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Abstract

This work concerns the question of when contractible 4-manifolds need 1-handles. In high- 

dimensions, eliminating handles whenever permitted by homotopy type has been a very 

fruitful approach. T he question addressed concerns the applicability o f these methods in 

low dimensions.

Specifically, we study when the interiors of compact, contractible 4-m anifolds have a 

handle-decomposition without 1-handles. An argument of Casson shows that the compact 

manifolds themselves ‘usually’ need 1-handles. This argument depends essentially on finite

ness of the handle-decomposition.

We show that any handle-decomposition without 1-handles must be o f a particularly 

nice form, which involves surgery along surfaces representing homology. We show that we 

have ‘Casson finiteness’, i.e., Casson’s argument can be used to show that such a handle- 

decomposition cannot exist, whenever there are embedded, disjoint surfaces satisfying a 

certain property. We then show that there are immersed surfaces satisfying this property. 

Finally, we show that the obstruction to cutting and pasting the surfaces to get embedded 

ones is non-trivial.

As a corollary to the methods, we give an example of an open manifold w ith  an infinite 

handle-decomposition without 1-handles that is not the interior of a compact manifold, and 

thus has no finite handle-decomposition.

A relative version o f this question is also considered. In this case, Donaldson’s theorem  

leads to obstructions to the existence of finite handle decomposition without 1 -handles.
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Chapter 1 Introduction

A fruitful approach in high-dimensional topology has been to simplify th e handle decomposi

tion o f a given manifold as much as possible. For instance, Smale’s proof of the h-cobordism  

theorem and the Poincare conjecture in high dimensions is along these lines. These methods 

don’t work so well in low dimensions. In the case of 3-manifolds, one has all the intricacies 

of Heegard theory.

On the other hand, for simply-connected 4-manifolds, one may ask whether one can at 

least eliminate 1-handles. The simple-connectivity means that there is  no obstruction to 

this from homotopy theory. In the closed case, there are no known obstructions. In several 

cases one does have a handle decomposition without 1-handles, for instance for non-singular 

complex hypersurfaces in CIP3 [1 0 ] [4]. We consider here the case o f contractible 4-manifolds.

A motivation for the results here is Poenaru’s program to prove the Poincare conjecture, 

which involves first eliminating the 1-handles o f A  x  I, where A  is a homotopy 4-ball. As 

part of this program, Poenaru conjectured that if the interior of a contractible 4-manifold 

(IV, d N ) has a handle decomposition without 1-handles, then so does (IV, d N ) itself. This 

is to be applied to A  x / ,  after showing that its interior does have a handle decomposition 

without 1-handles.

An argument of Casson [6 , page 253] shows that for a contractible manifold (IV, d N )  with 

boundary d N  that has, for instance, a residually finite fundamental group, we cannot have 

a handle decomposition with no 1-handles. This argument does not rule out the interior 

having a  handle decomposition without 1-handles. We study the applicability of this result 

to the interior of the manifold.

Casson’s result was based on partial positive solutions to the following algebraic conjec

ture [5, page 117] [7, page 403].
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C o n je c tu r e  (K erva ire  C o n jec tu re). Suppose one adds an equal number of generators

ol-l, . . . , a n and relations r i , . . . , r n to a non-trivial group G , then the group 

that one obtains is also non-trivial.

Casson showed that certain 4-manifolds (N , d N )  have no handle decompositions without

1-handles by showing that if they did, then 7Ti (d N )  violates the Kervaire conjecture.

T h e o r e m  (C a sso n ). I f  the contractible 4-m anifold (N , d N )  with boundary not a homotopy 

sphere has a handle decomposition without 1-handles, then tti (d N ) violates the Kervaire 

conjecture.

Proof. Since the manifold (N , d N )  is contractible, the number o f 2-handles is equal to the 

number o f 3-handles in a handle decomposition without 1 -handles. If we invert the handle 

decomposition, then 2-handles and 3-handles become 2-handles and 1-handles respectively. 

It follows that 7Ti (N )  is obtained from ~ i(d N )  by adding an equal number of generators and 

relations, as these correspond respectively to the 1-handles and 2 -handles of the inverted 

handle decomposition. Since N  is contractible, 7Ti (N )  is trivial, and hence -Ki (d N )  is either 

trivial or violates the Kervaire conjecture. □

Casson’s argument works to the extent that the Kervaire conjecture is known to be 

true. Casson originally applied it using a theorem of Gerstenhaber and Rothaus [3], which 

said that the Kervaire conjecture holds for subgroups of a compact Lie group. Subsequently, 

Rothaus [9] showed that the conjecture in fact holds for residually finite groups. Since resid

ual finiteness for all 3-manifold groups is implied by the geom etrisation conjecture, Casson’s 

argument works in particular for all manifolds satisfying the geometrisation conjecture. A  

simple argument (Proposition 1 .1  below) extends the class o f  groups for which the Kervaire 

conjecture is known further.

We shall study to what extent Casson’s theorem extends to a  statement about the interior 

of the manifold. We start with the following simple proposition extends the class of groups 

for which the Kervaire conjecture is known to be true. The m ethods of this proposition will
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also give us criteria under which the argument can be applied to a handle-decomposition of 

the interior.

P r o p o s it io n  1 .1 . I f  any non-trivial quotient Q  o f a group G  satisfies the Kervaire conjec

ture, then so does G.

Proof. Let <f> : G  -»  Q be the quotient map. Assume that Q satisfies the Kervaire conjecture. 

Suppose that G violates the Kervaire conjecture. Then we have generators a i , . . . ,  a n and 

relations such that <VrfTr"r°>> ^  ^be trivial group. Let 4> : G * <  a . \ , . . . , a n > —>■ Q* <  

a i , . . . , a n >  be the map extending j> by mapping to fit. This is clearly a surjection,

and induces a surjective map d>: 5 * 5 ° '..............-»  — — • But since the domain

of the surjection 6  is trivial, so is the codomain. But this means that — w .. is 

trivial, rind so Q  violates the Kervaire conjecture, a contradiction. □

C orollary  1 .2 . I f  a finitely generated group G  has a proper finite-index subgroup, then G 

satisfies the Kervaire conjecture.

Proof. This follows from the above proposition since finite groups satisfy the Kervaire con

jecture by the theorem of Gerstenhaber and Rothaus. □

Remark 1.3. The above corollary shows that the fundamental group o f a manifold satisfies 

the Kervaire conjecture as long the manifold has some non-trivial finite cover.

Suppose we do have a contractible 4-manifold (N ,d N )  w ith  a handle decomposition 

without 1 -handles of its interior. Since there m ay be infinitely m any handles, we cannot use 

Casson’s argument. However, we note that we can use Casson’s argument if we can show 

that

• (AT, d N )  has a (finite) handle decomposition without 1-handles.

• Some (IV', dN ')  has a  handle decomposition without 1-handles, where N ' is compact, 

contractible with tti(8 N ') =  tti(8N ).
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•  Some (N ', d N ')  has a handle decomposition without 1-handles, where N ' is compact, 

contractible and there is a surjection TT\(dN') -»  tti(dN )  (by the above proposition).

Thus, we can apply Casson’s argument if we show finiteness, or some weak form of 

finiteness such as the latter statements above.

We consider the level sets o f the handle decomposition, which are 3-manifolds. We see 

that in a certain ‘uniform’ sense, the limit of the fundamental groups o f the level sets tends 

to TTi(dN).

We then show that the handle decomposition can be assumed to be o f a canonical form. 

This canonical form involves surfaces representing the homology o f level sets. We show  

that if the surfaces are embedded, disjoint and o f a particular form, then we have ‘Casson 

finiteness’, i.e., we can conclude that the Kervaire conjecture is violated. We then show that 

we have surfaces that are in general im m erse d  and intersect that do satisfy the required 

conditions.

Thus the obstruction is to find embedded surfaces of this form where we have immersed 

surfaces. In the case of a finite handle-decomposition, such surfaces exist. We shall show that 

this obstruction, namely being able to obtain embedded, disjoint surfaces from the immersed 

ones, is non-trivial. More precisely, we do not have such embedded, disjoint surfaces in a 

neighbourhood of the attaching regions of the handles in our handle-decomposition.

We shall also construct an example of an open manifold with an infinite handle decom

position without 1-handles that is not the interior o f a compact manifold. This implies that 

the manifold has no finite handle decomposition (in particular no finite handle-decompostion 

without 1-handles).

We also consider a relative version of the same question. Namely, we take a partial 

handle-decomposition without 1-handles and ask when it can be extended to a handle- 

decomposition without 1-handles for the whole manifold. Donaldson’s  theorem leads to 

subtle obstructions in the finite case.
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Chapter 2 Properties of the handle 

decomposition

o
We assume henceforth, that we have a handle decomposition of the interior N  o f  (N , d N ),  a  

contractible four manifold w ith boundary a homology 3-sphere. This handle decomposition  

shall be regarded as coming from a Morse function, which we shall refer to as ‘tim e’, with 

words like ‘past’ and future’ having obvious meanings. The inverse images o f regular points 

are 3-manifolds, which we shall refer to as the ‘manifold at that tim e’.

Now let { K i ,d K t ) , i  €. N denote the 4-manifolds obtained by successively attaching 

handles to the zero handle (B 4, S 3), that is if t  : (N , d N ) —> R is the Morse function time, 

then (K i ,d K i ) =  f - 1((oo, ai]), with a* being points lying between pairs of critical values of 

the Morse function.

L em m a  2 .1 . d K i+ \ is obtained from d K i by one of the following:

• A 0-fram e surgery about a homologically trivial knot in d K i.

•  Cutting along a non-separating 2-sphere in d K i and capping off the result by attaching 

a 3-ball.

These correspond respectively to attaching 2-handles and 3 -handles to ( K ,  d K i) .

Proof. Since attaching 2-handles and 3-handles always correspond to surgery and cutting 

along 2 -spheres respectively, we merely have to show that the surgery is 0 -frame about a 

homologically trivial curve and the spheres are non-separating.

First note that since there are no 1-handles, H i(K i)  =  0 =  tt i(K i)V i. Further, each d K i
O

is connected, for, suppose it were not, since there are no 1-handles, ^ (IV  \  K i,  d K i)  =  0.
O O

Hence N \ K i  is not connected, so N  has more than one end, a contradiction. Thus the
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2 -spheres along which any d K i  is split have to be non-separating. This in  particular means 

that attaching a 3-handle decreases the rank of
O

Now, since N  is contractible, by a Mayer-Vietoris argument the inclusion maps induce 

surjections H ^ d K i)  -» H o(K i), hence rk {H z{d K i))  >  rk (H 2 (K i).  Since there are no 1-  

handles, each 2-handle increases the rank o f iT^C^r) by one, and that o f Ho (d K i)  by at most 

one. Also a 3-handle decreases the rank o f Ho (d K i)  by one and that o f H ^(K i) by at most 

one. Since for (B 4, S’3), the ranks are equal, it follows that the ranks are always equal, and 

that every surgery decreases the rank of H 2 (d K i) .  But this means that the surgery must 

be a zero-frame surgery about a homologically trivial curve. □

O

Since d N  has a neighbourhood o f the form d N  x  I, N  has an end of the form d N  x [0, oo). 

For i large enough, d K i  lies in this set, hence we have a map f i  : d K i —> d N  which is the 

composition o f the inclusion with the projection.

L em m a 2 .2 . The map f i  is a degree-one m ap and hence induces a surjection  <£,• between 

the fundam ental groups. Further, the image under f i  of a curve along which surgery is 

performed is homotopically trivial in d N .

O
Proof. We have am inclusion map i  : (K i ,d K i)  —> ( N ,d N  x [0 ,oo)).  This induces maps

O

between the long-exact sequences o f the pairs (K i, d K i)  and (N , d N  x [0 , oo)). From this we
O  O

see that f i  is degree-one iff i .  : H 4(K i, K i)  —>■ H 4(N , d N  x [0, oo)) is an isomorphism. This 

in turn follows as i  is an inclusion and degree maybe computed locally, or more formally 

by looking at exact sequences of triples (M , M  \  {x } , dM )  for manifolds M with boundary,
O

where x  G M .

Further, if a surgery is performed along a curve 7 , this means that a two handle is 

attached along the curve in the 4-manifold. Hence 7  bounds a  disk in d N  x  [0 , 0 0 ), which 

projects to a disk bounded by f i ( 7 ) in d N .  □

Remark 2.3. The maps <j>i and 4>i+i are related in a  natural way. To define the map <pi+i, 

take a generic curve 7  representing any given element of TTi(dKn-i). If d K i+ 1 is obtained
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from d K i  by splitting along a  sphere, then 7  is a curve in d K i,  and so we can simply take 

its image. On the other hand, if  a surgery was performed, then we may assume that 7  lies 

off the solid torus that has been attached, and hence lies in d K i,  so we can take its image 

as before. This map is well-defined by lemma 2.2.

We now make some key definitions. Suppose henceforth that we have a  sequence of

3-manifolds M i with degree-one maps onto d N  that satisfies the properties o f d K i stated  

above, i.e., in lemmata 2.1, 2 .2  and remark 2.3. We note that if we take a curve 7  in Mi and 

perform surgery on M i, then 7 , regarded as an element of the fundamental group of dN , has 

several ‘descendants’, i.e., curves homotopic to 7  in M i (though not in general homotopic 

to 7  after the surgery). On the other hand, if we split M i along a sphere, we may or may 

not be able to homotope 7  to be disjoint from the sphere. In the latter case, we say that 7  

does not persist.

D efin ition . 2 .1 . A curve 7  in M i is said to persist till M i+n if some descendant of 7  persists, 

i.e., we can homotope 7  in M i so that it is disjoint from all the future 2 -spheres that are 

attached while passing from M i to M i+i-

D efin itio n  2 .2 . A curve 7  in M i is said to die by M i+n if it is homotopically trivial in the

4-manifold obtained by attaching 2-handles to M i x  [0,1] along the curves in M* x {1} =  M i 

where surgeries are performed in the process of passing to M t+„, or equivalently, 7  is trivial 

in the group obtained by adding relations to 717 (M ,) corresponding to curves along which 

the surgery is performed.

It must be emphasised that the above does not mean that the curve is homotopically 

trivial in M i+n, or in any 0  <  j  <  n.

We now prove a key property of the sequence d K i.

L em m a 2 .4 . Given i, there is a uniform n such that any curve 7  in d K i that is in the 

kernel of 4>i that persists till dK i+n  dies by d K i+n.

Proof. The set d N  x  [0,0 0 ) has a proper Morse function, time, on it, as well as a foliation
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by compact leaves d N  x  {x } , and the d K / s  axe level sets o f time. We can find x  G [0 , oo) so  

that d N  x. {x }  is entirely after d K i, and n i so that d K i+ni is in turn entirely after d N  x  {x } .  

We then define n  by repeating this process once.

Now suppose the curve 7  in the kernel o f  fa persists till d K {+ni ■ This means that in. 

d N  x  [0,0 0 ), there is an annulus bounding 7  and a curve 7  in d K i+n so that the annulus 

is entirely in the present and future with respect to d K i.  Since 7  in d K i+ n , it is entirely in  

d N  x  [x, 0 0 ). Since it is in the kernel o f <f>i, it follows that it bounds a  disc in d N  x  [x, 0 0 ). 

This disc together with the above annulus ensure that 7  dies by d K i+n , as they bound  

together a disc entirely in the present and future w.r.t. d K i,  and 3-handles do not affect 

the fundamental group. □

Henceforth we also assume that the sequence Mi satisfies the conclusion of lemma 2.4. 

Indeed in our applications, we shall take M i to be d K i, with perhaps a modified handle 

decomposition.
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Chapter 3 Re-ordering of the handle 

decomposition

We show in this chapter that, after possibly changing the order o f attaching handles, any 

handle decomposition without 1-handles is of a particular form.
O

We first describe a procedure for attempting to construct a handle decomposition for N  

starting with a  partial handle decomposition, with boundary M i. In general, M i has non

trivial homology. It follows readily from the proof of lemma 2 .1  that is a torsion

free abelian group. The only way we can remove homology is by splitting along spheres. 

To this end, we take a  collection o f surfaces representing the homology, perform surgeries 

along curves in these surfaces so that they compress down to spheres, and then split along 

these spheres. B y  doing the surgeries, we have created new homology, and hence have to 

take new surfaces representing this homology and continue this procedure. In addition to 

this, we may need to perform other surgeries to get rid of the ‘homologically trivial portion’ 

of the kernel o f <Pi : M i —> d N .

The above construction may meet obstructions, since the surgeries have to be performed 

about curves that are homologically trivial as well as lie in the kernel of <f>i, hence it may 

not be always possible to perform enough of them to compress the surfaces to spheres. The 

construction terminates at some finite stage if at that stage all the homology is represented 

by spheres and no surgery off these surfaces is necessary.

Remark 3.1. A surface in M j+ „ ,  after isotopy, cam be assumed to intersect all the 2 -handles 

added between times i  and i + j i  in a  union of horizontal discs D 2 x { i}  c  D 2 x  [0 ,1 ]. 

On deleting these discs, one gets a  surface in M i+n n  M i with boundary on the loci o f the 

surgeries between times i  and i  +  n. Thus, the surface pulls back to a surface with boundary
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in Mi.

T h eo rem  3 .2 . A fter possibly changing the order o f attaching handles, any handle decom

position without 1-handles m ay be described as follows. We have a collection o f surfaces, 

with disjoint simple closed curves on them which shall be called seams, and embeddings from  

the surfaces to M i so that:

• The surfaces represent the homology of M i.

• The only intersections of the surfaces are along the seams.

• When compressed along the seams the surfaces become spheres.

• The seams are homologically trivial curves in M i and lie in the kernel of <fi.

•  The pull backs of surfaces at any future time, which are in general surfaces with bound

ary in M i, can only intersect the surfaces in M i either transversely at the seams or by 

having some boundary components along the seams.

We attach 2-handles along all the seams of M i, and possibly also along some curves that 

are completely off the surfaces in M i and have no intersection with any future surface. We 

then attach 3-handles along the sphere obtained by compressing the surface. Iterating this 

procedure gives us the handle decomposition.

We shall see that once we construct the surfaces, all of the properties follow automatically. 

First we need some preliminary results.

L em m a 3 .3 . Let a  : rvi(M i) —* H i (M i) be the Hurewicz map. Then k er(a ) surjects onto 

tti(8N ) under <fi.

Proof. We first show that ker(<j>i) surjects onto H\(M i) .  This follows as if 7rL(M i) is ex

pressed in terms of generators and relations, then we get its quotient Ti (dN ) by adding

some further relations. Since rvi(8N ) when abelianised is trivial, it follows that the ex

tra relations on abelianising must normally generate H\(Mi),  the abelianisation o f rri (Mi).
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These relations are in ker(tpi) by hypothesis, and as -Hi (Mi) is abelian they generate (as 

they normally generate) H \(M i). The claim follows.

The lemma now follows from a simple diagram chase. Given any element in x G (d N ) , 

we take some element y  G iti(M i) that maps to it under 4>i, which must exist as <t>i surjects. 

Now by the above we can find z  G ker(4>) with a ( z ) =  a(y), and y z -L is the required 

element in ker(a )  that maps to x  under <fii. □

Next, observe that spheres in some M i+j look like planar surfaces in M i, with boundary 

components being the loci of future surgeries. Further, since we have a surjection <j>i+j, 

we have curves in M i+j mapping to every element in ir i(d N ), and hence curves in the 

complement o f the planar surfaces mapping to every element. Moreover, by the above 

lemma, we have such curves that are homologically trivial in M i+j, and hence in M i as all 

relations added are trivial on abelianising.

Now, let n  be as in the conclusion of lemma 2.4, and pull back the spheres up to time i  

to get a collection of planar surfaces S . By the above, homologically-trivial curves disjoint 

from these surfaces map to every element of H i(dN ).

L em m a  3 .4 . i ,  : H i (M i \  S) -> H i(M i) is the zero map.

Proof. Suppose not. Then we have an element H i(M i\S ), which we regard as a curve in M i, 

that represents a non-trivial element of H i(M i). Using the above remarks and modifying 

by a homologically trivial element if necessary, we may assume that 7  G ker(4>i). But, by 

hypothesis 7  persists. Also 7  does not die as it represents a non-trivial element on abeliani- 

sation (i.e., on projecting to H \(M i)),  and all the relations are trivial on abelianisation (i.e., 

they project onto 0 in H^Mf)). This gives the required contradiction. □

We are now in a position to prove the theorem. The surfaces will be obtained from a 

sub collection o f the collection S  o f planar surfaces by ‘stitching together’ along the knots 

on which the boundaries of these lie. These knots shall be the seams o f the surfaces. It is 

clear by construction that we have all the desired properties as soon as we show that there
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are enough planar surfaces to be stitched together to  represent all the homology.

To see this, we consider the reduced homology exact-sequence of the pair (M i, M, \  E), 

and use the fact that M i \  E is connected, since M i+n is, as well as lemma 3.4. Thus, we 

have the exact sequence

 > H x(M i \  E) -+ H ^ M i)  -j. .Hr(Mi, Afc \  E) -*  H 0(M i \  E)

which gives the exact sequence

0  -»■ ^  (M i) -j. i l i(M i,  M i \  S ) ->  0

which together with an application of Alexander duality gives H \(M i)  =  Hi(M i ,  Mi \  E) =  

H 2(Ti). Further, as the isomorphisms H \ ( M )  =  H 2(M )  and H i(M i ,  M ,-\E) =  H 2(E), given 

respectively by Poincare and Alexander duality, are obtained by taking cup products with 

the fundamental class, the diagram

H 2(Mi ) -----------► H 2(E )

i 1
H d M i)   >■ H l (M i ,M i \  E)

commutes.

Thus, H 2(M {) 3 - H 2(T,) by the map induced by the inclusion o f E in M,-. Since ^ ( M )  

and i?2 (S ) have no torsion, the cap product induces perfect pairings H i(M i) x  H 2(M{) —>• Z 

and f?2 (S ) x  U 2 (E) —)■ Z. Thus the map iJ2 (S ) ->  H2(M i) induced by inclusion, which 

is the dual of the above isomorphism H 2(M i) ^  H 2(T,), is also an isomorphism, i.e., the 

above sub collection of surfaces in E carry all the homology of M ,.

Now take a basis for £T2 (E).  Each element of this basis can be looked at as an integral 

linear combination of the planar surfaces (as in cellular homology), with trivial boundary. 

We obtain a surface corresponding to each such homology class by taking copies of the 

planar surfaces, with the number and orientation determined by the coefficient. Since the
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homology classes axe cycles, these planar surfaces can be glued together at the boundaries 

to form closed, oriented, immersed surfaces. Without loss o f generality, we can assume these 

to be connected.

Remark 3.5. The surfaces representing the homology that is created by the surgeries come 

essentially from capping-off Seifert surfaces of the loci o f the surgeries, except that they  

might also have other boundary components along the seams that need to be capped off.
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Chapter 4 On Casson finiteness

We now assume that the handle decomposition is as in the conclusion o f  Theorem 3.2. We 

shall change our measures of time so that passing from M i to Mi-t-i consists of performing 

all the surgeries required to compress the surfaces, splitting along th e  surfaces, and also 

performing the necessary surgeries off the surface.

In M i, we have a collection of embedded surfaces representing all the homology of Mi- 

We see that we have Casson finiteness in a  special case.

T h eo rem  4 .1 . I f  for some M i, the surfaces are embedded and their fundamental groups 

map to the trivial group under <j>i, then ir i(d N ) violates the Kervaire conjecture.

Proof. Let k be the rank of H \{M i) and P j, 1 <  j  <  k be the fundamental groups of the 

surfaces. Since the surfaces are disjoint, tt1(A// ,)  is obtained by HNN extesions from the 

fundamental group G  of the complement o f the surfaces. Thus, if 1pj are the gluing maps, 

we have

tri{M i) =  (G , t i , . . . ,  t k; t j x t j 1 =  ipj(x)Vx e  P j)

Now, since P j's  map to the trivial group under <pi, and G  surjects onto ~ i(d N ), ifi(M i) 

surjects onto (7̂  (31V), f L, . . . ,  tn), the group obtained by adding k  generators to ir i(d N ). 

But, M i is obtained by using n 2-handles and n  — k 3-handles. Thus, as in  Casson’s theorem, 

TTi(Mi) is killed by adding n  — k  generators and n  relators. As in proposition 1.1, this implies 

that TTi(dN) is killed by adding n generators and n  relators. □

T h eo rem  4 .2 . There is a collection of immersed, not necessarily disjo in t surfaces, carried 

by E, whose fundamental groups map to the trivial group under

Proof. Observe that half the curves on the surface do map to homotopically trivial curves. 

Further, if the Siefert surfaces have groups that map to the trivial group, then compressing
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the surfaces along these, we obtain surfaces representing homology w ith trivial tti images. 

Thus, it suffices to show that we obtain this condition for all surfaces at some time in the 

future.

Thus, we look at the surgeries that need to be performed at some stage far out in the 

future. These are along curves that must have died between M i+n> and Mt+„, but may 

be non-trivial in the M j  in which they live. Here, we choose n'  so that any 2 -sphere after 

time i  +  n'  that bounds a 3-sphere does so after i, and then n  by applying the lemma to 

time i  +  tl'. We now use an analogue o f lemma 2.4 for 7r2 rather than Ki. Let 7  be one of 

the curves in M j  where the surgery was performed. Then it bounds a disc in the 2 -handle 

attached to it. Further, as it can be pulled back, say along an annulus, to time M i, and 

then dies by Mi+n, it bounds another disc consisting o f the annulus and the disc by which it 

dies. These discs together bound a 2 -sphere, which must bound a 3-ball if d N  is irreducible, 

or more generally after modifying by a sphere in a collar d N  x I  contained between M x+n' 

and M i+n.

Thus, we have a 2 -sphere which gives a trivial element of tt2  of the 4-manifold between 

times i  and i -j- m,for some m.  We shall call this manifold the collar. Thus, it must also 

be a trivial element in the homology o f the universal cover of this manifold. Thus, we have 

a finite number o f 3-handles (with multiplicity) whose boundary consists of this 2-handle 

together with a surface that intersects each 2 -handle algebraically 0  times in the cover.

We observe some basic facts. The boundary of a  3-handle consists of a planar surface in 

M i together with some discs attached along the seams, with the coefficient of a 2 -handle Ln 

the boundary being that of the seam in the planar surface. Thus, we may identify 2-handles 

with loci o f surgery and 3-handles w ith the planar surfaces. Further, the coefficient o f a 

2-handle vanishing in a 3-cycle is equivalent to the boundaries of the surfaces gluing together 

to close up at the corresponding surgery locus.

Thus, the above 3-handles give a  surface in M i w ith boundary the curve with which 

we started plus some curves along which surgery is performed by time i  +  n.  Further, as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

this is in fact a cycle in the universal cover, the surface lifts to one, with a single boundary 

component being a curve not surgered by time i +  n, in the universal cover of the collar.

As the fundamental group of the collar maps to tti(d N ),  the image o f the surface group 

in tti (d N )  is trivial.

Thus, after surgering along the curves up to the beginning of the collar, we do have 

the required Seifert surfaces to compress to get embedded surfaces with trivial 7Ti (dN) 

image. □

Next, we shall attem pt to eliminate intersections between the surfaces. To do this, we 

find appropriate Siefert surfaces along intersection loci and compress along these.

First, we make an observation that shall be used in the following. If two surfaces S i and 

S 2  intersect transversally in a family of curves, this may or may not bound a subsurface in 

S 2 - If it does not bound a surface, in S 2 , then we can connect the two sides o f a curve of 

intersection by an arc in So whose interior is disjoint from the curves of intersection, which 

gives a closed curve. This curve intersects S i exactly once, implying that both S i and this 

curve are non-trivial in homology, and in particular S i is in a homology class that gives 1 

upon evaluation with respect to a particular cohomology class.

Since, we have immersed surfaces o f the required form, the obstruction we encounter is 

in making these surfaces disjoint at some finite stage. N ote that for a finite decomposition, 

we do indeed have disjoint surfaces representing the homology after finitely many surgeries, 

since we in fact have a family of such spheres.

P r o p o s it io n  4 .3 . There is a 2-complex £  with intersections along double-curves, coming 

from  a handle-decomposition as above, where all the seams are trivial in homology, but which 

does not carry disjoint, embedded surfaces representing all of the homology.

Proof. For the first stage, take two surfaces of genus 2 , and let them intersect trasversely 

along two curves (which we shall call seams) that are disjoint and homologically independent 

in each surface. Next, take as Seifert surfaces for these curves once punctured surfaces of
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genus 2  intersecting in a similar manner, and glue their boundary to the abovementioned 

curves o f intersection. Repeat this process to obtain the complex.

At the first stage, we cannot have embedded, disjoint surfaces representing the homology 

as the cup product of the surfaces is non-trivial. As the surfaces are compact, we must 

terminate at some finite stage. We shall prove that if we can have disjoint surfaces at the 

stage k +  1 , then we do at stage k. This will suffice to give the contradiction.

Now, we know the complex cannot be embedded in the first stage. Suppose we did have 

disjoint embedded surface S i and So at stage fc-t-1- Since these form a  basis for the homology, 

they contain curves on them that are the seams at the first stage with, algerbraically non-zero 

multiplicity, i.e., the collection o f curves representing the seam is not homologically trivial 

in the intersection of the first stage with the surface. Further, some copy o f the first seam 

must bound a subsurface S' in each of the surfaces, for otherwise the surface contains a 

curve dual to the seam. For, the cup product o f such a dual curve w ith the homology class 

of the other surface is non-trivial, hence it must intersect the other surface, contradicting 

the hypothesis that the surfaces axe disjoint. Similarly, at the other seam we get surfaces 

S f.

By deleting the first stage surfaces and capping off the first stage seams by attaching 

discs, we get a complex exactly as before with the (j-i-l)th  stage having become the jth  stage. 

Further, the Sj and So now give disjoint, embedded surfaces representing the homology that 

are supported by stages up to k. This suffices as above to complete the induction argument.

It is easy to see that this complex can in fact be embedded in S 2 x S 2. Figure 4.1 shows 

a construction o f tori with one curve of intersection. Here we have used the notation of 

Kirby calculus, with the thickened curves being an unlink along each component of which 

0-frame surgery has been performed. It is easy to see that the same construction can give 

surfaces of genus 2 intersecting in 2 curves. Since the curves o f intersection are unknots, 

after surgery they bound spheres. Further, it is easy to see by cutting along these that we 

get S 2 x  S 2 after surgery as well. Repeating this process, we obtain our embedding.
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Thus we have an infinite handle-decomposition satisfying our hypothesis for which this

2 -complex is S . □
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Chapter 5 A wild example.

We shall construct an example o f an open, contractible 4-manifold that is not tam e, and 

that has a  handle-decomposition without 1-handles.

T h e o r e m  5 .1 . There is a proper handle-decomposition o f an open, contractible 4-m anifold  

N  such that N  is not the in terior of a compact 4-manifold. In particular N  does n o t have 

a fin ite handle-decomposition.

Proof. We shall take a variant o f the example in the last section. Namely, we take three 

surfaces o f genus 2 at each stage, starting with S2 x  S 2 x  S 2, and make each pair intersect 

in a single curve. Attach 2-handles along the seams and 3-handles along the surfaces as 

before.

Observe that the 3-manifold obtained at each stage is S 2 x  S 2 x  S 2. Thus, we may iterate 

this process to get N .  Further, the fundamental group o f the 3-manifold at any stage is 

the free group generated by the commutators of the generators o f the previous stage, since 

the curves dual to the intersection curves are the generators of the previous stage. This in 

particuar implies that the fundamental group at each stage injects into that of the previous 

stage.

Suppose N  is in fact tame. Then, we may use the results of the previous chapters. Now, 

by construction no curve dies as only trivial relations have been added. Thus every element 

in kerne I (di) must fail to persist by some uniform time. In particular, the image of the group 

after that time in the present (curves that persist beyond that time) must inject under (pi. 

But we know that it also surjects. Thus, wre must have an isomorphism.

Thus, there is a unique element mapping onto each element o f TTx(dN). Thus, this 

element must persist till infinity as we have a surjection at all times. On the other hand, 

since the limit of the lower central series o f the free group is trivial, no non-trivial element
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persists. This gives a  contradiction unless is trivial.

But there are non-trivial elements that do persist beyond any give time. As no element 

dies, we again get a contradiction.

□
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Chapter 6 Further obstructions from Gauge 

theory

To explore some of the subtleties that one might encounter in trying to construct a handle 

decomposition without 1-handles for a contractible manifold, given one for its interior, we 

consider a more general situation. We shall consider sequences of 3-manifolds Mi that begin 

with S 3. As before, we require that each manifold comes from the previous one by 0 -frame 

surgery about a homologically trivial curve or by splitting along a non-separating S 2 and 

capping off. Also, we require degree-one maps f i  to a common manifold N , related as before. 

We shall say that the sequence limits to JV if :any curve that persists dies’ as in lemma 2.4.

In this situation, our main question generalises to a ‘relative version,’ namely, given any 

such sequence {M t-}, with Mk an element in the sequence, is there a finite sequence that 

agrees up to Mk with the old sequence and whose final term is IV?

We shall show that there is an obstruction to completing certain sequences to finite 

sequences when N  =  S 3. I do not know whether there are infinite sequences limiting to N  

in this case.

Let ip denote the Poincare homology sphere. Observe that we cannot pass from this 

to S 3 by 0 -frame surgery about homologically trivial curves and capping-off non-separating 

spheres. For, if we could, if! would bound a manifold with H 2 =  ©jt[° q ], which is impossible 

as ip has Rochlin invariant 1 . On the other hand, for the same reason, ip cannot be part of  

any sequence o f the above form.

Using Donaldson’s theorem [1], we have a similar result for the connected sum ip # iP  

of ip with itself. The main part o f the proof o f this lemma was communicated to me by 

R. Gompf.
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L em m a  6 .1 . One cannot pass from  to S z by 0-frame surgery along homologically

trivial curves and capping off non-separating S 2 ’s.

Proof. If we did have such a sequence of surgeries, then bounds a  4-manifold M i  with

H 2 =  ©jt[° ol > whh  a half-basis formed by embedded spheres. Now glue this to a  manifold 

with form E$ 0  Eg which is bounded by to get M .

We can surger out the disjoint family of S 2ls from M  to get a 4-manifold with form 

Es © Eg and trivial H i-  This contradicts Donaldson’s theorem. □

We still do not have a sequence as claimed. For, Cassson’s argument shows that 

cannot be part of a sequence. To obtain such a sequence, we shall construct a manifold M  

that can be obtained by O-frame surgery on algebraically unlinked 2 -handles from each o f S'3 

and Thus, M  is part o f a sequence. On the other hand, if we had a sequence starting

at M  that terminated at S 3. then we would have one starting at which, contradicts

the above lemma.

To construct M , take a contractible 4-manifold K  that bounds By Freedman’s

theorem [2 ], this exists, and can moreover be smoothed after taking connected sums with  

sufficiently many copies o f S 2 x S 2. Take a handle decomposition o f M . This may include 1- 

handles, but these must be boundaries o f 2 -handles. Hence, by handle-slides, we can ensure 

that each 1-handle is, at the homological level, a boundary of a 2 -handle and is not part of 

the boundary of any other 2-handle. Replacing the 1-handle by a 2-handle does not change 

the boundary, and changes H 2(M ) to H 2{M ) © (©jt[° o ])• We do this dually with 3-handles 

too. Sliding 2-handles over the new ones, we can ensure that the attaching maps o f the

2 -handles having the sam e algebraic linking (and framing) structure as a disjoint union of 

Hopf links.

Now take M  obtained from S3 by attaching half the links, so that these are pairwise 

algebraically unlinked. T he manifold M  has the required properties.
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