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With kind permission from Springer Science+Business Media: 

Experimental Mechanics, Three-Dimensional Full-Field Measurements of Large 

Deformations in Soft Materials using Confocal Microscopy and Digital Volume 

Correlation, 47(3), 2007, p. 427-438, Franck, C., Hong, S., Maskarinec, S.A., Tirrell, 

D.A., and G. Ravichandran, Figures 1–12. 
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Abstract 

A three-dimensional (3-D) full-field measurement technique was developed for 

measuring large deformations in optically transparent soft materials. The technique 

utilizes a digital volume correlation (DVC) algorithm to track motions of subvolumes 

within 3-D images obtained using fluorescence confocal microscopy. In order to extend 

the strain measurement capability to the large deformation regime (> 5%), a stretch-

correlation algorithm was developed and implemented into the Fast Fourier Transform 

(FFT)-based DVC algorithm. The stretch-correlation algorithm uses a logarithmic 

coordinate transformation to convert the stretch-correlation problem into a translational 

correlation problem under the assumption of small rotation and shear. Estimates of the 

measurement precision are provided by stationary and translation tests. The proposed 

measurement technique was used to measure large deformations in a transparent agarose 

gel sample embedded with fluorescent particles under uniaxial compression. The 

technique was also employed to measure non-uniform deformation fields near a hard 

spherical inclusion under far-field uniaxial compression. Introduction of the stretch-

correlation algorithm greatly improved the strain measurement accuracy by providing 

better precision especially under large deformation. Also, the deconvolution of confocal 

images improved the accuracy of the measurement in the direction of the optical axis. 

These results shows that the proposed technique is well-suited for investigating cell-

matrix mechanical interactions as well as for obtaining local constitutive properties of 

soft biological tissues in 3-D. 
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B.1 Introduction 

The importance of mechanical signals in directing cellular behaviors such as 

adhesion, motility, differentiation and morphogenesis has become evident in recent years 

[1-4]. Yet there is minimal understanding regarding the intricate coupling of mechanical 

and biochemical signaling at the cellular level [5]. This knowledge gap is mainly due to 

the lack of experimental tools that can accurately measure forces and deformations at the 

cellular or sub-cellular level with sufficiently high sensitivities and wide applicable 

ranges. Previous investigations on the influence of mechanical stimuli predominantly 

focused on two-dimensional cell-substrate interactions that occur during cell spreading 

and migration [6, 7]. Although these reports have contributed much to the understanding 

of cell behavior in two-dimensional environments, it has been recently demonstrated that 

cells show distinct three-dimensional morphologies and interactions, as expected in vivo 

[8-10]. Thus, in order to characterize and understand cell-matrix interactions at the single 

cell and sub-cellular level, forces and motions in three-dimensions must be quantitatively 

measured and analyzed. Even though technical advances in microscopy have allowed for 

feature sizes as small as nanometers to be resolved [11], the nature of most of the 

previously presented measurements remains two-dimensional. Attempts to employ 

stereo-imaging techniques to capture three-dimensional deformation fields [12] have 

been successful, but these methods only provide surface information.  

Motivated by the need for capturing mechanical responses of a motile cell in a 

three-dimensional extracellular matrix (ECM), a promising new technique that uses the 

three-dimensional imaging capability of confocal microscopy coupled with a digital 

volume correlation (DVC) algorithm was developed in this study. Analogous to the 
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digital image correlation (DIC) technique [13, 14] where in general two-dimensional 

displacement fields are measured, the DVC uses volume subsets to track the three-

dimensional displacement fields within the matrix. One main advantage of the proposed 

algorithm over those reported previously [15-17] is that the method presented here takes 

into consideration the stretch deformation of each volume subset. Also, a deconvolution 

algorithm is used to minimize the blurring of the confocal images. These two 

improvements allow for a more accurate strain estimate, especially when local strains are 

large and subset deformation is significant. Another advantage over previous studies is 

that the results do not depend on the local sample feature size to achieve high correlation 

resolution, but rather can be tailored to the relevant length scale of interest. This is 

achieved by utilizing commercially available fluorescent markers rather than relying on 

the autofluorescence of the sample, which can limit the field of view. The method 

presented here allows the user to choose virtually any field of view provided the 

availability of the appropriate markers. Using this method, material properties of soft 

materials can be experimentally determined, especially where conventional 

characterization techniques fail due to the compliant nature of the material. 

This paper is organized as follows. In Section B-2, a brief description of the laser 

scanning confocal microscope (LCSM) is presented. The details of the digital volume 

correlation methodology and algorithm developments are described in Section B-3. The 

experimental procedures are given in Section B-4 and the results are presented and 

discussed in Section B-5. Conclusions for the present study are summarized in Section B-

6. 
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B.2 Laser Scanning Confocal Microscope (LSCM) 

Confocal microscopy has emerged as a powerful imaging technique owing to the 

optical sectioning capability enabling construction of three-dimensional images. In 

conventional wide-field microscopy, light is collected from the entire sample volume, 

including the focal plane as well as all other planes, whereas, in confocal microscopy, 

light is generally collected from the focal plane only. This is achieved by using a pinhole 

in front of a photomultiplier tube (PMT) detector that blocks the incoming light from all 

other planes. As illustrated in Figure B-1, the solid line represents light reflected or 

emitted from the focal plane, while the dashed line represents light from the out-of-focus 

plane. The overall contrast and resolution of the image is significantly increased as 

compared to conventional wide-field microscopy where the image is blurred by out-of-

plane light. Furthermore, the inherent optical sectioning of the specimen in confocal 

microscopy allows the assembly of three-dimensional image volumes by stacking 

together individually acquired planar slices. In a LSCM system, a laser with a single-

diffraction limited spot size is used to sequentially scan a selected focal plane. Thus, the 

image is not formed using a CCD camera as in conventional microscopy, but rather the 

image is a result of the light’s interaction with successive areas of the specimen, i.e. the 

image is recorded pixel by pixel analogous to a scanning electron microscope. The 

resulting image is generally superior in resolution to images recorded by conventional 

optical microscopy. A more detailed description of the confocal principle and the current 

applications of confocal microscopy are well documented and can be found elsewhere 

[18, 19].  



 172 

In the present study, fluorescent markers were added to the transparent materials 

of interest and they served as image sources for constructing the 3-dimensional images 

and as markers for performing DVC described in the next section. 

 

B.3 Digital Volume Correlation (DVC) 

B.3.1 Principle of DVC 

LSCM provides discretized volume images visualizing 3-dimensional structural 

patterns of fluorescent markers in a transparent sample. In this study, the combination of 

digital volume correlation (DVC) and confocal images is used to achieve 3-dimensional 

full-field deformation measurements as an extension of the vision-based surface 

deformation measurement techniques, well-known as digital image correlation (DIC). 

The basic principle of the DVC is schematically illustrated in Figure B-2. Two confocal 

volume images of an agarose gel with randomly dispersed fluorescent particles are 

obtained before and after mechanical loading. Then, the two images are subdivided into a 

set of subvolumes that are centered on the points of interest. Using each pair of 

corresponding subvolume images, the respective local displacement vector can be 

obtained from 3-dimensional volume correlation methods.  

Consider two scalar signals f (x)  and g(x)  which represent a pair of intensity 

patterns in a sub-volume  before and after a continuous mapping, ˆ y (x) : x y , 

respectively. Assuming that the signal is locally invariant during the mapping, 

f (x) = g(y(x)), subvolume-wise correlation matching can be obtained by finding an 

optimal mapping that maximizes the cross-correlation functional defined as 

m( ˆ y ) = f (x)g(y(x))d x  (1) 
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The methodology is illustrated using a translational volume correlation, which is 

presented below. The continuous mapping is assumed to be a rigid translation, y = x + c , 

and the cross-correlation function is represented as a function of a displacement vector c  

as 

m(c) = f (x)g(x + c)d x  (2) 

The cross-correlation function can be written using Fourier transforms as follows 

m(c) = F 1 F f (x)[ ]
*
F g(x)[ ][ ]  (3) 

where the Fourier transform of f (x)  is defined as  

F f (x)[ ] = f (x)e ik•xd x  (4) 

 and * denotes the complex conjugate. The discrete cross-correlation function can be 

computed efficiently by using the Fast Fourier Transform (FFT) algorithm. Then, the 

rigid translation vector c can be estimated from the location of the cross-correlation peak 

with respect to the origin. Finding a voxel-resolution displacement vector c from the 

discrete cross-correlation function is straightforward and provides half-voxel accuracy. 

Determining the displacement vector c in sub-voxel accuracy generally requires fitting 

and interpolation of the correlation function near the peak. Various fitting models have 

been used in the past [20, 21], employing somewhat arbitrary assumptions that the cross-

correlation function near the peak can be approximated by a Gaussian or a parabolic 

function. The sub-voxel accuracy of such peak-finding algorithms is determined by the 

choice of fitting function as well as the size of the fitting window. In this study, a three-

dimensional quadratic polynomial fitting is used to accurately fit the correlation function 

near the peak and hence provide improved sub-pixel accuracy.  
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However, significant measurement error can be introduced from the decorrelation 

of the intensity patterns when the rotation or the stretch of the subvolume is large. Thus, 

applications of such simple correlation algorithms have been limited to small strain and 

small rotation problems due to the inherent limitation of the rigid-translation assumption. 

In general, the applicability of such algorithm is limited up to about 5% of strain or 0.05 

radian of rotation angle [20]. In order to overcome this limitation and to obtain more 

accurate displacement measurements, a higher-order approximation of the deformation 

field within each subvolume is required for large deformation measurements in soft 

materials. In the following section, an extension of the FFT-based DVC to measure large 

deformation fields is presented. 

 

B.3.2 Stretch correlation 

Assuming uniform deformation of each subvolume, a general homogeneous 

deformation field can be written as 

ˆ y (x) = Fx + c  (5) 

with a deformation gradient tensor F = I + u  and a displacement vector u . Therefore, 

any uniform deformation in 3-dimensions can be represented with a total of 12 

parameters which consist of 3 displacement components and 9 displacement gradient 

components. Optimal programming in 3-dimensions for a total of 12 degrees of freedom 

(DOF) is computationally expensive in conventional correlation algorithms.  

Alternatively, the general homogeneous deformation can be represented with a 

polar decomposition of the deformation gradient tensor as 
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ˆ y (x) = RUx + c  (6) 

where R is the orthogonal rotation tensor and U  is the symmetric right-stretch tensor. 

Then, the general homogeneous deformation in 3-dimensions is represented with 6 

stretch, 3 rotation and 3 translation components. Depending on the dominant mode of the 

deformation of interest, the correlation algorithm can be modified to include additional 

optimization parameters selectively. A digital volume correlation algorithm that includes 

three rotational degrees of freedom has been presented previously [17]. In this study, 

assuming small rotations and small shear stretch components, three normal stretch 

components are included as additional correlation parameters in the FFT-based DVC 

algorithm, as an extension of the stretch-correlation algorithm developed for large 

deformation measurements in two-dimensions [22]. 

Neglecting the small rotations, the mapping of a pure homogeneous deformation 

and a rigid translation is written as 

ˆ y (x) = Ux + c  (7) 

When the loading axes are aligned with the global coordinate axes so that the shear 

stretch components are small, the invariant condition can be written as 

f (x) g(U x + c) (8) 

where U  denotes the diagonal part of U . Then, the six optimization parameters for the 

stretch correlation in DVC algorithm are c1,c2,c3,U11,U22,U33{ } . 

In the case of a pure stretch problem without any translation, a simple coordinate 

transform into a logarithmic scale converts the stretch correlation problem into a simple 

translational correlation problem. However, when there is a non-zero translation, the 

coordinate transform cannot be directly performed in the spatial-domain to achieve the 
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stretch correlation. Therefore, an equivalent invariant condition of (8) in the Fourier-

domain is considered to implement the stretch correlation in the Fourier-domain as 

U F(U k) = eik•cG(k)    (9) 

where F(k)  and G(k)  represent Fourier transforms of f (x)  and g(x) , respectively. Then 

by using the Fourier power spectrums only and therefore dropping the phase term, a 

translation-invariant stretch-correlation problem can be achieved in the Fourier-domain. 

A stretch cross-correlation function to be maximized for determining the 3 axial stretch 

components neglecting the determinant of jacobian is shown as  

m(U ) = F(U k) G(k) d k   (10) 

The stretch correlation problem in the Fourier-domain can be transformed into a 

translational correlation problem in a log-frequency domain as 

˜ m ( ) = ˜ F ( + ) ˜ G ( ) d   (11) 

where = logb k  and = logb U . The translational correlation problem in the log-

frequency domain can be easily solved using (3). Finally, the three axial stretch 

components can be obtained from the optimal vector  in the log-frequency domain as 

follows 

U11 = b 1 ,U22 = b 2 ,U33 = b 3  (12) 

The accuracy of the obtained stretch components depends strongly on the spectral 

content of the original signals. If the signals are already band-limited, special 

considerations, such as normalizing the power spectrums and employing the Hanning 

window, must be included to achieve robust stretch correlations. Also, in the numerical 

implementation of the stretch correlation algorithm, incorporating zero-padding of the 

signals before Fourier transforms can improve the overall accuracy of the stretch 
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correlation algorithm by providing ideal interpolations of the Fourier transforms at a cost 

of increased computational load.  

In Figure B-3, the stretch-correlation procedures are illustrated using a one-

dimensional example. Two reference and deformed signals representing 10% of uniform 

strain are shown in Figure B-3(a). The Fourier power spectrums of the two signals are 

shown in Figure B-3(b). Note that only half of the full frequency range is shown due to 

the inherent Fourier symmetry. In Figure B-3(c), the equivalent Fourier power spectrums 

are shown after the zero-padding as ideal interpolations of the power spectrums in Figure 

B-3(b). Figure B-3(d) shows the Fourier power spectrums along the logarithmic axis. 

After interpolating the power spectrums using a uniform interval in the log-frequency 

domain as shown in Figure B-3(e), the translational correlation as presented in (11) can 

be applied to find the 1-D stretch value. Extension of the 1-D stretch-correlation into 2-D 

or 3-D is straightforward as long as rotation and shear stretch are small. 

In the implementation of 3-D stretch correlation, 2-D projections of the 3-D 

subvolume images were used to circumvent the geometrically increased computational 

load after the zero padding, as shown in Figure B-4. Essentially, the stretch correlations 

using the large zero-padding were conducted in a reduced dimension for computational 

efficiency. Three separate 2-D projections were conducted so that three sets of two 

stretch components can be obtained. From the six stretch values, three stretch 

components (U11, U22, U33) were obtained by computing the average of the two 

corresponding stretch components.  
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Once the three axial stretch components are found, the translation vector c can be 

determined more accurately by conducting the stretch-compensated translational 

correlation using 

m(c) = ˜ f (  x )g(  x + c)d
 x 

 (13) 

 

where f (x) = ˜ f (U x)  and  x = U x . The stretch-compensated translational correlation 

requires the initial subvolume image f (x)  to be stretched to ˜ f (  x ) according to the 

obtained three stretch values. Therefore the process involves sub-voxel interpolations of 

the initial subvolume image. Because the stretch part of the deformation is compensated, 

a more accurate translation vector c can be obtained. The stretch correlation and the 

translational correlation were conducted iteratively to achieve converging results. For all 

experiments executing the stretch and translational correlation twice yielded sufficient 

convergence based on a mean difference criterion, where the mean and standard 

deviation of the difference of the before and after displacement matrices were compared 

(this is similar to least-square error estimate). Such an iteration process is equivalent to 

the iterative optimization of a correlation coefficient in conventional image correlation 

scheme conducted in the spatial domain. 

Finally, the displacement gradients were computed by using a 3-dimensional 

least-square fitting of each displacement component in a 3x3x3 grid of neighboring data 

points. Although more sophisticated smoothing or filtering algorithm can be employed 

before or during the gradient calculation in order to obtain smoother strain fields, no such 

algorithm was used in this study to assess the performance and robustness of the 

proposed DVC algorithm. Once the displacement gradient fields are determined, either 
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infinitesimal or finite strain values can be computed from the displacement gradient 

fields.  

 

B.3.3 DVC using confocal microscope images 

The spatial resolution of a confocal microscope is determined by the 3-

dimensional point spread function (PSF) which is an intensity distribution near the focal 

point corresponding to a volume image of a point light source under a diffraction-limited 

imaging system. The 3-dimensional PSF has an ellipsoidal shape elongated along the 

optical axis [23, 24]. Thus, the obtained confocal image is the convolution of actual 

intensity distributions using the PSF as a kernel. Consequently, the axial spatial 

resolution of confocal imaging is 3 to 10 times worse than the lateral spatial resolution 

depending on the refractive index of the medium and the numerical aperture of the 

objective lens.  

In Figure B-6 (a), an isosurface plot of a typical confocal subvolume image 

(64x64x64 voxels) of a transparent agarose gel with randomly dispersed fluorescent 

spherical particles of 2 voxels diameter is shown. The spherical fluorescent particles 

appear as axially elongated ellipsoids. The blurring in the axial direction causes increased 

uncertainties in the DVC measurements of the axial direction components. The 

consequence of such blurring is particularly critical to the performance of the stretch 

correlation algorithm that uses the Fourier power spectrums. In this study, the noise-

resistant Lucy-Richardson deconvolution algorithm [25] was used to deconvolve the raw 

confocal images using a sinc PSF in the axial direction prior to the stretch correlation. 

Figure B-6 (b) shows a subvolume image obtained after deconvolution of the raw image. 
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There are two additional confocal-imaging artifacts caused by the refractive index 

mismatch in the optical path. First, spherical aberration due to the refractive index 

mismatch causes asymmetric distortions of the 3-dimensional PSF as a function of the 

penetration depth. Such a distorted and depth-dependent PSF makes the deconvolution of 

the confocal images difficult and causes significant error in the DVC. Effects of such 

spherical aberration in confocal imaging have been extensively studied in the past [26, 

27]. In practice, the spherical aberration can be minimized by adjusting the correction 

collar commonly equipped in commercial microscope objectives. In order to minimize 

the distortion of the PSF within the field of view, the correction collar needs to be 

adjusted appropriately prior to each test. The second form of confocal imaging artifact 

due to the refractive index mismatch is caused by the fact that the focal point does not 

follow the axial motion of the scanning stage [28, 29]. This causes an over- or under-

estimation of the depths depending on the ratio of the refractive index mismatch. This 

apparent discrepancy between the axial and the lateral scanning resolutions can be 

calibrated by imaging large fluorescent microspheres embedded in a sample. 

 

B.4 Experimental Procedures 

Test specimens were prepared from a 1% (w/v) solution of agarose (J.T. Baker, 

NJ) in standard 0.5X TBE buffer (Tris/Borate/EDTA, pH 8.0). The agarose solution was 

heated until molten, and carboxylate-modified red fluorescent (580/605) polystyrene 

microspheres (Invitrogen, CA) of 1μm diameter were injected into the liquid agarose. 

The nominal volume fraction of fluorescent markers in the gel was 0.3%. The addition of 

the fluorescent microspheres seemed negligible to both the local or global mechanical 
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response of the agarose gel. The nominal volume fraction of fluorescent markers in the 

gel was 0.3%. The mixture was cast into a pre-chilled Teflon mold mounted onto a glass 

plate. Samples were left at room temperature for 5 minutes to solidify. This protocol 

yielded circular agarose specimens with typical dimensions of 6.4 mm diameter and 1.4 

mm height. For spherical inclusion experiments, spherical polymethylmethacrylate 

(PMMA) beads (Sigma-Aldrich, MO) of 100 μm diameter were added to the mixture 

before casting.  

In order to apply uniaxial compressive loading to the sample while imaging, a 

miniature loading-fixture was built and mounted directly on top of the microscope stage 

of an inverted optical microscope as shown in Figure B-7. The sample was kept 

immersed in the buffer solution to prevent swelling or shrinking during the test. The 

compressive loading was achieved by translating a micrometer head with a resolution of 

1 μm. For all experiments the imposed strain increments were controlled by the 

micrometer and were calculated using the dimension of the specimen and the imposed 

loading (displacement) step. The resulting applied force was measured using a 10-gram 

load cell (A.L. Design, NY).  Nominal stress-strain curves were compiled using this setup 

for each test. The LSCM used in this study was a confocal system (Nikon C-1) combined 

with an inverted optical microscope (Nikon TE-2000-U). A 40x CFI planar fluor air 

objective with a numerical aperture of 0.6 was used in all experiments. 
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B.5 Results and Discussions 

B.5.1 Characterization of measurement precision 

In order to verify the measurement precision of the DVC algorithm using confocal 

volume images, two tests were conducted under zero-strain condition. In the first test, 

two confocal volume images were repeatedly acquired from a stationary sample under 

zero load. The scanning resolution was 512x512x512 voxels, and the scan spacing was 

0.45 μm in all three directions. This resulted in a field of view of 230x230x230 μm
3
. In 

the second test, two confocal images were acquired before and after translating the 

unloaded sample using the x3-directional scanning stage of the confocal microscope. The 

two pairs of the confocal images were analyzed by using the DVC algorithm with a 

subvolume size of 64x64x64 voxels. Displacements were measured at 15x15x15 points 

(total 3375 points) in a uniform grid of 32 voxels spacing. Displacement gradients were 

then calculated by using the displacement data at 3x3x3 neighboring grid points 

following linear least-square fitting of the displacement components. Although the 

quadratic (Lagrangian) or the logarithmic (true) strain measure can be used for large 

deformation analysis, the linear (engineering) strain measure was used to represent the 

deformations in this study. As a quantitative measure of the uncertainties in the DVC 

results, standard deviation values of three displacement components and three normal 

strain components were computed and summarized in Table B-1.  

The absolute values of the uncertainties in the displacements and the strains are 

comparable to previously reported results [15, 16]. These measurement uncertainties are 

likely due to the noises in the confocal images caused by the PMT detector noise as well 

as the positional uncertainty of the laser scanning system. It is also noted that the axial 
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uncertainties of the displacement and strain components in the x3-direction are 

approximately 3 to 5 times higher than the corresponding lateral uncertainties in the x1- 

and x2-directions (in-plane). This result shows that the axially elongated three 

dimensional PSF causes a significantly degraded measurement precision in the x3-

direction. These tests under zero-strain condition provide a simple way to assess baseline 

uncertainties of the measurements using the DVC algorithm.  

 

B.5.2 Uniaxial compression test 

In order to verify the 3-dimensional deformation measurement capability of the 

DVC using the LSCM, the agarose gel sample was compressed uniaxially with nominal 

strain increments of 2-3%. The total imposed nominal strain was approximately 10%. 

The obtained confocal images were analyzed using the DVC algorithm with a subvolume 

size of 64x64x64 voxels. Figure B-8 (a) shows a vector plot of the measured 

displacement field. Figure B-8 (b) shows a 3-dimensional contour plot of the vertical 

displacement components. 

 In order to assess the performance of the DVC algorithm with the stretch-

correlation for large deformation measurements, accuracy and precision must be 

established systematically. The accuracy and the precision of a measurement technique 

are usually achieved by repeatedly measuring some traceable reference standard. Then, 

the accuracy and precision are typically quantified as the difference between the mean of 

the measured values and the true value, and as the standard deviation of the measured 

values, respectively.  
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Mean and standard deviation values of the measured strain fields are presented in 

Table B-2 to assess the effectiveness of the stretch-correlation algorithm. The mean 

values of the lateral strain components 11 and 22 are close to zero and smaller than their 

corresponding standard deviation values, i.e. the measurement precision, and are 

therefore negligible. The standard deviations of the no-stretch-correlated and stretch 

correlated lateral strain components are similar illustrating that the stretch-correlation 

does not improve the precision of the strain measurements for small strains. Comparing 

the no-stretch and stretch-corrected axial strain component 33, the difference of 0.09% 

between the two mean values is smaller than their corresponding standard deviation 

values, which shows that the stretch correlation does not improve the accuracy of the 

average strain measurement. However, the standard deviation in the stretch-correlation 

case is less than half of that in the no stretch-correlation case. This proves that the stretch 

correlation greatly improves the precision of the large-deformation measurement. 

Although precise measurements do not necessarily mean accurate measurements, it is 

often not possible to reliably achieve high accuracy in individual measurements without 

precision. This point is particularly important in the full-field measurement of non-

uniform deformation fields.  

Since it is not possible to know the true value of the compressive strain up to the 

level of accuracy and precision of the measurement technique under investigation, the 

absolute accuracy of the proposed DVC method cannot be assessed with the nominal 

strain value from the global measurement.  However it is clear that overall measurement 

accuracy can be improved by providing better precision, since precision is a limit of 

accuracy. The results from the uniaxial compression test show that the proposed stretch-
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correlation algorithm in conjunction with the deconvolution algorithm improved the 

overall accuracy of large deformation measurement with better precision. 

The average axial compressive strain value was 9.3%, whereas the average lateral 

strain values were negligible. The result showed that the lateral expansion due to the 

Poisson effect was effectively constrained due to the disc-shaped geometry of the sample. 

To determine the material properties of the agarose sample correctly the uniaxial test 

results need to be interpreted as a constrained compression of a soft layer yielding 

expression (14), where the axial stress-strain ratio for constrained compression is defined 

as a constrained modulus and related to elastic properties as follows, 

 33

33

=
(1 )E

(1+ )(1 2 )
, ( 11 = 22 = 0)  (14) 

where E and  denote Young’s modulus and Poisson’s ratio, respectively. 

 

B.5.3 Spherical inclusion problem 

In order to demonstrate the capability of the measurement technique using the 

DVC and the LSCM, a non-uniform 3-dimensional deformation field near a hard 

spherical inclusion was measured under far-field uniaxial compressive loading. Confocal 

images near a 100 μm-diameter PMMA bead embedded within the agarose gel sample 

were recorded during incremental compressive loading. The nominal strain increment 

was approximately 3%. The scanning resolution was 512x512x512 voxels, and the scan 

spacing was 0.45 μm in all three directions. The confocal scanning volume near the 

embedded PMMA bead is illustrated in Figure B-9. Figure B-11 shows a vertical slice of 

the confocal image along the meridian plane of the PMMA bead at the undeformed 

configuration. The superimposed uniform grid of 16-voxels spacing represents the 
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locations where displacements measurements were conducted. The confocal images were 

analyzed by using the proposed DVC algorithm with a subvolume size of 64x64x64 

voxels. The contour maps in Figure B-13 represent constant contours of the horizontal 

(u1) and the vertical (u3) displacement components on the meridian plane. As expected, 

the dominant mode of the deformation was a constrained uniaxial compression along the 

x3-direction. The local distortion of the displacement contours near the PMMA bead 

indicated that the proposed DVC algorithm effectively captured non-uniform deformation 

fields near the spherical inclusion.  

The experimentally measured displacement fields in Figure B-13 were compared 

to the analytical solution of the equivalent linear-elasticity problem. Most analytical 

elasticity solutions of the inclusion problem assume the continuity of displacement at the 

interface. Considering the high water content in the agarose gel and the large 

deformations in the sample, the perfect bonding condition is inadequate to accurately 

represent the present experiment. Using the solution of the sliding inclusion problem 

under uniaxial loading [30], the analytical solution of the sliding inclusion problem under 

the laterally-constrained uniaxial compressive loading was constructed by the 

superposition of three mutually-orthogonal uniaxial compression solutions as shown in 

Figure B-9. The contour maps in Figure B-15 show the horizontal and the vertical 

displacement fields of the constructed analytical solution. Qualitative comparisons of the 

contour maps in Figure B-13 and Figure B-15 indicate that the proposed DVC algorithm 

was well-suited for the full-field measurements of non-uniform deformation fields in 

three dimensions. It can be observed that the resolution of the lateral displacement field is 
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superior to the resolution in the vertical displacement, which is due to the blurring effect 

caused by the PSF along the optical axis (vertical direction).  

A contour map of 33 strain components near the inclusion is shown in Figure 

B-16 (a). At the bottom of the inclusion, a region of high strain concentration of up to 

25% strain was visualized. Figure B-16 (b) displays the line-profile of the 33 strain 

component along the central axis in x3-direction. The local compressive strain reaches the 

far field applied strain level at approximately one radius length away from the center of 

the bead. The high strain gradient will decrease the accuracy of the stretch-correlation by 

violating the assumption of uniform stretch deformation. In such cases, iterative 

applications of the DVC using a smaller subvolume will increase the accuracy of the 

measurements since each subvolume will be subjected to a more uniform stretch.  

 

B.6 Conclusions 

A novel experimental technique for measuring 3-dimensional large-deformation 

fields in soft materials has been developed. The technique utilizes the 3-dimensional 

measurement capability of the DVC algorithm in conjunction with the 3-dimensional 

imaging capability of confocal microscopy. Introduction of the stretch-correlation 

algorithm and the deconvolution algorithm greatly improved the strain measurement 

accuracy by providing better precision especially under large deformation. Also, the 

large-deformation measurement capability of the proposed DVC algorithm was 

successfully demonstrated by measuring a uniform deformation field for the case of 

simple uniaxial compression and a non-uniform deformation field surrounding the hard 

spherical inclusion. This new technique should prove itself particularly useful in 
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situations where local three dimensional strain non-uniformities need to be measured 

with high resolution It is expected that the newly developed DVC technique will play a 

major role in characterizing time dependent cell interactions with its surrounding 

extracellular matrix including artificially engineered proteins [31], in three dimensions, 

which will provide valuable insights into the role of mechanical forces on biological 

processes. 
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Table B-1. Standard deviation values for measured displacement and strain fields in the 

undeformed condition.  

 Stationary Translation 

u1 [voxel] 0.0605 0.1392 

u2 [voxel] 0.0541 0.1238 

u3 [voxel] 0.2106 0.6491 

11 (%) 6.39x10-3 4.18 x10-2 

22 (%) 9.80 x10-3 4.96 x10-2 

33 (%) 0.260 0.718 

 

 

Table B-2. Mean and standard deviation values for measured strain fields under uniaxial 

compression. 

No stretch-correlation Stretch-correlation  

Mean Standard 

deviation 

Mean Standard 

deviation 

11 (%) 7.69 x10-3 7.07 x10-2 -3.55 x10-2 7.37 x10-2 

22 (%) 1.14 x10-2 6.83 x10-2 7.75 x10-2 7.11 x10-2 

33 (%) -9.25 0.866 -9.34 0.392 
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Figure B-1. Illustration of the confocal imaging principle  

(solid lines = in-focus light; dashed lines = out-of-focus light) 
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Figure B-2. Schematic illustration of the digital volume correlation (DVC) 
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Figure B-3. One dimensional example of the stretch-correlation procedures 
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 (a)  

(b)  

 

Figure B-4. 2-dimensional projection of confocal subvolume images  

(a) before and (b) after uniaxial compression of 10% in x3-direction. 
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 (a)  

(b)  

 

Figure B-5. Isosurface plots of confocal subvolume images  

(a) before and (b) after deconvolution 
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Figure B-6. Loading fixture for uniaxial compressive loading of soft materials 
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 (a)  

(b)  

Figure B-7. Experimentally measured displacement fields under uniaxial compression  

(a) 3-dimensional displacement vector field and (b) vertical displacement field, u3
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Figure B-8. Schematic of uniaxial constrained compression of a spherical inclusion in a 

matrix with a sliding interface 
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Figure B-9. A confocal slice along the meridian plane of an embedded 100 μm PMMA 

bead within the agarose sample 
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(a)  

(b)  

Figure B-10. Experimentally measured displacement fields near a spherical inclusion 

under uniaxial compression; (a) horizontal and (b) vertical displacement components 
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(a)  

(b)  

 

Figure B-11. Analytical displacement fields near a rigid inclusion with a sliding interface 

under uniaxial constrained compression; (a) horizontal and (b) vertical displacement 

components 
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(a) 

 

(b) 

Figure B-12. Experimentally measured strain fields 33 near a spherical inclusion under 

uniaxial compression. 


