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Abstract

Since the invention of turbo codes, there has been a lot of interest in iterative decod-
ing schemes. It is also known that the turbo decoding algorithm and several other
previously known iterative algorithms are instances of Pearl’s belief propagation al-
gorithm applied to a graph with cycles, while the algorithm is known to work only for
graphs without cycles. We describe a marginalization algorithm which works on junc-
tion trees, which is based on some newer developments in Bayesian networks. This
is sufficiently general that Pearl’s belief propagation and decoding on Tanner graphs
may be regarded as special cases. An attempt to compute the discrete Fourier trans-
form as a marginalization problem in this framework gives the fast Fourier transform
algorithm, thus showing that this framework has applications apart from probabilistic
computations. Junction graphs with cycles lead to an iterative algorithm. The case
of junction graphs with a single cycle is analyzed, with specific results in the case of
the sum-product algorithm. We also have some experimental results for small turbo
code-like junction graphs.

On a different topic, we consider the typical set decoder, which can be used to
obtain bounds on the noise threshold for asymptotically error free decoding, for given
code ensembles. Some choices of the typical set for AWGN channel are considered

and the resulting bounds on the threshold obtained.
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Chapter 1 Introduction

There are now several examples of decoding algorithms which can be expressed as
message passing algorithms on a graph [12, 29, 28, 33, 23]. These algorithms perform
maximum likelihood decoding when the graph is acyclic. When the graph has cycles,
we have an iterative algorithm which is found experimentally to do well in terms of
decoding performance in several cases [12, 7, 19, 20], and are computationally feasible
in contrast with exact maximum likelihood algorithms for the corresponding codes.
We present a unified framework for these algorithms in terms of a message passing

algorithm on junction graphs [15, 27] which we call the “generalized distributive law.”

1.1 Decoding and Probabilistic Inference

The canonical communication systems picture is given in Figure 1.1. The string of
k symbols U is encoded into a string of n symbols X which is then transmitted over
the channel. At the output of the channel, the string Y is received, from which the
decoder has to compute U, an estimate of the transmitted information U. If the
decoder has to minimize the average probability of symbol error, then the 7th symbol
of U is chosen as the u; which maximizes the probability p(u;|Y"). If the decoder has
to minimize the probability of word error, then U is chosen to be the string U which
maximizes p(U|Y).

The probabilistic model for the communication system is as follows. The informa-
tion symbols U are generated according to some probability distribution p(U) which
is usually uniform. We assume that each symbol is generated independently so that
p(U) = ]I, p(w;). The encoder encodes U deterministically to X so that p(X|U) is
equal to 1 if X is the encoded version of U and 0 otherwise. The channel is described
by its conditional probabilities p(Y|X). If the channel is memoryless, the output at
each time depends only on the input at each time so that p(Y'|X) = [[, p(y;|z;).



| Encoder | o —— | Decoder | >

Figure 1.1: Parts of a communication system.

Thus we can write the joint probability

pU,X,Y) = pU)p(X|U)p(Y|X) (1.1)
= [Trtwpx10) [T p(ly) (1.2)

for independent information symbols and a memoryless channel.

The conditional probabilities p(u;|Y") and p(U|Y") are proportional to p(u;,Y) and
p(U,Y), with Y fixed at its received value. The latter functions can be computed as
marginals of the joint probability p(U, X,Y’). Thus the decoding problem is reduced
to finding the marginalization of a function of several variables, which often factors
into several parts.

We need not consider the input bits U but merely work with the codeword X
as follows. Let ¢(X) be a function proportional to the probability that codeword
X is transmitted, and let it be zero if X is not a codeword. If the codewords are
all equally likely, then ¢(X) can be taken to be the indicator function of the set
of codewords. Then we want to find the values for all the x; which maximize each
p(z;]Y) to minimize the symbol error probability or maximize p(X|Y) to minimize

the block error probability. The expression

= arg max Z (Y|X)o (1.3)
‘ {2}z
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gives the value for x; maximizing p(z;|Y"), and

#; = arg max max p(Y|X)p(X). (1.4)
zi Azl
gives the value for x; which maximizes p(X|Y).
We have seen that p(Y'|X) factorizes as [[; p(y;|z;) for a memoryless channel.
If the code is constructed so that X is a codeword iff it satisfies each of a set of
conditions, then the indicator function for the set of codewords can be written as the

product of the indicator function for each of these conditions, and then
o(X) = ][ (), (1.5)
!

where ¢;(X) is 1 if the [th condition is satisfied by the string X and 0 otherwise.
In cases where each of these conditions involves only a small number of the x;, this
factorization may lead to an efficient algorithm for finding the x; which maximizes

p(z;|Y) or p(X|Y), as described in chapter 2.

1.2 Outline

In chapter 2 we describe a message passing graphical algorithm to solve marginaliza-
tion problems. We were motivated by the similarity between Pearl’s belief propagation
algorithm [26] and Wiberg’s [33] generalization of the Gallager-Tanner algorithm to
express these as special cases of a general algorithm. Using the post-Pearl develop-
ments [15, 27], we have a graphical algorithm based on message passing which not
only generalizes these two algorithms but provides a unified framework for several
marginalization problems.

The message passing algorithm gets its efficiency by reordering computations using
the distributive law. Hence we call it the “Generalized Distributive Law.” Motivated
by the observation that the Fast Fourier Transform is also based on reorganizing

computations using the distributive law, we found that the Fast Fourier Transform
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[25] can be expressed in the framework of the generalized distributive law. This is
described in chapter 3.

We then discuss the notion of junction graphs, which generalizes the notion of
junction trees to allow cycles in the graph. As the simplest example of the message
passing algorithm on junction graphs with cycles, the case of single cycle junction
graphs turns out to be possible to analyse and can be expressed in terms of matrix
multiplications. This is described in chapter 4. This lets us apply some results about
matrices to obtain information about the behaviour of the iterative algorithm on a
single cycle graph.

Chapter 5 describes some numerical simulations of the iterative algorithm on some
small graphs based on a simplified junction tree representation of “turbo” like codes.
The results support the conjecture that the result of the iterative algorithm is, in
some way, close to that of the exact algorithm.

On a different subject from the rest, chapter 6 describes typical set decoding on the
AWGN channel and considers several choices for the decoder, giving us corresponding

bounds on the noise thresholds for asymptotically error free decoding.



Chapter 2 Junction Trees and the

Generalized Distributive Law

While attempting to generalize the belief propagation algorithm for Bayesian networks
[26] and the graphical decoding algorithm in [33], we found a fairly general frame-
work for doing marginalizations of factored functions in [15, 27]. In this chapter,
we present this framework from a more abstract viewpoint than probability propa-
gation. The new results presented are a more careful consideration of the complex-
ity of the algorithm and the use of shortest spanning tree algorithm to construct
a junction tree with a set of kernels, where one exists. The message passing algo-
rithm presented here derives its efficiency from reorganizing computations using the
distributive law. For example using the identities a - by + a - by = a - (b + bs) or
aj - by +ay - by +as- by +as-by = (a1 + az) - (b1 + be) can reduce the number of ad-
ditions and multiplications. For this reason, we call this framework the “Generalized

Distributive Law.” Most of this chapter has been written up in [3].

2.1 Definitions and Notation

Definition. We define a commutative semiring to be a triple (R, +,-) where R is a
set and +: R X R - R and - : R x R — R are commutative associative binary
operations on R satisfying the additional property that - distributes over +, i.e.,
a-(b+c)=a-b+a-cforall a,b,c € R. For our purposes, it is also convenient if the

semiring has multiplicative and additive identities.

Examples.

eAny commutative ring. We shall often be dealing with (R, +,-), where R is the set

of real numbers.
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o(R", max, ), where R" is the set of nonnegative real numbers. This is the semiring
we work in for finding maximum probability assignments to a set of variables. An
isomorphic semiring is (R U {oo}, min, +) with « — —log(x) giving the isomorphism

between the two.

eAny boolean algebra. In particular, for any set S, (2°,U,N) is a commutative

semiring. (2° is the set of all subsets of S.)

For decoding applications we shall be interested in the first two of the above exam-
ples. The actions of a decoder given by equations 1.3 and 1.4 correspond to marginal-
izing a product of functions in the semirings (R, +,) and (R*, max,-) respectively.
We will usually use the isomorphic (R U {oco}, min, +) instead of (R*, max, -) since it
is more familiar from the operation of the Viterbi algorithm. We now set up some
notation for the marginalization problem.

Let x1, 2o, ..., x, be variables taking values in the finite alphabets Ay, As, ..., A,.
For any S C {1,...,n}, let Ag = [],.q Ai (cartesian product) and zg be the list of
variables (z;)ics. Let A = Ay oy and @ = g1 = (@1,...,2,). We are given
S1,S9, ..., Sy which are subsets of {1,...,n} and for each i = 1,..., M we are given
functions «; : As, = R where R is a commutative semiring. We call the sets S; local
domains, and we call «; the local functions or local kernels. Let 3 : A — R be defined

as

Blz) = Haz‘(xsi)-

We call this the global function or global kernel. We are required to compute the

marginalizations of the global function, i.e., we have to compute 3; : Ag, — R where

Bi(zs) = Y Bla).

Tgc€Age
k3 1

Examples.

eOne example of such a marginalization problem is the decoding problem in the
form of equations 1.3 and 1.4. A specific example is finding the maximum likelihood

codeword for the Hamming code. This is a (7,4, 3) binary linear code with parity



check matrix
0O 001 111

H=]10 11 0 0 11
1 01 0101

Suppose the vector (yi, s, ..., y7) was received, and we would like to find the most
probable codeword (%1, Zy, ..., Z7).

We use equation 1.4 modified for the (R U {oc}, min, +) semiring. i.e,

#; = arg min min Z [(—logp(yjlz;)) + ¢'(X)], fori=1,...,7, (2.1)
x; {wj}j;éi .
where ¢'(X) is zero if X is a codeword and oo otherwise.
In our example, since X is a codeword only if it satisfies the three parity check

equations, we can write

¢'(X) = x(x4, 5, T6, x7) + X (22, T3, 6, T7) + X (21, T3, T5, T7), (2.2)

where y is a function which is zero if its arguments sum to zero (mod 2) and oo
otherwise.
Thus equation 2.1 is a marginalization problem in the (RU {co}, min, +) semiring

with the following local domains and local kernels.

local domain local kernel
{xl} —logp(y1|x1)
{1‘7} - logp(y7|x7)

{$1,$3,335,5U7} X(5U1,333,5U5,5U7)
{$2,$3,336,5U7} X(5U2,333,5U6,5U7)

{-'174;-7757~T6;-'177} X($4,$5;l‘6,$7)-

eAnother example we consider is that of a probabilistic state machine. At each time

t € Z, this has a state s;, an input u; and an output y;. The u; are probabilistically



Figure 2.1: Bayesian network for a probabilistic state machine.

generated, independently, with probabilities p(u;). The output y, depends on the
state s; and input u; at that time and is described by the conditional probability
distribution p(y;|ss, us). The state transition process is described by p(siy1]s¢, ur), the
conditional probability of the next state given the present state and input. If the
a priori distribution of the initial state sg is known, we can write the joint probability

of the inputs, state and outputs from time 0 to n — 1 as

p(“O) <oy Un—1,505++-3Sn—1,Y0y - - - 7yn71) -
n—1
p(s0)p(o)p(yol s, uo) | [ pselsi—1, ue—1)p(ue)p(yelse, ue). (2.3)
t=1

This factorization by conditional probabilities is described graphically by the Bayesian
network [15] in Figure 2.1.

If we observe values of y; from such a system and want to find the probability of
each u; given our observations, we can use the the joint probability in equation 2.3

with the observed values of y; and marginalize out all the s; and also all but one of
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the u;. This is thus an instance of the marginalization problem described earlier.

This model also describes convolutional codes, with the following additional re-
marks. The state transition is deterministic, which means that p(s;i1|s¢, us) is one
only when s;y1 = s;41(s¢, u;) and zero otherwise. The output y, is probabilistically
dependent, due to the channel, upon z; which is a deterministic function of the state
and input, and so p(y¢|ss, ue) = p(ye|ze(se, ug)). Marginalizing the product of functions
in equation 2.3 in the (R, +,) and (R", max, ) semirings will then give us the max-
imum likelihood input symbols or input block respectively. The algorithm described
in this chapter for such marginalization then gives us essentially the BCJR [6] and

Viterbi [29, 9] algorithms respectively.

2.2 Junction Trees and a Message Passing Algo-
rithm

In many cases it is possible to find an algorithm for computing the required marginal-
izations considerably more efficiently than by direct computation of 3(x) and sum-
ming out the variables not required. This is done by reorganizing the sum of product
computation using the distributive law so that various sums are performed as early
as possible, before further multiplications. It is easy to see this in some simple cases,

as in the following examples.

Examples.

If we want to compute Zwyyf(x,z)g(y,z), we can compute this more efficiently as

(5, f(.2) (£, 90.2).

Another marginalization, ) f(,2)g(y, 2), can be computed as ) _ g(y,2) O_, f(z,2)).
While this reorganization is easy to do in simple cases, it may not always be

obvious in more complicated cases. The junction tree formalism gives us a way to

graphically indicate the computation making it easier to see how this may be done.
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Definition. A junction tree is a tree in which each vertex is labeled by a finite set
such that the intersection of the labels on any two vertices is a subset of the label
of any vertex lying on the unique path between the two vertices. Equivalently the
condition is that the subgraph induced by the vertices whose labels contain any given

element is connected.

When there is a junction tree with the vertex labels being given by the sets 5j,
then we can find the marginals 3; using the message passing algorithm described
below.

Let the junction tree have M vertices and for each ¢ = 1,..., M, let vertex ¢
be labeled with S;. The message from vertex ¢ to an adjacent vertex j is a function
Hij Aginsj — R, i.e., it is a function of the variables Ts;ns;- It is computed using the
local kernel «; and the messages to vertex ¢ from all its neighbours except vertex j by
multiplying all these incoming messages with the local kernel and then marginalizing

out all the variables not in Sj, i.e.,

pij(rsns) = Y ailws) [] mei(wsns)- (2.4)

IS-\S-EAS-\S- vg adj v;
H H k#j

When vertex 7 has received messages from all its neighbours, it can compute a “result”
o;: Ag, = R as

oi(xs,) = a;i(zs;) H ki (Ts,ns;)- (2.5)

vy, adjv;
This “result” o; is the required marginalization ;.

We need to consider the issue of scheduling the messages. The message passing
rule implies that the message from vertex ¢ to vertex j can be sent only when vertex
¢ has received messages from all its other neighbours. So the messages have to be
scheduled in such a way that these dependencies are satisfied for each message. Since
initially no messages have been received, message passing begins from the leaves (who
can send messages to their unique neighbour). Since removing the leaves still leaves a
tree, it follows that we can continue to pass some more messages (since a tree has at

least two leaves.) This can be continued until we are left with only one vertex. This
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vertex has now received messages from all its neighbours and so can send messages
to all its neighbours. They in turn can send messages to their other neighbours. In
this way, messages propagate out towards the leaves. The scheduling ends when a
message has been passed on each edge along each direction. The above argument
demonstrates that this can be achieved without deadlock. At this point it is possible
to compute the result at each vertex.

If only one of the 3; needs to be computed, then we make vertex ¢ the root to obtain
a rooted tree, and then schedule only the messages that are in the direction pointing
towards the root. Here too we start from the leaves and pass messages upward towards
the root. Once the root has received messages from all its neighbours, the 3; can be
computed.

We can make the following argument to see that the result of the message passing
algorithm is the required marginalization. Let v and w be adjacent vertices. Removing
the edge between v and w breaks the junction tree into two components. Let C),
denote the set of vertices in the component containing v and C,,, the set of vertices in
the component containing w. Since the edge between v and w is on the unique path
between any vertex in C, and any vertex in C,, we can see that any variable that
occurs in some vertex in both C), and (), must occur in both the vertices incident
on this edge. Thus the message passed on this edge is a function of exactly those
variables that appear in both the components.

We claim that the message from v to w, which may be viewed as a message from
C, to Cy, is the product of all the local kernels of vertices in C, marginalized over
all the variables that do not occur in w. This is proved by induction on the number
of vertices in C,. The claim is easily seen to be true for a message from a leaf, i.e.,
|Cy| = 1. When |C,| > 1, the outgoing message from v is the product of the local
kernel and all but one of the incoming messages marginalized over the variables not
in w. Each of the incoming messages are, by induction, products of sets of local
kernels marginalized over all the variables not in v. The proof of the claim for the
message from v to w follows from the fact that any variable occurring in more than

one of the sets of local kernels forming the incoming messages will, by the junction
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tree property, also be in the given vertex, and hence not be marginalized out at an
earlier stage.

The result computed at a vertex v is the product of its local kernel and all its
incoming messages. By the claim, each of the incoming messages is the product of a
set of local kernels marginalized over all the variables not occurring in v. Any variable
occurring in more than one of these sets will, by the junction tree property, also be
in v, and so will not be marginalized. Thus the result computed at v is the product
of all the local kernels marginalized over all the variables that are not in v.

Thus, the junction tree condition ensures that a variable is summed over, in the
process of computing a message, only when all the local kernels containing that vari-
able have been multiplied into the product. It is allowable to take any other local
kernel, i.e., any kernel not containing the given variable, out of this sum by dis-
tributivity so they need not have been multiplied in when the variable is summed

over.

Example.

Let us consider the probabilistic state machine example given earlier. From the
factorization of the joint probability in equation 2.3, we can form a junction tree for
this in the following way. Since we want to find the conditional probabilities of each
ug, we have local domains {u;} with local kernels p(u;) for each 0 < ¢ < n—1. We also
have the local domains {s;, uy, s;41} for each 0 < ¢ < n—2 with associated local kernel
P(Sei1|Se, ue)p(ye|se, ug) for 1 < t < n — 2 and kernel p(so)p(s1]so, wo)p(yo|so, uo) for
t =0 (y; is observed and thus fixed), and {s, 1, u, 1} with kernel p(y,, _1]$5_1,Un_1)-
These can be made into a junction tree as shown in Figure 2.2 for the case n = 4.
An example of a scheduling order for message passing in this graph satisfying
the dependency requirements is the following. First the leaves pass messages 1 — 5,
2—6,3—7,and 4 — 8 inwards. Then we can pass the messages 5 — 6 and 8 — 7.
Then we can pass 6 — 7 and 7 — 6. Now 6 and 7 have received all the incoming
messages and can send out messages 6 — 5,6 — 2, 7 — 8 and 7 — 3. Then 5 and 8

can send messages 5 — 1 and 8 — 4. Now all the vertices have received all incoming
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Figure 2.2: Junction tree for a probabilistic state machine/convolutional code.

messages. In this scheduling, each message was passed at the earliest time possible.

2.3 Complexity of the Message Passing Algorithm

Let us consider a vertex v with label S(v) and degree d(v). Then a message compu-
tation involves multiplying the d(v) — 1 incoming messages into the local function,
which will take (d(v) — 1)| Ag(,)| multiplications, and then marginalizing the table of
‘AS(U)‘ elements thus obtained to the variables that also are in the label of the target

additions. We may bound the

vertex (say v'), which will take ‘AS ‘ — ‘AS(U)QS(U,)

sum of these two above by d(v ‘AS , which gives us a bound on the number of
arithmetic operations required for a message computation. A result computation at
vertex v takes d(v ‘Ag ‘ multiplications, since all the incoming messages must be
multiplied into the local function.

A single vertex result computation requires all but the target vertex to pass one

message each, resulting in one message on each edge, and the target vertex to compute

its result. The number of arithmetic operations this takes is at most

Zd )| Asw)] (2.6)

and accounting for the ‘As(u)‘ — ‘AS(U)QS(,}/)

Zd ‘AS Z ‘AS(ul)ﬁS(uz) (2.7)

’01 ,U2
vy adj vy
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arithmetic operations.

If we want to compute the result at all the vertices, and this is done in the
obvious way, we get terms of the form d(v ‘AS ‘ for each vertex, since each vertex
must send out d(v) messages. But we may observe that it is possible to compute
all the n possible products of n — 1 numbers out of a set of n numbers in no more
than 3n — 6 multiplications. Let aq,...,a, be the numbers. Let b; = H;:1 a; for
i=1,...,n— 1. All the b; may be computed, each b; using the value of b;_;, using
n — 2 multiplications. Similarly, ¢; = H;L ;a; for i = 2,...,n may also be computed

using n — 2 multiplications. Then we can write

H aj = b;i_1Cit1, (2.8)

J#i
where by = ¢,41 = 1 and so all such products can be computed using n — 2 more
multiplications, giving us a total of 3n — 6 multiplications. We observe that with one
more multiplication, we can also compute b,,, which is the product of all the n terms.
The all vertex computation requires each vertex to pass one message to each of its
neighbours. For this, out of the d(v) + 1 terms, which are the incoming messages and
the local function, vertex v has to compute the d(v) products of the d(v) + 1 terms,
each of which leaves out one incoming message. For its own result computation, it
also needs the product of all the d(v) + 1 terms. From the above argument, all this
can be done with no more than 3d(v) multiplications. This has to be done for each
of the ‘AS ‘ values of the variables the local function depends on, giving us a figure
of 3d(v ‘Ag ‘ multiplications as an upper bound. The marginalizations performed
during the message computations remain as in the earlier case, and, summed over all
the messages, this gives > d(v ‘AS ‘ — 2> v ‘Ag (v1)nS(vz)| additions. So the

vy adj vy

all vertex computation takes no more than
4 Z d(v)|Asw)] (2.9)

arithmetic operations.
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An upper bound on the complexity of a similar algorithm has been obtained in

(18], as 3>, ¢, + M max, ¢,. This is strictly greater than the bound in equation 2.7.

2.4 Construction of Junction Trees

Given a junction tree with the S; as vertex labels, we have a message passing algorithm
to compute the marginals of the global function. There remains the question of
whether, when we are given the sets S;, there exists a junction tree with these sets
as labels, and what can be done otherwise.

The question of whether such a junction tree exists is easy to answer. Suppose
there is such a tree with vertices labeled by the S;. Label each edge by the intersection
of labels of the incident vertices. If a given variable z; appears in [ of the sets .S;,
the number of times it appears on the edges is [ minus the number of components of
the subgraph induced by the vertices whose labels contain ;. This can be at most
[ — 1, which happens when this induced subgraph is connected. The tree we have is
a junction tree if and only if the induced subgraph thus obtained for each variable x;
is connected, which means that the sum of the cardinalities of edge labels takes on
its maximum possible value of 3> |S;| — n. (n is the number of variables.) This
gives us an algorithm to determine whether we can form a junction tree. We start
out with a complete graph with the vertices labeled by the sets S;. We give each edge
a weight, which is the cardinality of the intersection of the labels of the two incident
vertices. Then we find the maximum weight spanning tree, which can be efficiently
done using Prim’s algorithm [22]. Comparing the weight of this spanning tree with
the above value it should have if it is a junction tree, we can tell whether or not we
have a junction tree with the given vertex labels, with the maximum weight spanning
tree being such a junction tree if one exists.

If no junction tree exists with the given vertex labels S;, we can still find a junction
tree such that each S; is a subset of some vertex label, so that each local function
«; may be associated with a vertex whose label contains S;. This can be done in a

systematic way by forming a moral graph, triangulating it, and forming a junction
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tree of the cliques of the resulting graph, as described in [15, Section 4.5]. We describe
this construction further and use it in section 3.2

In any case, the problem of finding a minimum complexity junction tree to solve
a marginalization problem for given sets S; has been proven to be NP-hard [16].
Thus we cannot hope to construct minimum complexity junction trees for all our
marginalization problems, but we can often still construct junction trees that give us
algorithms of reasonable complexity even if it is not minimal.

As an indication of the hardness of finding minimum complexity junction trees,
we may see from the following example that even in the case where there is a junction
tree with a given set of vertex labels, it may be possible to find a junction tree with
additional vertices which can be used to solve the same marginalization problem with

lower complexity.

Example.

We give an example to show that there are cases where a set of local domains can
form a junction tree, but it is possible to obtain a lower complexity junction tree
by adding more local domains. This illustrates the problem of finding the minimum
complexity junction tree for a given marginalization problem.

Consider the local domains {x, zs, x5}, {x1, 24}, {22, x5}, and {x3,26}. There is
a unique junction tree with these sets as vertex labels, given in Figure 2.3(a). Let the
alphabet size for x; be equal to (), and let all the other alphabet sizes be equal to g.
Let us assume that ) is much bigger than ¢. Then, the complexity is dominated by
the terms relating to vertices whose labels contain z;. By equation 2.7, we can see
that () appears with highest power equal to one, and the linear term has coefficient
q+3¢*— 1. If we add in the local domain {5, z3, x5}, then we can form the junction
tree shown in Figure 2.3(b), in which the vertex labeled by {zi,zs, 23} has a lower
degree and so the linear term in @ has coefficient ¢+2¢? —1. Thus the second junction

tree gives a lower complexity than the first if () is sufficiently large compared to gq.



Figure 2.3: Junction trees for example where adding a local domain lowers complexity.

(a)

(b)
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Chapter 3 The Discrete Fourier

Transform

We attempt to find a graphical algorithm of the kind discussed in the previous chapter
to compute the discrete Fourier transform (DFT). This is motivated by the fact that
the fast Fourier transform [25] owes its efficiency to reorganizing computations using
the distributive law. A junction tree is constructed using the method described in
[15]. On obtaining a junction tree based algorithm, we find that we do recover the

fast Fourier transform.

3.1 The Problem

For a positive integer N, the discrete Fourier transform of a function f : Zy — C is

to be another function F': Zy — C, given by
F(y) =) flz)e™ . (3.1)

We consider the case where N = p™ for some prime p. Let z = Zﬁglxipi and
Yy = Z?:OI y;p' where the z; and y; belong to {0,...,p — 1}. Then the product xy
becomes Y o) o zryp" !, and the exponential in equation 3.1 factorizes. We can

then write

i2m —ShYL
Fyo,- o yma) = 3. fl@oramey) [ €, (3.2)

L0,y s Tm—1 0§k+l<m

the exponential factors being unity when k£ + [ > m. This expresses F' as a sum
over the variables x; of a product of many factors and is thus in the form of the

marginalization problem in chapter 2.
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The sets of variables on which the factors depend (i.e., the local domains) are
Sr=A{xo,...,&m_1} and Sk; = {xy, y;} for each k, [ such that 0 < k+1 < m. We also
add a set Sp = {vo,...,Ym_1} for the vertex where the result F' is obtained. It is not
possible to find a junction tree with the above sets as vertex labels. So we instead
need to construct a junction tree such that each of the above sets is a subset of some

vertex label.

3.2 Moral Graphs and Triangulation

Given a set of local domains, we define the moral graph [15] to be a graph with the
vertex set being the set of variables and having an edge between any two variables if
there is some local domain with both these as elements.

Given a cycle in a graph, a chord is an edge between two vertices on the cycle
that do not appear consecutively in the cycle. A graph is triangulated if every simple
cycle (i.e., no repeated vertices) of length bigger than three has a chord.

In [15], it is shown that the cliques (maximal complete subgraphs) of a graph
can be the vertex labels of a junction tree if and only if the graph is triangulated.
Thus, to form a junction tree with vertex labels such that each of our local domains
S; is contained in some vertex label, we form the moral graph associated with the
local domains S;, add enough edges to the moral graph so that the resulting graph is
triangulated, and then form a junction tree with the cliques of this graph as vertex
labels.

We apply this method to the discrete Fourier transform problem. The moral
graph has vertices xg, ..., Tm_1,%0,--.,Ym—1. Lhere are edges between any two of the
x; (due to St), any two of the y; (due to Sg), and between any x; and y; for which
k+1 < m (due to Si,). Figure 3.1 shows this moral graph for m = 4.

The following argument shows that the moral graph constructed above is trian-
gulated. The fact that all the x; are adjacent and all the y; are adjacent implies
that in any cycle without a chord, any two x; must occur next to each other and

similarly with any two g;. This restricts the length of such a cycle to four and the



Figure 3.1: Moral graph for the DFT problem for m = 4.

cycle should be of the form x,, xy, y., yq4. If there is cycle of this form, then a+d < m
and b + ¢ < m since there are edges between z, and y4, and z, and y.. Thus
(a+c¢)+ (b+d) =a+b+c+d < 2m which means that at least one of a + ¢ and
b+ d is less than m. So there is an edge between x, and y. or an edge between x,
and y4, giving us a chord for such cycles also.

Since the moral graph is triangulated, we do not add any more edges but find
the cliques instead. The cliques have vertex sets S = {zo, ..., Tm—i, Yo, - - -, Yi—1}, for
i €{l,...,m}. The junction tree formed with these as vertex labels is a linear chain,
where vertex i (with label S}) is adjacent to vertex j iff j = ¢ £ 1. We add to this
graph a vertex 0 with label S; = Sy, which is adjacent to vertex 1, and a vertex m+1
with label S], ., = SF, adjacent to vertex m. This gives us a junction tree, as shown
in Figure 3.2, where each of the original local domains is contained in some vertex

label, which is what we set out to construct.

3.3 The Algorithm

For the junction tree we have constructed, the local function at each vertex ¢ must be
chosen to be some product of the factors we started out with, which are all functions
of the variables which belong to the label S]. We let ay = f be the local function at
vertex 0. For each k,[, 0 < k 4+ [ < m, we associate the exponential ei%% with
some vertex containing it. For ¢ from 1 to m, we let «;, the local function at vertex i,

be the product of the exponentials associated with vertex . Finally we let a;,11 =1
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Figure 3.2: Junction tree for the discrete Fourier transform.
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be the local function at vertex m+ 1. Now we can run the message passing algorithm
to compute the marginalization of products [3,,,; which is just the required Fourier
transform F'.

The message passing algorithm begins by passing a message from vertex 0 to
vertex 1. Then messages are passed successively along the chain. When vertex ¢
receives a message from vertex ¢ — 1, it then sends a message to vertex ¢ + 1. The
algorithm terminates when vertex m + 1 receives a message from vertex m. This
message is the Fourier transform F. Denoting the message passed from vertex i to
i + 1 by f; (which is a function of the variables S; N S{, ), we may describe the

computation performed by the message passing algorithm as follows.

fO = f7
fi-l—l = Z fiai-i-l for0 <i< m, (33)
xm—i—lezp
F=fy

TrYL

- : : : iom—SkYL
There is in general more than one vertex with which the exponentials e »™ %!

may be associated, so that we have several possibilities for choosing the «;. It turns
out that the choices correspond to variants of the fast Fourier transform algorithm
[25]. We consider two of these cases. Associating each of the above exponentials with

vertex ¢ for the largest possible ¢ gives us

Q; = G%IM_izf;é yl (34)
and is the “decimation in time” version of the FFT. Associating the exponentials

with the j for smallest possible j gives

27 M—i
Yi-12 20 T
ai = ePM ¢ =0 (35)

and is the “decimation in frequency” version of the FFT [25].
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3.4 Complexity

For each 7 from 1 to m, vertex ¢ has m + 1 variables of size p, and so the vertex size

is p™*1. On each edge, the message is a function of m variables, and so the messages

are of size p™. Counting the number of operations needed to compute the result the

single vertex m + 1, we find that it takes p™*!

m = pN log, N multiplications (where
N =p™) and (p— 1)p™m = (p — 1)Nlog, N additions, which matches the N log N

complexity achieved by the fast Fourier transform.

3.5 Discrete Fourier Transform on a Finite Abelian
Group

A general finite abelian group G is the direct product of the form G = H?Zl 2, [14].
J

It is possible to consider the discrete Fourier transform on such groups, which can be

expressed as

i S

F(yay, - yw) = > flaay, - aw) [[e v (3.6)

x(l)EZp;nl,...,x(k)EZp;nk Jj=1

The z(; and y(;) can be written in digits base p; and then the exponentials can
be factored as in equation 3.2. We can construct a moral graph for this problem, but
it is not triangulated, unless £ = 1, which is discussed earlier in this chapter. So, we
need to add more edges to get a triangulated graph. It is possible to add edges in a
way that gives us a junction tree corresponding to a fast Fourier transform on this
product group.

Note that in the case of the discrete Fourier transform on Z,» we have a junction
tree that starts with set {zo, ..., Tnm_1, %0} and then, in each step, replaces the highest
index x (z,,—;) by the next index y (y;). We obtain a linear junction tree with these
sets. In the case of the DFT on a product group, this needs to be done for each of
the factors. So we start with {za)0, ..., L) m—1, Y(1),05 - - - T(k),05 - - - s T(k)ymp—1 1> Y(k),0

and then at each step replace a highest index z(;), i.e., z(;,m,,—j, by the next y), i.e.,
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Yu),j- Since at each step, we can choose any of the x( for this (except those [ for
which we are left with only x(;0), this gives us several linear junction trees with the
same complexity.
While we can come up with these junction trees, since we are looking for something
like the fast Fourier transform, we do not have an answer to the question of whether

there are junction trees that give us even lower complexity.
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Chapter 4 Single Cycle Junction Graphs

The behaviour of the message algorithm on general junction graphs with loops, dis-
cussed in section 4.1, is not theoretically understood, and in general seems quite
complex. But in the case of junction graphs with a single cycle, we find that the be-
haviour of message passing algorithm can be understood in terms of repeated matrix
multiplications. In the (R",+,+) semiring, we can use the Perron-Frobenius theorem
to obtain facts about the convergence and limiting values of the messages. This treat-
ment is independent of but very similar to the analysis of message passing on single

cycle graphs in [30], which also has an analysis on min-sum message passing.

4.1 Junction Graphs and the Message Passing Al-
gorithm

Definition. A junction graph is a graph whose vertices and edges are labeled by sets,
where each edge label is contained in the label of both the vertices on which the edge
is incident, and such that the graph formed by taking only the vertices and edges
whose labels contain any given element is a tree.

A junction graph whose underlying graph is a tree is a junction tree. In that case,
the junction condition implies that the edge label is the intersection of the labels of

the two incident vertices.

If we have sets of variables S;, functions «; : Ag, — R, and a junction graph
whose vertices are labeled by the S;, the message passing rule defined in section 2.2
can essentially still be applied, with the modification that all the variables not on
the edge label are summed over, rather than those not in the target vertex. So the
algorithm can be applied for junction graphs that are not junction trees. In that

case, the algorithm is not well defined, since there is no way to schedule the messages
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taking care of dependencies as we could in the case of junction trees. But if the
messages are initialized in some way, and then messages are scheduled in some way,
this gives us an iterative algorithm. The messages propagate along the cycles of the
graph updating the message at each iteration. There is no notion of termination but
instead, we have a notion of convergence. If the messages converge, we may compute
the result at a vertex as before.

The turbo decoding algorithm [7] and the decoding algorithm for Gallager’s low
density parity check codes [12] are expressible as message passing algorithms on junc-
tion graphs with cycles [23]. Their performance, as well as numerical simulations
on some junction graphs with cycles (see chapter 5) indicate that the “results” ob-
tained in some way approximate the marginalization of the global function that was

computed exactly in the case of junction graphs.

4.2 Message Passing on Subtrees of Junction Graphs

Let G be a junction graph with vertices {1,..., M} with local domains S; and local
kernels «;(xg,). We consider a subtree H of the junction graph G, together with
incoming messages (i1 x(zp,) to any vertex of this subtree from an edge not in the
subtree. When messages are passed within this subtree, we would like to know what
the outgoing messages pok(zy,) from these vertices are. To this end, we construct
another graph H'. We first take the subtree. For each of the incoming messages 1¢1
to a given vertex, we add a leaf vertex with local domain being U, and add an edge
with label Uy between this leaf vertex and the given vertex. The local kernel on the
added leaf is pr . The graph so constructed remains a tree. The incoming messages
from the added leaf vertices are exactly the incoming messages to the subtree from
the rest of the junction graph, so that the outgoing messages resulting from message
passing in the subtree are now given by the messages toward the added leaves.

If the graph H' is a junction tree, then the message on any edge is just the product

of all the local kernels of vertices on one side of the edge, appropriately marginalized.
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So the outgoing message (1o can be written as

pok(2u,) = > I citws) I mrwao)|. (4.1)
Ts\U, €EAS\U, | 1€V (H) k' £k
where Sy = Ujcv (u)S;-

The graph H' is a junction tree if and only if H is, since edge labels are subsets of
labels of adjacent vertices. But given that H is only a subtree of a junction graph with
loops, it need not be a junction tree. In that case, we take each variable z; and find
the subgraph of H' formed by taking the vertices and edges whose labels contain x;.
If this subgraph is not connected, we label the occurrences of x; in each component
differently, by x;, x;2, and so on. This makes the graph H' into a junction tree.
This relabeling does not alter the behaviour of the message passing algorithm, which
is local and sees the occurrences of the same variable in different components as
different. So the outgoing messages can be expressed in terms of the modified H' by

equation 4.1.

Example.

In Figure 4.1 we have a junction graph, as well as a subtree of this junction tree.
The part containing x; has three components and x; has been relabeled differently in
each component. Thus, if the kernel associated with vertex 7 is «;, then after message

passing on this subtree, we have

po(r11) = Z a5(x2)Hai(xl,i,xg)ﬂuz,i(xl,i), (4.2)

x1,2,71,3,T2

and similar expressions for pp 2 and po 3.

4.3 Message Passing on Single Cycle Junction Graphs

By a single cycle graph, we mean a connected graph with only one simple cycle. Such

a graph consists of the one cycle, and the other vertices can be partitioned so that the
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Figure 4.1: (a) A junction graph. (b) The subtree of (a) below the dashed line with
the several occurrences of x; relabeled.

subgraph induced by each of the partitions is a tree that is attached in the original
graph to one of the vertices on the cycle. Figure 4.2 is an example of a single cycle
graph.

We note that messages passed inwards from the trees attached to the cycle are not
altered by any further messages passed along the cycle or from the cycle into the tree.
So we may take these messages to be initially computed and fixed while the other
messages are passed. Fixing these messages to vertices on the cycle, the message from
a vertex along an edge on the cycle depends only on the incoming message from the
other edge on the cycle adjacent to this vertex. In particular, a message along the
cycle in one direction has no dependence on a message in the other direction along
the cycle. If, in each direction we pass messages around the cycle till the messages
converge, if they will, and then pass messages from the cycle into the trees, we will

have reached a fixed point of the message passing algorithm.
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Figure 4.2: An example of a single cycle graph.
4.4 Analysis of Message Passing on Single Cycle
Junction Graphs

We apply the results on message passing in subtrees of junction graphs (section 4.2)
to analyzing the message passing algorithm on single cycle junction graphs. Let G
now be a single junction cycle graph. We take H to be G with one of the edges on
the cycle removed. Then H is a tree. Let the edge removed have label U and let the
vertices incident to this edge be v and v’. Then the only incoming messages from the
rest of G to H are the messages on the removed edge, which are incoming messages
to v and v'. Let these be iy ;(xy) for i = 1,2. Now H is not a junction tree. The part
of H containing any given variable not in zy is connected, and the part of the graph
containing any given variable in xy has two components. So we relabel the variables
that appear on the ji;; side as xy; and the variables that appear on the p; o side as
zy2. With this relabeling, H is a junction tree which we can extend into the junction

tree H'. Then using equation 4.1, we can compute the result of message passing for
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one cycle to get
po,(zu,) = > pia(roz) [] edlxs) (4.3)
Tyc€Aye,xy 2€AY 1€V(Q)

and

po2(ruz) = Z pra(Tu) H o;(zs,), (4.4)

Tyre EAUc,:DU,léAU iEV(G)

where o} are the «; with the appropriate variable relabeling done. If we define

B'(zuy, wu2) = Z H (4.5)

Tye EAUC ’LEV(

we can then write

poa(tus) = Y pualeun)f (@, ) (4.6)
Ty, 1 €AY
and
Mo,l(xU,l): Z Ml,z(xU,z)ﬁl(JfU,beg)a (4-7)
Ty 2€AY

which describe multiplications by matrices with elements given by the function '
We also note that ;102 and pp,1 are just going to be p;; and ji7 5 respectively for

the next round of message passing. So denoting p; 1 and pr 9 by pi and po respectively

and oo and po, by i) and ph respectively, and letting B be the matrix such that

BC’?U,l,C’?U,2 - ﬁ,(xU,la xU,Q), we get

py = B,
py = Bpo. (4.8)
Thus we have expressed the effect of passing messages round the cycle once as

multiplying the message in each direction by a matrix expressible in terms of the

local kernels as given by equation 4.5.



Figure 4.3: A single cycle junction graph.

Example.

Figure 4.3 shows a single cycle junction graph that can be made into a tree by breaking
the edge along the dashed line. Then we can write down the result of message passing

on this tree as

140,2(1) E oy (w1, 74) E (w3, 14) E (w2, T3) E oy (v, xo)pra(r1).  (4.9)
Let
B'(z11,212) E (21,2, T4) E o33, T4) E (22, x3) 0 (21,1, T2), (4.10)

so that we can then write

Moz $12 ZMU 3311 xl 1,$12) (4-11)

x1,1

as in equation 4.6. A similar expression can be written for the messages in the other

direction, as in equation 4.7.
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4.5 Result of the Iterative Algorithm

The marginalization of the global function to the variables xy which are on the edge
is given by

Blar)= Y, I «l@s) (4.12)

zyc€Ayc ieV(G)
We note that this is the same as the expression for §'(zy1, vy 2) in equation 4.5, but

without the relabeling of the zy into zy; and xy2. So we have

Blzv) = B'(zv, 2v), (4.13)

which tells us the marginalization of the global kernel to zy is given by the diagonal
of the matrix B which we are iterating.

We now look at the “result” obtained by the iterative algorithm. By computing
the result at either of the vertices to which the edge is incident and then marginalizing
it to xy, we can compute the result of the iterative algorithm +(zy). By using the
expression for outgoing messages in equation 2.4, this result, computed with either

vertex, can be written as

Y(@r) = m(@r)pe (), (4.14)

i.e., 7 is the component-wise product of the vectors p; and ps. If, on successive
iteration by the matrices BT and B, the messages p; and j, converge, then the result
of the iterative algorithm may be taken to be the component-wise product of the

limiting values of these messages.

4.6 The Sum-Product Algorithm

We now consider the case of the (R", +, ) semiring, where the message passing algo-
rithm is termed the “sum-product” algorithm. Now the matrix B is a matrix of real
numbers. If a vector is repeatedly multiplied by B then, apart from an overall scalar

factor which may be divided out to keep the numbers bounded, the vector converges
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to the eigenvector of B corresponding to the unique eigenvalue of largest modulus, if
it exists. Then we call this the principal eigenvector of B. If there are multiple eigen-
values of largest modulus, we get oscillatory behaviour rather than convergence, and
if there are multiple eigenvectors corresponding to the eigenvalue of largest modulus,
we get dependence on initial conditions. This may be seen, for instance, by using the
Jordan canonical form for B, by which we also see that B has a principal eigenvector
iff BT does.

In the (R*,+, ) semiring, the matrix B has nonnegative entries, and the Perron-
Frobenius theorem [17] tells us that the largest eigenvalue of B will be real and

positive and the principal eigenvectors of B and BT have nonnegative entries.

4.6.1 Binary Valued Variables

When the edge we break has only one variable, and that variable is binary valued, we
find that the matrix B is 2x 2. In this case an explicit calculation, shown below, shows
that the component-wise product of principal eigenvectors has the same ordering as
the diagonal elements of the matrix. This means that, in the case of probabilistic
inference, both the exact and iterative algorithms will choose the same value of the
variable as the maximum likelihood value, and so the iterative algorithm gives the
same answer as the exact algorithm for this case. This generalizes a similar result for

a turbo code like structure in [24].

Calculation. Consider a 2 x 2 matrix B of nonnegative entries, given by

B = “ 0 4.15
_<c d>. (415)

Without loss of generality, let a > d. Then, the larger eigenvalue is given by

+d —d\?
=2 +\/<a2 ) + be. (4.16)
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Ay —d Ay —d
The principal eigenvectors of B and BT are and b respectively.
c

Our claim now amounts to (A, — d)? > be, which is easily verified, since

()\+—d)2:bc+2(%1>Q+(a—d)\/<a;d>2+bc. (4.17)

We find that for all bigger matrices there are cases where the exact and iterative

algorithms do not pick out the same element as most probable, though it seems from
the results of numerical experiments [1] that the iterative algorithm still gives the
same answer (for most probable value) as the exact algorithm a reasonably large
fraction of the time.

Results on the performance of the “min-sum” algorithm, i.e., when the semiring
used is (R U {co}, min, +) , are given in [30], [10] and [2]. More recent results on

min-sum message passing in general loopy graphs are in [31] and [32].
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Chapter 5 Numerical Simulations

5.1 A Junction Graph for “Turbo” Codes

In chapter 2, Figure 2.2, we have seen how we can form a junction tree for a con-
volutional code. If we ignore efficiency considerations, we can choose to ignore the
structure of the code and make a junction tree consisting of local domains {u;} with lo-
cal kernels p(u;), another local domain {uy, ..., u;} with local kernel p(Y |uq, . .., ug),
as in Figure 5.1. This is a possible junction tree for any code, but doing the com-
putation for the vertex labeled by {wj,...,ux} is too complex for large k. For a
convolutional code, this computation may in fact be done efficiently because the local
kernel p(Y|uq, ..., uy) factorizes as in equation 2.3.

In a turbo code, the input bits are encoded by two encoders, with the input bits
being permuted before being encoded by one of the encoders. Permuting the input
bits before encoding only changes the local function p(Y|us, . .., ux) (by a permutation

of the arguments) but not the structure of the junction tree in Figure 5.1. Since we

Figure 5.1: Simplified junction tree for decoding any code.
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Figure 5.2: Simplified junction graph for “turbo” codes.

have two encoders, the function we want to marginalize is

k
p(Vi, Yayur, - ug) = [[ p(udpMilun, o a)p(Vayur, ). (5.1)

i=1
This may be represented by a junction graph as shown in Figure 5.2.

The turbo decoding algorithm is equivalent to a message passing algorithm on
this graph [23], though the vertices W) and W, are exploded into subtrees based
on Figure 2.2, so that the computation is done more efficiently. The messages are
initialized to constant functions, and then messages are alternately passed from W,
to W, through the V; and then back from W, to W;. After this is iterated several

times, the result is computed at vertices V;.

5.2 Simulations of Small Turbo Like
Junction Graphs

We consider the junction graph of Figure 5.2 with local kernel equal to one for vertices

Vi and equal to fi2(uy, ..., ux) for vertices Wy 5. The “result” we wish to compute is
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the marginalization of f; - fo, i.e.,

Bi(u;) = Z filug, ..o ug) foug, . oo ug). (5.2)
{uj}izi
We could also perform the iterative algorithm on the junction graph, as in the turbo
decoding algorithm, and obtain “results” (!(u;) from this. For small k, it is feasible
to compute both ;(u;) and f!(u;), and compare the two after normalizing both of
them.

We consider the junction graph of Figure 5.2 for small k, i.e., k = 3 and k = 4. Let
the u; be binary valued variables. We choose the functions f; and f; independently
and uniformly on the space of 2% nonnegative real numbers that sum to one (which
forms a 2F —1-simplex). Then we compute 3;(u;) and 3!(u;), the latter being computed
after the iteration is done a certain number of times. The result §;(u;) is, after being
normalized so that ;(0) + ;(1) = 1, specified completely by (;(0), and similarly for
Bi(u;). Thus we compare the two by plotting the point (3;(0), 51(0)) for each choice
of fi and fy. (It does not matter which i we choose since the functions are picked
from an ensemble that is symmetric under input bit permutation.)

Figure 5.3 shows such a plot for £ = 3, with f; and f; being chosen 20000 times
and the iteration for the 3’ computation being done 10 times. (Once from W; to Wy
and then from W5 to Wy counts as one iteration.) Figure 5.4 shows a similar plot for
k = 4, also with 20000 points and 10 iterations for the 3’ computation.

The two algorithms, exact and iterative, result in the same decision if 3;(0) and
(!(0) are on the same side of 0.5. We see from the plots that this happens a significant
fraction of the time, and also that when they lie on opposite sides of 0.5, the exact
result is itself fairly close to 0.5. This lends support to the belief [23] that there are
undiscovered theorems about the performance of the iterative algorithm on junction
graphs. In particular, it supports the conjecture that if the exact decision is fairly
certain, i.e., not near 0.5, then the iterative result will with high probability be on

the same side of 0.5 as the exact result.
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Figure 5.3: Comparison of exact and iterative results for a turbo like junction graph

(Figure 5.2) for k = 3.
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Figure 5.4: Comparison of exact and iterative results for a turbo like junction graph
(Figure 5.2) for k = 4.
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Chapter 6 Typical Set Decoding on the

Gaussian Channel

The typical set decoding technique [21, 4] has been used to obtain noise thresholds
for families of codes, such that for the noise level below the threshold it is possible to
decode with probability of error going to zero as the block length is taken to infinity.
Here we apply this technique to the Gaussian channel, which also gives us a new

derivation of the noise threshold given by the “Simple” bound in [8].

6.1 Typical Set Decoding

Consider a code C. The typical pairs decoder [4] is one that when given a received
sequence y, decodes to the unique x € C such that (z,y) belongs to the set of typical

pairs 7', if such an z exists. Let us define

T(z) ={yl(z,y) € T},

so that (x,y) € T is equivalent to y € T'(x). The probability of decoding error given

that codeword x is transmitted can be bounded as

Pe < P + Py, (6.1)
where
Py =Pr{y ¢ T(x¢)}, (6.2)
and
Pir= Y Pr{y € T(x)NT(x)}. (6.3)

z'eC
z’;ézo



41
We need some symmetry conditions to go further. We assume that the channel
is a memoryless binary input symmetric channel [13], i.e., the channel inputs are the

binary values 0 and 1 and the channel outputs are real numbers and we have

p(Y/0) = p(=Y/1), (6.4)

for any output value Y. Consider the action on any channel input string  and channel
output string y by a binary string u (all of the same length n) as follows. u acts on
x by addition modulo two. u acts on y by negating all those components of y where
u is 1. Equation (6.4) implies that the channel probability p(y/z) is invariant under
this action by any string u. If we also impose the condition that the typical pairs
set 1" is invariant under this action, i.e., (u(z),u(y)) € T iff (z,y) € T'), then the P,
expression above becomes independent of the transmitted codeword zy, which we will
subsequently take to be the all zero codeword. If we also take the set T" to be invariant
under coordinate permutations (the channel is memoryless, so p(y/z) is invariant
under coordinate permutations), then we get Pr{y € T(zo) N T(2")} to depend only
on the weight of the difference between zy and z'. Let P,(T) = Pr{y € T(xz¢)NT(2")}
when zy and 2z’ differ in h positions.

Now, taking xy to be the all zero codeword, we can group the terms in P;; ac-

cording to the weight of 2’ and write

n
Prp=>Y_ AP(T), (6.5)
h=1

where Aj, is the number of codewords of weight h. Note that this expression is linear
in the weight enumerator, so the average P;; for an ensemble of codes of given block

size can be got just by using the average weight enumerator Z,(Zn) for these codes.
Now we want to use this bound for calculating a noise threshold for an ensemble of
codes. We wish to define T" such that P; goes to zero as the blocksize goes to infinity.
As in [4], one could define the typical pairs T}, for codes of block size n and for the
BSC with crossover probability p as being all the pairs (x,y) where the fraction of
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positions in which they differ is within €, of p, where ¢, — 0 more slowly than /2.
We also want to write P, (7},) as
Ph(Tn) — efn(K(zS,s)+o(1)), (66)

where § = h/n, and s is a noise parameter (it could be the crossover probability p for
BSC, or the noise variance o2 for Gaussian channel).
We have an ensemble of codes of varying block lengths [4]. Let Z,(Zn) be the average

weight enumerator for blocklength n. We have the ensemble spectral shape

I SO
r(0) = nhHmOO EALMJ’ for 0 <6 < 1. (6.7)
Then,
Zgbn) — en(r(5)+0(1))7 (6 8)

where again 0 = h/n.

From equations (6.5), (6.6), and (6.8), we can write Py as

PII _ Z en(fK(zﬁ,s)+r(6)+o(1)) ) (69)

We define the typical set decoding threshold to be the supremum of values s for
which

sup —K(d,s) +r(d) <0. (6.10)
0<o<1

Note that here, K(d,s) depends only on the channel and r(J) depends only on the
code ensemble.

We want to show that whenever s is below this threshold, P;; goes to zero as
n — oo. If we did not have the o(1) term in equation (6.9), we would have P;; going
to zero as n — oo when supy_;<; —K(J, s) +7(5) < 0. With the o(1) term, we can
say only that the sum of all the terms for which ¢ is above any given positive value

goes to zero. So the terms for very small 0 need to be considered separately. This
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requires some conditions on the low weight codewords of the code ensemble. For an
analysis of this and sufficient conditions on the code ensemble, see [4]. One sufficient
condition is that the ensemble minimum distance of the code increase linearly with
n.
Now we describe a way of choosing 7' for a binary input symmetric channel so

that it satisfies the symmetry conditions. We do this by defining
T = {(x,y)|z(y) € T'} for some T", (6.11)

where z(y) is the result of x acting on y according to the action of a binary string on

y given above. Now 7' is invariant under the action of any binary string v because

(u(@))(u(y)) = (& +u+u)(y) = x(y). (6.12)

For T to be invariant under coordinate permutations, we must also have 7" to be so.

Note that 1" is the set of typical outputs when the all zero string is transmitted.
We basically need to choose 7" so that P; does go to zero as the block length

increases. Given this, the smaller we choose the set T, the smaller will be P;;, and

potentially, we will have a better threshold.

6.2 Typical Set Decoding on the AWGN Channel

The additive white Gaussian noise (AWGN) channel is one where the binary inputs
0 and 1 are modulated into the real numbers +1 and —1 respectively and then a

Gaussian random variable of variance o2 is added to this. i.e., we have
y=u2z(1) + 2, (6.13)

where 1 is the sequence of n 1’s and z is a sequence of i.i.d random variables that are

2 2

Gaussian with mean zero and variance o°. For this channel, s = ¢° is used as the

measure of noise level.
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Using the method in the previous section of specifying a 7" to define the typical
set T, the test for typicality of (z,y) becomes a test of x(y). Since in this case,
z(y) = 1+ z(2) and x(2) is also sequence of i.i.d Gaussian random variables, we can
equivalently make the test for typicality a test of u = x(y) — 1, which is a sequence
of i.i.d random variables which are Gaussian with zero mean and variance o. That
is, we define T as all pairs (z,y) for which u = z(y) — 1 lies in some set U.

Different choices of U give us different K(d,02) and thus potentially different

thresholds for any code. We consider some choices for U below.

6.2.1 Testing the Variance of the Noise

Our first choice for U is

2
Zn“l —o?| <}, (6.14)

Ulz{(ul,...,un)|‘

for any small positive number €. This set satisfies the condition that P; — 0 since
if zy is transmitted, and u = zo(y) — 1, Pr{u ¢ Uy} — 0 as n — o0, as can be
shown using Chebyshev’s inequality. For any (x,y), letting z be that noise value for
which we have y = (1) + z, we have u = x(z). Since the test for being in the set U
is only on the sum of the squares, which is the same for u and z, the condition for
typicality is that the hypothetical noise z = y — (1) have sample variance close to
o?. So y is in T'(x) if it lies in a spherical shell centered at (1), having radius o+/n
and thickness ~ ey/n.

Now we need to find P,(T) = Pr{y € T(xy) NT(2")}, where xy was transmitted
and z' differs from x, in h positions. Since xzy was transmitted, y is in the spherical
shell around z(1) with probability approaching 1 and since for AWGN, p(y/z) is
dependent only the distance between y and xy(1), we can take the probability of y
to be distributed uniformly within that shell. So we can take Pr{y € T'(xy) N T'(z")}
to be the ratio of the volume of T'(xy) N T'(z") to the volume of T'(xy).

Figure 6.1 is a schematic of the sets T'(xy) and T'(z"). The radius of the spherical
shells T'(zp) and T'(2') is r = oy/n. The Euclidean distance d between X, = (1)
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T (zo) T(z")

Figure 6.1: Spherical shell typical sets obtained by considering only the variance of
the noise for typicality.

and X' = 2/(1) is given by d = 2v/h. From Figure 6.1, we see that T'(xo) N T (') is a
spherical shell of dimension n — 2, with radius [ = y/r? — (%) and thickness ~ e\/n

in the other two dimensions. Taking § = h/n, we have

| =o0yny1—14/02 (6.15)

The volume of a spherical shell of radius  and dimension k (in R*) is Agr* times
the thickness of the shell in the remaining n—k dimensions, where Ay is the volume of
the unit & dimensional sphere, equal to 2r*~1/2/D((k —1)/2). (This is the perimeter
of the 1-sphere in R?, the surface area of the 2-sphere in R*, and so on.) We only
need the fact that Ag.1/Ag is bounded by a polynomial in k.

We get

Vol(T'(x9)) ~ Ap_1(ov/n)" 1 ev/n, (6.16)

and

Vol(T'(w0) N T(2")) < Ap_y(ov/nn/1 — 6/02)"2 - (ev/n)?. (6.17)
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So, denoting P, (T) = Ps,(T) by Ps,

A,
Py < 2 (\/1=0/02)"2 (6.18)

n—10

which gives us

log P, 1
8%, S log(1 = 3/0%), (6.19)

n

as n — 00. l.e.,

K(6,0%) = — log(1 — 6/0°). (6.20)

To be on the good side of the threshold, we must have

1
sup = log(1 —6/0%) +7(8) < 0, (6.21)
0<6<1
which is equivalent to
1 1—e 20 (6.22)
— > su )
20 0<521 20

The signal to noise ratio F, /Ny is 1/(20%) and equation (6.22) tells us that the thresh-

old on the signal to noise ratio for an ensemble of codes for achieving asymptotically

1_e=27()

zero probability of error as block length increases is supy s —5;—

6.2.2 Testing the Variance and Mean

We now refine our test for typicality by taking the set U to be

< e}, (6.23)

n

U;
U2 :Ulﬂ{(ul,...,un)|‘z

which is asking not only the sample variance to be close to the variance o but also
the sample mean to be close to zero. Us is a spherical shell centered at zero of radius
o+/n of dimension n — 2, restricted to the hyperplane perpendicular to the vector 1,
with thickness ~ €\/n in the radial direction and thickness ~ e\/n in the direction

perpendicular to the hyperplane. (‘% < € means that u - (1/y/n) < e/n and

1/4/n is the unit normal perpendicular to the hyperplane and so €,/n is the thickness



d=2vh

Figure 6.2: Intersection of two typical sets with typicality defined considering the
variance and mean of the noise. This is a projection onto the plane containing the
origin O, X, and X'.

perpendicular to the hyperplane.)
This set too satisfies P — 0 as n — oo since if 2 was transmitted, u = xy(y)—1
is a sequence of i.i.d Gaussian random variables with mean zero and variance o2, and

we have both ‘ETZL? — 02‘ < € and ‘% < € with high probabilities approaching 1.

With this choice of U, T'(zy) is a spherical shell of n — 2 dimensions, centered
at ro(1) with radius o/n, and concentrated around the hyperplane passing through
xo(1) and perpendicular to the vector x¢(1) (with the same thickness in the other
dimensions as Uy). Figure 6.2 is a projection of T'(xy) and T'(z') onto the plane
containing the origin, zo(1) and 2'(1). When z, and 2’ differ in h positions, the
Euclidean distance between X, = (1) and X' = 2'(1) is 2v/h. In Figure 6.1, we
see that T'(x) N T(z') is a spherical shell of dimension n — 4, with radius /72 — [2,
where 7 = oy/n. From triangles OXoB and X,AB we have I/Vh = \/n/v/n —h,
which gives

_ e N o 6
l_\/ﬁm_\/ﬁ — (6.24)

where § = h/n. So the radius of the spherical shell T'(zo) N T'(z") (whose projection
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in the figure is just the point A) is

J

52— 19
Vr2—12=o0yn =

(6.25)

and its volume is

Vol(T (zo) NT(2")) ~< Ap_4 (U\/ﬁ 1- ﬁ) - (ev/n)*. (6.26)

We also have

Vol(T(20)) = An_o(ov/n)" 2 - (ev/n)?. (6.27)

So,
n—4
Vol(T NT(x An_ 4]
py = YU TG Ao ()0 (g
Vol(T'(x)) Ap_q0? (1—4)o?
and we get
log P 1 o
—log(l— ——— 6.29
= SloB(l - =) (629
as n — 00. l.e.,
1 1)
K(6,0%) = —=log(l — ———). 6.30
(0.0%) =~ loB(1 ~ 7 —"552) (630
The condition for being on the good side of the threshold is
L log(1 )+ r(8) < 0 (6.31)
sup —log(l — ———=) +r , .
0<5I§)1 2 % (1—19)o2
which, as in the previous case, can be transformed into
1 1—e 20
— — (1 =9). 6.32
207~ S o5 (1-9) (6.32)

This tells us that the threshold on the signal to noise ratio E,/Ny = 1/(20?) for
an ensemble of codes for achieving asymptotically zero probability of error as block
length increases is supg;<; 1‘%;“6)(1 —9).

Comparing with the thresholds in [8], we see that equation (6.22) gives us the
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threshold obtained by the Hughes bound and equation (6.32) gives us the (tighter)
threshold obtained using any of several bounding techniques, including the “Simple”

bound in that paper.

6.2.3 A Stronger Test for Typicality

It is possible to define a stronger notion of typicality than that of the earlier sections,
and thus obtain better thresholds, as given in [5]. This uses a notion of typicality
well defined on a channel with finite number of outputs and considers the Gaussian
channel to be the limit of a sequence of such channels. For binary input symmetric
channels whose outputs take on only a finite number of values, we define (x,y) to be
typical only if the fraction of times a given output value Y, occurs in the sequence
x(y) is within a given € of the probability p(Y,/0). This is testing not just the variance
or mean but the distribution of values in z(y). Taking a sequence of such typical set
decoders which consider the Gaussian channel to be more and more finely quantized

versions, we get the limiting K () given by

K@) =HE) ~ max [T G0 w000 659
where
G(r.£.8) = rH(55=) + (1= F)eH (G ) (6.34)
) = (P(0/0) + P(4/1) = (e 07107 4 ~0m0) - (635
and
10 = 570 4 P71 = [ (6:36)

The maximization in equation (6.33) can be done explicitly and the value of 6(y)

at which the maximum occurs is given by

5*(y) = Af(y)(1— f(y))m(y)

1+ /1H4ACTy) (A - fy) (037
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where C has to be chosen to satisfy the constraint [~ d(y)dy = 4.

6.3 Thresholds for the Ensemble of Random Codes

As an application of the above techniques, we present the typical set decoding thresh-
olds for the ensemble of random binary codes. The ensemble of random binary linear

codes with rate R has spectral shape
r(6) = H(0) + (R —1)log?2. (6.38)

We numerically obtain the typical set decoding thresholds over a range of R, and
plot the threshold versus rate R, for the three choices of typical set decoder described
above. Figure 6.3 displays the noise threshold as E /Ny = 1/(20?), where Ej is
the transmitted energy per channel symbol. Figure 6.4 displays the noise threshold
expressed as Ey,/Ny = 1/(2Ro?), where Ej is the transmitted energy per information
bit. (We have E; = REj,.) We see that of the three schemes, testing the mean and
variance gives a better threshold (lower Es/Ny or E,/Ny) than testing only the mean,
and the third scheme of testing the distribution of samples is better than either of
the other two, as expected.

A simplification occurs in solving this problem for random codes. We wish to find,

for each R, the o2 such that

sup —K(6,0%) + H(8) + (R —1)log2 = 0. (6.39)

0<o<1

Since R occurs as an additive parameter in r(§), we can instead, for each o2, determine

the rate R at which it is the threshold as

2y _
P~ inf K(d,0%) — H(9)
0<6<1 log 2

+1. (6.40)

The function to be minimized here is convex and so the minimization is easily done

numerically.
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Figure 6.3: Noise thresholds, expressed as E;/Ny, for random codes for the three
choices of typical sets.
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Figure 6.4: Noise thresholds, expressed as E,/Ny, for random codes for the three
choices of typical sets.
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