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Abstract 

Let m = m1f2 where m1 is a square-free positive integer and m 

is congruent to 1 or 2 mod 4. A theorem of Gauss (see [5]) states 

that the number of ways to write m as a sum of 3 squares is 12 times 

the size of the ring class group with discriminant -4m in the field 

m(J:m;). The proof given by Gauss involves the arithmetic of binary 

quadratic forms; Venkow (see [12]) obtained an alternative proof by 

embedding the field m(J-m1) in the quaternion algebra over (Q. This 

thesis takes Venkow's proof as its starting point. We prove several 

further facts about the correspondence established by Venkow and apply 

these resu·1 ts to the study of irnagi nary quadratic ring cl ass groups. 

Let H denote the quaternion algebra over m, let E denote the 

maximal order in H and 1 et U denote the group of 24 units in E. 

Let s1(rn) be the set of quaternions in E with trace 0 and norm m. 

The group U acts on B0(m) by conjugation; let e
1

(m) denote the set of 

orbits of B0(m) under the action of U. For µ=ui1+vi 2+wi 3eB1(m) 

we let [u,v,w] denote the orbit containing µ. 

Venkow proved Gauss's result by defining a sharply transitive 

action of r(m), the ring class group with discriminant -4m, on 

B(m). In chapter 2 we establish some more subtle properties of this 

action. The prime 2 ramifies in the extension m(J-m1) and its prime 

divisor p 2 is a regular ideal with respect to the discriminant -4m. 

It is shown that the class containing p 2 maps [u,v,w] to [-u,-w,-v]. 

It is shown that if an ideal class c maps [r,s,t] to [u,v,w] then the 

class -l c maps [-r,-s,-t] to [-u,-v,-w]. From these two facts, 

several results follow. If c maps [r,s,o] to [u,v,w] then c has 
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order 2 iff one of u, v or w is 0. If c maps [r,s,o] to [u,v,v] 

then c has order 4 and the class c2 contains p 2. If c maps 

[r,s,o] to [u,v,w] then c-l maps [r,s,o] to [-u,-v,-w]. If m can be 

written as a sum of two squares then a class c is the square of another 

class (i.e. c is in the principal genus) iff c maps some bundle 

[u,v,w] to [-u,-v,-w]. 

We apply these results to the following problem; given an odd prime 

p and an odd integer n, in which ring class groups are the prime 

divisors of p regular ideals in classes of order n? It is shown that 

the number of such ring class groups having discriminant -4m where m 

i s a sum of two squares is related to the class number h(-4p) of the 

field IJl(J-p). For n = 3 the number is given by 

1 16 f(p)h(-4p) - 6h(-4p) + 2 if p = 1 mod 4 

l f( p) h( -4p) - 6h(-4p) if p = 3 mod 8 8 

0 if p = 7 mod 8. 

Here f(p) is the number of ways to write p as a sum of 4 squares 

pl us the number of ways to write 4p as a sum of 4 odd squares. A 

simple algorithm for producing the discriminants of all such ring class 

groups is given. Similar, but more complicated formulas hold for odd 

numbers n greater than 3. 
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Introduction 

The aim of the present work is to study the ring class groups r(m) 

in the imaginary quadratic extensions ~(J-rn). Let m be congruent to 

1 or 2 mod 4. In Disquitiones Arithmeticae, Gauss proved that h(m), 

the order of r(m), is related to the number of integral representations 

of m by the quadratic form x2 + y2 + z2. 

Theorem: (Gauss) Let t(m) be the number of vectors 

with gcd(x,y,z) = l and with x2 + y2 + z2 = m. Then 

t(m) = 12 h(m). 

3 (x,y,z) e 7l 

The proof of this theorem given by Gauss is indirect in the sense that 

it gives no explicit 12 to 1 correspondence between the integral 

representations of m by the form x2 + y2 + z2 and the cl asses in 

r(m). In the m·id 1920's, Venkow discovered a new proof of this theorem 

which does display a direct correspondence. 

The idea of Venkow's proof is to view the equation x2 +y2+z2 = m 

as a norm equation in the Hurwitz quaternions. The ring, E, of 

Hurwitz quaternions is the ring E in the rational quaternion algebra 

with 7l-basis i 1, i 2, i 3 and o = ~1 + i 1 + i 2+ i 3). For 

µ = w + xi 1 + yi 2 + zi 3 in H, the norm of µ, denoted Nµ, is 

w2 + x2 + y2 + z2 and the trace of µ, denoted Trµ, is 2w. If µ 

is not in m then the minimal polynomial of µ over IQ is 

A.2 - (Trµ)A + Nu. So µ has minimal polynomial A.2 + m = 0 iff w = 

and x2 + Y2 + z2 = m. Hence the integral representations of m by 

the form x2 + y 2 + z2 are in l - l correspondence with the 

embeddings of m(J-m) in E. 

0 
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The group of units U in E has order 24 and acts on E by 

conjugation. If a and s are elements of E in the same orbit under 

this action then a and s satisfy the same minimal polynomial over 

m. Let B1(m) denote the set of orbits containing Hurwitz quaternions 

with relatively prime coefficients which satisfy the polynomial 

')...2 + m = 0. 

Venkow defined an action of r(m) on B1(m) which he showed to 

be transitive. He also showed that the stabilizer of any element of 

B1 (m) is the identity in r(m) from which it follows that 

h{m) == IB1 (m)I. Lastly Venkow showed that every orbit in B1 (m) has 

size 12. Thus Venkow showed that the t{m) integral representations 

of m by x2 + y2 + z2 are in one to one correspondence 

cx2+ y2+ z2 - xi,+ yi2+ zi) with the embeddings of m{J-m) in E. 

These in turn are divided into h(m) orbits each of size 12 and so it 

follows that t(m) = 12 h(m). 

This is a brief outl i ne of Venkow' s proof written in the language 

of permutation representations. Venkow' s ori gina 1 proof was not 

written in such a way; Hans Peter Rehm is responsible for having 

reformulated the original work using modern ideas and language. 

The present work is divided into four chapters. Chapter 1 contvins 

background material about the Hurwitz quaternions and about ring class 

groups in imaginary quadratic extensions. Chapter 2 is a detailed 

explanation of Venkow's proof of the theorem. In Chapter 3 we examine 

the action of r(m) on B1(m) defined by Venkow. We prove several 

new facts about this action, some of which are similar to results of 

Mac Duffee {see Mac Duffee [7]) and Taussky (see Taussky [11]). The 
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role played in this work by the ring E is played in their work by the 

ring of 2 by 2 ~-matrices. Their results deal with classes of 

2 x 2 ~-matrices under unimodular similarity. 

In Chapter 4 we use the facts proved in Chapter 3 to answer the 

following question. Let p be an odd prime. How many imaginary 

quadratic ring class groups r(m), with m a sum of two squares, have 

the property that the prime divisors of (p) are regular ideals in 

classes of order 3 in r(m)? It is shown that this number is related 

to h{p), the class number of (Q{,j-p) and that all such m are 

generated by values of a certain form. 

In the conclusion we list some unsolved problems which stem from 

this work. 
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Chapter 1. Ring Class Groups in m(J-m) and the Quaternion Algebra. 

Let m be a positive (rational} integer which is congruent to 

l or 2 mod 4. Write m = m1f2 where m1 is square-free. Let K be 

the field ~(J-m1 ) and let 0- be the maximal order in K. 

Definition 1.1. The ring mod f, Of, is the suborder of 0- with 

"7l.. -module basis 1 and f,J-m1. 

Let A denote the semigroup of ideals in () and let Bf denote 

the subgroup of A consisting of ideals Ol with (N01,f) = 1. 

Definition 1.2. An ideal 01. of Of is regular if Ol = Of n ;:r for 

some J e Bf. 

Let Af denote the semigroup of regular ideals of Of and let 

Pf denote the subsemigroup of Af consisting of the ideals which are 

principal in Of· Define equivalence, denoted .....,, of ideals in Af 

as follows; for (1(1, ot2 e Af' we say ot1 ....., or2 iff there exist 

(y1), (y2) e Pf with (y1 )at1 = (y2)et2. Let r(m) denote the set of 

equivalence classes of Af. The multiplication in Af induces a 

multiplication in r(m). With this multiplication, r(m) is an 

abelian semigroup. In fact, r(m) is a finite, abelian group (see 

Cohn [ l J) ca 11 ed the ring class group u.'lith discriminant -4m. If 

f = l, the ring class group is exactly the class group of the number 

field m(J-m,}. 

Let Ol. e Af and suppose Ol. has "7l.. -basis (a,b+f,J-m1). The ideal 

in Af with "ll..-basis (a,b-f,J-m1) is called the conjugate of ex. and 

is denoted Ot'. We will use the fact that if Ot is in the class c 

then 0\1 is in the class c-1 . 
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Example 1 .l. Let m = 41, so m1 = 41 and f = l. In this case r(m) 

is the class group of the field ~(j-41). The group r(m) is 

isomorphic to 71. 8 and the class c containing the ideal 

0t = (3,l+J-41) generates r(m). The following table gives a 

representative ideal from each class. 

Class Representative Ideal ---

1 (1) 

c ( 3'1 +J-41) 

c2 ( 9, 7+J-4 l} 

c3 ( 6,5+J-41) 

c4 (2 'l +J-41) 

cs ( 6,5-J-41) 

c6 ( 9' 7-J-41) 

c7 ( 3 ' 1 -J -41 ) . 

Tabl~· The group r(41). 

Two classes c and f) in r(m) are in the same genus if their 

ratio C.f)-l is a square in r(m). Thus r(41) is composed of two 

genera [1,c2,c4,c6J and [c,c3,c5,c7J. The subgroup of squares in 

r(m) is a genus, called the principal genus and denoted here by r 2(m). 

Clearly r(m)/r2(m) is an elementary abel ian 2-group. In Disquitiones 

Arithmeticae [ 5 ], Gauss introduces r(m)/r2(m) by means of binary 

characters on r(m) and shows that lr(m)/r2(m)I = 2t-l where t is 

the number of distinct prime divisors of 4m. 

The ring class number h(m) is the order of r(m). When f = 1, 

h(m) is the usual class number of the field ~(j-m). In general 

h(m1)!h(m1f 2) as we will see in Section 3. The following theorem of 
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Gauss gives a simple means of computing h(m). 

Theorem l .1. (Gauss [ 5]) Let t(m) denote the number of vectors 

(x,y,z) e 7l
3 with gcd(x,y,z) = 1 and with x2 + y2 + z2 = m. 

Then 

h(m) = t(m) 
12 if m = l ' 2 mod 4 

h(m) = t(m) 
24 if m= 3 mod 8 m > 3 

h(3) = 1 = t( 3) 
8 

Gauss 1 s proof of Theorem 1 .1 is in Disquitiones Arithmeticae 

written in the language of binary quadratic forms. One can show that 

there is a l - l correspondence between classes of binary quadratic 

forms with discriminant -4m and classes of ideals in the ring Of· 
For details of this correspondence see Cohn [ l ], chapter 14 (note that 

weak and strict equivalence of forms coincide since the discriminant is 

negative). The final statement of the theorem appears in articles 289-

292 though the proof relies on previous work from Section V. Gauss's 

proof has the interesting feature that it gives no 12 to l correspon-

dence, when m = 1 mod 4, and no 24 to l correspondence, when 

m = 3 mod 8 between the triples counted by t(m) and the form classes 

counted by h(m). 

In 1922, Venkow [12] published an elegant new proof of Theorem 1.1. 

This proof displays an explicit correspondence between the triples 

counted by t(m) and the classes counted by h(m). The proof makes 

use of the maximal order of the rational quaternion algebra and will be 

outlined in the next section. 

Example l .2. As an example of Theorem 1 .1 consider m = 41. In this 
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case h{m) is 8 so t(m) = 96. The 96 ways to write 41 as a sum of 

three squares come from the following three representations 

41 = u2 + v2 + w2 by permuting the order of u, v and w and 

changing their signs. 

41 - o2 + 42 + 52 

41 = 32 + 32 + 42 

41 = 12 + 2
2 + 6

2 . 

Next let m = 163. Here t(m) = 24, the representations of 163 

coming as above from the representation 

By Theorem l .1 h(l 63) = l , as is well-known. 

We end this section with a brief introduction to the Hurwitz 

quaternions along with some facts about them that will be of interest 

to us in later chapters. 

DefinHion 1.3. The quaternion algebra H over IQ is the 4 dimen-

sional ~-algebra with vector space basis 1, ;
1

, i
2

, i 3 
and with 

multiplication of basis elements according to the rules 

(A) 1 . \ = ir . l ::: ir r = l ' 2, 3 

(B) . 2 -1 1 ' 2, 3 lr = r ::: 

( c) ili2 ::: -i2il = i 3' i2i3 ::: -i3i2 ::: i 1 ' i 3 i l = -i l i 3 = i 2. 

If a.= a+ bi 1 
+ ci

2 
+ di 3 e H the conjugate of a., denoted a. is 

the quaternion a. = a - bi 1 
- ci 2 - di 3. The norm and trace of a, 

denoted N:x and Tra are given by 

- 2 2 2 2 
Na = a.a = a + b + c + d 
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and Tra. = a. + a = 2a. 

Note that both Na. and Tra. are rational; if a ~ 01 then the 

minimal polynomial of a. over (Q is 

m (x) = 2 x - (Tra.)x + Na. . 
a. 

In particular if Tra. = 0 and Na. = m then a satisfies the minimal 

polynomial x2 + m over (Q. It is easily seen that Na. =Na. and 

that conjugation is an anti-isomorphism of H; i.e. (a.[3) =~a.· Since 

Na. = 0 ·jff a.= 0 it follows that H is a division algebra over (JJ. 

Quaternions a. with Na., Tra. e 7l are called integral quaterni­

ons. Integral quaternions can have non-integral coefficients. In 

particular we shall deal with the quaternion 

for which we have No = Tro = l. 

Definition 1 .4. Let E be the 7l-module in H spanned by 

i 1, ; 2, i 3, 0; so E = [z0o+z1i 1+z2i 2+z3i 3 :zie7l}. Then E is 

called the set of Hurwitz quaternions. 

Not all integral quaternions are Hurwitz quaternions; for example 

a= (-~)i 1 + (~)i 2 + (1)i 3 has trace 0 and norm l but a. is not an 

element of E. One can check that E is a maximal or<ler in H· 
' 

i.e. E satisfies the following four conditions, 

(i) E contains a vector space basis for H over (Q. 

(ii) E is a subring of H and l e E. 

(iii} Each element of E satisfies a minimal equation over (Q 

having coefficients in ?l. 
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(iv) E is not properly contained in any other subset of H with 

properties (i)-(iii). 

In fact E is the unique maximal order in H. For a proof of this 

fact see Dickson, Algebras and Their Arithmetics [ 3 ], Section 91. The 

following theorem due to Hurwitz will be very important in what 

follows. 

Theorem 1.2. (Hurwitz [ 6], pg. 313} The quaternion norm, restricted 

to E, is a Euclidean norm; i.e. given a, s e E, with sf 0, there 

exist n• p e E and n, a e E with 

a = nS + p N(p) < N(S) 

and a = sn + a N(cr) < N(S). 

The proof is in Dickson [ 3] on pages 148 and 149 and will not be 

repeated here. However we illustrate the theorem in the next example. 

Exa!!}-2.l_~l:_l. Let a, f3 e E. This example first explains how to choose 

n and p so that a = nf3 + p and Np < Nf3, and then illustrates 

this algorithm with a = l + 4i 2 + 5i 3 and S = 3. 

Step 1: Let h = aS and m = Ns. Write h = h0o + h1i 1 + h2i 2 + h3i 3 
and write n = x0o + x1i 1 + x2i 2 + x3i 3 where the x0, x1, x2, x3 are 

to be determined. 

Step 2: Choose n so that N(h-mn) < m2 as follows; 

(l) Choose x
0 

e 7l so that lh
0

-mx
0

j ~ 1~ (here x
0 

will be either 
h h

0 
h 

[m0
] or [rr1J + l where [m0

] is the integer part of h
0
/m). 

(2} Choose xt e 7l (t= 1,2,3) so that 
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Since h - mri = 

+ ±(h
0 

+ 2h1 - mx
0 

- 2mx1 )i 1 

+ ±( h
0 

+ 2h2 - mx
0 

- 2mx2) i 2 

+ ~( h
0 

+ 2h3- mx
0 

- 2mx 3)i 3 

we have 

l 2 l 3, 2 
N(h- mri) = 4·(h -mx ) + 4 2-' (h + 2ht- mx - 2m.xt) 

0 t=l 0 0 ' 

so m2 1 2 13 2 2 
N ( h - m11 } ~ 16 + 4 3m = 16rn < m 

Step 3: Let p =a. - ris where TJ is as above. 

Then 

so m2 
> mN(p) which shows that ri and p as chosen here can be 

used in Theorem l .2. 

Now let a. = l + 4i 2 + 5i 3 and s = 3. ThU.s h = 3 + 12i 2 + 15i 3 

and m = 9. We must choose x0, x1 , x2, x
3 

to satisfy 

( 1 ) 3 9 < ~ - x 
0 - 2 

( 2) 3 - 1 Bx -< 9 · .,l -

( 3) 3 + 24 - 18x2 ~ 9 

- choose 

- choose 

- choose 

x = 0 
0 

x - 0 1 -

x - 1 2 -

(4) 3 + 30 -18x3 ~ 9 - choose x3 = 2. 

Let TJ = i 2 + 2; 3 and let p = (1+4i 2+ 5i 3) - (i 2+ 2i 3)3 so 

p = l + ; 2 - i 3. Note that Np = 3 < 9 = Ns. 

In the above case s =Np= pp so p is a right divisor of S· 

Al so a. = TJS + p = (71p· + l )p thus 0 is a right divisor of a. as well. 
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Furthermore, Np= 3 = gcd(Na,,NS) so p is a greatest common right 

divisor of a and S· In fact for any pair a. s e E we obtain a 

greatest common right divisor of a and s by repeated use of 

Theorem l .2. 

Corollary 1.1. (Euclidean ·Algorithm for E) Let a. s e E. Suppose 

~l, ... , ~r+l and p1 , ... ,Pr are elements of E such that 

a = ~lS + Pl 

S = ~2pl + P2 

pl = ~3P2 + p 3 

Pr-1 = ~r+l Pr· 

N(pl) < N(S) 

N(p2) < N(pl) 

N(p3) < N(p2) 

Then Pr is a greatest common right divisor of a. and S in E. 

The algorithm given in Example 1 .9 chooses p such that 

Np< ~-NB. One can show that the Euclidean algorithm for E finds a 

greatest comr1on divisor of a. and s in no more than 

C log(min(Na,NS)) steps where C is a constant. From Corollary 1.1 

we obtain three further results all clue to Hurwitz. 

Corolla.Q'.__Ll_. (Hurwitz [ 6], pg. 313) The ring E is a principal 

ideal r'ing, i.e. every left ideal A of E can be written A= Ea 

for a e E. 

The quaternion a in Corollary l .2 is determined up to left 

multiplication by a unit; a is the greatest common right divisor of 

all elements of A. Hence a can be obtained using the Euclidean 

algorithm. 
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Corollary l .3. (Hurwitz [ 6 ], pg. 314) If o is a greatest common 

right divisor of a. and s in E then there exist Tll' ri2 e E such 

that 

ri1a. + ri2S = o · 

Corollary 1.4. (Hurwitz [ 6 ], pg. 322) Let a. e E and let p be a 

prime in Z. If p divides Na. then there exist n1 , n2 e E with 

Nn1 = Nrr2 = p such that rr1 is a right divisor of a. and rr2 is a 

left divisor of a.. 

Proof. Suppose to the contrary that no quaternion of norm p is a 

right divisor of a.. By the Euclidean algorithm we have that a and 

p are relatively prime in E. Hence by Corollary 1.3 there exist 

T\l' ri2 e E with 

Tl ,a. + Tl 2 p = 1 • 

Now N(111 )N(a.) = N(l -ri2P) =,:0.-112p)(l -ri2P) 

hence N(ril )N(a.) =· (1 -712p.)(l - T\2P) = 1 - Tr(T\l )p + p2 

so N(ri1 )N(aJ = l + tp where t e "lL. This contradicts the 

assumption that p divides Na. 

Exam_pl e l . 4. Let a = 3 - 2i l + ;2 - i 3 so Na.= 15. We can factor 

as a. = (l + il - i2)(-2i, + i2) 

or as a. = {+; 1 + 2i 3)(-i1 + i 2 - ; 3) 

The first factorization gives a. as a quaternion of norm 3 times a 

quaternion of norm 5. The latter factorization gives a. as a 

quaternion of norm 5 times a quaternion of norm 3. 

a. 
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Definition 1.5. Let U denote the group of units in the ring E. 

A Hurwitz quaternion E is a unit in E if and only if NE = 1. 

The group of units in E has order 24 and is generated multiplicatively 

by 0, i
1 

and i2. There are 8 units with exactly one nonzero 

coefficient, [l ,±i 1 ,±'i 2,±i 3J. The remaining 16 units have 4 nonzero 

coefficients and are listed below; 

The group U acts on E by conjugation; this action will play a 

fundamental role in what follows. The following table is included for 

reference. 
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Table II. U/±1 acting on Eby conjugation 

s E:(a+ bi 1 + ci 2 + di 3)s -1 

l a + bi 1 
+ ci 2 + di 3 

il a + bi 1 - ci 2 - di 3 

i2 a - bi l + ci 2 - di 3 

i3 a - bi l - ci 2 + di 3 

¥i+i1+i2+i3) a + di 1 + bi 2 + ci 3 

l ( l . . . ) "2- + 11- 12+ 13 a + di 1 - bi 2 - ci 3 

!<-1 + il + i2- ·j3) a - di l + bi 2 - ci 3 

l ( l . . . ) 2- - 11+ 12+ 13 a - dil - bi 2 + ci 3 

l '1 . . . ) 2t -1,-12-13 a + ci 1 + di2 + bi3 

l (1 . . . ) 2· +1,+12-13 a + ci 1 - di2 - bi3 

1 (1 . . . ) 2 -1,+12+13 a - ci 1 + di2 - bi3 

l (l . . . ) 2 +1,-12+13 a - ci 1 - di2 + bi3 
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The three facts stated in the next 1 emma fo 11 ow by ins pee tion of 

Table II. 

Lemma 1 .1. For all µ e E and c e U, 

(i) N(cµc-1} = N{µ) 

(ii} Tr(cµc- 1 ) =Tr(µ}. 

(iii) If all coefficients of µ are integers then all coefficients 

of t:ps-l are integers and the greatest common divisor of the 

coefficients of µ equals the greatest common divisor of the 

coefficients of cµc- 1 

Definitfon 1.6. Let µ e E. The bundle of µ, denoted [µ], is 

[ µ] = ( cµs - l : c e UJ . 

If µ = ui 1 + vi 2 + wi 3 we may also denote [µ] by [u,v,w]. Let e 

be a bundle and let µ e e. Define the norm of e, denote Ne, and 

trace of e, denoted Tr9, 

by Ne = Nµ and Tre = Trµ. 

By Lemma 1 . l the norm and trace of e a re we 11 -defined; i . e. i nde-

pendent of the choice of µ from 9. 

Bundles of trace 0 will be of particular interest to us. If e 

is a bundle, µ e e and Tre = 0 then all coefficients of µ are 

integers. So the following definition makes sense. 

Definition 1 .7. Let 8 be a bundle of trace 0 and let µ e 9. 

Define the content of e, denoted ce to be the greatest common 

divisor of the coefficients of µ. By Lemma l .l (iii), c(e) is 

well-defined. 
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Example 1 .5. Let µ = 6i 1 + 3i 2, and let e = [µ]. Then e contains 

the following 12 quaternions; 

(6i1 + 3i2) 

(6i2+ 3i3) 

(3i1+6i3) 

(-6il+3i2) 

(-6i2+ 3i3) 

(-3il + 6i3) 

(6il - 3i2) {-6i1 - 3i2) 

(6i2-3i3) (-6i2- 3i3) 

(3il - 6i 3) (-3i1-6i3)· 

Here we have Ne = 45, Tre = 0 and Ce = 3. The next two lemmas show 

that with a few exceptions, the size of a bundle is always 12. The 

first l enma is due to Hurwitz, the second to Venkow. 

Lemma ·1.2. (Hurwitz [ 6], pg. 308) If µ e H - IQ then the centralizer 

of µ in H is exactly the set of rational polynomials in µ. 

Suppose µ e E, with Nµ > 3, and Trµ = 0, and suppose the 

coefficients of •µ are relatively prime. Any rational polynomial in 

µ can be put in the form q
0 

+ q1µ where q
0

, q1 e ~ hence the 

only rational polynomials in µ which are units are ±1. So for such 

µ, the centralizer of µ in U is the subgroup [±1}. So 

_illL_ 24 
l[µJj = 1Cu(0)1 = ~ = 12 

here Cu(µ) denotes the centralizer of µ in U. This proves the 

following lemma. 

Lemma l .3. (Venkow [12]) Suppose e is a bundle with Ne > 3, 

Tre = O and c(e) = 1. Then the size of e is 12. 

We finish this section with three technical results about E. 

Lemma l .4. Let µ = ui 1 + vi 2 + wi 3 be a nonzero element of E with 

gcd(u,v,w) = 1. Let S = cr + xi 1 + yi 2 + zi 3 be an element of E. 
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The [31JS-l = -µ iff a = 0 and xu + yv + zw = 0. 

Proof. Let S = [a. e E: a.JJ= -JJa.} and let 

Rehm shows that S is a rank 2 7l-module (see [ 9 ], pg. 9). It is clear 

that T is a rank 2 7l-module. This lemma states that S = T. 

First observe that Tc S. For if [3 = xi 1 + yi 2 + zi 3 e T then 

[31113 = (xi 1 + yi 2 + zi 3)(ui 1 + vi 2 + wi 3)(-xi 1 -yi 2 - zi 3) so 

!WS = (i 1{wy-vz) + i 2(uz-wx) + i 3(vx-uy))(-xi 1 -yi 2-zi 3). 

Hence [3JJ[3 = i 1 ( -z2u + xzw - y2u + xyv) 

+i 2(-x2v+ xyu- z2v+ yzw) 

. ( 2 2 ) +i 3 -y w+ yzv - x vi+ xzu . 

So [3JJS = i 1(-u(y2 + z2) + (xyv+ xzw)) 

+i
2(-v(x2 + z2) + (xyu+ yzw)) (*) 

The linear condition XU + YV + ZW = 0 gives 

( 1) x(yv + zw) = -x2u 

(2) y(xu+ zw) 2 = -y v 

( 3) z(xu + yv) 2 = -z w. 

Substituting (1), (2) and (3) into(*) gives ~ws = Ns(-ui 1 -vi 2 -wi 3) 

and so fWS -l = -µ. This shows Ts S. 

Next we show that every element of S has trace 0. Assume to the 

contrary that s e S and Tr(s) f 0. Write [3 =a+ xi 1 + yi 2 + zi 3 
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and note that 

so 

s2 centralizes µ. 

A straightforward computation shows that 

- q2 As a I 0 we see that xi1 + yi 2 + zi 3 = qu with q - 20 . 

Thus SµS-l = µ which is a contradiction. 

Hence Tr(s) = O for all s e S. So if s e S then all 

coeff'icients of f3 are integers. Since (u,v,w) = l there exists 

a 3 x 3 unimodular ~-matrix 

-cl 
ml2 ml3) 

M m22 m23 - m21 

m31 m32 ffi33 

en with M ~J = g . Let K = m2lil + m22;2 + m23i3 and let 

~ = m3lil + m3212 + m33i3; K and ~ are in T, hence s. Also 

det M == ± 1 implies that the 3 2 x 2 minors of 

(m21 m22 m23) 
m31 m32 m33 

are relatively prime. So K and ~ form a ~-module basis for S, 

which completes the proof that S = T (see Smith [10], pg. 365). 

The next two results deal with the action of U on E by left 

multiplication. The following table is included for reference; 
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the notation (a,b,c,d) is used to abbreviate a + bi 1 + ci 2 + di 3. 

Table III. U/±1 acting on E by left multiplication 

E: E(a,b,c,d) 

(l ,0,0,0) (a,b,c,d) 

(0, 1 ,0,0) (-b,a,-d,c) 

(0,0,l,0) (-c,d,a,-b) 

(0,0,0,l} (-d,-c,b,a) 

1 l 1 1 (a-b-c-d) ( a+b-c+d )_ (a+b+c-d) (a-b+c+d)) 
<2,2·2·2> ( 2 ' 2 ' 2 2 

1 1 1 1 (-a-b+c-d} · (a-b-c-d) ( -a+b-c-d) (a+b;c-d) ) <-2,2,-2,2> ( 2 ' 2 2 

l l l 1 ( -a-b-c+d) (a-b+c+d) (a-b-c-d) ( -a -b+c -d ) , 
<-2, 2' 2' -2> ( 2 ' 2 2 2 I 

1 l l 1 (-a+b-c-d) _(-a-b-c+d) ( a+b-c+d) ( a-b-c-d) 
> <-2·--2-,2-·2> ( 2 ' 2 2 2 

1 1 l 1 (a+b+c+d) (-a+b+c-d) ( -a-b+c+d) (-a+~-c+d)) <2,-2,-2,.-2) ( 2 ' --2- 2 
1 ·1 1 -1 {a-b-c+d) (a+b+c+d) (a-b+c-d) {-a-~+c+d)) 

<2-'2'2' 2> ( 2 ' 2 2 

l 1 1 1 (a+b-c-d) (-a+b-c+d) ( a+b+c+d), (a-b-c+d} > <2, --2-·2··2> ( 2 ' 2 2 2 

l 1 1 l (a-b+c-d) (a+b-c-d} (-a+b+c-d} (a+b+c+d} 
} <2·2·2·2> ( 2 ' 2 2 2 
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Lemma l .5. Let 6 =a+ bi 1 + ci 2 + di 3 e E and suppose c is a unit 

for which we have either 

(A) Eo = a - bil - ci 2 + di 3 

or (B} E6 = a - bil + ci 2 - di 3 

or (C) £6 = a + bi l - ci 2 - di 3. 

Then for some p e U, the quaternion p6 has 2 zero coefficients. 

Assume (A) holds, so E6 =a - bi 1 - ci 2 + di 3. Then £6 

. ( ).-1 (. .-1)(" .-1) (" .-1)( ) so 1 3 Eo 1 3 = 6 so 6 = l 3 E l 3 13 6. 1 3 = 1 3 E 1 3 Eo • 

= i 6 ;-l 
3 3 

{*) 

From (*) we have i 3 c i31 = E-l = E". By inspection of Table II we 

If E = l then a + bi 1 + ci 2 + di 3 = a - bi1 - ci 2 + di 3 so 

b = c = 0. Let p = l. 

If c = -1 then -a - bi 1 - ci 2 - di 3 =a - bi 1 - ci 2 + di 3 so 

a = d = 0. Let p = 1. 

If E = i 1 then -b + ai1 - di 2 + ci 3 = a - bi 1 - ci2 + di 3 so 

a=-b and c=d. Let p=~(l+i 1 -i 2 -i 3 ). 
If c = -i, then b - ai 1 + di2 - ci 3 =a - bi 1 - ci 2 + di 3 so 

a = b and c = -d. Let p 
l (l . . . ) =2 +1,-12-13. 

If E = i2 then -c + d il + ai 2 - bi = a - bi l - ci 2 + di
3 so 3 

a = -c and b = -d. Let ~l . . . ) p=2 +i,+12+13· 

If E = -i 2 then c - di 1 - ai 2 + bi 3 =a - bi 1 - ci 2 + di 3 so 

a=c and b=d. Let p=t(l-i1 -i2-i 3). 

Cases (B) and (C) are handled similarly. 
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Lemma 1.6. If a is an element of E then for some unit s e U, all 

coefficients of c:a are in '71... 

P f W d 1 .d a b. c. d. h 11 f roo . e nee on y cons1 er a = 2 + 21
1 

+ 21 2 + 213 w ere a o 

a, b, c, d are odd integers. 

Case 1: a= b = c = d mod 4. ----

I h . 1 1,, . . . ) n t ls case et E = 2' - 11 - 12 - 13 . Then Tr(rn,) = ~(a+ b + c + d) 

so Tr(rn.) e '71... It follows that all coefficients of Ea are in 'll... 

Case 2: Exactly three of a, b, c, d are congruent mod 4. 

If -a=b=c=dmod4 let c=}(l+i1 +; 2 +i 3). 

Then Tr( rn.) = }<a - b - c - d) so Tr( Ea) e 'll.., hence a 11 coeffi ci en ts 

of t:a are in '71... If a=-b=c:::::dmod4 let E:=t(l+i 1 -i 2 -i3), 

if a = b = -c = d mod 4 1 et E = ~(l - i 1 + ; 2 - i 3) and if 

a= b = c = -d mod 4 let t: = t(l - i 1 - ; 2 + i 3). In each of these cases 

we have Tr(Ea) e '7l so all coefficients of Ea are in 'll... 

Case 3: Two of a, b, c, d are congruent to 1 mod 4, and two of 

a, b, c:, d are congruent to -1 mod 4, so a+ b + c + d = 0 mod 4. 

Let c = i(l -i 1 - i 2 - i 3). Then Tr( Ea) =~a+ b+ c+ d) so all 

coefficients of Ea are in '71... 
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Chapter 2. Venkow's Proof of Theorem l .l. 

In this section we sketch Venkow' s proof of Theorem l .1. The proof 

in detail can be found (in Russian) in Venkow's original paper and a 

somewhat rrodernized proof can be found in the article by Rehm [9 ]. 

Let m be an integer greater than 3 with m = 1, 2 mod 4 or 
3 m = 3 mod 8. Let T(m) denote the set of triples (x,y,z) e 7l with 

gcd(x,y,z) = l, and x2 + y2 + z2 = m. According to the notation of 

Theorem 1.1, t(m) denotes the size of T(m). 

The mapping (x,y,z) - xi 1 + yi 2 + zi 3 is a 1 - l correspondence 

between the elements of T(m) and the Hurwitz quaternions of norm m 

and trace 0 having relatively prime coefficients. Let B1(m) denote 

the set of bundles [µ] with N([µ]) = m, Tr([µ]) = 0 and c{[µ]) = l. 

Combining the l - 1 correspondence above with the fact that all 

bundles in B.1 (m) have size 12 (by Lemma 1.3) gives that 

12IB1{m)j = t(m). So to prove Theorem 1 .1 it suffices to prove the 

following two equalities; 

I B 1 ( m) I = h ( m) i f m = l , 2 mod 4 

jB1 (m) I = 2h(m) if m = 3 mod 8. 
(2. 1) 

To prove the equalities (2.1) Venkow made use of an action of the ring 

class group r(m) on B1(m) which we now discuss in some detail. 

Let e e s1(m) and let µ = ui 1 + vi 2 + wi 3 be an element of e. 
Then Nµ = m and Trµ = 0 so µ satisfies the minimal equation 

x2 + m = 0 over (Q. Hence the mapping J-m -+ µ induces a field 

isorrorphism from UHJ-m) onto (Q{µ) which maps the suborder Of- onto 

En~(µ). This isomorphism establishes a l - 1 correspondence 



20 

between integral ideals of the suborder Of- and ideals in the ring 

En (Q(µ). If crc = (a,b+ µ) is an integral ideal of Of we let 01µ 

denote its image at = (a,b+ µ) in En (Q(µ). 
].l 

To define Venkow's action of r(m) on B1 (m) we start with an 

action of the semigroup of regular integral ideals on B1(m). We first 

need two facts. 

!.-ernm~_Ll_. ( Venkow [12] or Rehm [ 9], pg. 6) Let Qt be a regular 

integral ideal of Of and let e e B1(m). If µl' µ2 are elements of 

e and K1, K2 are elements of E which satisfy EOCµ
1 = EK

1 and 

Eotp
2 = EK2, then 

(a) (K1µ1Ki1) and (K2µ2 K~ 1 ) are elements of E with relatively 

prime coefficients. 

Definitfon 2.1. Let 0( be a regular integral ideal of Of· Define a 

map netC from B
1 

(m) to B
1 

(m) 

e e B1(m), choose µ e 8 and 

II (9) = [KµK- 1]. 
Ot 

in the following way; given a bundle 

K e E such that E 01 = EK. Let 
µ 

By Lemma 2.1 the map rr
01 

·is wel1-defined and maps B
1

(m} into 

B1(m). 

Example 2.1. Let m = 41, let ot be the principal ideal (5+ a[4T) 

and let e = [l ,6,2]. Choose µ = i
1 

+ 6i 2 + 2i 3 so 

a( = (En (Q(µ) )( 5 + 8µ). Thus E Of = E( 5 + 8µ) so we can choose µ µ 

K = 5 + 8µ. Hence II()(([µ]) = [(5+ 8µ)µ(5+ 8p)-1J = [µ]. In this case 

rro-c. fixes e. 

Next let ;]' = (3,l+J-41) and let e = [0,4,5]. Choose 
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µ = 4i 2 + 5i 3 so EJµ = [e13+ e2(1 + µ): e1 ,e2e E}. In example 1.3 we 

showed that (1 + ; 2 - i 3) is a greatest common right divisor of 3 and 

1 + 1.1 hence we may choose K = (1 + i 2 - i). So 

II;:/ [ 0, 4 , 5] ) = [ ( 1 + i 
2 

- i 
3 
)( 4 i 2 + 5 i 3 )( l + i 

2 
- i 

3
) - l ] = [1 , 6, 2] . 

Venkow proved the following very important result. 

Lemma 2. 2. ( Venkow [12] or Rehm [ 9 ] , pg. 6) Let ot and J be 

regular integral ideals of Of• and let e be an element of s1 (m). 

Then 

(a) rrotJ(e) = ~(rrJ(e)). 

(b) If ot and J are in the same c1ass of r(m) then nor= TIJ. 

Definition 2.2. Let C be a class in r(m), and let 8 e s1(m). 

Define c(e) to be 11c(e) for at an ideal chosen from c. 

Note that 11
0
/ e) is independent of the choice of ot e c by 

Lemma 2.2 (b) so c(e) is well-defined. Also by Lemma 2.2 (a) we 

have 

(Ci) )( 8) = c L.9 ( 8) ) 

for all c, J9 e r(m) and e e B1(m). So c: 8 + c(e) is an action of 

r(m) on B1(m). The main result of Venkow's original paper on this 

subject is the following fact about this action. 

Theorem 2.1. (Venkow [12] or Rehm [ g ], pg. 9) Let r(m) act on 

B1 ( m) as above. 

(a) If e e B1(m) and c e r(m), then c(e) = e iff c is the 

class of principal ideals (i.e. the identity in r(m)). 

(b) If m = 1, 2 mod 4 then r(m) acts transitively on B1(m). 
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(c} If ms 3 mod 8 then B1(m) splits into exactly two orbits. 

As a corollary of this theorem we have the equalities labelled 

( 2. l). 

Corollary 2.1. (Venkow [12] or Rehm [g ], pg. 10) If rn =: 1, 2 mod 4 

then jr(rn) I = I B1 (m) I and if m s 3 mod 8 then 2 lr(m) I = I B1 (m) I · 

Proof. Let e e B1(m). Then the size of the orbit containing e is 

lr(m)J divided by the size of the stabilizer in r(m) of e. By 

Theorem 2.1, only the identity stabilizes e so the size of the orbit 

containing e is !r(m)I. This corollary follows immediately from 

Theorem 2 .1 ( b), ( c). 

E~_I!P~~2:-· Let m = 41. Since ms 1mod4 we know that r(41) 

acts transitively on B1(41). Let e = [0,4,5]. If c1 and c2 are 

distinct classes in r(m) then c1(o) and c2(e) must be distinct 

bundles. Otherwise we have c1 (e) = c2(e) so (c21c1 )(e) = e. Hence 

the nontrivial class cz1c1 stabilizes e which contradicts 

Theorem 2.1. So given any bundle [u,v,w] e B1(41) there is a unique 

class mapping e to [u,v,w]. Below we see B1(4l); beside each 

bundle [u,v,w] is the unique class £ e r(41) with 

~([0,4,5]) = [u,v,w]. Recall from Example l .l that r(41) is cyclic 

of order 8 generated by the class c which contains 

crr = ( 3, i + J -41 ) . 

2 [3,4,4] c 
3 [1 ,2,6] c 

[1,6,2] c 

[0,4,5] l 
4 [0,5,4] c 

[-3,-4,-4] c6 

[-1 ,-2,-6] c5 

[-1 ,-6,-2] c7 
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Note that ci and c-i lie opposite the vertical symmetry line and 

that c4 maps [u,v,w] to [-u,-w,-v] ·for a11 bundles [u,v,w]. 

This elegant proof of Theorem 1 .1 was the content of Venkow 1 s 

1923 paper. The ideas can be pushed a bit further by considering the 

semigroup of classes of integral ideals rather than just the group of 

classes of regular integral ideals. This generalization is delayed 

until more machinery has been established. 
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Chapter 3. A Closer Look at Venkow's Work. 

In this section we study the action of r(m) on B1 (m) in more 

detail. Our method of attack is to study the greatest common right 

divisor K e E which arises when we write Eatµ = EK. From facts 

about these greatest commo·n di vi so rs K we derive facts about the 

mapping nat. 

Definition 3.1. Let K and µ be elements of E and suppose the 

minimal equation of µ over (Q is x2 + m = 0. We say K is an 

ideal quaternion un>th respect to µ if there exists an integral ideal 

ct of cr:f which satisfies E<l( = EK. µ 

We begin with two lemmas concerning ideal quaternions, the first 

of which is due to Venkow. 

Lemma 3.1. (Venkow [12]) Let CTC be an integral ideal of Of and let 

K e E. If E01 = EK then µ ' 

CJ(_ =(EK n (Q(µ)). 
µ 

A consequence of Lemma 3.1 is that if K is an ideal quaternion with 

respect to µ then there is a unique integral ideal ot of Of which 

satisfies Eot = EK. 
µ 

Let µ be an element of E which satisfies x2 + m = 0 and let 

K be any element of E. Then EK n ~(µ) c EK so 

(*) E(EK n (Q(µ)) SEK. 

Lemma 3.1 says that K is an ideal quaternion with respect to µ 

iff the inclusion in(*) is an actual equality. 
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Lemma 3.2. Let m be congruent to 1 or 2 mod 4. Let K be 

an ideal quaternion with respect to µ and let CJ1 be the integral 

ideal of Of which satisfies 0-Cµ = EK n (Q(µ). Then NK =NOL where 

NO( denotes the norm of Ot as an ideal in a:; (i.e. the index O< in Of), 

and where NK denotes KK, the quaternion norm of K. 

froof: Without loss of generality we may assume that 0( cannot be 

written in the form z;:r where z e 7l and ;:r is an integral ideal. 

Assume Of.= {a,b+ µ) where a, be 7l and a > 0. We must show 

a = KK. 

Consider EK n ?l... This is an ideal of 7l which contains NK so 

EK n 7l = s7L where s ! NK. Write s = eK for e e E. Now 

NK = (NK)s = (NK)eK = (NK)(eK) = (NK)Re = K(NK)e s s s s s . 

Multiplying both sides of this equation on the left by (K)-l we have 

NK)-K = (-5- e. Hence 

oc µ = (EK n !Q{µ)) = (E(~~)e n ~(µ)) = (~K)(Ee n !Q(µ)) 

so 01 = (NK);:r where ;:r is the ·integral ideal of 7l[µ] given by 
µ s µ µ 

(Ee n !Q(µ)). By hypothesis, ~K = l so EK n 7L = (NK)?l. Thus 

(NK)?l =(EK n 7L) =(EK nan n 71.. = <J( n 7l = all 
µ 

hence a = NK as was to be shown. 

Example 3.1: Let m = 41 and O{ = (3, 1 + J-41 ). If µ = 4i 2 + 5i 3 
then Eelµ = EK where K = ~(- l -3i 1-i 2+i 3); Note NK = 3 = NOL 

Next let n = ;1 + 2i 2 + 6i 3. Here EOTn = EK1 where 

K1 = t(-l-i 1+i 2+3i 3). Again NK1 = 3. 
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The next theorem gives a characterization of ideal quaternions 

which is in practice more applicable than the definition. We do not 

assume in this theorem that the coefficients of µ are relatively 

prime. 

Theorem 3.1. Let K e E ·and suppose NK is an odd prime. Then K is 

an ideal quaternion with respect to µ iff KµK-l e E. 

Proof. The forward direction is a result due to Venkow vJhich was 

stated earlier as Lemma 2.1 (a). Conversely, suppose KµK-l is an 

element of E. Our first step is to reduce to the case where 

K = a + bi 1 + ci 2 + di 3 with a, b, c, d e 7l and a :f. O mod p. 

Let c be a unit. Then cK is an ideal quaternion with respect 

to µ iff K is an ideal quaternion with respect to µ and KµK-l e E 

iff (sK}µ{cK)-l e E. Furthermore NK = NcK so without loss of 

genero.l"ity vie may premultiply K by any unit s. Therefore by 

Lemma 1.6 we may assume that a, b, c, de ?l. Premultiply K by 

l, ; 1, ; 2 or ; 3 so that a~ 0 mod p. Let µ = ui 1 + vi 2 + wi 3; 

our first step is to compute KµK. 

- ( 2 2) ( KiiK = i1(up-2u c +d + 2v be-ad)+ 2w(ac+bd)} 

+ i 2(vp- 2v(b2+ d2) + 2u(ad+ be) + 2w(-ab+ cd)) 

+ i 3(wp-2w(b2+c 2) + 2u(-ac+bd) + 2v(ab+cd)). 

The condition KµK-l e E together with the fact that p is odd gives 

us the following three congruences from the above expression for KµK; 

(A) -u(c2+ d2) + v(bc - ad) + w(ac + bd) == 0 mod p 

(B) -v(b2 +d2) + u(ad+bc) + w(-ab+cd) == 0 mod p 

(C) -w(b2 + c2) + u(-ac+ bd) + v(ab+ cd) == 0 mod p. 
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Choose ;, e (0, 1,2, ... ,p- lJ such that 

(D) a..e + bu + cv + dw = 0 rrDd p. 

a(-b.e+ au+ cw- dv) = -b(-bu- cv- dw) + a2u + acw - adv 

_ u(a2+ b3) + v(-ad+ be)+ w(ac+ bd) 

_up+ (-u(c2+d2) + v(bc-ad) + w(ac+bd) 

= 0 mod p by congruence (A). 

Thus we have 

(E) -b,e + (au+ cw- dv) = 0 rood p. 

Similarly we obtain 

(F) -CJ..+ (av-bw+du) = 0 mod p using congruence (B) 

(G) -dt +(aw+ bv- cu)= 0 mod p using congruence (C). 

Now 

Ce+ v)K = (a.e +bu+ cv+ dw) 

+ i 1(-b,e+ (au+ cw- dv)) 

+ i 2 ( -cf, + (av - bw + du) ) 

+ i
3

(-d,e+ (aw+ bv- cu)). 

The congruences (D)-(G) imply that Ce+ µ)K-l == p e E so pK = J, + µ. 

Hence ot = (p,,e +µ} and EK== EOl as N(K) == NO( = p. 
µ µ µ 

Example 3.2. Let m = 59, let µ = ;1 + 3i 2 + 7i 3 and let 

K1 = 2 + ; 1 . Then K1µK1
1 

== ; 1 - (1
5
9)i 2 + (~3 )i 3 so K1 is not an 

ideal quaternion with respect to µ. 

Next let K = 2i
1 

+ ; 2. Then KµK-l = 3i
1 

- ;
2 

- 7i
3 

so K is 

an ideal quaternion with respect to µ. The proof of Theorem 3.1 
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describes how to find the ideal EK nm(µ). First premultiply K by a 

unit sK so that Tr(sK) i 0 mod NK. In our case let s = i
1 

so 

Tr(sK) = -4, and sK = -2 + i 3. Writing cK =a + bi 1 + ci 2 + di 3 and 

µ = ui 1 + vi 2 + wi 3 we need to find ;, between 0 and 4 such that 

a;, + bu + cv + dw = 0 mod. NK. So in our case we need -2;, + 7 == O mod 5. 

Choose ;, = l. Then EK n (Q(µ) = (NK, t +µ) = (5, 1 + µ) . 

. The reverse dire£tion of Theorem 3.1 is false in the case p = 2. 

Consider for example m = 11 

-1 Here KµK = -i 1 - ; 2 - 3i 3 

E(j{ for any ideal 0( of µ 

that Ot is an ideal of er 

with µ = ; 1 + 3i 2 + ; 3 and k = ;2 - i
3

• 

so KµK-l e E, but EK does not equal 

a-. To see this, suppose to the contrary 

and Eot = EK. 
µ 

Then NOC.= 2 by 

Lemma 3.2, but 2 remains prime in the extension (Q(j-=11) so there 

are no ideals of norm 2. The next theorem discusses the case p = 2. 

Theorem 3.2. Let K e E with NK = 2 and let µ be an element of E 

with Nµ = m and Trµ = 0. Then K is an ideal quaternion with 

respect to i1 if m= 1, 2 mod 4, and is not if m= 3 (rrod 8). 

Proof. Let a + bi 1 + ci 2 + di 3 be a Hurwitz quaternion of norm 2. 

Since 8 cannot be written as a sum of four odd squares we have 

a, b, c, de 71. Thus exactly two of a, b, c, d are 0 and the other 

two are ±1. So there are exactly 24 Hurwitz quaternions of norm ~ 

which are listed below: 

Hence if µl and µ2 are Hurwitz quaternions of norm 2 then µ1 = £µ2 
for some unit £. So either all Hurwitz quaternions of norm 2 are ideal 



29 

quaternions with respect to µ or no Hurwitz quaternions of norm 2 are 

ideal quaternions with respect to µ. The former case occurs exactly 

when there are integral ideals of norm 2, by Lemma 3.1. This is true 

iff m = 1, 2 mod 4 (see Cohn [l], pg. 90). 

For the remainder of this section we let c2 denote the class in 

r(m) which contains the prime divisor of (2). If m = 3 mod 8 then 

c2 is the identity class, but for m = l, 2 mod 4, c2 is nontrivial. 

The action of c2 on B1(m) is described in the following corollary to 

Theorem 3.2. 

Corollary 3.1. If m = 1, 2 mod 4 and [u,v,w] e B1(m) then 

c2([u,v,w]) = [-u,-w,-v]. 

In particular, c2 has order 2. 

Proof. Since m = 1, 2 mod 4, there exist ideals CJ{ in Of of norm 2. 

Let µ denote the quaternion ui 1 + vi 2 + wi 3 . Then Eotµ = E(i 2 - i 3
) 

since any pair of Hurwitz quaternions of norm 2 differ by left unit 

multiplication (see proof of Theorem 3.2). 

Note (i 2 - i 3)(ui 1 + vi 2 +wi 3)(i
2

- ; 3r 1 = -ui 1 - wi 2 - vi 3 

which completes the proof. 

Example 3.3. Let m = 41. Then c2 = c4 where c is the class 

containing the ideal (3, l + J-41) (see Example 1 .1). 

By Corollary 3.1 we have 

and 

c2([0,4,5]) = [0,-5,-4] = [0,5,4] 

c2([3,4,4]) = [-3,-4,-4] 

c2([1,2,6]) = [-1,-6,-2]. 
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In the case m = 3 mod 8, the set B1(m) breaks into two orbits 

under the action of r(m) according to the rule [u,v,w] and 

[-u, - w, - v] lie in distinct orbits. Conjugation by the quaternion 

K = i
2 

- i
3 

sends (ui 1 +vi 2 +wi 3) to (-ui 1 -wi2 -vi
3

) but in the 

case m = 3 mod 8, K is not the greatest common right divisor of 

an ideal ECJ(
11

• This will not be proved here. 

The next simple observatfon will turn out to be very important. 

Lem~~-:l· Let c be a cl ass in r(m) and 1 et [riJ and [µ] be 

in B
1

(m). Suppose c([11]) = [riJ. Then c-1([-µ]) = [-riJ. 

Proof. Let ac. be an idea 1 in c; choose K in E such that 
' _., 

EOT = EK and KpK = TJ· Write ()( == (a, b + µ) and observe that µ µ 

at: = (a, b - ( -p)) = (a, b + p) . Hence 
-µ 

Ear' = EK and so K -µ 

greatest common right divisor for the ideal 

cl ass c-1 so 

Eor' . Also ()'( -µ 

The next theorem is an immediate consequence of Lemma 3.3. 

is a 

is the 

Theorem 3.3. Let [µ] be a bundle in B
1

(m) and let .i9 be the 

class in r(m) which maps [µ] to [-µ]. If c is in r(m) and 

c( [p]) = [riJ then .l9C-l ( [µ]) = [-11]. 
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Example 3.4. Let m = 173. We have h(m) = 14; the set B1(m) is 

listed below: 

[10,8,3] 

[10,3,8] 

[11 '6 ,4 J 

[11.4 ,6] 

[12,5,2] 

[12,2,5] 

[0,2,13] 

[0,13,2] 

[-10,-8,-3] 

[-10,-3,-8] 

[-11,-6,-4] 

[-11,-4,-6] 

[-12,-5,-2] 

[ -12' - 2' - 5] 

Let µ be 10i 1 + 8i 2 + 3i 3 and let 8 be the class in r(m) 

containing the ideal CC= (9, 4 -J-173}. Then EO{µ = EK where 

K = 2 - 2i 1 - 2i 2 and KvK-l = -µ. Thus 8([10,8,3]) = [-10,-8,-3]. 

Let c be the ideal class containing the ideal J = (19, 6 -J-173), 

and let µ = 10i1 + 8i 2 + 3i 3 as above. Then EJµ = Ep where 

p = ~ 7 + 5 ii + i 2 + i 3) , and p JJp -
1 = 1 0i1 + 3 i 2 + 8 i 3. So 

c([lO~B,3]) = [10,3,8]. 

[l 0,8,3] [) [-10, - 8, - 3] .... 
--.... 

8C-l 
cJ 

--.... 
........ 

....... 
--.... 

--.... 
[10,3,8] ..... [-10,-3,-8] ":.\ 
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By theorem 3.3 we have 

(iJc-1)([10,8,3]) = [-10,- 3,-8]. 

Also by theorem 3.2 we have c2([10,8,3]) = [-10, - 3, - 8]. So 

-1 
C2 =DC and c = DC2· 

Next let J. be the class which satisfies J([l0,8,3]} = [0,4,13]. 

By Theorem 3.3 we have 

But 

(J.9i"1 )([10,8,3]) = [O, - 2, -13]. 

[0,2,13] = [O, -2, -13] and so 

..2 f:).::: cJ-

-1 
i)J. = J.. Consequently 

so £ is in the principal genus. 

Lastly note that since r(m) has order 14, it can be written as 

71.2 x 727 . Since f) is a square, it must have order 7 and ~ is 

known to be the unique cl ass of order 2. Hence r(m) :::= (c
2

) x (.0) 

and so r(m) is cyclically generated by c = .GCz. 

We now list and illustrate several corollaries to Theorem 3.3. 

Corollary 3.2. Suppose m can be written as a sum of 2 squares. Say 

m = r 2 + s2. Let c e r(m) and suppose C([O,r,s]) = [u,v,w]. Then 

(a) c-1 ([o,r,s]) :.: [-u,-v,-w]. 

( b) c 2 
= 1 i ff one of u, v or w is 0. 

(c) If two of u, v or w have equal absolute values, then 

c has order 4 and c2 = ~· 

(d) c is in the principal genus (i.e. c is a square in r(m)) 

iff C([µ]) = [-µ] for some [µ] e B
1 

(m). 
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(e) C has order 3 iff a11 of u, v and w are nonzero and 

c([u,v,w]) = [-u,-v,-w]. 

Proof: (a) Let µ = ri
1 

+ si
2

. Since [µ] = [-µ] we have 

1([µ]) = [-µ] where 1 denotes the identity class in r(m). Part (a) 

now fo 11 ows from Theorem 3. 3. 

(b) c2 = 1 iff c([O,r,s]) = c-1([0,r,s]). By part (a) 

c-1((0,r,s]) = [-u,-v,-w] and so c2 = l iff [u,v,w] = [-u,-v,-w] 

iff one of u, v or w is O. 

(c) Assume that two of u, v or w have equal absolute values. 

Without loss of generality we may assume that v = w. Thus 

· -ui - vi - wi = -ui - wi -·vi so 1 2 3 l 2 3 
c
2

([u,v,w]) = [-u,-v,-w]. 

Cz 
·[u,v,vJ] L-u,-v,-w] · 

c\ /o 
[O,r,s] 

Note that c([-u,-v,-w]) = [O,r,s] by part (a) and so cc
2

c( [O,r,s]) = 

[O,r,s]. It follows that .cc
2 

= 1 so ~ = c2 
(since ~l = Cz). 

This proves part (c). 

(d) First assume that c is in the principa1 genus; say c = s;;2 . 

Let [µ] = il-1 ([O,r,s]) so .0([0,r,s]) = [-µ] by part (a). Hence 

c{[µ]) = .02 (~-l ([0,r,s])) = ~([O,r,s]) = [-µ]. 

Conversely suppose c([µ]) = [-µ]. Choose .0 such that 

~-1 ([0,r,s]) = [µ]. Then ~([O,r,s]) = [-µ] so ~-1 ([-µ]) = [O,r,s]. 

Hence Ct-2([0,r,s]) = [O,r,s]. 
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c 
[µ] [-µ] 

~-~ /~-1 
[o,r,s] 

-2 Hence CJ9 = l so c = 1)
2. 

(e} First suppose that c has order 3. Then all of u, v and 

w are nonzero by (b). A1so c-l = c2 so 

C([u,v,w]) = c(c([O,r,s])) = c2([0,r,s]) = c-1([0,r,s]) = [-u,-v,-w]. 

The last equality holding by (a). 

Conversely suppose c([u,v,w]) - [-u,-v~-w] and that all of u, v 

and w are nonzero. Then 

c2[o,r,s]) = c([u,v,w]) = [-u,-v,-w] = c-1([0,r,s]) again by (a). 

So by Theorem 2.1 (a) c2 
= c-l and c3 

= 1. If c = l then 

[u,v,w] = [O,r,s] so one of u, v or w is 0. 

E'S._aJ!!.Pk.~~· Let m = 41 • Note m = r 2 + s2 where r = 4 and s = 5. 

Below we see the same figure as in Example 2.2. The 8 bundles in B1 
(m) 

appear; beside each bundle [µ] is the class c1 which maps [0,4,5] 

to [µ]. 

2 [3,4,4] c 

3 [l ,2,6] c 

[1,6,2] c 

[0,4,5] l 
4 [0,5,4] c 

6 
[ - 3' -4 '-4] c 

5 [-1 ,-2,-6] c 

7 [-1 ,-6,-2] c 
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Note that Ci and Ci map [0,4,5] to bundles [µ] and [-µ] 

respectively. This is the statement of Corollary 3.2 (a). The subgroup 

of squares in r(m) is the subgroup [1,c
2,c4,c6

}. By inspection of 

the diagram above one sees that these are exactly the classes which map 

[µ] to [-µ] for some bundle [µ]. This is the statement of Corollary 

3.2 (d). 

In the next example we consider, for the prime p = 3, a question 

which we take up in the .next chapter for all primes p. This example is 

intended to display some of the basic ideas which we will use in 

Chapter 4. 

ExamJ?J €~ ~~-· In this example we use Coro 11 ary 3. 2 ( e) to find a 11 m 

which satisfy properties (i) and (ii) be1 ow; 

(i) m can be written as a sum of two squares. 

(ii) (3) splits in m(J-rr~ and the prime divisors of (3) are 

regular ideals in classes of order 3 in the ring class group r(m) 

with discriminant -4m. 

Let m satisfy (i) and (ii); write m = r 2 + s2 with gcd(r,s) = l 

and let p and p' be the prime di vi so rs of ( 3) in Of· Let c denote 

the class in I'(rn) containing P, let p = ri
1 

+ si
2 

and let 

p e C([p]). Note that C([µ]) = [- 11] by Corollary 3.2 (e). 

[p] 

/ ~=c2 
[µ] c [-µ] 
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Choose Hurwitz qua tern ions a and 13 such that 

( 1 ) Ef> = µ E13 

(2) Er' = Ea. 
µ 

(3) j3µj3- l = -µ 

(4) -1 
ct'JJa = o · 

We know that a is a Hurwitz quaternion of norm 3 and that 13 is a 

Hurwitz quaternion of norm 3 and trace 0 ( 13 has trace 0 by Lemma 

1 .4). 

Let a,= a + bi 1 + ci 2 + di 3, let 13 = xi1 + yi 2 + zi 3 and let 

µ = u·i 1 + vi 2 + wi 3. By Lemma 1.4 we have 

(5) XU + yV + ZW = 0 , 

By (4) and the fact that the i 3 coefficient of p is 0 we have 

(6) (-2ac+2bd)u + (2ab+2cd)v + (a2
--b2-c 2 +d2)w = o 

Notice that if a and 13 are specified, relations (5) and (6) 

determine the vector (u,v,w) up to a constant multiple. We will show 

later that conditions (5) and (6) are independent. 

These conditions determine the line in R3 generated by the vector 

(u,v,w). But u, v, w are relatively prime integers hence the vector 

(u,v,w) is determined up to ±1. Thus m is determined from knowing 

only a and 13! 

We consider all pairs {a,,13) where a is a Hurwitz quaternion of 

norm 3 and 13 is a Hurwitz quaternion of norm 3 and trace 0. We 

construct a vector {u,v,w) consisting of relatively prime integers 
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which satisfy (5) and (6). Then we let m = u2+v2+w2. For example, if 

i i i 3 
:::l+-1+_1_+3-a. 2 2 2 2 

( 6) read 

and s = i 1 + ; 2 + ; 3 then relations (5) and 

(5) LI + V + W = 0 

(6) 2u - v + 2w = 0. 

The only triples (u,v,w) consisting of relatively prime integers which 

satisfy (5) and (6) are ±(l,0,-1) and m = 2. As another possibility, 

let a= ~(3+ i1 + i 2+ i 3) and let 13 = -i1 + i 2 - i 3. Then equations 

(5) and (6) become 

(5) -u - v - w = 0 

(6) · -u + 2v + 2w = 0 

Substituting equation (5) in equation (6) we obtain 

{-u) + 2v + 2(-u+ v) = O so -3u + 4v = 0. We must choose 

(u,v,w) = ±(4,3,-1), and m = 26. 

If one cont·inues this procedure until all pairs (a,,13) have been 

considered, one finds that 2 and 26 are the only values of m 

which appear. In m(J-=2) the class group has order l, but in 

m(J-26) the priw.e divisors of (3) do lie in classes of order 3. Hence 

26 is the only value of m which satisfies conditions (i) and (ii). 

The algorithm used in this example is exactly the one used in the 

next section where odd primes other than 3 are considered. 

The next result is a corollary of Theorem 3. 3. 

Corollary 3.3. Let m be congruent to l or 2 mod 4. Suppose m 

can be written as a square plus two times a square, say m = r2 + 2s2. 

Let c e r(m) and suppose c([r,s,s]) = [u,v,w]. 
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Then 

(a) c has order 2 iff two of u, v, w have equal absolute 

values. 

(b) c2 is in the principal genus iff m can be written as a sum 

of 2 squares. 

Proof. (a) By Corollary 3.1 we know that c2([r,s,s]) = [-r,-s,-s]. 

Now c has order 2 iff cc2 == c-1c2 which is true iff 
, 

cc2([r,s,s]) == c- 1c2([r,s,s]). By Theorem 3.3 we have 

c-1c
2
([r,s,s]) = [-u,-v,-w]. By Corollary 3.1 we have 

cc2([r,s,s]) = c2([u,v,w] = [-u,-w,-v]. So c has order 2 iff 

[-u,-v,-w] = [-u,-·w,-v] which is true iff two of u, v, w have equal 

absolute values. 

(b) First suppose that c2 is in the principal genus, say 
2 c2 = ~ • Let [u,v,w] = ~([r,s,s]). By Theorem 3.3 we have 

[-u,-v,-w] = 19-1c2([r,s,s]). So 

[u,v,w] = ~([r,s,s]) = ~- 1 c2 ([r,s,s]) = [-u,-v,-w]. 

Thus one of u, v, w is 0 so m can be written as a sum of two 

squares. 

Conversely suppose that m can be written as m = u2 + v2 . let 

~ be the class with ~([o,u,v]) = [r,s,s]. By Corollary 3.2 (c} we 

have §)
2 = c2 so c2 is in the principal genus. 

Example 3.7. Let m = 57. Then B1(m) looks like 

[4,4,5] 

[2,2,7] 

[-4 ,-4 ,-5] 

[-2,-2,-7]. 
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By Corollary 3.3 (a) we have that every class in r(57) has order 2. 

Hence r(57) ::::: 7l2 x ?I. 2. 

To end this section we return to Venkow's ideas in Chapter 2 and 

generalize them from the group of regular integral ideals to the 

semigroup of integral ideals. For the remainder of Chapter 3 we assume 

f is square-free. Let Rf denote the semigroup of integral ideals of 

Of and let Pf denote the sub-semigroup of Rf consisting of the 

ideals which are principal in Of· 

Definition 3.2. Let S(m) be the abelian semigroup Rf/Pf. We call 

S( m) the ring semigroup with di scri mi nant -4m. 

Dade, Taussky and Zassenhaus [2] studied the structure of S(m) 

and showed that the lattice of idempotents in S(m) is isomorphic to 

the lattice of divisors of f. This will show up clearly in what 

fo 11 ows. 

pefini_tion 3.3. For each d which divides· f, let Bd(m) denote the 

set of bundles e with Ne = m, Tre = O and c(e) = d. Let 

B(m) = U Bd(m). 
d{f 

Defin"ition 2.1 can be extended from regular integral ideals to all 

integral ideals. 

Definition 3.4. Let O'( be an integral ideal of Of· Define a map 

Ticrc from B(m) to B(m) in the following way; given a bundle 

e e B(m), choose µ e e and Ke E such that EO( = EK. Let 
1-1 

nOt(e) = [KµK-1J. 

The analogue of Lemma 2.2 holds; the same proof Venkow used for 

Lemma 2.2 can be used here. 
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Lerrma 3.4. Let Oland J be integral ideals of Of and let e be 

an element of B(m). Then 

(b) If Ol and J are in the same class of S(rn) then 

Il = TI . 
01 J 

Define an action of S(m) on B(m) by saying that if e e B(m) and 

c e S(m) then c(e) = nat(e) where at is an ideal chosen arbitrarily 

from c. By Lemma 3.4 th·is is a well-defined action of S(m) on B(m). 

If c is a class in S(m) which is not invertible then the map 

e + c(e) 

is not a 1··1 map. Our analysis of the action of S(m) on B(m) is 

based on the following theorem. 

Theorem 3.4. Let p be a prime which di vi des f and 1 et e be a 

bundle in B
8

(m) where e divides f. Let cp be the class in S(m) 

which contains the ideal otp = (p,J-rn). Then 

(a) cp(e) = e if p divides e. 

(b) cp(e) e Bep(m) if p and e are rel~tively prime. 

Proof. First suppose that p divides e. Let µ be an element of 

e; write µ = p(ui 1 + vi 2+wi 3) where u, v, we lL. It is clear that 

p is a right divisor in E of both p and µ so EOlp = Ep. Thus 

cP(e) = [pµp- 1
] = e. 

Next assume that p and 

divides Nµ we can find K1 

e are relatively prime. S. 2 rnce p 

in E such that NK1 
-1 = p and µK1 

(this follows from Corollary 1 .4). Likewise since p divides 

e E 



41 

-1 N{µKl ) -1 { -1 there exists K2 e E such that NK2 = p and K2 µK1 ) E E. 

Thus 

where µ1 E E. From (*) we have 

- - -1 
K2µ( K2) = µKl K2 

-1 
Kl µKl = Kl K2µ 

(*) 

- - -1 -1 hence both K2µ(K
2

) and K111K1 are elements of E. Thus K1 and 

K2 a re each ideal quaternions with respect to µ by Theorem 3.1. 

However each has norm p and Olp= or'P is the only integral ideal in 

Of of norm p. Thus 

EK = EOT = EK 2 p l 

so 1<2 = £K1 for E a unit. Thus 

-1 -1 - 1 KlµKl = KlK2µ1 = E (K2K2}µ1 = p(E- µ1}. 

so c(K1µKl 1) = pc(µ1) = pe, which shows that c(e) e Bep(m). 

Definition 3.5. For each d dividing f, let cd denote the class 

in r(m) which contains the ideal crcd = (d~). 

Lemna 3.5. If d and e are divisors of f then cdce = c,e where 

,e = ,ecm( d ,e). 

Proof. It suffices to show that O(d~ is equivalent to Cft.,e' where 

,e = .ecm(d,e). Let g = gcd(d,e). We have 

9_ T-m e c;;; m ( -) and (.e,-gv-m,
9

,y-m,9) = ,e,,j-m 

and since ,e divides ~· Thus 

. d d since 
9 

an e are relatively prime g 

or dcrre = ( g) (J{..e so 
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Note that if we let d = e in Lemma 3.5 we have that each cd is 

idempotent in S(m). Dade, 1aussky and Zassenhaus [2] showed that the 

classes cd are the only idempotents in S(m). 

Definition 3.6. Let d be a divisor of f. Let Sd(m) be the group 

of a11 classes in S(m) ·of the form cdc where c is in r{m). 

Note that each set Sd{m) is a group with identity cd and that 

s1(m) = r(m). Gauss showed that Sd(m) and Se(m) are disjoint if 

d f e and that S{m) = U Sd(m) (see Gauss [5], article 161 ). The 
djf 

next two lemmas lead up to the last theorem of this chapter. 

Lemma 3.6. Suppose e divides f. Let O'( be an ideal in 0- with 

?l-basis (a,b+J-111) where a is relatively prime to f. Let O(f be 

the regular ideals in Of and Cff/e given by <J(f= GfnC>C and 
A ore = Of/e n O( respectively. Let c and c be the classes in r(m) 

and r{m/e2) containing Ol:f and ate. Let [eu,ev,ew] be a bundle 

in Be(m) and let [r,s,t] = c([u,v,w]). Then 

c([eu,ev,ew]) ~ [er,es,et]. 

Proof.. Note that O! f and me have ?l.-bases given by 
- f -(a,f(b+j-m

1
)) and (a,e(b+J-m

1
)) respectively. Let K be a 

greatest common right divisor of a and f<b + J-~); choose K so 

that K(ui
1 

+ vi 2+ wi 3)K-l = (ri
1 

+ si
2

+ ti 3). Observe that K is also 

f -a greatest common right divisor of a and e(b + J-rn1) s i nee a and 

e are relatively prime. Thus 

c([eu,ev,ew]) = [K{eui
1

+evi
2

+ewi
3

)K-l] 

= [e(K(ui
1

+ vi 2+wi 3)K-1)] 

= [e(ri 1 + si 2+ ti)J = [er,es,et]. 
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This result gives us the next lemma. 

Lemma 3.7. Let e divide f and suppose that m is congruent to 

l or 2 mod 4. 

(a) If c e r(m) and e e Be(m) then c(e) e Be(m). 

(b) If e1 and e2 are in Be(m) then there exists c e r(m) 

such that c(e1 ) = 92 . 

Proof. We first prove (a). Let OTf be an ideal from c. Write 

Otf = Otn Of and 1 et ore = Otn Of;e· Let c be the class in r(m/e2) 
,. 

which contains ct . Let 8 = [eu,ev,ew], e and let c([u,v,w]) = [r,s,t]. 

By Lemma 2.1 (a) we have that gcd(r,s,t) = l. By Lemma 3.6 we have 

c([eu)ev,ew]) = [er,es,et] and so 

c(c(9)) = e. 

We next prove (b). Let 91 = [eu,ev,ew] and let 92 = [er,es,et]. 

By Theorem 2.1 (b) there exists a class c in r(m/e2) such that 
,. 
c([u,v,w]) = [r,s,t]. Choose an ideal CJ( of 0- with NO'C relatively 

prime to f such that O{ n Of; e is in c. Let c be the cl ass in 

r(m) containing the ideal ot n Of· By Lemma 3.6 we have 

c( e1 ) = er 

Theorem 3.5. Let m be congruent to 1 or 2 mod 4, let d and e 

be divisors of f and let ,t = .ecm(d,e). Then 

where Sd{m) (Be(m)) denotes the set of all c{e) for c e Sd(m) and 

8 e Be(m). 
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Proof. Let c be an element of Sd(rn) and let e be in Be(m). 

Write c = ~c5ct where t = gcd(d,e) and s = d/t. By Theorem 3.4 (a) 

we have ct(e) = e and by Theorem 3.4 (b) we have c
5

(e) e B.e(m). Thus 

.19(c2(e)) = c(e) is in B.e(m) by Lemma 3.7 (a) so Sd{m)(Be(m)) c B.e(m). 

Equality ho1ds by Lemma 3.7 (b) which completes the proof. 

2 
Ex~mple 3.8. Let m = 585 = 5 • 13 • 3. Here m1 = 65 and f = 3. 

The group r(585) has order 16 and 

r( 585) ::::: ZL4 x ZL 2 x ll2" 

r(585} is generated by c2' the class containing (2,3+J-585), by 

c11 , the class containing (ll ,3+J-585) and by c101 , the class 

containing (101,18+J-585). The class c11 has order 4 and the 

classes C2 and cl 01 have order 2. The set B3( 585) has size 8. 

Below see 8(585); the 16 bundles in s, (585) appear on top and the 

8 bundles in B3(585) appear on the bottom. Beside each bundle e 
in 8(585) is a class c which maps [1,10,22] to e. 



l [1,10,22] 

[ 4 ,20 'l 3] 

3 c11 [8, 11 ,20] 

c11 c101 c2[s,20,11J 

c2c1 l C 3 [ 6 , l 5 , 1 8] 

c3c11 [ 6, 18, 1 5] 

45 

[0,3,24] cf 1c2c3 
2 [o, 24 ,3] c11 c3 

[ 0, l 2 , 21] c2c3 

[0,21,12] c2 

[-1,-10,-22] ClOl 

[ -1 , -2 2, - l 0] c2 

[-4,-13,-20] e11 e2 
3 [-4,-20,-13] e11 elOl 

2 [ -1 0, -1 4 , -1 7] e11 e2 

[-10,-17,-14] ei1e101 

[ -8 , - 11 , - 2 o J e
11 

e
1 01 

3 [-8,-20,-11] e11 e2 

3 [-6,-15,-18] c2e3e11 

[-6, -1 8, - 1 5] e 3e11 
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Chapter 4. Imaginary Quadratic Fields vlhere a Prime has Order 3. 

In this chapter we apply the machinery developed in Chapter 3 to 

answer the following question for all odd primes p. Which imaginary 

quadratic ring class groups r(m) for m a sum of tvJO squares have the 

property that the prime divisors of (p) are regular ideals in classes 

of order 3 in r(m)? The methods we use to answer this question are 

similar to those used to answer the same question for p = 3 in 

Example 3.6. 

Section 1. The Quadratic Form ~' 

Throughout this section, p is a fixed odd prime. Let m = m f 2 
l 

be a positive integer congruent to ·1 or 2 mod 4 where m1 is 

square-free and positive. Assume that p does not divide m and that 

the prime divisors p and p' of {p) in Of are :in classes of 

order 3 'in r(m). Assume in addition that m can be written as a sum 

of 2 relatively prime squares. 

Lemma 4.1. Let m = r 2 + s2 where (r,s) = 1. Suppose TIP maps the 

bundle [r,s,o] to [ -u -v -w] ' ' . 

l. rrp' maps [r,s,O] to [-u,-v,-w] and rrp' maps [u,v,w] 

to [r, s ,O]. 

2. TIP maps [u,v,w] to [-u,-v,-w]. 

Proof. Let c denote the class in r containing p. Then p' 

belongs to c -1 so rrP, maps [u,v,w] to [r,s,0]. By Corollary 

3.2 (a) we have that rrP, maps [r,s,O] to [-u,-v,-w] which proves 

1. 

Since c has order 3 we have that p and 2 (p') belongtothe 
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same class. JI maps 
(r') 2 

[u,v,w] to [-u,-v,-w] by (1) which 

completes the proof. 

Definition 4.1. Let A denote the set of Hurwitz quaternions of 

norm p and let B denote the set of Hurwitz quaternions of norm p 

and trace 0. 

Let r, s, u, v, w be as in Lemna 4.1, let µ = ui 1 + vi 2 + wi 3 

and let p = ri 1 + si 2. Let s1 be a greatest common right divisor 

of [f>
11 

and let a 1 be a greatest common right divisor of fp~. By 

-1 [ ] -1 Lerrma 2.1 we have a 111a1 e p and 13 11113 1 e [-µ]. Premultiply a 1 

and f.l·i by appropriate units to obtain a and s which satisfy 

-1 
alla. = p 

( 4 .1) 
-1 

SllS = -µ 

By Len1na 1.4, the latter equation implies that s e B so the pair 

(a. ,13) comes from A x B. 

Applying Lemna 1.4 to the equations in (4.1) and observing that 

the i 3 coefficient of p is 0 we obtain the following 3 conditions 

on a , s and µ; 

( i) The coefficient of i 3 

(i"i) Tr(sw = o. 

(iii) (u,v,w) = l. 

-1 in aµo:. is 0. 

We begin with a pair (a,s) e Ax B and construct the µ e E 

which satisfy conditions (i), (ii) and (iii). Given a and .13, 

conditions (i) and {ii) put two linear conditions on u, v and w 

thus constraining the vector {u,v,w) to a line in JR 3. Condition 
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(iii) determines {u,v,wJ up to a change in sign. For a given a and 

s. the algorithm breaks down iff one of u, v or w is 0. 

To construct such an algorithm we begin with a function ~' which 

for a pair (a,f3) e Ax B yields an integer vector (u' ,v' ,1'1') on the 

same 1 ine in IR
3 

as (u,v,w). We define cp' in such a way as to 

facilitate the analysis 1-Jhen one of u', v', or w' is 0. 

Definition 4.2. Define cp': Ax B -r '!L 5 
as follows; for 

(a.,s) €Ax B with a = a + bi 1 + ci 2 + di 3 and s = xi 1 + yi 2 + zi 3 
define 

cp' (a. ,13) = ( u' , v' , w' , r' , s' ) 

ltihere u' = y(--a 2 + b2
+ c 2 - d2) + 2z(ab+ cd) 

v' -- x(a 2 -b2 -c2 +d2) + 2z(ac-bd ) 

w' = 2x(-ab- cd) + 2y(-ac+ bd) 

r' = u' ( a 2 + b 2 - c 2 - ci2 ) + 2 v' ( b c - a d) + 2w' (bd + ac) 

s' v' (a2 - b2 + c 
2 - d2) + 2 u' ( ad + b c ) + 2w' ( cd - ab) . -

One can check that all of u', v', lti', r', s' are integers even in the 

case where the coefficients of a are odd integers divided by 2. We 

begin \'1ith a lerrrna which lists some properties of r:/. 

Lerrma 4.2. Let a. s and u', v', w', r', s' be as in Definition 4.2. 

Then 

(a) xu' + yv' + zw' = 0 

(b) 2u'(bd- ac) + 2v'(cd+ ab)+ w' (a 2 - b2 - c2 + i) = O. 

(d) gcd(u' ,v' ,w') = gcd(r' ,s') 

or pgcd(u',v',w') = gcd(r',s') 
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or p2gcd(u' ,v' ,w') = gcd(r' ,s') 

(e) If (r',s') = (u',v',w') or (r',s') = p2(u',v',w'} 

then ( u' i 1 + v' i 2 + vt' i 3) has 2 zero components. 

( f) Cf'' ( i la. ,(3 ) ::: (-u' ,-v' ,-1'1' ,-r' ,s'). 

Cf'' ( i2a. ,13) = (-u' ,-v' ,-w' ,r' ,-s'). 

-:p' ( i 3 a ,(3 ) ::: ( u' , v' , w' , - r' ,-s' ) . 

Proof. The proofs of (a), (b) and (f) are simple computations. 

prove (c); to do so it suffices to show that 

a.(u1 i 1 + v1 i 2+ w'i 3)p == (r'i 1 + s'i 2)a.. 

( r' ·i 1 + s' i 2 )a. = ( r' i 1 + s' i 2) (a + bi 1 + c i 2 + di 3) 

= (-b(u'(a2 + b2 - c2 - d2) + 2v'(bc- ad) + 2w'(bd+ ac) 

-c(v'(a2 - b2+ c2 - ct2) + 2u'(ad+bc) + 2w'(cd- ab)) 

+i (a(u'(a 2+ b2 - c2 - d2 ) + 2v'(bc- ad)+ 2w'{bd+ ac)) 
1 

+d{v'(a
2 - b2+c

2 -d2) + 2u'(ad+bc) + 2w'(cd- ab))) 

+i 2(-d(u'(a
2+ b2

- c2 - d2) + 2v'{bc- ad)+ 2w'(bd+ ac)) 

+a(v'(a2 -b2+ c2 - d2) + 2u'(ad+bd) + 2w'{cd- ab))) 

+ i 3 ( c ( u' ( a 2 + b 2 - c 2 - i) + 2 v' ( b c - ad) + 2w ( b d + a c ) ) 

-b(v'(a2 -b2 +c2 -d2 ) + 2u'(ad+bc) + 2w'(cd-ab))). 

We n01<1 
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Rewriting each of these coefficients we obtain, 

(r'i 1 +s'i 2)a. = 

( -bu' (a 2 + b 2 + c 2 + d 2 ) + 2 du' ( b d - a c ) - c v' (a 2 + b 2 + c 2 + d 2) 

+2dv1 (cd+ab) - dw'(a 2 +b2 +c 2 +d2) + dw'(a 2 -b2 -c2 +ct2)) 

+i
1

(au'(a 2+b2 +c2 +d2) + 2cu'(bd-ac) - dv'(a 2+b2+c 2+d2) 

+2cv' (ab+ cd) + cw' (a2 + b2 + c2 + ct2 ) - cv.i' (-a2 + b2 + c2 - ct2)) 

+i 2(du'(a 2+b 2+c2+d2) + 2bu'(ac-bd) +av (a 2 +b 2 +c2+<l2) 

-2bv'(ab+ cd) - bw (a2+ b2 + c2+ d2) + bw'(-a 2 + b2 + c2 - d2)) 

+i 3(-cu'(a2+b2 +c2 +d2) + 2au'(ac-bd) + bv'(a2 +b2 +c2 +ct2) 

+2av'(-ab-cd) + aw'(a 2 +b 2+c2+d2) + aw'(-a 2 +b2 +c2 -d2)). 

Applying the orthogonality condition given in part (b) of this 1 emma 

we can simplify the above expression. 

(r 1 i 1 +s1 i 2)a = ((-bu'-cv'-dw') + ; 1(au'-dvr+cvv') 

+i 2(du' +av' - bw') + i 3(-cu1 + bv' + aw'))(a2+ b2 + c2 + ct2) 

so 

Next \-Je prove (d). By the equations for r' and s' given in 

definition 4.2 it is clear that gcd(u',v',\'J')!gcd(r',s'). Also by 

part (c) of this lerrrna we have 

(4. 2). 

The equation (4.2) expresses p2u', p2v' and p2w' as Z-linear 

combinations of r' and s' thus showing that 

gcd(r' ,s') !p2gcd(u' ,v' ,w' ), and this proves (d). 
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To prove (e) assume first that gcd(r',s') = gcd(u',v',w'). 

L p ( 1· I' 1·) et p = gcd( r' , s') u i 1 + v i 2 + w i 3 = 

d 1 (r' · I· ) an <:p = gcd(r' ,s') 11 + s 1 2 = 

Note that (r,s) = 1 and that (u,v,w) = p. 

Let O(P = p?l + ?Z(ri 1 +si 2) and observe that 

a ( ui 
1 

+ vi 
2 

+ wi 3 )a. - l = { ri 
1 

+ s i 
2

) 

by part {c) of this lemma. So N(µ) = N(p) = -{ri
1 

+ si 2)2 hence p 

divides (ri 1 + si 2)2. Thus Olp is an ideal in ?l[p]. Also 

(aJ-1 (ui 1 + vi 2+ wi 3),:l = ri 1 + si 2 

and (;:T.1(ui
1

+vi
2

+wi
3) e E since plgcd(u,v,w). So a. is a 

greatest corrmon right di visor of EO( . Cl early O<' =at hence p p p 
[u,v,w] = [-u,-v,-w] which completes the proof of {e) in the case 

gcd(u',v',w') =gcd(r',s' ). The case p
2
gcd(u',v',w') = gcd(r',s')x is similar. 

The rest of this section is spent characterizing those pairs 

(a,,13) where one of u', v' or w' is 0. 

Definition 4.3. Let {a,,13) e Ax B and let cp'(a.,(3) = (u',v',\'J 1 ,r',s'). 

If one of u', v' or w' is 0 then (a,,13) is called a degenerate 

pair·, and \'le say that qi' degenerates at {a. ,13). 

Lemma 4.3. Suppose (a,,13) e A x B is a degenerate pair. Then one of 

the fo"llowing conditions must hold; 

l. (a) a = E(xi
1 

+ yi
2

+ zi 3) for £ e U 

{b) a= d-xi
1

+yi
2

+zi 3) for £ e U 
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(c) a = s(xi
1 

-yi 2+ zi 3) for E e U 

( d) a = d-xi 1 - yi 2+ zi 3) for E: € u 

2. £Cl has hm zero components for some E: € u. 

Proof. Let (a,s) e Ax B be a degenerate pair with 

a = a + bi
1 

+ ci 2 + di 3 , with s = xi 1 + yi
2 

+ zi 3 and with 

' ( P ) = ( u' v' w' r' s' ) cp ex. '.lJ ' ' ' ' .. 
By Lemma 4.2 (d) we know that 

gcd(u',v',w') = gcd{r',s'), or pgcd(u',v',w'} = gcd(r',s') or 

p2gcd( u', v' ,w') = gcd( r' ,s'). He examine each of these three cases 

separately. 

Case 1. gcd(u' ,v' ,w') ::: gcd(r' ,s' ). 

p ('. ,. '') Let p = --d-.-,-,-,-:-71 u l l + v l z +\'I 1 3 gc \ U , V ,W I 
and 1 et 

1 ------.--,-( ' . -1 • ) 
P := gcd ( r' , s' ) _r 11 + s 1 2 · ~lrite u, v, w for the 

coefficients of p and r, s for the coefficients of p. By 

assumption, one of u, v or w is 0. Assume that w = O; the 

cases u = 0 and v = 0 are handled similarly. 

L t 2 + 2 2 2 2 d •t e. m = u v + w = r + s an wr1 e 2 m = m1 f where m1 

square-free. Let 0- denote the maximal order in the field ~(J-m1 ) 

and Of the suborder with generators (l ~-m). Note that p[m so 

(p~:.m) is a ~-basis for an ideal ot in the order Of· 

By Lemma 4.2 (c) we have -1 
aµu = p hence 

(-)-1 -
a µa = P• 

and ((0.)-\1) e E since p{(u,v,w). Also a.a..= p so a. is a 

greatest comrron right divisor of the ideal E()(P = E(p,ri 1 + si 2). 

is 
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Next observe that 

So i 3a-i31 is also a greatest common right divisor of the ideal 

Hence there is a unit c: e U for which 

Now and so by Lemma 1 .5 with 

E O'( • 
p 

o = a. we have that for some p e U, Pa. has 2 zero components. Hence 

the same is true of a., which completes Case 1. 

Case 2. p2gcd(u' ,v' ,1,l) = gcd(r' ,s'). 

Th·is is handled very much 1 ike case 1. Again one finds that Pa. 

has 2 zero components for some p e U. 

Case 3. pgcd(u' ,v' ,w'} = gcd(r' ,s' ). 

Let l ('" ,. '") 11 = gcd(u' ,v' ,w') u. 11 + v 1 2+ w 1 3 and 1 et 

1 (r'" '") P = -gc-d~(-r'-, s...,..' -.--) 11 + s 1 2 · 

As ~efore, let u, v and w denote the coefficients of µ; by 

assumption one of u, v, or w is 0. We consider the case u = 0, 

the cases v = 0 and w = 0 are handled similarly. We will show 

a.= t:~ or a. = d-xi 1 + yi 2 + zi 3) for t: e U. 
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By Lemma 4. 2 (a) 1t1e have 

XU + yv + ZW = 0 

-1 . . -1 
so 13µ13 = -µ = 11111 1 . Hence i

1
13 centra1izes µ so 

ilp = ql + q2µ for q1, q2 Em. By inspection, i
1
P = -x -zi

2 
+ yi

3 

so q1 = -x. Let ~ = gcd(y,z), so 

for k € ~. Write k = 

v = -k(z/y) 

w = k(y/y} 

kl /k2 with gcd ( k
1

, k2) = 1 and k2 > 0. 

Observe that k2 = l since {.y/y) and (z/y) are relatively prime. 

So k = ± 1. 

Subcase 1. k ;:: ., 

2 2 
Let m = y_-;z 

y 

and write m = m
1

f 2 

so v = -z/y 

2 
= ~-; 

where m
1 

and w = y/y. 

is square-free. 

suborder 1 n m(J-ml) generated by 1 and J··m . 

ideals in the ring Of we have 

(p) = (p,x+ yJ-rn)(p,x - y,/-m) . 

Let Of- denote the 

In the semigroup of 

Identify J-:rn with the quaternion 
zi 2 yi 3 p=--+-
y y 

Note x + yµ = x - zi
2 

+ yi 3 is a divisor of both p and x + yµ. Also 

x - yp = x + zi 2 - yi 3 is a divisor of both p and x - yµ. Hence a 

differs from x + yv or from x - yµ by left unit multiplication (in 

this case the prime divosors· of (p) are principal). Assume that a 

differs from x + yµ by left unit multiplication (the other case is 

similar). We have 

a= t:
1
{x-zi 2 +yi

3
) = (t:

1
i
1

)(-xi
1

+yi
2

+zi 3) 
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for El a unit. This is condition lb which completes this subcase. 

Subcase 2. k = -1. 

Here a similar argument shO\'IS that a. differs from 

xi 1 + yi 2 + zi 3 by left unit multiplication. This completes the proof 

of Lemma 4. 3. 

The next three lemmas examine the cases when the pair {a,,13) 

satisfy one of the 5 conditions of Lemma 4.3. Together they give a 

complete characterization of degenerate pairs. 

Lemma 4 • .4 dea 1 s with the case where £C( has 2 zero coeffi ci en ts 

for some s e U. Note that if £ e [±1 ,±i1 ,±i 2 ,±i 3} and sa has 2 

zero coefficients than a. has 2 zero coefficients. If 

E e U - [±1 ,±i1 ,±i 2,±i 3} and ca has 2 zero coefficients then all 

coefficients of a. are nonzero and 2 pairs of coefficients have equal 

absolute values. The reader should bear in mind throughout that if 

p =.= l nod 4, there are unique integers x, y viith 0 < x < y and 

x2 + .i "" p. L ike\<Jise there are un·ique odd integers 0 < a < b with 

Lemma 4.4. Suppose (a,,S) e Ax B and ~'(ci.,s) = (u' ,v' ,w' ,r' ,s'). 

Let a. = a + bi 1 + ci 2 + di 3 and s = xi 1 + yi 2 + zi 3. Then 

1. All of u', v', w' are nonzero in the following cases 

{a) a = b = 0 and x f 0 

c = d = 0 and x f 0 

(b) a = c = 0 and y f 0 

b = d = 0 and y f 0 
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(c) a = d, b = c and x f 0 

a = d, b = -c and y I 0 

a = -d, b = c and y f 0 

a = -d, b = -c and x f 0 

( d) a = c, b = d and z f: 0 

a = -c, b = -d and z f 0 

(e) a = b, c = -d and z f 0 

a ·- -b' c = d and z f 0 

2. (a} If a :::; c and b = -d then u' = 0. 

If a = -c and b -- d then u' = 0. 

(h) If a = b and c = d then v' = 0. 

If a = -b and c = -d then V' = 0. 

( c) If a - d = 0 then w' ·- 0. 

If b = c = 0 then It;'' -· 0. 

Proof. The proof is by computation. The - ..... --- computations in 2. are 

straightfoniard and are 1eft to the reader. The computations in 1. are 

very similar so only one is done. The reader v1ho is interested in 

compieting the rest can use Lemma 4.2 (f} to reduce the number of 

necessary coniputat ions. 

~~e do the first case of l. Assume that a = b = 0 and that 

x f 0. Then 

and so gcd(c,d) = 1 ·since p is prime. 
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u' = y(c2 -ct2) + 2zcd 

v' = x(-c 2 + d2) 

w' = -2xcd. 

As gcd(c,d) = 1 we see that c2 - d2 t= 0 and v', w' are nonzero. 

If u' = 0 then 

y( d2 - c2) = 2zcd. 

Since gcd(c,d) = 1 we have (cd,(c2 - d2 )) = l and since p is 

odd 1-1e have {2,(d2 - c2)) = 1. Hence 

Now 

and this is a contradiction. This completes the proof of this case and 

of Lemma 4 .4. 

Let V denote the subgroup of U generated by i
1 

and i 2• This 

subgroup has index 3 in U; the distinct left cosets are given by 

Lemma 4.5. Let (a,,13) €Ax B and let cp'(a,,13) = {u' ,v' ,w' ,r' ,s'). 

Suppose a = a + bi 1 + ci 2 + di 3 and s = xi 1 + yi 2 + zi 3 where all of 

x, y and z are nonzero. 

1. If a = s13 for s € U then one of u', v' or w' is 0. 

2. Suppose a = t.(-xil + yi 2 + zi 3) for E e U. One of u' , v' 

or \'I' is 0 iff s e u2. 

3. Suppose a = d xi 1 - yi 2 + z i 3) for E e U . 0 n e of u' , v' or 

1'1' is 0 iff £ € u, . 
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4. Suppose a = E:(xi 1 - yi 2 + zi 3) for E e U. One of u', v', or 

w' is o iff s e u0 . 

Proof. The proof is by computation; by Lemma 4.2 (f) only 12 of the 

96 possible cases need be considered. The computations are straight-

forward in the 6 cases where one of u', v', or \·./ is 0. In the 

remaining 6 cases, the computations are similar and so only one is 

done. 

Assume a = ~(1 + i
1 

+ ; 2 + i 3){-x·i
1 

+ yi 2+ zi 3), so 

a = }( x - y - z) + ~l ( - x - y + z) + ~ 2 
( - x + y - z) + ~3 ( x + y + z). 

Thus 

4u' = y(-(/- 2xy+ y2 - 2xz + 2yz+ z2) + (/+ 2xy+ y2 - 2xz- 2yz+ z2) 

2 2 2 2 2 2 +(x - 2xy+ y + 2xz- 2yz+ z ) - (x + 2xy+ y + 2xz+ 2yz+ z )) 

+2z((x- y- z)(-x-y+ z) + (-x+ y- z)(x+ y+ z)) 

so 

4u' - y(-8yz) + 2z(-x2+2xz+y2-/- x2 -2xz+y2 - z2) 

4u' == 4z(-x2 -y2 - z2) 

so u' = -zp hence u' I 0. 

4 v' = x ( 8y z) + 2z ( { x - y - z )( - x + y - z) - ( - x - y + z )( x + y + z)) 

so 4 v' = l 6xyz hence v' I- 0. 

2 2 2 2w' = x(2x -2y + 2z) + y(-4xy) 

so w' = x(x2 - 3y2 + z2}. 

Hence w' = 0 iff 3y2 
= x2 + z2. Assume this is the case. If y is 

even then x2 + z2 = 0 rood 4 so both x and y are even and this 

contradicts gcd(x,y,z) =l. So y is odd and so x2 + z2 = 3 mod 4 
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which is a contradiction. Thus w' I- 0 which completes the proof of 

the case a.= d-xi
1 

+yi 2 +zi
3

) and £ e u1. 

Each of the last two lenmas requires the assumption that all of 

x, y and z are nonzero. The next lemma deals with the case when one 

of x, y or z is 0. 

Lenrrna 4. 6. Suppose (a. ·f3 ) e Ax B and cp' (a. ,f3) = ( u' , v' , w' , r' , s' ) . 

Let a. = a + bi 1 + ci 2 + di 3 and f3 = xi1 + yi2 + zi 3. Then 

1. If x = 0 and either 

(a) a = b = 0 

(b) c = d = 0 

( c) a = d and b = c 

( d) a = -d and b = -c 

then v1 = vi' = 0. 

2. If y = 0 and either 

(a) a = c = 0 

(b) b = d = a 

(c) a = d and b = -c 

( d) a = -d and b = c 

then u' = ,../ ::: 0. 

3. If z = 0 arid either 

(a) a = c and b = d 

(b) a = -c and b = -d 

( c) a = b and c = -d 

(d) a = -b and c = d 

then u' = v' = 0. 
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4. If a. = t:{-xi
1 

+ yi 2 + zi 3) for c E U and if one of 

x. y or z is 0 then one of u', v' or w' is 0. 

If a= dxi
1 -yi 2+zi 3) for Ee U and if one of x, y or z 

is 0 then one of u', v' or \'1 1 is 0. 

If a= E(-xi 1 - yi 2 + zi 3) for Ee U and if one of x, y or z 

is 0 then one of u', v' or w' is 0. 

Proof. The proofs of l . -3. are simple computations, and are left to 

the reader. The proof of 4. is also by computation; we consider the 

case where a = E(-xi 1 + yi 2+ z·i 3). By Lemma 4.2 (f) we need only 

consider c = 1, o or o2 and c = o is done in Lemma 4.4. 

If a. = (·-xi 1 + yi 2 + zi 3) then a straightforward computation gives 

u' = YP 

v' = x( -x2 - y
2 + 3z2) 

· w' = -4xyz. 

The assertion clearly follows. If a= 1/(-xi 1 + yi 2+ zi 3) then 

u' = pz 

v' = 4xyz 

2 2 2 w' = x( x - 3y + z ) 

and again the assertion follows. 

We are now ready to count the number of degenerate pairs 

(a ,s) € A x B. 

Theorem 4.1. Let h(p) denote the class number of the field ~(j-p). 

The number of degenerate pairs (a.~) e Ax B is 

192(6h(p)-2) if p:::l mod4 

192(6h(p)) if p = 3 mod 8. 
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Proof. Consider first the case p = 3 rod 8. \tie know that every 

degenerate pair must satisfy one of the conditions of Lemma 4.3. 

Condition 2. cannot be met in this case since a prime congruent to 

3 nod 8 cannot be written as a sum of 2 squares. So we only need 

consider conditions la-ld and here Lemma 4.5 is pertinent. 

For each !3 = xi 1 +yi 2+zi 3 e B there are 24 a. satisfying 

a --- ~f3 with s e U, 8 a satisfying a.= s(~xi 1 + yi 2+ zi 3) with s e u
2
, 

8 a satisfying a= E(xi 1 - yi
2

+ zi 3) with s e u
1

, and 8 a. 

sat·isfying a.= E(-xi 1 -y; 2+zi 3) w"ith s e u0 . Thus the number of 

degenerage pairs (a.,s) e Ax B is 48· IBJ. By Theorem 2.1, 

!Bl = 24h(p) so the number of degenerate pairs is 

48. IBI = 48. 24h(p) = 192(6h(p)) 

which completes the proof in the case p = 3 mod 8. 

If p = ·1 nnd 4 the situation is rore complicated, since the 

conditions of Lemma 4.4 2. and Lemma 4.6 are met as well as the 

conditions of Lemma 4.5. Suppose first that s = xi1 + yi 2 + zi 3 € B 

and that all of x, y and z are nonzero. The conditions of 

u~mma 4.4 2. are met by 48 a. e A and the conditions of Lemma 4.5 

which give a degenerate pair are met by 48 a e A (as above). Also 

these 96 a. are distinct since all of x, y and z are nonzero. 

If one of x, y or z is 0 then we look at Lemma 4.6 in place 

of Lerrnna 4.5. There seem to be 96 a which satisfy the conditions of 

Lemma 4.6 4 .. 

However, if z = 0 then E(xi1 + yi 2+ zi 3) = (-E)(-xi
1 

-yi 2+ zi 3) 

and dxi
1

-y; 2+zi
3

) ~ (-s){-xi
1

+yi
2

+zi 3) 
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if y = 0 then £(xi
1 

+ yi 2 + zi 3) = E(xi 1 - yi 2 + zi
3

) 

and E(-xi
1 

+ yi 2 + zi 3) = d-xi1 - yi 2 + zi 3) 

So there are 48 a which satisfy the conditions of Lemma 4.6 4 .. 

There are 48 a which satisfy the conditions of Lemma 4.4 2 .. 

Of these, 16 also satisfy the conditions of Lemma 4.6 4. and so are 

counted twice. In total, 384 pairs (a.s) are counted twice. Pairs 

(a.f3) wtrich satisfy conditions in Lemma 4.6 1.-3. also satisfy the 

conditions of Lemma 4.6 4. and so these pairs have already been 

counted. 

Thus for each s e B there are 96 a for v1hich (a,f3) is a 

degenerate pair though this counts 384 pairs twice. Hence the total 

number of degenerate pairs is 96 !Bl - 384. By Theorem 2.1, 

IBI = 12h(p) so the total nunber of degenerate pairs is 

19 2 ( 6h ( p)) - 384 = 19 2 ( 6 h ( p) - 2). 

This completes the proof of Theorem 4.1. 

Section 2. Classes of order 3. 

We begin by defining a function ~ on A x B. This function is 

derived from the function ~' of the previous section. 

Definition 4.4. Define ~ : Ax B-+ Ex E as follows; for 

(a.$) e Ax B let ~'(a..s) = (u' ,v' ,w' ,r' ,s'). Define ~(a,,(3) =(µ,p) 
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1 
P = gcd(r' ,s') (r'il + s'i2). 

Lemmas 4.3, 4.4 and 4.5 together show that if u', v' and w' are all 

nonzero we have 
-1 

crµa = p 

-µ. 

The next lemma shows that the only way the above two equations can be. 

sat·isf'ied is for cp(a.,{3) = ±(µ,p). 

Lemma 4.7. Let µ = ui 1 + vi 2 + wi 3 e E with gcd(u,v,w) = 1, let 

p = ri 1 + si 2 e E with gcd(r,s) = l and let (a.,13) e Ex E. Suppose 

-· l 
aµa = p 

Then cp{a,13) = ±(JJ,p). 

Proof. Let a. = a + bi 1 + ci 2 + di 3 and s = xi 1 + yi 2 + zi 3. 

A simple computation gives that the coefficient of i 3 in aµa is 

w(a2 - b2 - c2 + d2) + 2u(-ac+ bd) + 2v(ab+ cd). 

So we have the following linear condition on u, v and w: 

2 2 2 2 w(a - b - c + d ) + 2u(-ac+ bd) + 2v(ab+ cd) = 0 ( *) . 

The equation S\J\3-l = -µ gives the fol1owing linear condition on u, v 

and w: 

XU + yv + ZW = 0 (**). 
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We next show that the two conditions (*) and (**) are linearly 

independent over m. (The reader may want to refer back to Examp1 e 

3. 6.) 

with 

Suppose to the contrary that there exists a rational number q 

xq = 2(-ac+ bd) 

yq = 2 {ab + cd) 

zq = a2 - b2 - c2 + d2. 

Then pq2 ·-- (x2+y2 +z2)q2 

= {xq)2 + (yq)2 + (zq)2 

= 4(-ac+ bd) 2 + 4(ab+ cd) 2 + (a 2 - b2 - c2 + ct 2)2 

= 4(a2c2 - 2abcd+ b2ct2) + 4(a2b2 + 2abcd+ c2d2) 

+( a4 + b 4 + c4 + ct4 - 2a2b2 - 2a2c2 + 2a2ct2 + 2b2c2 - 2b2ct2 - 2c2ct2) 
so 

pq2 = a4 + b4 + c4 + d4 + 2(a2b2+ a2c2+ a2d2+ b2c2+ b2d2+ c2d2) 

·thus pq 2 = p2 so q2 = p. 

Since p is prime, this is a contradiction. 

So the two conditions (*) and (**) are linearly independent over 

m hence they determine a line in JR 3 on which the vector (u,v,w) 

must lie. 

Let ~(Q,a) = (µ1 ,p1) where µ1 = u1i 1 + v1i 2 + w1i 3. Then 

gcd(u1 ,v
1

,w1)=1 and (u1 ,v1 ,w1 ) liesonthesamelinein m3 as 

does (u,v,w). The condition gcd(u,v,w) = gcd(u1 ,v1 ,w1) implies 

that (u,v,w) = ±(u1 ,v1 
,w

1 
), which completes the proof. 
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Let t{p) denote the number of ways to write p as a sum of three 

squares and 1 et f{p) denote the number of Hurwitz quaternions with 

norm p (i.e. f(p) is the number of ways to write pas a sum of four 

squares pl us the number of ways to write 4p as a sum of four odd 

squares.) We are now ready to state the main result. 

Theorem 4.2. Let m(p) be the number of discriminants -4m, with m 

a sum of two squares, such that the prime divisors of (p) are regular 

ideals in classes of order 3 in the ring class group with discriminant 

-4m. Here each discriminant is counted with multiplicity zt-l where 

t ·is the number of prime di vi so rs of 4m. Then 

(/\) m(p) = 1
1
6 f(p}h(p) - 6h(p) + 2 if p = l mod 4 

(B) m(p) = J f(p)h(p) - 6h(p) if p = 3 mod 8 

(C) m(p) = 0 if p = 7 mod 8. 

Proof. First we will prove the following two statements which are 

equivalent to (A) and (B) above by Theorem 2.1. 

(A' ) l 
m(p) = 192 IAI. IBI - 6h(p) + 2 if p = l mod 4 

(B') rn(p) = 1!2 IAI • IBI - 6h(p) if p = 3 mod 8 

(the sets A and Bare defined in Definition 4.1). 

First suppose the prime divisors of (p) are in classes of 

order 3 in the ring class group associated with discriminant -4m. 

Assume that m can be written as a sum of 2 squares and that p 

does not divide m (so the prime divisors of (p) are regular ideals). 

Choose a pair (a,s) e Ax B according to the following scheme; 

l. Choose p = ri 1 + si 2 with r2 + s2 = m, (r,s) = 1. 
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2. Choose p = (p,a+J-m), one of the prime divisors of (p). 

Let c denote the ideal class to which p belongs. 

3. Let p 
p 

divisor of [,? . 
p 

= (p,a+ p) and let K be a greatest comrron right 

-1 Let a = K and let µ = KpK ; write 

µ = ui 1 + vi 2 + wi 3 . 

4. By Corollary 3.2 (a) the class c-l = c2 maps the bundle 

[r,s,0] to the bundle [-u,-v,-w]. Hence c maps [u,v,w] to 

[-u,-v,-w]. Let 0
11 

= {p,a+ µ); pick [3, a greatest common right 

divisor of Ep, such that [311[3-l = -µ. 

By our choice of (a,[3) we have 

-1 
Cl)JCl = p 

and -µ. 

By Lemma 4.7 we have cp(a,[3) = :±:(µ,p). 

Note that (a, ,[3) is not a degenerate pair. For if any 

coefficient of µ is 0 then [µ] = [-11], so c maps [µ] to 

't 11' . -l 1 se ·· since [3JJl3 = -v. This implies that c is the identity class 

which contradicts the assumption that c has order 3. Thus we've 

chosen a nondegenerate pair (a,[3). 

Conversely, let (a.[3) be a nondegenerate pair. Let 

cp{a,[3) = (µ,p) and let m = N{µ). By Lemma 4.2 (a) and (c) we have 

-1 
Cl]JO:. = p 

(*} 
and -µ. 

Let p =~{µ)nEa. and let 2 =~(µ)nE[3. Bytheequationin(*) 
ll ll 

we have aµa-l e E and [311[3-l e E so by Theorem 3.1 we have 
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Ep = Ea. and E2 = Es. By Lemma 3.2, IP and 2 are integra1 µ µ µ µ 

ideals of (Q(µ) each having norm p. Since µ has 3 nonzero 

coefficients, [-µ] ! [p] hence IP f 2 . µ µ Let IP and 2 be the 

idea 1 s in (Q(j-m} whose images under the map J-m -+ µ are IPµ and 

2 respectively. From the above we see that 2 =IP' and (p} = w'. µ 

Henceforth let p' denote ::JP • µ 

Let c denote the class in the class group of (Q(j-m} which 

contains IP' . Then -1 contains the equations Ef> = Ea: and c IP so µ 
-1 imply that -1 [µ] to [p]. Thus [p] to aµa -- p c maps c maps 

[µ] so c-1 maps [p] to [-µ] by Corollary 3.2 {a}. The equations 

Ep' ::: Ef3 and Sl-lS - l = -µ imply that c maps [µ] to [-µ] so c2 µ 

maps [p] to [-µ]. Since the class group action is sharply transitive, 

C
2 -- c-l and so 3 l A.l t th t h th c = . so no e a µ as ree nonzero 

coefficients so [µ] ! [p], and hence c ! 1. Thus c is a class of 

order 3 containing a prime divisor of (p). 

So the map cp defines a many-one correspondence between 

nondegenerate pairs (a.,s) e Ax B and discriminants -4m for which 

the prime divisors of (p} are regular ideals in classes of order 3 

in the ring cl ass group with discriminant -4m. We need to compute the 

exact ratio of this many-one correspondence. 

Consider the freedom of choice we have in carrying out the 4 step 

procedure given at the start of this proof. 

l. The bundle containing p = ri 1 + si 2 can be chosen in 2t-l 

ways where t is the number of prime divisors of 4m. Once the 

bundle containing p is chosen, the pair r, s can be picked in 4 

ways. 
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Total choice 4 • 2t-l. 

2. A prime divisor p of (p) can be chosen in 2 ways. 

Total choice 2. 

3. K can be chosen in 24 ways; a and µ are specified by K. 

Total choice 24. 

4. s must map µ to -µ so there are 2 choices for s. 

Total choice 2. 

Hence we have 384 • 2t-l choices in all when constructing a and 

s. However the function cp makes an arbitrary choice of either p or 

p' at step 2 .. To see this suppose cp(cx..S) == {µ,p). Then we have 

-1 -1 aµa = p and Sl-lS = -µ 

so we al so have 

a{-µ)a- 1 = -p and s(-µ)s- 1 = -(-µ). 

Al so . . -1 
i 3n1 3 = -p so p and -p are in the same bundle. By the 

defirrition of r.p we made a choice between {µ,p) and (-µ,-p}. 

Hence we've shown that there is a 192 • 2t-l to l correspondence 

between non-degenerate pairs (a.s) in Ax ~ and the ring class 

groups with discriminant -Am, w"ith m a sum of two relatively prime 

squares, in which the prime divisors of (p) are regular and fall in 

classes of order 3. Applying Theorem 4.1 completes the proof of 

Theorem 4.2, (A) and (B). 

Lastly \'le must consider the case p = 7 (mod 8). Suppose m can 

be written as m = r2 + s2 and suppose that the prime divisors of (p) 

are regular ideals in classes of order 3 in the ring class group r(m). 



69 

There exist integers a and b such that p3 
= a2 + b2m, since 

there is a principal ideal of norm p3 in Of· But now p3 = -1 rrod 8 

so a2 + (br) 2 + (bs) 2 = -1 (mod 8) and it is well-known that this 

latter congruence· is impossible. Thus m(p) = 0 when p = 7 (rrod 8). 
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Canel usion 

The work in this thesis suggests some lines of further research. 

Consider the quadratic space given by m and the norm form x2 + my2. 

The Clifford Algebra of this quadratic space is the quaternion algebra 

H (see Edwards and Snapper [5]). One can view the embeddings of 

!Q(j::.rn) in E as the embeddings of the quadratic space (m,x2+ y2m) 

in its Clifford Algebra. This leads one to ask whether the results 

discovered by Venkow and extended in this thesis are true of the 

embeddings of an arbitrary quadratic space in its Clifford Algebra. 

Another possible line of research is suggested by work of 

Pat Morton. Using results of Barracand and Cohn [l], Morton showed 

that the eighth degree extension K= m{i,ji + 12) has the property 

that for all primes p, 8 divides the class number of m(J-p) iff p 

splits completely in K (see Morton [9]). This latter condition is 

equivalent to saying that p is a norm from K since K has class 

number ·1. It is unknown whether there exists a corresponding field F 

with tl1e property that 16 d·i vi des h( p) i ff p splits completely 

in F. There is evidence that 2 should be the only prime to ramify 

in F, if F exists. Harvey Cohn and Jeff Lagarius have shown that 

no field F of degree 16 over ~ in which 2 is the only prime to 

ramify has the desired property (this work is unpublished but in 

preparation). So the existence of s~ch a field F seems questionable. 

There may however be a degree 16 division algebra A over m 

which has the property that 16 divides h(p) iff p is a norm from 

A. A likely sort of division algebra to consider is one of degree 4 

over H, where H denotes the quaternion algebra. It is hoped that 
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results from this thesis may guide one in choosing the algebra A and 

then simplify the ensuing proofs. For example one might consider 

adjoining A., where is a fourth root of 2, to H with some sort of 

twisted multiplication. We have that A.2 
is a square-root of 2. 

For p = l, 2 mod 4, ~(J-p) has an ideal square root of (2). 

Corollary 3.1 from this thesis suggests the multiplication 

2. . 2 2. . 2 d 2. . '2 I th. . ht A. ll = -1 1A. , A. 12 = -1 3A. an A. 13 = -1 2A n is way one m1g 

be able to use results from this work to shed light on the above 

question. 
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