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AN IMPROVED MANY-ELECTRON THEORY FOR ATOMS

AND MOLECULES USING EIGENFUNCTIONS OF TOTAL SPIN

THESIS BY William Andrew Goddard, III

ABSTRACT
The object is to obtain good approximations for the ground state
wave function and energy for atoms and simple molecules (e.g., HZ’ HF,

HZO’ CH4). We neglect relativistic effects including all spin couplings

and we fix the nuclear positions; thus, the Hamiltonian for a molecule

N _Hi_z N N o2
with N electrons is H = 5;;Q<+£§:Vrbf+;§ . , where V(r.) is the
‘= A=/ 1292/ 7Y i

electrostatic interaction between the electrons and the nuclear frame-
work. Since the Hamiltonian does not contain spin interactions, then
the many electron wave function is an eigenfunction of 82; in addition,
the many-electron wave function must satisfy Pauli's principle.

A method has been developed to obtain explicitly (for any N)
many-electron wave functions which simultaneously are eigenfunctions of
S2 and satisfy Pauli's principle. The method is simple and elegant and
lends itself readily to applications. Given any function of the spatial
coordinates of N particles, @ , and any function of the spin coordinates
of N particles, X , then GT?X is an eigenfunction of S2 and satisfies
Pauli's principle. We will be particularly interested in the best des-
cription of the ground state of the many-electron system by a single

o
Gi§§x . The primary reason for this is that such a description is read-
ily interpretable and, in addition, the energy promises to be rather
accurate.

With no further restrictions (two different sets of orthonormal

one-electron functions are used as the basis for the spatial space, i.e.,
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different orbitals for different spins, the components of & are any N
of these one-electron functions) the best G;Q?X approximation to the
many-electron wave function is found for any N (number of electrons),
any S (total spin), and any nuclear configuration. For a given compound
calculations can be made for the various nuclear configurations to deter-
mine the molecular structure for each possible value of spin. The opti-
mum set of orbitals are each the solution of a one-electron Hamiltonian
and thus can be interpreted as the state of an electron moving in the
potential due to the other electrons. 1In addition, these orbitals are
not required to be basis functions of the irreducible representations
of the spatial symmetry group (as are the Hartree-Fock orbitals) thus,
they may be somewhat localized. These optimum orbitals may be of chemi-
cal significance.

The very much more restrictive case is considered where only one
set of orthonormal basis functions spanning spatial space is used from
which to select the N components of <f . Due to the presence of doubly-
occupied orbitals this method leads to rather large correlation errors.
Using the Gg method the Hartree-Fock equations and the first-order
perturbed wave functions thereof are derived.

The VO2 distorted rutile crystal structure is explained and the

(uninvestigated) magnetic structure predicted,
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INTRODUCTION

We are interested in obtaining good approximations for the ground
state wave function and energy for atoms and simple molecules. We
neglect relativisitic effects including all spin couplings and we fix
the nuclear positions; thus, the Hamiltonian for a molecule with N

electrons is

N s N & e?
- A 2 V) - -
i é Zom 4 +x§/ +7§:/ “t (a-1)

where V(ri) is the electrostatic interaction between the electrons and
the nuclear {ramework.

A good first approximation to the ground statc solution of A-1 is
the Hartree-Fock approximation. 1In the Hartree-Fock scheme one tries
to find the lowest energy solution for which the wave function is approx-
imated as a single Slater determinant. For a typical molecular ground
state for a molecule with N-electrons (N even), the Slater determinant
contains X orthogonal molecular orbitals (4>i) associated with an &«

2

. N , , ,
spin and the same B orthogonal molecular orbitals associated with a 8

spin. The orbitals, 471, are varied in order to minimize the energy.
The minimum in the energy is called the Hartree-Fock energy, EHF’ and
the orbitals which minimize the energy are called the Hartree-Fock

. HF . .
orbitals, ¢iA . The Hartree-Fock orbitals are solutions of a one-
electron Hamiltonian (which includes an average electron-electron inter-

. . HF

action term) called the Hartree-Fock Hamiltonian, H{r<#?F =<Ti4>fF .
The difference between EHF and the exact energy of the ground state of

A-1 is called the correlation energy. The Hartree-Fock method yields

accurate energies as compared to the total energy; however, the corre-

lation energy although small compared to the total energy is of the
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order of magnitude of the binding cnergy of the molecule (SLATER (1960)
p.32; SINANOELU (1961ab); LOWDIN (1959) 242,246). For this reason it
is desirable to improve upon the Hartree-Fock method in order to obtain
better energies and wave functions. Three major methods of improvement
have been proposed (LOWDIN (1959) p.259) (i) superposition of configura-
tions, (ii) wave functions with explicit interelectron coordinates, and
(iii) different orbitals for different spin.

Before discussing these methods we consider some possible expan-
sions of the exact wave function ?7€)€J~3?Q) (where fi is the spatial
(ri) and spin (Si> coordinate of particle i). Let y[%)be a function of
the coordinates of one electron and let the set of ?1 for all i form a
complete orthonormal set; then (LOWDIN (1955a)) the set of
%/ﬁ)%(ﬁ')"' %a(¥n) for all i, j,.., k forms a complete orthonormal set
for the N-electron space and the exact wave function of an N-electron

system may be expanded as

In order to satisfy Pauli's principle it is sufficient to take the Slater
determinant of each different set of functions of A-2. If two functions
in the determinant are the same, then the determinant is zero; thus, if

the subscripts of 9& are ordered, then

(’L//P: Fz”' E’):Z c, . % DET Sg(/)g‘}(z.)"' %(N) -
, 4 4 (A-3)

1 Ah< <
Since the Hamiltomian, (A-1) is independent of spin, each one-electron
function f(g) can be factored into a spatial part (éf%) and a spin
part 6;(%%), i.e.,

W7y =4 () 52 (oy) (A-4)

We will take &, to be an eigenfunction of Sg, Viz.,dYgéd=§«)or
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5(52 ﬁ:-i'—,e) The complete set of one-electron functions, 5‘///?’3) , in
terms of which the actual wave function of the N-electron system is ex-
panded in A-2 is taken to be orthonormal. The one-electron spin functions
K and B form an orthonormal set. What about the one-electron spatial
functions? If %(95)=£/‘7;)°f/3) and %=%,9, then ¢ and &, are ortho-
gonal when %f and %Leue. However, if %$==%@ B then we can say nothing
about the relation between.cg and %@ . Therefore, we can, at best,
consider two complete orthonormal bases spanning the spatial vector
space (LOWDIN (1955a)) -- one complete orthonormal set for expansion of
all %f with o spin and the other orthonormal set for expansion of all

%ﬂ with B spin. We call a one-electron spatial function an orbital.
So, we have one complete set of orbitals fa for &« spin and another
complete set of orbitals éh (over the same space) for B spin. It has
been extremely common in the past to require that the set of orbitals be

the same for o and B spin, i.e., ¢. = &,

ia b in this case we have

only one complete set of functions to deal with and an enormous simpli-
fication results., Of course, it makes no difference if we really use
the infinite expansion of A-3, but we usually only consider a few terms
and want to know the best choice for these few terms. This type of an
assumption is involved in most discussions of electron shells in atoms,
molecular orbitals in molecules, bonding pairs of electrons, lone pairs,
etc. The restriction to a single set of orbitals I denote as SODS (same
orbitals for different spin), and if different orbitals are allowed for
different spins, I denote it as DODS (different orbitals for different
spins). We see that the Hartree-Fock wave function is the best approx-

imation to the exact wave function using only one term from A-3 with the



restriction that SODS be used,

In conficuration interaction the SODS restriction is used but

several terms from A-3 are used to approximate the wave function and the
coefficients of the A-3 expansion are varied in order to minimize the
energy. According to SINANOGLU (1962a) the best configuration interac-
tion calculations on small molecules so far have given only one-third to
one-half of the binding energy. LOWDIN (1959, p.296) states that if the
results for helium apply to molecules, then orbitals of sufficiently

high angular momentum, in order to get the small absolute errors in the
binding energy which are desired, have definitely not been included in
configuration interaction calculations. But the inclusion of orbitals of
sufficiently high angular wmomentum would result in an enormous computation-
al problem because of the number of different configurations involved.
Besides problems of accuracy, the configuration interaction wave function
is quite difficult to interpret (LOWDIN (1955a) p.1483).

Wave functions involving interelectron correlations have allowed
accurate calculations in He and HZ and other two-electron systems, but,
according to LOWDIN (1959, p.304), no strict foundation for a generaliza-
tion of the theory has been developed. Sinanoflu has made important
contributions by developing an approach for closed shell systems where
the correlations on the HF states are solved for one pair at a time
(SINANOELU (1961a, 1962ab, 1963)). The Sinanoflu approach is valid
only for closed-shell systems, and even for them a wave function involv-
ing interelectronic coordinates is hard to interpret (see the difficulty
SLATER (1960, p. 37ff) has when considering the simplest case with corre-

lation, viz., helium).



5

In the method of different orhitals for different spins (DODS) one
allows two different sets of orthogonal orbitals, ome for the spin-
orbitals with « spin and one for the spin-orbitals with g spin (this
much restriction can be made without approximation). Since the correla-
tion error is primarily due to two electrons being forced into the same
orbital (LOWDIN (1959) p.307), then one can hope for a big improvement in
accuracy with DODS. Several applications have been made on two-electron
problems (see LOWDIN (1959) p.307 for rcferences) but the extension to
larger numbers of electrons has been prevented by problems in handling
the spin problem (LOWDIN (1959) p.307).

The Hamiltonian A-1 does not involve spin; thus, the wave function
must be an eigenfunction of total spin, i.e., of 82. This is no problem
to satisfy for molecular ground states in the Hartree-Fock method because
the SODS restriction is used and (usually) every molecular orbital is
doubly~-occupied, once with an o« spin and once with a g spin. However,
when DODS is used no such simplification occurs even for molecular ground
state wave functions; thus, we have the spin problem Ldwdin refers to.
Forgetting the spin problem for the moment, the DODS method is attractive
because it may allow quite accurate energies for a single "configuration"
(by a single configuration we mean a state well approximated by just N
different orbitals and which is an eigenfunction of 82) and because the
wave function for such a state admits of some physical interpretationm.

To be more specific we approximate the exact wave function by a single
DODS configuration and vary the orbitals in order to minimize the energy
just as in the Hartree-~Fock method. The result is that the orbitals which

minimize the energy are eigenfunctions of a one-electron Hamiltonian and
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thus, each orbital can be interpreted as the state of an electron moving
in the average field of all other electroms.

To facilitate the development of the DODS approach, it is important
that we construct a general method of writing wave functions (for N-
electrons) which satisfy Pauli's principle and which are also eigenfunc-
tions of 82. This is accomplished in section A. The result is an opera-
tor G: which upon operating on a function & of the spatial coordinates
of N-electrons and a function X of the spin coordinates of N-electrons
yields a function G?é“ which satisfies Pauli's principle and is an eigen-
function of total spin. Fortunately, the G: operator has properties
adapted to the later applications.

The GZ operator is used in conjunction with the SODS restriction
in section B culminating in the Hartree-Fock equations and the first-
order perturbed wave functions.

In section C the GZ operator is used in conjunction with DODS in
the manner described in the second paragraph before the last., The result
is the best possible G;%X function. The resulting one-electron equations
for the best orbitals (the Roothaan technique of solving for the best
orbitals is used) are called the GF equations and the best orbitals are
called the GF orbitals. For any given N this method can be used for any
possible S, not just the ground state S. Because DODS is allowed the GF
method can be carried out for any nuclear configuration (as distances go
to o0 , the orbitals automatically change to atomic orbitals). As dis-
tinct from Hartree-Fock orbitals for nondegenerate, S = 0 molecular
ground states, the GF orbitals are not required to be basis functions of

the irreducible representations of the spatial symmetry group. Thus, the
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GF orbitals are not required to be spread over the molecule or solid as

are the Hartree-Fock orbitals. Thus, the GF orbitals may be somewhat

localized and may even be interpretable in terms of such concepts as

bonding and non-bonding.
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Section A

A Method of Constructing Many-Electron Wave Functions Which

2
Satisfy Pauli's Principle and Are Eigenfunctions of S

Introduction

In order to develop the DODS approach of solving for the ground
state energy and wave function of a molecule, we must construct a general
method of writing wave functions (for N-electrons) which satisfy Pauli's
principle and which are also eigenfunctions of SZ. Methods of accom-
plishing this have been obtained by KOTANI et al (1955) and by LOWDIN
(1955¢). Lowdin's method is not well suited for our purposes because
generalizations to arbitrary N are too difficult and because of problems
of linear dependency of the resulting wave functions (see p. Ac-3).
Kotani's method (see p. Ac-2) could actually be used for the DODS ap-
proach; however, we shall find it convenient for our later development
to construct a third method from a somewhat different standpoint than
Kotani's. 1In section Ac it is shown that the new method constructs
many-electron functions which are equivalent to those constructed with
the Kotani method. Sections Aa and Ab are preliminaries discussing the
symmetry properties of the symmetric group (the group of permutations)
and the general transformations of tensors; the results of sections Aa
and Ab are combined in section Ac to obtain a general function which has

the desired properties.



“ Aa-1
Aa%: The Symmetric Group and G,
i

The symmetric group on N objects, SN’ is the group of N! differ-
ent permutations of N identical objects among N distinguishable posi-
tions. We write the permutation %= (135)(2678) to mean that the object
in position 1 is moved to position 3, the object in position 3 is moved
to position 5, the object in position 5 is moved to position 1, the ob-
ject in position 2 is moved to position 6, the object in position 6 is
moved to position 7, etc.; note that the object in position 4 is not
moved. We do not interpret the above permutation to mean that the ob-
ject in position 1 is replaced by the object in position 3,etc.; this
interpretation is the inverse of the previous one. If the objects are
numbered and the positions are not, we interpret the above permutation
as object 1 is replaced by object 3jetc., (i.e., the position on object
1 is moved to the position on object 3)etc.); in this case we do not
interpret the permutation as object 1 moves to where object 3 is, etc..
There is a pictorial method of discussing the different irreducible
which uses Young's tableaux, e.g., for S, there

4

are five irreducible representations which are characterized by the five

representations of SN

Young shapes (or patterns or diagrams),

(T 1] [] ]

S —

I1f we place numbers in the boxes of a shape, we get a Young tableau,

e.g., [2]1]3] . If the numbers 1 through N are placed such that
4

they always increase down each column and increase to the right in

* The first four paragraphs are based on RUTHERFORD (1948),
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each row, we have a standard tableau, e.g., 3 and
A 11Z]3 . o
; 3l } but not 5 I | The number of different standard tableaux of

a particular shape is the dimension of the irreducible representation
denoted by the shape. We denote a shape by the number of elements in
2 3J
each row, e.g., the shape &« = |p ,q,r,s has two rows of length p, one
row of length q, one row of length r,and three rows of length s; the
convention is that the longer rows be mentioned first, thus pyqrr>s.
. . 2 3 .

Remember that N = 2Zp+q+r+3s, for this reason | p ,q,r,s is called a
partition of N.

Some convenient representations of the irreducible representa-
tions can be related to the standard tableaux. In particular, the

. . . « -

orthogonal representatiorn is of interest. Let U, _ be the ij component

1]
of the matrix represeanting the permutation 2 in the < irreducible repre-

sentation of SN. Consider the N-1 different elementary transpositions
(k,k+1), where k varies from 1 to N-1; this set of transpositions is the

set of generators of S since any element of SN may be expressed in terms

N

of elementary transpositions. We must now define the axial distance in

a tableau. Consider two elements, say p and q, in a standard tableau;

let the row and column of the position of p and g in the standard tab-

leau be r and Cp’ and rq and cq respectively, e.g., for é § lg 11]
417(12
618]
r9=l and c9=3, and r7=3 and c7=2 . Define the axial distance d;
between p and g in tableau i as d;q = {r -¢ )-(r -c¢ ), for our example
P

d97=3 (we see that the axial distance is the number of horizontal and
vertical jumps in moving from p to q where left and down are positive).

We denote the standard tableau j of the irreducible representation
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« by Sj’ where j ranges from 1 to £ and f 1is the dimension of the

irreducible representation « . The different tableaux of the same
shape (i.e., same irreducible representation) are obtained from each

o L
other by permutations of S we let the permutation taking Sj into bi

N;
be 622 (i.e., Si: Giij , the subscript & is often suppressed below).
Now 1
o
u,. , = e (Aa-1)
11 (k,k+1) Aé*&k
— . - < o
Uiy = 0 iE S # (k,k+1) 53
- _ ! z . «_ )
O i T SR s
1 fot1, I

Therefore, we have off-diagonal elements in U only for positions

(k,k+1)

whose tableaux differ only by the transposition of k and ktl; also, if

k and k41 are in same column of S,, then U,,
i

13k, k1) =-%j and if k and

k+1 are in same row of Si then U, , The matrices for

iikkny T Sij

N =3 and N = 4 are in appendix F. Since (k,k+1)2 is the identity and

Uij = Uji in Aa-1, then the matrices for the elementary transpositions
are orthogonal. But the product of orthogonal matrices is also ortho-
gonal; so, all the matrices in this representation are orthogonal;
i.e.,

q of

Urstz Usrt’“1 (4a-2)

o
We mention the orthogonal units, Ors , these are linear combi-

nations of the elements of S the set of these for the different «

N’
and r and s varying from 1 to f“.form a basis of the group algebra.

For any shapes &« and £ of S, and any standard tableaux r, s, p, and g

N
P < o
G =3 ssporq (Aa-3)
o [
For any #p of S, (where € = N!/f = an integer)

N)
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Lo

:éu O A__/
2/ «,r,S5 rs¥ Ts (Aa 4)
= 1 x

-3 A_
Ors “ngN Ursz’ (4 (Aa-5)

=
= = v uP o P

«1rs Bpq rs?i pqéé rs pq =

Therefore, 21 Zé

Ud Ud O« U« 0™
X rsq rs?i qué rq B erq rq?iikz rq

]

We denote the identity or unity permutation by & (stands for einheit);
of

note that U = 5 .
PgE  pq

Some examples:

w2 [l ) o
[12] 1 [,12] (Aa-6)
011 =5(€-(1,2) 5 S =
N=3 [3] [3]
01 ~ %[é +(1,2,3)4(1,3,2)+(1,2)+(1,3)+(2,3)] 5 T
2,1
0[11 ]= % (2€ -(1,2,3)-1,3,2)+2(1,2)-(1,3)-(2,3)) ;
2,1 J3
2,11 [1[3
0, = 5((1,2,3)-(1,3,2)-(1,3)+(2,3)) ; gz L 2 ]
2,11 [2,1]
0pq = gb(1,2,3)+(1,3,2)—(1,3)+(2,3>>5 51~ ;_2|
2l
0g9 = —=(2€ -(1,2,3)-(1,3,2)-2(1,2)+(1,3)+(2,3))
27 6 3
IS i
0., = ¥ (€+(1,2,3)+(1,3,2)-(1,2)-(1,3)-(2,3)) 5 § =

{a(
o
It is a general result that §§~2§ g, = €
=7

Any permutation can be written in a number of different ways
as a product of transpositions, but the number of transpositions in such

an expansion is either always an odd number or always an even number.
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The parity of a permutation, C;‘, is defined as +1 or -1 for permuta-
tions expressible as an even or odd number of transpositions respective-
ly. For any number N2> 2 there are two irreducible representations of SN

with dimension one, they are & = [N] (the trivial representation) and

= [lN](the alternating representation).

[NZ 1
o1 7 N!é}vlg (ha8)
R -

' 7€5Sy

A shape which is obtained from a second shape by interchanging
rows and columns is called the associate of the second shape, the same

is true for tableaux and the associate is denoted by a bar, e.g., if

Sf = 11216 then Si = 1131 4) . Note that the associate of a stan-
] 31517 i 215
4] 617 o ¢

dard tableau is a standard tableau and thus: f = f . Since

e, 0) = ", k) Ehem
U S

;;(kﬂl,k) a}l(k+1,k) (Aa-9)

Ussaeit, i)~ Yiiki1,k) if j# i

We wish to consider linear combinations of permutations acting
[
on two different spaces. We will let Ors act only on the first space
B . o« £
and a/pq act only on the second space; of course, Ors and quq com-

mute. Consider the expression¥®

a -
¢ Zf 0 e (Aa-10)
< r1
=4
Remember that Sr "'S}iSi . Let the transposition ¢ act on d;; it then

acts on both 0"and W™ From (Aa-4)
K P4
r- = UL, 0f =S U vy,

Fax d r

e Q. . .
* The symbol = is read as 'is defined as"
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” _ Aa-6
Thus, #C% = == = éf of o7 of 0% W7 W
i Bst ¥IPq T s st¥ pgz st ri “pq Tl
- < C E A Gl Aa-11)
spr Gi’p 5})1 sr¥ pry¢ si " pil (Aa-

Where we have used 6;:i =€rp€pi and E?E';f;c—; also, note that E?,= f?;'

If 7% is an elementary transposition, then from appendix I

f Uq v Th
- E . us,
?r Fre qr
g S Aa-12)
T “eqr sr¥ ﬁf?‘— sq (Aa-

Using (Aa-12) in (Aa-11) we obtain
d x
(DG, = %:Q—S-O 4 = -G

-
1 s1 51 i

But any permutation # may be expressed in terms of elementary transposi-
tions and # will involve an even or odd number of elementary transposi-

tions depending on whether ¥ is an even or odd permutation, hence:

vc = [ o (Aa-13)
i "ot

When G‘_Y operates on the N-electron space, the resulting function satis-
1

fies the Pauli principle.
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Ab¥*: The Spatial and Spin Tensor Spaces

Consider a group G of linear transformations in an n-dimensional
space Rn . 1f we choose a basis for Rn , then any vector x in Rn is de-
scribed by its components, X, , on the basis vectors. If a , a trans-
formation of the group G, transforms x into x then we write (where we

use the summation comvention, and € is read as "is an element of''),

x'= ax or x7 = 8, X where i € $1,..,n¢ (Ab-1)
= i ij

2
Consider the n quantities Xiyj formed from products of the components

of the vectors x and y in R . When the transformation (Ab-1) is ap-

4

plied to the vectors of Rn,xiyj is transformed as x;yj = aikajlxkyl R

i.e., the n quantities g transform according to a x a , the Kron-

. 2 o
ecker square of the transformation a. A set of nm quantities Fij whose

law of transformation is F, forms a tensor of rank two with

15 = 251k

T
respect to the group G. Similarly, a set of n quantities Fi' K
whose law of transformation is
F,. =a,a, .,..a F
ij...k il jm kp 1lm ...p (Ab-2)
forms an rth-rank tensor with respect to the group G.
Reconsider the case of second rank tensors, say F, , Where

1112

ie 51,2,..,n§ . Under the transformation of (Ab-1) the set of ten-

sors (F. , + F, . ) transforms into itself and the set of tensors
i, 1,1
12 271
(F . - F, i ) transforms into itself. For example,
i i i

172 21

L. a, . e N a. . a, : F. . 4 ag. :
Jit d2ty M2 T o hahy It Tt it TIh

* The first two paragraphs are based on HAMERMESH (1962) Chapter 10.
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Also, a, a. (*l { + Fl i y =+ (F, . * ) Thus,
Jitg ot Mt ot Jidp d9dg
1
F, .®F, .)= =T (, ,a, ,*a, ,a, . )F, .+F, . ) and,
( 33y gy R R L P S L S L]
(a ¥ ) (F £ F ) =0 (Ab-3)

g 85 g tag Ay P i i
1t 304 J1tp ottty oYy

Thus, the transformation matrix is reduced and the tensor subspaces are

invariant. Hence, by taking linear combinations of the Fi . and per-
172
muting the indices, we are able to decompose the space of second rank

tensors into two invariant subspaces. Let the permutation operator p

operate on equation (Ab-2),

(pF'). . ., = /T/ = .
iji,..1, Yo tpen) Ap J’f’ﬁ)?’ 347,{2)3»2 J”f(r) Ir F?}’ te By

Now rename j1 as jp(l)’ j2 as jp(z) , etc.; then,

(pF'), . . = d o ce s
Mttty T tpentea) Spa Ypn) aﬂvﬂjﬁkfﬂ (pF>3'132...jr

But the order of the aij here is not important; therefore,

(pF'). . ., =a, ,a, . ...a, . (pF). . . (Ab-4)
T R 3y Yoy Lol Jdo--3s

We see that the operator p commutes with the transformation (Ab-2) in
the tensor space; therefore, the tensor space can be decomposcd by

. . 2 . .
operating on the Fi : with the ODq for Sr (the symmetric group on r
TR 1
. . ro., ; -
objects). Then, in place of the n independent quantities Fi i
) TR
we deal with a linearly independent set of n~ quantities selected from

the dx F, . . From (Ab-4)
pq i...1
A r
=4
T )=a, ,a, . a, ., (OF, ) (Ab-5)

pq i;...1 131,307 10 pc1 Jq---d
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Since j1 , 1, , etc., independently go through all values from 1 to n,

2
then different terms have the same components of F but in a different

order. We can take F =2F', where F' has a special order; then, O:qt’
yields a linear combination of OSr involving various r. So, the space
of d“ with the same K and p is invariant, and the total tensor space

has been decomposed into a number of invariant subspaces.

Consider the case of N=2, there are two irreducible representa-

tions of S, both of dimension one (cf. Ab-3),.

N
O[Z]F = i(F - F ) this is a symmetyric tensor
11 1112 2 1112 1211
o[lzjr 1(F F ) this i ti tric t
v, = =(F, , - F, . R is is an antisymmetric tensor.
11 i,i, 2 i,i, i1
Ogi]a. .a, ., = —;-(a],L .a, . +a. .a, .)
pdy tdy 1141 tod Ty Moy
[1%] 1
O11 a, s a; . = —Z-(ai LA L omay LA )
113y Body 111 Fodo tdo tody

The 2nd-rank tensor space can be decomposed into two invariant subspaces

corresponding to the two irreducible representations of 82

Consider the case of N=3, there are three irreducible represen-~
tations of SN’ two of dimension one and one of dimension two. But now,

use a two-dimensional space, i.e., i = 1 or 2 . Then,

[13 1
0 F, ;= % [ﬁ. PR S I S T ]
11213 Litots  Iptgty Eshity Bolgty igloly Iiisly

1,i2, and 13 since n=2. There-

fore, we can have non-empty subspaces for N=3 and n=2 only for the other

But, this is zero for any choice of the i

two irreducible representations of § i.e., [31 and[?,iz ( they do occur).

N!

The general result (see Thm. Ab-1 iii) is that for an n-dimensional
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transformation space we gel non-zero tensors after operating with

o . 3
Opq only for shapes with no more than n rows. In our above examplefi
has three rows; consequently, we obtained zero when operating on a ten-
sor based on -a two-dimensional space.

We now derive some theorems which will be useful in the further
development. The n-dimensional space transformed by the group G (with
elements a) is called the transformation space. The n'-dimensional vec-
tor space spanned by the rth-rank tensorsgg is called the tensor space.
A component of géis denoted by Fi T the i, are called indices of

1727 3
the tensor component and are often suppressed.

Before going on to the next theorem, it will be necessary to go

=
back to the definition of the Orq (which may be found in the reference
RUTHERFORD (1948)). It will be convenient to discuss the semi-normal
. of . i . o
units e rather than the orthogonal units O . Since e is propor-
rq rq rq
S
tional to 0rq » where the proportionality constant is not zero, then
o
Oqu = 0 iff equ = 0, Letﬁvr be the group of all permutations for
&
which no element of one column of Sr is put into a different column.

g
let 7? be the group of all permutations for which no element of one row

X . .
of Sr is put into a different row. Let

g A Y a
Aﬁ ::53;1 C; 2/ j /2 = AES 2/

ze
Define E;; 2 P:}s?gN:'. Denote as S* the tableau obtained from S by re-
. - 2% . %* .

moving n, denote as S%% = § the tableau obtained from S by removing

(m-)%
n-1, etc. Let & = &

m-2)¥ (m-)% __ (M-2)% ~) %

e = A = (-

(2 e(M—Z]* eH‘ [}'/0, 0.0

”* _ Q¥ g% _ Lyro¥

ra T Sa* S Esw Cas

N B *
Cra = =) Crp é;yno o4
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Theorem Ab-1:

(i) If for a given F it is not possible to arrange the first m indices

4

of F to get F' such that when F' is placed in Sr

to give¥ S:(F')
no two identical indices among the first mtl indices of F' occur
in the same column of S:(F'), then O:rF = 0 for all s.

(ii) If S: has more rows than F has different indices, then O:;F =0 .

(iii) In particular, for an n dimension transformation space, if & has
more than n rows, then OZ;F = 0 for all possible F.

Proot:

1% 1% T% 1% %
(i) Let e’ operate on F. But, B = Pl e N and N antisymmetrizes
ST sSY s SY T r

LIRS

1% w ’
each column of Si ; so, 1if Eir operates on F' and if two identical

* ale

indices of the first n-j indices of F' are in the same column of Si“

3% Hl '
then Nr F' = 0. Now, ézr F rearranges the first n-j -1 indices of

b

F; so, if there is no way to rearrange the first (n-j-1) indices of F

such that the first n-j indices of F' have all identical indices in

1% (x-1)¥
i , then leF = 0 (for all s) and, thus,

e F =0 (for all s).
ST

different columns of S

(ii) If Sr has morc rows than F has different indices, then no rearrange-
ment of F (from applying e*) can avoid having an index appear more
than once in the first column of Sr . Thus, eer = 0 (for all s).

(iii) In particular, an n-dimensional space F can have at most n differ-
ent indices; so, ersF = 0 for all £ with more than n rows. QED

This theorem is not a necessary condition for OrsF = 0; the reason is

that we are limited to studying the continuous collections of indices of

* It is convenient in discussing such theorems to place the indices of
F in the tableau (say S¥) in place of the numbers 1...N; such an ar-
ray I call an array andPdenote by S;(F),



20 Ab-6

F starting at the first index; so, we might miss some arrangement of
indices of F farther along which in themselves can give rise to OrsF =0
and, indeed, see theorem (Ab-2) for one case. It is possible that
theorems Ab-1 and Ab-2 could provide a necessary condition for OrsF = 0
but this seems likely only for n = 2.

We want to be able to select a linearly independent set of
F
Orp ijk....
Theorem Ab-2: If F is written with all identical indices adjacent¥®,
then (i) is the arrays SP(F) and Sq(F) are identical, then

OrpF = [Eonstant (independent of r) OquY and (ii) if the array

Sp(F) has identical elements in the same column, then Or F =0.
Proof:
(i) T1If SP(F) = Sq(F) and if SEq is an clementary transposition, say,

[~'¢ o I x P x )
(k,k+1), then OrpF = Orp(k,1<+1)F = % ot (4.80)Cop ot F =2 Uptrs g% F

But, Upt(k,k+l): 0 unless t = p or t = q since (k,k+l) is an elemen-

tary transposition and since Ggq = (k,k+1). Thus,

+

But, U # 1 since

Uoq (i, k+1) Ozt pp(k,k+1)

if it was then k and k+1 would be in the same row of SP in which case

OrpF - Upp(k,k+1)orpF

Sq = (k,k+1)Sp would not be a standard tableau which is contrary to

our assumptions. Thus, OrpF = constant Oqu. Since F has identical
indices adjacent, then the set of identical arrays is such that each
Sq of the set differs from at least one other by an elementary trans-

position and the chain of tableaux so related is unbroken and connects

* Note the requirement on F; this important theorem is not true for
just any F; consequently, tensor components will usually be written
with the convention of theorem Ab-2.
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to all q of the set. Thus, the OrpF are proportional as p goes
through the elements of the set of identical tableaux.
(ii) If Sp has a pair of adjacent letters in the same column, say k and

k+l, and if the kth and (k+1)th indices of F are identical, then

4 o 2 o B X o
= + =5 = Zu 0 F .
OrpF Orp(k’k 1)F ﬁstUst(k,k+1)OrpOstF t pt(k,k+1l) rt But,
x o « of
E = . X F =0 .
Vst e k1) igt , Thus, 0 F 0, F, and hence, O If

Sp(F) has identical indices, in the same column, but these positions

in S are not occupied by adjacent letters (e.g., i 2]3] for
P L
F = F6666> then among the set of identical arrays there is an S (F)
. . ) e NEI
with adjacent letters in these positions¥®, viz., > in the
[ ]

above example. Thus, using part (i) and first part of (ii) we obtain

o*F =0
rp
An example for F11223 and 1
- 23] . 112 o
517 &5 s S5 F) = 537 5 OF£0
_opil2lal 112 o N o
82 Y 5 Sz(F) = 54 R OpZF = const OplF ; constant
independent of p
- [slal - l22 e
S, 515 ; 8,(F) = 1 3 ; op3F =0
_ 1l2]51 . _ 113 a
% 314 5, =55 5 Op,F 0
o o«
F
Op4 # const OpZF
_ 1113]5] 123 o
s = o4 5 SgE) =g, 7 5 0 F =0

* The reason being that all the arrays obtained from S (F) by permuting
letters which have identical components in F must be’identical. We
select out of all these arrays the set of those which are based on
standard tableaux; this set includes all standard tableaux obtained
by permuting the above letters. Thus, one tableau has adjacent ele-
ments in the same column.
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Some theorems on transformations of symmetry tensors follow.

Theorem Ab-3: The tensor of symmelry [1n1transforms as det a

"

£. = - 3
Proof: a(Oll 1. ) = 8“832 am Oy FW"@ But,
0,.F,. = 0 unless 1,j, etc., are all different; thus,
117ij...k
$i,3,...k§=5,2,..n¢.
tet Foy 0 = ¥y 0
m ) [
then, 0yy 2Fyy o = f’k’ o1 Fipom £
!
D"U
thus, a(Oll ( ?,(,J, 2/()1 82’{/1»)/"? f ) F;Z"M
(05751) o077 Frgm GED
Theorem Ab-4: The tensor of symmetry [Zn]transforms as (det a)2
~ ~
[271 J
. a.,.d .
Proof: a(Orf Fl..nl..n) 4i?i“‘“i‘ 42’ “ g ,mns(Zh{ oIy AM)
M
MJ J ’ IR
But, O[; F = 0 wunless the first n indices are all different and
the last n indices are all different.
Y4 4
Let F. . =2¢F , where ' and ¢ operate on the first
ij..m 1..nl..n
and last m components of F respectively. Then,
[2*1 f [{U
Orf Fi.. ol “ .nl..n But,
2
’% a,ugaz ’Jgﬂ'- a,,.,M ﬁé,, fyu = (det a)~ ; thus,
[2"7 _ 2 ,
a0ue Fy 1) = et " (O 7y ) - et
l .nl. =UF 1122, .on ° then
[z = =71 =
0O _F = < U_.. 0 . F =U_ 0 . F
rf "1..nl..n J £j¥ rj "1122..nn £l vl "1122..nn
[ZM] 2 CZNJ
Hence, a0,y Fyypy nn) = (det a)7(0y Foypy )
e
Q3 -7 O n ) 1Q i e
Since Ufl%’# 0, any non-zero Orp Fij..k can be expressed in terms
"1
°f 001 F1195. . om QED



23 L, Ab-9

Theorem Ab-5: The teusors of symmelLry [imq]transform* as (at det a)
r G B po -
(HAMERMESH (1962) p. 391 states that[l I s equivalent to [1]
det a = 1; this statement is true only if det a =1 and a is
-1

. t . . .
equivalent to a ; if a is orthogonal, i.e., for SO(m), thc statc-

ment is true; it is not true in general, e.g., for SU(3)).

s = dmer o
Proof: a(O F“,J“ZJWJ o 3/@ S ,@ 442 pu -t Oy Fre
But, {3 ij m 0 unless jk..m are all different; therefore®¥
[l o o e
014 ij.'m = C__ij“mO11 Fp+l,..,p—1 if p is the letter missing
from jk..m. So,
M-l
k| ned

a(O11 Fi-%~1,.. . ) -—(10?’% E’Pak"m 531“‘5,7@44—2 R /}0// é,:. e, P

a
Let Api =3§M€P3/?~mC%l/,,"-'?,@'4+2"8MIJ_, (this is the cofactor of det a).

Th c .A.: . Rsd . . . e 8. s = - i i
en, a ;A ezpjk..mqq,1a3,1+l a . q gnm)det951nce if

q # p, ¢ is one of the other letters j, k,.., m and the determinant

-1 -/
h t 1 . - = & = ] E
as two equal rows Thus Apk 3, 1miAip ap (det a) QED

Note that for SO(n)*** the tensors [1 "1 and [l] transform in the
[1™] :

same way. TFor SU(n), {1 transforms as a¥*; therefore, for SU(2)

a and a¥* must be equivalent (this certainly provides insight into

the reason for an important difference between SU(2) and SU(3),

namely, that a is equivalent to a* for SU(2) but a is not equivalent

to a* for SU(3).

t . . .
* a , a¥, and aT denote the transpose, complex conjugate, and Hermi-
tian conjugate of a, respectively.

*E €%quis zero unless all subscripts are different, it changes sign
under transposition, and it is positive when all subscripts are in
order

aloatoate
W

© 0(n) is the group of orthogonal transformations in n dimensions
(i.e., if a 0(n) then at = a"l). The S in SO0(n) indicates that we
take the subgroup of O0(n) with determinant equal to +1. U(n) is the

%roup of unltagy transformation in n dimensions (i.e., if a U{n)
hen' a®™ =
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P~

Theorew Ab-6: The tensor of symmetry [1 Jtransforms under a as det a
2 t-‘l

times the way Il ] transforms under a . (Similarly we can prove

-3 3
the corresponding theorem for flmjand [l ], etc.).

Proof: Proceeding as in Thm Ab-5 we obtain

[lM*ZJ [/M‘zj
= 2 F -
a(oll Fi+1,..,j—1,j+1,..i-l) P,q quijo” PHyy §-L 5, o P!
where A .., = & g
pq J J_.t(ln,ﬂu},qr)_‘ f’%ﬂ"”’iﬁf&, @),{f‘l BMVH'Z
- A = -
Then, a;ayihogig = (e DS G 1q = 9gq 9ep)
Thus, A = a & A = (det a)(a”) a -a’ a7’ ) qED
> Aoquy Ao g anatj pai ] et a a;“r’ a”r dﬂ[ g Q

[, My, ee | ms] =

Theorem Ab-7:% Orf transforms
s
as (det a) times the way m, J
Mi-Mg M, -Mg ., M mM M-yt
OEf ) S’ 1Mot =M% ] F transforms. 2 T l-'— i,'
- M - b ~M I
0 Lo =15 s Ma =My e Mo 33 F transforms |
rf 0
under a the same way that

0 [N:‘MS)"’U ‘MS—IJ"‘) MI"“Z]

F transforms
rf -1

under a

Proof:

I, My, e, 5 ]

rf Fl"%”‘ﬁ'-- 7/) jgz,@ 8,“ ngu, J,%y 0}({ 5—3’}8

But, the first m¢ sets of $ indices in F, . must each contain each
P ij..k

a(o [#, M2, 0o mg ]

letters 1,...,% once; the next M5_,~"‘§ sets must each contain all
but one of the letters 1)...)5 once; etc.. Next, we let

F,. = ¥ F , where the first mg sets of 9 indices of F'
ij..k 1915

are in order 1,...,92; the next Mg, - sets of 2 -1 letters

are in order starting from the missing letter (e.g., if p is missing,
then p+l, p+2, ... , 1, ...p-1); the next mg_ ;M5  sets of 5 -2

* MHere I let the dimension of the transformation space be 9.
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letters start with the first letter above the lower of the two
missing letters and the letters are in order (e.g., if p and q are

missing and p<q, then p+l, p+2, ..,q-1, q+l,..., S , 1, ...p-1),

_ 1 peed P ¢z
etc. Then, OrfF Orf’}:F ):;,S L;% gz-’f" g?, O”f F
s Fhies VN
Hence, each of the first Mg terms separates into a

492/“ 2,942 s E;sr- det a just as in THM Ab-3. Thus,

My My s M Mg ]
ré VRTITYE transforms the same way as (det a) times

M o-Mg M.~ ree =M MI-MS m —Ms Vs M§~’- MSJ
Oi;' T F. Now, consider Of% 2reTe F,

5-1
each column transforms separately and the column of length [J J
-1
transforms like [1] if a 1s replaced by at , and the column of
-1
length [15 Z transforms like [12] if a is replaced by a , etc.,

f’”:”""a', My o re, M5y -mg |

as in THM Ab-6. Thus, O
rf

[ -5, - = 05 1
Orf[ J r F if a is replaced by at .

s/

0

F transforms like
X
Theorem Ab-8: 1If there is only one linearly independent tensor Or
(r fixed and j varying) of symmetry of = [ﬂh,’”g “‘)’”5:]>
o
then THM Ab-7 applies to any of the non-zero Orj'

Proof: Trivial.

It may be true that THM Ab-7 applies to any non-zero OS} even if
there is more than one linearly independent O;; but I have not been
able to prove it and have not needed it (and I doubt it).

We have not yet put any requirements on the group of transforma-
tions G of the n-dimensional transformation space. If the group is
GL(n), the group of all linear transformation of an n-dimensional space,
then the invariant subspaces of the n'-dimensional tensor space obtained

o

by applying the gﬁ(are indecomposable for fixed « and p with q varying.
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For some subgroups of GL(n), e.g., SU(n), (see HAMERMESH (1962), p. 390)
the invariant subspaces are still indecomposable, whereas for others,

e.g., S0(n), the invariant subspaces are in general decomposable. For

g

example, if G = S0(3) (the three-dimensional proper rotation group) the
six-dimensional space of symmetric tensors can be further decomposed in-
to a one-dimensional space which transforms like a scalar (i.e., invar-
iant) and a five-dimensional indecomposable space which transforms like
the spherical harmonics with L = 2; the three-dimensional space of the
antisymmetric tensors is indecomposable.

We are particularly intercsted in (complex) two-dimensional spaces
with SU(2) as the transformation group. We choose as the basis vectors
A and B, the eigenfunctions of Sz. A typical tensor component (for
an N-electron problem) might be }/(l...N) =dO) B2)dA(3) o (+) B(5) (W)
From THM Ab-1 iii we can consider only one and two rowed shapes since
O:fX,= 0 if o has more than two rows. From THM Ab-2 we see that the
O:ikl for different i and the same o and r are all proportional. So,
although for general jX we might have f“, linearly independent sets of
dziﬂ/ (with r varying from 1 to fq ), there is at most one. Thus, we
choose the convention of considering only the components X with all of
the & written first and all of the B written last; we write O;?;X
picking i = 1 since O;;X is always non-zero if Oriy is non~zero for
any i. The shape has two rows; thus, we write the partition & as
A =[§+5,”g"5] , where -g+ S and "g - S are integers. If N is

even, there is one partition « for each integral value of S from O to

N . . . - . .
508 if N is odd, there is one partition o for each half-integral¥ value

* We use the physicists' usual convention that half-integral implies
what might be better termed half-odd-integral.
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of S from

N f—=

o
to g . The number of linearly independent Or17( for
the different X (r and & fixed) is 2S+1 (use THM Ab-2). Because of

o
our convention on X these different Orl?( correspond to different S,;

o
and of the 2S+1 different oﬂ?( there is one for each Sz from ~S to +S

r17(8=0

spaced at integral intervals. Also, S+Cr1/XS =0 and S O
(use THM Ab-2). The total number of linearly independent O;;:X for
different_ﬂ , &, and r is ZN; and f“ is just the number obtained
from the branching diagram for the number of different states of the
same spin. Since the spaces of different &« and v are each indecom-
posable, we have shown that the sel of states Ojlf(for of = [ZH*SJ ”2/9’5]
span the same space as the set of states of spin S for N particles each
of spin % . Since there is a one-to-one correspondence between S and
A , we use them interchangeably; when I write O?i 7(5, I mean that

7( has Sz = § for the S corresponding to &£ ., There is only one

Orjxé # 0 for varying j and fixed r and Orlzé is an eigenfunction of

S2 with Sz = 8 (since S+Or17(S = 0). S—Orfi?(S gives a linear combination
of Orj“é-l for varying j and fixed r (i.e., S-ﬂ; =,Zé_1 +~X’S_1+'~-F§ﬂ;/
where only ﬂg_l has the standard order; thus, S_)g = (e'+2*?~~r?”)ﬂé_/
where, e.g., ¢ As., :7(/;,, and, e.g., 0:(, Y Xs. = arzulaz‘” 0”; %5-/)
But, all of these are proportional; so, by merely multiplying

by the appropriate (normalization) constant the dzlkg; are all connec-

£ a . . , 2
ted by S . Each OrleS is an eigenfunction of S,
z
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Some examples:

For N=5, % =H{BFF (5 =- %), and s = _;.)
517 ;gﬁ
5, = ‘;*”g? 0 ,F = const O F = const O_,F
5, =% é‘g 0 4F =0
5, = ‘Eoép O5F = 0
s, = X EF
For N = 6
s=3 [LLTTT[]
s-2 [ 1]
51 - L]
S =0
For N = 2
s=1 [I]s, =1 omaro(:% (Ao 4 oAo) = XA
s, =0 olthp- 2 (aprp)
olgt= 1 (pat+aap) = olHap
s, = -1 : olgpgp
SZOB sz=1:o§’;:i<o(=o 2
s =0 oMkt (ap-pay = ol
s, =1 : 0l Bp= 0

We started with a 22 = 4 dimensional tensor space (o ,df, B, BB
being a set of independent quantities), and we have transformed to
01 R,  [2 rJ

/
3 £ 1 A .
a new set of basis vectors Olld R Ollo(ﬁ, O11 £F, and Ollo[ﬁ which

. . 2
are eligenfunctions of 87 and § .
Z
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Ac: The General Function Which Satisfies Pauli's Principle and is an
Eigenfunction of S
Consider a product of N one-electron wave functions
I/—:‘L’/ﬁ')?;/?;)m %KFN), and let each (f{}/?é)’ @/Va)sj(/ﬁ') , where
S, =« or PF. Then .‘IV(’/”/N):i/"J%(r’)“féfy"’)67{')62)/2)" BN Let
i
2 2
Bl N5 4,9, 2) FRONYLR) G CR) [ X (14N 4,5, Fe) =SSy 2)er o)
Then QE involves only spatial coordinates, and % involves only spin co-

. o . .
ordinates. Let the operator OPq operate only on the spatial coordinates

and “%q operate only on the spin coordinates. Using Aa-10%

clen- S e ) (he 1)

a . . 2 .
But, from section Ab &éik'is an eigenfunction of S, Therefore, since
2 of « . . . 2
S™ does not operate on (Orié ), then Giff*' is an eigenfunction of S,

From Aa-13 2’6;(: E?Gj ; thus,

r(c78%) = L (GIFX) (he-2)

- x . R . . . . . .
Therefore, Gi.f*'satlsfles Pauli's principle and is an eigenfunction of

s

Note that since « is limited to two rows then &« is limited to
two columns.
A useful theorem follows.

Theorem Ac-1:

(1) <oy & 18> =<F 198>
op
1) < EIofgE>S 5, <8I0 E>

o 2
% TFor Bose particles, Z#*%; thus, we would use %?(Ckcéﬁéﬁuﬂo to get an
eigenfunction of S8~ if the spin of the particles is 5 - It is be-
Tieved that such particles do not exist.
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Proof:

(i) let (dx) = dxldxz...de;

o o +
<SG 218,> = (08, ) 8,() = Ju Z Uy §(28,)F ()

But the integral is some number and is independent of the spatial
coordinates since they have been integrated over; therefore, the in-
tegral is unchanged by a permutation of the spatial coordinates.

* ” * . ¥
Steg V&, ()= 2"((28)" 3, () = (23, ) (#'F, ) (x)
” -
If # =% we obtain g/zg«g)*g;/,,ox)_—)fgg*(zu B,) (Ax) ;

s0, using Uijt’ = Ujiz—/

<oy, 18, >= e E Yl JE D = <F 10 &, >

(i1) Using part i , »
o — x B a
0y 8104 5,>=<F 10 0pp18,5= 5 9, <19 &> PEP
Using Thm. Ac-1

<&'v16f8>=5" §I<E ok FO g 1>

We cannot go too much further without becoming becoming a little more
specific about the @2

Another method of obtaining N-electron wave functions which are
eigenfunctions of 82 and simultaneously satisfy Pauli's principle has
been obtained independently by KOTANI et al (1955). By a quite differ-

ent approach than that used here Kotani obtains (K p.17)

§(M‘) 1 E (f,f/“") /) — o

SMm V?}% S, & ®S,M}‘,% , where %k=@§[/@/ﬂﬁ7} F¥

( V/Ois a product of N orbitals) and Ly 4ais one of fS orthonormal
]

spin functions which is an eigenfunction of 82 with eigenvalue S(S+1)

(the ® are obtained by vector coupling the N spins in the fS differ-

ent ways given by the branching diagram). The & transform as (K p.7)
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F@S,M)',% - hg VJ’),Q’(P)®-§,MJL’ and U;,@(P) = GP V?),/Pd) in order that 5,/\4

rm)
satisfy Pauli's principle (K p.14). We must compare the §SM 7o

G: PA = Pé_f{m (0:: f)/w;i- A) . Here

G £ X & , o,
P ¥ = 5‘?4 Vyop L"gﬁ“’;; 7:/‘}503»'7: W% . We may identify &, ¥ and

-’ &
-
C%»ﬁrin which case LﬁFP =L%kﬂ°) . Also (X p. 14)
) m,;
)0915“@/= ;UL,;{;(IO) C/S,h . However,
of — = . s
P/I:«S;A Oy P)= 32%* fc;,‘ 03/§ ?:s%,_aarﬁ (fq%‘ %x @) ; thus,
/ = o ) = = . +
Ug#.lo) [671* %rﬁ . But from appendix I ﬁgrUérP fp (/g"FF ;  thus,
Ua.—(P) s ff, Ua—;p . Thus, we see that the Kotarni function and the G;‘@X
are equivalent. TIn fact Kotani derives the eguivalent of Theorems

Ba-1 and Ba-2 and appendix A (K p.22 and K p.23-26); he also obtains
the equivalent of equations Be-3 and 4 (K p.27). In general Kotani's
proofs proceed somewhat differently than those discussed in this report.
An advantage of the G:‘ form is the close relationship to the Young
tableaux permitting a pictorial visualization of the relationship be-
. P « p .

tween and the properties of the Gi ;  however, the ngﬁﬂzcan be visual-
ized using the branching diagrams and, indeed, there is a direct
relation between the bdbranching diagrams and the standard Young tableaux.

Arother method cof obtaining N-electron wave functions which are

. . , . . . . C .
eigenfunctions of S° and simultareously sactisfy Pauli's principle is
due to LOWDIN (1955¢c). L&wdin starts with a Slater determinant and
“hen operates with a projection operator to select the component of a
e . s . S*-ecer

specified total spin. The projection operator 1§EEZ:@@4¢ﬂggz+h) where

the product Is over all k from O or

ro f

to % (except 2 ) and
n Yoas Yo P P
s’ (5,‘3« )g‘f ’0?)4—_/5'0;)2— (Sdz) . The oroblem is that the result of

20+
operating with 0 on a Slater determinant includes, in general, a
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sum over very many Slater determinants many of which are in general,
. . » 2!*( .
linearly dependent and,in addition,the result of 0 operating on
different Slater determinants with the same orbitals results in very
many lincarly dependent and nonorthogonal terms. Thus, the use of this
scheme is quite complex; however, Lowdin has succeeded in obtaining a

general expression for what might be the most important of the many

different functions with a given total spin.
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Section B

Same Orbitals for Different Spin -- the Hartree-Fock Method

Introduction

Before proceeding to the DODS approach of solving for the ground
state energy and wave function of a molecule, we will develop the
Hartree-Fock method using the G;(operators. Throughout section B the
SODS restrictlon is employed since the Hartree-Fock method requires
SODS. Although it is true that the best Slater determinant approximation
to the ground wave function of a molecule is usually an eigenfunction of
82 if the S0DS restriction is used, it is not true that every Slater
determinant is an eigenfunction of 82 even 1f the SODS restriction is
applied. Thus, even for the SODS restricted case it is mnecessary to
use the G; operators in gencral trcatments. For this reason we carry
out a more complete development than is required for constructing the
Hartree-Fock method. Sections Ba and Bb are preliminaries for the
later sections of B. The orthogonality properties of the G;Qfﬂ/aro
developed in section Ba; the first- and second-order density matrices
which are used for determining expectation values are determined in
section Bb. Section Bc contains a simple application of the results of
section Bb to obtain a generalized Hund's rule. The Hartree-Fock method
is derived and discussed in section Bd. The first-order perturbed wave
function (with the Hartree-Fock wave function as the zero-order state)
is obtained in section Be; with the first-order wave function, the
second- and third-order corrections to the energy can be determined. TIn
section Bf the procedure involved in combining the G{ffﬂ’ to obtain

proper symmetry functions of the spatial symmetry group are discussed
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the proper rotation group, S0(3).
for
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of
Ba: Orthogonality and Normalization of the G1§X

First some useful theorems.
Theorem Ba-1: If Filizzf§==%fvifa"' (where the set of c#i is orthonor-
mal) is written with all identical indices adjacent and if
qua# Sq@ﬂ, then 0;§§and O:;§are orthogonal.

Proof: Using THM Ac-1 (o:p?{) orq@:(é)o";(l@} = éo(;u;w Gl YA
but <P/edy+ 0 implies that 2 only permutes sets of identical indices,
and if for convenience we consider that only one set is permuted, then
% can be expressed in terms of elementary transpositions involving

only the letters corresponding to the pertinent set of indices of ﬁ?.

Hence, Q’Sq(@) = Sq(é) ; thus, qu?# 0 only if Sp(@) = Sq(&’),

but we have assumed Sp(§5) # Sq(§ Y. If more than one set of identi-
cal indices is permuted then each one is treated the same way. QED

From THM Ab-2 {f Sp(i) = Sq(?) then O:p§ and O:qé are proportional so

that G;Eﬂ/and G:QZY are proportional. We want to select the set of all

of the different G:é% ; so, a method of deciding which ones are propor-
tional is necessary.

Theorem Ba-2: If & is written with all ‘#i which occur twice (I call
these doubly-occupied orbitals) placed together and first,and the
¢iAoccurring once (I call these singly-occupied orbitals) placed
last (i.e.,
b= qa‘(/) Cé'(z)‘gz(ﬂq},z@-)—--c}f;m(zn-dfm(zm)df(sznw) fz,ﬁ:rz) <é{~(/v)

where the set i i2,...,in is ordered and the set i is

2n+17 "
ordered, and n is the number of doubly-occupied orbitals) the set

o . . . . .
of non-zero Giéfx' is linearly independent and, a fortiori, ortho-

gonal. (This theorem depends on the o being one- or two-columned.)
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Proof: Let TQ be the group of permutations leaving & invariant (it is

an Abelian group of 2" elements); then,
<PIEP>  =0if #e T
=1 1if #e 7z
3 1 2
U =9  if #ely since both S and S are of the form 3 4
pat “pq P q , :
We have 2n-1 n
a - « 2 '
<Oy,}o§loyi§’>’<§/0fg§>’ é? Py (Ba-1)
But, using THM Ac-1 - 7 af
<6;§, 7(,/6;@52%9—- ;? Eczf fs'rg' <@,/0ff.§’;><7f!/wff%> S ks
= c%F o of &
=S §o1-,{ § <8y E >N Uy 22>
and therefore, if @A and SZ;’& are in the standard order,
of Al 7
<6‘,;£ 1/6;525_373>:5 ﬁsﬂ? 543 % {HAlwsz Xy 2 (Ba-2)
QED

When considering the spin tensor space or the spatial tensor space by it-
self, it is permissible to select specific types of tensor components
. . . S .
(i.e., ordered as in THM Ab-2) on which the Oij must operate since we are
interested in the number of different non-empty spaces, and we have found
a convention which does not miss any spaces. We must be careful in making
. . . d k3
a convention for ¥=®X that we do not miss any non-zero Gi Y . 1In parti-

cular we cannot arbitrarily select the convention for @ and X separ-

ately (e.g., if o =[23]) §= ¢1¢1¢24’2¢3¢3 , and A =aAdFBL then

O:q@ # 0 only for q = 1 and C‘?,—E,—% = 0 whereas if A =AB9B4F then
W;,~//\/ # 0). For SODS it is most convenient to use the convention of THM
Ab-2 for @ and then to use a convention for X which will give a non-
Zero w%)’ for every ¢ which gives a non-zero O:q§ regardless of what &

is. The convention for A is that the first N-2S positions of X have

alternating o and B then the remaining 2S positions have the remaining
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= first and then the remaining £ , e.g., for S = 2, 5, =1, and
x ook Aol
N = 10, ¥ = apagdBadd 8 (5o 8:1(3') =;(,sp £ ). From theorems Ab-1

and Ab-2 we see that there is indeed no case where Q/pqﬁ’= 0 from either
of these theorems; for a two-dimensional transformation space theorems
Ab-1 and Ab-2 probably form a necessary condition for a/pq2’= 0. There
are some cases in which we will use the convention of THM Ab-2 for %4 ;
in those cases we will write* ﬁf rather than just 7.

Consider the case of M, = S; then (by THM Ab-2)

S
wb_qﬁ(;f = Scﬁ a/l.ﬁ}’f. Let /)(=°—7YZE- then (using Aa-4)
w?qﬁ Y = U@Eswqf Xz (Ba-3)
2z
<K wez)h> = /(/ﬁfy) <7ra;/wfp;/7ro;> (Ba-t)
Thus,
<9Y/Wff/X>=de7€005ff<%o;/wﬁ/72> = l/<7/“/ﬁ5/1’> ("ﬁ/aff/ﬂD (Ba-5)

sut, SAplagslly > = g0 S e <Hpleidy>
and <ﬁflé'xf>># 0 only fOrfGFTﬂE (i.e., ¢ which do not move elements

from one row to a different row). If #e Tﬂf then Ufft'= 1; thus,

Tl wed2:0= G+ 9! G - ) &7

o . .
The GiéfY used so far have not been normalized, denote the normalized

function as E;Efkﬂ From Ba-2, Ba-3 and Ba-4 (MS = 5 has been assumed,

* There is a general convention for numbering the standard tableaux
(see RUTHERFORD (1948) p.24). All that will be

115
necessary here is to know that S, is the standard 112
. . . . S - 3 4 S - 2 &
tableau obtained by filling successive rows one at S = 5Te 4 75
a time and Sp is the standard tableau obtained by > p
filling successive columns one at a time Lo !
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but it is shown below that Ba-7 and Ba-8 are valid for any MS)

- of of o
a1 e = car) g [ﬁforié ) (W K (Ba-7)

clrmg) = \/ﬂv/éM
” 5) = 2”{“<ﬂ;;/affi/?;7) (Ba-8)

gy o o of
For any M_ we let G.?X* C,(?ﬂ)é%{ g;;<°r39<“%12/)

where C CZ$) ( <2// }77

Thus,

— af
<& |EFEN>=5"3, (Ba-9)

For arbitrary MS the non-zero 50511/ for different i are all propor-
tional but I have not discovered a simple way to find the coefficient
for the general case (see Appendix E for an example). If 50}32/# 0,

let
k; Z (Ba—lO)

Then equations Ba-7, and 8 are valid for any MS and

<7 /“%'g/ﬂlz>’ VZJI(? 7” (7)(;//40” /5{;;7-‘}/<7?’/w~-/ﬂ')(’1' W53 % > (Ba-11)

I define

SEZEE N (o,, ) iz 77)

(Ba-12)

We expand the exact wave function for the system in terms of the
o . . . . . 2
Gifﬁ(the exact wave function is required to be an eigenfunction of S

and S )
z

PIER - T) = ;;q@é‘» L on (Ba-13)
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where the sum over @ is over all different ordered &

P = ‘E{, ;) 454,{2) 43(/“ (2m~1) @M(zm) @MN (amt1) oo ¢4~ (V)

M2

Thus, =S = >
T A AR S o

Remember that although for a given value of S there are restrictions on
the possible n, in general there are several possible n for the same S.

Our convention for 7YM is such that it also depends on n. Thus,

(Ba-14)

A A o =Tk )by (2 By (m) By (2aa-t) - (W)
0 )7 EER, ., SOy SO ) D,

By Ba-4 the terms in this sum are all orthogonal.
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Bb*: First- and Second-Order Density Matrices for G;@f{’

Our Hamiltonian, A-1, contains only one- and two-electron oper-
ators; so, for evaluating energies it will only be necessary to deal
with the electron densitics and pair densities discussed below.

. 1 _ =
Consider the one-electron operator H = T hi’ where hi

. 1. . . . .
operates on electron i (H  is invariant under permutations of the parti-
cles). If ?’is an N-electron wave function which satisfies Pauli's

s
principle, then <W//'//9J>—‘((F/?h,(/{‘ﬁ-—‘?(w/é/?”) , but since all
coordinates in L¥/4,/¢> are integrated over, then
SYIh, |95 19> = CEM by 12 ¥ > . But ## L ¥, so, let
¢= (1,i), then ¥/41¢>=<¥lh/¥> . Thus,
SYHTIY>= S <FIbI¥> = NIWI6I¥>, et

PCIVEN SP g my 173 - oy b It (Bb-1)

where (dxi) = dxzdx3...de and, (ds) = dsldsz..dsN(i.e., integrate
(actually sum) over all spins) then,

SYIHIW> = S5 POIIS . o, (Bb-2)
where the ?l%,ﬂélﬁﬁlensures that the operator hi operates on ¥ and not
on W#V (I may abbreviate it as h(1)P(1)). (1,1') is called the first-
order density matrix, and (1) (i.e., 1 = 1') is called the electron
density since /°(1) dxl is the probability of there being an electron in
the volume dx. .

1

. 2. =
Consider the two electron operator H = peq 3ﬁf’ then, as

See LOWDIN (1955) for a general discussion of the density matrices.
The notation is based on that of RUEDENBERG (1962).
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above,

%S, S Sis -1 S<pg,iv
YYD (?’/M Bor!#7 2%<W7,,/¢> AN
= ML prg,. 19 (Bb-3)

Let  77(1,2) = NO-1) § @#(1,..1) Y. @x)(ds), where
(dx{é) = dx3dx4 ..de . 7(1,2) is called the electron pair density
since Zr(laz) dxldXZ is the probability of there being an electron in

dxl and an electron in dxz simultaneously. Then,

2 o
CHIHEIE> = g Sgia T02) I (3b-4)

If the wave function of the system is approximated by a Slater

determinant of SODS molecular orbitals (a common approximation), then

N
PALY - 8 ) 400 (8b-5)
i=1

z ¥, ¥ * F
7l,2- S [$05d0%0-5, AL 4] (56

»(,9 =/

RUEDENBERG (1962) 1lets,

70 = POIFCE)- 7y02) (3b-7)

where 77 1is called the exchange pair density. Ruedenberg suggests
that 7, does two things, first it corrects for the excess contribution
in 2 (1) /2(2) due to the same electron being at positions 1 and 2
(the integral (with factor %) of P(1) /2 (2) yields N2/2 whereas
there are only N(N-1)/2 pairs, the integral ol 7% provides the correc-

tion for the N/2 self pairs), and second, it includes the correlations
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between the electrons®. Ruedenberg expands the (SODS) molecular orbi-

tals in a basis of atomic orbitals, and by carefully partitioning the
resulting expansions of £, 77, and Z;, he is able to give a truly
lucid and interesting discussion of the nature of the chemical bond
based on some Hartree-Fock calculations on simple molecules. Relationms
similar to Bb-1 through 4 follow for <¢//44; > where 9& # ?]2 ; so,
we consider 43 = é:tizﬂa and = é;g§52; . The Nth-order density
matrix is
L} Pl B1,8,0,)5 M S (GX G MG 81,) (de) =

) Sdpp;//g?’”z £ ECEICAED
where Ba-8 has been used. Z(Oy,, f) (O"a fz) /é()z ZZ (,[9 f(é@,)*(z@;)

where we have used Aa-2 and EU”“”('IUVQZ" = U"éf'_’(,

o
Thus, using N! = E;ﬁf

o« af ! * *
31:(/,2)..)/\;).%7(])@212): D) ES;QWZ' ;; [43?-%/(2’%) (?’i)

The second-order density matrix is defined as

o | af
T 0,353,1, 80) Sy § By (0o 80,87 ()

= 5" e [ S §002.) (0 3 (4 (#o-5)
where (dX12) = dx3dx4...dxn . The first-order density matrix is de-
Fin »d as
A g(l 7, & %)= w g?"g(llzj ¢ %,f’; 2) X,
= 5 St Lo, SSORE)(,3,)) (3b-10)

Consider Sk%@f)*(t§7)(dx ) this is independent of electroms 2 through

N (do not confuse electrons with states; the integral, of course, does

* It should be realized that compared to the case where no correlation
is included (Ruedenberg says this is the case with the SODS HF wave
function) the introduction of correlation changes both ¢ and 7 (as
is easily seen since the Virial then must be satisfied in both cases
and only © leads to kinetic terms).
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depend on the states which in the term ¢ happen to be associated with
specific electrons, the application of Gi makes the clectrons indistin-

7 ’
guishable) so the integral is invariant if we operate with (i, ¥ (1))Z.

/"
In particular, we choose &=2 . So,

SeZ) 2 ))<= (,2) 5? (£FE,)Mm),) -
N E f[OZ, f)/o% é;)(ébX,/) = 2(/ 70)5§ /@6 (414( ) . Similarly,

Sz Y E) e’ ) = (,210) ¢z, ?’@){é‘ /2' T, ) (A /,,,,))
MN-1) g §/0m (@3 é‘z)(d%u >" 2 (/ f)(sz)’{f / f )/a@(ff)
From ’lIH\ Ac-1 §§( ,Acf)foy?@)(d«)*ff‘}*/@?éﬁ)/&‘)

For the general case

Nn- /) (- )r+/) 2 5/0",( @-){0,»3 )[M//»/ )

12k

30 Pr

Using the preceding stcps

ap g o7 < o
%y (1; %, 8,%,)= 57 f§3Wz< f/,f’))/f*[@a Z,) ()

Thus,

and

(Bb-11)
q’
Tog .2, 87,87,) - Ff% m S apep) 3 e, ) (o ) (8b-12)
Consider &1 = %2 (remember we use the convention of THM Ab-2).
n
From Ba-1 (@0. ]§>= “2“4 S ; also,
(3@ 8) ) = 50 £ Ye 7 z/éffd« ) hnd,
*
§§ ¢ (dnp) = 9”/70/?) qﬂf/f) ZE o,
= o F e 7;
¥
p P re) Also,
5%(013:?)%) =R
Py (dx /r,v)¢ #S P é (r) 1f #e7F {in this case U, .= 9.,
1 4 i 4’ ; ijZ 13)

i

bGP bpt,p) T = (0 ) vhere ¥ < T (n
this case Uijt’: Uij(p ) )

= 0 otherwise

The second case is different from the first if and only if (p)q)q?T§
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o, $87(a; $) )= 2[5 ¢ ALY P 40 %, w40

2

where Uij(p o5 ik o If (p,q) & Ty
= 0 If (p,q) € Ty
Thus, N
j/:(’i X 3 n,)= 50(?3"3 S, 72:/ ﬁ:(/)qum (Bb-13)

?:fgﬁ(/,z)- ﬂ’m)-‘ﬂ/ﬂz)’ MM Z[ﬁ 4 9o 0)75;)4. Latrp qS(I)n}/?)qb(,)qé{z)] (Bb-14)
If i=j and «=fF , then Bb—13 and -14 are the p and J7 for the state
G{@fﬂ;f, compare with Bb-5, 6. It should be noted that in general the
second~order density matrix is not expressible in terms of the first-
order density matrix as is the case for Slater determinents. Even for
the same space state, G;éﬂ’and G;i% have off-diagonal matrix elements
(in the 'exchange terms') if more than one linearly independent G?' is
possible for the same « and for the given & . The same thing, of
course, occurs when one uses Slater determinants except that there are
interactions between more Slater determinants than there are between
G? (the G? to interact must be of the same S and Sz’ the Slater de-
terminents need only be of the same Sz). Using THM Ab-2 there is only
one linearly independent Gf( (and thus, no off-diagonal matrix elements)
for the same o when 2S = N-2n, this is the case of maximum spin for a
given number of doubly-occupied orbitals; the same statement is true
for Slater determinants if, in addition, MS= s .

Now, consider ésl# %2 . Sél’foij éz(dxr')) = él_’(gUij ‘8%71"‘8%2((&1;)
Tor this to be non-zero %%ﬁand éE can differ by at most one state;
however, the differing states will generally be at different positions

/
(i.e., not match). Let 32 = 21 %é match ?ﬁ except for one state
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(note é'z does not mnecessarily have all doubly-occupied states adja-
’ ¥ ’ ”
cent). If &= ?’12’ then {% 2’%;(0(4(10) # 0 only if % & 1%,
and p is the position of the ncn-matching states. If %2 and @1
differ by?fzhaving one more c state and one less d state (d # c¢), write

52 2 %1(C;d) . Then (where n' = nz)

’
~M

* 2
g@l (Oij §51(c;d))(dx'p) = Sd = U, 4’ (p) 4’ (p) . For

i i 2’
p69 j 1
¥ o
5@1?:?2((1};1)(1) # 0 ) ¥l and @2 can diffeyr in at most two states. If
§2 differs by two states from §l and contains one more of ¢y and
<, states and one less of dl and d2 states than %1 , let
o ’ + . PR
%2 = §51(c1c2,d1d2). Let fz = 2’1?2 match ?1 except in two positions

and let dl and ¢y correspond

"0, & c;d ), 25 [U/ v (% AfSJI ¢:/f’)‘¢a‘j{f)¢q(f’)9‘q/ﬂ #
+ 5"'? SJ 1p 4’4 ['P)S‘i’d 6")4’ /f)‘% f))"' 3/49;)?’/ /56’:4 542 ?94‘/’(7’)96,{5)4;2’)4;@);-
S, B0 0. m35) |

If @2 and %1 differ only by one state, set d2 =c, equal to whatever

the 5 function implies Hence,

Cgf[ 31,3, ;) O’Ff m iy (’)?")

34 (;2 §,7 gg{( NT,)= ozﬁg’ ng[yq?@msb (z)ib ()¢ 2) +
oy, p)e, HOM g D4,0) b fz)j (Bb-16)

(Bb-15)

d4p, iy -
By %3 31, Sload it [ Wfém z))[%z« ‘# 4, (z)4> 4.0 4
U, ) f, ”@f) sf’q(z)#}z(l}] (Bb-17)

Using Bb-13 through 17 any operator involving one- and two-electron
operators can be evaluated for the expansion in terms of G;( of the

exact wave function of Ba-13.
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T e
Bc: The Set of Giézx With the Same ¢ ; Hund's Rule and the
Heisenberg Hamiltonian
Consider the matrix elements of the Hamiltonian between the var-
ious G;( for the same space state 5?? L H= A S ‘3;?
)

4 <g
Using Bb-2, 4, 13, 14

Af_ of it ;<
£5-373s, [f%/ <4 _1hid,> R <t tlgi0,8,5]

e

+ 5 S T (Be-1)
2 U
7y IR <9§7: é;/ﬁléf 73,,);
It is common Lo define
= = 1 2 - 13
Jpq <4>ip ‘Fiq/ j! ‘fipﬁb iq> Coulomb integral
(Bc-2)
R = R a3 1
. <f4gp ¢iql§l¢iqctis> Exchange integral
We would like to compare the energies for the different <X, i , and

7

o
iy the important quantity is U, . .
J P 4 Y 1] (Paq)

ey
dard form for & (THM Ab~2)) all tablecaux Si for which Gié"’/\/% 0 must be

Because of our choice of stan-

of the form (remember n is the number of doubly-occupied orbitals)

1 2
3 4
5 6
2n-1 2n

I call a tableau of this form the lowest-in-2n. So the possible &« and
i for the above case ara in a one-to-one correspondence wilth the pos-
sible o' and i' for N-2n electrons and general &'(1,...,N-2n)(i.e.,
each state singly-occupied). In appendix A it is shown that

1 v
U = - =%, . if p<2n and  is any letter not in the same
1.] (p’q) 2 SL_] 1 P n 4an g L5 any G er 1no in 1¢ same row
as p. Thus,
o { 4 =4
E_=AS,. +5=
” ‘9 2 pf>am 2L A/f’f (Bc-3)
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Be-2
where A (which is independent of o, i, and j) is
A = [Zo ;Wf»zZ( or)* {1 (L -3k Y+
f ,’of 2M P<2M 07? , ff 2 /‘f (BC"4>
oV)ZM 2 j
Tz fo}’)zm l’
where we used J =K . We now delete the A and obtain
pp pp
N
g‘ = 1 7 s (Bc-5)
A Pof>2m 2k e

. ey . . o
For &% with more than one non-zero G;f?ﬂ’we must diagonalize Eij

. . ] . o
In so doing we take a unitary transformation on the Gifﬂ%ﬁ'the same

ol
13(p,q)

same unitary transformation, but since U'j is unitary it is left uni-
L

oA which subjects each matrix U in the above equation to the

tary. The diagonal elements of a unitary matrix have magnitude less

2 ¥ ) .
than or equal to one ( ;Uii] 5:§f Uijuij = 1); thus, if V is the
of 24
o B g <
transformed U, E, > Vii(p,q)qu and /Viii\ 1

pP,q>2n

The qu are all positive since each is the self-energy of a
charge distribution (ROOTHAAN (1951)); thus, the lowest possible state

would be one (say i) for which V. -1 for all p and q (we do not

11(p,q)

expect to acheive this usually since there are (N-2n)(N-2n-1) different

matrices being transformed by the same unitary transformation). Con-

1N—2@]

sider the =lj2n ythere is only one tableau lowest-in-Zn and,

o
hence, only one non-zero G, . If p>2n, U ~9.. 3 thus,
v one “ 1§X P 13(p,p+l) 513
v’ S . f on . So the EX, = -5.. S K_ is al
S = ~5,, fTor p>q >2n . 0 e E,, = -2,. is al-
ij(p,q) 1] pod ij L5555

ready diagonal and this state has the lowest possible energy. We have

found, then, that the lowest possible state* among all possible states

1,

#* We have not shown that there will not be a tie but such a case would

not be due to symmetry but rather to an accidental relation between
the K and would thus be quite unlikely.



48 Be~3
with the same orbital occupations is the state of highest spin. We

have not stated how the ¢1p are to be determined. TIf they are eigen-
functions of the one-electron operator h (i.e., neglecting electron-
electron interactions), then equation Bc-1 is the first-order pertur-
bation energy. If we include the electron-electron interactions in

the self-consistent field sense as in section Bd and choose the 42
which minimize the energy, then the best ¢i are actually different

for different j and same o« of G; « The point is that regardless of
which ¢i are used the o« of the maximum spin for which G;@X’# 0 1is
the lowest energy state. This is a general Hund's rule being applica-
ble to any system of electrons (within the restrictions of SODS and no
spin interactions). It should be remembered that the Hund's rule which
is applicable to solids might be stated as: Given that the ground
state of an atom has electroms occupying certain closed shells and a
certain number of eclectrons in certain incomplete shells; then among
all possible sets of orbital occupation numbers giving the same number
of electrons in each shell, the actual set of occupation numbers for
the various states of the incomplete shell is that allowing the maximum
possible spin and the maximum L consistent with that spin; and the
ground state is an eigenfunction with the above values of S and L and

J equal to the maximum or minimum amount (depending on whether the
shell is less than or more than half filled) consistent with the S and
L eigenvalues. In considering the different sets of occupation numbers
of the orbitals of an incomplete shell, we must consider the case (if
allowed) of no doubly-occupied orbitals, all of the occupied orbitals

being singly-occcupied; one doubly-filled orbital, the rest singly-
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occupied; two doubly=-occupied orbitals; etc.. We have shown that among
the possible spin states with no doubly-occupied orbitals the lowest
energy state is the one with the maximum spin, among the states with
one doubly-occupied orbital the lowest energy state is the state of
maximum spin, the same for two doubly-occupied orbitals, etec.. To con-
tinue on to proving Hund's rule we must show that (at least for atoms)
the state with the fewest doubly-occupied orbitals (and highest S for
this n) is the lowest energy state. We might first try showing that
the highest spin state for no doubly-occupied orbitals has a lower en-
ergy than the highest spin state for one doubly-occupied orbital and a
lower energy than the highest spin state for two doubly-occupied orbi-
tal, etc., (I presumed here for definiteness that the shell is not more
than half-filled, if it is more than half-filled then we modify accord-
ingly). Actually, even if proved we would still not have even part of
Hund's rule because the states must be eigenstates of L. So, even if
the lowest energy Gi nas the highest possible spin, it is possible that
when combinations are taken to pget eigenfunctions of L, some states

of lower spin will split more and give a lower energy. 1 have not

been able to prove a complete Hund's rule even for the case of an atom
(every proof eventually involves considering each possible number of
clectrons in the incomplete shell and diagonalizing for L but this te-
dious procedure has been done before and does not generalize to any N).
KOSTER (1953) in an unpublished work considered a set of singly-occupied
states and started from an equation similar to Be-5 {(cxcept that the co-
efficients of qu were components of some undetermined unitary matrix)

which he obtained from Dirac's vector model and found that among the
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set of states (no closed shells) with no doubly-occupied orbitals, the
state of spin = g is the lowest. Since we can discuss cases where
there are some doubly-occupied orbitals and thus can discuss systems
having some closed shells, we have a much more general result than
Koster's. As Koster did (and for lack of a better term) I will call my
Hund 's-type rule the extended Hund's rule since it applies to any sys-

tem of electrons and despite the fact that for atoms it is more resrict-

ed than Hund's rule.

o
Consider <§i E, = ;é{;_ K EE U,'< q) Pretend that the
i 1L pP>g>2n Pd T 1LAPL4

closed shells are not there; then we have r = N-2n electrons and r dif-

o
ferent one-electron states; so, all f of the G:Q%Tare allowed. Then

o of
éngi(p O = ;rt = character of transposition (same for all transposi-
i ol b @
. 4 1 S Ar .
tions). Eave = Ew<i:ﬂii = t;g;; qu . From appendix B
o i P>q’2n
fﬁg 2 r(ir-4)
/ T TR = 7 5(S+l)] ;  thus,
o« 2 [r(’k—*) - 5(5+/)] %
Eﬁvé W) + gﬁm d (Bc-6)

S5+)GEN= S ey = Q

thus, . ) 1§ . éé{

Bave = 7Y 27T ,@Zp £ 521 70(}2,“!{7"3’) (Be-8)
If we now set all the qu equal

4
Lo fr(e-1) ’Aa 1 "o~ .
LW;[ Lt 51 JK— > (7 +8;8)K  and if we
k,1 k,1
now let K = Kkl for the kl term, etc.,
I's
oA B l N /1’/\ _
Eave N 42;;( 4 Sksl>Kkl (Be-9)

Eguation Bc-9 is the Heisenberg Hamiltonian used for parameterizing

magnetic interactions among electrons in solids. It must be emphasized
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of
that unless all of the qu are equal then the f different states of

. o . .
the same o (same total spin) are at f different energies; so, the
differences between Eave for different o have little to do with the
actual spectrum of energies. The pretense that the closed shells are

not there is valid since the U, for p, q>2n are the same as for

ij(p,q)
the case where there are only r = N-2n electrons (e.g., see the lemma
to appendix A). The transition from Bc-8 to Be-9 is, of course, utter-
ly ridiculous. It should be remembered that all of the qu are posi-
tive,

A restriction common to this whole section is that we use the
same set of (Pi for different Gai( and then we require that the Gféﬁ/
or linear combinations (with the same $1) form eigenstates of the
N-electron system. It is all right to form G:@iy with some set of ¢i
and then to vary the ¢E to try to obtain a good approximation to an
eigenstate, but we must do this for each & separately. TFor the same
basic set of ¢k we would vary, among other parameters, the scale of
the different ¢i , (we do not change the type of symmetry of the tii)
to minimize the energy and find the ground state of each, but the scale
changes of the same ¢i for different « would in general be different.
Hence, the integrals in (Bc-1) are different for different & . But we
have assumed them to be the same; thus, the energy differences obtained
from equation Bc-2 and, hence, from all other equations in this section,
are quite without physical meaning. The only purpose for which they
can be used is to select the ground state as justified on p. Be-3. The
Heisenberg Hamiltonian is often used in a way which is not justifiable

on theoretical grounds; we will do so ourselves in section E.
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] . o
Bd: The Hartree-Fock Equations for the GiQEX’

o .
Let us try to find the lowest energy Gifle for a given type of
@'. Each ¢i is required to be a basis function of an irreducible re-
presentation of the spatial symmetry group of the Hamiltonian. Let the

dimension of the K irreducible representation be d If there is among

K’

the ¢, in & a set of d doubly-occupied orbitals transforming as the
i

K
dK different basis functions of K, we say that the set of dK orbitals
comprises a closed shell. If there are several shells for the same K,
then we number them 1K, 2K, 3K in order of increasing one-electron
energy (as from a Hartree-Fock calculation). A set of functions which
accounts for less than ZdK electrons (but at least one) and which trans-
forms as basis functions of an irreducible representation under the
operations of the spatial symmetry group comprises an open shell. A

set of dK singly occupied orbitals transforming as the dK different
basis functions of K is termed to comprise a half-filled shell (note it
is not sufficient that there be dK electrons in the shell). Two &'s
are defined as being of the same type if they contain the same number of
one-electron functions of each symmetry. The variations in each one-
electron function must leave the number of functions of cach shell the
same, and all of the basis functions of the same shell must change in
the same way under the variation so that they remain basis functions

for the irreducible representation. We require that §E€i = 0 under the

constraint that the N-n occupied one-electron functions remain orthogon-

al (this also preserves the norm of the many-electron function). Thus,

S(E;‘i ; %éﬁ TEpltp> ) =0 (Bd-1)
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Taking the complex conjugate of this equation, we see that & is
P4

Hermitian . Using Bc-1

N Vs /
9 [g (4?1111470}4-2—'% ((4704{};/470?? +(/,(ﬁf)<419109/314{17a>) —5 6}?@1.14/5].-

Q

*
One separates the variation of '542 from that of 54; by replacing

p P
54& by ii#k then multiplying the equation by i and adding the re-
P P
sult to the above equation (see MESSIAH (1962) p. 764). Thus,

N
ZE f<‘5¢‘ 6>j o (Bd-2)

If all of the 543 are linearly independent, then the coefficient of

¥ p
é‘#ip = 0 , that is,

(Bd-3)
Fhit o1 (< lgig004,> + User, <8 1318,514) £ plt, >{=0
If the coefficient of iﬁg in the equation corresponding to Bd-2 is set
equal to zero, then the rZsulting differential equation is the complex
conjugate of Bd-3; thus, we obtain nothing new. Now, although it is
true that all of the orbitals in a shell have to vary together so that
they remain a basis of an irreducible representation, the Sq% for two
states of the same shell are orthogonal because the 54% also trans-
form as different basis functions of the irreducible representation.
1f 4% is doubly occupied then the same equation occurs twice. Thus,
equation Bd-3 is valid. Equation Bd-3 is the Hartree-Fock equation and
can in principle be solved iteratively by integrating for 4% after
solving for the integrals from the previous approximation (thgs is im-

practical except for atoms), Consider <f¢& { and (dg f on equation

Bd-3 (and use <ﬁbl ]Q"i >= %i ; )

P q P g
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<tplhltp> +;§fk47?/?/47’?> + Ueecpp) <Py i) = Epp

<t 1 hl1p> +7§;((4k4f/3/4¢,?>+ U,J(f/ﬂ (4,?/?/,?,,(7»): Spr (Bd-5)

Since h and g are invarient under the spatial symmetry group, & = 0
pT

unless 4& and ¢E transform as the same basis function of the same
irreduciblg representation (we are using the discussion following Bd-9
and Bd-10 here). Actually we should have expected E;pr = 0 for differ-
ent symmetry functions since <ﬁ#} ]cpij>= 0 by symmetry. A transforma-
tion among the occupied states which leaves G:§a/invariant (except for

] X .
a phase factor) leaves kL unchanged. 1If L, = S.. . {(where the
P ) v ii g <?51. 2 ij #DJ (

sum is over all different states), then

iépq<¢ CP > E'\/‘#’ l‘# > Z . f(j? 072 S 1is unitary

(since we require that orthonormality of the ¢i be preserved) and <
is Hermitian; thus, an S can be chosen which will diagonalize S?
We wish to preserve the symmetry properties of the #? (which is pos-
sible since the only non-diagonal é?éq are between states of the same
symmetry). It is now necessary to see in which cases the transformation
:_S_ leaves Gj%ﬂ’ invariant.

Consider a set of functions which are transformed by E among them-
selves; then
é_ d’ (()47 (1’) ql) w)= 2 S 9,_ Séw*‘/u C%I[l)%l(z_).,4%~(~) (Bd-6)

% 52"6«,), P ng(,)} ‘n [Zv‘éf,(’)" 43«,\,("”)

and cousider G:(t%f)k’. Assume that all of the functions in the trans-

formed set are doubly-occupied orbitals. If the functioms qé and

42 are transposed, then we must use for 72 in Bd-6 say

4
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say 2= (2p-lxpeiCepzg) of Cep-3P) 2p, 3-1) (Ba-7)

The reason is that the 2 in equation Bd-6 must refer to permutations
of the (numbered)¥* electrons, this & takes the two electrons in i

states and puts them in i states and vice versa.
of
o) @PX = = ﬁsp 0, £ ) ( @z X )

T £

o, ¢¢ = Z Uijz'ori§ (from Aa-4), but by THM Ab-2
3 ,

= 0 since & is ordered and S, is lowest-in-2n). Tt
Orj§ 5ij ri%( ince @ i rdered an i i owe in-2n) hus,
g 2 = U . y <l - { =
0_; ¢ iit’ori§? From appendix C Uij(2p—1,2q-1)(2p,2q) E;ij >
and thus for any permultation ¢ composed of transpositions of type

Bd-7 U,
1.

= ; of _ of or
e %ij thus, Gi (¢ )X = Gi X, and the Gig_‘b'ﬂ’

is invariant under all transformations of the space of doubly-occupied

orbitals (we might say that if the pair of electrons in a doubly-
occupied orbital are considered as a single entity then this entity is
a Bose particle).

It follows then that the éhfbetween doubly-occupied orbitals are

alanta

zero**, The 65? between doubly-occupied orbitals and singly-occupied

% In case anyone is worrying about numbering the electrons when they
are indistinguishable, the particles in a function such as & are
distinguishable (if they are in different states); only when we
operate with G, or with the Slater antisymmetrizers do we get a
wave function which describes indistinguishable particles.

%% Actually the different basis functions of the same irreducible re-
presentation must be transformed by the same S so that they still
form a basis for the irreducible representalbion; so, one might
think that the &  between functions transforming as different ba-
sis functions of PYthe irreducible representation could not all be
simultaneously diagonalized; however, by applying the group opera-
tions on Bd-5 we see that these different matrices are the same and
thus are diagonalized by the same §).
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orbitals of the same symmetry type need not be zero. However, if all

of the singly-occupied orbitals are basis functions of the same irre-
ducible representation and if this irreducible representation occurs
only once* then the & can be completely diagonalize **% (e.g., for
the (argon)dn and (argon)dn_zs2 configurations of the first row trans-
ition elements). A case such as lithium would involve off-diagonal
E;pq' These same problems occur for the same reasons for Slater deter-
minants despite the common derivation (e.g., MESSIAH (1962) p. 777)
showing that the équ can be diagonalized. The reason is that we have
restricted our wave function by requiring that the same set of orbitals
be used for different spins®%* (SODS); this is an artificial restric-
tion which is justified because of the vast simplification in calcula-
tions (making them fecasible) and because the restriction usually fits
with whatever experimental information is available. If no restrictions

are made on the spin-orbitals other than their orthonormality, then in-

deed a transformation can always be performed to diagonalize the &

2
* This is true even if some of the states of this irreducible repres-
entation are doubly-occupied, the reason is that €pe is non-zero
only between states which transform as the same basis function of
the same irreducible representation, thus an irreducible represen-

tation must occur twice in order to have off-diagonal e?pq
%% A similar result for atoms with Slater determinant wave functions
is given by WATSON (1959) p. 7
*%% Actually we required that the é be basis functions of the irredu-
cible representations of the spatial symmetry group; however, even
without this additional assumption the unitary transformations of )
in order to leave Zif invariant must be restricted to transformations
among the doubly-occupied orbitals (see p. Bd-3) and transformations
among the singly-occupied orbitals (this latter is allowed only if
o = fzflﬂwemj , see p. Cb-1,2) and thus, the e;? will, in general,
have off-diagonal elements for is€2n<j.
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the "no restriction'" means that we cannot require the SODS approxima-

tion.
We assume in the remainder that conditions prevail which allow

the eﬁq to be diagonalized. From Bd-3

197 +Z (<%, 15192147+ Gt G314, 0190)= Epp > 0

V4 &
where U = U,, if i #1
i(p,q)  iilp,q) P g
s 1 ., . .
=-3 if 1P = 1q and p,q<2n(to correct for the extra
Coulomb term)
2

-1 if i = iq and p,q>2n

Using the results of appendix A for U,

ij(p,q)
hig>+ ZOHIF18,> 1< 1914519, ) = €5p 19, (3-9)

as in section Bc, if p<Zn

if p>2n
Wit >+ 2 (<% /g/qé, >l >- 48,514, >/¢7>)+2 [<Hplgl,> /%, >
+(/,,,¢,/)<<é I3, >1d.> ) = €pp 14,0

Now, in order for equations Bd- 9 and 10 to be consistent with the re-

Bd~ 10)

strictions on the 4& , the equations above must transform as <$i ;
P P
so, the term operating on <$i must be invariant under transformations

13 #
of the spatial symmetry group. The sum <§? #}(«1)#}(«5) is invariant
i

under all operations of a group iff the sum includes all basis functions
of every irreducible representation of which it contains even one basis
function®*. Therefore, our equations are comsistent only if all shells

are either full or half-full (remember the definition on p. Bd-1)

. X . . .
*REEU)n,) = 54’(«,)4'4(42) SE ISY, EA,« ; R is unitary since the ortho-
normality is pleselved The set of functions is left invariant since
the functions in each irreducible representation must transform among

themselves; so, the sum over i is over all columns; thus,

Aé@ E’/@A = %9»@ . By the definition of irreducibility if some
but not all of the basis functions of an irreducible representation
are in the sum then the sum is not invariant.
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and in addition for p, g >2n (i.e., among the states of the half-full
shells) then U,, must be the same for all q of the same shell
ll(Pa‘l)

(e.g., if there is only one unfilled shell then U,_( ) must be inde-

3

endent of and for p,g>2n; the only case is U, , = -1 (maximum
P P q P>q v 11(p,q) (

spin)). 1In cases other than these we cannot require the orbitals to be
basis functions of the irreducible representations of the spatial symme~-
try group of the N-electron system. The only good solution is to relax
the SODS restriction which of course complicates the problem consider-
ably; this will be discussed in section C. For the remainder of this
section we presume that all shells are either full or half-full. How-
ever, Hartree-Fock calculations are often made on systems for which

they can't be self-consistent (open- but not half-shell); the results
are not especially bad (WATSON, 1959) so I will leave my equations with
the U;; rather than -1 in Bd-10 to allow for these cases. The only

cases where Bd-9 and Bd-10 are consistent with the 4& all being basis

p
functions of irreducible representations are just the cases of maximum

spin of closed shell and half-filled shell systems, in these cases the
Slater determinant is an eigenfunction of spin and gives the same Har-

tree-Fock equations¥,

* In the usual derivations of the Hartree-Fock equations for Slater
determinants {(this is redundant in the usual terminology since the
Fock usually implies that the wave function is approximated by a Slater
determinant) a spin ( X or £ ) is associated with each orbital. One
gets an equation similar to Bd-8 except that U;:ﬁﬂ ) is replaced by
-1, each orbital is multiplied by a spin, and the 4integral (sum) over
these spins is not completed. When the integral over spins is taken,
the exchange terms between "orbitals with different spins' are deleted.
It should be realized that for a system with no spin interactions, it
is not possible to associate a definite spin with a specific orbital;
only the total spin and total spin component can be fixed. Of course,
if SODS is used and if an orbital is doubly-occupied, then one must
have the orbital once with an o spin and once with a £ spin in every
non-cancelled term of the expansion of the wave function. So, between
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Note that if N # 2n then even for half-filled orbitals the operator on
4}p in equation Bd-10 is not necessarily the same for different p and
is not the same as the operator for Bd-9. Thus, the eigenfunctions
would not automatically be orthogonal if it was not that they are dif-
ferent basis functions of an irreducible representation which does not
occur in the doubly-occupied set of orbitals; thus, we see why an off-
diagonal 6;q is needed when the irreducible vepresentation used in the
singly-occupied set is repeated.
If the ¢E in Bd-2 are expanded in terms of a fixed set of basis

functions®* (ROOTHAAN 1951) then the variations of S%%fre variations

in the coefficients of the expansion. In this case we obtain

*
H +Z g ’ = -

h ., = <, 2 N- i fixed basis f ti
where c,’blp /Z—/ 7::/47/(,,) M=z N-m ) 7(/“ is a fixe asis function

Huw = <Tul 01702 | Yueiay = <KuKe 11T, X >

Substituting for the Uf.
& ii(p,q)’

¥ !
[H/ua t ? CZK'C{A (?/46')- zAT 2 ?/ws‘),\0>]67-ay = €ff §ayc7ay (Bd-12)

if ps2n

% We use more basis functions than the number of different orbitals.

(continued from previous page)

two doubly-occupied orbitals there are four Coulomb terms and two ex-
change terms; from Bd-8 we see that the same situation prevails here
since each orbital appears twice and has one Coulomb and one-half ex-
change term for each occasion that the other orbital appears. In the
maximum spin case for a configuration, Bd-8 has one exchange term be-
tween singly-occupied orbitals and one-half exchange term between a sin-
gly-occupied orbital and each occurence of the doubly-occupied orbital.
So, the result for Slater determinants corresponds to the correct re-
sult for the case of maximum spin of a configuration (this includes
closed shell systems, i.e., S = 0); this case includes all those for
which the llartree-Fock equations can be self-consistent within the re-
striction that the orbitals be basis functions of the spatial symmetry
group.
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if p>2n N
[H/W ”"fngg’(cf"\ (3;“6')' AL 3/,45}- ,;z/) +5§M€’:(3’A (j'/“f,‘ 2+

+U/,:,(1>1Z) ¥ c;)p)]f 2 = €pp SuzCpa (Bd-13)
The advantage of the Roothaan procedure of solving Bd-12 over the
Hartree procedure of integrating equation Bd-9 is that in the former it
is merely necessary to diagonalize an M x M matrix whereas the latter
involves a set of coupled partial differential equations which cannot
in general be solved (in the case of SO0(3) the variables separate and
a set of coupled ordinary differential equations result, even in this
case the Roothaan procedure is apparently more convenient). As before,
the eigenvectors of Bd-13 are orthogonal to the others because they are
required to be by symmetry restrictions and not because they are dif-
ferent eigenvectors of a Hermitian matrix. As noted before Bd-13 is
consistent with ¢i being a basis function of an irreducible represen-
”

Py N-2m
tation only if o« =2 1 in which case U, , =

tor in Bd-13 is independent of p for p>2n. This is an important case

-1, and the opera-

since it has the maximum possible spin consistent with the number of
doubly-occupied orbitals.

If unitary transformations are taken on the set of Hartree-Fock
orbitals by having the doubly-occupied orbitals transform among them-
selves, then GZ&&%ﬁ left invariant (see discussion after Bd-7). Under
these transformations the Hartree-Fock Hamiltonian (Be-1), the density
(Bb-5), and the pair density (Bb-6) are left invariant. Often such
transformations are used to obtain orbitals which are expected to be
more consistent than the Hartree-Fock orbitals with the correlation
terms of the complete Hamiltonian which are missing from the Hartree-

Fock Hamiltonian. The disadvantage with such orbitals (e.g., Wannier
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orbitals, hybridized orbitals, etc.) is that the-off-diagonal E%py
{(Bd-5) are non-zero. So, instead of Bd-8 the equation for the new

orbitals 1is

nid, e Z(Hlgleo, Uriar <, 1314, 518,>) =
=a§ Kbl >+ (<%, 4, 1314, 8.0+ ,,/M<<é,%,)9/m,>]/d‘zf> (Bd-14)

which is extremely inconvenient to use.
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Be: Perturbation of the Hartree-Fock Equations for GfiUY

In the Hartree-Fock equations each electron moves in the averaged
field of the other particles. Actually, the motion of the real electrons
is correlated so that they can reduce their mutual repulsions. Correla-
tion effects are apparently important enough so that the Hartree-Fock
equations are often of insufficient accuracy when discussing chemical
aspects of molecules (LOWDIN (1959), STNANOELU (1961)). 1In this section
we find the first-order perturbed wave function; using the Hartree-Fock
wave function as the zero-order function; with the first-order wave func-
tion, the second- and third-order perturbed energies can be found. The
treatment is modeled after that of SINANOéiU (1961a) who considered only
closed shells, for which case the Slater determinant is an eigenfunction
of Sz. The basic idea of using the Hartree-Fock wave function as the
zero-order wave function is due to MPLLER and PLESSET (1934).

Since the SODS Hartree-Fock equations are used as the zero-order
functions, this approach can only be used where the SODS Hartree~Fock
equations are valid (i.e., self-consistent) which is for closed-shell
and half-shell systems. If we allow DODS, then the treatment is very
much more difficult, and in that case the self-consistent field equa-
tions (see section C) are probably so much better that the perturbation

is not mecessary in order to get accurate results.
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SUMMARY: The first-order perturbation wave function is obtained for the
two types of cases for which the SODS Hartree-Fock eyuations
are self-consistent (hence, this is limited to systems with only
full and half-full shells). This first-order wave function is
a sum of terms each of which is obtained from the zero-order wave

function by replacing a pair of orbitals ¢i and ¢i with a two-
r ¢
electron function &, ., . If i =1 then the €. . can be
i 1 P q i i
P9 PP
found by solving an inhomogeneous differential equation. If

ip i thenwfa i is expressed as a sum over the excited states

P 9
of the Hartree-Fock Hamiltonian. This allows us to accurately

determine the eai i (which should be large since the states
pp
were artificially forced to be the same) and to determine 62 i

P4
by a simpler less accurate method more in keeping with the

lesser importance of éEk P It should be stressed that we
P9
do include systems with half-filled shells and maximum spin.
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From Bd-8, the equation for rhe Hartree-Fock molecular orbitals

is
h o+ i Jg] i >+TU P ] 1S = i,
[ §(< ql8! *q2 11(p ) < lBI D P/ f 1T, > = €y 12
2 . ) .
where U = U, , if i #1i
1(p q) 11(pq) p q
A 1
R ' 5
5 1f Lp lq and p,q $2n
2 -1 if i =1 and > 2n
D q P.q

Let Vp Z(<l lgli >

i i P then
. q>< qlgl p> pq),

U' V4
iidp
(h +V )}i > = é? )i > . Take <i } and obtain

Cop = [(47,/1;/ >+ g((/(ff/?/4f»/d¢>+ ”fff) <4f,f/g./,/ /f’>)]

g 2 5? : - -
Let H_ = (h 4 Vp), s0, H_ ¢31...¢1N (é{ )¢) N .

—— OF
Then multiply by 2’ and operate with G i 5 thus,

Y (é f) pno o = 7"2"- <rr (Be-1)
o N
The perturbation is H ;5: éf . The first-order energy cor-
PP L a
rection 1is
£E,=-3 (<f;/3/¢7>+(/ i ) <f;/;/o¢f>> (Be-2)

This first-order correction merely corrects for the electron-electron
interaction energies being counted twice in FZO . Tet <EIBS>=1,

then (e.g., SINANOGLU (1961a)) (H - E )X, = (B~ H) yﬁ” where X, is

the first-order correction to ?g .

From above

/ P24
E,- B (3 + U, K - + P +U.., K
;5;i, 11(p,) “pq ~ Epq’ ;gi fﬂ, pq  ii(pq) pq)K
lethY-W ;m 23 ~§-U/ g ;

K -
1 pq pq 1i(p,q) pg Pq
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Pe g 4
2 Tf,f+@4,ﬁ{)rf,f—<{flgl?>—QJ,M)<?/9/A,>/2;_

7"5’;‘?
we have
(H-E)Y = (%M,f) # . (,L/o—t:)l/\/:(f? £ep) 7, (Be-3)

L/}o is non-degenerate (except for the 2S + 1 different spin states);
so, <(////2M7,;/%> = 0 for all solutions (i.e., ¥ ) of the homogen-
Py

eous equation, and thus solutions to the inhomogeneous equation for )

!

e 7 . (0 = —— m - a
exist. We have >/ &, (f(?’ ff)% C’%Mff)% , where

S M
My, = . As discussed in section Bd the Hartree-Fock scheme

& H-&,
as restricted here is valid only for states involving only closed- and
half-filled (maximum spin) shells; so, only G;(é—ﬁ/% 0 if f—é is written
—o

in standard order. Thus, ffz= G, §})ﬁ/

Since the one-electron orbitals and spin functions form a complete
set of functions on the one-electron space, then the product functions

9):‘?%"’%5;"'5,\; form a complete set of functions on the N-electron

o . . ;
space. Thus, since the Gié;\/ is obtained by a non-singular transfor-

mation from the & , then the set of G1. for all e, « , and
i _g ~
ordered % and A is complete. Thus, 1 :ﬁi I@ @XM><6A,F§XM/
248 My
ad Y= = 1658y ><Gfeq,. /s m, =7
él/f?/ﬁ’ " " <7 %’/G/ é;%a)

T (SN I iy 1S R

/4

(Be-4)

From before if é—“— ? )then {Q//é_Mf, /Qg> =0 . From Bb-12 (or by
0 Py vd

6"(

. X dine —or — B of
st expanding) <&BZ /515> [ fo= <)ol 18 >
Use Ba-12 for Gi $% and Ba-8 for C,:; , then

t-Gf S e 1&eas < mS Mg S - det
C4Fe 2W T e p T
§ =¢3$ ", then
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GZ?}Y ; fs‘ ( 2’%)/ gﬂ%) 2 ,qﬁyff (0r1§)/CU- /’Y{)
T fﬁ'r 6_3 fﬁ(
Thus, = g;; |6 1>, = = ;fﬂ £°: qﬁq,?/@f EX>

>

(
My
N

= Fle 1% PI>EYy, o, = i $T =G (¢7F)
So, Y = C‘: = M /61(3@')2’)(2@'/ %{/55 > ; here g goes over all
zg

permutations of S If we restrict the & to ones yielding different

N*

n
% , then we get a factor of 2 and

2 /6/§3/><§//§ 7"07/£> (Be-5)

D/F/ §

But, for <P /Mff/§;> #0 ) §must match §o in all positions ex-

cepting p md g. Let @m ?(%:f« ﬁ(f)‘ém (¢) differ from §o only by
P €

having 4>k rather than 961 in position p and C}éw rather than ¢i in

P q
position g (of course qbk may equal 4’], , etc.); then
P
Vet S = (g R (Be-6)
= S 6 S| Mys /4 e-
° p<p R ?;{ ¢ X< f/f 7
A Fi e 7 Py . . :
Define @/rf?/ﬂf):g% &@)%?J(@m/ﬁfff/4f?> , where 1 <1 and
ﬁéwkiiD
the sum over k and m only goes over the ¢1, and <}5m such that
,4)%? 9( FO and also for which the set CPk and qu is not
equal to the set <f>i and d’i (see the remark after Be-4). Then
P q
Z/G, .:‘%‘2 ;(> There are three possibilities for 9 i
f’<g* ¢ ¢o’ r P p q

both lp and lq are doubly occupied, one is doubly-occupied, or noneis
doubly-occupied; I use FF, F and HH to denote these three possibili-

ties (F is for full and H is for half-full).
Let: k>iN denote that k can be any orbital not contained in &n

k>« denote that k can be any orbital not doubly-occupied in CPQ

o

(i.e., k can be a singly-occupied orbital in @ or else
an orbital not contained in &)
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d

HH
Sy P8 = Z Pt )<t b /M), b, >

(Be-7)
Bym <« FH: HAp, Kedp, & >4y §
o

Neither k nor m can be a doubly-occupied orbital of & since P
would have the same orbital three times and thus G1§X= 0 by
THM Ab-1, and k and m cannot be singly-occupied orbitals of %o
other than ip or J'.q since we would have n = no~‘r 1 (& has nO-Z~ 1
doubly-occupied orbitals) and G; &A= 0 by THM Ab-2. Also

k # m since in all cases other than above get n = no+ 1

¢ FH
‘94,,?(%;):5 bP%, )< b, /Mz/‘é,%o,> (Be-8)

B>y AN M >y

R >y AND Az < S Ay
A

20, SB< Ly s M > Ay

7

DoOOELY- &X' 7ed

72 :x{ AND A gy <M S “p SINGLY EXciTEL
Azmy B L4y puD m = 1
oAy AND m >4,

% > Ay ANS = 450

The other possibilities yield either some orhital triply-occupied

or clse result in n >n (note that n<n allows G1§7= 0 and 1is

thus acceptable)
/ F

£
@P?[ﬁf) = %EM B P By () S B | Mltptp > (Be-9)

R>dy ; >y
B > Apy [ Ay < S Ap

Camo SRS Ay s m > Ap

Ap £4
PTE ) oy b sy : M >4 ‘ ?
i J LOVELY &SxCrTED
2> /2ﬂ, ;M sAp OF '(o’ S/INGLY EXCITED

2= Ap M'Z" ;oM >,
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Elpap P07 2, BT F) Som M 2

@>/,V)' M > Ay
2> tp Ao, <o 5 4y,

=, A .
A 4 2M, SRS Ay o M 2y Dov8LY EXITED

4>'{2M03 /\/\4.‘:/{79 SING LY EYormeED
#=dp s Ay,

Now we partition W (from Be-3) in the same way

W S (Ropihy,)| 52,17 = E(ff +/f)

= 7 8
where Hh( _gzg% . The development proceeds as for Y except that
since qu is a one-electron operator, the excited é in Be~5 can differ
from %2 in at most one place. é?/must differ from 5?0 in at least

- = = o

one place since <6j§oﬂ’/f§f(ﬁ'fi+/;}f)/6, §:7> = 0 (remember
—a ot
Gi 5,%2’— 54,@1 f‘;}/) Instead of Be-6 we get

= Cmdé/é [ O S% % 7()(3?//7@,/4,?}. We obtain

P
C‘ Z (&, § > ) where
“PT fpty Pof
f;a P E 2 [, 000,00) Rl Voo lipty > +4, (P4 B)<tp o] R 40 4>

&C( owEL
a1y21ng as before

@ f;) = P ) < o K I 1pap >

»@P/ﬂ;m ,(op
A= /¢;M>/,u

=
4,, fff) 5 Yo lP) b ) <P | 1t pdp >

(Be-11)

(Be-12)
_4 4?)”')‘//&/
J%)AEM ; ”":’Q(

o FF

9
v g = § %)¢m?)<ém/ﬁ“//,,j,> (Be-13)
’@"’(f) /W>'/2/'lo
,%>/2,1,° M T /7&

Next we need the relation between <’km11\1}1p1 ~ and {km{K/i 1 > .
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If k # L) (@/ /M//’fof>-" < £ 4 1G] g 40 >
<Gl |Midptp>= -<4fé/<3/4¢,/ > (Be-14)

<B4 /’(/17”/2”)"(%’{ /2/ 7’f> V//ffoi’)</{5’@{5/47n

Let o 2o/ -o, then X = G, %
ey PG ’ o%/ F‘f’ /ﬁf)7>
Comparing Be-11, 12, 13 and Be-7, 8, 9 and using Be- 14, we see that if

% o -
G s 5400~ U 12 32 0> (pe-19)
J’
then the singly-excited g states of =" would cancel those of e’ 1eav1ng
y %
& with no singly-excited ¢ states. ']6' 5 4’/@42 2’) /G/ (’/"0’) 2’)"

_ffc (%/f,f)#@ (e = 3 EC’ ,3,”)/ %70 T e

43% gy ) FLom appendix D for p,qs2n_ and for P,q>2n_

g
O“ @#g) ? = 0”/7”'f) 0}'/%;

LAY el . )
and @ " and & have no singly-excited states.

Thus, Be-15 is true for these cases

A
However, & does have

4

4
singly-excited states. Let é‘- be the part of € containing only

FFO M EF pH Vg /4
doubly-excited states and let & =6 7 ana =S, Then,

5% Gl if‘f @f’?’> -+
4,
5;2"" T Es'f’” 9'rg) E@»y A
t= |Gy q:fl $ A > < Ap /M4y ?ﬂg

’@>’(2~

o

BI>< 2L JMHp >+

ha)

i W

We are considering the case of A = [2 N 2Mj (maximum spin for the

&
configuration); for this case Gi %%—1‘2, G, ?ﬂ/ . Consider the singly-

excited states in the above equation; if ¢iqis excited then

P 4’/@ ﬂ/ =0 if j # 1 for the same reason as above.

G,a%—

3
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Thus¥®,
o &
X"-"(M 216_4';9 +EZE 1/)
A & (Be-16)
il v 5’>z R, 97’0; — e- :(
‘e 16y BIM [ 4p 45>
if only closed shells are present then ‘@>4W %é s fJ?
X = (_d é }6 __?9_ =) (Be-17)
T M 1 ¢ 4 ;>

| i A

Using Be-7, 8, 9 and remembering that © contains only double excita-

tions,

% The Brillouin theorem (Brillouin (1933), M@LLER and PLESSET (1934),
LOWDIN (1959) p. 283) states that the matrix elements of total ener-
gy and thus of the perturbing energy between the Hartree-Fock con-
figuration and the singly-excited (Slater determinant) configurations
vanish identically. One might wonder how this is consistent with
the appearance of non-zero terms in Be-16 for singly-excited states.
The answer is that the Brillouin theorem discusses spin-orbitals; so,
the situation where the orbital stays the same and the spin changes
is considered to be an excitation. Thus, if ¢ is a singly-occupied
orbital and associated with the spin o in the Slater determinant and
if 4% is associated with spin F , then the excited state obtained by
replacing ¢« with 4# and §£ with ¢'e°( is considered (in the Brillouin
theorem) as a double excitation although only one orbital is changed
and the total spin may remain unchanged (e.g., for o= [27 /#2"]
(maximum spin) and M = S the excited state is a mixture of S and
S 4+ 1). Thus, the Brillouin theorem is somewhat emptier of signifi-
cance than is usually thought. A contributor to this common mis-
understanding is the common errvor in assigning a definite spin to a
definite orbital as discussed in the footnote on p. Bd-8. Note
that for the situation with all orbitals doubly-occupicd then no
cases as in the example can occur and, in fact, only matrix elements
to excited states differing in two orbitals can occur., This latter
result coupled with the fact that most calculations are done on
systems with all orbitals doubly-occupied is probably why the above
defect in the Brillouin theorem has not been noticed earlier.
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<52'/p)/91/; wp> = <?§/A’)/9 ﬂﬂf)) O 4 e Is cemesonse

T H&é OCCUAIED STATES

<¢, plo %WD = Z B pI<h I Mapis> IF 2w < SN

>y

= 0 otherwise
<¢j¢,,éi)/9;” pp)>= 2 %, PISHAI M Ap e > 17 20, <FS N

= 0 otherwise

<q3'_/f)/@/f /ﬁf)> = %/f)(d,,/m//\ﬂ//ff»fi> F 2 <EFEN Sap xf,s‘?

MDA opmg
Ay

= ,éj’,w/p) (er/M/,(f ?) IF ZMSESN D Ap= /27

= 0 otherwise
<t §) 0 (p)> 7 ©
<¢,m9, /;)/e”" (pp)>= o
<4ff,,/?’)4é/,{f)/é /ff)> Ay Ay 1M Lap T 2 Lt SN rtr pw dpdsy

= 0 otherwise

If only closed shells are present, then

<:%Léﬂ]€?;:;(}zfﬂ:> 0 i.e., CJ#ES orthogonal to all (Be-18)

occupied states

Il

3
\V4
|
o

<f45r<£*163p?ér
One cannot arbitrarily require equation Be-18 to be true, but it is

true for closed shell systems (because of the Pauli principle). This

is the reason that SINANOGLU (1962b, p. 3200) is ablc to require it (he

deals with closed shell), Unfortunately, such a relation is not true

for non-closed shell systems. For closed-shell systems

Sy E e I

where h; is the one-electron Hartree~Fock operator and e is one-
electron Hartree-Fock energy. This is equivalent to (if the equation

has a solution)
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(bp+ f“ef'%)@‘f‘f P = g Cplr) Bplp)

wo G (St P> 7 <L PG (pp)> = O (Be-20)

since with the second requirement the sum in Be-19 can be taken over
the complete set. The inhomogeneous equation has a solution only if
the inhomogenity is orthogonal to the solutions of the homogeneous

equation., Since

i ii > =17 U K J U} K _#0
1 1 ym,,.j1 1 = + U, ., - = U, .
p q} 13} P q pq ii(p,4) pq P9 1i(p,q) pq

i1 7

P a

and

It

- K # 0, then the inhomogeneous equa-
Pq Pq

i i fm, J1i i

< q P] 111 P QT>

tion for &, . has a solution, but for &, . where 1 # 1 it does
i1 i1 p q

PP P 9
not. The reason for wanting a differential equation for ES& i is

p 4
that the expansions of the form Be-19 are slowly convergent with a sig-

nificant contribution from the continuum (e.g., SHULL and L.OWDIN (1955));
whercas, for two-particle differential equations quite accurate results

can be obtained. However, the éQi ; terms are likely to be very much
PP

more important than the terms for i_ 7 iq due to the two electrons

being forced to be in exactly the same spatial state in the former
(LOWDIN (1959)). Even if we had a differential equation for ésipiq,
it probably would be worth solving only for é?i ;o and the other less

important terms, if included at all, would be cztﬁmated by a "short"
expansion. If the Roothaan procedure is used to solve the Hartree-
Fock equations, the left-over molecular orbitals (we have N-n mole-
cular orbitals but use M>N-n basis functions, after diagonalizing the
matrix we select the N-n ones with the lowest Ggpp as the Hartree-Fock
orbitals the others are the left-over or virtual orbitals) can be used

for the expansion of & , for 17D # 1 (see LOWDIN (1955b) p. 1504).

rs &
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For systems with half-closed shells then similarly to the above case
(b i
hp by = G I B )= gy Ly P Y P ) s ape e (Ben20)

o
where we require that < ¢ 4 (g)/ ,,f/f/f,f)>/for all doubly-occupied

i and <¢{’,V/¢9)%qf)/9,f,,r/ﬂ5')>:0 for all occupied states
The second and third order energies can be obtained from Xl

(SINANOGLU (1961a)).

Il

2

E3 = Z)5////'7//"5—///%7
Let Xls involve only singly-excited states and X? involve only doubly-
excited states (see Be-16). X is orthogonal to ¥ , so, <®/E/X,>=0.
Also, ‘/’/é /)( > = 0 since V is a one-electron operator.

7
E°=<o/€w@ - S <GB HS Fpl 2 o 7
2 rer /Z%(ﬂ;{?/(g)//z;i>fco; b-(;r?rr tféjf /f;' >
2
= ,,(,2< 92157‘,,,/ «52 U)3<28192l 5 Spsp

where ¥ goes over all ¥ giving different fo .

(7’/2‘//){> Z cS S f’? 3;9»% (?%;/U,./%;ﬁ>(?}ajm/4,{f>

2m, ¥ OIEF 7
g>2M.,

if k>1 then get zero since % must be & and U, = 0

N’ jie

if 1'.2[1< kSiN, let k = it, then r = p or r = t;
o

if r = p, we must have Z°=¢ , if r = t we must have 2 = (p,t).

Thus,

SV
E2 ’P<Mo ?#,/ [ 3/ff) 9/?1)2 < /Vr//‘;f></2¢»9/M//fwd(¢>
£ >2%
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Also,

ESE = <BIE, P XD

‘ 3
) f’;“’é »;g fqﬂmfﬂﬁ%'fémfzi‘?*’*’ 3, %> ppIMipy>

if k>1’.N let p = r then =& or (p,t);

if k =i where 2n<msN and p =1 then Z=¢€ , (p,t), (m,p),or

(map)(P,t)
Thus,
Esg: li é_{ U §[§0, )(41}?/1 4><4—@’/M///>+_
2 21052»4,, 2t o PP 5 83, 97723?‘ s o s s
3’>zﬂo

+<= [%//m,a)a) o419 1w 44 X?/M/M/"f?>+

b <N
e +(Gyiepa) +Uyﬂ\~,»p}/ﬁw)<”!ﬂf’2 [ Aoty > o 199/ 20 > )z
pEA 1224

The analysis for E, is similar with more terms.

3
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Bf: Construction [rom the G;ﬂfx of Basis Functions of Irreducible

Representations of the Spatial Symmetry Group
. 2 . .
The G?@Ur are eigenfunctions of S” but are not basis functions of
the irreducible representations of the spatial symmetry group. Let us
. . . . . ﬂ?vr
consider a case of taking linear combinations of the Gi to get wave
functions which are basis functions of the irreducible representation of
the spatial symmetry group. For convenience we take the spatial symmetry
group to be S0(3) (the proper rotation group in three dimensions).
We consider a set of one-electron states all of which belong to
the same irreducible representation or shell of 0(3) (e.g., L = 2 or d
functions). The usual procedure starts with a Slater determinant which
. 2 2 .. .
happens to be an eigenfunction of L” and S~ (it is automatically an
eigenfunction of Lz and SZ since the one electron functions are eigen-
functions of LZ and Sz)' Consider the maximum possible Sz consistent
with the given number of occupied states of the shell, then the Slater

determinant of this maximum Sz and the maximum possible L for this S
z

4

. 2 ) + +

is an eigenfunction of S and L2 (if we apply S or L we get zero).

Also, if the next lower value of S allows a higher maximum value of Lz,
z

then the Slater determinant for this next lower S and highest Lz is
Z

2
also an eigenfunction of SZ and L, etc. for still lower SZ (no need to

2

consider Sz less than zero). With each of these eigenfunctions of S
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and LZ, we can get the other states of the same S and L by applying s~

and L~ (the lowering operators). The S and L for which the Slater de-
terminant of maximum SZ and LZ is not an eigenfunction of 82 and L2 can
be found by orthogonalizing to the previously determined states. (A
problem occurs when more than one state with the same S and L occurs).
We are really constructing zero-order eigenfunctions (neglecting elec-
tron-electron interactions) for a degenerate problem, but since the

2
éff - is invariant under spatial rotation and spin transformation,

A< 57

then only states which have the same values of S and L can interact.
Neglecting eigenfunctions coming from other configurations (i.e., a
different set of one-electron functions, e.g., not all 3d functions if
the above set is for 3d functions) the perturbing Hamiltonian is diagon-
al for cases where only one state has the same values of L and S, but
we still must diagonalize the submatrix for cases where there is more
than one state with same L and S. Thus, in the latter case the wave
function is not determined by symmetry. I have no quarrel with the
usual procedure except that the wave functions are linear combinations
ol Slater determinants which are unnecessarily complicated to work with.
The use of the G;< allows the ultimate possible simplification of the
wave functions; the simplification is small in some cases but signifi-
cant in others. I will [ind some of the eigenfunctions of the d3 con-
figuration to demonstrate the method and compare it with the usual
method. For S = 2 the new method is no better than the usual approach

2

since the Slater determinants automatically factor into a space and
131
11 o
. 1 , . \
Consider § = > then ¢ = [2,112 . We wish the maximum LZ;

spin part and the O is just the determinant of space states.
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if $- ¢4 , then GJ¥¥ = O(THM Ab-1), but for @ =P b b
GIQZX# 0. Thus we will consider the L = 5 eigenstates. Recall that

of o a +

= 177 . i

G1 . % :€§Or1§ )( HX) Since the L~ operates only on the Ori§’
we need only consider the Orié(remember that states of different MS
are obtained by simply using a different number of of and @B in the
ordered X ).
L =5,

12,11
Orl 4>24>24>1

T B T O (24,940 2k ERLD)
1//:0:4 L‘#z‘f’z(}):“/? ri (zéicﬁﬁle' 27zl

(o]

L = 5 (55)rl

Lz = 4 (54)r1

but we want the standard oxder Cf’lcf’lqb , thus

0, P =0, PEE =V, 50, AEP,
rl 1 Ow (z((},,(,3) U/(z,s))‘ﬁq‘f#gf—l/?d’z‘f’z‘f’o

I

(54)

U/m 37 U= -
[2//..7

(), = 72 ol g4 + 5 0 444

[z,
L, =3 OOy S O[B4, -2 b, e b+ 2 hhd +ehh % |

!
= 5 [21!?(0//; +Uiaa” U/I(/,.?) “01/[/32)) 0,,,9‘34343, +
+2 V?(UIZf *U/z(/z)GUN(l&)' U/z(/zz)) G- #)zf‘;b‘* €O %24)24’7]

I/VOHC#’#’#’ /—OP2¢¢¢+ b 4% ?;
(it should be noted that the norm of Orl 4>kq5$4>m

where k = § # m is twice as much as it is if k >% >m; thus,

the norm of (53) is the same as that of (54) and (55)) (see Ba-1)
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L, = 2: (52) =V:Z—£E[VZOH(24741€%+VE43‘@4Z*V?%%"‘T)HIEOn(ZfﬁSﬁ*

+HE 5 +VE 4,4 9"7)"‘ Or(24 % ¢; +2d, 4P +2H ¢ 4’;)]
:v,‘"i [Om (20 ¢, 4 &, + §Uua,2 bbb, HEE L 0Bk r244, +z)"‘
$O (64,6 Pr+2b,d, b- +2d, $-) + Opz (VI B, %)

= = [ hh b HEOH 4B -30ntbet, +50,,99, 9 +VE Ora b %
This is certainly enough to demonstrate the technique. The advantages
of the new method result from the linear independence and, a fortiori,
the orthogonality of the various terms in the expansion of (L Lz) and
the (L LZ)ri terms occurring in ngﬁr. This is in contrast to linear
dependencies and non-orthogonalities and non-separated spin and space
states in the usual sum of Slater determinants (cf. CONDON and SHORTLY

(1963) p. 227).
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Section C

Different Orbitals For Different Spin -- The GF Method

Introduction

We will now develop the DODS approach of obtaining accurate
approximations to the ground state energy and wave function of the Ham-
iltonian A-1. The G: operator will be used in order to consider
N-electron wave functions which satisfy Pauli's principle and are eigen-
functions of Sz. The best possible G?éﬁy wave function is found for
each spin and number of electrons by using the variational principle
(ézrﬁa?m””&gﬂe”’éwh , where the ¢Ea are mutually orthonormal orbitals

and the ¢,. are mutually orthonormal orbitals). The Roothaan technique

ib
or expanding the orbitals in terms of a large fixed basis set of func-
tions is used to obtain one-electron equations for the ¢ia (the ¢}a are
eigenfunctions of the one-electron Hamiltonian H? and the ¢ib are eigen-
functions of Hb). The ¢ia and ¢ib which lead to the minimum total

energy are called the GF orbitals and the one-electron equations for the

GF orbitals (e.g., Ha¢1a = eiadza) are called the GF equations. In sec-
tion Ca the first- and second-order density matrices for Géﬂ?X are derived;
these are used in obtaining the expectation value of the energy in section
Cb. In section Cb the variational principle is applied to obtain the GF
equations, which yield the best possible G;Sfﬂf. In section Cc the signi-
ficance of the GF orbitals is discussed. 1In section Cd the defect of the
GF method is pointed out and discussed. 1In section Ce the restrictions
placed on the GF orbitals by the spatial symmetry is discussed for the

two particle case.

The DODS scheme was used by Harris and Taylor (1963) for H The

2-
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single configuration used by Harris and Taylor did not use general orbi-
tals; however, they chose very good (elliptic) parametric orbitals and
were able to remove over half the correlation energy for H (comparing
with the Hartree-Fock and exact energies given in FRAGA and RANSIL
(1961)). We would expect the GF method to allow even more improvement.

Some other approaches have been developed which eliminate part or
all of the SODS restriction (but which involve other restrictions). The
alternate orbital, unrestricted Hartree-Fock and extended valence bond
methods will be briefly described. The alternate orbital method is
sketched in section Cf.

The unrestricted Hartree-Fock method (we call this UHF)(e.g., PRATT
(1956), WATSON (1959), WATSON and FREEMAN (1960)): 1In the UHF a single
Slater determinant is used for the wave function but the set of orbitals
with & spin are varied independently of the orbitals of g spin. Such
a wave function is not an eigenfunction of 82 with the result that each
orbital has a definite spin associated with it (see footnote on page
Bd-7). Apparently, most of the UHF calculations have dealt with atoms
and all have used additional approximations. Apparently, most have as-
sumed that the atomic orbitals are basis functions of the spatial sym-
metry group (i.e., transform as spherical harmonics) although some have
discussed the possibility of having different radial functions for
orbitals of the same L but different m. (this means that the set of func-

L

tions of different m and same L no longer form an irreducible represen-
tation of SO(3)). LOWDIN (1959, p.314) has pointed out that the UHF

method may not allow as much splitting of the doubly-occupied orbitals

as would the general DODS solution. In addition, LOWDIN (1959, p.315)



81

points out that since the varied UHF state is not an eigenfunction of S2
then even if a pure spin component is projected from the UHF state, one
must be very careful in making physical interpretations of the UHF re-
sulls.

Another approach which does not use the SODS restriction is the
extended valence bond method* (SLATER (1963) p. 195 ff): A simple
method of solving for an approximate ground state of H2 is the Heitler=~

Londin method. In this method one approximates the wave function by
(A BE)+ 8(/)4/2))(9“’“5’(2)“ o(2) B(1) ) where A(1l) is an atomic orbi-
tal on atom a and B(l) is an atomic orbital on atom b. Then one chooses
some parametric form for the atomic orbitals (say an exponential) and
varies the parameters to minimize the energy. The extended valence bond
(EVB) method is an extension of Heitler-Londin method to systems more

complicated than H In the EVB method one has one atomic orbital for

5
each bonding electron and atomic orbital for each pair of nonbonding
electrons. The nonbonding atomic orbitals are assumed to be orthogonal
to all other orbitals, each bonding atomic orbital is assumed to be or-
thogonal to all other atomic orbitals except one other (with which it
bonds). A particular combination of the orbitals and spins is used which
results in a total wave function of spin equal to zero (one of the £
such functions). With these assumptions a fairly simple energy expres-
sion is obtained. A parametric form is assumed for the various atomic
orbitals, and the parameters are varied in order to minimize the energy.

Due to increased flexibility of the wave function, the EVB method yields

lower energies than methods involving parametric molecular orbitals

o
w

Dr. R. M. Pitzer pointed out this method to me.
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(SLATER (1963) p.196). A configuration interaction based on the EVB
method accounted for 80% of the binding energy of HZO (MERRIFIELD
(1961)). Note that since the orbitals are fixed to be the atomic type,
they cannot vary as generally as in the GF method. The orthogonality
assumptions provide another restriction in the EVB method as compared
to the GF method; moreover, these orthogonality assumptions should

lead to a rather complicated Lagrange multiplier matrix.
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Ca: The First- and Second-Order Density Matrices

Let the wave function be GZ@X) where o =['§ + S, X S]_ Define

2 T:\IZ—+ S . We let é contain n = —I; + S orthogonal orbitals cPia

a #*
and N-n 2 m orthogonal orbitals ¢ib . Let S(ia;ib) = g‘g; 4)qu

n

(for SODS S(ia;jib) = sij , for alternate orbitals S(ia;jb) =2 %ij)'
We wish to determine the ¢ia and 4)jb such that the energy of the sys-

tem is a minimum.

Lert § = .;‘b,a(:) 4723(2)..,%36”) 41)6(/"“) 4>2,°(m+2) ¢MB(N) (Ca-1)
and X = A AR FN) Plwer) Blmrd) - BON) (Ca-2)
(we are here considering MS = §). Then by THM Ab-2 é ::;
G:§y= %ifo(xéﬂ/, We will consider G?é}/ in the _
following. <% = | X
ollowing. 4
m
of — o
Tt E <& ?%/H/Gf 1> (Cca-3)
1e energy, E = = = a-
¥ < EAIF X >

here H = Sk, + 4 57
where §/+24§?"X

The next steps are to evaluate the normalization integral and the first-
and second-order density matrices for G;?%.
The normalization integral:
. of of of aq ﬂ//w;’ /Z/>
From (ac-3) <{GpEX/GpPA>=¢ <EIGgel SP K4y
From p. Ba-&4 (7?'/&){{/7]’) = /—2414‘5)./(9'5)//90(
o
© <§/0ff/§>=§0//g/ <PlEld>

Due to the orthogonality among the a states and among the b states,
/
then either (Pia is in the i position of $ = #P or else it is in a

,
position > n:similarly either ¢_b is in the nii position of % or
1

* But see section Ce.
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else it is in a position £ n. If & takes no element £ n to a posi-
tion > n, then <P/#IP># 0 only for #-& . If & takes one element,
say i, from a position $m to a position >n, then il must take omne
element say j from a position >n to a position < nj <PlI#IPP> # 0
only for ¢ = (i,j). If ¢ takes two elements, i and j, from posi-
tions < n to positions >mn; then it must take two elements, say p

and q, from positions > n to positions < n; CFlelP>+ 0 only for

¥ = (1,p)(§,9); G, E,p)(G,9);5(p,a)(1,p)(§,9); and

(1,1, ), G, = (L,9(,p). If & takes r elements

(pl, pz, e pr) from positions <n to positions > n, then it must
take r elements (say, SRR PR qr) from positions > n to positions
En; <PlPF> + 0 only if &= 273, ¥  where

Z; = (pl,ql)(pz, q2) ...(pr, qr) and 2; is any permutation of
?pl, Pos wees prg and ‘Z’b is any permutation of §q1, Qys +ees qr§ (the
choice of the spccific sct of r disjoint transpositions for zr is ar-
bitrary, the permutations 27 and ?L take 2} through the (r!)2 dif-
ferent permutations for whici <$/&$> # 0). Now we evaluate
Uff‘&’a?{,fh . From (Aa-1), U/A & :5/4 fz)g and Uf"fe = 5/4 fz/b :
thus, Uppa pa,  ° Eég I;b (/0,/&_ , but from appendix H*

Uff2?::(éb' Thus,

m
o o
I®>= .
&} PlopyIe> 5{”)70% - f:;%f [?’b ﬂ,a#;’b o’*él }‘f»,e "f},b‘#}ea Ypa)
&< fas
But the integral fa{:tors into two integrals, one of which is

<¢,g¢ﬁ3"' 4’70,3)?’3/‘#;‘1, %’ibm%—b>= S(ﬁf-?/ fé%-/a)b) X S(Pré’)'fég(r) 5)
The sum Z E times the above is recognized as the determinant of the
r- dlmenSLonal matrix S(p a; q b) which from (Aa-8) is written as

You must note that the proof in appendix H is incomplete.
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r! s(p, jga,b)-'-s(;ﬂka;;,e) . Thus,

r

& &) ol Ca-4
ElGpier= é 7 2 [0, Straipt)- s(paygb)|* (Ca-4)

PV@!- [l

x[O,, Stpb; pd) - b ed) |

A standard order of the 1 and of the 4y is presumed to have been de-
fined. Since S(ia;jb) = S* (jbj;ia) each term in the sum of Ca-4 is
real and positive. The Pr is an abbreviation for the sum of the Py
from 1 to n such that p,l(p2< e < pr.

The first-order density matrix: From section 8b

P12 N (G B0 BT (12 = § Nl 17> 50, 2) § & "9 )

Let gcf“oﬁ,f&!y&’) £ ; %j(/)c%/,) Df" (Ca-5)

where k], is the ith state in % ; I shall often omit the k. Using the

same reasoning as in derfving the normalization integral

ng (C?) S Z y s tpa: g S(»,u,a,gkh)]
= (V) e 3
L£P <ol stgeinar sy pal]

(Ca-6)

I will always write m as the upper limit of r, the limit is set by the

smaller of the maximum number of elements in Pr and Qr. In the case of
ia . . ; . .
Dia this number is the smaller of m and n-1 since i ¢:Pr. For [393 5

4#4, LET = zgzvbz;_,z, woepE 2 = (43, 2k) Awo %, =043, 43)

A3 ~ b zb 4
PE RN ec? Ty g3 B ga Ty %
<4 b A3 <3 o <43

(Ca-7)

D§i Z ;’M)}Z E’mg;})@,, S//Pu? Fib) 7[0,, SKfé 7). 7
P@Y

/EP»—
2¢R
where the -1 1s due to E = -1 and (ia, ja) transposes ia and ja. For
2
D?i , E=H% 4% where €= (ia, jb)
A3
L G o9b &Y b
9b A3 4d 03
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Thus,
Ae'l > H(hbl)' J b'-(&)s ,b‘ﬁg).,.
O™ 001 %,[ Swsro-qlo Swesin e (Ca-8)
44F%
1€ @

where the GWJ occurs above because of the r +1 transpositions between
sets a and b. Equations Ca-3, 6, 7, 8 determine the first-order den-

. . ; i, .
sity matrix. Note that Dj is Hermitian.

The second-order density matrix: From section Bb

7Ch2;1,7) 2 New-0§ep 1K) (G,fﬂr)a«, )(do)
=/“<;f/w,f/¢/>2 402,5)S & 00,/_% /o&/r,; )

gy@//fﬁ%) Z Usﬁg@ (x7¢/3)D 2,8

The same approach as for the first-order density matrices is
used. ( 2 is shown below the D, in some cases). Indices are equal

only if the same letter is used (i.e., 1 # j # k # t).

. m 2z r
prsde | S (0 5 1o} scpa;pe- |

tode v (V) Ra

43R
M
. ] o "7
pie:Ia 2 e E Lo, Stajge-J[a) Sqpeind-]
ia,ta P &
4#%41
t<F

m

ia,ja _ Gy 2 éa)m:rsw 5/, 8- ey 729) -
il - B G e Seepedlan g

LALP,
/’Ja GP}-
[ . l-]
s | ! . .
- 2 e 14 Stpesger- 2ol Fagorsigina- 1
=0 (£
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£

. Jod ™7
D;a,_é}a; - H[m)lz[/@g/g)@, S/f, 376 ][0,, S(b;43) (7 b;49) J
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87
m 7 ot 2
ia,kb (r1)
O, Spape) -
ia,kb Z; )%k 3 #iéiie) |
«¢P
%eQ
1a kb 2 (}«/) O,,[/US(/ﬂQ,‘f.bJ:" }2
kb la (”‘f} P"Q"
<€P
#ec®
o b |
Dk Z(” Z[f%ab)@/ Stnaperdlal stgyra -]
A¢p
#e®
PEQ

4#?)*

2E@r

€6,
where we used Z2=&&&4H % and &= (jb,kb)
A3 b b

4 _,_?:f__) ‘ %7, e % e

76 b 02 T2 g > 43
Al A3 A 43 “d

biLasi

. ”
piaskb _ = EKVHWZ [a, nga,stffa gb)ee

ja,tb 22 () RG g
3 #P Job Seganrsie pd ]
2,1 EQ
where we used C=2%%% 7
A3 2b 2b <t 429
74 & 49 B 43 Gk, 43 K A6
&l Ad Ad wd b
b ‘b Fo) £b ard

L iy S )

th,ja
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<, 24 Q)

L7

Jal" Sapasipe pa ]

Ca-5
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<S5y ,}S. S5, 45 S, 45,
Note that [) n¥de (D 531 * oy = DﬁSZI and
/653);(54_ Al)?SZ 431&53
/’SIJ 95, 35/"/5/ . ) . .
=T ; using these relations all other D are obtained
RSy ASy 45, ¢,

from the above ones.

Using the preceding work

Nz 4 A
6 Vi ! 4 ’g’
({ff’?’/"”ﬁ’fﬂ? == <@l >0 +3 55 <%4191% 42 D, . (Ca-9)
O <N gz 172 g1 Y A ’
where the i, j, k, t denote the position of the state in éﬁ . But,
Dia,ga = —Diaﬁja ; so, regardless of what we define the, so far un-
defined, Di?éia to be, then Di?éia = —Di?éia Also,
<?é/j/ﬁ¢x>r{f¢/?/ﬁ%> ; thus, we can write
N N
G, 2’ H/ §7> Y / A,
Sy =2 hig>Dy+ 5 & <rplg x> D@j (Ca-10)
/"(7(/1%;/0 4 4=t 4,877/ ”

In the next section the density matrices derived here will be
utilized in solving for the best DODS G??K@qﬁmoximation to the ground

state of an N-electron molecule.
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Cb: The GF Equations
<P IH Gy B2

? /% 13>

constraint that the n CPia remain orthonormal and the m (#ib remain

We wish to minimize the energy E = with the

orthonormal. Thus, $1= 0 where¥

TRty [B>-ESCE G413 >—%EM S5 <Balta>+ (Cb-1)
'4%/63 <<l’,b}<;%b>]

Consider $<@/(H-£) %y |P> =P IH-E) ///J > +FH-E |5F >
= <s§7m—f)0/,/sf>+<$f/m-ej%/§>

hence,it is real. Thus $ of the other term must be real since $I=0.

Consider the variation of ¢,

ia
m
d
S (ormER TERM) = %[é;; CREPPLY (%3152‘;07):( + €, S<L5 12>
#« a x*
Since this is rea, by taking the complex conjugate we obtain 6’9: é‘ai s

. b -
i.e., € Yo € are Hermitian. Take some unitary transformation of the

4 7 /, 14 4
b, eg., b= Sij <Pja then §=§]C’Z§(ng) , where P=F P

ia ia
siso, BF- = (5%E) = 5 b (BE). But, <F|2d><S, .
d)
and <§_5/2§ §>, 5623 (s:ane the unitary transformation preserves
g ;

the orthonormality of the 471). Thus,

=

% (4 ?3—/,7 5?’ )€ (Cb-2)

Moreover, Oer%-: Ufftorf§=fé’0"o’§ if ¢ involves only elements

/

€n (or >mn); so, Orfész (§ s f,g ) Orf§ .  Hence,
I H-EVGp|$>= < 8| (H-E)|OpE > =
= <OP{§ /(;/—g)lorff) §(? f % 1:

-] P
Recall that fi‘b Ef’:{ = by, EQA, - g ‘, 5?2’ , where & =232 ;
c c - , .

of
The &, a constant, is used to simplify later formulae
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Therefore, < §[(H-E) 0 18>~ < P|(u-E) off@'}, Thus

led ~ e d a P ,
E o S S
= { $J(H-E) §> ﬂ?/ 4%_/ 2p 47 €43 (‘#}:/9;@);;/ 69 {ﬁb/‘%b>

Hence, the transformed equation is the same as the original except that

a a

€ .. is replaced b ST Since &€ 1is Hermitian and §
ij ! Y £ —fo?Z—/ WL 7°o’

b

is unitary, an s% exists which diagonalizes 6 . Similarly for < .

/
In the following we use the <Pi defined by these transformations, thus

N
T - 9“<47/m-£)oﬁ/§> —4% €,.<¢ 1%, > (Cb-3)

¥
Using the same analysis as on p. Bd-2, we see that 4}& and ﬁ can be

. . ¥ ; .
varied independently; we vary 4)5} . We are now interested in the

coefficient of cff;; in I.
S| 0/{/@) (ka) -[sum of terms in 9(_@ |@) involving ka]

1")
= é % 1/ S/ﬁé’;ﬁb) "'} . Now relax the restriction that the

2. be order(_d (i.e., PL < Py< - <pr); as a consequence we must divide
i

!

by r.. Let p, = k and multiply by r. Exzpand the determinant
1 ply by p

a4
ri o, Sfﬁgj—ﬁé)s%&;ﬁé)m]:?i f? Sﬁea;é;mg,)s/ﬁ;jﬁmé)m =
+
= =

W=t #eS, , Vi) Sy G b sms ’f ?//uz’a)“ =
= (0! é L 5/13:,-%)17@@*@% S/ﬁ-’;(z W f

g S0 )
In Lhe second equation we set %= (4&)#’ | where & involves

only elements 2 to r, Let

&< F 10y |$ > (82) = & S8a; ) FIEI )

where
M

Ly
e st s 1T Oy Stpasnbllx
P (ka < (R f;b ﬂé) t ﬁJﬁ
F(ka;a) g(}-) P//")Q’r) £, )

.
7
% 5 & "[0/;[/ Stas; #2)S(E Y
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P(r) denotes the unordered set which is ordered in P , and P'{(r) has
Py deleted. Similarly, (ka) —ZS(@J ,aé)F (Ba;~) if 1 # k,
where (for i # k)

. VA
12 asw) 25 A % (,sab)o, Sipapb- |
F a (ka;e) = vzl (M) /’%Wr) {ul[f ! & f J

il ;
“ &g [0” 6»%:7)50?5 #d) j
. M
Continuing in the same manner let D:JL(k__.E‘..) =§ S@gf’“b)/c;{/,gg)—,a)
=y
if i # ka.
. ~” ] [l‘._J
ira PN P
Falai) 2= 2 o 2 tf Q?fé w390, Srpdimb)
ja s (M)P?r)(p() ;,4)[ 2300, iy I
;:;p X[OH 5(4?/6,567)5/6!15}- ﬂa)”_J
/‘léQ

o
Flg(ka;ﬂ) Z (kw)' Z E[f,x() [{ﬁb;,ab)d,, S/ﬂijﬁb)'—'jx

H P7’),¢/*) ‘ ey
4¢P xJa" SnuenSh ea) sk Ad) [
1€
s E€G
. i,i . . i,j & 4y
Defining Fs,t in a similar way we obtain Ds,t (ka) =2’5/4‘7;y4,)5’x/43}—ﬂ)

~A =/

if 1,3 # ka . Thus, the coefficient of 5%):7 in ¢ is (after multiply-
ing by %q’g;)

N
51088 S =<5y halbl#) 2057 4 = <544, 151, > ]

+ §<5 ﬁ,g[g AT ACY ) 5> <¢¢/gl¢> >, sy ) +

"19,41»
o »3 4, 9 483

- . 3 —
EF/»@J,A()] ~ €4y <g<&;}¢};>g -O

(Cb-4)

#

The differential-integral equation which is the coefficient of 5‘?}@3

¥

must be equal to zero since the Skaa are linearly independent. This

equation is analogous to the Hartree-Fock equation which results from

using a Slater determinant wave function. I will call the coefficient
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of S¢{a in Cb-4 the GF equation for ¢k1 since it results from using
- <!

Ggﬁas the wave function. We will write the GF equation as
3
H gy > Egp |4,, ) (Cb-5)
h H(ka) —szth +5<4’) 14, ’9/O
where® a 2,24 % )L) ﬁg

[;<¢/h;¢ > Ftha ) +£<¢ b1t Yk a0 +

1,1

4#‘4& 49;{,@3
-EFgz;m] B, MZ
and Pka 3 changes ¢k“ into 43. The biggest trouble with the GF equa-
s o

tions is that they are a set of coupled integral-partial differential
equations, and, thus, are essentially impossible to solve. 1In order to
get a set of equations which can be solved, we expand each dﬁ in terms
of a fixed set of M>n basis functions, 2}: Then in the variation of
¢i the coefficients of the expansion are varied; ROOTHAAN (1951) de-
scribed this approach for the SODS closed-shell approximation of mole-
cules. If the basis set 'Xi were complete, then the exact solution of
Cb-5 would be obtained. The basis sets will be finite, so some approxi-

mation is involved, the limit on the number of basis functions is set by

d b
&) o 3 royq = C
the computers available. Let ¢ia igcflq; and ¢ /a %;_ Let
<>
CALIE LR P ]<%77/§/7r7:\>§3/v;o—,4,'(Z“/’Yy>: ez (Cb-6)
Thus, all of the integrals are evaluated once. From Cbh-4
%3 254
Sy O 2 Yl e O (-1

“"AZ Suz m[ga/h/p/:‘(g; M)+12 (4913140 g(é%-ﬂ)—EF/,ea,—w:(z
=t

8 d
,@g é;wc;a@

* The E appearing here is just (@/HO,; /§>/<§/ofo,/§> and is evalua-
ted for the guessed wave function just llke all the other terms in H(ka).
E is not used as a Lagrange multiplier in the SODS HF equations since in
that case the constraint that the orbitals be orthonormal is sufficient
to guarantee that the normalization of the N-~electron wave function be
unchanged.



write Cb-7 as

d 3 g
H/?/ (‘g}Cp@ = Spp 2wz Can (Cb-8)

T call this equation the GFR equation since the Roothaan approach is

used to solve for the GF orbitals (Pi . The method of solving Cb-8 is

. e a a . . a
to guess the coefficients C,/‘;é)then evaluate H/,p)then diagonalize H/.V
using the Sup metric (i.e., solve IH/,,,— 6/5.,,,[= 0). The Ci& which are

. a a .

solutions of Cb-8 are used to re-evaluate H,, 3 then the new Hyp is
diagonalized etc.. The same is done for Cb to find the C#ib' The only
problem left is that from Cb-7 it would appear that H/y(a) depends on
k; we must now show that this is not the case.

Let

prazu> 25 (Z,')E E, olizh a0, S/Mﬁw"]
Zrifim <[of "stpe w0 Stpbina) ]

MEQR
= 0 since the second determinant has the same column twice
D

Then F(a;« ) = F(ka;«) + f(ka;« ) is independent of k. Thus,
M A I3 , .
G I§>[ﬂ2&)=§5/42'/16)f‘7¢7;ﬂ) . Also, f'(ka; u) and £r J(ka;,«)
f/ — A2 4 J S,t .
are defined similarly and are zero for the same reason. Thus, F;ﬁ(ka;u),

F;‘i(ka;ﬂ ), and F(ka;# ) in Cb-4 and Cb-5 can be replaced with

Fl,(a'M) FlJ(a',«) and Fa;« ). Let

1;2 2 ES&I& &2)/:’ ﬁ@«? ) , where

A=

gk
a;f?;” %[(g,b,ﬂb)a,, Lnna-]

Jea ”‘ 03

Ba; ) 5 -
faaf EARE (J%{r) I SRR DR
7

%;;g x[en b,,ub)O,,[’ 5‘@5;7@3)'“]
ey

Then ggﬁ,b ,@3)/’0"‘7/’,@(7) w)= 0 since this corresponds to the det S(ib;ja)
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ka ka o~ @
in Dja having the ka column twice; thus, Dja = :E Sﬂbb}@g)FT (3 ;a)
A=y

, a k
where F&,l (a;v) 2 b‘l.(a(ka;v) - fl,m (kaj;v) . The other Dl.<a and D, 8,1
ja ja ja ]

3

with j,s#ka are treated similarly. First consider,

23
32 Sy nlHa>D,7 = <%, [hldy,> Dy ;g’;s S Ih1Gy> S Skl (a )
- %3
<Sholnl %> [ Dy - = Stk a2 B g + S, kb >SSy x;-:)@afa ar)

But
25/”")‘*5’) Fas (@)= ?5 z 2 /0«/[[75/%9',7’1“"’/2*
(}R'rmm ’
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BrdP
P
J
= ng

Similarly, for the others we obtain

%3, 4 3¢ _ Y
Dpos = = S@b,»@a)@aj(a,w) =Dy (Cb-9)
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Also,
pka, jb b ) 000 — S+ (6, 4b) G, 5@” g0 J*
tb i MZS//V /;b ka(a ) = g ,,Z ) %@/{) g ]+
4¢P [0/ Sk 7
##‘4’
mmmo or:
y.»o (1) e%n a nga g Srzige -4 7o
RBEP
ITEQ
The second term = -Ly ( )2 [C), 5/29)35)5/70‘7)?6) ]
(LeT F=> v-1) awizﬁgm” x[a, SQ@kﬂ&?Hﬁ@”J
44 SO

B
= +§ L 2 )_'(:/Lgb)(),, s/f, 3 pibder ][ou 5(6% 73 ,,,]
k=i (H‘/) P(r) Qv
,GéP

7%

ka,jb & 4b jb .

I > - - a pad - Y| Y
Thus, Dtb,ka }/E Sﬁvb/ﬂza)/;_b Jba( ) Dtb Moreover, for the
other cases where jb or tb is replaced by a Lerm with a, this result

_ . . ka, j ka, j
follows immediately from Cb-9 since D S s T Hence,

ta,ka ka,t

ka, j 8, j .
D - - : = : =—D . der th 2fficient
t,ka é/v— S&rb,/%a)/#))?g(c?/v) Now consider the coefficien

ka

. . 5 J . -
of <§¢‘e3’4}4b> in Cb-4. Since FJ %(kazu) = 0 and T s .t (kaju) =

then as before, we define f; (kaju) (which is zero) and Fi (a;u) 2

= Fl (ka;u) + (kaj;u). Thus, Cb-4 becomes
N e
8 <ty Inldy, > SKF| %é>+§ dﬁgiwwzﬁfé;ﬂe&)@gﬁw) +
+?§[<s¢ b 191%0% D8 - <5%,%,151% 4, >D2 ] +
+Z  <5ha4)1914,% >§ Stirbi#) %W—H

+ 2“‘&3 b>[§ <4/h/9>/—; (7 ”"‘:%‘,\:A 319194 >F )% ")~ EF/JM)]E

= e <S%,) fag>
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The coelf of (34:92143(”9) :Ag[\/’(/h/@g)/i;ﬂe‘]fﬂj+2_<"/h/3>/;4ﬂ%2},u)+
FEZ

+ 2 <1191 3 # > F :
e 4;,2«/45,4);,%@3/3)«70/;‘ By - EF R )]

0 F483

Here I‘ (ka u) = 0 and I‘;’i P 0 as before., We let

2

FJi_Z(ka;u) :2'5&,5}_@&)}:—/&(/%; A A) , where
Ar
taa. & b O S/ bl fx
F a( asu,v) (M}P/,.) t/fﬂ) I?M)[(fb “b) /II g2 ﬁ J
1P’ x[Cpib,ab) S/zb A |
ke [Gererar S
A, o Q)
Next define IL\ (ka u,v) which is zero, and I"Ja(d;u,v). Do the same
for the other FJ and F ’g . Thus, Cb-4 becomes
9<59,. ] H h/¢4a>9<§l%/@>+ S8, 4, 131%, 4% ~% $4,> D2 + (Cb-10)

+ é 5 [<.s s ;t,lcﬁ >s/”z,-,w>,c g;w)+2<s ;gm PStack; éa)F /a /u)]+

3/4//

+ §<Sc§g! >S/ve!é9)[§<4/h/a>F /J/oldf)-f-i&glgm»ol-’ "I 2y nr) +

Rl 49 49,0,4=1

-EF/3;N,'V)]-§(: é:@)g.<59§@g %3

Hence, (see Cb-8)

S %
Ao ;(L/m,@<§/0/l§>+§ (Gusioa = ;Azz)a,%/ C’;; el *
1:;[ A s‘ygéc:la v /‘7""')""
,(% Jue. Ag Q——,, g(%(’\gcgz — F (a Af)j +

s Sua S;—yécj\ﬂ S_N[é'o/h/g)f-'(,; 4 45) +é-é<401714}>/: /a &, ar) +

- £ FC7 Mf)jg
And we see that Hﬁ"y is, indeed, independent of k. Thus, then ¢

(Cb-11)

+

ia
- - , P
are eigenfunctions of H/W and the m CPib are eigenfunctions of H/“y

(H/”, is obtained from Cb-11 by letting a<>b and the limits on v and
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u become 1 to n). %M;, is the CF Hamiltonian and the 4&1 are the

GF orbitals.

Notice that by using the Roothaan procedure we avoid the coup-
ling of equations present in Cb-5 because of exchange and nonorthogon-
ality. Since H is Hermitian and independent of k, then the ¢ia mus t

b .
be orthogonal. When we diagonalize 1S and %uz/ we get two independent

/d'V

sets of M eigenvectors; we select n from the first set and m from the
second set for the 413 and 4Eb to use for the next iteration. The
ones selected must be those which give the lowest value of E when eval-
uated for the new ¢ia and ¢ib' It probably will result that the ¢ia
selected will usually be those with the lowest éii as apparently¥® occurs

in the SODS HF approach,

e
Eiy

I should mention that although everyone takes it for granted in the
usual SODS HFR approach (which is only applicable for closed shell
systems, let N = 2n) that the n states of lowest &£gg are the occupied
ones (e.g., ROOTHAAN (1951) p. 77), I believe that that is not neces-
sarily true. From Be-1 and Be-2 the energy, E', of the SODS HF state
is (for a closed shell system)

”m
"M ”~m l ‘-—'
E=2] S -22 (Ty-try)] - 2[%0/"’0*:5/% #rig)]

Thus, the criterion for choosing the occupied states among the eigen-
states of the HFR Hamiltonian should be: The n states of lowest

e, = [<4uu4>+- EE(I% fkq)j are occupied. We see then that if 1 = n
is one of the n states of lowest &, and if p is some state with high-
er Epp then e, >e_ and state p is occupied and state n is empty if

~
-21—'7%(@?9“7,"9’{’%‘#;”/”?) >éﬂ°€/\4m
This is true only when
p is more favorable then n as regards the one-electron operator but
less favorable as regards the electron-electron repulsion. For those
those who would try to use the Virial theorem to dispute the above,

remember that the electron-nucleus interactions are included in h and
the nucleus-nucleus interactions have been omitted.
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Cc: The Significance of the GF Orbitals

We now have a method of solving for the energy and the wave func-
tion of the molecular ground state (and the lowest state of each spin)
without the restriction (SODS) of doubly-occupicd orbitals and without
the restriction (BF0O) that the orbitals be basis functions of the irre-
ducible representations of the total spatial symmetry group. The relax-
ation of the SODS restriction should yield more accurate energies and
many-electron wave functions. The BFO restriction* forces Hartree-Fock
molecular orbitals to be spread out through the entire molecular or
solid#*., The relaxation of the BFO restriction allows the variationally
obtained orbitals (the GF orbitals) a great deal more freedom to vary in
whichever manner minimizes the total energy; thus, again the many-
electron wave function is improved and, furthermore, the GF orbitals --
which do not vary under the very constraining BFO restriction =-- have
very much more opportunity to become physically significant than do the
Hartree-Fock orbitals,

There has been a prevalent feeling that the Hartree-Fock orbitals
lack chemical significance and that chemically significant orbitals
should be rather localized. The result is that a number of transforma-
tions of the Hartree-Fock orbitals into more localized orbitals under the
restriction that the many-electron wave function be invariant have been
proposed (e.g., WANNIER (1937), LENNARD-JONES (1949), DAUDEL (1955), and

EDMISTON & RUEDENBERG (1963); others are listed in the last reference),

- e s e e e e e ma m we e e e sh am W e e e o mm e e e e m we e e e e we e mm em e

* ROOTHAAN (1951, p.80) has shown that for a nondegenerate molecular
state with spin equal to zero the SODS restriction is sufficient to imply
that the Hartree-Fock orbitals be BFOs. Dr. R. M. Pitzer pointed out
this proof to me.

** The electron density and pair density are, of course, spread out
through the molecule but we are here discussing the one-electron states
from which the many-electron wave function is to be constructed,
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" All of these attempts have in common the disadvantage that the Hartree-
Fock lagrange-multiplier matrix is nondiagonal (see equation Bd-14) and
thus, the localized orbitals are not eigenfunctions of some one-electron
Hamiltonian. The Hartree-Fock orbitals are eigenfunctions of a one-
electron Hamiltonian and can each be interpreted as a state in the aver-
age electrostatic field due to the other electrons, but the BFO restric-

tion keeps the Hartree-Fock orbitals from being chemically significant.

The GF orbitals are eigenfunctions of a one-electron Hamiltonian and can

each be interpreted as a state in the average electrostatic field due to

the other electrons;‘ however, the GF orbitals are not required to be

spread over the molecule and, thus, are free to become localized if such

behavior would decrease the total molecular energy. Since in the GF
method all artificial restrictions(SODS & BFO) have been removed except
the one that no interelectron coordinates appear, then the GF orbitals

are the best possible ones from which to form the many-electron wave

function, and if any chemically significant interpretation of the many-
electron wave function in terms of one-electron states exists, then these
one-electron states are the GF orbitals®*., Thus, if some common intuitive
concepts of bonding are correct then we might expect some GF orbitals to
be mainly localized near two (or a few) adjacent nuclei and perhaps others
mainly localized near one nucleus. Remember that the total energy is min-

imized; the kinetic terms must prevent the orbitals from becoming com-

* Just as it is possible that Hartree-Fock solutions might predict
equilibrium molecular structures in spite of the high correlation energy,
it is not impossible that some method of localizing the Hartree-Fock
molecular orbitals might approximate the GF orbitals; if so, the useful-
ness of the Hartree-Fock method would be greatly enhanced (and the method
of localization might provide some physical insight).
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pletely localized; thus, we must expect at least small subsidiary max-
ima near several nuclei. Since the 4}3 and ¢3b orbitals are (allowed
to be) nonorthogonal, we might expect the bonding orbitals to pair to-
gether with perhaps some sort of extremal value for S(ia;jb).

It should be emphasized that the lack of progress in understand-
ing the structures of molecules and solids is partly due to the lack of
a physical picture of the electron states of the system which corres-
ponds adequately with reality. The importance of the physical picture
has been stressed by RUEDENBERG (1962) and LOWDIN (1955a). With the GF
method we can calculate the ground states for each spin and for all
values of interatomic distance and all arrangements of the nuclei. Recall
that the HF method causes large correlation errors at very large dis-
tances). Using the GF method one can, thus, find the stable structure
and obtain information needed for studying the effect of nuclei motions.
We can calculate the GF orbitals for various nuclear configurations and
study the characteristics of the GF orbitals for the ground state.

For a given N (number of electrons) and a given S (total spin)
there is just one set of GFR equations. For the various compounds with
the same total number of electrons and the same total spin we merely
substitute different values for <Ku/h/¥ppand 4.1, I3/ X%y > .

My reasoning for expecting that the GF orbitals are localized:

Consider first the situation where there are no interactions be-
tween the electrons. The Hamiltonian H = 2§:hi is separable so the
eigenfunction can be written as a product of functions each of which de-

pends on a different set of one-electron variables. Thus, # &= £ ¢,

§: (#f[') %(2)"’ ‘PN(N) J hé = € ¢, , E = ;EA . Since H is invariant
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under permutations, we can write HG??%“& EG:?X just as before. The
point is that since the ¢i are all eigenfunctions of the Hermitian
operator h, then they can be taken as orthonormal. Therefore, the non-
orthogonality of the orbitals in the many-electron problem is due to the
interactions of the electrons. Now consider the case where a portion of
the electron interactions has been included (e.g., by the HF or GF
method); the remaining perturbation represents the (average) difference
between the instantaneous potential and the average potential due to

all of the HF or GF orbitals; this perturbation we call the fluctuation
potential. Since the Coulomb interaction is long range, then in order

to minimize the average fluctuation potential (i.e., minimize the energy)
the orbitals should be localized® (since then for large distances the
average potential due to an electrén in the orbital j is essentially the
same as the potential due to an electrom at any of the positions for
which ¢3 is large and thus, the fluctuation is zero). Hence, the con-
tributions to the fluctuation error from a particular orbital would be
due only to the interactions of this orbital with a few others. 1In the
process of minimizing the energy the orbitals would be localized and

then varied to minimize the interactions with even the neighboring orbi-
tals. Bear in mind that through all this varying of orbitals to minimize
electron interaction the changes have to be such as to not increase the
kinetic and electron-nuclear terms excessively (the total energy is mini-
mized). It should be pointed out in the above reasoning that we are not
really speaking of electrons in specific orbitals, but rather the discus-

* In the limit of only electron-electron interactions (no kinetic or
electrgn—nuclear term) we would expect the electroms to be uniformly dis-
tributed and kept at maximum distances from each other, i.e., localized.
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sion presupposes a partition of the perturbation interaction terms in
such a way that the contributions can be interpreted as if the electrons
were in fact in specific orbitals (in section Be the term (m -k -k )

pa P4 9P
could be interpreted as the fluctuation interaction between an electron
in orbital p and an electron in orbital q). Such a partition should in-
volve only pairs of electrons; because of nonorthogonality of the GF
orbitals each term involves many orbitals and thus, I have not been able
to convincingly show that the above interpretation is really valid. Al-
though intuitively reasonable, the conjecture concerning the localization
properties of the GF functions must remain a conjecture until some actual
calculations are performed.

It would seem that the above reasoning follows in the same way for
the case of an attractive-short-range interaction of particles. Thus,
if it were valid to neglect spin interactions, it would seem that the
many-nucleon wave function should be built out of localized orbitals.
The use of the localized orbitalstwould allow much more advantage to be
taken of the attractive nuclear forces than, say, orbitals which are
eigenfunctions of the total symmetry group (i.e., ¥? for the finite nu-
clei, eik‘r for infinite nuclear matter).

It should be emphasized that the use of GF orbitals is primarily
to try to get a wave function which is sufficiently accurate to describe
the system of particles but sufficiently simple to allow physical inter-
pretation. It is not necessary that such a wave function should exist;
however, the success of the chemical concepts of bonding indicate that

such a wave function must exist.
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Cd: The Defect in the GF Method

Now that we are aware of the genuine promise of important results
which the GF method holds out, we must go back to a point which was com-
pletely glossed over at the very beginning of the development. Although,
it is true that for @ and A as in Ca-1 and Ca-2, we obtain
Gf@}’ = Singgﬁﬂ/ , this is not true if any other permutation of the

-4 /s
states in X is used. Since these new Gi§5Y are linearly independent
of G?g?ﬂ’ , then we should have considered the Hamiltonian matrix over
this complete space and diagonalized it. Then we might have tried all
possible sets of<£gaﬂd %h’and chosen the one that results in the lowest
energy; this is a horribly complicated variational problem since the
Hamiltonian matrix should be kept diagonal throughout the variation.
An alternate and simpler procedure would be to consider each different
Gf%ﬂ’/ separately and vary the fa and (éb in order to minimize the
energy. Those Ggéﬁkﬂ gilving the lowest energies would be examined and
a compromise set of <£a and ?b chosen and a limited configuration
interaction performed. This too is much too complicated. There are
other possible schemes, none of which are very inviting.

Practically all discussions of DODS (vide infra) have presupposed
that the total wave function is antisymmetric under transformations
among the céa and among the ¢, (I will call this the anti-anti case).
This requirement is sufficient to restrict the possible Gf}??’/to
just the G;g?ﬂ/ we have considered in the previous sections of C; so,
if such a requirement could be justified rigorously, then the founda-
tion for the GF method would be absolutely sound and rigorous.

All of the work on alternate orbitals by LGWDIN, de HEER, and
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PAUNCZ has presumed the anti-anti case. This assumption 1s explicitly
stated in one paper PAUNCZ etal (1962a). YOSHIZUMI and ITOH (1955)
actually considered the anti-anti case and one other case; the former
allowed an energy stabilization of 2.35 ev whereas the other allowed an
energy stabilization of only 0.3 ev). Yoshizumi and Itoh argue that the
reason for the stabilization of the anti-anti case is that the correla-
tion between the electrons in states of the same type (i.e., a or b) is
automatically included by the Pauli principle and that the correlation
between electrons in different types of states are taken into account by
the semi-localization of the alternate orbitals. LIEB and MATTIS (1962)
prove* the theorem that for a one-dimensional system of electrons the
lowest energy state of spin S has a lower energy than the lowest energy
state of spin §' if S<S'. This would be an important theorem except for
one thing -- throughout their entire analysis they assumed that every
state (or at least the lowest of a given spin) is of anti-anti type.
Their proof would be correct if, in fact, the anti-anti state always has
the lowest energy*¥*., WIGNER (1934) treated the correlation energy for a
many-electron system by using for the wave functions the product of a
determinant of orbitals for spin times the determinant of the orbitals
for spin, i.e., Wigner assumed the anti-anti case. The "unrestricted
HF" method (see p. C-3) also assumes the anti-anti case. In other words
in every case (with which I am familiar) where DODS is considered it is

implicitly or explicitly assumed that the anti-anti case prevails,

* But see section Db, the theorem and the proof are incorrect.

wtaat,

%% Which cannot be true for the one-dimensional case, see section Db.
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The G state for &= [mm] is antisymmetrical for interchanges of

e

£

the n ¢, orbitals and also for interchanges of the m ¢, orbitals;
ia ib

thus, the order of the subgroup of S, which transforms only antisymmetri-

N

cally related (and thus correlated) orbitals into each other is nim.

This is the maximum possible antisymmetricity for any state Gi of the

same spin, The next best state is S, = | 1 In
nb
2 In+2
for which the antisymmetricity is 3
m+m
(n-1)'(m-1)!. It is clear that the n-1
n-+1

states of higher antisymmetricity have

correlations automatically included

between more orbitals and thus, can be expected to achieve lower energies.
If the total wave function changes sign when two orbitals are transposed
then the electrons in these orbitals cannot be at the same éoint at the
same time; whereas, 1if this condition does not hold then there is a
finite possibility of their coinciding . Since the electron interaction
contains a positive singularity, such close distances between electrons
are highly unfavorable; the anti-anti state has (by a factor of at least
mm e.g., 9 for Benzene) the fewest possible close encounters by elec-
trons and thus, the variation can concentrate more on varying the orbitals
to minimize these few close encounters. On the other hand the non-anti-
anti cases must waste much of the flexibility in the varying orbitals

to try to make-up for the much larger number of close encounters. 1In
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this light it is quite easy to believe that the anti-anti state is

far superior to the others. Since we do make a variational calcula-
o — 7

tion, then even if the actual ground state uses some Gi§ﬂf different

from Gféif , we can vary the ¢i to get the best possible Gfiﬁwhich

the preceding arguments imply should be quite close to the actual

solution.

A real disadvantage to making variational calculations on
non-anti-anti states is that the proof that the Lagrange multiplier
matrix is diagonal (p. Ch-1, 2) only holds for Gftiﬂ' thus, the varia-
tional calculations are immensely more complicated than the GF equa-
tions. As mentioned on p. Bd-> one can show that for Slater determinant
wave functions with general spin orbitals, a transformation may be
taken on the spin orbitals which diagonalizes the Lagrange multiplier
matrix. However, such a wave function is not necessarily an eigen-
function of 82 and it is not clear to me that one can necessarily be
sure that the resulting spin orbitals can each be factored into either
¢id or ?15. Thus, it is not (proved to be) true that the Lagrange
multiplier matrix is diagonal for even the general case where the spin
orbitals are factored into an orbital times e or B ; thus, the first
sentence of this paragraph does not contradict the general proof of the

Lagrange multiplier matrix.
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Ce: Restrictions on the GF Orbitals Due to Spatial Symmetry

The total wave function must, besides satisfying Pauli's principle
and being an eigenfunction of SZ, be a basis function for an irreducible
representation of the spatial symmetry group. As an example of how this
may restrict the GF orbitals we consider the case of N = 2 electrons,
S = 0, and the total wave function is nondegenerate. The wave function
is G.¢ ¢4 and RGf¢é¢bx = CRGf4;¢bﬂ’, where ]CR] =1 . Take ¢ and ¢b to
be real and note that Gf¢5?bﬂ'= Gf¢b¢;q,° Define

(’V V-Z‘a-——s‘) (4)3 + C#b) and 2 a‘/’m (¢3 cpb)

where S =<{¢a )¢b) ; then %& and Vz are orthonormal. Thus,
~JIES v (745 lf‘“‘-s
=VTZ 9}! tVz ’é and ¢‘b = !—;——S- {‘J/ - 1_2__ %

Hence, G, ¢ ¢bﬂ (% )G ?’?’1’ (5 )G— ¥,#,4# . Define the functions

V3,W , «.. such that the set of all 9} is complete and orthonormal.
Expand R'f’ and R‘f’ as R ?’1 = ;Aufj and R ?’2=;§Aﬂ $, Therefore,

RG. ¢ ¢ 4 ff[(lﬂts)AM A, - (1-8)A, A29]G 9’.‘#’.7(-%
hi' s

1-S)
+ Sl as)a? - (1-5)a° :(G Y ¥26= [(’*5)6 Wy x- &= G/?/zf‘i?r]
T 2 2 4
The wvarious Gf Yl?éﬂ'are orthogonal and, hence, linearly independent;
thus, we may equate coefficients.
1 = = + -
From 1 ji>?2 1+8 Ali * ﬂl S A2i

From j>1>2 either all of the signs in the above equation are +

or all are -

From j>2, i =1 (l+S)A All = (1—S)A £ J1- 1+8 A215
thus, either all A.iJ 0 for j>2 or Jl+ A £y1- A

. . 2
From i = j = 1 (1-}-S)A11 - (1-S)A§1 = CR(1+S) thus, we cannot have the

second of the above choices and Aij =0 for j>2

* Dr. R. M. Pitzer suggested that this case be dome explicitly.
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- Similarly we obtain AZj =0 for j>2 .

The Ajy Ay By Byy

A 2 2 ‘
Ce-1: (1+S)All (1-S)A21 —CR(1+S)

must satisfy

2 _
Ce-2: (1+S)A12 - (1-S)A22 = CR(l—S)

Ce-3: (1+S)A11A12 = (1~S)A21A22
. 2 7 . 2 z 1
Ce-d: A |+ [Alzf =1 A+ A, =
Ce-5: A11A21 + A12A22 = 0
where Ce-4,5 are obtained from the requirement that <E%/:€‘/jg> = 5“..
AE
We let A,, = ) © ! , where & ,, is real and positive. We let C_ =1
1] 1] e R
i = X = ol = = (=] = +T
and find that <¥11 99 1 and 12 6¥21 0 and 11 0, and
922 0, £7 . Thus, Aj; = %1, A,, =% 1, and A, = A ,= 0. But
= 33 ==
Re= V2 A Y T VALY
= /S - -5
R ¢, VEE A -V AT
7 = + = +
Hence, either R =+ ¢  and Ry =+, (Ce-6)
= * = =+ -
or R¢, = * ?b and Rﬁb -‘#a (Ce-7)

We note that the ¢a function may transform into the ¢b function under

some symmetry transformations. For H, we would expect Ce-6 (with - signs)
to prevail for rotations about the axis and Ce-7 to prevail when the atoms
are interchanged by R. For He we would expect Ce-6 with plus signs to
prevail for all elements of SO(3). Thus, the GF orbitals would be symme-
tric with respect to the axis for the ground state of H2 and would be §
functions for the ground state of He (cf. LOWDIN (1955c), p.1517).
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Cf: The Alternate Orbital Method

Lowdin suggested a simple way to remove much of the correlation
error in the 7 electron M. O. of alternate systems (e.g., benzene). 1In
these systems there is a natural set of n excited states which can be
mixed with the n filled ( 7 electron) states (mixing each filled state
with one excited state and using different excited states for different
filled states) to split the doubly-occupicd orbitals. By using one mix-
ing parameter for all the states, a set of relatively simple equations
are obtained. Solutions have been carried out for C2H2 and C6H6 (Yoshi-~
zumi and Ttoh (1955), Ttoh and Yoshizumi (1955)) and for cyclic systems
of 2n atoms (where n is odd) (Pauncz et al(1962)). The general theory
is presented in Pauncz etal (1962a). The extension to the case where
different mixing parameters are used for different orbitals is con-
sidered by de HEER (1962). All the preceding studies have neglected
the inner shell electrons. All of the formulae of the preceding works
can be derived from GF theory by simply letting S(ia;jb) = A gij in the
D; and Dig of equation Ca-10 (or to allow different mixing parameters

we simply let S(ia;jb) = )A‘ia_). In all cases even if different para-

ia,ja

ia _ e s . _ ..
meters are used Dja =0 if i # j, Dka,ta = 0 unless ;i,J? = fk,t? y
ia,ja _ . , . ia,kb ia,kb .
= Q i = > = > = £ 4 .
Dka,tb if k =1 or j, Dia,tb 0 and Dtb,ia 0 if k # t;

If all A are equal we obtain (N must be equal to 2n for the al-

ternate orbital method)
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all other cases are zero.
From here one next evaluates the /> and(lgl) integrals in equation

Ca-10 then minimizes the energy with respect to A . The limits shown
at the right for each quantity are for A—>1, i.e., for the SODS case,

and in fact when the limiting quantities are placed in Ca-10 the result



is the HF energy (the norm of the wave function is n + 1).

LOWDIN (1962b, p.270) states that if DODS are used, then for an
S = 0 state a transformation on the ¢2a and another on the %ib can be
found for which S(ia;jb) =/&§;3 , and therefore, it is not necessary to
go beyond the general alternate orbital scheme. It should be realized
that the transformation to S(ia;jb) =A,3q introduces off-diagonal
elements in the Lagrange multiplier matrix which would make the GF
equations unsolvable and also would remove the wonderful properties
promised for the ¢ia in section Cb. Thus, one is left with no way to
solve the energy problem since the orbitals are not known and the matrix
elements can't be evaluated.

By its nature the alternate orbital method is wedded to S50DS-BFO
type molecular orbitals; so it is possible that the orbitals obtained
will never be significantly more useful than the SODS-BFO M. 0. The

energies obtained should be more accurate ,of course.
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Section D

Spin Considerations

Introduction

In all previous discussions the spins have been completely summed
over in all matrix elements since only operators independent of spin have
been used. There are electron systems with non-zero spin density and/or
spin pair-density (e.g., for crystals, antiferromagnets such as MnF2 and
ferromagnets such as CrO2 and for molecules, 02). Thus, measurements
depending on these spin densities and pair-densities (e.g., neutron dif-
fraction for crystals) yield information about the electron system com-
plementary to that obtained from measurements not involving spin. The
interactions resulting in the various magnetic structures are no doubt
much the same ones as are involved in chemical bonding so the explana-
tion of one awaits the elucidation of the other. So, the variety of new
information involving spin measurements should be helpful in developing
the theory of the chemical bond., In section Da the first- and second-
order density matrices are obtained; these would be used in obtaining
the expectation values for operators involving spin. In section Db a
thcorem concerning the lowest energy state among the states of different

spin for a one-dimensional system is discussed.
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Da: First- and Second-Order Density Matrices With Unsummed Spin
Before, we have always summed over the spin when evaluating
matrix elements. Now we will find the first- and second-order density

matrices, ¥ and 7% (which have unsummed spins), for cf§2’

é—f@’( - \/;Zor<§/lgyf/§)<ﬂ’/wfd;/7f) G/§%

S(Gpanfic &1 @) ZZ g;.{ %{ (S8 0ng? ) Sz N e ¥ et4)
Stig Nty 104)) =G 22 U op Upop (o 27 (241)

= £ %l 7273 (120) S X2 k) )

But, 57?’///7/44;(/> = 0 unless & ”rezs,, where €3 involves
!
only elements € n
=1 sF ¢vFez%0 and €7} only elements
>n
For convenience let M = S in the following

Sy wsp Hedey) (B E-51/07)Z Ui Uspe e V55
Sond G2 H)) = o = 2% Uper Gop e (170 (E2"E (#},)
X £ NS(GBNNGpEX) (/Yo )

SEDIED s S [ =S Gpth e Uyt

/R A A /
x S8 %3) (1, 5SS E# 5{4«{7(”)
But, Upgp = fs?’f _[;, U,.{g« from appendix I.

ThU.S, g f?f UFZ‘ZI-I Pp’ﬁ—/ = f,r Uﬁ/aaﬁ—-/ / )
= (§Fs)i(g-s)! s (L ain) SEeE (e,
where ¥ is the normalized 2, ()= [Wel(i’) /‘,’{(’,/’J-fﬁ?’/)ﬁ’/'/lf}(///’)])

g? %ﬂg*’ %O’ e, (W] SE&EPA ¥en)

2

where A 0= = =
TSR 1E> 0z Lz
For ,g(/) the sum over ¥ is for 2@)>m. /ﬁ,(/)*ﬁe(//" rFo) since

,? U/#z’ %}(2’ = 5;—2‘
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Recall that eai(q:/V/

In the simple cases (N = 3,4) which I have tried,the sums simplify some-
what, but I have not found a general way to simplify these equations.
Once the @ is known ¥ and /7% can be evaluated to predict such things
as the Fermi contact tevrm of NMR, the chemical isomeric shift of
Mossbauer studies, and the elastic spin scattering of neutrons. Thus,
it is by careful study of the ¥ and /° that we must hope to try to

extract the reasons for the stability of the various magnetic structures.
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Db: Concerning the Lowest State of a One-Dimensional System

Of Electrons

LIEB and MATTIS (1962) prove the theorem that for a one-dimensional
system of electrons if E(S) is the energy of the lowest energy state of
spin S and E(S§ is the energy of the lowest state spin S', then E(S) <
E(S') if s<8'. The theorem, although dealing with a thought problem,
could be useful; unfortunately, the theorem is quite wrong. The error
in the theorem results from the lack of an adequate method of construct-

ing an eigenstate of 82 which also satisfies Pauli's principle. We will
use the Gi method for this purpose.

The basic ideas in the proof are: (i) If the many-electron wave
function for a one-dimensional system (one-dimensional electrons) is
antisymmetric under interchange of some spatial coordinates (say 1 and
2), then each point in configuration space for which X =%, is a node
of the wave function and this node divides the space into two regions
(X, <%, and #,>4,). The knowledge of the wave function in either region
is sufficient to fix the wave function over the entire space. Thus,
if the wave function is antisymmetric under interchanges of 411,4ﬁ2,4X3
and also of X5 Xgs Xpo Xy then (if the system is finite and the wave
is required to be zero on the boundaries, say x = 0 and L) consideration
may be restricted to the domain o<g <xcx,< L and O<Hg <K <K Xy |
where the boundaries are nodes. (ii) the ground state of H¢ = Ed has
no nodes; so, if two eigenfunctions of the many-electron problem have the

same restricted domain and one has further nodes but the other does

not, then the latter has the lower
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energy*. Consider, for example, o = [2,1%} S

) 7
2 2]
3] (4]

then consider o<#, <% <L . G;{’?( has
no required nodes in this region but G;@ﬁ/ has additional required

des f - d x_ = x, thus E. < E.
nodes for x; = x, and x, = x, thus E,, S E g

First, we consider LIEB and MATTIS' error. All of their proof

(excepting the basic idea paraphrased above) is predicated upon an im-
plicit misunderstanding, and thus, is irrelevant. The erroneous assump-
tion which is made explicit in the last paragraph on p. 166 is that
every many-electron eigenfunction with Sz = M is antisymmetric in one
set of % + M wvariables and in another set of % - M variables. The

fact is that only for s¥ where ¢X=Xz *5"'53 (i.e. s = §) is that

i
assumption true, and Ggﬁ’X is never (vide infra) the lowest energy state
of spin for a cne-dimensional problem.

Theorem Db-1: Of all the states Gf§ﬂ, for a system of N one-dimensional

1

electrons,(%f?ﬂ/has the lowest emergy, where B=]z" ™7 and m = 0 or 1.

Proof: S1 = 112 112 and, thus, has no necessarily
3 14 or 314

antisymmetric variables; and,

50-117n Tn-1]7m

hence, can be nodeless through
all of configuration space. Every other Si for all i and « has at
least one occasion where adjacent letters are in the same column and

thus has at least one required node. QED

* Thus, the lowest state for three-dimensional Bose electrons (i.e.,
ones identical with real electrons except for the symmetry of the wave
function under permutatlon) would always be the totally symmetric state
X = Z(OW})(WW X) wirw &=[N] (thus, the total spin =AW/2), This is
because <f“"§5z'/ HIE 34> = consr <0n§f/lllcw§)and any other X would have some
nodes while &« = [N] has no nodes. It is believed that such particles
do not exist.
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It should be noted that Lieb and Mattis tried to prove that the lowest

["7
state is Sf =11[n+l (for an even number of electrons)
2|n+2
3 nfB
n| N

We see that in fact there are many states of lower energy. For example,

[m*t,m-l] . .
S1 =11 2 In spite of THM Db-1 it is not possible to
3 4
2n-3]2n-2 prove (at least not by using the ideas in the
2n-1
2m second paragraph of this section) that the

lowest energy state of a one-dimensional system of electrons is a state
. . . . _ TN N
of lowest spin. An eigenstate of spin & (i.e., d-[;‘+§ 5—-5] ) can be
. . .- o .
constructed from any linear combination of the £ different Gfs??{ 5
since there is no pair of coordinates which is antisymmetric in every
tableau of shape % , then the wave function for any spin can be made
nodeless. It is apparent that the use of the G:i%x provides a clear

insight into many-electron problem, at least for the Hamiltonian A-1.
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Section E

Explanation of the VO, Distorted Rutile Crystal
L

Structure and Prediction of the Magnetic Structure

Introduction

In the previous sections all discussions have been at a fairly
rigorous level in that the few approximations made could be stated and
the resulting errors approximated (e.g., the errors due to neglecting
nuclear motion and relativistic effects (at least for light atoms) have
been treated by others, the error in using the Roothaan approach can be
estimated by using larger or smaller basis sets); however, although im-
portant results may be foreseen in the future, actual calculations must
perforce deal with systems of only about a dozen electrons or less. 1In
this section we will make a major assumption which has only the most ten-
uous of theoretical justification -- but an aura of empirical basis -- and
proceed from there with a few approximations to obtain some quite interes-
ting results. The results are of such a nature as to place some more
a posteriori evidence in favor of the original assumptions.

The kind of system that we deal with is a nonconducting oxide or

fluoride of a transitional metal element. The physical ideas involved

are: (1) the compounds are ionic; this is used to mean that the predom-
inant energy lowering mechanism is related to a transfer of electrons (as
compared to the free atom) from the transition element atom to the oxygen

atom, each oxygen atom is presumed to take two electrons and each fluorine
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atom one; (2) any electrons® left on the transition element after the
charge transfer and in addition to the number of the heaviest lighter
inert gas atom are not involved significantly in binding and are con-
sidered localized on the atom; I call these the extravalence electrons;
(3) the extravalence electrons are all in one-electron states belonging
to the L = 2 irreducible representation of S0(3) (we would use L = 3 for
rare earth elements); (4) Hund's rule applies to the extravalence
electrons of each atom, so that each atom has the maximum possible spin
consistent with the number of extravalence electrons and with the re-
quirement that they be in L = 2 states (we forget about the net orbital
angular momentum, which would occur in the free atom, pretending that it
is zero, i.e., quenched). In section Ea a survey of the pertinent proper-
ties of the compounds exhibiting the rutile structure is presented; the
conclusion is that the above ideas apply to these compounds.

At this point we make the big assumption: We allow the set of

extravalence electrons from different atoms to interact and assume that
the relative encrgy of the possible states is given by (the Heisenberg
Hamiltonian)

H = 22 J,..S. S, (E-1)
i, 131 7]

where 1 and j refer to different atoms and the sum is over the differ-
ent pairs. TIn analogy to expressions such as Bc-9 the Ji' is sometimes
referred to as an 'exchange integral", note that I use the opposite sign.

The Si used here is considered to be a vector with its magnitude being

e
w

It should be clear that since the electrons are indistinguishable, I
am not really discussing electrons but rather the one-electron states to
be later used in constructing the many-electron wave function. Conven-
tion and expediency make the present terminology convenient.
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the spin of atom i and its direction being the direction of the spin of
atom i (as given by neutron diffraction experiments). To really be anal-
ogous to,say, Bc-9 the equation should involve §i rather than Si’ one
might want to consider this as a second assumption. Using the Hamilton-
ian E-1 the possible stable magnetic structures for compounds exhibiting
the rutile structure are determined in section Eb.

In section Ec one of the stable magnetic structures, ¥3, is ana-
lyzed and it is determined that for the ¥ 3 magnetic structure the rutile
crystal structure is not stable. The necessary distortions of the rutile
crystal structure result in the VO2 crystal structure; thus, it is pre-
dicted that the ¥3 magnetic structure is probably exhibited by VO, and

2

the distortion of the VO2 is explained as the result of the interactions

responsible for the magnetic structure.
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Ea: Survey of the Rutile-Structure Compounds

The rutile structure is exhibited by the following compounds:
Mng(l), MnFZ(Z)(B), FeFZ(Z)(B), C0F2(2)(3), NiFZ(Z)(3), ZnFZ(Z)(S),
PdF2(6), TiOZ(l)(7), CrOz(é)(S), Mn02(17), TaOZ(S), GeOZ(l), and
SnOz(l). The following six substances have a structure which is essen-
tially the same as rutile but with a slightly lower symmetry and slight
(~.05 to .3 A) displacements of the atoms: V02(12), Nb02(13)(14),
Mb02(9)(10), TCOZ(ll), W02(9)(10) and ReOZ(ll). The following two com-
pounds have structures directly related to the rutile structure but
with a significant distortion; CrF2(16) and CuF2(15). The following
compounds are reported to have the rutile structure (but the work is
rather old, Goldschmidt 1926, ref. 18 Pb02, Rqu, OSOZ, IrOZ, and

Teoz(from the Jahn-Teller theorem we would expect RuO2 and OsO2 to be

strongly distorted, TeO2 seems to me to be an inappropriate compound

(1) W. H. Baur, Acta Cryst. 9, 515-520 (1956)

(2) J. W. Stout and S. A. Reed, J. Amer. Chem. Soc. 76, 5279-5281(1954)

(3) W. H. Baur, Acta Cryst. 11, 488-490 (1958)

(4) 0. Glemser, U. Hauschild and F. Trilipel, Zeit. anorg. Chem. 227,
113-126 (1954)

(5) N. Schoenberg, Acta Chem. Scand. 8, 240-245 (1954)

(6) N. Bartlett and R. Maitland, Acta Cryst. 11, 747-748 (1958)

(7) D. T. Cromer and K. Herrington, J. Amer. Chem. Soc. 77, 4708-4709
(1955) ‘

(8) K. A. Wilhelmi and O. Jonsson, Acta Chem. Scand. 12, 1532-3 (1958)

(9) A. Magnéli, Arkiv Kemi, Min. Geol. 24A, No. 2 (1947)

(10) A, Magnéli and G. Andersson, Acta Chem. Scand. 9, 1378-1381 {1955)

(11) W. H. Zachariasen, A.C.A. Program & Abstracts of Winter Mceting
(1951)F-4; this is footnote 4 of refevence 10.

(12) G. Andersson, Acta Chem. Scand. 10, 623-628 (1956)

(13) B. 0. Marinder, Arkiv Kemi 19, 435-446 (1962)

(14) N. Terao, Jap. J. Appl. Phys. 2, 156-174 (1963)

(15) C, Billy and H. M. Haendler, J. Amer. Chem. Soc. 79, 1049-1051
(1957)

(16) K. H. Jack and R. Maitland, Proc. Chem. Soc. (1957) 232

(17) J. Brenet, Compt. Rend. 230, 1360-1362, 1950-1952 (1950)

(18) Coldschmidt (1926) Geochemische Verteilungsgesetze VI, measure-
ments by W. H. Zachariasen; quoted in Strukturbericht 1, 158,211,
213 (1931)
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for the rutile structure (the extra electrons are not "d-type' elec-

trens), Ir0, seems a little out of place when compared to the compounds

2

for which the rutile structure is well verified). There are several
cases of the rutile structure with more than one cation (19); however,
these have not been investigated very thoroughly.

The compounds MnFZ(ZO), FeFZ(ZO), COFZ(ZO), and NiFZ(ZO) are all
antiferromagnetic with the same arrangement of localized magnetic
moments ; MnOZ(Zl)(ZZ) has a unique spiral antiferromagnetic structure;

and Cr02(4)(8) is ferromagnetic. The compound VO, is reported to have

2

an antiferromagnetic Neel point at about 340°K ((23) measuring magnetic
susceptibility reports 341°K with most of the change between 338°K and
343°K, (25) by the same means reports between 335°K and 355°K, (24)
measuring specific heat reports 340°K); this is about the same temper-
ature as the conductivity transition ((26) gets 340-325°K when cooling
and 335-350°K when heating, the low temperature form is a semiconductor
( P =2Ll-cm at the transition), the high temperature form has

P = .02 £1-cm at the transition). On the other hand MnO,, MnF,,FeF,,

(19) K. Brandt, Arkiv Kemi, Min. Geol. 17A, #15 (1943).

(20) R. A, Erickson, Phys. Rev. 90, 779-785 (1953).

(21) R. A. Erickson, Phys. Rev. 85, 745 (1952). This is an abstract.
The work was on powder specimens; when single crystals were
later used, it was found that the structure given here is incor-
rect. See reference 22. Erickson's single crystal data (and
thus, his method of preparation, etc.) on which reference 22 is
based have not (as far as I know) been published.

(22) A. Yoshimori, J. Phys. Soc. Japan 14, 807-821 (1959).

(23) E. Hoschek and W. Klemm, Z anorg. Chem. 242, 63-69 (1939).

(24) J. Jaffray and A. Dumas, J. Recherches Centre Natl. Recherche
Sci. Labs. Bellevue (Paris) 5, 360 (1953-54); as quoted by ref.
26.

(25) N. Perakis and J. Wucher, Compt. Rend. 235, 354-356 (1952); ref-
erence 27 gives the wrong volume and page number for this ref-
erence.

(26) F. J. Morin, Phys. Rev. Lett. 3, 34-36 (1959).
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CUFZ, and NLFz have Neel points of about 90°K, 70°K, 80°K, 40°K, and

70°K respectively ((27) p. 14 ff, I have averaged and rounded off the
experimental values). Ferromagnetic CrO? has a Curie point at 116°C
(28). Erickson found that the tcmperature dependence of the magnetic

structure factor of the (100) diffraction for MnF Fer, Con, and

2’

NiF2 are consistent with localized spins on the transition element of
magnitude 5/2, 2, 3/2, and 1 respectively (20), such a measurement is
really not too sensitive but the results are consistent with what

people think is reasonable. The saturation magnetization of CrO2 is

consistent with S = 1 (29); this is a reliable indication of the mag-
nitude of the localized spin. Erickson's measurements (20) indicate

that the orbital angular momentum is quenched in Man, CoF and

29
NiF2 but not quite quenched in Fer.
The fact that every case of this structure involves oxygen or
fluorine as the anion suggests that the stability of the rutile struc-
ture is not due to covalent (i.e., electron interference) effects but
rather to electron transfer effects. The occurrence of the structure
for many transition element cations and many non-transition element
cations suggests that the extravalence electrons on the transition
elements are not important in the stability of the rutile structure.

The above evidence and the fact that all the rutile compounds are

apparently insulators (except for VO2 which shows a transition from a

semiconductor to a poor conductor (26) and CrO2 which has a resistivity

(27) T. Nagamiya, K. Yosida, and R. Kubo, Adv. in Phys. &, 1-112(1955
(28) A. Michel and J. Bénard, Compt. Rend. 200, 1316-1318 (1935)
(29) C. Guillaud, A. Michel, J. Bénard, & M. Fallot, Compt. Rend. 219,

58-60 (1944)
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of 10-2 to 10“3 f-cm at room temperature (30)) suggests that the set
of all extravalence electrons of all the transition element ions may be
considered as somewhat independent of the other electrons (31) in the
solid (the ones which are responsible for the stability of the structure)
and, in addition, that these extravalence electrons may be considered
as localized. The localized spins on the transition elements (for those
compounds on which measurements have been made) are consistent with the
Hund's rule assumption and with the usual change transfer values; the
angular momentum seems to be fairly well quenched. Thus, the compounds
having the rutile structure fit the requirements for using the Heisen-

berg Hamiltonian quite well (probably better than any other structure).

(30) T. J. Swoboda, etal, J. Appl. Phys. 32, 3745-3755 (1961)
(31) See footnote on page E-2
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Eb:

Eb-1

The Stable Magnetic Structures for the Rutile Crystal Structure

We use E~1 and assume that Jij is equal to zero except between

nearest neighbors (two at £ ce , J = J2)

€, J =7

at * s s 1), and the

NN

+
%”

favorable (for superexchange because of

&t

ool
(31N

the intervening oxygen atoms) pair of
next-next-next-nearest neighbors (two

at +ae —aggand -ae, %aq? for one sub-

lattice and at +ae, -I—ae“2 and -ae, -ae

for the other sublattice, J = J4).

, next-nearest neighbors (eight

cAaron (72)
ANtON (O

°
L]

O
i

1. The spin is treated as a vector and expanded in a Fourier series

(the periodicity is due to the assumption of periodic boundary condi-

tions over the microcrystal, as usual) which effects a partial diag-

onalization of the Hamiltonian.

H = 23 Zsi'si’

<447

Thus,

+ 23 S.-S. + > s.,-8., [ + 23
2[:§g>1 j é%% i 73 ] 4

[Z505 12 5]

<og> <49

where, <i,j> indicates all pairs of a certain type, e.g., for JZ we

have the sum over all nearest neighbor pairs.

- -t —
cio= + ;
For Jl i nlal +*n2a2 n3c ;
1, 1, o 1,
3 B + = . + = + =
i (nl_ 2) a; (n2 2) a, + (n3 Z)C
:,'= — - — -.).',_ _h.)‘ — X il.&
For J2 i n,a; 4 n,a, + n,c; j =na +nya, 4 (n3 )c
. - -l -h A-: '_F‘ —A'Ji' - .—\+ -
For J4 i=mna +nya,+ n,C; ] (n1 1)a1 (n2 + 1)a2 n,c for one
sublattice
- - 1.a ’ - — ]__.;
- + + 2)8; i7= (n.* o * +(n, £ =
i n,a; + 0,3, (n3+ 2)0, iy (n1 1)al‘r(n2 1)32 (n3 )c for other

3 pZ A _ Vi Py 3 A
2. s, -;s(k)e ;5; = % s(k)e

sublattice

d
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where the sum is over the k in the first Brillouin zone; there are

N such states and thus, N unit cells in the microcrystal (2N transi-

tion element cations).

3. Substituting Eb-2 in Eb-1 we obtain

. s K@'}:“*’é/'k)
(31) 203 S,:5.=25, 550 5223 5 sw)ste)S e" -2
St T s ,

where
AL &(n
gy, - [@ g‘(@,,a+@ﬂa+,§ac)+€zi(ﬁ,xa—ﬂ,dawe() ;o2 CHa+8ya+8,0) o0 £y5-Rya r8,0),

- F(~8y3-84a-
‘e %(4«3 *ﬁyg‘égc)+ e zi ('@4(?‘«673"42().’. e i‘f#«3+ﬁaaw9gr)+e 2 ('g“ '3‘7 43()]=
= 5 zov %ﬁm éﬁj <oq 22<
2 2 2

(3ii) But (see e.g., ZIMAN (1960) p. 10)

A(B+2)- ¥, _ 4G ko
§E(? T < A/§2+g:2,

The unit cell is simple tetragonal; thus, so is the first Brillouin
zone; so, the only way for k + k' = ¢ = 0 is for k to be on the sur-

face of the Brillouin zonc. Note that both k and g-k must be in

49 Ko
first Brillouin zone. The term¢ ° is due to not requiring that the

coordinate system origin be placed on a lattice site of the sublattice
4
under consideration. I, denotes the vector from the origin to some

lattice site of the primed sublattice. It would seem that there is

‘£
. . . . G to 49 to
an inconsistency here since we could get either & or @

depending on which sublattice we sum over. However, it turns out

(vide infra) that the only occasions when g # O have %, = 0, and if

A ko AG ety .. .
g = 0 then e te. 43 e Similarly (remember to count each pair

only once)

3Gi1) 2T, Z S5,= T, S 5w 3 o 2y,
<42 24 “

-t B,<
where, 23/}(2__6;’5864,9 47 :Z/éo-a,éfc
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Giv) 2T, Z 55 ZJ;Z ). s,@/ZZe‘“’%’ “ 2V
%)

/4 - - -
22/;{4,36"‘ %,,2 ,@13)4‘ - A/’@«a /@'79): 2"0‘4[)@4"@@)3
22"(,4 = sz/@,xab@.j)g

(3v) thus,
’ = /3'&0]4—
1= N §16 T, Z 7 [50) St + Z 50 Slya) €
+27, g Uep [508)-5C2) + ZSA@) Stg-8)e Gt
“ge ko
+ S/B).SF8)+ E S78)- Stg-A)e ] *

+ 23,2 g (s0)-562) fgz S08)-53-8) &7 %) +

+ Vg (SVR)- SER) + g S8 . ShG-2)e 13" )]§

Y, - 2xa 8,3 Bz

g = 09 (By-£4)a -

}

3/‘;4 = <0d (@4*‘*@3)3

(4) However, there are some conditions on the possible values of S(k)
(41) Si is real, thus S(-k) = S*(k)

2 2, . . . .
(4ii) Si-Si = Si = 8 is a scalar and thus is left invariant by lattice

TRy
transiation; Ef.s(k) S(k") el(k'k )r.
A B+B)F,
,g[yg) 5[,@)+ Zsﬁ@) -SB)e ]
B+5 )k
Hence,i?léf sce)-sta)e is invariant under lattice
£%-5
translations.
(41ii) Consider first the terms with k' = k (i.e., assume
22k,
S(k)*S(k') ~ 0 if k' = k or -k) then £ 830-5(0) e is

invariant under lattice tramnslations; thus,

= E[508)-508) + 57R)-S'08) [ecral 28} + [S(8)-SC8)- ST8)- S]] aaom 21, §

is invariant under lattice translations.
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Thus, either

(4iiiq) S(k)-S(k) = 0 (and thus S(-k)-S(-k) = 0); no restriction on k
3

(4iiif) 2k-ri = n27 , thus, ki = 0, 7; no restriction on S(k)-S(k)

(41117%) S(k)-S(k) = pure imaginary and r, = 0 for some i3 then

sin ZQ'}% = 0, hence, 2#h =7 or f;,—o)ig)r N AR > B
must include at least one ,%:wfg"to get cases different from &

(41v) Condition (iii) is too restrictive, we should only require in-

Akt
variance for 2?2? SB). S(h-%)e where K = k#k', for all K or

VNI 4
cELe

Pz a
2<s(k) S(R-k)e "+ S*(k)-S*(K-k)e ., for each K K goes all
possible values of ktk'. Thus, either,

(bivet) i; S(k)-S(K-k) = 0 ; no restriction on K

%
e =
(4iv B) Ker, =27 n, thus K, = 0, 27 =k, + k! rac i
k| i i 1
(4ivy) jgrs(k)'S(K~k) = 1imag and ri = 0 for some i 3then
sin(Kr,) = 0; thus, Kex, =7 ; K =0, ¥7, 27 =k,  +k;
] ] i i i
AGky
(4v) in all cases we get Si [SK@) 5/«@’)4-2 S@)- 5/3"'@)'? ? ]

G ? 00) (% 0) (0,0, % (5‘,%{0)/(%0, )(0, a,J)(ﬂ,a a)f
For k # ? at most one term of & is allowed and cven then k must

lie on the surface of the Brillouin zone.

(5i) Now minimize H with respect to S(k) and S'(k) holding all
Si2 - Sz; thus, consider H - EAASZ' é A: 5'«,1 (see 3v and 4v).
N?/GT x,r,[su)»f 2 57q-#)e ‘3 el 2}2[25(2)«»
+zZ  sgHe” ‘°]+z:)7,arm_[25(—,6)+ zg§ s(g-2)e"? WJE
§A [25[,@)«-22 Sg-2)e"3" ]

52 N{/srz’,(,[su)%Zs(g—,@)e KR P sz[zs{fé)fzé §G-p)e T el

95/»)

19 ¥, “
+23;ZK4[25(—$)*?§°5@‘&)€3 ]:?AA [z.sf—,é]+23565/(7"!é)e I ]



129 Eb-5
.. Ny -k .
(5ii): Note that 5,\/ o"d ’:ca"a °s d, , where r. is the vector to
A >3

some atom position of the unprimed sublattice, and

;?A:elalt /7 bo:?A ; where rio is some atom position of the primed
sublattice. But, @Ag rm 4‘7'&09 és{g"‘g"hg'-"aifgar):/—IJMJé’l‘?‘ﬁo)

where ng is the number of the gy = 27 (0 to 3). Cases where ng # 1
can occur only for k = 22 . Let NA® =4, ) NA 2 §A

(5iii); Consider k not on surface of the Brillouin zone

16 T, %, S CR)+ (4T, %, +4 T g ) SC-8) = 24 S(-R)

16 T} %) SER) + (4T, %0y + 4T3 Fng ) SI-R) = 2) sr)

If we multiply the first equation by S(k) and the second equation by

1 ZH ’ 2 ' 2
S'(k) and sum over k, we get 7/“:2(/\1-,\)5 , Thus, H =N(A+A')S";
hence, H is proportional to A+ A'. But, if S(k) and S/(k) are non-zero,

then the determinant equals zero or $(k) = 0 and S'(k) =

AB =) C = 0
C A-D-X
7
A = ZJZsz, B = 23 Xk[&’ C = 8J1Xk1; D = ZJZ;.Xklt

2 0. Thus, we have X as

i

Thus, A1~ X (A+B) - A (A+D) + (A+B) (A+D) -C

function of A , but H is proportional to A+ A' and we want H to be a

/ s
minimum; thus, we take 9'—11‘: NSZ(/ + —i—% = 0; thus, 3{—’}"—“ ~-1. Sub-
stituting above we get ,\ +) ;l_X % (AHS) (A+D) = 0. Hence,

- A= (A+D)~(A+B) = D-B. Substituting in the secular equation and
solving, we obtain A= (A+B) %C and )\/= (A+D) £ C. Let,

S oLy o . _
M= A+ A 2A4(BHD)E 2C = 4J,%, T 27, @, s )&4 £ 16 then

J1%1

= 0; thus, S(-k)= % S'(-k) or

:N/,(SZ; also, *’C C) S

s7-2)

Fc

S%(k) = £ S%'(k). Hence, S(k) = % S'(k). Now note that the only

non-zero S(k) and S'(k) are those for which/qhas the same numerical
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value as the above one. For this to be true for general values of Jl,
J2, and J4 we must have Zkr, =%, » thus /@,«/3 + %, OF Ijgor l‘ﬁf;
Vo = Yy s thUs, Bz Ty 3 Wg t Ve = Vg e Tip » thus 8= Fa,
and /9,,; = fg,J or ﬁ,; = :"3,; and 4,; =t %, . These conditions taken

together imply that if k is taken into k(by one of the symmetry opera-
tions in the group D4h then =M./ . Since the rutile space group is

homomorphic onto the D,. point group, we expect the k states related by

4h

the operations of the D4h

interactions Jl’ JZ’ and JQ had been neglected, however, then the group

point group to be equivalent. If one of the

of operations relating the k states of equal energy would have been

some group containing D,, as a subgroup. In the sense that there is no

4h
degeneracy (excepting the accidental degeneracy which results for speci-
fic relations between the Jl’ JZ, and J4 values) other than that re-
quired by the crystal symmetry, we have included enough types of inter-
actions to eliminate all falsely degenerate states.

Regardless of the particular values of the S(k) for the various
defenerate modes which are combined for a particular spin state,
H =N« 82 and is thus, the same. Consequently, it is sufficient when
determining the lowest energy state to pick one mode out of each degen-
erate set.
(5iv) Consider k on surface of Brillouin zone but k # g/2. Now note

that the argument k of S(k) must be . . .

in first Brillouin zone; therefore,

we can get only one g, say 81> such

that gl~k is in first Brillouin zone if

k # g/2. But k on the Brillouin
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zone surface implies that -k is not in the first Brillouin zomne, gl—k

on the B. Z. surface implies that k—g1 is not in the first B. Z.; thus,

we can have no S(-k) or S(k—gl) terms. For every possible 81> ng = 1.
: 1
From 51 a3, 5 b
’t( } ! 40" . 145 e
16 J, Py S //31 “—@)6‘13’ O*["'*Tz 3K2++J:7'2/”4>5(§' 2)e = 24 S'/g, ®)e
«Jr ke 43 o

16 T, %41 S92 B (4 T+t T U0 )S TR =24/ S7g-4 )

"1'4 A9 o
3 e -—99 ;  thus, A-G-A <

b

c —p-0+A

A=21,%, 3B=21,%, ;C=813, ;D=21,%,

Solving as in (iii) \V=A+(D-F) , A= (B+r8) +4C 5

thus, there is no real solution unless C = 0, But if k is on B, Z. sur-
face, then at least one ki =7/ , and since 7, = cos:'g;;C7 . cos %99 | cos <
2 2

then ¥ = 0 and, thus, C = 0O; tl1us,/x:',\+,l’:297"6’*0:4"757/@*2‘7;.(3}4.+ pyy

’
No relation between S(k) and S(k) is required since the minimization

conditions separate into a term involving only S(k) and a term involving
’

only S(k)

(5v) Consider k on surface of Brillouin zone and such that k = g/2

for some g # 0. Thus, we consider

ke§(Zq0), (0F0), 00 F) (5% 7 o%) 0L F) (£75)

In each case the only possible g-k is g~k = k or g = 2k (using 51).
Note that if k = g/2 then -k is not in the first B. Z. Also note that

¥y, = 0. Thus, from 5i we obtain

A9, Fa -k
qi fae 2 s5c8)e T e

% ’ Ag"”‘; , 4‘7,"’4:
(4—3}?,(2—#43;3';{4)5/})@ _ ZAIS/ﬁh?

il

(#T, Uz + 472 %es ) SR O
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Thus, p=A+ A\ =43, F, +Z; (Za "'3/};4-) and there is no required rela-

y;
tion between S(k) and S(K).
(5vi)! We summarize the preceding. A necessary condition for H to be a

minimum with respect to variations in S(k) and S'(k) is that:

M= 4327}{2 +2 74(3"(4+Z,;4)f/537 Vet , where H = N _« Sz,

If ¥y, #O  Twew S/B) = +SR)
If ¥, = O then no required relation exists between S'(k) and s(k),
The above * cases are not independent, the pluses correspond and
the minuses correspond,
(5vii); In any case S(k) and S'(k) must satisfy one of the conditions 4«ws
LivR , 4iv¥ . The cases £ and ¥ involve only a few discrete k
values; however, for case  there is no restriction on the possible
values of k. If the state has S(k) # O only for one value of |k| ,
then I call it a single mode state; we have shown in 5iii that it is
sufficient to consider only such states when determining the ground
state. Thus, conditions&4iii« , 4iii B, and 41iii¥ are used.
(5viii K ): Since for case &« there is no restriction on the possible

k values, we shall find the minimum of/u with respect to variations of

k.
= . 4 4 J /4 a 4 <
M 4choskzc + 4J4(coskxa)(coskya) + 16J1(cos s Y(cos ~Zﬁ~)(cos —g—— )
2
gj?‘z: -ZwEJZ sink7c * g Jl cos’ggf cos '?%’:LJ sin’gngz =0
P Bac Bad .3 -
A aln.zé.[chos.er * Jl cos —-ZL cos —zﬁ-z = 0

2 ,
5:3;: -4a [Jh sin 4,3 cos/@,yc? + Jl sin'?gf? . cos”:fl—-za » CcOS ’%SK = 0
2

é’—é/g: ~4a [J4 cos 4,3 Sinﬁ:,o"

adding or subtracting these we get

I+
Ny N
!
o

J. cos*ad . sin #y49 . cos’?if] =
1 2 2 2
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[J sin (x  * k )a + 2J sin[-gaf«gg)amgafz:o Thus ,
4 x v 1 Z 2
sin (k_ * ky)% [J4 cos(k  * k Y& + 3. cos 22{5] =0

1
C: y'2

A, B, and C are all necessary conditions for 4 to be a minimum with
respect to variations in k.

(5viii B) To satisfy A we must have either

I: ke¢ =0 or IL: J2 cos 2z< =~T—J1 cos Za¢ ’COS’%@ . To sat-
B 2 Z

Z

isfy B we must have either PO: &3 :-,273 , = ’@43__/@73:77J o

V: Jpeo9Byt8)E =7 I»cao‘g.zéf

-

To satisfy C we must have either

r: ka=%ka or s:J, cos{k -k ) 2 =37 cos® . We consider all
% y 4 x vy 2 1 2

possible combinations of these conditions

ol = ITpPr: ke =0; k a 4+k a = -k a, thus, k. a =k a=20
y y L=

&5 =T1ps: ke = 0‘; lkxa = _kvailJ/: cosk a = + Jl]

A3 = I&r: kc=0;1kxa"

)
~
™

i

| N

Is~s: No solution

x6 = I1&r: ke =0; ka=%a, J cosk a = + J
Lz ) L= Y i ‘ 4 biS 1j
- . - 0. & = - a o1 a
of 7 I¢s: *kzc 0; + Jl J/+ cos(kX ky)2 Jq cos (kX z{y)Z, thus,
k =0 d,Jg 8 -377, the S ti ith k d
lcy ]an W cos ,?41 F ,]or e same equations wi L, an

ky interchanged

A

o = . ka=%kas= N £z - -
8 IIpr I & 1/}7'1 O‘,LJZ cos '5"- 4—3}'

= = . 7%
10 = TIpsi ka=-kas J, cos #2< - 27, (o0 227 )" w0

Lx v

Iz .«co—:lﬁda - F 37«6017’?_2{..() THUS,

B e T T g0 2 B ol 7)™ 1] e
! !
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(eos 825 - (BEY(-252)) - 1 Jee- Ty
thus,l:ﬁm —g—: 733 [ 2fera #29) il=%7, [(%)/(2— %_ ]J

a4=1Ter: k a=ka==";;tkc=7V
" y [ |

Il s: No solution

A9=IT% r: kxa =k a, chos%‘f = 3 Jl(cos ?12_‘3 )2, and

J2 I+

. /%ZC . 443 2 ,
lJ + J. cos == thus, Jl(cos %2 ) ol

4 1
Syant _ Jp I3
(o) = B3t |

= .3 £z o : a . k).
A 2=TI#s:+ J1 cos £~ chos (kX 4 ky)2 J4 cos(kx k X thus
]k = 0 and kx # 0 (for kX = ky > 0, No solutlon);
1 'gz" = Ax3 &ZC I ,Q d
+ Jl cos ~£- Jbr cos ,%.. and .TZ cos =- -+ .Tlcos __’?A_C._
J cos’g’if, =J E cos ’%if ; thus, cos '?Sf =0
1 2 4T z Fi

)
k ¢ =7 and thus, |k a =7
lZ | X
Now for the energies:

M= 4J2 coskzc + 4J4 coskxa coskya * l6Jl cosﬁ__:’._‘z . cosgg—a . COS %-{c

ol= IPr: A= 4J_  + 4J, * 16J
2 4 1 72

~h\F_ 1€ — -4 L+

a5= Lps: M= 4J, + é+J4<+ $)FFT Ji+en$ya] = 45 47‘} &Y,

o 3= Is r: M= 4J2 + 4J4 .
T T,
B ) By -4 L +&
6= Tyri M= 4], + 4J4<+ ﬁ) &3] 7 3_,;] +J, T J, )
. i — !
o7=Tys: u=4J, + 4J, (zﬂ«mﬁaﬂ)*./):lgs, ( -).-+crz—+3'+ 5’%
3, J2
X 8=IIr: M= “2(2 "1)+ 4T+ 1T (+ ‘;)"— $ T, Tp -8

o10=IIPs: M= 4J2(2(T'/0) -1)+4% (2-1)"t167, 5 (7 ’/D)

2
= -4J_ + 43, -8J,/D where D = 2 - %
2 4 4 3—23-4
AL4=T16"r: MU= —4J2 -+ 4J4
, NS 23
YO=IL¥r: M= -4J, + 43, -26 F 4y V2 431»

I

'
A(2=TI1¥s: = -43, —4J4
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(61): The conditions 4iii«, 4iii B, 4iii Yy, 5vi, and 5viii allow no
other states than those on page Eb-12 to be the ground state (leaving
out states degenerate because of symmetry reasons).

(6ii): It is appropriate here to consider a point which was omitted in
section 4iii. For cases where ¥, #0 then from 5vi we have S(k)= * s(k)
so that the spins on the two sublattices are related. 1In section 4 we
considered the requirement that Si = § be invariant under lattice trans-

lations; for cases ®% and B S'(k) = £ S(k) implies that Si = SZ; how-

N 2 . 2
ever, case W is not sufficient to guarantee that Si =5 1if Si =57, 1In

order for case ¥ to be satisfied on both sublattices when S'(k) = * S(k)
we must have sin Zk’rj = 0 for rj = translation vector between two cations

on the same or on different sublattices; therefore, 2(kx§‘2+ ky_f.ék kzg)f

= 27n and we have the additional requirement that ki =:ﬁg—nmst occur
in pairs (e.g., k = (I r 7Yy, (%7, _%_r’ 0), etc,). This means that
states ?!, ¥2 ,¥7, and ¥8 are not allowed as ground states.

(71): We must now find the stable states for the various values of the

exchange parameters. For every case where 4 contains a term in Jl’

there is a state of the same total energy for both J, = + [J and

1 11

Jl = —IJlj ; therefore, it is sufficient to consider J, = + ]Jll . Since

1

we are here interested in the stable states and not the total energy, we
may divide all energies by ]Jll (if Iy # 0), and therefore we may take
i, = Jz/lJll and j, = J4/’J1, as the two independent variables. We will

then partition the j2 plane into regions where the various structures

are stable. Note that the analysis in 5viii yields all structures which

are stable over an area in the j2— plane of measure greater than zero¥.

% ¥10 is degenerate with B4 for a finite area but that is for a
special reason, see the footnote on the bottom of page Eb-12.
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Table Eb-1: Energies of the Magnetic States
’ ¥ ¥
Byd Ayd B T Yz Ve Vg

Bl o o o 1 1 1 4T, + 4Ty 16T,
BZ o o /2 ) -1 { ! 4T, +4T,
B3 w7 o o ©O -1 -l 43,-4 T1
B+ 77 o T O A -1 - 4T, -4 T,
Bs w7 T o O ( ! ! 4T+ 472
ps 7 T T O -l ! ! -4 T, + 4T,
¥y o o0 Tk V%, o ! { 4Ts T EVZ T wor AuoweD™
w2 Tz 0 o By o o 47T, t8VzJ, No7 prowed*
3 T o T Y2 o o o +87,
“ Ty o T o - o o -4 7,
w5 Th T o Vo o I 4T, t 87T,
T Ty o Y2 o1 -1 i 4T, &
¥ T T T 24 o ! - +4Vz J; NoT picowen™
% Th T T Vg o 4 +4Vz T, wor Areowsp™
W T T w0 -l - - Tyt Ty T
wo T Mp T 0 o - R, R A
¥u Tp w o o 1 © o 47
w2 "5 g7 Ve o o o o
ws "% g 7T o -1 ©o o -47,
wm T o Tp o0 o - - -4 34
s w7 e o o ! i 4 T4
«x O o o same As R
xZ2 77 o 7 sAME ps B4
«3 7 T ©  sgmr AS B5
a¢ 7 w7 T spwe AS BE
x5 - $3 O Tpeba=Fl, 4T,-4(T7T+) 87,
a8~ I O T4 <o fyd =37 SAME AS A5
7 = 0 O Jgpew(#ie)=T7, 4T, -4T¢ -8 (T T)
s © O - T, eval@a</e)s =3, g T+ 4T 8T/ T2)
«9  ~ Ba — Jp=Fenal(Beclz)j |- 4Tpr4Te- 2t LIE/T)HIS(RTTY)

JT/‘UJ (»34!3/@) = J,J¢ 2

g T, Je _

A0 — k3 = T enlfr2)= FLY/ LD |- 4Tt Tet B T T T

(eoatByare))*= 1/ D 4Tt 4 %- T

D=2~ 3,%/320¢

*  See 6ii

*k S'(k) = = S(k) if Yy # O

*%% ¥9 and ¥10 have 7= 0, therefore, there is no required relation be-
tween S'(k) and S(k);this allows combinations of the two to be used
to maximize the .‘J4 interaction which I have done.
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Therefore, neither B2,B3 or any of the ¥ states can be stable ex~
cept at isolated points or lines. However, this conclusion is true
only for the exact rutile structure, it will resuit that at least one
structure which is stable only at a point for the exact rutile struc-
tures becomes stable over a region of the jz—j4 plane if small distor-
tions in the rutile structure are allowed. For this reason we will
carry these states along in the analysis.

(7ii)¢ Comparing the various S and ¥ states we obtain the lowest states
for the various j2 and j4 values as shown in Figure Eb-1. Comparing
the various # states we arrive at the lowest states for the various
jz and j4 values as shown in Figure Eb-2 (remember that for some

states the possible j2 and j4 are restricted in 5viii in order to keep
the magnitude of the argument of each cosine term from becoming greater
than one). Figures Eb-1 and 2 are for the convenience of the reader
who wishes to check the calculations. Considering o, f, and & states
together the lowest states are those shown on Figure Eb-3. The stable
magnetic structure B 1l is exhibited by MnFZ, Fer, Con)and NiF2
(ERICKSON (1953)) and the stable magnetic structure «8 is exhibited by
MnO,, (YOSHIMORI (1959)). The PB1 structure yields a ferromagnetic
arrangement of spins (all parallel) if Jl is negative; this is the
structure of CrO2 (GUTLLAUD, etal (1944)). Tt should be pointed out that
Yoshimori, using Erickson's data for single crystal MnO, (which Erick-
son could not interpret), used an analysis similar to the preceding one
to find the o 8-type stable magnetic structure which is consistent with
the experimental data. Yoshimori used the same Jl and J2 interactions

but he used a physically unreasonable third type of exchange inter-
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Figure 3: The Stable Magnetic Arrangements For the Rutile
Structure

¥3 is stable at the point j2 = j4 = 1 and is degenerate
there with Bl, B4, ¥10, 7, and <8

o5 and &6 are stable on the 1.i_ne 34 = 41, jz-s.+1 and
are degenerate there with <7 and £1; on this
line o5 and «6 are identical with B1

o9 and 10 are stable on the line j2j4= 1, 0<j4:sl and
are degenerate there with &8 and F4; on this
line «9 and «10 are identical with er8

=1 ig identical with Bl

o2 is identical with PB4
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Figure 3: The Stable Magnetic Arrangements For the Rutile
Structure

¥3 is stable at the point j2 = j4 = 1 and is degenerate
there with Bl, B4, ¥10, X7, and <38

of5 and o6 are stable on the line j4 = +]1, =+1 and

k|

2
are degenerate there with <7 and B1l; on this
line o5 and o6 are identical with B1

&9 and 10 are stable on the line j =1, O<j4sl and

h|
274
are degenerate there with o8 and EF4; on this

line o9 and <10 are identical with or8
<1 is identical with Bl

«2 is identical with B4
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action. From the start he used the same Lagrange multipliers for each
sublattice. He also failed to discuss the g # O terms in 3ii. But most
important he completely failed to consider the ¥3 method of satisfying
the spin invariance (see part 4); we will see in section Ec that one

of these ¥ states (¥ 3) explains the distorted rutile structure ex-

hibited by VO MOOZ’ WOZ’ Re0O,, and TcO,. Since the type of analysis

2° 2° 2
is not restricted to the rutile structure, we can hope that some other
cases of distorted structures may be similarly explained as a result of

a ¥-type of magnetic order.
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Ec: The Distorted Rutile Structure

From Figure Eb~3 the ¥3 structure is stable if j2 = 1 and j4=1.
In this structure each cation has neighbors at *c; one with the same
spin and one with the opposite spin. (This results since
Si = %;:S(k)eikr = zazcos(k—r‘+£d and k-c = g—3thus)as r increases in
the ¢ direction, we get
+si %si 8, 78 +si +si -8, S etc.). Therefore, if we let the neigh-
boring atoms in the ¢ direction with opposite spin come closer together
(and, therefore, the neighboring atoms with the same spin get farther
apart), then the exchange integral for the favorable pair increases

while that of the unfavorable pair decreases (assuming J.>0, trivial

1
. X # V4
changes if J1<O) and we get a change in s of (-4 J4 + 4J4). Thus, for

Y3
4(3” jf) +& T - Fa )
— - - = X - 1
/4{."1‘5’\7; 1'/‘2‘ ! (Ec-1)
# 7
where x = —gziijEt-a

So, if the movements of the various cations are consistent with each

other (they are, see below), we see that the rutile structure is not

stable for the ¥3 magnetic arrangement, but, in fact, the ¥3 magnetic

arrangement implies a distortion of the crystal structure which then
makes the ¥3 magnetic arrangement stable with respect to F1l, B4, o7,
and €8 for a region of the exchange integrals. 'he region of stability

of U3 forx=%

is shown on Figure Ec-~1.
It is now necessary to see what restrictions on the Y 3-stabilizing
movements of the cations are imposed by the crystal structure. Each

cation is surrounded by six anions which are located approximately as

if they were at the vertices of an octahedron centered at the cation
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(e.g., anions 1, 2, 3, 4, 5, and 6 "surround"

cation A). If A and B displace toward each

other along the line between them, they con- @

. . . . zZ=0
flict with anions 5 and 6 which are already
very close together. The extravalence elec-

——’.X
trons on the cations have been previously
assumed to be in states non-interacting
with the states which contribute to the A 2=’§
®
binding of the solid. For this reason the @
spatial regions of high density of extraval- O = swront
ence electrons are in regions away from the c ® = car/on
e
anions (i.e., "point" toward the midpoint of 5
the plane formed by anions 134, 234, 123, 2= c
124, 356, 456, 345, or 346 for atom A). Con-
sequently, if cation A moves from the center D
of the octahedron, it will move toward one of
the faces of the octahedron. If it is to move B 2
° = z¢

toward B, then it must approach face 356 or

456; similarly, if B is to move toward A, it
must move toward face 567 or face 568. But
note that if A moves toward face 356 then A approaches C and if A moves
toward face 456 then A moves toward D. If D and C have different spins,
say +S and -S, respectively, and if A has spin +S then A will move toward
atom C rather than atom D (if Jl> 0), etc.. The above conclusions will
be used to see which, if any, distorted structures can result from the

¥ 3 magnetic arrangement.



144, Ee-4

- .'I[ ' = - . ]—7
From hefore, Si = 242 cos(k ri+~+), S i 2“@ cos (k T, +£ ) and

kxa = g‘, kya = 0, kzc = g'. This information is used to determine the
orientation of the magnetic moments throughout the crystal as shown on
Figure Ec-2 (left hand column, periodicity is ba, a, Lc in the %, y and
zZ directions). Letting the ions displace we get the distorted struc-
ture shown in the right hand column. It is important to note that this
distorted structure is completely determined by the above considerations
(it was not obvious that the movements of the ions would all cooperate
to allow the distortion, but they do). The arrow indicates the dis-
placement in the x-y plane and the U or D indicates the direction of
displacement in the z direction (the total displacement is in the
direction perpendicular to the face of the octahedron). The crystallo-
graphic structure is determined by the pattern on the right. We see
that the size of the unit cell (orthorhombic) is 2a, a, 2c¢ in the x,

y and z directions. Actually, closer examination shows that the true
primitive cell is half the size of the orthorhombic cell and is mono-

clinic (same y and z primitive vectors, but a new x primitive vector

-
such that 6y='é84—§é§ . In fact this structure is identical with the

VO, structure.. So, the VO

> structure which is exhibited by VO

MoO

2 2’

TCOZ, ReO2 and WO2 is derived here as the only stable structure for a

23

certain range of "exchange integrals" (if the cations are such that they
may be displaced from the center of the anion octahedron). Note that
the required distortion also results in an additional (not included in
Ec-1) energy lowering for ¥ 3 due to the J4 interaction. For L = 2
electron states (i.e., d electrons) the fivefold degeneracy is partial-

ly lifted for cubic symmetry; in which case, there are three states at
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The magnetic structure is

on the left. The crystal-

lographic structure is on

the right.

0 indicates an anion in the

same plane.

Layers separated by A4dz= 2c

have reversed spin.

The orthorhombic magnetic

unit, cell, (not primitive)

a' = 4a, b' = a, ¢' = 4¢c.

The orthorhombic crystallo-

graphic unit cell (not pri-

mitive) has a' = 2a, b' = a,

c' = 2c.

FIGURE Ec-2: The ¥ 3 Magnetic Arrangement and the Resulting
(VOZ) Distorted Rutile Crystal Structure
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one energy {(we call these t2 states) and two states at another energy
(we call these e states). If the cubic symmetry is due to an octahe-
dron of anions, then the three-fold level has a lower energy (this 1s
assuming that these electrons are not used for binding, which is appro-
priate here). TFor the three fold states the electrons avoid the anions;
for the two fold states the electrons are concentrated near Lhe anions.
Therefore, if the atom has any e electrons, it will be forced to stay
in the center of the octahedron, since any distortions push the e
electrons into very unfavorable surroundings; so, if extravalence
electrons are present, (which is appropriate for transition element
cations of the V through Ga columns for oxides and the Sc through Cu
columns for fluorides then the ¥ 3 magnetic arrangement can occur only
for cations which have one to three extravalence electrons, viz., V, Cr,
Mn, Nb, Mo, Tc, Ta, W, Re for the oxides (the fluorides with one to
three valence electrons do not have the rutile structure). Five of
these, as mentioned, do, in fact, have the VO2 structure which, T say,
implies that they have the ¥ 3 magnetic arrangement (this prediction
can be checked by experiment), one case Mn02 has the &8 magnetic ar-
rangement, one case CrO2 is ferromagnetic, one case TaO2 has been
studied only fairly carefully using x-ray diffraction and is reported
to be undistorted rutile {(actually it was shown to have a period of
length ¢ in z direction), and one case Nb02 has a distorted structure
different from VOZ' According to my analysis the NbO2 distorted
structure (which using my analysis should correspond to a rather com-

plicated magnetic arrangement iﬁvolving four independent magnetic sub-

structures) is always unstable with respect to VOZ; I have no explan-
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ation for NbO2 which is simultaneously consistent with the previous

analysis and with the reported x-ray diffraction data. If TaO2 has
exchange integrals such that it is in the stability region of B4
(quite possible noting the region in which VO2 is stable), then the
¥ 10 structure would result (B4 and ¥10 have same energy for the un-
distorted case, but ¥10 allows an cncrgy-lowering distortion) and the
distortion in this case results in an x and y period of ¥2d but no
change in the z period -- this structure is consistent with the litera-
ture; neutron diffraction experiments if they verify the predicted
magnetic structure would imply, then, the larger crystallographic unit
cell. The above deductions serve to indicate approximate values of ex-
change integrals for the various compounds; it should be noted that
there is no known relation between these exchange integrals and the ac-
tual state of affairs of the electrons and nuclei (e.g., wave functioms,
perturbing potentials, and the like) and this prevents us from making
any meaningful estimates of the changes of these exchange integrals
under distortion.

One more point should be mentioned. All of the regular rutile
structure antiferromagnets have Néel points below 100°K, but VO2 has
a Néel point of 340°K. This is consistent with the above explanation
of VO2 structure since the distortion allows a much greater energy
stabilization of the magnetic structure.

Using the known Néel points of VO2 and M’nO2 and assuming that the
Jl exchange integral is the same in the two cases (this may be a poor
assumption since the Mn has three t, electrons while the V has one;

2

thus, they interact differently with the oxygens involved in the super-
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exchange type Jl interaction) we may calculate for V02 the J,- J

b, s i.e.,

the change in exchange parameter with distance times the distance. We

S5+

use 27y ==3 A . YOSHIMORI (1959, p.811) estimates for Mn02>j2 = 1.60

and j4 = % (he uses j3 but the energy expressions for « 8 differ by my

i, being replaced by his 2j3). Thus, for MnO,
g o
En = 2[4 tpet %1 = 11.75; T, = 90°K, thus, 2 + x = 46 and
_ 4k 1 . _
x = Lb = ({y‘ %)/Jl, thus, %,- ; = 7600 - 36 V- This value seems un

reasonably high. If a value of 10 times the previous J. is used, the

1
v x = 2.6 which is much mo reasonable and J - J = 2.6 __1 e

new . 1L 1.5 muc re e Or e 81 e 7 160 60 V.

The displacement of the V from the center of symmetry is 0.24 A (ANDERSSON

1 °
changes as —= ev per A; note that the

(1956)); thus, (averaging) J 30

2
effect of changes in J4 has been neglected; inclusion of J4 would de-
crease the calculated change in Jz.
The point to be made about the results of section E is that al-
though the crystallographic structure was known beforehand, the magnetic
structure was not (and is still not known experimentally). Thué, the
theory besides predicting some results which were known has predicted a
magnetic structure which is unique® and is certainly complicated enough
to have never been suspected a priori. As a matter of fact, if VO2 has,
in fact, the magnetic structure ¥ 3, then I conjecture that it would
have been very difficult to successfully interpret the experimental neu-
tron diffraction data even if it were available (this may explain why no
one has reported studies of this obvious candidate for neutron diffraction
study). If the predicted magnetic structure actually occurs, then we

have some justification in trying the same method on some other ionic

* Even the ++ - - 4+ - - alternation of spins along the nearest-
neighbor directions is, I believe, unique.
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oxides. On the other hand, if the predicted magnetic structure for VO2
does not occur {and similarly for the one for TaOz) then we may simply

discard the theory.
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APPENDIX A:
Summary: We prove that for tableau S; and S? like this 112
3 14
if p<2n and if q is not in the same row as p then : ]
2n-1{ 2n
o 1
U, . == 5 95 2n+l} ¢
ij(p,q) 2 “1] <

Lemma: Let S, = .S., in order for U,., to be non-zero:
i i3] ij¢ >
then for any expansion of 2 1in elementary transpositions it must
be possible to get some expansion of s—ij in elementary transposi-
tions by deleting elementary transpositions from the expansion of
Proof: Remember from Aa-1 that all diagonal elements of Uij(k,k+1)
are non-zero but the off-diagonal elements are non-zero iff

where:

S, = (k,k+1)S,. U
1 ]

= U, U ..U v .,
112 ompp 187, sm%  PdZE., d4i

T=%%-%.,%,. is an expansion of ¥ in elementary transpositions.
But U, #0iff ¢ =jorq= 2, jSrj . If q=3 then
SR
U #0iff p=jorp=2.,3j = (r-1)j . If q = rj then
P9 %,
U # 0 iff p = rj or p = (r-1)rj . We carry this on until we
P4 %

arrive at 2; , by which time we have 2n-1(not all different) possi-
bilities for s; then we find that either s = i or s = ¢, 1 for non-

zero contributions to Ui'

57 Thus, all non-zero contributions to

UijZ’ result from ordered selections of elementary transpositions

= . ] s, . = -
from # such that Si 2;?%.. ZESj We note that i3 2;?% ZE

S0 ‘?atb A is an expansion of Glj in elementary transpositions.

If no such set of ¢ ¢ ..p =& ., exists then U,, ,= 0. Note
ab C ij ijz

that this result is independent of the particular choice of the

expansion of % in elementary transpositions. QED

THEOREM a: If d = igthen Ui

‘ ) =U,,
p,p+l i(p,q) ii(p+l,q)
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Proof: (p,q) = (p,p+l)(p+l,q)(p+l,p)

Proof: (p,q) = (p,p+l)(p+l,q)(p+l,p); U

U.. = U, . U. ) =
ii(p,q) > ij(p,p+l) Jk(p+1,q)Uk1(p,p+l)

ik
2
= (u, . Yu,., . =U,.
( iilp,p+l) ii(p+l,q) ii(p+1l,q)
Define a tableau lowest-in-2n as one like 112
3 14
5 16
2n-1|2n
2n+1] ¢
. of 1 .
Theorem bi: Tf Si and Sj are lowest-in-~-2n and p612n<?q)then
= ¢ o
u,, =1, .,
ii(p,q) ij(2n,q)

ij(p,q)

g Uik(p,p+1)Uks(p+1,q)Usj(p+1,p)' From equation Aa-1

Uik(p,p*i-l) # 0 only for Sk = Si and for Sk = (p,p-}l)Si; denote the

latter by k = pi. Si and Sj are the same in p+l and p, Thus,

Umj(p+l,p) = Umi(p+l,p); but, from the lemma if S, = (p,p+1)Sk, then

= R 1 = = d 1
Sm (p,p+l)8j Thus, if Sj 2’Si , then Sm z enote j by

Sk;

i and m by 2k. Sk and Sm are the same in p and p+l; so,

U_. =U . = U, ;
mj(p+1,p) 2k, 2z5(p+1,p) ki(p+l,p)’

( 2

5 _
U. . = (U, . U.. + (U, . U, .
1(p,q) [k ll(PaP+1)) 1j(p+l,q) 1,pl(p,p+l>) Pl,PJ(P+17Q)]

If is odd, then U, =9,, and thus U,, =U,., . ;
P ij(p,p+1) 5;3 ij(p,q) "ii(p+l,q)’

so we can take p to be even. If p = 2n the theorem is proved; thus,

assume p<2n. The p+l is odd so Ui and

. =U.,
j(p+l,q) 13(p+2,9)
U, ., =U_, . =U,,, ;

pi,pilp+l,a)  “pi,pi(p+2,9) 1j(p+2,q9)

2 2
, ; =1 -(U,, ; . . =U,, .
(Ui,pl(p,p+l)) ( ll(p,p+1)) > 850, UlJ(P:Q) UlJ(p+2,q) He

continue this until Uij(p,q) = Uij(Zn,q) QED
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1
Theorem bii: If p<qg=<2n then U, = - =,
P=d i3(p,q) 2 %13

Proof: Take g odd since if q is even, Then

U, . = U, . :
1j(p,q) 1j(p,q-1)

stop iteration in Theorem bi when p = ¢-1; so,

-t (from equation

U, . =TT, , . If i =13, U,,
13(p,q) 1j(q-1,9) 30 Pii(q-1,9) 2
Aa-1). 1If i # j then by the le u.. =0
a-l) J Y e T13(q-1,q)
. 1 = .]; = p
Theorem c: For a tableau like Si’ Uii(p,q) 5 Si Y
pH2
q

Proof: This follows immediately from repeated application of part a.

Theorem di: For a tableau like S, S, = P
Ly 1 - -
1 p+1l|p+2
Uii(p,p+2) T2

Proof: Directly from Theorem a

Theorem dii: For a tableau like §,, S, = P
i L :
1 p'r]. p+3
= - +2
Uii(p,pt3) 2 b

- e )y y
Proof: TU.. (p,p+3)° [((J,u(qors,qofz)) L () PH2) A0+ (P12, P Uiy ) pr2da; P+

since Ui(p+2)i; (p,p+2) = 0. But from Theorem di

et

- % , and from Theorem ¢

U X ) AT u.. = -
(p+2)i, (p+2)i; (p,p+2) ii(p,p+2) 2

. 2 2
From equation Aa-1 (Ui,(p42)i; (p+2,p+3)) =1 (Uii(p+3,p+2)) ;
thus, U = - 1
S P (pL,pt3) 2
p
Theorem diii: For a tableau like Si’ Si =ip+li q
1 :
u,. = - -
ii(p,q) 2 q-1

Proof: All the steps in Theorem dii are the same in this case (pre-

suming the cases for small q to be already done).
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Theorem div: For a tableau like S, , U,, = - l. S, = P
i’ “ii(p,r) 2 i +1 q
Proof: This follows from Theorem diii and repeated pr qfl
application of Theorem A, 3 i =
Theorem ei: For a tableau like S,, S, = P
i i
1 p+l q
U, 1" " :
ii{p,q+1) 2 T
q+l

2

2
P f: U,,. =(U, . u,. + (U, . N LU . 5
roo ii(p,q+l) g 11(q,q+1)) ii(p,q) ( 1,q1(q,qvl)) ql,ql(p,qﬂ

U, . -1 from Theorem d; U ., | --1 from Theorem c;
ii(p,q) 2 qi,qi(p,q) 2
1
thus, U = - =
% Tiip,at)” T 2
p
Theorem eii: For a tableau like Si’ Si = |p+liq-1
U L i2 .
P > = q..
ii(p,q+1) 2 PES]

2

2
P £f: U, =(U, . U, . + (U, . , .. 5
roo ii(p.q) ( 11(q,q+1)) ii(p,q) ( 1,q1(q,q+1)) Uql,q1(p,q)

1 .
- = from Theorem ei; thus,

1
= from div; U , . =
qi,qi(p,q) 2

U.‘ F .
ii(p,q) 2

1
U.. = -7
ii(p,q) 2
P
Theorem eiii: For a tableau like 3., 5., = [p¥l{ ¢
i i
1 p+2|q+l
Uii(p,r+l)* ) i ;
g-1
Proof: All the steps are the same as in Theorem T+
eii (presuming the cases for lower r to be al-
ready due)
1 P
Theorem eiv: For a tableau like 8., U,_( t)= -3 S, = |p+l| ¢
B & S ) s
Proof: This follows from Theorem eiii and repeated :
T
application of Theorem a. q-1
r+l
t

Theorem f: Further additions of strings of elements suc-

cessively in one column and then the other follow in the same way
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as in Theorem d, c, and e. Any tableau of the form _51

can be constructed from the general case by

selecting various lengths for the different strings. The general

result is: For a tableau of the form: mEE| P if q>p then
R
1
Yiip,a) T T 2"
Nowconsider U, . and require 1 # j.
" iilp,q) E J
Theorem gi: TFor the tableau of Theorem c, Uij(p q) = 0 since there is
3
only one tableau lowest-in-2n for that shape.
Theorem gii: For the tableau of Theorem di Uij(p O = (0; same reason

as for Theorem gi.
Theorem giii: For the tableau of Theorem dii, Sj = (p+2,p+3)Si

ua P, ff&) = [U{lﬁf’f‘.g,ﬂ'l'Z) ul ﬂf'rz) )] l,/fa {f+3l ,Pf.z) + qyf,hgf&z) Uﬁ (f+2, ff) (/a?(f-&% ¢+ZJ.:(

1
But, from parts c¢ and d U., =U,, = - — and from
P ji(p+2,p) ii(p+2,p) 2
uation Aa-1 U,, = -U,. Thus, U, . = 0
equation ii(p43,p+2) 33 (p+3,p+2) ij(p,p+3)
Theorem giv: Continuing as in Theorem diii, U, . = 0 since all
1j(p,q)

steps in above case are still valid.

Theorem gv: The equivalent of div, e and f for Uij(p,q) follow just as
in the above cases where we always take
Mg(ﬂr): ),.Uu(f—/)g) Q«{f-/,«p)(/ffg(f—l,f) * U"a (ﬁf-')uagff—’,'f’) %ﬁ(f"/iﬂ]

which results since U has been previously shown to be diag-

ik(q-1,p)
onal; thus, S, = (g,q-1)S, . & U.. = U,
» 83 = (@aD) j © T1i(q,q-1) jj(q-1,q); then

we use U, . which results from Theoremsc, d, e,

=U,,
1i(q-1,p) jiCq-1,p)

and £f; so, we obtain U, ,

C o ifid
13(p,q) if 143,
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Appendix B:

Consider H = sum of all elements in a class C of the group G. By
the definition of a class, if g€ G the gH = Hg; so, by Schur's lemma
(LOMONT (1959) p. 7) for every irreducible representation of the group,
UH = aF where UH represents H, a is a constant, and E represents €,

If G = SN and C is the class of transpositioms, then we obtain

o{

of o of
.= a”S . Taking the trace #%, = £ ad, where 7, is the charac-
P
dec 132’ 3 7

ter (trace) of a transposition (it is the same for all transpositions),
t is the number of transpositions in SN, and £% is the degree of the

representation & , t = N(N-1)/2. From LOMONT (1959) p. 263:
o N N p- (4-2
— (- (Orsve 2es: A, - ("60) - (6%) (473
= (N-k) + k = [%’*57"‘[?’53

(n-2)) (R-5:0)(§-5-DI(§-5-DI (49 (B+5-0)(§+5-2) A

Xe = (S Es ) Es D E5 DI F) (eI Frs 5] (Fesv]

= (?,_5 ,)[z+s)(ﬂ+5+l)+(—-5~’)(” s)(§'+s-1) - (A"S)( +5)(2 Lise)- ( ‘2)("!'5")(5'5)

= [(Hes) Frsr) H(E-5)(E-5-1)] (25+0) + 2 [(Ees)t-5-1) - (£ Pes)(+s+1) ]
(25+/)[ g—z ~2N + 25(5+/)]

1l

A = —(N«2)!(25+/)[g-?—21\/+ 2S(S+l)7
* B (Erser)]
{or Wl es+i- (B-5)] M/ (25+)

(§+5+d!(£~aﬂ T (Esr)] (£5)]
t = N(N-1)/2 ,
[d 2N+2&3+Q]
7, z ~ -
Thus, —7—?{—;(1 = - 7 = - A’-%”—i')- SCs+1) Thus,
; U, 543[ A—JQ‘;—}Q +5(S+/)] ; (this above formula is given by
eC

o
LOWDIN (1955a) p. 1476). Also, X_ = - ;4 [ -"-’5-3'_:1)+ 5(5+z)]
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APPENDIX C:

Theorem: If Si or Sj is lowest-in-2n and if p<g<mn, then
Uij(2p~l,2q—l)(2p,2q) = Sij . (Note that the proof of this
theorem is not complete.)

Proof: Since Uij is unitary, it is sufficient to prove that

Uit (2p-1,24-1)(2p,29) 1. (2p-1,2p)(2p-1,29-1)(2p,2q) =

(2p,2q-1)(2p-1,2q)(2p-1,2p) and Uik(Zp—l,Zp) = Sik thus,

Uii(2p-1,2q-1)(2p,2¢) ~ Vii(2p,2q-1)(2p-1,2q)" T eiements in

the rows before p and the rows after q are irrelevant; so, for

p-q = 1 it is sufficient to let p = 1 and q = 2, for p-q = 2 it is

sufficient to let p = 1 and q = 3 etc.. The only value for i is 1.

(i) Consider p-q = 1, then S1 = [1]2
314

(23)(14) = (23)(123)(34)(23)(12); hence,
(13)

Uy123)(14) = < Vim(1,3)%m(3,4) n1(2,3) + Denote (kLIS as
SK ;  denote (k,k+1)(m,m+1)sl as SKE , etc.

1

= = - L4 2=
Uiy = C PV T CE Vzaw Tt # /

(ii) Comsider p-q = 2, then Slf=

5D
P R, S
(25)(16) = (2,3,4)(5,4,3,2)(1,2,3,4,5)(6,5,4)(4,3,2)(1,2)

2
Y1125y (16) ~ ;('i!)zuﬂﬂﬂ) +(-4) (- vz’g)[uzwl,s)* Uzas* U’f(/fﬁ]*

3
+- %)(—?)Z[Uzg(z,s)'* 32(1,5)+(jl,§f(l,5)]+ (- lg) (/3%5"(’»535

From appendix A, Ull(l,S) =

Ut o= N]&l

2
4
6

- % , I call terms like this no-jump
. P = = U =O;
terms. By direct evaluation, Uz)l(l,S) Ul)g(l,S) 1)5(1,5)

T call these one-jump terms.
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- % : I call these two-jump

U__)_Z_(l.S) B U_Z,JQ(].,S) " Y 2601,5) T 5

terms. U —4%;' I call this a three-jump term. Thus,

2,24(1,5) ~ 5
U =1
11(25)(16) T2
. _ - 314
(iii) Comsider p-q = 3, then §; =16
718

(27)(138) = (2’334)(435a6)(731)(8)7’6)(6:594)(493)2)(132) The one-
and three-jump terms all are zero by direct evaluation. The

no-jump term is - % by appendix A. By direct evaluation,

“Ue,n T 2, T, T

U001, T Y2a1,7)

_ - _ 1
Ve, T 72
Vo uci,7y = U260, T Y267 T Viaec1,m) 7O

U -1

2,26(1,7) T 72
U = U = U = U = .1
24,26(1,7) 24 46(1,7)7 "2, 246(1,7) ~ 4,246(1,7) 3
U = - 2V'g" Th U =

24,246(1,7) 9 7= - BSs Y11(2,7)(1,8)

2 ’ . s .
R N A NSRRI Y S RV U R

(iv) Trends in the above terms can be recognized from which some of
the general terms may be guessed. Unfortunately, I have not been

able, yet, to complete the inductive step. Parts (ii) and (iii)

relied on no special properties of the S1 for p~q = 2 and 3 thus, it is

clear that the theorem will be true for the general case.
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Appendix D: A Theorem Used in the Perturbation of the SODS

Hartree-Fock State.
. _[ n N-2n
Theorem: Consider dA =(2", 1 {. Let & have the standard order

and obtain §q from § by replacing the state ¢iq'with some state

¢k‘for which d}é&ﬁ'% 0. In the following cases

Orl(P’q) éq B Ull(p,q)orlé‘q
(i) p and q>2n,
PROOF (i): k is not a doubly~occupied state of é; since then §q
would have a triply occupied state; k is not a singly occupied

state of ii since then.1§f would have n' = n + 1 (TIIM Ab-1). Thus,

. ted i . = .
k is not occupied in & ; so, Orjiz jlorléa ;

0.1 (p, )¢, = é? U1i6p,)% 3% ~ Ull(p,q)orlih

(ii) p and q €20, i2n<1<$iN.and p and q not in the same row of ST‘
o

/
PROOF (ii): Let k = lm and let 1q_1 = 1q, then (m,q—lX% =& has the

/’
standard order and n = noo. Orl §ﬁ = U11(m’q_1)0r1§ 5

01 D€ = U115 Y (m,q-1)%18 3

(p,q) (m,q-1) = (q,q-1)(p,q-1)(m,q)(q,q-1). Thus,

U =7 . If -1, ct
11(p,q-1)(p,q-1)(m,q) (q,q-1) ~ ~11(p,q-1)(m,q) P=<q ren

Ull(p,q—l)(m,q) = Ull(p,q—l)Ull(m,q) from the Lemma of appendix A.

If p>g-1, use (p,q-1)(m,q-1)(p-1,9)(p,q-1) = (m,p)(p-1,q); then,

Y11, q-1) (m,q) ~ C11(p,q-1)(m,q-1)(p-1,4)(p,q-1) ~ "11(m,p)(p-1,4)

= Ull(m,p)Ull(p-l,q)’ where appendix C and the Lemma of appendix A

have been used. From appendix A and

V116m,p) ~ Yilm,q)

=1 . Thus,
Ui1(p-1,9) = "11(p,q) “
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4 4 .
Hpg) “Hem, g-4) O, é_

O R =3 = U O §
1P q)éq Urrmges 2 1 cpp) Grt Lg
(iii) p,q€2n_ and k>1i.
— 4
PROOF (iii): Let iq—l = iq then (q-1, 2n-—l)(q,2m)§q =& has the stan-

I'd
dard order. Using appendix C, Oriéq = ZJ U1j (q,2n) (q—l,Zn—],)Orj§=

rd
= Ul1(q,20)(q-1,20-1)%1% 5

!

Orl(p’q)é% :‘éi Ulj(p,q)(q,zn)(q-l,zn-l)orj§;

(q9,9-1)(p,q)(q,2n)(q-1,2n-1) = (p,q-1)(q-1,2n)(q,2n-1)(q,q-1).

Using the Lemma of appendix A and the appendix C

u, . = U.. ; =
1j{p,9){q,2n){q-1,2n-1) 1j(p,q-1)(g-1,2n)(q,2n-1)

Y110p,9-1)"11(q-1,20) (q, 2n-1) Sjl . Thus,

Orl(p’q)§q " 16,1 %
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APPENDIX E:

I have not developed general simple formulae relating the pro-
portional wrjX(for different j) to each other. We know from THM Ab-2
that the proportional wrjx all have the same array if the convention
for 9( is used. As an example of how the proportionality corstants can

be found for any particular case we consider the partition [4,2] and

X = &4 BBPB. Recall that Wyg X = “/ra 4 =;%Jf Wy X

23]4‘]. 3

S = H s, = [r]z]|3]s]. . lle4l5]

B )2 ¢ 1S; = IaTe
NEEIRY - [/T2T+ls]. _ |tl2]5]¢6]

Sq," 4|5 )Ss“‘ 3T l l) S‘__ P

<U3?z’ —‘) Wr? 4 +‘% //3/2' @, X =<
(/—' U//(#S)) wy, )/ = (//2(4.5) wyg y

(1= Upprsnr) Wha M = Vazgsey WiaX 5 (7= Vaaese) D ¥ = Upsise) Wos X

((/- (/33(55)) wh?z/ = Ug4-(5‘) 4{/,_4,7
(/— U4—4—/3’+))&/H_2’ = Ussiz4) Wrsﬂ/)' (/‘04_4-(45))(,4},,4,?’ = Uger4s) WX

Bvr < Sg = (8, %+1)5, , THEN 0,,3/,@14,“) =Y/- %42/4’,»@-”)

=/ - 2
/ 099(%24-/) 5

THUS, V= Csyras) w X =y /”"///(45) Wy, }/ - WNore 7#AT
Uiersy = = Uzz crs) 5 THOS Vit sy Wi X 7 V= Cozeas) “ro X .
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=4
Whp X = L2228 ),
/) 0e5)

3

V/ +U22(3-/») V 1+ o)1+ as)

W, X = V/- Usses) WX = \/(/ ~Usseso) 1~ Yapesn)1-Cyngzs)
f
V74 Usseser (7+ Uhsrso W14 Unapzas X 140} ca5)

Wes Y = ,_______._._...V/'UZZG‘) e @ Uszesor)(1= Guegs)) W ¥
’f
Vi1 + oacse) V I+ Usss) )1+ Uc45))

-4
w,o < LGat0) 4y
! +Us4034)

W 2/ _ v/~ U++(4-5) W ?, = \/(/' 044(45')) [ /- 03;(5())(/"‘ Uz?{ .?’9)// —U///‘?.S'))
re V/+Usgras) v ‘/ (1+Usgpas)(! +(/33/50)( [+ Uzazs))(1125)

779y 4

whﬂ/

Wi ¥

Thus,

WX =5 Wn X
s 1= EZ @

27 /’2{:’2_"’3— W X
U} = 1/—%‘—_35 wy J
Wi X = Vfg;g ¥




162 App. F-1
APPENDIX F: The Matrices for the Orthogonal Representation
for N = 3 and 4

N =3, o= [2,1 _ IO) _ (10)
} uc-: - (o ! ) U(:,z) o -
S, = {1i2 3
e U (i % e
= ey =G )5 Uin =g
- 113 2 2 Z 2z
%2 > . 3 B
— T2 i') (} - 2 f‘)
(23) ,_? -1/ (132) szz -2
N=¢4, o= [2,2]
i B
S, = [|1]2 _[/!e /10 i ~2 3
1 31k Ué.' (O l) )(j(!,Z)~ o —l) )£j(a,3)" 1£] 3'..)
S = 1 3 I '3
2 L E -2 -B
- 214 1 Q . :—(‘z z) . = 2 z)
(/(3"4—) o -/ b U{’13) -\ iL J (/(214') -\ %‘
L B /0 (/o
- 2z 2 . = . pog
U(lﬂ») - (I‘g + ) >U(l.z)(3,4) o/ ) >(/(/,3)(2,4) o1
!
U (29 iU ,(-z- '4?) U _(—é ?)
tne o/ Yz \-8 -3l 1T\ -
” __(-;' 5 (z’ -'E’-) U (e
Cian V8 -2 /)%30 L8 -4/ Y329 (0
= - 2
Gz (—vg 5') 3[/(:.3,4,2) ( = ;Z*)

Unge = Upazw 2 (,23)(,32)7€ | GIRNEED =€
(1,24)(1,4,2)=€ (,3,4)(1,%3) 7€ (1,3,2,91,42,3) =€

(1,4,32)X1,839-€ | (13%2X1,2%3) = €

Of all the irreducible representations of all the symmetric
groups, the only irreducible representation of dimension greater
than one which is not a faithful representation of the group is

this one, of = [2,2] of 84.



N =4, o= [3,1],’

« =[2,17: s
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s, = [2[3] s, = [H214 s, = [1304]
(4 | 3] 2]
= [1]4] s, = [113] s, = [1]2
1 A 2 A 3 H
3] |4 ] [ 4]

| o o +H O O + o‘ vo_
_ + = 12
Ue=|o1© U |20 2] Yt 2
© o ' o © F % o +3 +1
2 2
e
75 /2 o tl o o 4 & =3
|25 4 . _ -1 .3 -z +5 2
() =[37%3 o] U . =[cF =] 3 e %
G#H |\ o o =i ' G o+ ) & 3 4.
i T "z S +F 2
i [F3 __g 1 +2 ¢ o V2 Ve
¥3 -3 ¥3 -3 ik o 3 T3 *3
-VZ +5 _B _l*2 { _[zE 2 8
(/(,4)= 3 "¢ € jU/I,Z){3+)- iR 30 )‘%,30(24)" T 73 73
’ ¥ V3 *= ’ o o ™ ' ¥ 78 o
3 ?’ 2 3 3
f 2
-4 ?? _!é? +H O © -3 *3R Or
3
=2 -2 +V3] . - o-4 8 . =& -z 2
U(w(z,a)’ "3 3 "%/ Uf/,z,?) o 5 i )(/(2'3"” - f@ .
_;j r_;z“ o 2 "2 t3 e 2
-z |E ! 2 — 1 Vg
-5 7% & -3 5 o 73 "% *3
7 +5 +B _(-vz -+ §FB _VE -2 _IB
=¥z t¢g 2% . = vz - +t . = 5 Tz~
Uige)=[73 7€ 7% )U(/,3;4-) SRR 1O/l I S B
—E “E - - V& ’@ - "E '!‘u‘g fe)
3 tg 2 3 g 2 +3 '3
-1 .2
=425 L V3 |- =(-2 3% -B
0(114,3,2) +3V2 +€ rs )U('lg,fZJ 3 e 2
6 +3 . +E B -1
z T2 7 ¢ Tz
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Appendix G: A Tittle Bit About Group Theory

A representation: Let G be a group of transformations on some
vector space S. Let a be some vector in the space and consider the

quantities G,a, G a,...,Gna where n is the order of the group. Then

1 2

G.G . a = Gia if G.G

3% 3% and we see that the set of quantities G

1a, Gza,..,

G a are transformed into each other by the operations of the group. We
n

obtain a set of orthonormal basis vectors bl’ b,),...,bm by, say, using

the Gram-Schmidt procedure on the previous set (m<n). Gibj equals a

linear combination of b say, Gibj = DI

K? kjbk; if GiGp = Gq; then
c.cb, =D c.b. =p°.D b =c¢b,. =0%b :thus, D¢, = ' DP. (since
ipj kji ik ki'rk'r q j i r) ] rk7k]

the br are linearly independent). Therefore, the set of matrices
D, Dy .., D" combine with each other in the same way that the group
elements combine. Such a set of matrices is called a representation
of the group G (appendix F contains several representations of the
symmetric group; note that the set of matrices D1 = 1, D2 = 1,04,
p" = 1, where 1 is the real number, forms a representation of any group
of order n, this is called the trivial representation).

An irreducible representation: If there exists some vector ¢ in
the vector space S (continuing with the above example) such that when

the set G,c, G

1 Cy erves Gnc is orthonormalized to obtain f_,f ...,gu s

1772

where #<m, then the precvious rcprescntation is said to have been re-

2

duced. If the set £ f .

1> Ty . s E” is completed to give the space of

b ...b and if the new matrices representing the group elements are
m

]J
determined, then it will be found that: for every matrix, D;q =0 if

psp#, q3# or if p>u and qgu . The original space has been decomposed

into two subspaces each of which is left invariant by the group
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operations. If the space spanned by the basis vectors of some represen-
tation cannot be decomposed into two non-null spaces, then the represen-
tation is said to be irreducible.

Consider the transformation group of order two operating on three-
dimensional space where the elements are the identity (€ ) and the in-

version (i). If £ (&) is some function of Q, then € £(x) = £(x),

i f(x) = £(-x). Thus, £(%) and f£(-®) correspond to the bl’ bosees o

€ £(%) = £(X),€f(-%) = £(-%), i £(F) = £(-¥), i £(-%) = £(X); thus,
1 (10 2 01)

4 3 B3 P 3 = 1 F=] : il = i . e t

if (1 € and C2 i, D 01) aind D 10 The group relations

are €€ =€ | {i =€ , €4i = i€ = i, and we see that DlD1 = Dl,

: 7 Z - =
DZD2 = Dl, Dth = Dle = DZ. But (f(x) -f(—x)] is contained in the

space spanned by £(%) and £(-%); élf(§) —f(Jij] = Zf(ﬁ) —f(Jﬁj] ,

. 2 S - a . . .

i [f(x) —f(—xj} = - [f(x) —f(—xﬂ . Thus, the one dimensional space
If(i) —f(—%)} is invariant under the group and the previous representa-
tion has been reduced. The complementary space is [f(i) +f(4§5] for
which €[£@) +£(0] = i [£G) +£()] = [£@) +5(D) .

Consider the homogeneous differential equation H ?& = Ei ?E ;
consider transformations of the space of eigenfunctions, ?;. The set
of transformations (say h), leaving H invariant forms a group. (If
G.€h and G,€h, then G,H = HG, and G,H = HG., thus,

i j i i j i
yal
G,6,H = G,HG, = HG,G,; hence, if G,G, = G, then G,€h; the unit ele-
i’] i i] i’ Tk K
ment is in the set since it does not change H and €H = He ; if Gié h

1 1

-1 - - -1 - -
then consider HG,, we have G,HG, = HG,G,” = H, thus G.(G,HG,l) = G,ﬁ
i i1 i1 iii i

-1 -1 -
or GiH = HGi » hence Giéh; thus, the set is a group). Let Gj€]1

operate on H V; = Ei¥é; then EiGjyg = GjH?; = HGj?i; thus, Gjyi is

an eigenfunction of H degenerate with the eigenfunction V&. Continuing
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in this way the functions of the set qué’ Gz?;".‘,GnQ; are all
degenerate. As before we construct an orthonormal set ¢3,4’, "‘qun
(m<n) from these; the group h transforms the 4& among themselves and
the transformation matrices form a representation of the group h. All
of the <Pi are necessarily degenerate. Approaching the other direction
if ﬁ&} ﬂ’,...,a; are basis functions of an irreducible representation
of h and if ﬂ& is an eigenfunction of H then ﬁ’,..,,g; must all be
eigenfunctions of H and degenerate with ﬂl. For real physical systems
it is almost everywhere true that each set of degenerate eigenfunctions
of the Hamiltonian forms a basis for an irreducible representation of
the symmetry group of the Hamiltonian. (Exceptions are called acciden-
tal degeneracies.) Note, however, that if the assumed symmetry group
(say h') of H is smaller than the real symmetry group (say h) of H,
then since h' is a subgroup of h the irreducible representations of h
may be reducible for h'; thus, some symmetry required degeneracies
might appear to be accidental.

The different irreducible representations of S0(3) are labeled
by numbers called the angular momentum, L. The degeneracy of the irre-
ducible representation L is 2L+l and a set of basis functions for irre-
ducible representation L is the set of spherical harmonics of degree L,
Yim5€9¢0. The eigenfunctions of the Hamiltonian can be required to
transform as spherical harmonics.

Let Ci be the group containing the identity and the inversion.
This group has two irreducible representations both of dimension one.
For one, the trivial representationm, Dé.: Di = 1 and the basis function

is invariant under i; such a function is said to have even parity.
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For the other irreducible representation D€-= 1, Di = -1 and the basis
function changes sign under inversion; such a function is said to have
odd parity.

For the Abelian group of order n (all the elements commute) all of
the irreducible representations are one-dimensional. If t is the gen-
erator of the group then the n elements are €, t, tz, cees tn_1 (note
t"=€ ). The irreducible representations are labeled by the numbers k,
and the basis function of irreducible representation k changes as
gﬁ#k =G?imkik (note nk = 1). The translation group in one dimension,
T(l), is Abelian; so, let £t = t(a) be the primitive translation (of
magnitude a); then " = t(ma) and t(ma)‘#k(x) =<Pk(x+ma) = eimk¢%(x).
So far, the m and k are dimensionless, it is convenient to let
ma = M and % = K then MK = mk. The three-dimensional translation
group, T{(3), is the direct product of three Abelian groups. The typi-
cal element is t(mlal)t(mzaz)t(mSa3 . This group is still Abelian; so,
the irreducible representations are one-dimensional and
,t(mlal, mya, s mBaB) Cg,g}ixlxzx3) = ei (k,m, + kym,+ k3m3)43&%%(xl’xz’x3).
We let M = m 3’ +m.a, +m.a (a,, a,, &, not required to be orthogon-
ERIERN

) 5 o]
4+ k.2~ + k,3a” where ai-aJ = Sij then,

1 F: =]
al) and K kl 9 5

_ ) Sy - = lR'm v
MK =m + mzk + m,k, and t{(3) CP—}:{(‘{) —+T\L(\ + M = e C}";[/X)

151 2 " M3

Such fundamental principles as conservation of momentum and energy
arise from considerations of symmetry. Similarly, the selection rules
are group theoretical. Consider diffraction by a solid: H is invariant
under the translation group T(3); Let ¢%(ib5&;qi&) be the ground state

eigenfunction of H (N is the number of eleclrons and nuclei in the

solid). The initial situation is the solid in the ground state and a
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free X-ray or neutron (it is a basis function of the Euclidean group
(all three-dimensional translations and all three-dimensional rotatiomns)
Ikex . . .
and thus, transforms as e under translation) with wave number k;
the final state is the solid in the ground state and a free X-ray or
=/
neutron with wave number k. Let H' be the interaction between the
solid and the X-ray or neutron. The transition matrix element is
‘ x ’ Yoo A 7 . . .
I =‘<¢ﬁazfyﬂh)2%/q;)}kil¢ﬁ(ﬁf34W)2%‘“Mﬂ>. This quantity is
invariant under lattice translation (H' has the symmetry of the lattice);

-y = - W e " o
. AP —a %M MK ) ~ 4/I“£)'M"‘,
so, we transform with T(M), I-T/m 1= e e & Ire _1)

ik - }OM
e =

thus, 1 or (K - i}ﬁ = 2T n(n is an integer). Thus, if
- e B - >} -2 -3
($-3)F% 279 -:277/3,3*'323 tJs? >> then the g; are integers; such

vectors as g are called reciprocal lattice vectors, and we see that the
2 Tf'f include the possible scattering vectors for all allowed diffrac-
tions. The other selection rules (e.g., absorption of light) follow in
a similar manner.

For a set of N identical particles H is invariant under the permu-
tations of the particles; thus, %1 is a basis function of an irreduci-
ble representation of the symmetric group, SN (see section Aa for some
discussion of SN). If we consider some perturbation of the problem, H',
then the transition matrix element is <V%IH//%C>; but if the particles
are still identical, then H' is also invariant under the operations of
SN . Thus, <%/HI/4‘,{> # 0 only when the (//i and (}/j transform as the
same basis function of the same irreducible representation. Thus, if
the system is in a state which belongs to an irreducible representation
of SN dimension greater than one, then the system is degenerate but the

degeneracy can never be detected as long as the particles are
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identical. It is unsatisfactory to speak of things which are in prin-
ciple undetectable; so, the whole problem is avoided by postulating
that physical systems of identical particles must belong to one of the
one-dimensional irreducible representations of SN {(this postulate 1is
called the Pauli principle). There are only two one-dimensional irredu~

cible representations of S these are the trivial representation and

N’
the alternating representation. For the trivial representation all per-
mutations are represented by +1; for the alternating representation
even permutations are represented by -1, and odd permutations are re-
presented by -1. Particles whose many-particle systems have wave
functions which are basis functions of the trivial representation
(alternating representation) are called Bosons (Fermions). Electrons,
protons and neutrons arc Fermions (given that the electron has spin
1/2, the footnote on page Db-1 implies that electrons are Fermions
since, experimentally, the ground state of many-electron systems is not
totally symmetrical and the spin is not N/2).

Probably the best place to begin the study of group theory is the

first three chapters of HAMERMESH (1962).
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APPENDIX H:

Summary :

1
(i)* Let S = 2

A Inl‘ ) ]
1 n 4+ Ln + 2[--n] where o =[n, N~n]

Then if é”r is the product of r disjoint transpositions each of which

involves one element in the first row and one element in the second
£s%, U =

row of =

1 1s (F)

(ii)* if 87 = [T[ndl where o =[ 2%, 1N%%]
21ni2
. R
N then Ufft; )
1]

(1ii) for the « of (ii) if ¢ involves only elements £ n or else only
i
elements > n )Uffe?;— f; N Two permutations are defined to be dis-
joint if no element of one appears in the other (e.g., the cycles of
a permutation are disjoint).
Consider r = 1, let %= (ij), where isn<j and o =/n, N-n{ .

y = 9

We note that U

kl(n,n-1,..,i k1’ Uk1(nil,n42,..,3)" 21

Uer(i,i) = Yel(i,it,...n)(m,i)(n,n-1,..,1)" Vrl(i,i+l,..,n)(n,3)

= Ui, i, .. n) Gui-1,. o) (nyntl) (nhl 02, .., §)

- Utl(i,i+i,..n)(j,j-l,..,n+l)(n,n+l) :

Consider r = 2, let ¢= (k,m)(i,j), where k<iTn<j<m

..y = U . . - - i
Utl(k,m)(l,]) ti(k,m)(i,i+1,..,0)(5,j-1,..,n+L)(n,n+l) Jcon51der

<i; : i
Uil(n,n«l,..,k)(i,i+i, .0’ k<1i ; thus, by the lemma of appendix A the
elementary transpositions involving letters€i-1 canmot have off-diagonal
contributions. Thus, the position of i-1 cannot be changed under any of

the transpositions giving off-diagonal contributions.

% The proof of this theorem is not complete.
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Hence, all permutations involving only letters £i-1 give unity contri-

butions to Urf'&' , for this reason I replace these transpositions by &

or neglect; thus, Uij(n,n-—l,..k)(i,i+l,..,n) =

' i(n,n-1,..,1) (1,10 (1,141,..,0) ~ ij(n,i-1)

3] ..y = U

t1(k,m)(i,]) tl(k,k+1,..,n) (n,m)(n,i-1)(j,j-1,..,n+l)(n,n+1)
= U . , =
£1(k,k+1,..,n)(m,m-1,..,n+1)(n,n+1) (n,1-1) (n+1, §+1) (n,n+l)
= U1 (o, ) (i 1) (b, 1) (1 0y 442 Oy 1 M) (S, 1 42) Oy 91
= Ux-/(@, Y ) M)(Mlm-ljn"mél) (A-1, 4 wm-t) (gl g, o, oMt2) (=1, M+2) Crajmat1)

Taus, Upy e 1) (mp) © Ui (n-1,n42) (n,nl)

Theorem App. H-1: If the 2r inequalities p<k<...<i¥n<j<..<m<q

are satisfied and “(=[n, N-n{ , then

i U L =
@ Uy (p,q) Geym) o (1,1
= Ux/m",m/y, vo) k) (el ey ML) (ply g manZ) oo (A 04D mr) (Gl D B

a
where Ar S (mme ) (et s =P (bl 32 0 s DI A 1 M=) (Ml oo M=) e (Mo et X

X (meft2W g pat 1)

G Uy emy..a,g) ~ O/ ()

Proof (i):

(i) It is true for r = 1 and 2. Assume it is true for r-1 % s.
Yt e, grytha, gar ) =

= Ve (Ao r) o, ds+tyy m) (g, Ja-ty yptt) e (U=¥ 4200y ro2) (4027 mir-1) Ay =

= U;\‘l(/y;",m)fﬁr,",M*lJ(M,M*')(’“*’)‘ 'lﬂV){Qﬂ,?r‘J"l’"”)("‘T'J“V) g,y ) oo Ay

= UJ:(A»,“;M&/?H') per) (Ag=iy oy M) (et ) Wt 2) (o, 1) (o=l YOG M) (1) 01y g =032y 4 g1 ) -

= e , P ve A = M*P)X
Ut 1chyy mY ooyt Gy ) gty e 20 = (b oy semba D170 QED
X (m, 1) (o, M=t} ot M+2) (et =242, b 3) < (Mabrt 2, M = b b1} (AFF=Iy Mt F) }?,_.,,
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Proof (ii): U = U =_.1- -
) 11A1 11(n,n+L) n (from Aa 1

U = U , _
114, 11(n,n+1)(n,n~-1) (n+1,n+2) (n,n+l)

2 2
= (U/I//w,mw) ) UI//A,AM) M+l m+2) + (Ulh (m,mrd) U/.,;, (m'/u.;)(m&l/ﬂf-a)

‘ 2 (MH) n
e A - e

where Sh = (n,r1—§~l)Sl ; Sh = [1] 2 [---ln-1]n+1]
n{n+2
= U
U11A3 1,1 (n,n+1)(n,n-1,n-2) (n+1,n+2,n+3) (n,n+1) (n,n-1) (n+1 ,n+2) (n,n+1)
, / ! I ! | i ! !
)7 ,/ / ! | ! I | I '
< A WA T ! +! V- b e by -3 |

|

1

|/l
SR

t

+

AR

|

prd
i

S, — =t t
3
7 T2 [m]mei] . _ /{2 [m-1]mr2] | NIRE Im | mez|
S‘J_ 1| M2 joS. = m|mMe] ) 3= m—1] s+t
2 (M‘Z)(M*"'y’"")’ 2abt) (=1 p4 (a2 ) (A A= Drnfoe2) anfra~2)

U, z -
//A3 et (m,,)3(,.~/)/v,2 6",_2)//“_,)2(}72/,“:52 @_2)3/” er_,)Z(}“_',)z

_,.__i__[}_ +Q;Z)£@_'ﬂ+ 20Mm+1) | psm) -< o
mimyL 2 MGy m1)* mdiayt] T armgaez) T 7 '/ 4 3)

We can go on calculating this for each r but for the proof we need the
induction which I have not accomplished yet. What is needed is a way
i
to generate expansions of (74") . Thus, the proof is incomplete.
¥

N~
Theorem App. H-2: If p<ke ... <iSn<]J<..<m<g and “ =[2n,1 2n],

then
ZH-P  me-R 9*1'4(/‘7

D Voo yom.. G,y ~C0 e e

;s - =
(ii) Uff(p,q)(k,m)..(i:j) [,:
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Proof (i): the proof is the same as for THM 1li where the elementary
transpositions which were +1 before are -1 which causes the factor of
the parity of the (p,..,n) etc. to appear.
Proof (ii): the parity factor is squared for t = £ so Uff()(%1)=1274r
just as in THM 1lii. We follow the same steps as before except that all
terms are positive.

Theorem App. H-3: If p, k, .., i are all different and £n, and j,..m,q

are all different and >n, then

. . - = /- F ~
() if o = [a, Nnd s Uy yaom). (L9 © Y /(7]

L. .- v n N-Zn _ M
(11) if o =] 2%, 174 Uer(o.a)Ceum) . (5,5 'y /)

Proof: U .. = U - if % eithe
ZL90LF Uiy (p,q) (km) ... (1,107 T11(p,q) (k,m). .. (i,5) *
involves letters £€n or if 7 involves letters >n. But the similarity
transformation ¢ rearranges the p, ¢,..,i among the transpositions.
Thus, the p, k,.., i can be put in the order of THM-1. Similarly, if

¥ involves only elements>n the q, m,..,j can be put in the order of

THM-1. The proof for ii is exactly the same. QED

N-2
Theorem App. H-4: If & = [ZH, 1 é} and for ?% = (p,q)(k,m)...(i,3)

of THM 2 and if % involves only elements £n or else elements >mn then
P {
Uiere ™ belT)

Proof:
]

= 1 == U = y .
Usres ™ VsreUsr 2 L, /4G £, (’y) QED



174 App I-1
APPENDIX 1:

Theorem: f's' ‘f Cs}sursg

Proof: Consider 2= (k,k -+ 1), then U’i"s(k,k > l)m[‘SM—"(}—SM)]U"‘O{‘Q’%H)

from (Aa-9). We write this as Ufé(k,k N 1): ﬁr,@gy) E‘Fo UM(,@,.@H)

since Escf -Lafr F s and Uy gy # 0. Grgps ZU&( 3?2"%3#

‘m

where ’2’2‘3 w are elementary transpositions. But f&: l:s_ L =
A

2] rd
and ﬁ?’, 5?,2 f?«m’ fé’ . QED
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