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AN EXPERIMENTAL STUDY
OF THE HYDROMAGNETIC WAVEGUIDE

Thesis Dby
Robert Henry Hertel

ABSTRACT

The hydromagnetic waveguide consists of a cylindrical metal
tube filled with a longitudinally magnetized plasma. Among the
classes of waves which propagate in this system are the compres-
gional hydromagnetic modes, characterized by a waveguide cutoff
at low Tregquencles and by a resonance at the electron cyclotron
frequency. This paper presents the results of observations of
the propagation of such waves in & decaying hydrogen plasma at
frequencies from 0.8 to 3.4 times the ion cyclotron frequency.
The phase shift and attenuation of the waves are interpreted in
terms of the ion density and the temperature by applying a theory
hased on a three-fluild description of the plasma. Spectroscopic
measurements of the Hﬁ line profile and absoclute intensity are
used to check the density and temperature inferred from the wave
measurements.

The results of this study indicate that a simple approximate
relationship between the phase factor and density obtained by
neglecting dissipation gives densities which agree well with the
spectroscopic measurements. As a diagnostic tool this method

may yield densities to within + 25% over a range of two decades.
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In the case of amplitude measurements only semiquantitative

agreement between the wave and spectroscopic measurements is
found, but the amplitude curves do show evidence of interfer-
ences between modes and a sharp cutoff at a critical density,

both effects predicted by the theory.
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I. INTRODUCTION

1.1 Background of the Problem

The study of wave propagation in plasmas forms an important
branch of the field of plasma physics for at least three reasons:

(a) Some types of plasma waves occur naturally or as the result of
unintentional or unavoidable interactions between electromagnetic

waves and natural plasmas; (b) Waves are one means of interacting with
nabural or laborétury plasmas, elther for dlagnosllc purposes or Lo
modify the plasma; and (c) a study of wave propagation is one means

for investigating the validity of the equations used to describe a
plasma. Thio invceotigation ic primarily concerncd with the last objcc-
tive, although there are some rather specialized diagnostic applications
for the results.

The particular class of waves--the compressional hydromagnetic
modes~--studied in this investigation is closely related to the waves
predicted by Alfvén (1) in 19%2. Alfvén waves may be described as
waves which propagate in a conducting fluid penetrated by a magnetic
field B  strong enough so that the field lines are "frozen" into the
fluid. In a hydrogen plasma, for example, a field strength of
L Web/m2 implies that a 1 eV proton will spiral about a field line
with a gyromagnetic radius of about 0.1 mm. If the field lines are
dilsplaced, 1t can be shown that the particles tend to follow the motlon.
The force on the particles for small dispiacements.of the field lines

turns out to be just what one would compute if the field lines were

8. Alfvén, Ark. Mat., Astr. Fysik 298, 2 (1942).
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elastic strings having a tension Bi/uo per unit area along the direc-
tion of the field. The mass per unit area of a l-meter length of the
"string" is just Py 2 the mass density of the plasma in kg/m3 .

Hence by analogy with the propagation of waves on an elastic string wve
find for the wave velocity the Alfvén speed VA = \/Bi/uopo .

A more detailed and rigorous analysis requires a careful speci-
fication of the type of wave under consideration. If the analysis is
restricted to monochromatic plane waves traveling along the magnetic
field, one finds two circularly polarized waves with phase velocities
approaching VA at low frequencies (2). It is customary to refer to
any equatlon relating the wave frequency o and the wavelength (or,
equivalently, the phase velocity or phase constant) as a dispersion
relation. For a plasma in which temperature effects are negligible,
the dispersion relation for the waves under discussion may be written

in the form

02
2 i)

(1.1)
(o + Qc)(m T mc)

vhere N = c/vp is the index of refraction or the ratio of the velo-

city of light te the phase velocity, wp = neg/m.eeO is the plasma

frequency, and ®_ = eB /m and 0 = eB /m, are the electron and ion
c o e c o i

cyclotron frequencies.

N2 is sketched in Fig. 1.1. Note that N2= 1 corresponds to

propagation at the velocity of light and N2 < 0 implies an evanescent

27, H. Stix, The Theory of Plasma Waves (McGraw-Hill Book Company, Inc.,
New York, 1962), pp. 32-3k4.
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Figure l;l Dispersion Relation for Plane Waves
Propagating along the Magnetic Field

(spatially decaying) wave. The upper sign in equation 1.l corresponds
to a right-hand circularly polarized wave with an index of refractlon
NR . TIts electric field vector rotates in the same sense as the elec-
tron gyrations about the field lines; at the electron cyclotron fre-
quency the phase veloclly approaches zerv and the wave is sald to have
a resonance. No‘propagation is possible in this mode for frequencies
between ®, and the cutoff frequency wh‘ corresponding to NR =0 .

The high-frequeney branch cxtending from W to infinity corresponds

to propagation with a phase velocity greater than the speed of iight.
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The lower sign In equation 1.1 represents a left-hand
polarized wave whose properties are similar to the first branch
except that the resonance occurs at the ion cyclotron frequency and
the cutoff frequency wp iS.lOWer than @

Both waves have phase velocities approaching VA ag the fre-

)

guency approaches zero; thus they may be referred to as the fast (NR
and slow (NL) Alfvén waves. Tn the frequency reglon described by

Qc << w << wc the fast wave is frequently referred to ag the whistler

mode.

The results of the plane-wave theory may be expected to apply
to experimental situations in which the dimensions of the plasma are
very large compared to the wavelength and where techniques for launch-
ing nearly plane waves are available. In this commection two groups of
experiments are noteworthy. Using the high-frequency branches above
the plasma frequency one can measure the phase shift undergone by a
plane wave in propagating through a known length of plasma to determine
the plasma density. Usually such experiments are performed with the
wave propagating across the magnetic field with E parallel to Eo B
or, equivalently, with no magnetic field. For typical laboratory plasma
densities (lO15 to 1022 m73) the plasma frequency ranges from a few

hundred megacycles to a few hundred gigacycles so that microwave inter-

ferometers are used for the measurements (3). For the denser plasmas

3J. E. Drummond, Plasma Physics (McGraw-Hill Book Company, Inc., New
York, 1962).
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infrared and even visible light interferometers (4) have been used:

The second group of experiments for which the plane wave theory
is a good approximation includes the laboratory studies of whistler
mode proﬁagation at microwave frequencies. Such observations were
first reported by Gallet et al (5), and have since been verified by
other investigators (6-8). 1In several of these experiments inter-
ferometers capable of separating the left- and right-hand circularly
polarized waves were used and propagation in the high-frequency'
branches as well as in the whistler mode was investigated.

We now turn from the high-tfrequency experiments related to ours
to a brief summary of relevant work on low-frequency Alfvén waves.
Although the first experimental observation (9) of Alfvén wave propaga-
tion used mercury for the conducting fluid, most later investigators
used gaseous plasmas where the wave damping 1s less severe. One 4iffi-
culty encountered in attempting to verify the low-frequency dispersion
relation is that for typical laboratory plasmas the wavelength is much

larger than the dimensions of the plasma; also, methods for launching

N
D.E.T.F. Ashby and D.F. Jephcott, App. Phys. Letters 3, 13 (1963).

5R M. Gallet J.M. Richardson, B. Wieder, and G D. Ward, Phys. Rev.
Letters L 4, 3&7 (1960).

A.N. Dellis and J.M. Weaver; Nature 193, 1274 (1962).

7A.N. Dellis and J.M. Weaver, Proc. Phys. Soc. 83, 473 (196k).

8D.W. Mahaffey, Phys. Rev. 129, 1481 (1963).

%. Lundquist, Phys. Rev. 76, 1805 (1949).
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plane waves are impractical at the frequencies encountered. An experi-
mental arrangement which circumvents these difficulties was described
by Newcomb (10). His hydromagnetic waveguide, Figure 1.2, consists of
a cylindrical'metal tube immersed in a longitudinal magnetic field and
filled with a plasma. The cylindrical shape permits the use of several
standard plasma-formation schemes and at the same time provides s well-
understood boundary condition (zero tangential electric field at the

wall). The wave equation separates in cylindrical coordinates and the

Typical Wave Excitation Methods

Figure 1.2 The Hydromagnetic Waveguide

10y. A. Wewcomb 1n Magnetohydrodynamics, edited by R.K.M. Landshoff
(stanford Univ. Press, Stanford, California, 1957), p. 109.
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waveguide wall is a coordinate surface so the boundary condition takes
a simple form. Newcomb analyzed wave propagation in this configuration
using the MHD (magnetohydrodynamic) approximation--that is, for fre-
guencies well below the ion cyclotron frequency. Many others have
since elaborated upon the theory; see, for example, Stix (11,12),
Gajewski (13) or Woods (14).

The results of the analysis of the hydromagnetic waveguide,
again for a colllision-free plasma, are sketched in Figure 1.3 in the
same form as the plane wave results. Only the low-frequency branches
of the curves are shown. Two major effects of the guide are evident:
each branch of the dispersion curve is split into an infinite set of
modes (the modes are distinguished by different radial and azimuthal
field patterns and only a few of the circularly-symmetric modes are
shown); and a low-frequency cutoff is introduced into the dispersion
curve for each of the modes with a resonance at the electron cyclotron
frequency.

The characteristics of the two classes of modes arc simple and
distinct only for o < ﬂc . In that limit it may be shown that the
class of modes which have the phase velocity VA at low frequencies
have no axial component of the wave magnetic field; that is, the effect
of the wave is to give a torsional or shear disturbance of the static mag-

netic field. The other class of modes does have a strong axial component of

11T .H. Stix, Phys. Rev. 106, 1146 (1957).
12p.H. Stix, Phys. of Fluids 1, 308 (1958).

13r. Gajewski, Phys. of Flulds 2, 633 (1959).

1k
L.C. Woods, J. Fluid Mech. 13, 570 (1962).
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Figure 1.3 Dispersion Relation for the Hydro-
magnetic Waveguide

the wave megnetic field, and corresponds to a compressional disturbance

of the field lines. These properties also hold for the plane waves
discussed earlier if propagation at an angle with respect to the mag-
netic field is considered. Thus the slow wave may be shown to have a
magnetic field vector which is always perpendicular to Eo , while the
fast wave has a component along Eo .

On the basis of the similarity in the dispersion relations and

the field patterns we may say that the following identifications have
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been established. The left-hand circularly polarized or slow Alfvén
wave of the plane wave theory corresponds to the torsional modec in
the hydromagnetic wavegulde. The right-hand polarized or fast Alfvén
wave corres?onds to the compressional modes. We shall apply the
names "torsional” and "compressional" to the modes even at frequencies
equal to or greater than the ion cyclotron frequency, even though all
three components of the wave magnetic field are nonzero for both
classes of/modes. In the same way we shall continue to use the term
"hydromagnetic" even though it was originally applied to the MHD regime.
The experimental investigations ol the hydromagnetic waveguide
most closely related to the present study are those of Wilcox, Boley,
De Silva and others (15,16,17), Jephcott and others at Culham (18,19,

20), and the previous studies al Lhls laboratory (21,22,23,2k).

Numerous investigators have studied the torsional waves in the vicinity

15 J. M. Wilcox, F.I. Boley, A.W. De Silva, Phys. Fluids 3, 15 (1960).

16 T.K, Allen, W.R. Baker, R.V. Pyle, J.M. Wilcox, Phys. Rev. Letters
2, 383 (1959).

17 A.W. De Silva, Lawrence Rad. Lab. Report UCRL 9601 (March 1961).
18 D.F. Jephcott, Nature 18, 1652 (1959).

19 D.F. Jephcott, P.M. Stocker, J. Fluid Mech. 13, 587 (1962).

20 D.F. Jephcott, A. Malein, Proe. Royal Soc. A, 278, 243 (196k4).
21 D.G. Swanson, R.W. Gould, Bull. Am. Phys. Soc. 8, 152 (1962).

22 D.G. Swanson, R.H. Hertel, R.W. Gould, Bull. Am. Phys. Soc. 9, 332
(196k).

23 R.H. Hertel, D.G. Swanson, R.W. Gould, Bull. Am. Phys. Soc. 9, 33=2
(l96h).

2k D.G. Swanson, R.W. Gould, R.H. Hertel, Phys. Fluids 7, 269 (196k);
included here as Appendix A.
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of ion cyclotron resonance, principally with a view toward heating the
plasma. For a summary of this work, see the survey by Hooke and
Rothman (25).

The experiments of the Berkeley group were confined to the
torsional modes; for example, it was demonstrated that a pulse whose
spectrum is confined to frequencies well below Qc travels down the
guide at the Afvén speed. Our investigation uses a wavegulde and
plasma-formation scheme patterned after the apparatus used in these
studies.

Jephcott also studied the torsional modes but has recently, with
Malein, reported on a detailed investigation of the lowest circularly
symmetric compressional mode. In the latter study waves were propa-
bgated in an argon plasma at frequencies ranging up to six times the
ion cyclotron frequency. The "waveguide" was actually an insulating
tube enclosed in a larger metal tube, but the different boundary con-
dition does not greatly modify its characteristics.

The earlier work at this laboratory was primarily concerned with
an investigation of the lowest compressional mode, using an impulse
technique. The frequencles used were an order ol magnitude greater
than those used by Jephcott but, since the ion cyclotron frequency for
hydrogen for the same field is 4O times greater than for argon, the
investigation was limited to frequencies below the ion cyclotron fre-

quency. It was, however, possible to dbtain a lowest mode cutoff

25> W.M. Hooke, M.A. Rothman, Nuclear Fusion 4, 33 (196k%).
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frequency which was nearly an order of magnitude below the ion cyclo-
tron frequency, whereas the lowest cutoff frequency and the ion

cyclotron freguency were comparable in (20).

1.2 Objectives of the Experiment

The present study is an investigation of wave propagation in
Lhe compressional modes at freguencles ranging from just belovw the
ion cyclotron frequency to well above it. Thus it is an extension
in frequency of our work in the MHD regime (22,24). The principal
new feature of the wave propagation introduced by raising the fre-
quency is the increased importance of the higher modes. Although
their presence had previdusly been detected (see Appendix A, Fig. 8),
the amplitudes of the higher modes were small compared with that of
the lowest mode. In our study the reverse is frequently true. Since
the phase velocity varies slowly with frequency except in the neigh-
borhood of cutoff or resonance, the wavelength decreases with frequency
and the phase shift for a given propagation distance is larger.

As pointed out in the discussion of plane waves, the whistler
mode is an extension to intermediate frequencies of the fast Alfven
wave. It will be shown in Section 2.5 that the whistler mode disper-
sion relatlon holds for the compresslonal modes when Q’c K w < c.uc .
Hence we may also regard this study as an extension to lower frequen-
cies of the microwave investigations of whistler-mode propagation.
From sn experimental point of view the high-fregquency techniques (such
as the use of interferometers for phase measurement) are more appro-

priate for intermediate frequencies than those commonly used in MHD
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studies (direct oscillographic display) .

The plasma used in these experiments is a decaying hydrogen
plasma formed by a hydromagnetic ionizing wave (26) and is the same
as that used in our previous experlimenits. The use of a sinusoldal
source and interferometric techniques permits the time-resolved mea-
surement of the propagation characteristics as the plasma decays, This
suggests the possibility of using the waves as a diagnostic tool for
measuring some of the plasma parameters--for example, the density and
resistivity. In this sense the techniques we use are similar to the
microwave and laser diagnostic methods mentioned earlier.

To provide an independent check on some of the measurements,
spectroscopic studies of the Stark-broadened profile and asbsolute
intensity of the HB line were carried out. From these the plasma
density and temperature may be determined and compared with the density
and temperature inferred from the phase shift and attenuation of the
hydromagnetic waves.

The detailed account of our investigation begins in Chapter
IT with an culline of Lhe theory of wave propagatlon in the hydrbmag-
netic wavegulde. The first part of the chapter is concerned with the
representation of the plasma by incorporating in Maxwell's equations
an effective dielectric tensor, and with the solutions of theee equa-
tions appropriate to the interior of a conducting tube. Special

properties and applications of the solutions useful in the analysis of

26 W.B. Kunkel and R.A. Gross, Plasma Hydromagnetics, edited by
D. Bershader (Stanford Univ. Press, Stanford, California (1962),
p. 58; Lawrence Rad. Lab. Report UCRL 9612 (1961).
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our experimental results are then developed. The last two sections of
Chapter II describe the theoretical basis of the spectroscoplc mea-
surements.

In Chapter IIT the equipment and techniques used in both the
wave and spectroscopic measurements are discussed. The results of the
measurements are presented and analyzed in Chapter IV. Finally, in

Chapter V we present our coneclusions and suggestions for further study.
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IT. THEORY

2.1 TIntroduction

In thé first part of this chapter we will outline the theory
used in the analysis of our measurements. We conslder the ldeallzed
problem of an infinitely long circular waveguide filled with a uniform
plasma consisting of neutral particles (atoms or molecules) and nearly
equal numbers of singly-charged ions and electrons. We neglect preo-
sure and viscosity effects, and assume that the wave amplitudes are
small enough so that their effects on the plasma may be regarded as a
small perturbation.

The approach we use is to Ilncorporate the effects of the plasma
currents into a generalized dielectric tensor. -Two formulations of
this tensor are given in Sections 2.2 and 2.3. A brief description
of the solution of Maxwell's equations using the dielectric tensor is
. given and the results summarized in Section 2.4. In Section 2.5 we
consider an appropriate approximation which permits the derivation of
a simple relationship between the ion density and the propagation fac-
tor. Finally, Sections 2.8 and 2.7 discuss the excitation of the waves
and the problem of interpreting the phase shift between the exciting
current and the wave fields. The last two sections of this chapter
describe the theory of the spectroscopic density and temperature mea-
surements.

Rationalized MKS units are used except where specifically indi-

cated.
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2.2 Derivation of the Dielectric Tensor

For each of the three species making up the plasma we can obtain
from the Boltzmann equation an equation of momentum transfer (1). This

set of equations may be written in the form

)
nm (s +¥ V) v =ne(E+y, xB) +V - ¥, +B  (2.1)
nm(a+V-V)v =-ne(E+V XB)‘I‘V'W + P (22)
e e'ot -—e - SNBTY, R 2 Yo t I .
n m.(EL +Vv V) v =V -y +P (2.3)
nngot -n —n =n =-n .

The subscripts 1, e, and n refer to ions, electrons, and neutrals
respectively. Particles of type k have mass mo number density
nk(g,t), and average velocity Xk(

are singly charged) are acted on by the electric and magnetic fields

r,t) . The electrons and ions (which

E(r,t) and B(r,t) . The quantity P, represents the average momen-
Lun transferred in collisions to the particles of type k per unit

volume per second. Finally, ik is the kinetic stress tensor for

species k ; in the special case where the distribution of particle

velocities is isotropic in the reference frame moving with velocity

Vi thils tensor is diagonal and

1 2
Vioody =R - v[§ 8" Vrk] (2.4)

1L. Spitzer, Physics of Fully Ionized Gases, (Interscience Publishers,
Inc., New York, 1958), p. 97.
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Here Py is the ordinary scalar pressure defined in terms of the mean-
square random velocity. In this treatment we shall neglect the
pressure terms entirely. It can be shown (2) that this approximation
is justified if the sound speed is much less than the Alfvén speed, a
condition which is met in our plasma.

To simplify the momentum equations we will proceed to
linearize them. Assume that in the absence of the waves the plasma
is in a steady state with no drift velocitles, pressure gradients, or
static electric fields. Then all terms in the momentum equations are
zero. Now suppose a monochromatic wave with time dependence eLm
is propagating through the plasma. Perturbations with the same time
dependence will appear in all the plasma parameters. Of the quanti-
ties appearing in equations 2.1, 2.2 and 2.3, only the particle

densities and the magnetiec field have zero-order terms, so that we may

write
ny(2:8) = m, (1) + o (x) &
B(x,t) = B, + B(x) ek
E(r,t) = B(r) e™*
v () = v, () &
P8 = Rylo) & (2.5)

Notice that we have used the same symbol for the perturbation amplitude

2. c. Woods, J. Fluid Mech. 13, 570 (1962).
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of a quantity as for the total gquantity. This should cause no confu-
sion, as only the forms on the right-hand side of equations 2.5 will
appear hereafter unless the argument is explicitly given. Upon sub-
stituting from equations 2.5 into the momentum equations and
neglecting all terms guadratic in the perturbation, we obtain the

linearized momentum equations

Y v = + v + F .
o . m n, e(E 1 X B ) . (2 6)
m v = = + V X + 3

it
+g

ion mv
no n—n -n

(2.8)

where we have deleted the common factor eLwt.

We will consider only the two types of collisions vhich are
most important in a highly ionized plasma: electron-ion and lon-neutral

collisions. That 1s, we assume the collision terms may be written

ie in

P = P +P 2.

go- ey (2.9)
P = p° (2.10)
Py P

p = P (2.11)
ﬁl —

Jk
where P represents the momentum transferred from species k to
J

k ik
species J by collisions. Note that P = -39 because momentum

is conserved in a collision.



-18-

The usual first approximation for the collision terms is to
assume that they are proportional to the difference in the velocities

of the two species involved. For example,

ni
= Vo 2.12
Bom iy - v (2.12)
where v = niocrvnt is the ion-neutral collision freguency expressed

in terms of the collision cross-section ¢ and the neutral thermal

speed. We will treat (o v as a constant, which is eguivalent to

nt)
assunming that o 1is proportional to l/vnt. In our plasma, charge
transfer collisions should dominate. While no reliable measurements
of o at low energies are avallable, calculations by Dalgarno and
Yadav (3) show reasonable agreement with measurements (4) at energies
above 200 eV . These calculations give (ovnt) = 6x10—15m3/sec for
a neutral thermal speed corresponding to 1 eV, and indicate a weaker
dependence on velocity than we assume.

Using equation 2.12 we can eliminate the neutral velocity from

equations 2.7 and 2.8 to obtain (assuming mo = mi)

_ ie
= n Oe(g +V, X EO) +P (2.13)

e n kL = 1

This eguation is just the ilon equation one would write in the absence

of neutrals except the ion mass 1s replaced by a pseudo-mass

3B.A. Dalgarno and H.N. Yadav, Proc. Phys. Soc. (London) 66A, 173
(1953).

Lw.L. Fite, R. T. Brackmann, W. R. Snow, Phys. Rev. 112, 1161 (1958).
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n
= m |1 20 } 2.1k
" " [ ' nio(l + iw/v) (2.14)

Note that if the wave frequency o 1s much less than the collision fre-
quency v, n, b~ (nio + nno) m, as the neutrals are carried along by
the ions. IFf @ > v s By M niomi and the neutrals have no effect.

The above treatment can easlly be applled to the electron~ion

collisions. In this case we note that if the plasma is neutral in the

absence of the wave
n = n = n (2.15)

so that the current, correct to first order, is

—

J = ne(v, - v) - (2.18)

Hence the collision term can be written in the form

el
B = neqg (2.17)

where the proportionality constant 1 has been defined to have the
dimensions of a resistivity.
Using equations 2.6, 2.13, 2.16 and 2.17 we can solve for J

in terms of E and write the result in the form

ey
{]

ha

=

(2.18)

The generalized conductivity tensor thus calculated is given by equa-

tions 7 to 10 of Appendix A.
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It can be shown that the power dissipated by a current flowing

perpendicular to }_3_0 is greater than that for a current along the

field. We can allow for this effect by replacing equation 2.17 by

P = neg-J (2.19)

0 0
h
- |o o)
a U
L 0 0 n, (2.20)

Spitzer (5) has calculated that for the case of a strong magnetic field
n_L/ (" = 2 . By examining the components of equations 2.6 and 2.13 we
see that uslng the tensor reslsllvlly replaces 1 by ql. in the egua-
tions involving the transverse components of the velocities and

- replaces 1 by ﬂ“ in the equations involving the z-components. We
can therefore immediately write down the generalized conduectivity
tensor by making the corresponding substitutions in equations 8a to 8¢

of Appendix A. The results are given below.

_ _ i
™~ -
er Ul 102 0 Er
o = -ie, 9 0 N
-Ji | i 0 0 03— L_EZ J (2.21)

5L,. Spitzer, Astrophys. J. 116, 299 (1952).
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ol +1, (ol = al7)
g, me—t b1 2 (2.22)
' 1+ 29 0o + 2 (0'2 012
11 n_{_ 1 2 )
. O-Y
- 2
9% = P, > (2.23)
1+ EnJ-ci + ql_(oi - o))
0-'
o5 = 3 (2.2h)
1+ oa!
I3
$ . %
H —
o =|55*+t—=7p iu;eo (2.25)
®_ -0 Q@ -w
C c
2
0)2 @y Q Qc
o} = E = - 2" —| iwe, (2.26)
w(mc - o) oo -
! Qg +m§
03 = - —-——T iw EO (2.27)
w
m2 _ ne2 Qg neg
p m € p hue
¢° ° (2.28)
eB eB
o o
®. = 8 =
e 28

Note that the plasma and cyclotron frequencies for the ions involve
and are complex quantities as defined above. The electron cyclotron
frequency o, is defined as a positive number.

It is frequently convenient to use a dielectric tensor instead

of the conductivity tensor. That is, we may write Maxwell's equations in

the form

VxE =-iop[H (2.29)
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VxH = iwe + B (2.30)

where E and H are the complex amplitudes of the wave fields and

iloe = 0 +iwe 1 (2.31)

The dielectric tensor will be written in the same form as the conducti-

vity tensor.

o . T
el 162 0]
-E- = -i€2 el O
0 0 < (2.302)
l— .
o]
€ = € (l -+ = ) \
1 iw €
%
€2 = o Tme B
3
e, = € {1+ ) (2.33)
3 o io.)eo /

2.3 Alternative Derivation of the Dielectric Tensor

Measurements in the plasma used for these experiments indicate
that the value of the scalar resistivity necessary to match theoretical
and experimental results is a function of the axial magnetic field (see
Fig. 10 of Appendix A). As has been pointed out n_L, which is more
important than nll in determining the properties'éf the compressional
mode, depends on the magnetic field and changes by a factor of two as

the field is increased from zero to a high valuve. 1In an effort to
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provide & theory valid for intermediate field strengths we have used
the transport coefficients calculated by Marshall (6). He considers
a fully-ionized plasma and combines the equations for electrons and
jons to obtain a one-fluid description. Thus we may define a fluid

velocity, net charge density and mass density by

o, (z,%) mv (z,8) +n_(£,%) mv_(z,t)

2= (2.34)
D(E:t)

Q= [n,@0) - n,@t)] e (2.35)

p(z,t) = n,(r,t) m +n (z,%) m (2.36)

In the absence of pressure and gravitational effects the momentum

transport equation for the fluid as a whole can be written

p(z,t) [%,g + u(r,t) - V] u(zr,t) = Q E(x,t) + J(r,t) x B(z,%)
(2.37)

Using the notation of equation 2.5

u(r,t) = u(r) e (2.38)

p(rt) = o (z) + o(r) &°

the linearized form of equation 2.37 is

ow. Marshall, U.K. Atomic Energy Research Establishment Report, A.E.R.E.
T/R 2419, Part III (1957).
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where the electric force has dropped out because both @ and E are

first-order quentities. Marshall finds for the current J (again

neglecting pressure and temperature gradients)

I(r,t) = Qu(r,t) + gy -[E(g,t) + u(r,t) X_B_(z,t)]

or in linearized form

L = Su

where the conductivity tensor

=M

a
|

g
II

ITT ~

+ (E+uxB)

-EM takes the following form
. Stz ©
“rr %11 0
I 0 0 oI~
ne T
1.931 22
e
o2
2 ocT + 1.802
ne T C
e wi Tu + 6.282 wiTg + .933
2 o (@ T + 4.382)
ne T c Ve
m

€ thh + 6.282 miTe + .933

6€2 ml/2 (EKKT)S/Z
o e

net mA
e

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)
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N by € KT
A=
nn_ c

)3 + 1 (2.47)

We can solve equation 2.39 for u and substitute into 2.41 to find

I = gy B+ (GxB) xB ] (2.48)
= = ilwp, =7 = -0
which may be solved for J in terms of E . The result may be written

in terms of a generalized conductivity tensor where the components as

defined by equation 2.21 have the forms

2 2
o _ ~it (o__ +o___)
o, = I; - ZI IIT (2.49)
1-¢ (oII + "III)" 2it Ory
ia
o, = — Iil (2.50)
1=t (opp + opp) =21 oy
0y = o | (2.51)
where
BS
t = o (no neutrals) (2.52)
O

To include the effects of neutrals in this development we may

modify equation 2.39 by adding a collision tcrm

lwp, u = JxB + E?n (2.53)

and write a momentum equation for the neutrals
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- pf (2.54)

iw v
pI'J.O -1 -

where g?n_= - E?f is the momentum transferred to the electron-ion
3

"£luid" from the neutrals per m~ per second. If we again set the

collision term proportional to the velocity difference

) (2.55)

= p vin-v

we may follow the procedure we used before and eliminate Y from the

equations. We find that equation 2.53 becomes

iwp!’ = .
wp'u JxB (2.586)
where
o /p
ol = po[1+———-—-—n° °] (2.57)
1+ iw/v

Equation 2.56 is seen to be identical to the momentum equation 2.39 for
a fully lonized plasma except that the mass density oy is replaced by
the pseudo~density pé . It should be noted that the factor in
brackets differs slightly from the corresponding factor in the three-
fluid model (see equation 2.1L4) and the definitions of the collision
frequency given by equations 2.12 and 2.55 are also different. The
differences, however, are far smaller than the uncertainties in either
the theoretical or experimental values for the guantities. We nov see
that the generalized conductivity tensor including neutrals is just

that given by equations 2.49 - 2.51 with
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f = —— (including neutrals) (2.58)

If terms of the order of (mé/mi), (m/mc) and (wT) are neg-
lected compared to unity, it can be shown that the components of the
three-fluid conductivity tensor agree with those calculated from

Marshall's results if the following identifications are made:

(2) For (mc'r) <1, set T‘_Lz fq” = 1/cI .

(b) For (wc'f) >> 1, set n = 1.931L 1 = 1.931/c:I

i

Since the plasma parameters used in these experiments are such that
condition (b) is fulfilled, the two forms of the generalized conducti-

vity may be used interchangeahly here.

2.4 Derivation of the Dispersion Relation

Now that the properties of the plasma have been expressed in
terms of the dielectric tensor € the remaining problem is to solve
Maxwell's equations 2.29 and 2.30 in cylindrical coordinates and apply
appropriate boundary conditions. Only circularly-symmetric modes will
Ve treated since the excitation scheme has that symmetry. We assume
therefore, that the wave fields E and H depend onlyon r and 2z,

A -ik
Wwhere the z-dependence 18 e z and

k = ﬁ - ia (2‘59)
1s the propagation factor. Four of the six component equations of

Maxwell's equations may be used to express the transverse fields in
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terms of Ez and HZ ;3 for details, see Appendix B. Eliminating the
transverse fields from the remaining equations yields a pair of coupled
partial differential equations for the longitudinal fields (equations
1ha and 14%b of Appendix A). Tt can be shown that appropriate solutions
are combinations of zero~order Bessel rfunctions. For HZ , for

example, we have
-ikz
HZ(_I_',Z) = A[JO(Tlr) + T JO(Tgr)] e (2.60)

the transverse wave numbers Tl and T2 are the solutions of the dis-

persion relation

€ €
o 2 2 1.2 2% 2
Ty = Yo T+ Zg T (v + +T) = 0 (2.61)
in which
2
Tl = k - uoel (2'62)
2

The constant A in equation 2.80 may be regarded as an excitation coef-
ficient and 7 as belng determined from the boundary conditlions. If
the plasma is bounded by a conducting wall at r = a the appropriate

conditions are Ez(a) = Eg(a) =0 . These lead to

To 2 2 ‘
(Yl + ) + Tl) quo(Tla) Jl(TEa) (2.64)
YA€
272 2
= (Tl + + T2) TEJO(Tga) Jl(Tla)

and
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Eg Jl(Tla)

T = - ey e (2.65)
Tl Jl(TEa)
The simultaneous solution of equations 2.61 and 2.64 has been
carried out with the aid of a digital computer by Swanson (7, Appendix
A). If we regard a mode as specified by a set of values for k, Tl and

T, it is found that two infinite classes of modes may be distinguished.

o2
The first set, with which the experiments described in this thesis are
concerned, we call the compressional modes. They are characterized by
a cutoff (k - 0) at low frequencies and a resonence (k » 00) at the
electron cyclotron frequency with highly dispersive behavior In the
vicinity of both cutoff and resonance. At low frequencies (w << QC)
Hr and HZ are much greater than HG for this mode so that the effect
of adding the wave fields to §0 is an alternate compression and expan-
sion of the field lines; hence the name "compressional modes". Other
investigators have used the terms TE modes and fast hydromagnetic waves;
at high frequencies the class may be identified with the whistler mode
(see the discussion in Chapter I). The values of Tl for the éompres-
sionel modes are very nearly given by the solutions of Jl(Tla) =0
(see Figure 3 of Appendix A).

The second class of modes, called here the torsional modes and
designated by primes, is nearly dispersionless at low frequencies and

exhibits a resonance at the ion cyclotron frequency. The phase velocity

for o < Q, 18 the Alfven speed VA = Bo/ V HoPo As pointed out

7D. G. Swanson, California Institute of Technology Tech. Report No. 1,
AFOSR Office of Aerospace Research Grant No. 412-63 (1963), p. 23.
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in Chapter 1, these modes have a large magnetic field component Hé
corresponding to a torsional perturbation of the field lines. Other
terms applied to this class are the principal modes (8) and the slow
hydromagnetic waves (9). At high frequencies the values of Ti are
again given approximafely by Jl(Tia)= 0 but at very low frequencies
the condition JO(Tia) = 0 applies (see Figure 2 of Appendix A).
Measurements of the radial dependence of the wave fields (10)
seem to Indlcate that the condition Jl(Tla) = 0 1s the correct one
for both types of waves even at low frequencies. A boupdary condition
which leads very nearly to this result is that of a thin vacuum layer
between the plasma and the conducting wall. This problem was treated
by an approximate method by De Silva (11) and in some detail by
Swanson (12). The method consists of matching solutions of Maxwell's
equations valld in the annular vacuum region to the plasma fields at
the plasma-vacuum interface and setting Ez(a) = Er(a) =0 . In the
remainder of this thesis we shall assume that the vaelues of T,a are

1

the zeros of J From eguation 2.65 we see that this leads to

1
T =0 so0 that T2 no longer appears in the problem. We may drop the

subscript 1 and write

Bﬁ.A. Newconb in Hydromagnetics, edited by R.K.M. Landshoff (Stanford
University Press, Stanford, California (1957), p.l09.

9L.C. Woods, J. Fluid Mech. 13, 570 (1962).
105 .M. Wilcox, A.W. De Bilva, W.3. Cooper IIT, Phys. Fluids il-_, 1506
(1961).

1la.w. De S8ilva, Lawrence Radiation Laboratory Report UCRL 9601 (March
1961), Appendix F.

12p.g. Swanson, Callf. Inst. of Technology, Tech.Report No. 2 on AFOSR
Office of Aerospace Research Grant No. 412-63 (1964), Chapter III.
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Jl(Tma) = 0 (2.66)

in place of equation 2.6L4 and solve equation 2.61 for the propagation

factor to obtain

2 2 2 0 o) \
k! € T € T T
m B 2 1 m o, _ 1lym 2 2 . m
5 =0 p’oel (1 + c ) - = [( 'e'—)—g-] + (@ #052) (1 c?é__e—) ’
km 3 Ry 3

(o < Qc) (2.67)

where the mode number m now refers to the various solutions of
eqguation 2.66, that is, Tla = 3.832, Tza = 7.016, and so on. The sign
convention in equation 2.67 must be reversed for o >—Qc . We use the
symbols km and k& for the roots of equation 2.67 lying in the
fourth guadrant, corresponding to propagation in the +z direction.

It should be emphasized that the distinction between compres=-
sional and torsional modes on the basis of the wave fields disappears
at high frequencies; both Types of modes have appreciable amounts of
all six components of E and H .

A typical set of dispersion curves calculated from equation 2.67

is plotted in Figure 2.1.

2.5 The Dissipationless e3 = 00 Theory

The measurements described in Chapters IIT and IV of this thesis
involve exciting seQeral of the compressional modes at a fixed freguency
and measuring the longitudinal wave field HZ(O,z,t) some distance from
the point of excitation. The phase and amplitude of the wave are then

used Lo infer some of the plasms parameters, such as the denslty and
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temperature. Tt is useful to examine the characteristics of wave
propagation in the 1limit of zero Jdamping for two reasons. In the
first place, the dissipationless theory gives some insight into the
gross charaéteristics of the problem; also, if the damping is not too
grecat, the phase factor R depends very little on the damping. The
dissipationless theory thus provides a good approximation for 8
which can be used to relate the phase shift to the ion density.

If the resistivity “J_ and nll are set equal to zero, the
0 ‘tensor calculated in Section 2.2 reduces to the ¢' tensor. If we

make the approximations
(n/cnp <1, w/a)c <1, Ime/“l << 1 (2.68)

the components ol the dielectric tensor become

» 1 .
e, ¥ € (1 + ;3? ————:;—75) (2.89)
A 1~ (5—
c
2 /9
e, = - € E_a. < (2.70)
VA 1- (/)
. 2, 2
€5 = eo(l - ‘”p/“’ ) (2.71)

The first term in equations 2.69 and 2.71 is due to the displacement
current and 1s negligible in these experiments which involve frequen-
cies from 0.8 to 3.4 times the 19n cyclotron frequency. For fre-
quencies in this range (but not equal to Qc) s 63 is larger than

. 2, 2\ ,2, 2y
€ and €, Dby approximately the factor &gp/ac)(VA/c: )= mi/me'
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We therefore make the approximation that €, = co. The dispersion

3

relation, equation 2.61, simplifies to

2 2 2

Tig = Y2 ¥ Yo Tm = 0 (2.72)
or
o 2 2 2] o o 2 o
- - - e = 2.7
(km ® uoel) (o uoee) M (km ® uo l} Tm 0 ( 3)
Solving for km we find
kl
i 2 L /T2 2 2 2
=y 1 £ — _E -+ ‘ /_nL‘ 2 {n\ 1y £ \ IQ 7).1\
2 - V \ 2/ ! A\ T“'O 2/ \ F

It can easily be shown that Jl(ng) = 0 1is satisfled exactly in this

limit, (e, = ® ). This dispersion relation is plotted in Figure 2.2

3
for the first few compressional modes. For comparison purposes the
.phase factor obtained from the solution of equation 2.67 1s alsc shown.
It will be noted that the approximate theory gives a good approximation
for the phase factor P except near cutoff. From equation 2.74 we can
show that the cutoff frequencies are given by

= 2.7
wom TmYA (2.75)

or, expressed another way, the mth mode is cut off for a given frequency

® when the density is reduced to the critical value

2 _2
Tm Bo

= 2.76
T (2.76)

L m
o] iw
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If the approximate forms of El and €, are substituted into

the dispersion relation we can solve for the ion density, yielding

. >N
B (2 T o2 Py + D)
ne———{B +=) |1+,/1+ (=-1) —u_—— (2.77)
m(D2 m 2 n2 o T% o
IJ'O i c (Bm + —é_)

where we have replaced km by Bm since the propagation factor is
purely real under the circumstances we are considering. We can expect
this formula for the density to be falrly accurate if the density is
well above the critical value. Of course, 1t is useful only if we
know Bm and Tm , that is, we must be sure that only one mode con-

tributes to the field we measure so that we can measure a single phase

Pactor Bm and we must know which mode we are measuring so that we
can use'the appropriate value for Tm .

Equation 2.77 is plotted in Figure 2.3. It will be noted
that if the wave frequency i1s well above the cutoff frequencies of
all the modes which contribute to the detected wave field, the phase
factors for the different modes are nearly the same. In fact; if we
make the approximation w >> vah in the dispersion relation, we find

s w>> TV (2.78)

Q'C
Bolt+ )

which may be recognized as the phase factor for plane wave propagation

in the whistler mode.
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2.6 Excitation Coefficients for a Coaxial Loop

To complete the analysis of hydromagnetic wave propagetion in
a circular waveguide we must calculate the excitation coefficients
for the various modes. The excitation scheme to be considered, shown
in Figure 2.4, consists of a coaxial circular loop of radius b
immersed in the plasma. The loop is assumed to carry a current

iwt

T e .

2b

Pt

—f———fg i
"l;”‘"‘“_“‘ﬁ

Figure 2.4. Schematic Dlagram of the Excitation Scheme

Orthogonality relations have been derived (13,14), both for
the conducting wall and vacuum sheath boundary conditions. It can be

shown that the integral

13 a.G. Liebermann, Ph.D. Thesls, California Institute of Technology,
(1964).

i p.g. Swanson, Celifornia Institute of Technology Tech. Rep. No. 2
on AFOSR Office of Aerospace Research Grant No. 412-63, Chapter VI.
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By X Ep) " gy var

O%{D

(where E . 1s the transverse electric field of the nth mode and
Eﬁtiﬁ the transverse magnetic field of the mUh mode derived from the
transpose of the £ tensor) is zero if kn #+ km . This relation
holds for both torsional and compressional modes--for example, n may

refer to the lowest compressional mode and m +to the lowest torsional

mode.

Our assumption that Jl(ng) = 0 means that the tangential
electric field does not vanish at the wall, which is one of the assump-
tions leading to the above orthogonality relation. The simple radial
dependence of the fields resulting from this assumption, however, makes
it a simple matter to find appropriate relations to use in calculating
the execitation coefficients for a loop.

By examining the fields as indicated in Figure 2.4, it is
apparent that the presence of the current-carrying loop introduces a

discontinuity into the radial magnetic field:
Hr(r,0+) - Hr(r,o-) = I &(r=0) (2.79)
No discontinuity appears in the other components, so by symmetry
Hg(r,O) = 0 ‘ (2.80)

if we suppose the wavegulde to be infinitely long so that reflections

may be ignored. The transverse fields from Appendix B are



: -ikm§z| -ik};llz[
Hr(r,z) =+ 2:-15— Jl(T r)| k Ae + kégég (2.81)
m n
: € g -ik jzl ! -ik! |zl
1 m m - m e ™
= =z Z1e
Hy(rs2) = ), w5 I4(T,7) [ = Ae r Ay ]
m 2m m m (2.82)

where the upper sign is used for z > 0 and the lower for z< O .

The primes, as usual, represent the torsional modes. The guantity 2%

is given by
> 2 €§ 2
Fu Epm @ Ho(el B €l) " (2-83)

with a corresponding expression for ;Zé . Applying conditions 2.79

and 2.80 to the fields yields

¥ '
oy Jlm oo (2.8%)
m © kp
i
2 Z - Jl(Tmr)[ k A+ kI;lAI'n] = I &(r -b) (2.85)
nl m

Multiplying both esidee of the lagt equation by Jl(‘I‘nr)r dr and intea-

grating from 0 to a gives
ia2 2
= |k k'A? [ ] = b 2.86
Tm[ A+ k! m] 5 (T 8) IbJ (T b) (2.86)

where we have made use of
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a o m#n
[ Jl(Tmr) Jl(an)rdr = a2 , (2.87)
0 = {JO(Tma)] , m=n

Finally from equations 2.87 and 2.86 we obtain

ir Ty Iy (TP) 1
" T 2 k_ 2 1+e (2-89)
a m
[JO(Tma)] n
where
2 2 2 2
xﬁ o ‘1 * (km Pyt Tm) 8
[&] = - ""',- ———E = > ) ) (2' 9)
m k k™ W n_€
o m m o 2

The second equality in equation 2.89 results after some manipulation
by making use of the dispersion relation (equation 2.67). It can be
shown that the same result is obtained by using the exact field expres-
sions and the corresponding orthogonality relation (the resulting

formula for Am is equation 31 of Appendix A) and setting Jl(Tla)

to zero. If the further approximation 63 = oo 1is made
T,
cln > 1+ k2 > . ag €3—>OO (290)
m ~® Po1

The formula for the torsional mode excitation coefficient A& is
obtained by interchanging primed and unprimed quantities in the above

results.

2.7 The Empty-Waveguide Limit; Phase Shift

One method for measuring the propagation factor k =p - ia is

simply to measure the wave amplitude and phase as a function of
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distance. If a single mode 1s propagating the phase will change
linearly with =z , the slope being £ . The amplitude will decay
exponentially and « is the inverse of the e-folding distance. A
second approach is to measure thé amplitude and phase at a single
point and use the excitation coefficient and the loop current to
determine k . In the latter measurement the ambiguity of a multiple
of 2nx 1inherent in phase measurements must somehow be resolved. That
is, we must regard phase angles of = and 3n , for example, to rep-
resent situations in which the distances befween the exciting loop and
receiving probe differ by exactly one wavelength. To ald in this
determination it is convenient to define the phase relative to a
situation which is well-understood and which can be reached by a
continuous variation of the plasma parameters. Such a reference state
is the zero-density limit.

The solutions we have obtained apply directly to the empty
waveguide 1if we set €, = 0 and el = 63 = Eo in the dielectric
tensor. We find that

2
hi = S5 - Tfl (2.91)

c
and the boundary condition once again leads to Jl(ng) = 0 for the
circularly symmetric TE modes. For a 6.75 cm radius guide the lowest
cutoff frequency is 2710 Mc so k = -i Tm for the frequencies of

m

interest here. Hence from equation 2.88

A - M ————-———Jl(Tmb) o (2.92)
m a [JO(TmB-)]
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The same results are obtained if we set n =0 1in the 63 =
dissipationless theory. We now define the phase shift ¢ as the
phase lag of Hz on the axis relative to the phase in the empty

waveguide.

§ = ws|n00)] - hre [Hz(o,@] (2.93)

empty plasnma

wavegulde

If the contribution of the mbh compresgsional mode to HZ(O,Z) is
greater than that of all other modes (torsional as well as compres-

sional) we have

r ~

@ = - Arg LAm.J + B 2 (2.94)

plasma m

Examining equation 2.88 for A and noting that both k and c

are nearly real and positive 1f the damping ls not too high, we find

Arg [Am:}plasma % g/2 . Therefore

g = n/2 + B2 (2.95)
or .

B = % (¢ - n/2) (2.96)

vhere in equation 2.96 we can determine ¢ from the experimentally
determined phase shift by adding factors as 2n as necessary to make

¢ approach zero continuously ags n - O .
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2.8 Theory of the Spectroscopic Density Measurements

In order to check the results of the wave propagation measure-
ments it 1Is necessary to have independent measurements of some of the
plasma parameters. Since a monochromator was available, it was declded
to make use of one of the standard techniques for hydrogen plasmag--a
measurement of the Stark broadening of one of the emission lines (HB
at hBGIR was used here) to determine the plasma density. As will be
discussed 1n Sectlon 2.9, 1t was found Lhat only an absolute callbra-
tion of the same apparatus was necessary to make fairly accurate
temperature measurements.

The spectroscopic ion density measurements used in this inves-
tigation are based on the fact that the energy levels of hydrogen are
shifted by electric fields. Hydrogen exhibits a linear Stark effect;
that is, the difference between two energy levels and hence the fre-
guency of radiation arising from a transition between them has a shift
. which depends linearly on the electric field. Strong local electric
fields are, of course, present in a plasma; since different radiating
atoms find themselves in different fields depending on the proximity
of neighboring ions and electrons, the net effect is a broadening of
the spectral lines.

The earliest satisfactory theory, due to Holtsmark (16), took
into account only the fields of the ions and led to the result that the

width of a Stark-broadened hydrogen line is proportional to n2/3.

165, Holtsmark, Ann. Physik 58, 577 (1919). J. Holtsmark, Physik. Z.
20, 162 (1919); 25, 73 (192).
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Since then, more elaborate theories have been developed to include the
effect of electron shielding on the ion broadening as well as the
broadening caused by the collisions of electrons with the radiating
atom. A comprehenslve revliew of Lhe subject is contained in an article
by Margenau and Lewis (17). We shall use here the calculations of Griem,
Kolb, and Shen (18-20). Their results are expressed in terme of & nor-
malized line inteneity 8(a) where « is the normalized wavelength

difference from the line center Xo

A=A
a = 2 (wavelengths in Angstroms) (2.97)

1.25 x 10'13112/3

The tabulated proflles are normalized so that

o]

fs(a) da = 1 (2.98)

-0
The effect of using the variable « defined by equation 2.97 is to make
the function 8§ almost independent of the density.

For convenience in notation we will describe the line profile by

a new function

A=A
P(k:n:T) = S( 2 ) n’T) (2'99)
1.25%10°13 »7/3

whose value at a given wavelength is simply the relative intensity of

the line at that wavelength. We have indicated the dependence of S on

17 H. Margenau, M. Lewis, Rev. Mod. Phys. 31, 569 (1959).
18 H. R. Griem, A. C. Kolb, K. Y. Shen, Phys. Rev. 116, 4 (1959).

19 g. R. Griem, A. C. Kolb, K. Y. Shen, U.S. Naval Research Laboratory
Report 5455 (March 1960).

20 g. R. Griem, A. C. Kolb, K. Y. Shen, Astrophys. J. 135, 272 (1962).
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n and T explicitly in equation 2.99. From Eguation 2.98 the nor-

malization of P 1is given by

o0

Jr P(»,n,T) dx = 1.25 x 10

=00

-13 n2/3 (2.100)

As will be discussed in Section 3.3, the measurement of the in-
tensity profile was performed with an instrument of finite resolution.
For our purposes here we may think of the measuring device as a tunable
narrow~-band filter followed by a detector. That is, for monochromatic
light of wavelength )\ anc constant intensity, the output voltage of
the detector is proportional to H(\ - xc) where xc is the center wave-
length of the filter. For convenience we normalize the transfer func-

tion so that
00

jﬁ(x- xc) = 1 (2.101)

=00

If the filter is illuminated with light from & radiating plasma vhose
intensity profile is P(\,n,T) in such a way that the line profile and

filter transfer function overlap (see Figure 2.5), the detector

F’()\,r1,1')w\\

Figure 2.5 Illustration of the Relationship between the
Line Profile and Filter Function
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output will be given by the integral with respect to A of the

product of P(A,n,T) and H(X - xc); that is, the output will be

o]
P‘(?»C,n,T) = f P(x,n,T) H(\ - xc) dAr (2.102)

-0
We may regard equation 2.102 as defining a modified line profile. The

normalization is unchanged, since

00 0 0) [0 9]
[P'(X,n,T) ax = f f P(¢,n,T) H(e - &) dedxr
-0 D =
(e 0] ¢ 0]
= [ P(t,n,T) f H(g - A) dx dg
=00 =00
@
= f P(¢,n,T) dg = 1.25 x 10743 n2/3 (2.103)
-0

In making use of the Stark proflles the proucedure was as fol-
lows:

a) A set of normalized profiles S(a) for various densities
was obtained by Interpolating between the tabulated pro-
files. The dependence on temperature over the wavelength
range of interest was so weak as to be negligible; the
value T = th °k was assumed.

b) The line profiles P(i,n,T) in terms of actual wavelength

were determined according to equation 2.99.

e¢) The modified profiles P'(:,n,T) were produced by con-
volving the original profiles with the measured transfer

function of the recording instrument as shown in 2.102.
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d) The modified profiles were compared with the measured

line profiles to determine the lon density.

The details of the instrumentation and the measurement procedure will

be discussed in Section 3.3.

2.9 Theory of the Spectroscopic Temperature Measurements

In the last section we discussed the problem of determining
the ion density from the shape of the Hfs line profile. We now
observe that the total area under the intensity curve is determined by
the population in the upper energy level involved in the transition.
Hence an absclute calibration of the polychromator used to measure the
line profile will provide a simultaneous measure of the density of
atoms in that level. From this information and the ion density we can,
under certain assumptions, calculate the temperature. The details of
this procedure are discussed below.

Assuming the plasma to be optically thin, the energy radiated
per unit volume due to spontaneous transitions from the sth to the
tth level 1s

U, = h

ot v A Py (2.10k)

where h 1is Planck's constant, Vot is the frequency of the emitted

radiation, A is the transition probability, and ng is the density

5t

of atoms in the sth level. For the H line, Ah2 (averaged over the

B
angular momentum states) is 8.3 x 10° sec™t (21) so that

2l H. Bethe, Handbuch der Physik XXIV(1), (Springer-Verlag, Berlin 1933),
p. bhk,
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), = 2.95 x lOll th {2.105)
We must now make a much stronger assumption about the state of
the plasma than any of the previous theories required. Such calcula-
tions as the Stark broadening computation by Briem, Kolb and Shen and
the calculation of the transport coefficients by Marshall require at
most the assumption that the velocity distributions of the electrons
and ions are Maxwellian and characterized by a common temperature T .
According to estimates by Spitzer (22), the characteristic time for
establishment of equipartition between electrons and protons with
kinetic temperatures of the order of 10,000°K at a density of 10503
is about 0.1 psec. The times for the establishment of Maxwellian dis-
tributions are much shorter, so the above assumption seems well
justified. We now assume that the s = 4  energy level and all higher
levels are essentially in thermal equilibrium with the free electrons
so that the Boltzmann and Saha eguations can be used to calculate the
populations. This assumpbtion has been investigated in a series of
papers by Bates and Kingston (23), McWhirter (24), and by all three
authors (25). Their results indicate that our assumption is probably

justified. For example, the population of the S = 4 state is found

to differ from the thermal equilibrium population by less than 30% if

22 1,, Spitzer, Physics of Fully Ionized Gases (Interscience Publishers,
Inc., New York (1956), pp. 76-8l.

23 p. R. Bates, A. E. Kingston, Planetary and Space scl. 11, 1 (1963).
24 ¢ W.P. McWhirter, Nature 190, 902 (1961).

Ty

2> D. R. Bates, A. E. Kingston, R.W.P. McWhirter, Proc. Royal Soc.
(London) 267A, 297 (1962).
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20 -
n=210 m 3 and T 2 5OOOOK. It mist be emphasized that in a recom-

bining plasma the question of the existence of thermal equilibrium or
detailed balancing is a complex one which miust he investigated by

taking into account the rates of all relevant transitions between
states.

On the basis of the assumption of thermodynamlic equilibrium for

the higher states we may use the Boltzmann and Saha equations in the

forms (26)
2%
EE ) g, e- o (2.106)
n_ u
n o}
Y,
n,n, u, (2ﬂﬂékT)3/2 "E%
= 2 NI e (2.107)
0, o h
where we have used the following notation:
nn = total density of hydrogen atoms
n, = density of atoms in the sth 1evel (for the ground
state s = 1)
Xi = ionization potential
%, = energy of the sth state relative to the ground state
= 13.6/8° ev.
g, = statistical veight of the s'™0 state = 05>
u, = statistical weight of the hydrogen ion = 1
- Y /KT
u o= ) g e % z g
o S s 1

2 L1
6 A. Unsold, Physik der Sternatmospharen (Springer-Verlag, Berlin,

1955), 2nd Fd., p. 83.
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Dividing equation 2.107 by 2.106 yields

Z -
n.n u, (2nm kT)3/2 ——%Er-?
:; < - 2 = < e (2-108)

s gs h3

In a dense plasma the energy Z&- Zg appearing in the exponential
should be modified to take into account the Debye shielding. Griem
(27) shows that the appropriate correction consists in subtracting

from this energy the correction term

2
A X e (2.109)

2neo XD

Where

€ kT
o)

2
Ay = p—— (2.110)
e (ne+ ni)
For our plasma the correction is of the order of .0l ev and may be

ignored. Putting into equation 2.108 the numerical values of the

various quantities for s = 4 and combining with equation 2.104 yields

U 32 9.861 x 107
2 2.24h x 10
_5*-5 = =75 e T (2.111)
n T
where we have set n, =n_=n. Thus, if the absolute line intensity

and the density are known, the temperature may be determined. The

27 §. R. Griem, Phys. Rev. 128, 997 (1962).
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normalized Hﬁ line intensity U2+2 n2 is plotted as a function of
temperature in Figure 2.6. It will be noted that, unless the tempera-
ture is very high, a given uncertalnty in U42/n2 leads to a smaller
uncertainty in T ; for example, at EO,OOOo an error of 20% in

Uh2/n2 produces about a 10% error in T .

The actual measurement of Uhe is performed by comparing the
brightness of the plasma to that of a tungsten surface. Consider the
situation shown in Figure 2.7. We wish to compute the power emitted
per steradian by a cylindrical plasma of length I radiating through
a small hole of area A . The energy is collected by a lens subtending
e & ag shown; hence
plasma sampled by the cone defined by r =L , 8 = OO . The power
radiated through the hole by the volume element av = Euresingtn'dg

is approximately

aWw = U, . av - A cos §
Lo )
i
Uuefk
- — sin © cos @ dr 4d0 (2.112)

snd the total power collected will be nearly

L g
o)
o . AU, 0
W= aw = U)+2 T sin QO = T (2.113)
r=0 6=0

where  1is the solid angle of collection. Hence the radiated power

per steradian near the axis is
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Fig. 2.6 Normalized H_, Line Intensity as a Function of the
Temperature
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AL U
aw oy k2 fa) (A) ar (2.114)
an Ly B
line
where we mean by wﬁ(x) the power radiated by the plasma per steradian

per unit wavelength.

Now consider the guantity corresponding to w, for the tungsten

B

surface. The power radiated per square meter per unit wavelength,
which will be denoted by C , 1s known. A flat surface of area A
then radiates w, = CA/n watts per steradian per unit wavelength

normal to the surface. We now rewrite equation 2.114% in the form

by W o (A\) ax o (x
U = ‘ “[‘ _Ei_z___ = EE Jr B( ) ax (2.115)
ho AL a)_t L w
line line

where we make use of the fact that W, is essentially constant over
the wavelength range of inlerest. The integral in eguation 2.115 is
Just the intensity of the light from the plasma relative to the inten-
sity of the light from the lamp. The experimental apparatus and

methods used to make this comparison are discussed in Section 3.3.
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IIX. EXPERIMENTAL METHODS

3.1 Plasma Formation

The apparatus for the production of the plasma is the same as
that used in earlier experiments at this laboratory (see Figure 1 of
Appendix A). The plasma is formed in a stainless steel cylinder 13.5
cm in diameter and 91.5 cm long with a 26 cm glass extension on one
end. The tube is closed at both ends by pyrex plates. A hollow stain-
less steel electrode 5 em in diameter and length projects through the
piate at the driving end. Access to the tube 1s avallable through a
row of eight l/2-inch ports 10 cm apart in the stainless tube and
through a 3/8-inch port in the electrode. All vacuum seals employ Viton
O-rings shielded from direct contact with the plasma. The trapped
2-inech oil diffusion pump is capable of evacuating the system to about
10_6 Torr. Before each experiment the tube is valved off and a static
atmocphere of hydrogen is admitted; in all the work reported here the
pressure is .07 Torr.

The entire plasma tube is placed inside a double-layer éolenoid
driven by a 1200 uf, 10 kv capacitor bank. The waveform of the axial
magnetic fleld is shown in Figure 3.1. In these experiments the peak
field was 1.17 web/mg, corresponding to a bank voltage of 6 kv; uni-
formity along the tube axis is ahaut 2% over 80 em of its length. The
crowbar ignitrons, fired 850 usec after the capacitor bank 1s connected
to the solenoid, prevent the bank voltage from reversing and result in

an exponential decay of the field.



Fiz. 3.1 Axial Magnetic Field at 1 kv Bank Voltage.
Vertical Scale - 0.5 web/m® per large division
Horizontal Seale - 200 psec per large division

e

Ionlzing Current I

Vertical Scale - approximately 10 amp per
large division

Hurlzonlal Scale - 10 psec per large division

g
-

Fig.
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In these experiments the plasma was formed L0OO psec after the
solenoid current was initiated, when the magnetic field has reached
about 80% of thc pecak valuc. The method of formation is that used 'by-
Wilcox, et al (1), Cooper (2), and recently investigated in some detail
by Brennan, et al (3). A 1h4 kiloamp current pulse lasting 30 usec (see
Figure 3.2) is discharged between the electrode and the concentric
tube. This discharge produces a hydromagnetic lonizing front which is
driven down the tube at a nearly constant velocity (typically 5 cm/usec)
by the azimuthal field produced behind the front by the axial current.
The radial current in the front experiences an azimuthal force because
of the axial magnetic field of the solenocid so that the plasma i1s
rotating. Detailed spectroscopic investigation of the decay of a
plasma formed in similar devices are the subjects of Cooper's study
and of a report by Irons and Millar (4). On the basis of their work
one would expect a plasma with approximately the following properties:
1. about 20% of the neutral gas is swept ahead of the ionirzing front,
leaving behind it a nearly fully ionized plasma. 2. Longitudinal
nonuniformities in the plasma density and temperature disappear by 80
usec after the initiation of the discharge. A pronounced dip in the

density (to as 1little as 25% of the peak value) near the tube axis

1 J.M. Wilcox, A. W. DeSilva, W. S. Cooper III, Phys. Fluids E, 1506
{1g961) .

2 W. 8. Cooper ITI, Lawrence Radiation Lab. Report UCRL-10849 (June

1963).

M. H. Brennan, I. G. Brown, D. D. Millar, C. N. Watson-Munro, J. Nuc-

lear Energy Part C, 5, 229.

Yp. B Irons, D. D. Millar, Report ER.8, Wills Plasma Physics Dept.,
University of Sydney, Australia (April 196k4).

3
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persisted for at least 160 psec in Cooper's study, but disappeared
almost completely in 60 psec in the other investigation. 3. The
plasma is nearly in local thermodynamic equilibrium with a temperature
of 1-2 eV. 4. The plasma decays by volume recombination rather than
diffusion. The ion density falls by a factor of two in about 100 usec.
The experiments reported here are performed in the afterglow
period beginning just after the ilonizing current is crowbarred and

lasting for about 300 usec.

3.2 Wave Excitation and Detection

A block diagram of the transmitting and receiving system used in
the wave experiments is shown in Figure 3.3. A reference signal in the
range 5-15 Mc is used to excite a 180 watt commercial amateur radio
transmitter which is continuously tunable from 2-30 Mc. For measure-
ments above 30 Mc this transmitter is used to drive a 50 watt VHF
amplifier. By means of plug-in coils and strip~line plate circuits the
' VHF amplifier output circuit can be tuned to above 100 Mc. Here it is
used as a class C frequency multiplier and is limited to YO Mc when
driven at 30 Mc. A matching network connects the transmitter to a 7.5
cm diameter loop coaxial with the plasma tube. The loop is formed of
20 gauge copper wire in a pyrex sheath. To adjust the matching network
a L-ohm resistor in series with the loop is used to simulate the effect
of the plasma. This value is based on the observation of the decay
rate of a 10 Me wave execited by connecting a charged capacitor to the
loop. If necessary, minor adjustments in the matching network are made

by trial and error using the actual plasma. Lumped matching networks



—60-

r--—=7 !Illln..\I\...I T T T T
WOON N33408 Oy 11950
3IN3u343N
_h,
]
I yandione ¥3L4IHS
pra— > —
ADNIND3YA 3SVHd
wnots | YN
3ISVHI 40193130
H3131dINY
g e azummu "
ONILININ d
-
WNOIS g muohz% ] 3y

Ewp.mhm Sutaloosy pus JurqarTwsurll 9Y} JO weIIRI(Q ¥o0Td

- ey W GEs -—--——-J

L——aﬂ -—— ase cmmm euus eme

€-€ -314
H3141INdWNY mw_u “.._x_zq
" |Livm 08! LIVM 0S
-
3g08d -
NOI12313C NyOML3
IAVM ONIHILIVI
4001 Y
NOILVL1IOX3

3AVM




~B1=

are used below 30 Mc; at higher frequencies combinations of lumped and
transmission line techniques are employed. The loop current is
monitored by a small magnetic probe sampling the field inside the
coaxial feed to the driving loop.

The wave detectiou system uses a maguetlce probe couslsllinyg ol
five turns of No. 32 wire wound on a 3/16 in. diameter lucite form
and provided with a slotted stainless steel electrostatic shield. A
3/8 in. 0.D. alumina sheath projecting through the port in the elec-
trode protects the probe from the plasma. In some cases probes
inserted radially through the side ports of the tube have been used,
but there is evidence that thelr disturbing effects are greater.
Calibration of the magnetic probes was accomplished by using the wave
detection probe to sample the field of a one-turn loop two inches in
diameter. Measurements with a VHF impedance bridge verified that this
loop was purely inductive to 300 Mc, and the measured inductance agreed
to within 5% with the calculated value. Thus the voltage across the
loop could be related to the magnetic field sampled by the probe. With
a 50-ohm termination the wave detection probe had a low-frequency sen-

2
2 volt-sec-m /weber falling to 64% of that value

sitivity of 7.6 x 10
at 90 Mc. With the wave excitation loop in free space and using a
procedure essentially the reverse of the one just described, the wave
detection probe was used to calibrate the loop current probe. In this
case it is possible that errors as high as 25% at 90 Mc could be intro-
duced by the fact that the point at which the probe samples the current
fed to the loop is about 10 cm from the terminals of the loop. Since

the presence of the plasma changes the impedance of the loop and the
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matching is only approximate, a standing wave is set up which makes the
amplitude of the current in the loop feed line a function of position
along the line.

As a check on the calibration of the receiving probe, it was
used (with an electronic integrator) to measure the axial magnetic
field of the solenoid. Assuming the data of Figure 2.1 (which was
obtained with an accurately constructed l~inch coil whose sensitivity
could be calculated)to be correct, it was found that the sensitivity of
the probe was 16% higher at a few hundred cycles than at 2 Mc. The
discrepancy may be due to the greater effectiveness of the slotted
shield as a magnctic chicld at the higher frecqueneies. A further test
of the self-consistency of the calibrations was made by measuring at
30 Mc the ratio of BZ(O,Z) to the loop current with a vacuum in the
waveguide. The measured ratio was about 20% below the calculated
value. This was judged to be acceptable agreement; for example, the
error could have resulted from an error of 0.15 in. in measuring the
loop-to-probe distance.

The receiver, as shown in Figure 3.3, consists of an r.f. pre-
amplifier followed by two parallel channels. One 1s simply a linear
r.f. amplifier (a typical stage is shown in Figure 3.4) followed by a
crystal detector and filter. It provides a signal nearly proportional
to the amplitude of the received wave. The second channel consists of
six cascaded limiting amplifiers whose function is to remove the amp-
litude variations from the signal while preserving phase information.

Such an operation is necessary because phase and amplitude variations
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Fig. 3.5 Gated-Beam Tube Limiter



-6l

occur on the same time scales in the experiments. Pentode limiters
geimilar to thoese frcegquently uecd in f.m. receivers were found to be
inferior to the simple gated~beam tube circuit shown in Figure 3.5.
With 55 db.of preamplification a 20 uv rms signal produces full
limiting. The limiter output increases less than 5% for a thousand-
fold increase in signal input, at which point the amplitude detector
saturates. The bandwidth is about 200 kec.

The limiter output is added to a much larger sample of the
transmitted signal, detected and filtered. The input to the detector

is thus

el(t) = 8, cos 0t + &, cos(wt - ¢O- ?) (3.1)

Wwhere &l s az . The total phase shift from the reference lopul Lo
the detector through the transmitter, empty wavegulide, and receiver is
represented by ¢0 . The remaining phase shift ¢ is therefore the
same as that defined by equation 2.96--namely, the phase of

Hz(r==0,z) relative to its value in the empty waveguide. We‘may

rewrite the detector input as

By STl
e, (t) = a, \/& + 2 E; cos (§_+@) + (EI) x
-1 % 1
cos | wt - tan {Ef' 5 }] (3-2)
[ 1 l+—§§ cos(¢0+ ?)

If we ignore terms of the order (ag/al) compared with unity in the

square root and arctangent we have
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el(t) 4 [al + a, cos (¢o + ¢)] cos{wt -AEE) (3.3)

so that if the detector tunctions as a peak or envelope detector its

output is
ee(t) ¥ a4 a, cos(¢O + @) (3.4)

The phase shift ¢o’ although large, is substantially constant
during the experiment. This has been verified by feeding the loop cur-
rent probe output into the receilver and observing the phase detector
output when the plasma is pulsed. A phase shifter (a transistor phase
splitter driving an R-C bridge) is provided so that ¢0 may be
adjusted to a convenient value.

The amplitude 8, is held constant by the limiter. Since the
transmitter signal amplitude is affected by the plasma, the reference
signal is in practice derived from the exclter via a frequency multi-
plier to match the frequency multiplication in the transmitter. The
two stages of the frequency multiplier are essentially identicél to
the narrow-band r.f. amplifier circuits except for the fact that plate
circuits are tuned to harmonics of the input signal.

To tune the recelver the plate circuits in all circults except
the preamplifier have independently variable capacitors. In addition
the inductors are mounted on 7-pin tube bases so they can be readily
changed. Three sets of colls cover the range 4-32 Mc in octaves. It
has been found that the tuning of the limiters is somewhat critical if

a slight amplitude-dependent phase shift is to be avoided. The
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preamplifier uses three cascaded commercial 125 Mc dlstributed ampli-
fiers, so that no tuning is necessary.

For frequencies above 30 Mc the recelver Jjust described is
modified by inserting mixers Jjust after the r.f. preamplifier and
frequency multiplier and heterodyning the signals down to a convenlent
intermediate frequency (see Figure 3.6). The mixers (Figure 3.7) use
pentagrid converters and are similar to the r.f. amplifiers in design.

The most perslstent problem 1ln the design of the wave experil-
ment has been the presence of spurious signals from the magnetic field
and from r.f. signals propagating through paths outside the plasma.
The time scale on which the magnetic field changes is only slightly
longer than the duration of the experiment so that induced signals
cannot always be removed by filters. Careful attention to the avoid-
ance of ground loops, particularly in the vicinity of the solenoid,
has been found to be essential. Good shielding of the transmitter and
placing the receiver in a screen room were the important factors in
eliminating spurious r.f. propagation paths. After some effort a
10-6 web/m? signal in the empty tube could be detected without signi-

ficant errors due to unwanted signals.

3.3 . Spectroscopic Measurements

The equipment used for absolute measurements of the Hg line

profile, shown schematically in Figure 3.8, is similar to polychroma-

tors constructed by other investigators (5). The basic unlt is a

5G. R. Spillman, W. S. Cooper TTT, J. M. Wilcox, Applied Optics 2, 205
(1963).
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Figure 3.7 Schematic Diagram for Mixer

Jarrell-Ash Model 82-000 monochromator with its exit slit opened to
about 1 mm. A 12 mm focal~-length cylinder lens parallel to the slit
increases the dispersion of the instrument so that 50 cm from the
exit slit a lh-angstrom portion of the spectrum is spread over 2
inches. A second cylinder lens with its axis perpendicular to the
first reduces the vertical height of the image to about 1/2-inch. A
series of light pipes of 1/8 X l-inch lucite strip collect the light
at eight different wavelengths and pipe it to separate photomulti-
pliers. A mask of thin copper was constructed by focucing & narrow
line from a mercury tube on the mask and cutting slits to pass the

image of the line at positions corresponding to the desired wavelengths.
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Since a straight entrance slit is used, the image is curved; the mask
permits the use of the entire height of the slit without a severe loss
in resolution. By scanning a narrow line (Cd 4086) across the exit
s1it the resolution is measured to be 0.6 A, indicating a loss of a
factor of two from the normsl resolution of the monochromator.

The photomultiplier circuits are conventional divider strings,
with capacitors across the last stage. Both 1P28 and 931-A photomul-
tipliers have been used. Since the instrument is operated in fairly
strong magnetic fields the photomultipliers are housed in a magneti-
cally shielded box. The eight output cables run through metal pipes
into the screen room, where they are fed to the common-base amplifiers
shown in Figure 3.9. These have a low input impedance, high ocutput
impedance and a current gain of nearly unity. Thus they permit the
use of large load resistors to convert the photomultiplier currents
to voltages while roughly terminating the long coaxial lines and main-
taining a good frequency response. The rise time of the system is
determined by the load resistance and oscilioscope input capacitance
and is about 2 psec. All eight channels of the polychromator are
displayed on one dual-beam oscilloscope by means of two four-channel
choppers.

Light from the plasma is reflected into the polychromator by
a wirror loclloed abt an angle of )+5o to the axis of the plasma tube.
The mirror is mounted on an optical bench so that light from different
radli can be collected simply by moving the mirror. The light 1s
focused on the entrance slit by a 135 mm focal length lens with a

solenoid-operated shutter used in testing and calibration of the
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Figure 3.9 Photomultiplier Amplifier

system. Alignment turns out to be very simple: a mercury tube is
placed at the exit slit of the monochromator and the light path is
followed backward through the system. The path of the light through
the end plates of the plasma tube can easily be seen in a darkened room.
The polychromator and mirror are adjusted so that path remains parallel
to the axis of the plasma tube as the mirror is moved along the optical
bench. A mask 3/h-inch high is placed across the window nearest the
mirror to give some vertical resoclution. The volume sampled approxi-
mates a prism with bases .12 by .75 inches and .2 by 1.8 inches.
Absolute and relative calibration of the polychromator channels
is accomplished by using a ribhon-filament tungsten lamp as a standard.
The effectlve black-body temperalure of Lhe lamp ls measured wlilh an

optical pyrometer as a function of the lamp current. By using the
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known properties of tungsten and glass one can compute the light inten-
gity emitted by the tungsten surface at the wavelength of the HB line.
The lamp is then placed at the end of the plasma tube so that the image
of the entrance slit of the monochromator, truncated by the 3/4-inch
mask, falle entirely on the filament. The shutter ie uesed +to

produce a short pulse of light and the output voltages of the channels
are recorded. If the lamp is removed and the light from the plasma
allowed to enter the polychromator, the output of a given channel
relative to its output for the light from the lamp gives one point on
the curve %(k)/m,G as defined in Section 2.9.

The density and temperature of the plasma are determined from
the data in the following way. The elght points representing wBﬂDt
are plotted with logarithmic ordinates versus wavelength. Theoretical
profiles plotted in the same way on transparent sheets are superposed
on the data, paying no attention to the absclute value--that is, the

theoretical curves are shifted vertically to give the best fit. The
density is taken to be that corresponding to the curve which is
visually determined to give the best fit to the data. It is usually
possible to determine the best-fit density to + 10%. Griem, Kolb, and
Shen estimate the possible errors in their calculations to correspond
to an error in the density of 20%. Although only profiles for th OK
are used, this 1s not a serlous source of error slnce over the wave-
length region measured a change of a factor of two in the temperature

has less effect on a theoretical profile than a lO% change in the den-

sity. A typical case is illustrated in Figure 3.10.
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To determine the temperature we make use of equation 2.115 and
the normalization of S(a) given by equation 2.98. Thus the area

under the curve wB(X)/d% is just the area

Q A= A

f s(————q_—lér 2/3) an - 1.5 x 10713 12/3
1.25x10 n

under the best fit curve times the factor [mb(o)/wt]/s(o) correspond-

ing to the amount by which the theoretical curve has been shifted verti-

cally. Consequently

Uh = &9 . Lféfgléle - (1.25 x 1

-13 2/3
0
2 L s(0) n )

(3.5)
The temperature is then determined from Figure 2.6. The greatest
sources of error are the uncertainty of about 20% in the density and an
uncertainty of about 10% in the absolute calibration of the system.

Typically these result in an uncertainty of 25% in the temperature.
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IV. RESULTS

L.1 Introduction

The results of our experiments, analyzed according to the
theories devéloped or cited in Chapter II, are the subject of this
chapler. The next two sectlons present the results of the spectro-
scopic measurements in the form of density and temperature profiles
and decay curves. Section L.L deals with the wave measurements and
their interpretation in terms of parameters of the decaying plasma.

As a background for the discussion of the wave measurements it
may be helpful to describe qualitatively the features which may be
expected on the basis of the theory developed in Chapter II. Referring
to the typlcal set of dispersion curves for the compressional modes in
Fig. 2.1, we recall that each mode is characterized by a phase factor
ﬁm and an attenuation Tactor am where the z-dependence of the wave

iBmz -0l Z

is e e . If the frequency is reduced toward the cutoff fre=-

quency ®_. = TmVA we find Bm decreases rapidly and Q@ increases
rapidly so that propagation belov w is effectively blocked. As
the frequency is raised Bm increases and aﬁ decreases, reaching a
minimum at a freguency somewhat above ®om Therealter both am and
Bm increase with frequency.

In this experiment the frequency is fixed while the plasma
decays. We may visualize the effect of the decreasing ion density on
the dispersion curves by noting that all the compressional mode phase
factor curves lie above the line m/Bm =V, . Thus as the density

A

decays (and VA increases) the phase factor decreases for two reasons:
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the Alfvén speed is increasing and the cutoff frequency is rising. If
the wave frequency is high enough at the start, thc attecnuation factor
will first decrease, then increase rapidly, as the density approaches
the critical value for which the cutoff frequency equals the wave
frequency. This process is repeated for each mode, beginning with
the highest one for which O < w and ending with the mode defined
by m =1 . Thus we expect to find a decreasing phase shift and a
series of relative maxima in the signal amplitude. Finally, propagation
ceases when the density falls below the critical value for the lowest
mode.

The above discussion has ignored the excitation coefficient.
From equation 2.88 we see that the main dependence of Am on the den-
sity is via the factor l/km , whlch would tend to exaggerate the
amplitude behavior already described. The effect of the excitation
coefficient on the phase, again mainly due to the term l/km s Was

shown in Section 2.7 to be the addition of approximately ﬂ/2 to the
phase.

k.2 Spectroscopic Density Measurements

As discussed in Section 3.3, the spectroscopic measurements are
made on the light collected from a longitudinal sectlion of the plasma.
Thus the densities and temperatures resulting are complicated averages
over the length of the plasma. Observations reported by Cooper (1)
indicate that both the density and temperature along a field line are
uniform to within 20% over the length of the plasma at 60 pusec after

crowbar and later. (Consequently we assume longitudinal uniformity of

the plasma in discussing our results.

1 W.S.Cooper III, Lawrence Rad.Lab.Report UCRL 10849 (June 1963) p.83.
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Radial density profiles at various times are shown in Fig. L.1.

It will be noted that the density on the tube axis is 65-70% of the
maximum density. Cooper observed a core density of about 30% of the
maximum density, while Irons and Millar (2) measured almost no central
dip. These discrepancies are of some interest, since the wave theory
assumes a uniform plasma. It was speculated that a possible explana-
tion was the fact that the magnetic field for Cooper's machine was
dec, allowing the field to penetrate the electrode, while the other
devices use pulsed solenoids, so that the fields are partially ex-
cluded. Current flowing from the perimeter of the electrode might be
expected to follow the field lines and funnel into the core region.

The effect of field penetration into the electrode was tested
by filling a hollow electrode with solder, thus changing the charac-
teristic penetration time from about 30 usec to 20 mgec . The only
significant change in the plasma density, as shown in Fig. 4.2, was
a tendency toward azimuthal asymmetry and highef densities near the
wall at times before 60 usec.

By integrating the density profiles of Fig. 4.l over the
volume (again assuming longitudinal uniformity) the average density
decay curves shown.in Fig. 4.2 were obtained. Also shown is data
obtained with the driving loop and one radial probe sheath in the
tube. In this case the assumption of longitudinal nonuniformity is

somewhat suspect. Apparently some 25% of the ionizing current may be

diverted to the tube wall by the presence of an alumina probe sheath

2 F.E. Irons and D.D. Millar, Report ER.8, Wills Plasma Physics Dept.,
University of Sydney, Australia (April 1964).
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extending radially from the tube wall to the axis. This estimate
results from a measurement of the azimuthal field behind the ionlzing
front. Consequently it seems likely that the decrease in density may
be confined to the region beyond the probe sheath. Since in the wave
meagurcmente there were no radial obstructions between the electrode
and the driving loop, one might expect the upper density decay curve

to be the appropriate one.

4.3 Spectroscoplc Temperature Measurements

Making use of the absolute calibration of the polychromator and
the results of Sections 2.9 and 3.3, the same data used to determine
the plasma density yields the temperature.

Fig. 4.k shows a typical set of temperature profiles obtained
with the solid electrode. It appears that at early times the profile
is somewhat asymmetrical and erratic, just as it was for the density.
After 40O psec the temperature is nearly constant across the tube and
equal to about th OK, decreasing only very slowly with time. 1In
Fig. 4.5 is shown the average temperature (weighting all radii
equally) decay curve.

As pointed out in Section 2.9, the Saha equation is not expected
to be valid for the lower energy levels in a decaying plasma. Never-
theless it is interesting to plot the density versus the temperature
for a given radius. It is usually true that such a decay curve shows
better repeatability and less scatter than either the density or tem-
perature plotted versus time. Decay curves obtained at 4.5 cm and 3.0

cm from the tube axis are shown in Fig. 4.6, together with curvec
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calculated from the Saha equation assuming the total density (ions
plus neutrals) remains constant. It appears that at 4.5 cm a curve

v 2. -
assuming n = 43,0 x 10 " m 3

rather than L.6 x lO2 n --corres-
ponding to the hydrogen density before the formation of the plasma--
more closely approximates the experimental results. At 3.0 cm there
is rather poor agreement no matter what total denelty ic ascumecd.
These results would seem to indicate either a lack of detailed balance
at the ground state or substantial drifts of material in the tube. The
4.5 cm results would appear to lend some feeble support to the idea

[predicted by the theory of Kunkel and Gross (3)] that some of the

neutral gas 1s swept ahead of the hydromagnetic ionizing wave.

L.  Wave Measurements

The procedure for measuring the propagation characteristics of
the hydromagnetic waveguide consists of turning on the transmitter,
- forming the plasma, and recording the loop current, amplitude, and
phase detector outputs as the plasma decays. Typical oscillograms are
shown in Figs. 4.7 and 4.9 (the amplitude detector output was sampled
about every 3 psec). Although the loop current is not displayed here,
it was taken into account in the analysis of all amplitude data. Thus
our measurements yleld as a function of time the phase and amplitude
{normalized to 1 amp loop current) of HZ(O,Z), the component of the

wave magnetic field parallel to the static field measured on the tube

3 W.B. Kunkel, R.A. Gross, in Plasma Hydromagnetics, edited by D.
Bershader (Stanford University Press, Stanford, Calif., 1962), p.58;
Lawrence Rad. Lab. Report, UCRL 9612 (1961).
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axis at a distance =z from the driving loop.

qucral typical features of phase decay curves are illustrated
by the example of Fig. 4.7. 1In the first place, we observe that the
phase détector output consists of noise for the first 75 or 80 usec.
The amplitude of the signal during this périod is large enough to pro-
duce full limiting: the noise indicates the absence of stable propaga-
tion characteristics. While this perlod was not carefully investigated,
it is interesting to note that the duration agrees closely with the time
reported by Cooper (see Section 3.1) for the disappearance of longitudi-
nal nonuniformities in the plasma.

The second typical feature displayed in Fig. 4.7 is a rather
abrupt change in the slope of the phase versus time curve, occurring
in this case at about 300~350 psec. This change 1s 1lnvariably
assoclated with a sharp drop in the amplitude of the signal from iis
maximum value to nearly zero. Based on the discussion in Section 4.1
we interpret these events as indicating that the plasma density has
decreased so that it coincides with the critical density for the lowest
circularly-symmetric compressional mode; we will refer to this coinci-
dence as "cutoff". After cutoff the phase detector output remains
nearly constant at the value measured in the absence of the plasma,
indicating that the plasma density 1s so low as to have a negligible
effect on the phase. Thus the ambiguity of a multiple of 2x in the
inverse cosine is to be resolved in such a way as to make the phase
approximately zero after cutoff.

At all frequencies investigated except 15 Mc it frequently

happens that there is a sudden but temporary change in the slope of
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the phase versus time curve similar to the one shown at 150 usec in
Fig. 4.7. In this example, note that if the curve to the right of the
discontinuity is extrapolated upward, it differs by about 2x from
the measured curve. A relative minimum in the amplitude of the
received signal was also noted at 150 usec. Taken together these facts
lead one to speculate that a partial interference between two modes
occurred at 150 psec; that 1s, it appears that the amplitudes of two
modes were nearly equal and their phases dlfferent by approximately

an odd multiple of = radians. In such a situation the amplitude of
the net fileld is very small and the phase determined partly by each of
the modes.

To show that an interference between two modes can result in an
error of a multiple of 2x in the phase, consider the artificial
example of Fig. 4.8. In Fig. 4.8(a) we show the z-dependence of two
modes at t = O . Mode 1 is assumed to have a phase (defined by 51L)
of 7n , mode 2 a phase either slightly greater or less than by . Iet
these phases remain fixed.while the amplitudes of the modes are changed
as shown in Fig. 4.8(b). We can compute the amplitude and phase of
the sum of tﬁe two modes by using a phasor diagram (c); the construc-
tion 1s indicated for t = T/2 when A =B = 1/2. The resultant
amplitude and phase curves are shown in (d) and (e); the final "mea-
sured" phase differs from the "correct" value by 2n in one case and
Ly 1in another. If one were to adjust the phase curves to give the
correct phase for t > T, the curves would be high by 2x or bx for

t <0 .
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The discussion above indicates that if the phase decay curve
to the right of an interference is correct, the curve to the left may
be in error.by a multiple of 2x , and that a slight change in the
plasma conditions during an interference may result in curves differ-
ing by 2x . Flg. 4.9 shows an exumple of Just such a situation. Only
shot~to-shot variations in the plasma parameters are responsible for
the differences between the two oscillograms. Note that the amplitude
detector output (approximately proportional to the received field
strength) shows that the two phase curves split near a relative mini-
mum in the signal.

Another event which occurs frequently but with much shot-to-
shot variation is illustrated in Fig. 4.9; a substantial change in the
phase after cutoff. 1In some cases one or more complete fringes are
observed after the signal amplitude has decreased tc a very low value.
It is believed that these extra phase shifts are due to the noncir-
cularly symmetric modes with lower cutoff frequencies or other
spurlous propagation mechanisms. The noncircularly symmetric modes
could be excited, for example, by small departures from azimuthal
symmetry in the wave excitation loop. In the case of data obtained
at 15 Mc (below the ion cyclotron frequency) it may be that the weakly
exclted torsional modes are observed. On the basis of this interpre-
tation we will ilgnore any phase varlatlone observed after cutoff and
adjust the phase (in steps of 2n) so that the phase shift just after
cutoff is nearly zero.

It should be pointed out that none of the features of the phase

curves which have been illustrated and discussed are believed to be
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due to our instrumentation. In all the oscillograms shown the wave
amplitude was large enough to keep the limiter output substantially
constant.

In view of the rather complex features of the phase versus time
curves Jjust discussed, it seemed desirable to measure the phase as a
function of distance from the driving loop. Figs. 4.10 and k.11 show
sets of phase decay curves measured at 15 and 30 Mc at several axial
positions. 1In each case the curves have been adjusted vertlcally in
steps of 2x so that the curve (or its extrapolation) reaches approxi-
mately zero radians at the same time that the amplitude of the signal
drops suddenly. The next two figures (Figs. 4.12 and 4.13) display
examples of phase versus distance curves obtained by cross-plotting
the phase decay curves. For clarity error bars have been omitted in
the data presented in Figs. 4.10 to 4.13. The variation from shot-to-
shot in the phase measurements are typically + 0.l fringe or + 0.6
radians, except near interferences where the variations may be several
times larger. Recalling the discussion of Section 2.7 where it was
shown that the phase should be approximately B z + n/2 1if a single
mode is propagating, we have drawn straight lines through (0,xn/2)
visually fitted to the data. They show exactly what is to be expected
on the basis of the theoretical considerations outlined in Section L4.1:
the phase is nearly that of a single mode if attention is restricted
to relatively long loop-to-probe distances (where the higher modes have
been damped out) or late times (where the density is below the critical

values for the higher modes). We further note that no lnterferences
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(except near cutoff) are observed in Figs. 4.10 and 4.11 under the
same conditions. Data taken at 60 and 90 Mc is qualitatively similar
to the 30 Mc data.

As a quantitative check on the phase data we have used the
phase factors determined from the phase versus distance plots (B is
just the slope of the straight-line approximation) to estimate the
plasma density. The uncertainty in determining B Dby this method
ranges from +5% at 15 Mc to about + 10% at 90 Mc. From equation 2.77
we see that the resultant errors in the density should be no more than
twice as great.

The sbove discussion indicates that we are Jjustified in
assuming only the lowest mode (Tla = 3.832) need be considered if the
straight lines are fitted to the data taken at the greatest propagation
distances. As wlll be seen later, the damping is relatively slight.
Hence the formula for the density (equation 2.77) derived from the
dissipationless 63 = o theory may be applied. The solid curves in
Fig. L4.14 were computed from data obtained at each of the frequencies
investigated; for comparison the spectroscopic density data from Fig.
4.2 are repeated here. Although the two types of measurements roughly
agree in the limited time period where they overlap, the density decay
curves for different frequencies differ by as much asg a factor of four.

The probable explanation for the disagreement between the phase
data obtained at different frequencies was found only after the bulk
of the oscillographic records had been analyzed. To discuss this

explanation in simple terms, let us first note that the time of arrival
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of the maximum in the amplitude of the received signal is approximately
equal to the time when the density reaches the critical value for the

lowest mode, n, = 2 x 1036/m2 for our experimental conditions. Upon

1
comparing the arrival times of the peak amplitudes for the 15 and 30 Mc
data presented as solid lines in Fig. 4.1, one finds that they very
nearly coincide, whereas the associated critical densities should differ
by a factor of four. Upon investigation it was found that the arrival
bime of the peak slgnal 1s a function of the drliving loop current, as
shown in Fig. 4.15. The values of the loop current used to obtain the

data previously discussed are indicated by arrows. If the theory

leading to the concept of a critical density nearly coinciding with
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the peak signal is correct, we are therefore led to the following con-
clusion: as the loop current is increased, a point is reached where a
further increase in loop current results in a rather abrupt decrease
in either the initial ion density or the decay time, presumably through
the influence of the loop current on the lonization mechanism. It is,
in fact, observed that at high loop currents the icnization produced
by the r.f. fields is high enough so that a visible glow is produced.
One would expect the 15 Mc data, obtained with the loop current below
the critical value, to correspond to the spectroscopic measurements
which were made with zero loop current. Unfortunately the accuracy of
the data is not good enough to support this conclusion.

To show that data obtained at low loop currents are consistent
we have computed the density from the 30 Mc phase decay curves
obtained with the loop current below 4 amps (see the dashed line in
Fig. 4.14). It is evident that the disagreement between the 15 and
30 Mc data is reduced from a factor of four to 25% when low loop cur-~
rents are used at both frequencies. While we did not repeat the
experiment at 90 Mc, it seems likely that in this case too, the trans-
mitter power may have been high enough to influence the ionization
mechanism. It is Interesting to note that 1f one shifts the 30 Mc
density curve measured at a loop current of 6.1 amps to the right by
20 psec, it coincides wilith the curve obtgined at low currents; that
is, the plasma density follows the same decay pattern, at least for

-3

21
densities below 10 m
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We now turn to a discussion of the results of the amplitude
measurements. It has already been shown that under some circumstances
(low densities and long propagation distances) there is evidence from
the phase shift that a single mode dominates the propagation. In some
cases, however, the amplitudes of higher modes can be comparable to
that of the lowest mode since interferences are observed.

Tn Fig. 4.16 are shown curves of amplitude (normalized to the
instantaneous loop current) versus time corresponding to the 15 Mc
phase data of Fig. 4.10. Similar measurements were made at each fre~
guency investigated. The scatter in these measurements increases with

+ 25% at 90 Mc, with perhaps

—

frequency from about + 10% at 15 Mc to
double these uncertainties near interferences. By plotting the ampli-
tude versus distance at fixed times on semi-log paper (Fig. 4.17) we
see that except for the points at 4 in. the decay is very nearly
exponential.. The attenuation coefficient ¢ is Jjust the reciprocal
of the distance in which the amplitude decays by a factor or E . As
the frequency 1s raised it 1s found that the spatial decay of the wave
is less closely approximated by an exponential so that s larger uncer-
tainty must be asslgned to the measured allenuutlon coefflcients.

It should be emphasized that the determination of the attenua-
tion factor o from the spatial decay rate does not depend on a
knowledge of the excitation coefficients. The calculation of these
coefficients in Section 2.6 was based on the assumption that the
driving current was constant around the circumference of the loop.
Since the wavelength in the plasma is usually smaller than or com-

parable to the loop dlameter, this assumption is somewhat suspect; it
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seems wise not to rely on it.

Once the attenuation factor has been determined, we may ask
what plasma losses would account for the measured attenuation.
Referring to Section 2.3 we see that the conductivity tensor and
hence the attenuation is determined if in addition to the static
magnetic field BO we know the neutral density Pho? ion density Py
the ion-neutral collision frequency v , and the temperature. Accord-
ing to the estimate discussed following equation 2.12, the ion-neutral
collision frequency is well below even the lowest wave frequency
studied; we therefore expect the temperature (via the electron-ion
collisions) to have the strongest effect on the attenuation. Accord-
ingly, we assume the total density (ions plus neutrals) to be constant
and equal to the value corresponding to 100% ionization of the neutral
gas, and compuxe the ion~neutral colllsion frequency from Vv = n,ovV

i nt

with ov , =6 x 10_15m3/5ec estimated (4) to be a reasonable value.

t
Then taking for the ion density the value computed from the phase shift
we find (by trial and error on a digital computer) the temperature
which ylelds the observed attenuation factor. Temperatures computed

in this fashion are displayed, together with the spectroscopic tem-
perature measurements, in Fig. 4.18 (the error bars on the wave
measurements include the uncertainty resulting from varying OVt

-1
from 3 to 9 x 10 5m3/sec). The wave data here corresponds to density

measurements represented by the solid curves in Fig. k.14, obtained

%B.A. Dalgarno, H.N. Yadav, Proc. Phys. Soc. {London) 684, 173 (1953).
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before the influence of the loop current on the plasma density was
discovered. Hence we should not expect the agreement between tem-
perature measurements at different frequencies to be very close. It
must be noted, however, that the 15 Mc data was obtained in the low-
current regime presumably corresponding to the conditions under which
the spectroscopic measurements were made. Yet the temperatures
inferred from the 15 Mc attenuation are lower than those found spec-
troscopically by a factor of about two. The discrepancy may be due
to the fact that we have ignored electron-neutral collisions in our
analysis. In thé regime covered by the wave measurements (1 to 25%
ionization) £hcoc moy well be morc important than the electron-ion
collisions included by taking the temperature into account.

A comparison which tests all aspects of our interpretation of
the experimental results is shown in Fig. 4.19. Here we have shown
the normalized signal asmplitude as a function of time. In addition
to the experimental curve two theoretical curves are displaye&. To
compute these the total particle density was assumed to be
h.6l x 1021m73, corresponding to 100% ionization; the ion density was
taken to be that measured from the phase shlft at Lhe frequency [for
which the response 1s being calculated. Dissipation was taken into
account by assuming a value of 6 x lO—lsma/sec for oV ¢ and taking
for the temperature the values computed from the attenuation rate and
shown in Fig. 4.18. Also shown is a curve in which a constant tem-
perature of lO4 OK was assumed. Dashed portions of the curves
indicgte regions where the temperature or density measurements were

not avallable at the frequency in question so that spectroscopic data
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or data taken at other frequencies had to be used. It should be
remenbered that because of the influence of the loop current on the
ionization scheme, the four sets of curves in Fig. 4.19 do not cor-
respond to the same plasma conditions.

In only one characteristic can the experimental and theoretical
curves in Fig. 4.19 be said to be in gquantitative agreement--the time
at which cutoff occurs as evidenced by the final rapid drop in signal
amplitude. As has been pointed out, this time is primarily a function
of the plasma density and not of the dissipative mechanisms.

There is clearly no detailed agreement between the experi-
mental and computed curves except near cutoff. However, the fact that
the amplitudes of the curves computed from the measured temperature
are within a factor of from two to five of the experimental values
indicates that the computed magnitude of the excitation coefficient
as well as the decay rate must be of the right order of magnitude. As
pointed out previously, the assumption of a uniform current distribu-
tion in the exciting loop made in the calculation coefficients is
probably not Jjustified because the loop size is comparable to the
wavelength. The disturbing effect of the loop itself on the plasma
is another factor which has been neglected. Hence the detailed
effects of interferences and reinforcements between modes cannot be
predlcted. The computed amplitude curves have enough qualitative
similarity to the experimental ones to lend support to the thesis that

such interactions between modes do occur.
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V. SUMMARY AND CONCLUSIONS

5.1 Evaluation of Results

We have attempted to interpret the characteristics of compres-
sional wave propagation in the hydromagnetic waveguide in terms of
the most important parameters of the plasma--the ion density and the
temperature--and to compare the results with independent measurements
of these paranmeters. Our most important conclusions are that the
phase shift and attenuation of the waves are relatively easy to mea-
sure at frequencies up to 100 Mc; the behavior of these parameters in
a decaying plasma shows semi-quantitative agreement with the predic-
tions of a simplified theory which assumes a uniform plasma sgnd
includes only electron-ion and ion-neutral collisions; and the agree-
ment between the density determined from the wave measurements and
that found spectroscopically isvgood enough to warrant the considera-
tion of employing the waves as a dlagnostic tool.

‘The ralher simple relationship between the phase shilfl and the
plasma density provided by the dissipationless theory is accurate and
sensitive enough to detect a change of a factor of four in the density;
it wae by thic means that it was found that the tranomitter oubtput
affected our measurements. The results obtained at low loop currents
indicate that the phase-shift density measurement method is capable
of accuracies of the order of 25% over a wide range of plasma densities

(note that the data in Fig. 4.1k covers a range of almost two decades).

- In the case of the amplitude measurements it is not clear that

the dissipation mechanisms included in the theory provide more than an
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order-of4magnitude explanation of the experimental results. Because
there is only a limited amount of spectroscopic data to compare with
the results of the wave measurements and the excitation coefficients
of the higher modes have not been measured, it is not possible to
state where the difficulty lies. The one feature of the measured
amplitude versus time curves which is accurately reproduced by the
computed curves--the time at which the amplitude drops sharply--is
determined primarily by the density and is little affected by the
damping assumed.

The spectroscopic measurements, although performed principally
for the purpose of affording an independent check on the results of
the wave measurements, yielded some information of collateral interest.
The radial density profile showed that although the density in the
core of the plasma drops to 60% of the peak value, it ie still consi-
derably higher than had previocusly been reported. It was shown that
the explanation for this discrepancy does not lie in the exteﬁt of
field penetration into the electrode.} The density and temperature at
a particular radius are apparently not related by Saha's eguation

(assuming constant total particle density).

5.2 Comments on the Experimental Techniques

Before discussing possible extensions of our work, it may be
of interest to discuss some improvements in techniques and apparatus
which could add to the convenience and accuracy of the measurements.

It is clear that some means for eliminating the influence of

the loop current on the plasma parameters should be provided. It
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reducing‘the loop current is not always practical, switching the
transmitter on only after the plasma is formed is another possible
remedy. This problem, of course, is related to the particular ioni=-
zation method we used.

The wide range of signal levels encountered in making the
spectroscopic measurements and in measuring the wave amplitude some-
times mekes it difficult to find the best oscilloscope gain settings.
Logarithmic converters would eliminate this dlfficulty. In the case
of the photomultiplier outputs, it may be possible to use a junction
diode in place of the load resistor and make use of the fact that for
an ideal diode the voltage acrogs the diode is proportional to the
logarithm of the current.

To permit extending the spectroscoplc measurements to lower
densities it would be useful to increase the signal-to-noise ratio of
the photomultipliers, perhaps by cooling the tubes or increasing the
transmission efficiency of the light pipes.

It has been found that it i1s sometimes difficult to detect a
reversal in the slope of a phase decay curve if it takes place near a
time where the phase detector output is at either a maximum or a
minimum. One way to remove this difficulty would be to add a quadra-
ture channel to the phase detector, with a reference signal shifted in
phase by 90°. Then both cos § and sin § would be available. A
better method might be to use a type of phase detector which gives

some other function of ¢ as its output. One method which has been
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used (1) is to follow the limiter with a discriminator whose output is
proportional to d@/dt . This may be integrated to yield ¢ itself.
This system, however, must be calibrated by means of a signal with
known phase modulation; also it responds only to rapid variations in

phase.

5.3 Suggestions for Further Work

In considering further work related to the subject of this
investigation one should consider the results of work by others, all
of which tend to show that the explanation of hydromagnetlc waveguide
propagation by means of the fluid equations is essentially correct.
It should also be kept in mind that significant advances may require
substantial increases in elther the experimenter's control over and
knowledée of the plasma parameters, or in the complexity of the theory
or both. The following three areas would seem to offer the best hope
for useful results.

(a) The use of compressional wave phase shift measurements as
a tool for measuring plasma densities would be made more practical if
several theoretical and experimental problems were solved. For
example, one would like to know more clearly what ranges of plasma
parameters are permissible for such measurements to be useful, how to
interpret properly phase shift measurements made at a single distance,
and vwhether excitation and detection schemes which do not require

devices inserted into the plasma are possible.

1 W.P. Ernst, Princeton University Plasma Physics Laboratory Report,
MATT-273 (June 1964).
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(b) A vetter account of the damping of the waves may be pos-
sible. Refinements in the theory (such as the inclusion of electron-
neutral cdllisions) or in the experiment (such as the use of a plasma

with more aceurately known properties) may be necessary.

(c) Some of the experimental techniques used here may be
suitable for measurements in other situations. In particular the
interferometric method, while certainly not new, does not seem to be
widely used at frequencies below the microwave region. It may be
useful in any problem involving constant or time-varying phase shifts
between signals with frequencies helow 30 Me or which can be hetero-

dyned to that region.
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Experimental Study of Compressional Hydromagnetic Waves

D. G. SwansoN, R. W. GouLp, axp R. fl. HERTEL

California Institute of Technology, Pasadena, California
(Received 5 August 1963)

An experiment is described in which a compressional hydromagnetic wave is observed in a hydro-
gen plasma-filied waveguide. The theory of a cool, partially ionized, resistive plasma in a magnetic
field is described briefly and expressions are derived for the dispersion relation and transfer function
which include Luth the propagation aud ailenuation vonstanis as a function of frequency. Measure-
ments of the cutoff frequency are presented, which verify its linear dependence on the magnetic field,
and they show good agreement with theory on the variation with the ion mass density. The impulse
response of the plasma is studied, transformed into the frequency domain, and quantitative com-
parisons are made with the theoretical transfer function to determine the degree of ionization, the
resistivity, and the ion—neutral collision frequency.

Results indicate that the degree of ionization varies over a range from 75% to 45% when the
initial density varies from 1.3 X 102 to 1.4 X 102 atoms/m3. The measured resistivity appears to
increase with the magnetic field, with the mean value corresponding to a temperature of the order of
5 X 10* °K. The average value of the product of the charge exchange cross section and the neutral

thermal speed is found to be approximately (5.5 & 1.3) X 10712 m%/sec.

I. INTRODUCTION

YDROMAGNETIC waves, which were first
described by Alfvén' in 1942, have been ob-
~served in recent years in gaseous plasmas.’™* All
of the above experiments have studied the wave-
guide mode which has a resonance at the ion cyclo-
tron frequency, whercas Newecomb® and others®’
have shown that two distinct modes will propagate
in a hydromagnetic waveguide. One of these has
no resonance at the ion cyclotron frequency but
does have a low frequency cutoff. The experimental
observation of this latter mode, which we call the
compressional mode, was only recently reported by
Hooke et al.,® the authors,® and by Jephcott.'® This
investigation is an extension of the work reported
by the authors.

In this paper the theory of a three-fluid model
for a cold plasma.in a maguetic field is first developed
and solutions for hydromagnetic waves in a plasma
filled waveguide are obtained. An experiment on
the compressional hydromagnetic wave is then de-
scribed which uses the geometry of Fig. 1 to test
the adequacy of the plasma model and to determine

L f. Alfvén, Ark. Mat., Astr. Fysik 29B, 1(1942)

2T K. Allen, W. R. Baker R. V. Pyle, and J. M. Wileox,
Phys. Rev. Letters 2, 383 (1959) J. Nf’Wﬂcox F. I Boley,
and A. W. DeSilva, Phys FluldsS 15 (1960).

sD. F. Jephcott Nature 183, 1652 (1959),

+ T, H. Stix, Phys. Rev. 106, 1146 (1957).

P W, A, Newcomb Magmtohydrodynamws (Stanford Uni-

verslty Press, Stanford California, 1957), p. 109,
. ¢ R. Gajewski, Phys Fluids 2, 633 (1959)

7 L. C. Woods, J. Fluid Mech, 13, 570 (1962).

8 W. M. Hooke, M. A, Rothman, P. Avivi, and J. Adam,
Phys Fluids 5, 864 (1962).

D. G. Swanson and R. W. Gould, Bull. Am. Phys. Soc. 8,

152 (1963
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Fia. 1. Schematic diagram of experimental apparatus.

the plasma parameters. In the experiment we have
developed a pulse technique which enables us to
measure the dispersion relation from below cutoff
to above the ion cyclotron frequency on a single
shot, so uncertainties due to nonreproducibility have
been avoided. This technique involves computing
the Fourier transform of the response to an impulse
excitation, and comparing the transform with a
theoretical transfer function. Curve fitting is used
in the comparison to determine the degree of ioniza-
tion, the resistivity, and the ion-neutral collision
frequency.

II. PLASMA MODEL

For a model of the plasma in a plasma filled
waveguide we consider a cold three-fluid plasma
which is uniform, neutral, axially magnetized, and
composed of electrons, singly charged ions, and
neutral atoms which interact with each other by
electron-ion and ion—neutral collisions. We neglect
the pressure or thermal effects since we assume that

269
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Ppn. = B/2u, 3> nkT, or that the Alfvén speed
is much greater than the sound speed. We consider
only small perturbations from the steady state and
assume e‘“* time dependence so that we may use
the linearized second moments of the Boltzmann
equations with the time derivatives replaced by dw.
Hence we may write

iam.m.v. = —n.e(E + Vs xBO) + Pei: (1&)
iwnim,-v; = me(E + ¥; "Bg) + Pi. + Pin, (lb)
dm,m¥, = P, (1c)

where the subscripts and superscripts e, i, and n
refer to electrons, ions, and neutrals respectively,
and the P‘’ represent the momentum per unit
volume per second transferred from the jih to the
ith species of the plasma due to collisions.

To obtain an expression for P*, we assume that
the charge-exchange cross section is dominant for
ion-neutral momentum transfer, and that the neu-
trals are comprised principally of atoms. A charge
exchange collision is effectively head-on, since little
momentum ig actually exchanged, in which case the
momentum gained by a neutral atom per collision
is very nearly m,(v; — v,), since m; ~ m,. P* is
then given by the product of this term and the
neutral particle density times the collision frequency
v of a neutral with any ion. Hence we have

P = nom (v, — vp. @)

Using Eqgs. (2) and (l¢) we may solve for v, in
terms of v; and then use this result again in (2) to
obtain an expression for P* in terms of v;. Since
P = —P”, we may use this result in Eq. (1b),
where, if we let m, = m,;, we may write the result
in the form

. "n
innim |14 2o
=neE + v. xB) + P*.  (3)

This result may be interpreted as the equation of
motion for a pseudo-ion with mass u, where '

If we consider the P*' term to be proportional
to the difference in average velocities of the ions
and electrons, or to the current, and define the
constant of proportionality by (where n; = n, = n)

ol ie
W= o B ®

SWANSON, GOULD, AND HERTEL

then 7 corresponds to the resistivity as given by
Spitzer."* Using these expressions along with

J = ne(v, — v.), (6)

we may solve the coupled equations for J in terms
of E, and if we assume B, is in the z direction, the
result may be summarized by writing an effective
conductivity tensor ¢

Jr oy 1:02 0 E,
Jo| = | =02 o, O E, (7)
J z 0 0 oy s
where
_ ol + 9(el® — of))
T R
_ o
o2 = 1+ 27'0( F 1'2(0_;2 — U;z) ’ (8b)
o3 = oi/(1 + ne3), (8¢c)
2 92 .
o = ( 5 ia s+ 3 _p 2\“&‘%, 9a)
W, — 8 — &/
0, %0, \.
o3 = (w:wf P - w:)“o, (9b)
o5 = (W + o/, (9¢)
w: = ma/meem n: = Mz/l“o; (10)

w, = eBy/m,, Q, = eBy/p.

We note that the effective conductivity tensor ¢
reduces to the ¢’ tensor when n — 0, and that this
tensor becomes the ordinary cold collisionless, two-
fluid conductivity when » — 0 so that the pseudo-
ion mass p reduces to the ordinary ion mass m,.

We now wish to incorporate the current J in the
Maxwell’s equation such that

V xH = J 4+ iweE = tue+E,

so we have

11
we = 6 + wel, 12)

and the effective dielectric tensor so defined con-
tains all of the information about the plasma. Equa-
tion (11) is now to be solved along with

V xE = —iwpH, (13)

with the conducting cylindrical wavegnide boundary
condition.

1 L. Spitser, Jr., Phﬁm‘ca of Fully Ionized Gases (Inter-
science Publishers Inc., New York, 1957), p. 21,
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III. DERIVATION OF DISPERSION RELATION

We restrict ourselves to circularly symmetric
modes in the solution of 1lqs. (11) and (13), although
the general solution to these equations has been
obtained.'” We may assume the fields to vary as
¢'“!"* gince we are interested in propagation down
the waveguide. Equations (11) and (13) may now
be used to solve for the transverse components of
the wave fields in terms of the longitudinal com-
ponents and their derivatives, and finally a pair of
coupled equations for H, and £, may be derived
which are

ia 8 { oH ok,
‘;;37( ) + ol + rar( o) =0 ()
tc & ( oK, N AN
ror (r 31'—) e Ey + ror (7 67‘) =0 (14b)
where
a = __Z—(i"‘n‘y; y b= kZ) Z
T 'YZ Y1 Y2 (15)
. WY, + wery:
=" z
Y1 — Y2
and

"= E — wz#ufu ¥2 = & poez.
To find a solution of these coupled equations we
assume that H, = ¢ and E, = a¢ where a is a

constant, thus obtaining

o+ ab) L2 (%) fiosp = 0, (160
(oo + b) ( ‘;";) — dweab = 0. (16b)

For a compatible, nontrivial solution the determi-
nant of coefficients must vanish and this yields a
quadratic equation for «. If we label the two solu-
tions of this quadratic equation by e, and @, we have

H, = ¢ + ¢, (17a)
E =a¢ + sy, (17b)

where ¢, and ¢, are the solutions of the differential
equations

a‘t’l) ( Twpy )¢ _

rar ( or ta + a;b =0, (18a)
1A o s T
r~6r (’ 81‘) + (ia + asb u. (18b)

We now observe that the quantity in the right

12 A (% Lieherman, Ph.N.

Teehnology (1964).

Thesis, California Tnstitnte of
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parentheses may be considered as the square of a
transverse wave number 7T, so we have

T = wp/(@ — iab) (19)

and we write the quadratic equation implied above
in terms of 77 instead of a with the result

0 - 73)[77 — ¥+ T
3
ez )| o0 e
The solution v — 93 = 0 corresponds to the

trivial solution ¢, = 0, and we will not consider
it further. The other factor yields the dispersion
relation for the hydromagnetic waves, although 77
must, be determimed from Tq. (20) along with the
boundary conditions. We note that Eq. (20) is
quadratic in 7° se that there are two values of T°
for each value of v,.

To construct the solutions of the differential
equations we observe that solutions of Eqs. (18a, b),

which are regular on the axis, are
¢.(r) = AJ(Tr), (21a)
&:(r) = rAJ(T). @21b)

We now use these to construct the axial field ex-
pressions

H,(r,z,0) = A[JTyr) + rJo(Te)]e 7, (22a)
E(r, 2, ) = Ala,Jo(Ti") + aurdo(Tir))e’ 7% (22h)
where 7 is determined by the boundary condition
and 4 is an excitation coefficient. Using Eqs. (22a, b)
the expressions for the other ficld components may
be derived.

If we now counsider the plasma to be contained
in a cylindrical conducting waveguide of radius a

s0 that the tangential clectric fields vanish at the
wall, the boundary condition E.(a) 0 leads to

(m +08 '1'?).10(1 1a)

(23)

and it may be shown that the boundary condition
Ey(a) = 0 leads to

J\Ta)/T, + +J,(T2a)/T, = 0. (24)

Fliminating = from the above equations we obtain

('Yl + I:_h‘ + Tt)TlJn(Tﬂ)Jl(Tza-)

+ f(m + ey '1':>J0(T2a) =

- (ﬂ 4y Tiﬁ)woa‘za).ll<1'.a>, (25)
1
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which, along with liq. (20), completely determines
a set of values for 7y, T, and &, and the set charac-
terizes a single mode for a given frequency and set
of plasma eonditions. In general, there exists an
infinite set, of modes which safisfies 19g<. (20) and
(25) and, in faét, we can distinguish two distinet
classes of modes, cach of which contains an infinite
number of modes. In the magnetohydrodynamic
limit (w << ©2,) one of these classes, which we cull
the compressional modes, may be identified with
the TE modes of Newcomb,® while the other class
of modes, which we call the torsional modes (and
designate with primes), may be identified with his
Principal modes.

The general steady state solution is then given
by a superposition of all these modes so we have for
H ., for example,

Hirz, ) = 20 ATT0d) + 7do(Tean)le’ 7000

+ Z A;[Jn( ',',,7‘) + T:Ju("énr)]ei(‘”_l'"l:}. (26)

IV. LIMITING CASES

The solution of 12gs. (20) and (25) has been ob-
tained with an IBM 7090 digital computer using
an iterative procedure. In order to find a starting
point for this procedure, we consider w K w, < w,
and neglect damping, in which case it may be shown
that e /¢ is of the order of (w/@.)° m.,/m;, which,
for frequencies of the order of the ion cyclotron
frequency, is of the order of m,/m;. If we neglect
terms of this order, the dispersion relation becomes

i — 7+ wI® =0 27

This expression is not quadratic in 7%, so there is
only one value of T for cach mode. Equation (26)
also yields « — 0, so IJ, = 0, and now the boundary
condition yields from Ey(a) = 0 that J,(T.a) = 0
for both classes of modes, so that the T, are given
by Ta = 383, 7.01, ctc. It may be shown that
7m in iq. (26) approaches zero as ¢ /¢, approaches
zero, so the term involving T, drops out of the field
expressions. The dispersion relation for the two
classes of modes is now given from Eq. (27) by

k2= oluee, — 33 & (BT + (Cuoe)]  (28)

where the upper sign is associated with the torsional
modes.

It may be shown, on the other hand, that at
very low frequencies « < 2, < »,; an appropriate
approximation is to ncglect e, This approximation
decouples the differential equations (18a, b) so H,

GOULD,
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and #, may be expressed in terms of K, while 71,
and Iy may be expressed in terms of H,, and now
there are separate differential equations for E,
and H..

The modes whieh have the axial electric field
may be identified with the torsional modes above,
but now the boundary condition E!{a) = 0 leads
to Jo(Tla) = 0, so the T2 values for this mode
are different from their values at higher frequencies.
This mode is nearly dispersionless at low frequencies,
and in terms of the wave maguetic field, it consists
of torsional waves (since only Hs # 0) hence our
designation as torsional modes. All of these modes
travel essentially at the Alfvén speed.

The other modes may be identified with those
characterized by the lower sign in Kq. (28) above,
and the boundary condition leads to J,(T.a) = 0
again, so the T, values are unchanged at low fre-
quencies. The dispersion relation for these modes
after neglecting terms of order w/Q, is

ke = @'/V3) — T4, (29)
which is analogous to ordinary waveguide propaga-
tion except that the characteristic velocity is the
Alfvén velocity. These modes exhibit the charac-
teristic waveguide cutoff phenomena, and from equa-
tion (29) we find the cutoff frequency Lo be given by

@gn = T, V4, (30)
a result which does not depend on the faet that
w K Q. Since these modes have a component of
the wave magnetic field in the direction of the
static magnetic field, the static field lines are
alternately compressed and expanded, hence we have
designated them compressional modes and the experi-
ment is restricted to these modes only. .

It should be noted that the cutoff phenomena
may be thought of as being due to waves which
travel in all directions and which reflect from the
walls according to the boundary condition. At the
cutoff frequency the waves travel only perpendicular
to the magnetic field and the wave oscillates in
phase down the entire waveguide. The wave which
propagates across the field is often called a magneto-
acoustic wave, but it is here a special case of com-
pressional wave propagation.

In order to illustrate the exact behavior of the
T values, Tig. 2 shows the exact solution for the
lowest torsional mode, where the change of T\a
from 2.405 to 3.832 is apparent, while Fig. 3 shows
the deviation of Tu from 3.832 for the lowest coni-
pressional mode.
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V. IMPULSE RESPONSE FOR LOOP EXCITATION

Using orthogonality relations which have been
determined by A. G. Lieberman,' the excitation
coefficient: for a coaxial current loop of radius b
in a waveguide of radius a (where we have considered
A, only, since it may be shown that 4, is small
for loop excitation) is given by

-t

Am = _IOb Sﬂm(b){z f (grmgcﬂm + SGmJCrm)r d'l'} )
@B

where the current I == Ie** and the script notation
denotes the field expressions without any excitation
coefficient. With the excitation coefficient above, the
steady state response is the Fourier transform of
the response to an impulse, I = I, §() since the
transform of I is I,. Therefore the impulse response
of the system is given by the inverse Fourier trans-
form of the steady stale response, or

H.(r,z, t)

= 2 [ AT + ol 22
32)

For the response to an arbitrary driving current we
simply replace I, in (31) by the Fourier transform
of the current I(w).
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Fic. 3. Twa vs o for lowest compréssional mode. (Same
parameters as Fig. 2 except n = 0.7n0 and » = 1.65 X 107
radians/sec).

VI. APPARATUS AND PLASMA PREPARATION

The basic geometry of the apparatus is similar
to that of Wilcox, et al.,” and a schematic diagram
is shown in Fig. 1. The waveguide and eclectrode
were 304 stainless steel and the end plates were
pyrex. Alumina probe sheaths and a pyrex encased
circular loop were used. The magnetic field was
pulsed, the current rising to its maximum in about
0.7 msec, so the field was within 1, of its maximum
value for over 100 usec. A lumped constant delay
line produced a 1.5 X 10* A, 10~15 psce discharge
between the electrode and the tube wall which
drove an ionizing wave' along the tube at about
5 cm/usec. The background pressure in the vacuum
system was about 2 X 107° Torr, to which a static
atmosphere of hydrogen in the range 0.02-0.25 Torr
was admitted just before the plasma preparation.

The plasma which is formed by the ionizing wave
is known to be somewhat turbulent and nonuniform,
having a core which is cooler than the annular
region. The radial and longitudinal diffusion times
should be 100 usec or greater so that the plasma i1s
quite steady during the wave experiment, which
never lasts more than 2 psec.

The wave is excited by -a coaxial loop with a
critically damped RLC circuit supplying a current
pulse about 40 nsec in duration. The loop radius
was chosen so as to minimize the excitation of the
second circularly symmetric mode, but all other
modes are excited.

The signals were detected by 10-turn magnetic
probes and were passed through high pass filters
before entering the dual beam oscilloscope to elim-
inate pickup from the slowly changing magnetic

BW, B Kunkel and R. A. Gross, “Hydromagnetic Toniz-
ing Waves,” Lawrence Radiation Laboratory Report UCKL
‘)612 {1961).
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field. The system response was essentially constant
hetween 1 and 20 Me “sec.

VII. EXPERIMENTAL RESULTS CUTOFF
FREQUENCY ANALYSIS

IFor the compressional mode the lowest frequency
at which the wave will propagate is the cutoff
frequency g, given hy Fq. (30), and the group
velocity approaches zero near this frequency. The
group veloeity for higher frequencies is always
higher, so the last frequency to appear at the mag-
netic probe due to an impulse excitation is the cutott
frequency. This frequency can easily be measured
approximately from the photographs of the received
signals, ‘and since it is proportional to the Alfvén
speed, we can study the dependence of this quantity
upon magnetic field and density. Measuring the
cutoff frequency in this manner introduces a small
systematic error, because the damping prevents the
measurement from being, made at very late times,
but this error is usually small and always results
in a measured frequency, which is slightly higher
than the actual frequency. FFor each of more than
125 pictures, the last observable frequency was
measured, generally by taking an average of the
last three or four half eveles.

GOULD,

AND HERTEL

The results of this parameter study are shown in
Figs. 4 and 5. Figure 4 shows the dependence of w,
upon the initial density for several values of the
magnetic field. N, here represents the assumed total
particle density including jons and atoms and is
deduced from the gauge pressure before the dis-
charge. Sihice the ionizing wave may drive some of
the original gas to the end of the tube, this may
introduce a systematic crror in our estimate of the
degree of ionization and of the ion-neutral col-
lision frequency. Each point represents an average
taken from two or three pictures. For the lowest
magnetic field (B = 0.878 W/m* only, n 100¢;
ionization reference line is indicated for comparison
purposes.

From the data of Fig. -t we can estimate the maxi-
mum impurity jon mass densivy as follows. If the
amount of hydrogen were progressively decreased,
the Alfvén speed, and hence the cutoff frequeney,
would be determined ultimately by the impurity
ion mass density, and a limiting cutoff frequency
would appear. From the highest values of w, in
I'ig. 4 and the fact that no limiting is apparent, we
estimate that the lon mass density of the impurities
is less than the 1on mass density of hydrogen at
no=3 X 10° m™,

We also note that the observed cutoff frequencies
are all above the values which would correspond to
1009 ionization, which we interpret as meaning
that the plasma is not fully ionized. In fact, with
this interpretation, the data of Iig. 4 indicates that
the percent ionization varies smoothly from about
75% + h% at the lowest initial densities to 45¢, +
39 at the highest densities indicated.

With the same interpretation, the data of Fig. 5
may be taken to indicate that there is no systematic
variation of the degree of ionization with magnetic
field. If there were some systematic variation of the
degree of ionization with magnetic field, one would
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expect a straight line through the origin to be a
poor fit to the data. However, a least squares
analysis of the data shown, along with other data
at different densities, indicates that the lines do
extrapolate very closely to the origin. Hence, we
find no evidence of a systematic variation of the
percentage ionization with the magnetic field.

VIII. EXPERIMENTAL RESULTS -TRANSFER
FUNCTION ANALYSIS

The most critical test of the adequacy of the
plasma model involves the study of the dispersion
relation for the compressional wave over the entire
range of frequencies from below cutoff up to the
vicinity of the ion cyclotron frequency. Since the
plasma conditions arc not highly reproducible from
shot to shot, we have obtained the transfer function
of the plasma for single shots by Fourier analysis
of the impulse response. We define the transfer
function G(w, 2) as the ratio of the Fourier transform
of the axial magnetic field at r = 0 to the transform
of the loop current

Glw,2) = e " = F[H,UU, z, 0]/Tw). (33)
From liq. (32), (/(w, 2) is given by
G, 2) = 7?15) S An(l + re L (84)

In the analysis of the data the values of &' = 8" — 7o’
are cvaluated on an IBM 7090 digital computer
from oscillograms of the received and driving signals
and compared with theoretical values computed
from Tq. (34). An example of the oscillograms is
shown in Fig. 6, where the impulse is shown in the
upper trace (retouched because of faintness) for
reference and the received signal is shown below.

Fi1g. 6. A typical photograph of a received
signal. The upper trace is the time derivative
of the driving current as measured with a
magnetic probe, and is displayed for timing
refercnce {arbitrary amplitude). The lower
waveform is the signal received from & mag-
netic probe which measures the time deriva-
tive of the axial component of the wave
magnetic field on axis, 20 em from the driving
loop. The vertical sensitivity for the lower
waveform is 20 G/usec/div. The horizontal
scale is 0.2 usec/div.
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Fia. 7. Frequency vs transfer function effective propagation
constant at z = 0.2032 m.

Over twenty such picuures covering a vsriety of
magnetic fields and initial densities have been
analyzed in detail.

The transfer function (phase and amplitude) of
the signal shown in Fig. 6, computed as described
above, is shown in Figs. 7 and 8 as an example of
the type of information which may be extracted
from such an oscillogram. Also included in Figs. 7
and 8 are the “best fit” theoretical transfer function
phase and amplitude curves which were determined
by a curve fitting procedure described below.

In the curve fitting procedure, the values of the
magnetic field (calibrated to 27), the initial density
(Mcleod gauge calibrated), and the dimensions of
the system were assumed to be known exactly,
but the resistivity », the ion-neutral collision fre-
quency », and the percent ionization y were treated
as disposable parameters. The three disposable
puratneters were selecled so uas (o minimize a
weighted average error, computed from the dif-
ferences between theoretical and experimental curves
at about ten frequencies and weighted according to
our estimates of the probable errors in the experi-
mental curves at those points. The location of the
minimum was determined to a few percent, but this
does not at all guarantee the best fit values are ac-
curate to that tolerance.
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Several characteristic features of the experimental
transfer functions are apparent in the example
shown. We observe that the shape of the phase
curve generally fits the theoretical curve very well
except near and below cutoff and at high frequencies
where the amplitude is very small. In many cases
the fit was even better than in the example shown.

It is apparent that the experimental and theo-
retical amplitude curves do not fit quite as well
as the phase curves, although the general features
match well. Since the resistivity and the ion-neutral
collision frequency are primarily determined from
the amplitude curve, we may expect the errors to
be somewhat larger in the determination of these
quantities than for the degree of ionization which is
primarily determined from the phase curve. One
feature of the experimental amplitude curves is that
there appears to be more evidence of higher modes
than in the theoretical amplitude curves. We note

e b I
i 1,\71‘“ AN
VIV
- i A
I . :

Fig. 9. Time waveform derived theoretically from “best
fit"' parameters (compare with Fig. 6). The horizontal and

vertical scales have been adjusted to agree with Fig. 6, and
the arrow denotes the start of the pulse.

SWANSON, GOULD, AND HERTEL

that evidence of the second mode appears cven
though we designed the excitation loop to excite
none of that mode. This may be due to the radial
nonuniformity of the plasma, which can be expected
to affect the excitation coeflicients more than the
propagation characteristics.

There is some evidence that the values obtained
for » and/or n are too high. If the inverse Fonrier
transform of the best fit transfer function is taken
to produce a time function, the amplitude of the
theoretical signal is systematically lower than that
of the experimental signal, and the envelope indi-
cates a higher damping rate. The time funciion
derived from the best fit curves of Figs. 7 and 8
is shown in Fig. 9 where these features may be scen
from eomparison with ¥ig. 6. It appears that if the
curve fitting had been done in the time domain
instead of the frequency domain, somewhat smaller
values might have heen obtained for 4 and ». Since
the phase agreement is quite satisfactory we expect
the determination of the degree of jonization to be
good.

Eiveu though there may be some systematic errors
in the determination of 4 and » we expect that
trends should be apparent. The only one which
was clearly obscrved was that the resistivity ap-
peared to increase with the magnetic field. This
trend is shown in Iig. 10 where the error bars are
intended to show our cstimate of the relative prob-
able errors and indicate the range over which 5
must be varied to double the weighted average crror.
A possible explanation of the variation of the re-
sistivity with magnetic field is offered below.

In general the degree of ionization determinations
showed the least uncertainties. Typically a 5%,
change in v would double the weighted average error.
The value of vy determined by curve fitting was
69% = 129 higher than that computed from the
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Fia. 10. “Best fit’ value of resistivity vs magnetic field
strength,
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measured cutoff frequency so both methods are
believed to be consistent and give rather good
estimates of the average ion density, although no
independent measurements have been made.

There was considerable scatter in the value of
the ion—neutral collision frequency determined from
curve fitting, and the uncertainties indicated a varia-
tion of » by a factor of two would only double the
weighted average error. No systematic trends were
apparent, so we simply averaged the quantity (sv,)
where ¢ is the ion-neutral cross section and v, is
the neutral thermal speed, and we have assumed

v = yno(ov). (35)

The result is that (ov,) = (5.5 = 1.3) X 107" m*/sec.

We have made measurements of the radial de-
pendence of the axial component of the wave mag-
netic field and found fairly good agreement with the
theoretical profile as is shown in Fig. 11. The experi-
mental profile supports our assumptions about the
boundary condition, although some other assumption
might lead to a similar profile.

IX. CONCLUSIONS

It is felt that the general agreement between
theoretical and experimental phase curves indicates
that the theory adequately describes the dispersion
characteristics of the compressional waves in a
waveguide. I'rom this type of data the average degree
of ionization can probably be determined within 59,
and from the cutoff frequency the error may be
about 109,. A possible inadequacy of the theory is
the variation of the resistivity with magnetic field,
illustrated in Fig. 11. This effect may be due to
some systematic error in the experiment of which
we are not aware, or it may be due to a systematic
change in the temperature with magnetic field. Both
these possibilities seem unlikely, although no inde-
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pendent temperature measurements have been made.

We believe the trend may be due to an inadequacy
of the theory, which assumes 7 to be a scalar quan-
tity, whereas if w./v.; is of the order of unity or
greater, the resistivity is a tensor.” Now w./v,; is
of the order of unity for the data of Fig. 10, and
since the compressional wave is primarily dependent
on the transverse resistivity, we may have simply
observed the onset of the tensor character of 7.
While all the data of Fig. 10 is at a constant density,
we are presently trying to extend the range of the
parameter w./v,; by studying other ion densities to
see if n becomes independent of w./»,, at extreme
values of this parameter as would be expected if
this were the proper explanation of the effect.
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APPENDIX B
To express the transverse wave fields in terms of the longi-
tudinal components we first write Maxwell's equations 2.29 and 2.30
. -1k
in component form, making use of the assumed z-dependence e Lhz and

the azimuthal symmetry.

ik By = —iwuoHr (B.1)
aEZ
‘—lkEr"—a'I:=—l(D jJ.o Hg (B'E)
10 . .
r 3% (r E.G) =-lop Hz (B.3)
Lk Hy = io(eE + 1eE)) (B.4)
BHZ
-1k - 2 = dw(-ie8 + €E) (B.5)
19 _
i (ng) = iw€3Ez (B.86)

Using the r- and ©-component equations the desired representations of
the transverse fields may be found. For example, solving equation B.1l

for E and equation B.2 for Er we have

(]
wp
Eg = -5 HI‘ (B.7)
op_ 5 BEZ
B = vty (8.8)

Substituting these expressions into equation B.5 we obtain
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» OH oE

2 . 2 Z
- € - € = ik 2 - -
(k W Ho L) Hr i o 2HG i 57 (n€2 o (B.Q)

or, using the notation of Secbion 2.h4,

OH OE

. Z >
v, B, - i iy = ik = "% S (B.10)

If equations B.7 and B.8 are used in B.l4t there results

aE

YHy *ATH = lee) — (B.11)

From the last two equations we can find expressions for Hr and H,9 .
I'hese are
L. Hm oE, elng, + 1) OF (5.12)
T YE_ 2 or 2 2 or )
1772 -
and
Ky o, loly &+ 1) OF,
T - N (B.13)
® 2 2 ¥ 2 2 Br
LA LA

which accomplishes the desired result for the transverse wave magnetic
field components. In similar fashion expressions for Er and Eg may

be found. They are

J
®p_T, aHZ ik v, OF,

= +
E. > 752 2 3 (B.14)
Yl To Tl Yo
e 2 2 or 5 o Or .

172 LT P



~-123-

The differential equations for HZ and EZ are obtained by using
equations B.1l3 and B.15 to eliminate Eg and HG from equations B.3
and B.6. The results are given by equations 14 and 15 of Appendix A.
From the solutions for the longitudinal field components (equa-

tions 22a and 22b, Appendix A) application of equations B.12 and B.13
yields the expressions for H, and Hg given in equations 2.81 and
2.82. To simplify the expressions the dispersion relation (equation
2.61 or equation 20, Appendix A) and equation 19 of Appendix A have

been used. Note also that our assumption Jl(Ta) = 0 eliminates the

second term appearing in the solutions for EZ and Hz .



