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Abstract

Let m= m]f2 where m, is a square-free positive integer and m

is congruent to 1 or 2 mod 4. A theovrem of Gauss (see [5]) states
that the number of ways to write m as a sum of 3 squares is 12 times
the size of the ring class group with discriminant -4m in the field
QQ/:E;). The proof given by Gauss involves the arithmetic of binary
quadratic forms; Venkow (see [12]) obtained an alternative proof by
embedding the field QQ/:E;) in the quaternion algebra over Q. This
thesis takes Venkow's proof as its starting point. We prove several
further facts about the correspondence established by Venkow and apply

these results to the study of imaginary quadratic ring class groups.

lLet H deﬁote the quaternion algebra over 0, let E denote the
maximal order in H and let U denote the group of 24 units in E.
Let B](m) be the set of quaternions in E with trace 0 and norm m.
The group U acts on Bo(m) by conjugation; let B](m) denote the set of
orbits of Bo(m) under the action of U. For L1=u11+ vi2+-wi3e Bl(m)

we let [u,v,w] denote the orbit containing u.

Venkow proved Gauss's result by defining a sharply transitive
action of r(m), the ring class group with discriminant -4m, on
B(m). In chapter 2 we establish some more subtle properties of this
action. The prime 2 ramifies in the extension QC/:E;) and its prime
divisor P, is a regular ideal with respect to the discriminant -4m.
It is shown that the class containing Py maps [u,v,w] to [-u,-w,-v].
It is shown that if an ideal class ¢ maps [r,s,t] to [u,v,w] then the

1

class ¢ ' maps [-r,-s,-t] to [-u,-v,-w]. From these two facts,

several results follow. If ¢ maps [r,s,o] to [u,v,w] then ¢ has
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order 2 iff one of u, v or w is 0. If ¢ wmaps [r,s,0o] to [u,v,v]
then ¢ has order 4 and the class 02 contains Py- If ¢ maps
[r,s,0] to [u,v,w] then c—] maps [r,s,o] to [-u,-v,-w]. If m can be
written as a sum of two squares then a class ¢ is the square of another
class (i.e. ¢ is in the principal genus) iff ¢ maps some bundle

[u,v,wl to [-u,-v,-w].

We apply these results to the following problem; given an odd prime
p and an odd integer n, in which ring class groups are the prime
divisors of p regular ideals.in classes of order n? It is shown that
the number of such ring class groups having discriminant -4m where m
is a sum of two sgquares is related to the class number h(-4p) of the

field Q(/~p). For n

3 the number 1is given by

%g‘f(p)h(-4p) - 6h(-4p) + 2 if =1 mod 4
38- f(pih(-4p) - 6h(-4p) if = 3 mod 8
0 if p= 7 mod 8.

Here f{p) s the number of ways to write p as a sum of 4 squares
plus the number of ways to write 4p as a sum of 4 odd squares. A
‘simple algorithm for producing the discriminants of all such ring class
groups is given. Similar, but more complicated formulas hold for odd

numbers n greater than 3.
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Introduction

The aim of the present work is to study the ring class groups T(m)
in the imaginary quadratic extensions Q(/-m). Let m be congruent to
1 or 2 mod 4. In Disquitiones Arithmeticae, Gauss proved that h(m),

the order of 1(m), is related to the number of integral representations

of m by the quadratic form x2 + y2 + 22.

Theorem: (Gauss) Let t(m) be the number of vectors (x,y.z) e 23

with gcd(x,y,z) =1 and with x2 + y2 +>22 = m. Then

t(m) = 12‘h(m).

The proof of this theorem given by Gauss is indirect in the sense that
it gives no explicit 12 to 1 correspondence between the integral

representations of m by the form x2 + y2 + 22

and the classes in
T(m). In the mid 1920's, Venkow discovered a new proof of this theorem
which does display a direct correspondence.

The idea of Venkow's proof is to view the equation ‘x2+-y2+-22 =m

as a norm equation in the Hurwitz quaternions. The ring, E, of
Hurwitz quaternions is the ring E 1in the rational quaternion algebra
“with Z-basis iy, 1,5, 15 and & = %(1+—1]+-12+ is). For

H=wW xi] + yiz + 213 in H, the norm of yu, denoted Ny, is

w2 + x2 + y2 + 22 and the trace of yu, denoted Try, 1is 2w. If u
is not in @ then the minimal polynomial of u over @ is

12 - (Tru)y + Nu. So u  has minimal polynomial XZ +m=0 iff w=20

and x2 + y2 + z2 = m. Hence the integra] representations of m by
the form x2 + y2 + z2 are in 1 - 1 correspondence with the

embeddings of @Q(/-m) in E.
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The group of units U in E has order 24 and acts on E by
conjugation. If o and g are elements of E in the same orbit under
this action then ¢ and p satisfy the same minimal polynomial over
0. Let B](m) denote the set of orbits containing Hurwitz quaternions

with relatively prime coefficients which satisfy the polynomial

Venkow defined an action of T(m) on B](m) which he showed to
be transitive. He also showed that the stabilizer of any element of
Bl(m) is the identity in T(m) from which it follows that
h(m) = IB](m)l.' Lastly Venkow showed that every orbit in B](m) has
size 12. Thus Venkow showed that the t{m) integral representations

of m by x2 + y2 + 22

are in one to one correspondence
(x2+y2+zZ o xi]*-y124-zi3) with the embeddings of Q(/-m) in E.
These in turn are divided into h{(m) orbits each of size 12 ahd so it

follows that t(m) = 12 h{m).

This is a brief outline of Venkow's proof written in the language
of permutation representations. Venkow's original proof was not
written in such a way; Hans Peter Rehm is responsible for having

reformulated the original work using modern ideas and language.

The present work is divided into four chapters. Chapter 1 contains
background material about the Hurwitz quaternions and about ring class
groups in imaginary quadratic extensions. Chapter 2 is a detailed
explanation of Venkow's proof of the theorem. In Chapter 3 we examine
the action of T{(m) on B](m) defined by Venkow. We prove several
new facts about this action, some of which are similar to results of

Mac Duffee (see Mac Duffee [7]) and Taussky (see Taussky [11]). The
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role played in this work by the ring E 1is played in their work by the
ring of 2 by 2 Z-matrices. Their results deal with classes of

2 x 2 Z-matrices under unimodular similarity.

In Chapter 4 we use the facts proved in Chapter 3 to answer the
following question. Let p be an odd prime. How many imaginary
quadratic ring class groups T°{m), with m a sum of two squares, have
the property that the prime divisors of (p) are regular ideals in
classes of order 3 in T(m)? It is shown that this number is related
to h(p), the class number of Q{(/-p) and that all such m are

generated by values of a certain form.

In the conclusion we list some unsolved problems which stem from

this work.
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Chapter 1. Ring Class Groups in Q(/-m) and the Quaternion Algebra.

Llet m be a positive (rational) integer which is congruent to

2

1T or 2mod 4. Write m = m]f where m is square-free. Let K be

the field Q(/-m;) and let O be the maximal order in K.

Definition 1.1. The ring mod f, U},

is the suborder of U with
Z -module basis 1 and f/-m,. |

tet A denote the semigroup of ideals in (O and let Bf denote
the subgroup of A consisting of ideals OU with (NOU,f) = 1.

Definition 1.2. An ideal 0C of Op is regular if GL= Gzn g for

some T & Bf.

Let Af denote the semigroup of regular ideals of O and let

P
Pf denote the subsemigroup of Af consisting of the ideals which are
principal in O}. Define equivalence, denoted ~, of ideals in Af
as follows; for‘CH], o, € Af, we say cn] ~ Oty iff there exist
(v;)s (yp) & Pp with (yydogy = (yolot,- Let r(m) denote the set of
equivalence classes of Af. The multiplication in Af induces a
multiplication in p(m). With this multiplication, r(m) is an
abelian semigroup. In fact, T(m) is a finite, abelian group (see
Cohn [ 11]) called the ring class group with discriminant -4m. If

f =1, the ring class group is exactly the class group of the number

field Q(/m).

Let 0 ¢ A and suppose Ot has Z -basis (a,b+f/=m). The ideal
in A with Z-basis (a,b—ﬁ/ﬁﬁ;) is called the conjugate of o and
is denoted oU. We will use the fact that if ot is in the class ¢

then ot is in the class c'].
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Example 1.1. Let m =41, so m = 41 and f = 1. In this case T(m)
is the class group of the field Q(/-47). The group 1(m) is
isomorphic to 1.8 and the class ¢ containing the ideal
Ot = (3,14/-4T) generates r(m). The following table gives a

representative ideal from each class.

Class Representative Ideal

1 » (1)

c (3,14/-47)

62 (9,7+/-41)

¢ (6,5+/-47)

c* (2,14/-47)

¢’ (6,5-/-41)

c® (9,7-/70T)

¢’ (3,1-/-47).

Table I. The group I(41).

Two classes ¢ and g in T(m) are in the same genus if their
ratio cgfl is a square in (m). Thus T(41) 1is composed of two
genera {],cz,c4,06} and {6,03,05,07}. The subgroup of squares in
r{m) is a genus, called the principal genus and denoted here by rz(m).
Clearly r(m)/rz(m) is an elementary abelian 2-group. In Disquitiones
Arithmeticae [ 5], Gauss introduces r(m)/rz(m) by means of binary
characters on T(m) and shows that ]r(m)/rz(m)l = Zt'] where t is

the number of distinct prime divisors of 4m.

The ring class number h(m) is the order of IT'(m). When f =1,
h{(m) 1is the usual class number of the field Q(/-m). In general

h(ml)[h(m]fz) as we will see in Section 3. The following theorem of
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Gauss gives a simple means of computing h(m).

Theorem 1.1. (Gauss [ 5]) Let t(m) denote the number of vectors

(x,y,z) € 7’ with gcd(x,y,z) =1 and with x2 + y2 + 2% = .

Then
h(m) = H('g) if m=1, 2 mod 4
h(m)=tg2) if m=3 mod8 m> 3
h(3) =1 = 23

Gauss's proof of Theorem 1.1 is in Disquitiones Arithmeticae
written in the ]anguage of binary quadratic forms. One can show that
there is a 1 - 1 correspondence between classes of binary quadratic
forms with discriminant -4m and classes of ideals in the ring 0}.
For details of this correspondence see Cohn [ 1], chapter 14 (note that
weak and strict equivalence of forms coincide since the discriminant fs
negative). The final statement of the theorem appears in articles 289-
292 though the proof relies on previous work from Section V. Gauss's
proof has the interesting feature that it gives no 12 to 1 correspon-
dence, when m= 1 mod 4, and no 24 to 1 correspondence, when

m= 3 mod 8 between the trip]es‘counted by t(m) and the form classes

counted by h(m).

In 1922, Venkow [12] published an elegant new proof of Theorem 1.1.
This proof displays an explicit correspondence between the triples
“counted by t(m) and the classes counted by h(m). The proof makes
use of the maximal order of the rational quaternion algebra and will be

outlined in the next section.

Example 1.2. As an example of Theorem 1.1 consider m = 41. In this
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case h(m) is 8 so t(m) = 96. The 96 ways to write 41 as a sum of
three squares come from the following three representations
41 = u2 + v2 + w2 by permuting the order of u, v and w and

changing their signs.

a1 = 0% + 4% 4 52
41 = 3% + 32 4 42
41 = 12 + 22 + 62,

Next 1et m = 163. Here t(m)

24, the representations of 163
coming as above from the representation

24924 92,

163 = 1
By Theorem 1.1 h(163) =1, as is well-known.

We end this section with a brief introduction to the Hurwitz
quaternions along with some facts about them that will be of interest

to us in later chapters.

Definition 1.3. The quaternion algebra H over @ is the 4 dimen-

sjonal G-algebra with vector space basis 1, and with

e T2 3
multiplication of basis elements according to the rules

(A) 1 -4_=4_+1=1 r=1, 2,3

If o =a+bi +'ci2 +diy e H the conjugate of o, denoted g is

the quaternion ¢ = a - bi, - ci, - di,. The norm and trace of q,

denoted Ny and Trq are given by _
2 2 2 2

No=ax =a" +b" +c” +d



and Trg =o +q = 2a.

Note that both Ng and Trg are rational; if o ¢ @ then the

minimal polynomial of o over @ is
_ .2
na(x) = x° = (Tra)x + Ne -

In particular if Trq = 0 and Ng =m then o satisfies the minimal
polynomial x2 +m over Q. It is easily seen that Ng =Ny and
that conjugation is an anti-isomorphism of H; i.e. (¢B) = Ba. Since
Ng =0 iff o =06 it follows that H 1is a division algebra over 0.
Quaternions ¢ with Ng, Trq € Z are called integral quaterni-

ons. Integral quaternions can have non-integral coefficients. In

particular we shall deal with the quaternion

oad

5 = E(T*'1]+-12-F13)

for which we have N§ Trs =1.

Definition 1.4. Let E be the Z-module in H spanned by

]

1> 1, 15, 85 so E {zgdt Zyi + 20yt 25051 2, € ZF. Then E is

called the set of Hurwitz quaternions.

Not all integral quaternions are Hurwitz quaternions; for example
a = (%)1] + (%)iz + (%013 has trace 0 and norm 1 but g 1is not an
element of E. One can check that E s a maximal order in H;

i.e. E satisfies the following four conditions,
(i) E contains a vector space basis for H over Q.
(i1) E 1is a subringof H and 1 e E.

(iii) Each element of E satisfies a minimal equation over @

having coefficients in Z.



6

(iv) E 1is not properly contained in any other subset of H with

properties (i)-(iii).

In fact E 1is the unique maximal order in H. For a proof of this
fact see Dickson, Algebras and Their Arithmetiecs [ 3], Section 91. The
following theorem due to Hurwitz will be very important in what

follows.

Theorem 1.2. (Hurwitz [ 6], pg. 313) The quaternion norm, restricted
to E, is a Euclidean norm; i.e. given g, 3 € E, with g # 0, there

exist n, pe E and 7, o e E with

H]

3 + o N(p) < N(p)
gm + o N{o) < N().

(08

. and a

The proof is in Dickson [ 3] on pages 148 and 149 and will not be

repeated here. However we illustrate the theorem in the next example.

Example 1.3. Let ¢, B € E. This example first explains how to choose
n and p so that g =78 +p and Np < N3, and then illustrates

this algorithm with o =1 + 412 + 513 and g = 3.

ot h3ig

gnd write n = Xgb + Xy0y + X0, + X515 where the x5, X;, X,, X5 are

Step 1: Let h =gf and m= Ng. Write h = hgs + h i, + hyi

to be determined.

Step 2: Choose 1, so that N(h-mn) < n? as follows;

(1) Choose Xy € Z so that IhO»mXO! f_g-(here Xq will be either

[EQJ or [EQJ +1 where [-2] is the integer part of h_/m)
m m m ger p 0 :
(2) Choose Xy € Z (t=1,2,3) so that

[ho + th- mx, - 2mxt[ <m.



r\;L_J

Since h - mn = h - mxo)

o

(h +2h] - X - 2mx]) 1

N[-—J

+ ﬁ(h0+-2h2— mx - 2mx2)1'2
1 ‘ .
+ ﬁ(ho%-2h3-mxo— 2mx3)13

we have

N(h-mq) = %(h —mxo)z

o
Ll
M

(h + 2h —nmo—me)
1 -
S0 N(h - mp) 5_]—6—+13m = qgn <.

Step 3: let p = @ - 18 where g1 is as above.
Then

a > N(h-mn) = NoB-183) = Nla- ng)N(B)
S0 m2 > mN(p) which shows that n and p as chosen here can be

used in Theorem 1.2.

Now lTet o =1+ 412 + 513 and g = 3. Thes h=3+ 1212 + 1513

— ! y =
and m = 9. We must choose Xgr X5 Xp> X3 to satisfy

9 -
(1) 3 - 9x0_‘§ 5 choose Xo = 0

—~
N
S~
[#%]
t

18x1~§_9/ - choose Xy = 0

—
w
~——
w
+

v 24 - 18x, <3 choose x, =1

2.

1

(4) 3+ 30 - 18x3_5 9 choose X3

let n = 12 + 213 and let p = (1**4124-513) - (iz*-2i3)3 S0

=1+, -

o = i3. Note that Np = 3 < 9 = Ng.

In the above case B = Np =pp so p 1is a right divisor of 8.

Also ¢ =nB +p = (n5’+1)p thus p 1is a right divisor of o as well.
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Furthermore, Np = 3 = gcd(Ng,NB) so p s a greatest common right
divisor of o and B. In fact for any pair o, 3 € E we obtain a
greatest common right divisor of ¢ and g by repeatéd use of

Theorem 1.2.

Corollary t.1. (Euclidean Algorithm for E) Let q, g € E. Suppose

Mys ++ s Ty and py, ...» p. are elements of E such that
a =mB *py N(py) < N(g)
B =moey top N(Dz) < N(D] )
P} = M30p * 03 N(p3) < N(p,)

Pr-1 = M) Py
Then Py is a greatest common right divisor of ¢ and g in E.
The algorithm given in Example 1.3 chooses o such that
Np < %%‘NB- One can show that the Euclidean algorithm for E finds a
greatest common divisor of o and B 1in no more than

C Tog(min(Ng,Ng)) steps where C is a constant. From Corollary 1.1

we obtain three further results all due to Hurwitz.

Corollary 1.2. (Hurwitz [ 6], pg. 313) The ring E 1is a principal

ideal ring, i.e. every left ideal A of E can be written A = Eq

for ¢ € E.

The quaternion ¢ in Corollary 1.2 is determined up to left
multiplication by a unit; o 1is the greatest common right divisor of
all elements of A. Hence g can be obtained using the Euclidean

algorithm.
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Corollary 1.3. (Hurwitz [ 6], pg. 314) If § 1is a greatest common

right divisor of g and g in E then there exist My> Mo © E such

that
ma * B =6

Corollary 1.4. (Hurwitz [ 6], pg. 322) let o e E and let p be a

prime in Z . If p divides Ny then there exist H], I, e E with
NH] = NHZ = p such that H] is a right divisor of o and H2 is a

left divisor of .

Proof. Suppose to the contrary that no quaternion of norm p is a
right divisor of . By the Euclidean algorithm we have that o and
p are relatively prime in E. Hence by Corollary 1.3 there exist
My> My € B with

npo tmpp = 1.

Now Nl (@) = N(1=myp) = (1~ qpp) (T m,p)

‘hence Ning D) = (1-mop) (T-7,p) = 1 = Tr(ny)p + p?

1]

SO N(n])NQx)

assumption that p divides Ng.

1+ tp where te Z. This contradicts the

Example 1.4, let o =3 - 2iy + i, - i3 50 No=15. We can factor q

as g -~ (]+'l-l - 12)(“21]"'12)

or as q (+1] + 213)(—1]4-12— 13)
The first factorization gives  as a quaternion of norm 3 times a
quaternion of norm 5. The latter factorization gives ¢ as a -

quaternion of norm 5 times a quaternion of norm 3.
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Definition 1.5. Let U denote the group of units in the ring E.

A Hurwitz quaternion e 1is a unit in E 1if and only if Ne = 1.
The group of units in E has order 24 and is generated multiplicatively
by s, i] and 12. There are 8 units with exactly one nonzero
coefficient, {1,ii],ii2,£i3}. The remaining 16 units have 4 nonzero

coefficients and are listed below;

1

oo L.
+ §(1+-1]%-12+-13) 4 ?(1— -, 13)
Ya-i,+i,+12) FRUT IO S S |
7 1727 '3 ? 1712713
FELTC I L M- i -1)
7 1772713 7 171273
Yasivi-i) Y-, -4 440
) 171273 75 17127 3/

The group U acts on E by conjugation; this action will play a
fundamental role in what follows. The following table is included for

reference.
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Table II. U/+1 acting on E by conjugation
e ela+ biy + ciy+ dig)e”
1 a + bi] + ciz + di3
i] a+ bi] - ciz - di3
i, a - biy + ci, - dig
i a - bi; - ci, + di,
12{1+1]+12+1‘3) a + diy +bi, +cig
S(Vwi - i, iy) | a+dip - bi, - cig
1+ i -5) | a - dip + biy, - cig
F-1- iy it i) | a - diy - bi, + cig
F1-4y-,-15) | a+ciy +di, + big
Fr i +iy-i5) | a+cip - diy - big
HU-i+iy+iy) | a - cip +di, - bi,
4y -i,+0) | a-ciy - di, + big
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The three facts stated in the next lemma follow by inspection of

Table II.
Llemma 1.1. For all pnebE and ee U,
(i) N(ewe ') = N(u) |
(i) Tr(sue_]) = Tr(n).
(i11) If all coefficients of u are integers then all coefficients

of eue'1 are integers and the greatest common divisor of the

coefficients of u equals the greatest common divisor of the

coefficients of aue-].

Definition 1.6. Let u e E. The bundle of u, denoted [u], is

] = {eue"]: ee U}.

If u-= ui] + v12 + wi3 we may also denote [u] by [u,v,w]. Let g
be a bundle and let u e g. Define the nowm of 8, denote Ng, and

trace of ©§, denoted Trg,
by Ng = Nu and Trg = Tru.

By Lemma 1.1 the norm and trace of g are well-defined; i.e. inde-

pendent of the choice of uy from g.

Bundles of trace 0 will be of particular interest to us. If g
is a bundle, uweg and Trp = 0 then all coefficients of u are

integers. So the following definition makes sense.

Definition 1.7. let g be a bundle of trace 0 and let pe g.

Define the content of g, denoted cg to be the greatest common
divisor of the coefficients of wu. By Lemma 1.1 (iii), c(g) is

well-defined.
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Example 1.5. let u = 611 + 312, and et g = [u]. Then § contains

the following 12 quaternions;

(611+~312) (—6i]+-312) (611— 312) (—611— 312)

(612+-313) (—6j2+-313) (612— 313) (—6i2— 313)

(3i] + 61 (—311 + 613) (3i] - 6i3) (-3i, - 61

3) 1 613).
Here we have Ng =45, Trg =0 and Cp = 3. The next two Temmas show
that with a few exceptions, the size of a bundle is always 12. The

first lemma is due to Hurwitz, the second to Venkow.

Lemna 1.2. (Hurwitz [ 61, pg. 308) If peH - Q then the centralizer

of w in H 1is exactly the set of rational polynomials in u.

Suppose u e E, with Np >3, and Tru =0, and suppose the
coefficients of .y are relatively prime. Any rational polynomial in
p can be put in the form 90 + gy M where dg> 97 € 0 hence the
only rational polynomials in u which are units are 1. So for such

i, the centralizer of u in U is the subgroup {+1}. So

_ U _ 24 _
| 0| "]‘CLIJ’(%JT[”’Q‘“]Z

here CU(u)_ denotes the centralizer of p in U. This proves the

following lemma.

Lemma 1.3. (Venkow [12]) Suppose g 1is a bundle with Ng > 3,

Trg = 0 and c(g) = 1. Then the size of g is 12.
We finish this section with three technical results about E.

lemma 1.4. Let u = ui] + v1'2 + wi3 be a nonzero element of E with

gcd(u,v,w) = 1. Llet =g + xi] + yiz + zi3 be an element of E.
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The g™ = - iff o =0 and xu + yv + zw = O.
Proof. let S ={geE:qu=-ug} and let
T = {xi]+y1'2+ Zig:xu+ yv+ zw=0}.

Rehm shows that S is a rank 2 Z-module (see [ 9], pg. 9). It is clear

that T is a rank 2 Z-module. This lemma states that S = T.

First observe that T< S. For if g = Xiy + yi, + zig e T then

i

pug = (xiy+yiy+2ig)(uiy+viy+wig)(-xiy - yi,- zig) so

pug = (iy(wy-vz) + i,(uz-wx) + 15(vx-uy))(-xi; - yi,- zi,). |

i

Hence BUB 1'] (-22u + XZW - yzu + xyv)

+12(—x2v+ Xyu - 2oy + yzw)
+1'3(-y2w+ yzv - x2w+ xzu).

2, 22) + (xyv+ xzw))

So ug = i, (-uly

+12(~V(x2+ 2°) + (xyu+ yzw)) (*)

2

+15(-w(x +y2) + (xzu+ yzv))

The linear condition xu + yv + zw = 0 gives

(1) x(yv+zw) = »xzu
(2) y(xu+zw) = —y2v
(3) z(xu+yv) = -zzw.

Substituting (1), (2) and (3) into (*) gives gup = NB(—ui] -viz—wiS)

and so pug T -y. This shows T < S.

Next we show that every element of S has trace 0. Assume to the

contrary that g e S and Tr(g) # 0. Write g =g + xiy +yi, + zig
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and note that
g% = pleue e =T = e ) =u s
52 centralizes yu. Thus BZ =gy + qou with 91> Gy € Q.

A straightforward computation shows that

8% = (o2 xP-y?- 2Py + 20(xiy+yiy+ zig).

. X . : 9
As o # 0 we see that xi; + yi, + zig=qu with q = 5y
Thus BUB—] = p which is a contradiction.

Hence Tr(g) =0 for all geS. So if g e S then all
coefficients of g are integers. Since (u,v,w) = 1 there exists

a 3 x 3 unimodular Z-matrix

with M(S) = (é) Let K = mmi] + m221'2 + m231'3 -and let
g = m:ﬂi1 + m3212 + m33i3; K and & arein T, hence S. Also
det M = 41 implies that the 3 2 x 2 minors of
o1 22 "‘23)
M1 M3z M3
are relatively prime. So K and & forma Z-module basis for S,

which completes the proof that S = T (see Smith [10], pg. 365).

The next two results deal with the action of U on E by left

~multiplication. The following table is included for reference;
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the notation (a,b,c,d) is used to abbreviate a + bil tci, + dis.

Table IIT. U/+1 acting on E by left multiplication
3 e{a,b,c,d)

(1,0,0,0) (a,b,c,d)
(0,],050) (-b,a,-d,c)
(O:Oa] >O> <-C,d,a,—b>
{0,0,0,1) (-d,-c,b,a)

1111 {a-b-c-d) (atb-c+d) (at+b+c-d) (a~b+c+d)>
(?a'z"a"z’:‘z‘) ( 2 S 2 > 2 s 2

T1 11, (-a-b+c-d) (a-b-c-d) (-atb-c-d)  (atb+c-d) ;
) S e ’ 2
111 1, (-a-b-c+d)  (a-b+c+d) (a-b-c-d) (-a-btc-d),
e | 2 , 7 7 7
1111 (-atb-c-d)  (-a-b-ct+d) (a+b-c+d) (a-b-c-d)
ey | ST 2 > 7 7 )
1 1 1 1 (at+b+ctd) (-atbtc-d)  (-a-btctd)  (-atb-c+d)
G | Gz 2 2z 7 )
111 -1 {a-b-c+d) (atb+c+d)  (a-b+c-d) (-a~b+c+d)
@rp2 |CTzoo 7 z 2
T 111 (a+b-c-d) (-atb-ctd)  (atb+ctd), (a-b-ctd) )
(27777 oo 7 T2 2

17 11 (a-b+c-d) (a+b-c-d) (-atb+c-d)  (atb+c+d)
G | s 7 > z > oz 7



lemma 1.5. Let § =

for which we

(A) €5 = a - bil
or (B) €5 =a - bi]
or (C) €5 =a + bi

1

Then for some o e U,

Assume (A) holds,

. 1
SO 13(56)13 =8 SO

17

have either

- ciz + d13
+ ciz - d13
- ciz - d13.

the quaternion p& has
SO €5 = a - bw] - ci, + d13.

5= (ige i3 )iz63) = (igei3)(es). (%)

From (*) we have ije ié] = e'] = €. By inspection of Table II we

have € = 41, ii] or iiz.

If ¢=1 then a + bi] + ciz + di3 =a - bi] - ciz + di3 S0

b=c=0. Let p=1.

If €=-1 then -a -»bi] - 012 - d13 =3 - bi] - ciz + di3 o)

a=d=0. Let p=1.

If ¢ = i] then -b + ail - diz + ci3 =3 - bi] - ciz + di3 SO
- _ _1 . . .

a=-b and c=d. Let p-= 2(]4-1]— i,- 13)

If &= —11 then b - ail + d12 - c13 =3 - bi] - ciz + di3 SO

1 . . .

a=b and c=-d. Llet p = §(1+~1]- iy-15)

If ¢= 12 then -c + di] + ai, - b13 =g - bi] - ciz + di3 o]
_ _ 2] . . .

a=-c and b= -d. let p = Eﬁ] +1]-+124-13)

If ¢ = —i2 then ¢ - di] - aiz + b13 =3 - bi] - c12 + di3 SO
_ B __]__. s

a=c and b=4d. Llet p = 2(] PERPEREYE

Cases (B) and (C) are handled similarly.

2 zero coefficients.

Then €§ = 135 i

a + bi] + ciz + di3 € E and suppose € is a unit

-1
3
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Lemma 1.6. If o is an element of E then for some unit e e U, all
coefficients of ea are in Z.

Proof. We need only consider o = —% + gi] + —;—12 + %‘3 where all of

a, b, ¢, d are odd integers.

Case 1: a=b=c=dmod 4.

(a+b+c+d)

-

In this case let ¢ = ]7(] - 1'] - 1’2— 13). Then Tr(ea) =

so Tr(ea) € Z. It follows that all coefficients of eo are in Z.

Case 2: Exactly three of a, b, ¢, d are congruent mod 4.

21 . . .
dmod 4 let ¢ = §(1+1]+12+ 13).

If ~-a=b=c¢=
Then Tr(eo) = %{a— b-c-d) so Tr(ea) € Z, hence all coefficients

, T I P
of ea arein Z. If a=-b=c=dmd4d Tet 8—-2(.]*’1] 12—13),

rof— I

if a=b=-c=dmed4d let ¢ =

ra=b=c=~-dmd4 let e=—]2~(1-1']—1'2+1'3). In each of these cases

(1-4;+1,-1,) and if
T s

we have Tr(ea) e‘Z so all coefficients of ea are in Z.

Case 3: Two of a, b, c, d are congruent to 1 mod 4, and two of

a, b, ¢, d are congruent to -1 mod 4, so a+b+c + d = 0 mod 4.

] —d

let € = -‘2—(14]-1'2-13). Then Tr(ea) = Ha+b+c+d) so all

coefficients of ea are in Z.
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Chapter 2. Venkow's Proof of Theorem 1.1.

In this section we sketch Venkow's proof of Theorem 1.1. The proof
in detail can be found (in Russian) in Venkow's original paper and a

somewhat modernized proof can be found in the article by Rehm [9 ].

Let m be an integer greater than 3 with m=1, 2 mod 4 or
m= 3 mod 8. Let T(m) denote the set of triples (x,y,z) e 23 with
ged(x,y,z) =1, and x2 + y2 + z2 =m. According to the notation of

Theorem 1.1, t{m) denotes the size of T(m).

The mapping (X,¥,2) xigp +yi, + zig disa 1 - 1 correspondence
between the elements of T(m) and the Hurwitz quaternioné of norm m
and trace 0 having relatively primé coefficients. Let B](m) denote
the set of bundles [u] with N([u]) =m, Tr([p]) =0 and c([u]) = 1.
Combining the 1 - 1 correspondence above with the fact that all
bundles in 81(m) have size 12 (by Lemma 1.3) gives that
]2[81(m)] = t{m). So to prove Theorem 1.1 it suffices to prove the

following two equalities;

IB](m)l = h(m) if ‘m =1, 2 mod 4
(2.1)

[B](m)] 2h(m) if m= 3 mod 8.

To prove the equalities (2.1) Venkow made use of an action of the ring

class group T(m) on B](m) which we now discuss in some detail.

let g e B](m) and let u = ui] + vi2 + wi3 be an element of g.

Then Ny =m and Trp =0 so u satisfies the minimal equation

x2 +m=0 over 0. Hence the mapping Mﬁﬁﬁ-+ u  induces a field

isomorphism from Q(/-m) onto Q(u) which maps the suborder U} onto

ENn Q(u). This isomorphism establishes a 1 - 1 correspondence
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between integral ideals of the suborder 0} and ideals in the ring

En Q(u). If ot = (a,b+u) ds an integral ideal of 0=

£ we let G‘l’u

denote its image G(u = {a,b+u) in En Q{u).

To define Venkow's action of 1 (m) on B](m) we start with an
action of the semigroup of regular integral ideals on Bl(m). We first

need two facts.

Lemma 2.1. (Venkow [12] or Rehm [ 9], pg. 6) Let QU be a regular
integral ideal of 0; and let g e B] (m). If Hp> Wy are elements of
g and K], K2 are elements of E which satisfy EG{”T = EK] and

ECS(;JZ = EKZ’ then

(a) (K1”1K;1) and (KZuZKE]) are elements of E with relatively

prime coefficients.

() TKyK; T = [Kpugk' .

Definition 2.1. Let OC be a regular integral ideal of 0'1; Define a
map iy, from B1(m) to B](m) in the following way; given a bundle
6 € Bl(m), choose peg and Ke E such that EG‘(U = EK. Let

- -1
n (o) = [Kuk™"].

By Lemma 2.1 the map TNy, is well-defined and maps B](m)b into

B] (m).

Example 2.1. let m =41, let 0C be the principal ideal (5+8/-4T)
and Tet o = [1,6,2]. Choose 1 = iy + 6i, + 2i, so |

Ofu = (En Q(u))(5+8u). Thus E<Jfu = E(5+ 8u) so we can choose

K= 5+ 8u. Hence T ([n]) = [(5+8u)u(b+ 81)711 = [ul. In this case

Hﬂ fixes g.

Next let g = (3,1+,/-41) and let g = [0,4,5]. Choose
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w=4i, + 513 so Ey = {e]3+-e2(1+-p): e;.e,€ E}. In example 1.3 we
showed that (1+~12— 13) is a greatest common right divisor of 3 and

1 + u  hence we may choose K = (14-12— 13). So
~ .
Hg([0,4,5]) = [(]+—12— 13)(412+—513)(1+-12— 13) 1=[1.6,2].
Venkow proved the foi]owing very important result.

Lemma 2.2. (Venkow [12] or Rehm [9 1, pg. 6) Let ot and 3J be
regular integral ideals of 07, and let g be an element of B](m).
Then

(a) 1 (6) = Te(Ti(0)).

(b) If ot and 3 are in the same class of T{m) then T = ng_

Definition 2.2. Let ¢ be a class in r(m), and let g e B](m).

Define c(g) to be Qx(e) for 6t an ideal chosen from c¢.

Note that Qn(e) is independent of the choice of o6t e ¢ by
Lemma 2.2 (b) so ¢(g) is well-defined. Also by Lemma 2.2 (a) we
have

(co)(o) = cls(o))

for all ¢, 9 eT(m) and g e B](m). So ¢c:8~c(g) is an action of
T(m) on B](m). The main result of Venkow's original paper on this

subject is the following fact about this action.

Theorem 2.1. (Venkow [12] or Rehm [ 91, pg. 9) Let r(m) act on

B](m) as above.

(a) If g e B](m) and cer(m), then clg) =g iff ¢ is the

class of principal ideals (i.e. the identity in (m)).

(b) If m=1, 2 mod 4 then T(m) acts transitively on B](m).
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(c) If m= 3 wmod 8 then B](m) splits into exactly two orbits.

As a coro]]ary}of this theorem we have the equalities labelled

(2.1).

Corollary 2.1. (Venkow [12] or Rehm [9 ]}, pg. 10) If m= 1, 2 mod 4

then |r(m)| = |B](m)] and if m= 3 mod 8 then 2|p(m}| = [Bl(m)‘.

Proof. Let g e By(m). Then the size of the orbit containing g fis
|(m)] divided by the size of the stabilizer in r{m) of 8. By
Theorem 2.1, only the identity stabilizes @ so the size of the orbit
containing ¢ is |r(m)]. This corollary follows immediately from

Theorem 2.1 {b), (c).

Example 2.2. Let m =41. Since m= 1 mod 4 we know that r(41)
acts transitively on 81(4]). Let g = [0,4,5]. If Cy and c, are
distinct classes in r{(m) then c](e) and cz(e) must be distinct
bundles. Otherwise we have cy(6) = cy(e) so (CE}C])(G) = 8. Hence
the nontrivial class célc] stabilizes g which contradicts
Theorem 2.1. So given any bundle [u,v,w] € 81(41) there is a unique
class mapping ¢ to [u,v,w]. Below we see 81(41); beside each
bundle [u,v,w] is the unique class g e r(41) with
02{[0,4,51) = [u,v,w]. Recall from Example 1.1 that 1(41) is cyclic
of order 8 generated by the class ¢ which contains
Ol = (3,1+,/-47).
[0,4,5]11
[0,5,4] ¢*
[3,4,4] ¢” [-3,-4,-4] ¢
[1,2,6] ¢ [-1,-2,-6] ¢
1,62 ¢ [-1,-6,-2] ¢’
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Note that c1 and 0—1 lie opposite the vertical symmetry 1ine and

that 64 maps [u,v,w] to [-u,-w,-v] ‘for all bundles [u,v,w].

This elegant proof of Theorem 1.1 was the content of Venkow's
1923 paper. The ideas can be pushed a bit further by considering the
semigroup of classes of integral ideals rather than just the group of
classes of regular integral ideals. This generalization is delayed

until more machinery has been established.
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Chapter 3. A Closer Look at Venkow's Work.

In this section we study the action of T(m) on B](m) in more
detail. Our method of attack is to study the greatest common right
divisor K e E which arises when we write EO(u = EK. From facts
about these greatest common divisors K we derive facts about the

mapping nﬁf

Definition 3.1. Let K and u be elements of E and suppose the

minimal equation of u over Q is x2 +m=0. Wesay K is an

ideal quaternion with respect to 1y if there exists an integral ideal

U of O}

which satisfies EG(U = EK.
We begin with two lemmas concerning ideal quaternions, the first

of which is due to Venkow.

Lemma 3.1. (Venkow [12]) Let O be an integral ideal of 0; and let

KeE. If Eﬁiﬁ = EK, then

O(u= (EKn Q(w)). -

A consequence of Lemma 3.1 is that if K 1is an ideal quaternion with
respect to p then there is a unique integral ideal OC of 0} which
satisfies EGtu = EK.

Let u be an element of E which satisfies x2 +m=0 and let

K be any element of E. Then EKn Q(n) c EK so

(*) E(EK n Q(n)) < EK.

Lemma 3.1 says that K 1ds an ideal quaternion with respect to

iff the inclusion in (*) is an actual equality.
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Lemma 3.2. Let m be congruent to 1 or 2 mod 4. Let K be
an ideal quaternion with respect to p and Tet O7 be the integral
ideal of 0 which satisfies O‘(11 = EKn Q(u). Then NK = NOT where
NOC denotes the norm of OU as an ideal in 0‘]; (i.e. the index otin O'];),
and where NK denotes KK, the quaternion norm of K.
Proof: Without loss of generality we may assume that OC cannot be
written in the form zg where z e Z and 3 1is an integral ideal.
Assume OU = (a,b+yu) where a, be Z and a > 0. We must show

= KK.

Consider EK N Z. This is an ideal of Z -which contains NK so

EKn Z = sZ where s|NK. Write s =eK for ee E. Now

ik = (s = Byex = By@r) - Wjke - wlz.

Mu]tiplying both sides of this equation on the Teft by ('K_)'] we have

K = (Nﬁ)e. Hence

o, = (Ecn ) = (EC8E 0 aw) = (K (ee 0 agw)

) OT ( )3 where 3, is the integral ideal of Z[u] given by
(EEn Q(u)). By hypothesis, ES& =1 so EKNZ= (NKYZ. Thus

(NOZ = (EKnZ) =(EKn Q) nZ = otunzz= aZ
hence a = NK as was to be shown.

Example 3.1: Let m =41 and OCU = (3,1 +,/-41). If u=41'2+51'3

then E(SI]J = EK where = 12—( 1-3i;-1 +13) Note NK = 3 = NOL.
Next Tet m =iy + 21'2 + 6i5. Here EGTn = Ky where

K, = :12—(—1—i]+1’2+31’3). Again K, = 3.
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The next theorem gives a characterization of ideal quaternions
which is in practice more applicable than the definition. We do not
.assume in this theorem that the coefficients of n are relatively
prime.

Theorem 3.1. Let Ke E and suppose NK is an odd prime. Then K is

an ideal quaternion with respect to u iff KuK_] e E.

Proof. The forward direction is a result due to Venkow which was

1

stated earlier as Lemma 2.1 (a). Conversely, suppose KuK ' is an

element of E. OQur first step is to reduce to the case where

K=a+ bi] + ciz + di3 with a, b, ¢, de Z and a# 0 mod p.

Let € be a unit. Then €K 1is an ideal quaternion with respect
to u iff K 1is an ideal quaternion with respect to u and KuK'l e E
iff (sK)u(eK)"] e E. Furthermore NK = NeK so without loss of
generality we may premultiply K by any unit €. Therefore by
Lemma 1.6 we may assume that a, b, ¢, d € Z. - Premultiply K by

1, i], 12 or i; so that a #£ O mod p. Llet u = ui] + viz + wi3;

our first step is to compute KuK.

KuK = i](up— 2u(c2+-d2) + 2v({bc-ad) + 2w(ac+ bd))

+ iz(vp- 2v(b2+-d2) + 2u{ad+ bc) + 2w(-ab+ cd))

+ 13(wp— 2w(b24-c2) + 2u(-ac+ bd) + 2v(ab+cd)).

The condition KuK_] e E together with the fact that p s odd gives
“us the following three congruences from the above expression for KuK;

(A) —u(c2+-d2) + v(bc - ad) + w(ac+bd) = 0 mod p

(B) —v(b24-d2) + u(ad+bc) + w(-ab+cd) = 0 mod p

2

(c) -w(b +~c2) + u(-ac+bd) + v(ab+cd) = 0 mod p.
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Choose ¢ e {0,1,2,...,p-1} such that

(D) ag + bu+ cv+ dw= 0 mod p.

a(-bg+autcw-dv) = -b(-bu-cv-dw) + a2u + acw - adv

i

u(a24-b3) + v(-ad+bc) + w(ac+bd)

i

up + (—u(cz*-dz) + v(bc - ad) + w(ac+ bd)

il

0 mod p by congruence (A).
Thus we have

(E) -bg + (au+cw- dv) 0 mod p.

I

Similarly we obtain
(F) -cg + (av-bw+du) = 0 mod p using congruence (B) -
(G) -dg + (aw+bv-cu)= 0 mod p using congruence (C).

Now

(2+u)K = (ag+ bu+cv+dw)
+ i](—bz+-(au+-cw— dv))
+i,(-co+ (av- bu+du))
+ ig(-de+ (aw+ bv-cu)).

The congruences (D)-(G) imply that (z+~u)K"] =peE so pK=g +p.
Hence O = (p,4 +u) and EK = EQC  as N(K) = NOT, = p.

Example 3.2. let m =59, let pu-= i] + 3i2 + 713 and let

K] =2 + 1]. Then K]uK{1 = i] - (%?Jiz + (%?)i3 SO K1 is not an

ideal quaternion with respect to .

. : -1 L. ) . )
Next et K =21, +1i,. Then KuK ' =3i, -1, -7i3 so K fis

an ideal quaternion with respect to u. The proof of Theorem 3.1
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describes how to find the ideal EK n Q(n). First premultiply K by a

unit €K so that Tr{eK) £ 0 mod NK. In our case let e = i [X0)

1
Tr(eK) = -4, and eK= -2 + iz, Writing eK=a + bi] toci, + di3 and
u = ui] + v12 + wi3 we need to find 4 between 0 and 4 such that

ag + bu+ cv +dw= 0 mod-NK. So in our case we need -2¢ + 7 = 0 mod 5.

Choose 4 =1. Then EKn Q{u) = (NK,g +u) = (5, T+ ).

. The reverse direction of Theorem 3.1 is false in the case p = 2.

Consider for example m =11 with u = i] + 312 + i3 and k = 12 -1
1

3
Here KpukK ' = =i - i, - 3i5 so KpK—] e E, but EK does not equal
ECﬂﬁ for any ideal OU of (7. To see this, suppose to the contrary
that Ot is an ideal of O and EC)Iu = EK. Then NOU= 2 by

Lemma 3.2, but 2 remains prime in the extension QQ/iTT) so there

- are no ideals of norm 2. The next theorem discusses the case p = 2.

Theorem 3.2. Llet Ke E with NK =2 and let u be an element of E
with Ny =m and Tru = 0. Then K 1is an ideal quaternion with

respect to pw if m=1, 2 mod 4, and is not if m= 3 (rmod 8).

Proof. Let a + bi] + ciz + di; be a Hurwitz quaternion of norm 2.
Since 8 cannot be written as a sum of four odd squares we have

a, b, ¢, d e Z. Thus exactly two of a, b, c,’d are 0 and the other
two are 1. So there are exactly 24 Hurwitz quaterhions of norm ?.

which are listed below:
+1 4 i] +1 + 12 +1 4 13
ii] + 12 ii] + i3 iiz + 13.

Hence if W and oy are Hurwitz quaternions of norm 2 then Uy = e,

for some unit e. So either all Hurwitz quaternions of norm 2 are ideal
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quaternions with respect to wu or no Hurwitz quaternions of norm 2 are
ideal quaternions with respect to wu. The former case occurs exactly
when there are integral ideals of norm 2, by Lemma 3.1. This is true

iff m=1, 2 mod 4 (see Cohn [1], pg. 90).

For the remainder of this section we let Co denote the class in
r(m) which contains the prime divisor of (2). If m= 3 mod 8 then
Co is the identity class, but for m= 1, 2 mod 4, Co is nontrivial.
~ The action of Cp, On B](m) is described in the following corollary to

Theorem 3.2.

Corollary 3.1. If m=1, 2mod 4 and [u,v,w] e B](m) then
CZ(EU:V:W]) = [‘U,'W,—V]-
In particular, Co has order 2.

Proof. Since m= 1, 2 mod 4, there exist ideals QU in 0: of norm 2.
Let p denote the quaternion ui] + v1'2 + wi3. Then EC!Tu = E(iz— 13)
since any pair of Hurwitz quaternions of norm 2 differ by left unit
multiplication (see proof of Theorem 3.2).

Note (12— 13)(ui1+-v124-w13)(i2— 13)'] = —ui] - w1'2 - vi3
which completes the proof.

Example 3.3. Let m = 41. Then Cy = c4 where ¢ 1is the class

containing the ideal (3,1 +,/~41) (see Example 1.1).

By Corollary 3.1 we have
Cz([0a4a5]) = [O,-S,-4] = [035343

1l

Cz([33454]) ['39'4:“4]

it

and 62([]a2a6]) [']a'6>‘2]~
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In the case m= 3 mod 8, the set B](m) breaks into two orbits
under the action of r(m) according to the rule [u,v,w] and
[-u,-w,-v] 1lie in distinct orbits. Conjugation by the quaternion
K = 12 - 13 sends (ui]i-v12+-w13) to (—uil-wiz— viS) but in the
case m= 3 mod 8, K is not the greatest common right divisor of

an ideal ECKQ. This will not be proved here.

The next simple observation will turn out to be very important.

Lemma 3.3. Let ¢ be a class in 1"(m) and let [n] and [n] be

in B,(m). Suppose c([ul) = [n]. Then ¢ ([-]) = -n].

Proof. Let Ot be an ideal in ¢; choose K in E such that

ECWﬁ = EK and KUK“! = n. Write CYU = (a,b + u) and observe that
Cﬂiu = (a,b-(-u)) = (a,b+ p). Hence EO{'_U = EK and so K is a
greatest common right divisor for the ideal ECHZU. Also 0¢ s the

class 6*1 S0

) = IK(-wKTT = [-(kek ™) = Enl.
The next theorem is an immediate consequence of Lemma 3.3.

Theorem 3.3. Let [u] be a bundle in B](m) and let g be the

class in r(m) which maps [p] to [-u]l. If ¢ is in T(m) and
-1

c([u]) = [n] then gc ([wl) = [nl.
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Example 3.4. Let m=A173. We have h{(m) = 14; the set B](m) is

Tisted below:

[10,8,3] [-10,-8,- 3]
[10,3,8] [-10, - 3, - 8]
[11,6,4] | [-11,-6,-4]
[11,4,6] [-11,-4,-6]
[12,5,2] [-12,-5,-2]
[12,2,5] [-12,-2,-5]

[0,2,13]

[0,13,2]

Let u be 101‘] + 81'2 + 31‘3 and let § be the class in T(m)
containing the ideal OU= (9,4 5/-173]. Then EOZU = EK  where
K=2-2i

|- 20, and KKl = -u. Thus g([10,8,31) = [-10,-8,-3].

Let ¢ be the ideal class containing the idea1 3= (19,6 5/-173),
and let u = 101’1 + 8i2 + 3i3 as above. Then Egu = Ep where
o = HT+5i +i,+1,), and pup” = 101, + 3i, + Bis So
c([10,8,3]) = [10,3,8].

[10,8,3] 9 - [-10, - 8, - 3]
(31 T~ 39(1’—]

[10,3,8] =~ [-10,-3,-8]
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By theorem 3.3 we have

(s¢71)([10,8,31) = [-10, - 3, - 8].
Also by theorem 3.2 we have cz([10,8,3]) = [-10,-3,-8]. So
Cy = gc”! and ¢ = 5Cy.

Next let & be the class which satisfies 3([10,8,3]) = [0,4,13].

By Theorem 3.3 we have
(951)(010,8,3]) = [0, -2, - 13].

But [0,2,13] = [0,~-2,-13] and so &37] = & Consequently

5=

so & 1is in the principal genus.
Lastly note that since I(m) has order 14, it can be written as
ZZ2 X Z’.7. Since ® 1is a square, it must have order 7 and (”2 is

known to be the unique class of order 2. Hence I(m) Es(Cé> X €87

and so I'(m) is cyclically generated by C = ﬁCé.
We now Tist and illustrate several corollaries to Theorem 3.3.

Corollary 3.2. Suppose m can be written as a sum of 2 squares. Say

m=rl o+ g8, Let Ce I'(m) and suppose ¢([0,r,s]) = [u.,v.w]. Then

(a) CT]([o,r,s]) = [-u,-v,-w].
) c?=1 iffoneof u, v or w is 0.

(c) If two of u, v or w have equal absolute values, then

C has order 4 and CZ = C@-

(d) ¢ dis in the principal genus (i.e. C is a square in I(m))

iff ¢([u]) = [-u] for some [u]e B](m).
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(e) C has order 3 iff all of u, v and w are nonzero and

A Lu,v,w]) = [-u,-v,-w].

Proof: (a) Let u= ri] t si,. Since [u] = [-u] we have
1([1]) = [-1] where 1 denotes the identity class in I(m). Part (a)
now follows from Theorem 3.3.

(b) c?

EN([0,r,s])

iff oneof u, v or w is O.

1 iff ([0,r,s]) = € ([0,r,s]). By part (a)

[-u,-v,-w] and so =1 iff [usvow] = [~u,-v,-w]

(¢) Assume that two of u, v or w- have equal absolute values.

Without Toss of generality we may assume that v

w. Thus

'—ui]-vi2-w13 = —uil--w12—--v13 sp C%([u,v,w]) = [-u?~v,-w].

[u v,w] ~——————-—% [-u,-v,-w]"

N,

[0,r,s]

Note that <([-u,-v,~-w]) = [0,r,s] by part (a) and so (BCZCK[O,r,S]) =

il

[0,r,s]. It follows that .¢C

- L . -1
. 1 so C,=C (since C, = Cé).
This proves part (c).
(d) First assume that C is in the principal genus; say C-= SZ.
Let [u] = sf]([o r,s1) so ®([0,r,s]) = vl by part (a). Hence
o[1]) = $°(67 ([0,r,51)) = 8([0,r,s]) = [-ul.

Conversely suppose C{[n]) = [-u]}. Choose 8 such that
o1 ([0,rss1) = [ul. Then 8([0,r,s]) = [-u] so 8 ([-1]) = [0,r,s].
Hence Cﬂ_z([o,r,s]) = [0,r,s].
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[ul;;;:"““*’[ -]

Hence cﬂ'z =1 so ¢ = Qz.

(e) First suppose that ¢ has order 3. Then all of u, v and

w are nonzero by (b). Also c"] = cz SO

clusvanl) = clell0,r,s1)) = c2([0,r,s]) = ¢ ([0,r,s]) = [-u,-v,-ul.
The Tast equality holding by (a).

Conversely suppose c([u,v,w]) = [-u,-v,-w] and that all of u, v

and w  are nonzero. Then

0,r,s1) = c(lu,v,wl) = [-u,-v,-w] = ¢ 1 ([0,r,s1) again by (a).

So by Theorem 2.1 (a) GZ = c'1 and c3 =1. If ¢=1 then

Lu,v,w] = [0,r,s] so one of u, v or w 1is O.

Example 3.5. lLet m=41. Note m= v2 + 5% where r=4 and s = 5.
Below we see the same figure as in Example 2.2. The 8 bundles in B1(m)
appear; beside each bundle [u] 1is the class ci which maps [0,4,5]
to [u].
[0,4,5] 1
[0,5,4] ¢
[3.4,4] ¢ [-3,-4,-4] ¢

[] 32 36] 63 ["-l )_2 9-6] 65

[1,6,2] ¢ [-1,-6,-2] ¢’
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Note that CJ and Cfi map [0,4,5] to bundles [p] and [-u]
respectively. This is the statement of Corollary 3.2 (a). The subgroup
of squares in I(m) s the subgroup {l,d ,04,06}. By inspection of
the diagram above one sees that these are exactly the classes which map

[1] to [-ul for some bundle [p]. This is the statement of Corollary
3.2 (d).

In the next example we consider, for the prime p = 3, a question
which we take up in the next chapter for all primes p. This example is
intended to display some of the basic ideas which we will use in

Chapter 4.

Example 3.6. In this example we use Corollary 3.2 (e) to find all m

which satisfy properties (i) and (ii) below;
(i) m can be written as a sum of two squares.

(i) (3) splits in Q{/-m) and the prime divisors of (3) are
regular ideals in classes of order 3 1in the ring class group I(m)
with discriminant -4m.

Let m satisfy (i) and (ii); write m = r2 ¥ s with gcd(r,s) =1

and Tet p and p’ be the prime divisors of (3) in 0% Let ¢ denote
the class in I(m) containing ©, let p = r11 + siz and let
ne C([g]). Note that C([u]) = [-u] by Corollary 3.2 (e).

o]

< [ud ¢



36

Choose Hurwitz quaternions o and 8 such that

(1)

m
)
]

EB

1

(2) EP; Ea
(3) BUB_] = -q
(4) aUa_]= -

We know that o 1is a Hurwitz quaternion of norm 3 and that B is a
Hurwitz quaternion of norm 3 and trace 0 (B has trace 0 by Lemma

1.4).

Let a=a + bi1 + ciz + di let B = xi, + yiz + zi, and let

3’ 3

Moo= ui] + viz + wi3. By Lemma 1.4 we have

1

(5) xu+yyv +zw=20,

By (4) and the fact that the 13 coefficient of p is 0 we have

2.2 2 2
)

(6) (-2ac+2bd)u + (2ab+2cd)v + (a“~b“-c“+d)w = 0

Notice that if o and P are specified, relations (5) and (6)
determine the vector (u,v,w) up to a constant multiple. We will show

later that conditions (5) and (6) are independent.

These conditions determine the 1ine in R3 generated by the vector
(u,v,w). But u, v, w are relatively prime integers hence the vector
(u,v,w) is determined up to +1. Thus m is determined from knowing

only o and B!

‘We consider all pairs (q.8) where a 1s a Hurwitz quaternion of

norm 3 and g 1is a Hurwitz quaternion of norm 3 and trace 0. We

construct a vector (u,v,w) consisting of relatively prime integers
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which satisfy (5) and (6). Then we let m = Wt 2wl For example, if

.i
1 ) . . .
. %.+ 5t 5+ 35 and g = i+ i, + g then relatqus (5) and

(6) read
(5) u+v+w=0

(6) 2u-v+2w=0.

The only triples (u,v,w) consisting of relatively prime integers which
satisfy (5) and (6) are +(1,0,-1) and wm = 2. As another possibility,

let ¢ = %(3+-i}+-i2+-13) and let B = —i] + 12 - i3. Then equations

(5) and (6) become
(5) ~u-v-w=0
(6) ~u+2v+2w=0

Substituting equation (5) in equation (6) we obtain
(-u) +2v+ 2(-u+v) =0 so -3u+4v =10. We must choose

(u,vow) = +(4,3,-1), and m = 26.

If one continues this procedure until all pairs (q,8) have been
considered, one finds that 2 and 26 are the only values of m
which appear. In QQ/TE) the class group has order 1, but in
Q(,/-26) the prime divisors of (3) do lie in classes of order 3. Hence

26 is the only value of m which satisfies conditions (i) and (ii).

The algorithm used in this example is exactly the one used in the

next section where odd primes other than 3 are considered.
The next result is a corollary of Theorem 3.3.

Corollary 3.3. Let m be congruent to 1 or 2 mod 4. Suppose m

can be written as a square plus two times a square, say m = rz + 252.

Let ¢ er(m) and suppose c([r,s,s]) = [u,v,w]l.
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Then
(a) ¢ has order 2 iff two of u, v, w have equal absolute

values.

(b) Cy is in the principal genus iff m can be written as a sum

of 2 squares.

Proof. (a) By Corollary 3.1 we know that cZ([r,s,s]) = [-r,-5,-S].
Now ¢ has order 2 iff ccé = c']cz which is true iff
CGZ([F,SsS]) = C_}CZ([P,S,S]). By Theorem 3.3 we have
c'1e2([r,s,s]) = [-u,-v,-w]. By Corollary 3.1 we have
ccz([r,s,s]) = 02([u,v,w] = [-u,-w,-v]. So ¢ has order 2 iff
f-u,-v,-w] = [-u,~w,-v] which is true iff two of u, v, w have equal
absoltute values.

(b) First suppose that Cy is in the principal genus, say
c, = o?. et [u,v,wl = g([r,s,s]). By Theorem 3.3 we have

[-us-v,-w] = ﬂ"]cz(ms,s]). So
[u,vowl = g(lr,s,s]) = ﬂ"]cz([r,s,s}) = [-u,-v,-u].

Thus one of u, v, w is 0 so m can be written as a sum of two
squares.

Conversely suppose that m can be written as wm = u2 + v2. Let

8 be the class with g(lo,u,v]) = [r,s,5]. By Corollary 3.2 (c) we

have @2 =Cy SO Cy is in the principal genus.

Example 3.7. Let m = 57. Then B](m) looks 1ike

(4,4,5] [-4,-4,-5]
[2,2,7] [-2,-2,-7].
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By Corollary 3.3 (a) we have that every class in 1(57) has order 2.
Hence 1 (57) = Zy x 222. |
To end this section we return to Venkow's ideas in Chapter 2 and

generalize them from the group of regular integral ideals to the
semigroup of integral ideals. For the remainder of Chapter 3 we assume
f is square-free. Let Rf denote the semigroup of integral ideals of
0? and let Pf denote the sub—éemigroup of Rf consisting of the
jdeals which are principal in 0;. '
We call

Definition 3.2. Let S(m) be the abelian semigroup Re/Pe.

S(m) the vring semigroup with discriminant -4m.

Dade, Taussky and Zassenhaus [2] studied the structure of  S(m)
and showed that the lattice of idempotents in S(m) is isomorphic to
the Tattice of divisors of f. This will show up clearly in what

follows.

Definition 3.3. For each d which divides f, 1let Bd(m) denote the
set of bundles g with Ng =m, Trg =0 and c(g) = d. Let

Bim) = U Bd(m).
d| f

Definition 2.1 can be extended from regular integral ideals to all

integral ideals.

Definition 3.4. Let OU be an integral ideal of U}. Define a map

L1 from B{m) to B(m) in the following way; given a bundle

6 € B(m), choose peg and K e E such that EO{u = EK. Let

1 (6) = [Kuk'1.

The analogue of Lemma 2.2 holds; the same proof Venkow used for

lLemma 2.2 can be .used here,
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Lemma 3.4. Let OU and 3 be integral ideals of U; and let g be

an element of B(m). Then

(a) T,(8) = T (T.(0))

(b) If OU and 3 are in the same class of S{m) then

Define an action of S{m) on B(m) by saying that if g € B(m) and
c e S{m) then c{g) = ﬂéée) where OC is an ideal chosen arbitrarily
from ¢. By Lemma 3.4 this is a well-defined action of S(m) on B{m).

If ¢ is a class in S(m) which is not invertible then the map

o + cls)

is not a 1-1 map. Our analysis of the action of S(m) on B(m) is

based on the following theorem.

Theorem 3.4. Let p be a prime which divides f and let g be a
bundle in Be(m) where e divides f. Let Cy be the class in S(m)

which contains the ideal O, = (p,/-m). Then
(@) cy(e) =g if p divides e.

(b) cp(e) € B, (m) if p and e are relatively prime.

p
Proof. First suppose that p divides e. Let u be an element of
g; write u = p(uii*—v124—w13) where u, v, we Z. It is clear that
p is a right divisor in E of both p and u so EOZp = Ep. Thus
cyle) = [pup' 1 = 0.

Next assume that p and e are relatively prime. Since p2
divides Nu we can find K, in E such that NK, =p and uK{] e E

(this follows from Corollary 1.4). Likewise since p divides
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N(pK{]) there exists K, € E such that NK, = p and KQ](UK{]) e E.
Thus
u = KZU] K] (*)
where My € E. From (*) we have

-1

Kou(Ky) = kK,
-1
Kquig = Ky kpu
hence both Kép(?é)—] and K‘uK{] are elements of E. Thus K, and

Ré are each ideal quaternions with respect to u by Theorem 3.1.
However each has norm p and Cﬂp = oq) is the only integral ideal in

U} of norm p. Thus

EK2 = EOTp = EK

1

S0 ’Kz = eK1 for € a unit. Thus

Kpuky ™ = KiKowy = 8-](EéK2)“1 = p(e" ).

) c(K]pK{1) = pc(u]) = pe, which shows that c(g) e Bep(m).

Definition 3.5. For each d dividing f, let Cq denote the class

in p{m) which contains the ideal oty = (d,/-m).

Lemma 3.5. If d and e are divisors of f then CqCe = C, Where

L
cm{d,e). ’

Proof. It suffices to show that dem% is equivalent to Gtz, where

4 = gem{d,e). Let g = gcd(d,e).. We have
o® = (de,d/-m,e,fm,m) = (9)(z,9J:ﬁ1~,9J:—rm~"1)
de g g 9

and /—m, = /-m = (gm/ m) since g— and %— ére relatively prime
and since d1v1des gu Thus GQF% = (g)G;z S0 Cdce = Cz-
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Note that if we let d = e 1in Lemma 3.5 we have that each Cq is
idempotent in S{m). Dade, Taussky and Zassenhaus [2] showed that the

classes ¢4 are the only idempotents in S(m).

Definition 3.6. Let d be a divisor of f. Let Sd(m) be the group

of all classes in S{m) -of the form CC where ¢ is in T(m).

Note that each set Sd(m) is a group with identity Cq and that
S}(m) = 7(m). Gauss showed that Sd(m) and Se(m) are disjoint if

d # e and that S(m) = L]J Sd(m) (see Gauss [5], article 161). The
dif ,

next two lemmas lead up to the Tast theorem of this chapter.

Lemma 3.6. Suppose e divides f. Let QU be an ideal in 0 with

Z-basis (a,b~+¢frn—]_) ‘where a is relatively prime to f. Let O{, be

f
the regular ideals in 0} and O‘jf/e given by Gl'f = 0']; N GC and

o, = 0“]2/8 n ot respectively. let ¢ and ¢ be the classes in T{m)

and ;[‘(m/e(') containing oL ¢ and Cﬂe. Let [eu,ev,ew] be a bundle
in Be(m) and et [r,s,t] = ¢([u,v,w]). Then

c(feu,ev,ew]) = [er,es,et].

Proof. MNote that Ql. and Gl, have Z-bases given by
(a,f(b+¢iﬁ17)) and (a,£—(b+¢?ﬁ)) respectively. Let K be a
greatest common right divisor of a and —g(b+,\/fﬁ); choose K so
that K(ui] + v1'2+ wiS)K_] = (ri] + 51'2+ ti3). Observe that K s also

a greatest common right divisor of a and g—(bJr,\/?rﬁ]—) since a and

e are relatively prime. Thus

c([eu,ev,ew]) [K(eui} + ev1'2+ ew1'3)K_]]

i

[e(K(ui] tvigt wiB)K—] )]

[e(r1'1 + si2+ t1'3)] = [er,es,et].
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This result gives us the next lemma.

Lemma 3.7. Let e divide f and suppose that m 1is congruent to

1 or 2 mod 4.
(a) If cer(m) and g € Be(m) then c¢(g) € Be(m).

(b) If 0y and 8, are in Be(m) then there exists ¢ e r{m)

such that C(GT) = 8-

Proof. We first prove (a). Let Cﬂ% be an ideal from . HWrite

OZf = Ol 0; and let Cwe‘= otn O?IE' Let ¢ be the class in jr(m/ez)
which contains Gte. Let g = [eu,ev,ew], and et c¢([u,v,w]) = [r,s,t].
By Lemma 2.1 (a) we have that gcd(r,s,t) = 1. By Lemma 3.6 we have

c(leu,ev,ew]) = [er,es,et] and so

c(cle)) = e.

We next prove (b). Let 0y = [eu,ev,ew] and let 0y = [er,es,et].
By Theorem 2.1 (b) there exists a class é in r(m/ez) such that
é([u,v,w}) = [r,s,t]. Choose an ideal OU of 0~ with NOU relatively
prime to f such that QUn O;/e is in G. Let ¢ be the class in
T'(m) containing the ideal OC n 0}. By Lemma 3.6 we have
cleg) = e,.
Theorem 3.5. Let m be congruent to 1 or 2 mod 4, let d and e

be divisors of f and let 4 = gcm(d,e). Then
S4(m)(B(m)) = B,(m)

where Sd(m)(Be(m)) denotes the set of all ¢(g) for ¢ e Sd(m) and

8 € Be(m).
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Proof. Let ¢ be an element of Sd(m) and let e. be 1in Be(m).
Write ¢ = 8CCy where t = gcd(d,e) and s = d/t. By Theorem 3.4 (a)
we have ct(e) =g and by Theorem 3.4 (b) we have cs(e) € Bz(m). Thus
ﬂ(CZ(e)) = c(g) 1is in Bﬂ(m) by Lemma 3.7 (a) so Sd(m)(Be(m)) g;Bz(m).
Equality holds by Lemma 3.7 (b) which completes the proof.

Example 3.8. Let m =585 =5+13+3". Here m = 65 and f = 3.
The group 1°(585) has order 16 and

'(585) = 27.4 x Z Z

2 X “p-

7(585) is generated by ¢ the class containing (2,3+,/-585), by

9°
Cyq»  the class containing (11,3+,/-585) and by Cyg1> the class
containing (101,18+,/-585). The class C11 has order 4 and the
classes Co and 6101 have order 2. The set 83(585) has size 8.
Below see B(585); the 16 bundles in B](585) appear on top and the
8 bundles 1in 83(585) appear on the bottom. Beside each bundlie g

in B(585) 1is a class ¢ which maps [1,10,22] to g.



1 [1,10,22]

626101[1322,]0]

3

oy [4,20,13]

2 3
C11%01¢2

0121 [10,17,14]

3

¢y [8.11,20]

611610102[8,20,]1]

CoCy1C416,15,18]

FONCREREY

[10,14,17]
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2 g ]
[0,3,24] Cy1CoC3

2
[0,24,3] Cy1C3
[0,12,21] CyCs

[0,21,12] ¢,

["] y"-} 03—22] C’I O]

['] 9‘229"101 CZ

["4:'] 3:"20] C'l ]Cz

3
[‘4 9‘203"] 3] C'l ]G'l O'I

2
{-10,-14,-17] C11Co

[—103"179—]4] C'IZ'IC'I 01

[‘8:’]‘]' 9”20] C'HC]O]

3
['8""205']]] C]]CZ

3
["6 3"] 53"1 8] 6263011

[—Ga'] 83'1 5] 63(3']]
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Chapter 4. Imaginary Quadratic Fields Where a Prime has Order 3.

In this chapter we apply the machinery developed in Chapter 3 to
answer the following question for all odd primes p. Which imaginary
quadratic ring class groups rT°(m) for m a sum of two squares have the
property that the prime divisors of (p) are regular ideals in classes
of order 3 in r(m)? The methods we use to answer this question are
similar to those used to answer the same question for p = 3 in

Example 3.6.

Section 1. The Quadratic Form ¢’.

Throughout this section, p is a fiXed odd prime. Let m = m]f2

be a positive integer congruent to 1 or 2 mod 4 where m is
square-free and positive. Assume that p does not divide m and that
the prime divisors p and p’ of (p) in 0r are in classes of
order 3 in 7{m). Assume in addition that m can be written as a sum
of 2 relatively prime squares.

Lemma 4.1. Let m = rZ + 52 where (rys) = 1. Suppose T

| P maps the

bundle [r,s,o] to [-u,-v,-w]

1. HP' maps [r,s,0] to [-u,-v,-w] and HP' maps [u,v,w]
to [PaS’O]‘

2. HP maps [u,v,w] to [-u,-v,-w].

Proof. Llet ¢ denote the class in I~ containing p. Then p’
belongs to c_] S0 HP' maps [u,v,w] to [r,s,0]. By Corollary

3.2 (a) we have that HP' maps [r,s,0] to [-u,-v,-w] which proves
1.

Since ¢ has order 3 we have that p and (p’)2 belong to the
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same class. I , maps [u,v,w] to [-u,-v,-w] by (1) which
(o)
completes the proof.

Definition 4.1. Let A denote the set of Hurwitz quaternions of

norm p and let B denote the set of Hurwitz quaternions of norm p

and trace 0.

let r, s, U, vV, w be as in Lemma 4.1, let u = uiy + vi, +owig
and let p = ri] + si,. Let B be a greatest common right divisor
of EPU and let a be .a greatest common right divisor of Ep%. By
Lemma 2.1 we have “1““{] € [p] and B]ugilvg [-p]. - Premultiply o

and B1 by appropriate units to obtain o “and ‘B which satisfy

a ko =p (4.1)

BUB = -M
By Lemma 1.4, the latter equation implies that g € B so the pair

{a,p) comes from A x B.

Applying Lemma 1.4 to the equations in (4.1) and observing that
the i, coefficient of p s 0 we obtain the following 3 conditions
on g, 3 and u;

(i) The coefficient of iy in aua-] is 0.

(ii) Tr(gu) = 0.
(i11) (u,v,w) = 1.
We begin with a pair (g.8) € A x B and construct the ue E
which satisfy conditions (i), (ii) and (iii). Given o and g,

conditions (i) and (ii) put two linear conditions on u, v and w

thus constraining the vector (u,v,w) to a line in R3.  Condition
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(i17) determines (u,v,w) up to a change in sign. For a given o and

B, the algorithm breaks down iff one of u, vorw is Q0.

To construct such an algorithm we begin with a function 5’ which
for a pair (q,8) € A x B yields an integer vector (u’,v’,w’) on the
same 1ine in IR3 as {u,v,w). We define ¢’ in such a way as to

facilitate the analysis when one of u’, v/, or w' is 0.

Definition 4.2. Define ¢ : Ay B> Z° as follows; for

(xs8) € Ax B with o =a + bi, + ci, + di; and g = xip + yi, + zig

define
Cp’ (@’B) = (U, v W, ,s")
where T y(wa2+-b2+~c2— dz) + 2z{ab+ cd)
: 2 2 2

= x(a-b%- %+ d%) + 2z(ac- bd )

<<
I

! = 2x(-ab- cd) + 2y(-ac+ bd)

2,022

st = W(a2~b2+c2—d2)+ 2 (ad+ bc) + 2w’ (cd- ab).

=
il

v (a - dz) + 2v/{bc - ad) + 2w’/ (bd+ ac)

1

One can check that all of u', v/, w', v, s* are integers even in the
case where the coefficients of g are odd integers divided by 2. We
begin with a Temma which lists some properties of ¢’.

fovi,w, r, s be as in Definition 4.2.

Lemma 4.2. let ¢, 3 and u
Then
(a) xu +yv +2zw =0
(b) 2u’(bd-ac) + 2v'(cd+ab) + w’(az— b2 - c2+-d2) = Q.
(C) C(.(ul-i'l+ V’-i2+wl-i3)C-I,— = Y‘ii-l + S'iz

(d) ged(u’ v ,w') = gcd(r,s")

or pged(u’,v' ,w') = ged(r’,s’)
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or ngcd(u' VW) = ged(r?,s?)

(e} If (v ,s') = (u.,v',w) or (r',s’') = p?’(u',v' W)

then (u'i]+v’1‘2+w’i3) has 2 zero components.

i

(f) @l(i]Q:B) (’Uf,‘V’,-W',’r‘,S,)-

w'(jzaaﬁ) = (’ula‘vfa'wlsr"'s’)-
;p’(i3a,5) = (u,v/ W ,-r*,-s’).
Proof. The proofs of (a), (b) and (f) are simple computations. We now

prove (c); to do so it suffices to show that

alu iyt Vit wig)p = (rfiy+s7i,)q.

(rfig+sfis)e = (efig + s, {at biy + ci,y+ diy)

2 2 2
)

= (-b(u’ (a?+b%- c?- d?) + 2v/ (bec- ad) + 2w’ (bd+ ac)

—c(v’(az— b+ ¢ + 2uf(ad+bc) + 2w’(cd - ab))

+1'1(a(u’(a2+ bl - dz) + 2v'(bc- ad) + 2w/ {bd+ ac))

+d(v"(a2— b2+ c2- d2) + 2uf(ad+bc) + 2w’ (cd- ab)))

2 2

1, (-d(u (a%+ b%- ¢ d%) + 2v/(bc- ad) + 2w’ (bd+ ac))

+a(v’(a2— be+ c2— d2) + 2u’(ad+bd) + 2w’{cd- ab)))

2
2..,2 2)

+1'3(c(u'(a +b7-c¢"-d") + 2v/(bc -ad) + 2w (bd+ ac))

b(v'(a® - bZ+ 2= d?) + 2uf(ad+bc) + 2w’ (cd- ab))).
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Rewriting each of these coefficients we obtain,

(Y" 1] + Sliz)(x =

(-buf (a%+ b2+ cZ+ d%) + 2dw (bd- ac) - o (a+ b2+ 2+ d%)

2

+2dv? (cd+ab) - dw’ (a+ b2+ c2+ d%) + dw’ (a%- b - cZ+ %))

2, 2

242 2) + 2cu’ (bd- ac) - dv'(a2+b +c +d2)

-~H’](au’(a2+ b+ c+d

+2cv’ (ab+ cd) + cw'(a2+ b2 + I dZ) - cw’ (—a2+ b2+ 02- dz))

+1'2(du'(a2+ b2+ c2+ d2) + 2bu’ (ac -~ bd) + av (a2+ b2+ 2+ dz)

2, 2. 2
)

-2bv*{ab+ cd) - bw (a2+b +c™+d7) + bw’(—a2+ b2+ c2~ dz))

2, 2

+i3(—cu'(a2+b +cZ+ d%) + 2au’ (ac- bd) + by* (a4 b2

+ c2+-d2)

+2av’ (-ab~- ¢d) + aw’(azi-b24-c24-d2) + aw'(—a2+ b2+‘cz— dz)).

Applying the orthogonality condition given in part (b) of this lemma

we can simplify the above expression.

(r'i]4-s'i2)a = ({-bu’ - cv’ - dw’) + 1](au’— dv® + cw’)

2.4.2, 2

+i?(du'+~av'— bw/) + 13(—cu’+-bv’4-aw'))(a +b+ ¢+ dz)

S0
(r'i]+-s’12)a = (a%-bi]+-cizi-di3)(u’il+-v’iz +-w’13)p.
Next we prove (d). By the equations for v/ and s’ given in
definition 4.2 it is clear that gcd(u ,v/ v )|gcd(r’',s’). Also by
part (c) of this lemma we have
p . . . = p .
p (u’114-v'12+-w'13) = a(r’114-s'12)a (4.2).

The equation (4.2) expresses p2u', pzv' and pZ

w/ as Z-linear
combinations of r’/ and s’ thus showing that

gcd(r’,s')fngcd(u',v’,w’), and this proves (d).
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To prove (e) assume first that gcd(r',s’) = gcd(u’ ,v/ ,w').

P . . . . . .
Let u = m(u'1]+ Vit w'13) = Uiy Vi, i,

B 1 /o 7 o i .
and p = W(Y‘ 'l-I +s 12-) Y‘1-| + 512.
Note that (r,s) =1 and that {(u,v,w) = p.

Let O(p = pZ + Z(ri] +s1‘2) and observe that
. . N X
a(_u1]+v12+w13)a = (r1]+s12)

by part (c) of this Temma. So N(u) = N(p) = —(ri]+s1’2)2 hence p

divides (m']+s1'2)2. Thus G{p is an ideal in Z[p]. Also

(a)‘](ui]+ Vigtuig)y = riy + si,

and (&")"](ui]+ v1'2+wi3) e £ since p|gcd(u,v,w). So o is a
greatest common right divisor of EO{Q. Clearly 01:) =61p hence
Lu,v,w] = [~u,-v,-w] which completes the proof of (e) in the case
ged(u,viw' ) =gcd(r,s’). The case ngcd(u’,v’,w_’) = gcd(r’,s’ )x is similar.

The rest of this section is spent characterizing those pairs

(asB) where one of u’, v/ or w’ is 0.

Definition 4.3. Let (a,3) e Ax B and let ¢ (a.8) = (u’,v’,w’,r’,s").

’ 4

! or w' is 0 then (g,8) is called a degenerate

If one of u’, v
pair, and we say that o' degenerates at (y,B).
Lemma 4.3. Suppose (g,8) € Ax B is a degenerate pair. Then one of

the following conditions must hold;

1. (a) a=e(x11+y12+zi3) for e e U

(b) «

fnl

e(—xi]+y1'2+ 21'3) for e e U
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(¢) o= E(XT'] —y1'2+ Zi3) for e eV

(d) «

1}

e(—x11— y12+-z13) for e U
2. €0 has two zero components for some e € U.

Proof. Let (d,g) € Ay B be a degenerate pair with

a = a+ bi] +ci, + dig, with g = xi} + yiz +zig and with

o (z.B) = (u',v',w,r",s"). By lemma 4.2 (d) we know that
ged(u’ ,v! ,w' ) = ged(r!,s’), or pgcd{u’,v/ ,w) = gcd(r ,s*) or
2

pTgcd(u ,v ,w’') = gcd(r’,s’). Me examine each of these three cases

separately.

Case 1. ged(u’,v/ ,w') = gecd(r’ ,s”).

o P
= ged(v, v W)

N (3 ’ s N
Let {u 1]+-v 12+-u 13) and let

5 = gé—(ﬂ%’?y(r'i1+s’i2). Write u, v, w for the

coefficients of u and r, s for the coefficients of p. By
assumption, one of u, v or w is 0. Assume that w = 0; the
cases u =0 and v =0 are handled similarly.

fet m = u2 + v2 + w2 = r2 + 52 and write m = m}f2 where m] is

square-free. Let 07 denote the maximal order in the field wcjfﬁ?)
and U} the suborder with generators (1,/-m). Note that p|m so
(p,/-m) is a Z-basis for an ideal OC in the order 0%
By Lemma 4.2 {c) we have auafl = p hence
-1 —
(a) " uwo = p,
and ((&)—]u) e E since p|(u,v,w). Also ou =p so o 1is a

greatest common right divisor of the ideal EO&)==E(p,r1}+-siz).
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Next observe that

(igaiy) ) wligail) = (1,313 T - (i5a13))

. N T R
isa ]131(13u13 )(13a13])

(@ i3 = aglriy +si )5 = (i 4 siy).

So 13&351 is also a greatest common right divisor of the ideal Eo(p.
Hence there is a unit € e U for which

—. =1 —

i3a13 = €(q,).
— . , : .
Now isaig = a + b1] + ci, - d13 and so by Lemma 1.5 with |
& = q we have that for some p e U, gqg has 2 zeroc components. Hence

the same is true of o, which completes Case 1.

Case 2. ngcd(u',v’,w’) = g;d(r’,s').

This is handled very much 1ike case 1. Again one finds that pq

has 2 zero components for some p € U.

Case 3. pged(u’ v/ W) = ged{r ,s').

]
ged(u’ , v/

Lot u = ’w,)(ufi]+v'1'2+w'i3) and Tet

1 . .
p - gcdir’,s'i(rj11’+3112)’
As hefore, Tet u, v and w denote the coefficients of u; by
assumption one of u, v, or w is 0. We consider the case u = 0,
the cases v =0 and w =0 are handled similarly. We will show

o T ER Or g = e(—x11+-y124-zi3) for e e U.
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By Lemma 4.2 (a) we have

Xu+yv+zw =20

SO 5116—] = -y = 1]U11 . Hence i]B centralizes u so
i]B = Gy + qou for 41> 4, € Q. By inspection, i]B = -X nziz + yi3
S0 gy = -X. Let v = ged(y,z), so

v = -k(z/v)
w= k(y/v)

for ke (. Write k = kl/kZ with gcd(kx,kz) =1 and k2 > 0.

Observe that k2 =1 since (y/v) and (z/y) are relatively prime.

So k= &7,
Subcase 1. k=1 so v=-z/y and w = y/y.
2.2 2
=¥ 1z . p=x_
Let m 5 5
Y Y
and write m = m]fz where m is square-free. Let 0} denote the

suborder in QL/jﬁ;) generated by 1 and ./-m . In the semigroup of

ideals in the ring 0; we have

(p) = (p,x+ vy /-m)(p,x - y./-m) .
212 y13

Identify ,/-m with the quaternion p = Tty

Note x + yu = x - ziz + yi3 is a divisor of both p and x + yu. Also
X -y = x+ 212 - yi3 is a divisor of both p and x - yu. Hence ¢
differs from x + yu or from x - yu by left unit multiplication (in
this case the prime divosors of (p) are principal). Assume that ¢
differs from x + yu by left unit multiplication (the other case is
similar). We have

a = ﬁ(x—zb+y1§ =(aﬂlﬂ-m]+yiz+ﬂ3)
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for e, @ unit. This is condition 1b which completes this subcase.
Subcase 2. k = -1.

Here a similar argument shows thaf o differs from
xi] + yiz + 213 by Teft unit multiplication. This completes the proof -

of Lemma 4.3.

The next three lemmas examine the cases when the pair (0»8)
satisfy one of the 5 conditions of Lemma 4.3. Together they give a

complete characterization of degenerate pairs.

Lemma 4.4 deals with the case where exa has 2 zero coefficients
for some € e U. HNote that if e e {#l,xi,,+7,.475} and ea has 2
zerp coefficients than o has 2 zero coefficients. If
eel - {i],ii],ii2,¢i3} and eo has 2 zero coefficients then all
coefficients of g are nonzero and 2 pairs of coefficients have equal
absolute values. The reader should bear in mind throughout that if
= 1 mod 4, there are unique integers x, y with 0 < x <y and

x2 + yz = p. Likewise there are unique odd integers 0 <a <b with

B @ e B 0P .

Lemma 4.4. Suppose (g,3) € Ax B and ¢ (0.3) = (u v W, s’ ).
Let o =a +bi, +ci, + di; and g = xip +yi, + zis. Then
1. Al of W, v/, w are nonzero in the following cases

{(a) a=b=0 and x#0
c=d=0 and x #0

(b) a=c=0 and y# 0
b=d=0 and y #0
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{¢) a=4d,b=c¢ and x # 0

a=d,b=-c and y #0

o
i}
1
o
“
o
1]
[}

and y # 0
a=-d,b=-c and x #£0

{(d) a=c¢c,b=d and z #0
a=-c,b=-d and z # 0

(e) a=b,c=-d and z # 0
d and z # 0

bl
il
i

o

(]
1t

2. (a) If a=c¢ and b=-d then u = 0.
If a=-¢c and b =d then u = 0.
(b) If a=b and c=d then v =0.
If a=-b and ¢ = -d then v = 0.
(¢c) If a=d=0 then w = 0.
If b=c=0 then w = 0.

Proof. The proof is by computation. The computations in 2. are

straightforward and are left to the reader. The computations in 1.

very similar so only one is done. The reader who is interested in
compieting the rest can use Lemma 4.2 (f) to reduce the number of

necessary conputations.

We do the first case of 1. Assume that a =b =0 and that
x # 0. Then '

Lo pexly?e

and so gcd(c,d) =1 -since p is prime.

are
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u’ = y(cz— dz) + 2zcd
vio= x(—c2+-d2)
w' = -2xcd.

As gcd(c,d) =1 we see that 2 - d2 #0 and v/, w are nonzero.
If W =0 then
y(d2~ c2) = 2zcd.

Since gcd(c,d) =1 we have (cd,(cz- dz)) =7 and since p is

odd we have (2,(d2— cz)) = 1. Hence

(d2— c2)]z ~and  (2cd)]y.

Now

b=y el a 22 s (2e)? 4 (- D)2 = (24 B)2 = 2

and this is a contradiction. This completes the proof of this case and

of Lemma 4.4.

Let V denote the subgroup of U generated by i] and 12. This
subgroup has index 3 in U; the distinct left cosets are given by

- - _ .2
Uy =V, U] = 5V, U2 =5 V.

Lemma 4.5. Let (q.8) € Ax B and let o (q,8) = (W ,v w1 ,s7).
Suppose o = a t bil + ciz + di3 and g = xi] + yiz + 213 where all of

X, ¥ and z are nonzero.

1. If ¢ =epg for e€eU thenoneof u', v or w 1is 0.

1]

2. Suppose q e(—x1]+-yi2+-zi3) for € € U. One of uw, v

or w is 0 iff e e U2.

3. Suppose g s(xil-y12+-zi3) for € eU. Oneof uw, v or

w' is 0 iff e € U,.
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4. Suppose g = s(xi]-y124-253) for € eU. Oneof u, v, or

'

w is 0 iff e € UO'

Proof. The proof is by computation; by Lemma 4.2 (f) only 12 of the

96 possible cases need be considered. The computations are straight-

forward in the 6 cases where one of u', vV, or w dis 0. In the

remaining 6 cases, the computations are similar and so only one is

done.

Assume o = %(14-114'124‘13)(~X114‘yf2*'213), so

a = x-y-2z) + 5{-x-y+tz) + 5{-x+y-z) + X{x+y+2z).
2 2 2 2

Thus
= y(-(x% - 2xy+ yP - 2xz+ 2yz+ 2%) + (x%+ 2xy + y2 - 2xz - 2yz+2°)

+(x2- 2xy4-y2+~2xz— 2yz + 22) - (x24-2xy+—y24~2xz4-2yz+~22))

+2z((x-y-2z)(-x-y+z) + (-x+ty-z)(x+y+z))

SO

du’ = y(-8yz) + 22(ux24-2xz+-y2— 22— x2— 2xz+-y2~ 22)

4y’ = 42(—x2—‘y2~ 22)
so u = -zp hence u # 0.

4v' = x(8yz) + 2z({x- y- z)(-x+y-z) - (-x-y+z}(x+y+z))

so 4v’ = 16xyz hence Vv # 0.

2w! = x(2x2— 2y2+-222) + y(-4xy)

so w = x(xz- 3y2+ 22).

Hence w' =0 iff 3y2 = x2 + 22. Assume this is the case. If y s

even then x2 + 22 = 0 mod 4 so both x and y are even and this

contradicts gcd(x,y,z) =1. So y is odd and so x2 + 22 = 3 mod 4
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which is a contradiction. Thus w’ # 0 which completes the proof of

the case g = s(—x1]+~y124-213) and € e Uj.

Each of the last two Temmas requires the assumption that all of
X, ¥ and z are nonzero. The next lemma deals with the case when one

of x, ¥y or z is O.
Lenma 4.6. Suppose (q.8) € Ax B and o (q.8) = (0 ,v ,w,r",s%).
lLet o = a + bil + ciz + d13 and B = xi] + yi2 + 213. Then

1. If x =0 and either
(a) a=b=20
(b} ¢c=d=0
(¢) a=d and b =c¢
(dy a=-d and b = -c

then V'

it

w o= 0.

™

If y =10 and either
(a) a=c¢c=20

0

(b) b=4d
(c) a=d and b= -c
(d) a=-d and b =c

i

W= 0.

then

3. If z =0 and either

(a) a=c¢c and b=4d

{]

(b) a=-c and b = -d
(c) a=b and ¢ = -d

(d) a=-b and c=4d

n



60
4. If o = e(—x1]+-yi2+-zi3) for ¢ el and if one of
X, ¥y or z 1is 0 thenone of w, v or w is 0.
If o = e(xi}—y1'2+ 21'3) for e el and if one of x, y or z

is C then one of u', vV or w' is 0.

If o = s(—xi] -yi2+ 213) for e e U and if one of x, y or z

is 0 then one of u', vV or w is 0.

Proof. The proofs of 1.-3. are simple computations, and are left to
the reader. The proof of 4. is also by computation; we consider the
case where g = e:(~x1'] + y1'2+ z‘i3). By Lemma 4.2 (f) we need only

consider =1, 5§ or 52 and € = § dis done in Lemma 4.4.

If ¢ = ("Xil +y1‘2+ 21'3) then a straightforward computation gives

u o= yp
v o= x(»xz— y2+ 322)
W= -dxyz.
The assertion clearly follows. If o = 52(—x1'1 +y1'2+ 213) then
W = pz
vV = 4xyz
W= x(x2— 3y2+ zd)

and again the assertion follows.

We are now ready to count the number of degenerate pairs

. (G.sB) €A X B.
Theorem 4.1. Let h(p) denote the class number of the field Q(/-p).
The number of degenerate pairs (g,3) ¢ A x B is

192(6h(p)-2) if p=1 nod 4
192(6h(p)) if p= 3md 8.
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Proof. Consider first the case p= 3 mod 8. UWe know that every
degenerate pair must satisfy one of the conditions of Lemma 4.3.
fondition 2. cannot be met in this case since a prime congruent to
3 mod 8 cannot be written as a sum of 2 squares. So we only need

consider conditions Ta-1d and here Lemma 4.5 is pertinent.

For each B = x1]4~y12+-zi3 € B there are 24  satisfying
o = €8 with e e U, 8 o satisfying ¢ =_s(jxi]+-yiz4-zi3) with € € U2,
8 o satisfying ¢ = E(Xil_ y124~213) with € € UI’ and 8 ¢
satisfying o = e(—xi]- y12+-zi3) with € e UO' Thus the number of
degenerage pairs (g.8) e Ax B is 48-|B]. By Theorem 2.1,

|B| = 24h{p) so the number of degenerate pairs is
48 - |B|] =48~ 24h(p) = 192(6h(p))
which completes the proof in the case p = 3 mod 8.

If p=1 md4 the situation is more complicated, since the
conditions of Lemma 4.4 2. and Lemma 4.6 are met as well as the
conditions of Lemma 4.5. Suppose first that g = xi} + yiz + zi3 € B
and that all of x, y and 2z are nonzero. The conditions of
Lemma 4.4 2. are met by 48 o € A and the conditions of Lemma 4.5

which give a degenerate pair are met by 48 o € A (as above). Also

these 96 o are distinct since all of x, y and z are nonzero.

If one of x, y or z 1is 0 then we look at Lemma 4.6 in place
of Lemma 4.5. There seem to be 96  which satisfy the conditions of

Lemma 4.6 4,.

i

However, if 2z = 0 then e(xi]+-yi2+-213) (—e)(—xi]-yi24-zi3)

i

and s(xi]-yi2+-zi3) (—e)(-x114-y124-zi3)
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if y =0 then e(xi]+-y124-z13) = e(x1]— y12+-zi3)
and e(—xilﬁ-y12+-zi3) = e(—xi]— yiz*-zi3)
if x =0 then e(xi]+-y12+-z13) = e(—xi1+~yi2+-zi3)

and e(xiy - y12+-z13) = a(-xil— yi,+zig).
So there are 48 4 which satisfy the conditions of Lemma 4.6 4..

There are 48 4 which satisfy the conditions of Lemma 4.4 2..
O0f these, 16 also satisfy the conditions of Lemma 4.6 4. and so are
counted twice. In total, 384 pairs {g.8) are counted twice. Pairs
(a,g) which satisfy conditions in Lemma 4.6 1.-3. also satisfy the
conditions of Lemma 4.6 4. and so these pairs have already been

counted.

Thus for each g € B there are 96 o for which (¢,8) is a
degenerate pair though this counts 384 pairs twice. Hence the total
number of degenerate pairs is 96 |B| - 384. By Theorem 2.1,

[B] = 12h(p) so the total number of degenerate pairs is
192(6h{p)) - 384 = 192(6h(p) - 2).

This completes the proof of Theorem 4.1.

Section 2. Classes of order 3.

We begin by defining a function ¢ on A x B. This‘function is

derived from the function ¢’ of the previous section.

Definition 4.4. Define ¢ : Ax B+ E x E as follows; for

_(G.:B) e A X B let Cp'(C(.sB) = (ulsvl ,WI,Y.I 95')- Define CP(CL’B) =(]J>p)
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_ 1
~ ged{uw v W

y (u'i‘4-v'124-w’i3).

_ 1 . .
P = ged(r ey (it
Lemmas 4.3, 4.4 and 4.5 together show that if u , v and w' are all

nonzero we have

Bus” = -u.

The next lemma shows that the only way the above two equations can be

satisfied is for ola.8) = £(nsp).

S ape - = p

and BUB—] = -y,

Then pla,.p) = {u,.p).

Proof. Let o =a +biy +ci, + d13 and g = xiy +yi, + zi,.
A simple computation gives that the coefficient of i3 in oua is

2 .2

w(a®-b°- 2+ d2) + 2u{-ac+ bd) + 2v(ab+ cd).

So we have the following 1inear condition on u, v and w:

2 2

w(al-b%- %+ d%) + 2u(-ac+bd) + 2v(ab+cd) = 0 (*).

The equation BUB-] = -y gives the following linear condition on u, v
and w:

Xu+ yv+zw =0 v (**).
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We next show that the two conditions (*) and (**) are linearly
independent over Q. (The reader may want to refer back to Example

3.6.)

Suppose to the contrary that there exists a rational number g

with

xq = 2(-ac+ bd)

yq = 2{ab+ cd)

zq = a2 - b2 - c2 + dz.
Then pg° = (x%+ y2+ 22)q?

(xq)2 + (yq)? + (2q)°

i

4(-ac+bd)? + 4(ab+ cd)? + (a%- b2 - 2+ ¢2)2

i

4(a2c2-2abcd+'b d°) + 4(a b%+ 2abed+ ¢ dz)

I

by Ay o 20202 20l 2a2d8 s 202c2 - 2b242 - 22l

SO

202, 22, 22, .22

4 4 + 2(a"b"+ta“c"+a"d"+b°c"+b

pg-=a +b +c + d4

2424 22

~thus pq2 = p2 50 q2 = p.

Since p 1is prime, this is a contradiction.

So the two conditions (*) and (**) are linearly independent over
Q hence they determine a line in 323 on which the vector (u,v,w)
must lie.

Let ola,B) = (U],pl) where My = u]il + v]iz + w]i3. Then
gcd(u],v],w]) =1 and (u],v],w]) Ties on the same line in IR3 as
does (u,v,w). The condition gcd(u,v,w) = gcd(ul,vl,w]) implies

that (u,v,w) = i(u],v1,w]), which completes the proof.
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Let t(p) denote the number of ways to write p as a sum of three
squares and Tet f(p) denote the number of Hurwitz quaternions with
norm p (i.e. f(p) is the number of ways to write p as a sum of four
squares plus the number of ways to write 4p as:a sum of four odd

squares.) We are now ready to state the main result.

Theorem 4.2. Let m(p) be the number of discriminants -4m, with m
a sum of two squares, such that the prime divisors of (p) are regular
ideals in classes of order 3 in the ring class group with discriminant

1

-4m. Here each discriminant is counted with multiplicity Zt' where

t is the number of prime divisors of 4m. Then

(A) m(p) = 1z f(p)h(p) - 6h(p) + 2 if p=1 md 4
() m(p) = g F(p)h(p) - 6h(p) if p=3md8
(C) m(p) =0 if p= 7 mod 8.

Proof. First we will prove the following two statements which are

equivalent to (A) and (B) above by Theorem 2.1.

yd

(M) m(p) = 197 |A] - |B] - 6h(p) +2 if p=1 mod4
o ,
(B*) wm{p) = T§§-|A|- [B] - 6h(p) if p=3mds3s8

(the sets A and B are defined in Definition 4.1).

First suppose the prime divisors of (p) are in classes of
ordér 3 in the ring class group associated with discriminant -4m.
Assume that m can be written as a sum of 2 squares and that p
does not divide m (so the prime.divisors of (p) are regular ideals).
Choose a pair (q.8) € A x B according to the following scheme;

1. Choose p = ri, +si, with o+ 5% = m, (r,s) =1.
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2. Choose p = (p,a+,/-m), one of the prime divisors of (p).

Let ¢ denote the ideal class to which p belongs.

3. Llet pp = (p,a+p) and let K be a greatest common right
divisor of Ep . let =X andlet = Kok™'; write
= ui] + v12 + wi3.
4. By Corollary 3.2 (a) the class c—] = CZ maps the bundle
[r,s,0] to the bundle [-u,-v,-w]. Hence ¢ maps [u,v,w] to
[-u,-v,-w]. Let P, = (p,a+u); pick B, a greatest common right

divisor of Ep, such that B“B_] = .

By our choice of (¢,8) we have

and BUB = -h.
By Lemma 4.7 we have (a,8) = x(sp).

Notevﬁhat (sB) 1is not a degenerate pair. For if any
coefficient of p is 0 then [u] = [-u], so ¢ mps [u] to
itself since 3u5“1 = -u. This implies that ¢ 1is the identity class
which contradicts the assumption that ¢ has order 3. Thus we've

chosen a nondegenerate pair (q,8).

Conversely, let (q,8) be a nondegenerate pair. Let

owlasg) = (usp) and Tet m = N(u). By Lemma 4.2 (a) and (c) we have
(*)
and  BUB = -u.

Let Py = Q(u)n Eg and let 2, = Q(u) n Eg. By the equation in (*)

we have aua"] e E and BUB_] € E so by Theorem 3.1 we have



67
Epu = Ey and EDU = E3. By Lemma 3.2, Pu and Qu are integral
ideals of Q{u) each having norm p. Since u has 3 nonzero
coefficients, [-ul # [p] hence Pu # 2, Let p and » be the
ideals in QQ/TH) whose images under the map Nfﬁﬁ—+ u are Pu and
2, respectively. From the above we see that n =p’ and (p) = e’ .

Henceforth Tet pL denote Du'

Let ¢ denote the class in the class group of Q(/-m) which
contains p*. Then c—] contains p SO the equations Epu = ky and
aua“] = o imply that c'] ‘maps [(u] to [p]. Thus ¢ mps [p] to
[u] so c"] maps [p] to [-ul by Corollary 3.2 (a). The equations .
EP; = Eg  and BUB_] = -y imply that ¢ maps [u] to [-u] so cz
maps [p] to [-ul. Since the class group action is sharply transitive,
02 = c—1 and so c3 = 1. Also note that 1 has three nonzero

coefficients so [u] # [p), and hence ¢ #1. Thus ¢ is a class of

order 3 containing a prime divisor of (p).

So the map ¢ defines a many-one correspondence between
nondegenerate pairs (q.8) € A x B and discriminants -4m for which
the prime divisors of (p) are regular ideals in classes of order 3
in the ring class group with discriminant -4m. We need to compute the

exact ratio of this many-one correspondence.

Consider the freedom of choice we have in carrying out the 4 step
procedure given at the start of this proof.

1. The bundie containing p = ri; + si, can be chosen in ot

ways where t 1is the number of prime divisors of 4m. Once the
bundie containing p is chosen, the pair v, s can be picked in 4

ways.
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Total choice 4 - Zt'].

2. A prime divisor p of (p) can be chosen in 2 ways.
Total choice 2.

3. K can be chosen in 24 ways; o and u are specified by K.
Total choice 24.

4. g wmust map u to -u so there are 2 choices for B.
Total choice 2.

Hence we have 384 « Zt"]

choices in all when constructing ¢ and
g. However the function o makes an arbitrary choice of either p or

P’ at step 2.. To see this suppose o(a,8) = (u,p). Then we have

apu—] =g and Bugm] = -y
so we also have
of-u)a”! = - and g(-mp”! = -(-u).
Also 13913_} =-p so p and -p are in the same bundle. By the

definition of ¢ we made a choice between (u,p) and (-u,-p).

fence we've shown that there is a 192- Zt']

to 1 corfespondence
between non-degenerate pairs (g,8) in A x B and the ring class
groups with discriminant -4m, with m a sum of two relatively prime
squares, in which the prime divisors of (p) are regular and fall in
classes of order 3. Applying Theorem 4.1 completes the proof of
Theorem 4.2, (A) and (B).

Lastly we must consider the case p= 7 (mod 8). Suppose m can

2 2

be written as m = r~ + s” and suppose that the prime divisors of (p)

are regular ideals in classes of order 3 in the ring class group T(m).
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There exist integers a and b such that p3 = a2 + bzm, since

there is a principal ideal of norm p3 in 0%. But now p3 = -1 mod 8
so af + (br)2 + (bs)2 = -1 (mod 8) and it is well-known that this

latter congruence is impossible. Thus m(p) = 0 when p= 7 (mod 8).
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Conclusion

The work in this thesis suggests some lines of further research.
Consider the quadratic space given by @ and the norm form x2 + my2.
The Clifford Algebra of this quadratic space is the quaternion algebra
H (see Edwards and Snapper [5]). One can view the embeddings of
M(/-m) in E as the embeddings of the quadratic space (Q,x2+-y2m)
in its Clifford Algebra. This leads one to ask whether the results

discovered by Venkow and extended in this thesis are true of the

embeddings of an arbitrary quadratic space in its Clifford Algebra.

Another possible 1ine of research is suggested by work of
Pat Morton. Using results of Barracand and Cohn [1], Morton showed
that the eighth degree extension K= Q(i,v@jf7§) has the property
that for all primes p, 8 divides the class number of Q(/-p) iff p
splits completely in K (see Morton [9]). This latter condition is
equivalent to éaying that p 'is a norm from K since K has class
number 1. It is unknown whether there exists a corresponding field F
with the property that 16 divides h(p) iff p splits completely
in  F. There is evidence that 2 should be the only prime to ramify
in F, if F exists. Harvey Cohn and Jeff Lagarius have shown that
no field F of degree 16 over § 1in which 2 is the only prime to

ramify has the desired property (this work is unpublished but in

preparation). So the existence of such a field F seems questionable.

There may however be a degree 16 division algebra A over @
which has the property that 16 divides h{(p) 1iff p 1is a norm from
A. A likely sort of division algebra to consider is one of degree 4

over H, where H denotes the quaternion algebra. It is hoped that
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results from this thesis may guide one in choosing the algebra A and
then simplify the ensuing proofs. For example one might consider
adjoining X, where is a fourth root of 2, to H with some sort of
twisted multiplication. We have that 12 is a square-root of 2.
For p=1, 2 md4, Q(/-p) has an ideal square root of (2).

Corollary 3.1 from this thesis suggests the multiplication

2. _ .2 2. _ . .2 2. _ .2
O R bY N A B and 3 T = =15\

In this way one might
be able to use results from this work to shed Tight on the above

question.
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