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ABSTRACT

The deformation and burst of small fiuid droplets suspended in a second
immiscible fluid undergoing a steady linear shearing motion are discussed. The
eflects of Capillary number, ratio of fluid viscosities, and flow type are con-

sidered both experimentally and theoretically.

The experiments are unique in that a spectrum of strong two-dimensional
flows (those with the magnitude of the strain rate exceeding that of the vorti-
city) was considered. These flows were generated in a four roll mill specifically
designed for the experiments. Previous investigations had been limited to one
specific strong flow owing to the difficulty in holding drops stationary at the
stagnation point in such flows. We overcame this obstacle by using a computer
interfaced to a digital video camera to locate the drops in the flow field and
adjust the roller speeds to effect an inferential feedback control scheme. It is
believed that the control system implemented for the present experiments
could be adapted to a variety of fluid flow experiments with similar control prob-

lemns.

Drop deformation and burst experiments were performed for viscosity
ratios ranging from 0.001 to 27., and flows with ratio of vorticity to strain rate
ranging from zero to 0.687. In a typical experiment a drop went through a suc-
cession of increasingly deformed steady shapes as the Capillary number was
slowly increased with the flow type constant. The appearance of the drop was
recorded photographically. In most cases, a Capillary number was reached
where no steady shape was possible, and this was recorded as the critical Capil-
lary number for drop burst. In a few cases with high viscosity ratio and large
vorticity 1o strain rate ratio, drop burst was impossible. In cases where burst

occurred, the transient motion of the drops at the critical Capillary number was
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observed. The drops continued to deform, but did not break into fragments
until the flow was turned off. They then either fragmented or returned to the

spherical shape through a complex interfacial tension driven motion.

The experimental deformation and burst observations were compared to
the predictions of several available theories. Separate theories apply to cases
where the deformation is small (nearly spherical drops) or large (threadlike
drops). Comparisons to existing numerical results for one particular viscosity
ratio are also included. Agreement between the experimental observations and

the predictions of the theories was very good.
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1.0 INTRODUCTION

In this work, we consider the behavior of a fluid drop, freely suspended in a
second, immiscible, viscous fluid which is undergoing a general linear two-
dimensional flow. The flow-induced stress on the drop surface tends to deform
the drop, and the interfacial tension between the phases resists this deforma-
tion. Under some conditions, the interfacial forces are insufficient to balance
the viscous stresses, and the drop bursts. The problem is of both practical and
academic interest, and has thus received considerable attention in the fluid

mechanics literature over the past fifty years.

In most practical applications, the objective is to disperse one fluid phase in
another, either to form an emulsion, or to increase the surface area between the
two phases for more efficient heat and/or mass transfer. In these cases, deter-
mination of flow conditions which result in drop breakup is of paramount impor-
tance. Examples include dispersion of anti-static or anti-soiling agents, disper-
sion of color concentrates, and blending of immiscible polymer systems to form

two phase structures of unique properties {(Grace [1971]).

Even when the drop does not break, the distortion produced by a given flow
is of interest in understanding the rheological behavior of flowing emulsions.
Emulsions are known to exhibit such non-Newtonian characteristics as shear-
dependent viscosity, viscoelasticity, and normal stress differences in rectilinear
flow, even when the concentration of the dispersed phase is small (Frankel and
Acrivos [1970], Barthes-Biesel and Acrivos [1973b]). From a knowledge of the
deformation of the drops forming the dispersed phase and of the disturbance
flow in their vicinity, a constitutive equation can be developed (at least in princi-
ple) for the emulsion. The advantage of this microstructural approach is that it

exposes the functional relationship between the stress and the physical
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properties of the two phases. This is in contrast to the phenomenological
approach to development of rheological equations of state, which generally
results in constitutive equations which contain parameters that are not directly
related to physical properties and are difficult or impossible to measure experi-
mentally. A possibility is that the study of emulsion rheology will aid in formu-
lating constitutive equations which can be applied to a more general class of
materials exhibiting similar non-Newtonian behavior (e.g., polymer solutions and

melts).

The drop deformation problem also presents interesting theoretical chal-
lenges. The equations of motion must be solved for the flow within and around
the drop, and boundary conditions applied on the surface of the drop, the shape
of which must be determined as part of the solution. To date, no general solu-
tion has been found, but progress has been made through asymptotic analyses,
considering conditions for which the drops are either nearly spherical, or highly
deformed. In addition, several numerical methods have been employed, but
they have been limited to either special flow fields (e.g., axisymmetric exten-
sional flow (Rallison and Acrivos [1978])). or particular values of the viscosity

ratio (Rallison [1981]).

A relatively large number of experimental studies of drop behavior in
viscous shear flows have been reported. However, almost all of the available
data concern drops in either two-dimensional irrotational flow or in simple shear
flow, where the vorticity and strain rate are equal. In irrotational flow produced
in a four roll mill (Taylor [1934], Rumscheidt and Mason [1961], Grace [1971]).
the experiments are particularly difficult because drops positionediat the lone
stagnation point in the flow field are highly unstable to disturbances in position,

tending to be carried away from this point by the flow with a velocity that is pro-
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portional to displacement. Naturally, this makes observations difficult, and con-
sequently fewer data are available for this flow than for simple shear. In simple
shear flow, the problem of controlling the drop position is considerably less
severe, since there is a plane of stagnant flow, and drops not centered in the

plane merely move parallel to it with constant velocity.

Several qualitative features of drop behavior differ dramatically between
the two flows, owing to the presence of vorticity in simple shear and its absence
in irrotational flow. For example, drops whose viscosity is greater than about 3.5
times the viscosity of the suspending fluid burst readily in irrotational flow, but
refuse to burst in sirnple shear, instead attaining a limiting deformation as the
shear rate is increased. Motivation thus exists for studies of other so-called
"strong’ flows (where the magnitude of the strain rate exceeds that of the vorti-
city) intermediate between simple shear and irrotational flow. These flows can
be conveniently generated in the four roll mill (which is also used to produce the
irrotational flow), but unfortunately the above-mentioned control problem exists

for these flows as well, and is in some ways even more difficult.

The present paper discusses the implementation of a computer-based sys-
tem to control the drop at the stagnation point of strong flows generated in a
four roll mill. This technique allowed us to obtain better data for irrotational
flow than was previously possible with hand controlled experiments, and also
allowed studies of intermediate strong flows for which experiments would have
otherwise been impossible. The observations are compared to the predictions of

several of the available theories and numerical studies.



1.1 PROBLEM STATEMENT

A drop of volume 4ma®/ 3, viscosity u' and density p', is freely suspended in
an infinite bath of a second fluid of viscosity & and density p. The interfacial ten-
sion between the two immiscible fluids is g. The interface is assumed to
transmit tangential étresses undiminished, thus other possible surface effects
such as interfacial viscosity and interfacial tension gradients are neglected. The
suspending fluid is undergoing a steady motion at infinity which is a linear shear
ﬁo;v in a frame of reference in which the drop center is stationary. This situa-
tion is illustrated schematically in Figure 1.1. Both fluids are Newtonian and
incompressible, so that the governing equations are the Navier-Stokes equations
and the continuity equation, applied inside and outside the drop, with appropri-

ate boundary conditions on the drop surface.

The fluid velocity inside the drop, u', and the fluid velocity outside the drop

u are both governed by the Navier-Stokes equations and continuity equations,

i.e., inside
p'(aalt'+ u-va') = ' (Vi) - Vp', (1.1)
Vu =0, (1.2)
and outside
du _
p(a—t+ uvu) = u{VPu) - Vp , (1.3)
Vu=0. (1.4)

The appropriate boundary condition far from the drop is
u-Vux as x-»o, (1.5)

At the drop surface S, the velocity is continuous,



u=u, (1.6)

but the stress suffers a jump in the normal direction owing to the interfacial

tension:

S T (1.7)
1

l__+ e P =
p'-p +unkE-unk UR A

R, and R, are the principal radii of curvature of the surface S, nis the unit out-
ward normal, and E' and E are the symmetric portions of the velocity gradient
tensors Vu' and Vu, respectively. Finally, the equation for the evolution of the

drop shape is written symbolically as:

ds _
Sr - un. (1.8)

When these equations are put in dimensionless form, with the undeformed
radius of the drop, a, as the characteristic length scale, the inverse of the mag-
nitude of the velocity gradient tensor, G}, as the characteristic time scale, and

Ga as the velocity scale, the following dimensionless parameters appear:

A= %— (viscosity ratio) , (1.9)
Ca = _C_?gg_ (Capillary number) , (1.10)
Re = %ga (Reynolds number) , (1.11)

K= %— (density ratio) . (1.12)

We will restrict our attention to cases where the viscous effects dominate,
so that the Reynolds number based on the drop size is negligible. We also con-
sider only neutrally buoyant drops, so that £ = 1. In this case, the evolution of

the drop shape will depend only on the viscosity ratio, the Capillary number, and
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the nature of the applied flow. Our experiments were limited to two-dimensional
flows of the type which can be generated in the four roll mill. The form of the
velocity gradient tensor is characterized by a single parameter «, defined by
(2.1), which specifies the relative strength of the strain rate and vorticity in the
flow. In particular, a = -1 for pure rotational flow, a = 0 for simple shear flow,

and o = +1 for irrotational flow.

In drop deformation experiments, photographs of the drop are taken with
the camera mounted perpendicular to the plane of the flow, yielding a projection
of the drop in the z = 0 plane. For convenient comparisons to theoretical pre-
dictions, two distinct scalar measures of drop deformation are customarily
defined. These are illustrated in Figure 1.2. The first, which is appropriate for
nearly spherical drops, defines the deformation in terms of the longest and
shortest semi-axes of the elliptical drop cross section (L and 5 respectively).

The definition is given by (Taylor [1934]):

L-B

br=1¥E

(1.13)

This quantity is zero for spherical drops and asymptotically approaches one for
infinitely extended drops. When L/ B is large (the drops are highly deformed),
D; changes very little with increasing L/ B, so in this case a different measure
of the deformation is more appropriate. We choose the ratio of the half-length of
the deformed drop to the undeformed radius, L/a. In both cases, the orienta-
tion angle of the drop (the angle between the longest axis of the drop and one

principal axis of the rate of strain tensor) is also measured.

In our experiments we have focussed attention on two aspects of drop behavior.
First, we have investigated the equilibrium deformation of drops (where dS/ dt

= 0 for all points of S) in steady flows as a function of Ca, for various values of



viscosity ratio and flow type:
Dy =Df(Ca;\a) or L/a =L/a(Ca;\ a). (1.14)

For some combinations of viscosity ratic and flow type, no stable steady shape is
possible for Capillary numbers greater than some critical value, Ca;. The condi-
tions which lead to this drop burst are of considerable practical interest, so we
have also investigated the critical Capillary number as a function of viscosity

ratio in a variety of different flow types:
Ca; = Ca; (A ) . (1.15)

The maximum stable deformation (the deformation at Ca just below Ca;) and

corresponding orientation angle have also been measured:

ch = ch (7\; a) ) (1.16)

S =3 (ha). (1.17)
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Figure 1.1
Schematic of problem

Figure 1.2
Scalar measurements of deformation



1.2 PREVIOUS WORK

Studies of drop deformation and burst date back at least fifty years, to the
pioneering work of G.I. Taylor [1932, 1934]. He investigated drop behavior
experimentally in simple shear flow, using a parallel band apparatus to generate
the flow, and apparently invented the four roll mill in order to study the same
problem for an irrotational flow field. Although few in number, Taylor's experi-
ments uncovered most of the qualitative aspects of the drop deformation and

burst process, including the following observations:

1. At low flow strengths, drops of all viscosity ratios deform into prolate
spheroids. The longest axis of the drop is initially aligned with the principal

axis of strain for both irrotational and simple shear flows.

2.  When the drop viscosity is low compared to that of the suspending fluid, the
critical Capillary number for burst becomes quite large, and the drops prior
to burst attain highly deformed shapes with pointed ends. Under some con-
ditions, small drops are ejected from these pointed ends, a phenomenon

which has come to be called "tip streaming.”

3. When the ratio of drop to suspending fluid viscosity is large, drop behavior
is qualitatively different in simple shear and irrotational flow fields. In irro-
tational flows, burst occurs at low Ca. In simple shear, on the other hand,
the drops assume slightly deformed shapes which are unaffected by further

increases in the shear, and drop burst becomes impossible.

To explain some of his observations, Taylor [1932, 1934] developed two
theories valid for small departures from sphericity, the first for o « 1 and
A = 0(1), and the second for A > 1 and Ca = O(1) for a simple shear flow. In
both cases, Taylor used the general solution of the creeping flow equations due

to Lamb to calculate the velocity fields in and around a spherical drop, which
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satisfled all of the boundary conditions on the spherical surface except for the
normal stress condition. This latter condition was then used to calculate the
first correction to the spherical shape. In the first case, Ca <« 1 and A = 0(1),
Taylor's analysis showed that the the deformation parameter, [y, is related to

the Capillary number by
Dy =Caf(N, (1.18)
with f (\) given by

18\ + 18

FN =T ie (1.19)

This relation proved valid at low deformations for all cases considered by Taylor,
and was at least qualitatively accurate for surprisingly large values of D; in

sorie cases.

Taylor’'s [1934] high viscosity ratio theory for simple shear flow led to the

result

D,—»:%— as A-eo, (1.19)

Subsequent researchers refined the small deformation theory. Cox [1969]
analyzed the situation for which the deformation was slight, using an expansion
in a small parameter representing the deviation from sphericity, so that the
same result could be applied when either the flow was weak or the viscosity ratio
large. He also examined drop response to time dependent flow fields, including
a detailed study of the approach to equilibrium of a viscous drop in a rotational
flow field suddenly started from rest. Barthes-Biesel and Acrivos [1973a] carried
the small deformation analysis to higher order in the deformation, using a com-
puter to perform the extensive algebra required. Their approach, discussed

more fully in Section 3.1, also provides predictions for drop burst. The predic-
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tions of this theory are compared to the observations in Sections 4.1 and 4.2.

Taylor [1964] was also apparently the first to apply the techniques of
slender body theory for low viscosity ratio drops, which are observed to take on
highly deformed steady shapes. His analysis was somewhat sketchy, but
clarifications have been published by Buckmaster [1972, 1973] and Acrivos and
Lo [1978]. These papers considered bubbles or drops in axisymmetric exten-
sional flows. Extensions of the theory to the experimentally realizable cases of
two-dimensional irrotational flow and simple shear flow have been published by
Hinch and Acrives [1979, 1980]. The predictions of these large deformation
theories are discussed in Section 3.2, with comparisons to the experiment found

in Sections 4.1 and 4.2.

To bridge the gap between the small deformation and large deformation
theories, several numerical studies have been undertaken. The problem is not
easily amenable to standard finite-difference methods, since the boundaries are
neither geometrically simple, nor of known conformation. Instead, use is made
of the boundary integral method first applied by Youngren and Acrivos [1978].
In this technique, the Stokes equations are put into an integral form whose solu-
tion only requires evaluation of unknown velocity and stress components on the
drop surface. This technique was first applied for a bubble (A = 0) in axisym-
metric flow (Youngren and Acrivos [1978]). Subsequently, solutions for a drop of
arbitrary viscosity ratio in an axisymmetric flow (Rallison and Acrivos [1978],
and for a drop with a viscosity ratio of one in a variety of flow fields, including
simple shear and two-dimensional irrotational flows (Rallison [1981]), were pub-
lished. The results of this latter study are discussed in Section 3.3, and com-

pared to the experimental results in Sections 4.1 and 4.2.
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On the experimental side, a number of additional studies of drop deforma-
tion and burst have followed Taylor's early work. Rumscheidt and Mason [1961]
considered both irrotational and simple shear flows, but with the experiments in
the former case being limited in scope owing to the difficulty in controlling the
drop position. They classified the limiting behavior {with increasing shear rate)
of drops in simple shear flow, reporting three main types of behavior; breakup
by the tip streaming process originally described by Taylor [1934] (Class A),
breakup by "necking" at the center of the drop (Class B), and attainment of a
limiting deformation without burst (Class C). The second mode was further bro-
ken down into cases where the drop broke with only moderate extension {Class
B-1), and cases where the drop extended into a long thread before breakup
(Class B-2). The tip streaming mode dominated the shear flow observation for
low viscosity ratios, and limiting deformations were found for a viscosity ratio
above about 3.5. For the irrotational flow, Class B-2 breakup was noted for A =
1.0 and 6.0, and Class A observed for A = 0.0002. The later investigation of Torza,
Cox, and Mason [1972] clarified the mode of burst for iﬁtermediate viscosity
ratio drops in shear flows. When the shear rate was increased slowly, so that the
drops went through a series of equilibrium shapes, Class B-1 burst dominated.
When the drops were subjected to higher dG/df, Class B-2 breakup was
observed. They also observed that tip streaming for low A systems seemed to be
promoted by rapid changes in shear rate. When the shear rate was increased
slowly, low viscosity ratio drops still formed pointed ends, but small fragments
were not ejected. Torza, Cox, and Mason [1972] also considered the approach to
an equilibrium deformation of a drop subjected to a simple shear started impul-

sively from rest, comparing their results to the theory of Cox [1969].

Grace [1971] performed the most comprehensive set of drop breakup

experiments in simple shear and irrotational flow, covering viscosity ratios from
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1075 to about 900. He focussed attention on matters of practical importance in
the formation of emulsions and design of dispersion equipment, presenting data
on the critical Capillary number required for drop burst, drop draw ratio neces-
sary for break at the critical Capillary number, the time necessary to achieve
that break, and the resulting drop fragment size distribution. Also considered
was the effect of exceeding the critical Capillary number on the energy required
for breakup and the resulting number and size of drop fragments. A summary
of Grace's data (which is typical of the data from all sources) for the critical
Capillary number as a function of viscosity ratio, for the two flows he considered,
is shown in Figure 1.3. Note that the burst data for low viscosity ratios includes
only large-scale burst of the drop, and does not include breakup by tip stream-
ing. In light of the significant differences between the two curves, a systematic
investigation of the effects of vorticity on drop deformation and burst seemed in

order.

The only experiments in flows other than simple shear and two-dimensional
irrotational flows appear to be those reported by Hakimi and Schowalter [1981]
in the flow produced in an orthogonal rheometer. In this device, flows of varying
vorticity-to-strain-rate ratio can be generated, but the flows are always "weak",
meaning that the magnitude of the vorticity is always larger than that of the
strain rate. The experiments were limited to small deformations (D, =0.2), and
only one viscosity ratio (A = 0.09). Agreement with a truncated version of the

Barthes-Biesel and Acrivos [ 1973a] analysis was reported.
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1.3 PRESENT WORK

As noted above, prior to this work, no experiments had been attempted in
strong flows other than irrotational flow. Since these flows can more readily
cause large deformations and drop burst than the weak flows considered by Hak-
imi and Schowalter [1981], they are actually of greater practical importance.
While a complete spectrum of two-dimensional strong flows can be conveniently
generated in the four roll mill, ¢ontrol of the drop position is too complicated to
be accomplished manually except in an approximate sense for the purely irrota-
tional case that was studied by Taylor [1934], Rumscheidt and Mason [1961] and
Grace [1971]. Reasons for the difficulty of control in other strong flows are dis-
cussed in Chapter 2. A major contribution of the present work is the applica-
tion of recent advances in the technology of laboratory computers and image
processing to essentially solve the drop control problem for the four roll mill,
allowing more accurate experiments in irrotational flow, and making experi-

ments in intermediate strong flows possible.

The feedback control system we developed to control the drop uses a closed
circuit video camera to sense the drop position. The camera is focussed on the
central portion of the flow field, and the drop backlighted to obtain maximum
contrast between it and the suspending fluid. In operation, the camera provides
an eight-bit digital signal which sequentially reports the intensity of light falling
on each picture element in a 248 by 244 grid. The data are fed into a video
preprocessor which "thresholds” it by comparison to a preset value, thus reduc-
ing the data rate by a factor of eight. The thresholded data are passed to a
laboratory computer. The center of mass of the drop is determined from this
data stream, and appropriate flow field adjustments made through changes in

the speeds of the DC stepping motors which turn the four rollers. Using a simple
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model for the response of the flow field to changes in the roller speeds, and for
the motion of the drop in response to the flow field, we were able to implement
an inferential control scheme capable of maintaining a drop at the center of the
flow field for much higher velocity gradients than could be controlied by hand.
Also, the computer was able to sense much smaller disturbances to the drop
position than could be detected by eye, and was thus able to respond with
smaller control actions, and thus less disruption to the desired flow, than would

be possible with manual control.

Using this technique, we have systematically investigated the effect of flow
type on the deformation and burst of drops in Newtonian fluids, covering a wide
range of viscosity ratio and strain-rate-to-vorticity ratio. Computer control of
the experiment has resulted in data of improved quality for irrotational flow, as
well as data for flows which had not previously been investigated. Comparisons
to several of the available drop deformation and burst theories have been made

to test the theories and clarify conditions for which they may be expected to

apply.

Planned extensions to the work described here include investigations of the
effects of viscoelasticity (of the drop and/or the continuous phase) on drop
deformation and burst. In this case, the qualitative differences caused by
increasing vorticity may be even more striking than for Newtonian systems,
since viscoelastic fluids typically exhibit a shear viscosity which decreases with
increasing shear rate, but an extensional viscosity which usually increases with
increasing velocity gradient. Another area for which the computer controlled
capability is particularly well-suited is in investigations of the response of fluid
drops to transient flow flelds. Since neither the shear rate nor the nature of the

flow field seen by a drop is constant in most practical dispersion equipment, an
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understanding of the effects of time-varying flows would be invaluable in the

design or optimization of such equipment.

It is also hoped that this demonstration of the feasibility of real-time con-
trol based on video data will encourage other applications of this technique.
Presently, technology is available to handle simple manipulations of video data
in real-time (such as the thresholding used in our experiments), but develop-
ment of pipelined processors which incorporate digital filtering techniques to
perform higher level functions (such as edge detection) in real-time is under-
way, driven by applications in robotics and machine intelligence (Wong [1979]).
In addition, the processing power and speed of laboratory computers is continu-
ously improving, while prices are continuously dropping. Thus more compli-
cated manipulations of the video data may become possible, allowing a broader

range of applications.



_18_

2.0 THE EXPERIMENT

The principal objective in the design and construction of the experimental
apparatus was to produce a device flexible enough to investigate a variety of
phenomena associated with drop deformation and burst. The flow device chosen
for the study was the four roll mill, which was evidently invented for the investi-
gation of drop phenomena in two—dimensional straining motion by G.I. Taylor

[1934] some fifty years ago. A schematic of this device is shown in Figure 2.1.

A valuable capability of the four roll mill, which has gone previously unex-
ploited in studies of droplet behavior (for reasons discussed below), is its ability
to produce two—dirmensional flows of arbitrary strain-rate-to-vorticity ratio,
through appropriate selection of roller speeds. This was first recognized by
Giesekus [1962] who reported that the velocity gradient tensor in the central
region, of dimensions comparable to the gap between the rollers, could be

closely approximated by:

y 1+ 1-ox O
Vu = 'é"G ~l4a —-1-a O (2.1)
0 0 0

in the cartesian coordinates of Figure 2.1. The flow parameter, q, is a measure
of the relative strength of the straining motion and vorticity in the flow field. It
ranges from -1, corresponding to purely rotational flow, to +1, corresponding to
pure straining motion. The intermediate value, a = 0, represents the familiar
sirnple shear. The ratio of the magnitude of the rate of strain tensor to that of

the vorticity can be expressed as:

mag. of strainrate _ 1+ a
mag. of vorticity l-a

(2.2)

In the coordinate system of Figure 2.1, the velocity (v, v,w) is given by
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u = é—G {(1+a)z + (1-a)y ] (2.3a)
v = -é—-G {(—1+a)z + (—1—a)y] (2.3b)
w=0 (2.3¢)
with streamlines given by:
(z+y)° - a (z-y)? = c? (2.4)

Figures 2.2 and 2.3 show streamlines for several choices of a. For positive
a, the streamlines are hyperbolas, symmetric about 4 = +n/ 4 with asymptotes
at ¥ =cos™![(1+a¥?)/ VE(1+a) ], while for negative a they are ellipses with
major axes aligned along ¥ = +77/ 4 and aspect ratios of V—a. The principal axes
of the rate of strain tensor, ¥[Va+ (Vu)7], are at 4=0 and d=n/2,

corresponding to the maxima in extension and compression, respectively.

Giesekus [1962] and Fuller and Leal [1981] found that the flow parameter a
was approximately equal to the negative of the ratio of the angular velocities of
rollers 2 and 4 to those of rollers 1 and 3. The shear rate at the center of the
device, G, was found to be directly proportional to the speed of the faster pair of
rollers, with the constant of proportionality dependent on the geometry of the
four roll mill, but independent of the flow type. These relations fer the four roll

mill used in the present study are discussed in Section 2.4.

The capability of generating linear two—dimensional flows with an arbitrary
ratio of vorticity to strain rate makes the four roll mill an ideal choice for the
present study, but there is a major difficulty associated with experiments in
flows where a > 0. In these so-called "strong" flows, there is a stagnation point
at the origin, where one would like to position the drop for ease of observation,

but a particle or drop at this point is unstable to disturbances in position. This
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positional instability can be seen from an examination of the trajectory of a drop
(or particle) assuming that i.t follows the path of a fluid element. Since the velo-
city gradient (2.1) is independent of position, the velocity at a point x is given by
u = Vu- x, and thus the drop trajectory can be found by solving the linear sys-

tem:

dx _ )
Tl Va- x. (R.5)

For « > 0, this linear system has nontrivial eigenvalues and eigenvectors:

Mz = £Ga?, £ .= |(1£a?)/VEaF1), (-1xa¥?)/VR{a+1), 0)|.(2.6)

The presence of the positive eigenvalue indicates that if a drop is initially placed
at the origin in a strong flow, any disturbance in its position with a component in
the direction of the corresponding eigenvector will grow. Thus, a drop or parti-
cle tends to be carried from the stagnation point in the direction of this eigen-
vector of the velocity gradient tensor. These eigenvectors correspond to the
linear exit streamlines which can be seen in Figure 2.2. For purely extensional
flow, a = 1, the exit streamline is along the r axis, while for flows with a = 0.8,
0.8, 0.4, and 0.2, the exit streamlines are at ¥, = =3.2%, —-7.2°, —=12.7°, and

—20.9° from the z axis, respectively.

Since strong flows induce drop deformation and breakup most readily,
these flows are of most interest and the control problem représents a major ob-
stacle to successful experiments. Previous researchers, Taylor [1934],
Rumscheidt and Mason [1961], and Grace [1971], have used the four roll mill to
study drop deformation and burst in two—dimensional irrotational flow (a = 1).
They controlled the drop by hand, keeping it as close to the center as possible
by adjusting the speeds of the leftApair of rollers (2 and 3 in Figure 2.1) relative

to those of the right pair {1 and 4). All reported difficulties in keeping the drop
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at the center of the apparatus, which limited the useful shear rate range of their

apparatus and appears to have resulted in data of only fair reproducibility.

While the control problem in pure straining motion is the most severe in the
sense that at a given G, the speed at which the drop moves away from the stag-
nation point is greatest (the eigenvalue in (2.6) is largest), it is less complicated
than controlling the drop in a flow with 0 < a < 1, in the sense that there is only
one parameter which must be varied, i.e., the ratio between the speeds of the
left and right roller pairs. In the general case, the speed of each roller must be
independently varied, a task requiring calculations and coordination beyond the

capabilities of an operator.

To overcome this difficulty, a computer-based feedback control system was
developed for the experiment. A solid state closed-circuit television camera was
interfaced to a laboratory computer to detect the position of the drop, and step-
ping motors were interfaced to the computer to control the roller speeds to
move the drop back to the center of the device. This contreol scheme is

described in Section 2.2.

Computer control of the four roll mill made it possible to study the effect of
the flow type on the deformation and burst of Newtcnian droplets in Newtonian
suspending fluids, with the data obtained showing very good reproducibility over
a wide range of viscosity ratios. It is believed that the measured deformation
and burst curves constitute an excellent test of the available theories for drop
deformation and burst in creeping flow. The apparatus constructed for this
study will also be useful for future experiments, including investigations of the
effects of non-Newtonian rheology of the drop and/or suspending phase. The
device is also expected to be particularly useful for investigations of the effect of

transient flow fields on the drop breakup behavior, since computer control of
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the roller speeds will allow convenient and reproducible generation of arbitrary
shear rate sequences, with simultaneous control of the drop to keep it at the

center of the device.
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Figure 2.1
Schematic of four roll mill (top view)
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2.1 DESIGN OF THE FOUR ROLL MILL. APPARATUS

The design of the four roll mill and associated electronics was intended to
permitl investigation over as wide a range as possible of the dimensionless
groups governing drop deformation and burst. By varying the suspending
and/or drop fluid, drop size, or a few equipment parameters, the apparatus was

capable of investigating almost any practical case.

2.1.1 Sizing and Geometry

In the four roll mill, the flow is well-represented by (2.1) in a square of
dimensions comparable to the width of the gap between adjacent rollers. To
accommodate drops which are highly deformed prior to burst (low viscosity
ratio drops), it was desirable to make the apparatus fairly large. However, con-
struction and filling costs increase with size, and the device Reynold’'s number is
proportional to the square of the roller diameter, so that the onset of flow insta-
bility occurs at lower shear rate as the size increases. We chose 2.54 cm for the
gap width, which is sufficient to allow a draw ratio (length divided by undeformed
drop diameter) of 25 for the smallest drop thought practical. This is the exten-
sion achieved at the point of burst for a drop of viscosity ratio 107%, according to
the theory for slender drops (Acrivos and Lo [1978]). The length of the rollers
was chosen somewhat arbitrarily as 15.5 cm, which proved sufficient to minimize
end effects for most of the depth while keeping filling costs reasonable. The
dimensions of the tank containing the suspending fluid was fixed at 49.5 cm
square by 17.5 cm deep. The depth of the tank was adequate to completely

immerse the rollers.

The geometry of the device was made adjustable by mounting the rollers on

arms which were attached to the base at 45° to the tank (see Figure 2.4). To
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arrive at the range of reasonable values for the roller spacing to roller radius
ratio, b/ 7. (see Figure 2.1), the desired hyperbolic streamline for a=1 was
forced to match the roller surface in one of a number of ways. Four methods of

matching the two curves were investigated:

1. The hyperbolic streamline was forced to go through points M, N, and P in

Figure 2.5, giving b/ . = 1.207.

2. The streamline and the roller surface were forced to intersect at point N,

with zero area between the curves. This yields b/, = 1.294.

3. The streamline and the roller surface were forced to intersect at points M

and P, with zero area between the curves, resulting inb /7, = 1.172.

4. The radii of curvature of the hyperbolic streamline and the roller were

forced to match at point N. This gives b/ 7, = 1.414.

This suggests that any geometry with 1.172 < b/r, < 1.414 is reasonable, so
the four roll mill was designed so that this quantity could range from 1.1 to 1.6
without changing the rollers, which were 10.16 cm diameter. The ratio chosen

for the experiments was b/ 7, = 1.25.

2.1.2 Construction

The apparatus was constructed on a Unistrut frame, using a 40 x 48 x 3/4
inch plate as the base on which the motor arms were mounted. A 50.8 cm
square hole was cut in the plate for the tank, which was supported by an alumi-
num frame suspended below the base. The tank was made of 1/2 inch thick
glass for the bottom and 1/4 inch thick glass for the sides, and was cemented
together with epoxy. A protective bead of silicone rubber adhesive sealant was

spread on the inside of the joints to protect the epoxy from the contents of the
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tank.

The rollers were driven by DC stepping motors (Superior Electric MO93-FD
301 motors driven by Superior Electric TM6800 translator modules). They were
selected for their torque output (50 Nem at full speed) and the ease of control-
ling them accurately from a computer. They could be driven from 250
steps/second to 10,000 steps/second, with each step corresponding to 1/200 of
a shaft revolution in full step mode or 1/400 revolution in half step mode. Typi-
cally, they were used in half step mode and geared down by a factor of 80:1.
This yielded a usable shear rate range of 0.05 sec™! to 2.0 sec™!, which proved
adequate for our experiments. Other gears allowing reductions of 20:1 were pur-
chased, giving a maximum shear rate of 12 sec™! if needed. The gears were dou-
ble threaded worm gears of 64 pitch for the 60:1 reduction and 24 pitch for the
20:1 gearing. The motors were mounted on rubber and coupled to the shafts
using rubber couplings to minimize vibrations. Since the stepping rate of the
motors was in the audio frequency range, they were housed in plexiglas boxes
lined with styrofoam to reduce the noise. This had the undesirable side effect of
insulating them from cooling air as well, but it was found that they could be run

for at least half an hour without overheating.

Our original intention was to float the suspending fluid on a thin layer of a
transparent, more dense, less viscous fluid to minimize the effect of the solid
boundary on the bottom. Preliminary experiments with water-sugar solution as
the inviscid layer, and various viscous oils as the upper phase, revealed that the
pressure field generated by the flow caused unacceptably large deformations to
the interface between the two phases, since the density difference between them
was too small. When the lower inviscid phase was eliminated entirely, non-

negligible three-dimensional secondary flow was induced. In order to retain the
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lower layer without 1afge interface deformations, mercury was used for the
lower phase. The large density difference eliminated the interface deformation,
and the low viscosity of the mercury reduced the secondary flow to an accept-
able level. However, this choice caused another problem since the lower phase
was no longer transparent. Since the control scheme depended on backlighting
the drop, a small (4 ecm square by 0.64 cm thick) plexiglass window was glued to
the bottom of the tank, protruding above the mercury layer about 2 mm. The
edges of the window were concave to conform to the hyperbolic flow field, and it
was aligned with its corners pointing along the z and y axes. A similarly shaped
but somewhat larger piece of plexiglass was suspended several millimeters into
the fluid from the top surface, which was otherwise open. This was necessary to
allow lighting from the top without the distortion which would have resulted
from the deformation of a free surface. A slight secondary flow remained
despite the mercury layer, with flow upward near the top surface and downward
near the bottom. Also, the drop and suspending fluid densities could not be
exactly matched, so there was also some vertical motion of the drop due to sedi-
mentation. Neither of these problems proved serious, and it was found that for
the shear rates needed for the experiments, the drop could be kept in the cen-
tral B cm in the vertical direction for up to 15 minutes, which proved to be ade-

quate for the experiment.

2.1.3 Lighting and Photography

The illumination of the flow field was very important to the success of the
experiment, since high contrast was required for the thresholding process to
successfully differentiate between the drop and the background. The central
portion of the flow field was illuminated by a well-collimated beam of light from a

point source (Oriel Model 6340). The beam of light, collimated with a 75 mm
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lens, was passed through the flow field and converged onto the light sensitive
array of the video camera using a 105mm lens and an 80 mm microscope objec-
tive. This technique yielded a shadowgraph, quite sensitive to refractive index
differences in the field. The drops showed up as dark in the bright background,
the only problem arising from occasional refractive index gradients in the
suspending fluid caused by small temperature gradients or impurities. These
appeared as dark streaklines. Generally, the intensity difference between these
lines and the drop was great enough that a suitable choice of threshold could be
made so that only the drop was below the threshold, but occasionally these lines
were dark enough t".o be below the intensity threshold, and they would then inter-
fere with the determination of the center of mass of the drop, and cause prob-
lems for the control scheme. The solution was to remove the drop and run the

rollers for a few minutes to mix the continuous fluid.

In order to take pictures of the drop simultaneously with video and still
cameras, a cubic beam splitter, 3.8 cm on a side, was inserted above the focuss-
ing lens of the video camera, and the still camera mounted at 90° from the vert-
ical axis. Both cameras were initially focussed on %he same point in the flow
field, and subsequent focussing during the course of the experiment was accom-
plished by moving the entire arrangement vertically using a motorized measur-
ing microscope mount specifically adapted for this purpose. The still camera
was a Canon A-1 with Macro Lens FD200mm f£/4.0 and 50mm extension tube,
yielding a magnification of 1.34 life size with a working distance of about 40 cm.
Kodak Tri-X Pan 400 ASA film was used with an f-stop of 4.0 and an exposure time

of 1/15 or 1/30 second.
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2.1.4 Camera -Computer Interface

The video camera (General Electric TNR500) was a solid state charge injec-
tion device (CID) closed circuit television camera. The sensor in the camera was
an array of 248 x 244 picture elements, or pixels. These were sequentially
scanned by the circuitry in the camera, which produced two outputs, an analog
signal in standard broadcast format and an eight-bit digital representation of
the intensity of light at each pixel as it was scanned. The analog signal was
routed to a black and white TV monitor, and the digital cutput routed to a spe-
cially designed interface. Each pixel was read twice during the 1/30 second
scan which comprises the broadcast standard, resulting in a data rate of 3.63
million bytes per second (MHz). This is far too fast for current generation
laboratory computers such as the Digital Equipment Corporation PDP 11/23
used for this experiment. Thus, an interface was designed by Ray Eskenazi of
the Jet Propulsion Laboratory Robotics Division to go between the camera and
computer. This interface compared the incoming intensity data to a programm-
able threshold, yielding a "one" where the intensity was below the threshold and
a "zero” where the intensity was above this threshold. The incoming data were
thus reduced to one output bit for each eight-bit input. These were assembled
into 18-bit words and sent in parallel through a direct memory access interface
to the computer. This reduced the net data rate to 0.453 MHz, which is just
within the limits of the PDP 11/23. The thresholded picture was also available
from the interface in broadcast format, so that it could be displayed on a second

TV monitor. This was invaluable in setting the threshold value.

Standard broadcast format is "interlaced,” meaning that all the odd-
numbered lines of information are transmitted sequentially, followed by the

even-numbered lines. This is done to prevent a noticeable flicker when viewing a
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television. Display time for each "field" is 1/60 second. In controlling the drop,
accurate determination of the position in the z direction was more important
than that in the y direction, since the exit streamline was aligned much closer
to the z axis than to the ¥ axis. Thus, only one fleld of information was used to
determine the drop center of mass, giving a resolution of 248 in the z direction
and 122 in the y direction. The field selected (odd or even) depended on which
started soonest after the computer’'s command to "grab" a frame of picture
information. The time necessary to get the frame was generally less than 1/60
second, since the size of the "window” for which thresholded information was to
be sent could be adjusted by the operator. Generally, only a fairly small fraction

of the screen was covered by the drop, and the window was set accordingly.

Once a frame of information was passed into the computer's memory, the
next step was to determine the center of mass of all the dark (one) bits. This
was done using a straightforward routine written in PDP/11 assembly language
for speed. This step took between 1/20 second and 1/6 second depending on the
window size and the picture composition. The elapsed time for the center of
mass calculation was accurately measured using a timer interface in the PDP

11/23.

The sequence of getting a frame of information and finding the drop center

of mass comprised the measurement portion of the feedback control process.

2.1.5 Computer - Stepping Motor Interface

In order to effect control of the flow field, the computer had to regulate the
motor speeds. Stepping motors are ideal for precise digital control since they
take one step for each voltage pulse received by a "translator,” which generates

the high power signals which energize the windings in the proper sequence to
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step the motor. Thus, one need only generate square wave voltage signals of fre-
quency appropriate for the desired motor speed. An Apple II+ microcomputer
was programmed to generate these signals and interfaced to the stepping motor
translators. The Apple was interfaced to the DEC computer using a standard
RS232-C serial line, the communication protocol used between a computer and a
terminal. The DEC computer calculated the desired motor speeds and transmit-
ted this information to the Apple for implementation. To keep the time for the
transmission step as short as possible, the serial interface was run at the
highest possible speed, 19,200 baud (bits per second). When the motors speeds
were changed, the Apple generated frequency signals ramped from the old
speed to the new, as attempts to change speeds too abruptly caused the step-
ping motors to stall. The Apple was capable of generating frequencies from 20 to
10000 Hz (+0.1%)on each of four independent channels. These signals were sent
to the inputs of the four stepping motor translators and this setup functioned as
the actuator in the control process. Unlike variable speed motors controlled by
analog signals (e.g., DC shunt wound motors), the speed of stepping motors is
not affected by temperature or load. Thus motor speeds could be specified
exactly, eliminating the need for measuring and recording motor speeds during

operation of the experiment.

Figure 2.8 shows a side view schematic of the four roll mill used in the

exXperiment.
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Figure 2.4
Top view of four roll mill, showing the roller mounting arrangment.
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Selection of geometry of the four roll mill
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Figure 2.8

Side view schematic of four roll mill.

1) point light source, 2) collimating lens, 3) worm gears, 4) drive shafts, 5) DC
stepping motors, 6) roller mounting arms, 7) rollers, 8) glass tank, 9) still
camera, 10) cubic beam splitter, 11) converging lens, 12) still camera mount,
13) digital video camera, 14) motor for moving camera assembly vertically, 15)
modified measuring microscope mount, 18) video preprocessor, 17) monitor
for viewing unprocessed video, 18) monitor for viewing thresholded video, 19)
video terminal, 20) DEC minicomputer, 21) Apple microcomputer.
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2.2 CONTROL OF THE FOUR ROLL MILL

For successful drop deformation and burst experiments in strong flows (a >
0). the drop must be kept as close as possible to the center stagnation point.
The only means of controlling the drop position is by changing the flow field
through variations in the roller speeds. These changes must be as small as pos-
sible to avoid significant disruptions to the characteristics of the flow field under

study, i.e., the shear rate and flow type.

When the drop wanders from the origin, the flow must be altered so that it
tends to return the drop to the center. For the case where a = 1.0, the required
response is obvious. If, for example, the drop drifts to the right, the left paif of
rollers is speeded up and the right pair slowed down in proportion. This has the
effect of superimposing a translational motion (right to left) on the hyperbolic
flow field, moving the point of zero flow (stagnation point) to the right. It is clear
that for the drop to tend to return to the center, it must be in a point in the flow
where the net velocity is towards the origin, which requires that the stagnation
point must be further from the origin than the center of mass of the drop. The
same reasoning applies for any strong flow, with the only complication being
that for 0<a <1 the drop moves along the exit streamline which is at an angle to
the roller geometry, requiring a response with changes to all four roller speeds. |
In the discussion which follows, we consider the stagnation point position to be
the control variable which is regulated by adjustments to the roller speeds, but
we could alternatively consider the control variable to be the translational velo-
city superimposed on the flow field by roller speed changes. The two points of
view are equivalent, but the former proves more convenient since the stagnation
point position is more easily measured when calibrating the four roll mill, so a

required control action (stagnation point movement) is more easily translated
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into the corresponding roller speed changes.
The sequence of events in the control scheme is as follows:

1. The computer requests a frame of thresholded information concerning the
light intensity at the pixels within the "window”. This information is stored
in the computer’s memory via direct memory access from the custom built
camera-computer interface. When the window is complete, the processor is
signalled that the information is ready for processing. Elapsed time for this

step is 0.01 to 0.05 seconds.

2. The computer calculates the center of mass of the drop. Elapsed time is

0.05 to 0.15 seconds.

3. The center of mass is used to calculate the required control action and
corresponding rollers speeds from the control model, taking about 0.10

seconds.

4. The DEC computer transmits the new speeds to the Apple microcomputer
which ramps the motors from their previous speeds to the new ones. This

step takes about 0.05 seconds.

5. The computer checks to see if there is any operator input to change thres-

hold value, window size, or shear rate, and makes requested adjustments.
8. Process starts over again at 1.

Calculation of appropriate roller speeds from the drop position data
required a control model describing the flow field's response to roller speed

changes, and the drop's response to flow field changes. A rigorous description
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would require a solution of the equations of motion throughout the experimental
device, including the region inside the deformed drop. Since this was clearly not
possible in a real-time control scheme, a simple, approximate model was
developed. In formulating this model we assume that the drop velocity is
equivalent to that of a fluid element placed at its center of mass in the undis-
turbed flow. Since the drop experiences no external forces except gravity, and
we are considering the case where the drops are neutrally buoyant, this approxi-
mation becomes exact as the drop size approaches zero. We also assume that
the stagnation point can be moved to any position near the origin (through suit-
able roller speed selection) without affecting the flow type or shear rate. This
assumption is plausible since we are concerned only with small departures from
the uncontrolled flow. The actual selection of the roller speeds and the
verification of this assumption is discussed in Sections 2.3 and 2.4. Finally, we
assume that the speed of movement of the stagnation point is proportional to its
distance from the "set” point. The set point is where the stagnation point would
end up if the roller speeds were held at the new speeds indefinitely. Since we
are considering only small displacements of the stagnation point, this last
assumption can be considered a linearization of the actual stagnation point

motion. These assumptions result in the following simple model:

2L = (1+a) (z-2,) + (1-a) (¥ %) (272)
2% = (~140) (z-2,) + (~1-0) (y—3s) | (2.70)
({:t' = '}'_(z“ -z) , (2.8a)
"'iéy't's"'= i_(yss_ys) J (Z'Bb)

where (z,y) is the drop position, (zs,ys) is the stagnation point position and
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(Zss . Yss ) is the stagnation point set point, which is the control variable. All times
are rendered dimensionless with respect to G ! and all distances with respect
to b, the distance from the center of the device to the line joining the centers of
adjacent rollers (see Figure 2.1). According to the model above, the system is
noninteracting {the drop position has no effect on the stagnation point), so the
latter pair of equations can be solved immediately for (z;,ys). We are thus led to

consider the system:

dX _ A o _ a.
T A x-ADb, (2.9)
where
Iz 1 | 1+a 1-a Iz,
x—L/ A= 5l i —1-a| P, (2.10)

Since our model assumes that the entire flow field can be moved about within
the four roll mill, and that the drop follows the fluid trajectories in this
translated flow, it is obvious that the homogeneous portion of this linear system
is exactly the same as that for the uncontrolled flow given by (2.5). Thus the
eigenvalues and eigenvectors are identical ({apart from the non-

dimensionalization by the shear rate):

Mz= xa?, o= (1xa’?)/VR(aF1) . (-1+xaV?)/VE[a+1), 0)] .(2.11)

We note that the component of a disturbance along the eigenvector with the
negative eigenvalue will decay, so we are concerned only with movement along
the eigenvector corresponding to the positive eigenvalue. Thus, if we define z to

be the distance from the origin along this eigenvector:

z = z(aY?+1)/VZ{a+1), : (2.12a)
y = z(a?-1)/V2(a+1), (2.12b)

then substituting into the homogenous portion of (2.9) gives:
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(;t—z= a2z (2.13)

reducing the problem to one dimension. We further note that if we maintain the
roller speeds such that (zy,yss) is always along the eigenvector with displace-
ment 24, then (z,,y,) will also be on the eigenvector with displacement zs, and

(R.8) gives:

di = ,]r‘.—(zss_zs) : (R.14)

%tg—= a’?(z—z), (2.15)
dz; 1
T ;(zss z,) . (2.18)

We investigate control of this simple system.

The computer based control sequence is best described as a discrete sam-
pled system with a time lag corresponding to the sum of the frame time and the
calculation time (steps 1, 2, and 3). Nevertheless, it is instructive to consider
the system as a continuous controller with a measurement delay. Figure 2.7
shows a block diagram of the system in the Laplace domain. Here G, is the con-
troller transfer function, Gy the fluid transfer function representing the stagna-
tion point movement described by (2.18), and G; the drop transfer function
representing the response of the drop to the flow field given by (2.15). G, is the
transfer function of the response to an unspecified disturbance ¥. % is the
desired drop position (here equal to 0, since we want the drop to be at the ori-
gin), Zg the stagnation set point, and Z; the stagnation point. G, is the transfer

function representing the measurement delay. Inthe present case,

Gr(s) = - (.17)



G = ——, 2.
a(s) 1—a s (R.18)
and for simple proportional contrel,

G(s) =K, . (2.19)

The measurement delay Gn(s) is exactly represented in the Laplace
domain by

tds

Gn(s)=e % . (2.20)

However, to simplify the analysis, the well-known Pade approximation was used

for the delay transfer function.

G (8™ Trie (2.21)
Prom the block diagram,
3s) = 2 Fls) + (s (2.22)
1+G, G, 1+G, G,
with
G,(s) = K, G, Gy . (2.23)

The behavior of the controller is determined by the roots of 1+ G, G,,,, which must
all have negative real parts for the system to be stable. A Routh array was used
to determine conditions where the real part of roots were negative, yielding the

following stability criteria:

K >1. (2.24)
T<a*, (2.25)
% g | #
ot - BTOTH | (a#-7)% + ST K| hroc
aH#-1 a -1
ty < (2.26)
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The requirement of (2.24) that the controller gain be greater than unity
simply meané that the stagnation point must be moved further from the origin
than the drop in order to move the drop in the correct direction. The second
criterion specifies that the response of the fluid to changes in the roller speed
must be fast compared to the shear rate (recall that 7 is relative to G™!). This
limits the shear rate for which the drop is controllable with this simple control
scheme. Since the response time of a fluid is inversely proportional to its
kinematic viscosity, we would expect a proportional control scheme to be more
successful with a more viscous suspending fluid. These two criteria are indepen-

dent of the presence of the measurement delay, £4.

The third stability requirement illustrates the destabilizing effect of the
measurement delay. This places a greater restriction on the controllable shear
rate range of the device, with the destabilizing effect magnified as the gain
increases. Figure 2.8 shows the stable region of (2.24 - 26) in the T,t4 plane, with

K. as a parameter for hyperbolic flow (a = 1).

From the analysis above, it is clear that control schemes based on conven-
tional continuous controllers are not ideal for control of drops in four roll mill
flows owing to the finite response time of the fluid and the measurement delay in
locating the drop. This was verified by computer simulations of proportional
control. These simulations were performed by starting the drop at a fixed dis-
placement from the origin, and calculating the drop and stagnation point posi-
tions based on the model above, with the stagnation point set point computed
from the simple proportional scheme. The measurement time, non-
dimensionalized by the shear rate, was chosen in the range from 0.2 to 1.0,
corresponding to shear rates from about 0.7 to 3.5 given the "worst case" meas-

urement delay encountered in getting the thresholded image from the camera
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and computing the center of mass. Various values for 7, the response time of
the fluid, were tried. The proportional control scheme was successful only for
low values of the measurement delay. When the £; was larger than about 0.5, the
controller failed no matter what value of the gain, K, was chosen. With a small
gain (e.g., 1.2), the controller tended to "chase" the drop as it went further and
further from the origin, since the drop was moving exponentially from the stag-
nation point during the time delay, and the controller was thus consistently
underestimating the required control action. If the gain was increased (e.g.,
2.5), the controller overshot the required response and caused the drop (and
stagnation point) to oscillate around the origin in an unacceptable manner. As
expected, both types of behavior were exacerbated by slow fluid response (large
7). Similar simulations using proportional-derivative control were performed,
but proved no more successful. In practice, the derivative mode would have
required differentiation of the drop position data as well, which would have been

an inherently inaccurate calculation.

These simulations demonstrate that a simple continous control scheme
would be very difficult or impossible to successfully implement. Moreover, since
the apparatus incorporates a computer as part of the position sensor, the cal-
culations necessary to implement a more sophisticated control scheme do not
present an obstacle. We are thus led to consider an inferential control scheme
which uses the model above to extrapolate the drop movement from the position
data, known stagnation point history, and measurement delay. A stagnation
point set point can then be calculated to achieve some particular control objec-

tive.

One possible objective would be to set the stagnation point to move the drop

some fraction of its displacement towards the origin in some period of time, with
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the most natural period being that of the control cycle. In this case, the meas-
urement delay is the slow step, so the timer for a complete control cycle can be
approximated by £y3. If 2z;,24 ;1,25 ; are the values of z,2,,2¢, at the end of con-

trol cycle 1, then solution of the (2.15) and (2.18) yields:

va Vai Vo - Vai
2= 8 a‘dzi + 2g5 i(1—e at‘) + _gz_(zs,i—zss.i)(e ‘T _ g a‘d) . (R.27)

1+Var
Zgi+1 = Zssi +(zs.i—zss.i)e_tdh - (2.28)
and the control strategy requires
Zi4y = (1-1) 2, (2.29)

which, upon substitution of (2.28) and (2.29) into (2.27) gives the new stagnation

set point as:

(1_7'—2 ‘/;td) zi _ i&'r_(e —td/'r__e \/a_td) Zs :
2 . = 1+Var ' (2.30)
st {— L1 May _ Mot —tysr
1+VaTr 1+Var

Note that for a given control cycle i, we measure z;_; and compute z; from
(2.27) written for i—1 and the known stagnation point history. We then calculate

2494 from (2.30).

Simulations of this control scheme, similar to those described above for
simple proportional control, showed that it too was unsatisfactory. The drop
moved closer to the origin at the end of each control cycle (as we require), but
movement during each control cycle was oscillatory as was the movement of the
stagnation set point. These oscillations were damped with the damping depend-
ing on the ratio 7/£4. For 7/ {4 greater than one, the oscillations grew with time,

so this control scheme was also rejected.

A second approach was to bring the drop to the device center in a more
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orderly fashion by requiring that the velocity of the drop be proportional to its
displacement from the origin at the end of each control cycle. This is equivalent

to specifying the relative positions of the drop and the stagnation point:
Zsi+1 — Zi+] = T Ziay (2.31)

Substituting (2.31) and (2.28) into (2.27) yielded for the stagnation point set

point:
- N -
('r+1)e‘/a"z‘- + (r+l)-l—_\;/—3—£—7_—(e W _ g a“‘) -e t‘”] Zs 4
Zes i = . (2.32)
=4 1 -t/ _ (r+1) |1 - ____1___2\/&4 _ _\/E‘r_e—td/f
1+Vor 1+Var

Simulations of this control scheme showed it to be much better behaved.
The drop and the stagnation point moved monotonically to the center of the dev-

ice without oscillations for any ratio 7/ £4.

This latter control scheme was implemented for the experiment. Tests of
the control were made using a neutrally bouyant solid particle. The results were
quite satisfying. Once the control scheme paramelers were properly selected
(in particular, the scheme was sensitive to the value of T, the response time of
the fluid), a particle could be maintained within a millimeter of the device
center for shear rates up to 5 sec™ in flows with 0.2<a=<1.0, provided that the
origin of the flow field {(where the stagnation point would be in the absence of any
control action) was aligned with the origin of the camera {where the computer
would compute a center of mass of (0,0)). Otherwise, the misalignment would
cause a systematic error in the center of mass determination, resulting in a
slow drift of the particle away from the origin, as its displacement and the
required control action would be consistently underestimated. To overcome this
difficulty, an integral control mode was added which became active only when

the particle was more than a specified distance from the camera center. This
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insured that the particle did not stray far from the center of the flow field and
gave the operator plenty of time to correct the misalignment by moving the
entire camera assembly in the z direction. Any misalignment in the y direction
was far less critical (since the maximum angle of the exit streamline was
inclined only 21 degrees from the z axis for a = 0.2). Provisions were made for
aligning the origin in the y direction in software. With a little practice, the
symptoms of this misalignment were easily recognized and appropriate correc-

tions made.

No facility was available to attempt hand contr:ol of the drop, but indica-
tions from previous researchers (Taylor [1934], Rumscheidt and Mason [1961],
and Grace [1971]) were that manual control was possible for shear rates of no
higher than 0.7 sec™!, and then, of course, was limited to irrotational flow.
Undoubtedly, the computer-based scheme was also superior in that it was able
to detect and correct movements away from the center before they were large

enough to be recognized by eye.

In the drop deformation experiments, the drop size, interfacial tension,
suspending fluid viscosity, and viscosity ratio were such that drop burst usually
occurred for shear rates less than 0.7 sec™}, leaving a substantial overcapacity
in the controller. Under these conditions, the drop and the stagnation point
were maintained within 0.05 cm of the device center at all times, and the control

scheme was considered an unqualified success.
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Figure 2.7
Block diagram for proportional control of drop position
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2.3 STAGNATION POINT POSITION

Controlling the drop position in the four roll mill required that the stagna-
tion point be moved within the device without upsetting the shear rate or the
flow type significantly. In this section we propose a simple model which will allow
calculation of the four roller speeds given the stagnation point position, shear
rate, and flow type. This model has been tested and found adequate for small
displacement of the stagnation point from the origin. In the experiment, we
specify the flow type and shear rate, and use the model to calculate the roller
speeds necessary to achieve the stagnation point movement required for drop

position control.

In the uncontrolled four roll mill flow, the flow type is determined by the
ratio of the speeds of the two diagonal pairs of rollers, and the shear rate is
governed by the speed of the faster pair. Since the stagnation point is at the
center, the speeds of diagonally opposed rollers are always equal. When the
stagnation point is to be moved, this is no longer true so these relations require

some generalization.

We start by assuming that in the case where the speeds of the faster pair of
rollers, w; and w3, are unequal, the shear rate can be kept constant by fixing the

surn of their speeds, with the required sum depending on the desired shear rate:
(A2 + g = fl(G) . (233)

Similarly, we assume that a given flow type can be generated by fixing the
ratio of the sum of the speeds of diagonally opposed rollers. The required ratio

depends on the flow type to be generated:

g + Wy

= fa). (2:34)
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The minus sign appears because rollers 2 and 4 are turned in the opposite direc-

tion from rollers 1 and 3.

We further propose that the position of the stagnation point along the line
joining rollers one and three depends only on the ratio of the speeds of these two

rollers and similarly for rollers two and four:

% fotm). (2.99)
w t
§= Salys) (2.36)

Here (z,'y:') is the position of the stagnation point in the (z'y') coordinate sys-

tem of Figure 2.9.

For a given desired flow type, shear rate, and stagnation point, f,, fa fs,
and f, are determined from the calibration data, and the roller speeds
W), wa, wa, and w, calculated by solving the four equations above. These form the

linear system:

1 0 1 0 o1 I
Jz 1 JFeli bl 01 5 37
~fs 0 1 O jug| = 8 . (R.37)
O ""f4 0 1 &)4
which has the solution:
J
4 For D (2:20)
Sif
%= T D (2:39)

_ J1fs
B Uar D (240
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AL
(et 1)

Wy = (R.41)

Calibration experiments were performed to test the assumptions which lead
to (2.38) through (2.41). These experiments demonstrated that the approxima-
tions were adequate for small displacements of the stagnation point from the
device center. The functions f, through f, were also determined from these

calibration experiments.
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Figure 2.9
Schematic of four roll mill with rotated coordinate system
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2.4 FLOW FIELD CALIBRATION

In order to relate the the flow field characteristics to the roller speeds, the
flow in the four roll mill was investigated photographically. This was necessary

to determine the following:

1. The precise flow type, «, for a given ratio of the speeds of rollers 2 and 4 to
those of rollers 1 and 3 (i.e., the function f, of (2.34) with the stagnation

point in the center.)

2. The relationship between the rollers speeds and the shear rate (i.e., the

function f, of (2.33)).

3. The position of the stagnation point in the device as a function of the roller

speeds (i.e., the functions fgand f, of (2.35) and (2.38)).

To visualize the streamlines in the flow, the four roll mill was filled with
Chevron Polybutene 16 laced with a low concentration of Emerson and Cum-
mings Ecosphere Microballoons. These were hollow glass spheres of 30 to 50
micron diameter, which were highly reflective and served as tracer particles.
The flow field was illuminated from two sides with thin (~ 1/2 c¢m ) horizontal
planes of light produced with projector bulbs shined through a deep slit formed
from two parallel aluminum plates held .3 cm apart. These were positioned mid-
way between the top and bottom of the tank. Time exposure pictures were
taken from below the tank at a lens opening of £/3.5 for periods ranging from

1/4 to 1 second.

Comparison between the streaklines from the photographs and those calcu-
lated from (2.4) showed good agreement within a 2.5 cm square region in the
central portion of the four roll mill. Of course, this does not necessarily mean

that the flow field is given exactly by (2.1), since the shape of the streaklines
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gives sufficient information to determine the ratio of the velocities in the z and
y direction on points along the streakline, but not enough information to deter-
mine the magnitude of the velocity nor the relative magnitudes of velocities on
adjacent streamlines. Support for the hypothesis that the flow is well-
represented by (2.1) comes from two sources. First, the shear rate as measured
by the procedure outlined below was essentially constant for different streak-
lines selected from a particular photograph. Second, a direct measurement of
the velocity gradient along the z axis in a flow with o = 1.0 was made by Fuller
et. al. [1980] using the technique of homodyne light scattering. Their results
showed that the velocity gradient was nearly constant in a region of the dimen-
sions of the gap between the adjacent rollers. We thus conclude that the
representation of (2.1) is adequate for our purposes and proceed to the determi-

nation of the functions f, through f , of equations (2.33) through (2.36).

The flow type parameter, a, could be easily determined from macroscopic
features of the streamlines of the flow given by (2.4). For a > 0 the dividing
streamlines, found by taking c? = 0 in (2.4), are linear, corresponding to the
eigenvectors of (2.5) for the trajectories of the fluid elements. These stream-
lines are termed the entrance and exit streamlines, corresponding to the eigen-
vectors with the negative and positive eigenvalues, respectively. The angle

between the entrance and exit streamlines is related to the flow type, a, by:
tan(¥/2) = al/?. (2.42)

This angle could be measured to within +1 degree, yielding an uncertainty of 3%
in a. For a <0, the flow type could be deduced from the ratio of the length of

the minor to major axis of the elliptical streamlines of (2.4):

L WV (2.43)

mg
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A series of photographs was taken to determine the relationship between
the roller speeds and the flow type . In this series, rollers one and three were
driven at the same rate, and the speeds of rollers two and four were also identi-
cal. The ratio of the speeds of crosswise pairs and the sum of the four rollers
speeds (to verify that the flow type was independent of the shear rate for a given
ratio) was varied. Figure 2.10 shows the measured value of a versus the ratio of
roller speeds for —1<a< 1. In later experiments (discussed below) the con-
straint that the speeds of diagonal pairs of rollers were equal was removed, and
the relationship shown on Figure 2.10 applied in that case as well. Thus Figure

2.10 supplies the function f 3 in graphical form.

Determination of the relationship between the shear rate and the roller
speeds required the more difficult procedure of measuring the beginning and
end of a number of streaklines for each of the time exposure photographs of the

flow. The shear rate could then be calculated from the expression for the parti-

cle paths:
= 172 1t . 172 1-a . 172
z = zglcosh(Gal/*t) + —2-&—172—smh(Ga t) +yo -2—&—-172—smh(Ga t)] , (R.44)
= /2 lta . /2 1 l—a . 1/2
Y = yglcosh(Gal/?t) - E—I/—asmh(Ga ) —zq gv—z-smh(ch t)| . (2.45)
o

For the shear rate calculations, accurate measures of the exposure times were
required. These were determined by the following method: A black disk with a
reflective radial stripe was attached to the shaft of one of the stepping motors,
which was then driven at a precise speed by applying a signal of known fre-
quency. Several photographs at each exposure time setting on the camera
were taken, and the angle swept by the motor during the exposure was used to
calculate the exposure time. The exposure time measurements using this

method were reproducible to within about 4%.
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Since only flows with positive a were used in this study, the relationship

between the shear rate and roller speeds were determine for these flows only.

Figure 2.11 shows the measured shear rate as a function of the speed of
rollers 1 and 3, for 0 < G < 10 sec ~! with a of 1.0, 0.75, 0.50, and 0.25. As for the
determination of the flow type, rollers 1 and 3 were driven at the same rate in
these initial studies. The relationship is evidently linear and independent of flow

type. The least-squares best fit for the data is given by:
G = 0.0399(w,; + wg) (v, and w3 equal) (2.48)

where w, and wg are the speeds of rollers 1 and 3 in revolutions per minute.
Later experiments verified that the sum of the speeds of rollers 1 and 3 could
indeed be used when the two were unequal, provided that the difference between
their speeds was less than about 10%. Thus the function f,(G) in (2.33) is given
by:

. _ G
J1= 0.0399 -

(2.47)

To determine the position of the stagnation point as a function of the roller
speeds (functions f3 and f, in (2.35) and (2.36)), photographs similar to those
used for determination of the flow type were used, except that a laser beam was
shined through the flow field in a fixed position to serve as a reference from
which to measure the position of the stagnation point. Initially, attention was
restricted to a = 1, varying the ratio of the speeds of rollers 3 and 4 to those of
rollers 1 and 2 so that the stagnation point moved along the z axis only. Two
different shear rates were studied to verify that the relationship between the
stagnation point position and the ratio of the speeds of the left and right roller
pairs was independent of shear rate. The results of these measurements are

shown in Figure 2.12. The stagnation point position, z, is reduced by the dis-
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tance b from the center of the device to the line joining the centers of two adja-
cent rollers (in the four roll mill used in these experiments b = 6.35 cm.) The
line in Figure 2.12 represents the empirically determined best fit of the data for

z; > 0, given by

(2.48)

Decomposing the stagnation point into its components (z;'y;") in the rotated

coordinate system of Figﬁre 2.9 yields

. w3 10.825
s fuocnd — —

= 0.039 ™ 1 , (2.49)
' o 0.825

s - X4 _

o 0'039})2 1‘ , (2.50)

which allows us to determine the functions f3 and f, of (2.35) and (2.36) above:

Fs(zs') = 1+51.20 (z,'/ b)13121 (2.51)

Falys') = 1+51.20 (y,'/ b)1R13 (2.52)

These relationships show that for a stagnation point movement of 0.02 cm from
the device center (a typical control action), a roller speed change of less than

2% is required.

A final set of experiments was performed to verify that the generalizations
made from the somewhat restrictive conditions used to determine the functions
J1 through f, were indeed valid when the restrictions were relaxed to allow the
four roller speeds to vary independently. Roller speeds required to generate
various shear rates and stagnation point positions along the exit streamlines for
flows with a of 1.0, 0.8, 0.6, 0.4, and 0.2 were calculated by determining f,—f,

from the calibration results discussed above, and then computing the roller



-59 -

speeds from (2.38) to (2.41). The four roll mill was run with the rollers at these
speeds, and photographs similar to those used for the initial calibration were
taken. Flow type, shear rate, and stagnation point positicn were determined
from these photographs and compared to those that the combination of roller
speeds was intended to produce. The agreement between the intended and
actual flow parameters was generally within about 5% provided that the stagna-
tion point displacment was less than about 0.2 cm. Since the control actions
required stagnation point movements which were generally substantially less
than this displacement, the simple model of Section 2.3 was judged adequate for

our purposes.
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2.5 FLUID SYSTEMS AND PROPERTIES

The suspending fluid used for the experiments was Pale 4 0il, an oxidized
castor oil available from CasChem Inc. of Bayonne, N.J. The drop fluids were a
series of silicone fluids (Dow Corning 200 Fluid from Dow Corning of Midland, Mi.)
with nominal kinematic viscosities of 5, 50, 100, 200, 500, 1000, 30000, and 60000
centistokes, plﬂus three blends of the 1000 and 30000 centistoke fluids with
kinematic viscosities of 2500, 6700, and 12000 centistokes. These Pale 4 Oil - sil-
icone fluid systems were chosen because the densities match closely, and the
interfacial tension between the drop and suspending fluid (4-6 dynes/cm) falls in
a range where deformation and burst phenomena occur over a reasonable range

of shear rates (0-1 sec™!) for reasonable drop sizes (about .2 cm diameter).

Stone [1984] performed some experiments in the same device using Pale
170 oil, another grade of oxidized castor oil with viscosity approximately one
fourth that of Pale 4 oil, as the suspending fluid. He used 30000 centistoke sil-
icone fluid as the drop fluid to investigate a higher viscosity ratio than was possi-

ble using Pale 4 oil as the suspending fluid.

The kinematic viscosities and densities of the fluids were measured as a
function of temperature in the range from 20°C to 25° C using a series of
Cannon-Fenske capillary viscometers and a pycnometer. All of the fluids have
been reported to be Newtonian (Rumscheidt and Mason [1961]) in the shear rate

range covered by these experiments.

The interfacial tension between each of the silicone fluids and the Pale 4 Oil
was measured using a ring tensiometer (Fisher Scientific Model 20). There were
several weaknesses associated with this technique. The measurements could not

be made as a function of temperature since facilities were not available to do
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this. But a more serious difficulty is that the force for interface rupture as the
ring is pulled through the interface in the ring tensiometer is generated by the
density difference between the two fluids. Thus the accuracy of the measure-
ment suffers as the densities of the two fluids approach each other. For the fluid
system considered by Stone [1984], the density difference was so small that no

reliable results could be obtained from the ring tensiometer measurement.

On the other hand, the results of the drop deformation experiments, in the
limit of small drop deformations, furnish a measure of the interfacial tension
which is independent of the density difference (so long as the density difference
is small). The interfacial tension can be inferred from comparison of the
observed slightly deformed drop shapes to the shapes predicted by the linear
theory of Taylor [1934]. This theory predicts that the scalar measure of defor-
mation D, of (1.13), is directly proportional to the dimensionless shear rate Ca
of (1.10), with the slope a weak function of the viscosity ratio. Our experiments
confirmed this linear relation for nearly spherical drops, and the initial slope of
Dy vs. Gua yielded a value for the interfacial tension. We thus determined an
interfacial tension from the small deformation observations by averaging the
values calculated for the five different flow types for each drop - suspending fluid
systemn, and it was this value that was used in subsequent data reduction for the
same fluids. Although this forced agreement between the experimental observa-
tions and the small deformation theory at the lowest deformations, we expect
that values of the interfacial tension from this method are more reliable than
those obtained using the ring tensiometer. The difference between the interfa-
cial tension measured using the ring tensiometer and that inferred from the
drop deformation data averaged 3.3%, with a maximum difference of 14.2%.
Rumscheidt and Mason [1961] reported better agreement (average deviations of

only 1%) between the deformation measure of interfacial tension and the
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pendant drop and drop volume methods they employed. Since these two
methods are more accurate than the ring tensiometer method, particularly
when the density difference between the two fluids is small, this further suggests
that discrepancies between the deformation and ring tensiometer measures

used in our experiments are probably due to inaccuracies in the latter.

It is interesting to note that the small deformation measure of the interfa-
cial tension yielded a consistently higher result than the ring tensiometer meas-
ure, possibly reflecting an aging of the interface in the ring tensiometer meas-
urement which does not occur for the small deformation measurement since
internal circulation in the drop is continually moving fresh fluid to the interface.

An effect similar to this was reported by Grace [1971].

All of the plots in this manuscript use the interfacial tension calculated
from the small drop deformation. Using the ring tensiometer value instead
would have the effect of rotating the experimental points toward the z axis for
the deformation curves and displacing the experimental points upward for the
burst curves. Table 2.1 shows the measured values of viscosity and density as a
function of temperature for each fluid used, and Table 2.2 shows the drop and
suspending fluid viscosities, and the interfacial tension from the ring tensiome-
ter and small deformation measurements for each fluid combination investi-
gated. Figure 2.13 shows the comparison between the interfacial tension meas-

urements made using the two different techniques.
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Table 2.1 - Fluid Properties

. . Viscosity (P) Density (g/cm?)
Fluid # Fluid 20.0° 225° 250° | 20.0° 225° 25.0°
1| Pale 4 oil 53.32 41.97 3355 | 9961 .9953 9931
2 | Pale 1700il | 14.28 11.84 9.431 | .9773 9758 9738
3 | 5csSF[1] 0519 0495 .0474 | 9181 .9161 9138
4 | 50csSF 5273 5008 4774 | 9623 9602 9578
5 | 100 cs SF 1.050 .0964 9483 | 9645 .9618 9598
6 | 200 cs SF 2.139 2031 1.937 | .9692 .96887 9657
7 | 500 cs SF 5336 5059 4807 | 9721 9697 9678
8 | 1000 cs SF 11.07 10.56 10.02 | 9716 9697 .9675
9 | 2000csSB2] | 27.76 2569 24.41 | 9732 9718 9696
10 | 5000 cs SB 7021 66.88 63.46 | .9737 .9721 .9699
11 | 10000esSB | 126.1 1191 113.0 | 9747 9724 9703
12 | 30000csSF | 3206 3032 289.0 | 9754 9729 9707
13 | 60000 csSF_ | 673.3 6388 607.7 | 9777 9751 9726

[1] SF = Commercially available grade of silicone fluid
[2] SB = Blend of 1000 cs SF and 30000 cs SF to get intermediate viscosity

Table 2.2 - Properties of Fluid Systems Used

System Susp. Drop Temp. M g orr [R] | osp [3]

# Fluid [1] | Fluid [1] °C (P) (P) (d/cm) | (d/cm)
1 1 3 20.8 49.5 .051 3.44 3.98
2 1 4 21.6 46.45 | 511 5.834 5.32
3 1 5 21.8 46.45 | 1.015 4.55 5.23
4 1 6 22.3 42.80 | 2.038 4.52 5.27
5 1 7 22.5 42.00 | 5.059 5.25 554
8 1 8 21.8 4525 | 10.70 5.14 5.61
7 1 9 22.8 40.80 | 25.52 5.34 5.37
8 1 10 21.9 44,80 | 67.68 5.41 5.41
9 1 11 22.4 42,45 | 119.3 5.40 5.48
10 1 12 21.2 47.8 313.0 5.52 5.98
11 1 13 21.8 45.25 | 648.8 5.668 5.94
12 2 12 22.0 11.93 | 308.0 5.19

[1] Fluid number refers to Table 2.1
[2] Interfacial tension (dynes/cm) measured with ring tensiometer
[

3] Interfacial tension (dynes/cm) inferred from drop deformation experiments
for small Dy .
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Comparison of ring tensiometer and drop deformation interfacial tension meas-
ures.
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2.6 EXPERIMENTAL PROCEDURE

Drop. deformation and burst experiments were performed for eleven
different drop - suspending fluid systems, with'viscosity ratios ranging from
0.001 to 14.5. Stone [1984] considered a fluid system where the viscosity ratio
was about 27. For each fluid system, five different flow types, with a of 1.0, 0.8,
0.6, 0.4 and 0.2 were investigated, with the deformation measured as a function
of the reduced shear, and the reduced shear necessary for burst established for
each flow type. Generally three different drops were used for each viscosity ratio
- flow type pair, with excellent reproducibility between the drops. The experi-
ments thus covered more than four orders of magnitude in viscosity ratio for

the entire range of strong flows which could be generated in the four roll mill.

The following procedure was used in performing the experiments. First, the
equipment was turned on, including the DEC PDP 11/23 computer and terminal,
the Apple computer, the General Electric video camera, the camera-computer

interface, the two video monitors, and the light source.

The experiment was run under the supervision of a program written for the
DEC computer. The second step was thus to run this program and enter some of
the parameters needed by the program to keep track of the data generated and
execute the control scheme. Information concerning the date, fluids used and
their physical properties, the flow type, and an identifier for the roll of film
taken were entered and stored in a disk file to which the experimental data were

added as the experiment progressed.

The dimensions of the field of view of the control camera, the gear reduc-
tion ratio, the mode (full or half step) of the stepping motors, the inital shear

rate, and the shear rate step size were also specified to allow the computer to
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calculate the drop displacement from the information from the video camera,
and to determine the stepping rate required for each motor to implement the
calculated shear rate, flow type, and stagnation point. Finally the parameters
for the control scheme (the parameter 7 in {2.31) and the response time of the

fluid 7 in (2.8)) were specified.

At this point a drop was introduced into the device by first injecting the
drop with a precision syringe into a small external bath of the suspending fluid,
and then using a glass tube large enough to accommodate the drop to remove
the drop along with a small amount of the suspending fluid from this bath. The
drop was inserted into the center area of device with this tube. This method
proved much more efficient than attempting to directly inject the drop, which

often resulted in drops with encapsulated bubbles.

Then, the operator adjusted the light - dark threshold to achieve maximum
contrast between the drop and the background. The camera combination was
focussed by moving the entire arrangement vertically until the still camera
came into good focus. This insured that the video camera was also in focus since
the two were set to be focussed on the same point at all times. Once these
adjustments were made, the computer was directed to center the drop. The
position of the drop was determined from the camera data, and the appropriate
pair of rollers rotated to center the drop first in the z direction and then in the
y direction. This centering step was necessary to allow the control scheme to

start with the drop near the corigin.

At this point, a picture of the drop was taken for later determination of its
exact size. The camera focus was never changed throughout the exeriments, so
that the size of the drop could be accurately determined from comparison with

a picture of a ruler taken at the same camera settings. The temperature was



-70 -

also measured and entered into the experimental data file, so that the viscosity
of the fluids could be accurately interpolated from the measured temperature - |
viscosity curves. Then the experiment was started by another command to the
computer. The motors were started at the speeds needed to generate the initial

shear rate and flow type, and the control loop entered.

While the experiment was in progress, the operator directed the apparatus
through various inputs to the terminal keyboard. Once each time through the
control loop (i.e., 5 to 10 times per second) the program checked to see if one of
the valid command keys had been pressed. Seventeen keys were defined to

cause different actions by the program.

Eight of these keys were used to affect the size of the "window" in use, one
to expand the window in each of the four directions, and a corresponding key to
contract the window in each direction. These keys were located on the numeric
keypad of the terminal in a cross shape to make it easy to remember the effect

of each key.

The "R" key was designated to raise the light-dark thresheold, and the "L"
key designated to lower the threshold. The threshold was adjusted during the
run to compensate for the changing light blocking characteristics of the drop as

it deformed.

The "I" key was used to increase the shear rate, and the "D" key to decrease
it. Changes in the shear rate were in the increments entered at the start of the

program.

Two keys were used to affect the computer's perception of the center of the

device in the y direction. The camera assembly could be moved in the z direc-
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tion to align the center of the camera and the device along this axis, but no
corresponding adjustment was possible in the y direction. Thus, the program
was designed to allow for a misalignment in this direction by adding an offset to
the calculated y component of the drop center of mass. The '"Y" and "B" keys

were used to adjust this offset up and down.

The "P" key was used to inform the program when a still picture was taken
of the drop. The computer recorded the number of the picture on the roll and
the current shear rate in the experiment data file and incremented the picture
number. After most of the experiments had been completed, a facility was
added to record the time of the picture as well, in order to allow analysis of
transient deformations. The data logging feature was very helpful since it elim-
inated the need for the operator to write the conditions for each picture,

thereby reducing the possibilities for human error associated with this task.

To terminate the experiment, the "T" key was used. This turned off all four
motors, and put the program into a loop which simply waited for keyboard input.
This was done to allow the operator to take more pictures after the rollers had
been stopped, and record them in the data file. The X" key was pressed to exit

from this loop and return to command mode.

The sequence of events in a typical run was to start the rollers at a shear

rate of about 0.05 sec™!.

The operator would wait for a time sufficient to allow
the drop to come to a steady state shape. This time depended on the drop
viscosity, varying from less than a second for the least viscous fluids up to about
a minute for the most viscous drops used. A picture would then be taken with
the still camera for later analysis, and conditions (i.e., picture number, shear

rate, and time) recorded in the data file. The shear rate was then increased and

the process repeated. A total of about 35 pictures was taken for each viscosity
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ratio - flow type combination. During the course of an experiment, the operator
would raise or lower the camera assembly to keep the drop in focus, adjust the
threshold value and the window size to accommodate the drop, and make sure
that the camera and device center were in alignment. With a littie practice, the

experiment could be easily operated.

As the shear rate was slowly increased, the drop proceeded through a suc-
cession of steady shapes of increasing deformation. For all but one flow type -
viscosity ratio combination investigated, a shear rate was reached where the
interfacial tension forces could no longer balance the viscous stresses, and no
steady drop shape was possible. This was defined as the point of drop burst for
these experiments. The only exception was for the highest viscosity ratio drop
in the most rotational flow studied. In this case, Stone [1984] found that no
burst was possible for A = 27 in a flow fleld with a = 0.2, up to the limit of shear
rates realizable in the device. The vorticity in the flow fleld, which tends to
rotate viscous drops to alignments where the effective strain rate is small, is
responsible for this lack of burst. The effect of vorticity on drop deformation

and burst is discussed in Chapter 3.

In cases where drop burst was realized, the flow was continued at the criti-
cal shear rate for a variable period after it was clear that no steady shapes
existed. The drops became increasingly deformed, but did not break into frag-
ments while the flow was on. At some point, the flow was turned off and the drop
motion became governed by interfacial forces. Either the extended drop would
fragment into a number of satellite drops through a complicated interfacial ten-
sion driven motion, or it would relax back to the original spherical shape, with
the type of behavior depending on the degree of extension prior to turning the

flow off and the viscosity ratio. Transient motions of the drops are discussed in
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Chapter 5.

When the experiment was over, the drop fragments were carefully removed
with a glass tube. This was done to prevent accumulation of debris in the
suspending fluid which could interfere with locating the drop in future runs.
Other than this and routine precautions to prevent dust and macroscopic dirt
from entering the fluid bath, no extraordinary attempts were made to keep the
suspending fluid clean. So far as can be determined from the data, no problems

of contamination arose.

The pictures taken of the drops were analyzed by projecting the negatives
onto the screen of a microfiche viewer. The resulting magnification (determined
by projecting a picture of a ruler photographed at the same camera settings as
the drops) was 41 times actual size. The undeformed radius (needed for calcula-
tion of the reduced shear) was determined by measuring the size of the drop in
the picture taken at zero shear rate. The longest axis of the deformed drops
was determined by eye, and the measured length recorded as L in (1.13). The
angle between this axis and the exit streamline of the flow was measured so that
the orientation of the drop could be calculated. The exit streamline was visible
as a faint streak caused by small refractive index gradients. In a similar
manner, the length of the shortest axis of the drop (90° from the longest axis)

was recorded as Bin (1.13).

The drop lengths and breadths, along with the shear rate for each picture
and the viscosity interpolated from the measured temperature, was used to plot
Dy vs. Gua. The initial slope of this curve was used to determine the apparent
interfacial tension, g. This process was repeated for each drop in all of the flow
types for a particular drop - suspending fluid pair. The interfacial tension values

thus obtained were very consistent from drop to drop, with variations less than
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3%. The interfacial tension for the fluid system was then taken as the average of

all the interfacial tensions calculated from this method.

Once the interfacial tensions were accurately determined for each fluid sys-
tem, the Capillary number, Ca could be calculated, and the deformation curve,
Dy versus (a, plotted for each flow type. Of particular practical interest was the
point at which dro§ burst was realized. Consequently, the critical Capillary
number, Ca., was plotted as a function of viscosity ratio, with the flow type as a
parameter. Similarly, the maximum stable deformation and corresponding drop
orientation angle were noted for each experiment, and also plotted versus
viscosity ratio, with a as a parameter. The deformation and burst curves are
included in Sections 4.1 and 4.2, where they are compared to the predictions of
several relevant theories and numerical calculations, as well as with the observa-

tions of previous experimenters.
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3.0 DROP DEFORMATION AND BURST THEORIES

The theoretical problem of determining the deformation and burst of a drop
in a viscous flow is complicated by the necessity of applying boundary conditions
on the surface of the drop whose shape is, of course, a priori unknown. As a
consequence, most theoretical investigations have concentrated on the two
extreme cases, where the drop is either nearly spherical, or highly deformed
and approximated as a slender body. In these two cases, progress can be made
through an asymptotic approach. For intermediate deformations, numerical

methods have been employed.

3.1 SMALL DEFORMATION THEORY

Solutions for slightly deformed drops date back to the pioneering work of
G.I. Taylor in the 1930's. He developed a solution for small deformations by
applying Lamb'’s general sclution for the Stokes' equations to find the flow field
inside and around an undeformed drop. The boundary conditions for continuity
of tangential stress and continuity of velocity were satisfied at the spherical
drop surface, but the normal stress discontinuity could not be balanced by
interfacial tension for a spherical drop shape, and so provided a means for

determining the first correction to the drop shape.

Taylor's analysis has been extended to higher order in the deviation from
sphericity by a number of investigators, including Cox [1969], and
Barthes—Biesel and Acrivos [1973a]. These results were unified and clarified by

Rallison [1980].

Rallison [1980] presented an analysis valid for inertialess drops in a linear

shear fleld whenever the deformation from sphericity is small. In this
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formulation, the drop surface R is represented by a superposition of spherical

harmonics of second and fourth order:
R=1+er®F.VW(1/7) + 2 [(-8/5)F: F+ rPHiVWVV(1/7)] + 0(%) . (3.1)

Here r = (z - z)%, and the dimensions are scaled by a, the undeformed radius of
the drop. The tensors F and H are symmetric and traceless tensors of second
and fourth rank, respectively. Rallison [1980] gives equations for the evolution

of these tensors as:

£ DDtl*i"= ack + & {Ca'a\F + a;Sd(E F)] + £%{Ca~'a3Sd(FF)

+aEF:F+a;FE:F+a,Sd(E-F-F) +agH:E} + 0(e3,Ca'£%)(3.2)

aDD? = b,5d(EF) + £ {boCa™'H + byCa 'S (FF) + b3Sd,(E-H)

+ b, Sd,(E FF)} + 0(£? Ca1e?), (3.3)

where E is the rate of strain tensor. The vorticity enters through the Jaumann,

or corotational, derivative which is defined for a second order tensor, A, as:

DA _9A .. ‘A-A-
F— at+v VA+ (Q-A AQ) (34)

where ) is the vorticity tensor. In (3.2) and (3.3), ap —ag and by — b, are
rational functions of the viscosity ratio, and all except b3 and b4, which have not
been derived to date, are given by Barthes—Biesel and Acrivos [1973a]. The
definitions of the symmetric deviators of second and fourth rank tensors, Sd

and Sd,, are also supplied.

These equations apply whenever the deviation from a spherical shape is
small. Steady small deformations occur when either the flow strength is weak
(Ca small), or the viscosity ratio is large in a flow with vorticity.
Barthes—Biesel and Acrivos [1973a] applied (3.1) - (3.3) for the weak flow case,

setting £ = Ca in 3.2, and including the terms of order &2 Ca™! (the ag and ag
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terms in (3.5)). This yields the equations:

a%‘-= aoE + a,F + £{a,;5d (B F) + agSd(F F)]
+2{a,EF:F+ a;FE:F+agFF.F+
+a;Sd(E-F F)+agH: E+ agH: F} + 0(e%), (3.5)

9H
rY

= boH + b,Sd(EF) + b,Sd,(FF) + O(e) . (3.6)
Note that the Jaumann derivative was replaced by the Eulerian time derivative
in going from (3.3) to (3.6), as is consistent since the right hand side is known
only to O(1). As noted by Rallison [1980], Hakimi and Schowalter [1980] demon-
strated that calculation of steady states ignoring all O(¢) terms in (3.5), with the
exception of the rotational terms of the Jaurnann derivative, resulted in a con-
siderable improvement over predictions of the O(1) theory, which results from
considering only the first two terms on the right hand side. By analogy, it is pos-
sible that retention of the rotational terms of the Jaumann derivative in (3.8)
would result in improved predictions for steagiy drop shapes, even though the
other O(t¢) terms are not known. However, considerable computational com-
plexity would be added, since the decoupling of (3.5) and (3.8) which occurs
when steady shapes are considered would be destroyed. Therefore, no attempt

was made in this work to retain the rotational terms of (3.6), but future

improvements may require such an effort.

There are several important points concerning the expansion leading to
(3.5) and (3.8). First, as noted by Barthes—Biesel and Acrivos [1973a], there are
some inconsistencies in the order of expansion. From (3.5), F is known to 0(z?),
so to be consistent H should be known to O(¢). However, the coefficients bg and
b, are unknown, so (3.3) is necessarily truncated after the O(1) terms. In addi-
tion, terms of 0(e3), including a sixth rank deformation tensor, should be

included in (3.1). Since none of these terms can be derived owing to their
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complexity, Barthes—Biesel and Acrivos [1973a] suggest using (3.1), (3.5), and
(3.8) as an approximate solution to the full problem, and that is the approach

followed here, with the exception discussed below for high viscosity ratio cases.

When the small deformation is due to a high viscosity ratio in a rotational
flow, a different expansion, using 1/ A as the small parameter, is more appropri-
ate. In this case, the behavior of the coefficients o; and b; as A»e cause some of
the terms in (3.2) and (3.3) to "jumnp order”. In the high A limit, (3.2) and (3.3)

yield (Rallison [1980], Equations 8 and 9):

DF _ 5. -1¢_R0 ~ @, 10 - 2 e
5= gE+ A =35 CaT'F+ T-Sd(E-F) - E-3EF:F+
+ 18Sd(E-F F) — 6FE:F} + O(A*,Ca '\ 7?), (3.7)
DH _ 1 ' ' -1y -13—1
Tt TaSA4(EF) + by'Sdy(E-H) + b,'Sdy(E FF) + O(A™",Ca™'A™") . (3.8)

When terms of O(£?) are retained in (3.5), and the limiting values of @; as
A~ substituted, all terms of (3.7) are preserved (as well as a few which are
higher order in A~! and have been truncated from (3.7)). Therefore, computa-
tions using (3.5) will remain accurate to O(A™!) for large viscosity ratio. In con-
trast, (3.6) does not allow calculation of H even to 0(1) in the high viscosity ratio
limit. This is because the O(g) terms of (3.3) have been truncated in going to
(3.8), since the functions by and b, are unknown. These neglected terms may
"jump order"” (depending on the behavior of bg and b, as A»=) and thus appear
as 0(1) in (3.8). In fact, for high viscosity ratio systems, calculations retaining
the fourth order tensor terms as calculated from {3.6) give drops with unrealis-
tic lobed shapes, apparently arising from overestimation of these terms. There-
fore, for viscosity ratios greater than 3.0, the fourth order tensor terms of (3.1)
were dropped. This gave much more realistic drop shapes in the high A limit,

and deformations which compared well with the experimental observations.
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For the steady deformation case, certain simplifications to (3.5) and (3.6)
are possible. Equation (3.8) can be solved for H direc.tly in terms of Eand F, and
the result substituted into (3.5). Use of an identity for the fourth order sym-
metric deviator then yields (Barthes—Biesel and Acrivos [1973a]):

O=agE+a,F+¢ ia.zSd(E F) + H.an(FF) -Q-F+F Q; +
+ &% {c|EF:F + cEE:F + cgFF:F + ¢ ,FE: F + ¢ ;FE. E +
+CsSd(EFF) +C7Sd(EEF) , (39)
where ¢; —c, are algebraic combinations of o; and b;, and are given by

Barthes—Biesel and Acrivos [1973a].

To apply (3.1), (3.6) and (3.9) to the four roll mill flow of (2.1), E and Q are
substituted into (3.9), and the component equations written. The requirements
of symmetry and tracelessness yield three independent components of F;
F11,F2, and Fgp. For convenience, the first two are written in the linear combi-
nations S = F'j; + Fge and D = Fy; — Fp. H has five independent nonzero com-
ponents; Hijiy.Hi112.H1122.H1222. and Hppze. In terms of S, D, and Fyp, (3.9)

reduces to the system of nonlinear algebraic equations:

0=2apd + ;D + & {8AS + a3SD + 2(1—-a)] + &2 {2¢,AT + 2c,4%D +

2 2
+ CgTD + c,AD® + 2c,A%D + csA(52—+zF§2+-’-)—) + cpA2D], (3.10)

2
0= alFlz + & 20-3Flzs - 1;@ Dg + 82 203TF12 + C4ADF12 +
+ 2c5A%F 15 + c,A%F 5], (3.11)
asAD
0=a,5+¢ 23 — ag(S%-T/3)} + &2 §cgST + c,ASD +

CBASD + C7AZS)
3 3 7

+ 205435 + (3.12)

where T is defined as F: Fand 4 as (1 + a)/ 2. Substituting into (3.6) yields:

b,A b
ni = —35—11)0—(51}?11—6&;2) - 532-;-(57,&121 ~4BF % +1RF % +12F, Fgp)(3.13)
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3b,4 b
Hine = __z_blo_Flz 7; (15F11F12 8F12F22), (3.14)
H1122 - 70b 356 ( SF +54F122 —6F222 +39F11F12) N (315)
3b,4 b
Hyge = —2—Fig + 5=—(6F 1 F1p — 15F 13F ), (8.16)
Rbg Tbg

Hogep = :52 (6F11—51Fzz) — 3—;—(12&1 ~48Ff +57F§ +12F ), Fz3) (3.17)
These equations reduce properly to Equations 4.1 of Barthes-Biesel and Acrivos
[1973a] for two-dimensional extensional flow {a = 1) and, with appropriate rota-
tion of the coordinate system, to Equations 5.1 for simple shear flow (a = 0},
except that the coefficient of the ¢, term in Equation 5.1 of Barthes-Biesel and

Acrivos [1973a] should be 1/3 rather than 1/6.

The system (3.10) - (3.12) was solved for S, D, and F 3 using a Newton itera-
tion scheme. Once S, D, and F; are known, calculation of the components of F
and His straightforward. For purposes of computing Iy, the scalar measure of
deformation defined by (1.13), (3.1) can be applied in the z =0 plane, yielding:

R(B) =1 + 3¢ {F;;c08*8 + 2F ,c0s8 sind + Fpgsin®®] +
+ g2 2:5§-T + 105(H 1 c08*8 + 4H,;pc0s98 sind +

+ B8H j1ppc08% 9 Sin ¥ + 4H 505c05 8 sin® 8 + Hagopsin®®)],  (3.18)

where 4 is the angle from the z axis in the z-y plane. The maximum and
minimum of R(¥) are then L and B, respectively. The orientation angle is

defined as the angle for which R () is maximum.

To assess the stability of the calculated shapes, a conventional linear stabil-
ity analysis of (3.5) and (3.6) was performed. Small perturbations, F* and H'

were superimposed on the steady state solutions and the resulting equations
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linearized about the steady state, discarding terms second order in the pertur-

bations. This process yields (Barthes—Biesel and Acrivos [1973a]):

E.aall;' =a,F + ¢ {a,Sd (B F) + 203Sd(F-F) - Q- F + F- Q) +

+ % {20,EF: F' + 20gFF . F' + aoFE: F' + a¢gH: F' + asFF.E + agFF: F +
+ 0.7Sd(E FF') + ll7Sd(E F- F’) +agH:E + agH': F; , (319)

s%ﬁ—’: boH' + b,Sd,(EF') + 2b,5d,(FF"). (3.20)

Writing the components of (3.19) and (3.20) reduces the linear stability
analysis to finding the eigenvalues of two matrices, an 8 by 8 matrix of distur-
bances to the components of F and H which are nonzero at steady state, and a 6
by 8 matrix of disturbances to the components which are zero at steady state.
The components of the two matrices are given in Appendix 1. The eigenvalues
were computed using a routine supplied as part of the IMSL subroutine library.
The algebra required to write the component equations of (3.19), (3.20), (3.9)
and (3.8) was performed with the aid of the SMP (Symbolic Manipulation Pro-

gram) package developed by the High Energy Physics department at Caltech.

The deformation and orientation curves (D, and ¥ versus ¢ or Ca) were cal-
culated for every flow type - viscosity ratio combination investigated experimen-
tally. Following Barthes—Biesel and Acrivos [1973a], we calculated the curves to
O(e) by discarding the O(e?) terms in (3.5), and to O(e?) by retaining these
terms. In both cases, (3.1) was used in its entirety except that the fourth order
tensor terms were disregarded for A >3 as described above. Each curve was cal-
culated by starting at nearly zero ¢ (or Ca), using an undeformed sphere as the
initial guess for the Newton iteration technique. The calculated deformation was

used as the new initial guess, and the process repeated for higher «.
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In this manner, the deformation curve was computed until some condition
indicating drop burst was reached. The calculation was then backed up a step,
and the step size reduced by a factor of 20 to determine the critical Capillary
number, Ca, (or &;) as closely as possible. We considered burst to be indicated
by the lack of a solution to (3.10) - (3.12), or an instability in the solution
revealed by the linear stability analysis. In most cases, burst was manifested by
inability to find a steady state solution. When unstable solutions were found, the
instability was always in the 8 by 8 matrix, and continuing the calculation to
higher £ revealed that the value of &£ for which no solution existed was within
0.6% of the value for unstable solutions. Also, when burst was indicated by the
lack of existence of a steady solution, the eigenvalues for the 8 by 8 matrix were
small negative numbers, decreasing in magnitude with increasing &. Thus, the

two criteria for burst nearly coincided for the cases we investigated.

It should be noted that, @ priori, there is no reason to be particularly
optimistic about the accliracy of drop burst predictions from the small deforma-
tion theory. In general, drop burst occurs at deformations which are not espe-
cially small, outside of the range where the small deformation theory is techni-
cally valid. Even disregarding this, there is no rigorous justification for the
inherent assumption that lack of a stable solution to the approximate governing
equations necessarily means that a solution of the exact equations is likewise
lacking. Thus the burst predictions of the small deformation theory must be
tested, either through experiments or through more exact numerical calcula-
tions. As we will see in Section 4.2, it turns out that the small deformation
theory not only reproduces the qualitative features of the drop burst curves
quite accurately, it also provides a surprisingly good quantitative estimate for

drop burst when the viscosity ratio is greater than about 0.05.
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3.3 LARGE DEFORMATION THEORY

The small deformation theory does not accurately predict drop deformation
or burst for A less than about 0.05. For these cases, the drops are highly
deformed, and a theory treating small perturbations from the spherical shape
would not be expected to apply. Fortunately, for A <« 1, an analytical solution

which takes advantage of the observed slenderness of the drops is available.

As for the small deformation theory, G.I. Taylor [1984] was the first to
present sclutions for highly elongated drops. The analysis was refined and
clarified by Buckmaster [1972,1973], and Acrivos and Lo [1978]. The latter
authors utilized the method of inner and outer expansions for a particularly con-

cise and elegant solution which is summarized below.

Acrivos and Lo [1978] considered a steady slender drop in an axisymmetric

extensional flow with components (in cylindrical coordinates ):
U, =Gz, up = %GT, us=0, (3.21)

far from the drop. This case is the simplest, since the drop cross section is cir-
cular, and the centerline position is known (aligned with the z axis). Velocities

are scaled with G L and dimensions with .. The drop surface is represented by:
r =cR(z), (3.22)

where ¢ is proportional to the ratio of the drop diameter at z = 0 to its half
length, and the slenderness ratio so defined is assumed small. The flow exterior
to the drop is divided into an outer region, where both 7 and z are of O(1), and
an inner region, where 7 is O(¢g). Appropriate scaling of the creeping flow equa-
tions immediately reveals that, to first order in ¢, the drop affects the flow only
in the inner region. In this region, the tangential stress boundary condition

gives du,/ 8r = 0O(e?), so to a first approximation,
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u = (z), (3.23)

and matching with the outer solution gives f(z) = z. The continuity equation

then gives ;.

%=_%+2Agl' (3.24)

The function A(z) is determined from the kinematic conditicn at the drop sur-

face, u'n = 0, where n is the unit inward normal to the surface. This yields

: (3.25)

with R' = dR/dz. Substituting (3.23) and (3.25) into the equations of motion
shows that, to first order, the pressure outside is not affected by the presence of

the drop, and can thus be set equal to zero. The normal stress boundary condi-

1
5%, (3.26)

where p{(z) is the pressure within the drop, rendered dimensionless with respect

tion can then be applied, giving

a'u.,‘

87 Jr=cr

o

2 GulL

+p(x) =

to Gu. This leads to:

g
GuL -

(3.27)

For an inviscid drop (A=0), p(z) is an unknown constant, P, and (3.27)

becomes:
zR' - vR = -%, (3.28)

with v = % P-1. The boundary condition, R(+1) = 0, specifies that the drop ends

are closed. This equation has the solution (Acrivos and Lo [1978]):
R=2T1-|z|"]. (3.29)
_v '

The determination of v is not easy. Prior to the work of Acrivos and Lo [1978],
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Taylor [1964] selected v = 2 without providing justification. Buckmaster [1972]
proposed that v be an even integer; so that (3.29) for the shape was analytic at
z = 0, and noted that v = 2 gives shapes with the smallest deformation and was
therefore a logical choice. He also demonstrated that v could not be deter-
mined from a detailed investigation of the solution in the exponentially small
region near the end of the drops, nor from extending the analysis to higher
order in &. However, Acrivos and Lo [1978], by considering the region where
both r and z are O(g), (which they termed the "singular region'") were able to
show that no satisfactory solution, matching with those in the other regions,
could be found unless v = 2 or some other even integer. Since all solutions for
v > 3 proved to be unstable, they concluded convincingly that v =2 is the

correct branch of (3.29).

Substitution of (3.28) with v = 2 into the constant volume requirement gives

the deformation relation for inviscid drops:

R'h

= 20 Ca?. (3.30)

The slender drop theory thus predicts that an inviscid, inertialess drop (e.g., a
bubble) will extend indefinitely, without breaking up, as the flow strength is

increased.

It is interesting to note that the shape of the drop can be found to this
order of approximation without consideration of the flow in the outer region
(other than insuring that the inner solution matches appropriately), since the
drop does not affect the outer flow at this order. A better approximation to the
drop shape can be found by expanding the solution in ¢ in both the inner and
outer regions. In the outer region, the drop's effect on the flow field is

equivalent to that of a line distribution of Stokeslet and source singularities
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along the portion of the z axis within the drop. The correction to the drop

shape, of order £?log(s), is given by Acrivos and Lo [1978].

If the drop is assumed to be of low but finite viscosity ratio, the creeping
flow equations must also be solved for the domain inside the drop. This analysis

reveals that slender drops can exist only for A < 0(¢?), and in this case:

plz) =p(0) + }STJO-RZ?:) . (3.31)

with K% = £?/ A, and p(0) the pressure inside the drop at z = 0, relative to the
pressure in the undisturbed external flow. Substitution of this expression
into(3.29), with v=1%p(0)—1, gives, upon differentiation (Acrivos and Lo [1978]):

2zRR" + 2RR' — 2zR® — R' = §K—§—. (3.32)

with the additional boundary condition that R(0) = 1/2v. This equation has

solutions:

R(z)=1/8[1+ (1 — 64/ K?)%] (1-z?) , (3.33a)

R(z) =1/8[1 = (1 — 84/ K2)%] (1-z?) . (3.33b)
Acrivos and Lo [1978] have shown that only the solutions corresponding to the
positive branch are stable, and then only for K® < 576/5. Substitution of this
solution inteo the volume conservation condition yields the deformation relation:

%
veo | 1| &
cor [20 1+4756 " (5.34)

This equation implicitly relates the dimensionless length, ¢ = LAY3/a, to the
flow strength. As can be seen in Figure 3.1, for values of Ca AY® up to about
0.12, the deformation curve of {3.34) is very similar to that for the A = 0 case.

At that point, the deformation increases sharply, reaching a maximum steady
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extension of £ = 0.630 at X? = 576/ 5. This point, defined as drop burst, occurs
at a dimensionless shear rate, Ca A”® of 0.14B. For this burst criterion to be

applicable, the slenderness ratio, F(0)/ L must be small, which requires that

(5A)% « 1.

Hinch and Acrivos [1979] extended the slender drop theory to the case
where the applied shear was a two-dimensional straining motion (& = 1 in (2.1)),
considering this flow field to be a perturbation to axisymmetric straining flow.
While the analysis was complicated by the fact that the non-axisymmetric
nature of the imposed flow caused the cross section of the drop to be noncircu-
lar, the analysis of Hinch and Acrivos [1980] revealed that the deformation pat-
tern and burst criterion for drops in the two-dimensional flow is nearly identical
to that for axisymmetric extensional flow. This is because the cross-sectional
area of the drops is very similar in the two flow fields even though the details of
the cross-sectional shape differ, and it is apparently the area which governs the
deformation and burst. Their results indicated that L/a in a two-dimensional
extension differs by at most 2% from that predicted by the axisymmetric theory.
The additional complexity in computing L/a using the results of Hinch and
Acrivos [1979] was therefore judged unnecessary, and in comparisons between
the experimental and predicted deformation curves (L/a vs. Ca), thex results of
the axisymmetric theory were used. The burst criterion for drops of low viscos-
ity in two-dimensional extensional flow is nearly identical to the prediction of the

axisymmetric theory:
Ca, A8 =10.145. (3.35)

This result was used in comparisons to the experimental burst data in Figure

4.286.
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Extension of the slender drop theories to other two dimensional flows of
interest (0 < a < 1) has not been attempted to date. The analysis is complicated
by the fact that the cross section of the drop is not only noncircular, but the
position of the centerline is not known a priori. Fortunately, the analysis of
Hinch and Acrivos [1979] for two dimensional straining flow indicates that as
long as the cross-sectional area is comparable to that of a drop in axisymmetric
extensional flow, the details of the cross-sectional shape are not particularly
important. Also, from the experimental observations, we know that long slender
drops, for which this theory is expected to apply, align with the exit streamline
of the flow field for 0 < a < 1. At this orientation they experience an "effective

strain rate" equal to Ga'/?,

Thus, an approximate deformation curve can be calculated by assuming
that the features of the deformation and burst process for & = 0.8, 0.6, 0.4, and
0.2 are similar to those for a = 1, as they appear to be from the experiments.
The deformation can then be computed from (3.34), substituting the effective
strain rate Gal/? for G. The results of this calculation are compared to the
experimental observations for A = 0.001 and 0.01 in Figures 4.24 and 4.25. For
comparisons of the bursting point, a similarly adapted version of (3.35) was

employed:

0.145
al’/?

Ca, \V8 = (3.36)
The predictions from this equation are compared to the experimental data in

Figures 4.29 through 4.37.
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(L/u) AVS

0 005 010 015
Ca xl/l
Figure 3.1
Large deformation theory predictions for drop burst. —, stable deformation
for drops with finite viscosity ratio;----, A = 0 reference. Points along BC and

CD are unstable. (Acrivos and Lo [1878]).
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3.3 NUMERICAL METHODS

Calculation of drop deformation is not well-suited to the finite-difference
method which is frequently employed in other viscous flow problems. The
boundary (i.e., drop - suspending fluid interface) is not geometrically simple nor
is its conformation known in advance. In addition, information about the flow
field throughout the domain is usually not required; the position and velocity of
points on the interface are of primary interest. The problem is thus ideal for
application of the boundary integral technique described by Youngren and
Acrivos [1976]. In this formulation, advantage is taken of the linearity of the
Stokes equations to express the velocity and stress at any point in the fluid as a
sum of contributions from singularities distributed on the boundaries. The
resulting integral equation, when applied for points on the drop surface, is then

(Rallison and Acrivos, [1978]):

F(1+Nuy(x) + (1-X) _£ Kig (x=y)u; (y)m (y)dS

= (x) - 377; { T (x~y)n; (y)V-ndsS . (3.36)

Both x and y are points on the drop surface. The kernel functions Ky and Jy
are supplied by Rallison and Acrivos [1978]. The method of solution is to approx-
imate the surface S by a number of collocation points, calculate the kernel
function at each, and then solve for u; at each collocation point by inverting the
resulting matrix. The calculation is started with the drop spherical. The posi-
tion of the interface is adjusted using the calculated velocity, and the process
repeated until a stationary state is reached (u'n = 0 for all points of S), or it is
apparent that the drop will continue to deform indefinitely. The calculation is
complicated by the existence of eigensolutions to (3.38) for A== and A = 0

which results in a singular matrix for these cases.
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This numerical technique has been applied for special forms of the applied
flow, and particular values of the viscosity ratio, A. Youngren and Acrivos [1976]
solved for the shape of a gas bubble in axisymmetric flow. Rallison and Acrivos
[1978] extended the result to cover arbitrary viscosity ratio in the same flow.
The simplifying feature for axisymmetric extensional flow is thaf the drop
shapes are axisymmetric, so the azimuthal integrals can be performed analyti-
cally and (3.38) thereby reduces to line integrals, dramatically reducing the

number of collocation points needed.

Rallison [1981] took advantage of the particularly simple form of (3.36)
which results when A = 1. In this case, no matrix inversion is required, so com-
putation costs are low even with a large number of collocation points. This
allowed Rallison [1981] to investigate flow fields for which the resulting drop
shapes were three-dimensional. In particular, he applied the technique to the
class of two-dimensional flows which are produced in the four roll mill for the
complete range of —1 <a <1. The results of his calculations are compared to the

experiments in Sections 4.1 and 4.2.

The numerical results have proven useful in studying cases for which the
deformation cannot be adequately described by the small deformation or the
large deformation theories discussed in Sections 3.1 and 3.2. It is clear, how-
ever, that numerical calculations cannot replace the asymptotic theories
entirely. To date, computations have been limited to cases for which some
simplification is possible (axisymmetry or equal drop and suspending fluid
viscosities). Even using the efficient boundary integral technique described
above, calculations for general viscosity ratios and applied flows would require
inversion of large matrices, which is a time-consuming (and thus expensive)

proposition. Analytic results, including asymptotic results, have the additional
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advantage of clarifying the effects of physical parameters without the need for

exhaustive numerical searches through multi-dimensional parameter spaces.
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3.4 QUALITATIVE EFFECTS OF YORTICITY

Befere discussing the quantitative comparison between the experiments
and the above mentioned theories, it is perhaps useful to include some com-
ments of a qualitative nature on the effects of vorticity on the deformation and
burst of drops.” The discussion is divided into two parts. We first consider the
orientation of deformed drops in two-dimensional flows of the type generated in
the four roll mill, and then discuss the effect of the drop orientation on the
strength of the extension it experiences. vaiously, the physics of drop defor-
mation are complicated, but the simple concepts included here are helpful in

explaining a variety of the qualitative features observed.

Orientation

We first consider the orientation of a freely suspended body in a linear
shear field of the type described by Equation (2.1). Analytic results are readily
available for the case where the body is a solid particle, but when the bedy is a
deformable drop the situation is considerably more complicated. Thus our
approach is to consider the orientation of a solid particle, and use the insight

gained from this to make qualitative predictions for a deformable drop.

Since the creeping flow equations and boundary conditions are linear for a
suspended solid particle, we can separately consider the angular velocity in a
purely rotational flow and a purely extensional flow, and superimpose the results
to determine the angular velocity in the actual flow. In a purely rotational flow,
a particle of any shape rotates with the local fluid vorticity. In the flow of Equa-
tion (2.1), the angular velocity due to the rotational component of the flow field

is aligned with the 2 axis, and is given by:
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ty = —G(1l-a). (3.37)

In a two-dimensional pure-straining flow, the angular velocity depends on
the orientation and shape of the particle. When the particle is isotropic, the
angular velocity is zero. When the shape is anisotropic, {e.g., an ellipsoid of
revolution) the angular velocity is greatest when the longest axis of the particle
is aligned at +45° from the principal axis of strain, since at this orientation the
long axis is perpendicular to every streamline. When the long axis of the parti-
cle is aligned with the strain-rate axis, the angular velocity is zero. An expres-
sion for the angular velocity of an ellipsoid of revolution in a two-dimensional
pure-straining flow (u = gz, v = —gy, z = 0) is given by (Chaffey, Takano, and
Mason [1965]):

we = —g b sin29 , (3.38)

where b is a scalar characterizing the eccentricity of the particle. It is related
to the equivalent axis ratio of the ellipsoid r, by

_ ('rcz — 1)

= m. (3.39)

This quantity ranges from zero for a sphere to +1 for an infinite rod. In (3.38) ¥
is the angle between the longest axis of the particle and the z axis. In the flow
of (2.1), the strength of the extensional portion of the flow (i.e., g in (3.38)) is

just G(1+a).

Superimposing the angular velocities in the rotational and extensional flows

then gives the angular velocity in the actual flow:
w=w, +w, = —G(l-a) - G(1+a)b sin2y (3.40)

To find the steady orientations, we set the angular velocity equal to zero and

solve:
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-1

— -1
B8 =1/2sin TR

(3.41)

This equation has no solutions for small & (unless a = 1, a vorticity-free flow),
which means that nearly spherical solid particles will rotate in the flow. For
b=(a=-1)/ (a+1), solutions exist, with particle alignment depending on b and
a. The least eccentric particle which has a steady orientation,
b = (a—1)/ (a+1), is aligned at —45°. As b increases (increasing eccentricity)
the magnitude of the orientation angle decreases. An infinite rod (b = 1) aligns
with the exit streamline of the flow field, 8 = ¥sin ![{(a—1)/(a+1)]. For a solid

particle, no steady orientations with 4 less than this value are possible.

The orientation of viscous drops is much more complicated since drops can
accommodate viscous stresses through deformation. Therefore, there are two
time scales which are of importance. The first is the time scale of the flow given
by G™!. This time scale characterizes the strength of the vorticity which is tend-
ing to rotate the drop. It appears in'the solid particle case as well, but since it
is the only time scale, it does not affect the equilibrium orientation in that case.
The second time scale characterizes the response of the drop to viscous
stresses, and is given by Aua/o. For a deformable drop, the ratio of the second
time scale to the first, Co A, is an additional parameter affecting the equilibrium
drop orientation. The other two parameters {which affect the orientation of a
solid particle as well) are the flow type and the anisotropy of the drop or parti-
cle. Unfortunately, these three parameters are not independent because the
deformation of the drop is related to the time scale ratio (through both Ca and
A) and to the flow type. Thus it is difficult to determine the effect of each
parameter separately, and it is necessary to consider increases of the time
scale ratio due to increasing viscosity ratio and increasing Capillary number

separately.
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When the deformation time scale is short compared to the flow time scale
(low Ca A), the drop can be thought of as responding instantanecusly to the
deforming viscous stresses. Since the extensional portion of the flow fleld is
responsible for these deforming stresses (c.f., the O(1) terms in the small defor-
mation theory of Equation (8.2)), it follows that when Ca A is small, drops will be
aligned with the principal axis of strain (the z axis in our experiments). This
applies as long as the deformation is small. If A is small and Ca mecderate, the
deformation will be too large for instantaneous response and the drop will be

rotated away from the z axis.

Now suppose we could perform an experiment in which the time scale ratio,
Ca ), is increased by increasing the response time of the drop (e.g., by increas-
ing A with Ca constant). As the response of the drop is slowed, the vorticity in
the flow rotates fluid elements away from the principal axis of strain faster than
they can respond to the extension. Consequently, the magnitude of the orienta-
tion angle increases. In the limit as A - =, solid-like behavior is approached, and

the drop aligns between the exit streamline and —45°.

When the time scale ratio Ca A is instead increased by decreasing the flow
time scale (increasing G and thus Ca at fixed A, as is the case in our experi-
ments), the situation is more complicated because increasing Ca also causes
greater deformation. From (3.41) above, it is clear that the effect of greater
deformation is to align the drop more closely with the exit streamline of the
flow. When the viscosity ratio is low, orientation of the drop is between the z
axis and the exit streamline. Thus when Ca is increased, both the increase in
Ca A and the increase in deformation serve to rotate the drop towards the exit
streamline, and the result is a monotonic increase in the magnitude of the

orientation angle with increasing Ca.
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In contrast, when A is large, for some values of Ca, the value of Ca A is such
that the magnitude of the orientation angle exceeds that of the exit streamline.
In that case, further increases to Ca have two competing effects. The effect of
increasing the time constant ratio is to rotate the drop further from the exzten-
sional axis. However, the consequential increase in deformation acts to align the
drop closer to the exit streamline of the flow, thus decreasing the magnitude of
the orientation angle. The net result of these competing effects is the appear-
ance of a maximum in the magnitude of the orientation angle as the shear rate

is increased in some high viscosity ratio experiments.

The orientation of a drop has a strong bearing on the "effective strain rate"
which it experiences. We define "effective strain rate"” as the constant of propor-
tionality between the co;:nponent of fluid velocity (in the undisturbed flow field)
parallel to the longest axis of the drop and the displacement along that axis.
When z is a unit vector in the direction of the orientation of the drop, this is
given by x-v. Since the flow is a linear shear field, v = Vv' x, and substitution of

(2.1) gives:

l+a

effective strain rate = G 5

cos 28 (3.40)

Thus, the effective strain rate is a strong function of orientation, ranging from
G(1+a)/2 when the drop is aligned with the z axis, to zero when the drop is
aligned at —45°. Note that when the drop is aligned with the exit streamline

(sin 29 = (a — 1)/ (a + 1)), the effective strain rate is Gal/?.

This very simple analysis clearly illustrates the reason for the difficulty in
breaking up viscous drops in rotational flows. The drops are rotated to orienta-
tions where the effective strain rate is very low. For example, in a simple shear

flow, drops of viscosity ratio greater than about 3.5 align very close to —45°,
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where the effective strain is nearly zero, so there is little tendency for the drops
to extend further. Increases to G cause the drops to align still closer to the —45
line, so the orientation effects compensate for the increased flow strength, and
the drops do not burst, no matter how high the shear rate. This same
phenomenon occurs for other rotational flows as well, but at a higher viscosity
ratio, since the ratio of vorticity to strain is lower. In our experiments, drops

with viscosity ratios above 27 could not be broken up for a = 0.2.

Another conclusion which can be drawn from the above physical description
is that the effect of the flow type on the deformation characteristics is too com-
plicated to allow definition of a dimensionless "effective strain rate” of the form
Ca f (a) which would govern the deformation and burst for any a at fixed viscos-
ity ratio. If, for example, drops were always aligned along the extensional axis,
then one would expect that for a given viscosity ratio, the drop deformation and
burst characteristics would depend on the quantity Ca(l+a) only. Similarly, if
the drops were always aligned with the exit streamline of the flow field, the gquan-
tity Ca o* would be appropriate. Since the orientation is instead a complicated
function of a and Ca A, the flow type must be investigated as an independent

parameter in studies of drop deformation and burst.
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4.0 COMPARISON BETWEEN THEORY AND EXPERIMENTS

In this chapter we compare the predictions of the small and large deforma-
tion theories, and the results of the numerical studies, to the experimental
observations. The first section covers drop deformation, and the second section

discusses the drop burst results.

4.1 DROP DEFORMATION

This section includes quantitative comparisons between the experimental
drop deformation observations and the predictions of the small deformation and
slender drop theories, A few viscosity ratio - flow type combinations have been
selected to illustrate general features of the drop deformation and burst proc-
ess. These are discussed in detail below. Data and comparisons with the

theories for the remaining cases are presented in a more compact format.

Comparisons with the small deformation theory discussed in Section 3.1 are
presented as plots of the scalar deformation parameter defined by (1.13), Dy,
and orientation angle, ¥ (measured from the z axis), versus the Capillary
number, Ca. The experimental observations are plotted using a different sym-
bol for each drop for the given fluid system, and the predictions of both the O(¢)
and O(s?) small deformation theories are presented as solid and dashed lines,
respectively. The theoretical curves are terminated with an asterisk if the
corresponding theory predicts drop burst, with the asterisk indicating the

bursting peint.

Similar plots are presented for comparison to the large deformation theory,
which is applicable for low viscosity ratic systems. In this case, the quantity

L/a is plotted versus Ca, since [, is insensitive to shape changes at high
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deformations.

For the cases chosen as examples, direct comparisons between the
observed shapes (photographs) and calculated shapes are also included. These
reveal that in some cases, the shapes calculated from the small deformation
theory may deviate significantly from those observed, even though the value of

Dy is in reasonable agreement.

4.1.1 Low Viscosity Ratio Drops

For very low values of the Capillary number, Ca, the behavior of the drops
was independent of viscosity ratio and flow type. All drops were deformed into
ellipsoids aligned along the extensional axis (the z axis of Figure 2.1). As the
shear rate was increased, the deformation characteristics became strongly
dependent upon the viscosity ratio and the rotational character of the applied

fiow,

Low viscosity ratio drops (A < 0.02) required quite large values of the Capil-
lary number for burst, and were able to attain steady shapes which were highly
deformed. The lower the viscosity ratio, the greater the sustainable steady
deformation and the greater the Capillary number at the point of burst. As the
shear rate was increased, the radius of curvature at the ends of the drop
decreased, and eventually the ends appeared to be pointed. The transition from
ellipsoidal deformation to pointed ends occurred at Ca(1+a) approximately 0.5.
The ends were more cusplike for lower viscosity drops, and for all pointed drops
the ends became sharper as the shear rate increased. The drop orientation
angle monotonically approached the angle of the exit streamline of the flow field

(-8.2°, -7.2°, =12.7°, and —-20.9° for a = 0.8, 0.6, 0.4, and 0.2, respectively) as
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the shear rate increased, and the drops became more elongated, with steady
aspect ratios as high as 20 observed for the lowest viscosity ratio systems. Even
in the most rotational flow considered (a = 0.2), the centerline of the drop
remained straight, without any signs of the "S" shape which is characteristic of
low viscosity ratio drops in simple shear flows (Taylor [1934], Grace [1971],

Torza, Cox, and Mason [1972]).

At the point of burst, the drops simply continued to extend with the ends
remaining pointed, becoming drawn into a thread of essentially constant radius.
The "tip streaming" phenomena reported by previous researchers (Taylor
[1934], Mason et al. [1961,1972], Grace [1971]) was not observed in our experi-
ments. It is possible that the magnification of our optical equipment was
insufficient to resolve tiny drops being ejected from the drop ends. However,
Torza, Cox, and Mason [1972] reported a correlation between tip streaming and
the rate of change of the shear rate. They indicated that tip streaming occurred
when the shear rate was changed rapidly, but apparently was suppressed for low
dG/dt. Absence of tip streaming in our experiments (if it could be proven)
would support this conclusion, since care was taken to increase the shear rate

slowly to avoid transient phenomena.

Figure 4.1 shows a plot of the deformation parameter and orientation angle
versus Capillary number for a viscosity ratio of 1.08x1073 in a flow with « = 0.8.
The error bars shown in the figure are typical for the uncertainties in D, and Ca
in all of the deformation plots. The small deformation theories agree with the
obéerved deformation within the experimental error only for small values of
Capillary number, where D, is essentially linear with Co as predicted by the
classic analysis of Taylor [1934]. The O(g) and O(¢?) corrections to the Taylor

result predict a positive curvature in D, vs. Ca, with the O(g) theory predicting
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a larger deformation at a given Co and burst at lower Ca than the O(¢?) theory.
The O(&®) theory is in better agreement with the experiment, but the predicted
burst point (Ca, = 0.280) still differs from the observed bursting point (0.51) by
45%. The experimental deformation curve exhibits positive curvature at low Ca,
but has an inflection point at about Ca = 0.3, which is close to the value at which
the transition to pointed ends occurs and where the 0{(s?) theory fails. The
rather poor agreement between the predictions of the small deformation theory
and the experiment (except at low Cu) is expected, since low viscosity ratio
drops require high Ca for burst, and exhibit highly deformed steady shapes,
while the theory is valid only when D, is small. We would expect a more accu-

rate prediction for the elongated steady shapes from the slender drop theory.

Figure 4.2 shows the dimensionless length, L/ a, plotted versus Ca for the
same experimental conditions. The curve represents the predictions of the
slender drop theory. The agreement between the theory and the experiment
improves with increasing deformation, as is expected since the theory is asymp-
totically valid as L/a-«~, The predicted bursting point, o, = 0.513, compares

favorably with the observed 0.51.

Figure 4.3 shows a comparison between actual photographs of the deformed
drops and the predictions of the small deformation and slender drop theories.
The lines visible in the photographs are caused by small refractive index gra-
dients in the suspending fluid which arise from minute temperature gradients.
They appear along the exit streamlines of the flow, where fluids from opposite
sides of the tank meet. The second and third photographs are compared to the
O(e?) small deformation theory, and the last four to the slender drop theory.
The comparison with the 0(&?) theory is reasonable for the second photograph,

with Ca = 0.175 and D, ~0.31, although there are larger differences between the
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experimental and calculated shapes than are suggested by the 1% difference
between the experimental and predicted D,. The ends of the calculated shape
are more blunt, and the approximations inherent in representing the shape with
only tensors of order two and four are apparent from the slight "bump” in the
sides of the drop. Asthe Capillary number is increased, the shapes predicted by
the small deformation theory become increasingly unrealistic, and as can be
seen from the comparison with the third photograph, at Ca = 0.265 the shape
bears only a superficial resemblance to the experimental shape (the length and
breadth, and hence D, are comparable). The O(¢?) small deformation theory
predicts burst at Ca, = 0.28, so for the remainder of the photographs the com-
parison is to the predictions of the slender drop theory. Qualitatively, the
predicted and observed shapes are similar, especially for Ca =0.409. The theory
predicts values of L/ a which are fairly consistently low by about 1, with the per-
centage error thus decreasing with increasing Ca. For the most extended drop
in this sequence, the difference between the theoretical and experimental L/ a
was about 20%. The predictions of the slender drop theory would undoubtedly

improve for lower values of A, the viscosity ratio.

Clearly, the lowest viscosity ratio drops represent the cases for which iner-
tia would be the most important in our experiments, both because the viscosity
is the smallest, and because the length scale of the deformed drop is the larg-
est. To verify that these effects were indeed negligible in our experiment, the
inertial parameter, pao/ u? defined by Acrivos and Lo [1978], was calculated.
The largest value for our experiments was 0.00032, for the case where the
viscosity ratio was 0.001. Thus, the quantity (pao/u?"°A 1€ was 0.63. From
Figure 4 of Acrivos and Lo {1978] and Figure 3 of Brady and Acrivos [1982], it is
clear that inertial effects in the exterior flow and within the drop were negligi-

ble.
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4.1.2 Intermediate Viscosity Ratio Drops

All systems with the viscosity ratio between 0.02 and 2.0 behaved in a quali-
tatively similar manner. The ends of the drops remained rounded to the point of
burst (with less viscous drops exhibiting a lower radius of curvature), and the
orientation angle varied monotonically from zero (aligned with the z axis) at low
Capillary number to alignment with the exit streamline of the flow as the burst-
ing point was approached. The critical Capillary number and the maximum
stable deformation both decreased as the viscosity ratio increased for all flow
types investigated. As the critical shear rate was approached, drop burst was
indicated by the appearance of "flat sides”, where the radius of curvature in the
z -y cross section became infinite along the length of the drop. Once this point
was reached, no steady shapes seemed possible. The drop sides became con-
cave and the drop was pulled into a thread, Witil the smallest radius at the cen-
tral portion. The shapes of drops undergoing this transient motion at the criti-
cal Capillary number were surprisingly similar over a wide range of viscosity
ratios (all A>0.02). The qualitative aspects of the burst phenomena and the
maximum stable deformation seemed independent of the flow type. The mode of
burst observed corresponds roughly to the "B-2" mode described by Mason and
coworkers [1961, 1972]. This is consistent with the descriptions of burst
reported by Taylor [1834], Rumscheidt and Mason [1961], and Grace [1971] for

drops in two-dimensional irrotational flow.

Figure 4.4 shows a plot of J, and ¥ versus Ca for A =0.118 in a flow with
o = 0.8. In this case, the predicted values of the scalar deformation measure,
Dy, are in surprisingly good agreement with the experimental observations, even
up to D, = 0.5. The predictions of the O(¢) and O(e?) theories are similar, with

the O(e?) theory predicting slightly higher deformation near the bursting point,
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and slightly lower Ca, at burst. The data lie above both calculated deformation
curves, with burst occurring at Ca, = 0.21, compared to 0.228 and 0.220
predicted by the O(g) and O(e®) theories, respectively. The orientation angles
predicted by the theory agree reasonably well with those observed, particularly
in view of the difficulty in accurately measuring these angles from the photo-

graphs of the drops.

Figure 4.5 shows the comparison between the actual drop shapes and those
predicted by the O(e?®) small deformation theory for the same parameters as
Figure 4.4. The agreement is satisfactory for Ca up to about 0.2, at which point
the drops assume shapes which could only be satisfactorily represented by
including higher order deformation tensors. The "bumps” in the drop shapes
are present in this case also (and, as pointed out by Barthes-Biesel and Acrivos
[1973a], for all but high viscosity ratios), but are less pronounced than for lower
viscosity ratios. In the final photograph in the sequence, the drop is shown

bursting, while the theory predicts a steady shape for that value of Ca.

The experimental observations for A = 1.58, a = 0.4 are compared to the
calculated deformation and orientation in Figure 4.6. At a given Ca, the 0(&?)
small deformation theory predicts a deformation which is greater than that
observed, while the O(e) theory predicts lower-than-observed deformations.
Thus the experimental points are "bracketed” by the two theoretical curves,
with neither supplying a particularly accurate prediction. The bursting point
(Ca, = 0.178) is underestimated by 18% by the O(£?) theory and overestimated
by 43% by the O(e) theory. This bracketing of the data, with an upper bound on
the bursting point supplied by the O(g) result and a lower bound supplied by the

O(e?) result, is typical of the small deformation theory for 0.5 <A<3.
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Photographs for this case are compared to shapes calculated from the
O(£?) theory in Figure 4.7. The theory predicts drop burst at Ca, = 0.146, so no
calculated shapes are included for the last three photographs in the sequence.
The final photograph shows the drop bursting. The calculated shapes are iu
qualitatively good agreement with the experiment, as are the predicted orienta-
tion angles. From comparisons between the photographs of Figures 4.3, 4.5, and
4.7, it is apparent that the ends of the deformed drops become blunter with
increasing viscosity ratio, and that these shapes are more readily represented

by the theory, which retains only second and fourth order deformation tensors.
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4.1.3 High Viscosity Ratio Drops

For drops of viscosity ratio greater than 3, the vorticity in the flow field had
pronounced effects on the drop orientation and deformation characteristics.
For flows with vorticity, {a # 1.0), the drops were aligned with the z axis only for
very small deformations, with the magnitude of the orientation angle increasing
rapidly with increasing shear rate. At moderate deformations, the magnitude of
the orientation angle even exceeded that of the exit streamline. Upon further
increase of the shear rate, the magnitude of the orientation angle went through
a maximum, and decreased to the angle of the exit streamline as the bursting
point was approached. This behavior was most pronounced for o = 0.2, the most
rotational flow studied. In that flow, the highest viscosity ratio drops, with

A = 27, did not burst up to the highest practical shear rate (G = isec™?).

Figure 4.8 shows the deformation and orientation curves for a high viscosity
ratio case, A = 14.4, in a flow with « = 0.4. In calculating Dy, the fourth order
tensor terms have been discarded as discussed in Section 3.1 above. In this
case, the O(e) theory proved virtually useless, predicting that the drop attains a
steady shape without bursting as the shear rate increases. In contrast, the
0(&?) theory predicts the deformation curve with surprising accuracy, and the
predicted bursting point, Ca, = 0.185, agrees well with the observed value of
0.1786.

Both the experimental results and the predictions of the O(e?) small defor-
mation theory show the orientation angle ¥ going through a maximum with
increasing shear rate as discussed in Section 3.4. The observed maximum mag-
nitude of ¥ was 22°, in reasonable agreement with the theoretical prediction of

18°.
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Figure 4.9 shows the comparison between the observed drop shapes and
those calculated from the 0(&?) theory. The comparison is good for Ca less than
about 0.10. The more eccentric shapes at higher Ca cannot be accurately
represented by retaining only the second order deformation tensor, but the cal-
culation of the fourth order tensor fails at high viscosity ratio as discussed in
Section 3.2. An accurate célculation of the fourth order tensor would probably
have improved the comparison for Ca = 0.13 and 0.16, particularly in the latter
case where the theory with only the second order tensor predicts a steady drop

shape with physically unrealistic concave sides.

Figure 4.10 shows the deformation and orientation curves for the one case
considered by Stone [1984] where no drop burst was observed. In that case, the
flow type was 0.2, and the viscosity ratio was 27.3. The predictions of the 0(s?)
theory (without the fourth order tensor) were quite accurate, predicting a limit-
ing deformation of about 0.083, compared to the observed 0.085+0.01. The O(e)
theory predicted a value of about 0.07. The predicted limiting orientation angle
for the O(e®) theory was about —40°, in good agreement with the observations.
At this orientation, the effective straining motion is apparently so low that the

drop shape remains essentially constant.

Figure 4.11 shows the comparison between the photographs and the shapes
predicted by the 0(e?) theory. In this case, the deformation is small for all Ca,

and thus the theoretical and experimental shapes are very similar.
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4.1.4 Deformation Curves

From the comparisons discussed in detail above, it is evident that the O(e?)
theory results in predictions superior to those of the 0O(e¢) theory. In every
instance, the bursting point is more accurately predicted, particularly for high
viscosity ratio systems. >For this reason, the remaining deformation curves
present comparisons between the experimental observation and the 0(£?)
theory only. For compactness, the deformation and orientation curve for every
flow type is included on one plot, with a separate such plot for every viscosity
ratio considered. Figureé 4,12 through 4.23 present these graphs for
A= 1.1x107%, 1.1x107%, 2.2x10°2, 4.8x10°%, 0.12, 0.24, 0.63, 1.50, 2.80, 6.50 ,14.0,
and 26. Each figure includes experimental points and predictions of the O(e?)
small deformation theory for a = 1.0, 0.8, 0.6, 0.4, and 0.2. The experimental
points for different flow types are distinguished by different symbols, and in
every case the theoretical curves go in order of decreasing « from left to right.
Deformation plots showing the comparison between the experiments and the
predictions of both the O(g) and O(£?) small deformation theories are included

in Appendix 2.

The presentation with data for all flow types on a single plot makes it easy
to see the effects of vorticity on drop deformation and burst. For low and inter-
mediate viscosity ratios, the qualitative behavior of the drops is not highly
dependent on the flow type. Deformation is smaller for lower a at fixed Ca
mainly because the magnitude of the rate of strain temsor (= G(l+a))
decreases with decreasing o. Except for the lowest viscosity ratios (A = 1.1x1078
and 1.1x107% where the O(£?) small deformation theory predicts no drop burst
for a = 0.2) the O0(£?) theory reflects the observed trends. For viscosity ratios

above 2.80, the vorticity starts to have more dramatic effects, with the ratio of
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Capillary number required for burst for the rotational flows to that for a = 1.0
increasing, particularly for o = 0.4 and 0.2. The results for drop burst as a func-

tion of viscosity ratio and flow type are discussed in detail in Section 4.2.

Figures 4.24 and 4.25 show the experimental results for the two lowest
viscosity ratio systems plotted as L/ a versus Co for convenient comparison to
the large deformation theory. The plots include the data for each flow type con-
sidered, as well as the predictions of the large deformation thecry described in
Section 3.2. This theory gives acceptable results for A = 1.1x1073, where L/ a
attains a value of about 7 at burst, but the predictions are rather poor for
A= 1.1x107%, where L/ a at burst is only about 3.5. This is in keeping with the

nature of the theory, which is valid in an asymptotic sense for large L/ a.

From the comparisons between the experiment and the theories presented

above, we conclude the following:

1. The small deformation theory gives adequate predictions for D, for A= 0.05.
The O(e?®) version of the theory generally gives better predictions for the
deformation, and always gives better predictions for the critical Capillary

number at which drop burst occurs.

2. The comparisons between the photographs of the drops and the shapes
computed from the O(e?) small deformation theory show that the two can
differ significantly even when the scalar measure of deformation, D,, is
predicted accurately by the theory. Thus the good agreement between the
experimental and theoretical deformation curves rmust be regarded as for-
tuitous in some cases. This is particularly true for low viscosity ratios,
where the observed shapes cannot be adequately represented by a theory

with only second and fourth order tensors.
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The large deformation theory gives adequate predictions only for A<0.01.
In that case, our assumption that the drops align with the exit streamline of
the flow, and thus experience an effective strain rate of Ga'/?, appears to

be an adequate approximation at least when the drops are highly extended.
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4.2 DROP BURST

In this section we consider the conditions which lead to drop burst for a
given fluid system. In fact, drop burst depends not only on the instantaneous
flow conditions (i.e., flow type and Capillary number), but on the entire time his-
tory of velocity gradient experienced by the drop. That is, drop burst is a func-
tional over the history of Vu. For example, Torza, Cox, and Mason [1972]
reported that drops could be made to burst in simple shear by a sudden
increase in shear rate to a value below that required for burst when the shear
rate was slowly increased. The same behavior was observed in the theoretical

study of Hinch and Acrivos [1980].

A complete investigation of the drop burst functional would be impossible,
due to the many degrees of freedom available in specifying the velocity gradient
history. Thus, in this work, we limit our attention to one such history.
Specifically, we consider only the case where the form of the velocity gradient
tensor is constant (fixed flow type) and the flow strength is increased very
slowly, so that the drop goes through a progression of equilibrium states. The
bursting point is defined as the shear rate for which no steady shape exists (if
there is such a shear rate). This particular choice of flow history provides a
sufficient condition for drop burst, in that any other approach to a constant flow
field (e.g.. a step increase in shear or a ramped shear rate) will result in drop
burst at the same or lower final shear rate. Thus our results can be used to
predict an upper bound for the size of a drop which can exist indefinitely in a

given flow field.

Figure 4.26 shows the critical Capillary number for burst, Ca,, as a function
of viscosity ratio for two-dimensional irrotational flow (a« = 1). Data from this

work are compared to the observations of Taylor [1934], Rumscheidt and Mason
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[1961], and Grace [1971]. The unbroken curve shows the predictions of the
O(e?) small deformation theory discussed in Section 3.1, and the dashed line
shows the predictions of the large deformation theory described in Section 3.2.
The result of Rallison's [1981] numerical calculation (Section 3.3) is also

included.

As can be seen, all of the experimental data are in reasonable agreement,
with the possible exception of the data point at A = 1 reported by Taylor [1934].
Typical error bars for our experiments are shown on the figure. Uncertainties
for the earlier experiments would presumably be larger owing to the diificulties
associated with hand control of the device. For A=0.05, agreement between the
burst predictions of the 0{¢®) small deformation theory and our observations is
surprisingly good, especially considering the approximations inherent in the
theory. For reasons unknown, the deviation between the theory and experiment
is maximum near A = 1.0, with the theory underestimating Ca, by about 20%.
The numerical calculation of Rallison [1981] for A = 1 agrees very well with data.
For low viscosity ratios, the large deformation theory predicts burst with

acceptable accuracy.

The trend for large viscosity ratio is of some interest. In our experiments,
the critical Capillary number was essentially constant for viscosity ratios above
about 3.0. In contrast, Grace [1971] concluded from his data that Ca, goes
through a minimum for A about 1, steadily increasing with viscosity ratio above
that value. While our evidence to the contrary is not entirely conclusive, we
believe that Grace's conclusion is in error for the following reason: As the
ﬁscosity of the drop increases, the time scale for deformation increases as well.
This makes the experiments more difficult since a much longer wait between

increases in the shear rate must be allowed for the drop to attain a steady
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shape. In our experiment, the drop's position was controlled automatically, so
great patience was possible. In a hand-controlled experiment, however, the
difficulty in controlling the drop may have forced the experimenter to increase
the shear rate before drop attained an equilibrium shape {or burst) at the lower
shear rate. The effect of such an error would be to observe drop burst at a
higher shear rate than the actual critical value. The error would be expected to
be greater for larger viscosity ratio since the time constant is higher for more

viscous drops.

Grace [1571] used the same fluid systems (various viscosity silicon fluids in
Pale 4 Oil) as were used in most of our experiments. For the highest viscosity
drops for which our experiments were successful (600 poise silicon fluid) several
minutes were required for the drop to come to a stable deformation. Burst,
when it was observed, proceeded extremely slowly. Experiments with more
viscous grades of silicon fluid as the drop phase were unsuccessful because the
drop response was so slow that the slight three-dimensionality of the flow field
caused the drops to drift to the bottom of the tank (where end effects were
important) before equilibrium deformation was attained. It is our opinion that
the extreme difficulty of accurately performing experiments with very viscous
drops casts doubt on the reliability of Grace's [1971] data for high viscosity

ratio.

The predictions of the 0(e?) small deformation theory (shown in Figure
4.26) and the numerical calculations of Rallison and Acrivos [1978] for axisym-
metric extensional flow both support our hypothesis that the critical Capillary
number for drop burst in irrotational flows tends to some constant as viscosity

ratio increases.
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Figure 4.27 shows the maximum steady deformation attained by the drop
(as measured by the deformation parameter D) at Capillary number just below
the critical value. Data and theoretical predictions from the same sources as
for Ca, are presented. Accurate determination of D, is difficult, since the
deformation changes rapidly with small increases in Ca near the burst point
(see Figure 4.8, for example). This is reflected in the considerable scatter in the
data. Agreement between our observations and the predictions of both small
deformation and large deformation theories is acceptable. Most of the other
available data indicates deformations at the bursting peint which are consider-
ably higher than we observed. In particular, the critical deformations reported
by Grace [1971] are much higher than we observed. We attribute this
discrepancy to the difficulty in distinguishing stable shapes from slowly evolving

transients as discussed above.

Figure 4.28 shows photographs of the most extended stable shapes

observed in irrotational flow for each viscosity ratio investigated.

Figures 4.29 and 4.30 show Ca; and D, ; as a function of A for a = 0.8. Fig-
ure 4.30 also includes the orientation angle at the critical deformation, ¥,. Fig-
ures 4.31 and 4.32 are the qualitatively similar corresponding plots for a = 0.6.
In all these plots, the solid curve represents the predictions of the O(g?) small
deformation theory and the broken curve represents those of the large deforma-
tion theory. No ¥, is predicted by the large deformation theory since the
assumption is made that the drops align with the angle of the exit streamline
(designated as ¥, in Figures 4.30 and 4.32). There are no previous experiments
to compare the results to, but the results of Rallison's [1981] calculation are

included, with the exception of the orientation angle, which was not reported.
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The agreement between the small deformation theory and the observations
is again very good, particularly for Ca.. More scatter in Dy ;. and 4. is evident
due to the difficulty in measuring these quantities. The large deformation

theory and Rallison's numerical result are also in good agreement.

The data for ¥, provide an interesting illustration of the effects of deforma-
tion and viscosity ratio on drop orientation. At low viscosity ratio, the bursting
drops are highly extended, and thus are aligned with the exit streamline of the
flow. For intermediate viscosity ratios, the drops are less extended, and are still
of low enough viscosity to allow the dissipation of vorticity through internal cir-
culation, so they align closer to the extensional axis. As the viscosity ratio
increases, however, the drop viscous time constant (Aua/ ¢) increases, and as
discussed in Section 3.4, they tend to be rotated away from the extensional axis,
with the angle exceeding that of the exit streamline when A is large. This

observed behavior is qualitatively predicted by the small deformation theory.

The trends for the critical Capillary number required for burst are corre-
lated with the orientation at burst, since the effective strain rate experienced by
a drop depends on its orientation. This is particularly evident in the results at
high viscosity ratio, where (&, goes through a weak minimum and starts to
increase at about A = 5, since higher shear rates are required for burst when the

drops are rotated to orientations where the effective strain is lower.

Figure 4.33 and 4.34 and Figures 4.35 and 4.36 show the same plots for
o = 0.4 and a = 0.2, respectively. The most interesting feature of these plots is
the prediction of the 0(z?) small deformation theory of a viscosity ratio (46.6 for
a = 0.4 and 14.7 for a = 0.2) above which no drop burst is possible. This is analo-
gous to the behavior in sirnple shear flow, except that in that flow the limiting

viscosity ratio is lower (3.8), since the vorticity is higher. We were unable to
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verify the predicted limiting A for a = 0.4 directly, owing to the difficulties in
investigating high viscosity ratio systems mentioned above, but for a = 0.2, the
rapid increase in Ca; for the data points at A = 14.7, and the lack of burst for
drops with a viscosity ratio of 27 indicates agreement with the small deforma-

tion theory, at least in a qualitative sense.

Another interesting prediction of the small deformation theory for a = 0.4
and 0.2 is a decrease in Dy . and increase in ¥, for large viscosity ratios. This is
related to an interaction between the deformation and orientation which can be
explained as follows: For high viscosity ratios, the drops are rotated by the vorti-
city such that the magnitude of the orientation angle is greater than that of the
exit streamline. Near the bursting point, when the shear rate is increased
slightly, the drop elongates in response, and this causes it to be rotated toward
the exit streamline of the flow, where the effective strain is larger. This higher
effective strain rate causes greater elongation, further decrease in the magni-
tude of the corientation angle, still higher effective strain rate, etc., and leads to
drop burst. The maximum stable deformation, of course, is the deformation at
which this process is initiated, and this apparently decreases with increasing
viscosity ratio. Our data reflect this trend for a = 0.2, but the data point for
A = 27 indicates an opposite trend for a = 0.4, possibly due to experimental

error in the (difficult) determination of Dy ;.

For a = 0.2, the small deformation theory also predicts a lower limit in
viscosity ratio for which drop burst is possible. Since the predicted deformation
at the point of burst becomes very large as the viscosity ratio decreases near
this limit, the small deformation theory is far outside it region of validity and
predictions in this region would be of no use in any event. For both & = 0.4 and

0.2, the large deformation theory predictions are adequate in the low viscosity
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ratio region. Rallison’s [1981] numerical results are also in reasonable agree-

ment with the observations for both flow types for A = 1.

For the sake of completeness, the results of the experiments of Torza, Cox,
and Mason [1972] are compared to the predictions of the small deformation
theory for simple shear (a = 0.0) in Figures 4.37 and 4.38. The orientation
angles at burst were not reported. As for a = 0.2, both an upper an lower limit
in A for burst is predicted by the small deformation theory. The upper bound is
in reasonable agreement with the experiments, but the existence of the lower
bound is apparently due to a (not unexpected) failure of the theory for low
viscosity ratio. The predicted deformation at burst for simple shear does not
decrease with increasing viscosity ratio as it does for a = 0.4 and 0.2, This is
because the magnitude of the orientation angle is always less than that of the
"exit" streamline (¥, = 45°) in simple shear, so the interaction between defor-
mation and orientation described above cannot occur. Rallison's [1980] numeri-
cal result is in agreement with the data for Ca,, but lies above the experimental

curve of Dy ¢, as is the case for a = 0.2.

The effect of vorticity on drop burst is illustrated in Figure 4.39. To allow
convenient comparison over the entire range of viscosity ratio, the plot shows
the critical Capillary number for each flow type divided by the critical Capillary
number for a = 1. The solid curves in the figure show the predictions of the
O(e?) small deformation theory and the solid points show the results of Rallisons
[1980] numnerical study for a= 0.8, 0.6, 0.4, and 0.2. Interestingly, even though
the small deformation theory does a poor job of predicting the value of the criti-
cal Capillary number for low viscosity ratio, it predicts the trends for changing «
at fixed low viscosity ratios reasonably well, except for a = 0.2. At intermediate

and high viscosity ratios, the small deformation theory predicts the trends quite
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accurately. Even though the numerical results are in better agreement (for
Co;) than the small deformation theory, the trend in Ca.(a)/ Ca.(a = 1) as
predicted by the numerical results is not in particularly good agreement with
the data, since the numerical results fall below the data for a = 1.0 and 0.8, and
above the data for a = 0.6, 0.4, and 0.2. The reason for this discrepancy is un-
known. In a recent review article, Rallison [1984] has made mention of more
accurate calculations for the A = 1 case from the as-yet-unpublished work of

Duffy and Blundell. Comparisons with those results would be of obvious interest.

The burst predictions of the large deformation theory are based on the
assumption that elongated drops align with the exit streamline of the flow. In
this case the effective strain rate is Ga!/? and thus the ratio of Capillary
numbers in Figure 4.39 should asymptote to a™'/? for low viscosity ratios where
the drops are significantly extended at the burst conditions. The expected limit-
ing values of Ca.(a)/ Ca.(a = 1) for each a are shown as dotted lines at the left
of Figure 4.39. While there is some scatter in the data, this appears to be an
acceptable assumption in the absence of a more rigorous theory. It is probable

that the agreement would be better at lower viscosity ratio.

Figure 4.40 shows D, ; and 8, vs. A for each flow type, allowing a convenient
comparison of the effect of vorticity on the highest stable deformation and
orientation angle at burst. Data from our experiments for o = 1.0, 0.8, 0.8, 0.4,
and 0.2 are plotted. The simple shear data are from the experiments of Torza,
Cox, and Mason [1972], and the solid points are from the numerical work of
Rallison [1980]. One interesting feature of Figure 4.40 is that both the small
deformation theory and the numerical results predict that the critical deforma-
tion is dependént on the flow type. In contrast, our experiments do not show

any clear differences between the different flows (except as noted above for high
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viscosity ratios for a = 0.2). The reason for this discrepancy is not known, but it

should be noted that the uncertainty in Dy . is rather large as mentioned above.

From the comparisons between the experimental and theoretical drop

burst criteria presented above, we conclude the following:

1. For viscosity ratio less than unity, the Capillary number required for burst
and the deformation at the point of burst both decrease with increasing
viscosity ratio for all strong flows. In an irrotational flow, (i, approaches a
constant value with further increases in the viscosity ratio. In contrast,
when vorticity is present in the flow, Ca, goes through a minimum at a
viscosity ratio about 1.0, and increases steadily with viscosity ratio above
that point. For flow types with the magnitude of the vorticity greater than
0.42 times that of the rate of strain (e.g., « = 0.2and0.4), there is a viscosity

ratio above which no burst is possible.

2. The 0(z?) small deformation theory does a remarkably good job of predict-
ing the qualitative features of the drop burst, critical deformation, and
orientation curves for viscosity ratios greater than about 0.05. This agree-
ment is for all flow types investigated in our experiments and for simple
shear. In particular, the prediction of a limiting viscosity ratio above which
drop burst is impossible for has been experimentally verified for a = 0.2

and (by Torza, Cox, and Mason [1972]) for a = 0.0.

3. The 0(¢?) small deformation theory can be used to obtain quantitative esti-
mates of Ca, within about 30% for the two-dimensional flows we considered

for A>0.05.
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The large deformation theory is in reasonable agreement with the data for
A<0.01. The lowest viscosity ratio considered in our experiment was 0.001,
and in that case the predictions for Ca; and L/ a at burst were accurate to
within about 157 for all a. It is expected that the agreement would improve

for lower A, since the slenderness of the drop increases with decreasing A.

The numerical calculations for A = 1 are in good agreement with the data
for Ca;. The predicted critical deformations do not agree nearly so well
with our observations, but the accurate experimental determination of Dy .
is difficult. Numerical results for other viscosity ratios would be helpful,
but to date, the three-dimensional nature of the problem has prevented
investigations except for A = 1, where the calculations are considerably

simplified.
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Critical capillary number for burst as a function of viscosity ratio for a = 1.0.
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Figure 4.28
Drop shapes at critical capillary number for irrotational shear flow.
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Critical capillary number for burst as a function of viscosity ratio for a = 0.8.
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Figure 4.31

Critical capillary number for burst as a function of viscosity ratio for a = 0.8.
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Figure 4.33
Critical capillary number for burst as a function of viscosity ratio for a = 0.4.



201 01 001 - 01 2-01 - 01
L L] Ls vvvey v ¥ T A O

AL B A | Ll L} L —-dlqﬂ L) L L] dd-<- L] ¥ L —--- — R
-a.m (] ® ® © ® mo—

w 0] ~ 0¢ Qmﬂ

: - o€
§ - ot
B i ] 1 } 34 ' s —-F-- } " - hd
FH-———— H————t H———— HHH—— -t H——— 0°0
410

~155-

| ® N
K109y uonywutiojap 3aN e // lg-0
- Kooy ‘Jop [rewss (33)0 ——- ~
i reoweumu [1get] uosey @ ~g
AOMST) & v @ 160
i yo=0» i

.
L L 3 1 3 A I —--h- 1 L —-——-h— 1 1 —--- ] i —--.- L (] Oﬂ

Figure 4.34
angle at critical capillary number as a function of

Deformation and orientation

viscosity ratio for a = 0.4.



~156-

.01

.01

[Ty v T T TrrrTT

T

reolssumu {1861 ] uosiifey

¢g0=»

Lioeyy uoyewiio}ap adaey  -------
Aiosyy Jop fewss (7) 0 ——

oM S O ¥ @

—-—Ph- 1 1 ——-F-

| N

| A

49°0

Figure 4.35

Critical capillary number for burst as a function of viscosity ratio for a = 0.2,
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Critical capﬂlar‘y number for burst as a function of viscosity ratio for simple

shear flow. Data from Torza, Cox, and Mason [1972].
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Figure 4.38
Deformation and orientation angle at critical capillary number as a function of
viscosity ratio for simple shear flow. Data for orientation angle was not reported
by Torza, Cox, and Mason [1972].
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Figure 4.40
Critical capillary number for burst for each flow type, divided by Ca; for a = 1.0.
This presentation highlights the effect of vorticity as a function of viscosity ratio.
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Effects of flow type on deformation and orientation angle at the critical capillary
number. Numerical results of Rallison [1981] go in order of increasing a from
top to bottom. Points for & = 1.0 and 0.8 coincide.
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4.3 APPLICATION TO OTHER FLOW FIELDS

Prediction of drop deformation and burst in linear shear flows other than
those we investigated experimentally can be accomplished in several ways.
Comparisons between our data and the predictions of the O(¢?) small deforma-
tion theory of Barthes-Biesel and Acrivos [1973a] have established that their
theory can be applied to finding both deformation and bursting point for viscos-
ity ratios above about 0.05 with reasonable accuracy. The drawback of that
approach is that, depending on the form of the velocity gradient tensor, a con-
siderable amount of algebra may be required to write the tensor equations in
compoenent form. The advantage is that there are no adjustable parameters,

and in principle at least, no experiments are needed to make the prediction.

If only information concerning drop burst is required, a much simpler
method of extrapolating our results is possible. In this approach, described by
Olbricht, Rallison and Leal [1982], the burst of a drop is considered within the
framework of a flow classification scheme based on the ability of a given flow to
effect finite deformations to a suspended microstructure. The microstructure
(in this case the drop) is characterized by either a vector or a traceless second
rank tensor, and the dynamical equations linearized about the rest
configuration. The conditions leading to growth of the microstructure length
scale are determined using a linear stability analysis, and in the case of a drop,

conditions where such growth occurs are defined as drop burst.

The governing equation for the case where the microstructure is character-

- ized by a vector R, is

(4.1)
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where r=R/ R, R = |R|, g is a measure of the response of the microstructure
to the straining motion, £ denotes the elastic restoring force, and f represents
the internal viscosity resisting deformation. When the microstructure is charac-

terized by a traceless second order tensor, A, the governing equation is:

dA

AL = A0 -0A+g(EA+AE- -g—-(E: A1) - £A+E . (4.2)

The analysis of the vector model of (4.1) leads to a linear system, the behavior of

which depends on the eigenvalues of the normalized tensor L, given by

_ Q+gE
= (vu;VuT)” } (4.3)

The eigenvalues are the roots of the characteristic equation of L:
1P — (Btrif)v — detL =0 (4.4)

The real part of the eigenvalue with the largest real part is termed v*, and
growth of the microstucture is indicated when v*(Vu:Vu’)}® exceeds £ Flow
fields for which this is true are termed '"strong”, and the remaining flows,

"weak'".

A somewhat more complicated analysis applies when the tensor model is
used, but the behavior is governed by roots of a 5 by 5 matrix, whose charac-
teristic equation can be written in terms of L (Olbricht, Rallison and Leal

[1982]):

o+ -é—[4tr(LT-L) - 11trL2] Ve o+ {Btr(LTaL) —SdetL] R+
+ é—[—zmﬁ tr(LT-L) + (trL?? — 6tr(L7-1L)? + 6(/tr(LT'L))2] v —
- g—[z detLtr(LT-L)—trLz] =0 (4.5)
As for the vector model, the flow is defined as strong when

vt=max Re(y;) > £(Vu: Vul)#%. (4.8)
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In applying their flow classification scheme to drop burst prediction,
Olbricht, Rallison and Leal [1982] suggest using a,G/ Ca from the small defor-
mation theory discussed in Section 3.1 for ¢ in (4.6). This gives the following

expression for the drop burst criterion:

40(A+1) G

Ca > (RA+3) (19A+ 16) v*(Vu:Vul)%

(4.7)

They suggest treat g as an adjustable parameter, using experimental results at
the same viscosity ratio to estimate this quantity. In principle, the burst for
drops suspended in any linear shear flow could be predicted from data for one
flow type. The procedure for extrapolating our results to some other linear

shear field is then clear:

1. An approximate value of g is determined from the data for the viscosity
ratio of interest. Data from any flow type can be used, but it is probably
best to use the flow type for which the ratio of magnitude of the vorticity to

the magnitude of the strain rate is closest to that of the flow of interest.

2. This value of g is then used to compute L for the flow field under considera-
tion. The eigenvectors are then computed from (4.4) or (4.5), depending on
whether the vector or tensor model is to be used. The flow strength is pro-

portional to the maximum real part of this set of eigenvectors.

3. The critical Capillary number for burst can then be determined from (4.7)

To illustrate this concept and test the vector and tensor models, we have
employed this method for one case from our experiments. For a viscosity ratio
of 1.53, we computed g from the burst point at a = 0.6, and then used both
models to predict the burst point for the other flow types investigated, compar-

ing the results to the experimental observations.
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For flows given by (2.1) the eigenvalues computed from the characteristic

equations are given by:

1 R+l —(1-op]?
C. %3 (1+a)? + (L—a)? |’ (+8)
for the vector model, and
1 2+a)?—(1-ar® [2/3g2(1+0)2 - 20 —a)]*
O v T (—af | | (lteRr(i-a® | &Y

for the tensor model. For the vector model, v* is always the eigenvalue with the
plus sign. For the tensor model, the two positive eigenvalues must be compared

to determine which is larger.

Figure 4.41 shows the comparison between the experimental results and the
predictions obtained from the vector and tensor models. Since the value of g
was determined from the data at a = 0.6, the agreement is exact at that point.
For the other flow fields, the tensor model gives slightly better agreement than
the vector model. Given the low level of effort required to "extrapolate” our
drop burst data to other flow fields, this technique seems quite attactive for

engineering estimates of the burst point.
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Figure 4.42
Results of "extrapolating” experimental results for a = 0.8 to other flow types
based on the flow strength classification scheme of Olbricht, Rallison, and Leal
[1982]. The viscosity ratio was 1.53.
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5.0 TRANSIENT DROP DEFORMATION

In this section we briefly consider the time dependent deformation of drops
under conditions where no steady shapes exist. As described in Chapter 2, the
drop deformation and burst experiments were performed by increasing the
shear rate in very small steps and observing the resulting equilibrium deforma-
tions of the drop as a function of shear rate. In most cases, a critical shear rate,
defined as the lowest shear rate for which no equilibrium shape existed, was
reached. The inherently transient deformation of the drops subsequent to this

point is the topic of interest in this chapter.

The transient portion of our experiments was basically a continuation of the
steady state experiments. The same fluid systems and flow fields were used.
When the critical shear rate (or Capillary number) was reached, the drops were
allowed to extend at that shear rate for a time sufficient to stretch the drops to
approximately ten times their undeformed diameter. During the period while
the flow field was on, the elongating drops showed no tendency to break up into
fragments. When a certain drop elongation ratio (defined as the length of the
deformed drop divided by its undeformed diameter) was reached, the flow was
turned off. The drop motion was then driven solely by interfacial tension. The
drop proceeded to either break into satellite drops through the growth of vari-
cosities in the extended shape, or to return to the initial spherical shape
through a complex motion. The particular behavior observed depended on the
viscosity ratio and degree of extension when the flow was stopped, as discussed
in Section 5.2. During the transient elongation of the drop and subsequent
breakup {or return to a spherical shape), still photographs were taken at

recorded intervals for later analysis.
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Our observations of transient drop deformation were by no means exhaus-
tive. In particular, we limited our experiments to one particular deformation
history, namely that experienced by a drop going through successive equili-
brium shapes approached in a quasi-stationary manner. The transients were
studied only for the lowest shear rate for which no stable steady shape existed,
and no experiments were attempted where the shear rate exceeded the critical
value. Extensive transient experiments have been reported by Grace [1971],
whose work concentrated on the final conformation (number and size distribu-
tion of fragment drops) of drops broken up by a number of different methods.
The reader interested in the effects of supercritical shear rates and/or final

drop size distribution is referred to that work.

Another limitation of our experiments was that they covered only a narrow
range of elongation ratios at which the flow was turned off. This elongation ratio

was determined by allowing the drop to extend to about the maximum length

- which would remain within the field of view of the control camera. Further

extension would also have put the drop ends out of the region where the flow was
closely approximated by (2.1). Time did not permit a more thorough investiga-
tion of the effect of elongation ratio at cessation of shear on the resulting drop
size distribution, but the preliminary experiments discussed here revealed some
interesting phenomena which will hopefully motivate further research in this

area.

A final weakness with our experiments was that the transient deformation
was followed only with discrete still photographs taken at intervals. A careful
analysis of the transient motions will probably require either motion picture

photography or video tape.
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Despite their limitations, the experiments did reveal some interesting
features of the transient drop deformation process. Quantitative data on the
elongation rate at the critical shear rate were obtained for viscosity ratios rang-
ing from 0.01 to about 13. The effect of flow type for various strong flows was

also determined. These points are discussed below.

5.1 TRANSIENT DROP THEORIES

While there is no general solution for the transient deformation and burst of
a drop in a linear shear field, theoretical studies relevant to portions of the
problem have been undertaken. These include studies of the transient moticn of
infinite fluid threads in an axisymmetric extensional flow, and studies of the sta-
bility of infinite fluid threads in a stationary suspending fluid. These theories

and their applicability to the experimental situation are discussed briefly below.

5.1.1 Extending Fluid Threads

Tomotika [1935] has investigated the extension of an infinite cylinder of one
fluid suspended in a second fluid undergoing axisymmetric extensional flow. The
same problem was treated in more detail by Mikami, Cox, and Mason [1975]. The
theory serves as an approximate model for a highly deformed drop elongating in

an extensional flow.

In these studies, the growth of small sinusoidal disturbances of arbitrary
wavelength on the cylindrical fluid interface was investigated. When the distur-
bances are small, the imposed axisymmetric extensional flow satisfies the flow
and continuity equations throughout the domain, including the portion interior

to the thread, and also satisfies the boundary conditions on the cylindrical
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surface. Thus, the undeformed suspended fluid cylinder extends with the flow,
decreasing in diameter correspondingly. As a consequence of this extension,
the wavelength of a given disturbance increases exponentially with time, and the
net effect is to slow the overall growth rate of the capillary waves and thus sta-

bilize the fluid cylinder.

This theory is very helpful in explaining the observed stability of extending
fluid threads. For a variety of reasons, however, its usefulness for quantitative
predictions of physically important results (such as drop fragment size and
breakup time) in experimentally realizable situations is limited. One difficulty
arises because the nature of the experiments differs in several important
respects from the situation considered theoretically. For example, in our exper-
iments the flow fields were two-dimensional rather than axisymmetric, and thus
the imposed flow could not satisfy the flow and continuity equations inside the
extending drop. As a consequence, the extension rate of the drops was less than
that of the imposed flow. Also, the theory applies for an infinite fluid cylinder,
but the experiments investigated the motion of extending drops. Particularly in
the early stages of transient deformation, the elongation-resisting effects of

interfacial tension due to the drop ends cannot be neglected.

Other difficulties arise because of the inherently transient nature of the
extending thread problem. In considering the stability of a problem with a
steady state solution (e.g., an infinite fluid cylinder in a stationary suspending
fluid, as discussed below), it is generally sufficient to find conditions under which
infinitesimal disturbances will grow. In the case of an extending fluid thread,
however, the wavelength of the disturbances, their growth rate, and the diamé-
ter of the thread are all time dependent. Thus, the evolution of each distur-

bance must be studied to determine whether the disturbance amplitude ever
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becomes equal to the thread radius, a condition which would indicate thread
breakup. For breakup predictions, the initial disturbance amplitude and the
thread diameter at the time at which the disturbance is generated must be

known. Since these can only be estimated, quantitative predictions are difficult.

The qualitative conclusion that threads are considerably stabilized by elon-
gation in an extensional flow has been readily confirmed. Mikami, Cox, and
Mason [1975] performed experiments with extending threads in a four roll mill
similar to the one used in our experiments. They extended the threads to the
point at which breakup occurred with the flow at a constant (supercritical)
shear rate. In this two-dimensional extensional flow, threads with viscosity
ratios of 0.148 and 1.46 remained intact until the thread diameter was less than

0.01 em.

In our experiments, drops were elongated to threads with a diameter of
approximately 0.03 to 0.05 cm with the flow constant at the critical shear rate,
and then the flow was turned off. While the flow was on, no breakup occurred
and no capillary waves were visible, but when the flow was turned off, capillary
waves became visible shortly thereafter. Thus our experiments confirmed the
qualitative theoretical result that some stabilization mechanism is present while

the thread is elongating which is absent when the suspending fluid is stationary.

5.1.2 Stationary Fluid Threads

The breakup of an infinite cylindrical fluid thread in a stationary suspending
fluid has been considered by Tomotika [1935] and in more generality by Lee and
Flumerfelt [1981]. The analysis for stationary threads is similar to that for

extending threads in that growth of infinitesimal sinusoidal disturbances to the
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cylindrical surface is considered, but is considerably simplified since neither the
radius of the cylinder nor the wavelength of the disturbance changes with time.
Thus to predict the diameter of drops resulting from thread breakup, one need
only determine the wavelength for which the disturbance grows fastest (this
implicitly assumes that the linearization remains valid even when the waves are
of finite amplitude). Lee and Flumerfelt [1975] determined this critical
wavenumber and growth rate for a variety of limiting cases through asymptotic
methods, and employed numerical methods for the general case (arbitrary
viscosity and density ratio). Our experiments were in the inertialless regime
where the time scales were determined by the fluid viscosities (the Ohnesorge
number, as defined by Lee and Flumerfelt, was small). Under these conditions,
the critical wavenumber depends on the viscosity ratio, with the smallest drop

fragments obtained with a viscosity ratio around unity.

The theory for an infinite fluid cylinder suspended in a stationary fluid
serves as an approximate model for the behavior of a fluid thread which has
been generated by elongating a drop in an extensional flow which has subse-
quently been turned off. The theory would be expected to provide good predic-
tions of the drop fragment size as long as the drops are highly extended and the
effects of the drop ends thus negligible. Unfortunately, the theory has limited
value for comparison with our observations since our experiments were res-
tricted to elongation ratios where the effects of the drop ends remained
significant. As a consequence, the breakup mechanism, particularly near the
drop ends, was quite complicated. A more exact analysis, taking the ends into
account, would be required for accurate drop fragment size predictions under

these conditions.
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5.2 TRANSIENT DEFORMATION RESULTS

5.2.1 Low Viscosity Ratio Drops

Figure 5.1 shows a sequence of photographs which illustrate the transient
behavior of a drop of viscosity ratio 0.012 in a flow with a = 0.8. The first four
photographs were taken with the flow constant at the critical shear rate. In low
viscosity ratio cases such as this one, the drops attained highly deformed steady
shapes with pointed ends prior to burst. As can be seen, the shape of the drop
did not change dramatically during transient deformation with the flow on.
Instead, the drop simply continued to elongate, becoming longer and thinner
with increasing time in the critical flow. Except for a small region near the drop
ends, which remained pointed, the width of the elongating drop was nearly con-
stant over its length at a given instant. While the flow was on, there was no
noticeable wave formation on the drop surface, and the drop showed no ten-
dency to fragment while extending. -The appearance of the drops was the similar

to that in Figure 5.1 for all flow types.

The final four photographs of Figure 5.1 show the motion of the drop after
the flow was stopped. The times shown are relative to the time at which the flow
was turned off. The most immediate adjustment took place near the ends of the
drop, where the curvature was high due to the pointed ends. The ends immedi-
ately became rounded, forming beads which were rapidly pinched off from the
main drop. Simultanebusly. capillary waves became visible on the central por-
tion. After the original ends pinched off, the ends of the remaining central por-
tion began to likewise form spherical beads. These appeared to be pinched off
by a mechanism similar to that for the original drop ends, except that growth of

capillary waves played some role as well. In other experiments with the same
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fluid system, we observed that the number and size of the drop fragments was
"determined by the degree of elongation achieved before the flow was turned off.
The greater the elongation, the greater the number of drops and the more uni-
form the drop size distribution, since breakup via capillary wave growth played

an increasingly important role.

The final photograph of Figure 5.1 shows five major drop fragments, with
each pair of major fragments separated by one barely visible minor fragment.
The rest diameter of the central fragment, which appeared to be formed at least
partly from growth of capillary waves, was approximately one-half that of the
original drop. The theory of Lee and Flumerfelt [1981] for a stationary fluid
cylinder predicts that the fastest growing disturbance for this fluid system has a
wavenumber of approximately 0.42. Using the diameter of the central portion of
the extended drop when the flow was turned off, this yields a predicted fragment
diameter of about one-fourth that of the original drop. The large discrepancy
between the calculated and observed fragment size illustrates the importance of

the contraction of the drop due to the presence of the ends.

Figures 5.2 and 5.3 show plots of the elongation ratic L/ a vs. dimensionless
time for the case discussed above and for another low viscosity ratio case with
A =0.023. G, a'/?t is chosen for the dimensionless time because G, a!/? is the
effective extension rate along the exit streamline where the elongated drops
align. After the flow is turned off (indicated by the maxima in L/ a) the motion
is driven by interfacial tension, and the interfacial tension time scale (L &'/ o) is
obviously more appropriate under these conditions. For convenience, however,
the time scale was the same throughout the plot. Measurements of L/ a after
the flow was stopped were continued until the first fragment separated from the

main drop. In the low viscosity ratio cases shown in Figure 5.2 and 5.3, only a
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slight decrease in the drop length was observed between the time the flow was

stopped and the time at which the drop ends were pinched off.

Figures 5.2 and 5.3 include data for drops in several different flow types.
Approximate error bars are shown on Figure 5.2. Uncertainties in the time axis
arose because the operator of the experiment had to simultaneously trigger the
photograph and signal the program to record the time at which the picture was
taken. Since the operator was also occupied adjusting the focus of the camera
and experimental parameters such as the window size and thresheld value,
there was some margin for error. Errors were generally more significant for low
viscosity ratio drops, as the critical Capillary number was larger and the drops

fragmented more quickly when the flow was stopped.

Due to a weakness (since corrected) in the computer program used to run
the experiment, the time origin of all the plots of L/ a vs. dimensicnless time in
this manuscript (the time at which the shear rate was first increased to the crit-
ical value) was not accurately determined. Consequently, the origins for the
different experimental runs shown in each such figure were adjusted to cause
the steeply sloping portions of the curves to coincide. This adjustment affects
only the relative positions of the curves, and has no effect on the curve shape.
Excellent agreement between the shapes of the curves for different flow types
was obtained, indicating that our choice of G, al/?¢t as the dimensionless time is
appropriate for the period when the flow was on. This agreement also indicates
that the nature of the transient deformation is roughly independent of flow type

for strong flows.

As noted in Section 5.1.1, an infinite cylindrical thread in an axisymmetric
extensional flow extends exactly as would a fluid element in its place. Thus if the

"length” L of this infinite thread is considered to be the distance between two



- 176 -

particular fluid elements in the thread, log L/ a (where a represents their initial
separation) varies linearly with G; ¢, with a slope of unity. The time dependent
behavior of L/ a for threads formed by deforming drops in two-dimensional flows
(c.f. Figure 5.2) was considerably different for two reasons. First, at low elonga-
tion, the growth rate was much slower due to the resistance to deformation
caused by the curvature of the ends of the drop. As the drops became more
deformed, the influence of the ends decreased, and the extension rate
increased. For elongation ratios greater than about five, the slope of log L/ a
versus G, a/?t was essentially constant, indicating that deformation-resisting
effects of the drop ends were negligible once that elongation ratio was attained.
In Figures 5.2 and 5.3, these constant slopes were 0.47 and 0.84, respectively.
These are lower than unity, the value that would be observed in axisymmetric
extensional flow, because in two-dimensional flow, compression in a plane per-
pendicular to the extensional axis is along parallel lines, while in an axisym-
metric flow, compression is directed radially inward. Consequently, the cross
section of the drop was not circular in two-dimensional flow, and the constant
volume constraint prevented the length of the drop from elongating at the

extension rate of the imposed flow.

5.2.1 Intermediate and High Viscosity Ratio Drops

For drops with viscosity greater than about 0.02 times that of the suspend-
ing fluid, the appearance of the drops elongating in a flow held constant at the
critical Capillary number was nearly independent of viscosity ratio. In these
cases, burst of the drop (defined as the point at which no steady shape was pos-
sible) occurred at moderate drop deformation, and its initiation was signalled by
the appearance of flat sides on the deformed shape. As the drop was elongated

in the critical flow, its sides became concave, and its ends somewhat bulbous.
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When the drop was extended to about five times its original diameter, the width
of the central two-thirds of the drop was essentially constant at a given instant.
As for the low viscosity ratio drops, no capillary waves were visible and no
breakup occurred while the flow was on, up to the highest elongation ratios

investigated in our experiments (approximately 12).

Figures 5.4 and 5.5 show photographic sequences of the transient behavior
of drops of viscosity ratios 0.046 and 12.8, respectively. Despite the 250-fold
difference in viscosity ratio, the shapes of the drops were remarkably similar
while the drops were elongating in the critical flow. These shapes are shown in
the first four photographs of each set. The final four photographs in the two
figures show the behavior of the extended drops after the flow was turned off. As
can be seen, similarities in behavior between the two viscosity ratios ended when
the flow was stopped. Since the degree of elongation when the flow was stopped
was comparable in the two cases, this difference was evidently due to viscosity

ratio effects.

In the lower viscosity ratio case, shown in Figure 5.4, the drop ends started
to approach a spherical shape when the flow was stopped, but were pinched off
nearly immediately. This process repeated itself, with the new drop ends bead-
ing up and pinching off, and the drop thus appeared to be breaking up by shed-
ding its ends. In another experiment with the same fluids, a drop was allowed to
extend to approximately eleven times its undeformed diameter. In that case,
capillary waves were observed to grow on the central, cylindrical portion of the
drop, and breakup was through a combination of the growth of these varicosities

and the end-pinching mechanism.

In the high viscosity ratio case illustrated in Figure 5.5, the motion of the

drop after the flow was turned off was strikingly different. The drop ends again
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formed nearly spherical beads, but rather than breaking off, these ends were
pulled toward the drop center, engulfing the cylindrical portion of the drop as
they moved. The diameter of the central portion of the cylinder remained
essentially constant until the separation between the drop ends was approxi-
mately equal to the initial drop diameter. In the example shown in Figure 5.5,
the drop returned to the spherical shapé without breaking up. In another exper-
iment with the same fluid system, the drop was allowed extend to approximately
eleven times its initial diameter before the flow was stopped. In that case, the
initial behavior was very similar, with the drop ends becoming spherical and
starting toward the center, but the drop extension was large enough that capil-
lary waves had sufficient time to growv to the point that they caused breakup
before the drop could return to the spherical shape. The breakup was further
from the drop end in that case than was observed when breakup was through the

end- pinching mechanism.

In attempting to explain the difference in behavior between the intermedi-
ate viscosity ratio drops ( A < 3) and high viscosity ratio drops, several possibili-
ties come to mind. One possibility is that some viscosity-ratio-dependent detail
of the drop shapes at the point of flow stoppage causes the difference in
behavior. For several reasons, this seems unlikely. First, for viscosity ratios
where the end-pinching behavior occurs, it occurs for any (reasonably large)
elongation ratio, and details of the shape (e.g., the ratio of the size of the bul-
bous ends to the diameter of the cylindrical central portion) depend more on
the degree of extension than they do on viscosity ratio. Second, the end-
pinching process repeats itsell on the central portion when the original drop
ends are pinched off. This suggests that the pinching process does not depend

on a particular starting shape.
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A more plausible explanation is that the viscosity-ratio-dependent behavior
is caused by differences in the dynamics which arise from differences in the
relative viscosities of the drop and continuous phases. To illustrate this con-
cept, we consider the normal stress jump across an interface of the shape shown
in Figure 5.8, which is typical of the drop shapes soon after the flow was turned

off. The expression for the normal stress jump is given by:

ml=oltos tlo o [t s ]
[T'n] =0 % + sz—- oyar; 1+f'2_l (5.1)

where we have considered the surface to be axisymmetric and f' and f" are the

derivatives of the shape function f with respect to distance along the drop axis.
The normal stress jump is plotted qualitatively in Figure 5.6. It is highest near
the end of the drop where the radius of curvature is concave in planes both
parallel and perpendicular to the drop axis, and goes through a minimum with
decreasing z because the drop surface in the plane parallel to the drop axis
becomes convex. In the central cylindrical portion of the drop, the normal
stress jump approaches a constant. To get a qualitative idea of the flow driven
by this normal stress jump, we make the approximation that the fluid is static
(so the normal stress jump is just a pressure jump) and then consider the fluid

motion driven by the pressure gradient caused by the interfacial tension.

The pressure gradient will induce fluid flow both from the end of the drop
and from the center cylindrical region. However, the flow from the end of the
drop can occur without large velocity gradients in the internal fluid, since the
drop end can essentially translate without a large change in shape. Thus the
motion is mostly damped by the outer fluid. Flow of the drop ends towards the
pressure minimum causes the convex region (and hence the pressure minimum)
to move toward the drop center as well, so the driving force for continued end

movement is maintained. The dynamics of the flow from the central portion of
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the drop towards the pressure minimum are different because this flow requires
a velocity gradient in the inner fluid as the fluid at the drop center is stagnant.

Thus this motion is inhibited by the drop fluid viscosity.

The behavior observed in our experiments can then be explained as follows.
In high viscosity ratio systems, the ends are drawn toward the middle as
described above, with this motion damped mostly by the outer fluid. Drainage
from the center portion is comparatively slow since it is damped by the higher
inner fluid viscosity. Consequently, movement of the pressure minimum accom-
panying the end movement is such that the flow from the central region is too
slow to cause a "neck” to form in the shape, and the ends do not pinch off. In
contrast, in lower viscosity ratio systems, fluid flows readily from the central
portion to the pressure minimum. This causes a a local minimum in drop
radius. The pressure jump at this point is thus increased, accelerating the

drainage and eventually causing the ends to pinch off.

It is worth noting that the end-pinching process occurs faster than growth
of capillary waves on the central cylindrical portion of the drop since a cylindri-
cal shape is an (unstable) equilibrium conformation. Capillary waves in this
region are thus the result of growing instabilities, while the the pinching flow
near the drop ends arises from a nonequilibrium shape. This is why the initial
breakup of intermediate viscosity ratio drops appears to be caused by shedding

of the drop ends.

Figure 5.7 through 5.14 show plots of L/a versus dimensionless time for
viscosity ratios of 0.046, 0.12, 0.28, 0.63, 1.38, 2.43, 6.1, and 12.8, respectively.
In each case, the curves for several different elongating drops are shown. Agree-
ment in the shape of the curves for different flow types indicates that the quali-

tative aspects of the elongation and breakup process are not sensitive to flow
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type. This is in agreement with cur observation that the shapes of the drops

were essentially identical in different flows with the same viscosity ratio.

In Figures 5.7 through 5.14, the slopes of L/a versus G, a'/?t were nearly
identical in the steeply sloping portion where L/ a was greater than five. These
slopes are shown in Table 5.1. As can be seen, excluding the slope for A = 0.012,
which was the least accurately measured, all of the slopes were within 10% of the
mean of 0.64. Thus the theoretical result that highly extended drops extend
with the suspending fluid regardless of viscosily ratio is qualitatively confirmed,
taking into account the difference between the axisymmetric flow considered in

the theory and the two-dimensional flow used in our experiments.

In conclusion, we point out that our transient experiments, though few in
number, revealed some interesting features of the drop breakup process which

may justify further research. Some possible topics include:

1. Further investigations into the effect of different flow histories on drop
breakup would be useful for practical applications where the final drop size
distribution resulting from breakup is of primary interest. Our experi-
ments were limited to slow increases in the shear rate to the critical value,
with the flow then held constant until it was turned off. Different
approaches to a bursting condition, for example step or fast ramping
increases in the shear rate, may yield different breakup behavior. Increas-
ing the shear rate past the critical value has been shown (Grace [1971]) to
dramatically effect the drop fragment size distribution. Grace also per-
formed a few experiments in which the drop was extended for a short
period at the critical shear rate, and then the shear rate was reduced in a
such a way as to keep the drop length constant. This also changed the drop

size distribution. One problem with experiments in this area would be
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choosing a useful shear rate profile from among the many possibilities. One
helpful result of our experiments was that it is probably unnecessary to

consider flow type as an independent parameter, at least for strong flows.

More conclusive studies of the offect of the magnitude of the drop elonga-
tion when the flow is stopped would be of interest, particularly determina-
tion of the critical elongation required for drop breakup as a function of
viscosity ratio. One interesting possibility is that the highly deformed
steady shapes observed for low viscosity drops may actually break up when
the flow is stopped. Also of interest would be a more careful observation of
the interfacial-{ension-driven motion of elongated drops after the flow is
turned off. Use of motion picture photography with tracer particles in the
drop fluid would be useful for determining whether the explanation for the
viscosity-ratio dependence of the breakup behavior offered above is
correct. Numerical studies of the interfacial-tension-driven flow, using the
boundary integral technique, could perhaps be used to determine whether

the flow is sensitive to details of the shape at the time the flow is stopped.

Table 5.1 - Elongation Rates
viscosity ratio slope [1]
0.012 0.47
0.023 0.64
0.046 0.59
0.12 0.87
0.26 0.64
0.63 0.65
1.38 0.65
2.43 0.83
6.1 0.69
12.8 0.56

[1] Slope of L/ a vs. Gc al/?t
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Sequence of drop deformations for A = 0.01, o = 0.8. First four photographs
were taken with the flow at the critical Capillary number, and the final four were
taken with the flow off.
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-185-

o
I LA Ly T T LA T H T N
Jw
5}
5} ® {e
o4
09‘ 0‘
Qe
90
- &
|l cow @ B
©--e e
Wuwu 5]
c’.-‘, LRI
o
W ©¢©
~<
4un
5]
:l L i [ I | i 1 - 1 ao
o g o
— A —
~3
Figure 5.3

Dimensionless length vs. time for A = 2.3x1072,
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Time-dependent drop deformation for A = 0.048, o = 1.0. The flow was on for the
first four photographs and off for the last four photographs. Times in the last
four photographs are relative to the time at which the flow was stopped.
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Figure 5.6
Typical drop shape shortly after flow stopped, and approximate normal stress
jump across interface.
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Dimensionless length vs. time for A = 0.12,
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Dimensionless length vs. time for A = 0.26.

30

20

5

10



Q
‘ T T L] L) L) T L] T N
4w
e p—
e
o
‘ -
°g |,
©
° ©
e
-
! 1°8
O
o &
QO w O
o B |
O nnwu
o 888
L]
PR R
PN -1 W
)
l L L i L i L L i ‘
= 3 2
~
~
Figure 5.10

Dimensionless length vs. time for A = 0.63.
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Dimensionless length vs. time for A = 1.38.
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Dimensionless length vs. time for A = 2.43.
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Dimensionless length vs. time for A = 6.1.
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Dimensionless length vs. time for A = 12.8
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6.0 SUMMARY

The first part of this thesis described the design and construction of a flow
device known as a four roll mill. The immediate objective for the apparatus was
to investigate the deformation and burst of fluid drops suspended in a second
fluid undergoing a steady linear shear flow. The four roll mill was chosen
because it is capable of generating flows with arbitrary ratio of vorticity to
strain rate. Experiments in the flows of most interest, the so-called strong flows
where the magnitude of the strain rate is greater than that of the vorticity, had
not been previously attempted (except for one specific such flow) due to the
difficulty in controlling the drop at the lone stagnation point in such flows. To
overcome this obstacle, we devised a computer-based control system to keep
the drop at the device center. A digital closed-circuit television camera was
interfaced to a laboratory computer to serve as the sensor in the control
scheme, and the DC stepping motors which turned the rollers were interfaced to
the computer to serve as the actuator. A model for the drop's response to flow
field changes and the flow field's response to roller speed changes was developed
and tested experimentally. An inferential feedback control system based on this
model was successfully implemented. The apparatus was capable of keeping a
particle or drop within 0.1 cm of the device center in flows with shear rates up to

5 sec”! and flow type from 0.2 to 1.0.

We used the apparatus described above to study drop deformation and the
burst in Newtonian systems. However, there are other applications for the same
apparatus. Obvious extensions include investigations of drop deformation and
burst in systems where the drop énd/or suspending fluid are non-Newtonian.
The apparatus is also ideal for studying the effects of transient flow fields on

drop behavior. Other less related possibilities include investigation of the orbits
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of solid particles in flows with arbitrary vorticity to strain ratio, and investiga-
tions of the coalescence of emulsions in straining flow. In the latter case, one
fluid drop could be held stationary at the stagnation point while another drop

approached it.

There are other experiments which could benefit from the control technol-
ogy developed for the four roll mill. A very similar control scheme could be
implemented to maintain a drop at the stagnation point in a device designed to
produce axisymmetric extensional flows (e.g., a device with opposing tubes pro-
ducing positive flow for biaxial extension or negative flow for uniaxial extension).
Another class of applications would be in fluid flow experiments where it is desir-
able to make observations in a frame of reference which translates with a solid
or deformable body. In some situations it would be possible to have a computer
control the motion of the observation equipment (i.e., a camera) to keep the

body in the center of the observation field.

A related application that may become feasible in the next few years is to
interface a more sophisticated digital camera to a computer to record the
shape of a deformable body. For this use, the resolution of the camera would
have to be considerably better than that of the camera used in our experiments,
and in most cases the gray-level information (which was simply compared to a
threshold to yield light-dark information in our experiment) will have to be
retained for more complex processing. If the camera is used for data acquisi-
tion only, and not for control purposes, longer frame times {the time necessary
to get a complete picture from the camera to the computer) would be accept-
able, although they would still have to be fast compared to the time scale for
changes in the features being observed. Should the technology become avail-

able and affordable, a computer could be used to store and process the shape



-199-

data, considerably speeding up the task of reducing photographic data to
numeric results. In the case of drop deformation experiments, this would also
make it possible to do more sophisticated quantitative comparisons between the
theoretical and observed drop shapes than the simple scalar comparisons used

in this work.

The second portion of the thesis discussed the results of our drop deforma-
tion and burst experiments. Our goals for the experiments were to investigate
the effect of flow type on drop deformation and burst, and to determine the
range of applicability of several asymptotic drop deformation and burst
theories. Accordingly, we performed experiments covering viscosity ratios from
0.001 to 25 for flow types with a = 1.0, 0.8, 0.6, 0.4, and 0.2. The small deforma-
tion theory of Barthes-Biesel and Acrivos [1973a] was applied to these flow fields
and compared to the observations. A slightly modified version of the large
deformation theory of Hinch and Acrivos [1980] was compared to the results for
small viscosity ratios. In addition, the numerical results of Rallison [1981] were

compared to the experiments. Our conclusions can be summarized as follows:

Effect of Flow Type on Drop Burst

For viscosity ratio less than unity, the Capillary number required for burst
and the deformation at the point of burst both decreased with increasing viscos-
ity ratio for all strong flows. In our experiments in irrotational flow, Ca,
approached a constant value with further increases in the viscosity ratio. This is
in agreement with the predictions of the small deformation theory and with the
numerical results of Rallison and Acrivos [1978] for axisymmetric flows, but
disagrees with the observations of Grace [1971], who reported an increase in Ca,

with viscosity ratio for high viscosity drops in the same flow. We believe that the
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computer control used in our experiments allowed more accurate measure-
ments, particularly for the high viscosity ratio cases for which conflicting results

exist.

When vorticity is present in the flow, (a, goes through a minimum at a
viscosity ratio about 1.0, and increases steadily with viscosity ratio above that
point. For a = 0.4,0.2, and 0.0, there is a viscosity ratio above which no burst is

possible.

Small Deformation Theory

The small deformation theory gives adequate predictions for drop deforma-
tion for A=0.05. The O(£?) version of the theory generally gives better predic-
tions for the deformation than does the O(g) theory, and always gives better
predictions for the critical Capillary number at which drop burst occurs. The
0(£?) theory predicts the qualitative features of drop burst with surprising accu-
racy for viscosity ratios greater than about 0.05. The agreement is for all flow
types investigated in our experiments and for simple shear. In particular, the
theory correctly predicts a limiting viscosity ratio above which drop burst is
impossible for o = 0.2 and 0.0. It can be used for quantitative estimates of Cq,,
accurate to within about 307%, for the two-dimensional flows we considered when

A>0.05.

large Deformation Theory

The large deformation theory gives adequate predictions for drop shape and
burst for A<0.01. The lowest viscosity ratio considered in our experiments was
0.001, and in that case the predictions for Ca; and L/ a at burst were accurate

to within about 15% for all a. It is expected that the agreement would improve
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for lower A, since the slenderness of the drop increases with decreasing A.

Numerical Results

The numerical calculations for A = 1 are in good agreement with the data
for Ca;. The predicted critical deformations do not agree nearly so well with our
observations, but the accurate experimental determination of D, . is difficuit.
Numerical results for other viscosity ratios are not yet available for the flows we

studied.

The final part of this thesis discussed the transient experiments we per-
formed. These were limited in scope, but revealed some interesting phenomena.
Drops extending at the critical shear rate were stabilized by the flow field. When
the flow was turned off, capillary waves appeared. For low and intermediate
viscosity ratios, these varicosities grew and eventually caused the drop to frag-
ment. For high viscosity ratios, the drops sometimes returned to their initial
spherical shape through a complex motion, depending on the degree of exten-

sion when the flow was turned off.

There are a wide variety of transient drop phenomena which could be inves-
tigated in the existing apparatus. Our investigations were limited to the motion
of drops with the flow held constant at the critical shear rate for breakup. The
drops were allowed to extend until their length was approximately ten times
their initial diameter, and then the flow was turned off. More extensive experi-
ments along the same lines could include a systematic study of the effect of the
elongation ratio and/or the effect of supercritical shear rates on the final con-
formation (number and size of drop fragments). In such experiments, the tran-

sient motion should be followed through motion picture or video tape photogra-



- 20R -

phy. Lack of a suitable camera - lens combination prevented us from doing this

in our experiments, so we were limited to taking still photographs at intervals.

Another largely-unexplored class of transient phenomena involves studying
the drop deformation and burst pattern in an unsteady flow . In our deforma-
tion experiments, the flow type was held constant during a run, and the shear
rate slowly increased so that the drops went through a series of equilibrium
deformations. In most dispersion equipment, the flow type and shear rate seen
by a drop vary with time. Thus experiments with time- dependent flows would be
of considerable practical interest. Several well-defined transient experiments
suggest themselves. The simplest would be to "step" the shear rate from some
initial to some final value. There are experimental and theoretical indications
(Torza, Cox, and Mason [1972], Hinch and Acrives [1980]) that this can cause
breakup in simple shear even if the final value is below the shear rate required
for burst when the shear rate in increased slowly. Similar experiments in strong
flows have not been attempted because of the difficulty in controlling the drop
position, an obstacle which has been essentially overcome in the computer-
controlled four roll mill. More complicated shear rate sequences (such as
ramped or sinuscidal shear rates ) could also be generated fairly easily. It would
also be possible to vary the flow type. Transient experiments such as these are

currently in the planning stage (Stone [1984]).
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APPENDIX ONE - STABILITY MATRICES
As mentioned in Chapter 3, the linear stability of the solution to the non-

linear algebraic equations of the small deformation theory is determined by the

eigenvalues of two linear systems:

df _ .

sdt—Af Al.l
and

dg _g.

£ Beg A12

The vector f contains the eight independent components of F and H which are
nonzero at steady state, and g contains the six independent components which

are zero at steady state. The two vectors are defined as:

F'n
F'ip F's
HF"'zz ;'23
_{H'un - 1118
£= H'1112 E=| H'es Al.3,4
H'y122 H'y223
"1222 H'g23
H'ga22

The components of Aand B are given below. A and T are defined in Chapter

2 2
Ap=a; + 3[3—a2A+ g‘aa(Fu‘Fzz)] +e2[a A(4F ) +R2 Fp) +
+05A(2F11_F22)+U.5(T+2F11F22+4F121)+ %"‘

+ag{2 Hi111 + Hy122)] Al5

G.7AF11+

Ap = s[g—F,2+ 1—a] + s[4 0 A Fpp+

+20-7AF12+4~0.8F11F12+2¢19H“12] Al6
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—.rl 2
AIS - 8[—'04214 ——as(F11+2F22)] + 82[a4A(2F11+4f22)_a5AF11+

3 3

+ag(4Fy Fa+2F3 ) + ‘2—07F22+a9(H1111+2H1122)]

Ay = e%[agA +ag(RFy; + Fep)]
Ajs = £2[Ragd Fip]

A = e[ —agA+ag(F1y +2 Fep)]
A =0

A18=0

Az =e[agFpe—H{1-a)] + e?[asA Fipa+ag(4 Fy Frat+
+2 F13 Fog) + ag(2 Hyyya + Higzo)l

Ap =a, + e[ ag(Fi+Fe)] + e?[asA(F 1 —Fp) +ag(T +4Fh) +
+2ag Hyy20]

Apg=elagFia+B(1-a)] + e®[—asAF iz +ag(RF | Fia+
+4F 13 Fag) + ag(Hy112+ 2 Hyg2z)]

Az, =0

Azs = e¥[agA +0g(RF); + Fa2)]
Agg = £2[2ag Fg]

Agy = €®[ —agA +ag(Fy; +2Fg))

Aza=0

_ 1 2 "
Ag =¢e[- 'é_ﬂ-zA - '3"03(2}7'11+F22)] + %[ —a  A(4F ) +R Fg) +

+agA Fop+ag(d Fyy Fog+2F%) - -?5-117,4 Fi,

ALY

Al.8

Al9

A1.10

Al.11
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A1.13

Al.14

Al1-15

Al.18

Al.17

A2.18

Al.19

A1.20
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+ag(R Hyig2 + Hozz)]

A = e[ZagFip=1+a)] + 22 [~ 4a,A Fp+

+4agF 3Fas —2a7AF i+ 209 Hizz)

2 2
Azgs=a, + 5[‘§—azA+ B—GS(Fzz‘Fu)]"‘

+ 82[—G4A(2F11+4F22)+a5A(F11"'2F&)+
4
+ag(T+RF Faat4F5)— 3—07AF22+%(H1122+2H2222)]
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98
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APPENDIX TWO - DEFORMATION PLOTS

This Appendix contains comparisons of the experimentally observed drop
deformations and the predictions of the O(g) and O(e®) small deformation
theory. Similar information is included in Chapter 4, but in a more compact for-
mat and without the O(g) predictions. For the two lowest viscosity ratio cases,
the observations are also compared to the predictions of the large deformation

theory.
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Deformation Curve for a = 1.0,A=1.48
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Figure A3.44
Deformation Curve for a = 0.8, A = 1.49
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Figure A3.45
Deformation Curve for a = 0.6, A = 1.53
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Figure A3.468
Deformation Curve for a = 0.2, A = 1.55
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Deformation Curve for a = 1.0, A = 2.80
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Deformation Curve for a = 0.8, A = 2.82
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Figure A3.49
Deformation Curve fora = 0.8, A = 2.85
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Figure A3.50
Deformation Curve for a = 0.4, A = 2.77
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Deformation Curve for a = 0.2, A = 2.78

4



0.5

=267~

1 ) I

a=10,A="730

O a

——  O(e) theory
O(e®) theory

experiment

Figure A3.52
Deformation Curve for a = 1.0, A = 7.30
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Deformation Curve for a = 0.8, A = 6.27
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Figure A3.54
Deformation Curve for a = 0.8, A = 6.37
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Deformation Curve for a = 0.4, A = 8.50
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Figure A3.58
Deformation Curve for a = 0.2, A = 8.80
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Deformation Curve fora = 1.0, A = 13.8
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Figure A3.58
Deformation Curve for a = 0.8, A = 13.9
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Figure A3.59
Deformation Curve for a = 0.8, A = 14.1
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Figure A3.80
Deformation Curve fora = 0.2, A = 14.7
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Deformation Curve fora = 1.0, A = 24.5
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Deformation Curve for a = 0.8, A = 25.9
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Figure A3.83
Deformation Curve for a = 0.6, A = 28.0
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Figure A3.84
Detormation Curve fora = 0.4, A = 27.3





