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ABSTRACT

There has been significant interest during the past decade in developing methods for
remote manipulation and shaping of soft matter such as polymer melts or liquid metals
to pattern films at the micro- and nanoscale. The appeal of low-cost fabrication of
micro-optical devices for beam shaping or metallic films to produce high order cuspidal
arrays for antireflective or self-cleaning coatings has driven considerable interest in the
fundamentals associated with film shaping and liquid curvature. Physicists and applied
mathematicians have uncovered new rich ground in examining the complex behavior of
high order, nonlinear partial differential equations describing the motion and response
of liquid structures driven to redistribute and reorganize by externally applied thermal
and electric fields. For the problems relevant to this thesis, which focuses on liquid
structures at small scales, the applied fields induce surface forces which act only at the
moving interface. Because the surface-to-volume ratios tend to be very large however,
the corresponding forces are considerable in magnitude and dominate the formation and
growth processes described. In all cases examined, once the driving forces are removed
and the operating temperatures dropped below the melting point, the patterned films
and liquid shapes rapidly solidify in place, leaving behind structures with molecularly
smooth surfaces, an especially advantageous feature for micro-optical applications.

The first part of this thesis examines the nonlinear dynamics of free surface films in the
long wavelength limit coating either a flat or curved substrate. We examine the long
wavelength limit in which inertial forces are suppressed in comparison to viscous forces
such that the system reacts instantaneously to interfacial forces acting in the direction
normal to the moving interface, such as capillary and Maxwell forces, or in the direction
parallel to the moving interface, such as thermocapillary forces. In the first example,
we demonstrate by analytic and numerical means how a system designed to incur large
runaway thermocapillary forces can pattern films with conic cusps whose tips undergo
self-focused sharpening through a novel self-similar process. This finding expands the
known categories of flows that can generate cusp-like shapes and introduces a new
lithographic method for remote, one-step fabrication of cuspidal microarrays. We next
examine a lithographic technique known as Electrohydrodynamic Lithography in which
remote patterned electric field distributions projected onto the surface of a dielectric
film generate Maxwell stresses which cause growth and accumulation toward regions of
highest field gradients. Here we solve the inverse problem associated with the governing
fourth-order nonlinear interface equation by appealing to a control-theoretical approach.
This approach reveals the optimal electrode topography required to generate precise
complex liquid patterns within a given time interval. Numerical implementation of this
algorithm yields high fidelity pattern replication by essentially incorporating proximity
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corrections which quench undesirable interference effects of material waves. We then
extend the long wavelength analysis to a liquid layer coating a curved manifold and
demonstrate how a desired film shape can be obtained by novel application of the
Helmholtz minimum dissipation principle. We illustrate this solution method by deriving
the nonlocal tensorial partial differential equation for the evolution of a slender, perfectly
conducting or insulating liquid film supported on a curved electrode. Finite element
simulations demonstrate the complex shapes which can result, including formation of
liquid accumulation sites and flow instabilities not accessible to films supported on a
planar substrate.

The second part of this thesis focuses exclusively on geometric singularities which re-
sult from nonlinear effects caused by the coupling of capillary and Maxwell forces in
perfectly conducting liquids. Here, we do not restrict ourselves to the long wavelength
approximation but instead examine systems with comparable lateral and transverse di-
mensions. We probe the energy stability of such systems using a convective Lagrangian
approach. The exact variational characterization of equilibrium shapes and their sta-
bility is derived in the most general form without restriction to coordinate system or
shape deformations. This formulation unmasks several terms, typically not evident in
calculations restricted to normal deformations of an electrified spherical drop. Our result
provides new insights into the energy stability of equilibrium shapes that do not neces-
sarily have constant interface curvature or uniform surface charge distribution. We then
turn attention to the classical problem of a conical meniscus produced in an electrified
liquid body. The analysis by G. I. Taylor (1963) first determined that the hydrostatic
equilibrium shape for a liquid body subject only to capillary and Maxwell forces is given
by a cone with an opening angle of 98.6◦. However, the fact that such a cone rep-
resents an unsteady configuration is often ignored. We revisit the inviscid analysis by
Zubarev (2001) who proposed that conic cusps in perfectly conductive liquid evolve
through a time-dependent self-similar process. Using the unsteady Bernoulli’s equation,
he analyzed the force balance at the moving interface and obtained an asymptotically
correct self-similar solution dominated by a sink flow far from the evolving apex whose
streamlines orient nearly parallel to the moving surface. In addition to the sink flow
our analysis, supported by accurate, high resolution numerical solutions of the bound-
ary integral equations, independently reveals a two-parameter family of non-spherically
symmetric self-similar solutions whose velocity streamlines intercept the conic surface
at an angle. This new family of solutions not only properly account for the interplay
between capillary, Maxwell and inertial forces but generate advancing and recoiling type
interface shapes, which substantially alter current understanding of the formation and
acceleration of dynamic cones.
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C h a p t e r 1

INTRODUCTION: PATTERNING LIQUID FLOW BY INTERFACIAL FORCES

The need for patterning materials with high resolution and high fidelity levels at micro-
and nano-length scales continues to grow as new technological applications emerge. As
a result, lithography is constantly under active development and has yield many ad-
vanced technologies. Typically, small-scale patterns are constructed with conventional
lithographic techniques such as photolithography and electron beam lithography. The in-
tended reader can consult on reviews (Ito and Okazaki, 2000; Quake and Scherer, 2000;
del Campo and Arzt, 2008) for more information. Typically, these methods involve ex-
posing target material (resist) under patterned radiation of photons or electrons followed
by material removal in a developer where the solubility of the resist is significantly al-
tered upon exposure to radiation. Although these traditional tools have been extensively
studied and optimized in the past few decades, on a fundamental level there still exists
known drawbacks, such as the optical diffraction limit in the case of photolithography
(Wong, 2001), proximity effects in the case of e-beam lithography (T. H. P. Chang,
1975) and the issue of high cost and complicated pre- and post-processing procedures
in general.

Recently, self-organization and self-assembly of soft materials have been reported to
overcome some of the drawbacks of conventional lithographic methods by exploring the
intrigue coupling between intrinsic material properties and externally applied fields. In
many of these “soft” lithographic methods, the use of liquefied materials prevails be-
cause, unlike elastic solids which are often constrained by restoring fores proportional
to its relative displacement to the initial configuration, liquids do not resist deforma-
tion: a liquid parcel immediately accelerates under exerted driving forces and sometimes
decelerates due to viscous forces sensitive to the rate at which it’s being deformed
(not deformation magnitude). Due to the fluidity of the target material, soft lithogra-
phy in general is not necessarily additive or subtractive as the case with conventional
techniques. Instead materials are spontaneously redistributed in accordance with the
transport process enforced by externally imposed forces.

One distinguishing feature about lithographic systems operating at micro- and nanoscale
is that, the volume-to-area ratio scales down drastically with the characteristic size of
the system. As a result, surface forces at liquid interface become dominant over or at
least as important as volumetric forces in the bulk. Shaping of liquid masses becomes
possible, sometimes even more effectively, with careful manipulation of interfacial forces.
A notable example is capillary stress induced by surface tension which is ubiquitous
at any liquid/air interface. Liquid shapes are regularized by capillary stresses acting
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in the direction normal to the interface with a magnitude proportional to the local
mean curvature (Plateau, 1873). Mechanically speaking, whenever the shape of a liquid
undergoes infinitesimal deformations, capillary stresses always act to penalize excessive
surface energy, which is proportional to the total area of the interface. Hence, droplets
and bubbles of spherical or near-spherical shapes are the most ubiquitous geometric
configurations of a liquid mass in nature.

However, the stabilizing effect of capillarity against small-scale geometric variations also
becomes an obstacle in developing sharp features at a liquid interface below a certain
characteristic capillary length scale for micro- and nanosize systems (recall curvature
scales as inverse of characteristic length). In order to achieve diverse patterns with liq-
uefied materials, aside side from capillarity researchers have uncovered a zoo of physical
mechanisms that can generate significant surface forces at the interface between two
phases. Many of these ongoing developments in this thriving area of fluid mechanics and
related applications are highlighted in the comprehensive reviews (Oron, S. H. Davis,
and Bankoff, 1997; Craster and Matar, 2009). It is worth noting that because virtually
all materials respond to electric and thermal fields to some degree and the interactions
with these fields are often non-contact, Maxwell forces induced by electric field (Chou
and Zhuang, 1999; Schäffer et al., 2001) and thermocapillary forces by thermal field
(Dietzel and Troian, 2009b; McLeod, Y. Liu, and Troian, 2011) have shown promis-
ing results and potential. It is the subject of this dissertation that, illustrated through
five hydrodynamic problems concerning controlled deformation of liquid, electrically and
thermally induced interfacial forces, if deliberately engineered, can be used to oppose
or collaborate with the repressive capillary stresses and eventually lead to formation of
non-spherical liquid shapes.

Aside from practical application in lithography, another underlying theme of this thesis is
the theoretical and computational treatment of geometric nonlinearity in hydrodynamics.
Nonlinearity, being the most prominent character of the conservation laws underlying
fluid mechanics, is not a new concept. For inertia-dominant phenomena of fluids at large
scales, the source of nonlinearity is commonly attributed to the convective acceleration.
The most well known example is turbulent flow for which kinetic energy cascades into
a spectrum of velocity fluctuations due to the nonlinear processes of energy transfer
between small- and large-scale flow structures (Kolmogorov, 1991). Another example is
the nonlinearity in the thermodynamic equation of state which plays a central role in the
formation of shock waves in a compressible fluid medium due to the nonlinear steepening
of ordinary acoustic waves (White, 2006). There is also the material nonlinearity in the
stress-strain-rate relation of non-Newtonian fluids (Bird, 1976) which exhibit curious
rheological behaviors such as shear thinning/thickening and plastic-like responses to
applied forces.
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That being said, a common “misconception” about the behavior of fluids at smaller
length scales is that the dynamics must be almost linear since the governing equation—
Stokes equation—is a linearized version of the incompressible Navier-Stokes equation
in the limit of vanishing Reynolds number. However benefits of such linearity expire
when the interface and domain that define a liquid body continuously undergo large
deformations. This type of nonlinearity stems from the fact that, a liquid reacts to the
current deformation rate rather than its displacement to the initial configuration. The
resulting kinematics is globally nonlinear in the current geometric quantities (domain,
boundary, coordinates, etc.) of the evolving liquid volume, regardless of the magnitude
of the Reynolds number. In such cases, a different source of nonlinearity, namely the
geometric nonlinearity, arises even though the incremental dynamics may be perfectly
linear. For this reason, the methodology to achieve precision control of liquid shapes is
not straightforward and sometimes can be counter-intuitive. For the systems examined
in this thesis, a suitable language describing the evolving geometry of liquid bodies is
developed to provide analytic insight into the nonlinear aspect of the problem before
resorting to direct numerical simulation.

1.1 Contributions of this thesis
This thesis is divided into two parts, namely Chapter 2, 3, 4, and Chapter 5, 6, 7, and the
principal contributions of this thesis are summarized as follows. The first half deals with
interfacial flows in a special limit so-called the “lubrication” regime where the streamwise
dimension of the liquid volume is much longer than the transverse dimensions. The
potential energy of the liquid body (or a liquid film to be more precise) is completely
lost to the internal viscous dissipation due to the rate of shear deformation against the
supporting substrate, and therefore not transferred into kinetic energy. In the lubrication
limit, geometric noninearity of the thin viscous fluid is captured by the Reynolds equation
of liquid film thickness (Reynolds, 1886).

In Chapter 2, we demonstrate, by analytic and numerical means, spontaneous formation
of cuspidal cones in a thin liquid film exposed to large thermocapillary stresses, a shearing
type of interfacial force due to the heterogeneous temperature distribution along the
interface. On a fundamental level, this finding broadens our understanding of known
categories of flows that can generate cuspidal forms. More practically, the mechanism
discovered here introduces a potentially novel lithographic method for one-step non-
contact fabrication of cuspidal microarrays.

In Chapter 3, a control protocol is devised for Electrohydrodynamic Lithography (EHL),
a simple yet effective electrostatic technique which deforms slender dielectric liquid films
on a flat substrate through interfacial Maxwell stresses projected by a structured elec-
trode in close proximity. The control methodology developed in this chapter provides a
computational cure to the current bottleneck of EHL, the fidelity of film pattern repli-
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cated from electrode topography. The optimal design of electrode topography generated
by our algorithm, illustrated through finite element simulations, is capable of guiding di-
electric liquid films into complex three-dimensional structures such as the nearly uniform
leveling of a heart-like pattern.

In Chapter 4, we generalize the classical lubrication theory originally derived for lubri-
cation flows on a flat plane to flows on curved substrates. Unlike previous approaches
which rely on asymptotic expansions of the Stokes equation, our formulation is es-
tablished upon the Helmholtz minimum dissipation theorem in the lubrication regime,
which naturally conforms to the energy-dissipation law of fluidic systems. In particular,
we develop a novel nonlocal model in the form of a tensorial partial differential equation
describing the evolution of the local volume density of a thin dielectric liquid coating an
arbitrarily curved conductor in the presence of an external electrode, accompanied by
the usual capillary and gravitational forces.

The second half of this thesis revisits the minimal mechanical model of a perfectly con-
ductive liquid body, first studied by Rayleigh (1882), for which only electrostatic energy
stored in the surrounding vacuum and surface energy of the liquid/vacuum interface are
considered. The focus here is on the strong interface distortion due to the nonlinear
interplay between capillary and Maxwell stresses as well as inertia forces if dynamics is
involved. We show that the classical problem of an electrified liquid, when equipped
with modern mathematical tools, yields some interesting surprises.

In Chapter 5, we systematically derive the first and second shape variations for the
total potential energy (i.e. electrostatic plus surface energy) of an arbitrarily shaped
conductive liquid body subject to exact mass conservation. The second order stability
criterion is identified for any liquid shapes that satisfy the first order equilibrium con-
dition. Our work is fundamentally different than previous approaches in the sense that
the convective Lagrangian methodology developed here is neither restricted to a specific
geometry nor limited to normal-only deformations. Several contributions to the energy
stability, previously obscured by the assumption of a spherical geometry, are uncovered
for equilibrium shapes with nonuniform surface charge distribution or mean curvature.
We expect this result to shed light on the existence and stability of the hydrostatic Taylor
cone, a conic equilibrium shape on which capillary and Maxwell stresses are everywhere
equal and opposite (except at the conic vertex).

In Chapter 6, the apical behavior of an ideal, perfectly conductive incompressible fluid
surrounded by vacuum is examined under circumstances where the capillary, Maxwell
and inertial forces contribute to dynamical formation of a liquid cone. A previous inviscid
model (Zubarev, 2001) showed that dynamic formation of a conic cusp in a perfectly
conductive liquid evolves by a dynamic self-similar process. At the time, Zubarev didn’t
provide actual solutions to the model and the fluid motion near a self-sharpening apex
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predicted by his asymptotic analysis orients parallel to the moving surface. By carefully
matching asymptotic velocity and electric potential to the far-field conditions dictated
by a stationary Taylor cone, our theoretical analysis, supported by accurate numerical
solutions to an equivalent reformulation of the self-similar dynamics as coupled bound-
ary integral equations, reveals a two-parameter family of non-spherically symmetric,
self-similar solutions whose streamlines intercept the conic surface at an angle. These
solutions also unmask the existence of field-driven advancing and recoiling interface dy-
namics for the first time. Our finding expands the understanding of cusp formation and
introduces a new twist to many existing theories based on Taylor’s static cone.

In Chapter 7, we expound on some technical details concerning the discretization of
boundary integrals and numerical approximations to the integral equations. The iterative
procedure for solving the exact similarity solutions on a semi-infinite domain is outlined
in depth.
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C h a p t e r 2

CUSPIDAL FORMATION IN THERMOCAPILLARY THIN LIQUID FILMS

Note: Significant content of this chapter is taken from the work of C. Zhou and Troian
(2019).

2.1 Cusp Formation in Physical Systems
Despite that capillary forces always act to repress regions of high curvature, nature
nonetheless finds clever ways of forming and sustaining cusps in many physical sys-
tems. In fact, cusps are rather ubiquitous and occur in such diverse phenomena as
thermal grooving at grain boundaries (Mullins, 1957), surface diffusion and pinchoff in
annealed or sintered systems (Bernoff, Bertozzi, and Witelski, 1998), complex plasma
formations (Schwabe et al., 2009), wavefront propagation in systems described by the
linear (Z.-H. Yang, Maitra, and Burke, 2012) or nonlinear Schrödinger equation (Ami-
ranashvili, Bandelow, and Akhmediev, 2011), critically charged droplets (Burton and
Taborek, 2011), microbranching instabilities in fast moving cracks (Kolvin, G. Cohen,
and Fineberg, 2015), line attractor states in neural computation models (Xiao et al.,
2017), evaporative dryout in liquid films (Burelbach, Bankoff, and S. H. Davis, 1988)
and many more. A recent delightful book by Eggers and Fontelos (2015) describes as
well the complex dynamics governing cusp formation in many liquid systems including
thread and droplet breakup, Hele-Shaw sink flow and thin film rupture caused by a
negative disjoining pressure (Bernoff, Bertozzi, and Witelski, 1998; Zhang and Lister,
1999; Thete et al., 2015). The latter system sketched in figure 2.1(a) and (b) shows
that the receding air/liquid interface traces a cusp.

In these and other systems (Eggers, 1993; Eggers, 2001; Zhang, 2004; Blanchette and
Zhang, 2009; Karpitschka et al., 2017), the apical region of the evolving cusp exhibits
self-similar behavior characterized by universal exponents, some of which have been
confirmed experimentally (Pont and Eggers, 2006; I. Cohen and Nagel, 2002; Peters
et al., 2009; Marin et al., 2014; Villermaux and Almarcha, 2016). The resulting power
laws stem from scaling symmetries that are invariant in time up to a change of scale. In
almost all cases reported in the literature, however, the moving interface is assumed to
be shear-free and the operable surface forces orient exclusively in the direction normal to
the advancing boundary. The interface therefore experiences no shear force and therefore
plays no active role in corralling fluid into a sharpened tip. Krechetnikov (2010) has
recently conducted elegant analyses of chemically driven tip streaming emanating from
conical singularities in self-driven Marangoni systems; however, those studies have had to
assume steady state (i.e. time independent) flows since the dynamics of cusp formation
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(a)

(b)

(c)

(d)

Figure 2.1: Liquid (a) line type and (b) point type cusp formation in a thin film subject
to a negative disjoining pressure from van der Waals forces that promote dewetting of
the film from the bottom substrate. Reprinted from Witelski and Bernoff (2000) with
permission from Elsevier. Liquid (c) line type and (d) point type conical cusp formation
caused by thermocapillary forces which draw fluid away from the lower warm substrate
toward the top colder substrate, as described in the text.

there remains an unsolved problem (Krechetnikov, 2012; Krechetnikov, 2015).

To explore further the possibility of cuspidal formation driven by shear forces at a free
interface, we here focus on nanoscale liquid films confined by a geometry designed to
elicit self-reinforcing thermocapillary stresses at the air/liquid interface. We analyze the
dynamics by which the ensuant self-similar process gives rise to fluid elongations resem-
bling cuspidal shapes whose conical tips promote self-focusing. Shown in figure 2.1(c)
and (d) are examples of thermocapillary driven line and point cuspidal formations caused
by runaway thermocapillary forces. While figures 2.1(a) and (b) depict cusp formation
arising from forces exclusively oriented normal to the free interface (disjoining pressure
counterbalanced by capillary pressure), figures 2.1(c) and (d) depict formation of cus-
pidial shapes from thermocapillary (shear) forces which orient parallel to the moving
interface. An additional challenging feature of the thermocapillary problem is that the
apical region exhibits multiscale dynamics which considerably complicates the stability
analysis.

Aside from such fundamental considerations, there is a practical motivation for this study
as well. We are interested in exploring thermocapillary based techniques for patterning
nanoscale films which can be rapidly solidified in situ. The system geometry examined
in this work offers a potentially novel lithographic method for one-step non-contact
fabrication of cuspidal microarrays. This development can facilitate design and man-
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(a) (b)

Figure 2.2: Cuspidal arrays: (a) SEM micrograph of plasma etched substrate for super
antireflective coatings, adapted from Nowlin and LaJeunesse (2017) with permission
from the Royal Society of Chemistry, and (b) AFM image of cicada wing, reprinted from
Wisdom et al. (2013) with permission from PNAS.

ufacture of specialty microarrays such as biomimetic cuspidal substrates. Two recent
important examples of such desirable substrates include infrared (IR) antireflective moth
eye surfaces patterned with quintic cusps for eliminating Fresnel reflections in the mid-
IR (Southwell, 1991; Weiblen et al., 2016; Nowlin and LaJeunesse, 2017) as in figure
2.2(a) and superhydrophobic, self-cleaning antimicrobial surfaces mimicking the surface
of a cicada wing (Wisdom et al., 2013) as in figure 2.2(b). Such substrates can likely
be architected using thermocapillary forces to pattern thin films in which form follows
function, i.e. imprinted cuspidal shapes relating directly to their intended function.

Our group has previously demonstrated experimentally how large patterned thermocap-
illary forces can be used to sculpt nanofilms into liquid microlens arrays, which are then
solidified rapidly in situ (McLeod, Y. Liu, and Troian, 2011). The resulting ultrasmooth
surfaces are ideally suited to micro-optical applications such as beam shaping. The
analysis presented in this work suggests that if the microlens configurations are allowed
to evolve further in time before solidification is imposed, the system will transition to
a microcuspidal array. The local analysis presented in this work indicates how initial
protrusions of any sort, whether triggered by the linear instability (Dietzel and Troian,
2009b; Dietzel and Troian, 2010) or triggered by large amplitude perturbations (Dietzel
and Troian, 2009a; McLeod and Troian, 2011), are expected to evolve into individual
or array-like cuspidal patterns.

The outline of this chapter is as follows. In Section 2.2 we sketch the derivation of
the fourth-order nonlinear diffusion equation which governs the evolution of the liquid
film interface driven by interfacial traction forces in general. In Section 2.3 we present
the evolution equation for an ultrathin Newtonian liquid layer subject to very large
thermocapillary forces induced by thermal conduction across a slender quiescent gas
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film. Nominal estimates (Dietzel and Troian, 2010) extracted from experiment for the
spanwise temperature gradient across the gas/liquid bilayer reveal values in the range
105−108 ◦C/cm. This slender geometry is known to give rise to an initial linear instabil-
ity (Dietzel and Troian, 2009b; Dietzel and Troian, 2010) which generates spontaneous
periodic arrays of slender domes. The array pitch, given by the wavelength characterizing
the fastest growing mode is subsequently used to rescale the original equation. Further
rescaling to parameter-free dimensionless form yields an equation belonging to the gen-
eral class of gradient flows. In Section 2.4, it is shown that this evolution equation
does not support stable stationary states because the dynamics incurred by the confined
geometry involve runaway thermocapillary forces whereby the nanofilm can reduce its
free energy by advancing ever closer to the top colder substrate. In Section 2.5, 2D and
3D numerical solutions of the nonlinear interface equation reveal formation of a stable
cuspidal shape which terminates in a cone with a rounded tip that undergoes continu-
ous sharpening. The numerical simulations reveal the self-similar process underlying the
power law growth behavior characterizing the tip speed and tip curvature. In Section 2.6
we present an asymptotic analysis of the conical region which reveals the presence of a
stable fundamental mode acting as an attractor state. Various measures characterizing
this fundamental mode are shown to be in excellent quantitative agreement with the
numerical simulations. The asymptotic analysis also provides an analytic relation for
the slope of the conical tip which should prove useful in designing arrays with specific
tip textures. In Section 2.7, we conclude with some final thoughts on how these find-
ings may help advance a novel lithographic method for fabrication of specialty cuspidal
microarrays.

2.2 Thin Film Equation on a Flat Substrate
In this section we briefly review the standard derivation of the classical lubrication approx-
imation to an incompressible Newtonian fluid of constant density and viscosity bounded
by a surface that’s free to move and deform. Lubrication theory applies when the
evolution of the thickness of a slender liquid layer is of greater interest than the velocity
or pressure field within the bulk of fluid. The foundations of the theoretical treatment
of lubrication flows have been well established since the pioneering work of Reynolds
(1886) on the hydrodynamic lubrication of journal bearing. Assuming that the viscos-
ity is constant and using the slenderness of the liquid film as a small parameter, an
asymptotic approximation in the limit of vanishing slenderness, namely the well-known
Reynolds equation expressed solely in terms of the film height, can be derived for the
evolution of the film thickness in place of the governing Navier-Stokes equation coupled
to a moving free surface which is analytically intractable.

As the use of lubrication approximation for the fluid mechanics of thin liquid films be-
comes pervasive in the field of physics, engineering and mathematics, there have been
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many excellent review articles on the derivation, modeling and analysis of thin liquid
films. The standard procedure of deriving the thin film equation on a flat substrate,
which we closely follow in this thesis to obtain the thermocapillary and electrohydro-
dynamic lubrication models in Chapter 2 and 3, is largely based on the comprehensive
survey by Oron, S. H. Davis, and Bankoff (1997), in which the modeling of various phys-
ical situations are discussed in great details. An overview of the mathematical results
and techniques on the resultant lubrication equations describing surface-tension-driven
thin film flows subject to a number of physical processes can be found in the review
article by Myers (1998). Rigorous mathematical and numerical details of moving con-
tact line and undercompressive shock formation in the context of thin liquid film are
examined the lecture series published by Bertozzi and Bowen, 2002. The introductory
article by O’Brien and L. Schwartz (2002) demonstrates numerical simulations of a col-
lection of thin film models from a more practical perspective oriented towards industrial
applications. For fluid flowing down an inclined plane, the pedagogical paper by Kondic
(2003) presents theoretical, computational and experimental aspects of the instability
development in the gravity driven flow of thin fluid films. The (relatively) recent review
by Craster and Matar (2009) on the dynamics and stability of thin liquid films structures
the discussion into how the liquid films are driven by external forcing, thermal effects
and inter-molecular forces. The article highlights the most prominent developments and
technological advances in the area of thin film flows since the work of Oron, S. H.
Davis, and Bankoff (1997) in the 90s. Aside from deterministic hydrodynamic equa-
tions, analytic and numerical studies of stochastic thin-film equations derived from first
principles, which play a crucial role in thermally activated process such as film rupture
and droplet formation during dewetting, are expounded in the pioneer work of Grün,
Mecke, and Rauscher (2006) for uncorrelated thermal noise and in a follow-up article
(Durán-Olivencia et al., 2019) for perfectly correlated noise.

Continuum equations of fluids
The standard derivation of the lubrication equation begins with the Navier-Stokes equa-
tion of incompressible fluids. Here the basic formulation of fluid mechanics follows the
presentation in the widely used textbook (Leal, 2007) on transport phenomena. The di-
mensional Navier-Stokes equation describes the motion of viscous fluid in the convective
form

ρ
Du
Dt = −∇p+ µ∇2u,

0 = ∇ · u,




(Navier-Stokes equation) (2.1)

where ρ is the density of the fluid , µ is the dynamic viscosity, u = [u, v, w]> is the
velocity field defined in the three-dimensional Euclidean space and D/Dt = ∂/∂t+u ·∇
is the material derivative. The total pressure field

p = pliq + ρgz (2.2)
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is the sum of the true liquid pressure pliq and the hydrostatic pressure (g is the gravitation
acceleration). The Navier-Stokes equation (2.1) is known to be a particular form of the
Cauchy momentum equation (Leal, 2007). Under the incompressible condition, the
equivalent convective form of the Cauchy momentum equation is given by

ρ
Du
Dt = ∇ · σ,

0 = ∇ · u,




(Cauchy momentum equation) (2.3)

where the linear constitutive equation of the stress tensor

σ = −pI + 2µe (2.4)

subject to incompressibility can be decomposed into an isotropic pressure (I is the
identity tensor), also known as the confining stress, and a viscous stress proportional to
the strain rate tensor 2e = ∇u+∇u> with tensor components given by

2eij =




2∂u/∂x ∂u/∂y + ∂v/∂x ∂u/∂z + ∂w/∂x

∂v/∂x+ ∂u/∂y 2∂v/∂y ∂v/∂z + ∂w/∂y

∂w/∂x+ ∂u/∂z ∂w/∂y + ∂v/∂z 2∂w/∂z


 . (2.5)

In this chapter we will not be dealing with the Cauchy momentum equation (2.3) di-
rectly since the Navier-Stokes equation (2.1) has proven to be more useful for modeling
lubrication flow on a flat substrate. However, at an interface γ where a liquid meet-
ing another fluid (e.g., air), integrating the Cauchy momentum equation (2.3) over an
infinitesimally thin Gaussian pillbox enclosing the surface γ yields the stress balance
equation

(σair − σ liq)n+ f = 0 on γ, (2.6)

where n is the unit normal pointing toward the air and f is the surface traction attached
to the liquid/air interface. In fluid mechanics, stress balance equation (2.6) serves as a
boundary condition for interfacial flows, complementing the Navier–Stokes equations.

Traction forces f acting on a capillary surface usually have two components,

f = −σ(∇s · n)n+∇sσ on γ. (2.7)

Here ∇s is the surface gradient (behaves like a vector with contravariant components)
along the curved interface γ. The first term on the right hand side of traction equation
(2.7) is called the capillary stress with σ being the surface tension coefficient at a
liquid/air interface, which is also commonly referred to as the Young-Laplace pressure
since it acts exclusively normal to the interface. Microscopically speaking, capillary stress
arises from the stronger cohesion bonding between liquid molecules than the adhesion
attraction between liquid and air molecules. In continuum limit, the effect of capillary
stress is captured by the quantity −∇s · n, which is twice the mean curvature h of the
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surface. The second term∇sσ, known as the Marangoni stress, accounts for the presence
of interfacial shear tractions due to the variation of surface tension coefficient with
respect to a distribution of additional interfacial quantities. There are three common
interfacial phenomena attributed to the Marangoni stress, the electrocapillary convection
due to surface excess charge density (Choo and Toguri, 1992; J. Lee and Kim, 2000;
L. Wang and J. Liu, 2016), the surfactant spreading caused by the significant change in
surface tension due to contamination of specific immiscible solutes (Gennes, 1985; O. E.
Jensen and Grotberg, 1993; Wit, Gallez, and Christov, 1994; Matar and Troian, 1999;
Warner, Craster, and Matar, 2004) and thermocapillary motion driven by the thermal
fluctuation of interfacial tension (Williams and S. H. Davis, 1982; Burelbach, Bankoff,
and S. H. Davis, 1988; Oron and Rosenau, 1994; Vanhook et al., 1997; Bestehorn,
Pototsky, and Thiele, 2003).

When the interface of a fluid body is a material surface, it does not allow flow through
it. Let xγ be a material point attached to the fluid interface γ. Then the difference
of the velocity at which xγ moves and velocity field u evaluated at fluid interface in
the direction normal to the surface should be zero. This observation translates into the
kinematic boundary condition which states

n · dxγ
dt = n · u on γ. (2.8)

An alternative way to specify a fluid interface is to invoke a level function l(x, y, z, t)
for which the zero set

γ = {(x, y, z) | l(x, y, z, t) = 0} (2.9)

coincides with the fluid interface. Then kinematic boundary condition (2.8) can be
alternatively expressed as the statement that the zero set of the level function l(x, y, z, 0)
stays as the zero set of l(x, y, z, t) at all times, which is equivalent to

Dl
Dt = 0 on γ. (2.10)

A fluid interface which is both free to move and free of traction forces, therefore satisfying
kinematic boundary condition (2.8) and stress balance condition (2.6), is called a free
surface.

Classical lubrication theory
Lubrication theory applies when the evolution of the thickness of a slender liquid layer
is of greater interest than the actual velocity or pressure field within the bulk of fluid.
In the limit of vanishing slenderness, lubrication approximations allow us to replace the
governing Navier-Stokes and the free surface conditions of a thin liquid film deposited
on a flat substrate with a time-dependent partial differential equation expressed solely
in terms of the film height. Following the development of classical lubrication theory
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outlined in the comprehensive review article (Oron, S. H. Davis, and Bankoff, 1997),
we start the derivation by first non-dimensionalizing the governing fluid equations (2.1)
using [L] for the lateral length scale in x- and y-coordinates, [H] for the vertical length
scale in z, [T ] for the time scale, [U ] = [L]/[T ] and [W ] = [H]/[T ] for the in-plane and
out-of-plane reference velocities and [P ] for reference pressure. The first assumption
of the theory is the slender (or long-wavelength) limit, which is equivalent to assume a
small vertical-to-lateral aspect ratio ε defined as

ε = [H]
[L] = [W ]

[U ] � 1. (assumption I) (2.11)

The mass and momentum conservation laws within the thin liquid film described by the
Navier-Stokes equation (2.1) are recast into the dimensionless form

ReDU
Dτ = − [P ][L]

[U ]µ
∂P

∂X
+ ∂2U

∂X2 + ∂2U

∂Y 2 + 1
ε2
∂2U

∂Z2 ,

ReDV
Dτ = − [P ][L]

[U ]µ
∂P

∂Y
+ ∂2V

∂X2 + ∂2V

∂Y 2 + 1
ε2
∂2V

∂Z2 ,

εReDW
Dτ = − [P ][L]

[U ]µ
1
ε

∂P

∂Z
+ ε

∂2W

∂X2 + ε
∂2W

∂Y 2 + 1
ε

∂2W

∂Z2 ,

0 = ∂U

∂X
+ ∂V

∂Y
+ ∂W

∂Z
,





in Ωliq (2.12)

where the Reynolds number is defined as

Re = ρ[U ][L]
µ

(2.13)

and the dimensionless total pressure field

P = Pliq + ρg[L]
[P ] εZ (2.14)

with the non-dimensional liquid pressure Pliq. The key idea behind the slender ap-
proximation (2.11) is that, the terms modified by the inverse powers of ε in the non-
dimensional Navier-Stokes equation (2.12) are significantly amplified as ε → 0 so that
these leading order terms alone could mostly determine the behavior of the fluid in this
asymptotic limit. Note the incompressibility condition (i.e. mass conservation) is not
compromised in the slender limit.

The second assumption of the lubrication theory is the scaling balance between pressure
and viscous forces:

[P ][L]
[U ]µ = 1

ε2
. (assumption II) (2.15)

Enforcing scaling (2.15) is equivalent to choosing the slow time scale [T ] = ε−2µ/[P ].
This a common feature shared by all lubrication systems: the lubrication flows operate
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on a much slower time scale as the overall geometry becomes slenderer and slenderer.
With lubrication scaling (2.11) and (2.15), the momentum equations in (2.12) can be
rearranged into

ε2ReDU
Dτ = ε2

∂2U

∂X2 + ε2
∂2U

∂Y 2 −
∂P

∂X
+ ∂2U

∂Z2 ,

ε2ReDV
Dτ = ε2

∂2V

∂X2 + ε2
∂2V

∂Y 2 −
∂P

∂Y
+ ∂2V

∂Z2 ,

ε3ReDW
Dτ = ε4

∂2W

∂X2 + ε4
∂2W

∂Y 2 + ε2
∂2W

∂Z2 .−
∂P

∂Z
.





(2.16)

If all the higher order terms proportional to or higher than ε2 in the momentum equations
(2.16) were truncated, we would then arrive at the classical lubrication equation first
derived by Reynolds (1886). In order to do so, we would need the third assumption:

Re = O(1). (assumption III) (2.17)

For flows in many micro/nanoscale systems (Oron, S. H. Davis, and Bankoff, 1997;
Craster and Matar, 2009), assumption (2.17) can be easily satisfied due to the presence
of length and velocity scales in Re. Under the assumption of vanishing Reynolds number,
we arrive at the Reynolds lubrication equation in the bulk of the thin liquid film,

− ∂P
∂X

+ ∂2U

∂Z2 = 0,

−∂P
∂Y

+ ∂2V

∂Z2 = 0,

−∂P
∂Z

= 0.





in Ωliq (2.18)

It is worthwhile to mention that, in the opposite regime where Reynolds number is large
(e.g., Re ∼ ε−2 � 1), we recover Prandtl’s boundary layer equations at the leading
order.

The liquid volume Ωliq occupied by the thin film is bounded between the flat support
substrate at Z = 0 and the evolving interface described by a height field function
H(X,Y, τ),

Ωliq =
{
(X,Y, Z) | 0 ≤ Z ≤ H(X,Y, τ)

}
. (2.19)

Kinematic boundary condition of a free surface

D
Dτ
∣∣∣
Z=H

[Z −H(X,Y, τ)] = 0 (2.20)

states that fluid particles on the free surface always remain part of the free surface.
For surfaces specified by a height field Z = H(X,Y, τ), kinematic boundary condition
(2.20) becomes

∂H

∂τ
+ ∂H

∂X
U(X,Y,H) + ∂H

∂Y
V (X,Y,H) = W (X,Y,H). (2.21)
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Equation (2.21) can be further simplified if we derive the following identity by integrating
incompressibility condition in (2.12) along the out-of-plane Z-direction,

0 =
∫ H

0

∂U

∂X
+ ∂V

∂Y
+ ∂W

∂Z
dZ =

∫ H

0

∂U

∂X
+ ∂V

∂Y
dZ +W

∣∣∣
H

0

= ∂

∂X

∫ H

0
U dZ − ∂H

∂X
U(X,Y,H)

+ ∂

∂Y

∫ H

0
V dZ − ∂H

∂Y
V (X,Y,H) +W (X,Y,H), (2.22)

where in the last equality Leibniz integral rule is used to move in-plane differentiations
out of the integral. If we further introduce the in-plane velocity field U‖ and the
volumetric flux Q as

U‖ =




U

V

0


 , Q(X,Y, τ) =

∫ H

0
U‖ dZ, (2.23)

and apply identity (2.22) to the free surface condition (2.21), then the evolution of film
thickness H(X,Y, τ) can be written as a continuity equation

∂H

∂τ
+∇‖ ·Q = 0, (2.24)

where ∇‖ = (∂/∂X, ∂/∂Y ) is the in-plane differential operator with the usual rules of
gradient ∇‖, divergence ∇‖· and Laplacian ∇2

‖. From (2.23) we see that volumetric flux
Q(X,Y ) is fully determined by integrating out the Z-dependence in the in-plane velocity
field U‖. In other words, in the lubrication limit mass conservation due to incompress-
ibility is integrated to an in-plane conservative form instead of satisfied pointwisely in
the three-dimensional fluid volume.

The solution to the velocity components U , V andW (hence U‖) can be found by solv-
ing the Reynolds lubrication equation (2.18) subject to appropriate boundary conditions,
for instance, the no-slip condition between the liquid and the support substrate,

U = V = 0 at Z = 0, (2.25)

which is appropriate for continuous films considered throughout the thesis. At the free
surface Z = H(X,Y, T ), the stress-free condition at air-liquid interface states that, any
surface traction F would result in a jump in the total stresses acting on the interface
from both sides of the dividing interface,

(Σ air − Σ liq)N + F = 0 at Z = H, (2.26)

whereN is the unit normal vector pointing from liquid into air. The dimensionless stress
tensor Σ of an isotropic Newtonian fluid under the lubrication scaling (2.15) takes the
form,

Σ = −P I + 2ε2E . (2.27)
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In order to identify various stress components at the liquid/air interface, it is convenient
to set up a local coordinate system adapted to the interface. In addition to the normal
vector N , we introduce two unit tangent vectors, designated as Sα=1,2, such that the
interfacial traction F can be decomposed into its normal and tangent components,

F = F S + FNN , F S = F1S1 + F2S2 . (2.28)

We further assume air flow is almost inviscid, i.e. O(µair) � O(µliq), and hence drop
the viscous stress contribution from air. Then the projection of stress balance (2.26)
into local surface coordinates yields

Pliq − ε2N · (2E )N = Pair − FN ,
ε2S1 · (2E )N = F1,

ε2S2 · (2E )N = F2.





at Z = H (2.29)

In the event when interface shape is specified by a height field (2.19), these surface unit
vectors can be parametrized using the rescaled coordinates (X,Y, Z),

N ∝
(
∇‖ + 1

ε

∂

∂Z

)
[εZ − εH(X,Y, τ)] ,

S1 ∝
∂

∂X




X

Y

εH(X,Y, τ)


 ,

S2 ∝
∂

∂Y




X

Y

εH(X,Y, τ)


 .





(2.30)

In the limit of small aspect ratio ε� 1, we can expand the normalized expressions from
(2.30) in orders of ε and obtain the leading order approximations to surface unit vectors
N and Sα,

N =




0
0
1


− ε




∂H/∂X

∂H/∂Y

0


+O(ε2),

S1 =




1
0
0


+ ε




0
0

∂H/∂X


+O(ε2),

S2 =




0
1
0


+ ε




0
0

∂H/∂Y


+O(ε2).





(2.31)



17

Similarly the strain rate tensor 2E = ∇U +∇U> is rescaled by powers of ε,

2E =




2∂U/∂X ∂U/∂Y + ∂V/∂X ε−1∂U/∂Z + ε∂W/∂X

∂V/∂X + ∂U/∂Y 2∂V/∂Y ε−1∂V/∂Z + ε∂W/∂Y

ε∂W/∂X + ε−1∂U/∂Z ε∂W/∂Y + ε−1∂V/∂Z 2∂W/∂Z


 .

(2.32)
Substituting components of the strain rate tensor E from (2.32) and surface unit vectors
N and Sα from (2.31) into the stress balance (2.29) and collecting leading order terms
produce three boundary conditions at the interface,

P − ρg[L]
[P ] εZ +O(ε2) = Pair − FN ,

∂U

∂Z
+O(ε2) = 1

ε
F1,

∂V

∂Z
+O(ε2) = 1

ε
F2.





at Z = H (2.33)

We see that the slender assumption (2.11) and pressure scaling (2.15) of the lubrication
theory significantly simplify the stress balance equation at the interface. The solution
to the Reynolds lubrication equation (2.18) is found to be polynomials in Z where the
in-plane velocity field U‖, out-of-plane component W and pressure field P are given by

U‖ =
(1

2Z
2 −HZ

)
∇‖P + ZF ‖,

W =
(1

2HZ
2 − 1

6Z
3
)
∇2
‖P + 1

2Z(∇‖P · ∇‖H −∇‖ · F ‖),

P = Pair − FN (X,Y,H(X,Y, T )) + ρg[L]
[P ] εH,





(2.34)

where

F ‖ = 1
ε




F1(X,Y,H)
F2(X,Y,H)

0


 (2.35)

is introduced as a rescaled in-plane approximation to the true tangential traction F S .
Note the true tangential traction F S is described by the surface unit vectors (2.28) and
is different from the Cartesian definition of F ‖ in (2.35). We shall make this subtle
point clear when dealing with a particular form of the tangential traction, for example,
the thermocapillary stress.

Finally the volumetric flux Q is found by integrating (2.23) with the in-plane velocity
profile U‖ substituted from (2.34),

Q = −1
3H

3∇‖P + 1
2H

2F ‖. (2.36)

Together with the conservation law (2.24) we derive the general form of the evolution
equation for the thickness of a thin liquid film on a flat substrate,

∂H

∂τ
+∇‖ ·

(
−1

3H
3∇‖P + 1

2H
2F ‖

)
= 0. (2.37)
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The thin film equation (2.37) is mostly driven by two mechanisms: in-plane gradient of
interfacial pressure P and tangential traction approximation F ‖. The nonlinear mobility
coefficients, H3 and H2, convert interfacial pressure gradient and tangential traction
into volumetric fluxes which now scale with the local film thickness H(X,Y, τ).

Capillary and Marangoni stresses in lubrication limit
Let σ be the surface tension coefficient between the liquid and air. The dimensionless
surface traction F in the lubrication limit is rescaled as

F = ε2

[U ]µ [σ(−∇S ·N)N +∇Sσ] , (2.38)

where ∇S is the dimensionless surface gradient and the surface divergence of the unit
normal vector is twice the dimensionless mean curvature H of a surface specified by the
height field H,

−∇S ·N = 2H = ∇‖ ·

 ε∇‖H√

1 + |ε∇‖H|2


 . (2.39)

We further assume surface tension coefficient σ(c) is a function of some interfacial
quantity c. Let σo be the reference surface tension coefficient evaluated at the reference
interfacial quantity co. The functional form of σ(c) is called the equation of state. In
a simple model where variation of c is relatively weak, we approximate the equation of
state by a linear relation,

σ(Θ) =




σo + ∆c σcΘ if dσ/dc|c=c0 > 0,

σo −∆c σcΘ if dσ/dc|c=c0 < 0,
(2.40)

where σc = |dσ/dc| is the absolute magnitude of the local slope evaluated at c = co

and Θ is some dimensionless variable such that σ(0) = σo and σ(1) = σo ±∆c× σc.

With capillary number Ca, Bond number Bo and Marangoni number Ma defined as

Ca = µ[U ]
ε3σo

, Bo = ρg[L]2
σo

, Ma = ε
σc∆c
µ[U ] = 1

Ca
σc∆c
ε2σo

, (2.41)

the pressure expression (2.34) becomes

P = Pair −
( 1

Ca
± ε2Ma

)
∇‖ ·


 ∇‖H√

1 + |ε∇‖H|2


+ Bo

Ca
H (2.42)

and the dimensionless Marangoni stress in (2.38) is proportional to the surface gradient
of the interfacial quantity Θ(X,Y,H),

F S =





+εMa∇SΘ if dσ/dc|c=co > 0,

−εMa∇SΘ if dσ/dc|c=co < 0,
(2.43)
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where the surface gradient ∇SΘ can be parametrized with the in-plane coordinates
(X,Y ) using the height field specification (2.19),

∇SΘ = S1√
1 + (ε∂H/∂X)2

∂Θ

∂X
+ S2√

1 + (ε∂H/∂Y )2
∂Θ

∂Y
. (2.44)

The dimensionless numbers Ca and Ma differ from the standard definitions by factors of
the small aspect ratio parameter ε. This is one of the distinct features of the lubrication
theory: interfacial forces scale differently in the slender limit.

Assuming Ca and Ma are both O(1), the leading order slender approximation to the
pressure expression (2.42) is given by

P = Pair −
1

Ca
∇2
‖H + Bo

Ca
H +O(ε). (2.45)

In practice, material properties such as liquid density ρ, gravitational acceleration g and
surface tension coefficient σ generally don’t exhibit order-of-magnitude variations. It
then follows from the definition of Bond number (2.41) that, at micro/nanoscale the
effect of gravity soon becomes negligible as Bo rapidly scales down with characteristic
length [L]2. On the other hand, substitution of the component-wise projection Fα =
F S · Sα into the in-plane approximation F ‖ yields of the slender approximation of the
Marangoni stresses used in the thin film equation (2.37),

F ‖ = ±Ma∇‖Θ +O(ε2), (2.46)

where Θ is determined by solving additional physical systems related to the interfacial
quantity c.

2.3 Thermocapillary Growth of Ultrathin Viscous Film
A theoretical model has previously been derived (Dietzel and Troian, 2009b; Dietzel
and Troian, 2010) to describe the evolution and stability of a confined slender gas layer
overlaying a nanoscale molten film as sketched in figure 2.3. The molten nanofilm
of initial uniform or average thickness ho is confined to a very narrow gap width do

by two impenetrable solid substrates maintained at a uniform temperature difference
∆T = Thot − Tcold > 0. The nanofilm is assumed to comprise a single-component,
non-volatile, incompressible liquid. The model is based on a long wavelength approx-
imation (also called the lubrication or slender gap limit) for which the thickness of
the molten film is much smaller than any characteristic lateral scale [L] such that
ε2 = (ho/[L])2 < (do/[L])2 � 1, inertial forces are negligible such that Re � 1
where Re is the Reynolds number, and thermal conduction is the dominant mode of
heat transfer such that RePr� 1 where Pr is the Prandtl number. Estimates (Dietzel
and Troian, 2010) based on experimental values have shown that hydrostatic forces are
much smaller than viscous forces by at least order 10−7 (quantified by the ratio of Bond
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Virtual singularity z = h = do/(1 − κ)

Thin gas gap
Tcold

Thot

∆T

h(x, t)ho

do
λmax

z y

x

Thin molten film

Figure 2.3: Sketch of a linearly unstable thin molten film overlay by a gas layer. The
gas/liquid bilayer is subject to a very large vertical temperature gradient enforced by the
uniform temperature difference ∆T = Thot−Tcold maintained across the very small gap
width do, typically less than a couple microns. Nominal vertical temperature gradients,
∆T/do, are estimated (Dietzel and Troian, 2010) to be extremely large and range from
about 105 − 108 oC/cm. As discussed in the text, the governing interface contains a
virtual singularity designated by the dashed line at h(x, t) = do/(1 − κ) where κ < 1.
This singularity is never accessible to the evolving film because it lies beyond the top
cold substrate situated at z = do.

number to capillary number) and therefore gravitational effects are also negligible. The
viscosity of the film µ = µ(Thot) is also assumed relatively constant given the ultra-
small gap dimension do. The model also disallows any contact with the bottom or top
substrate such that 0 < h(x, t) < do where x = (x, y).

Since for single component fluids the variation in surface tension σ with temperature T
given by dσ/dT is a negative quantity, any fluctuation giving rise to a local protrusion
generates a local segment of the interface with relatively cooler surface temperature
and therefore higher surface tension. Such variations in surface temperature generate
thermocapillary stresses ∇Sσ = (dσ/dT )∇ST , which act to pull liquid from warmer
to cooler regions of the film. As we discussed in the last section, within the slender
approximation the operator ∇S denoting the surface gradient reduces to the in-plane
gradient ∇‖. Therefore the dominant interfacial shear stresses caused by thermocapil-
larity are mostly oriented in-plane and give rise to large lateral fluxes that push liquid
into protruding regions of the film, which grow further in height and become cooler in
temperature, thereby establishing a feedback mechanism.

In terms of non-dimensionalization, we choose the average film thickness ho to be the
vertical length scale [H] and the characteristic fluid speed based on in-plane thermo-
capillary flow (Dietzel and Troian, 2010) to be the reference speed [U ]. Following the
procedure outlined in the last section for deriving the lubrication equation, we introduce
the dimensionless variables

X = x

[L] , H(X, τ) = h(x, t)
ho

, D = do
ho
, τ = [U ]

[L] t, (2.47)
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which eventually lead to the evolution equation of the thin liquid film,

∂H

∂τ
+∇‖ ·

(
H3

3Ca
∇‖∇2

‖H −
Ma
2 H2∇‖Θ

)
= 0, (2.48)

where Θ is the dimensionless temperature evaluated at the interface to be determined.
The dynamics of film thickness H(X,Y, T ) in equation (2.48) is controlled by two
dimensionless numbers, namely a modified capillary number Ca = µ[U ]/ε3σo and a
modified Marangoni number Ma = εσT∆T/µ[U ] with the reference surface tension
coefficient σo = σ(Thot) and slope σT = |dσ/dT |Thot .

Heat transfer within a slender gap
Assuming no heat source or sink in the system, the general form of heat transfer for a
fluid of density ρ involves both advection and conduction (Leal, 2007),

ρcp
DT
Dt = k∇2T, (2.49)

where k is the thermal conductivity and cp is the specific heat. The conservation of
energy requires continuity of temperature and heat flux across a material surface,

Tair = Tliq,

n · kair∇Tair = n · kliq∇Tliq,



 at z = h (2.50)

Under the previous nondimensionlization used in the slender approximation, the heat
transfer equation (2.49) takes the dimensionless form,

ε2RePrDΘ
Dτ = ε2

∂2Θ

∂X2 + ε2
∂2Θ

∂Y 2 + ∂2Θ

∂Z2 , (2.51)

where Θ is the non-dimensional temperature,

Θ = T − Tcold
Thot − Tcold

, (2.52)

and RePr is the product of Reynolds number and Prandtl number,

RePr = cpρ[L][U ]
k

, Pr = cpµ/k . (2.53)

The typical ranges (Dietzel and Troian, 2010) of material parameters for polymer ma-
terial are cp ∼ O(103 J/K/kg), k ∼ O(1 W/m/K), ρ ∼ O(103 kg/m3). In mir-
cro/nanoscale systems where [L] = O(10−6 m) and [U ] = O(10−6 m/s), the product
RePr � 1 implies the effect of heat advection is negligible and thermal conduction
along the vertical direction, ∂2Θ/∂Z2, is mostly responsible for heat transfer in the
slender geometry. Similarly, the continuity of the heat flux in (2.50) is dominated by
the matching of vertical flux,

kair
kliq

(
∂Θair
∂Z

+O(ε2)
)

= ∂Θliq
∂Z

+O(ε2), (2.54)
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where we have used the slender expansion of the normal vector N from (2.31).

The above analysis conveniently reduces the heat transfer problem to an one-dimensional
thermal conduction across a liquid/air bilayer,

∂2Θair
∂Z2 = 0 in Ωair,

∂2Θliq
∂Z2 = 0 in Ωliq,





(2.55)

subject to isothermal boundary conditions at Z = 0 and Z = D plus two continuity
conditions at the interface,

Θair = 1 at Z = D,

Θair = Θliq at Z = H,

κ
∂Θair
∂Z

= ∂Θliq
∂Z

at Z = H,

Θliq = 0 at Z = 0.





(2.56)

The material parameter κ = kair/kliq denotes the ratio of gas to liquid thermal conduc-
tivity evaluated at the temperatures of the respective adjacent substrates. Since the gas
layer is always more thermally insulating than the liquid layer, κ is restricted to the range
0 < κ < 1. Depending on the materials of choice, however, the magnitude of κ can
range anywhere from about 1/4 or higher for molten polymer films overlay by an air film
(Dietzel and Troian, 2010) to 10−4 or smaller for liquid metal films (Peralta-Martinez
and Wakeham, 2001) overlay by a xenon gas layer (Haynes, 2011). The solution to
equation (2.55) is straightforward:

Θ =





Z − (1− κ)H
D − (1− κ)H if H ≤Z ≤ D,

κZ

D − (1− κ)H if 0 ≤Z ≤ H.
(2.57)

The dimensionless temperature distribution at leading order along the liquid interface is
found to be

Θ(X,Y,H) = κH

D − (1− κ)H . (2.58)

Governing equation of thermocapillary thin film
Substituting Θ from (2.58) into thin film equation (2.48) yields the evolution equation
describing the long-wavelength thermocapillary model,

∂H

∂τ̂
+∇‖ ·

{
H3

3Ca
∇‖∇2

‖H + κDMaH2

2
[
D + (κ− 1)H

]2∇‖H
}

= 0 . (2.59)

The system described is known to undergo a linear instability (Dietzel and Troian, 2009b;
Dietzel and Troian, 2010) which occurs irrespective of the magnitude of ∆T . Physically,
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the confined geometry generates self-reinforcing runaway thermocapillary stresses, which
promote growth of elongations toward the colder substrate. This process is mitigated
only by capillary forces which tend to suppress regions of high curvature. At early times,
infinitesimal disturbances generate periodic undulations in film thickness which undergo
exponential growth. The wavelength of the fastest growing mode is given by

λmax = 2πho
( 4σoho

3κdoσT∆T

)1/2 (do
ho

+ κ− 1
)
. (2.60)

All else equal, a larger difference in temperature ∆T causes undulations of smaller
wavelength. Recent (McLeod, Y. Liu, and Troian, 2011; Fiedler and Troian, 2016;
Fiedler, McLeod, and Troian, 2019) and ongoing experiments to confirm the mechanism
leading to instability so far indicate good agreement with predictions for the fastest
growing mode and its growth rate. In what follows, λmax is selected as the characteristic
lateral scale [L] used to non-dimensionalize lateral scales in the governing equation of
motion. (This parameter should not be confused with the small parameter ε pertaining
to temporal behavior introduced in Section 2.6.) As evident, equation (2.59) exhibits a
virtual singularity at

Hs = D

1− κ (2.61)

(or h = do/(1 − κ) in dimensional variables). This singularity lies outside the physi-
cal domain beyond the top cold substrate since κ < 1. For purposes of this current
study, it proves convenient to recast equation (2.59) into parameter-free form via the
transformation

H∗ = H

[H∗]
, X∗ = X

[X∗]
, τ∗ = τ

[τ∗]
, (2.62)

where the scalings are given by

[H∗] = Hs, [X∗] =
√

2DHs

3κMaCa
, [τ∗] = 4D2

3κ2HsMa
2 Ca

. (2.63)

We then drop ()∗ subscription of H∗, X∗ and τ∗ in the transformed equation and obtain
the final form:

∂H

∂τ
+∇‖ ·

[
H3∇‖∇2

‖H + H2

(1−H)2∇‖H
]

= 0. (2.64)

It suffices to study the behavior of equation (2.64) alone rather than equation (2.59)
parametrized by an arbitrary combination of Ca, Ma and κ. In these new variables,
the top cold substrate is located at H = 1 − κ while the virtual singularity occurs at
H = 1. In this work, we establish that the conical tip at the apex of the evolving cuspidal
shape undergoes self-similar sharpening characterized by distinct power law exponents.
Extraction of robust exponents, however, requires growth over several decades in time.
We therefore focus on systems such that κ ' 2× 10−4 (e.g., liquid metal films overlaid
by a highly insulating gas film) in order to allow longer evolution times.
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Some elementary properties of equation (2.64) can be examined in the linear limit.
Consider an initially uniform film of thickness H0 (i.e. base state) subject to a periodic
perturbationH = H0+δH0 exp (βτ) exp(iK ·X) where |δH0| � 1 is the infinitesimally
small amplitude and K is the two-dimensional wave vector. The resulting expression
for the growth rate β as a function of wave number K = |K| is

β(K) = −H3
0K

4 + H2
0

(1−H0)2K
2. (2.65)

The critical wave number, designated as Kcrit for which β(Kcrit) = 0, sits at the
boundary between the band of growing wave numbers 0 < K ≤ Kcrit and the decaying
band 0 < K ≤ Kcrit. In other words, there always exist exponentially growing distur-
bances of wavelength Λ > Λcrit for an initially flat film of thickness H0 (disturbances of
0 < Λ < Λcrit decay instead), among which the fastest growing (or the most unstable)
wavelength Λmax corresponds to the maximum of β(K) in equation (2.65),

Λmax =
√

2Λcrit, Λcrit = 2π
√
H0(1−H0). (2.66)

If we convert Λmax back to dimensional form, we recover λmax in (2.60), which is the
lateral length scale eventually used to scale the system.

2.4 Stability Considerations by Analogy to Gradient Flows
In previous work (Dietzel and Troian, 2009b; Dietzel and Troian, 2010), the classical lin-
ear stability analysis of equation (2.59) was examined, which exclusively focused on early
time behavior of infinitesimal fluctuations in interfacial temperature or film thickness.
That analysis showed that the instability is of Type II (Cross and Greenside, 2009) where
all modal fluctuations of wavelength λ > λmax/

√
2 are linearly unstable irrespective of

the magnitude of temperature difference ∆T . The authors also investigated nonlinear
growth in late stages by deriving the exact from of the free energy (Lyapunov) functional
F[H] of the thermocapillary system. Through a series of numerical experiments, they
showed that a flat film, not mass-limited, is likely to be driven to touch the opposing
cold substrate whereas a mass-limited film tends to saturate to a configuration in which
interstitial portions between primary film pillars thin to zero thickness. In this section,
we elicit the stability characteristics of stationary states of the full nonlinear equation
(2.64) through a different analytic approach based on the system free energy F[H]. By
exploiting an analogy to general gradient flows, we show next that equation (2.64) does
not admit any stable stationary states on periodic or infinite (lateral) domains so long
as H > 0.

Free energy functional
Mitlin (1993) has previously shown that the interface equation describing thin film
dewetting by van der Waals forces, the process depicted in figure 2.1(a) and (b), can
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Figure 2.4: Plots of Φ(H), 0.2×dΦ/dH and 0.005×d4Φ/dH4 for the thermocapillary
equation. Magnitudes have been rescaled to accommodate all curves on a common scale.
Φch(H) = 200((H − 0.4)2 − 0.05)2 − 1.5 is an example of the double-well potential in
Cahn-Hilliard theory of phase separation.

be rewritten in Cahn-Hilliard form described by

∂H

∂τ
= ∇‖ ·

{
M(H)∇‖

δF[H]
δH

}
, (2.67)

known more generally as gradient flow (Giacomelli and F. Otto, 2003). The thermocap-
illary model described by equation (2.64) posed on the in-plane domain Ω can also be
written in this form where the free energy functional is given by

F[H] =
∫

Ω

1
2
∣∣∣∇‖H

∣∣∣
2

+ Φ(H) dΩ (2.68)

with mobility coefficient
M(H) = H3 (2.69)

and potential function
Φ(H) = H [ln(1−H)− lnH] , (2.70)

such that evaluating the (unconstrained) variational derivative of the free energy

δF

δH
= −∇2

‖H + dΦ
dH (2.71)

recovers the original governing equation (2.64). The curves in figure 2.4 show that, in
contrast to the conventional double-well potential Φch(H) in the Cahn–Hilliard theory
of binary phase separation (J. E. Taylor and Cahn, 1994), Φ(H) has no global minimum
(and that Φ(H), dΦ/dH and d4Φ/dH4 all diverge at the virtual singularity H = 1),
mimicking an infinitely sharp potential well at virtual singularity H = 1.

We first show that for any periodic domain Ω, functional F[H] is indeed a free energy,
i.e., dF/dτ ≤ 0. We evaluate the quantity dF[H]/dτ for the free energy F[H] defined
in equation (2.68) by applying Leibnitz’s rule for differentiation over a fixed periodic
domain Ω:

dF[H]
dτ = d

dτ

∫

Ω

1
2
∣∣∣∇‖H

∣∣∣
2

+ Φ(H) dΩ =
∫

Ω
∇‖H ·

∂∇‖H
∂τ

+ dΦ
dH

∂H

∂τ
dΩ. (2.72)
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Interchanging the order of operators ∇‖ and ∂/∂τ followed by application of the Green’s
first identity to the first integral in equation (2.72) gives

dF[H]
dτ =

∫

Ω

(
−∇2

‖H + dΦ
dH

)
∂H

∂τ
dΩ, (2.73)

where continuity of H and higher order derivatives ensures that the boundary term
proportional to ∇‖H vanishes identically. Substitution of the term ∂H/∂τ in equation
(2.73) by the relations given in equation (2.67) and (2.68) yields

dF[H]
dτ =

∫

Ω

(
−∇2

‖H + dΦ
dH

)
∇‖ ·

[
M(H)∇‖

(
−∇2

‖H + dΦ
dH

)]
dΩ. (2.74)

Application of Green’s first identity subject to the vanishing boundary term yields the
desired inequality

dF[H]
dτ = −

∫

Ω
M(H)

∣∣∣∣∇‖
(
−∇2
‖H + dΦ

dH

)∣∣∣∣
2

dΩ ≤ 0. (2.75)

The proof for infinite (lateral) domain simply requires that the integrand in equation
(2.68) be augmented by the term Φ[H(X→∞, τ)], but otherwise proceeds similarly.

First and second variations of free energy
Due to the conservative (divergence) form of the evolution equation, the total volume of
the liquid film over a periodic domain is a conserved quantity. The energy analysis is only
instructive to the dynamics if it is carried out for film states of identical total volume.
However the form of the free energy (2.68) of the thin film system depends on the total
liquid volume. We can enforce the constrain on the total volume by augmenting the
free energy F[H] with the Lagrange multiplier constant P ,

F[H,P ] =
∫

Ω

1
2
∣∣∣∇‖H

∣∣∣
2

+ Φ(H) dΩ − P
( ∫

Ω
H dΩ −Vol

)
, (2.76)

where the total volume
Vol =

∫

Ω
H dΩ . (2.77)

For H to represent an extrema of the free energy (2.76) with some fixed total volume,
the infinitesimal change δF in the free energy F[H + δH, P + δP ] must vanish against
all infinitesimal variations δH and δP . Evaluating the first variations of free energy
(2.76) results in two expressions,

δF[H,P ; δH] =
∫

Ω

(
−∇2
‖H + dΦ

dH

∣∣∣∣
H

− P
)
δH dΩ, (2.78)

δF[H,P ; δP ] = −
(∫

Ω
H dΩ −Vol

)
δP, (2.79)

where we have used the Green’s identity
∫
Ω∇‖δH · ∇‖H dΩ = − ∫Ω δH∇2

‖H dΩ for a
periodic domain Ω. This yields the value of the Lagrange multiplier

P = −∇2
‖H + dΦ

dH

∣∣∣∣
H

such that
∫

Ω
H dΩ = Vol, (2.80)
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which defines the effective surface pressure required for maintaining stationary states
of constant volume. It’s straightforward to verity that the film profile H satisfying
equilibrium condition (2.80) is a steady state solution to the evolution equation (2.67).

To conclude the nature (e.g., local minimum, maximum or saddle point) of these sta-
tionary solutions H obtained by solving equation (2.80), we must proceed to the second
variation of the free energy around H,

δ2F[H,P ; δH] =
∫

Ω
|∇‖δH|2 + d2Φ

dH2

∣∣∣∣
H

δH2 dΩ, (2.81)

δ2F[H,P ; δP ] = 0, (2.82)

δ2F[H,P ; δH, δP ] = −δP
∫

Ω
δH dΩ = 0, (2.83)

where in equation (2.83) we invoke the volume constraint
∫
ΩH + δH dΩ = Vol on an

admissible variation δH. Usually one needs to first numerically solve for the stationary
solution H and then examines the convexity of the quadratic forms (2.81), (2.82) and
(2.83) that appear under the integral of the second variation. Fortunately we can do
better for the thin film equations. It has previously been shown that for a general class
of thin film equations (Laugesen and Pugh, 2002) which include the form of equation
(2.80), there always exist some small perturbations to the periodic stationary states H
which lead to strictly negative values of the second variation whenever the potential
function satisfies the relation the relation d4Φ/dH4 < 0 over the entire range of H.

To prove this claim, let’s consider the free energy associated with a small deviation
about a stationary solution H of equation (2.76) for admissible (i.e., periodic and zero
total volume) perturbations δH:

F[H+δH, P+δP ] = F[H,P ]+δF[H,P ; δH, δP ]+1
2δ

2F[H,P ; δH, δP ]+O(δH, δP )3.

(2.84)
By definition, the first variation of the energy δF[H,P ; δH, δP ] must vanish identically
for any such stationary solution H. Application of Green’s first identity reduces the
second variation to the form

δ2F[H,P ; δH, δP ] = δ2F[H,P ; δH] =
∫

Ω
δH

(
−∇2
‖ δH + d2Φ

dH2

∣∣∣
H
δH

)
dΩ, (2.85)

where the additional boundary integral vanishes for any periodic perturbation δH. It is
now a straightforward exercise to show that there always exist admissible arbitrary per-
turbations δH such that δ2F[H,P ; δH, δP ] is always strictly negative. We differentiate
equilibrium condition (2.80) twice with respect to X and obtain the relation

−∇2
‖
∂2H

∂X2 + d2Φ

dH2

∣∣∣
H

∂2H

∂X2 = − d3Φ

dH3

∣∣∣
H

(∂H
∂X

)2
. (2.86)
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Substituting equation (2.86) into equation (2.85) for a perturbation of the form

δH = ∂2H

∂X2 (2.87)

(note
∫
Ω δH dΩ = 0 is admissible) yields

δ2F[H,P ; δH, δP ] = −
∫

Ω

(∂2H

∂X2

) d3Φ

dH3

∣∣∣
H

(∂H
∂X

)2
dΩ

= −
∫

Ω

d3Φ

dH3

∣∣∣
H

1
3
∂

∂X

(∂H
∂X

)3
dΩ

= 1
3

∫

Ω

( d4Φ

dH4

∣∣∣
H

∂H

∂X

)(∂H
∂X

)3
dΩ = 1

3

∫

Ω

(∂H
∂X

)4 d4Φ

dH4

∣∣∣
H

dΩ.

(2.88)

All boundary terms from integrations by parts vanish due to periodic boundary con-
ditions. For the thermocapillary model described by the potential function (2.70), its
fourth derivative (as plotted in figure 2.4)

d4Φ

dH4 = −2(1− 2H)2 + 4H2

H3(1−H)4 < 0 for 0 < H < 1 (2.89)

is always negative. When substituted into equation (2.88), this yields the relation
δ2F[H,P ; δH, δP ] < 0. This inequality assures that for every (if exists) nonuniform
stationary state H such that ∂H/∂X is not identically zero everywhere, there always
exists a neighboring state H + δH with same periodicity as H but of strictly lower
free energy. Therefore we conclude that equation (2.80) cannot therefore support any
energetically stable stationary periodic states, at least not any classical smooth solutions
such that H > 0 everywhere. This analysis is quite general and can be modified and
applied to many other thin film systems (even volume non-conserving systems) so long
as the governing interface equation can be cast into the gradient flow equation (2.67).

2.5 Numerical Solution of Nonlinear Thermocapillary Equation
In this section we perform direct numerical simulations for the thermocapillary equation
(2.64) on a rectilinear, axsymmetric and a full two-dimensional domain. In order not to
divert us from the physics, technical details of the finite element formulation and time
step integration scheme employed are postponed to Section 3.2 in Chapter 3.

One-dimensional rectilinear and cylindrical simulations
To gain further insight into the behavior of equation (2.64) for growth in the nonlinear
regime, we examine details of the dynamical shapes obtained from numerical solutions
for rectilinear H(X, τ) and cylindrical H(R, τ) geometry. By virtue of the fact that
vertical dimensions cannot exceed the substrate separation distance and that lateral
dimensions continue to scale with the dominant wavelength of the initial instability, the
results below rigorously satisfy the lubrication approximation throughout the cuspidal
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formation process (in contrast with other thin film problems which involve asymptotic
matching to regions described by a Stokes flow (Krechetnikov, 2010)). A mixed Lagrange
finite element method (COMSOL Multiphysics, Inc. V5.3, 2017) was used to evolve
the solutions, subject to no-flux conditions at the boundaries of the lateral domain
[0, Λmax/2] and initial condition

H(X, τ = 0) = 1
3

(
1 + 0.1 cos 2πX

Λmax

)
(2.90)

(withX replaced byR for cylindrical geometry). The restriction to a domain size Λmax/2
ensured that the dynamics of an individual cuspidal shape could be examined with high
resolution without interference from similar adjacent shapes arising from the native
linear instability (2.66). Quadratic elements numbering about 20000 and of minimum
size 4× 10−8 ensured sufficient spatial resolution of the emerging cuspidal region. The
mesh sizes were everywhere much smaller than |∇2

‖H|−1 at all times. Integration in time
relied on a second order backward difference scheme with small adaptive time stepping.
Typically, full evolution toward the asymptotic shapes required about 11000 integration
steps. Simulations were terminated when the (dimensionless) distance between the
virtual singularity at H = 1 and the liquid cusp apex Hapex(τ) = H(0, τ) reached a
value of about 10−4.

Shown in figure 2.5 are far-field (a) and magnified views (b) of an evolving cusp capped
by a conical tip. As expected from consideration of volume accumulation, the rectilinear
geometry leads to a slightly thinner cusp for the same time interval. Inspection of
the shape of the fluid tip reveals a conical protrusion with constant slope whose tip
radius decreases rapidly in time. Plotted in figure 2.5(c) are the tip speed ∂H/∂τ |apex

and magnitude of the tip curvature |∇2
‖H|apex as a function of the decreasing distance

1−Hapex(τ). The power law behavior observed persists for almost four decades in time
indicating robust self-similar growth. The indicated asymptotic values for the slope and
intercept values (in parentheses) of the lines shown were obtained from least square fits
over the shaded (yellow) portion shown. This self-similar behavior confirms the relations

∂Hapex
∂τ

∼ 1
(1−Hapex)3 , ∇2

‖Hapex ∼
1

1−Hapex
. (2.91)

Introducing the singular time τs where the local film apex Hapex reaches H = 1—the
singular point of equation (2.64)—yields the scaling relations governing the conical tip
region, namely (1−Hapex/(τs−τ) ∼ (1−Hapex)−3 and (1−Hapex)/X2 ∼ (1−Hapex)−1.
These reveal the self-similar variables characterizing this asymptotic regime, namely

X ∼ 1−Hapex ∼ (τs − τ)1/4, (2.92)

which reflect the lack of an intrinsic spatial or temporal scale in the conical region.
As evident in figure 2.5(d), the shape of the conical tip undergoes collapse onto a



30

1.5 1.0 0.5 0 0.5 1.0 1.5
0.0
0.2
0.4
0.6
0.8
1.0

0 0.01-0.01

1.0

0.99

0.4 0.2 0 0.2 0.4

0.80
0.85
0.90
0.95
1.00
1.05

10-5 10-4 10-3 10-2 10-1 100

1000
1002
1004
1006
1008
1010
1012
1014

1−Hapex(τ)

100 50 0 50 100
0

20

40

60

80

100

1 1
-1

-0.5

(a)
Rectilinear
profile H(X, τ)

Axisymmetric
profile H(R, τ)

ττ

RX

(b)

RX

−3.010(−1.675)
−3.015(−1.742)−0.995(−0.056)−0.993(−0.146)

Rectilinear (X)
Axisymmetric (R)∂H

∂τ

∣∣∣
apex

∇2
‖H|apex

(d)

(1
−

H
ap

ex
)

×
|∇

2 ‖
H
| ap

ex

ηη 0

η = X
1−Hapex

η = R
1−Hapex

slope 1.044 slop
e 0.7

64

τ
τ

τ
τ

(1
−
H

)/
(1
−
H

ap
ex

)

Figure 2.5: Self-similar formation of conical cusp from numerical solution of equation (2.64) for
rectilinear (X) and axisymmetric (R) geometry. Arrows indicate increasing time τ . (a) Far field
view of cuspidal formation for Hapex(τ) = 0.367, 0.4, 0.5, ... , 0.8, 0.9, 0.9875. (b) Magnified
view of conical tip for Hapex(τ) = 1− 0.2/2n showing n = 0 (H), n = 1 (�), n = 2 (�), n = 3
(l) and n = 4 (�). Inset: Magnified view of conical tip for Hapex(τ) = 1 − 0.2/2n showing
n = 5− 10 (N). (The last two curves n = 9, 10 are indistinguishable.) (c) Power law behavior
of ∂H/∂τ |apex and |∇2

‖H|apex versus 1−Hapex(τ). Slopes and intercept values (in parentheses)
were obtained from least squares fits over the shaded (yellow) region. (d) Rescaled solutions
(1−H)/(1−Hapex) showing self-similar collapse of the conical tip for Hapex(τ) = 1− 0.2/2n

where n = 0− 10. Inset: Rescaled apex curvature (1−Hapex)(∇2
‖H)apex versus η.
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Figure 2.6: Four images of the film thickness H(X, τ) (top panel) and interface
curvature ∇2

‖H (bottom panel) from numerical simulation of equation (2.64) on a
square periodic domain with edge length Λmax ≈ 3.02. The initial condition was
H(X, 0) = {1−0.05[cos(2πX/Λmax)+cos(2πY/Λmax)]+rand(X)}/6, where rand(X)
denotes a uniformly distributed random variable between -0.2 and 0.2. The maximum
film thickness is denoted Hmax. The orange lines are the boundaries between regions of
positive and negative curvature. The evolution times depicted are τ = 0.0, 30.0, 50.5
and 50.84552722.

common curve when both the vertical and lateral dimensions are normalized by the
factor (1−Hapex). The extent of the collapsed region is observed to increase in time.
Shown in the inset of figure 2.5(d) is the rescaled apical curvature (1−Hapex)(∇2

‖H)apex

versus η = X/(1 −Hapex) or R/(1 −Hapex), which also exhibits self-similar collapse.
The virtual singularity Hapex = 1 appears therefore to act as an attractor state for
formation of the conical tip.

Two-dimensional periodic square domain
We also performed a full two-dimensional direct numerical simulation of equation (2.64)
to demonstrate the robustness of cuspidal formation in a thermocapillary-driven thin
film. The top panel shown in figure 2.6 represents 3D views of an evolving cusp with a
conical tip at the four times designated, as obtained from finite element simulation of the
full nonlinear equation (2.64). The square domain was discretized into 15872 triangular
elements of quadratic order with 63746 degrees of freedom in total. Since the evolving
cusp was centered about the origin of the domain, the nested mesh shown in figure 2.7
was implemented in order to resolve details of the apical region with sufficient resolution.
The edge size ∆X of the smallest mesh element in the central was about 0.0004,
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Figure 2.7: Image of progressively refined mesh used to resolve details in the apical
region.

intentionally chosen to be smaller than the minimum value of |∇‖H|−1 ∼ O(10−2).
The finite element simulation was run until the cusp apex height reached a maximum
value Hmax that just exceeded 0.99.

The bottom panel displays the value of the curvature of the gas/liquid interface at every
point within the computational domain. The orange curves delineate concave from
convex regions. The last image in the bottom panel clearly reveals that the interface
evolves into a cuspidal shape capped by a conical tip with shrinking radius flanked by a
broader convex surface.

We verified that these results, i.e. rectilinear, axisymmetric and full two-dimensional
simulations, converged upon mesh refinement and that the minimum mesh size chosen
was sufficient to capture the dynamics of the evolving tip with high resolution. In
particular, the scaling relations (2.92) noted above establish constraints on the minimum
mesh size ∆X ∼ 1 − Hapex ∼ 1/|∇2

‖H|apex required to resolve the curvature in the
apical region. For the results shown in figure 2.5, the simulations were terminated when
1 − Hapex ∼ O(10−4). The minimum element size used of 4 × 10−8 ensured that
O(∆X)� O(1−Hapex). Therefore, the overall local error in was sufficiently small in
our simulations to capture with high resolution the self-similar dynamics in the apical
region before the simulations were terminated to prevent contact with the top colder
substrate. Similar argument applies to the two-dimensional simulation on the square
domain.
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2.6 Asymptotic Analysis of Self-Similar Cusp Formation
The exponents obtained from these numerical simulations were also confirmed by analy-
sis of equation (2.64) by considering a Taylor expansion about the virtual singular point
H = 1, which yields the asymptotic evolution equation

∂H

∂τ
+∇‖ ·

[
∇‖∇2

‖H + 1
(1−H)2∇‖H

]
+O(1−H)−1 = 0. (2.93)

Balancing the first and second term with the second and third term yields the same
asymptotic relation (2.92) obtained previously. These scalings suggest introduction of
the stretched variables

η = X

ε
or R

ε
, 1−H =

∞∑

n=0
εnWn(η) where ε = (τ − τs)1/4 (2.94)

(recall τs is the singular time where film apex Hapex → 1). We note here that if
equation (2.64) were truly scale-invariant, and not just asymptotically so as Hapex → 1,
the expansion in equation (2.94) would terminate at n = 1. The appearance of the 1−H
term in the denominator of equation (2.64), however, precludes such global scaling and
instead leads to multiscale expansions of the form:

∂H

∂τ
= 1
ε4

∞∑

n=1
εnTn(W1, . . . ,Wn), (2.95)

∇‖ ·
(
H3∇‖∇2

‖H
)

= 1
ε4

∞∑

n=1
εnSn(W1, . . . ,Wn), (2.96)

∇‖ ·
[

H2

(1−H)2∇‖H
]

= 1
ε4

∞∑

n=1
εnMn(W1, . . . ,Wn), (2.97)

where the symbols ∇‖, ∇‖· and ∇2
‖ represent the appropriate forms of the gradient,

divergence and Laplacian operators for rectilinear (X) or cylindrical (R) geometry. To
leading order n = 1, equation (2.93) then reduces to the nonlinear, fourth order equation
given by

T1(W1) + S1(W1) + M1(W1) = 0, (2.98)

where the operators T1, S1 and M1 are defined as

T1(W1) = 1
4

(
W1 − η

dW1
dη

)
, (2.99)

S1(W1) = −∇2
η∇2

ηW1, (2.100)

M1(W1) = ∇2
η

( 1
W1

)
. (2.101)

Here and in what follows, operator subscripts ∇η denote differentiation with respect to
the self-similar variable η for rectilinear or cylindrical form. These self-similar solutions
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can be used to derive some characteristics of the local touch-up process,

1−Hapex(τ) =
∞∑

n=1
εnWn(0) = εW1(0) +O(ε2), (2.102)

∇2
‖H|apex(τ) = −

∞∑

n=1
εn−2∇2

ηWn(0) = −1
ε
∇2
ηW1(0) +O(ε0), (2.103)

dHapex
dτ =

∞∑

n=1

n

4 ε
n−4Wn(0) = 1

4ε3W1(0) +O(ε−2). (2.104)

Required symmetry about the axis of origin yields two boundary conditions, namely

dW1
dη

∣∣∣∣
η=0

= d3W1
dη3

∣∣∣∣∣
η=0

= 0. (2.105)

It is argued (Bernoff, Bertozzi, and Witelski, 1998) that in order to describe localized
self-similar behavior, the solution profile away from a localized singularity must not rely
on the rapidly evolving singularity as the singular time τs is approached. This means
equation (2.98) must also conform to far-field boundary conditions allowing asymptotic
matching to the slow dynamics away from the apical region. In other words, at any fixed
distance away from the cusp point, film height must stay bounded. In the dynamically
stretched variables (2.94), it translates into the requirement that equation (2.99) remains
bounded as ε→ 0, or equivalently η →∞, which requires the leading term T1(W1) to
vanish. This then leads to the additional Robin boundary condition at far field

T1(W1)|η→∞ = 0, or equivalently W1 ∼ η as η →∞. (2.106)

To leading order then, the asymptotic solution to equation (2.98) is satisfied by the
Laurent series

W∞1 =
∞∑

k=0
ak+1η

1−4k = a1η + a2
η3 + a3

η7 + ... as |η| → ∞, (2.107)

where the higher order coefficients ak>1, for instance,

a2 =





− 2
a1

(rectilinear)

a1 −
1
a1

(axisymmetric)
, a3 =





− 30
(12
a1

+ 1
a3

1

)
(rectilinear)

25
2

(
9a1 −

8
a1
− 1
a3

1

)
(axisymmetric)

,

(2.108)
are all uniquely determined by the leading order linear slope a1 alone, which in general
can only be obtained numerically.

Long-wavelength transformation
The asymptotic slope a1 is a free parameter and cannot be determined from far-field
expansion at η → ∞ alone. Nevertheless in the limit of small slope |a1| � 1, it is
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possible to extract information about the structure of W1 through the long-wavelength
transformation,

W1 = √a1 W̃1(η̃), η̃ = √a1η. (2.109)

We rewrite equation (2.98) in terms of the long-wavelength variables η̃ and W̃1,

T1(W̃1) + M1(W̃1) + a2
1S1(W̃1) = 0. (2.110)

The highest derivative∇2
η∇2

η in the transformed equation (2.110) is multiplied by a small
parameter a2

1 which makes it a singular perturbation. The solution to the unperturbed
part of equation (2.110),

T1(W̃1) + M1(W̃1) = 1
4

(
W̃1 − η̃

dW̃1
dη̃

)
+∇2

η̃

( 1
W̃1

)
= 0, (2.111)

serves as an excellent approximation to the full problem except for the near-field region
which would require a different rescaling of η and W1 other than (2.109).

It’s standard to recast a second order inhomogeneous ordinary differential equation into a
three-dimensional autonomous dynamical system. For example, with X = dW̃1/dη̃, Y =
W̃1, Z = η̃ and T = η̃ introduced, it’s straightforward to show that the corresponding
autonomous system d[X,Y,Z]>/dT = F(X,Y,Z) = [function(X,Y,Z),X, 1]>. How-
ever, the invariance of equation (2.111) under long-wavelength transformation (2.109)
immediately suggests a symmetry reduction in the dimension of the resulting dynamical
system. If instead we define

X = 1
W̃2

1

dW̃1
dη̃ , Y = η̃

W̃1

dW̃1
dη̃ , T = ln |η̃|, (2.112)

then the second order ODE (2.111) is mapped onto a first order autonomous dynamical
system of only two dimensions,

d
dT

[
X
Y

]
= F(X,Y) =





[
Y(1− Y)/(4X)

Y2(1− Y)/(4X2) + Y(1 + Y)

]
, (rectilinear)

[
Y(1− Y)/(4X)− X

Y2(1− Y)/(4X2) + Y2

]
. (axisymmetric)

(2.113)

It’s easy to verify that the solution of W̃1 at η̃ = 0 is mapped to the origin (0, 0) in
the (X,Y)-phase plane while the far-field linear asymptope of W̃1 is mapped to the
point (0, 1). The phase portrait of vector field F(X,Y) shown in figure 2.8 was cre-
ated with the symbolic mathematical computation program (Wolfram Research, 2019).
We immediately observe that there are infinitely many trajectories connecting the two
singularities, a hyperbolic point at (0, 0) and a sink point at (0, 1). Although all of
these trajectories have a linear asymptope, there is only one unique trajectory such that
the derivatives of the solution W̃1 that corresponds to this trajectory is bounded near
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Figure 2.8: Phase portrait (arrow) of dynamical system (2.113): a hyperbolic fixed
point at (0, 0), a saddle point (0, 1) and the two unique trajectories (solid line) that are
continuous at all orders.

η̃ = 0. Note each trajectory shooting out of (0, 0) can be characterized by its exiting
slope dY/dX in the neighborhood of (0, 0). The local behavior of the vector field near
(X,Y) = (0, 0) can be mapped back to the corresponding local structure of W̃1 near
η̃ = 0,

Y ≈ cX2 + ...⇐⇒ W̃1 ≈ W̃1(0) + η̃2

2
d2W̃1
dη̃2

∣∣∣
η̃=0

+ ...,

Y ≈ cX + ...⇐⇒ W̃1 ≈
const.
η̃

+ ....





(2.114)

For W̃1 to well behave near η̃ = 0, the corresponding trajectory near the origin of
(X,Y)-phase plane must be locally parabolic instead of linear. We plot the two such
unique trajectories (thick lines) in figure 2.8 for both rectilinear and axisymmetric cases.
This exercise implies that if we ignore the small scale details induced by the singularly
perturbed capillary term a2

1S1 near η = 0, the solutionsW1(η) to the similarity equation
(2.98) shall all collapse onto a single unique trajectory in the long-wavelength phase
space.

WKBJ approximation
As we discussed in the last section, all solutions W1(η) to ODE (2.98) are expected to
converge to a linear asymptote, presumably of different slopes. The algebraic expansion
(2.107) only captures perturbative corrections to the linear far-field asymptope. Instead
of seeking a power series approximation (2.107), we pursue a WKBJ-type approximation
(Bender and Orszag, 1999) in the form

W1(η) = a1η + ∆W(η), (2.115)
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where the WKBJ ansatz

∆W(η) = exp
[1
δ

∞∑

k=0
δkSk(ξ)

]
, δ = ν4/3, ξ = νη (2.116)

measures deviations from the linear asymptote with the asymptotic scaling δ and slow-
varying coordinate ξ for some small parameter ν � 1. Substituting ansatz (2.115) into
the original ODE (2.98) and setting coefficients of the leading order terms to zero yield

O(δ−1) : 1
4ξ

dS0
dξ +

(dS0
dξ
)4

= 0,

O(δ0) :
[1

4ξ + 4
(dS0

dξ
)3] dS1

dξ = 1
4 − 6

(dS0
dξ
)2 d2S0

dξ2 −
2
ξ

(dS0
dξ
)3

︸ ︷︷ ︸
if axisymmetric

.





(2.117)

The solution to equation (2.117) is straightforward. The fact that dS0/dξ belongs to the
four roots (two real and two complex) of the fourth degree polynomial ξ(ξ3 + ξ/4) = 0
leads to four possible modes of the far-field behavior,

∆W ≈ β0η +
3∑

k=0

βk
ηα

exp
[
− 3

44/3 e
i2πk/3η4/3

]
+O(η−3), (2.118)

where α = 1 for rectilinear geometry and = 5/3 for axisymmetric. WKBJ approxima-
tion (2.118) sometimes is referred to as a non-perturbative method because the Taylor
expansion of ∆W (excluding the β0 term) in the small parameter η−1 is zero at every
order. Such contribution is not visible in any order of the perturbative approximation
(2.107).

From equation (2.118), we see that the β1- and β2- modes in the summation undergo
divergent oscillatory growth whereas the two remaining non-vanishing modes propor-
tional β0 and β3 simply reflect an infinitesimal shift in the far-field slope a1 and a
super-exponential decay, respectively. In order to satisfy the far-field condition (i.e.
convergence to a1η), we must require β0 = β1 = β2 = 0. However, combined with the
two symmetry conditions (2.105) at η = 0 which W1 must satisfy, this gives a total
of five constraints on the solution of a fourth order differential equation—the problem
(2.98) with boundary conditions (2.105) and (2.106) is in fact over determined. This
overdeterminancy is a classic sign of a beyond-all-orders eigenvalue problem: the solu-
tions to equation (2.98), if exist, can only be expected to exist for specific values of
a1, i.e. must be discrete and locally unique in the far-field asymptotic slope a1 (we
think of the solution family W1 as being parameterized by a1). The discrete selection
mechanism is made clear by using exponential asymptotics which has been successfully
applied to the self-similar solutions of thin film equation during the process of van der
Waals-driven rupture (Chapman, Trinh, and Witelski, 2013).
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Figure 2.9: Leading order self-similar solutions W(`)
1 (η) of equation (2.98). Only the

first six convergent solutions are shown.

Numerical solution
In order to compute the self-similar solutions, we truncate the semi-infinite domain at a
sufficiently large distance L and then project equation (2.98) into the finite element space
over interval [0, L]. We impose dW1/dη = d3W1/dη3 = 0 at η = 0 to enforce symmetry
condition and a constraint T1(W1) = 0 at η = L to eliminate the two growing modes
predicted by (2.118). The resulting discretized system of equations is solved by Newton
iteration. The initial guess of each iteration is in the form of a hyperbola (a2 + b2η2)1/2

with b being an adjustable parameter for asymptotic linear slope. Given a range of
b-values swept, the solver (COMSOL Multiphysics, Inc. V5.3, 2017) only converges to
a discrete family of solutions. The numerical solutions to equation (2.98) are computed
on a finite domain of sufficiently long sizes, i.e. L = 50, 100 and 200, to preclude
finite distance effects. The results also converge upon progressive mesh refinement
as the finite domain [0, L] is discretized into 103, 104 and 105 elements. Shown
in figure 2.9 are the first six similarity solutions with corresponding numerical values
listed in table 2.1. The asymptotic interface slopes of the conical tip for axisymmetric
geometry are always smaller than the slopes for rectilinear geometry, as expected. The
axisymmetric solutions also display weaker oscillatory behavior, likely due to suppression
by the capillary pressure associated with the additional term in the interface curvature.
The fundamental mode ` = 1 exhibits no oscillatory behavior unlike the higher order
solutions ` ≥ 2.

Next we compare the fitting coefficients from the asymptotic self-similar analysis of equa-
tion (2.98) with those obtained from direct numerical simulations of equation (2.64),
which are plotted in figure 2.5. To the leading order, if we assume 1−Hapex ≈ εW(`)

1 (0)
then it can be shown that the intercept values for the log-log plot in figure 2.5(b) are
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` lim
η→∞dW(`)

1 /dη W(`)
1 (0) ∇2

ηW(`)
1

X R X R X R
1 1.0437 0.7639 0.5526 0.5372 1.2082 1.5563
2 0.3430 0.2474 0.6728 0.7317 -0.2316 -0.1624
3 0.2145 0.1610 0.4204 0.4816 0.2021 0.1669
4 0.1580 0.1196 0.4052 0.4544 -0.0884 -0.0438
5 0.1257 0.0962 0.3390 0.3902 0.0792 0.0526
6 0.1046 0.0806 0.3211 0.3649 -0.0364 -0.0087

Table 2.1: Asymptotic values of the interface slope, apex height and apex curvature
for the leading order solution W1 to equation (2.98). The columns with headers X and
R denote values of the first six solutions W(`)

1 found for rectilinear and axisymmetric
geometry, respectively.

approximately given by

log10
∂H

∂τ

∣∣
apex ≈ −3 log10(1−Hapex) + 4 log10

(
W(`)

1 (0)
)
− log10 4, (2.119)

log10∇‖H2∣∣
apex ≈ − log10(1−Hapex) + log10

(
W(p)

1 (0)∇‖W(`)
1 |η=0

)
. (2.120)

Substitution of the values for ` = 1 from table 2.1 into these expressions yields inter-
cept values for ∂H/∂τ |apex equal to −1.632 (rectilinear) and −1.681 (axisymmetric).
Likewise, the intercept values for ∇2

‖H|apex equal −0.175 (rectilinear) and −0.078 (ax-
isymmetric). These predicted values are in excellent agreement with the numerical
intercept values (shown in parentheses) in figure 2.5(c). Additionally, the asymptotic
values of the interface slope limη→∞ dW(1)

1 /dη given in table 2.1 show good agreement
when superimposed on the profiles in figure 2.5(d). The asymptotic values from the
self-similar theory are predicted to be 1.0437 (rectilinear) and 0.7639 (axisymmetric)
while the numerical results of the time-dependent simulations yielded 1.044 and 0.764.
Converting back to dimensional form, the value of conical tip slope is given by the
relation

Conical tip slope =
√
σT∆T
σo

3κ
2(1− κ) × lim

η→∞
dW(1)

1
dη . (2.121)

Modal stability of the self-similar solution
In Section 2.5, it is shown that the numerical solution to the full nonlinear equation given
by equation (2.64) asymptotes to a fluid elongation resembling a cuspidal shape capped
by a conical tip. The asymptotic analysis in this section reveals that the numerical
solution for this shape corresponds identically to the fundamental solution W(1). A
general analytic proof of why the time-dependent numerical solution always converges
to this fundamental solution and not other solutions W(`≥2) is beyond the scope of this
work. Further examination of this finding by implementing a conventional linear stability
analysis of equation (2.64) about evolving self-similar solution W1(η) is a non-trivial
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exercise because of the multiscale nature (2.94) of the self-similar base state solutions,
which evolve on multiple time scales {εn}∞n=1. However, since both the numerical and
analytic solutions suggest that the late stage dynamics of equation (2.64) towards the
conic singularity is dominated by the term W(1) described by the locally truncated PDE
(2.93), it suffices then to consider infinitesimal perturbations described by

1−H = εW(`)
1 (η) + ε1−4λ

∞∑

m=0
eimθφ(`)

m (η), (2.122)

where |φ(`)
m (η)| � 1 denotes an infinitesimal modal perturbation to W(`)

1 (η), θ is the
polar angle in cylindrical coordinates and ε is time-to-singularity variable defined in equa-
tion (2.94). Substituting ansatz (2.122) into the truncated PDE (2.93) and collecting
terms that are linear in φ(`)

m (η) result in an eigenvalue problem:

T1(φ(`)
m ) + S1(φ(`)

m ) + δM1(W(`)
1 ;φ(`)

m ) = λ(`)
m φ(`)

m , (2.123)

where the linearized operator

δM1(W(`)
1 ;φ(`)

m ) = −∇2
(η,θ)


 φ

(`)
m

(W(`)
1
)2


 (2.124)

is formally the Fréchet derivative of operator M1(W(`)
1 ) and

∇2
(η,θ) = ∇2

η + 1
η2

∂2

∂θ2 (2.125)

is the full Laplacian operator in terms of both radial coordinate η and angular coordinate
θ. In the same vein, differential operators of S1 defined in (2.100) must also be expanded
to include the angular dependence on θ. We only consider localized disturbances to the
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base state W(`)
1 such that the disturbed state given by (2.122) still preserves the same

linear asymptote of W(`)
1 in the far field. It is then required that

T1(φ(`)
m )− λ(`)

m φ(`)
m → 0 as η →∞, (2.126)

which yields the far-field solution φ(`)
m ∝ η1−4λ(`)

m . Here, positive eigenvalues λ(`)
m reflect

modal perturbations φ(`)
m with algebraic growth ε1−4λ(`)

m , which is faster than the growth
ε = (τs − τ)1/4 of the `-th base state solution W(`)

1 , therefore considered unstable.
We also note that, since the leading order PDE (2.93) is translationally invariant in
both space and time, for each value of ` there must exist at least two eigenvalues (and
eigenfunctions) reflecting these symmetries. The actions of these invariant symmetries
lead to the exact eigenvalues and eigenfunctions,

Temporal shift : τs → τs + δ, λ
(`)
0 = 1, φ

(`)
0 = T1(W(`)

1 ),

Spatial shift (rectilinear) : Xs → Xs + δ, λ
(`)
1 = 1

4 , φ
(`)
1 = dW(`)

1
dη ,

Spatial shift (axisymmetric) : Xs →Xs +
[
δ

0

]
, λ

(`)
1 = 1

4 , φ
(`)
1 = dW(`)

1
dη cos θ.





(2.127)
These exact eigenmodes correspond to infinitesimal shifts in the singular time τs with
eigenvalue λ(`)

0 = 1 and in the singular point Xs (we set Xs = (0, 0) for simplicity)
along the X-axis with eigenvalue λ(`)

1 = 1/4 .

Plotted in figure 2.10 is the eigenvalue spectrum λ
(`)
m for infinitesimal modal pertur-

bations φ(`)
m for the first six self-similar base state solutions W(`)

1 where ` = 1 − 6.
Each solution contains 2` eigenvalues. Irrespective of the geometry, the fundamental
solution W(1)

1 is the only solution with no positive eigenvalues aside from 1/4 and 1.
The solution W(1)

1 is therefore the only solution that is linearly stable to perturbations.
The remaining positive eigenvalues increase in magnitude with increasing `, indicating
more rapid growth and instability associated with the coefficient ε1−4λ multiplying the
last term in equation (2.122). The numerical simulations described in Section 2.5 and
plotted in figure 2.5 and 2.6 are always found to locally asymptote to the fundamental
solution W(1)

1 . Similar strong convergence to the stable fundamental solution has previ-
ously been reported for the thin film equation describing van der Waals rupture (Witelski
and Bernoff, 1999) shown in figure 2.1. In that example, initialization of the thin film
equation by the corresponding solution W(`≥2)

1 for that problem leads to a different
global liquid film configuration—however, the local behavior in the vicinity of the line
or point rupture converges to the fundamental mode W(1)

1 . A full investigation of the
local scaling behavior leading to self-similar cuspidal formation in the thermocapillary
system for initial conditions resembling higher order (` ≥ 2) base solutions is left for
further study. It is anticipated that irrespective of the initial condition, simulation of
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the full nonlinear evolution equation given by equation (2.64) will still yield film shapes
dominated by W(1)

1 in the region of the conical tip since W(1)
1 is the only self-similar

solution found to be linearly stable.

2.7 Conclusion
The analysis and simulations presented in this work reveal how surface shear forces due to
runaway thermocapillary stresses generate fluid protrusions resembling cuspidal shapes
capped by a conical tip. This finding expands the category of hydrodynamic flows known
to form stable cuspidal shapes to include thin film systems subject to interfacial shear,
where the driving force is oriented parallel to the moving interface. The asymptotic
analysis reveals how the conical tip undergoes self-focusing toward a virtual attractor
state characterized by a line (rectilinear case) or point (axisymmetric case) singularity via
a robust self-similar process. The asymptotic derivation also yields an analytic relation
for the slope of the conical tip which should prove useful to experimentalists who wish
to design microarrays with specified tip slopes for beam shaping, antireflective coatings,
or other textured substrates.

The original system described, based on a thin uniform molten film confined by parallel
solid boundaries maintained at different uniform temperature, is known to support a
linear instability that forms arrays of rounded protrusions resembling microlenses. These
protrusions are expected to evolve into arrays of cuspidal shapes with conical tips by the
nonlinear dynamical process described since the thermal gradient across the gas layer
just above the fluid tip progressively increases in time, leading to a runaway process. We
anticipate that any initial film configuration that contains local maxima in film thick-
ness, whether or not periodically arranged and however initially seeded, will also trigger
cusp formation at such locations given the local, self-similar nature of the underlying
growth process. We also anticipate that evaporative effects (Grigoriev and Qin, 2018)
in nanofilms containing volatile components which require that the temperature of the
warmer substrate exceed the vapor saturation temperature, an effect not considered in
this work, may preclude self-similarity in the apical region.

We have previously shown (McLeod, Y. Liu, and Troian, 2011; McLeod and Troian,
2011; Fiedler and Troian, 2016; Fiedler, McLeod, and Troian, 2019) that the evolution
process leading to rounded lenslet microarrays can be terminated on demand and the
liquid shapes affixed in place by dropping the temperature of both substrates below the
solidification point. Rapid solidification of these liquid structures is made possible by
two advantageous features: the large surface to volume ratios intrinsic to microscale or
nanoscale films which facilitates rapid cooling and digital control over the temperature of
the confining substrates. We fully expect that similar rapid solidification can be achieved
once the desired conical protrusions have formed in order to solidify and affix their
shape on demand. Perhaps alternative methods of flow control by laser manipulation,
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previously applied to thin film thermocapillary spreading along a solid substrate, can also
be used (Garnier, Grigoriev, and Schatz, 2003). In summary, we hope the theoretical
analysis provided here helps guide development of a novel lithographic method for direct,
non-contact fabrication of cuspidal microarrays, whose shapes would be more difficult,
costly, or even impossible to fabricate by other means.
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C h a p t e r 3

COMPUTATIONAL ELECTROHYDRODYNAMIC LITHOGRAPHY OF
DIELECTRIC FILMS

3.1 Electrically Induced Structure Formation in Thin Dielectric Film
Micro- and nano-fabrication techniques free of ultraviolet curing, chemical development
and wet etching are attractive for a number of advantages such as simplifying fabrication
procedures, enhancing product yield and cost-effectiveness. Chou, Zhuang, and Guo
(1999) and Chou and Zhuang (1999) discovered for the first time that, by creating a
heterogeneous distribution of polarization charges on the surface of dielectric liquids via
a patterned top electrode, they were able to induce self-assembled microstructures of
arbitrary shapes in in thin molten polymer films. Because the polymer melt thickness is
ultrathin ∼ O(100 nm), the observed lithographically induced self-assembly is not due
to the instabilities from conventional mechanism such as the Rayleigh-Benárd thermal
convection. They proposed an electrohydrodynamic (EHD) model based on the interplay
between the interfacial Maxwell stress arsing from the surface charge in the polymer
melt induced by the top electrode and hydrodynamic force in the thin polymer film.
The method, later termed Electrohydrodynamic Lithography (EHL), has potential for
important applications in the fabrication of polymer electronic and optoelectronic devices
due to its fast dynamics and low cost.

Shortly after Chou’s initial discovery, Schäffer et al. (2000) reported a similar technique
based on the electrostatic forces experienced by a dielectric media exposed to an electric
field gradient. They demonstrated self-assembled polymer film patterns replicated from
the lateral structures of a topographically patterned electrode on a sub-micron length
scale. In a subsequent work, Schäffer et al. (2001) refined Chou’s electrohydrodynamic
model and derived an expression of the characteristic wavelength λmax of the fastest
growing fluctuation for a uniform dielectric thin film subject to only two competing
surface forces, i.e. the stabilizing capillary stress and the destabilizing Maxwell (electro-
static) stress. They also performed measurements on the correlation between the most
unstable wavelength λmax and the applied electric field strength using an unpatterned
flat electrode. Their experimental data quantitatively agrees with the prediction from
the theoretical EHD model without any adjustable parameters.

In fluid mechanics, EHL is considered as a branch of electrohydrodynamics, the theoret-
ical development and mathematical modeling of which have a long history in literature.
Many classical results, built on the early work of G. I. Taylor and McEwan (1965) and
Melcher and Smith (1969), are summarized in a review paper by Saville (1997) on the ef-
fect of electric fields in the emerging instability of electrohydrodynamic systems featuring
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two-phase interfaces. Typically a critical voltage is required to destabilize perturbations
of intermediate wave number, the value of which depends whether the fluid is “perfect”
or “leaky” dielectrics, that is, whether lateral transport of free charge on the interface is
possible, whereas long and short wavelength disturbances are often stabilized by gravity
and capillarity, respectively. The instability of conductive liquids, for example the case
of liquid metal examined by Miskovsky et al. (1991), can be viewed as a perfect di-
electrics of an infinite dielectric constant. The recent development of EHL is motivated
by the intention of manipulating electrified liquid interfaces (e.g., films and droplets) on
a much smaller scale where inertia and gravity are less important and lubrication ap-
proximation naturally applies. The linear stability of thin films in lubrication regime was
thoroughly investigated for various situations including perfectly conductive media (Her-
minghaus, 1999; Schäffer et al., 2001), two-layer polymeric systems (Z. Lin et al., 2001),
leaky dielectric fluids (Pease and Russel, 2002; Pease and Russel, 2003; Shankar and
Sharma, 2004; Craster and Matar, 2005) and applied AC electric fields (S. A. Roberts
and Kumar, 2009). Numerical simulations have elucidated the interfacial evolution and
induced patterns of electrified thin films in late nonlinear stage when subject to nonlocal
contribution of electric stress (Tseluiko and Papageorgiou, 2007), over substrate to-
pography (Tseluiko, Blyth, Papageorgiou, and Vanden-broeck, 2008; Ramkrishnan and
Kumar, 2014), driven by abruptly applied or removed electric fields (Corson et al., 2016)
and under structured electrodes directly modeled by the two-dimensional Navier-Stokes
equation (Tian, Shao, Ding, X. Li, X. Li, et al., 2011; Q. Yang, B. Q. Li, and Ding,
2013; H. Li et al., 2014) or reduced three-dimensional lubrication approximation (Wu,
Pease, and Russel, 2005; Verma et al., 2005; Berendsen et al., 2013; Nazaripoor et al.,
2016).

On experimental side, there have been substantial developments over the past decade
in EHL aiming for a promising non-contact soft lithographic method due to its simple
process, cost-effectiveness and high-resolution patterning. In a typical setup of EHL
shown in figure 3.2, a thin layer of liquid polymer is first spin-coated on a flat substrate
and then positioned below a patterned top electrode with protrusions of different shapes.
An electric potential difference usually about 10 ∼ 100 volts is applied across the air
gap maintained by spacers on the order of micrometers. The entire electrode-polymer-
substrate system is heated above the glass transition temperature of the polymer and
then maintained for a time period ranging from a few minutes to a few days. On some
length scales, the polymer melt is unstable under the influence of the electric field im-
posed by the patterned electrode and self-assembles into array of pillars. The whole
system is then cooled back to room temperature quickly to freeze the microstructures
that have formed. The idea of shaping liquid with electrohydrodynamic forces has given
birth to fruitful innovations in micro/nanotechnologies including electric field tweezers
for surface characterization of liquid interface (Sakai and Yamamoto, 2006), surface-
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charge writing of liquid film on dielectric substrates (Berendsen et al., 2013), bifocal mi-
crolenses via electrohydrodynamic reflow of prepatterned polymer (Tian, Shao, Ding, X.
Li, and Hu, 2014; Hu et al., 2014) and patterning of ceramic TiO2 micro/nanostructures
(Voicu et al., 2007), low-viscosity polymer (Goldberg-Oppenheimer and Steiner, 2010),
crystalline organic materials (Goldberg-Oppenheimer, Kohn, et al., 2012) and various
inorganic functional materials (S. Lee et al., 2016).

As promising as it looks, EHL intended for a high-resolution lithographic method cur-
rently still suffers from a significant bottleneck, i.e. pattern fidelity. Generally speaking,
the ultimate goal of any lithographic method at small scales is to manufacture certain
user-specified micron- and submicron-size structures in faithful details. However, what
most existing literature on the applications of EHL has demonstrated are large film areas
packed with isolated micropillars (cylindrical protrusions) and parallel strips. As we will
see in Section 3.2, this is due to the strong nonlinearity and unstable nature of electrohy-
drodyamic thin film. There are several factors contributing to the fidelity of replicated
patterns in EHL. For example, pattern resolution is fundamentally constrained by the
instability wavelength set by material and operating parameters of the system. Schäffer
et al. (2001) derived the expression of the most unstable wavelength λmax when a uni-
form film of dielectric constant εliq and thickness ho overlaid by an air layer of dielectric
constant εair destabilizes under a flat electrode of height do (see figure 3.2),

λmax = 2π
εliq − εair

√
σ∆Ψ

ε0εairεliq

(
∆Ψ

εliqdo − (εliq − 1)ho

)−3/2

, (3.1)

where ε0 is the vacuum permittivity, σ is the surface tension coefficient and ∆Ψ is
the applied voltage difference. Expression (3.1) indicates that pattern resolution is
limited by the ability to create a strong electric field strength ∼ ∆Ψ/εliqdo within a
slender gap of width do against liquid surface tension. Another contributing factor is
the proximity effect of electrode topography. In EHL, a structured electrode acts as
a trigger to the onset of localized electrohydrodynamic instability concentrated under
the region where electric field gradient is the strongest, e.g., below sharp edges of
the electrode. The subsequent growth of patterns in dielectric liquid films is not only
guided by the top electrode but also heavily influenced by the nonlinear propagation
and interaction of these localized instabilities, which often result in isolated protrusions
interleaved by unintended secondary structures between. There is also the temporal
factor since EHL is a dynamic process after all. The fine details of electrode geometry,
initially projected onto the liquid film through electric field, are lost overtime to the
dissipative hydrodynamics within the viscous thin film unless electrode topography is
properly engineered to account for pattern formation at late stages. Hence, achieving a
faithful pattern transfer from an electrode with designated topography onto the surface
of polymer melt is a nontrivial task on account of all these factors.
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Figure 3.1: Atomic force microscopy images reveal formation of unintended structures
when replicating design patterns in TiO2 films. Electrode pattern used for the image
on the left was a square lattice with three cylindrical protrusions on each side of the
square and a simple square pattern for the image on the right. Adapted from Voicu
et al. (2007) with permission from The Royal Society of Chemistry.

The problem of pattern fidelity is best illustrated in the experimental work of Voicu
et al. (2007) on ceramic TiO2 film patterning. The atomic force microscopy images
shown in figure 3.1 are direct evidence of how pattern replications in dielectric liquid
films can be plagued by intuitive designs of structured electrode. The measured film
structures shown in the left figure formed under an electrode topography of a square
lattice bordered by twelve cylindrical protrusions. During replication process, the film
was locally depleted only next to the twelve columns which in turn led to unintended
contraction of the material towards the center, leaving behind a pyramid-like film patch
in the center of each square. The electrode pattern corresponding to the image on the
right is a simple square block at the center of a larger square. However due to high-
intensity electric field gradient near sharp edges and corners of the electrode, instead of
a uniformly leveled film surface, isolated pillars were attracted to corners of each square.
Note these pillars are not perfect cylinders as well, usually accompanied with oscillatory
over- and undershooting at the bottom edge.

On the other hand, numerical simulations of the thin film model for perfect dielectric
liquids are found to be in close agreement with the experimental results in the literature
(Wu, Pease, and Russel, 2005; Nazaripoor et al., 2016). The predictive power of the
EHD thin film model provides invaluable insights into the pattern formation driven by
electrodes of specific geometries. For instance, using finite difference method Verma
et al. (2005) demonstrated that, through fine-tuning the mean film thickness, applied
voltage drop and the geometric parameters of an electrode decorated with deep grooves,
it is possible to adjust the number density of the electric field induced micropillars as
well as to suppress the formation of secondary structures in between. Wu, Pease,
and Russel (2005) performed a weakly nonlinear analysis on the second and third order
nonlinearities near the onset of nonlinear growth in EHD thin film, which indicates growth
of hexagonal patterns is favored under a featureless (flat) electrode. Their numerical
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simulations based on the fully nonlinear model suggests some “smart” electrode designs
(e.g., replacing large flat protrusions with interconnected ridges) to achieve large areas
of ordered patterns.

While these previous works all exhibited improvements of pattern fidelity to a certain
degree, none of them managed to achieve precise replications of customized patterns
even as simple as a triangle or a square. This is because their approaches were based
on trials and errors over a finite set of material and geometry parameters (e.g., spacing
between electrode features and average film thickness) while there are infinitely many
possibilities in the design space of electrode topography not being fully explored yet.
Furthermore, EHL is a dynamic process that relies on the strongly nonlinear transient
evolution of liquid film driven by the structured electrode. The pattern transferring
process from mask (electrode) to the target (liquid film) can be counter-intuitive and
very different from other conventional lithographic processes that are usually steady and
linear. For instance, the conventional optical proximity correction (O. W. Otto et al.,
1994; Cobb and Zakhor, 1995; Ea and A. D. Brown, 2001; Granik, 2005), commonly
employed by semiconductor industry during the process of photolithography, compen-
sates for pattern errors due to diffraction effect of linear superposition of steady light
fields by directly manipulating the geometric elements of optical mask. However for soft
lithography methods such as EHL, the issue of nonlinearity and transient evolution must
be properly addressed. A systematic treatment on the design of electrode topography
beyond human intuition is required to improve pattern fidelity during the replication
process.

Given input of a model predicting its outcome is called the “forward problem”. The
inverse of a forward problem, or simply the “inverse problem”, is to deduce input based
on an observed or desired outcome of the model (Vogel, 2002). In the context of EHL,
observing final film shapes after hand-tuning electrode topography is precisely forward
modeling. However for lithographic purposes, it is the inverse problem that needs to
be addressed: given a user-specified target film profile, what is the optimal design of
the top electrode topography guiding an initially flat dielectric liquid film towards the
target shape as close as possible? In the theory of optimal control, a powerful com-
putational framework, namely the adjoint method, has already been fully developed to
tackle the inverse problem. In brief, the ajdoint method in general involves construction
of an objective function with relevant (possibly nonlinear) constraints identified and
efficient evaluation of constrained derivatives with respect to feasible design parame-
ters. In modern design process of microelectromechanical systems (MEMS), the adjoint
method is extensively used to improve fabrication quality and performance goals of
MEMS devices, examples of which include, but not limited to, full wave optimization of
microwave circuits (Alessandri, Mongiardo, and Sorrentino, 1993), systematic design of
phononic band–gap materials and structures (Sigmund and J. S. Jensen, 2003), sensitiv-
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ity analysis and topology optimization of photonic crystal devices (Veronis, Dutton, and
Fan, 2004; J. S. Jensen and Sigmund, 2010), mask design for optical microlithography
(Poonawala and Milanfar, 2007), geometrical shape optimization of complex electro-
magnetic components (Lalau-Keraly et al., 2013) and inverse design of nanophotonics
subject to fabrication constraints (Piggott et al., 2017). Recently the adjoint method
has even found its application in a tumor growth model to assist the optimization of
spatiotemporal radiotherapy (Fujarewicz and Łakomiec, 2016). As a side note, the type
of inverse problem we consider here belongs to a larger class of optimization problem,
i.e. the shape optimization, which was originally examined for mechanical problems in
continuum mechanics and is still an active research area currently. The adjoint method
for shape optimization has yielded fruitful results in hydrodynamics including minimum
drag hydrofoil profile in a viscous fluid (Pironneau, 1974), optimum plane diffuser of
maximum static pressure rise (Çlabuk and Modi, 1992), design of fluid paths allowing
minimum power dissipation (Borrvall and Petersson, 2002), full control of free surface
liquids in physics-based animation (McNamara et al., 2004), optimal shape of capil-
lary barriers between micro-channels and reservoirs on microfluidic biochips (Antil et
al., 2010), control of fingering instability in gravity-driven lubrication flow by optimal
substrate curvature (Balestra, Badaoui, et al., 2019), etc.

The outline of this chapter is as follows. In Section 3.2 we derive the governing evolution
equation for a thin dielectric or conductive liquid layer subject to large Maxwell forces
induced by a proximate electrode on top of a slender quiescent gas film. The slender
geometry is known to give rise to an electrohydrodynamic instability (Schäffer et al.,
2001). In additional to the nonexistence of energetically stable equilibrium film shapes,
the self-similar analysis reveals a severe runaway process, i.e. self-reinforced formation of
a genuine cusp in EHD thin film. The finite element method employed for the numerical
simulation of the thin film equation is also discussed in details. We then illustrate the
problem of pattern fidelity by finite element simulations of localized pillar growth under
a top electrode patterned with a heart-like protrusion. In Section 3.3, we reformulate
the ultimate goal of Electrohydrodynamic Lithography as a constrained inverse problem.
Using elements of control theory, we analytically identify the optimality conditions that
the optimal electrode topography must satisfy in order to eliminate the discrepancy
between the desired structure and the evolving film profile. In Section 3.4, we present
the discrete control algorithm using the adjoint method and provide implementation
details particularly tailored for the finite element model developed in Section 3.2. In
Section 3.5, we outline the procedure of nonlinear optimization. Our implementation of
the control protocol is verified against a test problem. In the end, we demonstrate the
optimal design of electrode topography that is able to produce a nearly perfect heart-like
protrusion from an initially flat dielectric film.
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Virtual singularity z = h = d(x)/(1 − κ)
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∆ψ

h(x, t)ho

d(x)do

z y

x
Thin molten film

Figure 3.2: Sketch of a linearly unstable thin molten film overlaid by a gas layer. The
gas/liquid bilayer is subject to a very large vertical electric field enforced by the uniform
voltage difference ∆ψ = ψtop−ψbot across the very small gap with characteristic width
do, typically of a few microns, applied through a patterned electrode (red curve). Nomi-
nal vertical electric field strength, ∆ψ/do, are estimated to be extremely large and range
from about 107 − 108 V/m (Schäffer et al., 2001). The governing interface equation
contains a virtual singularity designated by the dashed line at h(x, t) = d(x)/(1 − κ)
where 0 ≤ κ < 1. This singularity is not accessible to the dielectric film because it lies
beyond the top electrode situated at z = d(x). For perfectly conducting film (εliq =∞
therefore κ = 0), the virtual singularity actually coincides with the top electrode.

3.2 Thin Film Model of Electrohydrodynamic Lithography (EHL)
The molten polymer layer is modeled as an incompressible Newtonian fluid. Electro-
hydrodynamic flow within the melt is driven by the jump in Maxwell stress across the
gas/liquid interface due to the contrast of dielectric constant in each medium. In this
chapter, we exclusively focus on the dynamics of perfect dielectric liquid films. The slen-
der geometry of lithographic system allows us to directly apply the thin film equation
(2.37) in its most general form derived from the classical lubrication theory in Section
2.2. In this section we provide a brief review on the derivation of the interfacial pressure
P and tangential traction (if any) F ‖ present in the thin film equation (2.37). The for-
malism of interfacial Maxwell stresses adopts the approach oulined in the review article
by Saville (1997) on electrohydynamics which however does not include the lubrication
limit. Although as mentioned in Section 3.1 there are articles on the linear stability
analysis of electrohydrodynamic thin film, to the best of author’s knowledge, the first
appearance of the full nonlinear evolution equation for perfect dielectric films under a
flat electrode is due to Schäffer et al. (2001). Shortly after, Pease and Russel (2003)
and Pease and Russel (2004) generalized the lubrication model to describe the effect of
charge transport in leaky dielectric films. The equation was then immediately extended
to the case of patterned electrodes (Wu and Russel, 2005; Wu, Pease, and Russel, 2005;
Verma et al., 2005). The interested reader should consult these references for detailed
discussions on the scaling argument used in lubrication approximation.
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Electrohydrodynamic thin film equation
Assuming a perfect dielectric medium with no bulk free charges , the Maxwell equations
simplify to the electrostatic (Laplace) equation in free space,

∇ · ε0ε∇ψ = 0, (3.2)

where ε is the homogeneous isotropic dielectric constant of the medium and ε0 is the
vacuum permitivity. Interface conditions for electromagnetic fields (Jackson, 1999)
require continuity of electric potential ψ and displacement field −ε0ε∇ψ in the direction
normal to the interface,

ψair = ψliq,

n · ε0εair∇ψ = n · ε0εliq∇ψ,



 at z = h. (3.3)

We introduce the nondimensional electric potential,

Ψ = ψ − ψbot
∆ψ , ∆ψ = ψtop − ψbot, (3.4)

where ∆ψ is the voltage difference between the top electrode (ψtop) and ground sub-
strate (ψtop) at the bottom. Under our previous choice of nondimensionlization employed
in the slender limit, the electrostatic equation (3.2) subject to interface boundary con-
dition (3.3) is identical to the heat transfer problem (2.49) within a slender gap in the
thermocapillary model. As a result, the electrostatics problem is dominated by electric
conduction along the vertical direction, ∂2Ψ/∂Z2, which yields a similar solution to the
heat problem,

Ψ =





Z − (1− κ)H
D − (1− κ)H if H ≤ Z ≤ D(X,Y ),

κH

D − (1− κ)H if 0 ≤ Z ≤ H,
(3.5)

where the permittivity contrast parameter κ = εair/εliq is defined alike. Note in the limit
κ → 0, the solution (3.5) to electric potential corresponds to a perfectly conducting
material, e.g., a liquid metal film.

The new complication in electrohydrodynamic thin film is the additional interfacial trac-
tion f which arises when the (dimensional) Maxwell stress tensor

t = ε
(
e⊗ e− 1

2 |e|
2I
)

(3.6)

suffers a discontinuity across the liquid/air interface (Saville, 1997),

f = (tair − t liq)n, (3.7)

where e is the dimensional electric field. For an electrostatics system, the jump in
Maxwell stress gives rise to normal traction forces only. To see this claim, let’s consider
the tangential traction expressed in terms of electric field components,

sαtn = sαε
(
e⊗ e− 1

2 |e|
2I
)
n = ε(sα · e)(n · e), (3.8)
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where ε and e can be the dielectric constant and electric field in the medium on either
side of the interface (sα=1,2 is the unit tangent vector of the interface). But we know
displacement field is continuous across the interface, i.e. −n · εaireair = −n · εliqeliq,
as well as the tangential components of electric field e. Hence tangential stress (3.8)
evaluated on either side of the interface immediately suggests sαtairn = sαt liqn and
therefore zero tangential traction. This leaves us with normal jump of the Maxwell stress
only,

n(tair−t liq)n = εair
2
[
(n·eair)2−

2∑

α=1
(sα·eair)2

]
−εliq

2
[
(n·eliq)2−

2∑

α=1
(sα·eliq)2

]
. (3.9)

Nondimensionlizing the normal traction (3.9) with the lubrication scales and the ex-
panding electric field E, normal vector N and tangent vectors Sα as usual yield

N(T air −T liq)N = ε0∆Ψ2

2[L]2[P ]

[
εair
(1
ε

∂Ψair
∂Z

)2
− εliq

(1
ε

∂Ψliq
∂Z

)2]
+O(1). (3.10)

Substituting the leading order solution to Ψ found in (3.5) leads to the leading order
approximation to the normal traction F = FNN produced by Maxwell stress in terms
of reference pressure [P ] and length scale [L] defined previously,

FN = 1
ε2
εairε0∆Ψ2

[L]2[P ]
1− κ

2[D(X,Y )− (1− κ)H]2 . (3.11)

To gain more insights into the normal traction (3.11), we define [E] to be the charac-
teristic electric field strength between the top electrode and the bottom substrate,

[E] = ∆Ψ
[H] , Ec = 1

ε

ε0εair[E]2
σ/[L] , (3.12)

where Ec is the (rescaled) electric-capillary number. The total pressure P at film inter-
face is then given by

P = − 1
Ca
∇2
‖H + Bo

Ca
∇2
‖H −

Ec
Ca

1− κ
2[D − (1− κ)H]2 . (3.13)

In micro- and nanofabrications where electrohydrodynamic thin film model is meant to
apply, the lateral length scale [L] ∼ O(micron) or even smaller and the effect of gravity
soon becomes negligible compared to other interfacial forces. Substituting interfacial
pressure P from (3.13) into the conservative form (2.37) of the thin film equation with
gravity term dropped yields the electrohydrodynamics of a viscous thin liquid film,

∂H

∂τ
+∇‖ ·

{ 1
3Ca

H3∇‖
[
∇2
‖H + Ec 1− κ

2
1

[D − (1− κ)H]2
]}

= 0. (3.14)

Partial differential equation (3.14) is identical to the previously derived equation for
perfect dielectric films (Schäffer et al., 2001; Pease and Russel, 2004; Wu and Russel,
2005; Verma et al., 2005; Nazaripoor et al., 2016). We further apply transformations,

H∗ = H

[H∗]
, D∗ = D

[H∗]
, X∗ = X

[X∗]
, τ∗ = τ

[τ∗]
, (3.15)
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similar to the ones for the thermocapillary equation (2.62), where the scalings are given
by

[H∗] = Dref
1− κ, [X∗] = 1

1− κ

√
2

Ec
D

3/2
ref , [τ∗] = 12

1− κ
Ca
Ec2D

3
ref . (3.16)

Here Dref represents some reference height of the electrode topography D(X,Y ), for
instance, the spatial average or the maximum/minimum height of D(X,Y ) over a
periodic domain in the (X,Y )-plane. In what follows we drop the (·)∗ subscription on
all the transformed variables and recast equation (3.14) into a parameter-free form of
gradient flow,

∂H

∂τ
= ∇‖ ·

{
M(H)∇‖

[
−∇2
‖H −Π(H,D)

]}
(3.17)

with the usual mobility coefficientM = H3 and the effective electrostatic pressure

Π(H,D) = 1
(D −H)2 (3.18)

which is inversely proportional to the distance squared between the local height of
the electrode topography D(X,Y ) and the local thickness of the instantaneous film
profile H(X,Y, τ). Although in the rescaled model (3.17), the physical electrode is now
positioned at Z = D(X,Y )/(1 − κ), we still refer to the virtual singularity D(X,Y )
as the electrode topography. This is motivated by the consideration that, unlike the
thermocapillary problem in Chapter 2, we are less concerned with making a distinction
between the virtual singularity and the physical electrode as the goal is to achieve
controlled pattern growth in the early and intermediate stages of the evolution rather
than to rely on the runaway process of localized cusp-like pillar growth attracted by the
virtual singularity.

As for boundary conditions, in this work we restrict ourselves to periodic boundary
condition on bothH andD for a periodic domain Ω in the (X,Y )-plane. This is justified
by the practical purpose of soft lithography which is to achieve efficient fabrication of
massive arrays of identical structures at micro- and nanoscales. Though other types of
boundary conditions such as flux injection rate of liquid material through the boundaries
of a non-periodic domain are certainly possible and left for future studies.

Some rough estimates on the regime where the electrostatic-hydrodynamics thin film
equation (3.17) is expected to operate can be obtained from the electric-capillary number
Ec defined in (3.12). For a length scale [L] ∼ O(10micron), surface tension σ ∼ 0.078
N/m (e.g., water-air interface) and a relative permittivity εair ∼ 1, we have Ec ∼
10−5ε−3(∆Ψ/volts)2. The electrohydrodynamics thin film equation (3.14) is only an
accurate description of liquid motion if Ec is O(1). For aspect ratios ε ranging from 0.05
to 0.25, the required voltage difference between the ground substrate and the proximate
electrode, separated by a few microns, is roughly between 3.5 to 40 volts, which is
experimentally feasible (Schäffer et al., 2000).
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Unstable film growth under flat electrode
In previous work (Schäffer et al., 2001), the classical linear stability analysis of equation
(3.14) is examined for the early time behavior of sinusoidal perturbations to a polymer
film of uniform thickness. The result described by the electrohydrodynamics model
quantitatively agrees with experimental data without any adjustable parameter. Here
we present the same result only with the dimensionless equation (3.17). Adopting the
linear stability analysis in the thermocapillary model for a flat film of thickness H0 and
a flat electrode of height D0, the resulting expression for growth rate is a function of
wave number K,

β(K) = −H3
0K

4 + 2H3
0

(D0 −H0)2K
2, (3.19)

where the critical wavelength and the most unstable wavelength are given by

Λmax =
√

2Λcrit, Λcrit =
√

2π(D0 −H0)3/2. (3.20)

If Λmax is transformed back to its dimensional form λmax (not shown), we indeed recover
expression (3.1). It is clear from (3.20) that the wavelength Λmax of the fastest growing
perturbation rapidly decreases as the gap width D0 −H0 diminishes. This is reflected
in free energy functional F[H,D] of the electrohydrodynamic thin film equation (3.17)
as well. Consider the free energy functional

F[H,D] =
∫

Ω

1
2∇‖H · ∇‖H + Φ(H,D(X,Y )) dΩ, (3.21)

where the potential function

Φ =
∫
−Π(D,H) dH = − 1

D(X,Y )−H (3.22)

is inversely proportional to the local separation between patterned electrode and local
film thickness. Note dF[H,D]/dτ ≤ 0 irrespective of whether electrode D(X) is uni-
form or patterned. For a flat electrode such that D0 = 1 after transformation (3.15),
the fourth-derivative test (2.88) reveals a similar unstable nature as in the thermocap-
illary film: no stable equilibrium film profile can be reached under the balance between
capillary and Maxwell stresses.

In fact the situation is even worse. If we perform self-similar analysis near the virtual
singularity D = 1, to the leading order we arrive at the truncated PDE

∂H

∂τ
+∇2

‖

[
∇2
‖H + 1

(1−H)2

]
+O((1−H)−1) = 0, (3.23)

which implies the local scaling balance

1−Hapex ∼ X2/3 ∼ (τs − τ)1/6 (3.24)

as the film apex Hapex approaches the virtual singularity. The leading order self-similar
solutionW1 = (1−H)/(τs−τ)1/6 has an asymptotic behavior ∼ η2/3 as η →∞ where
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Figure 3.3: Lagrange polynomial basis {N1(ξ1, ξ2), ... ,N9(ξ1, ξ2)} and nine correspond-
ing nodes for bi-quadratic interpolation in the canonical domain [−1, 1]× [−1, 1].

η = X/(τs − τ)1/4 is the self-similar coordinate. However unlike the conic cusp found
in the thermocapillary system, spatial derivative d(·)/dX of η2/3 becomes singular as
η → 0. Therefore near the singular point Xs, local film profile is expected to converge
to a genuine cuspidal shape |1−H| ∝ |X −Xs|2/3 as Hapex → 1. In contrast to the
thermocapillary system where the slope of film profile remains finite even in the late stage
of the self-similar runaway process, surface slope in the apical region blows up indefinitely
for electrohydrodynamic thin film, which is a clear violation of the slender assumption
that lubrication models all rely on. These peculiar features of electrohydrodynamic
thin films, if not properly controlled, would lead to multiple sites of localized cuspidal
blow-up.

Finite element discretization
In this section we outline the numerical scheme for simulating the thin film equation.
There are many classical references on the general theory and practice of finite element
method such as treatments on elliptic problems (Ciarlet, 2002), parabolic problems
(Thomée, 2006), implementation details (Zienkiewicz, R. L. Taylor, and Zhu, 2013) and
Navier-Stokes equation (Girault and Raviart, 1986). Owing to the vast literature, here
we do not aim to give a comprehensive review of the finite element method. Interested
readers should consult the aforementioned references. The presentation on the finite
element approximation follows the exposition in the review article (Becker et al., 2002)
on the numerical method for fourth order nonlinear degenerate diffusion problems.

We clarify here all finite element computations in this chapter are implemented in C++
from scratch with the help of high performance linear algebra library EIGEN (Guen-
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nebaud, Jacob, et al., 2010). The reason for a bottom-up implementation is that,
applying adjoint method to solve the inverse problem in EHL requires a highly cus-
tomized matrix assembly procedure that is not readily available in most closed-source
commercial software. The tutorial of finite element method presented in this section
aims to prepare for a correct implementation of the adjoint method. Accuracy of our
finite element code is discussed at the end of this section.

Let Qh be the quadrilateralization of a periodic rectangular domain Ω. The grid size h
is the maximal edge length over all elements. Let O be the canonical element [−1, 1]×
[−1, 1] with canonical coordinates ξ = (ξ1, ξ2). In this work, we restrict ourselves to
straight elements Qe ∈ Qh obtained only by translating and rescaling of the canonical
element O,

X ∈ Qe
ϕ−1
e−−−⇀↽−−−
ϕe

ξ ∈ O, (3.25)

where ϕe is some bijectively affine map between element Qe ∈ Qh in the (X,Y )-plane
and the canonical square element O in the (ξ1, ξ2)-plane.

The set of all bi-quadratic functions in the canonical space is spanned by any linear-
independent combination of the polynomial basis {1, ξ1, ξ2

1} ⊗ {1, ξ2, ξ2
2}. In finite ele-

ment method, it’s standard to use the Lagrange polynomial basis {Ni}9i=1,

N1(ξ) = 1
4(ξ2

1 − ξ1)(ξ2
2 − ξ2), N2(ξ) = 1

4(ξ2
1 + ξ1)(ξ2

2 − ξ2),

N3(ξ) = 1
4(ξ2

1 + ξ1)(ξ2
2 + ξ2), N4(ξ) = 1

4(ξ2
1 − ξ1)(ξ2

2 + ξ2),

N5(ξ) = 1
2(1− ξ2

1)(ξ2
2 − ξ2), N6(ξ) = 1

2(ξ2
1 + ξ1)(1− ξ2

2),

N7(ξ) = 1
2(1− ξ2

1)(ξ2
2 + ξ2), N8(ξ) = 1

2(ξ2
1 − ξ1)(1− ξ2

2),

N9(ξ) = (1− ξ2
1)(1− ξ2

2),





(3.26)

so that any bi-quadratic function can be represented by its value at the nine local nodes
shown in figure 3.3. There are nine nodes in the canonical square element with indices
{1, 2, 3, 4} for the ones at four corners, {5, 6, 7, 8} for the mid points of four edges and
9 for the central interior point, hence the name “Q9” element. As shown in figure 3.3,
the Lagrange basis is designed in such way that, Ni(ξ) = 1 at the i-th local node and
= 0 at all other nodes. Since only translation and scaling are involved in the mapping
ϕe for each element Qe, any Lagrange basis function after being mapped to the physical
space,

Nei (X) = Ni(ϕ−1
e (X)), (3.27)

is also a bi-quadratic function in the (X,Y )-plane.

Let Vh be the space consisting of continuous functions which are piecewise bi-quadratic
on each element Qe ∈ Qh. A function in Vh is uniquely defined by its values on the set
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Figure 3.4: Global hat functions Vi at corner node of local indices {1, 2, 3, 4}, at edge
node of local indices {5, 6, 7, 8} and at interior (central) node of local index 9.

of nodes {Xj}j∈J of quadrilateralized domain Qh where J is the index set of all nodes.
For each nodal point Xj , we associate a compactly supported hat function Vj ∈ Vh

such that

Vj(Xi) =
{ 1 if i = j,

0 if i 6= j.
(3.28)

The set of hat functions over all the nodal points spans the finite-dimensional vector
space Vh. In figure 3.4 we show a typical quadrilateral mesh where each rectangle is
a Q9 Lagrange element. Depending on the type of each individual node (e.g., corner,
edge or interior), the corresponding hat function may span one, two or four elements.
The projection Hh(X) of a continuous function H(X) into the finite element space Vh

is accomplished by the nodal interpolation operator Ph,

Hh = Ph[H] ≡
∑

i

H(Xi)Vi . (3.29)

In what follows, we identify the projected function Hh ∈ Vh with its nodal vector
representation H in boldface character,

H = [H1, H2, ...]> ←→ Hh(X) =
∑

i

HiVi(X). (3.30)

Composition of continuous functions can be projected into Vh in a similar fashion. For
example let Π(A(X), B(X), ...) be some elementary function (possibly nonlinear) of
its arguments. We then associated a nodal vector Π with Π(A(X), B(X), ...),

Π(A,B, ...) = [Π1, Π2, ...]> ←→ Ph[Π(A,B, ...)] =
∑

i

Π(Ai, Bi, ...)Vi(X). (3.31)
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The inner product of the finite-dimensional vector space ∈ Vh between two continuous
functions A ∈ Vh and B ∈ Vh is defined as

〈A,B〉 ≡
∫

Ω
AB dΩ. (3.32)

An equivalent formulation in the nodal vector representation (3.30) yields

〈A,B〉 = A>MB, Mij = 〈Vi,Vj〉, (3.33)

where M is the mass matrix. The entries of mass matrix M are precisely the inner
product of all possible pairs of basis hat functions. It’s evident that M is positive
definite and symmetric, however not diagonal due to the overlaps of hat functions which
share one identical element in the physical domain Ω (see figure 3.4). In practice, the
solution of many transient problems become more efficient if the mass matrices can be
diagonalized and hence inverted trivially. The process of replacing the true (consistent)
mass matrix by a diagonal approximation without drastic degradation in overall accuracy
is called mass lumping (Thomée, 2006; Zienkiewicz, R. L. Taylor, and Zhu, 2013). The
essential idea is to approximate the inner product 〈·, ·〉 in (3.32) with the lumped mass
product 〈·, ·〉h such that

〈A,B〉h ≡
∫

Ω
Ph[AB] dΩ (3.34)

which yields the lumped mass matrix M h for which

〈A,B〉h = A>M hB, (Mh)ii = 〈1,Vi〉. (3.35)

Recall the partition of the unity function, 1 = ∑
j Vj(X). The name “lumped mass

matrix” comes from the observation that, every row (column) of the true mass matrix
M is lumped into a sum of its entries through the lumped mass product (3.35),

(Mh)ii = 〈1,Vi〉 = 〈
∑

j

Vj ,Vi〉 =
∑

j

〈Vj ,Vi〉 =
∑

j

Mji.

In this work throughout, we use the lumped mass matrix M h for its computational
efficiency when dealing with transient problems. With a slight abuse of notation, from
now on we redefine M as the lumped mass matrix M h unless stated otherwise. The
standard definition of the stiffness matrix K is given by

Kij = 〈∇‖Vi,∇‖Vj〉 ≡
∫

Ω
(∇‖Vi) · (∇‖Vj) dΩ, (3.36)

where the inner product is understood to be the sum of component-wise scalar products.
Definition (3.36) is motivated by the finite element projection of the Laplacian operator
∇2
‖ since

〈A,∇2
‖B〉 =

∫

Ω
A∇2
‖B dΩ =

∫

∂Ω
AN∂Ω ·∇‖B dS−

∫

Ω
(∇‖A) · (∇‖B) dΩ = −A>KB

(3.37)
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Figure 3.5: 2-point (left) and 3-point (right) Gauss quadrature rules for two-dimensional
integration: quadrature weights are shown next to the nodes (dots).

where the boundary integral (N∂Ω is the in-plane normal of domain boundary ∂Ω)
vanishes under periodic or no-flux boundary conditions. In the same spirit we introduce
the weighted stiffness matrix W (H) for the mobility function M(·) acting on some
function H ∈ Vh,

W (H)ij = 〈∇‖Vi,Ph[M(H)]∇‖Vj〉. (3.38)

Integrals arising from the finite element method are often approximated by nqd-point
Gauss quadrature rules. For the Q9 element used in this work, the 2- and 3-point
quadrature rules are recommended (Cook et al., 2007) for approximating integral of a
sufficiently continuous function A(ξ) over the canonical square element,

∫ 1

−1

∫ 1

−1
A(ξ) dξ1dξ2 ≈

nqd2∑

k=1
wkA(ξk) (3.39)

where ξk and wk are the nqd-point quadrature nodes and weights for the canonical
square element O as illustrated in figure 3.5.

Following Becker et al. (2002), we employ a semi-implicit discretization for time integra-
tion which leads to the variational (weak) form of the thin film equation (3.17): given
a known time series of film profiles H0, H1, ... , Hk ∈ Vh, find two functions Hk+1 ∈ Vh

and Pk+1 ∈ Vh such that,

〈A,Dτ [Hk+1]〉h + 〈∇‖A,Ph[M(Hk)]∇‖Pk+1〉 = 0,

〈B,Pk+1〉h − 〈∇‖B,∇‖Hk+1〉 = −〈B,Π(Hk+1, D)〉h,



 (3.40)

for all A,B ∈ Vh. To avoid confusion in subscripts, Hk and similar objects always refer
to the function in finite element space Vh at the k-th time step whereas (Hk)i refers to
the i-th nodal value of the film profile Hk. The discrete time derivative operator Dτ [·]
in variational formulation (3.40) is treated with either the first or second order backward
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Scheme α+
k α0

k α−k
BDF1 1 1 0

VS-BDF2 1 + ∆k

1 + 2∆k

(1 + ∆k)2

1 + 2∆k
− ∆2

k

1 + 2∆k

BDF2 2
3

4
3 −1

3

Table 3.1: Coefficients of the backward differentiation formula (BDF) family. ∆k =
∆τk/∆τk−1 is the ratio between adjacent time steps.

differentiation formula (BDF) scheme (Crouzeix and Lisbona, 1984),

Dτ [Hk+1] =





1
∆τk

(Hk+1 −Hk), (BDF1)

1
∆τk

[
1 + 2∆k

1 + ∆k
Hk+1 − (1 + ∆k)Hk + ∆2

k

1 + ∆k
Hk−1

]
, (VS-BDF2)

1
∆τ

(3
2Hk+1 − 2Hk + 1

2Hk−1

)
, (BDF2)

(3.41)
where ∆τk is the incremental time step. Note BDF1 is identical to the first order
implicit Euler scheme. For BDF2 with a constant time step, we set ∆τk = ∆τ for all
k. The variable step BDF (VS-BDF2) requires the ratio between current and previous
time stepS, designated as ∆k = ∆τk/∆τk−1.

Using nodal vector representation, we recast variation formulation (3.40) into a nonlinear
system of equations at each time step. The discrete form of variation formulation (3.40)
reads: given a known time series of nodal vectorsH0,H1, ... ,Hk, find two nodal vectors
Hk+1 and P k+1 such that

MHk+1 + ∆τkα+
kW (Hk)P k+1 = M (α0

kHk + α−kHk−1),

−KHk+1 +MP k+1 = −MΠ(Hk+1,D),



 (3.42)

where coefficients α+
k , α0

k and α−k at time stamp τk are defined in table 3.1. Since the
mass matrix M for Lagrange Q9 element is positive definite, we can eliminate effective
pressure vector P k+1 in (3.42) which yields a nonlinear system of equations with Hk+1

being the only unknown,

F k+1(Hk−1,Hk,Hk+1,D) = 0, (3.43)

where the nonlinear function

F k+1 = M (Hk+1 − α0
kHk − α−kHk−1) + ∆τkα+

kRk+1(Hk,Hk+1,D) (3.44)

contains a linear component and a nonlinear function

Rk+1(Hk,Hk+1,D) =W (Hk)
[
M−1KHk+1 −Π(Hk+1,D)

]
. (3.45)
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The nonlinear system of equations (3.43) can be efficiently solved via the Newton’s
Method. Starting from a “good” initial guess H(0)

k+1, for example H(0)
k+1 = Hk from

previous time step, Newton’s iteration scheme

H
(i+1)
k+1 = H

(i)
k+1 − [J (i)]−1F k+1(Hk−1,Hk,H

(i)
k+1,D) (3.46)

produces successively better approximationsH(i)
k+1 to the roots of equation (3.44) where

the Jacobian matrix in (3.46)

J (i) = M + ∆τkα+
kW (Hk)

[
M−1K − ∂Π(H(i)

k+1,D)
∂Hk+1

]
(3.47)

is the linearization of F k+1 about H(i)
k+1.

In practice, direct inversion of the Jacobian matrix J (i) is strictly forbidden due to its
large dimensions. Instead we can take advantage of the sparse pattern in J (i) which can
be seen from the following two observations: first of all,W and M−1K are assembled
element-wisely (this is explained in Section 3.4) with identical locations of non-zero
entries, which means if the one-ring element neighbors of the element which the i-th
node belongs to and that of the j-th node are disjoint, it must be that [WM−1K ]ij = 0,
hence sparse; secondly, recall from (3.30) that the action ofΠ onHk+1 is an entry-wise
operation, which implies ∂Π/∂Hk+1 must be diagonal. Therefore it is more favorable
to implement the Newton’s method (3.46) with an iterative solver (Saad, 2003) such
as bi-conjugate gradient stabilized method (BiCGSTAB),

J (i)δH(i) = −F k+1(Hk−1,Hk,H
(i)
k+1,D),

H
(i+1)
k+1 = H

(i)
k+1 + δH(i).



 (3.48)

Another advantage of employing an iterative method to solve the linear system (3.48)
is the control over accuracy. The ultimate goal is to drive the residue in F k+1 below
certain tolerance threshold. A perfectly accurate solution to δH(i) in (3.48) is not
necessary as long as the iterative increment δH(i) helps guide F k+1 to 0. Likewise
it is not necessary to update J (i) at each Newton step which can be potentially time
consuming as well. For sufficiently small time step ∆τk, we only need to reassemble
J (i) every a few Newton steps.

The finite element formulation outlined in this section is very general and can be applied
to all sorts of thin film models including the thermocapillary equation (2.64). Calcula-
tions of the mass and stiffness matrices are only slight different for the one-dimensional
line mesh and the triangular mesh used in the simulation reported in Section 2.5 due to
different forms of Lagrange basis functions on a line and triangle element.

Film evolution under an electrode of a heart-like topography
Figure 3.7 represents 3D views of the discrete film profileHk of an evolving elctrostatic-
driven thin film at designated time stamps respectively, obtained from finite element
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Figure 3.6: Electrode topography (right) on a periodic square domain [0, 4.5]× [0, 4.5]
reconstructed from a grayscale bitmap (left). For visual purpose, 1 −D(X) is plotted
instead.
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Figure 3.7: Finite element simulation of film thickness H(X, τ) on a periodic com-
putational domain [0, 4.5]× [0, 4.5] driven by a heart-like electrode shown in figure 3.6.
Snapshots with elevation contours (black line) are taken at time stamps τ = 0, τ/9, ..., τ
where τ = 4.2 is the final time.
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simulation of the nonlinear EHL equation (3.17). The simulation is performed on a
periodic square domain [0, 4.5] × [0, 4.5] consist of 1002 Lagrange Q9 elements with
40000 degrees of freedom in total for an initially flat film of uniform thickness H0 =
0.15. Time span of the simulation ranges from τ = 0 to the final time τ = 4.2. We
evenly divide the time interval [0, τ ] into 400 intermediate steps with constant increment
∆τ = 0.0105 between the steps and integrate the resulting discrete evolution equation
with semi-implicit BDF2.

Discretized electrode topography D is reconstructed from the grayscale bitmap of a
heart-shape pattern shown in figure 3.6 and shifted by a constant according to equation
(3.117) to ensure that the spatial average of electrode topography is unity. Here we
briefly outline the reconstruction procedure. Any grayscale bitmap can be regarded as a
function φ(i, j) defined on a square domain (up to a rescaling) with its function value
at each pixel coordinate (i, j) equal to the rescaled gray level between zero (black) and
unity (white). The heart-shaped bitmap in figure 3.6 would yield a step-like function
which is discontinuous and not suitable for higher order PDEs such as the EHL equation
(3.17). There are many filter-based image smoothing techniques capable of producing
gentle transitions between black and white pixels (Gonzalez and Woods, 2017). In order
to preserve the step-like feature of the original bitmap, we implement a reconstruction
process based on the level-set method (Sethian, 1999) by advancing a time-dependent
Eikonal-like equation ∂φ/∂t+(φ−0.5)(

√
c1 + |∇(i,j)φ|2−1) = c2∇2

(i,j)φ till a stopping
time ts with the original gray level being the initial condition of φ. Here ∇(i,j) and ∇2

(i,j)
are the discrete gradient and Laplacian operator defined with respect to the pixel grid
of the bitmap. Two positive constants c0 � 1 and c2 � 1 control the final smoothness
of φ. The topography function on the right hand side of figure 3.6 is the result of
applying this reconstruct algorithm to the 200×200 bitmap on the left where ts = 0.15,
c1 = 0.05 and c2 = 0.02.

In figure 3.8 we demonstrate the convergence behavior of the discrete film statesHk as
the mesh and time steps are progressively refined while the initial condition H0 = 0.15,
domain size [0, 4.5]× [0, 4.5] and final time τ are fixed. The discrepancies in maximum
and minimum film thickness are virtually indistinguishable between various configurations
of element size and time steps. Although the absolute error in free energy appears to be
discernible due to the integral nature of F[H], the relative error is still less than 0.5%.

Similar to what have been reported in literature, we observe rapid growth of multiple
localized pillars triggered by large electric field gradient near the sharp edges and corner of
the heart-like electrode, which eventually would turn into cusp-like structures through
the runaway self-similar process discussed in Section 3.2 if we let the simulation run
longer. The blow-up tendency in film growth is reflected in the time-dependent data
of the total free energy F[H] plotted in figure 3.8. Towards the final time τ = 4.2,
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Figure 3.8: Time-dependent data of maximum thickness Hmax, minimum thickness
Hmin and the total free energy F[H] of the evolving film state. Each colored line rep-
resents a different combination of mesh size and time steps used: run 00 (402 elements
and 100 time steps), run 01 (602 elements and 200 time steps), run 02 (802 elements
and 300 time steps) and run 03 (1002 elements and 400 time steps) which corresponds
to the simulation shown in figure 3.7.

the free energy of the system begins to decrease in an accelerating fashion, which can
be peculiar because the free energy (3.21) of the EHL system is neither convex nor
globally bounded below. As the film apexes approach the bottom of the electrode,
the underlying pillars become slenderer while growing taller accompanied with a rapid
reduction in the total free energy by forming cusp-like shapes. In addition, we notice the
undershooting of film surface at the bottom circumference of the pillars which forms a
“trench” bordering these pillars due to drainage caused by the accelerating growth. This
is the repercussion of mass conservation for incompressible liquids: local aggregation of
liquid material inevitably leads to removal of nearby material.

3.3 EHL as a Constrained Inverse Problem and Its Optimal Control
Having given an overview of the physical principle, mathematical modeling and nu-
merical simulation of EHL, we are now in the position to discuss electrostatic control
of pattern formation in dielectric viscous thin liquid film, which essentially reduces to
optimization, a well established subject in the field of mathematics and engineering.
Nevertheless an immediate solution to the inverse problem of EHL is not quite readily
available. The challenge we face here is threefold: first, liquid films are not parameter-
ized by a discrete set of parameters but a continuous distribution of interface height;
secondly, electrostatic shaping of liquid films is a not static but evolving process; thirdly,
the evolution equation is nonlinear in both film profile and electrode topography. The
relevant tools to overcome these difficulties are scattered in different context of op-
timization. The textbook by Tröltzsch (2010) discusses how adjoint equations arise
during parameter identification of coefficients in differential equations describing steady
continuum systems. A one-dimensional tutorial is illustrated in the monograph by Vogel
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(2002) which highlights ill-posedness of these inverse problems with a strong focus on
various regularization methods. Although the adjoint formalism presented is applicable
to time-dependent systems, the author admits the numerical implementation can be
much more problematic than in the steady-state case. The first volume of the book
series by Bertsekas (2005) on dynamic programming elaborates on the continuous-time
optimal control of deterministic discrete systems over a finite horizon (i.e. a finite span
of time), which we extend to continuum fluid systems such as EHL. Finally, identifying
the optimal electrode topography under the adjoint formalism reduces to a large-scale
unconstrained nonlinear optimization problem, various solution methods of which are
explained in the comprehensive book by Nocedal and Wright (2006) on numerical opti-
mization. We refer the interested readers to the monograph by Isakov (2006) for rigorous
mathematical treatment and latest development on the theory of inverse problem for
partial differential equations. We shall see how a combination of these tools adopted
from different perspectives of optimization yields a drastic improvement of EHL pattern
fidelity on a computational level.

State, control, constraint and objective
In this subsection we layout the computational methodology of finding the optimal
counter electrode pattern D(X). By optimal what we mean is that, under certain
constraint (should there be any) the electrode pattern D(X) is expected to drive an
evolving film state H(X, τ) from an initially uniform film of average thickness H0

towards a desired target shape H(X) at a user-specified termination time τ = τ as
close as possible.

On an abstract level, the optimization task of EHL can be reformulated as a special
case of the finite horizon problem in dynamic programming (Bertsekas, 2005) which was
popularized in the 50’s through the pioneer work of Bellman (1957) and has been widely
applied to problems of optimal control (see Hocking (1991) for numerous applications).
In this framework, an admissible control D(X) is sought over a finite horizon [0, τ ],
which, together with its corresponding state trajectory {H(X, τ) | τ ∈ [0, τ ]}, minimizes
a terminal objective (or cost) functional of the form J[H(X, τ), D(X)]. Mathematically
we encode the two primary goals of Electrohydrodynamic Lithography, namely the fidelity
of final interface shape H(X, τ) to the target profile H(X) and the physical plausibility
of the electrode topography D(X), into the objective functional

J[H(X, τ), D(X)] =
∫

Ω

1
2
[
H(X, τ)−H(X)

]2 dΩ + R[D(X)], (3.49)

where functional R[D] is a regularization that penalizes nonphysical geometric features
of the electrode pattern. For example, the H1-regularization (Heinkenschloss, 1998;
Vogel, 2002)

R[D(X)] = γ

∫

Ω

1
2 |∇‖D|

2 dΩ (3.50)
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would suppress excessive amount of high-frequency spatial oscillations and ensure certain
level of smoothness in D(X) depending the numerical value of penalty parameter γ > 0.

Our goal is to minimize the objective functional J defined in (3.49) as much as possible.
Obviously this is not a free minimization: the final film shape H(X, τ = τ) is the last
snapshot of the evolution equation (3.17) which is directly influenced by the electrode
topography D(X). The optimization problem we are dealing with here is constrained
and most likely non-convex: given an initial film thickness H0, a termination time τ ,
dimensions of the periodic domain Ω and the desired target film profile H(X), find the
optimal electrode topography

D(X) = argmin
D

J[H(X, τ), D(X)]

subject to ∂H

∂τ
+N (H,D) = 0 for 0 ≤ τ ≤ τ ,

(3.51)

where N (H,D) stands for the negative of the nonlinear operator on the right hand
side of equation (3.17) in shorthand. Most optimization algorithms are gradient-based
methods which search for local minima of the objective. Unlike the explicit gradient
in the context of multi-variable calculus, the gradient in optimization problem (3.51)
is rather abstract, which can be interpreted as the infinitesimal total variation of the
objective J[H(X, τ), D(X)] with respect to infinitesimal changes in the control variable
D(X) along the hypersurface implicitly given by the constraint between the control
D(X) and the state H(X, τ).

The type of control studied in this work falls into the open-loop category (Kirk, 2004):
once the optimal topography is computed, the control action exerted by the electrode
pattern D(X) is independent of the evolving film state H(X, τ). As the film deforms,
modifying the electrode topography concurrently, i.e. D(X) → D(X, τ), would be
difficult at the scale of micro- and nano-lithography. Although it is experimentally
feasible to alter the overall amplitude of voltage difference across the thin gap in time.
It is mathematically equivalent to replace the effective electrostatic pressure Π(D,H)
with A(τ)Π(D,H) where A(τ) is a function of time. This type of control is called
feedback or closed-loop (Kirk, 2004; Bertsekas, 2005), which is particularly useful when
stochasticity in EHL is taken into account and is left for future study.

Optimal electrode topography acting on an initially flat film
Let electrode topography D(X) be one of the optimal designs which at least locally
minimizes the constrained objective functional J[H,D] defined in (3.49) and H(X, τ)
be the spatial-temporal film profile generated by D(X). In this subsection we derive
a set of necessary conditions which the optimal topography D(X) and the optimal
evolution trajectory of film profile H(X, τ) must satisfy.
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The derivation of optimality condition here closely follows the variational formalism in
Tröltzsch (2010) which treats adjoint state as a Lagrange multiplier. In order to enforce
the dynamic evolution (3.17) on film state H(X, τ), it is convenient to employ the
method of augmented Lagrangian with the Lagrangian functional

L[H(X, τ), D(X), Λ(X, τ)] = J[H,D]−
∫ τ

0

∫

Ω
Λ
[∂H
∂τ

+N (H,D)
]

dΩ dτ, (3.52)

where Λ(X, τ) is the spatial-temporal Lagrange multiplier which implicitly imposes the
dynamic constraint between the time-varying film profile H(X, τ) and the electrode to-
pography D(X). By definition the augmented Lagrangian L[H,D,Λ] is unconstrained
in all of its arguments, the critical points of which coincide with the ones of the con-
strained objective J[H,D]. One way to characterize the optimal evolution trajectory
H(X, τ), the optimal topography D(X) and the optimal multiplier Λ(X, τ) of the
Lagrangian is to identify conditions under which the first variations δL of Lagrangian
L[H,D,Λ] evaluated at optimal solutions vanish against all infinitesimal perturbations
in its arguments.

Let δH(X, τ), δD(X), δΛ(X, τ) be some admissible infinitesimal variations to the
optimal solutions. Then the first variations of Lagrangian L[H,D,Λ] are given by the
Fréchet derivative in the directions of these prescribed variations,

δL[H,D,Λ; δΛ] =
∫ τ

0

∫

Ω
δΛ
[∂H
∂τ

+N (H,D)
]
dΩ dτ, (3.53)

δL[H,D,Λ; δH] = δJ[H,D; δH]−
∫ τ

0

∫

Ω
Λ
[∂δH
∂τ

+ LH(H,D)δH
]
dΩ dτ, (3.54)

δL[H,D,Λ; δD] = δJ[H,D; δD]−
∫ τ

0

∫

Ω
ΛLD(H,D)δD dΩ dτ, (3.55)

where δJ[H,D; δH] and δJ[H,D; δD] are the unconstrained (free) variations of the
objective functional J with respect to its arguments. The two operators LH and LD in
(3.54) and (3.55) are the linearizations of the nonlinear operator N (H,D) about the
optimal solutions H and D, respectively,

LH(H,D)δH = ∇‖ ·
{
M(H)∇‖

[
∇2
‖ δH + ∂Π

∂H

∣∣∣
H,D

δH
]}

+∇‖ ·
{dM

dH
∣∣∣
H
δH∇‖

[
∇2
‖H +Π(H,D)

]}
, (3.56)

LD(H,D)δD = ∇‖ ·
{
M(H)∇‖

[∂Π(H,D)
∂D

δD
]}
. (3.57)

The condition that the first variation δL in (3.53) vanishes for any spatial-temporal
variation δΛ of the optimal multiplier Λ simply recovers the nonlinear constraint, i.e.
the optimal trajectory H and topography D must fulfill the electrohydrodynamic thin
film equation (3.17),

∂H

∂τ
+N (H,D) = 0 for 0 ≤ τ ≤ τ ,

H(X, 0) = H0 at τ = 0.





(3.58)
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Equation (3.58) is called the state (forward) PDE.

The condition that δL in (3.54) vanishes for any spatial-temporal variation δH of
the optimal evolution trajectory H is not yet explicit because the operators under the
spatiotemporal integrals in (3.54) are still acting on the variation δH. We need to
rearrange the integrals into equivalent forms such as

∫ τ
0
∫
Ω δH × (...) dτ dΩ so that the

response to the variation δH can be explicitly identified. Performing integration by parts
on (3.54) yields

∫ τ

0

∫

Ω
Λ
[∂δH
∂τ

+ LH(H,D)δH
]

dΩ dτ

=
∫

Ω

∫ τ

0
Λ
∂δH

∂τ
dτ dΩ +

∫ τ

0

∫

Ω
LH(H,D)δH dΩ dτ

=
∫

Ω
δH(X, τ)Λ(X, τ) dΩ −

∫

Ω
δH(X, 0)Λ(X, 0) dΩ

−
∫

Ω

∫ τ

0
δH

∂Λ

∂τ
dτ dΩ +

∫ τ

0

∫

Ω
δHL†H(H,D)Λ dΩ dτ

=
∫

Ω
δH(X, τ)Λ(X, τ) dΩ +

∫ τ

0

∫

Ω
δH

{
−∂Λ
∂τ

+ L†H(H,D)Λ∗
}

dΩ dτ, (3.59)

where we drop the integral at τ = 0 because the initial condition is meant to be fixed
for which δH(X, 0) = 0. The linear operator L†H(H,D) is the adjoint of LH(H,D)
defined in (3.57), the closed-form expression of which can be derived thanks to the
Green’s identity. We begin with the definition of adjoint operator,
∫

Ω
ALH(H,D)B dΩ =

∫

Ω
BL†H(H,D)A dΩ

=
∫

Ω
B

{[
∇2
‖ + ∂Π

∂H

∣∣∣
H,D

]
∇‖ ·

[
M(H)∇‖A

]}
dΩ

−
∫

Ω
B

{dM
dH

∣∣∣
H
∇‖
[
∇2
‖H +Π(H,D)

]
· ∇‖A

}
dΩ, (3.60)

where periodic boundary conditions on A, B, H and D eliminate all boundary terms
arsing from Green’s identity. This concludes the form of the adjoint operator

L†H(H,D)A =
[
∇2
‖ + ∂Π

∂H

∣∣∣
H,D

]
∇‖ ·

[
M(H)∇‖A

]
− dM

dH
∣∣∣
H
∇‖
[
∇2
‖H+Π(H,D)

]
·∇‖A.
(3.61)

Recall from definition (3.49) of the objective functional J that its first unconstrained
variation in the direction of δH is given by

δJ[H,D; δH] =
∫

Ω
δH(X, τ)

[
H(X, τ)−H(X)

]
dΩ. (3.62)

With (3.59) and (3.62) in mind, the condition that δL vanishes for any spatial-temporal
variation δH to the optimal trajectoryH is equivalent to impose another transient partial
differential equation on the optimal multiplier Λ,

−∂Λ
∂τ

+ L†H(H,D)Λ = 0 for 0 ≤ τ ≤ τ ,

Λ(X, τ) = H(X)−H(X) at τ = τ .





(3.63)
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Equation (3.63) is called the adjoint (backward) PDE. The issue of ill-posedness and
severe instability in backward parabolic PDEs is discussed in Isakov (2006). For instance,
in the case where forward model is simply a linear diffusion PDE, the operators N =
LH = L†H = −∇2

‖ all become the Laplacian and the adjoint PDE (3.63) is now the
backwards diffusion equation which is peculiarly unstable at all high spatial frequencies.
In general it is advised to integrate the unstable adjoint PDE backwards in time (Giles
and Pierce, 2000; Stoll and Wathen, 2013) by relabeling the temporal variable τ = τ−τ
so that the final time condition at τ = τ becomes an initial condition at τ = 0.

Likewise, the condition for which variation δL in (3.55) vanishes in all directions of
δD would require us to first compute the adjoint operator of LD(H,D) which has the
analytic form

∫

Ω
ALD(H,D)B dΩ =

∫

Ω
B L†D(H,D)A dΩ

=
∫

Ω
B

{
∂Π

∂D

∣∣∣
H,D
∇‖ ·

[
M(H)∇‖A

]}
dΩ,

L†D(H,D)A = ∂Π

∂D

∣∣∣
H,D
∇‖ ·

[
M(H)∇‖A

]
. (3.64)

The free variation of the objective functional J with respect to δD usually comes from
the regularization R[D] alone. For instance, the H1 regularization (3.50) leads to,

δJ[H,D; δD] = δR[D; δD] =
∫

Ω
γ∇‖δD · ∇‖D dΩ =

∫

Ω
δD(−γ∇2

‖D) dΩ. (3.65)

With (3.65) and (3.64) substituted into (3.55), the variation of Lagrangian L[H,D,Λ]
in the directions of all δD is evaluated to be

δL[H,D,Λ; δD] =
∫

Ω
δD(−γ∇2

‖D) dΩ −
∫ τ

0

∫

Ω
δDL†D(H,D)Λ dΩ dτ

=
∫

Ω
δD

{
− γ∇2

‖D −
∫ τ

0
L†D(H,D)Λ dτ

}
dΩ, (3.66)

where we have exploited the fact that δD(X) is only a spatial variation to the optimal
topography D(X) and must commute with the time integral. The condition for δL to
vanish for all variations δD(X) is now straightforward:

δL

δD

∣∣∣
H,D,Λ

= −γ∇2
‖D −

∫ τ

0
L†D(H,D)Λ dτ = 0. (3.67)

Equation (3.67) is called the control PDE. We observe that, the effect ofH1-regularization,
i.e. the term multiplied by γ, is equivalent to the Laplacian smoothing introduced
through a small amount of artificial diffusion controlled by the size of γ into the system
so that the optimal topography D(X) is regularized at high spatial frequencies to ensure
physical plausibility in the optimal design of the electrode pattern.
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Figure 3.9: Flow chart of computing constrained variational derivative in electrode to-
pography D(X): state PDE (blue) for H(X, τ), adjoint PDE (red) for Λ(X, τ) and
control equation (green) for D(X).

In order to obtain the optimal topography D(X), one must simultaneously solve all
three equations for the optimal solutions H(X, τ), D(X) and Λ(X, τ) which is a non-
trivial task. In practice, the solutions to (3.58), (3.63) and (3.67) are usually acquired
incrementally (Nocedal and Wright, 2006). In a typical iterative framework, we would
start with a good initial guess of the topography function D(X). The control equation
(3.67) is relaxed whereas the state equation (3.58) and the adjoint equation (3.63) are
solved exactly for H(X, τ) and Λ(X, τ). We then compute the residue of the control
equation (3.67) and use the gradient information δL/δD to help the objective functional
J[H,D] descend. Once J almost reaches its (local) minimum J, we expect H → H,
Λ → Λ and D → D converging to their (local) optimal solutions as well. This entire
process is illustrated in the flow chart shown in figure 3.9.

3.4 Adjoint-Based Discrete Optimal Control of EHL
There are two schools of numerical approach that can be taken to solve PDE-constrained
optimization problems (Hinze et al., 2009): optimize-then-discretize (OTD) and discretize-
then-optimize (DTO). In OTD, optimality conditions are first derived from the infinite-
dimensional (continuum) partial differential equations, which often result in a set of
additional PDEs as we have already encountered in Section 3.3. These equations are
then discretized and solved by numerical means for the optimal solutions. In DTO,
state, control and objective are first discretized into finite-dimensional objects, for ex-
ample, nodal vectors in finite element space. The control solution to the resulting
finite-dimensional optimization problem can be directly constructed from the underlying
discrete dynamic system using techniques from dynamic programming. As discussed
in Hinze et al. (2009), there is no general recipe which approach should be preferred.
Ideally upon resolution refinement, OTD and DTO shall converge to the identical op-
timal solution. In this work we proceed with DTO since a thorough understanding of
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the discrete evolution system by means of finite element approximation is already es-
tablished in Section 3.2. We shall see that the DTO approach taken in this section
to some extent reflects and preserves the structure inherent in the infinite-dimensional
optimization problem solved in Section 3.3.

Adjoint method as duality in linear programming
Adjoint method essentially is just a way of regrouping operations which could potentially
lead to a much faster way of computing infinitesimal responses of the objective to
all available controls in the system. The key idea behind the adjoint method can be
explained with the concept of duality in linear programming (Giles and Pierce, 2000;
McNamara et al., 2004; Nocedal and Wright, 2006; Johnson, 2012).

Suppose matrices A and B are known. In many practical applications, it is of great
interest to compute the matrix product between some matrix S and another yet unknown
matrix X determined from the matrix equation AX = B . We call this the primal
problem:

compute S>X such that AX = B . (primal) (3.68)

Of course the dimensions of matrices A, B , X and S have to be compatible,

Ap×q, X q×r, Bp×r, S q×s, (3.69)

where p, q, r and s are positive integers. The most straightforward method is to
first solve AX = B either by direct or iterative methods and then perform matrix
multiplication between S> and X . Alternatively, we can consider the dual of the primal
problem (3.68) by introducing an adjoint matrix Y p×s such that matrix product in
(3.68) is equivalent to the solution of the dual problem:

compute Y >B such that A>Y = S . (dual) (3.70)

Using basic rules of matrix operation we can easily prove the equivalence between the
primal problem (3.68) and its dual (3.70),

S>X = (X>S )> = (X>A>Y )> =Y >AX =Y >B . (3.71)

The name “adjoint method” stems from the adjoint matrix A> instead of A in the linear
system (3.70).

Despite the equivalence between their final outcomes, the operational cost of solving the
primal problem versus its dual can be drastically different. Computational complexity of
the primal (3.68) and the dual (3.70) are tightly related to the matrix dimension r and
s. If we only restrict ourselves to very basic algorithms of numerical linear algebra, then
computational cost of the primal formulation (3.68) is equivalent to

solve p× q linear system r times +O(rsq) matrix multiplication. (3.72)
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For the dual formulation (3.70), we have another estimation,

solve q × p linear system s times +O(rsp) matrix multiplication. (3.73)

In numerical analysis of physical problems, it is common to have dimensions O(p) ∼
O(q). For example in PDE-constrained optimization, A can be taken as the discrete form
of some differential operator and is almost always a square matrix. Then it immediately
follows that the primal formulation (3.68) would be more efficient if s� r whereas the
dual formulation is more advantageous if r � s. We shall see in the next section that,
the control problem (3.51) of Electrohydrodynamic Lithography, after discretization,
greatly benefits from the adjoint (dual) formulation.

In the context of control theory, dimension r in B is often connected to the available
degrees of freedom in the control of the system and the dimension s of S is related to
the dimension of the objective of interest. For example, a natural strategy for designing
a multi-dimensional space curve on a computer screen with mouse as the only navigation
tool is to modify the curve progressively in a trial-and-error fashion. Such procedure
corresponds to the primal formulation (3.68) since the control (mouse movement on a
screen) is low-dimensional whereas the objective (multi-dimensional coordinates of the
space curve) has a much higher degrees of freedom. It’s therefore much easier and more
efficient for us to first map out the responses of the space curve to mouse movement.
However it is not the case in modern airfoil shape optimization where the objective
is usually to maximize the lift coefficient or to minimize the drag coefficient using
hundreds of design parameters from the geometry parameterization. Adjoint method
(Jameson, 1988) complemented with advances in Newton-based optimization scheme
and the relentless increases in CPU speed and memory capacity, has largely removed the
limitation on the number of design parameters and allows the “truly optimal” designs
to be computed.

Discretize-then-optimize
The finite element procedure outlined in Section 3.2 propagates a discretized initial film
state H0 into nτ subsequent states H1, ... ,Hnτ . Let integer nH be the degrees of
freedom in any discrete film stateHk. For notation simplicity, we concatenate the entire
sequence of film states H1, ... ,Hnτ into a master state vector

H> =
[
H>1 , ... ,H

>
nτ

]
. (3.74)

Given a sequence of film statesH0, ... ,Hk up to the k-th time step, the film stateHk+1

at the next time step is the solution to the discrete dynamics (3.43) of the nonlinear
state PDE,

F k+1(Hk−1,Hk,Hk+1,D) = 0 for k = 1, ... , nτ − 1, (3.75)
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where F k+1 ∈ RnH is a nonlinear function of its arguments arsing from the particular
discretization method used in the numerical simulation. In the fully discretized finite
element formulation of electrohydrodynamic thin film equation, F k+1 takes the form in
equation (3.44). In the same spirit of master state vector (3.74), we introduce a master
nonlinear function F (H,D) whose action on the master vector H is given by

F (H,D)> =
[
F 1(H0,H1,D)>,F 2(H0,H1,H2,D)>,

... ,F nτ (Hnτ−2,Hnτ−1,Hnτ ,D)>
]
.

(3.76)

With the master notation introduced, we can express the discrete version of the op-
timization problem (3.51) in a concise matrix form: given initial film thickness H0,
termination time τ , dimensions of the periodic domain Ω and the desired discrete target
film profile H, find the optimal discrete electrode topography

D = argmin
D

J(H,D) subject to F (H,D)> = [0>, ... ,0>], (3.77)

where
J(H,D) = 1

2
(
Hnτ −H

)>
M
(
Hnτ −H

)
+ γ

2D
>KD (3.78)

is the discrete version of the continuous objective functional J(H(X, τ), D(X)) defined
in equation (3.49). The evaluation of the discrete objective J(H,D) is constrained to
a finite-dimensional (since discretized) hypersurface implicitly specified by F (H,D) =
[0>, ... ,0>]>.

Now suppose we have a discretized electrode pattern D and have solved the evolution
equation for the master vector H via some numerical method, for instance the finite
element method. In order to proceed with any kind of local optimization algorithm, we
must acquire the total derivative (or the gradient ) of objective J with respect to D,

dJ
dD = ∂J

∂H

dH
dD + ∂J

∂D
, (3.79)

where the numerator layout convention (Minka, 1997) is assumed throughout. The
second quantity on the right hand side of equation (3.79), i.e. partial derivative ∂J/∂D,
is easy to compute since it usually comes from the regularization term exclusively which
only involves D in case of (3.78). The real challenge lies in the matrix differentiation
term dH/dD: any change in the discrete form of electrode pattern D would affect the
entire sequence of film statesH1,H2, ... ,Hnτ . There is always a brutal-force approach,
namely the finite difference approximation: first slightly modify the current design of
electrode D by some perturbation δD, run the simulation again with the perturbed
electrodeD+εδD for some small parameter ε� 1 and check for the resulting variations
in film states. For example a central difference method would provide a second-order
accuracy in ε (Nocedal and Wright, 2006):

dH
dD δD ≈ H(D + εδD)−H(D − εδD)

2ε +O(ε2). (3.80)
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However in order to obtain the full gradient, it would require a complete set of pertur-
bations {δ0D, δ1D, ...} which span all degrees of freedom available in the design space
of the electrode topography D. The finite difference approximation (3.80) must be
computed for every single perturbation δiD in that set. In Electrohydrodynamic Lithog-
raphy, the electrode pattern, just like the interface shape of the liquid film, is expected
to have a continuous geometry. Thus the discrete electrode pattern D may contain
as many degrees of freedom as the discrete film state H i. In finite element method
where the continuous film state H(X, τ) is discretized into a large number of elements
easily exceeding O(104), the finite difference approach (3.80) is clearly not viable. An
even bigger issue is the error of the inexact gradient approximated by the finite differ-
ence approach. Such approximate gradient may work for any first order optimization
method but is not suitable for second order methods. For example, the quasi-Newton
methods approximate the second order information (i.e. Hessian matrix) to speed up
optimization process by accumulating the first order gradients of the objective. The
error in the inexact gradient would propagate and eventually destroy the accuracy in the
approximate Hessian which virtually all quasi-Newton methods heavily rely on.

A more efficient and reliable approach is to implicitly extract dH/dD from F (H,D)
by differentiating with respect to D on both sides of the constraint equation in (3.77),

∂F

∂H

dH
dD + ∂F

∂D
= 0 . (3.81)

According to the exact gradient expression (3.79) of dJ/dD, the matrix quantity
dH/dD alone, whose dimension can be potentially very large, is not of interest but
rather its matrix product with ∂J/∂H. A simple rearrangement of (3.81) yields the
computational problem needed to be solved:

compute ∂J

∂H

dH
dD such that ∂F

∂H

dH
dD = − ∂F

∂D
. (3.82)

Problem (3.82) is precisely the primal formulation (3.68) discussed in the last section.
If we count the dimensions of the matrices involved,

[
∂J

∂H

]

1×nτnH
,

[dH
dD

]

nτnH×nD
,

[
∂F

∂H

]

nτnH×nτnH
,

[
∂F

∂D

]

nτnH×nD
, (3.83)

it’s evident that the dual formulation of problem (3.82) is much more efficient. Let
ΛnτnH×1 be the master adjoint matrix (in fact Λ and [∂J/∂H]> in this problem are
both column vectors). Then the dual formulation of the primal problem (3.82) reads,

compute −Λ> ∂F
∂D

such that ∂F

∂H

>
Λ = ∂J

∂H

>
. (3.84)

To obtain the exact gradient of objective function J(H,D), we only need to solve the
linear system defined in the dual problem (3.84) for adjoint vector Λ once regardless of
the total degree of freedom in the control vector D.
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Let’s now delve more specifically into the details of calculating the adjoint system (3.84).
The vector on the right hand side of the matrix equation has a simple structure,

∂J

∂H
=
[
0>, ... ,0>, (Hnτ −H)>M

]
. (3.85)

Most entries of ∂J/∂H are zero because our objective J only concerns the difference
between final film state Hnτ and target state H. These zero entries would be non-
zero if our objective is affected by the intermediate evolution as well. We next make
an important observation that, despite its deceivingly large dimensions, ∂F /∂H is a
sparse block matrix because the time integration scheme (BDF) only relates up to three
states adjacent in time. This argument becomes clear if we write out the block-matrix
representation of ∂F /∂H explicitly,

∂F

∂H
=




∂F 1
∂H1

· · · 0

∂F 2
∂H1

∂F 2
∂H2

...

∂F 3
∂H1

∂F 3
∂H2

∂F 3
∂H3

∂F 4
∂H2

∂F 4
∂H3

∂F 4
∂H4

... . . . . . . . . .

0 · · · ∂F−1
∂H−3

∂F−1
∂H−2

∂F−1
∂H−1




. (3.86)

Note the block matrix (3.86) is not only sparse but also lower-triangular ([∂F /∂H]> is
upper-triangular). The master adjoint vector Λ given by the adjoint linear system (3.84)
can be efficiently computed through backward substitution without the constructing and
storing the entire matrix [∂F /∂H]>. If we break the master adjoint vector

Λ> =
[
Λ>1 , ... ,Λ

>
nτ

]
(3.87)

into a concatenated sequence of adjoint statesΛk (similar to how the master state vector
H is formed), then the ensemble of all matrix equations needed to be solved according to
the adjoint system (3.84) forms a discrete dynamical system for the subsequent adjoint
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states Λk,
[
∂F nτ

∂Hnτ

]>
Λnτ =

[
∂J

∂Hnτ

]>
,

[
∂F nτ−1
∂Hnτ−1

]>
Λnτ−1 = −

[
∂F nτ

∂Hnτ−1

]>
Λnτ ,

...
[
∂F k

∂Hk

]>
Λk = −

[
∂F k+1
∂Hk

]>
Λk+1 −

[
∂F k+2
∂Hk

]>
Λk+2,

...
[
∂F 1
∂H1

]>
Λ1 = −

[
∂F 2
∂H1

]>
Λ2 −

[
∂F 3
∂H1

]>
Λ3,





(3.88)

where ∂J/∂Hnτ = M (Hnτ −H). In the adjoint dynamical system (3.88), the final
adjoint state Λnτ propagates the discrepancy between the final film state Hnτ and the
target film profile H to the preceding adjoint states backwards in time.

Once we have obtained the whole sequence of adjoint states Λ1, ... ,Λnτ , we are left
with the contraction between master adjoint vector Λ and ∂F /∂D according to the
dual formulation (3.84). The fact that ∂F /∂D is block-diagonal significantly simplifies
the vector-matrix contraction,

−Λ> ∂F
∂D

=
nτ∑

k=1
Ck, Ck = −Λ>k

∂F k

∂D
, (3.89)

where the vectors Ck are interpreted as the generalized constraint forces (as in classical
Lagrangian mechanics) required to enforce the temporal trajectory of film states Hk

staying on the abstract manifold described by the PDE constraint (3.75) at all times.

By the definition of F k+1(Hk−1,Hk,Hk+1,D) in equation (3.44), we can write down
the analytic expression of the partial differentiation of F k+1 with respective to its argu-
ments,

∂F k+1
∂Hk−1

= −α−kM , (3.90)

∂F k+1
∂Hk

= −α0
kM + ∆τkα+

k

∂Rk+1
∂Hk

, (3.91)

∂F k+1
∂Hk+1

= M + ∆τkα+
k

∂Rk+1
∂Hk+1

, (3.92)

∂F k+1
∂D

= ∆τkα+
k

∂Rk+1
∂D

. (3.93)

Substituting these partial derivatives into the discrete adjoint dynamical system (3.88)
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yields the adjoint system for the electrohydrodynamic thin film equation,
{
M + ∆τnτ−1α

+
nτ−1

[
∂Rnτ

∂Hnτ

]> }
Λnτ = M (Hnτ −H),

{
M + ∆τnτ−2α

+
nτ−2

[
∂Rnτ−1
∂Hnτ−1

]> }
Λnτ−1 = Mα0

nτ−1Λnτ ,

−∆τnτ−1α
+
nτ−1

[
∂Rnτ

∂Hnτ−1

]>
Λnτ ,

...
{
M + ∆τk−1α

+
k−1

[
∂Rk

∂Hk

]> }
Λk = M

(
α0
kΛk+1 + α−k+1Λk+2

)

−∆τkα+
k

[
∂Rk+1
∂Hk

]>
Λk+1,

...
{
M + ∆τ0α

+
0

[
∂R1
∂H1

]> }
Λ1 = M

(
α0

1Λ2 + α−2 Λ3
)

−∆τ1α
+
1

[
∂R2
∂H1

]>
Λ2.





(3.94)
Discrete dynamical system (3.94) resembles a semi-implicit time integration scheme
applied backwards since the solution to Λk requires Λk+1 and Λk+2 as well as Λk itself.
This is one of the reasons we choose a semi-implicit scheme for the (forward) time
integration of the film state Hk as opposed to the fully implicit used by Becker et al.,
2002. If the forward time stepping was fully implicit, then the time integration of the
discrete adjoint dynamics would be fully explicit and hence may be subject to certain
stability criterion. The discrete control equation (3.89) is essentially a Riemann sum in
time, i.e. approximating the time integral in the continuous control equation (3.67) by
a series of rectangular “boxes” in time. We also note that the summation in (3.89) can
be accumulated concurrently with the backwards propagating adjoint vector Λk. The
procedure of computing discrete optimal control is illustrated in the flow chart 3.10.

In order to implement the discrete dynamical system (3.94) for adjoint states, we need
to compute the analytic expressions of differentiatingRk+1(Hk,Hk+1,D) with respect
to its arguments. We recall the definition of Rk+1 from (3.44) and derive,

∂Rk+1
∂Hk+1

=W (Hk)
[
M−1K − ∂Π(Hk+1,D)

∂Hk+1

]
, (3.95)

∂Rk+1
∂Hk

= ∂W (Hk)P k+1
∂Hk

, P k+1 = M−1KHk+1 −Π(Hk+1,D), (3.96)

∂Rk+1
∂D

= −W (Hk)
∂Π(Hk+1,D)

∂D
. (3.97)
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Figure 3.10: Flow chart: discrete state equation (blue) forHk, discrete adjoint equation
(red) for Λk and discrete control equation (green) for Ck.

The assembly of matrices ∂Rk+1/∂Hk+1 and ∂Rk+1/∂D is straightforward, the former
of which we have already encountered in the forward time integration of film state Hk.
To the contrary, we must be careful about the calculation of ∂Rk+1/∂Hk which seems
to be deceptively simple. Technically we could have directly evaluated the expression of
∂W (Hk)/∂Hk first and then contract it with P k+1 since P k+1 doesn’t depend onHk

at all. However,W (Hk) is a matrix whose entries are assembled from the state vector
Hk. A naive differentiation ofW with respect to Hk would promote ∂W (Hk)/∂Hk

to a rank-3 tensor whose the storage and contraction with other tensorial objects can be
computationally challenging. Fortunately, the sparsity in matrixW allows us to compute
the exact expression of ∂Rk+1/∂Hk in a much more efficient way.

Differentiation of weighted stiffness matrix
Before digging into details of differentiating weighted stiffness matrixW (Hk), we need
to first analyze the assembly pattern for the stiffness matrix K . Let’s introduce the
operator

[i] : global nodal indices→ sets of elemental indices (3.98)

to denote the index set of all elements which contain the i-th node. We also define the
surjective map

i|e : global nodal indices→ local nodal indices of element Qe, (3.99)

which maps a global index i to its local nodal index i|e in element Qe. A first glance
at the definition (3.36) of stiffness matrix K suggests a nodal-index-based strategy
for assembling each of its entry Kij . In practice, it’s more convenient to perform an
assembling procedure that loops over elemental indices instead. To see this, we define
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the elemental (local) stiffness matrix K e with its entries

Ke
ij =




〈∇‖Nei|e,∇‖Nej|e〉 if Xi and Xj ∈ Qe,
0 otherwise.

(3.100)

According to definition (3.36), the ij-entry of the global stiffness matrix K can be
expressed as

Kij =
∑

e∈[i]∩[j]
Ke
ij . (3.101)

The restriction on the summation e ∈ [i] ∩ [j] is fact redundant. To see this argument,
let’s consider an element Qe′ such that e′ 6∈ [i] ∩ [j]. Then by definition (3.100) of
local stiffness matrix K e′ , its ij-entry Ke′

ij must be zero otherwise e′ would belong to
e ∈ [i] ∩ [j]. Thus the global stiffness matrix K is the sum of all elemental stiffness
matrices K e,

K =
∑

e

K e. (3.102)

Inspired by the element-wise assembling strategy of the global stiffness matrix K , we
reformulate the formidable matrix-vector multiplication in (3.96) by breaking the node-
wise definition (3.38) of weighted stiffness matrix W into a sum of local weighted
stiffness matricesW e which are assembled locally in each element Qe,

W (A)ij =




〈∇‖Nei|e,Ph[M(A)]∇‖Nej|e〉 if Xi and Xj ∈ Qe,
0 otherwise.

(3.103)

Then the contraction between the global weighted stiffness matrix W (A) and some
nodal vector B is the sum of the individual contraction between each local weighted
stiffness matricesW e and B,

W (A)B =
∑

e

W e(A)B, (3.104)

which then can be further reduced to the interactions between nodal basis functions
Nei|e,

[
W e(A)B

]
i

=
∑

k

W e
ikBk

=
∑

Xk∈Qe
Bk

∫

Qe

( ∑

Xj∈Qe
M(Aj)Nej|e

)(∇‖Nei|e
) · (∇‖Nek|e

)
dΩ

=
∑

Xk∈Qe

∑

Xj∈Qe
M(Aj)Bk

∫

Qe
Nej|e

(∇‖Nei|e
) · (∇‖Nek|e

)
dΩ (3.105)

= 0 if Xi 6∈ Qe.
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Differentiating the local matrix-vector productW e(A)B defined in (3.105) with respect
to B now becomes straightforward,

[∂W e(A)B
∂A

]
ij

= ∂[W e(A)B]i
∂Aj

= dM(Aj)
dAj

∑

Xk∈Qe
Bk

∫

Qe
Nej|e

(∇‖Nei|e
) · (∇‖Nek|e

)
dΩ (3.106)

= 0 if Xi or Xj 6∈ Qe.

Just like the stiffness and the mass matrix, ∂W e(A)B/∂A is a local matrix of element
Qe as well. The global matrix ∂W (A)B/∂A can be assembled in a similar element-
by-element fashion instead,

∂W (A)B
∂A

= ∂

∂A

∑

e

W e(A)B =
∑

e

∂W e(A)B
∂A

. (3.107)

It turns out that in equation (3.106) we do need to compute a rank-3 tensor N e only
much smaller, constructed from the Lagrange basis of each individual element,

N e
ijk =

∫

Qe
Nej|e

(∇‖Nei|e
) · (∇‖Nek|e

)
dΩ. (3.108)

In analogy to the local stiffness matrix K e, integral (3.108) depends purely on the
geometry of each element and only needs to be assembled once for a given fixed mesh.
The storage of all local tensors N e is affordable since it’s only linearly proportional to
the total number of elements. We remark that, while analytic evaluation of integral
(3.108) is certainly possible, it is suffice to use Gauss quadrature rule (3.39) since error
in finite element simulation is usually dominated by mesh size and time step instead
of the approximation error in numerical integration. In fact the integrand of N e

ijk is
at most a sixth order polynomial which can be integrated exactly by the 4-point Gauss
quadrature rule.

We consider the simplest scenario where the mapping from the canonical square element
O to any element Qe of size ∆X ×∆Y in (X,Y )-plane is just an affine transformation
involving only translation and scaling,

X ∈ Qe = ϕe(ξ) =
[
Xe
o

Y e
o

]
+ 1

2

[
∆X 0

0 ∆Y

] [
ξ1

ξ2

]
, (3.109)

where [Xe
o , Y

e
o ]> is the geometric center of the straight quad element Qe. The compo-

nents of the 9-by-9 local mass matrix M e before lumping are given by

M e
ij = 〈Nei (X),Nej(X)〉 =

∫

O
Ni(ξ)Nj(ξ)∆X∆Y

4 dξ1 dξ2. (3.110)
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We analytically integrate (3.110) according to the polynomial expression of Ni in (3.26)
and obtain

M e = ∆X∆Y
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On the other hand, the evaluation of the local stiffness matrix K e must be split into
two 9-by-9 matrices K e

1 and K e
2 since the quad element Qe may be stretched differently

in the X and Y directions,

Ke
ij = 〈∇‖Nei (X),∇‖Nej(X)〉 =

∫

O

[ ∆Y
∆X

∂Ni
∂ξ1

∂Nj
∂ξ1︸ ︷︷ ︸

(Ke
1)ij

+ ∆X
∆Y

∂Ni
∂ξ2

∂Nj
∂ξ2︸ ︷︷ ︸

(Ke
2)ij

]
dξ1 dξ2. (3.112)

Analytic integration yields K e = K e
1 + K e

2 where

K e
1 = ∆Y

∆X
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(3.113)
In our simple example of a rectangular element, the local matrix K e

2 of every element
Qe is merely a permutation of K e

1. Similarly, the local weighted stiffness matrix

N e
ijk =

∫

O

[ ∆Y
∆XNj

∂Ni
∂ξ1

∂Nk
∂ξ1︸ ︷︷ ︸

(Ne
1 )ijk

+ ∆X
∆Y Nj

∂Ni
∂ξ2

∂Nk
∂ξ2︸ ︷︷ ︸

(Ne
2 )ijk

]
dξ1 dξ2 (3.114)

is the sum of two 9-by-9-by-9 tensors N e
1 and N e

2. Here we do not explicitly list in total
2× 729 entries of (N e

1 )ijk and (N e
2 )ijk.
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3.5 Nonlinear Optimization and Results
In the last section, we have provided a recipe to the exact computation of objective
gradient with respect to the electrode topography pattern D. We now proceed with
nonlinear optimization of the objective J(D) through a suitable choice of gradient-based
method.

Broyden–Fletcher–Goldfarb–Shanno algorithm
In numerical optimization, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is
one of the most popular quasi-Newton methods in the class of hill-climbing techniques
which seek a stationary point of a function by iteratively making incremental changes
to the current solution (Nocedal and Wright, 2006). A necessary condition of achieving
optimality is that the gradient must be is zero in every direction of the parameter space.
In quasi-Newton methods, the second derivatives of the objective function represented
by the Hessian matrix d2J/dD2, are not computed exactly but rather approximated
based on a selective history of the past gradient evaluations. Quasi-Newton methods
can be thought of as generalizations of the one-dimensional root-finding algorithm, i.e.
secant method, to multivariate calculus. In multi-dimensional problems such as the PDE-
constrained control problem of electrohydodynamic lithography, quasi-Newton schemes
differ in the way they constrain the iterative updates. The BFGS method introduces
a rank-2 correction to the approximate Hessian matrix at each update such that the
approximate Hessian is always symmetric and behaves like the true Hessian at least
locally for every incremental change.

For models numerically discretized by finite element method, we must be cautious about
the precise meaning of “gradient". The finite-dimensional vector space in finite element
method is equipped with a non-trivial inner product/norm (3.33), namely the mass
matrixM which is positive and symmetric but not necessarily uniform nor scale-invariant.
The gradient computation

∇DJ = dJ
dDM

−1 (3.115)

must respect the inner product of the underling vector space so that δJ = ∇DJM δD =
(∂J/∂D)δD. In the context of tensor analysis, ∇DJ and dJ/dD are the contravari-
ant and covariant components of the same gradient. Following the Riemannian BFGS
method presented in Qi, Gallivan, and Absil (2010), in algorithm 1 we modify the stan-
dard version of the BFGS algorithm and introduce mass matrix M at step 11 of the
inverse Hessian update to account for the discrete inner product of the finite element
space. In the standard form of BFGS algorithm, M is simply the identity matrix I.

In addition we must also ensure the feasibility of target film profile H. Just like the
continuum equation (3.17) of the EHL model, finite element formulation (3.40) also
conserves the discrete total mass at all time steps which means for an initially flat film
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Algorithm 1 Broyden–Fletcher–Goldfarb–Shanno algorithm
1: procedure BFGS
2: Compute and storage ∇DJ |(0) . initialize BFGS
3: Line search to find α = argmin J(D(0) + αG)
4: Storage S(1) = αG
5: Update D(1) = D(0) + S(0)
6: Initialize B−1

(0) = I
7: Initialize k = 1
8: while objective J(D(k)) > tolerance do . BFGS iteration loop
9: Compute and storage ∇DJ |(k)

10: Compute Y = ∇DJ |(k) −∇DJ |(k−1)
11: Rank-2 symmetric update on the inverse of approximated Hessian B−1

B−1
(k) = B−1

(k−1) +
S>(k−1)MY + Y >MB−1

(k−1)Y

(S>(k−1)MY )2 S(k−1)S
>
(k−1)M

− 1
S>(k−1)MY

[
B−1

(k−1)Y S
>
(k−1)M + S(k−1)Y

>MB−1
(k−1)

]

12: Compute G = B−1
(k)[−∇DJ |(k)]>

13: Line search to find α = argmin J(D(k) + αG)
14: Storage S(k) = αG
15: Update D(k+1) = D(k) + S(k)
16: Shift D(k+1)
17: k → k + 1

of thickness H0, the equality

1>MHk = 1>M (H01) (3.116)

holds for all subsequent film states. If total mass of the desired target film profileH over
the periodic domain is different from the initially flat state H01, then it is impossible
for any film state Hk to converge to target H no matter how we update the electrode
topography D, i.e. target H is unfeasible according to the constraint. In practice,
the discrete values of target film profile is generated by a user-specified input H in, for
example, the heart-like protrusion reconstructed from the raster height map shown in
figure 3.6, is likely not to have an identical total mass with H01. Preprocessing on these
user-generated inputs is required to ensure feasibility of the target film profileH used in
the optimization procedure. There are infinitely many ways to correct H in. We prefer
shifting H in by a constant value everywhere,

H = H in +
(
H0 −

1>MH input
1>M1

)
1, (3.117)

so that the geometric details of user input H in is not compromised too much.
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Figure 3.11: Sequence of electrode topography profiles 1 − D on a periodic square
domain [0, 4.5]× [0, 4.5] at iteration step 0, 5, ... , 40 of the BFGS optimization process;
the nonlinear EHL evolution equation is discretized with 602 elements and 200 evenly
spaced time steps till the final time τ = 4.2.

We also apply the shifting transformation (3.117) to the discrete electrode topography
D after the BFGS update in step 15 for a different reason. The purpose of such shift is
to maintain a fixed reference height (e.g., average height) on the electrode topography
throughout the entire optimization process and to prevent pathological scenario where
electrode topography D being optimized may drift infinitely far away from the film.

Validation on a target film shape of uniform thickness
We verify our implement of the optimization algorithm against the follwing test problem:
find the optimal electrode topography D(X) for a target film profile of uniform thick-
ness, which happens to be identical to the initial condition H = H01 due to volume
conservation. It is one of the few cases for which exact analytic solution of the optimal
electrode topography, i.e. a flat electrode D = 1, is known. Recall from (3.21) that the
free energy F[H,D] of the EHL system is always non increasing. Any nonflat electrode
would necessarily deform an initially flat film and hence cannot produce another flat
state of the same volume at a later time τ > 0. If we take the constraint on the spatial
average of electrode topography into account, then the optimal pattern must be the
unique “do-nothing” flat electrode D = 1.

The convergence to a flat electrode is shown in figure 3.11. The test problem is posed
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Figure 3.12: The BFGS optimization underlying figure 3.11: the minimum and maxi-
mum signed deviation to the analytic solution D = 1 and objective functional J(H,D)
at final time τ are plotted for the electrode being optimized at each BFGS step.

on a periodic square domain [0, 4.5]× [0, 4.5] and for a time interval 0 ≤ τ ≤ 4.2. The
initial film thicknessH0 = 0.15 is uniform over the entire domain. TheH1-regularization
parameter γ = 5× 10−4 is used in the discrete objective functional (3.78). We choose
the heart-like electrode plotted in figure 3.6 as the initial guess. In the early stage of
optimization, features of high spatial frequency such as edges and corners are rapidly
damped. We observe that the optimization process picks up large scale spatial variations
in the background after the initial damping. This is due to the inherent nonlinearity of the
problem being optimized: different spatial modes of electrode pattern D(X) are coupled
through the nonlinear constraint, i.e. the EHL evolution equation. In figure 3.12 we
plot the maximum and minimum signed deviation to the optimal electrode topography
D = 1 and discrete objective J over 100 BFGS iteration steps on a log scale. Deviation
from the analytic solution of the optimal flat electrodeD = 1 decreases towards zero as
the objective J is minimized. At iteration step 40 shown in figure 3.11, the maximum
spatial error of the optimal topography is already driven below 0.01. Th overall linear
trend suggests an exponential convergence rate which is typical for optimization methods
based on gradient descent (Nocedal and Wright, 2006).

The discrete cosine transform of 1 − D(X) are shown in figure 3.13 as the electrode
topography is being optimized at each iteration step. Each block at a grid num-
ber (i, j) represents the absolute (real) amplitude of the (i, j)-th spatial harmonics
cos(KX

i X) cos(KY
j Y ) where KX

i and KY
j are the i-th and j-th spatial frequencies of

in X and Y directions, respectively. Unlike a purely diffusive process for which features
of higher frequency always receive faster damping, during late stage of the optimiza-
tion the (0, 2)-, (0, 1)-, (2, 0)-, (2, 2)-modes seem to persist as a group. This indicates
that, the diffusive effect introduced from the regularization functional R[D] is not the
main driving force behind the optimization. Instead, the approximate Hessian matrix
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Figure 3.13: Discrete Fourier (cosine) transform of the electrode topography 1−D(X)
at iteration steps shown in figure 3.11. The color and height of a block at grid number
(i,j) correspond to the absolute (real) amplitude Aij of the (i, j)-th cosine harmonics
cos(KiX) cos(KjY ) where Kk is the k-th spatial frequency of interval [0, 4.5]. For
visual purpose, log10(1 + |Aij |) is plotted instead.

of the objective (excluding the regularization) may chose to amplify a selection of its
eigenvectors which result in the persisting pattern in the Fourier space we see in figure
3.13.

To gain more insights and intuitions into the control algorithm, we plot the discrete
solutions to the film state H(X, τ), adjoint variable Λ(X, τ) and the constraint force
C(X, τ) at the zeroth step of the nonlinear optimization in figure 3.14 side by side. Film
states H(X, τ) in the left-most column are identical to the ones shown in figure 3.7
subject to the top electrode with a heart-like protrusion (see figure 3.6). The adjoint
variable Λk in the middle column propagates the discrepancy between the final film
profile H(X, τ) and target profile H as the final time condition backwards in time.
The dynamics of the adjoint variable Λ(X, τ) mimics a reverse-diffusion process where
sharp features become blurry while being transported backwards in time. Recall from
the control equations (3.67) and (3.89) that the objective gradient ∇DJ at the zeroth
iteration step is given by the time integration of all the constraint forces Ck shown in
the right-most column at each discrete time step. We observe that the constraint forces
closer to the final time τ are orders of magnitude larger than the ones from the early stage
and hence dominate the time integration of all constraint forces. In other words, the
behavior of film states in the later stage has significantly more impact on the discrepancy
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Figure 3.14: Solutions to the film state H(X, τ) (left column), the adjoint Λ(X, τ)
(middle column) and the negative constraint force −C(X, τ) (right column) on a peri-
odic computational domain [0, 4.5]× [0, 4.5] computed from the discrete state, adjoint
and control equations (3.75), (3.94) and (3.89). Target film profile H(X) = H0 is
identical to the initial flat state. Snapshots with elevation contour (black line) are taken
at time stamps τ = 0, τ/5, ..., τ (from top to bottom) where final time τ = 4.2.
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Figure 3.15: (a) Target film profile H(X) compared to (b) the final film state H(X, τ)
obtained under (c) the optimal electrode topography 1 − D(X) found by nonlinear
optimization on a square domain [0, 4.5]× [0, 4.5].

between the final film profile H(X, τ) and target shape H. This is expected because the
evolution equation of the EHL system is dissipative under a time-independent electrode
with a static geometry and a constant applied voltage. The memory of previous film
states beyond certain time period is eventually lost due to dissipation in the system.
Unless time-dependency is restored in the electrode (voltage distribution, topography,
etc.) which would result in extra terms in the control equations, the best strategy to
guide the evolving film profile H(X, τ) into the target shape H(X), suggested by our
control algorithm, is to promote the desired convergence right before the final time τ
rather than to achieve it earlier.

Optimal electrode design for achieving a heart-like film pattern
We apply the control algorithm to obtain the optimal electrode design for a specific film
pattern, i.e. the uniform elevation of a filled heart-like shape at the center of a square.
The simulation and nonlinear optimization are performed on a square domain of edge
length 4.5, discretized by 502 Q9 Lagrange finite elements. The heart-like target film
profile H(X) is shown in figure 3.15(a). The goal is to look for an optimal electrode
topography function D(X) under which the evolving film state H(X, τ) converges to
the target H(X) at final time τ = 4.2. We start the search of the optimal design
with an initial guess of a uniform electrode D = 1. The H1-regularization parameter
γ = 7.5×10−4 is used to preserve certain level of smoothness inD throughout the entire
process. After about 100 BFGS iteration steps, the objective J reduces to about 6.5%
of its original value produced by the initial guess and the search therefore terminates.
The resulting optimal electrode pattern and the corresponding film profile at the final
time τ are plotted in figure 3.15. Snapshots of intermediate film evolution, backward
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adjoint propagation and discrete cosine transform (DCT) of film states are shown in the
left, middle and right columns of figure 3.16, respectively.

The optimal design solved by the control algorithm seems to suggest an interesting
design principle in favor of separating spatial scales. Small-scale features of the optimal
electrode shown in figure 3.15(c), e.g., ridges and horns, as usual immediately trigger
localized growth resembling the boundary of the heart pattern. However unlike the
case of naive electrode designs such as the one in figure 3.6, these structures do not
reinforce themselves into narrower pillars. Instead, the subsequent growths are arrested
by interface deformations induced by the large-scale sinusoidal oscillations in the optimal
electrode topography. As shown in the left column of figure 3.16, while the central void
enclosed by the narrow ridges are being filled, four weak bumps also start to appear
at corners of the square domain. Due to conservation of mass, if the dielectric film is
thickening at the center and corners, it must drain liquid from the region in between,
exactly where the prior development of narrow ridges occurs. The competition between
the growth of large and small features is made manifest by the discrete cosine transform
of H(X, τ) in the right column of figure 3.16. The rapid development of high frequency
modes (e.g., blocks in white) is suddenly choked by the emergence of low frequency
oscillations (e.g., blocks in yellow, orange and red) during the time interval between
4τ/5 and the final time τ . Hence a smart combination of sharp and blunt features
in the optimal electrode topography computed by our optimization algorithm not only
trigger pattern formations in dielectric film at multiple resolutions but also regulate
the growth rate of of spatial modulations at both large and small scales as well as the
temporal order at which these modulations emerge in order to achieve a complex pattern
such as the heart-like pillar.

Lastly, we briefly discuss the role of regularization, particularly the H1-regularization
(3.50). In our specific example of optimizing for a heart-like film pattern, the choice
of regularization parameter γ seems to have minor effects on the nonlinear search.
Although from the final film states H(X, τ) plotted in the the first row of figure 3.17, it
is slightly more difficult to reproduce corners and edges of the heart-like pattern with a
higher regularization value. This is expected because a stronger H1-regularization would
penalize sharp electrode features: the initial growth of film patterns triggered by these
sharp features can only be corrected later by interface modulations emerging on much
larger scales due to disspative nature of the EHL system. In future work, it is interesting
to explore other choices of objective functional and regularization, for example, the use
of l1-norm instead l2, i.e. J =

∫
Ω |H −H| dΩ, or distributed ones, i.e. J and R are

defined independently on disjoint subdomains (Barker, Rees, and Stoll, 2016).
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Figure 3.16: Film state H(X, τ) (left column), the adjoint Λ(X, τ) (middle column)
and the discrete cosine transform (DCT) of H(X, τ) (right column) computed for a
heart-like target profile on a periodic square domain [0, 4.5]2. Snapshots are taken at
time stamps τ = 0, τ/5, ... , τ (from top to bottom) where final time τ = 4.2. Legend
setup of DCT is identical to the one in figure 3.13.



91

0.100

0.125

0.150

0.175

0.200

0.225

0.10

0.15

0.20

0.25

0.30

γ = 0.001 γ = 0.002 γ = 0.003

Figure 3.17: Final film state H(X, τ) (top row) at τ = 4.2 and optimal electrode
topography 1−D(X) (bottom row) on a periodic square domain [0, 4.5]2 produced by
nonlinear optimizations under different H1-regularization parameters γ.

3.6 Conclusion and Outlook
The control algorithm and simulations presented in this chapter represent a computa-
tional resolution to the problem of pattern fidelity in Electrohydrodynamic Lithography
(EHL), a simple and promising soft-lithographic method by inducing a heterogeneous
distribution of Maxwell stresses on the interface of a dieletric liquid film through a
patterned top electrode (Chou, Zhuang, and Guo, 1999; Schäffer et al., 2000). The
evolution of film interface is shown to follow a fourth order strongly nonlinear partial
differential equation which are discretized based on finite element method.

In order to guide evolving film into a desired target shape in the theoretical framework
of EHL, we devise a control protocol using the optimal control theory to optimize
the design of electrode topography. Our method fundamentally differs from previous
approaches (Verma et al., 2005; Wu, Pease, and Russel, 2005; Nazaripoor et al., 2016)
based on trial and error over a finite set of geometry parameters of the electrode:
only three PDEs—state, adjoint and control equations—need to be solved regardless
of total degrees of freedom in the design space of electrode geometry. We highlight
the power of our control algorithm through a nontrivial example of optimal electrode
topography achieving a nearly uniform lifting of a heart-like pattern in the center of a
periodic square lattice, which cannot be accomplished by conventional design principles
of electrode topography due to rapid growth of localized pillars.

The control-theoretical framework established in this work is completely general and
can be extended to explore other types of control. For example, it is conceivable that
by applying a time-dependent, instead of constant, voltage drop between electrode and
bottom substrate (the rate at which voltage signal changes must be slow enough so
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that the system is still in the quasi-electrostatic limit), the additional temporal degree of
freedom in control may be exploited to improve robustness against random fluctuations
in the EHL system or to maintain the interface of a dielectric liquid film at a desired
target shape for an exceptionally long period of time. In such cases, signal of the time-
varying voltage drop must be determined from a feedback mechanism complementing
the current EHL system, for example, surface reconstruction from real-time thin film
interferometry (Naughton and Sheplak, 2002). The idea of time-varying control was
recently exploited by Boujo and Sellier (2019) who investigated the optimal kinematics
of a solid platform on which a solidifying liquid film flows with a temperature-dependent
viscosity. Significant improvement in thickness uniformity of the solidifying film was
achieved by the use of adjoint method from optimal control theory.
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C h a p t e r 4

GENERALIZED LUBRICATION THEORY ON CURVED GEOMETRIES

4.1 Development of Lubrication Theory on Curved Geometries
The lubrication theory was established by Reynolds (1886) to quantify the influence of
oil lubricant filled between the cylindrical surfaces of bearing and journal. His idea was
later extended to model fluid flow confined in geometries where the transverse dimension
is significantly slender than the streamwsie ones. In contrast to the long history and
rich studies of thin flows on flat and possibly inclined substrates in literature (Oron,
S. H. Davis, and Bankoff, 1997), some of which we have encountered in Chapter 2 and
3, the physics of thin liquid flow on curved geometries has only been developed recently
and is still not fully understood. In almost all existing literature on the topic, substrate
geometries are limited to simple forms such as spheroid and cylinder, and kinematics
being considered is driven exclusively by capillary and gravity forces only.

To study thin liquid flows on nonstandard geometries, L. W. Schwartz and Weidner
(1995) proposed a lubrication model for surface tension driven flows on curved surfaces to
explain the thinned or “puddled” defects in the coating behavior of liquid paints on highly
curved substrates. Their model was subsequently re-examined, corrected and improved
by the pioneer work of Roy, A. J. Roberts, and Simpson (2002), who first derived
the two-dimensional evolution equation of the film’s thickness for the three-dimensional
flow of a viscous Newtonian fluid upon an arbitrarily curved substrate using a special
curvilinear coordinate system based on orthogonal lines of curvature adapting to curved
surfaces. Howell (2003) derived the leading-order lubrication equations for thin viscous
films coating a moving curved substrate instead of an immobile surface. He identified
three distinguished limits: nearly flat substrate, extremely curved substrate of constant
curvature and moderately curved substrate with a radius of curvature comparable to
the film length scale. Stocker and Hosoi (2005) presented a lubrication model for
the evolution of a thin film covering the an interior corner driven by surface tension
and gravity using a hyperbolic coordinate system. Despite singularity in the hyperbolic
coordinates at the corner, good agreement with laboratory experiments was found.

On the other hand, thin liquid flow on the surfaces of cylindrical and spherical objects
have been studied extensively due to simplicity in the geometry and well developed sur-
face coordinate systems. Takagi and Huppert (2010), by formulating the lubrication
theory in spherical coordinates, investigated the spreading dynamics of shallow gravity
currents on the exterior surface of cylinders and spheres in the regime where gravity and
viscous forces govern the dynamics. The analytic spreading solution they predicted for



94

the extent of the flow agrees well with their experiments till the advancing front bifur-
cates into a number of rivulets due to the neglecting of surface tension effect in their
model. Braun et al. (2011) reexamined the flow of a tear film on a prolate spheroid shape
resembling human cornea, which usually is modeled on a flat substrate. By retaining
the next higher order terms of the geometry, they derived a fourth order parabolic PDE
for the film dynamics in prolate spheroidal coordinates. Trinh et al. (2014) studied the
role of substrate curvature on the gravitationally driven flow of a suspended thin liquid
film adhere to the underside of a circular cylinder. Combined with experimental demon-
strations, they quantitatively identified the conditions under which the Rayleigh-Taylor
stability of a liquid layer can be stabilized by substrate curvature. S. Lee et al. (2016)
introduced a simple yet robust mechanism to fabricate hemispherical thin, nearly uni-
form, elastic shells by the coating, drainage and subsequent curing of polymer solutions
on curved molds. Their theoretical model based on lubrication theory, which includes
the rheological properties of the curing polymer as well, was able to accurately predict
the final thickness of the shell as a function of the material properties and the substrate
geometry. Recently, Balestra, Brun, and Gallaire (2016) and Balestra, Badaoui, et al.
(2019) considered the optimal topographical perturbations of the substrate geometry
for the advancing front of an initially flat thin Newtonian fluid spreading on a horizon-
tal cylinder under action of gravity, which eventually results in the formation of fingers
(Troian et al., 1989). They discovered that the most unstable spanwise fingering wave-
length induced by substrate topography perturbations was slightly different from the the
emerging wavelength on a perfect cylinder and can be deliberately controlled.

The approaches employed above are essentially direct, low-dimensional approximation
to the full three-dimensional viscous Stokes equation. An alternative perspective on
the formulation of thin film flow was introduced by Rumpf and Vantzos (2013) who
reformulated the evolution of thin liquid film as a unique flow state resulting from the
interplay between the potential energies (e.g., the surface energy of liquid/gas interface
and gravitational energy) and viscous dissipation within the liquid due to tangential
frictions against the curved substrate in the thin film limit. The evolution of a viscous
thin film on a curved geometry was then approximated based on the underlying gradient
flow structure which is faithful to the energy-dissipation law in the fluidic system as
opposed to the equations of motion. Their formalism is numerically attractive as well:
it leads to the so-called natural time discretization (F. Otto, 2001) under which the
incremental time stepping is posed as a transport-equation-constrained optimization
problem on a curved manifold.

The outline of this chapter is as follows: In Section 4.2, we develop three curvilinear co-
ordinate systems essential to modeling free surface flow in vicinity of a curved supporting
substrate embedded in the three-dimensional ambient space. Section 4.3 begins with
two equivalent characterizations of viscous fluid, namely the Stokes equation and the
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Helmholtz minimum dissipation principle. Free surface kinematics driven by the viscous
dissipation of interfacial free energies is derived based on the curvilinear coordinates
developed earlier. In Section 4.4 we construct a truncated minimization problem of the
Helmholtz principle in lubrication limit, the solution of which gives rise to a tensorial
partial differential equation governing the evolution of thin viscous liquids attached to
a gently curved substrate. The derivation here follows the construction of the gradient
flow model introduced in Rumpf and Vantzos (2013) with tools of differential geometry
developed in the earlier sections in this chapter. We extend their result to cover shear-
type tangential interfacial forces in addition to pressure-type normal forces. Examples of
common interfacial free energies of local type such as surface and gravitational energies
are discussed. At last, in Section 4.5 we present a novel nonlocal model resulting from
the total electrostatic energy of a curved conductor in the presence of a thin dielectric
liquid coating. Through finite element simulations, we demonstrate the rich interplay
between capillary, gravity, Maxwell and viscous forces of a thin liquid film spreading
on a spherical conductor. Our model offers key insight into the complex evolution of
liquid shapes, mass accumulation sites and flow instabilities not accessible to planar
geometries.

4.2 Differential Geometry of Thin Layer Domain
In this section we develop the geometric language suitable for describing the kinematics
of a liquid layer. Mathematical concepts and tools from Riemannian geometry are
briefly reviewed with an emphasize on embedded surface in R3. The discussion here
roughly follows the exposition of the classical differential geometry textbooks (Kreyszig,
1991; Stoker, 1988). Other books oriented towards applications of curvature in physics
such as Frankel (2011) and Sternberg (2012) are also taken as references. We adopt
the standard convention (Aris, 1990) of index notation with the Latin indices (e.g.,
i = 1, 2, 3) for the three-dimensional ambient space R3 and the Greek indices (e.g.,
α = 1, 2) for two-dimensional manifolds.

Supporting substrate: Riemannian 2-manifold
The supporting surface Γ̂ of the thin liquid layer is assumed to be a sufficiently smooth,
closed manifold embedded in the physical space R3. Let O ⊂ R2 be the two-dimensional
parameter space. The coordinate chart ϕ : O → R3 smoothly maps an open set in O
to the supporting surface

Γ̂ = {x̂ = ϕ(ξ1, ξ2) | (ξ1, ξ2) ∈ O}, (4.1)

where (ξ1, ξ2) are the intrinsic coordinates of the surface parametrization. The local
tangent plane at each point x̂ on surface Γ̂ is spanned by the surface basis vectors (not
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ξ2

ξ1

ĝ2

ĝ1
n̂

ϕ(ξ1, ξ2)
Γ̂

Figure 4.1: Riemannian 2-manifold of an embedded surface Γ̂ in the ambient Euclidean
space R3 through coordinate chart ϕ(ξ1, ξ2), the local tangent plane of which is spanned
by the induced basis vectors ĝα.

necessarily normalized)
ĝα = ∂ϕ

∂ξα
. (4.2)

The induced metric ĝ of the embedded surface Γ̂ , also known as the first fundamental
form (Stoker, 1988), is a rank-two tensor which assigns an inner product (i.e., symmetric,
positive definite, bilinear) at each point x̂ ∈ Γ̂ . The covariant components of metric ĝ
are induced from the basis vectors,

ĝαβ = ĝα · ĝβ, ĝ = det ĝαβ, (4.3)

where ĝ is the metric determinant. Intuitively speaking, metric coefficient gαβ measures
lengths along the embedded surface in the three-dimensional Euclidean space. The first
kind Christoffel symbols

Γ̂γαβ = ĝγ · ∂ĝα
∂ξβ

(4.4)

describe the parallel transport of a basis vector ĝα along another basis vector ĝα on a
curved surface Γ̂ . In differential geometry terms, the Christoffel symbols are the Levi-
Cevita connection coefficients induced by the metric ĝ , for which the covariant derivative
of the metric is always zero. See figure 4.1 for a visualization of the coordinate system.

We also assume Γ̂ is an orientable connected surface equipped with well-defined unit
normal vectors everywhere on the surface. Let n̂ be the exterior unit normal vector at
x̂ ∈ Γ̂ given by the normalized cross product of the two surface basis vectors,

n̂ = ĝ1 × ĝ2
|ĝ1 × ĝ2|

. (4.5)

The second fundamental form II of surface Γ̂ characterizes the rate of change of the
normal vector n measured in the local tangent plane spanned by ĝα. The covariant
components of the second fundamental form is defined as

IIαβ = −ĝα ·
∂n̂

∂ξβ
= ∂ĝα
∂ξβ
· n̂ (4.6)
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where the second equality is deduced from ∂(ĝα · n̂)/∂ξβ = 0. Two eigenvalues κ1

and κ2 of the type-(1, 1) tensor IIβα ĝα⊗ ĝβ are called principal curvatures. The mean
curvatureH and Gaussian curvatureK are the trace and determinant of IIβα , respectively,

2H = tr IIβα = κ1 + κ2,

K = det IIβα = κ1κ2.



 (4.7)

The second fundamental form IIαβ together with the Christoffel symbols Γ̂γαβ of the first
kind can fully specify how surface tangent vectors ĝα and exterior normal vector n̂ vary
with the intrinsic coordinates (ξ1, ξ2). These relations are summarized by the formulae
of Weingarten and Gauss (Kreyszig, 1991),

∂n̂

∂ξα
= −IIβα ĝβ, (Weingarten) (4.8)

∂ĝα
∂ξβ

= Γ̂γαβ ĝγ + IIαβn̂. (Gauss) (4.9)

Note ĝαβ and IIαβ contain in total six degrees of freedom at each point on the embedded
surface Γ̂ whereas the three-dimensional ambient Euclidean space R3 is parametrized by
three coordinates at most (only flat ambient space is considered here). In other words,
there must be three additional equations for the metric ĝ and the second fundamental
form II to satisfy. Two of the three constraints are called the Peterson-Codazzi-Mainardi-
Gauss equations, also known as the integrability condition on a surface,

∇̂βIIγα = ∇̂αIIγβ , (Peterson-Codazzi-Mainardi-Gauss) (4.10)

where ∇̂α denotes the covariant differentiations (Stoker, 1988)

∇̂βvα = ∂vα

∂ξβ
+ Γ̂αγβvγ ,

∇̂βvα = ∂vα
∂ξβ

+ Γ̂γαβvγ ,

∇̂βvγα = ∂vγα
∂ξβ

+ Γ̂γνβv
ν
α − Γ̂µαβv

γ
µ,





(4.11)

for various types of tensor field on the curved manifold Γ̂ . The last missing equation
is the famous Theorema Egregium by Gauss, which is a statement of the Gaussian
curvature K = det IIαβ being intrinsic, i.e. a quantity depending only on the metric
coefficients ĝαβ. In the modern language of Riemannian geometry, Gauss’ Theorema
Egregium is equivalent to the identity

R1212 = Kĝ, (Gauss’ Theorema Egregium) (4.12)

where R1212 is the only independent component of the Riemann curvature tensor R in
two dimensions. Gauss’s Theorema Egregium leads to a simplification of the contraction
between two second fundamental forms,

IIαγII
γ
β = 2HIIαβ −Kĝαβ = IIIαβ. (4.13)
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ξ1

g2

g1

n̂

x̂ + ξ3n̂ Ω

η(ξ1, ξ2, t)

Figure 4.2: Surface-adapted coordinate system (ξ1, ξ2, ξ3) for the thin domain Ω in
the neighborhood of the supporting surface Γ̂ where η(ξ1, ξ2, t) is the time-dependent
height field of the liquid layer.

Tensor III is the third fundamental form which measures the principal linear part of
growth of the angle between the normal vector n̂ under infinitesimal displacement along
the surface basis vectors. However, the third fundamental form is not wildly used in
literature since its components IIIαβ are completely determined by the first and the
second fundamental forms (Stoker, 1988).

Thin liquid layer: surface-adapted coordinates
Let Ω ⊂ R3 be the volume in the three-dimensional ambient space in the vicinity of
the embedded surface Γ̂ . Given knowledge of the surface parametrization (4.1), we are
now in the position to construct a curvilinear coordinate system (ξ1, ξ2, ξ3). A point
x ∈ Ω ⊂ R3 may be uniquely identified as

x(ξ1, ξ2, ξ3) = x̂(ξ1, ξ2) + ξ3n̂(ξ1, ξ2), (4.14)

where ξ3 corresponds to coordinate lines normal to the surface Γ . Parametrization (4.14)
constructed from coordinates (ξ1, ξ2, ξ3) naturally induces a set of covariant basis,

gα = ∂x

∂ξα
= ĝα − ξ3IIβα ĝβ, g3 = n̂, (4.15)

where differentiation of the normal vector n̂ is resolved by the Weingarten formula (4.8).
The 3-by-3 metric tensor g of the coordinate system (4.14) and its determinant g are
given by

gij = gi · gj , g = det gij . (4.16)

In general, basis vectors gα differ from the substrate tangents ĝα defined in (4.2) except
on the supporting surface Γ̂ where ξ3 = 0. Although gα is still parallel to ĝα and is
perpendicular to n̂ in the thin domain Ω.

The range of ξ3 is often restricted because the coordinate system (4.14) is not meant to
cover the entire ambient space R3 but only locally near the supporting surface Γ̂ . Normal
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ξ3-coordinate lines emitting from a local surface patch that appears to be locally convex
would necessarily collide into each other after moving some normal distance away from
the surface. Another possible choice would be to normalize the ξ3-coordinate for which
x = x̂+ ξ3η(ξ1, ξ2)n̂ for a known layer thickness function η(ξ1, ξ2) (Storti, D’Elía, and
Battaglia, 2011). The coordinate system is well-defined for ξ ∈ [0, 1], i.e. the region
“below” the thickness field η(ξ1, ξ2). This approach is mathematically equivalent to
(4.14) however unwieldy in computations due to additional derivatives acting on the
thickness function η. In what follows we proceed with the surface-adapted coordinate
system (4.14) and assume it’s regular everywhere in the layer domain Ω where it applies.
We also assume the liquid layer is sufficiently thin such that the deformation of the liquid
layer Ω may be entirely tracked by the graph of a time-dependent height field,

Ω =
{
x(ξ1, ξ2, ξ3) ∈ R3 | 0 ≤ ξ3 ≤ η(ξ1, ξ2)

}
, (4.17)

where η(ξ1, ξ2) : O → R is the scalar height field which specifies the local thickness
(measured in distance along normal direction) of the liquid layer. Curvilinear coordinate
system (4.14) is quite general, not necessarily orthonormal or orthogonal. We also
do not limit ourselves to a particular choice of surface parametrization ϕ(ξ1, ξ2), for
example, the orthonormal coordinate system defined by the lines of curvature (Roy,
A. J. Roberts, and Simpson, 2002; Rumpf and Vantzos, 2013). Effect of curvature
should naturally appear from the first and second fundamental form of the surface Γ̂ .
The surface-adapted coordinate system is illustrated in figure 4.2.

We next compute the metric and connection coefficients for the curvilinear coordinates
(4.14). The covariant components of the 3-by-3 metric tensor g are derived from the
coordinate basis vectors (4.15),

gαβ = ĝαβ − 2ξ3IIαβ + (ξ3)2IIαγII
γ
β , gi3 = 0, g33 = 1. (4.18)

Note metric coefficients gij can be partitioned into exact orders of ξ3,

gij =
[
ĝαβ 0
0 1

]
+ ξ3

[
−2IIαβ 0

0 0

]
+ (ξ3)2

[
IIIαβ 0

0 0

]
. (4.19)

Equation (4.19) implies that the metric determinant g = det gij , which is required
for evaluating volume integrals in the liquid volume Ω, must be an exact fourth order
polynomial in ξ3. Since gij is only a 3-by-3 matrix with a bordered structure, we directly
evaluate its determinant

g = ĝ
[
1− 4Hξ3 + 4K(ξ3)2 + (4H2 − 2K)(ξ3)2 − 4HK(ξ3)3 + K2(ξ3)4

]
. (4.20)

After cleaning up (4.20), the closed-form expression of metric determinant g is surpris-
ingly simple,

g = J2ĝ, J = 1− 2Hξ3 + K(ξ3)2. (4.21)
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The expression (4.21) is exact with no truncated expansion or approximation in ξ3. We
can interpret J(ξ1, ξ2, ξ3) as the Jacobian between area differential dΓ̂ at a point x̂ ∈ Γ̂
and another area differential ξ3-distance away from the same point. As a result of the
metric determinant (4.21), the infinitesimal volume element

dΩ = J(ξ1, ξ2, ξ3) dξ3 dΓ̂ (4.22)

of the liquid volume Ω becomes separable in the sense that partial integration along
normal direction ξ3 is decoupled from the in-plane coordinates (ξ1, ξ2). When performing
volume integration of some function A(ξ1, ξ2, ξ3) over the liquid domain Ω bounded
above by the height field (4.17), we can first integrate out the transverse coordinate ξ3

and lump the result into the remaining area integral on the supporting surface Γ̂ ,
∫

Ω
A dΩ =

∫

Γ̂

(∫ η(ξ1,ξ2)

0
AJ dξ3

)
dΓ̂ . (4.23)

To raise or lower indices of a tensorial object, contracovariant components of the metric
tensor g are required. While a closed-form expression of gαβ is technically possible,
the asymptotic behavior of gij in the limit |ξ3| � 1 is more relevant as far as the thin
layer domain Ω is concerned. The power series expansion for the inverse of a perturbed
matrix Aε = A+ Ȧ ε+ Ä ε2/2 in a small parameter 0 < ε� 1 is given by the Neumann
series (Golub and Van Loan, 2013)

A−1
ε = A−1 − A−1ȦA−1ε+

(
A−1ȦA−1ȦA−1 − 1

2A
−1ÄA−1

)
ε2 +O(ε3). (4.24)

Applying expansion (4.24) to the covariant coefficients gij in (4.19) yields the asymptotic
expansion of gαβ in orders of ξ3,

gij =
[
ĝαβ 0
0 1

]
+ ξ3

[
2IIαβ 0

0 0

]
+ (ξ3)2

[
3IIIαβ

0 0

]
+O((ξ3)3). (4.25)

Similar to the covariant matrix gij , its inverse gij also has a bordered structure. We
point out that coefficients gα3 = 0 and g33 = 1 are exact. The asymptotic expansion
(4.25) only affects the 2-by-2 submatrix gαβ. This is one of the nice properties of the
surface-adapted coordinate system: we do not need to distinguish between covariance
and contracovariance in the ξ3-component of any tensorial object, i.e. u3 = u3 and
g3 = g3.

Covariant differentiation ∇i in the ambient space R3 requires the first kind Christoffel
symbols of the coordinates (ξ1, ξ2, ξ3),

Γkij = ∂gi
∂ξj
· gk. (4.26)
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The fact that ambient coordinate system (4.14) adapts to the surface coordinates
x̂(ξ1, ξ2) significantly simplifies the calculation of the connection coefficients Γkij . We
start with the relatively easy group Γ3

ij of the Christoffel symbols,

Γ3
αβ = ∂

∂ξβ
(
ĝα − ξ3IIγαĝγ

) · g3 =
(
Γ̂γαβ ĝγ + IIαβn̂− ξ3∂II

γ
αĝγ
∂ξβ

)
· n̂

= IIαβ − ξ3IIγα
∂ĝγ
∂ξβ
· n̂ = IIαβ − ξ3IIγαIIγβ

= IIαβ − ξ3(2HIIαβ −Kĝαβ),

Γ3
α3 = ∂

∂ξ3
(
ĝα − ξ3IIγαĝγ

) · g3 = 0,

Γ3
33 = 0,





(4.27)

where we have used the Weingarten formula (4.8) and the Gauss formula (4.9). Note
expression (4.27) of Γ3

ij derived above is exact without any truncation or approximation.
The calculation of Γγij for γ = 1, 2 is slightly more involved because gγ = gαγgα is an
infinite series expansion thanks to the asymptotic formula (4.25) of gαγ ,

gγ = gγαgα = (ĝγα + 2IIγαξ3 +O((ξ3)2))(ĝα − ξ3IIβα ĝβ) = ĝγ + ξ3IIγαĝ
α +O((ξ3)2).

(4.28)
With gγ from (4.28) substituted into Γγαβ, we then collect the leading order terms and
obtain

Γγαβ =
(
Γ̂ναβ ĝν + IIαβn̂− ξ3∂II

γ
αĝν
∂ξβ

)
· gγ

=
(
Γ̂ναβ ĝν + IIαβn̂− ξ3∂II

ν
α

∂ξβ
ĝν − ξ3IIνα

∂ĝν
∂ξβ

)
·
(
ĝγ + ξ3IIγµ ĝ

µ
)

+O((ξ3)2)

= Γ̂γαβ + ξ3
(
Γ̂µαβII

γ
µ −

∂IIνα
∂ξβ

ĝν · ĝγ − IIνα
∂ĝν
∂ξβ
· ĝγ

)
+O((ξ3)2)

= Γ̂γαβ + ξ3
(
Γ̂µαβII

γ
µ −

∂IIγα
∂ξβ

− Γ̂γνβII
ν
α

)
+O((ξ3)2)

= Γ̂γαβ − ξ3∇̂βIIγα +O((ξ3)2),

Γγα3 = ∂

∂ξ3
(
ĝα − ξ3IIγαĝγ

) · gγ

= −IIναĝν · (ĝγ + ξ3IIγµ ĝ
µ) +O((ξ3)2) = −IIγα − ξ3IIγµII

µ
α +O((ξ3)2)

= −IIγα − ξ3(2HIIγα −Kĝγα) +O((ξ3)2),

Γγ33 = 0.





(4.29)
The coefficients Γγij are responsible for parallel transport in the direction tangent to the
surface Γ̂ . Note the Levi-Civita connection is defined to have zero torsion. In this basis
the connection coefficients are symmetric, i.e. Γγαβ = Γγβα must be be symmetric in α
and β, which is guaranteed by the integrability conditions (4.10) of the surface Γ̂ .
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Free surface of liquid layer: Monge patch
As stated earlier, for a sufficiently slender liquid layer, the local film thickness at point
x̂(ξ1, ξ2) on the supporting surface Γ̂ is tracked by the height field η(ξ1, ξ2). Shal-
low depth of the thin layer geometry excludes the scenarios where the liquid interface
develops overhangs in the normal direction so that height field η(ξ1, ξ2) becomes multi-
valued. This strong assumption allows us to characterize the free surface Γ̃ (or the
“upper” boundary) of the thin liquid layer Ω using the same set of curvilinear coordi-
nates (ξ1, ξ2) of the supporting substrate Γ̂ . For example, a material point x̃ on the
free surface Γ̃ can be identified as,

x̃ = ϕ(ξ1, ξ2) + η(ξ1, ξ2)n̂. (4.30)

Coordinate system (4.30) is called the Monge patch (Weatherburn, 2016). From the
discussion in Section 2.2 we know that there are two ways to identity Γ̃ : either explicitly
through the parametrization (4.30),

Γ̃ =
{
x̂+ η(ξ1, ξ2)n̂ | (ξ1, ξ2) ⊂ O}, (4.31)

or implicitly by the zero set of a level function,

Γ̃ =
{
x(ξ1, ξ2, ξ3) | ξ3 − η(ξ1, ξ2) = 0

}
. (4.32)

The free surface Γ̃ inherits a set of normal and tangent basis vectors from the Monge
patch (4.30), which slightly differ from the ones of the supporting surface Γ̂ . The
covariant basis vectors g̃α are given by

g̃α = ĝα + ∂η

∂ξα
n̂− ηIIβα ĝβ (4.33)

with the induced metric tensor

g̃αβ = g̃α · g̃β = ĝαβ − 2ηIIαβ + ∂η

∂ξα
∂η

∂ξβ
+ η2IIγαIIγβ, (4.34)

and the usual definition of metric determinant g̃ = det g̃αβ. The unit normal vector ñ
of the free surface Γ̃ is proportional to the cross product of the two basis vectors,

g̃1 × g̃2 = (ĝ1 + ∂η

∂ξ1
n− ηIIα1 ĝα)× (ĝ2 + ∂η

∂ξ2
n− ηIIβ2 ĝβ)

= ĝ1 × ĝ2 +
(
∂η

∂ξ1
n× ĝ2 −

∂η

∂ξ2
n× ĝ1

)
+
(
−ηIIα1 ĝα × ĝ2 + ηIIβ2 ĝβ × ĝ1

)

−
(
∂η

∂ξ1
ηIIβ2n× ĝβ −

∂η

∂ξ2
ηIIα1 n× ĝα − ηIIα1 ĝα × ηIIβ2 ĝβ

)
. (4.35)

Then by the Lagrange’s identity, (a× b) · (c×d) = (a · c)(b ·d)− (b · c)(a ·d), metric
determinant of the free surface can be expanded in orders of the local height field η,

g̃ = |g̃1 × g̃2|2 = ĝ

{
1− 4Hη + ĝαβ

∂η

∂ξα
∂η

∂ξβ
+ (4H2 + 2K)η2 +O(η3)

}
. (4.36)
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ξ2

ξ1

g̃2

g̃1
ñ

x̂
+ η

n̂
Γ̃

%(ξ1, ξ2, t)

Figure 4.3: Monge parametrization of the free surface Γ̃ and columnar volume density
% bounded by the local height field η.

Similar to the relative volume Jacobian J , we introduce the relative area Jacobian

A =
√
g̃

ĝ
(4.37)

between the supporting surface Γ̂ and the free surface Γ̃ . If we retain terms in (4.36)
up to second order in η, the area differential of the free surface Γ̃ can be pulled back
to the supporting surface Γ̂ with quadratic corrections,

dΓ̃ = A dΓ̂ =
{

1− 2Hη + Kη2 + 1
2 ĝ

αβ ∂η

∂ξα
∂η

∂ξβ
+O(η3)

}
dΓ̂ . (4.38)

In order for the free surface surface Γ̃ to be validly described by the Monge patch
(4.30), its metric determinant g̃ must remain positive and bounded away from zero.
The higher order terms in expansion (4.38) immediately suggest a few admissible scaling
requirements, i.e. O(|καη|)� 1 and O(|∂η/∂ξα|)� 1, on the height field function η.

The columnar volume density

%(ξ1, ξ2) =
∫ η(ξ1,ξ2)

0
J dξ3 (4.39)

is another important scalar field on the supporting surface Γ̂ . As illustrated in figure
4.3, %(ξ1, ξ2) is the volume of an infinitesimal liquid column of local height η(ξ1, ξ2)
centered at x̂(ξ1, ξ2), hence the name “columnar volume density”. Recall from (4.23)
that the total volume of liquid layer Ω enclosed by the height field η is simply the area
integral of the columnar volume density %,

∫

Γ̂
%(ξ1, ξ2) dΓ̂ =

∫

Ω
dΩ. (4.40)

In light of the Jacobian J in (4.21), the ξ3-integral (4.39) is decoupled from the surface
integral over coordinates (ξ1, ξ2) which results in an exact expression for the columnar
volume density,

% =
∫ η

0
J dξ3 = η −Hη2 + 1

3Kη
3. (4.41)
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As we shall see later, the columnar volume density % is more suitable as the primary
dynamic variable enforcing the conservation law of viscous free surface films than the
height field η. However, in many situations physical quantities such as electric field
or temperature are usually directly related to the local thickness of the free surface Γ̃
rather than its areal volume density because the height field η is a geometric quantity.
While it’s possible to invert the cubic polynomial in (4.41) to obtain an exact solution
of η(%), it suffices to construct an asymptotic approximation for the height field η in
orders of columnar volume density % for hydrodynamics confined within a thin layer,

η = %+ H%2 + 1
3(6H2 −K)%3 +O(%4). (4.42)

In the limit of slender geometries, the height field η and the volume density % are
interchangeable up to higher order corrections depending on the local curvatures.

4.3 Kinematics and Dissipation of Viscous Free Surface Flows
In this section we present a variational (weak) formulation of viscous free surface flows, by
consulting the Helmholtz minimum dissipation theorem. We then modify the formulation
to incorporate kinematics and traction forces of the liquid free surface. For slender films,
it reduces to an energy-dissipation relation.

Helmholtz minimum dissipation theorem
In the limit of vanishing Reynolds, the effect of intertia becomes negligible and the bulk
motion of a viscous fluid follows the Stokes equation (Batchelor, 2000; Leal, 2007),

−∇p+ µ∇2v = 0,

∇ · v = 0.



 (Stokes equation) (4.43)

As noted earlier in Section 2.2, the Stokes equation (4.43) is only a particular form of
the Cauchy momentum equation,

σ = −pI + 2µe,

∇ · σ = 0,

∇ · v = 0,





(Cauchy momentum equation) (4.44)

where the strain rate tensor e = (∇v+∇v>)/2 is the symmetrization of velocity gradient
∇v and σ is the Cauchy stress tensor. The equivalence between Stokes equation (4.43)
and Cauchy momentum equation (4.44) is straightforward via index manipulation,

2∇ · e = ∇i(∇jvi +∇ivj) = ∇j∇ivi +∇i∇ivj flat= ∇i∇ivj div. free= ∇2v, (4.45)

where we have used the flatness of the ambient Euclidean space. von Helmholtz (1868)
discovered an alternative characterization of viscous flow by introducing the viscous
dissipation

D[v] =
∫

Ω
2µ e : e dΩ, (4.46)
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a non-negative quadratic functional of velocity field. The Helmholtz minimum dissi-
pation theorem, named after Helmholtz’s work, states that the Stokes flow (4.43) is a
solution to the following minimization problem,

min
v

1
2D[v],

subject to ∇ · v = 0 in Ω,

v = v′ on Γ̂ .





(Helmholtz minimum dissipation theorem) (4.47)

In other words, the steady Stokes flow of an incompressible fluid has the smallest rate of
viscous dissipation than any other incompressible velocity configurations with the same
velocity prescribed on the boundary Γ̂ .

The Helmholtz minimum dissipation theorem (4.47) can be proved from a variational
argument. Let v be a solution to the Stokes equation (4.43) and δv be an admissible
variation to v. By admissible we mean that, δv is divergence-free and δv = 0 on all
boundary because the perturbed velocity field v + δv must also be incompressible and
agree with the prescribed velocity on the boundary Γ . Since viscous dissipation (4.46) is
a quadric form of strain rate, its variation is exactly composed of a linear and a quadratic
part in δv,

1
2D[v + δv] = 1

2D[v] +
∫

Ω
2µ δe : e dΩ +

∫

Ω
µ δe : δe dΩ, (4.48)

where δe is the strain rate tensor constructed from δv. The integral linear in δe (hence
linear in δv) must vanish for any admissible velocity variation δv,
∫

Ω
2µ δe : e dΩ =

∫

Ω
2µ 1

2
(∇δv +∇δv>) : e dΩ

=
∫

Ω
2µ∇δv : e dΩ =

∫

Ω
2µ (∇iδvj)eij dΩ e is symmetric

= −
∫

Ω
2µ δvj(∇ieij) dΩ +

∫

Γ̂
2µ δvjeijni dΓ

= −
∫

Ω
µ δv · (2∇ · e) dΩ +

∫

Γ̂
2µ δv e ndΓ̂

= −
∫

Ω
δv · (µ∇2v) dΩ +

∫

Γ̂
2µ δv e ndΓ̂ Identity (4.45)

= −
∫

Ω
δv · ∇p dΩ +

∫

Γ̂
2µ δv e ndΓ̂ Stokes equation (4.43)

=
∫

Ω
p∇ · δv dΩ +

∫

Γ̂
δv · (− pn+ 2µ e n

)
dΓ̂

= 0, Constraint on velocity variation δv (4.49)

where n is understood to be the outward normal vector of liquid domain Ω. Now
it’s a straightforward exercise to show that any incompressible flow other than the
Stokes solution v with the same velocity prescribed on the boundary can only increase
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dissipation rate because

1
2D[e + δe]− 1

2D[e] =
∫

Ω
µ δe : δe dΩ ≥ 0. (4.50)

The Stokes flow (4.43) is indeed an optimal solution to the Helmholtz minimization
problem (4.47). It certainly would be desirable if the solution to the Helmholtz mini-
mization problem exists and is unique. Under such a condition the Stokes equation and
Helmholtz minimization theorem would be two equivalent formulations of viscous flow,

Stokes flow (4.43)⇐⇒ Helmholtz minimum dissipation (4.47). (4.51)

Statement (4.51) is correct although proving the existence and uniqueness of the solution
to Helmholtz minimization problem (4.47) is a highly nontrivial task which requires
sophisticated tools from functional analysis that are beyond the scope of this work. See
Ern and Guermond (2004) for the technical details and the complete proof. We only
briefly sketch the idea. The results follows directly from Lax-Milgram theorem which
requires the bilinear form of velocity vector v, in this case the viscous dissipation (4.46),
to be coercive, i.e. D[e] & ‖u‖2V, for some suitable norm ‖·‖V defined on the functional
space V that velocity field v belongs to. Coercivity of viscous dissipation (4.46) on a
Lipschitz domain is guaranteed by the Korn’s first and second inequalities.

Energy-dissipation theorem for free surface flows
Now we consider a slightly different scenario where Ω is the domain enclosed between
a fixed supporting surface Γ̂ at the bottom and a free surface Γ̃ at the top. In a
mixed problem, velocity field (e.g., no slip condition) is prescribed on Γ̂ whereas the
viscous stress must balance traction force f on the free surface Γ̃ . The resulting Stokes
equation,

−∇p+ µ∇2v = 0 in Ω,

∇ · v = 0 in Ω,

v = v′ on Γ̂ ,

σñ = f on Γ̃ ,





(4.52)

is called a “mixed” problem in the sense that it has a mixed set of boundary conditions:
Dirichlet type on Γ̂ and Neumann type on Γ̃ . If we augment the viscous dissipation
with an additional surface dissipation, then we can show that the modified minimum
dissipation problem,

min
v

1
2D[v]−

∫

Γ̃
f · v dΓ̃ ,

subject to ∇ · v = 0 in Ω,

v = v′ on Γ̂ ,





(4.53)
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is an equivalent characterization of the viscous flow described by the Stokes equation
(4.52). It’s not difficult to show that any fluid motion satisfying Stokes equation un-
der stress boundary condition must be a critical point of the augmented dissipation
functional in (4.53) through an expansion procedure similar to (4.48),

δ

{1
2D[v]−

∫

Γ̃
f · v dΓ̃

}
=
∫

Ω
2µ δe : e dΩ −

∫

Γ̃
δv · f dΓ

=
∫

Ω
p∇ · δv dΩ +

∫

Γ̂
δv · (σn) dΓ̂ +

∫

Γ̃
δv · (σñ− f) dΓ̃

= 0. δv is admissible and v is traction-free on Γ̃
(4.54)

We again refer to Ern and Guermond (2004) for a detailed proof on the existence
and uniqueness of the solution to the augmented minimization (variational) problem
(4.58) which eventually yields the equivalence between the Stokes equation (4.52) and
the minimum dissipation theorem (4.58) when the fluid is subject to mixed boundary
conditions.

In many physical systems, surface traction f arises as a restoring force when the total
potential energy F[Γ̃ ] available in the mechanical system undergoes infinitesimal vari-
ations in its boundary Γ̃ . For example, capillary stress is equivalent to the variation
of surface energy which is proportional to the total surface area. Interfacial Maxwell
stress in electrostatic systems can be derived by varying electrostatic energy stored in
the medium on both sides of the interface. When the liquid interface is covered by fluid
lipid membranes, the variation of Helfrich free energy gives rise to the membrane and
bending forces (Helfrich, 1973). When surface tension coefficient is inhomogeneous,
surface energy variation produces a force tangent to the free surface, known as the
Marangoni stress which we have already encountered in Chapter 2. In these cases, the
traction integral becomes the shape variation of the energy functional F[Γ̃ ],

∫

Γ̃
f · v dΓ̃ = −δF[Γ̃ ;v], (4.55)

which measures the amount of (signed) power required in order to deform the free surface
Γ̃ at a displacement rate v. This idea is very similar to the principle of virtual work in
the elastic theory of solids (Gurtin, 1973; Washizu, 1982; Marsden and Hughes, 1994).
Except for dissipative systems such as viscous fluids, the name “virtual dissipation” or
“virtual power” is more appropriate since we are dealing with rate of energy instead of
work itself.

Then the modified minimum dissipation formulation (4.53) reads,

min
v

1
2D[v] + δF[Γ̃ ;v]−T[Γ̃ ;v, b],

subject to ∇ · v = 0 in Ω,

v = v′ on Γ̂ ,





(4.56)
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where T is the virtual power due to the additional external surface tractions b,

T[Γ̃ ;v, b] =
∫

Γ̃
b · v dΓ̃ , (4.57)

which do not arise from energy variations, for example, wind shear stress. An important
observation due to the energy-dissipation formulation (4.56) is that, the rate at which
potential energy F[Γ̃ ] is being depleted by the internal viscous frictions exactly equals to
the viscous dissipation D[v] and additional power done by the external surface traction
b . To see this, we recall from (4.54) that

∫

Ω
2µ δe : e dΩ −

∫

Γ̃
δv · f dΓ̃ = 0 (4.58)

for all admissible variation δv. However the velocity field v of the Stokes flow itself
qualifies an admissible variation as well. Replacing δv with v in equation (4.58) and
substituting the traction force f defined in (4.56),

∫

Ω
2µ e : e dΩ −

∫

Γ̃
v · f dΓ̃ = D[v] + δF[Γ̃ ;v]−T[Γ̃ ;v, b] = 0,

lead to the identity
δF[Γ̃ ;v] = −D[v] + T[Γ̃ ;v, b]. (4.59)

The following is a physical interpretation of the above equation: the difference between
external virtual power T, after being dissipated by the internal viscous frictions D[v], is
equal to the rate at which the total potential energy of the viscous free surface flow varies.
Note when the boundary Γ̃ is a free surface, it is exactly advected by the instantaneous
velocity v evaluated at the free surface, which means δF[Γ̃ ;v] = dF[Γ̃ ]/dt. Therefore
in absence of external surface traction b, we arrive at the energy-dissipation law for free
surface viscous flow,

dF[Γ̃ ]
dt = −D[v] ≤ 0 if b = 0. (4.60)

Energy-dissipation law (4.60) states that, if there is no additional power input from
external surface traction, the energy of the viscous fluid must always decrease unless it
reaches an equilibrium shape.

Kinematic boundary condition
On flat supporting substrates, height field η of the liquid layer is indistinguishable from
the columnar volume density % at every point x̂ ∈ Γ̂ . The classical lubrication theory
which we use to develop the models for thermocapillary and electrohydrodynamic thin
film in Chapter 2 and 3 is established around the height field. However, it’s not the
case for thin layer flow coating curved substrates. In particular we show that the time-
dependent columnar volume density %(ξ1, ξ2, t) is more appropriate as a dynamic variable
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than the height field η. Let’s consider the following integral evaluated via index notation,
∫ η

0
(∇ · v)J dξ3 =

∫ η

0

1√
g

∂
√
gvj

∂ξj
J dξ3 =

∫ η

0

1√
ĝ

∂
√
ĝvαJ

∂ξα
+ ∂v3J

∂ξ3 dξ3

= 1√
ĝ

∫ η

0

∂
√
ĝvαJ

∂ξα
dξ3 + v3J

∣∣∣
ξ3=η

ξ3=0

= 1√
ĝ

∂

∂ξα

(√
ĝ

∫ η

0
vαJ dξ3

)
− ∂η

∂ξα
(vαJ)

∣∣∣
ξ3=η

+ v3J
∣∣∣
ξ3=η

, (4.61)

where the last line we have used the Leibniz’s rule for differentiation under the integral
sign. Equation (4.61) must be exactly zero due to incompressibility condition ∇·v = 0.
We immediately recognize the form of surface divergence on manifold Γ̂ in (4.61). This
motivates the definition of volumetric flux

q̂ = ĝα

∫ η

0
vαJ dξ3 (4.62)

which is a vector field belong to the tangent bundle of the supporting surface Γ̂ . Then
equation (4.61) reduces to

∇̂ · q̂ +
[
v3 − vα(ξ1, ξ2, η) ∂η

∂ξα

]
J(ξ1, ξ2, η) = 0 (4.63)

where ∇̂ stands for the covariant differential operators (e.g., divergence and gradient)
on the curved surface Γ̂ .

On the other hand, the kinematic boundary condition of a moving free surface η(ξ1, ξ2, t)
states that the material time derivative of the zero contour of level function implicitly
defined in (4.32) must remain zero at all times,
[ ∂
∂t

+ v(ξ1, ξ2, η) · ∇
]
(ξ3 − η) = −∂η

∂t
− vα(ξ1, ξ2, η) ∂η

∂ξα
+ v3(ξ1, ξ2, η) = 0. (4.64)

Substituting kinematic condition (4.64) into the incompressibility identity (4.63) yields

J(ξ1, ξ2, η)∂η
∂t

+ ∇̂ · q̂ = 0. (4.65)

Recall from (4.39) that columnar volume density % is precisely defined as the integral of
relative volume Jacobian J along the normal coordinate line ξ3. Hence equation (4.65)
is in fact the exact conservation law for the columnar volume density,

∂%

∂t
+ ∇̂ · q̂ = 0, (4.66)

instead of for the height field η. Volume conservation law (4.66) is no surprise: vol-
umetric flux q̂(ξ1, ξ2) has the physical interpretation of total amount velocity vector
traversing side walls of the infinitesimal liquid column at x̂(ξ1, ξ2), which must be bal-
anced with the rate at which the volume of the liquid column %(ξ1, ξ2, t) changes in
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time. For a boundary-less manifold Γ̂ , dynamical equation (4.66) conserves the total
volume occupied by the thin liquid layer Ω coating a fixed supporting surface Γ̂ at all
times,

d
dt

∫

Ω
dΩ = d

dt

∫

Γ̂
% dΓ̂ =

∫

Γ̂

∂%

∂t
dΓ̂ = −

∫

Γ̂
∇̂ · q̂ dΓ̂ = 0,

where the last equality is implied by the (covariant) Stokes theorem on a manifold. As
it turns out later, it is convenient to introduce the partial volumetric flux coefficient

qα(ξ1, ξ2, ξ3) =
∫ ξ3

0
vα(ξ1, ξ2, ξ3′)J(ξ1, ξ2, ξ3′) dξ3′ (4.67)

in analogy to the “full” flux q̂ = qα(ξ1, ξ2, η)ĝα. In this sense, the vα-components
of the velocity field v are fully specified by the ξ3-derivative of the partial flux vα =
J−1∂qα/∂ξ3.

Viscous dissipation in lubrication regime
Let v be the dimensional velocity field within the viscous fluid layer. The essence
of Reynolds lubrication theory is encoded in the singuarly scaled ansatz for the liquid
velocity field,

v = vα(ξ1, ξ2, ξ3/ε)gα + v3(ξ1, ξ2, ξ3/ε)g3, O(ξ3) = O(v3) = O(ε). (4.68)

Here 0 < ε � 1 is some small parameter (e.g., aspect ratio of the liquid layer) which
we will identify later. Partial derivative ∂ξ3 of the velocity field v along the transverse
direction is amplified by a factor of 1/ε while the scaling of the normal component
of velocity field v3 = O(ε) ensures mass conservation still applies for the free surface
liquid layer by retaining the full incompressibility condition O(∇αvα) = O(∇3v3). From
a mechanical point of view, lubrication scaling (4.68) decouples the “out-of-tangent-
plane” components eα3 of the strain rate tensor e from the “in-plane” components eαβ
owning to the scaling O(eα3) > O(eαβ). As a result, the total energy F[Γ̃ ] of the
liquid layer (assuming no external surface traction) dissipates mostly through tangential
shear against the supporting substrate Γ̂ , which is precisely what lubrication theory was
invented for.

Such mechanical point of view can be made explicit based on the lubrication ansatz
(4.68). Magnitude of the tensor components of the velocity gradient ∇v in orders
of the aspect ratio ε can be estimated from the Christoffel symbols (4.29) and (4.27)
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derived earlier,

∇3v
3 = ∂v3

∂ξ3 + Γ3
k3v

k = ∂v3

∂ξ3 = O(1),

∇βvα = ∂vα

∂ξβ
+ Γαkβvk = O(1),

∇3v
α = ∂vα

∂ξ3 + Γαk3v
k = ∂vα

∂ξ3 − II
α
β v

β

︸ ︷︷ ︸
O(ε−1)+O(1)

+O(ε),

∇αv3 = ∂v3

∂ξα
+ Γ3

kαv
k = IIβαv

β

︸ ︷︷ ︸
O(1)

+O(ε).





(4.69)

The integrand of the viscous dissipation (4.46) can be expanded with the use of index
notation,

2 e : e = 2 eijeij = (∇jvi)(∇ivj) + glmgij(∇lvi)(∇mvj). (4.70)

We look for those leading order terms of the components in (4.70) which couple with
∇3vα,

(∇jvi)(∇ivj) = 2(∇3v
α)(∇αv3) +O(1)

= 2
(∂vα
∂ξ3 − II

α
β v

β
)
IIγαv

γ +O(1)

= 2∂v
α

∂ξ3 IIγαv
γ

︸ ︷︷ ︸
O(ε−1)

− 2IIαβ IIγαvβvγ
︸ ︷︷ ︸

O(1)

+O(1) (4.71)

glmgij(∇lvi)(∇mvj) = gαβ(∇3v
α)(∇3v

β) +O(1)

=
(∂vα
∂ξ3 − II

α
ν v

ν
)
gαβ

(∂vβ
∂ξ3 − II

β
γ v

γ
)

+O(1)

= gαβ
∂vα

∂ξ3
∂vβ

∂ξ3
︸ ︷︷ ︸

O(ε−2)

− 2IIβνvν
∂vβ

∂ξ3
︸ ︷︷ ︸

O(ε−1)

+ IIαν v
νgαβII

β
γ v

γ

︸ ︷︷ ︸
O(1)

+O(1), (4.72)

where we have used that fact from (4.19) that gαβ = ĝαβ + O(ε) + O(ε2). Summing
up (4.71) and (4.72) yields

2e : e = gαβ
∂vα

∂ξ3
∂vβ

∂ξ3
︸ ︷︷ ︸

O(ε−2)+O(ε−1)+O(1)

+O(1), (4.73)

where the O(ε−1) and O(1) term in (4.73) exclusively come from the coupling with the
first and second order corrections in metric coefficients gαβ. We remark that, approx-
imation (4.73) contains O(1) terms, the same order of magnitude of the residue. We
made this choice intentionally: by partially retaining some O(1) error, the approximate
dissipation (4.73) is symmetrized while still accurate up to some O(1) error.
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Next we apply the lubrication scaling (4.68) to the total free energy. In the height field
representation, the free energy of the liquid layer Ω coating the supporting substrate Γ̂
is assumed to be a functional of the height field η,

F[Γ̃ ] = F[ξ1, ξ2, η(ξ1, ξ2, t)]. (4.74)

Energies which only involve differential operators acting on η are considered local. Local
energies are the most common types studied in the literature. For a sufficiently thin
liquid layer, an asymptotic series in orders of height field η can be derived. For instance,
as stated earlier, capillary stress arises from the variation of the total area of the moving
free surface Γ̃ . Recall the expansion of the area differential dΓ̃ from (4.38). Then the
surfface energy of a liquid film with homogeneous surface tension coefficient σo can be
expanded as

F[Γ̃ ] = σo

∫

Γ̃
dΓ̃ = F[Γ̂ ; η] = σo

∫

Γ̂
1− 2Hη + Kη2 + 1

2 ĝ
αβ ∂η

∂ξα
∂η

∂ξβ
+O(η3) dΓ̂ .

(4.75)
Recall from conservation law (4.66) that the columnar volume density %(ξ1, ξ2, t) instead
of the height field η serves as the dynamical variable in the governing equation for viscous
free surface liquid. By the inversion relations (4.41) and (4.42) between %(η) and η(%)
we can conveniently switch back and forth between F[ξ1, ξ2, η] as a functional of the
height field or F[ξ1, ξ2, %] of the volume density. The zeroth order term in the free
energy usually only concerns the substrate geometry which is treated as a stationary
object in the present work. The rate at which free energy F fluctuates with the moving
interface Γ̃ is given by

dF[Γ̃ ]
dt = δF[%; ∂%

∂t
] =

∫

Γ̂

δF

δ%

∂%

∂t
dΓ̂ , (4.76)

where δF/δ% = O(%) is the variational derivative of F[Γ̂ ; %].

4.4 Truncated Minimum Dissipation Principle for Lubrication Flow
In order to quantify the effects of various competing forces relevant to lubrication layer
in terms of the small aspect ratio parameter ε, it’s convenient to work with a nondimen-
sionalized physical system where reference scales are deliberately chosen to promote the
slender geometry.

Nondimesionalization with lubrication scaling
Let [L] be the characteristic radius of curvature of the supporting surface Γ̃ . The
characteristic (normal) thickness [H] = ε[L] of the liquid layer is scaled down by the
small aspect ratio parameter ε. We assume the viscous flow within the thin liquid layer
is characterized by the tangential reference velocity [V ] = [L]/[T ] where [T ] is the
characteristic time scale. In the energy-dissipation approach, the total free energy F in
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the system is measured by the reference areal energy density [σ] (energy per area) which
has the same unit (N/m) as surface tension coefficient. With these scaling in mind, the
dimensionless variables indicated by the superscript (·)∗ are given by

x̂→ [L]x̂∗, ξ3 → [H]z, t→ [T ]t∗,

vα → [V ](v∗)α, v3 → ε[V ](v∗)3, q̂ → [H][V ]q̂∗,

η → [H]η∗, %→ [H]%∗, qα → [H][V ](q∗)α

F→ [σ][H][L]F∗.

(4.77)

The appropriate choices for the reference velocity [V ] and the time scale [T ] would
emerge naturally when we balance viscous dissipation with free energy fluctuation rate.
In what follows, we drop the superscript (·)∗ on all rescaled variables. The relative
Jacobian J defined in (4.21) and partial flux coefficient qα from (4.67) are expressed in
the rescaled transverse coordinate z,

J(ξ1, ξ2, z) = 1− ε2Hz + ε2Kz2, (4.78)

qα(z) =
∫ z

0
vαJ dz′. (4.79)

Conservation law (4.66) of the columnar volume density % remains invariant after rescal-
ing (4.77), which is expected because mass (volume) conservation is never approximated
but enforced exactly in lubrication theory. On the other hand, approximation (4.73) of
the viscous dissipation in the rescaled variables leads to the approximate dimensionless
dissipation,

1
2D[v] = µ[L]3/(ε[T ]2)

ε[σ][L]2/[T ]

{∫

Γ̂

[∫ η

0

1
2gαβ

∂vα

∂z

∂vβ

∂z
J dz

]

︸ ︷︷ ︸
O(1)+O(ε)+O(ε2)

dΓ̂ +O(ε2)
}
. (4.80)

Likewise the dimensionless rate of energy variation defined in (4.76) becomes

dF[Γ̃ ]
dt =

∫

Γ̂

δF

δ%︸︷︷︸
O(1)

∂%

∂t
dΓ̂ , (4.81)

where the variational derivative δF/δ% is an asymptotic series expended in orders of
aspect ratio ε.

We next consider variation to the virtual power due to external surface traction at the
free surface. Let [B] be the charaterstic scale of the external surface traction b. Recall
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from (4.38) that after dimensionless virtual power can be approximated as,

T[%;v, b] = [B][L]2[V ]
ε[σ][L]2/[T ]

∫

Γ̂
A v · b

∣∣
z=η dΓ̂

= [B][L]
ε[σ]

∫

Γ̂
A
(
bβvαgαβ + εv3b3

) ∣∣
z=η dΓ̂

= Ma
∫

Γ̂

(
J +O(ε2)

) (
bβvαgαβ +O(ε2)

) ∣∣
z=η dΓ̂

= Ma
∫

Γ̂

(
J bβvαgαβ

) ∣∣
z=η dΓ̂ +O(ε2), Ma = [B][L]

ε[σ] , (4.82)

where we assume ξ3-component (recall g3 = n̂) of traction b is only O(ε). In such cases,
Marangoni number Ma in equation (4.82) is appropriate for characterizing the effect of
tangential dominant surface traction such as the thermocapillary effect in Chapter 2.

The balance between viscous dissipation (4.80) and free energy fluctuation rate (4.81)
immediately suggests the scaling for time and velocity,

µ[L]3
ε[T ]2 = ε

[σ][L]2
[T ] ⇐⇒ [T ] = µ[L]

ε2[σ] or [V ] = ε2[σ]
µ

. (4.83)

The singular scaling 1/ε2 in [T ] is one of the predominant signatures of lubrication
flows: the more slender the characteristic film thickness [H] becomes, the slower the
thin liquid film redistributes its mass. As suggested by scaling (4.83), such dilemma
can be resolved either by reducing the size of the system [L] ↓ or by increasing the
scale of areal energy density [σ] ↑. Although we must be cautious with the rate at
which the bulk kinematic energy fluctuates ∼ ρ[V ]2[H][L]2. For lubrication theory to
be self-consistent, the overall scale of the kinematic energy fluctuation rate must be
negligible compared to the leading order terms in the viscous dissipation (4.80) and
to the free energy fluctuation rate (4.81) otherwise the conventional lubrication theory
doesn’t hold under inertial effect. The magnitude of kinematic energy fluctuation rate
can be estimated relative to the free energy fluctuation rate (4.81),

ρ[V ]2[H][L]2/[T ]
ε[σ][L]2/[T ] = ρ[V ][L]

µ

µ[V ]
[σ] = ε2Re = O(ε2). (lubrication assumption)

(4.84)
Thanks to the small aspect ratio ε � 1, the applicability of lubrication theory only
requires a moderately small Reynolds number from (4.84) which is more general than
the true Stokes limit Re = 0. These scaling requirements are quite realistic, for example,
when applied to the experiment by Takagi and Huppert (2010) in which 123 cm3 of
golden syrup was released on a beach ball of radius [L] = 23 cm. The experimental
parameters are kinematic viscosity ν = 0.045 m2/s, surface tension [σ] = 0.078 N/m
and density ρ = 1.4 kg/m3. For a liquid film of 1 cm thickness (film thickness was
not reported by the authors), the aspect ratio ε ∼ 0.04. The lubrication scaling (4.83)
leads to a characteristic time [T ] ∼ 100 s which agrees with the time scale between
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the snapshots of their experiment. In such a case, by equation (4.84) we evaluate the
Reynolds number Re ∼ 0.01 ∼ O(ε) which is more than sufficient for lubrication theory
to apply.

In summary, we replace the original viscous dissipation D, free energy F and external
traction T by their truncated versions up to O(ε2) approximation errors,

1
2D[v] = 1

2D[v] +O(ε2), (4.85)

δF[Γ̃ ;v] = δF[%; ∂%
∂t

] +O(ε2), (4.86)

T[Γ̃ ;v, b] = T[%;v, b] +O(ε2), (4.87)

where the truncated functionals D, F and T are given by,

D[v] =
∫

Γ̂

{∫ η

0
gαβ

∂vα

∂z

∂vβ

∂z
J dz

}
dΓ̂ , (4.88)

δF[%; ∂%
∂t

] =
∫

Γ̂

δF

δ%

∂%

∂t
dΓ̂ , (4.89)

T[%;v, b] = Ma
∫

Γ̂
vαJ gαβb

β|z=η dΓ̂ . (4.90)

Truncated minimum dissipation principle
The governing equation of a thin liquid layer driven by dissipation of its free energy and
external tangential traction is given by the solution to the truncated minimum dissipation
principle in place of the full version (4.56),

min
v

1
2D[v] + δF[%; ∂%

∂t
]−T[%;v, b],

subject to ∂%

∂t
+ ∇̂ · q̂ = 0 on Γ̂ ,

v = 0 on Γ̂ ,





(4.91)

where the incompressiblity condition is enforced through the conservation law of colum-
nar volume density %. Since the approximate functionals (4.85)–(4.87) are truncated at
O(ε2), it suffices to look for the necessary conditions for which a unique optimal partial
flux qα defined in (4.67) must satisfy in order to minimize (4.91) up to some O(ε2) error
only.

Let η be a height field (not necessarily optimal) on the boundary-less surface Γ̂ and v
be the optimal velocity field for the liquid volume bounded by η. We consider a flux
variation δqα(ξ1, ξ2, z) be the optimal volumetric flux qα associated with the optimal
velocity v. Applying integration by parts in the z-coordinate to the variation of viscous
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dissipation yields

δ

{1
2D[v; δv]

}
=
∫

Γ̂

∫ η

0
gαβ

∂δvα

∂z

∂vβ

∂z
J dz dΓ̂

=
∫

Γ̂

{
gαβδv

α∂v
β

∂z
J
∣∣∣
η

0
−
∫ η

0
δvα

∂

∂z

(∂vβ
∂z

gαβJ
)

dz
}

dΓ̂

=
∫

Γ̂

{
gαβδv

α∂v
β

∂z
J
∣∣∣
η
− δqα

J

∂

∂z

(∂vβ
∂z

gαβJ
)∣∣∣
η

+
∫ η

0
δqα

∂

∂z

[
1
J

∂

∂z

(∂vβ
∂z

gαβJ
)]

dz
}

dΓ̂ . (4.92)

Note the boundary terms evaluated at z = 0 vanish due to the integral definition (4.67)
of partial flux δqα(ξ1, ξ2, z) and the no-slip condition δvβ(ξ1, ξ2, 0) = 0 at the supporting
substrate. For an admissible variation δqα such that δqα|z=η = 0, the second term in
variation (4.92) drops out. If the free surface were stress-free (zero-traction), the first
term should vanish as well. In the presence of tangential interfacial tractions such as
Marangoni stresses, the balance between the contribution from viscous dissipation and
the external power by tangential traction translates into a boundary condition for qβ(z)
at z = η,

∂vβ

∂z
J
∣∣∣
z=η

= Ma bβ. (4.93)

After dropping out the first and the second term in the integrand of variation (4.92),
we are left with a piece which only involves integration in the z-coordinate. A necessary
condition for this term to vanish against all variations is that,

∂

∂z

{ 1
J

∂

∂z

[
gαβJ

∂

∂z

( 1
J

∂qβ

∂z

)]}
= 0. (4.94)

Equation (4.94) is a fourth order ODE subject to four boundary conditions derived
earlier,

qβ
∣∣∣
z=0

= 0, (by definition (4.67))

∂qβ

∂z

∣∣∣
z=0

= 0, (no-slip condition)

qβ
∣∣∣
z=η

= qβ(η), (choice of variation)

∂

∂z

( 1
J

∂qβ

∂z

)∣∣∣
z=η

= Ma bβ. (traction-free)





(4.95)
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Equation (4.94) can be solved by elementary integration,

1
J

∂

∂z

[
gαβJ

∂

∂z

( 1
J

dqβ

dz
)]

= Aα,

gαβJ
∂

∂z

( 1
J

dqβ

dz
)

= Bα +Aα

∫ z

0
J dz′,

∂

∂z

( 1
J

dqβ

dz
)

= gαβ

J

(
Bα +Aα

∫ z

0
J dz′

)
,

∂qβ

∂z
= CβJ + J

∫ z

0

gαβ

J

(
Bα +Aα

∫ z′

0
J dz′′

)
dz′,

qβ = Dβ +
∫ z

0
J
[
Cβ +

∫ z′

0

gαβ

J

(
Bα +Aα

∫ z′′

0
J dz′′′

)
dz′′

]
dz′,

(4.96)

where coefficients Aα, Bα, Cβ and Dβ are functions of ξ1 and ξ2 only. Applying
boundary conditions at z = 0 eliminates Cβ = Dβ = 0. Traction condition at free
surface imposes a constraint between Aα and Bα,

Bα +Aα

∫ η

0
J dz = Ma Jgαβbβ|z=η. (4.97)

The optimal partial flux qβ for a domain bounded by the height field η (or equivalently
the columnar volume density %) is found to be

qβ(ξ1, ξ2, z) =
∫ z

0
J
{∫ z′

0

[
Ma bβ + gαβAα

J

( ∫ z′′

0
J dz′′′ −

∫ η

0
J dz′′′

)]
dz′′

}
dz′. (4.98)

Any optimal partial flux qβ must be in the form (4.98) otherwise it would necessar-
ily produce O(ε) residues for the truncated minimization problem (4.91) which make
δqβ(ξ1, ξ2, z) suboptmal.

The only free coefficient Aα(ξ1, ξ2) left in (4.98) is determined by considering a gen-
eral variation δq to the optimal flux qβ such that δqβ(ξ1, ξ2, η) may not be identically
zero. Let η(ξ1, ξ2, t) and %(ξ1, ξ2, t) be the optimal interface shape and volume density
respectively and δq̂α denote the variation to the total volumetric flux q̂α = qα|z=η.
Substituting optimal partial flux (4.98) into viscous dissipation (4.92) yields the two
surviving terms for the truncated variation problem (4.91),

δ

{1
2D[v] + δF[%; ∂%

∂t
]−T[%;v, b]

}

=
∫

Γ̂
−δq

α

J

∂

∂z

(∂vβ
∂z

gαβJ
)∣∣∣
η

dΓ̂ +
∫

Γ̂

δF

δ%

∣∣∣
%
δ

{
∂%

∂t

}
dΓ̂ First line of 4.96

=
∫

Γ̂
−δq̂αAα dΓ̂ +

∫

Γ̂

δF

δ%

∣∣∣
%
δ
{
−∇̂ · q̂

}
dΓ̂

=
∫

Γ̂
−δq̂αĝαβAβ dΓ̂ −

∫

Γ̂

δF

δ%

∣∣∣
%
∇̂ · δq̂ dΓ̂

=
∫

Γ̂
δq̂α

[
−ĝαβAβ + ∂

∂ξα

(δF
δ%

∣∣∣
%

)]
dΓ̂ . Boundary-less manifold (4.99)
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For these terms to vanish, coefficient Aβ must satisfy,

Aβ = ĝαβ
∂

∂ξα

(δF
δ%

∣∣∣
%

)
. (4.100)

Substituting Aβ into equation (4.98) and evaluating at z = η shall produce the opti-
mal flux. The truncated minimum dissipation problem (4.91) is essentially a quadratic
programming subject to a linear constrain. Since we pursue an approximation to the
optimal solution aiming for O(ε2) errors, it suffices to further expand qβ with only the
O(1) and O(ε) terms retained,

q̂β(ξ1, ξ2, η) =
{
− η3

3 ĝ
αβ + ε

η4

6 (4Hĝαβ − IIαβ)
} ∂

∂ξα

(δF
δ%

∣∣∣
%

)

+Ma
{η2

2 ĝ
αβ + εη3

(
− 2

3Hĝ
αβ + IIαβ

)}
b̂α +O(ε2), (4.101)

where we introduce the tangent vector field

b̂ = bαĝα (4.102)

on the supporting surface Γ̂ as an alternative approximation to the external tangential
traction b on the free surface Γ̃ . To derive the full evolution equation, we convert height
field η to columnar volume density % truncated at O(ε2) errors,

q̂β(ξ1, ξ2, %) =−
{
%3

3 ĝ
αβ + ε

%4

6 (2Hĝαβ + IIαβ)
}

∂

∂ξα

(δF
δ%

∣∣∣
%

)

+ Ma
{
%2

2 ĝ
αβ + ε%3

(1
3Hĝ

αβ + IIαβ
)}

b̂α +O(ε2). (4.103)

Substituting the optimal flux (4.103) back into the conservation law (4.66) with un-
derscores below the optimal variables dropped yields the governing PDE of the optimal
columnar volume density in a coordinate-free form,

∂%

∂t
+ ∇̂ ·

[
−DF ∇̂

δF

δ%
+ MaDT b̂

]
= 0 on Γ̂ , (4.104)

where the two nonlinear, inhomogeneous mobility tensors, DF and DT , convert the
surface projections of interfacial pressure gradient and external tangential traction to
volumetric fluxes in the lubrication limit, respectively,

DF = %3

3 I + ε
%4

6
(
2HI + II

)
, DT = %2

2 I + ε%3(1
3HI + II

)
. (4.105)

On a flat substrate where the first fundamental form I = I becomes the identity tensor
and the second fundamental form II = 0 vanishes everywhere, we deduce η = % and
hence recover the general form of classical lubrication equation (2.37) in Section 2.2.
In the absence of external surface traction b̂ (or Ma = 0), we arrive at an approximate
energy-dissipation law similar to (4.60),

dF[%]
dt = −

∫

Γ̂

(
∇̂δF
δ%

)
DF

(
∇̂δF
δ%

)
dΓ̂ ≤ 0. (4.106)
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Fluctuations in interfacial energies of local-tpye
In order to put a closure on the evolution PDE (4.104), the free energies must be
expanded in the asymptotic orders of slender aspect ratio ε. Recall from the scaling
(4.81) that all energies associated with the thin liquid film are scaled by the reference
energy ε[σ][L]2. An interfacial energy is said to be “local” if its areal energy density at
a point of the interface only depends on quantities defined at that point. The notion of
localness is made clear in the following two example of interfacial energies.

One of the most common energies in physics is the potential energy due to the gravita-
tional force. Let g be the unit vector opposite to the direction of gravity. For a medium
of uniform density, the total gravitational energy can be expressed as a volume integral
of the projection of position vector onto the unit vector g,

G[Γ̃ ] = ρg[L]4
ε[σ][L]2

∫

Ω
x · g dΩ = Bo

ε

∫

Γ̂
ε

∫ η

0
(x̂+ εzn̂) · gJ dz dΓ̂ , Bo = ρg[L]2

[σ] ,

(4.107)
where Bo is the Bond number. For example in the previous example (Takagi and
Huppert, 2010) where a golden syrup film of 1 cm thickness spreads on a beach ball
with a radius of 23 cm, Bo ∼ 9.5 indicates gravity is the dominant driving force in that
system. Although the Bond number diminishes rapidly as size of the system [L] goes
down. In terms of columnar volume density %, we have

G[Γ̂ ; %] = Bo
{∫

Γ̂
(x̂ · g)%+ ε(n̂ · g)1

2%
2 dΓ̂ +O(ε2)

}
. (4.108)

Variation of the truncated gravitational energy is a simple scalar field

δG

δ%
= Bo

[
x̂ · g + ε(n̂ · g)%

]
. (4.109)

Note for a supporting surface Γ̂ almost parallel to the direction of gravity field, it’s
necessary to retain terms at least up to the first order in the approximate gravitational
energy (4.109) because the zeroth order term x̂ · g completely vanishes and the first
order term (n̂ · g)% becomes the dominant driving mechanism underlying the dynamics
of the viscous liquid layer layer.

The surface tension coefficient σo of the liquid/air interface is selected to be the baseline
for various types of interfacial energies per area. When σo is homogeneous, i.e. constant
everywhere on an uncontaminated free surface, the surface energy after nondimension-
alization is simply the total area of the (boundary-less) free surface Γ̃ ,

S[Γ̃ ] =
∫

Γ̃
dΓ̃ = 1

ε

∫

Γ̂
1− 2Hεη + ε2Kη2 + ε2

1
2 ĝ

αβ ∂η

∂ξα
∂η

∂ξβ
+O(ε3) dΓ̂ . (4.110)

In terms of columnar volume density %, the surface energy becomes

S[Γ̂ ; %] = 1
ε

∫

Γ̂
dΓ̂ −

∫

Γ̂
2H%+ ε

1
2
[
(4H2 − 2K)%2 − (∇̂%) · (∇̂%)

]
dΓ̂ +O(ε2).

(4.111)
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The first integral in (4.111) represents the area of the fixed supporting substrate Γ̂
covered by the viscous liquid layer which should not contribute to energy variation in
time. The second integral contains two scalar pieces similar to the case of gravitational
energy plus a gradient-type (Dirichlet) energy. To derive its variation, we perform
integration by parts on the boundaryless manifold Γ̂ which yields

∫

Γ̂
−(∇̂%) · (∇̂%) dΓ̂ =

∫

Γ̂
% ∆̂%dΓ̂ , (4.112)

where the line integral arising from the manifold boundary vanishes and ∆̂ is the Laplace-
Beltrami operator (covariant Laplacian) for surface Γ̂ . In the end, we arrive at the
expression of the variational derivative of surface energy,

δS

δ%
= −2H− ε(4H2 − 2K)%− ε∆̂%. (4.113)

Equation (4.113) is essentially the perturbation expansion of the curvature of the free
surface Γ̃ , expressed with the coordinates of the supporting surface Γ̂ and the columnar
volume density %. Identical expressions were obtained by Roy, A. J. Roberts, and Simp-
son (2002) and Rumpf and Vantzos (2013). Note the first two terms in the variation
(4.113) of the approximate surface energy are entirely due to the curvature of the sub-
strate whereas the Laplace-Beltrami term is the leading approximation to the curvature
of the free surface. As we already know from Chapter 2 and Chapter 3, for a flat region
of the supporting surface Γ̂ , substrate curvatures completely disappear and the Lapla-
cian of volume density % becomes the sole driving force behind interface deformation of
the thin films.

For the classical problem of a thin fluid flowing down an flat plane inclined at an angle
α with respect to the (x, y)-plane driven by gravity and capillary stresses, the total free
energy F = G + S. The resulting governing equation of film thickness agrees with
many previous references (Huppert, 1982; Troian et al., 1989; Roy, A. J. Roberts, and
Simpson, 2002),

∂%

∂t
+ ∇̂

{
%3

3 ∇̂
[
∆̂%− Bo (cosα)%

]
+ Bo (sinα)%

3

3

}
= 0, (4.114)

where differential operators are the usual two-dimensional Euclidean ones defined with
respect to the Cartesian coordinates of the inclined plane.

4.5 Perfect Dielectric Films Coating Curved Conductors: Dissipation of a Non-
local Energy

In this section we derive the total electrostatic energy of a curved conductor coated by a
thin dielectric film. The resulting energy variation is nonlocal, i.e. the effective pressure
at one location on the conductor boundary not only depends information defined locally
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but also anywhere else on the same surface. “Nonlocalness” naturally emerges when
a low-dimensional solution (e.g., two-dimensional surface charge density) is obtained
from a high-dimensional problem (e.g., three-dimensional electrostatics). In particular
for electrified fluid layers wetting a flat solid wall, the effect of nonlocal terms has
been examined through a series of analytic and computational investigations for ideal
fluid layers of finite depth (Papageorgiou, Petropoulos, and Vanden-Broeck, 2005) or
thin viscous lubrication films (Tseluiko and Papageorgiou, 2007) in the presence of
wall-normal electric fields, gravity-driven liquid films down a corrugated inclined wall
(Tseluiko, Blyth, Papageorgiou, and Vanden-broeck, 2008) or subject to a periodic
electrode of arbitrary shape (Tseluiko, Blyth, Papageorgiou, and Vanden-Broeck, 2010)
and electrostatically stabilized viscous thin films wetting the underside of a flat wall in the
presence of wall-parallel electric fields (Anderson et al., 2017). We refer the interested
readers to a recent review article by Papageorgiou (2019) (and references therein), which
provides a complete survey on nonlocal terms in the nonlinear theories and models of
electrohydrodynamic instabilities in immiscible multi-layer flows for various planar and
cylindrical geometries.

On the other hand, previous works on electrohydrodynamic thin films coating substrates
of non-planar geometries are very limited and mostly focus on the patterns and waves
of dielectric fluids confined in the cylindrical geometries, e.g., annulus between two
concentric cylinders (Wray, Papageorgiou, and Matar, 2013; L. Wang and J. Liu, 2016).
Nonlocalness of electrostatic pressure that appears in most papers cited in the review
article (Papageorgiou, 2019) is derived based on the Hilbert transform technique which
only applies to planar problems in a periodic rectangular channel. In this section we
derive nonlocal terms in the lubrication model of dielectric thin films residing on a curved
conductor of an arbitrary (smooth) shape fixed at a constant potential subject to a far-
field electrode by computing the first and second variations of the total electrostatic
energy in the film-conductor-electrode system. The overall setup is sketched in figure
4.4(a).

Electrostatic energy of a perfect dielectric film
Let Ωext be the exterior region enclosed between the conductor surface Γ̂ and the
electrode surface Γ . It is further divided into the liquid volume Ω and the outer region
Ωo = Ωext\Ω occupied by the gas. We refer to εi = εliq as the inner dielectric constant
of the liquid and εo = εair as the outer dielectric constant of the air phase. Let [ψ] be
the characteristic potential drop between the conductor and the electrode. After the
standard procedure of nondimensionalization, we arrive at the electrostatics equations

∇ · εo∇ψ(o) = 0 in Ωext \Ω,
∇ · εi∇ψ(i) = 0 in Ω,



 (4.115)
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Figure 4.4: (a) Thin dielectric liquid layer (liquid thickness is exaggerated) subject to
an electrode with the boundary Γ (thick solid): Γ̂ is the conductor surface (thin solid),
Γ̃ is the liquid free surface (dashed), Ω is the thin liquid volume (green) Ωo is the gas
region exterior to the conductor and the liquid layer. (b) Domain Ωext for the outer
potential correction ψ(o)

k , which overlaps with the inner (liquid) domain Ω.

of the inner and outer potentials ψ(i) and ψ(o) subject to a set of boundary conditions
due to continuities of electric potential and displacement field,

ψ = 0 on Γ̂ ,

ψ(i) = ψ(o) on Γ̃ ,

ñ · εi∇ψ(i) = ñ · εo∇ψ(o) on Γ̃ ,

ψ = ψ on Γ ,





(4.116)

where ψ is some potential distribution prescribed on the electrode boundary Γ . The
negative gradient of electric potential produces the inner and outer electric fields, E(i)

and E(o). Then the total electrostatic energy E of the electrode-film-conductor system
is the sum of the volume integrals of energy density both interior and exterior to the
liquid layer,

E[Ω] = Ec
ε

{∫

Ωext\Ω

εo
2 |E

(o)|2 dΩ +
∫

Ω

εi
2 |E

(i)|2 dΩ
}
, Ec = ε0[ψ]2

[σ][L] , (4.117)

where Ec is the electric-capillary number.

In order to identify the leading order effects on the electrostatic energy due to the
presence of a dielectric layer, we introduce a consistent base-state electric potential ψ0

corresponding to the limit of ε → 0, from which the higher order perturbations are
constructed. It’s not difficult to see that base-state potential ψ0 solves the bare-bones
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electrostatic problem,
∇2ψ0 = 0 in Ωext,

ψ0 = 0 on Γ̂ ,

ψ0 = ψ on Γ ,





(4.118)

in the absence of a dielectric layer.

Before proceeding with the construction of higher order corrections, we expand differ-
ential operators in the close vicinity of the conductor boundary. In such cases, the
Laplace operator ∇2 acting on a three-dimensional scalar can be expressed in terms of
the surface-adapted coordinate system (ξ1, ξ2, ξ3),

∇2φ(ξ1, ξ2, ξ3) = 1√
g

∂

∂ξ3

(√
g
∂φ

∂ξ3

)
+ 1√

g

∂

∂ξα

(√
ggαβ

∂φ

∂ξβ

)
, (4.119)

where gij and g are the metric coefficients and determinant defined in (4.21) and (4.19)
respectively. Inspired by exercise 1.1 of Jackson (1999), we make an important obser-
vation here: evaluating the Laplace equation on the surface Γ̂ where ξ3 = 0 leads to
a constraint relating the surface Laplacian of potential φ to its first and second normal
derivatives at the surface,

∇2φ(ξ1, ξ2, 0) = ∂2φ

∂(ξ3)2

∣∣∣
ξ3=0

− 2H ∂φ

∂(ξ3)
∣∣∣
ξ3=0

+ ∆̂φ(ξ1, ξ2, 0) (4.120)

where ∆̂ is the Laplace-Beltrami operator of surface Γ̂ . Relation (4.120) is exact and
is very useful in simplifying the electrostatic problem as we will see later. Recall from
the metric inverse gij in (4.25) that in the stretched inner coordinate system (ξ1, ξ2, z),
the three-dimensional Laplacian and gradient are separated into operators of hierarchical
scales,

∇2φ(ξ1, ξ2, z) = 1
ε2
∂2φ

∂z2 −
1
ε

2H∂φ

∂z
+O(1), (4.121)

∇φ(ξ1, ξ2, z) = 1
ε

∂φ

∂z
n̂+ ∇̂φ+O(ε), (4.122)

provided conductor surface Γ̂ is only gently curved (i.e. O(H) = O(1)) and potential
φ does not exhibit rapid variations along Γ̂ (i.e. O(∇̂φ) = O(1)).

Inner and outer perturbation solutions
We solve the electrostatic equation interior and exterior to the thin liquid layer by as-
suming two separate—inner and outer—perturbation expansions of the unknown electric
field in terms of the small aspect ratio parameter ε. As stated earlier, perturbation series
are constructed around the base-state potential ψ0,

ψ(o) = ψ0 + εψ
(o)
1 + ε2ψ

(o)
2 +O(ε3) in Ωext \Ω,

ψ(i) = ψ0 + εψ
(i)
1 + ε2ψ

(i)
2 +O(ε3) in Ω,



 (4.123)
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where we must emphasize that, the outer corrections ψ(o)
k are defined on the entire

exterior domain Ωext instead of Ω \Ωext (see figure 4.4(b) for clarification).

At the leading order in ε, we find the governing equations of ψ(i)
1 and ψ(o)

1 to be

∂2ψ
(i)
1

∂z2 = 0 in Ω,

∇2ψ
(o)
1 = 0 in Ωext,





(4.124)

subject to four boundary conditions, three of which are of Dirichlet-type,

ψ
(i)
1 = 0 at z = 0,

ψ
(o)
1 = ψ

(i)
1 at z = η,

ψ
(o)
1 = 0 on Γ .





(4.125)

The last condition comes from the continuity of displacement flux. The leading order
balance in the flux jump condition (4.116) is

εon̂ · ∇ψ0|Γ̂ = εi
[∂ψ(i)

1
∂z

∣∣∣
z=η

+ n̂ · ∇ψ0|Γ̂
]
, (4.126)

which then yields the solution to the leading order equations (4.124)

ψ
(i)
1 (ξ1, ξ2, z) = εo − εi

εi
(n̂ · ∇ψ0|Γ̂ )z,

ψ
(o)
1 = εo − εi

εi
(n̂ · ∇ψ0|Γ̂ )η on Γ̂ ,





(4.127)

where ψ(o)
1 is the harmonic potential in the exterior domain Ωext determined indirectly

by boundary condition (4.127) on the conductor surface Γ̂ .

The equations governing the inner potential ψ(i)
2 and outer potential ψ(o)

2 at the next
order are found to be

∂2ψ
(i)
2

∂z2 − 2H∂ψ
(i)
1

∂z
= 0 in Ω,

∇2ψ
(o)
2 = 0 in Ωext.





(4.128)

The Dirichlet-type boundary conditions at the next order are again straightforward,

ψ
(i)
2 = 0 at z = 0,

ψ
(o)
2 |Γ̂ + (n̂ · ∇ψ(o)

1 |Γ̂ )η = ψ
(i)
2 at z = η,

ψ
(o)
2 = 0 on Γ .





(4.129)

The continuity of displacement field flux at the free surface Γ̃ deserves careful exam-
inations since it involves the expansion of electric field which is a vector instead of a
scalar,

∇φ|Γ̃ = ∇φ|Γ̂ + ε∇(∇φ)|Γ̂ η n̂+O(ε2). (4.130)
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Expansion (4.130) projected to the normal vector ñ of the free surface Γ̃ gives rise to
the normal flux at the free surface Γ̃ up to the second order,

ñ · ∇φ|Γ̃ = n̂ · ∇φ|Γ̂ + εn̂1 · ∇φ|Γ̂ + εηn̂[∇(∇φ)|Γ̂ ]n̂+O(ε2), (4.131)

where n̂1 is the first order correction to ñ so that ñ = n̂+ εn̂1 +O(ε2). However the
first order correction n̂1 must be purely tangential (i.e. n̂1 · n̂ = 0) since both ñ and
n̂ are unit vectors for which |ñ| = |n̂| + 2ε n̂1 · n̂ + O(ε2) = 1 can be fulfilled only if
n̂1 · n̂ = 0. If we apply expansion (4.131) to the base state ψ0 which is equipotential
on the conductor surface Γ̂ , then

ñ · ∇ψ0|Γ̃ = n̂ · ∇ψ0|Γ̂ + εη
∂2ψ0
∂(ξ3)2

∣∣∣
ξ3=0

+O(ε2) (4.132)

where we recall in surface-adapted coordinate system (ξ1, ξ2, ξ3), expression n̂[∇(∇φ)|Γ̂ ]n̂
simplifies to ∂2φ/∂(ξ3)2 at ξ3 = 0. Then by virtue of relation (4.120), it immediately
follows from the harmonicity of potential ψ0 that,

∂2ψ0
∂(ξ3)2 = 2H ∂ψ0

∂(ξ3) at ξ3 = 0. (4.133)

With identity (4.133) substituted into expansion (4.132), the continuity of displacement
flux at next order reads,

εo
[
n̂ · ∇ψ(o)

1 |Γ̂ + 2Hη(n̂ · ∇ψ0|Γ̂ )
]

= εi
[∂ψ(i)

2
∂z

∣∣∣
z=η

+ 2Hη(n̂ · ∇ψ0|Γ̂ )
]
. (4.134)

The next order corrections to the inner and outer potentials are found by solving equa-
tions (4.128) subject to boundary conditions (4.129) and (4.134),

ψ
(i)
2 = 1

22Hεo − εi
εi

(n̂ · ∇ψ0|Γ̂ )z2 + εo
εi

(n̂ · ∇ψ(o)
1 |Γ̂ )z,

ψ
(o)
2 = 1

22Hεo − εi
εi

(n̂ · ∇ψ0|Γ̂ )η2 + εo − εi
εi

(n̂ · ∇ψ(o)
1 |Γ̂ )η,





(4.135)

where ψ(o)
2 is the harmonic potential in the exterior domain Ωext subject to boundary

condition (4.135) on conductor surface Γ̂ .

Total electrostatic energy in presence of a dielectric layer
The total electrostatic energy E defined in (4.117) has two disjoint contributions, the
energy confined within in the dielectric layer and the energy stored in the free space
exterior to the film. Recall the outer potential corrections ψ(o)

k are defined on the entire
exterior region Ωext instead of the gas volume Ω \ Ωext. Therefore we must subtract
off the overlapping part to prevent double-counting,

E[Ω] = Ec
ε

{
εo

∫

Ωext

1
2 |∇ψ

(o)|2 dΩ − εo
∫

Ω

1
2 |∇ψ

(o)|2 dΩ + εi

∫

Ω

1
2 |∇ψ

(i)|2 dΩ
}
.

(4.136)



126

Applying Green’s identity to the first volume integral in (4.136) yields
∫

Ωext

1
2 |∇ψ

(o)|2 dΩ

=
∫

Ωext

1
2 |∇ψ0|2 + ε(∇ψ0) · ∇ψ(o)

1 + ε2

2 |∇ψ
(o)
1 |2 + ε2(∇ψ0) · ∇ψ(o)

2 dΩ +O(ε3)

=
∫

Ωext

1
2 |∇ψ0|2 dΩ − ε

∫

Γ̂
ψ

(o)
1 (n̂ · ∇ψ0) dΓ̂

− ε2
∫

Γ̂

1
2ψ

(o)
1 (n̂ · ∇ψ(o)

1 ) + ψ
(o)
2 (n̂ · ∇ψ0) dΓ̂ +O(ε3). (4.137)

The second integral in (4.136) can be separated into orders of ε as well. The idea here
is to interchange Taylor expansion with integration, i.e.

∫ a+ε
a f(x) dx =

∫ a+ε
a f(a) +

f ′(a)x + f ′′(a)x2/2 dx + ..., for a smooth function f(x). Expanding the integral with
index notation leads to,
∫

Ω

1
2 |∇ψ

(o)|2 dΩ

=
∫

Ω

1
2
∂ψ(o)

∂ξi
∂ψ(o)

∂ξj
gij dΩ

=
∫

Γ̂

∫ εη

0

1
2

[
(ĝαβ + ξ32IIαβ)∂ψ

(o)

∂ξα
∂ψ(o)

∂ξβ
+ ∂ψ(o)

∂ξ3
∂ψ(o)

∂ξ3 +O((ξ3)2)
]
J dξ3 dΓ̂

=
∫

Γ̂

∫ εη

0

1
2

[
∂ψ(o)

∂ξ3
∂ψ(o)

∂ξ3 +O((ξ3)2)
] [

1− 2Hξ3 + +O((ξ3)2)
]

dξ3 dΓ̂

= ε

∫

Γ̂

η

2(n̂ · ∇ψ0)2 dΓ̂ + ε2
∫

Γ̂
η(n̂ · ∇ψ0)(n̂ · ∇ψ(o)

1 ) + H

2 η
2(n̂ · ∇ψ0)2 dΓ̂ +O(ε3),

(4.138)

where we note ∂ψ(o)/∂ξα must be O(ε) since ∂ψ0/∂ξα = 0 on the equipotential surface
ξ3 = 0.

The last volume integral in (4.136) measures the electrostatic energy interior to the
dielectric layer due to the interior electric potential ψ(i). In light of the perturbation
series from (4.127) and (4.135), we have
∫

Ω

1
2 |∇ψ

(i)|2 dΩ = ε
ε2
o

ε2
i

∫

Γ̂

η

2(n̂ · ∇ψ0)2 dΓ̂

+ ε2
ε2
o

ε2
i

∫

Γ̂
η(n̂ · ∇ψ0)(n̂ · ∇ψ(o)

1 ) + H

2 η
2(n̂ · ∇ψ0)2 dΓ̂ +O(ε3).

(4.139)

Rearranging the expanded integrals from (4.137)–(4.139) into orders of ε leads to the
first and the second order corrections to the electrostatic energy of the base-state po-
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tential (up to a material constant),
∫

Ωext

εo
2 |∇ψ

(o)|2 dΩ −
∫

Ω

εo
2 |∇ψ

(o)|2 dΩ +
∫

Ω

εi
2 |∇ψ

(i)|2 dΩ

= εo

∫

Ω

1
2 |∇ψ0|2 dΩ + ε

εi − εo
εi

εo

∫

Γ̂

1
2(n̂ · ∇ψ0)2η dΓ̂

+ε2 εi − εo
εi

εo

∫

Γ̂

1
2
[
H(n̂ · ∇ψ0)2η2 + (n̂ · ∇ψ0)(n̂ · ∇ψ(o)

1 )η
]

dΓ̂ +O(ε3).

(4.140)

To clean up notations, we define the dielectric contrast parameter κ = εair/εliq as in the
EHL model (3.5) and rewrite potential gradient as electric field E = −∇ψ. We shall
also drop the (·)(o) superscript on the higher order terms since only the outer correction
ψ

(o)
1 is involved. In terms of columnar volume density %, the truncated final form of

total electrostatic energy E reduces to the energy of the base state plus two higher order
corrections,

E[Γ̂ ; %] = Ec εair

{1
ε

∫

Ωext

1
2 |E0|2 dΩ

+ (1− κ)
∫

Γ̂

1
2(n̂ ·E0)2%dΓ̂

+ (1− κ)ε
∫

Γ̂
H(n̂ ·E0)2%2 + 1

2(n̂ ·E0)(n̂ ·E1)%dΓ̂
}
. (4.141)

The variational derivative immediately follows,

δE

δ%
= Ec εair(1− κ)

{1
2(n̂ ·E0)2 + ε2H(n̂ ·E0)2%+ ε(n̂ ·E0)(n̂ ·E1)

}
, (4.142)

where the outer field correction E(o)
1 is the electric field of the outer potential ψ(o)

1 which
solves the auxiliary electrostatic problem,

∇2ψ1 = 0 in Ωext,

ψ1 = 0 on Γ ,

ψ1 = (1− κ) (n̂ ·E0)% on Γ̂ .





(4.143)

In the lubrication limit, the effective pressure (4.142) is weakened due to the presence of
a dielectric layer. For a perfectly conductive liquid (i.e. limεliq→∞ κ = 0), the familiar
electrostatic pressure is recovered at the zeroth order. When liquid material shares
the same dielectric property with the gas (i.e. limεliq→εair κ = 1), the entire effective
electrostatic pressure (4.142) disappears. This is expected because in such a limit
εliq = εair, electric field is no longer discontinuous which means no jump in the Maxwell
stresses acting on both sides of the liquid free surface. The first two terms in (4.142)
represent the bare-bones electrostatic pressure and a leading order geometric correction
due to the dilation of free surface area differential dΓ̃ measured wit respect to dΓ̂ of
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the conductor surface. The “nonlocalness” in the effective electrostatic pressure δE/δ%
attributes to the last term in (4.142), which represents a long-range interaction between
the base-state electric field E0 and the correction electric field E1. Such interaction
is indeed nonlocal (with respect to the conductor surface Γ̂ ) because E1 = −∇ψ1 is
deduced from the potential ψ1 of the auxiliary problem (4.143), the solution of which
requires information of the columnar volume density % everywhere on the conductor
surface Γ̂ . The nonlocal term becomes dominant when the surface charge distribution
induced by the base-state electric field n̂ ·E0 is uniform (e.g., concentric capacitor of
two cylinders or spheres of different radius).

Finite element simulations
We illustrate the generalized lubrication model through finite element simulations of the
dynamics of a thin dielectric liquid film coating a grounded spherical conductor. In this
case, the total free energy of the system has three components, homogeneous surface
energy S and gravitational energy G and electrostatic energy E,

F = S + G − E, (4.144)

where the minus sign in front of the electrostatic energy E is due to the fact that for
a perfect dielectric film in contact with a conductor at a fixed potential, the external
voltage supply is doing work to the liquid film, as opposed to for a charged isolated
conductor, surface charges do work to redistribute themselves (Ljepojevic and Forbes,
1995).

Let Vext be the finite element interpolation space of the three-dimensional exterior
domain Ωext discretized by quadratic tetrahedral elements and V̂ be the space of
the two-dimensional conductor surface Γ̂ discretized by quadratic triangular elements.
ψh

0 ∈ Vext and ψh
1 ∈ Vext are the finite element projections of the base-state electric

potential ψ0 and the correction potential ψ1, respectively. Similarly, we introduce four
discretized scalar fields, the columnar volume density ρh ∈ V̂, the effective capillary
pressure (S/δ%)h ∈ V̂, the effective hydrostatic (gravitational) pressure (G/δ%)h ∈ V̂
and the effective Maxwell (electrostatic) pressure (E/δ%)h ∈ V̂. Notations Vi and Xi
are reserved for the i-th hat function and i-th global Lagrange nodal position in a finite
element space which can be either Vext or V̂. The standard finite element inner product
〈·, ··〉 similar to the one in equation (3.32) is introduced for each discretized domain in
terms of volume or surface integrals.

Prior to the time-dependent simulation, we solve the base-state problem only for once,
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whose variational formulation reads: find ψh
0 ∈ Vext such that

〈
∇Vi,∇ψh

0
〉

= 0 for all Vi ∈ Vext,

subject to ψh
0 (Xi) = 0 for all Xi ∈ Γ̂ ,
ψh

0 (Xi) = ψ(Xi) for all Xi ∈ Γ .





(4.145)

Given an initial distribution of film thickness, at each ensuing time step we solve the
following semi-discrete variational problem: find %h ∈ V̂ such that

〈Vi,Dt[%h]〉+ 〈∇̂Vi,DF ∇̂(δF
δ%

)h〉 = 0,

(δF
δ%

)h = (δG
δ%

)h + (δS
δ%

)h − (δE
δ%

)h,

〈Vi, (
δG

δ%
)h〉 = Bo〈Vi, x̂ · g + ε(n̂ · g)%h〉,

〈Vi, (
δS

δ%
)h〉+ 〈Vi, 2H + ε(4H2 − 2K)%h〉 = ε〈∇̂Vi, ∇̂%h〉,

〈Vi, (δE/δ%)h〉
εair(1− κ)Ec − 〈Vi,

(n̂ ·Eh
0)2

2 + ε2H(n̂ ·Eh
0)2%h〉 = ε〈Vi, (n̂ ·Eh

0)(n̂ ·Eh
1)〉,





(4.146)
for all Vi ∈ V̂, and ψh

1 ∈ Vext such that
〈
∇Vi,∇ψh

1
〉

= 0 for all Vi ∈ Vext,

subject to ψh
1 (Xi) = (1− κ) (n̂ ·E0(Xi))%h(Xi) for all Xi ∈ Γ̂ ,
ψh

1 (Xi) = 0 for all Xi ∈ Γ ,





(4.147)

where Dt is some discrete time-stepping operator (backward Euler, BDF2, etc.). On
the surface of a unit sphere, the second fundamental form II has no preferable principle
directions since the principle curvatures κ1 = κ2 = −1. The discrete mobility tensor
DF is simply the identity tensor multiplied by a nonlinear mobility coefficient,

DF =
[1
3(ρh)3 − ε

2(ρh)4
]
I. (4.148)

The fully discretized finite element system (4.145)–(4.147) is implemented in the com-
mercial software COMSOL Multiphysics, Inc. V5.3 (2017).

Plotted in figure 4.5 is a spherical conductor of unity radius concentric with another
spherical electrode of radius = 5. A boundary electric potential ψ = 5Y 2

3 (ϑ, ϕ) is
prescribed on the electrode surface where Y `

m is the spherical harmonics of degree `
and order m with polar angle ϑ and azimuthal angle ϕ. The exterior volume Ωext is
discretized by 245957 quadratic tetrahedral elements and the spherical surface Γ̂ of the
conductor by 12550 quadratic triangular elements. Since in equation (4.142) electric-
capillary number Ec always comes with the contrast parameter κ and dielectric constant
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t = 0 t = 4

t = 0.25 t = 6

t = 0.5 t = 8

t = 0.75 t = 10

t = 1 t = 12

(a) (b)

0.75 1.00 1.25 1.50 1.75 2.00
0.597 2.082

0.5 1.0 1.5 2.0 2.5
0.177 2.511

Figure 4.5: Snapshots of (a) early and (b) late stages of the evolution of liquid columnar
volume density % (colored) on a conductor of a unit sphere subject to another spherical
electrode of radius 5. Black tubes are field lines of the correction potential ψ1. Tube
radius is proportional to field strength |E1|. Parameters used in the simulation: κ = 0,
Bo = 0, Ec = 50 and ε = 0.005.
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εair, without loss of generality we set κ = 0 and εair = 1 and vary Ec alone. In this
example, gravity is turned off (i.e. Bo = 0) and the pattern formation in the dielectric
film with aspect ratio ε = 0.005 entirely results from the competition between Maxwell
(Ec = 50) and capillary stresses. During the early development 0 ≤ t ≤ 1 shown in
figure 4.5(a), liquid film immediately responds to the valleys and peaks (eight in total) of
the spherical harmonics Y 2

3 in the prescribed potential of the electrode by forming eight
charged droplets. The initial growth of triangle-shaped droplets, for example at t = 0.5,
shows reminiscence of the fine details of the spherical harmonics electrode potential,
which however is soon lost to capillary smoothing. Note every charged circular droplet
is surrounded by three other droplets of the opposite charge type, as indicated by the
connections of electric field lines (black tubes) generated by the correction potential ψ1.
In the late stage of the evolution (4 ≤ t ≤ 12), the positions of these droplets are tightly
interlocked by the attractive electric forces between each one and its three neighbors.
The surface region between these charged droplets are depleted to about only 18% of
the initial film thickness whereas each droplet apex attains more than 2.5 times as tall.

In figure 4.6 is another finite element simulation with the identical setup of the geometry
and discretization with the one in figure 4.5 except a different electric potential ψ = x

is prescribed on the larger spherical electrode of radius 5 in order to mimic a constant
electric field parallel to the horizontal plane in the far field. In this simulation, gravity is
turned back on (Bo = 1) acting vertically downwards in z-direction on a twice thicker
film (ε = 0.01) while electrostatic effect is reduced (Ec = 1.25). As shown in figure
4.6(a), a circular pile of liquid four times higher than the background uniform film
initially concentrates on the north pole. However, azimuthal symmetry in the system is
broken due to the presence of a nearly unidirectional base-state electric field parallel to
the horizontal plane. Instead of spreading evenly at every azimuthal angle, the excessive
liquid volume is immediately elongated along or against the direction of the electric
field E0 depending on the type of charges at the spreading front. In the later stage
shown in figure 4.6(b), the thinned liquid pile is split into two separate droplets which
gradually slide towards the south pole under the vertical pull of gravity. The two droplets
absorb significant amount of liquid volume from the relatively uniform liquid reservoir
in the background along with their sliding motion and eventually almost recover the
maximum thickness of the initial state. In the end at t = 0.3, an equilibrium is about
to be reached under the balance between gravitational forces and Maxwell stresses as
two circular droplets are suspended at positions between the directions of gravity and
base-state electric field. The electric field lines of the correction potential ψ1 plotted in
figure 4.6(b) suggest that the two droplets are also attracted to each other nonlocally
due to the induced surface charges they carry.
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t = 0 t = 0.14

t = 2.5 · 10−2 t = 0.18

t = 5 · 10−2 t = 0.22

t = 7.5 · 10−2 t = 0.26

t = 1 · 10−1 t = 0.3

(a) (b)

1 2 3 4
0.870 4.000

1.01.52.02.53.03.5
0.783 3.976

Figure 4.6: Snapshots of (a) early and (b) late stages of the evolution of liquid columnar
volume density % (colored) on a conductor of a unit sphere subject to another spherical
electrode of radius 5. The second column in each panel is the first column rotated by
90◦ about one of the axes. Gravity acts vertically downwards whereas the prescribed
electrode potential mimics a constant electric field parallel to the horizontal plane. Black
tubes are field lines of the correction potential ψ1. Parameters used in the simulation:
κ = 0, Bo = 1, Ec = 1.25 and ε = 0.01.
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4.6 Conclusion
In this chapter we have developed the appropriate differential geometry languages to
describe the kinematics and dissipation of thin liquid films on curved substrates. The
tensorial partial differential equation governing the evolution of local film volume density
on curved manifolds is derived based on a novel energy-dissipation formalism of free sur-
face lubrication flow derived from the Helmholtz minimum dissipation theorem in slender
limit. It is shown that the dynamics of thin viscous film is uniquely determined by the
dissipation of available interfacial free energies in the liquid film due to internal frictions
caused by the tangential shear against the curved supporting surface. In particular, we
present a novel nonlocal model of a thin dielectric liquid layer coating a gently curved
conductor. In addition to interface-normal driving forces (e.g., gravity and capillary)
resulting from standard interfacial energies of local type, the local liquid volume at one
position on the conductor surface experiences electric forces due to polarization charges
carried by the liquid volume at all other positions on the same surface.

The finite element simulation of the nonlocal dielectric model reveals mass accumulation
sites on a spherical conductor directly responding to prescribed potential on a larger
spherical electrode. Such behavior may inspire new methods of manufacturing artificial
compound eye structure on spherical domes, which is currently fabricated through an
intricate laser lithography system (Y. Cheng et al., 2019). Based on the selective paths
of mass transport in form of droplets observed in the simulation, it is also conceivable
that our model can offer some key insight to the development of efficient feeding strategy
in liquid metal ion source (LMIS) devices, the performance of which largely relies on
transporting material from a liquid metal reservoir to the tungsten needle tip along the
surface of a double-coil wire (Jaworek, 2006). In future work, it is straightforward to
extend the energy-dissipation framework developed in the current work to incorporate
other types of energy, for example, the elastic energy of deformable structures in a
dielectric fluid transducer (Acome et al., 2018) which offers high actuation strain and
robust muscle-like performance by applying Maxwell stresses on the walls of thin elastic
channels filled with dielectric liquids.
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C h a p t e r 5

SHAPE ANALYSIS AND ENERGY STABILITY OF CONDUCTIVE LIQUIDS

5.1 Energy Stability of Electrically Charged Conductive Liquid
In 1882, Lord Rayleigh (1882) p resented a concise derivation on the theoretical estimate
of the maximum amount of charge a nearly spherical liquid drop could carry while still
maintaining stable, which is now known as the Rayleigh charge limit

QRa = 8π
√
σε0R3

c . (5.1)

Here Rc is the characteristic radius, σ is the surface tension coefficient and ε0 is the
vacuum permittivity. Rayleigh’s prediction that a droplet reaching this limit would be-
come unstable has been widely quoted since then and confirmed by careful experimental
studies for many liquids and droplet sizes (Doyle, Moffett, and Vonnegut, 1964; Taflin,
Ward, and E. J. Davis, 1989; Duft et al., 2003). In Rayleigh’s original approach, the
surface of a near-spherical liquid drop is explicitly parametrized by a series of azimuthally
symmetric spherical harmonics multiplied by time-dependent coefficients. Under suit-
able assumptions, velocity and electric fields are expressed as the gradients of harmonic
potentials, which can again be expanded in terms of spherical harmonics multiplied by
some radial functions. These harmonic coefficients are then coupled through the kine-
matic condition at the free surface, exchanging their amplitudes provided the global
conservation of kinematic and potential energies. To alleviate the overabundance of
the omitted steps in Rayleigh’s short communication, Hendricks and Schneider (1963)
provided a detailed derivation for an inviscid and incompressible liquid drop, albeit still
being ambiguous on the truncation of the first and second order terms. Along similar
veins, Rayleigh’s theory on the oscillation of electrified liquid drops was later extended to
include various effects such as a uniform external electric field (G. I. Taylor, 1964), vis-
cous dissipation (Morrison, Leavitt, and Wortman, 1981), rigid body rotation (Natarajan
and R. A. Brown, 1987), the presence of counterions (Deserno, 2001), permittivity of
the drop and the surrounding medium (Shrimpton, 2005) and internal inclusion of a
highly charged ion (Oh et al., 2017).

All these work mentioned before specialize on spherical coordinate system with spherical
harmonics for drop deformations. For drop shapes that are not perfectly spherical,
method of spheroidal analysis was popularized by G. I. Taylor (1964). In his analysis,
the shape of liquid body was assumed to be a prolate spheroid parametrized by its major
radius and minor radius, which were found by satisfying the normal stress condition only
at the pole and the equator but not at every point on the surface. Thinking alone the
same lines, K. J. Cheng and Chaddock (1984) and K. J. Cheng and Chaddock (1986)
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first developed a prototype of variational method from a consideration of the variation
of free energy. Although a spheroidal liquid shape was still assumed in their work,
instead of pursuing force balance on the surface of the spheroid they determined the
deformation and equilibrium/instability criterion of spheroidal drops and bubbles from
the extremization of total free energy of the conductive or dielectric liquid body over
an eccentricity parameter subject to a constant-volume constraint. They were able to
recover Taylor’s result and predicted that a minimum energy configuration is always
possible for bubbles.

The condition which an arbitrarily shaped conductive liquid body must satisfy in order
to be in equilibrium requires a coordinate-free approach such as the variational method.
Sujatha et al. (1983) and Chung, Cutler, Feuchtwang, et al. (1984) attempted a varia-
tional formalism of the equilibrium configurations of a perfectly conductive fluid kept at
a fixed voltage by minimizing the total free energy associated with a volume-conserving
liquid body. However, they treated surface charge density as a local variable, i.e. a func-
tion of the local geometric quantities described by the first and second derivatives only,
rather than a shape functional of the complete surface. Hence their calculations may
only be valid for very simple shapes. Later Ljepojevic and Forbes (1995) re-examined
the variational problem of an electrified liquid using an Eulerian approach. By carefully
tracking the leading order effect of geometric variations on the surface charge density,
they managed to recovered the equilibrium condition, which is the familiar pressure bal-
ance between capillary and Maxwell stresses. However, due to lack of precise treatments
on shape geometry, their first order calculation cannot to be carried out to the second
order variation, which is crucial to the stability of charged liquid drop.

It is worth noting that Rayleigh’s method is Eulerian: coordinates and potentials do not
vary with deformation of the liquid body. The rational for the Eulerian point of view
is challenging because functions defined on a reference domain need to be extended
onto the deformed domain where these functions were not meant to exist in the first
place. Despite the prevailing Eulerian approach in literature of free surface flow, Joseph
(1973), inspired by his seminar work on the parametric domain dependence of eigenvalues
of elliptic PDE (Joseph, 1967), drew attention to the conceptual and computational
difficulties behind the Eulerian formalism commonly used in the derivation of the higher
order water wave theory: expansion of the true velocity potential, which is defined for
the wavy water domain, into a series of potential functions, which are defined only
under the flat water surface, assumes these potentials can be continued analytically
into that part of the wavy domain outside the flat domain. He then presented an
alternative derivation by mapping the domain of complicated unknown configuration and
the potentials defined within onto a relatively simple domain that is readily described by
some curvilinear coordinate system. The method of domain variations, the prototype of
which is attributed to Hadamard (1908), was developed based on this concept. Inspired
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by the work of Joseph (1973), Feng (1997) revisited Rayleigh’s result of an electrically
charged conductive drop by means of the domain variation technique. However his
calculation is limited to perfect spherical and cylindrical geometries only.

In the field of modern control theory, the problem of finding Rayleigh charge limit by
extremizing the total potential energy falls into the category of shape optimization,
i.e. finding the optimal shape which minimizes a certain cost functional (e.g., potential
energy of the liquid drop) subject to constraints (in our case electrostatic equation in
vacuum and volume conservation of the liquid) where the method of domain variations
plays a central role. For example, H. Wang, L. Liu, and D. Liu (2017) reformulated the
problem of determining the equilibrium shape of the bubble in an applied electric field as
an energy minimization problem, based on which a fixed mesh level-set gradient method
was implemented to simulate equilibrium shapes of wall-contacting bubbles in an electric
field. For further references and recent development in the topic of shape optimization,
we refer to the comprehensive textbooks (Henrot and Pierre, 2005; Sokolowski and
Zolesio, 1992). In this chapter, we adhere to the development laid out in the work
of Bandle and Wagner (2015) who computed the first and second domain variations
for functionals related to second order elliptic boundary value and eigenvalue problems
subject to Robin boundary conditions. Finally, regarding the existence and nonexistence
of equilibrium shapes of charged liquid drops with or without constraints, we refer the
interested readers to a series of mathematically rigorous works (Goldman, Novaga, and
Ruffini, 2014; Goldman and Ruffini, 2017; Muratov, Novaga, and Ruffini, 2018) where
the problem is carefully examined in a setting of functional analysis using Riesz potential
and Riesz capacity.

In this chapter we would like to address three issues: first of all, we formulate the total
potential energy of an isolated, charged, perfectly conductive, arbitrarily shaped liquid
body based on the convective Lagrangian coordinates from continuum mechanics which
allow systematic and geometrically precise treatments for arbitrary domain deformations.
Secondly, in contrast to the usual small amplitude deformations normal to a spherical
surface typically considered in the literature, we rigorously derive the constrained first
and second order volume-conserving shape variations to the potential energy (electro-
static and surface energies) when liquid boundary undergoes both normal and tangential
deformations. The equilibrium condition and stability criterion are also presented. Most
importantly we discover that, for an equilibrium shape (if exits) with nonuniform mean
curvature or surface charge distribution, there exist additional contributions to the sec-
ond shape variation of the potential arising from the three-way coupling between normal,
tangential deformation and mean curvature, which are entirely overlooked in the exist-
ing literature due to inadequate treatment on geometric deformation. Lastly, we recover
the classical Rayleigh charge limit by applying the shape variations derived earlier to a
perfect sphere. In particular we show that when a spherical liquid drop is charged below
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the Rayleigh limit, the second shape variation to its total potential energy is a strictly
positive quadratic functional and hence implies local stability in the energy landscape.

5.2 Lagrangian Specification in Continuum Mechanics
When the shape of domain is unknown a priori, it is convenient to introduce a coordinate
system that follows the domain as it deforms, more commonly known as the convective
Lagrangian coordinates which is the basis of continuum mechanics. Convective coordi-
nates are especially important when non-mechanical physics such as electromagnetism
occurs in the deformed medium. They are essential to the theory of relativity which
does not acknowledge a universal simultaneity (Weile et al., 2013). The exposition of
convective Lagrangian coordinates in this section follows the standard approach in con-
tinuum mechanics (Wriggers, 2008). Online lecture notes (Kelly, 2013) are found to
be very helpful as well. For a more rigorous treatment on the subject, we refer to the
classical textbook by Marsden and Hughes (1994) on mathematical elasticity.

Lagrangian description
In the Lagrangian description of continuum mechanics, regions in the three-dimensional
ambient space R3 can be assigned to different configurations of the material body. The
position and motion of a continuum body are tracked by a function of the particle
position X in some fixed reference domain Ω. Let χ(·, ·) be a smooth one-parameter
function which maps some non-negative parameter ε and position vector X ∈ Ω in the
reference domain to another position vector x in the ambient space,

x = χ(X, ε) for ε ≥ 0. (5.2)

In literature of continuum mechanics, function χ(·, ε) is called the configuration map,
X is the material (or reference or Lagrangian) configuration and x is the spatial (or
Eulerian) configuration. In a mechanical setting, ε is often treated as the time variable
and x coincides withX in the ambient Euclidean space R3 initially at ε = 0. Physically,
if we attach a massless marker particle to position X of the continuum body at ε = 0
and let the continuum body undergo transformation χ(·, ε), then x is the position of
the same particle at ε = t. The spatial domain

ω = {x = χ(X, ε) |X ∈ Ω, ε ≥ 0} (5.3)

represents the ensemble of particle positions evolving from the reference domain. In
general ε doesn’t have to be the time variable. It can represent any continuous parametric
dependence of the mapping χ(·, ε).

We next introduce the material velocity

V (X, ε) = ∂χ(X, ε)
∂ε

(5.4)
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to be the vectoriol rate at which the position of a particle initially labeled with material
coordinate X changes with respect to parameter ε. Again if we take χ(X, 0) = X

and ε to be time, then V (X, ε) is the velocity of the particle which starts out at the
reference position X in Ω. The spatial counterpart of material velocity V (X, ε) is the
spatial velocity

v(x, ε) = V (χ−1(ε;x), ε) (5.5)

which is the velocity vector of the particular marker particle currently occupying the
spatial position x. Here χ(ε; ·) : Ω → ω is the invertible configuration map when ε is
held fixed. In the same spirit, a spatial scalar field φ(x, ε) in general can be viewed as
a material field Φ(X, ε) if we identify

Φ(X, ε) = φ(x(X, ε), ε) (5.6)

for all ε ≥ 0 in the valid range.

Convective curvilinear coordinate
Let the vectorial function X(ξ1, ξ2, ξ3) denote the position vector of the material frame
constructed out of coordinates (ξ1, ξ2, ξ3) drawn from a subset O in the Euclidean space
E3. Here we differentiate the ambient three-dimensional space R3 from the Euclidean
parameter space E3 although both of them are flat spaces. The material coordinate
curves, i.e. curves of constant ξi, form a net in the material configuration. The covariant
basis Gi are the tangent vectors to these material coordinate curves ξi,

Gi = ∂X

∂ξi
, Gi ·Gj = δij , Gij = Gi ·Gj , (5.7)

where Gi are the contravariant basis vectors and Gij are the metric coefficients (δij is
the Kronecker delta). Given knowledge of the configuration map χ(·, ε), we can express
the spatial coordinates x at ε ≥ 0 in terms of the same curvilinear coordinates as well,

x(ξ1, ξ2, ξ3) = χ(X(ξ1, ξ2, ξ3), ε). (5.8)

The covariant and contravariant basis vectors, gi and gi of the spatial curvilinear coor-
dinates are given by

gi = ∂x

∂ξi
, gi · gj = δij , gij = gi · gj , (5.9)

where gij is the spatial metric coefficient. The curvilinear coordinates x are said to
be convective if coordinate curves are attached to material particles and deform with
the body so that each material particle has the same parameter coordinates (ξ1, ξ2, ξ3)
in both the material configuration X and spatial configuration x. The mapping triad
between parametrization (ξ1, ξ2, ξ3) ∈ O ⊂ E3, material configuration X ∈ Ω ⊂ R3

and spatial configuration x ∈ ω ⊂ R3 is illustrated in figure 5.1. A useful fact to have
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(ξ1, ξ2, ξ3)

Configuration map
χ(X, ε)

Material frame Ω ⊂ R3

X

Spatial frame ω ⊂ R3

x(χ(X, ε), ε)

Ψ = 0

Ψ = 1

Γ

ψ = 0

ψ = 1

γ

Figure 5.1: Triad of parameter, material and spatial frames: material coordinates X
send (ξ1, ξ2, ξ3) from the parameter space E3 into the material frame Ω in the ambient
space R3 with boundary Γ ; Spatial frame ω and its boundary γ in R3 are convected from
the material coordinates X through the configuration map χ(·, ε); the composition of
χ(X, ε) and X(ξ1, ξ2, ξ3) can be viewed as a set of curvilinear coordinates x(ξ1, ξ2, ξ3)
drawn from the parameter space. The thin solid curves are the coordinate lines in
each frame while the thick solid curves represent the boundaries Γ and γ of the same
conductor (white region) before and after deformation. The material harmonic potential
Ψ and its spatial counterpart ψ remain equipotential on these boundaries. The dashed
lines are immobile boundaries of the vacuum domain exterior to the conductor.

in mind is that, despite being curvilinear, both x(ξ1, ξ2, ξ3) and X(ξ1, ξ2, ξ3) are a
re-parametrization of the ambient three-dimensional space R3 which is Euclidean, flat
and torsion-free.

In what follows, we use operator D(·) to represent the (covariant) gradient vector with
respect to material coordinates X and d(·) with respect to spatial coordinates x. For
example, when D (or d) acts on a scalar field Φ (or φ) we have

DΦ = ∂Φ

∂ξi
Gi, dφ = ∂φ

∂ξi
gi. (5.10)

When gradient D (or d) acts on a vector field, the resulting object becomes a rank-2
tensor,

DV = ∂V

∂ξi
⊗Gi, dv = ∂v

∂ξi
⊗ gi. (5.11)

The deformation gradient tensor

F = Dx = ∂x

∂ξi
⊗Gi (5.12)
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is defined as the gradient of spatial configuration x with respect to material coordinates
X. The deformation gradient F is a two-point tensor which maps the tangent space
of the material configuration at position X ∈ Ω to the tangent space of the spatial
configuration at position x ∈ ω. With convective curvilinear coordinates (ξ1, ξ2, ξ3), it’s
easy to show that F behaves like a linear operator that transforms the covariant basis
vectors Gi at X of the material frame into the covariant basis vectors gi at x of the
spatial frame,

F = gi ⊗Gi, FGi = gi. (5.13)

In addition to the deformation gradient F , its transpose, inverse and inverse-transpose
are two-point tensors as well which map a set of basis vectors from one frame onto the
other (Kelly, 2013),

F −1 = Gi ⊗ gi, F −1gi = Gi,

F > = Gi ⊗ gi, F >gi = Gi,

F −> = gi ⊗Gi, F −>Gi = gi.





(5.14)

With various two-point tensors introduced in (5.14), the material gradient of a scalar
field Φ(X) and the spatial gradient of its spatial counterpart φ(x) can be transformed
back and forth through the relations,

dφ = (DΦ)F −1, dv = (DV )F −1. (5.15)

It is convenient to introduce the right Cauchy-Green tensor C and its inverse C−1,

C = F >F , C−1 = F −1F −>. (5.16)

Physically, the Cauchy–Green tensor C measures the squared local change in distances
due to body deformation asGiCGi = gi ·gi. In the same fashion, we define the velocity
gradient as a measure of the rate at which a material is deforming. It’s common to use
the spatial velocity gradient tensor

l = dv. (5.17)

The differential volume element of the material configuration X is given by

dΩ =
√
G dξ1dξ2dξ3, G = detGij , (5.18)

where G is the determinant of material metric tensor Gij . Similarly, the volume element
of the spatial configuration x is given by the determinant g of the spatial metric tensor
gij ,

dω = √g dξ1dξ2dξ3. (5.19)

Since F is the essentially the Jacobian matrix of x(X, ε), the material volume element
dΩ and the spatial volume element dω are related through the relation,

dω = J dΩ, J = detF , (5.20)
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where J is the coordinate Jacobian. A similar identity exists for the differential area
elements. Let Γ (or γ) be the boundary of the material ( or spatial) domain Ω (or ω)
and N (or n) be the unit normal vector of the boundary. The material differential area
element dΓ is related to the spatial area element dγ by the Nanson’s formula (Wriggers,
2008)

ndγ = JF −>N dΓ. (5.21)

Kinematics: rate of quantities
We next consider how fields transform when material body undergoes deformation. The
total change of a scalar field at a spatial coordinate x following a material particle
initially labeled with position X is given by the chain rule,

dφ(x, ε)
dε = dφ(x(X, ε), ε)

dε = ∂φ(x, ε)
∂ε

+ v(x, ε) · dφ · . (5.22)

Following the convention in literature of shape analysis, we define

φ′(x, ε) = ∂φ(x, ε)
∂ε

(5.23)

to be the Eulerian derivative of φ and

φ̇(x, ε) = φ′(x, ε) + v(x, ε) · dφ(x, ε) (5.24)

to be the material derivative of φ. The name “material derivative” stems from the obser-
vation that, alternatively the total derivative (5.22) of spatial field φ(x, ε) is equivalent
to the partial derivative of its material counterpart Φ(X, ε),

φ̇(x, ε) = dφ(x, ε)
dε = dφ(x(X, ε), ε)

dε = ∂Φ(X, ε)
∂ε

. (5.25)

It can be shown that the time derivatives of various forms of deformation gradient tensor
F can be expressed in terms of the spatial velocity gradient l ,

∂F

∂ε
= l F ,

∂F −1

∂ε
= −F −1l ,

∂F >

∂ε
= F >l>,

∂F −>

∂ε
= −l>F −>. (5.26)

The Eulerian derivative of spatial velocity gradient is frequently encountered in this work.
If we introduce the material and spatial accelerations,

V̇ = ∂2χ(X, ε)
∂ε2

, v̇ = V̇ (χ−1(ε;x), ε), (5.27)

then ∂l /∂ε can be computed as

∂l

∂ε
= ∂dv

∂ε
= ∂(DV )F −1

∂ε
= D

(∂V
∂ε

)
F −1 − (DV )F −1l = dv̇ − l l , (5.28)

where we have used (5.26) and (5.15) to simplify. Here dv̇, similar to spatial velocity
gradient l = dv, is the spatial acceleration gradient. A similar expression can be derived
for the transposed quantity, i.e. ∂l>/∂ε = (∂l /∂ε)>.
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The rate at which spatial volume element changes is given by the first partial derivative
of Jacobian J with respect to ε,

∂J

∂ε
= (detF )tr

(
∂F

∂ε
F −1

)
= Jdivv, (5.29)

where the divergence operator div is understood to act on the spatial vector fields
(Div acts on material vectors). Differentiating ∂J/∂ε again yields the second partial
derivative of Jacobian J ,

∂2J

∂ε2
= ∂

∂ε

[
(detF )tr

(
∂F

∂ε
F −1

)]

= ∂J

∂ε
tr(l F F −1) + Jtr

(
∂2F

∂ε2
F −1

)
+ Jtr

(
∂F

∂ε

∂F −1

∂ε

)

= J

{
(divv)tr(l ) + tr

[
D
( ∂x
∂ε2

)
F −1

]
− tr(l F F −1l )

}

= J
[
(divv)2 + div(v̇)− tr(l l )

]
, (5.30)

which we will use later.

5.3 Electrostatic Energy and Shape Variations of a Perfect Conductor
In this section, we exclusively focus on the electrostatic energy of a perfect conductor
stored in the vacuum and its first and second shape variations when the boundary of
the conductor undergoes deformation.

Electrostatic energy and self-capacitance
For a perfect conductor, the total electrostatic energy stored in the free space is the
volume integral of electrostatic energy density exterior to the conductor. Let Ω be the
volume of surrounding vacuum exterior to the conductor and Γ be the surface of the
conductor. Then the electrostatic energy E[Ω] of the conductor is given by

E[Ω] =
∫

Ω

1
2ε0|E|2 dΩ (5.31)

where E = −DΨ is the electric field of a harmonic potential Ψ satisfying the Dirichlet
problem,

DivDΨ = 0 in Ω,

Ψ = Ψ0 on Γ,

Ψ = 0 everywhere else.





(5.32)

We assume electric potential Ψ vanishes at either infinity (e.g., isolated charged drop)
or on any other boundary that’s not part of the conductor (e.g., external electrode).
Potential difference Ψ0 is a constant and can be either directly prescribed (e.g. a constant
potential drop held between conductor and electrode) or indirectly determined (e.g.,
an appropriate value such that total physical charge on the surface of the conductor
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is conserved). Electrostatic energy (5.31), albeit in the form of a volume integral, is
completely determined by the shape of the boundary. More explicitly, by Green’s identity
and the fact Ψ is harmonic in the vacuum phase, electrostatic energy E can be put into
the form of a shape functional of the boundary Γ ,

E[Γ ] =
∫

Γ

1
2ε0Ψ0E · (−N) dΓ, (5.33)

where N is defined to be the surface (outward) normal vector pointing from vacuum
into the conductor. It’s convenient to work with a rescaled version of Dirichlet problem
(5.32),

DivDΨ = 0 in Ω,

Ψ = 1 on Γ,

Ψ = 0 everywhere else.





(5.34)

Now if we introduce the self-capacitance funcitonal

C[Γ ] =
∫

Γ
E · (−N) dΓ =

∫

Ω
DΨ ·DΨ dΩ, (5.35)

then the physical self-capacitance C and the total physical charge Q can be expressed
as

C = ε0C[Γ ], Q = Ψ0C. (5.36)

We therefore recover the classical capacitance-charge-potential relation

E[Γ ] = 1
2Ψ

2
0C = 1

2Ψ0Q = 1
2
Q2

C
. (5.37)

Thus to understand variations in the electrostatic energy of a conductor, it suffices to
study the properties of the self-capacitance functional C[Γ ] defined in equation (5.35)
instead of the original unscaled energy E[Γ ] in (5.31). An advantage of working with
self-capacitance (5.35) is that, we have a single recipe to the variations of electrostatic
energy when either potential difference Ψ0 or total charge Q is held constant,

δE[Γ ] = +1
2Ψ

2
0C

δC[Γ ]
C[Γ ] for a fixed potential Ψ0,

δE[Γ ] = −1
2
Q2

C

δC[Γ ]
C[Γ ] for a fixed total charge Q.





(5.38)

Precise notion of the shape variation δC[Γ ] can be built from concepts of continuum
mechanics developed in Section 5.2. Suppose we have a configuration map χ(·, ε) which
transforms the conductor boundary Γ to a new shape γ and the vacuum region Ω to a
new volume ω. We identify X ∈ Ω as the material (reference) frame and x ∈ ω as the
spatial (deformed) frame. Aside from regularity requirements (smoothness, boundness,
etc.), we do not impose constraints on χ(·, ε) interior to the vacuum. Later it turns
out that it is irrelevant how material coordinates X ∈ Ω are mapped to the spatial
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region x ∈ ω as long as χ(·, ε) transforms the conductor boundary X ∈ Γ to the new
boundary x ∈ γ.

The notion of the first shape variation of capacitance functional C[Γ ] (formally known as
Gateaux derivative) is defined as the infinitesimal change in the capacitance as vacuum
domain Ω deforms to ω under a particular choice of configuration mapping x = χ(X, ε)
(Kasumba and Kunisch, 2014),

δ(1)C[Ω;χ] = dC[ω]
dε

∣∣∣
ε=0

= lim
ε↓0+

C[ω]− C[Ω]
ε

. (5.39)

Definition (5.39) can be generalized to higher order shape variations such as the second
variation δ(2)C[Ω;χ] by taking derivative of first shape variation. There are two ma-
jor obstacles in computing the variations of capacitance C[γ]: First of all, it’s obvious
that changes in geometry would directly affect the volume integral in capacitance func-
tional (5.35). Secondly, the new harmonic electric potential ψ now satisfies the Laplace
equation not in the undeformed vacuum region Ω of material frame but the deformed
region ω of spatial frame. In addition to pure geometric considerations, calculation of
capacitance C[ω] must also take the new potential ψ into account instead of Ψ . It’s
not apparent that how to directly compare the two potentials ψ(x ∈ ω) and Ψ(X ∈ Ω)
defined on two different regions. In the following section, we address these issues using
the convective Lagrangian coordinates introduced in Section 5.2.

First shape variation of self-capacitance
Recall ψ is the harmonic potential satisfying the Laplace equation in the deformed
vacuum region ω with equipotential boundary condition on the new boundary γ,

divdψ = 0 in ω,

ψ = 1 on γ,

ψ = 0 otherwise.





(5.40)

In the spatial frame ω, capacitance functional

C[ω] =
∫

ω
dψ · dψ dω (5.41)

has the standard form of a Dirichlet energy. We transform capacitance functional back
to the reference configuration X ∈ Ω where coordinates are fixed but instead the map
χ(·, ε) varies with ε. Using gradient transformations between the spatial and mate-
rial frames introduced in (5.15), we can evaluate capacitance functional using material
coordinates,

C[Ω, ε] =
∫

Ω
DΨC−1DΨJ dΩ. (5.42)

The total derivative of capacitance C[ω] in ε now becomes the partial derivative of
C[Ω, ε] in ε. Since material domain Ω is fixed, we can interchange the order of volume
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integration and partial differentiation with respect to ε,
dC[ω]

dε = ∂C[Ω, ε]
∂ε

=
∫

Ω
DΨ

∂C−1J

∂ε
DΨ + 2DΨC−1J

∂DΨ

∂ε
dΩ. (5.43)

Recall material gradient D and ∂/∂ε commute. We can simplify the second term that
appears in integral (5.43),

∫

Ω
DΨC−1J

∂DΨ

∂ε
dΩ =

∫

Ω
DΨC−1D

∂Ψ

∂ε
J dΩ =

∫

ω
dψ · dψ̇ dω

=
∫

ω
−ψ̇ div(dψ) dω +

∫

γ
ψ̇n · dψ dγ, (5.44)

where the last line we apply Green’s identity in spatial frame. Recall from equation (5.40)
that ψ is expected to be harmonic everywhere in the spatial frame which immediately
eliminates the volume integral in (5.44). Dirichlet boundary condition ψ(x ∈ γ) = 1
must be enforced in every spatial frame mapped by the configuration χ(X, ε) which
means the material time derivative of ψ must vanish on γ for all ε. Hence ψ(x), being
the solution to equation (5.40), completely eliminates the second integral in equation
(5.43). As for the first volume integral in equation (5.43), we observe that

∂C−1J

∂ε
= C−1∂J

∂ε
− F −1(l + l>)F −>J. (5.45)

Substituting expression (5.45) back to the first total derivative (5.43) and converting to
spatial frame yield a spatial volume integral,

dC[ω]
dε =

∫

ω
dψ
(
divv − l − l>)dψ dω. (5.46)

The form of expression (5.46) is not satisfactory due to its volume-integral nature. As we
discussed before, the capacitance functional C[ω] should be interpreted more precisely
as C[γ] since the solution ψ to the Dirichlet problem (5.40) is completely determined by
the boundary shape γ alone. Intuitively speaking, how configuration map χ(X, ε) and
its derivatives in ε behave interior to the domain should have no effect on capacitance
except the prescribed deformation on the boundary. We must be able to show that
volume integral (5.46) can be recast into a pure surface integral which only involves
interfacial information on γ. To see this, we first perform integration by parts on the
first term of expression (5.46),

∫

ω
(dψ · dψ)divv dω =

∫

γ
n · v(dψ · dψ) dγ −

∫

ω
v · d(dψ · dψ) dω. (5.47)

We then note the following identity using index notation,

2div((v · dψ)dψ) = 2∇i((vj∇jψ)∇iψ)

= 2(∇ivj)(∇jψ)(∇iψ) + 2vj(∇i∇jψ)(∇iψ) Harmonic

= (∇jψ)(∇ivj +∇jvi)(∇iψ) + 2vj(∇j∇iψ)∇iψ Torsion free

= (∇jψ)(∇ivj +∇jvi)(∇iψ) + vj∇j((∇iψ)∇iψ)

= dψ(l + l>)dψ + v · d(dψ · dψ). (5.48)
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Substitution of identity (5.48) into equation (5.47) cancels out all volume integrals in
(5.46) except one in the divergence form ∝ div(·). A straight forward application of
divergence theorem in spatial coordinates concludes the first total derivative of capaci-
tance functional

dC[ω]
dε =

∫

γ
(v · n)|dψ|2 − 2(v · dψ)(n · dψ) dγ. (5.49)

If the solution ψ(x) to the Dirichlet problem (5.40) is known for some configuration
χ(·, ε), we can compute the rate of change in the capacitance C[ω] by evaluating the
integral defined in the first total derivative (5.49). We would like to point out that, the
integrand in (5.49) is in fact the familiar Maxwell stress tensor t (up to a factor of 2),

dC[ω]
dε =

∫

γ
ntv dγ, t = |dψ|2I− 2dψ ⊗ dψ. (5.50)

This is no surprise since we are calculating the variation of electrostatic energy which is
precisely the physical interpretation of Maxwell stress tensor in a homogeneous isotropic
medium. The first shape derivative (or variation) δ(1)C[Γ ;V ] is defined as (Sokolowski
and Zolesio, 1992)

δ(1)C[Γ ;V ] =
∫

Γ
(V ·N)|DΨ |2 − 2(V ·DΨ)(N ·DΨ) dΓ, (5.51)

where all quantities in (5.51) are understood to be evaluated at ε = 0. In fact for a
perfect conductor, we know electric field on its boundary is the normal direction only.
Hence we recover the usual electrostatic pressure (up to a factor of 1/2),

δ(1)C[Γ ;V ] =
∫

Γ
−(V ·N)(N ·E)2 dΓ, (5.52)

which is the result that Ljepojevic and Forbes (1995) arrived at, except our approach is
more systematic and rigorous in light of convective Lagrangian coordinates.

Equation for Eulerian derivative ψ′

Although the first total derivative (5.49) of capacitance C[ω] doesn’t involve any varia-
tion in ψ, as we shall see later, the Eulerian derivative ψ′ of ψ is required for the second
total derivative of C[ω] in ε. In this section we derive a boundary value problem that
ψ′ must satisfy. Note we have already encountered the boundary condition for ψ′ on γ
which comes from the spatial Dirichlet condition on ψ,

ψ̇ = ψ′ + v · dψ = 0 on γ. (5.53)

Deriving the governing equation of ψ′(x) in the spatial frame ω is more involved. We
begin with transforming the harmonicity of ψ everywhere in the spatial frame back to
the material frame,

divdψ = 1
J

Div(JC−1DΨ) = 0 in Ω. (5.54)
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Note the Laplace equation (5.54) must be fulfilled for every configuration χ(·, ε). Hence
differentiating (5.54) with respect to ε on both sides yields

0 = −∂J
∂ε

1
J2 Div(JC−1DΨ) + 1

J
Div

(
JC−1D

∂Ψ

∂ε

)
+ 1
J

Div
(∂JC−1

∂ε
DΨ

)
. (5.55)

With the help of identities (5.54) and (5.45), after some rearrangements we arrive at
an equation for ψ′ in spatial frame,

divdψ′ = −div
[
(divv − l − l>)dψ + d(v · dψ)

]
. (5.56)

We next show that entire right hand side of equation (5.56) is in fact identically zero.
To simplify notation, we use bk ≡ ∇kψ and bk ≡ ∇kψ to denote the covariant and
contracovariant components of dψ for shorthand. Each term on the right hand side of
equation (5.56) can be expanded in index notation of covariant differentiation,

divd(v · dψ) = ∇i∇ivk∇kψ
= ∇igij∇j(vkbk)
= ∇igij [bk(∇jvk) + vk(∇jbk)]
= bk∇i(gij∇jvk) + (∇jbk)(∇jvk) + (∇jbk)(∇igijvk) + vk∇igij∇jbk
= bk∇i∇ivk + 2(∇jbk)(∇jvk) + vkgij∇i∇j∇kψ]

= bk∇i∇ivk + 2(∇jbk)(∇jvk) + vkgij∇i∇k∇jψ] Torsion free

= bk∇i∇ivk + 2(∇jbk)(∇jvk) + vkgij∇k∇i∇jψ] Flat

= bk∇i∇ivk + 2(∇jbk)(∇jvk) + vk∇k∇i∇iψ]

= bk∇i∇ivk + 2(∇ibk)(∇ivk), Harmonic (5.57)

div((divv)dψ) = ∇i((∇kvk)∇iψ)

= bi∇i∇kvk + (∇kvk)∇i∇iψ
= bi∇i∇kvk, Harmonic (5.58)

div(−ldψ) = −∇k((∇ivk)∇iψ)

= −bi(∇k∇ivk)− (∇ivk)(∇kbi)
= −bi(∇i∇kvk)− (∇ivk)(∇kbi) Flat

= −bi(∇i∇kvk)− (∇ivk)(gij∇k∇jψ)

= −bi(∇i∇kvk)− (∇ivk)(gij∇j∇kψ) Torsion free

= −bi(∇i∇kvk)− (∇ivk)(∇ibk), Torsion free (5.59)

div(−l>dψ) = −∇k((∇kvi)∇iψ)

= −bi(∇k∇kvi)− (∇kvi)(∇kbi). (5.60)

As promised, all terms in the summation of (5.57), (5.58), (5.59) and (5.60) exactly
cancel out with each other and in turn eliminate the entire right hand side of equation
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(5.56). Therefore the equation for Eulerian derivative ψ′ is again the Laplace equation in
the spatial frame but this time with a nontrivial Dirichlet boundary condition depending
on the interaction between spatial potential ψ and spatial velocity v,

divdψ′ = 0 in ω,

ψ′ = −v · dψ on γ.



 (5.61)

Second shape variation of self-capacitance
The second derivative of capacitance functional C with respect to ε is again evaluated
in the material frame,

d2C[ω]
dε2 =

∫

Ω
DΨ

∂2C−1J

∂ε2
DΨ + 2DΨ ∂C

−1J

∂ε
D
∂Ψ

∂ε
+DΨC−1JD

∂2Ψ

∂ε2
dΩ. (5.62)

We note that the last integrand in (5.62) is almost identical to the one we encountered
in the first variation (5.43). In spatial frame, ∂2Ψ/∂ε2 becomes the second material
time derivative ψ̈ which must vanish on γ for the similar reasoning that leads to the
boundary condition ψ̇ = 0 on γ for the first derivative dC[ω]/dε. Therefore it eliminates
the last integrand in (5.62).

We next transform the second integral in equation (5.62) into a more symmetric form,
∫

Ω
DΨ

∂C−1J

∂ε
D
∂Ψ

∂ε
dΩ

=
∫

Γ
N
∂Ψ

∂ε

∂C−1J

∂ε
DΨ dΓ −

∫

Ω

∂Ψ

∂ε
Div ∂C

−1J

∂ε
DΨ dΩ

=
∫

Γ
N
∂Ψ

∂ε

∂C−1J

∂ε
DΨ dΓ +

∫

Ω

∂Ψ

∂ε
Div

(
JC−1D

∂Ψ

∂ε

)
dΩ

=
∫

γ
ψ̇n(divv − l − l>)dψ dγ +

∫

γ
ψ̇(n · dψ̇) dγ −

∫

Ω

(
D
∂Ψ

∂ε

)
C−1JD

∂Ψ

∂ε
dΩ,

(5.63)

where in the third line we apply the identity (5.55) derived earlier,

Div
(
JC−1D

∂Ψ

∂ε

)
= −Div

(∂JC−1

∂ε
DΨ

)
. (5.64)

Applying Dirichlet constraint ψ̇ = 0 on γ to (5.63) yields the second total derivative of
capacitance functional C[ω] in ε,

d2C[ω]
dε2 =

∫

Ω
DΨ

∂2C−1J

∂ε2
DΨ − 2

(
D
∂Ψ

∂ε

)
C−1JD

∂Ψ

∂ε
dΩ. (5.65)

In order to proceed from here, we must evaluate the second Eulerian derivative in (5.65).
Standard product rule yields

∂2C−1J

∂ε2
= ∂2C−1

∂ε2
J + 2∂C

−1

∂ε

∂J

∂ε
+ C−1∂

2J

∂ε2
. (5.66)
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We then lift the second Eulerian derivative of C−1 to the spatial frame,

∂2C−1

∂ε2
= ∂2F −1

∂ε2
F −> + 2∂F

−1

∂ε

∂F −>

∂ε
+ F −1∂

2F −>

∂ε2

= −∂F
−1l

∂ε
F −> + 2F −1l l>F −> − F −1∂l

>F −>

∂ε

= F −1(l l + 2l l> + l>l>)F −> − F −1∂l + l>

∂ε
F −>

= F −1(2l l + 2l l> + 2l>l> − dv̇ − dv̇>)F −>, (5.67)

where the last line we use the identity (5.28) of the material time derivative of v.
Substituting expressions (5.67) and (5.30) into identity (5.66) transforms the material
form (5.62) of the second total derivative of capacitance functional C[ω] into a spatial
form,

d2C[ω]
dε2 =

∫

ω
dψ
{

2(l l + l l> + l>l>)− dv̇ − dv̇>

+ (divv)2 − tr(l l ) + divv̇

− 2(divv)(l + l>)
}
dψ − 2dψ̇ · dψ̇ dω.

(5.68)

By exploiting symmetries of the quadratic forms in expression (5.68) we rewrite the
second total derivative of capacitance functional as the sum of four volume integrals,

d2C[ω]
dε2 = I1 + I2 + I3 + I4, (5.69)

where the integrals I1, I2, I3 and I4 are given by

I1 =
∫

ω
dψ
[
4l l + 2l l> − 4l (divv)

]
dψ dω, (5.70)

I2 =
∫

ω

[
(divv)2 − tr(l l )

]
(dψ · dψ) dω, (5.71)

I3 =
∫

ω
−2dψ′ · dψ′ − 4dψ′ · d(v · dψ)− 2d(v · dψ) · d(v · dψ) dω, (5.72)

I4 =
∫

ω
dψ(divv̇ − dv̇ − dv̇>)dψ dω. (5.73)

We would like show that the sum of volume integrals (5.70)–(5.73) can be recast into
a collection of pure surface integrals because as we discussed before the details of
deformation interior to the vacuum region shouldn’t matter.

To start we first note the identity

d(v · dψ) = ∇i(vj∇jψ) = (∇ivj)∇jψ + vj∇i∇jψ = l>dψ + (d2ψ)v, (5.74)
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where d2ψ = d(dψ) is a rank-2 tensor. Applying the identity (5.74) to integral I1 yields

I1 = 2
∫

ω
dψ
[
2l l + l l> − 2l (divv)

]
dψ dω

= 2
∫

ω
dψ
[
l l − l (divv)

]
dψ dω − 2

∫

ω
(l>dψ) · [(divv)− l − l>]dψ dω

= 2
∫

ω
dψ
[
l l − l (divv)

]
dψ dω + 2

∫

ω
(v · d2ψ) · [(divv)− l − l>]dψ dω

+ 2
∫

ω
(v · dψ)div

[
(divv − l − l>)dψ

]
dω − 2

∫

γ
(v · dψ)n · [(divv − l − l>)dψ

]
dγ

= 2
∫

ω
dψ
[
l l − l (divv)

]
dψ dω + 2

∫

ω
(v · d2ψ) · [(divv)− l − l>]dψ dω

− 2
∫

ω
(v · dψ)divd(v · dψ) dω − 2

∫

γ
(v · dψ)n · [(divv − l − l>)dψ

]
dγ, (5.75)

where for the last equality we have used the fact shown earlier that the right hand side
of equation (5.56) is zero. We next consider another identity relevant to integral I2,

div
{[

(divv)v − l v]|dψ|2} = ∇i
{[

(∇jvj)vi − (∇jvi)vj
]
(∇kψ)(∇kψ)

}

=
[
(∇jvj)(∇ivi)− (∇jvi)(∇ivj)

]
(∇kψ)(∇kψ)

+
[
(∇i∇jvj)vi − (∇i∇jvi)vj

]
(∇kψ)(∇kψ)

+
[
(∇jvj)vi − (∇jvi)vj

]
2(∇kψ)(∇i∇kψ)

=
[
(divv)2 − tr(l l )

]|dψ|2 + 2v
(
divv − l>)d2ψdψ (5.76)

Applying the above identity (5.76) to integral I2, we get

I2 =
∫

ω

[
(divv)2 − tr(l l )

]
(dψ · dψ) dω

=
∫

ω
div
{[

(divv)v − l v]|dψ|2
}

dω −
∫

ω
2(divv)dψ(d2ψ)v dω

+
∫

ω
2dψ(d2ψ)l v dω, (5.77)

where the symmetry of tensor d2ψ is evoked to arrive at the last line. As for integral
I3, we apply the Green’s identity and integrate by parts,

I3 =
∫

ω
−2dψ′ · dψ′ − 4dψ′ · d(v · dψ)− 2d(v · dψ) · d(v · dψ) dω

=
∫

ω
2(divdψ′)ψ′ + 4(divdψ′)(v · dψ) + 2(divd(v · dψ))(v · dψ) dω

−
∫

γ
n · [2ψ′(dψ′) + 4(v · dψ)(dψ′) + 2(v · dψ)(d(v · dψ))

]
dγ. (5.78)

Recall from equation (5.61) that ψ′ must be harmonic which immediately eliminates two
integrands in I3. After summing up contributions from I1 in (5.75), I2 in (5.77) and
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I3 in (5.78) altogether, we are left with a combination of volume and surface integrals,

I1 + I2 + I3 = 2
∫

ω
dψ
[
l l − l (divv)

]
dψ − v(d2ψ)(l + l>)dψ + dψ(d2ψ)l v dω

+
∫

γ
n · [(divv)v − l v]|dψ|2 dγ

−2
∫

γ
(v · dψ)n · [(divv − l − l>)dψ

]
dγ

−2
∫

γ
n · [ψ′(dψ′) + 2(v · dψ)(dψ′) + (v · dψ)d(v · dψ)

]
dγ. (5.79)

Now it’s only a straightforward exercise to convert the volume integrals in I1 +I2 +I3

to pure surface integrals. Consider one of the integrals in equation (5.79),

−
∫

ω
(dψldψ)(divv) dω =

∫

ω
v · d(dψldψ) dω −

∫

γ
(n · v)(dψldψ) dγ. (5.80)

We observe that the volume integral in (5.80) can be split into two pieces,

v · d(dψldψ)

= vk∇k((∇jψ)(∇ivj)(∇iψ))

= vk(∇jψ)(∇ivj)(∇k∇iψ) + vk(∇k∇jψ)(∇ivj)(∇iψ) + vk(∇jψ)(∇k∇ivj)(∇iψ)

= vk(∇k∇iψ)(∇ivj)(∇jψ) + vk(∇k∇iψ)(∇jvi)(∇jψ) + (∇jψ)(vk∇k∇ivj)(∇iψ)

= v(d2ψ)(l + l>)dψ + (∇jψ)(vk∇i∇kvj)(∇iψ). Flat (5.81)

The first term in equation (5.81) exactly cancels out the second integrand in the volume
integral (5.79) which leaves us with the only integrand of the volume integral in I1 +
I2 + I3,

(∇jψ)(vk∇i∇kvj)(∇iψ) + dψl ldψ + dψ(d2ψ)l v

= (∇jψ)(vk∇i∇kvj)(∇iψ) + (∇jψ)(∇kvj)(∇ivk)(∇iψ) + (∇iψ)(∇i∇jψ)(∇kvj)vk

= (∇jψ)(∇iψ)(vk∇i∇kvj + (∇kvj)(∇ivk)) + (∇iψ)(∇i∇jψ)(vk∇kvj)
= (∇jψ)(∇iψ)∇i(vk∇kvj) +∇i((∇iψ)(∇jψ))(vk∇kvj)− (∇i∇iψ)(∇jψ)(vk∇kvj)
= (∇jψ)(∇iψ)∇i(vk∇kvj) +∇i((∇iψ)(∇jψ))(vk∇kvj) Harmonic

=∇i
[
vk(∇kvj)(∇jψ)(∇iψ)

]
= div

[
(vl>dψ)dψ

]
. (5.82)

After a straightforward use of divergence theorem, the sum of volume integrals I1 +I2 +
I3 defined in equation (5.70)–(5.72) simplifies to a collection of pure surface integrals
as it must,

I1 + I2 + I3 = 2
∫

γ
(n · dψ)(vl>dψ)− (n · v)(dψldψ) dγ

+
∫

γ
n · [(divv)v − l v]|dψ|2 dγ

−2
∫

γ
(v · dψ)n · [(divv − l − l>)dψ

]
dγ

−2
∫

γ
n · [ψ′(dψ′) + 2(v · dψ)(dψ′) + (v · dψ)d(v · dψ)

]
dγ.

(5.83)
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We note that the form of integral I4 is almost identical to the first total derivative
(5.46) of the capacitance functional except for spatial velocity vector v replaced by
spatial acceleration v̇. Hence the surface integral contribution from I4 shares the same
functional form with the first shape variation,

I4 =
∫

γ
(v̇ · n)|dψ|2 − 2(v̇ · dψ)(n · dψ) dγ. (5.84)

After substituting I1 + I2 + I3 from (5.83) and I4 from (5.84) into (5.69), we arrive
at the second total derivative of capacitance functional C[ω] as a sum of spatial surface
integrals only,

d2C[γ]
dε2 = 2

∫

γ
(n · dψ)(vl>dψ)− (n · v)(dψldψ) dγ

+
∫

γ

[
(divv)(n · v)− nl v]|dψ|2 dγ

−2
∫

γ
(v · dψ)

[
n(divv − l )dψ]dγ

−2
∫

γ
(v · dψ)n(d2ψ)v dγ

−2
∫

γ
(v · dψ)(n · dψ′) dγ

+
∫

γ
(v̇ · n)|dψ|2 − 2(v̇ · dψ)(n · dψ) dγ, (5.85)

where shape derivative ψ′ is the harmonic potential which solves the Dirichlet problem
(5.61) posed on the spatial domain ω. From now on, we officially replace the notation
C[ω] with C[γ].

Second shape variation in boundary-adapted coordinates
To gain more insight into the surface integrals in the second total derivative (5.85) of
capacitance functional C[γ], we introduce an adapted coordinate frame (ξ1, ξ2, ξ3) for
vectors and tensors in the neighbourhood of conductor surface γ,

x(ξ1, ξ2, ξ3) = xγ(ξ1, ξ2) + ξ3n. (5.86)

The image of map xγ(ξ1, ξ2) corresponds to the conductor surface γ and ξ3 describes
the distance away from the in the direction normal to the surface. Under surface-adapted
coordinate system, a direct consequence of the equipotential condition defined in the
Dirichlet problem (5.40) is ∇3ψ being the only non-zero component of dψ evaluated
on the boundary γ,

∇iψ = δj3∇jψ on γ, (5.87)

which leads to tremendous simplifications in the first three integrals of the second total
derivative (5.85). Evaluating the integrands of the first two integrals in (5.85) on the
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conductor surface γ in terms of surface-adapted coordinate system yields

2(n · dψ)(vl>dψ)− (n · v)(dψldψ) +
[
(divv)(n · v)− nl v]|dψ|2

= 2∇3ψv
i(∇iv3)∇3ψ − 2v3∇3ψ(∇3v

3)∇3ψ + v3(∇kvk)(∇3ψ∇3ψ)

− (∇kv3)vk(∇3ψ∇3ψ)− 2v3∇3ψ(∇kvk)∇3ψ + 2v3∇3ψ(∇3v
3)∇3ψ

= ∇3ψv
i(∇iv3)∇3ψ − v3(∇kvk)(∇3ψ∇3ψ)

= (ψ∇3ψ)2[vi∇iv3 − (∇kvk)v3
]
. (5.88)

Recall the calculation of Christoffel symbols Γkij from (4.27). The last two terms in
expression (5.88) can be explicitly expanded in the surface-adapted coordinates (5.86)
as

vi∇iv3 = vα∂αv
3 + vαΓ3

αβv
β + v3∂3v

3, (5.89)

(∇kvk)v3 = v3divγ(vαgα) + v3∂3v
3 − 2hv3, (5.90)

where divγ and h are the surface divergence and mean curvature of boundary γ respec-
tively. We expand the integrand of the fourth integral in the second total derivative
(5.85) in a similar fashion,

− 2(v · dψ)n(d2ψ)v = −2v3∇3ψ(∇3∇3ψ)v3 = −4h(∇3ψ)2v2
3, (5.91)

where in the second equality we have used the identity (4.133) that ∇3∇3ψ = 2h∇3ψ

on γ for a harmonic potential ψ. Thus if we identify v3 = vn as a scalar field on manifold
γ and vγ = vαgα as a surface vector field tangent to γ, we can transform the second
total derivative (5.85) of capacitance functional C[γ] back to a coordinate-free form,

d2C[γ]
dε2 =

∫

γ

[
vγ · dγvn − (divγvγ)vn + vγiivγ − v̇n

]
(n · dψ)2 dγ

−
∫

γ
2vn(n · dψ)(n · dψ′) + 2hv2

n(n · dψ)2 dγ, (5.92)

where dγ is the surface gradient operator and tensor ii is the second fundamental form
of conductor surface γ.

We make a few remarks on the observation that both the first (5.49) and second (5.85)
total derivative don’t involve derivative of spatial velocity v in the direction normal to the
boundary γ. In other words, given any two configuration maps χ(X, ε) and χ̃(X, ε), as
long as their prescribed boundary deformations agree, i.e. χ(X ∈ Γ, ε) = χ̃(X ∈ Γ, ε),
the resulting derivatives of capacitance functional C[γ] are identical regardless of how
interior vacuum region is deformed. This is consistent with the comment we made
earlier that the self-capacitance of a conductor is solely determined by the shape of its
boundary.

In the end, if we evaluate the second total derivative (5.92) at ε = 0 (i.e. material
frame), then the second shape variation of capacitance functional in direction of the
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V

Γ

γ

VNN

V Γ

Figure 5.2: Material shape Γ (solid black line) is deformed into the spatial shape γ
(dashed black line) under material velocity V (black arrow) with normal (red) compo-
nents VNN and tangential (blue) ones V Γ .

material velocity V and acceleration A is found to be a combination of contributions
from the first order and the second order shape variations,

δ(2)C[Γ ;V ,A] = δ(2)C[Γ ;V ] + δ(1)C[Γ ;A], (5.93)

where

δ(2)C[Γ ;V ] =
∫

Γ

[
V Γ ·DΓVN − (DivΓV Γ )VN + V Γ IIV Γ

]
(N ·DΨ)2 dΓ

−
∫

γ
2VN (N ·DΨ)(N ·DΨ ′) + 2HV 2

N (N ·DΨ)2 dΓ
(5.94)

accounts for the second order variation induced exclusively by material velocity V (II
is the second fundamental form tensor of the material boundary Γ ) and δ(1)C[Γ ;A]
has the identical functional form with the first shape variation (5.51), except material
velocity V is replaced by the acceleration A = ∂V /∂ε at ε = 0. The surface-adapted
decomposition of material velocity V into V Γ and VNN is illustrated in figure 5.2.
Note the form of second shape variation (5.93) is exactly what one would obtain for a
smooth function f(x) in the context of single-variable calculus,

d2f(x0 + εδx1 + ε2δx2/2 +O(ε3))
dε2

∣∣∣
ε=0

= f ′′(x0)(δx1)2 + f ′(x0)(δx2). (5.95)

It should be emphasized that the second shape variation of self-capacitance has a nonlo-
cal nature because Eulerian derivative Ψ ′ is the solution to the auxiliary problem (5.61)
evaluated at ε = 0,

DivDΨ ′ = 0 in Ω,

Ψ ′ = −VN (N ·DΨ) on Γ,



 (5.96)

which requires the information of material velocity field everywhere on the conductor
surface Γ .
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As a sanity check, we test the second variation of C on a spherical capacitor occupying
the region between two concentric spheres of inner radius ra and outer radius rb. The
exact solution to the electric field within the capacitor is given by

ψ = ra
ra − rb

(
1− rb

r

)
, ψ(ra) = 1, ψ(rb) = 0, (5.97)

where r is the radial distance and the outward normal vector n = −gr on the inner
surface. We consider a configuration map χ(R, ε) such that the inner radius ra in spatial
coordinates is mapped from Ra in material frame,

ra = χ(Ra, ε) = Ra + ε. (5.98)

The rate of spatial deformation vector v = gr in this case is purely normal to the
inner surface. The exact solution to the self-capacitance C[ra] and its first two total
derivatives in ε for any radius ra can be easily obtained,

C[ra] = 4πrarb
rb − ra

,
dC[ra]

dε = 4πr2
b

(rb − ra)2 ,
d2C[ra]

dε2 = 8πr2
b

(rb − ra)3 . (5.99)

The auxiliary problem of the Eulerian derivative ψ′ also admits the analytic solution,

ψ′ = rb
(rb − ra)2

(rb
r
− 1

)
, ψ′(ra) = −v · dψ = rb/ra

rb − ra
, ψ′(rb) = 0. (5.100)

We also compute the necessary ingredients needed in the integral formula of the first
and the second derivatives,

n · dψ|ra = rb/ra
rb − ra

, n · dψ′|ra = r2
b/r

2
a

(rb − ra)2 , H = 1
ra
, vn = −1. (5.101)

It can be easily verified that, with quantities from expression (5.101) substituted, the
surface integrals (5.49) and (5.92) are indeed evaluated to the identical results from the
exact solution (5.99).

5.4 Geometric Variations of Surface Area and Volume
In this section, we derive the variations in differential elements when geometry undergoes
deformation. Such calculations are usually done in a bottom-up approach such as the
method employed by Lenz and Lipowsky (2000) where metric variations of surface-
adapted coordinate system (ξ1, ξ2, ξ3) are directly computed through index notations
which are usually extremely lengthy and error-prone. For example, the first variation of
surface metric tensor in equation (19) of Lenz and Lipowsky (2000) is in fact incorrect.
Their umbersome index notation and lack of covariant expressions make it impossible
to check if it is only a typographical error or the remaining par of their paper is actually
wrong (Deserno, 2004). Instead, the use of convective Lagrange coordinates allows a
top-down approach: variations are first computed under the general transformation rules
of deformation gradient tensor F and then projected to the surface-adapted coordinate
frame in the end.
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First and second derivatives of area differential
Variational calculations of area element is much easier with convective Lagrangian co-
ordinates. We start with an equivalent expression of a spatial area element dγ,

dγ = n · ndγ. (5.102)

Substituting Nanson’s relation (5.21) into (5.102) and taking total derivative with re-
spect to ε yield

ddγ
dε = n · d(ndγ)

dε + dn
dε · ndγ

= n · ∂JF
−>

∂ε
N dΓ + 1

2
d|n|2

dε dγ Note |n| = 1

= n ·
[
J(divv)F −> − J l>F −>

]
N dΓ

= n ·
[
(divv)− l>

]
ndγ =

(
divv − nl>n) dγ. (5.103)

Using the adapted curvilinear coordinates for surface γ, we arrive at a convenient ex-
pression for the first total derivative (or deformation rate) of spatial area element,

d(dγ)
dε = divγv dγ =

(
divγvγ − 2hvn

)
dγ. (5.104)

Note from the calculation of (5.103) that, the following identity

dn
dε dγ = d(ndγ)

dε − nddγ
dε

=
(
divv − l>)ndγ − n(divv − nl>n) dγ =

[(
nl>n

)
n− l>n

]
dγ (5.105)

must hold for all area differentials dγ which is only possible if

dn
dε =

(
nl>n

)
n− l>n. (5.106)

Equation (5.106) is the first variation of surface normal vector n as boundary γ deforms.

We then apply a similar strategy to derive the second total derivative of spatial area
element which yields

d2n · ndγ
dε2

= n · d2(ndγ)
dε2 + d2n

dε2 · ndγ + 2dn
dε ·

d(ndγ)
dε note d2|n|2

dε2 = 0

= n · ∂
2JF −>

∂ε2
N dΓ − dn

dε ·
dn
dε dγ + dn

dε ·
d(ndγ)

dε + dn
dε ·

d(ndγ)
dε

= n · ∂
2JF −>

∂ε2
N dΓ + dn

dε · n
ddγ
dε +

[(
nl>n

)
n− l>n] · [(divv)− l>]ndγ

= n · ∂
2JF −>

∂ε2
N dΓ + nl l>ndγ − (nl>n)2 dγ, (5.107)
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where ∂2JF −>/∂ε2 can be explicitly expanded in aid of (5.28) and (5.30),

∂2JF −>

∂ε2
= 2∂J

∂ε

∂F −>

∂ε
+ ∂2J

∂ε2
F −> + J

∂2F −>

∂ε2

= −2J(divv)l>F −> + J
[
(divv)2 + div(v̇)− tr(l l )

]
F −>

+J l>l>F −> − J(dv̇> − l>l>)F −>

=
[− 2(divv)l> + (divv)2 − tr(l l ) + 2l>l> + div(v̇)− dv̇>]JF −>.

(5.108)

Applying identity (5.108) to (5.107) finally leads to the spatial form of the second
derivative of area differential,

d2dγ
dε2 =

[− 2(divv)nl>n+ (divv)2 − tr(l l ) + 2nl>l>n

+ divv̇ − ndv̇>n+ nl l>n− (nl>n)2] dγ. (5.109)

In surface-adapted curvilinear coordinates, equation (5.109) simplifies to

d2dγ
dε2 =

[
(divγv)2 − (nl>n)2 − tr(l l ) + 2nl>l>n+ nl l>n− (nl>n)2 + divγ v̇

]
dγ.

(5.110)
Using index notation, we can simply various terms in expression (5.110) and group them
into contributions intrinsic and extrinsic to the surface γ,

2nl>l>n− tr(l l )− (nl>n)2 = 2(∇3v
i)(∇iv3)− (∇jvi)(∇ivj)− (∇3v

3)2

= 2(∇3v
3)(∇3v

3) + 2(∇3v
α)(∇αv3)− (∇3v

3)(∇3v
3)

−(∇αv3)(∇3v
α)− (∇βvα)(∇αvβ)− (∇3v

α)(∇αv3)

−(∇3v
3)2

= −(∇βvα)(∇αvβ) = −(∇̂βvα − iiαβv3)(∇̂αvβ − iiβαv3)

= −(∇̂βvα)(∇̂αvβ) + 2iiαβv3(∇̂αvβ)− iiβαiiαβ(v3)2,

(5.111)

nl l>n− (nl>n)2 = (∇jv3)(∇jv3)− (∇3v
3)2

= (∇αv3)gαβ(∇βv3)

= (∇̂αv3 + iiαα′vα
′)gαβ(∇̂βv3 + iiβ

′
β vβ′)

= (∇̂αv3)(∇̂βv3) + iiβα′v
α′(∇̂βv3)

+(∇̂αv3)iiαβ′vβ′ + iiβα′ ii
β′
β v

α′vβ′ , (5.112)

(divγv)2 = (divγvγ)2 − 4h(divγvγ)vn + 4h2v2
n, (5.113)

where ∇̂α is the low-dimensional covariant derivative restricted to surface γ, for which

∇βvα = ∇̂βvα − iiαβ on γ (5.114)
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holds (recall expansions (4.29) of the first kind Christoffel symbol). Substituting ex-
pressions (5.111), (5.112) and (5.113) into second total derivative (5.110) of dγ and
exploiting properties of the second fundamental form ii we arrive at

d2|dγ|
dε2 =

[
divγ v̇ + (divγv)2 − (∇βvα)(∇αvβ) + (∇αv3)(∇αv3)

]
dγ

=
[
divγ v̇ + (divγvγ)2 − 4h(divγvγ)vn + 4h2v2

n

−(∇̂βvα)(∇̂αvβ) + 2iiαβv3(∇̂αvβ)− iiβαiiαβ(v3)2

+(∇̂αv3)gαβ(∇̂βv3) + 2iiβα′v
α′(∇̂βv3) + iiβα′ ii

β′
β v

α′vβ′
]

dγ

=
[
divγ v̇ + (divγvγ)2 − 4h(divγvγ)vn + 4h2v2

n

−(∇̂βvα)(∇̂αvβ) + 2iiαβ(v3∇̂αvβ + vβ∇̂αv3)− (4h2 − 2k)(v3)2

+(∇̂αv3)(∇̂αv3) + iiβα′ ii
β′
β v

α′vβ′
]

dγ

=
[
divγ v̇ + (divγvγ)2 − (∇̂βvα)(∇̂αvβ) + (∇̂αvn)(∇̂αvn) + 2kv2

n

−4h(divγvγ)vn + 2iiαβ∇̂α(vnvβ) + iiβα′ ii
β′
β v

α′vβ′
]

dγ (5.115)

where ∇̂α is the low-dimensional covariant differential operation of surface γ. A cleanup
of the algebras in expression (5.115) leads to the final result

d2dγ
dε2 =

{
divγ v̇

+ 2hvγiivγ − kvγ · vγ
+ dγvn · dγvn + 2kv2

n

+ (divγvγ)2 − (∇̂βvα)(∇̂αvβ)

− 4h(divγvγ)vn + 2iiαβ∇̂α(vnvβ)
}

dγ.

(5.116)

The first line in (5.116) is due to spatial acceleration v̇ which is expected to have
the identical form with the first derivative d(dγ)/dε in (5.104) with v replaced by v̇.
The bilinear form in the second line in (5.116) is known as the third fundamental form
tensor iiiαβ = 2hiiαβ − kgαβ. Integrands from the third and the fourth lines are the
intrinsic contributions from tangential vector field vγ and from scalar (normal) field
vn, respectively. We interpret the geometric meaning of these intrinsic contributions by
recognizing

(divγvγ)2−(∇̂βvα)(∇̂αvβ) = (divγvγ)2−tr
(
(dγvγ)(dγvγ)

)
= 2 det(∇̂βvα). (5.117)

Expression (5.117) exactly agrees with the second derivative of Jacobian ∂2J/∂ε2 from
(5.30) in the case of a flat two-dimensional manifold with tangential deformation vγ
only. The last line in (5.116) represents the three-way coupling between vγ , vn and
the extrinsic (mean) curvature of surface γ. If the second derivative of dγ in (5.117) is
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restricted to normal variations only (i.e. v = vnn), we then arrive at the well known
formula in shape analysis,

d2dγ
dε2 =

(
divγ v̇ + |dγvn|2 + 2kv2

n

)
dγ when vγ = 0. (5.118)

In the theory of minimal surfaces, integration of expression (5.118) over the entire
surface of a critical shape γ leads to a quadratic shape functional whose convexity
directly determines whether its total surface area is locally minimal or maximal. The
expression of the first area variation (5.104) and the second variation (5.118) restricted
to normal displacement can be found in standard textbooks on differential geometry
(Stoker, 1988; Kreyszig, 1991). However, the full expression (5.116) of second area
variation d2dγ/dε2 especially including the tangential variations of the surface is less
commonly known or documented, at least to the best of the author’s knowledge. We
find it coincides with the expression derived in Capovilla and Guven (2004).

First and second derivatives of total volume
Variations of volume differential element are straightforward since they mostly deal with
the relative Jacobian J . The first derivative of spatial volume differential dω is directly
given by ∂J/∂ε in (5.29),

ddω
dε = ∂J

∂ε
dΩ = divv dω. (5.119)

The first derivative of the total volume can be expressed as a surface integral through
divergence theorem,

d
dε

∫

ω
dω =

∫

Ω

∂J

∂ε
dΩ =

∫

γ
v · ndγ =

∫

γ
vn dγ. (5.120)

The second derivative of spatial volume differential dω is directly given by ∂2J/∂ε2 in
(5.30),

d2|dω|
dε2 = ∂2J

∂ε2
dΩ =

[
divv̇ + (divv)2 − tr(l l )

]
dω. (5.121)

In order to convert the second derivative of the total volume

d2

dε2
∫

ω
dω =

∫

Ω

∂2J

∂ε2
dΩ =

∫

ω
divv̇ + (divv)2 − tr(l l ) dω (5.122)

to a surface integral only, we first recall an identity similar to the one we encounter in
(5.76),

div
[
(divv)v − l v] = ∇i

[
(∇jvj)vi − (∇jvi)vj

]

= (∇jvj)(∇ivi)− (∇jvi)(∇ivj) + (∇i∇jvj)vi − (∇i∇jvi)vj

= (divv)2 − tr(l l ). Flat (5.123)
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With identity (5.123) substituted in (5.122), the second derivative of the total volume
now becomes a surface integral,

d2

dε2
∫

ω
dω =

∫

γ
n · v̇ + (divv)(n · v)− nl v dγ. (5.124)

We can gain more insights into the second derivative (5.124) by expanding it using index
notation of surface-adapted curvilinear coordinates,

(divv)(n · v)− nl v = (∇ivi)v3 − (∇iv3)vi = (∇αvα)v3 − (∇αv3)vα

= (∇̂αvα − iiααv3)v3 − (∇̂αv3 + iiαβvβ)vα

= v3∇̂αvα − vα∇̂αv3 − 2h(v3)2 − iiαβvβvα. (5.125)

Finally with identity (5.125) we arrive at

d2

dε2
∫

ω
dω =

∫

γ
v̇n + vn(divγvγ)− vγ · dγvn − 2hv2

n − vγiivγ dγ. (5.126)

As usual, the first term in the second derivative of the total volume (5.126) is due to
spatial acceleration v̇. The next two terms are the intrinsic coupling between tangential
vector field vγ and scalar normal field vn, The last two terms represent how vector field
vγ and scalar field vn individually interact with extrinsic curvatures of surface γ.

Both first (5.120) and second (5.126) derivatives of the total volume are surface integral
and only involve information of vector field v defined strictly intrinsic to surface γ (e.g.,
n · dv is considered extrinsic to surface γ). This is expected because the total volume
of region ω can be expressed as a surface integral via divergence theorem,

∫

ω
dω =

∫

ω

1
3divxdω = 1

3

∫

γ
n · xdγ. (5.127)

Finally we would like to highlight the necessity of spatial acceleration v̇ in volume
conservation. Consider a configuration map χ(·, ε) which is constrained to conserve the
total volume for all valid ε. The total derivative of

∫
ω dω with respect to ε at any order

must be zero over the entire range of ε as well. As implied by (5.120), a spatial velocity
field v = vγ always tangent to surface γ would guarantee that the first derivative of
∫
ω dω vanishes but not necessarily the second derivative! To see this claim, let’s consider
a unit sphere to be the material frame Ω with χ(X, ε) being a rigid rotation that rotates
Ω to a new spatial frame ω about some axis (in this case ε is the rotation angle). We
expect the total volume of spatial domain ω be conserved for all ε. Since v derived
from χ(X, ε) is everywhere tangent to the surface γ of the sphere, the first derivative
of
∫
ω dω is zero according to formula (5.120). Second fundamental form ii in this case

equals to the negative of the identity tensor everywhere on the surface of a unit sphere
which renders the second derivative of the total volume

d2

dε2
∫

ω
dω =

∫

γ
v̇n + vγ · vγ dγ (5.128)
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through the formula (5.126). It’s now evident that, integral (5.128) would always be
non-negative without the help of spatial acceleration v̇ and hence violate volume con-
servation.

5.5 Energy Variation and Stability of Charged Conductive Liquids
In this section we derive the first and second shape variations of the total potential
energy of an isolated charged perfectly conducting liquid body with an arbitrary smooth
shape as well the necessary conditions for equilibrium and energy instability. In the
end we show that the famous Rayleigh charge limit for a near-spherical shape can be
obtained from energy analysis alone. In what follows, we non-dimensionalize length scale
with the characteristic radius of curvature Rc of the conductor surface, energy with the
characteristic surface energy σR2

c (σ is the liquid-vacuum surface tension coefficient)
and capacitance with ε0Rc. For an isolated conductor, we fix the total physical charge
Q residing on its surface for any deformed configuration.

Potential energy of a charged liquid body
Let Γ be the dimensionless boundary of the vacuum region Ωvac exterior to the unde-
formed (material) conductive liquid body with γ and ωvac being the deformed (spatial)
counterparts. After the standard procedure of nondimensionalization, the dimensionless
total potential energy

F[γ] = S[γ] + E[γ] (5.129)

of an isolated charged liquid drop is composed of two parts: surface energy

S[γ] =
∫

γ
dγ (5.130)

which is proportional to the total surface area of the liquid body, and the electrostatic
energy E[γ]

E[γ] = Ec
C[γ] , Ec = Q2

2ε0σR3
c

, (5.131)

stored in the surrounding vacuum region ωvac. Here Ec is electric-capillary number and
C[γ] is the dimensionless self-capacitance (5.41).

Let Ωliq and ωliq be the undeformed (material) and deformed (spatial) liquid volume
respectively, with Γ (or γ) being the dividing interface common to both vacuum Ωvac (or
ωvac) and liquid Ωliq (or ωliq) domains. We assume the variation of drop shape is driven
by incompressible motions of the fluid interior to the conductor. Thus mass exchange
through the boundary is forbidden here. For a geometry configuration associated with
the boundary γ to be dynamically accessible, it must at least conserve the total volume
which is equivalent to impose an integral constraint

V[ωliq] = 0 (5.132)
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on the potential energy functional of any spatial configuration ωliq where

V[ωliq] = 3
( ∫

ωliq
dω − |Ωliq|

)
, |Ωliq| =

∫

Ωliq
dΩ. (5.133)

Here |Ωliq| is the dimensionless total volume of the undeformed configuration. In other
words, only energies of different shapes that share identical liquid volume should be
compared. The factor 3 in V[ωliq] arises from the earlier observation (5.127) that
volume integral V[ωliq] can be reformed into a shape functional V[γ] through divergence
theorem,

V[ωliq] =
∫

γ
x · ndγ − 3|Ωliq| = V[γ]. (5.134)

In the rest of this chapter, we will adopt one unique global definition of the surface
normal vector n (or N) pointing from the liquid to the vacuum.

Now let’s consider a configuration map χ(X, ε) which transforms the material domain
Ωvac and boundary Γ to their spatial counterparts ωvac and γ. Although the derivatives
we developed in the last section hold for arbitrary function χ and value of ε as long
as the map χ(·, ε) is well-defined, in energy stability analysis we are mostly interested
in the effect of small perturbations to the undeformed geometry of the conductor. We
choose to align the material frame with the spatial frame at ε = 0, i.e. χ(X, 0) = X

is an identity map. Assuming sufficient continuities in parameter ε, then in the spirit of
Taylor expansion we can represent any near-identity map χ(·, ε) in the general form

χ(X, ε) = X + εV + 1
2ε

2A+O(ε3) (5.135)

for some small ε where V andA are the material velocity v and acceleration v̇ evaluated
at ε = 0, respectively. We reemphasize that the terminologies “velocity” and “acceler-
ation” do not refer to physical quantities in time but rather parametric dependence of
the map χ(·, ε) on 0 ≤ ε � 1. We also do not specify behaviors of χ(X ∈ Ωliq, ε) in
the liquid volume other than mass conservation and continuity of χ(X ∈ Γ, ε) on the
liquid/vacuum interface.

Constrained first shape variation of potential energy
The boundary Γ is said to be a critical shape of the energy functional F[Γ ] if its
first shape variation vanishes for all admissible infinitesimal deformations under certain
constraint, in our case the conservation of total liquid volume,

dF[γ]
dε

∣∣∣
ε=0

= 0 for all χ(·, ε) such that V[γ] = 0. (5.136)

Equation (5.136) is a constrained derivative. If the potential energy and volume con-
straint in (5.136) were multivariate functions instead of functionals, one could enforce
the constraint through the multi-variable chain rule. In an abstract variational problem
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of functionals, it’s not clear how to apply “chain rule" directly. To overcome this diffi-
culty we instead formulate the Lagrangian functional (not to confuse with Lagrangian
coordinates)

L[γ, λ] = S[γ] + E[γ]− λV[γ], (5.137)

where constant λ is the Lagrange multiplier. Then an unconstrained critical point (Γ,Λ)
of the Lagrangian (5.137) is also a critical shape of the original constrained potential.
The critical condition reads

dL[γ, λ]
dε

∣∣∣
ε=0,λ=Λ

= dF[γ]
dε − ΛdV[γ]

dε
∣∣∣
ε=0

= δ(1)F[Γ ;V ]− Λδ(1)V[Γ ;V ] = 0,

(5.138)
dL[γ, λ]

dλ
∣∣∣
ε=0,λ=Λ

= −dV[γ]
dε

∣∣∣
ε=0

= −δ(1)V[Γ ;V ] = 0, (5.139)

where Λ is the correct constant of multiplier λ to be determined. Using the results
(5.51) and (5.104) derived earlier, we arrive at the necessary conditions for Γ to be a
critical shape of the constrained potential energy F[γ],

0 =
∫

Γ

(
− Ec

C[Γ ]2 |DΨ |
2 − 2H− Λ

)
N · V dΓ +

∫

Γ
DivΓV Γ dΓ,

0 =
∫

Ωliq
dΩ − |Ωliq|,





(5.140)

where
∫
Γ DivΓV Γ dΓ = 0 on a boundaryless manifold Γ . Note the definition of N in

(5.140) is opposite to the normal vector in (5.49). For Γ to be an equilibrium shape,
the critical condition (5.140) must hold for all admissible velocity field V which is only
possible if

− Ec
C[Γ ]2 |DΨ |

2 − 2H = Λ on Γ, (5.141)

where the constant Λ is chosen such that the volume of the liquid equals |Ωliq|.

In dimensional form, the equilibrium condition (5.141) represents a point-wise balance
between the electrostatic and capillary pressure everywhere on the liquid surface only
up to a residue pressure that’s globally constant over the entire surface. This constant
pressure level is implicitly determined by the total volume of the liquid. The potential
energy of shape Γ satisfying equilibrium condition (5.141) would have a vanishing first
energy variation for all volume-conserving shape deformations. Recall the stability near
an equilibrium point of a mechanical system largely attributes to the local convexity of
the same point in the energy landscape. We cannot tell if a critical shape Γ (if exist) is
a local minimum, maximum or saddle point of the potential energy F[γ] from the first
order conditions of the Lagrangian L[γ, λ] alone.

Note volume constraint V[γ] = 0 must hold for every spatial configuration which means
its derivatives at all orders of ε must vanish,

dV[γ]
dε = d2V[γ]

dε2 = ... = dkV[γ]
dεk = ... = 0 for ε ≥ 0. (5.142)
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Applying volume variation (5.120) to dV[γ]/dε at ε = 0 yields a first order constraint
∫

Γ
N · V dΓ = 0 (5.143)

on the velocity field V .

Constrained second shape variation of potential energy
The energy stability of a critical shape Γ is encoded in the functional structure of
its second shape variation, which essentially maps out the local energy landscape near
the critical shape and thereby allows us to determine the type of local extreme (i.e.
maximum, minimum or saddle). The second variation of the total potential energy with
respect to ε at ε = 0 has two contributions from material velocity V and acceleration
A,

d2F[γ]
dε2

∣∣∣
ε=0

= δ(2)F[Γ ;V ,A] = δ(2)F[Γ ;V ] + δ(1)F[Γ ;A]. (5.144)

Note the material acceleration field A cannot be an arbitrary vector field since χ(·, ε)
must conserve total liquid volume. We can eliminate this indirect constraint on A by
invoking the first order critical condition (5.138) on Γ ,

δ(1)F[Γ ;V ] = Λδ(1)V[Γ ;V ], (5.145)

which is expected to hold for any admissible vector field V . Now if we replace V in
(5.145) by A and then substitute (5.145) back to equation (5.144), we arrive at

d2F[γ]
dε2

∣∣∣
ε=0

= δ(2)F[Γ ;V ] + Λδ(1)V[Γ ;A]. (5.146)

We next evaluate the second order condition in the volume constraint (5.142),

0 = d2V[γ]
dε2

∣∣∣
ε=0

= δ(2)V[Γ ;V ,A] = δ(2)V[Γ ;V ] + δ(1)V[Γ ;A], (5.147)

which again has two contributions from V and A. It’s now evident that the variational
contributions in d2F[γ]/dε2 are functionals of material velocity V alone after substitut-
ing identity (5.147) into (5.146). In the end, we arrive at the constrained (i.e. volume
conserving) second shape variation of the potential energy F[γ] evaluated at a critical
shape Γ provided the material velocity field V of a configuration map χ(·, ε) satisfies
the constraint (5.143),

d2F[γ]
dε2

∣∣∣
ε=0

= δ(2)F[Γ ;V ]− Λδ(2)V[Γ ;V ]

= − Ec
C[Γ ]2

{
δ(2)C[Γ ;V ]− 2(δ(1)C[Γ ;V ])2

C[Γ ]

}

+ δ(2)S[Γ ;V ]− Λδ(2)V[Γ ;V ], (5.148)
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where the Lagrange multiplier constant Λ is determined by the first variation. We
make a comment here regarding the elimination of material acceleration A: it does not
imply A is dispensable. It’s merely a consequence of volume conservation under which
the contribution of A to the second variation is equivalent to some integral expression
involving V only. It is computationally more convenient if we keep V as the only
independent variable.

We again employ the surface-adapted curvilinear coordinates (ξ1, ξ2, ξ3) defined in (5.86)
and project material velocity V into a surface vector field U(ξ1, ξ2) tangent to Γ and
a normal component Θ(ξ1, ξ2)N ,

V = U +ΘN , U = UαGα(ξ1, ξ2, 0). (5.149)

Through the use of the second derivative of area differential (5.116), total volume (5.128)
and self-capacitance (5.94) (recall normal vector is flipped in C[γ]), we can explicitly
write down the expressions for the three functionals in the second shape variations
(5.148),

δ(2)C[Γ ;V ] =
∫

Γ
2(N ·DΨ)(N ·DΨ ′)Θ + 2HΘ2(N ·DΨ)2 dΓ

−
∫

Γ
[U ·DΓΘ − (DivΓU)Θ +UIIU ] (N ·DΨ)2 dΓ, (5.150)

δ(2)S[Γ ;V ] =
∫

Γ
DΓΘ ·DΓΘ + 2KΘ2 −KU ·U dΓ

+
∫

Γ
(DivΓU)2 − (∇̂βUα)(∇̂αUβ) + 2IIαβ ∇̂α(ΘUβ) dΓ

−
∫

Γ
4H(DivΓU)Θ − 2HUIIU dΓ, (5.151)

δ(2)V[Γ ;V ] =
∫

Γ
−2HΘ2 + 2(DivΓU)Θ −UIIU dΓ. (5.152)

Here K is the Gaussian curvature of surface Γ . At first glance, the integrals (5.150),
(5.151) and (5.152) appear to be formidable. Fortunately many terms would cancel out
each out thanks to Γ being a critical shape. To see this, we first expand the constraint
Λδ(2)V[Γ ;V ]. Note Λ is a constant determined by the critical condition (5.140) which
therefore can be moved inside the integral of δ(2)V[Γ ;V ],

Λδ(2)V[Γ ;V ] =
∫

Γ

(
− Ec

C[Γ ]2 |DΨ |
2 − 2H

) [
−2HΘ2 + 2(DivΓU)Θ − IIαβUαUβ

]
dΓ

=− Ec
C[Γ ]2

∫

Γ
|DΨ |2

[
−2HΘ2 + 2(DivΓU)Θ − IIαβUαUβ

]
dΓ

+
∫

Γ
4H2Θ2 + 2H

[
IIαβU

αUβ − 2(DivΓU)Θ
]

dΓ. (5.153)

Substituting equations (5.150), (5.151) and (5.153) into the second shape variation
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(5.148) yields a relatively clean expression,

d2F[γ]
dε2

∣∣∣
ε=0

=− Ec
C[Γ ]2

∫

Γ
2(N ·DΨ)(N ·DΨ ′)Θ + 4HΘ2(N ·DΨ)2 dΓ

+
∫

Γ
DΓΘ ·DΓΘ + (2K − 4H2)Θ2 dΓ

+ Ec
C[Γ ]2

∫

Γ
DivΓ (ΘU)(N ·DΨ)2 dΓ +

∫

Γ
2IIαβ ∇̂α(ΘUβ) dΓ

+
∫

Γ
(DivΓU)2 − (∇̂βUα)(∇̂αUβ)−KU ·U dΓ

+ 2Ec
C[Γ ]3 (δ(1)C[Γ ;V ])2,

(5.154)

where material velocity V must fulfil
∫
Γ N · V dΓ = 0. The second variation (5.154)

contains four parts: a purely normal and extrinsic contribution (line 1 and 2), a cross
term (line 3) which couples the tangential vector field U with the normal scalar field Θ
of material velocity V , a purely intrinsic integral (line 4) plus a contribution from the
first order variation (line 5).

We next show that, for an equilibrium shape Γ , the integrals on line 3 and 4 of (5.154)
can be significantly simplified. We begin with the second integral on line 3 of (5.154),
∫

Γ
2IIαβ ∇̂α(ΘUβ) dΓ =

∫

Γ
−2(∇̂αIIαβ )ΘUβ dΓ =

∫

Γ
−2(∇̂βIIαα )ΘUβ dΓ Codazzi

=
∫

Γ
−2(∇̂β2H)ΘUβ dΓ =

∫

Γ
4HDivΓ (ΘU) dΓ. (5.155)

We then substitute identity (5.155) into the integrals on line 3 of (5.154) and compute,

Ec
C[Γ ]2

∫

Γ
DivΓ (ΘU)(N ·DΨ)2 dΓ +

∫

Γ
2IIαβ ∇̂α(ΘUβ) dΓ

=
∫

Γ

{
(N ·DΨ)2 Ec

C[Γ ]2 + 4H
}

DivΓ (ΘU) dΓ

=
∫

Γ
(−Λ+ 2H)DivΓ (ΘU) dΓ =

∫

Γ
−2(U · ∇̂H)Θ dΓ, (5.156)

where in the last line of (5.156) the equilibrium condition (5.140) on Λ is invoked for
the critical shape Γ . The integral from line 4 of (5.154) is actually zero,

∫

Γ
(DivΓU)2 − (∇̂αUβ)(∇̂βUα)−KU ·U dΓ

=
∫

Γ
(DivΓU)2 + Uβ∇̂α∇̂βUα −KU ·U dΓ

=
∫

Γ
(DivΓU)2 + Uβ∇̂β∇̂αUα + UβRα

ναβU
ν −KUαGαβU

β dΓ

=
∫

Γ
(DivΓU)2 + Uβ∇̂β(DivΓU) + Uα(Ricαβ −KGαβ)Uβ dΓ

=
∫

Γ
(DivΓU)2 − (∇̂βUβ)(DivΓU) dΓ = 0, (5.157)
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where in the last line of (5.157) we have used the fact that the Ricci tensor of a two-
dimensional manifold is intrinsic (Kreyszig, 1991), i.e. Ricαβ = KGαβ. With identities
(5.156) and (5.157) substituted into (5.154) we obtain the final form of the second
shape variation of the total potential energy F[γ] about an equilibrium shape Γ ,

d2F[γ]
dε2

∣∣∣
ε=0

=− Ec
C[Γ ]2

∫

Γ
2(N ·DΨ)(N ·DΨ ′)Θ + 4HΘ2(N ·DΨ)2 dΓ

+
∫

Γ
DΓΘ ·DΓΘ + (2K − 4H2)Θ2 dΓ

−
∫

Γ
(U ·DΓ 2H)Θ dΓ + 2Ec

C[Γ ]3 (δ(1)C[Γ ;V ])2 for
∫

Γ
Θ dΓ = 0,

(5.158)
where the Eulerian derivative Ψ ′ is the harmonic solution to the boundary value problem,

DivDΨ ′ = 0 in Ω,

Ψ ′ = −(N ·DΨ)Θ on Γ.



 (5.159)

Later we will show that the integrals in the first two lines of the second shape variation
(5.158) directly lead to the famous Rayleigh charge limit QRa. However, to author’s
knowledge, the terms in the last line of (5.158) have not been derived before in literature.
This is because when a liquid body in equilibrium has both constant mean curvature and
constant charge density over its surface, e.g., the shape of a perfect sphere or cylinder
considered by most literature, the integrals in the last line of (5.158) are identically
zero. However, when the equilibrium shape has a heterogeneous distribution of surface
charges, the first variation of capacitance δ(1)C[Γ ;V ] from equation (5.52) may not
vanish for an arbitrary volume-conserving material velocity V . Similarly, if boundary Γ
is not a surface of constant curvature then the surface-advection term U ·DΓ 2H is not
necessarily zero for every tangential velocity field U .

Energy stability of an isolated charged spherical drop
Let Γ be a dimensionless unit sphere (so that the dimensional radius of a physical drop
becomes the characteristics length scale Rc). It’s natural to use the spherical coordinates
X = (R,ϑ, ϕ) centered at origin of the drop for the material frame Ω. It’s easy to
verify that a uniformly charged spherical drop is a critical shape of the total potential
energy F[γ], the analytic solution of which is given by

Ψ(X) = 1
R
, N ·DΨ |Γ = −1, C[Γ ] = 4π, H = −1, K = 1. (5.160)

For a general equilibrium shape, the term (δ(1)C[Γ ;V ])2 in the second shape variation
(5.158) is nonzero. However in the special case (5.160) of a spherical drop the dimen-
sionless surface charge N ·DΨ is constant on the entire spherical surface which would
completely eliminate this term since

δ(1)C[Γ ;V ] =
∫

Γ
Θ(N ·DΨ)2 dΓ = (N ·DΨ)2

∫

Γ
V ·N dΓ = 0 (5.161)
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where the first order condition of volume constraint is used. The contribution from
tangential variation V Γ also drops out due to the constant mean curvature of a spherical
surface. Substituting critical solution (5.160) into second shape variation (5.158) yields
a surface integral involving normal variation Θ only,

d2F[γ]
dε2

∣∣∣
ε=0

= Ec
8π2

∫

Γ
(N ·DΨ ′)Θ + 2Θ2 dΓ −

∫

Γ
Θ∆ΓΘ + 2Θ2 dΓ, (5.162)

where we have replaced the term DΓΘ ·DΓΘ by the Laplace-Beltrami operator ∆Γ =
∇̂α∇̂α via integration by parts on a boundary-less manifold (surface of a sphere). The
quadratic forms Θ2 and Θ∆ΓΘ are local in the sense that only multiplication and differ-
ential operator are involved. On the other hand, the termN ·DΨ ′ is truly nonlocal: the
solution to the boundary value problem (5.159) of the Eulerian derivative Ψ ′ requires the
knowledge of normal variation Θ everywhere on Γ and therefore is considered nonlocal
with respect to the intrinsic coordinates of surface Γ . Analytic solution to (5.159) for
a general shape Γ is often not possible. However, for the geometry of a unit sphere, it
can be treated by the means of spherical harmonics expansion. In what follows, we refer
to the elementary treatise by Byerly (1895) for various properties of spherical harmonics
functions.

Let Y m
` (ϑ, ϕ) be the standard notation for spherical harmonics of integer degree ` ≥ 0

and integer order −` ≤ m ≤ `. Normal field Θ on the unit sphere can be expanded in
terms of the spherical harmonics Y m

` ,

Θ(ϑ, ϕ) =
∞∑

`=0

∑̀

m=−`
am` Y

m
` (ϑ, ϕ), (5.163)

where each complex coefficient
am` = 〈Y m

` , Θ〉 (5.164)

is given by the orthonormal projection under inner product integration 〈·, ·〉 over the
surface of a unit sphere (or equivalently the solid angle) defined as

〈f, g〉 =
∫

Γ
f(ϑ, ϕ)†g(ϑ, ϕ) dΓ. (5.165)

Here (·)† is the complex conjugate operator. We will suppress the (ϑ, ϕ)-dependence
from now on and only refer to the projected coefficients instead. Note the zeroth degree
coefficient must vanish due to the volume constraint,

a0
0 = 〈Y 0

0 , Θ〉 ∝
∫

Γ
Θ dΓ =

∫

Γ
V ·N dΓ = 0. (5.166)

Any linear combination of spherical harmonics above ` = 0 would have a zero spherical
mean which implies the expansion (5.163) of Θ is an admissible variation as long as
a0

0 = 0. We then replace boundary condition for the harmonic potential Ψ ′ in the



169

auxiliary boundary value problem (5.159) by the expansion (5.163). The solution to the
harmonic problem for Eulerian derivative Ψ ′ exterior to the spherical drop is found to be

Ψ ′ =
∞∑

`=0

∑̀

m=−`

1
R`+1a

m
` Y

m
` in Ωvac. (5.167)

Normal vector N on the surface of a unit sphere is simply the unit vector in the radial
direction which yields

N ·DΨ ′ =
∞∑

`=0

∑̀

m=−`
−(`+ 1)am` Y m

` on Γ. (5.168)

On the other hand, the Laplace-Beltrami operator ∆Γ defined for the surface of a unit
sphere is diagonalized by the spherical harmonics Y m

` with eigenvalue −`(`+ 1),

∆ΓΘ =
∞∑

`=0

∑̀

m=−`
−`(`+ 1)Y m

` . (5.169)

Substituting expansions (5.169), (5.168) and (5.163) into the second shape variation
(5.162) results in a double summation over two sets of integers {`,m} and {`′,m′},

d2F[γ]
dε2

∣∣∣
ε=0

=
∑

`,m

∑

`′,m′

{ Ec
8π2 (1− `) + `(`+ 1)− 2

}
am` a

m′
`′

∫

Γ
Y m
` Y m′

`′ dΓ. (5.170)

Orthonormality of spherical harmonics doesn’t directly apply yet since Y m
` under the

integral (5.170) is missing the complex conjugate defined in the inner product (5.165).
We note that Y m†

` can be recovered through manipulation of the spherical harmonics
identity Y m

` = (−1)mY −m†` . We first consider the partial summation in integer m′,

`′∑

m′=−`′
am` a

m′
`′

∫

Γ
Y m
` Y m′

`′ dΓ

=
`′∑

m′=−`′
am` a

m′
`′ 〈Y m†

` , Y m′
`′ 〉 =

`′∑

m′=−`′
am` a

m′
`′ (−1)m〈Y −m` , Y m′

`′ 〉

=
`′∑

m′=−`′
〈Y m
` , Θ〉am′`′

1
(−1)m 〈Y

−m
` , Y m′

`′ 〉 =
`′∑

m′=−`′
〈Y −m†` , Θ〉am′`′ 〈Y −m` , Y m′

`′ 〉

=
`′∑

m′=−`′
〈Y −m` , Θ〉†am′`′ 〈Y −m` , Y m′

`′ 〉 Note Θ is a real function

=
`′∑

m′=−`′
a−m†` am

′
`′ δ(−m)m′δ``′ = a−m` a−m†`′ δ``′ . (5.171)

Identity (5.171) reduces the double summation to an infinite sum of real quadratic forms,

d2F[γ]
dε2

∣∣∣
ε=0

=
∞∑

`=1
F̀

∑̀

m=−`
am` a

m†
` , F̀ = Ec

8π2 (1− `) + `(`+ 1)− 2, (5.172)
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where −m in identity (5.171) is relabeled as m provided symmetry in the summation
of m = −`, . . . , `. Since am` a

m†
` ≥ 0 is always non-negative, the coefficients F̀ in the

second shape variation (5.172) play a key role in determining the contribution of each
spherical harmonics deformation Y m

` to the total potential energy.

The ` = 1 coefficient F1 is always zero regardless of the value of the electric-capillary
number Ec and hence doesn’t contribute to any change in the potential energy F[γ].
This is due to the translational symmetry in the electrostatic energy and in the surface
energy. The three harmonic modes Y −1

1 , Y 0
1 and Y 1

1 correspond to infinitesimal shifts
in the direction of three axes of the three-dimensional Euclidean space R3 which must
leave each component of the total potential energy individually invariant.

Rayleigh’s charge limit QRa controls the sign of F2 in the ` = 2 modes. These are the
modes of prolate and oblate deformations, the combination of which leads to elongation
or depression of the spherical drop about an arbitrarily oriented symmetry axis. With
some nonzero electric-capillary number Ec = Q2/2ε0σR3

c , it is possible to set the sign
of every ` = 2 quadratic form am2 a

m†
2 to be strictly negative if the following inequality

is satisfied,

F2 = − Ec
8π2 + 4 < 0 if Ec > 32π2 ⇔ Q > 8π

√
σε0R3

c = QRa. (5.173)

We can make a more general statement regarding the sign of coefficient F2: given some
integer `′ > 1,

if Q`′ < Q < Q`′+1 then




F̀ < 0 for 2 ≤` ≤ `′,
F̀ > 0 for ` ≥ `′ + 1,

(5.174)

where
Q`′ = 4π

√
(`′ + 2)σε0R3

c (5.175)

is the `′-th Rayleigh charge. If the total charge of a spherical drop falls between Q` and
Q`+1, then the modes of harmonic deformation V ∝ Y m

` N equal to or below degree
`′ contribute negatively to its potential energy F[γ] while the modes above degree `
act to increase the energy. The Rayleigh charge limit QRa = Q2 is the special case
where all deformation modes are only allowed to increase the total potential energy.
In other words, an isolated perfectly conductive spherical drop, if charged below QRa,
is forbidden to release any of its potential energy into other forms such as kinematic
energy or viscous dissipation.

5.6 Conclusion
Whereas stability of electrically conductive spherical drops has been scrutinized for
decades based on Eulerian approaches, a geometrically rigorous treatment on the to-
tal potential energy of an arbitrarily shaped liquid body undergoing both normal and
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tangential deformations is still lacking. In this work, we apply well developed concepts
of convective Lagrangian coordinates from continuum mechanics to the calculation of
electrostatic energy and surface energy of an isolated charged liquid drop assigned to
a continuously deformed domain. Our methodology allows precise examinations on the
effects of deformation arising from both normal and tangential directions of the liquid
interface. The overall computational procedure is systematic, free of heuristics in assign-
ing orders of infinitesimal terms and exactly enforces the constraint of constant liquid
volume.

For a conductive liquid body in equilibrium (not necessarily a perfect sphere or cylin-
der), our calculation indicates that tangential deformation does not make a difference
in the first shape variation of its total potential energy. However, in the calculation of
the second shape variation, which is required for searching stability criterion in energy
landscape, we have unmasked two additional contributions for equilibrium shapes which
may carry a nonuniform distribution of surface charges and a nonconstant mean cur-
vature over its surface such as the celebrated Taylor cone (G. I. Taylor, 1964). These
contributions have been previously obscured by the spherical geometry and omission of
tangential deformations usually assumed in literature. The combined effects of these
neglected terms on the stability of general equilibrium shapes are left for future studies.

The Lagrangian formalism employed in this work is completely general and systematic.
By following the transformation rules of convective Lagrangian coordinates, it is possible,
albeit tedious, to carry out shape variation of the potential energy to the third order,
similar to the calculation Zhong-can and Helfrich (1989) conducted for the bending
energy of vesicle membrane, which would necessarily reveal the directions at which the
local energy landscape near an equilibrium shape is tilted. In other words, the third
shape variation explains whether an oblate or a prolate ellipsoid is favored when a
spherical liquid drop charged just above the Rayleigh limit undergoes deformation. It
is also conceivable that the use of convective Lagrangian coordinates allows systematic
modifications to the calculation of electrostatic energy and its variations in the presence
of a uniform electric field or spatial charges.
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C h a p t e r 6

DYNAMIC CONE FORMATION IN CONDUCTIVE LIQUIDS: INVISCID
THEORY

6.1 Interfacial Cone Formation in Electrically Conductive Liquids
As already discussed in Chapter 5, if charged beyond a critical level, the interface of
an electrically conductive liquid surrounded by an insulator (e.g., air, a vacuum or an-
other dielectric medium) becomes susceptible to the influence of intense electric field.
Formation of small conical interfacial features, followed by ejection of liquid filaments
or ions in the end, often accompanies the strong distortion of an electrified liquid after
its initial loss of stability. This unique electrohydrodynamical phenomenon is often as-
sociated with the terminology, Taylor cones, named after G. I. Taylor (1964)’s seminal
calculation on the cone opening angle. Although the earliest recorded observation of
these conical shapes can be traced back to the 16th century when Gilbert (1600) in
his work De Magneto described the deformation of a water drop into a cone in the
presence of a charged object and has fascinated scientists in many different disciplines
for centuries since then.

It is now commonly accepted that the distinguishing factor which separates many cone-
related phenomena into two major categories is liquid electrical conductivity. An infinite
conductivity corresponds to the electrostatic limit of a perfect conductor or dielectrics
where surface charges are instantaneously distributed on the interface and all the Maxwell
forces act normally on the interface. Under such an assumption G. I. Taylor (1964)
reported that a perfectly conductive liquid subject only to capillary and electrical forces
in hydrostatic equilibrium must adopt the shape of a cone with a vertex angle of 98.6◦,
known as the Taylor cone angle. On the contrary, for a medium of finite or high
conductivity, charge relaxation, i.e. convection-driven departures of the surface charge
density away from the value it would have on a perfect conductor, takes a finite amount of
time (Saville, 1997). The situation then becomes much complex as tangential Maxwell
stresses may be present, leading to shear forces, hence tangential accelerations, on
the charged liquid interface that are eventually responsible for jet emission observed in
experiments.

Most researches on liquids of finite or high conductivity are oriented around the Taylor
cone-jet configuration, a regime where a steady non-breaking jet issues continuously
from the cone apex, eventually either breaking into a spray of charged drops, known
as electrospray (Fernández de la Mora, 2007), or being drawn further as a continuous
fiber (possibly whipping and bending) instead of a charged cloud, known as electrospin
(Hohman et al., 2001a; Hohman et al., 2001b). The model of charge transport in
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the literature concerning the theory of steady but not static cone-jet modes is largely
based on the ohmic conduction (uniform electrical conductivity) and leaky dielectric
model (ohmic liquid governed by Stokes equation) introduced and popularized by the
reviews (Melcher and G. I. Taylor, 1969; Saville, 1997). The crucial role of charge
transport in cone-jet phenomenon has been confirmed in a number of computational
studies such as simulated electrohydrodynamic tip streaming of a leaky-dielectric liquid
film (Collins, Jones, et al., 2007) and of a conducting drop subject to a uniform external
electric field (Collins, Sambath, et al., 2013), progeny formation from critically charged
conductive inviscid drops (Burton and Taborek, 2011), micro-jet emission from the
tip of low-conductivity pendant drops subject to a step change in the electric field
magnitude (Ferrera et al., 2013), first-droplet ejection from a parent capillary meniscus
under volumetric relaxation of charge density in the hydrodynamic bulk (Gañán-Calvo,
López-Herrera, Rebollo-Muñoz, et al., 2016; Gañán-Calvo, López-Herrera, Herrada, et
al., 2018) and the transient electrohydrodynamic response of a liquid drop containing
ions, to both small and large values of electric field (Pillai et al., 2016). It’s worth
noting that the conic base of experimentally observed cone-jet configurations sometimes
exhibits substantially smaller opening angles than the Taylor cone due to the presence of
space charges carried by the jet which technically violates Taylor’s assumption of free-
space electrostatics in the region exterior to the cone and inevitable causes repulsion
between jet and conic base.

Despite large amount of literature and applications on cone-jet related physics (e.g.,
electrospray and electrospin), little has been known of the transient process that a
round meniscus takes to morph into a conic cusp before any criterion for spontaneous
ejection of ion or fluid is met. In particular it is the subject of this chapter to decipher
the electrohydrodynamic mechanism underlying the rapid development of conic tips in
perfectly conductive liquids. There are many practical reasons that it is important to
understand the dynamic process of cone formation in addition to steady cone-jet. For
instance, the electrohydrodynamic direct-writing technique (C. Chang, Limkrailassiri,
and L. Lin, 2008; Huang et al., 2013), one of the emerging solutions to the increas-
ing demand for micro/nano-scale manufacture, can be used to print nanofibers onto
a large-area substrate in a direct, continuous, controllable and free-form fashion. The
development of fine and steady jets at cone apex is known from experiments to correlate
strongly with electrical conductivity: thread diameter approximately shrinks toward zero
in a rate inversely proportional to a power of the electrical conductivity (Fernández de
la Mora, 2007). Therefore knowledge of bulk hydrodynamics at the singular limit of
infinite conductivity could shed light upon the onset of nano-/micro-sized jet emitted
from liquid tips of high but finite electrical conductivity. There is also liquid metal ion
source (LMIS) which was originally developed as the charge material of electrostatic
droplet sprayers as a heavy charged particle source for electric space micropropulsion



174

(Bartoli et al., 1984; Rüdenauer, 2007; Tajmar et al., 2009). It was then discovered
that LMIS device was a high brightness source of metal ions, capable of being focused
to spots of nanometer dimensions. LMIS now becomes a fundamental component of fo-
cused ion beam microscopy and micromachining (Orloff, 2017), one of the most precise
micro-/nano-fabrication tools at the present time. Once the local intensity of electric
field reaches above certain threshold, it causes ions to begin to form through field evap-
oration and field ionization of the metal atoms in the vapor, a process similar to the
mechanism that inspired Fenn (1993) for his Nobel prize winning technology mass spec-
trometry (Guerrero et al., 2007). The field threshold for common LMIS (e.g., gallium
and indium) is on the order of 109V/m (Orloff, Utlaut, and Swanson, 2003). It is crucial
to understand the hydrodynamic origin of highly curved cone apex that spontaneously
forms in liquid metals which naturally exceeds the requirement for field ion evaporation.

In this chapter, we exclusively focus on the process of dynamic cone formation in per-
fectly conductive liquids during a small time window long after initial destabilization
and but shortly before the onset of other physics on smaller scales (e.g., secondary
fluid ejection or field ion evaporation). In practice, the rapid development of conical
cusps at liquid interface is notoriously difficult for experimental observations owning to
its transcendental nature at small spatial dimensions and explosive fluid/ion ejection
that ensues. As technology advances, accurate imaging and measurement of cone for-
mation have only become available in the last few decades since G. I. Taylor (1964)’s
original photography of oil/water interfaces. Although it still poses tremendous chal-
lenges in high-speed and high-resolution imaging, appearance of the Taylor cone has
been recognized in experiments involving a variety of highly conductive liquids including
stroboscopic shadow photography of indium-gallium alloy wetting a liquid-metal cathode
under high vacuum (Baskin et al., 1995), in situ observation of AuGe liquid alloy and tin
liquid metal ion source in a high-voltage transmission electron microscope (Driesel and
Dietzsch, 1996; Driesel, Dietzsch, and Mühle, 1996), determination of onset voltage for
ionic liquid EMI-BF at tip of a filled capillary tip of a microchined electrospray emitter
(Krpoun and Shea, 2008), controlled meniscus evolution of deionized water in micro-
gravity environment over a wide range of fluid properties (Elele et al., 2015) and free
surfaces of cryogenic superfluid helium charged from below (Moroshkin et al., 2017).

Direct numerical simulations have also been developed over years to resolve final stages
of cone formation that are not accessible to current experiment and imaging tech-
niques. Suvorov and Zubarev (2004) employed standard finite difference discretization
of the axisymmetric Navier-Stokes equation for free surface of liquid gallium in vac-
uum under a flat electrode, where the governing fluid and electrostatic equations were
transformed to a set of curvilinear coordinates and numerical grid adaptive to the evolv-
ing liquid/vacuum interface. They reported that the formation of a conical singularity
seemed to be universal, i.e. irrespective of initial surface shape (in their case a Gaussian
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bump). Collins, Jones, et al. (2007) solved the Navier-Stokes equation coupled with
surface charge transport modeled by ohmic conduction for a conducting film under a
different electrode geometry (a metallic cylindrical rod protruding from upper plate).
Their finite element method adaptively remeshed the liquid domain and its interface
with elliptic mesh generation. It was confirmed in the paper that when charge transport
was turned off, no electrohydrodynamic tip streaming was observed at all and conic
cusping singularity occurred instead. Giglio et al. (2008) simulated the spontaneous de-
formation of an initially critically charged droplet by a spectral method utilizing spherical
harmonic functions in a prolate spheroidal coordinate system. The liquid was assumed
to be inviscid and incompressible with an irrotational flow. Their simulation (and ex-
periment) suggested the droplet shape right before charge emission was remarkably well
fitted by a “lemon” profile with two pointed ends, however, substantially narrower than
the Taylor cone. Later, the identical simulation was repeated and refined by Burton
and Taborek (2011) via a different yet much more accurate numerical method based on
boundary integral formulation of harmonic potential. The ultrahigh resolution of their
scheme revealed long-sought convergence to the Taylor cone angle at two conical ends
of the droplet as well as decades of power-law behavior of tip electric field and curvature
during the last stage of cone formation.

A common theme shared by these researches is that, the apical region of a round
meniscus, after initial instability is triggered, continuously undergoes a self-sharpening
and accelerating process towards a conic shape while simultaneously accumulating a
significant amount of surface charges concentrating near the cone apex. Here is a
summary of we have learned from these experiments and numerical simulations. First
of all, cone formation in highly conductive liquid is unequivocally a dynamic process.
The continuously sharpening and simultaneous enhancement of the electric field near
the apex are always accompanied by increasingly large bulk acceleration of the liquid.
Secondly, dynamic cone formation appears to be a runaway process that seldom halts
on its own. It’s usually the non-hydrodynamic causes such as controlled quench-down
of electrode potential, ejection of fluid filament/jet due to small-scale charge transport
or field ion evaporation into ambient gas, that eventually mitigate the runaway process.
Thirdly, since none of the experiments or simulations were set up identical to each other
or to pursue an idealization of G. I. Taylor (1964)’s electrostatic solution, formation
of conic cusp at liquid/gas interface is very likely to be universal, i.e. not sensitive to
geometric details of ambient electrode or initial liquid shape as long as the interface can
be destabilized in the first place.

Theoretical understanding of this phenomenon is often credited to G. I. Taylor (1964)’s
hydrostatic equilibrium between capillary and electrical forces. Despite simplicity of
his static argument, the cone angle Taylor predicted has simulated a large amount of
theoretical effort on understanding the steady cone-jet configuration, for instance, the
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cone-jet mode of infinitely conductive liquids with a negligibly short jet that opens
into the spray infinitesimally close to the cone apex (Fernández de la Mora, 1992), the
analytical cone-jet solution of infinitely long and thin, charged liquid jet issuing from
the tip of Taylor cone (Gañán-Calvo, 1997), flow structure of the Taylor meniscus and
emitted jet examined through singular perturbation methods in the limit of low flow
rates (Cherney, 1999), various scaling laws between jet radius, current carried by the
jet, liquid dielectric and electrical conductivity (Fernández de la Mora, 2007) and a
recent extension of previous theories to account for variations of the cone angles (non-
Taylor) by replacing the equipotential assumption of conic base with a finite electric
current along the cone surface (Subbotin and Semenov, 2015).

Technically these aforementioned theories are “dynamic” in the sense that surface
charges are being steadily transported downstream along the jet. However, the over-
all interface shape of the cone-jet is still stationary. Besides, none of these existing
theories have addressed the spontaneous transition from a round meniscus to a conic
cusp. Significant progress has been achieved in the study of non-stationary electrohy-
drodynamic behavior since Zubarev (2001) pioneered a self-similar theory to capture
universality and dynamic nature of conic cusp formation in perfectly conductive inviscid
liquid. The novelty of his work lies in the self-similar scaling of an unsteady flow field
which results in nontrivial inertia forces contributing to the stress balance at conic sur-
face. The self-similar dynamics that Zubarev developed is also a fully nonlinear theory
which is normally obscured if only infinitesimally weak disturbances, as in conventional
linear stability analysis, of a Taylor cone under hydrostatic equilibrium, are considered
(Sujatha et al., 1983; Chung, Cutler, and Miskovsky, 1989). As correctly pointed out by
Zubarev (2001), dynamic cone formation is the result of local balance between capillary,
Maxwell (electrostatic) and inertia forces, which in his self-similar framework all blow up
at the same rate as the conical singularity is approached. At the time, Zubarev was not
able to obtain the exact solutions to his self-similar theory which requires sophisticated
numerical techniques. Instead he employed asymptotic expansions of field variables to
approximate the true solutions far away from the cone apex. Our work is an extension
and an completion of Zubarev (2001)’s initial effort by introducing a more important yet
still compatible leading order term in the asymptotic series, based on which a system of
boundary integral equations are formulated to numerically compute the exact solutions
conforming to the asymptotic behavior analytically derived.

In this chapter we hope to clarify the following: first of all, the classical Taylor cone
is merely a geometric condition under which local capillary and Maxwell stresses scale
with each other all the way up to the apex. The underlying liquid in the bulk is not
necessarily static. Secondly, in inviscid regime formation of conic cusp is a dynamically
self-similar process for perfectly conductive liquids, during which capillary, Maxwell and
inertia forces all blow up in the vicinity of cone apex. The precise boundary conditions
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Figure 6.1: Common depictions of a dynamic cone: (a) A pulsating unstable liquid
meniscus “glued” onto a far-field Taylor cone (dashed blue) in hydrostatic equilibrium
subject to a specific electrode geometry (solid black) which coincides with one of the
electric potential contours (dashed black). According to Chung, Cutler, and Miskovsky
(1989), no liquid motion can be allowed far away from the conical pointXc. The unsta-
ble meniscus oscillates up and down due to small vertical shifts of the electrode position.
(b) A self-reinforced meniscus converging to the Taylor cone angle due to a spherically
symmetric sink flow (arrow) based on Zubarev (2001)’s self-similar mechanism.

(flow or electrostatics) of ambient environment are irrelevant compared to the dominant
local scales. Thirdly, we wish to establish the multiplicity of dynamic cone formation.
The widespread spherically symmetric sink flow moving tangentially to the conic surface
predicted by Zubarev (2001) is one of the many possibilities in the self-similar framework
of inviscid cone formation. Our complete asymptomatic analysis independently shows
that in addition to sink flow, pressure mismatch between capillary and Maxwell stresses
induces a novel uplifting velocity field near cone apex, which we coin the“lifting” flow,
with streamlines nearly vertical upward intercepting the conic surface at a finite angle.
The exact solution family, uncovered by our use of a patched boundary integral for-
mulation, depends on two parameters reflecting the relative strength between capillary,
Maxwell and inertia forces. Novel hydrodynamic patterns in the vicinity of cone apex
such as counter flows, stagnation point and oscillatory pressure field during dynamic
cone formation are also revealed for the first time.

6.2 Previous Theoretical Developments of Dynamic Cone Formation
In this section we briefly review some previously proposed theoretical analysis on the
dynamics of a conic meniscus which seem to prevail in literature.

Conventional hydrostatic stability
Chung, Cutler, and Miskovsky (1989) studied a simplified three-dimensional axially sym-
metric model for a liquid ion source comprised of a conducting liquid by examining pos-
sible leading order shape deformations away from the exact Taylor cone. To author’s
knowledge their work was the first attempt to introduce a dynamic Taylor cone. They
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explored possible deformations in the quasi-hydrostatic limit where deformation is purely
caused by hydrostatic forces as well as in the hydrodynamic limit where the inertia forces
of the liquid are expected to significantly contribute to interfacial pressure. They treated
the exact Taylor cone as the zeroth-order configuration and linearized the Bernoulli’s
equation to construct the first-order fluid equations. In both limits they made predictions
on the evolution of the shape deformation and critical voltage at the onset of instability.

However such linearization excludes strongly nonlinear behavior of conducting liquid.
As a result, Chung, Cutler, and Miskovsky (1989) found it was impossible to match
inner solutions (near apex) of velocity field to an active flow in the far field (away
from apex) and thus concluded their “hydrodynamic” analysis with the claim that there
should no fluid motion in the bulk away from the apex (i.e. only hydrostatic), which is
contradicting their original intention of a “dynamic” analysis. In addition, as shown in
figure 6.1(a) their calculation was deliberately engineered for a very specific electrode
geometry introduced in the experiment of G. I. Taylor (1964), the one and only one
configuration that a truly hydrostatic Taylor cone must admit. They conjectured that
the pulsation of a liquid meniscus “glued” onto a static Taylor cone must be caused by
tiny vertical shifts in the exact position of Taylor’s electrode. This type of linearized
static theory cannot explain the ubiquitous formation of conical features observed in
various different scenarios, hence is hardly satisfactory.

Zubarev’s self-similar theory
Our work is inspired by Zubarev (2001) who independently examined the nonlinear
dynamics of a free surface of an inviscid, irrotional, perfectly conductive liquid subject
to strong electric forces. Having retained the full nonlinear form of the Bernoulli’s
equation, he discovered a self-similar scaling under which surface profile near apex at
different stages could all collapse onto a single shape according to a self-reinforced
process described by power-law growths in the oppositional interfacial forces and kinetic
energy density near the cone apex. He was the first to demonstrate surface curvature
and electric field strength at liquid apex could undergo divergence in finite time due to
this self-similar process while liquid interface still conforms to the Taylor cone angle far
away from the apex. He argued this mechanism is universal in the sense that liquid in
a local self-similar frame near the apex “forgets” about boundary conditions of electric
and velocity fields in laboratory frame and therefore is driven only by the local scales
and forces. Unlike Chung, Cutler, and Miskovsky (1989), Zubarev included a spherically
symmetric sink flow in the far field as illustrated in figure 6.1(b) and predicted that
the fluid must move to the sink point Xc along the tangent to the surface. He also
calculated a leading order shape correction to the exact Taylor cone induced by the sink
flow, which rapidly decays ∼ R−5

‖ (R‖ is the axial distance to the liquid apex).

The self-similar scaling underlying the mechanism of dynamic cone formation proposed
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by Zubarev (2001) is robust in inertia-dominated regimes and has found its appearance
in the Navier-Stokes simulations of a tank of liquid gallium between two plate electrodes
(Suvorov and Zubarev, 2004) and the direct numerical simulation of a conductive liquid
film under the influence of a protruding electrode (Collins, Jones, et al., 2007). In the
inviscid simulation of a charged drop, Burton and Taborek (2011), albeit unaware of
Zubarev’s work, accurately recovered the universal self-similar scaling. The microgravity
experiment (Elele et al., 2015) of self-sharpening meniscus under electric field conducted
for a variety of conductive liquids also reported strong evidence of Zubarev’s scaling.

Zubarev (2001) was also the first to perform asymptotic expansions of far-field electric
potential, velocity field and interface shape to approximate the exact self-similar solutions
order by order. We improve his analysis by introducing a crucial leading order term in
the asymptotic series of velocity field and therefore make new analytical predictions to
flow pattern and interface profile relevant to the existing simulations and experiments.
Moreover, while asymptotic analysis does provide a quantitative picture of localized
cone formation, important details of physically relevant information such as pressure,
velocity field and interface shape near cone apex still remain unknown. On top of
extending Zbuarev’s asymptotic analysis, we also devise a novel numerical technique
based on boundary integral equations which connects our analytically calculated far-
field asymptotics to interface profile and velocity/electric fields near the cone apex. Our
scheme has successfully uncovered a two-parameter family of the exact solutions (flow
pattern, interface shape, electric field) to the self-similar dynamics. Finally we would
like to emphasize that, despite the pioneering work of Zubarev in electrohydrodynamics,
similar inviscid scaling has been previously exploited in context of capillary pinch-off and
recoil of inviscid fluids (Day, Hinch, and Lister, 1998; Leppinen and Lister, 2003; Sierou
and Lister, 2004). These theoretical predictions have been found to correlate closely
with experimental measurements of a collapsing surface singularity (Zeff et al., 2000).

6.3 Inviscid Theory of Electrohydrodynamics Free Surface Flows
In this section, we derive the governing equations for inviscid motions of a perfectly
conductive liquid subject to capillary and Maxwell (electrostatics) stresses acting on its
free surface. These electrohydrodynamic equations are by no means new, probably
known since the time of Rayleigh (1882)’s work on charged conductive drops. However,
the invariance and symmetries hidden in the inviscid model were only recognized a
few decades ago by Zubarev (2001) which, as we shall see in this section, lead to the
similarity transformation he proposed.

Unsteady Bernoulli’s equation
The governing equations will be expressed in dimensionless spatial and time variables,
X and T , and non-dimensional velocity U , electric field E and pressure P with [L], [T ],
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Figure 6.2: Dynamic cone formation of a conducting liquid (yellow) between two plate
electrodes viewed in (a) laboratory frame with coordinates X = (X,Y, Z) and (b)
axisymmetric self-similar frame χ = (r, z) or (rs, θ). At critical time T = Tc, liquid
interface Γ (blue) would develop a genuine singularity at the conical point Xc. Self-
similar frame χ centered at Xc is parametrized either by cylindrical coordinates r (axial
radius) and z (height), or by spherical coordinates rs (spherical radius) and θ (polar
angle). In such a frame, liquid interface γ (blue) is expected to be represented by a
height field z = η(r).

[U ], [E] and [P ] being the characteristic scales of each variable respectively. Without loss
of generality, we further choose time scale [T ] = [L]/[U ] and pressure scale [P ] = ρ[U ]2

in favor of inertia effects (ρ is liquid density). In the regime where inertia, capillary and
electrostatic forces all contribute, the length, velocity and electric field scaling introduced
by Zubarev (2001),

[L] = σ1/3

ρ1/3 [T ]2/3, [U ] = σ1/3

ρ1/3 [T ]−1/3, [E] = σ1/3ρ1/6

ε
1/2
0

[T ]−1/3, (6.1)

represent a balance, ρ[U ]2 ∼ σ/[L] ∼ ε0[E]2, between these three interfacial forces
where σ is the liquid surface tension coefficient and ε0 is the vacuum permittivity con-
stant. It’s not surprising that scaling (6.1) would completely eliminate all material
parameters in the inviscid model as shown later.

We consider the irrotational flow of an incompressible, inviscid, perfectly conductive
liquid surrounded by a vacuum. In figure 6.2(a), global coordinate systemX = (X,Y, Z)
is defined in the lab frame with (X,Y )-plane parallel to the top and bottom plate
electrodes. The conducting liquid occupies a time-varying volume Ωliq, separated from
the vacuum region Ωvac by a moving free surface Γ implicitly defined by a level function
F (X, T ) such that the zero set of F (X, T ) coincides with the moving free surface Γ
at all times,

Γ = {X|F (X, T ) = 0} . (6.2)

Unit normalN of interface Γ is set to point from the liquid domain Ωliq into the vacuum
Ωvac. It then follows from two assumptions of an ideal liquid, irrotationality ∇×U = 0
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and incompressibility ∇·U = 0, that the liquid velocity field U = ∇Φ can be described
by the gradient of a harmonic potential Φ which satisfies the Laplace’s equation in the
liquid domain,

∇2Φ = 0 in Ωliq. (6.3)

Under these assumptions, the Euler’s equation of inviscid fluids simplifies to the unsteady
Bernoulli’s equation everywhere in the liquid volume (Batchelor, 2000),

∂Φ

∂T
+ 1

2∇Φ · ∇Φ+ P = 0 in Ωliq, (6.4)

where the redundant constant of integration in the unsteady Bernoulli’s equation (6.4) is
set to zero without loss of generality. By evaluating Bernoulli’s equation on the moving
interface Γ , we find

DΦ
DT −

1
2∇Φ · ∇Φ = −P on Γ, (6.5)

where D/DT = ∂/∂T + U · ∇ is the usual material derivative. A combination of the
Laplace’s equation (6.3) and the unsteady Bernoulli’s equation (6.4) specify how pressure
forces acting on the free surface are converted into volumetric inertial accelerations.
Additionally, the kinematic boundary condition requires the free surface to move with
the normal component of the velocity. In the level function representation (6.2), it
simply means the level function F (X, T ) is advected by the velocity field U ,

DF
DT = 0 on Γ. (6.6)

It remains to determine the interfacial pressure P . Aside from the capillary stress across
a curved interface, induced charges accumulating on the interface result in an interfacial
stress due to a discontinuity in the Maxwell stress tensor EE> − |E|2I/2 (in unit of
pressure scale [P ]) in the normal direction N across the liquid/vacuum interface Γ
(Saville, 1997). For a perfect conductor, net bulk charge must be zero. All charges
in this case reside on the conductor surface, rearranging themselves in a way that the
electric potential Ψ is always constant on the surface. Consequently, electric field at
the conductor surface only has a normal component, i.e. E = (E · N)N , which
solely depends on the instantaneous shape of the conductor. The jump in Maxwell
stresses simplifies to the usual expression of electrostatic pressure −|E|2N/2. The
total pressure just traversing the interface into the liquid (assuming zero pressure in
vacuum ) is therefore given by

P = −2H− 1
2 |E|

2 on Γ, (6.7)

where H is the dimensionless mean curvature (H < 0 for a local surface patch curving
away from normal N). Note the interfacial pressure (6.7) is precisely the first shape
variation (5.140) of the combined electrostatic energy and surface energy derived in
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Chapter 5. From equation (6.7), we see that the electrostatic pressure is always negative
which implies that the Maxwell forces tend to destabilize the conductive liquid by pulling
it into the vacuum regardless of surface charge type and convexity of local geometry.
For a perfect conductor, electric field E = −∇Ψ in the vacuum Ωvac is the negative
gradient of the electric potential Ψ which satisfies

∇2Ψ = 0 in Ωvac. (6.8)

In general the boundary conditions of electric potential depends on the specific problem.
Suvorov and Zubarev (2004) and Collins, Jones, et al. (2007) considered a fixed voltage
difference between liquid interface Γ and electrode. Their overall system is similar to the
setup shown in figure 6.2(a) although their electrode designs differed from each other.
Burton and Taborek (2011) performed inviscid simulations for an isolated charged drop,
for which a constant surface potential was chosen at every instant to conserved the
total surface charge. Despite these differences, the boundary conditions of the liquid
or electric field all seem to serve as a trigger of the initial instability which then leads
to rapid development of localized conic singularities at the liquid/vacuum interfaces
observed in these simulations. The key feature shared by these different scenarios of
cone formation in perfectly conductive fluids is that, the liquid interface Γ is always
equipotential,

Ψ = constant on Γ. (6.9)

Equation (6.9) is the only local electric field condition considered by G. I. Taylor (1964)
when he deduced the famous Taylor cone angle.

At last we would like to justify the inviscid-irrotational approach. It’s well known that
an initially quiescent fluid with zero vorticity cannot produce vorticity from its interior
(Batchelor, 2000). Vorticity can only be introduced through the free surface and gets
transported/diffused into the bulk. For a perfectly conductive liquid, there is no ac-
tive interfacial shear stress. The traction-free condition on the free surface is solely
responsible for vorticity production. The effect of vorticity and viscous friction is esti-
mated to be confined within a boundary layer of viscous length scale [L]vis = µ2/ρσ.
If we take the example of liquid gallium in vacuum (Suvorov and Zubarev, 2004), of
which ρ ∼ 6×103 kg/m3, µ ∼ 2×10−3 kg/m · s and σ ∼ 0.72 N/m, the resulting scale
[L]vis ∼ O(nm) of viscous boundary layer thickness is on the order of only a few nanome-
ters, which is expected to have negligible impact on the inviscid-irrotational flow in the
bulk until the late stage when conic singularity has developed sufficiently small radius
of curvature at the apex. From a historical perspective, the Bernoulli-based approach
has led to a number of theoretical milestones in free surface hydrodynamics including
the celebrated crest angle of propagating steep deep-water waves (Stokes, 1847).
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Self-similar theory of dynamic cone formation
We assume the conductive liquid described by the inviscid model develops a cuspidal
shape with a conical singularity at the conical point Xc as the critical time Tc is ap-
proached. Zubarev (2001) proposed a universal mechanism to describe the rapid forma-
tion of conical singularities at liquid/vacuum interface. He suggested an axisymmetric
coordinate centered at Xc as shown in figure 6.2(b) where the symmetry axis aligns
with the cone axis. We note that the scaling (6.1) implies unsteady Bernoulli’s equa-
tion (6.5) and pressure (6.7) would remain unchanged in time if the local characteristic
scales always satisfy the relation [U ]2 ∼ 1/[L] ∼ [E]2. This observation immediately
motivates the self-similar transformation introduced by Zubarev.

To see this, we first define the temporal deviation to the critical time Tc as

τ = ±(Tc − T ) (6.10)

where the plus-minus sign ensures τ remains positive (i.e. τ = T − Tc if T > Tc) if
the electrohydyrodynamic system is hypothetically allowed to advance beyond Tc. The
original transformation by Zubarev is extended to incorporate time-reversal symmetry
by introducing the axisymmetric coordinates χ(X, T ) and dilated time t(T ),

χ(X, T ) = X −Xc

τ2/3 , t(T ) = − ln τ. (6.11)

As illustrated in figure 6.2(b), χ is the position vector in the similarity frame, parametrized
by either spherical (rs, θ) or cylindrical (r, z) coordinates, and t is the dilated temporal
variable which “slows” down the algebraically fast dynamics of cone formation observed
in the laboratory frame. The self-similar space is divided by the transformed interface,
designated by γ, into a semi-infinite liquid domain ωliq and a semi-infinite vacuum do-
main ωvac. We then rescale the velocity potential Φ, the electric potential Ψ and the
level function F with their self-similar counterparts φ, ψ and f ,

Φ(X, T ) = ±τ1/3φ(χ, t), Ψ(X, T ) = τ1/3ψ(χ, t), F (X, T ) = τ2/3f(χ, t).
(6.12)

The position of transformed boundary in the self-similar frame, coincides with the zero
contour of the transformed level function f(χ, t),

γ = {χ | f(χ, t) = 0} . (6.13)

A useful form of the level function is the height field representation f(χ, t) = z−η(r, t)
which assumes the interface γ doesn’t develop overhangs. Here η(r) is the height field
of γ measured with respect to the ground where z = 0. The governing equations
(6.3) and (6.8) of velocity potential Φ and electric potential Ψ interior to the liquid and
vacuum domains, respectively, remain unchanged when they are expressed in terms of
the self-similar coordinates (6.11) and potentials (6.12),

∇2φ = 0 in ωliq, ∇2ψ = 0 in ωvac, (6.14)
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owing to the isotropic rescaling of spatial coordinates, where the differential operator
∇ is understood to act on the self-similar coordinates χ. With these new variables
introduced and substituted, we transform the unsteady Bernoulli’s equation (6.5), kine-
matic boundary condition (6.6) and equipotential condition (6.9) into the frame of
self-similarity. The two axisymmetric potentials φ(χ, t) and ψ(χ, t) must satisfy three
boundary conditions,

∂φ

∂t
+ 2

3χ · ∇φ−
φ

3 + 1
2 |∇φ|

2 = 2h + 1
2 |∇ψ|

2 on γ, (6.15)

1
|∇f |

∂f

∂t
+ 2

3n · χ+ n · ∇φ = 0 on γ, (6.16)

ψ = constant on γ, (6.17)

where h is the mean curvature of boundary γ in the self-similar frame. The identity,
n = ∇f/|∇f |, is used to simplify the kinematic boundary condition (6.16).

We note that ± nowhere appears in the self-similar equations (6.15) and (6.16) due to
the extra ± in the transformation (6.12) of the velocity potential Φ. This is a direct
consequence of being an ideal fluid with an infinite (perfect) conductivity: zero (or
negligible) dissipation in the system means the dynamics is time-reversible. Rewinding
backward in time T → −T is equivalent to reversing the direction of velocity field
U → −U . The minus sign in τ = −(T − Tc) corresponds to post-singularity dynamics
of the cone apex beyond the critical time Tc. A pre-singularity (T < Tc) convergence
to a perfect cone can also be equivalently interpreted as post-singularity (T > Tc)
onset flow of an initially conical interface. Physical quantities in laboratory frame such
as velocity field U(X, T ), electric field E(X, T ) and pressure field P (X, T ) can be
recovered in terms of the similarity variables,

U(X, T ) = ±∇φ(χ, t)
τ1/3 , E(X, T ) = −∇ψ(χ, t)

τ1/3 , P (X, T ) = p(χ, t)
τ2/3 , (6.18)

where the rescaled pressure p(χ, t) is found by transforming the unsteady Bernoulli’s
equation (6.4) to the self-similar frame (recall unsteady Bernoulli’s equation for po-
tential flows holds throughout the entire liquid domain not just along a streamline if
irrotationality of an invsicid liquid is assumed),

p(χ, t) = −∂φ
∂t
− 2

3χ · ∇φ+ φ

3 −
1
2 |∇φ|

2. (6.19)

It now becomes clear that the dynamic process of cone formation described by Zubarev
(2001) is the “steady” state solution (i.e. t-independent) to the unsteady Bernoulli’s sys-
tem (6.5), (6.6) and (6.7). From a mathematical perspective, we seek two t-independent
harmonic potentials, φ(χ) and ψ(χ), and a “stationary” interface shape γ such that in
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the co-moving self-similar frame,
2
3χ · ∇φ−

φ

3 + 1
2 |∇φ|

2 = 2h + 1
2 |∇ψ|

2 on γ, (6.20)
2
3n · χ+ n · ∇φ = 0 on γ, (6.21)

ψ = constant on γ. (6.22)

Since the coordinates of self-similar frame extend to infinity, the exact solutions to the
above equations closely depend on the far-field behavior of φ, ψ and γ at |χ| � 1. For
a solution to be physical, quantities such as velocity ∇φ and electric field −∇ψ must
be bounded as interface γ matches onto the exact shape of a Taylor cone at |χ| → ∞.
It turns out that, there is not just one but an entire family of self-similar solutions
satisfying these constraints, as demonstrated in the next section.

6.4 Family of Asymptotic Solutions to Self-Similar Dynamic Cone Formation
Zubarev (2001) devised valid asymptotic series of the electric field, velocity potential and
interface shape to satisfy the self-similar Bernoulli system in the far-field where |χ| � 1.
His argument was constructed entirely based on a sink-type velocity potential φ ∼ 1/rs.
In a subsequent work (Suvorov and Zubarev, 2004), the authors mentioned a previously
omitted yet more important leading order velocity potential φ ∝ √rsP1/2(− cos θ),
albeit in extreme brevity. In this section, we deliver a thorough analysis on the inclusion of
this term by constructing more general asymptotic solutions to the self-similar equations
(6.20), (6.21) and (6.22) in the far field where |χ| � 1. Physical implications of this
new velocity potential and the asymptotic expansions it induces are discussed in great
details as well.

Taylor’s static cone
G. I. Taylor (1964) examined the static equilibrium between electrostatic and surface
tension forces along the surface of a perfectly conductive liquid cone which leads to an
opening angle ≈ 98.6◦. Taylor’s argument is most easily seen by considering a conical
conductor spanning a range of polar angle from θ0 to π as depicted in figure 6.3. In
cylindrical coordinates (r, z), the conical surface γ is given by

γ = {(r, z) | z = c0r}, (6.23)

where c0 = cot θ0 is the slope of a conic surface at θ = θ0. In Taylor’s simplified static
picture, the self-similar Bernoulli system reduces to

0 = 2h + 1
2 |∇ψ|

2 on γ, (6.24)

ψ = constant on γ. (6.25)

Then solution to the electric potential ψ has the general form (Jackson, 1999),

ψ = b0r
`
sP`(cos θ) with P`(cos θ0) = 0, (6.26)
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rs rs rs

z z z

r r r

θ0 θ0 θ0

(a) (b) (c)

ψ ∝ √rsP1/2(cos θ) φ ∝ 1/rs φ ∝ √rsP1/2(− cos θ)

Figure 6.3: (a) Contours (black) and field lines (dashed) of Taylor’s conic electric po-
tential. Velocity field (arrow) and pressure contours (red) of (b) Zubarev’s sink flow
and (c) lifting flow inside liquid (yellow). Taylor cone (blue) is an exact solution (solid
blue) in (a) but a leading order approximation (dashed blue) in (b) and (c). Increments
between adjacent contours are constant.

where b0 is an undetermined constant representing the scale of local field strength and
P`(·) is the associate Legendre polynomial of order `. It is only possible for ψ to be
equipotential along the cone surface χ = (rs, θ0) if θ0 is the root of P`(cos θ).

On the other hand, the mean curvature h for a surface represented by a height field
η(r) is given by

2h = 1
[1 + (dη/dr)2]3/2

d2η

dr2 + 1
r

1√
1 + (dη/dr)2

dη
dr . (6.27)

Applying formula (6.27) to a perfect cone (6.23) for which η(r) = c0r yields 2h ∝ 1/r.
If capillary were to balance with the Maxwell stress |n · ∇ψ|2 ∼ r2`−2

s all the way up
to the cone apex, ` must equal 1/2 which immediately yields the Taylor cone angle
2(π − θ0) ≈ 98.6◦ where θ0 is the unique root of P1/2(cos θ). Taylor’s solution can be
summarized as

φ = constant, ψ = b0
√
rsP1/2(cos θ), η = c0r, (6.28)

where c0 = cot θ0 ≈ −0.86 is not a free parameter but the slope locked by the exact
Taylor cone angle. In figure 6.3 we plot the electric potential and its field lines. It’s
evident from the potential contours clustering near the origin that electric field −∇ψ
locally blows as it moves towards the cone tip.

While Taylor cone is an exact solution to the self-similar equations (6.20)–(6.22) with a
trivial (constant) velocity potential, it is not uniformly valid: curvature and electric field
are both undefined at the cone apex. As pointed out by Zubarev (2001), in the self-
similar framework Taylor cone should be understood as an asymptotic condition away
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from the apex. On the other hand, Taylor’s static solution (6.28) alone is not sufficient
to determine the underlying flow structure that could possibly spawn and sustain such
a cone. In fact a truly hydrostatic equilibrium (G. I. Taylor, 1964) must demand exact
balance between capillary and Maxwell stresses to achieve a constant pressure distribu-
tion everywhere along the liquid/vacuum interface. In our nondimensionalized model, it
means the local electric field strength b0 is not an arbitrary parameter but

|b0| =
√
−2 cot θ0

dP1/2(cos θ)/dθ|θ=θ0
≈ 1.34593 (6.29)

in order to produce a uniform pressure along the cone. In practical situations, condition
(6.29) is a very stringent requirement and is unlikely to meet for every spontaneous cone
formation observed. Any deviation from the field strength (6.29) immediately results in
an O(1/rs) pressure gradient along the conical surface which must be compensated for
by additional physical mechanisms such as inertia forces in the inviscid model.

Taylor’ static cone is also problematic in the vicinity of cone apex. Physical quantities
such as surface charge density (i.e normal component of electrostatic field) and surface
curvature,

− n · ∇ψ = b0√
rs

dP1/2(cos θ)
dθ

∣∣∣
θ0
, 2h = c0√

1 + c2
0

1
r

on γ, (6.30)

blow up to infinity as r → 0. In other words, the static conical interface between
liquid and vacuum is maintained under the counterbalance between two surface forces
becoming singularly large towards the apex, a configuration that’s often metastable or
unstable in reality. Nevertheless Taylor’s theory still unambiguously identifies the unique
cone angle θ0.

Dynamic cone formation
In order to motivate a dynamically formed conic singularity, let’s consider material points
on a locally conical surface being mapped by the self-similar transformation (6.11), i.e.
X → Xc + (Tc − T )2/3χ. In such a scenario, the material surface formed by these
material points remains a “stationary” conical shape (since they all move tangent to the
cone surface) while still experiencing large accelerations as T → Tc. This observation
suggests possible existence of an inertia-driven Taylor cones, which we term the dynamic
cone. It is conceivable that there might exist some special liquid shapes and particular
forms of velocity field under the influence of capillary and Maxwell stresses such that
the interface geometry maintains a nearly conical shape almost indifferent to the static
Taylor cone while liquid in the bulk is being actively advected instead of the hydrostatic
“no-flow” situation assumed by previous work (Chung, Cutler, and Miskovsky, 1989).

Mathematically speaking, we seek asymptotic solutions to equations (6.20)–(6.22) of
the self-similar Bernoulli system with a nontrivial velocity potential φ in the far-field
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where |χ| � 1. Zubarev (2001) proposed a far-field sink flow at the leading order by
placing a fictitious sink φ ∝ 1/rs at the conical point χ = 0. At first glance, sink
flows seem to be a valid candidate accountable for dynamic cone formation as they
are tangent to conical surfaces of arbitrary opening angles and thus trivially meet the
kinematic boundary condition (6.21). It’s also evident from −φ/3 in the self-similar
Bernoulli’s equation (6.20) that the inertial contribution from a sink flow is comparable
to the pressure forces due to capillary and Maxwell stresses. However, we would like
to raise an issue with asymptotic sink flows dominating the far field: their streamlines
are almost perfectly spherically symmetric about the conical point. It is conceivable
that the convergence of a round material surface towards a conical shape under the
advection of sink flows must be exceptionally slow unless it is already a conical shape
in the first place. For this reason, it is not appropriate to model the dynamic process
of cone formation entirely based on sink flows. Although sink flows are widely used
in the mathematical description of steady cone-jet configurations (Gañán-Calvo, 1997;
Fernández de la Mora, 2007; Subbotin and Semenov, 2015) where a slender cylindrical
high-speed jet is matched on to the apex of a stationary conic base.

Following Zubarev’s initial effort, we observe that the kinetic energy density |∇φ|2/2 of
a velocity potential of the form √rsP1/2(± cos θ) in the self-similar frame also scales
O(1/rs) along a conical surface of an arbitrary opening angle. The seemingly unbounded
term 1

3φ (∝ √rs) exactly cancels out the growing contribution from 2
3χ·∇φ in Bernoulli’s

equation (6.20). A similar form of velocity potentials was first employed by Day, Hinch,
and Lister (1998) to explain the capillary pinch-off of an inviscid fluid. We choose
to discard the unphysical velocity potential √rsP1/2(cos θ) as it’s singular along the
symmetry axis interior to liquid (recall limθ→π P1/2(cos θ) → −∞). In the end, we
propose a larger set of asymptotic ansatzes for velocity potential φ, electric potential ψ
and height field η(r) of interface γ, which are more appropriate for capturing the leading
order behavior of the liquid-vacuum system during the self-similar process of dynamic
cone formation,

φ(χ) ∼ a0r
1/2
s P1/2(− cos θ) + a1

rs
, ψ(χ) ∼ b0r

1/2
s P1/2(cos θ), η(r) ∼ c0r. (6.31)

Ansatzes (6.31) were briefly mentioned in Suvorov and Zubarev (2004). To illustrate
the effect of these leading order solutions, in figure 6.3 we plot the velocity field ∇φ and
pressure p(χ) field defined in (6.19) for a sink potential 1/rs and a “lifting” potential
√
rsP1/2(− cos θ), named after its uplifting streamline pattern, along with the electric

field ∇ψ of Taylor’s conic potential √rsP1/2(cos θ). The velocity field of a lifting flow is
clearly distinct from a sink flow: instead of corralling liquid to a sink point in a spherically
symmetric fashion, the resultant forces from the opposing Maxwell and capillary forces
lift liquid along streamlines that are nearly vertical, which make the transition from a
round menus to a conic cap possible. Another distinct discrepancy between these two
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types of flow is that, the local pressure gradient ∇p and velocity ∇φ are no longer
colinear, which means the inertia force acting on an accelerating infinitesimally small
liquid parcel is not in the direction of its motion as opposed to the case of a sink flow.
Furthermore, the self-similar Bernoulli’s equation (6.20) evaluated at the exact Taylor
cone (z = c0r) can be satisfied at the leading order if coefficients a0, b0 and a1 of the
potentials in ansatzes (6.31) fulfil the relation

a1 = a2
0

2

{[
P1/2(− cos θ0)

2

]2
+
[dP1/2(− cos θ)

dθ

∣∣∣∣
θ0

]2}
− b2

0
2

[dP1/2(cos θ)
dθ

∣∣∣∣
θ0

]2
− c0,

(6.32)
or in its numerical form a1 ≈ 0.144 a2

0 − 0.475 b2
0 + 0.860. In a such event, Bernoulli’s

equation (6.20) would have a residue decaying to zero as rs → ∞. Likewise, the
kinematic boundary condition (6.21) is no longer exactly fulfilled (unless a0 = 0) but
evaluated to a diminishing residue ∼ O(1/√rs). These asymptotically vanishing residues
manifest self-consistency in the ansatzes (6.31) as valid leading order approximations.

In order to formally eliminate the residues of the self-similar Bernoulli system (6.20)–
(6.22) at all orders, we construct a set of infinite series expansions φ∞, ψ∞ and η∞ for
velocity potential φ, electric potential ψ and height field η in the far field (Sierou and
Lister, 2004),

φ∞(χ) =
∞∑

k=0
akφk(χ), ψ∞(χ) =

∞∑

k=0
bkψk(χ), η∞(r) =

∞∑

k=0
ckηk(r), (6.33)

where the k-th order terms are given by

φk(χ) = r
1
2−

3
2k

s P 3
2k−

3
2
(− cos θ), ψk(χ) = r

1
2−

3
2k

s P 3
2k−

3
2
(cos θ), ηk(r) = r1− 3

2k.

(6.34)
The series obtained by Zubarev (2001) is actually a subset of the expansions (6.33),
i.e. φ∞ = a1φ1 + a3φ3 + ..., ψ∞ = b0ψ0 + b2ψ2 + ... and η∞ = c0η0 + c2η2 + ....
Despite there are infinitely many coefficients, all ak, bk and ck for k > 1 are in fact
uniquely determined by a0, b0 and c0. Since the asymptotic slope c0 is locked by
the Taylor cone angle θ0, we expect a two-parameter (a0 and b0) family of the exact
solutions to equations (6.20)–(6.22) of the self-similar Bernoulli system. The order-by-
order procedure of determining higher order coefficients, is nontrivial: there are three
series of coefficients ak, bk and ck coupled through a set of three nonlinear equations
evaluated at the perturbed cone shape z = c0r + ∑∞

k=1 ckηk—not the exact Taylor
cone—in an interleaved fashion. Following the arrows in the flowchart 6.4, we can
explicitly calculate higher order coefficients ak, bk and ck up to arbitrary integer order
k > 0 via the symbolic package MATHEMATICA (Wolfram Research, 2019). The
analytic expressions of ak, bk and ck become cumbersome as order k rises. Hence we
only list the first few lower order ones here. For instance coefficients a0, ..., a2 are given
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a0 · · ·

b0 · · ·

c0 · · ·

ak ak+1 ak+2

bk bk+1 bk+2

ck ck+1 ck+2

· · ·

· · ·

· · ·

Figure 6.4: Flowchart for the interleaved process of computing coefficients ak, bk, ck.
Arrows represent the equations needed to produce a particular coefficient at the next
order: equipotential condition (6.22) in blue, kinematic boundary condition (6.21) in
red and Bernoulli’s equation (6.20) in green.

by the relations

a0 = free parameter,

a1(a0, b0, c0) = equation (6.32),

a2(c0, . . . , c3, a1) = 3√
sin θ0P ′3/2(− cos θ0)

(
−a1c1

2 + c3
1

8 sin θ0
+ c3

sin3 θ0

)
,





(6.35)

where P ′`(·) means differentiation with respect to the argument. Coefficients b0, ..., b3

are found to be

b0 = free parameter,

b1(c0, c1, b0) = −b0c1 sin3/2 θ0P
′
1/2(cos θ0),

b2(c0, . . . , c2, b0) = −b0
2c2P ′1/2(cos θ0) + c2

1 sin3 θ0P ′′1/2(cos θ0)
2P3/2(cos θ0) ,

b3(c0, · · · , c3, b0) = b0P
′
1/2(cos θ0)

[
c1c2P ′3/2(cos θ0)

csc3/2 θ0P3/2(cos θ0)P3(cos θ0)

−8c3 csc4 θ0 + c3
1
(
csc2 θ0 + 1

)
+ 12c1c2 cot θ0 csc2 θ0

8 csc5/2 θ0P3(cos θ0)

]

+b0P
′′
1/2(cos θ0)

[
c3

1P
′
3/2(cos θ0)

2 csc9/2 θ0P3/2(cos θ0)P3(cos θ0)

− c1c2
csc3/2 θ0P3(cos θ0)

]

−b0P
′′′
1/2(cos θ0) c3

1
6 csc9/2 θ0P3(cos θ0)

.





(6.36)
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Coefficients c0, ..., c2 are given by

c0 = slope of Taylor cone angle θ0,

c1(a0, c0) =
P ′−3/2(− cos θ0)
√

csc θ0
a0,

c2(c0, c1) = − c2
1

2P ′1/2(− cos θ0)/ sin θ0

[
2 cos(θ0)P ′1/2(− cos θ0)

+ sin2 θ0P
′′
1/2(− cos θ0) + 3P1/2(− cos θ0)/4

]
.





(6.37)

Equation (6.37) indicates that c1 and a0 are linearly related by a constant. Therefore
the two degrees of freedom in expansion (6.33) can be either (a0, b0) or (b0, c1). For
example, coefficient a2 after substitutions can be reduced to a function of b0 and c1

instead,

a2(c1, b0) = c1

[
b2

0
P1/2(− cos θ0)− 4 cos θ0P ′1/2(− cos θ0)
8 csc3/2 θ0P3/2(− cos θ0)P ′1/2(− cos θ0)

P ′1/2 (cos θ0)2

+
4 cos θ0P1/2(− cos θ0)− (3 cos (2θ0) + 5)P ′1/2(− cos θ0)

16P3/2(− cos θ0)P ′1/2(− cos θ0) csc3/2 θ0

]

+ c3
1
16 cos θ0P ′1/2(− cos θ0)3 + 4P1/2(− cos θ0)P ′1/2(− cos θ0)2 − csc2 θ0P1/2(− cos θ0)3

32 csc1/2 θ0P3/2(− cos θ0)P ′1/2(− cos θ0)3 .

(6.38)

An important observation from equations (6.37) is that the coefficient c2 of shape
correction η2 doesn’t depend on the sink strength a1 but instead on c1 and c2 from the
first two shape corrections. A simple change of variable − cos θ0 → x reveals c2 is in
fact zero since

c2 ∝ 2 cos(θ0)P ′1/2(− cos θ0) + sin2 θ0P
′′
1/2(− cos θ0) + 3

4P1/2(− cos θ0)

= d
dx

[
(1− x2)

dP1/2(x)
dx

]
+ 1

2

(1
2 + 1

)
P1/2(x) = 0, (6.39)

where the last line is precisely the definition of associate Legendre polynomials P`(x) as
exact solutions to the Legendre’s differential equation. Recall the asymptotic corrections
to the exact cone shape derived by Zubarev (2001) are only a subset of the expressions
(6.33), i.e. η∞ = c0r + c2/r2 + c4/r5 + O(1/r8). Note c2 = 0 implies the first shape
correction to the exact Taylor cone implied by Zubarev’s asymptotic sink flow is as
negligibly small as O(1/r5). Once coefficients ak, bk and ck are entirely determined, the
asymptotic expansion of liquid pressure p∞ can be readily computed by collecting terms
order by order after substituting expansions (6.33) into self-similar pressure (6.19),

p∞(χ) = 1
rs

{
a1 −

1
8a

2
0
[
4 sin2 θP ′1/2(− cos θ)2 + P1/2(− cos θ)2

]}

+ 1
r

5/2
s

[1
2a0a1P1/2(− cos θ) + 2a2P3/2(− cos θ)

]
+O(r−4

s ). (6.40)



192

While the asymptotic pressure p∞(χ) still maintains the O(1/rs) radial scaling of a pure
sink flow, its additional angular dependence on θ, as reflected in the pressure contours
shown in figure 6.3(c), is due to a nonzero lifting flow strength a0.

Estimating near-apex behaviors
The exact solutions to the self-similar Bernoulli system can only be determined numer-
ically since one must solve two Laplace’s equations posed on semi-infinite liquid and
vacuum domains separated by a yet undetermined interface shape. Before delving into
details of numerical analysis, we discuss some near-field behaviors of the exact solutions
if exist. Recall from the kinematic boundary condition (6.21) that at r = 0 we have

2
3η(0) + ∂φ

∂z

∣∣∣
χ=(0,η(0))

= 0. (6.41)

The location of cone apex in the self-similar frame dictates the direction and magnitude
of near-field velocity field u = ∇φ. From relation (6.37) we know that coefficient c2 = 0
which makes the first shape correction c1/

√
r to the exact Taylor cone exceptionally

relevant. The fact that c1 ≈ 0.36843 a0 indicates whether c1/
√
r leads to a correction

beneath or above the exact Taylor cone depends on the sign of a0, hence the direction
of velocity field induced by the lifting potential a0φ0. Taking time-reversal symmetry
of the inviscid model into account, we illustrate a number of possible shape-velocity
configurations in figure 6.5 where self-similar interfaces with c1 < 0 (or c1 > 0) shape
corrections in the far field would coverage to (or deviate from) the exact Taylor cone
under the influence of lifting (or repressing) flows ∇φ0 of strength a0 < 0 (or a0 > 0).

Before resorting to numerical solutions, it is already possible to make several predictions
on the self-similar behaviors of the interface. The “super-cone” solutions shown in figure
6.5(a) are the ones whose interfaces are entirely above the exact Taylor cone. Although
the “retraction” solution seems to be physically implausible, its time-reversal dynamics
can be interpreted as the post-singularity onset growth of a liquid cap. The dynamic
cone formation, which indefinitely sharpens the cone apex till the conical point Xc

is reached, belongs to the pre-singularity dynamics of the “sub-cone” class shown in
figure 6.5(b), of which the interfaces are entirely bounded above by the Taylor cone. Its
time-reversal corresponds to a “collapse” situation where an initially sharp conic tip is
repressed due to, for instance, a sudden loss of surface charges. We can imagine more
sophisticated situations where the interfaces remain above the Taylor cone in the far
field but beneath near the apex shown in figure 6.5(c). This is known as the recoil flow
(Sierou and Lister, 2004; Hoepffner and Paré, 2013): while liquid in the bulk is still
being driven upward to the conical point, the cone apex has already bounced downward.

We next provide some analytic effort on estimating near-apex interface shape. The
argument was originally employed by Zubarev (2001) to derive a lower bound on the
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(a) (b) (c)

onset jet
T > Tc

retraction
T < Tc
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T < Tc
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T > Tc T < Tc
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Figure 6.5: Sketches of (a) super-cone, (b) sub-cone and (c) mixed-cone self-similar in-
terfaces γ (solid blue) relative to the exact Taylor cone (dashed blue) and configurations
of far-field and near-apex velocity fields ∇φ (arrow) in pre-(right) and post-singularity
(left) dynamics.

maximum apex depth without actually having the coupled boundary value problems of
the self-similar Bernoulli system solved. However, his analysis doesn’t directly apply
when the deviation of self-similar interface shape from the exact Taylor has a noticeable
tail, i.e (η− c0r) ∼ c1

√
r+ ..., caused by the presence of a far-field lifting flow, instead

of a rapidly decaying tail ∼ c4/r5 due to a sink flow alone assumed by Zubarev. By
making some additional assumptions, we show that it is still possible to arrive at some
estimations on the maximum depth near cone apex.

Let χ∗ = (r∗, z∗) be a truncation point on the liquid/vacuum interface γ with z∗ = η(r∗)
for some large axial radius r∗ � 1. We define boundary

γT = {(r, c0r) | 0 ≤ r ≤ r∗} (6.42)

to be the surface of a perfect Taylor cone and

γ∗ =
{
(r, z) | z∗ ≤ z ≤ c0r∗ (or c0r∗ ≤ z ≤ z∗ if super-cone)

}
(6.43)

be the vertical strip between Taylor cone γT and actual interface γ at r = r∗. These
geometry quantities are illustrated in figure 6.6(a). The total volume ωT enclosed
between the exact Taylor cone γT and liquid/vacuum interface γ is given by the integral
∫

ωT
dω =

∫

ωT

1
3∇ ·χdω = 2π

3

∫

γT
nT ·χ r dγ + 2π

3

∫

γ∗
n∗ ·χ r dγ − 2π

3

∫

γ
n ·χ r dγ,

(6.44)
where nT and n∗ are the outward normal vectors of volume ωT whereas n is the globally
defined normal of interface γ. Note ωT is a signed volume due to possibilities of super-
and sub-cone shapes. The first integral in equation (6.44) is zero since along the surface
of a perfect cone nT · χ = 0. The second integral along strip γ∗ is straightforward,

2π
3

∫

γ∗
n∗ · χ r dγ = 2

3πr
2
∗(c0r∗ − z∗). (6.45)
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Figure 6.6: (a) Signed volume (hatched) ωT, (b) ωD and (c) ω̃D: γ (blue) is the
solution to the self-similar Bernoulli system, γT (dashed blue) is the exact Taylor cone
z = c0r, γD(dashed red) is the leading order asymptote z = c0r + c1r−1/2, χ∗ ∈ γ is
the truncation point, γliq (blue) is the spherical cap passing through χ∗ and γ∗ (green)
is the vertical strip bridging γ and γT (or γD) at r = r∗, r̃ is the turning radius of γD
and depth zmax is related to an estimation on the minimum elevation of interface γ.

Direct evaluation of the third integral in equation (6.44) requires actual geometric in-
formation about the interface shape γ which is not available. Fortunately with the use
of divergence theorem we can transfer this integral to the spherical cap γliq which is an
arc of radius |χ∗| spanning from the polar angle θ∗ of χ∗ to the south pole θ = π as
shown in figure 6.6,

−
∫

γ

2
3n · χπr dγ = 1

2

∫

γ
n · ∇φ 2πr dγ kinematic B. C. (6.21)

= 1
2
( ∫

γ∪γliq
−
∫

γliq

)
(n · ∇φ) 2πr dγ

= 1
2

∫

ωliq
∇ · ∇φ dω − π

∫

γliq
(n · ∇φ) (rs)2

∗ sin θ dθ recall ∇2φ = 0

= −π
∫

γliq
(n · ∇φ) (rs)2

∗ sin θ dθ, (6.46)

where (rs)∗ = |χ∗| is the spherical radius at the truncation point. Assuming truncation
radius r∗ is sufficiently large, the unknown velocity potential φ is expected to converge to
the asymptotic expansion φ∞ on the spherical cap γliq. Substituting φk from equation
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(6.34) into (6.46) yields
∫

γliq
(n · ∇φ) (rs)2

∗ sin θ dθ

=
∫ π

θ∗

∂φ∞
∂rs

∣∣∣
χ=((rs)∗,θ)

(rs)2
∗ sin θ dθ

=
∞∑

k=0
ak

∫ π

θ∗

∂φk
∂rs

∣∣∣
χ=((rs)∗,θ)

(rs)2
∗ sin θ dθ

=
∞∑

k=0
ak

∫ π

θ∗

∂r
1
2−

3
2k

s

∂rs

∣∣∣
rs=(rs)∗

P 3
2k−

3
2
(− cos θ)(rs)2

∗ sin θ dθ

=
∞∑

k=0
ak

1− 3k
2 (rs)

3
2−

3
2k∗
∫ π

θ∗
P 3

2k−
3
2
(− cos θ) sin θ dθ

=
∞∑

k=0
ak

1− 3k
2 (rs)

3
2−

3
2k∗
∫ 1

− cos θ∗
P 3

2k−
3
2
(x) dx

= −a1(1 + cos θ∗) + a0
2
3(rs)3/2

∗ sin2 θ∗P ′−3
2

(− cos θ∗)

+
∞∑

k=2
ak(rs)

3−3k
2∗

2 sin2 θ∗
3(1− k)P

′
3k−3

2
(− cos θ∗), (6.47)

where the last line is the result of the integral formula of Legendre polynomial P` (Byerly,
1895), ∫ 1

x
P`(x′) dx′ = 1− x2

`(`+ 1)P
′
`(x) for ` 6= 0. (6.48)

Substituting integrals (6.45) and (6.46) back into in equation (6.44) we obtain
∫

ωT
dω = a1π(1 + cos θ∗)− a0π

2 sin2 θ∗
3 P ′1/2(− cos θ∗)(rs)3/2

∗ + ...+ 2
3πr

2
∗(c0r∗ − z∗)

= a1π(1 + cos θ0) +O(r−3/2
∗ )

−2
3πc1r

3/2
∗ + a2

0π
P ′1/2(− cos θ0)

3

[
c0P ′1/2(− cos θ0)

(1 + c2
0)3/2 +

2P ′′1/2(− cos θ0)
(1 + c2

0)2

]
+O((rs)−3/2

∗ )

−2
3π(c1r

3/2
∗ + c2) +O(r−3/2

∗ )

= a1π(1 + cos θ0) + a2
0π
P ′1/2(− cos θ0)

3

[
c0P ′1/2(− cos θ0)

(1 + c2
0)3/2 +

2P ′′1/2(− cos θ0)
(1 + c2

0)2

]

−
∫ r∗

0
c1r
−1/2 2πr dr +O(r−3/2

∗ ), recall c2 = 0 (6.49)

where we have replaced z∗ by the asymptotic height z∗ = η∞(r∗) in the limit r∗ � 1
and then expanded all terms in powers of 1/r∗. Since all the residues left in the integral
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(6.49) are non-growing, it’s now safe to evaluate the limit

lim
r∗→∞

{∫

ωT
dω +

∫ r∗

0
c1r
−1/2 2πr dr

}

= a1π(1 + cos θ0) + a2
0π
P ′1/2(− cos θ0)

3

[
c0P ′1/2(− cos θ0)

(1 + c2
0)3/2 +

2P ′′1/2(− cos θ0)
(1 + c2

0)2

]
.

(6.50)

Note that by setting a0 = 0 (hence c1 = 0 as well) we recover the relation derived by
Zubarev (2001), which assumes sink flow is the leading order solution. The geometric
interpretation of equality (6.50) becomes transparent if we introduce a new asymptotic
boundary γD of the dynamic cone as

γD = {(r, c0r + c1r
−1/2) | 0 ≤ r ≤ r∗} (6.51)

and define another signed volume ωD enclosed between liquid/vacuum interface γ and
the leading order asymptote γD (see figure 6.6(b)),

lim
r∗→∞

ωD = lim
r∗→∞

∫ r∗

0

[
c0r + c1r

−1/2 − η(r)
]

2πr dr

= a1π(1 + cos θ0) + a2
0π
P ′1/2(− cos θ0)

3

[
c0P ′1/2(− cos θ0)

(1 + c2
0)3/2 +

2P ′′1/2(− cos θ0)
(1 + c2

0)2

]
,

(6.52)

or in its numerical form, limr∗→∞ ωD ≈ 1.093 a1 − 0.118 a2
0.

Equation (6.52) poses a constraint between coefficient a1 and c1, or equivalently between
b0 and a0 due to (6.32) and (6.37), which suggests that arbitrary combinations of the
two parameters, a0 and b0, might not all be admissible, i.e. there might exist no self-
similar solution corresponding to the asymptotic series (6.33) of some particular pairs
of a0 and b0. For instance, it is impossible for a combination of a strong sink flow
(a1 � 0) and a weak lifting flow (|a0| � 1) to produce a self-similar interface shape
that’s entirely bounded below by the asymptote γD for which the signed volume ωD

would have to strictly negative.

An interesting application of constraint (6.52) is estimates on the elevation of interface
height η(r) near apex. We only consider a special case where c1 < 0 and liquid/vacuum
interface γ is everywhere bounded blow by its asymptote γD:

c0r + c1r
−1/2 ≤ η(r) ≤ c0r for r ≥ 0 and c1 < 0. (assumption) (6.53)

Let r̃ be the axial distance of the turning point where boundary γD reaches its maximum
height. We can then solve for a height level zmax such that the volume ω̃D, which is
bounded between z = zmax and γD till the turning radius r̃, is identical to limr∗→∞ ωD

(see figure 6.6 for visualization),

ω̃D =
∫ r̃

0

(
c0r + c1r

−1/2 − zmax
)

2πr dr = lim
r∗→∞

ωD, (6.54)
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The solution of equation (6.54) is straightforward,

r̃ =
(
c1
2c0

)2/3
, zmax =

(2c0
c1

)1/3 (5
3c1 −

2c0
πc1

lim
r∗→∞

ωD

)
. (6.55)

It then immediately follows from the assumption (6.53) that the maximum interface
elevation of η(r) over interval 0 ≤ r ≤ r̃ must be above the height of γD at the turning
radius r̃ and that the minimum elevation of η(r) over the same interval must be below
zmax:

3
22/3 c1

(
c0
c1

)1/3
≤ max

r∈[0,r̃]
η(r), min

r∈[0,r̃]
η(r) ≤ zmax. (6.56)

Inequality (6.56) is different from the estimate in Zubarev (2001). In a simplified sink-
flow setting, the liquid interface is assumed to be always bounded above by the exact
Taylor cone z = c0r. However, due to the presence of far-field lifting flows, such
assumption can no longer hold and interface profile is more likely to be bounded below
by a corrected boundary z = c0r + c1/

√
r.

6.5 Numerical Solutions via Patched Boundary Integral Equation
Asymptotic series (6.33) only converge to the exact solutions of the self-similar equations
(6.20)–(6.22) in the far field. To resolve details of the velocity field, electric field and
interface profile near cone apex, a patched boundary integral formulation (Leppinen
and Lister, 2003) of the Laplace’s equation is employed to communicate the near-apex
information with analytically derived far-field asymptotic expansions. In figure 6.7(a),
the semi-infinite vacuum and liquid domains are truncated by a sphere of a sufficiently
large radius χ∗ � 1. The liquid/vacuum interface γ is intercepted by the same sphere
at truncation point χ∗. The resulting vacuum volume ωvac enclosed by γ and a spherical
vacuum patch γvac is finite and closed. Similar truncation applies to the liquid domain
γliq. These conditions allow the use of boundary integral representation of harmonics
potentials. For velocity potential φ we have

β(χ′)φ(χ′) =
∫

γ∪γliq

{
g(χ′;χ)∂φ(χ)

∂n
− φ(χ)∂g(χ′;χ)

∂n

}
2πr dγ(χ), (6.57)

where g(χ′;χ) is the axisymmetric Green’s function (Lennon, P. L.-F. Liu, and Liggett,
1979) of a ring source located at χ′, n is the boundary normal vector pointing from
ωliq into ωvac and β(χ′) is the interior angle formed by two adjacent boundaries at χ′.
The electric potential ψ can be formulated through an almost identical representation
as in equation (6.57) only with outward normal n reversed.

Normally for boundary value problems of harmonic potentials exterior to a finite, simply
connected body, the integral contribution from these spherical patches are neglected
because the integrand from these boundaries tends to decay sufficiently fast in the limit
of a infinitely large truncation radius. Unfortunately this is not the case for the problem
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Figure 6.7: (a) Truncated vacuum domain ωliq with patched vacuum boundary γvac
(dashed) and liquid domain ωliq (dash-dotted), separated by the liquid/vacuum interface
γ (solid blue) clamped at the intercept point χ∗. (b) Patched boundary value problem
(6.58) for velocity potential φ. (c) Patched boundary value problem (6.59) for electric
potential ψ.

of self-similar cone formation we consider here. It’s not difficult to see that, if velocity
potential φ converges to its asymptotic expansion φ∞ in (6.33), then the integrand, e.g.,
φ(χ)(∂g(χ′;χ)/∂n)2πr dγ, would grow ∼ √rs as rs → ∞ instead of decay to zero.
Inclusion of the two patched boundaries γliq and γvac is crucial to obtaining accurate
solutions to the integral equation (6.57). For the velocity potential φ, we impose the
kinematic condition (6.21) on γ and a Dirichlet condition on the patched boundary γliq

based on the asymptotic expansion (6.33) up to k = 4,

∂φ

∂n
= −2

3n · χ on γ, φ =
4∑

k=0
akφk on γliq. (6.58)

For the electric potential ψ, equipotential condition (6.22) is imposed on γ and a Neu-
mann condition on γvac,

ψ = 0 on γ,
∂ψ

∂n
=

4∑

k=0
bk
∂ψk
∂n

on γvac. (6.59)

We discretize the boundaries γ, γliq and γvac with a set of knots interpolated by quintic
splines. Quadratic Lagrange basis functions along the spline arc-length are employed to
approximate velocity potential φ, normal velocity ∂φ/∂n and electric field ∂ψ/∂n from
their Lagrange nodal values on the boundary. Numerical integration in the presence of
the Green’s function g(χ′;χ) is handled with Gauss-Legendre quadrature rules when
the integrand of (6.57) is regular and with the logarithmic-weighted quadrature rules
whenever a logarithmic singularity appears. Given a pair of coefficients (a0, b0), we
clamp a trial interface shape γ and its first two derivatives at the truncation point
χ∗ (see figure 6.7(a)) according to the analytic expression η∞(r) from (6.33). The
matrix equations arsing from two discretized integral equations of φ and ψ subject to
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Figure 6.8: Self-similar solutions parametrized by a0 and b0: interface shape γ (solid),
pressure field p (contours) and velocity field ∇φ (arrow). (a) Two sub-cone solutions
with b0 = 1.15: a0 = 0⇒ a1 = 0.23 (right) and a0 = −1.36 (left). (b)Two super-cone
solutions with a0 = 1.36: b0 = 1.15 (right) and b0 = 0 (left). (c) Sub-cone solution γSS
corresponding to a0 = −2.37 and b0 = 1.76, overlaid by the rescaled data (dot) from
Burton and Taborek (2011). (d) Log-log plot of φ (red), ∂ψ/∂n (green) and η (blue)
evaluated along γSS against r. Thick lines are power-law asymptotes 0.989703 a0r1/2,
0.848582 b0r−1/2 and 0.860437 r with no adjusting parameters.

mixed boundary conditions (6.58) and (6.59) are solved by QR decomposition to obtain
nodal vlaues of φ and ∂ψ/∂n on γ. In the end a Newton-Raphson method is used
to iteratively adjust parametrization of the interface γ till the self-similar Bernoulli’s
equation (6.20) is satisfied up to a sufficiently small residue. The Jacobian at Newton
steps is approximated numerically by perturbing interface γ in the normal directions.
The details of these numerical methods and approximations are provided in Chapter 7.

In figure 6.8(a) we compare two sub-cone solutions produced by our boundary integral
solver under identical far-field electric field strength b0 = 1.15. The solution plotted in
the left half is completely beneath the exact Taylor cone which corresponds to a lifting
flow a0φ0 with a0 = −1.36 dominating the far field. The near-apex surface undulations
decay quickly and converge to the leading order correction η ∼ c0r+ c1/

√
r (c1 = −0.5
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by (6.37)). The solution plotted on the right is found by imposing a far-field sink flow
a1φ1 for which a1 = 0.23 by setting a0 = 0 in (6.32). It’s evident from the pressure
contour lines that the flow becomes spherically symmetric as it moves away from the
apex. Aside from its rapid convergence to the exact Taylor cone (recall sink flow implies
η ∼ c0r + c4r−5), the interface oscillations cross the line of the Taylor cone multiple
times leaving behind a series of stagnation points χs in the bulk, i.e. bifurcation points
of the streamlines shown in the right half of figure 6.8(a) where ∇φ = 0. Note fluid
is only “stagnant” in the co-moving self-similar frame. In the laboratory frame time-
dependent trajectories of these points Xs exactly follow the self-similar transformation,
Xs(T ) = Xc + τ2/3χs. We conjecture these stagnation points may lead to global
instabilities as we recall from the unsteady Bernoulli’s system (6.5)–(6.6) that self-
similar solutions are the steady states in the transformed frame.

In figure 6.8(b) we plot two sub-cone solutions subject to identical far-field flow condi-
tion a0 = 1.36. These solutions are computed in a pre-singularity (T < Tc) context.
However, given time reversal symmetry of the inviscid theory, these solutions could be
equivalently interpreted as post-singularity dynamics beyond the critical time Tc. The
solution on the left is free of Maxwell stress (b0 = 0) which qualitatively agrees with
the capillary recoil of a single conical drop revealed by Sierou and Lister (2004). On
the symmetry axis r = 0 there exists a stagnation point where the descending flow of
the recoil liquid cap meets the uprising bulk. This counter flow results in a parabolic
bulge protruding normal to the exact Taylor cone, which in the lab frame turns into a
self-similar capillary wave recoiling away from the conical pointXc. In the presence of a
far-field Maxwell stress (b0 = 1.15), the solution shown in the right half of figure 6.8(b)
is now entirely above the Taylor cone with a highly curved apex owning to the upward
pulling of electrostatic pressure and a persisting lifting flow φ0 in the far field. Physically
this type of solution can be interpreted as early time onset flow of a growing pendent
drop or a bursting jet as the liquid cone just transverses the critical time Tc. Contrary
to the accelerating apex of pre-singularity sharpening solutions, the cone apexes in these
post-singularity dynamics actually decelerate since dX/dT ∼ (T − Tc)−1/3 → 0 as
laboratory time T traverses over the critical time Tc.

The self-similar solution dominated by a strong far-field lifting flow instead of a sink
flow shows remarkable consistency with the spontaneously sharpening conical ends of
an isolated charged drop in the inviscid simulation (Burton and Taborek, 2011). In their
work, mean curvature and electric field at the tip of the drop were observed to exhibit
decades of robust power-law rates, |H| = 0.604 τ−2/3 and |N ·E| = 0.925 τ−1/3. By
setting a0 = 2.37 and b0 = 1.757, we successfully identify a self-similar solution γSS

with h = −0.608 and |n ·∇ψ| = 0.922 at r = 0. The data points of 20 time-dependent
interface shapes were extracted from figure 1(b) of Burton and Taborek (2011) and
transformed into a local frame where all data points collapse onto a single curve γBT as
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they should. Since tick marks are not included in their figure inset, γBT is expected to
agree with γSS up to an one-parameter isotropic rescaling which is found by least-square
fits. In figure 6.8(c) we overlay the best-rescaled data points from Burton and Taborek
(2011) on top of the self-similar solution γSS produced by our boundary integral solver
with a0 = 2.37 and b0 = 1.757 being the input. Almost perfect agreement is achieved
between their time-dependent simulation and our self-similar solution. The shape γSS

resembles a clean hyperbola without notable oscillations in the geometry or in the liquid
pressure field. In figure 6.8(d) the asymptotic behaviors of of velocity potential φ,
surface electric field ∂ψ/∂n and interface shape η evaluated along γSS computed by the
boundary integral solver also agree with the leading order ansatz (6.31) re-parametrized
in r,

η ∼ c0r, φ(γ) ∼ a0
P1/2(− cos θ0)√

sin θ0

√
r,

∂ψ

∂n
(γ) ∼ b0√

sin θ0

dP1/2(cos θ)
dθ

∣∣∣
θ0

√
r,

(6.60)
with no adjusting parameters. This result confirms that the local velocity field near
apex during a dynamic cone formation is dominated by the lifting flow φ0 as opposed
to the sink flow φ1 suggested by Zubarev (2001). Burton and Taborek (2011) also
demonstrate robustness of the observed self-similar cone formation against artificial
perturbations during the final stage of their time-dependent simulation, which provides
strong evidence in favor of the lifting flow being dynamically stable in laboratory frame
and hence more likely to be selected during the formation of a conic cusp.

6.6 Discussion and Conclusion
In this work the inviscid mechanism of dynamic cone formation at interface of a perfectly
conductive liquid surrounded by vacuum is investigated. In contrast to what’s commonly
spread in literature, it is not necessary for capillary and Maxwell forces to maintain a
perfect balance everywhere along a conic surface. In fact it is the mismatch between
these two opposing surface forces giving rise to the inertia forces–which have always
been ignored– responsible for the self-reinforced liquid motion and acceleration in the
bulk.

After re-examining Zubarev (2001)’s self-similar theory, we have found a family of
similarity solutions parametrized by the leading order strength a0 of a lifting velocity
potential φ0 = √rsP1/2(− cos θ) and strength b0 of Taylor’s conic electric potential
ψ0 = √rsP1/2(cos θ). Our asymptotic analysis leads to the prediction of a novel flow
pattern, i.e. the lifting flow ∇φ0, as well as a stronger leading order shape correction
∝ 1/

√
r to the exact Taylor cone. It is shown that Zubarev’s asymptotic result is only

a subset of the entire solution family. The majority of similarity solutions lift liquid up-
wards with nearly vertical streamlines intercepting the conic interface at a finite angle, as
opposed to the wildly quoted sink motion of nearly spherically symmetric flows (Collins,
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Jones, et al., 2007; Moroshkin et al., 2017). These self-similar solutions are exact
for inviscid and irrotional liquids, representing dynamic local balances between capillary
pressure (curvature) |2H|, Maxwell (electrostatic) pressure |E|2/2 and kinetic energy
density |U |2/2 in the vicinity of the conical point Xc during the self-similar process of
cone formation. As the critical time Tc is approached, these physical quantities all blow
up algebraically ∼ |Tc − T |−1/3 accompanied by rapidly diminishing length scale of the
local frame. In this sense, the self-similar process of cone formation can be regarded
universal as boundary conditions away from cone apex become irrelevant compared to
the dynamics happening in the local frame. When transformed back to the laboratory
frame, velocity potential Φ near the conical point Xc has the local expression near the
cone apex,

Φ(X, T ) = a0
√
|X −Xc|P1/2(− cos θ) + a1

T − Tc
|X −Xc|

+ ... , (6.61)

where the strength of lifting flows is unaffected by the self-similar transformation in
contrast to the magnitude of sink flows which actually dwindles linearly in time as
T → Tc. Similarly, if we define H(X,Y ) to be the height field of interface shape Γ
in laboratory frame measured with respect to Z = Zc (the Z-plane of conical point
Xc) and R‖ =

√
|Xc −X|2 − (Zc − Z)2 as the (cylindrical) axial distance to Xc, the

asymptotic solution η∞(r) yields

H(R‖, T ) = c0R‖ + c1
Tc − T√

R‖
+ c3

(Tc − T )3

R
7/2
‖

+ c4
(Tc − T )4

R5
‖

+ ... (6.62)

(recall from (6.37) that c2 = 0). Note as the conical singularity is approached, Zubarev’s
leading order shape correction to the exact Taylor cone, i.e. the c4 term in equation
(6.62), has an extremely rapid convergence in both space and time while the first shape
correction uncovered by our analysis has a much more prominent tail with a linear
convergence in time.

We have also computed the exact solutions to the self-similar theory for the firs time
using a novel boundary integral method which correctly captures the asymptotic behavior
derived analytically. Given the time-dependent data of an inviscid, perfectly conductive
drop (Burton and Taborek, 2011), we have successfully recovered the similarity solution
responsible for the spontaneous development of conical ends with an almost perfect
agreement. The result shows that the lifting flow, instead of sink flow, is selected
during the last stage of their simulated cone formation. In addition, the solutions
computed by the boundary integral method reveal the near-apex flow structure during
dynamic cone formation including novel flow patterns such as counter flow, stagnation
points and oscillatory pressure distribution which are all not accessible to the far-field
asymptotic analysis. Existence of multiple stagnation points in the similarity solution of
an asymptotic sink flow shown in figure 6.8(a) leads to localized oscillatory fluctuations
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of velocity field in laboratory frame and hence may rise stability concerns. It’s also worthy
of mentioning that modal stability analysis of the self-similar “steady”-state solutions
(Leppinen and Lister, 2003) can be carried out by examining the full self-similar dynamics
(6.15)–(6.17) for which the log-time-dependence, t = − ln(Tc − T ), in both velocity
potential φ and moving interface γ is retained. This analysis is left for future research.
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C h a p t e r 7

DYNAMIC CONE FORMATION IN CONDUCTIVE LIQUIDS: BOUNDARY
INTEGRAL FORMULATION

7.1 Boundary Integral Method for Interfacial Inviscid Flow
The boundary integral method is a numerical computational technique which approx-
imates the solution to linear partial differential equations (PDEs) by formulating the
problem as boundary integral equations of the solution to the same PDE but restricted
to the domain boundary. After solving the boundary integral equation, the solution eval-
uated on the domain boundary is known and then can be further postprocessed to derive
solution inside the domain. A boundary integral formulation becomes available typically
when the governing PDEs are homogeneous (i.e. do not depend on other spatially vary-
ing variables) or only have a finite number of sources or singularity in the domain. In
such cases, the governing PDE can be recast to a self-contained integral representation
in aid of the Green’s functions, for which only information on the boundary is involved.

As a modern technique of numerical analysis, popularity of the boundary integral method
has thrived over the last two decades. For state-of-art boundary integral methods in
simulating interfacial fluid flows driven by surface tension such as multiphase potential
flows and Hele-Shaw flows, we refer to the inspiring review article by Hou, Lowengrub,
and Shelley (2001). Theoretical and computational aspects of boundary integral repre-
sentation for Stokes flows at vanishing Reynolds number are addressed in the survey by
Pozrikidis (2001). The two-volume book set (Wrobel, 2002; Aliabadi, 2002) serves as
an excellent resource for engineering applications such as heat transfer, acoustic wave
scattering, and elastostatics. Mathematically rigorous treatments on the topic of linear
integral equations can be found in the classical monograph (Kress, 2014).

Boundary integral representation of the harmonic potential has become an indispensable
tool for understanding the formation and dynamics of geometric singularities at the
interface of inviscid fluids. Keller and Miksis (1983) developed the self-similar theory
of free surface inviscid flows when examining the ensuing capillary-driven motion of
an initially wedge-shaped liquid which has just come into contact with a solid. They
pioneered the use of integral representation by reformulating the inviscid fluid equations
in self-similar frame as an integrodifferential system which led to a family of similarity
solutions for receding liquid with different initial wedge angles. Billingham and King
(1995) extended the idea of locally self-similar flow in the vicinity of a surface singularity
to an interface between two inviscid fluids of different densities advected in an initially
uniform flow towards a semi-infinite thin flat plate perpendicular to the interface. They
developed an efficient numerical solution method for the full nonlinear boundary value
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problem based on Green’s integral representation for harmonic potentials. In a three-
dimensional setting, Leppinen and Lister (2003) and Sierou and Lister (2004), motivated
by the hyperbola-like fluid pinch-off observed in the time-dependent simulations of an
inviscid drop (Day, Hinch, and Lister, 1998), recovered a large family of self-similar
solutions corresponding to the axisymmetric inviscid pinch-off and recoil of a fluid body
immersed in an ambient fluid of a different density over a range of the density ratio
and pinch angles. They correctly recognized the necessity of far-field patching in the
velocity potentials, which was not present or need in those planar problems studied
before, and obtained a family of interface shapes with exotic double-cone structures
via a double-layer integral representation of the velocity potential. Burton and Taborek
(2007) investigated the two-dimensional pinch-off of an inviscid fluid by numerically
solving the boundary integral equations via a method for singularity reduction (Nie
and Baker, 1998). Unlike three-dimensional cases, they discovered that the asymptotic
collapse of the pinching region exhibits an anomalous similarity exponent which is the
signature of self-similarity of the second kind. Padrino and Joseph (2011) extended
the numerical simulation of bubble or drop break-up in uniaxial straining flow to study
viscous effect in irrotational potential flow. The ultrahigh resolution of their boundary-
element method coupled with a time-integration routine uncovered larger break-up times
compared to the inviscid case. Burton and Taborek (2011) performed unsteady boundary
integral simulations of critically charged inviscid droplets. Their work presented solid
numerical evidence on previously predicted power-law behaviors during the formation of
conic tips for perfectly conductive liquid as well as new scaling laws for the charge and
radius of progeny drops when surface charge transport is limited by a finite electrical
conductivity.

In this chapter, we provide technical details of the boundary integral scheme used to
solve the system of coupled equations (6.20), (6.21) and (6.22) emerging from the
self-similar theory of of dynamic cone formation under the combined effect of capillary
and Maxwell stresses. In Section 7.2, numerical techniques such as spline-based curve
interpolations and weighted quadrature rules concerning logarithmic singularities in the
compete elliptic integrals are discussed. In Section 7.3, we establish the discretization
process for the axisymmetric boundary integral equation of harmonic potentials via
collocation method with an emphasis on mixed boundary conditions. The accuracy
of our C++ implementation of boundary integral solver is verified as well. Finally
in Section 7.4 we present the Newton-Raphson algorithm which iteratively modifies the
liquid/vacuum interface to guide the convergence to the self-similar solutions of dynamic
cone formation shown in Section 6.5.
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7.2 Spline Interpolation, Gaussian Quadrature and Elliptic Integral
In this section, we discuss several numerical approximations and techniques that are
crucial to achieving accurate solutions to boundary integral equations. In particular,
the technical details of quintic spline approximation to curved geometries, weighted
Gaussian Quadrature rules for weakly singular integrals and Chebyshev approximations
for the complete Elliptic integrals are presented.

Quintic spline interpolation
The accuracy of numerical solutions to equations posed on curved geometries is only as
good as the precision and smoothness of the underlying geometric approximation. For
2D problems, we employ the spline approximation of planar curves. A quintic spline is
a piecewise-quintic curve defined by a collection of low degree polynomials, which we
call the local splines, such that not only it interpolates through a set of knots but also
guarantees continuity up to the fourth derivative (Mund, Hallet, and Hennart, 1975).
The ability to acquire higher order derivatives with respect to curve parameterization
makes higher order spline interpolations especially relevant to continuum mechanics such
as modeling of elastic rods and beams, the bending energy of which is proportional to
curvature squared (Horn, 1983). The quintic spline algorithm presented in this section
closely follows the derivation in the appendix of Padrino Inciarte (2010) with several
typos fixed.

Let χ0, ... , χN be a collection of N + 1 spline knots and vector γ(s) be the global
spline that interpolates through these knots with s being the intrinsic coordinate of
the curve. Since the spline interpolation is not known a priori, a natural choice for
the intrinsic coordinate l is to first construct the chords, i.e. the Euclidean distances
between adjacent knots xj and xj+1,

hj = ‖χj+1 − χj‖ for j = 0, ... , N − 1. (7.1)

The accumulative sums of these chords yield N + 1 intrinsic coordinates s0, ... , sN
where

s0 = 0, sj =
j−1∑

k=0
hk for j = 1, ... , N. (7.2)

We then construct the global spline γ(s) from a set of local splines γ(0), ... , γ(N−1)

where each local spline

γ(j)(s) = χj +
5∑

k=1
c

(j)
k (s− sj)k for j = 0, ... , N − 1 (7.3)

is a fifth degree polynomial defined within the interval [sj , sj+1] and c(j)
k are the local

vectorial coefficients for each monomial of γ(j)(s). Continuities between any neighboring
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pairs of local quintic splines is expected to hold up to the fourth derivative,

γ(j) = γ(j+1),
dγ(j)

ds = dγ(j+1)

ds , ... ,
d4γ(j)

ds4 = d4γ(j+1)

ds4 , at s = sj+1 (7.4)

which translate into five algebraic equations for the vectorial coefficients c(j)
k of adjacent

local splines,

c
(j−1)
3 h3

j−1 + c(j−1)
4 h4

j−1 + c(j−1)
5 h5

j−1 = χj − χj−1 − c(j−1)
1 hj−1 − c(j−1)

2 h2
j−1,

(7.5)

3c(j−1)
3 h2

j−1 + 4c(j−1)
4 h3

j−1 + 5c(j−1)
5 h4

j−1 = −c(j−1)
1 − 2c(j−1)

2 hj−1 + c(j)
1 , (7.6)

6c(j−1)
3 hj−1 + 12c(j−1)

4 h2
j−1 + 20c(j−1)

5 h3
j−1 = −2c(j−1)

2 + 2c(j)
2 , (7.7)

c
(j−1)
3 + 4hj−1c

(j−1)
4 + 10h2

j−1c
(j−1)
5 = c

(j)
3 , (7.8)

c
(j−1)
4 + 5hj−1c

(j−1)
5 = c

(j)
4 . (7.9)

Many coefficients c(j)
k are redundant which can be eliminated by manipulating the alge-

braic equations (7.5)–(7.9). In fact the global spline γ(s) is fully specified by the first
and the second coefficients, c(j)

1 and c(j)
2 , only.

To see this argument, we first eliminate c(j−1)
3 , c(j−1)

4 and c(j−1)
5 from equations (7.5)–

(7.7) and express them as functions of c(j−1)
1 , c(j−1)

2 , c(j)
1 and c(j)

2 alone,

h3
j−1c

(j−1)
3 = + 10(χj − χj−1)− 6hj−1c

(j−1)
1 − 3h2

j−1c
(j−1)
2 − 4hj−1c

(j)
1 + h2

j−1c
(j)
2 ,

(7.10)

h4
j−1c

(j−1)
4 =− 15(χj − χj−1) + 8hj−1c

(j−1)
1 + 3h2

j−1c
(j−1)
2 + 7hj−1c

(j)
1 − 2h2

j−1c
(j)
2 ,

(7.11)

h5
j−1c

(j−1)
5 = + 6(χj − χj−1)− 3hj−1c

(j−1)
1 − h2

j−1c
(j−1)
2 − 3hj−1c

(j)
1 + h2

j−1c
(j)
2 .

(7.12)

Once all coefficients c(j)
1 and c(j)

2 are computed, the rest, i.e. c
(j)
3 , c(j)

4 and c(j)
5 ,

can be derived from equations (7.10)–(7.12). We next recognize a set of recursive
relations between the coefficients c(j−1)

1 , c(j)
1 , c(j+1)

1 , c(j−1)
2 , c(j)

2 and c(j+1)
2 based on

the observation that expressions of c(j)
3 and c(j)

4 are basically equivalent to the ones in
equations (7.10) and (7.11) only with index j advanced to j + 1. Together with c(j−1)

3 ,
c

(j−1)
4 and c(j−1)

5 substituted from equations (7.10)–(7.12), the last two continuity
conditions (7.8) and (7.9) yield a set of 2(N − 1) coupled linear equations

10
[
+λ3χj−1 − (1 + λ3)χj + χj+1

]
= +4hjλ2c

(j−1)
1 +6hj(λ2 − 1)c(j)

1 −4hjc(j+1)
1

+h2
jλc

(j−1)
2 −3h2

j (1 + λ)c(j)
2 +h2

jc
(j+1)
2 ,

15
[
−λ4χj−1 + (λ4 − 1)χj + χj+1

]
= +7hjλ3c

(j−1)
1 +8hj(1 + λ3)c(j)

1 +7hjc(j+1)
1

+2h2
jλ

2c
(j−1)
2 +3h2

j (1− λ2)c(j)
2 −2h2

jc
(j+1)
2 ,





(7.13)
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for 2(N+1) unknowns c(0)
1 , ... , c(N)

1 and c(0)
2 , ... , c(N)

2 where λ = hj/hj−1 is the ratio
between adjacent chords. It is convenient to introduce a ghost local spline γ(N) next
to γ(N−1) which satisfies all continuity conditions as well. The purpose of γ(N) is to
deal with boundary conditions at the end of the global spline γ(s) in a computationally
self-consistent manner. Note we have 2(N−1) equations from (7.13) but only 2(N+1)
unknowns. The four additional equations come from constraints on c(0)

1 , c(0)
2 , c(N)

1 and
c

(N)
2 when we enforce boundary conditions at the begin and the end of the global spline
γ(s). Here c(N)

k are the vectorial coefficients of the ghost spline γ(N).

In general there are three types of boundary condition—even, odd and mixed—that we
would like to impose at each end of the global spline. Let χj , γ(j) and c(j) be one
of the scalar components of knots χj , local spline γ(j) and vectorial coefficient c(j),
respectively. Three types of boundary condition evaluated at s = s0 for a quintic spline
lead to constraints on the derivatives of the zeroth spline γ(0),

dγ(0)

ds = d3γ(0)

ds3 = 0, (even) (7.14)

γ(0) = d2γ(0)

ds2 = d4γ(0)

ds4 = 0, (odd) (7.15)

dγ(0)

ds = α,
d2γ(0)

ds2 = β, (mixed) (7.16)

which then translate into two linear equations for each type,

c
(0)
1 = 0,

6h0c
(0)
1 + 3h2

0c
(0)
2 + 4h0c

(1)
1 − h2

0c
(1)
2 = −10χ0 + 10χ1,



 (even) (7.17)

−8h0c
(0)
1 − 3h2

0c
(0)
2 − 7h0c

(1)
1 + 2h2

0c
(1)
2 = +15χ0 − 15χ1,

c
(0)
2 = 0,



 (odd) (7.18)

c
(0)
1 = α,

c
(0)
2 = β/2.



 (mixed) (7.19)

Similarly, boundary conditions evaluated at s = sN ,

dγ(N−1)

ds = d3γ(N−1)

ds3 = 0, (even) (7.20)

γ(N−1) = d2γ(N−1)

ds2 = d4γ(N−1)

ds4 = 0, (odd) (7.21)

dγ(N−1)

ds = α,
d2γ(N−1)

ds2 = β, (mixed) (7.22)
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yield another two linear equations for each type of boundary condition,

c
(N)
1 = 0,

4hN−1c
(N−1)
1 + h2

N−1c
(N−1)
2 + 6hN−1c

(N)
1 − 3h2

N−1c
(N)
2 = 10(χN − χN−1),



 (even)

(7.23)

7hN−1c
(N−1)
1 + 2h2

N−1c
(N−1)
2 + 8hN−1c

(N)
1 − 3h2

N−1c
(N)
2 = 15(χN − χN−1),

c
(N)
2 = 0,



 (odd)

(7.24)

c
(N)
1 = α,

c
(N)
2 = β/2.



 (mixed)

(7.25)

Thus a combination of boundary conditions imposed at both ends of the spline interpola-
tion would exactly produce four equations that are needed in order to uniquely determine
all coefficients c(j)

1 and c(j)
2 . For a planar curve describing a smooth axisymmetric object

in (r, z)-plane (r is the cylindrical radius and z is the axial height), it must begin and
end on the symmetry axis with an even condition imposed on its z-component and an
odd condition on its r-component at both ends of the curve. On the other hand, for
objects with geometric discontinuities, e.g., two boundary segments meeting at a sharp
corner, mixed conditions can be employed to prescribe tangential direction and curvature
independently for the two curves when approaching from each side of the corner. For
computational reasons, if we lump the unknowns c(j)

1 and c(j)
2 into an one-dimensional

array
[
c

(0)
1 , c

(0)
2 , ... , c

(j)
1 , c

(j)
2 , ... , c

(N)
1 , c

(N)
2
]>
, (7.26)

then the equations in (7.13) complemented by one set of boundary conditions from
(7.17)–(7.19) and one set from (7.23)–(7.25) yield a 2(N + 1)-by-2(N + 1) system of
linear equations. Such system corresponds to a banded diagonal sparse matrix with at
most 6 nonzero elements in each row which can be efficiently solved by direct methods
such as Thomas algorithm (essentially backward substitution) or iterative methods for
sparse matrix (Press et al., 2007). Other spline coefficients, c(j)

3 , c(j)
4 and c(j)

5 , can be
reconstructed through equations (7.10)–(7.12).

For purpose of numerical integration, it is convenient to re-parametrize each local spline
γ(j)(s) with a local coordinate t of the canonical interval [0, 1] so that

γ(j)(t) = χj +
5∑

k=1
c

(j)
k tk for j = 0, ... , N − 1 (7.27)

with c(j)
k redefined as c(j)

k → c
(j)
k hkj . The total arc-length s(j) and arc-length fraction

ξ(j) of a local spline γ(j) are given by the integrals,

s(j) =
∫ 1

0
‖γ̇(j)(t′)‖ dt′, ξ(j)(t) = 1

s(j)

∫ t

0
‖γ̇(j)(t′)‖ dt′, (7.28)
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where the over-dot notation is used to represent the derivative of a function with respect
to its variable. As we will see later, arc-length fraction ξ(j) is essential to the construction
of the Lagrange interpolations along the global spline γ(s).

The conventions for unit tangent s and unit normal n are chosen such that n equals s
rotated 90◦ counterclockwise,

s = 1
‖γ̇‖

[
ṙ

ż

]
, n = 1

‖γ̇‖

[
−ż
ṙ

]
. (7.29)

If explicit parametrization for each component of an axisymmetric curve γ (e.g., a global
quintic spline) is known, then total curvature 2h of the surface of revolution obtained
by rotating curve γ about z-axis has the analytic expression

2h = ṙz̈ − żr̈
(ṙ2 + ż2)3/2 + 1

r

ż√
ṙ2 + ż2 , (7.30)

where h → z̈/ṙ2 as r → 0 approaches the symmetry axis, provided the revolving surface
is smooth at r = 0.

Lastly we remark that, if γ(s) were instead a cubic spline, derivative of the mean
curvature h would necessarily be discontinuous. Recall from the self-similar theory of
dynamic cone formation that mean curvature h is supplied as a boundary condition on
the liquid/vacuum interface γ for the velocity potential. The use of cubic splines, which
are usually employed in commercial software and libraries, would inevitably degrade rate
of convergence.

Gaussian quadrature rule of logarithmic-singular integrals
We briefly review the process of computing quadrature rules for arbitrary weight func-
tions. A Gaussian quadrature rule approximates the definite integral of a function by
a weighted sum of function values evaluated at specified points, termed quadrature
abassica, within the domain of integration. The quadrature abassica tk are the roots of
polynomials that belong to a class of orthogonal polynomials with respect to a weighted
inner product

〈f, g〉 =
∫ 1

0
f(t)g(t)w(t) dt (7.31)

over the canonical interval [0, 1] with w(t) being the weight function. A set of orthogonal
polynomials pn with respect to the weight w(t) can be bootstrapped from a three-term
recurrence relation (Golub and Welsch, 1969)

pn+1(t) =
(
t− 〈t pn, pn〉〈pn, pn〉

)
pn(t)− 〈t pn, pn−1〉

〈pn−1, pn−1〉︸ ︷︷ ︸
=0 if n=0

pn−1(t), (7.32)

where the first two polynomials are given by

p−1(t) = 0, p0(t) = 1. (7.33)
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Abscissae tk of a m-point Gaussian quadrature rule are the roots of the m-th orthogonal
polynomial pm(t) with the corresponding quadrature weights wk given by the integral

wk = 1
dpm/dt|t=tk

∫ 1

0

pm(t)
t− tk

dt. (7.34)

The standard m-point Gauss-Legendre quadrature rule is derived by setting weight
w(t) = 1 in the inner product (7.31), in which case a regular integral over interval
[0, 1] (or more generally [a, b]) can be approximated by a discrete summation,

∫ b

a
f(t) dt ≈

m∑

k=1
(b− a)wf(a+ (b− a)tk). (7.35)

In the same vein, logarithmic-weighted Gaussian quadrature rules can be derived by
selecting weight function w(t) = − log(t),

∫ 1

0
f(t) ln t dt ≈ −

m∑

k=1
wlog
k f(tlog

k ),

∫ 1

0
f(t) ln(1− t) dt ≈ −

m∑

k=1
wlog
k f(1− tlog

k ),





(7.36)

where tlog
k and wlog

k are the abscissae and weights for a m-point logarithmic-weighted
quadrature rule. The symbolic package MATHEMATICA (Wolfram Research, 2019) al-
lows us to compute the abscissae and weights for logarithmic-weighted Gaussian quadra-
ture rules up to an arbitrarily high precision, the first twenty of which are tabulated in
table 7.1 and table 7.2.

When integrating functions against alternative logarithmic weights such as ln |t − t∗|
with t∗ ∈ (0, 1) being an interior logarithmic singularity in the canonical interval, we
split the integral into a left and a right part separated by the interior singularity t∗,
∫ 1

0
f(t) ln |t− t∗|dt = t∗

∫ 1

0
f(t∗t′) ln(1− t′) dt′ + t∗

∫ 1

0
f(t∗ + t∗t′) ln t′ dt′

+ t∗ ln t∗
∫ 1

0
f(t∗t′) dt′ + t∗ ln t∗

∫ 1

0
f(t∗ + t∗t′) dt′, (7.37)

where t∗ = 1 − t∗. Applying the Gauss-Legendre and logarithmic-weighted Gaussian
quadrature rules derived earlier to the two regular and two logarithmic-singular integrals
in (7.37) immediately leads to the quadrature rule when an interior logarithmic singularity
t∗ ∈ (0, 1) is present,
∫ 1

0
f(t) ln |t− t∗| dt ≈ t∗ ln t∗

m∑

k=1
wkf [t∗tk] + t∗ ln t∗

m∑

k=1
wkf [t∗ + t∗tk]

−t∗
m∑

k=1
wlog
k f

[
t∗(1− tlog

k )
]
− t∗

m∑

k=1
wlog
k f

[
t∗ + t∗t

log
k

]
.

(7.38)
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Abscissa tk Weight wk

1-point
2.50000000000000E-1 1.00000000000000

2-point
1.12008806166976E-1 7.18539319030384E-1
6.02276908118738E-1 2.81460680969616E-1

3-point
6.38907930873254E-2 5.13404552232363E-1
3.68997063715619E-1 3.91980041201488E-1
7.66880303938941E-1 9.46154065661491E-2

4-point
4.14484801993832E-2 3.83464068145135E-1
2.45274914320602E-1 3.86875317774763E-1
5.56165453560276E-1 1.90435126950142E-1
8.48982394532985E-1 3.92254871299598E-2

5-point
2.91344721519721E-2 2.97893471782894E-1
1.73977213320898E-1 3.49776226513224E-1
4.11702520284902E-1 2.34488290044052E-1
6.77314174582820E-1 9.89304595166331E-2
8.94771361031008E-1 1.89115521431958E-2

6-point
2.16340058441169E-2 2.38763662578548E-1
1.29583391154951E-1 3.08286573273947E-1
3.14020449914766E-1 2.45317426563210E-1
5.38657217351802E-1 1.42008756566477E-1
7.56915337377403E-1 5.54546223248863E-2
9.22668851372120E-1 1.01689586929323E-2

7-point
1.67193554082585E-2 1.96169389425248E-1
1.00185677915675E-1 2.70302644247273E-1
2.46294246207931E-1 2.39681873007691E-1
4.33463493257033E-1 1.65775774810433E-1
6.32350988047766E-1 8.89432271376580E-2
8.11118626740106E-1 3.31943043565711E-2
9.40848166743348E-1 5.93278701512592E-3

8-point
1.33202441608925E-2 1.64416604728003E-1
7.97504290138949E-2 2.37525610023306E-1
1.97871029326188E-1 2.26841984431919E-1
3.54153994351909E-1 1.75754079006070E-1
5.29458575234917E-1 1.12924030246759E-1
7.01814529939100E-1 5.78722107177821E-2
8.49379320441107E-1 2.09790737421330E-2
9.53326450056360E-1 3.68640710402762E-3

9-point
1.08693360841755E-2 1.40068438748135E-1
6.49836663380079E-2 2.09772205201030E-1
1.62229398023883E-1 2.11427149896603E-1
2.93749903971675E-1 1.77156233938080E-1
4.46631881905468E-1 1.27799228033205E-1
6.05481662776129E-1 7.84789026115622E-2
7.54110137157164E-1 3.90225049853991E-2
8.77265828835838E-1 1.38672955495930E-2
9.62250559410282E-1 2.40804103639231E-3

10-point
9.04263096219965E-3 1.20955131954571E-1
5.39712662225006E-2 1.86363542564072E-1
1.35311824639251E-1 1.95660873277760E-1
2.47052416287160E-1 1.73577142182907E-1
3.80212539609332E-1 1.35695672995484E-1
5.23792317971843E-1 9.36467585381105E-2
6.65775205516425E-1 5.57877273514159E-2
7.94190416011966E-1 2.71598108992333E-2
8.98161091219004E-1 9.51518260284851E-3
9.68847988718634E-1 1.63815763359826E-3

Abscissa tk Weight wk

11-point
7.64394117463771E-3 1.05652256099100E-1
4.55418282565789E-2 1.66571680600629E-1
1.14522297455125E-1 1.80563218287754E-1
2.10378581227034E-1 1.67278736773784E-1
3.26695553221693E-1 1.38697057401631E-1
4.55453246928813E-1 1.03833433365044E-1
5.87648356359084E-1 6.95366978887352E-2
7.13963850012561E-1 4.05416008035963E-2
8.25453217801812E-1 1.94354024762182E-2
9.14193921612543E-1 6.73742934245006E-3
9.73860256275586E-1 1.15248696105748E-3

12-point
6.54872227908006E-3 9.31926914439313E-2
3.89468095604500E-2 1.49751827576322E-1
9.81502631060066E-2 1.66557454364593E-1
1.81138581590632E-1 1.59633559436988E-1
2.83220067667373E-1 1.38424831864836E-1
3.98434435163437E-1 1.10016570635721E-1
5.19952626792353E-1 7.99618217708290E-2
6.40510916716106E-1 5.24069548246418E-2
7.52865012051831E-1 3.00710888737612E-2
8.50240024162302E-1 1.42492455879983E-2
9.26749683223914E-1 4.89992458232176E-3
9.77756129689997E-1 8.34029038056903E-4

13-point
5.67476625624267E-3 8.29004967932758E-2
3.36901087990325E-2 1.35368673165745E-1
8.50367544741750E-2 1.53773284392292E-1
1.57497559477889E-1 1.51458158509988E-1
2.47569578876843E-1 1.36040336537283E-1
3.50744312360855E-1 1.13176822881634E-1
4.61773746761610E-1 8.73744304800453E-2
5.74959466525561E-1 6.21602306418049E-2
6.84459880350430E-1 4.00877289341659E-2
7.84602568810347E-1 2.27238449399722E-2
8.70186428407888E-1 1.06712304129684E-2
9.36757829306751E-1 3.64649227597414E-3
9.80843451811591E-1 6.18270034851697E-4

14-point
4.96600357386854E-3 7.42912250675104E-2
2.94325401188852E-2 1.22988772469323E-1
7.43762922245358E-2 1.42199306562523E-1
1.38138491989186E-1 1.43229297641264E-1
2.18055648498959E-1 1.32345083772085E-1
3.10662083918102E-1 1.14135875736676E-1
4.11872475177750E-1 9.22830380790736E-2
5.17179307398654E-1 6.97536732939376E-2
6.21864859728511E-1 4.88303236005136E-2
7.21220745208109E-1 3.11017960644161E-2
8.10765988071590E-1 1.74628119501961E-2
8.86454038034435E-1 8.14242342987594E-3
9.44859139461819E-1 2.76843641856394E-3
9.83331026485678E-1 4.67935914040560E-4

15-point
4.38311017547540E-3 6.70099789164937E-2
2.59358981053306E-2 1.12264150286706E-1
6.55960954123162E-2 1.31760177039680E-1
1.22101934073332E-1 1.35217649061935E-1
1.93395262374007E-1 1.27881798645680E-1
2.76772838706102E-1 1.13532907490219E-1
3.69015127139743E-1 9.52052397843587E-2
4.66524328964707E-1 7.53893141673960E-2
5.65473473791817E-1 5.60784244926537E-2
6.61962919012456E-1 3.87682953750182E-2
7.52178883378786E-1 2.44514832687501E-2
8.32548033866190E-1 1.36246301382388E-2
8.99882050120898E-1 6.31644759859076E-3
9.51506188743410E-1 2.13888991594447E-3
9.85364468122132E-1 3.60613818335407E-4

Table 7.1: Abscissae and weights for 1- to 10-point (left panel) and 11- to 15-point
(right panel) logarithmic-weighted Gaussian quadrature rules
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Abscissa tk Weight wk

16-point
3.89783448711592E-3 6.07917100435912E-2
2.30289456168732E-2 1.02915677517582E-1
5.82803983062404E-2 1.22355662046009E-1
1.08678365091054E-1 1.27569246937016E-1
1.72609454909844E-1 1.23013574600071E-1
2.47937054470578E-1 1.11847244855486E-1
3.32094549129917E-1 9.65963851521243E-2
4.22183910581949E-1 7.93566643514731E-2
5.15082473381463E-1 6.18504945819652E-2
6.07556120447729E-1 4.54352465077267E-2
6.96375653228214E-1 3.10989747515818E-2
7.78432565873265E-1 1.94597659273608E-2
8.50850269715391E-1 1.07762549632055E-2
9.11086857222272E-1 4.97254289008764E-3
9.57025571703542E-1 1.67820111005119E-3
9.87047800247984E-1 2.82353764668436E-4

17-point
3.48944942809365E-3 5.54350690606789E-2
2.05860406877611E-2 9.47187691894761E-2
5.21217916297223E-2 1.13880141162429E-1
9.73354259275744E-2 1.20355013998229E-1
1.54945857983249E-1 1.17980764446305E-1
2.23243954205450E-1 1.09431257929842E-1
3.00161598873464E-1 9.68312916837090E-2
3.83343519530540E-1 8.19531082099494E-2
4.70225073199601E-1 6.62795971230357E-2
5.58115277026492E-1 5.10192843604564E-2
6.44283151731502E-1 3.71053713203179E-2
7.26044960838813E-1 2.51931143920290E-2
8.00849737279702E-1 1.56624561420511E-2
8.66360460578840E-1 8.62924747911945E-3
9.20528319303556E-1 3.96638761660894E-3
9.61657532071674E-1 1.33491824730003E-3
9.88456918847435E-1 2.24207638462937E-4

18-point
3.14246513800145E-3 5.07847569150232E-2
1.85133122080843E-2 8.74918217698710E-2
4.68891829953568E-2 1.06231987072427E-1
8.76681791779751E-2 1.13600962803119E-1
1.39821274385391E-1 1.12940421014858E-1
2.01966306570199E-1 1.06540929054561E-1
2.72420255500711E-1 9.62078032569690E-2
3.49252538662625E-1 8.34492524143092E-2
4.30342588559143E-1 6.95422794922013E-2
5.13441600439316E-1 5.55525077526928E-2
5.96237308519533E-1 4.23366797199512E-2
6.76420232632214E-1 3.05405451343943E-2
7.51749655041838E-1 2.05983704127194E-2
8.20117526905824E-1 1.27372513543855E-2
8.79608522893184E-1 6.98775937952583E-3
9.28554528829897E-1 3.20143571140962E-3
9.65581851992832E-1 1.07495526563557E-3
9.89648238497166E-1 1.80281475947801E-4

Abscissa tk Weight wk

19-point
2.84511472758003E-3 4.67193525156959E-2
1.67394868602341E-2 8.10871117350897E-2
4.24062333121213E-2 9.93176888151342E-2
7.93646495242485E-2 1.07306686287853E-1
1.26779524713245E-1 1.07993224036674E-1
1.83521965374816E-1 1.03360703222194E-1
2.48209751538999E-1 9.49578478153139E-2
3.19247560858021E-1 8.40770856575388E-2
3.94870226085803E-1 7.18209287678724E-2
4.73189256050998E-1 5.91249841059563E-2
5.52241966862257E-1 4.67634017963781E-2
6.30042214445635E-1 3.53481401173877E-2
7.04631556024242E-1 2.53276486089719E-2
7.74129598714736E-1 1.69879052239090E-2
8.36782282905287E-1 1.04573449694563E-2
8.91006879458074E-1 5.71638941331142E-3
9.35432532472656E-1 2.61174087234964E-3
9.68935159159729E-1 8.75215444108251E-4
9.90664392788623E-1 1.46600594806024E-4

20-point
2.58832795592196E-3 4.31427521332081E-2
1.52096623495602E-2 7.53837099085894E-2
3.85365503721653E-2 9.30532674516631E-2
7.21816138158739E-2 1.01456711849830E-1
1.15460526487633E-1 1.03201762056072E-1
1.67442856275330E-1 1.00022549805273E-1
2.26983787260203E-1 9.32597993002977E-2
2.92754960941546E-1 8.40289528719411E-2
3.63277429857859E-1 7.32855891300307E-2
4.36957140090768E-1 6.18503369137303E-2
5.12122594678967E-1 5.04166044383747E-2
5.87064044914410E-1 3.95513700052984E-2
6.60073413314909E-1 2.96940778958128E-2
7.29484083929687E-1 2.11563153554271E-2
7.93709671987086E-1 1.41237329389640E-2
8.51280892789126E-1 8.66097450433550E-3
9.00879680854418E-1 4.71994014620360E-3
9.41369749129092E-1 2.15139740396521E-3
9.71822741075263E-1 7.19728214653203E-4
9.91538081438712E-1 1.20427676330217E-4

Table 7.2: Abscissae and weights for 16- to 18-point (left panel) and 19- to 20-point
(right panel) logarithmic-weighted Gaussian quadrature rules
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The quadrature rule (7.38) reduces to formula (7.36) for t∗ = 0. The logarithmic-
weighted Gaussian quadrature rules are indispensable to numerical evaluation of the
convolutional boundary integrals of the two-dimensional Green’s function. A m-point
logarithmic-weighted Gaussian quadrature rule converges much faster than a m-point
Gauss-Legendre quadrature rule when a logarithmic singularity is present in the integrand
or hidden in its higher order derivatives.

Chebyshev approximations of complete elliptic integrals
The complete elliptic integral of the first and the second kind (Abramowitz and Stegun,
1965), designated as K(m) and E(m), frequently appear in the analytic expressions of
the Green’s function for the axisymmetric Laplace operator and its partial derivatives.
The integral forms of K(m) and E(m) are given by

K(m) =
∫ π/2

0

dθ√
1−m sin2 θ

, E(m) =
∫ π/2

0

√
1−m sin2 θ dθ. (7.39)

It’s well known that the complete elliptic integral of the first kindK(m) has a logarithmic
singularity ∼ ln(1−m) at m = 1. Here we present an elementary proof. Consider the
following two integrals,

K(m) =
∫ π/2

0

dθ√
1−m sin2 θ

=
∫ π/2

0

dθ′√
1−m cos2 θ′

θ′ = π

2 − θ

=
∫ π/2

π/4

dθ′√
1−m cos2 θ′

+
∫ π/4

0

dθ′√
1−m cos2 θ′

, (7.40)
∫ π/4

0

dθ′√
1−m cos2 θ′

=
∫ π/4

0

(cos2 θ′ + sin2 θ′) dθ′√
cos2 θ′ + sin2 θ′

√
sin2 θ′ + δ2 cos2 θ′

δ =
√

1−m

=
∫ π/4

0

1 + tan2 θ′√
1 + tan2 θ′

√
δ2 + tan2 θ′

dθ′

=
∫ 1

0

dx√
1 + x2

√
δ2 + x2 x = tan θ′

=
∫ 1

0

dx√
δ2 + x2 −

∫ 1

0

(
1− 1√

1 + x2

) dx√
δ2 + x2 . (7.41)

In the limit m→ 1, the integrals from (7.40) and (7.41) in K(m) that remain bounded
eventually drop out to finite values since

lim
m→1

K(m) =

finite︷ ︸︸ ︷

lim
m→1

∫ π/2

π/4

dθ′√
1−m cos2 θ′

+ lim
δ→0

∫ 1

0

dx√
δ2 + x2 − lim

δ→0

∫ 1

0

x2

1 + x2 +
√

1 + x2
dx√
δ2 + x2

︸ ︷︷ ︸
finite

= lim
δ→0

arctan 1√
1 + δ2 = lim

δ→0

[
ln 2
δ

+O(δ2)
]

= lim
m→1

−1
2 ln(1−m),

(7.42)
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i Ki
P Ki

Q

0 1.38629436111989062502E0 4.99999999999999999821E-1
1 9.65735902811690126535E-2 1.24999999999870820058E-1
2 3.08851465246711995998E-2 7.03124996963957469739E-2
3 1.49380448916805252718E-2 4.88280347570998239232E-2
4 8.79078273952743772254E-3 3.73774314173823228969E-2
5 6.18901033637687613229E-3 3.01204715227604046988E-2
6 6.87489687449949877925E-3 2.39089602715924892727E-2
7 9.85821379021226008714E-3 1.54850516649762399335E-2
8 7.97404013220415179367E-3 5.94058303753167793257E-3
9 2.28025724005875567385E-3 9.14184723865917226571E-4
10 1.37982864606273237150E-4 2.94078955048598507511E-5
i EiP EiQ
0 1.00000000000000000299E0 0.0
1 4.43147180560990850618E-1 2.49999999999888314361E-1
2 5.68051945617860553470E-2 9.37499997197644278445E-2
3 2.18317996015557253103E-2 5.85936634471101055642E-2
4 1.15688436810574127319E-2 4.27180926518931511717E-2
5 7.58395289413514708519E-3 3.34833904888224918614E-2
6 7.77395492516787092951E-3 2.61769742454493659583E-2
7 1.07350949056076193403E-2 1.68862163993311317300E-2
8 8.68786816565889628429E-3 6.50609489976927491433E-3
9 2.50888492163602060990E-3 1.00962792679356715133E-3
10 1.53552577301013293365E-4 3.27954898576485872656E-5

Table 7.3: Coefficients Ki
P , Ki

Q, EiP and EiQ for Chebyshev approximations (7.44) of
the complete elliptic integrals K(m) and E(m)

which reveals the logarithmic singularity of K(m) at m = 1. To effectively capture
the weakly singular behavior of the complete elliptic integrals, Cody (1965) devised
logarithmic-weighted Chebyshev approximations of K(m) and E(m) with numerical
errors down to machine size ∼ O(10−16). These approximations share a general poly-
nomial form multiplied by a logarithm function,

K(m) ≈ KP (m)− ln(1−m)KQ(m), E(m) ≈ EP (m)− ln(1−m)EQ(m), (7.43)

where KP , EP , KQ, and EQ are tenth degree polynomials,

KP (Q)(m) =
10∑

i=0
Ki
P (Q)(1−m)i, EP (Q)(m) =

10∑

i=0
EiP (Q)(1−m)i. (7.44)

Polynomial coefficients Ki
P , Ki

Q, EiP and EiQ are listed in table 7.3.

An immediate application of Chebyshev approximation (7.44) is the high precision eval-
uation of the 1/2-family of associate Legendre polynomials, which are essential to the
far-field asymptotic expansions of the velocity and electric potentials in the self-similar
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` c` P `E(x) P `K(x)
1
2

2
π 2 −1

3
2

1
3π 16x −2(4x+ 1)

5
2

1
15π 4

(
32x2 − 9

) −2
(
32x2 + 8x− 9

)
7
2

1
105π 64x

(
24x2 − 13

)
2
(−384x3 − 96x2 + 208x+ 25

)
9
2

1
315π 8192x4 − 6528x2 + 588 −2

(
2048x4 + 512x3 − 1632x2 − 264x+ 147

)

Table 7.4: Constants c` and polynomials P `K(x) and P `E(x) in the analytic expression
(7.48) of the 1/2-family of associate Legendre polynomials up to degree ` = 9/2.

theory of dynamic cone formation developed in Section 6.4. Y. Zhou (2013) showed
that the associate Legendre polynomial of 1/2-order

P1/2(x) = 2
π

[
2E

(1− x
2

)
−K

(1− x
2

)]
(7.45)

is directly related to complete elliptic integrals of the first and the second kind. Re-
call from the recurrence relation for associate Legendre polynomials of order ` (not
necessarily interger),

(1 + x2)dP`(x)
dx = (`+ 1)xP`(x)− (`+ 1)P`+1(x), (7.46)

and the recurrence relations for the complete elliptic integrals,

dK
dm = E(m)

2m(1−m) −
K(m)

2m ,
dE
dm = E(m)−K(m)

2m , (7.47)

we can symbolically bootstrap higher order members P`(x) of the entire 1/2-family
where

P`(x) = c`

[
P `E(x)E

(1− x
2

)
+ P `K(x)K

(1− x
2

)]
for ` = 1

2 ,
3
2 , ... . (7.48)

Coefficient constants c` and (` − 1/2)-th degree polynomials, P `K(x) and P `E(x), are
listed in table 7.4.

7.3 Discretization of Axisymmetric Boundary Integral Equation
In this section, we present the numerical algorithm for solving free-space Laplace equa-
tion in axisymmetric domains. Discretization and numerical integration of the boundary
integral equation are treated properly with approximation techniques developed in the
last section. In what follows, we restrict all variables (e.g., χ and χ′) and operators
(e.g., ∇ and ∇2) to an axisymmetric plane parametrized either by spherical coordinates
(rs, θ) or cylindrical coordinates (r, z).
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Boundary integral formulation
Let χ′ be a field point interior to the closed, simply connected region ω enclosed by
the boundary γ and χ be a source point on the boundary. The axisymmetric Green’s
function g(χ′;χ) is the fundamental solution to the Poisson’s equation

∇2g(χ′;χ) = −δ(χ′,χ), (7.49)

where δ(χ′,χ) is the axisymmetric Dirac delta function. Physically, g(χ′;χ) is inter-
preted as the intensity of a harmonic field at field point χ′ due to a point (ring) source
positioned at the source point χ. Analytic solution to the Poisson’s equation (7.49) can
be derived by integrating out azimuthal dependence in the full three-dimensional Green’s
function (Lennon, P. L.-F. Liu, and Liggett, 1979). In cylindrical coordinates χ = (r, z),
the expressions for g(χ′;χ) and its directional derivative along vector v = (vr, vz), des-
ignated as ∂g/∂v ≡ v · ∇g, are given by

g(χ′;χ) = 1
π
√
a+ b

K(m), (7.50)

∂g(χ′;χ)
∂v

= 1
π
√
a+ b

{[
vr
2r + v · (χ′ − χ)

‖χ′ − χ‖2
]
E(m)− vr

2rK(m)
}
, (7.51)

where K(m) and E(m) are the elliptic integrals (7.39) of the first and the second kind
with auxiliary variables defined as

a = r′2 + r2 + (z′ − z)2, b = 2r′r, m = 2b
a+ b

. (7.52)

Note χ → χ′ implies m → 1 which precludes a logarithmic blow-up of the Green’s
function (recall from (7.43) that elliptic integral E(m) ∼ ln(1 −m) as m → 1). Nu-
merical integration across over logarithmic-singularities is the main source of difficulties
in solving various kinds of boundary integral equation.

For notational convenience, let ϕ(χ ∈ γ) ≡ φ(χ ∈ γ) and q(χ ∈ γ) ≡ ∂φ(χ ∈ γ)/∂n
be two boundary functions which coincide with the potential and flux evaluated on the
boundary γ, respectively. If potential ϕ(χ) and flux q(χ) are known on the boundary,
then Green’s third identity allows us to compute field strength φ(χ′) at an interior field
point χ′ through an axisymmetric boundary integral (Jackson, 1999)

∫

γ

{
g(χ′;χ)q(χ)− ϕ(χ)∂g(χ′;χ)

∂n

}
r dγ(χ) = φ(χ′) for χ′ in ω. (7.53)

Note the Green’s third identity (7.53) doesn’t apply if field point χ ∈ γ is placed on
the boundary γ. The actual solutions to the boundary potential ϕ(χ) and flux q(χ)
correspond to the limit when the interior field point χ′ moves infinitesimally close to
a point χ on the boundary. Careful examination of such limit shows that boundary
potential ϕ and flux q must satisfy an axisymmetric boundary integral equation posed
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z

Figure 7.1: A surface of revolution (left) projected to an axisymmetric plane(right): χ′
is an interior field point, χ is a source point on boundary γ (solid line), β is the interior
angle at different boundary source points χ and n is the boundary normal vector pointing
from interior volume ω to exterior.

on γ (Wrobel, 2002),
∫

γ

{
g(χ′;χ)q(χ)− ∂g(χ′;χ)

∂n
ϕ(χ)

}
r dγ(χ) = β(χ′)

2π ϕ(χ′) for χ′ on γ, (7.54)

where β is the interior angle at field point χ′ (see figure 7.1).

In many practical applications, the domain boundary γ is often divided into different
segments so that either φ(χ) or ∂φ/∂n is prescribed (but not both) on each portion of
the boundary. The Dirichlet boundary condition refers to prescription of potential ϕ(χ)
on a boundary segment and Neumann boundary condition means flux q(χ) is supplied
instead. The mixed boundary condition, which is the type that we will use to compute to
the self-similar solutions of dynamic cone formation, corresponds to the situation where
instead of prescribing a single type of condition for the entire boundary, The Dirichlet
condition is partially imposed on some boundary segments while the Neumann condition
on the rest.

One of the major advantages of boundary integral method over other numerical tech-
niques such as finite element and finite difference methods is the ability to recover field
values of the harmonic potential and its higher order derivatives at arbitrary interior
field points without being limited to the resolution of interior meshes. In practice, many
physical observables of interest, e.g., velocity and electric fields, are not the field po-
tential but rather the field gradient. Once the boundary potential ϕ(χ) and flux q(χ)
are computed, we can readily evaluate field gradient at an arbitrary interior point χ′

in terms of boundary integrals by differentiating Green’s identity (7.53) with respect
to the field position χ′ as long as χ′ is strictly interior to the domain. In cylindrical
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coordinates, the integral representations of ∂φ(χ′)/∂r′ and ∂φ(χ′)/∂z′ are given by
∫

γ

{
∂g(χ′;χ)

∂r′
q(χ)− ∂2g(χ′;χ)

∂r′∂n
ϕ(χ)

}
r dγ(χ) = ∂φ(χ′)

∂r′
,

∫

γ

{
∂g(χ′;χ)

∂z′
q(χ)− ∂2g(χ′;χ)

∂z′∂n
ϕ(χ)

}
r dγ(χ) = ∂φ(χ′)

∂z′
,





for χ′ in ω

(7.55)
where ∂g(χ′;χ)/∂r′ and ∂g(χ′;χ)/∂z′ can be derived by evaluating ∂g(χ′;χ)/∂v in
(7.51) with coordinate unit vectors v = (1, 0) or (0, 1) followed by relabeling (r, z) ↔
(r′, z′),

∂g(χ′;χ)
∂r′

= 1
π
√
a+ b

[( 1
2r′ + r − r′

a− b

)
E(m)− 1

2r′K(m)
]
,

∂g(χ′;χ)
∂z′

= 1
π
√
a+ b

z − z′
a− b E(m).





(7.56)

The expressions of ∂2g(χ′;χ)/∂r′∂n and ∂2g(χ′;χ)/∂z′∂n are more algebraically in-
volved. Using a symbolic package, we manage to derive

∂2g(χ′;χ)
∂r′∂n

= 1
π
√
a+ b

{
+ dE

dm
2
(
a− 2r′2

)

(a+ b)2
nr
(
a− 2r2)+ 2nzr(z′ − z)

a− b

+E(m)
[
− 2(r′ − r)

a− b
nr(r′ − r) + nz(z′ − z)

a− b + nr
a− b

− r + r′

a+ b

(
nr(r′ − r) + nz(z′ − z)

a− b + nr
2r

)]

− dK
dm

2nr
(
a− 2r′2

)

(a+ b)2 +K(m)nr
(
b+ 2r′2

)

2b(a+ b)

}
,

∂2g(χ′;χ)
∂z′∂n

= 1
π
√
a+ b

{
− dE

dm
4b(z′ − z)
(a+ b)2

(
nr(r′ − r) + nz(z′ − z)

a− b + nr
2r

)

+E(m)
[
− 2(z′ − z)

a− b
nr(r′ − r) + nz(z′ − z)

a− b + nz
a− b

− z′ − z
a+ b

(
nr(r′ − r) + nz(z′ − z)

a− b + nr
2r

)]

+ dK
dm

4nrr′(z′ − z)
(a+ b)2 +K(m)nr(z

′ − z)
2r(a+ b)

}
,





(7.57)
where derivatives of the complete elliptic integrals, dK/dm and dE/dm, are evaluated
through the closed-form recurrence relation (7.47).

To proceed with numerical evaluation of boundary integrals, the boundary γ is first
discretized into a global quintic spline interpolation γ constructed from a set of knots
χj . We then seek approximate solutions to boundary potential ϕ and flux q drawn from
a finite-dimensional subspace such as the interpolation space of Lagrange polynomials
by demanding boundary integral equation (7.54) to be satisfied at a finite number of
collocation points. This is called the collocation method (Kress, 2014). Let γ(e) be
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a local spline of index e with ξ(e) being its local arc-length fraction. Then boundary
potential ϕ and flux q can be approximated by the Lagrange interpolations along the
arc-length of the global spline,

ϕ(χ ∈ γ) ≈
∑

e

∑

k

ϕ
(e)
k Nk(ξ(e)), q(χ ∈ γ) ≈

∑

e

∑

k

q
(e)
k Nk(ξ(e)), (7.58)

where ϕ(e)
k and q(e)

k are the nodal values of φ and ∂φ/∂n at the k-th local Lagrange
node ξk of local spline γ(e) respectively. Here Nk is the k-th Lagrange interpolation
polynomial such that Nk(ξj) = 1 if j = k and = 0 if j 6= k. The first order basis of
Lagrange interpolation over the canonical interval [0, 1] are linear polynomials,

N0 = 1− ξ, N1 = ξ,

ξ0 = 0, ξ1 = 1.



 (first order) (7.59)

The second order basis are quadratic polynomials,

N0 = (1− ξ)(1− 2ξ), N1 = 4ξ(1− ξ), N2 = ξ(2ξ − 1),

ξ0 = 0, ξ1 = 1/2, ξ2 = 1.



 (second order) (7.60)

For our purpose, the first and the second order basis over interval [0, 1] provide sufficient
accuracy. Note the Lagrange nodes ξk are constructed based on the arc-length fraction
ξ(e) from (7.28) instead of the intrinsic coordinate t of the local spline γ(e)(t) defined in
(7.27). For numerical purposes, integrals are first parametrized in the intrinsic variable
t and then integrated over the canonical interval [0, 1] via appropriate quadrature rules.
Therefore we must compute the corresponding intrinsic coordinates tk of each Lagrange
node ξk such that ξ(e)(tk) = ξk, which boils down to solving a few integral equations
along each local spline γ(e),

ξk = 1
s(e)

∫ tk

0
|γ̇(e)(t′)| dt′. (7.61)

Integral equation (7.61) can be efficiently solved by standard Newton’s methods. Given
a reasonable initial guess (e.g., tk = ξk), the iteration process typically converges within
two or three steps up to machine-size errors.

Single-layer and double-layer boundary integrals
There are two types—single- and double-layer—of boundary integrals in equation (7.54).
Convoluting boundary flux q(χ) with the Green’s function g(χ′;χ) yields field intensity
at a field point χ′ due to a single-layer integral

s[q](χ′) =
∫

γ
g(χ′;χ)q(χ)r dγ(χ). (7.62)

In electrostatic terms, the resulting potential s[q](χ′) of a single-layer boundary integral
is the sum of the potentials due to a distribution of surface charges with magnitude
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q(χ) residing on the boundary γ. The single-layer integral (7.62) is approximated by
the Lagrange interpolation introduced in equation (7.58). It is decomposed into a
summation of integrals over the arc-length of each local spline γ(e),

s[q](χ′) ≈
∑

e

∑

k

q
(e)
k

∫

γ(e)
g(χ′;χ)Nk(ξ(e))r dγ(χ) =

∑

e

∑

k

q
(e)
k s(e)[Nk](χ′), (7.63)

where
s(e)[Nk](χ′) =

∫ 1

0

r‖γ̇‖
π
√
a+ b

Nk(ξ(e))K(m) dt (7.64)

is the single-layer integral of a Lagrange basis function Nk restricted to a local spline γ(e).
Integral (7.64) is regular when field points χ′ do not overlap with a local spline γ(e),
in which case the standard Gauss-Legendre quadrature (7.35) is sufficient for numerical
integration. However when field point χ′ coincides with an interior point γ(e)(t′) of the
local spline, e.g., one of the Lagrange nodes γ(e)(tk), it becomes a source of logarithmic
singularity in the integrand of (7.64) which can be handled the logarithmic-weighted
quadrature rules (7.38) after some manipulations.

To analyze the singular behavior of single-layer integrals, we consider the limit of auxiliary
variable m(t) defined in equation (7.52) as χ→ χ′ = γ(e)(t′) for some t′ ∈ [0, 1],

m = 4rr′
(r′ + r)2 + (z′ − z)2 = 1− ṙ(t′)2 + ż(t′)2

4r′2 (t′ − t)2 +O((t′ − t)3). (7.65)

We see that |1 − m| → 0 quadratically in |t′ − t|. It can thus be deduced from
the Chebyshev approximation (7.43) of the complete elliptic integral K(m) that the
integrand of the single-layer integral (7.64) contains a logarithmic singularity ∼ ln |t−t′|
when field point χ′ is belongs to the local spline γ(e)(tk). Note the quadratic coefficient
in front of (t′ − t)2 in (7.65) can never be zero since ṙ(t) and ż(t) are components of
the tangential vector γ̇(e) which can not simultaneously vanish. This means we can first
subtract off the logarithm ln |t′ − t| from ln(1−m) and then add it back,

ln(1−m) = ln 1−m
|t′ − t|2 + 2 ln |t′ − t|. (7.66)

This technique is called singularity subtraction (Dommermuth and Yue, 1987; Oguz and
Prosperetti, 1993; Padrino Inciarte, 2010). It follows that the single-layer integral (7.64)
can be split into a regular integral and a logarithmic-singular one,

s(e)[Nk](χ′) ≈
∫ 1

0

r‖γ̇‖Nk(ξ(e))
π
√
a+ b

[
KP (m)−KQ(m) ln 1−m

(t− t′)2
︸ ︷︷ ︸

regular

−
logarithmic-singular︷ ︸︸ ︷

2KQ(m) ln |t− t′|
]
dt.

(7.67)
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To simplify notations, we introduce a few helper functions,

sK(t) = r‖γ̇‖
π
√
a+ b

,

KR(t′;m) = KP (m)−KQ(m) ln 1−m
(t− t′)2 ,

ER(t′;m) = EP (m)− EQ(m) ln 1−m
(t− t′)2 .





(7.68)

We then lump various terms into integrands I(o), I(i) and I log
(i) with subscripts (·)(i)

and (·)(o) designated for source points χ′ inside and outside of a local spline γ(e),
respectively,

I(o)(t) = sK(t)K(m)Nk(ξ(e)),

I(i)(t′; t) = sK(t)KR(t′;m)Nk(ξ(e)),

I log
(i) (t) = −2sK(t)KQ(m)Nk(ξ(e)),





(7.69)

which will be used later.

Similar to the singular-layer integral (7.62), field intensity at field point χ′ due to a
double-layer integral d[ϕ] is given by the convolution of boundary potential ϕ(χ) with
the normal flux of the Green’s function g(χ′;χ),

d[ϕ](χ′) =
∫

γ

∂g(χ′;χ)
∂n

ϕ(χ)r dγ(χ). (7.70)

Physically, the resulting potential of a double-layer boundary integral can be interpreted
as the sum of potentials due to a distribution of surface electric dipole with strength
ϕ(χ) covering the boundary. With the Lagrange interpolation (7.58), we reduce the
double-layer integral d[ϕ] to a summation of integrals over each local spline γ(e),

d[ϕ](χ′) ≈
∑

e

∑

k

ϕ
(e)
k

∫

γ(e)

∂g(χ′;χ)
∂n

Nk(ξ(e))r dγ(χ) =
∑

e

∑

k

ϕ
(e)
k d(e)[Nk](χ′)

(7.71)
where

d(e)[Nk](χ′) =
∫ 1

0

Nk(ξ(e))‖γ̇‖
π
√
a+ b

{[
nr
2 + n · (x′ − x)

‖x′ − x‖2 r

]
E(m)− nr

2 K(m)
}

dt

=
∫ 1

0

Nk(ξ(e))
π
√
a+ b

{[
ṙ(z′ − z)− ż(r′ − r)
(r′ − r)2 + (z′ − z)2 r −

ż

2

]
E(m) + ż

2K(m)
}

dt

(7.72)

is the double-layer integral of a Lagrange basis function Nk restricted to a local spline
γ(e).

Analogous to the single-layer integral (7.64), the double-layer integral (7.72) is regular
when field points χ′ locate outside of a local spline γ(e). When a field point χ′ = γ(e)(t′)
moves to the interior, we come to the observation that the part of the integrand under
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integral (7.72) that involves the complete elliptic integral of the second kind E(m) is
regular because E(m)→ (1−m) ln(1−m) as t→ t′ which is always finite form ∈ [0, 1]
and the second derivatives r̈ and z̈ are well defined for a smooth boundary shape. It
suffices to employ the standard Gauss-Legendre quadrature rules. However, the rate at
which the standard Gauss-Legendre quadrature rules converge scales with the overall
magnitude of derivatives of the function being integrated. In our case, derivatives of
the second kind elliptic integral E(m) produce terms such as ln(1 − m) which blows
up at t = t′. Therefore we choose to treat both elliptic integrals K(m) and E(m) with
logarithmic-weighted quadrature rules. For notation simplicity, we again introduce two
helper functions for the double-layer integral,

dE(t) = 1
π
√
a+ b

[
ṙ(z′ − z)− ż(r′ − r)

a− b r − ż

2

]
,

dK(t) = 1
π
√
a+ b

ż

2 ,





(7.73)

as well as I(o), I(o) and I log
(i) ,

I(o)(t) = [dE(t)E(m) + dK(t)K(m)]Nk(ξ(e)),

I(i)(t′; t) =
[
dE(t)ER(t′;m) + dK(t)KR(t′;m)

]
Nk(ξ(e)),

I log
(i) (t) = −2 [dE(t)EQ(m) + dK(t)KQ(m)]Nk(ξ(e)).





(7.74)

With helper functions introduced in (7.69) and (7.74), given a local spline γ(e) and a
Lagrange basis function Nk we can compactly express the local integrals of both single-
and double-layer types as the sum of a regular and a logarithmic-singular integral,

s(e) or d(e)[Nk](χ′) =





∫ 1

0
I(o)(t) dt for χ′ 6∈ γ(e),

∫ 1

0
I(i)(t′; t) dt+

∫ 1

0
I log

(i) (t) ln |t′ − t| dt for χ′ ∈ γ(e),

(7.75)
where the logarithmic-singular integral can be efficiently treated with the logarithmic-
weighted quadrature rules (7.38) developed in the last section.

Lastly we note that, when a field point χ′ is placed on the symmetry axis where r′ =
0, the complete elliptic integrals can be evaluated to closed-form expressions which
significantly simplify the single- and double-layer integrals. For a well-behaved surface
of revolution, the technique of singularity subtraction is not needed. It suffices to use
the standard Gauss-Legendre quadrature rules to treat the integrals,

s(e)[Nk](χ′) = s(e)[Nk](z′) =
∫ 1

0
Nk(ξ(e))r ‖γ̇‖

2
√
r2 + (z − z′)2 dt,

d(e)[Nk](χ′) = d(e)[Nk](z′) =
∫ 1

0
Nk(ξ(e))r żr + ṙ(z′ − z)

2
[
r2 + (z′ − z)2]3/2 dt,





(7.76)
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assuming the integrands in (7.76) have well-defined limits as χ → χ′ = (0, z′). For
instance, surface regularity demands that z̈/ṙ must be finite at r = 0 (e.g., a generic
conical tip aligned with symmetry axis is not allowed).

Matrix assembly for discretized boundary integrals
Let boundary γ be approximated by a collection of n local splines γ(e). We use the
ensemble of Lagrange nodes of each local splines as the collocation points at which
boundary integral equation (7.54) must satisfy after discretization. These nodes serve
as field points in evaluating the boundary integrals. For the second order Lagrange
interpolation, we rearrange all field points into an ordered set

{χ′0,χ′1, ... ,χ′N} =
{
γ(0)(t0),γ(0)(t1),

γ(1)(t0),γ(1)(t1), ... ,γ(n−1)(t0),γ(n−1)(t1),γ(n−1)(t2)
}

(7.77)

with respect to the parametrization of the boundary curve γ. In what follows, we
exclusively refer to index i as the global nodal index in the sense of (7.77). Note entries
γ(e)(t2) do not explicitly appear in the nodal set (7.77) because adjacent local splines
share one identical Lagrange node, i.e. γ(e)(t2) = γ(e+1)(t0). Along the same lines,
nodal values ϕ(e)

k of the boundary potential ϕ(χ) and q(e)
k of the flux q(χ) are sorted

into ordered arrays, designated by boldface capital letters ϕ and q,

ϕ = [ϕ(0)
0 , ϕ

(0)
1 , ϕ

(1)
0 , ϕ

(1)
1 , ... , ϕ

(n−1)
0 , ϕ

(n−1)
1 , ϕ

(n−1)
2 ]>,

q = [q(0)
0 , q

(0)
1 , q

(1)
0 , q

(1)
1 , ... , q

(n−1)
0 , q

(n−1)
1 , q

(n−1)
2 ]>,



 (7.78)

where ϕ(e)
2 = ϕ

(e+1)
0 and q(e)

2 = q
(e+1)
0 are assumed to hold. The single- and double-layer

integrals evaluated at field points χ′i can be identified with column vectors si and di
such that

s[q](χ′i) ≈
∑

e

∑

k

q
(e)
k d(e)[Nk](χ′i) = s>i q,

d[ϕ](χ′i) ≈
∑

e

∑

k

ϕ
(e)
k d(e)[Nk](χ′i) = d>i ϕ.





(7.79)

Applying collocation procedure to the boundary integral equation (7.54) of a sufficiently
continuous boundary γ yields a matrix equation

(b + d )ϕ = sq, (7.80)

where s and d are fully populated dense matrices and b is a near-identity sparse matrix
with interior angles β on its diagonal,

s =




s>0
s>1
...
s>−1



, d =




d>0
d>1
...
d>−1



, bij =





0 if i 6= j,

β(χ′i)/2π if i = j.
(7.81)
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Description Index Range
Interpolation order o o ≥ 1

Total number of splines n
Total number of nodes N n× o+ 1

Global nodal index of field point i 0 ≤ i ≤ n× o
Index of source spline e 0 ≤ e ≤ n− 1
Index of spline knots j 0 ≤ j ≤ n

Local nodal index of source point k 0 ≤ k ≤ o
Global index of k-th local node in e-th spline l l = e× o+ k
Index set of splines which contain i-th node e|i {bi/oc − 1, bi/oc} if i% o = 0

{bi/oc − 1} if i% o 6= 0

Table 7.5: Indices used in the assembly procedure described by algorithm 2: operator
b·c is the floor function and % is the modulo operation.

The matrix assembly procedure for s and d is summarized in algorithm 2, the loop
indices of which are listed in table 7.5. For a C1-continuous boundary γ (i.e. tangent
vector is continuous), interior angle β = π everywhere on the boundary which means
b = I/2 behaves almost like an identity matrix.

Algorithm 2 Assembly procedure for matrices s and d . Indices are defined in table 7.5.
1: procedure Matrix Assembly
2: for 0 ≤ i ≤ N do . Parallel this loop
3: e|i = index set of splines which contain i-th node . Check index bound
4: for 0 ≤ e ≤ n do
5: if e 6∈ e|i then
6: for 0 ≤ k ≤ o do
7: l = e× o+ k
8: sil = sil + s(e)[Nk](χ′i) . Gauss-Legendre quadrature
9: dil = dil + d(e)[Nk](χ′i)

10: else
11: for e ∈ e|i do
12: for 0 ≤ k ≤ o do
13: l = e× o+ k
14: sil = sil + s(e)[Nk](χ′i) . Logarithmic-weighted quadrature
15: dil = dil + d(e)[Nk](χ′i)

In a more complicated scenario where two adjacent boundaries γ0 and γ1 meet at a cor-
ner, e.g., the geometry shown in figure 7.2(a), we decompose the assembly process into
four subroutines, for which source points χ and field points χ′ may belong to different
boundaries. Similar to the matrix equation (7.80), looping through all combinations of
field and source points yields a block matrix equation,

[
b00 b01

b10 b11

] [
ϕ0
ϕ1

]
+
[
d 00 d 01

d 10 d 11

] [
ϕ0
ϕ1

]
=
[
s00 s01

s10 s11

] [
q0
q1

]
, (7.82)
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where matrix subscript (·)ab means the matrix entries are computed for field points
χ′ ∈ γa and source points χ ∈ γb.

In our example of two smooth boundaries that join at a sharp corner, the last node of the
first boundary γ0 coincides with the first node of the second boundary γ1. It is important
to remember that, although the these two nodes are treated as two independent degrees
of freedom in the matrix equation (7.82), they correspond to an identical position in
the axisymmetric plane. We must be mindful about the choice of quadrature rules for
the single- and double-layer integrals when field and source points coincide with these
two nodes. Coefficients of b01 and b10 are identically zero whereas diagonals of b00

and b11 are everywhere 1/2 except [b00]−1,−1 = [b11]0,0 = β(χcorner) are determined by
the interior angle at the corner discontinuity χcorner ([·]−i,−j means the last i-th and
j-th entry). After a close examination on the block matrix equation (7.82), we come to
the observation that, there are two identical rows in d and s complemented by an extra
constraint on the continuity of potential at the corner,

row−1(b00 + d 00)ϕ0 + row−1(b01 + d 01)ϕ1 = row−1(s00)q0 + row−1(s01)q1,

row0(b10 + d 10)ϕ0 + row0(b11 + d 11)ϕ1 = row0(s10)q0 + row0(s11)q1,

(p0)−1 − (p1)0 = 0,





(7.83)
where operator row0(·) and row−1(·) denotes the last and the first row vectors of the
matrix. We choose to eliminate one of the identical rows by replacing it with the
continuity condition,

row−1(b00 + d 00) = [0, · · · , 0, 1], row−1(b01 + d 01) = [−1, 0, · · · , 0],

row−1(s00) = [0, · · · , 0, 0], row−1(s01) = [0, 0, · · · , 0].



 (7.84)

For a mixed-type boundary condition where potential ϕ (Dirichlet) is prescribed on
boundary γ0 and flux q (Neumann) on γ1, the solutions to the unknown flux q on
boundary γ0 and unknown potential ϕ on boundary γ1 (or the other way around) is
given by a simple rearrangement of the block matrix equation,

[
b00 + d 00 −s01

b10 + d 10 −s11

] [
ϕ0
q1

]
=
[
s00 −b01 − d 01

s10 −b11 − d 11

] [
q0
ϕ1

]
. (7.85)

Elimination of identical rows from (7.84) still preserves continuity between the last
nodal value of potential vector ϕ0 and the first nodal value of ϕ1 when we solve the
rearranged block matrix equation (7.85). However, what cannot be achieved here is to
prescribe identical potential values on from both sides of the corner discontinuity. In
such an event, continuity of potential would no longer provide an extra equation which
means the single-layer block matrix assemble from s00, s01, s10 and s11 is rank-deficient
and hence may not yield a unique solution. A possible remedy for such problem is
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to construct an extra constraint (Wrobel, 2002) based on some local approximation
(e.g., finite difference approximation) near the corner which relates nodal values of the
potential to flux value before and after the corner. To circumvent this issue, in this work
we always consider a mixture of Direchlet and Neumann conditions before and after the
discontinuity as described in Section 6.5 of Chapter 6.

Validation of boundary integral solver
To verify the accuracy of our boundary integral solver we formulate a test problem subject
to mixed boundary conditions posed on a piecewise -smooth boundary γ = γ0 ∪ γ1. As
shown figure 7.2(a), boundary γ is divided into a sinusoidally deformed semi-circle γ0 and
a straight line γ1 which join at a 90◦-corner discontinuity. The explicit parametrizations
of γ0 and γ1 are given by

γ0(θ) = 2
(
1 + 1

4 cos(8θ − π)
) [cos θ

sin θ

]
for θ ∈ [0, π/2],

γ1(θ) =
[
θ

0

]
for θ ∈ [0, 3/2].





(7.86)

We consider the following test problem for the interior axisymmetric volume enclosed
by these two boundaries:

given φ on γ0 and ∂φ

∂n
on γ1, solve for ∂φ

∂n
on γ0 and φ on γ1, (7.87)

where n is the outward normal vector and φ = r`sP`(cos θ) is an axisymmetric harmonic
potential analytically constructed from the `-th order Legendre polynomial P`. For
` = 2, we have

φ = −r
2

2 + z2,
∂φ

∂n
= n ·

[
−r
2z

]
. (7.88)

The exact solution to the test problem (7.87) is readily deduced from the explicit
parametrization (7.86) and potential (7.88). Discrepancy between numerical and an-
alytic solutions can be then measured and quantified. In addition to the potential
problem, we also verify the accuracy of our quintic spline interpolation. Recall from the
curvature formula (7.30) of a planar curve γ = (r(θ), z(θ)) in an axisymmetric plane
that surface total curvature 2h can be calculated through substitution of either quintic
spline interpolation or the exact parametrization (7.86) into (7.30). The errors between
numerical and analytic solutions are measured in l∞-norm, i.e. the maximum point-wise
absolute error over the set of all nodal points χi on the boundary. The error of Dirichlet
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Figure 7.2: Convergence of errors between numerical and analytic solutions measured in
l∞-norm for the test problem (7.87): (a) Axisymmetric volume (shaded) enclosed by two
boundaries γ0 (solid) and γ1 (dashed) parametrized by (7.86). Arrows represent direction
of normal vector. (b) Log-log plot of curvature error (7.91) (H) on γ0, Neumann error
(7.90) on γ0 using linear ( ) and quadratic (�) Lagrange basis functions and Dirichlet
error (7.89) on γ1 using linear (#) and quadratic (2) Lagrange basis functions against
degrees of freedom (DoF) used by the solver. Inset: linear fits (dashed line) of the last
five points of each type of error.

data errD, the error of Neumann data errN and the error of curvature errC are given by

‖errD‖∞ = max
χi∈γ1

|ϕi − φ(xi)|, (7.89)

‖errN‖∞ = max
χi∈γ0

|qi − ∂φ(χi)/∂n|, (7.90)

‖errC‖∞ = max
χi∈γ0

|2hi − 2h(χi)|, (7.91)

where ϕi, qi and hi are the nodal values of boundary potential, flux and mean curvature
produced by the boundary integral solver and quintic spline interpolation, respectively.

In figure 7.2(b), the Dirichlet error errD, the Neumann error errN and curvature error
errC are plotted against the total degrees of freedom (DoF) employed by the solver, i.e.
number of independent nodes. We observe robust power-law behaviors in asymptotic
error convergence, which are expected for collocation methods based on interpolation
functions (Kress, 2014). Solutions computed with quadratic Lagrange interpolation
functions exhibit convergence rate at least as twice fast as the ones with linear ones.

7.4 Solutions to Self-Similar Cone Formation via Newton-Raphson Iteration
As discussed in Section 6.5, there are in total three boundary segments in the system
of self-similar equations (6.20), (6.21) and (6.22), i.e. the dividing interface γ between
vacuum and liquid phases, the upper spherical patch γvac for vacuum and the lower
spherical patch γliq for liquid. These three curves join at the truncation point χ∗ =
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(r∗, z∗) and divide a spherical volume of radius χ∗ = |χ∗| into a closed liquid domain
ωliq bounded by γ and γliq and a closed vacuum domain ωvac bounded by γ and γvac.
In order to proceed with boundary integral formulation, all three boundary segments
are approximated by quintic spline interpolation developed in Section 7.2. The analytic
shapes of γliq and γvac are arcs which begin at χ∗ and end at south pole (0,−χ∗) for
γliq and north pole (0, χ∗) for γvac. The shape of interface γ is to be determined.

For γ to be an admissible solution to the self-similar Bernoulli system, it must satisfy a
few constraints. Recall from the spline equations (7.13) that in addition to positions of
the knots a quintic spline requires extra four boundary conditions. On the symmetry axis
where r = 0, an odd condition must be supplied for the r-component of all three splines
and an even condition for the z-component to enforce axial symmetry. At large axial
distance where r � 1, the shape of liquid/vacuum interface γ is expected to converge
to the far-field tail of asymptotic expansion (6.33), the higher order coefficients c2, c3, ...

of which are completely specified by any two of the three parameters a0, c1 and b0. For
numerical purposes, we use a0 and c1 as the two independent parameters of the solution
family. By differentiating asymptotic height field η∞(r) in (6.33), we arrive at three
additional constraints relating the first two derivatives of interface γ = (r, z) at the
truncation point χ∗,

z = η∞(r),

ż = dη∞
dr ṙ,

z̈ = r̈ż + 2(ṙ2 + ż2)3/2h∞
ṙ

− ż
(
ṙ2 + ż2)

ṙr
,





at r = r∗ (7.92)

where h∞(r) is obtained by the curvature formula (7.30) applied to a shape parametrized
by (r, η∞(r)).

Now if we introduce the residue of the Bernoulli’s equation along a given interface γ,

ζ(χ) = 2
3χ · ∇φ−

1
3φ+ 1

2 |∇φ|
2 − 2h − 1

2 |∇ψ|
2 on γ, (7.93)

then on an abstract level the problem of solving for possible liquid/vacuum interfaces γ
constrained by the self-similar equations of the Bernoulli system is essentially equivalent
to root-finding of the nonlinear integro-differential equation

ζ(γ) = 0. (7.94)

This argument can be made explicit if we transform residue (7.93) using boundary
coordinate frame with unit tangent s and unit normal n,

ζ(χ) = 1
2

(
∂φ

∂s

)2
+ 2

3(χ · s)∂φ
∂s
− φ

3 −
2
9(n · χ)2 − 2h − 1

2

(
∂ψ

∂n

)2
. (7.95)
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Given asymptotic velocity potential φ∞ from expansion (6.33) prescribed on the liquid
patch γliq and kinematic boundary condition (6.21) imposed on γ, the boundary veloc-
ity potential φ(γ) is completely specified by the geometry of liquid/vacuum interface γ.
Similar situation applies to the electric flux ∂ψ/∂n(γ) when asymptotic electric field
∇ψ∞ is prescribed on the vacuum patch γvac and equipotential condition on γ. We
can compute interfacial quantities such as φ and ∂ψ/∂n by solving boundary integral
equations subject to mixed boundary condition as outlined in the last section. Curva-
ture formula (7.30) applied to the quintic spline interpolation of interface γ yields a
good approximation to h. The only complication here is the surface gradient ∂φ/∂s.
Since boundary potential φ is expected to be sufficiently continuous with respect to the
arc-length of interface γ, one way of approximating ∂φ/∂s at a knot χj ∈ γ is to differ-
entiate a third order polynomial interpolation through adjacent knots along arc-length,
for example,

{(
0, φ(χj)

)
,
(
sj , φ(χj+1)

)
,
(
sj + sj+1, φ(χj+2)

)
,
(
sj + sj+1 + sj+2, φ(χj+3)

)}
,

(7.96)
where sk is the total arc-length (7.28) of a local spline γ(k). The resulting local poly-
nomial can be conveniently expressed in terms of the divided differences (Abramowitz
and Stegun, 1965). By taking derivatives of this polynomial, we recover formulas of
one-dimensional finite difference approximation on a nonuniform grid. Note there are
multiple positions to evaluate the first derivative ∂φ/∂s. Depending on the “wind”
direction, i.e. the local sign of χ · s in Bernoulli residue (7.95), either a backward or a
forward finite difference must be chosen accordingly. Another possibility is to employ a
global quintic spline interpolation through the entire set of points (∑j−1

k=0 sk, φ(χj)) as
suggested by Leppinen and Lister (2003).

In the Newton-Raphson-type iterative methods, the Jacobian matrix, i.e. first order
derivatives with respect to knots of the quintic spline γ, is required to improve solution
at each iteration step. However aside from evident nonlinearity in velocity and electric
fields, geometric nonlinearity of the Bernoulli residue ζ(γ) in (7.95) makes the exact
calculation of Jacobian matrix very challenging due to the unknown interface shape γ.
As we have already encountered in Chapter 5, perturbing boundaries of a domain where
a harmonic potential is defined leads a number of extra complications. Analytically
tracking shape perturbations can be difficult and error-prone. Therefore we choose to
estimate the Jacobian matrix by a finite difference approximation such as the scheme
mentioned in (3.80) for computing objective gradient, which is affordable for the one-
dimensional problem we have here. A straightforward strategy for perturbing a global
quintic spline γ at a knot χj is to probe along its normal direction, i.e. χj → χj + εnj

for some small number ε� 1 where nj is the unit normal vector of spline γ at knot χj .
Recall from equation (7.92) that the truncation point χ∗ is specified by the asymptotic
expansion η∞(r∗), which would have sufficiently high accuracy if higher order terms are
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retained in η∞. Therefore we decide to clamp the interface position χ, the direction of
local tangent s and mean curvature h of interface γ to fixed values at the truncation
point χ∗. In this way, we avoid any boundary perturbation at χ∗, which would inevitably
cause reconstruction of liquid and vacuum patches (hence the single- and double-layer
dense matrices) with high computational costs. The overall iteration process of Newton-
Raphson method is summarized in algorithm 3.

Algorithm 3 Newton-Raphson iteration for solving system of coupled nonlinear equa-
tions (6.20), (6.21) and (6.22).

1: procedure Newton iteration(c1, b0, r∗) . Truncation distance r∗
2: Compute a0, .... , a4, b1, ... , b4 and c3, ... , c4. . c2 is always zero
3: Initialize interface spline γ with guess . Clamp r, z, ṙ, ż, r̈, z̈ at r∗
4: Initialize liquid and vacuum splines, γliq and γvac . Spherical patches
5: Set asymptotic Dirichlet condition φ∞ on γliq
6: Set asymptotic Neumann condition ∂ψ∞/∂n on γvac
7: Compute Bernoulli residue ζ . ζi = ζ(χi)
8: Allocate Jacobian matrix J . dim(J ) = #node × (#knot − 1)
9: while ‖ζ‖∞ > tolerance do . L∞-norm

10: for all knots χj of interface spline γ do . Exclude ending knot
11: Perturb χj → χj + εnj . ε ∼ 0.001� 1
12: Compute derivatives ṙ, r̈, ż, z̈ at r = r∗
13: Initialize perturbed interface spline γ̃
14: Set kinematic condition on γ̃ for φ
15: Set equipotential condition on γ̃ for ψ
16: Compute solution φ on γ̃
17: Compute solution ∂ψ/∂ñ on γ̃
18: Compute new residue ζ̃ after perturbation . At knots only
19: Update coli(J ) = (ζ̃ − ζ)/ε . Finite difference
20: Solve J δ = −ζ for δ . Matrix inverse (QR decomposition)
21: Update χi → χi + α δini . Damping rate 0 < α ≤ 1
22: Compute new residue vector ζ



232

C h a p t e r 8

CONCLUDING PERSPECTIVE

A number of tools and models were developed in this thesis to investigate and quantify
geometric nonlinearity in small-scale hydrodynamic systems driven by interfacial forces.
This research represents a collection of problems bridging the gap between analytic linear
theory and direct numerical simulation of interfacial flows with an emphasis on the full
treatment of nonlinear effects beyond the linear regime.

In the first half of this dissertation, we have examined interfacial flows in the lubrica-
tion limit where the transverse dimensions of the liquid volume are significantly slender
than the streamwise dimension. The total potential (free) energy of the liquid film is
dissipated through internal viscous frictions quantified by the rate of shear deformation
against the supporting substrate, and thus not transferred into kinetic energy. In this
regime, velocity field and pressure field within the liquid film are entirely specified by
surface forces acting on the liquid/gas interface. Fluid equations are then reduced to
a single time-dependent, nonlinear, partial differential equation describing the evolution
of local film thickness.

For nonlinear problems, it is customary to first perform a linear stability analysis about
some trivial steady base state, such as a flat, static liquid film. While linear theory
certainly provides insights into the emerging sinusoidal patterns at early times, it fails to
capture strong interface distortions which typically occur at later stages beyond small
amplitude deformations . It is especially the case for interfacial flows for which localized
geometric singularities are more likely to develop under the action of strong surface
forces. For example, the self-similar mechanism of spontaneous conic cusp formation
in a viscous thin film when subject to extremely large thermocapillary shear stresses
discovered in Chapter 2 cannot be properly resolved without recognizing the nonlinear
amplification in thermocapillary stresses as the film apex approaches the top cold plate.
In the same vein, linear or weakly nonlinear analysis (Cross and Greenside, 2009) alone
with a small number of system parameters is not sufficient to achieve precision control
over liquid shapes. As discussed in Chapter 3, when more effective means of control are
available, such as the structured electrodes in Electrohydrodynamic Lithography used to
pattern dielectric films, it is much more rewarding to solve the full nonlinear, spatiotem-
porally constrained optimization problem for the optimal electrode design rather than
to proceed by trial and error. In more general scenarios where substrate supporting the
liquid film is curved, nonlinear (i.e. non-Cartesian) effects of surface curvature can be
quantified order by order through the use of appropriate curvilinear coordinate systems
such as the ones introduced in Chapter 4. By retaining geometric nonlinearity of both
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liquid volume and supporting surface, a novel nonlinear, nonflat, nonlocal model, de-
scribing the evolution of a thin dielectric liquid film coating a curved conductor driven
by interfacial Maxwell stresses projected by an external electrode, can be derived.

In the second half of this thesis, we have investigated the strong interface distortions of
a perfectly conductive liquid body under the nonlinear interplay between capillary and
Maxwell stresses as well as inertia forces if inviscid motions of the liquid are considered.
For a classical problem like this, the standard practice is to restrict calculations to
small deformations of some trivial equilibrium shapes such as a sphere, cylinder and
sheet which usually exist due to the rotational or translational invariance. In doing so,
linearized calculations benefit greatly from the well-developed mathematical apparatuses
(e.g. spherical harmonics) for particular geometries; however, these techniques tend to
obscure geometric insights behind these already specialized quantities.

By evoking a nonlinear (convective Lagrangian) coordinate system without any prelim-
inary approximations or restrictions to the liquid shape and its allowable deformations,
in Chapter 5 we have obtained truly coordinate-free expressions of the first and sec-
ond shape variations to the total potential energy for an arbitrary shaped liquid body.
More importantly, placing geometric nonlinearity under scrutiny allows us to recover
previously neglected contributions to the energy stability of a conductive liquid body in
equilibrium when neither curvature nor charge distribution is constant along the liquid
interface. By introducing nonlinearity of the convective acceleration in liquid into the
picture, we unravel a large set of dynamic cone formations allowable in electrified inviscid
liquids. The self-similar theory in Chapter 6, pioneered by Zubarev (2001), accounts for
the dynamic balance between capillary, Maxwell and inertia forces due to strong distor-
tion of liquid/vacuum interface. The self-similar transformation introduced by Zubarev
preserves nonlinearity of the inviscid model, and hence is fundamentally different from
standard linearized modal dynamics which is only suitable for weak disturbances about
a hydrostatic Taylor cone. It is this nonlinearity that eventually leads to his key obser-
vation that pressure mismatch between interfacial Maxwell and capillary stresses can be
possibly compensated by inertia forces such as self-similar suction of an asymptotic sink
flow dominating in the far field away from the cone apex. We improve Zubarev’s asymp-
totic analysis to show that in addition to self-similar suction, which is actually linear in
velocity potential, liquid kinetic energy density (i.e. the squared norm of velocity field)
is primarily responsible for the formation of localized conic cusps. Furthermore, despite
his initial effort Zubarev never provided actual solutions to the self-similar theory. The
numerical method developed by us in Chapter 7 for solving coupled nonlinear boundary
integral equations posed on truncated semi-infinite domains has not only successfully
produced accurate solutions of the self-similar dynamics but also revealed curious near-
apex details of pressure field and velocity streamlines such as counter flows, stagnation
points and interface oscillations not resolved by the asymptotic analysis.
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