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Abstract

There has been rising interest in the study of Dade’s conjectures, which not only
generalize Alperin’s weight conjecture, but unify some other major conjectures in
(modular) representation theory, such as Brauer’s height conjecture in abelian blocks
and McKay’s conjecture. In this thesis we verify Dade’s ordinary conjecture for the
finite unitary groups in the defining characteristic. Dade’s conjectures involve proving
the vanishing of the alternating sum of certain G-stable function over the p-group
complex of a finite group G. We develop some machinery to treat alternating sums
which we hope will serve as part of a general approach to such problems. This includes
extending some of the existing techniques in a functorial way. We also show how to
make use of the topological properties of p-group complexes to reduce the alternating
sums. While this work is mainly intended for the unitary groups, it should also apply
to other groups of Lie type, and part of the work can be generalized to treat a much
wider class of groups. Among other things, we also obtain a formula which expresses
the McKay’s numbers of the finite unitary groups in terms of partitions of integers.
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Chapter 1 Introduction

Background.

The description of character values, in terms of structure given by a prime p, has
been a basic topic of the representation theory of finite groups. In particular, since
Brauer’s pioneering work, the question of the number of irreducible characters in a
p-block and the divisibility properties of their degrees is of fundamental concern.

In the 1986 Arcata conference ([A]), J.L. Alperin proposed his famous weight
conjecture which expresses the number of irreducible modular characters of a finite
group in terms of p-local information. Since then it has become one of the central
problems in the modular representation theory of finite groups, as the conjecture
implies many new results and old theorems as well as outstanding conjectures. Alperin
also pointed out that the weight conjecture, which has been verified in many cases
but hasn’t yet been proved, could be a special case of even more sweeping conjectures.

Later an intriguing reformulation of Alperin’s weight conjecture was obtained by
G. Robinson and R. Knorr ([KR]), who introduced the chains of so-called radical
subgroups and stated a form of the conjecture in terms of alternating sums. This in-
spired E.C. Dade ([D1], [D2]) to propose his spectacular series of conjectures. Dade’s
conjectures not only generalize Alperin’s weight conjecture, but unify some other ma-
jor conjectures in (modular) representation theory, such as Brauer’s height conjecture
in abelian blocks and McKay’s conjecture. The weakest of the conjectures, Dade’s
Ordinary Conjecture, already implies Alperin’s weight conjecture. The strongest of
Dade’s conjectures, Dade’s Final Conjecture, reportedly has the property that if it
is true for the finite simple groups, then it is true for all the finite groups, i.e., its
verification can be reduced to the case of the finite simple groups. In certain cases
Dade’s Final Conjecture is equivalent to the Ordinary Conjecture.

There has been rising interest in the study of Dade’s conjectures ever since they

appeared. In general, however, Dade’s conjectures are very. difficult to verify. For
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instance, while there is an very elegant bijective proof of Alperin’s conjecture for the
finite groups of Lie type in the defining characteristic (see [A]), an analogous proof of
Dade’s conjectures in those cases has yet to be found. Indeed, only Dade’s Ordinary
Conjecture has been verified for the general linear group, in work of J.B. Olsson and
K. Uno ([OU]).

In this thesis we only study Dade’s Ordinary Conjecture. We include an incom-
plete list due to J. An ([An]) of the cases for which Dade’s Ordinary Conjecture has
been verified.

(2) GLa(q) (pla), *Fa(2™*') (p #2), G2(9) (p1q) (by Olsson, Uno, An).

(b) Sn (by Olsson and Uno when p odd, An when p = 2).

(c) Ru (by Dade).

(d) Unipotent abelian defect blocks (by Broue, Malle and Michel).
(e) Abelian defect principal 2-blocks (by Fong and Harris).

(f) All abelian defect blocks with small inertia index (by Usami).

Results and Goals.

Dade’s work has already shown the importance of verifying his conjectures for the
finite simple groups and groups close to being simple. Among other things, we prove
that Dade’s Ordinary Conjecture holds for the finite unitary groups in the defining
characteristic. However, our goal is beyond that.

It is believed that the study of conjectures like those of Alperin and Dade which
express the number of irreducible complex/modular characteﬁ of a finite group G in
terms of the p-local structure of G fits into a larger picture where one can consider
how to evaluate the alternating sum of certain G-stable function f over the p-local
geometry of G. More explicitly, it involves proving the vanishing of the alternating
sum of certain G-stable function over the p-group complex of G. Alternatively, J.
Thevenaz (see [Th2]) showed that (given a prime divisor p of |G|) any G-stable func-
tion f can be decomposed as the sum of the “p-part” f, and the “p’-part” f,y, where
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fp is a p-locally determined G-stable function in the sense that the alternating sum of
fp over the p-group complex of G is 0, and f,s is a G-stable function which vanishes
on p-local subgroups. Thus the question turns to how to determine the “p-part,” as
well as the “p’-part” of a given G-stable function f.

We feel that the study of these questions may proceed in two directions. First, in
order to show a function f is p-locally determined, one may consider which properties
f should have. These properties should be independent of the explicit group structure
if f is defined for any finite group. Subsequently techniques for manipulating the G-
stable functions may be developed and applied to show the corresponding alternating
sum is 0. Second, one may proceed by studying the topological properties of the
p-group complexes for finite groups, as questions of this kind can be interpreted as
showing the “weighted” Euler characteristic of the p-group complex for any finite
group G by f is 0. The study of such properties by a.nalyziﬁg the p-local structure
of G has been active. See for instance D. Quillen’s work on the homotopy properties
of p-group complexes (see [Q]), M. Aschbacher and S.D. Smith’s work on Quillen’s
conjecture (see [AS]|) and Aschbacher’s work on the simple connectivity of p-group
complexes (see [As2]). In our case, we need to utilize certain properties of the p-group
complex or of various subcomplexes to reduce the alternating sums to a stage where
we can either proceed by an inductive argument or make use of the explicit properties
of f.

In this thesis, we make efforts in both directions. Namely we develop some ma-
chinery to treat the alternating sums which we hope will serve as part of a general
approach to such problems. This includes extending some of the existing techniques
in a functorial way; and in particular we are interested in the study of the case when
the function f is decomposable in a certain sense. Moreover, in proving Main Theo-
rem 1 which is stated below, we display how to make use of the topological properties
of the p-group complexes to reduce the alternating sums. While this work is mainly
intended for the unitary groups, we feel optimistic that it applies to other groups of
Lie type and have good reason to believe that part of the work can be generalized to

treat a much wider class of groups. As an application, we prove the following results.
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Throughout this thesis, Dade’s Ordinary Conjecture is abbreviated as DOC. Let
G = GU,(q) be the full isometry group of an n-dimensional unitary space over a field

F,2 of order ¢* where g = p® is an integral power of a prime p.
Main Theorem 1. DOC holds for G at the prime p.

Main Theorem 1 follows from Lemma 3.1.6 and Theorem 3.3.5. We also obtain
the formula for the McKay numbers for the general unitary group:

Main Theorem 2. The number of irreducible complex characters ¢ of G such that

the p-part of p(1) is p* is 3 g* W5

Here the sum 5’ is taken over all the partitions x of n with n(x) = h/e. The
parameters [(x), (1) and n(u) are defined in section 2.3.
Main Theorem 2 is restated as Theorem 3.3.4, which follows from Theorem 3.3.3.

Two immediate consequences of Main Theorem 1 are the following:
Corollary 1.0.1. DOC holds for the finite projective unitary group PGU,(q) at p.

Corollary 1.0.2. If (n,q +1) = 1, then DOC holds for the finite simple unitary
group Up(q) at p.

The corollaries are proved in section 3.3.

The Organization of the Thesis.

The thesis is organized as follows. In Chapter 2, after we state DOC, we set up
some notation which will be used throughout the thesis and prove some preliminary
lemmas. Then we prove some results on partitions of integers which will be used in
section 4.3 as well as in 9.3.

In Chapter 3 we give a reformulation of the conjecture for the finite groups of
Lie type. The reformulation is an extension of Olsson and Uno’s reformulation for
the general linear groups. We then present a strategy for verifying the conjecture for
the finite groups of Lie type. In particular, we show that Main Theorem 1 follows
from Proposition 3.3.6 and give a proof of Coroﬂary 1.0.1 and 1.0.2 assuming Main

Theorem 1.
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In Chapter 4, we start by introducing some key facts from the Deligne-Lusztig
theory on the representation theory of the finite groups of Lie type, and then prove
Theorem 3.3.3, and hence also Main Theorem 2. In the end, we prove part (1) of
Proposition 3.3.6.

In Chapter 5 we discuss some general techniques for treating alternating sums. In
particular we extend some combinatorial ideas in a functorial way to obtain some re-
sults on cancellation in alternating sums. We also set up some machinery to deal with
the alternating sum of certain decomposable functions. Some interesting examples
are discussed to illustrate how the general results can be applied.

In Chapter 6 we study the action of the direct product of two groups on the
tensor product of two modules, one for each factor, and obtain a parameterization of
the orbits as well as information on the stabilizers. This serves as the basis for the
analysis of the action of the parabolic subgroups of a finite group of Lie type on some
of their internal modules, namely the so-called linear modules and unitary modules.

Chapter 7 is devoted to the study of the action on a twisted version of the tensor
modules, namely the action of a sub-parabolic subgroup of a maximal parabolic P of
the general unitary group on the center of the unipotent radical of P, which we call
the central module of P.

We begin our reduction toward a proof of part (2) of Proposition 3.3.6 in Chapter
8. We introduce a system to parameterize the stabilizers in the parabolics of certain
characters of the internal modules, and show that the count of the alternating sum
of the number of irreducible characters of the parabolics of the unitary group lying
over the set of non-trivial characters of a fixed internal module can be reduced to
the count of characters over some special subset of characters in that module whose
stabilizers are well understood and labeled by the system we introduced.

We continue the discussion in Cha.pter 9. By a recursive analysis we show that
only certain characters of the parabolics lying over characters in the unitary and
central modules need to be counted. Then we are able to implement an inductive

argument in section 9.3 to the proof of part(2) of Proposition 3.3.6.



Chapter 2 The Conjecture and

Preliminary Lemmas

2.1 The Conjecture

Let G be a finite group, p a prime. A chain

c: U QUL C---CU,

——

of p-subgroups of G is called radical if Uy = Op(G) and
Ui = Op(Mj=o Na(U;))

for all 2 with 1 < 7 < r. For such a chain ¢ we denote ﬂ;.';o Ng(Uj) by G, and the
length r of ¢ by |¢|. For a p-block S of G and a non-negative integer i, let k(G., S, ?)
be the number of irreducible characters ¢ of G. such that ¢ lies in a p-block of G,
inducing up to S and such that p* is the highest power of p dividing |G.|/¢(1). Note
that if two radical chains ¢ and ¢ are G-conjugate, then k(G,, S,1) = k(Gx, S, %) for
all S and . Dade proposed the following

Dade’s Ordinary Conjecture. Let G be a finite group with Op(G)=1and S
a p-block of G of positive defect. Then

Z(—I)ICIk(Gm S, 7‘) =0
for allZ > 0, where Y denotes the sum over a set of representatives of the G-conjugacy
classes of p-radical chains of G.

Remark 2.1.1. (1) A p-subgroup P < G is radical if P = Op(Ng(P)). By defi-
nition, the second term of a radical p-chain must be a radical p-subgroup. In
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general, however, the radical p-chains are not the chains of radical p-subgroups

and do not constitute a simplicial complex;

(2) It can be shown that (see Proposition 3.3 in [KR] and Proposition 3.7 in [D1])
the alternating sum in the conjecture remains the same if the set of radical chains
is replaced by any of the following: The Brown complex, Quillen complex, Bouc

complex or Robinson complex.

2.2 Notation and Preliminary Lemmas

We fix some notation used throughout the thesis.

Let N be the set of positive integers and C the set of compiex numbers. Let C* be
the multiplicative group of the nonzero complex numbers and C, the unique cyclic
subgroup of C of order n. Similarly we write F, for the field of g elements and F; for
the multiplicative group of Fy;. We write My, »(F) for the set of m X n matrices over
a field F. _

For z > 1, let [z] = {1,2,---,n} where n is the largest integer less than or equal
toz. If £ < 1, set [z] = 0. For a subset J C [n], denote the minimal (resp. maximal)
member of J by min(J) (resp. max(J)). By convention we set min(@) = max(@) = 0.

A simplicial complez is a set X whose elements are called vertices, together with
a collection X of subsets of X called simplices, such that if B € £ and A C B, then
A€ X. A G-complex is a simplicial complex with a group G acting on the vertex set
and mapping simplices to simplices.

If X is a topological space together with a continuous action of G on X, then
X is called a G-space. Recall that a G-homotopy between two G-spaces X and X'
is a continuous map F : [0,1] x X — X’ such that F; : X — X' is a G-map for
every t € [0,1] (where Fi(x) = F(t,z)). We may set Fy = f, Fi = g and write
f ~c g. Two G-spaces X and X' are G-homotopy equivalent if there are continuous
G-maps f: X - X' and g: X' - X such that fog ~g 1x» and go f ~g 1x. In
particular a space is G-contractible if it is G-homotopy equivalent to a point. These
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concepts apply in an obvious way to G-complexes since the geometric realization |A|
of a G-complex A is a G-space.
In this thesis we only discuss finite posets. We require that all the posets have
a unique minimal element 0 and that all the chains involved start with 0, unless
otherwise mentioned. The set of chains in P starting with 0, including the chain {0},
is denoted by A(P). For a chain

CEA(P):0=$o<$1<122<"'<.’12k,k?O,

|c] = k is called the length of c. By our convention ¢ = {0} is the unique chain in
A(P) with |c| = 0. The order complez O(P) of P is the simplicial complex whose
k-simplices are the chains in A(P) of length k£ + 1. By convention {0} is the unique
(—1)-simplex of O(P). Recall P is a G-poset if P affords a G-action which preserves
ordering. Two G-posets are G-homotopy equivalent if their order complexes are G-
homotopy equivalent.

If G acts on P, the stabilizer in G of ¢ € A(P) is G, = Mi<i<kGz,- The orbit
space of A(P) under G is denoted by A(P)/G. Throughout this thesis, c € A(P)/G
always means that c is a representative of the G-orbit ¢®. So 3 A(P)/c means the
sum is taken over a set of representatives of A(P)/G. Similarly if H; < G, ¢ = 1,2,
> heH\G/H, Means the sum is taken over a set of representatives of H}\G/H,. By
abuse of notation, we denote by A([n]) the set of subsets of [n].

If V is a vector space, we set P(V) to be the poset of proper subspaces of V'
ordered by inclusion. The chains in P(V) are also called flags. For ¢ € A(P(V)),
{dim(U);0 # U € c} is called the type of c. Clearly if G acts on V then G preserves
type.

If G is a group, we write Irr(G) for the set of irreducible complex characters of G.

Let N be a normal subgroup of G and p € Irt(N). We say ¢ € Irr(G) lies over p
if p is a direct summand of the restriction of ¢ to N, or equivalently (p, ¢|nx) #0. G
acts on Irr(IV) in a natural way. The stabilizer in G of p is denoted by G, or Ng(p).
We write Irr(G, p) for the set of ¢ € Irr(G) lying over p. Let Irr'(G) be the set of

non-trivial irreducible complex characters of G.
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For X C Irr(N), Irr(G, X) denotes the set of ¢ lying over some 7 € X. In
particular we denote by Irt?(G, N) = Irr(G, 1x) the set of irreducible characters of G
whose restriction to N is trivial, and denote by Irr!(G, N) = Irr(G, Irr! (V)) the set
of irreducible characters of G lying over a non-trivial irreducible character of N. Here
1y is the trivial character of N. Clearly Irr(G) is the disjoint union of Irt®(G, N)
with Irr! (G, N).

Similarly for N; < G and p; € Ier(Vy), 7 = 1,2, Irr(G, p1, p2) denotes the set of
irreducible characters of G lying over p; and p,. If Ny < N and V = Ny /Ny, we
denote by Irt’(G, V') the set of irreducible characters of G whose restriction to N,
(and hence to V) is trivial, and denote by Irr}(G, V') the set of irreducible characters
of G whose restriction to N; is trivial but whose restriction to N, is non-trivial. In
other words, ¢ € Irr!(G, V) if and only if N; < ker(p) 2 Na.-

In the above notation, we replace Irr by k£ to denote the size of the corresponding
set of characters. For instance k(G) = |Irr(G)|, ¥*(G, N) = |Irr' (G, N)|, ete.

Let p be a prime. The p-height of ¢ € Irr(G) is the exponent of p in the prime
factorization of ¢(1). Similarly if ¢ is a power of p, the g-height of ¢ is the exponent
of ¢ in the prime factorization of ¢(1). In this thesis, we always use Irry(G) to denote
the set of irreducible characters of G whose g-height is d for some given g, and set
ka(G) = |Irra(G)|-

If N is normal in G, the inflation operator

InfC : kr(G/N) — Irr(G), A — Inf())

is the map defined by letting Inf()) be the character such that Inf¢(\)(g) = A(gN)
for g € G.

Lemma 2.2.1. Let G be a finite group and N a normal subgroup of G. Let 7 €
Irr(N), H =G, and p € Irr(G, ).

(1)

pln=m Z 79 (2.1)

9eG/H
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for some m € N.

(2) If T € X C Irr(N) is a subset of G-conjugates of T, then
Im(G, X) = Irr(G, 7).

Proof. Part (1) is Clifford Theorem. See for instance Theorem 3 in [BZ], Chapter 7.1.
By definition, Irr(G, X) consists of the set of irreducible characters of G lying over
some member of X. So by part (1), ¢ € Irr(G) lies over some 79 € X if and only if

it lies over 7. Therefore, part (2) holds.
a

Lemma 2.2.2. Let G be a finite group and N a normal subgroup of G. Let 7 €
Ir(N), H=G, and HS P <G:

(1) There is a 1-1 correspondence between Irr(P, ) and Ir(G, T) given by inducing
characters. In particular, k(G,7) = k(P,1). Moreover, if ¢ = p°® is a prime
power, then for each d 2 0, k4(G,T) = kq-a(P,T) where d’ is the ezponent of q
in the prime factorization of |G|/|P]|.

(2) Let Z be a normal subgroup of G contained in H and p € Irr(Z). Then the
bijection in (1) restricts to a bijection between Irr(P, T, p) and Irr(G, T, p).

Proof. Fix a P with H < P < G. Then H = P,. Let ¢ € Irr(P, 7).
By Theorem (6¢) in [BZ], Chapter 7,

0p: o f

defines a 1-1 correspondence from Irr(H, 1) to Irr(P, 7). As this holds for any P < G
with H < P, 8gofp! is the desired 1-1 correspondence between Irx(P, T) and Irr(G, 7).
Therefore, k(P, 7) = k(G, 7). Under this map, ¢ € Irr(P, ) has g-height d —d’ where
d' is as in the hypothesis if and only if ¢ has g-height d as ¢©(1) = ¢(1)|G|/|P]. So
part (1) holds. Also ¢ lies over p € Irr(Z) if and only if ¢ does. So Part (2) holds.

a
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Lemma 2.2.3. Let G be a finite group and N a normal subgroup of G. Let 7 €
Irr(N) be G-stable, that is G = G,.. Assume T is extendable to G, i.e., there is
Y € Ir(G) with Y|y = 7. Then there is a 1-1 correspondence between Irr(G/N) and
Ir(G, T) given by A — InfC(A\). In particular if q is a prime power, then for each
d >0, ki—o(G/N) = kq(G, T) where d’ is the g-height of 9.

Proof. By definition, ¢ € Irr(G, 7) if and only if (¢|n~,T) > 0, and hence if and only
if (¢, 7€) > 0 by Frobenieus reciprocity. But by (11.5) in [CR], Inf¢(A\)¢ € Irr(G, 7)
for each A € Irr(G/N) and

= 3 A)INp).

AEIT(G/N)

In other words,
Irr(G, 7) = {Inf®(\)¢ | A € Ire(G/N)}.

Moreover, (Inf¢(A\)¥)(1) = A(1)%(1), so A has g-height d — d’ with d’ as in the hy-
pothesis if and only if Inf¢(A)y has g-height d. Therefore, the lemma holds.
O

Lemma 2.2.4. Let G = AB be a finite group with A a normal abelian subgroup and
B a complement to A. Let T € Irr(A), H =G, and K = B,.

(1) H=AK;
(2) T can be extended to H, i.e., T = 1|4 for some ¢ € Irr(H);

(8) There is a 1-1 correspondence between Irr(K) and Irr(H,T) given by Lemma
2.2.3. In particular if q is a prime power, then for eachd > 0, ka(K) = kq4(H, T).

Proof. Part(1) is obvious. Part (2) follows from Proposition (11.8) in [CR]. Part (3)
follows from part (2) and Lemma 2.2.3 and the fact that i is of degree 1, which is

true because A is abelian and hence 7 is of degree 1. O



12
Lemma 2.2.5. Let G;, i = 1,2, be a finite group, Z; < Z(G;) and Z < Z, x 2,.
There is a natural 1-1 correspondence between Itr(G:) x Ir(G2) and Irr(G; x G,)
given by

(‘Ph <P2) =@ = Y12,

where ¢ is the character afforded by the tensor product of the modules afforded by
w1 and @2 with ©(g) = ¢1(g1)p2(g2) for g = (91,92) € G1 X Ga2. In particular
©(1) = p1(1)w2(1). Moveover, if @; lies over p; € Irr(Z;), i = 1,2, then ¢ lies over
p = (p1p2)|z- If q is a prime power and d > 0, then

k4(G1 x G, p) = z Z k4, (G, p1)kay (G2, p2)-

P1.P2 dl ,dg
p=(p1p2)lz d=d;+d2

The proof is trivial. As both p; and p, are linear, so is p. In this case write
p = p1p2 by abuse of notation.

The following lemma exhibits an elementary technique for simplifying the compu-
tation in the later chapters of the thesis.

For i = 1,2, let G* be a group with Z* < Z(G?). Let I; = [n;] and {G%;J C L}
a collection of subgroups of G* containing Z*. Let G = G* x G?, Z < Z' x Z2, and
I=[n;+ng]. For JCI,let Gy = G}(I) X Gﬁ(z) where

JU)=J(€m), J2)={j—-m|nm<jeJ} (2.2)

Finally let N be a normal subgroup of G!, and X;, X, C Irr(IV). Let g be a prime
power and d > 0. Recall k4(G?, X5, p;) counts the number of irreducible characters of

G® lying over some character in X; as well as over p; whose g-height is d.

Lemma 2.2.6. Assume for all dy > 0 and all p, € Irr(Zy),

Z (—l)”llkdl.(G.lIlaXh pl) = Z (-l)l‘hikdl (G.I}l: Xa, pl)'

J1Ch SNEL
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Then for all d > 0 and all p € Ir(Z),

> (—D)Wka(Gr, X1, 0) = D _(—1)'ka(Gr, X2, p)-

Jcr JCr

Proof. By Lemma, 2.2.5, there is a natural 1-1 correspondence
A Irr(G) = Irr(GY) x Ire(G?).

By hypothesis, G? centralizes N, so G? acts trivially on X; and X,. Thus X restricts
to a 1-1 correspondence between Irr(G, X;) and Irr(G!, X;) x Irr(G?), ¢ = 1,2. By
construction of A, we have for each d > 0, p € Irr(Z) and fori = 1, 2,

kd(G, X'ia p) = Z Z kd1 (Glr Xir pl)kda (Gza p2)‘
dl ,dz 1.2
dy +da=d pLP2=pP

Next J — (J(1), J(2)) where (J(1), J(2)) is defined as in equation (2.2), defines a
natural bijection of A(I) with A(l;) x A(L2) such that [J| = |J(1)| + [J(2)|. Simi-
larly there is also a bijection of Irr(G,, X;) with Irr(G}(l),Xi) X Irr(G3(2)), i=1,2.

Therefore,

o= (-1)"k4(Gs, X1, p)

JCI

= Z Z Z (—1)IJ(1)I+IJ(2)Ikd1(G.lf(l),thl)kdz(Gg(z),,02)

JCI dy,d2 PLP2
dy+dp=d P1P2=P

= Z Z ( Z (_I)IJ(I)Ikdl(G.II(l)’thl))( z (—l)lj(z)lkdz(G3(2)7p2))'-

dy,da AL.P2  J(1)CH J(2)CIy
PR Pt ¢y (2

But by hypothesis

Z (—I)IJ(I)lkdl (Gb(l)v Xl: pl) = Z (_l)lj(l)lkdl (G.ll(1)1 X2s pl)r
J(nch Jch
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hence

o= > D (X ()Y (Ghay Xo,p))( Y (1), (Goiay, p2))

d ,d PL.p2
dl-{}d22=d g JQU)Ch J(2)CI2

=3 > D ()OI, (G, X2, p1)ka; (G, p2)

JCI dida PLP2
dy+da=d PLP2=P

=> (-Dk(Gs, X2, p)-
JCI

The lemma is proved. a

2.3 Partition of Integers

We need to establish some notation involving the partitions of integers. Let n € N. We
say A= (A1, Az, -+ , M) with A; > Mgy > O for all i is a partition of n if 3o, A = n.
In this situation we write © F n and |g| = n. A; are called the parts of u. By
convention we set (0) to be the unique partition of 0. The diagram [A] of A is defined
to be the set of ordered pairs (¢,7) with 1 < i <[/ and 1 < j < A;, and we always

regard [)\] as an array of "nodes” as in the following example:

XX X X X
A=(,32) PA=Xx X X
X X

4

Let A; be the number of nodes in column j of [A]. Then X = (A},A3,---) is a
partition and called the conjugate partition of A. For instance, if A = (5, 3,2), then
XN = (3,3,2,1,1). Clearly the diagram of X’ is obtained by interchanging the rows
and columns of the diagram of A. Therefore, (\')' = A. Notice |A] = |X|].

Let 4 = (a7, a3?,--- ,a™ ) be a partition of n. Here @; > a2 > --- > a, > 0 and
m, > 0 is the multiplicity of a; as a part of u. So Y _; a;m; = n. We introduce some
parameters associated to p. Let (1) = 3, <., ™: be the number of parts of y, and
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let §(u) = r be the number of distinct parts of . Also define

n(p) = gmi (;') :

Here (3) =0ifz < 2.

Lemma 2.3.1. (1) Fora,b>0,

(37 - )+ )+
()2 ()+ @)

and the egquality holds if and only if ab = 0.

So in particular

(2) If ptn, then n(u) < (3), and the equality holds if and only if p = (n).

Proof.

z(“;“b) =(a+b)a+b—1) = (a+b)? - (a+b)
=(a® —a) + (b2 — b) +2ab=2((;) + (12’) +ab).

So part (1) holds. If g = (A1, Ag,...) F n, then by part (1),

w=-%(5)<(5%)-0)

t

and the equality holds if and only if all but one of the parts of u are 0, that is, if and
only if 4 = (n). So part (2) is true. -
a

We denote the multiplicative subgroup F; by Hy—;. Similarly we denote F7, by
H,2_;, and the cyclic subgroup of order ¢ + 1 in Hgz_; by Hg4s-
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We define a function a(u,a), where p is a partition and a is an element of H,_,.

If u is written as above, then

a(ﬂ’a) =#{ (1"111"21"’ 12:1‘) EH;-I. I (_l)on?i =a.}

i=1
where —1 is the additive inverse of 1 in F,. Notice —1 € H_;.

Lemma 2.3.2. (1)

Z a(“h a) = (q - l)r;
a€Hq 1

(2) In the above notation, let m = ged(ay, az, - ,ar). Then
a(p,a) = (- 1),

where § is the number of solutions in H,_; to the equation z™ = a.

This is Lemma 2.5 in Olsson and Uno’s paper [OU].
Similarly we define a function S(u, a) where p is a partition and a € H;. If g is

as above, then

6(/"'1 a) = #{ (21)1‘27' °c 7:1:7) € H;—H. l (—l)nnzgi =a }

i=1
where —1 denotes the additive inverse of 1 in Fg2. Observe —1 € H,;.

Lemma 2.3.3. (1)

> Ba)=(@+1);
.15 PESY

(2) In the above notation, let m = ged(ay, az,--- ,a.;). Then

Blu,a) = (g +1)7%,
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where £ is the number of solutions in Hyy1 to the equation z™ = a.
The proof is identical to the proof of Lemma 2.3.2.

Lemma 2.3.4. Let u = (a]*) as above.

(1) Let a € Hy_,;.

a(ﬂ'ia') =#{ (1:1,1:2,"' ,.'L'r) GHZ—II Hz‘?i =a}‘

=1

(2) Let a € Hyy,.

ﬁ(ﬂra) =#{ (z11$2)"' ,I,-) EH;-'I-I' Hzg‘ =a}’

=1

Proof. The proof of part (1) and (2) are identical. Here we prove part (2). Define
f:H;+1—)H;+11 (zlr"'1xr)'_+(y11"'1yr)

where y; = (—1)™z;, 1 < i < 7. Recall that —1 € Hl,y;. It is easy to check that this
is a well defined bijection. Observe

(=1 [T = TTw"

i=1 =1

So (—1)* [, z¥ = a if and only if [];_, ¥i* = a. Therefore, by definition of 3,

=1
Blu,a) =#{ (yr.y2. - %) €y | [[oi =0 }-
=1

Done.
a

Example 2.3.5. Assume pg = (af%) - n with §(z) = 7. Set I(u) = 1. Let s > [ and
k € N. So (k®) is a partition of sk. Define A = p + (k*) = (b;7) such that
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bj=aj+kforl<j<rby =k andmyy; =s—1L
Then At (n + sk) with 6(A) =r + 1, [(A) =s, and by Lemma 2.3.1,
_ - bj a; k _ k

n(A) n(p)—;mj((z) (2))+(s l)(z)—s<2)+kn.

Observe g — p + (k°) defines a bijection from the set of partitions p of n with
I(z) < s to the set of partitions A of n + sk with [(A) = s and min(A) = &k, where
min(x) denotes the minimal part of A.

Lemma 2.3.6. Let a € Hyy,. Then for (k®), p, and A = p + (k°) as above,

Z ,B((k)v al)ﬂ(ﬂr a2) = /B(Av a)'

a1,a2€Hg+1
aiaz=a
Proof. Define
r+l
+1 +1 l I
foHg =, (2 ) Try Tr1) (21,00, Try | | 5)-
=1

This is a well defined bijection. Set y = HH_'% zj. Asbj=aj+kforl1<j<r

r+l1

[I=F = (f[ =3 "
=1 j=1

So [TiXlz¥ = a if and only if y* = a; and [T}

j=1Z; =1 Z% = ay for some (a1,a;) € Hj,,

with a;a; = a. The lemma then follows from Lemma 2.3.4.
a

Finally we define another function so that we can deal with a and 8 together. If
a is an element of Hlp; < Hp2_;, define

B(l—‘a a) = Z a (g, b).
bEqu_,.
b9-l=qa
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For the rest of this section, we fix n € N. Then for 0 < n’ < n, a partition yx of n’
may be denoted by p = (t™) with 1 <t < n and m, > 0 such that n' =3, tm,.

Ifr; e N,0< n; <n,i=12, such that rin; +mn, < n, and y; = (™*) is a
partition of n;, then we define u = r u; U rou, to be the partition p = (FT1m1.e+72m2.)
of ryn; + rong. Check n(p) = rin(u,) + ran(us). The decomposition g = 7y U o
is parameterized by the (2 x n)-matrix

A= A(ur, p2) = ML Tzt Man , wheremy; >0,
M2y Ma2 --- Map

such that rymys + ramg: = m, for all £. Notice u; = 0 if and only if m; = 0 for all ¢.

Given such a matrix A define the shadow (2 x n)-matrix C = C(u, 2) = (i) of
A by

1 if My # 09
Cit =
0 otherwise.
That is ¢; = 0 if and only if m; = 0. Observe that Y ;. ¢ = 6(pi), ¢ = 1,2. Set
c=c(p1, p2) =D gy CreCos.
Lemma 2.3.7. Assumer; € N, 0 < n; < n, ¢t = 1,2, such that rin; + rene < n,

pi = (E™+t) is a partition of n;, and p =Ty Uropy. Let a € Hyyy. Then

> Blu,a)B(pa, az) = (g — 1)°@) (g + 1)°B(k, a).

a1,62€H 41
aiaz2=a

Proof. As p; = (t™¢), for b € Hyp2_;, we may deduce from Lemma 2.3.4 that

a(p1,b) = #{ (z1,Z2,- - ,Tp) € Hz_, | H(l‘t)t =b,andz; =1ifm;; =0}

t=1
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By definition of 3, for a; € H,+1, we have

Blui,a;1) = Z #{(xl,xg,---,zn)eﬂgz_lIHxﬁ-—-b, andz, =1ifm;, =0}

beH 2_, t=1
y9—l=q,
n
~1)t i
=#{(T1,Z2, -+ ,Ta) € Hp_, | Hrcgq ¥ =gy, andz, = 1ifm;, =0 }.
t=1

Similarly for a; € H41, we deduce from Lemma 2.3.4 that
Blur, az) = #{ (Y1, Y2, - ,yn) € Hy, | Hyf =ap, andy, =1ifmg =0}
t=1

For z, € Hj2_; and y; € Hyys, set z, = :zg—lyt. So z € Hy4+1. We then conclude

Z B(ula al)ﬁ(#2) a2) = #{ (1:1, ) R ,xn) X (yh Y2,°-" 1yﬂ-) € ng—l X IHI(';{-I I

a1,a2
aijaz2=a

n
Hzf =a; and z = z{ 'y, ze = 1if my =0, gy =1ifma, =01}.
t=1

(2:3)

For a fixed choice of z; € Hj4;, the number of choices of (z:, y:) € Hga_; x Hyy; such

that Z = .’Bg—lyt is

r(q-l)(Q'f‘l)a fee=ca=1;

q—1, if c;je =1 and ¢ =0;
91, if c;e =0 and ¢ = 1;

1, ifcie=cy=0and zz =1,
\0, " ifep=cye =0and z # 1.

In other words, the number is (g — 1)°tt(g+ 1)°1*“* unless ¢ = c2: = 0 and 2 # 1. So
for a fixed choice of (21, - ,2,), the number of choices of (1, -+ ,Zn) X (Y1, - ,¥n)
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[(a— 1) (g + 1)oreex = (g — 1)¢) (g + 1)°

t=1

unless ¢;; = ¢z = 0 and 2, # 1 for some t, where the number of choices is 0. Moreover,
zz = 1 if my; = my; = 0, or equivalently m; = rymy, + romg, = 0. Therefore, the

right-hand side of equation (2.3) is

(@ — 1)’ (g +1)°- #{ (z1, 22, -, zn) € HY,, | Hz§=a, and zz =1if m; =0}

t=1

= (g — 1)’ (g + 1)°B(p, a).

This completes the proof.

a
We close the section by proving the following technical lemma.
Lemma 2.3.8. Let o be a partition of n. Then
Z qz(l(m)—6(m)) (q— 1)5(#1)((1 + 1)«:(;‘1.#2) =.ql(ﬂ)—5(#)_ (2.4)
(“1-“2)
p=2p1Up3

Proof. Recall pairs (u1, ug) of partitions y; = (¢™¢) of n; with 2n; +ny; = n are
parameterized by the (2 x n)-matrices A = A(u, u2)- Given such an A, define

n .
Py(q) = Hq2(mn—cn)(q — 1)e1e (g + 1)Crecze,

t=1

Then as Y ;. ; (mye — 1) = I(pa) — (1), d_py €1t = 8(p1) and ¢ = ), ciecor, We have

PA(q) = q2(l(m)—6(m))(q - 1)6(“‘)(q + I)C(m.,#z)_
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Consequently equality (2.4) is equivalent to

3" Pa(g) = ¢®-® @25)
A

where the sum is taken over all the possible matrices parameterizing pairs (u;, ys)

with g = 2p; U ps. Define

ho(q) = hi(q) = 1;

r—1
har(@) =1+ 970(¢ - 1) + ¢ V(g - 1);
j=1
r -
hart1(9) =1+ Y _ g9 V(¢ - 1)

=1
for r € N. We claim that

(i) For each ¢,

hm:(‘]) — Z qz(mu—cu) (q _ l)cl‘(q + l)cucqg‘

oSme<me /2

> Pa(g) =[] hm.(a)
A

t=1

where the sum is taken over all the possible matrices parameterizing pairs

(B1, p2) with p = 2p, U po.
(iii) Am(g) =q™ ' forallm > 1.

Then

> Pa(@) = [[ ome(@) = [ g™ = ¢ @5,
A

t=1 t=1

Therefore, equality (2.5) and hence the lemma is proved.
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So it remains to prove that the claims are true. Fix 1 < t < n. Assume m, < 1.
Then my; = 0 as 2my; + moy = my and my > 0. Consequently c¢;; = 0. So by

definition of A,

hm: (q) =1= Z q2(mu—-cu) (q _ l)c“ (q + l)c“c2‘

0Sm e Sme /2

for m, < 1.

Assume m; = 2r for some r € N. Then 0 < my; <r. [f my, =0, then ¢;; =0. So
the contribution to the sum in (i) from the term m;; =0is 1. If 1 < my; < r, then
cit = 1 and mgy: > 0 and hence cy;; = 1. So the contribution from each such term is
g¥m1:—1) (g2 — 1). Finally if m;; = r, then my, = ¢y = 0. So the contribution from

this term is ¢~V (q — 1). Therefore,

E q2(m1:—6u) (q _ l)cu (Q + 1)61:62:

0Smi <me /2
r—1

=1+ Y ™ (g-1)(g+ 1)+ Vg~ 1)

mys=l1

= hor (Q) .

Finally assume m; = 2r + 1 for some r € N. Then 0 < my; < r. If my = 0,
then ¢;; = 0. So the contribution to the sum in (i) from the term m;; =0is 1. If
1 < my <, then ¢;; = 1 and my > 0 and hence ¢;; = 1. So the contribution to the

sum from each such term is g™+~ (g — 1)(g + 1). Therefore,

r
Z q2(mu_c“) (q —1)°t(q + 1)cuc2g =1+ Z q2(m1e-1) (g — ]_)(q +1)

o<me<me /2 mpe=l1

= h2r4+1(q)-

Therefore, claim (i) holds.
As each m, is fixed, the choice of a matrix A parameterizing (11, g2) with g = 2, U
L2 is completely determined by the choice of (myy,- - ,m1,) With 0 < my < my/2,

and the choice of my; is independent of the choice of m,; for 7 # j. Therefore, by
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definition of P4(q),

n
Se@- ¥ [Iemea- v e
A

(mi1,- M) t=1

n
— H Z q2(mu—cn)(q _ 1)61:(q + l)CuCze

t=1 0OKm e <me /2
n

=[] #m.(@);
=1
That is, claim (ii) holds.
Finally hi(g) = 1=2¢’,
2(r—-1) __ 1
har(q) =1+ (¢ - 1)2';2‘7 +¢*C V(g -1)
= q2(r—1)(1 +q— 1) — q2r—1,

and

h ()—1+(2—1)———‘12r—1—2f
ar+1\4) = q qz_l—q -

So claim (iii) is true. Therefore, the proof is complete.
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Chapter 3 Refinement and General

Discussion

3.1 A Refinement for The Finite Groups of Lie
Type

Let G = G(q) be a finite group of Lie type of rank n over a finite field of order
g = p. That is, G is either an ordinary Chevalley group defined over F, or the
subgroup of fixed points of an ordinary Chevalley group defined over F. or F,; by
some automorphism o. Let (G, B, N, S) be a Tits system for some root system X,
H =BNN, and B = UH where U = O,(B). Set I = [n]. Let {P;i € I} be the
set of maximal parabolic subgroups of G over B and Py = ();c; Pjfor J C . In
particular P = B. By convention Py = G. For J C I, set Uy = Op(Py). Let Py
be the parabolic subgroup opposite to Py and U; = Op(Pj ) the opposite unipotent
radical. Clearly Py = U;L; where Ly = P;N Py is a Levi factor of P;. The following

is an example (when the base field F is finite), which we will refer to from time to

time.

Example 3.1.1. Let V' be an n-dimensional vector space over a field F and G =
GL(V). Then G is a group of rank n — 1 and in this case I = [n — 1]. We fix a basis
{ej;7 €M} for V. Set Vo =0, V; =(es1<ig<j)forl<j<n—1and V,=V.
For

DA£IJCI: j1<ja<--<7Jg

let ¢y be the flag



26
We may choose B = Ng(cr) and Py = Ng(cy). Consequently for 1 < 7 < n —1,
P = Ng(V;") where V.- = (e;;7+ 1 < i < n).

Let A be the set of chains of the poset on {U;; J C I} ordered by inclusion.

Lemma 3.1.2. A is a set of representatives of the G-orbits on radical p-chains of

G. The stabilizer in G of ¢ € A is the stabilizer of the final term of c.

Proof. f 0 < Uy, < --- < Uy, is a chain in P, then Ng(Uy,) = Py, < Pj; fori > j,
so the second statement holds. Let ¢: Uy C Uy € --- € U, be a radical p-chain of
G. So Uy = Op(G) = 1. By definition, U, is a radical p-subgroup of G. However,
it is well known that the radical p-subgroups are precisely the unipotent radicals
of the parabolics and each parabolic subgroup is conjugate to a unique member of
{Ps;J C I}. Therefore, replacing ¢ by a G-conjugate if necessary, we may assume
U, = Uy, for some Ji, Ji C I. Set P = Pj, = Ng(Uy).

Next by definition U, is a radical p-subgroup of P and therefore, U, /U is a radical
p-subgroup of P/U;. But P = P/U, is a finite group of Lie type, possibly with a
disconnected diagram, and the radical p-subgroups of P are the images in P of the
radical p-subgroups of G contained in P, which are conjugates of Uy for J; € J C I.
Therefore, replacing ¢ by a P-conjugate if necessary, we may assume U, = Op(Py,)
for some Jp, J; € Jo € I.

By definition U; is a radical p-subgroup of Nigjci-1Ng(U;) for all 2. We may
proceed by induction to conclude that ¢ can be conjugated to a chain of P. As
distinct parabolics over B are not conjugate, no two chains in P are conjugate. The

proof is complete. O

Lemma 3.1.3. Set Z = Z(G).

(1) G has |G/GW| p-blocks of defect 0 and |Z| p-blocks of full defect and no other
blocks. There is a 1-1 correspondence between Irr(Z) and the set of p-blocks of
G of full defect given by p — S,, such that ¢ € Irr(G) lies in S, if and only if
@ lies over p and |p(1)|p, < |Glp-
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(2) Let 0 # J C I. Py has only p-blocks of full defect. Moreover, the Brauer map
gives a 1-1 correspondence between the set of p-blocks of Py and the set of p-
blocks of G of full defect. If S is a p-block of P; and the Brauer correspondent
S corresponds to p € Ir(Z) in (1), then ¢ € Irr(Py) lies in S if and only if ¢

lies over p.

These are either well known results (see [H]) on the block theory of the finite
groups of Lie type or direct consequence of Lemma 2.1 in [OU].

For d > 0, recall Irry(G) is the set of characters ¢ € Irr(G) whose g-height is d
and kq(G) = [Irra(G)|-

Proposition 3.1.4. Let p € Irr(Z), |G|, = g*. The following are equivalent:

(1) DOC holds for (G,p,S,) and i > 0. Here S, is the p-block of full defect of G

corresponding to p.
(2) Ejg[(—l)l‘”kd(PJ, p) =0, where d =dy —ife.

Proof. By part (1) of Lemma 3.1.3, the p-blocks of G of positive defect are of full
defect and parameterized by the central characters of G. Fix our choice of p-block
S = S, corresponding to p € Irr(Z). Let A be as in Lemma 3.1.2. So A is a set of
representatives of the G-orbits on the set of p-radical chains. For J C I, let A(J)
be the set of chains in A whose final term is U;. By Lemma 3.1.2, G, = P; for
all c € A(J). As |Pslp, = |G|p and ¢ > 0, by Lemma 3.1.3 we have k(G,, S,i) =
kq(Py,p). Finally the Euler characteristic x(K) of the complex K of all chains of
proper nonempty subsets of J is 1 + (—1)/I. Then as

AN ={Up<-<Us,_,<Us| i << g€ KU{0} },
it follows that

3 (1) = S0P — 1= x(K) — 1= (-,

ceAJ) beK
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Therefore, (1) is true if and only if

0= (-G89 =D Y (-1)ky(Ps,0) = (—1)""ka(Py, p),
ceA JCI ceA()) JCI
i.e., if and only if (2) is true. Done.
O

Remark 3.1.5. (1) The reason that we don’t have a reformulation when ¢ = 0 is

because k(G, S, 0) # k4o (G, p)- The p-defect 0 case will be handled below.

(2) We consider the g-height of characters of G rather than p-height to simplify
notation. In the case of G = GU,(q), it follows from Proposition 4.2.2 that
the p-part of the degree of ¢(1) for ¢ € Irr(G) is an integral power of g, so that
the g-heights involved are all integers. In general, according to Deligne-Lusztig
theory, the p-part of (1) is always an integral power of ¢ (including the case

G = GL,(q)) except in some cases when p is small.
Lemma 3.1.6. (1) DOC holds for G at p when i = 0.

(2) DOC holds for G at p if and only if

> (~1)Vk4(Ps,p) =0,  Vp € Irr(Z),Vd < do. (3.1)
JCI
Proof. An irreducible character ¢ of G lies in a p-block of defect 0 if and only ¢(1) is
divisible by the p-part of |G|, or equivalently if and only ¢ has p-defect 0. So as S, is of
positive defect, k(G, S,,0) = 0. On the other hand, for all @ # J C I, O,(Py) # 1. So
it is easy to show that k(Pr, S,,0) = 0; ie., |@(1)]p < g% for ¢ € Irr(Py). Therefore,
DOC holds for G at p when 2 = 0. Part (2) then follows immediately from part (1)

and Proposition 3.1.4.
a
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3.2 Strategy

We continue with the notation in section 3.1. By Lemma 3.1.6, to prove DOC
for G, it suffices to prove equation (3.1). The general strategy of proving equation
(3.1) presented here is essentially a generalization of Olsson and Uno’s approach for
dealing with the general linear group. But technically there are more difficulties in
the unitary case than in the linear case.

For J C I, Irr(Py, p) is naturally partitioned into two subsets Irt®( P, Uy, p) and
It (Py, Uy, p) using the notation established in section 2.2. We have

kd(Per) = kg(PJa vap) +k¢]£.(PJ1 UJap)’

where as usual k5(Py, Uy, p) = |Iety (P, Us, p)|-

But k2(Ps,Us,p) = k4(Ls,p). As Ly is a group of Lie type, we may apply the
Deligne-Lusztig theory to evaluate Y, (—1)"'k4(L, p) and describe it in terms of
information controlled by the Weyl group of G. Whatever the outcome is, say X, we
then need to show that 3=, (-1)Vk}(Pr, Us, p) = —X.

Let 0 = Wy < W < --- < W, = U; be the lower central series of U;. The
factor groups W;/W,_; are the so-called internal modules of P;. We further partition
Irr (Py, Uy, p) into the subsets Irt*(Py, (W;/W;_1),p) for 1 < i < r again using the
notation established in section 2.2. Cancellation occurs when we count characters
in Irc'(Py, W, p) for those Py which have a common internal module W appeared
as a factor of its lower central series, so that we only need to count the number
of irreducible characters of P; lying over a subset S(W) C Irr(W) of very special
characters of W. Then by a recursive analysis we show that only the characters in
a subset Irr(Pr, S'(W),p) of Irt(Py, S(W), p) need to be counted. This leads to a
surprising cancellation among the number of characters of Py over Irr(S'(W)) for
different internal modules. Most characters in the count are eliminated during the
process, and essentially only the characters of Py over certain characters in the so-

called unitary and central modules, which are parameterized by certain chains of a



30
unitary space, need to be counted. The stabilizers in P of such characters of W
are well understood. And by implementing a dimension argument, we show that the
outcome is indeed —X.
The key to the success of this approach is to develop some general tools for dealing
with alternating sums and to find a smart way to partition the characters of the

parabolic subgroups so that we can achieve substantial cancellation.

3.3 The General Linear and Unitary Groups

Let G = GL,(q). Then Z = Z(G) is a cyclic group of order ¢ — 1. We fix a
generator z of Z and an isomorphism é from C,_; to the multiplicative group H,_;
of F,. Consequently we obtain an isomorphism between Irr(Z) and Hi,-; given by

p = a, = 8(p(2)).
Olsson and Uno proved the following results which imply equation (3.1) in section
3.1 and hence verified DOC for the general linear groups in the defining characteristic.

Lemma 3.3.1. Let G = GL,(q) and Z = Z(G). Assume the notation in section
3.1. Let p € Irr(Z) and d > 0. Then

(1) ka(G,p) =Y ¢W—Wa(u,a,). In particular,
ki(G) = Z' g =) (g — 1)5(#)_
Here Y is taken over all the partitions p of n such that n(p) = d.

(2)

a((n),a,), ifd=(3);
D (—1)kg(Pr, p) = ’ :
Jcr ‘ 0, otherunse.
Part (1) is Proposition 3.1 in [OU] and Part 2 is a corollary to the following result:

Lemma 3.3.2. Let G = GLn(q) and Z = Z(G). Assume the notation in section
3.1. Let p € I'(Z) and d > 0. Then
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(1) 3 ;e (—0O)VYEY(Ps, Uy, p) = = ¥ (-1)*Pa(p, a,).

(2)

Z(—l)lJlk‘li.(PJ U, p) _ Z'("l)‘s(ﬂ)a(p,,ap), 2fd< (g)’

Jcr 0, otheruwise.

Here 3’ is the same as in Lemma 3.3.1.

This is Theorem 2.6 in [OU].

In this thesis we will prove the following results which complete the verification
of DOC for the general unitary groups in the defining characteristic.

Let G = GU,r(q), n = 2m or 2m + 1. So as a linear group, G is a subgroup of
GL.(¢%). Z = Z(G) = Hyy, is the unique subgroup of Z(GLn(¢?)) of order ¢ + 1.
We fix a generator z of Z(GL,(¢?)), and hence also a generator 297! of Z, and an
isomorphism @ from Cgz_; to Hyz_;. Consequently we obtain an isomorphism between
Irr(Z) and Hy4 given by p = a, = 0(p(2771)).

Assume the notation in section 3.1. In particular I = [m]. We refer to the set-up
in the beginning of section 7.1. So P; is a parabolic subgroup of G stabilizing a chain
of totally isotropic subspaces of the natural module V' of G of type J.

Theorem 3.3.3. Let G = GU,(q) and Z = Z(G). Assume the notation in section
3.1. Let pe I'(Z) and d > 0. Then

ka(G,p) = 32 ¢"W~2® B(p, ay).

Here 3 is the same as in Lemma 3.3.1.

The McKay numbers for a finite group and some prime p are the number of
irreducible complex characters of a given p-height. By Theorem 3.3.3 and part (1) of
Lemma 2.3.3 we immediately obtain the following formula on the McKay numbers

for G at p:

Theorem 3.3.4. (McKay numbers) Let G = GU,r(q). Then



32
G) = 5 140 (g 4 10
Here Y is the same as in Lemma 3.3.1.
Theorem 3.3.3 will be proved in section 4.3.

Theorem 3.3.5. Let G = GU,(q) and Z = Z(G). Assume the notation in section
3.1. Let p € '(Z) and d > 0. Then

> (—)Vka(Pr,p) = B((n).ap), ifd=(3);

Jcr 0, otherwise.

Clearly Theorem 3.3.5 implies equation (3.1) in section 3.2. Therefore, Main
Theorem 1 follows. We need the formula for the case when d = (3) for the purpose

of induction. Theorem 3.3.5 is a consequence of the following proposition.

Proposition 3.3.6. Let G = GU,(q) and Z = Z(G). Assume the notation in section
3.1. Let p € Irr(Z) and d > 0. Then

(1) ZJ;[(—l)IJ'kg(PJ: Us,p) = Zlﬂ(#x ap).

(2)

's .
- :3(#10')7 7'fd< 5 )
Z(—l)”’k}(Pj, Us,p) = x ’ &)
JCI 0. otherwise.
Here 5 is the same as in Lemma 3.3.1.
Part(1) is Proposition 4.3.7 and Part (2) will be proved in Chapter 9.

Proof of Corollary 1.0.1. Assume Theorem 3.3.5. Let G = PGU,(q). By definition
Z(G) = 1. So by Lemma 3.1.3, G and the parabolics of G have a unique p-block of

positive defect. So equation (3.1) becomes

Y (-1)Vlkg(Py) =0, Vd<do. (3.2)
JCrI
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On the other hand, there is a natural bijection preserving degrees between Irr(G)
and Irr(GU,(q), 1) (where 1 denotes the trivial central character) which restricts to
a bijection between the set of characters of corresponding parabolics. So in Theorem

3.3.5 if we let p be the trivial character, we then obtain equation (3.2).
a

Proof of Corollary 1.0.2. This follows from Corollary 1.0.1 as PGU,(q) = U,(q)
when (n,q+ 1) = 1.
|
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Chapter 4 On the McKay Numbers

In this chapter, we apply the Deligne-Lusztig theory on the representation of finite
groups of Lie type to the finite unitary groups and prove Theorem 3.3.3 as well as
part (1) of Proposition 3.3.6. We record most of the well known results without
proof. The proofs are similar to Olsson and Uno’s proofs of the corresponding results
for the general linear groups. The material in this section is independent of the rest
of the thesis. For this reason, the reader may temporarily choose to skip this section

and return to it later.

4.1 General Facts

We recall some well known facts from the Deligne-Lusztig theory. See for instance
[Ca] for relevant terminology or [DL] for more details.

Let G be a connected reductive group over the closure F, of a finite field F, of
order ¢ = p® associated with a Frobenius endomorphism ¢ in the general sense. The
group G = G, of fixed points by ¢ is then a finite reductive group. The irreducible
representations of G are studied by Deligne and Lusztig in terms of the so-called
Deligne-Lusztig generalized characters Rry of G where T = T,, T is a o-stable
maximal torus of G, and @ € Irr(T). It turns out that each irreducible character of
G occurs as a constituent of Rrg for some pair (T, 8). _

The set of pairs (T, 0) can be partitioned into equivalence classes called the geo-

metric conjugacy classes with the following properties:

(1) The geometric conjugacy classes are in 1-1 correspondence with the semisimple
conjugacy classes in G*, where G* is the dual group of G. We write A, for the

geometric conjugacy class corresponding to the semisimple class s¢°;

(2) For each ¢ € Irr(G), there is a unique geometric conjugacy class A, such that
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(p,Rre) = 0 if (T,0) ¢ As. In other words, if ¢ is a constituent of Rrg,
then (T,8) € A,. This gives a partition of Irr(G) into subsets labeled by the
semisimple classes of G*. We write [, for the set of ¢ € Irr(G) corresponding
to A,.

The characters in I'; corresponding to the identity element of G* are the so-called
unipotent characters of G; A; consists of all (T, 17) where 1t is the trivial character.

Further it turns out that I'; is in 1-1 correspondence with the set of unipotent
characters of H(s) = (Cg-(s))*, the dual group of the centralizer in G* of s. If p € [’
corresponds to a unipotent character A € Irr(H (s)), then (1) = A(1)|G/H(s)|p-

In summary, the set of irreducible characters of G are in 1-1 correspondence with
the set of pairs (s, ) where s is a representative of a semisimple class of G* and A is
a unipotent character of (Cg-(s))*; And the p-height of the character corresponding
to (s, A) is equal to the p-height of A\ .

The dual group of a finite reductive group G and the semisimple classes of G, as
well as their centralizers, are all well known; See for instance [Ca]. The unipotent
representations are studied by Lusztig and others in terms of the representations of

the Weyl group. This make it clear how to calculate the number k4(G, p) and hence
ZJ(_:[(_I)'JIkd(LL p)-

4.2 Unitary groups

We discuss in more details the irreducible representation of finite unitary groups. It
is well known that both finite general linear and unitary groups are self-dual. The
semisimple classes of a finite unitary group can be described in terms of the rational
canonical form, and the centralizer of a semisimple element is a direct product of
general linear and unitary groups. See for instance [FS]. For completeness, we include
the necessary information as follows.

For a polynomial f(z) = z™ + @m_1z™ ! + - - - + a1T + ag € Fp2[z] with a0 # 0,
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let f(z) =z™+al_,z™ ' +---+alz + al. Define
- _ _1 _ _ ~
Fe) = G F(2) = o™ + a37ale™ ! + ay%afe™t 4+ gy

Notice f? = f for all f. Set

F' = {f | T # f(z) € Fp[z] is monic, irreducible and f = f},
F’ = {ff | z # f(z) € Fp[z] is monic, irreducible and f # f},

and F = F' UF”. Set dy = deg(f).

The conjugacy classes of elements in GL,(g) are described by elementary divisors
which are powers of monic irreducible polynomials in F,[z]\{z}. Similarly if we regard
GU,(q) as a subgroup of GL,(g?), the conjugacy classes of elements in GU,(q) can
also be described by elementary divisors which turn out to be the powers of members
in F.

Forr € Nand f € F, let (f) be the companion matrix of f and r(f) be the matrix
direct sum of r copies of (f). So if df = d, then (f) is a d x d matrix and r(f) is a
(rd) x (rd) matrix consisting of r blocks with each block equal to (f).

For the rest of this section assume G = GU,p(g). It turns out that the rational

canonical form of a conjugacy class g€ in G is the matrix direct sum

P P msa)(r)

feF i
such that - g deg(f*)msi(g) = n, where my:(g) is the multiplicity of f* appearing
as elementary divisors of g. g is semisimple if and only if m(g) = 0 for ¢ > 1, in
which case g corresponds to [],cp m(9)(f)-

Let V be the unitary space on which G acts, and g € G a semisimple element.
The primary decomposition will be denoted by g =[] feF 9f, Where gy is the element
in G whose rational canonical form is mz(g)(f). Correspondingly V' decomposes as
V = @cr Vr Where V; are non-singular subspaces of V’; gy acts on Vy and centralizes
the other components. Cg(g) is the direct product of C(g); for all elementary divisors
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of g where

Lemma 4.2.1. (1) If f € ¥, then C(g) s = GUrn,(q)(Fs), where Fy is an extension
field of Fyq with |Fy : Fo| =dj;

(2) If f = fufi € F”, then C(g); = GLy,(4)(Fy), where Fy is an extension field of
]Fq wz'th lFf : ]Fql = df.

This is Proposition (1A) in [FS].

On the other hand, the unipotent characters of GL,(gq) or GU,(q) are in 1-1
correspondence with the conjugacy classes of the Weyl group W = S, of GL,(F,),
and hence with the partitions of n. Moreover, if a unipotent character A of GL,(q) or
GU,(q) corresponds to u b 7, then A(1)|, = ¢"*?) where 4’ is the conjugate partition
of u defined in section 2.3. Finally if we denote the set of unipotent characters
of G by Irt*(G), then for finite reductive groups H; and Hj, there is a natural 1-1

correspondence
¥ : Im*(Hy) x I*(Hz) - Im¥(Hy x Hy), (@1, 92) = ¢ = o102

where ¢(h1, h2) = @1(h1)p2(h2).
Let P be the union of the set of all partitions of n for all n > 0.

Proposition 4.2.2. There is a I-1 correspondence A —> @ between the set of maps

A:F - P with

S IA)lds=n (4.1)

feF

and Irr{(G). Moreover, if px € Ir(G) corresponds to A, then the q-height of o is
Z feF df'n(A(f ))-

Proof. Let ¢ € Irt(G). Then ¢ is uniquely determined by (g,p,), where g is a
representative of a semisimple class of G and. ¢, € Irr*(Cg(g))- (g,%,) is in turn

determined by {(gr,¢s) | f € F} where g = [[;cp 95, ¥r € Ir*(C(g)s), and @y =



38
[I;er ¢s- However, by Lemma 4.2.1 C(g)y is either an my(g)-dimensional general
linear group or an my(g)-dimensional general unitary group, hence ¢y is uniquely
determined by a partition py of ms(g). We now define the map A : F — P by letting
fpp As . pdrms(g) =n, we have

d_IA()lds=n.

feF
We let ¢ correspond to A. It is easy to check that each step of our construction of A
is bijective, and therefore we obtain a 1-1 correspondence between Irr(G) and the set
of maps from F to P with desired properties.

Let’s turn to the degrees. We have seen that the p-height of ¢ is the same as
that of ¢ = [[¢y. By Lemma 4.2.1, if f € F', then C(g); = GUmn,(5)(¢*¥), so the
g-height of ¢y is dgn(p}). If f € F”, then C(g)y = GLm,(4)(g%), so the g-height of
@y is also dyn(u)). Therefore, the g-height of ¢ is 3 g dfn(A(f)').

a

Indeed, the irreducible characters of GU,(q) are constructed by Lusztig and Srini-
vasan ([LS], also see [FS]). By directly checking with their construction, we can
deduce the following:

Lemma 4.2.3. If px € Ir(G) corresponds to the map A as in Proposition 4.2.2,
then px lies over p € Irr(Z(G)) where a, is equal to the product of the roots of

ITjee FAO.

4.3 The McKay Numbers

Let F be the set of polynomials which are the product of members of F. Then F
consists of monic polynomials z # f(z) € Fp2[X] with f = f.

Lemma 4.3.1. Let f(z) = 2™ + @m™ ' +--- + a1z + ao € Fa[X]. Then f € F
if and only if ag € Hyy; and am—: = aoaf, 1 <i<m—1.

The proof is trivial. Notice that a,,—; = aga! if and only if a; = agal,_;.
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Proof of Theorem 3.3.3. Fix r 2> 0 and p € Ir(Z(G)). We need to count
(G, p)-

Let nq be the number of elements in F of degree d and let f41, fa2,-.-, fan, be

the polynomials in F of degree d. Let A be the set of maps A : F — P satisfying
equation (4.1) of Proposition 4.2.2. Given A € A, we put

A(fis) = (™). (4.2)

Also we denote by A’ the map from F to P such that A'(f) is the conjugate partition
to A(f) for all f € F. By Proposition 4.2.2, A corresponds to ¢y € Irr(G). Set

A(p) ={ A € A| ¢ lies over p }.

Lemma 4.3.2. X € A(p) if and only if X' € A(p).

Proof. Recall from section 2.3 that for each partition g, |z| = || Then the lemma

follows from Proposition 4.2.2 and Lemma 4.2.3.
O

Define hy(A) = hq(pa) to be the g-height of pa.

Lemma 4.3.3.
k(G,p) = | {A€A(p) | RgA) =1} |=|{ A€ A(p) | hg(N) =T}

Proof. The first equality follows from the definition of k.(G, p) and the second follows

from Lemma 4.3.2.
a

Now for A € A, we construct a partition g = p(A) of n by defining = (5%7),

where

zj = Edmf},i = Z d(z mft,i)-
dyi d i
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Observe u is a partition of n because by Proposition 4.2.2,

n=3 A = ZdZ G40l = 3 dimiy = 3233 Sl =3 gy
Lemma 4.3.4. hy(X) = n(u(N).
Proof. By Proposition 4.2.2,
h(X) = S dgmN) = 3 d<§ "= 5 (3)dm =nwx)). (a3
O
Let
U(r) = { s+ n | nl) =
For uF n, let
Alp)={AeA|pA)=p}
and A(g, p) = A(z) N A(p). By Lemma 4.3.3 and 4.3.4:

Lemma 4.3.5.

k(G,p) =1 { A €Ap) [ n(u(A)) =T} |

Let u = (j%) be a partition of n, we next obtain a parameterization of A(u)
and A(y,p). Let S(u) be the set of sequences (fi, fa,-- -, f) such that f; € F and

deg(f;) = z;.

Lemma 4.3.6. There is a bijection

s:A(p) = S(), s(A) = (f1,far---+Fa)
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such that A € A(u, p) if and only if

(-1)"01035 ....a7 = a,. (*)

where a, € Hy, is defined in section 3.3 and for 1 < j < n, a; is the constant term

Of fj .
"‘{t.i

Proof. For A € A(p) define s(A) = (f1,---,fz) by fj = [lq: fai"- As fai € F,
fi€ F. Further

deg(f;) = Y _ dm}; = z;,
dst

so indeed s(A) € S(u). To see that s : A(u) — S(u) is a bijection, we define an
inverse t : S(u) — A(p) for s. Namely given f = (f1, f2,---, fa) € S(u), f; has a

unique factorization
J
fj — H f‘z::d.i
dyi
and we define ¢(f) = A € A using equation (4.2). Now

ST IA)ldy =D ddml; = jzi=n,
f

di,j 7

so indeed A € A. Further for each j,
> dml; =deg(f;) =z;
di

as f € S(u), so A € A(). By construction, s and ¢ are inverses.
Next by Lemma 4.2.3, A € A(p) if and only if a, is the product of the roots of

[Ter AL But [A(f1)] = & 5mi,, so

H flA(f)I = Hf!&(fd,i)l = Hj,i’:‘fx; — ZfJJ

feF di dij j
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Further the product of the roots of f; is (—1)4%i)a;, so A € A(p) if and only if

a, = H(_l)dez(fj)ja;: = (—1)" H,I;
J j

as claimed.
a
We can now complete the proof of Theorem 3.3.3. We must show
k(G,p) = D ¢W8(, a,).
BeEU(T)
So by Lemma 4.3.5, it suffices to show
[A(e, p)| = ¢~ B(u, ap). (4.4)

To establish equation (4.4) we use the parameterization of Lemma 4.3.6, and

count the number of f = (f1,--.., fn) € S(i) satisfying (). Let
f(ZD) =z"+b _1$m_1 +.. .b]_:l: +b0 € ]qu[a:].

For 1 < % < (m — 1)/2, there are g2 choices for b;, and then by Lemma 4.3.1, f € F
if and only if by € Hyy1, bn—s = bob!, and if m is even, b,ln_/g = bg. Thus there are
g*eslf)—1)/2 = g%i~1 choices for the coefficients bj1, .. .,bjz;-1, and the coefficients

a; = bjo must satisfy (¥). By Lemma 2.3.3, there are 5(u,a,) tuples (ai,...,an)
satisfying (x), so

IA(e, )| = [ 7B, ap) = ¢ @) B, ay).
J

as desired. This completes the proof of Theorem 3.3.3.
0O

We now prove the following proposition which is equivalent to Proposition 3.3.6.1.
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Recall n =2m or 2m + 1 and I = [m].

Proposition 4.3.7. Let G = GU,(F,;). Then
ZJQI(—]-)lJlkd(LJv p) = Z’ .B(Au'l ap)
where Y_' is the same as in Lemma 3.3.1.

Proof. Use induction on m. If m =0, then n =1, so G = GU;(q) = Z(G) = Hyy;-
As I = [0] = 0 and H,4, has g + 1 irreducible representations, all of degree 1, if
follows that
i 1, ifd=0;
> (~1)Mka(Ls, p) = ka(G, p) =

Jcr 0, otherwise.

On the other hand, 1 has a unique partition y = (1), with n(x) = 0 and B(x,q,) = 1.
So the right-hand side of the proposition is 1 if d = 0 and 0 otherwise. Therefore, the
proposition holds for m = 0.

Assume m > 1. Let A = A(I). For 0 <! < m, let A; be the set of J C I whose
minimal member min(J) is equal to [. Here we set min(@) = 0. Then A is the disjoint
union of A, 0 <l < m.

IfJ e Ayand | > 1, then Ly = Gt x L% where Gt = GLi(¢?) and L% % is
the Levi subgroup of GU,_2(g) corresponding to the subset J' = {j — |l < j € J}.

Let Z; be the subgroup of Z(G*!) of order ¢ + 1 and Z; = Z(GU,-2(q)). Then
Z(G) £ Zy x Z,. So by Lemma 2.2.5 we have

d

ka(Lsp) =D > ki(G*, p)ka—i(LTTH, p2)-
J=0 pi€Z;
pLPI=P

Let Z = Z(G*Y). Fix p € Irr(Z,). ¢ € Irr(GH) lies over p if and only if ¢ lies over

some 7 € Irr(Z) with 7 lying over p. So Irr(G*, p) is the disjoint union of Irr(G*, 7)
for 7 € Irr(Z) lying over p. As Z = Hja_;, there are (g — 1) choices of T € Irr(Z)
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lying over p. In this case T lies over p if and only if the restriction of T to Z; is p. So

ap = p(A71) = (A7) = r(2)7! = aZL.

Therefore, by Lemma 3.3.1,

kd(G-H,p) - Z kd(G-H’ )= Z Z q2(l(#1)—6(#1))a(#1’b)

T€lrr(2) beH 2 _ it
Tlz,=p bq—lqia; n(ms=¢i/ 2
= Z qz(l(ﬂl)—tf(m))ﬁ(#h ap) .
pHl
n(p1)=d/2

Therefore, by induction

d
S (WL p) ==Y D k(G p) Y (1) ki (L, p2)
JeA; j=0 pL.P2 Jcr
P1P2=p
d

== 3" TC Y. Buzam)

j=0 pPL.P2 uatn—2{
p1p2=p n(p2)=d—j

for all 1 <1 < m, where

wrbl
n(p1)=75/2

Recall from section 2.3 that if gy F [ with n(y;) = j/2 and pz + n — 20 with
n(ue) = d—j, then p = 2u, Up,  n with n(p) = 2n(g;) +n(u2) = d. So when j runs
over all possibilities, x and (u;, g2) run over all 4 + n with n(x) = d, and such thé,t
1= 21 U, for some y; 1 and po H n—2[. Then let [ run over all possibilities from
1 to m, p and (1, p2) run over all p - n with n(x) = d such that u can be written as
2411 U po, except that gy # (0), as 1 < |p1| < m. Therefore, by exchanging the order
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of summation,
Z (—1)“lkd(LJa p) = Z Z (—1)Ulkd(LJv p)
0£JCI =1 JeA;

= — Z z Z q2(l(p1)—5(#1))5(ﬂ1, ap, )5(#2: am)-

prn (pr.p2) PLA2
n(p)=d p=2p1Upz P3P
lp1]#0

On the other hand, we need to show

S (-D)ki(Lsp) = Bua) = D Blw.a,)

JCI un
n(p)=d

and 3’ B(u, a,) can be regarded as the term corresponding to |u;| = 0 in the sum o,

where

o= E Z Z =SBy, 0 ) B2, apy)-

#"‘ﬂ» (]‘l 1”2) P1 ,P_2
n(p)=d p=211Upq P1P2=P

So as G = Ly, it suffices to show that
o =ky(G,p)= D ¢W¥pB(u,a,)
pFn
n(p)=d

where 1, is allowed to be 0. However, for each p - n, by Lemma 2.3.7 and Lemma
2.3.8,

Z Z q2(l(u1)—6(u1 ))B(ﬂly Qp,y )ﬂ(ﬂm apz) =

(Ilvl-#z) P1.02

p=2p1Upg P1P2=P
Z @A) =80 (g 1)6({;1)(‘1 + 1)) gy, a,) = g @)= gy, a,).
(121,2)
p=2p1Unz

Therefore, the proposition is proved.
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Chapter 5 Evaluating Alternating Sums

5.1 Overview

Let G be a finite group, E an abelian group and S(G) the set of subgroups of G.
Definition 5.1.1. A function
f:8(G)—~E

is called a G-stable function if it is constant on the conjugacy classes of subgroups of
c. .

Let P be a G-poset. The alternating sum of f over P/G is defined as

A(f,P/G) = 3 (-1)f(Go).
ceA(P)/G
This may also be written as A(f, A(P)/G). The alternating sum of f over a G-set
of chains in P can be similarly defined. If H < G, then clearly f|s) is an H-stable

function. So we may define

A(f,P/H) = Y (-1)Ff(H).
ceA(P)/H

Seeking techniques for evaluating the alternating sum of a G-stable function -f
over P/G where P is a G-poset, has become more and more important in the recent
study of the representation theory of finite groups, as many important conjectures in
this area can be stated in a form which asserts the vanishing of certain alternating
sums.

There are two well known approaches for dealing with alternating sums by study-
ing the structure of the poset: the topological approach and the combinatorial ap-
proach. The idea of the first approach is discussed in the work of P. Webb ([W}]),
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Thevenaz ([Th2]), and others. Recall that the Burnside Ring B(G) of G is the
Grothendieck group of the category of finite G-sets with respect to relations given by
disjoint union decompositions. That is B(G) is the free abelian group with the set
of equivalence classes of transitive G-sets as a basis, two transitive G-sets G/H and
G/ K being equivalent if and only if H and K are conjugate in G.

A G-stable function f : S(G) — FE can naturally be viewed as a Z-linear map from
B(G) to E by defining f(G/H) = f(H) for any subgroup H < G, and extending Z-
linearly to B(G). Since f is constant on conjugacy classes of subgroups, this function
is well defined. Let P be a G-poset. For k& = 0, let Ag be the set of chains of length
k in A(P). Clearly Ay is a G-set. The alternating sum

AP =Y (1A= T (-1)MG/G.
k ceA(P)/G
is an element of B(G) called the reduced Lefschetz G-set of P, which is G-homotopy
invariant (see [Th]). That is, if P is G-homotopy equivalent to Q for some G-poset
Q, then Ag(P) = Ag(Q) in B(G).
As f is Z-linear, applying f to Ag(P) we have

fAeP) = D (-1)Mf(G) = A(f,P/G).

ceA(P)/G
Therefore, the following is true:

Lemma 5.1.2. Let P and @ be G-posets. If P and Q are G-homotopy equivalent,
then A(f,P/G) = A(f, Q/G).

An immediate consequence to Lemma 5.1.2 is that the alternating sum of a
G-stable function over the Brown complex for G and some p is the equal to the
alternating sum over the Quillen complex or Bouc complex or Robinson complex, as
these complexes are all G-homotopy equivalent.

A special case to Lemma 5.1.2 is the following:

Corollary 5.1.3. If P is G-contractible, then A(f,P/G) =0.
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Proof. Recall from section 2.2 that we demand each poset P has a unique minimal
element 0 and the k-simplices of the order complex O(P) are the chains in A(P) of
length k& + 1 starting from 0. In particular the vertex set of O(P) is P\{0} with
0 < z € P identified with {0 < z}. Assume P is contractible. By Lemma 5.1.2, we
may assume the order complex of P is a point, so P = {0,1}. Then A(P) consists of

two chains, {0} and {0, 1}, both stabilized by G. Therefore,

A(f,P/G) = f(G) — f(G) =0.
(|

Thus in order to prove the vanishing of an alternating sum, it suffices to show that
P is G-contractible. On the other hand, when the poset is not G-contractible, one still
can reduce the alternating sum to a.. smaller poset which is G-homotopy equivalent to
P, or eliminate most chains in P by applying Lemma 5.1.2 to certain subposets of
P.

The combinatorial approach is based on a pretty simple-minded idea. Namely one
can achieve cancelation by pairing certain chains which have the same normalizers
but different length parity. Interesting examples exhibiting this idea can be found in
[KR]. In this section we extend some of the existing techniques in a functorial way

and later study some useful examples.

5.2 The Combinatorial Approach

Let G be a finite group, P a G-poset, and f : S(G) — E a G-stable function. Let
T : P = P be a G-equivariant map of posets. So 7T preserves ordering and for all
g € G and z € P, 7(g9z) = g(v(z)). Consequently, G; < Gz for all z € P. We say

T is admissible if one of the following holds:
(1) 7(z) = z for all z € P;

(2) 7(z) <z forallz € P and 7(z) >0 if z > 0.
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In the first case, it is possible that 7(0) > 0. In the second case, 7(0) < 0 so 7(0) =0.
Recall 7 is idempotent if 7(7(z)) = 7(z) for £ € P. The identity map is a trivial
example of G-equivariant, admissible and idempotent map.
A subset X of elements in P is non-degenerate with respect to 7 if the restriction
of 7 to X is not the identity map, in which case we say 7 is non-degenerate on X. In
particular a chain ¢ € A(P) is non-degenerate with respect to 7 if it is non-degenerate

as a subset of elements of P.

Example 5.2.1. Let S = 5,(G) be the Brown complex of G at p, that is S is the
poset of p-subgroups of G ordered by inclusion. Fix a non-trivial p-subgroup P of G
and set H = Ng(P). Then S(< P) is an H-poset. Define

T:S(KP)->S(LP), Q- QP((P)

where ®(P) is the Frattini subgroup of P. As ®(P) is a characteristic subgroup of
P, Q®(P) € S(< P) and 17(Q") = Q"®(P) = (Q®(P))* for h € H, so T is an
H-equivariant map. 7 is admissible because 7(Q) > Q. Apparently 7(7(Q)) = 7(Q)
so T is idempotent.

Similarly we can define
A: S(KP) > S(SP), @ QUu(Z(P)).

Again as Q,(Z(P)) is a characteristic subgroup of P, one can check that A is a well
defined H-equivariant, admissible and idempotent map on S(< P).

Example 5.2.2. Let P = P(V) where V is a unitary space and G < GU(V). Fixa
subspace U of V and set H = Ng(U). Then P(< U) is an H-poset. Define

7: P(SU) = P(SU), W — W +Rad(U).

T preserves inclusion and hence is a map of posets. Moreover it is H-equivariant as H

stabilizes Rad(U). 7 is admissible because (W) > W. Apparently 7(7(W)) = 7(W)
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so T is idempotent. Observe that T is the identity map if U is non-degenerate, and T

maps all the elements to U if U is totally isotropic.

Lemma 5.2.3. (Pairing Lemma). Let 7 : P — P be a G-equivariant, idempotent,

admissible map. Let A C A(P) be the set of non-degenerate chains with respect to T
in P.

(1) T induces a G-equivariant permutation { =, on A of order 2 such that for any

CeA |C(C)=I|C|£1 and G = Geo)-
(2) A(f,T/G) =0 for any (-stable G-subset I" C A. In particular A(f,A/G) =0.
(8) Let H < G and T a (-stable H-subset of A. Then A(f,I'/H) =0.

(4) A(f,P/G) = A(f,P-/G). Here P, is the subposet consisting of elements in P
fized by T.

Proof. Forz € P,set 7(z) =2’. Let C:0=¢p < ¢y <--- < ¢, be a chain in A.

Assume 7(z) > z for all z € P. By the choice of C, 7 is non-degenerate on C.
So there is some ¢. € C, 0 < 7 < s, with ¢, > ¢.. Choose 7 to be maximal with this
property. If 7 < s, by the maximality of , ¢/, ; = ¢r41; hence ¢} < ¢, = ¢41. Now
if r < s and ¢, = ¢ry41, set C' = C\{c.}; Otherwise (i.e., ifr = s, or if r < s and
. # cry1), set C' = C U {c.}. Then we define (: A — A by ((C) =C".

Now assume 7(z) < z for all z € P. As 7 is admissible, by definition 7(z) > 0
for z > 0. By the choice of C there is some c., such that ¢. > ¢/ > 0. Choose r
to be minimal with property. As 7(0) = 0, it follows that 1 < 7 < s. Then by the
minimality of 7, ¢,y =¢,_; < d.. If &, > ¢r—1, st C' = CU{c.}. If ¢, = 1, set
C' = C\{c,.}. Notice that in the second case C’ still begins with 0 as ¢, > 0. Again
we define  : A — A by {(C) =C".

By hypothesis 7 is G-equivariant. Hence if C is non-degenerate with respect to
T, so is CY for any g € G. Therefore, A is a . G-set. In both cases, ¢, € C' with
7(c;) # ¢- So C' is non-degenerate, hence C' € A. Therefore, { acts on A. As
T is G-equivariant, so is (. By the choices of ¢, and the fact that 7 is idempotent,
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it is easy to check that ((C’') = C. So ( is a permutation of order 2. Obviously
[¢(C)| = |C| £ 1. Finally, as 7 is admissible and in both cases the inserted or deleted
element is 7(c;), we have G¢ = G¢(c). Therefore, ( is a well defined permutation on
A which satisfies all the desired properties. Thus part (1) is proved.

Let I’ be a G-subset of A with {(I') =T. Then by part (1), forany C € T, f(Gc) =
f(G¢(c)); So the contribution in A(f,'/G) of C cancels with the contribution of ((C).
As { is G-equivariant and involutary, it follows that A(f,'/G) = 0. Part (2) is proved.

For H < G, regard P as an H-poset. Certainly 7 is H-equivariant and admissible,
so by applying part (1) and part (2), we have A(f,I'’/H) = 0. Part (3) is proved.

Observe that A(P) is the disjoint union of A with A(P;). So Part (4) follows
from part (2).

a

Remark 5.2.4. (1) We call (1,T) as in part (2) of Lemma 5.2.3 a G-equivariant

canceling patr. Lemma 5.2.3 says that one can reduce an alternating sum by

finding a canceling pair.

(2) Under some extra hypothesis, one can apply a stronger version of Quillen’s
Fibre Theorem (see Proposition 1.6 in [Q] and Theorem 1 in [ThW]) to show
that 7 is indeed a G-homotopy equivalence (which happens in many cases). So

Lemma 5.2.3.4 follows from Lemma 5.1.2.

Corollary 5.2.5. Let P be a G-poset and A a G-set of chains in P. If (7, 4A:),
1 € i <7, are G-equivariant canceling pairs such that A is the disjoint union of A;,

then A(f,A/G) = 0.

Proof. This follows from the proceeding lemma as A(f, A/G) = >, A(f, Ai/G).
a

Corollary 5.2.6. Let P be a G-poset and f a G-stable function.

(1) Let Py = P. For 1 < i < n, let ; be a G-equivariant admissible idempotent
map on P and P; = (Pi—1)r,- Then
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A(f,P/G) = A(f, Pn/G).

(2) Let 1;, 1 < © < n, be G-equivariant admissible idempotent maps on P which
commute with each other. That is, 7;(1;(z)) = 7j(ri(z)) for all z € P and all

i,7. Then

A(f,P/G) = A(f, ([ P-)/G).

i=1

Proof. In part (1), observe that for each 7 > 1, by Lemma 5.2.3.4,
A(f, Pi=1/G) = A(f, Pi/G).
So part (1) holds. As for part (2), set P; = P and
Pi=()Pr
j=1

for 1 <7 < n. As 7; commutes with 7; for all 7, 7, it follows that 7; acts on P;_; and
indeed a G-equivariant admmisible idempotent map on P;_;. Moreover, P; = (P;_1)r,-
So Part (2) follows from part (1).

O

For z € P, recall the star of z is
St(z) =P(S z) UP(Z z).
If A is a set of chains in P, then a map 6 : A — P is called a signalizer for A if

6(C)eCforall C € A.

Lemma 5.2.7. Let P be a G-poset, A a G-set of chains in P, and 8 : A — P a
G-equivariant signalizer. Assume for each z € 6(A), there is a G.-equivariant, ad-
missible idempotent map 1. : St(z) — St(z), such that (7z,07(z)) is a Gz-equivariant

canceling pair. Then A(f,A/G)=0.

Here §~1(z) is the set of pre-images of z.
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Proof. As § is G-equivariant and A =[] 4,07 "(2), it follows that

AIG= ] 67 (=)/G--

zeP/G

Therefore, as Gc = Ng,, (C) for all C € A,

ALAG) =Y Y f(G)= > Y f(Ng(©)

z€eP/G Ceb-1(z)/Gz zeP/G Ceb~(z)/Gx

= Y A(f,67(=z)/Gz).

z€P/G

By hypothesis (1z,67(z)) is a G.-equivariant canceling pair, so by Lemma 5.2.3,
A(f,671(z)/G:) =0

for all z € P. Therefore, A(f,A/G) =0.
d

Remark 5.2.8. (1) Lemma 5.2.7 can be combined with Corollary 5.2.5. That
is, one may define more than one admissible idempotent map on St(z) so that

6~1(z) satisfies the hypothesis of Corollary 5.2.5 to make the cancelation.

(2) It turns out that in most existing examples we have worked on, 7 is obtained
by extending a G,-equivariant admissible idempotent map A; on P(2 z) (resp.
P(< z)) to St(z) by letting A;(y) =y for all y < z (resp. ¥y > z).

Example 5.2.9. Assume a G-poset P contains a maximal element 1 # 0. It is easy
to show that P is G-contractible and hence A(f,P/G) = 0. Alternatively define
T : P = P by mapping all elements to 1. As G fixes 1, 7 is a well defined G-
equivariant map on P and admissible. 7(7(z)) = 1 = 7(z) for all z € P. Each chain
C € A(P) is non-degenerate as C contains 0 and 7(0) = 1 > 0. Therefore, by Lemma
5.2.3, A(f,P/G) =0.
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If P is a G-poset and z,y € P, the join z V y is the minimal upper bound for =
and y, if it exists. It may or may not exist in P. Example 5.2.9 is a special case of

the following lemma.

Lemma 5.2.10. Let P be a G-poset. Assume 0 < z € P is fized by G and z V z
ezists in P for all z € P. Then A(f,P/G)=0.

Proof. P is conically contractible in Quillen’s sense (see [Q]) and hence contractible.
It can be proved that P is G-contractible. So the lemma follows from Corollary 5.1.3.
Alternatively we can prove the lemma combinatorially.

Define 7 : P — P by 7(z) = z V z. By hypothesis 7 is a well defined map of
posets. For g € G and z € P, claim g(z V 2) = (9z) V 2.

Indeed, as zVz 2> 7,2, g(zVz) > gz and g(z Vz) = gz = 2,50 gz V 2) is
an upper bound for gz and z. For any y € P with y > gz, z, we have g7 'y > z, z,
so g7y > z V 2. It follows that y > g(z V z). Therefore, by definition of the join,
g(z V z) = (gz) V z. So the claim is true.

Therefore, T is G-equivariant. By construction 7 is admissible. 7 is idempotent as
(zVz)Vz = zV z. Each chain ¢ € A(P) is non-degenerate as 0 € ¢ and 7(0) = 2z > 0.

Therefore, by Lemma 5.2.3, A(f,P/G) = 0. Done.
[

Example 5.2.11. Let p be a prime, S = S,(G) as in Example 5.2.1 and A = A,(G)
the Quillen complex of G. That is A is the poset of the elementary abelian p-subgroups
of G ordered by inclusion. Then A(f,S/G) = A(f, A/G). We have seen that this
can be proved by showing that S and A are G-homotopy equivariant. It can also be
proved combinatorially. For instance, Knorr and Robinson'’s i)roof in Proposition 3.3
of [KR] can be interpretated as follows. Let A = A(S)\A(A). It suffices to show
A(f,A/G) =0.

Notice that C € A if and only if the final term of C is not elementary abelian.
Define § : A — S by letting 8(C) be the final term of C. This is a G-equivariant
signalizer. Fix C € A and set §(C) = P. Extend 7 = 7p in Example 5.2.1 to
St(P) as in part (2) of Remark 5.2.8, that is define 7(Q) = Q = Q®(P) for P < Q.
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Then 7 is a well defined Ng(P)-equivariant, admissible idempotent map on St(P).
6~1(P) consists of all the chains in § whose final term is P. 7 is non-degenerate on
D € 671(P) because 1 € D and 7(1) = ®(P) > 1. As required in Lemma 5.2.3, ¢,
acts on §~1(P) since (-(D) is obtained by inserting or deleting a proper subgroup of P
into or from D and consequently P remains the final term of {.(D). So (7p, 6~ 1(P))
is an Ng(P)-equivariant canceling pair. By Lemma 5.2.7, A(f,A/G) = 0.

Alternatively we can define # : A — S by letting §(C) be the first nonzero term
of C which is not elementary abelian. Fix C € A and set §(C) = P. Extend A = Ap
in Example 5.2.1 to St(P) as in part (3) of Remark 5.2.8. It is an easy exercise to
check that the hypothesis in Lemma 5.2.7 is satisfied, and hence A(f,A/G) =0.

Example 5.2.12. Let P be the poset of proper subspaces of a unitary space V
ordered by inclusion and G < GU(V). Let P, be the subposet of P on the set of
subspaces U such that Rad(U) > 0 together with 0, and P, the subposet of P; on
the set of totally isotropic subspaces including 0. Then A(f,P1/G) = A(f, P2/G).
As an application of Lemma 5.1.2, this can be proved by showing the embedding
i: Py = P, is a G-homotopy equivalence. We omit the proof here. It can also be
proved combinatorially.

Set A = A(P1)\A(P2). So C € A if and only if C contains a member U with 0 <
Rad(U) < U. Define 8 : A — P; by letting 8(C) be the first (mininial) member which
is not totally isotropic. As G is an isometry group, 8 is a G-equivariant signalizer. Fix
C € A and set 6(C) = U. Extend 7 = 7y in Example 5.2.2 to St(U) as in part (3)
of Remark 5.2.8. It is a well defined Ng(U)-equivariant, admissible idempotent map
on St(U). Obviously §—1(U) consists of all the chains D in P; containing U such that
D(< U) consists of totally isotropic subspaces. T is non-degenerate on D € 6~}(U)
because 0 € D and 7(0) = Rad(U) > 0. As required in Lemma 5.2.3, {; acts on
6~1(U) since (,(D) is obtained by inserting or deleting a totally isotropic subspace
into or from D and therefore {-(D) € 8-1(U). So (rv, 8~ 1(U)) is a Ng(U)-equivariant
canceling pair. By Lemma 5.2.7, A(f,A/G) =0.
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The following two results, Lemma 5.2.13 and Proposition 5.2.16 are of key

importance in our reduction theorems proved in the later chapters.

Lemma 5.2.13. LetV be a finite dimensional vector space over a field[F, P = P(V),
G =GL(V), and H < Ng(W) for some subspace 0 < W < V. Let f be an H-stable
function. Then

A(f,P/H) = A(f,T/H)

where I consists of all the chains in P containing a complement to W.

Proof. Let Q be the subposet of P on the set of subspaces which are not the comple-
ments of W. Observe Q is an H-poset and H acts on I'. Moreover A(P) = A(Q)[[T-
So the lemma is equivalent to A(f, @/H) = 0. But this follows from Lemma 5.2.10
as0<We Qisfixed by Hand foreach U € Q, UVW =U+ W € Q. The lemma

is proved.
O

For the rest of this section, let V' be an n-dimensional unitary space over a field

F and G=GU(V). Let P =P(V) and A = A(P).
Definition 5.2.14. A chain

celA:0<Vi<W<--- <V (5.1)

is called a normal chain if there exists 0 =4y <y < --- < i < s, k 2 0, such that
(1) V,, is non-degenerate or 0 for all 0 < j < k;
(2) For each 0 < j < k and any 4; < i < i (assume gq; = s+ 1 and Voy; = V),
Vi = Vi, @ Rad(V5).
Clearly chains of totally isotropic subspaces are normal. If ¢ is a normal chain,
it is singular if c consists of totally isotropic subspaces. Otherwise we say c is non-

singular. If c is non-singular, the non-singular rank of c is the dimension of the

minimal non-degenerate member of c.
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Let T be the set of normal chains in A. Let A, be the set of chains in P which
don’t contain a non-degenerate subspace. Set I'y = A, NI'. Observe I';, consists of
the singular normal chains in A. For 1 <7 < n — 1, let A, be the set of chains in P
whose minimal non-degenerate member has dimension r. Set ['; = A, NI". Observe
I, consist of the non-singular normal chains of non-singular rank r in A. Also observe
that A (resp. I') is the disjoint union of A, (resp. ;) for 1 < 7 < n. As G preserves
isometry type, I', A, and I, are G-sets.

Lemma 5.2.15. Fiz r < n and an r-dimensional non-degenerate subspace U of V.
We write PT, A", I'", G, etc. for the corresponding sets or isometry group defined
for U. For instance G* = GU(U). Set H = Ng(U). Then H = G™ x G*™". Denote
the set of chains in A, containing U by A.(U). and set T .(U) = A (U)NT,.

(1) A./G is in 1-1 correspondence with Ar(U)/Ng(U).
(2) Define
6:A(U) > AL x A™

as follows. If c € A.(U) s represented as in (5.1) with U = V; € c for some j,

then 8(c) = (1, ¢2) where

a€AT:0<Vi1<---<Vj_ and
cpEA™T 0<‘/j+lﬂU‘L<"°<‘/|c|ﬂU'L.

Then 8 is an H-egquivariant 1-1 correspondence with |c| = |ci| + [cal — 1. In
particular G. = G, x Gg;"-

(8) The statements in part (1) and (2) hold for the corresponding set of normal
chains in A,. That is, ['/G is in 1-1 correspondence with I'+(U)/Ng(U), and

8 restricts to a H-equivariant 1-1 correspondence between I'r(U) and I'L x ™.

The proof is straightforward and omitted.

Proposition 5.2.16. A(f,P/G) = A(f,T/G).
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Proof. We induct on n. If n < 2, the statement is trivial as A = I'. Assume the

lemma for spaces of dimension less than n.

We show
A(f,Ar/G) = A(f,T+/G) (5-2)
for each 1 < < n. Then as
A(f, H/G) = 2 A(f, H/G)

for H = A, T, the statement follows.

Observe A, is the set of chains in P which consists of subspaces U with Rad(U) >
0 and I',, is the set of chains of totally isotropic subspaces of V. So by Example 5.2.12,
equality (5.2) holds for 7 =n.

Fix r < n and an r-dimensional non-degenerate subspace U of V. Set H = Ng(U).
Then by Lemma 5.2.15, A,./G is in 1-1 correspondence with (A} x A®~")/H which
is in 1-1 correspondence with AZ/G"™ x A™"/G™". And a similar statement holds
for I'.. Therefore,

o=A(f,0:/G)= Y (-1)MF(G.)

cEAr/G

=— Y e 3 (F)RIAGL < G

C1EAT/GT c2EAR-T/GR-T
But for a fixed ¢, € AL, f.,(K) = f(G;, x K) for K < G™" defines a G" "-stable

function. Therefore, by induction,

o== Y (DMA(fo,a"T/G ) == 3, ()AL, I/

c1€AT/GT c1EAL/GT
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By exchanging the order of summation, we have

o== 3 (-0 3 ()G x GE).

dpern—r/Gn-r c1EAT/GT

Similarly for each fixed d; € A" /G™™", f4,(K) = f(K,GZ, ") for K < G defines a
GT-stable function. By Example 5.2.12,

o=— Y (DA, AL/G)=- Y (-1)A(fs,,TT/G7).
d2 e[‘n—r/Gu—r d2 e[‘n—r/cn—r
Finally
o= > (—nliHial=lf(Gy x GgT) = A(£,T+/G).

(d1 xd2)elr't/GTx[»—"/G™—T

Therefore, equality (5.2) is proved. This completes the proof of the lemma.
a

Next we consider the truncation of A. For 0 < m < n, let A(m) be the set of
chains of subspaces of V' whose final term has dimension m. Set A(n) = A. For

0<m<n,let '(m)=A(m)NT.
Proposition 5.2.17. For each m < n, A(f,A(m)/G) = A(f,T(m)/G).

The proof is identical to the proof of Proposition 5.2.16. The only reason we
chose to prove Proposition 5.2.16 instead of proving Proposition 5.2.17 directly was

to minimize notation.

5.3 Decomposable functions

We now discuss some techniques for evaluating alternating sums through the study
of the properties of f. We develop some machinery to deal with the alternating sum
of a function which can be decomposed. All sets here are finite.
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Let G be a group. We have seen that a G-stable function f : S(G) — E can
be viewed as a Z-linear map from B(G) to E. In practice, however, we are only
interested in the values of f on certain collections G of conjugacy classes of subgroups
of G (instead of on all subgroups). Often G is the collection of stabilizers in G of the
elements in some G-set. Therefore, we may define and work with G-stable functions

on a G-set X, which is defined in a weaker sense comparing with Definition 5.1.1.

Definition 5.3.1. Let X be a G-set and F an abelian group. A function f : X - F
is G-stable on X if it is contstant on G-orbits on X.

Remark 5.3.2. Clearly a G-stable function f : X — E is a G-stable function on X,
but not so conversely. Definition 5.3.1 is weaker than Definition 5.1.1 in the sense
that the values of f on the subgroups of G which are not the stabilizers of elements
of X are not defined, and that it does not require f(z) = f(y) if Gz = G,.

We write EX for the set of G-stable functions on X. X is graded if there is a
G-stable function r € ZX. r(z) is usually denoted as |z| and called the rank of z.
If X is a G-set and f € EX, the sum of f over X/G is:

S(£,X/G)= D f(=)

zeX/G

If X is a graded G-set, the alternating sum of f over X/G is:

Af,X/G) = 3 (-1)"f(z).
zeX/G
We may abbreviate S(f, X/G) and A(f, X/G) as S(f) and A(f), respectively. Notice
if X = A(P) for some G-poset P, then X is a graded G-set with the rank function
being the length function. In this case our definition of the alternating sum of f over
X /G coincides with the definition in the beginning of section 5.1.

Remark 5.3.3. Let X be a G-set and f € EX. We say f can be extended to a
G-stable function h : S(G) — E if f(z) = h(G;) for any z € X. Observe this is
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possible if and only if f(z) = f(y) whenever G, = G, for z,y € X. Clearly in this

case
A(f, X/G) = A(h, X/G).

Let X be a graded G-set and Y a G-set. Let f € EX*Y_ Thenforz e X,y €Y,

f induces the following functions:

f:: Y= E, yw— f(z,y); fzisa G;-stable function on Y;
fy: X E, zw— f(z,y); fyisa Gy-stable function on X.

We then define B : EX*Y — EY by

B(f): Y = E, y— A(fy, X/Gy)
and T : EX*Y  EX by

T(f): X = E, zw+ S(f:,Y/G:)-

Clearly B(f) is a G-stable function on Y and T'(f) is a G-stable function on X.
Lemma 5.3.4. Let X be a graded G-set and Y a G-set, f,g € EX*Y.
(1) AoT =SoB;

(2) If B(f) = B(g), then A(T(f)) = S(B(f))-
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Proof.

AT = Y (DET()@) = > (-1)"S(f, Y/GC2)

z€X/G zeX/G

=2 DY flmy = Y (-DHf(z,v)
z€X/G yeY/Gz (z.y)e(XxY)/G

=Y > Oy = Y AR X/Gy)
YEY/G z€X/Gy yeY/G

= Y B(H) = S(B(f).
yeY/G

So part (1) is proved. Part (2) then follows immediately. O

Lemma 5.3.5. Let Y, Z be two G-sets, ¢ : Y — Z a G-equivariant map. f is a
G-stable function on'Y.

(1) ¢ induces a map ¢ : E¥ — EZ by

6(f): Z—E, z— S(fle-1(x) ¢ (2)/Gz), forf € E.

(2) S(f,Y/G) = S($(f), Z/G). In particular if S(3(f)) = S(¢(g)) for some g €
EY, then S(f) = S(g)-

Proof. Part (1) is easy. As for part (2),

SHY/Q) = 3 fu)= Z‘ ”If()

yeY/C er
G Gyl |G:
- ¥ Bw-x & 'IG"I':G}f()
z€Z ye¢'1(z) zE€Z yep=1(2)/Gx 4
G G.
Zl ‘] S fw)= Zl | 2
zeZ ye¢-1(z)/G zeZ

= Y #f)(2) = S(&(f), 2/G)-

2€Z/G
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Proposition 5.3.6. Let X be a graded G-set. LetY, Z be G-setsand ¢ : Y — Z a

G-equivariant map. Assume f, g are two G-stable functions on X x Y.
(1) ¢ induces a G-equivariant map
P=10¢: X xY >Xx2Z
by ®(z,y) = (z, #(y)), and hence induces
& : EXxXY _, pXxZ
with
8(£)(2,2) = S(flo-i(ee @1z, 2)/G).

(2) T(&(f)) = T(f)-
(3) If B(2(f)) = B(2(9)), then A(T(f)) = A(T(g))-

Proof. By Lemma 5.3.5, part (1) is clear. By definition of ®(f), we have

T@(MN) = Y A== >, > [y

z€Z/Gz 2€Z2/Gz y€¢p~1(2)/Gz.z
= Y flz.y) =T
yeY/Gz

for all z € X, so T(®(f)) = T(f). Consequently
A(T(f), X/G) = A(T(2(f)), X/G).

Assume B(®(f)) = B(®(g)), then by Lemma 5.3.4, A(T(®(f)) = A(T(®(g))- Hence

A(T(f)) = A(T(9))-
o

Lemma 5.3.7. Let G be a finite group, P a G-poset and Y a transitive G-set. As-
sume g is a G-stable function on A(P) x Y and f =T(g). Then
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A(f,A(P)/G) = Alg=, A(P)/H)

where H = G, for somez €Y.

Proof. By definition
A(f, A(P)/G) = A(T(9), A(P)/G) = A= T(g,(A(P) x Y)/G).

By Lemma 5.3.4,

AoT(g,(A(P)xY)/G) =S o B(g,(A(P) xY)/G)
=5(B(9),Y/G)= Y _ B(g)®)-

yeY/G

But G is transitive on Y, so z is a representative of the unique orbit in Y/G. Therefore,

we have

A(f,A(P)/G) = B(g)(2) = A(9-, A(P)/H).
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Chapter 6 On Parabolic Actions, I

In this chapter, we study the action of a parabolic subgroup P of a finite unitary group
on the successive quotients of the lower central series of its unipotent radical, which
are called the internal modues for P. As we are mainly interested in the information
on the orbits and stabilizers, often the statements are true up to conjugation.

Starting from section 6.2 we need to treat certain subgroups of general linear
groups and unitary groups on vector spaces of different dimensions over F,2 where ¢
is prime power. We use superscripts to denote the dimension of the space on which
the ambient group acts. To distinguish a subgroup of a linear group from a subgroup
of a unitary group, we use a + sign in the superscript to indicate that the ambient
group is a linear group. For instance, V' is an [-dimensional vector space over F .z,
G*"* = GL.(q?), G" = GU,(q), Pj is a parabolic subgroup of G" which is the stabilizer
of a chain of totally isotropic subspaces of the natural module for G™ of type J, and
L% is a Levi factor of the parabolic subgroup P;" of GL.(g?). Set G*® =1.

6.1 Tensor Modules

In this section, IF is an abitrary field, £2; is a group and V; is an n;-dimensional F{2;-
module, i = 1,2. Let G = 2, x % and V = V; Q¢ V5. For g = (g1,92) € G and
v = v ®up € V, define gv = g;v; ®g2v, and extend this definition linearly to V. Under
this construction V' becomes a module for G. We are interested in parameterizing

the orbits of G on Irr(V') and describing the stabilizer of orbits up to conjugation.

Example 6.1.1. Let V] be the set of n;-dimensional column vectors and {2; a sub-
group of GL(V}) acting on V; by multiplication from the left; Let V; be the set of
no-dimensional row vectors and {2, a subgroup of GL(V,) acting from the right. So
V; is the restriction to {2; of the natural module for GL,, (F) and V; is the restriction
to (2, of the dual module of the natural module for GL,,(F). Fix the natural basis
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Xt ={e1<j<n}forV,, t =1,2. Thatis, e} is the column/row vector all of
whose entries are 0 except the j-th entry, which is 1. So e! xe? = e;; is the ij-th matrix
unit in My, 1, (F), the set of n; X ny-matrices over F. Y ajjel ® €2 — 3 asje;; = (ai;)
defines an F-space isomorphism between V' and My, »,(F). For g = (g1,92) € G

1

and v € V, gv = gyug;~", where on the right-hand side the operation is matrix

multiplication.

Lemma 6.1.2. The following are G-isomorphic as abelian groups:
Ir(V') = Hom(V,C*) = Hom(V,C,) = Homg,(V,F,) = Homg(V,F) = L(V;, Vo; F).

Here L(Vy, V3, F) is the space of F-bilinear maps from V; x V; to F.

Proof. Hom(V,C*) is isomorphic to Hom(V,C,) because the values of any character
of V are in C,. As C, can be identified with the additive group of Fp, Hom(V,C,) is
G-isomorphic to Homg,(V, Fy).

Regard F as a vector space over Fp. Let X = {z;;7 € A} be a F,-basis of F where
A is an index set. Assume 0 € A and zo = 1. Define § : F — F, by 0(3_ a;z;) = ao.
Then 8 € Homg, (F,F,) as 6 is a projection. Fix an F-basis ¥ = {uy,...,uc} of V
and let U be the F,-space spanned by Y. So V = F®g, U and {z;®u;} is an Fp-basis
of V. Now for ¢ € Homg(V,F), define ¢ € Homg,(V,Fp) by @ = 6 o p. Check @ is
well defined and ¢ +—> @ defines a G-isomorphism between the two abelian groups.

The fact that Homg(V, F) is G-isomorphic to L(V4, V2, F) follows from the universal
property of tensor product. Namely there is a bilinear map = € L(V4, V3, V) such
that for any a € L(V;, V,,F), there is a unique 8 € Homg(V,F) with a = Sr. So
Homg(V,F) is in 1-1 correspondence with L(Vi, V3,F). By checking the G-action
directly, they are G-isomorphic.

a

Remark 6.1.3. Observe that the proof of the first three G-isomorphisms does not
use the fact that G is a product of two groups or V is a tensor module for G. It
applies to any group G and any FG-module V.
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Lemma 6.1.2 suggests that we can use the G-equivariant identification of each of
these sets with Irr(V') and study the G-action on whichever set is most convenient
to obtain information on the action of G on Irr(V'). For this reason, we denote
L(V1, V2; F) by V* which normally would denote the dual space Homg(V, F), although
we occasionally still use V* to denote the dual space, in which case we will say so
explicitly. Also from time to time, when we say 7 € Irr(V') has a certain property, we

may actually mean that the element corresponding to 7 in V* has that property.

Recall the action of G on V* is defined as follows: For f € V*, (v1,12) e Vi x
and g = (g1,92) € G as above, (9f)(v1,v2) = f(g7 v1, gz "v2)- Set

Ri(f) = Ra,(f) ={u e V1| f(u,v) =0, Vv € V3}.

Ry(f) is defined similarly. It is easy to check that R;(f) = V; if f =0 and Ri(f) is a
proper subspace of V; if f #0,¢=1,2.
For W < V, set Cg(V/W) = Cp(V/W) and Autg(V/W) = P/Cp(V/W) where

P = Ng(W).
In the following proposition V;* denotes the dual space of V, (while V* always

denotes L(V4, V2, F)).
Proposition 6.1.4. (1) codim(R(f)) = codim(R2(f)), Vf € V*.
(2) Rt(gf) = ng;(f), Vf € V‘,Vg = (91)92) € G: 1= 112'

(3) Let f € V*, R; = Ri(f) and V; = V;/R;, i = 1,2. Then-

Ca, (V1) X Ca,(V2) < Ne(f) € Nay (R1) X No,(Ra).

(4) Let1 < r < min(ny,n2), and R; be a co-dimension v subspace of V;, i = 1,2. Set
Vi = Vi/R;, P, = Ng,(R:), and P = P, x P,. Then there is a P-isomorphism
between the set X of members f of V* with Ri(f) = R;, and the set Y of

isomorphisms from Vy to V.
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(5) Let (r,Ri,R;) and f be as in ({). Fiz some B € Y. Set H; = Auto (V}),
Hy = B~ Autq,(V5)B. Then there is a 1-1 correspondence between the P-orbits
on X and the double cosets of GL(V1) on (Ha, Hy), such that if f corresponds
to HogH,, then

Ne(f)/(Cp (%) x Cpy(V2)) = Hy N Hj.

Proof. Pick 0 # f € V* and let V; = V;/R;(f). We define @ = a5 : V; — V; as

follows:
a(t)(?:) = f(u,v2) forv; € V,i=1,2.

It is easy to check that « is a well defined linear map between the two vector
spaces. We claim « is injective. In fact, if a(7;) = 0 for some #; € V4, then for all
7, € V,, by definition we have a(%,)(%2) = f(v1,v2) = 0. Therefore, v; € R;(f), i.e.,
7, =0.

Consequently dim(V;) < dim(V;) = dim(V;). By symmetry, dim(V;) < dim(V}).
Hence dim(V;) = dim(V2) and o is an isomorphism. So (1) holds.

By definition

Ri(gf) ={ueVi| f(g17'u, g2 v) =0, Vv € V3}
= {glu € ‘/1 | f(u,v) = 0’ Yv € VZ} = g1R1(f).

Similarly Ry(gf) = g2R2(f). Part (2) holds.
By part (2), if gf = f, then R;(f) = Ri(gf) = g:Ri(f), so g: € N, (R:) and hence
Ng(f) € N, (Ry) x Nq,(Rz). If g; € Cg(V;), then for all v; € V;

gf(v1,v2) = gf (U1, B2) = f(g1 01, 927 02) = f(U1, Ta).

So g € Ng(f). Thus part (3) is proved.
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As for part (4), we claim that ¢ : f — ay, where ay is defined in the proof of part
(1), defines a 1-1 correspondence between X and Y.

Certainly ¢ is well defined. Assume ay = a4 for some f, g with R;(f) =
Ri(g) = R;. Then by definition af(7;)(72) = ay(71)(7:) for all v; € V;. Conse-
quently f(vi,v2) = g(vi,v2), i-e., f = g. Hence ¢ is injective. On the other hand,
given a € Y, we can construct f € V* by letting f(v1,v2) = a(7,)(%2) for all v; € V.
Check o = ay. So ¢ is surjective. Therefore, the claim is true.

By part (2), P = Nqo,(R;) x Np,(R;) acts on X. Also P acts on Y by ga =
g2(a o git) for g = (g1,92) € P. To show the map is actually a P-isomorphism, we
need to verify that for g = (g1,92) € P and f € X, ayr = g(ay). But

ags (1) (T2) = f(g7 v, 95 v2) = (g7 ' 01) (97 '02),

0 agf = g2(argr) = gay. This proves (4).

Set H = GL(V}). It is clear that H; < H,i=1,2, and A : o+ S~ 'c defines a 1-1
correspondence between Y and H. Denote the projection of g € P in P by § where
P = P/(Cp, (Vi) x Cp,(V2)). P acts on Y by ga = ga. If v = ga for a,v € Y and
g = (g1,92) € P, then by the way g acts on Y, we have

By = (B7158) (B a)gi "

This shows that two elements &,y in Y are conjugate by P if and only if their images
A(a) and A(y) in H are in the same double coset of H on (H;, H;). Moreover, if

a = ga, then
1= (87')" (B0 P)(B"e) € Hyn Hf .

It then follows from part (4) that Ao¢ is the 1-1 correspondence from X to the double

coset of H on (H,, H,) with the desired property. This completes the proof.
O
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R;(f) is called the 2;-radical of f or radical for short. codim(R;(f)) is called
the rank of f. According to Lemma 6.1.2, if 7 € Irr(V) is identified with f, we
say R;(t) = Ri(f) is the radical of 7~ and 7 has rank r if f does. The set of rank r
characters in Irr(V) is denoted by Irr(V, 7).

Remark 6.1.5. (1) Fix r < min(n;,n;). Let X = Irr(V,r). Let R; be the set of

co-dimension r subspaces of V;, ¢ = 1,2. Proposition 6.1.4.2 says
8 : 7= (Ryi(7), R2(7))

defines a G-equivariant map from X to R; x Rs. By Proposition 6.1.4.4, it is
surjective. Equivalently, if we regard X as a (2-set, then

0; : T — Ri(7)

defines a surjective {2;-equivariant map from X to R;.

(2) Fix R, € R; and let X(R;) be the set of characters T € X with R;(7) = R;.
By Proposition 6.1.4.3, Cp,(Vi/R;) acts trivially on X(R;). The projection
pr: Vi — Vi/R; induces an Autg, (Vi/R1) X §2;-equivariant isomorphism from
X(Ry) to the set of f € V* = (Vi/R1) ® V2)* with R;(f) =0 via f — f where
Flor(w), v2) = f(v1, va).

Lemma 6.1.6. Let 2, = GL,,(F) and 1 < r < min(ny,ny). There is a I-1 corre-

spondence between the G-orbits on Irr(V,r) and the §2,-orbits on the set of codimen-

sion T subspaces of V; given by 7€ — Ry(1)™1.

Proof. Let X, R1, Ry, and 0 be as in Remark 6.1.5. By Remark 6.1.5, € is surjective

and G-equivariant. So X/G is in 1-1 correspondence with

11 X(Ry, Ry)/(Ngy(R1) X Ny (Rz))
(R1,R2)e(R1xR2)/G

via 7€ = 7F where X(R;, Ry) = {r € Irr(V) | Ri(7) = R;} and P = Ng,(R((7)) x
Nﬂz(R2(T))'
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Fix R; e R;, i = 1,2, and let P = Ng (Ry) x No,(Rz). As 22 = GL,,(F), it
follows that H, = Autg,(V2/R,) is the full general linear group GL.(F) on V2/R,.
Consequently, as in the proof of Proposition 6.1.4, H;\H/H, contains a unique
element. Therefore, by Proposition 6.1.4.5, X(R;, R;)/P contains a unique mem-
ber. Thus the G-orbits on Irr(V, r) are in 1-1 correspondence with (R; x R;)/G via
¢ 5 (R (7)™, Ry(7)™), which is in 1-1 correspondence with R;/f2; by the natural
projection, as 2, = GL(V?) is transitive on R,. Therefore, the proof is complete.

a

Lemma 6.1.7. Let 2; = GL(V}),i=1,2.

(1) G is transitive on Irr(V,r) and consequently G has 1 + min(n;,ny) orbits on
(V).

(2) Let (r, R, R;) be as in Proposition 6.1.4.4 and v € Irr(V,r) with R;(t) = R;,
i = 1,2. Then Cq,(Vi/R;) is the semi-direct product of Cq,(R:) N Cq,(Vi/R:),
which is isomorphic to M, ,._.(F) as an abelian group, by Ng,(R;) N Cn,(R})
with R being a complement to R; in V;, which is isomorphic to GL,,_.(F). So
Autg,(Vz/R;) is isomorphic to GL.(F). For v € Ir(V,r), Ng(T) is the semi-
direct product of Cqo,(Vi/R1) x Ca,(Va/R;) by a subgroup of Auto,(Vi/R1) X
Autg, (V2/Ry) isomorphic to GL.(F).

Proof. Part (1) follows from Lemma 6.1.6 and and the fact that 2, = GL(1}) is
transitive on the co-dimension r subspaces of V]. Part (2) follows from Proposition

6.1.4.5 and well known facts on the structure of the general linear groups.
O

6.2 Action on the Linear Modules

Throughout this section, F = F,2 for some prime power ¢, and §2; = GL(V;). Fix
1 < r < min(ny,n;) and set X = Irr(V,r).
Refer to the set-up as in Example 3.1.1 in discussing the action of 2; on V;. Let

P = P(W). So {Pf™;J C [n — 1]} is a set of standard parabolics of £2; which
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are the normalizers of a set {c;} of representatives of A(P)/f2;. Let Y be the set of
co-dimension r subspaces of V;, and for y € Y, let X (y) be the set of 7 € X whose
{2;-radical is y.
Form the semi-direct product H of V' by G. Extend the action of 2, on V; to H
by letting V' x £2; act trivially. So H acts on P, X and Y/, as well as on P x X. Also
foreach J C [n; — 1], let G, = Pf™ x {2, and H; =V x G,.

Proposition 6.2.1. Letd > 0, Z < Z(G) centralizing V' and p € Irr(Z).

(1) If r = ny, then as the only co-dimension r subspace in V; is 0, Y = {0} and

X = X(0).

(2) If r < n,, then

> (WWky(Hp, X, p) = Y (~1)Yku(Hy, X (w), p)
JC[n1-1] reJC[n1—1]
where w € Y is a complement in V; to the r-dimensional subspace stabilized by

+ny
P

Proof. Part (1) is trivial. So Assume r < n;. Recall from section 2.2 that kq(H;, X, p)
counts the number of irreducible characters of H; of g-height d lying over p and
some 7 € X. Define f : A(P) x X — Z such that for J C [n; — 1] and T € X,
f(cs, 7) = ka(H;,7,p). We show f is a well defined H-stable function on A(P) x X.
Observe {cs; J C [n; — 1]} is a set of representatives of A(P)/H, and

kd(H-ff T, p) = kd(HJ, 79, p) for ge H,;.

So f is a well defined H-stable function on A(P) x X.
Recall the definition of T'(f) from section 5.3. We have

T(f)e)= Y. flenm)= D ka(Hs T p)=ka(Hs X, p)-

T€X/H; reX/Hs



73
The last equality holds by Lemma 2.2.1.2. Consequently,

> (—U)Vky(Hi, X, p) = A(T(f), A(P)/H). (6.1)

Jg[m—l.]
By Remark 6.1.5.2 and by our hypothesis preceeding this proposition,
¢ ST > Rl(T)

defines a surjective H-equivariant map from X to Y. So by Proposition 5.3.6.1, ¢
induces an H-equivariant map ® from P x X to P x Y, and consequently f induces

an H-stable function f' = ®&(f) on P x Y defined by

f'(er,y) = S(fle-1csyy @ Hea v)/Nuly)) = ka(Hs, X (y), p)-

By Proposition 5.3.6.2, T(f) = T(f') as H-stable functions on P. So
A(T(f), A(P)/H) = A(T(f"), A(P)/H). (6.2)
But 2, and hence H is transitive on Y, so applying Lemma 5.3.7, we have
A(T(f), A(P)/H) = A(f,,, A(P)/Ng(w)) (6.3)

where w is given by the hypothesis. But recall from Proposition 6.1.4.3 that for each
V < K < H and 7 € X(w), Ng(r) < Ng(w) < Ng(1). So by Lemma 2.2.1.2 and
2.2.2, for each J,

fulcr) = ka(Hy, X(w), p)
= Z kd(HJrT’ P)

T7€X(w)/Nu , (w)

_ Z ka-a (N, (w), 7, p)

TeX(w)/Nu , (w)
= ky-q (NHJ (w)v X(w)v P)

where d’ is exponent of ¢ in the p-part of |H;|/|Ng,(w)|. Observe H; has the same
g-height as H.
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Define g : S(Ng(w)) = Z by

kd—do+d(K)(Kv X(w)’ p)1 fK >V;
g(K) =

g, otherwise.

Here dj is the g-height of H and d(K) is the g-height of K. It is easy to see that gis a
Ny (w)-stable function. Moreover, f.(cs) = g(Ng,(w)) for each J and consequently

A(f, A(P)/Na(w)) = A(g, A(P)/Na(w)). (6.4)
Finally as Ng(w) acts as Ngrv;)(w) on Vi, so by Lemma 5.2.13,
A(g, A(P)/Ne(w)) = Alg, A(P, w)/Na(w)) (6.5)

where A(P, w) consists of the chains in P containing a complement to w. But N, (w)
is a maximal parabolic of {2; and acts transitively on the complements to w. It follows

that {c; : 7 € J C [n; — 1]} is a set of representatives of A(P,w)/Ng(w). So

A(g, A(P,w)/Nu(w)) = > (D f'erw)= Y (~D)Wka(Hs, X(w),p).

reJC[l-1] reJCcl-1}

Therefore, the proposition follows from the above equation and equations (6.1)-(6.5).
d

For the rest of this section, assume {2, = GL(V;). In this case, we say V is a
linear module.

Lemma 6.2.2. Let 2, =GL(V;),i=1,2. Letd, Z, and p be as in Proposition 6.2.1.
Let w = 0 be the 0 subspace if r = n;, or as in Proposition 6.2.1 a complement in

Vi to the r-dimensional subspace R stabilized by PF™ ifr < n;.

(1) Npsos (w) = Ngrn (R) N Ngen, (w) = GHO=1) x G,

Moreover, Cp+m (Vi/w) = Gtm-m) gnd Autpsn (Vi/w) = G*".
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(2) Ng,.(w) is transitive on X (w). For v € X (w),

GHm-m) x G*™ ifr =n,,
Neg. (1) =
GHm—r) x Pin2 ifr < n,.

(3) Let J C [ny — 1] withr € JU {n1}, thatisT =n, orr € J. Then

Npsmi(w) = Pf™ 0 Nppm (w) = P57 x PET

with y ={j—r|r<j€J} and Jo = J(< 7). Moreover, CP}-M Vi/w) =
P3™™ and Autgsm (Vi/w) = 3.

(4) Let J be as in part (8). Then Ng,(w) is transitive on X (w). For T € X (w),

N, (1-) P}l;(m—r) X P}:nz, zf T = Ty,
Gs =
PrmT x pE L ifr <.

Proof. Part (1) follows from our choice of w. As G, = P} x GL(V;), by Lemma
6.1.6, the G-orbits on X are in 1-1 correspondence with the PF™-orbits on the co-
dimension r subspaces of V; via 76~ — Ry (7)% . In particular as w is fixed, any two
members in X (w) are conjugate under G,, and hence under .NG, (w) by Proposition

6.1.4.2. So Ng, (w) is transitive on X(w). Also
Ng, (1) = Gr N Ng(7)
and Ng(7) is given by Lemma 6.1.7.2. Assume R,(t) = w'. By part (1), and as
2, =Gtm2,
Autpen (Vi/w) 2 G = Autg, (V2/w).
So by Proposition 6.1.4.5, Ng, () is the semi-direct product of Cp+m (Vi/w) x

Caq,(Va/w') by the diagonal subgroup D in Autp+n, (Vi/w) x Autg, (V2/w') isomorphic
to G*T. But CP;_H\I (Vi/w) commutes with D and (2;, and the extension of Cq,(V2/w’)
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by D is isomorphic to G™2 if r = ny and isomorphic to PF™ if r < n,, therefore,
part (2) holds.

Part (3) is easy. As for part (4), we may argue as in part (2) to show that Ng,(w)
is transitive on X (w). Ng,(7) can be worked out by the same argument in the proof
of part (2).

a

Proposition 6.2.3. Assume the hypothesis in Proposition 6.2.1.

(1) If r =n,, then

Z (_1)IJlkd(HJ1 Xy p) =

JC[n1-1]
ZJQ[r—l](_l)lJlkd—d’ (Pi™,p), ifr=n,,

2o I (“l)mkd—d'(PfL?{z,.}, p), ifr<ns
(2) If r <my, then

> (—~1)Mky(H X, 0) =

JC[n1-1]
.
2 L Clni—r—1] Zng[r—l](—l)IJII+IJ2I+1 ki-a (P, .Z(m_r) x Py, p),
J ifr =mng,
ZJIQ[‘"-].-T"]-] EJQQ[T—II(—]‘)IJII+IJ2I+1 ky_a (P};(nl—f) x PJ-:TL?{r}’ p),
ifr <mns.

In any case d’ =2((%) — ("57)).

Proof. Let w be as in Lemma 6.2.2. Let J C [n] be as in part (3) of the same
lemma. By Lemma 6.2.2.4, Ng,(w) = V X Ng,(w) is transitive on X(w). So by
Lemma 2.2.1.2,

ka(Hr, X(w), p) = ka(H;, T, p)

for some 7 € X(w). By Lemma 2.2.2,
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ki(Hy, T, p) = ka—a (Nu, (1), 7, p)

where d’ is the exponent of q in the p-part of [H;|/|Ng,(7)|. But Hy =V x G with
V being abelian. So by Lemma 2.2.4,

kd—d’(NHJ (T)r T, P) = kd—d’ (NGJ (T)’ p)'

Therefore,

kys(Hy, X(w), p) = ka—a(Neg, (1), p)- (6.6)

Recall Ng,(7) is given by Lemma 6.2.2.4. Also recall a parabolic subgroup of a
general linear group contains a Sylow p-subgroup of the general linear group. So in
any case the exponent of g in the p-part of |[Ng,(7)| is

2((™7) + (%)
On the other hand, the g-height of |G| = |[P}™ x G*™| is
2((3) + (3))-
As Ny, (1) =V x Ng, (1),
|Hl/|Ng,(7)| = |Gul/|Ne, (1)

So d' =2(("}) — (™, 7)) Observe d’ does not depend on the choice of J.
Assume r = n,;. Then by Proposition 6.2.1, X = X(0). So by equation (6.6),

Z (—l)ljlkd(HJ’ X, P) = Z (“U”Ikd—d’(NGJ(T)r P)-
JCln1—1] JCln1-1]
Now part (1) follows from Lemma 6.2.2.4, where we observe that Ng,(r) = Pj™ if
T =mng O Pﬂi} if r < no,..

Similarly if 7 < n;, then by Proposition 6.2.1.2 and equation (6.6),

Z (_l)lJlkd(HJr X, P) = Z (_1)lJlkd—d’(NGJ (T)7 p)'

JC[n1-1] reJC[n1—1]
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Then again the proposition follows from Lemma 6.2.2.4, as we observe J —
(J1, J2) there defines a 1-1 correspondence from A([n;—1]) to A([ny—r—1]) xA([r—1])
with |J] = |J1| + |Jo] + 1.
a

6.3 Action on the Unitary Modules

Continue with the notation in the beginning of section 6.2. So in particular {2, =
G*™™. In addition we assume {2, = G™* throughout this section. We call V' a unitary
module in this case. Recall as in Example 6.1.1 that the dual space V5 is the
natural module for §2; and becomes a unitary space. For R < V2, we set R* to be the
subspace of V;* consisting of functions which vanish on R. Then dim(R*) = codim(R),
Ng,(R) = Ng,(R*), Ce(V2/R) = Ce(R") and Autq,(V2/R) = Autg,(R*). We first

study the special case when n; =r.

Lemma 6.3.1. Let n; = r and J C [r — 1]. Then there is a 1-1 correspondence
between the G s-orbits on X with the £2;-orbits on flags of type JU{r}\{n2} in P(V5),
such that if T € X/G; corresponds to ¢ € A(P(V5))/§22, then Ng,(T) = Ngn:(c) up

to conjugation.

Proof. By hypothesis r < n,. First assume np =r. So J U {r}\{n2} = J. As the
only co-dimension r subspace in V; is the 0 space, which is of course stabilized by {2;,
any member in X must have (0, 0) as radicals, and £2; = Autg,(V;/0). By Proposition
6.1.4.5, the G-orbits on X are in 1-1 correspondence with the double cosets in
G"\G*"/PjfT, such that if T corresponds to G"gP}", then Ng,(r) = P}" N (G")s.
On the other hand, recall that V' is the natural module for G™ and P}7 is the
stabilizer in G*" of a flag of type J. So as G*" is transitive on the flags of type
J, it follows that the G"-orbits are in 1-1 correspondence with the double cosets
P}™\G*"/G", such that if ¢ corresponds to P}"g~'G", then Ngr(c) = G"N (PF)9™".
Therefore, as G"gP}"™ — P}"g~1GT is a bijection of G"\G*"/P}" with Pf"\G*"/G"
the proposition holds in this case.
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Next assume ny > 7. So JU{r}\{n2} = JU {r}. Let S be the set of subspaces of
dimension r in V. For R € S, let X(R) = {r € X | (R2(7))* = R}. Recall Ry(1) =0
for each 7 € X. By Remark 6.1.5.1, 7 — (Ry(7), R2(7)) defines a G j-equivariant
surjective map from X to {0} x {R* | R € S}. Therefore, as Ngr(R) = Ngr(R®),

X/Gr = Uges/or X(R)/(Pf™ x Ng-(R))-

Let A C A(P) be the set of flags in P(V;") of type JU {r}. For R € S, let A(R) be
the set of flags in A whose final term is R. Then

A/G™ = ges/or A(R)/No-(R).
Fix R € S. Set P = Ngr(R) and P = Autg-(R). As Ri(r) = 0 for all 7 €
X, Ca,(Vi/Ri(7)) = 0 and Autpsr(Vi/Ry(7)) = PfT. By Proposition 6.1.4.5,
X(R)/(PfT x P) is in 1-1 correspondence with P\G*"/P}" and the stabilizer in
G of the orbit corresponding to PgPjT is the extension of Cp(R) by P9 N P}™.

On the other hand, there is an P-isomorphism between A(R) and the set of flags of
type J in P(R) given by ¢ — ¢\ { R}, where P(R) is the poset of proper subspaces of R.
As G*T is transitive on the chains of type J in P(R) and P} is the stabilizer in G*™ of
a chain of type J, it follows that A(R)/P = A(R)/P is in 1-1 correspondence with the
P-orbits on Gt7/P}™, or equivalently Pj™\G*"/ P, such that the stabilizer in G" of the
orbit corresponding to P}"g~1P is the extension of Cp(R) by PN (PF")9"". We have
established a 1-1 correspondence between X (R)/(P}" x Ngr(R)) and A(R)/Ner(R)

for each R € S/G™ with the desired property. So the lemma follows.
O

Definition 6.3.2. Assume n; = 7 and J C [n; — 1]. If 7¢/ € Irr(V, ) /G corre-
sponds to € € A(P(Vy)) of type J U {r}\{n2} as in Lemma 6.3.1, we say 7¢/ is
labeled by c¢ . By abuse of notation, we may also say 7 is labeled by ¢ and write

T =T

Let A = A(P(V5')), and T the set of normal chains in P(V5") as defined in section
5.2. Recall from the paragraph preceeding Proposition 5.2.17 that A(r), ['(r) are
the r-th truncations of A, T, respectively, and in particular A(ny) = A, T'(np) =T.
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Lemma 6.3.3. Assume ny =r. Let E be an abelian group and f : Px X — E a

G-stable function on P x X.

(1) There is a 1-1 correspondence ¢ : (P x X)/G — A(r)/$2,, such that if
(cs, )€ — 2,

then d is of type J U {r}\{n2} and G., . = Nq,(c).

(2) Let g be the (2;-stable function on A defined by g = f o p~1. Assume g can be
extended to an (25-stable function in the sense of Remark 5.8.3. If r = n,, then

A(T(f),P/G) = A(g, A/$%) = A(g,T/$2).
If r < n,, then
A(T(f),P/G) = —Alg, A(r)/ %) = —A(g,(r)/122).
Proof. Recall from Example 3.1.1 that c; is the flag stabilized by P}", and

{eriJ S lm —1]}

is a set of representatives of P/{2;. So

P xX)/G= ][] {es} x X)/(PF" x 2) = X/G;.

JClr-1]

Here = means 1-1 correspondence. Without loss we may identify these sets.
Set J = JU {r}\{nz}. By Lemma 6.3.1, there is an 1-1 correspondence
¢s: X/Gr— A5(r)/ 12
267 > ¢(z)™
where A ;(r) denotes the set of chains of type J in A(r), such that G,z = Ng,(¢s(z)).

Therefore, as A(r) is the disjoint union of Ay, ¢ = Usés with ¢((cs, £)7) = ¢s(z)™
is the desired 1-1 correspondence. Part(1) holds. As the value of each §2,-orbit on
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A(r) under g is determined by f and ¢, g is a well defined §2,-stable function. We

have
ATS)LPIG) = ). (-Dfez) =% Y (-1)¥f(s7(d))
(c,z)e(A(P)xX)/G deA /2,

where the + is taken if 7 = ny, and — is taken if 7 < n,. This is because when (c, )
corresponds to d under ¢ with ¢ of type J, the d is of type J.But J=Jifr=mn,
and J = JU {r} if r < n,.
This proves the first equality of part (2). The second equality follows from Remark
5.3.3 and Proposition 5.2.16. So the proof is complete.
a

For each J C [n; — 1], we denote by S*(V, J,r) C X/G; the set of T € X/G;
labeled by normal chains of type J U {r}\{n2} in P(V3).

Lemma 6.3.4. Assumen; =r1. Letd >0, Z < Z(G) centralizingV and p € Irr(Z).
Then

Z (—l)lﬂkd(HJv X, P) = Z (—l)ljlkd(HJr Su(‘/’ J, T), P)-
JC[r-1] JC[r-1]
Proof. We define a G-stable function f on P x X as follows. For J C [r — 1] and
T € X/Hy, let f(cs,7) = ka(H, T, p). As in the proof of Proposition 6.2.1, this is a
well defined G-stable function on P x X with T(f)(cs) = ka(H s, X, p), so that

A(T(f),PIG) = D (-1)Vky(H;, X, p).
JCl—1]
Let ¢ and g = fo ¢! be as in Lemma 6.3.3.
If ¢c € I'(r) is of type J as in the preceeding lemma, then g(c) = ka(H, T, p) where
#(cs,7)C¢ = c?2. Consequently as ¢ is a 1-1 correspondence, and S*(V, J,7) is in 1-1
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correspondence with the ['(r)/f2,,

A(g,T/) =+ D (-1)Vku(H;, S*(V, J,7), ).
JC[r-1}
On the other hand, as H; splits over V' with V abelian, so by Lemma 2.2.3 and
2.2.4, g(c) = kg-q, (Na,(c), p) where d, is the exponent of g in

|Gs/Ng(cs,T)| = |G/Na,(c)|

by Lemma 6.3.3.1. Therefore, if G. = G, then g(c) = g(c’). So by Remark 5.3.3, g
can be extended to a {2;-stable function. Therefore the lemma follows from Lemma

6.3.3.
a

We now discuss the case when n; > r. Pick w € Y as in Proposition 6.2.1. Let
V = (V1/w)® Va. Recall dim(V;/w) = r and Autg, (Vi/w) = G*". Then V is a tensor
module for G*7 x (2,. So the above discussion applies to X = Irr(V, ).

Form the semi-direct product H = V x (G*" x ), and let H;, = V x G,
Gr, = P} x £, for J; C [r — 1]. By Lemma 6.3.1, X/Hj, is labeled by G™-orbits
of chains of type J> U {r}\{n2} in P(V}).

Lemma 6.3.5. Assume r < n;. There is a Autg, (Vi/w) X (2;-equivariant isomor-
phism 6 between X (w) and X given by 6(7) = 7, such that forr € J C [n; — 1] and
T € X(w),

Ng,(r) = PF™™) x Npirwa,(T) with Npiru,(T) = Ne , (7)
where  ={j—r|jeJ(>r)} and Jo=J(<T).

Proof. By Lemma 6.1.7, Autg, (Vi/w) = G*". The existence of § follows from
Remark 6.1.5.2. Let J and 7 be as'in the hypothesis. By Lemma 6.2.2.3,

Npgma () = P % BT

with
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Cppm(Vi/w) = P;™™ and Autpem (Vi/w) = P}

By Proposition 6.1.4.5, ij-nl (Vi/w) € Ng,(t). As CP}"‘I (V1/w) commutes with the
diagonal subgroup D ¢ Aut prm (Vi/w) (described in the proof of Lemma 6.2.2) and

2;, and as Ng,(7) < ij.nl (w) x £2;, we have
Ne,(r) = P£™ ™ x Npsr,q,(7)-
Now as G, = P};" X {2, and @ is Autg, (V1/w) x 2;-equivariant, it follows that
NP};"xng (T) = Néjz (7:)

Therefore, the lemma is proved.
a

Definition 6.3.6. Let r < n; and 8 be as in Lemma 6.3.5. Forr € J C [n; — 1], we
say ™Ves®) € X (w)/Ng,(w) is labeled by ¢ € P(V3')/G" of type Jo U {r}\{n,} if

B(r)éfz is. By abuse of notation, we also say 7 is labeled by c and write 7 = .

Let 7 < n;. We denote by S*(V, J,r) C X(w)/Ng,(w) the set of orbits labeled
by a normal chain of type J; U {r}\{n2} in P(V5").

Remark 6.3.7. In general, each z € S*(V, J,r) is not a member of X/G,, but z C y
for some y € X/G;. Hence for 7 € z, by Lemma 2.2.1.2,

kd(H.fa z, p) = kd(H.h T, p) = kd(HJa Y, p)'
So for this purpose, we may regard S*(V, J,r) as a subset of X/G.

Lemma 6.3.8. Assumer <n;. Letd, Z and p be as in Lemma 6.3.1. Then

S ()k(HS X, 0)= Y (—DVka(Hs, SHV, J7),p). (6.7)

JC[n1-1} reJC[n1—1]

Proof. By Proposition 6.2.1, we have

Y. COk(HA X, )= Y (—1)Yka(Hy, X (w), p) (6.8)

JC[n1-1] reJCln1~1]

where w is defined in that proposition. Pick 7 € X(w). By Lemma 2.2.2,
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kd(HJ’ T, p) = kd—d’ (NHJ(T)Y T, p)

where d’ is the exponent of g in the p-part of |H;/Ng,(7)|. But Hy =V % G; with
V abelian, so by Lemma 2.2.4,
kd—d’(NHJ (T)a T, p) = kd—d'(NGJ(T)Y T, p)
Ng,(7) is given by Lemma 6.3.5. So
ka(Hy,7,p) = ka—ar (P} x Ng, (7), p)
where Ji,Jo are as in that lemma. Similarly as P_Z("‘—') acts trivially on X and
H;, =V x Gy, with V abelian, by Lemma 2.2.2 and 2.2.4,
Kd—dr+dr (P}:(m_r) x Hy,, T\ p) = kd—d’(P;;(m-r) X Ng, (7),p)

where d” is the exponent of ¢ in the p-part of |H,/Ng 1,(T)|- Therefore,
k’d(Hj, T, p) = kd_dl+dll (P‘}t(nl-r) X Ejz, 7.’, p). (69)

Recall H; =V x G with V < Ng,(7) and G; = P;™ x 2. So
|H|/|Net, (7)| = |Gsl/|Ng,(T)]-
Similarly Hy, =V x G, with V < Ng,_ (7) and Gy, = PF™ 7™ x 2,. So
|H;l/|Ng,(7)| =G s/|Ng, ()
But by Lemma 6.3.5,
Ng,(r) = P57 x Ng, (7).

Therefore, d' —d" is the exponent of g in the p-part of |P}™/ (P};(""r) x PET)|, which
is 2((%) — (™) — (5)), and does not depend on the choice of J.

Equality (6.9) holds for any 7 € X (w), so as S*(V,J,r) (resp. X) is in 1-1
correspondence with S*(V, J,,r) (resp. X),

ka(Hjy, S¥(V, J,1), p) = ka—dr+ar (P};(m—r) x Hy,, S*(V, J2,T), p)
and

kd(HJ, X(’UJ), p) = kd_dl+dll (P;;(nl—r) X sz,x, p).
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But by Lemma 6.3.4, we have

Z (—l)ljzikd(g’]m er) = Z (_l)l-lekd(g'Jz’S‘u(V, Jg,'l"),p)-

J2Cfr—1} J2C[r—1]

Applying Lemma 2.2.6, we obtain that for any d > 0,

Z Z (_1)IJ1l+llekd(Px(m—f) x Hy,,X,p) =
Jlg[nl—r—l] ng[r—l]

Z Z (_1)|J1|+|J21kd(P};(n1—f) % FIJ,,S“(V, J2,7), p).

J18[n1~r—1] J2C[r—1]

(6.10)

Recall that J — (J;, J2) defines a 1-1 correspondence between the subsets of [n; — 1]
containing r and A([n; —r — 1]) x A([r — 1]) with |J| = [/1 +|J2[ + 1. So

3 (~)Vka(H, X (w), p) =

reJCni—1]

- Z Z (~)WH ey e (PFT x Hy, X, p).

J1€[ny—r—-1]} ng[‘t‘-ll

Similarly

Z (—1)VYka(Hy, S*(V, 1), ) =

reJCni1—1]

- Y )k (P x B, ST, B,7), )

J1C[n1—r—1] J2C[r—1]}

By (6.10), the last two double sums are equal, so

> COYki(HA X W), p)= Y, (=)Yki(Hs, S* (Vi Ii7), p)-

reJCni—1} reJCn1—1]

Hence the lemma. follows from (6.8).
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Fix J C [n; — 1] and let w = 0 (if r = n;) or w be as in Proposition 6.2.1. We
have labeled X (w)/Ng,(w) by GT-orbits of chains of type J U {r}\{n.} in P(V7)
when r = n; or r € J, or equivalently when r € J U {n;}. In particular S*(V, J,r)
is defined when r € JU {n;} and in 1-1 correspondence with the G™-orbits on the
normal chains in P(V5") of type JU {r}\{n.}, in which case S*(V, J,r) is non-empty
as normal chains of any type exists in P(V;). Set S*(V, J,r) =0 if r ¢ JU{n,}, and

set

min{ni,n2)

sV, )= |J SsV.an).

Furthermore, let S*(V, J,0) consist of the trivial character of V.

Recall that Irr' (V) is the disjoint union of Irr(V,7) for 1 < 7 < min(ny, nz) and
each Irr(V,r) is a G-set. So it follows from Lemma 6.3.4 and 6.3.8 by summing over
all » with 1 < 7 < min(ny, n,) that

Proposition 6.3.9.

> COYMEE V) = Y (~DVka(Hy, SV, ), ). (6.11)

JC[n1—1] JCn1~1]

Recall the definition of singular chains as well as non-singular chains from Defini-
tion 5.2.14.

Definition 6.3.10. Let J C [n; — 1], 1 < 7 < min(ny,n2) and r € J with
J = J(<r)U{r}\{n2}-

(1) Assume T < n; so J = J(K 7). Let S**(V, J,r) be the set of 7 € S*(V, J,r)
labeled by a singular normal chain of type J(< r) in P(V3*). Observe S**(V, J,r)
is non-empty if and only if r < n2/2, in which case it consists of a unique
member. Let S™(V, J,r) be the set of 7 € S¥(V, J,r) labeled by a non-singular
normal chain in P(V}"). Clearly

S¥(V, J,r) = SV, J,r) 1 S™(V, J,7).
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For 1 < 7 < 7, let SE*(V, J,r) be the set of members in S™*(V, J,r) labeled
by non-singular normal chains of non-singular rank /. Observe SE*(V, J,r) is
non-empty if and only if € J = J(< r) and J(< 7) C [r/2]. Clearly

s, J,r) =[] se(v. 4, 7).

r’=1

Assume 7 = ny; so J = J(<r). For1 < v <, let SZ*(V,J,r) be the set of
members in S*(V, J,r) labeled by non-singular normal chains of type J(< r)
in P(V3') non-singular rank 7. Observe S%*(V, J,r) is non-empty if and only if
™ € J = J(< 7). Let S™(V,J,r) be the set of members in S*(V, J,r) labeled
by singular normal chains of type J = J(< r) in P(Vy). Observe S*(V, J,r) is
non-empty if and only if J(< r) C [r/2]. Set

sV, J,r) = [ Se“(V, ;7).
r=1

So in this case S*(V, J,r) = S™*(V, J,r), and we may set S**(V, J,r) =0.

Set

min(ni,na)
s wv,N= |J S™WV.Jr),

r=1

min(n1,n2)
sV, = |J sV,

r=r’/

and

A min(ni,nz)
sv,nN= |J s™WV.Jr)

r=1

Remark 6.3.11. Observe in either case of Definition 6.3.10, S**(V, J,r) is non-

empty if and only if 1 < r < ny/2, in which case it consists of a unique member.
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SE*(V, J,r) is non-empty if and only if ' € J(< r) and J(< 77) C [r//2]. Moreover,

S* (V. Jyr) =SV, J,r) I S™(V, J,7)
and
sH V. J) = §™(V, J) [15™(V, J).
We make the following observations.

Remark 6.3.12. Let J C [n; — 1] with r € JU {n;}.
(1) Assume 7 € S*(V, J,7). If r < n;, by Lemma 6.3.5,
Ng,(r) = PE™™ x Ng, (7).

Here J; = {j—r|je J(>r)}and J, = J(< 7). If r =n;, was in Lemma 6.3.5
may be chosen to be 0, so that H, V, H;,, T are identified with H, V, H;, T,
respectively. So the above equation holds trivially in this case as P};(’“—r) =1
and Ng,(7) = Ng,, (7). In either case, 7 is labeled by a normal chain ¢ in P(V;')
of type J = JoU {r}\{n2}. Recall from the discussion preceeding Lemma 6.3.5
that 7 € Irr(V, r) with V = M, ,,(F;2). So we may apply Lemma 6.3.1 to get

Ng,, (F) = Ngra(c).
Consequently
NGJ (‘I’) = P‘Z(nl-r) X NGn: (C)

(2) Assume 7 = 7. € S%(V, J,r) is labeled by a singular normal chain ¢ in P(V}’),
then Ng,(c) = P}*. Therefore,

Ng,(r) = P™™ x PP, (6.12)
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(3) Assume 7 = 7. € SE*(V, J,r). Then c is a non-singular normal chain of type
J in P(V3) of non-singular rank 7. So 1 < ' < r and J(< ) C [/2]. Let ¢
correspond to (c1, ¢2) as in Lemma 5.2.15.3, where ¢, is a singular normal chain
in P(V"') and c; is a normal chain in P(V™*~"'). Here V" is the natural module
for G~ and V™~ is similarly defined. ¢; is of type J = J(< ') = J(< )
and ¢, is of type J" = {j — 7' | j € Jo(> )} with |J| = |J'| +|J”| + 1. So by
Lemma 5.2.15.3 and by part (1),

Ne,(r) =P, j;(m_r) X Ngr(c1) X Ngny—r(c2)
with Ngr(c1) = P}E<,.,) being a parabolic subgroup of G™.

Proposition 6.3.13. (1) Ifr =n;, then

S (~0)ky(Hy, S™(V, JyT), p) =

Jg[n]_—l]

0, if = ny;

> sctnasa (DM kaa (PR3, 0), i T <ma.
(2) If r < ny, then

> (“)Vky(Hy, SV, iT), p) =

Jg[‘nq—l]
,
0, if r=mny;
+(n1—1) n
J E.hg[n],—r—ll EJQ_C_[ﬂQ/2] (-1)'-I1|+|J2l+1 kd_dl (PJI n1—r X PJ;LJ{r}’ p) ’,
ifr <mns.
\

In any case &' =2((3) — (*57))-

Proof. If r = ny, S*¥(V, J,r) = 0 by definition. So the statement holds in this case.
Without loss assume 7 < nj.
First assume r = n;. From Remark 6.3.11, S°%(V, J,r) consists of a unique

member if J C [r/2], and is empty otherwise, in which case k4(H s, S*“(V, J,T),p) = 0.
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For 7 € S**(V, J,r) (and hence J C [r/2]), from Remark 6.3.12.2, Ng, (1) = P}*. So
as H is the semi-direct product of an abelian normal subgroup V' by G, by Lemma
2.2.1.2, 2.2.3 and 2.2.4, we have

ke(Hy, S™(V, J,7),p) = ka(H, T, p) = ka—a(Ng, (1), p) = ka—ar (P}, p)

where d’ is the exponent of ¢ in |G|/|Ng,(7)|- As Gy = Pf™xG™ and Ng, () = P}
and the P}? has the same g-height as G™2, it follows that

& =2(3).

Therefore, the part (1) holds. The case 7 < n; can be proved similarly.
a

To end this section, we prove the following technical lemma which will be used in
section 9.2.

Let J C[ny—~1],1<r e JuU{n}and r <ng. Let J = J(<r)U{r}\{n;} and
v € J. Let V = M,,_p n,—(F) be a tensor module for G = G*™~™) x G*~"', Form
the semi-direct product H of V by G, and for J' C [ny — 7' — 1], set Hp = VG
where G = P;(""r') x Gr2—T
Lemma 6.3.14. There is a I-1 correspondence vy from SE*(V, J,r) to s¥(V,J' r—r')

where J' = {j — ' | v < j € J}, such that for v € STV, J,T),

NGJ(T) = P}E(r’) X NGJI ('Y(T))'
Proof. By definition, there is a 1-1 correspondence av,; from SE*(V, J,7) to the set

A of GT-orbits on the nonsingular normal chains of nonsingular rank 7’ in P(V"2) of
type J. Moreover, by Remark 6.3.12.1, if 7 = ., then

Neg, () = P x Ngns (c) (6.13)

where J; = {j —r | r < j € J}. By Lemma 5.2.15.3, and as G" is transitive on
the set of singular normal chains of a given type in P(V"™'), there is a natural 1-1
correspondence § from A to the set B of G™~" -orbits on the set of normal chains in

P(V™~T) of type



91
J={j-r|r<jel}=TUu{r—r}u{n,—r},

such that if ¢ € A with ¢ = 6(c), then
Ngra(€) = Pjcpy X Ngng—r (¢).- (6.14)

Finally by ; is a 1-1 correspondence from S*(V,J',r —1') to B such that if 7’ = T, €
S*(V,J',r —1'), then
Neg,, (') = P70 ¢ Ny ().
with
Ji={--")ielCGr-m}={(-r)-(-")|je}=J.

That is,
Ng,, (1) = P& x Ngng-wr () (6.15)

Now it is easy to check that v = aV,JOGObF,fJ, is a 1-1 correspondence from S*(V, J, r)
to S¥(V,J',r — 7). If T — 7 under this map, then by equations (6.13)-(6.15),

NGJ(T) = P};(nl—r) X P.;E<r') X Ncnz—r’ (CI) = .;’(<r') X Né,/ (7',)

Therefore, the proof is complete. a
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Chapter 7 On Parabolic Actions, II

In this chapter we first state a few facts about the unitary group, then study the

action of a maximal parabolic subgroup on the center of its unipotent radical.

7.1 The Structure of the Unipotent Radicals

The structure of the parabolic subgroups as well as the unipotent radicals are dis-
cussed in [ABG|. We state the most well known facts without proof. Recall that
M, ((F) is the set of r by s matrices whose entries are elements in F.

In this section, let V' be an n-dimensional unitary space over Fgpz with n = 2m or
2m + 1. Let G = GU(V). We fix a basis X = {e;,...,e,} for V such that

1, fi+j=n+1
(e:,€5) =
0, otherwise.
Here ( , ) is the unitary form on V. Define M = M(X) to be the n by n matrix
M = M(a;;) with a;; = (e;,e;). Cleatly for g € M, ,(Fp2), g € G if and only if
M = gMgT®, where g7 denotes the transpose of g, and g? is the matrix obtained by
raising every entry of g to its g-th power.

Let I = [m]. For j € I, let V; be the subspace of V spanned by {e;;1 < i < j}.
By our choice of X, each Vj is a totally isotropic subspace. In particular V;, is a
maximal totally isotropic subspace of V.

Let @ # J C I. Assume

J={j1<ja<--<3s} ' (7.1)
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Let c; be the flag

O<V; <V, <---<V,.

Set B = Ng(cr), Pr = Ng(cs), and Py = G. Then B is a Borel group of G and
{Py; J C I} is a set of parabolics of G over B. Let P; = U;L; be the Levi decompo-
sition of Py, with Uy and L being the unipotent radical and Levi factor, respectively,

as in section 3.1. As usual, we write F; for P;;. It is well known that
U; = Ca(V5) N Ca(V5-/V;) N Ca(V/ViH).
Lemma 7.1.1. Fizjel.

(1) Z(Uj) = Cy;(V;+) = Cu,(V]) where V] = (ej41,...,enj). In particular, as an
additive group, Z(U;) is isomorphic to M; ;(F,) and U;/Z(U;) is isomorphic to
M;n2j(Fp). (U; = Z; when n =2j) Z(U;) is an FyL;-module while U;/Z(Uj;)

is an FpL;-module, both induced from the conjugation of L; on Uj.

(2) Ly = Ng(V;) N Ne(V]) N Ng(V]') where V' = (en_jt1,.--,€n)- In particular
L; = L} x L7 where L} = Cr,(V]) = G and Ly = Cr,(V;) = G™¥.
Moreover, L; acts trivially on Z(Uj); U;/Z(U;) is the tensor module for L;

described in the beginning of section 6.1.

Proof. Pick u € U;. As a matrix, u can be written as:

L; 0 0
u=1 A I, gjn2 O

cC B I

where I;; is the identity j x j matrix, A is a (n — 2j) x j matrix, etc. Certainly
we must have M = uMuT?. Indeed all the assertions in this lemma can easily be

deduced from direct calculation, and we omit the proof.
a
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Similarly for J C I represented as in equation (7.1), it is well known that Uy is

the subgroup of G centralizing the successive quotients of the following series:

0< Vi <Vi<...V SVE<VE<VE<V.

Lemma 7.1.2. (1) For1 <1 < s, Uszjy) i a normal subgroup of Py as it is the
unipotent radical of a subparabolic of P;. Consequently the following is a chain

of normal p-subgroups of Py:

UJ = UJ(?J'I) > UJ(?JZ) > > UJ(?jJ) = Uj: 2 ZJJ > 1' (7’2)

(2) For1<i<s,
V(ji, Jir1) = UJ(?ji)/UJ(21i+1) = M, i (qu)
as an abelian group. V (j;, jiv1) s an Fg2P;/Uj>j;)-module induced by conjuga-
tion. P;/U;;j,) s isomorphic to

L(Jr;—Zj.-H) X P-}*;ji x G+(ji+1—ji) (7.3)

where Jo = {j — Jis1 | Jir1 < J € J} and Jy = J(< ji). L_(};_Zj"*‘) acts trivially
on V (ji, Jiv1) by conjugation. When regarded as a module for P};j" x GtUs+1—7i)
V(ji, jiv1) s a tensor module as in Ezample 6.1.1. Consequently Py is the

semi-direct product of Ujsj,.,) by

(n—2ji+1) +Ji+1
LJO x PJIU{ji}.

(3) As an abelian group, Z(U;,) = M;, ;,(F,) while U;,/Z(U;,) = M, n—2j,(Fg).
Z(U;,) is an F,P;/U;,-module while U;,/Z(U;,) is an Fy2P;/Uj,-module, both

induced by conjugation. Moreover, P;/Uj, is isomorphic to

P} x Gr2is (7.4)
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where J; = J(< j;). G™ s acts trivially on Z(U,,). U,,/Z(U;,) is a tensor
module for P;/Uj, as in Ezample 6.1.1.

Again these assertions are either well known or can easily be deduced from direct

calculation.

We study a “twisted” variation of a tensor module.

Let G = GUan(q) for some m € N. Let P = P,. So L = L, = GL»(¢?). Let
V = Up = Op(P). From section 7.1, we know V is an F,L-module via conjugation.
So by Lemma 6.1.2 and Remark 6.1.3, Irr(V') is L-isomorphic to the dual module
V*. On the other hand, the unipotent radical V'~ of the opposite parabolic P~ is
known to be isomorphic to the dual module for V. Therefore, in this situation we
may as well identify V'~ with Irr(V).

Let G = GLm(F), where F is the algebraic closure of F,. Fixing a basis for the
natural module on which G acts, we may view G as a matrix group. Definec : G = G

by (as;) = M~(a%)~TM where X7 is the transpose of X and M = (m;) with

1, ifi+j=2m+1;
m,-j =
0, otherwise.

So o is an extended Frobenius endomorphism of G and we may assume G, = G.
We can choose a o-stable maximal parabolic subgroup P with B, = P. Then V =
Op(P) & My (F,) is o-stable and V, = V. Also V has a o-stable Levi complement
L = GLy(F;) X GLm(F,) with L, = L. As V~ is characteristic in P~ and P~ is
o-stable, V'~ is o-stable and (V~), = V.

By the set-up in Example 3.1.1 and the choice of o, we have L = L; x L, with

[ Ly & GLn(Fpa)

with o(L;) = Ls_;, i = 1,2. Written as a (2m) x (2m)-matrix, a typical element
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A 0
0 I;nm

where A is a non-singular m x m-matrix. A typical element g, € Ly has the form

Imm O
0 B

where B is a non-singular m x m-matrix. Consequently a typical element g € L has

(2]

V= can be either upper triangular or lower triangular. We assume the former. Then

g1 € L, has the form

the form

a typical element z € V'~ has the form

Inm C
0 Inm

with C € My, m(F,). So each z is uniquely determined by an m x m-matrix. Clearly

Imm ACB™
0 Imm |

Moreover, if £ € V'~ corresponds to C = (¢;;) as above, then o(z) has the form

Im,m (di.j )
0 Imm

gzg~! has the form

with di; = _c‘(Im+1—j),(m+1-i)‘
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As both V'~ and Irr(V) are dual to V as FL-modules, we may identify them with
each other. So the results apply when we study the actionof Lon V—,as L = L; x L,
and V is a tensor module for L. In particular, Lemma 6.1.7 says L has 1 + m orbits
on V-~ and describes the orbit stabilizers.

On the other hand, we may identify V~ as M, »(F), as we do in Example 6.1.1.
As the action of L on V'~ preserves the rank of matrices, we conclude that the L-orbits
on V'~ are determined by the ranks.

Next we define a set of representatives of V—/L as follows. Fix 0 # € € F, with
e +e=0. For 1 <t <m, let , = (a;;) € V~ be defined as:

e, fj—i=m-—r;
aij =
0, otherwise.

By definition z, has rank r as a matrix. So {0,z,;1 < 7 < m} is indeed a set of
representatives of V~/L. Moreover, it is easy to check that z, is o-stable for all r.

Assume V~ = V; @ V5 as in Example 6.1.1. So V; is the natural module for L,
while V5 is the dual of the natural module for L,. Fix 1 < 7 < m and let # = Nz (z,).
So by Lemma 6.1.7.2,

C=01X62<ﬁ<g1XH2

such that H; = Ni,(R;) for some co-dimension r subspace R; of V;, and C; =
Ct,(Vi/ R:). Moreover,

H;=U; x (K; x K?)
where
U; = C¢,(R:) = My (F),
K; 2 GL,,_.(F) is the stabilizer in C; of a complement R. to R; in V;,

K} = Cp,(R) = GL(F),
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H=(C,xCy) nD,
where D = GL,(F) is a full diagonal subgroup of K} x Kb.
Now as z, is o-stable, and o(L;) = Lz_; for i = 1,2, it follows that o(H;) = Ha_;,
o(K;) = K3_;, and o(K!) = K}_;, so 0(C;) = C3_;, and as z, is o-stable, o(D) = D.
We deduce that

C=C,=UxK

where
U = (0103)6 & Mym—r(Fp),
K = (K1K,)y =2 GLy—(F,3),
and
H = Ni(z,) = H, =CD,
where

D=D, < GU,.(Fp).
By construction,
C = CL(Vo/Ro) < H < N(Ro)

where Ry is a co-dimension 7 subspace of the natural module V; for L. We have

shown
Lemma 7.1.3. Letl <r < m.

(1) There is a unique L-orbit on the elements of V~ of rank r, and {0,z,;1 <7 <

m} is a set of representatives of L-orbits on V.

(2) Ni(z.) is isomorphic to

( (M (F) ¥ GLy_(F)) X (M;.-(F) X GLr_(F)) ) x GL.(F).
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(3) o(z:) = ., and there is a co-dimension r subspace R of the natural module V™

for L such that
Ni(z;) =U x (K x D)
stabilizes R,

U =CL(R)NCL(V™/R) & M, m_.(Fa),
K = N(R) N CL(R’) & GLp_.(Fpa),

where V" =R® R, and
D = Ng(z,)NN(R)NCL(R) = GU,.(FQ).

By Lemma 7.1.3, o acts on each L-orbit on V. Therefore, studying the L-orbits
on V'~ is equivalent to studying how the fixed points by ¢ in each orbits breaks into

orbits of V'~ under L-action.

Lemma 7.1.4. For 1 < r < m, =¥ is the unique L-orbit on the set of elements of
rank v of V~. Consequently L has 1 +m orbits on V~ with {0,z,;1 < r < m} being

a set of representatives of V~/L.
The proof is an easy application of the following well known lemmas.

Lemma 7.1.5. Let G be a group acting transitively on a set X, z € X, H = G, and
K < H. Then Ng(K) is transitive on Fiz(K) if and only if KSNH = KH.

Proof. This is (5.21) on page 19 in [As].

Lemma 7.1.6. (Lang-Steinberg Theorem.)
If H is a connected algebraic group over F, and o is an endomorphism of H, then

the map g — o(g)g~! from H to itself is surjective.

Proof. This is Steinberg’s generalization of Lang’s Theorem. See the discussion on
page 32 in [Cal. For the proof, see [S].
a
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Proof of Lemma 7.1.4. Let X = zl where z = z,. It suffices to show that L is
transitive on X,.

Set G = (L, o) such that g° = o(g) for g € L. Then G acts transitively on X with
G: = L.T where T = (0). Then Ns(T) = LT, Fiz(T) = X,. By Lemma 7.1.5, LT
is transitive on X, if and only if T¢ NG, = TC= if and only if TENL,T = TL= if and
only if eLo~' N L, = oLo~1. Here cLo~! = {g~logo" | g € L}.

Certainly L is a connected algebraic group. By Lemma. 7.1.3, L. is the semi-direct
product of connected algebraic groups and hence connected. So by Lemma 7.1.6,
olo=! = L and oLo~! = L,. Therefore, the final equality indeed holds. Hence the

lemma is proved.
a

Recall the rank of £ € V'~ as a matrix is L-invariant. For each 1 < r < m, we set
Irr(V, 7) to be the set of 7 € Irr(V') identified with the rank r elements in V~. we let
7 € Irr(V, r) be identified with z,.

7.2 Representations of U

In this section, G = GU,(q) with n = 2m or 2m + 1. Fix 1 < I < m and let
P = P, be the maximal parabolic subgroup of G stabilizing an /-dimensional totally
isotropic subspace in the natural module for G, U = U}, and P = LU where L is a
Levi complement of U. Set Z = Z(U). We study the irreducible representations of
U. If n =2m = 2l, then U = Z and Irr(U) is studied in section 7.1. So without
loss we assume U # Z. In this case, U is a special p-group, Z is an F,L-module of
dimension % and U/Z = M;,_u(q?) is a tensor module for L = G+ x G*%. The
linear representations of U are precisely those which contain Z in the kernel, and
hence can be identified with the representations of U/Z, which are studied in section
6.2. So it remains to study the non-linear representations of U, i.e. those lying over
some non-trivial character of Z.

Recall that there is an L-equivariant 1-1 correspondence between Irr(Z) and
Z(0Op(P7)). So as the G*# factor of L acts trivially on z , by Lemma 7.1.4, L



101
has [ orbits on the non-trivial characters in Irr(Z) with {1,7;1 < r < [} being a
set of representatives of L-orbits on Irr(Z), where 7. is identified with z, in Lemma
7.1.3.

Let ¢ € Irr(U) lying over 7., for some 1 < r < [. Set N = ker(p) and K = ker (7).
As Z = Z(U), ¢|z is a multiple of 7. So K < N. As Z is abelian, Z/K is cyclic of
order p. Hence as Z £ N, it follows that NN Z = K. Set U = U/K and U=U/Z.
As P is irreducible on U and Z and U is non-abelian, Z = UM = &(U). Thus
Z=UM =®(U) and as 1 # Z = UM, U is non-abelian.

Claim ®(Z(U)) = 1. If not, as &) = Z, |Z({U) : Q1 (Z(U))| = p and hence
Z(0)/Q(Z(0)) is centralized by some e € E#, E = Z(G™ %), contradicting U =
[U,e]. Let U = U/N. As U has a faithful irreducible representation, Z(U) is cyclic,
so as Z(U) is an homomorphic image of Z(J) and ®(Z(0)) = 1, Z(U) = Z and
hence U is extraspecial.

Now observe ¢ and 7, can be regarded as a character of U and Z, respectively.
But the irreducible representations of extraspecial p-groups are well known. See for
instance (34.9) in [As|. Explicitly, regarded as a character of U, ¢ is faithful and the
unique irreducible character of U lying over 7. Equivalently ¢ is the unique member
of Irr(U, ) with ker(p) = N. Clearly NL(p) = Ni(1) N N.(N). We have proved
that

Lemma 7.2.1. Let 1 <7 <! and p € Ir(U, 7+-) with N =ker(p). Then U/N is an
extraspecial p-subgroup, ¢ is uniquely determined by N, and Ni(p) = Ni(7)NNL(N).

We now divide the discussion into two cases, namely r =l and r < [.

Assume 7 = [. We claim that N = K so U is extraspecial. To prove the claim,
we need to show Z = Z(U). Clearly Z < Z(U). If Z £ Z(U), then there exists
u e U — Z with @ € Z(0), so [u, U] < K. However, Ni(11) = G' x G*~% stabilizes K
and acts irreducibly on U. Therefore, U = (uV£(™), Z). It follows that [U,U] < K, a
contradiction. Hence the claim follows.

As Np(K) = Ni(n), by Lemma 7.2.1, Ni(p) = Np(n). Moreover, as [U| =
pg?™=2) (1) = ¢*™=2), We have shown that
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Lemma 7.2.2. Irr(U, 1) consists of a unique member @. Moreover, ker(¢) = ker(m),
o(1) = ¢, and

Ni(p) = Np(n) =G x G*%.

Now assume 1 < 7 < . Recall that U = V* x (V™%)* where V* is the natural
module for G**, k = [,n — 2. By Lemma 7.1.3.3, N.(7+) = L; x G* % where G*%
centralizes Z, and L, stabilizes a co-dimension r subspace R of V! with

L, =C x (L] x LY)
where

C =Ca(R)NCa(V/R) = M, ;. (Fp),
Li=CL(R)INNa(R)=G"

and
Ll =Ca(R)YNNa(R) = G+i-m),

Here V! = R® R'. Therefore, R is the unique proper nontrivial L,-submodule, and
consequently W = R ® V™2 < U is the unique proper nontrivial Nz (7.)-submodule
where W is the preimage of W in U. Moreover, as Z(U) # Z, it follows that
Z({U) = W. Let E = Z(G™%). Recall that for each e € E¥, Cy(e) = Z. So
Z =Cg(e) = Cg(E), [e, W] = [E,W] and W = Z x [E, W]. Set No = [E, W] and let
N be the full preimage of Np in W. So W = NyZ with NyNZ = K and W = Ny x Z.

As U/N is extraspecial, W = NZ. As ZN N = K, it follows that W = N x Z.
So as ¢ is uniquely determined by N, Irr(U, 7;.) is in 1-1 correspondence with the set
X of complements of Z in W as ®(W) = 1. Moreover, X is in 1-1 correspondence
with

Hom(Ny, Z) = Hom(Ny, Fp) =2 Irr(Vp)

via a map Y + ¢¢ with ker(¢y) = Y N Ny. Now N (7:) centralizes 7. and hence also
Z, so these bijections are all Np(7;)-equivariant. Let ¢ correspond to ¢ € Irr(Np).

Observe
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(1) Cr,(R) = C % Lj acts trivially on N, and Cr,(V!/R) = C x L acts trivially
on U = U/N. So Cr,(U) = Z(G)Cr,(V!/R). Moreover, |U| = pg?®™~2_ So
Cp(l) = qr(n-—zl)_

(2) Np = V' x V2 is a tensor module for L} x G*%.
(3) If ¢ is the trivial character, then N = Np Npuygn-2(¢) = L{ x G*~%. Conse-

quently Nz(p) = N(r) and

Ni(p)/CL,(VY/R) = L] x G2 (7.5)

(4) If ¢ is non-trivial, then Ny, gn-u(@) is described in Proposition 6.1.4.5. As-
sume the radicals of ¢ are (R!, R?) as in the proposition. Then in this case,

Nr(yp)/Cr, (VI/R) N Nr(p) = Li X Lo (7.6)

with Ly & Nga-u(R2).

In summary,

Lemma 7.2.3. Let r < | and P’ = Np(t.). There is a P’-equivariant bijection
from Irr(U,7,) to Irr(Ny), such that if ¢ corresponds to ¢, then Np(p) = Np:(p).
Moreover, (1) = g"®2 for all ¢ € Irr(U, ;).

Observe that in the above lemma, if r = [, then N = 1. And hence Lemma 7.2.3

coincides with Lemma 7.2.2.

Lemma 7.2.4. Let 1 < r < I, and ¢ € Irr(U, 7). Then ¢ is extendable to Np(yp).
That is, there exists ¢ € Irr(Np(p)) such that @ly = .

The proof is an application of the following result due to Dade (see [D3]).

Lemma 7.2.5. Let F be an eztraspecial p-group and G = E x H with Z(E) < Z(G).
Assume that for each normal p'-subgroup K of H, [E,K]| = E. Let ¢ € Irr(E) with
¢(1) > 1. Then ¢ is extendable to G.
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Proof of Lemma 7.2.4. Let ker(p) = N and U = U/N. We may regard ¢ as a
character of U. To prove the lemma, it suffices to show that ¢ can be extended to
HU where H = Ni(¢p). Recall from Lemma 7.2.1 that U is extraspecial.

Assume r = [. Then by Lemma 7.2.2, H = G' x G*2%. As H is irreducible on
U/Z =U/Z, [X,U)] =U for any normal p’-subgrup of H with X £ Z(G). Therefore,
[K,U] = U for any normal p’-subgroup of H/Z(G). Hence by Lemma 7.2.5, ¢ is
extendable to (H/Z(G))U. But [Z(G),U] =1, so ¢ can be extended to Np(p)-

Assume r < [. Adopt the notation of the proof of Lemma 7.2.3. Let ch correspond
to ¢ € Irr(Np). If ¢ = 1, then from equation 7.5,

H/HNCy, (V}/R) =G x G2,

But U is an extraspecial p-group. So as in the preceeding case, ¢ is extendable to
U(H/H N C,(V'/R)). But [HNCL,(V!/R),U] =1, so ¢ can be extended to HU,
or equivalently to Np(y) in this case.

Assume ¢ # 1 and that the radicals of ¢ are (R!, R?). Then H/H N Cr, (V'/R)
is described in equation (7.6). If R? is nondegenerate, then L, is the product of
two general linear groups, and W = [W, Ly| ® Cy(L2), so there is a N (p)-invariant
automorphism of U mappping Ny to N. Thus U/Ny is Ni(p)-isomorphic to U/N, so
we can take N = N, a case already handled (i.e., ¢ = 1).

If R? is degenerate, then

Lz = CG'n-Zl (R.a:d(Rz)) n CGn—ZI (T)
where T is a complement to Rad(R?) to R?, so F*(L2) = Op(L,) and the only normal
p’-subgroups of AutH(lj' ) are the normal p’-subgroup X of L}. But as L} x G* % is
irreducible on U/W = U/Z(U), U = [U, X], so again by Lemma 7.2.5, ¢ can be

extended to Np(p). Done.
a
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7.3 Action On the Central Modules

In this section G = GU,h(q) withn =2mor2m+1and l € [ = [m]. Let V = Z(U})
where Uj is the unipotent radical of P,. Let V! be the natural module for G*!. Denote
the set of J C [m] with | = max(J) by J(I). By Lemma 7.1.2.3, if J € J(I), then Py
is the semi-direct product of U; by Pj‘(’d) x G2 with G % acting trivially on V.
We call V a central module for B.

Fix 1 < r <! and set X =Irr(V,r). Let 7 € X be identified as z, in Lemma

7.1.3 and K = K, = Ng+(7+). So K is described in Lemma 7.1.3.3. That is
K =M, (Fp)x (GHE x Gn).

Lemma 7.3.1. Let J € J(l). There is a 1-1 correspondence between the P;-orbits
on X and the K-orbits on the set of chains of type J(< ) in P(V'), such that if
787 3 cX, then N, Pl (1) = Nk(c) up to conjugation.

Proof. Recall Py acts as P‘}"(‘d) on X as U; and G™ % act trivially on V. By Lemma
7.1.4, G*! is transitive on X. So as 7. € X and K = Ng+ (1), the Pf(il)-orbits are
in 1-1 correspondence with K\G*!/ P}‘(‘d) which is in turn in 1-1 correspondence with
P}'(L,)\G‘” /K, which is in 1-1 correspondence with the K-orbits on chains of type
J(< 1) in P(VY), and if

{
rFin o K 9P}y — Pilpg K = K,

-1

then IV, PrL, () = Pf(l<z) N K9 and Ng(c) = (P_}*i’d))g N K. Therefore, the lemma

holds.
il

Definition 7.3.2. Let 7 = [ and J € J(I). So by Lemma 7.1.3.3, K = G'. For
T € X, we say 777 is labeled by a chain & C A(P(VY)) if 75 %< corresponds to cC'
of type J(< [) as in Lemma 7.3.1.2. By abuse of notation, we also say 7 is labeled
by c in this case and write T = 7,. Moreover, let S?(V, J) be the set of 7 € X/P;
labeled by a normal chain in P(V?) of type J(< I).
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Lemma 7.3.3. Assumer =1. Letd >0 and p € Irr(Z(G)). Then

2 (“Dka(Pr, X, p) = Y (=) ku(P1, 5%(V, J,1), p)
JeI() JeJ(h)

Proof. Certainly P, = U; x (G* x G* ) acts on X = Irr(V,!) with U; and G2
acting trivially. Extend the action of G** on P = P(V}) to P, by letting U; and
G2 act trivially. Set H = P.. So H acts on both P and X. For J C [l — 1], set
Hjy = Ppqy-

Define an H-stable function on P x X as follows. For J C [l — 1] and 7 € X,

fles, 1) = ka(Progy, T, p)-
Argued as in the proof of Proposition 6.2.1, we see that f is well defined, and
T(f)(es) = ka(Prugy, X, p)-
So as A[l — 1] is in 1-1 correspondence with J(I), we have

A(T(f),P/H)=— > (-1)"'ky(Py, X, p).
JeJ()

But by Lemma 7.1.4, G*' and hence H is transitive on X. By Lemma 7.1.3.3,
Ng+i(11) = G* and hence Ng(n) = U; x (G* x G*%). So by Lemma 5.3.7,
A(T(f),P/H) = A(fn,P/Nu(m)).

But U; and G™ 2 act trivially on P, so Ng(m) acts as G* on P.
Define g : S(G') = Z by

g(K) = k4(U x (K x G*2), 1, p) for K < G-

It is straightforward to check that g is an G'-stable function, and
A(frn,P/Ny(n)) = Alg, P/G").
Therefore, by applying Proposition 5.2.16 to g, we obtain

A(fn: P/Nu(n)) = A(fn, T/Nu(n))
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where [ consists of the normal chains in P. For J C [l —1], let ' be the set of chains
of type J in I". Then

A(fa,D/Ng(m)) = > (=D >~ f(e,m).
Je(-1] c€l’s/Ny(m)
By Lemma 7.3.1 and Definition 7.3.2, S*(V, JU {l},1) is in 1-1 correspondence with
the G'-orbits on the set Ty of normal chains in P of type J, that is with I';/G*. So
as [';/G* =T ;/Ny(m),

ki Progy, S*(V, JU{LD.0) = > flam).
c€ly/Nu(m)

Consequently

A(fn, T/Nu(m)) = = > (~1)"ka(Py, S*(V, J, 1), 0)-
JeJ(l) .

Therefore, the lemma holds.
0

Now we discuss the case 1 < r < I. By Lemma 7.1.3.3, K is contained in
a maximal parabolic subgroup of G** stabilizing a co-dimension r subspace of V'.
Without loss assume K < Ng+(w) with V! = R ® w and R being the r-dimensional
subspace stabilized by P+.

Lemma 7.3.4. Set z = 7. Let " be the set of chains in P containing a complement
to w and T'(R) consists of the chains inP containing R. Let f be a G*'-stable function
on P x X such that f, can be extended to a K -stable function in the sense of Remark
5.3.5.

(1) K 1is transitive on the complements to w in V'. So in particular T/K can
be identified with T'(R)/Ng(R). Moreover, Nx(R) = G™ x G- with G™ =
Ng(R) N Cg(w) and Gt = Ck(R) N Ng(w).

(2) A(f,P x X/G*) = A(fz,[(R)/Nk(R)).



108
(3) Define 8 : T(R) = A(P(R)) x A(P(w)), ¢+ (c1,¢2), as follows. If

c=0<V<---<V;<--- <V
with R =V;, then
a=0<Vi<---<Vijandey=0< Vg Nw<--- <V, Nw.
Then 6 is a Ng(R)-equivariant isomorphism. So in particular
Ng(c) = Ngr(e1) x Ngsa-n(c2).
Observe if c is of type J C [l — 1], then ¢; s of type J(< T) and c; is of type

{j~-rlieJdJ>r)}

(4) Define 6, : T(R) — A(P(R)) as the projection of 8 to A(P(R)). That is if
8(c) = (c1,¢z), then 8;(c) = c1. Let A be the set of c € ['(R) such that 6,(c) is
a normal chain in P(R) regarded as a G*-poset. Then

A(fzT(R)/Nk(R)) = A(fz, A/Nk(R))-

In summary, A(f,P x X/G*") = A(fz, A/Nk(R)).
Proof. Part (1) follows from Lemma 7.1.3.3 and the choice of w. As G*! is transitive
on X, by Lemma 5.3.7,
A(f,P x X/G*) = A(fz, A(P)/K).
Then as K < Ng+(w), by Lemma 5.2.13,
A(fz, A(P)/K) = A(fz, T/ K).

By part (1), K is transitive -on the complements to w, and I'/K can be identified
with ['(R)/Nk(R). More explicitly, cN<(®) i X defines a 1-1 correspondence from
I'(R)/Nk(R) to I'/ K such that Ny, (r)(c) = Nk(c). Therefore,



109
So part (2) holds.
Part (3) is easy. Part (4) can be proved by the argument used in the proof of

Proposition 5.2.16.
a

Definition 7.3.5. Let r <l and r € J € J(I). By Lemma 7.3.1, X/P; is in 1-1
correspondence with the G*i-orbits on A = A(P(V!)) of type J(< [). We also see in
Lemma 7.3.4 that

A/Ng(R) CT(R)/Nk(R) =T/K C A/G*

subject to suitable identification. Here A is as in Lemma 7.3.4.4. For r € X, if 757
corresponds to V%8 € T'(R)/Nk(R) of type J(< ) with 8(c) = (c1, c2), we say T~
is labeled by a ¢§” € A(P(VT)). By Lemma 7.3.4, ¢; is of type J(< 7). By abuse of
notation, we also say 7 is labeled by c; in this case and write 7 = 7.,. Moreover, let
S#(V, J,r) be the set of 77 € X/Py labeled by c§" € P(V")/G" of type J(< r) with
c; normal. By definition, S*(V, J,r) is in 1-1 correspondence with the G™-orbits on
the set of normal chains in P(V™) of type J(< ).

Lemma 7.3.6. Letr < !l. Letd > 0 and p € I'rr(Z(G)). Then

S E)ENPL X, p) = Y (=1)ka(Pr, S*(V; J,T), p)- (7.7)
Jea() reJeJ(l)

Proof. This is a direct application of Lemma 7.3.4. Namely as {c;; J C [l — 1]} is set
of representatives of A(P(V*))/G*, we define a G*'-stable function f on P(V!) x X
by

f(cJ7 7.) = k&(PJU{I}a T, p)
It is easy to check that f, can be extended to a K-stable function. Then we may

proceed as in the proof of Lemma 7.3.3 and apply Lemma 7.3.4 to show the statement

is true. O
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Let J € J(I). By Definition 7.3.2 and 7.3.5, we have labeled a subset of
Irr(V, 7)/ Py by chains of type J{< r) in P(V") when r € J. In particular we defined
S*(V, J,r) for such (r,J) and S*(V, J,r) is in 1-1 correspondence with the G™-orbits
on the normal chains of type J(< r) in P(V"). Obviously S*(V, J,r) is non-empty as
there are always normal chains of type J(< r). We set S*(V,J,r) =0 if r ¢ J, and

set

sV, )= |J S* (Vi Jir).

1<r<d

Furthermore, let S*(V, J,0) consist of the trivial character of V.
It follows from Lemma 7.3.3 and 7.3.6 by summing over all 7 with 1 < r <[ that

Proposition 7.3.7.

> DYV, p) = Y (~1)ka(Py, 8%V, ), ). (78)
JeI() JeJ()

Remark 7.3.8. Let JeJ(l)and r € J.

(1) Assume T € S*(V, J,r). If r = [, by Definition 7.3.2, 7 = 7. with ¢ € A(P(V?))
of type J(< l). By Lemma 7.3.1, and as K = Ng«(n) = G! in that lemma,

NP'H (T) = NGl(C).

J(<il)

If r < I, then by Definition 7.3.5, 7 = 7. where d € A(P(V!)) is of type
J(< 1) with 8(d) = (¢, ) with ¢ € A(P(VT™)) being of type J(< r) as in Lemma
7.3.43,and ¢ € A(P(V*")) of type J' = {j —r | j € J(< |)}. By Lemma
7.3.1, pr(z«) () = Nk(d). So by 7.3.4.3,

pr(x (T) = Ngr(c) X NG+(l-r) (C’)

<)

As ¢ is a chain of subspaces of type J' in A(P(V'™)), Ng+a-n(¢) = PO

In either case Np,(7) is the semi-direct product of U; by
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Np+t (1) % G2 = Ngr(c) x Ngra-n(c) x G™ 2.

J(<t)

Observe this is true even when r = [, as we may set ¢ to be the 0 chain when

r=I[.

As G' is transitive on Irr(V, r), we may assume 7. = 7 as in Lemma 7.2.3. Let
Np be defined as in that lemma and let ¢ € Irr(U}, 7.) correspond to ¢ € Irr(Np).
Observe that Ngr(c) < Np,(p), D acts on Ny where D = Ng+u-n(c) x G*%,
and Np,(yp) is the semi-direct product of U; by

Ngr(c) x Np(¢)-

(2) For v < r,let S%(V, J,r) consist of the set of members in 5*(V, J,7) labeled by
a normal chain ¢ of type J(< r) in P(VT) of non-singular rank 7’; That is, the
first non-degenerate member of ¢ has dimension 7. Observe S%(V, J,r) is non-
empty if and only if 7 € J(< r) and J(< ') C [r’/2]. As in Lemma 5.2.15.3,
¢ corresponds to (ci,c2), where c; is a chain of totally isotropic subspaces in
P(V™) of type J(< ), and ¢; is a normal chain in P(V"""") of type {j — 1’ |
j € Jand v < j <r}. Also from Lemma 5.2.15.3,

NGT(C) = NG"’ (Cl) X NG(r—r’) (Cz) with NG"’ (61) = P}E<r,).

Similarly let $Z(V, J, ) be the set of members of S*(V, J, r) labeled by a singular
normal chain ¢ of type J(< r), that is ¢ consists of totally isotropic subspaces.
Observe S*(V, J,r) is non-empty if and only if J(< r) C [r/2], in which case
Ngr(c) = Pj, :

(<r)’

To end this section, we prove the following technical lemma which is analogus to
Lemma 7.3.9 and will be used in section 9.2. Let J € J(I), r € J and ' € J(< 1).
Let V' = Z(UP72") where UPZ?" = Op(PR7).

Lemma 7.3.9. (1) There is a 1-1 correspondence

v:85V,J,r) = S*(V', J',r —1’)
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where J' = {j — ' | ¥ < j € J}, such that for T € SZ(V, J, 1),

N, Pr/Uy (T) J(<r') X N, "-2"' /Uﬂ-z"' (7(T))

(2) Let T € SZ(V, J,7) and () = 7/. Then there is a 1-1 correspondence between
Irr(U, ) and In(U“‘zr 7'), such that if ¢ € Ir(U;,T) corresponds to ¢’ €
I(UP2, 7', then

NPJ/rjl ((p) J(<rl) X N n—zr’/Un..z,—l (QO )

(3) Letd >0 and p € I'(Z(G)). Let T and 7’ be as in part (2). Then

kd(PJ’ T, P) = Z Z kdl (P.}J(<r’)) pl)kdz (P}—Zr” T,: p2)

P1,P2 dy,d2
P1P2=P g4, 4 dy=d’

where d =d — (3) —r'(n —2r).

Proof. Part (1) can be proved by the same argument as in the proof of Lemma
6.3.14 by applying Remark 7.3.8. Part (2) follows easily from Remrk 7.3.8, part (1),
Lemma 7.2.2 and 7.2.3. As for part (3), observe that A € Irr(Py, 7, p) if and only if
A € Irr(Py, @, p) for some ¢ € Irr(U;, 7). So by Lemma 2.2.1,

kd(PJ; T)p) =kd(P_],Il'I'((I[,T),p) = Z kd(PJs(pap)'
p€lrr(U,7)/Np, (7)
However, by Lemma 7.2.4, each ¢ € Irr(U;, ) is extendable to Np,(¢). Therefore,
by Lemma 2.2.3 and the fact that ¢(1) = g"™=2),

ki(Ps, ¢, p) = ka-a,(Np, v, (), p)

where d; = r(n — 2l) + r and z is the exponent of ¢ in the p-part of [P;/Np,(p)|.
But Np, v, (¢) = Nk(¢) where K = Np,;y,(T) and ¢ corresponds to ¢ in the sense of
Lemma 7.2.3. Similar statement holds for k4, (P, ¢', p2). The rest of the proof
is then an easy application of part (1) and (2) as well as Lemma 2.2.5. We leave it

as an exercise.

O
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Chapter 8 The Reduction Theorems

In this chapter, G = GU,(q), n = 2m or 2m+ 1, I = [m]. Denote the power set A([)
of I by J.

8.1 General Discussion

Let A, B be sets. Recall a relation between A and B is just a subset R = R4 g of
A Xx B. For a € A, set

B(a) = {b € B| (a,b) € R}.

Similarly for b € B, set A()) = {a € A| (a,d) € R}.

Let A;,7 =1, 2,3, be sets. Again a relation among the A; is a subset R = R4, 4,4,
of Ay x A x A3. Fori = 1,2,3, let R; be a relation between A; and Ag, where
1<j<k<3andi#jk. Then R;, i = 1,2, 3, naturally define a relation R among
the A;, 2 = 1,2, 3, as follows:

R= {(al,az, a3) | for a.llz, (aj, ak) € Rq,} Q A1 X A2 X A3

where 1, j, k run over all the possibilities described in the preceeding paragraph. In
other words, a triple (a3, @z, a3) is in R if and only if any pair of coordinates have the

corresponding binary relation. For a; € A; and ax € Ag, we set
Ai(aj, a) = {a; € Ai | (a3, a5, ax) € B}.

Observe from the definition that A;(a;,ax) = 0 if (a;, ax) ¢ R;, and A;(aj, ar) =
Ai(a,-) n A,-(ak) if (a,-, ak) € R;.
Let C be the set of subsets C C I where either C =0 or

C:hi<hb<---<lgs21 (81)
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such that

LhzLb-4L2B-06L2>2...21;—1. (8.2)

Denote the sequence in (8.2) by 8C. We call C the set of convez sequences. Set
Oy =L and 8l; =1; —Il;_; for2 < i <s. Set &?l; =0l; —Ol;;; for 1 <i<<s—1.
Notice 8%l; > 0 for all i. Observe that if § # C € C, then 8C can be regarded as a
partition of [; with dl;, 1 < 7 < s, being the parts of 8C. Notice that as a partition,
O0C has s parts, i.e., [(0C) = |C]|.

Definition 8.1.1. Let C,C’ € C. We say C’ covers C, written as C < C’, if C' is
the disjoint union of C with {max(C")}.

Remark 8.1.2. (1) Each non-empty element C € C is uniquely determined by its
final member [, and the partition 8C F I, because for each 7, 1 < i < s,

L =35, 0l

Conversely given a positive integer k and a partition z: m; 2 mg > ... 2 my of
k,define C = (I <lp <--- <) by ly =3 ;_; m;. Then C € C and 8C = p.
In particular, the set of C € C whose final term is a given integer k is in 1-1

correspondence with the set of partitions of k.

(2) Each @ # C' € C covers a unique element in C, namely C'\{max(C")}. If
@ # C € C is represented as in (8.1), then by definition, C < C' = CU {l41} €
C if and only if l,4; < m and 0 < [y — I; < Ol,, that is if and only if
0 < ls41 — l; < min(m — [,, 8l,). Therefore, for each § # C € C,

{CecCciC<C}={Cu{ly+7r}]|0<r < min(m—1,08l)}.

8.2 First Reduction

Let T be the set of ordered pairs t = (,/) with 1 < I <l' <

We now apply the above discussion on relations among sets to the triple (J, C, T).
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Definition 8.2.1. (1) Let Rz r be the set of (J,£) € J x T such that

(1a) Ift = (I,1'), then [,I' € J;
(1b) thereisnoje Jwithl < j </l

(2) Let Rj,c be the set of (J,C) € J x C such that either (J,C) = (0,0),or C # 0
and representing C as in (8.1)
(2a) [, € J, but thereisno j € J with {; < 7 < l4; And
(2b) 6C C J. Thatis, 0l; € Jforall 1 < i< s.

(3) Let Rc,t be the set of (C,t) € C x T such that C # 0, and representing C as
in (8.1) and setting ¢t = (I, ')
(3a) I =1;; and
(3b) I, <.

(4) Set E = Rj ¢, to be the relation on J x C x T induced from the three binary

relations we just defined, and make E a graded set by letting |e|] = |J| for
e = (J,C,t) € E. We also define a length function on E by I(e) = |C].

We make a few observations.

Remark 8.2.2. (1) By definition, t € T(J) if and only if £ consists of two consec-
utive members of J. In particular T'(J) is non-empty if and only if J contains
at least two elements. Moreover T(J) has |J| —1 members. On the other hand,
J € J(¢) if and only if J contains both / and I’, and no elements in between.
In particular J(¢) is in 1-1 correspondence with A([m —U']) x A([l — 1]) via the

following map:
J — (Jo, Jl)

where Jo={j — V' |l <j € J} and J; = J(< I).
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If [C| =1 and C € C(t), then C = {l}. In this case, it can be deduced from
the definition of Ry ¢ that J € J(C) if and ouly if [ € J. Consequently, from
part (1) we have

J(C,t) = I(C) N I(t) = I(t).

Fort = (I,l') € T, if C' € C(t) with |C’'| > 2 and C < C’, then by checking the
conditions directly, C € C(t). Conversely, assume C € C(¢) is represented as
in (8.1) and C' = CU {l; + r}. Then by Remark 8.1.2 and Definition 8.2.1,
C’' € C(t) if and only if 0 < r < min(m — I,,8l,) and s + 7 < I/, and hence if
and only if 0 < r < min(l' — I, 8l,).

Assume C,C’ € C with |C] 2 1, C < C' and ¢ = (J,C',t) € E. Claim
e = (J,C,t) € E. Indeed, as ¢ € E, (J,t) € Ryr. In order to show e € E, we
must check that C € C(J,t). By part (3), C € C(t). Also C’' € C(J) implies
8C' C J. By hypothesis, C is obtained by deleting the maximal element of C’.
So 8C c 8C" C J. Therefore, (J,C) satisfies the conditions in the definition
of Ryc. That is C € C(J). Hence C € C(J) N C(t) = C(J,t). So the claim
holds.

Recall from section 2.2 that [n] = 0 when n < 0. Recall from section 2.3 that for

C € C, §(0C) counts the number of distinct elements in C regarded as a partition.

Lemma 8.2.3. Fort = (I,l') € T and C € C(t) represented as in (8.1), there is a

1-1 correspondence

6 =dcs: I(C,t) = A(m —1]) x A([02 — 1]) X - - - x A([B%e—1 — 1]) x A([Bls — 1])

J = (JO)J].)"'JJS)

where

Jo={j-VIjieJ(>1)}

Ji={j—8l,-+1|j€Jand6!,~+1<j<al,-}, 1<i<s—1,
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and
Js = J(< 8l,).
Moreover
|71 = | +68(8C) + 1. (8.3)
=0

Proof. Observe that if |C| = 1, then C = {{} and J(C,t) = J(¢t) by part (2) of
Remark 8.2.2. So the lemma follows from part (1) of the same remark, except we
have to check (8.3). Notice in this case §(8C) = 1. Therefore, |J| = |Jo| + |Jo| +2 as
J is the disjoint union of Jy, {[,!'}, and {7 + ! | j € Ji}.

In general, as C € C(t), {; = and [, < !'. By definition of Rj,c, J € J(C) if and
only if 9C C J and there is no j € J between [; and /5. By definition of Ry t, J € J(¢t)
if and only if [,!’ € J and there is no j € J between [l and I'. As J(C,t) =J(C)NJI(t),
we conclude that J € J(C,¢) if and only if

(1) 6Cu{l'} C J; and
(2) thereisnoje Jwithl<j<l.
That is the sequence
S0l <Oy <..00W=h=1<l

is a subset of any J € J(C,t) and breaks J\S into segments J, = J(< 8l,), J; = {j €
J Ol <j<Ol}forl1<i<s—1,and Jop=J(>U),with JN{l,l+1,...,1'} =0.
Each segment J;, 0 < i < s, can be any subset of [Oly — 1] or {Ol;4y + 1, Oliyy +
2,...,0; —1} or {I' +1,...,m}. Therefore,

¢: J'—*(jo,---,js)'—*(Jo1~--,Ja)

where J; is defined as in the hypothesis is the desired 1-1 correspondence.
Finally to count the number of elements of J, we observe that as 9l; =1 < !', J

is the disjoint union of 8C regarded as a set, {I'}, and J;, 0 < ¢ < s. Consequently,
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as OC contains §(8C) distinguished elements and |J;| = |J;|, we have |J| = 33, |Ji| +
é(aC) +1.
d

Remark 8.2.4. Let C € C with |C| > 1 and ¢t € T be as in Lemma 8.2.3. Let
C < C' = CU {4} € C. Assume (J,C',t) € E for some J. Then by part (4)
of Remark 8.2.2, (J,C,t) € E. Assume ¢¢c:(J) = (Jo, J1,---,Js) and ¢¢ o (J) =
(Jor J1s---1J5, Jey1). Then J; = J! for 0 < 2 < s — 1. This can be done by checking
directly with the definition in Lemma 8.2.3. Also by definition,

Js = J(< 0l,) S [0, — 1],
while
Jo={j—0lis1|j € JandOlsy; < j < Als} C [Ol, — Olyyr — 1]

and

Jop1 = J(< Olgy1) C [Olg4r — 1]
So Js, Ji, and J;, are related by

Jy={j ~ Ols+1 |j € Js(> Olss1)}
and

Tty = Jo(< Olgsr).

Toeache = (J,C,t) € Ewitht = ([,!') and C represented as in (8.1), we associate
a group P(e), an elementary abelian normal subgroup V'(e) of P(e), and an integer
d(e). Let ¢ = ¢¢;: be the map defined in Lemma 8.2.3 with ¢(J) = (Jo,...,Js)-
Recall from part (3b) of Definition 8.2.1 that [y <U'. Sodl; =1, —ls_; <I'—1I; and
consequently, J, = J(< 0l,) C [l — I, —1].
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Definition 8.2.5. (1) Define P(e) to be a group isomorphic to

F x P x PR x - x PR < IO )
where
no(e) =n =2, Jy(e) = Jo,
ni(e) =8%;, Ji(e)=J; forl<i<s—1,
ns(e) = — L1,
and:
(la) If I, < V', then Js(e) = J, U {8l,};

(1b)

(2) (2a)

(2b)

Ifl, =U, then Js(e) = J,.

If I, < I, then by (la), 8ls € Ju(e), so Py < Pi™® < G+, Set
Vie) = U;',:l"(e) . So as an abelian group, V(e) = My, r—,(Fy2). Also V(e)
is a normal subgroup of P}:’(:)(e), and hence of P(e). So V(e) becomes an
F,2 P(e)-module induced by conjugation, with all but one factors of P(e)
acting trivially on V(e). Observe that Pz?;)(e) is the semi-direct product

of V(e) by
K = PP x GO,

For g = (g1,92) € K and v € V(e), 9v = givg;'. So V(e) is a tensor
module for K as in Example 6.1.1.

Ifl, =0, let V(e) = 1, the trivial group, which of course affords the trivial
action by P(e). Observe in 1;1413l case. e,

e _ v,

P J.(e.) == P e ..
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(3) Define

w0=s(%)- ()

=1

Remark 8.2.6. (1) As an abelian group, V(e) depends only on (C,t). That is, if

(2)

@)

e; = (J;,C,t) e E,i=1,2, then V(e;) = V(ez). Also d(e) depends only on C.

Assume bothe = (J,C,t) e Eand &’ = (J,C',t) € E, with C < C' = CU{l541}-
By definition and by Remark 8.2.4, n;(e) = n;(e’) and Ji(e) = J;(¢’) for 0 < 7 <
s — 1. That is the ¢-th factor of P(e) is isomorphic to the i-th factor of P(e’)

for0<i<s—1.

Continue the assumption in part (2). As I, < l;41 < U/, by part (1a) and (2a)
of Definition 8.2.1, Js(e) = J(< 8l,) and V'(e) is non-trivial. Moreover Pz?;)(e)
is the semi-direct product of V'(e) by

K = Pifly) x G-

So we are now in the situation of Lemma 6.2.2.4 with P_}';’(:)(e), P_}*'((é‘(;lj,‘“_)l)),

G+l V(e), ls —ls—1, and I — I, playing the roles of H, Pf™, Ga, V, n;, and
no, respectively. Set r =l ; — ;. As C' € C(J,t), it follows from Definition
8.2.1 and Remark 8.2.2.3 that 0 < r € min(l’ — [,,ls — l;—1) and = € J, and
hence r € Js(e). Pick 7 € Irr(V'(e),r) as in Lemma 6.2.2.4. Then Ng(T) is
given there, with two possibilities depending on whether r = I'—[, or r < I' —[,,
or equivalently depending on loy; = I’ or lg4y < I'. If [;4; = U', then P(¢') is
defined by case (1b) of Definition 8.2.5. If l,; < I/, then P(€’) is defined by
case (la) of Definition 8.2.5. In both cases

Nic(r) 2 Py < P

By part (2), the first s factors of P(e) are isomorphic to the first s factors of
P(¢’). We conclude that Np,)(7) is the semi-direct product of V(e) by
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LR x PE® x PRa® x - .. x PI™iE x Ni(r) = P(e).

In other words, P(e’) can be embedded into P(e).

(4) In part (2), the g-height of |P(e)|/|P(€')||[V (e)] is d(e’) — d(e). Indeed, as the
first s factors of P(e) are isomorphic to the first s factors of P(e),

¢* = [P()l/IPE)IV(e)l = |PF i PI/|1PFes?) x Prrelld |V (e))-

But a parabolic subgroup of a general linear group contains a Sylow p-subgroup
of the general linear group, and the g-height of G** = G L. (F,2) is 2(3). So

z =2((") — (") — (") — (' = 1) (s — ls-1))-

By Definition 8.2.5, ns(e) = I' — l;_;. We need to be a little careful when
plugging in the formula for n,(e’) and ngs1(€e’). Recall that ¢ = (J,C’,t) and
C'={li,...,ls,ls+1}- That is C’ consists of s + 1 elements. So as the ng;(€)
appears in the last factor of P(€’), ns41(€’) =1’ —[;. As n4(€’) appears in the
second to last factor of P(e’), ns(€') = (s —ls-1) — (ls+1 —Is)- Applying Lemma

2.3.1, we obtain
T = 2((’3";5—1) — ((ls"la—l);(z.ﬂ—l—la)) )'

Then it can be checked directly from the definition of d(e) that d(e’) —d(e) = z.

Example 8.2.7. Let t = ({,I') € T and C € C(t) with |[C| = 1. Then C = {l},
and by Remark 8.2.2.2, e = (J,C,t) € E if and only if J € J(¢). So the set of
e € E with [(e) =1 is in natural 1-1 correspondence with Ry . Pick such an e € E.
By definition P(e) = L’}o‘(g x Pfi,- On the other hand, as (I, ') are consecutive
members of J, we may let ([,!') = (j;, ji+1) as in Lemma 7.1.2.2. Then the lemma
says a complement to Ujr) in Py is isomorphic to L'};é;' xP};’('e). Therefore, P(e) can
be identified as this subgroup of P; containing Z(G), in which case V' (e) is identified
with V([,l'). Recall from section 2.2 that Irr'(Ps, V(I,!')) denotes the set of 7 €
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Irr(P;) with Usery < ker(r) 2 Ujy- With this identification, Irt!(P(e), V(e)) =
It (P, V(I,U)). As |C| = 1, it is easy to see that d(e) = 0. So in particular
EX P, V(). p) = kj_d(e)(P(e), V(e),p) for d > 0 and p € Irr(Z(G)).

Lemma 8.2.8. For anye € E, P(e) can be embedded into G such that Z(G) < P(e).

Proof. Fix t = (I,I') € T. We prove the lemma by induction on |C| where e =
(J,C,t) € E. If |C| = 1, the lemma follows from the preceeding example. Assume
the lemma for all e = (J,C,¢t) with |[C| < s. If C' € C(t) with [C'| = s+ 1 and
e = (J,C',t) € E. Let C < C'. By Remark 8.2.24, ¢ = (J,C,t) € E. By induction
we may assume Z(G) < P(e) < G. Then by Remark 8.2.6.3, P(e’) can be embedded
as a complement to V(e) in the stabilizer in P(e) of a linear character 7 of V' (e).
As Z(G) is normal in G and stabilizes 7, Z(G) < P(¢’). That is, Z(G) < P(¢') <
P(e) < G. The lemma is proved.

|

Proposition 8.2.9. Let d > 0 and p € Ir(Z(G)). For each (C,t) € Rcr with C
represented as in (8.1) and t = (I,1),

D> DMk (Ple), Vie), p) = D> (“D)¥ky_ge(P(e),0).  (85)

e=(J,.C,t)eE e'=(J,C" t)eE
c=<C’

Proof. Denote the left-hand (right-hand) side of (8.5) by I'r (I'r). Recall from
section 2.2 that k}_,.,(P(e), V(e), p) counts the number of irreducible characters of
P(e) of g-height d — d(e) lying over p and a non-trivial character in Irr(V(e)). If
I, = U, then by part (2a) of Definition 8.2.1, V(e) =1 and Irr(V(e)) consists of the
trivial character. Therefore, k;_,.,(P(e), V(€), p) =0 for each e = (J,C,t) € E. We
conclude 'y = 0. Also if [; = I', then by Remark 8.2.2.3, there is no C’' € C(¢)
with C < C’. Therefore, I'r =0, too. So the proposition holds in this case. We now

assume [ < l'.
By Remark 8.2.2.3, the set of C' € C(t) with C < C’ is indexed by the set of r
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with 1 < 7 < min(dl,, I’ — ;). So

min(8l,,l'—{;)

Tr= > S (D) ke (P(€), p)-
r=L  &=(J,C',t)eE
C'=CU{l,+r}

By Remark 8.2.6.1, all the groups V(e) involved on the left-hand side of (8.5)
are isomorphic as abelian groups, and we denote V(e) by V. V = My, s, (Fy2)
as an abelian group. Recall from section 6.1 that each 7 € Irr(V) is assigned a
rank which is invariant under the action of P(e), and Irr(V,r) consists of the set
of rank r characters in Irr(V). Therefore, Irr!(V) is the disjoint union of Irr(V,r),
1 < 7 < min(dl,, " —1;), and each Irr(V, r) is a P(e)-set. Consequently,

min(alg ,l'—lg)

I'p= Z Z (1) kg _giey (P(e), Irr(V, 1), p).

r=1 e=(J,C,t)eE

We claim that for each 1 < r < min(8l,,l' —I,),

Y (kg (Pl Ix(Vir),0) = D> (=1)*kaaen(P(¢), p)- (8:6)
e=(J,.C,t)eE e=(J,C' t)eE
C'=Cu{ls+r}

Then the proposition follows by summing over all . So it remains to prove (8.6).
This is a direct application of Proposition 6.2.3, Lemma 2.2.5, 8.2.3 and Remark
8.2.4. To simplify notation and to make it easier for the readers to understand the
proof, we only prove (8.6) for s = 1. The general case can be proved by using the
same argument.

Ass=1,C={} with; =l and C’' = {I;,l} with 7 =l — [;. Recall { <!’ by
assumption.

Let ¢c, be as in Lemma 8.2.3. For e = (J,C,t) € E, assume ¢¢c(J) = (Jo, J1)-
SoJo={i—U]|jeJ>U)}and J; = J(< ). By definition, no(e) = n — 2/,
Jo(e) = Jo, ni(e) =1 and Ji(e) = JU{l} = J(< !) as Il < I'. Observe n;(e) does not
depend on J. We have
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P(e) = L3 x Pihg,

As V is normal in Pzﬁ{,}, by Lemma 2.2.5 we have

ki-de)(P(e), X, p) = Z Z ka, (LT 2”,91)kda—d(e)(P}Iﬁ{z},X, p2)92)-
dy,da P1,P2
di+da=d PLP2=p

Recall from Lemma 8.2.3 that |e] = |J| = |Jy| + |J1i| + 1 + §(8C), and ¢c, is
a 1-1 correspondence. So as the set of (J,C,t) € E (with (C,¢t) fixed) is in 1-1
correspondence with J(C, t), when e runs over all the possibilities, J; and J; run over
all the subsets of [m — '] and [l — 1]. Therefore, the left-hand side of (8.6) can be

written as

(—1)%@+1 N N o(dy, pr)n(d2 — d(e), p2) (8.7)
dy,da P1.02
dy+da=d P1P2=P
where
o(di, p1) = Z (—1)olkg, (L5, p1)
JoC[m-U]
and

n(d2 —d(e),p2) = Y (1), —ae) (P iy X 02)-
SiCli—1]

Recall that d(e) depends only on C, so it is a constant as C is fixed.

Now pick & = (J,C',t) € E. Assume ¢¢rs(J) = (J§, J{,J5). Then by Lemma
823, o={j—U|jeJU}Ji={j-r|jeJandr <j <!}, and J} = J(< ).
By definition, ng(e’) = n —2U, Jo(€') = Jg, ni(¢/) =1 —r, Ji(e') = J}, n2(e’) =U' — I,
Jo(¢) = J} if l; =1 and Jo(e') = J5U {r} if I, < I'. Observe n;(e’) does not depend
on J. Observe (as we did in general in Remark 8.2.6.2) that mg(e) = no(e’) and
Jo = Jj for e = (J,C, t). Also Ji, J| and J; are related as in Remark 8.2.4. We have

P = L’}c,)‘”' X Pj{'a—') X Pj’z(l'"‘)
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where J; = Jy(¢/). Again by Lemma 2.2.5 we have

~2l! [—r o
kia@(PE€), X, 0) = D D ka(L3, p0)kareaer(PECT x PEE, o).
dida PLP2 2
dy+dp=d P1P=P

As above, the right-hand side of (8.6) can be written as
(—1)%@* N N o/ (dr, pr)n (d2 — d(€'), p2) (8.8)

dl ,dz PlyP_?
dy +da=d P1P2=P

where
dd,m)= Y, (—)Wlkgy (L%, o)
JoCm-r]
and

- i 14 [—r L
7 (d2 — d(€), pa2) = Z Z (“D”‘HIJ"kdg—d(e')(P_-;;( ) « P}Z(l l),pz)-
JiC—r] Sz

Recall d(e’) depends only on C’, so it is a constant as C’ is fixed.
Clearly for any d; and p,,

O'(dl,Pl) = aJ(thl)'

Now if we can prove that for any d and p,
(—-1)%n(d, p) = (-1)°C ' (d ~ &', p) (8.9)

where d' = d(e') — d(e), then (8.7) is equal to (8.8), thus the claim is proved. So it
remains proved (8.9).

Recall V' = My _i(Fg2) as an abelian group. We identify V' with the module V' =
V1 ®V; in Proposition 6.2.3. Son; =, ny=0'—I,and r =l —1. Also H;, = P}tﬁ{z}
for each J; C [l — 1]. Recall 8C = {i} and 8C' = {I, 7}, so 6(8C) =46(8C") if =T
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and §(8C) =46(0C") — 1 if r < [. Also observe that by Lemma 2.3.1 we always have

() - (") =2((y) - (57 = &)~ e

that is d' in Proposition 6.2.3 coincides with d' in (8.9).

Assume 7 = l. So §(8C) = 6(8C"). If r = — I, that is if [, = I, then Jj = Jj.
In this case (8.9) follows from the first equation of Proposition 6.2.3, as J; = @ and
P}Z("') =1. Ifr <V —1 that is if [, < I, then J, = J, U {r}. In this case (8.9)
follows from the second equation of the proposition.

Assume r < [. So 6(8C) =6(0C’') - 1. If r =1’ — 1, (8.9) follows from the third
equation of the proposition. If r < I’ —{, (8.9) follows from the fourth equation of the

proposition. The proof is complete.
O

Corollary 8.2.10.
Z (—l)lelké—d(e) (P(e)r V(e)v P) = Z (_l)lelkg—d(e) (P(e)v V(e)7 ,0)
ecE ecE
I(e)=1 l(e)>2

Proof. Fix s > 1. As (8.5) holds for each |C| with |C| = s and ¢ € C(t), and as each
C' € C with |C’| = s + 1 covers a unique C € C by Remark 8.1.2.2, we obtain

D (CDEE) 4 (Ple). Vie)p) = Y (—1)Nkuaen(P(€), p)-

ecE eeE
l(e)=s l(e/)=s+1

Then taking the sum over all possible s > 1, we obtain
S (—1)Fkh_ gy (P V(e)yp) = 3 (—1)¥ kgeae) (P€), p)-
ecE 43 ]
I(e)>1 ()22

But for each € € E with I(¢/) > 2,

ki-ae)(P(€), p) = kg—d(e‘)(P (), V(e),p) + ké-d(e') (P(e'), V(€), p),
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It follows that

Z (_l)le[kclf—d(e)(P(e)a V(e)r P) = Z (—I)ICIkg—d(e)(P(e)r V(e)r p)'

ecE ecE
l(e)=1 l(e)=2

8.3 Second Reduction

We now move to the discussion of a relation on J x C x I where I = I' U {0}.
Definition 8.3.1. (1) Rjc remains as in Definition 8.2.1.

(2) Set Ry to be the set of (J,!) € J x I with [ = max(J).

(3) Set Rc to be the set of (C,!) € C x I with [ = min(C).

(4) Set F = Rj 1 and make F a graded set by letting |f| = |J| for f = (J,C, ).
We also define a length function on F by setting I(f) = |C|.

The following observations and lemmas are similar in nature to Remark 8.2.2 and

Lemma 8.3.3.

Remark 8.3.2. (1) Recall min(f) = max(@) = 0. By definition, if f = (J,C,l) €
F, then either f = (0,0,0) or both J and C are non-empty. If f # (0,0,0),
then f € F if and only if max(J) = min(C) = and 0C C J, as condition (2a)
in Definition 8.2.1 is automatically satisfied when max(J) = [.

(2) Assume C € C(l) with |C| = 1. Then C = {l}. In this case,

J(C, 1) =IC)NI(W) =I() = {J € T | max(J) = 1}.

B)IfC,C'eCwithC <C',|C|21,and f' = (J,C", 1) €F, then f = (J,C,l) €
F. To show f € F, we have to check C € C(J,!). As in part (4) of Remark
8.2.2, C € C(J). | = min(C") since C' € C(!). But min(C) = min(C’), given
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that C is obtained by deleting max(C’) and the fact that [C'| = |C|+1 > 2.
So { = min(C). That is, C € C(l). It follows that C € C(J, ).

(4) C(J) is the disjoint union of C(J,max(J)) and C(J,t), t € T(J). Indeed,
C(J, max(J)) and C(J,t) are disjoint with each other as the minimal members
of the convex sequences from different sets are different. On the other hand, if
C € C(J) with min(C) = [, then either [ = max(J) so that C € C(J,!), or there
is a unique t = ([, /') € T(J) whose minimal member is [, in which case it can be

checked from the definition that C € C(t) and hence C € C(J,t) = C(J)NC(¢).

Lemma 8.3.3. For l € I and C € C(l) represented as in (8.1), there is a 1-1

correspondence

¢ =dcy: I(C,1) = A([8%h — 1]) x - - x A([0%Ls—1 — 1]) x A((0, - 1])

I (1,3 ds)
where
Ji={j-0lin|j€JandBliy, <j<Ol},1<i<s—1,
and
Js = J(< 9ls).
Moreover,

Il = 2251 |3l + 6(8C).

=1

Notice if |C| = 1, then the lemma is an easy consequence of part (2) of the Remark
8.3.2.

Proof. The proof is similar to that of Lemma 8.2.3. From part (1) of Remark 8.3.2
we know that J € J(C,!) if and only if max(J) = and 8C C J. Thus dC breaks
J\OC into several segments J; = {jeJ|dipn<j<di}forl<i<s—1, and
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Jy = J(< 8l,), with J(> ) = 0. Each segment J;, 1 < i < s, can be any subset of
A([Ols — 1)) or {Oliy1 + 1,...,0!; — 1}. Therefore,

¢: Je(Jy, ..., )= (Joy--oy Js)

where J; is defined as in the hypothesis is the desired 1-1 correspondence.

To count the number of elements of J, we observe that J is the disjoint union
of OC regarded as a set, and J;, 1 < i < s. Consequently, as C contains §(8C)
distinguished elements and |J; = |J;|, we have |J| = 3, |Ji| + 6(8C).

a

Remark 8.3.4. Let C € Cand ! € I be as in Lemma 833. Let C < C' =
C U {lgt1} € C. Assume (J,C',l) € F for some J. Then by Remark 8.3.2.3,
(J,C,1l) € F. Assume ¢ci(J) = (J1,...,Js) and ¢ y(J) = (J},.--,J;, Jiy1)- Then
J;i = J{ for 1 < i < s — 1. This can be seen by checking directly with the definition
in Lemma 8.3.3. Also by definition,

Js = J(< 8l,)) C [0l, — 1],
while

! ={j —0ly41 | j € Jand Blyyy < j < Bl,} C [62C" — 1]

Jop1 = J(< Olss1) C [Ols41 — 1]
So Js, J;, and J;,, are related by
J.; = {.7 —als-f-l |.7 € Js(> als+1)}

and
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To each f € F, we associate a group P(f), a normal p-subgroup U(f) of P(f),
and an integer d(f). Notice f = (0, 0,0) is the only member in F with I(f) = 0. Set
P(f)=G,U(f)=1,and d(f) =0. Next let f = (J,C,l) e F with! € I and C as
in equation (8.1). Assume ¢(J) = (J1,...,J;) as in Lemma 8.3.3.

Definition 8.3.5. (1) Define P(f) to be a group isomorphic to

P < P < x B < B (a0
where

ni(f) =0, Ji(f)=J;for 1<i<s —1,
and

ns(f) =n — 2,1, J(f) = J, U {8} = J(< al,).

(2) Asmax(Jy(f)) = 0ls, P3E) < P < Gn2e-1. Set U(f) = U, 2. So U(f)
is a normal p-subgroup of PZ‘(%) and hence of P(f). Also set Z(f) = Z(U(f))
and V(f) = U(f)/Z(f).

(3) Define
=, (0 82l
an=25((5) - (%)
i=1
The following remarks are similar to Remark 8.2.6.

Remark 8.3.6. (1) U(f) depends only on (C,!). That is, if f; = (J;,C,l) € F,
i =1,2, then.U(f;) =2 U(f2). d(f) depends only on C.

(2) Assumeboth f = (J,C,l) e Fand f' = (J,C,l) € F, with C < C' = CU{l;11}.
By definition and by Remark 8.3.4, n;(f) = ni(f’) and Ji(f) = Ji(f') for
1 <7 < s—1. That is the ¢-th factor of P(f) is isomorphic to the i-th factor of

P(f').
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Continue the discussion in part (2). Set P(f) = P(f)/Z(f). Then by Lemma
7.1.2.3 (where we replace n, j,, by ns(f), 8l,, respectively, and observe n,(f) —
20l, =n—-2l,), PZ’(%) is a semi-direct product of V(f) by K = P}'(‘Zl‘;,.) x Gn—2s
The conjugation action makes V'(f) a tensor module for K. So we may apply the
discussion in section 6.2. Set r = [;;;_;,. Then as C’ is convex, 1 < r < 8l;. As
Is <lgy1 < m, 2r < n—2l,. Moreover r € 8C’ C J, so T € J,(f) = J(< 8l,).
So S*(V(f), Ju(f),r) C Ix(V(£),r)/P}L) is defined by Definition 6.3.2 (in
case 7 = 0l,) or Definition 6.3.6 (in case r < 9l;), and it is non-empty. As
2r < n—2l,, J(Sr) C[m—1L]. So by Remark 6.3.12.2, S*(V(f), J,(f),r)
consists of a single orbit. Let r € S**(V(f), Jy(f),r). By Remark 6.3.12.2, it

can be computed that

Ni(r) = Py x Prenly.

By part (2), the first s — 1 factors of P(f) are isomorphic to the first s — 1
factors of P(e’). Therefore, viewing 7 as a linear character of U(f), Np(p (1) is
the semi-direct product of U(f) by P(f’). That is P(f’) can be embedded into

P(f).

In part (2), the g-height of |P(f)|/|P(f)| is ¢®)~4). Indeed, by part (2),
@ = P(AOIIPENUE)| = 1B 1PEE" x PErasu(f)).

But a parabolic subgroup of a general unitary contains a Sylow p-subgroup of
the unitary group, and the g-height of G™ = GU,(F,) is (3). So

= ((n-éf)) — 2(n.(2f')) _ (n.+;(f/)) — (s — ls—1)2 —92 ((z,-z,_l)-z-(z,ﬂ_z,)).

By definition, ns(f) = n — 2l,_,. Again we need to be careful when plug-
ging in the formula for ns(f’) and ney1(f’). Recall f/ = (J,C', 1) and C' =
{li,...,ls,ls41} consisting of s + 1 elements. So as ns+1(f’) appears in the last
factor of P(f'), ng+1(f’) = n — 2l,. As ny(f') appears in the second to last
factor of P(f"), ns(f’) = (Is — ls—1) — (ls41 — ls)- Applying Lemma 2.3.1, we

obtain
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= 2((14—51—1) — ((l;—l:-l);(l..n,—l,))).

Then it can be checked directly from the definition of d(f) that d(f') —d(f) = z.

Example 8.3.7. Let [ € I and C € C(I) with |[C| = 1. Then C = {i}, and by part
(2) of Remark 8.3.2, f = (J,C,!) € F if and only if J € J(). By definition of P(f),
P(f) = Py and U(f) = U;. In particular Z(G) < P(f) < G. Also d(f) = 0. So in
this case Irr(Py, Uy, p) = Irt(P(f), U(f), p)- Consequently,

kg(Pr, Z(U1), p) = k3(P(f), Z(f), p) and
k3(Pr,Ui/Z(Th), p) = ky_g(s)(P(f), V() p)-

Observe there is a 1-1 correspondence between the set of @ ¢ J C I and the set of
f € F with [(f) =1, given by J — (J, {max(J)}, max(J)).

Lemma 8.3.8. Forany f € F, P(f) can be embedded into G such that Z(G) < P(f).

Proof. We prove the lemma by induction on |C| where f = (J,C,l) € F. If f =
(0,9,0), by definition P(f) = G so the statement is true. If f = (J,C,l) € F
with |C| = 1, then the lemma follows from the preceeding example. Assume the
lemma for all f = (J,C,!) with |C| < s. Pick C' € C(t) with |C'| = s + 1 and
= (J,C",l) e F. Let C < C’. By part (3) of Remark 8.3.2, f = (J,C,l) € F. By
induction we may assume Z(G) < P(f) < G. Then by Remark 8.3.6.3, P(f’) can be
embedded as a complement to U(f) in the stabilizer in P(f) of a linear character 7
of U(f)/Z(f) labeled by a singular normal chain in A(P(V™~2%s), where V"% is the
natural module for G*~%+ (assuming max(C) = [,). As Z(G) is normal and stabilizes

7, Z(G) < P(f"). That is Z(G) < P(f') < G. The lemma is proved.
a

Definition 8.3.9. Let f = (J,C,!) € F be as in Definition 8.3.5. By definition of

P(f), all but one factors act trivially on U (f) and hence on V(f) and Z(f). Moreover

V(f) is a unitary module for P}“((ff)) JU(f) as we studied in section 6.3. We define

§*(f) (resp. S™(f), §™(f), S™(f,r), S7*(f), ete.) to be S*(V(f), Ju(f)) (resp.

STV (), Js(£)), 8 (V(£), Ju(F)), S™(V(S), Je(f), 1), STV (£), Js(£)), ete.).
Similarly as in Remark 8.3.6.3,
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PLH U = PEQ V() 2 Py, x G,

G™%s acts trivially on Z(f), and Z(f) is a central module for Pf((féﬁ y as we studied in
section 7.3. So we define S*(f) (resp. S*(f,r), S3(f), etc.) to be S*(Z(f), J(< 8l,))
(resp. S*(Z(f), J(< Ol,),7), SF(Z(f), J(< Bls)), etc.)

Proposition 8.3.10. Let d > 0 and p € Irr(Z(G)). Fiz @ # C € C represented as
in (8.1) with [ = min(C), and let Fy be the set of f = (J,C,l) € F.

(1)
Z (—l)lflkcli—d(f) (P(f), Z(f)1 p) = Z (—l)lﬂké—d(f) (P(f)r Sz(f)v ,0)—
f€Fo fF€EFy
(2)
Z (_l)lﬂké—d(f) (P(f)s V(f)': ,0) = Z (_l)lﬂké—d(f) (P(f)i Su(f)r P)
feFo f€Fg
(3)
S DRy (P, S™(Fhp) = > ka—ay(P(f),p).
FeFy f'=(J,C" )eF
c=c’
(4)
> Oy (P UF )= Y. kacar(P(f),0) +
f=(J,C\l)eF f'=(éf,_<0éll)eF
> (D) (kaaeny(P(f), S™(£), ) + ka—at) (P(£), S*(£): p))-

f=(J,Cl)eF

Proof. We prove part (1). First assume s = |C| =1. As (C,1) is given, by Example
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8.3.7,

> (KL (P(f), Z2(F), ) = Y (-1)MEY(Py, Z(Th), p).

f=(J,Cl)EF JeJ()

Similarly

> (O (P, S () 0) = > (1) ka(Py, SH(Z(Wh), J), p).-
f=(J,Cl)eF JeJ(l)
Therefore, part (1) follows directly from Proposition 7.3.7.

For s > 2, each P(f) is a product of s — 1 parabolics of general linear groups
with a parabolic subgroup of a general unitary group. Ther proof of part (1) is an
application of Proposition 7.3.7 and Lemma 2.2.6. To simplify notation, we only
present a proof for the case s = 2. The same argument applies for the general case.

Assume C = {I,l'}. Let ¢¢c; be as in Lemma 8.3.3. Let f = (J,C,1) € F with
dci(J) = (J1, J2)- So |J| = |J1| + |Jo| +6(8C). Observe that ni(f) =1— (' — 1) and
n2(f) = n — 2l do not depend on J. By definition

P(f)= P s prdt
As (C,1) is fixed, the set of (J,C,!) € F is in 1-1 correspondence with J(C,[), which
is in 1-1 correspondence with A([l — (I’ — 1) — 1]) x A([l - 1]) via ¢c;.

Recall that the Z(f) are isomorphic as abelian groups for all f = (J,C,l) € F,
which we may record as Z, and the first factor P};"‘(f ) acts trivially on Z. Finally

by Proposition 7.3.7 (where the sum is taken over all J € J(I' — ) = {J | max(J) =
I —1}), for any d, p,

D COVERYPEE, 4 Zip) = Y (DY Ri(PRY, . 552, 2 U {l - 1}),p)
J2C[z] J2Clz]
where £ = I’ — [ — 1. Therefore, as ¢; is a bijection, and by definition
kY (PR 2, p) = ka(PrT, It (2), p),

part (1) follows from Lemma 2.2.6.
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The same proof a.pplids to part (2), as it is a direct application of Proposition
6.3.9 and Lemma 2.2.6. The argument in the proof of Proposition 8.2.9 can be used
to prove part (3), which is an application of Proposition 6.3.13, Lemma 2.2.5, 8.3.3
and Remark 8.3.4. Finally it remains to prove part (4).
For each f = (J,C,l) € F, as V(f) =U(f)/Z(f), we have

ki(P(£),U(£), p) = ka(P(£), Z(£), p) + kg (P(£), V(£), p)-

Summing over all f = (J,C,[) € F and applying part (1) and (2), we have

> VR (PELUE ) = Y (D) (kamain (P, S*(F), p)

f=(J.CHeF F=(J,C\l)eF

+ ka—acr) (P(f), S“(f), 0))-
(8.11)

On the other hand, by Definition 8.3.9 and 6.3.10,

ka(P(f), S*(f), p) = ka(P(f), 5°*(f), ) + ka(P(f), S™(f), p)-

Consequently,

> (WOkaan(P(F, S (o) = D (=D)ka_ain(P(£), S™(£), p)

f=(J.CleF F=(J,Cl)eF

+ > (~Dkaay(P(F), S™(£), p).

f=(JCH)eF
(8.12)

Therefore, part (4) follows by substituting (8.11) in (8.12) and applying part (3).
ad

Corollary 8.3.11. For each d > 0 and p € Irr(Z(G)),
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Z (— 1)”"‘3‘1 d(f)(P(f) U(f)p)= Z kg—d(f)(P(f) U(f).p) +

l(f)—l l(}})>2
> (D) kamaery (P(F), S™(F), ) + ka—atn)(P(£), 5%(£), p))-
feF
l(f)>1

Proof. This can be proved by the same argument as in the proof of Corollary 8.2.10.
For each f € F, set

J(f) = kd—d(f)(P(f)r Sﬂu(f)v ,0) + kd—d(f)(P(f)1 Sz(f)a p)'

Fix s > 1. As Proposition 8.3.10.4 holds for each |C| with |C] = s, and as each
C’ € C with |C'| = s + 1 covers a unique C € C by Remark 8.1.2.2, we obtain

S (DM g (P, U 0) = D (1) kaapy(P(f), 0) +

feF f'eF
(f)=s I(f)=s+1
> ()Hla(f).
feF

I(f)=s

Then taking the sum over all possible s > 1, we obtain

Z (DG _aery (P(F), U(f), p) = Z (=D ka_aen (P(f), p) +
l({f)>1 l(f;’gz

> (—)Ylo(f).

feF
l(f)>1

But for each f’ € F with I(f') > 2,

kd—d(f') (P(fl)v p) = kg—d(f’) (P(f,)’ U(f,), p) + ki—d(f’) (P(fl)’ U(f’)v p)v
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It follows that

> (DR gy (P, U 0) = D (DR gy (P(F), U(£), 0) +

ferF feF
I(f)=1 I(f)=2
> (—D)Ha(f).
feF
(nN=1

The proof is complete.
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Chapter 9 Completion of the Verification

9.1 Further Reduction

Let E’ be the set of e € E with [(e) > 2. Similarly let F' be the set of f € F with
I(f) 22. Set H=E'UF'. We define £ : H — H as follows and then show it is well

defined.

Definition 9.1.1. Let h € H. So either h = (J,C,t) € E/, or h = (J,C,!) € F'.
In either case, we assume C is represented as in equation (8.1). By hypothesis,

(k) =|C| =2 2.
(1) If h=f =(J,C,l) € F, then define
E(h) = (J',C,t) € E/, where J' = JU {,} and ¢ = (I, 1,).

If h=e=(J,C,t) € E with t = ({,!'), then by definition of E/, [ < [, < [’
Also as ' € J, I' < max(J).

(2) If I, < U, then define
E(h) = (J',C, '), where J' = J U {l,} and ¢ = (I,1,).

(3) If I, =V < max(J), then as I’ € J, there is a unique " € J with (I',l") € T(J).
Define

E(h) = (J',C,t), where J' = J\{l'} and ¢’ = ({,1").
(4) If I, = I = max(J), then define

&(h) = (J',C,1) € F, where J' = J\{l'}.
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We now verify that £ is a well defined.

In case (1), as { = min(C) = max(J), { =;, and there is no j € J between {; =
and l,. Hence (C,¢) € Rc,t and (J',C) € Ry ¢ since J' = JU {l,}. Also there is no
Jj € J' between [ and [,. Therefore, as [,l, € J', ¢’ € T(J'). Hence £(h) € E.

In case (2), as ({,!') € T(J), thereisno j € J between [ and I’. but [ <, <!
and {,l; € J' = JU {{,}, so there is no j € J' between [ and [,. Consequently,
(J'.t') € Ry 1, (J',C) € R3¢, and (C,t') € Rcr. Therefore, £(R) € E.

In case (3), as (L, V'), (V',1") € T(J), there is no j € J between [ and I, or between
I and I". As J' = J\{l'}, it follows that there is no j € J' between ! and {”. So
(i) e Rgras " € J. As|C| > 1,V =1, > I} = max(8C). So l' ¢ OC.
Consequently, 8C C J' = J\{l'} since C C J. As there is no j € J, and hence no
jeJ' Cc J,between l; =land I, =1, (J',C) € Rjc. Finally as t = ({,1") with

s =1 < 1", it follows that (C,t) € Rc,r. So £(h) € E.

In case (4), as there is no j € J between [ and !’ = max(J), and as J' = J\{/'},
it follows that [ = max(J’). t € T(C) implies | = min(C). Finally 8C C J with
max(0C) =1l < ', so 8C C J'. Therefore, by part (1) of Remark 8.3.2, £(h) € F.

Observe in all cases, I(§(h)) = |C| = 2, so £(h) € H. That is, € is well defined.

Proposition 9.1.2. (1) £ is a permutation on H of order 2 with |h| = [E(R)| £ 1
for h € H.

(2) If E is an abelian group and ¢ : H — E is a function with ¢(h) = p(£(h)) for
allh € H, then

> (~1)Mep(h) =0.
heH
Proof. Part (2) is a direct consequence of part (1) as the contribution of A and &(h)
in the alternating sum cancel with each other. As for part (1), it follows from the
definition of £ that |h| = [£(R)| £ 1. So &£(h) # h. Therefore, it suffices to check that
E())=hforall he H.
Let h = (J,C,1) be as in case (1) of Definition 9.1.1 with £(k) = (J’,C,t'). Then
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by construction, ¢’ = (I,1,) and [, = max(J’). So £(h) satisfies the conditions in case
(4). Consequently,
EE(R) = (I\{L}HC, 1) = (4,C1) = h.

If h = (J, C,t) satisfies the conditions in case (4), we can check £(§(h)) = h similarly.

Let h = (J,C, t) be as in case (2) of Definition 9.1.1 with £(h) = (J', C,t). Then
by construction, t' = (I,l,) and max(C) = [, < I’ < max(J'). So &(h) satisfies the
conditions in case (3). Now (I, ), (Is, ") € T(J’). So by definition

EEMR) = (I\{L}ELC (T)=(J,Ct)=h

If h = (J, C, t) satisfies the conditions in case (3), we can check £(£(h)) = h similarly.

The proof is complete.
d

Corollary 9.1.3. In Proposition 9.1.2, define ¢ : H — Z as follows. Let d > 0 and
p € Ir(Z(G)). Foree FE/, let

ole) = kg_d(e) (P(e),V(e),p).
For f e F, let
o(f) = kg_d(f) (P(),U(f)p)

Then @(&(h)) = @(h) for all h € H. In particular,

D (1) kg (P(e), V(e)0) + D _ (VMG s (P(f), U(F), p) = 0.

ecE’ feF
Proof. For e € E, let L(e) be a complement to V(e) in P(e) containing Z(G). For
f € F, let L(f) be a complement to U(f) in P(f) containing Z(G). So by definition
of ¢, o(h) = ki—qm)(L(R),p) for all h € H. To show p(€(Rh)) = ¢(h), it suffices to
show L(¢£(h)) = L(h) with d(£(h)) = d(h). Then the final remark in Corollary 9.1.3
follows from Proposition 9.1.2.2.

Let h = (J,C,l) € F’ be as in case (1) of Definition 9.1.1; then as in the proof

of Proposition 9.1.2, ' = £(h) = (J',C,t) € E satisfies the conditions in case (4).
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Recall the definition of d(k) from Definition 8.3.5. Observe d(k) depends only on C
as h = (J,C,[). Recall the definition of d(h’) from Definition 8.2.5. Similarly d(h’)
depends only on C where A’ = (J', C,t’). As the defining formulas for d(h) and d(h’)
are identical, d(h) = d(h’).

Represent C as in equation (8.1). Recall the definition of P(h) from Definition
8.3.5. Recall from Remark 8.3.6.3 that a complement to U(h) in Pz’((hh)) is isomorphic

to P}Zs,, x G* . So

_ ptm(h) +nq—1(h) at, 2,

Similarly as b’ = (J',C,¥') with J' = JU {l,} and ¢/ = (I, l,), P(h') is defined by case
(1b) in part (1) of Definition 8.2.5, while V(A') = 1 by part (2b) of the definition.
So L(h') = P(R') and

4 R’ s(h’
L(R) = L350 x Prag™) x -+ x Prat).

Observe for 1 < ¢ € s—1, ny(h) = 8%; = ni(R’) and J;(h) = J; = J! = J/(K') where J;
is defined in Lemma 8.3.3 while J] is defined in Lemma 8.2.3. Also ng(h') =n — 2,
as t' = (I,l;) and Jy(h') = J'(> l,) = 0; Finally n,(h') = Iy — l,_; = Ol, and
Ji(R') = J'(< 8ls) = J(< 8l,). Therefore,

h’ + l(h’) P al. ~—byg
L’;ggh,g x Proslt) = PHEs | x Gnthe,

Consequently, L(h) = L(h') when h € H satisfying the conditions in part (1) of
Definition 9.1.1.

The case when h € H satisfies the conditions in part (2) of Definition 9.1.1 can
be similarly handled. This completes the proof. a

Theorem 9.1.4. Let d >0 and p € [r(Z(G)). Then

E(_I)Ulki(PJ: Us, p) =+,
Jcr
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where

Ti= Y (=)ksan(P(f), S™(f). p)
F

€
(=1

and

o= 3 (~)“Mkaain (P(F), S(£). 0)-
fer
Nzt

Proof. If J =0, Py = G and Uy = 1, so k}(G, 1,p) = 0. Hence the sum on the left
hand side can be taken over all § # J C I.

For@# J={j1 <---<js} CI, by Lemma 7.1.2.1, equation (7.2) is a chain of
normal p-subgroups of P;. So Irr'(Uy) is the disjoint union of It (V' (5;, jiv1)), ¢ = 1,
and Irr*(U;,). Here V'(J;,ji41) is defined in Lemma 7.1.2.2. Certainly P; acts on
each of these subsets of Irr!(U;). So

s—1

ké(PJr UJ: P) = Z kcli(PJs V(jirji-é—l): P) + ké(PJv U}n p)'
i=1
But from Example 8.2.7,
IC;'(P_], V(jia j‘i-i-l)’ P) = ktli—d(e) (P(e)r V(e)1 p)
with e = (J, {7:}, (Gi, Ji+1)) € E. From Example 8.3.7,
ké(PJv U}'n p) = ké—d(f)(P(f)v U(f)7 p)

with f = (J,{Jjs},Js) € F.

Recall T(J) consists of the pairs which are consecutive members of J. Therefore,
the set of modules V'(j;, ji;1) is in 1-1 correspondence with T(J), which is in 1-1
correspondence with the set of f = (J,C,t) € E with J given and |C| = 1. So

ki(Ps,Us, p) = E k}-d(e) (P(e), V(e), p) + ké-d(f) (P(f), U(f)p)

e=(J,C,t)eE
l(e)=1
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where f = (J, {js},Js)- We have observed in Example 8.2.7 and 8.3.7 that the set of
e € E with [(e) =1 is in 1-1 correspondence with Rj T, and the set of f € F with
[(f) =1 is in 1-1 correspondence with the set of @ # J C I. So summing over all

possible J, we obtain

S (~)VKL(Pr, Us, p) = AL+ Aq

Jcr
where
A=) (—1)¥kS gy (Ple), V(e), p)
Ay
and
A=Y (DMK} _yry (P(F), U(F), p).

feF
l(f)=1

By Corollary 8.2.10,
A= Z (—l)lelkg—d(e) (P(C), V(e)a P)
(&2

By Corollary 8.3.11,

A, = Z (DG (P(£), U(£), p) + T1 + T2

fEF
l(£)>2

The theorem then follows from Corollary 9.1.3.
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9.2 A Dimension Argument

In order to complete the verification of DOC for G*, we will proceed by inducticn on
n € N. In this section, we prove some technical results which relate the representations
of certain subgroups of G* to the representations of certain subgroups of a unitary
group of lower dimension.

Recall from Chapter 8 that the definitions of J, C, I, and F depend on n (and
hence on m as n = 2m or 2m + 1). From now on we denote them by J*, C*, I"
F™, respectively, to distinguish corresponding sets defined for different n. Recall that
F™ = Rjncnn is a subset of J® x C™ x I". Observe that for n < n’, C* ¢ C" and
F™ C F™. On the other hand, observe from Definition 8.3.5 that P(f) for f € F*
also depends on n. So in order to avoid confusion,we write P*(f), U™(f), V*(f), and
Z™(f) for P(f), U(S), V(f), and Z(f), respectively, if necessary. So in particular
for f € F* c F¥ with n < '/, P*(f) and P™(f) are different groups. Recall from
Remark 8.3.6.1 that d(f) depends only on C for f = (J,C,!).

For r, s € [m], let

C*(s,r)={C e C*| |C| = s and min(8C) > r}
and
Crgs)y={CeC"||C|<s}.
Lemma 9.2.1. Define
6 =08(s,r): C*(s,7) = C*~27(L 5)
Cw—{l; —ir;1 <1< s}\{0}

where C is represented as in equation (8.1). Then 6 is a I-1 correspondence. Specif-

ically,
min(8C) > r if and only if |[0(C)| = s;

0C = {r} if and only if |§(C)| =0;
{r} € 6C if and only if 0 < |0(C)| < s.
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Proof. We must show first that 8 is well defined. Let C be as in the hypothesis. For

1 <7< s,set ll =1; —ir. Recall that as C is convex,
ll =3l1 2 6!2... ? 613 = l_., —l,_l.

Observe I ; > [} if and only if 8l;; > r. We need to discuss three cases.

Assume min(0C) > r, i.e., Ol = lg —l,_; > r. Then 8l; > r for all %, so as
we just observed, it follows that i{,, >l for1 < i< s—1land/ =0} —7r > 0.
Therefore, §(C) is a chain. Clearly 9l = 9l; — r for all i. So 4(C) is convex, and
20, =2(l; —st) < n—2s71,50 (C) € C* 27, As [6(C)| =, §(C) € C*27(< 5). So
in this case 8(C) € C*~27(< s) with |[6(C)| = s.

Assume min(8C) =r. Let j =min{i¢ | 8l; =7}. Then 1 < j <s. I[fj =1, then
8C = {r} and [; = ir for all i. By definition §(C) = @ € C*~27(< 5). So in this case
8(C) € C*~%7(< s) with |§(C)| =0.

If j > 1, then {r} € 8C. By our choice of j, and an earlier observation ! > I!_,
forz < 7, so

O<l< <l =U=-=l
By definition §(C) = {I},---,l;_,}. Againas Ol; =0l; —r,0l} > --- > dl_,. So
8(C) is convex. Finally as 2I7_, = 2] < n—2sr and {§(C)| =j — 1 < s, we conclude
8(C) € C*27(< s). So in this case §(C) € C*~27(< s) with 0 < |§(C)| < s.

In summary, 6 is well defined. Conversely, we define ¢ : C*~%7(g s5) — C"(s,1)
as follows. Let D € C*~27(K s).

If |D| =0, then D = 0. Define {(D) = {ir; 1 < i < s}. By definition (D) is a
chain. As the difference of the successive members of (D) is a constant, ¢ is convex.
As 2sr < n, {(D) € C*. As min({(D)) =r and |[((D)| = s, {(D) € C*(s, ).

If 0 < |D| < s, then D ={d; <:-- <d;} for some j < s. Define

(D)={di+r<da+2r<.---<dj+jr<dj+({F+1)r <--- <dj+sr}.

By definition {(D) is a convex sequence. Observe |((D)| =s. As D € C*27(K s),
0<di<dg <m—gsr. So

r <min({(D)) =d; +r < dj+sr < m.
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It follows that ¢ € C*(s,T).

Finally if |[D| = s, then D = {d; < --- < d,}, and we define {(D) = {d; +ir;1 <
i < s}. As in the second case, it is easy to see that {(D) € C*(s,r).

Therefore, ¢ is a well defined map from C*27(< s) to C*(s,r). It remains to
show ( is the inverse of 4.

Observe C € C"*(s,r) with min(8l,) if and only if |#(C)| = s, so checking with
the definitions directly shows that § and ( are inverses of each other in this case.

Observe C € C*(s,r) with 8C = {r} if and only if §(C) = 0. Also observe that
{r} € 8C if and only if 0 < |6(C)| < s. Again checking directly with these two cases
shows that 8 and ¢ are inverses to each other. So 4 is a 1-1 correspondence.

a

Remark 9.2.2. Observe if C"(s, ) is non-empty, say C € C"(s, ) is represented as
in (8.1), then as 9l; > r,

n>2m>2,=2% 7 0l; > 2sr.

Conversely, if n > 2sr, then {ir | 1 < i < s} € C*(s,r). So C"(s,r) is non-empty if

and only if n > 2sr.
Let
F(s,r)={f=(,C,l)eF*| reJand C € C*(s,7) }
and
Fr<s)={f=(JCleF|CeCo (L)}
Lemma 9.2.3. Define
¥ =7(s,7) : F*(s,7) = A([r — 1]) x F*~27(< s),

f=UCH— (")
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where J' = J(< 1), and f' =(J,8(C),l—r) with ' ={j—r|r<je€J}. Thenvy

is a 1-1 correspondence. Moreover,
d(f) =d(f)+2(s—-1) (;) +2r(lg—1 — (s = 1)r).

Here C is represented as in equation (8.1).

Proof. Fix f = (J,C,l) € F*(s,r) and set v(f) = (J”, f') with f' = (J,8(C),l —r).
By definition J” C [r — 1]. We need to verify f’ € F*~27(< s) in order to show v is
well defined. But §(C) € C*~%7(< s), so it remains to show f’ satisfies the conditions
in Definition 8.3.1. As f € F*, max(J) = [ = min(C). By definition of C*(s, 1),
r<l.

If | =r, then as [ = max(J), J' =0. As C € C*(s,r) with min(C) =1l =r, it
follows from the proof of Lemma 9.2.1 that C = {¢r;1 < ¢ < s} and 6(C) = 0. So
f'=(0,0,0) € F*~27(< s).

Assume | > r. As | = max(J), by definition of J’, | — r = max(J'). Also
| —r = min(4(C)). So it remains to show 8(4(C)) € J'. But 8(8(C)) = {8l; —r;1 <
i < s}\{0}. As f € F*, 8C C J. That is, each 8l; € J. Therefore, each non-zero
ol; —re J,ie, 8(0(C)) € J'. So v is well defined.

Assume v(f) = y(f) for some f = (J,C,]) € F*(s,r). So J' = J', J" = J",
8(C) =6(C),and I ~r =i —r. Sol =1I. Also

J=J"u{r}u{j+r|jeJ} (9.1)

and J can be similarly expressed. So J = J. Finally as 6 is a bijection, C = C. So"y
is injective.

Given f' = (J',C",l') € F*27(< 8) and J” C [r — 1], we set f = (J,C,!) where
J is defined by (9.1), C = ¢(C'), ¢ being the inverse of §, and [ = I' +r. We
show f € F*(s,r). As max(J') = I/ < m — sr, by (9.1) J is a subset of [m] and
max(J) = I. As C' € C*2o7(< s), by Lemma 9.2.1, C = ¢{(C") € F*(s,r) with
min(C) =l'+r=1. As8C'"e€ J',C ={z+r|z€dC'}CJ. So f € F. By
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definition of J, r € J. So f € F*(s,r). By construction, v(f) = (J”, f’). So v is
surjective. Hence < is a bijection.

To calculate d(f) — d(f’), notice by definition
s—1 i 2l'
an=23(5) - (%)
=1

and

a(f) = 22((32’) - (%)

But [; = I} +4r for all ¢ (I, Ol] are allowed to be 0 for this purpose). So 9l; = 9l +r
and 82l; = 8%l.. Finally by Lemma 2.3.1,

()= () )+

It follows that

s—1

d(f) —d(f)=2(s—1) (;) + 21'26[2 =2(s—1) (;) +2r(ls—1 — (s — D).

O

Remark 9.2.4. Assume f = (J,C,!l) — (J”, f') under < as in Lemma 9.2.3. Then
as J” = J(< r), the following statements are equivalent:

(i) There is no j € J between /2 and r;
(ii) There is no j € J” between r/2 and r.

Moreover, replacing n by n — r, we see that <y restricts to a 1-1 correspondence
from F*~"(s,7) to A([r — 1]) x F*~@s+Ur(< 5). That is, f € F*"(s,r) C F*(s,r) if
and only if f' € Fr—(s+lr(L s).

Proposition 9.2.5. Fizn € N, and 1 < r < m. Let d 2 0 and p € I'(Z(G)).
Define
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tdp = tndpsr: F(s,7) 2> Z

[ tap(f) = ka—ary(P™(f), SF*(f), p)

and
hd,p = hn.d.p,s,r : F"‘(z"“)"(g 3) - Z
kO_ , Pn—(23+1)r fl ’Un—(23+1)r ! ,0), if O <l " < s,
s hap(f) = d d(f)( () (f')p), if (f)
RO g (PP=Co¥Dr(f1), Zn=@s+ir (£1), 0 iFU(f") = 5.
Then

Aan F o)== D D (D (=1)Y%4 (5, p1) Alhag 0, F®7(< 9)),

PLP2  dyda  JC[r/2]
P1P2—P d1+d2=d, [

and
d'=d—2s(}) —r(n—(2s+1)r).

Here we regard F" as a graded set for all n € N where the rank of f is |[f| = |J]
for f = (J,C,1). Recall from section 5.3 that A(c4,, F*(s,7)) is the alternating sum

of ¢4, over F*(s, 7).

Proof. Let f = (J,C,l) € F*(s,r) with C € C™(s, ) represented as in (8.1). Let v
be as in Lemma 9.2.3, and (f) = (J”, f') with f' = (J',C’,l — r). By definition,
J" = J(< r). Let M* be the natural module for G**.

The proof consists of several steps.

(I) Set P"(f) = Q(f) x H(f), where

s—1
o -[I5z i 5 =23,
=1
Let L(f) be a complement in H(f) to U™(f). Recall from Definition 8.3.5 and
Remark 8.3.6.3 that n,(f) = n — 2l,_1, Jo(f) = J(< L), V*(f) = Moy, n—2,(F2),
and L(f) = P2, x G™2.
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(II) By Definition 8.3.9 (which depends on Definition 6.3.10),

min(9ls,n—~2l,)
St (f) =Sp(vr(f J(<al) = | SV, J(< 8L, T,

and SP*(V™(f), J(< 8ls), ') consists of a subset of Irr(V™(f))/H(f) which are labeled
bijectively by the G*~%s-orbits on the set of non-singular normal chains of type J(<
ol,) U {rN\{n — 2L} in P(M™2%+) of non-singular rank r (In particular these chains
contain subchains of totally isotropic subspaces of type J(< r)). If r > n — 21,
then there is no chain in P(M™ %) containing an r-dimensional subspace, hence
S™(f) = 0, and the contribution of f in A(t4,, F*(s,r)) is 0. From now on we
assume r < n — 2l,, or equivalently 2[; < n —r. So C € C* (s, r), or equivalently
f € F*"(s,7). By Remark 9.2.4, f € F*~"(s,r) if and only if f € Fr—(s+lr(L s).
So Pr—@s+1)r(f") is well defined. For the rest of the proof, set P(f) = P*(f) and
P(f') = pr—@s+lr(f).

(IIT) In (II), notice that there is a singular normal chain of type J(< r) in
P(M™=%s) only if J(< r) C [r/2]. Otherwise SP“(f) = @, and the contribution
of f is 0. So from now on assume J” = J(< 1) C [r/2].

(IV) Assume r = 9l,. Then by (II), S*(f) = S*(f,r) and it consists of a unique
member. In this case V(f) = M p_o,(Fpz) by (I). Let 7 = 7. € SF¥(f,r). Then
by Definition 6.3.10, either »r = n — 2[, and c is a singular normal chain of type
J(<1)in P(V7), or r < n — 2l and c is a non-singular normal chain of type J(< )
such that all but the final member of ¢ are totally isotropic, while the final member
is non-degenerate of dimension r. In either case, by Remark 6.3.12.3 (where c; is

forced to be 0),
Npip () = Py X G2,

(V) Assume r < 8l,. By Lemma 6.3.14, S?*(f,7’) is in 1-1 correspondence with
S™(V', J',r’ — ), where V' & Mp;,—rn—a1,—r(F) is a tensor module for G*@k-) x
G™2s-7 and J' is as in the above hypothesis. On the other hand, as r < 8l, =
min(0C), I(f') = |C'| = s by Lemma 9.2.1. Recall from Lemma 9.2.1, C' =
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{t,...,Il} with I} = l; —ir. So by the definition of P(f’) = P"~Zs+Ur(f") (as we
assumed in (II)), V(f’) is the restriction to

at, - —or
L(f') — P;;(<3!;) x G* (2s+1)r-24;

of a tensor module for

G+al§ x Gn—(2s+1)r—2l;

But 0l =0l —r and I/, = [, — sT. So
SHV', J v —1)=S*(f, v —7). (9.2)

Recall from the paragraph preceeding Proposition 6.3.9 that S*(f’,0) consists of
the trivial character of V' (f’). So taking the union of equatility (9.2) for all ' with
r < r < min(dls,n — 2l,), we deduce that S'*(f) is in 1-1 correspondence with
{1} U S*(f'). Also by Lemma 6.3.14, if 7 € S?*(f, ') — 7’ € S*(f',r’ —r), then

NL(f) (T) = P}u X NL(f/)(TJ).

(VI) Define
h:i ot Fn—(2s+1)r(< s) A
ha,o(f) if 0 <IU(f)<s,
Febg (=4 "
ka_arry(P(f), {1} U S*(f),p), HUf)=s.
We show

A(hd,p, F"_(23+1)r(< s)) = A(h&,p’ F"—(2’+1)"(< s))

To see this, it suffices to prove

S DR () = YD (DR (9.3)
flan—(2l+1)r flan-(Zl-l—l)r
l(f")=s I(f)=s

However, if [(f') = s, then by definition of h,
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han(F') = KO gy (PUE, VI, ) + Kby oy (PUF), VS, ).

Recall from section 2.2 that k3(P(f"), V(f'),p) = ks(P(f'),1,p). So for each C’' €
Cn—(2s+1)r with |C'| = s, by applying Proposition 8.3.10.2, we obtain

> (=) hg o (F) = > (=D R, (F)-
fr=(J",C" ) eF=Gas+tr fr=(J,C" )eEn-Gs e
Equation (9.3) then follows by summing over all C' € C*~(s+1" with |C'| = s.
(VII) We claim that

1ao(f) = D D ka(Pis, 1)k 5 (F) (9:4)

PL .PE dl ,dz
P1P2=P d1+da=d’

where d’ is defined in the statement of the proposition. Then by (II) and (III), when
we sum over all f € F*(s,r), only those f € F*~"(s,r) C F*(s,r) with J(< 1) C
[r/2] contribute to A(ng,, F*(s,7)), and consequently (J”, f') runs over all subsets in
A([r/2]) x Fr—@s+lr(L ). Also notice that |f| = |J”[ +|f'| + 1. So the proposition
follows by summing over all f and by (VI). Therefore, it remains to establish the
claim.

(VIII) Assume 8C = {r}. So by (I), P(f) = H(f) and L(f) = P}y X Gr—(@s+l)r
By (IV), S™(f) consists of one member, say 7. Then Np(s)(T) = Pj .,y x G*~ @+,

As H(f) splits over V(f) with V(f) abelian, by Lemma 2.2.3 and 2.2.4,

ka-a(r)(P(f), T, p) = ka (Q(f) X Nry(7), p)

such that d —d(f) —d' is the exponent of g in the p-part of |L(f)|/|Nrs)(7)|- But by
Lemma 9.2.1, C = {ir;1 < i < s}. It is easy to see that Q(f) = 1. So by Lemma
2.2.5,

Tap(F)= D D kar(Phupr)ka,(G* DT, py)

pPLP2  dy,d2
pLP2=pP dy+da=d’

But C = {ir;1 <i < s}, C' =0, so f = (0,0,0) and P(f') = G~ 2+ with
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d(f') =0. Also U(f’) =1 in this case. So

oo (1) = kg (GP=0+1T, ).
Finally, d(f) = 2(s — 1)() by Definition 8.3.5. So
d=d—-2s5(3) —203) - ("2) + ) + ("E) =d—25(]) —r(n — (25 + 1))

Therefore, the claim holds for this case.
(IX) Assume {r} C 8C. Again by (II), S™(f) consists of a unique member T,

and
Nipp(r) = Pjery X G2,
We claim
Q(f) x G = Q(f') x L(f"). (99
So

QUf) x Nigny(r) = gy x (QUY) x L(F)).

Again as H(f) splits over V(f) with V(f) abelian, so as Q(f’) x L(f’) is a com-
plement in P(f’) to U(f’), by Lemma 2.2.3, 2.2.4 and 2.2.5,

ka—d(f)(P(f)s T, p) = kar—a(s) (Q(F) X Ni(p)(7), p)
= kar-a() (Prer) X (Q(f') x L(f)), P)
= Z Z ka, (Pjo, p1)kdy-a(sy (QUSF') X L(f'), p2)

P1,P2 dy,d2
P1P2=P dy+dy=d’

such that d —d(f)—(d' —d(f’)) is the exponent of g in the p-part of |L(f)|/| Ny ()|
But Q(f’) x L(f’) is a complement to U(f’) in P(f’), Therefore,

kaay(P(F)mp) = D Y. ka(Pou, 01)k,_agsry (P(F), U, p2)
P12 dy,dy
pPrp2=p dy +do=d'

= Z E kay (P, pr) gy, 5, (1)

ALz - dydp
p1p2=p dy +da=d’
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As Ol, =, the exponent of ¢ in the p-part of |L(f)|/| N (7)| is

z=0%)+ (7N (@ + (TN =20 +rn -2 —1).
By Lemma 9.2.3,
d(f) — d(f") = 2(s = 1)() + 2r(ls_y — (s — 1)r).
So direct calculation shows that
& =d—z—(d(f) —d(f)) =d—2s(}) —r(n— (25 + 1)r)

as required in the proposition. Therefore, the claim in (VII) holds if we can establish
(9.5). And we do so now.

Recall {r} C 8C. So by Lemma 9.2.1, there is 1 < ¢ < s, such that dl; > r, and
Ol; = r or equivalently [; =Il; + (j — 2)r for j > i. Consequently, C’' = {l,1),...,[}}.
where I} = [; — jr. Recall 9l; = 0l; —r and 8%l; = %; for 1 < j < i — 1. Moreover,
&li=0fori<j<s—1 Alsorecal /={j—r|r<jeJ}.

Now by hypothesis, as n;(f) = 8%; =0 for i < j < s — 1, we have

_ p+n(f) +n;
Q) = PP x - x D,

On the other hand,

_ p+n(f) +ni-1(f)
Q(fl) - P-fl(f') X X PJi—l(},) :

But for 1 < j <i—1, n;(f) =8%; = 32{3 = n;(f’), and

Ji(f) = {z — Oljy1 | z € J and 8l;; < z < Ol;}
={z' - 0l;y, | ' € J' and Ol;4; < =’ < B}

= J(£).
That is, Q(f) = Q(f") x P};?f")(f ). Therefore, to establish (9.5), it suffices to show
PyesD x Gr2er = [(f). (9.6)

By definition,
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L(f) = P;;?Eaz;) x Gn—(2s+1)r)—2;
But recall 9l; = r for j > ¢. So
ni(f) = 8%l; =0l; — Oliyy =0l; — r =Bl

and

Ji(f) ={z — 8l;31 | £ € J and 8l;y, < z < BL;}
={' e J' |z’ < Ol}}
= J'(< al}).

Moreover, as [y =l; + (s —t)rand l; =; —ir, (n —2l, — ) = (n — (25 + 1)7 — 21}).
Therefore, (9.6) indeed holds, thus the claim in (VII) holds when {r} C 8C.

(X) Assume min(8C) > r. so [(f') = s by Lemma 9.2.1. By part (V), S**(f) is
in 1-1 correspondence with {1} U S*{f’). So to prove the claim in (VII), it suffices to
show that for each 7 — 7/,

kaay(P(F)imip) = D Y. kay(Pis, p1)kay-aisn(P(£), 7, p2) (9.7)

PLA  dy d;

PIP2‘=P'dl+d2-=‘4:‘
P1PE=P 4y + dy=d'

.7)

where d’ is as required. But argued as before,

ka(P(f), T, p) = ka-a(s)(Q(f) X Nir(s)(7), p)

where a(f) is the exponent of ¢ in |L(f)|/Nr)(7)|. Similar statement holds for f'.
But by (V),

NL(f) (T) = P;" X NL(fl) (Tl). (98)

Also by checking with the definitions as we did in (IX), we deduce Q(f) = Q(f’). So

Q(f) x Nps(T) = Phu x (Q(f') x Ny (7).
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Consequently,

ka—a(r)(P(f), T, p) = ka—a(r)—a(r) (Q(S) X Nr(py(7), p)
= ka—d(f)—a(r) (Pin X (Q(f') X Ny ('), p)
= ka-d(f)-a(p)+a(sn) (Pin X P(f), 7', p)
= > D ka(Pinpkamag(P(f), 7, p2)

ALL2 - d),dy
pPrp2=p dy+da=d’

where d' = d — a(f) — d(f) + a(f’) + d(f'). Therefore, (9.7) will hold if we can show
d’ is as required by the proposition. By (9.8), a(f) —a(f’) is the exponent of q in the
p-part of |[L(f)|/(|L(f)||P}u|). So as ls =, + sr and 8l; =8I, +,

of) —a(f) = 2 (azz,) N (n ; 213) s (62l§) _ (n —(2s 2 r— 211,) _ @

=2 (;) +2r(Bl, — )+ r(n — 2, — 1)
=2 (;) +r(n — 2ls_; — 3r).

Now as d(f) — d(f’) is given in Lemma 9.2.3, it is easy to check d’ is indeed as
required. Therefore, the claim in (VII) holds in this case.
This completes the proof of the proposition. a

Proposition 9.2.6. Fizn € N, and1 < s,r < m. Letd > 0 and p € I'(Z(G)).
Define

Mdp = Tndpsr - F(8,7) = Z

f = nd,p(f) = kd—d(f)(Pn(f)w S:(f)a P)

and

9dp = Gndp.s;r * Fr27(<s) > Z

ka—agn (P27 (£, Um2T(£),0), ifO<SU(S) <3,
kd-d(f')(Pn—zar(f,)r P); ifl(f') =s.

fl — ga'.p(f,) =
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Then

Aap F ) == 3 30 (S (~DYka(PF, 01)) AlGann F*27(< 5)),

PL,P2 dy,d2 JCr/2]
pLP2=p dy+da=d’

and
d=d—(2s—1)(}) —r(n —2sr).

Proof. The proof is analogous to the proof of Proposition 9.2.5 so the proof is omitted.
We do point out that the only difference is that each 7 € Irr(V(f)) is extendable to
Np(s) (1), while there is no such property for 7 € Irr(Z(f)). To resolve this problem,
in part (VIII)-(X) of the proof of Proposition 9.2.5, we may apply Lemma 7.3.9.3

instead of applying Lemma 2.2.3 and 2.2.4.
O

Lemma 9.2.7. For a fitedn and s with1 < s<m,
(1)

> (1) ka_ary (P™(£), S*(£), ) = Y A(thn.dpsrs F™(5,7));
(s >t

(2)

§ : (—1)If|kd-d(f) (Pn(f)7 Sm‘(f)w ,0) = § :A(“ﬂ.dyp,s-r’ Fn(sv 7‘))
feF® r>1
I(f)=s

Proof. This is straightforward as for each f € F*, S*(f) (resp. S™*(f)) is the disjoint
union of S?(f) (resp. S™(f)) for r > 1, so that for a fixed f € F® with I(f) = s, we

have
ka-air)(P™(£), S*(f): p) = 2211 Ka-a(n)(P™(£), SE(f)s P)

and
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ka—a(p)(P™(f), S™(£), P) = 2 o1 Ka—a(p) (P™(f), STA(f), P)-

Therefore, the lemma follows from the definition of 7, 45,5 and ¢ d,p,s,r-
a

Remark 9.2.8. Observe that gn g4, a0d A(gndp,sr F*27(< s)) are well defined
for r = 0. Moreover, observe that for each f € Fr~27(K s),

gn,d,p,s,r(f ) = gn—2sr.d,p,s,0(f )
So
A(gn.d,p.s,ry Fn—23r(< 3)) = A(gn—’ar,d,p,s,m F n-—2sr(< 3))

Similarly observe that hy, 4,5 and A(Rq g5, F*~27(< s)) are well defined for r = 0,
and for each f € F*~%7(< s),

hn,d,p,s,r(f ) = hn—Zsr,d,p,a,O(f )~
Hence

A(hn.d,p.s.ra Fn—(2’+1)r(< 3)) = A(hn—(2~9+1)r,d,p,s,07 Fn-(2s+l)r(< 3))

9.3 Completion of the Verification

In this section, G = GU,(q), n € N with n = 2m or 2m + 1. So I = [m]. Recall from
section 3.3 that in order to show DOC holds for G, we need to prove Proposition
3.3.6.2, that is,

—Elﬂ(#va), ifd( n ;
Z(—l)mki(PJ, Unp)= P (2)
e 0. otherwise.

(9.9)

Here the sum Y~ is taken over all partitions y - n with n(u) = d. Recall the definition
of n(y) from section 2.3. By Lemma 2.3.1.2, n(r) < (3), with equality holding if
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and only if z = (n), that is, if and only if () = 1. So in either case, the right-hand

side of (9.9) can be written as

- Z ﬂ(ﬂr ap)'
pn
n(p)=d
U()>2

So by Theorem 9.1.4, Proposition 3.3.6.2 is equivalent to the following:
Proposition 9.3.1. Letn € N.

> (D) kamainy (P(), S™(£), 8) + kaeainy (P™(F), S7(£),0)) = — D Blu,ap).
F b-n

fe H
(=1 ?((;:));—-g

Observe Proposition 9.3.1 follows directly from the next proposition by summing

over all s > 1:

Proposition 9.3.2. For a fited n and s with 1 < s <m,

(1)
D (D) kg (PP, S*()sp) = = D Bl ap);
1({523 : n(‘:s?—-d
l(p)=2s
(2)
3 (“D)kaan (PP(F), S™(f)0) == > Blu.a,).
l({gzs n(‘z;n=d
l(p)=2s+1

Then by Lemma 9.2.7, Proposition 9.3.2 follows from the following proposition

by summing over all 7 > 1.

Proposition 9.3.3. Fizn and1 < s, < m.
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(1) Let ngpsr be as in Proposition 9.2.6. Then

A(nn,d,p.s,rv Fn(s’ Ir)) = - Z .B(/-"v ap);
un

n(p)=d
l(p)=2s
min(u)=r

(2) Let tndp,sr be as in Proposition 9.2.5. Then

A(tndpsr Fr(s,7)) = — Z: B, a,).

un
n(p)=d
(p)=2s+1
min{u)=r

Before we prove Proposition 9.3.3, we prove the following corollary to Proposition
9.3.3. Actually Corollary 9.3.4 is proved only under the assumption that Proposition
9.3.3 holds at n. Then later as we prove Proposition 9.3.3 by induction on n, we can

assume the corollary is valid for all n’ < n.

Corollary 9.3.4. Fiz n and assume Proposition 9.3.3 for n. Then the following is

true for each 1 < s < m.

(1) Let g4p,s = Gn,dps0 be as in Proposition 9.2.6 with T =0. Then

AGap (S 8) = D Blp,ay). (9.10)
uFn

n(u)=d
l(p)<2s-1

(2) Let haps = hngpspo be as in Proposition 9.2.5 with r = 0. Then

Alhaps, FM(< ) = D Blp,ap). (9.11)
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Proof. Throughout the proof, set P(f) = P*(f) for f € F™.

As Proposition 9.3.3 holds for n, so do Proposition 9.3.1, 9.3.2, and 3.3.6.2.
Hence Main Theorem 1 and Theorem 3.3.5 hold for n. We prove the corollary by
induction on s. Recall from Definition 8.3.1 that if f = (J, C,l) € F*, then I(f) = |C]|
and [f] =[J].

Assume s = 1. Let f = (J,C,l) € F*(< 1). IfI(f) = 0, then f = (0,0,0) by
definition of F™. In this case P(f) = G, U(f) =1, and d(f) = 0 by Definition 8.3.5.
So the contribution to A = A(gq4,,s, F*(< s)) from f is ka(G, p). If I(f) = 1, then
by Remark 8.3.2.2, f = (J,{{},!) with @ # J C I and [ = max(J). In this case
it follows from Example 8.3.7 that P(f) = P;, U(f) = Ui, and d(f) = 0. So the
contribution to A from such an f is (—1)Y'ks(Py, p). Thus as the set of f € F™ with
I(f) = 1 consists of all such (J, {l},!) with J running over all non-empty subsets of
I, the left-hand side of equation (9.10) is equal to

ka(G,p) + (=M >~ ka(Pr,p)-
ecJCr

By Theorem 3.3.5, this is equal to 0 if d < (3), and B((n),q,) if d = (3). We
show this is equal to the right-hand side of (9.10). Ass =1, l(g) <2s—1=1, so
g = (n) and n(p) = (3). So the right-hand side of (9.10) is nonzero if and only if
d =n(g) = (3), in which case it is 3((n), a,). So part (1) holds when s = 1.

As for part (2), notice that for f € F®, hq,s(f) = ga,s(f) if I(f) < 1, while if
(=1

hap,s(f) = kg_ap)(P(£): Z(f), p)
= ka_a(ry(P(f), 0) — ki—acpy (P(), Z(f), p) (9.12)
= Ga,p.s(f) — kicay (P(f), Z(), P)-
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But by Proposition 9.3.2.1 and Proposition 8.3.10.1,

g= Y (-DELyn(P(F), Z(F.p) =~ > Blua,).

feF™ pFn
I(f=1 n(p)=d
{u)=2

Therefore, as part (1) holds for s = 1, by (9.12),

A(hap1, FN(< 1)) = AGap, FNE D)) —z = D Blu,ay).

pFn
n(p)=d
l(u)<2

So part (2) and hence the corollary is true when s = 1.
Assume the corollary for s’ < s. Observe for each f € F* with I(f) < s — 2,

Gaps(f) = hape-1(f)-
Also for each f € F*,
KO aip)(P(F), Z(F), 0) = Ky (P(F), UF), P) + Kby (PLE), V(£), p)-
We have

y = A(94,p,5 F"(< 8)) — A(ha,ps-1, F*(< (s — 1))
= > Dk an(P(Fo)+ D (V)KL y5(P(F), U(F), p)

fFEF™ feF™
I(f)=s I(f)=s—1
= Y (D (P(£), Z().p)
feF™
I(f)=s—1
= > (Okaan(P(Fp)— D (DKL 40P, V(F), p)-
fEF™ fEF™
I(f)=s I(f)=s—1

But for each f € F™, by Definition 6.3.10,

ka—a(ry(P(£), S*(f)s p) = ka—a(ry (P(f), S**(£), p) + ka—air)(P(f), S™(f), p)»
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so by part (2) and (3) of Proposition 8.3.10, we obtain

Z ()Y gy (P(F), V() 0) = Z (—DH ks (P(F), P)

fEF™ feF®
I(f)=s—1 i(f)=s
+ Y (DK (P(F), S™(£), p)-
fEF™
I(f)=s—1

So by Proposition 9.3.2.2,

v=— Y (-Dksian(Pf),S™()o)= D, Bwa,)
fer® pn
I(f)=s—1 n(u)=d
(p)=2s—1

By induction, A(hg,s-1, F*(< (s — 1))) is given by (9.11). Therefore, part (1) holds
for s.

Observe that for f € F*, hy,s(f) = gaps(f) if I(f) < s, while if I(f) = s, (9.12)
still holds. Consequently,

w = A(ha,pe FH(< 5)) = AlGap F(< 8)) = = D (=D)}_y) (P(£), Z(F), p)-
fEF®
I(f)=s

But by Proposition 9.3.2.1 and Proposition 8.3.10.1,
w=— Y (- yn(P(FZ(H0)= Y Blmas);
feF® pFn

I(f)=s n(p)=d
l(p)=28

Therefore, as part (1) holds for s,
Aha e FH(< 5)) = A(Gapa FHS 8)) +w =D Blp,ap)-
pEn
' n(p)=d

lw)<2s

So part (2) and hence the corollary is true for s. The proof is complete.
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Proof of Proposition 9.3.3. Recall n = 2m or 2m + 1. We prove the proposition by
induction on m, or equivalently by n. This breaks the proof into two steps, namely
the small case and the induction process.

Step 1: Swall case.

If m = 0, then [m] is empty, so the proposition is vacuously true.

Let m = 1. Thenn =2 or 3, and [m] = {1}. So s =r = 1. In this case if
f=(J],C)l) € FwithlI[(f) =1, thenl = 1. Also C = {1}, as | = min(C) and
|C] = 1. Then J = {1} as |l = max(J) and 8C C J. That is f = ({1}, {1},1). By
Example 8.3.7, P = P(f) is the Borel subgroup of G with U(f) being the unipotent
radical of P. Also d(f) = 0 by definition. We suppress the notation (f) and write U,
Z for U(f) and Z(f).

If n=2, then U = Z is elementary abelian of order q. It follows that V =U/Z =1
and S7¥(f) = 0. On the other hand, the only partitions of 2 are (2) and (12). So there
is no p 2 with I(z) = 3. Hence part (2) holds vacuously. As for part (1), observe
in this case S?(f) = Irr}(Z) and P is transitive on Irr'(Z). Let 7 € Irr'(Z). Then
Np(1) = Zx Z(G). As p does not divide |P|/|Np(7)|, by Lemma 2.2.2, the left-hand
side of part (1) becomes —kq(P, 7, p) = —k4(Np(7),T,p). By Lemma 2.2.5, p =7pis
the only character in Irr(Np(7)) lying over 7 € Irr(Z) and p € Irr(Z(G)). Moreover,
as both Z and Z(G) are abelian, ¢(1) = 1. Therefore, —kq(Np(7),7,p) = —1ifd =0
and 0 otherwise. On the other hand, the only x - 2 with two parts is u = (12), in
which case n(g) = 0, min(x) = 1, and B(p, a,) = 1. So the right-hand side is —1 if
d = 0 and 0 otherwise. Thus the proposition is true if n = 2.

If n = 3, then U is a special p-group with Z = F; and V = U/Z = F ;2. Moreover
P/U =2 Cp_; % Cg41. Observe in this case SP*(f) = Irr! (V') and P is transitive on
I (V). Let 7 € Irr'(V); then Np(1) = U x Z(G). Let P = P/Z; then Np(7) =
V x Z(G)-. As p does not divide |P|/|Np(T)|, by Lemma 2.2.2, the left-hand side of
part (2) becomes

_kd(Pr T, p) = —'kd(Pa T, p) = _kd(NP(T)’ T, p)°

By Lemma 2.2.5, ¢ = 7p is the only character in Irr(Np(7) lying over 7 € Irr(V)
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and p € Irr(Z(G)). Moreover, as both V' and Z(G) are abelian, ¢(1) = 1. Therefore,
—k4(Np(7),7,p) = —1 if d = 0 and 0 otherwise. On the other hand, the only p F 3
with {(u) = 3 is g = (13), in which case n(u) = 0, min(g) =1 and B(g,a,) = 1. So
the right-hand side is —1 if d =0 and 0 otherwise. So part (2) holds if n = 3.

Next observe S7(f) = Irt'(Z) and P is transitive on Irr'(Z). Pick 7 € Irr'(2).
By Lemma 7.2.2 there is a unique ¢ € Irr(U) lying over T with ¢(1) = ¢, and
¢ € Irr(P) lies over T if and only if it lies over ¢. Notice Np(¢p) = Np(r) = UH
with Z(G) < H = Cyy41 X Cyyy. Therefore,, as p does not divide |P|/|[Np(¢)|, the
left-hand side of part (1) becomes

""kd(P) T, p) = —kd(Pa ¢1 p) = _kd(NP(¢)) ¢) p)
But ¢ is extendable to Np(¢) by Lemma 7.2.4. So by Lemma 2.2.3,

—kd(NP(¢)a ¢’ p) = —kd-l(H7 p)1

which is —(¢ + 1) if d = 1 and 0 otherwise. Finally the only - 3 with [(u) =2 is
g = (21), in which case n(z) = 1, min(g) = 1 and B(k, a,) = ¢+1. Consequently, the
right-hand side of part (1) is equal to —(¢+ 1) if d = 1 and 0 otherwise. Therefore,
part (1) and hence the proposition holds when n = 3.

Step 2: The induction process.

Assume the proposition for dimension less than m € N, m > 2, with n = 2m or
2m + 1. Hence Proposition 9.3.1, 9.3.2 and Main Theorem 1 hold for dimension less
than n. Also Corollary 9.3.4 holds for dimension less than n.

Denote the left-hand side of part (1) by o. Then by Proposition 9.2.6,

oc=— z Z o'd”

PLA2  dydy
P1PI=P g, 4 do=d’

where d' = d — (25 — 1)(}) — r(n — 2sr) is as in Proposition 9.2.6,

o= 3 () ks (P )
JClr/?]
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and
o = A(gn.dz,pz,-?.r! Fn—2sr(< S))
By induction, Theorem 3.3.5 holds for r. So

B((r),ap), ifd1=(3);

0, otherwise.

o =

By induction, Corollary 9.3.4.1 holds for n — 2sr. So by Remark 9.2.8,

o' = A(gn-l‘!r.dz,m.s.oy Fn—ur(s 5)) = Z Bk, a,,,).

p(n—2sr)
n(p)=dz
l(n)<2s—-1

Therefore,

o= Z ﬂ((r)vaﬂl) Z ﬂ(ﬂ’am)

P1.:M -2
pxp'2=p ":;((:)=¢;:I.)
l(p)<2s-1

where d” = d' — () =d — 2s(}) — r(n — 2s7).

Recall from Example 2.3.5 that the set of 4 = (a]) Fn —2sr with [(z) < 2s—1
is in 1-1 correspondence with the set of ' - n with I(1') = 2s and min(y') = r such
tht if n(x) = d”, then n(y') = @’ +2s(}) +r(n — 2sr) =d via p > p' = (r**) +p. So
by Lemma 2.3.6,

g=-— E : IB(ﬂa aﬂ)'
un
n(p)=d

min(u)=r

l()=2s

Part (1) is proved.
Part (2) can be proved similarly. Denote the left-hand side of part (2) by o. Then
by Proposition 9.2.5,
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o= — § : E: a_lo,ll

1,92 dy,da
pPLP2=P dy+do=d’

where d’ = d — 25(}) — r(n — (25 + 1)r) is as in Proposition 9.2.5, ¢’ is as in the

preceeding case, and
0" = A(hndz 2,55 Fn-(23+1)r(< s))-

Again by induction, Corollary 9.3.4.2 holds for n — (2s + 1)r. So by Remark
9.2.8,

0" = A(hn-@st1)rdapest FE(<s)) = ) Br,ap).
p(n—(2s+1)r)
n(p)=dz
l(p)<2s
Therefore,

=— Z B((r), as,) E B, ap,)

5, o et
l(u)<2s

where &' =d' — (5) =d — (25 +1)(}) —r(n — (2s + 1)r).
Applying Lemma 2.3.6 and Example 2.3.5 once more, we have

g=— Z .B(l"r ap)‘
pn
n(p)=d

l(p)=2s+1

So part (2) is proved. This completes the proof.
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