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ABSTRACT

Photoacoustic imaging (PAI) is an emerging imaging modality that shows great potential 

for preclinical research and clinical practice. As a hybrid technique, PAI uniquely 

combines the advantages of optical excitation and of acoustic detection. Optical absorption 

provides a rich contrast mechanism from either endogenous chromophores or exogenous 

contrast agents. Because ultrasound scatters much less than light in tissue, PAI generates 

high-resolution images in both the optical ballistic and diffusive regimes, overcoming the 

limitations imposed by light scattering in deep biological tissues. PAI has led to a variety 

of exciting discoveries and applications from laboratory research to clinical patient care.

To translate photoacoustic technology from the bench to the bedside, this thesis focuses on 

efforts to increase the imaging depth, provide clinically useful information (i.e., relevant 

imaging contrast), reduce system size, and improve system reliability. Assisted by 

powerful pulsed lasers and advanced data acquisition circuits, modern PAI has achieved 

applications such as functional imaging of the whole rat brain, revealing detailed 

angiography and functional connectivity at high spatiotemporal resolution. The 

advancement of deep imaging in small animal PAI has been transferred to human breast 

and brain imaging, showing early promise for clinical practice. To further extend the 

imaging depth and provide dielectric imaging contrast, microwave-based thermoacoustic 

tomography has been demonstrated in vivo. To map further physiological contrasts, 

spectroscopic PAI has been performed to image the oxygenation states of hemoglobin and 

myoglobin. In addition to the effort towards deep penetration and multiple contrasts, 

benchtop photoacoustic microscopy has been minimized to a handheld probe for human 
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skin imaging. As a rapidly evolving imaging technology, PAI is being translated from the 

bench to the bedside and promises exciting and useful clinical applications.
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Chapter I

INTRODUCTION

Motivation

With recent advances in photonics and optical molecular probes, optical imaging plays an 

increasingly important role in preclinical and clinical imaging. The manner in which light 

is scattered and absorbed in tissues can provide both structural and functional information 

in biomedical contexts. A fundamental constraint in pure optical imaging is light diffusion, 

which limits the spatial resolution in deep-tissue imaging. Consequently, pure optical 

imaging methods fall into two categories: ballistic (minimally scattered) optical 

microscopy and diffuse (multi-scattered) optical tomography. The former provides fine 

resolution but with a low imaging depth in tissue—up to ~1 mm, as defined by the optical 

diffusion limit [1]. In contrast, diffuse optical tomography (DOT) can probe centimeters 

into tissue, but the scrambled paths of the diffuse photons render the image reconstruction 

mathematically ill-posed with poor spatial resolution [2]. It remains a challenge for pure 

optical imaging to attain fine spatial resolution at depths beyond the optical diffusion limit.

Fortunately, photons in tissue can be converted into ultrasonic waves, which are scattered 

approximately 1,000 times less than optical scattering. Based on the photoacoustic (PA) 

effect, absorption of photons by biomolecules thermoelastically induces a pressure rise 

which propagates as ultrasonic waves. The amplitude of the ultrasonic wave is proportional 

to the optical absorption. Photoacoustic imaging (PAI) forms high-resolution images by 

detecting the low-scattered ultrasonic waves and consequently revealing the optical 

absorption as the imaging contrast. Accordingly, PAI combines the advantages of both 
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optical excitation and acoustic detection. The conversion from optical to ultrasonic energy 

brings multiple inherent advantages: (1) the low acoustic scattering enables PAI to break 

through the optical diffusion limit and achieves multiscale high-resolution imaging of 

biological structures ranging in size from organelles to organs; (2) rich optical contrast 

based on chemical compositions, which express wavelength-dependent light absorption; (3) 

PAI provides background-free detection because non-absorbing tissue components present 

no background [3]; (4) PAI is speckle free [4].

PAI also has unique advantages when compared with other mainstream biomedical 

imaging modalities, making a broad impact both in preclinical studies and clinical practice: 

(1) compared with ultrasonic imaging, PAI has rich intrinsic and extrinsic optical contrasts 

and is free of speckle artifacts; (2) compared with X-ray computed tomography and 

positron emission tomography, PAI uses nonionizing laser illumination; (3) compared with 

magnetic resonance imaging (MRI), PAI is faster and less expensive.

Fundamentals of PAI

In PAI, a short-pulsed (usually in nanoseconds) light source is typically used to irradiate 

the tissue. Following the temporally confined optical absorption, an initial temperature rise 

induces a pressure rise. The pressure rise is proportional to the temperature rise and 

propagates as an ultrasonic wave (i.e., PA wave). Approximately, a 1-mK temperature rise 

results in an 800-Pa pressure rise, which is on the order of the noise level of a typical 

ultrasonic transducer. If the pulse duration is shorter than the thermal relaxation time and 

the stress relaxation time, the excitation satisfies both thermal and stress confinements and 

the initial pressure rise  can be expressed as:  𝑝0
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,         (1)𝑝0 = Γ𝜂𝑡ℎ𝜇𝑎𝐹

where  is the Gruneisen parameter (dimensionless) and  denotes the percentage of Γ 𝜂𝑡ℎ

absorbed light converted into heat. They are usually approximated as constants, although 

 has been found to increase with equilibrium temperature, enabling PAI to image Γ

temperature with a sensitivity of 0.16 °C — useful for monitoring thermal therapy [5].  𝜇𝑎

is the optical absorption coefficient (cm–1) and  represents the local optical fluence (J/cm2), 𝐹

also called radiant exposure. Therefore, if  can be measured and  is known,  can be 𝑝0 𝐹 𝜇𝑎

recovered. Since is linearly proportional to the local optical fluence , increasing the 𝑝0 𝐹

optical fluence within the safety limit is always preferable for obtaining higher signal-to-

noise ratio (SNR) in PA images. Averaging PA signals will also improve the SNR, which, 

however, is proportional to the square root of the signal averaging times.

After the generation of the initial pressure , an acoustic wave starts to propagate at the 𝑝0

speed of sound ( ) in the material. The propagation in an inviscid medium can be 𝑣𝑠

described by a general PA equation in the time-domain [6]:

，           (2)(∇2 ―
1

𝑣2
𝑠

∂2

∂𝑡2)𝑝(𝑟,𝑡) =  ―
𝛽
𝐶𝑝

∂𝐻(𝑟,𝑡)
∂𝑡

where  is the acoustic pressure at position  and time .  and  denote the 𝑝(𝑟,𝑡) 𝑟 𝑡 𝛽 𝐶𝑝

isothermal compressibility and specific heat capacity at constant pressure, respectively. 𝐻

 is the heating function defined as the thermal energy converted per unit volume and (𝑟,𝑡)

per unit time; it is related to the optical fluence rate  by . Solving Eq. (2) Φ H =  𝜂𝑡ℎ𝜇𝑎Φ

with the Green’s function approach, the delta heating response of an arbitrary absorbing 

object is:
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.           (3)𝑝(𝑟,𝑡) =  
1

4𝜋𝑣2
𝑠

∂
∂𝑡{ 1

𝑣𝑠𝑡∫𝑑𝑟′𝑝0(𝑟′)𝛿(𝑡 ―
|𝑟 ― 𝑟′|

𝑣𝑠
)}

For an ideal point transducer placed at , the detected PA signal can be written by 𝑟𝑑

reforming Eq. (3) as:

            (4)𝑝𝑑(𝑟𝑑, 𝑡) =  
∂
∂𝑡{ 𝑡

4𝜋∬|𝑟𝑑 ― 𝑟| = 𝑣𝑠𝑡𝑝0(𝑟)𝑑Ω},

where  is the solid-angle element of  with respect to the point at . Eq. (4) indicates 𝑑Ω 𝑟 𝑟𝑑

that the detected pressure at time t comes from sources over a spherical shell centered at 

the detector position  with a radius . The initial pressure distribution  can be 𝑟𝑑 𝑣𝑠𝑡 𝑝0(𝑟)

obtained by inverting Eq. (4). The so-called universal back-projection (UBP) algorithm for 

image reconstruction can be expressed in the temporal domain as:

             (5)𝑝0(𝑟) =  
1

Ω0
∫𝑆𝑑Ω0{2𝑝𝑑(𝑟𝑑, 𝑡) ― 2𝑡

∂𝑝𝑑(𝑟𝑑, 𝑡)
∂𝑡 } |

𝑡 = |𝑟𝑑 ― 𝑟|/𝑣𝑠

.

Here,  is the solid angle of the whole detection surface  with respect to a given source Ω0 𝑆

point at . Eq. (5) indicates that the initial pressure  can be obtained by back-𝑟 𝑝0(𝑟)

projecting the filtered data, , onto a collection of concentric  {2𝑝𝑑(𝑟𝑑, 𝑡) ― 2𝑡
∂𝑝𝑑(𝑟𝑑, 𝑡)

∂𝑡 }
spherical surfaces that are centered at each transducer location , with  as the 𝑟𝑑 𝑑Ω0/Ω0

weighting factor applied to each backprojection. The first derivative with respect to time 

represents a ramp filter, which suppresses low frequency signals. The UBP reconstruction 

algorithm is essentially a method for sophisticated triangulation of PA sources from the 

time-resolved acoustic signals [7]. We note that UBP assumes the medium is acoustically 

lossless and homogeneous. Significant acoustic inhomogeneity of the sample may 

introduce reconstruction distortions, which, however, may be corrected or minimized using 

modified algorithms that take into account the acoustic inhomogeneity [8].
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Major Implementations of Multiscale PAI

The elegant marriage between light and sound endows PAI with the unique capability of 

scaling its spatial resolution and imaging depth across both optical and ultrasonic 

dimensions. Currently, PAI has two major implementations: focused-scanning 

photoacoustic microscopy (PAM) and photoacoustic computed tomography (PACT). 

While PAM usually aim to image millimeters deep at micrometer-scale resolution, PACT 

can be implemented for both mesoscopic and macroscopic resolution with centimeter 

imaging depth. Microwave-induced thermoacoustic tomography (TAT) is a macroscopic 

imaging modality that bears resemblance to PACT. Instead of using light, TAT utilizes 

microwaves for excitation, providing deeper penetration with dielectric contrast.

Photoacoustic Microscopy

In PAM, both the optical excitation and ultrasonic detection are focused, and the dual foci 

are usually configured confocally to maximize sensitivity. Volumetric imaging is realized 

by two-dimensional (2D) raster scanning of the dual foci of optical excitation and 

ultrasonic detection. At each scanning position, a laser pulse excites tissue predominantly 

along a line in the elevational direction and the ultrasonic transducer receives PA signals 

along the line and records the time-of-arrival, producing a one-dimensional (1D) depth-

resolved image (A-line). Accordingly, a 2D transverse scanning generates a three-

dimensional (3D) image. While the depth information is resolved by the acoustic time of 

flight, the lateral resolution is determined by the product of the point spread functions of 

the light illumination and acoustic detection. Depending on whether the optical or 

ultrasonic focus is finer, PAM is further classified into optical-resolution (OR) and 

acoustic-resolution (AR) PAM.
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In OR-PAM, the laser beam is focused by a microscope objective to a diffraction-limited 

spot, whose diameter can range from several hundred nanometers to several micrometers, 

depending on the numerical aperture ( ) of the optical focusing lens, the wavelength 𝑁𝐴𝑂𝑝𝑡

( ) of the excitation beam, and the desired imaging depth. In typical OR-PAM, the 𝜆𝑂𝑝𝑡

objective forms an Airy diffraction pattern whose full width at half maximum (FWHM) 

size determines the lateral resolution (ROR-PAM):

ROR-PAM .                                                (6)= 0.51
𝜆𝑂𝑝𝑡

𝑁𝐴𝑂𝑝𝑡

Relying on the tight optical focus, the penetration of an OR-PAM system is limited to about 

one transport mean free path in tissue [9]. By using longer optical wavelengths, which have 

longer transport mean free paths, the penetration limit can be increased.

At depths beyond the optical diffusion limit and up to a few millimeters, AR-PAM achieves 

high resolution by taking advantage of the much lower acoustic scattering. Despite the 

loosely-focused laser beam, lateral resolution (RAR-PAM) of tens of micrometers is achieved 

by diffraction-limited acoustic detection:

RAR-PAM ,                                                (7)= 0.71
𝜆𝐴𝑐𝑡

𝑁𝐴𝐴𝑐𝑡

where  and  denote the center wavelength of the acoustic wave and the numerical 𝜆𝐴𝑐𝑡 𝑁𝐴𝐴𝑐𝑡

aperture of the ultrasonic detector, respectively. 

In both PAM configurations, the axial resolution is given by the corresponding distance of 

the FWHM of the temporal signal envelope. Accordingly, if the impulse response of the 

ultrasonic transducer has a Gaussian envelope, the axial resolution can be estimated 

as , where  is the ultrasonic transducer bandwidth which is approximately 0.88𝑣𝑠/𝐵 𝐵
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proportional to the central frequency. Increasing the bandwidth for better axial resolution 

will decrease the maximum imaging depth since higher frequency ultrasound has greater 

attenuation in biological tissues. To convert each PA signal to a depth-resolved image, the 

Hilbert transformation is normally used to extract the envelope of the short-pulsed PA 

signal. Because the transducer is focused in PAM and each signal acquired by the 

transducer directly represents a 1D image after Hilbert transformation, UBP is usually not 

applied to PAM.

Photoacoustic Computed Tomography

Rather than relying on raster scanning as in PAM, PACT uses an array of ultrasonic 

transducers to detect PA waves emitted from an object at multiple view angles 

simultaneously, allowing a much faster cross-sectional or volumetric imaging speed at the 

expense of system and computational costs. In PACT, the entire region of interest is excited 

by an expanded laser beam for wide-field illumination.

After the acoustic waves are detected by the transducers, various reconstruction algorithms 

can be applied for PACT image formation [10]. The UBP based on Eq. (5) is commonly 

utilized because of its high accuracy and ease of implementation. In the reconstructed 

images, tissue interfaces are important for identifying organ boundaries. Because each 

boundary is composed of small flat segments and each segment transmits acoustic waves 

along the two opposite directions perpendicular to it, a boundary can be well-reconstructed 

if the local normal directions of the boundary pass through the transducers [11]. Therefore, 

the detection surface with respect to the imaging object should be 2  radians and 4  π π

steradians to exactly reconstruct an arbitrary boundary in 2D and 3D, respectively. The 

UBP reconstruction algorithm can be extended straightforwardly to the limited-angle view 
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case, in which the reconstruction may be incomplete and reconstruction artifacts may occur. 

The solid-angle weighting factor in the UBP Eq. (5), however, can compensate for the 

variations in the detection views. Ultrasonic transducer arrays with various populating 

patterns, such as line, plane, half ring, full ring, and hemisphere, have been employed and 

demonstrated in both animal and clinical applications.

There are a few important factors a researcher/engineer should consider when building a 

PACT system: (1) high optical fluence within the safety limit is preferable for high SNR. 

Since PACT reconstruction assumes light has a uniform or predicable distribution, light 

illumination needs to be carefully designed. Positioning of the imaging object should also 

be considered for desirable light illumination; (2) a large view angle of the transducer array 

or detection aperture is helpful to minimize the loss of information and improve the image 

quality; (3) since PA signals generated from the deep tissue could suffer both light and 

acoustic attenuation, analog preamplifiers connected between the array and data acquisition 

systems (DAQ) can amplify the weak PA signals before cable noise compromises the SNR; 

(4) in addition to the temporal Nyquist sampling law, one should also consider the spatial 

Nyquist sampling criterion . Inadequate spatial sampling will result in limited field of view 

(FOV) and undersampling artifacts; (5) high imaging speed is helpful to reduce the motion-

induced artifacts. Although co-registration methods can partially mitigate the motion 

distortion, the non-rigidity of the biological tissue compromises the effectiveness; (6) 

proper grounding of the metallic housing of the transducer array, preamplifiers, and DAQs 

is important to reduce noise. The motors are often well-shielded to eliminate 

electromagnetic interference.
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The high imaging speed and deep penetration is the key advantage of PACT over PAM. 

Nevertheless, deeper penetration is necessary for many clinical applications, including 

human brain or trunk imaging. By simply replacing the laser with a pulsed microwave 

source and applying proper shielding of the transducers and electronics, microwave-

induced TAT images can be generated using the same reconstruction algorithm. Different 

from visible light absorption in which heat is generated by non-radiative relaxation of 

excited electrons, microwaves generate heat through the electrical conductivity of tissues. 

Molecular relaxation and ionic conduction dominate this response at microwave 

frequencies, which generally relate to water and salt content. Therefore, the difference in 

dielectric properties of biological tissues can be revealed by TAT.

Dissertation outline

Both PACT and PAM have the potential for clinical applications. Most of the projects in 

this thesis were accomplished to advance PAI for small animal imaging, and to then 

transfer the improved technology for human applications. The essential improvements in 

PACT for bedside imaging are to provide greater depth and multiple contrasts. In PAM, 

one key objective is to minimize the system for handheld operation. Prior to the work in 

this thesis, PACT was limited to the imaging depth of a few millimeters in vivo and was 

mainly used to image the mouse brain cortex. First, internal illumination was developed 

using an optical fiber in the oral cavity to demonstrate PACT of the deep rat brain in vivo, 

and whole rat brain imaging was then implemented using a stronger laser and faster system 

(Chapter II). The experience gained from small animal brain PACT was further transferred 

to human breast imaging. In this new system, high-resolution, high-speed, and deep-

penetration PACT was first demonstrated for breast cancer patients. This study was further 
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extended to assess the effectiveness of neoadjuvant chemotherapy in breast cancer patients 

(ongoing project) (Chapter III). To advance the technology for human brain imaging, 

another PACT system was developed with improved performance that provided isotropic 

spatial resolution in 3D space. The system has been validated by imaging healthy human 

subjects and will be moved to the Children’s Hospital of Los Angeles for neonatal brain 

imaging (Chapter IV). To provide dielectric imaging contrast and further extend the 

imaging depth, TAT of a rat in vivo and transcranial imaging of a phantom enclosed by a 

human skull were demonstrated (Chapter V). Based on the dynamics of PA signals at 

different oxygenation states, oxygenation of hemoglobin and myoglobin were revealed in 

mice backbone muscles, thus providing multiple optical contrasts (Chapter VI). In addition 

to PACT, OR-PAM of mouse cortical microhemodynamics was explored (Chapter VII), 

where the system was minimized from a benchtop system to a handheld probe for human 

skin imaging (Chapter VIII). The dissertation outline is summarized in Fig. 1.

Internal illumination

PACT

OR-PAM

Greater 
depth

Multiple 
contrasts

Microwave-based thermoacoustic tomography (Chapter V)

Whole rat brain imaging (Chapter II)

Single-breath-hold human breast imaging (Chapter III)

Benchtop OR-PAM (Chapter VII)

Handheld probe (Chapter VIII)

Myoglobin imaging (Chapter VI)

3D PACT of human brain (Chapter IV)

Figure 1. Dissertation outline.
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All animal experimental procedures in this dissertation were carried out in conformity with 

laboratory animal protocols approved by the Animal Studies Committee at Washington 

University in St. Louis and the Institutional Animal Care and Use Committee at California 

Institute of Technology. All the human experiments followed protocols approved by the 

Institutional Review Board (IRB) and Protocol Review and Monitoring Committee (PRMC) 

of Washington University in St. Louis, as well and the IRB at California Institute of 

Technology and City of Hope National Medical Center.
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Chapter II

PACT OF RAT BRAIN

The evolution of this research began from small animal imaging. Existing PACT systems 

were used with improved setups to demonstrate deep imaging depth in the rat brain. 

Knowledge gained from these trials was then transferred to building human-scale breast 

and brain PACT systems.

Introduction and Motivation

The brain has been likened to a great stretch of unknown territory consisting of a number 

of unexplored continents. Small animal brain imaging plays an important role in 

biomedical research. Currently, two major animal brain imaging modalities are 

multiphoton microscopy and MRI. However, these imaging techniques have their own 

limitations. Multiphoton microscopy has a depth limit around 1 mm [12]. Functional MRI 

(fMRI) of small animals requires a costly high magnetic field to achieve sufficient temporal 

and spatial resolutions [13].

As a nonionizing imaging modality, PACT is gaining increasing interest in 

neuroimaging. Its hybrid nature allows PACT to image optical absorption with 

ultrasonically defined spatial resolution beyond the diffraction limit, which limits the 

penetration capability of ballistic optical imaging such as two-photon microscopy. Prior to 

this work, multiple PA brain imaging studies have been reported [14-19]. However, due to 

the limited light penetration depth, most studies focused on cortical imaging [14, 16, 18, 

19]. By then, only two studies on deep brain PA imaging have been reported. One used 
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external illumination through the scalp of a dead mouse [15]. While some deep structures 

can be identified, the imaging depth was limited to intermediate layers of the brain. The 

dead brain also limited its usefulness in functional neural studies. The other study used an 

optical fiber bundle illuminating the circumference of a mouse head to acquire coronal-

view images [17]. However, their presented image still shows strong cortex signals and the 

internal brain structures can barely be identified. The limited-view half-ring detection also 

prevents accurate reconstruction of the cross-sectional image.

Oral-cavity illuminated PACT of Rat Brain

To deliver light deep into the brain, either strong lasers with low-attenuation wavelengths 

or internal illumination using lower-power light sources can be used. At the time of this 

work, strong lasers were not available to us, so we resorted to internal illumination. By 

inserting a multimode optical fiber with a side-illumination tip into the oral cavity of a rat, 

we delivered more light to the base of the brain than with conventional external 

illumination through the scalp. The PA signals were collected by a full-ring-array PACT 

system [18]. The full-ring ultrasonic transducer array provided faster imaging speed than a 

single-element ultrasonic transducer scanner [15] and more accurate image reconstruction 

than a fixed half-ring transducer array [17].

Figure 2a shows a schematic of the oral-cavity illuminated PACT (OI-PACT) system. A 

tunable Ti-Sapphire laser pumped by a Q-switched Nd:YAG laser emitted pulsed light with 

a 780-nm wavelength, 12-ns pulse width, and 10-Hz repetition rate. The laser beam was 

first condensed by two convex lenses. The condensed beam, with a full-width at half-

maximum of ∼2mm, was then coupled into a multimode optical fiber (2.8-mm core 

https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-20/issue-1/016019/In-vivo-deep-brain-imaging-of-rats-using-oral-cavity/10.1117/1.JBO.20.1.016019.full#f1
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diameter, SGS-3.0, Fiber Optic Store) with a coupling efficiency of approximately 35%. 

The other end of the fiber was inserted into the rat’s mouth as shown in Fig. 2b. A 45-deg 

right-angle prism was attached to the fiber tip and fixed in an air chamber enclosed by 

transparent cladding and translucent adhesive. To quantify the illumination uniformity, we 

measured the light intensity around the fiber tip using a power meter with a pinhole in 

front. The light intensities at 45 deg and 90 deg were, respectively, ∼56% and ∼15% of 

the intensity at 0 deg (Fig. 2b). The maximum light intensity at the palate surface was 

approximately 20 mJ/cm2, which was below the American National Standards Institute 

(ANSI) limit (29 mJ/cm2) at the chosen wavelength [20]. The total energy at the output end 

of the fiber was ∼10 mJ.

Rat (~80g)

Translation stage
Computer

Convex lenses

Multi-mode 
optical fiber

Flip mirror mount

Flexible 
membrane

Aerophore

512-element
full-ring array
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Z
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Figure 2. Experimental setup of the oral-cavity illuminated PA computed tomography (OI-

PACT) system: (a) Schematic of the OI-PACT system. (b) Detailed view of the optical 

fiber tip in the rat’s mouth. The origin of the z-axis was aligned with the plane 3 mm above 

the fiber tip.

As shown in Fig. 2a, the rat was mounted in an upright position and was secured to a holder. 

We then mounted the holder on a translation stage for elevational scans. The rat was placed 

https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-20/issue-1/016019/In-vivo-deep-brain-imaging-of-rats-using-oral-cavity/10.1117/1.JBO.20.1.016019.full#f1
https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-20/issue-1/016019/In-vivo-deep-brain-imaging-of-rats-using-oral-cavity/10.1117/1.JBO.20.1.016019.full#f1
https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-20/issue-1/016019/In-vivo-deep-brain-imaging-of-rats-using-oral-cavity/10.1117/1.JBO.20.1.016019.full#f1
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underneath the water tank with its scalp coupled to the flexible membrane through 

ultrasonic gel to be imaged through the membrane.

The PACT system utilized a 5-MHz (80% bandwidth) transducer array formed into a 

circular aperture with a 50-mm diameter. Each element was shaped into an arc in elevation 

to produce an acoustic focal length of 19 mm. The combined foci of all elements generated 

a central imaging region of 20-mm diameter and 1-mm thickness. Within the central 

imaging region, the system provided relatively uniform 0.10-mm radial (axial) resolution 

and <0.25-mm tangential (transverse) resolution [18]. The center cross section of the 

ultrasonic transducer array determined the imaging plane, which was 3 mm above the fiber 

tip (Fig. 1b) when we imaged the brain base. The origin of the z-axis was aligned with the 

plane of the brain base. For the particular rat shown here, the elevational distance from the 

scalp to the brain base was around 13 mm.

The data acquisition was triggered by the laser’s Q-switch signal. After every other laser 

shot, the 8:1 multiplexer on the receiver boards forwarded the data from the transducer 

elements to the 64-channel acquisition board. With pure endogenous hemoglobin contrast 

and 10 times averaging, each PA image was acquired over 16 s. In order to reduce artifacts 

caused by the acoustic heterogeneities in the rat’s head, we used the simplified half-time 

image reconstruction algorithm [21], which backprojected only the first half of the received 

data. 

To investigate the advantages of internal illumination in deep brain imaging, after each 

measurement with fiber illumination, we also acquired corresponding control images with 

external illumination. Figure 3 shows a series of in vivo images acquired over an 

https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-20/issue-1/016019/In-vivo-deep-brain-imaging-of-rats-using-oral-cavity/10.1117/1.JBO.20.1.016019.full#f1
https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-20/issue-1/016019/In-vivo-deep-brain-imaging-of-rats-using-oral-cavity/10.1117/1.JBO.20.1.016019.full#f2
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elevational distance of 5 mm in the brain’s bottom region, with images acquired by internal 

illumination above (Figs. 3a–3c) and corresponding images obtained by external 

illumination below (Figs. 3d–3f). Clearly, for deep brain imaging, using the same PACT 

data collection system and image reconstruction algorithm, internal illumination provides 

much clearer images than external illumination, which barely showed any recognizable 

structures. Figure 3g shows an in vivo PA image of the rat brain base (z = 0 mm, ventral 

aspect). In the image, the left and right cerebral hemispheres, brain stem, hypothalamus, 

and anterior cerebral artery underneath the optic chiasma are clearly visible. In addition to 

the brain structures, the interface between the zygoma and the muscle tissue can also be 

seen. After the imaging experiment, we euthanized the rat in a CO2 chamber and then 

dissected its brain to photograph the anatomy in ventral view (Fig. 3h). The PA image and 

photograph agree with each other despite the fact that the release from skull confinement 

slightly changed the shape of the cerebral hemispheres.
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Figure 3. A series of images acquired at z = −1 mm (a), z = 1 mm (b), and z = 4 mm (c), 

with control images at the same layers (d)–(f) acquired by external illumination through 

the top skull. (g) In vivo PA image of the rat brain base (z = 0 mm) acquired by OI-PACT. 

(h) Corresponding photograph of the anatomy of the same rat brain. ACA, anterior cerebral 

artery; BS, brain stem; BMI, bone-muscle interface; CE, cerebellum; CM, cerebral medulla; 

CO, colliculus; HY, hypothalamus; LCH, left cerebral hemisphere; OL, olfactory lobes; 

RCH, right cerebral hemisphere; and TH, thalamus.

Rat Whole Brain Functional Imaging by Single-Impulse Panoramic PACT

Two years afterwards, we built a single-impulse panoramic PACT (SIP-PACT) system 

which is coupled with a stronger Nd:YAG laser. The PACT system is equipped with a 

cylindrically-focused ring array that is similar to the previous version, but with one-to-one 

mapped preamplification and analogue-to-digital sampling (no multiplexer) so that it can 

form a 2D image from a single laser shot. Accordingly, SIP-PACT realizes high 

spatiotemporal resolution (125 μm in-plane resolution, 50 μs per frame data acquisition and 

50 Hz frame rate) without noticeable motion artifacts [22]. 

Equipped with the strong laser at 1064 nm, we imaged the entire rat brain on the coronal 

plane. As shown in Fig. 4a, the rat head was mounted vertically and the light was delivered 

obliquely to the rat cortex. A cranial window was opened to maximize the acoustic 

transmission. Taking advantage of the low scattering of 1064 nm light, the full-view 

acoustic coverage and high detection sensitivity of SIP-PACT, coronal views of the whole 

rat brain (11 mm in depth) was produced with detailed vasculature (Fig. 4b). 

The brain serves as the center of the nervous system, dynamically coordinating responses 

through the functional network. We utilized PACT to detect the functional connectivity by 

globally monitoring the brain hemodynamics with appropriate spatiotemporal resolution 

https://www.nature.com/articles/s41551-017-0071#s1
https://www.nature.com/articles/s41551-017-0071?report=reader#f6
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and penetration. We measured and compared the spontaneous hemodynamic responses 

between contralateral regions of the rat brain. In the seed-based functional connectivity 

study, we picked a seed in the image and computed the correlation coefficients between all 

pixels in the region of interest and the seed (Fig. 4c). Excitingly, we identified the left–

right correlation between the deep thalamus regions (9.7 mm in depth, Fig. 4c, bottom 

right), which, to the best of our knowledge, has not been demonstrated at this spatial 

resolution. 
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Figure 4. (a) Setup of the rat brain imaging. The rat head was mounted vertically during 

imaging and 1064-nm light was obliquely delivered to the rat cortex. (b) Rat whole-brain 

vasculature in different coronal planes (From ~bregma −1 mm to −4 mm). (c) Seed-based 

functional connectivity analyses of different functional regions on both sides of the brain 

https://www.nature.com/articles/s41551-017-0071?report=reader#f6
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before the stroke surgery. (d) Seed-based functional connectivity analyses the brain after 

the stroke surgery.

We further performed a stroke ligation surgery at a neck artery of the same rat and assessed 

the functional connectivity between the two hemispheres. Because of the ischemia in the 

left brain hemisphere, most correlations disappeared (Fig. 4d). Interestingly, the left–right 

correlation between the deep thalamus regions still existed (Fig. 4d, bottom right). The 

functional connectivity observation demonstrates the potential of PACT as a high-

resolution imaging tool for studying deep brain functions in rats, which was previously 

difficult to accomplish using optical contrast, and therefore underexplored.

Summary and Outlook

By utilizing a fiber-transmitted internal illumination and full-view-array PACT system, we 

first demonstrated a method for deep rat brain imaging when laser energy is not adequate 

for external illumination. With the improvements of high-energy lasers and DAQ systems, 

we further made fast and deep PACT available for small animal imaging. Using the new 

PACT system with strong 1064-nm light, the entire rat brain was imaged, realizing whole 

brain functional imaging by showing the functional connectivity of different functional 

regions before and after stroke surgery. More efforts are necessary to improve the imaging 

sensitivity, spatiotemporal resolution, and contrast agents to assess single neuron action 

potentials in the whole brain.
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Chapter III

PACT OF HUMAN BREAST CANCER

The experience gained from small animal brain PACT inspired the design and construction 

of an advanced PACT system for human breast imaging, which requires deeper penetration 

and higher reliability. We have developed a single-breath-hold photoacoustic computed 

tomography (SBH-PACT) system to reveal detailed angiographic structures in human 

breasts.

Introduction and Motivation

About 1 in 8 (12%) women in the U.S. will develop invasive breast cancer during their 

lifetime [23]. Multiple large prospective clinical trials have demonstrated the importance 

of early detection in improving breast cancer survival [24-26]. While mammography is 

currently the gold standard used for breast cancer screening, it utilizes ionizing radiation 

and has lower sensitivity in women with dense breasts [27, 28]. Ultrasonography has been 

used as an adjunct to mammography, but suffers from speckle artifacts and low specificity 

[29, 30]. MRI poses a large financial burden and requires the use of intravenous contrast 

agents that can cause allergy [31], kidney damage [32], and permanent deposition in the 

central nervous system [33]. Diffuse optical tomography has been investigated to provide 

functional optical contrast. However, the spatial resolution of the current prototypes limits 

their clinical use [34, 35]. Overall, each modality has notable advantages and limitations. 

PACT is a promising complementary modality that overcomes many of these limitations.
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In the near infrared (NIR) region, the 1/e attenuation coefficient (1.0–1.3 cm−1) [36] for 

light in an average breast is less than twice that for mammographic X-rays (0.5–0.8 cm−1) 

[37]. However, the optical absorption contrast of soft tissue is much higher than X-ray 

contrast [38]. For breast imaging, PACT can exploit these advantages to the fullest, 

offering high spatial and temporal resolutions with sufficiently deep nonionizing optical 

penetration [7, 39]. As the principal optical absorber in the NIR region, hemoglobin 

provides an endogenous contrast for imaging of blood vessels. A high density of blood 

vessels should correlate with angiogenesis [40-42], which plays an important role in tumor 

growth and metastasis [43].

Several breast PACT systems have been developed, employing different light illumination 

and detection schemes [44-53]. These systems have advanced PACT toward clinical 

application, but ongoing limitations remain to be addressed. Here, we consider five main 

factors: (1) sufficient penetration depth to accommodate most breast sizes and skin colors, 

(2) high spatial resolution to reveal detailed angiographic structures, (3) high temporal 

resolution to minimize motion artifacts and enable dynamic or functional studies, (4) 

minimal limited-view artifacts, and (5) sufficient noise-equivalent sensitivity and contrast-

to-noise ratio to detect breast masses.

Specifically, the current systems’ limitations mainly arise from their long scanning times 

[44-46] and/or limited-view apertures (i.e., missing data or a <2π steradian solid angle) 

[46-52]. Toi et al. recently reported a photoacoustic imaging system with a hemispherical 

detector array [44], which was modified from a previous design [45]. Although the design 

for acoustic detection is slightly different, both used a sparse hemispherical detector array 

and scanned in a spiral pattern on a plane. The dense sampling, and the nearly isotropic 3D 
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spatial resolutions produced elegant vascular images, but tumor detection was limited by 

respiratory motion artifacts resulting from the long scanning time (~4 min). Although co-

registration partially mitigated the breathing motion distortion, the non-rigidity of the 

breast compromised the effectiveness. While larger vessels were coregistered, small tumor 

vessels, which often occur in small clusters, could be challenging to be imaged with partial 

data and even more difficult to be coregistered. Other groups have used planar transducer 

arrays [47-50] and arc-shaped arrays [51] for breast imaging. However, the limited views 

of these systems decreased their overall performances [54, 55]. Consequently, most blood 

vessels were not well visualized in their images. The same problem occurred with linear 

transducer arrays, either fixed in position [52] or scanned [46]. A ring-shaped array of 32 

elements was developed at presumably relatively low system cost [53]. However, the low 

number of elements severely limited the field of view due to the spatial Nyquist sampling 

criterion, resulting in degradation of image quality [22].

The experience gained from small animal brain PACT has been transferred to a significant 

advancement in breast PACT technology that overcomes all of the aforementioned 

limitations. Our breast imaging modality—SBH-PACT—is the first PACT system that 

meets the aforementioned five conditions: (1, 2) Combining 1064-nm light illumination 

and a 2.25-MHz unfocused ultrasonic transducer array, SBH-PACT achieved up to 4 cm 

in vivo imaging depth and a 255 µm in-plane resolution (approximately four times finer 

than that of contrast-enhanced MRI [56]). (3) Equipped with one-to-one mapped signal 

amplification and DAQ circuits, SBH-PACT can obtain an entire 2D cross-sectional breast 

image with a single laser pulse, or obtain a volumetric 3D image of the entire breast by fast 

elevational scanning within a single breath-hold (~15 s). The 10 Hz 2D frame rate, 
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currently limited by the laser repetition rate, enables SBH-PACT to observe biological 

dynamics in a cross-section associated with respiration and heartbeats without motion 

artifacts. (4) A full-ring 512-element ultrasonic transducer array enables SBH-PACT for 

full-view fidelity in 2D imaging planes and delivers high image quality. (5) Capitalizing 

on the optimized illumination method and signal amplification, SBH-PACT achieves 

sufficient noise-equivalent sensitivity to clearly reveal detailed angiographic structures 

both inside and outside breast tumors without the use of exogenous contrast agent.

System Construction and Characteristics
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Computer
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Figure 5. Representations of the SBH-PACT system. (a) Perspective cut-away view of the 

system with data acquisition components removed. (b) Perspective view of the system with 

patient bed and optical components removed. (c) Signal flow diagram for the system. (d) 

Photograph of the system. DAQ, data acquisition system; Pre-amp, pre-amplifier circuits.



24

The SBH-PACT system is placed underneath a patient bed with minimal separation from 

the top surface of the bed to the top scanning position of the ultrasonic transducer array 

(Fig. 5). With the patient lying prone on the bed, the breast to be imaged is slightly 

compressed against the chest wall by a soft agar pillow. Compared to craniocaudal or 

mediolateral breast compression, compression against the chest wall not only avoids pain, 

but also gives the least thickness breast tissue for light to penetrate from the nipple to the 

chest wall. The laser illuminates the breast from beneath the patient’s breast, and the 

ultrasonic transducer array detects photoacoustic waves circumferentially around the breast. 

The light beam is converted into a donut shape via an axicon lens followed by an 

engineered diffuser. Compared to a Gaussian beam, the donut beam provides more uniform 

illumination inside the breast (Fig. 6) and also deposits less energy on the nipple and areola, 

which have a higher concentration of pigment. We take advantage of the low optical 

attenuation of 1064 nm light to achieve sufficient optical penetration in breast tissue [57].
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Figure 6. Simulation of the optical fluence in breast tissue at 2 cm depth, produced by 

different illumination schemes. (a) Distribution of the optical fluence in breast tissue when 

https://www.nature.com/articles/s41467-018-04576-z#MOESM1
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the illumination beam is donut-shaped. After removing the engineered diffuser, the ring 

diameter is approximately 6 cm. (b) Distribution of the optical fluence in breast tissue at 

the same depth when the illumination beam is Gaussian-shaped. The FWHM of the beam 

is approximately 6 cm. To mimic a breast compressed against the chest wall, we built a 

cylindrical breast model with a height of 4 cm and a diameter of 15 cm. In this numerical 

model, the absorption coefficient (0.05 cm−1) and the reduced scattering coefficient (7 cm−1) 

inside the breast were selected for a 1064 nm wavelength [58].

To provide 2D panoramic in-plane acoustic detection, we employ a full-ring ultrasonic 

transducer array with 512 elements. Four sets of 128-channel data acquisition systems 

provide simultaneous one-to-one mapped associations with the 512-element transducer 

array. Therefore, we acquire photoacoustic signals from a cross section within 100 µs 

without multiplexing after each laser pulse excitation. The ultrasonic transducer elements 

have a central frequency of 2.25 MHz and a one-way bandwidth of more than 95% (Fig. 7a, 

b), providing an experimentally quantified in-plane resolution of 255 µm (Fig. 7c, d). The 

height of each transducer element yields a moderate divergence angle in the elevational 

direction (~9.0˚ FWHM), yielding a flared diffraction pattern (Fig. 8a). This pattern 

enables both 2D imaging of a breast cross section per laser pulse and 3D imaging of the 

whole breast by scanning elevationally. Our 3D back-projection algorithm can reconstruct 

a volumetric image with an elevational resolution of 5.6 mm, which is ~3 times finer than 

that given by the 2D reconstruction algorithm (Fig. 8b, c).

https://www.nature.com/articles/s41467-018-04576-z#MOESM1
https://www.nature.com/articles/s41467-018-04576-z#MOESM1
https://www.nature.com/articles/s41467-018-04576-z#MOESM1
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Figure 7. (a) The raw radio frequency signal from each ultrasonic transducer element 

corresponding to a point PA source at the center of the full-ring array. The black solid line 

represents the mean value of all transducer elements’ responses, and the gray region 

represents the standard deviation (STD) across the elements. (b) Fourier transform 

amplitude of each RF signal in (a), showing that the bandwidth of the transducer array is 

about 2.16 MHz. The point source was created by fixing a carbon particle (20–50 µm) in 

an agar phantom. The particle was small enough to be regarded as a spatial point source 

for the SBH-PACT system. (c) A maximum amplitude projection (MAP) image of two 

crossed tungsten wires, each with a nominal diameter of 13 µm. (d) The PA amplitude 

distribution along the red dashed line in (c). The in-plane resolution, defined as the FWHM 

of the amplitude distribution, is 255 µm.
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Figure 8. Quantification of elevational resolution. (a) Simulated acoustic diffraction field 

in the elevational direction. (b) Line profile in the elevational direction of a carbon particle 

(20–50 µm, placed at the ring center) reconstructed by 2D back-projection. (c) Line profile 

in the elevational direction of the same carbon particle reconstructed by 3D backprojection.

SBH-PACT of Healthy Breast Anatomy and Dynamics

Before imaging breast cancer patients, the performance of SBH-PACT was assessed by 

imaging a 27-year-old healthy female volunteer. By scanning the transducer array 

elevationally through her right breast, within one breath hold (~15 s), we revealed the 

angiographic anatomy from the nipple to the chest wall (Fig. 9a). The color-encoded depth-

resolved image clearly revealed the detailed angiographic structures of the entire breast 

(Fig. 9b), visualizing the vasculature down to an apparent vascular diameter of 258 µm 

(Fig. 9c). We further investigated the relationship between parent and daughter vessels at 

vascular bifurcations, which is expressed by the junction exponent (XB) [59]. We selected 

https://www.nature.com/articles/s41467-018-04576-z#Fig2
https://www.nature.com/articles/s41467-018-04576-z#Fig2
https://www.nature.com/articles/s41467-018-04576-z#Fig2
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a vessel tree in the breast and marked five branch levels with distinct colors (Fig. 9d). At 

five vascular bifurcations (B1–B5), we calculated the junction exponents as well as the 

ratios between the cube of the diameter of the parent vessel and the sum of the cubes of the 

diameters of the daughter vessels (Fig. 9d).
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Figure 9. SBH-PACT of healthy breasts. (a) Vasculature in the right breast of a 27-year-

old healthy female volunteer. Images at four depths are shown in increasing depth order 

from the nipple to the chest wall. (b) The same breast image with color-encoded 

depths. (c) A close-up view of the region outlined by the magenta dashed box in (b), with 

selected thin vessels and their line spread plots. (d) A selected vessel tree with five vessel 

bifurcations, labeled from B1 to B5. At each bifurcation, the diameter relationships 

between the parent vessel ( ) and daughter vessels ( ) are presented on the 𝐷𝑝𝑎𝑟𝑒𝑛𝑡 𝐷𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟

right.  is the junction exponent, and  is defined as  𝑋𝐵 𝑅𝐵 𝑅𝐵 = 𝐷3
𝑝𝑎𝑟𝑒𝑛𝑡/(𝐷3

𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟_𝑎 +

. (e) Heartbeat-encoded arterial network mapping of a breast cross-sectional 𝐷3
𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟_𝑏)

image (red = artery, blue = vein). (f) Amplitude fluctuation in the time domain of the two 

pixels highlighted by yellow and green dots in e. The pixel value in the artery shows 

changes associated with arterial pulse propagation. (g) Fourier domain of the pixel value 

https://www.nature.com/articles/s41467-018-04576-z#Fig2
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fluctuations in f. The oscillation of the arterial pixel value shows the heartbeat frequency 

at ~1.2 Hz.

During a breath hold within 10 s, we imaged a cross section of the contralateral healthy 

breast in one of the breast cancer patients. Working in 2D mode at 10 Hz frame rate, SBH-

PACT continuously monitored arterial pulsatile deformation inside the breast by fixing the 

transducer array at a specific elevational position [60]. PA signals were analyzed pixel-

wise in the frequency domain to identify arteries and veins according to the heartbeat 

frequency (Fig. 9e). For illustration, we selected a pixel from one artery and one vein 

(highlighted by round dots 1 and 2 respectively in Fig. 9e) and plotted their pixel value 

fluctuation (Fig. 9f). The periodic oscillation of the pixel values in the artery indicates that 

the changes were the result of pulse waves propagating through the arterial network. The 

oscillation frequency further reveals the subject’s heart rate of ~1.2 Hz (Fig. 9g). 

Considering that arterial blood has a relatively narrow range of oxygen saturation (sO2) 

[61], average PA signals from arteries can potentially be used to calibrate the local optical 

fluence (mJ cm−2) deep in the breast, and thus enable accurate quantification of functional 

parameters (e.g., blood sO2) with an additional laser wavelength (e.g., 750 nm) [62, 63].

SBH-PACT of Breast Cancer Anatomy, Segmentation, and Elastography

The main purpose to build SBH-PACT was to detect breast tumors with fine details, 

making this imaging modality potentially useful for multiple applications in breast clinical 

care. We imaged seven breast cancer patients (Fig. 10), with breast sizes ranging from B 

cup to DD cup (over 99% of the U.S. population has breast sizes of DD cup or smaller 

[64]) and skin pigmentations ranging from light to dark. Angiogenesis, which plays a 

central role in breast cancer development, invasion, and metastasis, is the essential 

https://www.nature.com/articles/s41467-018-04576-z#Fig2
https://www.nature.com/articles/s41467-018-04576-z#Fig2
https://www.nature.com/articles/s41467-018-04576-z#Fig2
https://www.nature.com/articles/s41467-018-04576-z#Fig2
https://www.nature.com/articles/s41467-018-04576-z#Fig3
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hallmark by which SBH-PACT differentiates lesions from normal breast tissue [40-42]. 

Well correlated with the tumor locations shown in mammograms and reported by 

ultrasound-guided biopsy (Fig. 10a), SBH-PACT showed eight of the nine tumors by 

observing higher blood vessel densities associated with tumors in the depth-encoded 

images (Fig. 10b). We further selected tumor-containing slices perpendicular to the chest 

wall (marked by white dashed lines in Fig. 10b). In these sagittal (side-view) images, the 

same tumors, where higher PA amplitude is shown, can be seen at corresponding locations 

(Fig. 10c). In the X-ray mammograms of Patient 1 (P1) and Patient 6 (P6), the lesions in 

the dense breasts are barely distinguishable. In comparison, SBH-PACT clearly revealed 

the tumors not readily seen in mammograms, notwithstanding the high radiographical 

density of the breast.
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Figure 10. SBH-PACT of cancerous breasts. (a) X-ray mammograms of the affected 

breasts of seven breast cancer patients. LCC left cranial-caudal, LLM left lateral-medio, 

LML left mediolateral, LMLO left mediolateral-oblique, RCC right cranial-caudal, RML 

right medio-lateral. (b) Depth-encoded angiograms of the eight affected breasts acquired 

by SBH-PACT. Breast tumors are identified by white circles. For illustration, we marked 

the nipple of the first patient (P1) with a magenta circle. P1—48-year-old female patient 

with an invasive lobular carcinoma (grade 1/3); P2—70-year-old female patient with a 

ductal carcinoma in situ (microinvasion grade 3/3); P3—35-year-old female patient with 

two invasive ductal carcinomas (grade 3/3); P4—71-year-old female patient with an 

invasive ductal carcinoma (grade 3/3); P5—49-year-old woman with a stromal fibrosis or 

fibroadenoma; P6—69-year-old female patient with an invasive ductal carcinoma (grade 

2/3); P7—44-year-old female patient with a fibroadenoma in the right breast and an 

invasive ductal carcinoma (grade 2/3) in the left breast. (c) MAP images of thick slices in 

sagittal planes marked by white dashed lines in (b). (d) Automatic tumor detection on 

vessel density maps. Tumors are identified by green circles. Background images in gray 

scale are the MAP of vessels deeper than the nipple. (e) Maps of the relative area change 

during breathing in the regions outlined by blue dashed boxes in the angiographic images 

in d. The same tumors are identified by red circles. The elastographic study began with 

Patient 4, and it revealed all imaged tumors, including the undetected one in (d) (P7(L)).

To assist in translation of the technology to a clinical setting, we developed a tumor 

segmentation algorithm to distinguish tumors automatically. Presumably due to 

angiogenesis, tumors appear as regions of denser blood vessels in SBH-PACT images. To 

segment tumors automatically, we extracted the vessel skeleton and produced a vessel 

density map of the breast (local vessel number / local area). The regions with the highest 

vessel density highlight the breast tumors (Fig. 10d).

In addition to direct observation of blood vessel density, SBH-PACT detected the 

difference in compliance between tumors and surrounding normal breast tissue, providing 

https://www.nature.com/articles/s41467-018-04576-z#Fig3
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an alternate concurrent contrast to detect breast cancer. Before performing elastography on 

breast cancer patients, we demonstrated this method on breast-mimicking phantoms 

(Fig. 11). Working in 2D imaging mode, SBH-PACT quantified the relative area changes 

in a breast cross section when minor deformations were caused by breathing. Because 

breast tumors are generally less compliant than normal breast tissue [65], the regions with 

lower relative area changes indicated the breast tumor (Fig. 10e). Unlike ultrasonic 

elastography, SBH-PACT elastography utilized the contrast of hemoglobin and formed 

area-quantificational grids between vessels. From only angiographic anatomy detailed by 

SBH-PACT, the only tumor we missed was located in a marginal region of a D cup breast 

(P7(L)), where light illumination was insufficient. However, with the addition of SBH-

PACT elastography, the missed tumor was identified. Taking advantage of the short time 

requirement for elastographic measurement (~10 s), SBH-PACT can observe both blood 

vessel density and tissue compliance simultaneously within ~30 s. Taken together, these 

two measurements can improve the sensitivity of breast cancer detection.
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Figure 11. SBH-PACT elastography of a breast mimicking phantom. (a) Cross-sectional 

image of the phantom acquired by SBH-PACT. Hundreds of chopped human hairs were 

uniformly distributed in the phantom to mimic small blood vessels. To mark the location 

for comparison, two crossed tungsten wires (indicated by yellow arrows) were placed 

inside the ball (enclosed by the red dashed circle), which had a higher agar concentration 

https://www.nature.com/articles/s41467-018-04576-z#MOESM1
https://www.nature.com/articles/s41467-018-04576-z#Fig3


34

to mimic a breast tumor. (b) SBH-PACT elastographic image of the same cross section. 

Identified by the red dashed circle, the location of the agar ball is revealed correctly.

In this pilot study, SBH-PACT identified eight of the nine biopsy-verified tumors by 

assessing blood vessel density. Moreover, the initially undetected tumor was subsequently 

revealed by elastographic SBH-PACT. Pathology reports showed two benign tumors 

(Patient 5, stromal fibrosis or fibroadenoma; Patient 7, right, fibroadenoma), one ductal 

carcinoma in situ with a 3/3 nuclear grade (Patient 2), and six invasive carcinomas (all 

other cases).

Angiogenesis serves as a basis for tumor identification. Considering the diversity among 

the subjects, we defined high blood vessel densities as values greater than the whole-breast 

average plus (a) 1.5, (b) 2.0, or (c) 2.5 times the STD, respectively. We calculated and 

compared the ratios of average vessel density between the high-density region and the 

normal-density region in each affected and contralateral breast. Receiver operating 

characteristic (ROC) curves (Fig. 12a) were plotted by varying the threshold of the ratios 

from 1 to 6. Based on the data from the finite set of subjects, option (b) yielded the largest 

area (0.90) under the ROC curve. A threshold within (2.26, 2.58) produced a sensitivity 

(true positive rate) of 88% and a specificity (true negative rate) of 80%. We further 

performed training and testing studies by obtaining a threshold based on randomly picked 

six breasts (training set) and then applying the threshold to the remaining seven breasts 

(testing set). We repeated this procedure ten times and calculated the average sensitivity 

(87.0%) and specificity (85.9%).

https://www.nature.com/articles/s41467-018-04576-z#Fig4
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We then demarcated tumors in each breast and computed the average vessel densities inside 

and outside the tumors (Methods). The average vessel density ratios between the tumors 

and the surrounding normal breast tissues were 3.4 ± 0.99 (Fig. 12b). In addition, the mean 

of the average vessel density ratios of the six malignant tumors was 1.4 times higher than 

that of the two benign ones.
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Figure 12. Statistics. (a) The ROC curves of breast tumor detection based on blood vessel 

density. σ, STD. (b) The average vessel density in each tumor and surrounding normal 

breast tissue. (c) The relative area change in each tumor and surrounding normal breast 

tissue caused by breathing. The elastographic study was started with Patient 4. (d) The 

longest dimension and center depth of each tumor.

Since the elastography study began with Patient 4, SBH-PACT elastography identified all 

five tumors in the subsequent four patients (Fig. 12c). The average breath-induced area 

change in tumors was around 2 times lower than that in normal breast tissue. As the patient 

recruitment protocol excluded patients with a mass smaller than 1 cm in diameter in this 

pilot study, the longest dimension of the smallest tumor we detected was approximately 

https://www.nature.com/articles/s41467-018-04576-z#Fig4
https://www.nature.com/articles/s41467-018-04576-z#Fig4


36

0.8 cm (Fig. 12d). This tumor was located in the right breast of Patient 7, who was recruited 

due to a larger tumor in her left breast. However, with 255 µm spatial resolution and refined 

noise-equivalent sensitivity, SBH-PACT has the potential to detect smaller breast cancers 

once angiogenesis sufficiently progressed. Patient 3 had DD cup breasts, and her breast 

was compressed against the chest wall to roughly a cylinder. The tumor in her breast had a 

depth of ~3.2 cm (elevational distance from the nipple), which was the deepest among the 

recruited patients (Fig. 12d).

Assessing Breast Cancer Response to Neoadjuvant Chemotherapy

After demonstrating breast cancer detection using SBH-PACT, we further extended our 

study to understand breast cancer response to neoadjuvant chemotherapy (NAC). NAC has 

contributed to improving the outcomes of breast cancer patients by increasing the 

likelihood of breast conservation and by providing important prognostic information based 

on response to treatment. Exceptional responders to NAC may have complete eradication 

of breast cancer, known as a pathologic complete response (pCR), resulting in markedly 

better cancer outcomes. Overall, 20% to 30% of patients who receive NAC fit this profile 

and these patients may not benefit from definitive surgery after NAC. However, non-

operative management of breast cancer treated with NAC is predicated on the ability to 

identify pCR. Unfortunately, the limited accuracy of the current breast imaging and 

noninvasive methods of identifying pCR demands pathologic confirmation. As such, post-

NAC surgery remains standard of care. The primary objective of this study is to determine 

correlation of PACT measurements with clinical response in breast cancer to NAC and to 

determine if PACT can determine or predict pCR in patients treated with NAC.

https://www.nature.com/articles/s41467-018-04576-z#Fig4
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In this ongoing study, we have imaged 3 patients, each of whom have taken PACT 

measurements prior to commencing NAC and after 2 cycles (~ 1 month) of NAC. Figure 

13 shows PACT images of one patient. She responded to NAC well after 1-month treatment 

and the tumor reduced in size. The same assessment has been made by standard clinical 

examinations. The vessel density maps in Fig. 13b automatically detect the changes in 

tumor sizes by quantifying blood vessel densities. In addition to quantifying the vessel 

density, we further assessed the irregularity (entropy) of the blood vessels and enhanced 

the irregular ones (Fig. 13c) to make the tumors more easily identified.

Before 
NAC

After 
2-cycle NAC

1 cm

Elevational distance from nipple
0 cm 4 cm

Vessel density (/mm2)
0.8

Norm. PA amp.
10

N
or

m
. 

PA
 a

m
p.

0

1

2

Norm. entropy
10

a b c

Figure 13. SBH-PACT of a patient before and after the 2-cycle NAC treatments.

We will recruit 80 breast cancer patients for this study. The goals of phase I (n = 10) are to 

fine-tune the imaging system and to develop detailed imaging protocols. All subtypes of 
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breast cancer patients who are treated with NAC are eligible. At the training stage (phase 

II, n = 30), the utility of each measurement in predicting pCR will first be determined. Then 

a multivariate logistic regression model will be constructed, in order to identify the 

regression coefficients of PACT’s measurements and the threshold to dichotomize 

outcomes (pCR vs non-pCR). In phase III (n = 40), we will test our model built in the 

training phase and categorize the treated cancer as either pCR or non-pCR prior to surgery. 

The predicted results based on the PACT variables will then be compared with the reported 

final pathologic assessment of treatment response in the surgical specimen to determine 

the sensitivity, specificity, positive predictive value and negative predictive value as well 

as the area under the ROC curve.

Data Processing and Analysis

Half-time PA reconstruction in 2D and 3D modes

We used the half-time universal UBP algorithm [21] to reconstruct all images in this work. 

In 2D imaging mode, the time-domain PA signals generated by each laser pulse were back-

projected to a 2D imaging plane. Determined by the acoustic divergence angle (~9.0˚) at 

FWHM in the elevational direction (Fig. 8a), the elevational resolution at the center was 

~16.1 mm.

Alternatively, when working in 3D mode, the ultrasonic transducer array scanned the entire 

breast from the chest wall to the nipple. The time-domain PA signals acquired at all 

elevational scanning steps were then back-projected simultaneously into the 3D space. To 

accommodate the acoustic divergence angle in the elevational direction, 3D-UBP added a 

weight to the back-projected PA signals at different elevational divergence angles (Fig. 8a). 

To accurately reconstruct objects in the Fraunhofer zone, we back-projected PA signals 

https://www.nature.com/articles/s41467-018-04576-z#MOESM1
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from virtual transducers located at the transition points between the Fresnel and Fraunhofer 

zones [66]. Sharing the same in-plane resolution as the 2D mode, 3D-UBP provided an 

improved elevational resolution of 5.6 mm.

The full-ring transducer array with 512 elements could spatially well sample objects — 

according to the spatial Nyquist criterion — within a FOV of ~39 mm in diameter [22]. To 

eliminate aliasing caused by under-sampling in regions outside of this FOV, we low-pass 

filtered PA signals with cut-off frequencies determined by the distance to the center of the 

ring array.

Each volumetric image was first reconstructed with a voxel size of 1 mm in the elevational 

direction and 0.1 × 0.1 mm2 on the horizontal plane. In each horizontal slice, we applied 

Hessian-based Frangi vesselness filtration [22] to enhance the contrast of blood vessels 

with diameters ranging from 3 to 12 pixels. In each filtered slice, adaptive thresholding 

was used to segment blood vessels [67], followed by morphology filtration for single-pixel 

elimination. In the elevational direction of each filtered volumetric image, we selected 

voxels with the largest PA amplitudes and then projected their depths to form a 2D image. 

We applied median filtration with a window size of 3 × 3 pixels to the depth image. Another 

median filtration with a window size of 6 × 6 pixels was further applied inside the 

segmented vessels to the segmented vessels’ depths. Different RGB (red, green, blue) color 

values were assigned to discrete depths (vertical color bar in Fig. 9b). Finally, the 2D 

depth-resolved color-encoded image was multiplied by the MAP image pixel by pixel to 

represent the maximum amplitudes (horizontal color bar in Fig. 9b). To further reduce 

noise and improve image quality, we also tuned the above parameters in 2D slices at 

different depths. 

https://www.nature.com/articles/s41467-018-04576-z#Fig2
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Vascular diameter measurement

Vascular diameters were accurately measured by identifying vessel boundaries through a 

correlation-based template matching method [67]. The templates were generated through 

simulation (Fig. 14). The impulse responses of all ultrasonic transducers were used to 

simulate the images of vessels with different sizes (0.5–2.0 mm) and orientations. The 

diameters of vessels chosen from the SBH-PACT breast images were quantified by 

matching the reconstructed vessel images with the generated templates.
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Figure 14. Vascular diameter quantification. (a) (left) Numerically simulated image of a 

cylinder with a diameter of 3 mm. (right) Experimental image of a rubber cylinder with a 

pre-known diameter of 3 mm. (b) Photoacoustic amplitude distributions along the normal 
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directions (yellow dashed lines) of the numerical cylinder and the rubber cylinder. (c) 

Correlation coefficients between numerical cylinders with different diameters and the 

rubber cylinder. (d) (left) Numerically simulated image of a cylinder with a diameter of 

1.04 mm. (right) In vivo image of a section of a human blood vessel. (e) Photoacoustic 

amplitude distributions along the normal directions (yellow dashed lines) of the numerical 

cylinder and the blood vessel. (f), Correlation coefficients between numerical cylinders 

with different diameters and the blood vessel.

Arterial vessel mapping

Working in 2D imaging mode, SBH-PACT was able to monitor blood flow-mediated 

arterial fluctuation (Fig. 9e–g). After removing displacement through rigid transformation, 

we analyzed the pixel value fluctuation during a patient’s breath hold (~10 s). We found 

that arteries fluctuated much more than veins at the frequency of the heartbeat. The 

fluctuation of the pixel values in the artery indicated the changes associated with arterial 

pulse propagation (Fig. 9f).

To separate fluctuations caused only by heart beats, frames with strong motion caused by 

body movement were first removed. The entire imaging field was then divided into 16 

slightly overlapping subdomains. In each subdomain, we chose the first frame as the 

reference frame; other frames were registered to it through rigid transformation, optimizing 

the frame–frame correlation. In each subdomain, a Gaussian filter with a radius of 0.2 mm 

was applied to all registered frames to reduce high spatial-frequency noise. We then applied 

Fourier transformation to each pixel’s value through all the frames. The fluctuations in 

pixel values induced by arterial pulse propagation were quantified within the frequency 

range (1.0–1.6 Hz) of heartbeat cycles [68].

https://www.nature.com/articles/s41467-018-04576-z#Fig2


42

Tumor segmentation

SBH-PACT showed breast masses by revealing a greater density of blood vessels, 

presumably due to angiogenesis, in tumor regions. To segment tumors automatically, we 

extracted the vessel skeleton and produced a vessel density (number of vessels / area) map 

of the breast. The regions with the highest vessel density highlighted the breast mass of 

interest (Fig. 10d).

The dense vessels in the nipple would affect the automatic tumor segmentation. Therefore, 

the shallowest slices containing the nipple were first removed. The remaining slices were 

used to generate the MAP image. A vessel mask was generated from the MAP by Hessian 

filtering and threshold-based segmentation. Based on the mask, vessel centerlines were 

extracted by removing boundary pixels. The vessel centerlines were broken into 

independent vessels at junction points. To reduce noise further, we removed independent 

vessels with lengths less than 3 pixels (255 µm spatial resolution divided by 100 µm pixel 

size is approximately 3). A 2 mm × 2 mm window was then used to scan the entire image. 

At each scanning location, the number of vessels (independent segments) inside the 

window was counted and assigned to the center pixel in the window. The vessel density 

was quantified as the number of vessels divided by the window area. To compute the 

average vessel density of the whole breast, we included pixels inside a 10 cm-diameter 

circle around the image center.

To demarcate breast tumors from MAP images, we first identified suspicious regions where 

blood vessel densities were higher than a threshold, which was set to each whole-breast’s 

average plus 2.0 times the STD. Among the eight affected breasts, the smallest suspicious 

region had a diameter of 1 mm. We then counted the numbers of pixels in each contiguous 

https://www.nature.com/articles/s41467-018-04576-z#Fig3
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region and rejected the regions with pixel counts fewer than 1855 (18.55 mm2) to eliminate 

false positive cases. The remaining contiguous regions were labeled as tumors and the 

smallest one had a longest dimension of 8 mm (Fig. 12d). In comparison, contrast-

enhanced MRI on a 1.5 Tesla scanner can detect breast tumors as small as 4 mm, which is 

similar to the smallest size of tumors detectable by X-ray mammography [69, 70].

Elastographic study

SBH-PACT’s high imaging speed enabled differentiation in compliance between tumors 

and surrounding normal breast tissues, providing another contrast for detecting breast 

cancer. We first performed SBH-PACT elastographic measurements on a breast phantom. 

The phantom comprised a ball with 7% agar (mimicking breast tumor) embedded in a base 

of 2% agar (mimicking normal breast tissue) [71]. Chopped human hair was uniformly 

distributed in the phantom to mimic small blood vessels. Working in 2D imaging mode, 

SBH-PACT quantified the relative area changes in a cross section when minor 

deformations were induced by periodic compressions (~0.25 Hz) on top of the phantom. 

Due to the low elevational sectioning power of 2D imaging, objects in 2D frames were 

mainly influenced by coronal dilation instead of elevational displacement. Accordingly, 

SBH-PACT elastography clearly revealed the agar ball with correct size and location 

(Fig. 11). No obvious differences were observed in the concentration of the hair fiber 

between the balls and the phantom base.

To assess deformations over time, the first frame was taken as a reference. Other frames 

were registered to the first frame through a non-rigid demon algorithm [72] in Matlab. For 

each pixel of registered frames, the STD of the value variations was calculated. Pixels with 

relatively small STDs were stably registered and used for deformation quantification. The 

https://www.nature.com/articles/s41467-018-04576-z#Fig4
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entire image was then segmented into 2 mm × 2 mm squares. One stably registered pixel 

was chosen from each square, and triangular grids were further generated from these 

registered pixels. The triangular grids were mapped back to the original unregistered 

frames, and their areas were calculated. For each grid, Fourier transformation was applied 

to quantify the area variation at the frequency of periodic compression, and amplitudes 

were assigned to the pixels inside this triangle to generate the deformation map. To further 

reduce noise, 100 deformation maps were generated with randomly registered pixels in the 

squares. The final image is the average of the 100 deformation maps.

To conduct SHB-PACT elastography of the breast, patients were asked to breathe normally. 

The chest wall pushed the breast against the agar pillow, elevationally generating a 

deformation of the breast in the coronal plane. We used the same method to quantify the 

change of area between blood vessels in the breast. Tumors, being stiffer, could be 

identified in areas with less deformation than normal breast tissue.
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Chapter IV

3D PACT OF HUMAN BRAIN

SBH-PACT provides high in-plane resolution (255 µm) but suffers from poor elevational 

resolution (5.6 mm), thus has difficulty in accurately quantifying volumetric parameters. 

Therefore, we developed an improved PACT system that can provide isotropic resolution 

in 3D space while maintaining the deep penetration and high speed of SBH-PACT. We 

have validated the new system by imaging a healthy human breast and brain with high 

spatiotemporal resolution. The system will be utilized to image a few hemicraniectomy 

patients and then be moved to the Children’s Hospital of Los Angeles for neonatal brain 

imaging.

Introduction and Motivation

The BRAIN Initiative calls for novel approaches for entirely new or next-generation 

noninvasive large-scale, high-resolution recording of the human brain. These new 

approaches are expected to be ideally noninvasive and translatable to humans. Although 

fMRI offers sub-millimeter spatial resolution, it is generally considered a low sensitivity 

technique. The functional signal in Blood-oxygen-level dependent (BOLD) fMRI shows a 

nonlinear relationship to the Hb concentration and suffers from substantial tissue 

background. Optical-only imaging, e.g., diffuse optical tomography (a.k.a. functional NIR 

spectroscopy), suffers from low spatial resolution due to light diffusion [2]. Similarly, 

ultrasound-only imaging—is difficult to use in humans because the ultrasonic waves are 

attenuated and distorted twice by the skull on both transmission and reception.
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To address these issues, we developed a massively parallel high-speed high-resolution full-

view 3D PACT system (3D-PACT), akin to fMRI, for fast/ultrafast anatomical and 

functional brain imaging. PACT offers comparable spatial resolution but can potentially 

be made faster than fMRI. It is directly sensitive to both oxy-hemoglobin (HbO2) and 

deoxy-hemoglobin (Hb), which can be detected with a low tissue background. Moreover, 

the PACT signal possesses linear relationships with HbO2 and Hb concentrations. Other 

potential benefits of PACT over fMRI include open imaging platforms, minimal site 

requirements, and less system maintenance. 

System Construction and Characteristics

The 3D-PACT consists of four main modules: a laser module to excite PA waves from the 

brain cortex, an ultrasonic detection module to record the PA waves, a signal amplification 

and data acquisition module, and a mechanical scanning module to provide azimuthal 

sampling (Fig. 15). The system has 4 arc ultrasonic transducer arrays (1024 parallel 

channels) with per-element ultra-low-noise amplification and DAQ for high-speed, 3D, 

and spectroscopic PACT of human brains in vivo. It provided dense ultrasonic sampling on 

a hemispherical detection surface in just 10 seconds to fulfill the spatial Nyquist sampling 

criterion (i.e., spacing < wavelength/2). The 3D-PACT is orders of magnitude faster and 

more sensitive than our preliminary transcranial PACT systems, advancing PACT to the 

presently achievable limit.

Two types of laser, Nd:YAG and Ruby, have been utilized to generate dual-wavelength 

contrasts at HbO2-dominant 1064 nm and Hb-dominant 694 nm, allowing measurement of 

HbO2 [73] in addition to Hb (measurable by BOLD fMRI) as both are indicators of neural 

metabolism [74]. The laser beams are coupled and delivered through an engineered diffuser 



47

installed in the light aperture to irradiate the FOV on the head. This design ensures that the 

laser beam is unaffected by the rotation of the array, which is important to avoid PA signal 

fluctuations due to laser illumination so that small functional neural signals can be teased 

out. The optical fluence on the skin surface satisfied the ANSI safety standards [20].
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DAQ DAQ

Four 256-element 
ultrasonic arrays

Engineered 
diffuser

DAQ
Laser

Houlding cup

Pre-amplifiers

Slave gear Roller bearings
Laser light

Figure 15. 3D-PACT system. (a) Photograph of the 3D-PACT system. The whole system 

is mounted on wheels. (b) Photograph of the system with the bed top and side panels 

removed. (c) Closeup view of the ultrasonic transducer arrays. (d) Cut-away view of the 

system schematic.

Four ultrasonic transducer arrays are integrated on the inner surface of a 26-cm–diameter 

hemispherical bowl that is coated with white plastic to reflect (recycle) the back-scattered 

light. 1024 ultrasonic transducer elements are evenly distributed on 4 quarter rings. Each 

element of the designed transducer has an active area of 0.6 0.7 mm2 with a 0.73-mm ×

pitch. The central frequency is 2.25 MHz with a one-way –6-dB fractional bandwidth of 



48

~80%. To separate the human subject with the imaging system, we mounted a disposable 

holding cup that is made by transparent membrane to cover the imaging aperture. The space 

between the holding cup and the ultrasonic detection module is filled with deuterium oxide 

(D2O) for acoustical coupling because D2O absorbs NIR light much less than water. 

Customized pre-amplifiers (32 32 channels, 51-dB gain) are connected to the transducer ×

array directly, amplifying the signal before cable noise spoils the SNR. Four 256-channel 

DAQ boards (PhotoSound, Inc., 40-MHz sampling rate, programmable amplification up to 

51 dB, 12-bit dynamic range) receives all data in parallel. The digitized RF data are directly 

transferred to a workstation through USB 3.0. A mechanical scanning system rotates the 

transducer array to sample the object azimuthally over the hemisphere. With this design, a 

spatial resolution of ~0.28 mm has been achieved.

Geometric Correction in 3D-PACT

Due to manufacturing errors, the geometric position of each ultrasonic transducer element 

needed to be calibrated. We imaged a point source placed at multiple positions within the 

FOV and iteratively optimized the geometric location of each transducer element. To make 

a point source that emit strong PA waves, a point absorber (~100 µm) was glued to an 

optical fiber tip such that most of the light coupled into the fiber was absorbed. Because 

the arrays’ housing was coaxially aligned and mounted, we assumed all the transducer 

elements share the same rotation axis.

The geometric relationship of the point source and each transducer element can be 

described by the following quadratic equations:

(𝑥𝑚 ― 𝑥𝑛)2 + (𝑦𝑚 ― 𝑦𝑛)2 + (𝑧𝑚 ― 𝑧𝑛)2 = (𝑐 ∙ 𝑡𝑚,𝑛)2
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                                          (8)𝑚 = 1,2,…,𝑀; 𝑛 = 1,2,…,𝑁

Here,  and  are the number of point sources and elements, respectively;  𝑀 𝑁 (𝑥𝑚,𝑦𝑚,𝑧𝑚)

denote the location of the -th point source;  represent the location of the -th 𝑚 (𝑥𝑛,𝑦𝑛,𝑧𝑛) 𝑛

transducer element;  is the acoustic propagation time from the -th point source to the 𝑡𝑚,𝑛 𝑚

-th element; and  is the speed of sound in water.𝑛 𝑐

We know  precisely since the DAQs samples at 40 MHz. We have initial estimations 𝑡𝑚,𝑛

of the unknown parameters  from the water temperature measurement,  from 𝑐 (𝑥𝑚,𝑦𝑚,𝑧𝑚)

the reconstructed images, and  from the manufacture’s specifications.(𝑥𝑛,𝑦𝑛,𝑧𝑛)

Since our initial estimations were assumed to be close, we applied Jacobi iteration to find 

the true values of . In each iteration, we updated the following parameters:(𝑥𝑛,𝑦𝑛,𝑧𝑛)

(1) Speed of sound 𝑐

             (9)𝑐 =  
1
𝑁∑𝑁

𝑛 = 1
(𝑥𝑚 ― 𝑥𝑛)2 + (𝑦𝑚 ― 𝑦𝑛)2 + (𝑧𝑚 ― 𝑧𝑛)2/𝑡𝑚,𝑛

(2) Point source location (𝑥𝑚,𝑦𝑚,𝑧𝑚)

To solve , we subtracted the following Eq. (10) from Eq. (8).(𝑥𝑚,𝑦𝑚,𝑧𝑚)

          (10)(𝑥𝑚 ― 𝑥𝑛 ― 1)2 + (𝑦𝑚 ― 𝑦𝑛 ― 1)2 + (𝑧𝑚 ― 𝑧𝑛 ― 1)2 = (𝑐 ∙ 𝑡𝑚,𝑛 ― 1)2

Then, we had

2(𝑥𝑛 ― 𝑥𝑛 ― 1)𝑥𝑚 + 2(𝑦𝑛 ― 𝑦𝑛 ― 1)𝑦𝑚 + 2(𝑧𝑛 ― 𝑧𝑛 ― 1)𝑧𝑚 =  (𝑐 ∙ 𝑡𝑚,𝑛 ― 1)2 ―
        (11)(𝑐 ∙ 𝑡𝑚,𝑛)2 + 𝑥2

𝑛 + 𝑦2
𝑛 + 𝑧2

𝑛 ― 𝑥2
𝑛 ― 1 ― 𝑦2

𝑛 ― 1 ― 𝑧2
𝑛 ― 1

Since  is much less than , we applied the least squares method to solve .𝑀 𝑁 (𝑥𝑚,𝑦𝑚,𝑧𝑚)

(3) Element location (𝑥𝑛,𝑦𝑛,𝑧𝑛)
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Since the element size is much larger than the geometric error, we consider the radial error 

only. We define radial calibration factor  to confine the geometric error along the radial 𝛼𝑛

axis.

        (12)(𝑥𝑚 ― 𝛼𝑛𝑥𝑛)2 + (𝑦𝑚 ― 𝛼𝑛𝑦𝑛)2 + (𝑧𝑚 ― 𝛼𝑛𝑧𝑛)2 = 𝑐2
𝑚(𝑡𝑚,𝑛 ― 𝑡0)2

where  can be directly solved from the quadratic Eq. (12).𝛼𝑛

We repeatedly updated the above parameters 10 times, and their values converged to 

provide an optimal solution. Figure 16 shows the variation of the radial calibration factor 

 and Fig. 17 shows the images of a leaf skeleton reconstructed before and after geometric 𝛼𝑛

correction. The improvement in image quality is clear after correction. The images were 

acquired by scanning the array 90 degrees with 100 steps in 10 seconds. The laser has a 

repetition rate of 10 Hz, and each pulse has an energy of 750 mJ at 1064 nm.
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Figure 16. Radial calibration factor  of each ultrasonic transducer element.𝛼𝑛
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Figure 17. MAP images of a leaf skeleton reconstructed before and after geometric 

correction.

In Vivo 3D PACT

After optimizing the system using phantoms, we first performed in vivo tests by imaging a 

healthy human breast. Fig. 18 shows three projections of the 3D breast. Since we designed 

the optical illumination for neonatal brain imaging, the light was expanded to a diameter 

of ~6 cm. However, such a beam could not cover the entire C-cup breast. Accordingly, the 

deep blood vessels near the peripheral regions were not revealed as clearly as those near 

the center. In the breast image, the system was validated to visualize the vasculature down 

to an apparent vascular diameter of 275 µm and to penetrate up to 3.5 cm. The nipple can 

be visualized at 4:30 o’clock 3 cm away from the image center. The breast images were 

acquired by scanning the array 90 degrees with 100 steps in 10 seconds. The laser has a 

repetition rate of 10 Hz and each pulse has an energy of 2.0 J at 1064 nm. Similarly to 

SBH-PACT, we asked the subject to take a single breath hold of 10 seconds to minimize 

motion artifacts.
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Figure 18. MAP images of a healthy human breast acquired by 3D-PACT within a single 

breath hold of 10 seconds.
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Figure 19. 3D-PACT of a healthy human head. (a) Photograph of a healthy subject being 

imaged. (b) MAP images of a healthy human head acquired by 3D-PACT within 10 

seconds.
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We further imaged a bald healthy subject using the 3D-PACT system. Figure 19a shows a 

photograph taken during the measurement and figure 19b shows the blood vessel network, 

primarily from the scalp. Since the system has a center frequency of 2.25 MHz, which is 

chosen primarily for neonatal brain and human breast imaging, it is challenging to detect 

the low-frequency PA signals through an adult human skull (see Fig. 25a).

Up to date, we have finished developing the system for neonatal brain imaging. We have 

validated the system on in vivo human breast and brain imaging. Since the neonatal skull 

has thinner thickness, softer hardness, and fontanel openings, we expect minor acoustic 

distortion and attenuation from the skull. We will further perform functional study by 

applying two wavelengths at HbO2-dominant 1064 nm and Hb-dominant 694 nm.
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Chapter V

MICROWAVE-BASED THERMOACOUSTIC 

TOMOGRAPHY

The high imaging speed and deep penetration is the key advantage of PACT. For light 

incident upon a homogeneous scattering half-space, expression for light fluence can be 

readily simplified as  that is well known as Beer’s law. 𝐹 =  𝐹0 ∙ 𝑒 ― (𝜇𝑒𝑓𝑓 ∙ 𝑧) 𝜇𝑒𝑓𝑓 =

 is the effective absorption coefficient with absorption coefficient  and 3𝜇𝑎(𝜇𝑎 + 𝜇′𝑠) 𝜇𝑎

reduced scattering coefficient .  Using NIR light, PACT can image blood vessels as deep 𝜇′𝑠

as 4 cm in the human breast [75]. Nevertheless, deeper penetration is necessary for many 

clinical applications, including human brain or trunk imaging. 

By simply replacing the laser with a pulsed microwave source and applying proper 

shielding of the transducers and electronics, microwave-induced TAT images can be 

generated using the same reconstruction algorithm. Different from visible light absorption 

in which heat is generated by non-radiative relaxation of excited electrons, microwaves 

generate heat through the electrical conductivity of tissues. Molecular relaxation and ionic 

conduction dominate this response at microwave frequencies, which generally relate to 

water and salt content. Therefore, the difference in dielectric properties of biological tissues 

can be revealed by TAT.

Introduction

Figure 20 shows the penetration depth of microwaves with respect to frequency in various 

biological tissues. The penetration depth is the inverse of the absorption coefficient. The 



55

wide range of dielectric properties, related to physiological and pathological status, can 

lead to a high imaging contrast.

Figure 20. Penetration depths of various biological tissues versus the microwave frequency.

Several TAT systems have been developed [76-78] and have advanced TAT toward 

clinical application, while ongoing limitations remain to be addressed. Most TAT studies 

are limited to phantom imaging without validating the soft tissue contrast in vivo. And they 

did not analyze the specific absorption rate (SAR) to show the conformance to the safety 

standard for electromagnetic exposure. Our study demonstrates both soft tissue contrast in 

vivo and human-skull transcranial TAT, with an SAR lower than the safety limit.

Experimental Setup

To study the TAT contrast of soft tissue in vivo, we first imaged a live rat. A schematic of 

the experimental setup is shown in Fig. 21a. The rat was half-immersed in mineral oil. The 

microwave source had a peak power of 60 kW at 3 GHz and emitted 1.2-µs microwave 

pulses at a 10-Hz repetition rate. We used a custom-made horn antenna to illuminate the 

rat. It was found that a uniform distribution of the electric field could be acquired within a 

plane 4.5 cm above the horn antenna (Fig. 21b). An ultrasonic transducer (2.25-MHz 
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central frequency, 0.5-inch diameter, cylindrical focus) was mounted on a rotary scanner. 

The thermoacoustic signals were first amplified by a two-stage low-noise amplifier and 

then transmitted to a DAQ card set to a sampling frequency of 20 MHz. To eliminate 

microwave interference, we shielded the ultrasonic transducer surface with a metal mesh 

(Fig. 21c). The dimension of the mesh holes was smaller than the microwave wavelength 

but larger than the ultrasonic wavelength.

Ultrasonic transducer
(focusing vertically)
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Pre-amplifier

Step motor
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Figure 21. (a) Schematic of the experimental TAT system. (b) Simulated electric field 

distribution in a plane 4.5 cm above the antenna. (c) Photograph of the ultrasonic transducer 

shielded with metal mesh.

To image cross sections of the rat, we scanned the transducer circularly around the rat’s 

trunk with 720 steps (0.5° step angle) and averaged signals 20 times at each scanning step. 

A half-time reconstruction algorithm was applied to mitigate image artifacts due to 
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heterogeneous acoustic properties [79]. We then sacrificed the rat and photographed its 

abdominal cross section after imaging. All experimental animal procedures followed the 

laboratory animal protocol approved by the Animal Studies Committee of Washington 

University in St. Louis.

After showing the TAT contrast of the soft tissue in vivo, we further demonstrated the 

penetration of the microwave and ultrasound through an adult human skull, which was 

donated by an 83-year-old Caucasian male. The thickness of the skull was inhomogeneous, 

ranging from 7 mm (temporal area) to 11 mm (frontal area). An agar cylinder was placed 

inside the skull. The microwave illuminates the skull from the bottom and the tank is 

housed with microwave absorbing foams. We also covered the skull opening with an agar 

pad to isolate the reflected microwave.

Because of the near-field illumination of microwave, an analysis of the SAR inside a head 

model is necessary to confirm the conformance to the safety standard for electromagnetic 

exposure. SAR measures the rate at which energy is absorbed by biological tissues when 

exposed to RF electromagnetic fields. SAR is calculated as , where  is the SAR = σ𝐸2/2𝜌 σ

electric conductivity (S/m),  is the mass density (kg/m3), and  is the electric field (V/m). 𝜌 𝐸

We developed a model of the human head illuminated by the antenna. The SAR distribution 

has a peak amplitude of 4×10–2 W/kg, which is far below the safety limit of the average 

SAR (2 W/kg) per IEEE EM safety standard [80]. 

Results

Different from the PAT, microwave leads to a lot of interference on the transducer surface. 

After shielding the transducer surface with metal mesh, the artifacts induced by microwave 
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interference are significantly reduced (Fig. 22). Figure 23 shows two phantom images and 

their photographs, validating the TAT system and the reconstruction algorithm. Both 

phantoms were around 2 cm thick, which was shorter than the microwave wavelength and 

can eliminate standing waves formed in phantoms. 
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Figure 22. Diagrams of TAT signals acquired before and after shielding.
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Figure 23. Two phantom photographs and their cross-sectional images acquired by TAT.

The cross-sectional TAT image of the rat’s trunk agrees well with the corresponding 

photograph (Fig. 24a). The major vessels, spinal cord, and intestines are clearly revealed 

by TAT. Images of other cross sections (Z = 4, 5.5, and 7 cm) are shown in Fig. 24b, where 
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Z is the distance above the bottom of the tank. Because of the deep penetration, we imaged 

up to 7 cm in rat’s body, where shows the rat’s ribs. 
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Figure 24. Cross-sectional images of the rat’s trunk. (a) TAT image and the corresponding 

photograph. (b) TAT images of the rat’s trunk at different cross sections. 

The transcranial acoustic signals we received had a center frequency of 0.8 MHz (Fig. 25a). 

An ultrasonic transducer (1-MHz center frequency, 1-inch diameter) was used to detect the 

transcranial signals. We scanned the transducer circularly around the skull with 600 steps 

and averaged the signals 250 times at each scanning step. The TAT image clearly revealed 

the agar cylinder enclosed by the skull (Fig. 25b). To facilitate electromagnetic shielding, 

we used single-element transducer, preamplifier, and DAQ. Combining the microwave 

source with a transducer array will dramatically increase the imaging speed but requires 

careful shielding to protect the electronics from microwaves. 
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Figure 25. Transcranial TAT. (a) Normalized spectrum of the transcranial thermoacoustic 

signal. (b) Transcranial TAT image of the agar.

Summary and Outlook

Microwave-induced TAT reveals the difference in dielectric properties of biological tissues, 

providing a rich contrast showing tissue heterogeneity. Such a contrast would be a useful 

complement to the angiographic information provided by PAT for in vivo imaging. In 

addition to the imaging contrast, another key advantage of TAT is the deep penetration, 

which may not be feasible using NIR light. The transcranial image we acquired also 

demonstrates the potential of TAT for human brain imaging. By using a lower frequency 

microwave source, there is a potential for whole-body human imaging.

Due to the long microwave wavelength, objects are usually placed in the near field of the 

antenna. Therefore, the positions and orientations of the antennas need to be configured to 

distribute the microwave energy homogeneously in the tissue. Several techniques have 

been developed for this purpose. For instance, researchers used a power divider to equally 

distribute the microwave energy from a source into multiple antennas located around the 

object, allowing for uniform energy distribution.
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Chapter VI

MULTI-CONTRAST PACT―MYOGLOBIN

TAT generates an imaging contrast of dielectric properties. To investigate more 

endogenous functional PACT contrasts, we demonstrated myoglobin oxygenation imaging. 

By applying microwave and NIR illumination, there is potential to acquire images with 

simultaneous dielectric property, hemoglobin, and myoglobin distributions, as well as their 

oxygenations.

Introduction and Motivation

Myoglobin is a primary oxygen-carrying protein expressed in skeletal muscle fibers and 

cardiac myocytes [81]. It functions as an oxygen-storage unit, facilitating the diffusion of 

oxygen from the cell membrane to mitochondria. Quantification of oxygen saturation of 

myoglobin (sO2-Mb) is of great interest in preclinical and clinical applications. For instance, 

an increased capability of myoglobin to buffer oxygen in skeletal muscle is closely related 

to chronic heart failure [82]. Myoglobin may also be used as a cardiac biomarker in blood 

stream, to help diagnose a heart attack [83].

Myoglobin has been demonstrated, along with hemoglobin, as a main muscle chromophore 

in the visible and near-infrared spectral regions [84]. Both myoglobin and hemoglobin have 

oxygen-bound and -unbound states that are spectrally distinct. Currently, optical 

spectroscopy [85], DOT [86], fMRI [87] are mainly used to quantify sO2-Mb in vivo; 

however, all three techniques have limitations. Optical spectroscopy and DOT have low 

spatial resolution, and fMRI is sensitive only to deoxygenated myoglobin [88].

http://labtestsonline.org/understanding/analytes/cardiac-biomarkers
http://labtestsonline.org/understanding/conditions/heart-attack
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In muscle tissue, the major absorbers in the visible and NIR spectral regions are oxygenated 

myoglobin (MbO2), deoxygenated myoglobin (Mb), HbO2, and Hb. Figure 26a shows the 

optical absorption spectra of the major chromophores found in muscle. Their distinct 

spectra give us an opportunity to differentiate each chromophore. The optical absorption 

coefficient  at wavelength can be expressed as𝜇𝑎 𝜆 

;𝜇𝑎(𝜆,𝑠) = ln (10)𝐶𝑇(𝑠){ 𝑓𝑀𝑏𝑂2(𝑠) ∙ 𝜀𝑀𝑏𝑂2(𝜆) + 𝑓𝑀𝑏(𝑠) ∙ 𝜀𝑀𝑏(𝜆)
+ 𝑓𝐻𝑏𝑂2(𝑠) ∙ 𝜀𝐻𝑏𝑂2(𝜆) + 𝑓𝐻𝑏(𝑠) ∙ 𝜀𝐻𝑏(𝜆)} 

  ,                                   (13)𝑓𝐻𝑏 = 1 ― 𝑓𝑀𝑏𝑂2 ― 𝑓𝑀𝑏 ― 𝑓𝐻𝑏𝑂2

where  denotes the oxygenation state;  is the total concentration of myoglobin and 𝑠 𝐶𝑇

hemoglobin; , , , and  are the respective concentration fractions of MbO2, 𝑓𝑀𝑏𝑂2 𝑓𝑀𝑏 𝑓𝐻𝑏𝑂2 𝑓𝐻𝑏

Mb, HbO2, and Hb relative to the total concentration . , , , and  are the 𝐶𝑇 𝜀𝑀𝑏𝑂2 𝜀𝑀𝑏 𝜀𝐻𝑏𝑂2 𝜀𝐻𝑏

respective molar extinction coefficients of the four chromophores. Between two different 

oxygenation states (  a and b), the ratio of the measured PA signal amplitudes ( ) can 𝑠 = 𝑃

be written as follows [62]: 

𝑃(𝜆,𝑎)
𝑃(𝜆,𝑏) =

𝐹(𝜆,𝑎)
𝐹(𝜆,𝑏) ∙

𝐶𝑇(𝑎)
𝐶𝑇(𝑏) ∙

𝜇𝑎(𝜆,𝑎)
𝜇𝑎(𝜆,𝑏),                                  (14) 

 and  do not appear in the ratio because they do not change between different sO2 states. Γ 𝜂𝑡ℎ

For red and near-infrared light, the change in optical attenuation in the skin due to 

variations in sO2 (e.g., from 90% to 30%) is less than 3% [89], mainly because of the high 

optical scattering and low volume fraction of blood in the skin. Therefore, we can neglect 

the change in local optical fluence due to variations in sO2, i.e., . In  𝐹(𝜆,𝑎) = 𝐹(𝜆,𝑏)

addition, if we assume that the total concentration  does not change, i.e.,𝐶𝑇  𝐶𝑇(𝜆,𝑎) = 𝐶𝑇
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, the first two terms on the right hand side of Eq. (14) can be removed. To solve the (𝜆,𝑏)

remaining six unknowns , ,  in the a and b states, we need to measure the  𝑟𝑀𝑏𝑂2  𝑟𝑀𝑏𝑅 𝑟𝐻𝑏𝑂2

PA signals at a minimum of six wavelengths.
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Figure 26. Optical absorption properties of myoglobin. (a) Absorption spectra of major 

chromophores found in muscle, measured at wavelengths from 600 nm to 820 nm. (b) 

Absorption spectra of a mixture of MbO2 (60.7%), Mb (24.8%), HbO2 (6.9%), and Hb 

(7.6%), measured using a spectrophotometer before and after the photoacoustic experiment. 

Results

The source and the method adopted to prepare the solutions of pure MbO2, Mb, HbO2, and 

Hb were the same as reported in previous papers [84, 85]. A standard spectrophotometer 

measured the absorbance, which was the product of the molar extinction coefficient, molar 

concentration, and the pathlength of the cuvette. From the known molar extinction 

coefficients at various wavelengths and the pathlength of the cuvette, we derived the molar 

concentrations. To the mixture of MbO2 and HbO2, we added a moderate amount of sodium 

dithionite to partially deoxidize the sample, giving the spectrum shown in Fig. 26b (dashed 

line). From the spectrum, we calculated the concentration fractions of the four 
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chromophores as a reference. After PA measurement, we repeated the spectral 

measurement (solid line in Fig. 26b). We covered the cuvettes and the phantom with a 

piece of transparent film to avoid exposing the mixtures to the air during the two 

spectrophotometer measurements (~5 minutes).

We first performed a phantom study to validate our method. We made an agar cylinder 

with four square vertical tunnels (Fig. 27a). Each tunnel was 5 mm long, 5 mm wide, and 

70 mm high, with a 3 mm spacing between tunnels. Initially, 0.11 mL 20% intralipid 

(deoxygenated) was injected in each tunnel. The reduced scattering coefficient of the 

intralipid solution was around 100 cm–1 at 700 nm [90]. Three mixtures of MbO2, Mb, 

HbO2, and Hb with the same total concentration and different concentration fractions were 

then added into the first three tunnels, and the fourth tunnel was filled with pure water. The 

absorption coefficients of the first three samples at 700 nm were respectively 0.23 cm–1, 

0.15 cm–1, and 0.36 cm–1. The samples in all tunnels had the same reduced scattering 

coefficient of 10 cm–1 at 700 nm. 
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Figure 27. Experimental setup and a representative PA image of the phantom. (a) 

Schematic of the phantom setup. (b) Photoacoustic image of the phantom acquired at 600 

nm. 
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We used a full-ring PACT system [18] to validate our model. The agar phantom was ~5/6 

immersed in water and fixed at the center of the transducer array. The imaging plane was 

set at 2 mm below the sample’s liquid surface. At the imaging plane, a 0.1 mm radial 

resolution and <0.25 mm tangential resolution were achieved. For multiwavelength 

imaging, we combined an optical parametric oscillator (OPO) laser and a Ti-Sapphire laser, 

each pumped by an Nd:YAG laser with a 10 Hz pulse repetition rate. After passing through 

a ground glass, the light beam was expanded and delivered onto the top of the phantom. 

The laser fluence at the phantom surface was around 2.6 mJ/cm2. We imaged the phantom 

at 600 nm, 620 nm, 640 nm, 734 nm, 757 nm, and 800 nm, with 60 times averaging at each 

wavelength. Figure 27b shows a representative image of the phantom acquired at 600 nm. 

From the images acquired at each wavelength, we first averaged the PA signals within each 

tunnel, and then subtracted the water absorption (PA signal amplitude in tunnel #4) from 

the first three tunnels before substituting the data into Eq. (14). The spectral unmixing 

results are summarized in Table 1. In the table, the true concentration fractions were 

calculated by using the molar extinction coefficient of each chromophore and the 

spectrophotometer measurements of the mixture, e.g., Fig. 26b. The measured 

concentration fractions were in good agreement with the true values, with an average error 

of 10%. The accuracy is still sufficient to measure the sO2 change in vivo from hyperoxia 

induced with 100% O2 inhalation to hypoxia induced with 10% O2 inhalation [62].  

In the phantom experiment, the first three samples with different oxygenation levels served 

as the different oxygenation states required for the ratiometric sO2 calculation by using 

equations (13) and (14). The estimated effective attenuation coefficients of the three 

samples were respectively 2.65 cm–1, 2.14 cm–1, and 3.34 cm–1 at 700 nm. Therefore, the 
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optical fluence at the imaging plane was different for each sample. The ratio between the 

light fluence in tunnel #1 and tunnel #2 was 0.91, and the ratio between the light fluence 

in tunnel #1 and tunnel #3 was 1.15. Because Eq. (14) assumes the optical fluence remains 

constant between different oxygenation states, the actual difference in optical fluence 

between different samples (i.e., different oxygenation states) was the major source for the 

sO2 measurement errors. 

Table 1. Summary of the phantom experiment results. 

Tunnel #1 Tunnel #2 Tunnel #3Concentration 
fraction

True 
fraction

Measured 
fraction 

(± standard 
error)

True 
fraction

Measured 
fraction 

 (± standard 
error)

True 
fraction

Measured 
fraction 

 (± standard 
error)

Tunne
l #4

(water)

𝑓𝑀𝑏𝑂2 60.7% 59.5%
(±2.4%) 78.5% 71.4%

(±2.3%) 0 2.6%
(±1.4%) —

𝑓𝑀𝑏 24.8% 22.1%
(±1.7%) 0 2.3%

(±1.3%) 85.5% 77.6%
(±1.9%) —

𝑓𝐻𝑏𝑂2 6.9% 8.3%
(±2.0%) 21.5% 24.6%

(±2.4%) 0 3.3%
(±1.2%) —

𝑓𝐻𝑏 7.6% 10.1%
(±1.5%) 0 1.7%

(±0.9%) 14.5% 16.5%
(±2.1%) —

O
PO

 la
se

r

Transducer array

Conical lens

Flip mirror

Optical condenser

Anesthesia gas tube

Mouse

Computer

DAQ

Ti
-S

ap
ph

ire
 la

se
r

Figure 28. Schematic of the experimental setup for in vivo sO2 measurement in backbone 

muscle.
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To further test the method, we noninvasively imaged a systemic sO2 change in the 

backbone muscle of a mouse in vivo. Figure 28 shows a schematic of the experimental 

setup. The sO2 level in the backbone muscle was adjusted by challenging the animal with 

different oxygen concentrations in the inhalation gas. At first, the anesthesia gas was a 

mixture of pure oxygen and isoflurane, keeping the mouse in hyperoxia. We used 780 nm 

light with full-ring illumination to obtain a cross-sectional image of the mouse at the kidney 

level, shown in Fig. 28. We then adjusted the light to the mouse back to form a half-ring 

illumination to image the backbone muscle at six wavelengths. The laser fluence on the 

mouse’s dorsal surface was around 25 mJ/cm2.

We switched the six wavelengths one by one to image the mouse backbone region during 

hyperoxia. Then, we decreased the inhaled O2 to 10% and increased N2 to 90%, waited 

three minutes so the mouse was in hypoxia, and repeated imaging with six wavelengths. 

Finally, we increased the inhaled O2 back to 100% and repeated the measurements, in order 

to compare the sO2-Mb values in two hyperoxic states. At each wavelength, we averaged 

60 times. 

To calculate the hemoprotein sO2, we first smoothed the PA images with a 5×5 median 

filter. We then substituted the measurements into Eq. (14) and calculated the pixelwise 

concentration fraction of MbO2, Mb, HbO2, and Hb. Figure 29a shows the distribution of 

myoglobin in hyperoxia (state a), and figure 29b shows the distribution of hemoglobin in 

the same state. These two images clearly differentiate the regions of the spinal cord, 

backbone muscle, and kidney, which conform to the background structural image (shown 

in Fig. 28). The relative changes in myoglobin and hemoglobin sO2 from hyperoxia (state 

a) to hypoxia (state b) are shown in Fig. 29c and d, respectively. In Fig. 29c, the sO2-Mb 
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decreased primarily in the backbone muscle region when we reduced the inhaled O2 

concentrations. In Fig. 29d, we observe the hemoglobin sO2 systemically decreases, in both 

the backbone muscle and other internal organs. Moreover, with the same hypoxic challenge, 

the hemoglobin sO2 decreased faster than the myoglobin sO2, probably due to the fact that 

myoglobin has higher oxygen affinity than hemoglobin. 
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Figure 29. In vivo experimental results. (a-b) Concentration fraction of myoglobin (a) and 

hemoglobin (b) in hyperoxia (state a) (shown in color) overlaid on the structural image 

(shown in gray). (c-d) The relative change in myoglobin sO2 (c) and hemoglobin sO2 (d) 

from hyperoxia (state a) to hypoxia (state b) (shown in color) overlaid on the structural 

image (shown in gray). BM, backbone muscle; KN, kidney; SC, spinal cord.

Discussion

An accurate sO2 measurement requires knowledge of the local optical fluence, which can 

be estimated through invasive measurements [91] or sophisticated modeling of light 
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transportation [22]. To address this issue, we used a ratiometric method based on the 

dynamics in sO2, where knowledge of optical fluence was not required. We neglected the 

change in optical attenuation in tissue due to variations in sO2, mainly because of the high 

scattering and low volume fraction of blood in the skin. 

Since six wavelengths were used, the current in vivo measurements are not fast enough to 

monitor the dynamics of sO2-Mb changes. The imaging speed can potentially be improved 

by using faster wavelength switching. Direct validation of the in vivo sO2-Mb measurement 

in deep tissue is challenging. Invasive partial pressure of oxygen (pO2) oximetry or 

fluorescence lifetime-based pO2 measurement [92] might be a surrogate validation. Non-

invasive in vivo measurements of sO2-Mb might be useful in medical and surgical 

procedures [93]. By taking advantage of the high spatial resolution of PACT, applications 

such as cardiac surgery and sports medicine might particularly benefit. 
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Chapter VII

HIGH-SPEED OR-PAM OF CORTICAL HEMODYNAMICS

Efforts to advance PACT mainly focused on increasing the imaging depth, inducing rich 

contrasts, and improving the reliability such that it can be used for clinical applications. In 

addition to PACT, another implementation of PAI—OR-PAM—has been translated from 

the bench to the bedside. As in PACT, we started with small animal imaging by using an 

existing benchtop system to gain initial insight. A high-speed OR-PAM system was applied 

to image the mouse cortical microhemodynamics. Afterward, the system was minimized 

to a handheld probe suitable for human skin imaging.

Introduction and Motivation

The hemodynamics of the mouse brain have been studied in detail by biomedical imaging 

modalities such as small‐animal fMRI, wide‐field optical microscopy, and two‐photon 

microscopy. However, small‐animal fMRI is primarily sensitive to deoxy‐hemoglobin and 

is insufficient to resolve brain activities at length scales finer than 50 μm [94], wide‐field 

optical microscopy lacks depth resolution [95], and two‐photon microscopy relies on 

exogenously delivered fluorophores as the contrast agents [96]. Optical coherence 

tomography‐based angiography exploits the optical contrast in dynamic backscattered 

light [97] and is complementary to PAI, which shows the optical absorption contrast. By 

acoustically detecting optical absorption in tissues, PAI is capable of anatomical, functional, 

molecular, and metabolic imaging of small animals, with highly scalable spatial resolution 

and penetration depth [7]. In particular, the rich spectroscopic and functional imaging 



71

capabilities of PAI suggest it could be a powerful tool for brain disease diagnosis and 

neuroimaging studies [14, 39].

As a major implementation of PAI, OR-PAM provides capillary-level spatial resolution by 

tightly focusing the laser beam at depths within the optical diffusion limit [7]. In this 

chapter, we present a high-speed OR-PAM with micrometer-level resolution and a 

millisecond-level cross-sectional imaging speed over a millimeter-level field of view. 

Using this high-speed OR-PAM, we quantified the blood flow redistribution in response to 

spontaneous microhemorrhage, as well as to laser induced occlusions of single 

microvessels. We also imaged cerebral autoregulation (CA) on single microvessels in an 

intact mouse brain. 

Methods

High-speed OR-PAM
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Figure 30. Schematic of the high-speed OR-PAM.

Compared with conventional OR-PAM [98], the distinguishing feature of high-speed OR-

PAM is the confocal steering of the excitation laser beam and the detection acoustic axis 

by a lab-made water-immersible microelectromechanical system (MEMS) scanning mirror 

(Fig. 30). The confocal steering ensures uniform detection sensitivity over a large FOV. 

The excitation laser beam (3 ns at 532 nm), generated by an Nd:YVO4 laser, is spatially 

filtered by a 50 µm diameter pinhole, then reflected to the MEMS mirror by an optical-

acoustic beam combiner. The beam combiner provides optical-acoustic coaxial alignment 

by reflecting light but transmitting sound. The photoacoustic waves from the focus are 

selected by an acoustic lens and detected by an ultrasonic transducer (central frequency of 

50 MHz; –6 dB bandwidth of 100%). The fast angular scanning of the MEMS mirror along 

the x-axis enables a cross-sectional (B-scan) imaging rate of 400 Hz over a 3 mm range. 

Volumetric imaging is achieved by a slow linear step motor that scans the object along the 

y-axis. The lateral resolution is ~3 μm at the optical focus. The axial resolution is estimated 

to be ~15 μm based on the transducer bandwidth and the speed of sound in tissue. The high 

laser repetition rate of 100 kHz enables dense sampling for capillary-resolution imaging 

over a large FOV. The optical fluence at the tissue surface is around 18 mJ/cm2, just below 

the ANSI limit [20].

Animal preparation 

To observe a spontaneous microhemorrhage, two-year-old female ND4 Swiss Webster 

mice (Harlan Laboratory, Inc.; 22 to 28 g) were used for blood flow redistribution 

measurement. The laboratory animal protocols for this work were approved by the Animal 

Studies Committee of Washington University in St. Louis. During experiments, the 
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animals’ temperatures were kept at 37 ºC by a heating pad. We used an intraperitoneal dose 

of 100 mg/kg α-chloral hydrate for anesthesia. Each experiment typically took less than 

three hours. Therefore, no additional injection of the anesthetic mixture was needed.

The scalp was surgically removed before imaging, but the skull was left intact. The skull 

surface was cleaned with phosphate buffered saline solution. A membrane (clear plastic 

wrap) at the bottom of a water tank was positioned in gentle contact with the skull surface, 

where ultrasound gel was applied in advance to couple the acoustic signals. The head of 

the mouse was fixed in a stereotaxic frame. A motor stage translated the animal and the 

water tank along the y-axis at a speed of 2–4 mm/s (Fig. 30). 

For CA imaging, with no need for aged animals, we used three female ND4 Swiss Webster 

mice (Harlan Laboratory, Inc.; 16–22 g, 4 weeks old). After mounting the animal in the 

imaging system, phenylephrine, a clinically used vasoconstrictor, was intravenously 

infused into the tail vein at a dose of 1 mg/kg. Other preparation procedures were the same 

as for the blood flow redistribution measurement. 

Manipulating blood flow with photothrombosis of single vessels

Optical access to the vasculature offers the opportunity for laser-induced occlusion of 

single vessels as a model to study the effects of small-scale stroke in mice. In addition to 

imaging spontaneous microhemorrhage in aged mice brains, we studied blood flow 

redistribution due to a laser-induced vessel occlusion. We intentionally damaged the vessel 

wall by focusing a continuous wave (CW) laser beam at 650 nm (50 mW) into the lumen 

of a vessel, and a blood clot formed closely downstream from the irradiation site. The CW 

laser beam and the PA imaging beam were aligned so that the two beams were focused in 
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the same focal plane. The CW beam was roughly centered in the area that was raster-

scanned by the imaging beam. The energy of the CW beam was varied, and the time of 

irradiation was controlled based on the clot formation assessed from the OR-PAM images.

High-speed OR-PAM of blood flow redistribution in mini-stroke models
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Figure 31. High-speed OR-PAM of ischemic mini-stroke dynamics in a mouse brain. (a) 

OR-PAM image of a 1 mm by 1 mm cortical area, where spontaneous bleeding was 

observed in the boxed region. (b) Zoomed-in images of the bleeding region, showing a 

capillary bifurcation composed of a parent vessel (P) and two daughter vessels (D1 and 

D2). Spontaneous bleeding was observed at daughter vessel D1. (c) The time course of the 

bleeding dynamics, which shows that the bleeding halftime was 4.0 seconds and the 

extravascular blood was cleared with a halftime of 38.2 seconds. On the fitted curve, the 

halftime is the time duration from the baseline to half of the peak or from the peak to half 

of the peak. (d) The PA signals from the parent vessels and daughter vessels show the blood 
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volume redistribution after the bleeding, with the loss of the blood volume in the bleeding 

daughter vessel D1 compensated by the blood volume increase in the intact daughter vessel 

D2.

A spontaneous microhemorrhage was observed by high-speed OR-PAM at a cortical 

bifurcation in a two-year-old mouse (Fig. 31a). The dynamic imaging showed that the 

hemorrhage stopped within 8 seconds and the extravasated red blood cells were cleared 

within 80 seconds (Fig. 31b, c). After the hemorrhage, the blood flow in the hemorrhaged 

daughter vessel was completely stopped. By contrast, the blood flow speed in the intact 

daughter vessel was increased by ~100%, due to the conservation of volumetric blood flow. 

Since the vessel diameter did not change, the pressure gradient in the intact daughter vessel 

must have increased accordingly. In addition, the signal amplitude in the intact daughter 

vessel significantly increased, which reflected an elevated red blood cell (RBC) density 

(Fig. 31d). The escalated blood flow speed and RBC density increased the risk of further 

hemorrhages in the remaining vessels [99]. 

In addition to imaging a spontaneous microhemorrhage, we created an occlusion on the 

parent vessel of a bifurcation by focusing a high-power CW laser beam of 650 nm in 

wavelength. The formation of the occlusion was monitored by fast full-frame imaging (Fig. 

32a). Before and after the occlusion, RBC flow speeds were measured at each vessel branch 

by the line scanning method (Fig. 32b). The dynamic imaging revealed a dramatic blood 

flow decrease in the parent vessel after occlusion (Fig. 32c). Meanwhile, the blood flow in 

one of the daughter vessels, marked D1 in Fig. 32b, was quickly reversed after occlusion 

(Fig. 32d), and a new blood flow pathway was immediately formed between the two 

daughter vessels, which reflected the plasticity of the cortical vascular network. By 
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governing the blood flow redistribution after vessel occlusion, such plasticity may have 

therapeutic implications for large and small-scale strokes [100]. 
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Figure 32. Blood flow dynamics in response to vessel occlusion. A CW laser at 650 nm 

was focused at the lumen of a vessel to induce photothrombosis. (a) The occlusion region 

is marked by the dashed circle. Snapshots are shown before, during, and after the occlusion. 

(b) Line scanning at the bifurcation, consisting of a parent vessel (P) and two daughter 

vessels (D1 and D2), shows a reduced flow speed in the parent vessel and the reverse flow 

in the daughter vessel (D1). (c-d) Line scanning images of the parent vessel (c) and one 

daughter vessel (d) before and after the occlusion, which show the blood flow slowing 

down in the parent vessel and reversing in the daughter vessel. 

Interestingly, in both of the mini-stroke models, strong signals were observed from 

amoeboid structures scattered over the damaged region. These structures appeared ~30 

seconds after the hemorrhage and ~80 seconds after vessel occlusion (Fig. 33). Microglia 

are resident macrophages in the brain. They are rapidly activated, undergoing 
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morphological changes to amoeboid morphology in response to brain injuries such as 

ischemic stroke [99, 101]. Multiple substances might contribute to the absorption contrast: 

In response to brain injuries, microglia quickly display several activation markers, 

including CD68 and major histocompatibility complex class II [101, 102]. Besides, 

microglia/macrophages are the makers of Peridinin-chlorophyll protein complex, which 

has ~60% of peak absorbance at 532 nm [103]. Therefore, given the diameters of these 

structures (~10 µm) and their highly confined locations, we speculate that the amoeboid 

structures at the mini-stroke/occlusion regions were microglia/microphages activated by a 

rapid inflammatory response.
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Figure 33. Amoeboid structures (indicated by arrows) were observed in the damaged 

regions after hemorrhage and vessel occlusion.

High-speed OR-PAM of cerebral autoregulation

The intravenous tail vein infusion of phenylephrine, a clinically used vasoconstrictor, 

induced a systemic decrease in vessel diameters. High-speed OR-PAM of the mouse brain 

showed that, despite the administration of phenylephrine, the majority of the cerebral blood 

vessels remained of constant diameter, indicating an intact CA system (Fig. 34a, b, and h). 

The blood brain barrier (BBB) effectively blocked phenylephrine from diffusing out of the 

vessels [104]. Interestingly, blood perfusion to a subpopulation of vessels was completely 
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stopped (Fig. 34b, 33c and 33h), which indicates that selectively turning off a 

subpopulation of vessels may be part of the CA mechanism for blood redistribution. 

Quantitatively, the volumetric changes of different vessel types were quantified after vessel 

segmentation (Fig. 34d). While the trunk vessels with diameters larger than 50 μm showed 

no significant change in volume, the smaller vessels had a slight volumetric decrease of 

~10% (Fig. 34e). 

0 20 40 60 80 100 120
0

300

600

900

1200

1500

1800

Baseline
Treatment

Vessel diameter (m)

Fr
eq

ue
nc

y

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

Baseline
Treatment

Vessel diameter (m)

Fr
eq

ue
nc

y

a

b

f

g

e

Baseline

Treatment

Baseline Treatment

Mouse ear

Mouse brain

200 μm 50 μm

200 μm

200 μm 50 μm

***

***

0 1
Normalized PA amplitude

E1 E1

B1

B1

B2

h

c 50 μm

0 −1
Relative PA change

B2 d

Figure 34. High-speed OR-PAM of mouse brain autoregulation in response to 

phenylephrine. (a-b) PA images of a 2 mm by 3 mm cortical area before (a) and after (b) 

the intravenous tail vein injection of phenylephrine, a vasoconstriction agent. While the 

brain autoregulation maintained the diameters of the majority of vessels, blood perfusion 

to a sub-population of vessels was completely stopped. (c) The relative PA signal change 
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between the close-ups in (a) and (b), showing the vessels with stopped blood perfusion. (d) 

Automatic vessel segmentation was used to quantify the vessel diameters. (e) The statistical 

results show no significant difference in the vessel diameters in the mouse brain before and 

after the injection of phenylephrine. (f) A comparative study performed in the mouse ear 

shows clear vasoconstriction (marked by arrows) after the injection. (g) The statistical 

results also confirmed the decrease in vessel diameters in the mouse ear after the injection. 

Statistics: paired Student’s t-test. *** p < 0.001, n = 3. (h) Averaged diameter changes of 

representative vessel segments in the mouse brain and ear in response to phenylephrine. 

B1 and B2 are brain vessel segments marked in the close-up in (a), and E1 is an ear vessel 

segment marked in (f). While the diameter of E1 steadily decreased after the injection, the 

diameter of B1 remained constant and the blood perfusion in B2 stopped. 

Phenylephrine does not penetrate the BBB, but it does increase systemic blood pressure, 

and thereby increases blood flow velocity to the brain [104]. The brain vasculature reacts 

by constricting so that cerebral blood flow is kept constant (this activity is not dependent 

on phenylephrine but is a normal reactive change). Therefore, we think the turnoff of 

cerebral vessels was a reactive vasoconstriction caused by an increase in systemic blood 

pressure.

As a comparison, we also imaged the vasoactive effect of phenylephrine on the blood 

vessels in the mouse ear, where the vascular autoregulation system is much less developed 

(Fig. 34f). After phenylephrine administration, we observed a clear systemic 

vasoconstriction in the mouse ear. While the trunk vessels showed an average decrease in 

volume of ~30%, the small vessels had a volumetric decrease of ~60% (Fig. 34g and h), 

which in turn confirmed the counter-vasoactive effect of CA in the brain. 
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Discussion

The pathways of cortical microhemodynamics are closely coupled in neuronal activity 

[105]. The vasculature network nourishing the mammalian cortex is highly interconnected 

with extensive redundant connections. Cortical microhemorrhage and occlusion in aged 

brains, so-called mini-strokes, do not produce acute clinical stroke symptoms, but they are 

nevertheless closely linked to cognitive decline and dementia. Blood flow redistribution 

after microhemorrhage and occlusion is a crucial mechanism that mitigates the adverse 

effects of vessel obstruction, which otherwise can induce severe brain damage via ischemia. 

Imaging the hemodynamic response to mini-strokes can provide information leading to a 

deeper understanding of stroke mechanisms. CA plays another important role in 

maintaining adequate and stable blood flow in the brain. Impaired cerebral autoregulation 

is clinically used as a diagnostic indication of brain cancers and many neurological 

disorders [106]. 

Using endogenous contrast, OR-PAM has high spatial-temporal resolution, enabling 

imaging the microvasculature of the mouse brain through the intact skull, and observing 

the hemodynamic responses evoked by various stimulations. Although other biomedical 

imaging modalities have demonstrated similarly high imaging speeds, they usually have 

either limited spatial resolution or a small FOV. With a high volumetric scanning speed 

over a large FOV, high-speed OR-PAM could also quantitatively assess the energy 

metabolic information of cortical regions [107]. With its highly scalable spatial resolution 

and imaging speed, OR-PAM is a promising tool for neurophysiological studies.
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Chapter VIII

HANDHELD OR-PAM

The high-speed imaging capability in benchtop OR-PAM was realized by the use of a 1D-

MEMS scanning mirror. The millisecond-level cross-sectional imaging speed over a 

millimeter-level FOV makes handheld implementation possible. However, the size of the 

benchtop OR-PAM needs to be reduced for handheld use. In this chapter, we minimized 

the benchtop OR-PAM using a 2D-MEMS scanning mirror to reduce the space occupied 

by mechanical scanners, and we demonstrated handheld skin imaging.

Motivation

The American Cancer Society recommends regular examinations of skin lesions as the best 

way to find skin cancers early [108]. Therefore, a noninvasive device that can easily scan 

the body would facilitate such routine examinations. For use in medical offices and clinics, 

handheld microscopes have been developed based on various optical imaging modalities 

[109-112]. Compact confocal microscopy achieves fast imaging speed with high spatial 

resolution, but its shallow imaging depth (200 to 300 μm) limits its wide application [109, 

110]. Optical coherence tomography-based probes exploit the optical contrast in 

backscattered light [111, 112] and are complementary to PAI, which shows the optical 

absorption contrast.

In this chapter, we present a handheld probe, based on OR-PAM, that uses a newly 

developed two-axis water-immersible MEMS scanning mirror [64]. In the OR-PAM probe, 

the optical and acoustic beams are confocally configured to maximize the SNR [98, 

113]. The two beams are fast scanned by the MEMS mirror, yielding a 3D imaging rate of 
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2 Hz over a 2.5×2.0×0.5 mm3 volume. This probe was tested in vivo on both the mouse ear 

and human skin.

System Construction and Characteristics

Figure 35a shows a schematic of the optical and acoustic elements in the OR-PAM 

handheld probe. A laser beam is directed into the probe through a single-mode fiber (P1-

460B-FC-2, Thorlabs), which guides the light to a lens tube in the handheld probe. Two 

optical lenses (AC127-025-A, Thorlabs; and PAC025, Newport) in the lens tube focus the 

light to an optical–acoustic beam combiner immersed in water [114]. Similar to the 

benchtop OR-PAM in Chapter VII, the focused laser beam is reflected by the MEMS 

mirror plate onto the surface of the object to be imaged. Volumetric imaging is provided 

by fast rotational scanning along the x-axis and slow rotational scanning along the y-axis, 

as well as by the time-resolved detection of the ultrasound signal. The imaging probe is 

filled with water for ultrasound coupling. 

Figure 35b shows a 3D rendering of the OR-PAM handheld probe. The probe has 

dimensions of 80 mm × 115 mm × 150 mm along the x, y, and z axes. The lens tube is 

mounted on a five-axis lens positioner (LP-05A, Newport), which is used for fine tuning 

the laser beam. The MEMS scanning mirror is fixed on a compact linear stage (DS25-XY, 

Newport) for precise position adjustment. The front, bottom, and cover panels are made of 

transparent acrylic to help to localize the targeted area. The imaging window on the bottom 

panel has a diameter of 6 mm and is sealed with a transparent film. The PA signal from the 

ultrasound transducer is amplified by two integrated amplifiers (ZX60-43-S+ and ZFL-

500LN+, Minicircuits) that provide a total amplification of 41 dB. The probe is grounded 

through a cable attached to the backboard.

https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-22/issue-4/041002/Handheld-optical-resolution-photoacoustic-microscopy/10.1117/1.JBO.22.4.041002.full#f1
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a b

Figure 35. Schematic of the OR-PAM handheld probe. (a) 2-D sketch of the optical and 

acoustic beams in the probe. UT, ultrasound transducer; AC, aluminum coating; AL, 

acoustic lens. (b) 3-D rendering of the OR-PAM handheld probe. The front and the left 

side panels are removed for better visualization.

The handheld probe is connected to the laser, MEMS driver, DAQ devices, and computer. 

The light is provided by a fiber laser (VPFL-G-10, VGEN) that generates 5-ns pulses at 

532 nm, with a pulse repetition rate of 88 kHz. The MEMS mirror is driven by a sinusoidal 

current from a homemade MEMS driver. The amplified PA signal from the probe is 

recorded by the DAQ device with a sampling rate of 250 MHz. A low-pass filter (BLP-

70+, Minicircuits) is connected between the amplifier and the analog-to-digital converter 

to eliminate high-frequency noises. Both the mirror scanning and the DAQ are 

synchronized with the laser pulse.

To characterize the lateral resolution of the handheld OR-PAM system, the edge of a sharp 

blade was imaged in water, with a step size of 1 μm and a scanning range of 250 μm along 
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the x-axis. After conversion from polar coordinates to Cartesian coordinates, the MAP of 

the B-scan along the acoustic axis was calculated and is plotted as a function of the 

displacement of the optical and acoustic foci from the edge (Fig. 36). Assuming a Gaussian 

line spread function, fitting of the measured data to an error function indicates a lateral 

resolution of 5.0 μm (FWHM), which agrees well with the theoretical diffraction-limited 

focused laser spot size (4.9 μm). The lateral resolution in tissue decreases with imaging 

depth due to optical scattering. The axial resolution of the system is determined by the 

bandwidth of the ultrasound transducer and was estimated to be 26 μm. The penetration 

depth of the handheld probe was quantified by a hair embedded in an optical scattering 

medium consisting of 2% Intralipid solution (reduced scattering coefficient μ′s = 15 cm−1 

at 532 nm) and 3% agar gel, which mimics the reduced scattering coefficient of the human 

skin [115]. The x-z projected MAP image is shown in Fig. 36b. The PA signal from the 

hair 0.54 mm beneath the surface (indicated by the dashed line) was still detectable when 

100-nJ pulse energy was used.

a b

Figure 36. Characteristics of the handheld OR-PAM probe. (a) Lateral resolution 

measurement by imaging a sharp edge. Solid squares: the PA amplitude when the laser 

beam was scanned across the edge. Solid curve: the fit of the measured data to an error 

function. Dashed line: the extracted Gaussian-shaped line spread function. (b) Penetration 

depth measured by a hair embedded in an optical scattering medium mimicking skin tissue. 

https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics/volume-22/issue-4/041002/Handheld-optical-resolution-photoacoustic-microscopy/10.1117/1.JBO.22.4.041002.full#f2
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The acoustic attenuation has been compensated for by multiplying the PA signal by a 

depth-dependent exponential correction factor. The gray bar shows the normalized PA 

signal amplitude.

Results

To demonstrate the fast imaging capability of the handheld OR-PAM system, the vessels 

in a mouse ear were continuously scanned after a tail vein injection of 0.6 mL of 0.9% 

saline. The postinjection changes in the PA signal from the vessels were monitored with a 

temporal resolution of 2 Hz. Representative images taken at different times after the 

injection (Fig. 37a) show a decrease in the PA signal followed by a slower recovery process. 

To quantitatively characterize the changes in the signal from the vessels, we calculated the 

average of the pixel amplitude over the region indicated by the dashed box. The 

background signal was calculated by averaging over a region of the same size but without 

vessels inside. The net signal from the blood vessels is shown as a function of time 

in Fig. 37b. The initial drop in the signal was probably due to a quick wave of injected 

saline before it was homogeneously mixed with blood, while the slow increase later was 

due to the diluting effect of blood [116]. 
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Figure 37. Hemoglobin concentration monitoring in the vessels in a mouse ear after tail 

vein injection of 0.9% saline. (a) Representative images recorded at different time points 
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after the injection of 0.6 mL saline. The stamps on the images indicate the time (min:s) 

after the injection. (b) The signal from the blood vessels within the dashed box in (a) as a 

function of time. The injection procedure lasted 75 s.

To demonstrate the flexibility of the handheld probe in clinical applications, we tested the 

system by imaging the human skin. All the human experiments followed a protocol 

approved by the Institutional Review Board administered by the Human Research 

Protection Office at Washington University in St. Louis. We first imaged the blood vessels 

under a cuticle. To obtain higher SNR, the region of interest was scanned repeatedly at a 

volumetric imaging rate of 2 Hz, and images were averaged over 20 C-scans. It should be 

noted that the small shift of the same imaging region during the DAQ was corrected by 

image translation transform, with the shifts calculated from image correlation. In Fig. 38(a), 

the vessels under the cuticle can be seen clearly, with an SNR of 26 dB.
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Figure 38. OR-PAM of the human skin by the handheld probe. (a) OR-PAM image of 

capillaries in a cuticle. (b) Photograph of the OR-PAM handheld probe imaging a red mole 

on a volunteer’s leg. (c) Photograph of the mole. (d) OR-PAM image of the mole. The 

color bar shows the normalized PA signal amplitude.

The key advantage of a handheld system is its capability of imaging an area that is usually 

not accessible by a benchtop device. To demonstrate this advantage, a red mole on a healthy 

volunteer’s leg was imaged by the handheld OR-PAM probe, as shown in Fig. 38b–d. The 

scan fully covered the mole, and a single C-scan PAM image was able to resolve the 

features, with an SNR of 20 dB. The optical fluence at the skin surface was around 18 

mJ/cm2, just below the ANSI limit [20]. 

Summary

In summary, we have developed a handheld OR-PAM probe equipped with a water-

immersible 2D MEMS mirror for fast skin imaging. Potential applications of the probe 

have been demonstrated on a mouse ear and human skin. The scanning range of the probe 

is 2.5 mm × 2.0 mm, and the volumetric imaging rate is 2 Hz, which is mainly limited by 

the resonant frequency of the fast axis of the MEMS. The penetration depth of the present 

optical-resolution probe is 540 μm, which is chiefly limited by the optical scattering in the 

tissue and can be improved by using near-infrared light that usually undergoes less 

scattering in biological tissue [117]. Compared with the linear array-based photoacoustic 

computed tomography, the handheld OR-PAM provides finer spatial resolutions in the 

superficial region. Moreover, with multiwavelength measurements, OR-PAM has a better 

accuracy in quantifying the oxygen saturation of hemoglobin [118].
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Chapter IX

CONCLUSIONS AND OUTLOOK

To date, PAI is the only high-resolution optical imaging modality that breaks the optical 

diffusion limit. With its multiscale and multi-contrast imaging capability, PAI has 

irreplaceable advantages over other imaging modalities in biological research and has 

attracted growing interest for clinical applications. Evolving from benchtop modalities 

designed for small animal imaging, translational PAI has been developed with improved 

imaging depth, reliability, and portability. 

Overall, the essential improvements in PACT for bedside imaging have been made to 

provide greater depth and multiple contrasts. Starting from imaging the rat brain (Chapter 

II), PACT was translated to human breast imaging, detecting breast cancer and assessing 

its response during NAC (Chapter III). A 3D PACT system was developed subsequently 

with isotropic 3D resolution, and has been applied to human breast and brain imaging 

(Chapter IV). To further extend the imaging depth and provide more imaging contrast, 

microwave-based TAT was demonstrated in vivo (Chapter V). We also demonstrated 

multispectral PACT to provide additional contrast based on myoglobin (Chapter VI). In 

addition to translating PACT to the bedside, we minimized a benchtop high-speed OR-

PAM system (Chapter VII) to a handheld probe for human skin imaging (Chapter VIII).

What makes an imaging modality truly impactful in clinics are its high reliability and the 

capability to provide clinically useful information which is unavailable or impractical with 

other technologies. PAI certainly owns irreplaceable advantages over other imaging 

modalities. It is the only technology that can provide both optical contrast and high depth-
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to-resolution ratio. We have advanced PAI from the bench to bedside, but there remain 

challenges to be solved. For instance, one aspect of PAI that needs improvement relates to 

quantitative imaging, which is important for functional and molecular imaging. The 

quantification accuracy of absolute absorption coefficient is limited by the unpredictability 

of the wavelength-dependent optical fluence in tissues. While PAI faces a few challenges, 

exciting PAI results have already been reported. With its unique combination of optical 

absorption contrast, ultrasonic imaging depth, and scalable resolution, PAI is expected to 

find more high-impact applications in both biomedical research and clinical practice.
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