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Abstract

The general formulation of quantum statistical mechanics hints at interesting gen­

eralizations of the usual Bose/Fermi framework in two spatial dimensions. Anyon 

statistics, which is essentially a continuous interpolation between Bose and Fermi 

statistics, is relevant to the Fractional Quantum Hall Effect in two-dimensional (i.e., 

thin layer) condensed matter systems. In addition, the possibility of non-abelian 

statistics, in which the multi-particle wavefunction transforms as a representation 

of a non-abelian group under the exchange of indistinguishable particles, has been 

explored. Spontaneously broken non-abelian gauge theories in (2 -f 1) dimensions 

often have stable topological defects, called non-abelian vortices, that experience 

non-abelian statistics. In addition, it has been suggested that degenerate quasihole 

multiplets in Quantum Hall systems also transform as non-abelian representations 

of the braid group under particle exchange. In this thesis, I explore the braiding 

properties of systems of two-cycle flux vortices in a residual S3 discrete gauge group. 

The individual vortices are uncharged, but multi-vortex states can have Cheshire 

charge. The uncharged sectors all have non-vanishing bosonic subspaces, as do the 

non-abelian charged trivial flux sectors. A kinetic Hamiltonian for vortices on a pe­

riodic lattice is constructed. There is a modification to the translational symmetry 

in the periodically identified direction for non-trivial Z2 charged sectors. The ground 

state energies for various three and four vortex sectors is numerically determined. 

Typically, the ground state is bosonic, with a gap separating it from a non-abelian 

subspace.
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Chapter 1 Introduction

Generalizations of Bose and Fermi statistics in 2 -f- 1 dimensions have been studied 

for many years. Most familiar is anyon statistics, in which the wave function acquires 

an arbitrary phase upon the interchange of two indistinguishable anyons [24]. Anyon 

statistics are exhibited in nature by the quasiparticles of the Fractional Quantum Hall 

Effect (FQHE) [21]. The behavior of many-anyon systems may be probed through 

Mean Field Theory[3] or exact numerical analysis of finite-size systems[10, 11].

This thesis is concerned with a broader generalization of quantum statistics, 

namely non-abelian statistics [16, 32, 8]. Specifically, we consider collections of non­

abelian vortices[4, 28, 25, 23], particles which are labeled with a quantum number 

called flux (the reason for this terminology will be made clear in Section 1.1) that 

takes its value in a non-abelian group. Non-abelian particles call for a generalized 

notion of indistinguishability. The flux associated with a particular particle in the 

many-body system depends on its history. There is at present no Mean Field Theory 

for many-body non-abelian systems, and even the problem of three bodies is not well 

understood[25].

In this chapter, we review the basic properties of non-abelian vortices and their 

interactions, most notably the holonomy interaction and Cheshire charge. We briefly 

discuss the general framework of quantum statistical mechanics, in particular braid 

statistics in 2 + 1 dimensions.

In Chapter 2, we discuss the algebraic properties of many-vortex systems. The 

model that is the basis for the calculations in this thesis is introduced, followed by 

the definition of a sector group. We then discuss the three- and four-vortex sectors 

of the model in some detail, followed by a generalization to n-vortex sectors.

In Chapter 3 , we introduce a lattice-gas model suitable for numerical studies of 

non-abelian systems. The ground state structure of three and four vortex systems on 

the lattice is discussed.
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Chapter 4 contains a summary and concluding remarks, as well as possible future 

directions for work in this field.

1.1 Non-abelian Vortices

Non-abelian vortices arise as topological defects in spontaneously broken non-abelian 

gauge theories in (2 + 1) dimensions. Consider a model with a scalar Higgs field Φ 

coupled to a non-abelian gauge field with gauge group G[4, 5]. With the hermitian 

generators Ta of G in the representation of the Higgs field and gauge coupling s, the 

gauge-covariant derivative operator is Dμ = ∂fi + îsA“Tc. The Lagrangian is

C = - + (DμΦ)'DfiΦ + F(Φ) (1.1)

containing kinetic terms for the gauge and Higgs fields and the invariant potential 

for the Higgs. In the Higgs phase, V(Φ) is minimized for a non-vanishing Higgs field, 

hence Φ acquires a vacuum expectation value (vev) (Φ) and the symmetry is broken 

to the symmetry group H of the Higgs vev. Due to the gauge symmetry, any element 

of G acting on a vev produces a vev, and any element of H acts trivially on a vev by 

definition, so the vacuum manifold is the coset space G∕ H.

We now look for time-independent finite-energy solutions to the field equations 

of Eqn. 1.1. The requirement that the energy be finite implies that the fields must 

approach the vacuum configuration at spatial infinity. Therefore, the gauge potentials 

A“ must approach a pure gauge and the Higgs field at infinity must take its values in 

the vacuum manifold. The field equation for Φ is DμΦ = 0, which can be integrated 

to yield

Φ(r') = a(r', r, C)Φ(r) (1.2)

where

a(r,, r, C) = Pe×p ^'s J aJ (1.3)

Here P denotes path-ordering, and C is a path from r to r'. Consider a circle of very
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large radius parameterized by an angle since the Higgs field is tovariastly constant, 

we have

{Φ(0))= α(*){Φ(0)) (1-4)

Sisgle-valuedness of the Higgs condensate requires that a(2n) ∈ H.

We can now determine the conditions under which stable topological defects exist. 

a(θ) is a map from Si to the vacuum manifold, so there are stable defects if the 

fundamental group πi(G∕H) is sos-trivial. Any path for which α(2ii) 6 H is closed 

in the vacuum manifold, and hence is an element of πι(G∕H). If G is not simply- 

connected, we consider the universal covering group G and the lift H of the unbroken 

gauge group into the covering group; then ii(G∕H) = π(G∕H). Two closed paths 

for which a(2π) are hi and ft2 are homotopy if and only if hi and /i2 axe in the same 

connected component of H ; therefore, ki(G∕H) = π0(H).

If H is a discrete group, every connected component of H consists of a single group 

element, so we can endow π⅛ with a group structure; π0(H) = H. To summarize, 

if G is spontaneously broken to a discrete group i∕, there will be topological defects 

characterized by a magnetic flux taking its value in H 1. A sos-abelian vortex is 

a topological defect in (2 + 1) dimensions associated with a sos-abelian discrete 

unbroken gauge group H.

Is the case where H is discrete, all of the gauge bosons pick up a mass of order eu,

where v sets the scale of the Higgs vev. For processes that take place at energies well

below v, we can take v to be infinite; the vortices are effectively poist-like, and there

are so long-range gauge fields. That does sot mean that there are so long-range

interactions between the vortices; we shall see in Sec. 1.1.2 that vortices interact

topologically through a sort of generalized Aharonov-Bohm interaction. *

'The identification of the group element a(2îr) with a magnetic flux follows from the abelian case 
G = I'll), in which case a(2ιr) = exp(ιeΦβ), where Φβ is the magnetic flux linked by the loop.
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1.1.1 Electric Charge

The defects discussed in the previous section can carry electric charge as well as 

magnetic flux. The electric charge of a dyon (a flux/charge composite) is specified 

by the transformation properties of the state under a global gauge transformation: a 

state with definite charge is associated with an irreducible representation of the global 

gauge group. In particular, a state with zero charge always transforms according to 

the trivial representation.

If the unbroken gauge group is non-abelian, in general the globally defined gauge 

group in the presence of a vortex is a subgroup of the local unbroken gauge group H 

[6, 1]. This can be seen as follows; consider a circle around the vortex, parameterized 

by an angle 9. At every 9 there is a subgroup H(9) C G that stabilizes the Higgs 

condensate at 0; all of the H(β) are isomorphic to the same abstract group H, but 

the embedding of H in G varies smoothly with θ 2 3. Let Sa(0) be a basis for the 

generators of S∕γ(0). Then

Sa(θ) = a(θ)Sa(0}a~1(9) (1.5)

For a transformation to be globally well defined, it is necessary for α(2τr) to com­

mute with Sa(O): therefore, the global gauge group consists of all elements of H that 

commute with the vortex flux α(2π∙), i.e., the global gauge group is the normalizer 3 

N(a(2π}) of the magnetic flux.

1.1.2 Vortex-Vortex Interactions

We now consider the problem of patching single vortices together into a multi-vortex 

configuration. This will involve establishing a number of conventions to uniquely 

specify the state of the multi-vortex system[4, 8].

Start with an isolated vortex. First, we select an arbitrary basepoint xo and a 

standard path C that encircles the vortex in a definite sense (cf. Fig. 1.1). The flux

2In other, words, H{θ) is a section of a G principle fiber bundle over Si.
3The normalizer of a group element is the set of all elements of the group that commute with the 

given element: N(a) = {h 6 H :ha — ah}.



φ

ο
Figure 1.1: A standard path to define the flux of an isolated vortex.

3

Figure 1.2: A set of standard paths.

of the enclosed vortex is

a(C, xo) = P exp (y A ■ dxj 6H (1.6)

Since the gauge connection is flat everywhere outside the vortex core, the flux linked 

by any loop that can be smoothly deformed to C without crossing the vortex is the 

same.

If there are multiple vortices, it is necessary to choose a set of standard paths 

that encircle the vortices in a definite order (Fig. 1.2). The total flux of the multi­

vortex configuration is specified by the product (in the group H) of the individual 

fluxes, in the order they are encircled. For example, the total flux in Fig. 1.2 is 

a(Cι,x0)a(C2,XQ)a(C3, xy The importance of assigning a definite order to the single­

particle fluxes in the multi-vortex confi{g.lΓatron is readily apparent if the group H is 

non-abelian.

The fact that the gauge connection is flat outside of curvature singularities at
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(a) (b)

Figure 1.3: (a) The vortices a and b before the exchange, (b) The paths a' and 0' 
deform to the correct paths after the exchange.

the vortex cores implies that the locations of the vortices must be excised from the 

space. Consider n vortices on a connected, oriented two-dimensional space Σ, asd let 

∑(n) be the space Σ with holes at the vortex positions. It is clear that our choice 

of ba-sep^nt asd standard paths on ∑(n) amounts to a homomorphism p from the 

fundamental group of ∑(n) to the group H[23]:

p : 7r1(Σ(s),x0) ∣→ H (1.7)

Is general, there will be a number of topologically inequivalent sets of standard 

paths to specify the individual vortex fluxes (and the total flux). This is the patching 

ambiguity. By prescribing a set of standard paths, we are fixing a convention to 

resolve this ambiguity; it is somewhat analogous to the procedure of fixing a gauge. 

Osce we choose a set of standard paths, we must continue to measure fluxes relative 

to this choice. This has an important physical consequence if the vortices are free to 

move os ∑(n), as we shall sow see.

In Fig. 1.3, a vortex whose flux is a £ H relative to the standard path a is about 

to trade places in a counterclockwise sense with a vortex whose flux is b relative to 

the path 0. In order to specify the particle fluxes after the exchange, it is necessary 

to construct paths that will deform to standard paths after the exchange, without 

crossing the core of asy vortex. These paths are labeled a' and 0'. Homotopically,



 

 

we see that

β' ~ a, a, ~ a ∣∫3q (1.S)

Hence we come to the conclusion that, after the exchange, the particle whose flux 

originally waa b now hss flua aba~ 1, which is distinct (müsss a and 6 commuee) . Tiis 

long range effect is eeraeed tha “l^c^ll^nc^I^^ tt ss essentially a non-abelian

variant of the Aharonov-Bohm effect4.

The holonomy interaction can be expressed in terms of the braid operator R: if 

we express the original state of Fig. 1.3(a) as |a,6), the braid operator performs a 

counterclockwise exchange:

R∣a,b) = ∣aba~1,a) (1-9)

Clearly, a clockwise exchange is achieved with the operator R~l. The total flux a 6 of 

the state is preserved by the braid operation.

A global gauge transformation h acts on a vortex flux by conjugation: a — hah~l. 

It may seem, then, that a flux should merely be labeled by a conjugacy class. This 

is not true, however; a b = hah~l ^ hbh~l, so vortices distinct in one gauge are 

distinct in every gauge. One may conclude that the conjugacy classes in H form 

degenerate multiplets.

1.1.3 Cheshire Charge

Non-abelian topological defects have a curious property; it is possible for them to 

carry electric charge that is nonlocalizable, i.e., it is not associated with a physical, 

gauge invariant charge density localized on the object. This sort of charge, which is 

called Cheshire charge, is a global, topological effect.

A simple example will suffice to illustrate the concept of Cheshire charge. Consider

an unbroken gauge group H = S3, and the two-vortex state |( 12), (23)). The vortices

are assumed to be pure fluxes, not dyons, so individually they carry no electric charge.

4It is distinguished from the original Aharonov-Bohm effect in that the holonomy interaction is 
classical, not intrinsically quantum mechanical.
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The total flux of this state is (321). The globally defined gauge group is the centralizer 

of (321) in S3 (c∕. Sec. 1.1.1), which is just the Z$ subgroup {e, (123), (321)}. Under a 

global gauge transformation by the element (123), the state transforms to |(23), (31)). 

The latter state is transformed to ∣(31),(12)) by a (123) gauge transformation. We 

may now combine these states into three states that axe invariant under the global 

gauge group {4 ~ exp(2Zπ-∕3))r

W = ⅛12)'<23)> + ∣(23), (31)) + ∣(31), (12))) (1.10)

|4) = ~^(I12))(23)) +<11(23), (31)) + *⅛),(12))) (1.11)

|c) = i-(L1∣(i2), 223)) + ^2∣2^3), (31)) + ≠∣(31), (12))) (1.12)

Observe that state |a) transforms according to the trivial representation of Zβ, and 

hence is uncharged, whereas states |6) and |c) transform as the nontrivial represen­

tations of Z3, and therefore carry electric charge. This charge is not localized on 

either or both of the particles, but is a global property of the two-vortex state; this 

is Cheshire charge.

1.2 Braid Statistics

Here, we briefly discuss the possible varieties of quantum statistics possible in two 

spatial dimensions[33].

The quantum statistics of indistinguishable particles can be expressed in a gen­

eral way as follows; consider n indistinguishable particles, moving on a manifold M 

(typically Rd, where d is the spatial dimension). If the particles cannot coincide 

(like fermions or hard-core bosons), the classical configuration space of the system is 

[Mn — Z^n], where Dn is the subspace of Mn where two or more particles have the 

same coordinates. In quantum mechanics, it is necessa^ to identify all configurations 

that differ by a permutation of the coordinates of Indistinguishable particles, so the
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configuration space is

Cn = [Mn - Dn]∕Sn, (1.13)

where Sn is the permutation group on n objects.

In the path integral formalism of quantum statistical mechanics, one sums over 

all histories cosnecting a given initial and final state (if we are calculating a thermal 

average, for example, the initial and final states are identified). If the configuration 

space Cn is not simply connected, the path integral decomposes into a sum of path 

integrals over disjoint sectors, corresponding to the homotopy classes of Cn. The 

terms is the sum corresponding to different homotopy classes seed sot be weighted 

equally, as long as overall unitarity is respected.

If ose defines a set of “exchange operators” that carry the final configuration of 

the system around a closed path in Cs, clearly the different homotopy sectors are 

mixed by the operators, and if the sectors are weighted differently, the amplitude is 

transformed. By considering applying two such exchanges in turn, it is clear that 

the exchange operators generate a unitary representation of the fundamental group 

7Γι(Cs). For M = Rd, d > 3, t1(C∏) — Sn, and exotic statistics are sot allowed.

However, for d — 2, τ∙i(Cπ) = f?s, the braid group os n strands. Bn is generated 

by (n — 1) braid generators σ,∙, which obey the Yasg-Baxter relations:

σia-j = o-jC-,, ∣i — j\ > 2 (1.14)

= σ,∙+iσ,∙c∙,∙+ι, 1 < i < n - 2 (1.15)

These are the only defining relations for Bn, which is as infinite, discrete, sos-abelias 

group. Unitary, nsesdimessiosal representations of Bn exist, is which each generator 

is represented by the same phase, <,∙ = etθ, 1 < i < n —1 (these are the only abelias 

representations consistent with the Yasg-Baxter relations). The phase θ is arbitrary, 

asd hesce interpolates between Bose asd Fermi statistics. Systems of particles that 

transform as a nsesdimessinnal representation of Bn with 6 ^ 0, t are called anyons; 

asyos statistics is knows to be relevant is certain two-dimensional Quantum Hall
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systems (the Fractional Quantum Hall Effect, FQHE).

Non-abelian vortices transform according to non-abelian representations of Bn. If 

one considers an arbitrary three-vortex state |a,6, c), along with two braid operators 

Ri, R2 that braid the first and second pair, respectively, it is easy to demonstrate 

that R]R2Ri = R2R1R2· For n particles, there are n — 1 braid operators H,∙, and 

all of the Yang-Baxter relations are easily verified. In systems with non-commuting 

vortices, multi-dimensional irreducible representations of Bn arise. These systems are 

said to obey non-abelian statistics.

As emphasized by Lo and Preskill[25], non-abelian vortices may be treated in the 

above general framework, if one extends the usual concept of “ineistinguishhbility.” 

Two vortices are considered indistinguishable if their fluxes lie in the same conjugacy 

class of H, and they are in the same representation of the normalizer of their respective 

fluxes5 {i.e, they have the same charge). In other words, vortices are indistinguishable 

if it is possible (through topological interactions with other vortices) for an exchange 

amplitude to interfere with a direct amplitude. Two vortices a and 6, with the same 

charge but fluxes belonging to distinct elements of the same conjugacy class, are not 

identical, in that a 6 vortex will not be annihilated by an a anti-vortex, but they are 

treated as indistinguishable for the purposes of statistics.

As shown by Bais et a∕.[5], the classification of indistinguishable vortices is inti­

mately related to the representation theory of the quasi-triangular Hopf algebra, or 

“quantum double” [7, 13]. The quantum double D{H) associated with the group 

H is an algebra of order ∣H∣2 generated by the operators (using the notation of 

Refs. [25, 23]) P∏g, h,g 6 H: here, g performs a global gauge transformation, and 

Ph projects out the total flux h. The projection operators obey

PhPg = fh,gPh, aPha~1 = Paha~' (1-16)

and hence

{Pha)(P3b) = δh,aga-i(Phab) (1-17)

5It is easily shown that the normalizers of two group elements in the same class are isomorphic.
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Following Ref. [5], let aC be a conjugacy class of H, and °Γ the a-th irreducible 

representation of the normalizer aN of aC in H. A flux/charge sector is labeled 

AC,a Γ). The flux/charge sectors are irreducible representations of the quantum 

double D(H)[5, 23, 25]. In fact, the sectors form a complete set of irreducible rep­

resentations of D(H). The particles belonging to a sector should be considered a 

degenerate multiplet[5]. It should be clear from the proceeding discussion that two 

vortices are to be considered indistinguishable if and only if they belong to the same 

irreducible representation of D(H)[25].

1.3 Exotic Statistics in Condensed Matter Systems

Thin-layer condensed matter systems, such as two-dimensional inversion layers or 

MOSFETS, provide essentially two-dimensional systems in which braid statistics may 

be realized. Indeed, it is strongly believed that quasiparticles with fractional statistics 

arise in systems that exhibit the Fractional Quantum Hall Effect[21].

The incompressible Laughlin wavefunctîond Φm for N electrons is

Φm(2,,...,2jv) = ∏ ⅛-a)mexp{-∑¾ (1.18)

l<j<k<N j=l 4*0

Here zj are the complex coordinates of the electrons, m is an odd integer, and lq is 

the magnetic length. This state is a good approximation to the ground state of a 

Quantum Hall system at filling factor v = 1∕m. There are excitations around this 

state called quasiholes. The state with a quasihole at position z0 is, in terms of the 

Laughlin state Φm,

N
^m )(20,2l,∙..,2v) = Π (¾-∙ε0)Φm(2l,..∙,2Υ) ( 1-19 )

(j=1)

The quasihole has fractional charge e∕m, where e is the electron charge[14, 22]. Con­

sidering multi-quasihole solutions, we may expect that the Aharonov-Bohm effect on 

a fractionally charged excitation slowly dragged around another quasihole will yield
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fractional statistics^]. Arovas, Schrieffer asd Wilczek demonstrated this using a 

Berry phase calculation [2].

For non-abelian statistics to be possible, there must be a set of degnerate ex­

citations, that transform among each other by nos-trivial matrices under adiabatic 

exchange. Moore and Read[26] have argued, using conformal field theory, that quasi­

hole excitations of the paired Pfaffian Hail state obey sos-abelias statistics. Recent 

advances in evaluating the degneracies of multi-quaeihnle paired Pfaffian sta^t^^^[2T, 30] 

have strengthened this conclusios.
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Chapter 2 Algebraic Aspects of the

Many-Vortex Problem

In this chapter, we discuss the structure of the braid algebra, acting on many-vortex 

systems. Because of the extreme mathematical complexity of the problem, we will 

for the most part restrict attention to a specific model, described below. This model 

is simple enough to be somewhat tractable, yet still exhibits most of the interesting 

features of the general non-abelian problem.

Specifically, we will take the unbroken gauge group to be S3, the permutation 

group on three objects. The indii^nducLl uartialei wül we taken en be ekm^ennt of t hh 

two-cycle class of S,3, wi3h zero chargo (howgver, canVnrlS'cbtons wito mwie tman om 

vortex may have a total charge, due to Cheshire charge). Unless otherwise stated, 

the results in this thesis apply to this S3 model.

2.1 Preliminary Definitions

We may assume that a convention has been prescribed that resolves the patching 

ambiguity for multi-vortex states described in Sec. 1.1.2. Therefore, there exist states 

in which a definite flux may be assigned to each particle, so a typical n-vortex state 

is

∣a,b, .. .,k) a,b,.. .,k ∈ H (2.1)

The ordering prescribed by the patching convention allows one to specify the total 

flux Φi associated with the state 2.1,

Φi = ab. ..k ∈ H (2.2)
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Is as s-vortex sector, we may define n — 1 braid operators Ht∙,

« «+1 i+l
β,∣α,...,∕, * .. ,k) = ∣a,..., fgf 1, f ,... ,k) (2.3)

It is easy to verify that the braid operators obey the Yasg-Baxter relations:

RiRj = RjRi, \i — j I >2

RiRi+ιRi = fR+iRRi+i

(2.4)

(2.5)

It is also convenient to define the operator C(g), which conjugates the entire state 

by g—

C(g)∣a, b,...,k) = ∖gag~1, gbg 1,..., gkg 1) g€H (2.6)

If g is in the centralizer of the total flux Φt, C(g) implements a global gauge 

transformation. The conjugation operator commutes with all of the braid operators:

m R] = o (2.7)

2.2 The Sector Group

Having specified the unbroken gauge group to be H = Sß, and the fluxes of the 

individual vortices, a sector is determined by the number of vortices s, the total flux 

Φt € S3, asd the total charge, which is the representation of the centralizer of the 

total flux, N(Φt). If, following Ref. [5], we denote the a-th representation of N(Φt) 

by 0Γ(W(Φt)), a flux/charge sector cas be specified as (n,Φt,a Γ(√V(Φi))).

On a gives s-vortex sector, it is a straightforward exercise to calculate the braid 

matrices Ri (I < i < n — 1) associated with the actios of the generators σ,∙ of Bn 

os the many-vortex states. These matrices themselves generate a group, which we 

will define to be the sector group K(n,Φt,a T). The sector (n, Φt,αr T(iV(φi))) is a 

(generically reducible) representation space of its corresponding sector group.
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It is important to note the differences between the sector group K and the braid 

group Bn. The braid group for a sector is determined entirely by the number of 

particles (and the topology of the underlying configuration space), whereas the sector 

group also depends on the unbroken gauge group H, and the total flux and total 

charge of the sector. While the braid group is an infinite, discrete group, we shall see 

that the sector group for a finite number of vortices is of finite order.

The generators R{ of the sector group obey the Yang-Baxter relations determined 

by their parent braid group, plus additional defining relations imposed by the struc­

ture of the underlying model (and required by the fact that K is finite). One defining 

relation is determined by considering the repeated application of a braid generator to 

a two-vortex state. Either the fluxes associated with the individual vortices commute, 

in which case R acts trivially on the state, or the fluxes do not commute, and the 

fluxes associated with the vortices cycle through the conjugacy class of H to which 

they belong. Since the conjugacy class has a finite number of elements, the original 

state is restored after some finite number k of braidings. Thus the defining relation 

may be written Rl- = e (for(l <i<n — 1)).

In the S3 model underlying this thesis, the single particle fluxes take their values 

in the two-cycle class of S3, which has three elements, hence k = 3 for this model:

E% = e (2.8)

An additional defining relation for K that involves all of the generators for a given 

sector will be introduced in Sec. 2.5.

2.3 Sectors Of The Three Vortex Problem

The product of three two-cycles in S3 is again a two-cycle, so there are three possible 

values of the total flux Φt. Since it is always possible to arrange for the total flux to 

be any given element in a conjugacy class of H by an appropriate gauge choice, the 

three possible total fluxes are equivalent, and we can arbitrarily take Φt to be (31).
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The centralizer of (31) is {e, (31)} = Z2, which has two irreducible representations, 

so there are two possible charge states, the uncharged state (corresponding to the 

trivial representation 1Γ(Z2)), and the charged state, (corresponding to the non-trivial 

representation 2Γ(Z2)).

There are 9 states of three two-cycle vortices that have Φt = (31). This 9­

dimensional space decomposes under the action of the global gauge group into a 

ö-dimensional uncharged space and a 4-dlmnnsionhl charged space.

The Uncharged Sector

One state in the uncharged sector may be immediately singled out:

W = ∣(∙31), (31), (31)) (2∙9)

This state is deedy tHivia undee any bsatding, ss it bbts>l∏s imdee vvotex enchnagg.

The other fonu ssates in the uncharged sector are, in arbitrary order,

|1> = ⅛(H122, (62), (31» + I (1Î3), ( 23), ( 33») (2.10)

∣2) = (30, (23» + I (22» m, K») (2.U)

|3) = -^(ICT,^)^» + I SK» , K2)) (2.12)

|4) = ⅛|(31)((12),(12)2 +∣S33(,(23),(23») (2.13)

Applying the braid operators R∣ and R2 to the states above simply permute the 

states, so it is clear that the sector group for this sector ∕<(3, (31),1 Γ) C S4. With 

the states numbered as above, we can represent R-l and R2 as follows:

Rx = (1)(234) 

R2 = (4)(132) (2.14)
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Since Hi and R2 are both even permutations, we see that the sector group is a 

subgroup of A4, the even permutations on four objects. In fact, it is quite simple to 

verify that the sector group is A4:

K(3,(31)∕Γ) = A4 (2.15)

There is another bosonic state in this sector, namely

l⅛) = j(11) + |2) + |3) + ∣4)) (2.16)

The remaining 3-dimensional subspace in the uncharged sector corresponds to 

the 3-dimsnsiosal irreducible representation of A4, and hence is truly non-abelian in

nature.

The Charged Sector

The charged sector is spanned by the states

|1) = ⅛∣112), (12), (31)) -K23), (23), (31))) (2.17)

|2) = a=(∣112), (31), (23)) -(23), (31), (12))) (2.18)

|3) =-^=1[(23), (12),(23)) — ∣112),(23), 112))) (2.19)

|4) = -^α(31),^23),(23))-KJ1)ÄM (2.20)

Due to the minus signs in the states above, one cannot say that Hi and R2 are 

simply permutations in S4, because a braid operator acting on a state may produce a 

sign change as well as a permutation. The signs of the states above were chosen so that 

Hi does not produce any such sign flips, so that it is possible to write Hi = (1)(234) 

as before. However, it is no longer possible to write H2 as a permutation. The action 

of H on the charged subspace is



 

IS

ft2∣l) = -∣3)

• R* ∣2) = ∣ι> ■

Ri∣3) = -12)

⅛∣4) = ∣4) (2.21)

If we restrict ourselves to ordinary representations, we discover that the braid 

operators generate the group Td, the double group of the point group of the tetra­

hedron (the point group of the tetrahedron T = A4). But it is also possible to view 

the representation generated by the R's as a projective representation of A4 (a projec­

tive representation differs from an ordinary representation is that the representatives 

corresponding to group elements <1 and g2 obey p(gi)p(g2) = w(l,,2)p(gιg2), where 

u(l,2) is a phase factor - for the case at hand, oj = ±1). Since the latter possibility 

proves to be more easily geseralizable, that is the point of view we will take:

K(3, (31),2 T) = A4 (projectively realized) (2.22)

In the uncharged sector, we discovered that there were was a two-dimessiosal 

invariant subspace that obeys Bose statistics. That there are so bosonic states is the 

charged sector cas be demonstrated by the following argument (which is generalized 

is Sec. 2.5):

Consider the effect of the operator RγR2 on a three-vortex state:

R∣R2∖a,b,c) = ∣ΦtcΦ71,α,6) (Φt = abc) (2.23)

Applying R1R2 two more times conjugates the original state by the total flux:

(R1t^2)3μ^,^√^) = j<tβΦ→, Φt6Φt-l,ΦtcΦt-1) (2.24)
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Cl c2 C3 C4 Cs c6 C7
5Γ 2 U -u? 0 -2 —U U2
6Γ 2 -ω2 U 0 -2 U>2 —U

Table 2.1: Characters of the two "extra” representations of Td contained in the 
charged subspace: u> = exp(^πi)

Ci C2 c3
1Γ 1 1 1
2Γ 1 φ φ>
3Γ 1 Φ2 φ

Table 2.2: Character table of Z3: φ> = exp(∣7τi)

Since Φt ∈ N(Φt)∙, this is a global gauge transformation by the total flux. If the 

global gauge group is a cyclic group generated by the total flux (as is the case for this 

sector), every non-trivial global gauge transformation can be effected by a braiding. 

Therefore, a bosonic state, which is trivial under all braidings, must also be trivial 

under all gauge transformations, hence it must be in the uncharged sector.

The charged subspace is reducible when considered as an ordinary representation 

of TD. The space decomposes into 5Γ φ6 Γ, whose characters are listed in Table 2.1. 

It is clear from the characters that these two representations are related by an auto­

morphism.

2.4 Sectors Of The Four Vortex Problem

The product of four two-cycles is either a three-cycle or the identity. Just as in the 

case of two-cycle total flux, the physics can’t depend on which three-cycle is chosen, 

so we will arbitrarily take the total flux to be (123) in that sector.

2.4.1 Φi = (123)

There are 27 states of four two-cycle vortices with Φi = (123). The centralizer of 

(123) is {e, (123), (321)} = Z3. The 27 states are divided equally among the three 

inequivalent irreducible representations of Z3 (table 2.2).
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Φt = (123), Uncharged sector

A typical state in the uncharged sector is

|1) = -i=(|(12(l((2)(((2)((23)) +1(23), (23), (23),(31)) + |(31), (31), (31), (12)))

(2.25)

As in the uncharged three-vortex sector, the braid generators may be represented 

as permutations on the states. In some basis, the braid generators for this sector may 

be written as

Rr = (1)(2)(3)(465)(798)

R2 = (1)(6)(9)(275)(348)

Rz = (4)(5)(6)(132)(789) (2.26)

These are even permutations, so the sector group is a subgroup of Ag. Direct 

computation (using a computer, cf. App. B) shows that A(4, (123),1 T) is a proper 

subgroup of Ag, of order 216.

There is a bosonic state in this sector, namely

IB) = j(H> + 12) + |3) + 14) + |5) + |6) + 17) + |8) + |9)) (2.27)

Unlike the uncharged three-vortex sector, there is only one bosonic state in this 

sector.

Φt = (123), Charged sectors

Table 2.2 shows that the and 3Γ sectors give essentially the same physics.

The braid operators in these sectors cannot be simply represented by permuta­

tions, since unremovable phases arise in the braiding. The phases are cube roots of 

unity, and the charged sectors can be considered to be Z$ projective representations 

of the sector group of the uncharged sector. There are no bosonic states in this sector.
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Ci C2 C3
1r 1 1 1
2f 1 -1 1
3r 2 0 -1

Table 2.3: Character table of S3.

2.4.2 Φi = e

The centralizer of the trivial flux is all of S3 (Table 2.3). There are 27 states of four 

two-cycle vortices with trivial total flux.

Φf = e, Uncharged Sector

There are 5 states in this sector. Ose bosonic state may be written down immediately:

∣Bi) = -^=1∣(12),(12),(12),(12),) + ∣(23), (23))(23‰ (23), ) + ∣(31), (31), (31),(31 )>) 

(2.28)

It is possible to write the other four states is such a way that the braid generators 

are as follows:

Ri = (1)(234)

R2 = (4)(132)

R3 = Ri (2.29)

Remarkably, there are only two distinct braid generators in this sector, asd com­

parison with En∏. 2.14 staws that tee pacee of eecoo r (4 , e,l T) is isomropht c oo tee 

space of sector (3, (31)∕ T). In particular, we note that the secoor group

K(4, e,1 T) ≥ K{3, (31),1 T) S A4 (2.30)

asd that the bososic subspace is two dimensional.
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Φt = s, Charge 2Γ

There are 4 states in the non-trivial one dimensional irreducible representation of S3. 

Φust as in the uncharged sector, there are only two distinct braid generators, and the 

space is isomorphic to the charged three-vortex space:

Ri — R3

K( 4, e,2 r(S3)) — K{ 3, OU? Γ(Z2)) (2.31)

Φi = e, Charge 3Γ

This subspace is 18 dimensional. Unlike the other charged sectors considered so far, 

it has a two dimensional bosonic subspace. The sector group is order 216, like the 

sector group for the uncharged, Φt — (123) sector.

2.5 Many-vortex Sectors

First we will present several formulae and lemmas that are valid for an arbitrary 

number of vortices. Proofs are given in App. A.

The dimensions of the various sectors of the S3 vortex model are given in Lemma 1:

Lemma 1 For an odd number n of vortices, the dimensions of the sectors are

dim(n, (31),1 Γ(⅞)) — 1(3” + 1) (2.32)

dim(n, Γ(Z2)) — 1(3” - 1) (2.33)

For an even vortex number n, the sectors with trivial total flux have dimensions

dim(^z, e,1 T(53)) — + 1) (2.34)

dim(z^, e,2 Γ(53)) — ^(3^2-1) (2.35)

dim(n, e ,3 ∏S3)) — 2(3S"2) (2.36)
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The sectors with even vortex number n, three-cycle flux have dimensions
*

dim(n, (123),1 T(Z3)) = dim(n, (123),2 T(Z3))

= dim(n, (123),3 T(Z3)) = 37"2 (2.37)

The following two lemmas are more general than Lemma 1, in that they are not 

specific to the S3 model. Lemma 2 is the additional defining relation alluded to in 

Section 2.2, and Lemma 3 follows immediately from Lemma 2

Lemma 2 In any n vortex sector with trivial total charge, and in sectors with trivial 

total flux and arbitrary charge, the generators of the sector group obey the relation

(R1R2...Rn.l)n=e (2.38)

In ant/ sector with n vortices, the generators of the sector group must obey

(RlR2...Rn-l)n-no = e (2.39)

where no is the order of the global gauge group for that sector.

Lemma 3 In any sector whose global gauge group is a cyclic group generated by the 

total flux, there are no bosonic states in sectors with nontrivial charge.

The next two lemmas apply to the S3 vortex model. They generalize the results 

of the preceeding sections.

Lemma 4 In any d-dimensional uncharged sector of the S3 vortex model, the sector 

group is a subgroup (not necessarily proper) of the alternating group on d objects, that 

is to say,

K(n, Φi,1T) C Ad d = dim(n, Φi,1 r) (2.40)
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Lemma 5 In any sector whose global gauge group is a cyclic group Z,m generated 

by the total flux, the space of any non-trivially charged sector is a Z/v projective 

representation of the sector group of the corresponding uncharged sector.

In Sec. 2.4.2, it was noted that the representation of the sector group on os the 

uncharged, trivial total flux four vortex sector is isomorphic to the representation of 

the sector group os the uncharged three vortex sector with Φt = (31), and likewise 

there is as isomorphism between the three vortex 2Γ(Z2) sector and the four vortex, 

trivial flux 2Γ(5,a) sector. Using Lemma 1, ose sees that the dimension of the un­

charged, Φi = (31) n-vortex sector is always equal to the dimension of the uncharged. 

φt = e (n + l)-vortex sector, and likewise for the corresponding charged sectors. It 

turns out that the isomorphism between sector group representations discovered is 

Sec. 2.4.2 generalizes for the S3 model:

Theorem 1 The representation space, with respect to the sector group, of the un­

charged, Φi = (31), n-vortex sector (n odd) is isomorphic to the sector group repre­

sentation space of the uncharged, Φi = e, (n + 1)- vortex sector: that is to say, the 

corresponding sector groups are isomorphic:

K(n, (3I),1T(Z2)) S K(n + 1, √ T(⅞)) n odd (2.41)

and the representations (typically reducible) of the sector group on these sections 

are equivalent. A corresponding isomorphism exists between the charged, Φt = (31), 

n-vortex representation space and the non-trivial one dimensional charged (2r(S3)), 

Φt = e (n + 1 )-vortex space.

The fisal lemma concerns bosonic subsoaccs. The Bose states is sos-abelias 

vortex sectors are particularly interesting from a physics etasdpoist, for one expects 

that the ground state of any sector that has a bosonic subspace will be a Bose state.

Lemma 6 Let bose(n, Φt,a T) denote the bosonic subspace of the given sector. For 

any uncharged sector with an odd number of vortices, and for any uncharged sector
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with an even number of vortices and trivial total flux,

dim^ose^, (31)/ Γ)) > 2 n odd, (2.42)

drm(brse(n) e∕ Γ)) ≥ 2 n even., (2.43)

dim^ose^, s,^)) > 2 n even (2.44)

For an uncharged sector with an even number of vortices and three-cycle total flux,

dim^ose^, (123),1 T)) ≥ 1 n even. (2.45)

Theorem 1 and Lemma 3 combined show that there are no bosonic states in the 

non-trivial one-dimensional charged states (^(Sa)) with trivial total flux.

Lemma 6 only yields lower bounds on the bosonic dimensions of the uncharged 

sectors. The results of the numerical procedures described in App. B may help shed 

light on sectors with more vortices. One finds, for n < 7 vortices, that

The bosonic dimension of trivial flux sectors with non-abelian charge 3r(53) is 

two.

• The bosonic dimension of uncharged sectors with Φt — (31) and with Φi — s is 

exactly two.

• The bosonic dimension of uncharged sectors with Φt — (123) is exactly one.

It seems likely, therefore, that the bounds in Lemma 6 are saturated.

The sector groups grow in size quite rapidly with increasing numbers of vortices.

The order of the sector group in the uncharged five vortex sector is at least 25,920, 

and the order in the seven vortex uncharged sector is greater than 100,000. This is 

to be expected, since Lemma 1 combined with Lemma 4 show that the groups which 

contain the sector groups for uncharged sector grow combinatorial^ in the dimension 

of the sector, which in turn grows exponentially. There can also be a wide gap in 

the size of sector groups for different sectors with the same number of vortices, as 

Theorem 1 shows.
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The sector group for the trivial-flux, non-abelian charge sector with four particles 

is isomorphic to the sector group of the four vortex zero charge, three-cycle flux sector. 

This is not surprising, since they have the same number of generators and the same 

defining relations (including the defining relation implied by Lemma 2). We haven’t 

proved that no new defining relations occur for larger vortex numbers, so we can’t 

be certain that the corresponding sector groups will be isomorphic for any number of 

particles, but it seems likely. In addition, the characters of the representation of the 

sector group on the non-abelian charge are twice the characters of the three-cycle flux 

sector. Lemma 1 shows that the non-abelian charge sector is always twice as large 

as the uncharged three-cycle flux sector for any number of vortices; furthermore, 

the lower bound on bosonic dimension for the non-abelian charge sectors is again 

twice the uncharged three-cycle flux lower bound. It is likely, perhaps, that that the 

non-abelian charge sectors are always isomorphic to two copies of the corresponding 

uncharged, three-cycle flux sectors.
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Chapter 3 A Non-abelian Vortex Lattice 

Gas

In this chapter, we investigate the ground state properties of a lattice gas of non­

abelian vortices. In doing so, we are extending the work of Canright and Girvis[10, II] 

on abelian asyons to nos-abelian particles. They considered identical asyoss on a 

two-dimensional lattice, with Hamiltonian

H = -t 52[c∣cj∙ exp(iφij) + h.c.] + u ^2 Wj (3.1)
(.∙o) (m)

Here, fij is the anyon phase (with a possible contribution from as externally applied 

magnetic field), and u is a constant that sets the strength of a nearest-neighbor 

interaction. The lattice has periodic boundary conditions in one direction and hard 

walls in the other direction, so topologically it is equivalent to a cylinder. The ground 

state was iteratively determined using the modified Lanczos techsique]15, 12].

3.1 The Patching Convention

In order to define many-vortex states, it is necessary to define a convention for patch­

ing the single vortex states together. Essentially, this defines as ordering os the single 

particle fluxes, to specify a unique total flux.

On the lattice, we define the following ordering: vortices live os the vertices of 

the lattice, which may be specified by a row number and a column number. Vortices 

are numbered starting at the bottom of the leftmost column, moving to the top of 

the column, then starting again at the bottom of the next column. In other words, 

a particle has a higher number than another if the number of its column is larger, 

or if they are is the same column and the number of its row is greater. This order
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Figure 3.1: Ordering convention for vortices on the lattice, xo is the basepoint for 
flux measurements.

determines the order in which the single particle fluxes fill the multi-particle state, 

and also the value of the total flux.

The meaning of this convention is show in Fig.3.1 for three vortices with single 

particle fluxes a, 6, and c. The basepoint xo anchors the path C that defines the total 

flux. This path can be deformed to the path C1C2C3, travelling path C3 first, then 

Ci, then Ci. This specifies the state and total flux

∣a,6,c) Φi = abc (3.2) 4

The vector potential of a vortex is taken to vanish everywhere except for a delta­

function singularity on a string that starts on the core of the vortex and ends at infinity 

(or a wall). The ordering convention for vortices in the same column determines how 

the strings must be deformed to maintain the proper order. The total flux associated 

with the loop C may be determined by the order in which the strings intersect the 

loop.

As the particles hop around the lattice, the order changes, but the total flux 

remains constant due to the action of the braid operators. If the particle with flux c 

in Fig.3.1 hops to the left across the string of the 6 vortex, it becomes conjugated by 

6’s flux; this is a counterclockwise braiding on the last pair of particles:

∣a,6, c) t→ i?2|a, 6, c) = ∣a,6c6 1,6) (3.3)
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If the same particle hops to the left again, its string sweeps across the vortex with 

flux a. leading to a braiding of the first pair of particles in a clockwise sense:

∣a,bcZΓ1,b) h- R1"1 ∖<^, bcb~∖b) = (bcb~l)-'a(bcb'l), b) (3.4)

3.2 The Multi-vortex HiΓb<ert Space

Having defined a patching convention, the Hilbert space factors into an internal space, 

specifying the vortex fluxes, and the position space. A typical three-vortex state on 

a 2 x 3 lattice may be written

\ip) — ∣ internal) ($ ∣poss.) — |a, 6, c) (?)
1 0 0

0 1 1
(3-5)

Here, a, 6, c ∈ H are the single particle fluxes, a 1 denotes an occupied lattice site 

and a 0 denotes an unoccupied site. The patching convention unambiguously specifies 

which single particle flux is associated with which lattice site.

A basis for the Hilbert space of γ vortices with a given total flux on a specified 

lattice may be constructed using states like Eqn. 3.5. This space can further be 

decomposed into sectors irreducible under the global guage group and any spatial 

symmetries in the problem (translation symmetry for periodic boundary conditions 

is discussed in Sec. 3.4).

3.2.1 Position Space

Here we will define several operators that act on the position part of the states. A 

lattice site is specified by a 2d vector γ — (γ, c), where r and c are the row and column 

of the site.

We define creation/annihilation operators a*(r) and c(γ), respectively, at every 

site. The vortices have hard cores, so the operators obey

(0t(r))2 — («(P))» — 0 (3.6)
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As usual, one defines a number operator n(r):

n(r) = at(r)a(r) (3.7)

The ordering operator Ω(r) is defined in terms of the patching convention of 

Sec. 3.1. Acting on a state like Eqn. 3.5, it yields the order a flux at site r would take 

is the internal space. It does this by counting the number of vortices that precede 

that site according to the patching convention.

i!(r) = Ω((r',c')) = £ £ n((rj,c∙)) + ∑ n(ri,c') + 1 (3.8)
n c,<c' ri<r'

3.2.2 The Internal Space

Several operators that act on the internal space have bees introduced is previous 

chapters. These are the braid operators Ri, which implement a counterclockwise braid 

os the z’-th pair of vortices, and the conjugation operator C(h), which conjugates the 

entire state by h € H. Is addition, it is useful to define the operators 2∣(z) and z∕()), 

f ∈ H, which create and destroy, respectively, a flux f at the z-th position in thee 

vortex internal state:

x in ∙ i+i n+i,
zj(i)∖a,.. .,h,---,k) = (a,.·.,/, h,..., k) (3.9)

t «+1 n i n— 1
Zf(i ∣^, -∙.,9, h,.-,k) = 6/,ala ∙ ..,A, ∙) (3.10)

The operator A∕l(i) conjugates only the flux is position i by the group element 

heff:

A√i)∣α, ...,g,...,k) = ∣a,..., hgh~1,... ,k) (3.11)

Using the ordering operator from Sec. 3.2.1, it is sow possible to define operators 

c^(r) and c∕(r), acting on both the position and internal space, that create/destroy
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a particle of flux f at position r on the lattice:

c/( r) = z/(Q(r))a(r)

cj(r) = 2*il(r))θt(r) (3.12)

3.3 The Lattice Hamiltonian

We may now construct a Hamiltonian analogous to Eqn. 3.1 for non-abelian vortices 

on a lattice. The vortices are allowed to hop to nearest-neighbor sites, leading to a 

kinetic term analogous to the first term of Eqn. 3.1. There is no explicit interaction 

term, but the kinetic term must take into account the statistical interactions of the 

vortices, i.e., the braiding properties.

To construct the Hamiltonian, consider its effect on an n-particle flux/position 

eigenstate (like Eqn. 3.5):

W = ∖<^iu92,-∙∙,an) ® ∖posn.) (3.13)

Say a vootex at site si = (rt∙, c,∙) and flux flu(rl) hops tp the unoccupied site one 

unit to the left r,∙ = (r,-,ct∙ — 1). wwo things apppen: first the moving article is 

successively conjugated by the fluxes of all the vortices below it in column c,, then 

all of the vortices above the vortex in column (c,∙ — 1) are conjugated by the resultant 

flux. It is convenient to define operators that count particles above or below a lattice 

site r = (r, c):

n«(r) = YL n(r.,c)
r,> r

nt(r) =∑n(r,∙,c) (3.14)
f<r

The total flux that conjugates the moving vortex is then

f^(r,∙) = flrΩ(r,)-n6(r,) ∙ --<ya(r )-≡ ∏ ge € H
)=Ω(γ·,-1

(3.15)
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The product is the product in the group H. Eqn. 3.15 defines the ordered product 

[I, which is takes to order terms right to left.

The operator that conjugates the vortices braided by the moving vortex is

Ω(ri)-n6(r,)-no(Γj)-1
A(r,∙,rj∙) = ∏ Λm(A(r,-)5Ω(rt)A(r,∙)^1) (3.16)

m=Γ(Γt)-Γ()cpi·-l

Is terms of these operators, the Hamiltonian is 1

H — -<∑∑(cl(Γlc⅛(rι^^1(Γr·)Λ(Γ.·,Γr·)Cα(Γt·) + h.c.) (3.17)
<m> c

As alternate form of the Hamiltonian may be constructed using the braid op­

erators. Is terms of the ordered product, define two braiding operators i51(ri) and 

B2(γ,∙,γj∙)=

Ω(r,-n6(∏)

B,( γ.) — ∏ Ri (3.ls)
(—nirO-i

Γ(γϊ)—Γ6(γ,)—γο(ρ)—1

Bohr,) — ∏ Λ√ (3.19)
m=Ω(r, )-st(ιri-l

One cas sow consider the braiding process to be a sequence in which ose removes a 

particle from the position part of the state, applies the appropriate braiding operators 

to the internal state, asd then creates the particle is the sew site is the position space.

H = -t ^2,(a*('rj')B2(ri, Γj·)Bi(r)·)a(r,·) + h.c.) (3.20)
(∙j>

3.4 Translation Symmetry on the Cylinder

We periodically identify the lattice is ose dimension (call it the x direction) asd erect

hard walls is the other directios, so the configuration space is a cylinder. Typically,

ose would expect that the trasslatios mvαriasee in the x direction enables ose to

1It is implicit that k and A are the identity for up and down hops, i.e., for hops in the same 
column.
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Figure 3.2: Three particles on a 3 x 4 lattice: the dashed line is the International 
Dateline.

blnck-dihgnshlize the Hamiltonian by a discrete Fourier transform is x, i.e., by going 

to momentum space in the x direction. The spatial symmetry decomposes the multi­

vortex space into blocks labeled by the wave vector kr, where kx ranges over the 

Brillouin Zone for the lattice. It turns out that the translation symmetry is modified 

for son-hbclihs vortices, as we shall sow elucidate.

Topologically, the cylinder is homeomorphic to an annulus. The columns of the 

lattice are spokes on the annulus, and the rows are concentric circles. We chose a 

basepoint x⅛ for the flux definition, and select a column as a starting point, numbering 

the columns from 1 to Nc. Fig. 3.2 shows the case of three particles os a 3 × 4 lattice. 

The total flux of this state is Φt = abc, by our patching convention.

The particle with flux a is in column 1, and by hopping ose unit clockwise it 

can reach column 4. In doing so, it goes from being the first vortex by our patching 

convention to the last, so apparently

∣a,b, c) ι→ ∣∈, c, a) (3.21)

But because these are sos-abelian particles, is general abc ^ bca, so it would appear 

that the total flux changes. Since the total flux is conserved, this is sot possible.

This hoohrent dilemma is resolved by taking care to use only the paths prescribed 

by the patching convention to measure flux. The standard paths to define single 

particle fluxes reach only as far as column Nc, they are not allowed to wrap back
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around to column 1. Consider a particle with flux a, the first particle in the internal 

state, sitting in column 1. The combined flux of the rest of the particles is α^lΦi. 

Take the path C2 from the basepoint to encircle all of the particles except the first, 

and take Cχ to be the path encircling particle 1 that deforms to the proper path after 

particle 1 has jumped from the first to the last column, becoming the last particle. 

Paths Ci and C2 are indicated in Fig. 3.2. The flux bounded by Cχ is equal to the 

flux that the hopping particle will have after it jumps from the first to the last particle.

Let B be a path that encircles the central hole of the annulus in a clockwise sense: 

by considering the gauge strings of the vortices (c/. Sec. 3.1) we see that the flux 

linked by B is the total flux Φi. Let Co be a standard path that encloses vortex a. 

before the hopping. Then it is easy to see that, under homotopy,

Ci S B'1C0B (3.22)

In other words, the flux linked by Ci is ΦΓ1aΦt, so the hopping from column 1 to 

column Nc yields

∣a, 6, c) i-> ∣6, c, Φt-1aΦt) (3.23)

and the total flux is preserved.

Obviously, it )i possible for the last particle to hop ccooss the ‘‘Internaononal 

Dateline”2(a line seodrrtiag cooumn 1 and cohlmn Nc) aad become the frst particle. 

The operator F that performs the last-to-first rotation on the state, conserving total 

flux, may be expressed in terms of the braid operators:

F = RlR2...⅛l-i (3.24)

F∖a,b,..,k) = ∣ ΦtkΦfl,a,b,...) (3.25)

The first-to-last rotation is performed by F~l

Because acting on a state with F is equivalent to a braiding, F is trivial on any 

bosonic state. It is simply a rotation on trivial flux sectors.

2Credit for coining this term goes to John Preskill.
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To analyze the effect of the International Dateline on the translational symmetry of 

the vortex gas, it is instructive to consider a simple system: indistinguishable hard­

core bosons os a nne-dimeneioshl ring with N sites. Define the operator T which 

translates every particle one site to the right; if T commutes with the Hamiltonian, 

there is a translation symmetry that is isomorphic to Z/v- The Brillouin Zone consists 

of the wave vectors

⅛ == jjÿ -π, l<j<N (3.2∈)

The projection operator that projects onto the j-th momentum state is

N-1
Vj = ∑ eimk>Trn (3.27)

m=0

If we consider the same space, with indistinguishable vortices instead of identical 

bosons, we must consider a different translation operator T, which translates every 

particle to the right one lattice spacing and applies the operator F to the state every 

time a particle hops across the International Dateline. Applying T N times leads to 

a gauge transformation by the total flux of the state:

f,Ι≠> = C(Φ1)M) (3.28)

If the total flux is son-trivial, and the order of the total flux in the global gauge group 

is p, then we see that the translation symmetry group is sow isomorphic to Z^.v)·

For example, consider the sectors of the S3 vortex model with an odd number 

of particles, so that the total flux is a two-cycle and the global gauge group is Z2 

generated by the total flux. The translation symmetry group is Z2f, with Brillouin 

Zone wave vectors

kj = Î1 ≤i ≤nv (3.29)

On the uncharged sector, C(Φi) acts trivially, so under hhe tanslLti^o^n symmetry, hhe
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states transform as the Z,v subgroup of Zj corresponding to wave vectors with j 

odd or even, depending on whether N is odd or eves. (Eqs. 3.28 shows that the 

effective translational symmetry group will always be Z/v on as uncharged sector). 

On the charged sector, the translation symmetry will be Zj furthermore, the states 

in this sector will have momenta kj with j even or odd, depending on N odd or even. 

The other projection operators will arrihilate the charged states.

An immediate consequence is that there are no tronslatiorally invariant states in 

charged sectors with Z2 global gauge group, i.e., there are so zero-momentum states 

in these sectors. An analogous situation may be found is as ordinary conducting 

cylinder. If there is a magnetic flux through the cylinder that is not an integer multiple 

of the flux quantum, the momentum in the angular coordinate (in the direction that 

is periodically identified) is shifted by some fractional amount. For the vortices os 

a cylinder, the International Dateline is a brasch cut which alters the boundary 

conditions in the x direction, shifting the momentum spectrum3.

3.5 Ground State Structure

Having constructed a Hamiltonian with the required braiding properties, it is now 

possible to numerically calculate the ground state for small numbers of particles on 

a finite lattice. The numerical techniques used are described in Appendix C.

Actually, one cas predict the qualitative structure for various vortex sectors by 

simply considering the braiding and translation properties of the system. For any 

sector that contains a bosonic subspace, we can expect that the bosonic states will 

have the lowest g.s. energy. There should be a finite gap between the bosonic subspace 

and the Γrn-abelrcΓ subspace. The ground state energies should be zero-momentum 

(kx — 0) states, unless the sector does not contain zero-momentum states, as is the 

case for son-trivial Z2 charge sectors.

Consider first the sector (3, (31),1Γ(Z() ) on a 2 x 3 lattice. As discussed in 

Sec. 3.4, the translation symmetry group for this (uncharged) sector is isomorphic to

3∑ would like to thank John Preskill for pointing out this analogy.
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Zz, with Brillouin Zone vectors kx = 0, ±^f ∙ There are two bosonic states in this 

section so the ground state energy (with kx = 0) is doubly degenerate, and equal 

to —5.60 ± 0.005 (in some units). The lowest energy in the non-abelian subspace 

(corresponding to the threo-dlmonsional irreducible representation of the Ai sector 

group) for kx = 0 is —4.56 ±0.01 (in the same units), illustrating the anticipated gap 

between the bosonic and non-abelian subspaces.

The ground state degeneracy of the uncharged sector is somewhat mysterious. It 

is easily shown that a set of degenerate states of a Hamiltonian forms a representation 

of the symmetry group of that Hamiltonian. In the usual case, the representation is 

irreducible, so that the degeneracy can be clearly interpreted in terms of the symme­

try of the physical system. When the representation is reducible, the degeneracy is 

termed accidental, and it is usually lifted by an arbitrarily small perturbation to the 

Hamiltonian. In the case of the sector (3, (31 ),l T), the two-dimensional ground state 

subspace is reducible, splitting into two trivial representations of the sector group. 

Additionally, we note that this degeneracy is very robust: it is unaffected by any 

perturbation that acts only on the position space, and moreover it is unaffected by 

any perturbation involving products of the braid operators (since these operators act 

trivially on bosonic states). Furthermore, this degeneracy is pervasive, as shown by 

Lemma 3.

When accidental degeneracies occur with such regularity, one usually suspects 

that there is a larger, “hidden” symmetry group of the Hamiltonian4. There may 

be a hidden symmetry of Eqn. 3.20, such that the distinct bosonic states in sectors 

where the g.s. degeneracy occurs form irreducible representations under the larger 

symmetry group.

Moving on to the non-trivial charge (3, (31),1 Γ(Z2) ) sector, we note from Sec. 3.4

that the translation group is Z&, with odd-j representations realized on the charged

sector, so the “effective” Brillouin Zone is kx = r, ±^. Also, in Sec. 2.3, we discovered

that under the sector group, the chaxged sector splits into two automorphic irreducible

4The classic example of this is the explanation of the ‘extra’ degeneracy of the hydrogen atom 
spectrum in terms of the SU(2) x 5CZ(2) symmetry of the Hamiltonian, corresponding classically to 
the conservation of the Runge-Lenz vector in a 1/r potential.
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n Φt Fbose Fsos—ab AE/n
3 (31) -5.606 ± 0.005 -4.56 ± 0.01 0.35
4 e -8.801 ± 0.003 -6.91 ± 0.04 0.47
4 (123) —8.801 ± 0.003 -7.99 ± 0.03 0.20
5 (31) -8.800 ± 0.003 -8.17 ±006 0.13

Table 3.1: Uncharged-sector g.s. energies.

representations, so there will again be at least a two-fold ground state degeneracy. It 

turns out that the actual ground state energy of —3.8 ±0.1 occurs for kx — ir, so the 

ground state is indeed doubly degenerate.

For the trivial flux sectors of the four vortices os a 3 x 3 lattice, the translation 

symmetry group is always isomorphic to Z3, and the lowest energies will be found 

is the translationally invariant (zero-momentum) blocks. The g.s. energy for four 

bosons on a 3 x 3 lattice is —8.801 ± 0.003, which is the g.s. energy for both the 

uncharged and the non-abeliar charged (3Γ(S3)) sectors, both of which are doubly 

degenerate. The g.s. energy is the (Γ(S'3) sector, which doesn’t contais a bose state, 

is —4.23 ±0.13. The g.s. energies of the son-abelian subspaces of the uncharged asd 

non-abelias charged sectors axe —6.91 ±0.04 and —7.97 ± 0.12, respectively.

The uncharged, Φt = (123) sector has one bososic state, and the g.s. energy of 

the nrn-abelicΓ subspace of this sector is —7.99 ± 0.03. Since this is the same energy 

as the nonicbslran charged trivial flux sector (within numerical uncertainties), it is 

consistent with the conjecture that the 3T(S'3) sector is isomorphic to two copies of 

the uncharged, three-cycle flux sector.

In Table 3.1, the bososic asd non-abelian ground state energies for the uncharged 

three through five vortex sectors are listed. The last column gives the per-particle 

energy gap, where ΔE = Esos-ab - Ebθse∙
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Chapter 4 Summary and Conclusions

A general description of the behavior of large systems of indistinguishable sos-abelias 

vortices remains an extremely difficult problem. However, we have made incremental 

progress in discerning some features, at least in ose representative model.

The braid group essentially acts as a finite group os sectors with a finite number 

of particles. The generators of the associated finite group, which is in a many-to-ose 

homomorphism with the corresponding braid group, necessarily obey the Yang-Baxter 

relations, plus additional defining relations related to the underlying physical model. 

One of these additional relations, Lemma 2 , is a necessary condition for the sector 

group to be finite (whether it is sufficient in general is unknown).

The size of the sector group grows very rapidly in the number of particles. The 

dimension of the vortex sectors also grows exponentially, and one would expect that 

the dimensions of the irreducible representations of the braid group contained is the 

sectors will also grow rapidly. Thus excited states should be highly degenerate.

However, this huge degeneracy doesn’t seem to occur is the bosonic eubspaces that 

appear is the uncharged and non-abelian charged sectors of the S3 vortex model, at 

least for reasonable numbers of particles. For the Hamiltonian studied is this thesis, 

a kinetic term encoding the braiding properties of the vortices, the bosonic subspaces 

(where they occur) will contain the ground states of the lattice gas, so the ground 

state degeneracy doesn’t seem to be growing at a large rate.

However, in a number of subephces, the ground state is (at least) doubly degener­

ate. These degeneracies don’t result from any obvious symmetry of the Hamiltonian, 

so they hist at some deeper symmetry.

One expects, for the kinetic Hamiltonian, that the ground states of the uncharged 

and non-abelian charged sectors will be a Bose gas, with an energy gap separating 

the Bose states from the non-abelian states. This is sot the case for charge states 

associated with son-trivial one-dimensional representations of the global gauge group.
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since Bose states do not occur in these sectors.

The calculation of the ground state energies is technically difficult. We define a

patching convention for the multi-vortex states, and (at least partially) decompose 

the internal space of a sector into invariant subspaces under the sector group. The 

periodic boundary conditions enable us to exploit the translational symmetry of the 

Hamiltonian, but one must be careful to properly account for the “International Date­

line.” The ground state energies are calculated iteratively, using a modified Lanczos 

technique. The dimension of the total Hilbert space (internal and position) grows 

extremely rapidly with particle number, slowing convergence drastically. We have 

succeeded in calculating g.s. energies for up to five vortices, and the calculations 

appear to confirm expectations.

Future Directions

One obvious extension to the work in this thesis would be to analyze other rela­

tively simple models, in an attempt to discern universal features of the non-abelian 

many body problem. In addition, we can consider more complicated models, such 

as models with charged vortices, or stable vortices from several different thnjegaty 

classes.

Flux quantization is an effective probe for pairing and collective behavior[9]. Our 

geometry allows for the introduction of an external flux, which essentially amount to 

a non-trivial boundary condition for vortices traversing the cylinder. However, we 

can only choose external fluxes from a discrete set. One might expect that vortices 

would become dalt-ohtrolated in such a way that they commute with the external 

flux, and that sectors with an odd number of vortices would be frustrated. We have 

written code to calculate g.s. energies with an external flux, but have not yet achieved 

reasonable convergence for more than three vortices.
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Appendix A Proofs of the Lemmas in 

Section 2.5

Lemma 1 For an odd number n of vortices, the dimensions of the sectors are

dimhW,' Γ(Z2)) — i(3” + l) 

d⅛(κ(3())(Γ(Z()) — ∣(3"-1)

For an even vortex number n, the sectors with trivial total flux have dimensions

dim(n, e∕ Γ(S,3)) = j(3"→ + l) 

dim(n,e,( T(Ss)) — ^"2 — 1) 

dim(n, s,3 Γ(⅞)) — 2(3^)

The sectors with even vortex number n, three-cycle flux have dimensions

dim(s, (123),1 T(Z3)) — dim(s, (^^ T(Z3))

— dim(s, (123),3 T(Z3)) — 3s-2

Proof: Consider the case s odd. There are 3s states of n two-cycle vortices. For odd 

n, these states have a total flux which is a two-cycle, so there are 3n^l states with 

φt — (31). We may construct the matrices that represent the well-defined global gauge 

group,, {e, (31)}. Since distinct two-cycles of S3 do not commute, the only state which 

is invariant under conjugation by the total flux (31) is the stats |(31), (311),.., (31)). 

There is only one son-zero element on the diagonal of the matrix representative of 

(31), so we can compute the characters of the representation of the Z3 global gauge
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group on this space, namely,

x(e) = 3"-1, x((31)) = l

The orthogonality theorem for group characters states that the number of times np 

the p-th irreducible representation of a group G appears in a given representation is

np — — 53 Xp(9M9) (A-l)
nG g€G

where no is the order of the group, the χp are the characters of the p-th irreducible 

representation, and the χ are the characters of the reducible representation. Using the 

character table of Z2 and the characters of the vortex sector above, one immediately 

arrives at the first two equations in Lemma 1. All of the other formulae are obtained 

by an analogous calculation.

Lemma 2 In any n vortex sector with trivial total charge, and in any sector with 

trivial total Jinx and arbitrary charge, the generators of the sector group obey the 

relation

(R1R2 ■ ∙ ∙ Rn~i)n — e

In any sector with n vortices, the generators of the sector group must obey

(RlR2...Rn-l)nn = e

where no is the order of the global gauge group for that sector.

Proof: Consider the operator (RiR2 ∙ ■ . R-n-ι) acting on as n-vortex state:

(RιR2...Rn-ι)∖a,b, ...,k) = ∣ΦjfΦi l,at,0,...)
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where Φi = ab.. .k. Applying this operator n times yields

(RR ... R∏-ι)n∖α, b,..,k) = ∣ΦiaΦf~l, Φi6ΦΓ1,.. ,, ΦMΦf~1)

This is a global gauge transformation of the state by the total flux. Since the sector 

has zero total charge, the operator must act trivially on any state.

The second relation is a consequence of the fact that the order of an element of a 

finite group must divide the order of the group.

Lemma 3 In any sector whose global gauge group is a cyclic group generated by the 

total flux, there are no bosonic states in sectors with nontrivial charge.

Proof: Lemma 2 shows that a global gauge transformation by the total flux can al­

ways be achieved by a braiding. In a sector where the global gauge group is generated 

by the total flux, all global gauge transforms are equivalent to a braiding. Therefore 

any state that is trivial under all braidings is in an uncharged sector.

Lemma 4 In any d-dimensional uncharged sector of the S3 vortex model, the sector 

group is a subgroup (not necessarily proper) of the alternating group on d objects, that 

is to say,

K(n,Φt,lT) C Ad d = dim(n, Φί/Π

Proof:

Consider an initial basis of the n-vortex space with given total flux, consisting of 

states which have a definite flux at every point, i.e., states of the form ∣a, 6,..., k), 

Φf = ab.. .k. The operator that projects onto the uncharged subspace is

V= ∑ C(h) (A.2)
hζN(Φt)

This operator adds together all of the states of the initial basis that are related by a 

global gauge transformation, with equal weight. Label the linearly independent states
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obtained by applying the projection operator to the isitial basis |1), |2), .... |d). 

Because the braid operators commute with global gauge transformations, all of the 

braid operators simply permute the d uncharged states. The relation i?? — s for the 

braid operators of the S3 model implies that the braid operators must be products of 

one-cycles asd disjoint three-cycles, therefore they must be even permutations, hence

tf(n,Φt,1Γ) C Ad.

Lemma 5 In any sector whose global gauge group is a cyclic group Zp generated 

by the total flux, the space of any non-trivially charged sector is a Zn projective 

representation of the sector group of the corresponding uncharged sector.

Proof: The group Zjv has N isequivalest irreducible representations. The projection 

operator for the j-th irreducible representation is

Vj — ∑ e,w>C(Φ',), *7 — 1≤7≤V (A.3)
l=0

where we define Φ° — s. Applying the projection operator to the initial flux eigenstate 

basis, ose obtains d linearly independest vectors as a basis for the 7-th charge state, 

labeled ∣1), ..., |d). For asy j > 1, it is clearly possible to put these states is a 

one-to-ose correspondence with the uncharged j — 1 states, in which each charged 

state contains the same flux eigenstate basis members as the corresponding uncharged 

state, but weighted by phase factors that are N-th roots of unity. The braid operators 

os the charged sector connect the same states as the corresponding operator on the 

uncharged sector, modulo these phases. The usremovability of the phases for the 

charged sectors follows from Lemma 2

Theorem 1 The representation space, with respect to the sector group, of the un­

charged, Φi — (31), n-vortex sector (n odd) is isomorphic to the sector group repre­

sentation space of the uncharged, Φi — s, (τs + 1)- vortex sector: that is to say, the 

corresponding sector groups are isomorphic:

A(n,(31),1 Γ(Z2)) — K{n + 1, e∕ Γ(S3)) n odd
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and the representations (typically reducible) of the sector group on these sections 

are equivalent. A corresponding isomorphism exists between the charged, Φt = (31). 

n-vortex representation space and the non-trivial one dimensional charged (2Γ(?)))· 

Φt = e (e + 1)-vortex space.

Proof: Let the states |i) 1 < i ≤ d be the basis states for the sector (n, (31),1 Γ(Z2)), 

and the operators Ri, 1 < i < n — 1 the braid operators calculated using this basis. 

From the states |i), obtain the states |i') by applying the operator C((23)), and the 

states |z") by applying the operator C((12)),

K' = C(223))∣Z) (A.4)

|Z")=^122^)|t) (A-5)

It should be clear that the ∣z') and |i") are bases for the uncharged, n-vortex sectors 

with total flux (12) and (23), respectively, and that the braid operators os each 

of these sectors are identical to the braid operators on the (31) flux sector. Now 

construct a basis for the uncharged, (n + 1)-vortex trivial flux sector by the following 

procedure: take a state |i), append a flux (31), take a state |z'), append a flux (12), 

take a state |z’"), append a flux (23), and add the states together:

|e- = Iz"^)^ + ∣z'(122)f + ∣z"( 223)f (A.6)

It is obvious from this construction that

(i) the d states ∣et∙) form a btsis for ohe sectas s o + 1, e,1 Γ(^ )) -f-1 Lemma 1)( an))

(ii) thh first o — 1 braid opeiatoos Ra or this sector are identical to the taaid 

operators on the sector (n,(31),1 Γ(Z2)).

Because there is one adaitinnhl vortex in the trivial flux sector, there is one more braid 

operator, Rn. In order for the sector groups to be isomorphic, this extra operator must 

be ‘redundant,’ i.e., it must be possible to obtain this operator by taking products of



 

46

the first n — 1 braid operators. This is always possible, as we shall now see. Lemma 2. 

applied to the sector (n, (31),1 Γ(Z2)), says that

(RlR2...Rn-l)n = e (A.7)

By construction , this is also true in the n + 1 vortex sector. Lemma 2 applied to 

(n + 1,o∕ Γ(S3)) tells us that

(RlR2...Rn)n+1 =e (A.8)

Using the Yang-Baxter relations Eqn. 2.4, it is possible to establish, by induction, the 

formula

RnRn-l ■ ■ ∙ Rn-i{R∖R2 ∙ ∙ ∙ Rn) = {RlR∙2 ■ ∙ ∙ Rn-l)Rn ■ ■ ■ Rn-i-l (A.9)

Applying Eqn. A.9 repeatedly to Eqn. A.8 yields

(i?l . . . Rn-i)nRnRn-l ∙ ■ ■ R∖R∖R2 ∙ ∙ ∙ Rn

= Rn ∙.∙ RιRι∙.. Rn = o (by Eqn. A.77 (A.10)

A straightforward group manipulation puts this in tho form

Rn = ^¾∙∙.λγ⅛1∙∙∙ ⅛ (A.ii)

Now wo multiply both sides from tho left with R„, and use tho S3 model defining 

relation Eqn. 2.8:

R^ = o = Rn{Rn-l . . . RlRl . . . Rn-l) 1

Rn = Rn-l ∙ ■ ∙ R∖Rl . . ∙ Rn-1 (A.12)

Tho group generated by Ri,..., Rn is the same as tho group generated by Ri c.., Rn-ι
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and the theorem is proved. The statement concera(ng the charged s^c^Ct^r^^ follows from 

an analogous construction, applied to the charged n-vortex Φf = (31) sector.

Eqn. A. 12 for n = 3 is

R3 = R2R∖R2 (A.13)

Using the defining relations, it is possible to show that R2fi%R2 = Ri. on tho throe- 

vortex uncharged sebsdace( providing a check on Eqn. 2.29.

Lemma 6 Let bosn(n,Φt,“Γ ) dnnote the bosonic subsaace of the given sector. For 

any uncharged sector with an odd number of vortices, and for any uncharged seotor 

with an even number of vortices and trivial total flux,

dim(boso(n, (31)^^) ≥ 2 n odd, 

dim^ose^, o^T)) ≥ 2 n even, 

dim(bose(n, o,3 T)) ≥ 2

For an uncharged sector with an even number of vortices and three-cycle total flux,

dim(boso(n, (123),^)) ≥ 1 n even.

Proof: Tho proof is by construction. An uncharged sector with an even number of 

vortices and throe-cyclo total flux is spanned by states labeled ∣l), ..., ∣d), and the 

braid operators simply permute the states. The state

∣J3) = ∣l) + ... + ∣d) (A.14)

On uncharged odd vortox sectors with Φt = (31), there is a state

∣Bα) = |(3^l)(^ll)(··((31)) (A.15)

which is bosonic, henco it decouplos from the other d—1 states, which can bo combined 

as in Eqn. A.14 to form another bosonic state. On uncharged ovon vortex sectors with
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Φt — e, the ‘extra’ bososic stats is

|&> — ∣(1^, (12),..., (12)) + ∣(23), (23),... ,(23)) + ∣(31), (31),..., (31)) (A.16)

The (ussormalized) projection operator for the 3T sectors with Φi — e is

V3 — 2C(e) -C((123)) — C((321))

Applying this in turn to the states ∣(12), (12),,.., (12)), ∣(2∙3), (23)),.., (23)), and

∣131), (331, ).., (31)) yields the bosonic states

1B,> — 21(12), (12)),.., (12))-1(23) ,(23),.. ,,G^3t)> - 1(31), (311),....(31))

∣½) — 2123), (23‰,. ., (23)) — ∣(12},(12),.. ,,H2)>-∣(31), (311),..., (31))

∣⅛) = 2131), C^^1),. ., (3())-|(12),((2),.. ,,112)>- ∣(23), (23)),. ∙,(23))

But, e.g., ∣B1) + ∣F2) — — ∣-β3), so these states represent only two linearly independent 

bososic states.
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Appendix B Numerical Calculation of 

Subspaces and Sector Groups

For more than three or four vortices, hand calculation of braid matrices, charge 

sectors, etc. become impractical. This Appendix describes the numerical techniques 

used to facilitate the process.

B.0.1 Singular Value Decomposition

The Singular Value Decomposition (SVD) is ae extremely effective techniqe for com­

puting nrtenentmal bases of subepαces. It is based oe the fact that aey real, m x n 

matrix A can be factored in the form

A = UΣVt (B.l)

where U is an m x n column-orthogonal matrix, Σ is an n x e diagonal matrix with 

eon-negative values on the diagonal, and Γ is ae e x n orthogonal matrix (for pronf· 

see Ref. [18]). The columns of Γ whose corresponding values on the diagonal of Σ 

are zero form an nrthnnntmal basis for the nullspace of A, and the rows of U whose 

corresponding diagonal values in Σ are nonzero form ae otthnentmal basis for the 

range of A. The code I wrote to perform the SVD is essentially a translation of the 

Algol routine is Ref. [17] to ANSI/ISO C, incorporating a few elements of the routine 

is Ref. [29].

B.0.2 Sector Group Calculations

It is straightforward to encode the multiplication table for a finite group. Gives an 

no x no array (no is the order of the group) representing the multiplication table of 

a finite group {e.g, S3) and a set of basis elements, {e.g., the two-cycle class), it is
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then not difficult to find all sets of n elements of the basis sot that combine to give 

some specified total flux.

Tho states thus generated are not in a definite charge secter, i.e., they art in a 

reducible representation of the centralizer of tho total flux. If the uncharged sebsdaoo 

is desired, one can specify the non-trivial elements of the global gauge group; tho 

program selects a state and conjugates it by all non-trivial elements of tho global gauge 

group, generating the unchanged states. The braid operators can now bo calculated 

on the uncharged sector. By Lemma 4, tho braid operators on the uncharged sector 

are permutations of the states, so the code represents the R as permutations.

If a non-trivial charge sector is required, the code makes use of the projection 

operator for irreducible representations,

Λ = —- ∑ x;(9)T(i) (B.2)
n° hCNO/o)

Here dp is the dimension of tho p-th representation, the Xp art the characters of tho 

representation, and T(g) is the matrix representing g in the reducible representation. 

To find the subsdate for a given charge state, the appropriate projection operator is 

calculated, and then passed to the SVD routine. The rows of the resulting U ( cf. 

Sec. B.0.1) whose singular values are non-zero art selected as a basis for tho given 

charge sector, the columns of V whoso singular values vanish form a basis for tho 

orthogonal complement. Using these vectors, an orthogonal transformation matrix 5 

is constructed, which block-diagonalizes the braid matrices, one block corresponding 

to the desired charge sector.

After the braid operators on a given charge sector are calculated, the sector group 

may be computed in a brute force manner by starting with the braid operators, 

systematically multiplying the group olomonts with each other, storing new elements 

as they are created, until the group closes. In this way, a multiplication table for 

the sector group is generated. After tho multiplication table is complete, the classes 

can be computed. The elements may bo stored and manipulated either as matrices 

in tho representation of tho group on tho sector space, or, if the sector is uncharged,
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they can be represented as permutations. The former possibility has the advantage 

that the characters of the sector group representation may be computed, but it is 

much more costly ie terms of storage requirements and computation time, so it is 

impractical for sectors with more than four vortices.

B.0.3 Calculation of the Bosonic Subspace

Once the braid matrices for a given sector are computed, it is possible (and desirable) 

to extract the bosonic subspace. A state is bosonic if and only if it is invariant under 

all of the braid operators of the sector. Consequently, the bosonic subspace of a given 

sector bose(n, Φt,a Γ(V^(Φi))) can be determined as

n—1
bosein, Φt,a Γ) = ∩ null {Ri - I) (B.3)

ι=1

Here T is the identity matrix, aed sull() denotes the nullspace of the gives matrix.

The SVD is useful to extract the bosonic subsphce. The n — 1 braid matrices 

are ‘stacked’ into ose larger matrix (whose dimensions are (n - 1 )d x d, if the braid 

matrices are d x d), which is passed to the SVD routine. Aey element of the sullspace 

of this large matrix is is the intersection of the nullspa^ces of all of the braid matrices 

l. As ie the calculation of charge sectors, a, basis for the bosonic subsoace and its 

orthogonal complement is built from the U and Γ matrices returned from the SVD 

routine, which are in turn used to construct an orthogonal trasefnrmatinn that block- 

diagonalizes the matrices.

1If one only desires to find the nullspace intersection of two matrices there is a more efficient 
algorithm [18, pp. 602-603], but for more than two matrices, the procedure above calculates the 
bosonic space in one fell swoop
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Appendix C The Modified Lanczos 

Method

The modified Lanczos method is an efficient iterative algorithm to find the ground 

state of a given Hamiltonias[Γ2]. The algorithm is as follows: given a trial state p, 

calculate the expectation value of the Hamiltonian H;

eo — (C.l)

Let the state p measure the dfffersnce betwesn the trias stat e s,dd sn eiemstat e of

H;

Hp - eθipo — bp (C.2)

where 6 is chosen so that p ss properly normalized.

From the trial state p asd the state p (which is orthogonal to p). construct

the state p:

P =
p + apo

(C.3)T-H^
where a is a variational parameter. Calculating the expectation value of H is the 

state p as a function of or, one finds the value of a that minimizes this expectation 

value. The state pl is a closer approximation to the true ground state of H, and 

el — (ip1∣H∣≠ι) is an improved estimate of the ground state energy. This method cas 

be iterated, with p serving as the trial state for the next iteration.

To summarize the formulae for ose iteration (all expectation values are taken with 

respect to the trial state p):

J =

b = - m2
(-ff3)-3(ff)(⅞ι)+2(ff)3

(C.4)

(C.∙5)
263
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a = f-jp + 1 

Q = (H)+ab

(C.6)

(C.7)

0 0 

1 1

and the state ≠ι is given by Eqn. C.3.

C.l Useful Techniques

This section describes the actual implementation of the Laeczos method, adapting 

standard techniques^, 31, 19].

A basis for the position states is developed as follows. Since every site is occu­

pied by either ose or no vortices, the position states may be represented as binary 

ietegers[15]. If there are Nτ- rows and Nc columns, the lowest-order Nc bits represent 

the first row, the next Nc bits the second row, and so on. For example, with three 

vortices on a 2 x 3 lattice, the state

1

0

is represented by the number (1 + 2) + (32) = 35.

The internal states are also represented by a number: the smallest number of 

high-order bits required by the dimension of the internal space are reserved for this 

purpose. Is this way, the internal and position states are combined to give a single, 

unique integer.

The (modified) translation symmetry of the lattice vortices is used to block- 

diagonalize the Hamiltonian. To begin, consider the case of a trivial flux sector, 

so that the translation symmetry in the x direction is unmodified, and we need only 

consider the position part of the state. All of the position eigenstates that can be 

transformed into one another by shifting every particle to the left or right a certain 

eumber of sites will be combined into states with definite total i-momestum. For ex­

ample, the tthnslαtionally invariant (zero-momentum) state associated with Eqn. C.8

(C.8)
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is
_1_
√3

1 0 0 ∖ 0 1 0 ∖
∕ + ∕ +

011/ 101/
(C.9)

Clearly, it is only necessary to store one of the terms of the state to uniquely 

specify the state. By an arbitrary convention, we store the position state whose 

binary representation is a maximum as a representative of the entire transitionally 

invariant state. For example, the entire state Eqn. C.9 would be represented by the 

number 35.

Higher momentum states axe represented analogously. To generate a state with 

x-momontum kj, apply the projection operator

Nc-l
Vj = 53 c-imk>τm (C.10)

m=0

to the position eigenstate that is the representative (i.e., the maximum integer) for 

the momentum state. Note that by our phase convention, the theffiiOent of the 

representative state is real.

The operators in the Hamiltonian correspond to bitwise operations on the integer 

representatives. The integers generated by moving bits around won’t necessarily be 

proper representatives of the new states generated; every time a state is generated, 

it is rotated to produce the maximum possible number, which is stored as the repre­

sentative for the state. The code also keeps track of how many shifts are necessary 

to produce the representative; for non-zero momentum, the state must be multiplied 

by a factor exp(iskj), for s shifts, due to our phase convention.

Now complications arise if the sector doesn’t have trivial total flux, due to the 

modification of the translational symmetry discussed in Sec. 3.4. Now the operator 

F must be applied to the internal state every time every time a particle is rotated 

through the International Dateline. For example, consider the uncharged sector of the 

S3 throe vortex problem, in which one finds throe internal states that transform into 

each other under the action of F. Labeling the internal states ∣1), |2), and |3), F acts 

as the throe-cycle (123). The transitionally invariant state analogous to Eqn. C.9 is
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_1_
y/5

∕ 1 0 o \ 1 1 0 1 o \ l i 0 0 1 ∖λ
|1)® ) + |2) ® ) + |3) ® )

V 0 11/ 101/ 110/ y
(C.11)

Only the first term is stored as a representative. If the bit in the top left corner jumps 

one space to the left, the state generated is

0 0 1

0 1 1
|3) ® (C.12)

The internal state changes because the first vortex becomes last, so the operator F~γ 

acts on the state. The new state is not a valid representative, it must be rotated 

twice to the left to be maximized. In doing so, another particle hops to the left across 

the International Dateline, so F~l acts again. The representative of the new state 

generated by the upper left bit hopping is finally determined to be

1 0 0

1 0 1
|2) ® (C.13)

Had the state been in a higher momentum block, the phase exp(2fΛy) would have 

been generated.

In calculating expectation values, care must be taken in evaluating the norms of 

the states[15]. For example, the norm of the state represented by Eqn. C.12 is 3, but 

the norm of the state represented (in position space) by

0 0 0

1 1 1
(C.14)

is 32 = 9 in a trivial flux sector, or 3 again if in an uncharged sector whose states are 

not invariant under F.

In a non-trivial charge sector, further complications arise. For example, as noted 

in Sec. 3.4, in a non-trivial Z2 charge sector, the translation group is Z2vc∙ The non­
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2vanishing states are the odd-momentum states, and there is a further factor of (2) 

in the norm.

C.2 Implementation Details

All of the code described in this appendix and App. B was written in ethnahrd 

ANSI/ISO C. Much of it was originally developed on a Sun Spa^ta^on 10, and 

has been ported to a Pentium 166MHz. based PC running Linux 2.0.29 and Win­

dows 95, and to a dual-CPU Sun UltraSparc.
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