
Data Complexity in Machine Learning

and

Novel Classification Algorithms

Thesis by

Ling Li

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2006

(Defended May 4, 2006)

ii

c© 2006

Ling Li

All Rights Reserved

iii

Acknowledgments

I owe a great debt of gratitude to many people who have helped make the research

work in this thesis possible.

First and foremost, I thank my advisor, Dr. Yaser Abu-Mostafa, for his guidance,

support, and encouragement throughout my years at Caltech. I am also grateful for

his wisdom, understanding, and friendship for almost everything in life.

It has been quite a pleasure working in the Learning Systems Group with my

fellow members, Amrit Pratap and Hsuan-Tien Lin. I have enjoyed many valuable

discussions, especially those taking place during the conferences. It is also with great

appreciation that I mention my friends in the Vision Group, Marco Andreetto, Anelia

Angelova, Claudio Fanti, Alex Holub, Pierre Moreels, and Dr. Pietro Perona. With

their expertise, they have provided many helpful suggestions and opinions.

I appreciate the efforts of my thesis committee, Dr. Yaser Abu-Mostafa, Dr. Steven

Low, Dr. Robert McEliece, and Dr. Pietro Perona, for their time reviewing the thesis.

I also thank Dr. Leonard Schulman for spending time with me on my research.

My special gratitude goes to Lucinda Acosta and Dr. Alexander Nicholson, simply

for being so helpful in many aspects of my life and research. I also owe a lot to

Dr. Amir Atiya, Dr. Malik Magdon-Ismail, Dr. Alcherio Martinoli, and Dr. Joseph

Sill for numerous career suggestions.

Finally, I thank my family, especially my wife Xin, for their love and support.

iv

Abstract

This thesis summarizes four of my research projects in machine learning. One of them

is on a theoretical challenge of defining and exploring complexity measures for data

sets; the others are about new and improved classification algorithms.

We first investigate the role of data complexity in the context of binary classi-

fication problems. The universal data complexity is defined for a data set as the

Kolmogorov complexity of the mapping enforced by that data set. It is closely re-

lated to several existing principles used in machine learning such as Occam’s razor,

the minimum description length, and the Bayesian approach. We demonstrate the

application of the data complexity in two learning problems, data decomposition

and data pruning. In data decomposition, we illustrate that a data set is best ap-

proximated by its principal subsets which are Pareto optimal with respect to the

complexity and the set size. In data pruning, we show that outliers usually have

high complexity contributions, and propose methods for estimating the complexity

contribution. Experiments were carried out with a practical complexity measure on

several toy problems.

We then propose a family of novel learning algorithms to directly minimize the

0/1 loss for perceptrons. A perceptron is a linear threshold classifier that separates

examples with a hyperplane. Unlike most perceptron learning algorithms, which

require smooth cost functions, our algorithms directly minimize the 0/1 loss, and

usually achieve the lowest training error compared with other algorithms. The al-

gorithms are also computationally efficient. Such advantages make them favorable

for both standalone use and ensemble learning, on problems that are not linearly

separable. Experiments show that our algorithms work very well with AdaBoost.

v

We also study ensemble methods that aggregate many base hypotheses in order

to achieve better performance. AdaBoost is one such method for binary classification

problems. The superior out-of-sample performance of AdaBoost has been attributed

to the fact that it minimizes a cost function based on the margin, in that it can be

viewed as a special case of AnyBoost, an abstract gradient descent algorithm. We

provide a more sophisticated abstract boosting algorithm, CGBoost, based on con-

jugate gradient in function space. When the AdaBoost exponential cost function is

optimized, CGBoost generally yields much lower cost and training error but higher

test error, which implies that the exponential cost is vulnerable to overfitting. With

the optimization power of CGBoost, we can adopt more “regularized” cost functions

that have better out-of-sample performance but are difficult to optimize. Our experi-

ments demonstrate that CGBoost generally outperforms AnyBoost in cost reduction.

With suitable cost functions, CGBoost can have better out-of-sample performance.

A multiclass classification problem can be reduced to a collection of binary prob-

lems with the aid of a coding matrix. The quality of the final solution, which is an

ensemble of base classifiers learned on the binary problems, is affected by both the

performance of the base learner and the error-correcting ability of the coding matrix.

A coding matrix with strong error-correcting ability may not be overall optimal if

the binary problems are too hard for the base learner. Thus a trade-off between

error-correcting and base learning should be sought. In this paper, we propose a

new multiclass boosting algorithm that modifies the coding matrix according to the

learning ability of the base learner. We show experimentally that our algorithm

is very efficient in optimizing the multiclass margin cost, and outperforms existing

multiclass algorithms such as AdaBoost.ECC and one-vs-one. The improvement is

especially significant when the base learner is not very powerful.

vi

Contents

Acknowledgments iii

Abstract iv

1 Data Complexity in Machine Learning 1

1.1 Introduction . 1

1.2 Learning Systems . 4

1.3 Data Complexity . 5

1.3.1 Kolmogorov Complexity and Universal Distribution 6

1.3.2 Universal Data Complexity 8

1.3.3 Data Complexity with Learning Models 11

1.3.4 Practical Measures . 14

1.3.5 Related Work . 17

1.4 Data Decomposition . 18

1.4.1 Complexity-Error Plots . 18

1.4.2 Principal Points and Principal Subsets 21

1.4.3 Toy Problems . 23

1.4.4 Discussion . 26

1.4.5 Related Work . 29

1.5 Data Pruning . 30

1.5.1 Rightmost Segment . 31

1.5.2 Complexity Contribution . 34

1.5.3 Experiments . 38

1.5.4 Discussion . 41

vii

1.5.5 Related Work . 42

1.6 Conclusion . 43

1.A Principal Sets . 44

2 Perceptron Learning with Random Coordinate Descent 48

2.1 Introduction . 48

2.2 Related Work . 51

2.3 Random Coordinate Descent . 54

2.3.1 Finding Optimal Descent Step 55

2.3.2 Choosing Descent Directions 57

2.3.3 Variants of RCD . 59

2.4 Experiments . 60

2.4.1 Comparing Variants of RCD 61

2.4.2 Comparing with Other Algorithms 62

2.4.3 Ensembles of Perceptrons . 65

2.4.4 AdaBoost with Perceptrons 66

2.5 Conclusion . 68

3 CGBoost: Conjugate Gradient in Function Space 69

3.1 Introduction . 69

3.2 CGBoost . 71

3.2.1 AnyBoost: Gradient Descent 71

3.2.2 CGBoost: Conjugate Gradient 72

3.2.3 CGBoost with Margin Cost Functions 74

3.3 Cost Functions . 75

3.3.1 AdaBoost Exponential Cost 76

3.3.2 Bisigmoid Cost . 77

3.4 Experimental Results . 78

3.5 Conclusions . 79

viii

4 Multiclass Boosting with Repartitioning 81

4.1 Introduction . 81

4.2 AdaBoost.ECC and Multiclass Cost 83

4.3 AdaBoost.ECC with Repartitioning 88

4.4 Experiments . 90

4.5 Conclusion . 95

Bibliography 97

ix

List of Algorithms

2.1 The pocket algorithm with ratchet . 52

2.2 The averaged-perceptron algorithm . 53

2.3 The update procedure for random coordinate descent 57

2.4 The simpler update procedure for random coordinate descent 58

2.5 Random coordinate descent algorithm for perceptrons 59

2.6 The randomized averaged-perceptron algorithm with reweighting . . . 66

3.1 CGBoost: Conjugate gradient in function space 73

3.2 CGBoost with margin cost functions 75

4.1 AdaBoost.ECC . 84

4.2 AdaBoost.ERP . 90

x

List of Figures

1.1 Subsets of examples from the concentric disks problem 19

1.2 Fictional complexity-error plots . 20

1.3 A fictional complexity-error plot with principal points circled 22

1.4 Clusters of random examples of the concentric disks problem 23

1.5 The complexity-error plot of the concentric disks problem 24

1.6 Three selected principal subsets of the concentric disks problem 24

1.7 Clusters of random examples of the Yin-Yang problem 25

1.8 The complexity-error plot of the Yin-Yang problem 26

1.9 Selected principal subsets of the Yin-Yang problem 27

1.10 A fictional complexity-error path . 31

1.11 Average complexity contribution of the Yin-Yang data 39

1.12 ROC curves of two estimators on the Yin-Yang data 40

1.13 Fingerprint plot of the Yin-Yang data with the average contribution . . 41

1.14 All principal subsets of the concentric disks problem 45

1.15 Principal subsets of the Yin-Yang data, part I 46

1.16 Principal subsets of the Yin-Yang data, part II 47

2.1 Training errors of several RCD algorithms (pima) 61

2.2 Training and test errors of the averaged-perceptron algorithm (pima) . 63

2.3 Training and test errors of several perceptron algorithms (pima) 63

2.4 Training and test errors of several perceptron algorithms (yinyang) . . . 65

3.1 Performance of CGBoost and AnyBoost with different cost functions . 77

3.2 Three margin cost functions . 77

xi

4.1 The tangram with seven pieces . 86

4.2 AdaBoost.ECC cost in the tangram experiment 87

4.3 Dominating partitions in the tangram experiment 87

4.4 Multiclass boosting with the decision stump (letter and pendigits) . . . 93

4.5 Multiclass boosting with the perceptron (letter) 94

xii

List of Tables

2.1 Several margin-based cost functions . 54

2.2 Training errors of several perceptron algorithms 64

2.3 Test errors of several perceptron algorithms 64

2.4 Test errors and number of iterations of AdaBoost-perceptron 67

3.1 Average final cost ratio of CGBoost to AnyBoost 79

3.2 Average test errors of CGBoost and AnyBoost 80

4.1 Multiclass problems . 91

4.2 Test errors with the decision stump as the base learner 92

4.3 Test errors with the perceptron as the base learner 94

4.4 Test errors with the AdaBoost-stump as the base learner 95

4.5 Test errors with the SVM-perceptron as the base learner 95

1

Chapter 1

Data Complexity in Machine
Learning

We investigate the role of data complexity in the context of binary classification

problems. The universal data complexity is defined for a data set as the Kolmogorov

complexity of the mapping enforced by the data set. It is closely related to several

existing principles used in machine learning such as Occam’s razor, the minimum de-

scription length, and the Bayesian approach. The data complexity can also be defined

based on a learning model, which is more realistic for applications. We demonstrate

the application of the data complexity in two learning problems, data decomposi-

tion and data pruning. In data decomposition, we illustrate that a data set is best

approximated by its principal subsets which are Pareto optimal with respect to the

complexity and the set size. In data pruning, we show that outliers usually have

high complexity contributions, and propose methods for estimating the complexity

contribution. Since in practice we have to approximate the ideal data complexity

measures, we also discuss the impact of such approximations.

1.1 Introduction

Machine learning is about pattern1 extraction. A typical example is an image classifier

that automatically tells the existence of some specific object category, say cars, in an

image. The classifier would be constructed based on a training set of labeled image

1In a very general sense, the word “pattern” here means hypothesis, rule, or structure.

2

examples. It is relatively easy for computers to “memorize” all the examples, but in

order for the classifier to also be able to correctly label images that have not been

seen so far, meaningful patterns about images in general and the object category

in particular should be learned. The problem is “what kind of patterns should be

extracted?”

Occam’s razor states that entities should not be multiplied beyond necessity. In

other words, if presented with multiple hypotheses that have indifferent predictions

on the training set, one should select the simplest hypothesis. This preference for

simpler hypotheses is actually incorporated, explicitly or implicitly, in many ma-

chine learning systems (see for example Quinlan, 1986; Rissanen, 1978; Vapnik, 1999).

Blumer et al. (1987) showed theoretically that, under very general assumptions, Oc-

cam’s razor produces hypotheses that can correctly predict unseen examples with

high probability. Although experimental evidence was found against the utility of

Occam’s razor (Webb, 1996), it is still generally believed that the bias towards sim-

pler hypotheses is justified for real-world problems (Schmidhuber, 1997). Following

this line, one should look for patterns that are consistent with the examples, and

simple.

But what exactly does “simple” mean? The Kolmogorov complexity (Li and

Vitányi, 1997) provides a universal measure for the “simplicity” or complexity of

patterns. It says that a pattern is simple if it can be generated by a short program or if

it can be compressed, which essentially means that the pattern has some “regularity”

in it. The Kolmogorov complexity is also closely related to the so-called universal

probability distribution (Li and Vitányi, 1997; Solomonoff, 2003), which is able to

approximate any computable distributions. The universal distribution assigns high

probabilities to simple patterns, and thus implicitly prefers simple hypotheses.

While most research efforts integrating Occam’s razor in machine learning systems

have been focused on the simplicity of hypotheses, the other equivalently important

part in learning systems, training sets, has received much less attention in the com-

plexity aspect, probably because training sets are given instead of learned. However,

except for some side information such as hints (Abu-Mostafa, 1995), the training set

3

is the sole information source about the underlying learning problem. Analyzing the

complexity of the training set, as we will do in this paper, can actually reveal much

useful information about the underlying problem.

This paper is a summary of our initial work on data complexity in machine learn-

ing. We focus on binary classification problems, which are briefly introduced in Sec-

tion 1.2. We define the data complexity of a training set essentially as the Kolmogorov

complexity of the mapping relationship enforced by the set. Any hypothesis that is

consistent with the training set would have a program length larger than or equal to

that complexity value. The properties of the data complexity and its relationship to

some related work are discussed in Section 1.3.

By studying in Section 1.4 the data complexity of every subset of the training set,

one would find that some subsets are Pareto optimal with respect to the complexity

and the size. We call these subsets the principal subsets. The full training set is

best approximated by the principal subsets at different complexity levels, analogous

to the way that a signal is best approximated by the partial sums of its Fourier

series. Examples not included in a principal subset are regarded as outliers at the

corresponding complexity level. Thus if the decomposition of the training set is

known, a learning algorithm with a complexity budget can just train on a proper

principal subset to avoid outliers.

However, locating principal subsets is usually computationally infeasible. Thus in

Section 1.5 we discuss efficient ways to identify some principal subsets.

Similar to the Kolmogorov complexity, the ideal data complexity measures are

either incomputable or infeasible for practical applications. Some practical complexity

measure that approximates the ideal ones has to be used. Thus we also discuss the

impact of such approximation to our proposed concepts and methods. For instance, a

data pruning strategy based on linear regression is proposed in Section 1.5 for better

robustness.

Some related work is also briefly reviewed at the end of every section. Conclusion

and future work can be found in Section 1.6.

4

1.2 Learning Systems

In this section, we briefly introduce some concepts and notations in machine learning,

especially for binary classification problems.

We assume that there exists an unknown function f , called the target function or

simply the target, which is a deterministic mapping from the input space X to the

output space Y . We focus on binary classification problems in which Y = {0, 1}. An

example or observation (denoted by z) is in the form of an input-output pair (x, y),

where the input x is generated independently from an unknown probability distribu-

tion PX , and the output y is computed via y = f(x). A data set or training set is a

set of examples, and is usually denoted by D = {zn = (xn, yn)}Nn=1 with N = |D|, the

size of D.

A hypothesis is also a mapping from X to Y . For classification problems, we

usually define the out-of-sample error of a hypothesis h as the expected error rate,

π(h) = E
x∼PX

Jh(x) 6= f(x)K,

where the Boolean test J·K is 1 if the condition is true and 0 otherwise. The goal of

learning is to choose a hypothesis that has a low out-of-sample error. The set of all

candidate hypotheses (denoted by H) is called the learning model or hypothesis class,

and usually consists of some parameterized functions.

Since both the distribution PX and the target function f are unknown, the out-of-

sample error is inaccessible, and the only information we can access is often limited

in the training set D. Thus, instead of looking for a hypothesis h with a low out-of-

sample error, a learning algorithm may try to find an h that minimizes the number

of errors on the training set,

eD(h) =
N∑

n=1

Jh(xn) 6= ynK.

A hypothesis is said to replicate or be consistent with the training set if it has zero

errors on the training set.

5

However, having less errors on the training set by itself cannot guarantee a low out-

of-sample error. For example, a lookup table that simply memorizes all the training

examples has no ability to generalize on unseen inputs. Such an overfitting situation

is usually caused by endowing the learning model with too much complexity or flex-

ibility. Many techniques such as early stopping and regularization were proposed to

avoid overfitting by carefully controlling the hypothesis complexity.

The Bayes rule states that the most probable hypothesis h given the training set D

is the one that has high likelihood Pr {D | h} and prior probability Pr {h},

Pr {h | D} =
Pr {D | h}Pr {h}

Pr {D}
. (1.1)

Having less errors on the training set makes a high likelihood, but it does not promise

a high prior probability. Regularizing the hypothesis complexity is actually an appli-

cation of Occam’s razor, since we believe simple hypotheses should have high prior

probabilities.

The problem of finding a generalizing hypothesis becomes harder when the exam-

ples contain noise. Due to various reasons, an example may be contaminated in the

input and/or the output. When considering only binary classification problems, we

take a simple view about the noise—we say an example (x, y) is an outlier or noisy

if y = 1− f(x), no matter whether the actual noise is in the input or the output.

1.3 Data Complexity

In this section, we investigate the complexity of a data set in the context of machine

learning. The Kolmogorov complexity and related theories (Li and Vitányi, 1997) are

briefly reviewed at the beginning, with a focus on things most relevant to machine

learning. Our complexity measures for a data set are then defined, and their prop-

erties are discussed. Since the ideal complexity measures are either incomputable

or infeasible for practical applications, we also examine practical complexity mea-

sures that approximate the ideal ones. At the end of this section, other efforts in

6

quantifying the complexity of a data set are briefly reviewed and compared.

1.3.1 Kolmogorov Complexity and Universal Distribution

Consider a universal Turing machine U with input alphabet {0, 1} and tape alpha-

bet {0, 1, }, where is the blank symbol. A binary string p is a (prefix-free) program

for the Turing machine U if and only if U reads the entire string and halts. For a

program p, we use |p| to denote its length in bits, and U(p) the output of p executed

on the Turing machine U . It is possible to have an input string x on an auxiliary

tape. In that case, the output of a program p is denoted as U(p, x).

Given a universal Turing machine U , the Kolmogorov complexity measures the

algorithmic complexity of an arbitrary binary string s by the length of the shortest

program that outputs s on U . That is, the (prefix) Kolmogorov complexity KU(s) is

defined as

KU(s) = min {|p| : U(p) = s} . (1.2)

KU(s) can be regarded as the length of the shortest description or encoding for the

string s on the Turing machine U . Since universal Turing machines can simulate each

other, the choice of U in (1.2) would only affect the Kolmogorov complexity by at

most a constant that only depends on U . Thus we can drop the U and denote the

Kolmogorov complexity by K(s).

The conditional Kolmogorov complexity K(s | x) is defined as the length of the

shortest program that outputs s given the input string x on the auxiliary tape. That

is,

K(s | x) = min {|p| : U(p, x) = s} . (1.3)

In other words, the conditional Kolmogorov complexity measures how many addi-

tional bits of information are required to generate s given that x is already known.

The Kolmogorov complexity is a special case of the conditional one where x is empty.

For an arbitrary binary string s, there are many programs for a Turing machine U

that output s. If we assume a program p is randomly picked with probability 2−|p|,

7

the probability that a random program would output s is

PU(s) =
∑

p : U(p)=s

2−|p|. (1.4)

The sum of PU of all binary strings is clearly bounded by 1 since no program can be

the prefix of another. The U can also be dropped since the choice of U in (1.4) only

affects the probability by no more than a constant factor independent of the string.

This partly justifies why P is named the universal distribution. The other reason is

that the universal distribution P dominates any computable distributions by up to a

multiplicative constant, which makes P the universal prior.

The Kolmogorov complexity and the universal distribution are closely related,

since we have K(s) ≈ − log P (s) and P (s) ≈ 2−K(s). The approximation is within a

constant additive or multiplicative factor independent of s. This is intuitive since the

shortest program for s gives the most weight in (1.4).

The Bayes rule for learning (1.1) can be rewritten as

− log Pr {h | D} = − log Pr {D | h} − log Pr {h}+ log Pr {D} . (1.5)

The most probable hypothesis h given the training setD would minimize− log Pr {h | D}.

Let’s assume for now a hypothesis is also an encoded binary string. With the uni-

versal prior in place, − log Pr {h} is roughly the code length for the hypothesis h,

and − log Pr {D | h} is in general the minimal description length of D given h. This

leads to the minimum description length (MDL) principle (Rissanen, 1978) which is

a formalization of Occam’s razor: the best hypothesis for a given data set is the one

that minimizes the sum of the code length of the hypothesis and the code length of

the data set when encoded by the hypothesis.

Both the Kolmogorov complexity and the universal distribution are incomputable.

8

1.3.2 Universal Data Complexity

As we have seen, for an arbitrary string, the Kolmogorov complexity K(s) is a uni-

versal measure for the amount of information needed to replicate s, and 2−K(s) is a

universal prior probability of s. In machine learning, we care about similar perspec-

tives: the amount of information needed to approximate a target function, and the

prior distribution of target functions. Since a training set is usually the only infor-

mation source about the target, we are thus interested in the amount of information

needed to replicate a training set, and the prior distribution of training sets. In short,

we want a complexity measure for a training set.

Unlike the Kolmogorov complexity of a string for which the exact replication of

the string is mandatory, one special essence about “replicating” a training set is that

the exact values of the inputs and outputs of examples do not matter. What we really

want to replicate is the input-output relationship enforced by the training set, since

this is where the target function is involved. The unknown input distribution PX

might be important for some machine learning problems. However, given the input

part of the training examples, it is also irrelevant to our task.

At first glance the conditional Kolmogorov complexity may seem suitable for mea-

suring the complexity of replicating a training set. Say for D = {(xn, yn)}Nn=1, we

collect the inputs and the outputs of all the examples, and apply the conditional

Kolmogorov complexity to the outputs given the inputs, i.e.,

K(y1, y2, . . . , yN | x1,x2, . . . ,xN).

This conditional complexity, as defined in (1.3), finds the shortest program that takes

as a whole all the inputs and generates as a whole all the outputs. In other words, the

shortest program that maps all the inputs to all the outputs. The target function,

if encoded properly as a program, can serve the mapping with an extra loop to take

care of the N inputs, as will any hypotheses that can replicate the training set.

However, with this measure one has to assume some permutation of the examples.

This is not only undesired but also detrimental in that some “clever” permutations

9

would ruin the purpose of reflecting the amount of information in approximating the

target. Say there are N0 examples that have 0 as the output. With permutations that

put examples having output 0 before those having output 1, the shortest program

would probably just encode the numbers N0 and (N − N0), and print a string of

N0 zeros and (N − N0) ones. The conditional Kolmogorov complexity would be

approximately log N0 + log(N − N0) + O(1), no matter how complicated the target

might be.

Taking into consideration that the order of the examples should not play a role in

the complexity measure, we define the data complexity as

Definition 1.1: Given a fixed universal Turing machine U , the data complexity of a

data set D is

CU(D) = min {|p| : ∀ (x, y) ∈ D, U(p,x) = y} .

That is, the data complexity CU(D) is the length of the shortest program that can

correctly map every input in the data set D to its corresponding output.

Similar to the Kolmogorov complexity, the choice of the Turing machine can only

affect the data complexity up to a constant. Formally, we have this invariance theo-

rem.

Theorem 1.1: For two universal Turing machines U1 and U2, there exists a con-

stant c that only depends on U1 and U2, such that for any data set D,

|CU1(D)− CU2(D)| ≤ c. (1.6)

Proof: Let 〈U1〉 be the encoding of U1 on U2. Any program p for U1 can be trans-

formed to a program 〈U1〉 p for U2. Thus CU2(D) ≤ CU1(D) + |〈U1〉|. Let 〈U2〉 be the

encoding of U2 on U1. By symmetry, we have CU1(D) ≤ CU2(D) + |〈U2〉|. So (1.6)

holds for c = max {|〈U1〉| , |〈U2〉|}.

Thus the data complexity is also universal, and we can drop the U and simply write

C(D).

Unfortunately, the data complexity is also not a computable function.

10

Lemma 1.1: C(D) ≤ K(D) + c where c is a constant independent of D.

Proof: Let p be the shortest program that outputs D. Consider another program p′

that takes an input x, calls p to generate D on an auxiliary tape, searches x within

the inputs of examples on the auxiliary tape, and returns the corresponding output

if x is found and 0 otherwise. The program p′ adds a “shell” with constant length c

to the program p, and c is independent of D. Thus C(D) ≤ |p′| = |p|+ c = K(D)+ c.

Lemma 1.2: The data complexity C(·) is not upper bounded.

Proof: Consider any target function f : {0, 1}m → {0, 1} that accepts m-bit binary

strings as inputs. A data set including all possible m-bit binary inputs and their

outputs from the target f would fully decide the mapping from {0, 1}m to {0, 1}.

Since the Kolmogorov complexity of such mapping (for all integer m) is not upper

bounded (Abu-Mostafa, 1988b,a), neither is C(·).

Theorem 1.2: The data complexity C(·) is incomputable.

Proof: We show this by contradiction. Assume there is a program p to com-

pute C(D) for any data set D. Consider another program p′ that accepts an in-

teger input l, enumerates over all data sets, uses p to compute the data complexity

for each data set, and stops and returns the first data set that has complexity at

least l. Due to Lemma 1.2, the program p′ will always halt. Denote the returned

data set as Dl. Since the program p′ together with the input l can generate Dl, we

have K(Dl) ≤ |p′| + K(l). By Lemma 1.1 and the fact that C(Dl) ≥ l, we obtain

l ≤ K(l) + |p′|+ c, where c is the constant in Lemma 1.1. This is contradictory for l

large enough since we know K(l) is upper bounded by log l plus some constant.

With fixed inputs, a universal prior distribution can be defined on all the possible

outputs, just similar to the universal prior distribution. However, the details will not

be discussed in this paper.

11

1.3.3 Data Complexity with Learning Models

Using our notions in machine learning, the universal data complexity is the length of

the shortest hypothesis that replicates the data set, given that the learning model is

the set of all programs. However, it is not common that the learning model includes

all possible programs. For a limited set of hypotheses, we can also define the data

complexity.

Definition 1.2: Given a learning model H, the data complexity of a data set D is

CH(D) = min {|h| : h ∈ H and ∀ (x, y) ∈ D, h(x) = y} .

This definition is almost the same as Definition 1.1, except that program p has now

been replaced with hypothesis h ∈ H. An implicit assumption is that there is a way to

measure the “program length” or complexity of any hypothesis in the learning model.

Here we assume an encoding scheme for the learning model that maps a hypothesis

to a prefix-free binary codeword. For example, the encoding scheme for feed-forward

neural networks (Bishop, 1995) can be the concatenation of the number of network

layers, the number of neurons in every layer, and the weights of every neuron, with

each number represented by a self-delimited binary string. We also assume that a

program pH, called the interpreter for the learning model H, can take a codeword

and emulate the encoded hypothesis. Thus |h|, the complexity of the hypothesis h, is

defined as the length of its codeword.2 It is easy to see that CU(D) ≤ |pH|+ CH(D).

The data complexity as Definition 1.2 is in general not universal, i.e., it depends

on the learning model and the encoding scheme, since full simulation of one learning

model by another is not always possible. Even with the same learning model, two

encoding schemes could differ in a way that it is impossible to bound the difference

in the codeword lengths of the same hypothesis.

Definition 1.2 requires that some hypothesis in the learning model can replicate

the data set. This is probably reasonable if the target is in the learning model and the

2This also includes the possibility of using a universal Turing machine as the interpreter and
directly mapping a hypothesis to a program. In this case, |h| is the program length.

12

data set is also noiseless. What if the target is not in the learning model or there is

noise in the data set? A data set might not be consistent with any of the hypotheses,

and thus the data complexity is not defined for it. Actually in the case of noisy data

sets, even if there are hypotheses that are consistent, it is not desirable to use their

complexity as the data complexity. The reason will be clear later in this subsection.

In summary, we need another definition that can take care of replication errors.

Consider a hypothesis h that is consistent with all the examples except (x1, y1).

We can construct a program p by memorizing input x1 with a lookup table entry:

p = if input is x1, then output y1; else run the interpreter pH on h.

Excluding the length of the interpreter, which is common to all hypotheses, the

program p is just a little longer than h, but can perfectly replicate the data set.

Actually, the increase of the program length is the length of the “if . . . then . . . else”

structure plus the Kolmogorov complexity of x1 and y1. For a hypothesis that has

more than one error, several lookup table entries can be used.3 If we assume the

increase in the program length is a constant for every entry, we have

Definition 1.3: Given a learning model H and a proper positive constant λ, the data

complexity (with a lookup table) of a data set D is

CH,λ(D) = min {|h|+ λeD(h) : h ∈ H} .

The constant λ can be seen as the equivalent complexity of implementing one lookup

table entry with the learning model. It can also be regarded as the complexity cost

of one error. Definition 1.2 does not allow any errors, so the data complexity CH(·)

is actually CH,∞(·).
3There are other general ways to advise that h fails to replicate the example (x1, y1). Here is

another one:

p = let y = h(input); if input is in {x1}, then output 1− y; else output y.

When there are several erroneous examples, {x1} can be replaced with the set of the inputs of the
erroneous examples. If only very basic operations are allowed for constructing p from h, all these
ways lead to the same Definition 1.3 of the data complexity.

13

For positive and finite λ, the data complexity CH,λ(D) is actually computable.

This is because the complexity is bounded by min {|h| : h ∈ H} + λ |D|, and we can

enumerate all codewords that are not longer than that bound.4

Given a learning model H and an encoding scheme, which determines the hypoth-

esis complexity, we consider a prior of hypotheses where Pr {h} = 2−|h|. Let’s also

assume a Bernoulli noise model where the probability of an example being noisy is ε.

This gives the likelihood as

Pr {D | h} = εeD(h)(1− ε)N−eD(h) = (1− ε)N
(
ε−1 − 1

)−eD(h)
.

And according to (1.5), we have

− log Pr {h | D} = |h|+ eD(h) · log
(
ε−1 − 1

)
+ c,

where c = log Pr {D} − N log(1 − ε) is a constant independent of the hypothesis h.

To maximize the posterior probability Pr {h | D} or to minimize − log Pr {h | D}

is equivalent to minimize the sum of the hypothesis complexity and the error cost

for CH,λ(D), with λ = log (ε−1 − 1). And the case of CH(·) or CH,∞(·) corresponds

to ε = 0. The Bayesian point of view justifies the use of λ, and also emphasizes that

the encoding scheme should be based on a proper prior of hypotheses.

We also have this straightforward property:

Theorem 1.3: CH,λ(D) ≤ CH,λ(D ∪D′) ≤ CH,λ(D) + λ |D′|.

The first inequality says that the data complexity is increasing when more examples

are added. The second inequality states that the increase of the complexity is at

most λ |D′|, the cost of treating all the added examples with lookup table entries.

The increase would be less if some of the added examples can be replicated by the

shortest hypothesis for D, or can form patterns which are shorter than lookup table

entries. More will be discussed on these two cases when the complexity-error path is

4Well, we also assume that every hypothesis, simulated by the interpreter, always halts. This is
true for any reasonable learning models.

14

introduced (Definition 1.6 on page 31).

For the rest of the paper, we will mostly work with Definition 1.2 and Defini-

tion 1.3, and we will use just C(·) for CH,λ(·) or CU(·) when the meaning is clear from

the context. Because lookup table entries are an integrated part of Definition 1.3, we

will also simply use “hypothesis” to mean a hypothesis together with lookup table en-

tries. Thus all the three data complexity definitions can be unified as the length of the

shortest consistent hypothesis. We use hD to denote one of the shortest hypotheses

that can replicate D.

We will also assume that any mechanisms for memorizing individual examples,

no matter whether it is built-in or implemented as lookup table entries as in Def-

inition 1.3, would cost the same complexity as a lookup table. In other words, if

an example cannot help build patterns for other examples, adding it to a set would

increase the data complexity by λ.

1.3.4 Practical Measures

Although we now have three data complexity measures, none of them is feasible in

practice. The universal data complexity CU(·) is incomputable. The data complexity

defined on a learning model H, CH(·), may be computable for some H, but finding a

hypothesis that is consistent with the data set is usually NP-complete, not to mention

finding a shortest one. The data complexity with a lookup table CH,λ(·) seems the

most promising to be used in practice. But it also suffers from the exponential time

complexity in searching for a shortest hypothesis (with errors). We need to have some

approximate complexity measure for practical applications.

A reasonable approximation to CH(·) or CH,λ(·) can be obtained as a byproduct of

the learning procedure. A learning algorithm usually minimizes the number of errors

plus some regularization term over the learning model, and the regularization term

is usually meant to approximate the complexity (encoding length) of a hypothesis.

Thus some information about the learned hypothesis can be used as a practical data

complexity measure. For example, the number of different literals used to construct

15

a mixed DNF-CNF rule was used by Gamberger and Lavrač (1997). In the following

text, we will deduce another practical data complexity measure based on the hard-

margin support vector machine.

The hard-margin support vector machine (SVM) (Vapnik, 1999) is a learning

algorithm that finds an optimal hyperplane to separate the training examples with

maximal minimum margin. A hyperplane is defined as 〈w,x〉− b = 0, where w is the

weight vector and b is the bias. Assuming the training set is linearly separable, SVM

solves the optimization problem below:

min
w,b

‖w‖2 ,

subject to yn (〈w,xn〉 − b) ≥ 1, n = 1, . . . , N. (1.7)

The dual problem is

min
α

1

2

N∑
i=1

N∑
j=1

αiαjyiyj 〈xi,xj〉 −
N∑

n=1

αn,

subject to αn ≥ 0, n = 1, . . . , N,
N∑

n=1

ynαn = 0.

The optimal weight vector, given the optimal α∗ for the dual problem, is a linear

combination of the training input vectors,

w∗ =
N∑

n=1

ynα
∗
nxn. (1.8)

Note that only the so-called support vectors, for which the equality in (1.7) is achieved,

can have nonzero coefficients α∗
n in (1.8).

For a linearly nonseparable training set, the kernel trick (Aizerman et al., 1964)

is used to map input vectors to a high-dimensional space and an optimal separating

hyperplane can be found there. Denote the inner product in the mapped space of two

inputs x and x′ as K(x,x′), the so-called kernel operation. The dual problem with

16

the kernel trick uses the kernel operation instead of the normal inner product, and the

optimal hypothesis (a hyperplane in the mapped space but no longer a hyperplane in

the input space) becomes

N∑
n=1

ynα
∗
nK(xn,x)− b∗ = 0.

Since the mapped space is usually high-dimensional or even infinite-dimensional,

it is reasonable to describe the SVM hypothesis by listing the support vectors and

their coefficients. Thus the descriptive length is approximately (Mc1 +c2 +c3), where

M is the number of support vectors, c1 is the average Kolmogorov complexity of

describing an input vector and a coefficient, c2 is the Kolmogorov complexity of the

bias, and c3 is the descriptive length of the summation and the kernel operation.

Since c3 is a common part for all SVM hypotheses using the same kernel, and c2 is

relatively small compared to c1, we can use just the number of support vectors, M ,

as the complexity measure for SVM hypotheses.

With some minor conditions, SVM with powerful kernels such as the stump ker-

nel and the perceptron kernel (Lin and Li, 2005a,b) can always perfectly replicate a

training set. Thus the measure based on SVM with such kernels fit well with Defi-

nition 1.2. In the experiments for this paper, we used the perceptron kernel, which

usually has comparable learning performance to the popular Gaussian kernel, but do

not require a parameter selection (Lin and Li, 2005b).

Note that SVM can also be trained incrementally (Cauwenberghs and Poggio,

2001). That is, if new examples are added after an SVM has already been learned on

the training set, the hyperplane can be updated to accommodate the new examples

in an efficient way. Such capability of incrementally computing the complexity can

be quite useful in some applications, such as data pruning (Subsection 1.5.2) and

deviation detection (Arning et al., 1996).

17

1.3.5 Related Work

Our data complexity definitions share some similarity to the randomness of decision

problems. Abu-Mostafa (1988b,a) discussed decision problems where the input space

of the target function was finite, and defined the randomness of a problem based on the

Kolmogorov complexity of the target’s truth table. The randomness can also be based

on the length of the shortest program that implements the target function, which

is essentially equivalent to the previous definition (Abu-Mostafa, 1988a). However,

in our settings, the input space is infinite and the training set includes only finite

examples; hence an entire truth table is infeasible. Thus the second way, which we

have adopted, seems to be the only reasonable definition.

Definition 1.3, the data complexity with a lookup table, is also similar to the two-

part code length of the minimum description length (MDL) principle (Rissanen, 1978;

Grünwald, 2005). The two-part scheme explains the data via encoding a hypothesis

for the data, and then encoding the data with the help of the hypothesis. The latter

part usually takes care of the discrepancy information between the hypothesis and

the data, just like in Definition 1.3. However, in our definition, the inputs of the data

are not encoded, and we explicitly ignore the order of examples when considering the

discrepancy.

The data complexity is also conceptually aligned with the CLCH value (complexity

of the least complex correct hypothesis) proposed by Gamberger and Lavrač (1997).

They required the complexity measure for hypotheses, which is the program length

in this paper, to be “reasonable.” That is, for two hypotheses, h1 and h2, where h2

is obtained by “conjunctively or disjunctively adding conditions” to h1, h1 should

have no larger complexity than h2. However, this intuitively correct requirement is

actually troublesome. For instance, h1 recognizes all points in a fixed hexagon, and

h2 recognizes all points in a fixed triangle enclosed in that hexagon. Although h2

can be obtained by adding more constraints on h1, it is actually simpler than h1.

Besides, their definition of a set being “saturated” and the corresponding “saturation

test” depend heavily on the training set being large enough to represent the target

18

function, which might not be practical.

Except the usual complexity measures based on logic clauses, not many practical

complexity measures have been studied. Schmidhuber (1997) implemented a variant

of the general universal search (Levin, 1973) to find a neural network with a close-

to-minimal Levin complexity. Although the implementation is only feasible on very

simple toy problems, his experiments still showed that such search, favoring short

hypotheses, led to excellent generalization performance, which reinforced the validity

of Occam’s razor in learning problems.

Wolpert and Macready (1999) proposed a very interesting complexity measure

called self-dissimilarity. They observed that many complex systems tend to exhibit

different structural patterns over different space and time scale. Thus the degrees of

self-dissimilarity between the various scales with which a system is examined consti-

tute a complexity signature of that system. It is mainly a complexity measure for a

system, or a target function in our context, which can provide information at different

scales, and is not straightforward to be applied to a data set.

1.4 Data Decomposition

In this section, we discuss the issue of approximating a data set with its subsets.

Compared with the full data set, a subset is in general simpler (lower data complex-

ity) but less informative (fewer examples). In addition, different subsets can form

different patterns, and thus lead to different combinations of the data complexity and

the subset size. We show that the principal subsets, defined later in this section,

have the Pareto optimal combinations and best approximate the full set at differ-

ent complexity levels. The concept of the principal subsets is also useful for data

pruning (Section 1.5).

1.4.1 Complexity-Error Plots

When there is only one class of examples, the data complexity is a small constant.

Only with examples from both classes can more interesting patterns be formed. Given

19

(a) (b) (c) (d)

Figure 1.1: Subsets of examples from the concentric disks problem: (a) all examples;
(b) examples from the two outer rings; (c) examples within the middle disk; (d) all
“×” examples

a training set D, different subsets of D may form different patterns, and thus lead to

different complexity values.

Figure 1.1(a) shows a toy learning problem with a target consisting of three con-

centric disks. The target is depicted with the “white” and “gray” backgrounds in

the plot—examples on the white background are classified as class 1, and examples

on the gray background are classified as 0. The examples in the plot were randomly

generated and are marked with “+” and “×” according to their class labels. The

other three plots in Figure 1.1 illustrate how different subsets of the examples can

be explained by hypotheses of different complexity levels, and thus may have differ-

ent complexity values. We also see that different subsets approximate the full set to

different degrees.

For a given data set D, we are interested in all possible combinations of the data

complexity and the approximation accuracy of its subsets. Consider the following set

of pairs:

Ω1 = {(C(S), |D| − |S|) : S ⊆ D} . (1.9)

Here we use |D| − |S| as the approximation error of S.5 The set Ω1 can be regarded

as a plot of points on the 2-D plane. For each subset S, there is a point in Ω1

with the horizontal axis giving the data complexity and the vertical axis showing the

approximation error. Such a plot is called the subset-based complexity-error plot (see

5If we regard S as a lookup table, the error of the lookup table on the full set is |D| − |S|.

20

0

10

20

30

40

50

Complexity C(S)

|D
| −

 |S
|

0

10

20

30

40

50

Complexity |g|

Nu
m

be
r o

f e
rr

or
s

Figure 1.2: Fictional complexity-error plots for (left) Ω1 and (right) Ω2

Figure 1.2).

We can also consider another set built upon programs or hypotheses:

Ω2 = {(|h| , eD(h)) : h ∈ H} .

This set, Ω2, has a point for each hypothesis h in the learning model, depicting the

complexity of the hypothesis and the number of errors on the training set. It is

called the hypothesis-based complexity-error plot. Note that the hypothesis h and the

learning modelH shall agree with the data complexity measure C(·) used in (1.9). For

example, if the data complexity measure allows lookup tables, the learning model H

would then includes hypotheses appended with lookup tables of all sizes.

The two plots in Figure 1.2 demonstrate for a fictional training set how the two

sets of pairs look. Here are some observations for the two complexity-error plots:

1. For each point in Ω1, there is at least one subset S associated with it. The point

associated with S also shows the complexity of hS .

2. There is a subset Dh associated with each hypothesis h,

Dh = {(x, y) : (x, y) ∈ D and h(x) = y} .

And eD(h) = |D| − |Dh|. Thus the point associated with h also shows the

21

approximation error of the subset Dh.

3. The leftmost points in both plots are with subsets of only one class, since that

gives the lowest complexity.

4. The points on the horizontal axis are associated with the full set.

5. For any point in Ω1, there is a point in Ω2 that has the same complexity value

but a smaller or equal error value. This is because |DhS | ≥ |S| when S ⊆ D.

6. For any point in Ω2, there is a point in Ω1 that has the same error value but a

smaller or equal complexity value. This is because C(Dh) ≤ |h|.

1.4.2 Principal Points and Principal Subsets

The two complexity-error plots depict all the possible combinations of the data com-

plexity and the approximation error for subsets of the training set. In general, if one

subset or hypothesis gets more examples correct, it would be more complex. How-

ever, with the same data complexity, some subsets may contain more examples than

others; and with the same size, some subsets may be simpler than others. Ideally, to

approximate the full set, we want a subset to have the most examples but the least

complexity.

With respect to the data complexity and the approximation error, some points in

a complexity-error plot are optimal in the sense that no other points are better than

them. They are called the principal points :

Definition 1.4: A point (c, e) in a complexity-error plot is a principal point if and

only if we have for any other point (c′, e′) in the plot, c′ > c or e′ > e.

In other words, a principal point is a Pareto optimal point, since there are no other

points that have one coordinate smaller without making the other coordinate larger.

Although the subset-based complexity-error plot looks quite different from the

hypothesis-based complexity-error plot, they actually have the same set of principal

points.

22

0

10

20

30

40

50

Complexity C(S)

|D
| −

 |S
|

Figure 1.3: A fictional complexity-error plot with principal points circled

Theorem 1.4: The subset-based and hypothesis-based complexity-error plots have the

same set of principal points.

Proof: The proof utilizes the observations in the previous subsection that relates

points in these two plots. For any principal point (c, e) ∈ Ω1, there is a point (c2, e2) ∈

Ω2 with c2 = c and e2 ≤ e. If (c2, e2) is not a principal point in Ω2, we can find a

point (c′2, e
′
2) ∈ Ω2 such that c′2 ≤ c2, e′2 ≤ e2, and at least one inequality would be

strict; otherwise let c′2 = c2 and e′2 = e2. For (c′2, e
′
2), there is a point (c′, e′) ∈ Ω1

with c′ ≤ c′2 and e′ = e′2. Overall we have c′ ≤ c and e′ ≤ e, and either e2 < e or

(c2, e2) not being a principal point will make at least one inequality be strict, which

contradicts the assumption that (c, e) is a principal point in Ω1. Thus e = e2 and

(c, e) is also a principal point in Ω2. Likewise we can also prove that any principal

point of Ω2 is also a principal point in Ω1.

Figure 1.3 shows the principal points in the subset-based complexity-error plot

from the last fictional problem. Note that each principal point is associated with at

least one subset and one hypothesis. Each principal point represents some optimal

trade-off between the data complexity and the size. To increase the size of the associ-

ated subset, we have to go to a higher complexity level; to reduce the data complexity,

we have to remove examples from the subset. Each principal point also represents

some optimal trade-off between the hypothesis complexity and the hypothesis error.

23

Figure 1.4: 15 clusters of the concentric disks problem, shown as groups of examples
connected with dotted lines

To decrease the error on the training set, a more complex hypothesis should be sought;

to use a simpler hypothesis, more errors would have to be tolerated. Thus the princi-

pal point at a given complexity level gives the optimal error level, and implicitly the

optimal subset to learn, and the optimal hypothesis to pick.

A subset associated with a principal point is called a principal subset. The above

arguments actually say that a principal subset is a best approximation to the full set

at some complexity level.

1.4.3 Toy Problems

We verify the use of the data complexity in data decomposition with two toy problems.

The practical data complexity measure is the number of support vectors in a hard-

margin SVM with the perceptron kernel (see Subsection 1.3.4).

The first toy problem is the concentric disks problem with 31 random examples

(see page 19). To have the subset-based complexity-error plot, we need to go over all

the (231 − 1) subsets and compute the data complexity for each subset. To make the

job computationally more feasible, we cluster the examples as depicted in Figure 1.4

by examples connected with dotted lines, and only examine subsets that consist of

whole clusters.6 The complexity-error plot using these 15 clusters, with principal

points circled, is shown in Figure 1.5.

6The 15 clusters in Figure 1.4 were manually chosen based on example class and distance, such
that each cluster contains only examples of the same class, and is not too close to examples of the
other class. Although this could be done by some carefully crafted algorithm, we did it manually
since the training set is small.

24

0 5 10 15 20 25
0

5

10

15

20

25

30

Number of support vectors

|D
| −

 |S
|

Figure 1.5: The complexity-error plot based on the clusters of the concentric disks
problem (Figure 1.4), with the principal points circled

(a) (0, 11) (b) (17, 3) (c) (24, 0)

Figure 1.6: Three selected principal subsets of the concentric disks problem
(complexity-error pairs are also listed)

There are 11 principal points associated with 17 principal subsets. In Figure 1.14

on page 45, we list all the 17 principal subsets, of which three selected ones are shown

in Figure 1.6. The data complexity based on SVM-perceptron and the number of

errors are also listed below the subset plots, and the white and gray background

depicts the target function. Plot (a) shows the situation where a simplest hypothesis

predicts the negative class regardless of the actual inputs. The subset is same as the

one in Figure 1.1(d) on page 19. Plot (c) is the full training set with the highest

data complexity, same as the one in Figure 1.1(a). The middle one, plot (b) or

Figure 1.1(b), gives an intermediate situation such that the two classes of examples

in the two outer rings are replicated, but the examples in the inner disk are deserted.

25

Figure 1.7: 32 clusters of the Yin-Yang problem, shown as groups of examples con-
nected with dotted lines

This implies that, at that level of complexity, examples in the inner disk should rather

be regarded as outliers than exceptions to the middle disk.

The second toy problem is about the Yin-Yang target function used by Li et al.

(2005), which is also a 2-D binary classification problem. The background colors in

Figure 1.7 depict how the Yin-Yang target classifies examples within a round plate

centered at the origin; examples out of the plate belong to the Yang (white) class

if it is in the upper half-plane. The training set consists of 100 examples randomly

picked within a circle slightly larger than the plate. Clustering is also required for

generating the complexity-error plot. Figure 1.7 also shows the 32 manually chosen

clusters. The resulted complexity-error plot, based on the practical data complexity

measure with SVM-perceptron, is show in Figure 1.8.

This time we get 25 principal points and 48 associated principal sets (see Fig-

ure 1.15 on page 46 and Figure 1.16 on page 47 for most of them). Here in Figure 1.9,

we list and organize with arrows 11 principal sets that we think are representative.

With the flow of arrows, the data complexity increases and the number of errors goes

down. The first principal subset shows a simplest hypothesis classifying any input as

the Yang (white) class. The one to the right shows a slightly more complex hypoth-

esis that seems to separate the two classes by a line. From now on, the classification

patterns fork in slightly different routes. The two subsets in the left route with points

(12, 15) and (16, 11) continue the trend to separate two classes by relatively straight

26

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

Number of support vectors

|D
| −

 |S
|

Figure 1.8: The complexity-error plot based on the clusters of the Yin-Yang problem
(Figure 1.7), with the principal points circled

boundaries, only that more examples are included. Probably due to the specific ran-

dom sample that we have as the training set, it is relatively “easier” or “cheaper”

to replicate the examples in the small white disk than those in the small gray disk.

This is reflected in both subsets in the left route. On the other hand, the hypotheses

associated with the subsets in the right route, also with points (12, 15) and (16, 11),

try to mimic the main S-shape boundary and ignore all examples in the two small

disks. This gets to an extreme situation with the fourth subset in the right route

(point (23, 7)), where all examples except the seven ones in the two small disks can

be correctly replicated. With higher complexity values, the two routes merge at sub-

sets (points (23, 7) and (29, 4) on the left) that include both examples in the small

white disk but also examples around the S-shape boundary. Finally the examples in

the small gray disk are also included.

1.4.4 Discussion

The concept of data decomposition is quite similar to approximating a signal function

with partial sums of its Fourier series expansion. Each component in the Fourier

series carries information about the original signal function at some frequency level.

And the partial sum gives the best approximation to the signal function up to some

27

(0, 47)

→

(7, 24)

↙ ↓

(12, 15) (12, 15)

↓ ↓

(16, 11) (16, 11)

↓ ↙ ↓

(23, 7) (23, 7)

↓ ↙

(29, 4)

→

(35, 3)

→

(41, 0)

Figure 1.9: Eleven selected principal subsets of the Yin-Yang problem (complexity-
error pairs are also listed)

28

frequency level. Higher precision can be obtained by adding more series components

of higher frequency levels to the partial sum, and in the limit, the sum becomes the

signal function itself.

Following this analogy, we would want to “decompose” the full data set D into

a series of “components,” denoted as δ`, which has information about the full set at

different complexity levels quantified with `. That is,

D =
∞⊎

`=1

δ`,

where
⊎

is some operation to add up the components. Although at this point we are

still unclear exactly what the components δ` are and what the operation
⊎

does, we

would expect the partial sum,

DL =
L⊎

`=1

δ`,

which should be a subset of D, to be the best approximation to D within the com-

plexity level L.

Our analysis about the complexity-error pairs of all the subsets concludes that

DL should be a principal subset. Since a smaller principal subset is not necessarily

a subset of a larger principal subset, the decomposition component δ` is in general

not a set of examples. We may consider δ` as a set of examples that should be added

and a set of examples that should be removed at the complexity level `.7 That is,

moving from one principal subset to another generally involves adding and removing

examples.

This fact also leads to the inevitable high computational complexity of locating

principal subsets. It is not straightforward to generate a new principal subset from a

known one, and to determine whether a given subset is principal, exponentially many

other subsets needed to be checked and compared. This issue will be reexamined in

7To even further generalize the data decomposition concept, we can formulate both the compo-
nent δ` and the partial sum DL as a set of input-belief pairs, where the belief replaces the original
binary output and tells how much we believe what the output should be. However, this more gen-
eralized setting is not compatible with our data complexity measures for binary classification data
sets, and will not be discussed in this paper.

29

Subsection 1.5.1. There we will see that the computational complexity is related to

the number of the complexity-error paths that contain principal points.

1.4.5 Related Work

A general consensus is that not all examples in a training set are equivalently im-

portant to learning. For instance, examples contaminated by noise are harmful to

learning. Even in cases where all the examples are noiseless, there are situations in

which we want to deal with examples differently. For instance, in cases where none of

the hypotheses can perfectly model the target, it is better to discard examples that

cannot be classified correctly by any hypothesis as they may “confuse” the learning

(Nicholson, 2002; Li et al., 2005).

There have been many different criteria to discriminate examples as different cate-

gories: consistent vs. inconsistent (Brodley and Friedl, 1999; Hodge and Austin, 2004),

easy vs. hard (Merler et al., 2004), typical vs. informative (Guyon et al., 1996), etc.

Li et al. (2005) unified some of the criteria with the concept of intrinsic margin and

group examples as typical, critical, and noisy.

The approach mentioned in this paper takes a quite different view for categorizing

examples. There are no natively good or bad examples. Examples are different

only because they demand different amount of data complexity for describing them

together with other examples. Although we usually think an example is noisy if it

demands too much complexity, the amount can be different depending on what other

examples are also included in the set. Thus an example that seems noisy at some level

of complexity, or with some subset of examples, could be very innocent at another

level of complexity or with another subset of examples.

Hammer et al. (2004) studied Pareto optimal patterns in logical analysis of data.

The preferences on patterns were deliberately picked, which is quite different from our

data complexity measures, so that a Pareto optimal pattern could be found efficiently.

Nevertheless, they also favored simpler patterns or patterns that were consistent with

more examples. Their experimental results showed that Pareto optimal patterns led

30

to superior learning performance.

The so-called function decomposition (Zupan et al., 1997, 2001) is a method that

learns the target function in terms of a hierarchy of intermediate hypotheses, which

effectively decomposes a learning problem into smaller and simpler subproblems. Al-

though the idea and approaches are quite different from data decomposition, it shares

a similar motivation for simple hypotheses. The current methods of function decom-

position are usually restricted to problems that have discrete/nominal input features.

1.5 Data Pruning

Every example in a training set carries its own piece of information about the target

function. However, if some examples are corrupted with noise, the information they

provide may be misleading. Even in cases where all the examples are noiseless, some

examples may form patterns that are too complex for hypotheses in the learning

model, and thus may still be detrimental to learning. The process of identifying and

removing such outliers and too complex examples from the training set is called data

pruning. In this section, we apply the data complexity for data pruning.

We have known that given the decomposition of a training set, it is straightforward

to select a principal subset according to a complexity budget. However, we also know

that, even with a computable practical complexity measure, it is usually prohibitively

expensive to find the decomposition. Fortunately, there are ways to approximately

identify some principal subsets with affordable computational requirements.

We first show that, with the ideal data complexity measures, outliers or too com-

plex examples can be identified efficiently. Then we show that some more robust

methods are needed for practical data complexity measures. Our methods involve a

new concept of complexity contribution and a linear regression model for estimating

the complexity contributions. The examples with high complexity contributions are

deemed as noisy for learning.

31

0

10

20

30

40

50

Complexity C(S)

|D
| −

 |S
|

Figure 1.10: A fictional complexity-error path

1.5.1 Rightmost Segment

If we start from an empty set, and gradually grow the set by adding examples from a

full set D, we observe that the set becomes more and more complex, and reveals more

and more details of D, until finally its data complexity reaches C(D). This leads to

the definitions of subset paths and complexity-error paths:

Definition 1.5: A subset path of set D is an ordered list of sets (D0,D1, . . . ,DN)

where |Dn| = n and Dn ⊂ Dn+1 for 0 ≤ n < N , and DN = D.

Definition 1.6: A complexity-error path of D is a set of pairs {(C(Dn), |D| − |Dn|)}

where 0 ≤ n ≤ N and (D0,D1, . . . ,DN) is a subset path of D.

Along a subset path, the data complexity increases and the approximation error

decreases. So the complexity-error path, if plotted on a 2-D plane, would go down

and right, like the one in Figure 1.10.

Visually, a complexity-error path consists of segments of different slopes. Say

from Dn to Dn+1, the newly added example can already be replicated by hDn , one

of the shortest hypotheses associated with Dn. This means that no new patterns

are necessary to accommodate the newly added example, and C(Dn+1) is the same

as C(Dn). Such a case is depicted as those vertical segments in Figure 1.10. If

unfortunately that is not the case, a lookup table entry may be appended and the

32

data complexity goes up by λ. This is shown as the segments of slope −λ−1. It is also

possible that some lookup table entries together can be covered by a pattern with

reduced program length, or that the new example can be accounted for with patterns

totally different from those associated with Dn. For both cases, the data complexity

increases by an amount less than λ.

A vertical segment is usually “good”—newly added examples agree with the cur-

rent hypothesis. A segment of slope −λ−1 is usually “bad”—newly added examples

may be outliers according to the current subset since they can only be memorized.

The subset-based complexity-error plot can be regarded as the collection of all

complexity-error paths of D. The principal points comprise segments from probably

more than one complexity-error path. Due to the mixing of complexity-error paths, a

segment of slope −λ−1 of the principal points may or may not imply that outliers are

added. Fortunately, the rightmost segment, as defined below, can still help identify

outliers.

Definition 1.7: Given a data set D, the rightmost segment of the principal points

consists of all (c, e) such that (c, e) is a principal point and c + λe = C(D).

In the following text, we will analyze the properties of the rightmost segment, and

show how to use them to identify outliers.

Let’s look at any shortest hypothesis for the training set D, hD. Suppose hD has

lookup table entries for a subset Db of Nb examples, and the rest part of hD can repli-

cate Dg = D\Db, the subset of D with just those Nb examples removed. Intuitively,

examples in Db are outliers since they are merely memorized, and examples in the

pruned set Dg are mostly innocent. The question is, without knowing the shortest

hypothesis hD, “can we find out the examples in Db?”

Note that according to the structure of hD, we have C(Dg) ≤ |hD| − λNb and

C(D) = |hD|. Thus Dg is on the rightmost segment, i.e., C(D) = C(Dg ∪ Db) =

C(Dg) + λNb, and removing Db from D would reduce the data complexity by λ |Db|.

This is due to the Lemma 1.3 below. Furthermore, removing any subset D′
b ⊆ Db

from D would reduce the data complexity by λ |D′
b|.

33

Lemma 1.3: Assume C(Dg ∪ Db) ≥ C(Dg) + λ |Db|. We have for any D′
b ⊆ Db,

C(Dg ∪ D′
b) = C(Dg) + λ |D′

b|.

Proof: From Theorem 1.3 on page 13, C(Dg ∪ D′
b) ≤ C(Dg) + λ |D′

b|, and

C(Dg ∪ Db) = C(Dg ∪ D′
b ∪ (Db\D′

b)) ≤ C(Dg ∪ D′
b) + λ (|Db| − |D′

b|) .

With the assumption C(Dg ∪Db) ≥ C(Dg) + λ |Db|, we have C(Dg ∪D′
b) ≥ C(Dg) +

λ |D′
b|.

Geometrically, the lemma says that D\D′
b would always be on the rightmost segment

if D′
b ⊆ Db.

This also assures that removing any example z ∈ Db from D would reduce the

data complexity by λ. But the inverse is not always true. That is, given an example z

such that C(D\{z}) = C(D)− λ, z might not be in Db. This is because there might

be several shortest hypotheses hD with different lookup table entries and subsets Db.

An example in one such Db causes the data complexity to decrease by λ, but may not

be in another Db. With that said, we can still prove that an example that reduces

the data complexity by λ can only be from Db associated with some hD.

Theorem 1.5: Assume D = Dg ∪ Db, Dg ∩ Db = ∅, the following propositions are

equivalent:

1. There is a shortest hypothesis hD for set D that has lookup table entries for

examples in Db;

2. C(D) = C(Dg) + λ |Db|;

3. For any subset D′
b ⊆ Db, C(Dg ∪ D′

b) = C(Dg) + λ |D′
b|.

Proof: We have seen 1 ⇒ 2 and 2 ⇒ 3. Here we prove 3 ⇒ 1. Pick any shortest

hypothesis hDg for Dg. For any subset D′
b, add lookup table entries for examples

in D′
b to hDg and we get hDg∪D′b , with

∣∣hDg∪D′b

∣∣ =
∣∣hDg

∣∣+ λ |D′
b| = C(Dg ∪D′

b). Thus

hDg∪D′b is a shortest hypothesis for Dg∪D′
b. We let D′

b = Db to get the proposition 1.

34

Thus to identify Db, we may try all subsets to see which satisfies proposition 2.

Alternatively, we can also use a greedy method to remove examples from D as long

as the reduction of the complexity is λ.

1.5.2 Complexity Contribution

From our analysis of the rightmost segment, removing an example from a training set

would reduce the data complexity by some amount, and a large amount of complexity

reduction (λ) implies that the removed example is an outlier. For convenience, define

the complexity contribution of an examples as

Definition 1.8: Given a data set D and an example z ∈ D, the complexity contri-

bution of z to D is

γD(z) = C(D)− C(D\{z}).

The greedy method introduced in the last subsection just repeatedly removes exam-

ples with complexity contribution equal λ.

However, this strategy does not work with practical data complexity measures.

Usually, an approximation of the data complexity is based on a learning model and

uses the descriptive length of a hypothesis learned from the training set. It is usually

not minimal even within the learning model. In addition, the approximation is also

noisy in the sense that data sets of similar data complexity may have quite different

approximation values.

For the purpose of a more robust strategy for data pruning, we may look at the

complexity contribution of an example to more than one data set. If most of the con-

tributions are high, the example is likely to be an outlier; if most of the contributions

are close to zero, the example is probably noiseless. Thus, for instance, we can use

the average complexity contribution over different data sets as an indication of the

outliers. In general, we can use a linear regression model for robustly estimating the

complexity contributions.

Assume that for every training example zn there is a real number γ̃n that is the

expected complexity contribution of zn. To be more formal, we assume that, if a

35

subset S of D has zn ∈ S and s1 < |S| ≤ s2, we have

C(S)− C(S\ {zn}) = γ̃n + ε,

where 0 ≤ s1 < s2 ≤ N are two size constants, and ε is a random variable with

mean 0 representing the measure noise. In general, if S ′ ⊂ S ⊆ D, s1 ≤ |S ′|, and

|S| ≤ s2, we assume

C(S)− C(S ′) =
∑

zn∈S\S′
γ̃n + ε.

With this assumption, we can set up linear equations of γ̃n’s with different pairs

of subsets S and S ′. If we just pick subset pairs in random, we would roughly need

two data complexity measurings for each linear equation. To save the number of data

complexity measurings, we try to reuse the subsets for setting up the equations. One

way is to construct equations with subset paths, as detailed below.

Denote s = s2−s1. For an N -permutation (i1, i2, . . . , iN), define Sn = {zi1 , zi2 , . . . , zin}

for 0 ≤ n ≤ N , which form a subset path (S0,S1, . . . ,SN). After getting the

data complexity values for the subsets Ss1 until Ss2 , we construct s linear equations

for 1 ≤ m ≤ s,

C(Ss1+m)− C(Ss1) =

s1+m∑
n=s1+1

γ̃in + ε.

Thus we only need (s + 1) data complexity measurings for s linear equations. And if

the practical measure supports incremental measuring, such as the number of support

vectors in an SVM (Subsection 1.3.4), we have extra computational savings. With

many different N -permutations, we would have many such equations. Let’s write all

the equations in vector form

∆ = Pγ̃ + ε, (1.10)

where ∆ is a column vector of complexity difference between subsets, P is a matrix

and each row of P is an indication vector of which examples causes the complexity

difference, γ̃ is a column vector [γ̃1, γ̃2, . . . , γ̃N]T , and ε is also a column vector of cor-

responding noise. For instance, the vector form of the s linear equations constructed

36

from the permutation (1, 2, . . . , N) is

C(Ss1+1)− C(Ss1)

C(Ss1+2)− C(Ss1)
...

C(Ss2)− C(Ss1)

 =

s1 columns︷ ︸︸ ︷
0 . . . 0 1 0 0 . . . 0

(N − s2) columns︷ ︸︸ ︷
0 . . . 0

0 . . . 0 1 1 0 . . . 0 0 . . . 0
...

0 . . . 0 1 1 1 . . . 1 0 . . . 0

γ̃1

γ̃2

...

γ̃N

+ ε. (1.11)

For a different permutation, the columns of the indication matrix shuffle according

to the permutation, and the rest is pretty much the same. The actual vector ∆ and

matrix P contain many block matrices from different permutations.

If we further assume some joint distribution of the measure noise ε, we may locate

the optimal γ̃n for these equations. For example, if we assume the noise is normally

distributed with Σ = E
[
εεT

]
as the covariance matrix, the best linear unbiased

estimator for (1.10) is

γ̃ =
(
PTΣ−1P

)−1
PTΣ−1∆. (1.12)

Notice that for a specific covariance matrix, the estimate is as simple as the average

complexity contribution:

Theorem 1.6: Assume the measure noise is independent across different permuta-

tions, and has covariance matrix

Σ1 =

1 1 · · · 1

1 2 · · · 2
...

...
. . .

...

1 2 · · · s

σ2

within equations of a same permutation. Thus the covariance matrix Σ for all the

equations would be a block diagonal matrix with diagonal blocks being Σ1. The best

linear unbiased estimator (1.12) is actually

γ̃n = E [C(Si+1)− C(Si) | s1 ≤ |Si| < s2] , (1.13)

37

where, for a particular permutation, Si is the largest in the subset path generated by the

permutation that does not include zn, and the expectation is over all the permutations

used in constructing the equations such that Si has the proper size.

Proof: Let’s first focus on equations constructed from a same permutation. Without

loss of generality, we take those in (1.11) for our proof. Define an s-by-s square matrix

A1 =

1

−1 1
.

−1 1

σ−1.

Left-multiplying both sides of (1.11) with A1, we get

C(Ss1+1)− C(Ss1)

C(Ss1+2)− C(Ss1+1)
...

C(Ss2)− C(Ss2−1)

 =

s1 columns︷ ︸︸ ︷
0 . . . 0 1 0 0 . . . 0

(N − s2) columns︷ ︸︸ ︷
0 . . . 0

0 . . . 0 0 1 0 . . . 0 0 . . . 0
...

0 . . . 0 0 0 . . . 0 1 0 . . . 0

γ̃1

γ̃2

...

γ̃N

+ A1ε.

It is easily verified that the noise covariance, A1Σ1A
T
1 , is now the identity matrix. The

optimal solution for this permutation only would be γ̃s1+m = C(Ss1+m)−C(Ss1+m−1)

for 1 ≤ m ≤ s. Consider a block diagonal matrix A that has as many diagonal blocks

as the permutations, and each diagonal block is A1. Left-multiplying both sides of

(1.10) with A transforms all the equations into some form of

C(Si+1)− C(Si) = γ̃n + ε′,

with Si+1 = Si ∪ {zn} and the noise covariance matrix being the identity matrix.

Thus the optimal linear solution would be γ̃n equal the average of such complexity

contributions. Since our construction only allows Si to have a size between s1 and s2,

we have the estimator (1.13).

38

Such assumption about the noise covariance matrix is somewhere between a uni-

form assumption and a fully-correlated assumption. The uniform assumption regards

the noise in each equation as independent and of the same magnitude. The fully-

correlated assumption fine-tunes the model to assume that, associated with each γ̃n,

there is a random noise variable with mean 0 and variance σ2, and the noise of the

equation is the sum of the random noise variables associated with γ̃n’s in the equation.

The noise covariance of two equations would then be proportional to the number of

common γ̃n’s in these two equations. That is, Σ = PPT σ2. However, since usually

there are more equations than unknown variables, Σ is singular, which gives trou-

ble in solving the equations via (1.12). Although the actual noise covariance would

depend many factors including the practical complexity measure, it happens that

the assumption that leads to average complexity contribution (1.13) works well in

practice, as we will see in the next subsection.

1.5.3 Experiments

We test with the Yin-Yang target the concept of complexity contribution and the

methods for estimating the complexity contribution. The experimental settings are

similar to those used by Li et al. (2005). That is, a data set of size 400 is randomly

generated, and the outputs of 40 examples (the last 10% indices) are further flipped

as injected outliers.

We first verify that outliers would have higher complexity contributions on average

than noiseless examples. To do so, we pick a random subset path and compute the

complexity increase along the path. This is repeated many times and the complexity

increase is averaged. Figure 1.11 shows such average complexity contribution of noisy

and noiseless examples versus the subset size. Here are some observations:

• Overall, the 40 noisy examples have apparently much higher average complexity

contribution than the 360 noiseless ones.

• When the subset size is really small (≤ 6), the noisy and the noiseless examples

are indistinguishable with respect to complexity contribution. There has to be

39

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

Subset size

Co
m

pl
ex

ity
 c

on
tri

bu
tio

n

noisy
noiseless

Figure 1.11: Average complexity contribution of the noisy and the noiseless examples
in the Yin-Yang data

more information about the target in order to tell which examples are noisy and

which are not.

• The average contribution of the noiseless examples becomes smaller when the

subset gets larger. This is because when the subset has more details about

the target function, newly added noiseless examples would have less chance to

increase the data complexity.

• The average contribution of the noisy examples becomes larger when the subset

gets larger, but it also seems converging to some value around 2.5. The reason

of the contribution increase is related to that of the contribution decrease of the

noiseless examples. When there is more correct information about the target

function, an outlier would cause more complexity increase than it would when

there is less information.

• The two contribution curves have noticeable bends at the right ends. These are

artifacts due to the lack of distinct subsets when the subset size is close to the

full size.

One way to use the complexity contribution for data pruning is to set a threshold θ

and claim any example zn noisy if γ̃n ≥ θ. For the uniform variance assumption and

40

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

1
−

fa
ls

e
ne

ga
tiv

e
ra

te
uniform assumption (AUC: 0.97111)
average contribution (AUC: 0.97278)

Figure 1.12: ROC curves of two estimators on the Yin-Yang data

the assumption leading to the average complexity contribution, which were discussed

in Subsection 1.5.2, we set s1 = 50, s2 = 400, and solve equations created from

200,000 random permutations. We plot their receiver operating characteristic (ROC)

in Figure 1.12. The ROC summarizes how the false negative rate (portion of noisy

examples being claimed as noiseless) changes with the false positive rate (portion of

noiseless examples being claimed as noisy) as the threshold θ varies. Both methods

achieve large area under the ROC curve (AUC), a criterion to compare different ROC

curves.

Similar to the data categorization proposed by Li et al. (2005), we also group all

the training examples into three categories: typical, critical, and noisy. With two

ad hoc thresholds θ1 = 2
3

and θ2 = 1, the typical examples are those with γ̃n <

θ1, and we hope they are actually noiseless and far from the class boundary; the

noisy examples are those with γ̃n > θ2, and we hope they are actually outliers; the

critical examples are those have γ̃n between θ1 and θ2, and we hope they are close

to the class boundary. Figure 1.13 is the fingerprint plot which visually shows the

categorization. The examples are positioned according to their signed distance to

the decision boundary on the vertical axis and their index n in the training set on

the horizontal axis. Critical and noisy examples are shown as empty circles and

filled squares, respectively. We can see that most of the outliers (last 10% of the

41

0 50 100 150 200 250 300 350 400
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Example index

In
tri

ns
ic

 v
al

ue

Figure 1.13: Fingerprint plot of the Yin-Yang data with the average contribution: ·
typical; ◦ critical; � noisy

examples) are categorized as noisy, and some examples around the zero distance

value are categorized as critical. We also have some imperfections—some of the

critical examples are categorized as outliers and vice versa.

1.5.4 Discussion

With the estimated complexity contribution γ̃n, we hope that a noiseless example

would have a relatively low contribution and an outlier would have a relatively high

contribution. However, whether an outlier can be distinguished using the complexity

contribution heavily depends on the choice of the subsets used in the linear equations

as well as many other factors.

For instance, the smaller Yin-Yang data set (Figure 1.7 on page 25) contains

several examples in the small gray disk. It is reflected in the selected principal subsets

(Figure 1.9 on page 27, also Figure 1.16 on page 47) that those examples are included

in principal subsets of only relatively high data complexity (≥ 35). Since those

examples constitute a small percentage of the training set, a random subset of size

smaller than, say, half of the full training set size, has a small probability to have

most of those examples, and would usually only have patterns shown in principal

subsets with data complexity lower than 35. Thus those examples would have large

42

complexity contributions with high probability. For similar reasons, if some outliers

happen to be in the small gray disk of the Yin-Yang target, with small subsets they

may be regarded as innocent.

It is still unclear what conditions can assure that an outlier would have a high

average complexity contribution.

1.5.5 Related Work

The complexity contribution quantifies to what degree an example may affect learning

with respect to the data complexity. It is similar to the information gain concept

behind informative examples used by Guyon et al. (1996) for outlier detection.

Some other outlier detection methods also exploit practical data complexity mea-

sures. Gamberger and Lavrač (1997) used a saturation test which is quite similar to

our greedy method. Arning et al. (1996) looked for the greatest reduction in com-

plexity by removing a subset of examples, which can be approximately explained by

the proposition 2 in Theorem 1.5.

Statistics community has studied outlier detection extensively (Barnett and Lewis,

1994). They usually assume an underlying statistical model and define outliers based

on discordance tests, many of which can be described as some simple distance-based

check (Knorr and Ng, 1997).

Learning algorithms can also be used for data pruning. For example, Angelova

et al. (2005) combined many classifiers with naive Bayes learning for identifying trou-

blesome examples. Some learning algorithms, such as boosting, can produce informa-

tion about the hardness of an example as a byproduct, which can be used for outlier

detection (Merler et al., 2004; Li et al., 2005).

Angiulli et al. (2004) encoded background knowledge in the form of a first-order

logic theory and outliers were defined as examples for which no logical justification can

be found in the theory. They also showed that such outlier detection was intrinsically

intractable due to its high computational complexity.

43

1.6 Conclusion

We have defined three ideal complexity measures for a data set. The universal data

complexity is the length of the shortest program that can replicate the data set. The

data complexity for a learning model finds a consistent hypothesis with the shortest

encoding. And the data complexity with a lookup table also takes hypothesis errors

into consideration. All these complexity measures are closely related to learning

principles such as Occam’s razor.

We have demonstrated the usage of the data complexity in two machine learn-

ing problems, data decomposition and data pruning. In data decomposition, we have

illustrated that the principal subsets best approximate the full data set; in data prun-

ing, we have proved that outliers are examples with high complexity contributions.

We have also proposed and tested methods for estimating the complexity contribu-

tion.

Underneath the concept and the applications of the data complexity is the desire

for generalization, the central issue of machine learning. Theoretically, if the correct

prior and the exact noise model are known, we can encode the hypotheses and the

errors in a way such that the shortest hypothesis generalizes the best. If the prior

is unknown, the universal prior is a good guess for any computable priors, and the

shortest hypothesis would still have high chance to generalize well. In practice, we

also make a reasonable guess on the prior since practical approximations are usually

designed with Occam’s razor in mind.

Many approaches in this paper require intensive computational efforts, which is

inevitable when the shortest hypothesis is sought. However, for practical applications,

more computationally feasible solutions should be studied.

Acknowledgments

We wish to thank Xin Yu, Amrit Pratap, and Hsuan-Tien Lin for great suggestions

and helpful comments. This work was partially supported by the Caltech SISL Grad-

44

uate Fellowship.

1.A Principal Sets

Here we collect all the principal subsets of the concentric disks problem (Figure 1.14)

and almost all the principal subsets of the Yin-Yang problem (Figures 1.15 and 1.16),

which are described in Subsection 1.4.3. The corresponding complexity-error plots

can be found in Figure 1.5 on page 24 and Figure 1.8 on page 26. For the Yin-Yang

problem, each of the principal points (11, 16), (15, 12), and (16, 11) has 4 or more

associated principal subsets, but only two are shown for space reason. The number

of support vectors in SVM-perceptron is the practical data complexity measure used.

45

(0, 11) (7, 10) (8, 9) (8, 9)

(9, 7) (11, 6) (14, 5) (14, 5)

(14, 5) (14, 5) (15, 4) (17, 3)

(19, 2) (23, 1) (23, 1) (23, 1)

(24, 0)

Figure 1.14: All principal subsets of the concentric disks problem (complexity-error
pairs are also listed)

46

(0, 47) (4, 43) (5, 34) (5, 34)

(6, 30) (6, 30) (7, 24) (8, 22)

(9, 20) (10, 17) (11, 16) (11, 16)

(12, 15) (12, 15) (12, 15) (13, 14)

(13, 14) (14, 13) (15, 12) (15, 12)

Figure 1.15: Principal subsets of the Yin-Yang data, part I

47

(16, 11) (16, 11) (17, 10) (19, 9)

(19, 9) (19, 9) (21, 8) (21, 8)

(23, 7) (23, 7) (23, 7) (24, 6)

(28, 5) (28, 5) (29, 4) (35, 3)

(35, 3) (36, 2) (40, 1) (41, 0)

Figure 1.16: Principal subsets of the Yin-Yang data, part II

48

Chapter 2

Perceptron Learning with Random
Coordinate Descent

A perceptron is a linear threshold classifier that separates examples with a hyperplane.

It is perhaps the simplest learning model that is used standalone. In this paper, we

propose a family of random coordinate descent algorithms for perceptron learning on

binary classification problems. Unlike most perceptron learning algorithms, which

require smooth cost functions, our algorithms directly minimize the training error,

and usually achieve the lowest training error compared with other algorithms. The

algorithms are also computationally efficient. Such advantages make them favorable

for both standalone use and ensemble learning, on problems that are not linearly

separable. Experiments show that our algorithms work very well with AdaBoost,

and achieve the lowest test errors for half of the data sets.

2.1 Introduction

The perceptron was first introduced by Rosenblatt (1958) as a probabilistic model for

information processing in the brain. Presented with an input vector x, a perceptron

calculates a weighted sum of x, the inner product of x and its weight vector w. If

the sum is above some threshold, the perceptron outputs 1; otherwise it outputs −1.

Since a perceptron separates examples with a hyperplane in the input space, it

is only capable of learning linearly separable problems.1 For problems with more

1In this paper, phrases “linearly separable” and “separable” are interchangeable, and “nonsepa-

49

complex patterns, layers of perceptrons have to be connected to form an artificial

neural network, and the back-propagation algorithm can be used for learning (Bishop,

1995).

If perfect learning is not required (i.e., nonzero training error is acceptable),

the perceptron, as a standalone learning model, is actually quite useful. For in-

stance, Shavlik et al. (1991) reported that the perceptron performed quite well under

some qualifications, “hardly distinguishable from the more complicated learning al-

gorithms” such as the feed-forward neural networks. Compared to another simple

linear classifier, the decision stump (Holte, 1993), the perceptron is almost as fast

to compute, but is more powerful in the sense that it can combine different input

features.

Given a data set of examples labeled 1 or −1, the task of perceptron learning

usually means finding a hyperplane that separates the examples of different labels

with minimal error. When the data set is separable, the task is relatively easy and

many algorithms can find the separating hyperplane. For example, the perceptron

learning rule (Rosenblatt, 1962) is guaranteed to converge to a separating solution

in a finite number of iterations. The support vector machine (SVM) can even find

the optimal separating hyperplane that maximizes the minimal margin, by solving a

quadratic programming problem (Vapnik, 1998).

However, these algorithms behave poorly when the data set is nonseparable, a

more common situation in real-world problems. The perceptron learning rule will not

converge, and is very unstable in the sense that the hyperplane might change from an

optimal one to a worst-possible one in just one trial (Gallant, 1990). The quadratic

programming problem of the hard-margin SVM is unsolvable; even if the soft-margin

SVM is used, the solution may be heavily affected by examples that have the most

negative margins, and may not be optimal for training error. It is also arguable which

criterion, the margin or the training error, is more suitable for nonseparable problems.

There are many other perceptron learning algorithms, some of which will be intro-

duced briefly in the next section. Although those algorithms appear quite different,

rable” means “not linearly separable.”

50

they usually optimize some cost functions that are differentiable. The training error,

although a very simple cost function, has never been minimized directly by those

algorithms.

In this paper, we introduce a family of new perceptron learning algorithms that

directly minimizes the training error. The essential idea is random coordinate de-

scent, i.e., iteratively optimizing the cost function along randomly picked descent

directions. An efficient update procedure is used to exactly minimize the training er-

ror along the picked direction. Both the randomness in the direction picking and the

exact minimization of the training error help escape from local minima, and thus our

algorithms usually achieve the best training error compared with other perceptron

learning algorithms.

Although many real-world data sets are simple (Holte, 1993), it is by no means

true that a single perceptron is complex enough for all problems. Sometimes more

sophisticated learning models are required, and they may be constructed based on

perceptrons. For example, the kernel trick used in SVM (Vapnik, 1998) allows the

input features to be mapped into some high-dimensional space and a perceptron to be

learned there. Another approach is to aggregate many perceptrons together to form

a voted ensemble. Our algorithms can work with the kernel trick, but this will be the

topic of another paper. In this paper, we explore AdaBoost (Freund and Schapire,

1996) to construct ensembles of perceptrons. We will show that our algorithms, unlike

many other algorithms that are not good at reducing the training error, work very

well with AdaBoost.

The paper is organized as follows: Some of the existing perceptron learning algo-

rithms are briefly discussed in Section 2.2. Our random coordinate descent algorithms

will be introduced in Section 2.3. We throughly compare our algorithms with several

other perceptron learning algorithms in Section 2.4, either as standalone learners, or

working with AdaBoost. We then conclude in Section 2.5.

51

2.2 Related Work

We assume that the input space is a subset of Rm. A perceptron has a weight vector w

and a bias term b (i.e., the negative threshold). For simplicity, we use the notations

w = (w0, w1, . . . , wm) and w0 = b to avoid treating w and b separately. Each input

vector x is also a real-valued vector in Rm+1, with x0 = 1. The perceptron labels the

input vector x by computing the inner product between w and x,

g(x) = sign (〈w,x〉) .

Given a training set {(xi, yi)}Ni=1 where yi ∈ {−1, 1} is the class label, the per-

ceptron learning rule proposed by Rosenblatt (1962) updates the perceptron weight

vector when a classification error happens. That is, for an example (x, y), w is up-

dated if g(x) 6= y,

wupdated = w + yx. (2.1)

This learning rule is applied repeatedly to examples in the training set. If the train-

ing set is linearly separable, the perceptron convergence theorem (Rosenblatt, 1962)

guarantees that a zero-error weight vector can be found in a finite number of update

steps. However, if the training set is nonseparable, the algorithm will never converge

and there is no guarantee that the weight vector obtained after any arbitrary number

of steps can generalize well.

The pocket algorithm with ratchet (Gallant, 1990) (Algorithm 2.1) solves the sta-

bility problem of perceptron learning at the cost of more computational effort. It runs

the learning rule (2.1) while keeping “in its pocket” an extra weight vector, which

is the best-till-now solution. Whenever the perceptron weight vector is better than

the pocket weight vector, the perceptron one replaces the pocket one. The ratchet

check (step 9 in Algorithm 2.1) ensures that the training error of the pocket weight

vector will only strictly decrease. Although the pocket algorithm can find an opti-

mal weight vector that minimizes the training error with arbitrarily high probability,

in practice, the number of trials required to produce an optimal weight vector is

52

Algorithm 2.1: The pocket algorithm with ratchet (Gallant, 1990) (note that the
training error calculation, step 8, may be skipped when the weight has not changed)

Input: A training set {(xi, yi)}Ni=1; Number of epochs T .
1: Initialize w {usually this means setting w← 0}
2: γ ← 0, wp ← w, γp ← 0, ep ← 1
3: for T ×N trials do
4: Randomly pick an example (xk, yk)
5: if yk 〈w,xk〉 > 0 then {w correctly classifies (xk, yk)}
6: γ ← γ + 1
7: if γ > γp then
8: e← 1

N

∑
i [yi 〈w,xi〉 ≤ 0] {the training error of w}

9: if e < ep then
10: wp ← w, ep ← e, γp ← γ
11: end if
12: end if
13: else {w wrongly classifies (xk, yk)}
14: w← w + ykxk {the Rosenblatt’s update rule (2.1)}
15: γ ← 0
16: end if
17: end for
18: return wp as the perceptron weight vector

prohibitively large (Gallant, 1990).

In contrast with the pocket algorithm, which uses only the best weight vector,

Freund and Schapire (1999) suggested combining all the weight vectors that occur

in a normal perceptron learning by a majority vote. Each vector is weighted by

its survival time, the number of trials before the vector is updated. Although this

algorithm does not generate a linear classifier, one variant that uses averaging instead

of voting—the averaged-perceptron algorithm (Algorithm 2.2)—does produce a linear

classifier. Since their experiments showed that the voted- and averaged-perceptron

algorithms had no significant difference in terms of performance, we will only consider

the averaged-perceptron algorithm in this paper.

It is interesting to note that the perceptron learning rule (2.1) is actually the

sequential gradient descent on a cost function known as the perceptron criterion,

C(w) =
1

N

N∑
i=1

max {0,−yi 〈w,xi〉} . (2.2)

53

Algorithm 2.2: The averaged-perceptron algorithm (Freund and Schapire, 1999)

Input: A training set {(xi, yi)}; Number of epochs T .
1: t← 1, γt ← 0, initialize wt {usually this means setting wt ← 0}
2: for T epochs do
3: for k = 1 to N do
4: if yk 〈wt,xk〉 > 0 then {wt correctly classifies (xk, yk)}
5: γt ← γt + 1
6: else {wt wrongly classifies (xk, yk)}
7: t← t + 1
8: wt ← wt−1 + ykxk {the Rosenblatt’s update rule (2.1)}
9: γt ← 1

10: end if
11: end for
12: end for
13: return

∑t
i=1 γiwi as the perceptron weight vector

The pocket algorithm aims at minimizing the training error, but adopts the gradient

of the perceptron criterion for weight update, and thus is not efficient. Using the same

update rule, the averaged-perceptron algorithm also tries to minimize the perceptron

criterion, but is heavily regularized via averaging.

Besides the perceptron criterion, there are algorithms that adopt other cost func-

tions, such as the sum-of-squares error (also called the least-squares error), and min-

imize them by stochastic gradient descent (Zhang, 2004). Most cost functions for

binary classification problems can be expressed as the sample sum of the example

margin cost. That is,

C(w) =
N∑

i=1

ϕic (yi 〈w,xi〉) ,

where ϕi is the sample weight for example (xi, yi), yi 〈w,xi〉 is the unnormalized

margin of the example, and c : R → R+ is a margin cost function. Several margin

cost functions are listed in Table 2.1. In order to apply gradient descent, the margin

cost has to be differentiable. Thus gradient descent type algorithms cannot work on

the training error cost function, where c (ρ) = [ρ ≤ 0]. Another problem with such

approaches is that the optimization process usually sticks at some local minima, and

cannot go close to the optimal solutions.

The minimal (normalized) margin, which is the minimal distance from the exam-

54

Table 2.1: Several cost functions in the form of C(w) =
∑N

i=1 ϕic (yi 〈w,xi〉)
cost function c (ρ)
perceptron criterion max {0,−ρ}
SVM hinge loss max {0, 1− ρ}
least-squares error (1− ρ)2

modified least-squares (max {0, 1− ρ})2

0/1 loss training error [ρ ≤ 0]

ples to the separating hyperplane, plays an important role in bounding the number of

mistakes made by a normal perceptron learning (Freund and Schapire, 1999). Usually

the larger the margin is, the smaller the bound is, and the better the perceptron gener-

alizes. Thus many algorithms aim at maximizing the minimal margin. For example,

SVM tries to minimize the magnitude of the weight vector ‖w‖ while keeping the

unnormalized margin bounded from below (Vapnik, 1998). The averaged-perceptron

may achieve a better margin distribution through averaging, similar to how AdaBoost

improves the base learner (Schapire et al., 1998).

The relaxed online maximum margin algorithm (ROMMA) is another algorithm

that approximately maximizes the margin (Li and Long, 2002). Each update of

ROMMA tries to minimize ‖w‖ according to some relaxed constraints. When the

data set is separable, a certain way of running ROMMA converges to the maximum

margin solution. However, there is yet no theoretical analysis on the behavior of the

algorithm when the data set is nonseparable.

It is arguable that the margin is the right criterion to optimize when the data

set is nonseparable. Outliers, which usually have very negative margins, may heavily

affect the solution if we insist on maximizing the minimal margin. The training error,

on the contrary, suffers less from outliers since the error count is the same no matter

how negative the margins are.

2.3 Random Coordinate Descent

There are two elements in the perceptron learning rule (2.1) that may be altered for

possibly better learning. The first one is the descent direction, which is yx in (2.1),

55

and the second is the descent step, which is always 1 in (2.1). If we replace them with

a vector d and a scalar α, respectively, the learning rule becomes

wupdated = w + αd. (2.3)

Different choices on d and α may lead to different perceptron learning rules. In this

section, we propose a family of new algorithms with proper choices of d and α to

directly minimize the training error.

2.3.1 Finding Optimal Descent Step

We will discuss how to choose the descent directions later in Subsection 2.3.2. For

now, let us assume that a descent direction d has been picked. We will find the the

descent step α to minimize the training error along the direction d. That is, we need

to solve this subproblem:

min
α∈R

e (gw+αd) =
N∑

i=1

ϕi [yi 〈w + αd,xi〉 ≤ 0] .

Let us first look at how the error on example (x, y) is decided for the weight

vector (w + αd). Denote 〈d,x〉 by δ.

• When δ 6= 0,

〈w + αd,x〉 = 〈w,x〉+ αδ = δ
(
δ−1 〈w,x〉+ α

)
. (2.4)

Thus

gw+αd (x) = sign (δ) · sign
(
δ−1 〈w,x〉+ α

)
.

This means that the error of gw+αd on example (x, y) is the same as the error of a

1-D linear threshold function with bias α on the example (δ−1 〈w,x〉 , y sign (δ)).

56

• When δ = 0,

gw+αd (x) = sign (〈w + αd,x〉) = sign (〈w,x〉) .

Thus the descent step α will not change the output on the input x.

The 1-D linear threshold function is actually a decision stump, which has a determin-

istic and efficient learning algorithm that minimizes the training error (Holte, 1993).

Hence, we can transform all training examples that have δi 6= 0 with the mapping

below,

(xi, yi) 7→
(
δ−1
i 〈w,xi〉 , yi sign (δi)

)
, (2.5)

and then apply the decision stump learning algorithm to the transformed data set to

decide the optimal descent step α∗.

Since α is not restricted to positive numbers, the direction d is not required to be

strictly descent. As an extreme example, using −d as the search direction in (2.5)

will merely negate the transformed 1-D examples, and −α∗ will then be returned by

the decision stump learning algorithm.

Note that a decision stump can have positive or negative directions. That is, it can

be sign (x + α) or− sign (x + α). Although we expect the learning algorithm to return

a decision stump with positive direction, it is still possible that a negative-direction

one will be found.2 When this happens, the weight vector should be negated; the

examples with δi = 0 will also have different errors, and thus they cannot be ignored

as what we just described. The full update procedure is described in Algorithm 2.3.

The classification error on those examples with δi = 0 is essential in deciding the

optimal direction, acting as an error bias for the positive direction.

We also use a simplified procedure (Algorithm 2.4), considering only positive-

direction decision stumps. Since the emergence of negative-direction decision stumps

is really rare and usually happens at the beginning of the optimization, we choose

the simplified one for our experiments.

2This usually happens when the initial weight vector has a training error larger than 1
2 .

57

Algorithm 2.3: The update procedure for random coordinate descent

Input: A training set {(xi, yi)}Ni=1 and its sample weight {ϕi}Ni=1; The current weight
w; A descent direction d.

1: for i = 1 to N do {generate the 1-D data set}
2: δi ← 〈d,xi〉
3: if δi 6= 0 then
4: x′i ← δ−1

i 〈w,xi〉, y′i ← yi sign (δi)
5: else
6: x′i ←∞, y′i ← yi sign (〈w,xi〉) {set sign(0) = −1 only here}
7: end if
8: end for
9: Find the optimal decision stump for {(x′i, y′i)}

N
i=1 and {ϕi}Ni=1,

(q∗, α∗) = arg min
q∈{−1,+1},α∈R

∑
i

ϕi [y
′
i · q · sign (x′i + α) ≤ 0]

10: w← w + α∗d
11: if q∗ = −1 then
12: w← −w
13: end if

The computational complexity of both the update procedures is O [mN + N log N].

The mapping (2.5) takes N inner product operations, which has complexity O [mN].

The decision stump learning requires to sort the transformed 1-D data set, and the

complexity is O [N log N]. Looking for the optimal bias is just an operation linear

in N . Compared with the standard perceptron learning whose complexity is O [mN]

for every epoch (to examine the inner product with N examples), our update pro-

cedure is still very efficient, especially when the number of examples is comparable

to 2m.

2.3.2 Choosing Descent Directions

There are many ways to choose the descent directions.

Even if the cost function we are minimizing is the 0/1 loss training error, we can

still adopt the gradient of the perceptron criterion as the descent direction. Actu-

ally, we may use the gradient of any reasonable smooth cost function as our descent

direction.

58

Algorithm 2.4: The update procedure for random coordinate descent using a positive-
direction decision stump

Input: A training set {(xi, yi)}Ni=1 and its sample weight {ϕi}Ni=1; The current weight
w; A search direction d.

1: for i = 1 to N do {generate the 1-D data set}
2: δi ← 〈d,xi〉
3: if δi 6= 0 then
4: x′i ← δ−1

i 〈w,xi〉, y′i ← yi sign (δi)
5: end if
6: end for
7: Find the optimal decision stump for {(x′i, y′i)} and {ϕi}, only considering those

with δi 6= 0,

α∗ = arg min
α∈R

∑
i : δi 6=0

ϕi [y
′
i · sign (x′i + α) ≤ 0]

8: w← w + α∗d

The cyclic coordinate descent (CCD), also known as the iterative coordinate de-

scent, can be used when the cost function is not differentiable. It picks one coordinate

at a time and changes the value of that coordinate in the weight vector. In other

words, if we denote the i-th basis vector by ei, e.g., e0 = (1, 0, . . . , 0)T , CCD uses ei

as the descent direction.

However, except for the possible actual meanings that the original coordinates

may have, there is nothing special about the original coordinate system—we can set

up another coordinate system and do CCD there. That is, we can pick a random

basis, which is a set of pairwise orthogonal vectors, and iteratively use each basis

vector as the descent direction. In order to avoid local minima caused by a fixed

coordinate system, a different random basis shall be put in use every once in a while.

Another more radical and more generalized choice is to every time pick a new random

vector as the descent vector, as summarized in Algorithm 2.5, the random coordinate

descent (RCD) algorithm.

We have investigated two general ways of picking random vectors. The first one,

which we refer to as the uniform random vectors, picks each component of the vector

from a uniform distribution spanned over the corresponding feature range. If the

input features of the examples have been normalized to [−1, 1] (see Section 2.4 for

59

Algorithm 2.5: Random coordinate descent algorithm for perceptrons

Input: A training set {(xi, yi)}Ni=1 and its sample weight {ϕi}Ni=1; Number of epochs
T .

1: Initialize w
2: for T epochs do
3: Generate a random vector d ∈ Rm+1 as the descent coordinate
4: Do the weight update procedure with {(xi, yi)}Ni=1, {ϕi}Ni=1, w, and d
5: end for
6: return w as the perceptron weight

more details), each component is a random number uniformly in [−1, 1]. The other

one uses Gaussian distribution instead of the uniform distribution, and is named

Gaussian random vectors. If the features have been normalized to have zero mean

and unit variance, each component is then picked from a unit Gaussian distribution.

This approach has the nice property that the angle of the random vectors is uniformly

distributed.

2.3.3 Variants of RCD

We can get different variants of RCD by using different schedules of random descent

directions. For example, if ei (i = 0, . . . ,m) is iteratively picked as the descent

direction, we get CCD.

When a random basis of (m + 1) pairwise orthogonal vectors is used for every

(m + 1) epochs, we refer to it as RCD-conj. RCD-grad is RCD with the gradient of

the perceptron criterion.

One thing we have noticed is that the range of the bias, w0, can be quite different

from those of the other components of w. Thus it might be necessary to have a

descent direction devoted to adjusting w0 only. If the vector e0 is adopted every

(m + 1) epochs in addition to other settings, RCD becomes RCD-bias, and RCD-conj

becomes RCD-conj-bias.

60

2.4 Experiments

We compare our RCD algorithms with several existing perceptron learning algorithms,

as both standalone learners and base learners for AdaBoost. Experiments are carried

out on nine real-world data sets3 from the UCI machine learning repository (Hettich

et al., 1998), and three artificial data sets4. Each real-world data set is randomly

shuffled and split with 80% of the data for training and the rest for testing. Each

artificial data set has 5000 randomly generated examples, of which 600 are used for

training. The perceptron algorithms are allowed to run T = 2000 epochs. This is

repeated 500 times to get the mean and the standard error of the training and test

errors.

Data Preprocessing. Solely based on the feature distribution in the training set,

we shift and scale the features in the training set to [−1, 1], and correspondingly

normalize the test set.5 Thus we use the uniform random vectors for RCD algorithms.

Initial Seeding. We initialize the perceptron weight vector with two possible vec-

tors, the zero vector and the Fisher’s linear discriminant (FLD, see for example (Bishop,

1995)). For the latter case, when the within-class covariance matrix estimate hap-

pens to be singular, we regularize it with a small eigenvalue shrinkage parameter of

the value 10−10, just large enough to permit numerically stable inversion (Friedman,

1999).

3They are australian (Statlog: Australian Credit Approval), breast (Wisconsin Breast Cancer),
cleveland (Heart Disease), german (Statlog: German Credit), heart (Statlog: Heart Disease), iono-
sphere (Johns Hopkins University Ionosphere), pima (Pima Indians Diabetes), sonar (Sonar, Mines
vs. Rocks), and votes84 (Congressional Voting Records), with incomplete records removed.

4They are ringnorm and threenorm (Breiman, 1996, 1998), and yinyang (Li et al., 2005, Yin-Yang).
5Note that a common practice is to normalize based on all the examples, with the benefit of doing

it only once before the data splitting. However, since our RCD algorithms are affected by the range
of the random descent directions, even this “tiny” peek into the test set will give our algorithms an
unfair edge.

61

100 101 102 103

20

22

24

26

28

30

32

34

36

Number of epochs

Tr
ai

ni
ng

 e
rr

or
 (%

)

CCD
RCD−grad
RCD
FLD, CCD
FLD, RCD−grad
FLD, RCD

100 101 102 103
19.5

20

20.5

21

21.5

22

Number of epochs

Tr
ai

ni
ng

 e
rr

or
 (%

)

FLD, RCD
FLD, RCD−conj
FLD, RCD−bias
FLD, RCD−conj−bias

Figure 2.1: Training errors of several RCD algorithms on the pima data set

2.4.1 Comparing Variants of RCD

We first look at the in-sample performance of our RCD algorithms. Figure 2.1 shows,

for the pima data set,6 the training errors for several RCD algorithms. We can see

that

• With FLD as a much better initial weight vector, the RCD algorithms achieve fi-

nal training errors significantly lower than those obtained from the zero starting

vector.

• RCD-grad does not work as well as other RCD algorithms. Apparently this is

because the descent direction it uses is the gradient of the perceptron criterion,

but the optimization is for the training error.

• Randomness in the direction picking is important. Even without FLD, RCD

surpasses CCD with FLD in the end.

• Whether to use groups of orthogonal directions seems not affecting the perfor-

mance significantly.

• The bias direction e0 does yield a better optimization, especially at the begin-

ning. However, the edge gets smaller with more training epochs.

6Most plots in this paper are based on results on the pima data set. However, there is nothing
special about pima. It is just a data set picked for illustration purposes.

62

Thus for clearer comparison with other perceptron learning algorithms, we shall

focus on RCD and RCD-bias.

2.4.2 Comparing with Other Algorithms

We compare our RCD algorithms with several other perceptron algorithms, including

the pocket algorithm with ratchet (pocket) (Gallant, 1990), averaged-perceptron (ave-

perc) (Freund and Schapire, 1999), stochastic gradient descent with a learning rate 0.002

on the SVM hinge loss (SGD-hinge) and that on the modified least-squares (SGD-

mls) (Zhang, 2004), and the soft-margin SVM with the linear kernel and parameter

selection (soft-SVM) (Chang and Lin, 2001; Hsu et al., 2003).

It should be mentioned that when Freund and Schapire (1999) proposed the voted-

perceptron and averaged-perceptron algorithms, they did not pay much attention to

how the examples should be presented in multi-epoch runs, since their theoretical

result on the error bound is only applicable to one-epoch run of the voted-perceptron.

We find that cycling through examples with a fixed order7 is not optimal for multi-

epoch runs of the averaged-perceptron. Randomly permuting the training set at the

beginning of each epoch or simply choosing examples at random at each trial can

improve both the in-sample and the out-of-sample performance (see Figure 2.2 for a

comparison on the pima data set). In our experiments, we use averaged-perceptron

with the random sampling (see line 3 of Algorithm 2.6). Figure 2.2 also shows that

using FLD only helps for early epochs.

ROMMA and aggressive ROMMA (Li and Long, 2002) perform miserably on most

of the data sets we tried. The solution oscillates, especially when random sampling is

used, and the training and test errors keep high. They also have numerical problems

when running for more than several hundreds of epochs, even with the normalized

data. We thus exclude them from further comparisons.

Figure 2.3 presents the performance of the selected algorithms on the pima data

7This is what was implied in (Freund and Schapire, 1999; Li and Long, 2002) although they did
preprocess the training examples with a random permutation.

63

100 101 102 103
21.5

22

22.5

23

23.5

24

Number of epochs

Tr
ai

ni
ng

 e
rr

or
 (%

)

ave−perc, fixed
ave−perc, permute
ave−perc, random
FLD, ave−perc, random

100 101 102 103
21.5

22

22.5

23

23.5

24

Number of epochs

Te
st

 e
rr

or
 (%

)

ave−perc, fixed
ave−perc, permute
ave−perc, random
FLD, ave−perc, random

Figure 2.2: Training and test errors of the averaged-perceptron algorithm on the pima
data set

100 101 102 103
19.5

20

20.5

21

21.5

22

22.5

23

23.5

24

Number of epochs

Tr
ai

ni
ng

 e
rr

or
 (%

)

FLD, RCD−bias
FLD, pocket
FLD, ave−perc
FLD, SGD−hinge
FLD, SGD−mls

100 101 102 103
19.5

20

20.5

21

21.5

22

22.5

23

23.5

24

Number of epochs

Te
st

 e
rr

or
 (%

)

FLD, RCD−bias
FLD, pocket
FLD, ave−perc
FLD, SGD−hinge
FLD, SGD−mls

Figure 2.3: Training and test errors of several perceptron learning algorithms on the
pima data set

set.8 In the competition for low training errors, RCD-bias is clearly the best, and

pocket follows. However, when the test error is concerned, the other three methods,

especially ave-perc, are the winners. Tables 2.2 and 2.3 give the training and test

errors on all the data sets at the end of the 2000 epochs. The errors of soft-SVM are

also included. Again, we observe that RCD and RCD-bias achieve the lowest training

errors for most data sets, but only achieve the lowest test errors for two artificial data

sets, ringnorm and yinyang. The soft-SVM and ave-perc, both heavily regularized,

overall achieve much better test errors. Since most real-world data sets may be

8We did not show the curves for RCD because they are very close to those of RCD-bias.

64

Table 2.2: Training errors (%) of several perceptron learning algorithms initialized
with FLD

data set RCD RCD-bias pocket ave-perc SGD-hinge SGD-mls soft-SVM

australian 10.12± 0.03 9.98± 0.03 10.81± 0.03 12.19± 0.03 14.11± 0.03 12.70± 0.04 14.33± 0.03
breast 1.68± 0.01 1.68± 0.01 1.86± 0.01 2.87± 0.02 2.66± 0.02 2.77± 0.02 2.70± 0.02
cleveland 10.57± 0.05 10.62± 0.05 12.07± 0.05 14.40± 0.06 14.31± 0.06 14.48± 0.06 14.74± 0.05
german 19.16± 0.04 18.80± 0.03 21.10± 0.03 21.31± 0.04 21.54± 0.04 22.18± 0.05 21.48± 0.04
heart 9.48± 0.05 9.49± 0.05 11.22± 0.05 13.64± 0.06 13.73± 0.06 13.82± 0.06 14.20± 0.06
ionosphere 3.88± 0.04 3.97± 0.04 3.41± 0.05 4.92± 0.06 4.55± 0.04 5.14± 0.05 6.95± 0.10
pima 19.60± 0.04 19.60± 0.03 20.34± 0.03 21.99± 0.04 22.15± 0.04 22.25± 0.04 22.09± 0.04
ringnorm 27.61± 0.07 27.36± 0.08 30.46± 0.07 35.49± 0.11 31.92± 0.09 34.52± 0.13 31.82± 0.09
sonar 2.56± 0.04 2.62± 0.04 0.00± 0.00 0.37± 0.02 2.23± 0.05 1.42± 0.06 11.58± 0.20
threenorm 11.41± 0.06 11.39± 0.06 13.53± 0.06 14.43± 0.06 14.23± 0.06 14.51± 0.06 14.47± 0.06
votes84 1.32± 0.02 1.31± 0.02 1.46± 0.02 2.42± 0.03 1.84± 0.03 2.48± 0.03 3.02± 0.04
yinyang 15.33± 0.05 15.36± 0.05 15.61± 0.05 19.10± 0.07 18.89± 0.08 19.03± 0.07 18.89± 0.08

(results within one standard error of the best are marked in bold)

Table 2.3: Test errors (%) of several perceptron learning algorithms initialized with
FLD

data set RCD RCD-bias pocket ave-perc SGD-hinge SGD-mls soft-SVM

australian 14.24± 0.12 13.92± 0.12 14.31± 0.12 13.64± 0.12 14.72± 0.12 13.87± 0.12 14.78± 0.12
breast 3.65± 0.07 3.61± 0.07 3.43± 0.06 3.36± 0.06 3.34± 0.06 3.28± 0.06 3.22± 0.06
cleveland 18.68± 0.22 18.57± 0.21 18.49± 0.21 16.74± 0.20 17.24± 0.20 16.76± 0.20 16.72± 0.20
german 24.45± 0.12 23.70± 0.13 25.24± 0.13 23.24± 0.12 23.66± 0.13 24.05± 0.13 23.64± 0.12
heart 18.13± 0.21 18.20± 0.22 17.63± 0.20 16.51± 0.20 16.70± 0.20 16.49± 0.20 16.45± 0.20
ionosphere 13.91± 0.17 14.72± 0.18 12.87± 0.18 12.76± 0.18 12.45± 0.17 12.63± 0.18 12.57± 0.17
pima 23.79± 0.14 23.50± 0.14 23.50± 0.14 22.79± 0.14 23.13± 0.13 23.07± 0.14 23.19± 0.14
ringnorm 35.83± 0.04 35.65± 0.04 36.59± 0.04 39.27± 0.08 36.01± 0.05 38.38± 0.10 35.70± 0.05
sonar 25.98± 0.29 26.20± 0.29 25.20± 0.25 25.09± 0.26 24.72± 0.28 24.90± 0.28 23.89± 0.27
threenorm 16.82± 0.03 16.86± 0.03 17.65± 0.04 16.14± 0.02 16.33± 0.02 16.18± 0.02 16.08± 0.02
votes84 5.21± 0.09 5.00± 0.10 5.24± 0.10 4.52± 0.10 5.17± 0.09 4.70± 0.11 4.39± 0.09
yinyang 17.71± 0.02 17.75± 0.02 17.74± 0.02 19.25± 0.02 19.12± 0.02 19.21± 0.02 19.21± 0.02

(results within one standard error of the best are marked in bold)

noisy or contain errors, overfitting might be the reason for the inferior out-of-sample

performance of the RCD algorithms.

The two artificial data sets, ringnorm and yinyang, have quite different nature. The

former is 20-dimensional and inherently noisy, and the latter is 2-dimensional and has

clean boundaries. However, overfitting seems to be no problems for these two data

sets. Figure 2.4 shows that, approximately, the lower the training error, the lower the

test error. We are still unclear for what problems the perceptron model will induce

no or very little overfitting.

We should also note that pocket is much slower than other algorithms such as

ave-perc and RCD. This is because every time a new weight vector is considered

65

100 101 102 103
15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

Number of epochs

Tr
ai

ni
ng

 e
rr

or
 (%

)

100 101 102 103
15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

Number of epochs

Te
st

 e
rr

or
 (%

)

FLD, RCD−bias
FLD, pocket
FLD, ave−perc
FLD, SGD−hinge
FLD, SGD−mls

Figure 2.4: Training and test errors of several perceptron learning algorithms on the
yinyang data set

for the “pocket,” mN multiplications have to be done for computing the training

error. Thus pocket may actually go over all the examples many times in one epoch,

especially when the initial weight has good quality. For example, for the pima data

set, the average number of training error computations is 7463.7 for 2000 epochs if

initialized with the zero vector, and 33170.0 if initialized with FLD.

2.4.3 Ensembles of Perceptrons

AdaBoost (Freund and Schapire, 1996) is probably the most popular algorithm among

the boosting family that generates a linear combination of base hypotheses. It im-

proves the accuracy of the base learner by gradually focusing on “hard” examples.

At each iteration, AdaBoost gives the base learner a set of sample weights, and asks

for a hypothesis that has a low weighted training error. Thus in order to work with

AdaBoost, a base learner should be able to take care of weighted data.

Our RCD algorithms are ideal for working with AdaBoost, since they are designed

to directly minimize the weighted training error. For the other algorithms, small

modifications are needed to accommodate weighted data.

Take pocket for example. Given a set of sample weights {ϕi}Ni=1, we may mod-

ify line 4 of Algorithm 2.1 to “randomly pick an example (xk, yk) according to the

distribution defined by {ϕi},” and replace line 8 with the weighted training error

66

Algorithm 2.6: The randomized averaged-perceptron algorithm with reweighting

Input: A training set {(xi, yi)}Ni=1 and its sample weight {ϕi}Ni=1; Number of epochs
T .

1: t← 1, γt ← 0, initialize wt

2: for T ×N trials do
3: Randomly pick an example (xk, yk) with uniform probability
4: if yk 〈wt,xk〉 > 0 then {wt correctly classifies (xk, yk)}
5: γt ← γt + Nϕk

6: else {wt wrongly classifies (xk, yk)}
7: t← t + 1
8: wt ← wt−1 + Nϕkykxk {using the sample weight}
9: γt ← Nϕk

10: end if
11: end for
12: return w =

∑t
i=1 γiwi

∑
i ϕi [yi 〈w,xi〉 ≤ 0]. We refer to this as resampling. Alternatively, we can keep

picking examples with uniform probability, but modify quantities related to sample

weights in a proper way. Here we change line 6 to “γ ← γ + Nϕk” and line 14 to

“w ← w + Nϕkykxk.” Of course we also modify line 8 as before. We refer to this

as reweighting. The modified ave-perc with reweighting is shown in Algorithm 2.6.

Note that the names reweighting and resampling have slightly different meanings from

those by Freund and Schapire (1996).

Our experiments with AdaBoost (see Subsection 2.4.4 for settings) show that there

is no significant difference between the resampling and reweighting methods. Since

resampling usually requires O [log N] time to generate a random index according to

the sample distribution, we prefer the reweighting method for its low computational

overhead.

2.4.4 AdaBoost with Perceptrons

For the 12 data sets we use, 200 epochs seem sufficient for all perceptron learning

algorithms to achieve a reasonable solution. Thus our base learners for AdaBoost are

the perceptron learning algorithms with 200 epochs. We run AdaBoost up to 200

iterations. Often when the sample distribution becomes far away from the initial

67

Table 2.4: Test errors (%) and number of iterations (#ite) of AdaBoost (the #ite of
the first three algorithms is 200)

data set RCD RCD-bias pocket ave-perc #ite SGD-hinge #ite SGD-mls #ite

australian 15.45± 0.12 15.49± 0.12 15.75± 0.12 13.61± 0.12 6.4 15.97± 0.13 12.3 14.00± 0.12 8.8

breast 3.21± 0.06 3.34± 0.06 3.41± 0.07 3.35± 0.06 3.2 3.27± 0.06 7.4 3.24± 0.06 4.7

cleveland 18.00± 0.21 18.22± 0.21 18.95± 0.20 16.81± 0.20 3.3 17.16± 0.20 10.0 16.74± 0.20 5.9

german 25.17± 0.13 25.37± 0.12 25.57± 0.13 23.25± 0.12 2.9 23.71± 0.13 9.2 23.96± 0.13 7.5

heart 17.60± 0.21 17.58± 0.22 18.94± 0.21 16.55± 0.20 3.0 16.95± 0.21 10.7 16.54± 0.20 5.3

ionosphere 10.36± 0.16 10.30± 0.16 11.65± 0.17 13.21± 0.17 6.9 11.71± 0.17 25.3 12.67± 0.17 11.0

pima 24.87± 0.14 24.79± 0.14 25.15± 0.14 22.77± 0.14 3.0 23.18± 0.14 4.9 23.01± 0.14 4.5

ringnorm 8.60± 0.05 12.22± 0.07 7.12± 0.04 39.29± 0.08 2.3 27.41± 0.22 29.2 38.32± 0.09 2.1

sonar 16.44± 0.25 16.06± 0.25 25.02± 0.27 25.77± 0.27 199.7 21.23± 0.27 195.5 25.37± 0.27 146.7

threenorm 14.51± 0.02 15.34± 0.03 14.95± 0.02 16.14± 0.02 2.7 16.27± 0.02 5.2 16.17± 0.02 3.9

votes84 4.25± 0.09 4.24± 0.09 4.54± 0.10 4.74± 0.10 7.0 4.78± 0.10 32.4 4.68± 0.10 7.8

yinyang 3.95± 0.03 3.98± 0.03 4.87± 0.02 19.25± 0.02 2.5 19.11± 0.02 2.6 19.23± 0.02 2.7

(results within one standard error of the best are marked in bold)

uniform one, the base learner fails to find a perceptron with a small training error

because the cost function it tries to minimize becomes so different from the training

error. When this happens, AdaBoost stops at some iteration earlier than 200. We

record the training error, test error, as well as the number of iterations, at the end of

the AdaBoost run. The numbers are averaged over 500 random splits of the original

data set.

We tried resampling and reweighting with pocket, ave-perc, SGD-hinge, and SGD-

mls. There was no significant difference in the training error, test error, or the number

of AdaBoost iterations. We also tested the two initialization methods for perceptrons,

zero vector and FLD, and found that there was no decisive advantage in one or the

other. So we only list the results of the simplest setting, reweighting and initialization

with the zero vector, in Table 2.4.

First we notice that algorithms not aiming at minimizing the training error, ave-

perc, SGD-hinge, and SGD-mls, do not really benefit from working with AdaBoost.

Their numbers of iterations are usually small, and the test errors are similar to those

listed in Table 2.3.

AdaBoost with our RCD algorithms and pocket never early stops before the spec-

ified 200 iterations. The resulted ensembles based on RCD and RCD-bias always

achieve the zero training error, and those based on pocket also almost always get the

zero training error. For about half of the data sets, they also achieve the lowest test

68

errors.

2.5 Conclusion

We proposed a family of new perceptron learning algorithms that directly optimizes

the training error. The main ingredients are random coordinate descent (RCD) and an

update procedure to efficiently minimize the training error along the descent direction.

We also discussed several possible approaches to initialize the algorithms and to choose

the descent directions. Our experimental results showed that RCD algorithms were

efficient, and usually achieved the lowest training errors compared with several other

perceptron learning algorithms. This property also makes them ideal base learners

for AdaBoost.

We discussed the resampling and reweighting approaches to making several other

perceptron algorithms work with AdaBoost. However, most of them optimize cost

functions other than the training error, and do not benefit from aggregating. In

contrast, the test error may be dramatically decreased if RCD algorithms and the

pocket-ratchet algorithm are used with AdaBoost.

For noisy and/or high-dimensional data sets, regularized algorithms such as the

averaged-perceptron algorithm and the soft-margin SVM may achieve better out-of-

sample performance. Future work will be focused on regularizing RCD algorithms.

Acknowledgments

I wish to thank Yaser Abu-Mostafa, Hsuan-Tien Lin, and Amrit Pratap for many

valuable discussions. This work was supported by the Caltech SISL Graduate Fel-

lowship.

69

Chapter 3

CGBoost: Conjugate Gradient in
Function Space

The superior out-of-sample performance of AdaBoost has been attributed to the fact

that it minimizes a cost function based on the margin, in that it can be viewed as a

special case of AnyBoost, an abstract gradient descent algorithm. In this paper, we

provide a more sophisticated abstract boosting algorithm, CGBoost, based on con-

jugate gradient in function space. When the AdaBoost exponential cost function is

optimized, CGBoost generally yields much lower cost and training error but higher

test error, which implies that the exponential cost is vulnerable to overfitting. With

the optimization power of CGBoost, we can adopt more “regularized” cost functions

that have better out-of-sample performance but are difficult to optimize. Our experi-

ments demonstrate that CGBoost generally outperforms AnyBoost in cost reduction.

With suitable cost functions, CGBoost can have better out-of-sample performance.

3.1 Introduction

AdaBoost (Freund and Schapire, 1996) is probably the most popular algorithm among

the boosting family that generates a linear combination of weak hypotheses. Given

a weak learner L, AdaBoost iteratively adds hypotheses generated by L to the linear

combination. It emphasizes difficult examples by giving them higher sample weights

and favors hypotheses with lower training errors by giving them larger coefficients.

AdaBoost can be viewed as a special case of AnyBoost (Mason et al., 2000b), a general

70

gradient descent in function space.

It has been observed experimentally that AdaBoost keeps improving the out-

of-sample error even after the training error of the linear combination has reached

zero (Breiman, 1996). One explanation to this is that AdaBoost improves the margins

of the training examples even after all the examples have positive margins, and larger

margins imply better out-of-sample performance (Schapire et al., 1998). However, this

explanation was challenged in (Grove and Schuurmans, 1998) where the algorithms

achieve larger minimum margins than AdaBoost, but do not have better out-of-

sample performance than AdaBoost, mostly worse. Another related explanation is

that AdaBoost optimizes a cost function based on example margins (Mason et al.,

2000b). Although there is a theoretical bound on the out-of-sample error based on

cost, it is still unclear whether minimizing the cost is helpful in practice.

We take a closer look at this question, examining how the cost function, in and of

itself, affects the out-of-sample performance. To do so, we apply more sophisticated

optimization techniques directly to the cost function. We obtain three sets of results:

1. The introduction of a new abstract boosting algorithm, CGBoost, based on

conjugate gradient in function space which has better cost optimization perfor-

mance than AnyBoost.

2. The conclusion that AdaBoost cost function is much more vulnerable to overfit-

ting when it is directly minimized instead of being minimized within the confines

of the AdaBoost algorithm.

3. The identification of more “regularized” cost functions whose direct minimiza-

tion results in a better out-of-sample performance than that of the AdaBoost

cost function.

The paper is organized as follows: The CGBoost algorithm and its implementation

with the margin cost functions are introduced in Section 3.2. In Section 3.3, we

compare CGBoost and AnyBoost with two different cost functions. One cost function

is observed to have better out-of-sample performance but is more difficult to optimize.

71

CGBoost has superior performance than AnyBoost with that cost function. We then

give results on some UCI data sets in Section 3.4.

3.2 CGBoost

We assume the examples (x, y) are randomly generated according to some unknown

probability distribution on X × Y where X is the input space and Y is the output

space. Since this paper focuses on voted combinations of binary classifiers, Y =

{−1, 1}.

The voted combination is sign(F (x)) where

F (x) =
T∑

t=1

αtft(x)

with weak hypotheses ft : X → Y from a base learning model G, and hypothesis

coefficients αt ∈ R+. Let lin(G) denote the set of all linear combinations (with

nonnegative coefficients) of functions in G, and C : lin(G) → R+ be a cost function.

We want to construct a combination F ∈ lin(G) to minimize C(F).

3.2.1 AnyBoost: Gradient Descent

AnyBoost (Mason et al., 2000b) is an abstract boosting algorithm that provides a

general framework for minimizing C iteratively via gradient descent in function space.

Suppose we have a function F ∈ lin(G) and we wish to find a “direction” f ∈ G

so that the cost C(F + εf) decreases for some small positive ε. The desired direction

such that the cost decreases most rapidly (for small ε) is the negative functional

gradient −∇C(F), where

∇C(F)(x) =
∂C(F + τ1x)

∂τ

∣∣∣∣
τ=0

,

where 1x is the indicator function of x. In general, it may not be possible to choose

f = −∇C(F) since f has to be one of the hypotheses in G. So, instead, AnyBoost

72

searches for f that maximizes 〈−∇C(F), f〉.1 After f is fixed, a line search can be

used to determine the coefficient of f in the new combination of hypotheses.

3.2.2 CGBoost: Conjugate Gradient

If we replace gradient descent in AnyBoost with the more efficient conjugate gradient

technique (Nash and Sofer, 1996, §12.4), we obtain a new and more powerful abstract

boosting algorithm: CGBoost (Algorithm 3.1). The main difference between conju-

gate gradient and gradient descent is that the former also utilizes the second-order

information of the cost to adjust search directions so that the cost could be decreased

faster.

Let dt denote the search direction at iteration t, and ft ∈ G denote the weak hy-

pothesis approximating the negative functional gradient −∇C(F). Instead of letting

dt = ft directly, we choose the search direction to be

dt = ft + βtdt−1, (3.1)

where βt ∈ R and dt−1 is the direction from last iteration. With this change, the

search direction dt is no longer limited to a single hypothesis in G. Instead, it is some

linear combination of the current and previous ft’s and thus dt ∈ lin(G).

The βt in equation (3.1) determines how much the previous search direction dt−1

affects the current direction dt. If βt = 0, dt is solely determined by the current

gradient ft, which usually helps conjugate gradient recover from some bad situations

(Nash and Sofer, 1996, pp. 408). In Algorithm 3.1, β1 is effectively forced to be 0

since d0 is initialized to 0. For reasons that will be explained in Section 3.3, βt is

also clipped to 0 for the first several iterations. For other cases, we can use the

1The inner product 〈·, ·〉 is define on lin(G). Generally, we want f ∈ G to maximize the normalized
inner product 〈−∇C(F), f〉 /

√
〈f, f〉. For the inner product definition (3.4) used in this paper and

some other papers (Mason et al., 2000b), 〈f, f〉 is a constant for binary classifiers. So there is no
need for normalization.

73

Algorithm 3.1: CGBoost: Conjugate gradient in function space

Require:

• A base learning model G and an inner product defined on lin(G)

• A differentiable cost function C : lin(G)→ R+

• A weak learner L(F) that accepts F ∈ lin(G) and returns f ∈ G with a
large value of 〈−∇C (F) , f〉

1: F0 ← 0, d0 ← 0
2: for t = 1 to T do
3: ft ← L(Ft−1)
4: dt ← ft + βtdt−1 for some βt ∈ R
5: if 〈−∇C(Ft−1), dt〉 ≤ 0 then
6: return Ft−1

7: end if
8: Ft ← Ft−1 + αtdt for some αt > 0
9: end for

10: return FT

Polak-Ribiére formula (Nash and Sofer, 1996, pp. 399)

βt =
〈ft, ft − ft−1〉
〈ft−1,ft−1〉

, (3.2)

which automates the “restart” mechanism.

Although the search direction of CGBoost is more complicated than that of Any-

Boost, the combination FT is still a linear combination of (at most) T weak hypotheses

in G, since all dt are in the space spanned by {f1, . . . , fT}. For i ≤ t, define

βi,t =

∏t

j=i+1 βj, if i < t;

1, if i = t.

We then have dt =
∑t

i=1 βi,tfi, and

FT =
T∑

t=1

αtdt =
T∑

i=1

(
T∑

t=i

αtβi,t

)
fi. (3.3)

If the base learning model G is negation closed, which is trivially true for almost

74

all reasonable binary classification models, it is obvious that FT ∈ lin(G). In the

following subsection, we will see a definition for the inner product that also guarantees

the coefficients in (3.3) are nonnegative. If it is the size of linear combinations that

generally decides the complexity of the combination, these features imply that using

conjugate gradient will not increase the complexity.

The search step αt can be determined by some line search technique. If αt−1

ensures that ∇C(Ft−1) ⊥ dt−1 (which could be achieved by an exact line search), we

have

〈−∇C(Ft−1), dt〉 = 〈−∇C(Ft−1), ft〉 .

That is, the adjusted direction dt is just as close to −∇C(Ft−1) as ft is, while ft

is guaranteed by the weak learner L to be a good approximation of the negative

gradient.

3.2.3 CGBoost with Margin Cost Functions

Commonly used cost functions are usually defined on example margins. Given a

training set S = {(x1, y1), . . . , (xN , yN)} of N examples, the margin cost of F has the

form

C(F) =
1

N

N∑
i=1

c(yiF (xi)),

where yiF (xi) is the margin of example (xi, yi) and c : R → R+ is a (decreasing)

function of the margin. We may thus use c(·) to refer the whole cost function C.

The inner product between hypotheses f and g is defined as

〈f, g〉 =
1

N

N∑
i=1

f(xi)g(xi). (3.4)

In this case,

〈−∇C(F), f〉 =
1

N2

N∑
i=1

yif(xi) · [−c′(yiF (xi))] .

Maximizing 〈−∇C(F), f〉 is thus equivalent to minimizing the training error with

sample weight D(i) ∝ −c′(yiF (xi)). This explains why a weak learner L is used in

75

Algorithm 3.2: CGBoost with margin cost functions

Require:

• A base learning model G containing hypotheses f : X → {−1, 1}

• A differentiable cost function c : R→ R+

• A weak learner L(S, D) that accepts a training set S and a sample distri-
bution D and returns f ∈ G with small weighted error

∑
i D(i) [f(xi) 6= yi]

1: F0 ← 0, d0 ← 0
2: for t = 1 to T do
3: Dt(i)← c′(yiFt−1(xi))/

∑N
j=1 c′(yjFt−1(xj)) for i = 1, . . . , N

4: ft ← L(S, Dt)
5: dt ← ft + βtdt−1 for βt = 1− 〈ft−1, ft〉
6: if

∑N
i=1 Dt(i)yidt(xi) ≤ 0 then

7: return Ft−1

8: end if
9: Ft ← Ft−1 + αtdt for some αt > 0

10: end for
11: return FT

Algorithm 3.1 to return f that has a large value of 〈−∇C(F), f〉.

For a binary classifier f , the definition in (3.4) gives 〈f, f〉 ≡ 1. Then equa-

tion (3.2) becomes

βt = 1− 〈ft, ft−1〉 ,

which is always nonnegative.

Algorithm 3.2 summarizes the implementation of CGBoost with margin cost func-

tions.

3.3 Cost Functions

The frameworks of CGBoost and AnyBoost leave the choice of cost functions open

to users. However, not all the cost functions are suitable for learning purposes. We

will discuss two cost functions in this section as well as the performance of CGBoost

and AnyBoost on these cost functions.

76

3.3.1 AdaBoost Exponential Cost

When margin cost function c(ρ) = e−ρ is used, AnyBoost is equivalent to Ada-

Boost (Mason et al., 2000b). To have a taste of the performance of CGBoost, we

compare CGBoost using this cost function with AdaBoost. Since the same cost func-

tion is used, this is a comparison between two optimization methods.

The data set used in this comparison was generated by the Caltech Data Engine.2

The input space is X = R8 and output space is Y = {−1, 1}. We use 400 examples

for training and 3000 examples for testing. Our learning model G contains decision

stumps and the weak learner L returns the decision stump with best weighted training

error.

The results averaged over 132 independent trials are shown in Figure 3.1(a). We

can see that, though the cost from AdaBoost was lower on average during the first 20–

30 iterations, CGBoost overall decreased the cost faster and achieved a significantly

lower cost. The training error, with similar trend as the cost, was also decreased

much faster by CGBoost.

However, the out-of-sample behavior was the opposite. Noticing that AdaBoost

got overfitting after roughly 50 iterations, the deteriorating out-of-sample perfor-

mance of CGBoost implies that the exponential cost function is more vulnerable to

overfitting when optimized directly and more aggressively.

This result is of no surprise since the exponential cost function has a very steep

curve for negative margins (see Figure 3.2) and thus emphasizes “difficult” examples

too much (Grove and Schuurmans, 1998; Dietterich, 2000; Mason et al., 2000a). While

better optimization techniques can help decreasing the cost faster, the out-of-sample

performance would be mainly determined by the cost function itself.

Based on the observation of this comparison, we set βt = 0 for the first several

2The Caltech Data Engine (Pratap, 2003) is a computer program that contains several predefined
data models, such as neural networks, support vector machines (SVM), and radial basis functions
(RBF). When requested for data, it randomly picks a model, generates (also randomly) parameters
for that model, and produces random examples according to the generated model. A complexity
factor can be specified which controls the complexity of the generated model. The engine can be
prompted repeatedly to generate independent data sets from the same model to achieve small error
bars in testing and comparing learning algorithms.

77

50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

of iterations

cla
ss

ific
at

io
n

er
ro

r (
%

)

scaled cost
training error
test error

(a) Exponential cost

50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

of iterations

cla
ss

ific
at

io
n

er
ro

r (
%

)

scaled cost
training error
test error

(b) Bisigmoid cost

Figure 3.1: Performance of CGBoost (solid curves) and AnyBoost (dashed curves)
with two different cost functions. (a) AnyBoost with exponential cost is equivalent
to AdaBoost; (b) Bisigmoid cost with κ+ = 1 and κ− = 1.05 in (3.5). Since [ρ < 0] ≈
1
2
c(ρ) when |ρ| is large, the training error and cost (scaled by 50) coincide quite well.

iterations in the following experiments to take advantage of the initial efficiency of

gradient descent.

3.3.2 Bisigmoid Cost

Because of the power of conjugate gradient as an optimization technique, one can

afford to use more “regularized” cost functions that are harder to optimize but have

better out-of-sample performance.

The sigmoid margin cost function c(ρ) = 1−tanh(ρ)

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

margin ρ

co
st

exponential cost
bisigmoid cost
sigmoid cost

Figure 3.2: Three margin

cost functions

was suggested in (Mason et al., 2000b). Since it has a

flatter part for negative margins compared to the expo-

nential cost (see Figure 3.2), it does not punish outliers

too much. However, this cost function causes difficul-

ties to AnyBoost and CGBoost. If the weak learner L

finds the optimal hypothesis for the uniform sample

distribution, AnyBoost and CGBoost will terminate at

the second iteration due to c′(−ρ) = c′(ρ) (Proof is similar to (Mason et al., 2000b,

78

Lemma 12.9)).

A simple technique to avoid c′(−ρ) = c′(ρ) is to concatenate sigmoid functions

with different slopes for negative margins and positive margins. Below is what we

call the bisigmoid function:

c(ρ) =

κ+ − κ+ tanh(ρ/κ+), for ρ > 0;

κ+ − κ− tanh(ρ/κ−), otherwise,

(3.5)

where κ+ and κ− are positive numbers controlling the slopes for positive and negative

margins, respectively. We usually set κ− > κ+ so that the negative margins could

also be emphasized a bit more. The closer κ− is to κ+, the more similar the bisigmoid

curve is to a scaled sigmoid.

We applied CGBoost and AnyBoost with the bisigmoid function (κ+ = 1 and

κ− = 1.05) to the problem in Subsection 3.3.1. Again we observed in Figure 3.1(b)

that CGBoost optimized the cost and training error faster, though this time with the

bisigmoid function, the cost could not be reduced to near zero and the training error

was also above zero. However, we observed much better out-of-sample performance of

both CGBoost and AnyBoost, compared to test errors in Figure 3.1(a). On average,

CGBoost achieved the lowest test error.

This result reinforces the idea that the cost functions have great impact on the

out-of-sample performance, while the optimization techniques only help to a lesser

extent.

3.4 Experimental Results

We compared CGBoost and AnyBoost on six UCI data sets3 with the exponential

cost function and the bisigmoid cost function. In all these experiments κ+ is fixed

to 1. Since the value of κ− decides how flat the bisigmoid is and thus how difficult

3The six UCI data sets are pima-indians-diabetes, sonar, cleveland-heart-disease, voting-records,
breast-cancer-wisconsin, and ionosphere. Examples with missing features are removed from the
original data sets.

79

the optimization is, we tried four values of κ−, namely, 1.05, 1.1, 1.15, and 1.2. We

observed that the smaller κ− is, the more difficult the optimization is.

Each data set was randomly partitioned so that 80%, 10%, and 10% of the ex-

amples were used for training, validation, and testing. CGBoost and AnyBoost with

different cost functions were allowed to run 300 iterations. Results were averaged over

more than 60 trials.

Table 3.1 gives the geometric mean of the cost ratios between two optimization

algorithms, CGBoost and AnyBoost, at the final iteration. As we expected, the cost

of CGBoost is generally much lower than that of AnyBoost.

Table 3.1: Average final cost ratio of CGBoost to AnyBoost. Numbers less than
0.00005 are shown as 0.0000. To save space, the ratios with κ− = 1.1 and κ− = 1.15
are omitted.

Cost Function pima sonar clevel vote84 cancer iono
exponential 0.5716 0.0000 0.0675 0.1006 0.0656 0.0000
κ− = 1.05 0.8067 0.2674 0.6882 0.4997 0.8896 0.9949
κ− = 1.2 0.7615 0.0000 0.6374 0.8058 0.9011 0.0000

We also compared the out-of-sample performance of these two algorithms. During

one trial, the linear combination with the best validation error was picked. That is,

for the exponential cost, validation chose the size of boosting; for the bisigmoid cost,

validation also chose the “optimal” κ− value.

The average test errors are listed in Table 3.2. Although it seems that CGBoost

did not yield better test errors, the results from these algorithms are similar, and the

relatively high error bars prevent us from drawing statistically significant conclusions

for these limited data sets.

3.5 Conclusions

AdaBoost can be viewed as gradient descent of the exponential cost function in func-

tion space. In this paper, we introduced a new boosting algorithm, CGBoost, based

on conjugate gradient in function space. We demonstrated with Caltech Data Engine

80

Table 3.2: Average test errors of CGBoost and AnyBoost on six UCI data sets. The
lowest error in each column is in bold font. The error bars are much higher than the
differences.

Cost Method pima sonar clevel vote84 cancer iono
exp. AnyBoost 25.10% 19.74% 16.56% 4.38% 5.38% 11.42%
exp. CGBoost 25.72% 22.02% 17.83% 4.46% 4.99% 12.62%

bisigmoid AnyBoost 25.83% 23.97% 16.45% 4.59% 4.14% 11.49%
bisigmoid CGBoost 26.25% 24.07% 17.77% 4.67% 4.78% 11.77%

roughly error bar 4.85% 9.22% 7.45% 3.04% 2.60% 5.59%

data and UCI data that CGBoost generally optimized the cost faster and achieved

much lower training error.

We also observed that the exponential cost of AdaBoost was much more vulner-

able to overfitting when it was minimized by the more aggressive CGBoost. The

bisigmoid cost function, which has a flatter part for negative margins, was introduced

to alleviate the overfitting problem. It also avoids the optimization difficulties that

normal sigmoid function might have. Our experiments showed that, though it is

harder to optimize, it generally leads to better out-of-sample performance. CGBoost

with the bisigmoid cost yielded the lowest test error with Data Engine data.

However, the impact of cost functions on the out-of-sample performance still re-

mains unclear, partly due to the statistically insignificant results on the UCI data

sets.

Acknowledgments

This work was supported by the Caltech Center for Neuromorphic Systems Engineer-

ing under NSF Cooperative Agreement EEC-9402726.

81

Chapter 4

Multiclass Boosting with
Repartitioning

A multiclass classification problem can be reduced to a collection of binary problems

with the aid of a coding matrix. The quality of the final solution, which is an ensemble

of base classifiers learned on the binary problems, is affected by both the performance

of the base learner and the error-correcting ability of the coding matrix. A coding

matrix with strong error-correcting ability may not be overall optimal if the binary

problems are too hard for the base learner. Thus a trade-off between error-correcting

and base learning should be sought. In this paper, we propose a new multiclass

boosting algorithm that modifies the coding matrix according to the learning ability

of the base learner. We show experimentally that our algorithm is very efficient in

optimizing the multiclass margin cost, and outperforms existing multiclass algorithms

such as AdaBoost.ECC and one-vs-one. The improvement is especially significant

when the base learner is not very powerful.

4.1 Introduction

Many efforts of the machine learning research have been focused on binary classifica-

tion problems. For a multiclass classification problem with more than two different

class labels, it is possible to reformulate it as a collection of binary problems. The

most popular approaches are one-vs-all where each class is compared against all oth-

ers, and one-vs-one where all pairs of classes are compared (Allwein et al., 2000).

82

Dietterich and Bakiri (1995) and Allwein et al. (2000) unified and generalized

most such approaches with error-correcting codes. In their framework, an error-

correcting coding matrix is first given, with each row associated with a class from the

multiclass problem. Binary classifiers (also called base classifiers) are then learned,

one for each column of the matrix, on training examples that are relabeled according

to the column. Given an unseen input, the vector formed by the outputs of the base

classifiers is compared with every row of the coding matrix, and the class associated

with the “closest” row is predicted as the class of the input.

The coding matrix is usually chosen for strong error-correcting ability (Dietterich

and Bakiri, 1995). However, strong error-correcting ability alone does not guarantee

good learning performance—one important assumption for normal error-correcting

codes that errors are uncorrelated may not hold for the base classifiers (Guruswami

and Sahai, 1999). Thus the choice of the coding matrix has to balance the needs

of strong error-correction and uncorrelated classifier errors, and is usually problem-

dependent (Allwein et al., 2000).

Multiclass boosting algorithms based on error-correcting codes (Schapire, 1997;

Guruswami and Sahai, 1999) tackle the error correlation among the base classifiers

by deliberately reweighting the training examples. They usually start off with an

empty coding matrix and all classes indistinguishable from others, and then iteratively

append columns to the matrix and train base classifiers so that the confusion between

classes can be gradually reduced. The examples are reweighted in a fashion similar to

the weighting scheme in the binary AdaBoost (Freund and Schapire, 1996), aiming

at uncorrelated errors. In order to reduce the confusion between classes as fast as

possible, in each iteration, a max-cut problem can be solved so that the “optimal”

matrix column is obtained.

It is however common that researchers usually do not pursue the “optimal” coding

matrix when applying the multiclass boosting algorithms. Instead, some choose the

matrix columns at random (Schapire, 1997; Guruswami and Sahai, 1999).1 Although

the fact of max-cut being NP-complete prevents an efficient solution, this is not

1We actually did not find out how Guruswami and Sahai (1999) chose the columns.

83

exactly the reason for researchers not using it; after all, many multiclass classification

problems have less than ten classes, and even some simple heuristic methods can

do better in reducing the confusion than a random method. It is mostly because

that, combined with the boosting algorithm, a max-cut or heuristic method does not

improve over a random one (Schapire, 1997).

In this paper, we discuss why max-cut does not work well with existing multiclass

boosting algorithms, and propose a general remedy which leads to a new boosting

algorithm. We first discuss in Section 4.2 how AdaBoost.ECC, a typical multiclass

boosting algorithm, can be explained as gradient descent on a margin cost func-

tion (Sun et al., 2005). The trade-off between the error-correcting ability and the

base learning performance is then explained. We propose in Section 4.3 the new al-

gorithm to achieve a better trade-off by modifying the coding matrix according to

the learning ability of the base learner. In Section 4.4, our algorithm is tested on

real-world data sets with four base learners of various degrees of complexity, and the

results are quite promising. Finally we conclude in Section 4.5.

4.2 AdaBoost.ECC and Multiclass Cost

Consider a K-class classification problem where the class labels are 1, 2, . . . , K.

The training set contains N examples, {(xn, yn)}Nn=1, where xn is the input and yn ∈

{1, 2, . . . , K}. To reduce the multiclass problem to a collection of T binary problems,

we use a coding matrix M ∈ {−1, 0, +1}K×T (Allwein et al., 2000). A base classifier ft

is learned on the relabeled examples {(xn,M(yn, t)) : M(yn, t) 6= 0} based on the t-th

column of M, and classes that are relabeled as 0 are omitted. The columns of M are

also called partitions (or partial partitions if there are 0’s) since they define the way

the original examples are split.

Given an input x, the ensemble output F(x) = (f1(x), . . . , fT (x)) is computed,

and the Hamming decoding2 (Allwein et al., 2000) is used to predict the label of x.

2We consider base classifiers with outputs in {−1,+1} (see experiment settings in Section 4.4).
Thus a loss-based decoding is equivalent to the Hamming decoding.

84

Algorithm 4.1: AdaBoost.ECC (Guruswami and Sahai, 1999)

Input: A training set {(xn, yn)}Nn=1; number of epochs T
1: Initialize D̃1(n, k) = 1; F = (0, 0, . . . , 0), i.e., ft = 0
2: for t = 1 to T do
3: Choose the t-th column M(·, t) ∈ {−1, +1}K
4: Ut =

∑N
n=1

∑K
k=1 D̃t(n, k)JM(k, t) 6= M(yn, t)K

5: Dt(n) = U−1
t ·

∑K
k=1 D̃t(n, k)JM(k, t) 6= M(yn, t)K

6: Train ft on {(xn,M(yn, t))} with distribution Dt

7: εt =
∑N

n=1 Dt(n)Jft(xn) 6= M(yn, t)K
8: αt = 1

2
ln(ε−1

t − 1)

9: D̃t+1(n, k) = D̃t(n, k) · e−
αt
2

[M(yn,t)−M(k,t)]ft(xn)

10: end for
11: return the coding matrix M, the ensemble F and αt

In the most general settings, there is a coefficient αt for every base classifier ft. The

Hamming distance between F(x) and the k-th row M(k) is

∆ (M(k),F(x)) =
T∑

t=1

αt
1−M(k, t)ft(x)

2
.

Label y is predicted if M(y) has the smallest Hamming distance to F(x).

To correctly classify an example (x, y), we want ∆ (M(y),F(x)) to be smaller

than ∆ (M(k),F(x)) for any k 6= y. Naturally, we may define the margin of the

example (x, y) for class k as the difference between these two distances,

ρk (x, y) = ∆ (M(k),F(x))−∆ (M(y),F(x)) . (4.1)

A learning algorithm should pick a coding matrix M, T base classifiers ft’s, and

their coefficients αt’s, such that the margins of the training examples are as large as

possible.

AdaBoost.ECC (Guruswami and Sahai, 1999) is one such algorithm with a boost-

ing style (Algorithm 4.1).3 It starts from an empty coding matrix, and iteratively

generates columns and base classifiers. Just as AdaBoost (Freund and Schapire, 1996)

3We only discuss the symmetric AdaBoost.ECC in this paper; nevertheless, our improvement can
also be against the asymmetric AdaBoost.ECC.

85

optimizes some cost as gradient descent in the function space (Mason et al., 2000b),

AdaBoost.ECC optimizes an exponential cost function based on the margins (Sun

et al., 2005)4

C(F) =
N∑

n=1

∑
k 6=yn

e−ρk(xn,yn). (4.2)

We will briefly show how AdaBoost.ECC optimizes this cost in the t-th iteration. Us-

ing the definitions in Algorithm 4.1, we notice that by induction, F = (f1, . . . , ft, 0, . . .)

and D̃t+1(n, k) = e−ρk(xn,yn). So C(F) =
∑N

n=1

∑K
k=1 D̃t+1(n, k) − N for D̃t+1(n, yn)

is always 1. The negative gradient at αt = 0 is thus

− ∂C (F)

∂αt

∣∣∣∣
αt=0

= −
N∑

n=1

K∑
k=1

∂D̃t+1(n, k)

∂αt

∣∣∣∣∣
αt=0

=
N∑

n=1

K∑
k=1

D̃t(n, k)

[
M(yn, t)−M(k, t)

2

]
ft(xn). (4.3)

The last equality is due to step 9 in Algorithm 4.1. Since M(k, t) in AdaBoost.ECC

can only be −1 or +1, the negative gradient can further be reduced to

Ut

N∑
n=1

Dt(n)M(yn, t)ft(xn) = Ut(1− 2εt). (4.4)

AdaBoost.ECC tries to maximize this negative gradient and then picks αt to exactly

minimize the cost along the negative gradient.

Two steps in Algorithm 4.1 directly affect the maximization of the negative gra-

dient (4.4). One is step 3 where the t-th column is picked. The t-th column decides

the value of Ut, which indicates the error-correcting ability of the column. Roughly

speaking, the larger Ut is, the stronger the error-correcting ability is, the faster the

cost is reduced, and the smaller the training error bound is (Guruswami and Sahai,

1999, Theorem 2). The other is step 6, where the base classifier is learned. It is also

obvious that both the cost and the training error bound can be smaller if the base

4Although Sun et al. (2005) used different definitions for the ensemble output and the distance
measure, their cost function is equivalent to ours.

86

learner can achieve a smaller εt. It seems that in order for a better cost optimization,

we should both maximize Ut and minimize εt.

A max-cut method has been proposed to obtain the “optimal” partition that max-

imizes Ut (Schapire, 1997). However, it appears that researchers prefer a somewhat

random method for picking the partitions, e.g., rand-half that randomly picks half

of the classes for label −1 and the other half for +1 (Schapire, 1997; Sun et al.,

2005). This is actually with a reason: in long run, using the “optimal” partitions

from max-cut is usually worse than using the random partitions, in both training and

testing.

Let’s look at a toy problem where points in a rectangle are assorted into seven

tangram pieces (Figure 4.1). To compare the two column-picking methods, rand-half

and max-cut, we ran AdaBoost.ECC on 500 random examples. Our base classifiers

are perceptrons, which separate points with a straight line. It turned out that rand-

half was more efficient in reducing the cost (Figure 4.2). And as a matter of fact, the

test error in this experiment was also smaller with rand-half.

Why did max-cut, which maximized Ut in every iteration, have a worse perfor-

mance in optimizing the cost? One probable reason is that the binary problems from

max-cut are usually much “harder” for the base learner. To see this in the tangram

experiment, we counted how many times a partition was picked during the Ada-

1
2

3
4

56 7

Figure 4.1: The tangram with seven pieces

87

0 10 20 30 40 50

10−2

10−1

100

Number of iterations

Tr
ai

ni
ng

 c
os

t (
no

rm
al

iz
ed

) AdaBoost.ECC (max−cut)
AdaBoost.ECC (rand−half)

Figure 4.2: AdaBoost.ECC cost in the tangram experiment (normalized by N(K−1))

(a) 48 times, ᾱt = 0.332 (b) 40 times, ᾱt = 0.335

(c) 9 times, ᾱt = 0.813 (d) 11 times, ᾱt = 0.619

Figure 4.3: Dominating partitions in the tangram experiment: (a,b) with max-cut;
(c,d) with rand-half

Boost.ECC runs, and summed up for this partition the coefficients αt, which were

decided from the weighted error εt of the base classifiers trained on the partition. The

sum indicates how much the partition influences the ensemble, and the average coef-

ficient (denoted as ᾱ) implies how hard the binary problems are to the base learner.

Figure 4.3 gives the two dominating partitions with the largest coefficient sums out of

the 200 AdaBoost.ECC iterations. Obviously AdaBoost.ECC with max-cut focused

on harder binary problems, while AdaBoost.ECC with rand-half was happy with eas-

88

ier problems. Since harder problems deteriorated the learning of base classifiers, the

overall cost reduction was worse for max-cut. Note that this situation might be more

prominent for later iterations since the boosting nature of AdaBoost.ECC keeps in-

creasing the hardness of the binary problems.

It is thus important to find a good trade-off between maximizing Ut and minimiz-

ing εt. In next section, we will discuss a remedy based on repartitioning.

4.3 AdaBoost.ECC with Repartitioning

We have seen from the tangram experiment that different partitioning methods may

generate binary problems of various hardness levels. How hard a problem is depends

on how the relabeled examples distribute in the feature space and how well the base

learner can handle such a distribution. For example, with perceptrons as the base

classifiers, discriminating tangram classes 1 and 3 from 2 and 4 (Figure 4.3(a)) is

much harder than discriminating 1 and 2 from 3 and 4 (Figure 4.3(c)). Thus in order

to achieve a good trade-off between maximizing Ut and minimizing εt, we should also

consider the discriminating ability of the base learner when picking the partitions.

How do we know whether a partition can be well handled by the base learner?

We usually do not know unless the base learner has been tried on the partition. The

learned classifier has its own preference on how the examples should be relabeled, and

thus hints on what partitions better suit the base learner. We can then repartition

the examples based on such information so as to reduce the cost even more.

Assume in the t-th iteration, a base classifier ft has been learned. To find a new

and better partition for this ft, we try to maximize the negative gradient (4.3),

max
M(·,t)

N∑
n=1

K∑
k=1

D̃t(n, k) [M(yn, t)−M(k, t)] ft(xn),

89

which can be reorganized as

max
M(·,t)

K∑
k=1

µ(k, t)M(k, t),

with µ(k, t) defined as µ(k, t) =

∑
n : yn=k

K∑
`=1

D̃t(n, `)ft(xn)−
N∑

n=1

D̃t(n, k)ft(xn). (4.5)

Since M(k, t) ∈ {−1, +1}, it is clear that the negative gradient is maximized when

M(k, t) = sign [µ(k, t)].

The repartitioning can also be justified intuitively from a single example point of

view. On one side, the contribution of example (xn, yn) to M(yn, t) = sign [µ(yn, t)]

is [
K∑

`=1

D̃t(n, `)− D̃t(n, yn)

]
ft(xn).

Note that with F = (f1, . . . , ft−1, 0, . . .), D̃t(i, k) is e−ρk(xn,yn). So the summation∑
` 6=yn

D̃t(n, `) actually tells, without the current ft, how close the example is to

classes other than its own class yn. The closer it is to other classes, the larger the

summation is, and thus the more likely M(yn, t) would be to have the same sign

as ft(xi), which would in consequence increase some of the margins of this example

after ft is included. On the other side, the contribution of the example to M(k, t)

where k 6= yn is −D̃t(n, k)ft(xn). With similar reasoning, this implies that if the

example is close to class k, M(k, t) would be requested to have the opposite sign

as ft(xn), which also would increase the margin ρk.

The repartitioning of M(·, t) and the learning of ft can be carried out alternatively.

For example, we can start from a partition, train a base classifier on it, repartition

the classes, and then train a new base classifier on the new partition. If the base

learner always minimizes the weighted training error, the negative gradient would

always increase until convergence. In practice, when the base learning is expensive,

we may only repeat the repartitioning and learning cycle for several fixed steps.

90

Algorithm 4.2: AdaBoost.ERP (ECC with repartitioning)

Input: A training set {(xn, yn)}Nn=1; number of epochs T
1: Initialize D̃1(n, k) = 1; F = (0, 0, . . . , 0), i.e., ft = 0
2: for t = 1 to T do
3: Choose an initial column M(·, t) ∈

{
−1, 0, +1

}K

4: repeat {Alternate learning and re-partitioning}
5: Ut =

∑N
n=1

∑K
k=1 D̃t(n, k)JM(k, t)M(yn, t) < 0K

6: Dt(n) = U−1
t ·

∑
k D̃t(n, k)JM(k, t)M(yn, t) < 0K

7: Train ft on {(xn,M(yn, t))} with distribution Dt

8: M(k, t) = sign [µ(k, t)] {See (4.5) for details}
9: until convergence or some specified steps

10: Update Ut and Dt with the current M(·, t), as above
11: εt =

∑N
n=1 Dt(n)Jft(xn) 6= M(yn, t)K

12: αt = 1
2
ln(ε−1

t − 1)

13: D̃t+1(n, k) = D̃t(n, k) · e−
αt
2

[M(yn,t)−M(k,t)]ft(xn)

14: end for
15: return the coding matrix M, the ensemble F and αt

Algorithm 4.2 depicts the new multiclass boosting algorithm, AdaBoost.ERP,

i.e., AdaBoost.ECC with repartitioning. The changes from AdaBoost.ECC are un-

derlined for better reading. Note that we also allow the initial column M(·, t) to have

0’s (step 3). Since a partial partition will be adjusted in the repartitioning step to

a full one, the coefficient αt can still be decided exactly. The benefit of having a

partial partition is that only part of the examples are used for the initial base learn-

ing (step 7). This allows, for example, to first focus the learning on local structures

of just a pair of classes and then extend to the full partition based on the knowledge

learned from the local structures. Besides, the base learning is also faster with less

examples.

The repartitioning takes 2NK arithmetic operations, which is usually much cheaper

than the base learning.

4.4 Experiments

We tested AdaBoost.ERP experimentally on ten multiclass benchmark problems (Ta-

ble 4.1) from the UCI machine learning repository (Hettich et al., 1998) and the

91

Table 4.1: Multiclass problems

data set #train #test K #attribute
dna 2000 1186 3 180
glass 214 - 6 9
iris 150 - 3 4
letter 16000 4000 26 16
pendigits 7494 3498 10 16
satimage 4435 2000 6 36
segment 2310 - 7 18
vehicle 846 - 4 18
vowel 528 462 11 10
wine 178 - 3 13

StatLog project (Michie et al., 1994). For problems with both training and test sets,

experiments were run 100 times and the results were averaged. Otherwise, a 10-

fold cross-validation was repeated 10 times for a total of 100 runs. When there was

randomness in the learning algorithm and/or cross-validation was used, the standard

error over 100 runs was also computed. For each run, the training part of the examples

were linearly scaled to [−1, 1], and then the test examples were adjusted accordingly.

We tried different ways to set the initial partitions and different schedules to repar-

tition. In the results reported here, the initial partial partitions always contained two

classes selected from all the K classes, randomly (denoted by rand-2) or to maximize

the corresponding Ut (denoted by max-2). We use a string of “L” and “R” to rep-

resent the schedule of base learning and repartitioning in a boosting iteration. For

example, “LRL” means that a base classifier was first learned on the two classes in

the partial partition, then the partition was adjusted, and finally a new base classifier

was trained on the adjusted full partition.

We used four base learners of various degrees of complexity. The first one is the

decision stump, also known as FindAttrTest (Schapire, 1997). The second one

is the perceptron with a learning algorithm suitable for boosting (Li, 2005). The

third one is a binary AdaBoost (Freund and Schapire, 1996) that aggregates up to

50 decision stumps. The last one is the soft-margin support vector machine with the

perceptron kernel (SVM-perceptron) (Lin and Li, 2005b).5

5For the perceptron kernel, only the regularization parameter C needs to be tuned. For problems

92

Table 4.2: Test errors (%) of multiclass algorithms with the decision stump as the
base learner

one-vs-one AdaBoost.ECC AdaBoost.ERP (max-2) AdaBoost.ERP (rand-2)
data set one-vs-all max-cut rand-half LRL LRLR LRL LRLR

dna 30.61 5.90 5.92± 0.02 6.41 5.56 5.78± 0.03 5.88± 0.03
glass 34.10± 1.11 27.43± 0.95 26.67± 0.92 26.05± 0.85 25.57± 0.89 25.29± 0.85 25.62± 0.85
iris 7.60± 0.55 7.67± 0.61 6.60± 0.60 6.73± 0.59 6.80± 0.59 7.53± 1.10 6.60± 0.59
letter 39.42 32.79± 0.19 22.00± 0.04 21.05 17.73 18.52± 0.03 17.84± 0.02
pendigits 23.67 9.06 5.94± 0.02 6.03 5.80 5.65± 0.03 5.55± 0.02
satimage 19.15 14.50 12.57± 0.04 12.10 12.45 12.59± 0.04 12.58± 0.04
segment 12.24± 0.21 3.28± 0.12 1.94± 0.09 2.07± 0.09 1.97± 0.09 1.90± 0.09 1.95± 0.09
vehicle 43.31± 0.48 26.93± 0.40 22.13± 0.38 23.28± 0.38 22.85± 0.39 22.08± 0.39 22.40± 0.41
vowel 57.14 59.74 57.98± 0.16 55.63 59.09 57.40± 0.15 57.65± 0.13
wine 15.33± 0.71 2.00± 0.32 3.17± 0.39 2.33± 0.36 2.72± 0.39 2.83± 0.37 2.78± 0.37

We compared our algorithm with AdaBoost.ECC with max-cut or rand-half. When

the decision stump was used as the base learner, each algorithm was run for 500 it-

erations; for other more powerful base learners, the number of iterations was 200.

However, for one exception, the letter data with 26 classes, we ran 1000 iterations

with the decision stump and 500 iterations with other base learners. Note also that

the exact max-cut for 26 classes is time-consuming so instead we used a simple greedy

approximation for the letter data to approximately maximize Ut for AdaBoost.ECC.

We also compared with one-vs-one and one-vs-all using the same base learners. For

space consideration, we only list the lower test errors of these two algorithms.

Table 4.2 presents the test errors with the decision stump as the base learner,

the lowest errors in bold. With this simple base learner, one-vs-one and one-vs-all

got quite large errors since they are limited in the number of base classifiers. We

can also see that most of the time AdaBoost.ECC with max-cut was worse than

AdaBoost.ECC with rand-half. This verified our analysis that, when the base learner

is not powerful enough, problems from max-cut would be too hard and the overall

learning performance would instead be deteriorated (see also Figure 4.4). With the

help of repartitioning, AdaBoost.ERP achieved better test errors for most of the data

sets, and for some cases it was substantially better. For better illustration, we also

with both training and test sets, a cross-validation with 30% of the training set kept for validation
was repeated 10 times. The best C ∈

{
2−3, 1, 23, 26, 29

}
was then used in the full training and

testing. The whole process was repeated 20 time. For problems with no test sets, the best results
of the 10-fold cross-validation averaged over 10 times were reported. To support the weighted data,
we scale C for each example proportional to its sample weight (Vapnik, 1999).

93

0 200 400 600 800 1000

10−1

100

Number of iterations

Tr
ai

ni
ng

 c
os

t (
no

rm
al

iz
ed

)

AdaBoost.ECC (max−cut)
AdaBoost.ECC (rand−half)
AdaBoost.ERP (max−2, LRL)
AdaBoost.ERP (rand−2, LRL)
AdaBoost.ERP (rand−2, LRLR)

(a) cost on the letter data

0 200 400 600 800 1000
15

20

25

30

35

40

45

50

55

60

Number of iterations

Te
st

 e
rr

or
 (%

)

(b) test error on the letter data

0 100 200 300 400 500

10−2

10−1

100

Number of iterations

Tr
ai

ni
ng

 c
os

t (
no

rm
al

iz
ed

)

AdaBoost.ECC (max−cut)
AdaBoost.ECC (rand−half)
AdaBoost.ERP (max−2, LRL)
AdaBoost.ERP (rand−2, LRL)
AdaBoost.ERP (rand−2, LRLR)

(c) cost on the pendigits data

0 100 200 300 400 500
5

10

15

20

Number of iterations

Te
st

 e
rr

or
 (%

)

(d) test error on the pendigits data

Figure 4.4: Multiclass boosting with the decision stump (AdaBoost.ERP (max-2,
LRLR) is very close to that with rand-2)

show in Figure 4.4 the training cost and the test error curves for two large data sets,

letter and pendigits. With the same number of base classifiers, AdaBoost.ERP almost

always achieved a much lower training cost and a lower test error. More steps of the

repartitioning and base learning further improved the learning, although the marginal

improvement was small.

With the perceptron as a more powerful base learner, test errors on some data sets

were greatly reduced (Tables 4.3, with less number of iterations compared to that with

the decision stump). Again repartitioning improved the learning performance on most

of the data sets. Figure 4.5 shows the training cost and the test error curves for the

letter data set. Observations are similar to those of Figure 4.4, but the improvement

94

Table 4.3: Test errors (%) of multiclass algorithms with the perceptron as the base
learner

one-vs-one AdaBoost.ECC AdaBoost.ERP (max-2) AdaBoost.ERP (rand-2)
data set one-vs-all max-cut rand-half LRL LRLR LRL LRLR

dna 25.97± 0.26 8.08± 0.05 8.21± 0.06 8.18± 0.06 8.17± 0.06 8.09± 0.07 8.11± 0.06
glass 35.57± 1.16 29.48± 0.94 30.00± 1.02 28.38± 0.87 29.43± 1.04 30.57± 1.05 29.81± 0.94
iris 4.93± 0.57 5.20± 0.56 4.40± 0.53 4.67± 0.51 4.47± 0.51 4.33± 0.53 4.60± 0.52
letter 22.17± 0.07 15.88± 0.05 14.66± 0.05 13.64± 0.05 11.61± 0.04 13.65± 0.05 11.59± 0.05
pendigits 7.09± 0.09 3.71± 0.03 3.72± 0.03 3.72± 0.02 3.64± 0.03 3.71± 0.02 3.68± 0.03
satimage 15.14± 0.06 12.84± 0.05 12.60± 0.05 12.37± 0.05 12.42± 0.05 12.58± 0.05 12.57± 0.05
segment 7.53± 0.18 2.80± 0.12 2.74± 0.11 2.81± 0.11 2.83± 0.11 2.74± 0.10 2.60± 0.11
vehicle 31.58± 0.49 22.22± 0.45 20.47± 0.42 20.39± 0.42 20.86± 0.43 20.88± 0.44 20.34± 0.43
vowel 56.19± 0.29 56.26± 0.28 51.61± 0.26 50.61± 0.22 50.97± 0.26 50.40± 0.26 50.31± 0.25
wine 3.22± 0.41 2.06± 0.32 2.67± 0.37 2.39± 0.37 2.33± 0.37 2.39± 0.36 2.56± 0.39

0 100 200 300 400 500
10−2

10−1

100

Number of iterations

Tr
ai

ni
ng

 c
os

t (
no

rm
al

iz
ed

)

AdaBoost.ECC (max−cut)
AdaBoost.ECC (rand−half)
AdaBoost.ERP (max−2, LRL)
AdaBoost.ERP (rand−2, LRL)
AdaBoost.ERP (rand−2, LRLR)

0 100 200 300 400 500
10

15

20

25

30

35

40

Number of iterations

Te
st

 e
rr

or
 (%

)

Figure 4.5: Multiclass boosting with the perceptron on the letter data

was not as dramatic as with the decision stump.

The binary AdaBoost was the only weak learner with which one-vs-one actually

had comparable or even better performance compared to the boosting algorithms.

So we mark in Table 4.4 both the lowest errors among the boosting algorithms and

the lowest errors among all the algorithms. Note that with this base learner, Ada-

Boost.ERP with only one base learning and one repartitioning (“LR”) was already

comparable to AdaBoost.ECC with base learning on the full training set.

SVM-perceptron brought us the overall lowest test errors for most of the data

sets (Table 4.5). Note that we do not have all the results for dna and letter since

parameter selection on an ensemble of SVMs is time-consuming. With this powerful

base learner, all the multiclass algorithms performed comparably well, although Ada-

Boost.ERP was still better for some data sets. AdaBoost.ERP was also much faster

95

Table 4.4: Test errors (%) with the AdaBoost that aggregates 50 decision stumps as
the base learner

one-vs-one AdaBoost.ECC AdaBoost.ERP (max-2) AdaBoost.ERP (rand-2)
data set one-vs-all max-cut rand-half LR LRLR LR LRLR

dna 6.32 7.93 7.30± 0.03 7.50 6.75 7.48± 0.05 7.17± 0.04
glass 26.57± 0.87 27.29± 0.96 26.52± 0.91 26.48± 0.92 26.48± 0.94 26.62± 0.95 25.57± 0.90
iris 6.00± 0.60 6.40± 0.58 7.00± 0.57 5.67± 0.59 6.20± 0.59 79.33± 0.75 9.13± 1.47
letter 12.12 40.12± 0.24 20.82± 0.05 27.88 16.05 16.89± 0.05 16.30± 0.04
pendigits 4.92 8.81 5.37± 0.02 4.00± 0.01 5.69 5.55± 0.08 5.12± 0.02
satimage 12.55 14.60 13.87± 0.04 14.75 13.65 12.74± 0.05 13.67± 0.04
segment 2.66± 0.11 2.44± 0.10 1.89± 0.08 1.94± 0.10 2.15± 0.09 2.18± 0.10 1.96± 0.09
vehicle 24.66± 0.41 24.60± 0.47 22.82± 0.45 26.01± 0.43 23.32± 0.44 22.80± 0.43 23.05± 0.44
vowel 46.10 56.93 56.64± 0.14 50.33± 0.03 57.14 51.35± 0.23 56.21± 0.14
wine 2.61± 0.34 4.72± 0.51 2.94± 0.40 3.50± 0.42 4.72± 0.48 3.17± 0.37 3.22± 0.42

Table 4.5: Test errors (%) of multiclass algorithms with the SVM-perceptron as the
base learner

one-vs-one AdaBoost.ECC AdaBoost.ERP (max-2) AdaBoost.ERP (rand-2)
data set one-vs-all max-cut rand-half LR LRLR LR LRLR

glass 28.71± 0.96 28.52± 0.90 28.14± 1.01 29.00± 0.98 28.05± 0.88 28.24± 0.92 28.19± 0.87
iris 4.00± 0.47 3.87± 0.52 3.73± 0.49 3.73± 0.48 3.93± 0.49 3.93± 0.50 3.73± 0.49
pendigits 1.71± 0.00 1.80± 0.01 1.81± 0.03 2.34± 0.04 1.64± 0.02 3.71± 0.14 1.81± 0.04
satimage 7.70 7.66± 0.02 7.70± 0.07 7.71± 0.02 7.72± 0.05 7.76± 0.02 7.63± 0.06
segment 2.09± 0.09 2.21± 0.10 2.08± 0.09 2.09± 0.09 2.16± 0.09 2.10± 0.09 2.14± 0.09
vehicle 17.89± 0.37 19.08± 0.39 18.65± 0.37 17.93± 0.38 17.67± 0.35 17.96± 0.37 17.89± 0.37
vowel 37.45 39.49± 0.14 39.42± 0.29 36.44± 0.02 39.95± 0.19 38.16± 0.37 40.03± 0.25
wine 0.94± 0.22 1.22± 0.26 0.94± 0.25 0.89± 0.23 1.06± 0.23 1.17± 0.25 0.94± 0.21

compared to AdaBoost.ECC even though two SVMs may be learned in one iteration

of AdaBoost.ERP, since the binary problems were usually easier.

4.5 Conclusion

We have proposed and tested AdaBoost.ERP, a new multiclass boosting algorithm

with error-correcting codes and repartitioning. The repartitioning is meant to find

a better coding matrix according to the learning ability of the base learner. Our

experimental results have shown that, compared with AdaBoost.ECC, one-vs-one,

and one-vs-all, AdaBoost.ERP achieved the lowest training cost and test error on most

of the real-world data sets we used. The improvement can be especially significant

when the base learner is not very powerful. AdaBoost.ERP was also faster than

AdaBoost.ECC when working with SVM-perceptron.

96

Simple algorithms like one-vs-one have their advantages. Compared to boosting

algorithms, their training time is usually much less, and the test error can be compa-

rable or even lower when powerful base learners are used. The test time can also be

substantially reduced (Platt et al., 2000). Thus it is interesting to see how boosting

algorithms can be further improved in these aspects.

Acknowledgments

The author thanks Yaser Abu-Mostafa, Alex Holub, and the anonymous reviewers

for helpful comments. This work was supported by the Caltech SISL Graduate Fel-

lowship.

97

Bibliography

Abu-Mostafa, Y. S. (1988a). Complexity of random problems. In Abu-Mostafa, Y. S.,

editor, Complexity in Information Theory, pages 115–131. Springer-Verlag.

Abu-Mostafa, Y. S. (1988b). Random problems. Journal of Complexity, 4(4):277–284.

Abu-Mostafa, Y. S. (1995). Hints. Neural Computation, 7(4):639–671.

Aizerman, M., Braverman, E., and Rozonoer, L. (1964). Theoretical foundations of

the potential function method in pattern recognition learning. Automation and

Remote Control, 25(6):821–837.

Allwein, E. L., Schapire, R. E., and Singer, Y. (2000). Reducing multiclass to binary:

A unifying approach for margin classifiers. Journal of Machine Learning Research,

1:113–141.

Angelova, A., Abu-Mostafa, Y., and Perona, P. (2005). Pruning training sets for

learning of object categories. In Schmid, C., Soatto, S., and Tomasi, C., editors,

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR 2005), volume 1, pages 494–501.

Angiulli, F., Greco, G., and Palopoli, L. (2004). Detecting outliers via logical theories

and its data complexity. In Suzuki, E. and Arikawa, S., editors, Discovery Science:

7th International Conference, DS 2004, volume 3245 of Lecture Notes in Artificial

Intelligence, pages 101–113. Springer-Verlag.

Arning, A., Agrawal, R., and Raghavan, P. (1996). A linear method for deviation

detection in large databases. In Simoudis, E., Han, J., and Fayyad, U., editors, Pro-

98

ceedings of the Second International Conference on Knowledge Discovery & Data

Mining, pages 164–169. AAAI Press.

Barnett, V. and Lewis, T. (1994). Outliers in Statistical Data. John Wiley & Sons,

3rd edition.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University

Press.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. (1987). Occam’s

razor. Information Processing Letters, 24(6):377–380.

Breiman, L. (1996). Bias, variance, and arcing classifiers. Technical Report 460,

Department of Statistics, University of California at Berkeley.

Breiman, L. (1998). Arcing classifiers. The Annals of Statistics, 26(3):801–824.

Brodley, C. E. and Friedl, M. A. (1999). Identifying mislabeled training data. Journal

of Artificial Intelligence Research, 11:131–167.

Cauwenberghs, G. and Poggio, T. (2001). Incremental and decremental support

vector machine learning. In Leen, T. K., Dietterich, T. G., and Tresp, V., editors,

Advances in Neural Information Processing Systems 13, pages 409–415. MIT Press.

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: A library for support vector machines.

Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Dietterich, T. G. (2000). An experimental comparison of three methods for construct-

ing ensembles of decision trees: Bagging, boosting, and randomization. Machine

Learning, 40(2):139–157.

Dietterich, T. G. and Bakiri, G. (1995). Solving multiclass learning problems via

error-correcting output codes. Journal of Artificial Intelligence Research, 2:263–

286.

99

Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algo-

rithm. In Machine Learning: Proceedings of the Thirteenth International Confer-

ence (ICML ’96), pages 148–156. Morgan Kaufmann.

Freund, Y. and Schapire, R. E. (1999). Large margin classification using the percep-

tron algorithm. Machine Learning, 37(3):277–296.

Friedman, J. H. (1999). Regularized discriminant analysis. Journal of the American

Statistical Association, 84(405):165–175.

Gallant, S. I. (1990). Perceptron-based learning algorithms. IEEE Transactions on

Neural Networks, 1(2):179–191.

Gamberger, D. and Lavrač, N. (1997). Conditions for Occam’s razor applicability and

noise elimination. In van Someren, M. and Widmer, G., editors, Machine Learning:

ECML-97, volume 1224 of Lecture Notes in Artificial Intelligence, pages 108–123.

Springer-Verlag.

Grove, A. J. and Schuurmans, D. (1998). Boosting in the limit: Maximizing the

margin of learned ensembles. In Proceedings of the Fifteenth National Conference

on Artificial Intelligence, pages 692–699. AAAI Press/MIT Press.

Grünwald, P. (2005). Minimum description length tutorial. In Grünwald, P. D.,

Myung, I. J., and Pitt, M. A., editors, Advances in Minimum Description Length:

Theory and Applications, chapter 2, pages 23–80. MIT Press.

Guruswami, V. and Sahai, A. (1999). Multiclass learning, boosting, and error-

correcting codes. In Ben-David, S. and Long, P., editors, Proceedings of the Twelfth

Annual Conference on Computational Learning Theory, pages 145–155. ACM Press.

Guyon, I., Matić, N., and Vapnik, V. (1996). Discovering informative patterns and

data cleaning. In Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., and Uthu-

rusamy, R., editors, Advances in Knowledge Discovery and Data Mining, pages

181–203. AAAI Press/MIT Press.

100

Hammer, P. L., Kogan, A., Simeone, B., and Szedmák, S. (2004). Pareto-optimal

patterns in logical analysis of data. Discrete Applied Mathematics, 144(1–2):79–

102.

Hettich, S., Blake, C. L., and Merz, C. J. (1998). UCI repository of machine learning

databases. Available at http://www.ics.uci.edu/~mlearn/MLRepository.html.

Hodge, V. J. and Austin, J. (2004). A survey of outlier detection methodologies.

Artificial Intelligence Review, 22(2):85–126.

Holte, R. C. (1993). Very simple classification rules perform well on most commonly

used datasets. Machine Learning, 11(1):63–91.

Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2003). A practical guide to support vector

classification. Technical report, National Taiwan University.

Knorr, E. M. and Ng, R. T. (1997). A unified notion of outliers: Properties and

computation. In Heckerman, D., Mannila, H., Pregibon, D., and Uthurusamy, R.,

editors, Proceedings of the Third International Conference on Knowledge Discovery

and Data Mining, pages 219–222. AAAI Press.

Levin, L. A. (1973). Universal sequential search problems. Problems of Information

Transmission, 9(3):265–266.

Li, L. (2005). Perceptron learning with random coordinate descent. Computer Sci-

ence Technical Report CaltechCSTR:2005.006, California Institute of Technology,

Pasadena, CA.

Li, L., Pratap, A., Lin, H.-T., and Abu-Mostafa, Y. S. (2005). Improving generaliza-

tion by data categorization. In Jorge, A., Torgo, L., Brazdil, P., Camacho, R., and

Gama, J., editors, Knowledge Discovery in Databases: PKDD 2005, volume 3721

of Lecture Notes in Artificial Intelligence, pages 157–168. Springer-Verlag.

Li, M. and Vitányi, P. (1997). An Introduction to Kolmogorov Complexity and Its

Applications. Springer-Verlag, 2nd edition.

101

Li, Y. and Long, P. M. (2002). The relaxed online maximum margin algorithm.

Machine Learning, 46(1–3):361–387.

Lin, H.-T. and Li, L. (2005a). Infinite ensemble learning with support vector machines.

In Gama, J., Camacho, R., Brazdil, P., Jorge, A., and Torgo, L., editors, Machine

Learning: ECML 2005, volume 3720 of Lecture Notes in Artificial Intelligence,

pages 242–254. Springer-Verlag.

Lin, H.-T. and Li, L. (2005b). Novel distance-based SVM kernels for infinite ensemble

learning. In Proceedings of the 12th International Conference on Neural Information

Processing, pages 761–766.

Mason, L., Bartlett, P. L., and Baxter, J. (2000a). Improved generalization through

explicit optimization of margins. Machine Learning, 38(3):243–255.

Mason, L., Baxter, J., Bartlett, P., and Frean, M. (2000b). Functional gradient

techniques for combining hypotheses. In Smola, A. J., Bartlett, P. L., Schölkopf,

B., and Schuurmans, D., editors, Advances in Large Margin Classifiers, chapter 12,

pages 221–246. MIT Press.

Merler, S., Caprile, B., and Furlanello, C. (2004). Bias-variance control via hard points

shaving. International Journal of Pattern Recognition and Artificial Intelligence,

18(5):891–903.

Michie, D., Spiegelhalter, D. J., and Taylor, C. C., editors (1994). Machine Learning,

Neural and Statistical Classification. Ellis Horwood.

Nash, S. G. and Sofer, A. (1996). Linear and Nonlinear Programming. McGraw-Hill

series in industrial engineering and management science. McGraw-Hill.

Nicholson, A. (2002). Generalization Error Estimates and Training Data Valuation.

PhD thesis, California Institute of Technology.

Platt, J. C., Cristianini, N., and Shawe-Taylor, J. (2000). Large margin DAGs for

102

multiclass classification. In Solla, S. A., Leen, T. K., and Müller, K.-R., editors,

Advances in Neural Information Processing Systems 12, pages 547–553. MIT Press.

Pratap, A. (2003). Data engine for machine learning research. Available at http:

//www.work.caltech.edu/dengin/.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1):81–106.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5):465–

471.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, 65(6):386–408.

Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory of

Brain Mechanisms. Spartan.

Schapire, R. E. (1997). Using output codes to boost multiclass learning problems.

In Douglas H. Fisher, J., editor, Machine Learning: Proceedings of the Fourteenth

International Conference (ICML ’97), pages 313–321. Morgan Kaufmann.

Schapire, R. E., Freund, Y., Bartlett, P., and Lee, W. S. (1998). Boosting the margin:

A new explanation for the effectiveness of voting methods. The Annals of Statistics,

26(5):1651–1686.

Schmidhuber, J. (1997). Discovering neural nets with low Kolmogorov complexity

and high generalization capability. Neural Networks, 10(5):857–873.

Shavlik, J. W., Mooney, R. J., and Towell, G. G. (1991). Symbolic and neural learning

algorithms: An experimental comparison. Machine Learning, 6(2):111–143.

Solomonoff, R. J. (2003). The universal distribution and machine learning. The

Computer Journal, 46(6):598–601.

Sun, Y., Todorovic, S., Li, J., and Wu, D. (2005). Unifying the error-correcting

and output-code AdaBoost within the margin framework. In Raedt, L. D. and

103

Wrobel, S., editors, ICML 2005: Proceedings of the 22nd International Conference

on Machine Learning, pages 872–879. Omnipress.

Vapnik, V. N. (1998). Statistical Learning Theory. Adaptive and Learning Systems

for Signal Processing, Communications, and Control. John Wiley & Sons.

Vapnik, V. N. (1999). The Nature of Statistical Learning Theory. Springer-Verlag,

2nd edition.

Webb, G. I. (1996). Further experimental evidence against the utility of Occam’s

razor. Journal of Artificial Intelligence Research, 4:397–417.

Wolpert, D. H. and Macready, W. G. (1999). Self-dissimilarity: An empirically ob-

servable complexity measure. In Bar-Yam, Y., editor, Unifying Themes in Complex

Systems, pages 626–643. Perseus Books.

Zhang, T. (2004). Solving large scale linear prediction problems using stochastic

gradient descent algorithms. In Brodley, C. E., editor, ICML 2004: Proceedings of

the Twenty-First International Conference on Machine Learning. Omnipress.

Zupan, B., Bohanec, M., Bratko, I., and Demšar, J. (1997). Machine learning by

function decomposition. In Douglas H. Fisher, J., editor, Machine Learning: Pro-

ceedings of the Fourteenth International Conference (ICML ’97), pages 421–429.

Morgan Kaufmann.

Zupan, B., Bratko, I., Bohanec, M., and Demšar, J. (2001). Function decomposition

in machine learning. In Paliouras, G., Karkaletsis, V., and Spyropoulos, C. D.,

editors, Machine Learning and Its Applications: Advanced Lectures, volume 2049

of Lecture Notes in Artificial Intelligence, pages 71–101. Springer-Verlag.

