analyses on inhibitory local neurons (iLNs) 

and quantified fluorescence expression across antennal lobe glomeruli. Trans-2-hexenal 

odor exposure lead to a reduction of glomerular volume across our samples, and this 
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lead to a decrease in total iLN innervation density. In contrast, 2-butanone exposure did 

not have any effects on iLN density. These findings suggest that trans-2-hexenal rearing 

may nonspecifically alter local neuron circuitry across the antennal lobe.  

 The magnitude of the effects of trans-2-hexenal rearing on VA6 PNs were not 

large enough to cause changes in spiking. Prior work suggests that a population of 

excitatory local neurons (eLNs) provide small depolarization through gap junctions 

across the antennal lobe (Yaksi, E., and Wilson, R.I., 2010; Shang, Y., et al., 2007). We 

isolated lateral excitation and recorded odor responses in VA6 after rearing in trans-2-

hexenal. We did this by severing the antennal nerve and removing ORNs that synapse 

directly into the VA6 glomeruli. Any remaining odor-evoked excitation will occur through 

activation of palp ORNs. Interestingly, we found that  trans-2-hexenal rearing increased 

odor-evoked lateral excitation in VA6 PNs. This finding suggests that trans-2-hexenal 

may be increasing global network activity or increasing the threshold for activation of 

eLNs. In the future, it will be interesting to understand how odor exposure effects eLN 

recruitment and activity across a larger sample of glomeruli.   
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Chapter 2: Effect of odor rearing on antennal 
lobe PNs 

Abstract 

We reared flies in odor for two days post-eclosion. Unlike prior rearing paradigms that 

used continuous stimulation and high concentrations of odor, we pulse dilute 

concentrations of a specific odor to selectively stimulate a targeted olfactory receptor 

neuron and glomerulus. Flies were exposed to trans-2-hexenal, 2-butanone, and geranyl 

acetate to stimulate the DL5, VM7 and VA6 glomeruli, respectively. These experiments 

are referred to as directly reared. Rearing in trans-2-hexenal selectively increases DL5 

PN responses to low odor concentrations as measured by whole-cell patch-clamp 

physiology. We did not see any changes in odor-evoked responses in VM7 or VA6 PNs 

after rearing in odors selective for the presynaptic ORNs. We find that the effects of odor 

exposure do not generalize across glomeruli, and we hypothesize that the strength of 

the stimulus may influence the effects of rearing. Given the effect of trans-2-hexenal 

exposure on DL5 PNs, we wondered if other PNs can also be affected by this odor. We 

exposed flies in trans-2-hexenal as before and recorded odor-evoked responses in PNs 

that are not activated by this odor during rearing, termed indirectly reared. We find that 

the effects of trans-2-hexenal exposure on other PNs is complex. In VM7, indirect 

rearing resulted in a dramatic increase in the afterhyperpolarization amplitude compared 

to mock-reared PNs. In VA6, indirect rearing significantly increased odor-evoked 

membrane potential in response to dilute odors. The increase in membrane potential, 

however, was small and did not result in a change in odor-evoked spike rate. Overall, we 

find that trans-2-hexenal is capable of changing PN response dynamics globally. This 

suggests that even selective odor stimulation can recruit lateral inputs and result in 

global plasticity in the antennal lobe. We note that the effects of naturalistic odor rearing 
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on antennal lobe PNs are small and changes in behavior likely arise due to higher brain 

circuits.  

Introduction 

A novel aspect of our rearing paradigm is our ability to precisely control the odor stimulus 

throughout the odor exposure experiment. Prior work in olfactory plasticity used simple 

chambers that exposed flies to odor through passive diffusion. Most studies included a 

perforated vessel containing a high concentration of odor near the vicinity of fly vials or 

simply placed fly bottles into an odorized chamber. It is unclear how many ORNs were 

targeted in these exposure paradigms, how stable the stimulus was over the course of 

days and how many more spikes were recruited in the olfactory circuit throughout 

exposure. We extended prior work by designing a constant odor rearing paradigm. Next, 

we exposed flies in odor for two days post-eclosion and performed whole-cell patch-

clamp recordings from olfactory projection neurons. We compared PN spike responses 

in odor reared flies to those of flies reared in just the paraffin oil solvent. Selective odor 

ligands were used to stimulate DL5, VM7 and VA6 PNs using trans-2-hexenal, 2-

butanone and geranyl acetate, respectively. We used odor concentrations that were 

known to activate PNs selectively and were near PN saturation (Olsen, S.R., et al., 

2010). Our direct rearing results show that selective odor rearing with dilute odors has 

modest effects on the DL5 glomerulus. The main result is that direct odor rearing 

increases DL5 spike rates to low trans-2-hexenal odor concentrations. This effect was 

not seen in the VM7 or VA6 glomerulus, suggesting that the effects of targeted, dilute 

odor rearing does not generalize across different olfactory glomeruli.  

Design of a constant odor exposure paradigm 

We were first interested in designing an odor rearing chamber that would maintain odor 

pulse stability. We used a standard olfactometer to control pulsing of odor through 
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solenoid valves. Flow meters were used to set the wind speed entering into the fly 

chambers and control odor mixing into a carrier air stream. We selected flow rates that 

did not interfere with standard fly behavior (data not shown) and that allowed for a 

consistent stimulus amplitude to be delivered for several hours. To achieve this, we 

modified previously published olfactometer designs to fit onto a standard fly food bottle.  

We punched two holes through fly bottle cotton plugs and placed thin-wall stainless steel 

pipes into each hole. Carrier air and odorized air were mixed in the olfactometer, and this 

air was connected to one of the steel pipes leading directly into the fly bottle. Output air 

was allowed to ventilate through the remaining pipe, and this was connected to a loose 

vacuum (Figure 2.1A). We validated the stability of the odor pulse with a photoionization 

detector, and found that we could optimize odor stability by continuously stirring the 

liquid contents of an odor vial (Figure 2.1B). All stimulation vials were placed on a 

magnetic stir plate to equalize the headspace of stimulus vials and prevent rapid 

depletion during odor exposure. We emphasize that stirring was vital to achieve a 

reliable stimulus pulse long-term.  

 We recorded odor responses from a sample PN in response to the rearing 

parameters used for odor exposure (Figure 2.1C, D). To do this, we presented trans-2-

hexenal diluted to 10-7 and mixed it into a carrier air stream that was odorized with fly 

food. DL5 responses recorded across 90 consecutive trials demonstrate that we can 

recruit 200Hz of stimulus-evoked activity across individual trials in a single DL5 PN 

(Figure 2.1D) with our rearing parameters. As a control, we delivered solvent (paraffin 

oil) into the food-infused carrier air and measured weak responses in the PN (Figure 

2.1C, D). This suggests that our odor exposure parameters can reliably and robustly 

activate odor responses in PNs. To confirm that the PN of interest remained stable 

throughout our recording, we plot the input resistance in red and display baseline spike 

rates as black open circles (Figure 2.1C). Odor-evoked spike rates, shown as black filled 

circles, were quantified during 500ms of odor exposure (Figure 2.1C). DL5 spike rates to 
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the paraffin-oil solvent are plotted as gray filled circles (Figure 2.1C) and quantified in 

50ms bins as a peristimulus-time histogram (Figure 2.1D, gray lines). The total odor 

pulse delivered was 1s and the inter-pulse interval was 20s to mimic the exact exposure 

protocol for all experiments. 

Figure 2.1: Chronic stimulation of olfactory neurons in a controlled odor 

environment 

A) Diagram of chronic odor-rearing paradigm showing olfactometer and fly rearing bottle. 

Charcoal filtered air is split and sent to a high mass flow controlled, set to 250mL/min, or 

a low flow controller, set to 25mL/min. Low flow air is passed into a normally-closed 
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solenoid valve that controls whether air flows through an odor vial or a control (mock 

vial) containing just the solvent, paraffin oil. The valve receives input from an 

olfactometer that consists of a 1s 5V command with a 20s inter-pulse interval during 

which air is passing from the mock vial only. Odors are pulsed into fly bottles and exit 

through a port connected to a loose vacuum. B) The odor pulse was measured by 

placing a photoionization detector probe into the center of a fly bottle (designated by ‘x’ 

in panel. C) Raw spike rasters showing the response of a DL5 PN to mock (gray) and 

trans-2-hexenal 10-7 (black) presented across consecutive trials to mimic mock and odor 

rearing conditions. Baseline spike rate (open circles), odor-evoked spike rate (filled 

circles) and input resistance (red circles) are plotted for each trial. D) Peri-stimulus time 

histogram (PSTH) of trials 1-85 in response to trans-2-hexenal 10-7 stimulation with 

average evoked PSTH across all trials is plotted (black trace). Paraffin oil PSTH 

responses are overlaid in gray. 

Chronic activation of direct ORN input can modestly increase PN 
responses to weak odors  

To investigate how odors that are overrepresented in the flies’ environment are encoded 

by the olfactory system, we exposed flies to one second pulses of odor in the bottle in 

which they normally grow (Figure 2.1A). We chose specific odors at concentrations 

previously shown to selectively activate a single ORN type (Olsen 2010), in order to 

facilitate the subsequent analysis of the impact of the manipulation on olfactory neurons 

receiving direct versus indirect persistent input. An additional criterion was that the odor 

stimuli drive strong and consistent levels of neural firing in the PNs receiving direct input 

from the activated ORN type. Indeed, photoionization measurements of the odor 

stimulus in the rearing bottle demonstrated that the stimulus was stable across more 

than 24 hours (Figure 2.1B). Odors were pulsed to avoid long-term neural adaptation to 

the odor, and the interval between odor pulses delivered to the bottle was 20 seconds. 
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Pilot recordings showed that, at this interstimulus interval, the odor stimulus reliably 

activated its cognate PN to saturating or near saturating firing rates over many trials, 

with little adaptation of the PN response to the odor (Figure 2.1C and data not shown; 

see also Figure 2.4 and Olsen 2010). Thus, the odor concentrations to which we 

exposed the flies were significantly lower than what has been used in prior studies 

investigating olfactory plasticity (Sachse, S., et al., 2007; Kidd, S., et al., 2015; Devaud, 

J.M., et al., 2001; Devaud, J.M., et al., 2003), but they drove strong, persistent, and 

saturating levels of neuronal activity in PNs. 

 We reared flies in odors that have previously been used to strongly activate a 

single olfactory receptor neuron type (Olsen, S., et al., 2010). Flies were exposed to 

odor in a highly controlled odor environment that is designed to maintain a constant odor 

amplitude throughout rearing (Figure 2.1A, B, and see Methods). Unlike prior odor 

exposure paradigms (Sachse, S., et al., 2007; Kidd, S., et al, 2015; Devaud, J.M., et al., 

2001; Devaud, J.M., et al., 2003), we used an olfactometer to pulse odor for 1 second 

every 20 seconds into a carrier air stream that connects to a rearing bottle. We recorded 

responses from DL5 to verify that our stimulation parameters did not lead to habituation 

across trials (Figure 2.1C-E). We presented trans-2-hexenal diluted to 10-7 and mixed it 

into a carrier air stream that was odorized with fly food. As a control, we delivered 

solvent (paraffin oil) into the food-infused carrier air and measured weak responses in 

the PN (Figure 2.1C-D). 

 Using these conditions, newly eclosed flies were chronically exposed to trans-2-

hexenal (10-7), which selectively activates ORNs projecting to glomerulus DL5, or 

solvent (as a control), for two days (see Methods). On day three, we established whole-

cell current clamp recordings from uniglomerular PNs receiving direct input from the DL5 

glomerulus (hereafter referred to as DL5 PNs, Figure 2.2A) and measured their 

responses to a concentration series of trans-2-hexenal. In response to low 

concentrations of trans-2-hexenal (10-10 to 10-9), we observed a modest increase in the 
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average amount of odor-evoked membrane depolarization in DL5 PNs. This heightened 

depolarization of DL5 PNs by weak odors corresponded to higher average rates of odor-

evoked spiking. However, in response to moderate to high concentrations of trans-2-

hexenal (>10-8), DL5 PNs in trans-2-hexenal exposed and control solvent-exposed flies 

responded similarly.  

  We next examined the extent to which these results generalize to other 

glomeruli. Using the same approach, we exposed flies to either 2-butanone (10-4), which 

selectively activates ORNs projecting to glomerulus VM7 (Figure 2.2G), or geranyl 

acetate (10-4), which selectively activates ORNs projecting to glomerulus VA6 (Figure 

2.2K). The concentrations of each of these odors was chosen because they selectively 

elicit similarly high average firing rates (>100-150 Hz) in their corresponding PNs, as 

trans-2-hexenal (10-7) does in DL5 PNs. Again, we chronically exposed flies for two days 

to each of these stimuli, and measured the responses in each cognate PN 

(corresponding to the glomerulus receiving direct input from the activated ORNs) to a 

concentration series of each odor. We observed that the effect of chronic activation of 

direct ORN input on PN odor responses varied across different glomeruli. Similar to the 

DL5 glomerulus, VM7 PNs in 2-butanone exposed flies exhibited increased odor-evoked 

depolarization in responses to 2-butanone as compared to control flies, and these 

effects were more pronounced at weak concentrations (10-7). Due to the small size of 

VM7 PN somata, VM7 PN spikes are small and filtered in comparison to those of other 

PNs, and odor-evoked spikes riding on large depolarizations could not be reliably 

counted across all firing rates in our data set. Therefore, for VM7 PNs only, we report 

odor responses only in terms of membrane depolarization.  

 In contrast, chronic activation of direct ORN input to VA6 PNs by exposure to 

geranyl acetate did not alter PN odor responses to the odor across the entire range of 

concentrations tested at the level of membrane depolarization or firing rate. These 

concentrations elicited levels of membrane depolarization (~10-30 mV) which were 
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similar to those at which other PN types exhibited differences in odor-evoked responses 

after chronic exposure. Additionally, odor exposure did not alter the input resistance of 

any cell that we recorded from (Figure 2.2D, J, N). Together, these results demonstrate 

that, in some glomeruli, chronic activation of direct ORN input can modestly enhance the 

strength of PN odor responses to weak direct odor inputs. However, this effect does not 

appear to be universal across all glomeruli. 
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Figure 2.2: Effects of direct odor rearing on PN responses 

A, G, K) Schematic of direct odor rearing and patch-clamp recordings targeting PNs. (a) 

DL5 reared in trans-2-hexenal (E2-hexenal; blue), (g) VM7 reared in 2-butanone (2but; 

red), and (k) VA6 reared in geranyl acetate (ga; green). Concentrations used for rearing: 

trans-2-hexenal 10-7, 2-butanone 10-4, geranyl acetate 10-4. B, H, L) Average PN 

membrane potential following direct odor rearing and mock rearing in paraffin oil (black). 

(b) DL5 responses to trans-2-hexenal 10-10, 10-9, 10-8, 10-7, (h) VM7 responses to 2-

butanone 10-7, 10-6, 10-5, 10-4, and (l) VA6 responses to geranyl acetate 10-7, 10-6, 10-5, 

10-4. C, I, M) Left: Average odor-evoked depolarization of (c) DL5, (i) VM7 and (m) VA6 
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in direct rearing and mock rearing conditions. Right: Total normalized PN membrane 

depolarization computed across all odor stimuli. D, J, N) Average input resistance for (d) 

DL5, (j) VM7 and (n) VA6 PNs. E, O) Average PN spike rates following direct odor 

rearing and mock rearing in paraffin oil (black). (e) DL5 responses to trans-2-hexenal 

10-10, 10-9, 10-8, 10-7, (o) VA6 responses to geranyl acetate 10-7, 10-6, 10-5, 10-4. F, P) 

Left: Average baseline-subtracted odor-evoked spike rate for (f) DL5 and (p) VA6 PNs. 

Right: Total normalized PN evoked spike rate. Raw Bootstrap p-values after 10,000 

random draws are shown for each statistical comparison. Threshold for statistical 

significance is p < 0.0125 for concentration series and p <0.05 for total normalized 

responses and Rinput. Values are Bonferroni corrected. 

We quantified these effects by calculating the total depolarization and average evoked 

firing rate during the first 500 ms after nominal stimulus onset (Figure 2.2C, F, I, M, P). 

To determine if any differences were arising by chance, we used permutation testing to 

iteratively shuffle the experimental labels of the data (odor trans-2-hexenal versus 

solvent exposure) within each stimulus. P-values were calculated directly from the 

fraction of 10,000 shuffled trials in which the absolute difference between the simulated 

group means was larger than the actual observed mean difference (see Methods), and 

the significance level was corrected for multiple comparisons within the concentration 

series. This statistical analysis confirmed that trans-2-hexenal exposure increased odor-

evoked firing rates in DL5 PNs to weak, but not moderate or strong, stimuli. When firing 

rates in odor-exposed brains were normalized to controls within each stimulus, we 

observed an overall increase in odor-evoked DL5 PN firing rate due to trans-2-hexenal 

exposure (see Methods). Differences in the level of membrane depolarization between 

odor- and solvent-exposed groups did not reach statistical significance at any stimulus 

concentration, suggesting that a small, but systematic increase in membrane 



!38

depolarization was nonlinearly amplified by its interaction with spike threshold in DL5 

PNs. 

Figure 2.3: Statistical analysis of direct rearing results in PNs 

A, C, D) Histograms of 10,000 permuted samples of average odor-evoked membrane 

potential in response to increasing concentrations of trans-2-hexenal (E2H) in DL5 (a), 

2-butanone (2but) in VM7 (c), and geranyl acetate (ga) in VA6 (d). B, E) Same as above, 

but for average odor-evoked spike rates computed during the 500ms odor-stimulation 
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window for DL5 (b) and VA6 (e) PNs. Dotted lines indicate two-sided statistical 

threshold. Red lines are the actual differences between odor-reared and mock-reared 

responses. Bootstrap p-values are displayed in each histogram. Threshold for 

significance is p < 0.0125. Values are Bonferroni corrected.  

To summarize our direct channel results from above, we generate PN concentration 

curves by plotting PN spike rates or membrane depolarization versus odor concentration 

(Figure 2.4). We find that trans-2-hexenal heightens DL5 PN spiking responses to low 

odor concentrations of trans-2-hexenal in direct rearing. In VM7, we find that direct 

rearing in 2-butanone increases odor-evoked membrane potential to low odor 

concentrations of 2-butanone. Lastly, we did not see any effects of direct odor rearing in 

geranyl acetate on VA6 odor-evoked PN spike rates. The results so far suggest that the 

effects of rearing may be odor specific and glomerulus specific. Not all glomeruli show 

the same effects; thus, there does not appear to be a general rule of PN plasticity 

following direct odor exposure. An important feature of the observations in Figure 2.4 is 

that the reared concentrations we used were near PN saturation levels. This suggests 

that our stimuli were sufficiently strong across exposure experiments. We do see that 

VA6 can response more strongly to geranyl acetate 10-3 than 10-4. It is possible to recruit 

more spikes in VA6 PNs with a stronger odor than we used during our rearing 

experiments (Figure 2.4C).  
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Figure 2.4: PN concentration curves following direct odor rearing 

A-C) PN concentration curve in direct rearing for DL5 (a; blue), VM7 (b; red) and VA6 (c; 

green) and mock reared (black) conditions. For (b) and (c), responses to odor dilutions 

of 10-3 were not used to generate fits as these points likely recruit network mechanisms 

and are no longer selective odors. Odors used include (a) trans-2-hexenal (E2-hexenal) 

10-12, 10-11, 10-10, 10-9, 10-8, 10-7, 10-6, 10-5;  (b) 2-butanone 10-8, 10-7 , 10-6 , 10-5 , 10-4 , 

10-3; and (c) geranyl acetate 10-7 , 10-6 , 10-5 , 10-4 , 10-3. 

 
Chronic elevation of indirect activity perturbs PN response 

properties 

What determines whether PN odor-evoked responses will change after odor exposure? 

Directly rearing DL5 in trans-2-hexenal resulted in an increase in PN spike rates that we 

did not see in other directly reared glomeruli, VM7 and VA6. We reasoned two possible 

scenarios to explain our direct rearing results: a glomerulus may be responsible for the 

effects seen following rearing or the rearing odor used may influence the effects seen at 

a glomerulus. If the former is true, we would expect to see the same effect on individual 

PNs independent of the rearing odor. In contrast, the latter case suggests that each 

rearing odor is unique and therefore can influence the effects seen at PNs. 

 Although olfactory input is compartmentalized into parallel processing channels 

organized around each glomerulus, odor processing depends on an extensive network 

of local neurons that mediate lateral excitatory and inhibitory interactions across 

glomeruli. Thus, the odor response of a given PN depends on both the direct and 
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indirect synaptic input it receives. Having observed that chronic activity in a single ORN 

type can elicit plasticity in PNs directly postsynaptic to it, we next asked whether this 

plasticity is selective to PNs receiving direct input from the chronically activated 

glomerulus, or whether odor responses of PNs belonging to other glomeruli are also 

impacted. To address this question, we focused on evaluating odor responses in VM7 

and VA6 PNs from flies chronically exposed to trans-2-hexenal (10-7), which should 

evoke indirect neural activity in these neurons (Figure 2.5 A, I). 

 Intracellular recordings from non-DL5 PNs revealed that chronic exposure to 

trans-2-hexenal elicited subtle changes in the odor-evoked response properties of these 

PNs. For instance, spontaneous activity in VM7 PNs from trans-2-hexenal was mildly 

elevated (Figure 21.5 G, H). Similar to what was observed in the case of chronic direct 

activation, chronic activation of indirect activity resulted in a trend towards mild 

enhancement of PN odor responses to weak odors (Figure 2.5 J, K, M, N). This trend 

was small, but was observed in VA6 at the level of odor-evoked depolarization and spike 

rates in response to a subset of stimuli.  

 Additionally, chronic engagement of indirect input impacted the post-stimulus 

odor response in PNs. For example, odor-evoked depolarization measured in VM7 PNs 

in trans-2-hexenal exposed flies had a much more pronounced and prolonged 

afterhyperpolarization as compared to controls, or even as compared to flies that 

experienced chronic activation of direct input via 2-butanone exposure (Figure 2.5 B, D-

F). This effect does not appear to generalize to all glomeruli. VA6 PNs exhibited a very 

different type of post-stimulus response, dominated by an extended period of excitation. 

In recordings from VA6 PNs in trans-2-hexenal exposed flies, odor responses in this 

post-stimulus epoch were enhanced across multiple odor concentrations, as compared 

to solvent-exposed controls. Together, these experiments demonstrated that chronic, 

focal activation of a single ORN class can lead to changes in odor response properties in 

multiple glomeruli, including in glomeruli not receiving direct synaptic input from the 
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chronically activated ORN class. This observation suggests that local lateral circuitry in 

the antennal lobe may participate in plasticity evoked by perturbations in the odor 

environment. 

Figure 2.5: Effect of indirect rearing on PN responses 

A, I) Schematic of indirect odor rearing and patch-clamp recordings targeting PNs. (a) 

VM7 and (i) VA6 reared in trans-2-hexenal (E2-hexenal 10-7; blue). B, J) Average PN 

membrane potential following indirect odor rearing and mock rearing in paraffin oil 

(black). (b) VM7 responses to 2-butanone 10-7, 10-6, 10-5, 10-4, and (j) VA6 responses to 

geranyl acetate 10-7, 10-6, 10-5, 10-4. C, L) Average input resistance for (c) VM7 and (l) 
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VA6 PNs. D, K) Left: Average PN membrane depolarization for (d) VM7 and (k) VA6 

PNs. Right: Total normalized PN evoked spike rate. E, F) Left: Average VM7 

afterhyperpolarization (AHP) potential following indirect odor rearing (e; blue) and direct 

odor rearing in 2-butanone 10-4 (f; red) computed for 2.5 seconds post-stimulation. Right: 

Total AHP averaged across stimuli. G) Average coefficient of variation (CV) computed for 

5 seconds before odor stimulation. H)  Average spontaneous firing rate computed for 5 

seconds before odor stimulation. M) Average VA6 odor-evoked spike rate following 

indirect odor rearing. N) Left: Average VA6 odor-evoked spike rate computed during 

500ms stimulus presentation. Right: Total normalized VA6 evoked spike rate. All traces 

show mean +/- SEM. Raw Bootstrap p-values after 10,000 random draws are shown for 

each statistical comparison. Threshold for statistical significance is p<0.0125 for 

concentration series and p<0.05 for total normalized responses and Rinput. Values are 

Bonferroni corrected.  

Discussion 

We find that the effects of odor exposure do not greatly influence PN coding and vary 

between glomeruli. By using selective odor ligands to activate individual olfactory 

receptor neurons, we show that naturalistic odor conditions have small effects on both 

directly targeted and indirectly targeted PNs, though the effects are odor-dependent.  

Our exposure paradigm is fairly naturalistic in the sense that the odor concentrations we 

use for rearing closely resemble the concentrations at which the specific monomolecular 

compounds are typically found in nature. For example, trans-2-hexenal is a leaf 

aldehyde that occurs in leaves at concentrations of 10-11 (Kunishima, M., et al., 2016). 

Prior work showing effects on PNs and ORNs following exposure to high concentrations 

of odor may be problematic because of the borderline toxic odor concentrations used for 

exposure throughout the animal’s development. While our odor concentrations used for 

exposure are dilute, we show that the targeted PNs fire near saturation to our stimuli. 
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This suggests that higher concentrations of odor will not further activate individual PNs, 

but instead will act as broad odors and activate more cells overall. With our work, we 

show that the early olfactory circuit of Drosophila is fairly hard-wired, and the effects of 

odor exposure on PN odor-responses are small.  

 The strongest effect of odor exposure was seen in response to the leaf aldehyde, 

trans-2-hexenal. We find that DL5 PNs increase sensitivity to low odor concentrations 

following direct odor exposure (Figure 2.2 B, C, E, F; Figure 2.4 A). It is possible that 

trans-2-hexenal exposed flies may be able to behaviorally discern dilute concentrations 

of trans-2-hexenal better than controls. Why would PNs increase sensitivity to dilute 

concentrations of the exposed odors rather than show habituation? We hypothesize that 

the design of our odor-exposure paradigm may be an important factor in mediating this 

distinction. For one, we present an odor pulse and allow the odor to dissipate completely 

during the inter-pulse interval period. This pulsing paradigm appears to be sufficient to 

‘refresh’ PN sensitivity to odors, and this stimulus design is widely used across insect 

olfactory neurophysiology (Olsen, S.R., 2010 and many others). The presentation of 

odor with food may also be an important factor behind our observations, though we do 

not test the effects of odor-exposure in an odor-less food substrate or on sucrose-based 

food. Another possibility is the potential ethological importance of DL5 and trans-2-

hexenal to the fly. Previous work shows that Or7a can mediate Drosophila oviposition 

through pheromone detection, and activation of  Or7a via trans-2-hexenal in our 

experiments may be mediating similar effects in the fly (Lin, C.C., et al., 2015).  

 The effects of indirect rearing are small and most of the results are not 

significantly different than control responses. We noticed that trans-2-hexenal rearing 

significantly increased VA6 odor-evoked membrane potential in a 1s time window to a 

500ms stimulus. The effect was only seen to low odor concentrations. Similarly, we 

noted a trending increase in VM7 odor-evoked spike rate to low odor concentrations, but 

the effect was not significantly different than control VM7 spike rates. Interestingly, the 
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effects we observed occurred within a similar stimulus range as we had seen in DL5 

after direct rearing in trans-2-hexenal. The observation that VA6 odor-evoked membrane 

depolarization is significantly different during a 1s time window is unclear. PNs typically 

have unique response properties characterized by several features such as spike rate, 

membrane potential, and input resistance. In our data set, we note that PNs can differ in 

the overall shape of their responses, particularly during the post-stimulus period.  

 The afterhyperpolarization phase of VM7 PNs are strikingly pronounced 

compared to VA6, which typically does not hyperpolarize following stimulus presentation. 

Surprisingly, whereas 2-butanone rearing did not have any effect of VM7 odor-evoked 

spike rates, we see that indirect rearing in trans-2-hexenal induces a robust change in 

post-stimulus afterhyperpolarization of VM7 membrane potential that scales with odor 

strength. The afterhyperpolarization is not increased in amplitude, but instead shows that 

the cell requires more time to reach its resting membrane potential. Changes in 

membrane afterhyperpolarization have not previously been reported in Drosophila 

antennal lobe PNs following odor exposure. The membrane afterhyperpolarization phase 

is a complex interplay of voltage-gated ion channels and pumps that work together to 

bring the cell membrane potential back to baseline. It is possible that the different 

membrane dynamics of individual PNs may result from the unique genetic expression of 

voltage-sensitive machinery. Prior work suggests that PNs can be grouped into 

discernible clusters using gene expression analysis (Li, H., et al., 2017). While we did 

not investigate the cause of the increased afterhyperpolarization in VM7 following 

trans-2-hexenal exposure, we propose that the source may be a potassium-sensitive 

current. Prior work shows that there is an electrogenic sodium pump which regulates 

membrane afterhyperpolarization (Smith, P.A. and F.F., 1977; Schlue, W.R., 1991). 

Interestingly, the afterhyperpolarization disappears in K+-free saline and in ouabain, an 

electrogenic sodium pump blocker (Schlue, W.R., 1991). It is possible that the effect of 

odor exposure may involve the electrogenic sodium pump. If so, the pump may be more 
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sensitive to changes in membrane potential or may be over-expressed as a result of 

exposure.  

 VA6 has different membrane response dynamics than VM7; for example, we find 

subthreshold increases in odor-evoked membrane potential which have no effect on 

spike rate to low odors such as geranyl acetate 10-6. Thus, rearing in trans-2-hexenal 

tends to increase responses in antennal lobe PNs but the magnitude of plasticity and 

response characteristics are unique to each glomerulus. VA6 odor-evoked membrane 

potential after trans-2-hexenal rearing was significantly greater than VA6 control 

responses. This suggests that indirect rearing in trans-2-hexenal may increase excitatory 

input into other glomeruli. The observation that trans-2-hexenal rearing does not result in 

a significant change in odor-evoked spike rate may suggest that the effects of rearing 

may not be computationally important in VA6. Overall, we see that trans-2-hexenal 

appears to be capable of mediating small changes in PN responses following chronic 

exposure. It will be interesting to perform a large-scale screen of different 

monomolecular odors to determine which other ligands are capable of altering PN 

responses as well. Is this effect aldehyde-specific or dependent on the targeted 

glomerulus, DL5? To address this question, one can expose flies to another odor which 

selectively activates DL5 or use light to selectively activate Or7a ORNs (Lin, C.C., et al., 

2015).  
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Methods 

Flies 

The line NP3481-Gal4, UAS-CD8-GFP was used for all single-sensillar recordings and 

all patch-clamp experiments targeting DL5 and VM7. All patch-clamp recordings of VA6 

PNs were performed in UAS-CD8-GFP; Mz612-Gal4, UAS-CD8-GFP.  

Rearing  

We designed a rearing set-up that allows us to group-rear flies in a controlled odor 

environment. Flies were reared on standard fly bottles with modified cotton plugs 

containing stainless steel rods for air input and output (McMaster Carr #89535K162). 

The bottom of the cotton plug was lined with mesh (McMaster-Carr #9318T45) to 

prevent flies from entering the rods. The inlet port was fit with a luer connector so each 

bottle could be easily positioned into the rearing set-up. Air delivery into the rearing 

system is controlled using an olfactometer as previously published with some 

modifications. For rearing, charcoal filtered air is split and passed through a low-range 

flowmeter (Cole-Parmer) set to 25mL/min and a high-range flowmeter (Cole-Parmer) set 

to 250mL/min. The high flow carrier air is passed into a humidifier bottle containing 

water, while the low flow is directed into a normally closed solenoid valve. Upon 

receiving a 5V signal, the valve switches the direction of flow into the rearing odor vial. 

This switching is cycled throughout the duration of rearing with 1 second of odor delivery 

followed by 20 seconds of solvent. Odors are mixed directly into the carrier air flow, and 

the total volumetric flow rate (odor/mock + carrier air) of 275mL/min is passed into the 

rearing bottle. Tygon tubing is used throughout the set-up except at site of odor mixing, 

where we use PTFE tubing. A lose vacuum is attached onto the outlet of the bottle.  

 We achieve stable pulse-to-pulse odor amplitude by continuously stirring the 

odor on a magnetic stir plate (Adventures in Homebrewing). We verified the long-term 

stability of the odor using a photoionization detector (Aurora Instruments) by inserting 
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the PID probe into the center of an empty fly bottle and measuring odor amplitude over 

the course of 24 hours. We used 2-butanone diluted at 10-4 as our test odor for rearing 

validation and set the PID at 10x gain.  

 For rearing experiments, we used bottles ~12 days post-seeding. Prior to rearing, 

flies were briefly anesthetized with CO2 and all adult flies were emptied from the bottle. 

Any remaining adult flies that were stuck in the bottle were stirred into the fly food to 

ensure that there were no adults present at the start of rearing. The flies were set-up in 

the evening (day 0). The next morning, all eclosed flies were flipped into a new bottle 

and reconnected into the same rearing set-up where they remained for 2 days. Stimulus 

vials were changed every ~12 hours to maintain a consistent stimulus amplitude. 

Electrophysiology  

All electrophysiological experiments were performed in current-clamp mode on 2-day-old 

female flies except for EPSCs measurements, in which we used voltage-clamp mode. 

Patch-clamp recordings were conducted as previously described. Briefly, we filled our 

pipettes with K+ aspartate internal solution for all recordings except for EPSC recordings 

where we used K+ aspartate and Cs+-based internal solution. Internal solution 

contained 140mM of KOH, 140mM aspartic acid, 10mM HEPES, 1mM EGTA, 1mM KCl, 

4mM MgATP, 0.5mM Na3GTP and 13mM biocytin. The final pH values were adjusted to 

7.1-7.3 and final osmolarity to 262-268 mOsm. For Cs-based internal, we replaced 

140mM KOH with 140mM of CsOH. Patch electrodes were freshly pulled everyday 

(Sutter) and had a resistance of ~6-10 MOhm. The silver recording wire (A-M Systems 

#782500) was chlorided with bleach every ~1-2 weeks and throughly washed with water. 

Recordings were performed on electrophysiological rigs (Scientifica), signals were 

amplified (AxonClamp) and all data input/output was controlled using custom scripts  in 

Matlab (Mathworks) communicating through an acquisition board (National Instruments 

BNC2120). 
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 Flies were dissected in Drosophila saline containing 103mM NaCl, 3mM KCl, 

5mM TES, 8mM trehalose 2H2O, 10mM glucose, 26 mM NaHCO3, 1mM NaH2PO4 H2O, 

4mM MgCl 6 H2O, and 1.5 mM CaCl2 2H2O with pH ~ 7.25 and osmolarity adjusted to 

270-275 mOsm. Saline was oxygenated with a 5% CO2/95% O2 air mixture (Airgas 

#Z02OX951200C4H9) during dissections and perfused during all electrophysiological 

experiments. Flies were anesthetized on ice and stabilized into stainless steel foils with a 

small application of wax (Almore Electra waxer #66000) around the eyes and abdomen. 

The antennal lobe PNs were exposed by carefully removing the cuticle and desheathed 

with forceps as previously described (Olsen, S.R., 2008; Olsen, S.R., 2010 and others). 

For EPSC and current injection experiments, the antennal nerve was carefully severed 

using fine forceps. For all recordings, we targeted GFP+ PNs. We used a 5X objective 

(Olympus) for coarse alignment and switched to a 40X water-immersion objective 

(Olympus) while patching. After locating flies with a white LED, we switched to an IR 

LED shining below the head to locate cell somata. We briefly pulsed wide-field blue light 

(Sutter TLED+) to locate GFP-expressing PNs and visualized IR-GFP signals through 

long-pass filters (Olympus). During experiments, cell identity was verified using 

diagnostic odor panels and verified post-hoc by imaging biocytin fills in most of the cells 

recorded. When measuring odor-evoked responses, we excluded cells that had low 

spontaneous activity, suggesting nerve damage. Recordings were stopped if there was a 

~20% drift in input resistance.  

Histology and confocal imaging 

Tissue histology was performed as previously described. Briefly, after rearing for two 

days as, flies were transferred to a scintillation vial and anesthetized on ice. Female flies 

were selected for dissection and fixation, and dissections were performed in Drosophila 

saline. The head capsule was removed from the body and the cuticle was carefully 

removed from the brain. Fine forceps were used to remove trachea and fat droplets 
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surrounding the brain. Samples were fixed in 4% paraformaldehyde for 14-16 minutes 

and then washed three times in phosphate buffered saline (PBS) for seven minutes 

each. After washing, samples were placed in blocking buffer solution consisting of 5% 

normal goat serum in PBS with triton (PBST) (0.2% Triton-X in PBS) for 20 minutes. 

After blocking, samples were transferred to a primary antibody solution consisting of a 

fresh mixture of blocking buffer plus primary antibodies. We used the following 

antibodies: rat anti-CD8 (1:50; Thermo Fisher #MA5-17594) and mouse anti-nc82 (1:40; 

DSHB #AB_2314866). Samples were placed in 4oC rocking for 24 hours. After 

incubation, a quick 1X wash was performed in PBST followed by three washes of 15 

minutes each on the rocker. Samples were again incubated 4oC rocking for 24 hours in 

secondary antibody solution consisting of a fresh blocking buffer and secondary 

antibodies: goat anti rat Alexa 488 (1:250; Abcam #ab150157), goat anti mouse Alexa 

633 (1:250; Thermo Fisher #A21050), and Streptavidin Alexa 568 conjugate to visualize 

biocytin (1:1000; Thermo Fisher #S11226). After incubation, samples were washed as 

previously described for the primary antibody step and washed at 4oC overnight. 

Confocal imaging was performed using a Leica SP8 confocal with a 40X oil immersion 

objective. Images were acquired as z-stacks with one micron step sizes between each 

plane. 

Odor presentation for electrophysiology 

Odors were presented using custom olfactometers controlling normally-closed solenoid 

valves. For all physiological measurements, air flow was controlled using mass flow 

controllers (Alicat), with the carrier air set to 2L/min and stimulus to 220mL/min. We 

presented a 500ms odor pulse for all experiments unless otherwise noted. We computed 

input resistance by measuring the voltage response to a 300ms hyperpolarizing current 

injection at the start of every recording. Resting membrane potential was estimated by 

computing the average membrane potential between 3-4 seconds of the recording, 
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odors were presented after a 6 second delay from the start of the trial, and the total trial 

length was 10 seconds. The inter-trial-interval was set to 30 seconds, and each odor 

was presented for 6 trials for PNs and 5 trials for ORNs. In concentration series 

presentations, we presented paraffin oil first followed by odors from low to high 

concentrations to minimize contamination. Between flies, clean air was passed through 

the olfactometer for ~15 minutes. Odorants were presented in a two-channel 

olfactometer and mixed in the carrier air stream. In experiments where we only used one 

odor for stimulation, the remaining port was connected to vials containing just the 

solvent. In odor blends, we presented two odorants simultaneously through different 

valves.  

Analysis of odor-evoked responses 

Spikes were counted using a custom GUI in Matlab (Mathworks) that identifies spikes by 

thresholding the first and second voltage derivatives as described previously. Thresholds 

were manually adjusted and all spikes were manually inspected. Peristimulus-time 

histograms of PN and ORN spiking responses were quantified as previously described 

using 50ms bins and a 25ms overlap. The PN response to the first trial of each stimulus 

was not included in analysis. All data plotted is the population mean and SEM. The odor-

evoked response for DL5 and VM7 PNs were analyzed from 6.1 to 6.6 seconds during 

odor delivery and accounts for any mechanical delay in stimulus presentation (data not 

shown). VA6 odor-evoked responses were quantified from 6.1 to 7.1 seconds to account 

for the prolonged depolarization following stimulus presentation in this cell type.  

Statistics 

Statistical analysis was conducted using nonparametric permutation methods. Cell 

averages across rearing conditions were permuted such that each sample was randomly 

selected without replacement. Labels from the data were removed to create permuted 
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samples consisting of mock and odor data selected at random. The total number of 

samples per each rearing condition matched that of the experimental groups. 

Permutations were drawn 10,000 times and shuffled distributions for pseudo-mock and 

odor conditions were generated. We computed a t-statistic to compare whether the 

difference between the shuffled responses were significantly different than the difference 

between the actual measured mean odor and control responses for each odor. To do 

this, we computed a p-value using a two-sided t-test. We counted the total number of 

observations that the shuffled mean was greater than or equal to the observed mean. 

The cut-off for significance was adjusted using a Bonferroni correction to account for 

multiple comparisons across odor stimuli. This statistical analysis was applied to 

average spike rate, depolarization area, and peak calcium fluorescence as indicated in 

the main text and figure legends.  
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Chapter 3: Effect of odor rearing on ORNs and 
ORN-PN synapses 

Abstract 

What causes PNs to alter odor-evoked responses following direct and indirect odor 

exposure? One possibility is that PNs inherit changes from feed-forward olfactory 

receptor neurons (ORNs). To determine if rearing alters ORN responses, we performed 

single-sensillar recordings and GCaMP calcium imaging of ORN terminals following odor 

exposure. We found that ORN responses to odor do not change; thus, the effect at PNs 

must occur within the antennal lobe. Next, we measured ORN-PN synaptic strength by 

recruiting unitary excitatory post-synaptic currents (uEPSCs) in PNs using optogenetics. 

Overall,  we found no difference in current peak amplitude or decay rate of the uEPSCs 

between rearing conditions. Finally, we recorded PN responses to current injections and 

found no changes across rearing conditions. These results suggest that effects of 

rearing do not occur at the ORNs, ORN-PN synapses, or intrinsically at the PN. We 

hypothesize that odor exposure may change PN responses through lateral circuit 

mechanisms.  

Introduction 

To identify the source of the increase in excitation in DL5 PNs, we recorded spiking 

responses from cognate ORNs, Or7a. After following the same odor exposure protocol, 

we recorded single-sensillar responses from directly reared ORNs and found that there 

is no effect on any ORN responses tested. This suggests that PN responses cannot be 

explained by responses at the ORN level. In the following chapters, we look into what 

synaptic and circuit mechanisms may be important in mediating the selective increase in 

excitation in the DL5 glomerulus. 

 Increases in DL5 responses to low odor concentrations following direct odor 

rearing in trans-2-hexenal may be a result of a change in ORN-PN synapse strength. We 
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developed a method to artificially recruit uEPSCs into PNs using light stimulation. We 

show that light results in reliable uEPSCs and allows4 for targeted stimulation of 

genetically labeled ORN dendrites. To determine if increases in DL5 are due to changes 

in ORN-PN synaptic strength, we measured uEPSCs in DL5 PNs while stimulating ORN 

axons. We did not find that trans-2-hexenal rearing influenced the total uEPSC size 

compared to that of solvent-reared flies. We acknowledge that the spread of EPSC data 

is high and small changes may be difficult to measure. 

ORN response properties are unaffected by their chronic, 
persistent activation 

We wondered if, in flies chronically exposed to some odors, enhanced PN responses to 

weak odors might arise directly from changes in the sensitivity of ORNs. Prior studies 

have suggested that chronic odor exposure increases the sensitivity of ORNs (Iyengar, 

A., et al., 2010). Direct feedforward excitation might be impacted by chronic odor 

exposure, but not be apparent in measurements of PN responses to stronger odors, 

perhaps due to compensation from circuit mechanisms such as lateral inhibition. 

 Therefore, we exposed flies to trans-2-hexenal (10-7) or 2-butanone (10-4) as 

before, and recorded extracellular spiking activity from the ORN classes selectively 

activated by each odor (see Methods). We observed that chronic activation of either 

ORN type – ab4a ORNs in trans-2-hexenal exposed flies or pb1a ORNs in 2-butanone  

and trans-2-hexenal exposed flies (Figure 3.1A, D, G) – did not significantly impact their 

odor responses at concentrations at which we observed increased responses in their 

cognate PNs (Figure 3.1B, C, E, F, H, I). We quantified ORN responses by calculating 

the average firing rate during a 500-ms window after the stimulus, and observed that 

ORN responses to their cognate odor across a broad range of concentrations were 

unaffected by chronic odor exposure (Figure 3.1C, F). In addition, we evaluated pb1a 

odor sensitivity in trans-2-hexenal exposed flies, since VM7 PN responses were altered 
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by chronic activation of trans-2-hexenal driven indirect input. These experiments showed 

that pb1a odor responses were largely unaffected by trans-2-hexenal exposure. 

Although we observed a small decrease in response to 2-butanone at a concentration of 

10-4, this difference did not consistently trend at nearby concentrations (10-5 or 10-3) and 

did not reach statistical significance (Figure 3.1H, I).  

 We next considered the possibility that very small changes in ORN firing rate 

might not be resolvable in extracellular recordings from individual neurons, but that the 

high convergence of ~10 to ~100 ORNs onto PNs could amplify a small difference in 

ORN firing into a measurable increase in PN response. Therefore, we used functional 

imaging to measure the population response of all ab4a ORNs summed in the DL5 

glomerulus, where the many ab4a ORN axon terminals converge in a small physical 

volume of about ~200 µm3 (Figure 3.1J, K). As before, we chronically exposed flies 

expressing the genetically encoded calcium indicator GCaMP6f in ab4a ORNs (under 

the control of the Or7a promoter) to trans-2-hexenal or solvent, and measured odor-

evoked ORN calcium signals in the DL5 glomerulus using two-photon imaging (Figure 

3.1J, K). The increased sensitivity of ORN population imaging, as compared to single 

ORN recordings, for detecting odor responses was evident from the ability of functional 

imaging to resolve ab4a responses to trans-2-hexenal at 10-10 concentration, an odor 

stimulus that was not distinguishable from solvent controls in single ORN recordings 

from either condition. However, odor-evoked population responses from ab4a ORNs in 

DL5 were indistinguishable between trans-2-hexenal exposed and control flies across 

the entire concentration curve (Figure 3.1L, M). Taken together, these results indicate 

that ORN odor responses are unaffected by perturbations in the odor environment that 

drive over a million additional spikes in the ORN over the course of two days of 

exposure. They also imply that the limited PN plasticity we observe likely stems from 

central circuit mechanisms, rather than changes in input from the periphery. 



!58

Figure 3.1: ORN responses do not explain the effects of rearing on PNs 
 
A, D, G) Schematic of odor rearing conditions and targeted single-sensillar recordings 

(SSR) in trans-2-hexenal reared ab4a ORNs (a; blue), 2-butanone reared pb1a ORNs 

(d; red) and trans-2-hexenal reared pb1a ORNs (g; 2but). B, E, H) PSTH of odor-evoked 

spike rates in trans-2-hexenal reared ab4a (b), 2-butanone reared pb1a (e) and trans-2-

hexenal reared pb1a (h) ORNs. C, F, I) Concentration series showing baseline-

subtracted ORN responses computed during the 500ms of stimulus presentation for 
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trans-2-hexenal reared ab4a responses (c), 2-butanone reared pb1a (f) and trans-2-

hexenal reared pb1a (i). The average paraffin oil (pf) response is plotted to the left. J) 

Schematic of direct odor rearing and imaging window. Or7a terminals, projecting into the 

DL5 glomerulus, were imaged. K) Left: Maximum intensity projection of imaging plane. 

Right: Delta F/F response to trans-2-hexenal 10-7 in a mock-reared fly. Scale bar 5µm. L) 

Average delta F/F responses of Or7a terminals after direct (blue) and mock (black) 

rearing conditions to trans-2-hexenal 10-10, 10-9, 10-8 and 10-7. Scale bar 0.5 seconds. M) 

Average and SEM of peak delta F/F responses were computed during stimulus 

presentation. Paraffin is shown to the left, followed by responses to a concentration 

series of trans-2-hexenal. 

We permuted ORN spike rates and calcium fluorescence 10,000 and quantified p-values 

by counting the ratio that the difference between permuted conditions are different than 

the actual means across all 10,000 shuffled samples. Significance thresholds were 

determined using a Bonferroni correction. The distributions we obtained are shown in 

Figure 3.2 for ab4a direct rearing (a), pb1a direct (a) and indirect rearing (c), and Or7a 

direct rearing (d). A quantification of baseline spike rates and distribution of permuted 

samples is provided in Figure 3.2A-C in the right panel. We note that we did not find any 

effect on spontaneous spike rate at the ORN. This is in contrast to the weak effect of 

trans-2-hexenal rearing on VM7 spontaneous activity (Figure 2.5G, H). 
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Figure 3.2: Statistical analysis of ORN spiking responses in direct and indirect 

rearing conditions 

A-C) Left: Histogram of 10,000 permuted samples taken from average odor-evoked 

ORN spike rates. Right: Average baseline spiking activity was computed prior to odor 

stimulation across rearing conditions. Direct E2H-reared ab4a to trans-2-hexenal (a), 

direct 2-butanone reared pb1a to 2but (b)  and trans-2-hexenal indirect pb1a to 2-

butanone (c) are shown. D) Statistical analysis of delta F/F responses in Or7a ORN 
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axon terminals following direct trans-2-hexenal 10-7 rearing. All responses are shown to 

increasing concentrations of odor stimuli from left to right. Dotted lines indicate two-sided 

statistical threshold. Red lines are the actual differences between odor-reared and mock-

reared responses. Threshold for statistical significance was p<0.0125 for concentration 

series and p<0.05 for baseline spike rates. Values are Bonferroni corrected. Bootstrap p-

values are displayed in each histogram. 

 Next, we wondered if there was a change in the total amount of ORN neurites 

innervating the DL5 glomerulus following trans-2-hexenal exposure. A change in total 

ORN innervation may reflect changes in the total population of Or7a ORNs or an 

increase in innervation density from a conserved population of ORNs. One way to 

measure total ORN innervation is by quantifying the total baseline calcium fluorescence 

in Or7a>opGCaMP6f terminals. We used our existing 2-photon imaging data to extract 

the pre-stimulus baseline fluorescence responses of our data in trans-2-hexenal and 

solvent exposed Or7a terminals (Figure 3.3). We did not find any effects of odor 

exposure on Or7a baseline fluorescence. 

Figure 3.3: Baseline calcium fluorescence of Or7a>opGCaMPf6 terminals in DL5 

Baseline fluorescence (a.u.) is plotted for mock exposed (black) and trans-2-hexenal 

10-7 exposed conditions. With our statistical analysis, we did not find that odor exposure 

had significant effects on baseline calcium fluorescence. 
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The role of central mechanisms in olfactory plasticity 

We next investigated possible central mechanisms that might contribute to olfactory 

plasticity in the weak odor regime. First, we asked whether receiving increased sensory 

input might change the intrinsic excitability of PNs. Overall, the input resistance of PNs 

was unaltered in flies chronically exposed to any of the odors in our study, regardless of 

whether they were receiving direct or indirect chronic stimulation (Figure 2.2D, J, N). To 

measure f-I responses in PNs, it was necessary to remove the spontaneous activity in 

PNs to ensure our measurements were not impacted by presynaptic inputs arising from 

the ORNs (Figure 3.4A). Consistent with these observations, f-I curves directly 

evaluating the spiking response of deafferented DL5 PNs in response to current injection 

at the soma were similar between control and trans-2-hexenal exposed flies (Figure 

3.4B, Figure 3.5A, B).  These results indicate that the intrinsic excitability of PNs is 

unaltered by chronic odor exposure and does not account for the increase in PN 

responses to weak odors. 

 Next, we asked whether ORN-PN synaptic strength might be impacted by 

chronic odor exposure. In each glomerulus, many ORN axons of the same type synapse 

onto each PN, and each ORN communicates with each PN via multiple active zones 

(Kazama, H. and Wilson, R.I., 2008; Tobin, W.F., et al., 2017; Horne, J.A., et al., 2018). 

We refer to the combined action of all the neurotransmitter release sites between an 

ORN and a PN as the “ORN-PN synapse.” To measure the strength of a unitary synaptic 

connection between ab4a ORNs and DL5 PNs in trans-2-hexenal exposed flies, we 

adapted a previously established minimal stimulation protocol (Kazama, H. and Wilson, 

R.I., 2008) for use with an optogenetic-based method to recruit ORN activity. Presently, 

we are aware of one other study that uses a light-based optical method to recruit EPSCs 

in post-synaptic cells on a rodent model (Burke, K.J., et al., 2018). To our knowledge, we 

employ the first use of Chrimson to recruit light-evoked EPSCs in Drosophila. We placed 

the  channelrhodopsin variant Chrimson under the control of the Or7a promoter, driving 
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its expression in all ab4a ORNs. Or7a>Chrimson flies were housed in light-proof bottles 

on ATR-supplemented food (Figure 3.3C). We acutely removed the antennae to 

eliminate spontaneous feedforward activity. Next, we stimulated ORNs using wide-field 

delivery of light through the imaging objective while monitoring synaptic responses in 

DL5 PNs using genetically targeted whole-cell voltage-clamp recordings (Figure 3.4D).  

 We employed a minimal stimulation protocol to isolate unitary excitatory 

postsynaptic currents (uEPSCs) evoked by a single presynaptic ORN spike. Stimulation 

with initially low levels of light elicited no synaptic response in the PN. As the power 

density was gradually increased, trials of mostly failures were interspersed with the 

abrupt appearance of an EPSC in an all-or-none manner. Further ramping the light in 

small increments had no effect on the amplitude of the EPSC in the PN, until a power 

density was reached where the EPSC amplitude abruptly doubled, as compared to the 

amplitude of the initially recruited EPSC (Figure 3.4E). Light-evoked EPSCs were 

entirely dependent on supplying flies with the rhodopsin chromophore all trans-retinal in 

their food. The step-like profile of EPSC amplitudes as a function of power density 

reflects the discrete recruitment of individual ORN axon fibers with increasing 

stimulation. In particular, the sharp transition from mostly failures to a reliably evoked 

current is consistent with the response stemming from the activation of a single ORN 

input. The time from the onset of light stimulation to the onset of the evoked EPSC was 

variable and averaged around ~22 ms (Figure 3.5C), which was similar to the properties 

of the latency to the recruitment of the first ORN spike at comparable light intensities 

(Jeanne, J.M. and Wilson, R.I., 2015). In order to compare response amplitudes and 

kinetics across different trials, individual uEPSCs from each condition were aligned by 

their peaks and averaged. In control flies, DL5 uEPSC amplitude (~40 pA) and kinetics 

were similar to previous measurements made using conventional electrical stimulation of 

the antennal nerve (Kazama, H. and Wilson, R.I. 2008). We used these methods to 

record uEPSCs from DL5 PNs in flies chronically exposed to either solvent or trans-2-
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hexenal, which drives direct activity in DL5. Average DL5 uEPSC amplitudes and 

response kinetics were indistinguishable in flies solvent and trans-2-hexenal exposed 

flies (Figure 3.4F). Thus, ORN-PN strength appeared unchanged by chronic odor 

exposure, and is unlikely to account for the observed increases in DL5 PN responses to 

weak odors.    

Figure 3.4: Cellular and synaptic effects following direct rearing 

A) Flies were reared directly in trans-2-hexenal to target DL5 glomeruli or mock as 

before. Prior to recording, the antennal nerve was severed to silence spontaneous 

activity in the antennal PNs. B) Spike rates were measured in response to current 

injection step (left) and ramp (right) protocols. For current step response, spike rates 

were quantified as the total spike count per 100ms current step. For ramp response, 

spike rates were quantified in 50ms bins with 25ms overlap. C) Flies expressing 

Chrimson in Or7a ORNs were raised in foil-wrapped, light-proof bottles on standard 

medium. ATR was mixed into food for control and odor-reared experiments prior to 

rearing. D) Schematic of direct odor rearing in trans-2-hexenal 10-7 (blue). The antennal 
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nerve was severed, and DL5 PNs were targeted for patch-clamp recordings. Blue light 

was passed through a 40X objective to stimulate Or7a terminals and recruit uEPSCs on 

post-synaptic DL5 PNs. E) Left: EPSC current amplitude is plotted versus light intensity. 

Right: As light intensity is increased, light-evoked EPSCs show a doubling in current 

amplitude. F) Top: Average EPSC after direct rearing in E2H (blue) and mock (black). 

Bottom right: Average EPSC peak (pA). Bottom left: Average decay rate (s-1). Bootstrap 

p-values are shown in gray.  
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Figure 3.5: Supplement to Cellular and synaptic mechanisms following rearing 

A-B) Spike rate versus voltage (a) and voltage versus current (b) responses plotted in 

direct E2H-reared DL5 PNs to a step current injection protocol. C) Raw, unaligned EPSC 

responses in mock-reared DL5 PNs in response to light-evoked Chrimson activation. A 

100µs light pulse (to scale) was used to stimulate Or7a terminals and recruit unitary 

EPSCs  in cognate DL5 PNs. 
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In order to compare uEPSC kinetics, we fit each uEPSC with an exponential model. We 

computed the average time constant by extracting the minimum peak to the steady state 

response of the data and fitting the traces using the following equation: A x e(-Bx), where 

A has units of pA and B seconds. Overlaid raw data and model fits are shown below in 

Figure 3.5. We show mock exposed uEPSC (Figure 32.6A) and trans-2-hexenal 

exposed uEPSC  (Figure 3.6B) with fits.  

Figure 3.6: Raw uEPSCs and exponential model fit overlay 

A-B) Average EPSCs for data recorded from individual flies are plotted for mock (a; 

black) and trans-2-hexenal (b; blue) exposure conditions. Data are fit with an exponential 

model to compare decay rates between rearing conditions. Exponential fits are plotted 

for mock (a; red dash) and trans-2-hexenal (b; purple dash) conditions. 
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ORN-PN transforms after direct odor rearing using known 
models 

Given that DL5 PN responses were heightened at low odor concentrations while Or7a 

responses were unchanged, we hypothesized that the PNs were boosting weak ORN 

inputs. We reasoned that there may be a change in the ORN-PN transform function that 

may reflect an increase in input gain control at the PN. Thus, we wanted to determine 

whether the ORN-PN transform is altered in response to rearing and compare the effects 

across glomeruli. To investigate this, we utilized a known framework to observe the 

input-output function arising between ORN and PN synapses. Following the formulation 

described in Olsen et al., we applied the input gain control model (Eq. 2), a variation of 

the hyperbolic ratio function, to the ORN-PN transform data of Or7a and DL5 responses 

after rearing in paraffin and trans-2-hexenal. While we find that there is a slight boost in 

PN responses at the low end, this effect is not captured by the Olsen model (Figure 

3.4A). We repeated the same process, but this time for pb1a and VM7 responses 

following direct and indirect odor exposure conditions. We see that the ORN-PN 

transform does not capture differences in the PN responses for VM7 either (Figure 3.7A, 

B) as we see when analyzing the PN concentration curves alone (Figure 2.4A-C). DL5 

PN responses are changed at low concentrations, and the transform model does not 

capture the small amplification in the data arising at the PN. In VM7, we see small 

change in the saturation region of the PN (Figure 3.7B). This observation suggests that 

direct rearing in 2-butanone may change the ORN-PN transform and the effect may be 

described by a change in the saturation region via a response gain model. Overall, the 

effects of rearing are best captured by looking at the PN concentration curves and 

PSTHs (Figures 2.1 & 2.4). 
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Figure 3.7: ORN-PN transforms in direct and indirect rearing conditions 
 
A) ORN-PN transforms for (a) ab4a-DL5 responses after direct rearing in trans-2-

hexenal (blue) and mock rearing in solvent (black). B) ORN-PN transforms for pb1a-

VM7 responses. Left: Direct odor rearing in 2-butanone 10-4 (red) and mock rearing 

(black). Right: Indirect odor rearing in trans-2-hexenal 10-7 (blue) and mock rearing 

(black). ORN and PN responses are quantified as the average odor-evoked spike rates 

during the 500ms odor stimulation. ab4a-DL5 responses are plotted to trans-2-hexenal 

10-11, 10-10, 10-9, 10-8, 10-7 and 10-6. pb1a-VM7 responses are plotted to 2-butanone 10-8, 

10-7, 10-6, 10-5, 10-4 and 10-3. 
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Discussion 

In this chapter, we investigated potential presynaptic and cell intrinsic mechanisms that 

may explain the effects of odor exposure on PNs. This chapter represents several 

experiments we performed to characterize the inputs arising into PNs with high 

resolution. Our analysis confirms that the effect of odor exposure on PNs is not 

explained by changes in peripheral odor responses or in ORN-PN synaptic strength. It is 

possible that network level activity may be responsible for the effects we see on PNs, 

and we investigate different circuit mechanisms in Chapter 4.  

 Overall, our results suggests that ORN responses may be robust and resistant to 

plasticity following our odor-exposure paradigm. Our observation complements prior 

work in olfactory plasticity that report a consistent total ORN number or ORN glomerular 

innervation between odor rearing and control flies (Sachse, S., et al., 2007). Other 

studies reported effects of rearing on ORNs both at a physiological (Iyengar, A., et al., 

2010) and anatomical (Golovin, R.M., et al., 2019) level. The discrepancies among the 

different bodies of work may be due to the difference in exposure paradigms, 

monomolecular odors and odor concentrations used. It is possible that chronically 

exposing flies to high concentrations of specific chemical compounds can be toxic. 

Odorants may enter through the lymph and disrupt internal homeostasis or the olfactory 

receptor itself may be damaged. For example, CO2 influences spiracle dilation on the 

Drosophila thorax, and increasing CO2 concentrations can result in Drosophila 

desiccation due to the heightened need for oxygen (Badre, N.H., et al., 2005; 

Wigglesworth, V.B. 1942). We propose that chronically exposing flies to monomolecular 

odorants at naturalistic concentrations does not change ORN spiking responses. Future 

work may seek to understand whether our observations generalize across a diversity of 

chemical classes.  

 In our experiments, we developed a novel method to recruit uEPSCs in post-

synaptic neurons while performing GFP-guided whole-cell patch-clamp physiology. 
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Unlike traditional nerve stimulation experiments where all ORN fibers are activated near 

the vicinity of the stimulation electrode, our light stimulation method allows for a single  

population of ORN fibers to be activated. This technique can be combined with any gene 

expression methods including Gal4/UAS, lexA/lexAop, and QF/QUAS systems. Our 

method has a few benefits over conventional nerve shock experiments. Experimenters 

needing to record EPSCs from PNs receiving inputs from the palp cannot use nerve 

shock because the maxillary nerve is located deep within the head capsule. It is possible 

to overcome this challenge by expressing light-sensitive opsins in palp ORNs and using 

wide-field light to activate release from terminals. Additionally, it is possible to identify 

unlabeled PNs in patch-clamp recordings by determining whether light stimulation from a 

defined population of ORNs recruits activity.  

 We confirm that the shape of recruited uEPSCs is consistent with those of prior 

published works using conventional nerve shock in Drosophila (Kazama, H., and Wilson, 

R.I., 2008). Our results suggest that rearing does not alter the amplitude or the kinetics 

of uEPSCs in DL5 PNs. It is important to note that the variance in EPSC amplitude 

across populations is high (Kazama, H., and Wilson, R.I., 2008), and it is possible that 

we are unable to resolve effects of rearing from the noise. We conclude that the EPSC is 

unchanged in response to odor exposure. We acknowledge that current methods cannot 

resolve effects, and it is possible synaptic strength may be affected after rearing.  
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Methods 

Flies 

Single-sensillar recordings were performed in NP3481-Gal4, UAS-CD8-GFP female 

flies. Unitary EPSC experiments were conducted in NP3481-Gal4, UAS-CD8-GFP; 13X-

IVS-lexAop2-Cs-Chrimson.mVenus/+; Or7a-lexA/+ (see also Chapter 5 Methods). For 

calcium imaging of ORN terminals, we used Or7a-KI-Gal4/+; 20XUAS-IVS-Syn21-

OpGCaMP6f-p10/+.  

Histology and confocal imaging 

Histology and confocal imaging was performed as previously described in Chapter 2.  

Odor stimulation 

Odors were diluted w/w in paraffin oil to a final concentration of 10-2. A broad panel of 

odorants were used to activate the palp including isobutyl acetate, pentyl acetate, p-

cresol, trans-2-hexenal, 2-butanone and 2-heptanone. We presented a paraffin solvent 

to flies in mock and odor rearing conditions. Odors were presented via a custom 

olfactometer and presented for 500 ms as described in Chapter 2. Odorants were 

purchased from Sigma or Fischer Scientific in the highest purity available. 

Light-activated EPSC recruitment 

EPSCs were isolated using light stimulation for the first time to our knowledge in flies. All 

fly crosses containing the Chrimson reporter were wrapped in foil to prevent any chance 

of light-activation. For light-activation experiments, flies were fed food supplemented with 

a mixture of all trans-retinal (ATR; Sigma #R2500) at least 24 hours prior to recordings. A 

35mM ATR stock was prepared in 95% ethanol, wrapped in foil and stored in the dark at 

-20oC. We supplemented 50mL of food with 500uL of ATR once at the start of rearing 
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and kept fly bottles wrapped in foil for the duration of rearing. ATR was added to both 

odor and mock reared bottles.  

 Flies were dissected to expose the antennal lobe and both antennal nerves were 

severed. Electrophysiology rigs were light-proofed, and patch-clamp recordings were 

performed in voltage-clamp mode. We used wide-field blue light stimulation using a 

460nm light source (Sutter TLED+) to selectively stimulate ORN terminals to recruit 

unitary EPSCs (uEPSCs) directly into DL5. This method has several advantages over 

conventional nerve shock techniques. Because we sever the antennal nerve to isolate 

uEPSCs, we lose our ability to identify cell identity using an odor panel. Genetically 

expressing Chrimson in Or7a ORNs allows us to minimize uncertainty in experimental 

recordings by recording from PNs that only show light-evoked responses. In addition, 

this method will allow future recordings of uEPSCs in the maxillary palp. In an intact fly 

prep, it is challenging to find the maxillary nerve for nerve stimulation. Using light would 

bypass this issue and allow for easy accessibility to the terminals of maxillary palp 

ORNs. We tested several methods of optical stimulation and found that wide field blue 

light worked best. When we used optrodes for pilot experiments, we found that light was 

highly sensitive to the optrode position relative to the antennal nerve. In effect, there was 

large variability in the required stimulus pulse length needed to successfully stimulate 

ORN terminals. In all experiments with wide-field stimulation, we maintained a 100us 

pulse length and adjusted the total light intensity across flies to recruit single or double 

uEPSCs when necessary. 

Single-sensillar recordings 

Single-sensillar recordings were performed as previously described. Flies were 

positioned at the end of a cut pipette tip and stabilized with wax. The antennae or palp 

were stabilized on a glass coverslip with a glass pipette controlled by a micro-

manipulator (Scientifica). Flies were coarsely adjusted under a 5X objective, then finely 
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adjusted under a 50X air objective (Olympus). Ground and recording electrodes were 

filled with saline and flicked to remove any air bubbles. We carefully inserted ground 

electrodes into the eye. A sharp recording pipette was inserted into sensilla, and sensillar 

identity was confirmed using diagnostic odor panels. We used fluorescence-guided SSR 

in pilot experiments to learn the morphology and anatomical location of our target 

sensilla (Lin, C.C. and Potter, C.J., 2015). 

Calcium imaging  

We performed calcium imaging using a 2-photon microscope (Thor Labs) with a Ti-

Sapphire laser through a 20X water objective (Olympus). Images were acquired at 11 

frames per second with frame size of 256x96 pixels and a dwell time of 2us/pixel. 

Frames were aligned to stimulus commands in Thor Sync software. We collected 8 

seconds of baseline activity prior to presenting a 0.5 second odor pulse for a total trial 

length of 15 seconds. Odors were presented for 3 trials, with 45 second inter-trial-

interval during which the shutter was closed to prevent bleaching of the sample.  

Analysis of calcium imaging data 

Each frame was first background subtracted to the mean fluorescence of an ROI drawn 

outside of the neuropil. Odor was presented at frame 93 for a total of 6 frames. We 

extracted 70 frames before the start of each trial and 60 frames post-odor presentation 

for analysis. Baseline fluorescence responses were computed as the average pixel 

intensity across the first 70 frames prior to odor presentation for each trial, and then 

subtracted frame-by-frame. We computed delta F/F values by normalizing the 

background-subtracted signal by the average pre-stimulus background and averaged 

across trials for each stimulus. Peak fluorescence was computed by finding the 

maximum of the delta F/F during stimulus presentation. Heat-maps were generated 
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using the same methods as described above. We chose representative heat-maps by 

identifying the maximum intensity projection taken across the entire recording (ImageJ). 
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Chapter 4: Network-level effects after rearing 

Abstract 

In Chapters 2-3, we investigated the effects of rearing on PNs in the antennal lobe. PNs  

receive direct feedforward inputs from cognate ORNs that project into the same 

glomerulus. While ORNs are a main source of excitation onto PNs, additional circuit-

level inputs are important components to PN odor responses. Lateral inhibition and 

lateral excitation is broadly signaled across the antennal lobe. Promiscuous odors are 

particularly strong activators of lateral inputs, and these inputs are understood to 

innervate the antennal lobe glomeruli globally. To determine whether rearing affects 

lateral inputs, we measure lateral inhibition and lateral excitation within the antennal 

lobe. We use a genetic strategy to label most of the GABAergic antennal lobe inhibitory 

local neurons (iLNs) and perform confocal fluorescence microscopy to quantify 

innervation density across a subset of antennal lobe glomeruli. We find that trans-2-

hexenal rearing induced an increase in iLN innervation density while 2-butanone rearing 

had no effect. The effect of increased iLN innervation density was driven by a change in 

the volume of antennal lobe glomeruli while the raw iLN fluorescence was unchanged.  

 Next, we wondered if the effects of trans-2-hexenal can be explained by changes 

in lateral excitatory inputs in the antennal lobe. We reared flies in trans-2-hexenal and 

recorded from VA6 PNs in a severed-nerve preparation. By removing direct excitation 

from the feedforward ORNs, any remaining excitation in the VA6 glomerulus is a result of 

lateral inputs. We find that odor-evoked membrane depolarization is increased in 

trans-2-hexenal exposed VA6 PNs. This finding suggests that trans-2-hexenal exposure 

may increase lateral excitatory inputs into some olfactory glomeruli. All in all, these 

findings suggest that trans-2-hexenal may influence physiology and anatomy of global 

antennal lobe networks.  
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Introduction 

Each individual glomerulus in the Drosophila antennal lobe receives direct excitation 

from feedforward ORNs that synapse onto PNs. ORNs typically increase in firing rates 

as odor concentrations increase, whereas PN responses appear to saturate (Wilson, 

R.I., 2013). Global circuit mechanisms help shape the PN output arising in response to 

ORN input. A major computational component within antennal lobe glomeruli involves 

inhibition via pre- and post-synaptic local neurons (LNs) (Olsen, S.R. and Wilson, R.I., 

2008). LNs act as a turn-dial volume control within the antennal lobe by maintaining a 

homeostatic balance of odor outputs from the antennal lobe. Typically, the more ORNs 

that an odor activates, the more LNs also become activated (Hong, E.J. and Wilson, R.I., 

2015). In effect, the inhibitory inputs prevent synapse depletion between ORNs and PNs 

and normalize PN responses to odor. Inhibition innervates glomeruli globally and 

appears to have uniform physiological inputs across the antennal lobe. While the 

population of inhibitory LNs (iLNs) is heterogenous, the majority of the population signals  

via GABAergic neurotransmission. Thus, each glomerulus is a complex bundle of fibers 

containing ORN terminals, LN terminals and PN dendrites.  

 Lateral inhibition is recruited by broad odors which typically activate several 

populations of ORNs simultaneously. In nature, flies rarely encounter monomolecular 

odors as we present in the lab. Instead, natural odors are present as complex mixtures 

containing dozens of monomolecular odors. An odor that we associate as a single entity, 

i.e. a ripe banana, contains several odorants that smell like the characteristic fruit when 

combined together. One way to mimic natural odorants in the lab is to present a mixture 

of monomolecular odorants to flies while recording odor responses. Mixing fixed 

compounds allows for experiments to be comparable across days and gives the 

experimenter control of the concentrations of each odorant. In this chapter, we present 

odor mixtures and record from VM7 PNs following rearing. While we found that rearing 

can alter responses to monomolecular compounds in Chapter 2, our goal in this chapter 
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is to  determine if rearing alters PN responses to more naturalistic stimuli.  

  Aside from iLN input, the antennal lobe also contains a population of lateral 

excitatory neurons (eLNs) which broadly innervate glomeruli. Like iLNs, eLNs appear to 

broadly respond to odors. Direct excitation from feedforward ORNs is the dominant 

source of excitation that forms PN odor responses. Lateral excitation becomes 

noticeable when these inputs are disrupted (Yaksi, E. and Wilson, R.I., 2010); yet, it has 

never been reported to depolarize the cell membrane towards spike threshold. While the 

purpose of lateral excitation is unclear, it may serve as a back-up system to ensure all 

channels receive some form of excitation. Interestingly, lateral excitation is mediated via 

electrical rather than chemical synapses. More work needs to be done to understand the 

computational roles of lateral excitation and how these populations of neurons are 

affected across perturbations to the circuitry. We were drawn to investigate features of 

lateral excitation following our rearing paradigms because of the magnitude of our 

effects. Specifically, we wondered if lateral excitatory inputs are capable of undergoing 

plasticity in response to chronic odor exposure.  

Chronic odor exposure can elicit global perturbation in 
glomerular volume 

Our observations suggested that lateral connectivity may be important for the effects of 

chronic odor exposure on PN responses, and prior work had implicated local GABAergic 

inhibition in olfactory plasticity (Sachse, S., et al., 2007). Therefore, we next examined 

whether LN innervation density is impacted by chronic odor exposure. We expressed 

membrane-targeted GFP (CD8:GFP) under the control of the NP3056-Gal4 driver, which 

targets a large subset of GABAergic LNs, and exposed these flies for two days to 

trans-2-hexenal, 2-butanone, or solvent as described. The labeled LNs were 

reconstructed by volumetric confocal imaging, and the 3D boundaries of each of a 

subset of easily identifiable glomeruli were manually segmented in each brain using a 
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neuropil co-stain (nc82) (Figure 4.1A). In order to determine if rearing results in any 

anatomical changes across the antennal lobe, we focused on quantifying glomerular 

volume after trans-2-hexenal and 2-butanone odor exposure (Figure 4.1B). In addition, 

we characterized LN innervation density by measuing raw fluorescence and normalizing 

by each glomerular volume (Figure 4.1C). We found that trans-2-hexenal rearing 

resulted in a global decrease in LN fluorescence intensity.  

 As expected, identified glomeruli of the same type had a characteristic size that 

was consistent across brains within a condition (Figure 4.1B). Across the glomeruli in our 

subset, glomerular volumes varied as much as ~5 to 6-fold. We found that glomeruli in 

flies chronically exposed to trans-2-hexenal were smaller than their counterparts in 

control solvent-exposed flies. This downward trend was relatively consistent across all 

glomeruli measured; DL5, the glomerulus that receives direct input from trans-2-hexenal 

(10-7), was not notably different. We pooled our measurements across glomeruli by 

computing the normalized volume of each glomerulus in the odor-reared condition, 

relative to its average in the control group. We found that the average glomerular volume 

in trans-2-hexenal exposed flies was smaller than that of control flies (Figure 4.1B). We 

then quantified the amount of LN neurites (CD8:GFP) in each glomerulus using the 3D 

ROI generated from the neuropil co-stain. Whereas the absolute level of LN signal was 

similar between trans-2-hexenal and control exposed flies, the overall density of LN 

innervation in each glomerulus was higher in trans-2-hexenal exposed flies, driven by 

the reduction in glomerular volume (Figure 4.1C). These effects were specific to trans-2-

hexenal exposure. Flies chronically exposed in parallel to 2-butanone showed no 

significant changes in either glomerular volume or in LN density, including in glomerulus 

VM7, which receives direct input from 2-butanone (10-4) (Figure 4.1B, C). These results 

show that chronic exposure to some, but not all, odors can elicit widespread anatomical 

perturbations in the olfactory circuit. In contrast with previous reports, however, these 
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effects are not glomeruls-specific and extend globally beyond the chronically activated 

glomerulus (Sachse, S., et al., 2007; Kidd, S., et al., 2015; Golovin, R.M., et al., 2019).  

  

Figure 4.1: Anatomical characterization of rearing effects in the antennal lobe 

A) Sample section of neuropil (magenta), LN neurites (green) and expression overlay 

(white) in the antennal lobe. Scale bar 20µm. B) Left: Volume measured for 13 antennal 

lobe glomeruli in 2but (red; top), E2H (blue; bottom) and mock (black) reared flies. Right: 

Total normalized volume. C) Left: LN neurite density in 2but (red; top) and E2H (blue; 

bottom) reared flies. Right: Total normalized LN density across rearing conditions. 
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 In addition to glomerular volume and LN density, we quantified raw LN 

fluorescence intensity (Figure 4.2A, B), neuropil intensity (Figure 4.2C, D), LN intensity 

per neuropil (Figure 4.2E, F) and neuropil density (Figure 4.2G, H) as supplemental 

analyses. Following trans-2-hexenal rearing, we did not see any effect on any additional 

metrics (Figure 4.2A, C, E, G). We note that 2-butanone rearing resulted in a significant 

decrease in the total LN neurite intensity (Figure 4.2B) which is also significantly 

decreased for the glomerulus DM6. This result suggests that the total LN innervation 

may be scaling proportionally to volume (Figure 4.1B) and fixed LN innervation density 

may be maintained between 2-butanone rearing and mock rearing conditions (Figure 

4.1C, Figure 4.2F). It is possible that the effects on anatomy may have a significant 

signaling contribution on the cellular and circuit level. We next wanted to determine 

whether there are physiological consequences of an increase in LN density following 

trans-2-hexenal rearing or LN intensity following 2-butanone rearing by activating the iLN 

population with our stimulus set.  
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Figure 4.2: Additional data on antennal lobe anatomy 
 
A, B) Left: Raw LN neurite intensity across 13 glomeruli following rearing in trans-2-

hexenal 10-7 (a; blue) and 2-butanone 10-4 (b; red) with mock reared control glomeruli 

(black). Right: Normalized total LN neurites summed across glomeruli. C, D) Left: Raw 

nc82 intensity following trans-2-hexenal 10-7 (c) and 2-butanone 10-4 (d) rearing. Right: 

Normalized total nc82 intensity summed across AL glomeruli. E, F) Left: LN neurite 

intensity normalized to nc82 following trans-2-hexenal 10-7 (e) and 2-butanone 10-4 (f) 

rearing. Right: Normalized total LN neurite intensity per neuropil intensity summed 

across AL glomeruli. G, H) Left: nc82 normalized to antennal lobe volume following 

trans-2-hexenal 10-7 (g) and 2-butanone 10-4 (h) rearing. Right: Normalized total neuropil 

density summed across AL glomeruli. 
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PN coding of odor mixtures is unaffected by chronic odor 
exposure 

So far we have evaluated PN responses using only atypical odor stimuli, specifically 

chosen to provide selective input to a single ORN class. We started with this approach 

so that the source of ORN input with respect to each PN type is unambiguous. However, 

typical odors activate multiple odorant receptor neuron classes, and the odor response 

in each PN usually reflects both direct input, from its presynaptic ORN partners, and 

indirect input, arising from activity in other glomeruli and received via local lateral 

circuitry. Thus, we next investigated how chronic odor exposure impacts PN responses 

to more typical odor stimuli that elicit direct and indirect synaptic input to PNs. 

Additionally, we wondered what the physiological consequences of a decrease in LN 

innervation are. In all of the physiological experiments we have thus far shown, we 

measured responses of individual cells to highly selective monomolecular odorants. In 

this set of experiments, we chose to focus on VM7 because this PN has previously been 

shown to be suppressed by the broad odorant, pentyl acetate (Olsen, S.R. et al., 2010). 

We then tested whether direct and indirect odor rearing has an effect on VM7 responses 

to blends of pentyl acetate and the selective odor, 2-butanone. 

 As before, we recorded from VM7 PNs in flies chronically exposed to trans-2-

hexenal, 2-butanone, or solvent (Figure 4.3A-C, F, I).  We mixed a fixed concentration of 

pentyl acetate (10-3), a broadly activating odor that drives activity in many ORN types 

(but does not activate pb1a, the VM7 ORN), with increasing concentrations of 2-

butanone, the odor that drives direct input to VM7 (Olsen, S.R., et al., 2010). As 

previously described, mixing in pentyl acetate generally reduced VM7 responses to its 

direct odor 2-butanone (Figure 4.3A-C), a consequence of the recruitment of lateral 

GABAergic inhibition onto VM7, driven by activity in non-VM7 ORNs (Olsen, S.R. and 

Wilson, R.I., 2008; Olsen, S.R., et al., 2010). Each rearing paradigm is plotted with 

responses to pure monomolecular odor, 2-butanone (solid line), and odor mixtures  
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(dashed line) overlaid. Mixtures of pentyl acetate and 2-butanone result in a reduction in 

odor-evoked membrane potential to dilute concentrations of 2-butanone, particularly at a 

concentration of 10-8 (Figure 4.3A-C). This suggests that the feedforward direct 

excitatory input onto VM7 is fairly strong and counteracts the effects of inhibition from 

concentrations of 10-7 to 10-4 (Figure 4.3A-C). We quantify the change in depolarization 

between pure odor responses and mixture responses for mock, 2-butanone and trans-2-

hexenal rearing conditions (Figure 4.3D, E). Overally, there is no difference between the 

total suppression in response magnitude across rearing conditions. We find that the 

difference between response magnitudes shows an effect at 2-butanone 10-4, and this is 

driven by the observation that 2-butanone rearing enhances the odor-evoked amplitude 

to the pure odor (Figure 4.3D, Figure 2.2H, I).  

 When we plot the same data but compare mixture responses across rearing 

conditions (Figure 4.3F, I), we see that there are no differences to any stimulus (Figure 

3.3G, H, J, K). This result suggests that odor mixtures normalize responses and abolish 

any changes that result from direct feedforward excitation. Whereas we observed that 

the afterhyperpolarization responses of VM7 PNs to pure direct input (driven by 2-

butanone) were modestly enhanced in odor-exposed flies (Figure 2.2H, I), VM7 

responses to mixed direct and indirect input (driven by mixtures of 2-butanone and 

pentyl acetate) were similar in control and odor-exposed flies (Figure 4.3G, H, J, K). This 

effect was observed across the entire range of concentrations we evaluated. This 

observation suggests that the local GABAergic inhibitory network may act to counter 

modest changes in excitability elicited by perturbations in the odor environment, thereby 

maintaining stable PN responses to most typical odors.  
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Figure 4.3: Odor exposure does not affect PN responses to mixtures 

A-C) Left: Schematic of rearing condition and VM7 patch-clamp recordings for (a) mock 

rearing (black), (b) 2-butanone 10-4 direct rearing (red), and (c) trans-2-hexenal (E2-

hexenal) 10-7 indirect rearing (blue). Right: Average odor-evoked membrane potential in 

VM7 PNs in response to pure odor stimulation (2-butanone; dark solid line) and mix (2-

butanone with pentyl acetate; light dotted line). 2-butanone was presented at 10-8, 10-7 ,
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10-6, 10-5  and 10-4 concentrations. Pentyl acetate was fixed at 10-3 in mixtures. D-E) Left: 

Average change in odor-evoked membrane depolarization between pure and mix 

responses following mock rearing,  (d) 2-butanone 10-4 rearing and (e) trans-2-hexenal 

(E2-hexenal) 10-7 rearing. Right: Total change in odor-evoked membrane depolarization 

between pure and mix VM7 responses across rearing conditions. F, I) Schematic of 

rearing condition and VM7 patch-clamp recordings. (f) direct 2-butanone 10-4 rearing 

(red), and indirect trans-2-hexenal (E2-hexenal) 10-7 rearing (blue). G, J) Average odor-

evoked membrane depolarization of VM7 PNs in responses to odor mixtures of 

increasing concentrations of 2-butanone with pentyl acetate. H, K) Left: Average 

membrane depolarization across odor mixtures in mock vs. 2-butanone (h) and trans-2-

hexenal (E2-hexenal) (k) reared conditions. Right: Average total membrane 

depolarization computed across odor mixtures.  
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Indirect odor rearing may increase lateral excitation globally 

The majority of network-level activity is mediated through presynaptic inputs from 

inhibitory local neurons. Antennal lobe PNs are also known to receive small amounts of 

lateral excitation from gap junctions. Different PNs receive different amounts of lateral 

excitation, and the excitation is odor-dependent. Lateral excitation is typically very small, 

providing around 10mV subthreshold depolarization into the PNs. We wondered if odor 

exposure can alter the amount of lateral excitation that a PN receives. Our data shows 

that PN responses have small changes in odor-evoked depolarization after rearing. In 

VA6 in particular, indirect rearing in trans-2-hexenal lead to small, subthreshold changes 

in odor-evoked membrane potential. In this set of experiments, we aimed to isolate 

lateral excitation in VA6 after indirectly rearing in trans-2-hexenal. We chose this PN 

because the effects of trans-2-hexenal rearing resembled features of lateral excitation as 

previously described (Olsen, S.R., et al., 2007; Yaksi, E. and Wilson, R.I., 2010). For 

these recordings, we reared flies in trans-2-hexenal to indirectly target VA6 PNs. Prior to 

physiological recordings, we carefully severed the antennal nerve to remove all direct 

inputs into VA6 (Figure 4.4A). Any excitation that we see is thus mediated laterally 

through stimulation of maxillary palp ORNs.  

 We presented a panel of odorants that strongly activate broad ORN subtypes. 

Interestingly, we found that rearing in trans-2-hexenal increases odor-evoked membrane 

depolarization in VA6 PNs to a panel of broad odorants (Figure 4.4B, C). Notably, 

different odors recruit different amounts of lateral excitation and not all odors show the 

effect of enhanced depolarization. In particular, we found that pentyl acetate, 2-

heptanone and trans-2-hexenal recruit increased odor-evoked in excitation after rearing 

whereas 2-butanone (Figure 4.4B, C) did not show any differences. We also tested 

responses to iso-butyl acetate and p-cresol, and did not see strong enhancements of 

lateral excitation. This result suggests that the effect of rearing on lateral excitation is 
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dependent on odor identity and a glomerulus can be uniquely tuned to different sources 

of lateral excitation. 

 

Figure 4.4: Lateral excitatory inputs may be increased after trans-2-hexenal 
exposure 

A) Schematic of indirect odor rearing in trans-2-hexenal 10-7 and patch-clamp recording 

from VA6 PNs. The antennal nerve was severed prior to electrophysiological recording. 

B) Average VA6 odor-evoked membrane potential in response to lateral excitatory 

inputs. Odors used include pentyl acetate (pa), 2-heptanone (2hep), trans-2-hexenal 

(E2H), isobutyl acetate (iba), p-cresol (p-cres), 2-butanone (2but) and paraffin oil. All 

odors were diluted to 10-2. C) Left: Average membrane depolarization of VA6 PNs in 

response to lateral excitatory inputs. Right: Total normalized membrane depolarization. 
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Methods 

Flies 

We used the following line for LN anatomy and glomerular volume measurement: UAS-

brp-short strawberry/+; 20X-UAS-CD8-GFP/NP3056-Gal4. We did not quantify the short-

stawrberry signal. 

Odor stimulation 

Odors were mixed in vapor phase in the carrier air stream. Odors were diluted as 

previously described. We presented a panel of increasing concentrations of the selective 

odor (2-butanone) while holding the concentration of the broad odor, pentyl acetate, at 

10-3. This concentration was previously shown to be effective at recruiting inhibition 

(Hong, E.J. and Wilson, R.I., 2015) and suppressing VM7 odor responses (Olsen, S.R., 

et al., 2010).  

Electrophysiology 

Electrophysiological measurements were performed as described in Chapter 2. To 

isolate lateral excitation in VA6, flies were dissected to expose the antennal lobe as 

described previously. Direct excitatory inputs into VA6 arise from ab5a ORNs, which are 

housed on the antennae. We removed directed excitatory inputs by carefully severing 

both antennal nerves with fine forceps. Any remaining excitation was mediated via ORN 

activation located on the palp and signaled into the antennal lobe via the maxillary nerve. 

Histology and confocal imaging 

Tissue histology was performed as previously described in Chapter 2. For LN anatomy 

experiments, Streptavidin was omitted from the secondary antibody solution. 
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Anatomical image analysis 

Stacks were imported into ImageJ (NIH) and the 3D ROI toolkit was used to extract 

individual glomeruli. Several planes were manually traced across the upper and lower 

bounds of individual glomeruli and the remaining planes were automatically interpolated. 

Values for each region of interest were saved and exported into Matlab (Mathworks) and 

Excel (Microsoft Office) for further analysis.  

Discussion  

Overall, trans-2-hexenal odor exposure resulted in a global decrease in glomerular 

volume. In effect, we found that LN innervation density also decreased. This result is 

consistent with prior work that reported changes in glomerular volume. Our result, 

though, differs from published work because we see effects of rearing across multiple 

glomeruli rather than the target odor. This suggests that odor exposure paradigms are 

complex and may affect antennal lobe glomeruli through network circuits. We propose a 

global screen spanning chemical classes to determine whether the effects of rearing 

generalize across a certain dimension in odor space.  

 Odorants in nature are highly complex mixtures consisting of many 

monomolecular odorants in varying concentrations. In effect, naturalistic stimuli likely 

recruit many different ORN populations that can recruit both PNs and local neurons 

(LNs) to modulate total spiking responses in the antennal lobe. While we saw that VM7 

PNs had increased afterhyperpolarization amplitude in response to pure monomolecular 

odor stimulation after indirect rearing (Figure 2.5B, E), we found that broad odor 

mixtures suppress these effects (Figure 4.3G, H, J, K). Future studies may look into how 

inhibitory neuron recruitment is effected after rearing and whether PN sensitivity to 

inhibition is altered. 
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 Prior work has characterized the effects of lateral excitation across different 

antennal lobe glomeruli and identified that each glomerulus receives different amounts of 

lateral excitation in an odor-dependent manner (Yaksi, E. and Wilson, R.I., 2010; Olsen, 

S.R., et al., 2007; Shang, Y., et al., 2007). Yaksi et al. describe that different odorants 

can recruit different amounts of depolarization into glomeruli, yet the total depolarization 

is weak and is below spike threshold (Yaksi, E. and Wilson, R.I., 2010). Interestingly, 

lateral excitation mediated via eLNs is signaled via electrical, not chemical synapses and 

eLN inputs appear global. It is unclear why the antennal lobe needs lateral excitation and 

what computation advantages eLNs have within this stage of olfactory processing. One 

possibility is that electrical communication is much faster, which may allow for odor 

signals to be quickly propagated across the network. It is also possible that lateral 

excitation may serve as an auxiliary excitatory signaling input into glomeruli in case 

direct excitatory inputs are damaged. Since most odorants in nature are composed of 

complex mixtures that activate populations of ORNs, damages in individual ORN 

populations can result in an altered population code of odorants and therefore skew a 

fly’s perception and behavioral response to odors. By activating glomeruli via another 

mechanism, the fly may be able to maintain a consistent odorant representation.  

 The observation that trans-2-hexenal rearing may increase the strength of lateral 

excitation into VA6 suggests that eLNs may be capable of undergoing odor-evoked 

plasticity. Typically, lateral excitation is seen in response to strong, broad odors. Given 

that flies are reared in low odor concentrations of trans-2-hexenal suggests that eLN 

sensitivity may be increased. It is important to note that trans-2-hexenal 10-7 did not 

recruit noticeable lateral excitation in VA6. With this observation, we can only suggest 

that this particular glomerulus does not receive strong lateral excitation in response to 

this odor. It is possible that trans-2-hexenal 10-7 may still recruit weak levels of eLN 

activity into other glomeruli which may strengthen global eLN connectivity. Future work 

would need to image eLN responses to trans-2-hexenal 10-7 to determine whether the 
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responses are present and whether rearing can increase eLN sensitivity to a panel of 

odorants. Whether the effects of lateral excitation after trans-2-hexenal rearing can occur 

across other glomeruli is unknown with our current dataset. It would be interesting to 

image PN calcium responses across the entire antennal lobe to identify other glomeruli 

which may be affected following trans-2-hexenal rearing. A caveat to imaging is the 

decreased measurement sensitivity in comparison to patch-clamp, though this may not 

be an issue with the new, high resolution calcium indicators available for use within 

Drosophila. 
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Chapter 5: Expressing Chrimson in ORNs 

Introduction 

In this short chapter, I provide sample recordings from  antennal and palp ORNs in which 

I drove expression of the Chrimson light-activated ion channel. All of the driver lines 

used in this chapter were generated by our lab’s first technician, Meike Lobb-Rabe. She 

generated both the Or42a-lexA and Or7a-lexA fly lines, both of which are expressed on 

the third chromosome. I recorded odor-evoked and light-evoked responses from Or42a 

ORNs located on the palp, which innervate the VM7 glomerulus. These ORNs are also 

known as pb1a neurons, and are housed in palp basiconic sensilla along with another 

neuron, pb1b. Light-evoked responses were achieved in Chrimson-expressing Or42a 

ORNs across a range of light intensities and wavelengths. To achieve high spatial 

precision during uEPSC recruitment, blue light was used to stimulate ORN terminals. 

However, for the recordings shown in this chapter, I use 660nm red LEDs attached to a 

rearing barrel. Surprisingly, driving Chrimson in OR42a ORNs abolished endogenous 

odor responses from these neurons, but light-evoked responses were functional. In 

effect, expressing Chrimson appeared to influence the endogenous expression or 

compromised the function of the Or42a receptor. This effect was seem in Or42a across 

all flies tested (n=2). Interestingly, while Or42a ORNs did not have odor responses, the 

ORNs housed in the same olfactory sensilla had strong odor-evoked responses that 

resembled responses in control flies without Chrimson expression. Chrimson expression 

did not always influence odor responses in ORNs. Driving Chrimson expression in Or7a 

ORNs, located on the antennae, induced reliable light-evoked responses. Importantly,  

odor-evoked responses via the endogenous Or7a receptor remained intact. These 

observations suggest that odor responses may be affected by Chrimson expression in 

ORNs. It is important to thoroughly test light-evoked and odor-evoked responses in 

ORNs if an experimenter needs to compare light-activated and receptor-mediated ORN 
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spiking activity. Lastly, I provide an example of an LED rearing barrel I built for the lab. I 

validated that the LEDs can successfully activate light-evoked responses in flies on the 

rig. While I did not use the barrels for experiments, I leave the assembly for future use in 

the lab. 
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Methods 

Chrimson expression 

Fruit flies were stored at 25oC throughout all phases of development. Chrimson was 

expressed in Or42a ORNs by crossing flies from the following genotypes:  

 NP3481-Gal4, UAS-CD8-GFP/(FM6) ;  ; Or42a-lexA/TM6B  

X  

NP3481-Gal4, UAS-CD8-GFP/(FM7) ; 13X-IVS-lexAop2-Cs-Chrimson.mVenus/Cyo-

actGFP ;  

This yielded the genotype used in experiments: 

NP3481-Gal4, UAS-CD8-GFP; 13X-IVS-lexAop2-Cs-Chrimson.mVenus/+; Or42a-lexA/+ 

 

Likewise, Chrimson expression in Or7a ORNs was accomplished using an identical 

schema: 

NP3481-Gal4, UAS-CD8-GFP/(FM6) ; ; Or7a-lexA/MKRS  

X  

NP3481-Gal4, UAS-CD8-GFP/(FM7) ; 13X-IVS-lexAop2-Cs-Chrimson.mVenus/Cyo-

actGFP ;  

This yielded the genotype used in experiments: 

NP3481-Gal4, UAS-CD8-GFP; 13X-IVS-lexAop2-Cs-Chrimson.mVenus/+; Or7a-lexA/+ 

Or42a-lexA and Or7a-lexA were generated in the Hong lab by our former lab technician, 

Meike Lobb-Rabe. These flies are currently maintained in the Hong lab fly stocks in case 

other experimenters wish to use these flies in future work.  

For control recordings, we used the following line: 

NP3481-Gal4, UAS-CD8-GFP;; 
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ATR and light-proofing 

Once crosses were established, all fly bottles were carefully wrapped in aluminum foil to 

prevent the entrance of light. This is critical to ensure Chrimson does not cause 

unintended activation of the chosen olfactory receptor throughout development. Prior to 

recordings, all trans-retinal (ATR) was carefully added to the existing fly food. ATR was  

kept in a 35mM stock solution in 95% ethanol, and this was wrapped in foil and 

maintained at 4oC. On the day of experiments, flies were transferred into scintillation 

vials and wrapped in foil.  

Electrophysiology 

Extracellular single-sensillar recordings were performed as previously described. Briefly, 

flies were anesthetized on ice and a ~2-day-old female was chosen for recordings. The 

fly was positioned into the end of a modified 200uL pipette tip, and the head and 

abdomen were stabilized with a light application of wax. Recording and ground pipettes 

were freshly pulled each day before the start of experiments using a Sutter pipette puller.  

Both pipettes were filled with standard Drosophila saline. The flies were mounted on 

Scientific electrophysiology rigs, coarsely adjusted using a 5x Olympus objective and 

finely adjusted using a 50x Olympus air objective. A coarse manipulator was used to 

insert a ground electrode into one eye of the fruit fly. One antenna or palp was carefully 

positioned onto the top of a coverslip, also connected to a coarse manipulator. Once the 

sensilla of interest were identified, a fine manipulator was used to bring a recording 

electrode into view. The electrode tip was carefully inserted into the tip of an olfactory 

sensillum and sensillar identity was confirmed using a standard panel of diagnostic 

odors. This procedure was repeated until the sensilla of interest were found.  

 

Light stimulation 

A red LED barrel was positioned below the fly on the electrophysiology rig. The barrel 
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was aligned such that the antennae were positioned near the top and center of the LED 

barrel. Light stimulation was controlled using a Matlab program and DAQ (National 

instruments). A 500ms pulse of light was delivered to the fly and the intensity was 

manually adjusted on the LED barrel using a custom-built rotary switch (Figure A.1).  

Results 
  

In pb1, there are two neurons that have distinct odor tuning: pb1a (Or42a) responds 

strongly and selectively to 2-butanone, and pb1b (Or71a) to p-cresol (de Bryune, 1999; 

Couto, A., M., et al., 2005). In control flies that lack exogenous light-sensitive opsins in 

the olfactory system, all odor responses should be driven only by the specific olfactory 

receptor expressed on the ORN of interest. In ab4a, a typical odor response is shown in 

Figure 4.1. The traces represent representative raw extracellular recordings measured in 

a NP3481-Gal4, UAS-CD8-GFP female fly. Responses to trans-2-hexenal are strong: 

there is both a strong local field potential (LFP) response present as well as 

spontaneous and evoked spikes throughout the recording. Two olfactory receptor 

neurons (ORNs) are housed in the ab4a sensilla, and they are distinguished based on 

their spike amplitude. The Or7a-expressing ORN is termed ab4a due to its large spike 

amplitude, and this ORN is responsible for the robust response to trans-2-hexenal. In 

contrast, the smaller spikes belong to ab4b neuron which is not responsive to trans-2-

hexenal.  
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Figure 5.1: Odor-evoked response in ab4 sensilla of a control fly 

Trans-2-hexenal was presented to the fly at (a) 10-7 and (b) 10-4 concentrations. Strong 

odor-evoked spiking responses are recruited during stimulation in ab4a ORNs. An LFP 

response is seen in both (a) and (b) odor-evoked responses. A red arrow in (a) 

designates a spike from ab4b, which fires sparsely and with a smaller amplitude. 

Genotype: NP3481-Gal4, UAS-CD8-GFP. 

NP3481-Gal4, UAS-CD8-GFP

trans-2-hexenal 10-7

5 mV

250 ms

trans-2-hexenal 10-4
5 mV

250 ms

A

B
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In order to perform light-activated uEPSC recordings in DL5 PNs, we expressed 

Chrimson in  Or7a ORNs which project into the DL5 glomerulus. These ORNs are 

located within ab4 sensilla and are denoted as ab4a neurons due to the larger spike 

amplitude these cells have than the neighboring neuron, ab4b, within the same sensilla. 

In addition to EPSC experiments, we were also interested in the prospect of using light 

to chronically activate specific ORNs rather than using odorants as before. For light to 

work, we needed to ensure that we could recruit reliable and robust spiking responses  

in ORNs. First, we built a rearing chamber that is lined with red-emitting LEDs which we 

discuss in more detail in the Appendix. To test the efficacy of our design, we placed the 

rearing barrel within an electrophysiology rig just below the pipette tip holding a fly. About 

1-2 days prior to recordings, female flies were sorted from male flies and placed in vials 

containing standard fly food with a droplet of ATR. For reference, we placed roughly 

100uL of ATR-EtOH solution into the small fly vials and 500uL of ATR-EtOH into the 

large fly bottles. The fly vials were wrapped in aluminum foil, and flies were maintained 

in the incubator until ready for use. Flies were prepared according to the standard 

procedure for single-sensillar recordings as described in the Methods section in Chapter 

3. We fixed the light intensity of the red LEDs to evoke maximum spiking, which was 

roughly midway on the rotary switch (see Appendix for more information). The 

electrophysiology rig was light-proofed to ensure the ORNs were not stimulated by 

ambient light. Without light-proofing, the spontaneous firing rate of Or7a ORNs was 

increased relative to control flies lacking Chrimson expression (data not shown). In light-

proofed conditions, the spontaneous firing rate of the cell was similar to that of control 

flies, suggesting that Chrimson expression did not affect the spontaneous activity in 

Or7a ORNs (Figure 5.2). Care was taken to ensure the flies were exposed to ambient 

light for as little time as possible, though exposure to light could not be prevented during 

the placement of flies into the mounting pipette.  
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Figure 5.2: Light-evoked response in ab4 sensilla in Or7a>Chrimson fly 

A light-evoked response in ab4 sensilla in Or7a>Chrimson fly is reliably recruited. 

We presented a 500ms pulse of red light to the fly and measured light-evoked responses 

in Or7a. The results of a single recording are shown in Figure 5.2. Notably, light 

stimulation caused a robust increase in spiking that closely resembled responses to 

trans-2-hexenal 10-7 odor stimulation (Figure 5.1A, Figure 5.2). We see that ab4b 

neurons are still functioning as expected, with a visible spontaneous spike appearing 

early in the pre-stimulus phase of the sample trace (Figure 5.2). Interestingly, we do not 

see a transduction current during light stimulation (Figure 5.2) as we do with odor 

(Figure 5.1), suggesting that receptor-ligand interactions may be necessary for 

transduction currents to occur. Instead, we see that light causes a slight deflection with 

reversed polarity. The cause of this is likely due to an electrical artifact of stimulation that 

is detected by the recording headstage. All in all, we see that light stimulation causes 

robust firing in Or7a that is locked to the stimulus. We note that we could not achieve 

higher firing rates with more light, and this example roughly demonstrates the highest 

spiking response we could recruit in this ORN. The effect of increasing light was 

nonlinear, and high light intensities shunted ORN firing (Figure 5.5B). It may be possible 

NP3481-Gal4, UAS-CD8-GFP ; 13X-IVS-lexAop2-CsChrimson.mVenus/+ ; Or7a-lexA/+
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to increase the amount of light-evoked spikes using a genotype that includes two copies 

of the Chrimson reporter or Or7a driver, though we did not test this.  

 We were also interested in determining if odor-evoked responses were 

comparable between Or7a>Chrimson and control flies. To the same ORN that we show 

in Figure 5.2,  we presented a series of trans-2-hexenal odor concentrations following 

the same methods used throughout our experiments in Chapter 3. In addition to 

observing reliable light-evoked responses, the neuron maintained robust odor-evoked 

responses (Figure 5.3). We conclude that expressing Chrimson in Or7a does not disrupt 

the function of the Or7a receptor. Thus, the Or7a>Chrimson fly line can be used to 

reliably recruit light- and odor-evoked spiking.  
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Figure 5.3: Odor-evoked responses in ab4 sensilla in Or7a>Chrimson fly 

Odor-evoked responses are maintained in Or7a>Chrimson flies. Responses to trans-2-

hexenal (a) 10-7 and (b) 10-4 are shown. Full genotype is written in figure above. 

NP3481-Gal4, UAS-CD8-GFP ; 13X-IVS-lexAop2-CsChrimson.mVenus/+ ; Or7a-lexA/+

5 mV

250 ms
trans-2-hexenal 10-7

5 mV

250 ms trans-2-hexenal 10-4

A

B



!107

Another ORN we were interested in potentially rearing with light was the Or42a neuron 

that projects into the VM7 glomerulus. This ORN is located on the palp, and is known to 

be strongly selective to 2-butanone (Olsen, S.R., et al., 2010). The large amount of prior 

work focused on VM7 makes this ORN an attractive target for light-evoked rearing  

(Golovin, R.M., et al., 2019; Olsen, S.R., et al., 2010; Olsen S.R., and Wilson, R.I., 

2008). First, we wanted to determine what typical odor-evoked responses look like in 

control flies. We presented a series of 2-butanone dilutions to our work-horse line, 

NP3481-Gal4, UAS-CD8-GFP. As expected, 2-butanone recruits robust firing and a 

pronounced transduction current in pb1a ORNs (Figure 5.4). Dilutions of 10-4 recruited 

strong spiking that was locked to the stimulus (Figure 5.4A), while 10-2 dilutions recruited 

a prolonged spiking response (Figure 5.4B).  

 The rearing concentration we used for VM7 throughout this thesis was 2-

butanone at 10-4, so we were interested to see if light could recruit comparable spiking. 

We expressed Chrimson in Or42a ORNs and performed the same experiments as 

described for Or7a>Chrimson. As before, we found that light stimulation evoked reliable 

and robust spiking in Or42a>Chrimson ORNs (Figure 5.5A). The traces we show 

represent the maximum spiking we could recruit, and higher light intensities shunted the 

ORN as we observed for Or7a (Figure 5.5B).  
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Figure 5.4: Odor-evoked responses in Or42a (pb1a) in a control fly 

Representative odor-evoked responses in control pb1 sensilla to 2-butanone stimulation 

diluted to (a) 10-4 and (b) 10-2. 2-butanone is a selective ligand for pb1a neurons, and 

responses are driven by pb1a neuronal activity. Genotype: NP3481-Gal4, UAS-CD8-

GFP. 

A pb1a
NP3481-Gal4, UAS-CD8-GFP

B

p-cresol 10-4

p-cresol 10-2

2-butanone 10-2

2-butanone 10-4

pb1b
A NP3481-Gal4, UAS-CD8-GFP

B
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Figure 5.5: Light-evoked responses in Or42a>Chrimson (pb1a) ORNs.  

A) A 500ms pulse of red light was used to stimulate Or42a>Chrimson ORNs. 

Representative raw traces are shown for recordings in two different flies. Light intensity 

A
NP3481-Gal4, UAS-CD8-GFP; 13X-IVS-lexAop2-CsChrimson.mVenus/+; Or42a-lexA/+

Light (mid)

Light (mid)

Fly 1

Fly 2

pb1a

B Light (high)
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was set at a medium level. B) Representative trace showing light-evoked shunting of 

ORN responses with high light intensities. Genotype written in figure. 

We wondered if Or42a>Chrimson flies exhibit reliable odor-evoked spiking in addition to 

light-evoked responses. We presented a 500ms pulse at different concentrations of 2-

butanone to the same cells shown in Figure 5.5. To our surprise, we found that odor-

evoked responses were completely abolished in Or42a>Chrimson ORNs (Figure 5.6). 

We did not see any transduction currents apparent in the ORN to 2-butanone 10-4, 

suggesting that all odor-evoked dynamics are completely gone (Figure 5.6A). Since 2-

butanone 10-2 is a broad odor, the transduction we see is likely due to the activity of 

other ORNs rather than pb1a given the lack of spiking in the cell (Figure 5.6B). Given 

how robustly Or42a ORNs respond to odor in control flies (Figure 5.4), we were not 

expecting to see this effect in Or42a>Chrimson ORNs. The lack of odor responses in 

Or42a>Chrimson suggests that Chrimson may somehow disrupt odor responses in 

some ORNs. We postulate a couple of possible mechanisms behind this observation. 

The exogenous expression of Chrimson may somehow interfere with the genetic 

expression of the Or42a receptor itself. Genetic profiling or histological analysis of 

receptor expression may reveal whether the receptor continues to be expressed in 

Or42a>Chrimson flies. It is also possible that the receptor is expressed, but is non-

functional. Given that we see this observation in two different flies, we conclude that 

Or42a>Chrimson cannot be used in experiments requiring measurements of odor and 

light-evoked responses. We suggest that researchers always perform targeted single-

sensillar recordings when they wish to drive Chrimson expression in different ORN 

populations.  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Figure 5.6: Odor-evoked responses are gone in Or42a>Chrimson (pb1a) ORNs 

A,B) Or42a (pb1a) responses to a 500ms pulse of (a) 2-butanone at 10-4 is shown in two 

different flies and to (b) 2-butanone 10-2 in Fly 1. Notably, expressing Chrimson in Or42a 

abolished odor responses. Full genotype listed in figure. 

A
NP3481-Gal4, UAS-CD8-GFP; 13X-IVS-lexAop2-CsChrimson.mVenus/+; Or42a-lexA/+

Fly 1

pb1a

2-butanone 10-4

Fly 2 2-butanone 10-4

B
2-butanone 10-2
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Next, we wondered if the effect of Chrimson expression in Or42a was selective. 

Conveniently, the pb1 sensilla contains another neuron which is highly selective for p-

cresol (Figure 5.7). If the genotype disrupts odor responses non-selectively, we would 

expect to see a difference in pb1b neuronal responses. 

 

Figure 5.7: Odor-evoked responses in Or71a (pb1b) neuron in a control fly 

Representative odor-evoked responses in control pb1 sensilla to p-cresol stimulation 

diluted to (a) 10-4 and (b) 10-2. p-cresol is a selective ligand for pb1b neurons, and 

responses are driven by pb1b neuronal activity. 

A pb1a
NP3481-Gal4, UAS-CD8-GFP

B

p-cresol 10-4

p-cresol 10-2

2-butanone 10-2

2-butanone 10-4

pb1b
A NP3481-Gal4, UAS-CD8-GFP

B
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While recording from the same sensilla as shown in Figure 5.5 and 5.6, we presented p-

cresol to activate Or71a (pb1b) neurons in Or42a>Chrimson flies. We see that odor 

responses in pb1b are intact (Figure 5.8) and comparable to control recordings (Figure 

5.7). We note that the spontaneous activity of Or71a is low in both genotypes (Figure 

5.7, 5.8) which is likely a standard characteristic of these ORNs. This finding suggests 

that the Or42a>Chrimson line specifically abolishes odor responses in the targeted 

ORNs rather than affecting odor responses globally. Thus, we rule out the possibility that 

this line is toxic and conclude that the targeted expression of Chrimson on Or42a 

neurons disrupts the endogenous Or42a receptor functionality and/or interferes with 

receptor expression.   
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Figure 5.8: Odor-evoked responses are intact in Or71a (pb1b) ORNs in an 

Or42a>Chrimson fly 

Responses to p-cresol, a known selective ligand for Or71a (pb1b) ORNs are shown. 

Odors were diluted to (a) 10-4 and (b) 10-2. Note that pb1b odor responses are normal in 

Or42a>Chrimson flies. Genotype listed in figure.  

A Fly 2: pb1b

p-cresol 10-4

p-cresol 10-2

NP3481-Gal4, UAS-CD8-GFP; 13X-IVS-lexAop2-CsChrimson.mVenus/+; Or42a-lexA/+

B
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We have shown that we can reliably recruit light-evoked spiking in two different ORNs 

including antennal Or7a and palp Or42a neurons. Both cells behave similarly during light 

stimulation: reliable time-locked spiking is apparent, responses lack transduction 

currents, spontaneous activity is maintained comparable to controls in light-proofed 

conditions, and high light intensities shunt ORN firing. We demonstrated that 

Or7a>Chrimson ORNs maintain odor-evoked responses comparable to control flies that 

lack Chrimson expression in Or7a ORNs. Surprisingly, we find that targeted Chrimson 

expression in Or42a ORNs abolishes odor-evoked responses completely and selectively 

in this cell type. We conclude that Chrimson may affect odor-evoked responses in a 

certain population of targeted ORNs. Measurements of odor- and light-evoked 

responses are encouraged should Chrimson be expressed in a different ORN type. We 

did not investigate the cause for the disrupted odor responses in Or42a>Chrimson 

ORNs, but this leaves an interesting open question in the genetic regulation of receptor 

expression and/or function in ORNs.  
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Chapter 6 : Antennal LFP responses to odors 

Introduction 

All data presented in this chapter were collected by my sister, Caroline Gugel, during the 

summer of 2018 in the Hong lab. She worked as a research assistant on a project aimed 

to generate isointense odor curves for different commonly-used odors in the field of 

insect olfaction. I provided all training and assisted with data analysis throughout her 

project, though she became extremely independent and performed all experiments and 

analyses herself (including her own Matlab scripts). All data shown was collected, 

analyzed, and generated by Caroline while I formatted the final figures in Adobe 

Illustrator.  

 The purpose of this chapter is to provide experimenters with a reference dataset 

containing commonly used odorants in olfactory neuroscience. We presented four 

odorants from low to high concentrations while recording antennal local field potentials 

(LFP) from three different recording sites. Our purpose was to generate concentration 

curves for 2-heptanone (2hep), pentyl acetate (pa), trans-2-hexenal (t2h) and 2-

butanone (2but) and identify concentrations at which these odors are isointense. We find 

that pentyl acetate recruits the largest local field potential (LFP) amplitude in the 

antennal lobe while 2-butanone recruits the least amount of activity. Most odors evoke 

LFP at concentrations that are 10-6 or above with the exception of trans-2-hexenal, which 

evokes measurable LFP activity when diluted to as low as 10-8. The weakest odor 

appeared to be 2-butanone, which only evokes strong LFP in response to 10-5 dilutions. 

Overall, our data suggests that each odor evokes differing levels of population activity, 

and isointense stimuli can be created by slightly varying odor concentrations. We note 

that our dataset only includes antennal LFP, not maxillary palp LFP; thus, the responses 

measured to the odors are an underestimate of the total olfactory receptor neuron 

population LFP. About 90% of all ORNs are located on the antennae, with the remaining 
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10% on the maxillary palp (Couto, A.M., et al., 2005; de Bruyne, M., et al., 1999; de 

Bruyne, M., et al., 2001; Hallem, E.A., and Carlson, J.R., 2006);  

 

Methods 

We presented odors in increasing concentrations to the fly while recording total antennal 

activity. We used the following odors, all diluted by weight in paraffin oil: 2-butanone 

(2but), trans-2-hexenal (t2h), iso-butyl acetate (iba) and 2-heptanone (2hep). The 

concentrations ranged from 10-8 to 10-2, and the flow rates were fixed to 2L/min for the 

carrier and 200mL/min for the odorant. Electroantennogram recordings were performed 

using the same set-up as single-sensillar recordings with a few modifications described 

below. Briefly, flies were anesthetized on ice and positioned into the end of a modified 

pipette tip. Antennae were positioned on coverslips and stabilized using a glass pipette. 

A ground electrode was inserted into one eye of the fruit fly, and a recording electrode 

was inserted into one of three locations on the antenna: proximal, medial, and distal. For 

each fly, the entire odor panel was presented at a single location. To ensure the reliability 

of odor-evoked responses and to prevent fruit fly desiccation, new flies were used for 

each location. Odors were averaged across locations and across flies. Isointense 

concentration curves were generated using peak voltage deflection and area during the 

500ms odor stimulation period. We computed the peak and average deflection of the 

LFP responses across odor concentrations, recording locations, and averaged across all 

locations. Peak LFP was computed by finding absolute value of the minimum voltage 

deflection during the odor-evoked stimulation window. Average LFP was first computed 

as the integral of the voltage waveform during the odor-evoked stimulation window. The 

integral was then multiplied by the time window to obtain an estimate of the average 

evoked LFP. 
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Results 

A concentration series was presented to each fly during a recording session. Odors were 

selected randomly and presented in order of increasing concentration. We found that 

most odors evoke strong local field potential (LFP) at high odor concentrations (Figure 

6.1). The palp pb1a-selective  odor, 2-butanone (2but), recruited the least amount of LFP 

at the antenna, with an average population response of 3mV. Responses to 2-butanone 

start at 2but 10-4, suggesting that lower concentrations of 2-butanone are fairly weak 

activators (Figure 6.1A). Interestingly, while trans-2-hexenal recruits a maximum LFP 

amplitude of 4mV in the antenna, this odor recruited a stronger odor-evoked response at 

low concentrations (Figure 6.1B). Since trans-2-hexenal is a selective odor for ab4a 

ORNs that express the Or7a receptor, we expect that the LFP activity arises largely from 

this specific population of ORNs. The next strongest odor, 2-heptanone (2hep), recruited 

noticeable LFP through a range of odor concentrations and shows evidence of activation 

to concentrations as low as 10-6 (Figure 6.1C). As expected, pentyl acetate (pa) recruited 

the strongest LFP at high concentrations including 10-2, 10-3 and 10-4 within the antennal 

lobe (Figure 6.1D). Previously, single-sensillar recordings of ORN odor responses have 

shown that pentyl acetate broadly activated many individual ORN classes. In effect, 

most antennal PNs are also responsive to pentyl acetate. 
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Figure 6.1: Antennal LFP recordings averaged across locations 

Stimuli were presented from 10-8 to 10-2 dilutions for monomolecular odors including (a) 

2-butanone, (b) trans-2-hexenal, (c) 2-heptanone and (d) pentyl acetate. Mean +/- SEM 

of the LFP response is computed across all recordings. Data are averaged across all 

recording locations, and SEM is computed across flies.  
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Next, we wanted to determine how LFP amplitude varies across different recording 

locations. To do this, we separated the data in Figure 6.1 based on the recording 

location along the third antennal segment including proximal, medial and distal to the 

second segment of the antennae (Figure 6.2A-C, respectively). All data represent the 

average peak LFP across flies. The peak was computed as the maximum deflection 

within the 500ms odor delivery window. Proximal recording locations resulted in the 

largest peak (Figure 6.2A) LFP deflection compared to medial (Figure 6.2B) and distal  

(Figure 6.2C) for 2-butanone, 2-heptanone and pentyl acetate. The peak magnitude 

decreased as the recording location was moved further along the third antennal segment 

for these three odors. In contrast, trans-2-hexenal recruited the largest peak deflection 

for medial recording locations (Figure 6.2B), followed by distal (Figure 6.2C), and finally 

the lowest detected LFP magnitude at proximal locations (Figure 6.2B). In general, each 

recording location produced greater peak deflections consistently across odor 

concentrations with a few exceptions (i.e. pentyl acetate 10-4 peak magnitudes were 

greater medially than proximally). Overall, the differences between recording sites are 

notably different between proximal and distal locations yet comparable between proximal 

and medial conditions. This data suggests that using proximal or medial locations may 

suffice for an estimate of total LFP, and these locations can be used to directly compare 

evoked LFP across a range of odors. We note that there is a population of ORNs 

strongly selective for 2-butanone that are located on the palp, and the antennal 

recordings are an underestimation of the total LFP recruited. It is likely the other 

odorants are also activating palp ORNs, but we suspect that 2-butanone-evoked LFPs 

may be underestimated to a larger extent than the rest of the stimulus panel.  
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Figure 6.2: Peak LFP vs. odor concentration across different recording locations 

LFP was recorded in the third antennal segment across (a) proximal, (b) medial and (c) 

distal recording locations relative to the second antennal segment of the fly. Peak LFP 

was quantified from the raw LFP amplitude and averaged across flies for each recording 

location. Plotted is average peak LFP +/- SEM computed across flies.  
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We combined data by averaging across all recording locations and plotted concentration 

curves for each odor. We extracted both the peak deflection (Figure 6.3A) and the 

average LFP (Figure 6.3B). The peak LFP was calculated as done previously for Figure 

6.2, and the average LFP was computed across the 500ms stimulus window as well. 

Our goal with this analysis was to determine whether the results differed depending on 

which metric was used to quantify total LFP activity. Overall, we find that both analysis 

methods capture the same trends in LFP activity across odor concentrations. For 

instance, pentyl acetate recruits the most LFP at high concentrations including 10-3 and 

10-2. Interestingly, 2-butanone, 2-heptanone and pentyl acetate all recruit nearly zero 

mV of LFP activity from concentrations of 10-8 to 10-4 (Figure 6.3). In contrast, trans-2-

hexenal recruits around 1-2mV of LFP activity at concentrations as low as 10-7 (Figure 

6.3). The peak LFP metric tends to capture higher voltage values (Figure 6.3 A) than 

average LFP (Figure 6.3 B) partly due to the observation that LFP tapers across the 

stimulus-evoked window (Figure 6.1). Either value is an accurate and sound metric to 

use when assessing odor-evoked LFP responses. 
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Figure 6.3: Isointense odor tuning curves averaged across locations 

(a) Peak and (b) average LFP deflection computed across recording locations for 2-

butanone (red), trans-2-hexenal (blue), 2-heptanone (purple) and pentyl acetate (dark 

yellow). Solvent (paraffin oil) responses are plotted in black. Mean +/- SEM. 

In summary, data from this chapter is intended to serve as a reference for future work 

seeking isointense odors. We find that proximal and medial recording locations capture 

most of the signal, and we suggest that future LFP measurements can include just  

these two locations while maintaining accuracy. Trans-2-hexenal appears to activate the 

most activity at low odor concentrations, while pentyl acetate activates the greatest 

activity of all stimuli tested. As expected, odors tend to increase exponentially with odor 

concentration, and most odors recruit noticeable LFP at concentrations of 10-5. Future 

work may focus on obtaining similar measurements from the maxillary palp for a 

complete view of combined (antennal + maxillary palp) peripheral LFP.  
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Appendix 

LED Barrel 

Figures A.1 - A.2 

I provide a detailed circuit diagram and overview of the LED barrel I built. I used this 

barrel to evoke light responses in Or7a>Chrimson and Or42a>Chrimson flies in Chapter 

5. The barrel can be used for chronic light exposure, behavior, and fictive odor rearing, 

to name a few. Currently, there is one barrel in the Hong lab, but all parts are affordable 

and readily accessible. I list part numbers where I can should anyone be interested in 

replicating the LED barrel.  

Physiology, data acquisition and analysis 

Figures A.3 - A.10  

I show a sample of my GUIs for data collection and analysis. I provide sample raw data 

to highlight how spikes were quantified for ORNs and PNs and cell identity was 

determined. I show pictures of the recording setup used and fly preps.   
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Figure A.1: LED barrel circuit diagram 

Circuit diagram of LED rearing barrel with intensity dimmer and constant current drive. 

Input voltage from a command source is used to drive LED stimulation. The command 

voltage required is 5V, and this input can arise from an Arduino or MATLAB program. 

The stimulation can be continuous or pulse on and off. The ‘off’ stage of a stimulation 

paradigm can be programmed such that the LEDs become dimmer or completely shut 

off by varying the amount of voltage set into the circuit from 0V (completely off) to 5V 

(brightest). Additionally, the rotary dimmer can be used to pre-set a fixed stimulation 

voltage during the ‘on’ stage of stimulation. A transistor is used to drive the stimulation 

protocol. A constant current driver is used to increase the amount of current driving the 

circuit (LuxDrive by LEDdynamics, A009-D-V-2100) and this was essential to ensure the 

LEDs were performing near the factory ratings. Vin+ is a 12V DC power source. The 
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LEDs used are quad-row flexible, stick-on LEDs (SuperBright LEDS, 4NFLS-R24-24V-

CL). Each strip is connected in series along the inner perimeter of the barrel. The barrel 

is a custom-cut aluminum pipe (Metals Depot; 6 inch long, 6 inch outer diameter, 0.125 

inch thickness). The material was chosen to function as a layman’s heatsink.  
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Figure A.2: Photos of LED barrel for rearing and behavior 

The LED barrel is positioned on a platform and bread-board from Thorlabs. A clear 

plastic bottle is suggested to be used to prevent filtering light. A bird’s eye view of the 

inside of the rearing barrel is shown with LEDs off (top left) and LEDs on at an 

intermediate setting (bottom left). Below the barrel are miniature fans connected in 

series to a 12V voltage source and dimmer switch (not shown) to provide additional 

cooling if necessary. An example of a clear bottle positioned in the center of the rearing 

barrel is shown (right). The rotary dimmer controlling the intensity of the LEDs is visible 

in the bottom left corner. The final arrangement of the LED rearing set-up should be 

placed in a light-proof, well-ventilated box. The LEDs are highly efficient and should not 

over-heat over extended use. Precautions should be taken if this set-up is to be used for 

long-term light-rearing or behavior. 
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Figure A.3: MATLAB GUI interface for physiological data acquisition 

Throughout my experiments, I used a very convenient interface to trigger stimuli, acquire 

data, and visualize data. I built the GUI around the conventional data acquisition code 

used in the Hong lab on the electrophysiology computers. I found the GUI helped me 

stay organized and keep track of my experiments. E-1-1-1: Fly 1, cell 1, trial 1. t2h: 

trans-2-hexenal. 
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Figure A.4: ORN spike quantification and recording setup 

The GUI I built for spike quantification uses essentially the same methods as shown in 

Fisek, M., and Wilson, R.I., 2013). Left: Two different ORNs are shown (magenta and 

green). Raw voltage, first derivative of voltage, and extracted waveforms are plotted. I 

include features to manually remove and add missed spikes. The individual spike 

waveforms are overlaid to aid in distinguishing between different cell types in ORN 

recordings. Right top to bottom: Picture of mounted antenna (top) and palp (middle) with 

recording electrode under 50X objective. Picture of fly in 200uL pipette, coverslip is 

positioned below fly, ground electrode is inserted into the eye, stabilizing pipette is 

holding the palp, and recording pipette is inside a sensilla.  
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Figure A.5: Sample ab4 spike quantification with trans-2-hexenal stimulation 

Raw voltage: Raw voltage (mV) vs. time (seconds) of ab4 single-sensillar recording to 

trans-2-hexenal 10-4 (t2h-4). Magenta = ab4a spikes. Green = ab4b spikes. Legend 

shows total # of spikes detected per cell. Filtered: First derivative of voltage (mV/sec) vs. 

time (sec). Peak waveforms: Extracted ab4a and ab4b waveforms. Bottom: Spike 

rasters from ab4a (left) and ab4b (right) ORNs. Trans-2-hexenal is selective to ab4a 

(Or7a). 
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Figure A.6: Sample ab4 spike quantification with geosmin stimulation 

Same as in Figure A.5, but in response to geosmin 10-2 (geo; the smell of wet soil) to 

activate ab4b (Or56a) selectively. 
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Figure A.7: Sample antennal lobe dissection and view of patch-clamp recording on 

a GFP+ PN 

Top: View through a dissecting microscope objective of a typical antennal lobe prep for 

PN recordings. I removed the cuicle and exposed the brain. The antennae are tucked 

under a stainless steel foil and the antennal nerves can be seen extending towards the 

brain. Most of my PhD work involved GFP-targeted patch-clamp recordings of individual 

cells in the fruit fly brain. The cells are around 5-10 micrometers in diameter, and the 

recording pipette has roughly a one micrometer diameter. Bottom: The same view as 

above, but with GFP visible on the electrophysiology rig. I carefully targeted my 

recordings towards PNs that express GFP. An individual PN is shown in the dotted white 

circle.   
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Figure A.8: Sample recording from a DL5 PN 

Top: Output figure after a data acquisition trial of a current clamp recording showing 

current injected (green), raw voltage traces (purple) and odor pulse (cyan). Bottom: Cell 

input resistance is plotted in real-time following every trial to monitor recording quality. 

Trans-2-hexenal is used as one of the diagnostic odors to determine cell identity during 

an experiment.  
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Figure A.9: Validating PN identity using biocytin 

The cell in Figure A.8 was confirmed after experimentation using histology. Our internal  

pipette solution contains biocytin, and this dye permeates into the cell during a 

recording. We confirm cell identity by staining biocytin with a conjugated Streptavidin 

secondary antibody. We then visualize fluorescence signal in the targeted glomerulus. 

Top: CD8-GFP is in green, biocytin is in red, and nc82 neuropil is in magenta. While our 

fly line labels a few PNs, we see biocytin expression in only one glomerulus from our 

recording. We use existing maps of the antennal lobe to identify the glomerulus. In this 

case, it is DL5 (white arrow). Bottom left to right: Overlay of CD8-GFP (green) with 

biocytin (red). DL5 glomerulus is the overlay of green and red, which becomes yellow in 

the merged stack. Overlay of biocytin (green) with nc82 (magenta) shows the DL5 

glomerulus overlaid in white. Scale bar 20µm. 
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Figure A.10: Quantifying odor-evoked spikes in PNs  

Top: Expanded scale of voltage response showing that spikes can be quantified in PNs.  

A red line is plotted above each identified spike. Bottom: Raw trace on a standard time 

scale used for the example above.  
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