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“Nothing in the world can take the place o f persistence.
Talent will not; nothing is more common than unsuccessful men with talent. 
Genius will not; unrewarded genius is almost a proverb.
Education will not; the world is full o f educated failures.
Persistence and determination alone are omnipotent. ”

— Calvin Coolidge
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Abstract

The development of well-defined ruthenium alkylidene (PCy3 )2Cl2 Ru=CHPh 

brought about a revolution in the area of olefin metathesis. The objective of the work 

presented here is to expand the scope of ruthenium-based olefin metathesis catalysts such 

as (PCy3 )2 Cl2 Ru=CHPh through the development of novel synthetic organic methods for

ring-closing metathesis as well as through modification of the ligand sphere of the

ruthenium complexes.

Chapter 2 describes the application of ruthenium alkylidenes to the catalysis of 

polycyclization reactions. Several acyclic precursors have been synthesized and reacted 

with (PCy3)2 Cl2Ru=CHPh. These precursors vary in topology and contain acetylenic 

and/or cycloolefinic metathesis relays. The cyclization reactions proceed in good yields 

to produce polycyclic polyenes.

Chapter 3 focuses on the synthesis of racemic and enantiopure targets containing 

the 6,8-dioxabicycIo [3.2.1]octane skeleton using an intramolecular ruthenium-catalyzed 

ring-closing metathesis reaction as the key step. The natural product frontalin is

synthesized in racemic and enantiopure forms and in excellent yields using this

methodology.

Chapter 4 outlines the preparation of a novel imidazolylidene-substituted 

ruthenium-based complex starting from (PCy3 )2 RuCl2 (=CHPh). The N-heterocyclic 

carbene-substituted olefin metathesis initiator exhibits increased ring-closing metathesis 

activity at elevated temperature compared to that of the parent complex 

(PCy3)2 Cl2Ru(=CHPh). Di-, tri-, and tetra-substituted cycloolefins are successfully 

prepared from corresponding diene precursors in moderate to excellent yields.
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Chapter 5 describes the preparation of a new family of l,3-dimesityI-4,5-dihydro- 

imidazol-2-ylidene-substituted ruthenium-based complexes. These air and water tolerant 

systems exhibit an increased ring-closing metathesis activity at elevated temperature 

when compared to that of the parent complex (PCy3)2Cl2Ru(=CHPh) as well as to the 

complexes disclosed previously in Chapter 4. In many instances the activity of these new 

complexes also rivals or exceeds that of the alkoxy-imido molybdenum-based olefin 

metathesis catalysts. Applications of chiral N-heterocyclic carbene ruthenium complexes 

to asymmetric ring-closing metathesis are also briefly discussed.

Finally, the synthesis of the Schiff base-substituted ruthenium carbene complexes 

on a solid support is described in Chapter 6. The activities of the supported complexes 

are compared to those of their unsupported counterparts. The newly prepared systems are 

found to be highly stable to air, moisture, and temperature, and exhibit increased catalytic 

activity in acidic media.
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Chapter 1 

General Introduction to Olefin Metathesis and 

to Olefin Metathesis Catalysts
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The olefin metathesis reaction is a unique rearrangement of unsaturated carbon- 

carbon bonds involving the exchange of alkylidene moieties of two olefins (Eq. 1). 

Although Eleuterio at Du Pont observed the olefin metathesis reaction as early as in 

1957,1 the term "olefin metathesis" was first used only in 1967 by Calderon.2

mechanism of the olefin metathesis reaction (Scheme 1): (a) formation of a 

metallacyclobutane, formally a [2+2] cycloaddition between an olefin and an alkylidene, 

and (b) subsequent non-degenerate retrocycloaddition to produce a new olefin and a new 

metailacarbene species. Since all steps of this mechanism are generally reversible, the 

reaction is typically under thermodynamic control. Also of particular significance is the 

fact that the olefin metathesis reaction utilizes no additional reagents beyond a catalytic 

amount of metal carbene and that the byproduct of the reaction is generally a volatile 

olefin such as ethylene.

2
metathesis

catalyst r-
(1 )

In 1971 Chauvin and coworkers3 proposed what is now a generally accepted

Scheme 1. Chauvin mechanism of the olefin metathesis reaction
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The olefin metathesis reaction can be divided into three closely related types of 

reactions (Scheme 2): (I) ring-closing metathesis (RCM); (2) acyclic cross-metathesis for 

alkenes, acyclic diene metathesis polymerization (ADMET) for dienes; and (3) ring- 

opening metathesis polymerization (ROMP). The competition among these three 

reversible processes is affected by the reaction conditions: olefin concentration, reaction 

pressure (ethylene) and temperature, as well as by the thermodynamic properties of the 

reactants such as ring strain.

The olefin metathesis reaction is catalyzed by transition metal carbenes. The 

classical transition metal-based olefin metathesis catalysts, with the exception of the 

Tebbe reagent, were ill-defined, multiple-component mixtures, which suffered from

n
n

ADMET

Scheme 2. Olefin metathesis reaction pathways
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instability and lack of functional group tolerance.Ic’4 More recently, well-defined single

component catalyst systems have been developed (Figure 1).

Br
Me3CCH20'<„ ' _^»H
Me3CCH20 ^ ' ~ "S -I 

Br
f-Bu  ^ v v = ^

Ar0 Cl *'Bu

Cl
M = Mo, W

OR = OCMe<
J. A. Osborn J. M. Basset OCMe2CF3

OCMe(CF3)2

R. R. Schrock

Cf

r3p

R -  pCy3, R’ = Ph (1)
R = PPh3, R' = (C=CPh2) (2)

v  PR3 l

R. H. Grubbs

Figure 1. Select group of single component olefin metathesis catalysts

While these catalysts are well-defined and exhibit high metathesis activity, the 

problems with stability and functional group tolerance have not been fully addressed in 

most of these systems. In addition, the wide spread use of many of these catalysts has 

been limited because of their difficult syntheses. A significant advance in the area of 

olefin metathesis catalysts was the development and the commercial availability of 

Schrock's molybdenum systems.5 These catalysts are highly reactive toward a broad 

range of substrates with various steric and electronic properties. However, they also lack 

the tolerance to a variety of functional groups and require rigorous exclusion of water and 

oxygen from the reaction mixtures.
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The development of the ruthenium alkylidene system (PR’3)2 Cl2Ru=CHR by 

Grubbs and coworkers,6 was a major breakthrough since it alleviated most of the 

previously encountered difficulties. This well-defined, single-component system exhibits 

substantial metathesis activity even in the presence of air, water, and strong acids, 

although it is not as potent as the early transition metal catalysts. It is also tolerant of 

many functional groups including aldehydes, alcohols, amides, and carboxylic acids due 

to its increased affinity for olefins with respect to Lewis basic or prodc functionalities. It 

can be stored at room temperature for prolonged periods of time without decomposition.

In addition, there exist several relatively inexpensive and straightforward 

preparations of the ruthenium alkylidene catalysts including reactions of ruthenium 

precursors with cyclopropenes, diazo compounds, gem-dihalo compounds and propargyl 

and vinyl chlorides (Scheme 3).7 The ruthenium alkylidene complex 1 is commercially
o

available, and is seeing increased use in synthetic organic and polymer chemistry.

Ph Ph 
RuCI2(PPh3)3 + ^

= < '  2PCy3 
-2 PPh3

PCy3

RuCI2(PPh3)3 +

PPh3 
Cl/,..! .ph 

R u=^ 
C f  |

PPha

2PCy3 
-2 PPh3

PCy3 
Cl/,, I .Ph

C f  |
PCy3

Scheme 3. Representative syntheses of selected ruthenium-based olefin metathesis catalysts

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

The effect of the ligand sphere of the ruthenium-based catalysts was studied in 

this laboratory.9 Specifically, it was shown that phosphine dissociation is vital for the 

major pathway of the catalytic cycle (Scheme 4). As a result, larger phosphine ligands

Minor Pathway

0y$ < n ,P bRu-=^
C l'l

PCy3

^ C L P h
Cl—R u ^  

PCy3

PCy3

R

Cl—R u= ^

cy3p nJ -CLPhCl—Ru

r i
C l - R u £ - Ph 
R'

^ C l  .R h  

R PCy,
.Ph

cy3P 
Cl—Ru-CI 

R̂ P C y 3
PCyy?

^ p  ci .Ph ^  ci-pd-̂ r
R

Ph

Ma/or Pathway

Scheme 4. Major and minor pathways in the mechanism for olefin metathesis

make better catalysts because they are easier to dissociate. In addition, the more basic the 

phosphines, the stronger the frans-influence they exhibit and the easier the dissociation of 

phosphines in the trans orientation. Based on these observations and in order to increase 

the utility of the ruthenium-based complexes by increasing their activity and/or 

selectivity, several novel olefin metathesis catalysts have been prepared, including 

bidentate salicylaldimine ruthenium complexes10 and binuclear ruthenium complexes.11 

Chapters 4 and 5 of this thesis are a continuation of the effort to tinker with the ligand
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sphere of the ruthenium-based olefin metathesis catalysts and describe the substitution of 

one of the phosphines in alkylidene complexes such as 1 and 2 by the more basic N- 

heterocyclic carbene ligands.

The ruthenium alkylidene catalyst 1 has found numerous applications in the diene 

RCM for the synthesis of cyclic olefins (Scheme 5).8 The mechanism of diene RCM 

involves the initial formation of a metal alkylidene, which then undergoes intramolecular 

olefin metathesis involving a metallacyclobutane intermediate. The reaction is

Diene RCM

+

h2c=ch2

Scheme 5. Mechanism of diene RCM
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entropicaily favored: two molecules (of which one is usually a gas) are formed from one. 

However, ring strain is created, which involves loss of enthalpy. As a result, ring sizes of 

five to seven (small rings) and larger than eleven (macrocycles) are relatively easy to 

access by RCM,8d while medium size rings (8 to 11-membered) constitute a particular 

challenge.12 These results are consistent with the relatively low ring strain values for 5- 

to 7-raembered rings (2.5 - 7.2 kcal/mol, Table I).13

Table 1. Ring strain values for common cycloolefins

Cyclooleffn Ring Strain 
(kcal mol*1)

Cyclopropene 54-56

Cyclobutene 31-34

Cyclopentene 6.8-6.9

Cyclohexene 2.5-2.6

cis-Cycloheptene 6.7-7.2

cis-Cyclooctene 7.4-8.8

cis-Cyclononene 11.5

cis-Cyclodecene 11.6

Enyne RCM, a related reaction to diene RCM, has recently been reported 

(Scheme 5).14 The mechanism of the enyne RCM metathesis begins analogously to the 

diene RCM initially forming a metal alkylidene which then undergoes intramolecular 

acetylene (rather than olefin) metathesis involving a metallabicyclic intermediate to yield 

a cycloolefin and a vinyl carbene. In the last step, the vinyl carbene undergoes olefin
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metathesis with a new substrate molecule to yield the final reaction product and start the 

cycle anew. It is important to note that unlike diene RCM, enyne RCM is not 

entropically driven but proceeds mainly based on enthalpic factors. One substrate 

molecule is converted exactly into one product molecule. The cyclic diene product, 

however, is energetically more stable than the acyclic enyne starting material by about 11 

to 18 kcal/mol.

Diene and enyne RCM, have been combined successfully in the synthesis of 

bicyclic molecules. This combination, or dienyne metathesis, has been observed when

Enyne Metathesis

(CH2)n

(CH2)„

Scheme 6. Mechanism of Enyne Metathesis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

stoichiometric amounts of electrophilic (Fisher) carbenes were used.15 Based on this 

methodology, the catalytic synthesis of fused bicyclic [n, m, 0] ring systems has been 

developed. It has been established that ruthenium alkylidene 1 catalyzes the double 

metathesis of acyclic dienynes, in which the acetylene positioned between the two olefins 

acts as an "olefin metathesis relay" (Eq. 2).16 The reaction begins at the terminal olefin 

group. The intermediate metallaolefin undergoes RCM with the alkyne (as opposed to 

the other olefin because formation of a 6-membered vs. an 8-membered ring is preferred) 

generating a new vinylcarbene complex. This new complex is then capable of 

undergoing RCM again with the second olefin. If two olefinic groups are placed one at 

each end of an alkyne (Eq. 3), formation of two independent (non-fused) rings is 

observed.163

R'

1

R = SiEt3, Me 
R’ = H, Me, hPr, 

Ph, COaMe

n- ^ - =

R'

(2)

£KJ (3)

RCM and its formal reverse, the ring-opening metathesis reaction (ROM), have 

been used in succession in the so-called tandem ring-closing/ring-opening metathesis 

(RORCM, Eq. 4).17 In this type of reaction, a cycloolefin rather than an acetylene is used
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as the "olefin metathesis relay." In accord with the mechanism of dienyne metathesis, 

this reaction begins at one of the terminal olefins. The intermediate metallaolefin then 

undergoes ROM with the cycloolefin generating a new metallaolefin, which then 

undergoes a RCM with the second terminal olefin. This combination of ring- 

opening/ring-closing metatheses is enthalpically disfavored based on additional ring 

strain in the products and is again entropically driven: two molecules (one of which is a 

gas) are generated from one.

The objective of the work described in the next of this thesis has been directed at

metathesis reactions) to the formation of polycyclic molecules. This appears possible 

considering the fact that in the final stages of both dienyne (Eqs. 2 and 3) and diene- 

cycloolefin metathesis reactions (Eq. 4) a reactive metallaolefin intermediate is 

generated, which undergoes a final RCM with an end-olefin. Substitution of additional 

"olefin metathesis relays" (alkynes and/or cycloolefins) in place of the end-olefin should 

promote the formation of additional rings in a cascade fashion (Scheme 7).18

extending and applying the relay-metathesis methodology (dienyne and diene-cycloolefin

metathesis
catalyst (___) (__ /  (___) +• CH2CH2

Scheme 7. Cartoon illustrating cascade ring-opening ring-closing metathesis
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Chapter 3 of this thesis extends the applications of the relay-metathesis 

methodology to the construction of oxygen containing bridged bicyclic structures. This 

is a direct extension of work done in this group on carbocyclic bridged bicyclic 

structures.19 Specifically, the natural product frontalin is prepared from cycloolefin 

containing diene precursors in both racemic and enantioselective fashion using tandem 

ring-opening ring-closing metathesis.

Despite all the profound accomplishments in the area of olefin metathesis 

catalysts, some acknowledged drawbacks, especially from the industrial standpoint, still 

remain associated with currently used metathesis catalysts such as 1 and 2. Specifically, 

the catalysts are non-recyclable, they are destroyed upon workup, and frequently lead to 

highly colored ruthenium-based residues in the product mixture that are hard to remove 

by chromatography.20 A successful immobilization of the metathesis catalysts on a solid 

support should alleviate some of these problems. Previous work in this group resulted in

1-2 h

Scheme 8. Examples of supported ruthenium olefin metathesis catalysts
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the development of immobilized ruthenium vinyl carbene complex 2 on a polystyrene 

support (Scheme 8).21 More recently, the immobilization of ruthenium alkylidene 

complex 1 was accomplished by Barrett and coworkers.22 However, because the 

supported complexes were found to be either much less active than their homogeneous 

counterparts and/or were short-lived, improvements are desired. Hereto, findings for 

immobilization of the salicylaldimine ruthenium system onto a polystyrene support are 

presented in Chapter 6 of this thesis.
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Chapter 2 

Ruthenium-Catalyzed Polycyclization Reactions§
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Abstract

The application of ruthenium alkylidenes such as 1 to the catalysis of 

polycyclization reactions is reported. Several acyclic precursors have been synthesized 

and reacted with 1. These precursors vary in topology and contain acetylenic and/or 

cycloolefinic metathesis relays. The cyclization reactions proceed in moderate to good 

yields to produce polycyclic polyenes when the precursors are subjected to catalytic 

amounts of 1. In general, precursors bearing n relay units generate polycycles containing 

(n + I) rings.

Introduction

Cascade reactions have proven effective in the assembly of complex polycyclic 

systems from simple acyclic precursors.1 These cascade cyclizations are characterized by 

the formation of a reactive intermediate which undergoes a series ring-forming steps 

before termination. Examples have been reported for cationic,2 anionic,3 radical,4 and 

transition-metal mediated cascade processes.1 The application of homogeneous transition 

metal catalysts to cascade cyclizations of polyenes and polyynes appears very promising 

for the synthesis of polycyclic structures. For example, the groups of Negishi (Eq. I)5 

and Trost (Eq. i f  have utilized cyclic carbopalladation cascades in the one-step, catalytic 

assembly of systems containing up to seven rings (Scheme 1). Despite tremendous 

progress in this area, the development of efficient methods for the construction of 

polycyclic systems remains an important goal of synthetic chemistry.
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Pd(0)

76%

,OMe,OMe

Pd(0), AcOH

77%

(2)

Scheme 1. Examples of tandem ring-forming processes

Previous reports from this laboratory7 demonstrate the possibility of extending 

catalytic diene ring-closing metathesis8 (RCM, Eq. 3) to the formation of polycyclic 

structures by a cascade of ring-opening olefin metathesis or carbene-acetylene metathesis 

reactions.9 For example when a precursor diene containing an acetylene or a cycloolefin 

is exposed to ruthenium alkylidene l , 10 bicyclics are produced (Eqs. 4-5). Extending this 

reaction to analogous precursors bearing two or more of these olefin metathesis relays 

should lead to the production of polycyclic molecules. Herein we report the synthesis of 

such precursors and their cascade cyclization reactions catalyzed by 1.

Cy3P

Rif
cr

PCya

1
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FL

-  £XJ

(3)

(4)

3̂ Crc CTO (5)

Results and Discussion

Precursor Synthesis

Several dienes containing two or more olefin metathesis relay units were prepared 

in order to study the possibility of ruthenium-catalyzed polycyclizations (Scheme 2). The

OH

a

HO HO

2a: R = H
2b: R = Me

3a: X = CI, R
3b: X = CI, R = Me 
3c: X = OMs, R = H

HO
2a

"or
4

(a) NaH, Allyl (2a) or Crotyl Bromide (2b), DMF, 70%. (b) 3a: 2a, TsCI, NEt3, 
DMAP, CH2CI2; 3b: 2b, TsCI, Et3N, DMAP, CH2Cl2; 3c: 2a, MsCI, Et3N, 
DMAP, CH2CI2 (c) NaH, DMF, 3a, 60-82%.

Scheme 2. Synthesis of triether 4
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linear precursor 4 was prepared by alkylation of the anion of 2-butyne-l,4-diol monoallyl 

ether 2a with propargyl chloride 3a.11

The linear tetraether-triyne 5a containing two unsubstituted terminal olefins was 

made by double alkylation of the dianion of 2-butyne-l,4-diol with propargyl chloride 3a 

(Scheme 3). The corresponding tetraether-triyne 5b containing one methyl substituted 

olefin was prepared by monoalkylation of the anion of 2-bytyne-l,4-diol with propargyl 

chloride 3b, followed by another monoalkylation of the resultant isolated product with the 

propargyl mesolate 3c.

5a: H 
5b: CH3

(a) 5a: NaH, DMF, 3a (2eq.), 64%; 5b: NaH, DMF, 3b, then NaH, DMF, 3c.

Scheme 3. Synthesis of tetraethers 5a-b

Four /V-protected polyamines (6-9) bearing one to four cycloolefinic relay 

linkages, respectively, were prepared to study the possibility of a cascade ring- 

opening/ring-closing metathesis in such systems. The strategy for the synthesis of 6-9 

(Scheme 4) was comprised by four reactions: (a) palladium-catalyzed ring opening6 of 

cyclopentadiene monoepoxide; (b) treatment of the resulting amino alcohol with methyl
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chloroformate to form an amino carbonate; and (c) or (d) palladium-catalyzed amination6 

reactions with either sodium p-toluenesulfonamide or iV-allyl-p-toluenesulfonamide.

Steps a-c were repeated one to four times, respectively, and terminated with step 

d, which yielded the desired protected polyamines 6-9. Because palladium-catalyzed 

ring-opening of cyclopentadiene monoxide is stereoselective and yields only the syn- 

isomer, the total number of stereoisomers in 6-9 was equal to the number of relay 

linkages n.

6:n = 1 
7: n = 2 
8: n = 3 
9: n = 4

Ts TsI V I^NH

n = 0 to 3

10: n = 1 
13: n = 2

n = n + 1

Ts Ts
/ N Vy/s A 0 C 0 2Mex n(Cr X

12: n = 2 11: n = 2

(a) Pd2dba3«CHCI3, dppe, BSA, THF, 40-100%. (b) CH3OCOCI, 
C5H5N, CH2CI2, 80-100%. (c) Ts-NHNa, Pd(PPH3)4, dppe, THF, 
60-80%. (d) Aliyl-NHTs, Pd2dba3«CHCI3, PPh3, BSA, THF, 40-88% 
or Allyl-NTsNa, Pd(PPH3)4, dppe, THF, 72%.

Scheme 4. Synthesis of N-protected polyamines 6-9
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In order to study the effect of olefin substitution on the yield of the metathesis 

product, the analog of N-protected polyamine 7 bearing one methyl-substituted olefin was 

synthesized (14) (Scheme 5). The synthesis began with palladium-catalyzed ring 

opening of cyclopentadiene monoepoxide with N-crotyl-p-toluenesulfonamide, followed 

by treatment of the resulting amino alcohol with methyl chloroformate to form an amino 

carbonate. The amino carbonate was converted to 14 by palladium-catalyzed 

animation6,12 with sodium iV-allyl-p-toluenesulfonamide.

Tsi

MeOjCOi

CH3 14 CH3

(a) Crotyl-NTsH, Pd2dba3«CHCI3, dppe, BSA, THF, 61%.
(b) CH30C0CI, pyridine, CH2CI2,70%. (c) Allyl-NTsNa,
Pd(PPh3)4, dppe, THF, 68%.

Scheme 5. Synthesis of precursor 14

In order to explore the possibility of utilizing cyclohexenes as relays for 

polyamines in ring-opening/ring-closing metathesis reactions, 15 was prepared by 

palladium-catalyzed 1,4-diacetoxylation12 of 1,3-cycIohexadiene followed by palladium- 

catalyzed animation of the resulting diacetate (Scheme 6).
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OAc

0

OAc

(a) Mn02, benzoquinone, Li0Ac«2H20 , LiCI, Pd(OAc)2> 
CH3COOH/pentane, 80%. (b) Allyl-NTsNa, Pd(PPh3)4 , 
dppe, THF:DMSO 4:1

Scheme 6. Synthesis of precursor 15

A family of precursors (17a-c) containing both acetylenic and cycloolefinic 

metathesis relays was synthesized (Scheme 7). Palladium-catalyzed ring-opening of 

cyclopentadiene monoepoxide with iV-allyl-p-toluenesulfonamide and iV-crotyl-p- 

toluenesulfonamide13 gave amino alcohols 16a and 16b, respectively. The <9-aikyIation 

of 16a and 16b with propargyl chloride 3a produced 17a and 17b, respectively. 

Analogous, the O-alkylation of 16a with propargyl chloride 3b produced the precursor 

17c.

Tsi

16a: R = H 17a: R = H, R‘ = H
16b: R = Me 17b: R = Me, R' = H

17c: R = H, R' = Me

(a) 16a: Allyl-NHTs, Pd2dba3*CHCI3, dppe, BSA, THF, 40-100%. 
16b: Crotyl-NHTs, Pd2dba3*CHCI3, dppe, BSA, THF. 61%. (b) 
17a: 16a, NaH, DMF, than 3a; 17b: 16b, NaH, DMF, than 3a; 
17c: 16a, NaH, DMF, than 3b, 60-82%.

Schema 7. Synthesis of precursors 17a-c
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Polycyclization Reactions

Acetylenic Relays

Treatment of the acyclic precursor 4 containing acetylenic relay units with a 

catalytic amount of 1 at ambient or slightly elevated temperatures results in the formation 

of non-fused heterocyclic product 18 in moderate yield (Scheme 8).14 The products 

contain a conjugated triene system.

Scheme 8. Results of ring-opening ring-closing metathesis of 4

The mechanism of the polycyclization of the precursor 4 involves the initial 

formation of a ruthenium alkylidene, which undergoes a series of intramolecular 

metatheses with the relay units prior to termination by a final ring closure. The 

conversion of 4 to 18 (Scheme 9) presumably begins with metathesis of 1 with either 

monosubstituted olefin of 4. The newly formed carbene subsequently undergoes two 

intramolecular carbene-acetylene metatheses15 involving respective metallacyclobutene 

intermediates. Cyclization is completed by intramolecular metathesis of the vinylcarbene 

with the remaining terminal olefin to yield product 18 and propagating, primary catalytic 

species the ruthenium methylidene 19b.
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.0 .  o.

h2c = c h 2 II II
RuL.

pCV3C|
I Z '1

Ru-CH2 19b
Cl I 

PCy3

18

Scheme 9. Mechanism of the polycyclization of precursor 4

Product 18 is a substituted hexatriene, and can in principle undergo a pericyclic 

6rt-eIectron electrocyciic closure16 to yield 20 (Scheme 10). Indeed refluxing the 

precursor 18 in bromobenzene for 2.5 hrs yields a single product, which is consistent with 

the structure of 20 by lH NMR and LRMS. However, the NMR spectrum is not entirely 

clean, presumably due to high reactivity of 20 and the presence of an inseparable 

decomposition product. Attempts to isolate 20 in its more stable form as the oxidized 

aromatic species failed, but 18 was successfully oxidized to and isolated as the fully 

aromatic tri-furan 21.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

Ph-Br

2.5 hrs 
reflux

20

DDQ

H

1821

Scheme 10. Reactions of the tricyclic ether 18

An attempt has been made to cyclize the precursor 5a bearing three acetylenic 

metathesis relay units (Scheme 11). The expected product from this reaction would be a 

tetracyclic non-fiised tetraether 22. At the end of the reaction a single product is isolated. 

However, the spectral data of that product (lH and I3C NMR) is not consistent with the 

structure of 22. Further considerations lead to the conclusion that a spontaneous 8- 

electron pericyclic closure to 23 (analogously to the pericyclic closure of 18 to 20) may 

have occurred.

23

4 mol% 1 
0.05 M 
Ph-H,

5b: CH3

Scheme 11. Spontaneous perycyclic closure of tetraether 22
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While the l3C NMR spectrum of 23 is clean and consistent with the product, the 

lH NMR indicates again the presence of either an inseparable impurity or a 

decomposition product. The exact identity of the impurity is unknown but spectroscopic 

data indicates that it might have formed via an intermolecular metathesis of acyclic 

olefins. This type of side reaction has been observed previously in cycloolefin-relay 

metathesis relay reactions.70 In order to slow down the oligomerization pathway by 

means of deactivating the terminal olefins relative to acetylene relay units for acyclic 

olefin metathesis, precursor 5b has been synthesized. There is ample precedent that 

increasing substitution on an olefin decreases the rate of olefin metathesis.7,17 However, 

in this case the substitution turns out not to have any significant effects on the formation 

of the product and 23 along with previously observed impurities is produced in a 

comparable yield. In addition, attempts to cleanly isolate derivatized 23 in the form of 

the fully hydrogenated analog have failed and multiple products were obtained.

The initiation and subsequent reactions of 1 are followed by observing the !H 

NMR signal of the a-proton of the ruthenium alkylidene. As the benzylidene (singlet 

20.02 ppm in CD2CI2) is consumed, a signal for the propagating alkylidene 19b appears. 

In the reaction of 5b this species is expected to be the ethylidene and is observed initially 

as a multiplet (quartet at 19.26 ppm in CD2 CI2). However, as the reaction progresses, a 

singlet corresponding to the ruthenium methylidene 19a (18.94 ppm in CD2 CI2 ) grows as 

the alkylidene signal decays. Additionally, the formation of ethylene (singlet, 5.35 ppm 

in CD2CI2) and 2-butene is observed in the reaction mixture. These observations indicate 

a secondary metathesis with the a-olefm byproduct of the cyclization reaction (Eq. 6) and 

are consistent with the reported reactivity of 1 with a-olefins.l0a
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H3C ^ h3c ^ " CH3

19b 19a

Cyloolefinic Relays

Multiple cycloolefinic relays can be used to promote cascades of ring-opening 

ring-closing metathesis reactions. Treatment of Af-protected polyamines 6-9, bearing one 

to four cycloolefinic relays, respectively, with catalytic amounts of 1 at ambient or 

slightly elevated temperatures results in the formation of N-protected polycyclic amines 

24-27 in moderate to good yields (Scheme 12; Table 1).

The mechanism of these polycyclizations is thought to be similar to the previously 

described mechanism for the polycyclization of polyenes bearing acetylenic relays 

(Scheme 9) and involves an initial formation of a ruthenium alkylidene which undergoes 

a series of intramolecular metatheses with the cyclopentene relay units prior to 

termination by a final ring closure. For example, the conversion of 7 to 25 (Scheme 13) 

presumably begins with metathesis of 1 with the monosubstituted olefin of 7. The newly- 

formed carbene subsequently undergoes two intramolecular ring-opening/ring-closing 

metathesis reactions, involving the respective metallacyclobutene intermediates. The 

cyclizadon is completed by metathesis of the ruthenium carbene with the monosubstituted 

olefin to yield product 25 and a propagating methylidene 19a.
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Tsi
N

Ts

6: m = 0 
7: m = 1 
8: m = 2 
9: m = 3

Tsi
,N

Table 1

m

24: m = 0 
25: m = 1 
26: m = 2 
27: m = 3

Scheme 12. Tandem ring-opening ring-closing metathesis of /V-protected polyamines 6-9

Table 1. Results of polycyclizations (Scheme 12) upon treatment with 5 mol% of 1

Entry m Catalyst Time (h) Solvent Concentration (M) i O o Yield (%)

1 0 1 1 c 6h6 0.05 RT 76

2 1 1 3 CgHg 0.05 45 70

3 2 1 8 c 6h6 0.06 45 20
4 2 1 8 c h 2ci2 0.003 RT 50

5 2 29 24 c h 2ci2 0.003 40 60

6 2 30 4 c h 2ci2 0.003 RT 70
7 3 1 48 c h 2ci2 0.003 RT 51
8 3 29 48 c h 2ci2 0.003 40 59

While the polycyclization reactions of polyamines containing one to two 

cyclopentene metathesis relays proceed in good yields (Table 1, Entries 1-2), significant 

impurities were found initially in the reaction mixtures. These impurities proved 

inseparable by normal-phase flash chromatography and were attributed to either inter- or 

intramolecular acyclic olefin metathesis. Although product 24 could be isolated cleanly 

as its derivatized (aromatic) analog 28 (Scheme 14), this procedure did not seem ideal
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due to long reaction times (3 days) needed for aromatization. Significant breakthrough in 

the isolation of the products 24 and 25 was made, when it was discovered, that upon 

treatment of the products containing inseparable impurities with concentrated sulfuric 

acid the impurities were degraded and products 24 and 25 could be isolated cleanly.

r♦ > h ^
H2C=CH2 Ts Ts Ts Ts Ts Ts J s  Ts

d f r CH2PCy3

198 I s I s I s Ts Ts Ts

25 yiP ^
(M nI-Ts

Scheme 13. Mechanism of tandem ring-opening ring-closing metathesis of precursor?

I s Ts DDQ, I s I s

W  W  3 days, 80°C % J  W  

24 28

Scheme 14. Aromatization of the product 24
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The problem of inseparable impurities was also ameliorated by introduction of 

olefin substitution (Scheme 15). As discussed earlier in this section, acyclic olefin 

metathesis reactions are greatly slowed down with olefin substitution. When 14, the 

methyl substituted analog of 6, is treated with a 5 mol% of 1, the initially observed 

inseparable impurities are no longer detected and the product 24 is isolated direcdy

iTO
without additional acid work-up in an increased 80% yield.

I s | s  5 mol% cat. I s I s
0.05 M C6H6[ .N  N

RT, 4h ^
14 80 % yield 24

Scheme 15. Metathesis of precursor 29

The diene-cycloolefin relay metathesis of substrates bearing increasingly greater 

number of cyclopentene relays is more challenging (Table I, Entry 3). Greater variety of 

intermolecular side reactions can be expected and the yields drop off sharply under the 

same conditions. This problem is effectively solved by decreasing reaction concentration 

and temperature (Entries 4-8); this decreases the relative rate of intermolecular side 

reactions with respect to intramolecular metathesis cyclizations and lowers the rate of 

catalyst decomposition.18

Ruthenium alkylidenes with salen ligands such as 29 have exhibited greater 

stability than 1 in the RCM of diallyl malonates.19 Although the cyclizations of 

precursors 8 and 9 catalyzed by 29 are generally slower, increased yields of an additional 

8-10% (Table 1, Entries 5 and 8) are observed. Treatment of the tricyclic N-protected
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polyamine 8 with the bimetallic ruthenium complex 3020 resulted in further increase of 

the yield and the product 26 was isolated in a 70% yield! (Table 1, Entry 6).

29 30

In addition to cyclopentenes, cyclohexenes are also effective as metathesis relays 

in the polycyclizations of N-protected polyamines. Precursor 31 is converted to product 

32 in 66% yield upon treatment with a catalytic amount of 1 (Scheme 16). As expected, 

the rate of reaction is much slower than in the case of similar substrate bearing a 

cyclopentene relay (2 days at 45°C vs. 1 hr at RT) due to lower ring strain energy released 

upon ring-opening metathesis. Nevertheless, it is anticipated that treatment of acyclic N- 

protected polyamines bearing multiple cyclohexene relays with olefin metathesis catalysts 

will lead to polycyclic iV-protected amines.
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Mixed Acetylenic and Cycloolefinic Relays

Cycloolefins as well as acetylenes are effective relays in the polycyclization 

reactions (Scheme 17). When precursor 17a is exposed to 4 mol% of 1, tricycle 33 is 

recovered but only in a 40% yield. The mass balance is found in an uncharacterized side 

product which appears to be oligomerized starting material. This type of side reaction has 

been observed previously in cycloolefins metathesis relay reactions, and the problem was 

ameliorated through alkyl substitution of one of the terminal olefins, thereby slowing the 

relative rate of the competing oligomerization reactions.7 This strategy works in the 

present study as well: when 17b is exposed to 4 moI% of 1, cyclization proceeds cleanly 

over a period of 4 hrs to a single product, and the tricycle 33 is isolated in 76% yield.

17a: R = H, R‘ = H
17b: R = CH3,R' = H
17c: R = H, R‘ = CH3

yield:
40%
76%
25%

Scheme 17. Utility of a  combination of acetylenic and cycloolefinic metathesis relays

Interestingly, alkyl substitution of the other terminal olefin as in the case of 

precursor 14 does not produce the same result. Treatment of the precursor 17c with 4 

mol% of 1 yields the product 33, but in a rather low yield (25%). The result is elucidated 

by isolation of the other (major) product of this reaction, which by lH NMR and HRMS
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appears to be 34. Since 17 is not symmetric, methyl substitution of the olefin on the 

nitrogen-side forces initiation of the metathesis reaction to occur on the allyl ether olefin. 

The initially formed alkylidene reacts in this case with an acetylene rather than with the 

cycloolefin. The vinyl carbene formed in the next step reacts preferably with another 

substrate molecule yielding 34 rather than undergoes ring opening metathesis reaction 

with the cycloolefin. This is presumably the rate determining step. An intermolecular 

pathway is also accessible to 17b, but ring opening could still be rate determining. 

Intermolecular reactions prior to ring opening would result in the formation of dimers and 

after ring opening the rate of intramolecular processes dominates.

Conclusions

We have presented an efficient, catalytic method for the production of polycyclic 

molecules from acyclic precursors. The reaction proceeds through a cascade of 

metathesis steps with either acetylenic or cycioalkenyl relay units. A variety of structural 

types are accessible depending on the topology of the precursor and relay unit employed. 

The use of more and varied metathesis relays as well as the further functionalization of 

the resulting cyclolefin systems are currently under investigation.
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Experimental Section

General Considerations

High resolution mass spectra were provided by the Southern California Mass 

Spectrometry Facility (University of California at Riverside). Analytical thin-layer 

chromatography (tic) was performed using silica gel 60 F254 precoated plates (0.25 mm 

thickness) with a fluorescent indicator. Visualization was accomplished with one or more 

of the following: UV light, KMnC>4 , phosphomolybdic acid (PMA), cerric ammonium 

nitrate (CAN), or p-anisaldehyde solution followed by heating. Flash chromatography 

was performed using silica gel 60 (230-400 mesh) from EM Science.21

All reactions were carried out under an inert atmosphere in oven-dried glassware 

unless otherwise specified. Catalyst 1 was prepared according to published procedure 

and is commercially available.100 Catalyst 29 and 30 were prepared according to 

published procedures19,20 and were generously provided by Drs. Sukbok Chang and Eric 

Dias, respectively. Solvents were purified by passage through a column containing A-5 

alumina (all solvents) followed by a column containing Q-5 reactant (non-ethereal 

solvents). Argon was purified by passage through columns of BASF R3-11 catalyst 

(Chemalog) and 4A molecular sieves (Linde). Allyl bromide was purchased from 

ARCOS. All other reagents were purchased from the Aldrich Chemical Company. 

Cyclopentadiene monoepoxide was prepared following published procedure.22

General and Specific Procedures

General procedure for the formation of aminocydopentenyl alcohols 

(Scheme 4, a). To a stirring solution of palladium dibenzylidene acetone adduct (21 mg,
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0.02 mmol, 0.02 equiv.) in THF (1 mL, 0.02 M) is added diphenylphosphinoethane (32 

mg, 0.08 mmol, 0.08 equiv.) The resulting deep violet mixture is stirred for several 

minutes at RT until its color changed to yellow. To this reaction mixture is added 10 

(447 mg, 1.0 mmol, I equiv.) in THF (1 mL, 1M). The resulting mixture is cooled to 0°C 

and treated with N, £>-bis(trimethylsilyl)acetamide (305 mg, 1.5 mmol, 1.5 equiv.) The 

reaction mixture is allowed to stir for 20 minutes, after which cyclopentadiene monoxide 

(123 mg, 1.5 mmol, 1.5 equiv.) is added dropwise over a period of I hr. The temperature 

is kept at 0°C for an additional hour, after which it was allowed to warm up to RT and 

stirred overnight. The solvent was removed under reduced pressure. The remaining, dark 

brown residue is redissolved in Et20 (10 mL) and hydrolyzed with 4N aqueous HC1 (5 

mL) until a complete disappearance of the initial reaction product, TMS-protected 

alcohol, is observed by tic (R f = 0.6, 30% EtOAc in hexanes). The organic phase is 

separated and the aqueous phase is extracted twice with Et2<D (10 mL). The organic 

phases are combined, dried over MgS0 4 , and the solvent is removed under reduced 

pressure. The free alcohol 11 (400 mg, 76%) is isolated by flash chromatography as a 

clear colorless oil.

HO
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General procedure for the formation of aminocydopentenyl carbonates 

(Scheme 4, b). To a stirring solution of 11 (11.0 g, 37.5 mmol) in CH2CI2  (300 ml, 0.125 

M), is slowly added at 0°C methyl chloroformate (17.8 g, 188 mmol, 5 equiv.) and 

pyridine (5.93 g, 75 mmol, 2 equiv.) The reaction mixture is stirred at rt until complete 

consumption of starting material is observed by tic (product R f = 0.4, 30% EtOAc in 

hexanes). The reaction mixture is washed twice with water (100 mL), dried over MgS0 4 , 

filtered and the solvent is removed under reduced pressure. Flash chromatography 

affords 12, as a yellow oil (13.4 g, 100%).

General procedure for the formation of aminocydopentenyl p- 

toluenesulfonamides (Scheme 4, c). To a stirring solution of 12 (8.5 g, 24.4 mmol, 1.0 

equiv.) in THF (120 mL, 0.2M) is added sodium p-toluenesulfonamide (4.17 g, 24.4 

mmol, 1 equiv.), Pd(PPh3 ) 4  (2.26 g, 1.95 mmol, 0.08 equiv.) and diphenyl- 

phosphinoethane (777 mg, 1.95 mmol, 0.08 equiv). The resulting reaction mixture is 

stirred overnight. The solvent is removed under reduced pressure and the remaining dark 

residue is purified by flash chromatography to afford 13, as a yellow solid (8.6 g, 79%).

Ts Ts

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

HN

General procedure for the formation of aminocydopentenyl N-allyl-p- 

toluenesulfonyi amides (Scheme 4, d). To a stirring solution of palladium 

dibenzylidene acetone adduct (43 mg, 42 pmol, 0.08 equiv.) in THF (2 mL, 0.02 M) is 

added triphenylphosphine (27 mg, 104 pmol, 0.2 equiv.) The resulting yellow-brown 

mixture is stirred at RT for 20 minutes. To this reaction mixture is added A'-allyl p- 

toluenesulfonamide (115 mg, 546 pmol, 1.05 equiv.) The resulting mixture is cooled 

down to 0°C and treated with MO-bis(trimethylsilyl)acetamide (212 mg, 1.04 mmol, 2 

equiv.) for 20 min, after which 12 (300 mg, 520 fimol, 1.0 equiv.) in THF (2.5 mL, 0.21 

M) is added dropwise over a period of I hr. The temperature is kept at 0°C for an 

additional hour, after which the reaction mixture is allowed to warm to RT and stirred 

overnight. The solvent was removed under reduced pressure. Compound 7 (300 mg, 

80%) is isolated by flash chromatography as a yellow solid.

TsTs
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Typical procedure for the metathesis reaction of 6  (Scheme 12). To a stirring 

solution of 6  (200 mg, 0.41 mol) in benzene ( 8  ml, 0.05M) is added 1 (17 mg, 21 ftm, 

0.05 equiv.) The reaction mixture is stirred at 45°C for 1 hr, at which time complete 

consumption of the starting material is observed by tic (product R f -  0.3; 30% EtOAc in 

hexanes). The solvent is removed under reduced pressure. The remaining dark oil is 

redissolved in 1 mL of benzene and treated with concentrated H2 SO4  (1 mL) and 0.1 mL 

of H2 O (0.1 ml) until tic of the organic phase indicates disappearance of the product. The 

reaction mixture is diluted with H2 O (10 mL) and benzene (10 mL), cooled to 0°C and 

carefully made basic with KOH. The liquid phases are separated and the aqueous phase 

is extracted twice with CH2CI2  (10 mL). All organic phases are combined, dried over 

MgSC>4 , filtered, and the solvent is removed under reduced pressure. The resulting oil is 

purified by flash chromatography (20% EtOAc in hexanes) to yield 24 as a white solid 

(135 mg, 72%).

Typical procedure for the metathesis reaction of 29 (Scheme 14). To a stirring 

solution of 29 (500 mg, 1.0 mmol) in C&H6  (20 ml, 0.05 M) is added 1 (41 mg, 0.05 

mmol, 0.05 equiv.) The reaction mixture is stirred at RT for 4 hrs, at which time 

complete consumption of the starting material is observed by tic. The reaction mixture is

Ts Ts

24
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purified by flash chromatography (20% EtOAc in hexanes) to yield 24 as a white solid 

(365 mg, 80%).

Ts Tsi i

24

General procedure for the metathesis reactions of 7-9 (Scheme 12). To a

stirring solution of 9 (45 mg, 38 /amol) in CH2 CI2  (12.5 ml, 0.003 M) is added 29 (1.7 

mg, 1.89 /amol, 0.05 equiv.) The reaction mixture is stirred at 40°C for 24 hrs, at which 

time complete consumption of the starting material is observed by tic (product R f = 0.4; 

40% EtOAc in hexanes). The solvent is removed under reduced pressure. The remaining 

residue is purified by flash chromatography (20% EtOAc in hexanes) to yield 27 as a 

white solid (26 mg, 59%).

Ts Ts Ts Ts Ts

27
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Synthesis and Characterization Data

All new precursors and metathesis products were characterized by IH-NMR, 13C- 

NMR, IR and HRMS, whenever possible. Characterizations and experimental details are 

followed by each structural formula.

l-Allyloxy-4-(4-ailyloxy-but-2-ynyloxy)-but-2-yne (4). 'H NMR (C6D6, 300 

MHz) 5 5.74-5.63 (m, 1H), 5.18-5.10 (m, 1H), 4.96-4.91 (m, IH), 4.04 (t, J  = 1.8 Hz, 

2H), 3.86 (t, J = 1.8 Hz, 2H), 3.81-3.78 (m, 2H); ,3C NMR (C6D6, LOO MHz) 5 134.7,

116.8, 83.1, 81.6, 70.0, 56.8, 56.1; IR (neat, cn r1) 3080, 3015, 2982, 2943, 2854, 1074; 

HRMS calcd for CuHlsO, (MNH/) 252.1600, found 252.1599.

l-AUyloxy-4-[4-(4-alIyloxy-but-2-yiiyIoxy)-but-2-ynyloxy]-but-2-yne (5a). ‘H

NMR (C6D6, 300 MHz) 5 5.95-5.82 (m, 2H), 5.33-5.19 (m, 4H), 4.28-4.27 (m, 8 H), 4.18 

(t, J  = 1.8 Hz, 4H), 4.04 (dt, J  = 5.8, 1.4 Hz, 4H); ,3C NMR (CDClj, 75 MHz) 5 133.6,

117.4, 82.7, 81.8, 81.1, 70.3, 57.0, 56.5, 56.4; IR (neat, cm'1) 3080, 3014, 2980, 2944, 

2896, 2853, 1730, 1646, 1442, 1344, 1264, 1247, 1120, 1074; HRMS calcd for ClgH230 4 

(MHO 303.1596, found 303.1588.
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l-{4-[4-(4-AllyIoxy-but-2-ynyIoxy)-but-2-ynyIoxy]-but-2-ynyloxy}-but-2-ene 

(5b), trans Isomer (major). 'H NMR (C6D6, 300 MHz) 8  5.95-5.81 (m, 1H), 5.78-5.67 

(m, IH), 5.60-5.49 (m, IH), 5.33-5.18 (m, 2H), 4.30-4.26 (m, 8 H), 4.15 (dt, 7 = 10.3, 1.7 

Hz, 4H), 4.04 (dt, 7 = 5.8, 1.4, 2H), 3.98-3.94 (m, 2H), 1.72-1.69 (m, 3H); ,3C NMR 

(CDClj, 100 MHz) 8  134.7, 131.4, 127.4, 118.6, 83.7, 83.5, 82.7, 82.6, 81.9, 81.7, 71.1,

70.9, 57.7, 57.4, 57.2, 57.2, 57.1, 57.1, 17.9; IR (neat, cm1) 2854, 1442, 1344, 1140, 

1119, 1070; HRMS calcd for C .^ N O , (MNH/) 334.2025, found 334.2025.

5b

Compound (6 ). ‘H NMR (C6DS, 300 MHz) 8  7.65 (d, 7 = 8.2 Hz, 4H), 6.74 (d, 7 

= 8.2 Hz, 4H), 5.80-5.67 (m, 2H), 5.19 (s, 2H), 5.10 (dd, 7 = 17.2, 1.4 Hz, 2H), 4.84 (dd, 

7= 10.2, 1.4 Hz, 2H), 4.78 (app t,7  = 8.1 Hz, 2H), 3.56-3.52 (m, 4H), 2.19 (app dt, 7=

13.4, 8.1 Hz, IH), 1.88 (s, 6 H), 1.44 (app dt, 7= 13.4, 8.1 Hz, IH); I3C NMR (CDCl3,
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100 MHz) 5 143.5, 137.6, 135.8, 133.9, 129.8, 127.2, 117.1, 61.6, 46.6, 34.4, 21.5; IR 

(neat, cm1) 2921, 1598, 1335, 1158, 1091; HRMS calcd for C ^ .R O .S , (MHO 

487.1725, found 487.1730.

Compound (7), 2 isomers. lH NMR (C6D6, 300 MHz) 5 7.71-7.55 (m, 6 H), 7.33- 

7.22 (m, 6 H), 5.92-5.74 (m, 2H), 5.63-5.44 (m, 4H), 5.24-5.03 (m, 4H), 4.87-4.74 (m, 

2H), 4.38-4.22 (m, 2H), 3.90-3.66 (m, 4H), 2.41-2.31 (m, 11H), 1.88-1.73 (m, 2H); ,3C 

NMR (CDC13, 100 MHz) 8  143.5, 143.4, 138.9, 137.7, 136.2, 134.6, 134.1, 133.1, 132.7,

129.8, 129.8, 127.2, 127.2, 127.1, 117.0, 116.9, 61.9, 61.8, 60.9, 60.7, 46.6, 46.6, 36.5,

36.1, 21.5; IR (neat, cm 1) 3065, 2954, 1598, 1340, 1158, 1091; HRMS calcd for 

CjjHjjNjOjSjNa (MNaO 744.2212, found 744.2245.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

Compound (8), 3 isomers. 'H NMR (C6D6, 400 MHz) 8  7.67-7.56 (m, 8 H), 7.36- 

7.18 (m, 8 H), 5.89-5.74 (m, 2H), 5.72-5.60 (m, 2H), 5.58-5.48 (m, 2H), 5.45-5.38 (m, 

2H), 5.23-5.00 (m, 4H) 4.88-4.76 (m, 2H), 4.47-4.31 (m, 4H), 3.89-3.71 (m, 4H), 2.55- 

2.34 (m, 15H), 2.00-1.83 (m, 3H); IR (neat, cm'1) 2923, 1597, 1331, 1155, 1085; HRMS 

calcd for C4,H56N40 8S4Na (MNa*) 979.2879, found 979.2915.

Compound (9), 4 isomers. lH NMR (C6D6, 400 MHz) 8  7.68-7.58 (m, 10H), 

7.31-7.23 (m, 10H), 5.92-5.53 (m, 8 H), 5.45-5.40 (m, 2H), 5.25-5.04 (m, 4H), 4.88-4.78 

(m, 2H), 4.51-4.37 (m, 6 H), 3.90-3.72 (m, 4H), 2.58-2.43 (m, 19H), 2.12-1.84 (m, 4H); 

IR (neat, cm 1) 3063, 2955, 1598, 1332, 1157,1092; LRMS calcd for C#IHJ0NIO10Ss (MIT) 

1192, found 1192.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

Compound (14), trans isomer (major). lH NMR (C6D6, 400 MHz) 5 7.62 (app t, 

J = 6 . 6  Hz, 4H), 7.26 (d, J  = 6 . 6  Hz, 2H), 7.24 (d, J  = 6 . 6  Hz, 2H), 5.78-5.71 (m, IH), 

5.52-5.28 (m, 4H), 5.14-5.04 (m, 2H), 4.76-4.72 (m, IH), 3.70-3.51 (m, 4H), 2.39 (s, 3H), 

2.38 (s, 3H), 2.29 (dt, / =  10.0, 6.2 Hz, IH), 1.57 (dd, 7 = 4.9, 1.1 Hz, 3H), 1.46 (dt, /  =

10.0, 6.2, IH); I3C NMR (CDC13, 100 MHz) 8  143.5, 143.3, 137.8, 137.5, 135.8, 134.2,

133.5, 129.8, 129.7, 128.5, 128.4, 127.2, 127.1, 117.1, 61.5, 61.5, 46.5,46.4, 34.5, 21.6,

21.5, 17.6; IR (neat, cm'1) 2922, 1594, 1440, 1379, 1331, 1L56, 1085; HRMS calcd for 

C:6H36N30 4S2 (MNH;) 518.7145, found 518.7145.

Compound (15). ‘H NMR (CDC13, 300 MHz) 8  7.66 (d, J  = 8.1 Hz, 4H), 7.26 (d, 

J = 8.1, 4H), 5.85-5.72 (m, 2H), 5.35 (s, 2H), 5.20-5.06 (m, 4H), 4.29 (s, 2H), 3.90-3.83 

(dd, J  = 16.9, 5.4 Hz, 2H), 3.69-3.61 (dd, /  = 16.9, 5.8 Hz, 2H), 2.40 (s, 6 H), 1.73-1.71 

(m, 4H); ,3C NMR (CDCI,, 100 MHz) 5 143.3, 138.1, 136.0, 131.9, 129.8, 127.1, 116.9,

52.3, 47.5, 25.8, 21.5; IR (neat, cm’1) 3028, 2923, 1598, 1337, 1163, 1090; HRMS calcd 

forCjHjjNjC^Sj (MHO 501.1882, found 501.1889.
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N-AIIyl-N-[4-(4-allyloxy-but-2-ynyloxy)-cyclopent-2-enyl]-4-methylbenzene- 

sulfonamide (17a). 'H NMR (CDC1„ 300 MHz) 8  7.70 (d, J = 8.4 Hz, 2H), 7.28 (d, J  = 

8.4 Hz, 2H), 5.99-5.76 (m, 3H), 5.62-5.59 (m, IH), 5.32-5.07 (m, 4H), 4.97-4.93 (m, IH), 

4.46-4.42 (m, LH), 4.15-4.12 (m, 4H), 4.03-4.00 (m, 2H), 3.72-3.54 (m, 2H), 2.43 (dt, J  =

14.7, 8.0 Hz, IH), 2.41 (s, 3H), 1.38 (dt, J  = 14.4, 4.6 Hz, IH); ,3C NMR (CDCL,, 100 

MHz) 5 143.2, 137.3, 135.9, 134.3, 134.2, 133.8, 129.6, 127.2, 117, 9, 116.9, 82.2, 80.9,

70.6, 61.7, 57.3, 56.6, 45.6, 34.9, 21.5; IR (neat, cm ') 3078, 3020, 2980, 2922, 2854, 

1645, 1088; HRMS calcd forCBH,,N,04S (MNH/) 419.2004, found 419.2004.

Tsi

17a

N-[4-(4-AllyIoxy-but-2-ynyIoxy)-cyclopent-2-enyl]-N-but-2-enyl-4-methyl-

benzenesulfonamide (17b), trans isomer (major). ‘H NMR (CDCL,, 400 MHz) 5 7.68 

(d, J  = 6.0 Hz, 2H), 7.28 (d, J  = 6.0 Hz, 2H), 5.97 (dt, J -  5.5,2.2 Hz, IH), 5.93-5.83 (m,
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IH), 5.67-5.52 (m, 2H), 5.45-5.38 (m, IH), 5.31-5.18 (m, 2H), 4.95-4.91 (m, IH), 4.46-

4.42 (in, IH), 4.15-4.13 (m, 4H), 4.02 (dt, J  = 4.4, 1.1 Hz, 2H), 3.71-3.48 (m, 2H), 2.40 

(s, 3H), 1.64-1.60 (m, 4H), 1.42 (dt, J  = 11.0, 3.6 Hz, IH); l3C NMR (CDC13, 100 MHz) 8

143.1, 136.7, 134.5, 134.1, 130.7, 129.7, 129.6, 127.3, 127.3, 117.9, 82.4, 81.1, 70.8,

61.7, 61.7, 57.5, 56.7, 45.4, 35.2, 21.6, 17.7; IR (neat, cm'1) 2853, 2369, 1718, 1340, 

1159, 1089; HRMS calcd for C ^ N ^ S  (MNH/) 433.2164, found 433.2164.

Tsi

17b

N-Allyl-N-[4-(4-but-2-enyIoxy-but-2-ynyloxy)-cyclopent-2-enyI]-4-methyl- 

benzenesulfonamlde (17c), trans isomer (major). 'H NMR (CDC13, 400 MHz) 5 7.70 

(d, J  = 8.0 Hz, 2H), 7.28 (d, J  = 8.0 Hz, 2H), 5.97 (dt, J= 5.5, 2.2 Hz, IH), 5.87-5.50 (m, 

3H), 5.22-5.07 (m, 4H), 4.96-4.93 (m, IH), 4.46-4.43 (m, IH), 4.16-4.07 (m, 4H), 3.95- 

3.93 (m, 2H), 3.73-3.56 (m, 2H), 2.40 (s, 3H), 1.71-1.64 (m, 3H), 1.39 (dt, J  = 14.3, 4.8 

Hz, IH); I3C NMR (CDC13, 100 MHz) 5 143.3, 137.6, 136.1, 134.5, 134.3, 130.7, 129.7,

127.3, 126.8, 117.1, 82.2, 81.0, 70.5, 65.0, 61.9, 57.1, 56.7, 45.7, 35.2, 21.6, 17.8; IR 

(neat, cm1) 2939, 2854, 2359, 1340, 1160, 1091; HRMS calcd for C ^H ^O .S (MHO 

416.1912, found 416.1905.
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H3Cj,V xv'0-

17c

2,5,2',5',2",5"-Hexahydro-[3,3';4l,3"]terfuran (18). To a stirring solution of 4 

(234 mg, 1.0 mmol) in CgHg (20 ml, 0.05 M) was added 1 (41 mg, 0.05 mmol, 0.05

equiv.) After stirring for 12 hrs at 45°C was added additional 1 (25 mg, 0.03 mmol, 0.03 

equiv.) After stirring for another 12 hrs at 45°C, 4 was not detectable by tic (product Rf

= 0.3; 30% EtOAc in hexanes) and the reaction mixture was purified by flash 

chromatography (30% EtOAc in hexanes containing 2% NEt3  elution). The product 18

was isolated as a white solid: 140 mg, 6 8 %; ‘H NMR (CD.CU, 300 MHz) 8  5.78 (s, 2H), 

4.74 (s, 4H), 4.65 (s, 8 H); ,3C NMR (CD,CI„ 100 MHz) 8  132.2 (s), 128.1 (s), 125.9 (d, J  

= 179 Hz), 78.2 (t, J  = 147 Hz), 75.6 (t, J = 147 Hz), 75.5 (t, /  = 147 Hz); IR (neat, cm'1) 

3076,2846, 1078, 1064; HRMS calcd forC12HM0 3 (NT) 206.0943, found 206.0937.
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l,33MbA6»7»9-Octahydro-2,5,8-trioxa-trindene (20). A solution of 18 (24 

mg, 0.12 mmol) in bromobenzene (0.5 ml, 0.05 M, b.p. 157°C) was stirred for 2.5 hrs at 

reflux. The reaction mixture was purified by flash chromatography (30% EtOAc in 

hexanes elution). The product 20 was isolated (Rf = 0.8; 30% EtOAc in hexanes); lH

NMR (CDC1,, 300 MHz) 5 5.07 (s, 2H), 4.72-4.62 (m, 6 H), 4.30-4.26 (m, 2H), 3.56-3.50 

(m, 2H), 3.13-3.08 (m, 2H).

Q
>” 0 >

20

[3,3';4',3"]-Terfuran (21). To a solution of 18 (5 mg, 24 /xmol) in CgDg (0.5 ml,

0.05 M) was added DDQ (26 mg, 0.117 mmol, 4.9 equiv.) After stirring for 18 hrs at RT, 

18 was not detectable by NMR or Uc (product Rf = 0.8; 30% EtOAc in hexanes), and the 

reaction mixture was purified by flash chromatography (30% EtOAc in hexanes elution). 

The product 21 was isolated. ‘H NMR (CD,CU, 300 MHz) 5 7.55 (s, 2H), 7.48-7.45 (m, 

4H), 6.48-6.49 (m, 2H); LRMS (GC-MS) calcd for C12H80 3 (NT) 200, found 200.
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l,3,3a,3b,4,6,7,9,10,12-Decahydro-2,5,8,ll-tetraoxa-tetracyclopenta[a,c,e,g]- 

cyclooctene (23). To a stirring solution of 5a (302 mg, 1.0 mmol) in C6H6 (10 ml, 0.1 M) 

was added 1 (33 mg, 0.04 mmol, 0.04 equiv.) After stirring for 36 hrs at 45 °C, 5a was 

not detectable by tic (product Rf = 0.1; 30% EtOAc in hexanes), and the reaction mixture 

was purified by flash chromatography (25% EtOAc in CH,CU elution). The product 23 

was isolated as a white solid: 96 mg, 33%. lH NMR (CD,C1,, 300 MHz) 5 4.10 (s, 4H), 

4.02 (s, 4H), 3.89 (s, 4H), 3.71-3.68 (m, 2H), 3.15-3.10 (m, 2H), 2.39-2.48 (m, 2H); ,3C 

NMR (CDClj, 100 MHz) 5 137.6, 127.9, 126.7, 73.3, 72.5,72.0, 71.9,48.3; LRMS calcd 

for C16HIg0 4 (M*) 274, found 274.
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Compound (24). To a stirring solution of 6 (200 mg, 0.41 mol) in benzene ( 8  ml, 

0.05M) is added 1 (17 mg, 21 fim, 0.05 equiv.) The reaction mixture is stirred at 45°C for 

I hr, at which time complete consumption of the starting material is observed by tic 

(product Rr = 0.3; 30% EtOAc in hexanes). The solvent is removed under reduced 

pressure. The remaining dark oil is redissolved in I mL of benzene and treated with 

concentrated H,S04 (1 mL) and 0.1 mL of H,0 (0.1 ml) until tic of the organic phase 

indicates disappearance of the product. The reaction mixture is diluted with H,0 (10 mL) 

and benzene (10 mL), cooled to 0°C and carefully made basic with KOH. The liquid 

phases are separated and the aqueous phase is extracted twice with CH,CL (10 mL). All 

organic phases are combined, dried over MgS04 filtered, and the solvent is removed 

under reduced pressure. The resulting oil is purified by flash chromatography (20% 

EtOAc in hexanes) to yield 24 as a white solid (135 mg, 72%). Alternatively, to a stirring 

solution of 6  (500 mg, 1.0 mmol) in CSHS (20 ml, 0.05 M) is added 1 (41 mg, 0.05 mmol, 

0.05 equiv.) The reaction mixture is stirred at RT for 4 hrs, at which time complete 

consumption of the starting material is observed by tic. The reaction mixture is purified 

by flash chromatography (20% EtOAc in hexanes) to yield 24 as a white solid (365 mg, 

80%). ‘H NMR (CDCl,, 300 MHz) 5 7.70 (d, J  = 8.3 Hz, 4H), 7.31 (d, J  = 8.3 Hz, 4H), 

5.86-5.81 (m, 2H), 5.64-5.61 (m, 2H), 4.61-4.54 (m, 2H), 4.19-4.04 (m, 4H), 2.47-2.40 

(m, 7H), 2.17-2.07 (m, IH); « c  NMR (CDCI3 , 100 MHz) 8  143.6, 134.3, 130.5, 129.8,

127.6, 24.6, 64.7, 55.4, 42.6, 21.5; IR (neat, cm'1) 3066, 2918, 2861, 1596, 1340, 1163, 

1095; HRMS calcd for C^H^N-P.S, (MHO 459.1412, found 459.1404.
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Ts Tsi i

24

Compound (25), 2 isomers. ‘H NMR (CDC13, 400 MHz) 8  7.70-7.65 (m, 6 H),

7.29-7.27 (m, 6 H), 6.09 (s, 2H), 5.62-5.56 (m, 4H), 4.72 (d, J = 8 . 8  Hz, 2H), 4.56-4.48 

(m, 2H), 4.14-4.02 (m, 4H), 2.69-2.64 (m, 2H), 2.40-2.37 (m, 9H), 1.95-1.88 (m, 2H); 

,3C NMR (CDClj, 100 MHz) 8  143.7, 142.9, 139.4, 134.4, 130.5, 129.8, 129.7, 129.6,

127.6, 126.8, 125.0, 65.0, 64.7, 55.4, 40.1, 21.6, 21.5; IR (neat, cm ') 2923, 1597, 1340, 

1161, 1093; HRMS calcd for C^H^NjO^ (MHO 694.2079, found 694.2068.

Ts Ts Ts
i i i

25

Compound (26), 3 isomers. ‘H NMR (CDCl,, 400 MHz) 8  7.73-7.64 (m, 8 H),

7.30-7.26 (m, 8 H), 6.15-6.03 (m, 2H), 5.84-5.71 (m, 2H), 5.62-5.57 (m, 4H), 4.82-4.37 

(m, 6 H), 4.17-4.04 (m, 4H), 2.95-2.91, 2.72-2.54 (m, 3H), 2.44-2.28 (m, 12H), 2.11-1.85 

(m, 3H); IR (neat, cm 1) 3066, 2923, 2869, 1598, 1339, 1162, 1099; HRMS calcd for 

C^HnN4OgS+ (MHO 929.2746, found 929.2747.
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Ts Ts Ts Ts

26

Compound (27), 4 isomers. To a stirring solution of 9 (45 mg, 38 /xmol) in 

CH,CU (12.5 ml, 0.003 M) is added 30 (1.7 mg, 1.89 fimol, 0.05 equiv.) The reaction 

mixture is stirred at 40 °C for 24 hrs, at which time complete consumption of the starting 

material is observed by tic (product Rr = 0.4; 40% EtOAc in hexanes). The solvent is 

removed under reduced pressure. The remaining residue is purified by flash 

chromatography (20% EtOAc in hexanes) to yield 27 as a white solid (26 mg, 59%). 'H 

NMR (CDCl,, 400 MHz) 8  7.77-7.62 (m, L0H), 7.34-7.26 (m, 10H), 6.18-6.12 (m, 2H), 

5.92-5.55 (m, 8 H), 4.85-4.36 (m, 8 H), 4.17-4.03 (m, 4H), 2.96-2.92, 2.71-2.51, 2.40-2.63 

(m, 19H), 2.12-1.81 (m, 4H); IR (neat, cm 1) 2922, 1598, 1338, 1162, 1092; HRMS calcd 

forC59H66N50 10S5(MHO 1164.3413, found 1164.3467.

Ts Ts Ts Ts Ts

27

Compound (28). To a stirring solution of 24 (150 mg, 0.33 mol, 75% pure) in 

benzene (20 ml, 0.01M) is added DDQ (363 mg, 1.64 mmol, 5 equiv.) The reaction
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mixture is stirred at 80 °C for 72 hrs, at which time tic indicates roughly 80% 

consumption of the starting material (product Rf = 0.2; 30% EtOAc in hexanes). The 

reaction mixture is purified by flash chromatography (20% EtOAc in hexanes) to yield 

28. ‘H NMR (CDClj, 400 MHz) 8  7.83 (d, 7 = 6 . 8  Hz, 2H), 7.77 (d, 7 = 8.3 Hz, 2H), 7.31 

(d, 7 = 6 . 8  Hz, 2H), 7.29 (d, 7 = 8.3, 2H), 6.18 (app t, 7 = 3.3 Hz, IH), 6.05-6.04 (m, 2H), 

5.55-5.47 (m, 2H), 4.82-4.76 (m, IH), 4.18-4.00 (m, 2H), 3.52 (dd, 7 =  14.6, 4.4 Hz, IH), 

2.85 (dd, 7 = 14.6, 9.2 Hz, IH), 2.40 (s, 3H), 2.39 (s, 3H); ,JC NMR (CDC13, 100 MHz) 8

145.0, 143.5, 136.2, 134.3, 130.7, 130.1, 129.8, 129.4, 127.8, 127.1, 124.9, 122.9, 115.3,

111.7, 6 6 .6 , 56.1, 35.1, 21.7, 21.6; HRMS calcd for C ^ N A S ,  (MIT) 457.1256, found 

457.1257.

Compound (32). To a stirring solution of 31 (200 mg, 0.40 mol) in benzene (8.0 

ml, 0.05M) is added 1 (17 mg, 20 (im, 0.05 equiv.) The reaction mixture is stirred at 45 

°C for 48 hrs, at which time complete consumption of the starting material is observed by 

tic (product Rr = 0.4; 30% EtOAc in hexanes). The reaction mixture is purified by flash 

chromatography (30% EtOAc in hexanes). The obtained white solid is dissolved in 1 mL 

of benzene and treated with concentrated HjSO* (1 mL) and 0.1 mL of H,0 (0.1 ml) for 

10 hrs. The reaction mixture is diluted with H,0 (10 mL) and benzene (10 mL), cooled to
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0°C and carefully made basic with KOH. The liquid phases are separated and the 

aqueous phase is extracted twice with CH,CL (10 mL). All organic phases are combined, 

dried over MgS04, filtered, and the solvent is removed under reduced pressure. The 

resulting solid is purified by flash chromatography (30% EtOAc in hexanes) to yield 32 

as a white solid (125 mg, 6 6 %). 'H NMR (CDCl,, 400 MHz) 8  7.69 (d, J  = 8.3 Hz, 4H), 

7.29 (d, J  = 8.3, 4H), 5.63-5.54 (m, 4H), 4.54 (s, 2H), 4.18-4.03 (m, 4H), 2.40 (s, 6 H),

1.83-1.82 (m, 4H); l3C NMR (CDCl,, 100 MHz) 8  143.4, 134.7, 129.8, 129.7, 127.5,

125.0, 67.1, 56.0, 30.0, 21.5; IR (neat, cm'1) 2911, 2859, 1592, 1330, 1157, 1089, 1047; 

HRMS calcd for C^H^Np.S, (MIT) 473.1569, found 473.1570.

Ts

N
v • / Ts

32

2-(2,5,2',5'-Tetrahydro-[3,3']bifuranyl-5-ylmethyl)-l-(toIuene-4-suIfonyl)-2,5- 

dihydro-lH-pyrrole (33). To a stirring solution of 17b (180 mg, 0.43 mol) in benzene 

(8 . 6  mL, 0.05M) is added 1 (14.3 mg, 17 fim , 0.04 equiv.) The reaction mixture is stirred 

at 45°C for 4 hrs, at which time complete consumption of the starting material is 

observed by tic (product R/ = 0.2; 30% EtOAc in hexanes). The reaction mixture is 

purified by flash chromatography (20% EtOAc in hexanes) to yield 33 as a clear, 

colorless oil (123 mg, 76%). lH NMR (CD2C12, 300 MHz) 8  7.66 (d, J  = 8.4 Hz, 2H),

7.32 (d, J  = 8.4 Hz, 2H), 5.73-5.57 (m, 4H), 5.03-4.93 (m, IH), 4.82-4.67 (m, 6 H), 4.52-
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4.46 (ra, 1H), 4.16-4.01 (m, 2H), 2.41 (s, 3H), 2.21-2.13 (m, 1H), 2.00-1.90 (m, 1H); I3C 

NMR (CDC13, 100 MHz) 8  143.7, 132.2, 132.0, 130.1, 129.8, 127.4, 126.4, 124.2, 123.4,

84.0, 76.2, 75.0, 74.5, 64.7, 55.5, 42.3, 21.2; IR (neat, cm'1) 2847, 1597, 1470, 1162, 

1088; HRMS calcd for C2 0H2 4NO4 S (MH*) 374.1426, found 374.1423.
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Chapter 3 

Total Synthesis of (-)- and (±)-Frontalin via Ring-Closing Metathesis9
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Abstract

Racemic and enantiopure targets containing the 6,8-dioxabicyclo[3.2.1]octane 

skeleton, can be conveniently synthesized from monocyclic diene precursors using an 

intramolecular ruthenium-catalyzed ring-closing metathesis reaction as the key step. The 

natural product frontalin was synthesized in racemic and enantiopure forms and in 

excellent yields using this methodology.

Introduction

Ring-closing metathesis (RCM), catalyzed by transition metal carbenes, has 

recently become a popular tool for the conversion of acyclic dienes to cycloolefins. 1 

While a large number of mono- and polycyclic compounds has been prepared by this 

method, not much effort has been directed toward application of RCM to the construction 

of bridged systems, so ubiquitous in natural products. A recent report from this 

laboratory described the first application of RCM to the formation of small ring bridged 

bicycloalkenes from monocyclic dienes. 2  We now report the first synthesis of small ring 

bridged oxygen heterocycles using RCM as demonstrated by the synthesis of 1.

0

1

(+)~Fronta!in
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Results and Discussion

The 6,8-dioxabicyclo[3.2.1]octane ring system defines the skeleton of frontalin

(1), the aggregation pheromone of the southern bark beetle Dendroctonus frontalis. 3 

Although the biologically active enantiomer of frontalin (IS,5R)4 contains two chiral 

centers, only one of them needs to be considered since the correct configuration of the 

second center is dictated by the formation of the bicyclic structure. The IS center can be 

set in the 1 ,2 -diol 2  with a high degree of enantiocontrol, utilizing either the recently 

developed Mukiyama asymmetric allylation5  or the Sharpless asymmetric 

dihydroxylation6  reaction (Scheme l ) . 7

-  HO OTMS 4 b : c, d Ry /= =

J U - ^  4 5 : 6
f  c h 3

o

4a: R = Me 
4b: R = H

HO OH H3C% / =
«.« O ^O

O ^  J  ^CHs

3 (-)-4c

a: Sn(ll)-catecholate, (+)-DIPT, DBU, Cul, Ailyl-Br, CH2CI2, -78°C, 81%; b: 
LiAIH4, Et20 , 0°C, then 25°C, 89%; a: TMS-CI, Et3N, CH2CI2, 0°C, then 25°C, 
83%; d: MVK, cat. TMS-OTf, CH2CI2, -78°C, then -20°C, 85%; b: 
H2C=CHCH2MgCI, THF, 0°C, 67%; e: H2C=CHCH(OCH3)2, cat. CH3COCI, 
CH2CI2, 0°C, 74%.

Scheme 1. Synthesis of precursors 4a-c
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Alternatively, the racemic mono-TMS-protected 1,2-diol 3 can be conveniently prepared 

via Grygnard addition of allyl magnesium chloride to the TMS-protected hydroxyacetone.

To utilize RCM for the formation of the bicyclic structures, the monocyclic dienes 

4a and 4b-c are prepared starting from enantiopure8 (2) and racemic (3) diols, 

respectively. The ketals 4a and 4b are synthesized under mild conditions using Noyori 

TMS-OTf assisted ketal formation9  and the acetal 4c is prepared via acetyl chloride- 

catalyzed condensation of 3 with acrolein dimethyl acetal.

Formation of bicyclo[3.2.1]a!kenes by closure of the six membered ring is 

extremely facile. 2  The ring closed products 5a-c can be obtained within minutes at room 

temperature by treatment of 4a-c with a catalytic amount of ruthenium benzylidene10 

(Scheme 2). Since the precursors 4a-c are most conveniently prepared as a mixture of the 

syn- and anri-isomers and only the syn-isomer can undergo cyclization, the unreacted 

anti-isomers 4a'-c' can be recovered11 and are easily equilibrated to a mixture of the two 

isomers. 12

5 mol% 
RuCI2(=CHPh)(PCy3)2

0.01MCH2CI2 
RT,10 min

'"'CH,

(-)-4a: (1-S), 
R = Me 
4b : R = Me 
4c: R = H

(-)-5a: (1-S) (5-fl), 
R = Me (89%)
5b : R = Me (89%) 
5 c : R = H (90%)

(♦ H a 1: (1-S) (5-S), 
R = Me (89%)
4b*: R = Me (89%) 
4 c ': R = H (90%)

Scheme 2. Ring-closing metathesis of precursors 4a-c utlilizing 5 mol% of catalyst
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Finally, the l,5-dimethyl-6,8-dioxabicylo[3.2.1]oct-3-enes 5a and 5b are hydrogenated to 

yield racemic and enantiopure frontalin la  and lb , respectively, in excellent yields13 

(Scheme 3). Synthetic la  shows nearly identical optical rotation to that reported for the 

authentic (-)-isomer ([a]o -50.0 vs. lit.4  [a]o -52.0).

1 atm. H2, 
Pd/C

CHCI3 
RT, 30 min

(-)-Sa
(±)-5b

(-)-1a: (89%) 
(±)-1b: (89%)

Scheme 3. Hydrogenation of 5a-b to yield frontalin (1a-b)

Conclusions

In conclusion, enantiopure and racemic products, such as frontalin, containing the 

6,8-dioxabicyclo[3.2.1]octane skeleton can be prepared in 4 steps from 2-methyI-4- 

pentene-l,2-dioIs 2 and 3, respectively. Current investigations are directed at in situ 

epimerization14 of the C5 center of the monocyclic acetals and ketals 4a-c leading to a 

theoretically quantitative conversion of 4a-c to the corresponding bicycles 5a-c. In 

addition, the synthesis of other small ring bridged natural products via RCM is in 

progress.
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Experimental Section

General Considerations

High resolution mass spectra were provided by the Southern California Mass 

Spectrometry Facility (University of California at Riverside). Analytical thin-layer 

chromatography (tic) was performed using silica gel 60 F254 precoated plates (0.25 mm 

thickness) with a fluorescent indicator. Visualization was accomplished with one or more 

of the following: UV light, KMnC>4 , phosphomolybdic acid (PMA), cerric ammonium 

nitrate (CAN), or p-anisaldehyde solution followed by heating. Flash chromatography 

was performed using silica gel 60 (230-400 mesh) from EM Science. 15

All reactions were carried out under an inert atmosphere in oven-dried glassware 

unless otherwise specified. Catalyst 1 was prepared according to published procedure 

and is commercially available. 100 Solvents were purified by passage through a column 

containing A-5 alumina (all solvents) followed by a column containing Q-5 reactant (non- 

ethereal solvents). Argon was purified by passage through columns of BASF R3-11 

catalyst (Chemalog) and 4A molecular sieves (Linde). Allyl bromide was purchased from 

ARCOS. All other reagents were purchased from the Aldrich Chemical Company.

Synthetic Procedures and Characterization Data

l,5-DimethyI-6,8-dioxa-bicycIo[3.2.1]octane (la) and (lb). Match literature, 

see: Whitesell, J. K.; Buchanan, C. M. /. Org. Chem. 1986, 51, 5443-5445.; la: [a]D - 

50.0°.
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CH

1a - (-)-enantiomer 
1b - racemic

2-Methyl-2-trimethylsilanyloxy-pent-4-en-l-ol (2). NMR and ER. match lit.: 

Barluenga, J.; Florez, J.; Yus, M. J. Chem. Soc. - Perkin Tram. I 1983, 3019-3026.; 

HRMS caicd forC6Ht6N02  (MNH/) 134.1181, found 134.1188.

HO OTMS

CH.

4-Allyl-2,4-dimethyl-2-vinyl-[l,3]dioxoIane (4a) and (4c). (each -1:1 mixture 

of syn- and anfz-diastereomers): ‘H NMR (CDCI3 , 400 MHz) 8  5.86-5.71 (m, 4H), 5.38-

5.32 (m, 2H), 5.10-5.02 (m, 6 H), 3.80 (d, J  = 8.4 Hz, 1H), 3.72 (d, /  = 8  Hz, 1H), 3.69 (d, 

J  = 8.0 Hz, 1H), 3.53 (d, J  = 8.4 Hz, 1H), 2.39-2.23 (m, 4H), 1.45 (s, 6 H), 1.28 (s, 3H),

1.26 (s, 3H); I3C NMR (CDC13, 100 MHz) 5 140.0, 140.0, 133.9, 133.8, 118.3, 118.2,

114.4, 114.3, 108.2, 108.1, 81.2, 81.2, 73.9, 73.2, 45.0, 44.0, 26.2, 26.2, 25.0, 23.9; IR
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(neat, cm 1) 2968, 1630, 1426, 1374,1218,1166,1047; HRMS calcd forCioHl7 0 2  (MH*)

169.1229, found 169.1228.

4a (syn + anti) (-)-4c (syn + anti)

4-Allyl-2,4-dimethyI-2-vinyI-[l,3]dioxoIane (4a') and (4b'). fH NMR (CDCI3, 

400 MHz) 8  5.89-5.79 (m, 2H), 5.38-5.32 (m, IH), 5.12-5.09 (m, 3H), 3.80 (d, J = 8.4 

Hz, 1H), 3.53 (d, J  = 8.4 Hz, IH), 2.35-2.26 (m, 2H), 1.45 (s, 3H), 1.28 (s, 3H); l3C NMR 

(CDCI3 , 100 MHz) 8  140.0, 134.0, 118.3, 114.4, 108.2, 81.3, 73.3, 45.0, 26.2, 23.9; IR 

(neat, cm 1) 2931, 1641, 1372, 1217, 1170, 1050; HRMS calcd for C,oHt 7 0 2  (MH+)

169.1229, found 169.1228.

(+)-4a‘ - enantiopure (1-S) (5-S) {anti only) 
4b‘ • racemate {anti only)
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4-AIIyl-4-methyI-2-vinyI-[l,3]dioxolane (4b). (~L:1 mixture of syn- and anti- 

diastereomers): lH NMR (CDCI3 , 400 MHz) 8  5.86-5.75 (m, 4H), 5.50-5.43 (m, 2H), 

5.35-5.29 (m, 4H), 5.14-5.07 (m, 4H), 3.85 (d, J  = 7.6 Hz, IH), 3.74 (d, J  = 7.6 Hz, IH), 

3.66 (d, J  = 7.6 Hz, IH), 3.55 (d, J  = 7.6 Hz, IH), 2.42-2.30 (m, 4H), 1.29 (s, 3H), 1.29 

(s, 3H); l3C NMR (CDC13, 100 MHz) 5 135.4, 135.1, 133.6, 133.4, 120.1, 119.9, 118.5,

118.4, 104.0, 103.5, 80.8, 80.7, 74.4, 44.5, 43.1, 30.4, 24.7, 23.3; IR (neat, cm 1) 2978, 

1642, 1436, 1377, 1097; HRMS calcd forC9Hi5 0 2  (MH*) 155.1072, found 155.1070.

4b (syn + anti)

4-Allyl-4-methyI-2-vinyl-[l,3]dioxolane (4c'). lH NMR (CDCI3 , 400 MHz) 5

5.84-5.72 (m, 2H), 5.41 (d, / =  17.2 Hz, IH), 5.31-5.26 (m, 2H), 5.09-5.04 (m, 2H), 3.70 

(d, J  = 8.0 Hz, IH), 3.62 (d, J = 8.0 Hz, IH), 2.39-2.25 (m, 2H), 1.26 (s, 3H); I3C NMR 

(CDCI3 , 100 MHz) 5 135.4, 133.4, 119.9, 118.5, 104.0, 80.8, 74.4, 43.1, 24.7; IR (neat, 

cm*1) 2979, 1728, 1642, 1436, 1378, 1097; HRMS calcd forC 9H l 5 0 2  (MH*) 155.1072, 

found 155.1070.
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4c' (anti only)

l,5-Dimethyl-6,8-dioxa-bicyclo[3.2.1]oct-3>ene (5a) and (5b). 'H NMR (CDCI3 , 

400 MHz) 5 5.80-5.66 (m, 2H), 3.72 (d, J  = 7.3 Hz, IH), 3.53-3.50 (m, IH), 2.40 (dd, J  =

17.9, 7.3, IH), 1.99-1.93 (m, IH), 1.51 (s, 3H), 1.41 (s, 3H); l3C NMR (CDC13, 100 

MHz) 8  131.0, 125.3, 103.3, 78.9, 74.6, 38.6, 24.1, 22.1; IR (neat, cm 1) 2932, 1711, 

1374, 1260, 1062, 1020; HRMS calcd forC 8Hl2 0 2  (M+) 140.0837, found 140.0846.

(-)-5a - enantiopure (1-S) (5-fl) 
5b - racemate

l-Methyl-6,8-dioxa-bicyc!o[3.2.1]oct-3-ene (5c). lH NMR (CDC13, 400 MHz) 5

5.85-5.81 (m, IH), 5.72-5.67 (m, IH), 5.44 (d, /  = 3.3 Hz, IH), 3.72 (d, / =  7.3 Hz, IH),

3.42 (dd, /  = 7.3, 3.3 Hz, IH), 2.48-2.41 (m, IH), 2.00-1.94 (m, IH), 1.39 (s, 3H); 13C 

NMR (CDCI3 , 100 MHz) 8  128.0, 126.1, 97.3, 77.8, 73.5, 39.3, 23.8; IR (neat, cm 1)
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2973, 1686, 1638, 1384, 1169, 1073; HRMS calcd for C7Hto02 (M*) 126.0681, found 

126.0689.

5c - racemate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

References and Notes

(§) The majority of this chapter was previously reported in a separate publication.

See: Scholl, M.; Grubbs, R. H. Tet. Lett. 1999,40, 1425-1428.

(1) For recent reviews of RCM see: (a) Armstrong, S. K. J. Chem. Soc. - Perkin 

Trans. 1 1998, 371-388.; (b) Randall, M. L.; Snapper, M. L. J. Mol. Cat. A-Chem. 

1998, 133, 29-40.; (c) Schuster, M.; Blechert, S. Angew. Chem., Int. Ed. Engl. 

1997,36 ,2037-2056.; (d) Ivin, K. J. J. Mol. Cat. A-Chem. 1998,133,1-16.

(2) Morehead, A.; Grubbs, R. Chem. Comm. 1998,275-276.

(3) For recent syntheses of frontalin see: (a) Nishimura, Y.; Mori, K. Eur. J. Org. 

Chem. 1998, 233-236.; (b) Majewski, M.; Nowak, P. Tetrahedron-Asymmetry 

1998, 9, 2611-2617.; (c) Maezaki, N.; Shogaki, T.; Uchida, M.; Tokuno, K.; 

Imamura, T.; Tanaka, T.; Iwata, C. Chem. Pharm. Bull. 1998,46,217-221.

(4) Mori, K. Tetrahedron 1975,31, 1381-1384.

(5) Yamada, K.; Tozawa, T.; Nishida, M.; Mukaiyama, T. Bull. Chem. Soc. Japan 

1997, 70,2301-2308.

(6) Becker, H.; King, S. B.; Taniguchi, M.; Vanhessche, K. P. M.; Sharpless, K. B. J. 

Org. Chem. 1995,60,3940-3941.

(7) For a similar approach to define the IS stereocenter see: Turpin, J. A.; Weigel, L.

O. Tet. Lett. 1992,33,6563-6564.

(8) The enantiopurity of the 2-hydroxy-2-methyl-pent-4-enoic acid benzyl ester 

derived from the Mukaiyama allylation reaction is assessed to be 99+% as 

determined by its optical rotation ([<x]d 6.5 vs. lit.5 [a]o 5.8) and the rH NMR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

analysis of its Mosher’s ester. The absolute configuration of the 2-hydroxy-2- 

methyl-pent-4-enoic acid benzyl ester was determined to be (5) by the conversion 

to (S)-(+)-dimethyl citramalate.5

(9) Tsunoda, T.; Suzuki, M.; Noyori, R. Tet. Lett. 1980,21, 1357-1358.

(10) (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. 

Engl. 1995, 34, 2039-2041.; (b) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. 

Chem. Soc. 1996,118, 100-110.

(11) No dimerization of the non-cyclizable isomer of (+)-4a was observed at 0.01M; 

the reaction was not run at any other concentrations.

(A(12) Treatment of the anti-isomer with a cat. amount of Amberlyst 15 acidic ion 

exchange resin results in a rapid equilibration to a mixture of the syn- and anti- 

isomers.

(13) Yields determined by *H NMR are quantitative; isolated yields are slightly lower 

due to high volatility of products.

(14) Gassman, P. G.; Singleton, D. A.; Wilwerding, J. J.; Chavan, S. P. J. Am. Chem. 

Soc. 1987,109,2182-2184.

(15) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978,43,2923-2925.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

Chapter 4

Increased Ring-Closing Metathesis Activity of Ruthenium-Based Olefin 

Metathesis Catalysts Coordinated with Imidazol-2-ylidene Ligands9
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Abstract
The novel air and water tolerant, imidazolinylidene-substituted ruthenium-based 

complex 3, has been prepared starting from RuCl2 (=CHPh)(PCy3 ) 2  2 and shown to 

exhibit increased ring-closing metathesis activity at elevated temperature compared to 

that of the parent complex 2. Di-, tri-, and even tetra-substituted cycloolefins were 

successfully prepared from corresponding diene precursors using catalytic amounts of 3 

in moderate to excellent yields.

Introduction

With the advent of efficient catalysts, the olefin metathesis reaction has emerged 

as a powerful tool for the formation of C-C bonds.1 Widely used well-defined alkylidene- 

metal complexes for this transformation include the alkoxy imido molybdenum complex 

l 2 and the benzylidene ruthenium complex 2.3 The molybdenum complex 1 exhibits the 

higher reactivity of the two towards a broad range of substrates with many steric or 

electronic variations;4 however, it also suffers from high sensitivity to air and moisture 

and decomposition upon storage. To increase the utility of the ruthenium family of 

complexes by increasing the activity and/or selectivity, a number of derivatives of 2 have 

been prepared. These derivatives of 2 include bidentate salicylaldimine ruthenium 

complexes5 and binuclear ruthenium complexes.6 The recent reports from the Herrmann 

group on the derivatization of 2 with imidazolinylidene ligands7 prompted us to explore 

this family of complexes for use in organic applications. Herein, we report a ruthenium- 

based imidazolinylidene complex 3, showing a ring closing metathesis activity
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comparable to that of the molybdenum complex 1, yet exhibiting a remarkable air and 

water stability similar to that of the parent benzylidene ruthenium complex 2.

Results and Discussion

Herrmann et al. prepared a novel class of ruthenium complexes 4 by substituting 

both of the phosphine with imidazolinylidene ligands.7 Although these complexes 

showed little if any improvements in applications to ROMP and RCM, their potential 

activity expected from the ligand’s basicity and steric bulk8 led us to explore some of the 

other members of the Arduengo imidazolinylidene ligand family.9 Of the number of 1,3- 

diaryl-imidazolin-2-ylidene ligands that were tried, only the 2,6-disubstituted aryl systems 

including the l,3-dimesityl-imidazolin-2-ylidene ligand gave clean substitution products. 

In contrast to the Herrmann systems, this ligand displaced only one of the two phosphines 

to produce 3.10 This new derivative of 2 allows many of the desirable RCM reactions to 

be carried out with ruthenium complexes.

PCy3 R - N ^ N - R
f= \

R' - N .  .N-R'
, - -  k / N—R V

CI" * J _ ^ P h  I C k . Ph
ph Cl*' V h '  '  n ^ R y —(F3C)2MeCO, .M Ph 1 ^  o r R u - ^  C, ^

M O ^ A T  uy3 pCy_ R‘—N N-R'
(F3C)2MeCO Me 73  W

R = C6H2-2,4,6-(CH3)3 R1 = CgHn, C3H7 

1 2  3 4
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The monosubstituted imidazolinylidene complexes can be prepared using 

Herrmann’s procedure,7 provided that the substituents on the imidazole ring are 

sufficiently bulky to prevent disubstitution (Scheme 1). The imidazolinylidene ligand 59 

is conveniently synthesized from the corresponding salt with sodium hydride in liquid 

ammonia/THF11 and can be isolated or used without purification in the subsequent step. 

The ligand exchange reaction in toluene12 is rapid at room temperature and the product 3 

is isolated as a pinkish-brown microcrystalline solid that can be purified by 

recrystallization from pentane at -78°C.

NaH
/= \+  01 --------------** f= \

R—N ^ N - R  iiq. NH3/THF R—N N-R
^  -40°C, 2 hrs i i

5

f= \  f= \
PCy3 R - N ^ N - R  r - n  N-R

Cl/'**r, I ^Ph •• ^  T
Cl, R u = /   ► Cl//,. I__  Ph

I 0.02 M Ph-CH3 CI^RV
PCy3 RT.M N.

2 R = C6Hz-2,4,6-(CH3)3 

3

Scheme 1. Synthesis of imidazolinylidene ligand 5 and catalyst 3

The activity of the complex 3 has been briefly explored as shown in Table 1. 

Although the new species is less reactive than the parent 2 at room temperature for ring 

closing metathesis reactions, the reactivity increases dramatically at slightly higher 

temperatures. For instance, although the ring closure of diethyl diallylmalonate ester
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(Entry 1) takes hours at room temperature with complex 3, the reaction is completed 

within 30 minutes at 40°C with the same carbene catalyst.

Table 1. Results of the RCM with 5 mol% 2 or 3 in 0.05M CD2CI2 at reflux

Entry Substrate Product Time Yield Yield
(min) With 2  (%)a with 3  (%)a

30 100 100

30 82 100

60 N.R. 100

90 N.R. 40

90 N.R. 95

60 39* 55 (45)c

a Yields represent the conversion to product as determined by 1H NMR. b E:Z = -1.6:1 
c Isolated yield in parentheses; E:Z~2:1.

E E
E E

E = C 02Et

E E Me

E E t-Bu

Me e  E Me

A A A

Me e  E

Me

V v \ / Q

E E

Me
E E

f-Bu 

E E

Me Me 

E

Me Me

n—A
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In addition, the complex 3 exhibits increased ring closing activity towards 

sterically demanding olefins. For example, 2-f-butyl diethyl diallyl malonate ester (Entry 

3) can be cyclized with 5 mol% of 3 in 1 hr, while the corresponding reaction with 5 

mol% of 2 does not yield any significant amount of cyclized product.4 Similarly, tetra- 

substituted olefins (Entries 4 and 5) can be prepared in moderate to excellent yields using 

the complex 3.

Ring closing metathesis of macrocyclic ethers with complex 3 is comparable to 

that with complex 2. For instance, triethylene glycol diallyl ether (Entry 6) is cyclized at 

40°C to a 45% isolated yield with complex 3 and to a 39% yield with complex 2.13 The 

stereoselectivities of both complexes are similar and the product is obtained as a ~2:1 and 

a -1.6:1 mixtures of trans:cis isomers, respectively.

Conclusions

In conclusion, complex 3 exhibits high olefin metathesis activity in RCM 

reactions and extends the potential of the ruthenium family of complexes. Di-, tri-, and 

tetra-substituted olefins can be prepared in moderate to excellent yields. Further detailed 

studies regarding the mechanistic description, the scope and limitations, and the 

steric/electronic tuning of on the complex are under investigation.
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Experimental Section

General Considerations

High resolution mass spectra were provided by the Southern California Mass 

Spectrometry Facility (University of California at Riverside). Analytical thin-layer 

chromatography (tic) was performed using silica gel 60 F254 precoated plates (0.25 mm 

thickness) with a fluorescent indicator. Visualization was accomplished with one or more 

of the following: UV light, KMnC>4 , phosphomolybdic acid (PMA), cerric ammonium 

nitrate (CAN), or /3-anisaldehyde solution followed by heating. Flash chromatography 

was performed using silica gel 60 (230-400 mesh) from EM Science.14

All reactions were carried out under an inert atmosphere in oven-dried glassware 

unless otherwise specified. Solvents were purified by passage through a column 

containing A-5 alumina (all solvents) followed by a column containing Q-5 reactant (non- 

ethereal solvents). Argon was purified by passage through columns of BASF R3-11 

catalyst (Chemalog) and 4A molecular sieves (Linde).

Representative Procedures and Characterization Data

Representative procedure for the preparation of 3: To a solution of 

imidazolin-2-yIidene ligand 5 (304 mg, 1.0 mmol) in toluene (40 mL) was added a 

solution of Ru complex 2 (823 mg, 1.0 mmol) in toluene (10 mL) under N2  atmosphere. 

The reaction mixture immediately turned from purple to dark red and it was allowed to 

stir at RT for 1.5 hrs. The reaction mixture was filtered, toluene was evaporated in vacuo 

and the remaining solid residue was recrystallized from pentane at -78°C thrice to give
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the desired complex 3 (700 mg, 85%) as a pinkish-brown microcrystalline solid: lH 

NMR (CeDs, 400 MHz) 8 19.93 (s, IH), 7.15 (m, 5H), 7.03-6.93 (m, 2H), 6.9l(s, 2H), 

6.20-6.17 (m, 2H), 2.78-2.45, 2.40-2.00, 1.84, 1.80-1.48, 1.36-0.98 (all m, 51H); 3lP 

NMR (C6D6, 161.9 MHz) 5 32.43; HRMS (FAB) C4 6H6 3Cl2 N2 PRu [M l 846.3143, found 

846.3116.

f = \
R-N N-R

Cl/,,. |   Ph
CI*'R||

PCy3

R = C 6H2-2,4,6-(CH3)3

3
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Chapter 5

Synthesis and Activity of a New Generation of Ruthenium-based Olefin 
Metathesis Catalysts Coordinated with 

l,3-Dimesityl-4,5-dihydro-iniidazol-2-ylidene Ligands3
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Abstract

A new family of l,3-dimesityl-4,5-dihydro-imidazol-2-ylidene-substituted 

ruthenium-based complexes 9a-f has been prepared starting from RuCl2 (=CHPh)(PCy3)2 

2 or Cl2 (PCp3 )2Ru(=CH-CH=C(CH3 )2) 10. These air and water tolerant complexes 

exhibit an increased ring-closing metathesis activity when compared to that of the parent 

complex 2 and the previously developed complex 3. In many instances the activity of 

these complexes also rivaled or exceeded that of the alkoxy-imido molybdenum complex

1. Catalyst loadings of as low as 0.05 mol% could be used. In addition, applications of 

the chiral complexes 9c-f to asymmetric ring-closing metathesis are discussed.

Introduction

With the advent of efficient catalysts, the olefin metathesis reaction has emerged 

as a powerful tool for the formation of C-C bonds.1 Well-defined alkylidene-metal 

complexes, which are widely used for this transformation, include the alkoxy-imido 

molybdenum complex l 2 and the benzylidene ruthenium complex 2.3 The molybdenum 

complex 1 exhibits the higher reactivity of the two towards a broad range of substrates 

with many steric or electronic variations;4 however, it also suffers from extreme 

sensitivity to air and moisture as well as decomposition upon storage. To increase the 

utility of the ruthenium family of complexes by increasing their activity, we recently 

prepared ruthenium-based complexes coordinated with l,3-dimesityl-imidazoI-2-yIidene 

ligands 3.5 These complexes exhibited a high ring-closing metathesis activity similar to 

that of the molybdenum complex 1, yet have also retained the remarkable air and water 

stability characteristic of the parent benzylidene ruthenium complex 2.
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PCy3 R - nO n-R
° K J  Ph «  Y

N ph CI," J . = / Ph

(F3C)2MeCO^ Me Ya
R = CgH2-2,4,6-(CH3)3

C6H2-2,4-(CH3)2-4-(OCH3)

In search for even more efficient ligands for our ruthenium olefin metathesis
£  ■» «

catalysts, we have focused on the related 4,5-dihydro-imidazol-2-ylidenes 4. ’ ' We 

reasoned that due to the lack of carbene stabilization provided by the absence of n- 

interactions, these saturated imidazole ligands might be more basic then their unsaturated 

analogues.9 The higher basicity of these ligands should in turn translate into an increased 

activity of the desired catalysts.10

R' R'
w

R -N V N-R
• •

4

Results and Discussion 

Catalyst Synthesis

We began the synthesis of ligands 4 with the preparation of ethane-l,2-diamines 5 

(R’=H) and 1,2-disubstituted ethane-1,2-diamines 6 (R’=Ph, alkyl). The diamines Sa-d 

were easily made via the condensation of a variety of aromatic and aliphatic amines with
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glyoxal, followed by a reduction of the resulting Schiff-bases with either NaCNBH3 , 

NaBK;, or with H2  and Pd/C (Scheme l).u The diamines 6 a-e  were obtained in one step 

via the palladium-catalyzed animation reaction of various aryl bromides with 1,2- 

disubstituted ethane-1,2-diamines.12

R \ R'
y ~ (

R-N N-R
v t
H H

R'v R'
V“(

H2N nh2

Method a

5a: R1 = H, R = Mesityl 
5b: R' = H, R = Isopinocampheyl 
Sc: R’ = H, R = 2,6-Diisopropylphenyl 
5d: R’ = H, R = 1-Adamantyl

Method b

6a : R‘ = -(CH2)4-, R = Mesityl
6 b : R' = -(CH2)4-, R = 2 -isopropylphenyl
6c : R' = -(CH2)4-, R = 9-Anthracenyl
6 d : R' = Ph, R = Mesityl
6e  : R1 = Binaphthyl, R = Mesityl

Method a: (i) R-NH2, acetone/water; (ii) NaCNBH3, HCI, MeOH, or NaBH4, MeOH, or 
H2, Pd/C; Method tr. R-Br, Pd2dba3, (±)-BINAP, NaO'Bu, Ph-CH3 ,100°C.

Schem e 1. Synthesis of ethane-1,2-diamines 5 and 6

The diamines 5 and 6 were subsequently converted to the corresponding 

imidazolium salts through treatment with triethyl orthoformate in the presence of one 

equivalent of ammonium tetrafluoroborate at 120°C (Scheme 2).13 The resultant 

imidazolium tetrafluoroborate salts 7 were obtained quantitatively and could be purified 

further by recrystallization from ethanol/hexanes.
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R'\ R1

V ~ (
R-N N-R

V /

H H

(EtO)3CH
NH4BF4

120°C
1
R

©

B F ?

5,6 7a : R' = H R = Mesityl
7c : R' = -(CH2)4-,R = Mesityl
7d : R‘ = Ph R = Mesityl
7e : R' = -(CH ^-.R  = 2-isopropylphenyl
7f : R* = H R = Isopinocampheyl

Scheme 2. Formation of 4,5-dihydroimidazoyl tetrafluoroborate salts

We had hoped that these precursors (7) could be readily deprotonated with metal 

hydrides to yield the desired ligands 4 directly,7 especially since similar procedures have 

worked well for many unsaturated imidazolium salts.14 Unfortunately, we were 

unsuccessful at extending the published procedures7,14 to our saturated systems. Parallel 

work in our group, however, revealed the possibility of using protected carbenes as 

precursors to generate the free carbene ligands in situ. Specifically, it was found that 5- 

methoxy-triazoles could be reacted directly with metal complexes at elevated 

temperatures via the in situ conversion to the free triazol-5-ylidenes.15

Correspondingly, we prepared the similar 2-alkoxy-4,5-dihydro-imidazoIes 8 by 

treatment of the tetrafluoroborate salts 7 with sodium methoxide in methanol or 

potassium tert-butoxide in THF at ambient temperature (Scheme 3). Interestingly, the 

tert-butoxide/THF route worked much better than the methoxide/methanol route.16 

Although compounds 8 were too unstable to be isolated by common experimental 

techniques, presumably due to facile alcohol elimination and conversion to the desired
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ligands 4 upon workup, HRMS investigations revealed the presence of compounds 8 in 

the reaction mixtures.

q  CH3ONa, CH3OH
' r 

R'

R"' = fBu, Me
1

R'

7 8

Scheme 3. Formation of 2-alkoxy-4,5-dihydroimidazoles 8

The alkoxy-protected species 8 did not react with the benzylidene ruthenium 

complex 2 in benzene at ambient temperature. However, they readily reacted with the 

complex 2 when deprotected in situ by heating to 60-80°C. Specifically, when the 

alkoxy-protected ligand 8a was heated in the presence of complex 2 at 60-80°C, the 

desired ruthenium complex 9a coordinated with l,3-dimesityl-4,5-dihydro-imidazol-2- 

ylidenes was readily obtained as a pinkish-brown microcrystalline solid in good yield 

(Scheme 4). This complex could be purified further by recrystallizing from methanol.

1. KOBu, 
THF, minutes

Me.c—̂  N—Mes

Mes
2 .2 ,60-80°C, 

THF/C6H61 nr/ugng
5-80 min

PCy3

7a 9a

Schem e 4. Formation of the ruthenium complex 9a
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In addition, ruthenium sources other than the parent ruthenium benzylidene 2 

could be utilized. For instance, the treatment of tetrafluoroborate salt 7a with tert- 

butoxide in THF and then the exposure of the resultant adduct to vinyl carbene ruthenium 

species Cl2 (PCp3 )2Ru(=CH-CH=C(CH3)2) 10 at 80°C, leads to the formation of 1,3- 

dimesityl-4,5-dihydro-imidazol-2-ylidene substituted ruthenium vinyl carbene 9b in good 

yields (Scheme 5).

Mesi

i
Mes

©
©

b f 4
1. KOfBu, 

THF, minutes

2.10, 60-80°C, 
THF/C6H6 
5-80 min

r ~ \
M e s-N ^ N -M e s

J X -  ■ ■>

9b

Scheme 5. Formation of the ruthenium complex 9b

As a variety of chiral N-heterocyclic carbene substituted ruthenium olefin 

metathesis catalysts were desired for our project, they could be obtained in a similar 

manner, starting with the other tetrafluoroborate salts 7c-f (Figure 1).

Q
M es-N^-N-M es

C|/"...I . -Ph
CP

; ru= 

PCy3

Ph Ph
i ~ (

Mes—N ,-N -M es / /  
CU/,„T Ph
c K i

PCy3

c i/T  _ _
c r ? “

PCy3

c r Rl|=
PCy3

Ph

9C 9d 9e 9f

Figure 1. Selected N-heterocyclic carbene substituted ruthenium olefin metathesis catalysts
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Ring-Closing Activity of Complexes 9a-c

The RCM activity of complexes 9a and 9c was briefly explored and compared to 

that of complexes 1 and 2 as illustrated in Table 1. All complexes catalyzed the ring 

closure of diethyl diallylmalonate to form the corresponding di-substituted cycloolefin 

within minutes at 45°C (Entry 1). In the case of 2-substituted a,a>-dienes, however, the 

increased ring-closing metathesis activity of the complexes 9a and 9c was readily 

evident.17 For example, compound 11 was converted within minutes to the 

corresponding tri-substituted cycloolefin using complexes 9a, 9c and complex 1. In the 

same time duration the previously developed complex 3 facilitated a conversion of 85% 

and the parent ruthenium complex 2 a conversion of only 20% (Entry 2). For 

comparison, the same reaction at room temperature was completed within 1 hour with 

complex 9a, while little (< 5%) or no conversion was achieved with complexes 2 and 3.

A more dramatic illustration of the ring-closing metathesis activity of complexes 

9a and 9c was observed during cyclization of compound 12 at 45°C (Entry 4). This 

compound was readily converted to the corresponding tri-substituted cycloolefin with 

catalytic amounts of complexes 9a and 9c. But in the same time duration the 

molybdenum complex 1 resulted in a conversion of only 37%, and the parent ruthenium 

complex 2 completely failed to promote the cyclization.

Similarly, while the parent ruthenium complex 2 was not active for the formation 

of tetra-substituted olefins, these compounds could be prepared in moderate to excellent 

yields using both complexes 9a and 9c as well as complex 1 (Entries 6 and 7). For 

example, in the formation of the 6-membered tetra-substituted cycloolefin a higher
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Table 1. R esults of ring-closing m etathesis a t 45 °C utilizing 5 mol% of 
catalysts 1 ,2  and 9a and 9c

Entry Substrate Product Time Yield of product (%) using:
1 2 9a 9c

1.

2.

E E
E E 

6
E E

3.

4.

Me 

OH

6
E E

E E f-Bu X .

12 f-Bu

1 0 min quant, quant, quant, quant.

1 0 min quant. 2 0  quant, quant.

10 min N.P. N.P. quant, quant.

60 min 37 N.P. quant, quant.

5.
V V ' ^ A  / >  o-

/ v ° s / V
60 min (I5)a (39)a (35)6 (45)6

Me E  E

6.

Me

90 min 52 N.P. 90 87

Me Me 

E  E

M e e  E  Me X .

7' \  7  24 hrs 93 N‘P‘ 31 55
Me Me

E = C02Et; quant = quantitative conversion; N.P. = no product observed by 1H NMR; 
yields in parentheses are isolated, all other yields are determined b y 1H NMR; a E:Z = 
1.6:1; b E:Z = 2.0:1
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conversion was achieved with catalysts 9a and 9c then with catalyst 1 (Entry 6). This 

trend was reversed in the formation of the tetra-substituted 5-membered cycloolefin 

(Entry 7).

Furthermore, the advantage of the ruthenium carbene complexes 9a and 9c over 

complexes 1 and 2 could be demonstrated in cases where the molybdenum complex 1 

was inactive due to its incompatibility with functional groups,2 while the parent 

ruthenium complex 2 also failed, presumably due to a formation of unreactive chelates. 

Specifically, the ring-closing metathesis of unprotected l,6-heptadien-4-ol was 

quantitative with both 9a and 9c while no reaction was observed with either complex 1 or 

2 (Entry 3).

Since the complexes 9a and 9c showed enhanced ring-closing metathesis 

activities and the propagating species of these complexes in RCM reactions were long- 

lived,18 the use of lower catalysts loadings for RCM reactions was investigated. The ring 

closure of diethyl diallylmalonate in refluxing methylene chloride was conducted using 

0.1, 0.05, and 0.01 mol% of catalysts 9a and 9c with respect to the substrate. In the first 

case (0.1 moI% catalyst) quantitative conversions within I hr were observed with both 

catalysts; in the second case (0.05 moI% catalyst) the conversions were quantitative with 

9a (I hr) and nearly quantitative (94%) with 9c (3 hrs). In the third case (0.01 mol% 

catalyst) the yields were nearly zero with both catalysts. These results indicated a lower 

limit for the catalyst loading of approximately 0.05 moI%, which is about two orders of 

magnitude lower than for the parent complex 2 in this reaction. This feature might be 

especially useful, since ruthenium-based compounds are generally expensive, highly 

colored and moderately toxic.19
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Since the catalysts 9a and 9c showed unique activity towards challenging 

substrates for presently known ruthenium-based olefin metathesis catalysts (Table 1, 

Entries 3-4, 6-7), we also decided to investigate the participation of a-functionalized 

olefins in the metathesis reaction using 9b.20 Specifically, the ring-closing metathesis 

reactions of substrates bearing vinyl functional groups were attempted (Scheme 5). The 

ring-closing reaction of vinyl ether 13 proceeded in good conversion to give the cyclic 

adduct 14. Interestingly, substrates bearing both a vinyl ether and allylic ether were 

previously found to be inactive for ring-closing metathesis using 2.13 It is presumed that 

the allylic ether is initially reacting with the catalyst followed by a fast reaction with the 

vinyl ether minimizing the formation of a stabilized Fischer-type carbene. This proposed 

reaction mechanism is further evidenced by the inability of 9b to ring close substrates 

where both alkenes are vinyl ethers (Scheme 6).

CD2 CI2  

12  hrs, refux

2.5 mol% 9b

13 1 0 0  % conversion 
49% isolated yield

14

2 mol % 9b

CD2CI2  

1 2  hrs, refux

N.R.

Schem e 6 . Ring-closing metathesis of substrates containg vinyl ethers
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Asymmetric Ring-Closing Metathesis (ARCM)

The utility of chiral N-heterocyclic carbene complexes 9c-f was tested briefly for 

the asymmetric ring-closing olefin metathesis reaction (Scheme 7).21

n *  - S .  o ~ r r \ R

Scheme 7. Cartoon depicting asymmetric ring-closing metathesis

The acyclic diene precursors 15a-c and 16 were exposed to catalytic amounts of 

chiral 9c-f. The reactions were stopped at moderate conversions and the enantiopurities 

of the recovered starting materials were determined by chiral GC or by the preparation of 

Mosher’s esters (Scheme 8, Table 2).

R = TES (15a) 
OAc (15b) 
H (15c)

OTES

chiral catalyst 
0.05 M C6H6

chiral catalyst 
0.05 M C6H6

OTES

R<J

OTES

16

Schem e 8. Asymmetric kinetic resolution of alcohols 15a-c and 16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98

Table 2. Results of Kinetic Resolution of Prochiral Alcohols (Scheme 8)

Entry Catalyst Substrate Catalyst Reaction time, Enantiopurity of
loading Conversion recovered starting 

_________________________(mol%)____________________ material

1 9c 15a 5 23 min, 52% 18 ee%
2 9c 15b 5 40 min, 85% 40 ee%
3 9c 16 5 50 min, 50% 11 ee%
4 9c 16 5 160 min, 75% 20 ee%
5 9d 15a 6 60 min, 50% 26 ee%
6 9e 15c 0.1 40 min, 70% 31 ee%
7 9f 15a 5 30min, 75% 9 ee%
8 9f 15b 5 60 min, 50% 3 ee%

The cyclohexyl diamine based chiral catalyst 9c was prepared initially and found 

to catalyze the ring-closing of precursors 15a-b and 16 with low to moderate 

enantioselectivities ranging from 11 to 40ee%. In search for catalysts that would mediate 

the same reaction with a better control of enantioselectivity different chiral moieties were 

incorporated into catalyst design using a semi-combinatorial approach. For instance, the 

chiral cyclohexyl diamine moiety was replaced with chiral diphenyl ethylenediamine (9d) 

and with isopinocampheyl amine (9f). In addition, other structural changes were made 

which were geared at providing better chirality transfer from the far-lying chiral 

cyclohexyl diamine moiety to the metal center through the introduction of additional 

asymmetry of the N-substituents (9e) as well as a better interaction of the ligand sphere 

with the prochiral substrate through the introduction of substituents extending further into 

the metal sphere (9f). Disappointingly, these changes did not result in a better control of 

enantioselectivity.
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Conclusions

The novel 4,5-dihydro-imidazol-2-ylidene substituted ruthenium-based complexes 

exhibit high olefin metathesis activity in RCM reactions and extend the potential of the 

ruthenium family of complexes. Di-, tri-, and tetra-substituted cycloolefins can be 

prepared in moderate to excellent yields through RCM. With certain substrates, similar 

yields may be obtained when catalyst loadings are reduced to as low as 0.05 mol%. In 

addition, the ring-closing metathesis of substrates containing vinyl ethers is reported 

using ruthenium alkylidene 9b. Also, the application of chiral N-heterocyclic carbene- 

substituted systems 9c-f to asymmetric ring-closing metathesis is discussed. Despite low 

to moderate enantioselectivities observed more systematic studies are warranted. 

Especially, the effect of solvent and temperature on enantioselectivity should be assessed. 

Further detailed studies regarding the mechanistic description, the scope and the 

steric/electronic tuning of these complexes are under investigation.
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Experimental Section

General Considerations

High resolution mass spectra were provided by the Southern California Mass 

Spectrometry Facility (University of California at Riverside). Analytical thin-layer 

chromatography (tic) was performed using silica gel 60 F254 precoated plates (0.25 mm 

thickness) with a fluorescent indicator. Visualization was accomplished with one or 

more of the following: UV light, KMnCU, phosphomolybdic acid (PMA), cerric 

ammonium nitrate (CAN), or p-anisaldehyde solution followed by heating. Flash 

chromatography was performed using silica gel 60 (230-400 mesh) from EM Science.22

All reactions were carried out under an inert atmosphere in oven-dried glassware 

unless otherwise specified. Solvents were purified by passage through a column 

containing A-5 alumina (all solvents) followed by a column containing Q-5 reactant 

(non-ethereal solvents). Argon was purified by passage through columns of BASF R3-11 

catalyst (Chemalog) and 4A molecular sieves (Linde).

Representative Procedures and Characterization Data

Preparation of 1,2-dimesityl ethylene diimine: A 300 mL round bottom flask 

was charged with isopropanol (50 mL), water (100 mL) and mesityl amine (10.0 g, 74 

mmol). The solution was cooled to 0°C and a solution of 40% glyoxal in water (5.38 g, 

37 mmol) was added slowly. The reaction mixture was allowed to warm up to room 

temperature slowly and was stirred for additional 8 hours. The yellow precipitate formed 

was filtered off, briefly washed with cold acetone and air-dried to yield 1,2-dimesityl 

ethylene diimine.
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Preparation of 1,2-dimesityl ethylene diamine: (a) with NaCNBHa: A 300 mL

round bottom flask was charged with 1,2-dimesityl ethylene diimine (3.8 g, 13 mmol), 

methanol (100 mL) and NaCNBH3 (4.92 g, 78 mmol). Concentrated HCI was added 

dropwise to maintain the pH below 4, and the reaction was stirred at room temperature 

for 20 hours (overnight). The solution was then diluted with 50 mL water, made basic 

with NaOH, and extracted thoroughly with CH2 CI2 . The organic layer war dried over 

MgS04, filtered and the solvent was removed in vacuo to yield 1,2-dimesityl ethylene 

diamine (95% yield), (b) with NaBHc A 500 mL round bottom flask was charged with 

1,2-dimesityl ethylene diimine (6.8 g, 23.3 mmol), THF (100 mL) and methanol (100 

mL). NaBHi (6.40g, 230 mmol, 10 equiv.) was added portionwise over a period of 

several hours, until the initially deep yellow reaction mixture became colorless. Water 

(50 mL) and NaOH (1 M in H2 O, 50 mL) were added and the reaction mixture was 

concentrated in vacuo to 100 mL. The resultant aqueous phase was extracted with ether. 

The organic layer was separated dried over MgS04, filtered and concentrated in vacuo to 

give crude 1,2-dimesityl ethylene diamine 7g (quantitative yield), (c) with H2 , Pd/C: A 

50 mL round bottom flask was charged with 1,2-dimesityl ethylene diimine (300 mg, 

1.01 mmol) and ethanol (20 mL). 10% Pd/C (30 mg) was added and a hydrogen balloon 

was attached via a needle. TLC indicated complete spot-to-spot conversion within 4
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hours. The Pd catalyst was filtered off and the volatiles were pumped off in vacuo to 

yield 1 ,2 -dimesityl ethylene diamine.

Preparation of l,3-dimesityl-4,5-dihydro-imidazolium tetrafluoroborate 7a:

A round bottom flask was charged with 1,2-dimesityl ethylene diamine (3.8 g, 12.8 

mmol), triethyl orthoformate (15 mL) and ammonium tetrafluoroborate (1.35 g, 12.8 

mmol). The reaction mixture was stirred at 120°C for 4 hrs at which time TLC indicated 

complete conversion. Volatiles were removed in vacuo and the product was used as 

prepared or it could be purified further by recrystallization from ethanol/hexanes.

Mes
BR

Mes

7a

Representative procedure for the preparation of 9a-f: A 500-mL flame-dried 

Schlenk flask equipped with a magnetic stir bar was charged with l,3-dimesityl-4,5-
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dihydro-imidazolium tetrafluoroborate 7a (4.02 g, 10.2 mmol, 1.4 equiv.) and dry THF 

(100 mL) under nitrogen atmosphere. To this suspension, a solution of potassium tert- 

butoxide (1.25g, 10.2 mmol, 1.4 equiv.) in dry THF (200 mL) was slowly added at room 

temperature. The tetrafluoroborate salt dissolved immediately to give a cloudy yellow 

solution. The reaction mixture was allowed to stir at room temperature for one hour, 

followed by cannula transfer of the reaction mixture to another 1000-mL flame-dried 

Schlenk flask under argon. To this solution, dry benzene (400 mL) and 

RuCl2 (=CHPh)(PCy3 ) 2  (6.00 g, 7.29 mmol, 1.0 equiv.) were added. The reaction mixture 

was heated at 80°C for 30 min, at which point the reaction was complete as indicated by 

NMR. The volatiles were removed under high vacuum and the residue was washed 

with anhydrous methanol (4x100 mL) to give 9a as a pinkish-brown microcrystalline 

solid (4.64 g) in 75% yield: lH NMR (CD2C12, 400 MHz) 5 19.16 (s, IH), 7.37-7.05 (m, 

9H), 3.88 (s, 4H), 2.56-0.15 (m, 51H); 3lP NMR (CD2C12, 161.9 MHz) 5 31.41; HRMS 

(FAB) C4 5 H6 5 CI2 N2 PRU [M l 848.3306, found 848.3286.

Mes—N. .N-M es

Compound 9c was prepared in the same manner as above utilizing 7c: ‘H NMR 

(C6D6, 400 MHz) 5 19.60 (s, IH), 7.15 (m, 5H), 7.00 (s, IH), 6.94 (s, IH), 6.73 (s, IH),
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6 . 6 8  (s, IH), 3.89-3.50 (m), 3.10-2.60 (m), 2.57-2.52 (m), 2.26 (m), 2.17 (s), 2.08 (s), 

1.85 (s), 1.80-1.40 (m) 1.35-0.97 (m) (all resonances 3.89-0.97: 62H); 3IP NMR (C6D6, 

161.9 MHz) 8  31.06; HRMS (FAB) C ^.C L K P R u [M l 902.3775, found 902.3766.

Q
N-MesMes—N

Representative procedure for the preparation of l,3-dimesityI-4,5- 

dihydroimidazol-2-ylidene dichlorotricyclopentyl ruthenium dimethylvinyl carbene

9b: A 250-mL flame-dried round bottom flask equipped with a magnetic stirbar was 

charged with l,3-dimesityl-4,5-dihydro-imidazoIium tetrafluoroborate (3.08 g, 7.80 

mmol, 1.6 equiv.) and dry THF (30 mL) under nitrogen atmosphere. A solution of 

potassium rm-butoxide (0.88 g, 7.80 mmol, 1.6 equiv.) in dry THF (30 mL) was slowly 

added at room temperature. The reaction mixture was allowed to stir for 1/2 hr and was 

then slowly transferred to a 500-mL flame-dried Schlenk flask containing a solution of 

Cl2 (PCp3 )2 Ru(=CH=C(CH3 )2 ) (3.50 g, 4.88 mmol, 1 . 0  equiv.) in dry toluene ( 2 0 0  mL). 

This mixture was stirred at 80°C for 15 min, at which point the reaction was complete as 

indicated by lH NMR. The reaction mixture was Altered through a glass hit under argon 

and all volatiles were removed under high vacuum. The residue was recrystallized thrice 

from anhydrous methanol (40 mL) at -78°C to give 9b as a pinkish-brown micro
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crystalline solid (2.95 g) in 77% yield: lH NMR (C<>H6,400 MHz) 8  19.16 (d, /  = 11 Hz, 

IH), 7.72-7.69 (d, J  = 11 Hz, IH), 6.89 (s, 2H), 6.62 (s, 2H), 3.36-3.24 (m, 4H), 2.80 (s, 

6 H), 2.54 (s, 6 H), 2.41-1.26 (br m, 27H), 2.20 (s, 3H), 2.02 (s, 3H), 1.06 (s, 3H), 0.90 (s, 

3H); 3lP NMR (C6H6, 161.9 MHz) 5 26.50; HRMS (FAB) C4 iH6 lCl2 N2PRu [M+] 

784.2993, found 784.2963.

f— \
M e s-N ^ N -M e s

C k . I /= <  
J 'R u—

Cl 1 
PCy3

, ch3

vc h3

9b
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Chapter 6

Olefin Metathesis Activity Study of Polymer-Supported 
Ruthenium Bidentate Schiff Base Catalysts
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Abstract

Synthesis of the Schiff base-substituted ruthenium carbene complexes was 

achieved on a solid support by the treatment of RuCl2 (=CHPh)(PCy3 ) 2  with a Schiff base 

ligand attached to polystyrene support in the form of its thallium salt. The activities of 

the supported complex were compared to those of their unsupported counterparts. The 

newly prepared system was found to be highly stable to air, moisture, and temperature, 

and exhibited increased catalytic activity in acidic media.

Introduction

The development of more efficient well-defined single-component metal carbene 

complexes for use in olefin metathesis reactions has attracted the attention of the 

synthetic organometallic chemists. 1 Consequently with the advent of more efficient 

catalyst systems, olefin metathesis has emerged as a powerful tool for the formation of C- 

C bonds in chemistry. 2  However, the development of efficient, user-friendly olefin 

metathesis complexes for enantioselective and stereoselective applications remains to be 

accomplished. 3 To facilitate the progress in this area, catalysts which exhibit improved 

thermal stability as well as tolerance toward polar protic solvents need to be developed.

Recendy, we disclosed the synthesis and characterization of new ruthenium-based 

catalysts la-i coordinated with bidentate Schiff base ligands (Scheme I ) . 4  These 

complexes showed high metathesis activity in polar protic solvents and in commonly 

used organic solvents such as dichloromethane or benzene. Because the complexes were 

found to initiate only to a small extent and were mosdy found unchanged at the end of 

reactions, we decided to direct our efforts on recyclability and reusability of these
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complexes. We now wish to report the synthesis and activity of solid supported versions 

of the homogeneous Schiff base substituted systems.

= N —R TIOEt

n  ? Cy3

CK | 
PCy3 

11

C6H6, RT, 2 hrs THF, RT, 2-10 hrs 
>98% 54 - 82%

i-P r.

PI ~ N

i>W-Pr
PCy3ph

1a-i

a) R1=H, R2=H; b) R1=N02, R2=N02; c) R1=N02, R2=H; d) R1=H, R2=N02; e) R1=N02, R2=OMe; 
f) R1=OMe, R2=N02; g) R^OMe, R2=N02; h) R’=H, R2=OMe; i) R1=OMe, R2=OMe

Scheme 1. Formation of salicylaldimine Ruthenium complexes 1a-l 

Results and Discussion

Synthesis of Heterogeneous Ruthenium Schiff Base Complexes

For the purpose of attachment of the Schiff base ligand to a solid support, an allyl 

moiety was introduced to the amine portion of the ligand (Scheme 2). The commercially 

available 2,6-diisopropyl aniline 2 was brominated with NBS to yield the 4-bromo-2,6- 

diisopropylaniline 3 in quantitative yield. 5  4-Bromo-2,6-diisopropyl aniline 3 was then 

protected with benzaldehyde as the N-benzylideneamine6  4 and the desired allyl moiety 

was introduced via standard Stille cross-coupling with allyl tributyl tin . 7  Quantitative 

deprotection of the resultant allyl-substituted benzylideneamine derivative 5 was 

accomplished with Girard’s T reagent to yield 4-aHyI-2,6-diisopropyIaniline 6 . 8  Finally,
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the 4-allyl-2,6-diisopropylaniline 6  was condensed with 4-nitro-salicylaldehyde to yield 

the desired ligand 7.

N02

HO'

/-Pr

7

/-Pr

/-Pr- /-Pr

Ph

NJ

/-Pr/-Pr-

4

Ph

NJ
/-Pr/-Pr-

5

a: NBS, DMF, RT, 84%; b: PhCHO, cat. p-TsOH, 4A mol. sieves, Ph-H, reflux, 78%; 
c: AllylBu 3Sn, cat. Pd(PPh 3) 4, Ph-H, 100°C, 100%; d: Girard's T Reagent, CH 3OI 
92%; e: 5-N02*2-0H-PhCH0, cat. p-TsOH, 4A mol. sieves, Ph-H, reflux, 65%.

Scheme 2. Preparation of ligand 7 bearing an allylic linker

The attachment of ligand 7 to solid support was envisioned via platinum catalyzed 

hydrosilylation reaction (Scheme 3) . 9  Consequently, the commercially available 

polystyrene-diethylsilane linker (PS-DES) 8  was chosen as the solid support The 

progress of the hydrosilylation reaction was monitored by the disappearance of the Si-H 

IR stretching resonance at -2095 cm'1. The extent of attachment of the ligand to the solid
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support was also ascertained through elemental analysis and corresponded well with the 

initial amount of silane on the polymer support (0.5 mmol/g).

SiEt2H

OH

/-Pr/-Pr.

^ 0  PCy3

■^M-Ru=CHPh

/-Pr-

OTI

/-Pr/-Pr-

12 10

a: 7, cat. Pt-DTD, THF, reflux; b: TIOEt, THF, RT; c: 11, THF, RT.

Scheme 3. Attachment of the ligand to solid support and to the ruthenium metal

The subsequent steps for substituting the polystyrene supported Schiff base 

ligands on the ruthenium metal were identical to those of the unsupported ligands. 4 ,1 0
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Consequently, the intermediate 9 was treated with thallium ethoxide in THF at room 

temperature resulting in the thallium salt 10. The intermediate 10 was then reacted with 

the catalyst precursor 11 to give the desired heterocyclic ruthenium complex 12. The 

extent of ruthenium incorporation onto the solid support was again ascertained through 

elemental analysis and corresponded well with the initial amount of silane on the polymer 

support (0.5 mmol/g).

Metathesis Activity Studies of Heterogeneous Ruthenium Schiff Base Complexes

Based on NMR studies of ring-closing metathesis reactions of diethyldiallyl 

malonate esters with salen Ruthenium complexes la-i, we have determined that only a 

small portion of the salen benzylidene complexes initiated in ring-closing metathesis 

reactions (i.e., was converted to alkylidene propagating species) and that majority of the 

catalyst remained uninitiated throughout the reaction. We decided to exploit this feature 

by designing salen Ruthenium complexes attached to a solid support. In doing so we 

would not only gain the advantage of a catalyst system that was easily separable from the 

reaction products, 11 but also give us the opportunity to exploit the uninitiated portion of 

the salen complexes through recycling. In addition, the difficulty of purification of some 

of the Schiff base complexes such as lh  due to their high solubility in hydrocarbon 

solvents during crystallization would be alleviated since the purification of supported 

complexes would only require washing of the polymer bound complexes.

To test the supported salen systems, we exposed diethyl diallyl malonate to 

complex 12 in a variety of solvents for 24 hrs at room temperature (Table 1). The 

conversions achieved were low ranging from 0-31%. However, the significant rate
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increase found for the homogeneous catalysts in acidic media1 0  was again confirmed for 

the heterogeneous complex 12. When the reactions were performed in chloroform 

containing traces of acid, the conversions increased to 83% under the same conditions. 

This rate increase is again most likely associated with the increased acidity of the 

media. 4 ,1 2  However, compared to the homogeneous catalyst, the supported systems are 

somewhat less active. For example, while with 8  mol% unsupported catalyst after 45 min 

at room temperature the reaction is completed, utilizing 5 mol% of the supported catalyst 

required 24 hrs to reach 83% conversion.

Table 1. D ependence of Solvent on C atalyst Activity

Et02< X X 0 2Et
100 mg 19

Et02C. .C02Et

0.01 M solvent
* CH2—CH2

Solvent
% Conversion 

a t RT1

THF-d8 31

C 5 D5 28

CD2 CI2 16

Toluene-d8 14

MeOH 0

CDCI3 83

' Percent conversion at 24 hrs unless otherwise noted.
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To determine the longevity of the supported catalyst, diethyl diallyl malonate was 

exposed to complex 12 in chloroform at 65°C (Table 2). After the reaction was run for 24 

hrs, the conversion was determined by lH NMR, the catalyst was recovered, washed with 

chloroform, and exposed to a new batch of diethyl diallylmalonate. This sequence was 

repeated until the catalyst lost its activity after 3 recovery cycles. This result 

demonstrates that although the acidic media increases the activity of catalyst 1 2 , it also 

leads to a faster decomposition of the catalyst.

Table 2. Supported Catalyst Activity/Longevity

Et02< ° 2 a  EtOsĈ  yC02Et
100 mg 19

^  0.1 M CDCI3 \= J
ch 2= ch 2

Times % Conversion
Recycled at65°C 1

0 (fresh)

1 

2 

3

83

72

27

0

1 Percent conversion at 24 hrs unless otherwise noted.

To confirm the above results and also to provide further evidence for the 

acceleration of reaction rates in acidic media for the solid supported system, diethyl 

diallyl malonate was exposed to 12 in benzene containing a catalytic amount of DC1
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(Table 3). While the ring closure of diethyl diallylmalonate at RT in was completed 

in only 33% in 4 hrs, when catalytic amounts of DC1 were added to the reaction mixture 

the conversion was increased to 90% under the same conditions and in the same time 

period.

Table 3. Acid Effect on th e  Catalyst Activity

Et02C X X 0 2Et Et02C  ,C02Et
/ \  100 mg 19 X

-----------------►  s  N  * c h 2= c h 2
^  ^  0.01M C6D6 \ = /

Tim es
Recycled

% Conversion 
a t R T 1

0 (fresh) 90

1 90

2 52

3 0

1 Percent conversion at 4 hrs unless otherwise noted.

To test the longevity of the supported catalyst under the DC1 conditions, after a 

90% conversion was achieved (4 hrs), the catalyst was recovered, washed thoroughly 

with benzene and again exposed to diethyl diallylmalonate and a catalytic amount of DC1. 

The results were comparable to the ones obtained when CDCI3 was used as a solvent 

without any additional acid added (unpurified): during the first two recycle runs 90%
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conversions were achieved and during the third recycle run the catalyst lost its activity 

resulting in only 50% conversion after 4 hrs.

Conclusions

The object of this study was to disclose an efficient method of affixing ruthenium 

Schiff base-substituted catalysts to solid supports. The solid supported complexes were 

prepared efficiently, proved to be metathesis active and were easily recovered from 

reaction mixtures. However, the longevity of these systems leaves a lot of room for 

improvement. Current studies are directed at the exploration of other solid supports as 

well as other modes of attachment of the complexes to solid supports that may be able to 

slow down catalyst decomposition and extend the longevity of the supported complexes. 

In addition, the development of methods for support of other olefin metathesis catalysts 

such as the N-heterocyclic carbene-substituted olefin metathesis catalysts discussed in 

Chapters 4 and 5 is in progress.

Acknowledgments

Support has been provided by the National Institute of Health. L.J.II is grateful to 

the NIH for a Postdoctoral Fellowship. M.S. thanks Pharmacia and Upjohn for a 

Predoctoral Fellowship in Synthetic Organic Chemistry. The authors thank Drs. Fred Hu 

and John Porco of Argonaut Technologies, Inc. for the generous donation of polystyrene- 

diethylsilane (PS-DES) linker 8  and for their helpful comments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



120

Experimental Section

General Considerations

Unless otherwise noted, all operations were carried out using standard Schlenk 

techniques or dry-box procedures. Argon was purified by passage through a columns of 

BASF R3-11 catalyst (Chemalog) and 4 A molecular sieves (Linde). Solid organometallic 

compounds were transferred and stored in a nitrogen-filled Vacuum Atmospheres dry- 

box. lH-NMR (300.1 MHz) and l3 C-NMR (75.49 MHz) spectra were recorded on a 

General Electric QE-300 spectrometer. 3 lP-NMR (161.9 MHz) spectra were recorded on 

a JEOL GX-400 spectrometer. NMR chemical shifts are reported downfield from 

tetramethylsilane (TMS) ( 8  scale) with TMS employed as the internal solvent for proton 

spectra and phosphoric acid employed as the internal solvent for phosphorous spectra.

High resolution mass spectra were provided by the Southern California Mass 

Spectrometry Facility (University of California, Riverside. Elemental analyses were 

performed by Galbraith Laboratories, Inc. (Knoxville, TN). Analytical thin-layer 

chromatography (TLC) was performed using silica gel 60 F254 precoated plates (0.25 

nun thickness) with a fluorescent indicator. Flash column chromatography was 

performed using silica gel 60 (230-400 mesh) from EM Science. All solvents were 

rigorously degassed in 18 L reservoirs and passed through two sequential purification 

columns. 13 Complex l l 14 was prepared according to published procedures. Unless 

otherwise noted, all other compounds were purchased from Aldrich Chemical Company 

and used as received.
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Specific Synthetic Procedures and Characterization Data

2,6-Diisopropyl-4-bromoaniline (3). To a solution of iV-bromosuccinamide 

(0.36 g, 2 mmol) in dry DMF (20 mL) was added 2,6-diisopropylaniIine (1) (0.38 mL, 2 

mmol). The solution was stirred at room temperature overnight and poured into water. 

The organic layer was extracted with ethyl acetate, washed with brine and dried over 

magnesium sulfate. The solvent was removed in vacuo to afford 0.51 g (100%) of the 

title compound as a brown oil. Rf = 0.37 (9:1; hexane:ethyl acetate). 'H-NMR (CDC13) 5 

7.11 (s, 2 H), 3.78 (br s, 2 H), 2.88 (septet, J = 6.9 Hz, 2 H), 1.24 (d, J  = 7.0 Hz, 12 H).

/-Pr- /-Pr

Specific Procedure for the Synthesis of 2-[(4-Allyl-2,6-diisopropyl- 

phenylimino)-methyl]-4-nitro-pheiiol (7). A solution of 2-hydroxy-5-nitrobenzaldehyde 

(0.67 g, 4.0 mmol), 4-allyI-2,6-diisopropyIaniline 6  (0.87 g, 4.0 mmol) and p- 

toluenesulfonic acid (76 mg, 0.4 mol) in benzene (40 mL) containing 4 A molecular 

sieves was stirred under reflux overnight. Upon cooling the reaction mixture to RT and 

addition of hexane, a yellow solid precipitated from the reaction mixture. The solid was 

filtered, washed with cold hexanes and dried to afford the title salicylaldimine ligand 7 

(0.95 g, 65%) as a yellow solid: m.p. 120-121°C; lH-NMR (CDC13) 5 14.47 (s, 1H), 8.38
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(s, 1 H), 8.35 (d, J  = 2.6 Hz, 1 H), 8.30 (dd, J  = 9.2 Hz, 2.6 Hz, 1 H), 7.13 (d, J  = 9.2 Hz, 

1 H), 7.04 (s, 2 H), 6.05-5.95 (m, 1 H), 5.16-5.09 (m, 2 H), 3.41 (d, 7= 6 . 6  Hz, 2 H), 2.92 

(septet, J = 6.9 Hz, 2 H), 1.19 (d, J  = 6.9 Hz, 12 H); l3C-NMR (CDC13) 5 167.3, 165.5, 

142.7, 140.0, 138.9, 138.1, 137.4, 128.6, 128.4, 123.8, 118.6, 117.6, 16.0, 40.3, 28.4, 

23.6; IR (KBr, cm’1) 3435. 2963, 1625, 1385, 1345, 1299, 1100, 916, 833; HRMS (El) 

calcd forC2 2 H2 6 N2 0 3 (M*) 366.1943, found 366.1941.

NO.

HO-

/-Pr- /-Pr

Polystyrene-Diethylsilane (PS-DES) Linker 8 . This compound was obtained 

from Argonaut Technologies (San Carlos, CA); bead size = 100-200 mesh; loading = 

0.69 mmol/g. IR and elemental analysis data was obtained for comparative purposes: IR 

(KBr, cm*1) 3025, 2922, 2092, 1601, 1494, 1453, 754, 692; Anal. Found: C, 8 8 .8 6 %; H, 

8.87%; Si, 2.1%.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



123

Specific Procedure for the Attachment of 2-[(4-Allyl-2,6-diisopropyl- 

phenylimino)-methyl]-4-nitro-phenol 7 to the polystyrene-diethylsilane (PS-DES) 

linker 8 . To a 50 mL round bottom flask containing a stir bar and 15mL of dry THF was 

added 2-[(4-Allyl-2,6-diisopropyl-phenylimino)-methyl]-4-nitro-phenoI 7 (0.41 g, 1.33 

mmol) and platinum-divinyltetramethyl-disiloxane complex in xylene (2.1% Pt, 19.4mg, 

1.33 pm). The reaction mixture was stirred under reflux for 0.5 hrs at which time 

polystyrene-diethylsilane (PS-DES) linker 8  was added. The initially yellow solution 

turned orange and the reaction mixture was allowed to stir under reflux for additional 24 

hrs. The reaction mixture was then filtered through a 20-40p filter frit funnel. The 

collected polymer beads were washed with copious amounts of THF and dried on high 

vacuum to give intermediate 9 (1.48 g, quant, yield) as yellow polymer beads: IR (KBr, 

cm*1) 3449, 2989, 2886, 1773, 1633, 1379, 1104, 1016, 912, 746, 692; Anal. Found: C, 

86.85%; H, 8.34%; Si, 2.53%.
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OH

/-Pr/-Pr>

Et' Et

Specific Procedure for the Formation of the Thallium Salt of the Polymer 

Supported Schiff Base Ligand (10): To a 20 mL round bottom flask containing a stir 

bar and dry THF (7 mL) was added 9 (1.48 g) and TIOEt (110 mg, 0.44 mmol, highly 

toxic I ) .  The initially yellow polymer beads immediately turned dark brown. The reaction 

mixture was allowed to stir at room temperature for 24 hrs at which time it was filtered 

through a 20-40 micron frit. The collected polymer beads were washed with copious 

amounts of THF and dried on high vacuum to give intermediate 10 (1.6 g, quant, yield) as 

dark brown polymer beads: IR (KBr, cm-1) 3025, 2922, 1600, 1492, 1451, 1384, 1028, 

751,697; Anal. Found: C, 70.98%; H, 6.95%; 0 , 0.59%; Si, 4.45%; Tl, 10.39%.
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on

/-Pr- /-Pr

Et' Et

Specific Procedure for the Formation of Polymer Supported Olefin 

Metathesis Catalyst (12): To a 20 mL round bottom flask containing a stir bar were 

added dry THF (5 mL), 10 (0.56 g) and the ruthenium precursor 11 (0.50 g, 0.6 mmol). 

The reaction mixture was allowed to stir at room temperature for 24 hrs at which time it 

was filtered through a 20-40 micron frit. The collected polymer beads were washed with 

copious amounts of THF and dried on high vacuum to give the desired product 12 (0.5 g, 

calculate yield) as dark brown polymer beads: IR (KBr, cm-1) 3025, 2923, 1601, 1492, 

1451, 1384, 1004, 904, 838, 753, 697; Anal. Found: C, 70.95%; H, 6.93%; Ru, 1.58%; 

Cl, 2.26%; P, 0.42%; Si, 5.77%.
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0,N

O PCy3 
Ru=CHPh

/-Pr

t  V
Et Et

General Procedure for the Ring-Closing Metathesis of Diethyl 

Diallylmalonate using the supported catalyst 12: All reactions were performed on the 

benchtop under an inert atmosphere of Argon. To a 50 mL round bottom flask containing 

the appropriate solvent (amount and identity given in Tables 1-3) were added catalyst 12 

(100 mg, -0.5 mmol) and diethyl diallylmalonate (240 mg, 1 mmol). In the experiments 

described in Table 3, also a solution of DC1 in CD3OD (0.32M, lOfiL) was added. The 

studies were run at both ambient and higher temperatures (65°C) to access the activity 

and stability of the catalysts during the course of the reactions. The reaction mixtures 

were stirred for the indicated amounts of time (Tables 1-3). Product formation and diene 

disappearance were monitored by integrating the allylic methylene peaks.
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