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Abstract

A theoretical study of the low-temperature paramagnetic
resonance lines of linear-chain organic free-radical crystals
characterized by triplet excitons is made by means of a generalized
moment method. Techniques which permit the determination of the
moments of absorption lines at all temperatures, and to any desired
order in interaction parameters, are developed. The necessity for
~ the usual truncation of the hamiltonian is avoided with the aid of the
absorption operator expansions of Cheng.

The method is used to calculate the zeroth through fifth
moments of the g=2 doublet absorption lines of crystals of Wurster's
‘ blue perchlorate. The hamiltonian for the system includes exchange
and anisotropic spin interactions, and coupling to a strong external
magnetic field. It is shown that exciton creation, annihilation, and
transfer processes have negligibly small effect on the absorption.
The calculated exciton density, p, and the line width, W, have

temperature dependence given by

o~ e—J/kT

W ~ e—J/ZkT'



- =

The inclusion of phonon coupling, through distance-dependent
exchange integrals, is shown, by means of a canonical linear trans-
formation, to produce an effective exciton-exciton repulsion; this
repulsion decays exponentially with distance.

Inclusion of this phonon interaction in the moment calculation

leads to exciton density and line width varying like

p~ e-—J/kT

The activation energy, AE, can account for the"anomalous"

line broadening observed in many triplet systems.



1. Introduction

The low temperature paramagnetic properties of many organic
free-radical crystals can be most easily interpreted as resulting from
the presence of triplet excitons. For present purposes, a triplet ex-
citon may be defined as any collective crystal excitation of spin 1. A
dimerized system of spin + molecules, with spin pairing in the singlet
(S=0) configuration energetically favorable, will be characterized by
such spin excitations. The excited S=1 multiplet of a dimer of a sys-
tem of this sort can propagate through the crystal by means of such
mechanisms as exchange and dipole interactions, and phonon coupling.

The experimentally significant properties of a triplet exciton
system include:

(1) a characteristic splitting of spin states, due to
spin-spin dipole interactions and the influence of an external
magnetic field;

(2) a broadening of the spin resonance line, as com-
pared with the line width for an undimerized system;

(3) low spin concentration (and paramagnetic suscep-

tibility), resulting from the singlet-triplet energy gap to the

paramagnetic states of the system.

The cooperative nature of these elementary excitations mani-
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fests itself in the disappearance of proton hyperfine structure in the
' absorption spectrum. That is, the fact that a triplet exciton is not
localized, but is distributed over many molecules, results in an av-
eraged hyperfine structure that is small compared to that associated
with isolated molecﬁles.

We shall be concerned primarily with a study of the absorp-
tion spectra of organic crystals that are composed of essentially inde-
pendent, topologically linear chains. That is, the molecules of these
systems are assumed to interactstrongly withat most two nearest
neighbors. Systems exhibiting triplet exciton paramagnetic resonance
in which exciton motion is principally along linear free radical chains
include a number of salts based on the acceptor TCNQ 1'4, the
ionic crystal of Wurster's blue perchlorate (WBP) , 6, and others.
For definiteness, we shall consider specifically WBP; our results,
however, should be indicative of the behavior of many other linear tiri—
‘plet systems. 7

In WBP, linear chains of N,N,N? 6N’ -tetramethyl-p-pheny-

lene diamine cations (s=%), (shown schematically below) are insulated

from one another by perchlorate groups.

(CHy);N —— @—-—— N(CH,),

The WER Cation



-3~

At room temperature,the WB ions are equally spaced 7 )

- and the absorption spectrum shows a sharp exchange-narrowed reso-
nance line. (A projection of the orthorhombic structure of room tem-
perature WBP onto the a,C, plane is shown in Fig. 1.) Below 186°K,
the molecules dimerize to a configuration in which the intermolecular

5, 6

WB distances alternate Such a dimerized chain can be repre-

sented schematically as:

sy

Chain of Dimerized WR Cations

The instability of strictly linear chains of spin + molecules
“to distortions of this sort has been described theoretically by a number
of authors 8-11 , and is a quite general property for strictly linear
chains.
Experimental and theoretical studies of the paramagnetic
resonance of Wurster's blue perchlorate at low temperatures have
been reported in the literature in some detail, Thomas, Keller and

McConnell6 (TKM) show, from single crystal measurements in the

20° - 70° X temperature range, that the elementary triplet excitation
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" energy is 246 cm™ , and find an absence of hyperfine structure which
" indicates exciton motion. Using the fact that different linear WB chains
of the crystal are not magnetically equivalent for an arbitrary direc-
tion of the external magnetic field, they are able to estimate the rate
of exciton chain jumping. Their conclusion is that exciton motion is
indeed primarily along single chains, and the jumping rate is greater
than 50 Mc/séc but probably less than 10° - 10* Mc/sec. For a mag-
netic field directed along the chain axes, however, all chains are mag-
netically equivalent, and chain jumping has no effectonthe fine struc-
ture splitting of the resonance lines.

TKM also observe an "anomalous' broadening of the resonance
lines with increasing temperature, an effect also observed in a number

of the TCNQ free-radical salts 2,3 .

McConnell and Soos12 sug-
gest that an exiton-phonon coupling can lead to an activation energy for
spin-exchange line broadening that could account for this effect. The

| present work includes a detailed calculation of such an interaction, the
results of which confirm that this may be so if the coupling parameter
is sufficiently large.

Calculations of triplet exciton band structure, magnetic suscep-
tibility of én exciton gas, fine structure splitting and similar properties
have been performed on the basis of a number of simplified model%?’1 316
It has been shown that the statistical properties of these excitons may

1315

be approximated by Fermi or Bose 1 statistics, although the true

commutation relations obeyed by triplet exciton creation and annihila -
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tion operators are more complicated than either of these. In general,
| any predictions made by these methods about the shapes of the absorp-
tion lines tend to be qualitative, and based on a simplified truncated
version of the hamiltonian of the system.

The present calculation is based ona moment method. The
moments of the resonance line( at g=2), of WBP will be calculated
quantitatively using an untruncated model hamiltonian which should
yield a reasonable representation of the magnetic properties of many
linear triplet systems.

The method of moments, originally developed by Broer,

 Van Vleck, and others! 1719

,1sa powerful tool for studying the absorp-
tion lines of paramagnetic systems subject to a strong constant mag-
netic field and simultaneously to a weak oscillating field. The basis of
this method is the expression of the moments of a (narrow) absorption
peak in terms of traces of known operators. Since a trace is invariant
with respect to representation, any convenient complete set of states
can be used in the calculation. The eigenstates and eigenvalues of the
hamiltonian of the system need not be known explicitly.

In its original formulation, the moment method was subject to
two fundamental approximations. The first is a restriction to high tem-
peratures, so that the relative population of excited states of the sys-

tem depends only linearly on the energy difference between them. (That

is, it was assumed that e_WkT could be approximated reasonably by
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1- %/ kT .) The second approximation is a result of a truncation of the
hamiltonian in order to eliminate terms which can introduce contribu-
tions to the moments from secondary lines that are far removed from
the line of interest. A truncation of this sort will, of course, in gener-
al also discard terms that affect the shape of the primary line in some
higher order.

The restriction to high temperatures has been relaxed by
Kambe and Usui20 , and McMillan and Opechowsl«:i21 , who present
general temperature-dependent expressions for line moments. Since
there are many equivalent forms for these expressions, we shall pre-
sent in Section 2 a brief independent derivation that yields the form
most convenient for the present calculation.

The necessity for truncating the hamiltonian has been removed

by Hung Cheng22

, who has developed a method for generating absorp-
tion operators to all orders. These operators are functions of frequency;
>they are peaked in the region of the frequency of the absorption line of
interest, and fall rapidly to zero outside this reagion. Alternatively,

they can be looked upon as projecting out those parts of the hamiltonian
that give rise to absorption in the vicinity of the frequency of the pri-
mary absorption line, Using the truncated form of the spin hamiltonian,
as in earlier treatments, is equivalent to using the zeroth-order ab-

sorption operators of Hung Cheng.

It should be noted that in any calculation of this sort there are
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certain inherent limitations. In order to calculate the properties of a

~ single absorption peak, we must assume that individual resonance
lines are clearly defined, For lines proportional to the magnetic field
for example, this condition is satisfied if the external field is suffi-
ciently large; such splittings may be obtained in low field as a result
of anisotropic spin-spin coupling. A second assumption made here is
that saturation of the spin system does not occur. That is, we assume
that the power in the perturbing oscillatory field is sufficiently low so
that first order perturbation theory is an adequate description of the
transition probabilities. Experimentally, this condition is readily sat-
- isfied,

The present work combines the previous advances in the theory
of line moments, and presents a general method for determining the
moments of the absorption lines of a broad class of systems, to any
order in interaction parameters, and for a wide range of temperatures.
It will be seen that problems not hitherto encountered are met in the
present method. The techniques developed to handle these problems
should find applications elsewhere in the general field of statistical
physics, where quantities expressed in similar forms are often en-
countered.

In Section 2 we develop general expressions for the moments
of resonance lines in terms of traces of absorption operators, and pre-
sent a brief re-derivation of Hung Cheng's prescriptions for obtaining

these operators. Section 3 is concerned with the application of such
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expressions to the calculation of the absorption spectrum of WBP. In
" this section we neglect phonon coupling. This restriction is relaxed in
Section 4. For a model of the low-temperature spin structure of WBP,
we use a hamiltonian that includes nearest-neighbor exchange interac-
tions, an anisotropic spin-spin dipole term, and coupling to a (moder-
ately strong) external magnetic field, As we shall see, a hamiltonian
of this form contains components that create and annihilate triplet ex-
citons both singly and in pairs, and other components that correspond
to excitation transfer. Terms of this sort are often neglected in ear-
lier theoretical examinations of the properties of triplet system. We
shall see that this assumption is reasonable, in that creation, annihila-
tion and transfer terms do not affect the shape of resonance lines until
negligibly small terms of high order in interaction parameters are
considered.
Also in Section 3, we treat the special problems that arise in

" the present method. These include a discussion of the convergence of
the various expansions used, the elimination of a spurious N-depend—
ence of the quantities calculated, and a présentation of the general
techniques for taking temperature-dependent traces.

~In Section 4, the effects of phonon-exciton coupling are con-
sidered. This coupling appears as a result of an (assumed linear)
distance-dependence of the exchange integrals, and can, in fact, play
a significant role in determining the relative temperature-dependences

of the line width and the spin concentration. The fact that the phonon
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coupling to the exchange interaction between the molecules of a given

~ dimer is’equivalent to an exciton-exciton repulsion will be shown with
the aid of a canonical linear tranformation. The moment calculation

of the effects of the phonon coupling will reveal the effects of this re-
pulsion on the line shapes, and will include the coupling between dimers

as well,
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2. General Theory

It is possible to express the moments of an absorption line of
a quite general system in terms of traces of temperature-dependent
operators. We shall first develop such temperature-dependent ex-
pressions in the form most convenient for the present calculation,
and then present a brief re-derivation of the theory of absorption

operators.

2.1 Temperature-dependent Absorption

We consider a system represented by a hamiltonian 3¢, absorb-
ing power from a periodic perturbing field V. The‘ perturbation of this
oscillating potential is assumed to be sufficiently small to justify the
use of first order perturbation theory for obtaining the transition prob-
. abilities. The eigenstates, |j), and eigenvalues, Ej, of the hamilto-

nian are defined by
3clj)=Ejlj) . (2.1)

If the system is initially in state |j) , the probability per unit time
that V will induce a transition to state |k ), with the emission of a

photon of energy w, is given by

2 ‘
rjk=-ﬁl’-t <31V1k>}25(Ek-Ej+w). (2.2)
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We assume that the system is in thermal equilibrium at tem-

perature T, and can therefore be described by the density matrix

e H 2.3
P e @9

where TrXE[Z Gliy -,
1]

and ﬁs—lla..
The probability that the system is originally in state 1j) is

-BE,

re

and the probability that a photon of frequency w is absorbed in such a

transition is

(e'B Ex _e‘BEj )

I...
Tr e-BS(3 Ik

The power absorbed at frequency w is thus

(o) =2 Y (ePEE PE)

o1y lk)  Tre®® 13TV lz(Ej—Ek)a(Ej_Ek'w)‘

(2. 4)

We can, at least formally, decompose V into its harmonic com-

ponents with respect to 3¢, That is, we write
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V=20 V(w’),
wl

where

[3 V{w?)]=w V(w).

This decomposition is unique.

(2.5)

(2. 5a)

V (w’) has the property that when acting upon an eigenstate of

3, it yields another eigenstate of 3¢, with energy w’ greater than that

of the initial state. We can now absorb the d-function appearing in

the sum (2. 4), because

We observe, further, that

vy (e PR e BEN - e B% v )

so that equation (2, 4) may be written

2T

=B T1:.\ -

B 1),k Tr P

or
f(w) = 2r_ Trle B %, VT] V (w)
Tr e F%

(2.7)

(2. 8a)

(2. 8b)
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Since Tr ABC = Tr CAB, we can also express (2. 8b) as

£(w) = 27 w Ir eP [ VT, V{w)] 2.9)

Tr e'836

This form of the expression for the power absorbed at frequen-
cy whas a distinct advantage over Eq. (2.4), in that it is invariant
with respect to the choice of basis states. That is, the traces appear-
ing in Eq. (2.9) can be taken using any convenient complete set of
states; the eigenstates of 3 need not be known. The harmonic com-
ponents, V(w), however, are not known, in general, without know-
ledge of the eigenstates of 3¢, We shall now show that, for a wide
class of problems, it suffices to know only certain sums involving
these operators, and that we can generate series to approximate
these sums.

We assume that the hamiltonian can be written in the form
3@:5(30-{-3@' s (2. 10)

where the eigenvalues and eigenstates of % o 2re known, and where
3’ (| L Suppose, further, that the harmonic components of 3¢’
and V with respect to ¥, are also known. That is, we know explicitly

the sets of operators 3’ (v oz) and V(VB ) such that

st =2 g6 (Va) , (2.11a)
14
o
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[mo,zc'(va) ] = v’ (v,), (2.11Db)

and
\ =;Z' V() (2. 11¢)
E V(vﬁ)] =V V(vg) . (2. 11q)

N. B.: We use vto refer to the components of the spectrum of %
and w for the components of the spectrum of the complete hamilto-
nian, 3.

The frequencies v of the spectrum of i, are assumed to be
discrete and widely spaced. Thus, in the limit 3¢/ —~O, the absorption
spectrum is a set of discrete, infinitely sharp lines. The effect of a
non-zero, but small, 3/ is to widen (and shift slightly) these lines.
The frequencies w, then, will assume values grouped about the cen-
tral frequencies v .

We shall concentrate our interest on that portion of the absorp-
tion spectrum which is in the neighborhood of some central frequency
w . This line, or set of lines, is assumed to have a width that is
small compared to the separation from neighboring absorption peaks.

The nJCh moment of this line about w can be written
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1@ =2 _f@)w-o", (2.12)
wR W
or
R0 <t —_ = =
T v, g
L @) - re " [V, g 1@+ wg (@) ] 2. 13)
Tr e 2%

In Eq.(2.13)we have introduced the absorption operators

gn(E) , defined by
g @) =2 (0- @) V(w). (2.14)
WA W

Note that there is necessarily some inexactness in this defini-
tion; we sum over frequencies "in the neighborhood" of some central
frequency w. The degree of uncertainty in this definition diminishes
as the line width: line separation ratio becomes small. That is, to
the extent that the power absorbed in the frequencies between absorp-
tion peaks is vanishingly small, we have a clear-cut definition of indi-

vidual absorption lines.

2.2 Absorption Operators

The theory of absorption operators for use in the calculation
of the moments of the absorption spectra of spin systems has been

developed in some detail by Hung Cheng 22 As a result of Cheng's
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work, we can generate a series for the absorption operators (which
are defined as sums over the unknown frequencies w) in terms of
the known quantities V(VB) and %’ (v, ) . We do not have to truncate
the hamiltonian in order to eliminate contributions to the moments
from distant lines, and thereby avoid the danger of discarding portions
of the hamiltonian which may in fact make contributions to the line of
interest. In the discussion that follows, we present a brief rederiva-
tion of Cheng's results, and then apply these results to the triplet
problem.

We obtain two different formal expansions of the operator
eimv e'mt; one expansion in terms of the harmonic components of

the complete hamiltonian %, the other in terms of the spectral fre-

quencies of 5¢,. Thus, from Eq. (2.5), we have

ei:;ct V(w) e"mt = eiwt V(w), (2. 15a)

- whence

el¥t vt _ 3 0t vy, | (2. 15b)
W

i ’
+i (e + 3¢ /)t

Using the expansions of e in the forms

ei(:f(io+5€’)t=§‘(i)n 2. s (v )... 5% (v_)-
=0 v ...V % “

oo

1 n

t fn-l i(v t...v t) isk t
[t .. I dtn ol v b) Bt (g 16)



-17-
and

<O
-1 -3 A n
e 1(J€O+ ch)t =e iif(iot E (_1) E i (V 1). .. ae (V ).

= vV ...V n
=0 87} Oln

: t. ¥
[at...T " 1dtn el it - vy 1) (2. 16b)

) ) n

it can be shown that

. 0 it
ety ™t o T e B wer(w),.. . [rew ), V() ...
n=o vV ...V an %

By, &

B

t tn-1 (v t,+...+v. t.)
fodti...fo dtne(anl o,

(2.17)

From the (assumed widely spaced) set of frequencies appear-
ing in the exponentials of the terms of the series (2.17), we choose
the central frequency of interest, w, and collect all terms containing

this factor. These terms can be collected in the form

—, o ...k
el@wt > (it)” a, (@) . (2. 18)
k=0 k!

Equations (2. 15) and (2. 17) are different expressions for the
same quantity, and must therefore be equal. In Eq. (2.17), we were

able to separate the different frequency components directly; in
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Eq. (2.15), however, the frequencies appearing in the exponentials
cover a range around the central frequency w. To the extent that
this range is small, it is a sum over these terms having exponential

frequencies near w that we wishto equate to Eq. (2.17). That is

. = 2k
Z el Vi) =el®t 2 f;—t?- a, (@) . (2. 19)
W W =0 kI

The left side of Eq. (2.19) can be written

= . - = en  [1:\K
el®t z_ OOt gy 2 P12 W 3 i) (w-3)k (2 20)
~ k=0 kI wRw

From Egs. (2.19) and Q. 20), we obtain

3@ =2 _ V() (w- o) ~. (2. 21)
WR W

Comparison with Eq. (2.14) reveals that the a.k(E )'s obtained
in this way are in fact the absorption operators gk('cﬁ) in terms of
which we have expressed the moments about w ofthe absorption line
centered at w, By examining the terms of Eq. (2.17), from which the
ak(E)’s are generated, Hung Cheng arrives at the following prescrip-
tion:

(1) Choose all sets of 3¢’ (v a)'s the successive application of

which, together with a chosen V (VB) , will give an energy change equal
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to the mean energy of the absorption line of interest. (If there are
several ways of achieving this that are of the same order, all of them
must be taken into account.)

(2) From this set, form all possible multiple commutators of
the 3¢’ (Va)"s with V(VB), each divided by the weighting factor (Van) »
(va+v )...(Va +...+ v ); i.e., form the set;

n %n-1 n %

00 [ g ) T (), VO )]

a n- (2. 22)
v {v. +v )...(v. +v +...v)
% % %1 % %1 O
where van+ Van-1+ + Val + vﬁ = @

The absorption operator gk(a) can be written as the sum of two types
of terms:

(3) The energy conserving terms, Oi , of g (w) are obtained
by taking all commutators (2. 22) with exactly k zero factors in the
denominator, and throwing away the zeros.

(4) All the other terms of gk(a_J) are obtained by forming mul-

E

k,i.e.

tiple commutator brackets of 3¢/ (v a)'s with O

[ 5, ), L7 (g ) oo (307 (), 0L1...] , with

coefficient
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n n-1
[ 2 vy ) (2w ()17

r=1 ar =1 ar

]

If there are p zero factors in this coefficient, discard them and obtain

the value of

n-1

A& (e Ey )(EZ Vy ) A{E-vo )] T

o! dEp (2. 23)

evaluated at E=0O, as the appropriate coefficient, (The terms

(E-Z var) appearing in Eq. (2. 23) contain only those sums, Z‘Var’

which are non-zero.)
Note that for any gk(a) generated by this prescription there
are an infinite number of commutator brackets contributing. That is,

we generate an infinite series in powers of i-——;(or @ >/ Yy ) for
(%,

each gy Inasmuch as JCO) Y 3¢’ , we expect this series to converge
quite rapidly.
In calculating the moments of an absorption line, it is frequent-
ly convenient to make use of the fact that
TreBJC[V g @ 1= 1 eP*[ T @) (@)]. (2.24
’ k1+k2 gkl ’gkgw) . ( )
The calculation of the (&, + kz)th moment of a line is most

easily performed by choosing k; and k; as nearly equal as possible.
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3. Spin Absorption in Wurster's Blue Perchlorate

In this section we determine the moments of the resonance
spéctrum of a linear-chain triplet exciton system, neglecting phonon
interactions. The hamiltonian developed will use the low-temperature
WBP crystal as a model, but should be representative of the behavior

of a large class of triplet systems.

3.1 Model Hamiltonian

For purposes of determining the spin resonance spectrum of
Wurster's blue perchlorate, we consider a single (assumed independ-
| ent) linear chain of WB cations (see p.3 ). The molecular sites are
denoted by p = 1,2,...,2N; the dimerized pairs are those nearest
neighbors designated by (2p-1), (2p). Cyclic boundary conditions are
imposed (p + N =p).

Each cation (p.2 ) has a single unpaired electron in a p-
orbital. The spin interaction between the molecules of a dimer can,

in the presence of a strong external magnetic field, be represented by
5 oy ~Z ~Z N A AZ
JSZp—l ‘SZP + DSzp_1 Szp + A (Szp_l + sz) . (3. 1)

J is a two-center exchange integral, and is positive for triplet

systems; the term with coefficient D is the diagonal portion of a
general anisotropic spin interaction; and A/gB, is the magnitude of

the external magnetic field, which defines the z direction.
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The exchange interaction is by far the largest term in Eq. (3.1)
“with J = 246 cm ™" for WBP. The magnetic field is assumed to be

large compared to the anisotropy interaction (for WBP, with magnetic

field along the chain axis, D= .02 em™

McConnell et al. %, A = .316 cm™). Mote that it is only for a large

; in the experiments of

magnetic field that we are justified in taking this simple form for the
dimer hamiltonian {(neglecting the small off-diagonal portions of the
anisotropic interaction). We assume that the individual spins are pre-
cessing strongly about the direction of the external field.

The spin 3 operators, §p , appearing in Eq. (3.1), are defined

~Z
“in the usual way on the "spin-up", "spin-down" eigenstates of Sp :

~Z 1

5 |u>p = —2-|u>p (3.2a)
§% lay. =-%|a 3.2
o [y ="z[d (3.20)
A4 _ aX .Ay _

Sp ,u)p = (Sp-i—lSp )[u)p—() (3.20)
A - —_ AX- o*y - »

5, lu)p = (sp i5,) ]u>p ]d)p (3.2d)

(In these equations, we have seth = 1.)
The interaction between nearest neighbor dimers contains an

exchange term

and in general, anisotropic terms analogous to D. Inasmuch as
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J' « J (which will be so to the extent that dimerization is strong),
~ the anisotropic coupling between dimers, which is small compared
to J’, will be negligibly small. In the present calculation, then, we
retain only the isotropic exchange coupling between dimers.
As our model hamiltonian for linear chains of WB cations,

we therefore take the following form:

N . N
3 = Jpé1§21”] "Son J;éiszp.SZP”-
+D§§;p_1~§;p + §N§; (3.3)
p=1 p=1

It is convenient to re-express this hamiltonian in a triplet
representation. Instead of |u), |d) eigenstates of S% for a spin &
molecule, we use the four eigenstates of S% for a dimer to describe

the new basis. Thus we define the dimer states:

15) 5 = lugy_q5 Ugp) (3.4a)
45, = 275 [ [ugy 1,dg) + ldgp g, ugp)] (3.4b)
1) 5 = ldgy_1,9gp) (3.4c)
oy, = 278 [ ugy g,dy0) - [dg 0], (3. 4d)

In this representation, the indices p run from 1 to N, number-
ing the N dimers in the chain. The three states |f,) are the $% =1,

0, -1 projections of the excited triplet; |a ) is the ginglet ground
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state. A complete set of operators conveniently defined in this

basis is the set B B?]f with matrix elements determined by:

Pf-f b
T
Bpfi [ce)p = lfi>p (3.5a)
Bl 1) =0 (3.5D)
pf, 1P '
Bpfi la)p =0 (3.54d)

Observe that the number operator for the state if Y is B B

pf; “pty’
f
"the number operz.a.rtor for the singlet |o) is Bp £, pf (i.e., for any
value of i, Bp_ _B : lay = |a).
‘ . X . i o
The B f1B9f1 s satisfy quasi-Pauli relations:
T 1= =0

[Bpf , quj] prfinqu] (3.6a)

[Bpfi’ Bafj] =0 forp=q (3.6b)

Np(f) + Np(ce) =1 (3.6¢c)

In Eg. (3.}6c), the triplet and singlet occupation numbers,
Np(f) and N p(oz), are defined by

- “f
Np(a) Bpfinfi (3.70)
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If we were dealing with an excited singlet instead of an excited
triplet, Eq. (3.6c) would be equivalent to the usual Pauli anti-commuta-
tion relation, and the Bpfi’s would be true Pauli operators. Note that
this equation is simply a statement of the fact that each dimer must be

in some state.

We also define the vector spin 1 operators S o by

Sp = 32}3—1 + Szp. (31.8>

These spin operators can be expressed in terms of the basis

operators:
5; = B;f By, - B;fa Bot, (3.92)
sy = s§+ 1sg = VT (Bg;fz Bot, * B;fl Byt (3.9b)
S‘I‘) = s; - isg = V2 (Bg;ngpf2 + Bgfz Bpfl) (3.9¢)

The operators S‘p annihilate the singlet state, i.e.

Sp 1oty =0,
and commute with triplet occupation number:
[85, Ny(®)] =0

In the triplet representation, the hamiltonian Eq. (3.3), to

within an additive constant, is:
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% = Hg+ By +Hp Kyt Ko + 5 (I) + 3 (-0)

+ :}C/ (2‘]—) + g_cl (_23) (3.10)
where
g = JZJNP(f)
P
B VA
K= 4 % 5
_ DY A Z
Kp =7 L8, 8,
P
b, — J' .—N‘
Ly =7 %Sp Sps1

_ —J, e \ T T
%p =7 25 Zf (Bpafi Bp+1,fi ¥ Bpfi BP+1,fi)

S+
o[y gzat gt &% L S0 g
X (J) = T[%’ Sp Ep-l—l,fz Bpfzsp+1 + JZ BP+1:ia

s+1 S S -
P 1\/7 \/_2— P+ 1
s’ (-3) =[5 ()]
viomy - IS at wf T gl
i’ 23) = -7~ %[Bpfl BP+1>fs ¥ Bpfa Bp+17f1
'Bgfz B§+1,f4

s¢’ (-23) = [ (2] T
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The triplet exciton self-energy is obtained from the first three
 terms ab.ove: the exchange interaction, JC I3 the interaction with the
constant external magnetic field, JC A and the anisotropic spin inter-
action, ¥ . The exchange interaction between excitons includes: an
S@ . Sp +1 scattering term, ¥ 3¢5 an exciton transfer term, ‘JCT, which
moves an existing exciton to an unexcited neighboring site; double
creation, 3¢’ (2J), and double annihilation, 3¢'(-2J), terms, which
create and destroy spin-zero pairs of neighboring excitons; and single
creation, ¥ (J), and annihilation, ¢’ (-J), terms, which virtually

create or destroy an exciton in the field of a real neighboring triplet.

3.2 Harmonic Spectrum

The interaction of the chain of spins with the (small) oscillating
magnetic field (taken to be in the x direction), is represented by:
v.—_vaés; - %v(,%(sg+ 5) (3.11)
V commutes with 3C 33 i.e., it conserves exciton number.
Sp' corresponds to a spin flip which decreases the energy of the chain
in a strong constant magnetic field; it represents emission of a
photon of energy approximately equal to A . Sg corresponds to
absorption of this quantum of energy, and in obtaining absorption

operators, we may represent V by this component only; i.e., we

take

V =

(SIS

v, . St (3.12)
p p
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In the limit of very low temperature, i.e., for very low exci-
- ton concentration, we expect the system to behave approximately like

a non-interacting exciton gas. If we neglect the exciton-exciton inter-

actions, the hamiltonian is

e = {}CJ+1}C&+.’}CD.,

The absorption spectrum for the non-interacting system consists of
two infinitely sharp lines, one at A+ D/2, the other at A - D/2. From

Eq. (2.9), the power absorbed at these frequencies is

ela s D) _ (A , D) Tre PR [vF, V(s & D/2)]
z z Tre-fH

The spectral components of V are

V(A+ -2—-) = +—¥—ﬂ %, sgs;

Z

VV(A-%E’-) = -3 %sp'sp

and, using the techniques developed in Section 3.5 for taking

temperature-dependent traces, we find

(aeB) aa bR
= - x e .
tla-g) a-3 Bla-m 4

(The last step above follows if A > %- )
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This result is, of course, what would be expected on elemen-
~tary physical grounds. The line at A + D/2 arises from transitions
in which S; changes from 0 to 1; the line at A - D/2 from transitions
from sz =0to S; = -1. Since the probabilities of population of the
initial states are in the ratio e ? 2 :1 , this is the ratio of line
intensities.

When we include the effects of exciton-exciton interactions,

we would be tempted to take
$o = H3+ 3, + Iy, (3.13)

and calculate the moments of the A + D/2 and A - D/2 lines individu-
| ally. However, whereas the interaction terms of the harniltonian

commute with the magnetic field term

[&cA, :eeJJ = I::ec/_,\,:;cT} - [G‘CA,ZC'(d:J)] - [Jcﬂ_\ G‘C’(iZJ)] =0

‘they do not commute with anisotropy term. This means that the
spectrum of ¥¢’ with respect to 3¢, of equation (3.13) will contain
frequency coinponents ~ D. The series for the absorption operators
would then be in powers of J'/D. Since J’ is almost certainly greater
than D, and is probably large compared to it, this series will at best
converge only very slowly (and may be divergent).

For this reason, we are led to separate the hamiltonian as
follows: |

5 3, + 3¢’ (3.14a)
JC

It

o + 3C

1

Jt %A (3.14b)
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3= 3(0)+ ' (I) + ¥ (-T) + ;' (2T) + 3¢’ (-2T)  (3.14c)
where

' (0) = ey + Ky + Krp
and

[ s, ser ()] =lvie'n),

and we use

This separation leads to a calculation of the moments of the
combined lines , i.e., of all the absorption in the vicinity of A . Note
that we do not require that 4 > J', since A is not one of the harmonic
components of 3¢’ with respect to 3¢, , and therefore will not appear
as an energy denominator in the absorption operator expansions.

These expansions will be in powers of J'/J and D/J , and we do require

that these ratios be small in order to assure rapid convergence.

3.3 Absorption Operators

We now apply the prescriptions of Section 2 for obtaining g-
functions to the hamiltonian (3.14). We assume that J’ /J is sufficiently
small to justify neglecting terms of order (J’/J )2 or higher in the
absorption operator expansions. Observing that [3¢'(v),V(a)] = 0
for v = 0, we list the g-functions sufficient to calculate the first five
moments of the g = 2 absorption lines below, correct to first order

in (J'/J):
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g, = V(&) (3.15a)

g = e’ (0),v(a)] - yéﬂ [3¢7 (v),[5¢7 (0),V(a)] (3.15b)

ST TS

%o {SC' (0),[5e” (0), V(2] | (3.15¢)

o 3, s e, [ o.ve]]

- ) %[se’(v),Ez}c’(O),[m’(O),V(A)]ﬂ (3.15¢)

v0

& = [SC’(O), Lae’ (0), [ (0), V(A)m (3.15d)

. uéo %[3@' W), [m(-u)‘, L5’ (0), EJC’(W,V(A)]]E
+ péo %[36’(0), [3@’(1}), L3¢ (=), [5¢ (0),V(A)1]H

_ V_z ; 1 {3@ (v), ]:JC (0), [ 3¢’ (0) [3c'(0),v(A)]]ﬂ
Those terms in Egs. (3.15) with negative sign all represent
non-energy-conserving portions of the absorption operators. They
can contribute to the line moments only if commuted with other non-
energy-conserving terms (with frequency of opposite sign), or when
multiplied by appropriate off-diagonal terms from the expansion

ot e PH.
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It is by using the fact that
 BH[ o+ _ -BH[ +
Tre | (v, gkl"‘kz] = Tre [ gkl ) gkz]

that we are able to determine the first five moments from the set
(20,8132, %)

Those portions of the commutators of the form (8. 16) which
may have non-zero trace to the order of the calculation have been
evaluated explicitly, and are tabulated in Appendix A.

The problem of calculating, to any order, the moments of the
resonance absorption lines of WBP has now been reduced to that of
taking temperature-dependent traces of multi-site spin operators.
Before proceeding to a discussion of trace-taking techniques, however,
we consider a re-interpretation of the quantities to be calculated --
one based on the fact that experimental data is taken at constant

frequency as opposed to constant magnetic field.

3.4 Absorption vs. Magnetic Field

The expressions derived in Section 2 for the moments of
absorption lines were applicable to the spectrum of the power ab-
sorbed vs. frequency of the oscillating field, at fixed constant mag-
netic field. In practice, however, experimental considerations dictate
that data be taken at fixed frequency, equal to the central frequency
w of the line of interest, while slowly varying the magnitude A of the -

"constant™ field. Thus, whereas we have derived expressions for
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W+0
{

1 (@) = Hw,A M w- @) dw (3.16)

[e;

EA—
w=w-

in order to have direct comparison with experiment we wish to cal-

culate the quantities

A+
M (4,) = J 1,8 )6 - 8,) dA. (3.17)

In these expressions, 6 and 6’ are small compared to w and A, , and
are chosen to include the line of interest but no other absorption
peaks. Inasmuch as the power absorbed falls to zero between absorp-
tion maxima, we expect the integrals to be insensitive to the exact
values of 6 and &’ .

Expressions (3.16) and (3. 17) can be related to one another
fairly easily. Ordinarily, it is assumed that frequency and field
strength are interchangeable, i.e., that they are linearly related.™
We shall see that, although this is true to zeroth order, the first-
order corrections are significant, and, in fact, simplify the e;i--
pressions for the moments in terms of absorption operators.

From Eq. (2.4), the power absorbed at frequency w and mag-

netic field strength A is

w,4) = 0 ) (eﬁBEk-e—BEi) |G IVIK) [*8(E, - By - w) (2.4)
19, k) ]

* See, e.g., McMillan and Opechowski (21).
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Since the interaction, A SZ, of the spins with the constant

- external magnetic field commutes with the hamiltonian, the eigen-
states |j), |k) of € are eigenstates of SZ, and remain unchanged
upon variation of 4 . The only effect upon expression (2.4) of varying
4 by x, then, is a change in the energy of state |j) by zxm i where

7
S 1= m, 3. Thus we have

Hw,A+X) = w ), I:e—B(Ek-ka)— e—ﬁEj+ij):]
133 %)

X [V k) lzﬁ(Ej-Ek-erxmj - Xmy ). (3.18)
But V =+ S changes g by one unit, i.e.

GIV|k) =6 | VIx),
INALY mj»mk+1<3l | k)

whence m]. -my = 1.

The change x in the magnetic field is small compared to the
total magnetic field strength 4 . (_The excursion in field strength need
cover only a range that is of the order of the line width.) At all
temperatures of interest we may neglect 8x compared to 1 (but we

shall retain all terms in x/A). To this order, Eq. (3.18) becomes

N

fw,A + x) w (
13, [k

e—BEj) [ (G Vik) |2<3(Ej -E -w+ X)

= o fw- x,4). (3.19)
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This equation is exactly true at temperatures such that
- Bx <« 1; it has not been necessary to make any further assumptions
regarding the relative magnitudes of x, &, and w.

Equations (3,16) and (3.17) can be rewritten

9]
1) = (UM #E - x,8,)x"ax (3.20)

O

and

4

.0
f’ f(w,4, +x)x"dx
-0

i

Mn(zfx.o )

14

——

5
I fw - x,8,)x* 2 dx (3.21)
_ﬁ'

i

This last integral can be expanded as

5’ n+p

[+
0
M (A) = ), J #o -x,46)F—dx (3.22)
n 0) p:O -6, ( 0 wp

Inasmuch as these integrals are insensitive to their limits,

Eq. (3.21) can be written

S (L1)RtP _
M, (8,) = pz—JO L—L—wp In+p(w ). (3.23)

However, from Section 2 we know that

-BHpy+ —

:{n("cb‘) =
Tre’B H
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as a result of which the sum (3.22) collapses, and we have

Tre PH[ V7, ¢ |
Tre BH

M, (Ag) = -1)'e (3.24)

We observe that whereas the n + 1 order g-function had to be
calculated in order to obtain the nth moment of the absorption vs. ‘
frequency, we need calculate only the nth order g-function to obtain
the nth moment of the magnetic field spectrum. Thus, in addition to
yielding a result that is more directly applicable to experimental
observations , the field-spectrum calculation entails less computation

than does the frequency-spectrum calculation.

3.5 Temperature -Dependent Traces

The expressions derived for the moments of resonance lines

require calculation of terms of the form

Tre'ﬁ HC

(3. 25
Tre_B ( )

where C is an n-gsite operator:

In order to evaluate such expressions, we expand

- 5 '
e B _ B, + HY) i) the familiar fashion:
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o~ BH _ -BH, [1 - ), fOB dBleﬁlvl‘H' (v)
v

B8
v ) By dpy Bt Bava)  ()E (v,)
HVQG 0

+] (3.26)

Traces of the form

Tre P g o .0

b0t +Opin-t (3.217

can be evaluated simply. Since all of the O's commute (all spin
operators commute unless the site indices are identical), and since

we can write
e"BHo = II e-B(HO )q’
q
where

A
(Hy)a = JNq + ASq ,
we can write

BH, . ,
Tre 0 OpOp+1 « e Op+n_1

- -5{H, )p -B(H, Jp+1
= Trp(e ‘o Op)Trp+1(e o/D+ O£)+1 o

r "B (I‘Io )p+n_1 “ v 4 —B (HO )q
1‘rp+n--1(‘e p+n—1) Ié Trq(e (3.28)

The symbol Ir represents an excluded product; i.e., q takes

q
on all values from 1 to N except for the values p, p+1,...p+n-1.
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We have also introduced the operation Tr _, which is defined as a

q?

sum over the four site states; i.e.
Troleg) = (@glxglag) + L (@glxg1E)g -
We can now write

BH " _ N-n ;
Tr QOpOp+1 Opin-1 = <O 7 {C p+1> < p+n-1> (3.29)
where
= Trqe'ﬁ(HO >C1 = 1+ e"ﬁJ(l + 2 cosh B4) (3.29a)
and

(y) = (o lxplay + e PTRNa) x 1)) + e PTs), 1%) 1))
BTN (8,) [, (1) - (3.29b)

The trace of a general term of the expansion (3.26) for
TreBH( is somewhat more complicated. Each factor of3'(v) is a
sum over site indices. These multiple sums can, in general, be dis-
sociated into sums of the form

A B ..D
pTq -’ r
where p,q,...,r are all distinct. Each such term will have a co-
efficient that gives the total number of ways the site indices may be
chosen to yield the same result. These combinatorial coefficients

will, in general, contain higher powers of N than the first.
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As an example, consider

- rre B HJ;% Q, = TreP Z (Hy)p pe1Og (3.30)
This may be decomposed into
NTre PHoH, )p,ps1Op *+ NTTE BHo (u,, Jo,pe1 Ooel
+ N(N-2)Tre PHo (1, o.p+10ps2 (3.31)

Each of the three components of this equation involves traces

that can be evaluated with the aid of Eq. (3.29). We know that

Tre ™) o
p p

’I‘re"BH

must be proportional to the first power of N (in the limit N — ).

. That this is so can be seen from the facts that:

H
Tre R 0]
(1) ——_—B—ﬁp—' is independent of p, from which it follows
Tre~
that
Tre PH Y 0, rrefH,
p ‘
2 5 = N
® e e

(3) The expectation value of Op is bounded above by its

maximum eigenvalue,which is independent of N.
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It then follows that

Tre-BHZ e)
1 P P
lim .
N— 0 Tre™PH

is finite.
We must, then, show that the apparent higher order N-depen-
dence exhibited by Eq. (3. 31) is spurious. In order to do this, we

write

-BH -BH
Tre PHC Tre PHC _BH
p _ p Tre 0
Tre PH Tre P o Tre‘EH

and expand each of the factorsonthe right-hand side in powers of
3'/3¢,. Since these series contain powers of N, we must, for the
moment, require that 3¢’ is sufficiently small that N3C/5C, is less
than unity. This restriction will be relaxed when the final result is
obtained. The expectation value of Cp must be independent of N for
large enough N (the requirement is essentially that N be greater
than twice the order to which the expansion is taken). This means
that all terms in the expansion which are proportional to a positive
(non-zero) power of N must cancel identically when the product is
formed. This can be verified to any given order by actually per-

forming the expansions.

Tre PHo

Tre

Since the series for is equal to unity plus terms
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at least linear in N, the only terms remaining in the product are

-8H
Tre_ C  that are independent of
Tre =70

those terms of the expansion of
N. The restriction on the size of N¥C'/3C, may now be relaxed,
since the resultant series converges so long as /¢, is less than
unity.

The prescription for identifying the desired terms in an ex-

-BH -BH
. Tre P cC . . Tre C
pansion for ~ is thus very simple: expand ——— a8
Tre Tre B,

described above, and discard all those terms which do not have the
- proper N-dependence.

In the example considered above (Eg. (3.31)), we retain only

-8H -8H
N Tre PHo (HJ,) 0. + NTrePHo (HJ’)p,p+1 Op+1

p,p+1~p

- oaNTrePHo(m ;)

p,p+10

p+2 °

As a simple application of the techniques for performing
temperature-dependent traces, we calculate the zero-field magnetic
susceptibility of a linear triplet system. In low field the anisotropic
dipole-dipole coupling should include not only the diagonal interaction

{ ’JCD), but also an off-diagonal term of the form

& T LGT 55
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where x,y, and z are principal axes of the fine structure interaction.
The zero-field susceptibility along the z-axis can be written as

Tre PH(g%p

= 3.32
X =8 TI’B—‘BH ( )

where the hamiltonian now includes GCE, Note that 3C E can contribute
to the susceptibility only when terms of at least second order in the

expansion of e PH are considered.

A typical second-order term in the expansion of Eq. (3.32) is

8 JE -BH, S 2 S o Z (3.33)
B Tr [e ( p W)(Z sq q+l)<}f,sr><%st>
z\ 2n+1 |
In the zero-field limit (sp) >= 0, and

2 -
{S;) n> = 2¢™9/T . The multiple sums of Eq. (3.33) therefore

give non-zero contributions only when the overlap of site indices is
Z _
such that each site has an even number of S 's on it. Thus we

encounter terms of the form

- z Z Z ,
N(N - 2) Tre PHo (5,F (85,1 (8,,0)"

— -9N <(s )> ’jﬁJ
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p = qg-1, r = p,t = p+1:

NT;e‘BHo (80 (S5, (85,00 = N <(s;)2>3 - aN&

-38J
pP+L T 3

o-287
IIZ

N Tre PHo (%)4(3;1)2 =N <(slz))? 2 - 4N

etc.

In second order, all terms of the hamiltonian contribute to
the susceptibility (including exciton creation, annihilation, and

transfer terms). The result may be written:
X = NS [2-3D+423— T+ B+ 2%+ B

+ e Pd [12 - B(23" +4D) + 522- (2DJ’ + 8E?) - 3:8%—'1]

+ 2 [18-3(6.}' +3D) + %3— (%J’2 - %Dz + BE°

+ 2DJ) + —2831 Jm}} (3.34)

A plot of susceptibility vs. temperature, for a typical set of para-
meters is given in Fig. 2.

Observe that the second-order terms in J’ that appear in
Eq. (3.34) are of two types: (83’ ) and (83')J’/J). In general,

nth order contributions to traces will involve sums over terms of
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the form

A B3 )P /5P

The p = 0 terms arise from the factor [ 3/(0)]" in the ex-
pansion of e'BH; terras with p = 0 appear as a result of bringing

down components ¥’ (1), of non-zero frequency,

3.6 Results

Applying the technique of Section 3.5 to the calculation of the
traces of commutators of Appendix A, we obtain the first five
moments about A of the pair of resonance lines near g = 2. The
| complete results (to first order in interaction parameters) are
tabulated in Appendix B.  We shall be concerned with interpreting
these results for temperatures at which exciton concentration is
fairly small (e"BJ £ .01). The dominant portions of the moments at

~ such low temperatures (for which g4 is also small compared to

unity) are:

M, = NLAsinhpA(1-82 - gJ'Lcoshpa) (3.352)

M,(A) = -NLaA {-]2)? (cosh BA-1) - %Qf cosh ,BA] (3.35b)
Da

Mya) = L, (3.35c)

2 2.2
M) = %‘ M,(A) + NL?A ﬁ%‘-ﬂ- (cosh B A+ 2) (3.35d)
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MJfa) = %MO+NL2A2§‘K sinhBA{S—%ﬁD
BI 1342
-5— [ 3 +2L(5 cosh BA+ 4)] (3.35¢)
— -Dz 3 2, Dlez o2 DJ) r p
Mga) = TMs(A) + NL A 30" + 74— (7 cosh BA

+ sinh gA - 15) + gé-z—[Q(coshﬁA+ 2) + %— (cosh A + 1)

+ L{cosh A + 1)(62 cosh BA - 5)]} (3.35f%)
In these equations:
_ P
L=7

I'= 1+ e'BJ(l + 2 cosh BA ).

In general, portions of the moment expressions containing

~ factors of L* (e"n’eJ /T™) come from the traces of n-site operators
and represent contributions from the interactions of n excitons. The
complete moment expressions exhibit such terms with n as large as
four.

Notice that (particularly for the odd moments, although also ,
to some extent, for M,) the first-order terms may be comparable to
those of the zeroth order. This is due to the fact that BA « 1; i.e.,
although we have treated the magnetic field dependence of the
moments exactly, terms of zeroth order in 8J°, J'/J, etc. may

contain small coefficients which are functions of field. (For
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example, terms like (cosh BA - 1) may be smaller than 8J’ cosh BA.)
By the time second-order contributions are considered, however,
such ”accidental" anomalies in relative magnitudes can no longer

be important; in all moments, there are at least some leading terms
(of order no higher than the first) which do not contain coefficients
that are small as a result of BA's being small.

Thus, in order to estimate the size of the largest terms
neglected in the present calculation, we need only observe that they
are smaller than the calculated quantities by at least a factor of
BJ' (or J'/J). As we shall observe in Section 3.7, rough quantitative
agreement with experiment is obtained if J’ ~.1-5 cm™, so that
BJ" < 0.1 for the temperature range of interest. Thus the (neglected)
second-~-order contributions to line moments cause errors of the
order of 10% or less in the odd moments, and probably of order 1%

or less in the (more important) even moments.
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3.7 Interpretation and Discussion of Results

From a theoretical viewpoint, the most satisfactory applica-
tion of the fesults obtained above would entail a direct comparison of
measured moments of observed resonance lines with the calculated
moments. Unfortunately, because of noise which obscures the struc-
ture of the tails of the absorption, the experiment data cannot be read-
ily treated in this way. Instead, we adopt a simple model which en-
ables us to determine (approximately) the line widths and shifts of
the separate resonance peaks from the calculated moments.

To accomplish this, we assume:

(1) that the temperature is low enough so that

the separation of the fine structure lines is large compared

to the width of a single line;
(2) that absorption falls off so rapidly as we move

away from the peak that high order moments of each

individual line about its own center are negligibly small,;

(3) that both lines are of the same shape (although
possibly of different size).

aT(w-4A-y)

}T('w—A+ x)

g
-
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The lines are represented schematically above. We assume
that they have the same functional form, differing only in a scaling

factor, . The origin of the function T(x) is chosen such that

[PxT(x)dx = 0.
OO
The centers of the two resonance lines are taken to be at
A+ yand A-x. The moments of these combined lines about A can

be written as:

M, (8) = To(1 +a) (3.36a)
M(8) = To (-x +ay ) (3. 36b)
M, (&) = T, (X +ay®) + T (1 + @) (3.36¢)

My(2) =Ty (-x* + ay®) + T, (-3x + 3ay) (3.36d)
M, (A =T, (x* + ay*) + T, (65 + 6 ay® ), (3.36e)

where

T = [7T( " du,

n —o0

TI:O'

For low temperature, [x!|,lyl ~ D/2.
In equations (3. 36a)- (3. 36e) we have dropped terms with
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factors of T, and T,, because of the assumption that

Lo Ts
D/2 (D/2)?
For narrow lines, the shifts of the centers from the zero-
temperature positions will be quite small. If we linearize Eqs.(3. 36a)
-(3.36¢e) in these shifts and in the difference in heights of the peaks,

we may solve for

! M, (A) M, (a)
oa=1+— (3 e ), (3.37)
2 DM, D" M,
2 8
v M, (A) M. (Aa)
S 1 BN Sl LY )
2 4 2 D M, D°M
T i
(3.38)
2 Vg
T, _D_* (3. 39)
T, 4 4
where
M, (4) .
Vg = -
DM,

16

In obtaining these results, we have made use of the fact that,

for the moments calculated,

M; (A) = D"

M, .



-50-

The degree of asymmetry, described by the deviation of o,
the ratio of intensities, from unity, is quite small, since the calcula-
ted odd moments are small. «-1 is plotted as a function of tempera-
ture, for variousvalues of J’ , in Fig. ( 3), The other parameters,

5,6
from experiments on WBP ’ ~, are taken to be

J =246 cm ™t
A=.316 cm™
D=.02 cm'l

Inasmuch as the odd moments are small compared to v, , the
shifts of the two lines will be very nearly equal. If we also assume
that the line width is related to the normalized second moment by

1
b ] /2 (3. 40)
T,

W [

we get the usual relation between line width and shift:
Woc[(.g. - x) ]1/2 = [ Line Shift ] 1/2 |

The "width, " as given by Ec.(3.40), is plotted as a function

of temperature and J’ in Fig. (4). The exciton concentration, p,
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which is proportional to the line intensity, M, , is also shown in
Fig. ( 4 ).

Note that, for small enough J’ , we find the exciton concen-

tration varying like

Bd

p~ e,

and the width like

W~e'BJ/2.

1,2,15
Previous treatments, ’"’based on various models of highly

mobile excitons, have predicted that

p~ePd

W ~e—'gJ

b

It should be observed that if J/ is sufficiently large higher

order multi-exciton processes can become important. In general,

the line width takes the form

> i 1
Wz[rleane ngJq/2
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For large J’ the an's do not drop off rapidly, so that the overall
dependence can be like e'ﬁ J. This tends to reconcile the present
calculation with the resulfs of the previous models, since large J”
produces the high exciton mobility which they assume.

In Fig. ( 5 ) are presented experimental spectra for WBP6
Observe that the widths of the lines become comparable to the separa-
tion at a temperature of approximately 60°K. In order for the theo~
retical results to give quantitative agreement with this aspect of the
experimental data, we should require that J’ ~,1-5 em™
Although there exists no experimental determihation of the size of the
actual distortion in WB chains, theoretical calculations 23 based on
isolated dimers suggest that this value is rather smaller than what
would be expected. The inclusion of phonon interactions, as in
Section 4, however, produces a renormalization of both J and J’
which might be large enough to account for (J’)'s being so small.

In Fig. (6 ) are plotted the experimental values of line width
and exciton concentration as a function of temp;erature. The line width
exhibits an anomolous broadening, corresponding to an activation
energy for exciton—exciton interactions. Such a phenomenon does not
appear as a result of the present calculation in the absence of phonons.
We shall see in Section 4, however, that phonon-exciton processes do
indeed pré&dict such an effect.

A significant fact that emerges from this treatment concerns

the role of exciton creation, annihilation, and transfer processes.
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To the order calculated, these processes have no effect on the zeroth
through fourth moments of the combined lines, and only the transfer
terms contribute to the fifth moment. It is indeed so that their effect
will be felt in higher order, but, in light of the estimate of the mag-
nitude of higher order contributions SectionS; 6,this should be rel-
atively unimportant at temperatures for which the fine structure lines
are distinct.

Finally, we note that the dependence of the moments on mag-
netic field is determined essentially exactly in the present treatment.
The fact that experiments tend to be performed at magnetic field so
that 8 A< < | makes knowledge of this detailed structure somewhat
unnecessary. We suggest that if experiments were performed at
much higher fields (perhaps a factor of ten), the measured field
dependence of line shapes could provide perhaps the best experimen-

tal confirmation of the present theory.
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4, Exciton-Phonon Interactions

4.1 Interaction Hamiltonian

We now include the effects of phonon-exciton interactions in
the calculation of the moments of the absorption spectrum of the
linear triplet system. The dimerized chain is represented with two

molecules per unit cell, coupled as shown schematically below.

(, 1) (p, 2) P+1,1) @®+1, 2)
g1 Al E '_.

O
GEE G G G

a

th olecule in the pth unit cell is denoted by (p, o),

The o
- where p=1,2..., N, and ¢ = 1,2. Each molecule so designated has
spin 2. Cyclic boundary conditions are imposed; i.e., (p + N, «)
=(p, o).

The interactions included in this model are:

(1) The nearest-neighbor spin interactions previously discus-

sed, now considered with position-dependent exchange integrals;

(2) Van der Waals interactions between nearest-neighbor
molecules in the same chain. For lattice vibrations of (assumed)
small amplitude, we use the harmonic approximation, representing

these interactions by effective springs, with spring constants
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determined by the curvature of ‘the potential at the equilibrium posi-
" tion. These spring constants are denoted by g, for the coupling be -

tween the molecules of a dimer. [i.e., for the interaction between

molecules (p, 1) and {p, 2)],and by g, for nearest neighbors in dif-

ferent unit cells [i.e. », between (p, 2) and (p + 1, 1)];

(3) Effective quadratic interactions between molecules of the
chain and the rest of the crystal. These interactions, represented by
spring constant G, are an attempt to account, at least approximately,
for the actual three-dimensional character of the lattice. The result
is to suppress free translations (in the zero frequency mode) of the
~ chain considered.

The hamiltonian for this system can be written

3= g +ff(’sp +:¢(‘p, (4.1)
where: N
2 Z 22 ~Z AZ
g = ﬁ:ﬁ [a (sp’ r sp,z) +D &, 18, 5) ] (4. 1a)
N
Hop = pzi [Ip, 25p41,1 Sp,2 " Sp,1
| , 2 (4. 1b)
+ 9 41, 13p,2 Sp2 " Spa, 1
N 2 N
= _1_ X 2 ..].‘_
Mp"?m p;i azg I , O T2 pg [G(fp,l’”‘zp,z)“
2 2
+g (Xp,Z'Xp,l)_ + g, {Xp+1,1_xp,2)]’ (4.10)

In these equations:

X5 o is the displacement of the {, o) molecule from the equili-
, O

brium position (in the absence of spin interactions);
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IH?, o 15 the momentum operator for the (p, o) molecule;
m is the mass of a single molecule;
§p’ cé is the spin operator for the (p, o) molecule (s = 3);

the terms with coefficients J and J’ are the nearest neighbor
exchange interactions;

the term with coefficient D is the (small) anisotropic spin
interaction;

the term with coefficient A is the interaction with a constant
d. c. magnetic field.

The position and momentum operators, x and I, satisfy the

usual commutation rules:

[T 0 g, p) = 17 By O (4. 2)

For small displacements from equilibrium, linear variation

of the exchange integrals with distance is assumed. Thus, we take
= -] - 4.3
Ip,2;p,1 =% 3 (5 9 =% 1), (4.32)

T a1, 15p,2=% 1 (pyp 1 % 0) (4.30)
The hamiltonian can now be written as
{}ezg()s,‘*'g‘cij”':}(’l”'cp (4*4)

where:
3 is identical with the spin hamiltonian of preceding sections,

with constant coefficients;

= 3 2
J=Jo 3 G+2 (g +8)° @'48’)_
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r_ g 2 il .
I =do -3 G+2(g, +g,)° (4‘470?
:fi 1 27 T8 1z
='—2-17np’a I—%:Ci +2 P [G(yzpyl +y2p32)
2 2 .
+ 81 (_yp, 2~ Jp, 1) + B2 (yp-,!-l, 17~ Yp, 2) 13 (4. 4c)
DD Cy )3
=1 g U290 N
S - A . (4. 4d)
S % B 17 Yp,2 Sz S,
and ‘ ’
) i2
In these equations, we have obtained y from x by the
pja pia
translations:
- RS L— : 4.5
¥p,0™ ¥p,0* 0V I, v ey (#.9)

The translations were used in order to remove a linear term
in the displacements. This term arises from the zero-point energy
~ of the singlet state of a dimerized pair of molecules. [In Eq. (4. 4d)
Np = 0 if the dimer in cell p is in its singlet spin state, and Np =1if
this pair is in one of the three triplet spin states.] We will, then, be
obtaining phonons representing vibrations about a new equilibrium
position. Rigorously, we should then reinterpret the spring constants
and the derivatives of the exchange integrals as those measured at this

new equilibrium point.

4.2 Diagonalization Q_f_ the Phonon Hamiltonian

A transformation diagonalizing 3(’2) is:
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_1 oy ikp " - ikp T '
i ‘ = - m] k) ikp ek - ikp T ‘
Tp, 0™ "N l%,’u W pae™ Py ™ % po® Py ) Oy (4. 62)

Here:
k=-7 +%TI-—+—2%3, r=0,1,2,... N-1;
p=1,2;

a=1,2,

The operators bT T bk,u are boson creation and annihilation

operators; i.e., they satisfy the commutation relations

[bk;u,’ bi;’v ] =By G,uv 4.7)
[b, , b, ]=[b] , b, ]=0 (4.72)

kp’ "kK'v bk,u’ bk’v ) :

The c-numbers ukp.oz and wku are obtained from the secular

~ equation
23 = (4.8
det | E’Lkaﬁukuﬁ"mwf:u“kua =0, (4. 8)
where:

Lp11 = Dypp =G +e1 78
Lk12 = LﬁZl = - (gl + gzelk)-

The Uy " o,’s are normalized by either of the following (equi-
valent)equations:

Z_}u u* -—__.1_.__ 6
' k kva 2
& kuo kva MW ),

I (4.92a)
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or

1 .
* =
m Uy Qo ukuﬁ wkp 2m 60{6 ' (4. 9D)

N

Solutions to equations (4.8) and 4.9) are

2

mey = Lygqyq - (‘1}“ |1z (4.10)

g = mwku)‘% (4.10a)
L1z

vy 0 = (D LLl;_ﬁ} U (4. 10b)

The hamiltonian (4.4) can now be written, to within an additive

constant, as

- 5 ¥ 5 ikp
=730 + kzp’ C“’l{ubkubku+kj_zl—'1\) (Ck,ue bku+h'c‘)Np

~

> ikp S
tifh Gepe Pyt hee) Sy o 8 s (4.11)
where
Cy = Jﬁr(“kuz - “k,.d) , (4. 11a)
and
— - ., ik —
A, = Vﬁ’(_“kule uku2) . (4. 11D)

4.3 Effects of Variations in J on Line Shapes

For a strongly dimerized chain (i.e., J>J'), it is to be ex-
pected that variations in J due to latticev vibrations will produce much
larger changes in line shapes than will phonon-coupled variations in
J’. Thus, even for vibrations that are ""small" in the sense that the

harmonic approximation to the phonons is applicable and variation of
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J and J’ is linear, it may be that the changes in J are in fact larger
than J’ itself. In this section we (for the moment) neglect variations
ind (i.e., we setj =0), and consider the hamiltonian (4.11) with
d

Ky
First, we show that the phonon interaction can be expressed in terms

= 0. Two different tz:eatments of this problem are presentéd.

of an effective interaction between triplet excitons, and from this ef-
fective interaction deduce the nature of the change in the absorption
lines. Then we shall carry out the moment calculation on the hamil-
tonian with j* = 0 to terms of second order in ¢ 1w thereby allowing
this parameter (which is proportional to the change in J) to be moder-

ately large and still obtain qualitatively significant results.

4.3a Effective Interaction

An effective interaction between triplet excitons due to phonon-
coupled variation of the exchange integral, J, has been calculated by
~ McConnell and Soos 12 . In their treatment, this interaction was
obtained using lowest order perturbation theory. We shall obtain a
result that is, in fact, equivalent to theirs, without approximation.
This is obtained by performing a linear canonical transformation of
the phonon creation and annihilation operators to new boson operat-
ors. |

With j’ = 0, the hamiltonian is

- 5 i 7 ikp
e SCS + k”'ﬁ/ wkll bk“ bk[J. + k%’p (ck“e bkp. +h.c. ) Np (4. 12)
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i 7
We define new boson operators Pku and Pk,u by

— cX .
- 7y _kyp -ikp a
Pk,u bkp. t 5 "y e Np , (4.13a)
t ool . 5 ke Jikp g
=D ‘ . .
Pe,=be,+ & A, PN, (4.13Db)

Observe that

[Ny NLT =[Ny, b, ] =[N, by ] =0

so that the new operators do indeed obey Bose commutation relations.

The hamiltonian can now be written

‘~’- oik(p-a)
K=+ k?‘u “ep P Pk,u éﬁ 5q® NNy
u

=30, + ﬁ wk# Pkli Pk,u l%ﬁ ckp.\

5 R S qcp B
-2 & & nér') [o,i“l cos nk Npr+n (4.14)
u

Using the sums derived in Appendix ( C ), this can be ex-

pressed as
=50 + L Pl P - XN
s Ko “kp ku“kpT % pp
35y an
re i NNy s (4.15)
where

PG+ (1-€M)]

€ = ’

al "'Q’z
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2
i G (G +2gy)
glale - Oy

1+ 41 -ogzz
A= In :

E1=

2

2
o0,=G +2G (g +g)+288 .,

Oy = 2g1g2/051

It is to be noted that the new boson operators P and PJf
contain both phonon and spin coordinates. To the extent that exciton
creation, annihilation, and transfer terms of ¥, are unimportant,
however, P and PJr can be considered to be independent of spin
(that is, P and 13T commute with all of the spin hamiltonian G except
for these three terms). It will be recalled that in Section (3.6 ) we
concluded that creation, annihilation and transfer of triplet excitons
does not affect the shape of the absorption lines to the order to which
the calculation was performed, and that higher order effects were
expected to be small. In the following, then, we shall discuss the
hamiltonian (4. 15) assuming that site excitation number, Np’ is con-
served. |

The effective exciton-exciton interaction exhibited in Eq. (4. 15)
is seen to contain two terms:

(1) The ¢, term, an exciton self-energy correction, resulting
ina renbfmalization of J. The new effective exciton excitation energy

isd - €;



-63-

(2) The ¢, term, representing a repulsion between excitons,
' decaying‘ éxponentially with distance. *

Related to these two effects is the change in the equilibrium
separation of the molecules of a dimer. From Egs. (4.86),(4.11a)

and (4. 11b) we have

Tp2 " Ip1

In the ground state of the P u’s , for example, we see that if

dimer p is excited, this excitation increases the dimer length by

2 €, /1 (corresponding to the decrease in J indicated above; half of
this is offset by zero-point energy of the new "phonons''). Neighbor-
- ing excitations tend to decrease this bond length.

Of the two terms of the effective interaction, it is the exciton
repulsion that is particularly significant with respect to line shapes.
The self-energy term, indeed, will affect the temperature dependence
of exciton concentration, but since we do not know the magnitude of
the unrenormalized exchange integral on ¢ priori grounds, this

effect is not observable. By comparing the temperature dependence

* This repulsion is equivalent to Eq. ( 13 ) of McConnell and

Soos ( 12 ), although expressed in a different form.
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of the line width with that of the exciton concentration, however, we

~ can measure the effect of the repulsion. This repulsion would be ex-

pected to diminish the line-broadening exciton nearest-neighbor inter-
actions, and therefore to result in anomalously rapid decrease in line

width with decrease in temperature. We shall observe presently that

the moment calculation confirms this expectation, providing agree-

.ment with experiments on many triplet systems.

4.3b Moment Calculation (¥ =0)

With j’ = 0, the second order corrections to the resonance-
line moments can be calculated fairly easily, using the techniques

previously developed. The hamiltonian is separated into

3= 130, + 53¢ (4. 16)
where
3o =SCJ +:}CA+SCP
r o 5 1kp
30 "SCJ"Pkup(ck,u bku+h c.)N +$CD

&C K“' wkpbku ku*

The harmonic components of 3¢' with respect to 3¢, are 3¢’ (0),
3'(x 2J), as in the calculation without phonons, and

v = 2 f eikp T
3t (+ W) = Zﬁ Ciep © bku Np (4. 17a)ﬂ

% (- )= G e b, N (4. 170)

P
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The series for the absorption operators will now have compon-
ents that vary like powers of N%ck u/wk u In order to assure rapid
convergence of this expansion, we must therefore require that uk.u
be sufficiently large. Note that because of the inclusion of coupling
of the chain to the (assumed stationary) three-dimensional lattice,
the minimum phonon frequency is \/’I\% , not zero., The rms change

in bond length of a dimer, for uncoupled lattice vibrations, is

1
N -gHp 1 ikp
<(yp2 yp1)> = [Tre P l%}L ck“e bku
2 i
+ h.c. l/Tre—,BHpii 2

) 17 [Tre’ﬁHP Z e, ? (b};ubku +bkub]7;“):\ z

= Tre PHP

Using the fact that

b 1
ku “ku
Tre BHp eBwkﬂ -1 (4'17(:)
we find
2 2 k! 2
O L)

We shall see that the values of W, BTE such that Buwy py ~ 1

for the temperatures of interest. Thus

% N \ <A(Yp2 - Yp1)2> :
Wy “eu

1
N2 Cku
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The physical requirement corresponding to convergence of
the g—function expansions, then, is that the lattice vibrational fre-
quencies be large compared to the exciton excitation energy changes
corresponding to variations in bond length. This condition is satis-
fied if the slope of the exchange integral vs. bond length curve (j) is
sufficiently small, or if the temperature is sufficiently low. A more
detailed discussion of the conditions which we are led to impose on
the magnitude of w, , Appears in Section 4.4, in which we allow j’
to be non-zero.

In this calculation, we retain second-order terms in j, but
still assume that second-order terms in J* and D are negligibly
small. An examination of the general expressions for the g-functions
to second order reveals that to this order the presence of j produces
no changes in them that can contribute to the moments. The zeroth-
order g-functions are unchanged because 3¢’ (0) is unaffected by the
~ phonon coupling; the first-order g—functions are also unchanged, be-

cause
| [Np, [:fc 0), [5¢' (0), V (2)] H
_ [Np, [5 (©). V (A)]} =0,

from which it follows that
[sc’ @) [0, [0, V@] }

- [sc' (> (5 (0), V (A)H = 0.
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The changes in the second order g—functions are all either

H) )

These off —diagonal terms can contribute to the line moment only in

zero or off-diagonal in phonon operators (i.e., of frequency W

third order, since the trace of such terms will be zero unless multi-
plied by (at least) first order terms of the expansion of e PR,

As a result, changes in line _moments due to a non-zero j will
come entirely from changes in the traces of the old g- functions.
This change in the trace of an operator arises from the diagonal sec-

ond-order terms of the expansion of e -AH

, and is quadratic in j. If
C is taken to be a pure spin operator, the change in its temperature-

dependent trace is

5 Tre PHC
Tre -fH
1 —BHO 7
= Tec P Eﬁ‘%o o, - @) TreToue ()

e TTG_BHOC)
§ JC(wkp)(C— TreﬁHﬂ

wkZ:?O v(- W wk ) Tre PHo 5’ (- wkll)

| ~BH,
x50 (wk“) (C —-’%—C—ﬂ (4.18)
where |
yiw,- w) = i w'al - Bw

H, can be separated into spin and phonon components. Since
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the basic spin and phonon operators commute, general traces over all
- states of the system can be factored in the following manner, If Ak M
is an arbitrary phonon operator, and Ep an arbitrary spin operator,

we can write

Tre_BHOAil‘LEp Tr, e 6(H +ﬂA‘)E>(Tr e BHPA

Tre P Trse-B(HJ + Hp) Tr e—fsﬂp

where Trs represents the sum over spin states (only), and Trp a sum
over phonon states (only). Using Eq. (4.17¢c) to evaluate the phonon
traces, Eq. (4.18) becomes:

5 [Tre ’ﬂ{c:‘
Tr‘e"ﬁE

= L BJ__;_L K(PQ)

kilpg  “kp
_ary (8)
_gH (s) Trge Ay,
Trse © NpNgq C- ®)
Tre PHo °
X ©) (4.19)
Tr e PH,
S
where: H (s) = H_+H
: o . A

If the spin operator C is a sum of n-site operators, i.e., of the form
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.D (4.20)

C = Zil' ArBr+1" r+ﬁ-1 s

we can evaluate Eq. (4.19) in a more specific form. This form will,
in fact, allow us to use the previous results for the moments in a par-
ticularly simple way.

If C is given by Eq. (4.20), it is straightforward to show that

gy (8)
Tr € BH, NpNqgC 1
om,®)

{ 2n(T-1) + n(2-I) 6pq
Trse

n-1
+rZ;1 (n-r) (bp,q+r + Op,q-r)}

Trse'BHO (&) C

(4.21)
Trse'BHo )

X

b

from which it follows from Eq. (4.19) that

Tre PHc o Cc |*
5 — - B Z, £ {Zn(I’ -1)N& (k) + n(2-T)
Tre r? ke “%kuy -

s
Trge 'BHO( )C

n-1
+ ), (n-r)2cos kr
-1 _
: Trse FH,

Using the results of Appendix { C ) to evaluate the phonon sums,

we find



Tre_ﬁﬂ)c} B _ﬁ__ [ vy _ ]
5{:W = I"z {n (2 I‘)EO + (T 1)62

nfl BHO(S)
-3 (n-r) e e Tre o (S)C (4.23)
r=1 Tre Pt

where €, and €, are defined by Ec. (4.15) and
€x = zjz/ G+ 2(g, + 2).

If the components of C all have zero matrix elements on the
singlet state (i.e., non-zero matrix elements only within the excited

triplet), we can write

(s)
-8

Tr_e P ® = <7 (4.24)
" where << C> is independent of J. Inasmuch as the parameter j is
small, the change in the trace of the n-site operator C can be in-
corporated into a renormalization of the value of J appearing in the
exponential of Eq. (4.24), plus a (repulsive) activation energy for

exciton pair formation. We define

T =0- zlf €, - Q;'E’:l & (4.252)
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~and
. n-1
Eq (n) = Z (n—r)e'}‘rel/l"z, (4.25b)
’ r=1
ER (1) = 0.

We can now write

Tre'BHC _ N«xC>» | -B(nd + ER(n) )
-gH r?
Tre™ (4.26)

+ 15 order terms (BJ’, BD).

In Eq. (4.26), the first order terms in BJ’ ‘and BD are the
same as those in the calculation without phonons. ER‘(n) is simply
the total repulsive energy of excitons appearing on n consecutive
~ sites (the factor (n-r) is the number of pairs of excitons separated by
T e €,/T'? is the repulsive energy of such a pair). Cbserve that
in the low temperature limit, for which T' = 1 + e B J(1 + 2 cosh BA)
-~ 1, the renormalization of J and the exciton-pair repulsion reduce
exactly to the values predicted by the effective interaction technique
of the preceding section.

Applying this result to the zeroth and second moments of
Section (3.6), which arise from traces of single-site operators, we

find
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J
M, = 2 M) = X8 sinpa
D? r

-BJ
2e cosh BA)

-BJ )

Ne . D ;

- sinh A (= (1~
= B sinh B 2(

3’ e PJ 9¢7Pd
r

sinh’ ;m) (4.2m

+

< cosh BA -

The fourth moment, M,(A), contains one-, two-, and three-

site contributions to its zeroth order trace. The new value of M, is

. )
M,(A) = %- M, + $D°J'2 i%— sinh ga ¢ P2I+ER (2))

;LD g2 % sinh BA (cosh ga -1) e B3I +ER(3))

+ 15 order terms (83’ , 8D), identical to those

of Appendix B. (4.28)

At temperatures sufficiently low so that the second moments of

- the individual lines contributing to these moments can be approximated

b
Y D’ _ P M4(A) -1
8%~ 18 IF

15 Mo

we find that the exciton density p varies like

p~ B (4.292)
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whereas the width W of a single line has temperature dependence of

the form

poj

BT+ Bg (D)
e

W~ Vy, ~ (4.29D)

W~ o BE+EZ2)/2

Recall that in the absence of phonon coupling,we found

p~ e

b

W~ e'BJ/z.

Thus, the repulsive energy between triplet excitons due to

| phonon-coupled variation of the exchange integral J results in an
activation energy, ER (2) , for line broadening processes. Low temp-
‘ erature measurements on WBP’6 determine excitation density
varying like

p~ o-P(246 cmY)

and line width like
W~ o-B(392 cm™).

The phonon coupling, then, yields a correction to the temper-
ature dependence of line shapes that is at least qualitatively correct.
In order to obtain quantitative agreement with experiment, however,
the repulsive energy would have to be so large that many higher orders

in the expansions used should be employed. McConnell and Soo,s12
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_using data on the bond lengths of WB dimers in solution24

, estimate
that ER(Z) may indeed be this large (as an upper limit, they obtain
500 cm™!!). In any event, it is clear that a coupling mechanism of
the sort examined in this section can, in principle, explain the anom-

alous line broadening which has been observed in triplet systems

4.4 Moment Calculation {j' = 0)

We now consider the more general phonon-coupled hamiltonian,
for which we do not assume that j’ is negligibly small. In addition
to those components previously discussed, the spectrum of 3’ now
| contains additional components of frequencies = Wy 9 and new terms
of frequencies +J £ w), po 2J + Wyg s all of which are included in the

interaction

Z (dkuelkpbku+ h.c.) §_, 8§
k pp

ool (4.30)

We shall calculate the first-order changes in the even moments
of the absorption lines due to this interaction, keeping terms that

contain factors of

x .
G S (03¢5 (63 )
W - Ygp ’

but, since we assume that j’ is quite small, dropping terms like
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o, I oy |
Yxu Yru

In th.{s case, the changes in the g-functions are significant to
the order of interest. (Recall that with j’ = 0 changes in the g-func-
tions cd not affect the moments fo gecond order.) The series for
the absorption operators will contain powers of the characteristic
phonon-exciton interaction energy divided by phonon frequency,
dk 1k / Wiy - Thus, for purposes of convergence, the interaction
must be sufficiently small.

In addition, these expansions will contain energy denominators
like

[nwy, + mJ| -

which can represent resonant phonon-exciton processes. The phonon
Irequencies that are expected to be characteristic of WBP, although
‘fairly large, should be small compared to the exciton excitation
energy, J. (J =246 cm™; we anticipate Wiep ™ 50-100 cm™*.) Thus,

any resonant processes described by
nWy ), = md =0

can occur only for a rather large number of phonons in virtual inter-
action. The large contributions from such multi-phonon interactions
are, in a sense, spurious. They must correspond to large lattice
vibrational energies, for which the harmonic approximation to the

phonon hamiltonian is a poor one. The damping due to these
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anharmonic terms, plus the fact that an n-phonon process contains a
- factor of e'nﬁwku , will limit the magnitude of such terms. In the
present calculation, we restrict the analysis to consideration of (at
most) a few phonon processes, and disregard possible high-order
resonances.

Examination of the general absorption operator expansions re-
veals that the changes in the previously calculated zeroth- and second-

moments are zero to first order:
oM, = 8My(A) = O (4.31)

but that change in the fourth moment is non-zero. This change can be

written as

e Pl 5 Y ), 5 (0, o ), v ]] |
V=20,

5M4(A) =
Tre PH (4.32)

where
p] = [se(0),[xe’ (0), v(a)]]!

. . 2
Discarding |dk " ] / “kuterms, and performing phonon

traces, this can be expressed as
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3k
- G c .
GV (2) = -Z/ kp Ry eﬂ‘-k(Q."P) +h.c.)

kupg wku
—B}IS T A
Trge [P, 1[P) g.qs1 NP
X = (4.33)
Tr.e 5

fet)

where:

(35) _ L p oD gy
g q,q+l = 370|720 E q,0+1

The commutator [Pj, Pz] has already been determined in the
phonon-free calculation and involves sums over two- and three-site

. spin operators. If we define
B, = L (D*3%part of [ P,], B,])
¢ —jT o part o 2y *2 ’
then it can be shown that

o fa e . -ik
OML(A) = -, <i{—%k(—:—15-1i [Né(k) (%:D + }—Jrrg————jl +h.c.
n

ky
- (S) —~ * 3 i
. Tre P B, . Gy {2 M n e,
A A T
- H (S) A
Tre’BHo(S) |
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In equation (4.34), P,(3-s) represents the three-site part of
the operator ?’4.

Evaluating Eq. (4.34) with the aid of the phonon sums of Ap-
pendﬂx (C), we find

' B
DFJ’ sinh BA { & €5 + e, - €5) =— (cosh 5./_\-1)} (4.35)
r

927
Ne 28
3

T

V(L) =

where:

€2=ij'§ (r-1) +G(I{n "‘%{)-fg(“' _[:}

G+ 4{g,-g,) 1

2al
c. = 34
g = S

G',l

o

(G+g +2g)(1 +1L).

I we again assume that the widths of the individual lines can be
represented as proportional to vy, , and consider only the dominant,

zeroth order parts of v,, we find

W = (W+oWP~up, +01 = V4+6Ni A - V4<1 +£§-)
A"M, J

The effect of a non-zero j’ to lowest order is simply a re-
normalization of the width (an increase), approximately temperature
independent. It is only at extremdy low temperature , where the factor
(T - 1) appearing in €, is significant, that such a renormalization
could conceivably be detected by observation of temperature-depend-
ent line shapes, and at such low temperatures the expansions used

converge very slowly. Perhaps the most significant result of this
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portion of the calculation is the negative one: the lowest order
effects of a non-zero phonon-coupled variation in the exchange inter-

action between dimers does not produce any anomolous temperature

variation of exciton concentration or resonance line width.
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Appendix ( A)

The following commutators of g-functions, the traces of which
must be taken in order to obtain line moments, are not complete:
terms which, by virtue of being sufficiently off-diagonal, have zero
trace to the order of the present calculation have been dropped. (In
the results tabulated below we have set V, , the magnitude of the
oscillating perturbing field, equal to unity)

[VT; go (A)] = -_]‘__ESZ 3
2 p P
[V g (8)] = 2= Z(q, +8%),
4 P p

|

D? z , 3DJ’ z
[VT, ge (A)] 2. 8% 4 2. (S% ST s
2 8 p P 16 p P P P®

Z C o\
Sp pﬂspﬂ + flip),

(v, g(a)]= 2 > Z(Q + 87 >+ 2{3"'[ sh5,7, 2

p+1 P+1

Z ot g Z o Z\ (a2 Z o Z
- S_S 2
Sp b Spra + Spsp Sp+ Sp+ + 2 (Qp +Sp) (Sp 1 Sp_'_l Spﬂ.)

S”s% gt g% g%st s g%
+PP+1P"1P+2 p Spay Spe

(continued)
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+aq- QZ qZ - oZ ot oZ
S - SoS_ .S
* SP Sp"‘ﬂ Sp+1 Ptz SP P Ph Ptz ]

D[Q ( 25% 58% g™ g~ 5t g7 g2
+DIQ(Qy, +28 ), ) +55 8 8,  +58,8,, 5o

P e 2 o= .
-1osp;~3pspﬂstJr:1 -2SpSp+;]+fhp},

2

4 2./

[el (8), go(a) 1= -2 22+ 2L 30 [.3¢%(s" s° +Q
32 p P 128 »p P

-~QZ ot +oZ o= Z Z
_6Sp Sp+1S Dy 68 pSp +1Sp nt 2 Sp QpﬂQpﬂ - stp+1Qp+2

z v/
+2 Sp Qp " Sp_'_2

+28% ) -2(s’s:

+to~  QZ - Z ot
-(S'S S +S S8 S )(Qp+2 e 2Sp

P pta pra P Pt Pph

—at o
*+ 5851 Spis

A - + - Z VA +
+ (Spsp Sp+1 + Spsp Spﬂ.) Qp+2 + 2 (Sp Sp Sp+1sp+1

Zotq-  oZ z
+ Spsp Sp+1sp+n) Sp+2

+ flip } .

Pt Pt P+a
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D* D*J
[/ (4), & @] = B [V] e 4]+ 25 ZID Q@ +287,)

_(2st + 8%8T) 8" 2g%st - gt)s- &%
(28, +S;8;) S, + (28,8, -8 ) S, 8, ]

33’ - Z ot + 5 a-cZ Z ot +
-2 S S ) 2 —c‘
, [ Sp( " p+1+ssp+1)+2spsp(spﬁsp+g_ up_m)

+

- 4 +S-SZ - S+ Z - 2 - Z ~+ 3 Z SZ - S" Z +
SP p PSP'H‘ P"‘lSP“‘a SP Sp SP ( SP+31 p+1 P“SPHSP'*'I)

- + + - - §+
- (8p Spaa 55551 ) Sy Spea

-Z ot Z ot o= 7 - QZ ot
- (85 + 558, 8,,) (255, + S5, 8P SpL)

- - oZ Z + - Z ot
(8,-25, 8, ) p12 Sp4s) Spas SpiaSpaa
+ Z ot - oz - Z ot
(8 - 28] S (Sh40 Sp42) S pia St Spia

- ot zZ Z oz
+Sp Sp (Qpﬂsp-l“z-'.Qpﬂ Qp+z+sp+1 Sp+2)

z z
+ Sp (Qpﬂ+2 Sp+1)Qp+z]

J’ Z
" [ Z(Q S _ SZ Q S- V4 + V4 + -
o o p ™ % Ypu) i, S5, Shuy + 85, 80 80

-8 gt oo Z
P+2 Pt+s pP+3 Ptz p+3Sp+3)

(continued)
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YA Z
+ 2 Sp Qg (Upsy Spsy = 2 Sp Qp+ ) +2 stpﬁspﬁ g

- Z ot o= oZ Z oF o=

+28 ( 25p+1 Ptz +4 SP+1SP+11 Pﬂsp"“z "7 PpaTph Tpg

-387 8% gt )y &2

P+ prpre Cp+s
+ -
+ Q841504 %
: -~ Q2 of Z ot o
+Q, (2 Spﬂ pta * 2 Sp+isp+2 =% 551 SonSpts " SpSpaSpr,

+38F 87 s% +3s’ % st )gZ

p+1 Ptz pte P+a Pta2 Pra’ Pt
Z Z Z Z ot o= oZ
+2 Qp(Qp+1 ptz Sp+2 Sp+1 Sp+1 Qp+2 * Spﬂsp+2 p+gsp+z )

Z . -+ VA
-2 51) Q. (2 Spta ¥ Spia Spig Sp+e)

Z -+ - Z Z ~Z Z VA
-4 Sp Spﬂ Sp+zsp+z Qp+z -4 Sp Sp+n (6 SP+2 SP+2

+ o= oZ
" Spta pta Spta

St )y-128%8” &% sF g%

-z
+48 b “p1 “pap+pe

p+2 SP+2 Pta

(continued)
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- ot + o + o oZ - ot
- (Spsp+1 +Sp Sp+1)(5sp+2 Sp_}_2 Sp+2+ 12 Sp_h2 Sp+2)

-Z ot +oZ - z - o ot
+ (8,85, S+ 50 Spy Spue ) (8804, = 85, 504, Spyy )

Zet @~ - oZ ot Z - o ot
- (85 8, + 8, S5 8),, ) (2280, S 8L S )

Z ot~ oZ -Z oZ  oF - Z ot .
+2 (Sp Sp SpﬂSp ot SpSp Sp " Sp " ) Sp+2S o +28p +2] + flip }

+ three- and four- site terms from the exciton

transfer part of ¥¢ .
In the equations above, the operator Qp is defined by

+ o= % , a= % ot
= - s .
Q= =SS5 +5% 5 5%

The operation ( +flip) is defined, on an n-site operator, by:

Ap B ... C +
= Ph pin-y
AB, - Copp, +1lip= { - i

b+ Boincg Aping-

The exciton-transfer contribution to [ g, g, ] was not written
out above; its effect on the fifth moment is most simply determined by

direct calculation of the traces of the factors which comprise the
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commutator. The fifth moment, as tabulated in Appendix (B ),

~ does contain the full contribution of exciton transfer.
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Appendix ( B )

Listed below are the zeroth through fifth moments of the reso-
nance near g=2 for the triplet system in the absence of phonon inter-
actions, correct to first order in J’ and D,

M, = NLAsinh gA{ 1- %‘2.( 1- 2L cosh BA)

- 8J"L(cosh BA - 2L sinh® BA) b,

M;(4) = -NLA{—?—(cosh BA-1) - fo cosh BA[ 1-2L(cosh gA-1) ]
DJ! .
-B5— L sinh® Al 1-2L(cosh ga- 1)},

M3<A)=—;LD-5- M, ,

‘ _D* g A D2J/
M, (4) -T M,; (4) - NI2A -:1-— { 2(cosh BA - 1) - 8D(1-4L cosh gA)

* (cosh pA-1)

- %ﬁ [cosh BA+ 2 + 2L sinh? BA - 1212 sinh? BA
(coshga -1)] },

-2
M, (8 D, 4 N2 A2 ginh gal 3 + 2L (cosh BA- 1)
16 8

(continued)
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_BD [3 - 4L (2cosh BA-1) - 1212 cosh pA(cosh BA - 1) ]

-BdL ['3 + 2L (5cosh Ba+ 4) - 412 (cosh B A- 1) (Tcosh A+ 9)
4

- 32 L¢ sinh? BA(cosh gA-1)]},

2
M, () = %ng(A) - NL? A%—-‘—]’{ D*( cosh BA - 1)

- %’- (cosh A-1)[ 1+ 2L (cosh 8A-1) ]
9 2
+z— J’ (cosh BA-1)[ 1 + 2L (cosh Ba+ 1) ]

_ zD (coshfA-1)[ 1 -4L coshBA]

(cosh pa-1)[ 1 - 4L cosh BA]

8D°
2

2'
Q.%-J-[ 3 + L (coshpa-1) (cosh BA+ 2)

- 6L’ (coshBA-l)B]

(continued)
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; 2
-BDJ" I70sh BA + sinh A - 15 - 2L(cosh BA -1 )
8
(3 cosh BA - 13)

- 417 ginh® B A (26 cosh BA - 1)

+ 32L° sinh® BA (cosh BA - 1 )? ]
_BI 7 [9(cosh BA+ 2) + j‘i——-(ccvsh BA+1)
16 T
+ L (cosh BA+1) (62 cosh BA - 5) - 2 %— sinh2g A
- 21? (cosh BA - 1) (28 cosh® BA - 11 cosh BA - 41)
- 288 L° sinh*pA]} .
In these equations:
e PJ

L= R
r

r=1+e PY (1+2coshpa).
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Appendix C

In Section 4 , sums of the following forras arise in the deter-
mination of the effects of the exciton-phonon interactions:
2 2
o ey - el
) IEEL Ns(k), /) KL cos nk,

kp “ku kp “ku
* * -ink
~ [d ¢ /4, ¢, €
L Ry kp o h.c) No(k) , }_‘ k“wk“ +h.c.
ku "’ky, ku ku
where:
S -

U1 (4mwk“ 2
Lyqa|
gyl l k12
uk,uz =(-1) 17} 12 ukul ,

- _ p+1
mwyy, = Ingq + CDF (Ll

Iy =G+eate,

ik
Lk'i2 = -(g, + gzel )-
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The sums over uare most easily executed with the aid of

the orthonormality conditions (4.9). The results are:

E iCr i 2  (G+g -gco8k)
m Wie - 51041 IT-cagcosk ’

* ‘s

/a ¢, e K i 1

/. kp Ky +h.c.] =

I Wy, C o, (1 -c,cosKk)

X {gz [cos (n+1)k + cos(n—2)k]

- (G+g) [cos nk + cos (n—l)k]} ,
where:

2 2 3
a; = Lkll—gl - 82 >

]
%)
|

= 2%1%2/951 .

In the limit of large N, we can replace sums over Xk by

integrals, i.e.:
; #k) — 5— L 1(6)do
Integrals to be evaluated are of the form

= 1]‘ cos no dé

-1 1-0yc080

Simple contour integration yields:



1 = 1 1 -v1 - @2 |
n VI -a,? Oy

(Note that 0= @, =< 1).
The required phonon sums, expressed in terms of I o 2re

listed below:

ic iz jz ]2
) o No(x) = = ;
kp “ky mw, G+ 2(g, + )
— lck'LL'Z 2
1«;sz o, - @ [(G+g2)10—g211}>0,
Forn=1
'Z 2
e i*  G(G + 2g,)
LRy nk = - — <0
& cos & T
_ _SJ_ e—hlnl
where:.
jz G(G+2gz)
€, =
' g o, vl-ay ,
A:lnl_l'k C%"'Oéz ];
2
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“ 233
) __iL__H;jmﬁ k) + h.
B wene) - - gy
-ink * i(n-1)k
- (G " I wf &y, C
e Jep +h.c )2 ky Ky rh.c
Ky “kp 37 .3
i’
= -a: ‘:G(E + 1) + g,(1, Iz)} <0 Forn=20,1
_ i G ;
= -+ ,C!—l 'é'l— (G + g; + 2%2) (Ilnl + Iln_ll) >0 Tor
n= 2
i 2 -An) . _-Aln-1 or
= = ..i.
3 ( + m) €1(e + € ) 0 <-1
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Legends to Figures

Projection of the orthorhombic structure of Wurster's blue
perchlorate onto the a,c, plane. The perchlorate groups
are not in the plane of the chains of WB cations (seen
edge-on). (Figures 1,5, and 6 are reproduced from

reference 6 with the kind permission of the author.)

Susceptibility vs. temperature for WBP. Above the transi-
tion temperature the crystal structure changes, and the

present model is inapplicable.

a - 1 vs. temperature. The curves are terminated at
temperatures for which the width of the doublet lines be-
comes comparable to their separation. Note that the degree

of symmetry of the lines is of the order of 5% or less.

Line width, W, and exciton density, o, vs. 1/T. The
exciton density is insensitive to the value of J’ for the
ranges of parameters considered. The model used to

determine line width is inapplicable for & W 1.

Paramagnetic resonance spectra of a WBP crystal at 74°,
64°, 45° and 30° X. (These curves represent the derivative

of the absorption spectrum.)

Experimental plot of (a) relative spin concentration and (b)

exchange frequency vs. 1/T for a single crystal of WBP.
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