Some estimates of Fourier transforms

Thesis by
Oleg E. Kovrijkine

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

2000
(Submitted May 12, 2000}



Acknowledgements

I am deeply grateful to my advisor Professor Thomas Wolff for his support and
supervision during my research. It has been a great pleasure to work under his
guidance.

I would like to thank also W.A.J. Luxemburg, N. Makarov, B. Simon and A.
Soshnikov for useful discussions and suggestions.

Finally, I would like to thank the Mathematics Department of the California
Institute of Technology for giving me an opportunity to conduct my research and for

supporting me during my study.



Abstract

This work consists of two independent parts. In the first part we prove several re-
sults related to the theorem of Logvinenko and Sereda on determining sets for func-
tions with Fourier transforms supported in a parallelepiped. We obtain a polyno-
mial instead of exponential bound in this theorem, and we extend it to the case of
functions with Fourier transforms supported in the union of a bounded number of
parallelepipeds. When dimension d = 1 we also consider the case of infinitely many
lacunary intervals. We generalize the Zygmund theorem for lacunary series whose
Fourier coefficients are replaced with polynomials of uniformly bounded degree. We
give also a necessary condition for the support of Fourier transforms for which the
Logvinenko-Sereda theorem still holds.

In the second part we prove that the L2([0,1]¢ x SO(d)) norm of periodizations
of a function from L'(RY) is equivalent to the L>(R?%) norm of the function itself
in higher dimensions. We generalize the statement for functions from LP(R?) where
1<p< d—'j’% in the spirit of the Stein-Tomas theorem. We also show that the following
theorem due to M. Kolountzakis and T. Wolff does not hold if dimension d = 2: if
periodizations of a function from L'!(R?) are constants, then the function is continuous

and bounded provided that the dimension d is at least three.



iv

Contents
Acknowledgements ii
Abstract iii
0.1 Imtroduction .. ... .. . ... ... ... 1
1 Some results related to the Logvinenko-Sereda theorem 2
Ll Overview. . . . . . . . . i it e e e e e e e e e e e e e e e 2
1.2 Case of one parallelepiped . .. ... ... ... ... ......... 5
1.3 Case of finitely many parallelepipeds ... ... ... .. .. ... .. 16
1.4 Case of infinitely many lacunaryintervals . . . . ... .... .. ... 22
1.4.1 Conjectured theorem . . ... ... ... ... .. ....... 22
142 Large E,smallsupport . . . . ... ... ............ 23
143 PeriodicE ... ... ... ... . 27
144 Generalized lacunary series. . . . . . .. ... .. .. ..... 33
1.5 Necessary condition forsupport . . . .. . ... ... .. ... ..., 53
2 Periodizations of functions 59
21 Overview. . . . . . . . . e e e e e e e e e e e e e e e e e 59
22 Casep=1. ... .. . i i i e e e e e e e e e e e e e 62
23 Casel<p< & ... ... ... .. 73
24 Cased=2andp=00 . .. .ot vttt vttt i e 84

Bibliography 89



0.1 Introduction

This work consists of two independent parts. We use various estimations of Fourier
transforms to obtain results.

The first part considers the Logvinenko-Sereda theorem which is one of the basic
examples of the so-called Uncertainty Principle in Fourier Analysis. This Principle
states that a function and its Fourier transform can not be simultaneously supported
on “small” sets. Although this formulation is rather vague, we obtain rigorous re-
sults. Intervals and compliments of “relatively dense” subsets play the role of small
sets in our situation. The Logvinenko-Sereda theorem is based on properties of entire
functions of exponential type. We will improve on this theorem by getting an optimal
estimate and generalize it for the case of finitely many intervals. We will also inves-
tigate the case of infinitely many lacunary intervals. We will generalize a result of F.
Nazarov for the Zygmund theorem on lacunary series. We will also give a necessary
condition for the support of Fourier transforms for which “relatively dense” subsets

are still determining sets.

The second part is devoted to periodizations of functions from L!(R?) in higher
dimensions. Some results on the Steinhaus tiling problem due to M. Kolountzakis
and T. Wolff are related to mine since periodizations naturally appear in the problem
of Steinhaus. The main idea can be formulated in this way. If we are given some
information on periodizations, what can we say about the function itself and vice
versa? It is rather natural to formulate this problem in terms of various norms.
Using some facts from Number Theory, we prove that the L2([0, 1] x SO(d)) norm
of periodizations of a function from L!(R%) is equivalent to the L2(R?) norm of the
function itself in higher dimensions. We generalize the statement for functions from
LP(RY) where 1 < p < 2% in the spirit of the Stein-Tomas theorem. We will also show

that the result due to M. Kolountzakis and T. Wolff, which holds when dimension
d > 3, does not hold when d = 2.



Chapter 1 Some results related to the
Logvinenko-Sereda theorem

1.1 Overview

The purpose of this work is to study the behavior of functions whose Fourier trans-
forms are supported in a parallelepiped or in a union of finitely many parallelepipeds
on “thick” subsets of R%. A main result of this type was proven by Logvinenko and

Sereda.

By a “thick” or “relatively dense” subset of RY we mean a measurable set E
for which there exist a parallelepiped II with sides of length a;,as, ..., a4 parallel to

coordinate axes and vy > 0 such that
|[EN (I +z)| 2 ~|] (1.1)
for every r € R4.

The Logvinenko-Sereda Theorem, d = 1: let J be an interval with |J| = b.
If f € LP(R), p € [1, +oq], and supp f © J and if ¢ measurable set E satisfies (1.1),
then

(ab+1)
Y

| fllzecey = exp(—C - ) - £l (1.2)

It is a well-known fact that the condition (1.1) is also necessary for an inequality



of the form

I lleee 2 C - Ifll,

to hold. See for example ([7], p.113).

We will improve the estimate (1.2) by getting a polynomial dependence on v and

show that our estimate is optimal except for the constant C:

Theorem 1: let J be a parallelepiped with sides of length by, bo, ..., by parallel to
coordinate azes. If f € LP(R?), p € [1, +00|, and supp f C J and if a measurable set
E satisfies (1.1), then

C(¢+Zd: a;b;)

floer 2 (Zz) = - Il

We will also generalize the Logvinenko-Sereda theorem to functions whose Fourier

transforms are supported in a union of finitely many parallelepipeds:

Theorem 2: let Ji be identical parallelepipeds with sides of length by,bo, ..., bq
parallel to coordinate azes. If f € LP, p € [1,+00|, and supp f € JJi and if a
[

measurable set E satisfies (1.1), then

“f“LP(E) Z C(’Y, n,a- br dw p) - "f"P

where ¢(y,n,a-b,d,p) = (975 depends only on the number of paral-

lelepipeds but not how they are placed.

) —-a‘b(%d-) u-'n'f’%l

The next natural step is to consider the case of infinitely many parallelepipeds.
We will conjecture the following theorem for infinitely many lacunary intervals when
dimension d = 1:



Theorem 3: let A = {\}i2_, be lacunary and let E be “relatively dense.” If

feL?andsupp f C G e — 3 Ae+ 3, then
k=-—oca

“f"L?‘(E) .>_ C(’Yy Nr a, b) " "f"?.~

See section 1.4.1 for the definition of lacunarity. We will prove some partial results:
the above Theorem holds when + is large or when b is small. [t holds too when £
is periodic. We will also generalize Nazarov’s result for the Zygmund theorem on
lacunary series ([13], Theorem 3.6):

Nazarov’s Theorem: let A = {A\}32_ . be a lacunary sequence of integer num-
bers with the mazrimal number of representations N. If f € L*([0, 2r]) with specf € A
then

LWzmmmm@

_C(N.e)
with C(|E|, N) = e 187 for every E with positive measure.

We extend the above theorem to generalized lacunary series with Fourier coeffi-
cients being replaced by polynomials of uniformly bounded degree:

Theorem 4: let [ be an interval of length 1 and E be a subset of I of positive mea-
sure. If A = {\}2 _, is lacunary in the sense of (1.29) and f(z) = Y. pi(z)e?*
k=-o0

where pe(z) are polynomials of degree at most m, then
[1ee 2 cagLNm) [
E I§

C(m+1)

where C(|E|,N,m) = e~@=CMN (&)
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Note that the constant C below is not fixed and varies appropriately from one
equality or inequality to another without being mentioned.

1.2 Case of one parallelepiped

Proof of Theorem 1:
First we treat the case when p € [1,+00). Without loss of generality we can always

assume that J is centered at the origin:

By considering f(, ..., ;’;—3) instead of f, we can also assume that |E NII| > v for all

cubes I with sides of length 1 and parallel to coordinate axes and

S’l[p'pf C —a—lblr 9;;“1 X oo X [_E‘;_bd'v GL;d']r

just say

- by b ba b
suppf C [—51'7 51'] X .o X [__547 Ed]’

Define b = (by,...,b4). Bernstein’s inequality ([2], Theorem 11.3.3) applied to each

variable separately gives that

[irer<c-v=- [

with C = 1. Here a = (ay, ...,0q) is a multiindex in R? with nonnegative integer
d

coordinates. |af = Y a;. f@ =ZL . L2f If z € RY then z° = zf - .. - 3%

a=ay!-...-a4.

Divide the whole R? into cubes II with sides of length 1 and parallel to coordinate
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axes. Choose A > 1. Call a cube II bad if Ja # 0 such that

[ QP > 2 AllP(C by . / T
n I

Then

1
()
s [ T smpelr
n a#0
T is bad [T i3 bad

1 / |
- e | P
§ 2ARC B

IT ss bad

1
(a)
Z 2dAlalp(C. b)er / Thd

Z s |

a#0

= (m—l)/zd [ e (L3)

AN

IA

Choosing A = 3 and applying (1.3), we obtain

/ fr <3 [

iIis bcd

Therefore,

/ e =25 [ 1. (L4)

l'(ugoad

Replace 3C with C.
We claim that 3B > 1 such that if II is a good cube, then 3z € II with the property
that

9@ <4t BemC -y [IfF Ve
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Suppose towards a contradiction that this is not true. Then

2 [P <Y gt/ @@ vee
n a .

Integrate both sides of (1.5) over IT:
d 1 ()
w2 [1P < Y g @
i @ n
1
< 2 Blalp/mp
@ g
1 / .
= — [
- GrF

Choose B = 3 and apply (1.6). So

2. [ P < (3/2)° [ P
I It

This contradiction proves our claim. Replace 3C with C.

We will need to prove the following local estimate:

[ (Z)" "Z"/mp

for every good cube II. Without loss of generality we can assume that

o= [-%, ]d

DO =

by considering a shift f(z —n) which has

suppf(z —m) C [—% %1 x [~

ba bd

(L.5)

(1.6)
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Let z = (z, ..., 2z4) € C? be a complex vector. Let D;(0, R) = {z; € C : |z;] < R} be
a disk in the complex plane C. If

1

ZE DI(O, R) X .o X Dd(O, R) C D1(2?1,R+ 5

1
) X .o X Dd(l‘d,R-i- 5)

then

()
@ < SLZE e

<(R+3)-(Cb)"
< ) 4 = 1 Fll Loy

a

d
4 1 'y -
= 4 exp(C(R+3))_b;) - I flloem- (1.7)
2" &
We can assume that [ |f|” = 1. Then 3y € II such that [f(y)| > 1. Following
an idea of F. Nazarov we can choose spherical coordinates centered at y and find a
segment [ € I, y € [ and E‘I'?I—” > C(d)y:

v £ |ENT]|
= /Xann(l')dz

o
r(§)

- / /Xsnu(y+7”5)7'd—ldrd°'(§)~ (18)
|€l=1r=0

It follows from (1.8) that 3n € S%! such that

r(n)
¥ < 041 / xenm(y +rp)r¢ldr

r=0

where 64_; = |S%!|. Let I be the longest interval in II centered at y in the direction
of n:

I'=y+t|lln, 0<t<1 (1.9)



It is clear that || < d'/2. Therefore,

|[ENI| > ¥
| = ogy -di?

T (1.10)

v
l

It follows from (1.10) that

EnI
~
> T (1.11)
Define an analytic function of one complex variable w € C
F(w) = f(y +wl|l|n). (1.12)
Then |F(0)| = |f(y)| 2 1. If w € D(0, R) then
1 1
z=y+wllln € Diy(0,R+3) x ... x Da(0, R+ 3)
since |y;| < % and ||I|n;] < 1 for j = 1,...,d. Then it follows from (1.7) that
. d
IFw)] < 47exp(C(R+1))_b;). (L13)

=1

Now we will give a local estimate for analytic functions of one complex variable.

Lemma 1: Let ¢(z) be analytic in D(0,5) and let [ be an interval of length 1
such that 0 € I and let E C I be a measurable set of positive measure. If |¢(0)| > 1

and M = aas.i:[:ﬁ(zﬂ, then

In M

n2

supl(a)l < (%) sup 4(a)! (L14)
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Proof of Lemma 1:
Let wy, ws,...w, be the zeros of ¢ in D(0,2). If

s L3525 - 8

then |g(0)| > 1 and ﬂ%‘} lg(z)| £ M by the property of Blaschke products. Applying
Harnack’s inequality to the positive harmonic function In M — In |g(2)| in D(0,2) we

have:
ﬁ%{(hM —In|g(z)]) £ 3ln M.
Therefore,
> M2
min |g(2)} 2 M
This gives us
maxlgs)|
- < M°.
min |g(z)]
€l

We can give a similar estimate for Q:

max 1Q(z)| max [] |4 — @kz|

- < ~
Q@] i [ [t o

< 3

From the Remez inequality for polynomials ([3], Theorem 5.1.1) it follows that:

z€E

4 n
sup|P(a)] < (TEI) -sup|P()].
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Therefore,
max | P(z)|
sl < maxls@l ooy
3 o itéglf’(f)l
< M3-3 (W) i lo@) - o@

From Jensen’s formula it follows that n < 2L, Therefore,

In M
In2

suplo(a)l < (157)  suplotall.

Now we are in a position to proceed with the proof of our theorem. Let M =

;:nlax{F(w)l Applying Lemma 1 to F(w), interval [0, 1] and set {¢ € [0,1] : y+¢£|I|n €
EN I} and using (1.11), we have that

sup f(z)| = sup|f(z)|
enr

ENIl
|ENTI) =%
> (Zm) T Wl

Therefore,
In A

Hrel:|f(z)| < (Cd) I flleam} <€ Ve>o.

Ifwepute=|8—gu-'-then

e e o) < (E0H) ™ g1 < E0TL



Therefore,

./Iflp z ./‘XIJ’IZ(J%I-L)Iil';lill!fllz.ﬂ(n)-Iflp

ENII ENIT
In AL
|[ENTI ENnM\?=2
> L (ERID ™y ppe, o

2 2Cd

|E NI\ PR
> - [ 1P
24
I

Using (1.13) we get
., d
M < 4> exp(5C ) _b;).
J=1
Hence we obtain the desired local estimate
3 +Cp Y‘
J ez ( / Tk (1.15)
ENI

for every good cube II. Summing (1.15) over all good cubes and applying (1.4), we

have

E[ e [

En U I
Il is good
d
~ \34+Cp 3 b;
> (E) =t . / IfIP

IT
!Iwgood

% ( 3¢i+Cplz_:l /‘ [f[p

v
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Replacing Z b; with Z a;b; and choosing a new C, we have:

Jj=1

/ P2 (&) r ik [ise.

If p = 0o then the proof is almost the same: ||fllz=( y m = [|flle- L is good

is go

then || fll L (enm > (-7:) ‘n "1/ llzoo(m)- Hence

w2 ()5 )

If we keep track of all the constants and do the calculations more accurately, then

we can get that if d = 1 and p € [1,00):

v \Bebrs
Iflerer 2 (555) - 1l
ifp=oc:
¥ 33ab+1
(g 2 | — - .
Iflemer 2 (75)" -1l

However, if we try to minimize the factor in front of ab, then we can get the following
estimate:

(842 1 e)-abtA(e)
) Ifllp Ve>o0.

Il 2 (&
The following example suggests that the right behavior of the estimate in the
Logvinenko-Sereda Theorem is v to the power of a linear function of f: a;b;:
Let J be a parallelepiped with sides of length by, ...,b4 parallel to cjozolrdina.te axes
and let II be a cube with sides of length 2 parallel to coordinate axes. Denote
b = (b,..-,b4). Let T = Projp(L,1,...,1) = f:[bj/ |bl. Choose another system of
i=
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coordinates yyi, ..., Yo With axis y; parallel to b. Define

Fly) = A)¥ (s, - va)
where
hly) = (Xi-3 - X[—'-'?*-,-“%])(yl)

d .
with the number of convolutions equal to [|b|T/87] = [>_ b;/87| and ¢ is supported
i=1

in a small enough ball in R%"!. Then f lives in a cylinder with axis along the main
diagonal of J parallel to b with small enough radius so that it is inside of J. We have

- (3" b;/8n]
fly) = (w) = - Y(Y2, .ons Ya)-

n

Let E = E, x R%! where E, is a periodic subset of y; axis with period T

Then
I[EN(IT+z)| > C(dy|II] Vze R<.

d
If 3" b; is large enough we have:
=1

d
v\ L+ X bi/ew
Il < (F) = Ml

and therefore

W lleey = ||f1[lu(5;)|l¢||p
< () E " 1ol

- ()™ S,
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d
Remark 1: when ) a;b; is sufficiently small the proof of the theorem is much
Jj=1

simpler: if 2 ajb; < 1/p then || f|l(zy = (F)? ||f][p for certain p. This can be proven
very easxly If p = 1 we have

- f(@)] > / fl- ¥ a / £ (L16)

az(la; <1

and

- 1f(2)] < / A+ f £ (L17)
n <1

where z € I1, by induction on the dimension d. Hence, using (1.16), we have

- | [f(z)ldz 2 I | [ Ifl- 1<)
Lz ([ 2= )

a#O ;<

Therefore,

[ f@)ldz > / - 3 e / £,

a#z0:a; <1

Summing over all parallelepipeds II we have

- Ef nz [ n- ¥ « [
> [1n- #om'ﬁ)‘*a‘* [

- (2- H(1+a,b /2)) / Al

=1

LT / Il

> cfin
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If p is an integer then repeat the previous argument with f? instead of f and take
into account that supp}':p € p-J. We can also repeat the above argument when p > d
where p is not necessarily an integer since if || < p then [ |fP(®)] < (pb/2)= [|f7|
(combine Holder’s and Bernstein's inequalities to get it). It is even easier to prove
that if p = 0o and z asb; < 1, then | fllzm(z) = 4l flle-

i=
Alternatively, using Holder s inequality, we can obtain

AT / 1£lP -

ENM a#0:a; <1

7
Z a”“c"”/[f(“)lp) . z &l .

a#l:a; <1

> a;bjp/4
Put c, = a®/*(b/2)*/2. Then we are done provided (e’=! - 1)

that if Z a;b; < C then || fllo(gy 2 lé-llf[lp for p € [1,q].
=1

< 2% It shows

In a similar way using inequalities analogous to (1.17) we can treat the case when 1—v
i . . d . -p<0+2 a3b;/2)
is sufficiently small depending on )" a;b;: if p€ [l,00) and 1 —y<e 3=t
=1

then || flI7, gy = 3l FIIE-
When d = 1 we get better results.

1.3 Case of finitely many parallelepipeds

Proof of Theorem 2:
Let

by b ba b
J=[-2 2 ) d Od

3 gl * x5 gk
Then Ji = J + A¢ where Az € R%, k= 1,2,...,n. Denote by

Je=2J+ , k=12 .. n

First we will prove a special case of Theorem 2:
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Theorem 2": if Ji, k = 1,2, ...,n, are disjoint
then
N fllcegy = e(v,n,a-b,d,p)- || fll

Cd n
where ¢(y,n,a-b,d,p) = (é]?)a.b(7) +n—%l.

Proof of Theorem 2':
Let f(z) = Z fe(z = Ax) where suppfi C J and f(z) = Z fe(z)e*=*. The following

lemma glves a.n estimate of || fi||, from above.

Lemma 2:

”fk“l’ < Cd”f”? (k=1,2,..,n). (1.18)

Proof of Lemma 2:
Let ¢ be a Schwartz function such that supp ¢ C [-1,1}]¢ and o) =1lforz e
—4,31%. Then fu(z) = f-o(EPEL, ..., LK), Therefore, fi = f+(|J|@(0121, ..., baza)e™™).
Applying Young’s inequality we have || fill, < ||l - 191l g

We will also need the following auxiliary lemma on local estimates of generalized

trigonometric polynomials of one real variable:

Lemma 3: if r(t) = 3 pe(t)e®x
=1
where pi(t) is a polynomial of degree <m — 1 and E C [ is measurable subset of an
interval I with |E| > 0, then

CI nm—1
= < (S5) - Irlemce (119)
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Proof of Lemma 3:

If g is a pure trigonometric polynomial of order n, i.e.,

n
g(t) = cheipkt’
k=1

then it follows from a theorem on trigonometric polynomials by F. Nazarov ([13|,
Theorem 1.5) that

cin"!
lollzmey < (—I}ET') Nollzmcer- (1.20)

m—1
If p(t) = Y. ait! is a polynomial of degree m — 1, then it can be approximated
=0
uniformly on an interval with a trigonometric polynomial of order < m

m—1 it I mel
- e —1 -
Bty =) a ( o ) =) e

=0

because ¢ = lim ":‘T‘l uniformly on an interval. Applying (1.20) to the trigonometric
g
polynomial of order mn

Fe) =) Pult)e™
k=1
and taking the limit we have the desired result:

nm~—{
=y < (%) Nrli=ce)-

Now we are in a position to proceed with the proof of Theorem 2’.

First we assume that p € [1,00). Divide the whole R? into parallelepipeds II.



19
Consider one of them. Suppose | f| attains its maximum in I at point y € II. We can

find an interval [ € II, y € I and |E.!'?|n > C?%y (see argument before Lemma 1):

[=y+tn, 0<t<l (1.21)
{t€l0,1]:y+Hllne ENTY = 'Elg d
> % (1.22)
Define
Ft) = fly+¢lln)
= ) fily + til|m)eetvriin, (1.23)
k=1
Using the Taylor formula

t

m—1
git) = Z g‘(O _1_ D /g‘""(s)(t —-s)™"lds

0

t

1 (m) m—1
g™ (s)(t —s)™ 'ds
(m—-1)! ,0/

p(t) +

where p(t) is a polynomial of degree m — 1, we obtain from (1.23)

t

3 ety / o™ (s)(t — 5)™1ds

1
m—1)!
( )I:=I 4

F(t) = ) m(f)e™ +
k=1

= r(t) + T(t)
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where gi(s) = fk(y + s|I|n). Applying (1.17) to f; (°) we have that

max [T(8)] < %szmaxl @)l

te(0,1] k—l[ il

< ,Z > LS AP a1

k=1 Ia[—m B Bi<l

Denote the last quantity by M. Applying Holder’s inequality we have

dmdp -t
wmn < SIS Y ¥ (T

k=1 jaj=m #,6;<1

) . (124

Summing (1.24) over all parallelepipeds [T

Swem < ETHTS S 5 (R
T

) Tl
I k=1 |a|=m 8,8:<1

d,d 1" I
2%‘,,? DI (m“ ) (CB) 2P| 2

k=1 [aj=m B,8;<1

IA

29mdn)P-1(Ca - b)™PeCrab T
< P
(Cmn)¥(Ca - b)mPeCrab

= [l

where the last inequality follows from (1.18).
Lemma 3 applied to r, interval [0,1] and subset E} = {t € [0,1] : y + ¢t|[jlp € EN I}

A1 (1.25)

gives the following local estimate:

WAl Loeqmy 1 Fll L= (o, 11)

IA

Il zeo o,y + M

Cd nm—1
< (7) “lrllzecey + M
Cd nm—1 Cd nm—1
< (9) Wlme+(Z) m

IA

Cd nm-—1 Cd nm—1
(7) W fllzomce + ( 2 ) M. (12)
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An argument similar to the one after Lemma 1 shows that the following can be
obtained from (1.26)

cd pnm—(p—1) cd pnm—(p—1)
WA < 270 — W o nm + 277 | = - MP|TI].

Summing over all parallelepipeds II we have:

cd pnm—(p—1) e pnm—(p—1)
[isp < (—) -llfllz,(g)+(—) S b

Y v I
cd\ el Cct\"™ "1 (Cmn)P(Ca - b)mPeCrab

< (&) me+(5) 2 g
Cd pnm—(p—1) Cd pnm a-b mpeCpavb

< (5 e+ (S) BT (127

The second inequality follows from (1.25). The last inequality is due to Stirling’s
formula for m! and the fact that ¢t < 2.

Choose m such that it is a positive integer and ((f,—d) b <l eg,
m=1+[a-b (9}) | with so large C > 0 that the factor in front of || f||? in the last
inequality in (1.27) is less than ;. Therefore,

[ie < (%d)m(mb(g)u)_w- E/ I

d pa-b(g) nﬂm—(p—l)
(&)
E

7

IN

The proof for p = oo is similar and even simpler. a

Now we can proceed with the proof of Theorem 2. We will apply induction on
n. For n = 1 the theorem follows from Theorem 2’ or the usual Logvinenko-Sereda
Theorem. Suppose the statement is true forn <m. Letn=m + 1.
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If Ji, k = 1,2, ...,n, are disjoint then the result follows from Theorem 2'.

If J; and J; intersect each other for some k and [, then we can replace J with

3J reducing the number of frequencies Ar and replacing b with 3b. Therefore, by

induction:
Cd —3a-b(CTd)m-m+£;—l-
e 2 (5) Wl
cd -a-b(—c;i)('"“)-(mﬂ)#;—‘
> (7) Al

a

The purpose of this theorem is to prove the existence of a constant ¢(v, n, ab, d, p) >
0 depending only on the number of parallelepipeds and not how they are placed rather
than to get the best possible estimate. We can conjecture that the right behavior of

the constant ¢(-y, n,ab, d, p) is the following:

Cna-b+n-23L
7 ) ’ (1.28)

c(‘anra' b7 d,P) = (—Cr—d

The estimate (1.28) is suggested by an example similar to the one after Theorem 1:
choose Jp = J+k-(1 —¢€)b, k =1,...,n, so that neighborhoods of two corners of Ji
and Ji,1, kK = 1,...,n — 1, intersect. Then we can choose f supported in a cylinder

with axis along b of length n(1 —¢)|b|. The rest is the same as in the former example.

1.4 Case of infinitely many lacunary intervals

1.4.1 Conjectured theorem

The goal is to generalize a result of F. Nazarov for the Zygmund theorem on lacunary
trigonometric series ([13], Theorem 3.6). Instead of a trigonometric series we will
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consider the following sum f(z) = f: fi(z)e™= where fi € L*(R) with supp

k=-—cc

fk C [—-;'_,3, g] and {Ae}2_. is a lacunary sequence. A sequence of real numbers

A= {M}2_, is lacunary if there exists N < oo such that
N = rxg#a.E(Card{(k', DY de—M— (A =) <1} (1.29)
Let fes = [M — A — &, M — A + 4] Then
N = max Card{(K',l') : iy N [ p # 0}. (1.30)
Another equivalent definition:

N = maxCard{(k,l),k#!:z € I};}

= mfxC'ard{(k, Dk#lL: M~ NE[x— %,x + ;1)-]} (1.31)
The conjectured theorem is the following:

Theorem 3: let A = {\}2_ be lacunary and let E be “relatively dense.” [f
fel*and supp fC | e — 2, M + 2] then

k=-cc

| fllcaczy = C(7, N, a,b) - || flla-

We will prove some partial results.

1.4.2 Large E, small support

Proposition 1. Theorem 3 is true if 1 — v is small enough depending on N, a, b:
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ifl—-9< L then

16(i+ab)2(1+1/a)N
1
[ 2 5 i
E

Proof of Proposition 1: We can choose fi such that suppfi € [—g, %], supp
felz = M) are disjoint and f(z) = 3. fi(z — \). Then
k=~oa

f@) =) felz)e™

k=-oc

and

IF13 =" I3

k=-00
Divide the whole real line into intervals [ of length a each. Consider one of them.
We will need to prove the following local estimate:

/ M’ < -0y [ (Al +al(F2Y)

INES k=-0a

+ i_ Y VI-7ai+aN / | fiel®
k=-00 I

£ 3 A=aEFaN [(LRI6/2 + 15/,
k=—ca I

We can assume that [ = [-$, ]
[ue=% [16r+Y [ st (132)
INEes k=—oorApe Kl nge
The first term is bounded by
(=1 Y [P +al(RD- (13

k:—-co[
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To estimate the second term, we will rewrite it in the following way:

> / (fk(y)fz(‘y)+ / (fk(t)fz(t))'dt) ey =

k£ INE*® y

3" @) i) Rmee (e — M) +
k#l

wio

Z / (fkﬁ)'(t)i[t,a/zlnsc(z\k - \)dt -

"(t)X[-a/2.einEe (A — A)dt. (1.34)

2

k£l

ula\,c i
—~ <
P
=

The first term in this expression is bounded by

Y. VI =val+ )N flw)[.

k=-

To show this we will apply Holder’s inequality to the first term in (1.34):

IN

> ) @) Xange (e — M)
ey

IA

Zlfk(y F@R- [ [Ringe(Me = M)

AL

Z |fe(y) JZ/ (ng<l® + [((eme)?)'1)
k=-oc

e

IN

IN

> 1GE [N [ (el + (Gemee)?))
k=-ca

U &t
kAL

Y @)y N(L+a) f lRnee2 =
k=—co

Y 1A@IPVNI+a)(1 -7 (1.35)
k=—

We used here Bernstein's inequality: {|¢/|[; < Ll|gll: if suppg C [—L, L] and that
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supp()21".:;,::52 € [—a, a]. In a similar way we can bound the second term in (1.34) by

(21]]

k=-00 k=—-00

/ V32 AP 160): 3 e 0Pt <
y k#l

s

)3 / (FL1/(6/2) + 1 fil2e/2) /NI + )T = 7). (1.36)
k=—co v

The third term in (1.34) is treated analogously. Integrating (1.32) over y € I and
applying (1.33), (1.35) and (1.36) we obtain

[ < a-n % [0k +a@

IAEe k=-c7

+ % Z \/(1——7)a(1+a)N/|fk|2
I

k=-00
oo

+ 3 JIoairaN / AL/ 06/ + 1felb/2). (137)
o J

k=

Summing (1.37) over all intervals / and applying Bernstein’s inequality, we get

/ 2 < (L+ab)il-v+ VA=A F TN f P (L3
EC

If1-7 < wmrrsparooy then the factor in the right side of (1.38) is less than .

[ =2 3 [
E

Therefore,

Remark:
1. We can always take a larger ¢ and try to minimize (1 + ab)*(1 + 1/a). Then we
will get C(1 +ab)*(1 + min(b,1/a)),so I —y <

1
C(1+ab)*(1+min(b,1/a))"
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2. Using Theorem 4 with m = 0 we can prove in a similar way that Theorem 3
holds if b is sufficiently small depending on v, a and NV:
(o4
ifb(L+a) < e mCMN(3) then

P2 > e @omw(€)° [ppe
f /

Sketch of the proof: We can assume that a > C (otherwise if a < C we can put
a = C and replace vy with v/2). Rescaling we can assume that |E N [| > v for every
interval I of length 1 and replace A with aA and b with ab.

J1Y nwe+ [ pidseraz

I

f \f(z)Pde

EnI Eny k=-o
> [1Y swerepac- [1Y [ fodepa
Enr k=-x [ k=-ccV
> DT S e -cvR Y [IAP

k=—c0 k=—-cc T

Integrating over y € [ and summing over all intervals / we get

> [

k=~o0

/ 2 > e-tmomni(§)° > / |ful? ~CVN
L k=—-x
> oS [ e - oV [Ire.

(o4
Thus we obtain the desired estimate if ab < e ®™CMN(3)" a

1.4.3 Periodic £

The next case we consider is when E is a periodic set with period a. Let

En0,el=7-a.
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Proposition 2: Theorem 3 holds in this periodic case

B/ £ 2 Cna, M) [ 7P

Proof of Proposition 2: We will start with some results on periodizations.
Define a family of periodizations of a function f € L!:

g(z) = Y f(z +ka)e™ 2=k (1.39)
k=-o0

where ¢ € [—2, 2-]. Then g,(z) is periodic with period a and its Fourier coefficients

2a? 2a

are:

+ t). (1.40)

IS

f(

R |+

g(l) =

Now we assume that f € L! N L2. The next arcument shows an important relation
g P

between the average of L*> norm of periodizations and the L? norm of f:

1

2a

-

a / / Igt(:z:)l‘-!dxdt = Z / a / f(:z:+ka) (Z’-{-[ _a)e-ﬂm(k—l)adtdx
—-2[: Eﬂ[O,a] kvl En[o'al _%

= de‘ / f(:z:+ka)f(x+[a)d:z:
kl

En[0,a]
)

. / \f(z + ka) 2dz

k=— £ _ka)n[0,q]

(1.41)

[
~—
S
'N'

In particular, it follows that

a/ \ge(z)Pdzdt = f T (142)
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In the next lemma we extend these results to functions from L2. For simplicity we

assume that ¢ = 1.

Lemma 4: if f € L? then there ezists a family of periodic functions g:(z): = €
[0,1], t € [~%, 1] with period 1 such that g:(x) € L*([0,1] x [-1, 3]),

\uu«

/ muwaa=!vﬁ

i En(o,1]

and
a(l) = fl+¢)

for almost all t.

Proof of Lemma 4: Consider a cut of f:

fu(x) = X[—n,nlf(x)'

Since f* € L' N L? and converge to f in L? we can define corresponding families of
periodizations y?(z) which form a Cauchy sequence in L2([0, 1] x [~3, 3]):

j/ww-ﬁ@ﬂw=ﬂﬂ—ﬂﬁ

"?l [0'1]
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Let g.(z) be the limit of g*(z). Then we obtain the first statement of Lemma 4

Wi

Wl

[ | w@rad = wm [ [ 1or@prds

1 Enfo.1] 1 Enfo,]
= lim [|/f
n—oc
= [
E

To obtain the second statement of Lemma 4 we consider the following sum:

W
Wl

T / G0 - fU+ofd = 3 / 6D) — G20 + U+ 1) — FU+ 0Pt

l=—cc* l=—00 "

<2y / 6:(D) — GEOP + 1/ + ) — fU + &)t

l——oo

(X100

= 2 / [ lao) - grta)fdadt +2 [ 17 -
104
<
where € can be arbitrarily small if n is large enough. a

Rescaling we can assume that the set £ has period 1, |EN [0, 1]] =+, supp fi €
[-2 T .,] and A is lacunary with 1 being replaced by a in definitions (1.29), (1.30) and
(1.31). Let g be a family of periodizations of f as defined in (1.39). It follows from
Lemma 4 that §,(l) = f(I+¢) for almost all £ € [~3, 2] Assume for simplicity that
t =0 is among them. Let n; be the smallest integer in [\ — 2, A+ 2] if such exists.
Denote A = {ni}__. Then

m={ab|
Spec go C U (A+m).

m=0



31
Next lemma generalizes a result of F. Nazarov for the Zygmund theorem on lacunary

Fourier series.

Lemma 5: .
/ l90|2 Z C(’Yr Qa, b'l N) / I90l2-
ENfo,1] 0
Proof of Lemma 5: Denote M = [ab]. Let
R = supCard{(k,k',m,m),k#K,0<m,m' < M:n=n+m— (np +m')}
neZ
< (M +1)sup C'ard{(k, k’),k #K :ne [1\[¢ — M —ab, A\ — A + ab]}
nez
< (M+1)-N-(1+[28).

To obtain the last inequality we used (1.31) with 1 being replaced by a. We can write

go in the following way:

oS
o)=Y prlz)e®™
k=-

where p;. are trigonometric polynomials of degree M:

M
pe(z) = Y _ clBetmm=,
m=0

Therefore,
wf = > [ wF+Y [ pa
EN,1] k=-%gn,1 K gio,1
o
= >y [k /?
k=—c0g,1]

+ z Z Cfr'f) 5(75) Xenp,1 (7 +m — (e +m)).  (1.43)
£k 0<m,m/ <M
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The first term in (1.43) is bounded from below by

) o oo L
> (%)Mﬂilcgf)lz = (%).Mrl / g0l (1.44)
k=—co o J

The second term in (1.43) can be written in the form (T'gq, go) where T is a Hilbert-
Schmidt operator on L*([0, 1]):

—— 4
Tgo(nw +m') = Z Z Xenjo,1j (e +m — (ne +m'))do(ne +m)
£k 0Sm<M

and fg%(n) = ( for the rest of n. Its Hilbert-Schmidt norm is

S Y Reouutm=(e+m)P< VR,  (L45)

k#K 0S<mm’'<M

We won’t proceed further since the rest of the argument is the same as in Nazarov’s
proof of the Zygmund theorem ([13], Theorem 3.6). See details in the proof of the
next Theorem. This leads us to the desired inequality

L
l90l* > C(v,a,b,N) / g0l
EN[0,1] 0

where

cearen > =18 (1+ab)(1+20)N)((1+ab)(1+26)N)? (S) T F

C(v,a,b,N) = e I=RF(5)

a
In a similar way we have that
1
/ [gtl2 Z C(’Y: a, br ZV’) / [gtI2 (1‘46)
Bnfo,1] 0



33
for almost all ¢ € [—1 3,%]. Applying Lemma 4 and (1.46) we obtain

/ fI? > Clr,a,8,N) / T (147)
E

1.4.4 Generalized lacunary series

The next theorem generalizes Nazarov’s result for the Zygmund theorem for series

whose coefficients are replaced with polynomials of uniformly bounded degree.

Theorem 4: let I be an interval of length 1 and E be a subset of I of positive mea-
sure. If A = { M} _o @8 lacunary in the sense of (1.29) and f(z) = § pr(z)e =

k==o0
where pi(z) are polynomials of degree at most m, then

/ f1? 2 C(E), Nym) / Tik
E I

C )C(m+l)

C(|E|, N, m) = e =MV (i

Proof of Theorem 4: Without loss of generality we can assume that [ = [-‘;, %
Let p(z) = Z b;z’ be a polynomial of degree m. Denote b = (b, ...,bm). Then
Pl ~ Bl Tn foc, o

/ P < CIbIE.
First we will treat the case when gaps [\ — \/| are large: |\ — M| = C(1 +m?®) for
k # I. We need this condition to prove that [ |f[? ~ i [ |p&|®. Note that we don’t
need the lacunarity of A for the lemma belogv. et
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Lemma 6: If |\ — N\| > C(1 +m3) for k #1 then

1-{-Cm2 Z /lpk|25/[f|250(1+m2) Z /lpklg»
k=—co ¥ /

—a k=—c0 T

Proof of Lemma 6: We will prove only the left inequality. The right one can
be proved similarly. Let p be a polynomial of degree m. Hence, using the following
inequality

[w1<cm [, (1.48)
4 I

we obtain that

/szc/m2 (1.49)
A I

for any set A C I provided |/ N A¢] < <.
Let ¢(z) = (} — 2*)xs(z). Then

[mﬁzj?m?

Y / Slpel? +) / bpipre’ ™ M= dz. (1.50)
kAL 7

k=-m[

Using (1.49) we can bound the first term in (1.50) from below by

=Y [ (151)

k=—0cc I
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We claim that each summand in the second term in (1.50) is bounded from above by

C(1+m?)
P = M)? I/ (Ipel? + Iul?)- (1.52)

To show this we consider [ p(z)¢(z)e?*dz for A # 0 where p = pip; is a polynomial
1

of degree 2m. If we write

T

p(z) = ply) + 7 W)z — y) + / P'(t)(z — )t

y

then [ p(z)¢(z)e**dz can be written in the following way:
I

p(¥)B(A) + 7 ¥) (= = 4)é(z)(\)

/ / eXp"(£)(z — t)dtdz + / / ¢(z)e”*p"(t)(z — t)dtdz. (1.53)

(2105

The first and second terms in (1.53) are bounded from above by

()] + P @)D.

Meanwhile the third term in (1.53)

/ / o(z)e**p" (t)(z — t)dzdt

is bounded from above by

y
(04
oy [ Pl
4

The fourth term in (1.53) can be treated analogously.
Integrating (1.53) over y € I and applying (1.48) twice, we obtain (1.52). If [\ — A >
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C(1 +m3) with large enough C then

[ = 5 fm2 Py / it -3 (”;")3 / (el + i)
I

> 5)
e fi—; IOO(Z k)?
> Z [ el
The right inequality can be proven similarly with ¢(;—=z— ) instead of ¢. a

H»m-

Repeating an argument similar to the one used in Proposition 1 to prove a local

estimate, we have that Theorem 4 holds if E is large enough:

I[N E] < xSy then
L1 e _
| f? 23 | fI°. (1.54)
E I

Now we consider the case when [/ N E¢| > (Tw%i? The same argument shows

(see also Lemma 5) that

[ > [ 1o + @t

k—-ooE



37

where

(Tef. f) = Z / prpre" ™M= dg
L %,

= T [nwnwsste - Xy
Pl

1 Yy

= ¥ [mmato - et
porg

- Z /(Pkﬁl)'(t)(l/? -t)i[—l/?..t]ﬂE(/\k - /\l)dt
k£L Y

+ Z /(p’ff’i)l(t)(lﬂ + E) X 1/2ne(Ak — Ar)dt.
kAl

We can view Tg as an operator acting on the space of sequences of pairs of functions
from L2(1):

G =(G1,G2,Gs,-), G = (9 0k G € L*()),i=1,2, k=1,23,..

with a scalar product defined in the following way:

oo 2
(F.6) =33 [ figi
k=1 =L %}
Then

(TEF)I = Z’I;ka
K£L
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where each Tj, is a 2 x 2 matrix whose (1, 1) entry is

XA — N),

(1,2) and (2,1) entries are the same and equal to

—(1/2 = ) X—1 /208X — M) + (/2 + ) Xpe1/2ne(Me — Ar)

and (2, 2) entry is 0. In our case Fi = (px, p})- We claim that Tg is a Hilbert-Schmidt

operator since

sup 3" Y ITER < CNIE]

el Tkl ig=1

by an argument similar to the one used to prove a local estimate in Proposition 1.

Our proof will follow the one of F. Nazarov for the Zygmund theorem. Let gy, 09, ..
be the eigenvalues of T enumerated in the descending order of their absolute values:

lor| = |oa| > .... Since

o 2
Ylof < swpd Y ITEP
s=1

tel "l ig=1

< CNIE]

we have that |02 < %g—%l If V, is the space spanned by the first n eigenvectors

of Tk, then the norm of T on V! is equal to |o,+1|. Recall that

[152=% [1oeP+ st . (155)
E

k:—-coE

The first term in (1.55) is bounded from below by

k=-00
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n= [N (%) WA] (1.57)

with large enough C then the second term in (1.55) is bounded from above by % of
the expression in (1.56). Hence, if f1V;, then

E/ T (%‘)M 3 / el

k=—x
> ('Cﬁ')w [ise. (158)
I

The last inequality follows from Lemma 6. Therefore, Theorem 4 holds if f is

Iff.LV;‘(E) with

orthogonal to certain subspaces. Formula (1.57) gives that n > 1. We can think that
n =0 if £ is large enough (see (1.54)).

Now we will do the general case. The main idea is to construct a set §E € [\E
such that |[0E| > §(]E]) > 0if |E| < 1 and

/ 2 > Clm, N, |E) [ T
E EUSE

Then we will iterate until we get a large enough set so that we can apply (1.54). In

fact, we will reach I automatically at some iteration (see the end of the proof).

Choose n as in (1.57) but with twice larger constant C so that it will work for
sets of measure at least | E|/2. Define

B =[ (& - jt).
j=0

We can choose T > 0 so small that |E;| > [E}/2fort € [0, 7]. Itisclear that T < 1. We
will pick T in a special manner. Consider the continuous function ¢(z) = [E*N(E+x)|.
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#(0) =0, ¢(1) = |E|. Let n7 =inf{z,0<z < 1: ¢(z) = 12%[} then

c _ |E]
|E°N(E +n7)| = o

and

E
|ESN(E+kt)| < %;l fork=1,..,nandt€[0,7].

Hence
|Ee] = lﬂ(E—kt)l
k=0

IE\|J(E - kt)°n E|

k=1

> |E|-) (E—kt)°*NE|
k=1

= |E|=)_1E°N(E +kt)
k=1

, 18

— 2 -

Let g be the following linear combination:

gl@) =) a;(t) f(z + jt)

=0
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with zn: la;(£)|? =1 then
i=0

/ o < O leOP / |z + j8)dz)
E 3=0 j=05’:

n

> [ e+ itpa

I=0g5 jt

-3 E/ |f(2)dz

i=0
= (n+1) [ |f*
/

Since |E,| > |E|/2 we can choose such a;(t) that gL Vg,. Then

” C 2m+1 n

- < -
JIZRE (——, Eg,) [
I E,

¢

2m+1
< (n+1) (I%l) /m‘l:e?.
E

Let p(z) = i biz' be a polynomial of degree m. Define
=0

IA

Blz) =) _a(t)e™p(z +t) = Y bie.
j=0 =0
Then b = Ab where A is a certain (m + 1) x (m + 1) upper triangular matrix with
zn: a;(£)e** on the diagonal. If this sum is not zero, then A is invertible. A™! is also

rar?
L)AL
upper triangular and A.,-‘j1 = %;—wﬂ. In fact,

Ay = (l) Z a;(t)e?t(jt)'*, 0<k<I<m.
k) =

A trivial estimate shows that [ M| < m! (2™/nn™)™ < (Cn3/2)™*. However, we can
give a better estimate by noticing that Mj; is the sum of at most 2™ terms (open



42
determinants via rows or columns containing at most two nonzero entries) whose

absolute values do not exceed

Ot 2egw
[T kil — k!

=1

We used the fact that 7 < 1. Therefore,

|Mji| £ 2"min®™? < (C(m + 1)n®?)™.

Hence
- C(m + 1)n3/2)™
-ty < St )
I Z a,(t eu\]tlm-rl
7=0
Note that .
o) =) _a;(t)f(z+it) = Y Belz)e™ .
Jj=0 k=-co
Therefore,

Jia? 2 == 2 [ el
I

2 = by|l3.
Cm"A_["%k;m" k"2
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Integrating over ¢ € [0, 7] and applying Holder’s inequality, we have

(Cmn®?)me® > Z Iowcll3= / D ai(@)e sttt

k=~ j=0

m+1
> ) "bk"2< / l Zaz(t)e"""‘lﬁdt)

k=-— 7=0

= Z lIbl202™ Y (Ae).

k=-o0

It is known that S = {A: 2*(\) < ()™} LnJ I; where I; are some intervals of
=1
length - (see the proof of Lemma 3.1 in ([13]) ). Thus we obtain a lemma analogous

to ([13], Lemma 3.1).

Lemma 7: There are n intervals I, ..., I, of length T3 such that

dnr

z ”bk”g < ((m + 1)(Cn)4n+3/2)m+1 52.
Ae€A\ G L;
=1

Remark: if 7 > C(m, IV, |E]) then we are done since the cardinality of AN |J [;
j=1
is bounded by n(1+ 4n-_C(nl‘ ] E')) and f can be approximated by Z pr(z)e*=.

AR€AN U I;
=1

It is also known that there are real numbers py, ..., 4, and t € [0, 7] such that
lza (t)en\th[ > ( ) Ho,.()\ y])

where 6,(z) = min(1,7|z]) and A € LnJ I; (see arguments after Lemma 3.1 in ([13])).
=t



Thus we obtain the following result:

n 2(m+1)
2 I (H (M — uf)) < ((m+1)(Cry=+2)™ &,

n =1
MmeAnU L J
=t

Combining this result with Lemma 4 and the fact that 0 < 8, < 1, we obtain

Lemma 8: There are n real numbers p;, ..., 4n such that

. n 2(m-+1)
Z [Ibi|13 Hof(’\k - #j)) < (Cm+ 1)7'14'”'3/2)"‘+1 € =¢".
r

k=-o00

i=1 j=1

m+1
n . . n 3 .
Let D = (H(e""‘"’%e“"f‘)> = H(e“‘”;i%e“"i”) be a differential opera-

n
tor. Any solution of the homogenous equation Df = 0 is of the form Y p;(z)e®
ot

j
with p; being polynomials of degree at most m. A partial solution of Df = g is of

m+1
LI . n(m
the form ¢ = 1—[1(8"‘1'z [ e7t#%) g- Note that max ()] < %ﬁ ! g} for
J=

any interval J. Hence there exist n polynomials p; of degree at most m such that

- BT lJ'n(m+l) 1
mexl/(@) - Sopy(e)ee| < e [l (1.59)
J

i=t

Define a set of 2n intervals [y = (e — L, p +1) and i = (i — 2, e + 2). For some
fixed constant C which will be chosen later, define A = 0 {AeA:|\—pul| <Cm?}.
The cardinality of A is bounded from above by Cn be,:::;xse of our gap assumption
(see Lemma 6). Note that we don’t need the lacunarity of A for this. Put A’ = A\A.

Split A’ into n + 1 disjoint subsets in the following way. Ag = A\ U [;, Ak =
~
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n
L\ U I, k=1,..,n. Then we can decompose
j=k+1

F=F+>_5
=0
where f= ¥ pu(z)e™® and f; = 3 pr(z)e. It follows from Lemma 8 that
€A AEA;
n 2(m+1)
> bz { [To-0n - u,-)) < 1=0,..n.
A€ i=1

In particular, it means that

s [iar< Y b <t (160)
I

1+m?
A€Ag

since [] 6,(A — ;) = 1 if A € Ao.

i=l

If 1 <k < nthen f; has only finitely many terms and therefore it is infinitely
many times differentiable. If A\ € A, then

[16-x=ps) = [T &-(A—ny)-
J=t KB Gfk
Correspondingly, instead of D we will define another differential operator
+1

TR T dm —ipiT
D= H(epj drmtie #i%).
i€l

Let Difr = gk and let ng denote the number of u; € I,. We have that 1 < nx < n.

Let p be a polynomial of degree at most m, then

4™ttt L (m+l ) .
(¥ g Ip(z)e"” = E ) B (@) (F(\ — p))™+iF = p(z)e™™.
e’”‘dx — e )p(z)e* (( N )p ) (i — p )e“‘z B(z)e=



46

Since [|[p® || 21y < (Cm?)*||pl| 21y We have

1Bl 2¢ry < (1A — p} + Cm®)™ Il 21y

Actually we can give a better estimate because

p* N 220y < C™m*llpll L2y

which follows from well-known Markov’s inequality ([3], p.256):

m - (m? —1) - (m*=2) - .- (m? = (k ~1)?)
1-3-...-(2k—1) "P”L""([—l,x])

2%l oo 1,1y <

but what we already have is enough. Therefore,

C 2 )2m+L 2
1Mn.z‘/lgkl < > I Un=nsl+Cm?) *’/LDI
I

MEAL By e[k

< Y ] €ln—pyhxmen / lodf?

A€Mk pyel

since |\ — ;| > Cm? if A € A, € A\A. It is left to notice that |\ — sl < 26\ —p;)
if A€ Ax C [ and p; € I to conclude that

/ o < 3 TT €200~ )™ 3

1+m?2
I A[el\k “:e[k

g 2ne(m+1) 612
p .

(1.59) shows that for each 1 < k& < n and each interval J there exists ¢f =

Y. p;(z)e’i* such that
pi€lk

IA

IJI‘"k(m‘f'I)
e ot < e / e

[Jlnk(m-i-l)

s mMgk(l‘)
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for every z € J. We will consider only J C I. Mg; is the maximal function of g; on
I. Then

ng(m+1)
IMaedzer < Claddizn < (£) e (Le)

Let |J| = Ar with A > 1 and ¢/(z) = f(z) + 3 (z) then
k=1

(AT nk(m+l)

|f(z) - «mqmw+277:ﬁ;

Mgi(z) = R(z)
for every = € J. Note that ¢’ can be written in the following way:

Cn
o/(z) =Y pl(z)es

J=L
where pj are polynomials of degree at most m. Applying (1.60) and (1.61) we can
estimate the L?(/) norm of the remainder R by

IRl z2¢ny < (C - A)™m+De.

Now we will construct 0E € I N E°. Divide [ into intervals of length |J| = Ar. We
will choose A later so that so that - is an integer. Fix some 0 < v < |E| < L
Call an interval J good if |E N J| > v|J| and correspondingly bad if [E N J| < v|J|.
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Denote 0E = E°N |J J. Then
J is good

|E°N(E +n7)| < nr+|0E|+|E°n ] JN(E+n7)|
J is bad
< nr+PEl+ ) |JO(E+n7)|
J is bad
< nr+|0E| + Z (JI\(J +n1)| + |(J +n7) N (E +nT)])
J is bad
1

< PE|+ —nr+4|J
961 + e + 4141

1
< PEl+nT—+7
WE|+nT 7

since the number of bad intervals is bounded by J; — 1. Recall that |[E°N(E +nT)| =
',_,—E,‘}, If we put v = %ﬁl < |E| then

3|E| _ .. 1
271« nr—.
8 = [0E] +m'|J'

There are two possible situations:

1. nt < 2. Then we can put o = [s2-] and obtain that

|E]
> —.
9] 2 4n
We also have that
|J] 1 16n>
}l = —= S .
T S T
It is interesting to note that the condition nT < J%L implies that [E] <1 — % since

Bl _|Een(E+nr)| <nr+1-|E| < B +1-|E]

2. nT > I&—il Then we put |J| = 1, ¥ = |E| and therefore [ is a good interval
itself. In this case
1 8n?

A=-1:<[fl.
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Alternatively, we can use Lemma 7 directly in this case since 1 < ?g; and the

cardinality of AN U I; is bounded by n+ 5 < I E Z and we can approximate f with
J_
Z Pr(z)e™ =

A€ U I;
j=1

Now we will explain how to proceed in each case.

1.
[ < / Ik
éE
.Iuyaod
<2y [ +/IRI
Jwgood
CIJI )?.Cn(m+l)-l / i )
< > o e
“,zg:wd EnJ]
C 2Cn(m+1)—1 2Cn(m+l) L
< 2 () /m+< ) [
J is good v
Cn 2Cn(m+1)—1 ) Cn 2Cn(m+1)—-1
<@  [ret@) e
E [
Recall that

/|R|2 < (C-A)z"("‘“)e’z

< (C . A)2n(m+l) (C(m + 1)n4n+3/2)"‘+1 2

2m+1
S (C . ‘4)2n(m+1) (C(m + 1)n4n+3/2) m+l1 (n + 1) (I—ET[) /Iflz'
E
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Hence
” C('n+1) C(n+1)(m+1) Y
2 S m+ 1 m+1 ( ) / 2
w[g < e (2 I
< (&Y |f?
[E]
E
with
- |E]
> =i
WE| 2 in

v
Z| -
o
alm
SN—

Q
3
3

2. In a similar way we can get

P < ememNGET™ [ g
/ /

E

and we are done in this case.

)C(m+[)

If we iterate NV (%'

Jur s cmomEmT [
I E

times in case 1 we will reach / and therefore

Now we will drop the assumption that gaps | \x— )| are large, i.e., [\x=X| > C(1+m?®)
for k # . Since A is lacunary it has no more than CN(1 +m3) pairs of (A, \;) with
k # [ such that |\ — M| < C(1 + m3). To show this we will split these pairs in

[C(1 +m3)] groups such that d < [\g — M| < d+1withd =0,1,2,.
and apply definition (1.29). Denote by

={M€EA:INEMNIEE De— M <COL+md)}

- [C(L +m?)]
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Then the cardinality of A’ is bounded by CN(1 +m?3). Let

o

f@) = Y ml@)e™

k=-00

= Z pe(z)e™= + Z pr(z)e =

A€M\ A€’
= h(z) +r(z).

Assume for a while that r(z) is a trigonometric polynomial of order n’ = (1+m)|A’| <
(1+m)CN(1 + m3). The proof goes in the same way with few changes. We will only
discuss the changes. Let n; be the same as in (1.57):

SUON!

Put
n = n+n
C im+l
< l:N (I—El-) } + [CN(I +m?)]
C 4m+1
< N|— .
< ¥ ()
Let

gz) = D_ait)f(z+3t)

j—O

- za,(t)h(x +jt) + Za, (t)r(z + jt)
=0

with Z la;(¢)]> = 1 such that zaj(t)r(:z: + jt) = 0 and Za,(t)h(:z: + jt) =

(:z:)_LVm( E,) Which is exactly n; + n’ = n linear homogenous equa.tmns with n +1
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variables a;. Then

[IX wone+ipas = [igr

I4 Jj=0 4

Therefore, there are ¢”
|h(z) — ¢’ (2)| < R(z)
for every z € J. Note that ¢’ can be written in the following way:
Cn A
o(a) = 3 plla)e
j=t
where p; are polynomials of degree at most m and
IRl 2y < (C - At
Then
|f(z) = ¢7(z) —r(z)] < R(z).

It is left to note that

' ClJ 2Cn(m+1)+2n'—1
/l¢’+rl2 < ([Erlwirl) /l¢’+rl2
J

ENJ

Ol \ 2Cnm+n—t
< (i) [ 16 et

ENnJ
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The rest of the proof is the same. Thus we obtain an estimate similar to (1.62)

f! [P < oM ()T / f2. (1.63)
T E

Since any polynomial of degree m can be uniformly approximated on an interval by
a trigonometric polynomial of order m + 1 we can drop our assumption that r(z) is

a trigonometric polynomial and obtain the same estimate as (1.63). O

Remark: Unfortunately, the factor in (1.63) grows much faster than m! and we
can not use this result to prove the conjectured Theorem 3 by approximating fi on
each interval [ with corresponding Taylor polynomials as we did in the case when f

is supported on a union of finitely many intervals in Theorem 2.

1.5 Necessary condition for support

Recall that a set £ C R is called “relatively dense” if there exist a > Q0 and v > 0
such that

ENIl>7-a (1.64)

for every interval I of length a.
It is a well-known fact that “relative density” is also necessary for an inequality

of the form

1oy 2 CE, E,p) - I flp (1.65)

to hold for every f € L? with suppf C E. Now we will consider an inverse problem.
We will give a necessary condition for £ O f so that (1.65) holds.

Theorem 5: Suppose that for a given open set ¥ € R there ezist 0 < y < I,
a >0 and p € [1,00] such that for every “relatively dense” set E satisfying (1.64) we



have

Wfllzeey = C(E, ) - | fll (1.66)

for every f € LP with suppf € T
then for every by > 0 ¥ can not contain arbitrarily long arithmetic progressions with

steps at least bg.

Proof of Theorem 5: Note that the parameter a is fixed during the whole proof.
First we will prove that there is a uniform constant C such that (1.66) holds for large
enough sets E, i.e., there exists v € [,1) and C(p) > 0 such that

I fllcry 2 C) - Il (1.67)

holds for every “relatively dense” set E with density o and every f € LP with
suppf € T. Suppose towards a contradiction that this is not true. Then there
exists a sequence of f, and corresponding “relatively dense” sets F, with density

Yn > 1 — 52 such that

1
| falle(zn) < H“fn"?’

Let E = ) E,. Then E is “relatively dense” with density ~:

n=l

EnT]|

a—||JEg
n=1
> a—ia(l—’yn)
n=1

oo 1—
a-——az——2n—7 =ya
n=]

v
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for every interval I of length a. On the other hand we have

Vel < Wl < 21l

which contradicts to (1.66). The next lemma. plays a crucial role.

Lemma 9: Let ¥ € R be an open set for which there exists by > 0 such that ¥
contains arbitrarily long arithmetic progressions with steps at least by then for every
0 < ¥ < 1 (meaning arbitrarily small 1 — v) and every a > 0 (meaning arbitrarily
small a) there erist a sequence of “relatively dense” sets E, satisfying (1.64) and a
corresponding sequence of functions f, € LP with suppf C T such that

f |fal?

hm =0
o flfnlp

for every 1 < p < 0.

Remark: If ¥ contains an infinite arithmetic progression then we can take only
one set E instead of the sequence of E,,. Here is an example of such ¥ which has a
finite measure: U (k — 3%,k + 3). Compare with the Amrein-Berthier theorem
(see for example [7] pp 97, 455). Note also that small 1 — v and small a are typical
cases of “easy” proofs of the Logvinenko-Sereda theorem.

Proof of Lemma 9: Define L = [a%’%] + 1, a positive integer such that ¥ < q
for every b > by. Suppose we have an arithmetic progression with step b > by of
Iength Ln +1: zg,z9 + b, g + 2D, ..., zo + Lnb € ¥ hence there exists € > 0 such that
U [zo + kLb — €,z + kLb+ €] C T because ¥ is open. We can assume that € < £ so

tha.t these intervals are disjoint. Let ¢ be a Schwartz function with suppé C [—1, 1]
such that ¢(0) =1, e.g., if ¢ > 0. Define

. ®. . z—xzo—kLb
@) =Y 6E——)
=0
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so that suppf, C £. Then

Ifaw)l = [e) e g(ey)| (1.68)
k=0
= €| Da(Lby)d(ev)| (L.69)

where the 2m-periodic function D,(t) = %}—;‘l—o is the Dirichlet kernel with the

following easily verified property:

lim | Dall Lo((-s.81)

=0 V0<odo<m 1<p<L .
n—c2 | Da| Lo(—r,m)

This is true since ||Dyl|o((—ma]) ~ n? for 1 < p < o0 and || Dy|lzi((=rp) ~ Inn and
| Dn(z)| < ——; if § < |z|] € m. Now we will construet a 3Z-periodic set E:

T T T 7 (=7 (1—'1()'11'l

Enlmm = N5 " am

Then

Enll < ([aLb]+1) (1—~)w

2r Lb
2aLb (1—7)mw
= Tor T Lb
= (1-7)a

for every interval [ of length a. We used here that <% 2" < a to get the second inequality.

Let 1 <p < 0. |¢(z)| < =5 since ¢ is a Schwartz function. Applying (1.69) we



have

Jiwr = > [ oaumisra
E

k=—ca (2e—D)w (e+1)r
En— === 1

b Cr 1
P el P
; “ U+ (k/Lh)P b / 1Da(w)Pdy
- [, m]\ [ e Ui

IA

Lb 1

CeP _
—"”Dn”u([-mc) (1.70)

IA

IA

where 0 = L to get the last inequality.

Now we need to estimate || f,[|5. Recall that ¢(0) = 1. Since ¢ is a continuous
function there is d > 0 such that ¢(z) > 1/2 if |z| < d. We can assume that e < £

Then applying (1.69) we have

dfe
fal? 2 e“’i D, (Lby)|Pdy
i
—d/e
dLb/e
= P
—dLb/e
e 1 |Lbd
= 2 Lb[ }" Dallzsrap
1 Lbd
> 5 59 1 Oelrc
de?
2 2?“_“" n"[)’([—ar,ﬁ[) (1*71)

We used here that € < % to get the last but one inequality.
Hence dividing (1.70) by (1.71) we obtain the desired result

P
s{ el IDallzo-sare) _,
J1falP = 7 I Dall oqmapy
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as n — OQ.

The proof for p = oo is similar and even easier. a

Remark: If p = 2 we can use periodizations to prove Lemma 9 (see the proof

of Proposition 2).

Theorem 5 follows from Lemma 9 since otherwise we would get a contradiction

to (1.67). O
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Chapter 2 Periodizations of functions

2.1 Overview

Let f be a function from L'(R%). Define a family of its periodizations with respect

to a rotated integer lattice:

9(x) = Y_ flplz —v)) (2.1)
veZd
for all rotations p € SO(d). The main object of our study is G, the L*([0, 1| x SO(d))
norm of the family of periodizations,

¢ = [ [ ln@pdd

pPESO(d) [0,1]2

= [ ladid. 22)

pESO(d)

The purpose of this work is to show how G can give an estimate of the L2(R%)
norm of a function from L'(R%) in higher dimensions. Some results on the Steinhaus
tiling problem are related to Theorem 1 since periodizations naturally appear in the
problem of Steinhaus. M. Kolountzakis ([9]) proves that if a function f € L'(R?) and
|z|*f € L'(R?) where a > -Ig- and its periodizations are constants, then the function
is continuous. Another result is obtained by M. Kolountzakis and T. Wolff ([10],
Theorem 1). It says that if periodizations of a function from L!(RY) are constants,
then the function is continuous provided that the dimension d is at least three. We
will show that this result is false when dimension d = 2.

The main theorems are the following:



60
Theorem 1: let d > 4 and let f € L}(R?). If periodizations of f

() =Y _ flp(z —v))

veZd

are in L2([0,1]%) for almost all rotations p € SO(d) and

e / lg,2dp < o,
p€SO(d)

then f € L*(RY):
Ifll2 < C(G + I£ll1) (2.3)

where C' depends only on d.
We will also obtain an inverse theorem.

Theorem 1”: letd > 5 and let f € L'(R?) N LY(R?) and let g, be periodizations
of f

90(z) =) _ flp(z —v)),

veZd

then g, € L*([0,1]) for almost all rotations p € SO(d) and

ligolizdp < C(Ifll2 + 11.£110)* (24)
pESO(d)

where C depends only on d.

We will generalize Theorems 1 and 1’ in the spirit of the Stein-Tomas Theorem
([4], Chapter 6.5).



61
Theorem 2: let d > 4 and let f € LP(RY) where 1 <p < %fi. If periodizations
of f

go(@) =Y flp(z — 1))

veZd

are in L%([0, 1]?) for almost all rotations p € SO(d) and

G = / lg,li2dp < oo,
peSO(d)

then f € L?'(Rd):
Ifll2 < C(G + [I£llp) (2.5)

where C depends only on d and p.
We will also obtain an inverse theorem.

Theorem 2’: letd > 5 and let f € LY(RY) N L*(RY) and 1 < p < % and let g,

be periodizations of f

5@ =Y flolz—v),

veZd

then g, € L*([0, 1]%) for almost all rotations p € SO(d) and

[ 190 — 5(O)2dp < C(l Flla + 1 ll,)2 (2.6)

PESO(d)

where C depends only on d and p.

Note that the constant C below is not fixed and varies appropriately from one
equality or inequality to another without being mentioned.
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2.2 Casep=1

Proof of Theorem 1:
We will denote f(z) = f(—z) and F(z) = f * f(z). Then F € L'(R?) and

1Fl < AR (2.7)

We will define the following functions h, hy, ke : Rt — C

h(E) = / F(E)Pdo(e) 28)
- /Rdf*f(z)fm(x)dx
= [ F(z)doy(z)dz, (2.9)
Rd
h(t)= |  F(z)doz)dz, (2.10)
jzI<1
ha(t) = / F(z)doy(z)dz. (2.11)
lzi>1

Clearly h = hy + ho.

Lemma 1: Let ¢ : R — R be a Schwartz function supported in [%,2], and let
be[0,1). Define H :R — C

Hi(t) = ﬁi_bhl(\/—t T,

Then for large enough N we have
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Z IHI(V C”F”I

where C depends only on q and d.
Proof of Lemma 1:
First we will estimate derivatives of h;(t) when ¢ > 1
R (@) < CEHIFIL
where C depends only on k£ and d. This follows from (2.11)

hi(t) = F(z)do.(z)dz

=<1

= 4! F(z) / e =8 g (€)dx
lzl<t le1=1

by differentiating the last equality &k times.

We can easily prove by induction that

m(VEFD)\ _ o, A(VETD)
dt"( t+b ) ZCtk(,/ b)2k+1~i’

It follows from (2.14) and (2.13) that when ¢ ~ N? we have

=2 (2RV: LV < —k—
dt ( VE+b )' S CNTUF L

with C depending only on £ and d.

Since g({£) = o(VI+F) = (t') with ¢’ = 5 and ¥ = &

(2.12)

(2.14)

(2.15)

and ¢(t') is a
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Schwartz function supported in ¢’ ~ 1, then we have

G D) = N
< CN* (2.16)

with C depending only on £ and q.

Since q(@) is supported in ¢ ~ N2, it follows from (2.15) and (2.16) that

d* d* (hi(vVt+b) Vi+b
dtkHl(t)' Ty ( Vil q( i ))l
< CNT*H|F|, (2.17)

with C depending only on k, d and ¢. Since H;(t) is also supported in ¢ ~ N? we

have
IH®|, < CNEHF|),.
Therefore,
) < [VI,,IIH""III
Vd—k
< uﬂi (2.18)

||

for every v # 0.

Summing (2.18) over all v # 0 and putting k = d + 1, we get our desired result

Z By (v) C[lFlh (2.19)

where C depends only on g and d. m|

In the next lemma we will use an approach related to ([10], Lemma 1.1).
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Lemma 2: Letq : R — R be a Schwartz function supported in [}, 2], and letb € [0, 1).
Define H; :R — C

a(t) = —meha(VEF Do),

Then for large enough N we have

@< [ 1F@)-1Dy(z) (2.20)

w70 fei>1

where Dy : R — C

(7T il 24

fl<|z| <5

(2.21)

with C depending only on q and d.
Proof of Lemma 2:

We have

Ha(v)
= /Hg(t)e_i2mdt
= 2ei2™b / Nq(t)ho(tN)e™ 2N gt
= 2¢i¥mb / Ng(t)e2mNe? F(z)doy(z)dzdt

lz{>1

= 2ei2™b / F(z) / Nq(t)e 2 WO Nt)-ldg(Niz)dtdr.  (2.22)
lei>1

We will use a well-known fact that 2;(1:) = Re(B(|z])) with B(r) = a(r)e>™™ and
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a(r) satisfying estimates

C
la*(r)] < = (2.23)

with C depending only on k and d. Now we will need to estimate the inner integral
in (2.22) with B(|z]) instead of do(z)

/N‘I(t)e‘i21ru(Nt)2(Nt)d”La(lelt)ei?.qu[zl;dt
N . . o
= nﬁ/Q(t)e-‘g‘lﬂ/(Nt) td—la(lexlt)(1VlI|)Tel-‘n’N[zltdt
T
N L2 - |
= —[ = e [ q(t)a(N|z|t)(N|z]|) T te-le~2mNt-23 gy
Il 2
NE e y 2
e —e>" 5 | ¢(t)e —i2muN*(e—42k) &t 231
T 2

where ¢(t) = q(t)a(N|z|t)(V]z]|)*F t~! is a Schwartz function supported in (1,2
whose derivatives and the function itself are bounded uniformly in ¢, z and NV because
of (2.23). Note that we used here the fact that N|z| > 1. We can say even more.
Note that in fact @(t) = (¢, |z]). Let |z| = c-r where ¢ > 2 and r > §. Then all
partial derivatives of ¢(¢,c - r) with respect to ¢ and r are also bounded uniformly
in ¢, r, c and N. However, we will use that ¢(t) depends also on z only in formula
(2.66) from the proof of Lemma 4 and therefore we will keep writing just ¢(t).
From the method of stationary phase ([8], Theorem 7.7.3) it follows that if £ > 1
then

—i2me N3 (e—-52k)2 2y —j—% 4(27) |z | 2y —k—1
| [ stte dt - f‘_joc,(vN) 100 (I0)] < eu(iV) - (225)

where c; are some constants.
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Since ¢ is supported in [3, 2] we conclude from (2.25) that

2 x| \2 N‘Z -% 1f 3
l/¢(t)e-i2mzN-(t—%£T) dt[ < C(ly| ) VG[ 4N Nl

Cel(lv|N?) 7 ifv ¢ [, ';'1

(2.26)

If %’- < 4, then there are no v in [3; ﬂ,, ';'] and therefore if we sum (2.26) over all
v # 0 we will get

! / ¢(t) e-izwulv'-'(z—guib-)z dtl < Ck N-zk-[. (2’27)
If Nl > é then the number of v in [ AN vl is bounded by 2 12l and therefore if we

sum (2.26) over all v # 0 we will get

Zl/‘b(t)e-awm\ﬂ(t—%)?dtl < C%’(II’IIV)‘% +Ck1v_2k—l
v#0

1
F

||

o'y 2.8
< Gegg (2.28)
Summing (2.24) over all v # 0 and applying (2.27) or (2.28) we conclude

; 2 C (lz ;‘-,3 if ll_\fl Z %
S1 [ Natemmmonr vyt pNistna < R . 229)
A0 Ce g 1 B<i

Replacing in (2.22) 2;(1:) with ELED*z'ﬂE!l, summing over all v # 0 and applying
(2.29) with £ > ‘“;—1 we get the desired result

Zle(V 1< / |IF(z)| - |Dn(2)| (2.30)

jzj>1



68
where Dy : R¢ — C

|IDn(z)| £ C

MyE2 g >
(=) lz| > 5 (231)
1

if1<|z]

IA
wlz

N

with C depending only on q and d. O

Now we are in a position to proceed with the proof of Theorem 1. From (2.1) it

follows that
go(m) = f(pm) (2.32)
for every m € Z4. Scaling we can assume that
. : pm
= f(—= 2.33
go(m) = f( \/5) (2.33)

for every m € Z°. It follows that

gl =3 lgotm)P= 3 lf(%)lg- (2.34)

meZd meZd

Let rq(n) denote the number of representations of an integer n as sums of d squares.

It is a well-known fact from Number Theory that if d > 5 then
d=2
ra(n) > Cn2 (2.35)
and if d =4 and n is odd then
rqy(n) > Cn (2.36)

where C > 0 depends only on d. See for example ({5}, p.30, p.155, p.160).
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Integrating (2.34) with respect to the Haar measure dp and applying (2.2) we have

¢ = [ T

pESO(d) meZs

)y |f<'""e )Pdo(€)

lgj=1 m€Z!

> ¥ [ Herae

n20 jmi2=mei_)

. |m]
DD /|f(755)|2da(e)

"20 |m|2=2n+ ].lel: 1

\Y

= Yo+ [ 1(fn+ 50Pd©

>
n20 lei=t

- St [iiere o @3

n>0

Using (2.8) and (2.35) or (2.36) we conclude from (2.37) that

1
§>_:o ,/n-l——-;'

Let g : R — R be a fixed non-negative Schwartz function supported in [3,2] such

n+ -;-) <CG. (2.38)

h(

that
q(z) +q(z/2) =1

when z € [1,2]. It follows that

> q(—-) =1 (2.39)

i>0

when z > 1.
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Applying the Poisson summation formula to

1 f+é
H(t) = =h(y/t + )q( )
t+§
\/H-1 t+‘
= =yt ) + ([t + e
Jt+i t+3
= H\(t) + Ha(2)
we have
Y Hn) = Y H)
= HO)+Y_ B+ H(v)
v#0 v#£0
Note that
. 1 1. \t+s
H(0) = / \/H._%h( t+ 3)a(~——)dt
=2 / h(t)q(I%)dt

Substituting (2.41) into (2.40) we get that

9 / h(t)q(—ztv)dt

Z H(n) +)_|HB () + ) [Ha(v)]
v#£0 v#0

1 nt3 C"FHI
)3 Dyredlias a2+ S lz I[ |F(z) D (2l

where the last inequality follows from Lemma 1 and Lemma 2.

IA

-)

(2.40)

(2.41)

(2.42)
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From the definition of Dy (z) (2.21) it follows that

Y IDu@)| = Y IDul@)|+ Y |Daula)l

20 W <9z} 2>2z|
2 a4 C
< Z C’(m) T+ Z 5 <C (2.43)
2% <2z| 27 52|z}

for every |z| > 1.

Putting N = 27 in (2.42), summing over all 7 > 0 and applying (2.39) we get by

Lebesgue Monotone Convergence Theorem

o

1 1
2 [ he)dt < h(\[n+2) +CIF+C [ |F(z)ldz
< C(G*+|IF|h) (2.44)

where the last inequality follows from (2.38). From the definition of A(t) (2.8) it
follows that

h(t) < CIFI (2.45)
for t < 1. Therefore, we have
[if@pa = [P
0
= / h(t)dt
0
< CG+IfIRD (2.46)

where the last inequality is obtained from (2.44), (2.45) and (2.7). From (2.46) it
follows that f € L? and

Lfllz < C(G+ I fll1)



with C depending only on d.

Ifd > 5 then

ra(n) < Cn*%

(2.47)

where C' > 0 depends only on d. See for example ({5], p.155, p.160). An argument

similar to the one used to get (2.37) but without scaling shows that

G? Y | Fem)|*dp
pESO(d) meZd
= QP+ run) / |F(/mE) Pdor(€)

n2l lEi=1

o+ 8 [1i@raos©.
Using (2.8) and (2.47) we conclude from (2.48) that

G?< Ilfl|2+C’Z —=h(Vn).

Repeating arguments which we used to obtain (2.44) we get

> Z=hvA) < 2 [ hedt+ I,

n>1

0
< CUFIE+ IF1D-

Hence we can formulate an inverse theorem to Theorem 1:

(2.48)

(2.49)

(2.50)

Theorem 1’: let d > 5 and let f € L'(R%) N L*(R?) and let g, be periodizations

of f

90() =) flp(z —v))

vezZd

(2.51)
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then g, € L*([0,1]%) for almost all rotations p € SO(d) and

lgsll3de < CULA Nl + I1F11L)?
peSO)

where C depends only on d.

Corollary: interpolating between the trivial p = | and p = 2, we obtain the
following generalization of the previous theorem for 1 < p < 2: let d > 5 and let
f € LYR?) N LP(R?) and let g, be periodizations of £

go(z) = Y flp(z —v))

veZd

then g, € LP([0, 1|) for almost all rotations p € SO(d) and

[ Nalizdo < caist, + 1y

pESO(d)

where C depends only on d.

2.3 Casel<p<i

We will generalize Theorems 1 and 1’ in the spirit of the Stein-Tomas Theorem
([4], Chapter 6.5).

Theorem 2: let d > 4 and let f € LP(RY) where 1 <p < ﬁ‘_‘—z. If periodizations
of f

5(@) =Y flolz - v))

veZd
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are in L*([0,1]%) for almost all rotations p € SO(d) and

G = / lgpl3dp < 00
pESO(d)

then f € L2(RY):
1fll2 < C(G + | fllp) (2.52)

where C depends only on d and p.

It will follow from the proof (see (2.37)) that we can replace [ ||g,|l3dp with
pESO(d)
[ llgo — (0)||3dp in Theorem 2. We will also obtain an inverse theorem.
pESO(d)

Theorem 2: letd > 5 and let f € L'(RY) N LYR?) and 1 < p < £ and let g,

be periodizations of f

9(z) =Y flp(z ~v))

veZd
then g, € L*([0,1]%) for almost all rotations p € SO(d) and
/ 195 — 3,(O)l2dp < C(lLflla + 1 Flla)2 (2.53)
pESO(d)

where C depends only on d and p.

Since Schwartz functions are dense in LP(R%) N L2(RY) it follows from Theorem

2’ that we can define periodizations g, of f € LP(R?) N L2(R?) where 1 <p < 2% for

a.e. p € SO(d) as elements of the quotient space of L2([0, 1]¥) modulo constants.

Remarks: 1. As the following example shows, we can not replace [ |ig, —
pESO(d)



75

§(0)|3dp with [ ; llg,ll3dp in Theorem 2’ when p > 1. Let ¢ : R? — C be a
PESO(d)

Schwartz function supported in B(0, 1) such that #(0) = 1. Put f(z) = @#(%). Then
9 = f (0)=1

but
1fllp = €7 [ llp-

2. The next example from ([4], Chapter 6.3) shows that p can not be greater than

2—';14_*’3—2 in Theorem 2’. Put

- =1 zs
f(xlr eeey l’d) = (P( L [ B Rt _) (2'54)

where ¢ : R? — C is a Schwartz function supported in B(0,2) such that ¢ =1 in
B(0,1). Then

/ lg, — §0)Bdp = 2d / |F©)Pdo(e)
p€SO(d) k=t
> Ced-l

but

1F12 = €7 [16l-

It is an open question whether Theorems 2 and 2’ are valid when 2% < p < #£2.

We discuss this further in Remark 2 at the end of the section.
Proof of Theorem 2:
The proof goes quite similarly to the one of Theorem 1. We will replace Lemma 1

with

Lemma 3: Let ¢ : R — R be a Schwartz function supported in [1,2], let f €
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LP(R?) where 1 <p<2andletbe€[0,1). Define H;:R—C

1 — Vt+b
Hl(t) - mhl( t+b)Q( N )'
Then for large enough N we have
C 2
5~ iy < 25

v#£0

where C depends only on q and d.
Proof of Lemma 3:

The only difference in the proof is to obtain an inequality analogous to (2.13).

Using Young’s inequality we have ||f * fil, < ||If |2 where 1 + % = %, Therefore,

| [(f * /) z)w(z)dz| < ||If I3llwilg- Substituting derivatives of c?gt(x)x{lz|51} with
respect to ¢ instead of w, we get the desired inequality

R @) < Ce Al (2:56)
where ¢t > 1 and C depends only on k and d. a

The main difficulty is to prove a lemma analogous to Lemma 2:

Lemma 4: Let ¢ : R — R be a Schwartz function supported in [},2], let f €
LP(R?) where 1 <p < 2% and let b €[0,1). Define Hyy :R—C

Haa(t) = stV B0,



(4

Then we have

SIS B )] < CIIFI2
v£0  j20
with C depending only on p, q and d.

Proof of Lemma 4:

Recall from (2.22) that

Fly v (v)] = 2 / (f * F)(z) Dy (z)dz

where
Dy.(z) = x{lzpl}eﬁ""b / JVq(t)e“z""(‘V‘)z(N t)d‘lc’iz(Nt:t:)dt.
Denote by
K,(z) =) Dy, (z).
>0
Then

I3 )l = 2 [+ D@ Y Das(aa
>0 20

2 f F@) (K, * f)()da]
< 2AfllK * fllg-

(2.57)

(2.58)

(2.59)

(2.60)
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If Y = o0 or p = 2 we have

IK, * fllo < 1K llaall fllx
1K, * fllz < 1K llooll Fll2-

First we will show that

“Ku”co < “ Z 'D‘l‘,u[(x)“oo

>0

< Ot (2.61)
It follows from (2.26) that
NS JCWwINyE N el
|IDnp(2)| € —5 (2.62)

T | Cuuiv) 4 i N g [,

If v > 0 then the number of diadic N € [, &] is at most 3. If » < 0 then there are
no N in [ = E I2l] Therefore, choosing & > 41 and summing (2.62) over all diadic N,

we have

Y " |Da(z)| < Clvf~%

>0

with C depending only on d and gq.
Now we will show that

1&olloe < 11D 1D, |®)llee < C- (2.63)
>0

Since supp ¢ € [3,2] we can re-write (2.25) for a stronger version of the method of
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stationary phase ([8], Theorems 7.6.4, 7.6.5, 7.7.3)

k-1
| . s V)4
5t -x21wN2(L—=.,I;L)'dt _ (N2 —i—% 4(24) lxl ck(lyll
| [ ottre et =3 oo < 2 T
=0 1 BN
where c; are some constants. Therefore,
VE &
Divu(2) = Xtstotyy_zre™ S £ et ra e
J=0

d+1 —k—*
N :i c"('"wg)ﬂ +. Choosing k > %2 we have
Izl T max (L ghor) ?

where |9x(z)| < X{lzi>1}

Pelle < lléklls

- / | eldz + / \beldz

|z <8|viN jz|>8|v|N
C

< =
- N

(2.65)
where C depends only on d and q. We can assume that v > 0 since Dy, (z) = d(z)
for v < 0. We can also ignore x(jz>1} in front of the sum in (2.64) because if
—Ll% € [-;-, 2|, then |z| > vV > 1. We will consider only the zero term in the sum. The
other terms can be treated similarly. The Fourier transform of

\riﬂ |z|

'2"J‘L(VN2)“¢>( S7)

|25
at point y is equal to
N (2V1V)$2tl(VN2)‘% / W(|z|)e2™ NIl g2 WNTY g
R9

ClyN?)ze 2l / (el eV ¥ dg (2.66)
Rd

where ¥(t) = ¢(t, 2vNE)t~ T is a Schwartz function supported in (3, 2] whose deriva-
tives and the function itself are bounded uniformly in £, » and NV (see remark after



80
(2.24)). The same is true about partial derivatives of 1(|z|). Applying the stationary
phase method for R? ([8], Theorem 7.7.3) we get

. 2 C(vN?)—% if N e[ 2y
I f P(|z|)e?™ M= dx| < @ 15 2ll (2.67)
B Ce(wN?)~*% if N ¢ [, 2)y]]
Therefore, the absolute value of (2.66) can be bounded from above by:
C if Ve[, 2
< 3 2lwl] ’ (268)

Ce(vN?)~* if N ¢ [, 2)y]]

Similar inequalities hold for Fourier transforms for the rest of the terms in the sum in
(2.64). The number of diadic N € [, 2[y|] is bounded by 3. Using (2.65), choosing
k > 1in (2.68) and summing over all diadic N, we get

Y 1Du () <C (2.69)
>0

with C depending only on d and ¢q. Using (2.61) and (2.63) and interpolating between

p=1and p = 2, we obtain

& * fllr < Clel™ 11 £l

where o, = %2—;3. a, > 1if p < 2%. Summing (2.60) over all v # 0, we get the
desired inequality

SIY B @) < CIAR

v#0 720

a

Now we are in a position to proceed with the proof of Theorem 2. The proof is

almost the same as the one of Theorem 1. We need also to replace inequality (2.45)
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with the following one:

h(t)dt = / |Flu)Pdy
lyl<1

Clifliz
< ClfI?

o .

IN

where p < 2 and C depends only on d. An argument similar to the one used to get
(2.42), (2.44) and (2.46) (note that the interchange of summation by v and N is not

a problem) yields the desired inequality

/ F@Pde = [ |f(©Pdoe)dt

—

)
t)dt

[
Ow
5

< GG+ A1)

with C depending on d and p. a

The proof of Theorem 2’ is the same (see the argument after the proof of The-

orem 1). The important thing is that we exclude §,(0) = £(0) in (2.48) now.

Final remarks: 1. We can further generalize Theorem 2'. Fix some q €
1, %). Interpolating between the trivial p = 1 and p = 2, we obtain the following
generalization of the Theorem 2’ for 1 < p < 2: let d > 5 and let f € L}(R¥)NLP(RY)

and let g, be periodizations of f

ge() = Y flolz —v)) (2.70)

veZd
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then g, € LP([0, 1]4) for almost all rotations p € SO(d) and

/ 19, — 3,O)E dp < C(If 1o + 1 Flla)”

pESO(d)

where C depends only on d and q.

We can restate this result in the following way: if 1 < p < d% then

g, ~ G015 dp < CIIAIE,
peSO(d)

if1<q< % and 2 <p<2then

g0 — 30(0)IE'dp < C(lI fllp + 1 flla)* -
peSO(d)

2. Conditionally on the exponent pair conjecture ([12], Chapter 4, Conjecture 2)

we can clarify what happens when 2% < p < #£2. In our case the conjecture says

that

| S e < Clafnt 21)

n<v<m

where m < 2n and |[z| > n. Let B(z) = max(1, |z|)-

Proposition. Theorems 2 and 2’ hold if we replace || f||, with ||3¢f||, and if
p< %, provided the conjecture is valid.

Using the example (2.54) we can show that the Proposition is sharp up to e in

the range of p for the estimate (2.53).

Proof of Proposition:



83

The main issue is to improve the result of Lemma 4. Denote by

Li(n)= Y K2 (2.72)

2 <y<P+L

Using summation by parts we obtain from (2.64), (2.59) and (2.71) that

Lol =1 Y K|

U<yt

< Clzfo T,

We will deal with the following expression instead of (2.60)

| / @)Ly * @)z = | / f(x)ﬁ‘wdxl

< 18 )llpll(L g,

ll-

If o/ =00 or p =2 we have

Il([,_j*_flllw < "f,yls,,_.llﬂj(x-y)l~If(y)ldy+f,y.2,,, le(r-y)Hf(y)ldy"m
Be Be(z)
< II 2 floollBflx
< Ce2‘"=‘jllﬁ‘fll1,
Dy, < iz« e
< WLjlloll Fll2
< CZ|fll.

Interpolating between p = 1 and p = 2, we obtain

LDy, < caseripesl,

Whetea,,: &3 a,>0ifp< 22 a
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3. Concerning the lower dimensional cases we can use the following results from
the Number Theory:
r3(n) < Cnilnn Inlnn,

r4(n) < Cnlnlnn.

See for example ([2]). There is an infinite arithmetic progression, e.g., n = 8k + 1,
such that
r3(n) 2 Ceni™™.

See for example ([6]). Then Theorem 1 holds when d = 3 and Theorem 1’ holds

when d = 3 or d = 4 if we replace

lgpll3 = Y lga(m)l3
meZd
with
3 Imllg.(m) B3,

meZd

|go(m) |2
Z In |m)| Inlnzlm[

meZd,|m|>3

> |3p(m) 3
Inn [m|

meZd |m|>3

or

correspondingly.

24 Cased=2and p=o0

Some results on the Steinhaus tiling problem are related to Theorem 1 since peri-
odizations naturally appear in the problem of Steinhaus. In particular, showing that
there are no measurable Steinhaus sets in dimensions greater than two, M. Kolountza-

kis and T. Wolff proved the following theorem on periodizations in higher dimensions
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([10], Theorem 1) which can be viewed as some version of Theorem 1 for p =00 :

Kolountzakis and Wolff’s Theorem If f € L}(R9) and its periodizations g,

are constants for almost all rotations p € SO(d), then f is continuous and, in fact,

Ifllee < Callfllx

provided that the dimension d is at least 3.

Obviously, this statement is false when d = 1. We will show that it doesn’t hold
either if d = 2. The fact that g, are constant means that flp(k,1)) = gs(k, 1) =0
for all (k,[) € Z2\(0,0) and almost all p € SO(d) which means that f vanishes on
all circles of radii vIZ+ k2 > 0. Denote by X the Banach space of functions from
L'(R?) whose Fourier transforms vanish on all circles of radii vIZ+k2 > 0

X ={f e L}R¥: f(r) =0 if |r| = VE+ k2, (k,I) € Z°\(0,0)}.

We will use the notation z < y meaning z < Cy, and z ~ y meaning that z < y and

y < z for some constant C > 0 independent from z and y.

The next lemma crucially depends on the following fact from the Number Theory
([5]; p-22):

The number of integers in [n,2n] which can be represented as sums of two squares is

ne, where €, < > — 0 as n — 0.

Lemma 5: There ezists a sequence of Schwartz functions f, € X such that

e
2o =

Proof of Lemma 5: Let ¢; < a3 < a3 < ... be the enumeration of numbers
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an = VI2 +k? in ascending order. Denote ,, = @1 — G- As we already said the
number of a,, in [/, 2y/n] is ne,. Let ap, and @, be correspondingly the smallest
and the largest such a,,. Then

mp—1

Z J’m =0m; — 0y ~ \/ﬁ~
m=mg
Let § = 719;: with small enough constant C > 0 so that if
M ={m,mg <m <my :d, >4}

then

VRS Y bm

meM

since my; —mg ~ né,. Choose coordinate axes = and y. We will construct f, supported
in |J R, where R, is a largest possible rectangle inscribed between circles of radius
a,,.m::é @m+1 With sides parallel to the coordinate axes. Then R, is of size ~ d,, x
VOmlm = 8 % \/3+/n. We will split each rectangle R,, further into smaller [%m]

rectangles r of the same size ~ d x 1/d/n. The number of these rectangles r is

- gl

Vnen

since J,, > § for m € M. Enumerate these rectangles ri, £ = 1,...,N. Let r be
centered at (A, 0) It is clear that [Ax — M| > 0 for k # [. Let ¢ be a nonnegative
Schwartz function on R supported in [—1, 1]. Define f, as the following sum:

N
2 Z T — M y
a\L;Y) = —)- 2.73
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The k-th term in (2.73) is supported in ri. Therefore, f, is a Schwartz function

supported in |J Rn. Hence f vanishes on all circles of radii a;. Taking the inverse
meM
Fourier transform of (2.73), we get

. R N
fa(&,m) = 58(68)\/5vmd(m/6vm) 3 €. (2.74)
k=1
Then

£2(0) = §6(0)y/ov/nd(0)N

1 1
~ m V_n—%\/ﬁ'nén

A :
= '\/T:. (2.75)

We used here that q3(0) = f ¢ > 0 is some nonzero constant. Denote
N A
g(z) = z e FE,

k=1

Since |54 | > £ =1 for k # [ we have

/ gl ~ N
I

for any interval I of length 47 (see ([14], Theorem 9.1)). Therefore,

Judl < \/TITW

< VN (2.76)

for any interval [ of length 4. Since ¢ is a Schwartz function, we have that

1

5 <
6@ S -
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The L! norm of (2.74) is

N
[t niidedn = 16l [13(@)1- 13 e ¥Felag
k=1
(I+1)dw

16(€)] - 19(€)1d€

I
Q
lmg

[z l4m
= 1
<
S 2 iTE vN
< /ne,. (2.77)

Dividing (2.77) by (2.75) we obtain the desired result

[FAR nén

20 - &

| f=(0)| ves
= €,—0

aan—oQ.

Corollary: It follows immediately from the lemma that

sup Ifllz=py _
rex  Iflh
We claim that there exists a function f € X such that || f{|L=(p(o,1)) = 00. Suppose
towards a contradiction that this is not true. Then the restriction operator

T: f— flpey

maps X to L=(D(0,1)). Note that if f, — fin L' and f,, — g in L*=(D(0, 1)), then
f=ga.e. on D(0,1). An application of the Closed Graph theorem shows that T is a
bounded operator acting from X to L*(D(0, 1)). This contradicts to the Corollary.
Thus we proved our claim. Obviously, this function f is not continuous. Therefore,

it can serve as a counterexample to the Theorem when d = 2.
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